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Abstract. With the widespread popularity of intelligent mobile devices,
massive trajectory data have been captured by mobile devices. Although
trajectory similarity search has been studied for a long time, most exist-
ing work merely considers spatial and temporal features or single-level
semantic features, thus insufficient to support complex scenarios. Firstly,
we define multi-level semantics trajectory to support flexible queries for
more scenarios. Secondly, we present a new “spatial + multi-level seman-
tic” trajectory similarity query, and then propose a framework to find
k most similar ones from a trajectory database efficiently. Finally, to
hasten query processing, we build a multi-layer inverted index for tra-
jectories, design 4 light-weight pruning rules, and propose an adaptive
updating method. The thorough experimental results show that our app-
roach works efficiently in extensive and flexible scenarios.

Keywords: Multi-level semantics · Inverted index · Trajectory similar
query

1 Introduction

With the popularization and development of ubiquitous computing and posi-
tioning technology, users’ location information is frequently collected from daily
life by mobile intelligent devices. The massive trajectory data not only reflect
a person’s daily behavior, but also indicate the activity pattern of a user group
or even the whole city. Therefore, trajectory analysis is involved in many fields,
such as precision marketing, statistical analysis and policy making.

Similarity search is a typical issue in trajectory data management. Given a
query trajectory, the goal is to find one or more trajectories close to it. Currently,
most of the existing works that mainly focus on spatial and temporal features
of trajectory, are lack of effective utilization of trajectories’ semantics. In fact,
with the popularity of intelligent devices and applications, more and more data
beyond space and time are collected and converted into semantic information.
Trajectory similarity search that integrates semantics is more meaningful in real
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life, which therefore supports more scenarios [1]. Moreover, since the semantic
attributes of trajectory points are hierarchical, it can be defined as a specific
attribute name, or an attribute level above the specific attribute name. In most
cases, although semantic attributes may not be identical at the current level, they
may be similar at higher levels. Therefore, comparing the hierarchical seman-
tic similarity between trajectories has wide application, such as transportation
modes and trip purpose. Take Fig. 1 as an example (the X-axis and Y-axis are
longitude and latitude respectively), although the four trajectories are far away
and not similar for spatial dimension, they are similar in transportation mode
and trip purpose for semantic dimension.

Transportation Modes Classification and Planning. Multi-level semantic
trajectories can be queried and applied in a variety of ways, which cannot be
realized simultaneously by single-level semantics. For example, the four trajec-
tories represent four students going to school, where Tr1 and Tr3 take the bus,
Tr4 takes the subway, and Tr2 drives to school. If someone wants to choose
a favorite mode from all possible public transportation modes to school, the
high-level semantics, “Public Transportation”, can be used to query all the tra-
jectories in transportation mode. Moreover, integrating multi-level semantics,
the trajectories with the same destination in the same region can be found as
an alternate path. For example, Tr1 and Tr4 are close in space, and both public
transport. When there are few buses, students on Tr1 (bus) can choose Tr4 (sub-
way) to go to school in the same area through the query of high-level semantics,
“Public Transportation”, and space.

Trip Purpose Classification and Planning. With the combination of low
and high level semantic tags, more personalized services can be provided. For
example, when travelling to Beijing, we not only want to visit the Palace Museum
and the Great Wall (low-level semantic tag), but also taste Beijing’s special
food and theater (high-level semantic tag), which cannot be achieved simultane-
ously with single-level semantics. In this example, with the high-level semantic
tag (“Special Food”), multiple trajectories passing through different specialty
restaurants will be found for people to choose.

Fig. 1. An example of multi-level semantic trajectories.
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However, there are several challenges in trajectory data analysis. Since mas-
sive trajectory data are collected by mobile devices every day, it is challenging
to convert discrete trajectory points into stay points and then attach accurate
semantic tags. In addition, previous studies only considered single-level seman-
tics, and Jaccard Index was usually used to evaluate semantic similarity of tra-
jectories. However, since Jaccard Index no longer works for multi-level semantics,
how to define an appropriate similarity evaluation method is also challenging.
Furthermore, processing large-scale trajectory data raises another challenge. The
conventional methods, which compare trajectories one by one, is quite expensive.
Therefore, it is critical to design efficient pruning methods and feasible indexes
for optimization.

In this paper, we propose a similar trajectory search framework integrating
hierarchical semantic features. We first mine stay points from raw trajectories,
then choose appropriate multi-level semantic tags for each stay point to generate
semantic trajectories. To evaluate the difference between a pair of trajectories,
we define an efficient trajectory distance based on time, space and semantics.
Meanwhile, we introduce spatial and semantic indexes, and propose several light-
weight pruning rules to optimize query processing. To sum up, we make the
following contributions in this paper:

• We introduce a new way to evaluate trajectory distance based on spatio-
temporal and hierarchical semantic features.

• We present an efficient query processing method, which relies on indexes and
four pruning rules.

• We verify the performance of our proposed method on two different real
datasets.

The rest of our paper is organized as follows. Section 2 reviews related work
in recent years. Section 3 defines some important concepts. Section 4 introduces
our novel framework in detail. Section 5 verifies the performance of our proposed
methods through experiments. Section 6 summarizes the paper briefly.

2 Related Work

Trajectory similarity research, a foundational task of trajectory data manage-
ment, plays an important role in many fields, such as traffic management, urban
planning and intelligent recommendation.

Spatio-Temporal Similarity of Trajectory. Early studies mainly focused on
the measurement of spatio-temporal similarity of trajectory [2,3]. To deal with
the case that trajectory points are not aligned, Ta et al. proposed a similarity
measurement method of bidirectional mapping, and then generated a feature
code for each trajectory for rapid pruning [4]. In [5], Shang et al. combined time
and space linearly to calculate trajectory similarity, and proposed a two-stage
algorithm to support parallel retrieval of spatial and temporal dimensions, which
improves query efficiency.
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Semantic Similarity of Trajectory. With the emergence of the blending of
location and text, since more and more trajectories carry text information, more
researches focus on trajectory similarity search with semantics [6,7]. In [8], Zheng
et al. proposed fuzzy keyword query for semantic trajectory. Given a set of query
keywords, by calculating the pairwise semantic edit distance, top-k trajectories
with the smallest distance are returned.

Spatial and Semantics Similarity of Trajectory. He work that combines
space and semantics has also been studied in recent years [9,10]. [11] proposed
a top-k spatial keyword activity trajectory query method, aiming to find a set
of trajectories that both geographically close and semantically meet the query
requirement. Compared with the existing fuzzy keyword query, this query can
find more similar trajectories. In [12], Chen et al. proposed a divide-and-conquer
algorithm to deduce the boundary of spatial similarity and textual similarity
between two trajectories, which realizes trajectory pruning without calculating
the exact value of trajectory similarity and improves the query efficiency.

Although the trajectory similarity search based on spatio-temporal dimen-
sions is intuitive, how to reflect the semantic attribute is challenging. Also, it is
relatively unitary to compute trajectory similarity only from semantic dimen-
sion. Therefore, the combination of space and semantics is more effective and
suitable for more scenarios. But most existing researches only consider single
level semantics, without in-depth consideration of the hierarchy of semantics.
And the existing method of calculating trajectory distance based on single-level
semantics is not suitable for multi-level semantics. Consequently, we define a new
way to compute the distance between trajectories, based on which an efficient
method by integrating several pruning rules is given.

Index of Trajectory. In addition, to improve query efficiency, it is necessary to
build indexes in both spatial and semantic dimensions. [13] described the trajec-
tory representation and storage, and lists the indexing methods for spatial text
trajectory data: quadtree, R-tree, grid index and Z-order curve. Space-efficient
index representations and processing frameworks are crucial for trajectory data,
and the majority of trajectory search solutions [14] rely on an R-tree [15], which
store all points from the raw trajectories. Since trajectory datasets such as T-
drive [16] often contain millions of points, the R-tree must manage an enormous
number of maximum bounding rectangles (MBR), which have prohibitive mem-
ory cost in practice. Simpler Grid-index solutions are sometimes more appropri-
ate in such scenarios [17]. Therefore, we combine grid index and inverted index
to establish spatial index and semantic index.

3 Problem Definition

In this section, we define the query formally, along with some core concepts.

Definition 1. Trajectory (Tr). A trajectory Tr is a series of n points ordered
by time, Tr = (p1, p2, ..., pn), where pi = (ti, loci) means that the moving object
is located at loci at time ti.
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Definition 2. Stay Point (SP ). A stay point s = (loc, len, c) represents that
a moving object has stayed at loc for len time, and c is a label to represent the
corresponding semantics.

As aforementioned in Sect. 1, each stay point may have concrete semantics,
e.g., restaurant, cinema and university. The semantics can be structured hier-
archically. For example, through the POI information of the map and manual
correction, we define the multi-level semantics of Tsinghua University as (educa-
tional institution, school, university, Tsinghua University). Furthermore, some
special multi-level semantics may be customized for different persons, such as
home and working area, as illustrated in Fig. 2.

Fig. 2. An example of semantics.

Definition 3. Semantic Trajectory (ST ). A semantic trajectory ST is
a series of chronological ordered stay points of a moving object, ST =
(s1, s2, ..., sm).

To compute the distance between a pair of semantic trajectories A and B
(Spatial Semantic distance, S2D), we integrate both spatial distance (SpD) and
semantic distance (SeD) at the same time, as shown below.

S2D(A,B) = β · SpD(A,B) + (1 − β) · SeD(A,B) (1)

where β ∈ [0, 1] leverages the importance of each feature. We set β a greater
value if more attention is paid to space, and vice versa. The spatial distance,
SpD(A,B), is computed as normalized Euclidean distance.

SpD(A,B) =

⎧
⎪⎪⎨

⎪⎪⎩

|A|∑

i=1

‖A.loci, B.loci‖, |A| ≤ |B|

MAX DIST, |A| > |B|
(2)

‖A.loci, B.loci‖ =
dis(A.loci, B.loci) − minDis

maxDis − minDis + 1
(3)
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where dis(A.loci, B.loci) represents the Euclidean distance between point A.loci
and B.loci, maxDis and minDis are the maximum and minimum values of the
distance between track A and B.

According to Eq. (2), if the length of B is smaller than that of A, we simply
return MAX DIST , a specific BIG value. Otherwise, we compare the first |A|
pairs of points. Note that SpD(A,B) = SpD(B,A) only if |A| = |B|. If |A| �= |B|,
SpD(A,B) �= SpD(B,A). In comparison, the semantic distance, SeD, is a bit
more complex, since the two labels may be identical at any level, or totally dif-
ferent at all levels. Hence, the semantic difference between two labels, sd(c1, c2),
and the overall semantic distance between two semantic trajectories, SeD(A,B),
are defined below.

sd(c1, c2) =

⎧
⎪⎨

⎪⎩

0, c1 = c2

1 − αg, identical in the upper g-th level
1, different at all levels

(4)

SeD(A,B) =

⎧
⎪⎪⎨

⎪⎪⎩

|A|∑

i=1

sd(A.ci, B.ci), |A| ≤ |B|

MAX DIST, |A| > |B|
(5)

where α ∈ (0, 1) in Eq. (4) reflects the decay rate. ∀c1, c2, sd(c1, c2) ∈ [0, 1]. We
use α to control the decay rate of semantic distance if two labels are identical at
the g-th upper level, i.e., a smaller α value means higher decay rate.

Definition 4. Spatial Semantic Similar query (S2Sim query). Given a
set of semantic trajectories Φ = {ST1, ST2, ..., STg}, a query trajectory q, an
adjustment coefficient β and an integer k, S2Sim(Φ, q, β, k) query returns a
subset Φ′, such that (1) |Φ′| = k, and (2) for any STi ∈ Φ′ and STj ∈ Φ \ Φ′,
S2D(STi, q) ≤ S2D(STj , q).

Take Fig. 1 as an example, suppose ST1 is a query trajectory, k = 1 and
α = 0.7. Table 1 illustrates S2D values between ST1 and others in different β.
If we consider space and semantics equally (β = 0.5), we return ST4 because
S2D(ST1, ST4) = 0.5 × 8.74 + 0.5 × 0.6 = 4.67 is the minimal one. Similarly,
if we only focus on semantics (β = 0) or space (β = 1) respectively, the query
result is ST3 or ST2 accordingly.

Table 1. S2D between ST1 and other three trajectories in different β.

ST SpD SeD S2D wSpD wSeD S2D

β = 0 β = 0.5 β = 1 β = 0 β = 0.5 β = 1

ST2 7.81 2.3 2.3 5.06 7.81 1.857 0.536 0.536 1.197 1.857

ST3 20.02 0 0 10.01 20.02 4.504 0 0 2.252 4.504

ST4 8.74 0.6 0.6 4.67 8.74 1.833 0.005 0.005 0.919 1.833
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wSpD(A,B) =

⎧
⎪⎪⎨

⎪⎪⎩

|A|∑

i=1

wi · ‖A.loci, B.loci‖, |A| ≤ |B|

MAX DIST, |A| > |B|
(6)

wSeD(A,B) =

⎧
⎪⎪⎨

⎪⎪⎩

|A|∑

i=1

wi · sd(A.ci, B.ci), |A| ≤ |B|

MAX DIST, |A| > |B|
(7)

As a moving object may stay at a stay point for different time length, the
stay time length also acts as an important factor, which results in a weighted
version. Equation (6) and (7) depict the weighted version of distance, where the
i-th weight is wi = min (A.leni,B.leni)

∑min (|A|,|B|)
j=1 min (A.lenj ,B.lenj)

.

The right part of Table 1 shows the weighted distance, where the stay time
length of each stay point comes from in Fig. 1. If we consider space and semantics
equally (β = 0.5), we return ST4 because S2D(ST1, ST4) = 0.5 × 1.833 + 0.5 ×
0.005 = 0.919 is the minimal one. Similarly, if we focus on semantics (β = 0) or
space (β = 1) respectively, the query result is ST3 or ST4 accordingly.

4 Framework

In this section, we detail our framework, shown in Fig. 3. Our framework contains
three parts: semantic trajectory generation, index construction and query pro-
cessing. In the first part, stay points are generated and then tagged with concrete
semantics. In index construction part, we build spatial index and semantic index
to quickly retrieve trajectories. Furthermore, we propose several pruning rules to
quickly update the candidate set. Finally, we return top-k similar trajectories.

Fig. 3. Processing framework.
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4.1 Semantic Trajectory Generation

To generate semantic trajectory, we mine stay points from raw trajectories, and
then set appropriate labels. Algorithm 1 describes the steps to generate semantic
trajectory. The first point is initialized as the left endpoint of a segment (line 1). If
a segment (pl, ..., pr−1) satisfies the conditions ‖locr, locl‖ > δdis and tr −tl ≥ δt,
it means ‖locr−1, locl‖ ≤ δdis and we treat the mean of this segment as a stay
point and put it into st (lines 3–6). Otherwise, if tr − tl < δt, we ignore this
segment and update the left endpoint (line 7). After traversing all points, if
l < |Tr|, it means ‖loc|Tr|, locl‖ ≤ δdis. And if t|Tr| − tl ≥ δt, we also treat the
mean of the segment (pl, ..., p|Tr|) as a stay point and put it into st (lines 10–12).

After getting stay points, we select the nearest point of interest (POI) as
semantic label. Finally, the raw trajectory Tr is transformed into a semantic
trajectory st.

Algorithm 1. GenST
Input: Tr: raw trajectory, δdis: distance threshold, δt: temporal threshold;
Output: st: semantic trajectory;
1: l ← 1, st ← ∅;
2: for r = 2 to |Tr| do
3: if ‖locr, locl‖ > δdis then
4: if tr − tl ≥ δt then
5: s.loc ← the center of points pl, ..., pr−1, s.len ← tr − tl, st.add(s);
6: end if
7: l ← r;
8: end if
9: end for

10: if l < |Tr| and t|Tr| − tl ≥ δt then
11: s.loc ← the center of points pl, ..., p|Tr|, s.len ← t|Tr| − tl, st.add(s);
12: end if
13: return st;

4.2 Query Processing

The most straightforward solution to find similar trajectories is to scan the
whole trajectory database, and compute the distance to the query trajectory
one by one, which is, however, inefficient for large-scale dataset. To improve
query efficiency, it is necessary to build indexes in both spatial and semantic
dimensions, and propose efficient light-weight pruning rules, which is the basic
idea of this paper.

Index Construction. We have combined grid index and inverted index to
establish spatial index and semantic index. According to the proposed trajec-
tory similarity formula, we calculate the spatial and semantic distance point by
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point. Therefore, we put the i-th point of each trajectory together to construct
hierarchical spatial and semantic index. The final number of levels is determined
by the longest trajectory in the dataset.

For spatial dimension, we use grid index to handle trajectories, where the
whole space is divided into multiple basic cells with same size, and each tra-
jectory is mapped to the corresponding cell. Let a and b denote two arbi-
trary points in the space, function mindis(cell(a), cell(b)) computes the min-
imal distance between two cells containing a and b respectively. Note that
mindis(cell(a), cell(b)) = 0 if they are at the neighbor cell. For semantic dimen-
sion, we build an inverted index for semantic information. And each node is
represented as (c, trs), where c refers to the label and trs is a set of trajectories.
Since the label is structured hierarchically, function upper(ci, g) gets the label
in the g-th upper level. For example, upper (bus station, 1) = transportation,
since transportation is the highest level of bus station, as shown in Fig. 2.

Index Maintenance. When a new trajectory is added to the database, it is
unnecessary to rebuild the existing index, but only to update it incrementally.
Spatial index and semantic index have the same essential structure, which are
both multilevel inverted index.

Fig. 4. An example of spatial and semantic indexes.

Figure 4 illustrates the spatial and semantic indexes for the trajectories in
Fig. 1. The maximum number of four trajectories is 4, so the spatial index and
semantic index have 4 levels respectively. The left part is spatial index, where
the space is divided into 24 cells, each with a size of 2 km × 2 km. The minimal
distances between cell43 and cell42, cell23 and cell21 (calling mindis function)
are 0, 2 and 2

√
2, respectively. The right part is semantic index, and each level is

a tree-based structure, which satisfies the hierarchy of semantics. One trajectory
may fall on many nodes, and one node will contain many trajectories. So, we
can easily get trajectories using one semantic label. At level 2, ST1 and ST3 will
be quickly extracted via “Bus Station”.
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Pruning Rules. Besides indexing, it is necessary to devise light-weight pruning
rules to hasten query processing. In other words, given partial information, we
are capable of judging whether a trajectory is a candidate or not. The main
idea is that the distance between two trajectories can be accumulated point by
point. Consequently, if the partial distance based on one or several stay point(s)
is evaluated exceeding a given threshold, the whole trajectory can be filtered
safely.

Pruning Rule 1 (Spatial Pruning). Given an upper bound τ , an adjustment
parameter β, a query semantic trajectory q, and an arbitrary semantic trajectory
r, S2D(q, r) > τ if there exist positions i1, i2, ..., id, such that

d∑

j=1

mindis(cell(q.locij ), cell(r.locij )) >
τ

β
(8)

Proof. According to Eq. (2), we have:

SpD(q, r) ≥
d∑

j=1

‖ q.locij , r.locij ‖≥
d∑

j=1

mindis(cell(q.locij ), cell(r.locij )) >
τ

β

Integrating with Eq. (1), we have S2D(q, r) ≥ β · SpD(q, r) > τ . 	

Pruning Rule 2 (Semantic Pruning). Given an upper bound τ , an adjust-
ment parameter β, a query semantic trajectory q, and an arbitrary semantic
trajectory r, S2D(q, r) > τ if there exist positions i1, i2, ..., id, such that

d∑

j=1

sd(q.cij , r.cij ) >
τ

1 − β
(9)

Proof. According to Eq. (5), we have:

SeD(q, r) ≥
d∑

j=1

sd(q.cij , r.cij ) >
τ

1 − β

Integrating with Eq. (1), we have S2D(q, r) ≥ (1 − β) · SeD(q, r) > τ . 	


Framework. We propose a query framework which is Top-k similar trajectories
query based on Indexes and Pruning (TKIP). In Algorithm 2, we get spatial and
semantic candidate sets according to Algorithm 3 and 4 at first, then we get top-k
similar trajectories from the candidate set. Among them, the selection of spatial
candidate set needs to calculate the nearest spatial distance. In order to improve
the calculation efficiency, we generate cell distance coordinate pair set DcSet
in advance and arrange them in ascending order of distance. Specifically, the
DcSet contains two elements, the cell distance value dist, and its corresponding
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Algorithm 2. TKIP
Input: ISP : spatial index, ISE: semantic index, q: query trajectory, DcSet, β, k;
Output: Ψ : top-k similar trajectories;
1: τ ← ∞, Ψ ← ∅, g ← 0, step ← 0, σ ← 0, lb1 ← 0, lb2 ← 0;
2: while lb1 · β + lb2 · (1 − β) ≤ τ do
3: if β=1 then
4: S ← GetSpCandidate(q, ISP, step, DcSet), step ← step + 1;
5: else if β=0 then
6: S ← GetSeCandidate(q, ISE, g), g ← g + 1;
7: else
8: S1 ← GetSpCandidate(q, ISP, step, DcSet);
9: S2 ← GetSeCandidate(q, ISE, g);

10: S ← S1 ∪ S2, step ← step + 1, σ ← σ + (1 − β), g ← g + 	σ
;
11: end if
12: S ← remove trajectories in S which length less than |q|;
13: if S �= ∅ then
14: Ψ ← k nearest trajectories in Ψ ∪ S, τ ← max ({S2D(q, r)|r ∈ Ψ});
15: end if
16: lb1 ← DcSetstep.dis, lb2 ←semantic distance of the g-th level;
17: end while
18: return Ψ ;

coordinate pair CoorSet. And the CoorSet contains the cell distance between
X-axis and Y-axis formed as (Δx,Δy).

Algorithm 2 details the steps to process TKIP. We first initialize upper bound
τ , candidate set Ψ , the level of multi-level semantics g, current distance step,
adjusting parameter σ, spatial lower bound lb1 and semantic lower bound lb2
(line 1). For each iteration, we use the pruning rules to determine whether to
terminate the algorithm (line 2). If not, we should determine the value of param-
eter β at first. If β = 0 or 1, then we only need to get a candidate set of one
dimension, spatial or semantic, and update the corresponding parameters step
or g (lines 3–6). Otherwise, both the spatial and semantic candidate sets are
generated to get the final candidate set, and the parameter step, σ and g are
updated accordingly (lines 7–10). Furthermore, we remove the trajectories in S
whose trajectory length is less than |q| (line 12). If candidate set S is not empty,
we keep the k nearest trajectories in Ψ and update threshold τ (lines 13–15).
At the end of each iteration, we update the lower bounds lb1 and lb2 (line 16).
Finally, Ψ only contains the top k similar trajectories.

Algorithm 3 details the steps to get the spatial candidate set of similar tra-
jectories. We first initialize spatial candidate set S1 (line 1). For i from 1 to |q|,
we get the cell id of the i-th point in q and all the cell id in the i-th level of ISP .
According to the DcSet, we get the set of coordinate pairs corresponding to the
current step, generate the corresponding candidate cells based on the query cell
and put them in set DS. Next we take the intersection of cells which unmarked
in DcSet and HCI as the candidate set and put them in S1 (lines 2–7). Finally,
we mark the trajectories in S1 in the index to prevent re-access (line 8). The
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Algorithm 3. GetSpCandidate
Input: q: query trajectory, ISP : spatial index, step: current distance step, DcSet;
Output: S1: spatial trajectory candidate set;
1: S1 ← ∅;
2: for i from 1 to |q| do
3: h ← cell(q.loci) , HCI ← get all the cell id in the i-th level of ISP ;
4: A ← DcSetstep.CoorSet, DS ← {h.x + A.Δx, h.y + A.Δy};
5: mTr ← unmarked trajectories in DS ∩ HCI;
6: S1 ← S1 ∪ mTr;
7: end for
8: Mark the trajectories in S1 in the index to prevent re-access;
9: return S1;

Algorithm 4. GetSeCandidate
Input: q: query trajectory, ISE: semantic index, g;
Output: S2: semantic trajectory candidate set;
1: S2 ← ∅;
2: for i from 1 to |q| do
3: r ← upper(q.ci, g) , R ← Get i-th level of ISE;
4: Tr ← trajectories in the g-th level from R which contians r and unmarked;
5: S2 ← S2 ∪ Tr;
6: end for
7: Mark the trajectories in S2 in the index to prevent re-access;
8: return S2;

semantic candidate set is obtained in a manner similar to the spatial candidate
set, as detailed in Algorithm 4.

When updating the candidate set, we use a priority queue to maintain the
candidate set and its complexity is O(log k). Therefore, the time complexity is
O(L · |S| · (|q|+ log k)), where O(L) is the number of iterations and O(|S| · (|q|+
log k)) is the cost of updating the candidate set.

4.3 Weighted Query Processing

Our proposed framework (Algorithm 2) still works for weighted query version
(wTKIP), except the pruning rules should be modified accordingly. The com-
plexity of this weighted version (wTKIP) is the same as the original version
(TKIP). To simplify the formula and proof, let λi = min (q.leni,r.leni)

q.length , where

q.length =
∑|q|

j=1 q.lenj means the total stay time length of q. According to

Eq. (6) and (7), the weight wi is computed as min (q.leni,r.leni)
∑min (|q|,|r|)

j=1 min (q.lenj ,r.lenj)
, where

∑min (|q|,|r|)
j=1 min (q.lenj , r.lenj) is within [min (q.leni, r.leni), q.length]. Thus, wi

is within [λi, 1].

Pruning Rule 3 (Weighted Spatial Pruning). Given an upper bound τ ,
an adjustment parameter β, a query semantic trajectory q, and an arbitrary
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semantic trajectory r, S2D(q, r) > τ if there exist positions i1, ..., id, such that

d∑

j=1

λij · mindis(cell(q.locij ), cell(r.locij )) >
τ

β
(10)

Proof. According to Eq. (6), we have:

SpD(q, r) ≥
d∑

j=1

wij · ‖ q.locij , r.locij ‖

≥
d∑

j=1

wij · mindis(cell(q.locij ), cell(r.locij ))

≥
d∑

j=1

λij · mindis(cell(q.locij ), cell(r.locij )) >
τ

β

Integrating with Eq. (1), we have S2D(q, r) ≥ β · SpD(q, r) > τ . 	

Pruning Rule 4 (Weighted Semantic Pruning). Given an upper bound τ ,
an adjustment parameter β, a query semantic trajectory q, and an arbitrary
semantic trajectory r, S2D(q, r) > τ if there exist positions i1, ..., id, such that

d∑

j=1

λij · sd(q.cij , r.cij ) >
τ

1 − β
(11)

Proof. According to Eq. (7), we have:

SeD(q, r) ≥
d∑

j=1

wij · sd(q.cij , r.cij ) ≥
d∑

j=1

λij · sd(q.cij , r.cij ) >
τ

1 − β

Integrating with Eq. (1), we have S2D(q, r) ≥ (1 − β) · SeD(q, r) > τ . 	


5 Experiments

In this section, we evaluate our proposed framework upon two real datasets. One
dataset named NJ is the base-station access logs of 5,000 users in Nanjing from
Oct. 10 to Oct. 31, 2020. Another dataset named SZ is the base-station access
logs of 8,000 users in Suzhou from Mar. 10 to Mar. 31, 2021. The sizes of the two
datasets are about 3.4 GB and 6.17 GB respectively. In addition, we use a real
file with 982,200 POIs containing real location and the corresponding multi-level
semantic information. All codes were written in C++. The experiments run on
a PC with Windows 10 Pro, Intel(R) Core(TM) i7-8550U CPU @1.80 GHz, and
16 GB of RAM.
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We transform the raw trajectories into semantic trajectories by setting
δdis = 1 km and δt = 900 s, then we can get 90,423 and 154,096 semantic trajec-
tories respectively. As mentioned above, since no existing work considers spatial
dimension and hierarchical semantics at the same time, we use LINEAR and
weighted LINEAR (wLINEAR) as the baseline methods, which computes the
distance between the query trajectory and other trajectories one by one. LIN-
EAR directly traverses the trajectory set, calculates the distance using the tra-
jectory distance formula S2D defined in this paper, and returns the closest one.
The difference between wLINEAR and LINEAR is that wLINEAR calculates
the distance using the weighted trajectory distance formula S2D.

We build spatial index and semantic index in this paper. Figure 5 illustrates
the construction time and memory consumption of index under different factors
and datasets.

As shown in Fig. 5(a) and (d), with the increment of dataset size, the index
construction time and memory consumption also rise accordingly. Figure 5(b)
and (e) show that with the increase of grid cell size, the construction time of
spatial index changes little, and the memory consumption tends to decrease
due to the reduction of the number of cells that need to be placed in memory.

(a) Time cost of index
construction

(b) Time cost upon
different grid size

(c) Time cost upon
different levels of semantics

(d) Space consumption of
index construction

(e) Space consumption
upon different grid size

(f) Space consumption
upon different levels of

semantics

Fig. 5. Index construction time and memory on different factors.
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Figure 5(c) and (f) illustrate that with the increment of semantic level, the con-
struction time and memory consumption of semantic index will increase signifi-
cantly. Moreover, the level of semantics will lead to different depth and number
of nodes in semantic index. In conclusion, through the analysis of the above
experiments, it is found that the index construction time will not increase sig-
nificantly with the increase of semantic level or the number of grid cells, and
basically remains unchanged. This shows that our index structure is reasonable
and efficient.

5.1 Performance Comparison

We report the performance of our framework by comparing with the baseline
methods. We randomly select one query trajectory, and use our algorithms and
baseline methods to process queries in different dataset size and record these
query times.

Figure 6(a) reports the performance comparison. We observe that TKIP
and wTKIP are much faster than LINEAR and wLINEAR in different cases.

(a) dataset size (b) β (c) k

(d) |q| (e) α (f) grid cell size

(g) level of semantics (h) TKIP (i) wTKIP

Fig. 6. Query efficiency on different factors.
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However, due to different data structures of SZ and NJ, the results presented
by the two experimental datasets are not completely consistent. There is also
slight difference in query performance between different query methods. When
the NJ dataset size is 90k, TKIP and wTKIP only take about less than 50 ms,
while LINEAR and wLINEAR take about 500 ms.

5.2 Parameter Analysis

Then, we investigate the impact of the parameters. We randomly select one
query trajectory to process queries under different parameters, and record query
time and pruning rate (PR).

Figure 6(b) shows that the influence of β on query efficiency and pruning
rate under different experimental data. Query efficiency is highest when β=0 or
1, because only one distance, spatial or semantic distance, is concerned at this
time, thus greatly reducing the query time. In other cases, the higher the β value,
the lower the query efficiency. This is because spatial features will receive more
attention when β increases, and the query efficiency of spatial indexes is lower
than that of semantic indexes, because the pruning rules of semantic indexes are
simpler than those of spatial indexes. Figure 6(c) shows that with the increase
of k, the query efficiency decreases. The reason is that the greater the k value is,
the greater the upper bound τ will be, which may reduce the pruning efficiency.
Figure 6(d) shows that with the increase of |q|, the query efficiency may be
reduced. Because the calculation time of the trajectory distance is a factor that
affects the efficiency, which is proportional to the length of the trajectory.

In summary, we find that parameter settings do affect query time and pruning
rate. Moreover, the query time is not only determined by the pruning rate, but
also other factors, such as the time consumed by merging trajectories.

5.3 Analysis of Indexes and Pruning Rules

We first analyze the impact of different α and index structures on query efficiency,
and then compare pruning rules, finally verify the effectiveness.

Figure 6(e) shows the query efficiency on different α. The result shows that
a smaller α may reduce the query time. And the weighted query method is
more deeply affected by α than the unweighted query method. Moreover, when
α = 0.4, there will be an inflection point when query time increases. In addition,
Fig. 6(f) and (g) illustrate the query efficiency under different grid cell size and
semantic level, respectively. We find that with the increase of grid cell size,
query efficiency decreases, but the effect is insignificant. Due to the different
data distribution of the two experimental datasets, the efficiency of weighted
query based on the experimental data of SZ is generally low, mainly due to the
low pruning rate. Moreover, the level of semantics has little influence on the
query efficiency, whether weighted or unweighted.

Our pruning rules determine whether the partial distance based on one or
several stay point(s) exceeds a threshold. Single point pruning only considers
one point, while multi-points pruning considers as many as points as possible.
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To compare the efficiency of single point and multi-points pruning, we record
the query time and pruning rate under two pruning rules. Figure 6(h) and (i)
illustrate the comparison of TKIP and wTKIP respectively. Figure 6(h) shows
the query efficiency of multi-point pruning is higher than single-point pruning
under TKIP. However, under wTKIP, as shown in Fig. 6(i), the weight of query
method has a great influence on pruning methods.

6 Conclusion

In this paper, we study similarity search, a typical issue in trajectory data man-
agement. Unlike most existing works that only focus on spatio-temporal and
single-level semantic features, we integrate multi-level semantic features and
propose a framework to find top-k similar trajectories efficiently. We first build
spatial and semantic indexes to quickly retrieve trajectories. To improve query
efficiency, we also propose several light-weight pruning rules to filter invalid tra-
jectories and update the candidate set continuously and an adaptive updating
method of candidate set based on β value. In practice, parameter β is used to
adjust spatial and semantic attention, so as to adapt to more scenarios. The
experiments based on real datasets show that our approach is not only efficient,
but also suitable for flexible scenarios.

In future, we intend to improve our index structure, and propose more prun-
ing rules to filter out more illegal trajectories in time. Furthermore, we also
intend to analyze the scenarios with different β value.
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