
SEPoW: Secure and Efficient Proof
of Work Sidechains

Taotao Li1,2(B), Mingsheng Wang1,2, Zhihong Deng1, and Dongdong Liu1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{litaotao,wangmingsheng,dengzhihong,liudongdong}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Since the advent of sidechains in 2014, they have been
acknowledged as the key enabler of blockchain interoperability and
upgradability. However, sidechains suffer from significant challenges such
as centralization, inefficiency and insecurity, meaning that they are rarely
used in practice. In this paper, we present SEPoW, a secure and effi-
cient sidechains construction that is suitable for proof of work (PoW)
sidechain systems. The drawbacks for the centralized exchange of cross-
chain assets in the participating blockchains are overcome by our decen-
tralized SEPoW. To reduce the size of a cross-chain proof, we introduce
merged mining into our SEPoW such that the proof consists of two Merkle
tree paths regardless of the size of the current blockchain. We prove that
the proposed SEPoW achieves the desirable security properties that a
secure sidechains construction should have. As an exemplary concrete
instantiation we propose SEPoW for a PoW blockchain system consis-
tent with Bitcoin. We evaluate the size of SEPoW proof and compare it
with the state-of-the-art PoW sidechains protocols. Results demonstrate
that SEPoW achieves a proof size of 416 bytes which is roughly 123×,
510× and 62000× smaller than zkRelay proof, PoW sidechains proof and
BTCRelay proof, respectively.

Keywords: Sidechains · Merged mining · Decentralized construction ·
Succinct proof · Proof of work

1 Introduction

Since blockchain technology was introduced by Satoshi [1] in 2008, various
blockchains with different characteristics and their applications have been gain-
ing increasing attention and adoption by communities. However, blockchains
suffer from several fundamental open questions [2], as organized below: (i) Inter-
operability: How can assets or other data be interoperated and transferred among
different blockchains? (ii) Upgradability: How can a new functionality and an
implementation problem, e.g., smart contract and transaction malleability [3],
be supported and corrected in a deployed blockchain?
c© Springer Nature Switzerland AG 2022
Y. Lai et al. (Eds.): ICA3PP 2021, LNCS 13157, pp. 376–396, 2022.
https://doi.org/10.1007/978-3-030-95391-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95391-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-95391-1_24


SEPoW: Secure and Efficient Proof of Work Sidechains 377

Fortunately, a major approach to overcoming the above-raised questions is to
use sidechains [4], which are a technology that can allow different blockchains
to communicate with each other and react to events taking place in the other
as desired. At present, sidechains have two forms. The former is parallel chains.
This means that any two chains, for example, Bitcoin [1] and Ethereum [5], are
treated as equals; any of them can be the sidechain of the other. The latter is
parent-child chains. In this case, a sidechain can be a “child” of a parent chain;
the child chain is somehow bootstrapped from the parent chain.

There are, however, concerns regarding the deficiency of security and effi-
ciency in existing constructions for proof of work sidechains [2,4,6–13], which
are explained as below:

• Some existing constructions for sidechains are highly centralized making them
resistant to change, vulnerable to attacks and failures [14–16]. For example,
trusted intermediaries on the involved blockchains are responsible for main-
taining and managing the exchange of cross-chain assets, which will inevitably
lead to a single-point-failure. Moreover, centralized constructions cast a major
contradiction to the decentralized nature of blockchain.

• Cross-chain proof used for testifying the validity of cross-chain assets, consist-
ing of a list of block headers that increases linearly with the size of the entire
blockchain as well as a cryptographic proof, is fairly large, which reduces the
efficiency of the constructions and limits potential scalability development.

• About security properties, many constructions for sidechains lack formal def-
inition and rigorous proof. The security of cross-chain assets transfer can not
be guaranteed. Even worse, when a sidechain is corrupted, another sidechain
is unable to avoid the damage caused by that compromised sidechain.

Those challenges motivate our work.

1.1 Our Contributions

We present SEPoW, a secure and efficient construction that is suitable for proof of
work sidechain systems, to complement deficiencies in the security and efficiency
in existing constructions for proof of work sidechains.

In this work, we show that our SEPoW is decentralized and allows bidirec-
tional communication between proof of work blockchains without trusted inter-
mediaries. This means that the exchange of all cross-chain assets is managed not
by a centralized party but by all honest nodes in participating blockchains.

To reduce the size of a cross-chain proof, we introduce the merged mining
mechanism into our SEPoW such that a public chain of block headers is shared by
the participating blockchains. Exploiting this, the proof consists of two Merkle
tree paths: a transaction Merkle tree path and a merged Merkle tree path; their
sizes depend on the number of transactions included in a block and the number
of participating blockchains, respectively, regardless of the size of the current
blockchain.

Next, we prove the security of SEPoW using a secure cross-chain proof proto-
col and a collision resistant hash function. Our SEPoW captures: (i) cross-chain



378 T. Li et al.

assets can be transferred securely when the security assumptions of the partic-
ipating blockchains are held, namely that an honest majority of computational
power exists in the participating blockchains, and (ii) the firewall property main-
tained by SEPoW guarantees that any catastrophic blockchain corruption, such
as a violation of the blockchain security assumptions, does not impact other
blockchains.

Further, we present a concrete exemplary construction for proof of work
sidechains. For conciseness our SEPoW is outlined with regard to a generic proof
of work (PoW) blockchain consistent with the Bitcoin protocol [1] that underlies
the Bitcoin blockchain, which is the most popular PoW blockchain so far.

We also evaluate the size of SEPoW proof and compare it with the state-
of-the-art PoW sidechains protocols. Results demonstrate that SEPoW achieves
a proof size of 416 bytes which is roughly 123x, 510x and 62000x smaller than
zkRelay proof [12], PoW sidechains proof [7,17] and BTCRelay proof [6] for the
blockchain length of 300000 and a 1 MBytes block.

1.2 Organization

The rest of this paper is organized as follows. In Sect. 2, preliminaries of SEPoW
are introduced. We provide an exemplary concrete construction for proof of
work sidechains in Sect. 3. The security of SEPoW and the discussion of merged
mining are proved and presented in Sect. 4 and Sect. 5, respectively. In Sect. 6,
we evaluate the size of SEPoW proof and compare it with the state-of-the-art
work. Related works are proposed in Sect. 7. We conclude this paper in the last
section.

2 Preliminaries

2.1 Cross-Chain Proof Protocol

We introduce a cross-chain proof protocol [17] that attests to the validity of
cross-chain transactions into SEPoW. In this protocol the prover is a miner or
full node on a chain denoted by C1; the verifier does not have access to C1, but
holds a list of block headers on the chain denoted by C2 he/she participates in.
The prover wants to convince the verifier that the predicate (i.e., the transaction
tx is confirmed in C1) is true by sending a valid proof.

The definition of a cross-chain proof protocol is given below.

Definition 1 (Cross-chain proof protocol). A cross-chain proof protocol for
a predicate q (i.e., an event occurred on blockchain) is a pair of probabilistic
polynomial time (PPT) algorithms (P, V) such that:

• P. The algorithm takes as input a full chain C, and outputs proof π about the
predicate q. We note this as π ← P (C).

• V. The algorithm takes as input a proof π produced by an honest node or a
malicious node, and outputs a decision d ∈ {T, F}. We note this as d ← V
(π). The predicate q is true if V(π) = T and false otherwise.



SEPoW: Secure and Efficient Proof of Work Sidechains 379

A desired security property of a cross-chain proof protocol is shown as follows.

Definition 2 (Security). A cross-chain proof protocol for a predicate q is
secure if for all environments and for all PPT adversaries A and for all rounds
r ≥ ηk, if V receives a set of proofs Π at the beginning of round r, at least one
of which has been generated by the honest prover P, then the output of V at the
end of round r has the following constraints:

– If the output of V is false, then the evaluation of q for all honest nodes must
be false at the end of round r − ηk.

– If the output of V is true, then the evaluation of q for all honest nodes must
be true at the end of round r + ηk.

Note that the parameter η represents the rate at which new blocks are pro-
duced and k is the number of subsequent blocks. See more details in [17].

2.2 Merged Mining

To generate a succinct cross-chain proof for a predicate, we introduce a merged
mining mechanism [18,19] that allows a miner to produce multiple blocks at dif-
ferent chains with a single PoW solution. Exploiting this, a public chain of block
headers, produced and maintained by the miners running the merged mining,
is shared by the participating sidechains. Thus, the proof is only two Merkle
tree paths: a transaction Merkle tree path and a merged Merkle tree path. As
an exemplary concrete instantiation, in Sect. 3.1.4 we describe how a merged
mining mechanism is useful for generating a succinct proof for a predicate.

Miners are allowed to perform merged mining for all involved sidechains based
on their mining power. The process of the merged mining is as follows.

• Step 1 (Build merged-block-header). Miners will verify transactions for all
involved c sidechains (an efficient way that verifies all transactions without
monitoring all sidechains is given in Sect. 5) and collect c transaction Merkle
tree root ri, i.e., part C in Fig. 1a. Then, the miners calculate the root mr
(part B in Fig. 1a) of the merged Merkle tree over the leaves encoded from
the following txroots:

(r1, r2, ..., rc). (1)

• Step 2 (Search for nonce). Without merged mining, similar to Bitcoin, miners
are required to search for n nonce ne that each satisfies

H(pub, r, ne) ≤ T . (2)

Where pub denotes public block parameters described in part A in Fig. 1a.
With merged mining, miners only need to search for a nonce ne that satisfies

H(pub,mr, ne) ≤ T . (3)

Here we assume the difficulty target T is the same for all involved sidechains.



380 T. Li et al.

Fig. 1. The construction of a merged-block (a) and a mining facility (b).

• Step 3 (Diffuse block). Upon finding a valid ne, the miner will compose
sidechain-specific merged-blocks and send them to corresponding sidechain
networks, as described in Fig. 1b. It is worth pointing out that a merged-
block-header is shared by these merged-blocks. As shown in Fig. 1b, for each
sidechain, a merged-block includes a merged-block-header and a merged-
block-body. A merged Merkle tree path p connecting r to mr is used to
verify whether r is tied in the corresponding merged-block-header.

• Step 4 (Extend blockchain). In each sidechain, miners and full nodes verify the
merged-block according to the specification of a block. Then the sidechain-
specific merged-block will be appended in the corresponding sidechain if it is
considered valid.

2.3 Security Definition of Sidechains

The first security definition of sidechains was introduced by Gaži et al. [2]. In a
secure sidechains system, two fundamental properties, persistence and liveness,
are necessary because a robust public transaction ledger must satisfy persistence
and liveness [20]. Especially, a critical security feature that a secure sidechains
system should have is the firewall property in which any catastrophic chain
corruption, such as a violation of the chain security assumptions, does not impact
other chains.

A formal security definition of sidechains is presented as follows.

Definition 3 (Sidechains security). A system-of-sidechain ledgers protocol
Π for {Li}i∈[c] is pegging-secure with liveness parameter u ∈ N with respect to:

– a set of assumptions Ai for ledgers {Li}i∈[c],
– a merge mapping merge (·),
– validity languages VA for each A ∈ ⋃

i∈[c] Assets (Li),

if for all PPT adversaries, all rounds r and for Sr � {i : Ai[r] holds } we
have that except with negligible probability in the security parameter:

• Ledger persistence: For each i ∈ Sr,Li satisfies the persistence property.
• Ledger liveness: For each i ∈ Sr,Li satisfies the liveness property
parametrized by u.



SEPoW: Secure and Efficient Proof of Work Sidechains 381

• Firewall: For all A ∈ ⋃
i∈Sr

Assets (Li)

πA (merge ({L∪
i [r] : i ∈ Sr})) ∈ πSr

(VA) .

Where Ai denotes the security assumption of a ledger Li. For instance, a
majority of authority (computational power, stakeholding, or node) is never
controlled by the adversary. merge(·) is a function that combines a set of ledger
states ST = {L1,L2, ...,Lc} into a single ledger state denoted by merge(ST). A
concrete instantiation of merge(·) we will give later. For each asset denoted by
A, the validity language VA can capture specific rules of behavior for A, e.g., an
asset A is transferred from a chain to the other chain. Note that Assets (L) is
the set of all assets that belong to the ledger L. π is a ledger state projection.
Specifically speaking, πA (L) denotes the projection of the transactions of L with
respect to the asset A.

2.4 An Example of an Asset A

In this part we describe an example of a fungible asset A, and present the validity
language VA with respect to the asset A. This example is a modification version
based on an asset example in [2].

Instantiating VA. For validity language VA we consider two ledger: the main-
chain ledger L1 � MC and the sidechain ledger L2 � SC. For the asset A, each
transaction tx has the form tx = ((oAddr, utxo, σ), (dAddr, a, π)), here:

– oAddr is an origin address on the origin ledger Lori. Note that a bitcoin address
is derived from its public key.

– utxo is an unspent transaction output. A utxo represents the unspent
amount, and is locked by the private key held by the sender.

– σ is a signature generated by the sender on the metadata ((oAddr, utxo),
(dAddr, a, π)), which is used to unlock a utxo.

– dAddr is a destination address on the destination ledger Ldes. We say either
Lori = Ldes, meaning that tx is a local transaction, or Lori �= Ldes, meaning
that tx is a cross-chain transfer transaction.

– a is the transfer amount.
– π is the succinct proof data that validates the validity of a cross-chain

transfer transaction. Note that π is empty iif tx is a local transaction
or an origin transaction.

Instantiating Merge(·). A merge(·) function takes as input a pair of ledger
states (MC, SC) outlined above, and outputs a single ledger state.

3 Implementing Sidechain Ledger

We provide SEPoW for sidechains that are based on Bitcoin. Our protocol will
execute a system of sidechains with sidechain security with respect to Definition 3



382 T. Li et al.

under an assumption on honest hashing-power majority. Here our SEPoW adopts
the form of parent-child chains.

The main challenge in SEPoW is how to ensure secure cross-chain transfers.
To achieve this, we introduce a cross-chain proof protocol described above into
SEPoW. Consider two sidechains C1 and C2 (the notations C1 and C2 will be
used throughout the rest of this paper), as well as a predicate (e.g., a cross-
chain transaction took place in the sidechain C1 (resp. C2)). A cross-chain proof
protocol for the predicate means that, the prover of C1 (resp. C2) can convince
the verifier of C2 (resp. C1) that the predicate is true by generating a valid proof.

It is easy to establish valid but not succinct cross-chain proof for any com-
putable predicate: the prover provides the entire linearly-growing chain of block
headers as proof and the verifier simply selects the longest chain. To address
this problem, we also introduce a merged mining mechanism described above
into SEPoW, which allows the miners of sidechains to generate multiple blocks
at different sidechains with a single PoW solution. Exploiting this, a public chain
of block headers is shared by the participating sidechains. In this case, our proof
is composed of two Merkle tree paths and thus is succinct.

3.1 The Sidechain Construction

We now present an elaborate module design of SEPoW based on the fundamental
building block described above: cross-chain proof protocol and merged mining.
These interacting modules are initialization, maintenance, cross-chain transfer
and generating cross-chain proof. A graphical depiction about SEPoW is shown
in Fig. 2.

3.1.1 The Sidechain Initialization
The initialization of a new SC can be launched by any miners of MC deploying
the configuration transaction that configures SC described below. This action
only requires the miners to follow the rule in the configuration to support it (i.e.,
following merged mining). A sidechain that is successfully created will obtain a
unique identifier idSC.

Consider two rounds dη, sη on MC, as described in Fig. 2. dη means that
the first configuration transaction tx0 has been included in a block on MC.
sη denotes the start time of the sidechain if it is successfully activated. The
configuration transaction contains a set of predefined rules that describe how
to activate the sidechain and determine sη successfully. A typical example is as
follows: a sidechain starts in the MC-round sη that meets: (i) sη − dη > v1, here
v1 denotes the number of round, which is used to determine the round sη; (ii)
at least v2-majority mining power on MC is controlled by honest miners that
have supported SC.

The process of the activation is as follows (see more details in Algorithm 1).
First, the miners of MC that support the sidechain mine a new block includ-

ing the configuration transaction tx0 on mainchain. If the sidechain is success-
fully activated, then during the round sη the miners of MC that support the



SEPoW: Secure and Efficient Proof of Work Sidechains 383

Fig. 2. An overview of SEPoW. MC is at the top, while SC is at the bottom. dη is
the round of deploying sidechain. sη is the round of starting sidechain. Solid arrows
is used to connect adjacent blocks. Dashed arrows denote some blocks are omitted.
Red rectangles denote some merged-block-headers. Transactions tx of interest: tx0.
A configuration transaction; txori. An origin transaction carrying withdraw operation
from MC to SC; txdes. A corresponding deposit transaction from MC to SC; tx

′
ori. An

origin transaction carrying withdraw operation from SC to MC; tx
′
des. A corresponding

deposit transaction from SC to MC.

sidechain create a genesis block GB = (merged-block-header � (pub, mr, ne,
idSC), merged-block-body � (p, r)) for SC. Here there are the variables pub,
ne, p, r, as described in Fig. 1a. Note that GB can be created as soon as ne is
found. In addition, if the activation of the sidechain fails, the initialization of
the sidechain is aborted.

To demonstrate that SC has been successfully created, the miners of MC
that adopted SC broadcast a special transaction success sidechain(idSC)
into MC. Otherwise, the miners of MC that supported SC broadcast another
special transaction failure sidechain(idSC) into MC. In this case, we will
deduce whether the sidechain is valid, according to the transactions of MC only.

3.1.2 The Sidechain Maintenance
Once SC is successfully created, both MC and SC will be maintained by miners
and their respective full nodes.

For mainchain, its maintenance procedure is executed by MC-workers who
are acted by the miners running merged mining and the full nodes of MC
running the proof of work protocol, cf. Algorithm 2. For concreteness, the miners
attempt to mine new blocks on top of both the longest CMC and CSC by running
the merged mining mechanism described above, and then broadcast them as soon
as their nonce ne is found. The full nodes of MC only maintain the longest CMC.

MC-workers, on every new round after the round sη, receive all the possible
MC-chains Cmc-col from the other peers via Diffuse, and then check them to find
the “best” chain denoted by C̄. In this case they choose the chain C̄. Adopting the
chain C̄ is done for chain validity function (using Check-Chain given in Line 4 of



384 T. Li et al.

Algorithm 1. SC initialization.
1: upon DeploySidechain(idSC) do
2: state sidechain[idSC] ← initializing

3: block ← pack configuration sidechain

4: mine block on MC
5: end upon
6: upon MC.NewRound() do
7: s ← MC.RoundIndex()
8: f1 � (state sidechain[idSC]=initialized)
9: if f1 = true then

10: if FailureActivation then
11: state sidechain ← failed

12: block ← pack failure sidechain

13: mine block on MC
14: else if SuccessActivation then
15: state sidechain ← initialized

16: block ← pack success sidechain

17: sη ← ActivationRound()

18: mine block on MC
19: end if
20: end if
21: f2 � (s = sη)
22: if SuccessActivation ∧ (f2 = true) then
23: ne ← search(nonce)
24: header ← (pub, ne, mr, idSC)
25: body ← (p, r)
26: GM ← (header, body)
27: end if
28: end upon

Algorithm 2. MC maintenance.
1: upon MC.NewRound do
2: Cmc-col ← chains collected via Diffuse

3: � chain validity
4: Cvalchain ← Check-Chain(Cmc-col)

5: � chain comparison
6: C̄ ← Check-Comparison(Cvalchain)

7: txs ← transactions collected via Diffuse

8: � transaction validity
9: txvaltx ← Check-Tx(txs)

10: � extend chain by invoking merged mining
11: (Bmc, Bsc) ← Merged-PoW(txvaltx, C̄)
12: C̄ ← C̄ || Bmc

13: C̃ ← receive the best chain w.r.t. SC via Diffuse

14: C̃ ← C̃ || Bsc

15: respective networks ← Diffuse(C̄, C̃)
16: end upon



SEPoW: Secure and Efficient Proof of Work Sidechains 385

Algorithm 2) and chain comparison function (using Chain-Comparison given in
Line 6 of Algorithm 2), as well as transaction validity function (using Check-Tx
given in Line 9 of Algorithm 2). Then, the miners try to extend C̄ by running the
merged mining (using Merged-PoW given in Line 11 of Algorithm 2) described
below.

Most importantly, the miners can simultaneously extend CMC and CSC by
invoking Merged-PoW. In this case, a public chain of block headers is formed nat-
urally in CMC and CSC. Let us recall the work of Merged-PoW. First, the miners
collect two valid txroot r from CMC and CSC, and then calculate the root mr
of the merged Merkle tree over the two txroot r. Next, the miners search for a
nonce ne that satisfies H(pub,mr,ne) ≤ T (see more details in Eq. 3). Once ne
is found, the miner composes specific-chain merged-blocks, consisting of a pub-
lic merged-block-header and a specific-chain merged-block-body (as described
in Fig. 1a), and sends them (Bmc, Bsc) to corresponding blockchain networks.
Finally, workers of MC (resp. SC) verify Bmc (resp. Bsc) and append it to CMC

(resp. CSC) if it is considered valid. As a result, a public chain of merged-block-
headers is formed naturally in CMC and CSC.

Regarding the sidechain, its maintenance procedure is similar to the main-
chain. Hence we only present their differences.

The main difference is that in Algorithm 2, MC-workers, all the possible
MC-chains Cmc-col, the two new blocks Bmc and Bsc, as well as all occurrences
of the best chain C̃ with respect to SC, are respectively replaced by SC-workers,
SC-chains Csc-col, Bsc and Bmc, as well as the best chain C with respect to MC.

Algorithm 3. Transferring funds from MC into SC.
1: � withdraw operation
2: function Withdraw(oAddr, dAddr, utxo)
3: σ ← Signsk ((oAddr, utxo), (dAddr, a))
4: txori ← ((oAddr, utxo, σ), (dAddr, a))
5: mine block carrying txori on MC
6: end function
7: � deposit operation
8: function Deposit(oAddr, dAddr, a)
9: � txori is included in the stable MC

10: wait until block buried under k blocks
11: π ← generate a cross-chain proof about txori
12: σ ← Signsk ((oAddr, utxo), (dAddr, a, π))
13: txdes ← ((oAddr, utxo, σ), (dAddr, a, π))
14: mine block carrying txdes on SC
15: end function

3.1.3 Cross-Chain Transfer
Now nodes (or clients) can move funds from MC to SC by a cross-chain transfer
transaction, which consists of a transaction txori carrying the withdraw operation,



386 T. Li et al.

and a transaction txdes carrying the deposit operation. Two of them have the
same fields, except for that metadata π for txori is empty and metadata π for
txdes includes a cross-chain proof. The origin transaction txori that only involves
the state in MC is handled by MC-workers, while the destination transaction
txdes that only involves the state in SC is handled by SC-workers.

Moving funds from the mainchain MC into the sidechain SC works as fol-
lows. First, a client on MC diffuses txori with the desired utxo and the valid
receiving address on SC. If txori is considered valid, the corresponding block B
carrying txori will be generated by the miner and only be appended to MC; the
withdraw operation will be executed.

When B has been buried under k blocks within MC, MC-workers create a
cross-chain proof π about the predicate, claiming that txori has been included in
the stable mainchain MC. Here, π contains a transaction Merkle tree path for
txori as well as a merged Merkle tree path p. The construction of π is described
below. We now suppose that π has been produced, and then received by the
client that will diffuse it.

After that, the corresponding txdes is composed by the client in MC and
forwarded to the sidechain SC. If txdes is considered valid, it contains: (i) a
valid cross-chain proof π; (ii) a valid signature σ; (iii) sufficient utxo that is
not less than the transfer amount a. If included, the deposit operation will be
executed, concluding the completion of transferring from MC to SC. The core
of transferring from MC to SC is shown in Algorithm 3.

Withdrawing to MC. Clients can then transfer their funds from SC back
into MC. They follow the reverse procedure of Algorithm 3.

3.1.4 Generating Cross-Chain Proof
In the part we present a concrete construction of a cross-chain proof π. Let us
consider cross-chain transactions consisting of the origin transaction txori occur-
ring in MC and the destination transaction txdes occurring in SC, as well as the
predicate q which claims that txori has been included in block B in the stable
MC. To maintain the transfer of cross-chain assets for the SC verifiers (i.e.,
full nodes in SC) that cannot evaluate q, a cross-chain proof that deduces q is
essential.

When the block B carrying txori has been buried under k blocks within MC,
the cross-chain proof π about q is produced by the provers on MC, and contains:

– The transaction Merkle tree path. The path for txori is produced from
the transaction Merkle tree located in B’ body (see more details in Fig. 1a).
It testifies that txori is aggregated in the transaction Merkle tree root r.

– The merged Merkle tree path p. The path is generated from the merged
Merkle tree over the pair of (r1, r2) of the involved mainchain and sidechain.
p connecting the transaction Merkle tree root r to the merged Merkle tree
root mr is used to attest that r is tied in B’ header.



SEPoW: Secure and Efficient Proof of Work Sidechains 387

The above two paths allow the provers to convince the verifiers that q is true.
Concrete space requirements about the proof are discussed in Sect. 6.1.

4 Proofs of Security

In this section, we first prove that SEPoW from Sect. 3 satisfies persistence and
liveness, then prove that SEPoW achieves the firewall property, similar to the
proof method of Gaži et al. [2].

4.1 Persistence and Liveness

Lemma 1 (Persistence and Liveness). Consider SEPoW from Sect. 3 with
respect to the assumptions AMC and ASC. For all rounds r, if AMC [r] (resp.
ASC [r]) holds, then MC (resp. SC) achieves persistence and liveness up to
round r with overwhelming probability in k.

Proof (sketch). We directly borrow previous work [20,21] to prove that both
persistence and liveness hold. In [20] it was shown that the Bitcoin protocol with
the honest majority of computational power provides three security properties:
common prefix, chain quality and chain growth. Further, According to the work
[21–23], persistence and liveness needed by a ledger can be derived from the above
three properties. Therefore, SEPoW satisfies persistence and liveness, completing
the proof.

4.2 Firewall Property

Lemma 2. For all PPT adversaries A, SEPoW from Sect. 3 using a secure
cross-chain proof protocol and a collision resistant hash function achieves the
firewall property with the assumptions AMC and ASC with respect to overwhelm-
ing probability in k.

Proof (sketch). To illustrate that the firewall property holds, we employ the
idea of computational reduction in our proof. The line of the proof is as follows:
suppose the firewall property is broken, an insecure cross-chain proof protocol
or hash function is used by our protocol; then we show the probability of using
the insecure cross-chain proof protocol or hash function is negligible.
We denote by A an arbitrary PPT adversary attacking the firewall property,
and denote by Z an arbitrary environment supporting the execution of A. We
will consider two PPT adversaries:

– A1 is an adversary attacking the cross-chain proof protocol.
– A2 is an adversary attacking the hash function.

Next, we start by describing the behavior of these adversaries.

The Adversary A1bf . First, it models the execution of A. That is, A requests
that a cross-chain proof about the predicate q that an origin transaction is



388 T. Li et al.

included in MC is produced (without loss of generality, in this proof we consider
only the cross-chain transfers from MC to SC due to the symmetry of SEPoW),
A1 calls its proof generation algorithm P (as described in Sect. 2.1) to get the
corresponding proof to provide to A.

A1 monitors the ledgers, LMC and LSC, adopted by honest MC-workers and
SC-workers, and for every round r checks the state of all honest MC-workers
and SC-workers. To evaluate whether A has succeeded, the adversary inspects
whether L = merge (LMC,LSC) /∈ VA. If A1 can not find such a round r and
entities MC-workers, SC-workers, it returns failure.

Otherwise it exists a round r such that L = merge (LMC,LSC) /∈ VA. Sup-
pose that L′ is the prefix of L that satisfies L′ /∈ VA and tx = L′[−1]. If tx
has oAddr(tx) /∈ MC or dAddr(tx) /∈ SC, then A1 returns failure. Otherwise
oAddr(tx) ∈ MC and dAddr(tx) ∈ SC (and so tx ∈ LSC). Therefore, there
must exist a predicate q that the origin transaction (tx′) corresponding to tx is
committed in LMC is true.

Let q∗ be the set of LMC including all predicates up to and containing q.
We will show that q∗ must contain a predicate attested by a forgery cross-chain
proof. A1 inspects every predicate qr ∈ q∗. qr involves a proof πr for an origin
transaction. A1 produces a proof π′

r for qr based on the view of SC-workers,
and examines whether the following predicate violation condition holds:

(qr ∈ true) ∧ (¬V(πr) ∨ (πr �= π′
r)). (4)

Suppose it exists a round r∗ that satisfies the condition (4) and then outputs
the tuple (qr∗ , πr∗). Otherwise A1 returns failure.

The Adversary A2. Similar to A1, A2 models the execution of A. When A
requests that a proof of a predicate q is created, A2 invokes its algorithm P to
get the corresponding proof to provide to A.

A2 monitors the ledgers, LMC and LSC, adopted by honest MC-workers
and SC-workers, and for every round r checks the state of all honest MC-
workers and SC-workers. A2 checks whether L = merge (MC,SC) /∈ VA, to
evaluate whether A has succeeded. If the adversary can not find such a round
r and entities MC-workers, SC-workers, it returns failure. Suppose tx, tx′ are
as described in A1. If tx has oAddr(tx) /∈ MC or dAddr(tx) /∈ SC, then A2

returns failure. Then the predicate q that tx′ is committed in L1 is true, and
the corresponding cross-chain proof π for tx′ was created. If q is false, then A2

returns failure. When q for SC-workers is true, there exists a cross-chain proof
π′ that attests to tx′ in the view of SC-workers. Based on the above results, A2

finds a collision for hash function and returns it.

Probability Analysis. We define the following events:

– sc-failure[r]: A is successful at round r, i.e., πA (merge ({Li[t] : i ∈ St})) /∈
πSt

(VA).
– ccpp-break: A1 finds such a round r∗ such that the condition (4) holds.
– hash-break: A2 finds a collision for the hash function.



SEPoW: Secure and Efficient Proof of Work Sidechains 389

Next, we will argue that the probability Pr[sc-failure[r]] is negligible for
every time round r. We will demonstrate this probability in three successive
claims.

The first claim shows that one of ccpp-break, hash-break happens if sc-
failure[r] happens. As a result, according to a union bound, we have

Pr[sc-failure[r]] ≤ Pr[ccpp-break] + Pr[hash-break].

The other two claims show that Pr[ccpp-break] and Pr[hash-break] are neg-
ligible.

Claim 1: sc-failure[r] ⇒ ccpp-break ∨ hash-break.

By the Lemma 2, there exist two ledgers LMC and LSC. Thus sc-failure[r] is
meant to

merge({LMC[r],LSC[r]}) /∈ VA.

Without loss of generality, suppose that tx, tx′ and q are as described in A1.
By the Lemma 2 and the Lemma 2 from [2], we deduce that tx is a destination
transaction, and oAddr(tx) ∈ MC and dAddr(tx) ∈ SC. Thus, q is true. If A1

discovers such a round r∗ that satisfies the condition (4), then ccpp-break has
happened and the claim holds. Therefore, for each predicate qr involving a proof
πr, the following condition holds:

(qr ∈ true) ∧ V(πr) ⇒ (πr = π′
r). (5)

Thus, we have a set of all predicates, each of which is true and is proved by
the corresponding cross-chain proof πr; this equation πr = π′

r holds. However,
the origin transaction tx′ has been committed by πr, but not committed by π′

r.
Therefore, there must exist a Merkle tree collision, meaning that a hash collision
found by A2 occurs. As a result, hash-break happens.

Claim 2: Pr[ccpp-break] is negligible.

Suppose that ccpp-break happens. We can discover that the condition (4)
holds. This case, however, is negligible according to the assumption that the
cross-chain proof protocol in use is secure.

Claim 3: Pr[hash-break] is negligible.

It is the same as claim 2, there exists another cross-chain proof π for the
origin transaction corresponding to tx is created, which contradicts with the
assumption that the hash function in use is collision-resistant.

Relying on the three claims above, we conclude that for negligible proba-
bility negl, Pr[sc-failure] ≤ negl. Therefore, πA (merge ({Li[r] : i ∈ Sr})) ∈
πSr

(VA) holds, completing the proof.
The above two Lemmas directly prove Theorem 1 presented below.

Theorem 1 (Sidechains security). SEPoW from Sect. 3 using a secure cross-
chain proof protocol and a collision resistant hash function is secure with respect
to assumptions AMC and ASC, and merge and VA defined in Sect. 2.4.



390 T. Li et al.

5 Discussion of Merged Mining

Transaction Verification. In the merged mining mechanism described in
Sect. 2.2, merged miners should validate all transactions in sidechains; other-
wise invalid transactions may be included in some sidechain transaction Merkle
Trees. To achieve this, the merged miners are required to monitoring all involved
sidechains. However, this contradicts the sidechains agnosticism [7]: miners of
MC do not need to be aware of SC at all. Only the entities interested in facil-
itating cross-chain events must be aware of both. To resolve this question, we
introduce a cryptographic tool, the recursive composition of zk-SNARKs [24,25],
which can create proofs that attest to the validity of other proofs. We leverage
the tool to generate a succinct proof of sidechain transaction Merkle tree that
attests to the correctness of all transactions at the base of the tree. By verifying
the validity of the proof, the merged miners can efficiently evaluate the validity
of all transactions in the tree without re-executing transaction verification and
monitoring all involved sidechains.

Consider an example that a list of transactions tx1, tx2, tx3, tx4 in a sidechain
transaction Merkle tree needs to be proved. First, a full node in the sidechain
generates “base” proofs proving the validity of single transactions. Then two
adjacent “base” proofs are merged and further generate a new “merge” proof.
Finally, these “merge” proofs are recursively merged into a “merge” proof called
root proof. As a result, the root proof attests to the validity of all the transac-
tions.

Fig. 3. Asynchronous extension of sidechains (a); Sidechain fork (b). (Color figure
online)

Sidechains Extension. In SEPoW, some “regular miners” exist who do not
run merged mining but only work on the chain they participate in. This will
cause the computational power of each sidechain to be different. In this case,
one sidechain extension will exceed the other sidechain. A typical example is
shown in Fig. 3a. Where MC extension exceeds SC. A red public chain of block
headers is broken due to the two gray blocks on MC that the “regular miners”
mine. As a result, cross-chain proofs are affected.

To overcome this problem, merged miners need to rebuild a new public chain
of block headers to inherit the previous public chain and backup the information
testifying these gray blocks’ validity into SC. For the former, merged miners run



SEPoW: Secure and Efficient Proof of Work Sidechains 391

merged mining on the top of two chains and produce new public block headers
(blue block headers in Fig. 3a). For the latter, full nodes on MC send gray
blocks information, consisting of block headers verifying consensus and proofs
attesting to the validity of transaction Merkle trees, to merged miners. Upon
receiving them, merged miners check their validity by calling a hash function
and the zk-SNARKs described above. Then merged miners include these hashes
of valid gray block headers into subsequent merged-block-headers by merged
mining (here, the hashes are seen as the leaves of a merged Merkle tree).

Fork Solution. The setting of merged mining seems to be a bit coercive in that
it makes all sidechains collapse into one single blockchain. That is, the “fork”
in a sidechain will affect all sidechains unstable. A typical example is shown in
Fig. 3b. Where both MC (i.e., Branch 2) and SC maintain merged mining and
form a red public chain of block headers. With blockchains growth, however, the
length of Branch 1 exceeds Branch 2. Thus, branch 1 becomes the “main” chain
according to the longest chain rule, while Branch 2 is discarded. Meanwhile,
blocks b1 and b2 become “orphan” blocks. As a result, the red public chain of
block headers on MC and SC is broken; cross-chain proofs are affected.

To complement this deficiency, the following efforts need to be done: 1)
merged miners run merged mining on top of Branch 1 and SC, and create a
new public chain of block headers (blue block headers in Fig. 3b); 2) the infor-
mation of gray blocks on Branch 1 need to be backed up to SC via the way
described in Sidechains Extension; 3) merged miners need to mark “orphan”
blocks as invalid in subsequent merged-blocks. This is because adversaries may
utilize the headers information of h1 and h2 blocks, including some proofs that
testify to the validity of “orphan” blocks transactions, to implement the double-
spend attack.

6 Performance Evaluation

In this section, we evaluate the size of SEPoW proof and compare it with the
state-of-the-art work.

6.1 Size of Cross-Chain Proofs

We first evaluate the size of SEPoW proofs, consisting of a transaction Merkle
tree path denoted by path and a merged Merkle tree path denoted by p. Similar to
Bitcoin Core, we assume a 256-bit hash function is used to build the Merkle tree
construction, and a block of 1 MBytes and a block header of 80 bytes are applied
to SEPoW. More specifically, in 1 MB block including up to 2048 transactions
(in fact, since January 1, 2020, a Bitcoin block includes 1869 transactions1 on
average), we have in bits: |p| = |256 + 256| = 512 bits, |path| = |log(2048) ×
256| = 2,816 bits, and hence the size of SEPoW proofs is |path| + |p| = 512 +
2816 = 416 bytes.
1 See https://blockchair.com/zh/bitcoin/charts/total-transaction-count.

https://blockchair.com/zh/bitcoin/charts/total-transaction-count


392 T. Li et al.

6.2 Comparison with Existing Work

Without loss of generality, let us consider some work: BTCRelay [6], PoW
sidechains [7,17] and zkRelay [12], which have been implemented or can be evalu-
ated. Their cross-chain proofs sizes can be denoted as O(n·|BH|+log2 |BT |·|H|)
[6], O(log1/m(2)λ · ((log2(n)+1) · |BH|+log2(n) · 
log2 (log2(n, 2), 2)� · |H|)) [26]
and O(1/504 ·n · |BH|) [12], respectively, according to their experimental results.
Here, n is the length of a blockchain, |BH | is the size of a block header, |BT |
is the number of transactions included in the block B, |H| is the size of a hash,
m and λ denote an attacker who controls a m fraction of honest chain’s mining
power succeeds with probability 2−λ.

Fig. 4. Comparison of SEPoW, BTCRelay, PoW sidechains and zkRelay at different
blockchain length, |BH| = 80 bytes, |BT | = 2048, |H| = 32 bytes, m = 0.5, λ = 50.

As depicted in Fig. 4, we make comparisons of SEPoW with BTCRelay, PoW
sidechains and zkRelay in terms of the size of a cross-chain proof (The source
code related to this comparison experiment has been released to the Github2).
Figure 4a(1–3) show the impact of blockchain length on a cross-chain proof. Here,
BTCRelay proof and zkRelay proof, located in Fig. 4a1 and 4a3, are linear and
sublinear in the length of the blockchain, respectively; PoW sidechains proof,
located in Fig. 4a2, is logarithmic in the length of the blockchain. More impor-
tantly, our SEPoW proof is composed of two Merkle tree paths regardless of
the blockchain length, which significantly outperforms all proofs of the above,
especially for longer chains.

2 See https://github.com/01007467319/sepow.git.

https://github.com/01007467319/sepow.git


SEPoW: Secure and Efficient Proof of Work Sidechains 393

Figure 4b(1–3) show the multiple relationships between SEPoW proof and the
existing work at different blockchain length. Where, the multiple that SEPoW
proof is less than BTCRelay proof and zkRelay proof, indicated by Fig. 4b1
and 4b3, increases linearly; the multiple that SEPoW proof is less than PoW
sidechains proof, indicated by Fig. 4b2, is exponential growth. Note that for
a blockchain length (n) of 300000 and block header size (|BH|) of 80 bytes,
SEPoW achieves a proof size of 416 bytes which is roughly 123×, 510× and
62000× smaller than zkRelay proof, PoW sidechains proof and BTCRelay proof,
respectively.

7 Related Work

Recently, some researchers have focused on federation construction for
sidechains. Dilley et al. [9] designed a federation construction that allows cross-
chain assets transfer between disparate blockchains. In this construction cross-
chain assets are managed by a trusted committee and are transferred only when
the majority of the committee sign cross-chain transactions. Similarly, Back et
al. [4] proposed a federation cross-chain solution, in which cross-chain assets are
transferred by a trusted group of parties. However, their work has not entirely
overcome the political centralization risk as the federation constructions still rely
on a trusted committee to maintain and manage cross-chain assets transfer.

To prevent centralization risk, decentralized constructions for sidechains have
been proposed. Kiayias et al. [7] presented the first decentralized construc-
tion for proof of work sidechains. The construction that is built based on a
cryptographic primitive, Non-Interactive Proofs of Proof-of-Work (NIPoPoWs)
[17], allows the passing of any information between proof of work blockchains
without a trusted third party. However, its cross-chain proof has linear in the
length of the blockchain and thus is fairly large. Sztorc [10] and Lerner [11] pro-
posed Drivechains, a decentralized construction for proof of work sidechains. In
Drivechains cross-chain assets moved from Bitcoin to Drivechain are authenti-
cated by SPV proofs consisting of all Bitcoin block headers. Yet, these SPV
proofs are quite large. An implemented and decentralized construction for
sidechains was given in BTCRelay [6]. It supports assets transferred from Bit-
coin to Ethereum but not back. To verify the validity of the transactions that
took place in Bitcoin, BTCRelay requires saving the entirety of Bitcoin block
headers into Ethereum; limiting any potential scalability.

Some other studies are devoted to generating succinct cross-chain proofs
about the transactions that took place in a blockchain. Garoffolo et al. [8] pro-
posed Zendoo, a decentralized construction for blockchain systems that allows
communication with different sidechains without trusted intermediaries. The
construction introduces zk-SNARKs [27] to produce a constant-sized proof that
attests to the validity of all cross-chain transactions during a period. Westerkamp
et al. [12] presented an efficient sidechains construction, which uses zkSNARK-
based chain-relays to generate a succinct proof that testifies the validity of cross-
chain assets. The proof size does not grow linearly with the number of block



394 T. Li et al.

headers but is constant for any batch size. However, these work lacked a formal
security definition and proof.

In some different efforts, Gaži et al. [2] presented the first formal treatment
of sidechains and proof of stake sidechains construction. To attest to the validity
of cross-chain assets, they introduce a trust committee chosen among sidechain
block creators to generate the sidechain certificates. The first Bitcoin sidechain
in production was given in RSK [13]. It supports smart contracts functionality,
compatible with the Ethereum standards. Yet, RSK proofs (from Bitcoin to
RBTC) have linear complexity in the length of Bitcoin blockchain and RSK
lacked a formal security definition and proof.

Furthermore, different ideas regarding cross-chain transfers, such as Polkadot
[28], Cosmos [29], Tendermint [29], Blockstream’s Liquid [30] and Interledger
[30], have been proposed. Their construction was centralized and lacked formal
security definition and proof. Other related effort also included COMIT [31,32],
Plasma [33,34], NOCUST [35,36], Dogethereum [37] and XCLAIM [38].

8 Conclusion

In this paper, we proposed SEPoW, which makes up for deficiencies in secu-
rity and efficiency in existing PoW sidechains construction. In SEPoW the
exchange of all cross-chain assets is managed by all honest nodes in participat-
ing blockchains. To generate a succinct cross-chain proof, we utilized the merged
mining to produce a constant-size proof, regardless of the size of the current
blockchain. The security of SEPoW for PoW sidechains is proved formally. We
presented a detailed design of SEPoW and evaluated the size of SEPoW proof;
SEPoW achieves a proof size of 416 bytes which significantly outperforms all
proofs of the existing work, especially for longer chains.

Acknowledgment. The authors would like to thank the anonymous reviewers of
ICA3PP 2021 for their insightful suggestions. This work is partially supported by the
Shandong Provincial Key Research and Development Program under Grant Number
2019JZZY020127.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

2. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: S&P 2019, Piscat-
away, pp. 139–156. IEEE (2019)

3. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 18

4. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).
https://www.blockstream.com/sidechains.pdf

5. Buterin, V.: Ethereum: a next-generation smart contract and decentralized applica-
tion platform (2014). https://www.github.com/ethereum/wiki/wiki/White-Paper

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-11212-1_18
https://www.blockstream.com/sidechains.pdf
https://www.github.com/ethereum/wiki/wiki/ White-Paper


SEPoW: Secure and Efficient Proof of Work Sidechains 395

6. BTCRelay, Community: BTCRelay reference implementation (2017). https://
www.github.com/ethereum/btcrelay

7. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: Bracciali, A., Clark, J., Pin-
tore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 21–34.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1 3

8. Garoffolo, A., Kaidalov, D., Oliynykov, R.: Zendoo: a zk-SNARK verifiable cross-
chain transfer protocol enabling decoupled and decentralized sidechains. In: ICDCS
2020, Piscataway, pp. 1257–1262. IEEE (2020)

9. Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., Friedenbach, M.:
Strong federations: an interoperable blockchain solution to centralized third party
risks. CoRR arXiv:1612.05491 (2016)

10. Sztorc, P.: Drivechain - the simple two way peg (2015). https://www.truthcoin.
info/blog/drivechain/

11. Lerner, S.D.: Drivechains, sidechains and hybrid 2-way peg designs (2016). https://
docs.rsk.co/Drivechains Sidechains and Hybrid 2-way peg Designs R9.pdf

12. Westerkamp, M., Eberhardt, J.: zkRelay: facilitating sidechains using zkSNARK-
based chain-relays. In: Euro S&P Workshops, Piscataway, pp. 378–386. IEEE
(2020)

13. Lerner, S.D.: Rootstock: smart contracts on bitcoin network (2015). https://blog.
rsk.co/wp-content/uploads/2019/02/RSK White Paper-ORIGINAL.pdf

14. Singh, A., Click, K., Parizi, R.M., Zhang, Q., Dehghantanha, A., Choo, K.R.:
Sidechain technologies in blockchain networks: an examination and state-of-the-
art review. J. Netw. Comput. Appl. 149, 102471 (2020)

15. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum Smart
Contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

16. Moore, T., Christin, N.: Beware the middleman: empirical analysis of bitcoin-
exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 3

17. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 27

18. Judmayer, A., Zamyatin, A., Stifter, N., Voyiatzis, A.G., Weippl, E.: Merged min-
ing: curse or cure? In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H.,
Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp.
316–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0 18

19. Wang, J., Wang, H.: Monoxide: scale out blockchains with asynchronous consensus
zones. In: Lorch, J.R., Yu, M. (eds.) NSDI 2019, pp. 95–112. USENIX Association,
Berkeley (2019)

20. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

21. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

22. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
IACR Cryptol. ePrint Arch. 2015, 1019 (2015)

https://www.github.com/ethereum/btcrelay
https://www.github.com/ethereum/btcrelay
https://doi.org/10.1007/978-3-030-43725-1_3
http://arxiv.org/abs/1612.05491
https://www.truthcoin.info/blog/drivechain/
https://www.truthcoin.info/blog/drivechain/
https://docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
https://docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
https://blog.rsk.co/wp-content/uploads/2019/02/RSK_White_Paper-ORIGINAL.pdf
https://blog.rsk.co/wp-content/uploads/2019/02/RSK_White_Paper-ORIGINAL.pdf
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-642-39884-1_3
https://doi.org/10.1007/978-3-030-51280-4_27
https://doi.org/10.1007/978-3-319-67816-0_18
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22


396 T. Li et al.

23. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

24. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 16

25. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) STOC 2013, pp. 111–120. ACM, New York (2013)

26. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: super-light clients for cryp-
tocurrencies. In: S&P 2020, Piscataway, pp. 928–946. IEEE (2020)

27. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX
Security 2014, pp. 781–796. USENIX Association, Berkeley (2014)

28. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework (2016).
https://www.polkadot.network

29. Buchman, E.: Tendermint: byzantine fault tolerance in the age of blockchains
(2016). https://github.com/tendermint/tendermint

30. Group, T.I.P.C.: Interledger protocol v4 (2021). https://www.interledger.org
31. Hosp, J., Hoenisch, T., Kittiwongsunthorn, P.: COMIT - cryptographically-secure

off-chain multi-asset instant transaction network. CoRR arXiv:1810.02174 (2018)
32. Tian, W., Pan, W., Shaobin, C., Ying, M., Anfeng, L., Mande, X.: A unified trust-

worthy environment establishment based on edge computing in industrial IoT.
IEEE Trans. Ind. Inform. 16(9), 6083–6091 (2020). https://doi.org/10.1109/TII.
2019.2955152

33. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017).
https://www.plasma.io/plasma.pdf

34. Tian, W., et al.: Propagation modeling and defending of a mobile sensor worm in
wireless sensor and actuator networks. Sensors 17(1), 139 (2017). https://doi.org/
10.3390/s17010139

35. Khalil, R., Gervais, A.: NOCUST - a non-custodial 2nd-layer financial intermedi-
ary. IACR Cryptol. ePrint Arch. 2018, 642 (2018)

36. Mingfeng, H., Anfeng, L., Tian, W., Changqin, H.: Green data gathering under
delay differentiated services constraint for internet of things. Wirel. Commun. Mob.
Comput. 2018, 1–23 (2018). https://doi.org/10.1155/2018/9715428

37. Teutsch, J., Straka, M., Boneh, D.: Retrofitting a two-way peg between blockchains.
CoRR arXiv:1908.03999 (2019)

38. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.J.:
XCLAIM: trustless, interoperable, cryptocurrency-backed assets. In: S&P 2019,
Piscataway, pp. 193–210. IEEE (2019)

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://www.polkadot.network
https://github.com/tendermint/tendermint
https://www.interledger.org
http://arxiv.org/abs/1810.02174
https://doi.org/10.1109/TII.2019.2955152
https://doi.org/10.1109/TII.2019.2955152
https://www.plasma.io/plasma.pdf
https://doi.org/10.3390/s17010139
https://doi.org/10.3390/s17010139
https://doi.org/10.1155/2018/9715428
http://arxiv.org/abs/1908.03999

	SEPoW: Secure and Efficient Proof of Work Sidechains
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Preliminaries
	2.1 Cross-Chain Proof Protocol
	2.2 Merged Mining
	2.3 Security Definition of Sidechains
	2.4 An Example of an Asset A

	3 Implementing Sidechain Ledger
	3.1 The Sidechain Construction

	4 Proofs of Security
	4.1 Persistence and Liveness
	4.2 Firewall Property

	5 Discussion of Merged Mining
	6 Performance Evaluation
	6.1 Size of Cross-Chain Proofs
	6.2 Comparison with Existing Work

	7 Related Work
	8 Conclusion
	References




