
Efficient Estimation of Time-Dependent
Shortest Paths Based on Shortcuts

Linbo Liao1, Shipeng Yang1, Yongxuan Lai1(B), Wenhua Zeng1, Fan Yang2,
and Min Jiang1

1 School of Informatics/Shenzhen Research Institute, Xiamen University, Xiamen
361005, China

{laiyx,whzeng,minjiang}@xmu.edu.cn
2 School of Aerospace Engineering, Xiamen University, Xiamen 361005, China

yang@xmu.edu.cn

Abstract. The shortest path search in the road network in the road
network is of great importance in various Intelligent Transportation Sys-
tems. However, the commonly used shortest path search algorithms, such
as Dijkstra and A * algorithm, are time-consuming due to their complex-
ity, which leads to their poor performance in large-scale road networks.
Thus, a new optimization technology is required to solve the path search
problem on large-scale road networks. In this paper, the temporal feature
of the road network is considered for the shortest path search problem,
which is closer to the road network of the real world. And, an algo-
rithm called Time-Dependent A* With Shortcuts (TDAWS) is proposed
to estimate the time-dependent shortest paths. Concretely, the road net-
work is pre-processed offline and partitioned into several regions based
on clustering, which captures the spatial pattern of the road network.
Then we construct shortcuts contain the shortest paths information to
reduce search time and propose two mechanisms called Hop On Direc-
tionally (HOD) and Hop-Off Early (HOE) to avoid unnecessary detours.
We constructed an extensive experimental study on a road network with
real-world taxi trajectory data and compared our approach with existing
techniques. The results demonstrated that the time cost of our method is
more stable and achieves up to 17 times faster than the precise shortest
path searching algorithm with an acceptable extra ratio (about 20%) on
the path length.

Keywords: Approximate shortest path · Graph partition · Path
estimation · Time-dependent road network

This work was supported in part by the Natural Science Foundation of China
under Grant 6187215 and Natural Science Foundation of Guandong under
Grant 2021A1515011578, and Shenzhen Basic Research Program under Grant
JCYJ20190809161603551.

c© Springer Nature Switzerland AG 2022
Y. Lai et al. (Eds.): ICA3PP 2021, LNCS 13156, pp. 18–32, 2022.
https://doi.org/10.1007/978-3-030-95388-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95388-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-95388-1_2


Efficient Estimation of Time-Dependent Shortest Paths Based on Shortcuts 19

1 Introduction

With the development of intelligent transportation, many car-hailing systems
and navigation systems have emerged in recent years [13]. Those systems process
millions of path-planning or time-estimations tasks every day, within which the
shortest path search is a fundamental block. The shortest path computation
must be efficient to respond in a real-time way [16]. However, the shortest path
searching algorithms are time-consuming due to the complexity of the task [22].
Besides, time-dependent shortest path search, which considers time-dependent
factors like traffic jams, becomes a general search method and increases the
computing time.

The well-known Dijkstra algorithm [5] performs well on static graphs and can
be extended to the time-dependent case straightforwardly [6]. However, there
are lots of repeated computations when processing shortest path search on the
same road network. Moreover, the A∗ algorithm [12] is a goal-directed search
and is guaranteed to explore no more nodes than Dijkstra’s algorithm. In the
A∗ algorithm, all the computed information is cached to accelerate the search,
which requires a huge memory space and makes it impractical.

Road networks have some unique features that distinguish them from other
common graph structures. First, the road network is usually a hierarchical net-
work, in which the high-grade highway has greater capacity and higher driving
speed than the low-grade highway. Second, high-grade highways can span and
link different regions, while low-grade highways are scattered in each region.
Therefore, when planning a trip from one area to another, people often choose
the main road first and then the minor road leading to the main road. In this
way, we can reduce the complexity of the path search process. Besides, some
scenarios like the travel time estimation, in which only an estimated cost of the
travel time needed, can avoid the detailed exact shortest path calculation [2].
Therefore, we need to optimize the classical shortest path algorithms such as the
Dijkstra algorithm [5] to solve the time-dependent shortest path problem.

In this paper, we study the problem of travel time estimation for large-scale
time-varying road networks. The challenges lie in several aspects: 1) the search
time is positively correlated with the distance between origin and destination,
which results in a big difference in the time costs between long-distance and
short-distance path searching; 2) the speeds of the road segments change with
time, which increases the uncertainty of path searching. In this paper, the idea
shortcut [7] is applied to quickly guide the search process from the start region to
the end region. And we propose an efficient algorithm that estimates the shortest
path on time-dependent road networks based on the shortcut mechanism. The
major contributions of this paper are as follows:

– We proposed a bidirectional partition method that combines with the K-
Means clustering [17] to partition a road network into regions, where shortcuts
are inserted at their best positions.

– We proposed a path searching algorithm to estimate the shortest paths effi-
ciently. Different from existing research, we consider the shortest path search



20 L. Liao et al.

problem within the scenario of large-scale time-dependent road networks.
And our approach adopts bidirectional partitions and shortcuts to make the
searching time-efficient and stable.

– We conducted extensive experiments on a real road network with real request
datasets. The results demonstrated that our approach achieves up to 17 times
faster than the precise shortest path searching algorithm with an acceptable
deviation on the path length. Besides, the searching time is stable regardless
of the distance from the origin to the destination.

The rest of this paper is organized as follows. Section 2 presents the related
work of this paper. Section 3 gives some preliminaries and problem definitions.
Section 4 presents the details of the graph partition algorithm that combines K-
Means and the construction of shortcuts. Section 5 presents the detailed descrip-
tion of the approximating shortest path algorithm based on shortcut mechanism.
Section 6 presents the implementation details of hop on directionally and hop off
early. Section 7 presents the experimental studies and analysis. Finally, Sect. 8
concludes the paper and presents some future directions.

2 Related Work

There are lots of speed-up techniques proposed for path-finding algorithms dur-
ing the past several decades [4,21]. This section mainly introduces two important
algorithms related to road networks: 1) algorithm based on hierarchy in road
network; 2) graph-based search space trimming algorithm.

A lot of works use the hierarchical structure of the road network to acceler-
ate the search. Shapiro et al. [19] proposed a heuristic algorithm that uses the
“level” of nodes and edges to generate approximate shortest paths rapidly. This
algorithm can obtain the near-optimal path by searching a few nodes. Chou
et al. [2] partitioned a large-scale network into a high-level subnetwork and
a set of lower-level subnetworks. The partitioning permits a trade-off between
pre-computation and query time processing. Then, they proposed a hierarchical
algorithm to approximate the shortest paths in large-scale networks. A traf-
fic mining approach had been proposed by Gonzalez et al. [10]. They used the
road hierarchy and pre-computed areas to limit the search space. Delling and
Nannicini [3] noted the timing of the road network and proposed a hierarchi-
cal approach called core routing that combined with bidirectional goal-directed
search in time-dependent road networks. This algorithm is flexible and suitable
for a dynamic scenario where the piecewise linear time-dependent cost functions
on unfixed arcs. But the algorithm did not reduce the search time compared with
the shortest path estimation algorithm while it has a complex preprocessing.

The road network contains a lot of road information, and a lot of work uses
the pre-computed information of the road network to prune the search space.
Wagner and Willhalm [20] pruned the Dijkstra’s search by using geometric con-
tainers with precomputed information. Experiments show that the search space
for online computation reduced significantly.Lauther, U. I. [14,15] proposed a



Efficient Estimation of Time-Dependent Shortest Paths Based on Shortcuts 21

variant of Dijkstra’s algorithm by using edge flags to prune the search space
in static networks. They partitioned the road network into geometrically con-
nected regions and introduced the concept of edge flags: the flag is set if there is
a shortest path over it into the target region. Möhring et al. [18] also introduced
an algorithm that uses edge flags and particularly examined different partition-
ing algorithms and compared their impact on the speed-up of the shortest-path
algorithm. They found that the bidirectional search is the best partition-based
speed-up method among the methods they tested. Gutman [11] defined the ver-
tex reach and pruned a path search by using vertex reaches. It easily handles
multiple origins and destinations. Goldberg et al. [8,9] improved the reach-based
approach of Gutman [11] and introduced a practical algorithm that combines
A∗ search, landmark-based lower bounds, and reach-based pruning. Through the
reach-aware landmarks and improved algorithm, the preprocessing and queries
are faster while the overall space consumption is reduced.

Most existing works use a hierarchical structure or preprocess the road net-
work to speed up the search or reduce the search scope. However, these algo-
rithms consume a lot of time as the request distance increases. We consider the
directed large-scale time-dependent road network and propose an efficient short-
est path estimation algorithm based on road network partitions and shortcuts
which has a stable search efficiency regardless of the distances of requests.

3 Problem Definition

3.1 Time-Dependent Road Network

Let a strongly connected directed graph G = (V,E) be the road network with a
set of nodes V and a set of edges E ⊆ V ×V . The edges of a graph are weighted
by a function w : (E, t0) −→ R where t0 is time.

The weight of an edge e(u, v) ∈ E at time t0 is the traveling time from
u to v instead of distances; we denote the weight of edge e(u, v) at time t0
as w(e(u, v), t0). Given a path from o to d can be denote as p(o, d, t0) =
(v0 = o, ..., vi, ...vj , ..., vk = o), where t0 is the departure time. Then the
weight of path p is defined as w(p) = w0(e(v0, v1), t0) + w1(e(v1, v2), t1) + ... +
wk−1(e(vk−1, vk), tk−1), where ti+1 = ti + wi(e(vi, vi+1), ti). The path that has
the minimum weight from o to d with a departure time t0 is called the shortest
path which is denoted by ps(o, d, t0). We construct an edge e(o, d) with weight
w(e(o, d), t0) = w(ps(o, d, t0)), which is called the shortcut from o to d. As shown
in Fig. 1, the dotted line represents the shortcut from A to E, its weight is the
minimum path weight from A to E. In the following, we represent the path as
p(o, d) when the departure time t0 is known as context.

3.2 Partitions of Road Network

Given a strongly connected directed graph G = (V,E), we denote the partition
of G as Pm(1 ≤ m ≤ k), where k is the total number of the partitions. The



22 L. Liao et al.

Fig. 1. A shortcut bypassing several nodes: the dotted line is the shortcut from node
A to E, which represents the shortest path p(A,E) = (A,B, F,G,E).

VPm
(1 ≤ m ≤ k) is the set of vertices in Pm and VPm

∩ VPn
= ∅(m �= n and

1 ≤ m,n ≤ k). Each partition has a representative node Cm(1 ≤ m ≤ k), which
is called core node.

For any node x in the graph G, the index of its partition can be expressed
as i(x). So the partition that x belongs to can be denoted by Pi(x) and the
corresponding core node is Ci(x). For simplicity, we replace them with Px and
Cx in the following.

4 Graph Partitioning and Shortcuts Construction

The preprocessing that creates additional information can reduce the search
space. More precisely, our approach uses regions to constrain the search space
and uses shortcuts to accelerate the path search algorithm. The weights of paths
greatly depend on how the road network is partitioned and how core nodes are
selected, as they severely affect the quality of shortcuts. In this section, we intro-
duce the preprocessing of the time-dependent road network: graph partitioning
and shortcut construction.

The main idea of our algorithm is to use shortcuts between regions to reduce
the search space and accelerate the search. Considering the consumption of stor-
age space, we only establish the shortcut between core nodes of each region.
Partition and core node acquisition can be divided into two steps: 1) select the
core nodes by the K-Means clustering-based algorithm; 2) generate the regions
according to the core nodes. Then, a modified A∗ algorithm is applied to acceler-
ate the estimate of the time-dependent shortest path. The algorithm accelerates
the searching by shortcuts when the origin and destination are not in the same
region. Besides, two measures are adopted to avoid excessive detours. One can
lead the algorithm to “hop on” a better shortcut and the other can help the
algorithm “hop off” the shortcut more smoothly.

4.1 Bidirectional Partitioning

For a 2D layout of the graph, a common way is grid partition, where nodes in
the same grid are divided into a partition. Figure 2(a) shows an example of grid
partition, which can partition a graph into different regions fast in an easy way.
However, this method ignores other properties like the density of nodes. Another
partition method is based on the K-Means clustering algorithm, which divides



Efficient Estimation of Time-Dependent Shortest Paths Based on Shortcuts 23

the sample set into k clusters according to the distance. The criterion of K-
means is to reduce the distance between nodes within a cluster while increasing
the distance between clusters. Figure 2(b) shows an example of the K-Means
partition. However, the K-Means partition is not very suitable for road networks.
First, longitude and latitude, used in distance calculations, can not represent the
actual distance between two nodes in a road network. As the nodes are linked
by several road segments, which have different speed limits and lengths. Second,
the road network can be seen as a directed graph. For example, a car may go
through different road segments when it goes from node a to node b and node b
to node a.

(a) Grid partition (b) K-Means partition

Fig. 2. Two partition methods of Xiamen island

To generate the partitions considering the bidirectional distances between
nodes, we process as follows:

1. First, we select core nodes based on K-means in two steps: 1) Obtain K
partitions by the K-Means clustering algorithm; 2) the central node of each
partition is identified as the core node, which has the shortest distance sum
to other nodes in the same region. Then, we adopt the Distance-First Parti-
tioning on graph G to assign nodes to suitable partitions in turn, whose pseu-
docode is shown in Algorithm 1. In the first part of the algorithm, the cluster
centers(core nodes) are generated by K-Means algorithm (line 1). Then, the
candidateSet is initialized to a set of all nodes except the core nodes (line 2).
Queues are created for each core node to store the neighbor nodes in ascend-
ing order of distance to the core node (line 3–6). In the second part, we select
partitions for each node in turn. For each partition, we extract a node from
the queue and add it into the partition if it is in the candidate set. Then, we
add the neighbor nodes of the node to the queue in order (line 14–18). Each
partition performs the same steps in turn.

2. We also adapt the Distance-First Partitioning algorithm on the reversed
graph1 G−1 to represent the distance relationship between nodes and core
nodes more comprehensively. The partition and core node in G−1 are denoted
by P−1

m and C−1
m (1 ≤ m ≤ k) respectively.

1 G−1 has the same vertex set as G but all edges reversed.



24 L. Liao et al.

Algorithm 1: DistanceFirstPartition(G, k)
input : A graph G, number of clusters k
output: A partitioned graph

1 Obtain the core nodes Ncore of K partitions according to the K-Means
clustering algorithm;

2 Initialize the candidate set Sc as the node in the graph except the core nodes;
3 Initialize empty queues Q for each partition;
4 for i in k do
5 Otain the neighbor nodes of Ncore[i];
6 Add the sorted neighbor nodes into Q[i] by distance in ascending order;

7 while Sc is not empty do
8 for i in k do
9 while Q[i] is not empty do

10 currentNode = Q[i].pop();
11 if currentNode in Sc then
12 Add the currentNode into the partition of core node Ncore[i];
13 Remove the currentNode from the candidate set Sc;
14 Otain the neighbor nodes Ncur of the currentNode;
15 for node in Ncur do
16 if node in Sc then
17 Calculate the distance from the node to the core node;
18 Add the node to Q[i] and sort Q[i];

19 break;

20 return G;

We call this algorithm Bidirectional Partitioning because it considers the
bidirectional distances between nodes and obtained two partitioning schemes
according to the directions of edges.

4.2 Add Shortcuts

To reduce the complexity of searching the shortest path, we created a shortcut
for each pair of core nodes: additional edges with time-dependent weight equal
to the original shortest path between their endpoints. And we use sc(u, v) to
denote the shortcut from node u to node v. Then, we divide a day evenly into
x time slices for that the time-dependent weight of the path is dynamic. Then
we calculate the shortcut between each core node pair in each time slice and
store them in the memory. It is obvious that the accuracy and storage space are
increase with the time slices x.

5 Time-Dependent A∗ with Shortcuts

In this section, we introduce a fast approach for estimating the shortest paths
of a node pair. Our algorithm can reduce the search time significantly while



Efficient Estimation of Time-Dependent Shortest Paths Based on Shortcuts 25

Algorithm 2: TDAWS(G, o, d, t0)
input : A preprocessed graph G, the origin node o, the destination node d, the

start time t0
output: A approximate shortest path from o to d

1 if G.C−1
o == G.Cd then

2 p = TDRA(G, o, d, t0);
3 return p ;

4 else
5 p1 = TDRA(G, o, C−1

o , t0);
6 p2 = C−1

o .shortcut(Cd, t0 + w(p1));
7 p3 = TDRA(G,Cd, d, t0 + w(p1) + w(p2));
8 return p1 + p2 + p3;

the weight of the result is nearly optimal. The main idea is to use the precom-
puted information, partitions and shortcuts, to narrow the search and omit the
calculation.

Given a graph G = (V,E) that has been processed by Bidirectional Parti-
tioning algorithm and source and destination vertices o, d ∈ V , the algorithm
for estimating the shortest time-dependent path works as follows:

(a) If C−1
o = Cd, then start a restrained time-dependent A∗ search from o on G

and the search scope of nodes is restrained in VP−1
o

∪ VPd
.

(b) If C−1
o �= Cd, the process of estimating shortest time-dependent path from

o to d can be decomposed into four steps:
step 1. A Time-Dependent Restrained A∗(TDRA) occurs on G from o to C−1

o

and the search scope of nodes is restrained in VP−1
o

. The path obtained
in this step is denoted by p1. TDRA is a Time-Dependent A∗(TDA) with
limited search scope.

step 2. The shortcut from C−1
o to Cd provides the shortest time-dependent

path p2 from C−1
o to Cd.

step 3. A TDRA occurs on G like step 1 while the source and target are
Cd and d and the search scope of nodes is restrained in VPd

. The path
obtained in this step is denoted by p3.

step 4. The final estimated shortest time-dependent path is the combination
of p1, p2 and p3.

We call this algorithm Time-Dependent A∗ With Shortcuts (TDAWS). The
Algorithm 2 presents the pseudocode of TDAWS.

6 Avoid Detours

Although TDAWS can effectively reduce the cost of computation time, it can
also cause some unnecessary detours. This section describes two mechanisms to
avoid detours: hops on the shortcut and hops off the shortcut.



26 L. Liao et al.

6.1 Hop on Directionally

Given a graph G = (V,E) that has been processed by Bidirectional Partitioning
algorithm. The origin and destination nodes (o, d ∈ V ) are not in the same
partition, i.e. C−1

o �= Cd. As shown in Fig. 3(a), m and n are the core nodes of
o and d, respectively. According to TDAWS, the searching hops on the shortcut
between m and n although there is a detour from o to m. Hence, we propose
the Hop On Directionally (HOD) mechanism to avoid detours with the help
of adjacent core node h of m. Hence, we propose the Hop On Directionally
(HOD) mechanism to avoid detours with the help of adjacent core node k of m.
Specifically, the HOD is described as follows:

1. Select X nodes from the adjacent core nodes of m by comparing the weight
of shortcut to n as the candidate nodes.

2. Calculate the time cost from o to each candidate node. We chose the path
with the lowest total time cost to replace the path obtained in Step 1 of
TDAWS.

3. Then the TDAWS progresses as previously defined until the target is settled.

6.2 Hop Off Early

Given a graph G = (V,E) that has been processed by Bidirectional Partitioning
algorithm and source and destination vertices o, d ∈ V and C−1

o �= Ct. As shown
in Fig. 3(b), m is C−1

o , n is Cd and h is a node on the shortcut. As we can see,
the shortcut between m and n goes too “far” and the searching has to take a
detour to get d. If the searching hops off the shortcut at k, the detour can be
avoided. So we proposed a mechanism called Hop Off Early(HOE) to stop the
TDAWS step 2 before it makes more detours. The HOE is as follows:

1. The TDAWS step 1 progresses as defined.
2. As the TDAWS progresses to step 2, the p2 is obtained. Then traversal p2

forward until it reaches the node that is in VPd
and the node is denoted by

h. The p2 only keeps the path from the start point of p2 to h and abandons
the rest, which means the TDAWS hops off the shortcut early at node h.

3. A TDA occurs on G and the origin and destination are h and d. The path
obtained in this step replaces the path obtained in TDAWS step 3 and we
still denote it by p3.

4. Then the TDAWS returns the combination of p1, p2 and p3.

7 Experiments

We conduct experiments with real-world road network and taxi trajectory
datasets to verify the performance of the proposed algorithm. The schemes are
implemented in Java 1.8 and experiments are run on a desktop computer with
AMD R9 3900XT CPU, 3.8 GHz, 64G RAM under Ubuntu 18.04.5 LTS.



Efficient Estimation of Time-Dependent Shortest Paths Based on Shortcuts 27

(a) HOD (b) HOE

Fig. 3. Two mechanisms for avoiding detours, m is C−1
o , n is Cd, h is a core node and

the dotted lines are shortcuts

The road network of the Xiamen island is used for the simulation, which
contains 24,750 road nodes and 3,234 road segments. The source file of map
([118.0660E,118.1980E] × [24.4240N,24.5600N]) is from OpenStreetMap2 and
the road network is based on the JGraphT3 framework.

The default simulation settings are set as follows unless otherwise stated.
The Xiamen Island is divided into 80 partitions by the K-Means clustering algo-
rithm. And a day is divided into 24 time slices to represent the time-dependent
properties of the road network.

7.1 Compared Algorithms

To study the performance, we compared the efficiency of algorithms that also
use modified A∗ algorithm on dynamic road network. We conduct the following
algorithms:

– Time Dependent A*(TDA): the time-dependent case of A∗, whose potential
function uses Euclidean distance and an upper bound speed to estimate the
weight between a node and the target. It serves as the baseline of the schemes.

– Time Dependent A* With Shortcuts (TDAWS): the modified time-dependent
case of A∗ using shortcuts to accelerate the searching process.

– Time Dependent A* With Shortcuts And Hop on Directionally
(TDAWS+HOD): the TDAWS algorithm with Hop on Directionally mecha-
nism.

– Time Dependent A* With Shortcuts And Hop off Early (TDAWS+HOE):
the TDAWS algorithm with Hop off Early mechanism.

– Time Dependent A* With Shortcuts, Hop on Directionally And Hop off Early
(TDAWS+HOD+HOE): the TDAWS algorithm with Hop on Directionally
and Hop off Early mechanism.

– K Shortest Path Algorithm Based on Lifelong Planning A* Technique(KSP-
LPA*): is adopted based on [1] , which formulates the deviation path cal-
culation process as repeated one-to-one searches for the shortest path in a
dynamic network.

2 https://www.openstreetmap.org/.
3 https://jgrapht.org/.

https://www.openstreetmap.org/
https://jgrapht.org/


28 L. Liao et al.

7.2 Result Analysis

Compared with the TDA, we do some offline preprocessing on the road network
before the shortest path searching, including 1) clustering the graph with K-
Means to obtain the partitions; 2) create shortcuts for each core node pair. The
consumption of graph partition can be ignored as it only be executed once for a
graph. The cost of building a shortcut is related to time slices and the number
of partitions. It takes 24.562s to construct the shortcut for each time slice when
the number of partitions is 80. And storing a day’s shortcut consumes about
12MB when the number of time slices is 24.

Table 1. Overall performance of the schemes.

Schemes Metrics

Mean search
time (ms)

Standard
deviation of
search time

Shortcuts hit
rate (%)

CR

TDA 4.272 32.235 – 1

TDAWS 0.123 0.503 87.4 1.44

TDAWS+HOD 0.150 0.450 83.7 1.33

TDAWS+HOE 0.263 0.726 87.4 1.29

TDAWS+HOD+ HOE 0.243 0.603 83.7 1.20

KSP-LPA* 2.44 1.681 – 3.28

Overall Performance. We evaluate the performances of TDA, TDAWS,
TDAWS+HOD, TDAWS+HOE, TDAWS+HOD+HOE, and KSP-LPA* with
19,101 origin-destination pairs. We use a competitive ratio to evaluate the qual-
ity of an approximate time-dependent shortest path, which is defined as follows:

CR =
w(pa)

w(pmin)
(1)

where pa and pmin are the search path and the shortest path from the source
node to the target node, respectively. When the CR ∈ [1,∞) is smaller, the
search result is closer to the shortest path.

As shown in Table 1, the CR of TDA is the lowest (1.00) as its search result is
the shortest path with the highest search time (4.272 ms) and standard deviation.
The search time of TDAWS is the lowest (0.123 ms) with the cost of about 44%
longer estimated path than TDA. As shown in the result of TDAWS+HOD and
TDAWS+HOE, HOD and HOE mechanisms both can reduce the CR compared
with TDAWS. However, the HOD mechanism will reduce the shortcut hit rate
while the HOE mechanism will double the search time of TDAWS. When both
HOD and HOE mechanisms are adopted, the estimated path quality (CR = 1.20)
is further improved while it still costs more query time (0.243 ms) than TDAWS.
The KSP-LPA* has about 43% of query timeless (2.44 ms) than TDA while its
CR is 3.28, which means the estimated path weight is 3.28 times the shortest



Efficient Estimation of Time-Dependent Shortest Paths Based on Shortcuts 29

Fig. 4. Impact of the number of parti-
tions on the mean path length

Fig. 5. Impact of the number of parti-
tions on the mean search time

Fig. 6. Impact of the number of parti-
tions on shortcut hit rate

Fig. 7. Impact of the distances of
requests on the mean competitive ratio

path weight. As for the stability of the algorithms, the algorithms based on
shortcuts have very small standard deviations, which means for any shortest
path request, they can respond in a stable time.

Impact of the Number of Partitions. Figure 4 shows the experimental
results of the mean path length with different numbers of partitions, k, from 10
to 80. As shown in Fig. 4, when the number of partitions increases, the mean path
length of the results achieved by all the approaches shows a trend of downward.
The reason is that when the road network is divided into more partitions, the
distances between core nodes and other nodes are decreasing, and the estimated
path contains fewer detours. When k is 40 and 70, the values of mean length
of TDAWS and TDAWS+HOD rise because the locations of some core nodes
may cause more detours, while the HOE can effectively correct the detours.
The influence of the number of partitions on TDAWS+HOD+HOE is small,
which shows that TDAWS+HOD+HOE can effectively avoid detours caused by
the locations of core nodes. Figure 5 illustrates the impact of the number of
partitions on mean search time. The mean search times of all the algorithms
show a downward trend as k increases. While the TDAWS has the best result,
TDAWS+HOE and TDAWS+HOD+HOE have close results.



30 L. Liao et al.

Fig. 8. Impact of the distances of
requests on the mean search time

Fig. 9. Impact of the distances of
requests on the shortcut hit rate

Fig. 10. Impact of traffic time on the
mean path length

Fig. 11. Impact of traffic on the mean
search time

From above, we can infer that the HOD in the AWS+HOD+HOE is not
the the main factor for the time-consuming while the HOE is. As we can see
from Fig. 6, the shortcut hit rates of all the algorithms decrease as k increases.
The curves of TDAWS and TDAWS+HOE overlap, so as the TDAWS+HOD
and TDAWS+HOD+HOE. This is because the HOD mechanism can affect the
shortcut hit rate.

Impact of the Distances of Requests. To evaluate the performance of the
proposed algorithms for different distance requests, We divided requests into two
categories: the short-distance request and the long-distance request. Requests are
classified according to the Euclidean distance between the origin and destination.
If the distance is less than 3 km, it is called a short-distance request, otherwise,
it is a long-distance request.

We conducted experiments with short-distance requests and long-distance
requests, respectively. As shown in Fig. 7, The CR of KSP-LPA* increase sharply
when the distance exceeds 3KM. In contrast, TDAWS and its deformations are
not affected by the length of the distance, which takes advantage of the short-
cut. Figure 8 illustrates the impact of the distances of requests on the mean
search time. It can find that the search time of KSP-LPA* is significantly influ-
enced while TDAWS and its deformations are stable when the distance increased.



Efficient Estimation of Time-Dependent Shortest Paths Based on Shortcuts 31

This means that the algorithms based on shortcuts have stable search efficiency
regardless of the distances of requests. This is because TDAWS has a higher
shortcut hit rate in long-distance requests, which is also reflected in Fig. 9.

Impact of Traffic Time. We also verify the performance of the algorithms
in different traffic periods, including morning peak time (7:00–9:00), evening
peak time (17:00–19:00), and normal time (15:00–17:00). Figure 10 illustrates the
impact of traffic time on the mean path length. It can be found that the estimated
path weight in the peak period is higher, which is due to road congestion. As
shown in Fig. 11, the traffic time has little impact on the algorithms that use
shortcuts while the TDA and KSP-LPA* are more affected. This is because TDA
and KSP-LPA require more resources to handle increased requests during peak
times.

8 Conclusion

We have proposed an efficient algorithm for estimating the time-dependent short-
est path based on the shortcut mechanism. The road network is preprocessed
offline and partitioned into different regions. Each region has one core node and
shortcuts between core nodes are constructed. We utilizes shortcuts to omit
most of the searching process when searching a long-distance source-target pair.
Besides, the HOD and HOE mechanisms are proposed to correct the detours
of the approximated shortest paths. Experimental results show that the pro-
posed algorithm can effectively reduce the searching time with an acceptable
path length deviation.

References

1. Chen, B.Y., Chen, X.W., Chen, H.P., Lam, W.H.K., Talley, W.: Efficient algorithm
for finding k shortest paths based on re-optimization technique. Transp. Res. Part
E Logs Transp. Rev. 133, 101819 (2020)

2. Chou, Y.L., Romeijn, H.E., Smith, R.L.: Approximating shortest paths in large-
scale networks with an application to intelligent transportation systems. Inf. J.
Comput. 10(2), 163–179 (1998)

3. Delling, D., Nannicini, G.: Core routing on dynamic time-dependent road networks.
Informs J. Comput. 24(2), 187–201 (2012)

4. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02094-0 7

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

6. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3),
395–412 (1967)

7. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

https://doi.org/10.1007/978-3-642-02094-0_7


32 L. Liao et al.

8. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: efficient point-to-point
shortest path algorithms. In: Proceedings of the Meeting on Algorithm Engineering
& Expermiments, pp. 129–143. Society for Industrial and Applied Mathematics,
USA (2006)

9. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In:
Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72845-0 4

10. Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive fastest path
computation on a road network: a traffic mining approach. In: Proceedings of
the 33rd International Conference on Very Large Data Bases, VLDB ’07, VLDB
Endowment, pp. 794–805 (2007)

11. Gutman, R.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks, pp. 100–111 (2004)

12. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

13. Lai, Y., Yang, S., Xiong, A., Yang, F., Li, L., Zhou, X.: Utility-based matching
of vehicles and hybrid requests on rider demand responsive systems. IEEE Trans.
Intell. Transp. Syst., 1–15 (2020)

14. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Geoinformation und Mobilität - von
der Forschung zur praktischen Anwendung (2004)

15. Lauther, U.: An experimental evaluation of point-to-point shortest path calculation
on roadnetworks with precalculated edge-flags. In: DIMACS Book, vol. 74 (2009)

16. Li, L., Kim, J., Xu, J., Zhou, X.: Time-dependent route scheduling on road net-
works. SIGSPATIAL Spec. 10(1), 10–14 (2018)

17. Macqueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability 1967 (1967)

18. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speed up Dijkstra’s algorithm. In: Nikoletseas, S.E. (ed.) WEA 2005.
LNCS, vol. 3503, pp. 189–202. Springer, Heidelberg (2005). https://doi.org/10.
1007/11427186 18

19. Shapiro, J., Waxman, J., Nir, D.: Level graphs and approximate shortest path
algorithms. Networks 22(7), 691–717 (2010)

20. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS,
vol. 2832, pp. 776–787. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39658-1 69

21. Wang, Y., Li, G., Tang, N.: Querying shortest paths on time dependent road
networks. Proc. VLDB Endowment 12(11), 1249–1261 (2019)

22. Zhang, D., Yang, D., Wang, Y., Tan, K.-L., Cao, J., Shen, H.T.: Distributed short-
est path query processing on dynamic road networks. VLDB J. 26(3), 399–419
(2017). https://doi.org/10.1007/s00778-017-0457-6

https://doi.org/10.1007/978-3-540-72845-0_4
https://doi.org/10.1007/11427186_18
https://doi.org/10.1007/11427186_18
https://doi.org/10.1007/978-3-540-39658-1_69
https://doi.org/10.1007/978-3-540-39658-1_69
https://doi.org/10.1007/s00778-017-0457-6

	Efficient Estimation of Time-Dependent Shortest Paths Based on Shortcuts
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Time-Dependent Road Network
	3.2 Partitions of Road Network

	4 Graph Partitioning and Shortcuts Construction
	4.1 Bidirectional Partitioning
	4.2 Add Shortcuts

	5 Time-Dependent A* with Shortcuts
	6 Avoid Detours
	6.1 Hop on Directionally
	6.2 Hop Off Early

	7 Experiments
	7.1 Compared Algorithms
	7.2 Result Analysis

	8 Conclusion
	References




