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Abstract. Human activity recognition using MEMS on mobile devices has
become one of the most compelling solutions owing to the miniaturization of
sensors. A crucial challenge is to recognize precisely activities when they are
changing. Sliding window is a type of common methods. However, the interfer-
ence of historical data in the sliding window is harmful to insight into changing
of actions or uncommon behaviors. This paper proposes a fine-grained activity
recognition method and designs a corresponding system farer. It employs features
of action subsegments and incremental broad learning to precisely distinguish the
alterations of actions and abnormalmovements. Firstly, farer achieves the accurate
segmentation of activities as data preprocessing. A neighborhood extreme value
method (NEV) is adopted to avoid the intervention of peaks and valleys of data.
Secondly, the current action is partitioned to fine-grained subsegments to elabo-
rately abstract subtle features. We propose a feature extraction technique based
on adjacent difference (FETAD), and furthermore reduce its resulting dimension
through the complete two-dimensional principal component analysis (C2DPCA).
Finally, broad learning theory is employed to construct the activity recognition
model, especially incremental learning for unusual behaviors. Extensive exper-
iments demonstrate that farer could accurately recognize activities when they
abruptly change, and its performance is considerable stability. Meanwhile, it can
quickly establish a valid incremental model that only needs a short sampling time
for special activities. The overall accuracy of farer is 97.91% with 90.14% for
changed activities, which is far superior to the current mainstream methods.

Keywords: Fine-grained recognition · Broad learning · Action subsegments ·
Incremental model

1 Introduction

Human Activity Recognition (HAR) has been widely applied in some scenarios, e.g.
industry and medicine [1]. For instance, it could be used for early warning when factory
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operators carry out dangerous behaviors, and exhibiting the accuracy degree of mobility
impairments patients’ performed actions for physical therapy. The basis pattern of HAR
is to collect actual data of specific activities and then achieve accurate recognition through
comparison and classification. In generally, feature extraction by sliding window is an
effective activity recognition paradigm. The basic essence of this type of method is
to design a sliding window which contains the perception data of the activity to be
recognized, then extract features of the window data to represent the activity, and design
an effective classifier for activity recognition. However, in the above special scenarios,
most of them require the deployment of dedicated sensing systems, such as IoT devices
and sensor networks [2–4], resulting in high cost and poor universality.

The development of wireless communication technology [5] and the miniaturization
of sensors [6] have enabled smart devices [7] embedded with many MEMS sensors
(such as smart phones, tablets, etc.) to have good data collection capabilities. In the
meanwhile, in-depth research in the field of deep learning has further improved the
accuracy of activity recognition [8]. However, the popularization of mobile devices puts
forward higher requirements for activity recognition in complex scenarios. Particularly,
mobile devices must quickly and accurately perceive activity changes, and recognition
methods must be oriented to the special behavior habits of different users. The main
challenges that activity recognition still faces are as follows: 1) The raw data collected
by the accelerometer contains much noise. 2) The influence of historical data on current
activity data. 3) Special behavior habits are not easy to accurately recognize.

To address the above challenges, in this paper, we propose a fine-grained activity
recognition method and designs a corresponding system farer. The system implements
effective preprocessing of the source data by smoothing and filtering the sampled data
and segmenting activities into individual actions. Then deeply mine the features of
actions through fine-grained subsegment division, feature extraction and dimensionality
reduction. Finally, an incremental activity recognition model based on broad learning
(BL) is constructed to realize accurate activity recognition and satisfy incremental model
update. The main contributions of this paper are summarized as follows:

1) Realize accurate segmentation of activities. By smoothing and filtering the source
data, a neighborhood extreme value method is proposed to avoid the interference of
peaks and valleys.

2) Deeplymine the features of action subsegments. The action data is partitioned tofine-
grained subsegments according to changes of acceleration, and a feature extraction
technique oriented to adjacent difference is designed.

3) The farer system based on BL is designed with stable performance and good prac-
ticability. After a series of experimental verifications, the system has a high recog-
nition rate for different activities under the condition of stable activities, with an
overall recognition rate of 97.91%. Under the condition of changed activities, the
recognition accuracy is 90.14%, far exceeding other methods.

2 Related Work

Recognizing human activities based on sensor data is essentially a pattern classification
problem. When using a sliding window for activity recognition, it is required to process
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the noise generated during the sampling process, select an appropriate sliding window,
and design an effective activity classifier. These are all key factors that determine the
recognition performance. This section mainly introduces the current research status of
three aspects in the case of activity recognition: the processing of data noise, the setting
of sliding window and the construction of classifier model.

Since the data collected by the sensor often contains high-frequency noise, it needs
to be processed, otherwise it will affect the accuracy of activity recognition. Yang et al.
[9] used Gaussian filtering algorithm to eliminate the influence of noise. Garcia-Ceja
et al. [10] used the average smoothing method, replacing each original data with the
average of two adjacent data points. Khan et al. [11] used a third-order moving average
filtering algorithm to remove noise. These methods cannot eliminate the interference
extreme points to a great extent.

The collection of human activity data often takes a long time. In the activity recog-
nition stage, the sensor data stream needs to be segmented by windows. Because the
fixed-size sliding window segmentation technology is simple to operate, it is adopted
by most researches. In the terms of sliding window setting, Fida et al. [12] tested the
window of 0.5 s to 3 s, and achieved the best result in 1.5 s. Elsts [13] adopted a 2.56 s
sliding window to design the energy-saving activity recognition framework. Shuvo [14]
and Xia [15] adopted a sliding window of 2.56 s with a step length of 1.28 s, achieving
the recognition accuracy of more than 95%. Cha et al. [16] adopted a window length of
1 to 4 s and found that using 4 s achieved the best accuracy of 96.1%. Pienaar et al. [17]
adopted a large window of 10 s with a step length of 1 s to segment data and achieved the
recognition accuracy of 94%. The above methods verify that the selection of the action
window will greatly affect the recognition performance of the activity. The traditional
method of fixed-size sliding window is oriented to the recognition of a single stable
activity, while ignoring the change of the activity.

In the terms of classifier construction, researchers manually extract features from
activity sensor data and employ them in various traditional machine learning algorithms.
Since these data fragments cannot adequately represent complex human activities, they
have become the performance bottleneck of the classifier [18]. To further improve the
accuracy of activity recognition, methods based on deep learning are employed by more
and more people, such as Convolutional Neural Network (CNN) [19], Long Short-
Term Memory (LSTM) [20] and their joint improved models CNN-LSTM [21] and
ConvLSTM [22]. Although thesemodels showgood performance, their designs aremore
complex. In addition, the amount of calculation is large and hardware requirements are
high. More importantly, these models are constructed based on training data, so they
have poor perception of activity changes and lack robustness [23].

To solve the problems of accurate recognition and flexibility of activities, we propose
effective data preprocessing and employ fine-grained features of action subsegments,
which improve the accuracy of activity recognition, especially for changed activities.
Incremental model construction based on broad learning is also proposed to realize the
incremental update of the special activity behavior, without using the source data to
retrain the entire model.
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3 Proposed Method

For complex activity situations, we propose a fine-grained activity recognition method
based on features of action subsegments and incremental broad learning. The corre-
sponding recognition system named farer is also designed. The system contains three
sub-modules, namely data preprocessing, feature extraction based on fine-grained sub-
segment, and incremental recognition model based on broad learning. First, smooth
and filter the sampled data, and design a peak and valley recognition method to accu-
rately segment activities into individual actions. Then deeply mine the features of action
subsegments through the fine-grained segmentation of the action data, targeted feature
extraction and dimensionality reduction. Finally, build an incremental activity recogni-
tion model based on broad learning to realize the accurate recognition of activities and
satisfy the incremental model update. The framework of farer is shown in Fig. 1.

Fig. 1. farer framework.

3.1 Data Preprocessing

Data Smoothing and Filtering. According to the travel characteristics of pedestrians,
the sensor data changes smoothly in a relatively short period. Since people cannot main-
tain a fixed posture when traveling, the sensor perceives irregular changes during the
collection process, resulting in abnormal points. Without changing the trend of data
changes, we employ the neighborhood smoothing method to filter the source data.

Assuming that the sampled data at time t is xt , its neighborhood interval is [t−ϕ, t+ϕ]
and the interval range is μ = 2ϕ + 1. Construct a k-order polynomial to fit the points in
the interval. Denote S0, S1, · · · Sk as the polynomial coefficients, then the data xt can be
expressed as

xt = s0 + s1t + s2t
2 + · · · + sk t

k (1)
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The least square fitting of the neighborhood interval X = (
xt−ϕ, · · · , xt, · · · , xt+ϕ

)T is
calculated as
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The method of smoothing and filtering the source data saves the change information
of the signal and eliminates outliers,whichmakes the data curve smoother.After filtering,
the value of xt is X

∧

(ϕ + 1).

Activity Segmentation. The periodicity of activities makes the acceleration data in the
vertical direction sampled by the sensor show regular changes in peaks and valleys, so
dividing activities by identifying peaks and valleys is the basic way of activity segmen-
tation. The activity data is filtered to eliminate abnormal signal points, making the entire
data stream smoother. However, there are still multiple extreme interference points at
the peak and valley of activities, which seriously affects the accurate segmentation of
activities.

We design a neighboring extremum value method (NEV) to more accurately identify
the real peaks and valleys and avoid the interference of extreme points. Denote X =
(x1, x2, . . . , xn) as the acceleration sampling data in the vertical direction. Then,

1. Calculate extreme points.
Obtain all maximum points Xmax = (

x1max, x
2
max, . . .

)
and minimum points Xmin =(

x1min, x
2
min, . . .

)
.

2. Filter extreme interference points.
We employ the altitude, prominence and isolation of the peaks and valleys to filter
the noise at the extreme points, where the altitude refers to the height of the peak
or the depth of the valley, the prominence refers to the convexity of the peak or the
concavity of the valley, and the isolation is the horizontal distance between two peaks
or two valleys. We set the altitude threshold ΓA, the prominence threshold ΓP and
the isolation threshold ΓI to eliminate extreme points that do not meet the threshold.

3. Segment activities into individual actions.
When the vertical acceleration direction is upward and gradually increases from 0,
it is defined as the starting point of the action. Then the peak and valley are reached.
After reaching valley, when the vertical acceleration direction is downward and
decreases to 0, it is defined as the ending point of the action. Thus, the activity data
is segmented into individual action data.
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Different from the traditional activity recognition, we set the size of the sliding
window to the size of the complete action segment, so each window has a different size.
We call the sliding window here the action window. The action window only contains
the data of the current action, without historical data, and it slides a complete action
window every time. Our design avoids the influence of historical data on current data.

3.2 Feature Extraction Based on Fine-Grained Subsegments

Fine-grained Subsegment Feature Extraction. To extract fine-grained features of seg-
mented actions, we design an activity recognition method based on fine-grained subseg-
ments. We perform fine-grained subsegment division of actions to realize fine-grained
cognition of actions, that is, the action window is evenly divided into several subseg-
ments. The fine-grained division of the action window shows the change of the behavior
state.

In order to fully mine the action characteristics to realize the fine-grained cognition
of the action data, we design a feature extraction technique based on adjacent difference
(FETAD) for 3 axes acceleration. The change of measured data is relatively stable in a
short period due to the continuity of the action. Therefore, when the action is fine-grained
divided, the difference in adjacent subsegments changes most smoothly. According to
this principle, the steps of FETAD are as follows:

1) The action window is evenly divided into kf subsegments and the length is

lm. The three-axis data vectors are Gx
li

=
[
gx(i,1), g

x
(i,2), · · · , gx

(i,li)

]
, Gy

li
=

[
gy(i,1), g

y
(i,2), · · · , gy

(i,li)

]
, Gz

li
=

[
gz(i,1), g

z
(i,2), · · · , gz

(i,li)

]
, where 1 ≤ i ≤ kf .

2) Adopt the difference between the data in adjacent subsegments as the data of the
previous subsegment, i.e. Gx

li
= Gx

li+1
− Gx

li
, Gy

li
= Gy

li+1
− Gy

li
, Gz

li
= Gz

li+1
− Gz

li
,

where 1 ≤ i < kf . Each axis gets kf − 1 difference vectors.
3) Extract features for each difference vector of each coordinate axis. Denote nf as the

number of features to be extracted. The feature vector of the difference vector is
Dli = [

di(1), di(2), · · · , di
(
nf

)]
.

4) Combine the features of kf − 1 difference vectors on each coordinate axis into a
new feature vector. The feature vectors of the three coordinate axes are expressed

as Dx =
[
Dx
l1
,Dx

l2
, · · · ,Dx

lkf −1

]T
, Dy =

[
Dy
l1
,Dy

l2
, · · · ,Dy

lkf −1

]T
and Dz =

[
Dz
l1
,Dz

l2
, · · · ,Dz

lkf −1

]T
.

5) Finally, the feature vectors of the three coordinate axes are combined into a two-
dimensional matrix as Dxyz = [Dx,Dy,Dz]T . The size is 3 × [(kf − 1

) × nf ].

Feature Matrix Dimensionality Reduction. To improve the speed of activity recogni-
tion, we further extract the effective information of the three-axis features. First, perform
feature extraction on the combined matrixDxyz of the x, y and z three axes. Aiming at the
obtained two-dimensional feature matrix, we adopt complete two-dimensional princi-
pal component analysis (C2DPCA). C2DPCA reduces the dimensionality of the matrix
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from two aspects: row projection and column projection. Then, flatten the principal
component matrix of the three axes to obtain a one-dimensional vector to meet the input
requirements of BLS.

Denote D as the feature matrix set of N actions. The feature matrix of the i-th
action is Di ∈ Rp×q, i ∈ [1,N ]. To realize the complete two-dimensional princi-
pal component analysis of Di, it needs to be projected from two angels of row and
column. The column divergence matrix and row divergence matrix of D are formu-

lated as GP = ∑N
i=1

(
Di − D

)(
Di − D

)T
and GQ = ∑N

i=1

(
Di − D

)T (
Di − D

)
, where

D = 1
N

∑N
i=1Di is the average value of the feature matrix set D.

By choosing proper eigenvectors of the matrices GP and GQ, the projection of Di

is as dispersed as possible. The numbers of eigenvalues of GP and GQ are calculated
as nP and nQ. The eigenvalues of GP and GQ are sorted in descending order. The
eigenvalue set of GP are α = [

α1, α2, · · · , αnP

]
, and the corresponding eigenvector

set is
[
μ1, μ2, · · · , μnP

]
. The eigenvalue set of GQ are β = [

β1, β2, · · · , βnQ

]
, and

the corresponding eigenvector set is
[
ν1, ν2, · · · , νnQ

]
. Since GP and GQ are both non-

negative definite matrices, their eigenvalues are not less than zero.
If the first n1 eigenvalues of the eigenvalue sequence α of GP satisfy

∑n1
i=1 αi ≥ ∂P ·∑nP

i=1 αi, where ∂P is the column hash threshold. Select the eigenvectors corresponding

to n1 eigenvalues to form the column projection of Di, i.e. P = [
μ1, μ2, · · · , μn1

]T .
The size of P is n1 × p. Similarly, if the first n2 eigenvalues of the eigenvalue sequence
β of GQ satisfy

∑n2
j=1 βj ≥ ∂Q · ∑nQ

j=1 βj, where ∂Q is the row hash threshold. Select
the eigenvectors corresponding to n2 eigenvalues to form the row projection of Di, i.e.
Q = [

ν1, ν2, · · · , νn2
]
. The size ofQ is q×n2. P andQ respectively projectDi to obtain

the principle component analysis matrix is H = P · Di · Q. The size of H is n1 × n2.

Fig. 2. Broad learning system model.

3.3 Recognition Model Construction and Incremental Update Based on BL

Broad learning system was proposed by Chen [24] in 2018. It is a structure of a single
hidden layer including an input layer, a hidden layer and an output layer. The hidden
layer includes a feature layer and an enhancement layer. First, the input layer receives
the activity features which are extracted by windows. Then, the feature layer linearly
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maps activity features to construct feature nodes and the enhancement layer employs
non-linear activation function for the feature nodes to obtain enhancement nodes. The
feature nodes and the enhancement nodes are combined to form the hidden layer matrix.
Finally, the output layer obtains the output coefficients by the method of pseudo inverse,
and gives the learning results. The model architecture is shown in Fig. 2.

Recognition Model Construction Based on BL. We adopt broad learning to build
an activity recognition model. Suppose the training data sample set is X =
[x1, x2, · · · , xn]T and each sample has m dimensions. The sample category label set is
C = [c1, c2, · · · , cn]T . The construction process of the recognition model is as follows:

1. Input layer.
Reduce the dimensionality of the action featurematrix and flatten it to obtain targeted
one-dimensional data, which is employed as the training sample of the input layer.

2. Feature layer.
Suppose there are mg groups of feature mapping and each group has ng feature
nodes. The i-th group of feature mapping is calculated as follows:

Fi = ψi(XWi + βi) (3)

where 1 ≤ i ≤ mg , ψi is linear transformation function,Wi is a randomly generated
matrix and βi is a randomly generated vector. The integrated feature node matrix is
F = [F1|F2| · · · |Fmg ].

3. Enhancement layer.
The main purpose of the enhancement layer is to increase the non-linear factor of the
entire network. Since the feature nodes are all obtained in a linear manner, the BL
recognition model introduces enhancement nodes to supplement it. Suppose there
are me groups of enhancement nodes and each group has ne enhancement nodes.
The j-th group of enhancement nodes is calculated as follows:

Ej = ξj(FWoj + βj) (4)

where 1 ≤ j ≤ me, ξi is nonlinear transformation function, Woj is a randomly
generated orthogonal matrix and βj is a randomly generated vector. The integrated
feature node matrix is E = [E1|E2| · · · |Eme ].

Finally, the feature node matrix F and the enhancement node matrix E are
integrated to generate the hidden layer input matrix Λ = [F |E].

4. Output layer.
The output layer mainly realizes the mapping from the input matrix of hidden layer
to the label matrix. Since the category label matrix is C and the input matrix is Λ, if
the mapping matrix � satisfies

� · � = C (5)

Then � can be obtained by matrix inversion. However, it should be noted that since
� is generally not a square matrix, its pseudo-inverse can be solved as

�−1 = (�T� + δI)
−1

�T (6)

where I is the identity matrix, δ is the regularization coefficient and the value of δ is
close to zero.
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Incremental Update. When the recognition objects are some special users, such as
lameness, large swing during the activity, etc., the false alarm rate of the model will
increase, resulting in a poor user experience. Simplymatching the activity characteristics
of a special user to the recognition model makes it difficult to guarantee the recognition
rate of the special activity. In addition, it also affects the accurate recognitionof the trained
actions. On the other hand, if the special user’s activity data is added to the source data
and the model is retrained, a lot of model construction time is spent. To achieve targeted
activity recognition, the recognition model needs to be updated incrementally.

By incrementally fusing the characteristics of user’s behavior, we realize effective
recognition of personalized activities. Our system farer has incremental learning capa-
bilities and can be updated on the trained model without retraining historical data. This
method satisfies activity recognition scenarios in more complex situations.

Denote Ẋ as the special activity data set and Ċ as special activity label. The feature
node matrix FẊ and the enhancement node matrix EẊ of Ẋ are given by the random
matrix of farer. The hidden layer matrix is �Ẋ = [

FẊ |EẊ

]
, and its pseudo-inverse is

�Ẋ
−1 = [�−1 − φ · σ)|φ] (7)

where φ =
{

ω−1 ω �= 0
(
�−1

) · σ · (
I + σ T · σ

)−1
ω = 0

, σ = �Ẋ · �−1, ω = �Ẋ − σ T · �, I

is the identity matrix.
After getting the incremental pseudo-inverse, the output of farer is calculated as

�̇ = �Ẋ
−1

(
C

Ċ

)
= � + φ · (

Ċ − �Ẋ · �
)

(8)

Therefore, the system in this paper can achieve rapid incremental update of the original
model through matrix operations.

4 Experiment and Analysis

4.1 Experimental Settings

To verify the recognition advantages of farer, we not only compare the classification
effect of the traditional machine learning method SVM [25], but also compare the
convolutional neural network CNN, LSTM, and their joint model CNN-LSTM and
ConvLSTM.

We collect a large amount of three-axis accelerometer data of activities. There are
1556436 pieces of sampling data, and the sampling frequency is set to 180 Hz. There are
7 activity states collected in the experiment, namely trickling, walking, brisk walking,
jogging, upstairs, downstairs and jumping.

The action window is divided into 6 subsegments, employing typical features in
the activity recognition research, which are the maximum, minimum, average, median,
standard deviation, variance, interquartile range, skewness, kurtosis, root mean square,
sum, range and entropy. The feature vector size of each coordinate axis is 1 × 65
(Table 1).
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Table 1. Experimental parameter settings.

Parameter meaning Value Parameter

Smoothing filter window 51 μ

Polynomial order 3 k

Altitude threshold 0.5 ΓA

Prominence threshold 1.2 ΓP

Isolation threshold 55 ΓI

Number of action windows 6 kf

Column hash threshold 99.95% ∂P

Row hash threshold 99.95% ∂Q

Number of features 13 nf

regularization coefficient 2–30 δ

Number of feature windows 10 mg

Number of feature nodes 12 ng

Number of enhancement windows 1 me

Number of enhancement nodes 2000 ne

Zoom scale 0.8 γ

4.2 Performance Evaluation

SystemRecognitionAccuracy.Table 2 shows the comparison of the activity recognition
effect between farer and other methods. In the table, SA represents single activities and
CA represents changed activities.According to the experimental results, the performance
of farer is the best, with an overall recognition accuracy of 94.03%, which surpasses
other recognition methods. Compared with single activity recognition, the accuracy of
farer is 97.91%. More importantly, the recognition performance of farer is stable. It has
high recognition accuracy for different activities, and there is no tendency deviation.
In contrast, the recognition rate of other methods is either lower than that of farer, or
has a higher false alarm rate for certain activities. For example, for downstairs, LSTM
achieves 100% recognition accuracy, which exceeds 98.99% of farer. However, in the
recognition of two more common activities, walking and brisk walking, the recognition
rates of LSTM are only 73.98% and 78.20%, while the rates of farer are 96.64% and
97.78%.
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Comparing the situation of activity changes, the overall recognition rate of farer is
90.14%, which is much higher than other recognition methods. This is because other
methods are affected by historical data. The historical data leads to a great reduction in
recognition accuracy. The sliding window of farer only represents the current action,
so it effectively avoids the interference of historical data. For example, the recognition
accuracy of ConvLSTM which recognizes a single activity more accurately is reduced
to 77.78%. LSTM’s recognition of downstairs reaches 100%, but the recognition of
changed activities is only 67.78%.

Table 2. Comparison of the activity recognition effect.

farer SVM CNN LSTM CNN-LSTM ConvLSTM

SA Trickling 96.71% 96.58% 99.65% 97.90% 100.00% 100.00%

Walking 96.64% 93.33% 88.21% 73.98% 89.84% 96.34%

Brisk Walking 97.78% 93.66% 93.23% 78.2% 92.48% 97.74%

Jogging 98.01% 98.94% 99.04% 99.05% 99.05% 98.1%

Upstairs 98.88% 98.23% 94.33% 98.38% 97.17% 94.33%

Downstairs 98.88% 98.09% 98.72% 100.00% 99.15% 99.15%

Jumping 100.00% 96.64% 98.29% 99.15% 100.00% 99.15%

Overall 97.91% 96.4% 95.69% 92.33% 96.71% 97.74%

CA Overall 90.14% 72.22% 76.67% 67.78% 81.11% 77.78%

SA/CA average 94.03% 84.31% 86.18% 80.06% 88.91% 87.76%

Table 3. Recognition accuracy of different sliding windows for activity scenes.

Action
window

1.28 s 2.56 s 4 s 6 s 8 s 10 s

Stable 97.91% 94.29% 95.41% 97.41% 97.12% 96.52% 97.91%

Changed S 84.97% 65.71% 63.22% 65.46% 52.78% 37.04% 33.33%

Q 95.75% 72.97% 69.57% 68.97% 60.53% 39.29% 31.82%

Performance Comparison of Different Windows. The experiment in this section
compares the three types of stable activities, activity changes slowly (S) and activity
changes quickly (Q), as shown in Table 3. To verify the improvement of the activity
recognition rate, we employ window data of different durations, namely 1.28 s, 2.56 s,
4 s, 6 s, 8 s, and 10 s. The sliding step of them is 1/2.

According to the experiment results, when the activity is stable, the recognition
ability of action window is slightly higher than that of the fixed-size sliding window.
However, when the activity changes, the advantage of the former increases significantly.
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As the window duration increases, the historical data has an increased influence on the
feature extraction of the activity to be recognized. This results in a sharp drop in the
recognition rate for fixed-size sliding windows.

When the activity changes slowly, such as trickling to walking, there is more inter-
ference data in the window because of the long switching time, resulting in a lower
recognition rate. More importantly, the activity changes slowly, except for reasons of
their own behavior habits, mostly because the front and back activities are similar. These
changes further increase the difficulty of recognition.When the activity changes quickly,
such as walking to upstairs, the difference between the front and back activities is gener-
ally large. As the activity changes quickly, the interference data in the window becomes
less. The old activity is quite different from the new activity, so the recognition rate is
increased.

Performance Comparison of Feature Matrix Dimensions. We adopt FETAD to
extract features of the action data, and adopt C2DPCA to reduce the dimensionality
of the three-axis feature matrix. According to the above parameter settings, the number
of fine-grained subsegments is 6 and the number of features is 13. Thus, the number of
features of each axis is (6 − 1) × 13 = 65. The size of action feature matrix is 3 × 65.
We compare different dimensionality reduction results, as shown in Fig. 3.

Fig. 3. Dimensionality reduction effect of farer.

Table 4. The maximum and minimum accuracy in the dimensionality reduction process.

C2DPCA Row Column Accuracy (Max) Column Accuracy (Min)

flatten 1 51 94.39% 2 26.72%

flatten 2 59 95.08% 2 48.10%

flatten 3 61 98.28% 2 69.48%

srss 3 49 95.59% 2 20.22%

Figure 3 shows the recognition accuracy of the three dimensionality reduction curves.
The dimensionality of the feature matrix is reduced from 3 × 65 to 3 × n, 2 × n, and
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1× n, where 2 ≤ n ≤ 65. Experimental results show that the recognition rate of 3× n is
higher than that of the two categories. The experiment in this section further compares
the difference between the two processing methods of flattening and square root of sum
of squares (srss) when the row dimension is 3 after dimensionality reduction.

Table 4 compares the highest recognition rate and the lowest recognition rate when
the feature dimension drops to different sizes, as well as the corresponding row and
column values. It can be seen from the table that the row dimension of 3 has the best
effect. Especially the lowest recognition rate ismuchhigher thanother cases.Considering
the recognition accuracy and speed of farer, the column hash threshold and row hash
threshold are both set to 99.95%. The size of the feature matrix after dimensionality
reduction is 3 × 21. The recognition accuracy of the system is 97.91%.

Performance Comparison of Incremental Update. Some users’ behavior habits are
different from most people’s common activities. For traditional neural network, a lot of
special behavior data need to be sampled as new training samples. These new training
samples are appended to the original training samples. Then the model is retrained,
which takes a long time. Even worse, it requires users to perform special activities for a
long time to obtain adequate behavior samples. Obviously, this update method brings a
lot of trouble to users and is impractical.

To effectively and quickly recognition special activities of different users, farer
incrementally updates the recognition model. Based on the original model, it directly
updates themodel parameters according to the new activity data. The incremental update
of farer greatly reduces users’ activity sampling time and model training time, and
ensures the balance of recognition accuracy. farer achieve a balance of the three.

We compare farer with traditional machine learning and deep learning from the
perspective of recognition accuracy and model training time under the same sampling
time. In the experiment, volunteers perform special behaviors and acts continuously for
30min. In the sampling process, each learning model uses the activity data of this period
to update the model at regular intervals. Among them, farer employs an incremental
update method, while other systems mix the sampled data with the original training data
and retrain models.

Fig. 4. Recognition accuracy of special activities with different durations
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Figure 4 shows the recognition accuracy of special activities of different durations,
with an interval of 5 min. It can be seen from the figure that the recognition accuracy of
this system is the highest when the sampling time is the same. farer is growing faster
than other methods.

5 Conclusion

By studying the problem of poor accuracy of activity recognition for sliding windows,
we propose a fine-grained activity recognition method, which employs fine-grained
subsegments and incremental broad learning. We also design the corresponding activity
recognition system farer. The system can effectively process the activity data, realize
the accurate segmentation of activities and ensure the effectiveness of the action feature
extraction. Furthermore, the fine-grained subsegment division is used to dig deeply
into the action features and reduce the dimensionality to ensure the recognition rate of
the activity. In the process of activity recognition, the incremental recognition model
based on broad learning is adopted to learn the activity behavior of special users, which
improves the user experience. After a large number of experiments, the performance of
farer is better than that of other recognition methods. The recognition rates for stable
activities and changed activities are 97.91% and 90.14%.
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