®

Check for
updates

MGFL: Multi-granularity Federated
Learning in Edge Computing Systems

Shangxuan Cai, Yunfeng Zhao, Zhicheng Liu, Chao Qiu, Xiaofei Wang®),
and Qinghua Hu

College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
{shangxuancai,yfzhao97,liuzhicheng,chao.qiu,xiaofeivang,
huginghua}@tju.edu.cn

Abstract. As a promising machine learning framework in the big data
era, federated learning (FL) allows multiple mobile devices to collabora-
tively train a model without transmitting raw data, thus has attracted
widespread attention in both academia and industry. Considering that
heterogeneous mobile devices with limited resources and data diversity
are bound to impact the actual performance of some training nodes. How-
ever, conventional FL could not support collaborative training with multi-
granularity neural networks. To this end, we propose multi-granularity
federated learning (MGFL) that contains two mechanisms serving for
same-granularity FL and cross-granularity FL. MGFL customizes a per-
sonalized model for each device by designing a divergence-based similar-
ity measurement method in same-granularity FL. Further, it adjusts the
empirical risk loss function to break the restriction of cross-granularity
FL. Experimental evaluations demonstrate the positive guidance of the
fine-granularity model to the coarse-granularity model, which significantly
improves the performance of the coarse-granularity model. Besides, our
method shows superiority on both independently identically distribution
(IID) and non-IID data.

Keywords: Federated learning - Edge computing - Multi-granularity
model - Personalized model

1 Introduction

The Internet of Things gets rapidly development since the increased demand for
convenience in life. Its network applications, such as mobile heterogeneous elec-
tric vehicle networks in smart city [1] and wireless sensor and actuator networks
[2], catalyzes enormous amounts of data from edge devices every second. Since
these data contain rich and valuable information, they have attracted wide atten-
tion from researchers in recent years. Considering that these messages often need
more complex calculations to decode the valuable parts of them, some practical
technologies are applied to edge computing [3-5]. As an indispensable universal
service for big data processing [6], deep learning (DL) promotes the intelligence
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of mobile devices under the influence of the popularity of deep neural network
(DNN) models, which have become an essential part of edge computing systems.

However, there is generally insufficient data on one mobile device to sustain
training a high-quality model. Data are often owned by different entities, which
means that individual’s data privacy is compromised if centralized improperly
[7,8]. Thus, privacy and data integrity become essential points for application
or data owners [9]. With this in mind, individuals are reluctant to interact and
share data to train the model. Federated learning (FL) is proposed to alleviate
privacy anxiety and achieve cooperative training among numerous edge devices
(a.k.a. clients) [10]. In recent years, FL has drowned extensive discussions for
its superior ability on data privacy protection. The general FL system permits
all clients to keep their data locally and only upload parameters or gradients to
collaboratively train models under the coordination of a central server.

Kairouz et al. [11] discussed the existing problems and future development of
FL, in addition to which there are still many bottlenecks limiting the applications
of FL in edge computing. Conventional FL only allows all clients to share one
global model, which is not suitable for heterogeneous clients. One factor of het-
erogeneity is the diversity of data distribution that makes the aggregated model
fail to apply to each participant. Another factor is the constrained resources,
including storage, computing power, energy, and other such things. Those het-
erogeneous clients with constrained resources fail to train DL models ideally,
resulting in each client being forced to get a model with low performance.

As coarse-granularity models typically require fewer training resources than
fine-granularity models, a sensible approach is to run DL models with coarse
granularity if the client does not impose a requirement for granularity. E.g., a
fine-granularity model generally runs on resource-rich clients to identify cars,
boats, men, women, cats, dogs, etc. In contrast, a coarse-granularity model runs
on resource-constrained clients to identify coarse-granularity individuals, such
as vehicles, people, animals, etc. The heterogeneous clients in edge computing
systems have constrained resources and diverse data, leading to multi-granularity
models.

As client diversity is not conducive to the regular cooperation among multi-
ple clients, many researchers have attempted to solve this dilemma in FL. Some
studies try to design a personalized model for each client [12] and address the
challenge of different data distributions among clients. The works in [13,14] select
relevant and irrelevant clients according to the data distributions, and works in
[15,16] aggregate similar client models through the idea of clustering. Another
work in [17] considers the condition of the heterogeneous resource and non-ITD
data in clients, aiming to solve the selection problem of clients. However, these
works only focus on the differences in data samples and lack consideration of
similar samples with different labels. The studies in [18,19] analyze the collabo-
ration among multiple tasks, and the work in [20] further explores the non-ITD
data effect based on multi-task. However, they all ignore the situation of multi-
granularity tasks. Although data labels are different among multi-granularity
models, which is contrary to the principle of FL, the similarity among samples



MGFL: Multi-granularity Federated Learning in Edge Computing Systems 551

is the same as the original intention of FL that aims to make up for the lack of
samples among clients.

To address the challenges above, we propose a novel FL method, named
multi-granularity federated learning (MGFL), aiming to promote the coopera-
tive training among models with different granularity. MGFL adopts the same-
granularity FL to provide a personalized model for each client and adopts cross-
granularity FL. with adjusting the empirical risk loss function, which further
improves the models’ performance of coarse-granularity clients.

Our method focuses on the scenario of multi-granularity clients while per-
forming significantly on non-IID data. The main contributions of this paper are
summarized as follows:

e We propose a novel FLL method named MGFL, which contains two mech-
anisms, i.e., same-granularity FL. and cross-granularity FL, promoting FL
among models of different granularity clients in edge computing systems.

e We design a divergence-based similarity measurement method to provide a
personalized model for each client in same-granularity FL. Under the guidance
of fine-granularity models, we improve models’ accuracy of coarse-granularity
clients by adjusting the empirical risk loss function in cross-granularity FL.

e We conduct extensive experiments demonstrating that MGFL is more effec-
tive for adaptive FL with multi-granularity clients. It shows better perfor-
mance on both IID and non-IID data than other baselines and achieves great
performance by accurately capturing relationships among clients.

The remainder of this paper is organized as follows. Section2 shows the
motivation of this work. Section 3 presents the system model and the proposed
MGFL mechanism. Extensive performance evaluations are presented in Sect. 4.
Section 5 concludes this paper.

2 Motivation

We compare the model differences between coarse-granularity and fine-
granularity clients when performing image classification tasks. Since parameters
are basic representations of the models, we Visualize the differences in mod-
els’ image feature extraction capabilities with different granularity by compar-
ing parameters. We choose two models with different granularity based on pre-
trained Wide-Resnet [21] as observation objects and compare all layers except
the final dense layer.

Let models A and B be trained under the CIFAR-100 dataset [22] with the
same samples and different granularity labels, i.e., coarse-granularity and fine-
granularity labels, respectively. We measure the distance between the output
vectors of the two models at each layer using the Euclidean distance, which
indicates the difference in the parameters of each layer. As shown in Fig. 1(a),
there are significant differences in the convolutional layer parameters between the
coarse-granularity and the fine-granularity model. In particular, as the network
layers deepen, the difference in parameters between layers increases. It illustrates
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that there are significant differences between models with different granularity
even trained with the same samples.
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Fig. 1. Two key observations for motivating cross-granularity FL: (a) Euclidean dis-
tance of all layers between coarse-granularity model A and fine-granularity model B;
(b) Model A’s performance during the process of approximating to B’s parameters.

Next, we attempt to make the coarse-granularity model A’s parameters
approximate to those of the fine-granularity model B and test the models’ accu-
racy and loss after several rounds of modifications to the parameters. The results
are shown in Fig. 1(b), where the dashed and solid lines represent the perfor-
mance of the initial pre-trained and the approximating models, respectively. The
performance of the coarse-granularity model gradually improves as the param-
eters continue to approach those of the fine-granularity model and eventually
surpass the performance of the pre-trained model. The result show the positive
guiding effect of fine-granularity models to coarse-granularity models in feature-
extracting of convolution layers and lay the foundation of cross-granularity FL.

Based on the above two observations, we expect to overcome the limita-
tion of conventional FL that only trains the same models and collaborates to
train coarse-granularity and fine-granularity models with widely varying model
parameters. On the other hand, we aim to give full play to the guidance of
the fine-granularity model to the coarse-granularity model during FL to fur-
ther improve the coarse-granularity model’s performance. Therefore, we propose
the MGFL method to satisfy the collaborative training among multi-granularity
clients in edge computing systems.

3 System Model

In this section, we design MGFL to realize FL. among multi-granularity clients
containing similar model structures and samples.
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3.1 The Multi-granularity Federated Learning Framework

As shown in Fig. 2, extensive clients at the edge are managed by server and divided
into coarse-granularity clients N' = {1,2, ..., N} and fine-granularity clients M =
{1,2,..., M'}. At the beginning of MGFL, each client sends its model weight as well
as a part of its shared data and accuracy of recent rounds to the server. The aggre-
gation phase is divided into two stages dominated by same-granularity FL and
cross-granularity FL, respectively. In the early stage, the same granularity models
are measured by a similarity method based on the Jensen-Shannon divergence (JS
divergence) that urges same-granularity models to aggregate the new personalized
models. In the later stage, the fine-granularity clients perform same-granularity FL
while coarse-granularity clients perform cross-granularity FL with the guidance
of fine-granularity clients. In cross-granularity FL, each coarse-granularity model
selects the most relevant fine-granularity model as the target to guide it and then
modify parameters with the help of fine-granularity one. The server sends person-
alized models back to each client, and clients will start the next round of local train-
ing. The entire training is iterated until each client receives the highest-performing
model. The corresponding algorithm is shown in Algorithm 1. Assume that the sys-
tem is in a quasi-static state during a round, which means no clients join or leave
during a round.
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Fig. 2. The framework of MGFL.



554 S. Cai et al.

3.2 Same-Granularity Federated Learning

One of the challenges of designing MGFL is the non-IID data kept locally by
the client, which severely affects the quality of aggregation due to differences in
sample classification. To decrease the impact caused by it and design personalized
models on non-1ID data [23], the early stage of MGFL captures the relationship
among clients using a similarity-based method. By taking the coarse-granularity
clients as an example, the problem at the early stage is formulated as follows:

N 1 N;
n;{i/nz;ﬁiz;ﬂ(wu%jvyi,j% (1)
1= J=

where N is the number of total involved clients. N; is the number of training
data samples in client i. (z;;,v:;) € RE x R is the j-th training data pair of
client 7 where F is the number of data features; W = [wy, ..., wy]T is the weight
matrix to be estimated consisting of all the local models’ weight. F; is the loss
function of the -th client model.

Local Model Computation: Each client ¢ will parallelly optimize (e.g., using
stochastic gradient descent methods) its model weight w; based on its local data
(24,9:). In the t-th local iteration, each client computes its local update, i.e.,

w; = w; —mVF;(w;), (2)

where 7; is the predefined learning rate during local training.

Server Model Aggregation: After finishing local iterations, the client ¢ will
transmit its local model parameters w; to the parameter server. There is a chal-
lenge when learning the aggregation relationship among clients using their model
parameters at the server: how to quantify the similarity among models. Con-
sidering that the number of the last dense layer’s parameters of the model in
different granularity is generally different, the parameter server spontaneously
distinguishes these models into two parts according to it. Same-granularity FL
means the FL only processes clients in the same granularity. When the server
receives models from clients, we endurance the distance of models using each
client’s shared dataset.

There are some classical methods used in computing the similarity among
models, e.g., the Euclidean distance. However, as indicated in [15,24,25], these
distance-based methods show huge limitations for most non-convex models, espe-
cially for DNNs. The Kullback-Leibler divergence in [25] shows that it is able to
measure the similarity between DNN models, but its asymmetry leads to more
complex optimization. We choose the similarity measurement method based on
the vector from the output layer to address these key points to compute the
matching relationship between the current model and others. JS divergence is
used to measure how one probability distribution is different from the other and
is widely used in similarity measurement. The JS divergence of two DNN models
(w;, wj) can be expressed as:
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Algorithm 1: MGFL under T iterations

Input: Initial models of all the clients w3 - a4 With local iteration ¢ = 0.
Output: Personalized models w;eanum.
1 for t=1,2,...,T do

for each client i € N'UM do
3 Client 4 solves local problem (2) and derive w;. (Local model
computation)
4 end
5 All the clients transmit their updated wfc x4 and the local model
accuracy Pjen to the server.
6 After server receiving wc, wien’ can be obtained by
7 if in the early stage then
8 ‘ calculating (6). (Same-granularity FL)
9 else
10 if t%0 == 0 then
11 ‘ calculating (9). (Same-granularity FL)
12 else
13 ‘ calculating (9). (Cross-granularity FL)
14 end
15 end
16 Server calculates (6) after receiving wic o, and obtains w;e . (Server
model aggregation)
17 The server broadcasts wieaum to clients such that w! = w;.
18 end

2P 2P;
JSD(w;||w P log ———"— + P log —2—,
(wil|w;) = PP )

P; + P;
}Di:g(ww ) P (wjvxzs)a
where x7 is the shared data of client i. g(w;, z7) denotes the output of model
w; on the input data x7. A smaller JS dlvergence indicates the more similar the
two models are.

We then obtain a JS divergence matrix D5 € RY*N | with Dys(i,5) =
JSD(w;||w;). In order to construct the similarity matrix D, we first normalize

each row of the JS divergence matrix and get the normalized matrix Dys, ie.,

Dys(is:) = ( = Dys(i,:)) —min{l — Dys(i,:)}
TSN max{l — Djs(i,:)} — min{l — Ds(i,:)}’

(4)

where [ is a N-dimensional vector with all elements being 1. The similarity
matrix are defined as the dot product of the normalized matrix and its transpose,
which is shown as:

D=1\/Dys- D% (5)
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Although the JSD is symmetric in principle, the computed Dys is not entirely
symmetric, which is not conducive to reaching consensus on the client-side to
make the aggregated model more generalized. Therefore, a practical approach
is to use the inner product operation to create the ultimate similarity matrix
completely symmetric. The server will aggregate the same-granularity models
from clients according to the similarity matrix D to get new personalized models
and return them to the clients for the next round of training. The aggregated
results are shown below.

W=D x W (6)

Similarly, the fine-granularity clients also perform same-granularity FL with
execution details similar to those described above.

3.3 Cross-Granularity Federated Learning

Compared with the coarse-granularity model, the fine-granularity model is the
higher level participant containing mature and complex knowledge, which results
in the practical and logical cross direction of different granularity being fine to
coarse. During the later stage of training, the server performs cross-granularity
FL to facilitate clients’ collaboration between different granularity, promoting
more extraordinary performance for coarse-granularity models. We formulate
the coarse-granularity model problem in the later stage as follows:

N N;
. I
min ) A D Fiwiwi g, yig) + Abi(wi, 775, u75),
i=1" " j=1
) owi,25,) = 0wy, 5,) IP v
1y Ly 0 1)) g
¢i(wiam§jay5j) = Z 4,7 | - | i,r y
r=1 K

where wy,(;) is the model of the fine-granularity client h(i) that is selected to
assist the coarse-granularity client ¢ for its model performance improvement,
o(-) means the DNN models’ output before the last dense layer. The second
term ¢;(w;, x5, y?) calculates the difference between the output vector before
the coarse-granularity and the fine-granularity model’s dense layer.

The premise of addressing the problem of Eq. (7) is to find out the correspon-
dence between the coarse-granularity model and the fine-granularity model, i.e.,
how to ensure the value of () in Eq. (7). The optimal solution can be expressed
as follows:

h(i) = arg max [€(w, 25, y7) — Ay,
meM, e(wm,z5,yd)—A; >0
jaf | (8)
e(wpm, z;g7y13) _ Zj:l ]I{Hg(w7ﬂ7xﬁj)=yr'5::}

|7

where H is the prior knowledge matrix that contains the correspondence between
coarse-granularity classes and fine-granularity classes. It is possible to trans-
form fine-granularity classes into coarse-granularity classes using the matrix H.
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€(Wm, 7,y represents the conversion accuracy of the m-th fine-granularity
model on the i-th coarse-granularity client’s shared dataset. The function I(-) is
the indicator function and A; is the accuracy of the coarse-granularity client 4
on the local dataset, which has been sent to the server.

To avoid redundant guidance, the coarse-granularity model only selects one
fine-granularity model with the most prominent performance help for feder-
ated training at a time. The coarse-granularity model performs iterative weight
updates in the server as:

w; = w! — V(w5 y?), 9)

where 7, is the learning rate in the server update process.

It is worthy to notice that the coarse-granularity model only updates param-
eters except for the dense layer and retrain the dense layer using shared data
before returning it to the clients. The cross-granularity FL process only performs
in later stage of the system, whose goal is to ensure that the fine-granularity
models are mature enough to guide the coarse-granularity models.

4 Performance Evaluation

In this section, we evaluate the performance of MGFL and compare it with other
methods. Our experimental evaluations focus on three aspects: performance on
different data settings, improvement by cross-granularity FL, and the relation-
ship between the same and cross-granularity models.

4.1 Dataset and Experiment Settings

We consider the CIFAR-100 dataset, which contains common things in life
divided into 100 and 20 classes, corresponding to fine-granularity labels and
coarse-granularity labels. Thus, each coarse-granularity class includes five fine-
granularity classes. The dataset contains about 50000 training samples and 10000
testing samples uniformly distributed among coarse-granularity classes and fine-
granularity classes.

In the evaluations, we set N =5, M = 5 and number the clients under each
granularity as 0—4. For coarse-granularity clients and fine-granularity clients with
the same order (e.g., coarse-granularity client 0 and fine-granularity client 0),
we set the same data distribution to facilitate the observation of relationship
in cross-granularity FL. We adopt Wide-Resnet as the DNN model with multi-
ple convolutional layers to serve for an image classification task. All evaluation
results are implemented on Tensorflow 2.4.1 deployed on a server with Intel(R)
Gold 6226R CPU, NVIDIA GeForce RTX 3090, and Windows Server 2019.

To compare the performance of MGFL and other methods on both IID and
non-11D data, we apply different data settings. 1) IID data: each client holds the
same distribution data; 2) non-IID data: each client holds samples of different
5-6 classes. It is assumed that clients hold the same distribution data belonging
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to a group, and the number of groups ranges from 2 to 5. Considering that tasks
with different granularity in real life are usually deployed on different parties’
clients, some parties that have similar data distribution while others have pretty
different data distribution. That leads to the emergence of groups, so the data
setting 2) is more common in practice. By default, when the confusion degree is
2, clients in {0, 1, 2} are a group with the same data distribution, and the other
group consists of clients in {3, 4}. Similarly, the three groups are {0, 1}, {2, 3}
and {4} at confusion degree 3, the four groups are {0, 1}, {2}, {3} and {4} at
confusion degree 4, and each client is a group at confusion degree 5.

4.2 Experiment Results

Performance on Different Data Settings: We first evaluate the performance
of MGFL under different data settings and compare it with other methods. Under
the non-IID data, we set four confusion degrees C'2, C3, C'4 and C'5 by dividing
all clients into 2, 3, 4, and 5 groups. E.g., if all clients with the same granularity
are divided into two groups, each contains 5-6 coarse-granularity classes or 25-30
fine-granularity classes. In that case, the confusion degree is two and is denoted
by C'2. We choose the best mean test accuracy (BMTA) [13] as the performance
indicator defined as the highest mean test accuracy achieved overall communica-
tion rounds of training. Figure 3 shows the performance of coarse-granularity and
fine-granularity models using four methods, MGFL, Alone, Cosine, and FedAvg
[10], respectively, under training 300 epochs. The Cosine method replaces the
JS divergence of MGFL with the cosine distance, and the Alone method only
trains the model locally without FL.
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Fig. 3. BMTA of four methods under (a) coarse granularity and (b) fine granularity
at different confusion degrees.

As shown in Fig.3, MGFL exhibits superior performance on both coarse-
granularity and fine-granularity clients, especially on the non-IID data. Since
FedAvg was originally designed for clients with the same distribution, it is able to
achieve high accuracy on IID data and performs poorly on non-I1ID data. MGFL



MGFL: Multi-granularity Federated Learning in Edge Computing Systems 559

shows high performance close to FedAvg on IID data and far better than it on
non-I1D data. Since the Cosine method uses the cosine distance commonly used
in distance-based personalized FL [13,15], it captures the similarity among clients
in low confusion degrees and has some advantages. However, it gradually loses its
impact in the face of high confusion degrees. The Alone method shows the opposite
trend to the Cosine method in that it performs the worst at the confusion degree
2. Moreover, it offers better performance as the confusion degree rises, indicating
that the more complex the data, the more difficult it is to perform FL.

Performance Improvement by Cross-Granularity FL: Figure 4 shows the
performance variation curves of coarse-granularity models in Group 1 and Group
2 at confusion degree 2. As shown in the figure, the clients’ performance in both
Group 1 and Group 2 using the MGFL method shows a significant increase and
convergences to higher accuracy in the later stage than the other methods. The
cross-granularity FL causes that in the later stage, where the fine-granularity
model guides the coarse-granularity model resulting in a significant performance
improvement.
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Fig. 4. The performance of coarse-granularity models in (a) Group 1 and (b) Group 2
at confusion degree 2.

It is worth noting that the performance of coarse-granularity models first
degrades slightly at the beginning of the cross-granularity FL, as shown in Fig. 4
points A and B, due to improper coordination and incompatibility. That also shows
that the parameters of the fine-granularity model are not fully applicable to the
coarse-granularity model, so the parameters of the coarse-granularity model do
not be directly replaced by those of the fine-granularity model. Even parameter
approximation (shown in Fig. 1) requires many rounds of iterations to eliminate
the incompatibility and improve performance. In the later stage, fine-granularity
models perform the same-granularity FL as in the early stage except for guiding
coarse-granularity models. As shown in Fig. 5, the overall performance of MGFL is
better than other methods and has minor performance fluctuation in both Group
1 and Group 2.
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Fig. 5. The performance of fine-granularity models in (a) Group 1 and (b) Group 2 at
confusion degree 2.

Relationship in the Cross-Granularity FL: Selecting the most relevant fine-
granularity model for the coarse-granularity model is a critical step in the cross-
granularity FL. Figure6 shows the selection of each coarse-granularity client
to fine-granularity client in each execution of cross-granularity FL at confusion
degrees 2, 3, 4.
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Fig. 6. Relationships in cross-granularity FL at different confusion degrees.

As shown in the figure, MGFL can precisely choose the most similar fine-
granularity model to guide fine-granularity one in each cross-granularity FL.
E.g., coarse-granularity client 0 at C'2 selects the clients in group {0, 1, 2} due
to keeping the same data distribution. Though selection becomes more complex
as the number of groups increases, MGFL has the ability to overcome the com-
plexity and make the right choices. Another observation based on the results is
that the smaller the confusion degree, the more fluctuating the clients’ selection
when performing the cross-granularity FL. Compared to the results at confusion
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degree 4, the coarse-granularity clients at confusion degree 2 fluctuate consider-
ably with different clients selected in each cross-granularity FL. The more the
number of groups, the fewer the number of clients in the group and the fewer
the number of clients to select from, resulting in more minor fluctuations in
selection.

Relationship in the Same-Granularity FL: We aim to leverage the inherent
group relationship learned by MGFL to select similar models for aggregation
in the same-granularity FL while improving the overall accuracy performance.
We visualized the similarity matrix of MGFL and Cosine methods in the early
rounds at different confusion degrees, exhibiting the group structure. As shown in
Fig. 7, compared with the Cosine method, the group structure in our framework
is generally learned precisely in the early rounds, which can be interpreted as
having closer similar values within the same group. E.g., the nine values in the
upper left corner of MGFL at C'2 are superior to the nine values in the upper
left corner of Cosine at C'2. Besides, our method captures the same-granularity
relationship more accurately, especially as the confusion degree increases.

) 1.0 1.0
VERKN 0.0 0.1 0.0 1.0 0 AEEEN 03 00 0.1 0.1
0.8 0.8 0.8
1Kl 1 1 El 00 0.0 0.0
0.6 0.6 0.6
bR 0.1 04 2 2
0.4 0.4 0.4
kf 0.0 0.1 0.0 FK) 3 0n 3 o2
V% 0.0 0.2 0.1 /06 0.2 4 4 0.0 0.0 0.2 KK
‘ 0.0 ; 0.0 ‘ 0.0
01 2 3 4 01 2 3 4 01 2 3 4
(a) Cosine at C2 (b) Cosine at C3 (c¢) Cosine at C4
RTIREY 0.4 0.0 0.0 [NREINEEY 0.4 00 00 o0 [NEGUNIRLINYE 0.0 o0 oo JERY
0.8 0.8 0.8
1-1.0 1.0 DENGEOX] 1 (KN 0.0 0.0 0.0 1 (KN 0.0 0.0 0.0 N
0.6 0.6 0.6
pA 0.4 0.4 EKY 0.0 0.0 2 Y 1.0 1.0 KK 2
0.4 0.4 0.4
3EKEXINY 1.0 1.0 3 (0 1.0 1.0 X} 3
0.2 0.2 0.2
4 HNEGEGKE 1.0 1.0 4 RN EEE 1.0 4 0.0 0.0 0.0 KKV
— 0.0 ; 0.0
012 3 4 012 3 4 01 2 3 4
(d) MGFL at C2 (e) MGFL at C3 () MGFL at C4

Fig. 7. Relationships in same-granularity FL using (a)—(c) the Cosine and (d)—(f) the
MGFL methods at different confusion degrees.

Although learning group relationships become more difficult as the degree of
confusion increases, MGFL can overcome this difficulty and learn relationships
more accurately than the Cosine method. Due to the limitation of the length
of the paper, we only show the results of the coarse-granularity models, and
the behaviors of the fine-granularity models are similar to that of the coarse-
granularity model.
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5 Conclusion

In this paper, we address the challenge of collaborative training among multi-
granularity clients. Specifically, we develop a novel method named MGFL that
introduces two mechanisms for fine-granularity clients and coarse-granularity
clients. MGFL designs personalized models for different-granularity clients using
a divergence-based similarity method in same-granularity FL and breaks the
restriction cross-granularity FL by adjusting the empirical risk loss function.
Extensive experiments show that our method out-performs other baselines on
both IID and Non-IID data and proves its superior performance even under
confusing data distribution.
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