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Abstract. The Flexible Job-shop Scheduling Problem (FJSP) is a typi-
cal scheduling problem in industrial production that is proven to be NP-
hard. The Genetic Algorithm (GA) is currently one of the most widely
used algorithms to address the FJSP task. The major difficulty of using
GA to solve FJSP lies in how to set the key hyperparameters and improve
the convergence speed. In this paper, we propose a hybrid optimization
method based on Reinforcement Learning (RL) called the Adaptively
Hybrid Optimization Algorithm (AHOA) to overcome these difficulties.
The proposed algorithm first merges GA and improved Variable Neigh-
borhood Search (VNS), which aims to integrate the advantages of global
and local search ability into the optimization process. Then the double
Q-learning offers crossover and mutation rates according to the feedback
from the hybrid algorithm environment. The innovation of this work lies
in that our method can adaptively modify the key hyperparameters in
the genetic algorithm. Furthermore, the proposed method can avoid the
large overestimations of action values in RL. The experiment is eval-
uated on the most widely studied FJSP instances and compared with
some hybrid and self-learning algorithms including dragonfly algorithm
(DA), hybrid gray wolf weed algorithm (GIWO), and self-learning GA
(SLGA), etc. The results show that the proposed method outperforms
the latest related algorithms by more than 12% on average.

Keywords: Flexible Job-shop Scheduling Problem · Hybrid
algorithm · Reinforcement learning

1 Introduction

Production scheduling [15] plays an essential role in the planning and scheduling
of the manufacturing system. There are several well-known production schedul-
ing problems including Job shop Scheduling Problem (JSP) and Flexible Job
shop Scheduling Problem (FJSP) [15]. JSP is one of the most challenging parts
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of these kinds of problems and had been proved to be an NP-hard (Non-
deterministic Polynomial-time Hard) problem [13]. It can be described as a set
of independent jobs to be processed on multiple available machines, and each job
contains a series of operations with a specified order. However, each operation
must be processed on a specified machine in JSP. It is incapable of meet the
flexible scheduling requirements in the real world.

The FJSP is an essential extension of JSP [4] that can address flexible require-
ments. It allows each operation to be processed on different machines. This means
FJSP can be decomposed into two sub-problems including operations sequenc-
ing and machines selection [13]. Where, JSP is only composed of the operations
sequencing problem to find the best sequence of operations and machines selec-
tion problem is a extention of JSP task to assign suitable machines to each
operation.

In recent years, a great deal of algorithms have been proposed to address
FJSP like Evolutionary Algorithm (EA), Local Search (LS) Algorithm, and
Hybrid Optimization Algorithm (HA). For instance, Ding et al. [10] proposed an
improved Particle Swarm Optimization (PSO) method based on novel encoding
and decoding schemes for the FJSP; Amiri et al. [1] presented a Variable Neigh-
borhood Search(VNS) for the FJSP; Li et al. [26] proposed a HA based on the
Genetic Algorithm (GA) and Tabu Search (TS).

These methods are limited by hyperparameters settings. There is evidence
[8] showing that hyperparameters like crossover and mutation operator play
a crucial role in the evolution of the population. This means that relying on
experience to select parameters will affect the efficiency and performance of
the algorithm. For instance, the adverse configuration may cause premature
convergence to local extreme rather than the globally optimal. To overcome this
defect, many researchers often fix or update in a predetermined way [11]. But
it still lacks generalization. Moreover, some methods [5] based on RL can also
adjust the hyperparameters adaptively. However, the problem of overestimation
is not avoided [17].

Based on these motivations, this work proposes an Adaptively Hybrid Opti-
mization Algorithm named AHOA to search the minimum makespan of FJSP.
AHOA first utilizes GA to optimize globally and then introduces improved VNS
based on the critical path to optimize locally. Finally, the double Q-learning
offers crossover and mutation rates according to the feedback from the hybrid
algorithm environment. The contributions are as follow:

1) Our algorithm can adaptively modify the hyperparameters in the HA based
on double Q-learning. It can also avoid the overestimations problem of action
values compared to other works based on RL.

2) We deploy a hybrid algorithm to solve this problem effectively. It shows an
outstanding performance by combining the exploration ability of GA and the
exploitation ability of VNS.
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The remainder of this work is organized as follows. Section 2 introduces the
related work. The problem formulation is presented in Sect. 3, while the proposed
algorithm is given in Sect. 4. The experimental result is proposed in Sect. 5.
Finally, Sect. 6 describes the conclusion and future work.

2 Related Work

Since Brucker and Schlie [3] first proposed the FJSP in 1990, numerous methods
have been suggested to solve the FJSP task in recent years, and most existing
algorithms can be classified into two categories: GA based methods and RL
based methods. The GA based methods include simple GA and HA. The simple
GA is a typically global optimization method [31]. It can scale robustly and
easily to complex problems that are difficult to solve by traditional optimization
algorithms. For instance, De et al. [7] presented an improved GA for the FJSP,
in which a new operator based on LS is combined. Lu et al. [28] proposed a GA
embedded with a concise chromosome representation to solve the distributed
FJSP. However, the drawbacks of the simple GA are the poor local optimization
ability, and its excessively low convergence speed. For solving these problems, HA
based on the GA and LS is proposed. This hybrid method can greatly improve
the quality of the solution and the efficiency of optimization. Specifically, the
GA optimizer always yields an approximate optimal set or population. The best
individual of the set is utilized as the starting point for the local search optimizer
to run with. So that, the global searching ability of GA and the local searching
ability of LS are combined to solve the FJSP effectively. Wang et al. [33] proposed
a hybrid algorithm that combines GA and TS. This approach also calls for some
improvements, it limited by GA that the hyperparameters cannot be adjusted
adaptively during the optimization process.

Therefore, the RL based methods are proposed to overcome this defect. The
characteristic of the RL method is self-learning [30]. In other words, it can adap-
tively adjust the hyperparameters of GA based method. For example, Chen et al.
[5] proposed a algorithm combined with the SARSA algorithm and Q-learning
algorithm to adjust the hyperparameters. However, the problem of overestima-
tion in RL and sparse Q-table are not avoided.

3 Problem Formulation

3.1 Problem Model

The FJSP can be classified into two types of problems including total FJSP and
partial FJSP [18]. The total FJSP means each operation can be processed on
every machines and the partial FJSP means each operation can be processed only
on one or more machines. In this paper, our major research problem is partial
FJSP which is described as follows. There are a set J = {J1, J2, · · · , Ji, · · · , Jn}
of n jobs and a set M = {M1,M2, · · · ,Mk, · · · ,Mm} of m machines. The total
number of operations is defined as o =

∑n
i=1 Hi. Each job Ji contains a series of
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operations Oi = {Oi,1, Oi,2, · · · , Oi,Hi
} with a specified order. The jth operation

Oi,j of the ith job Ji can be processed on a machine Mk selected from a set of
available machines and ti,j,k is its processing time. The objectives in the FJSP
are to find the best sequence of all operations and the most suitable machine
for each operation to optimize the makespan, workload, etc. For an intuitive
illustration, a specific partial FJSP instance is shown in Table 1. The numbers
in the table refers to the processing time ti,j,k and the symbol ‘–’ indicates that
operation Oi,j can not be processed on a machine Mk. The typical assumptions
[27] of FJSP are given as follows:

(1) All jobs can not be processed and all machines are available at the initial
time;

(2) The order of precedence between operations of each job must be obeyed;
(3) Each machine Mk can process only one operation in any time;
(4) Each operation Oi,j owns at least one machine to be processed;
(5) The processing cannot be interrupted until is finished;
(6) The transportation time of operations and depreciation of machines are

ignored.

Table 1. An instance of 3 × 3 partial FJSP.

Jobs Operation M1 M2 M3

J1 O1,1 3 2 –
O1,2 2 5 1

J2 O2,1 2 3 2
O2,2 4 – 2
O2,3 – 2 3

J3 O3,1 4 2 1
O3,2 2 – 6

3.2 Optimization Object

In this paper, the optimization object is to obtain a scheduling with the lowest
makespan Cmax. The object function can be presented by Eq. (1) and the con-
straints are listed in Eq. (2)–Eq. (4). Among these equations, si,j,k represents the
work start time of operation Oi,j on Mk machine. Equation (2) shows that the
processing time of all operations is positive. Equation (3) represents the order
of precedence between operations of each job must be performed. Equation (4)
represents that each machine Mk can process only one operation in any time.
Equation (5) shows that each operation Oi,j owns at least one machine to be
processed.
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Object:
min(Cmax) = min(max(Ci)) (1)

Subject to:

ti,j,k > 0 , i = 1, 2, · · · , N ; j = 1, 2, · · · ,Hi; k = 1, 2, · · · ,M (2)

si,j,k + ti,j,k ≤ si,j+1,k , j = 1, 2, · · · , (Hi − 1) (3)

N∑

i=1

Hi∑

j=1

Xi,j,k = 1,Xi,j,k =
{

1 If Oi,j is assigned to kth machine
0 Otherwise (4)

M∑

k=1

Xi,j,k ≥ 1 (5)

Fig. 1. The workflow of the proposed algorithm

4 Proposed Algorithm

4.1 Workflow of the Proposed AHOA

As Fig. 1 shows, AHOA is designed by merging the hybrid algorithm and dou-
ble Q-learning algorithm. It accepts an instance of the FJSP as the inputs and
uses HA that combines GA and VNS to optimize the makespan. To avoid the
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performance being severely affected by the preset hyperparameters, the dou-
ble Q-learning algorithm is introduced to intelligently adjust them. The overall
workflow of the proposed algorithm is described as Algorithm 1, and the details
are described in the following sub-sections.

Algorithm 1: Adaptively Hybrid Optimization Algorithm
Input: Initial parameters and an FJSP instance.
Output: The best solution x and its makespan Cx.

1 Initialize two agents QA and QB , population Pop with P individuals and
set Gen = 1;

2 for Gen = 1 → loopmax do
3 Evaluate Pop to obtain the average makespan Cold−ave and the

minimal makespan Cold−best;
4 if population has stagnated in evolution for 20 iterations then
5 Reinitialize the population;
6 end
7 Select agent QA or QB randomly (50%);
8 Select action (including crossover and mutation rates) from Q-table

with ε-greedy strategy;
9 Apply the selection, crossover and mutation operators to generate the

new population Popnew;
10 Apply the improved VNS to promote the quality of each individual in

Popnew;
11 Evaluate Popnew to obtain the Cnew−ave and the Cnew−best;
12 Update the Q-table according to the Cold−ave, Cold−best, Cnew−ave

and Cnew−best;
13 Gen ← Gen + 1;
14 Pop ← Popnew;
15 end
16 Select the best solution x of Popnew;
17 return x and Cx.

Fig. 2. The example of the critical path.
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Fig. 3. The encoding and decoding example based on the Table 1

4.2 Hybrid Algorithm

4.2.1 Neighborhood Structure Based on Critical Path
The critical path is the longest path from the start to the end of all the operations
in the Gantt chart. There is no interval between any adjacent operations, and the
length of the path is equal to the makespan of the current solution. For instance,
the combination of the blue blocks including O3,1 → O2,1 → O1,1 → O3,2 → O3,3

is the critical path in Fig. 2. The length of this critical path is 9 which is also
the end of the Gantt chart. In the case that the critical path length remains
the same, the makespan cannot be reduced [35]. Therefore, the operation based
on the critical path is introduced to design a problem-specific neighborhood
structure for the VNS and the mutation operators for the GA.

The neighbourhood structure can be decomposed into the following steps.
First, all the critical paths in the current Gantt chart are found. Among the
critical paths, one path is chosen randomly, and the available machine is selected
for each operation on this critical path. For VNS, This neighborhood structure
modifies the individuals from the GA to generate new neighborhood solutions.
Moreover, this structure is also used as a mutation operator to generate new
individuals for the new population in the GA.

4.2.2 Genetic Algorithm
In the proposed algorithm, the encoding method proposed by Gao et al. [12] is
adopted. As shown in Fig. 3, the code composes of two strings. One is called OS
(Operation Sequence), and the other is called MS (Machine Sequence). As men-
tioned in Sect. 1, two sub-problems are needed to solve FJSP. The first is to find
the best sequence of operations and the second assigns suitable machines to each
operation. The two strings correspond to these two sub-problems respectively.
For OS string, the number i that appears jth times represents it is the operation
Oi,j of job Ji. For MS string, it presents the selected machines for the corre-
sponding operations of each job. Moreover, the decoding method proposed by
Gong et al. [14] is used in this work to minimize the makespan. It can minimize
makespan while obeying the constraints during operations and machines.
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For selection operators [34], the elitist selection method is performed firstly
and the tournament selection method is continuously performed until the size
of the new population reaches the Popsize. Each string has its independent
crossover and mutation operators. For the OS string, the Precedence Operation
crossover (POX) [26] and the Job-Based crossover (JBX) [26] are performed
randomly (50%). Moreover, two mutation operators for the OS string have been
adopted. The first one is the insertion mutation that selects a random digit to
insert before a random position. The second one is the swapping mutation that
swaps two random positions. These two mutation operators for the OS string
are also performed randomly (50%). For the MS string, the two-point crossover
[26] is adopted as the crossover operator. The mutation operator based on the
critical path is introduced in this paper. This operator only changes the machine
of operation in the critical path which is explicitly described in Sect. 4.2.1.

4.2.3 Variable Neighborhood Search
The LS algorithm is introduced to improve GA in terms of the convergence
speed, the quality of individuals, and the local search ability. The VNS is a
meta-heuristic LS method proposed by Mladenovi et al. [29]. The core idea is
neighborhood transformation which has been successfully applied to numerous
combinatorial optimization problems.

The VNS contains two procedures called shaking and local search. These
procedures only employ a neighborhood structure based on the critical path.
The main structure of the improved VNS is composed of external and internal
loops. The external loop performs the shaking procedure, and the internal loop
performs a local search. The definition of related symbols is as follows. The
symbol kmax is the max iterations of the external loop (kmax = 2), and l is the
max iterations of the internal loop (lmax = 2). The symbol kpopsize is delineated
as the size of the shaking neighborhood (kpopsize = 3), and lpopsize is the size of
the local search neighborhood (lpopsize = 3). Besides, N(x) is presented as the
neighborhood structure related to the critical path which is generated from a
solution x.

As shown in Algorithm 2, in the first step, the initial solution x generated
from the GA is denoted as the global optimal solution and the x′ generated from
the neighborhood structure Nk(x) is denoted as the local optimal solution. The
shaking procedure firstly selects a random solution x′ from the kth neighborhood
Nk(x) generated base on x. Then the local search procedure selects a random
solution x′′ from the lth neighborhood Nl(x′) generated base on x′. If x′′ is better
than x′, then set x′ to x′′ and l to 1. The local search procedure continues to be
performed until the end of the internal loop iteration. When the end of the local
search procedure. If the local optimal solution x′ is better than x, then set x to
x′ and k to 1. Finally, the procedure repeats until the end of the external loop
iteration.
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Algorithm 2: Variable Neighborhood Search Algorithm
Input: The old population Pold, and neighborhood parameters

kmax, kpopsize, lmax, lpopsize.
Output: The new population Pnew.

1 foreach individual x in Pold do
2 Evaluate the global makespan Cx of x;
3 for k = 1 → ksize do
4 Shaking procedure: pick a random solution x′ from kth

neighbothood Nk(x) of x;
5 for l = 1 → lsize do
6 Local search procedure: pick a random solution x′′ in

neighbothood Nl(x′) of x′;
7 if Cx′′ < Cx′ then
8 Update the local optimal solution: x′ → x′′,and l → 1;
9 else

10 l → l + 1;
11 end
12 end
13 if Cx′ < Cx then
14 Update the global optimal solution: x → x′,and k → 1;
15 else
16 k → k + 1;
17 end
18 end
19 Pnew = Pnew ∪ {x};
20 end
21 return Pnew.

4.3 Double Q-learning Procedure

The double Q-learning is a typical reinforcement learning method proposed by
Hasselt et al. [17]. It aims to solve the overestimations problem of Q-value defined
as Q(s, a). The double Q-learning obtains two intelligent agents QA and QB .
The agents interact continuously with the HA environment to find the most
cumulative Q-value based on past experience and update the Q-value from the
other agent for the next state. Moreover, each agent can obtain a reward or
penalty while performing a selected action and learn to maximize the long-term
reward after multi iterations.

The agent will take different actions to get crossover and mutation rates
combined as the action in the Q-table. Specifically, the crossover rates group
Gc is set to {0.9, 0.8, 0.7, 0.6, 0.5} and the mutation rates group Gm is establish
to {0.3, 0.2, 0.1} in the action list Alist. The Alist is the Cartesian product of
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Gc and Gm. Besides, the symbol α ∈ [0, 1] represents the learning rate. The
γ ∈ [0, 1] represents the attenuation rate for the future reward. The R is defined
as the reward shown in Eq. (8).

In the AHOA, we assume that only one static state in the HA environment
prevents the sparse Q-table. The specific algorithm is described as Algorithm 3
shows. Firstly, step in the double Q-learning is to initialize agent QA and agent
QB by initializing each Q-table to a zero-value matrix. Then select agent QA

or agent QB to use at random (50%). Assuming that agent QA is selected, the
ε-greedy strategy as shown in Sect. 4.3.1 is next used to select the action a∗ to
be performed from the action list Alist. The HA obtains the crossover rate and
mutation rate from a∗ and executes to get an evaluation. Finally, the Q-table is
updated according to Eq. (6). In Eq. (6), the above equation is used to update
if the agent QA is selected. Otherwise, the following equation is used to update
the table.

{
QA(s, a) ← QA(s, a) + α × (

R + γ × QB (s, a∗) − QA(s, a)
)

(1)

QB(s, a) ← QB(s, a) + α × (
R + γ × QA (s, a∗) − QB(s, a)

)
(2)

(6)

Algorithm 3: Double Q-Learning Algorithm
Input: The learning rate α, attenuation rate γ, ε-greedy rate ε, crossover

rates group Gc, mutation rates group Gm, and makespans
Cold−ave, Cold−best, Cnew−ave and Cnew−best.

1 Initialize QA and QB ;
2 Select agent QA or QB randomly (50%);
3 Select action a∗ from Q-table with ε-greedy strategy;
4 Apply the a∗(the crossover rate Pc and mutation rate Pm) to HA;
5 Calculate reward R according to the Cold−ave, Cold−best, Cnew−ave and

Cnew−best from HA;
6 if Select QA then
7 /* Update the table of QA */;
8 QA(s, a) ← QA(s, a) + α × (

R + γ × QB (s, a∗) − QA(s, a)
)
;

9 else if Select QB then
10 /* Update the table of QB */;
11 QB(s, a) ← QB(s, a) + α × (

R + γ × QA (s, a∗) − QB(s, a)
)
;

12 end

4.3.1 Selection Strategy
The selection strategy of double Q-learning is the ε-greedy strategy. In this
strategy, an action a∗ will be selected randomly from Alist if a random number
rand[0−1] is higher than the agreed value ε, otherwise the action with the most
Q(s, a) will be selected. The definition is shown in Eq. (7).

a∗ =
{

arg maxaQ (s, a) rand[0−1] < ε
Alist[random] rand[0−1] ≥ ε

(7)
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4.3.2 Reward Function
The reward function is designed according to the best and the average individual
fitness as shown in Eq. (8). In the reward method, Cold−ave and Cold−best are
delineated as the average and the best makespan in the previous population.
Cnew−ave and Cnew−best are delineated as the average and the best makespan
in the current population.

R =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

30 If Cnew−ave < Cold−ave and Cnew−best < Cold−best

15 If Cnew−ave ≥ Cold−ave and Cnew−best < Cold−best

−0.5 If Cnew−ave < Cold−ave and Cnew−best ≥ Cold−best

−5 If Cnew−ave ≥ Cold−ave and Cnew−best ≥ Cold−best

(8)

4.4 Computation Complexity Analysis

For each generation of the AHOA, the computational complexity can be analyzed
as follows. First it is with the computational complexity O(P log P ) by using
quick sorting method to evaluate the population. Then, it is with the computa-
tional complexity O(P ) to perform selection operator, with the computational
complexity O(P × o) to perform crossover operator and with the computational
complexity O(P × m × o) to perform mutation operator. Finally, the AHOA
applies the VNS based on the critical path with the computational complexity
O(P ×ksize×kpop×lsize×lpop×m2×o). Thus, the computational complexity for
each generation of the AHOA is O[P ×(log P +o×ksize×kpop×lsize×lpop×m2)].

5 Experiment and Discussions

5.1 Experimental Setup

To demonstrate the performance of the proposed algorithm, ten benchmark
instances of the BRdata [2] are tested. The BRdata is a data set consists of
10 test instances (Mk01-Mk10), which are randomly generated using a uniform
distribution between given limits. The parameters in the proposed algorithm
for these instances are listed in Table 2. The proposed AHOA is implemented in
C++ on the AMD Ryzen 5 5600X machine running at 3.7 GHz and the optimiza-
tion objective of it is makespan. Besides, we select three categories represented
algorithms with to compare, including EA based methods, HA based methods,
and RL based methods. For instance, Wang et al. [32] proposed a hybrid algo-
rithm named GIWO based on gray wolf and invasive weeds, and Chen et al. [5]
and Han et al. [16] both proposed methods based on RL to solve the FJSP.
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Table 2. The AHOA parameters.

Parameters Descriptions

α Learning rate 0.6

γ Attenuation rate 0.8

ε ε-greedy rate 0.85

Gc Crossover rates group in the action list Alist {0.9, 0.8, 0.7, 0.6, 0.5}
Gm Mutation rates group in the action list Alist {0.3, 0.2, 0.1}
kmax Max iterations of external loop in VNS 2

lmax Max iterations of internal loop in VNS 2

kpopsize Size of the shaking neighborhood 3

lpopsize Size of the local search neighborhood 3

P Size of the population 80

loopmax Max iterations of the proposed algorithm 200

5.2 Experimental Results

The results of these comparisons are shown in the Table 3. For the EA based
methods, the average improving performance of AHOA is 11%, of which the three
testing instances Mk02, Mk04, and Mk06 improved by more than 22.8%; for the
HA based methods, the average improving performance of AHOA is 6.7%, of
which the two testing instances Mk02 and Mk06 improved by more than 16.7%.
The most important difference between the AHOA and the above two methods
is the ability to adjust the hyperparameters adaptively. The improved PSO [10]
proposes some tuning schemes of parameters with exact mathematical meth-
ods. However, the accurate mathematical expression of the parameters tuning
schemes may be unavailable as the schemes are affected by various factors, such
as dynamic conditions. The result shows that the AHOA is more effective in
large-scale complex environments. Besides, it can deal with situations in which
the mathematical expression of the parameters tuning schemes is not available.
These observations align with the findings in [6].

For the RL based methods, the average improving performance of AHOA is
22%, including the three testing instances Mk06, Mk07, and Mk10 increasing
by more than 25%. However, the AHOA performs slightly worse than the self-
learning GA (SLGA) [5] on Mk05. Because the setting range of the action list in
the SLGA is more refined compared with the AHOA. It can find more suitable
parameters for complex environments with enough iterations. The SLGA pro-
poses a different way to combine two RL algorithms to enhance the performance
of GA. Nevertheless, it still can not avoid the large overestimations of action
values in the RL [17]. The result shows that AHOA performs better in terms of
solution quality than other RL based methods. Besides, the Gantt chart of the
solution obtained by AHOA for the Mk02 and Mk05 instance are presented in
Fig. 4 and Fig. 5.
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Table 3. The comparison of the makespan in BRdata

Methods Year Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10

10 × 6 10 × 6 15 × 8 15 × 8 15 × 4 10 × 15 20 × 5 20 × 10 20 × 10 20 × 15

Deep RL [16] 2020 44 28 245 74 193 123 216 523 386 337

Dragonfly Algorithm [19] 2020 52 46 210 88 175 87 – – – –

HLO-PSO [9] 2020 40 28 204 63 175 71 144 523 326 238

Improved PSO [10] 2020 40 29 204 66 175 77 145 523 320 239

SLGA [5] 2020 40 27 204 60 172 69 144 523 320 254

GIWO [32] 2021 40 32 204 65 177 84 156 523 331 242

GA – 42 33 204 67 183 86 181 523 325 270

VNS – 42 33 204 67 183 86 181 523 338 277

HA(GA+VNS) – 40 31 204 64 179 78 150 523 315 258

Our proposed method 2021 40 26 204 60 173 65 144 523 307 233

Fig. 4. Gantt chart of the solution of the Mk02 instance

Fig. 5. Gantt chart of the solution of the Mk05 instance

5.3 Ablation Experiment

As mentioned in Sect. 4, we introduce the critical path and reinforcement learn-
ing to solve the FJSP task. In order to illustrate the improvement in the proposed
algorithm, we make ablation experiments on these two parts.
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5.3.1 The Discussion of the Critical Path
As shown in Table 4, an algorithm with critical path can achieve better per-
formance than an algorithm without critical path. The experiment results show
that the makespan of the AHOA is 10.7% more than the method without critical
path on the ten instances on average. It indicates that the critical path can effec-
tively improve search quality. As the complexity analysis of AHOA in Sect. 4.4,
searching the critical path will increase the time cost of the algorithm, which
means that the AHOA will spend more time in a single iteration. However, it
can reach convergence with fewer iterations.

Table 4. Experiments observing the influence of the critical path on 10 instances.

Method Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10

AHOA without critical path 42 32 204 67 181 84 159 523 326 272

AHOA with critical path 40 26 204 60 173 65 144 523 307 233

Improvement 5.0% 23.1% 0.0% 11.7% 4.6% 29.2% 10.4% 0.0% 6.2% 16.7%

Fig. 6. Histograms reflecting the influence of the different reinforcement learning on
10 instances.

5.3.2 The Discussion of the Reinforcement Learning
We also conduct an ablation experiment on reinforcement learning. It aims to
explore the influence of different reinforcement learning methods on HA. As
shown in Fig. 6, the makespan of the histogram performs best on the double
Q-learning algorithm, which outperforms the HA and the Q-learning algorithm
by more than 5.9% and 4.6% respectively. Compared with the HA, the algo-
rithm introduced with reinforcement learning has the characteristics of adapta-
tion which can better adapt to different environments. However, the Q-learning
overestimate attempted actions, which will affect the convergence results to a
certain extent. The double Q-learning can avoid the positive bias in estimating
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the action values and achieves better performance. This result shows that the
strategy with the double Q-learning has achieved the best results on the ten
instances. It indicates that the double Q-learning can improve performance by
enhancing generalization and preventing overestimation problems.

6 Conclusion

This paper discusses the FJSP task by proposing a novel algorithm AHOA, com-
bining the hybrid and double Q-learning algorithms. Compared with the widely
deployed methods for FJSP, our algorithm can modify the key hyperparameters
adaptively in the HA and avoid the overestimations problem of action values
compared to other methods based on RL. Moreover, the proposed algorithm
is more efficient due to the neighborhood structure based on the critical path.
Finally, the experiment results verify that AHOA is suitable for FJSP instances
with the high flexibility.

For the future work, we notice that the existing algorithms have achieved
remarkable results in static scheduling, but there are few studies on the dynamic
scheduling. We would like to investigate the dynamic multi-objective FJSP based
on the transfer learning [21,23–25] and domain adaptation learning [20,22].
Besides, the performance of AHOA in practical applications still needs further
testing, our future work will also focus on enhancing the generalization capabil-
ities of the algorithm on the larger FJSP data sets.
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