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Abstract This paper describes how a capacity planning problem arising in health
care services design and optimization was successfully tackled with mathematical
programming techniques. What made the project successful was not the design
of a sophisticated algorithm providing optimal solutions, but rather the iterative
development of an integer linear programming model of the problem, solved
by a general-purpose MILP solver. This approach was made possible by the
characteristics of the mathematical model itself and the user-friendly tools that were
used. As a result, the problem expert could autonomously challenge and improve the
model and the data in a countless number of iterations with little or no intervention
of the O.R. expert. This allowed to reduce the development cost to zero and the
development time to a few days.
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1 Introduction

On 18/02/2020 a 37-year-old man in apparent good health and with no pathological
history came to the emergency room of Codogno hospital for fever, dyspnea and
productive cough, on X-ray evidence of right basal pneumonia. Excluding the most
common causes of pneumonia, the alarm bell, which lead to the execution of the
swab test for COVID19, was his distant connection with China, linked to the visit of
an acquaintance who had recently returned from the East. On February 20th at 9:30
pm confirmation of the positivity at the swab test for Sars-Cov-2 arrived [3]. The
regional administration of Lombardy gave the crisis unit of Lodi hospital complete
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power in decision-making for managing the emergency [2]. On February 21st, the
crisis unit decided to close the Codogno hospital to concentrate resources in a single
hospital, that of Lodi. For three months the operating room activity in Codogno and
Lodi was interrupted and all physicians of the anesthesia and resuscitation service
were engaged in facing the health emergency in Lodi.

At the end of May 2020 the heads of the two hospitals decided to reopen the
first aid and intensive care service in Codogno together with the operating rooms
of Lodi and Codogno, at the beginning of June. Therefore, the problem arose of
ensuring coverage of all work shifts in the two hospitals, while at the same time
guaranteeing annual leave periods in the summer for all physicians of the anesthesia
and intensive care service.

The problem was tackled and solved thanks to a mathematical optimization
model, developed in collaboration between a physician and an O.R. expert. The aim
of this short paper is to illustrate and discuss the use of mathematical optimization
models for decision-support in a real situation, highlighting the importance of
knowledge generation compared with optimal solution computation as well as the
flexibility and ease-of-use of models explicitly described in mathematical terms.

2 The Problem

The problem was a capacity planning problem: a given number of physicians with
non-identical skills have to be assigned to six different types of work shifts for a
given number of weeks, allowing some of them to be on annual leave in each week.
The goal was not to define a complete work schedule for the physicians, taking
into account, for instance, preferences, additional activities, balance requirements
in work shifts assignments in holidays and other details (a problem of this kind is
described in [1]). The goal was rather to understand how the strategic decision of
reopening the health services could be implemented. A formal description of the
problem is given hereafter.

Data The problem data are the following:

1. a set P of physicians;
2. a set T of types of work shifts; namely: Morning, Afternoon, Night, On-

call availability, Operating room, Clinic service, Rest (compulsory day of rest
following a night work shift);

3. a set D of days of the week (1=Monday, 7=Sunday);
4. a set W of weeks (the planning horizon);
5. a set S of hospitals (Lodi and Codogno).

Additional data appear only in some constraints and therefore they are described
when these constraints are introduced in the remainder.
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Variables The main variables of the model are the following:

1. Binary variables x representing the selected assignments have five indices:
xtwdsp = 1 if and only if physician p ∈ P is assigned a work shift of type
t ∈ T in day d ∈ D of week w ∈ W in hospital s ∈ S.

2. Additional binary variables y represent non-working days besides days on leave:
ywdp = 1 if and only if physician p ∈ P does not work in day d ∈ D of week
w ∈ W .

3. Variables h′ ≥ 0 and h′′ ≥ 0 count the number of work shifts not covered by the
available staff of physicians, but assigned to external resources, which implies
an extra cost for the administration: h′

wd is the number of operating room work
shifts assigned to external resources in day d ∈ D of week w ∈ W ; h′′

wd is the
number of night work shifts assigned to external resources in day d ∈ D of week
w ∈ W . Owing to the integrality of the x variables and the right-hand-sides of
the assignment constraints (see below), it is not necessary to impose integrality
requirements on these variables.

The model also includes other variables that appear only in some constraints and are
thus described when needed in the remainder.

Constraints

Assignment Constraints for Work Shifts in Lodi (s = 1)

1. Five work shifts must be covered every day: morning, afternoon, night, on-call
availability and rest.

∑

p∈P

xtwd1p = 1 ∀w ∈ W,d ∈ D, t ∈ {1, 2, 3, 4, 7}

2. A given number ωw of operating rooms (t = 5) must be active in Lodi in the
working days (d = 1, . . . , 5) of each week. Operating rooms are not active in the
week-ends.

∑

p∈P

x5wd1p + h′
wd = ωw ∀w ∈ W,d ∈ {1, . . . , 5}

∑

p∈P

x5wd1p = 0 ∀w ∈ W,d ∈ {6, 7}

3. A clinic service work shift (t = 6) is required every Tuesday and Thursday
(d = 2, 4) and not in the other days of the week.

∑

p∈P

x6wd1p = 1 ∀w ∈ W,d ∈ {2, 4}

∑

p∈P

x6wd1p = 0 ∀w ∈ W,d ∈ {1, 3, 5, 6, 7}
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Assignment Constraints for Work Shifts in Codogno (s = 2)

1. Two work shifts must be covered every day: morning and on-call availability
(t = 1, 4).

∑

p∈P

xtwd2p = 1 ∀w ∈ W,d ∈ D, t ∈ {1, 4}

2. Afternon and clinic service work shifts (t = 2, 6) are not required.

∑

p∈P

xtwd2p = 0 ∀w ∈ W,d ∈ D, t ∈ {2, 6}

3. A night work shift (t = 3) must be covered every day, either by the available
staff or by external resources.

∑

p∈P

x3wd2p + h′′
wd = 1 ∀w ∈ W,d ∈ D

4. A single work shift for the operating room (t = 5) must be covered on
Wednesdays and Fridays (d = 3, 5). The operating room is not active in the
other days of the week.

∑

p∈P

x5wd2p = 1 ∀w ∈ W,d ∈ {3, 5}

∑

p∈P

x5wd2p = 0 ∀w ∈ W,d ∈ {1, 2, 4, 6, 7}

Skills Not all physicians can be assigned to each work shift: incompatibilities are
easily forbidden by fixing the corresponding binary variables x to 0.

Compulsory Pairings Every night work shift (t = 3) must be immediately followed
by a rest day (t = 7).

x3,w,d,s,p = x7,w,d+1,s,p∀w ∈ W,d ∈ {1, . . . , , 6}, s ∈ S, p ∈ P

x3,w,7,s,p = x7,w+1,1,s,p∀w ∈ W, s ∈ S, p ∈ P.

Similar constraints were also introduced to force the correct pairing of the rest day
in day 1 of week 1 with the last night work shift of the previous planning period in
each hospital.

Forbidden Pairings By contrast, in some other cases pairs of work shifts were
declared incompatible, thus forbidding their assignment to the same person. For
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instance, on-call availability work shifts are incompatible with morning and after-
noon shifts in the next day.

∑

s∈S

(
x4,w,d−1,s,p + x1,w,d,s,p

) ≤ 1 ∀w ∈ W,d ∈ D,p ∈ P

∑

s∈S

(
x4,w,d−1,s,p + x2,w,d,s,p

) ≤ 1 ∀w ∈ W,d ∈ D,p ∈ P

Similar constraints were introduced at the boundaries of the planning horizon.

Joint Work Shifts Some work shifts can be joined, i.e. they can be assigned to the
same physician in the same day. The constraint that forbids multiple assignments
of shifts to physicians has the form

∑
t xtwdsp ≤ 1 ∀w, d, s, p. The possibility of

joining two work shifts was introduced by assigning them coefficient 1/2 in the left-
hand-side of the constraint. These constraints were one of the main issues that were
examined, to explore the boundary between feasible and infeasible instances. Here
is a sample set of constraints among the many that were tested.

1. In the working days (d = 1, . . . , 5) in Lodi s = 1 it is allowed to join morning
and afternoon shifts t = 1, 2 as well as clinic service and on-call availability
shifts (t = 4, 5).

1

2

∑

t∈{1,2,4,5}
xt,w,d,1,p +

∑

t∈{3,6,7}
xt,w,d,1,p + yw,d,p

≤ 1 ∀w ∈ W,d ∈ {1, . . . , 5}, p ∈ P

2. On Saturdays (d = 6) in Lodi (s = 1) the morning shift and the on-call
availability shift (t = 1, 4) can be joined.

1

2

∑

t∈{1,4}
xt,w,6,1,p +

∑

t∈{2,3,7}
xt,w,6,1,p + yw,6,p ≤ 1 ∀w ∈ W,p ∈ P

3. On Sundays (d = 7) in Lodi (s = 1) the morning shift and the afternoon shift
(t = 1, 2) can be joined.

1

2

∑

t∈{1,2}
xt,w,7,1,p +

∑

t∈{3,4,7}
xt,w,7,1,p + yw,7,p ≤ 1 ∀w ∈ W,p ∈ P

4. When operating rooms are active in Codogno (s = 2) on Wednesday and
Friday (d = 3, 5), the operating rooms shifts t = 5 can be joined with on-call
availability shifts (t = 4).

1

2

∑

t∈{4,5}
xt,w,d,2,p +

∑

t∈{1,3,7}
xt,w,d,2,p + yw,d,p ≤ 1 ∀w ∈ W,d ∈ {3, 5}, p ∈ P
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5. In the other days in Codogno no work shifts can be joined.

∑

t∈{1,3,4,7}
xt,w,d,2,p + yw,d,p ≤ 1 ∀w ∈ W,d ∈ {1, 2, 4, 6, 7}, p ∈ P

6. No two work shifts can be joined if they belong to different hospitals.

xt ′,w,d,1,p + xt ′′,w,d,2,p ≤ 1 ∀t ′ ∈ T , t ′′ ∈ T ,w ∈ W,d ∈ D,p ∈ P

Forced Joined Work Shifts In some cases two work shifts are mandatorily joined,
i.e. they must be assigned to the same physician in the same day.

1. On Sundays (t = 7) in Lodi (s = 1) morning and afternoon work shifts are
joined.

x1,w,7,1,p = x2,w,7,1,p ∀w ∈ W,p ∈ P

2. On Saturdays (t = 6) in both hospitals morning and on-call availability work
shifts (t = 1, 4) are joined.

x1,w,6,s,p = x4,w,6,s,p ∀w ∈ W, s ∈ S, p ∈ P

3. In working days (d = 1, . . . , 5) in Lodi (s = 1) the physician who is available
on-call (t = 4) is also assigned an operating room work shift (but not necessarily
vice versa).

x4,w,d,1,p ≤ x5,w,d,1,p ∀w ∈ W,d ∈ {1, . . . , 5}, p ∈ P

4. On Wednesdays and Fridays (d = 3, 5) in Codogno (s = 2) the physician who is
available on-call (t = 4) is also assigned an operating room work shift (but not
necessarily vice versa).

x4,w,d,2,p ≤ x5,w,d,2,p ∀w ∈ W,d ∈ {3, 5}, p ∈ P.

Days Off A complicating feature of the model is the presence of days off. An integer
variable rwp indicates how many days off a physician p ∈ P must have in week
w ∈ W . Days off in week w are assigned to physicians who have been assigned
demanding work shifts, such as a joint morning+afternoon shift on Sunday of week
w − 1 or a night shift on Saturday or Sunday in week w − 1.

rw,p = x1,w−1,7,1,p +
∑

s∈S

(x3,w−1,6,s,p + x3,w−1,7,s,p) ∀w ∈ W,p ∈ P

Similar constraints are used to make the plan in week 1 consistent with the last work
shifts assigned in the previous days.
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Annual Leaves All physicians must be on leave for two weeks every year. This
period is usually concentrated in two consecutive weeks in the summer. The need
for this study was triggered by the question whether leave periods were compatible
with the need of covering all services in the two hospitals and it proved that actually
this would have been impossible without changing the constraints of the problem.

A binary variable fwp = 1 indicates that physician p ∈ P is on leave in week
w ∈ W . These variables occur in several constraints.

1. Days off cannot be taken in leave weeks

rwp + fwp ≤ 1 ∀w ∈ W,p ∈ P.

Suitable boundary constraints ensure that in the last days of the planning horizon
not too many demanding work shifts are assigned to physicians in the subset
of those who still have to be assigned leave weeks. This is done to make these
constraints feasible in the next planning period.

2. Physicians on leave cannot be assigned any work shift, apart from the rest day
following a night shift (a rest day can occur at the beginning of a leave week).

xt,w,d,s,p + fwp ≤ 1 ∀t ∈ {1, . . . , 6}, w ∈ W,d ∈ D,p ∈ P, s ∈ S.

3. The number of non-working days for each physician during a non-leave week is
equal to 1 plus the number of required days-off.

∑

d∈D

ywdp ≥ 1 − fwp + rwp ∀w ∈ W,p ∈ P

4. A suitable constraint was introduced to force consecutive leave weeks for each
physician.

fw,p = fw+1,p ∀w ∈ W : w (mod 2) = 1, p ∈ P

5. A different number φw of physicians on leave was decided for each week w ∈ W ,
according to the forecasted needs of the hospitals, and it was imposed by suitable
constraints.

∑

p∈P

fw,p ≥ φw ∀w ∈ W.

It was used as a lower bound to give the model more flexibility.
6. A maximum number of leave weeks is given for each physician in each planning

period. Subset P ′ includes physicians that have not been assigned leave weeks in
the previous planning periods.

∑

w∈W

fw,p ≤ 2 ∀p ∈ P ′.
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For those who have already been assigned leave weeks, variables f are forced to
0.

Objective The model was initially formulated just to check the satisfiability of all
constraints, with no objective. Then it was formulated to minimize the number of
work shifts to be assigned to external physicians.

minimize
∑

w∈W,d∈D

(h′
w,d + h′′

w,d).

Finally, it was used in a multi-objective fashion to perform a parametric analysis
to explore the trade-off between the number of external work-shifts and some
indicators of the quality of service in the two hospitals from the viewpoint of
patients and physicians. For instance, one of these indicators was the number of
joint morning+afternoon shifts in Lodi (to be minimized) apart from the week-ends
(when they are explicitly forced to occur). Such an objective can be expressed as
follows:

minimize
∑

w∈W,d∈{1,...,5}
δw,d

with the additional constraints

x1,w,d,1,p + x2,w,d,1,p ≤ 1 + δw,d ∀w ∈ W,d ∈ {1, . . . , 5}, p ∈ P,

where δw,d ≥ 0 is a non-negative auxiliary variable that is forced to 1 every time
the same person p is assigned both the morning and the afternoon shifts (t = 1 and
t = 2) in a working day (d ∈ {1, . . . , 5}) of a week w in Lodi (s = 1).

2.1 The Solution Process

Since time constraints did not allow for the development of a customized mathemat-
ical programming algorithm and since there was no budget to carry out the analysis,
it was mandatory to rely on a free MILP solver. The solver glpsol with its Gusek
interface was selected, both because it is free and because of its ease of use.

Real instances with 12 physicians and a time horizon of 14 weeks turned out
out to be by far out of reach for glpsol. For this reason the model was solved in
a rolling horizon fashion, two weeks at a time. Provably optimal solutions were
not always found, depending on the activated and deactivated constraints. However,
a five minutes timeout for each run was enough to provide the necessary insight
into the problem complexity and explore the boundary between feasibility and
infeasibility.
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The model, written in MathProg and including many comments, was about two
hundreds lines long, plus an additional hundred lines for the data and the commands
to produce an easy-to-understand output in a text file. The user-friendliness of the
Gusek interface and the MathProg language turned out to be instrumental for the
success of the study, because it made possible to the problem expert to directly use
the model written and commented by the O.R. expert, thus speeding up the process.
The problem expert necessarily had to learn the MathProg language, which is a
standard in mathematical programming and is well documented on the web. In this
way he could grasp the meaning of each instruction, becoming able to add, remove
or modify constraints and objectives autonomously. Hence he modified and run the
mathematical model countless times, since each solution (including the answer “No
feasible solution found”) was used as a starting point to modify either the model (the
possible decisions, the constraints to be enforced, the objectives to be optimized) or
the data or both. The main model parameters to act upon were the type and number
of required services, the different possible definitions of allowed joined shifts, the
use of external resources in specific services in either hospital, and the rules to assign
days-off.

3 Discussion and Conclusions

The mindset of O.R. experts is instinctively oriented to the computation of optimal
solutions through efficient algorithms that suitably exploit the mathematical proper-
ties of the models representing critical decision problems. However, one of the main
lessons that can be learned from this study concerns the generation of knowledge
that comes well before the computation of an optimal solution and can even be
treated as an objective by itself.

In natural sciences, knowledge is generated by iteratively comparing abstract
models with empirical observations. Every model is challenged by new observa-
tions, triggering the search for more general or more refined models. In a similar
way, when the object of the study is not a natural phenomenon but rather a complex
decision problem, knowledge can be generated by continuously improving the
mathematical model of the problem: each solution round provides a feedback that
challenges the model and the input data, possibly triggering the development of a
more detailed model or the collection or observation of more reliable and precise
data. When used in this way, mathematical programming is a powerful tool to
generate knowledge, well before providing optimal solutions.

It is worth remarking that algebraic modeling languages, relying on mathematics
as a universal and unambiguous language, allow any user endowed with a sufficient
mathematical education to understand the model and to use it as a tool to investigate
the problem, not necessarily to solve it. Furthermore, the separation between the
logical structure of the model and the numerical values of the data, placed in two
separate files or in two separate sections of the same file is instrumental in making
the problem expert autonomous in evaluating alternative models.
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This remark is especially important in an age in which “solutionism” is heavily
criticized (not without some good reason) [4], “artificial intelligence” is often
presented as the way to solve complex problems and strong emphasis is placed on
data, especially “big” data. However, when using an “artificial intelligence” tool,
one could only examine solutions, often without any clue about why they have
been suggested and how they depend on data, because the model is not explicit. By
contrast, mathematical optimization puts emphasis on models, that are represented
in an algebraic language. This allows the user to examine the effects of the changes
he himself has introduced into the model. In this way mathematical optimization and
decision science aim at empowering human intelligence and ability to understand
complex problems, in order to formulate them better and better. Solutions come
later, almost as a side effect.

This project was no exception. Its main outcome was not a best possible solution,
but first of all a good model. This should be remarked, because in general problem
experts do not know what is the right model of their problems at the beginning;
they perfectly know their needs, but in general this is not enough to translate them
into a model. The search for the model should obviously precede the search for
the solutions and not rarely when a solution is provided after countless efforts in
algorithm development, it turns out that the model is wrong, incomplete, or flawed
for some reason. It may be the case that some “constraints” are not constraints but
decisions and the same holds for some “data”. Similarly it may be the case that the
initially assumed objective turns out not to be the main objective, because different
performance indicators have priority. This is why the definition of a model must be
challenged by a critical examination of the solutions (not necessarily the optimal
ones) obtained from it.

Making the problem expert autonomous in managing this knowledge generation
process was extremely beneficial to the development of the project. The feedback
from the solution back to the model and the data typically requires the intervention
of both the problem expert and the technical expert. On the contrary, in this case after
the development and documentation of an initial ILP model, the iterative feedback
was completely managed by the problem expert, with just a limited support from
the O.R. expert for major changes, such as the steps from constraint satisfaction to
optimization and then to multi-objective optimization. This significantly reduced the
effort, the time and the amount of interaction needed to carry the study to a positive
end under very strict time requirements (about ten days overall).
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