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Abstract We deal with nested affine variational inequalities, i.e., hierarchical
problems involving an affine (upper-level) variational inequality whose feasible
set is the solution set of another affine (lower-level) variational inequality. We
apply this modeling tool to the multi-portfolio selection problem, where the lower-
level variational inequality models the Nash equilibrium problem made up by the
different accounts, while the upper-level variational inequality is instrumental to
perform a selection over this equilibrium set. We propose a projected averaging
Tikhonov-like algorithm for the solution of this problem, which only requires the
monotonicity of the variational inequalities for both the upper- and the lower-level
in order to converge. Finally, we provide complexity properties.

Keywords Multi-portfolio selection · Nested variational inequality · Purely
hierarchical problem · Tikhonov method · Complexity analysis

1 Introduction: Context and Motivation for the Nested
Affine Variational Inequalities Model

Nested affine variational inequalities represent a flexible modeling tool for many
real-world applications like, e.g., the renowned multi-portfolio selection (see, e.g.
[5]). To introduce the general formulation of the model, we first briefly describe the
specific instance of the multi-portfolio optimization problem.

Consider N accounts, with ν = 1, . . . , N . Each account ν’s budget bν ∈ R+ is
invested in K assets of a market. The decision variables yν ∈ Yν ⊆ RK stand for the
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fractions of bν invested in each asset, where Yν is a nonempty compact polyhedron
containing the feasible portfolios, e.g., the standard simplex. Let r ∈ R

K indicate
random variables, where rk is the return on asset k ∈ {1, . . . ,K} over a single-period
investment.We defineμν = E

ν(r) ∈ R
K as expectations of the assets’ returns for ν,

as well as the positive semidefinite covariance matrix �ν = E
ν((r −μν)(r −μν)�).

We consider the following measures for portfolio income Iν and risk Rν , where we
use the portfolio variance as the risk measure: Iν(y

ν) � bν(μν)�yν , Rν(y
ν) �

1
2 (b

ν)2(yν)��νyν .
When trades from multiple accounts are pooled for common execution, individ-

ual accounts can suffer the market impact that stems from a lack of liquidity. To
take account of this transaction cost effect, we introduce a positive semidefinite
market impact matrix �ν ∈ R

K×K whose entry at position (i, j) is the impact of
the liquidity of asset i on the liquidity of asset j . For each account ν we consider a
linear market impact unitary cost function. The total transaction costs term for ν is:

T Cν(y
1, . . . , yN) � bν(yν)�

︸ ︷︷ ︸

Invested capital

�ν

N
∑

λ=1

bλyλ

︸ ︷︷ ︸

Unitary transaction costs

.

The multi-portfolio problem can be formulated as the following Affine Variational
Inequality AVI(M low, d low, Y ): find y ∈ Y � Y1 × · · · × YN such that

(

M lowy + d low
)�

(w − y) ≥ 0 ∀w ∈ Y, (1)

where d low � −bνμν and

M low �

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(b1)2[ρ1�1 + �1 + �1�] b1b2�1 · · · b1bN�1

b2b1�2 (b2)2[ρ2�2 + �2 + �2�] b2bN�2

.

.

.
. . .

bNb1�N bNb2�N (bN)2[ρN�N + �N + �N �]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

We assume the matrix M low to be positive semidefinite and, in turn, AVI(M low,

d low, Y ) to be monotone: these properties can be guaranteed under mild assump-
tions, see [5, Theorem 3.3]. We denote by SOL(M low, d low, Y ) the solution set
of AVI(M low, d low, Y ), which is a polyhedron (see [5, Theorem 2.4.13]). Note
that AVI(M low, d low, Y ) corresponds to an equivalent Nash Equilibrium Problem
(NEP), where the players’ objective functions are convex and quadratic. Since
the set SOL(M low, d low, Y ) is not necessarily a singleton in the framework we
consider, one has to discriminate among the solutions of AVI(M low, d low, Y )

according to some further upper level criterion. Thus, to model the resulting
selection problem, we introduce the monotone nested affine variational inequal-
ity AVI

(

Mup, dup,SOL(M low, d low, Y )
)

, that is the problem of calculating y ∈
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SOL(M low, d low, Y ) that solves

(

Mupy + dup)� (w − y) ≥ 0, ∀ w ∈ SOL(M low, d low, Y ), (2)

where R
NK×NK � Mup � 0 and dup ∈ R

NK . Problem (2), which has
a hierarchical structure, includes as a special instance the minimization of the
convex quadratic objective function 1

2y
�Mupy + dup�y, where Mup is symmet-

ric, over SOL(M low, d low, Y ). It is also worth mentioning the special instance
where the N accounts form an upper-level (jointly convex) NEP to select over
SOL(M low, d low, Y ); in this case, Mup turns out to be nonsymmetric. We refer the
reader to [1] for further information about NEPs.

Remark Convergent solution procedures have been devised in the literature
(see, e.g., [3, 4]) to address monotone nested AVIs when Mup is positive
semidefinte plus, i.e. Mup is positive semidefinite and y�Mupy = 0 ⇒
Mupy = 0 (see, [2, Ex. 2.9.24]). Requiring Mup to be positive semidefinite
plus is restrictive: for example, taking NK = 2, any matrix

Mup =
(

m1 2
√

m1m2 + m3

−m3 m2

)

with m1, m2 nonnegative scalars and m3 �= −√
m1m2, is positive semidefi-

nite but not positive semidefinite plus. Actually, the class of semidefinite plus
matrices is “slightly” larger than the ones of symmetric positive semidefinite
and positive definite matrices.

Recently, a projected averaging Tikhonov-like algorithm has been pro-
posed in [6] to cope with monotone nested VIs allowing for matrices Mup

that are not required to be positive semidefinite plus.

We present a solution method for problem (2). We apply the results presented
in [6] to the specific instance of monotone nested affine variational inequalities,
taking full advantage of some strong properties AVIs enjoy, such as error bound
results. This allows us to put forward an algorithm to address problems like the
multi-portfolio selection in a more general framework with respect to the literature,
where the upper level operator is invariably assumed to be monotone plus (see,
e.g., [5]).
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2 The Tikhonov Approach

We require the following mild conditions to hold:

(A1) Mup is positive semidefinite;
(A2) M low is positive semidefinite;
(A3) Y is nonempty and compact.

The set SOL(M low, d low, Y ) is nonempty, convex, compact and not necessarily
single-valued, due to (A2) and (A3), see e.g. [2, Section 2.3]. It follows that
the feasible set of the nested affine variational inequality (2) is not a singleton.
Moreover, thanks to (A1), the solution set of (2) can include multiple points.

Let us introduce the Tikhonov operator:

�τ (y) �
(

M lowy + d low
)

+ 1

τ

(

Mupy + dup) .

For any τ > 0, by assumptions (A1) and (A2), �τ is monotone and affine.
The following finite quantities will be useful in the forthcoming analysis:

H � max
y∈Y

‖Mupy + dup‖2, R � max
y∈Y

‖M lowy + d low‖2, D � max
v,y∈Y

‖v − y‖2.

We propose a Linear version of the Projected Averaging Tikhonov Algorithm (L-
PATA) to compute solutions of (2).

Algorithm 1: Linear version of the Projected Averaging Tikhonov Algo-
rithm (L-PATA)

Data: w1 = z1 = y1 ∈ Y , i ← 1, l ← 0;

for k = 1, 2, . . . do
(S.1) εk = i−2, τ k = i;

(S.2) yk+1 = PY

(

yk − 1
2(k−l)0.5

�τk (yk)
)

;

(S.3) zk+1 =
∑k+1

j=l+1
1

2(j−l)0.5
yj

∑k+1
j=l+1

1
2(j−l)0.5

;

(S.4) if miny∈Y �τk (zk+1)�(y − zk+1) ≥ −εk then
wi+1 = zk+1, i = i + 1, l = k;

end
end
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Index i refers to the outer iterations occurring as the condition in step (S.4)
is verified, which correspond to the (approximate) solutions wi+1 of the AVI
subproblems

�τ (y)�(w − y) ≥ −εsub, ∀ w ∈ Y, (3)

with εsub = i−2 and τ = i. The sequence {yk} includes all the points obtained
by making classical projection steps with the given diminishing stepsize rule, see
step (S.2). The sequence {zk} consists of the inner iterations needed to compute
(approximate) solutions of the AVI subproblem (3), and it is obtained by performing
a weighted average on the points yj , see step (S.3). Index l lets the sequence of
the stepsizes restart at every outer iteration, while considering solely the points yj

belonging to the current subproblem for the computation of zk+1. We remark that
the condition in step (S.4) only requires the solution of a linear problem.

We now deal with the convergence properties of L-PATA. With the following
result we relate (approximate) solutions of the AVI subproblem (3) where εsub ≥ 0
to approximate solutions of problem (2).

Proposition 1 Assume conditions (A1)–(A3) to hold, and let y ∈ Y satisfy (3) with
τ > 0 and εsub ≥ 0. It holds that

(

Mupy + dup)�
(w − y) ≥ −εup, ∀w ∈ SOL(M low, d low, Y ), (4)

with εup = εsubτ , and

(

M lowy + d low
)�

(w − y) ≥ −εlow, ∀w ∈ Y, (5)

with εlow = εsub + 1
τ
HD.

Proof We have for all w ∈ SOL(M low, d low, Y ):

−εsubτ ≤
[

τ
(

M lowy + d low
)

+ (

Mupy + dup)
]�

(w − y)

≤
[

τ
(

M loww + d low
)

+ (

Mupy + dup)
]�

(w − y)

≤ (

Mupy + dup)�
(w − y),

where the first inequality is due to (3), the second one comes from (A2), and the last

one is true because y ∈ Y and then
(

M loww + d low
)�

(y − w) ≥ 0. Hence, (4) is
true.
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Moreover, we have for all w ∈ Y :

(

M lowy + d low
)�

(w − y) = �τ (y)�(w − y) − 1

τ

(

Mupy + dup)�
(w − y)

≥ −εsub − 1

τ
HD,

where the inequality is due to (3). Therefore, we get (5). ��
Here follows the convergence result for L-PATA.

Theorem 1 Assume conditions (A1)–(A3) to hold. Every limit point of the sequence
{wi} generated by L-PATA is a solution of problem (2).

Proof First of all, we show that i → ∞. Assume by contradiction that this is false,
hence an index k̄ exists such that either k̄ = 0 or the condition in step (S.4) is
satisfied at the iteration k̄ − 1, and the condition in step (S.4) is violated for every
k ≥ k̄. In this case, it is true that i → ı̄, and then τ k = τ̄ � ı̄ for every k ≥ k̄.

For every j ∈ [k̄, k], and for any v ∈ Y , we have

‖yj+1 − v‖22 = ‖PY (yj − 1
2(j−k̄+1)0.5

�τ̄ (y
j )) − v‖22

≤ ‖yj − 1
2(j−k̄+1)0.5

�τ̄ (y
j ) − v‖22

= ‖yj − v‖22 + 1
4(j−k̄+1)

‖�τ̄ (y
j )‖22 − 1

(j−k̄+1)0.5
�τ̄ (y

j )�(yj − v),

and, in turn,

�τ̄ (y
j )�(v − yj ) ≥ ‖yj+1 − v‖22 − ‖yj − v‖22

(j − k̄ + 1)−0.5
− 1

4(j − k̄ + 1)0.5
‖�τ̄ (yj )‖22.

Summing, we get

k
∑

j=k̄

1

2(j − k̄ + 1)0.5
�τ̄ (yj )�(v − yj )

k
∑

j=k̄

1

2(j − k̄ + 1)0.5

≥

k
∑

j=k̄

(

‖yj+1 − v‖22 − ‖yj − v‖22 − 1

4(j − k̄ + 1)
‖�τ̄ (yj )‖22

)

2

k
∑

j=k̄

1

2(j − k̄ + 1)0.5

=

⎛

⎝‖yk+1 − v‖22 − ‖yk̄ − v‖22 −
k

∑

j=k̄

1

4(j − k̄ + 1)
‖�τ̄ (yj )‖22

⎞

⎠

2

k
∑

j=k̄

1

2(j − k̄ + 1)0.5

≥ −

⎛

⎝‖yk̄ − v‖22 +
k

∑

j=k̄

1

4(j − k̄ + 1)
‖�τ̄ (yj )‖22

⎞

⎠

2

k
∑

j=k̄

1

2(j − k̄ + 1)0.5

,

(6)
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which implies

�τ̄ (v)�(v − zk) =

k
∑

j=k̄

1

2(j − k̄ + 1)0.5
�τ̄ (v)�(v − yj )

k
∑

j=k̄

1

2(j − k̄ + 1)0.5

≥ −

⎛

⎝‖yk̄ − v‖22 +
k

∑

j=k̄

1

4(j − k̄ + 1)
‖�τ̄ (yj )‖22

⎞

⎠

2

k
∑

j=k̄

1

2(j − k̄ + 1)0.5

+

k
∑

j=k̄

1

2(j − k̄ + 1)0.5
(�τ̄ (v) − �τ̄ (y

j ))�(v − yj )

k
∑

j=k̄

1

2(j − k̄ + 1)0.5

≥ −

⎛

⎝‖yk̄ − v‖22 +
k

∑

j=k̄

1

4(j − k̄ + 1)
‖�τ̄ (yj )‖22

⎞

⎠

2

k
∑

j=k̄

1

2(j − k̄ + 1)0.5

,

(7)

where the last inequality holds thanks to the monotonicity of �τ̄ . Indicating by
z ∈ Y any limit point of the sequence {zk}, taking the limit k → ∞ in the latter
relation and subsequencing, the following inequality holds true:

�τ̄ (v)�(v − z) ≥ −

⎛

⎝‖yk̄ − v‖22 +
∞
∑

j=k̄

1

4(j − k̄)
‖�τ̄ (yj )‖22

⎞

⎠

2

∞
∑

j=k̄

1

2(j − k̄)0.5

= 0,

because
∑∞

j=k̄
1

2(j−k̄)0.5
= +∞ and

(
∑∞

j=k̄
1

4(j−k̄)

)

/
(
∑∞

j=k̄
1

2(j−k̄)0.5

)

= 0, due

to [6, Proposition 4], and then z is a solution of the dual problem

�τ̄ (v)�(v − z) ≥ 0, ∀v ∈ Y.
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Hence, the sequence {zk} converges to a solution of problem (3) with εsub = 0
and τ = τ̄ , see e.g. [2, Theorem 2.3.5], in contradiction to miny∈Y �τ̄ (z

k+1)�(y −
zk+1) < −εk = −ı̄−2 for every k ≥ k̄. Therefore we can say that i → ∞.

Consequently, the algorithm produces an infinite sequence {wi} such thatwi+1 ∈
Y and

�i(w
i+1)�(y − wi+1) ≥ −i−2, ∀ y ∈ Y,

that is (3) holds at wi+1 with εsub = i−2 and τ = i. By Proposition 1, specifically
from (4) and (5), we obtain

(

Mupwi+1 + dup
)�

(y − wi+1) ≥ −i−1, ∀y ∈ SOL(M low, d low, Y ),

and

(

M lowwi+1 + d low
)�

(y − wi+1) ≥ −i−1(1 + HD), ∀y ∈ Y.

Taking the limit i → ∞ we get the desired convergence property for every limit
point of {wi}. ��
We consider the natural residual map for the lower-level AVI(M low, d low, Y )

V (y) � ‖PY (y − (M lowy + d low)) − y‖2. (8)

Function V is continuous and nonnegative, as reminded in [4]. Also, V (y) = 0 if
and only if y ∈ SOL(M low, d low, Y ). Condition

V (y) ≤ ε̂low, (9)

with ε̂low ≥ 0, is alternative to (5) to take care of the feasibility of problem (2).

Remark Since both the variational inequalities (1) and (2) are affine, then εup
and either εlow or ε̂low give actual upper-bounds to the distances between y

and SOL
(

Mup, dup,SOL(M low, d low, Y )
)

and SOL(M low, d low, Y ), respec-

tively.

Theorem 2 If y ∈ SOL(M low, d low, Y ) satisfies (4), then there exists cup > 0
such that

dist
SOL

(

Mup,dup,SOL(M low,d low,Y )

)(y) ≤ cupεup.

(continued)
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Theorem 2 (continued)
If y ∈ Y satisfies (5), then there exists clow > 0 such that

distSOL(M low,d low,Y )(y) ≤ clowεlow.

If y ∈ Y satisfies (9), then there exists ĉlow > 0 such that

distSOL(M low,d low,Y )(y) ≤ ĉloŵεlow.

Proof The claim follows from [2, Proposition 6.3.3] and [6, Proposition 3].
��

In view of Theorem 2, conditions (4) and either (5) or (9) define points that are
approximate solutions for problem (2), also under a geometrical perspective.
In particular, the lower the values of εup and either εlow or ε̂low, the closer the
point gets to the solution set of the nested affine variational inequality (2).

We give an upper bound to the number of iterations needed to drive both the
upper-level error εup, given in (4), and the lower-level error ε̂low, given in (9), under
some prescribed tolerance δ.

Theorem 3 Assume conditions (A1)–(A3) to hold and, without loss of generality,
L� � ‖Mup + M low‖2 < 1. Consider L-PATA. Given a precision δ ∈ (0, 1), let us
define the quantity

Imax �
⌈

H + 1

δ

⌉

.

Then, the upper-level approximate problem (4) is solved for y = zk+1 with εup = δ

and the lower-level approximate problem (9) is solved for y = zk+1 with ε̂low = δ

and the condition in step (S.4) is satisfied in at most

σ � Imax

⌈

max

{

I 8max
(D + R)4

(1 − L�)2
C1, I

8
1−2η
max

(D + R)
4

1−2η

(1 − L�)
2

1−2η

C2,η

}⌉

,

iterations k, where η > 0 is a small number, and

C1 �
(

D2 + 5

4
(R + H)2

)2

, C2,η �
(

(R + H)2

(4η)

)
2

1−2η

. (10)

Proof See the proof of [6, Theorem 2]. ��
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