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Abstract In this paper, we introduce the theoretical structure of a stochastic
Generalized Nash Equilibrium model describing the competition among hospitals
with first aid departments for the hospitalization in a disaster scenario. Each hospital
with a first aid department has to solve a two-stage stochastic optimization problem,
one before the declaration of the disaster scenario and one after the disaster advent,
to determine the equilibrium hospitalization flows to dispatch to the other hospitals
with first aid and/or to hospitals without emergency rooms in the network.We define
the Generalized Nash Equilibria of the model and, particularly, we consider the
Variational Equilibria which is obtained as the solution to a variational inequality
problem. Finally, we present a basic numerical example to validate the effectiveness
of the model.

Keywords Game theory · Stochastic optimization · Hospitalization dispatching ·
Variational equilibrium

1 Introduction

Critic scenarios, such as earthquakes, hurricanes, fires, pandemic advents, are
situations in which unexpected violent natural events or global events alter normal
human activities. In such situations, it is essential that institutions, governments,
humanitarian organizations have the possibility to use various tools that can help
them in the management of critical situations, to mitigate the consequences.

The unpredictability of such events dictates the need to provide these entities
with non-deterministic mathematical models that allow them to estimate, depending
on the scenario that may occur, the best strategy to be implemented to assist the
multiple phases of the disaster management.
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In the existing literature, several network-based mathematical models, both of a
deterministic and non-deterministic nature, have been developed to provide support
to the disaster management phases (see, for instance, [2, 4, 5, 9–11]).

More specifically, in [2], authors provide an optimization model consisting of a
dynamic supply chain network for personal protective equipment in the COVID-
19 pandemic scenario in which they study the associated evolutionary variational
inequality (see, for instance, [1]) in the presence of a delay function. In [4], authors
propose a stochastic optimization approach for the distribution of medical supplies
in emergency situations due to natural disasters, providing a two-stage stochastic
programmingmodel for which they derive a two-stage variational inequality formu-
lation. In [5], authors present an evacuation model for which they derive a two-stage
stochastic programming model. Finally, in [10], is proposed a two-stage stochastic
game theory model describing the behavior of national governments in a healthcare
disaster determined by COVID-19 pandemic advent and their competition for
essential medical supplies in different phases of disaster preparedness.

The advent of a disaster scenario could cause an uncontrolled increase in requests
for hospital care. In the moments following the disaster, the injured or registered
victims are cared by the hospitals in the geographical area where the event occurred.
The sudden advent of a disaster, the possible huge number of requests for assistance,
the lack of medical personnel and the limited capacity of hospitalization cause
inevitable overcrowding of the hospital structures and delays in the management
of emergencies, as well as a large use of emergency vehicles and related costs
increase. On the other hand, not all hospitals located in the geographical area of
interest have emergency medical departments and this causes further inconvenience
in the management of hospitalization requests. These factors, together with the
total unpreparedness of hospitals, could make challenging, expensive and time-
consuming the process of responding to the disastrous event.

Disaster management consists of different phases, including the preparedness
and the response phases. In particular, when we consider an integrated preparation
and response phase, it is of fundamental importance that decision makers make
predictions on the uncertain possible disastrous scenarios that may occur and
on their associated severity, so as not to be caught unprepared once the event
occurs. These reasons led us to propose the two-stage stochastic optimization
model described below, in which the decision makers are hospitals with emergency
facilities, which seek to minimize both the total time of handling hospitalization
requests from different geographical areas and the total costs due to patient transfers
to other hospitals.

The paper is organized as follows. In Sect. 2, we develop the disaster stochastic
game theory network model for hospitalization. We describe how hospitals with
first aid departments compete to minimize their expected disutility, consisting of the
total management time of an emergency and the total transfer cost to other hospitals.
We describe the minimization problems that hospitals have to solve in the different
phases of the management of the disaster scenario and we define the Generalized
Nash Equilibrium and Variational Equilibrium of the proposed game theory model.
Section 4 is dedicated to conclusion.
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2 The Mathematical Model

The two-stage stochastic Supply Chain Network game theory model consists of
K geographic areas, with a typical one by k, M hospitals with emergency rooms,
with a generic one denoted by i and N hospitals without emergency rooms, with
a generic one denoted by j . We denote by Mi the set of hospitals with first aid
departments, except hospital i. In this model, the decision makers are hospitals
with emergency rooms. Usually, in non-critical situations, emergency calls from
a geographic location that are taken over by a hospital with an emergency room
are handled by the receiving hospital, proceeding with the reception of the patient,
anamnesis, diagnosis, possible hospitalization and subsequent discharge. In some
cases (specialized centers, lack of staff, hospital overcrowding) it is possible that
some emergency calls taken in charge by a hospital with first aid departments
are subsequently routed to other hospitals with or without first aid departments.
If, on the other hand, an emergency situation arises (outbreak of a pandemic,
environmental disaster, etc.), it is highly likely that there will be a greater exchange
among hospitals (for example, during the Covid-19 pandemic, due to the high
number of patients in intensive care in Bolzano, Northen Italy, transfers were made
to hospitals in Palermo, South Italy).

In this model, we want to provide a two-stage stochastic model, where in the
pre-crisis phase, hospitals with emergency rooms consider several scenarios with
different probabilities, so they are not surprised by a subsequent critical phase,
trying to minimize the weighted sum between the management of emergency calls
and the hospital dispatching times and the transport costs due to the transfers to
other hospitals.

The three-tier network that describes the problem is represented in Figs. 1 and 2
which contain, respectively, the network topology for each hospital i and the entire

Fig. 1 Network topology for hospital i
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Fig. 2 Network topology

network topology. The variables and the parameters of the model are reported in
Tables 1 and 2.

Facing a disaster scenario, the main goal of hospitals with first aid departments is
to guarantee the treatment to patients who needmedical devices and/ormedical care,
taking into account that requests for hospital care are all met as closely as possible.
However, it is very difficult and time-consuming to ensure a complete management
of the huge demand for hospital care, since the disaster scenario we are considering
is global in nature.

Each hospital aims at minimizing its expected disutility which consists of the
weighted sum between the expected dispatching time caused by the overcrowding
of hospitals and the subsequent transportation costs of patients to other hospitals.
The actions that the hospital takes in the first stage, before the disaster scenario, and
the associated costs, are deterministic. However, the actions that hospitals take in
phase 2, as soon as the disaster has occurred, depends on the possible scenario and
the realization of probabilistic parameters.

We denote by:

• t1ki the transport time of an emergency patient from a geographic area k, k =
1, . . . ,K , to hospital i, i = 1, . . . ,M , in stage 1 and let us assume that t1ki is a
function of the amount of emergency calls q1

ki , namely:

t1ki := t1ki(q
1
ki), ∀k = 1, . . . ,K, ∀i = 1, . . . ,M; (1)
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Table 1 Variables for the model

Notation Variables

q1
ki The amount of emergency calls from the geographic area k, k = 1, . . . , K ,

handled by hospital i, i = 1, . . . ,M , in stage 1. We group these quantities for all k
into the vector q1

i ∈ R
K+ and, in turn, we group these vectors into the vector

q1 = (q1
i )i=1,...,M ∈ R

MK+
q̂1
i The amount of emergencies handled by hospital i, i = 1, . . . ,M , dispatched by

hospital with first aid departments belonging toMi set in stage 1. We group these
quantities into the vector q̂1 ∈ R

M+
q̃1
il The amount of emergencies handled by hospital i, i = 1, . . . ,M , and

subsequently dispatched to hospital l �= i in stage 1. We group these quantities for
all l �= i into the vector q̂1

i ∈ R
M−1+ and, in turn, we group these quantities into the

vector q̃1 ∈ R
M(M−1)
+

q̄1
ij The amount of emergencies handled by hospital i, i = 1, . . . ,M , dispatched to

hospital j , j = 1, . . . , N , in stage 1. We group these quantities for all j into the
vector q̄1

i ∈ R
N+ and, in turn, we group these quantities for all i into the vector

q̄1 ∈ R
MN+

q2ω
ki The amount of emergency calls from the geographic area k, k = 1, . . . , K ,

handled by hospital i, i = 1, . . . ,M , in stage 2 when scenario ω occurs. We group
these quantities for all k into the vector q2ω

i ∈ R
K+ and, in turn, we group these

vectors into the vector q2ω = (q2ω
i )i=1,...,M ∈ R

MK+ . Finally, we group these

vectors for all scenarios ω ∈ Ω into the vector q2 ∈ R
|Ω|MK
+

q̂2ω
i The amount of emergencies handled by hospital i, i = 1, . . . ,M , arrived by

hospital with first aid departments belonging toMi set in stage 2 when scenario
ω ∈ Ω occurs. We group these quantities for all hospital into the vector in
q̂2ω ∈ R

M+ and, inturn, we group these quantities for all scenarios ω ∈ Ω into the

vector q̂2 ∈ R
M|Ω|
+

q̃2ω
il The amount of emergencies handled by hospital i, i = 1, . . . , N , and subsequently

dispatched to hospital l �= i in stage 2 when scenario ω occurs. We group these
quantities for all l �= i into the vector q̃2ω

i ∈ R
M−1+ and, in turn, we group these

quantities into the vector q̃2ω ∈ R
M(M−1)
+ . Finally, we group these vectors for all

scenarios ω ∈ Ω into the vector q̃2 ∈ R
|Ω|M(M−1)
+

q̄2ω
ij The amount of emergency calls from k handled by hospital i dispatched to hospital

j , j = 1, . . . , N , in stage 2. We group these quantities for all j into the vector
q̄2ω
i ∈ R

N+ and, in turn, we group these quantities for all i into the vector
q̄2ω ∈ R

MN+ . Finally, we group these vectors for all scenarios ω ∈ Ω into the

vector q̄2 ∈ R
|Ω|MN
+

q The vector q = (Q1,Q2) ∈ R
MK+M+M(M−1)+MN+|Ω|(MK+M+M(M−1)+MN)
+ ,

where Q1 = (q1, q̂1, q̃1, q̄1) and Q2 = (q2, q̂2, q̃2, q̄2)

• t1i the management time of an emergency patient arrived at hospital i, i =
1, . . . ,M , in stage 1 and let us assume that t1i is a function of

K∑

k=1

q1
ki and q̂1

i ,
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Table 2 Parameters for the
model

Notation Parameters

ω ∈ Ω The disaster scenario

pω The probability of disaster scenario ω in
stage 2, ω ∈ Ω

αi The weight in [0, 1]
C1

i The capacity of hospital i, i = 1, . . . ,M ,
in stage 1

C2ω
i The capacity of hospital i, i = 1, . . . ,M ,

in stage 2 under scenario ω, ∀ω ∈ Ω

Q̃1
j The maximum capacity of hospital j ,

j = 1, . . . , N , in stage 1

Q̃2ω
j The maximum capacity of hospital j ,

j = 1, . . . , N , in stage 2 under scenario ω,
∀ω ∈ Ω

βi The unit penalty encumbed by hospital i,
i = 1, . . . , N , on the unmet demand

d2ω
i The total demand for hospital i,

i = 1, . . . , N , when scenario ω occurs in
stage 2, ∀ω ∈ Ω

namely:

t1i := t1i

(
K∑

k=1

q1
ki, q̂

1
i

)
= t1i

(
q1
i , q̂1

i

)
. (2)

This assumption suggests that the management time of an emergency call in
the hospital i depends on the total flow of requests from each demand market and
the total flow of requests transferred from hospitals belonging toMi , to hospital
i;

• t̃1il , l �= i, the transfer time of an emergency from hospital i, i = 1, . . . ,M to
hospital l = 1, . . . ,M , l �= i, in stage 1 and let us assume that t̃1il is a function of
q̃1, namely

t̃1il := t̃1il (q̃); (3)

• t̄1ij the transfer time of an emergency from hospital i, i = 1, . . . ,M , to hospital

j , j = 1, . . . , N , in stage 1 and let us assume that t̄1ij is a function of q̄1, namely

t̄1ij := t̄1ij (q̄
1) (4)

• c̃1il the transfer cost of an emergency from hospital i, i = 1, . . . ,M , to hospital
l = 1, . . . ,M , l �= i, in stage 1 and let us assume that c̃1il is a function of q̃1

il ,
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namely

c̃1il := c̃1il (q̃
1
il); (5)

• c̄1ij the transfer cost of an emergency from hospital i, i = 1, . . . ,M , to hospital

j , j = 1, . . . , N , in stage 1 and let us assume that c̄1ij is a function of q̄1
ij , namely

c̄1ij := c̄1ij (q̄
1
ij ); (6)

Similarly, we define time and cost functions in stage 2, observing that these
functions will depend on the variables of the second stage, and, therefore, will be
affected by the uncertainty due to the scenario ω ∈ Ω .

Each hospital is faced with the following two-stage stochastic optimization
model in which, as previously mentioned, it seeks to minimize the weighted
sum between total expected dispatching time and the total expected costs (cf.
Tables 1 and 2 for a detailed explanation of the role of each variable and
parameter):

Min

⎧
⎪⎨

⎪⎩

K∑

k=1

t1ki (q
1
ki) + t1i

(
q1
i , q̂1

i

)
+

∑

l=1,...,M,
l �=i

t̃1il (q̃
1) +

N∑

j=1

t̄1ij (q̄1)

+αi

⎛

⎜⎝
∑

l=1,...,M,
l �=i

c̃1il (q̃
1
il) +

N∑

j=1

c̄1ij (q̄
1
ij )

⎞

⎟⎠ + EΩ [T 2
i (Q2, ω)]

⎫
⎪⎬

⎪⎭

(7)

subject to:

∑

l=1,...,M,
l �=i

q̃1
il +

N∑

j=1

q̄1
ij ≤

K∑

k=1

q1
ki + q̂1

i , (8)

K∑

k=1

q1
ki + q̂1

i ≤ C1
i , (9)

M∑

i=1

q̄1
ij ≤ Q1

j , ∀j = 1, . . . , N, (10)

q1
ki, q̂1

i , q̃1
il , q̄1

ij ≥ 0, ∀k = 1, . . . ,K; ∀l = 1, . . . ,M, l �= i; ∀j = 1, . . . , N.

(11)
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Constraint (8) ensures that the sum of emergencies dispatched by i to all hospitals
l plus the sum of emergencies dispatched by i to all hospitals j is not grater than the
number of emergencies reaching i from all geographical areas.

Constraint (9) ensures that the sum of emergency calls from all geographical
areas plus the transferred emergencies from all others hospitals to hospital i is not
greater than the maximum capacity of hospital i.

Constraints (10) are shared constraints and ensure that the sum of transferred
emergencies from all hospitals i, i = 1, . . . ,M to a hospital with no first aid
department is not greater than the maximum capacity of the latter.

Constraints (11) are non-negative constraints.
The last term of objective function (7) represents the expected value of the loss

to hospital i in stage 2. This loss depends also on the unmet demand from all
geographical areas, that is

d2ω
i −

K∑

k=1

q1
ki − q̂1

i −
K∑

k=1

q2ω
ki − q̂2ω

i .

We have:

EΩ [T 2
i (Q2, ω)] =

∑

ω∈Ω

pω[T 2
i (Q2, ω)],

where the loss for hospital i in stage 2 is the solution to the following second stage
minimization problem:

Minimize T 2
i (Q2, ω) =

K∑

k=1

t1ki(q
2ω
ki )

+ t2ωi

(
q2ω
i , q̂2ω

i

)
+

∑

l=1,...,M,
l �=i

t̃1il (q̃
2ω) +

N∑

j=1

t̄2ωij (q̄2ω)

+ αi

⎛

⎜⎝
∑

l=1,...,M,
l �=i

c̃1il (q̃
2ω
il ) +

N∑

j=1

c̄2ωij (q̄2ω
ij )

⎞

⎟⎠

+ βi

[
d2ω
i −

K∑

k=1

q1
ki − q̂1

i −
K∑

k=1

q2ω
ki − q̂2ω

i

]

(12)
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subject to the following constraints:

∑

l=1,...,M,
l �=i

q̃2ω
il +

N∑

j=1

q̄2ω
ij ≤

K∑

k=1

q2ω
ki + q̂2ω

i , ∀ω ∈ Ω (13)

K∑

k=1

q2ω
ki + q̂2ω

i ≤ C2ω
i , ∀ω ∈ Ω, (14)

M∑

i=1

q̄2ω
ij ≤ Q2ω

j , ∀j = 1, . . . , N, ∀ω ∈ Ω, (15)

q2ω
ki , q̂2ω

i , q̃2ω
il , q̄2ω

ij ≥ 0,∀k = 1, . . . ,K; ∀l = 1, . . . ,M, l �= i;
∀j = 1, . . . , N; ∀ω ∈ Ω.

(16)

In stage 2, when the severity of a disaster is declared, each hospital i carries out
restorative actions, to complete its first stage. Therefore, each hospital i seeks to
minimize the total dispatching time and the total transport costs and the damage due
to the unmet demand. The disaster could cause a shortage of staff, a greater demand
for medical care and, therefore, a consequent decrease in the number of places
available at each hospital, both with and without emergency rooms. Therefore,
similarly to stage 1, in the second stage constraints (13)–(16) must be satisfied.

Following [10] and the standard stochastic optimization theory, the two opti-
mization problems of stage 1 and stage 2 can be solved as a unique minimization
problem, namely (cf. Tables 1 and 2 for a detailed explanation of the role of each
variable and parameter):

Min

⎧
⎪⎪⎨

⎪⎪⎩

K∑

k=1

t1ki(q
1
ki ) + t1i

(
q1i , q̂1i

)
+

∑

l=1,...,M,
l �=i

t̃1il (q̃
1) +

N∑

j=1

t̄1ij (q̄1)

+αi

⎛

⎜⎜⎝
∑

l=1,...,M,
l �=i

c̃1il (q̃
1
il ) +

N∑

j=1

c̄1ij (q̄1ij )

⎞

⎟⎟⎠ +
∑

ω∈Ω

pω

⎡

⎣
K∑

k=1

t1ki(q
2ω
ki ) + t2ωi

(
q2ωi , q̂2ωi

)

+
∑

l=1,...,M,
l �=i

t̃1il (q̃
2ω) +

N∑

j=1

t̄2ωij (q̄2ω) + αi

⎛

⎜⎜⎝
∑

l=1,...,M,
l �=i

c̃1il (q̃
2ω
il ) +

N∑

j=1

c̄2ωij (q̄2ωij )

⎞

⎟⎟⎠

+βi

⎛

⎝d2ωi −
K∑

k=1

q1ki − q̂1i −
K∑

k=1

q2ωki − q̂2ωi

⎞

⎠

⎤

⎦

⎫
⎬

⎭

(17)

subject to constraints (8)–(11) and (13)–(16).
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We define the feasible set of hospital i as follows:

Ki =
{
q ∈ R

MK+M+M(M−1)+MN+|Ω|(MK+M+M(M−1)+MN)
+ such that:

(8), (9), (11), (13), (14), (16) hold

}
,

(18)

and K 1 = ∏M
i=1 Ki . Moreover, let S be the set of shared constraints, namely

S = {q : (10) and (15) hold}. Finally, we define the feasible set K 2 = K 1 ∩ S .
The objective function (17) represents the expected disutility of hospital i.
We assume that, for each hospital i, the time and cost functions are convex and

continuously differentiable. We have the following definition.

Definition 1 (Generalized Nash Equilibrium) A strategy profile q∗ ∈ K 2 is a
Stochastic Generalized Nash Equilibrium if, for each hospital i, i = 1, . . . ,M:

E(DUi(q
1∗
i , q̂1∗i , q̃1∗i , q̄1∗i , q2∗i , q̂2∗i , q̃2∗i , q̄2∗i , q1∗−i , q̂

1∗−i , q̃
1∗−i , q̄

1∗−i , q
2∗−i , q̂

2∗−i , q̃2∗−i , q̄2∗−i ))

≤ E(DUi(q
1
i , q̂1i , q̃1i , q̄1, q2i , q̂2i , q̃2i , q̄2i , q1∗−i , q̂

1∗−i , q̃
1∗−i , q̄

1∗−i , q
2∗−i , q̂

2∗−i , q̃
2∗−i , q̄2∗−i )),

∀(q1
i , q̂1

i , q̃1
i , q̄1

i , q2
i , q̂2

i , q̃2
i , q̄2

i ) ∈ Ki ∩ S , (19)

where

q1∗−i = (q1∗
1 , . . . , q1∗

i−1, q
1∗
i+1, . . . , q

1∗
M ), q2∗−i = (q2∗

1 , . . . , q2∗
i−1, q

2∗
i+1, . . . , q

2∗
M ),

q̂1∗−i = (q̂1∗
1 , . . . , q̂1∗

i−1, q̂
1∗
i+1, . . . , q̂

1∗
M ), q̂2∗−i = (q̂2∗

1 , . . . , q̂2∗
i−1, q̂

2∗
i+1, . . . , q̂

2∗
M ),

q̃1∗−i = (q̃1∗
1 , . . . , q̃1∗

i−1, q̃
1∗
i+1, . . . , q̃

1∗
M ), q̃2∗−i = (q̃2∗

1 , . . . , q̃2∗
i−1, q̃

2∗
i+1, . . . , q̃

2∗
M ),

q̄1∗−i = (q̄1∗
1 , . . . , q̄1∗

i−1, q̄
1∗
i+1, . . . , q̄

1∗
M ), q̄2∗−i = (q̄2∗

1 , . . . , q̄2∗
i−1, q̄

2∗
i+1, . . . , q̄

2∗
M ).

Each hospital seeks to minimize its expected disutility, that depends not only on its
own decisions, but also on the strategies of the other players. According to the above
definition, hospitals will be in a state of equilibrium if no player can unilaterally
change his strategy without obtaining a greater disutility. Moreover, the presence of
shared constraints provides an interconnection among feasible sets of players.

This formulation provides a model based on a Generalized Nash Equilibrium
(see, for instance, [3]). In general, Generalized Nash Equilibrium problems can be
formulated through quasi-variational inequality problems (see [6]). However, a class
of Generalized Nash Equilibria, the Variational Equilibria, can be formulated as a
variational inequality problem (see, for instance, [8] and [11]). As in [10], we will
deal with the variational equilibrium of the model.



A Stochastic Game Theory Network Model for Hospitalization in Critic Scenarios 23

Definition 2 (Variational Equilibrium) A strategy vector q∗ ∈ K 2 is a Varia-
tional Equilibrium of the above Stochastic Generalized Nash Equilibrium problem
if q∗ ∈ K 2 is a solution to the variational inequality:

N∑

k=1

M∑

i=1

⎡

⎣ ∂t1ki(q
1∗
ki )

∂q1
ki

+
∂t1

i

(
q1∗
i

, q̂1∗
i

)

∂q1
ki

− βi

⎤

⎦ × (q1ki − q1∗ki )

+
M∑

i=1

⎡

⎣
∂t1i

(
q1∗i , q̂1∗i

)

∂q̂1
i

− βi

⎤

⎦ × (q̂1i − q̂1∗i )

+
M∑

i=1

∑

l=1,...,M,
l �=i

[
∂t̃1

il
(q̃1∗)

∂q̃1
il

+ αi

∂c̃1
il
(q̃1∗

il
)

∂q̃1
il

]
× (q̃1il − q̃1∗il )

+
M∑

i=1

N∑

j=1

[
∂t̄1

ij
(q̄1∗)

∂q̄1
ij

+ αi

∂c̄1
ij

(q̄1∗
ij

)

∂q̄1
ij

]
× (q̄1ij − q̄1∗ij )

+
∑

ω∈Ω

pω

N∑

k=1

M∑

i=1

⎡

⎣ ∂t2ω
ki

(q2ω∗
ki

)

∂q2ω
ki

+
∂t2ω

i

(
q2ω∗
i

, q̂2ω∗
i

)

∂q2ω
ki

− βi

⎤

⎦ × (q2ωki − q2ω∗
ki )

+
∑

ω∈Ω

pω

N∑

i=1

⎡

⎣
∂t2ω

i

(
q2ω∗
i

, q̂2ω∗
i

)

∂q̂2ωi

− βi

⎤

⎦ × (q̂2ωi − q̂2ω∗
i )

+
∑

ω∈Ω

pω

M∑

i=1

∑

l=1,...,M,
l �=i

[
∂t̃2ω

il
(q̃2∗)

∂q̃2ω
il

+ αi

∂c̃2ω
il

(q̃2ω∗
il

)

∂q̃2ω
il

]
× (q̃2ωil − q̃2ω∗

il )

+
∑

ω∈Ω

pω

M∑

i=1

N∑

j=1

[
∂t̄2ωij (q̄2∗)

∂q̄2ωij

+ αi

∂c̄2ωij (q̄2ω∗
ij )

∂q̄2ωij

]
× (q̄2ωij − q̄2ω∗

ij ) ≥ 0 ∀q ∈ K 2.

(20)

The advantage of detecting a variational equilibrium consists in using the well-
known variational inequality theory, for which theorems of existence and unique-
ness of the solution are stated (see [7]).

3 An Illustrative Numerical Example

In this section, we solve an illustrative numerical example to validate the effective-
ness of the model. We consider g = 2 geographical areas, h = 2 hospitals with
first aid departments, s = 3 hospitals without first aid departments and |Ω | = 2
scenarios. In the first scenario ω1 = 1, we suppose that the consequences of the
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advent of the disaster scenario are severe while in the second scenario ω2 = 2 we
assume that the consequences are not severe. Consequently, in the first scenario the
requests for hospitalization are more than in the second one.

For the computation of the optimal solution we have applied the modified
projection method described in [10]. The calculations were performed using the
MATLAB program. The algorithm was implemented on a laptop with 1.8 GHz Intel
Core i5 dual-core and 8 GB RAM, 1600 MHz DDR3. For the convergence of the
method a tolerance of ε = 10−4 was fixed. The method has been implemented with
a constant step α = 0.1.

The numerical data and the size of the problem are constructed for easy
interpretation purposes. We have the following data:

pω1 = 0.8, pω2 = 1 − pω1 = 0.2, β1 = β2 = 20,

Γ 1
1 = 25, Γ 1

2 = 35, Γ
2ω1
1 = 45, Γ

2ω1
2 = 60, Γ

2ω2
1 = 30, Γ

2ω2
2 = 53,

C̃1
1 = 10, C̃1

2 = 15, C̃1
3 = 25, C̃

2ω1
1 = 18, C̃

2ω1
2 = 20, C̃

2ω1
3 = 30,

C̃
2ω2
1 = 15, C̃

2ω2
2 = 18, C̃

2ω2
3 = 25,

d
2ω1
1 = d

2ω1
2 = 80, d

2ω2
1 = d

2ω2
2 = 50.

The equilibrium solution is shown in Table 3.
The computational time needed to calculate the equilibrium solution is 50

seconds. As shown in Table 3, in phase 1, where cost and time functions and
demands are deterministic, there is not a huge transfer between hospitals with
first aid departments and between hospitals with and without first aid departments.

Table 3 Equilibrium solution

Stage 1 Stage 2: scenario ω1 Stage 2: scenario ω2

Solution Value Solution Value Solution Value

q1∗
11 20.6 q

2ω1∗
11 46.3 q

2ω2∗
11 24.3

q1∗
12 3.8 q

2ω1∗
12 46.3 q

2ω2∗
12 21.8

q1∗
21 9.3 q

2ω1∗
21 53.6 q

2ω2∗
21 35.7

q1∗
22 26.1 q

2ω1∗
22 53.6 q

2ω2∗
22 33.2

q̂1∗
1 0.5 q̂

2ω1∗
1 47.6 q̂

2ω2∗
1 16.1

q̂1∗
2 0.5 q̂

2ω1∗
2 47.3 q̂

2ω2∗
2 15.9

q̃1∗
12 4.6 q̃

2ω1∗
12 18.5 q̃

2ω2∗
12 11.9

q̃1∗
21 7.1 q̃

2ω1∗
21 22.7 q̃

2ω2∗
21 20.2

q̄1∗
11 3.9 q̄

2ω1∗
11 7.2 q̄

2ω2∗
11 5.2

q̄1∗
12 3.4 q̄

2ω1∗
12 8.2 q̄

2ω2∗
12 6.2

q̄1∗
13 3.8 q̄

2ω1∗
13 11.1 q̄

2ω2∗
13 6.6

q̄1∗
21 3.9 q̄

2ω1∗
21 10.8 q̄

2ω2∗
21 9.7

q̄1∗
22 3.5 q̄

2ω1∗
22 11.8 q̄

2ω2∗
22 11.8

q̄1∗
23 3.3 q̄

2ω1∗
23 14.6 q̄

2ω2∗
23 11.1
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When a disaster scenario occurs in stage 2, there is an increase in requests for
hospitalization and a consequent increase in transfers between hospital structures.
Particularly, under scenario ω1, the severity of which is higher, hospital 1 fails to
satisfy the total demand, having an unmet demand equal to 174.

4 Conclusion

In this paper, we presented a stochastic Generalized Nash Equilibrium model to
describe the competition among hospitals with first aid departments for hospital-
ization in response to the advent of a disaster scenario. We obtained a two-stage
stochastic optimization problem and the presence of shared constraints for all
hospitals with first aid departments led us to consider a Generalized Nash Equilib-
rium problem for which we derived the Variational Equilibrium and the associated
variational inequality problem. The results in this paper add to the growing literature
of game theory and and two-stage stochastic models in disaster management. This
theoretical model can be applied to any disastrous event that involves a sudden
and nondeterministic increase in hospitalization, such as the recent and still current
COVID-19 pandemic.
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