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Abstract In collaboration with EUROCONTROL (the European Organisation for
the Safety of Air Navigation), the considered Aircraft Landing Planning (ALP)
problem aims at minimizing delays (with respect to the published airline schedules)
while satisfying the separation constraint (which imposes minimum threshold times
between planes, ranging from 90 to 240 s). In this study, the landing sequence of
the planes has to be determined first, and subsequently their associated landing
times and Holding-Stack Patterns (HSPs) needed to meet such landing times. HSPs
consist of making a plane wait for its planned landing time by making circular
patterns close to the airport. The uncertainty due to winds is taken into account in the
simulation procedure (it has an impact on the arrival times). The proposed solution
method is a descent local search with restarts. It is quick enough with respect to
implementation in real situations as it can be applied within seconds. Furthermore,
the obtained results show that the delays can be reduced by approximately 50% on
average when compared to a common practice rule.
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1 Introduction

From take-off to landing, planes are subjects to many uncertainties (e.g., wind,
traffic). Moreover, the runway capacity of an airport is the bottleneck capacity of
the landing process. Therefore, the landing time of each plane arriving at an airport
has to be adjusted all along its flight trajectory to use the runway capacity at best
despite uncertainty. One way to delay an airplane is to make it perform holding

N. Zufferey (�) · M.-S. Vié
GSEM, University of Geneva—Uni Mail, Geneva, Switzerland
e-mail: marie-sklaerder.vie@unige.ch; n.zufferey@unige.ch

R. Leus
Faculty of Economics and Business, Leuven, Belgium
e-mail: roel.leus@kuleuven.be

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Amorosi et al. (eds.), Optimization in Artificial Intelligence and Data Sciences,
AIRO Springer Series 8, https://doi.org/10.1007/978-3-030-95380-5_15

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95380-5_15&domain=pdf
mailto:marie-sklaerder.vie@unige.ch
mailto:n.zufferey@unige.ch
mailto:roel.leus@kuleuven.be
https://doi.org/10.1007/978-3-030-95380-5_15


164 N. Zufferey et al.

stack patterns in the vicinity of the airport (approach area) before its landing,
but this creates bigger fuel consumption and noise pollution. Another way is to
decrease (sometimes increase) the speed of the plane during its cruise (or make it
do a detour using path stretching), but due to larger uncertainties at longer distance
from destination, this may create unnecessary additional delays. Also, the fewer
number of modifications there are on a landing time, the better it is for the air
traffic controllers’ (ATC) workload, as they have other priorities (mainly ensuring
safety and avoiding collisions). The goal of Aircraft Landing Planning (ALP) is
to optimize the landing times of the planes arriving at an airport runway. For this
purpose, the planes to delay have to be selected, as well as how and when to delay
them. Safety constraints imposing threshold distances between planes have to be
satisfied, obviously.

The paper is organized as follows. A literature review is first conducted in
Sect. 2. Second, the considered problem is formally introduced in Sect. 3. Next,
the proposed optimization method is proposed in Sect. 4. Results are presented in
Sect. 5, followed by conclusions in Sect. 6.

2 Literature Review

A comprehensive review covering the period up to 2011 can be found in [2].
It results that the main objective functions can be divided into four categories,
presented below.

• Safety and efficiency objectives. Maximize: runway throughput, fairness among
the aircrafts. Minimize: approach time before landing, ATCs’ workload, aircraft
taxi-out time, arrival delays.

• Airline’s objectives.Maximize: punctuality with respect to the published landing
times, adherence to airline priorities within their own flights, connectivity
between flights. Minimize: operation costs (mainly fuel costs), total passenger
delays.

• Airport objectives. Maximize: punctuality according to the operating schedule.
Minimize: the need for gate changes due to delays.

• Government objectives. Minimize: environmental effects (noise and air pollu-
tion).

The review of [2], covering the literature up to 2011, leads to different obser-
vations. First, many theoretical studies show a great potential improvement of the
runway utilization, but may not be feasible in practice due to ignored operational
constraints (e.g., minimum time before landing, precedence constraints) or unrea-
sonable computing times. Indeed, ATCs will always prefer fast (i.e., able to generate
a solution within seconds) and satisfying (with respect to the considered objective)
solution methods rather than optimal but time-consuming ones. Second, the defini-
tion of the objective functions and constraints varies a lot among the articles. Indeed,
the involved parties (e.g., airport, companies, customers) have conflicting interests.
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Therefore, selecting an appropriate and realistic objective function is a critical issue.
Third, and most importantly, uncertainty occurs at different levels (e.g., weather,
precision of the equipment, departure time, accuracy of information). However, in
contrast with the supply chain management literature (e.g., [18]), very few studies
take this aspect into account and actually use simulation, as [6, 15]. Indeed, most
of the literature considers the static case rather than a dynamic (but realistic)
environment. Interestingly, it is showed in [7] that: deterministic algorithms are sub-
optimal in a dynamic environment; a FCFS method is robust (i.e., not too sensitive
to variations in problem characteristics or data quality) and it has many advantages
over many existing algorithms (e.g., generated sequence understandable by ATCs,
stable and easy-to-estimate delays, already in place in many airports).

From 2012, some work on static ALP has still been published [11, 23]. But
as highlighted above, from a practical standpoint, only the approaches that are
able to take into account random events are relevant. The three main axes that
integrate this dimension are queuing theory [16], robust optimization [12], and
on-line optimization [3]. The approaches including uncertainty use Monte-Carlo
simulation, and some dynamic solution methods (but without uncertainty, except
the appearance of new flights) employ a rolling-horizon approach. Other relevant
and recent references can be found in [4, 20, 21].

In the light of the weaknesses of the existing literature, various promising
research directions are identified below.

(1) Consideration of uncertainty. Obviously, as most variables in ALP are stochas-
tic, a quick, accurate and dedicated simulation tool is mandatory to evaluate the
true quality of a solution. The Monte-Carlo simulation that is usually proposed
for ALP is probably not the best tool according to these criteria. Generally, the
existing literature does not take uncertainty into account. A scarce literature
proposes either robust solution within a static approach, or a dynamic solution
method but without any robustness guarantee. An interesting approach could
integrate robustness in the on-line process (to avoid a prohibitive number of
rescheduling actions) [14].

(2) Appropriate solution methods. The existing metaheuristics (generally genetic
and ant colony algorithms) do not seem the most appropriate for ALP. Indeed,
they need a long learning phase (e.g., Variable Neighborhood Search [5], Tabu
Search [22]), and even though they can provide feasible solutions at any time
in the computation, there is little chance that the quality of the solutions is
good after only a few seconds of computation. Filtering techniques would be
an efficient option to definitely discard unpromising decisions from the solution
space (e.g., [13]).

(3) Instance calibration. An instance has to be designed in a realistic way. In
most of the literature, instances with hundreds of flights are tackled (with
metaheuristics), as well as instances with around 50 flights (with exact methods
or metaheuristics). However, everyday and for many important European
airports, the demand follows patterns with marked peaks (e.g., hub periods of
3 h) and then lower traffic levels [10]. For these reasons, a relevant instance can
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be defined by a time horizon of 3 h (i.e., covering a peak) and a single landing
runway. Knowing that the time between two consecutive aircraft belongs to
interval [90, 240] s, the most relevant instance size ranges from 90 to 120 flights.
Surprisingly, this range is usually not considered in the literature.

(4) Planning horizon. In a dynamic case, an important optimization would be the
size of the considered rolling horizon H , as it can have a crucial impact on
the quality of the obtained solution [19]. A tradeoff has to be found between
(1) waiting as much as possible before delaying a flight (which minimizes
the uncertainties, but increases the noise pollution and fuel costs), and (2)
anticipating and delaying a flight as early as possible (more risky approach
if too many uncertainties, but more efficient otherwise). The challenge is that
the larger H is, the more flexibility we have in the optimization, but the more
uncertainty we have too (mainly because of pop-up flights, as presented below).

3 Considered Problem

Each instance covers a 3-h planning horizon, which allows capturing the peak period
of most airports. A rolling planning window Ht = [t, t + w[ (with w = 45 min)
is associated with the current time t , with time steps of �t = 30 s. At each time t ,
we only consider the flights that are in cruise and have their landing planned in Ht .
The flights that have their landing in Ht but are not yet in cruise are only considered
when they take-off. They are called the pop-up flights.

Each flight has different stages: (1) take-off, (2) cruise, (3) approach, (4) landing
(the last L = 15 min, during which no modification is performed). In this paper,
we only consider stages (2) and (3). From a practical standpoint, an initial schedule
is first built when each flight enters the planning window (i.e., when it has taken
off in the case of a pop-up flight, or when its expected landing time is within the
next 45 min). Next, we can reschedule it (within the landing sequence) or make
it wait to meet its planned arrival time (through HSPs). The popular First-Come-
First-Served (FCFS) rule is employed to build the initial schedule. FCFS ranks the
flights according to their entry times in Ht (i.e., with respect to increasing published
arrival times, like the earliest-due-date rule in job scheduling). FCFS used to be the
most employed current-practice approach [9], and it is an optimal rule for the single-
machine job-scheduling problemswhen themaximum tardiness has to beminimized
[17] (in our case we have to minimize the average tardiness).

We propose the following mathematical model (P t ) for each time t . Among the
flights that have already taken off, we only consider the flights with planned landing
times up to time t + w. Let J t be the set of (say n) flights considered in Ht . For
each flight j ∈ J t , the following data is given:

• rj : release date (i.e., take-off time).
• dj : due date (i.e., published landing time).
• pt

j : processing time (i.e., remaining time—in seconds—during the cruise phase).
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• sj,j ′ : set up time between flights j and j ′. More precisely, for each pair (j, j ′) of
flights such that j has to land before j ′, their landing times must be separated by
sj,j ′ ∈ {90, 120, 150, 180, 210, 240} s, depending on the involved plane types.
We have two types of decision variables:

• determine the vector �t of the positions of the flights involved at time t (i.e.,
improve the current landing sequence by performing an optimization method);

• for each flight j , determine a feasible landing time Ct
j (with respect to the

separation constraint) and assign a HSP of duration Wt
j in order to meet Ct

j .

The objective function f to minimize is the sum of all positive delays (i.e., the
total tardiness), and it is given in Eq. (1). In contrast with the production-planning
literature, negative delays are not penalized (e.g., [24]).

f =
∑

j∈J t

max{Ct
j − dj , 0} (1)

Below, Constraints (2) impose that two flights are not scheduled in the same posi-
tion. Constraints (3) capture the separation constraints. Constraints (4) determine the
expected landing times. Constraints (5) are the domain constraints.

�t
j �= �t

j ′ ∀j, j ′ ∈ J t (2)

Ct
j ′ ≥ Ct

j + sj,j ′ ∀j, j ′ ∈ J t such that �t
j + 1 = �t

j ′ (3)

Ct
j = t + pt

j + Wt
j + L ∀j ∈ J t (4)

�t
j ∈ {1, . . . , n}, Ct

j ≥ 0,Wt
j ≥ 0 ∀j ∈ J t (5)

This problem can be seen as a variant of a single-machine total-tardiness problem
with setup times, which is NP-hard even without setup times [8].

4 Optimization Method

Algorithm 1 presents how to roll the planning windowHt over the full 3-h planning
horizon.

In Step 2, the landing positions �t of the new flights are computed with the
following insertion rules used in practice:

• each pop-up flight j that just entered Ht (i.e., t ≥ rj but t − �t < rj , and
t ≥ dj − w) is added to the landing sequence at a position �t such that its due
date is respected (i.e., j is placed before all flights j ′ such that Ct

j ′ ≥ dj but after
all the other flights);
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Algorithm 1: Optimization for each time step t

Initialization: set t = 0, J t = J t−�t = ∅ and �t = �t−�t = ().
While (not all flights have landed), do:
1. Update J t : remove the flights that have started landing (i.e., each flight j for which

t ≥ Ct
j − l), and add the flights that have just entered the updated planning window Ht (i.e.,

each flight j for which t ≥ rj and t ≥ dj − w).
2. Compute the positions of the new flights (i.e., the flights that are in J t but not in J t−�t ) to

obtain the vector �t , based on �t−�t and the insertion rules.
3. Update the remaining cruise time for each flight j : set pt

j = pt−�t
j − �t · (1 + ut

j ).
4. Update Ct and Wt according to the new flight positions �t and the processing times pt .
5. Improve solution (�t , Ct ,W t ) with a solution method.
6. Move to the next time step: set t = t + �t and Ht = [t, t + w[.

• each flight j that took off a while ago but just entered Ht (i.e., t ≥ rj and
t ≥ dj − w, but t − �t < dj − w) is put at the end of the landing sequence
(FCFS rule).

In Step 3, each remaining processing times pt
j is updated while considering

an uncertainty parameter ut randomly generated following the EUROCONTROL

specifications. ut generates a deviation (e.g., due to wind) of the cruise speed of
around 7% (with an average of 0%, as positive deviations are compensated by
negative ones). In Step 4, and after each modification of �t , the values of Ct and
Wt are updated with the following current-practice rules. First, we re-number all
flights of J t as j1, j2, . . . , jn such that �t

j1
< �t

j2
< . . . < �t

jn
. Next, for k = 1 to

n, we perform steps (S1) and (S2).

• Step (S1). Ct
jk

= max{Ct
jk−1

+ sjk−1,jk , t + pt
jk

+ L} (i.e., the arrival time of jk

is as close as possible to the arrival time of the previous flight jk−1, or as soon as
jk can land).

• Step (S2). Wt
jk

= Ct
jk

− (t + pt
jk

+ L) (i.e., the flight turns over the airport if it is
too early with respect to the planned landing time).

As (1) the considered problem is NP-hard, (2) up to 24 flights are involved in Ht ,
and (3) the allowed computing-time limit T is very short (T = �t = 30 s), quite
a number of potential solution methods are not suitable for Step 5. Indeed, exact
methods, cumbersome population-based metaheuristics (e.g., genetic algorithms,
ant algorithms) or metaheuristics using a somewhat long learning process (e.g.,
simulated annealing) are too slow. In contrast, a descent local search (DLS) appears
as a promising candidate.

DLS takes as input the solution from Step 4. At each iteration, a neighbor
solution S′ is generated from the current solution S = (�t , Ct ,Wt ) by performing
the best Reinsert move on S. A move Reinsert consists of changing the position
�t

j of a flight j ∈ J t within the landing sequence. After each modification of
�t , the associated variables (Ct ,Wt ) must be updated to have a feasible solution
S′ (separation constraint) and to know f (S′). The search process stops when no
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improvement of S is achieved during an iteration. In order to use the full time budget
T , DLS is restarted when it encounters a local minimum (which occurs almost every
second). The best visited solution is returned at the end.

At each iteration, two mechanisms are used for reducing the computational effort.
First, the new position for the investigated flight j must be in [�t

j − 5; �t
j + 5].

This kind of Constrained Position Shifting is standard [1]. Indeed, from a practical
standpoint, it seems straightforward to reschedule a flight not too far away from
its initial position. Second, only a random proportion ρ (tuned to 50%) of the
possible neighbor solutions is generated. These mechanisms allows to performmore
iterations during T seconds, which increases the exploration capability of DLS.

5 Results

The algorithms were coded in C++ (under Linux, 3.4 GHz Intel Quad-core i7
processor, 8 GB of DDR3 RAM).

Table 1 compares the proposed DLS approach with FCFS (i.e., a common
practice rule, see Algorithm 1 without Step 5). Average results (over all the
instances) are indicated in bold face in the last line. For each instance (provided
by EUROCONTROL), the following information is provided: the numberN of flights,
the largest number nmax of flights encountered in a planning window, the average
delay and the maximum delay (for both DLS and FCFS). The two latter quantities

Table 1 Comparison of FCFS with DLS for 15 instances provided by EUROCONTROL

FCFS DLS % Gain

Instance N nmax Avg. delay Max delay Avg. delay Max delay Avg. delay Max delay

1 59 16 91.36 305.00 59.96 450.20 34% −48%

2 35 10 156.08 528.20 96.98 490.40 38% 7%

3 64 20 154.41 447.60 93.05 456.00 40% −2%

4 79 24 388.30 782.60 228.31 1672.60 41% −114%

5 53 14 189.53 545.00 110.36 538.40 42% 1%

6 79 21 328.86 709.20 181.40 1629.20 45% −130%

7 75 18 208.88 558.80 111.38 475.40 47% 15%

8 75 24 288.57 651.40 143.88 1480.60 50% −127%

9 62 16 240.26 539.20 118.33 505.20 51% 6%

10 70 22 207.41 503.20 99.57 563.40 52% −12%

11 72 22 280.79 631.20 131.57 800.20 53% −27%

12 71 18 170.19 514.80 77.72 475.20 54% 8%

13 97 23 386.69 903.00 174.56 1247.60 55% −38%

14 61 15 195.54 644.60 86.58 612.80 56% 5%

15 97 20 234.52 569.00 97.04 662.20 59% −16%

Average results 234.76 588.85 120.71 803.96 48% −31%
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are computed with respect to all flights (in seconds), and averaged over 5 runs (with
different uncertainty scenarios). The percentage gains of DLS (compared to FCFS)
are given in the two last columns (a negative value indicates a better performance
for FCFS).

We can see that DLS can significantly reduce the average delays (almost 50%).
Interestingly, the improvement is somewhat increasing with the difficulty of the
instance (i.e., withN and nmax), but further investigations are required to understand
the benefit of DLS with respect to the instance characteristics. FCFS is often better
regarding the maximum delay. This makes sense as FCFS guarantees optimality for
minimizing the maximum delay (but not the average delay) for single-machine job-
scheduling contexts. However, DLS can sometimes do better even for the maximum
delay, as it reacts to uncertainties whereas FCFS does not.

6 Conclusion

A lot of work has been done on Aircraft Landing Planning (ALP), from exact
methods (mainly branch-and-bound) to metaheuristics (e.g., numerous genetic
algorithms). These methods, however, entail two main weaknesses. First, they
are usually static (i.e., assume that all data is well-known), whereas the problem
presents many uncertainties (e.g., weather, traffic, interaction with other flights).
Second, the existing approaches generally do not match the quickness of the
decision environment in which the decision makers have to work.

ALP is a challenging problem as the runway capacity is the bottleneck of many
airports. In collaboration with EUROCONTROL, this study proposes a quick and effi-
cient descent-based solution method for minimizing delays. Indeed, solutions can
be obtained within seconds (which is appropriate for real-world implementation)
and the average delay is reduced by almost 50%. Possible future works include the
joint consideration of various objectives (for instance, in a lexicographic fashion as
in [25]), and the development of refined algorithms and other techniques (e.g., speed
adjustments, detours) to make the flights meet their landing times in order to reduce
the over-the-airport traffic.
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