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Abstract We consider a storage allocation problem which combines storage loca-
tion assignment with sequencing decisions about the assigned storage locations, and
which originates from a real-world application context. We propose a very efficient
successive constrained shortest path method, which outperforms a matheuristic
approach recently proposed in the literature in terms of both the computational time
required and regarding the quality of the solutions found.
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1 Introduction

Storage Location Assignment Problems (SLAPs) are operational problems aiming
at defining the exact physical location of a set of items in a storage area, which
broadly could be a warehouse, a yard, the bunt of a container ship or even a
tram/bus depot. Such decisions are made by considering some long-term storage
assignment policies (random, dedicated and class-based are the most popular [1, 2]),
that broadly prescribe the rules to follow when stocking is needed, by respecting
additional requirements related to the specific application context and, generally, by
optimizing criteria such as material handling cost or storage space utilization [3–5].

The problem addressed in this paper has been motivated by a real application
involving a production site of an Italian company, in Tuscany, whose large ware-
house (more than 10,000m2) is the subject of a big modernization project requesting
the resolution of a SLAP with operations research techniques. Specifically, a set of
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storage locations (SLs) has to be assigned to a set of different product types, each
with its own storage demand expressed in number of items to store in a given time
horizon. Each SL has a fixed capacity and can be assigned to at most one product
type, i.e., different types of products cannot share the same SL. The majority of
the product types can be stored in any available SL, i.e., a random storage policy
is considered. However, special product types do exist, which have to be preferably
managed according to a dedicated storage policy.

In addition, a suitable sequencing of the assigned SLs must be devised for each
product type, i.e., it has to be decided the ordering with which the assigned SLs
will be filled up during the storing operations. A motivation is that a FIFO (First-
In First-Out) order picking policy based on the time of permanence of the items in
the warehouse has to be pursued, separately per product type, when items must be
retrieved to fulfill customers’ orders. The sequencing established for the assigned
SLs will thus allow to easily implement the FIFO policy in the successive order
picking steps. Moreover, the selected sequencing also determines the availability
of additional extra storage per product type. Specifically, an additional amount of
storage can be made available on the top of pairs of consecutive SLs along the
sequence, provided that they are fully replenished and physically contiguous, thus
allowing a two level stocking policy. The objective is to maximize the storage
capacity which remains available after the assignment of the SLs.

The recent paper [6] describes the problem more formally, providing two Mixed
Integer Linear Programming (MILP) formulations and the proof of its NP-hardness.
Additionally, since the state-of-the-art commercial solver CPLEX is not able to
address real-size instances, such those faced daily by our industrial partner, a simple
yet effective matheuristic approach to tackle such instances is proposed in [6].
Further models to SLAP have been proposed in [7].

In this paper, we propose a heuristic solution method based on successive
constrained shortest paths. The heuristic is able to find solutions to real-size
instances in a few seconds, also improving the quality of those found in [6] in
terms of both available storage capacity and other crucial features that our industrial
partner is interested in.

The paper is organized as follows. We briefly describe the problem statement in
Sect. 2. The heuristic method designed to tackle the problem is presented in Sect. 3.
Section 4 describes the experimental plan and reports the results of the preliminary
computational experiments we performed. Finally, Sect. 5 concludes the paper and
identifies some future directions of research.

2 Problem Statement

Let K be the set of the different product types requiring storage in a given time
horizon, and qk be the number of items of product type k that needs storage, for
each k ∈ K. Let S be the set of available SLs in the warehouse where the products
in K have to be stocked, each SL s ∈ S having a capacity us . Two subsets of
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Fig. 1 Available SLs in a
storage area

K of special product types are given: KP ⊆ K denoting perishable products and
KHR ⊆ K denoting high rotational products. Products in KP and KHR should be
preferably stocked in specific SLs, denoted as SP ⊆ S and SHR ⊆ S, respectively.

The addressed problem consists in assigning a sequence of available SLs to each
k ∈ K, by satisfying the following constraints:

• each SL in S can be assigned to a unique product type in K;
• the sum of the capacities of the SLs assigned to a product type plus the extra

storage made available for it on the top level (in case of pairs of fully replenished
and physically contiguous SLs) must be greater than or equal to the storage
demand of the product type;

• the special product types in KP and KHR should be preferably assigned to SLs
in SP and SHR , respectively;

with the aim of maximizing the residual storage capacity, i.e., the one which remains
available after the assignment of the SLs.

Figure 1 depicts a storage area where three SLs are occupied by some items in
the first level (two are consecutive and one is isolated) and four SLs are available for
stocking (three are consecutive and one is isolated), depicted as full black rectangles
and as white rectangles, respectively. An example of the two level storage policy is
shown for the first two occupied SLs. The residual storage capacity, in this case, is
defined as the sum of the capacities of the 4 available SLs at the ground level, plus
the capacities exploitable on top of SLs 1 and 2, as well as on top of 2 and 3.

3 A Successive Constrained Shortest Path Method

For each product type k ∈ K, the proposed heuristic finds a constrained shortest path
on a suitable auxiliary graph, whose set of nodes describes the current availability
of SLs in the warehouse. This path specifies the SLs assigned to k and the order in
which they must be filled up, in such a way as to guarantee that the total capacity of
the assigned SLs is enough to store the qk items required by k, taking into account
the possibility of exploiting extra storage on the top of the assigned SLs. After the
assignment to k, the auxiliary graph is suitably pruned by removing the assigned
nodes and the corresponding incident arcs, to avoid that the corresponding SLs can
be assigned to product types other than k.

In the following subsections, we introduce the auxiliary graph, we present the
constrained shortest path problem to be solved for each product type andwe describe
the overall heuristic method.
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3.1 The Auxiliary Graph

In the auxiliary graph G = (N,A), the set of nodesN consists of:

• a fictitious source node �,
• a fictitious target node �,
• a set L containing one node for each currently available SL in the warehouse.

The setL is partitioned into two subsets,LI andL\LI :LI is composed of all those
nodes of L corresponding to isolated SLs in the warehouse (that is, no contiguous
SL is available for storage, like SL 4 in Fig. 1), while L \ LI is in turn partitioned
into ∪h=1,...,HFh subsets, each of them defining a group of nodes associated with
physically contiguous SLs. For example, SLs 1, 2 and 3 in Fig. 1 define one of these
groups. A generic subset Fh contains nodes of type {jh

1 , jh
2 , . . . , jh

|Fh|}, where jh
1

and jh
|Fh| respectively denote the nodes associated with the first and the last SL of

the physically contiguous groupFh (like SLs 1 and 3 in Fig. 1), while the remaining
nodes jh

m, with 1 < m < |Fh|, are associated with intermediate SLs (like SL
2 in Fig. 1). In particular, the SL associated with node jh

m is in between the SLs
associated with nodes jh

m−1 (being the previous one) and jh
m+1 (being the next one).

A capacity uj is associated with each node j ∈ L. It coincides with the capacity
of the SL the node j is associated with, if the SL is isolated or it is the first SL in a
group of physically contiguous SLs; otherwise, it coincides with its double, so as to
model the two level storage policy. Moreover, a profit δk

j is defined for each product
type k ∈ K and each node j ∈ L. This profit aims to favour the assignment of k to
the preferable subsets SP or SHR , if k ∈ KP or k ∈ KHR . Otherwise, it tends to
favour the assignment of k to SLs in S \ (SP ∪ SHR).

The set of arcs A is defined in order to model the assignment of a sequence of
SLs to each product type in K. The set A contains:

• arcs (�, j), with j ∈ LI , and arcs (�, jh
1 ), with h = 1, . . . , H , to model the

assignment of the first SL to a product type;
• arcs (j,�), with j ∈ L, to model the assignment of the last SL to a product type;
• arcs (jh

m, jh
m+1), with h = 1, . . . , H and m = 1, . . . , |Fh| − 1, to model

the assignment of the available SL jh
m+1 immediately after the available and

contiguous SL jh
m;

• arcs (jh
|Fh|, j

h′
1 ), with h, h′ = 1, . . . , H , and h �= h′, to model the assignment of

the SL jh′
1 of group Fh′ immediately after the SL jh

|Fh| of group Fh;

• arcs (jh
|Fh|, i), with h = 1, . . . , H , and i ∈ LI , to model the assignment of the

isolated SL i immediately after the SL jh
|Fh| of group Fh;

• arcs (i, jh
1 ), with i ∈ LI and h = 1, . . . , H , to model the assignment of the SL

jh
1 of group Fh immediately after the isolated SL i;

• arcs (i, j), i, j ∈ LI , and i �= j , to model the assignment of the isolated SL j

immediately after the isolated SL i.
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Fig. 2 Graph representation
of the available SLs depicted
in Fig. 1

Finally, a weight cij is associated with each arc (i, j) ∈ A, which indicates the
amount of space which becomes unavailable for future assignments due to the joint
assignment of i and j to k:

cij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uj if j �= �,

ui if j = � and ∃ h such that i = jh
1 ,

ui/2 if j = � and ∃ h such that i = jh
m, with 1 < m < |Fh|,

0 if j = � and ∃ h such that i = jh
|Fh| or i ∈ LI .

Figure 2 reports the auxiliary graph associated with the available SLs depicted in
Fig. 1. In this example, the capacity of each SL is 10 items. Thus, according to the
definition above, the capacity of nodes 1 and 4 is equal to 10, while the capacity
of nodes 2 and 3 is equal to 20 to model the two level storage policy. Nodes 1 and
4 are linked with � through an entering arc and each node is linked to � through
an exiting arc. The weight associated with each arc (�, j), j = 1, 4, is equal to
the capacity of node j , i.e., 10. The weight associated with the arcs (j,�) is 0 for
j = 3 and j = 4 (since 3 is the last SL of a group of contiguous SLs, and 4 is an
isolated SL), while it is 10 for j = 1 and j = 2 (since 1 represents the first SL and
2 an intermediate SL of a group of contiguous SLs). Finally, the weight of an arc
entering node j , with j �= �, is equal to the capacity of j .

3.2 The Constrained Shortest Path Problem

Given the current product type k ∈ K, the problem of determining a directed path
from� to� in the auxiliary graphG, which represents the sequence of SLs assigned
to k, is formulated using the following two families of variables:

• xij ∈ {0, 1}, for any (i, j) ∈ A, to model the sequence of SLs assigned to k in
terms of a directed path in G from node � to node �;

• yi ∈ Z+, for any i ∈ N, to model Miller-Tucker-Zemlin-like constraints, aimed
at avoiding subtours.
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For each i ∈ N, we also define N+(i) and N−(i) as the sets of nodes linked to
i ∈ N via an exiting and an entering arc, respectively:

N+(i) = {j ∈ N : ∃ (i, j) ∈ A} , N−(i) = {j ∈ N : ∃ (j, i) ∈ A} . (1)

The constrained shortest path problem related to k can be formulated as follows:

min
∑

(i,j)∈A
cij xij −

∑

j∈N
δk
j

∑

i∈N−(j)

xij (2)

∑

j∈N−(i)

xji −
∑

j∈N+(i)

xij =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if i = �

0 if i ∈ L
1 if i = �

∀ i ∈ N, (3)

∑

j∈N

∑

i∈N−(j)

ujxij ≥ qk, (4)

yj − yi − 1 + (1 − xij )|N| ≥ 0 ∀ (i, j) ∈ A. (5)

The objective function (2) consists of two parts: the first summation defines the
primary optimization goal to be minimized, i.e., the space no longer available in the
warehouse after storing items of type k along the nodes of the path; the second sum
is related to the secondary optimization goal, i.e., the request that special product
types should be preferably stored in specific SLs. It involves parameters δk

j which
are set in such a way that it is convenient to assign SL j to the product type k, if j is
one of the preferable SLs for k. Constraints (3) define a directed path for k, by means
of the binary variables xij , in terms of a unitary flow sent from the source node �

to the target node �, with the aim of modeling the assignment of a sequence of SLs
to k. Constraint (4) imposes that the sum of the capacities of the nodes along the
path be greater than or equal to the storage demand of the product type k. Finally,
constraints (5) are Miller-Tucker-Zemlin-like constraints, which avoid subtours in
the returned solution [8].

Figure 3 shows two feasible solutions referring to the auxiliary graph in Fig. 2,
assuming qk = 25. The solution on the left assigns to k the sequence of SLs 4, 1,
and 2, whose total capacity, given by the sum of the node capacities, is 40, enough
to stock all the items of k. The selected SLs will be filled starting from 4 (10 items),
passing then to 1 (other 10 items), and finally considering 2 (the remaining 5 items).
The space no longer available in the warehouse for future assignments, i.e., the first
sum of (2), is 50. Notice that the assignment of the SL 2 will make unavailable the
extra storage on top of 2 and 3 in the future: this is why a weight 10 is associated
with the arc (2,�). The solution on the right, instead, which is optimal, assigns the
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Fig. 3 Two feasible solutions representations

SLs 1 and 2 to k, with total capacity 30. The selected SLs will be filled starting from
1 (10 items) and then passing to 2, thus exploiting the capacity made available on
top of 1 and 2 (10 items at the ground level and the remaining 5 on top of 1 and
2). The space no longer available for future assignments is 40, better than in the
previously considered solution.

3.3 The Overall Heuristic Method

As outlined before, the idea underlying the heuristic approach is to address the
product types in cascade, each time solving the constrained shortest path problem
described in Sect. 3.2 over an auxiliary graph which is progressively pruned. The
steps of the heuristic method are summarized in Algorithm 1.

Algorithm 1: Successive constrained shortest path method

1: Sort the product types in K in a nonincreasing order with respect to the
number of items to stock. Set K = {k1, . . . , k|K|}.

2: Define L as the set of nodes corresponding to all the available SLs in the
warehouse.

3: for t = 1, . . . , |K| do
4: Solve the constrained shortest path problem related to kt on the graph

induced by L.
5: Define �t as the set of nodes corresponding to the SLs assigned to kt .
6: L := L \ �t .
7: end for
8: Unify the subproblem solutions �1, . . . ,�|K|.

At the beginning, the product types inK are sorted in a nonincreasing order with
respect to the number of items to stock. In the first iteration, the first product type
in the resulting ordered set is considered. The constrained shortest path problem
in Sect. 3.2 is solved on the graph defined in Sect. 3.1, where the set of nodes L
corresponds to all the available SLs in the warehouse. In any successive iteration,
say t , the t-th product type in the considered order is analysed and the corresponding
constrained shortest path problem is solved over a graph obtained from the initial
one by removing all the nodes corresponding to the SLs assigned till iteration t and
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their incident arcs. The complete solution is finally given by the set of the paths
which have been separately determined for all the product types in K.

4 Numerical Experiments

Two types of experiments have been performed. The first one aims at analysing the
performance of the heuristic for different values of the parameters δk

j , while in the
latter we compare the results of the heuristic here proposedwith the ones returned by
the matheuristic in [6]. The heuristic has been implemented by using the language
OPL and solved via CPLEX 12.6 (IBM ILOG, 2016). All the experiments have been
conducted on an Intel Xeon 5120 computer with 2.20 GHz and 32 GB of RAM.

4.1 The Instances

We considered the same set of real instances solved in [6], corresponding to 20
randomly selected days. The instances are divided into two classes, called ClassHA
and ClassLA, each referring to 10 days where the number of items to stock is higher
(ClassHA) or lower (ClassLA) than the average number of items to stock over the
20 selected days. Two kinds of special product types exist, i.e., perishable (P) and
high rotational (HR), which should be preferably assigned to specific SLs. More in
detail, the instances in ClassHA have to assign 1150 items of 14 different product
types on average: 1.2% are items of type P, whereas 21.2% are items of type HR.
The instances in ClassLA have to assign 787 items of 11 different product types on
average: 1.5% are items of type P, whereas 40.7% are items of type HR.

4.2 Efficacy and Efficiency of the Heuristic Approach

As specified, parameters δk
j are used to favour the assignment of specific SLs to

special product types. In particular, if product k is of type P, then its preferable SLs
are those specified in subset SP ⊂ S. In this case, δk

j > 0 if j ∈ SP , and δk
j = 0

otherwise. The same logic applies to a product k of type HR, for which δk
j are set

in such a way to favour the assignment of SLs belonging to subset SHR ⊂ S. On
the other hand, for a product k neither of type P nor HR, δk

j tend to favour the

assignment of SLs in S \ (SP ∪SHR). Three settings for positive values of δk
j have

been investigated, of form δk
j = p · uj , where p = 0.2, 0.5 and 0.8.

Table 1, for both the instances in ClassLA and ClassHA, shows the features of
the solutions our industrial partner is interested in for the different settings of δk

j .
Specifically, we report the average solving time (in seconds), the average space
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Table 1 Performance of the heuristic for ClassLA and ClassHA

ClassLA ClassHA

Solving Available Solving Available

Time space %P in %HR in Time space % P in %HR in

p (sec.) (items) SP SHR (sec.) items) SP SHR

0.8 2.92 2874 100% 75.40% 2.83 2062 96.08% 84.33%

0.5 3.32 2886 100% 75.37% 3.21 2080 84.97% 81.85%

0.2 3.73 2904 56.67% 57.57% 3.29 2096 77.12% 75.46%

available after the assignment (given by the total capacity of the empty SLs at the
ground level plus, whenever two empty SLs are contiguous, the capacity of the SL
that can be created on top of them), the percentage of items of type P assigned to
SLs in SP , and the percentage of items of type HR assigned to SLs in SHR .

As expected, by increasing p, i.e., the value of δk
j , the percentage of items of

types in P and HR assigned to their preferable SLs increases, at the expenses of
the space available after the assignment. In fact, as already observed in [6], the two
objectives are often conflicting, since forcing the assignment of items to specific
locations may be in contrast with the maximization of the total space available after
the assignment. Interestingly, the higher is value p, the lower is the average solving
time.

ClassHA was identified in [6] as the hardest group of instances to solve with the
matheuristic, mainly due to the higher number of items to stock. As opposed, the
heuristic seems to address such instances more easily. The higher number of items
to stock per product type in ClassHA requires longer paths. This implies a wide
pruning of the associated graphs at each iteration of the heuristic, and smaller and
easier constrained shortest path problems to address during the resolution process.

4.3 Comparison with a Matheuristic Approach

The SLAP here addressed has been formulated in [6] as a multicommodity flow
model, where the assignment of SLs is simultaneously addressed for all the product
types in K. Specifically, given an auxiliary graph whose set of nodes correspond to
the SLs available in the warehouse, |K| directed paths are sought along which the
quantity qk is sent for each k, by taking into account the two level storage policy.
The objective function aims at maximizing the available storage capacity after the
assignment and the number of items of types KP and KHR assigned to SP and
SHR , respectively. A two-phase matheuristic has been proposed in [6], which is
based on decomposition. In the first phase, K is partitioned into � subsets, in such
a way that each group contains about the same number of items to store. Thus, �

subproblems are generated and sequentially solved by CPLEX, each time removing
those SLs already assigned in the previous solved subproblems. Finally, the �
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Table 2 Comparison between the proposed heuristic and the matheuristic in [6]

ClassLA ClassHA

Solving Available Solving Available

time space %P in %HR in time space %P in %HR in

(sec.) (items) SP SHR (sec.) (items) SP SHR

Heuristic 2.98 2886 100% 75.37% 3.21 2080 84.97% 81.85%

Matheuristic [6] 3330 2897 83.89% 70.60% 3442 2073 85.89% 82.15%

solutions obtained are merged into a unique solution, which is provided as initial
feasible solution to the Branch and Bound algorithm of CPLEX. The matheuristic
relies on several parameters, whose impact on the performance of the resolution
process has been deeply investigated, by identifying a suitable parameter setting.

Table 2 compares the results obtained by the heuristic here proposed with the
ones achieved by the matheuristic in [6], on the set of instances described in
Sect. 4.1. For the matheuristic, the most suitable parameter setting devised in [6]
has been used. For the heuristic, we selected p = 0.5 as a good compromise
between efficiency and efficacy of results. Table 2 reports, separately for ClassLA
and CLassHA, the average solving time (in seconds), the average space available
in the warehouse after the assignment, the percentage of items of type P assigned
to their preferable SLs, and the percentage of items of type HR assigned to their
preferable storage locations.

For ClassLA, the successive constrained shortest path heuristic outperforms the
matheuristic for the preferable SLs assigned to the special product types. The
available space after the assignment is almost the same, just decreasing of a few
units on average. For ClassHA, the results are similar for both the approaches, with
the successive constrained shortest path heuristic outperforming the matheuristic
regarding the available space after the assignment. The strength of the heuristic
is the time required to obtain solutions. In fact, it is of about 3 seconds on
average, i.e., about one thousandth of the time required by the matheuristic. The
proposed heuristic thus appears to be a very promising tool to solve the addressed
SLAP problem, rapidly determining solutions which, for the majority of the tested
instances, also improve the quality of the solutions found by the matheuristic
approach.

5 Conclusions

A very fast successive constrained shortest path heuristic has been proposed to
address the assignment of items to SLs jointly with sequencing decisions about the
assigned SLs, as required in a real application context. The heuristic ouperforms
the matheuristic in [6] on real-size instances, in terms of both solving time and
solution quality. Future research will address a more general problem where storage
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allocation decisions are considered jointly with the routing of the vehicles in charge
of moving items towards the selected locations.
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