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Abstract This paper focuses on a model for supply chains, based on partial and
ordinary differential equations, that model, respectively, densities of parts on sup-
pliers and queues between consecutive arcs. An optimization approach is discussed
via a cost functional that, in consideration of a wished outflow, weights queues of
materials by variations of processing velocities for suppliers. The minimization of
the cost functional is achieved via a genetic algorithm that, as for the processing
velocities, considers mechanisms of selection, crossover and mutation. A simulation
example is discussed for the optimization procedure.
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1 Introduction

Managing supply systems is an important issue, as particular phenomena, such as
dead times and bottlenecks, represent serious matters within industrial contexts.
Various mathematical approaches are useful in this regard. Some of them are based
on Discrete Event Simulations (DES) [1], while others refer to Ordinary and/or
Partial Differential Equations (ODEs, PDEs) [2–4]. In this paper we consider a
continuous model that, based on differential equations for the dynamics of goods
on arcs and queues among them, is introduced in [5], further analyzed in [6, 7],
and solved numerically in [8]. Notice that the proposed model is different from
others based on mixed integer linear programming with possible issues about
combinatorial optimization, see for instance [9]. On the other hand, the used
numerical approach is similar to ones described, for instance, in [10–12].
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In the proposed research, once the PDE-ODE model is solved numerically by
an upwind scheme for the density of parts over suppliers, and by an explicit Euler
method for queues of goods between consecutive arcs, an optimization procedure is
described. A correct definition of the optimal performances is useful to improve the
productivity and often involves different questions. For instance, in [6], two different
optimal control problems arise: the first considers the minimization of queues in
terms of a pre-defined outflow; the second focuses on possible values of distributions
rates that minimize queues for a supply network with vertices of dispersing type. In
[13], the authors describe a procedure that, by adjusting a piecewise constant input
flow, aims to minimize queues and to approximate the wished supply chain outflow.
In particular, [6] focuses on a rich numerical investigation, based on the software
Matlab; [13], on the other hand, provides a correct analysis for an analytical optimal
solution, but only for particular cases of input flows.

In this paper, a procedure, based on a genetic algorithm (GA), allows, from one
side, to compute optimal solutions for a generic supply system that could have an
input flow of various shapes, unlike the case presented in [13]. On the other hand,
the adoption of a GA ensures a suitable theoretical basis for optimization issues,
that are considered only in terms of simulations in [6]. Finally, various analysis
of the approach proposed in this paper confirmed the results of [6] and [13], thus
showing a robust approach of resolution. Such features provide the key elements
of novelty for the following paper: the possibility of adapting classical numerical
schemes in order to simulate networks of medium/big dimensions with reduced
computational times; the definition of a robust optimization approach, based on a
GA, for a supply system modelled by ODEs and PDEs. Notice that the adoption
of GAs is only a starting point as other possible simulation schemes, based for
instance on particle swarm optimization as well as ant/bee colony dynamics, could
be proposed. Indeed, unlike other suitable optimization procedures, that are still
under investigation, GAs already present a complete analysis of various properties,
see [14–18], while applications of GAs in the context of supply systems are reported
in [19] and [20]: the former describes an integrated model for a supplier selection
model of both multi-item and multi-supplier frameworks via a two-level GA that
decides about selections of suppliers and splitting of demands; in the latter, a GA
works as a decision support system for dynamics of an integrated inventory control
in case of backlogged shortage. Here, a GA is used in a different way. Precisely, a
cost functional (see [6]), that weights the amount of queues and a wished outflow, is
minimized in terms of processing velocities of suppliers. The different iterations of
the GA allow variations of the velocities of suppliers by mechanisms of selection,
crossover and mutation.

Some numerical simulations are also discussed. In particular, a possible supply
chain with twenty arcs is considered. The queues show an evident dependence on
processing velocities and maximal capacities of suppliers. A further investigation
allows a possible optimization. Different iterations of the genetic algorithm are
considered and it is shown the queue decrease in successive steps.

The paper is structured as follows. Section 2 focuses on the ODE–PDE model
and numerical approaches. Section 3 describes a possible optimal control problem
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for the chosen model. Section 4 focuses on a test case and its optimization. The
paper ends with conclusions and future research activities in Sect. 5.

2 Model and Numerics for Supply Chains

We describe a model for supply chains, characterized by ODEs and PDEs ([5, 6]),
on the basis of a reformulated approach proposed in [2].

A supply chain has a set of vertices V = {1, . . . ,M − 1} and a set of arcs A =
{1, . . . ,M}. Each arc m ∈ A is a supplier, indicated by an interval [αm, βm]. For
each vertex, one incoming arc is connected to one outgoing arc and the various arcs
are consecutively labelled, namely arc m connects arc m + 1 with βm = αm+1. For
the first and the last arc, α1 = −∞ and βM = +∞, respectively, with suitable
boundary data.

For each supplier m ∈ A , we have: length Lm > 0; processing time Tm > 0,
and hence a processing velocity Vm := Lm/Tm; the highest processing capacity
μm > 0; the density of parts at point x and time t , represented by the continuous
function Dm (t, x) ∈ [

0,Dmax
m

]
. Finally, for each supplier m ∈ A \ {1}, at x = αm

the functionQm (t) represents a time dependent queue of goods, that travel between
consecutive arcs.

Then, for densities Dm (t, x) and queues Qm (t), the model obeys the equations:

∂Dm (t, x)

∂t
+ ∂φm (Dm (t, x))

∂x
= 0, ∀ x ∈ [αm, βm] , t > 0, (1)

Dm (0, x) = Dm,0 (x) ≥ 0, Dm (t, αm) = φm,inc (t)

Vm

, (2)

d

dt
Qm (t) = φm−1 (Dm−1 (βm−1, t)) − φm,inc (t) , m ∈ A \ {1} , (3)

Qm (0) = Qm,0 ≥ 0, (4)

where: φm (Dm (t, x)) := min {μm,VmDm(t, x)} is the flux function; Dm,0 (x) is
the initial datum (to assign); φm,inc (t) is the flux on the outgoing arc m, namely:

φm,inc (t) :=
⎧
⎨

⎩

F (t) , m = 1,
min {φm−1 (Dm−1 (βm−1, t)) , μm} , Qm (t) = 0,m ∈ A \ {1} ,

μm, Qm (t) > 0,m ∈ A \ {1} ,

(5)

whose interpretation is as follows: if m = 1 (first arc of the supply chain), φm,inc (t)

is F (t), assigned input profile on the left boundary {(α1, t) : t ∈ R}. If m ∈ A \{1},
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φm,inc (t) is dependent on the queue: ifQm (t) = 0, inflow to supplierm and outflow
from supplier m − 1 are equal; otherwise, we get the maximal inflow.

Remark 1 Notice that Dm(t, x) ≥ 0, Qm(t) ≥ 0 for every m ∈ A , t ≥ 0 and x, see
[8] for details.

Now, consider suitable numerical schemes to approximate Dm (t, x), m ∈ A ,
and Qm (t), m ∈ A \ {1}.

For an arc m ∈ A , denote by Nm and ηm, respectively, the number of grid
points for a partition of [0, Lm]×[0, T ]. Consider a fixed time mesh Δt and varying
space meshes Δxm = VmΔt . Then, the grid points are (xi, t

n)m = (iΔxm, nΔtm),
i = 0, . . . , Nm, n = 0, . . . , ηm.

The upwind scheme, useful to define the parts density of arc m, reads as:

mDn+1
i − mDn

i
mDn

i−1 − mDn
i

Δxm = ΔtVj , (6)

where mDn
i is the approximation of Dm at (xi, t

n)m, see (1), ∀ m ∈ A , i =
0, . . . , Nm, n = 0, . . . , ηm, while the Courant-Friedrich-Levy (CFL) condition is
satisfied since:

Δt = min

{
Δxm

Vm

: m ∈ A

}
. (7)

The proposed numerical approach allows advantageous computational times, as
well as properties of convergence and stability, as described carefully in [8].

If αj < −∞, the explicit Euler method, that allows to construct queues, reads
as:

Qn+1
m − Qn

m + Δt φn
m,inc = Δt φn

m−1(
mDn

Nm
), n = 0, . . . , ηm, (8)

where φn
m,inc is defined by using (5) while details for numerical corrections are in

[8]. Notice that, if αj = −∞, boundary data are used by ghost cells.

3 Optimization

Now, we consider a possible optimal control problem for the model of Sect. 2. Fix a
time horizon [0, T ] and define the cost functional:

G (V1, V2, . . . , VM) =
M∑

k=2

T∫

0

Qk (t) dt +
T∫

0

[VMDM (βM, t) − δ (t)]2 dt, (9)
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where Qk refers to (3), VMDM (βM, t) is the outflow of the supply chain with
density level lower than μM , while δ (t) ∈ L∞ ((0, T ) , [0,+∞[) is a pre-assigned
flow. The second integral of (9) represents a sort of measure between the effective
outflow of the supply chain and a reference output δ (t). Notice that the solution
of (1), Dm, is implicitly part of (9), hence the numerical solution of (1) and (3)
represents a priority for the optimization issue.

We analyze the minimization problem:

min
(V1,...,VM)

G (V1, V2, . . . , VM) , (10)

with V min
m ≤ Vm ≤ Vmax

m , m = 1, . . . ,M . Hence, the aim is the minimization of
the queues and the distance between the effective outflow and δ (t) by referring to
the velocities Vm, m = 1, . . . ,M.

A solution to problem (10) is sought via a Genetic Algorithm (GA). Such an
approach is deeply considered [14] for numerical optimization, while convergence
details are widely analyzed in [17, 18].

For a maximal number of iterations Λ, the algorithm works as follows: at the
iteration 0, generate an initial population V 0 = (

V 0
1 , V 0

2 , . . . , V 0
M

)
and compute the

value Γ0 := G
(
V 0
1 , V 0

2 , . . . , V 0
M

)
of the fitness function (9).

In general, indicating by Γk := G
(
V k
1 , V k

2 , . . . , V k
M

)
the value of (9) at the

iteration k, k ≥ 1, the steps are:

Step 1 Via selection, crossover and mutation, get V k =
(
V k
1 , V k

2 , . . . , V k
M

)
from

V k−1 =
(
V k−1
1 , V k−1

2 , . . . , V k−1
M

)
;

Step 2 compute Γk := G
(
V k
1 , V k

2 , . . . , V k
M

)
of (9);

Step 3 if Γk < Γk−1, set V k := V k and go to step 4; otherwise, come back to step
1;

Step 4 set k := k + 1 and come back to step 1 if k ≤ Λ; otherwise, stop.

Remark 2 The just described procedure uses a maximal number of iterations Λ

as stop criterion. Indeed, further optimization schemes could be addressed, also
considering different ways to stop iterations, see for instance [14, 15].

4 Simulations

For simulations, we deal with a test supply chain of twenty arcs, see Fig. 1 for a
possible structure. The number of arcs is purely indicative as the aim is to simulate
a network of medium dimensions, also considering the possibilities due to the used
numerical approaches. For the analysis of different supply networks, as well as for
computational times, see [8]. The supply chain has the following characteristics:
for arcs, Lk = Tk = 1, m = 1, . . . , 20; μ1 = 550; μ20 = 10; μm = 50 − 2m,
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Fig. 1 An example of supply chain, see [8]

m = 2, . . . , 19; Dm (0, x) = 0, m = 1, . . . , 20; Qm (0) = 0, m = 2, . . . , 20; total
simulation time T = 1800; input profile given by:

F (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t, 0 ≤ t ≤ 60,
60, 60 < t ≤ 130,

216 − 6

5
t, 130 < t ≤ 180,

0, t > 180.

(11)

As for the initial conditions, the supply chain is simulated in case of empty arcs
and queues. The processes velocities are all equal to one in order to simulate a
homogeneous starting situation when optimization criteria are used. The processing
capacities of all arcs m = 2, . . . , 20, are chosen in order to create queues among
arcs. In fact, following the model described in Sect. 2, in case of equal processing
velocities among consecutive arcs, queues occur if μm+1 > μm, m = 1, . . . , 19.
The processing capacity of the first arc is chosen so that the inflow F(t) is not cut
and totally directed to the first arc, as foreseen from the model of Sect. 2. In order to
simulate dynamics that are typical of industrial realities, functionF(t) is provided in
order to simulate an inflow of this type: strong injection (increasing profile), constant
injection, light injection (decreasing profile). Finally, the input of the system equals
zero, and phenomena on the test supply chain are only due to possible dynamics on
the last arcs.

According to the numerical schemes described in Sect. 2, we used Δt = 0.025.
Figure 2 presents various queues.The behaviour of queues is a direct consequence
of the choice of F (t), considering that conservation laws have flux functions that
could, in some cases, be constant. Richer phenomena, that deal with further profiles
for queues, are widely described in [6, 8, 13]. In the case of the presented paper,
the slopes of Qm (t), m = 17, 18, 19, are quite different due to the values of μm,
m = 1, . . . , 20.Moreover, although (11) is zero ∀ t > 180, queues dynamics is very
slow. This is confirmed by Q19 (t) that vanishes at t � 350 > 180.



A Genetic Algorithm to Optimize Dynamics of Supply Chains 113

Fig. 2 Queues Qm(t), m = 17, 18, 19; Q17(t) is the first on the left, Q18(t) the second on the
left, and so on

Table 1 Iterations, values of some velocities at various iterations and corresponding values of (9)

Iteration k
(
V k
5 , V k

6 , V k
7

)
Γi Iteration k

(
V k
5 , V k

6 , V k
7

)
Γi

1 (1.05, 1.08, 1.21) 356603 10 (1.55, 1.73, 1.54) 315021

2 (1.07, 3.11, 1.71) 350021 11 (1.61, 1.74, 1.22) 312212

3 (1.12, 2.45, 1.54) 349121 12 (1.71, 1.87, 1.17) 309989

4 (1.24, 2.31, 1.13) 348112 13 (1.61, 1.85, 1.89) 308874

5 (1.44, 2.18, 1.29) 339212 14 (1.58, 1.88, 2.17) 306721

6 (1.52, 2.14, 1.17) 334121 15 (1.59, 1.81, 2.19) 305361

7 (1.78, 1.79, 1.16) 317719 16 (1.59, 1.77, 2.21) 303218

For the optimization, we fix V min
m = 0.35, V max

m = 2.75, m = 1, . . . , 20, δ (t) =
155 and Δt = 0.05. The initial population is defined by V 0 with entries V 0

m = 1,
m = 1, . . . , 20. In this case, the fitness function (9) equals Γ0 = 356603. Fixing
Λ = 16 iterations, Table 1 reports the various values of (9) and some processing
velocities.

All queues decrease at the various iterations. Figure 3 presents Q19 (t) for the
first and the last iteration. For iteration 0, Q19 (t) has a maximum M � 580, and
vanishes at tv � 350; for the last iteration, M � 400, and vanishes at tv � 230.
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Fig. 3 Evolution of Q19(t) for iteration 0 (continuous line) and iteration 16 (dot dashed line)

5 Conclusions

This paper has described possible dynamics of supply chains modeled by PDEs and
ODEs, and solved numerically by an upwind scheme for densities and an explicit
Euler method for queues. A genetic algorithm has been described and tested to
optimize the performances of a supply system via minimization of a cost functional
that considers either queues or a pre-defined outflow. The aim of future research
issues is to study different evolutionary algorithms for the optimization.
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