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Preface

The International Conference on Optimization and Decision Science—ODS2021
(Rome, Italy, September 14–17) has been the 50th annual meeting and the first
hybrid conference organized by AIRO, the Italian Operations Research Society, and
the Department of Statistical Sciences, Sapienza University of Rome, and supported
by Springer. ODS2021 aimed at being a unique opportunity for researchers and
practitioners focused on today’s problems of knowledge, growth, sustainability, and
operational excellence from various sectors (quantitative management, engineering,
applied mathematics, statistics, computer science, economics and finance, medicine
and healthcare), private and public companies, industries, and policy makers, to
present and share ideas, experiences, and knowledge, as well as to enforce or
create a new cooperation network. Despite the difficult pandemic period, we had
more than 200 participants from more than 10 nations across Europe, Asia, and
North America, of which about half participated on-site and the rest online, and
four plenary speakers, of which one participated online and three onsite. The
conference contributions were related to the wide field of analytics, optimization,
problem-solving, and decision-making methods. However, a special focus was on
optimization in artificial intelligence and data science.

This book contains a selection of short papers submitted to ODS2021, which
have been peer reviewed by experts in operations research and related fields.

We thank the authors, for their work and dedication, all members of the Program
Committee, and auxiliary reviewers, who helped by offering their expertise and
time. We express our gratitude to the plenary speakers, Teodor G. Crainic, Matthias
Ehrgott, Pitu B. Mirchandani, and Dolores Romero Morales, for their invaluable
contributions.

Rome, Italy Lavinia Amorosi
September 2021 Paolo Dell’Olmo

Isabella Lari
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A Variational Inequality Approach to a
Class of Network Games with Local
Complementarities and Global
Congestion

Mauro Passacantando and Fabio Raciti

Abstract We investigate a class of network games with strategic complements and
congestion effects, by using the variational inequality approach. Our contribution
is twofold. We first express the boundary components of the Nash equilibrium by
means of the Katz-Bonacich centrality measure. Then, we propose a new ranking
of the network nodes based on the social welfare at equilibrium and compare this
solution-based ranking with some classical topological ranking methods.

Keywords Network games · Nash equilibrium · Network centrality measures ·
Social welfare

1 Introduction

The topic of Network Games is relatively recent and was formulated in a general
framework in the influential paper by Ballester et al. [1], where the authors proposed
to model the social and economic interactions among individuals with the help of
a graph where each individual (player) is identified with the node of a graph and
can interact only with his/her neighbors in the graph, while congestion effects are
due to all the players in the network. The solution concept considered is the Nash
equilibrium of the game and is related to the so called Katz-Bonacich centrality
measure, in the case of interior solution. Although the topic has grown at a high pace
in the last fifteen years (see, e.g., [4]), only recently some authors have proposed to
use the variational inequality approach to investigate this kind of games. In partic-
ular, in [9], the authors make an in-depth analysis of uniqueness and sensitivity of
equilibrium, with particular emphasis on its connection with the spectral properties
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2 M. Passacantando and F. Raciti

of the adjacency matrix of the graph, while in [8] a generalized Nash equilibrium
problem is proposed within the framework of variational inequalities.

In this note, we consider a game where the generic player is influenced by
his/her neighbors through a local strategic complement term and experiments a
global congestion effect. We first derive a new representation formula for the Nash
equilibrium, in the case where some of its components reach their upper bound,
which makes use of the Katz-Bonacich vector. Then, we focus on the problem of
assessing the importance of the players and propose a new centrality measure based
on the social welfare computed at the Nash equilibrium.

More specifically, the paper is structured as follows. In Sect. 2 we first introduce
the notation and the basic definitions, as well as the essential tools from variational
inequality theory needed for our investigation. We then introduce the utility
functions which describe a quadratic model with local complementarities and global
congestion. Moreover, we recall the classical Katz-Bonacich formula for the interior
solution case, where the strategy set of each player is R+. In Sect. 3, we assume that
the strategy sets are bounded also from above and derive a representation formula
for the solution in the case where some of its components lie on the boundary,
which is based on the Katz-Bonacich centrality. In Sect. 4, we propose to assess
the importance of a player by measuring the variation of the social welfare at
equilibrium when the player is removed from the network. Moreover, we compare
the ranking thus obtained with that one obtained using some classical topological
measures in the literature. A small concluding section ends the paper.

2 Network Games

2.1 Game Formulation and Variational Inequality Approach

In Network Games players are represented by the nodes of a graph (V ,E), where V
is the sets of nodes and E is the set of edges formed by pairs of nodes (v,w).
Here, we only consider undirected simple graphs. Two nodes v and w are said
to be adjacent if they are connected by an edge, i.e., if (v,w) is an edge. The
information about the adjacency of nodes can be stored in the adjacency matrix
G whose elements gij are equal to 1 if (vi , vj ) is an edge, 0 otherwise. G is thus
a symmetric and zero-diagonal matrix. Given a node v, the nodes connected to v
with an edge are called the neighbors of v, and are grouped in the set Nv(g). The
number of elements of Nv(g) is the degree of v and will be denote by degv(g). A
walk in the graph g is a finite sequence of the form vi0 , ej1 , vi1 , ej2 , . . . , ejk , vjk ,
which consists of alternating nodes and edges of the graph, such that vit−1 and vit
are end nodes of ejt . The length of a walk is the number of its edges. Let us remark
that it is allowed to visit a node or go through an edge more than once. The indirect
connections between any two nodes in the graph are described by means of the
powers of the adjacency matrix G. Indeed, it can be proved that the element g[k]ij
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of Gk gives the number of walks of length k between vi and vj . We now define
some common topological measures used to assess the importance of a node i in a
network:

• degree centrality:DCi = degi ;
• closeness centrality: CCi = 1

∑

j �=i
dij

, where dij is the shortest path length

between i and j ;

• betweennes centrality: BCi =
∑

s,t �=i

nst (i)

nst
, where nst is the number of shortest

paths between s and t and nst (i) is the number of such paths that pass through
node i.

In the sequel, the set of players will be denoted by {1, 2, . . . , n} instead of
{v1, v2, . . . , vn}. We denote with Ai ⊂ R the action space of player i, while
A = A1×· · ·×An. For each a = (a1, . . . , an) , a−i = (a1, . . . , ai−1, ai+1, . . . , an)

and the notation a = (ai, a−i ) will be used when we want to distinguish the action
of player i from the action of all the other players. Each player i is endowed with a
payoff function ui : A→ R that he/she wishes to maximize. The notation ui(a,G)
is often utilized when one wants to emphasize that the utility of player i also depends
on the actions taken by her/his neighbors in the graph.

The solution concept that we consider here is the Nash equilibrium of the game,
that is, we seek an element a∗ ∈ A such that for each i ∈ {1, . . . , n}:

ui(a
∗
i , a

∗−i ) ≥ ui(ai, a∗−i ), ∀ ai ∈ Ai. (1)

According to how variations of the actions of player’s i neighbors affect his/her
marginal utility, two classes of game can be defined. Specifically, the game has the

property of strategic complements if: ∂2ui
∂aj ∂ai

(a) > 0, ∀(i, j) : gij = 1,∀ a ∈ A,

while it has the property of strategic substitutes if: ∂
2ui

∂aj ∂ai
(a) < 0, ∀(i, j) : gij =

1,∀ a ∈ A.
For the subsequent development it is important to recall that if the ui are

continuously differentiable functions on A, and ui(·, a−i ) are concave, the Nash
equilibrium problem is equivalent to the variational inequality V I (F,A): find
a∗ ∈ A such that

F(a∗)	(a − a∗) ≥ 0, ∀ a ∈ A, (2)

where

[F(a)]	 := −
(
∂u1

∂a1
(a), . . . ,

∂un

∂an
(a)

)

(3)
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is also called the pseudo-gradient of the game. For an account of variational
inequalities the reader can refer to [6, 7]. We recall here some monotonicity
properties.

Definition 1 T : Rn → R
n is said to be monotone on A iff:

[T (x)− T (y)]	(x − y) ≥ 0, ∀ x, y ∈ A.

If the equality holds only when x = y, T is said to be strictly monotone. T is said
to be β-strongly monotone on A iff there exists β > 0 such that

[T (x)− T (y)]	(x − y) ≥ β‖x − y‖2, ∀ x, y ∈ A.

For linear operators on R
n the two concepts of strict and strong monotonicity

coincide and are equivalent to the positive definiteness of the corresponding matrix.
Conditions that ensure the unique solvability of a variational inequality problem

are given by the following theorem (see, e.g. [7]).

Theorem 1 If K ⊂ R
n is compact and convex, and T : Rn→ R

n is continuous on
K , then the variational inequality problem V I (F,K) admits at least one solution.
In the case that K is unbounded, the existence of a solution may be established if
the following coercivity condition holds, for x ∈ K and some x0 ∈ K:

lim‖x‖→+∞
[T (x)− T (x0)]	(x − x0)

‖x − x0‖ = +∞.

Furthermore, if T is strictly monotone on K the solution is unique.

2.2 The Linear-Quadratic Model with Local
Complementarities and Global Congestion

Let Ai = R+ for any i ∈ {1, . . . , n}, hence A = R
n+. The payoff of player i is given

by:

ui(a,G) = αai − 1

2
a2
i + φ

n∑

j=1

gij aiaj − γ
n∑

j=1

aiaj , α, φ, γ > 0. (4)

In this model α and φ take on the same value for all players, which then only
differ according to their position in the network. The third term describes the
interaction between neighbors and since φ > 0 this interaction falls in the class
of strategic complements. On the other term, since γ > 0 the last term falls in
the class of strategic substitutes and models the overall congestion effects in the
network. Thus, without further hypotheses, this model does not belong to any of the
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above mentioned class. The pseudo-gradient’s components of this game are easily
computed as: Fi(a) = (1+γ )ai−α−φ∑n

j=1 gij aj +γ
∑n
j=1 aj , i ∈ {1, . . . , n},

which can be written in compact form as F(a) = [(1 + γ )I − φG + γU ]a − α1,
where Uij = 1 for any i, j = 1, . . . , n and 1 = (1, . . . , 1)	 ∈ R

n. We will seek
Nash equilibrium points by solving the variational inequality:

F(a∗)	(a − a∗) ≥ 0, ∀ a ∈ R
n+. (5)

Since the constraint set is unbounded, to ensure solvability we require that F be
strongly monotone, which also guarantees the uniqueness of the solution. In the
next lemma we recall a well known result about matrices.

Lemma 1 Let T be a symmetric matrix and ρ(T ) the spectral radius of T . If
ρ(T ) < 1, then the matrix I − T is positive definite and (I − T )−1 =∑∞

k=0 T
k .

We now give an important definition for our analysis.

Definition 2 For any weight w ∈ R
n+, and φ > 0 the weighted vector of Katz-

Bonacich [2] for the networkG is given by:

bw(G, φ) =M(G,φ) = (I − φG)−1w =
∞∑

p=0

φpGpw. (6)

In the case where w = 1, the (non weighted) centrality measure of Katz-
Bonacich of node i can be interpreted as the total number of walks in the graph,
which start at node i, exponentially damped by φ. The connection between the Katz-
Bonacich vector and the Nash equilibrium is given in the following theorem.

Theorem 2 (See Theorem 1 in [1]) If φρ(G) < 1 + γ , then the unique Nash
equilibrium of the game with utility functions (4) and A = R

n+ is interior and given
by:

a∗ = α

1+ γ + γ
n∑

i=1

(

b1

(

G,
φ

1+ γ
))

i

b1

(

G,
φ

1+ γ
)

. (7)

For the subsequent developments we also need to define the social welfare:

W(a,G) =
n∑

i=1

ui(a,G). (8)
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3 A Katz-Bonacich Representation Formula

We now assume that the strategies of each player have an upper bound and derive
a Katz-Bonacich type representation of the solution, in the case where exactly k
components take on their maximum value.

Theorem 3 Let ui be defined as in (4), ai ∈ [0, Li] for any i ∈ {1, . . . , n}, and
φρ(G) < 1 + γ . Then there exists a unique Nash equilibrium a∗ of the game and
a∗i > 0 holds for any i ∈ {1, . . . , n}. Moreover, assume that exactly k components
of a∗ take on their maximum value: a∗i1 = Li1 , . . . , a∗ik = Lik , and denote with
ã∗ = (ã∗ik+1

, . . . , ã∗in) the subvector of the nonboundary components of a
∗. We then

get:

ã∗ =
(

1

1+ γ
)

bw

(

G1,
φ

1+ γ
)

−
(

γ

1+ γ
)

n∑

m=k+1

(

bw

(

G1,
φ

1+ γ
))

im

1+ γ + γ
n∑

m=k+1

(

b1n−k

(

G1,
φ

1+ γ
))

im

b1n−k

(

G1,
φ

1+ γ
)

,

(9)

where G1,G2, U1, U2 are submatrices ofG and U defined as follows:

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i1 ... ik ik+1 ... in

i1

... ∗ ∗
ik

ik+1

... G2 G1
in

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

i1 ... ik ik+1 ... in

i1

... ∗ ∗
ik

ik+1

... U2 U1
in

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

w = [α1n−k + (φG2 − γU2) L]/(1+ γ ) and L = (Li1 , . . . , Lik )	.
Proof Let us notice that the matrix γU is positive semidefinite and (1+ γ )I − φG
is positive definite by Lemma 1, hence the map F is strongly monotone on R

n and
the game has a unique Nash equilibrium a∗, which solves the variational inequality

F(a∗)	(a − a∗) ≥ 0, ∀ a ∈ K, (10)

where K = [0, L1] × . . . × [0, Ln]. Let us notice that a∗ �= 0, otherwise we have
0 ≤ −α1	a holds for any a ∈ K , that is impossible. Define the set S ⊆ {1, . . . , n}
such that a∗i > 0, ∀i ∈ S, a∗i = 0, ∀i /∈ S. We then get that a∗ solves the KKT
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system associated with V I (F ;K):

[(1+ γ )I − φG+ γU ]a∗ − α1 − λ+ μ = 0,

λia
∗
i = 0, λi ≥ 0, i = 1, . . . , n,

μ∗i (a∗i − Li) = 0, μ∗i ≥ 0, i = 1, . . . , n,

which implies:

(1+ γ )a∗i − φ
∑

j∈S
gij a

∗
i + γ

∑

j∈S
a∗i − α + μi = 0, ∀ i ∈ S, (11)

− φ
∑

j∈S
gij a

∗
i − α + γ

∑

j∈S
a∗i − λi = 0, ∀ i /∈ S. (12)

We then get: ((1 + γ )IS − φGS)a∗S = (α − γ ∑n
j=1 a

∗
j )1S − μS, and because

φρ(GS) ≤ φρ(G) < 1+ γ , we also have ((1+ γ )IS − φGS)−1 ≥ 0, hence:

0 < a∗S =
⎛

⎝α − γ
n∑

j=1

a∗j

⎞

⎠ ((1+ γ )IS − φGS)−11S − ((1+ γ )IS − φGS)−1μs

≤
⎛

⎝α − γ
n∑

j=1

a∗j

⎞

⎠ ((1+ γ )IS − φGS)−11S,

which implies α−γ ∑n
j=1 a

∗
j > 0. If there exists an index i /∈ S, then from (12) we

get the contradiction: 0 < α − γ ∑n
j=1 a

∗
j = −φ

∑
j∈S gij a∗i − λi ≤ 0. Therefore,

a∗i > 0 holds for any i ∈ {1, . . . , n}.
Let K̃ denote the face of K obtained intersecting K with the hyperplanes: ai1 =

Li1 , . . . , aik = Lik . Moreover, let ã = (aik+1, . . . , ain ), ã
∗ = (ã∗ik+1

, . . . , ã∗in ) and

define F̃ : Rn−k → R
n−k such that F̃il (ã) is obtained by fixing ai1 = Li1 , . . . , aik =

Lik in Fil (a). We consider now the restriction of (10) to K̃ , which reads:

n∑

l=k+1

F̃il (ã
∗)(ãil − ã∗il ) ≥ 0, ∀ ã ∈ K̃.

Since we are assuming that exactly k components of the solution a∗ reach their
upper bounds, it follows that ã∗ lies in the interior of K̃ , hence F̃ (ã∗) = 0, that is
equivalent to

(1+ γ )a∗il − φ
n∑

m=k+1

gil ima
∗
im
+ γ

n∑

m=k+1

a∗im = α + φ
k∑

m=1

gil imLim − γ
k∑

m=1

Lim,
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for any l = k + 1, . . . , n, which yields [(1+ γ )In−k − φG1 + γU1]ã∗ = α1n−k +
φG2L− γU2 L, which can be written as

[

In−k − φ

1+ γ G1 + γ

1+ γ U1

]

ã∗ = 1

1+ γ w,

with w = α1n−k + (φG2 − γU2)L. To derive ã∗ let us first notice that U1ã
∗ =(∑n

m=k+1 ã
∗
im

)
1n−k and the matrix (In−k − φ

1+γ G1) is not singular because
φ

1+γ ρ(G1) < 1, thus we get:

ã∗ = 1

1+ γ
[

In−k − φ

1+ γ G1

]−1

w − γ

1+ γ

(
n∑

m=k+1

ã∗im

)[

In−k − φ

1+ γ G1

]−1

1n−k,

(13)

which, from the definition of the Katz-Bonachich vector (6), yields:

(1+ γ ) ã∗ + γ
(

n∑

m=k+1

ã∗im

)

b1n−k

(

G1,
φ

1+ γ
)

= bw
(

G1,
φ

1+ γ
)

, (14)

which can be exploited to derive
∑n
m=k+1 ã

∗
im

. Indeed, summing up on the compo-
nents of both the left and right handside of (14) we get:

n∑

m=k+1

ã∗im =

n∑

m=k+1
(bw(G1,

φ
1+γ ))im

1+ γ + γ
n∑

m=k+1
(b1n−k (G1,

φ
1+γ ))im

. (15)

Inserting (15) into (13), we finally obtain (9) and the proof is completed. ��

4 A Social Welfare Centrality Measure

In this section we propose a new centrality measure of nodes (players) of a network
game based on the social welfare computed at the Nash equilibrium. Specifically,
for any node i ∈ {1, . . . , n}, we measure the importance of i as the percentage
variation of the social welfare computed at the Nash equilibrium after i is removed
from the network, that is

SWC(i) = 100 · W(NE(G)) −W(NE(G \ {i}))
W(NE(G))

, (16)
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Fig. 1 Network topology of
Example 1

1

2 3

where NE(G) is the Nash equilibrium in the network G, NE(G \ {i}) is the Nash
equilibrium in the network G where node i has been removed, and W is the social
welfare function (8). Note that SWC(i) can be negative if the total social welfare
of the network increases after removing the node i (as Example 1 below shows).
This situation can be compared to the well-known Braess paradox [3], where the
efficiency of a network improves due to the removal of a link.

Example 1 We consider the network game on the small network shown in Fig. 1
with three nodes and two links. We assume that the game parameters are α = 1,
φ = 2, γ = 3 and ai ∈ [0, 1]. Note that ρ(G) = √2 so that Theorem 3 guarantees
the existence and uniqueness of the Nash equilibrium in the original network and
the sub-networks obtained by removing one node at a time. The Nash equilibrium in
the network G is (2/17, 3/34, 3/34) and the corresponding social welfare is equal
to 7/68. When the node 1 is removed, the network becomes disconnected and the
total social welfare at equilibrium decreases to 7/100. On the other hand, when node
2 or 3 is removed, the social welfare at equilibrium increases to 7/64, hence the
social welfare centrality of nodes 2 and 3 takes on negative values. More precisely,
we have SWC = (32,−25/4,−25/4).

Example 2 We now compare the social welfare centrality with three well-known
topological centrality measures: degree, closeness and betweenness. We consider
a network game on a graph with 10 nodes, where the adjacency matrix G has
been randomly generated (see Fig. 2), and the game parameters are α = 1,
γ = 1, φ = 0.9(1 + γ )/ρ(G) and ai ∈ [0, 1] for any i = 1, . . . , 10.
Table 1 shows the ranking of nodes according to the social welfare centrality
measure and the three considered topological centrality measures. It is interesting
noting that the ranking defined by the new measure is quite different from that
provided by the other measures. Moreover, Fig. 2 gives a graphical representation
of the values associated to the network nodes for each considered centrality
measure.

5 Conclusions and Further Research Perspectives

In future work, we aim to apply our results to some specific social or economic
problems. An interesting account of these applications can be found in the survey
[4]. Also the theory of stochastic variational inequalities [5] could be used to cope
with uncertain parameters in the model.
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Fig. 2 Comparison between the social welfare centrality measure and degree, closeness and
betweenness centrality measures

Table 1 Ranking of nodes
according to the new social
welfare centrality measure
and the well known degree,
closeness and betweenness
centrality measures

Centrality measures

Rank Social Welfare Degree Closeness Betweenness

1 2 7 7 7

2 9 2 2 2

3 4 9 9 3

4 7 3 3 9

5 6 1 4 1

6 10 4 1 8

7 3 5 5 4

8 5 6 6 5

9 1 8 8 6

10 8 10 10 10
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A Two-Stage Variational Inequality
Formulation for a Game Theory Network
Model for Hospitalization in Critic
Scenarios

Patrizia Daniele and Daniele Sciacca

Abstract In this paper, we introduce the theoretical structure of a stochastic
Generalized Nash Equilibrium model describing the competition among hospitals
with first aid departments for the hospitalization in a disaster scenario. Each hospital
with a first aid department has to solve a two-stage stochastic optimization problem,
one before the declaration of the disaster scenario and one after the disaster advent,
to determine the equilibrium hospitalization flows to dispatch to the other hospitals
with first aid and/or to hospitals without emergency rooms in the network. We define
the Generalized Nash Equilibria of the model and, particularly, we consider the
Variational Equilibria which is obtained as the solution to a variational inequality
problem. Finally, we present a basic numerical example to validate the effectiveness
of the model.

Keywords Game theory · Stochastic optimization · Hospitalization dispatching ·
Variational equilibrium

1 Introduction

Critic scenarios, such as earthquakes, hurricanes, fires, pandemic advents, are
situations in which unexpected violent natural events or global events alter normal
human activities. In such situations, it is essential that institutions, governments,
humanitarian organizations have the possibility to use various tools that can help
them in the management of critical situations, to mitigate the consequences.

The unpredictability of such events dictates the need to provide these entities
with non-deterministic mathematical models that allow them to estimate, depending
on the scenario that may occur, the best strategy to be implemented to assist the
multiple phases of the disaster management.
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In the existing literature, several network-based mathematical models, both of a
deterministic and non-deterministic nature, have been developed to provide support
to the disaster management phases (see, for instance, [2, 4, 5, 9–11]).

More specifically, in [2], authors provide an optimization model consisting of a
dynamic supply chain network for personal protective equipment in the COVID-
19 pandemic scenario in which they study the associated evolutionary variational
inequality (see, for instance, [1]) in the presence of a delay function. In [4], authors
propose a stochastic optimization approach for the distribution of medical supplies
in emergency situations due to natural disasters, providing a two-stage stochastic
programming model for which they derive a two-stage variational inequality formu-
lation. In [5], authors present an evacuation model for which they derive a two-stage
stochastic programming model. Finally, in [10], is proposed a two-stage stochastic
game theory model describing the behavior of national governments in a healthcare
disaster determined by COVID-19 pandemic advent and their competition for
essential medical supplies in different phases of disaster preparedness.

The advent of a disaster scenario could cause an uncontrolled increase in requests
for hospital care. In the moments following the disaster, the injured or registered
victims are cared by the hospitals in the geographical area where the event occurred.
The sudden advent of a disaster, the possible huge number of requests for assistance,
the lack of medical personnel and the limited capacity of hospitalization cause
inevitable overcrowding of the hospital structures and delays in the management
of emergencies, as well as a large use of emergency vehicles and related costs
increase. On the other hand, not all hospitals located in the geographical area of
interest have emergency medical departments and this causes further inconvenience
in the management of hospitalization requests. These factors, together with the
total unpreparedness of hospitals, could make challenging, expensive and time-
consuming the process of responding to the disastrous event.

Disaster management consists of different phases, including the preparedness
and the response phases. In particular, when we consider an integrated preparation
and response phase, it is of fundamental importance that decision makers make
predictions on the uncertain possible disastrous scenarios that may occur and
on their associated severity, so as not to be caught unprepared once the event
occurs. These reasons led us to propose the two-stage stochastic optimization
model described below, in which the decision makers are hospitals with emergency
facilities, which seek to minimize both the total time of handling hospitalization
requests from different geographical areas and the total costs due to patient transfers
to other hospitals.

The paper is organized as follows. In Sect. 2, we develop the disaster stochastic
game theory network model for hospitalization. We describe how hospitals with
first aid departments compete to minimize their expected disutility, consisting of the
total management time of an emergency and the total transfer cost to other hospitals.
We describe the minimization problems that hospitals have to solve in the different
phases of the management of the disaster scenario and we define the Generalized
Nash Equilibrium and Variational Equilibrium of the proposed game theory model.
Section 4 is dedicated to conclusion.
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2 The Mathematical Model

The two-stage stochastic Supply Chain Network game theory model consists of
K geographic areas, with a typical one by k, M hospitals with emergency rooms,
with a generic one denoted by i and N hospitals without emergency rooms, with
a generic one denoted by j . We denote by Mi the set of hospitals with first aid
departments, except hospital i. In this model, the decision makers are hospitals
with emergency rooms. Usually, in non-critical situations, emergency calls from
a geographic location that are taken over by a hospital with an emergency room
are handled by the receiving hospital, proceeding with the reception of the patient,
anamnesis, diagnosis, possible hospitalization and subsequent discharge. In some
cases (specialized centers, lack of staff, hospital overcrowding) it is possible that
some emergency calls taken in charge by a hospital with first aid departments
are subsequently routed to other hospitals with or without first aid departments.
If, on the other hand, an emergency situation arises (outbreak of a pandemic,
environmental disaster, etc.), it is highly likely that there will be a greater exchange
among hospitals (for example, during the Covid-19 pandemic, due to the high
number of patients in intensive care in Bolzano, Northen Italy, transfers were made
to hospitals in Palermo, South Italy).

In this model, we want to provide a two-stage stochastic model, where in the
pre-crisis phase, hospitals with emergency rooms consider several scenarios with
different probabilities, so they are not surprised by a subsequent critical phase,
trying to minimize the weighted sum between the management of emergency calls
and the hospital dispatching times and the transport costs due to the transfers to
other hospitals.

The three-tier network that describes the problem is represented in Figs. 1 and 2
which contain, respectively, the network topology for each hospital i and the entire

Fig. 1 Network topology for hospital i
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Fig. 2 Network topology

network topology. The variables and the parameters of the model are reported in
Tables 1 and 2.

Facing a disaster scenario, the main goal of hospitals with first aid departments is
to guarantee the treatment to patients who need medical devices and/or medical care,
taking into account that requests for hospital care are all met as closely as possible.
However, it is very difficult and time-consuming to ensure a complete management
of the huge demand for hospital care, since the disaster scenario we are considering
is global in nature.

Each hospital aims at minimizing its expected disutility which consists of the
weighted sum between the expected dispatching time caused by the overcrowding
of hospitals and the subsequent transportation costs of patients to other hospitals.
The actions that the hospital takes in the first stage, before the disaster scenario, and
the associated costs, are deterministic. However, the actions that hospitals take in
phase 2, as soon as the disaster has occurred, depends on the possible scenario and
the realization of probabilistic parameters.

We denote by:

• t1ki the transport time of an emergency patient from a geographic area k, k =
1, . . . ,K , to hospital i, i = 1, . . . ,M , in stage 1 and let us assume that t1ki is a
function of the amount of emergency calls q1

ki , namely:

t1ki := t1ki(q1
ki), ∀k = 1, . . . ,K, ∀i = 1, . . . ,M; (1)
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Table 1 Variables for the model

Notation Variables

q1
ki The amount of emergency calls from the geographic area k, k = 1, . . . , K ,

handled by hospital i, i = 1, . . . ,M , in stage 1. We group these quantities for all k
into the vector q1

i ∈ R
K+ and, in turn, we group these vectors into the vector

q1 = (q1
i )i=1,...,M ∈ R

MK+
q̂1
i The amount of emergencies handled by hospital i, i = 1, . . . ,M , dispatched by

hospital with first aid departments belonging to Mi set in stage 1. We group these
quantities into the vector q̂1 ∈ R

M+
q̃1
il The amount of emergencies handled by hospital i, i = 1, . . . ,M , and

subsequently dispatched to hospital l �= i in stage 1. We group these quantities for
all l �= i into the vector q̂1

i ∈ R
M−1+ and, in turn, we group these quantities into the

vector q̃1 ∈ R
M(M−1)
+

q̄1
ij The amount of emergencies handled by hospital i, i = 1, . . . ,M , dispatched to

hospital j , j = 1, . . . , N , in stage 1. We group these quantities for all j into the
vector q̄1

i ∈ R
N+ and, in turn, we group these quantities for all i into the vector

q̄1 ∈ R
MN+

q2ω
ki The amount of emergency calls from the geographic area k, k = 1, . . . , K ,

handled by hospital i, i = 1, . . . ,M , in stage 2 when scenario ω occurs. We group
these quantities for all k into the vector q2ω

i ∈ R
K+ and, in turn, we group these

vectors into the vector q2ω = (q2ω
i )i=1,...,M ∈ R

MK+ . Finally, we group these

vectors for all scenarios ω ∈ Ω into the vector q2 ∈ R
|Ω|MK
+

q̂2ω
i The amount of emergencies handled by hospital i, i = 1, . . . ,M , arrived by

hospital with first aid departments belonging to Mi set in stage 2 when scenario
ω ∈ Ω occurs. We group these quantities for all hospital into the vector in
q̂2ω ∈ R

M+ and, inturn, we group these quantities for all scenarios ω ∈ Ω into the

vector q̂2 ∈ R
M|Ω|
+

q̃2ω
il The amount of emergencies handled by hospital i, i = 1, . . . , N , and subsequently

dispatched to hospital l �= i in stage 2 when scenario ω occurs. We group these
quantities for all l �= i into the vector q̃2ω

i ∈ R
M−1+ and, in turn, we group these

quantities into the vector q̃2ω ∈ R
M(M−1)
+ . Finally, we group these vectors for all

scenarios ω ∈ Ω into the vector q̃2 ∈ R
|Ω|M(M−1)
+

q̄2ω
ij The amount of emergency calls from k handled by hospital i dispatched to hospital

j , j = 1, . . . , N , in stage 2. We group these quantities for all j into the vector
q̄2ω
i ∈ R

N+ and, in turn, we group these quantities for all i into the vector
q̄2ω ∈ R

MN+ . Finally, we group these vectors for all scenarios ω ∈ Ω into the

vector q̄2 ∈ R
|Ω|MN
+

q The vector q = (Q1,Q2) ∈ R
MK+M+M(M−1)+MN+|Ω|(MK+M+M(M−1)+MN)
+ ,

where Q1 = (q1, q̂1, q̃1, q̄1) and Q2 = (q2, q̂2, q̃2, q̄2)

• t1i the management time of an emergency patient arrived at hospital i, i =
1, . . . ,M , in stage 1 and let us assume that t1i is a function of

K∑

k=1

q1
ki and q̂1

i ,
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Table 2 Parameters for the
model

Notation Parameters

ω ∈ Ω The disaster scenario

pω The probability of disaster scenario ω in
stage 2, ω ∈ Ω

αi The weight in [0, 1]
C1
i The capacity of hospital i, i = 1, . . . ,M ,

in stage 1

C2ω
i The capacity of hospital i, i = 1, . . . ,M ,

in stage 2 under scenario ω, ∀ω ∈ Ω
Q̃1
j The maximum capacity of hospital j ,

j = 1, . . . , N , in stage 1

Q̃2ω
j The maximum capacity of hospital j ,

j = 1, . . . , N , in stage 2 under scenario ω,
∀ω ∈ Ω

βi The unit penalty encumbed by hospital i,
i = 1, . . . , N , on the unmet demand

d2ω
i The total demand for hospital i,

i = 1, . . . , N , when scenario ω occurs in
stage 2, ∀ω ∈ Ω

namely:

t1i := t1i
(
K∑

k=1

q1
ki, q̂

1
i

)

= t1i
(
q1
i , q̂

1
i

)
. (2)

This assumption suggests that the management time of an emergency call in
the hospital i depends on the total flow of requests from each demand market and
the total flow of requests transferred from hospitals belonging to Mi , to hospital
i;

• t̃1il , l �= i, the transfer time of an emergency from hospital i, i = 1, . . . ,M to
hospital l = 1, . . . ,M , l �= i, in stage 1 and let us assume that t̃1il is a function of
q̃1, namely

t̃1il := t̃1il (q̃); (3)

• t̄1ij the transfer time of an emergency from hospital i, i = 1, . . . ,M , to hospital

j , j = 1, . . . , N , in stage 1 and let us assume that t̄1ij is a function of q̄1, namely

t̄1ij := t̄1ij (q̄1) (4)

• c̃1
il the transfer cost of an emergency from hospital i, i = 1, . . . ,M , to hospital
l = 1, . . . ,M , l �= i, in stage 1 and let us assume that c̃1

il is a function of q̃1
il ,
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namely

c̃1
il := c̃1

il (q̃
1
il); (5)

• c̄1
ij the transfer cost of an emergency from hospital i, i = 1, . . . ,M , to hospital

j , j = 1, . . . , N , in stage 1 and let us assume that c̄1
ij is a function of q̄1

ij , namely

c̄1
ij := c̄1

ij (q̄
1
ij ); (6)

Similarly, we define time and cost functions in stage 2, observing that these
functions will depend on the variables of the second stage, and, therefore, will be
affected by the uncertainty due to the scenario ω ∈ Ω .

Each hospital is faced with the following two-stage stochastic optimization
model in which, as previously mentioned, it seeks to minimize the weighted
sum between total expected dispatching time and the total expected costs (cf.
Tables 1 and 2 for a detailed explanation of the role of each variable and
parameter):

Min

⎧
⎪⎨

⎪⎩

K∑

k=1

t1ki (q
1
ki)+ t1i

(
q1
i , q̂

1
i

)
+

∑

l=1,...,M,
l �=i

t̃1il (q̃
1)+

N∑

j=1

t̄1ij (q̄
1)

+αi

⎛

⎜
⎝

∑

l=1,...,M,
l �=i

c̃1
il (q̃

1
il)+

N∑

j=1

c̄1
ij (q̄

1
ij )

⎞

⎟
⎠+ EΩ [T 2

i (Q
2, ω)]

⎫
⎪⎬

⎪⎭

(7)

subject to:

∑

l=1,...,M,
l �=i

q̃1
il +

N∑

j=1

q̄1
ij ≤

K∑

k=1

q1
ki + q̂1

i , (8)

K∑

k=1

q1
ki + q̂1

i ≤ C1
i , (9)

M∑

i=1

q̄1
ij ≤ Q1

j , ∀j = 1, . . . , N, (10)

q1
ki, q̂

1
i , q̃

1
il , q̄

1
ij ≥ 0, ∀k = 1, . . . ,K; ∀l = 1, . . . ,M, l �= i; ∀j = 1, . . . , N.

(11)



20 P. Daniele and D. Sciacca

Constraint (8) ensures that the sum of emergencies dispatched by i to all hospitals
l plus the sum of emergencies dispatched by i to all hospitals j is not grater than the
number of emergencies reaching i from all geographical areas.

Constraint (9) ensures that the sum of emergency calls from all geographical
areas plus the transferred emergencies from all others hospitals to hospital i is not
greater than the maximum capacity of hospital i.

Constraints (10) are shared constraints and ensure that the sum of transferred
emergencies from all hospitals i, i = 1, . . . ,M to a hospital with no first aid
department is not greater than the maximum capacity of the latter.

Constraints (11) are non-negative constraints.
The last term of objective function (7) represents the expected value of the loss

to hospital i in stage 2. This loss depends also on the unmet demand from all
geographical areas, that is

d2ω
i −

K∑

k=1

q1
ki − q̂1

i −
K∑

k=1

q2ω
ki − q̂2ω

i .

We have:

EΩ [T 2
i (Q

2, ω)] =
∑

ω∈Ω
pω[T 2

i (Q
2, ω)],

where the loss for hospital i in stage 2 is the solution to the following second stage
minimization problem:

Minimize T 2
i (Q

2, ω) =
K∑

k=1

t1ki(q
2ω
ki )

+ t2ωi
(
q2ω
i , q̂

2ω
i

)
+

∑

l=1,...,M,
l �=i

t̃1il (q̃
2ω)+

N∑

j=1

t̄2ωij (q̄
2ω)

+ αi

⎛

⎜
⎝

∑

l=1,...,M,
l �=i

c̃1
il (q̃

2ω
il )+

N∑

j=1

c̄2ω
ij (q̄

2ω
ij )

⎞

⎟
⎠

+ βi
[

d2ω
i −

K∑

k=1

q1
ki − q̂1

i −
K∑

k=1

q2ω
ki − q̂2ω

i

]

(12)
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subject to the following constraints:

∑

l=1,...,M,
l �=i

q̃2ω
il +

N∑

j=1

q̄2ω
ij ≤

K∑

k=1

q2ω
ki + q̂2ω

i , ∀ω ∈ Ω (13)

K∑

k=1

q2ω
ki + q̂2ω

i ≤ C2ω
i , ∀ω ∈ Ω, (14)

M∑

i=1

q̄2ω
ij ≤ Q2ω

j , ∀j = 1, . . . , N, ∀ω ∈ Ω, (15)

q2ω
ki , q̂

2ω
i , q̃

2ω
il , q̄

2ω
ij ≥ 0,∀k = 1, . . . ,K; ∀l = 1, . . . ,M, l �= i;

∀j = 1, . . . , N; ∀ω ∈ Ω.
(16)

In stage 2, when the severity of a disaster is declared, each hospital i carries out
restorative actions, to complete its first stage. Therefore, each hospital i seeks to
minimize the total dispatching time and the total transport costs and the damage due
to the unmet demand. The disaster could cause a shortage of staff, a greater demand
for medical care and, therefore, a consequent decrease in the number of places
available at each hospital, both with and without emergency rooms. Therefore,
similarly to stage 1, in the second stage constraints (13)–(16) must be satisfied.

Following [10] and the standard stochastic optimization theory, the two opti-
mization problems of stage 1 and stage 2 can be solved as a unique minimization
problem, namely (cf. Tables 1 and 2 for a detailed explanation of the role of each
variable and parameter):

Min

⎧
⎪⎪⎨

⎪⎪⎩

K∑

k=1

t1ki(q
1
ki )+ t1i

(
q1
i , q̂

1
i

)
+

∑

l=1,...,M,
l �=i

t̃1il (q̃
1)+

N∑

j=1

t̄1ij (q̄
1)

+αi

⎛

⎜
⎜
⎝

∑

l=1,...,M,
l �=i

c̃1il (q̃
1
il )+

N∑

j=1

c̄1ij (q̄
1
ij )

⎞

⎟
⎟
⎠+

∑

ω∈Ω
pω

⎡

⎣
K∑

k=1

t1ki(q
2ω
ki )+ t2ωi

(
q2ω
i , q̂

2ω
i

)

+
∑

l=1,...,M,
l �=i

t̃1il (q̃
2ω)+

N∑

j=1

t̄2ωij (q̄
2ω)+ αi

⎛

⎜
⎜
⎝

∑

l=1,...,M,
l �=i

c̃1il (q̃
2ω
il )+

N∑

j=1

c̄2ωij (q̄
2ω
ij )

⎞

⎟
⎟
⎠

+βi
⎛

⎝d2ω
i −

K∑

k=1

q1
ki − q̂1

i −
K∑

k=1

q2ω
ki − q̂2ω

i

⎞

⎠

⎤

⎦

⎫
⎬

⎭

(17)

subject to constraints (8)–(11) and (13)–(16).
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We define the feasible set of hospital i as follows:

Ki =
{

q ∈ R
MK+M+M(M−1)+MN+|Ω|(MK+M+M(M−1)+MN)
+ such that:

(8), (9), (11), (13), (14), (16) hold

}

,

(18)

and K 1 = ∏M
i=1 Ki . Moreover, let S be the set of shared constraints, namely

S = {q : (10) and (15) hold}. Finally, we define the feasible set K 2 =K 1 ∩S .
The objective function (17) represents the expected disutility of hospital i.
We assume that, for each hospital i, the time and cost functions are convex and

continuously differentiable. We have the following definition.

Definition 1 (Generalized Nash Equilibrium) A strategy profile q∗ ∈ K 2 is a
Stochastic Generalized Nash Equilibrium if, for each hospital i, i = 1, . . . ,M:

E(DUi(q
1∗
i , q̂

1∗
i , q̃

1∗
i , q̄

1∗
i , q

2∗
i , q̂

2∗
i , q̃

2∗
i , q̄

2∗
i , q

1∗−i , q̂1∗−i , q̃1∗−i , q̄1∗−i , q2∗−i , q̂2∗−i , q̃2∗−i , q̄2∗−i ))

≤ E(DUi(q1
i , q̂

1
i , q̃

1
i , q̄

1, q2
i , q̂

2
i , q̃

2
i , q̄

2
i , q

1∗−i , q̂1∗−i , q̃1∗−i , q̄1∗−i , q2∗−i , q̂2∗−i , q̃2∗−i , q̄2∗−i )),

∀(q1
i , q̂

1
i , q̃

1
i , q̄

1
i , q

2
i , q̂

2
i , q̃

2
i , q̄

2
i ) ∈ Ki ∩S , (19)

where

q1∗−i = (q1∗
1 , . . . , q

1∗
i−1, q

1∗
i+1, . . . , q

1∗
M ), q2∗−i = (q2∗

1 , . . . , q
2∗
i−1, q

2∗
i+1, . . . , q

2∗
M ),

q̂1∗−i = (q̂1∗
1 , . . . , q̂

1∗
i−1, q̂

1∗
i+1, . . . , q̂

1∗
M ), q̂2∗−i = (q̂2∗

1 , . . . , q̂
2∗
i−1, q̂

2∗
i+1, . . . , q̂

2∗
M ),

q̃1∗−i = (q̃1∗
1 , . . . , q̃

1∗
i−1, q̃

1∗
i+1, . . . , q̃

1∗
M ), q̃2∗−i = (q̃2∗

1 , . . . , q̃
2∗
i−1, q̃

2∗
i+1, . . . , q̃

2∗
M ),

q̄1∗−i = (q̄1∗
1 , . . . , q̄

1∗
i−1, q̄

1∗
i+1, . . . , q̄

1∗
M ), q̄2∗−i = (q̄2∗

1 , . . . , q̄
2∗
i−1, q̄

2∗
i+1, . . . , q̄

2∗
M ).

Each hospital seeks to minimize its expected disutility, that depends not only on its
own decisions, but also on the strategies of the other players. According to the above
definition, hospitals will be in a state of equilibrium if no player can unilaterally
change his strategy without obtaining a greater disutility. Moreover, the presence of
shared constraints provides an interconnection among feasible sets of players.

This formulation provides a model based on a Generalized Nash Equilibrium
(see, for instance, [3]). In general, Generalized Nash Equilibrium problems can be
formulated through quasi-variational inequality problems (see [6]). However, a class
of Generalized Nash Equilibria, the Variational Equilibria, can be formulated as a
variational inequality problem (see, for instance, [8] and [11]). As in [10], we will
deal with the variational equilibrium of the model.
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Definition 2 (Variational Equilibrium) A strategy vector q∗ ∈ K 2 is a Varia-
tional Equilibrium of the above Stochastic Generalized Nash Equilibrium problem
if q∗ ∈ K 2 is a solution to the variational inequality:

N∑

k=1

M∑

i=1

⎡

⎣
∂t1ki(q

1∗
ki )

∂q1
ki

+
∂t1
i

(
q1∗
i
, q̂1∗
i

)

∂q1
ki

− βi
⎤

⎦× (q1
ki − q1∗

ki )

+
M∑

i=1

⎡

⎣
∂t1i

(
q1∗
i , q̂

1∗
i

)

∂q̂1
i

− βi
⎤

⎦× (q̂1
i − q̂1∗

i )

+
M∑

i=1

∑

l=1,...,M,
l �=i

[
∂t̃1
il
(q̃1∗)
∂q̃1
il

+ αi
∂c̃1
il
(q̃1∗
il
)

∂q̃1
il

]

× (q̃1
il − q̃1∗

il )

+
M∑

i=1

N∑

j=1

[
∂t̄1
ij
(q̄1∗)
∂q̄1
ij

+ αi
∂c̄1
ij
(q̄1∗
ij
)

∂q̄1
ij

]

× (q̄1
ij − q̄1∗

ij )

+
∑

ω∈Ω
pω

N∑

k=1

M∑

i=1

⎡

⎣
∂t2ω
ki
(q2ω∗
ki
)

∂q2ω
ki

+
∂t2ω
i

(
q2ω∗
i
, q̂2ω∗
i

)

∂q2ω
ki

− βi
⎤

⎦× (q2ω
ki − q2ω∗

ki )

+
∑

ω∈Ω
pω

N∑

i=1

⎡

⎣
∂t2ω
i

(
q2ω∗
i
, q̂2ω∗
i

)

∂q̂2ω
i

− βi
⎤

⎦× (q̂2ω
i − q̂2ω∗

i )

+
∑

ω∈Ω
pω

M∑

i=1

∑

l=1,...,M,
l �=i

[
∂t̃2ω
il
(q̃2∗)

∂q̃2ω
il

+ αi
∂c̃2ω
il
(q̃2ω∗
il
)

∂q̃2ω
il

]

× (q̃2ω
il − q̃2ω∗

il )

+
∑

ω∈Ω
pω

M∑

i=1

N∑

j=1

[
∂t̄2ωij (q̄

2∗)
∂q̄2ω
ij

+ αi
∂c̄2ωij (q̄

2ω∗
ij )

∂q̄2ω
ij

]

× (q̄2ω
ij − q̄2ω∗

ij ) ≥ 0 ∀q ∈ K 2.

(20)

The advantage of detecting a variational equilibrium consists in using the well-
known variational inequality theory, for which theorems of existence and unique-
ness of the solution are stated (see [7]).

3 An Illustrative Numerical Example

In this section, we solve an illustrative numerical example to validate the effective-
ness of the model. We consider g = 2 geographical areas, h = 2 hospitals with
first aid departments, s = 3 hospitals without first aid departments and |Ω | = 2
scenarios. In the first scenario ω1 = 1, we suppose that the consequences of the
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advent of the disaster scenario are severe while in the second scenario ω2 = 2 we
assume that the consequences are not severe. Consequently, in the first scenario the
requests for hospitalization are more than in the second one.

For the computation of the optimal solution we have applied the modified
projection method described in [10]. The calculations were performed using the
MATLAB program. The algorithm was implemented on a laptop with 1.8 GHz Intel
Core i5 dual-core and 8 GB RAM, 1600 MHz DDR3. For the convergence of the
method a tolerance of ε = 10−4 was fixed. The method has been implemented with
a constant step α = 0.1.

The numerical data and the size of the problem are constructed for easy
interpretation purposes. We have the following data:

pω1 = 0.8, pω2 = 1− pω1 = 0.2, β1 = β2 = 20,

Γ 1
1 = 25, Γ 1

2 = 35, Γ
2ω1

1 = 45, Γ 2ω1
2 = 60, Γ

2ω2
1 = 30, Γ 2ω2

2 = 53,

C̃1
1 = 10, C̃1

2 = 15, C̃1
3 = 25, C̃

2ω1
1 = 18, C̃2ω1

2 = 20, C̃2ω1
3 = 30,

C̃
2ω2
1 = 15, C̃2ω2

2 = 18, C̃2ω2
3 = 25,

d
2ω1
1 = d2ω1

2 = 80, d
2ω2
1 = d2ω2

2 = 50.

The equilibrium solution is shown in Table 3.
The computational time needed to calculate the equilibrium solution is 50

seconds. As shown in Table 3, in phase 1, where cost and time functions and
demands are deterministic, there is not a huge transfer between hospitals with
first aid departments and between hospitals with and without first aid departments.

Table 3 Equilibrium solution

Stage 1 Stage 2: scenario ω1 Stage 2: scenario ω2

Solution Value Solution Value Solution Value

q1∗
11 20.6 q

2ω1∗
11 46.3 q

2ω2∗
11 24.3

q1∗
12 3.8 q

2ω1∗
12 46.3 q

2ω2∗
12 21.8

q1∗
21 9.3 q

2ω1∗
21 53.6 q

2ω2∗
21 35.7

q1∗
22 26.1 q

2ω1∗
22 53.6 q

2ω2∗
22 33.2

q̂1∗
1 0.5 q̂

2ω1∗
1 47.6 q̂

2ω2∗
1 16.1

q̂1∗
2 0.5 q̂

2ω1∗
2 47.3 q̂

2ω2∗
2 15.9

q̃1∗
12 4.6 q̃

2ω1∗
12 18.5 q̃

2ω2∗
12 11.9

q̃1∗
21 7.1 q̃

2ω1∗
21 22.7 q̃

2ω2∗
21 20.2

q̄1∗
11 3.9 q̄

2ω1∗
11 7.2 q̄

2ω2∗
11 5.2

q̄1∗
12 3.4 q̄

2ω1∗
12 8.2 q̄

2ω2∗
12 6.2

q̄1∗
13 3.8 q̄

2ω1∗
13 11.1 q̄

2ω2∗
13 6.6

q̄1∗
21 3.9 q̄

2ω1∗
21 10.8 q̄

2ω2∗
21 9.7

q̄1∗
22 3.5 q̄

2ω1∗
22 11.8 q̄

2ω2∗
22 11.8

q̄1∗
23 3.3 q̄

2ω1∗
23 14.6 q̄

2ω2∗
23 11.1
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When a disaster scenario occurs in stage 2, there is an increase in requests for
hospitalization and a consequent increase in transfers between hospital structures.
Particularly, under scenario ω1, the severity of which is higher, hospital 1 fails to
satisfy the total demand, having an unmet demand equal to 174.

4 Conclusion

In this paper, we presented a stochastic Generalized Nash Equilibrium model to
describe the competition among hospitals with first aid departments for hospital-
ization in response to the advent of a disaster scenario. We obtained a two-stage
stochastic optimization problem and the presence of shared constraints for all
hospitals with first aid departments led us to consider a Generalized Nash Equilib-
rium problem for which we derived the Variational Equilibrium and the associated
variational inequality problem. The results in this paper add to the growing literature
of game theory and and two-stage stochastic models in disaster management. This
theoretical model can be applied to any disastrous event that involves a sudden
and nondeterministic increase in hospitalization, such as the recent and still current
COVID-19 pandemic.
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On Nested Affine Variational
Inequalities: The Case of Multi-Portfolio
Selection

Lorenzo Lampariello, Gianluca Priori, and Simone Sagratella

Abstract We deal with nested affine variational inequalities, i.e., hierarchical
problems involving an affine (upper-level) variational inequality whose feasible
set is the solution set of another affine (lower-level) variational inequality. We
apply this modeling tool to the multi-portfolio selection problem, where the lower-
level variational inequality models the Nash equilibrium problem made up by the
different accounts, while the upper-level variational inequality is instrumental to
perform a selection over this equilibrium set. We propose a projected averaging
Tikhonov-like algorithm for the solution of this problem, which only requires the
monotonicity of the variational inequalities for both the upper- and the lower-level
in order to converge. Finally, we provide complexity properties.

Keywords Multi-portfolio selection · Nested variational inequality · Purely
hierarchical problem · Tikhonov method · Complexity analysis

1 Introduction: Context and Motivation for the Nested
Affine Variational Inequalities Model

Nested affine variational inequalities represent a flexible modeling tool for many
real-world applications like, e.g., the renowned multi-portfolio selection (see, e.g.
[5]). To introduce the general formulation of the model, we first briefly describe the
specific instance of the multi-portfolio optimization problem.

Consider N accounts, with ν = 1, . . . , N . Each account ν’s budget bν ∈ R+ is
invested inK assets of a market. The decision variables yν ∈ Yν ⊆ RK stand for the
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fractions of bν invested in each asset, where Yν is a nonempty compact polyhedron
containing the feasible portfolios, e.g., the standard simplex. Let r ∈ R

K indicate
random variables, where rk is the return on asset k ∈ {1, . . . ,K} over a single-period
investment. We defineμν = E

ν(r) ∈ R
K as expectations of the assets’ returns for ν,

as well as the positive semidefinite covariance matrix�ν = E
ν((r−μν)(r−μν)	).

We consider the following measures for portfolio income Iν and risk Rν , where we
use the portfolio variance as the risk measure: Iν(yν) � bν(μν)	yν , Rν(yν) �
1
2 (b

ν)2(yν)	�νyν .
When trades from multiple accounts are pooled for common execution, individ-

ual accounts can suffer the market impact that stems from a lack of liquidity. To
take account of this transaction cost effect, we introduce a positive semidefinite
market impact matrix �ν ∈ R

K×K whose entry at position (i, j) is the impact of
the liquidity of asset i on the liquidity of asset j . For each account ν we consider a
linear market impact unitary cost function. The total transaction costs term for ν is:

T Cν(y
1, . . . , yN) � bν(yν)	

︸ ︷︷ ︸
Invested capital

�ν
N∑

λ=1

bλyλ

︸ ︷︷ ︸
Unitary transaction costs

.

The multi-portfolio problem can be formulated as the following Affine Variational
Inequality AVI(M low, d low, Y ): find y ∈ Y � Y1 × · · · × YN such that

(
M lowy + d low

)	
(w − y) ≥ 0 ∀w ∈ Y, (1)

where d low � −bνμν and

M low �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(b1)2[ρ1�1 +�1 +�1	] b1b2�1 · · · b1bN�1

b2b1�2 (b2)2[ρ2�2 +�2 +�2	] b2bN�2

.

.

.
. . .

bNb1�N bNb2�N (bN)2[ρN�N +�N +�N	]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

We assume the matrix M low to be positive semidefinite and, in turn, AVI(M low,

d low, Y ) to be monotone: these properties can be guaranteed under mild assump-
tions, see [5, Theorem 3.3]. We denote by SOL(M low, d low, Y ) the solution set
of AVI(M low, d low, Y ), which is a polyhedron (see [5, Theorem 2.4.13]). Note
that AVI(M low, d low, Y ) corresponds to an equivalent Nash Equilibrium Problem
(NEP), where the players’ objective functions are convex and quadratic. Since
the set SOL(M low, d low, Y ) is not necessarily a singleton in the framework we
consider, one has to discriminate among the solutions of AVI(M low, d low, Y )

according to some further upper level criterion. Thus, to model the resulting
selection problem, we introduce the monotone nested affine variational inequal-
ity AVI

(
Mup, dup,SOL(M low, d low, Y )

)
, that is the problem of calculating y ∈
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SOL(M low, d low, Y ) that solves

(
Mupy + dup)	 (w − y) ≥ 0, ∀w ∈ SOL(M low, d low, Y ), (2)

where R
NK×NK � Mup � 0 and dup ∈ R

NK . Problem (2), which has
a hierarchical structure, includes as a special instance the minimization of the
convex quadratic objective function 1

2y
	Mupy + dup	y, where Mup is symmet-

ric, over SOL(M low, d low, Y ). It is also worth mentioning the special instance
where the N accounts form an upper-level (jointly convex) NEP to select over
SOL(M low, d low, Y ); in this case, Mup turns out to be nonsymmetric. We refer the
reader to [1] for further information about NEPs.

Remark Convergent solution procedures have been devised in the literature
(see, e.g., [3, 4]) to address monotone nested AVIs when Mup is positive
semidefinte plus, i.e. Mup is positive semidefinite and y	Mupy = 0 ⇒
Mupy = 0 (see, [2, Ex. 2.9.24]). Requiring Mup to be positive semidefinite
plus is restrictive: for example, taking NK = 2, any matrix

Mup =
(
m1 2

√
m1m2 +m3

−m3 m2

)

with m1, m2 nonnegative scalars and m3 �= −√m1m2, is positive semidefi-
nite but not positive semidefinite plus. Actually, the class of semidefinite plus
matrices is “slightly” larger than the ones of symmetric positive semidefinite
and positive definite matrices.

Recently, a projected averaging Tikhonov-like algorithm has been pro-
posed in [6] to cope with monotone nested VIs allowing for matrices Mup

that are not required to be positive semidefinite plus.

We present a solution method for problem (2). We apply the results presented
in [6] to the specific instance of monotone nested affine variational inequalities,
taking full advantage of some strong properties AVIs enjoy, such as error bound
results. This allows us to put forward an algorithm to address problems like the
multi-portfolio selection in a more general framework with respect to the literature,
where the upper level operator is invariably assumed to be monotone plus (see,
e.g., [5]).
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2 The Tikhonov Approach

We require the following mild conditions to hold:

(A1) Mup is positive semidefinite;
(A2) M low is positive semidefinite;
(A3) Y is nonempty and compact.

The set SOL(M low, d low, Y ) is nonempty, convex, compact and not necessarily
single-valued, due to (A2) and (A3), see e.g. [2, Section 2.3]. It follows that
the feasible set of the nested affine variational inequality (2) is not a singleton.
Moreover, thanks to (A1), the solution set of (2) can include multiple points.

Let us introduce the Tikhonov operator:

�τ (y) �
(
M lowy + d low

)
+ 1

τ

(
Mupy + dup) .

For any τ > 0, by assumptions (A1) and (A2),�τ is monotone and affine.
The following finite quantities will be useful in the forthcoming analysis:

H � max
y∈Y ‖M

upy + dup‖2, R � max
y∈Y ‖M

lowy + d low‖2, D � max
v,y∈Y ‖v − y‖2.

We propose a Linear version of the Projected Averaging Tikhonov Algorithm (L-
PATA) to compute solutions of (2).

Algorithm 1: Linear version of the Projected Averaging Tikhonov Algo-
rithm (L-PATA)

Data: w1 = z1 = y1 ∈ Y , i ← 1, l← 0;

for k = 1, 2, . . . do
(S.1) εk = i−2, τ k = i;
(S.2) yk+1 = PY

(
yk − 1

2(k−l)0.5�τk (y
k)
)

;

(S.3) zk+1 =
∑k+1
j=l+1

1
2(j−l)0.5y

j

∑k+1
j=l+1

1
2(j−l)0.5

;

(S.4) if miny∈Y �τk (zk+1)	(y − zk+1) ≥ −εk then
wi+1 = zk+1, i = i + 1, l = k;

end
end
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Index i refers to the outer iterations occurring as the condition in step (S.4)
is verified, which correspond to the (approximate) solutions wi+1 of the AVI
subproblems

�τ (y)
	(w − y) ≥ −εsub, ∀w ∈ Y, (3)

with εsub = i−2 and τ = i. The sequence {yk} includes all the points obtained
by making classical projection steps with the given diminishing stepsize rule, see
step (S.2). The sequence {zk} consists of the inner iterations needed to compute
(approximate) solutions of the AVI subproblem (3), and it is obtained by performing
a weighted average on the points yj , see step (S.3). Index l lets the sequence of
the stepsizes restart at every outer iteration, while considering solely the points yj

belonging to the current subproblem for the computation of zk+1. We remark that
the condition in step (S.4) only requires the solution of a linear problem.

We now deal with the convergence properties of L-PATA. With the following
result we relate (approximate) solutions of the AVI subproblem (3) where εsub ≥ 0
to approximate solutions of problem (2).

Proposition 1 Assume conditions (A1)–(A3) to hold, and let y ∈ Y satisfy (3) with
τ > 0 and εsub ≥ 0. It holds that

(
Mupy + dup)	 (w − y) ≥ −εup, ∀w ∈ SOL(M low, d low, Y ), (4)

with εup = εsubτ , and
(
M lowy + d low

)	
(w − y) ≥ −εlow, ∀w ∈ Y, (5)

with εlow = εsub + 1
τ
HD.

Proof We have for all w ∈ SOL(M low, d low, Y ):

−εsubτ ≤
[
τ
(
M lowy + d low

)
+ (Mupy + dup)

]	
(w − y)

≤
[
τ
(
M loww + d low

)
+ (Mupy + dup)

]	
(w − y)

≤ (
Mupy + dup)	 (w − y),

where the first inequality is due to (3), the second one comes from (A2), and the last

one is true because y ∈ Y and then
(
M loww + d low

)	
(y − w) ≥ 0. Hence, (4) is

true.
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Moreover, we have for all w ∈ Y :

(
M lowy + d low

)	
(w − y) = �τ (y)	(w − y)− 1

τ

(
Mupy + dup)	 (w − y)

≥ −εsub − 1

τ
HD,

where the inequality is due to (3). Therefore, we get (5). ��
Here follows the convergence result for L-PATA.

Theorem 1 Assume conditions (A1)–(A3) to hold. Every limit point of the sequence
{wi} generated by L-PATA is a solution of problem (2).

Proof First of all, we show that i →∞. Assume by contradiction that this is false,
hence an index k̄ exists such that either k̄ = 0 or the condition in step (S.4) is
satisfied at the iteration k̄ − 1, and the condition in step (S.4) is violated for every
k ≥ k̄. In this case, it is true that i → ı̄, and then τ k = τ̄ � ı̄ for every k ≥ k̄.

For every j ∈ [k̄, k], and for any v ∈ Y , we have

‖yj+1 − v‖2
2 = ‖PY (yj − 1

2(j−k̄+1)0.5
�τ̄ (y

j ))− v‖2
2

≤ ‖yj − 1
2(j−k̄+1)0.5

�τ̄ (y
j )− v‖2

2

= ‖yj − v‖2
2 + 1

4(j−k̄+1)
‖�τ̄ (yj )‖2

2 − 1
(j−k̄+1)0.5

�τ̄ (y
j )	(yj − v),

and, in turn,

�τ̄ (y
j )	(v − yj ) ≥ ‖y

j+1 − v‖2
2 − ‖yj − v‖2

2

(j − k̄ + 1)−0.5
− 1

4(j − k̄ + 1)0.5
‖�τ̄ (yj )‖2

2.

Summing, we get

k∑

j=k̄

1

2(j − k̄ + 1)0.5
�τ̄ (y

j )	(v − yj )

k∑

j=k̄

1

2(j − k̄ + 1)0.5

≥

k∑

j=k̄

(

‖yj+1 − v‖2
2 − ‖yj − v‖2

2 −
1

4(j − k̄ + 1)
‖�τ̄ (yj )‖2

2

)

2

k∑

j=k̄

1

2(j − k̄ + 1)0.5

=

⎛

⎝‖yk+1 − v‖2
2 − ‖yk̄ − v‖2

2 −
k∑

j=k̄

1

4(j − k̄ + 1)
‖�τ̄ (yj )‖2

2

⎞

⎠

2

k∑

j=k̄

1

2(j − k̄ + 1)0.5

≥ −

⎛

⎝‖yk̄ − v‖2
2 +

k∑

j=k̄

1

4(j − k̄ + 1)
‖�τ̄ (yj )‖2

2

⎞

⎠

2

k∑

j=k̄

1

2(j − k̄ + 1)0.5

,

(6)
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which implies

�τ̄ (v)
	(v − zk) =

k∑

j=k̄

1

2(j − k̄ + 1)0.5
�τ̄ (v)

	(v − yj )

k∑

j=k̄

1

2(j − k̄ + 1)0.5

≥ −

⎛

⎝‖yk̄ − v‖2
2 +

k∑

j=k̄

1

4(j − k̄ + 1)
‖�τ̄ (yj )‖2

2

⎞

⎠

2

k∑

j=k̄

1

2(j − k̄ + 1)0.5

+

k∑

j=k̄

1

2(j − k̄ + 1)0.5
(�τ̄ (v)−�τ̄ (yj ))	(v − yj )

k∑

j=k̄

1

2(j − k̄ + 1)0.5

≥ −

⎛

⎝‖yk̄ − v‖2
2 +

k∑

j=k̄

1

4(j − k̄ + 1)
‖�τ̄ (yj )‖2

2

⎞

⎠

2

k∑

j=k̄

1

2(j − k̄ + 1)0.5

,

(7)

where the last inequality holds thanks to the monotonicity of �τ̄ . Indicating by
z ∈ Y any limit point of the sequence {zk}, taking the limit k → ∞ in the latter
relation and subsequencing, the following inequality holds true:

�τ̄ (v)
	(v − z) ≥ −

⎛

⎝‖yk̄ − v‖2
2 +

∞∑

j=k̄

1

4(j − k̄)‖�τ̄ (y
j )‖2

2

⎞

⎠

2

∞∑

j=k̄

1

2(j − k̄)0.5
= 0,

because
∑∞
j=k̄

1
2(j−k̄)0.5 = +∞ and

(∑∞
j=k̄

1
4(j−k̄)

)
/
(∑∞

j=k̄
1

2(j−k̄)0.5
)
= 0, due

to [6, Proposition 4], and then z is a solution of the dual problem

�τ̄ (v)
	(v − z) ≥ 0, ∀v ∈ Y.
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Hence, the sequence {zk} converges to a solution of problem (3) with εsub = 0
and τ = τ̄ , see e.g. [2, Theorem 2.3.5], in contradiction to miny∈Y �τ̄ (zk+1)	(y −
zk+1) < −εk = −ı̄−2 for every k ≥ k̄. Therefore we can say that i →∞.

Consequently, the algorithm produces an infinite sequence {wi} such thatwi+1 ∈
Y and

�i(w
i+1)	(y −wi+1) ≥ −i−2, ∀ y ∈ Y,

that is (3) holds at wi+1 with εsub = i−2 and τ = i. By Proposition 1, specifically
from (4) and (5), we obtain

(
Mupwi+1 + dup

)	
(y −wi+1) ≥ −i−1, ∀y ∈ SOL(M low, d low, Y ),

and

(
M lowwi+1 + d low

)	
(y −wi+1) ≥ −i−1(1+HD), ∀y ∈ Y.

Taking the limit i → ∞ we get the desired convergence property for every limit
point of {wi}. ��
We consider the natural residual map for the lower-level AVI(M low, d low, Y )

V (y) � ‖PY (y − (M lowy + d low))− y‖2. (8)

Function V is continuous and nonnegative, as reminded in [4]. Also, V (y) = 0 if
and only if y ∈ SOL(M low, d low, Y ). Condition

V (y) ≤ ε̂low, (9)

with ε̂low ≥ 0, is alternative to (5) to take care of the feasibility of problem (2).

Remark Since both the variational inequalities (1) and (2) are affine, then εup
and either εlow or ε̂low give actual upper-bounds to the distances between y

and SOL
(
Mup, dup,SOL(M low, d low, Y )

)
and SOL(M low, d low, Y ), respec-

tively.

Theorem 2 If y ∈ SOL(M low, d low, Y ) satisfies (4), then there exists cup > 0
such that

dist
SOL

(
Mup,dup,SOL(M low,d low,Y )

)(y) ≤ cupεup.

(continued)
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Theorem 2 (continued)
If y ∈ Y satisfies (5), then there exists clow > 0 such that

distSOL(M low,d low,Y )(y) ≤ clowεlow.

If y ∈ Y satisfies (9), then there exists ĉlow > 0 such that

distSOL(M low,d low,Y )(y) ≤ ĉloŵεlow.

Proof The claim follows from [2, Proposition 6.3.3] and [6, Proposition 3].
��

In view of Theorem 2, conditions (4) and either (5) or (9) define points that are
approximate solutions for problem (2), also under a geometrical perspective.
In particular, the lower the values of εup and either εlow or ε̂low, the closer the
point gets to the solution set of the nested affine variational inequality (2).

We give an upper bound to the number of iterations needed to drive both the
upper-level error εup, given in (4), and the lower-level error ε̂low, given in (9), under
some prescribed tolerance δ.

Theorem 3 Assume conditions (A1)–(A3) to hold and, without loss of generality,
L� � ‖Mup +M low‖2 < 1. Consider L-PATA. Given a precision δ ∈ (0, 1), let us
define the quantity

Imax �
⌈
H + 1

δ

⌉

.

Then, the upper-level approximate problem (4) is solved for y = zk+1 with εup = δ
and the lower-level approximate problem (9) is solved for y = zk+1 with ε̂low = δ
and the condition in step (S.4) is satisfied in at most

σ � Imax

⌈

max

{

I 8
max
(D + R)4
(1− L�)2C1, I

8
1−2η

max
(D + R) 4

1−2η

(1− L�)
2

1−2η

C2,η

}⌉

,

iterations k, where η > 0 is a small number, and

C1 �
(

D2 + 5

4
(R +H)2

)2

, C2,η �
(
(R +H)2
(4η)

) 2
1−2η

. (10)

Proof See the proof of [6, Theorem 2]. ��
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Hyper-Parameter Optimization
in Support Vector Machine
on Unbalanced Datasets Using Genetic
Algorithms

Rosita Guido, Maria Carmela Groccia, and Domenico Conforti

Abstract Hyper-parameter optimization and class imbalance are two challenging
problems for machine learning in many real-world applications. A hyper-parameter
is a parameter whose value is used to control the learning process and it has to
be tuned in order to reach good performance. The class imbalance occurs when
one class contains significantly fewer instances than the other class. Common
approaches for dealing with the class imbalance problems involve modifying the
data distribution or modifying the classifier. This paper presents an optimization
framework that considers two evaluation measures, i.e., accuracy and G-mean, by
optimizing a cost-sensitive Support Vector Machine and its hyper-parameter by a
genetic algorithm. Experimental results on two benchmark datasets show that the
proposed method is effective and efficient in comparison with the commonly used
grid search method.

Keywords Machine learning · Support vector machine · Cost-sensitive
approach · Hyper-parameter optimization · Genetic algorithms · NSGA II

1 Introduction

In machine learning (ML), hyper-parameter is a parameter whose value is used to
control the learning process. Hyper-parameter should be carefully tuned in each
machine learning method because its performance depends on the hyper-parameter
[1, 2].

Parameters are different from hyper-parameters: the first ones are learned
automatically whereas hyper-parameters are set manually to help guide the learning
process. In other words, hyper-parameters strongly affect the final result. Inappro-
priate hyper-parameter settings may lead to poor classification results, for instance.
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A manual tuning consists on changing the hyper-parameter until the result is
satisfactory. It is a tedious task because of a lot of possible combinations that can be
tested.

A grid search is a hyper-parameter optimization approach based on a defined
subset of the hyper-parameter space. For searching a good hyper-parameter, a lower
bound, an upper bound, and an incremental step can be specified in order to find
the best combination among a finite number of combinations in the search space.
However, this exhaustive search can be very time-consuming. Bergstra and Bengio
[1] showed that random experiments are more efficient than grid experiments for
hyper-parameter optimization on several data sets.

Another important and challenging problem is related to machine learning
methods built on imbalanced datasets [3]. They are often unable to generalize on
new data because they are biased towards negative predictions, as the majority
class has no-event cases. In order to solve this problem, suitable methods for
handling imbalanced classes should be used. The main methods for sampling-based
imbalance correction are based on over-sampling and under-sampling approaches.
Over-sampling methods add more data to the smaller class making it the same size
as the larger class; under-sampling methods sample the larger class in order to have
the same size as the smaller class.

How to set hyper-parameters and combinations of interacting hyper-parameters
for a given dataset is thus a very challenging task. To address this problem, in
this paper we use the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [4],
which is an effective and efficient multi-objective search technique based on Genetic
Algorithms (GAs). Our research objective is to propose a GA-based approach
for optimizing Support Vector Machine (SVM) hyper-parameters and evaluate its
potential by comparing the results with those of an automated grid search.

This paper is organized as follows: a brief introduction to the main features of an
SVM and issues related to hyper-parameter optimization and imbalanced datasets
is given in Sect. 2. Section 3 describes the proposed GA-based approach for SVM
hyper-parameter optimization. Section 4 presents experimental results on two well-
known datasets using the proposed method. The results are compared to those found
by a grid search approach.

To the best of our knowledge, this is the first paper that addresses a cost-sensitive
SVM and hyper-parameter optimization at the same time via genetic algorithms.

2 SVM, Hyper-Parameters Optimization and Issues of
Imbalanced Datasets

The goal of a binary classifier is to map feature vectors x ∈ X to class labels y ∈
{−1, 1}. A vector is an example, which can be either positive, denoted by a label
y = 1, or negative, denoted by y = −1. In terms of functions, a classifier can be
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written as h(x) = sign[p(x)], where the function p : X → R is denoted as the
classifier predictor.

The SVM is based on statistical learning theory [5–7]. It is a class of algorithms
for classification, regression and other applications, and is the most widely used ML
technique available nowadays. It searches for an optimal hyperplane that separates
patterns of two classes by maximizing the margin w. Let X be a dataset with N
instances X = (x1, . . . , xN), where xi, i = 1, . . . , N , denotes an instance with m
features, and yi ∈ {±1} its label. Finding the optimal hyperplane means solving the
quadratic programming model (1)–(3)

min
1

2
||w||2 + C

N∑

1

ξi (1)

yi(w
T φ(xi)+ b)− 1+ ξi ≥ 0 i = 1, . . . , N (2)

ξi ≥ 0 i = 1, . . . , N (3)

where C, named penalty parameter, is a trade-off between the size of the margin
w and the slack variable penalty ξ ∈ RN+ . In nonlinearly separable dataset, the
SVM basically maps inputs into high-dimensional feature spaces by the so called
kernel functions [8]. The performance of an SVM model depends on a kernel
function, which maps original data to higher dimensional spaces to deal with non-
linearly separable data. A kernel function denotes an inner product in a feature
space where it measures similarity between any pair of inputs xi and xj . Usually, a
kernel function is denoted as K(xi, xj ) =

〈
φ(xi), φ(xj )

〉
. The kernel function can

take many different forms. It is well known that the performance of most machine
learning algorithms on a given dataset depends on well-tuned hyper-parameter. In
setting up an SVM model, for instance, two problems are encountered: (1) how to
select the kernel function, and (2) how to select its hyper-parameter. An SVM with
polynomial kernel has three parameters to optimize: the regularization parameter
C, a, and the degree d . The optimization of these three parameters if 30 steps
should be performed, requires an amount of time to test the total 303 = 27,000
combinations. The greater the number of parameters to be set, the greater is the
number of combinations.

The choice of hyper-parameters of an ML model can significantly affect the
resulting model’s performance. Generally, the hyper-parameters are adjusted for
each model in order to find a hyper-parameters setting that maximizes the model
performances and so that the classifier can predict unknown data accurately. The
goal of hyper-parameter optimization is to find a set of values that minimizes a
predefined loss function.

The Grid Search is an approach for hyperparameter optimization based on
considering all hyper-parameter combinations specified in a multi-dimensional grid.
The performance of a combination is evaluated using a performance metric. The
configuration with the best performance is selected and used to train the ML model
on the whole dataset.
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2.1 Imbalanced Dataset and Cost-Sensitive Approach

Another challenging problem in applied machine learning concerns dealing with
imbalanced data as event cases—usually a given disease—are underrepresented.
The instances that represent event cases belong to the minority class whereas
the other instances to the majority class. Indeed, in general, classifiers built on
an imbalanced dataset are often unable to generalize on new data because they
are biased towards predictions similar to the majority class, that is usually given
by instances representative of no-events. Furthermore, misclassification errors are
treated in the same way, but this is not correct when a dataset is imbalanced.
Suffice it to say that in many important applications of machine learning, such
as medical diagnosis, certain types of errors are much more costly than others.
Misclassifying a patient as healthy implies more loss compared to the opposite loss.
In the literature, several methods are used to deal with this problem. Sampling-based
imbalance corrections are based on over-sampling and under-sampling approaches.
Over-sampling methods add more data to the smaller class making it the same size
as the larger class [9]; under-sampling methods sample the larger class in order to
have the same size as the smaller class. Other approaches are cost-sensitive based
[10, 11]. Among the extensions of SVM, a cost-sensitive scheme refers to a model
with multiple costs which considers different error rates for misclassification. The
cost-sensitive scheme is useful when misclassification cannot be considered equal,
like for medical diagnosis. Therefore, a cost-sensitive scheme poses as a modified
model and hereby aims at minimizing loss function instead of generalization error.

A cost matrix Cost denotes the cost of each class misclassification [12]. A

general cost matrix for a binary classification problem is Cost =
[
c++ c+−
c−+ c−−

]

,

where c+− is the cost of predicting an instance belonging to class C+ as belonging
to class C−, i.e., the cost of a false negative misclassification, whereas c−+ is the
cost of a false positive misclassification. Usually, as we also assume here, there is
no cost for correct classifications, that is c++ = c−− = 0.

The goal of this type of learning is to minimize the total misclassification cost of
a model on the training set. Formally, given a cost matrix Cost and an instance x,
the cost R(C+|x) of classifying x into class C+ is R(C+|x) = ∑

j p(C−|x)c+−,
where p(C−|x) is the probability estimation of classifying an instance into class
C−.

As detailed in the next section, we coded the two misclassification costs in a
chromosome.
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3 A Genetic Algorithm-Based Approach for SVM
Hyper-Parameters Optimization

The genetic algorithms are optimization algorithms inspired by the Darwin evo-
lutionary process [13]. An initial population of a given number of chromosomes,
hereafter even called individuals, evolves during time through generations. One
chromosome has a given number of genes, which are the variables of the problem,
and it is one point in the solution space. At each generation, the individuals are
evaluated through a fitness function, which quantifies the quality of each individual
chromosome. According to their evaluation, some individuals in the population are
selected for reproduction. More specifically, like natural selection principles, the
fittest individuals are selected. To produce new individuals from the selected ones,
some operators are applied to genes. Crossover and mutation operators are applied
during the generation of a new population to generate new chromosomes, that is,
new solutions. The crossover mechanism aims to combine two chromosomes into
one chromosome. This operator is applied to two individuals named parents; the
two newly generated individuals are named offspring. A mutation generates a new
chromosome by changing one or more genes of a chromosome. Another type of
selection is elitism, which consists on sent a percentage of the best individuals
from the current population to the next population. This selection prevents the
loss of the best solutions for a population. A new population is thus given by
their descendants. In the evolutionary process, all those solutions that did not fit
some defined criteria will be dropped. The solution kept will continue the selection
process (i.e., crossover, mutation, elitism, and evaluation) until at least one of the
defined stop conditions is met. The stop conditions generally consist of a number of
generations and a certain time limit.

3.1 Hyper-Parameter Optimization via NSGA-II

Genetic Algorithms are an alternative method for determining optimum SVM values
in an evolutionary way. A GA can search for a better solution without trying all
possible solution. As a genetic algorithm, we chose the NSGA-II [4] because it uses
an explicit diversity preservation mechanism (the so-called crowding distance) and
emphasizes non-dominated solutions by a fast sorting procedure based on Pareto
front-ranking to promote convergence. NSGA-II is one of the first multi-objective
algorithms that introduced elitism, i.e., a partner of a non-dominated individual is
chosen from among the individuals of the population that it dominates. NSGA-II
has been successfully applied to several domains [14, 15]. The difference between
the NSGA-II and single objective GAs is in how fitness is assigned. The NSGA-
II employs Pareto dominance and the crowding distance to assign fitness values. It
implements a binary tournament selection to establish the mating pool (i.e., parents)
and uses the Simulated Binary Crossover and the Polynomial Mutation with defined
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probabilities to create children from parents. This algorithm has various parameters
that may impact its computational effectiveness. The most important parameters
are the population size (PS), the probability of crossover (Pc), the probability of
mutation (Pm) that prevents the population from being trapped in local optima. The
parameter PS plays an important role because if it is small may result in a crowded
population, i.e., with a number of similar solutions and not a diversified number of
chromosomes. Usually, the adopted strategy is to keep a high value of Pc and a low
value of Pm.

The cost-sensitive SVM (CS-SVM) assigns different values for the penalty factor
to two classes

argmin
w,b,ξ

1

2
||w||2 + C[C1

∑

i|yi=1

ξi + C−1

∑

i|yi=−1

ξi ] (4)

yi(w
T x + b) ≥ 1− ξi (5)

ξi ≥ 0 i = 1, . . . , N (6)

where C1 is the cost of a false negative and C−1 that one of a false positive.
This paper concentrates on optimising hyper-parameter of CS-SVM. The range

of possibilities for CS-SVM hyper-parameter can be huge. We perform a hyper-
parameter tuning by exploring various model architectures by NSGA-II. The best
population is given as a set of chromosomes with the best model performance.

4 Experimental Results and Discussion

To evaluate our proposed method, we used two benchmark datasets, the Hepatitis
dataset and the Wisconsin Prognostic Breast Cancer (WPBC), from the UCI
Repository of Machine Learning Databases. Both datasets are related to medical
diagnosis represented as binary classification problems. The Hepatitis dataset is
used to classify patients with hepatitis in the two classes, live or die. The WPBC has
198 instances that represent follow-up data for one breast cancer case, only those
cases exhibiting invasive breast cancer and no evidence of distant metastases at the
time of diagnosis. The WPBC is used here to classify patients as recurrences before
24 months (i.e., positive class) or nonrecurrence beyond 24 months (i.e., negative
class). To this aim we remove the feature named “Time” from the dataset because it
is the recurrence time for instances in the positive class and the disease-free time for
the instances of the negative class. Table 1 reports the number of positive instances
(diseased examples), the number of negative instances (non-diseased examples), the
ratio as minority class vs the majority class, and the number of features (excluding
the class), per each dataset.



Hyper-Parameter Optimization in SVM by GA 43

Table 1 Description of the used datasets

Dataset Positive instances Negative instances Ratio Number of features

Hepatitis 32 123 1:4 19

WPBC 47 151 1:3 32

4.1 NSGA-II Parameter Setting

In setting the parameters for the NSGA-II algorithm, we carried out several
preliminary tests to find suitable parameter values. We set Pc = 0.7 and Pm = 0.03.
Another parameter that we set is the distribution index of mutation DIm, which
is a control parameter inversely proportional to the amount of perturbation in the
design variables. The smaller the value of DIm, the larger the perturbation and
vice versa. It was bounded by 1 and 20, which is the default value. Depending on
the initial population, a GA may produce different solutions. In this research, we
tested NSGA-II with three initial populations: (1) randomly generated; (2) partially
fixed and the rest randomly generated (as proposed the first time in [15]); (3) all
chromosomes fixed.

4.2 CS-SVM Hyper-Parameter Optimization

We tested SVM with two kernel functions, i.e., polynomial kernel K(xi, xj ) =
(xTi xj + a)d , and Radial Basis Function (RBF) kernel K(xi, xj ) = exp(−γ ||xi −
xj ||2).

The hyper-parameter C and those related to the polynomial kernel and the RBF
kernel were optimized by searching the best value in a defined range of values, as
reported in Table 3. Figure 1 shows how hyper-parameter of CS-SVM with RBF
kernel was coded as a chromosome.

To perform model assessment, we carried out a tenfold cross-validation (tenfold
CV) process embedded in an evolutionary process aimed at improving a given
fitness function. The tenfold CV assures that k = 10 independent sets are used to
test the model, simulating unseen data. It consists basically in partitioning randomly
the dataset into k equal sized folds. k rounds are performed: at k-th round, all the
folds are used as training set except to the k-th fold, which is used as test set. The
test set is never seen during the training of the model, to avoid overfitting. Each fold

Fig. 1 Coding of CS-SVM with RBF kernel in a chromosome
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is used exactly once as test set and, as consequence, each instance is used for testing
exactly once. The performance metrics are averaged across the k estimates of each
test fold.

Let P , be the number of the positive instances, andN the number of the negative
instances of a given dataset. We evaluated the performances of the SVM classifiers
with the optimized hyper-parameter by accuracy and geometric mean (G-Mean).
Let T P and T N be, respectively, the number of instances of class C+ and class
C− correctly classified; FP and FN be the number of instances of class C− and
class C+ incorrectly classified, respectively. The accuracy metric, defined as (T P +
TN)/(T P + T N + FP + FN), is the most widely used evaluation metric for
classification algorithms. However, it can be a misleading for imbalanced datasets,
as we show empirically in the next section. The sensitivity, even known as true
positive rate, measures how well a classifier can identify true positives. It is defined
as Sensitivity=T P/(T P + FN) = T P/P . The Specificity, even known as true
negative rate, measures how well a classifier can identify true negatives. It is defined
as Specificity=TN/(T N + FP) = T N/N .

The G-Mean balances both Sensitivity and Specificity by combining them, as

G-Mean = sqrt (Sensitivity ∗ Specif icity)

NSGA-II here implemented has two objective functions, F1 and F2. We tested
as F1 both accuracy and G-Mean, whereas we set F2 = 1. NSGA II stops after
a given number of generations. We carried out the computational experiments on
43 configurations per dataset by considering PS = {25, 50, 100} and Gen ∈
{10, 100, 200}. The experiments were performed by Weka 3.8.2-API [16] integrated
in the Java version of NSGA-II. They were performed on a PC with 3.50 GHz Intel
Xeon CPU E5 1620 and 32 GB RAM, using Windows 10 Pro operating system.

Table 2 reports the setting of NSGA-II and CS-SVM of only 12 configurations.
The first column reports the computational experiment identification, which is given
as ExpID-dataset-F1, where dataset ∈ {H,WBCP }, F1 ∈ {A,GM}. For instance,
Exp1-H-A identifies the first set of the computational experiments carried out on
the Hepatitis dataset; accuracy is the used fitness function. The second column of
Table 2 specifies the fitness function. The third and the fourth column show the
population size (the letter r means that the initial population is random) and the
number of generations, respectively. The last two columns report the value of DIm
and the average computational time, in minutes, to execute all the generations.

Table 3 shows the range of values of the CS-SVM hyper-parameter investigated
by NSGA-II. c1 = c+− and c2 = c−+ denote the cost of each class misclassifica-
tion.

The best results for CS-SVM with RBF kernel are summarised in Table 4
per each computational experiment. This table even shows the values related to
Sensitivity, Specificity, G-mean, Accuracy, and the number of TP, FN, FP, and TN.
The optimised hyper-parameter are reported in the four last columns.

In Table 4, as expected, the best accuracy does not mean the best G-mean.
For instance, the optimised hyper-parameters found for Exp1-WBCP -A allow to
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Table 2 Hepatitis and
WPBC datasets: parameter
setting

Experiment F1 PS Gen DIm Time

Exp1-H-A Acc 100 (r) 100 1 62.5

Exp2-H-A Acc 50 (r) 10 20 3.1

Exp3-H-A Acc 100 (r) 10 20 5.1

Exp1-H-GM G-mean 100 (r) 100 1 57.2

Exp2-H-GM G-mean 100 (r) 100 10 58.3

Exp3-H-GM G-mean 100 (r) 10 20 5.6

Exp1-WPBC-A Acc 100 (r) 10 20 15.1

Exp2-WBCP-A Acc 50 (r) 10 20 7.32

Exp3-WBCP-A Acc 50 (r) 100 20 110.3

Exp1-WBCP-GM G-mean 100 (r) 10 20 15.6

Exp2-WBCP-GM G-mean 50 (r) 100 20 112.5

Table 3 Hyper-parameters
of CS-SVM with polynomial
kernel and RBF kernel

Cost C ∈ {1− 500} Kernel

C ∈ {1− 20} d ∈ {1− 3}
c1 ∈ {1− 20} γ ∈ {0.001 − 5}
c2 ∈ {1− 20}

Table 4 The best results, related metrics, and the optimised hyper-parameter per each computa-
tional experiment

Best Opt hyper-parameter

Experiment F1 Sens Spec G-mean TP FN FP TN C γ c1 c2

Exp1-H-A 87.742 0.656 0.935 78.317 21 11 8 115 186 0.124 13 3

Exp2-H-A 86.452 0.656 0.919 77.644 21 11 10 113 1 0.092 12 8

Exp3-H-A 87.097 0.656 0.927 77.982 21 11 9 114 454 0.144 15 3

Exp1-WBCP-A 78.283 0.106 0.993 32.443 5 42 1 150 1 4.062 5 4

Exp2-WBCP-A 77.778 0.085 0.993 29.053 4 43 1 150 1 4.459 10 9

Exp3-WBCP-A 76.768 0.255 0.927 48.619 12 35 11 140 1 1.232 17 10

Accuracy

Exp1-H-GM 79.231 0.75 0.837 81.936 24 8 20 103 1 0.299 9 2

Exp2-H-GM 82.43 0.781 0.87 85.161 25 7 16 107 345 0.005 14 5

Exp3-H-GM 80.405 0.75 0.862 83.871 24 8 17 106 1 0.258 14 4

Exp1-WBCP-GM 60.997 0.468 0.795 71.717 22 25 31 120 199 0.449 9 7

Exp2-WBCP-GM 62.297 0.617 0.629 62.626 29 18 56 95 259 0.078 13 2

Exp3-WBCP-GM 60.997 0.468 0.795 71.717 22 25 31 120 483 0.4356 1 1

achieve the best value of accuracy with respect to the other experiments. However,
the corresponding G-mean is low. If the G-mean is used as fitness function, different
optimised hyper-parameters allow to improve not only the value of G-mean but even
the Sensitivity. In addition, a larger number of generations allows in some cases
to find better results. These results show that accuracy cannot be used as the sole
criterion to evaluate the performance of a classifier when a dataset is imbalanced
and that, mainly in the medical domain, other performance metrics, like G-Mean,
should be considered.
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Finally, we compared our best results with those found by Auto-WEKA [17] that
implements a fully automated search and identifies the most appropriate machine
learning algorithm and hyperparameter settings to a given dataset. The best accuracy
found for the Hepatitis dataset, for instance, is 89.67 by a Simple Logistic model and
a feature selection that reduced the number of features. The related G-Mean is 78.95.
The best accuracy found for the WBCP is 75.75 by a Decision Tree and the related
G-Mean is only 14.48 with a number of T P = 1.

5 Conclusion

This paper presents a CS-SVM to address imbalanced datasets and a framework
for hyper-parameter tuning based on GAs. In many important applications of
machine learning, such as medical diagnosis, certain types of errors are much more
costly than others. The hyper-parameters of a CS-SVM are optimised by using
NSGA-II. Experimental results on two benchmark datasets with different ratios of
imbalance showed that the proposed method is effective. In addition, we used and
compared the accuracy and G-Mean metrics to evaluate the model performance. We
empirically showed that accuracy cannot be used as the sole criterion to evaluate the
performance of a classifier but other performance metrics, like G-Mean, should be
considered mainly in medical domain like disease diagnosis.

For future work we plan to extend the approach to other kernel functions and use
NSGA-II as a multi-objective algorithm.
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An Improvement of the Pivoting Strategy
in the Bunch and Kaufman
Decomposition, Within Truncated
Newton Methods

Giovanni Fasano and Massimo Roma

Abstract In this work we consider the solution of large scale (possibly nonconvex)
unconstrained optimization problems. We focus on Truncated Newton methods
which represent one of the commonest methods to tackle such problems. In
particular, we follow the approach detailed in Caliciotti et al. (Comput Optim
Appl 77:627–651, 2020), where a modified version of the Bunch and Kaufman
decomposition (Bunch and Kaufman, Math Comput 31:163–179, 1977) is proposed
for solving the Newton equation. Such decomposition is used within SYMMBK
routine as proposed by Chandra (Conjugate gradient methods for partial differential
equations, Ph.D. thesis, Yale University, New Haven, 1978; see also Conn et al.,
Trust–Region Methods, MPS–SIAM Series on Optimization, Philadelphia, PA,
2000; HSL: A collection of Fortran codes for large scale scientific computation,
https://www.hsl.rl.ac.uk/; Marcia, Appl Numer Math 58(4):449–458, 2008) for
iteratively solving symmetric possibly indefinite linear systems. The proposal in
Caliciotti et al. (Comput Optim Appl 77:627–651, 2020) enabled to overcome a
relevant drawback of nonconvex problems, namely the computed search direction
might not be gradient-related. Here we propose further extensions of such approach,
aiming at improving the pivoting strategy of the Bunch and Kaufman decomposition
and enhancing its flexibility.
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1 Introduction

Given a real valued function f : Rn −→ R, an unconstrained optimization problem
consists of determining a local minimizer of f by solving

min f (x)
x ∈ R

n.
(1)

In particular, we consider problems where n is large and the function f is possibly
nonconvex. Moreover, we assume that both the gradient ∇f (x) and the Hessian
matrix ∇2f (x) exist and are continuous. We do not assume any sparsity pattern on
∇2f (x). The iterative solution of large scale unconstrained optimization problems
plays a fundamental role in many and different contexts of applied mathematics.
Therefore, it is very important to have at one’s disposal an efficient and robust
method able to tackle also large scale difficult problems (see also [4, 14]).

As well known, in case the method of choice were a Truncated Newton method,
at each iteration h, a search direction ph and a steplength αh are determined, so that
the current point is updated according to the iterative scheme

xh+1 = xh + αhph, (2)

being x0 ∈ R
n a given starting point. In the Truncated Newton method, the search

direction ph is often obtained by approximately solving the Newton equation

∇2f (xh)p = −∇f (xh), (3)

by means of a Krylov subspace method. The iterations of the solver (called inner
iterations) are stopped according to a suited termination criterion, still ensuring a
good convergence rate of the method. This is obtained by using a particular trade–
off rule between the computational burden required to solve the system (3) and the
accuracy with which it is solved. The reader is referred to the seminal paper by S.
Nash [18] for a survey on Truncated Newton methods.

Among the Krylov subspace methods, the Conjugate Gradient (CG) algorithm
is usually the method of choice, even if it may break down when solving (3) and
the matrix ∇2f (xh) is indefinite. In this case, some alternative strategies have been
proposed in literature (see, e.g., [8–13, 15]).

In [5] the use of the SYMMBK algorithm was proposed as an alternative to the
CG method. The SYMMBK algorithm was introduced in [6, 16, 17] and it is based
on the Lanczos process, which does not break down in the indefinite case. More
precisely, the matrix of the Lanczos vectors is built one column at a time and (after k
iterations) the resulting n×k matrixQk has the property thatQTk ∇2f (xh)Qk = Tk ,
where Tk is tridiagonal. Then, the Bunch and Kaufman decomposition [1] of the
tridiagonal matrix Tk is performed, namely Tk = SkBkS

T
k , where Bk is a block

diagonal matrix with 1×1 or 2×2 diagonal blocks, and Sk is a unit lower triangular
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matrix. At each step k, a suited strategy is adopted for deciding whether a 1 × 1 or
2× 2 diagonal block must be formed, in order to guarantee numerical stability.

On the other hand, the test on a pivotal element inside SYMMBK algorithm
is uniquely chosen to pursue numerical efficiency and stability, inasmuch as the
Bunch and Kaufman decomposition performed by SYMMBK focuses on the growth
factor of the matrices resulting from decomposition (see [6]). Thus, some concerns
may arise when embedding the SYMMBK algorithm within a Truncated Newton
method, where a search direction must be gradient related, i.e., eventually bounded
and of sufficient descent (see Definition 1.1 in [5] for a formal statement). The
last issue was already addressed in [5], though the modification proposed therein
possibly left room to further generalizations. Here we aim at filling the last gap,
by proposing an enhancement with respect to [5]. In particular, we are going to
propose here an update for the parameters ω and φ used in [5], so that they
can possibly depend on the gradient vector computed at the current Truncated
Newton iteration. More specifically, in the next sections we analyze and discuss
the following issues:

• at step k of the Bunch and Kaufman routine, the test |δk| > ωηγ 2
k+1 discussed in

[5] represents indeed a test on the curvature along the vector qk;
• we can replace the quantity ω introduced in [5] with the sequence {ωk}, so that

the test |δk| > ωηγ 2
k+1 turns into the test |δk| > ωkηγ 2

k+1;
• we define a specific expression for the constant φ introduced in [5], so that it

explicitly depends on the gradient vector currently available from the optimiza-
tion framework;

• the choice of the sequence {ωk} and the constant φ can partially be steered
by the optimization framework, in case any additional knowledge is available
which suggests that a better quality of the overall gradient-related direction can
be sought.

The paper is organized as follows. In Sect. 2 some preliminaries on Truncated
Newton methods and the Lanczos process are reported; then, the Bunch and
Kaufman decomposition, as well as some basics on SYMMBK (see also [7]), are
given. In Sect. 3 we show how to compute a gradient-related direction by using
the Bunch and Kaufman decomposition. Finally, Sect. 4 reports some concluding
remarks.

We indicate by ‖ · ‖ the Euclidean norm of real vectors and matrices. Moreover,
λ�(C) and κ(C) represent the �-th eigenvalue and the condition number of the real
symmetric matrix C, respectively. Finally, ei is the i-th real unit vector.

2 Preliminary Results

Here we report some basic results, including introductory material on the Lanczos
process and the Bunch and Kaufman factorization. Some insights on the Lancos
process are mandatory, to show how SYMMBK performs an iterative decomposition
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of the tridiagonal matrix using the Lanczos process. For the sake of brevity, we
assume that the reader is familiar with a standard Truncated Newton method
which iteratively generates the sequence {xh} in (2). We recall the importance of
an efficient truncation criterion for the inner iterations within Truncated Newton
methods, as also pointed out in [8, 9, 19], and more recently in [2, 3].

Assumption 1 Let be given the function f : R
n → R in (1), with f twice

continuously differentiable. Then, we assume that the sequence {xh} in (2) satisfies
{xh} ⊂ �, being � ⊂ R

n compact. ��
As a very general convergence result for Truncated Newton methods, when
convergence to first order stationary points is sought, we give the next proposition.

Proposition 1 Consider the sequences {xh} and {ph} in (2), where {xh} satisfies
Assumption 1 and the search directions are gradient-related. If an Armijo-type
linesearch procedure is chosen to select the steplength αh in (2), then

• {f (xk)} converges regardless of the choice of the initial iterate x0;
• any subsequence of {xk} converges to a stationary point of f (x).

Definition 1 Let be given the function f : R
n → R in (1), with f twice

continuously differentiable. Consider a vector d ∈ R
n \ {0}. Then, the quantity

dT∇2f (x̄)d is the normalized curvature of f at x̄, along the direction d .

2.1 Matrix Tridiagonalization Using the Lanczos Process

The Lanczos process [7] is a Krylov-subspace method for tridiagonalizing a
symmetric indefinite matrix. Dropping the dependency of the subscript h and setting
A = ∇2f (xh), b = −∇f (xh) in (3), the application of the Lanczos process to the
linear system

Ad = b (4)

yields the orthogonal Lanczos vectors qi , i ≥ 1, according with Table 1.
After k ≤ n iterations the Lanczos process has generated the unit vectors

q1, . . . , qk (the Lanczos vectors), along with the values δ1, . . . , δk and γ2, . . . , γk ,
so that settingQk = (q1 · · · qk) and defining the nonsingular tridiagonal matrix

Tk =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

δ1 γ2

γ2 δ2 ·
· · ·
· δk−1 γk

γk δk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (5)
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Table 1 The Lanczos process for the indefinite linear system (4)

Data: ε = ε̄‖b‖, with ε̄ ∈ (0, 1). Set k = 1, u1 = b, q1 = u1‖u1‖ ,

δ1 = qT1 Aq1 and compute the vector u2 = Aq1 − δ1q1.

Do
k = k + 1;

γk = ‖uk‖;
If γk < ε STOP.

Else set
qk = uk/γk ;
δk = qTk Aqk ;
uk+1 = Aqk − δkqk − γkqk−1.

End If
End Do

we have

AQk = QkTk + γk+1qk+1e
T
k ; (6)

QTk AQk = Tk; (7)

QTk Qk = I ; (8)

QTk qk+1 = 0; (9)

span {q1, q2, . . . , qk} = span
{
u1, Au1, . . . , A

k−1u1

}
. (10)

In the case γk+1 = 0 in (6), then we have from (6)–(10) (see [6])

{
Tkyk = ‖b‖e1

dk = Qkyk (11)

which easily allow to first compute the vector yk (from Tkyk = ‖b‖e1) and then
dk = Qkyk , being dk an approximate solution of (4). Finally, note that according
to Definition 1 the scalar δk represents the normalized curvature of the function
φ(d) = 1/2dT Ad + bT d , along the direction qk.

3 Our Proposal of Possible Generalizations

As also reported in Sect. 2, in a Truncated Newton framework the SYMMBK
algorithm can be applied for the solution of the indefinite Newton’s equation (4), by
exploiting the Bunch and Kaufman factorization. Unfortunately, a mere application
of the last decomposition possibly provides in (11) a search direction (namely dk)
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which might not be gradient-related. Here, we suitably generalize the proposal in
[5] and better exploit the SYMMBK algorithm, so that starting from an approximate
solution of (3) we can compute a gradient-related direction.

We intend to slightly modify, at step k, the pivoting strategy adopted by the
Bunch and Kaufman iterative decomposition Tk = SkBkSTk , when choosing at step
k between 1 × 1 or 2× 2 pivot. Note that the matrix Bk is a block diagonal matrix
containing 1× 1 and/or 2× 2 blocks, while Sk is a unit lower triangular matrix. The
standard pivoting strategy in SYMMBK (see [6]) consists of performing at step k a
1×1 pivot if |δk| > ηγ 2

k+1, otherwise a 2×2 pivot is considered (where η is a suited
scalar). This strategy has also an interesting geometric interpretation suggested by
Definition 1 and summarized in the next result.

Proposition 2 Let us consider the Bunch and Kaufman decomposition Tk =
SkBkS

T
k of the tridiagonal matrix Tk in (11). Assume that at step k of the Bunch and

Kaufman decomposition the generalized test |δk| > ωkη(γk+1)
2 is adopted, with

ωk > 0. Then, the normalized curvature δk of the function φ(d) = 1/2dT Ad+bT d ,
along the direction qk , either satisfies δk ≤ (δk)− or δk ≥ (δk)+, where
• for k = 1, for any value of ω1 > 0 the quantities (δk)− and (δk)+ are bounded

away from zero;
• for k ≥ 2, there are values of ωk > 0 such that (δk)− and (δk)+ are bounded

away from zero.

Proof We separately analyze the cases k = 1 and k ≥ 2. When k = 1, recalling that
‖qi‖ = 1 for any i ≥ 1, the test |δ1| > ω1η(γ2)

2 is equivalent to the inequalities

δ1 < −ω1η
[‖Aq1‖2 − δ2

1

]

δ1 > +ω1η
[‖Aq1‖2 − δ2

1

]
.

(12)

Recalling that η = (√5 − 1)/(2 maxi |λi(A)|) (see [6]), after an easy computation
the first inequality yields

(δ1)− = 1− [1+ 4ω2
1η

2‖Aq1‖2
]1/2

2ω1η
≤

1−
[
1+ ω2

1(
√

5− 1)2/κ2(A)
]1/2

2ω1η
,

(δ1)+ = 1+ [1+ 4ω2
1η

2‖Aq1‖2
]1/2

2ω1η
≥

1+
[
1+ ω2

1(
√

5− 1)2/κ2(A)
]1/2

2ω1η
.
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Similarly, by the second inequality we get

(δ1)− = −1− [1+ 4ω2
1η

2‖Aq1‖2
]1/2

2ω1η
≤
−1−

[
1+ ω2

1(
√

5− 1)2/κ2(A)
]1/2

2ωη
,

(δ1)+ = −1+ [1+ 4ω2
1η

2‖Aq1‖2
]1/2

2ω1η
≥
−1+

[
1+ ω2

1(
√

5− 1)2/κ2(A)
]1/2

2ωη
.

When k ≥ 2, after some arrangements, the test |δk| > ωkη(γk+1)
2 is equivalent to

the inequality

|δk| > ωkη‖Aqk − δkqk − γkqk−1‖2 = ωkη
[
‖Aqk‖2 − δ2

k − γ 2
k

]
.

Furthermore, an analysis similar to the case k = 1 holds, after distinguishing
between the subcases ‖Aqk‖ > γk and ‖Aqk‖ ≤ γk. ��

In the next section we show that, for any k, the generalized test |δk| >
ωkη(γk+1)

2 reported in Proposition 2 allows to use an adapted SYMMBK algorithm
for constructing a gradient-related direction.

3.1 Gradient-Related Directions Using SYMMBK

Here we show that, using the results in Proposition 2, within the Bunch and
Kaufman decomposition, it is possible to guarantee that a gradient-related direction
ph at xh for the optimization problem (1) can be computed, provided that suitable
values {ωk} are used. In this regard, we first recall that to iteratively compute the
vector dk in (11), the Bunch and Kaufman algorithm generates the intermediate
vectors {zi} (see also [5]), i ≤ k, such that

• if at step i a 1× 1 pivot is performed by the Bunch and Kaufman decomposition,
then the vector zi = zi−1 + ζiwi is generated,

• if at step i a 2× 2 pivot is performed by the Bunch and Kaufman decomposition,
then the vector zi = zi−2 + ζi−1wi−1 + ζiwi is generated,

• when i = k we have dk = zk ,
being the real values {ζi} and the vectors {wi} computed using the entries of matrices
Sk and Bk . Furthermore, as regards the vectors {zi} we have the next result, which
represents a generalization of Proposition 3.1 in [5].
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Proposition 3 Let the matrix A in (4) be nonsingular, and let zi , i ≤ k, be the
directions generated by the SYMMBK algorithm when solving the tridiagonal linear
system in (11). Then, for any 0 < ωi < 1, i ≥ 1, we have that

• any direction in the finite sequences ζ1w1, . . . , ζkwk and z1, . . . , zk is bounded;
• the vector dk in (11) coincides with zk (and is bounded).

Proof The proof follows guidelines similar to Proposition 3.1 in [5], so that it is
omitted. ��

From Proposition 3 the real vectors ζiwi = zi − zi−1 (respectively the vectors
ζi−1wi−1 + ζiwi = zi − zi−2) are bounded, and according with the next scheme in
Table 2, they can be fruitfully used to compute the search direction ph, at the outer
iteration h of the Truncated Newton method. We remark that the scheme in Table 2
includes a relevant piece of news for the choice of the value φ, with respect to the
Reverse Scheme in [5], as detailed in the proof of Proposition 4.

Table 2 Computing a gradient-related search direction with SYMMBK
algorithm

Data: Set the initial vector ph = z0 = 0, along with the parameter
φ = φ̄‖b‖, with φ̄ > 0;

Do i ≥ 1

If at step i of the Bunch and Kaufman decomposition a 1 × 1
pivot is performed, then

If ∇f (xh)T (ζiwi) > 0 then set uu = −ζiwi else uu =
ζiwi .

Set ph = ph + uu.

If at step i of the Bunch and Kaufman decomposition a 2 × 2
pivot is performed, then set

ζ̃i−1 =
{
sgn(ζi−1)max{|ζi−1|, φ} i = 2

ζi−1 i > 2.

If ∇f (xh)T (ζ̃i−1wi−1) > 0 then set uu = −ζ̃i−1wi−1

else uu = ζ̃i−1wi−1.

If ∇f (xh)T (ζiwi) > 0 then set vv = −ζiwi else vv =
ζiwi .

Set ph = ph + uu+ vv.

End Do

In the next proposition we show that the direction ph, obtained by using the
scheme in Table 2 at any iterate of the Truncated Newton method, is gradient-
related. The next result aims at rephrasing and generalizing the results in Propo-
sition 3.2 of [5], after introducing the sequence {ωk} in place of the parameter ω and
the novel definition for the parameter φ in Table 2. Furthermore, the forthcoming
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result shows that any vector in the sequence {ph} is of sufficient descent and
eventually is (uniformly) bounded by a positive finite constant value.

Proposition 4 Let Assumption 1 hold. Let us consider Proposition 3 where we
set A = ∇2f (xh) and b = −∇f (xh). Assume the search direction ph in (2) is
computed as in Table 2. Then, the direction dk in (11) satisfies ‖dk‖ < μ, for any
k ≥ 1, with μ > 0, and ph is a gradient-related direction.

Proof The result surely holds if in Proposition 3 the Lanczos process performs just
one iteration, inasmuch as γ2 < ε. On the other hand, in case the Lanczos process
has performed at least 2 iterations, the proof follows guidelines similar to those of
Proposition 3.2 in [5], so that we only report the differences. For the case in which
the Lanczos process performs a 2× 2 pivot, by Table 2 we obtain

∇f (xh)T ph = −sgn[∇f (xh)T (ζ̃1q1)]∇f (xh)T (ζ̃1q1)

+
∑

i>2

−sgn
[
∇f (xh)T (ζiwi)

]
∇f (xh)T (ζiwi)

≤ −|ζ̃1|‖∇f (xh)‖ ≤ −φ‖∇f (xh)‖2 = φ̄‖∇f (xh)‖3,

showing that ph is gradient related.
As regards the property of boundedness for the vectors dk in (11) and ph, for any

h ≥ 1, we first have dk = Qkyk, so that ‖dk‖ = ‖yk‖ ≤ ‖T −1
k ‖ · ‖∇f (xh)‖ ≤

‖S−Tk B−1
k S

−1
k ‖‖∇f (xh)‖ ≤ ‖S−1

k ‖2 · ‖B−1
k ‖ · ‖∇f (xh)‖. Now, following the

analysis of Proposition 3.2 in [5] we can similarly prove that ‖S−1
k ‖ ≤ β, where

β =
(
m1

ω̄ηε

)

+
[
k −m1

2
max

(

4 max
�
{|λ�(∇2f (xh))|}

(
1

ε
+ ω̃η

)

,

16

ε2ξ
max
�
{|λ�(∇2f (xh))|}2

)]

+ k,

being

ω̄ = min
i is 1×1 pivot step

{ωi}

and

ω̃ = max
i is 2×2 pivot step

{ωi}.
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In addition, we also need to provide a suitable bound for the diagonal blocks of B−1
k .

From the proof of Proposition 3 and the compactness of � we can easily obtain the
next results:

• for 1× 1 pivot: δ−1
i is a diagonal block of B−1

k and |δi |−1 ≤ 1/ω̄ηε2,
• for 2× 2 pivot: the reader can refer to the proof of Proposition 3.2 in [5]. ��

4 Conclusions

In this paper we have considered efficient Truncated Newton methods for large scale
unconstrained optimization problems, where the effective use of a modified Bunch
and Kaufman decomposition within the SYMMBK algorithm is considered. We
slightly modified the test performed at each iteration of the Bunch and Kaufman
decomposition, using the guidelines in [5], so that a more general framework with
respect to the last paper is obtained. In particular, we were able to prove that the
numerical efficiency of the SYMMBK routine can be suitably coupled with some
mild arrangements on the Bunch and Kaufman decomposition, so that the computed
search direction for the optimization framework is gradient-related.

We are persuaded that further extensions can be studied, in the case the Truncated
Newton method in hand also claims for the global convergence to limit points which
satisfy both first and second order necessary optimality conditions. As well known,
the accomplishment of the last result needs an accurate analysis of the normalized
curvature of the Hessian matrix at any iterate, along any nonzero vector.
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for a Real-World Parallel Machine
Scheduling Problem with Workforce
and Precedence Constraints

Giulia Caselli, Maxence Delorme, Manuel Iori, and Carlo Alberto Magni

Abstract In this work, we consider a real-world scheduling problem occurring
in the engineering test laboratory of a multinational company producing hydraulic
components for motion systems. Similar problems have been solved in the literature
under the framework of resource constrained parallel machine scheduling problems.
In our work, the tests on the hydraulic components are the jobs to be scheduled. Each
job must be processed on a machine and requires an additional human resource
to prepare the machine and supervise the job. Machine and workforce eligibility
constraints are also included. Release and due dates are given for jobs. The aim is to
minimize the total weighted tardiness. Each job has a processing time expressed in
working days that depends on the machine and requires a fixed number of hours
per day for its assigned worker. Moreover, precedence and contiguity relations
between jobs must be respected. We propose a Mixed Integer Linear Programming
formulation to model the problem and demonstrate its effectiveness on both real-
world and randomly generated instances.
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1 Introduction

In the context of automation and other industries, engineering test laboratories are
crucial to deliver high-quality and customized products on time to the market.
Multiple resources as machines and workforce with eligibility restrictions, job
requirements and additional constraints make test laboratory scheduling a complex
and time-consuming activity if done manually. In the peculiar case of hydraulic
systems test laboratories, the energy consumption levels are significantly high due
to huge machines working without interruption with extreme levels of pressure
on hydraulic circuits. Therefore, scheduling the tests in an effective manner is
critical for both economic and environmental issues and automated decision support
systems for activity scheduling is a common and urgent need.

In this paper, we focus on a real-world scheduling problem for an engineering test
laboratory located in Italy and serving the global market of a multinational company
producing hydraulic components for motion systems. Our scheduling problem
requires to schedule a set of jobs on a set of machines (also called workbench) with
an assigned worker (also called technician) and respecting resource constraints and
release dates. Each job has a processing time that depends on the assigned machined
and a weight representing the relative priority of the job. The goal is to minimize
the total weighted tardiness considering jobs for a full scheduling over a long-term
period. Further constraints will be detailed later in this work.

Our main reference will be the literature on the Resource Constrained Parallel
Machine Scheduling Problem (RCPMSP), where a set of jobs must be processed
on a set of machines with the requirement of an additional resource. We will also
refer to a specific case of the well-known Resource Constrained Project Scheduling
Problem (RCPSP) having some elements in common with our problem.

In our work, we consider a RCPMSP with many additional constraints repre-
senting our real environment. First, we introduce resource eligibility constraints
as machines are unrelated parallel (i.e., different features that limit their usability
to any kind of job). Also, we consider workers’ skills and availability during the
considered period and assign a specific worker to each job. We define two types
of relations between jobs: In precedence relation, two jobs must be processed in a
given order but without restriction on the machine (i.e., different types of test on the
same product). In contiguity relation, two jobs must be processed in a given order
and on the same workbench without any other job in between (i.e., similar repeated
tests on the same product) but allowing idle times.

Our goal is to solve the real-world scheduling problem proposed by our industrial
partner by means of a Mixed Integer Linear Programming (MILP) model able to
provide an optimal solution for the full annual scheduling of activities. The model
can be easily generalized to include further constraints, thus making it a powerful
tool for addressing several real-world situations. In this direction, our final goal is
to further test our solution method for more general applications.

The rest of the paper is organized as follows. A concise description of the related
literature is given in Sect. 2. In Sect. 3, we provide a detailed description of the
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problem and present our mathematical model. Section 4 reports the results obtained
by the proposed solution method on our real-world instance and on randomly
created instances with the aim of evaluating the model performance and scalability.
Concluding remarks are provided in Sect. 5.

2 Concise Literature Review

The RCPMSP is a scheduling problem extensively studied in the literature and
representing many real-world applications, where additional resources are consid-
ered in the scheduling of jobs on machines. A survey on this class of problems
is provided by Edis et al. [1]. Our focus is on RCPMSPs with unrelated parallel
machine environment (i.e., processing times depend on independent machines) that
are mentioned to be rarely studied in the literature. Pfund et al. [2] provides a review
for this class of problems. Processing, discrete and renewable additional resources
(e.g., workers) are involved in the models studied by Fanjul-Peyro et al. [3], where
jobs are assigned directly to machines by mean of binary integer variables and
additional constraints guarantee that sufficient additional resources are available in
every time slot.

Machine eligibility constraints are introduced by further studies to model more
realistic scheduling environments, where each job is allowed to be processed only
on a subset of machines. Many real-world scheduling problems including machine
eligibility are modelled and solved in the literature, e.g., see [4].

A common objective function in RCPMSPs is the minimization of the makespan,
which is easier to handle with respect to due-date-based criteria as mentioned by
Edis et al. [1]. However, other objective functions are proposed in the literature. In
their Parallel Machine Scheduling (PMS) problem, [5] minimize the total absolute
deviation of job completion times from due dates penalizing both earliness and
tardiness. Other studies only consider tardiness, such as [6] who studied a PMS
problem with the goal of weighted tardiness minimization subject to machine eligi-
bility constraints, and [7] where the total weighted squared tardiness is minimized.

Many exact approaches and heuristic procedures are proposed in the literature
to solve PMS problems, most of which are proven to be NP-hard. Among many
mixed integer programming formulations, time-indexed models have been used in a
variety of machine scheduling problems typically in a single machine environment,
as stated in the survey by Unlu and Mason [8]. More recent studies include time-
indexed variables in multiple machine environments. Some works, including [9], use
binary time-indexed variables to indicate whether a job starts at a specific time slot.
Fanjul-Peyro et al. [3] use similar variables to indicate the job completion time. A
general model reported by Edis et al. [1] introduces three-index binary variables to
state whether a job completes its processing time on a specific machine at a specific
time. Heuristic procedures are commonly applied to PMS problems however, they
are not of interest in this part of the study.
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Precedence constraints are rarely included in machine scheduling, as stated by
Edis et al. [1]. Indeed, they commonly appear in project scheduling problems, where
some activities have to be grouped and scheduled and scarce resources have to be
allocated, subject to various constraints. A reference for the traditional RCPSP is
[10].

The Test Laboratory Scheduling Problem (TLSP) has been very recently studied
by Mischek and Musliu [11] as an extension of the RCPSP and inspired by a real-
world industrial context similar to the one of our interest. In the TLSP, tasks have
to be grouped into jobs and afterward jobs have to be scheduled assigning a mode,
resources and time slots, subject to various constraints. In the restricted scheduling
sub-problem, also defined as TLSP-S, precedences and links are required between
some tasks, that is, a given set of predecessors must be completed before starting the
task and a set of tasks must be assigned to the same human resource. Two similar
conditions occur between jobs in our problem.

We also mention some original machine scheduling problem formulations related
to real-world scenarios. Edis and Ozkarahan [12] study a RCPMSP with machine
eligibility in a molding department, providing an Integer Programming formulation
and alternative CP-based approaches proven to be effective in some computational
experiments. A work shift scheduling problem in a potash mine with setup times and
many additional constraints is investigated by Seifi et al. [13]. The authors provide
a MILP model with four-index binary variables and show how their formulation
outperforms some heuristic procedures from the literature.

3 Problem and Method

In this section, a detailed description of the problem is provided, followed by the
proposed mathematical model.

3.1 Problem Description

In the considered problem, there is a set J of jobs to be scheduled. Each job must be
processed on one machine among the set M of available machines and requires
one worker among the set K of available workers to prepare and supervise the
processing of the job. As each job has different machine requirements and requires
a set of human skills, compatibility constraints are also included. We define a set
of machines Mj that are compatible with job j and a set of workers Kij that are
compatible with job j and machine i. A set T of working days is given, representing
the time horizon of the scheduling. A processing time pij expressed in working
days is required to process job j on machine i (i.e., unrelated parallel machines).
Each job has a weight wj representing the priority of job j and requires tj hours
of human work per day. Each job has a release date rj defined by the arrival of
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material (i.e., product) for testing and a desired due date dj . The number of working
hours availability ukt is given for each technician k and for each working day t
of the considered period. Finally, precedence and contiguity relations between jobs
are defined: A precedence relation (j, l) exists if job l can only start once job j
is completed. A contiguity relation (j, l) occurs if jobs j and l must be processed
on the same bench and in the specified order. Idle time is allowed between two
contiguous jobs, but not the processing of any other job. Each job can have at most
one contiguous job (i.e., 0 ≤ |Qj | ≤ 1, where Qj is the set of jobs contiguous to
job j ), while more than one precedence relation per job is allowed (i.e., |Pj | ≥ 0,
where Pj is the set of jobs that follow job j ).

3.2 Mathematical Model

We introduce a set of four-index binary variables xijkt that take value 1 if job j starts
on day t on machine i with worker k, and 0 otherwise (j ∈ J, i ∈ Mj, k ∈ Kij , t ∈
T , t ≥ rj ), a set of continuous variables Cj representing completion time of job j
and a set of continuous variables Tj defining the tardiness of job j (i.e., equal to
Cj − dj if Cj > dj , and 0 otherwise). We also set

Sijt =
{
{0, . . . , t} if t ≤ pij
{t − pij , . . . , t} if t > pij

where t = 0 is the first time slot in the considered time horizon. Every set Sijt is
used in the model to define the set of starting times that would cause machine i to
be occupied if job j starts in a time slot included in the set.

The unrelated parallel machine scheduling problem with workforce and prece-
dence constraints is defined as follows:

min
∑

j∈J
wjTj (1)

subject to

∑

i∈Mj

∑

k∈Kij

∑

t∈T
xijkt = 1 j ∈ J (2)

∑

j∈J

∑

k∈Kij

∑

τ∈Sijt
xijkτ ≤ 1 i ∈ M, t ∈ T (3)

∑

j∈J

∑

i∈Mj

∑

τ∈Sijt
tj xijkτ ≤ ukt k ∈ K, t ∈ T (4)

Cj =
∑

i∈Mj

∑

k∈Kij

∑

t∈T
xijkt (t + pij ) j ∈ J (5)
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Cj ≤ Cl −
∑

k∈Kil

∑

t∈T

∑

i∈Ml
pilxilkt j ∈ J, l ∈ Pj ∪Qj (6)

∑

k∈Kij

∑

t∈T
xijkt =

∑

k∈Kil

∑

t∈T
xilkt i ∈ M, j ∈ J, l ∈ Qj (7)

∑

k∈Kij ′

∑

j ′∈J/{j,l}
xij ′kt ≤ 1−

∑

k∈Kij

t∑

t ′=0

xijkt ′ +
∑

k∈Kil

t∑

t ′′=0

xilkt ′′

i ∈ M, t ∈ T , j ∈ J, l ∈ Qj (8)

Tj ≥ Cj − dj j ∈ J (9)

xijkt ∈ {0, 1} j ∈ J, i ∈ Mj, k ∈ Kij , t ∈ T (10)

Cj , Tj ≥ 0 j ∈ J (11)

The objective function (1) minimizes the total weighted tardiness. Constraints (2)
ensure that each job is processed exactly once and is assigned exactly to one machine
among the set of compatible machines and one worker among the set of compatible
workers. Constraints (3) guarantee that each machine processes at most one job at
the same time (i.e., one job per day). Constraints (4) guarantee that the upper limit of
available working hours per day is not exceeded for each technician. Constraints (5)
define the completion time of each job (i.e., starting time plus processing time
on the assigned machine). Constraints (6) guarantee that the order between jobs
defined by precedence and contiguity relations is respected. Constraints (7) and (8)
refer to contiguity relations between jobs (i.e., processing on the same machine and
without any other job in between). Constraints (9) define jobs’ tardiness Tj . Finally,
constraints (10) state that variables xijkt are binary and constraints (11) state that
variables Cj and Tj are continuous and positive.

4 Computational Experiments

In this section, we study the performances of the model (1)–(11) on a real-world
instance from our industrial partner. Then, we discuss how we generated random
instances used for the experiment and present the results. Our model was coded in
Python 3.8 and solved with Gurobi 9.1.2. on a virtual machine Intel(R) Xeon(R)
Gold 6130 with 2.1 GHz and 16 GB of RAM memory, running under Windows
Server 2019 Standard. A time limit of 900 seconds per instance was imposed on the
solver.
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4.1 Results on the Real-World Instance

A real instance for the whole year 2019 including 97 jobs, 27 machines, 7 workers,
and 400 working days was solved by the model to optimality in 228 seconds.

We consider 400 working days since there is a delay from the previous year that
postpones many of the release dates from January 1, 2019 and jobs are scheduled
five days per week. Eight hours per day is the maximum working time for every
worker, and different workers’ availability is given (e.g., 0 hours of availability
during holidays). Machines can process at most one job per day. Release dates
are spread during the entire year until day 230 over 400. Compatibility relations
are given by the company based on real data. Two types of jobs are defined based
on workers’ working hours required per day: Performance tests require constant
supervision of workers (i.e., eight hours per day). Endurance tests are usually longer
than one week and do not require constant supervision of technicians (i.e., one
hour per day as estimated by the company). Four levels of priority are translated
into weights (wj ): high (1), medium-high (0.75), medium-low (0.5), and low (0.25)
priority. Even though processing times depend on machines in the general problem,
we consider equal processing times for every machine in our data as provided by the
company. The average processing time is 10 working days. Finally, six precedence
relations and 34 contiguity relations must be respected by our solution.

Comparing the solution obtained by the model with the solution implemented
manually by the company we obtain an overall improvement of 80% on the weighted
tardiness. In our solution, 28% of jobs are in delay against the 63%. The average
delay of the model solution is equal to 10 days, while 43 days of average delay
result in the real solution. Despite these outstanding results, several factors were not
taken into account by our model: for example, the difference in jobs’ processing
time among machines, and the delayed release dates. Moreover, we overestimated
the machine availability at the beginning of the year since we did not consider the
delayed tasks from late 2018.

4.2 Random Instance Generation

Because no similar scheduling problems have been solved in the literature to the
best of our knowledge, we have designed an ad-hoc data-generator to create random
instances with different sizes (but inspired by our real-world case).

We consider one year of scheduling demand for every instance (i.e., time horizon
equal to 400 days) varying the number of jobs, machines, and workers. We consider
the following factors for every set of instances:

1. Three binary compatibility matrices have been randomly generated to define
resource eligibility constraints in the following way: For jobs/machines compat-
ibility, we use the same compatibility distribution as the one observed in our
real-world case (i.e., 30% of machines compatible with every job), meaning



68 G. Caselli et al.

that, for each job, we randomly select 0.3 × |M| compatible machines. For
jobs/workers and machines/workers compatibility matrices we follow a similar
procedure with compatibility 50% and 70%, respectively.

2. Release dates rj are generated with U(0, 230) (i.e., a random integer uniformly
distributed between day 0 and day 230). Due date of job j is generated as dj =
rj + U(30, 90).

3. Parameters tj are randomly generated as equal to 8 with 80% of probability, 1
otherwise.

4. Jobs’ weights are randomly generated as 1, 0.75, 0.5, 0.25 with probabilities
40%, 30%, 20%, 10%, respectively.

5. Processing times pij are randomly generated with uniform distributions: U(1,
10) for perf ormance tests, U(10, 50) for endurance tests.

6. The number of precedence relations is a random integer between 0 and �njobs10 �;
the number of contiguity relations is a random integer between 0 and �njobs5 �. We
discard contiguity relations that would cause the instance to be infeasible.

Other factors may cause the generation of infeasible instances (e.g., not enough
machines or workers to complete all the tasks before the time horizon). Infeasible
instances are discarded.

4.3 Results on Randomly Generated Instances

The computational results on our mathematical model are summarised in Table 1.
We have considered “small”, “medium”, “large”, and “very large” groups of
instances. Each group is called N. jobs-N.machines-N.workers based on the number
of jobs, benches, and workers it contains. Average results shown in Table 1 are
computed for each group on the first five feasible instances solved by the solver. In
particular, we show (i) the number of instances solved to optimality ( # Opt.), (ii)
the average Upper Bound (UB), the average Lower Bound (LB), and the computed
Gap (Gap = 100× (UB−LB)/UB%), (iii) the average CPU time (i.e. time spent
by the solver for the optimization process) expressed in seconds, (iv) the average
number of variables, constraints, and non-zero coefficients of the model.

The average gap is equal to 0% for 12 out of 15 groups (i.e., all instances are
solved to optimality). Groups with the highest ratio between number of jobs and
number of machines (i.e., equal to 20) are the most critical ones to solve with the
highest average CPU time and gap. Moreover, from Fig. 1 we derive that CPU time
and solution value strongly depend on the instance generation procedure.

To conclude, our model is able to solve the selected groups of instances in most
cases to optimality. We plan to work on the model to improve its computational
performance as for bigger instances (e.g., with 200 jobs) it is not always able to find
a feasible solution within our time limit.



MILP for a Real-World Parallel Machine Scheduling Problem 69

T
ab

le
1

Su
m

m
ar

y
of

av
er

ag
e

re
su

lt
s

fo
r

ev
er

y
gr

ou
p

of
in

st
an

ce
s

Pa
ra

m
et

er
s

A
V

G
re

su
lt

sa

Si
ze

G
ro

up
C

ou
nt

#
O

pt
.

U
B

L
B

G
ap

(%
)

C
PU

ti
m

e
(s

)
nV

ar
nC

on
st

r
nN

Z

Sm
al

l
25

-5
-5

5
5

37
.9

5
37
.9

5
0%

10
.0

6
32

82
0

88
91

19
13

71
4

M
ed

iu
m

50
-5

-5
5

5
10

0.
65

10
0.

65
0%

25
.0

8
66

93
7

10
57

1
29

74
13

6

50
-1

0-
5

5
5

23
.9

5
23
.9

5
0%

21
.3

0
10

02
41

15
77

9
38

19
79

8

50
-1

0-
7

5
5

33
.5

5
33
.5

5
0%

15
.6

4
11

86
14

12
56

8
38

86
18

5

L
ar

ge
10

0-
5-

5
5

1
40

2.
35

30
6.

35
19

%
75

5.
86

13
39

04
11

12
3

51
16

71
5

10
0-

10
-5

5
5

74
.0

5
74
.0

5
0%

83
.4

0
19

96
78

25
55

9
87

04
07

4

10
0-

10
-7

5
5

12
3.

60
12

3.
60

0%
64
.1

7
24

08
24

14
32

4
79

93
41

2

10
0-

20
-5

5
5

46
.7

0
46
.7

0
0%

86
.7

7
41

25
46

27
95

2
14

02
01

07

10
0-

20
-7

5
5

73
.4

0
73
.4

0
0%

11
2.

50
47

72
80

49
60

5
20

58
20

06

10
0-

20
-1

0
5

5
62
.5

0
62
.5

0
0%

12
6.

80
59

44
67

58
82

6
27

13
77

96

V
er

y
la

rg
e

20
0-

10
-7

5
0

17
66
.8

0
25

9.
30

81
%

90
0.

84
47

91
44

18
63

8
14

88
51

07

20
0-

20
-7

5
4

16
9.

75
16

3.
25

2%
57

1.
83

94
41

39
62

74
4

37
74

58
09

20
0-

20
-1

0
5

5
14

7.
35

14
7.

35
0%

36
2.

23
11

62
03

8
63

94
5

45
41

16
08

20
0-

40
-7

5
5

13
2.

05
13

2.
05

0%
58

7.
39

19
03

13
1

99
61

7
66

62
14

44

20
0-

40
-1

0
5

5
15

5.
60

15
5.

60
0%

64
9.

22
23

44
44

6
20

02
64

11
81

29
43

0
a A

ve
ra

ge
re

su
lt

s
on

fiv
e

in
st

an
ce

s
pe

r
gr

ou
p



70 G. Caselli et al.

Fig. 1 Boxplots for the different groups of instances

5 Conclusions

In this paper, we have studied a real-world scheduling problem with unrelated
parallel machines and workforce occurring in an engineering test laboratory.
Eligibility constraints are included in our problem since incompatibilities occur
between jobs and resources and between resources (i.e., machines and workforce).
We have also considered precedence and contiguity relations between jobs.

We have proposed a Mixed Integer Linear Programming formulation that
minimizes the total weighted tardiness, while satisfying all the given constraints.
With the presented model, we were able to solve a real-world instance representing
the scheduling demand of the whole year 2019 in 228 seconds of CPU time. The
solution obtained an improvement of 80% on the total weighted tardiness. The
proposed mathematical formulation can be extended to more general versions of
scheduling problems (e.g., unrelated parallel machines, additional resources).

Further computational experiments on randomly created instances have shown
good scalability of the model on small- and medium-sized instances and a worse
performance on large-sized instances up to 200 jobs. Computational time limits
were reached when additional larger instances were tested.

Obtaining an optimal solution is important for our industrial partner when
scheduling their full annual activity. One direction for our future research will be
to improve the performance of the proposed mathematical model.

Moreover, since rescheduling is required in practice on a daily or weekly
basis due to several types of perturbation such as delayed release dates and
machines’ failures, we plan to continue our research focusing on decomposition
and metaheuristic procedures able to find good solutions in shorter times both
for the scheduling and the related rescheduling problem. We have obtained some
preliminary good results on a constructive heuristic algorithm that we plan to
improve with local search.

Acknowledgment We thank Dana Motion Systems Italy S.r.l. for describing the real-world
problem and providing us with the data.
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Scheduling K-mers Counting
in a Distributed Environment

Lavinia Amorosi, Lorenzo Di Rocco, and Umberto Ferraro Petrillo

Abstract Alignment-free algorithms are used in bioinformatics to efficiently eval-
uate the similarity between pairs of genomic sequences. They work by extracting
and aggregating features from the sequences under study and, then, by comparing
them using alignment-free functions. When working on large collections of huge
sequences, it is possible to improve the performance of these algorithms by execut-
ing the extraction and the aggregation steps, in parallel, across the computing nodes
of a distributed system. In this work, we address the problem of finding the optimal
schedule to use for assigning to computing nodes the features to be aggregated, in
order to minimize the maximum aggregation time. For this purpose, we consider
one exact mathematical programming approach and two approximated ones, based
on the Longest Processing Time heuristic. These have been implemented using
the Gurobi solver, and compared to the algorithm used by the Spark distributed
computing framework for assigning tasks to computing nodes. The experiments
have been performed on some large collections of genomic sequences well-known
in literature. The results show that the proposed approaches perform favourably
with respect to the scheduling strategy used by Spark, in terms of quality of the
solution. In particular the exact approach, run up to the time limit, allows to reduce
the makespan up to 77.11%, when considering the largest instance tested. However,
the required computational time of the exact approach is not compatible with its
online application. The approximated approaches appear more promising in terms
of computational time, while providing good quality solutions.
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1 Introduction

Sequence alignment is a fundamental task in bioinformatics. It is used to arrange
genomic or proteomic sequences so to as to identify matching or similar regions.
These could be, in turn, due to structural, evolutionary or functional relationships
between the considered sequences. The computational cost of sequence alignment
algorithms led to the introduction of alternative sequence comparison methods
based on an alignment-free approach. By this term, we denote those algorithms
that determine the similarity between pairs of sequences by, first, extracting a set of
features from each sequence and, then, by comparing features instead of the original
sequences.

Despite their improved efficiency, even alignment-free algorithms may fail to
deliver results in an acceptable time, especially when working with large collections
of (possibly huge) genomic sequences. Distributed computing can help to signif-
icantly reduce the execution time of these algorithms, by splitting the individual
steps they require into independent processes that are executed as tasks on the
nodes of a distributed system. This approach has been repeatedly studied in the
scientific literature and there are several contributions such as [15, 16] highlighting
the potential performance improvement from this approach. However, we note that
this speedup is only possible if the running algorithm is able to use all available
computational resources, simultaneously, by providing each computing node with
approximately the same workload.

In our work, we focus on the optimization of a particular task that exists in
distributed alignment-free algorithms. It is the task of choosing which computing
node is responsible for collecting and aggregating all occurrences of the same
feature. This is a fundamental task as a good allocation allows for an even workload
distribution, thus exploiting the intrinsic parallelism of a distributed system and
reducing the overall completion time.

To this end, we note that the assignment methods commonly used by distributed
alignment-free algorithms are those available, by default, from the underlying
distributed computing framework. It turns out that these methods do not provide an
even distribution of workload, when applied to features extracted by an alignment-
free algorithm.

In this paper, we present two optimization approaches and compare their
performance with that of the standard assignment method available in the Apache
Spark platform [17] and used by some of the main alignment-free distributed
algorithms. All experiments have been performed by considering, as datasets, the
features extracted from some collection of genomic sequences commonly used for
benchmarking alignment-free algorithms.
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2 Alignment-Free Algorithms

The term alignment-free (AF, for short) refers to a class of algorithms, that are
useful for identifying regions of similarity between different genomic or proteomic
sequences, and are an alternative to sequence alignment-based methods. These
approaches include, e.g., methods based on exact or approximate k-mer counts,
length of common substrings, micro-alignments, and many others (we refer the
interested reader to [18] for a thorough review of existing approaches).

The most popular AF approach is, for sure, the one based on k-mer counts [13].
Let� be an alphabet and S be a collection of sequence of characters drawn from�.
We define k-mer as any contiguous substring of length k in Si , with Si ∈ S. In a few
words, AF algorithms establish the distance/similarity between pairs of sequences in
S by comparing their corresponding k-mers frequency tables, using an AF function.
There is a vast literature of functions for this purpose, including functions based on
the Euclidean distance [18] and on the D2 distance [18].

The whole process of AF evaluation can be summarized in two steps. In the
first step, the distinct k-mers that exist in each sequence Si of S are extracted
and counted. As a result, a k-mer frequency table is available for each of the
considered sequences. In a second step, k-mer frequency tables of distinct sequences
are evaluated pairwise using an AF function. As a result, a similarity/distance matrix
is available, which indicates the AF distance/similarity between Si and Sj at position
(i, j).

3 Related Works

The problem we face in this paper can be modeled as a scheduling problem on
identical parallel machines, i.e., P||Cmax. This problem is NP-hard and has been
extensively studied in combinatorial optimization literature, because of its many
different applications. Most of the proposed approaches consist of approximation
algorithms like: [7, 8]. The pioneering approximation algorithm to solve this
problem is the Longest Processing Time (LPT) rule, proposed by Graham [10]. It
consists of sorting an input set of n jobs in non-ascending order by their processing
times pj (j = 1, . . . , n) and then, given the sorted job set, assigning one job at a
time, to the machine whose workload is the lowest so far. Due to its simplicity and
good performance, especially when the number of jobs becomes larger, many exact
and heuristic algorithms have been developed using this method. Dosa [5] and Dosa
and Vizvari [6] are examples of approaches explicitly based on this rule.

As for exact approaches, the literature is smaller. We mention [4], for approaches
based on the branch-and-bound algorithm, [14], for an approach based on the
cutting-plane algorithm, and [3], for an approach consisting of a scatter search
heuristic followed by an exact algorithm based on a specialized binary search and a
branch-and-price scheme. The latter uses the relationship between the P||Cmax and
the well-known bin packing problem (BPP).
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Approximation algorithms have also been designed, that exploit the relation
between P||Cmax and BPP. We can mention MULTIFIT [1]. They provide better
worst-case performance than the LPT rule, but at the cost of higher running times.

In literature, also polynomial time approximation schemes (PTASs) have been
derived for this problem. The most recent one has been proposed in [12].

Finally, in a recent work by Della Croce and Scatamacchia [2], a revisited LPT
heuristic rule, called SLACK, has been proposed which improves the approximation
ratio derived by Graham, but keeping the same computational complexity.

4 Methods

4.1 Distributed Counting of k-mers

Counting the k-mers present in an input sequence is apparently a very simple task.
All that is needed is a linear scan of the input sequence and an associative data
structure to store the frequencies for each k-mer. The problem turns out to be quite
complex when solved on a distributed environment.

Suppose we have an input collection S of genomic sequences. We are interested
in evaluating the matrix Df , where Df (i, j) reports the AF distance/similarity
between sequences i and j , as evaluated by the AF measure f , with i, j ≤ S.
We also assume that this evaluation is to be performed on a distributed system of
n computing nodes, so as to scale the procedure execution time up to 1/n the time
required to fulfill the same procedure on a non-distributed setting.

The challenge here is to implement the procedure outlined in Sect. 2 by using all
n computing nodes simultaneously, in all steps.

A typical distributed layout, followed by distributed algorithms as implemented
in [15, 16], assumes that S has been partitioned into n parts, of approximately equal
size, each of which is associated with a particular computing node. Furthermore,
the range of 4k possible k-mers is partitioned in m non-overlapping bins of size
4k
m

, each identified by a unique id number, thanks to a binning function. Then, the
AF evaluation procedure is organized into the following four distinct and sequential
distributed tasks:

• Task 1: K-mers extraction and partial counting.Each node extracts and counts
k-mers from its part of the input sequences. For each input sequence i, the
outcoming counts are recorded in a sequence of m frequency tables (i.e., one
for each bin). Upon completion of this task, a set of (key,value) pairs is returned
containing, as key, the bin id, and, as value, the table reporting the corresponding
sequence id and frequency counts.

• Task 2: K-mers counts aggregation. All k-mers frequency tables that have the
same bin id are sent to the same computing node where they are aggregated,
according to the sequence they refer to.
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• Task 3: AF function partial evaluation Each node performs a partial evaluation
of the AF function of choice, by considering the k-mers frequency tables related
to the bins it has been assigned. When finished, this task will return a list of (key,
value) pairs having, as key, the id of the two sequences being considered and, as
value, their partial AF similarity/distance evaluation.

• Task 4: AF function complete evaluation All partial AF similarity/distance
evaluations targeting a same pair of input sequences are sent to a same computing
node where they will be aggregated thus returning, as a result, their similarity/dis-
tance.

Regarding this procedure, provided that input sequences have been partitioned in
roughly equal parts, we observe that Task 1 can be executed almost perfectly in
parallel, thus has an execution time that is typically about 1/n of the time required
on a single computing node. We also observe that Tasks 3 and 4 have a very short
execution time, since the number of partial distances/similarities to be processed in
a typical setting is orders of magnitude smaller than the number of k-mers they
refer to. The remaining task, Task 2 is crucial for two reasons. First, the data
transfer operation required to send all frequency tables sharing the same bin id to
a computing node is typically very time consuming. Second, a wrong assignment
of bins to computing nodes, can lead to an unbalanced workload distribution where
some nodes are overloaded by a large amount of k-mers frequency counts to process
and others have very little work to do.

4.2 Scheduling Models

We model the problem as an identical parallel machines scheduling problem with
no preemption, where given a set of n jobs, having an associated processing time pj
(j = 1, . . . , n), and given a set of m parallel identical machines, each job must be
assigned to an exactly one machine so as to minimize the maximum completion time
(makespan). In our case, jobs refer to the work needed for counting the frequencies
of distinct k-mers existing in one particular bin. The time required to process a job is
approximated to the number of k-mers in the corresponding bin. Finally, machines
represent the computing nodes in charge of processing bins.

The problem, denoted as P ||Cmax , is NP -hard [9] and can be mathematically
formulated as follows:

minCmax (1)

Cmax ≥∑N
j=1 pjxij ∀i ∈ {1..m} (2)

∑m
i=1 xij = 1 ∀j ∈ {1..N} (3)

xij ∈ {0, 1} ∀i ∈ {1..m} j ∈ {1..N} (4)
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where Cmax is the makespan, N is the number of jobs, m is the number of
machines, pj is the processing time of job j , xij is the decision variable. The value
is 1 if the job j is assigned to machine i, otherwise it is 0. We denote this model as
Wopt .

Due to its complexity, for this problem different approximated and heuristic
algorithms have been proposed in literature. Among them, one of the most known is
the LPT rule, which consists in sorting jobs with respect to their processing times
in non-increasing order and then iteratively assigning the next job to the machine
whose current completion time, that is the sum of the processing times of jobs
assigned to that machine, is minimum. We denote this model asWlpt .

The worst-case performance ratio of LPT is equal to 4
3 − 1

3m. In [2], the authors
propose a revised version of this rule, called slack. This latter consists, first, in
applying the LPT rule for sorting a set of jobs, then, in splitting this set in tuples
ofm consecutive jobs (1, . . . ,m;m+ 1, . . . , 2m; etc.), to be sorted according to the
difference between the longest and the shortest job in the tuple. Then, following this
new ordering, each unscheduled job is assigned to the first available machine, that
is a list scheduling algorithm is applied. The approximation ratio of this modified
version of LPT is 4

3 − 1
3(m−1) for m ≥ 3 and 9

8 for m = 2. We denote this model
Wlpt .

5 Experimental Evaluation

In this section, we report the results of the experiments we conducted to evaluate
the performance of the scheduling models we presented in Sect. 4.2, in terms of
makespan and model computation time. We also give some insights into the impact
of the choice of the k-mers length (i.e., parameter k) on the performance of each
scheduling model considered.

5.1 Experimental Setup

We consider three datasets, that are commonly used in the literature for benchmark-
ing AF functions (see, e.g., [16]). The first, here denoted Yersinia, contains the
assembled sequences of 8 bacteria strains. The average length of each sequence
is about 4,600,000 characters, giving a total size of about 37,000,000 characters.
The second, here denoted E. coli, contains the assembled sequences of 29 E.
coli/Shigella strains. The average length of each sequence is about 5,000,000
characters, giving a total size of about 145,000,000 characters. The third, here
denoted Plants, contains the unassembled set of about 1,900,000 reads derived from
14 sequences of the Plants taxonomic group. The average length of each read is 150
bp, giving a total size of about 290,000,000 characters.
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As a preliminary step, we extract the k-mer counts from these datasets using
the FADE framework [16]. To investigate the impact of the k-mer length on the
performance of the considered models, we consider two possible assignments for
k: 11, 25. Then, we process the outcoming k-mers distributions with the considered
models, i.e., Wopt , Wlpt and Wslack. The Wopt model has been implemented using
the Gurobi optimization solver [11]. The remaining models have been coded as
Python applications.

5.2 Preliminary Analysis: The Role of k in Determining the
k-mers Distributions

The length of the k-mers is a key parameter for many AF methods. Fixed an
input genomic sequence, smaller values of k reduce the number of possible distinct
substrings, and thus increasing the number of high frequency k-mers. Conversely,
larger values of k imply a larger number of unique k-mers, which have a lower
frequency.

The binning function typically used by distributed k-mer counting systems is
simply based on applying a standard hash function to the numerical encoding of the
statistic (i.e., the k-mer), modulo the number of bins. Indeed, this choice could lead
to an unbalanced partitioning where multiple large bins are assigned to the same
node of the distributed system, affecting the overall completion time. We observe
that this data skew is also strongly affected by the length of the k-mers.

To investigate this dependency, we performed a preliminary statistical analysis
on the distributions that arise with increasing values of k, when we extract k-mers
from the considered datasets. We report in Fig. 1 the results for the (Plants) dataset.
Smaller values of k determine a histogram distributed over a larger range with a
higher value of the standard deviation σ , indicating significant differences between

Fig. 1 Histograms of the bins frequencies arising from Plants, with jobs = 768 and different
values of k, along with some statistics about these distributions
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bins frequencies. Moreover, the value of μ tends to be larger than the median value,
confirming the presence of a large number of bins with a low workload, versus a
group of overloaded bins.

On the other hand, as k increases, the mean value of the distribution is more
representative since the k-mers are scattered more homogeneously across the bins.
Hence, there is a significantly narrower range of variation.

5.3 Experimental Results

We divide the discussion on two parts. First, we present the results of the direct
comparison between the performance of the considered models and that of the
scheduling approach of distributed k-mer counting frameworks, here denotedWstd .
We then analyze the behavior of these approaches as a function of k.

5.3.1 Comparison of the Overall Performance

Table 1 reports the results of the experiment described in Sect. 5.1, for the specific
case of k = 11, in terms of makespan and model computation time. As a first
observation, we note that the exact model (i.e., Wopt ) manages to significantly
improve the quality of the solution with respect to Wstd . However, we note that
this significant performance gain requires a very long solution time, which makes
this option less attractive for a real use in a distributed k-mer counting framework.

If we instead consider the performance of the heuristic solution (i.e.,Wslack), we
find that its quality is not that far fromWopt , but with a much smaller solution time.
For the sake of readability, we omit to report the case ofWlpt , since its performance

Table 1 Performance
improvement provided by
Wopt and Wslack , in terms of
makespan percentage
reduction with respect to
Wstd , when considering
increasing values of m and
jobs, where the jobs is a
function of m. For Wstd , we
report the makespan. For
Wopt and Wslack , we also
report the solution time, in
seconds

m
jobs

Wstd

Wopt Time Wslack Time

(w.r.t m) (%) (s) (%) (s)

128 1x 894,585 2.60 0.750 0.00 0.006

2x – 38.66 2 38.66 0.001

4x – 66.72 4 66.72 0.002

8x – 69.51 79 69.51 0.004

256 1x 548,769 0.00 3 0.00 0.002

2x – 47.46 10 45.74 0.004

4x – 75.07 761 74.58 0.011

8x – 75.13 1075 75.11 0.007

512 1x 297,753 0.00 45 0.00 0.082

2x – 66.27 464 66.27 0.020

4x – 67.46 1756 67.46 0.031

8x – 77.08 7223 77.05 0.053
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is very close to that of Wslack. Moreover, as expected, the table shows that setting
the number of jobs very close to the number of machines yields a naive scheduling
approach, since the makespan coincides with the completion time of the longest job.
Increasing the number of jobs, gives better schedules. However, we also observe
that, except for the case jobs = m, using a larger number of jobs, once the number
of machines is fixed, does not yield a significant improvement in the performance of
Wslack and of Wopt . On the other hand,Wstd does not seem to benefit from a more
aggressive binning strategy as its makespan remains roughly the same, regardless of
the ratio between jobs and m.

We report a similar behavior for the case of k = 25 (data not shown but available
upon request).

5.3.2 Performance of Our Methods with Respect to k and to the Dataset
Size

Our expectation is that the performance of Wstd is influenced by the empirical
distribution of the k-mers to be counted. Indeed, a heterogeneous distribution leads
to an unbalanced jobs assignment that does not allow to fully exploit the distributed
computing system. We also expect that this phenomenon to be more pronounced
when using small values of k, as anticipated in Sect. 5.2.

To investigate this behavior, we have run a second experiment where we
measured the trend of the workload reduction provided by Wslack as a function
of k. The results, visible in Fig. 2, clearly show that with smaller values of k,
Wslack achieves a more significant workload reduction as there is more room for
improvement. Instead, when considering larger values of k, there is still a significant
workload reduction, although less pronounced than in the previous case. This trend
can be explained by looking at the standard deviation values (see Fig. 1, k = 11, 25).

Fig. 2 Makespan improvement, in percentage, provided by Wslack with respect to Wstd , when
considering m = 128, jobs = 768, and increasing values of k
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We observe that the greater the reduction in terms of standard deviation is, the higher
is the slope of the curve between two values of k. Along the same line, the flat
segments of the curve are due to almost constant values of the standard deviation.
We also observe that the performance improvements we observe are more important
for larger datasets, like Plants, likely due to the larger size of bins due to increased
redundancy in the input files.

6 Conclusion and Future Directions

In this work, we have investigated the efficiency of the scheduling strategy adopted
for counting k-mers during the execution of an alignment-free algorithm on a
distributed environment. Our proposed heuristic approach, based on the SLACK
algorithm, is compared with the standard one commonly used in these cases, and
yields promising results. As expected, the time performances of the exact resolution
of the mathematical formulation are not compatible with its online adoption.
Instead, the solution obtained by the SLACK algorithm is almost equivalent to the
exact solution in most of the cases, but requires only a tiny fraction of its time,
while providing a much more balanced assignment of jobs than that of the standard
scheduling strategy. As a further direction, we are considering the possibility of
developing and experimenting with other scheduling algorithms. Another direction
we are pursuing is to effectively integrate our approach with real-world distributed
k-mer counting frameworks.
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Workload Balancing at Cross-Docking
Platforms

Nicolas Zufferey, Marc-Antoine Coindreau, Olivier Gallay,
and Gilbert Laporte

Abstract We consider the management of cross-docking platforms (CPs). Every
day, suppliers deliver products to the CP by trucks (inbound flow). The same day
or during another day, the products are then loaded into containers (outbound
flow). At the end of the planning horizon (one week in this work), boats ship
the containers to offshore production plants. Workers are required to perform the
involved loading/unloading tasks. Constrained by the fact that a container can only
be loaded if its entire content is available at the CP, most of the loading is currently
done during the last days of the week. A mixed-integer linear program (MILP) is
proposed to smooth the workload. It allows to simultaneously manage the inbound
and outbound flows. Results are proposed for real instances and highlight the benefit
of the proposed approach when compared to a common practice rule, where inbound
and outbound flows are managed independently.

Keywords Workload balancing · Cross-docking platforms · Integrated logistics

1 Introduction

In this work, we model and solve a problem faced by CM (a car manufacturer
that cannot be named because of a non-disclosure agreement). CM consolidates the
product flows of its European suppliers to its offshore plants (in America, Africa, or
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Fig. 1 Operations related to a CP

Asia) by routing these products through cross-docking platforms (CPs). Over one
week (from Monday to Friday), products are delivered by trucks to the CPs. These
products are then sorted, reconditioned (to satisfy the constraints of sea transport,
in particular) and loaded into containers which are finally shipped by boats to the
production plants. The reader interested in having more information on the related
cross-docking literature is referred to [3, 12, 15, 16], whereas papers on integrated
logistics include [6, 11, 13]. The flows related to the CP are depicted in Fig. 1.

CM seeks to smooth the workload over the week. The workload of a day is
proportional to the volume of products handled (i.e., the sum of the volumes of
products unloaded from trucks and loaded into containers). To do this, CM has
determined the content of the trucks, the content of the containers, and the loading
day of the containers. We denote this problem as the CM problem.

For each CP, CM solves several complex optimization problems. First of all, CM
defines in advance the truck routes to collect the products from the suppliers (e.g.,
[2]). Truck routes cannot be modified (i.e., the truck arrival day and the list of visited
suppliers), but CM can nevertheless choose the products that are collected from each
supplier in each route (as long as the truck loading constraints are satisfied). Next,
CM minimizes the number of containers needed to ship all the products. Finally,
during the loading phase, CM must wait until all the products composing a container
are present in the CP before starting to load the container (the number of loading
doors being limited).

Currently, CM independently solves the optimization problems related to the
content of trucks and containers. Once these problems have been solved, CM
decides on the loading day of each container. As the entire content of the containers
must be available in the CP at the time of loading, it appears that CM must wait
until the end of the week to carry out most of the loading operations. This creates
unbalanced workload within the CP over the week (the workload is 2–3 times larger
in the last days of the week than in the first days).

In this work, we propose to jointly optimize the content of trucks and containers
to smooth the workload over the week. Changing the content of trucks and
containers involves taking into account complex loading constraints (size, weight
and position of the transported products). A detailed description of these constraints
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can be found in [14]. The full consideration of loading constraints would lead
to an untractable optimization problem. However, these loading problems can be
simplified as the products are loaded into boxes, and the loading constraints only
apply to the boxes regardless of the products they contain. In the data provided
by CM, more than 70% of the boxes can transport different products with weight
variations of less than 10 kg. Thus, for a given loading of boxes into containers (resp.
trucks), we can evaluate a large number of box-to-product assignments without
violating the loading constraints.

The contributions of this work are the following. First, we model the CM problem
with a mixed-integer linear program (MILP). Second, from a managerial point of
view, we quantify the gain brought by the joint optimization of truck and container
contents in the CPs by comparing our results with current industrial practice on real
instances provided by CM.

2 Model

In a preliminary work [5], we considered a simplified version of the CM problem
detailed above, where we did not take into account the truck contents. The reader is
referred to that work for a description of the associated literature review and for the
justification of the NP-hardness of the problem considered here.

2.1 Considered Sets, Parameters and Variables

The following sets, parameters and variables are considered, where T denotes the
time horizon (i.e., days). The exponents (in) (resp. (out)) refer to the parameters
related to trucks (resp. containers).

The following sets are considered.

• C is the set of CP clients (i.e., production plants)
• P is the set of product types
• B is the set of box types
• S is the set of suppliers
• I is the set of trucks
• It is the set of trucks arriving on day t ∈ T
• O is the set of containers
• Oc is the set of containers that are sent to the client c ∈ C

The following parameters are given.

• gp ∈ N: number of units of product type p ∈ P already available in the inventory
at the beginning of the week
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• Mop: largest amount of product of typep ∈ P that can be transported in container
o ∈ O

• dcp ∈ N: demand of client c ∈ C for product type p ∈ P (in units)
• lpb ∈ R+: weight of a box of type b ∈ B when filled with product type p ∈ P

(in kg)
• qpb ∈ N: number of units of product type p ∈ P that can be transported in box

type b ∈ B
• n

(in)
ib ∈ N: number of units of boxes of type b ∈ B transported in truck i ∈ I

• n
(out)
ob ∈ N: number of units of boxes of type b ∈ B transported in container
o ∈ O

• l(in) ∈ R+: maximum allowed weight that can be transported by a truck (in kg)
• l(out) ∈ R+: maximum allowed weight that can be transported by a container (in

kg)
• hp ∈ R+: volume of a product of type p ∈ P (in m3)
• πpi = 1 if truck i ∈ I visits the supplier that can provide product type p ∈ P

(πpi = 0 otherwise)

The following variables have to be determined.

• upt ∈ N: number of units of product type p ∈ P in stock on day t ∈ T before
loading the containers

• vpt ∈ N: number of units of product type p ∈ P in stock on day t ∈ T after
loading the containers

• rpt ∈ N: number of units of product type p ∈ P received on day t ∈ T
• spt ∈ N: number of units of product type p ∈ P sent on day t ∈ T
• zibp ∈ N: number of boxes of type b ∈ B assigned to product type p ∈ P in

truck i ∈ I
• xobp ∈ N: number of boxes of type b ∈ B assigned to product type p ∈ P in

container o ∈ O
• wopt ∈ N: number of units of product type p ∈ P sent by container o ∈ O on

day t ∈ T
• mt ∈ R: workload performed on day t ∈ T (in m3)
• f ∈ R: workload difference between the most loaded day and the least loaded

one
• yot = 1 if container o ∈ O is loaded on day t ∈ T (yot = 0 otherwise)

2.2 Presentation of the MILP

The MILP is described as follows.

Minimize f (1)
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Subject to

f ≥ mt1 −mt2 t1, t2 ∈ T (2)

mt =
∑

p∈P
hp · rpt +

∑

o∈O

∑

p∈P
hp · wopt t ∈ T (3)

vpt = upt − spt p ∈ P , t ∈ T (4)

upt = vp,t−1 + rpt p ∈ P , t ∈ T (5)

vp0 = gp p ∈ P (6)

rpt =
∑

b∈B

∑

(i∈It |πpi>0)

qpb · zibp p ∈ P , t ∈ T (7)

spt =
∑

o∈O
wopt p ∈ P , t ∈ T (8)

∑

t∈T
yot = 1 o ∈ O (9)

wopt ≤ Mop · yot t ∈ T , o ∈ O , p ∈ P (10)

wopt ≤
∑

b∈B
qpb · xobp t ∈ T , o ∈ O , p ∈ P (11)

∑

o∈Oc

∑

t∈T
wopt = dcp c ∈ C, p ∈ P (12)

∑

b∈B

∑

p∈P
lpb · xobp ≤ l(out) o ∈ O (13)

∑

p∈P
xobp ≤ n(out)ob o ∈ O , b ∈ B (14)

∑

b∈B

∑

p∈P
lpb · zibp ≤ l(in) i ∈ I. (15)

∑

p∈P |πpi>0

zibp ≤ n(in)ib i ∈ I , b ∈ B (16)

Constraints (2) set the difference between the most loaded working day and the
least loaded one. Constraints (3) calculate for each day the value of the workload.
Constraints (4) (resp. (5)) compute the available inventory in the CP at the end
(resp. at the beginning) of the day. Constraints (6) fix the initial inventory in the
CP at the beginning of the planning horizon (i.e., the products not obtained in the
planning horizon already belong to the inventory from the first day of the week).
For each day, constraints (7) determine the amount of products obtained at the CP,
whereas constraints (8) compute the number of units sent for each product type.
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Constraints (9) ensure that no container is loaded more than once. Constraints (10)
restrict each product to be sent on the loading day of a container. For each container,
constraints (11) bound the amount of products sent. Constraints (12) satisfy the
demand of each client. The loading constraints of the containers (resp. trucks) are
in constraints (13) and (14) (resp. (15) and (16)). More precisely, constraints (13)
(resp. (15)) limit the weight of the transported products to the container (resp. the
truck) capacity, and constraints (14) (resp. (16)) ensure that the number of boxes
transported in a container (resp. in a truck) satisfy the allowed upper bound.

3 Experiments

We use CPLEX 12.10.0.0 to solve the MILPs. The employed computer has the
following configuration: 2.2 GHz Intel Core i7 with 16 Go 1600 MHz DDR3
of RAM memory. CPLEX is used in deterministic parallel mode with 8 threads.
Default parameters were used to perform the computation (preprocessing presolve
and aggregator with primal and dual reduction).

3.1 Presentation of the Instances

We consider the data for two different CPs provided by CM, denoted as V and G.
Table 1 presents the characteristics of the considered instances regarding the number
of containers, trucks, suppliers and clients. It also indicates the number of different
product types and box types.

Table 1 Characteristics of
the test instances

Instance |O| |I | |P | |B| |S| |C|
V1 28 48 326 206 151 17

V2 51 78 358 290 171 20

V3 49 67 424 315 190 21

V4 59 82 454 334 191 20

G1 67 98 1181 616 544 8

G2 71 112 1199 644 554 7

G3 68 89 1353 575 572 8

G4 88 112 1401 718 606 8

G5 80 122 1548 605 646 8

G6 85 136 1676 748 678 7
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Table 2 Performances of CPLEX preprocessing step

Preprocessing Branch and cut

Instance Time (s) Best int. Best bound Nb. rows Nb. cols Nb. bin. Nb. gen. Time (s) Nb. nodes Opt. value

V1 <1 777 723 499 606 94 506 0.37 1587 777

V2 <1 1597 1515 831 761 155 600 5 5354 1626

V3 <1 1780 1780 339 472 124 342 0 1 1780

V4 <1 2071 1866 1162 1175 220 949 3 3469 2024

G1 2 2795 2643 5213 4914 388 4520 0 1 2795

G2 65 883 774 12,913 10,846 560 10,280 780 4899 881

G3 14 3806 3587 12,876 11,324 593 10,765 40 3716 3700

G4 148 2352 2260 11,887 10,520 650 9864 620 3389 2352

G5 180 2042 1772 23,792 21,521 753 20,762 >3600 4804 2022

G6 21 2739 2473 19,298 18,278 969 17,303 212 5612 2717

3.2 CPLEX Performances

Table 2 presents the output of the CPLEX preprocessing and branch-and-cut steps.
Columns “Time (s)” give the time spent (in seconds) for both these steps. Column
“Best int” (resp. “Best bound”) indicates the best integer solution (resp. the best
bound) obtained after the preprocessing step, whereas column “Opt. value” gives the
value of the optimal solution. Columns “Nb. rows”, “Nb. cols”, “Nb. bin.” and “Nb.
gen.” present the characteristics of the reduced MIP obtained after the preprocessing
step (i.e., the number of rows and columns of the matrix describing the constraints,
and the number of binary and integer variables). Column “Nb. nodes” gives the
number of subproblems explored by CPLEX during the branch-and-cut phase.
Overall, this table shows that the preprocessing step is rather efficient as it provides
a feasible solution that is on average 1% above the optimal solution returned at the
end of the branch-and-cut part, within a computation time representing on average
5% of the computation time associated with the branch-and-cut phase.

3.3 Benefit of the Integrated Approach

In Table 3, the following solutions are compared.

• The solutions of the configuration where both the truck and container contents
are optimized are displayed under columnQ (it is the most generic problem).

• The solutions of the configuration where the container contents are fixed and set
to the contents used by CM are displayed under column Qx . In this case, the
values of the xobp variables are known and do not change during the resolution
of the MILP.

• The solutions of the configuration where the truck contents are fixed and set to
the contents used by CM are displayed under columnQz. In this case, the values
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of the zibp variables are known and do not change during the resolution of the
MILP.

• The solutions of the configuration where both the container and the truck contents
are fixed are displayed under column Qx,z. It captures the current practice at
CM, where the truck and container contents are built at an earlier stage with
two different optimization systems and, ultimately, the decision maker builds “by
hand” the loading day of each container (in a step-by-step fashion). In this case,
the values of the xobp and zibp variables are known and do not change during the
resolution of the MILP.

The optimal solution value is given in column “Value”, whereas column “Time”
indicates the time needed for CPLEX to find optimality (in minutes). Columns “%
CM”, “% Qz” and “% Qx” give the improvement percentage with respect to CM,
Qz and Qx , respectively. For instance, the improvement of configuration Q over
Qz is given in column “%Qz” and is computed as f (Q)−f (Qz)

f (Qz)
, where f (Qz) (resp.

f (Q)) is the obtained workload gap when considering configurationQz (resp.Q).
As already highlighted in [5], reworking the container contents leads to signifi-

cant improvements with respect to the current practice (on average, an improvement
of 6.2% for the V instances, and of 30% for the G instances). Similar improvements
are obtained here when reworking the truck contents (on average, an improvement
of 13% for the V instances and of 19% for the G instances). The main achievement
is obtained when reworking the truck and container contents in an integrated manner
(together with the loading day of the containers). Indeed, when compared to [5], the
additional average improvement obtained by solving Q instead of Qz increases to
11.8% (resp. 30%) for the V (resp. G) instances. When compared to the current
practice at CM, the average improvement is of 19% for the V instances, and 70%
for the G instances. Moreover, for the V and G instances, the largest execution time
to find the optimal solutions with CPLEX is 31 minutes.

4 Conclusions and Future Works

Considering various operations in cross-docking platforms, we have proposed
models and solution techniques for a real problem using real data. The workload
has to be smoothed over the planning horizon (a week), which is obtained
through the minimization of the gap between the most loaded working day and
the least loaded one. We compare our results with current practice at CM, that
acts as a non-integrated solution method where truck and container contents are
optimized independently. Computational experiments showed that allowing product
reassignment from one container to another and from a truck to another leads to
improvements up to 70%.

A next step of this project would consist in considering larger instances (i.e.,
larger CPs), for which the MILP approach cannot be used. In such a context,
the use of a fix-and-optimize matheuristic [4, 7, 9] would be relevant. It consists
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in iteratively solving sub-problems generated by temporarily fixing the value of
certain variables in the MILP (e.g., fix some truck or container contents or both).
This differs from the literature on filtering techniques [10], where non-promising
solutions are definitely discarded from the search process. Note that the size of the
fixed parts of the problem (and as a consequence, the size of the remaining problem
to solve with the MILP) could be managed in a nested and well-controlled fashion,
as it is the case for variable-neighborhood-search metaheuristics [1, 8].
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Knowledge Before Solutions: Some
Reflections on a Successful O.R. Case
Study

Giovanni Righini and Pier Giorgio Villani

Abstract This paper describes how a capacity planning problem arising in health
care services design and optimization was successfully tackled with mathematical
programming techniques. What made the project successful was not the design
of a sophisticated algorithm providing optimal solutions, but rather the iterative
development of an integer linear programming model of the problem, solved
by a general-purpose MILP solver. This approach was made possible by the
characteristics of the mathematical model itself and the user-friendly tools that were
used. As a result, the problem expert could autonomously challenge and improve the
model and the data in a countless number of iterations with little or no intervention
of the O.R. expert. This allowed to reduce the development cost to zero and the
development time to a few days.

Keywords Decision science · Mathematical modelling · Capacity planning

1 Introduction

On 18/02/2020 a 37-year-old man in apparent good health and with no pathological
history came to the emergency room of Codogno hospital for fever, dyspnea and
productive cough, on X-ray evidence of right basal pneumonia. Excluding the most
common causes of pneumonia, the alarm bell, which lead to the execution of the
swab test for COVID19, was his distant connection with China, linked to the visit of
an acquaintance who had recently returned from the East. On February 20th at 9:30
pm confirmation of the positivity at the swab test for Sars-Cov-2 arrived [3]. The
regional administration of Lombardy gave the crisis unit of Lodi hospital complete
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power in decision-making for managing the emergency [2]. On February 21st, the
crisis unit decided to close the Codogno hospital to concentrate resources in a single
hospital, that of Lodi. For three months the operating room activity in Codogno and
Lodi was interrupted and all physicians of the anesthesia and resuscitation service
were engaged in facing the health emergency in Lodi.

At the end of May 2020 the heads of the two hospitals decided to reopen the
first aid and intensive care service in Codogno together with the operating rooms
of Lodi and Codogno, at the beginning of June. Therefore, the problem arose of
ensuring coverage of all work shifts in the two hospitals, while at the same time
guaranteeing annual leave periods in the summer for all physicians of the anesthesia
and intensive care service.

The problem was tackled and solved thanks to a mathematical optimization
model, developed in collaboration between a physician and an O.R. expert. The aim
of this short paper is to illustrate and discuss the use of mathematical optimization
models for decision-support in a real situation, highlighting the importance of
knowledge generation compared with optimal solution computation as well as the
flexibility and ease-of-use of models explicitly described in mathematical terms.

2 The Problem

The problem was a capacity planning problem: a given number of physicians with
non-identical skills have to be assigned to six different types of work shifts for a
given number of weeks, allowing some of them to be on annual leave in each week.
The goal was not to define a complete work schedule for the physicians, taking
into account, for instance, preferences, additional activities, balance requirements
in work shifts assignments in holidays and other details (a problem of this kind is
described in [1]). The goal was rather to understand how the strategic decision of
reopening the health services could be implemented. A formal description of the
problem is given hereafter.

Data The problem data are the following:

1. a set P of physicians;
2. a set T of types of work shifts; namely: Morning, Afternoon, Night, On-

call availability, Operating room, Clinic service, Rest (compulsory day of rest
following a night work shift);

3. a set D of days of the week (1=Monday, 7=Sunday);
4. a setW of weeks (the planning horizon);
5. a set S of hospitals (Lodi and Codogno).

Additional data appear only in some constraints and therefore they are described
when these constraints are introduced in the remainder.
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Variables The main variables of the model are the following:

1. Binary variables x representing the selected assignments have five indices:
xtwdsp = 1 if and only if physician p ∈ P is assigned a work shift of type
t ∈ T in day d ∈ D of week w ∈ W in hospital s ∈ S.

2. Additional binary variables y represent non-working days besides days on leave:
ywdp = 1 if and only if physician p ∈ P does not work in day d ∈ D of week
w ∈ W .

3. Variables h′ ≥ 0 and h′′ ≥ 0 count the number of work shifts not covered by the
available staff of physicians, but assigned to external resources, which implies
an extra cost for the administration: h′wd is the number of operating room work
shifts assigned to external resources in day d ∈ D of week w ∈ W ; h′′wd is the
number of night work shifts assigned to external resources in day d ∈ D of week
w ∈ W . Owing to the integrality of the x variables and the right-hand-sides of
the assignment constraints (see below), it is not necessary to impose integrality
requirements on these variables.

The model also includes other variables that appear only in some constraints and are
thus described when needed in the remainder.

Constraints

Assignment Constraints for Work Shifts in Lodi (s = 1)

1. Five work shifts must be covered every day: morning, afternoon, night, on-call
availability and rest.

∑

p∈P
xtwd1p = 1 ∀w ∈ W,d ∈ D, t ∈ {1, 2, 3, 4, 7}

2. A given number ωw of operating rooms (t = 5) must be active in Lodi in the
working days (d = 1, . . . , 5) of each week. Operating rooms are not active in the
week-ends.

∑

p∈P
x5wd1p + h′wd = ωw ∀w ∈ W,d ∈ {1, . . . , 5}

∑

p∈P
x5wd1p = 0 ∀w ∈ W,d ∈ {6, 7}

3. A clinic service work shift (t = 6) is required every Tuesday and Thursday
(d = 2, 4) and not in the other days of the week.

∑

p∈P
x6wd1p = 1 ∀w ∈ W,d ∈ {2, 4}

∑

p∈P
x6wd1p = 0 ∀w ∈ W,d ∈ {1, 3, 5, 6, 7}
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Assignment Constraints for Work Shifts in Codogno (s = 2)

1. Two work shifts must be covered every day: morning and on-call availability
(t = 1, 4).

∑

p∈P
xtwd2p = 1 ∀w ∈ W,d ∈ D, t ∈ {1, 4}

2. Afternon and clinic service work shifts (t = 2, 6) are not required.

∑

p∈P
xtwd2p = 0 ∀w ∈ W,d ∈ D, t ∈ {2, 6}

3. A night work shift (t = 3) must be covered every day, either by the available
staff or by external resources.

∑

p∈P
x3wd2p + h′′wd = 1 ∀w ∈ W,d ∈ D

4. A single work shift for the operating room (t = 5) must be covered on
Wednesdays and Fridays (d = 3, 5). The operating room is not active in the
other days of the week.

∑

p∈P
x5wd2p = 1 ∀w ∈ W,d ∈ {3, 5}

∑

p∈P
x5wd2p = 0 ∀w ∈ W,d ∈ {1, 2, 4, 6, 7}

Skills Not all physicians can be assigned to each work shift: incompatibilities are
easily forbidden by fixing the corresponding binary variables x to 0.

Compulsory Pairings Every night work shift (t = 3) must be immediately followed
by a rest day (t = 7).

x3,w,d,s,p = x7,w,d+1,s,p∀w ∈ W,d ∈ {1, . . . , , 6}, s ∈ S, p ∈ P

x3,w,7,s,p = x7,w+1,1,s,p∀w ∈ W, s ∈ S, p ∈ P.

Similar constraints were also introduced to force the correct pairing of the rest day
in day 1 of week 1 with the last night work shift of the previous planning period in
each hospital.

Forbidden Pairings By contrast, in some other cases pairs of work shifts were
declared incompatible, thus forbidding their assignment to the same person. For
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instance, on-call availability work shifts are incompatible with morning and after-
noon shifts in the next day.

∑

s∈S

(
x4,w,d−1,s,p + x1,w,d,s,p

) ≤ 1 ∀w ∈ W,d ∈ D,p ∈ P

∑

s∈S

(
x4,w,d−1,s,p + x2,w,d,s,p

) ≤ 1 ∀w ∈ W,d ∈ D,p ∈ P

Similar constraints were introduced at the boundaries of the planning horizon.

Joint Work Shifts Some work shifts can be joined, i.e. they can be assigned to the
same physician in the same day. The constraint that forbids multiple assignments
of shifts to physicians has the form

∑
t xtwdsp ≤ 1 ∀w, d, s, p. The possibility of

joining two work shifts was introduced by assigning them coefficient 1/2 in the left-
hand-side of the constraint. These constraints were one of the main issues that were
examined, to explore the boundary between feasible and infeasible instances. Here
is a sample set of constraints among the many that were tested.

1. In the working days (d = 1, . . . , 5) in Lodi s = 1 it is allowed to join morning
and afternoon shifts t = 1, 2 as well as clinic service and on-call availability
shifts (t = 4, 5).

1

2

∑

t∈{1,2,4,5}
xt,w,d,1,p +

∑

t∈{3,6,7}
xt,w,d,1,p + yw,d,p

≤ 1 ∀w ∈ W,d ∈ {1, . . . , 5}, p ∈ P

2. On Saturdays (d = 6) in Lodi (s = 1) the morning shift and the on-call
availability shift (t = 1, 4) can be joined.

1

2

∑

t∈{1,4}
xt,w,6,1,p +

∑

t∈{2,3,7}
xt,w,6,1,p + yw,6,p ≤ 1 ∀w ∈ W,p ∈ P

3. On Sundays (d = 7) in Lodi (s = 1) the morning shift and the afternoon shift
(t = 1, 2) can be joined.

1

2

∑

t∈{1,2}
xt,w,7,1,p +

∑

t∈{3,4,7}
xt,w,7,1,p + yw,7,p ≤ 1 ∀w ∈ W,p ∈ P

4. When operating rooms are active in Codogno (s = 2) on Wednesday and
Friday (d = 3, 5), the operating rooms shifts t = 5 can be joined with on-call
availability shifts (t = 4).

1

2

∑

t∈{4,5}
xt,w,d,2,p+

∑

t∈{1,3,7}
xt,w,d,2,p+ yw,d,p ≤ 1 ∀w ∈ W,d ∈ {3, 5}, p ∈ P
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5. In the other days in Codogno no work shifts can be joined.

∑

t∈{1,3,4,7}
xt,w,d,2,p + yw,d,p ≤ 1 ∀w ∈ W,d ∈ {1, 2, 4, 6, 7}, p ∈ P

6. No two work shifts can be joined if they belong to different hospitals.

xt ′,w,d,1,p + xt ′′,w,d,2,p ≤ 1 ∀t ′ ∈ T , t ′′ ∈ T ,w ∈ W,d ∈ D,p ∈ P

Forced Joined Work Shifts In some cases two work shifts are mandatorily joined,
i.e. they must be assigned to the same physician in the same day.

1. On Sundays (t = 7) in Lodi (s = 1) morning and afternoon work shifts are
joined.

x1,w,7,1,p = x2,w,7,1,p ∀w ∈ W,p ∈ P

2. On Saturdays (t = 6) in both hospitals morning and on-call availability work
shifts (t = 1, 4) are joined.

x1,w,6,s,p = x4,w,6,s,p ∀w ∈ W, s ∈ S, p ∈ P

3. In working days (d = 1, . . . , 5) in Lodi (s = 1) the physician who is available
on-call (t = 4) is also assigned an operating room work shift (but not necessarily
vice versa).

x4,w,d,1,p ≤ x5,w,d,1,p ∀w ∈ W,d ∈ {1, . . . , 5}, p ∈ P

4. On Wednesdays and Fridays (d = 3, 5) in Codogno (s = 2) the physician who is
available on-call (t = 4) is also assigned an operating room work shift (but not
necessarily vice versa).

x4,w,d,2,p ≤ x5,w,d,2,p ∀w ∈ W,d ∈ {3, 5}, p ∈ P.

Days Off A complicating feature of the model is the presence of days off. An integer
variable rwp indicates how many days off a physician p ∈ P must have in week
w ∈ W . Days off in week w are assigned to physicians who have been assigned
demanding work shifts, such as a joint morning+afternoon shift on Sunday of week
w − 1 or a night shift on Saturday or Sunday in week w − 1.

rw,p = x1,w−1,7,1,p +
∑

s∈S
(x3,w−1,6,s,p + x3,w−1,7,s,p) ∀w ∈ W,p ∈ P

Similar constraints are used to make the plan in week 1 consistent with the last work
shifts assigned in the previous days.



Knowledge Before Solutions 101

Annual Leaves All physicians must be on leave for two weeks every year. This
period is usually concentrated in two consecutive weeks in the summer. The need
for this study was triggered by the question whether leave periods were compatible
with the need of covering all services in the two hospitals and it proved that actually
this would have been impossible without changing the constraints of the problem.

A binary variable fwp = 1 indicates that physician p ∈ P is on leave in week
w ∈ W . These variables occur in several constraints.

1. Days off cannot be taken in leave weeks

rwp + fwp ≤ 1 ∀w ∈ W,p ∈ P.

Suitable boundary constraints ensure that in the last days of the planning horizon
not too many demanding work shifts are assigned to physicians in the subset
of those who still have to be assigned leave weeks. This is done to make these
constraints feasible in the next planning period.

2. Physicians on leave cannot be assigned any work shift, apart from the rest day
following a night shift (a rest day can occur at the beginning of a leave week).

xt,w,d,s,p + fwp ≤ 1 ∀t ∈ {1, . . . , 6}, w ∈ W,d ∈ D,p ∈ P, s ∈ S.

3. The number of non-working days for each physician during a non-leave week is
equal to 1 plus the number of required days-off.

∑

d∈D
ywdp ≥ 1− fwp + rwp ∀w ∈ W,p ∈ P

4. A suitable constraint was introduced to force consecutive leave weeks for each
physician.

fw,p = fw+1,p ∀w ∈ W : w (mod 2) = 1, p ∈ P

5. A different numberφw of physicians on leave was decided for each weekw ∈ W ,
according to the forecasted needs of the hospitals, and it was imposed by suitable
constraints.

∑

p∈P
fw,p ≥ φw ∀w ∈ W.

It was used as a lower bound to give the model more flexibility.
6. A maximum number of leave weeks is given for each physician in each planning

period. Subset P ′ includes physicians that have not been assigned leave weeks in
the previous planning periods.

∑

w∈W
fw,p ≤ 2 ∀p ∈ P ′.
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For those who have already been assigned leave weeks, variables f are forced to
0.

Objective The model was initially formulated just to check the satisfiability of all
constraints, with no objective. Then it was formulated to minimize the number of
work shifts to be assigned to external physicians.

minimize
∑

w∈W,d∈D
(h′w,d + h′′w,d).

Finally, it was used in a multi-objective fashion to perform a parametric analysis
to explore the trade-off between the number of external work-shifts and some
indicators of the quality of service in the two hospitals from the viewpoint of
patients and physicians. For instance, one of these indicators was the number of
joint morning+afternoon shifts in Lodi (to be minimized) apart from the week-ends
(when they are explicitly forced to occur). Such an objective can be expressed as
follows:

minimize
∑

w∈W,d∈{1,...,5}
δw,d

with the additional constraints

x1,w,d,1,p + x2,w,d,1,p ≤ 1+ δw,d ∀w ∈ W,d ∈ {1, . . . , 5}, p ∈ P,

where δw,d ≥ 0 is a non-negative auxiliary variable that is forced to 1 every time
the same person p is assigned both the morning and the afternoon shifts (t = 1 and
t = 2) in a working day (d ∈ {1, . . . , 5}) of a week w in Lodi (s = 1).

2.1 The Solution Process

Since time constraints did not allow for the development of a customized mathemat-
ical programming algorithm and since there was no budget to carry out the analysis,
it was mandatory to rely on a free MILP solver. The solver glpsol with its Gusek
interface was selected, both because it is free and because of its ease of use.

Real instances with 12 physicians and a time horizon of 14 weeks turned out
out to be by far out of reach for glpsol. For this reason the model was solved in
a rolling horizon fashion, two weeks at a time. Provably optimal solutions were
not always found, depending on the activated and deactivated constraints. However,
a five minutes timeout for each run was enough to provide the necessary insight
into the problem complexity and explore the boundary between feasibility and
infeasibility.
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The model, written in MathProg and including many comments, was about two
hundreds lines long, plus an additional hundred lines for the data and the commands
to produce an easy-to-understand output in a text file. The user-friendliness of the
Gusek interface and the MathProg language turned out to be instrumental for the
success of the study, because it made possible to the problem expert to directly use
the model written and commented by the O.R. expert, thus speeding up the process.
The problem expert necessarily had to learn the MathProg language, which is a
standard in mathematical programming and is well documented on the web. In this
way he could grasp the meaning of each instruction, becoming able to add, remove
or modify constraints and objectives autonomously. Hence he modified and run the
mathematical model countless times, since each solution (including the answer “No
feasible solution found”) was used as a starting point to modify either the model (the
possible decisions, the constraints to be enforced, the objectives to be optimized) or
the data or both. The main model parameters to act upon were the type and number
of required services, the different possible definitions of allowed joined shifts, the
use of external resources in specific services in either hospital, and the rules to assign
days-off.

3 Discussion and Conclusions

The mindset of O.R. experts is instinctively oriented to the computation of optimal
solutions through efficient algorithms that suitably exploit the mathematical proper-
ties of the models representing critical decision problems. However, one of the main
lessons that can be learned from this study concerns the generation of knowledge
that comes well before the computation of an optimal solution and can even be
treated as an objective by itself.

In natural sciences, knowledge is generated by iteratively comparing abstract
models with empirical observations. Every model is challenged by new observa-
tions, triggering the search for more general or more refined models. In a similar
way, when the object of the study is not a natural phenomenon but rather a complex
decision problem, knowledge can be generated by continuously improving the
mathematical model of the problem: each solution round provides a feedback that
challenges the model and the input data, possibly triggering the development of a
more detailed model or the collection or observation of more reliable and precise
data. When used in this way, mathematical programming is a powerful tool to
generate knowledge, well before providing optimal solutions.

It is worth remarking that algebraic modeling languages, relying on mathematics
as a universal and unambiguous language, allow any user endowed with a sufficient
mathematical education to understand the model and to use it as a tool to investigate
the problem, not necessarily to solve it. Furthermore, the separation between the
logical structure of the model and the numerical values of the data, placed in two
separate files or in two separate sections of the same file is instrumental in making
the problem expert autonomous in evaluating alternative models.
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This remark is especially important in an age in which “solutionism” is heavily
criticized (not without some good reason) [4], “artificial intelligence” is often
presented as the way to solve complex problems and strong emphasis is placed on
data, especially “big” data. However, when using an “artificial intelligence” tool,
one could only examine solutions, often without any clue about why they have
been suggested and how they depend on data, because the model is not explicit. By
contrast, mathematical optimization puts emphasis on models, that are represented
in an algebraic language. This allows the user to examine the effects of the changes
he himself has introduced into the model. In this way mathematical optimization and
decision science aim at empowering human intelligence and ability to understand
complex problems, in order to formulate them better and better. Solutions come
later, almost as a side effect.

This project was no exception. Its main outcome was not a best possible solution,
but first of all a good model. This should be remarked, because in general problem
experts do not know what is the right model of their problems at the beginning;
they perfectly know their needs, but in general this is not enough to translate them
into a model. The search for the model should obviously precede the search for
the solutions and not rarely when a solution is provided after countless efforts in
algorithm development, it turns out that the model is wrong, incomplete, or flawed
for some reason. It may be the case that some “constraints” are not constraints but
decisions and the same holds for some “data”. Similarly it may be the case that the
initially assumed objective turns out not to be the main objective, because different
performance indicators have priority. This is why the definition of a model must be
challenged by a critical examination of the solutions (not necessarily the optimal
ones) obtained from it.

Making the problem expert autonomous in managing this knowledge generation
process was extremely beneficial to the development of the project. The feedback
from the solution back to the model and the data typically requires the intervention
of both the problem expert and the technical expert. On the contrary, in this case after
the development and documentation of an initial ILP model, the iterative feedback
was completely managed by the problem expert, with just a limited support from
the O.R. expert for major changes, such as the steps from constraint satisfaction to
optimization and then to multi-objective optimization. This significantly reduced the
effort, the time and the amount of interaction needed to carry the study to a positive
end under very strict time requirements (about ten days overall).
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A Genetic Algorithm to Optimize
Dynamics of Supply Chains

Luigi Rarità

Abstract This paper focuses on a model for supply chains, based on partial and
ordinary differential equations, that model, respectively, densities of parts on sup-
pliers and queues between consecutive arcs. An optimization approach is discussed
via a cost functional that, in consideration of a wished outflow, weights queues of
materials by variations of processing velocities for suppliers. The minimization of
the cost functional is achieved via a genetic algorithm that, as for the processing
velocities, considers mechanisms of selection, crossover and mutation. A simulation
example is discussed for the optimization procedure.

Keywords Genetic algorithms · Supply chains · Simulations

1 Introduction

Managing supply systems is an important issue, as particular phenomena, such as
dead times and bottlenecks, represent serious matters within industrial contexts.
Various mathematical approaches are useful in this regard. Some of them are based
on Discrete Event Simulations (DES) [1], while others refer to Ordinary and/or
Partial Differential Equations (ODEs, PDEs) [2–4]. In this paper we consider a
continuous model that, based on differential equations for the dynamics of goods
on arcs and queues among them, is introduced in [5], further analyzed in [6, 7],
and solved numerically in [8]. Notice that the proposed model is different from
others based on mixed integer linear programming with possible issues about
combinatorial optimization, see for instance [9]. On the other hand, the used
numerical approach is similar to ones described, for instance, in [10–12].
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In the proposed research, once the PDE-ODE model is solved numerically by
an upwind scheme for the density of parts over suppliers, and by an explicit Euler
method for queues of goods between consecutive arcs, an optimization procedure is
described. A correct definition of the optimal performances is useful to improve the
productivity and often involves different questions. For instance, in [6], two different
optimal control problems arise: the first considers the minimization of queues in
terms of a pre-defined outflow; the second focuses on possible values of distributions
rates that minimize queues for a supply network with vertices of dispersing type. In
[13], the authors describe a procedure that, by adjusting a piecewise constant input
flow, aims to minimize queues and to approximate the wished supply chain outflow.
In particular, [6] focuses on a rich numerical investigation, based on the software
Matlab; [13], on the other hand, provides a correct analysis for an analytical optimal
solution, but only for particular cases of input flows.

In this paper, a procedure, based on a genetic algorithm (GA), allows, from one
side, to compute optimal solutions for a generic supply system that could have an
input flow of various shapes, unlike the case presented in [13]. On the other hand,
the adoption of a GA ensures a suitable theoretical basis for optimization issues,
that are considered only in terms of simulations in [6]. Finally, various analysis
of the approach proposed in this paper confirmed the results of [6] and [13], thus
showing a robust approach of resolution. Such features provide the key elements
of novelty for the following paper: the possibility of adapting classical numerical
schemes in order to simulate networks of medium/big dimensions with reduced
computational times; the definition of a robust optimization approach, based on a
GA, for a supply system modelled by ODEs and PDEs. Notice that the adoption
of GAs is only a starting point as other possible simulation schemes, based for
instance on particle swarm optimization as well as ant/bee colony dynamics, could
be proposed. Indeed, unlike other suitable optimization procedures, that are still
under investigation, GAs already present a complete analysis of various properties,
see [14–18], while applications of GAs in the context of supply systems are reported
in [19] and [20]: the former describes an integrated model for a supplier selection
model of both multi-item and multi-supplier frameworks via a two-level GA that
decides about selections of suppliers and splitting of demands; in the latter, a GA
works as a decision support system for dynamics of an integrated inventory control
in case of backlogged shortage. Here, a GA is used in a different way. Precisely, a
cost functional (see [6]), that weights the amount of queues and a wished outflow, is
minimized in terms of processing velocities of suppliers. The different iterations of
the GA allow variations of the velocities of suppliers by mechanisms of selection,
crossover and mutation.

Some numerical simulations are also discussed. In particular, a possible supply
chain with twenty arcs is considered. The queues show an evident dependence on
processing velocities and maximal capacities of suppliers. A further investigation
allows a possible optimization. Different iterations of the genetic algorithm are
considered and it is shown the queue decrease in successive steps.

The paper is structured as follows. Section 2 focuses on the ODE–PDE model
and numerical approaches. Section 3 describes a possible optimal control problem
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for the chosen model. Section 4 focuses on a test case and its optimization. The
paper ends with conclusions and future research activities in Sect. 5.

2 Model and Numerics for Supply Chains

We describe a model for supply chains, characterized by ODEs and PDEs ([5, 6]),
on the basis of a reformulated approach proposed in [2].

A supply chain has a set of vertices V = {1, . . . ,M − 1} and a set of arcs A =
{1, . . . ,M}. Each arc m ∈ A is a supplier, indicated by an interval [αm, βm]. For
each vertex, one incoming arc is connected to one outgoing arc and the various arcs
are consecutively labelled, namely arc m connects arc m+ 1 with βm = αm+1. For
the first and the last arc, α1 = −∞ and βM = +∞, respectively, with suitable
boundary data.

For each supplier m ∈ A , we have: length Lm > 0; processing time Tm > 0,
and hence a processing velocity Vm := Lm/Tm; the highest processing capacity
μm > 0; the density of parts at point x and time t , represented by the continuous
functionDm (t, x) ∈

[
0,Dmax

m

]
. Finally, for each supplier m ∈ A \ {1}, at x = αm

the functionQm (t) represents a time dependent queue of goods, that travel between
consecutive arcs.

Then, for densitiesDm (t, x) and queuesQm (t), the model obeys the equations:

∂Dm (t, x)

∂t
+ ∂φm (Dm (t, x))

∂x
= 0, ∀ x ∈ [αm, βm] , t > 0, (1)

Dm (0, x) = Dm,0 (x) ≥ 0, Dm (t, αm) = φm,inc (t)
Vm

, (2)

d

dt
Qm (t) = φm−1 (Dm−1 (βm−1, t))− φm,inc (t) , m ∈ A \ {1} , (3)

Qm (0) = Qm,0 ≥ 0, (4)

where: φm (Dm (t, x)) := min {μm,VmDm(t, x)} is the flux function; Dm,0 (x) is
the initial datum (to assign); φm,inc (t) is the flux on the outgoing arc m, namely:

φm,inc (t) :=
⎧
⎨

⎩

F (t) , m = 1,
min {φm−1 (Dm−1 (βm−1, t)) , μm} , Qm (t) = 0,m ∈ A \ {1} ,
μm, Qm (t) > 0,m ∈ A \ {1} ,

(5)

whose interpretation is as follows: ifm = 1 (first arc of the supply chain), φm,inc (t)
is F (t), assigned input profile on the left boundary {(α1, t) : t ∈ R}. Ifm ∈ A \{1},
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φm,inc (t) is dependent on the queue: ifQm (t) = 0, inflow to supplierm and outflow
from supplierm− 1 are equal; otherwise, we get the maximal inflow.

Remark 1 Notice thatDm(t, x) ≥ 0,Qm(t) ≥ 0 for everym ∈ A , t ≥ 0 and x, see
[8] for details.

Now, consider suitable numerical schemes to approximate Dm (t, x), m ∈ A ,
andQm (t), m ∈ A \ {1}.

For an arc m ∈ A , denote by Nm and ηm, respectively, the number of grid
points for a partition of [0, Lm]×[0, T ]. Consider a fixed time meshΔt and varying
space meshes Δxm = VmΔt . Then, the grid points are (xi, tn)m = (iΔxm, nΔtm),
i = 0, . . . , Nm, n = 0, . . . , ηm.

The upwind scheme, useful to define the parts density of arc m, reads as:

mDn+1
i − mDni

mDni−1 − mDni
Δxm = ΔtVj , (6)

where mDni is the approximation of Dm at (xi, tn)m, see (1), ∀ m ∈ A , i =
0, . . . , Nm, n = 0, . . . , ηm, while the Courant-Friedrich-Levy (CFL) condition is
satisfied since:

Δt = min

{
Δxm

Vm
: m ∈ A

}

. (7)

The proposed numerical approach allows advantageous computational times, as
well as properties of convergence and stability, as described carefully in [8].

If αj < −∞, the explicit Euler method, that allows to construct queues, reads
as:

Qn+1
m −Qnm +Δt φnm,inc = Δt φnm−1(

mDnNm), n = 0, . . . , ηm, (8)

where φnm,inc is defined by using (5) while details for numerical corrections are in
[8]. Notice that, if αj = −∞, boundary data are used by ghost cells.

3 Optimization

Now, we consider a possible optimal control problem for the model of Sect. 2. Fix a
time horizon [0, T ] and define the cost functional:

G(V1, V2, . . . , VM) =
M∑

k=2

T∫

0

Qk (t) dt +
T∫

0

[VMDM (βM, t)− δ (t)]2 dt, (9)



A Genetic Algorithm to Optimize Dynamics of Supply Chains 111

where Qk refers to (3), VMDM (βM, t) is the outflow of the supply chain with
density level lower than μM , while δ (t) ∈ L∞ ((0, T ) , [0,+∞[) is a pre-assigned
flow. The second integral of (9) represents a sort of measure between the effective
outflow of the supply chain and a reference output δ (t). Notice that the solution
of (1), Dm, is implicitly part of (9), hence the numerical solution of (1) and (3)
represents a priority for the optimization issue.

We analyze the minimization problem:

min
(V1,...,VM)

G (V1, V2, . . . , VM) , (10)

with V min
m ≤ Vm ≤ Vmax

m , m = 1, . . . ,M . Hence, the aim is the minimization of
the queues and the distance between the effective outflow and δ (t) by referring to
the velocities Vm, m = 1, . . . ,M.

A solution to problem (10) is sought via a Genetic Algorithm (GA). Such an
approach is deeply considered [14] for numerical optimization, while convergence
details are widely analyzed in [17, 18].

For a maximal number of iterations Λ, the algorithm works as follows: at the
iteration 0, generate an initial population V 0 = (

V 0
1 , V

0
2 , . . . , V

0
M

)
and compute the

value Γ0 := G
(
V 0

1 , V
0
2 , . . . , V

0
M

)
of the fitness function (9).

In general, indicating by Γk := G
(
V k1 , V

k
2 , . . . , V

k
M

)
the value of (9) at the

iteration k, k ≥ 1, the steps are:

Step 1 Via selection, crossover and mutation, get V k =
(
V k1 , V

k
2 , . . . , V

k
M

)
from

V k−1 =
(
V k−1

1 , V k−1
2 , . . . , V k−1

M

)
;

Step 2 compute Γk := G
(
V k1 , V

k
2 , . . . , V

k
M

)
of (9);

Step 3 if Γk < Γk−1, set V k := V k and go to step 4; otherwise, come back to step
1;

Step 4 set k := k + 1 and come back to step 1 if k ≤ Λ; otherwise, stop.

Remark 2 The just described procedure uses a maximal number of iterations Λ
as stop criterion. Indeed, further optimization schemes could be addressed, also
considering different ways to stop iterations, see for instance [14, 15].

4 Simulations

For simulations, we deal with a test supply chain of twenty arcs, see Fig. 1 for a
possible structure. The number of arcs is purely indicative as the aim is to simulate
a network of medium dimensions, also considering the possibilities due to the used
numerical approaches. For the analysis of different supply networks, as well as for
computational times, see [8]. The supply chain has the following characteristics:
for arcs, Lk = Tk = 1, m = 1, . . . , 20; μ1 = 550; μ20 = 10; μm = 50 − 2m,
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Fig. 1 An example of supply chain, see [8]

m = 2, . . . , 19; Dm (0, x) = 0, m = 1, . . . , 20; Qm (0) = 0, m = 2, . . . , 20; total
simulation time T = 1800; input profile given by:

F (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t, 0 ≤ t ≤ 60,
60, 60 < t ≤ 130,

216− 6

5
t, 130 < t ≤ 180,

0, t > 180.

(11)

As for the initial conditions, the supply chain is simulated in case of empty arcs
and queues. The processes velocities are all equal to one in order to simulate a
homogeneous starting situation when optimization criteria are used. The processing
capacities of all arcs m = 2, . . . , 20, are chosen in order to create queues among
arcs. In fact, following the model described in Sect. 2, in case of equal processing
velocities among consecutive arcs, queues occur if μm+1 > μm, m = 1, . . . , 19.
The processing capacity of the first arc is chosen so that the inflow F(t) is not cut
and totally directed to the first arc, as foreseen from the model of Sect. 2. In order to
simulate dynamics that are typical of industrial realities, functionF(t) is provided in
order to simulate an inflow of this type: strong injection (increasing profile), constant
injection, light injection (decreasing profile). Finally, the input of the system equals
zero, and phenomena on the test supply chain are only due to possible dynamics on
the last arcs.

According to the numerical schemes described in Sect. 2, we used Δt = 0.025.
Figure 2 presents various queues.The behaviour of queues is a direct consequence
of the choice of F (t), considering that conservation laws have flux functions that
could, in some cases, be constant. Richer phenomena, that deal with further profiles
for queues, are widely described in [6, 8, 13]. In the case of the presented paper,
the slopes of Qm (t), m = 17, 18, 19, are quite different due to the values of μm,
m = 1, . . . , 20.Moreover, although (11) is zero ∀ t > 180, queues dynamics is very
slow. This is confirmed byQ19 (t) that vanishes at t � 350 > 180.
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Fig. 2 Queues Qm(t), m = 17, 18, 19; Q17(t) is the first on the left, Q18(t) the second on the
left, and so on

Table 1 Iterations, values of some velocities at various iterations and corresponding values of (9)

Iteration k
(
V k5 , V

k
6 , V

k
7

)
Γi Iteration k

(
V k5 , V

k
6 , V

k
7

)
Γi

1 (1.05, 1.08, 1.21) 356603 10 (1.55, 1.73, 1.54) 315021

2 (1.07, 3.11, 1.71) 350021 11 (1.61, 1.74, 1.22) 312212

3 (1.12, 2.45, 1.54) 349121 12 (1.71, 1.87, 1.17) 309989

4 (1.24, 2.31, 1.13) 348112 13 (1.61, 1.85, 1.89) 308874

5 (1.44, 2.18, 1.29) 339212 14 (1.58, 1.88, 2.17) 306721

6 (1.52, 2.14, 1.17) 334121 15 (1.59, 1.81, 2.19) 305361

7 (1.78, 1.79, 1.16) 317719 16 (1.59, 1.77, 2.21) 303218

For the optimization, we fix V min
m = 0.35, V max

m = 2.75,m = 1, . . . , 20, δ (t) =
155 and Δt = 0.05. The initial population is defined by V 0 with entries V 0

m = 1,
m = 1, . . . , 20. In this case, the fitness function (9) equals Γ0 = 356603. Fixing
Λ = 16 iterations, Table 1 reports the various values of (9) and some processing
velocities.

All queues decrease at the various iterations. Figure 3 presents Q19 (t) for the
first and the last iteration. For iteration 0, Q19 (t) has a maximum M � 580, and
vanishes at tv � 350; for the last iteration,M � 400, and vanishes at tv � 230.
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Fig. 3 Evolution ofQ19(t) for iteration 0 (continuous line) and iteration 16 (dot dashed line)

5 Conclusions

This paper has described possible dynamics of supply chains modeled by PDEs and
ODEs, and solved numerically by an upwind scheme for densities and an explicit
Euler method for queues. A genetic algorithm has been described and tested to
optimize the performances of a supply system via minimization of a cost functional
that considers either queues or a pre-defined outflow. The aim of future research
issues is to study different evolutionary algorithms for the optimization.
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Closed-Loop Supply Chain Network
Equilibrium with Online Second-Hand
Trading

Georgia Fargetta and Laura Scrimali

Abstract This paper studies a closed-loop supply chain network equilibrium
problem with online second-hand trading of high-uniqueness products. The closed-
loop supply chain network consists of manufacturers, retailers, demand markets,
and one online second-hand platform engaging in both horizontal and vertical
competition. The optimal behaviors of all the decision-makers are modeled as vari-
ational inequality problems, and the governing closed-loop supply chain network
equilibrium conditions are given.

Keywords Variational inequality · Reverse logistics · Second-hand market ·
Sustainable consumption

1 Introduction

Reverse logistics aims at improving the exploitation of used products through
recycling or re-manufacturing and leads to a reduction in environmental damage.
Products may reverse direction in the supply chain for several motivations, such
as manufacturing returns, product recalls, warranty or service returns, end-of-use
returns, and end-of-life returns. Reverse logistics and, in particular, second-hand
trading have received large interest for the opportunity of sustainable consumption,
extending the life span of products, and reducing adverse environmental impacts due
to the purchase of new goods. Recently, the increasing use of the Internet and trading
platforms, such as eBay or Vinted, has completely changed the market conditions,
see [1, 15]. In the U.S., the e-commerce sales have reached $876 billion in the
first quarter of 2021, up 38% year-over-year. Moreover, the speculative buying of
limited edition goods has become a real business. In fact, people may gain profit
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from selling high-uniqueness goods at a price much higher than the original one to
potential consumers when the goods get scarce over time.

Due to several advantages, closed-loop supply chains (CLSCs) have been
extensively studied in recent years. Many researchers have investigated the network
structure of the CLSC, which includes competitive manufacturers, competitive
retailers and consumer markets. For example, Nagurney and Toyasaki [4] develop a
network model for supply chain decision-making with environmental criteria. In
[5], the authors explore a reverse supply chain network model using variational
inequality. In [10], Shen et al. examine the sale of second-hand products through
an online platform on a supply chain consisting of contributors, one second-hand
online platform, and one supplier. Different scenarios in terms of CLSC structure
and block-chain use are considered. In [13], Wang et al. study the waste of
electrical and electronic equipment and provide a variational inequality to model
the CLSC network. In [16], the authors examine a CLSC network equilibrium
problem in multiperiod planning horizons, with consideration to product lifetime
and carbon emission constraints. By variational inequalities and complementary
theory, the governing CLSC network equilibrium model is established. Other
valuable contributions can be found in [3, 9, 11, 12, 14].

Motivated by all the above analysis, this paper establishes a CLSC network
equilibrium model with online second-hand trading of high-uniqueness products.
We consider a CLSC network consisting of manufacturers, retailers, demand
markets, and one online platform, in which the consumers purchase new products
and collect them. Then, collectors sell the goods to consumers through the online
platform. By variational inequalities, the optimal behaviors of all the decision-
makers are modeled, and, in turn, the governing CLSC network equilibrium model
is given. The main contributions of this paper are: the modeling of the second-hand
market in a reverse logistics setting, and the study of the horizontal competition
among the members of the same tiers as well as the vertical one between adjacent
tiers. We describe the forward and the reverse logistics, taking into account capacity
constraints of manufacturers and retailers, as well as consumers’ risk-aversion to
purchasing second-hand goods, and platform’s risk-aversion to transacting with
collectors.

The paper is organized as follows. In Sect. 2, we develop the CLSC model
by describing the manufacturers’ and the retailers’ competitive behavior, and the
interactions with the demand markets and the online platform. We then provide a
variational inequality formulation of the optimal behavior of decision-makers. In
Sect. 3, we state that the governing equilibrium conditions of the CLSC network.
We summarize our results and present our conclusions in Sect. 4.

2 The Closed-Loop Supply Chain Network

We consider a CLSC network consisting of multiple manufacturers, multiple
retailers, and multiple demand markets, in which the consumers purchase new
products and collect them. Collectors distribute the used goods through an online
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Fig. 1 The closed-loop supply chain network

platform for the aim of gaining profit on the resale. The criterion of each player in
the network is the total profit maximization.

Let M be the set of manufacturers (we denote by m the typical manufacturer),
R be the set of retailers (we denote by r the typical retailer), K be the set of
demand markets (we denote by k the typical demand market) and we consider a
single online platform like eBay, Marketplace by Facebook, Vinted etc. . . Abusing
notation, without risk of confusion, we use the same symbols here to denote the
setsM,R,K and their cardinalities. Furthermore, we introduce the set of collectors
Kc, with |Kc| ≤ K , that represents the set of consumers who decide to resell
their collectibles. The network can be divided into two parts: the forward chain,
formed by manufacturers, retailers and consumers, and the reverse chain, formed
by collectors, the online platform and consumers. The collectors and the online
platform make it possible to connect the forward and the reverse chains and form
the closed-loop network. We consider two different types of items: the new ones
denoted by index n = 1, . . . N and the used ones indicated by index u = 1 . . . U .
The model network can be represented as in Fig. 1. The solid lines represent the
forward transactions and the dashed lines refer to the reverse ones.

We first focus on the manufacturers. We then turn to the retailers, to the
consumers, and, finally, to the platform. The complete equilibrium model is then
constructed as a variational inequality.

2.1 The Optimal Behavior of the Manufacturers

Let xnmr be the quantity of new item n sold by manufacturer m to retailer r . We
group all the n and r elements into the vector xm ∈ R

NR , and then we group all
the vectors (xm) for all m into the vector xM ∈ R

NMR . We denote by xmaxm the
production capacity of manufacturerm.

In the forward logistics, a manufacturer incurs production costs and transaction
costs. In order to maximize his own profit, each manufacturer m must decide
the quantity xnmr of new item n to be sold to retailer r . We associate with each
manufacturer the production cost, cm, and assume that it can depend, in general,
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on the entire vector of production outputs, namely, cm = cm(x
M). We denote

by tmr (xnmr) the transaction cost from manufacturer m to retailer r . Moreover,
we assume that cm(xM) and tmr (xnmr) are continuously differentiable and convex
functions. Finally, we consider pnmr as the selling price of a new product. Given the
above notation, each manufacturerm wishes to maximize the profit as follows:

max
∑

n∈N

∑

r∈R
pnmrx

n
mr − cm(xM)− tmr (xnmr) (1)

∑

n∈N

∑

r∈R
xnmr ≤ xmaxm , xnmr ≥ 0,∀n, r. (2)

The objective function (1) maximizes the profit, which equals sales revenue
minus costs associated with production and transaction. The first constraint in (2)
expresses the production capacity of manufacturerm. All the manufactures compete
in a non-cooperative fashion, and each manufacturer seeks to maximize his profit
given other manufacturers’ decisions. Thus, the optimality conditions of all the
manufacturers can be described by the following variational inequality, see [2]:

∑

n∈N

∑

m∈M

∑

r∈R

(
∂cm(x

∗M)
∂xnmr

+ ∂tmr(x
∗n
mr)

∂xnmr
− pnmr

)

(xnmr − x∗nmr) ≥ 0,∀xM ∈ SM,
(3)

SM =
{
xM ∈ R

NMR+ :
∑

n∈N

∑

r∈R
xnmr ≤ xmaxm ,∀m ∈ M

}
. (4)

2.2 The Optimal Behavior of Retailers

The retailers interact with manufacturers and consumers. Specifically, they decide
the amount of products to order from the manufactures, so as to transact with the
demand markets, while seeking to maximize their profit. The product shipment
of new good n between retailer r and consumer k is denoted by xnrk; the product
shipments xnrk for all n and k are then grouped into the column vector xr ∈ R

NK

and, further, into the vector xR ∈ R
NRK .

Each retailer r has associated management cost cr , which may include, for
example, the storage cost associated with the products in stock. For the sake of
generality, and to enhance the modeling of competition, see [6], we allow the
function to depend also on the amounts of the products held by other retailers,
that is, cr = cr (x

M). Let ĉnmr (x
n
mr), be the transportation cost from m for new

items and let pnrk be the sale price associated with a new item. Moreover , retailers
incur transaction costs tnrk(x

n
rk), when selling new products to consumers. Finally,

we assume that cr (xnmr), ĉ
n
mr (x

M), and trk(xNrk) are continuously differentiable and
convex functions.



CLSC Network Equilibrium with Online Second-Hand Trading 121

Each retailer r seeks to maximize his profit function as follows:

max
∑

n∈N

(∑

k∈K
pnrkx

n
rk −

∑

m∈M
ĉnmr(x

n
mr)−

∑

k∈K
tnrk(x

n
rk)−

∑

m∈M
pnmrx

n
mr

)

− cr (xM)
(5)

∑

n∈N

∑

k∈K
xnrk ≤

∑

n∈N

∑

m∈M
xnmr , xnmr ≥ 0, xnrk ≥ 0,∀n,m, k. (6)

Objective function (5) expresses that the profit of the retailer is equal to sales
revenues minus costs associated with the management, the transportation, the
transaction and the payout to the manufacturers. The first constraint in (6) states
that consumers cannot purchase more from a retailer than is held in stock. Since all
the retailers compete in a non-cooperative fashion, the optimality conditions for all
retailers can be expressed as the variational inequality:

∑

n∈N

∑

r∈R

∑

k∈K

(
∂trk(x

∗n
rk )

∂xnrk
− pnrk

)

(xnrk − x∗rrk )

+
∑

n∈N

∑

m∈M

∑

r∈R

(

pnmr +
∂cr(x

∗n
mr)

∂xnmr
+ ∂ĉ

n
mr(x

∗M)
∂xnmr

)

(xnmr − x∗rmr) ≥ 0,

∀(xR, xM) ∈ SR, (7)

SR =
{
(xR, xM) ∈ R

NRK+NMR+ :
∑

n∈N

∑

k∈K
xnrk ≤

∑

n∈N

∑

m∈M
xnmr ,∀r ∈ R

}
. (8)

2.3 The Optimal Behavior of the Consumers

The consumers at demand markets transact with the retailers as well as the
online platform. Specifically, in the forward supply chain, consumers purchase new
products; in the reverse supply chain, consumers act as collectors and sell their
goods on the online platform, that are then purchased by consumers at demand
markets. We analyze these situations separately.

2.3.1 The Consumers in the Forward Logistics

Let ĉnrk(x
n
rk) be the transportation cost for new product n sold by retailer r to demand

market k. Moreover, let dnk be the demand of new item n at demand market k and be
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pnk the price of new product n at demand market k. The equilibrium conditions for
consumers at demand market k are (see [4–8]):

p∗nrk + ĉnrk(x∗nrk )
{
= p∗nk if x∗nrk > 0,

≥ p∗nk if x∗nrk = 0,
∀r, k, n. (9)

dnk (p
∗n
k )

{
=∑

r∈R x∗nrk if p∗nk > 0,

≤∑
r∈R x∗nrk if p∗nk = 0,

∀k, n. (10)

Inequality (9) states that if the consumers at demand market k purchase the
products from retailer r , then the price charged by the retailer for the product plus
the transportation cost undertaken by the consumers does not exceed the price that
the consumers are willing to pay. Equation (10) states that if the equilibrium price
that the consumers are willing to pay for the new products at the demand market
is positive, then the quantities purchased of new goods from the retailers will be
exactly equal to the demand. These conditions correspond to the well-known spatial
price equilibrium conditions, see [2].

2.3.2 The Consumers in the Reverse Logistics

In the reverse supply chain, some consumers resell collectible items to the demand
market through the online platform. The product shipment of second-hand good u
between collector kc and consumer k, using the platform, is denoted by xukck . The
product shipments xukck, for all u and k, are then grouped into the column vector

xkc ∈ R
UK and, further, into the vector xU ∈ R

UKcK . We setQkc as the amount of
items in the collection of collector kc. Let pukc be the price charged by the collector
kc for second-hand items. We note that selling on the online platform can give higher
visibility to the products and, as a consequence, it can be more profitable, even if
the platform retains a portion of the sale price. For instance, on eBay the transaction
price amounts to the 10% of the selling price, indicated by the coefficient γ . Let
ckc (xkc ) be the maintenance and restoring cost of the collector kc, depending on
the amount of items that he resells on the online platform. Let ĉnrkc (x

R), be the
transportation cost from r for new item n to collector kc. We assume that ckc (xkc )
and ĉnrkc (x

R) are continuously differentiable and convex functions. We denote by
μkc ∈ (0, 1] the portion of second-hand goods that collector kc ∈ Kc decides to sell
on the platform.

Each collector kc ∈ Kc seeks to maximize his profit function as follows:

max
∑

u∈U

∑

k∈K
(1− γ )p∗ukc xukck − ckc (xkc )−

∑

n∈N

∑

r∈R

(
pnrkcx

n
rkc
− ĉnrkc (xR)

)
(11)

∑

u∈U

∑

k∈K
xukck ≤ μkcQkc , xukck, x

n
rkc
≥ 0, ∀n, u, r, k. (12)



CLSC Network Equilibrium with Online Second-Hand Trading 123

Objective function (11) expresses that the profit of the collector is equal to sales
revenues minus costs associated with restoring, purchasing and transportation. The
first constraint in (12) states that the amount of products collector kc decides to sell
should be less than or equal to the amount of collectibles in kc’s collection.

We now examine the transactions between the platform and the demand market
k. Let ĉukck(x

U ) be the transportation cost from collector kc to consumer k for used
product u purchased on the platform. Furthermore, let duk be the demand of second-
hand items at demand market k, and ρuk be the willingness to pay second-hand items
at demand market k. We group all these ρuk into a column vector ρk ∈ R

U , and
then into the vector ρU ∈ R

UK . We also consider a risk associated with purchasing
second-hand items from the trading platform. Therefore, each consumer exhibits
risk aversion that may be dependent on flows controlled by other demand markets.
Hence, the risk aversion function can be expressed as the continuous function
πk(x

U) [8]. The equilibrium conditions for consumers at demand market k in the
reverse supply chain are

p∗ukc + ĉukck(x∗U)+ πk(x∗U)
{
= ρ∗uk if x∗ukck > 0,

≥ ρ∗uk if x∗ukck = 0,
∀kc, u. (13)

duk (ρ
∗U)

{
= x∗ukck if ρ∗uk > 0,

≤ x∗ukck if ρ∗uk = 0,
p∗nrk − ρ∗uk

{
< 0 if x∗nrk = 0,

≥ 0 if x∗nrk > 0,
∀r, k, u, n.

(14)

Equality (13) states that if the consumers at demand market k purchase the
product on the online platform, then the price charged by the collector kc for second-
hand items plus the transportation cost plus the risk undertaken by the consumer is
equal to the price that the consumer is willing to pay. The first condition in (14)
states that if the equilibrium price the consumers at demand market k are willing to
pay for the second-hand product is positive, then the amount purchased of second-
hand product should exactly be equal to the demand of this second-hand item. The
second condition in (14) means that the unitary price of a second-hand collectible is
higher than the unitary price of a new collectible that is totally sold out.

2.3.3 The Consumers’ Equilibrium Conditions

Combining consumer behaviors in both forward and reverse supply chain, and
assuming that the tranposrtation costs, the demand functions and the risk function
are continuous, the equilibrium conditions for all the demand markets can be
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expressed as the following variational inequality, see [4–8]:

∑

n∈N

∑

k∈K

(∑

r∈R
xnrk − d∗nk (p∗nk )

)

(pnk − p∗nk )

+
∑

u∈U

∑

kc∈Kc

(
∂ckc (xkc )

∂xukck
+ γp∗ukc + ĉu(x∗Ukck)+ πk(x∗U)− ρ∗uk

)

(xukck − x∗ukck)

+
∑

u∈U

∑

k∈K

(

x∗ukck − duk (ρ∗U)
)

(ρuk − ρ∗uk )

+
∑

n∈N

∑

r∈R

∑

k∈K

(

p∗nrk +ĉnrk(x∗nrk )−p∗nk + p∗nrk −
∑

u∈U
ρ∗uk +

∂ĉnrkc (x
R)

∂xnrk

)

(xnrk − x∗nrk ),

+
∑

n∈N

∑

r∈R
pnrkc (x

n
rkc
−x∗nrkc) ≥ 0, ∀(pN , xUK, ρU , xU , xR) ∈ SK, (15)

SK =
{
(pN, xUK, ρU , xU , xR) ∈ R

KN+2UK+UKcK+NRK+ :
∑

u∈U

∑

k∈K
xukck≤μkcQkc

}
.

2.4 The Behavior of the Online Platform

Now, we present the behavior of the online platform as an intermediary that
matches consumers and collectors. As an intermediary, the platform is involved in
transactions both with the collectors, as well as with the consumers at the demand
markets.

Collectors resell items on the platform and determine the unitary price puk of
second-hand goods. Let Cu(xU ) be the management costs of second-hand product
u, including processing and advertisement, and let t̂uk (x

u
k ) be the transaction cost

function between the platform and demand market k, where xuk =
∑
kc
xukck . Since

the platform has no decision-making power on the choice of products that will
be sold, it takes the risk of owning false objects or with descriptions that do not
correspond to the real conditions of the item. As a consequence, the intermediary
may have risk associated with transacting with the various collectors and with
the demand markets. Let π(xU ) denote the risk function associated with online
platform. We assume that C(xU), t̂uk (x

u
k ) and π(xU) are continuously differentiable

and convex. Let μkc the portion of second-hand goods that collector kc decides to
sell on the platform, and satisfies μkc ∈ (0, 1]. We define Qu ∈ RU as the total
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amount of item u on the online platform. Each online platform makes his optimal
decisions based on maximizing the following profit function:

max
∑

u∈U

( ∑

kc∈Kc

∑

k∈K
γpukcx

u
kck
− Cu(xU)−

∑

k∈K
t̂uk (x

u
k )− π(xU)

)
. (16)

∑

k∈K
xuk ≤ Qu, xuk , x

u
kck
≥ 0, ∀u, ∀k. (17)

Objective function (16) expresses that the profit of the online platform is equal to a
percentage of the profit of sale of the product minus the management, transaction
costs and the risk. The first constraint in (17) states that the total amount of each
second-hand item bought by all consumers k on platform should be less or equal
than the availability of item u.

Under our assumptions, the optimality conditions for the online platform can be
expressed as the variational inequality:

∑

u∈U

∑

kc∈Kc

∑

k∈K

(
∂Cu(x∗U)
∂xukck

− ∂π
u(x∗U)
∂xukck

− γp∗uk
)

(xukck − x∗ukck) (18)

+
∑

u∈U

∑

k∈K

(
∂t̂uk (x̄

u
k )

∂xuk

)

(xuk − x∗uk ) ≥ 0, ∀(xU , xKc) ∈ SP (19)

SP =
{
(xU , xK

c

) ∈ R
UKcK+UK+ :

∑

k∈K
xuk ≤ Qu,∀u ∈ U

}
. (20)

3 The Equilibrium Conditions of the CLSC Network

In equilibrium state, the optimality conditions for all suppliers, manufacturers,
retailers, demand markets and online platform must be satisfied simultaneously.
We now define the CLSC network equilibrium and give an equivalent variational
inequality formulation.

Definition 1 The CLSC network is at equilibrium if the forward and reverse flows
between the tiers of the decision-makers coincide and the product flows and prices
satisfy the sum of optimal conditions in (3), (7), (15), and (19).

Using standard arguments, it can be proved that the equilibrium conditions
governing the CLSC network model with competition are equivalent to solve a
single variational inequality problem. We can establish the following theorem:

Theorem 1 The equilibrium conditions governing the CLSC network model with
competition are equivalent to solve a single variational inequality problem, given
by the sum of problems (3), (7), (15), and (19).
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The equilibrium conditions presented can be used by policy-makers to anticipate
the effects of the second-hand business on the market. Second-hand economy
is an increasingly important phenomenon because it is a sustainable way for
manufacturers and retailers to operate, and also because it is a convenient system
for users. In fact, it allows consumers to put a used or unwanted product back into
the supply chain and gain money.

4 Conclusions

This paper presents an equilibrium model of a CLSC network consisting of
manufacturers, retailers, demand markets, and one online platform, in which the
consumers purchase new products and collect them. Then, the collectors sell
the goods to consumers through the online platform. We take into considera-
tion capacity constraints of manufacturers and retailers, as well as consumers’
risk-aversion to purchasing second-hand goods, and platform’s risk-aversion to
transacting with collectors. We model the optimal behaviors of all the decision-
makers as variational inequality problems and provide the governing CLSC network
equilibrium conditions.

Our study can provide an analytical tool for investigating the market equilibrium
when collectors engage in the second-hand business. We emphasize that adopting
circular business models can be an effective system to extend the life span of
products and to inspire sustainable consumption. The entire society will benefit from
the lengthened use of available resources.

Future research can explore the equilibrium problem in multi-period planning
horizons, and examine some random factors in the demand functions.
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Design and Optimization of a Regional
Buffalo Milk Supply Chain: A Case
Study

Andrea Bettinelli, Giovanni Righini, and Fabrizio Venturelli

Abstract A feasibility study was carried out to assess the economic viability
of a regional supply chain of buffalo milk mozzarella in Lombardy, Italy. The
design and optimization of the supply chain required the solution of several
combinatorial optimization problems at a strategic and tactical level: location,
generalized assignment, transportation and inventory/routing. Some of them could
be easily solved with a spreadsheet add-in, while others required mixed-integer
programming solvers like glpsol and ILOG CPLEX.

Keywords Supply chain management · Location · Routing

1 A New Regional Supply Chain

Buffalo milk mozzarella is an appreciated typical Italian fresh cheese. Its protected
designation of origin (D.O.P.) requires its production to occur in Campania,
in Southern Italy, where specialized dairies are located. However, a very large
fraction of Italian production of buffalo milk occurs in Lombardy, in the North
of the country; moreover, Lombardy, the most populated Italian region, is also
the largest national market for mozzarella. More details can be found in [3]. This
geographically unbalanced scenario implies the transportation of significant North-
to-South flows of milk and South-to-North flows of cheese. The cost has been
estimated in 1200 Euros for each truck traveling forth and back. Moreover every
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other travel is done with an empty vehicle, because different types of vehicles
are required to trasport milk and fresh cheese. This motivated a feasibility study
to assess the economic viability of a regional supply chain for the production of
buffalo milk mozzarella, not endowed with the D.O.P. certification but possibly
more profitable than the current national supply chain.

2 Strategic Level: Location and Allocation

At a strategic level two scenari were considered: scenario A implies the construction
of a new specialized dairy, to be optimally located and sized in order to support
the whole regional supply chain; scenario B is based on the re-conversion of two
existing dairies of given production capacity. For each scenario it was also required
to study how milk transport operations should be organized to minimize the total
transportation cost.

Scenario A: Locating and Sizing a New Dairy
The strategic problem of optimally locating a new specialized dairy was formulated
as a weighted 1-median problem (see [5] for a comprehensive treatment of
discrete location problems) on the road network of South-Lombardy: distances were
weighted with the (known) average daily production of each of the twenty-eight
buffalo farms involved.

The optimization concerned only milk transportation cost, i.e. the first echelon
of the supply chain; the transportation cost of cheese to retailers, i.e. the second
echelon, was not considered, because of the high variability in the spatial distri-
bution of the demand and the heterogeneity of the destinations, including stores,
supermarkets, restaurants and hotels.

Two additional requirements were stated: (1) the location of the new dairy had
to be easily accessible to trucks, i.e. along some main road or highway; (2) it also
had to be close to a city, in order to have a nearby set of potential customers large
enough to make a local shop sustainable. Such a local shop is meant for selling fresh
mozzarella with no final packaging and possibly additional products characterized
by relatively small production volumes.

The optimal solution was computed on a weighted digraph obtained from
digital maps of the road network of South Lombardy, with a software tool based
on MapWinGIS [4]. To comply with the two additional constraints a GIS-based
decision-support system was designed to compute the set of points for which the
value of the objective function is within a user-defined small percentage of the
optimum, as shown in Fig. 1.

The optimal solution occurs along one of the main internal streets of Soncino,
close to the intersection of the borders between the three provinces of Cremona,
Brescia and Bergamo. This point is a few hundred meters from the ring road
surrounding the town, which could be a perfectly suitable location satisfying both
the above mentioned requirements (see Fig. 2).
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Fig. 1 Scenario A: quasi-optimal zones within 1% (green), 5% (orange) and 10% (yellow) from
the optimum

Fig. 2 Scenario A: the optimal location and the ring road just North of it

In scenario A the sizing problem is trivial: the needed capacity should be at least
equal to the total estimated production capacity of the twenty-eight buffalo farms of
the supply chain (18,477 L of milk per day).
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Fig. 3 Optimal allocation of farms (blue and red triangles) to dairies (black icons)

Scenario B: Demand Allocation
In scenario B the location and the capacity of two existing dairies is given
(Acquanegra sul Chiese (MN), 20,000 L per day and Dorno (PV), 3000 L per
day) and two corresponding clusters of buffalo farms must be defined in order to
minimize transportation costs complying with capacity constraints. A generalized
assignment problem instance arises (see [2] for a comprehensive survey on the
problem). Owing to its small size, it could be solved with a spreadsheet add-in such
as Microsoft Excel Solver. Its optimal solution is represented in Fig. 3.

All farms turn out to be allocated to the closest dairy with a single exception:
Casirate d’Adda (the break item in the optimal solution of the linear relaxation)
is 91 km far from Acquanegra sul Chiese and 76 km far from Dorno, but it
is assigned to the former one. The closest dairy (Dorno) has enough residual
capacity to accommodate about 75% of the milk production from Casirate d’Adda.
However, the option of splitting the Casirate d’Adda supply, allowing for a fractional
allocation, was discarded in favor of the more expensive integer allocation, because
of three main reasons: (1) integer allocation implies lower administrative costs and
simpler administrative procedures; (2) it allows for more reliable forward tracing,
which is especially important in food supply chains; (3) the resulting solution is
more robust, because no dairy is saturated and this is useful to absorb fluctuations
of the daily milk production.
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3 Tactical Level: Optimal Pick-Up Frequencies

For the whole set of suppliers in scenario A and for each farm cluster in scenario B
one has to decide how to organize the visits of vehicles to pick-up milk and carry it
to the dairies. We indicate with P the set of farms to be visited.

Since milking occurs twice a day, the time slots considered in this problem
correspond to half-days. For each time slot the forecasted milk production at each
farm is known. An additional datum is the maximum amount sp of milk that can be
stored at each farm p ∈ P. This amount is not larger than the total production of
7 time slots, because buffalo milk cannot be stored for more than three-and-a-half
days. The available storage is further reduced by the production of the last time slot,
because it is a good practice to leave fresh milk “resting” for about twelve hours
before transporting it.

The possibility of storing milk at the farms allows not to visit every farm in every
time slot, which would be very expensive from the viewpoint of transportation costs.
Instead, one wants to define a cyclic schedule of visits that repeats every T time
slots, where T is a user-defined parameter. We indicate with T the set of time slots
for each problem instance.

The mathematical model includes binary variables vpt , representing whether
farm p ∈ P is visited in time slot t ∈ T or not, as well as continuous non-negative
variables zpt and ypt , representing respectively the amounts of milk picked-up at
farm p ∈ P in time slot t ∈ T and the amount of milk stored at farm p ∈ P
at the end of time slot t ∈ T. The integer linear programming model includes the
dairy capacity constraint (a datum m indicates the capacity of the dairy in every
time slot), the farms storage capacity constraint, the typical flow balance constraints
ypt−1+ qp = zpt + ypt that link the stored amount y, the production q and picked-
up amount z in each time slot for each farm, and constraints stating that pick-up
operations can occur only when a farm is visited (i.e. zpt > 0 implies vpt = 1).

In principle the objective function of this problem should be the total travel cost,
i.e. the total distance traveled in the T time slots of the planning horizon. This would
generate a vehicle routing problem (actually, a periodic inventory-routing problem)
which cannot be solved by general-purpose ILP solvers. Instead of implementing an
ad hoc optimization algorithm, it was decided to minimize the total number of visits
to the farms. Intuitevely, this is a good proxy for the solution that minimizes the total
distance traveled, with the disadvantage that several solutions can exist implying the
same total number of visits but different transportation costs.

The model is as follows:

minimize f =
∑

p∈P

∑

t∈T
vpt

subject to
∑

p∈P
zpt ≤ m ∀t ∈ T

ypt = ypt−1 − zpt + qp ∀p ∈ P ∀t ∈ T : t �= 1
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yp1 = ypT − zp1 + qp ∀p ∈ P

ypt ≤ sp ∀p ∈ P ∀t ∈ T

zpt ≤ vpt sp ∀p ∈ P ∀t ∈ T

zpt ≥ 0 ∀p ∈ P ∀t ∈ T

ypt ≥ 0 ∀p ∈ P ∀t ∈ T

vpt binary ∀p ∈ P ∀t ∈ T

The optimization was repeated for several values of T . It is worth noting that in
order to allow farmers to easily plan the visits, it is not recommendable to use large
values of T .

In spite of the simplified objective function, the resulting ILP model turned out
to be too difficult for the Microsoft Excel Solver and also for the free solver glpsol,
even for the smallest instance (Dorno dairy in scenario B, with only 7 allocated
farms). Using ILOG CPLEX, on the contrary, it was possible to solve all instances
of interest to optimality. Moreover, it is worth observing that even values of T are
preferable to odd values, because their effect is that visits to each farm always occur
in the morning or in the afternoon without annoying alternations.

The results reported here refer to the case where all farms are assumed to
be equipped with sufficent capacity to store a 7 time slots production. Two
different cases were studied, indicated by “constrained” and “unconstrained”. In
the constrained case, the farm refrigerator is assumed to be completely emptied
when a visit occurs, while the unconstrained case allows for partial pick-up. The
unconstrained case is more difficult to implement in practice, because it requires
separated refrigerators and an additional information to be communicated to the
driver (i.e. the exact amount of milk to pick-up), which may be a source of errors.
However the unconstrained case was considered as a benchmark to evaluate the
costs of the constrained case. Tables 1, 2, and 3 report the results.

Table 1 Optimal visit frequencies (scenario A, Soncino dairy)

Unconstrained Constrained

T Visits Comp. time Visits/slot Visits Comp. time Visits/slot

1 28 0.000 28.00 28 0.000 28.00

2 28 0.005 14.00 28 0.000 14.00

3 28 0.008 9.33 28 0.015 9.33

4 28 0.022 7.00 28 0.037 7.00

5 28 0.270 5.60 28 0.244 5.60

6 28 0.296 4.67 28 0.199 4.67

7 28 0.008 4.00 28 0.007 4.00

8 56 0.156 7.00

9 56 0.253 6.22

10 56 5.733 5.60
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Table 2 Optimal visit frequencies (scenario B, Acquanegra dairy)

Unconstrained Constrained

T Visits Comp. time Visits/slot Visits Comp. time Visits/slot

1 21 0.000 21.00 21 0.000 21.00

2 21 0.003 10.50 21 0.000 10.50

3 21 0.007 7.00 21 0.007 7.00

4 21 0.011 5.25 21 0.031 5.25

5 21 0.309 4.20 21 0.196 4.20

6 21 0.321 3.50 21 0.186 3.50

7 21 0.005 3.00 21 0.006 3.00

8 42 0.132 5.25

9 42 2.048 4.67

10 42 114.048 4.20

Table 3 Optimal visit frequencies (scenario B, Dorno dairy)

Unconstrained Constrained

T Visits Comp. time Visits/slot Visits Comp. time Visits/slot

1 7 0.001 7.00 7 0.000 7.00

2 7 0.001 3.50 7 0.000 3.50

3 8 0.004 2.67 8 0.002 2.67

4 8 0.004 2.00 8 0.003 2.00

5 9 0.023 1.80 8 0.090 1.60

6 10 0.071 1.67 10 0.047 1.67

7 11 0.026 1.57 10 0.002 1.43

8 16 133.075 2.00 16 0.102 2.00

9 17 406.767 1.89 16 0.133 1.78

10 18 203.080 1.80 16 1.407 1.60

11 19 50.519 1.73 18 412.731 1.64

12 20 8.504 1.67 18 21.644 1.50

13 20 0.092 1.54 19 1.241 1.46

14 22 0.215 1.57 19 0.045 1.36

The results show that the constraint does not yield any significant increase of
the number of visits per time slot, with only a few exceptions of the smallest dairy
(Dorno) for some values of T .

The average number of visits per slot decreases when T increases, because farms
storage capacity is better and better exploited. When the time threshold of 7 slots is
reached, the average number of visits per slot suddenly doubles. This effect would
not be so concentrated on a specific value of T if the farm storage capacities were
assumed to be different from one another.
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4 Routing

The last step in this feasibility study was the evaluation and minimization of milk
transportation costs. This would require to solve some instances of the capacitated
vehicle routing problem (see [6] for a comprehensive survey) with some additional
constraints. However, owing to budget and time limits, in this preliminary feasibility
study it was not required to develop an exact solution algorithm (typically a branch-
and-price or branch-and-cut-and-price algorithm), but rather to compute a reliable
estimate of the transportation cost.

For this purpose, three assumptions were made. First, a single vehicle was
assumed to be sufficient for each time slot; this is not restrictive, because the
capacity of the available vehicles is larger than the amount of milk to be transported
in every scenario and for every value of T . Second, no constraints were imposed
on the maximum distance and the maximum duration for each vehicle route; this is
also unlikely to be restrictive in a real situation, because farms are not far from one
another. Third, it was assumed that routes were determined by the optimal farm-
to-slot assignment computed in the previous phase of the study, where the number
of visits had been minimized. This is the most restrictive assumption, because the
composition of the farms subsets assigned to the same time slots does not take
into account farm-to-farm distances; therefore, from the viewpoint of travel cost
minimization such clusters are likely to be sub-optimal. This effect is mitigated
by the decentralized position of the dairies in scenario B: this means that the total
distance travelled depends more on the number of routes than on their composition.

Owing to these assumptions, it is possible to obtain an estimate of the total
transportation costs by solving some instances of the asymmetric traveling salesman
problem (see [1] for a comprehensive survey), one for each scenario, for each dairy,
for each value of T and for each time slot. The size of these instances was between 2
and 29, including the dairy which is assumed to act as the vehicle depot. The results
obtained with ILOG CPLEX for T up to 7 are reported in Table 4.

The reason why the constrained cost is sometimes lower than the unconstrained
one is the third assumption mentioned above. This effect is possible when one

Table 4 Average distance [Km] travelled in each time slot for different values of T

Soncino (A) Acquanegra (B) Dorno (B)

T Constr. Unconstr. Constr. Unconstr. Constr. Unconstr.

1 485.35 485.35 387.58 387.58 180.43 180.43

2 348.98 304.46 281.38 277.22 153.00 160.99

3 280.89 275.24 259.50 259.91 144.88 144.88

4 247.77 244.29 213.73 223.69 141.72 143.38

5 215.50 244.24 199.77 212.35 140.46 113.81

6 217.98 193.17 198.91 194.20 136.01 117.17

7 190.92 191.70 181.35 164.38 134.95 136.02
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estimates costs using clusters of farms that are not guaranteed to be optimal from
the viewpoint of distance minimization.

5 Extensions and Conclusions

The aim of the preliminary study was to evaluate the feasibility and economic
sustainability of a new regional supply chain. For this reason some assumptions
and approximations were done to pursue a trade-off between reliability of estimates
on one side and development time and cost on the other side.

Several extensions are possible from this starting point. A first possible extension
consists of formulating and solving a vehicle routing problem, replacing the
many instances of the asymmetric traveling salesman problem, in order to obtain
more accurate estimates of the milk transportation cost. In such a vehicle routing
prooblem one can allow for the use of two types of vehicles (with capacity 17,000
and 35,000 L). Another extension consists of using tighter (and more realistic)
constraints on the available storage capacity at the farms. However this would
change the results but not the structure of the mathematical models.

An important possible extension concerns the production and distribution of
cheese. Taking into account the milk-to-cheese conversion factor (typically 25–28%
for mozzarella), one should determine the optimal production mix of mozzarella and
other types of cheese. For this purpose one should also consider seasonal effects
both in production and consumption. On one side, the monthly production of milk
is different along the year and it also depends on the buffalos reproduction cycle.
On the other side, the market demand is not uniform along the year; in winter,
demand for mozzarella is lower and demand for other types of cheese is higher than
in summer. A critical decision is how to manage production surplus in winter, i.e.
deciding whether to sell the surplus milk (for instance in the Southern Italy market)
or to freeze it to meet demand peaks in summer.

Finally it should be pointed out that this feasiblity study has shown that a new
regional supply chain of buffalo milk mozzarella in Lombardy would allow to
transport every liter of milk for about 33 km in average, instead of the 700 km
currently travelled to supply dairies in South Italy.
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Truck-and-Drone Parcel Delivery in the
Alps

Olivier Gallay, Marc-Antoine Coindreau, and Nicolas Zufferey

Abstract In this paper, we consider a parcel-delivery situation encountered in
practice by a logistics provider in France, involving a truck and a drone. Whereas the
majority of the deliveries take place in the valley, some parcels have to be delivered
to a remote place located in a mountainous area with poor accessibility. These
remote deliveries can be performed by a drone launched from the truck located
in the valley. We study this parcel-delivery configuration and extend it by allowing
the truck to launch and retrieve the drone from multiple positions in the valley. We
propose a strengthened Mixed-Integer-Linear-Programming model, and we solve it
for instances with up to 23 parcels. We compare our results with those of a classical
delivery framework involving a truck only, and we highlight the practical relevance
of using drones in this mountainous context.

Keywords Vehicle routing in mountains · Drones · Mixed-integer linear program

1 Introduction

In this paper, we address a parcel-delivery framework encountered in practice by the
logistics provider DPD in France [9], and we refer to it as the DPD Problem. Since
September 2019, DPD is operating, in a mountainous region close to Grenoble, a
delivery solution involving a truck and a drone. Following the DPD current practice,
the truck first reaches a dedicated zone located at the bottom of the mountainous
area. Next, a drone (carrying the parcel) flies up to the remote destination, drops
the parcel, and comes back to the dedicated zone where the truck waits. This bi-
modal delivery framework has several advantages. First, whereas the round trip
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from the valley to the uphill destination would take 30 minutes by truck, the
drone requires only 8 minutes to perform the delivery. Second, the mountain road
is narrow and thus unsafe (in particular in winter conditions), the drone delivery
reduces the accident risk. Finally, the energy consumption, as well as the associated
environmental footprint, can be drastically reduced by favoring drone instead of
truck delivery. It is interesting to note that the implementation of the DPD solution
was probably facilitated in practice as the drone avoids flying above urban areas.
Indeed, the drone is launched outside the city and most of the flight takes place above
a forest. In that regard, legislation aspects and noise pollution constitute smaller
obstacles towards the implementation of drone delivery.

Since the seminal paper by Murray and Chu [8], delivery fleets made of both
trucks and drones have received substantial interest from the research community.
In [6], 63 papers focusing on this research trend are reviewed (with publishing date
between 2015 and 2020). The various papers in this field differ in the employed
configurations (e.g., number of trucks, number of drones per truck, number of
parcels per drone), in the considered objectives and constraints (e.g., minimization
of the makespan or costs, time windows constraints, drone autonomy), and also in
the location at which the drones are allowed to be launched and retrieved. In terms
of solution methods, Mixed-Integer-Linear-Programming (MILP) is used for small
instance sizes, and larger instances require the use of meta/heuristics.

In this paper, we study the opportunity of using a truck-and-drone pair to deliver
a set of parcels (called jobs), some of them being located in a poorly accessible area
(denoted as remote jobs). We compare the three following configurations:

• The traditional truck delivery (TTD), where one single truck is used to deliver all
the parcels.

• The DPD current configuration (DPDC), where the truck driver launches and
retrieves the drone from a dedicated position located at the bottom of the
mountainous area. The drone can transport one parcel at a time and can be
launched multiple times. The driver waits until the drone has completed its
delivery before recharging it for another delivery or continuing its tour.

• The DPD extended configuration (DPDE), where the drone can be launched and
retrieved at any job location in the valley. When the drone is flying, the driver can
make other deliveries and retrieve the drone at another job location (instead of
simply waiting at the launch point). The time between the launch and the retrieval
of the drone is limited by its flight autonomy.

With respect to the increasing interest in routing problems with drones (see
[6] for a recent review), the present article proposes the following contributions.
First, we consider a real application currently in operation and which addresses
the use of drones to deliver parcels in poorly accessible areas. The latest review
papers indicate that this application has not been considered in the literature (see
[2] for an exhaustive overview of delivery practices using drones). Second, we
model and solve realistic instances based on this new application, and we highlight
the limitation of current practices (i.e., truck waiting during the drone delivery),
in particular when the number of remote jobs increases. Third, we show that
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these limitations can be narrowed down by: increasing the level of synchronization
between the trucks and the drones; allowing the trucks to move during the drone
deliveries. Last, we propose a new and efficient MILP formulation that is able
to manage several types of synchronization constraints between the truck and
the drone. Using strengthening constraints, the MILP is able to find competitive
solutions for instances involving up to 23 parcels in less than one hour of execution
time. An overview of exact methods developed for similar types of problems can be
found in [7]. In comparison, the MILP proposed by Murray and Chu [8] on a related
problem requires hours of computation for instances involving 10 parcels.

2 Models

2.1 Considered Sets, Parameters and Variables

Let JV = {1, . . . , n} be the set of jobs located in the valley and JR = {n+1, . . . , n+
m} the set of remote jobs located in the mountainous area (only the jobs in JR can
be served by drone). J = JV ∪ JR denotes the set of all the jobs. For job j ∈ J :
pj ∈ N (resp. p̃j ∈ N) denotes its processing time in minutes when served by a
truck (resp. by a drone). Between two jobs (i, j) ∈ J×J , the traveling (resp. flying)
distance is given by dij ∈ R (resp. d̃ij ∈ R), and the driving (resp. flying) time is
denoted by τij ∈ R (resp. τ̃ij ∈ R). The drone autonomy (i.e., maximum flying
time) is E.

To handle the necessary synchronization of the truck and the drone, we create
virtual nodes for each job to distinguish: the time at which the drone is launched,
the time at which it is retrieved, and the job service time (i.e., the time at which
the parcel is delivered at the remote location). Accordingly, a drone is launched and
retrieved at virtual nodes. We introduce the following extended sets and variables.
J− = {1−, . . . , n−} is the set of virtual entry nodes, whereas J+ = {1+, . . . , n+} is
the set of virtual exit nodes. In our modeling framework, when the truck serves job
j , it first visits j−, then j , and j+ (j− and j+ are two potential launch and retrieval
nodes for the drone). Moreover, 0 denotes the node representing the starting depot,
and 0+ represents the terminal depot. We introduceV = J−∪J+ as the set of virtual
nodes, V − = V ∪ {0}, and V+ = V ∪ {0+}. A1 = {(i, j) ∈ (V − × V +), with i �=
j , such that: if i = 0 then j ∈ J−, if i ∈ J− then j = i+, if i ∈ J+ then j ∈
{J− ∪ 0+}} is the set of arcs that can be used by the truck. A2 = {(i, j, k) ∈
(V− × JR × V +), such that τ̃ij + τ̃jk + p̃j ≤ E} is the set of arcs that can only be
used by the drone.

The following decision variables are used.

• xij = 1 if the truck travels from i ∈ V − to j ∈ V+; xij = 0 otherwise.
• yijk = 1 if the drone visits j ∈ JR in a flight route starting from i ∈ V − and

arriving at k ∈ V+; yijk = 0 otherwise.
• zij = 1 if the truck transports the drone from i ∈ V− to j ∈ V+; zij = 0

otherwise.
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• uj ∈ R: time at which the truck leaves j ∈ V −.
• u0+ ∈ R: time at which the truck returns to the depot.
• sj ∈ R: service start time of job j ∈ J .
• w̃ijk ∈ R: flying time corresponding to the flight route where the drone is

launched at i ∈ V−, serves job j ∈ J , and is retrieved at k ∈ V + (w̃ijk = 0
if such a flight does not exist).

2.2 MILP Model for the DPDE Configuration

Objective (1) minimizes the truck completion time (i.e., the time at which the truck
comes back to the depot).

minu0+ (1)

Job-satisfaction constraints:

∑

(i,j−)∈A1

xi,j− +
∑

(i,j,k)∈A2

yijk = 1, j ∈ J (2)

Constraints (2) ensure that each job is performed exactly once by either the truck
or the drone. The left component indicates that if a truck enters a virtual entry node
(j− ∈ J−), it serves the corresponding job. The right component checks whether
the considered job belongs to a drone flight route.
Vehicle-flow constraints:

∑

(j,i)∈A1

xji =
∑

(i,j)∈A1

xij , i ∈ V (3)

∑

(0,i)∈A1

x0i =
∑

(i,3·n+1)∈A1

xi0+ (4)

∑

(0,i)∈A1

x0i ≤ 1 (5)

∑

(k,j,i)∈A2

ykji +
∑

(k,i)∈A1

zki =
∑

(i,j,k)∈A2

yijk +
∑

(i,k)∈A1

zik, i ∈ V (6)

∑

(k,j,i)∈A2

ykji +
∑

(k,i)∈A1

zki ≤ 1, i ∈ V (7)

∑

(i,j,k)∈A2

yijk +
∑

(i,k)∈A1

zik ≤ 1, i ∈ V − (8)

zij ≤ xij , (i, j) ∈ A1 (9)
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Constraints (3) ensure that when the truck arrives at a virtual node, it will
ultimately leave this node. Constraints (4) ensure that the truck, after having left
the depot, will return to the depot at the end of its tour. Constraints (5) state that the
truck can only exit the depot using one arc. If the drone is retrieved or launched at
node i ∈ V , the truck route must pass by i. Constraints (6) ensure that when the
drone arrives at i ∈ V by flying or being transported in a truck, it must exit the node
by either flying or being transported by a truck. Similarly, Constraints (7) and (8)
prevent the drone from arriving at (or exiting from) a node i ∈ V by two different
paths. Constraints (9) ensure the en-route synchronization between the drone and
the truck.

Temporal Constraints

uj ≥ ui + τij −M · (1− xij ), (i, j) ∈ A1 (10)

sj ≥ uj−, j ∈ J , (11)

sj ≥ ui + τ̃ij −M · (1−
∑

(i,j,k)∈A2

yijk), j ∈ J , i ∈ V− (12)

uj+ ≥ sj + pj , j ∈ J (13)

uk ≥ sj + p̃j + τ̃jk −M · (1−
∑

(i,j,k)∈A2

yijk), j ∈ J , k ∈ V + (14)

w̃ijk ≥ uk − ui −M · (1− yijk), i ∈ V −, j ∈ J , k ∈ V + (15)

w̃ijk ≤ E, i ∈ V −, k ∈ V +, j ∈ J (16)

At a node j ∈ J− ∪ J+, the truck can: retrieve or launch the drone, perform
both of these tasks, or do none of them. Furthermore, the truck must leave the corre-
sponding node after all these operations take place. We setM =∑

(i,j)∈(J×J ) τij +∑
j∈J pj , which is a sufficiently large number that is strictly greater than the total

en-route time of every possible solution. Constraints (10) require the truck to leave
node j ∈ V after its arrival. Constraints (11) (resp. (12)) ensure that service occurs
after the truck (resp. the drone) arrival. Constraints (13) force the truck to leave
the node after completing the associated service. Constraints (14) allow the truck
to leave the node after the drone has been retrieved. Constraints (15) compute the
flight time of the drone. Constraints (16) forbid any drone flight from having a longer
duration than the drone autonomy.

Preliminary experiments showed that the MILP described by Eqs (1)–(16)
suffered from having a poor lower bound. To overcome this issue, we propose the
following strengthening constraints to improve the quality of the lower bound on
the time at which the driver returns the depot (i.e., u0+).
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Strengthening Constraints

u0+ ≥
∑

(i,j)∈A1

τij xij +
∑

j∈JV
pj (17)

∑

(i,j,k)∈A2

yijk ≥ 1, ∀j ∈ JR (18)

sj1 ≤ sj2 (19)

u0+ ≥ max
(i,j)∈J

τ0−,i + τi,j + τj,0+ +
∑

j∈J
pj (20)

Constraints (17) state that the truck driver en-route time is greater than the time
spent driving plus the time spent delivering the parcels in the valley. Constraints (18)
force the drone to visit the remote jobs (in order to avoid solutions in which the truck
visits one of the remote jobs). Constraint (19) allows cutting some symmetries by
forcing one of the job j1 in the valley to be served before another job j2 (j1 and
j2 being randomly selected). Constraint (20) is a lower bound for the considered
objective.

2.3 Models for the TTD and the DPDC Configurations

The TTD is an occurrence of the Traveling Salesman Problem (TSP). It aims at
finding the route for one single truck visiting all delivery locations while minimizing
the en-route time (see for instance [1]). Such configurations also occur in production
planning when the makespan to perform all the jobs has to be minimized, while
satisfying various constraints [12].

To solve the DPDC configuration, we first transform it into a TSP problem. To
do it, we create an instance involving: all the jobs that are located in the valley; one
aggregated job that contains all the information related to the drone deliveries. The
aggregated job is positioned at the dedicated launching position located in the valley.
Its duration is equal to the time needed for the drone to perform all the necessary
round trips and services to deliver all the parcels. Accordingly, the duration of this
aggregated job is equal to m× tf , where m is the number of parcels to be delivered
in the remote area, and tf denotes the total time needed for the drone to send a parcel
uphill (it includes loading and flying times).

TSP problems have been broadly studied over the last decades (see [5] for an
overview of efficient MILP formulations for the TSP). We thus use a generic MILP
version of the TSP to find the optimal solutions of the instances of the TTD and
DPDC configurations.
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3 Experiments

CPLEX 12.10 was used to solve the MILPs. The employed computer has the
following characteristics: 2.2 GHz Intel Core i7 with 16 Go 1600 MHz DDR3 of
RAM memory.

3.1 Instances

We generate instances based on data representing the valley currently delivered by
DPD. Figure 1 displays a map of the considered region, which is located 5km in the
north west of Grenoble. Fontanil-Cornillon (FC) is the city where DPD currently
launches and retrieves the drone, and Mont-Saint-Martin (MSM) is the village
equipped with the parcel retrieval platform. The drone flies over the platform to
drop the parcel. The parcel is secured by a locking system, and it is then available
to be picked up by its recipient (at any time after the delivery has taken place).

The valley containing the jobs is modeled by a rectangle grid of 10 × 4 km. The
start of the uphill to MSM (the drone launching position) is located at position (5,
4 km), and the depot at position (0, 0 km) on the grid. MSM is located at 10 km
from FC by road, and at 3 km when flying. The average truck speed in the valley is
25 km/h, and the average drone speed is 45 km/h (these values can be found in [9]).
Hence, the flying time for a round trip between FC and MSM is equal to 8 minutes.
Jobs are randomly generated in the valley, following a uniform distribution. We use
the Manhattan distance between jobs that are located in the valley (road network),
but the Euclidean distance between a job in the valley and a remote job. The road
distance between a job in the valley and a remote job is computed as the distance to
the beginning of the uphill in FC plus 10 km (the round trip for a truck is 20 km and

Fig. 1 Geographical characteristics of the territory under study. Source: Google Maps
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Fig. 2 Spatial distribution of the job locations for an instance involving |JV | = 10 jobs in the
valley and |JR| = 2 remote jobs (left part). Associated optimal solution (right part)

lasts 30 minutes). The service time is set to 3 minutes when the parcel is delivered
by the truck driver, and to 1 minute when the parcel is dropped by the drone in the
parcel-retrieval platform at MSM. The time required to load a parcel to the drone
is equal to 1 minute. As a result, considering the DPD problem, the total time to
deliver one parcel from FC to MSM by drone is equal to 10 minutes.

We will compare the performance of the three considered configurations (i.e,
TSP, DPDC and DPDE) with respect to the number of remote jobs to be performed.
We propose 5 instance structures (3 structures involving |JV | = 10 jobs, and 2
structures involving |JV | = 20 jobs, which corresponds to the workload of half a
day). For each instance structure, the number of remote jobs varies, with |JR| ∈
{1, 2, 3}. Instances having the same “Id” involve jobs located at the same positions
in the valley.

As an illustration, the left part of Fig. 2 shows how jobs are spread for one
representative instance. The square at the bottom left corner designates the depot,
the red cross “FC” indicates the start of the uphill to MSM, and “MSM” shows the
position of the remote jobs. The right part of Fig. 2 illustrates the associated optimal
DPDE solution obtained by the MILP. The straight (resp. dashed) lines indicate the
paths used by the truck (resp. drone). The value next to each job location is the time
at which the delivery occurs, and the drone flight times are indicated next to the
corresponding dashed lines.

3.2 Performance of CPLEX

CPLEX found the optimal solution for instances with |JV | = 10 jobs in 13 minutes
(on average). Within 1 hour of execution time, CPLEX found solutions with an
average gap to optimality of 14% for instances with |JV | = 20 jobs. Constraints (17)
was beneficial, as its reduces the objective-function value by 1% (resp. 15%) for the
instances with |JV | = 10 (resp. |JV | = 20). Moreover, as u0+ is poorly constrained
in the original MILP (even after 1 hour of execution time for the smallest instances,
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CPLEX returned a lower bound equal to 0), adding these constraints is mandatory
to obtain a good lower bound on the results, and to prove the optimality of some
solutions. Finally, adding constraint (19) (cutting symmetries) helps in reducing the
execution time (to find the optimal solution) by 45% for the instances with |JV | =
10. The use of more advanced filtering techniques [3, 4] to discard non-promising
solutions is left here as an avenue of research.

3.3 Results and Managerial Implications

Table 1 compares the results of the three considered configurations (TTD, DPDC
and DPDE). Instance characteristics are depicted in the first three columns. Next,
for each configuration, we display the en-route driver time (in minutes) in column
“ERDT”, and the truck driving distance (in km) in column “TDD”. Columns
“%(TTD)” is the percentage improvement (of the objective-function value) of
DPDC (or DPDE, depending on the column) with respect to the TTD objective-
function value. Similarly, “%(DPDC)” is the percentage improvement achieved by
DPDE over DPDC.

We can observe that DPDC reduces the truck driving distance (TDD) (and hence
the associated greenhouse gas emissions) when compared to TTD, which highlights
the benefit of using a drone. On average, TDDs are reduced by 39.5% (i.e., indeed,
20 km of driving on mountainous roads is removed from the solution). However,
regarding the en-route driver time (ERDT), which is the main cost for the company,
the superiority of DPDC (over TTD) decreases when the number of remote jobs
increases. Indeed, the more jobs have to be delivered at the remote location, the
more round trips must be achieved by the drone, and hence the more the driver has
to wait at the drone launching position. As a result, when the number of remote
jobs is equal to 3 (or more), DPDC is not more efficient than TTD regarding the
driver’s salary. In contrast, DPDE reduces both ERDT and TDD, regardless of the
number of remote jobs to be served. More precisely, on average, TDD is reduced
by 41.2% (resp 2.9%) when compared to TTD (resp. DPDC). At the same time, on
average, ERDT is decreased by 22.5% (resp. 15.6%) when compared to TTD (resp.
DPDC). This gain increases with the number |JR| of remote jobs. Compared to
DPDC, when |JR| is equal to 1, 2, and 3, this average improvement is equal to 9.5,
15.9, and 21.4%, respectively. Such ERDT improvements are possible for DPDE
thanks to the fine-tuned synchronization between the driver and the drone. Indeed,
for DPDE, the drone can be launched and retrieved at any job location, and not only
at a single launching position (as for DPDC).
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4 Conclusions and Future Works

In this paper, we model a realistic situation involving bi-modal parcel delivery
using a truck and a drone. More precisely, we address a truck-and-drone framework
currently operated by the French logistics provider DPD in a mountainous area
where some parcels have to be delivered in a poorly accessible location. In the
current DPD configuration (DPDC), a single launch-and-retrieve position (located
in the valley) is used, and the driver has to wait while the drone flies to drop the
parcels at the remote location. Keeping the realistic hypotheses of DPDC (i.e.,
most of the drone flights are outside the populated areas, hence reducing accident
risks), we propose an extended configuration (DPDE) for which the drone can
be launched and retrieved from various locations in the valley, and the driver can
deliver one or more parcels while the drone is on flight. We develop a strengthened
MILP that is able to tackle instances involving up to 23 jobs while managing the
complex synchronization among the driver and the drone. We measure the benefit
of DPDE with respect to DPDC and to TTD. Indeed, the en-route driver time
and the truck driving distance can be both significantly reduced (and hence the
associated greenhouse gas emissions, as no more round trips by truck are needed
in the mountains).

The superiority of DPDE should hold when multiple remote areas have to be
served within the same routes, and mountainous areas with denser population should
open the door for even greater improvement potential. Among future works, and in
line with some truck allocation problems [10], we could consider a fleet of trucks
and drones, where the trucks can carry several drones and are hence used as drone
hubs. Another avenue of research would be to daily solve an order-acceptance-and-
scheduling problem (i.e., the deliveries to be performed have to be selected first, and
performed second), as it is often the case in production planning [11].
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A Fast Heuristic Approach for the
Assignment and Sequencing Storage
Location Problem Under a Two Level
Storage Policy

Giacomo Lanza, Mauro Passacantando, and Maria Grazia Scutellà

Abstract We consider a storage allocation problem which combines storage loca-
tion assignment with sequencing decisions about the assigned storage locations, and
which originates from a real-world application context. We propose a very efficient
successive constrained shortest path method, which outperforms a matheuristic
approach recently proposed in the literature in terms of both the computational time
required and regarding the quality of the solutions found.

Keywords Storage location assignment · Storage location sequencing ·
Mixed-integer linear programming · Multicommodity flows · Heuristic

1 Introduction

Storage Location Assignment Problems (SLAPs) are operational problems aiming
at defining the exact physical location of a set of items in a storage area, which
broadly could be a warehouse, a yard, the bunt of a container ship or even a
tram/bus depot. Such decisions are made by considering some long-term storage
assignment policies (random, dedicated and class-based are the most popular [1, 2]),
that broadly prescribe the rules to follow when stocking is needed, by respecting
additional requirements related to the specific application context and, generally, by
optimizing criteria such as material handling cost or storage space utilization [3–5].

The problem addressed in this paper has been motivated by a real application
involving a production site of an Italian company, in Tuscany, whose large ware-
house (more than 10,000 m2) is the subject of a big modernization project requesting
the resolution of a SLAP with operations research techniques. Specifically, a set of
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storage locations (SLs) has to be assigned to a set of different product types, each
with its own storage demand expressed in number of items to store in a given time
horizon. Each SL has a fixed capacity and can be assigned to at most one product
type, i.e., different types of products cannot share the same SL. The majority of
the product types can be stored in any available SL, i.e., a random storage policy
is considered. However, special product types do exist, which have to be preferably
managed according to a dedicated storage policy.

In addition, a suitable sequencing of the assigned SLs must be devised for each
product type, i.e., it has to be decided the ordering with which the assigned SLs
will be filled up during the storing operations. A motivation is that a FIFO (First-
In First-Out) order picking policy based on the time of permanence of the items in
the warehouse has to be pursued, separately per product type, when items must be
retrieved to fulfill customers’ orders. The sequencing established for the assigned
SLs will thus allow to easily implement the FIFO policy in the successive order
picking steps. Moreover, the selected sequencing also determines the availability
of additional extra storage per product type. Specifically, an additional amount of
storage can be made available on the top of pairs of consecutive SLs along the
sequence, provided that they are fully replenished and physically contiguous, thus
allowing a two level stocking policy. The objective is to maximize the storage
capacity which remains available after the assignment of the SLs.

The recent paper [6] describes the problem more formally, providing two Mixed
Integer Linear Programming (MILP) formulations and the proof of its NP-hardness.
Additionally, since the state-of-the-art commercial solver CPLEX is not able to
address real-size instances, such those faced daily by our industrial partner, a simple
yet effective matheuristic approach to tackle such instances is proposed in [6].
Further models to SLAP have been proposed in [7].

In this paper, we propose a heuristic solution method based on successive
constrained shortest paths. The heuristic is able to find solutions to real-size
instances in a few seconds, also improving the quality of those found in [6] in
terms of both available storage capacity and other crucial features that our industrial
partner is interested in.

The paper is organized as follows. We briefly describe the problem statement in
Sect. 2. The heuristic method designed to tackle the problem is presented in Sect. 3.
Section 4 describes the experimental plan and reports the results of the preliminary
computational experiments we performed. Finally, Sect. 5 concludes the paper and
identifies some future directions of research.

2 Problem Statement

Let K be the set of the different product types requiring storage in a given time
horizon, and qk be the number of items of product type k that needs storage, for
each k ∈ K. Let S be the set of available SLs in the warehouse where the products
in K have to be stocked, each SL s ∈ S having a capacity us . Two subsets of
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Fig. 1 Available SLs in a
storage area

K of special product types are given: KP ⊆ K denoting perishable products and
KHR ⊆ K denoting high rotational products. Products in KP and KHR should be
preferably stocked in specific SLs, denoted as SP ⊆ S and SHR ⊆ S, respectively.

The addressed problem consists in assigning a sequence of available SLs to each
k ∈ K, by satisfying the following constraints:

• each SL in S can be assigned to a unique product type in K;
• the sum of the capacities of the SLs assigned to a product type plus the extra

storage made available for it on the top level (in case of pairs of fully replenished
and physically contiguous SLs) must be greater than or equal to the storage
demand of the product type;

• the special product types in KP and KHR should be preferably assigned to SLs
in SP and SHR , respectively;

with the aim of maximizing the residual storage capacity, i.e., the one which remains
available after the assignment of the SLs.

Figure 1 depicts a storage area where three SLs are occupied by some items in
the first level (two are consecutive and one is isolated) and four SLs are available for
stocking (three are consecutive and one is isolated), depicted as full black rectangles
and as white rectangles, respectively. An example of the two level storage policy is
shown for the first two occupied SLs. The residual storage capacity, in this case, is
defined as the sum of the capacities of the 4 available SLs at the ground level, plus
the capacities exploitable on top of SLs 1 and 2, as well as on top of 2 and 3.

3 A Successive Constrained Shortest Path Method

For each product type k ∈ K, the proposed heuristic finds a constrained shortest path
on a suitable auxiliary graph, whose set of nodes describes the current availability
of SLs in the warehouse. This path specifies the SLs assigned to k and the order in
which they must be filled up, in such a way as to guarantee that the total capacity of
the assigned SLs is enough to store the qk items required by k, taking into account
the possibility of exploiting extra storage on the top of the assigned SLs. After the
assignment to k, the auxiliary graph is suitably pruned by removing the assigned
nodes and the corresponding incident arcs, to avoid that the corresponding SLs can
be assigned to product types other than k.

In the following subsections, we introduce the auxiliary graph, we present the
constrained shortest path problem to be solved for each product type and we describe
the overall heuristic method.
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3.1 The Auxiliary Graph

In the auxiliary graph G = (N,A), the set of nodes N consists of:

• a fictitious source node�,
• a fictitious target node�,
• a set L containing one node for each currently available SL in the warehouse.

The set L is partitioned into two subsets, LI and L\LI : LI is composed of all those
nodes of L corresponding to isolated SLs in the warehouse (that is, no contiguous
SL is available for storage, like SL 4 in Fig. 1), while L \ LI is in turn partitioned
into ∪h=1,...,HFh subsets, each of them defining a group of nodes associated with
physically contiguous SLs. For example, SLs 1, 2 and 3 in Fig. 1 define one of these
groups. A generic subset Fh contains nodes of type {jh1 , jh2 , . . . , jh|Fh|}, where jh1
and jh|Fh| respectively denote the nodes associated with the first and the last SL of
the physically contiguous group Fh (like SLs 1 and 3 in Fig. 1), while the remaining
nodes jhm, with 1 < m < |Fh|, are associated with intermediate SLs (like SL
2 in Fig. 1). In particular, the SL associated with node jhm is in between the SLs
associated with nodes jhm−1 (being the previous one) and jhm+1 (being the next one).

A capacity uj is associated with each node j ∈ L. It coincides with the capacity
of the SL the node j is associated with, if the SL is isolated or it is the first SL in a
group of physically contiguous SLs; otherwise, it coincides with its double, so as to
model the two level storage policy. Moreover, a profit δkj is defined for each product
type k ∈ K and each node j ∈ L. This profit aims to favour the assignment of k to
the preferable subsets SP or SHR , if k ∈ KP or k ∈ KHR . Otherwise, it tends to
favour the assignment of k to SLs in S \ (SP ∪ SHR).

The set of arcs A is defined in order to model the assignment of a sequence of
SLs to each product type in K. The set A contains:

• arcs (�, j), with j ∈ LI , and arcs (�, jh1 ), with h = 1, . . . , H , to model the
assignment of the first SL to a product type;

• arcs (j,�), with j ∈ L, to model the assignment of the last SL to a product type;
• arcs (jhm, j

h
m+1), with h = 1, . . . , H and m = 1, . . . , |Fh| − 1, to model

the assignment of the available SL jhm+1 immediately after the available and
contiguous SL jhm;

• arcs (jh|Fh|, j
h′
1 ), with h, h′ = 1, . . . , H , and h �= h′, to model the assignment of

the SL jh
′

1 of group Fh′ immediately after the SL jh|Fh| of group Fh;
• arcs (jh|Fh|, i), with h = 1, . . . , H , and i ∈ LI , to model the assignment of the

isolated SL i immediately after the SL jh|Fh| of group Fh;
• arcs (i, jh1 ), with i ∈ LI and h = 1, . . . , H , to model the assignment of the SL
jh1 of group Fh immediately after the isolated SL i;

• arcs (i, j), i, j ∈ LI , and i �= j , to model the assignment of the isolated SL j
immediately after the isolated SL i.
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Fig. 2 Graph representation
of the available SLs depicted
in Fig. 1

Finally, a weight cij is associated with each arc (i, j) ∈ A, which indicates the
amount of space which becomes unavailable for future assignments due to the joint
assignment of i and j to k:

cij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uj if j �= �,
ui if j = � and ∃ h such that i = jh1 ,
ui/2 if j = � and ∃ h such that i = jhm, with 1 < m < |Fh|,
0 if j = � and ∃ h such that i = jh|Fh| or i ∈ LI .

Figure 2 reports the auxiliary graph associated with the available SLs depicted in
Fig. 1. In this example, the capacity of each SL is 10 items. Thus, according to the
definition above, the capacity of nodes 1 and 4 is equal to 10, while the capacity
of nodes 2 and 3 is equal to 20 to model the two level storage policy. Nodes 1 and
4 are linked with � through an entering arc and each node is linked to � through
an exiting arc. The weight associated with each arc (�, j), j = 1, 4, is equal to
the capacity of node j , i.e., 10. The weight associated with the arcs (j,�) is 0 for
j = 3 and j = 4 (since 3 is the last SL of a group of contiguous SLs, and 4 is an
isolated SL), while it is 10 for j = 1 and j = 2 (since 1 represents the first SL and
2 an intermediate SL of a group of contiguous SLs). Finally, the weight of an arc
entering node j , with j �= �, is equal to the capacity of j .

3.2 The Constrained Shortest Path Problem

Given the current product type k ∈ K, the problem of determining a directed path
from� to� in the auxiliary graphG, which represents the sequence of SLs assigned
to k, is formulated using the following two families of variables:

• xij ∈ {0, 1}, for any (i, j) ∈ A, to model the sequence of SLs assigned to k in
terms of a directed path in G from node � to node �;

• yi ∈ Z+, for any i ∈ N, to model Miller-Tucker-Zemlin-like constraints, aimed
at avoiding subtours.
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For each i ∈ N, we also define N+(i) and N−(i) as the sets of nodes linked to
i ∈ N via an exiting and an entering arc, respectively:

N+(i) = {j ∈ N : ∃ (i, j) ∈ A} , N−(i) = {j ∈ N : ∃ (j, i) ∈ A} . (1)

The constrained shortest path problem related to k can be formulated as follows:

min
∑

(i,j)∈A
cij xij −

∑

j∈N
δkj

∑

i∈N−(j)
xij (2)

∑

j∈N−(i)
xji −

∑

j∈N+(i)
xij =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if i = �
0 if i ∈ L
1 if i = �

∀ i ∈ N, (3)

∑

j∈N

∑

i∈N−(j)
ujxij ≥ qk, (4)

yj − yi − 1+ (1− xij )|N| ≥ 0 ∀ (i, j) ∈ A. (5)

The objective function (2) consists of two parts: the first summation defines the
primary optimization goal to be minimized, i.e., the space no longer available in the
warehouse after storing items of type k along the nodes of the path; the second sum
is related to the secondary optimization goal, i.e., the request that special product
types should be preferably stored in specific SLs. It involves parameters δkj which
are set in such a way that it is convenient to assign SL j to the product type k, if j is
one of the preferable SLs for k. Constraints (3) define a directed path for k, by means
of the binary variables xij , in terms of a unitary flow sent from the source node �
to the target node�, with the aim of modeling the assignment of a sequence of SLs
to k. Constraint (4) imposes that the sum of the capacities of the nodes along the
path be greater than or equal to the storage demand of the product type k. Finally,
constraints (5) are Miller-Tucker-Zemlin-like constraints, which avoid subtours in
the returned solution [8].

Figure 3 shows two feasible solutions referring to the auxiliary graph in Fig. 2,
assuming qk = 25. The solution on the left assigns to k the sequence of SLs 4, 1,
and 2, whose total capacity, given by the sum of the node capacities, is 40, enough
to stock all the items of k. The selected SLs will be filled starting from 4 (10 items),
passing then to 1 (other 10 items), and finally considering 2 (the remaining 5 items).
The space no longer available in the warehouse for future assignments, i.e., the first
sum of (2), is 50. Notice that the assignment of the SL 2 will make unavailable the
extra storage on top of 2 and 3 in the future: this is why a weight 10 is associated
with the arc (2,�). The solution on the right, instead, which is optimal, assigns the
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Fig. 3 Two feasible solutions representations

SLs 1 and 2 to k, with total capacity 30. The selected SLs will be filled starting from
1 (10 items) and then passing to 2, thus exploiting the capacity made available on
top of 1 and 2 (10 items at the ground level and the remaining 5 on top of 1 and
2). The space no longer available for future assignments is 40, better than in the
previously considered solution.

3.3 The Overall Heuristic Method

As outlined before, the idea underlying the heuristic approach is to address the
product types in cascade, each time solving the constrained shortest path problem
described in Sect. 3.2 over an auxiliary graph which is progressively pruned. The
steps of the heuristic method are summarized in Algorithm 1.

Algorithm 1: Successive constrained shortest path method

1: Sort the product types in K in a nonincreasing order with respect to the
number of items to stock. Set K = {k1, . . . , k|K|}.

2: Define L as the set of nodes corresponding to all the available SLs in the
warehouse.

3: for t = 1, . . . , |K| do
4: Solve the constrained shortest path problem related to kt on the graph

induced by L.
5: Define �t as the set of nodes corresponding to the SLs assigned to kt .
6: L := L \�t .
7: end for
8: Unify the subproblem solutions �1, . . . ,�|K|.

At the beginning, the product types in K are sorted in a nonincreasing order with
respect to the number of items to stock. In the first iteration, the first product type
in the resulting ordered set is considered. The constrained shortest path problem
in Sect. 3.2 is solved on the graph defined in Sect. 3.1, where the set of nodes L
corresponds to all the available SLs in the warehouse. In any successive iteration,
say t , the t-th product type in the considered order is analysed and the corresponding
constrained shortest path problem is solved over a graph obtained from the initial
one by removing all the nodes corresponding to the SLs assigned till iteration t and
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their incident arcs. The complete solution is finally given by the set of the paths
which have been separately determined for all the product types in K.

4 Numerical Experiments

Two types of experiments have been performed. The first one aims at analysing the
performance of the heuristic for different values of the parameters δkj , while in the
latter we compare the results of the heuristic here proposed with the ones returned by
the matheuristic in [6]. The heuristic has been implemented by using the language
OPL and solved via CPLEX 12.6 (IBM ILOG, 2016). All the experiments have been
conducted on an Intel Xeon 5120 computer with 2.20 GHz and 32 GB of RAM.

4.1 The Instances

We considered the same set of real instances solved in [6], corresponding to 20
randomly selected days. The instances are divided into two classes, called ClassHA
and ClassLA, each referring to 10 days where the number of items to stock is higher
(ClassHA) or lower (ClassLA) than the average number of items to stock over the
20 selected days. Two kinds of special product types exist, i.e., perishable (P) and
high rotational (HR), which should be preferably assigned to specific SLs. More in
detail, the instances in ClassHA have to assign 1150 items of 14 different product
types on average: 1.2% are items of type P, whereas 21.2% are items of type HR.
The instances in ClassLA have to assign 787 items of 11 different product types on
average: 1.5% are items of type P, whereas 40.7% are items of type HR.

4.2 Efficacy and Efficiency of the Heuristic Approach

As specified, parameters δkj are used to favour the assignment of specific SLs to
special product types. In particular, if product k is of type P, then its preferable SLs
are those specified in subset SP ⊂ S. In this case, δkj > 0 if j ∈ SP , and δkj = 0

otherwise. The same logic applies to a product k of type HR, for which δkj are set
in such a way to favour the assignment of SLs belonging to subset SHR ⊂ S. On
the other hand, for a product k neither of type P nor HR, δkj tend to favour the

assignment of SLs in S \ (SP ∪SHR). Three settings for positive values of δkj have

been investigated, of form δkj = p · uj , where p = 0.2, 0.5 and 0.8.
Table 1, for both the instances in ClassLA and ClassHA, shows the features of

the solutions our industrial partner is interested in for the different settings of δkj .
Specifically, we report the average solving time (in seconds), the average space
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Table 1 Performance of the heuristic for ClassLA and ClassHA

ClassLA ClassHA

Solving Available Solving Available

Time space %P in %HR in Time space % P in %HR in

p (sec.) (items) SP SHR (sec.) items) SP SHR
0.8 2.92 2874 100% 75.40% 2.83 2062 96.08% 84.33%

0.5 3.32 2886 100% 75.37% 3.21 2080 84.97% 81.85%

0.2 3.73 2904 56.67% 57.57% 3.29 2096 77.12% 75.46%

available after the assignment (given by the total capacity of the empty SLs at the
ground level plus, whenever two empty SLs are contiguous, the capacity of the SL
that can be created on top of them), the percentage of items of type P assigned to
SLs in SP , and the percentage of items of type HR assigned to SLs in SHR .

As expected, by increasing p, i.e., the value of δkj , the percentage of items of
types in P and HR assigned to their preferable SLs increases, at the expenses of
the space available after the assignment. In fact, as already observed in [6], the two
objectives are often conflicting, since forcing the assignment of items to specific
locations may be in contrast with the maximization of the total space available after
the assignment. Interestingly, the higher is value p, the lower is the average solving
time.

ClassHA was identified in [6] as the hardest group of instances to solve with the
matheuristic, mainly due to the higher number of items to stock. As opposed, the
heuristic seems to address such instances more easily. The higher number of items
to stock per product type in ClassHA requires longer paths. This implies a wide
pruning of the associated graphs at each iteration of the heuristic, and smaller and
easier constrained shortest path problems to address during the resolution process.

4.3 Comparison with a Matheuristic Approach

The SLAP here addressed has been formulated in [6] as a multicommodity flow
model, where the assignment of SLs is simultaneously addressed for all the product
types in K. Specifically, given an auxiliary graph whose set of nodes correspond to
the SLs available in the warehouse, |K| directed paths are sought along which the
quantity qk is sent for each k, by taking into account the two level storage policy.
The objective function aims at maximizing the available storage capacity after the
assignment and the number of items of types KP and KHR assigned to SP and
SHR , respectively. A two-phase matheuristic has been proposed in [6], which is
based on decomposition. In the first phase, K is partitioned into � subsets, in such
a way that each group contains about the same number of items to store. Thus, �
subproblems are generated and sequentially solved by CPLEX, each time removing
those SLs already assigned in the previous solved subproblems. Finally, the �
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Table 2 Comparison between the proposed heuristic and the matheuristic in [6]

ClassLA ClassHA

Solving Available Solving Available

time space %P in %HR in time space %P in %HR in

(sec.) (items) SP SHR (sec.) (items) SP SHR
Heuristic 2.98 2886 100% 75.37% 3.21 2080 84.97% 81.85%

Matheuristic [6] 3330 2897 83.89% 70.60% 3442 2073 85.89% 82.15%

solutions obtained are merged into a unique solution, which is provided as initial
feasible solution to the Branch and Bound algorithm of CPLEX. The matheuristic
relies on several parameters, whose impact on the performance of the resolution
process has been deeply investigated, by identifying a suitable parameter setting.

Table 2 compares the results obtained by the heuristic here proposed with the
ones achieved by the matheuristic in [6], on the set of instances described in
Sect. 4.1. For the matheuristic, the most suitable parameter setting devised in [6]
has been used. For the heuristic, we selected p = 0.5 as a good compromise
between efficiency and efficacy of results. Table 2 reports, separately for ClassLA
and CLassHA, the average solving time (in seconds), the average space available
in the warehouse after the assignment, the percentage of items of type P assigned
to their preferable SLs, and the percentage of items of type HR assigned to their
preferable storage locations.

For ClassLA, the successive constrained shortest path heuristic outperforms the
matheuristic for the preferable SLs assigned to the special product types. The
available space after the assignment is almost the same, just decreasing of a few
units on average. For ClassHA, the results are similar for both the approaches, with
the successive constrained shortest path heuristic outperforming the matheuristic
regarding the available space after the assignment. The strength of the heuristic
is the time required to obtain solutions. In fact, it is of about 3 seconds on
average, i.e., about one thousandth of the time required by the matheuristic. The
proposed heuristic thus appears to be a very promising tool to solve the addressed
SLAP problem, rapidly determining solutions which, for the majority of the tested
instances, also improve the quality of the solutions found by the matheuristic
approach.

5 Conclusions

A very fast successive constrained shortest path heuristic has been proposed to
address the assignment of items to SLs jointly with sequencing decisions about the
assigned SLs, as required in a real application context. The heuristic ouperforms
the matheuristic in [6] on real-size instances, in terms of both solving time and
solution quality. Future research will address a more general problem where storage
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allocation decisions are considered jointly with the routing of the vehicles in charge
of moving items towards the selected locations.
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Local Search for Aircraft-Landing
Planning

Nicolas Zufferey, Marie-Sklaerder Vié, and Roel Leus

Abstract In collaboration with EUROCONTROL (the European Organisation for
the Safety of Air Navigation), the considered Aircraft Landing Planning (ALP)
problem aims at minimizing delays (with respect to the published airline schedules)
while satisfying the separation constraint (which imposes minimum threshold times
between planes, ranging from 90 to 240 s). In this study, the landing sequence of
the planes has to be determined first, and subsequently their associated landing
times and Holding-Stack Patterns (HSPs) needed to meet such landing times. HSPs
consist of making a plane wait for its planned landing time by making circular
patterns close to the airport. The uncertainty due to winds is taken into account in the
simulation procedure (it has an impact on the arrival times). The proposed solution
method is a descent local search with restarts. It is quick enough with respect to
implementation in real situations as it can be applied within seconds. Furthermore,
the obtained results show that the delays can be reduced by approximately 50% on
average when compared to a common practice rule.

Keywords Aircraft landing · Scheduling · Descent local search · Uncertainty

1 Introduction

From take-off to landing, planes are subjects to many uncertainties (e.g., wind,
traffic). Moreover, the runway capacity of an airport is the bottleneck capacity of
the landing process. Therefore, the landing time of each plane arriving at an airport
has to be adjusted all along its flight trajectory to use the runway capacity at best
despite uncertainty. One way to delay an airplane is to make it perform holding
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stack patterns in the vicinity of the airport (approach area) before its landing,
but this creates bigger fuel consumption and noise pollution. Another way is to
decrease (sometimes increase) the speed of the plane during its cruise (or make it
do a detour using path stretching), but due to larger uncertainties at longer distance
from destination, this may create unnecessary additional delays. Also, the fewer
number of modifications there are on a landing time, the better it is for the air
traffic controllers’ (ATC) workload, as they have other priorities (mainly ensuring
safety and avoiding collisions). The goal of Aircraft Landing Planning (ALP) is
to optimize the landing times of the planes arriving at an airport runway. For this
purpose, the planes to delay have to be selected, as well as how and when to delay
them. Safety constraints imposing threshold distances between planes have to be
satisfied, obviously.

The paper is organized as follows. A literature review is first conducted in
Sect. 2. Second, the considered problem is formally introduced in Sect. 3. Next,
the proposed optimization method is proposed in Sect. 4. Results are presented in
Sect. 5, followed by conclusions in Sect. 6.

2 Literature Review

A comprehensive review covering the period up to 2011 can be found in [2].
It results that the main objective functions can be divided into four categories,
presented below.

• Safety and efficiency objectives. Maximize: runway throughput, fairness among
the aircrafts. Minimize: approach time before landing, ATCs’ workload, aircraft
taxi-out time, arrival delays.

• Airline’s objectives. Maximize: punctuality with respect to the published landing
times, adherence to airline priorities within their own flights, connectivity
between flights. Minimize: operation costs (mainly fuel costs), total passenger
delays.

• Airport objectives. Maximize: punctuality according to the operating schedule.
Minimize: the need for gate changes due to delays.

• Government objectives. Minimize: environmental effects (noise and air pollu-
tion).

The review of [2], covering the literature up to 2011, leads to different obser-
vations. First, many theoretical studies show a great potential improvement of the
runway utilization, but may not be feasible in practice due to ignored operational
constraints (e.g., minimum time before landing, precedence constraints) or unrea-
sonable computing times. Indeed, ATCs will always prefer fast (i.e., able to generate
a solution within seconds) and satisfying (with respect to the considered objective)
solution methods rather than optimal but time-consuming ones. Second, the defini-
tion of the objective functions and constraints varies a lot among the articles. Indeed,
the involved parties (e.g., airport, companies, customers) have conflicting interests.
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Therefore, selecting an appropriate and realistic objective function is a critical issue.
Third, and most importantly, uncertainty occurs at different levels (e.g., weather,
precision of the equipment, departure time, accuracy of information). However, in
contrast with the supply chain management literature (e.g., [18]), very few studies
take this aspect into account and actually use simulation, as [6, 15]. Indeed, most
of the literature considers the static case rather than a dynamic (but realistic)
environment. Interestingly, it is showed in [7] that: deterministic algorithms are sub-
optimal in a dynamic environment; a FCFS method is robust (i.e., not too sensitive
to variations in problem characteristics or data quality) and it has many advantages
over many existing algorithms (e.g., generated sequence understandable by ATCs,
stable and easy-to-estimate delays, already in place in many airports).

From 2012, some work on static ALP has still been published [11, 23]. But
as highlighted above, from a practical standpoint, only the approaches that are
able to take into account random events are relevant. The three main axes that
integrate this dimension are queuing theory [16], robust optimization [12], and
on-line optimization [3]. The approaches including uncertainty use Monte-Carlo
simulation, and some dynamic solution methods (but without uncertainty, except
the appearance of new flights) employ a rolling-horizon approach. Other relevant
and recent references can be found in [4, 20, 21].

In the light of the weaknesses of the existing literature, various promising
research directions are identified below.

(1) Consideration of uncertainty. Obviously, as most variables in ALP are stochas-
tic, a quick, accurate and dedicated simulation tool is mandatory to evaluate the
true quality of a solution. The Monte-Carlo simulation that is usually proposed
for ALP is probably not the best tool according to these criteria. Generally, the
existing literature does not take uncertainty into account. A scarce literature
proposes either robust solution within a static approach, or a dynamic solution
method but without any robustness guarantee. An interesting approach could
integrate robustness in the on-line process (to avoid a prohibitive number of
rescheduling actions) [14].

(2) Appropriate solution methods. The existing metaheuristics (generally genetic
and ant colony algorithms) do not seem the most appropriate for ALP. Indeed,
they need a long learning phase (e.g., Variable Neighborhood Search [5], Tabu
Search [22]), and even though they can provide feasible solutions at any time
in the computation, there is little chance that the quality of the solutions is
good after only a few seconds of computation. Filtering techniques would be
an efficient option to definitely discard unpromising decisions from the solution
space (e.g., [13]).

(3) Instance calibration. An instance has to be designed in a realistic way. In
most of the literature, instances with hundreds of flights are tackled (with
metaheuristics), as well as instances with around 50 flights (with exact methods
or metaheuristics). However, everyday and for many important European
airports, the demand follows patterns with marked peaks (e.g., hub periods of
3 h) and then lower traffic levels [10]. For these reasons, a relevant instance can



166 N. Zufferey et al.

be defined by a time horizon of 3 h (i.e., covering a peak) and a single landing
runway. Knowing that the time between two consecutive aircraft belongs to
interval [90, 240] s, the most relevant instance size ranges from 90 to 120 flights.
Surprisingly, this range is usually not considered in the literature.

(4) Planning horizon. In a dynamic case, an important optimization would be the
size of the considered rolling horizon H , as it can have a crucial impact on
the quality of the obtained solution [19]. A tradeoff has to be found between
(1) waiting as much as possible before delaying a flight (which minimizes
the uncertainties, but increases the noise pollution and fuel costs), and (2)
anticipating and delaying a flight as early as possible (more risky approach
if too many uncertainties, but more efficient otherwise). The challenge is that
the larger H is, the more flexibility we have in the optimization, but the more
uncertainty we have too (mainly because of pop-up flights, as presented below).

3 Considered Problem

Each instance covers a 3-h planning horizon, which allows capturing the peak period
of most airports. A rolling planning window Ht = [t, t + w[ (with w = 45 min)
is associated with the current time t , with time steps of �t = 30 s. At each time t ,
we only consider the flights that are in cruise and have their landing planned in Ht .
The flights that have their landing inHt but are not yet in cruise are only considered
when they take-off. They are called the pop-up flights.

Each flight has different stages: (1) take-off, (2) cruise, (3) approach, (4) landing
(the last L = 15 min, during which no modification is performed). In this paper,
we only consider stages (2) and (3). From a practical standpoint, an initial schedule
is first built when each flight enters the planning window (i.e., when it has taken
off in the case of a pop-up flight, or when its expected landing time is within the
next 45 min). Next, we can reschedule it (within the landing sequence) or make
it wait to meet its planned arrival time (through HSPs). The popular First-Come-
First-Served (FCFS) rule is employed to build the initial schedule. FCFS ranks the
flights according to their entry times inHt (i.e., with respect to increasing published
arrival times, like the earliest-due-date rule in job scheduling). FCFS used to be the
most employed current-practice approach [9], and it is an optimal rule for the single-
machine job-scheduling problems when the maximum tardiness has to be minimized
[17] (in our case we have to minimize the average tardiness).

We propose the following mathematical model (P t ) for each time t . Among the
flights that have already taken off, we only consider the flights with planned landing
times up to time t + w. Let J t be the set of (say n) flights considered in Ht . For
each flight j ∈ J t , the following data is given:

• rj : release date (i.e., take-off time).
• dj : due date (i.e., published landing time).
• ptj : processing time (i.e., remaining time—in seconds—during the cruise phase).
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• sj,j ′ : set up time between flights j and j ′. More precisely, for each pair (j, j ′) of
flights such that j has to land before j ′, their landing times must be separated by
sj,j ′ ∈ {90, 120, 150, 180, 210, 240} s, depending on the involved plane types.

We have two types of decision variables:

• determine the vector  t of the positions of the flights involved at time t (i.e.,
improve the current landing sequence by performing an optimization method);

• for each flight j , determine a feasible landing time Ctj (with respect to the
separation constraint) and assign a HSP of durationWtj in order to meet Ctj .

The objective function f to minimize is the sum of all positive delays (i.e., the
total tardiness), and it is given in Eq. (1). In contrast with the production-planning
literature, negative delays are not penalized (e.g., [24]).

f =
∑

j∈J t
max{Ctj − dj , 0} (1)

Below, Constraints (2) impose that two flights are not scheduled in the same posi-
tion. Constraints (3) capture the separation constraints. Constraints (4) determine the
expected landing times. Constraints (5) are the domain constraints.

 tj �=  tj ′ ∀j, j ′ ∈ J t (2)

Ct
j ′ ≥ Ctj + sj,j ′ ∀j, j ′ ∈ J t such that tj + 1 =  tj ′ (3)

Ctj = t + ptj +Wtj + L ∀j ∈ J t (4)

 tj ∈ {1, . . . , n}, Ctj ≥ 0,Wtj ≥ 0 ∀j ∈ J t (5)

This problem can be seen as a variant of a single-machine total-tardiness problem
with setup times, which is NP-hard even without setup times [8].

4 Optimization Method

Algorithm 1 presents how to roll the planning windowHt over the full 3-h planning
horizon.

In Step 2, the landing positions  t of the new flights are computed with the
following insertion rules used in practice:

• each pop-up flight j that just entered Ht (i.e., t ≥ rj but t − �t < rj , and
t ≥ dj − w) is added to the landing sequence at a position  t such that its due
date is respected (i.e., j is placed before all flights j ′ such that Ct

j ′ ≥ dj but after
all the other flights);
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Algorithm 1: Optimization for each time step t

Initialization: set t = 0, J t = J t−�t = ∅ and  t =  t−�t = ().
While (not all flights have landed), do:
1. Update J t : remove the flights that have started landing (i.e., each flight j for which
t ≥ Ctj − l), and add the flights that have just entered the updated planning window Ht (i.e.,
each flight j for which t ≥ rj and t ≥ dj −w).

2. Compute the positions of the new flights (i.e., the flights that are in J t but not in J t−�t ) to
obtain the vector  t , based on  t−�t and the insertion rules.

3. Update the remaining cruise time for each flight j : set ptj = pt−�tj −�t · (1+ utj ).
4. Update Ct andWt according to the new flight positions t and the processing times pt .
5. Improve solution ( t , Ct ,W t ) with a solution method.
6. Move to the next time step: set t = t +�t and Ht = [t, t +w[.

• each flight j that took off a while ago but just entered Ht (i.e., t ≥ rj and
t ≥ dj − w, but t − �t < dj − w) is put at the end of the landing sequence
(FCFS rule).

In Step 3, each remaining processing times ptj is updated while considering
an uncertainty parameter ut randomly generated following the EUROCONTROL

specifications. ut generates a deviation (e.g., due to wind) of the cruise speed of
around 7% (with an average of 0%, as positive deviations are compensated by
negative ones). In Step 4, and after each modification of  t , the values of Ct and
Wt are updated with the following current-practice rules. First, we re-number all
flights of J t as j1, j2, . . . , jn such that  tj1 <  

t
j2
< . . . <  tjn . Next, for k = 1 to

n, we perform steps (S1) and (S2).

• Step (S1). Ctjk = max{Ctjk−1
+ sjk−1,jk , t + ptjk + L} (i.e., the arrival time of jk

is as close as possible to the arrival time of the previous flight jk−1, or as soon as
jk can land).

• Step (S2).Wtjk = Ctjk − (t +ptjk +L) (i.e., the flight turns over the airport if it is
too early with respect to the planned landing time).

As (1) the considered problem is NP-hard, (2) up to 24 flights are involved inHt ,
and (3) the allowed computing-time limit T is very short (T = �t = 30 s), quite
a number of potential solution methods are not suitable for Step 5. Indeed, exact
methods, cumbersome population-based metaheuristics (e.g., genetic algorithms,
ant algorithms) or metaheuristics using a somewhat long learning process (e.g.,
simulated annealing) are too slow. In contrast, a descent local search (DLS) appears
as a promising candidate.

DLS takes as input the solution from Step 4. At each iteration, a neighbor
solution S′ is generated from the current solution S = ( t , Ct ,Wt ) by performing
the best Reinsert move on S. A move Reinsert consists of changing the position
 tj of a flight j ∈ J t within the landing sequence. After each modification of
 t , the associated variables (Ct ,Wt ) must be updated to have a feasible solution
S′ (separation constraint) and to know f (S′). The search process stops when no
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improvement of S is achieved during an iteration. In order to use the full time budget
T , DLS is restarted when it encounters a local minimum (which occurs almost every
second). The best visited solution is returned at the end.

At each iteration, two mechanisms are used for reducing the computational effort.
First, the new position for the investigated flight j must be in [ tj − 5; tj + 5].
This kind of Constrained Position Shifting is standard [1]. Indeed, from a practical
standpoint, it seems straightforward to reschedule a flight not too far away from
its initial position. Second, only a random proportion ρ (tuned to 50%) of the
possible neighbor solutions is generated. These mechanisms allows to perform more
iterations during T seconds, which increases the exploration capability of DLS.

5 Results

The algorithms were coded in C++ (under Linux, 3.4 GHz Intel Quad-core i7
processor, 8 GB of DDR3 RAM).

Table 1 compares the proposed DLS approach with FCFS (i.e., a common
practice rule, see Algorithm 1 without Step 5). Average results (over all the
instances) are indicated in bold face in the last line. For each instance (provided
by EUROCONTROL), the following information is provided: the numberN of flights,
the largest number nmax of flights encountered in a planning window, the average
delay and the maximum delay (for both DLS and FCFS). The two latter quantities

Table 1 Comparison of FCFS with DLS for 15 instances provided by EUROCONTROL

FCFS DLS % Gain

Instance N nmax Avg. delay Max delay Avg. delay Max delay Avg. delay Max delay

1 59 16 91.36 305.00 59.96 450.20 34% −48%

2 35 10 156.08 528.20 96.98 490.40 38% 7%

3 64 20 154.41 447.60 93.05 456.00 40% −2%

4 79 24 388.30 782.60 228.31 1672.60 41% −114%

5 53 14 189.53 545.00 110.36 538.40 42% 1%

6 79 21 328.86 709.20 181.40 1629.20 45% −130%

7 75 18 208.88 558.80 111.38 475.40 47% 15%

8 75 24 288.57 651.40 143.88 1480.60 50% −127%

9 62 16 240.26 539.20 118.33 505.20 51% 6%

10 70 22 207.41 503.20 99.57 563.40 52% −12%

11 72 22 280.79 631.20 131.57 800.20 53% −27%

12 71 18 170.19 514.80 77.72 475.20 54% 8%

13 97 23 386.69 903.00 174.56 1247.60 55% −38%

14 61 15 195.54 644.60 86.58 612.80 56% 5%

15 97 20 234.52 569.00 97.04 662.20 59% −16%

Average results 234.76 588.85 120.71 803.96 48% −31%
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are computed with respect to all flights (in seconds), and averaged over 5 runs (with
different uncertainty scenarios). The percentage gains of DLS (compared to FCFS)
are given in the two last columns (a negative value indicates a better performance
for FCFS).

We can see that DLS can significantly reduce the average delays (almost 50%).
Interestingly, the improvement is somewhat increasing with the difficulty of the
instance (i.e., withN and nmax), but further investigations are required to understand
the benefit of DLS with respect to the instance characteristics. FCFS is often better
regarding the maximum delay. This makes sense as FCFS guarantees optimality for
minimizing the maximum delay (but not the average delay) for single-machine job-
scheduling contexts. However, DLS can sometimes do better even for the maximum
delay, as it reacts to uncertainties whereas FCFS does not.

6 Conclusion

A lot of work has been done on Aircraft Landing Planning (ALP), from exact
methods (mainly branch-and-bound) to metaheuristics (e.g., numerous genetic
algorithms). These methods, however, entail two main weaknesses. First, they
are usually static (i.e., assume that all data is well-known), whereas the problem
presents many uncertainties (e.g., weather, traffic, interaction with other flights).
Second, the existing approaches generally do not match the quickness of the
decision environment in which the decision makers have to work.

ALP is a challenging problem as the runway capacity is the bottleneck of many
airports. In collaboration with EUROCONTROL, this study proposes a quick and effi-
cient descent-based solution method for minimizing delays. Indeed, solutions can
be obtained within seconds (which is appropriate for real-world implementation)
and the average delay is reduced by almost 50%. Possible future works include the
joint consideration of various objectives (for instance, in a lexicographic fashion as
in [25]), and the development of refined algorithms and other techniques (e.g., speed
adjustments, detours) to make the flights meet their landing times in order to reduce
the over-the-airport traffic.
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An Emission Pollution Permit System
for Time-Dependent Transportation
Networks Based on Origin-Destination
Pairs

Annamaria Barbagallo

Abstract In the paper an emission pollution permit system for a dynamic traf-
fic equilibrium model based on origin/destination pairs is presented. The time-
dependent equilibrium conditions are expressed by an evolutionary variational
inequality. Thanks to the variational formulation, existence and continuity results
for equilibrium distributions are established.

Keywords Evolutionary variational inequalities · Time-dependent traffic
equilibrium problem · Environmental policy · Emission pollution permits

1 Introduction

Scientific and technological progress has reached a remarkable development today.
It has brought considerable improvements in human life, but it has also caused
an alteration of the natural balance due to the increase in pollution. In last years
several goverments adopted policies in order to safeguard the environment. To
this aim the activation of emission control systems has a fundamental role to
reduce the pollution. For this reason we investigate on a new time-dependent
model of transportation networks which takes into account of a permit system.
More precisely we consider a new dynamic traffic policy model based on origin-
destination licenses. Such a model improves the model presented in [8], not only
because the time dependence occurs but also for the presence of capacity constraints
on path flows and emissions. It is worth to underline that each phenomenon of the
socio-economic and physical world is not stable with respect to the time and that
static models of equilibria are a first useful abstract approach. As J. Gwinner rightly
mentions in [4]: “Equilibrium per definition excludes time. On the other hand,

A. Barbagallo (�)
Department of Mathematics and Applications “R. Caccioppoli”, University of Naples Federico II,
Naples, Italy
e-mail: annamaria.barbagallo@unina.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Amorosi et al. (eds.), Optimization in Artificial Intelligence and Data Sciences,
AIRO Springer Series 8, https://doi.org/10.1007/978-3-030-95380-5_16

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95380-5_16&domain=pdf
mailto:annamaria.barbagallo@unina.it
https://doi.org/10.1007/978-3-030-95380-5_16


174 A. Barbagallo

time is central in our reality, in the physical-technological world as well as in the
socio-economic world. Thus we are led to the study of time-dependent variational
inequalities or evolutionary variational inequalities that model various constrained
evolution problems.”

In [8] and [3], the authors studied models in which vehicular travel and pollution,
owing to emissions, is controlled by emission pollution licenses or permits. The
equilibrium license price, for these emission permits, allows the reduction in travel
and pollution. In [7], the author analyzed two permit system models based on
origin/destination pairs and on paths. The travelers try to determine their minimal
cost paths of travels from their origins to their destinations. As in the model in [8],
the volume of emissions is equal to the product of a composite emission factor times
the vehicular activity at the link levels (see [2]).

The goal of the paper is to introduce a more general and time-dependent
model starting from the static emission pollution permit system. Furthermore,
the characterization by means of a suitable evolutionary variational inequality is
established. Such a variational formulation allows us to make use of theoretical
results in order to show the existence of time-dependent equilibrium distributions.
Since we study the evolution in time of the emission pollution permit system,
another aspect to analyze is the continuity of equilibrium solutions with respect to
the time variable. Such a result is obtained thanks the Kuratowski set convergence
property and under continuity assumptions on data.

The paper is organized as follows. In Sect. 2, we present the time-dependent
transportation network model with an emission pollution permit system based
on origin-destination pairs. We characterize its equlibrium conditions with an
evolutionary variational inequality. Then, in Sect. 3, we prove some existence and
continuity results for time-dependent equilibrium distributions.

2 The Dynamic Traffic Equilibrium Problem with the O/D
Pair-Based Permit System

Let us consider a traffic network which is represented by a graphG = [N,L], where
N is the set of nodes and L is the set of directed links interlocked the nodes. Let
r be a path consisting of a sequence of links which connects an origin-destination
(O/D) pair of nodes. In the network there are m paths. Let W be the set of O/D
pairs with typical O/D pair wj , with |W| = l such that m > l. The set of paths
connecting the O/D pair wj is denoted by Rj and the entire set of paths in the
network by R. The topology of the network is described by the pair-link incidence
matrix � = (ϕjr), where ϕjr is 1 if path r connects the pair wj and 0 otherwise.
We are interested to a time-dependent transportation network equilibrium problem,
for this reason we consider a time interval [0, T ], with T > 0. Therefore, let us
introduce the time-dependent flow vector on route F(t) = (Fr(t))Tr=1,...,m, a.e. in
[0, T ], which has to satisfy the time-dependent capacity constraints λr(t) ≤ Fr(t) ≤
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μr(t), for every r = 1, . . . ,m, a.e. in [0, T ], and the traffic conservation law states
�F(t) = ρ(t), a.e. in [0, T ], where ρ(t) = (ρj (t))

T
j=1,...,l is the total demand

vector. We assume that F belongs to L2([0, T ],Rm+), as well as, λ and μ, moreover
ρ ∈ L2([0, T ],Rl+). Let us consider the user travel cost on paths C(t, F (t)) =
(Cr(t, F (t)))

T
r=1,...,m, a.e. in [0, T ]. Let Er(t) be the emission factor on path r , a.e.

in [0, T ], then E(t) = (Er(t))Tr=1,...,m, a.e. in [0, T ]. Let Lj (t) be the number of
licenses or permits for O/D pair wj that enables the travelers between O/D pair wj
to release pollutants at a certain index, a.e. in [0, T ], so L(t) = (Lj (t))Tj=1,...,l , a.e.
in [0, T ]. Moreover, let us denote the initial allocation of licenses for O/D pair wj
by L0

j , and assume that such a quantity is nonnegative. We consider the price of
a license in the O/D pair-based and denote it by P(t), a.e in [0, T ]. We suppose
that a license in the O/D pair-based system is such that P (t) ≤ P(t) ≤ P (t), a.e.
in [0, T ], where P ,P ∈ L2([0, T ],R+). Furthermore let Tj (t) be the marginal
cost of emission reduction for the O/D pair wj , at time t ∈ [0, T ], hence T (t) =
(Tj (t))

T
j=1,...,l , a.e. in [0, T ]. We suppose that the marginal costs of reduction for the

O/D pair wj satisfies 0 ≤ Tj (t) ≤ T j (t), for every j = 1, . . . , l, a.e. in [0, T ]. In
this model, the network user on a path r not only has to pay the user travel cost but
also has to pay the price or cost of his emissions. Hence, the dynamic equilibrium
conditions in presence of the O/D pair-based emission pollution permit system are
given by:

For each O/D pair wj ∈ W , for each paths r, s ∈ Rj and a.e. in [0, T ]:

Cr(t,H(t))+ Er(t)T ∗j (t) < Cs(t,H(t))+ Es(t)T ∗j (t)
⇒ Hr(t) = μr(t) or Hs(t) = λs(t). (1)

Equilibrium conditions (1) assert that the road users choose minimum cost paths,
where the cost path is equal to the sum of the user travel cost plus the emission cost
for traveling on the path r .

We suppose that the transportation authority is responsible for warning the traffic
users of the license price and the corresponding payments requested, and also the
availability of the licenses or permits for O/D pairs. The government cashes the
paymentEr(t)T ∗j (t) associated with traveling on path r ∈ Rj , at the time t ∈ [0, T ].
Moreover the following equilibrium conditions must hold:

For each O/D pair wj and a.e. in [0, T ], it results:

∑

r∈Rj
Er(t)Hr(t)

⎧
⎪⎪⎨

⎪⎪⎩

≤ L∗j (t), if T ∗j (t) = 0,

= L∗j (t), if 0 < T ∗j (t) < T j (t),
≥ L∗j (t), if T ∗j (t) = T j (t).

(2)

The previous conditions state that if the equilibrium marginal cost of emission
reduction, T ∗j (t), is zero for an O/D pair wj , at the time t ∈ [0, T ], then the
emissions by that O/D pair do not exceed the pollution permits of that O/D pair,
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at the same time t ∈ [0, T ]; instead if the equilibrium marginal cost of emission
reduction is maximum for an O/D pair wj , at the time t ∈ [0, T ], then the emissions
by that O/D pair exceed the pollution permits of that O/D pair, at the same time
t ∈ [0, T ]; finally if the equilibrium marginal cost of emission reduction satisfies
strictly the capacity constraints, at the time t ∈ [0, T ], then the emissions by that
O/D pair are exactly equal to the pollution license holdings of that O/D pair, at the
same time t ∈ [0, T ]. We also assume that:

For each O/D pair wj ∈W and a.e. in [0, T ], one has:

T ∗j (t)
{
= P ∗(t), if L∗j (t) > 0,

≤ P ∗(t), if L∗j (t) = 0.
(3)

Therefore, a positive equilibrium holding of licenses by an O/D pair, at the time
t ∈ [0, T ], implies that the marginal cost of reduction must be equal to the price of
the license, at the same time t ∈ [0, T ]. Instead, if the price of the license exceeds
the marginal cost of reduction, at the time t ∈ [0, T ], then the number of licenses
for that O/D pair is zero, at the same time t ∈ [0, T ].

We impose that if the equilibrium price of the license is maximum, at the time
t ∈ [0, T ], then we have less of an O/D pair-based demand for licenses, at the
same time t ∈ [0, T ]; instead if there is an excess supply of licenses, at the time
t ∈ [0, T ], then the equilibrium price is minimum, at the same time t ∈ [0, T ];
finally we have an O/D pair-based demand for licenses, at the time t ∈ [0, T ], if the
equilibrium price of the license satisfies strictly the capacity constraints, at the same
time t ∈ [0, T ]; namely:

l∑

j=1

(L0
j − L∗j (t))

⎧
⎪⎪⎨

⎪⎪⎩

≤ 0, if P ∗(t) = P (t),
= 0, if P (t) < P ∗(t) < P (t),
≥ 0, if P ∗(t) = P (t),

a.e. in [0, T ]. (4)

For technical reasons, the functional setting for trajectories " = (F, T ,L, P ) is
the reflexive Banach space:

L = L2([0, T ],Rm)× L2([0, T ],Rl )× L2([0, T ],Rl)× L2([0, T ],R).

Hence, the feasible set K is given by

K = K1 ×K2 ×K3 ×K4

= {
F ∈ L2([0, T ],Rm+) : λ(t) ≤ F(t) ≤ μ(t), a.e. in [0, T ],

�F(t) = ρ(t), a.e. in [0, T ]}

×
{
T ∈ L2([0, T ],Rl+) : 0 ≤ T (t) ≤ T (t), a.e. in [0, T ]

}
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×
{
L ∈ L2([0, T ],Rl+) : L(t) ≥ 0, a.e. in [0, T ]

}

×
{
P ∈ L2([0, T ],R+) : P (t) ≤ P(t) ≤ P (t), a.e. in [0, T ]

}
.

We are able to state the dynamic O/D pair-based permit system equilibrium
conditions.

Definition 1 A vector-function "∗ = (H, T ∗, L∗, P ∗) ∈ K is an equilibrium
distribution of the dynamic traffic equilibrium problem with the O/D pair-based
emission permit system if and only if it satisfies conditions (1)–(4).

We establish the time-dependent variational formulation of the equilibrium
distribution.

Theorem 1 A vector-function "∗ = (H, T ∗, L∗, P ) ∈ K is an equilibrium
distribution of the dynamic traffic equilibrium problem with the O/D pair-based
emission permit system if and only if it is a solution to:

∫ T

0

n∑

j=1

∑

r∈Rj

(
Cr(t,H(t))+ Er(t)T ∗j (t)

)
(Fr(t)−Hr(t)) dt (5)

+
∫ T

0

n∑

j=1

⎛

⎝L∗j (t)−
∑

r∈Rj
Er(t)Hr(t)

⎞

⎠
(
Tj (t)− T ∗j (t)

)
dt

+
∫ T

0

n∑

j=1

(
P ∗(t)− T ∗j (t)

) (
Lj(t)− L∗j (t)

)
dt

+
∫ T

0

n∑

j=1

(
L0
j − L∗j (t)

) (
P(t) − P ∗(t)) dt ≥ 0, ∀(F, T ,L, P ) ∈ K.

Proof Firstly we assume that (H, T ∗, L∗, P ∗) ∈ K satisfies equilibrium conditions
(1)–(4) and we prove that it is a solution to evolutionary variational inequality (5).
For each O/D pair wj ∈ W , let A = {

q ∈ Rj : Hq(t) < μq(t), a.e. in [0, T ]},
B = {

s ∈ Rj : Hs(t) > λs(t), a.e. in [0, T ]}. Making use of (1), it follows

Cq(t, H(t))+Eq(t)T ∗j (t) > Cs(t,H(t))+Es(t)T ∗j (t), ∀q ∈ A, ∀s ∈ B, a.e. in [0, T ].

Consequently, there exists a function γwj : [0, T ] → R such that,

infq∈A
[
Cq(t,H(t))+ Eq(t)T ∗j (t)

]
≥ γwj (t) ≥ infs∈B

[
Cs(t,H(t))+Es(t)T ∗j (t)

]
,

a.e. in [0, T ]. Let F ∈ K
W
1 be arbitrary. Then for every r ∈ Rj such that

Cr(t,H(t)) + Er(t)T ∗j (t) < γwj (t), a.e. in [0, T ], it results r /∈ A; then,
Hr(t) = μr(t), a.e. in [0, T ], and Fr(t)−Hr(t) ≤ 0, a.e. in [0, T ]. Hence we deduce
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(
Cr(t,H(t))+ Er(t)T ∗j (t)− γwj (t)

)
(Fr(t)−Hr(t)) ≥ 0, a.e. in [0, T ]. Analo-

gously, for every r ∈ Rj such thatCr(t,H(t))+Er(t)T ∗j (t) > γwj (t), a.e. in [0, T ],
we have r /∈ B and

(
Cr(t,H(t))+ Er(t)T ∗j (t)− γwj (t)

)
(Fr(t)−Hr(t)) ≥ 0,

a.e. in [0, T ]. As a consequence, it follows

∑

r∈Rj

(
Cr(t,H(t)) + Er(t)T ∗j (t)

)
(Fr(t)−Hr(t)) ≥ γwj (t)

∑

r∈Rj
(Fr(t) −Hr(t)) (6)

= γwj (t)
(
ρwj (t)− ρwj (t)

) = 0.

Summing (6) over all the O/D pairs wj , j = 1, . . . , l, taking into account (2)–(4)
and summing over all the links j = 1, . . . , l, after integrating on the time interval
[0, T ], and summing all the inequalities, we obtain (5).

Vice versa, we suppose that (5) holds. Assuming in turns T = T ∗, L = L∗ and
P = P ∗, F = H , L = L∗ and P = P ∗, F = H , T = T ∗ and P = P ∗, F = H ,
T = T ∗ and L = L∗, we have:

∫ T

0

n∑

j=1

∑

r∈Rj

(
Cr(t,H(t)) + Er(t)T ∗j (t)

)
(Fr(t)−Hr(t)) dt ≥ 0, ∀F ∈ K1, (7)

∫ T

0

n∑

j=1

⎛

⎝L∗j (t) −
∑

r∈Rj
Er(t)Hr (t)

⎞

⎠
(
Tj (t)− T ∗j (t)

)
dt ≥ 0, ∀T ∈ K2, (8)

∫ T

0

n∑

j=1

(
P ∗(t) − T ∗j (t)

) (
Lj (t) − L∗j (t)

)
dt ≥ 0, ∀L ∈ K3, (9)

∫ T

0

n∑

j=1

(
L0
j − L∗j (t)

) (
P (t)− P ∗(t)) dt ≥ 0, ∀P ∈ K4. (10)

Proceeding by absurdum we can prove that (1), (2), (3) and (4) follow by (7), (8),
(9) and (10), respectively. ��

For further considerations, we set Σ("∗(t)) =
((

∑
r∈Rj Cr (t,H(t)) +

Er(t)T
∗
j (t)

)

j=1,...,n

,

(

L∗j (t)−
∑
r∈Rj Er(t)Hr(t)

)

j=1,...,n

,

(

P ∗(t)−T ∗j (t)
)

j=1,...,n

,

(

L0
j−L∗j (t)

)

j=1,...,n

)

, a.e. in [0, T ]. Hence, we rewrite (5) as:

 �("∗),"− "∗ !L≥ 0, ∀" ∈ K (11)
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where ·, · !L is the duality pairing of the Hilbert space L . It is easy to show
that (11) is equivalent to the following point-to-point variational inequality:

〈�(t,"∗(t)),"(t) −"∗(t)〉 ≥ 0, ∀"(t) ∈ K(t), a.e in [0, T ], (12)

where

K(t) = K1(t)×K2(t)×K3(t)×K4(t)

=
{

F(t) ∈ R
m+ : λ(t) ≤ F(t) ≤ μ(t), �F(t) = ρ(t)

}

×
{
T (t) ∈ R

l+ : 0 ≤ T (t) ≤ T (t)
}

×
{
L(t) ∈ R

l+ : L(t) ≥ 0
}

× {P(t) ∈ R+ : P(t) ≤ P(t) ≤ P (t)
}
.

3 Existence and Continuity Results

Let us start recalling some concepts. Let X be a reflexive Banach space with X∗ its
dual space and K be a subset of E. An operator A : K → X∗ is said to be:

• pseudomonotone in the sense of Karamardian (K-pseudomonotone) if
〈A(x2), x1 − x2〉 ≥ 0 ⇒ 〈A(x1), x1 − x2〉 ≥ 0, for every x1, x2 ∈ K;

• strictly pseudomonotone if 〈A(x2), x1 − x2〉 ≥ 0 ⇒ 〈A(x1), x1 − x2〉 > 0, for
every x1, x2 ∈ K , x1 �= x2;

• pseudomonotone in the sense of Brézis (B-pseudomonotone) if

(a) for every sequence {xn} weakly converging to x (shortly, xn ⇀ x) in K and
such that lim supn  A(xn), xn − x !≤ 0 it results lim infn  A(xn), xn −
y !≥ A(x), x − y !, for every y ∈ K;

(b) for every x ∈ K the function y $→ A(x), x − y ! is lower bounded on the
bounded subsets of K .

Now let K be a convex subset of X, an operator A : K → X∗ is said to be:

• hemicontinuous in the sense of Fan (F-hemicontinuous) if for every x ∈ K the
function y $→ 〈A(y), y − x〉 is weakly lower semicontinuous onK;

• lower hemicontinuous along line segments if for every x1, x2 ∈ K the function
y $→ 〈A(y), x1 − x2〉 is lower semicontinuous on the line segment [x1, x2].

The following existence result holds (see [6], for results on variational inequalities
in reflexive Banach spaces).
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Theorem 2 If there exist A,B two nonempty compact subsets of K, with B ⊂ A
and B with finite dimension such that for each " ∈ K \ A there exists "̂ ∈ B such
that  �(")," − "̂ !L> 0, each of the following conditions is sufficient to
ensure the existence of a solution to (12):

1. � is B-pseudomonotone,
2. � is F-hemicontinuous,
3. � is K-pseudomonotone and lower hemicontinuous along line segments.

In order to ensure the uniqueness of the solution to (11), it needs to assume that
the operator C is strictly pseudomonotone. Moreover, we remark that if � verifies
the following condition:

∃c > 0 : ‖C(t, F (t))‖ ≤ c‖F(t)‖, ∀F ∈ K1, a.e. in [0, T ],

then� belongs to the class of the Nemytskii operators (see [6]) and, hence, is lower
hemicontinuous along line segments.

In the next, we prove a continuity result for the dynamic traffic equilibrium
problem with the path-based emission pollution permit system. For this purpose
we make use of the Kuratowski convergence for subsets of a metric space (X, d)
(see [5]).

Definition 2 Let (X, d) be a metric space andK be a nonempty, closed and convex
subset ofX.We say that the sequence {Kn} of nonempty, closed and convex subsets
of X converges to K in Kuratwoski’s sense, if the following conditions hold:

(K1) for any x ∈ K , there exists a sequence {xn} converging to x ∈ X such that
xn ∈ Kn, for every n ∈ N,

(K2) for any subsequence {xn} converging to x ∈ X such that xn ∈ Kn, for every
n ∈ N, then x ∈ K .

We are able to obtain the next preliminary result.

Lemma 1 Let λ,μ ∈ C0([0, T ],Rm+), ρ ∈ C0([0, T ],Rl+), T ∈ C0([0, T ],Rl+)
and P ,P ∈ C0([0, T ],R+). Let t ∈ [0, T ] and {tn} ⊆ [0, T ] such that tn → t , as
n→+∞. Then, the sequence of sets

K(tn) = K1(tn)×K2(tn)×K3(tn)×K4(tn)

=
{

F(tn) ∈ R
m+ : λ(tn) ≤ F(tn) ≤ μ(tn), �F(tn) = ρ(tn)

}

×
{
T (tn) ∈ R

l+ : 0 ≤ T (tn) ≤ T (tn)
}

×
{
L(tn) ∈ R

l+ : L(tn) ≥ 0
}

× {P(tn) ∈ R+ : P (tn) ≤ P(tn) ≤ P (tn)
}
, ∀n ∈ N,

converges to K(t) in Kuratowski’s sense.
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Proof We start to show that the (K1) is true. We fix"(t) = (F (t), T (t), L(t), P (t))
∈ K(t) and, for each j = 1, . . . , l, we consider

Aj =
{
r ∈ {1, . . . ,m} : ϕjr = 1, Fr(t) = λr(t)

}
,

Bj =
{
r ∈ {1, . . . ,m} : ϕjr = 1, Fr(t) = μr(t)

}
,

Cj =
{
r ∈ {1, . . . ,m} : ϕjr = 1, λr (t) < Fr(t) < μr(t)

}
.

Assuming Cj �= ∅, we can deduce that there exists an index νj such that for n > νj
and r ∈ Cj it results

λr (t) ≤ Fr(t)+ρj (tn)− ρj (t)∑
r∈Cj ϕjr

−
∑
r∈Aj [λr (tn)− λr (t)]

∑
r∈Cj ϕjr

−
∑
r∈Bj [μr(tn)− μr(t)]

∑
r∈Cj ϕjr

≤ μr(t).

Then we introduce the sequence {"(tn)} = {(F (tn), T (tn), L(tn), P (tn))} such that
for n > νj and ξji = 1, j = 1, . . . , l

Fr (tn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λr (tn), for r ∈ Aj
μr(tn), for r ∈ Bj
Fr (t)+ ρj (tn)− ρj (t)∑

r∈Cj ξji
−
∑
r∈Aj [λr(tn)− λr(t)]∑

r∈Cj ϕjr

−
∑
r∈Bj [μr(tn)− μr(t)]∑

r∈Cj ϕjr
, for r ∈ Cj

and Fr(tn) = PK(tn)Fr (t) for n ≤ νj , ϕjr = 1, j = 1, . . . , l, where PK(tn) is
the Hilbert projection operator on K(tn), T (tn) = min{T (t), T (tn)}, L(tn) = L(t)
and P(tn) = P(tn) + min{P(t) − P(t), P (tn) − P (tn)}, for every n ∈ N. It
results that "(tn) ∈ K(tn), for every n ∈ N, and limn→+∞"(tn) = "(t) =
(F (t), T (t), L(t), P (t)).

Whereas if Cj = ∅, we can prove that there exists an index νj such that for
n > νj

λr(tn) ≤ λr(tn)+ 1
∑
r∈Aj ϕjr

max

(

0, ρj (tn)−
∑

r∈Aj
λr (tn)−

∑

r∈Bj
μr(tn)

)

≤ μr(tn),

λr (tn) ≤ μr(tn)+ 1
∑
r∈Bj ϕjr

min

(

0, ρj (tn)−
∑

r∈Aj
λr (tn)−

∑

r∈Bj
μr(tn)

)

≤ μr(tn).
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Hence, we consider the sequence"(tn) = (F (tn), T (tn), L(tn), P (tn)) such that for
n > νj , ϕjr = 1, j = 1, . . . , l

Fr(tn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λr(tn)+ 1
∑
r∈Aj ϕjr

max

(

0, ρj (tn)−∑r∈Aj λr(tn)−
∑
r∈Bj μr(tn)

)

,

for r ∈ Aj ,
μr(tn)+ 1

∑
r∈Bj ϕjr

min

(

0, ρj (tn)−∑r∈Aj λr (tn)−
∑
r∈Bj μr(tn)

)

,

for r ∈ Bj ,

and Fr (tn) = PK(tn)Fr (t), for n ≤ νj , ϕjr = 1, j = 1, . . . , l, T (tn) =
min{T (t), T (tn)}, L(tn) = L(t) and P(tn) = P(tn) + min{P(t) − P(t), P (tn) −
P (tn)}, for every n ∈ N. Also in this case, we can verify that "(tn) ∈ K(tn),
for every n ∈ N, and limn→+∞ "(tn) = "(t) = (F (t), T (t), L(t), P (t)). Then
condition (K1) is achieved. Furthermore condition (K2) can be easily verified.
Hence the claim is completely achieved. ��

We aim to establish a continuity result for our model. Preliminary it is easy to
verify that the following statement holds.

Proposition 1 If C is strictly monotone then � is also strictly monotone.

Making use of Theorem 4.2 in [1] and Proposition 1, we get the following result.

Theorem 3 Let λ,μ ∈ C0([0, T ],Rm+), ρ ∈ C0([0, T ],Rl+), E ∈ C0([0, T ],Rm+),
T ∈ C0([0, T ],Rl+) and P ,P ∈ C0([0, T ],R+). Let us assume that C ∈
C0([0, T ],Rm+) is a strictly monotone operator such that

∃c ≥ 0 : ‖C(t, F (t))‖ ≤ c‖F(t)‖, ∀F ∈ K1, ∀t ∈ [0, T ].

Then (11) admits a unique continuous solution.
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Power Network Design with Line Activity

Daniel Bienstock, Martina Cerulli, Mauro Escobar, and Leo Liberti

Abstract We discuss the problem of optimally designing a power transportation
network with respect to line activity. We model this problem as an alternating current
optimal power flow with on/off variables on lines. We formulate this problem as
a nonconvex MINLP in complex numbers, then we propose two convex MINLP
relaxations. We test our formulations on some small-scale standard instances.

Keywords Optimal power flow · MINLP · Relaxation

1 Introduction

Every network routing problem naturally yields a design counterpart which opti-
mally decides some part of the network topology. Network routing problems
based on multicommodity flows yield design problems where arcs, nodes and/or
other features are installed/removed according to flow cost and demand. Such
optimization problems often arise in telecommunication networks [1], supply chain
[2], logistics, and more. They are usually solved using a mixture of Mathemat-
ical Programming (MP) formulations of the mixed-integer sort, decomposition
strategies, combinatorial algorithms, and heuristics. On the other hand, the first
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approach—which we follow in this paper—is always the deployment of off-the-
shelf MP solvers on such problems.

Power networks are used to transport and distribute electricity. The transportation
occurs at very high voltage levels (hundreds of thousands of volts), while distribu-
tion occurs at lower voltage levels (hundreds of volts). Typically, such networks
are reasonably sparse, but have some cycles for redundancy-based protection.
Moreover, these networks route Alternating Current (AC) rather than Direct Current
(DC) [3]. The typical network routing problem for current is known as Optimal
Power Flow (OPF). It is well known that the OPF for DC can be well approximated
by a Linear Program (LP) (see [4, §1.2.4], [5, Eq. (5.48)]). On the other hand, the
OPF for AC, commonly known as ACOPF, is the object of intense research [4, 5]
because of its difficulty and importance.

We shall see in the following that the ACOPF can be naturally formulated in MP
in many ways, e.g. Quadratically Constrained Quadratic Programming (QCQP),
Polynomial Programming (PP), and general Nonlinear Programming (NLP), all
of which involve nonconvexities [4]. Common relaxations are LP, Second-Order
Cone Programs (SOCP), Semidefinite Programs (SDP) [5]. The variables (voltage,
current, power) are naturally defined on continuous domains. A very interesting
feature of the ACOPF is that its variables range in complex numbers. While a
separation in real and imaginary parts is always possible, matrix formulations and
relaxations generally take up twice the amount of storage w.r.t. working directly in
complex numbers [6].

Network design problems defined on the OPF in DC can be readily formulated
as Mixed-Integer Linear Programs (MILP) [7, 8]. This is also done for problems
arising in grid robustness analysis [9, 10], where binary variables model attacks and
vulnerabilities [4, Ch. 3]. Binary variables in the ACOPF have also been used to
discretize continuous variables arising in nonconvex constraints, so as to obtain
an approximate reformulation turning nonconvexities into a finite set of binary
choices [5, §4.3.5–4.3.6], which can be dealt with using standard Mixed-Integer
Programming (MIP) solvers.

To the best of our knowledge, the first paper exhibiting computational results
for the ACOPF with binary variables used for design (rather than approximation)
purposes is [11], where binary variables are used to switch generators and shunts
on and off: a local NLP solver is deployed on a well-known continuous NLP
reformulation of the corresponding nonconvex MINLP. A perspective cut based
relaxation of an ACOPF formulation with binary variables for switching generators
on and off was proposed in [12]. Another possible approach for working with
ACOPF involving binary variables is to apply network design modeling techniques
involving binary variables to an LP or SOCP relaxation of the ACOPF. This was
done in [13], which proposed inner and outer mixed-integer Diagonally Dominant
Programming (DDP) formulations. DDP [14] is a MP technique to approximate the
Semidefinite (PSD) cone using LP. The ACOPF is NP-hard [15], and remains hard
even when the goal is to minimize the number of active generators [12].

In this paper we move a step towards solving a “network design ACOPF” by
integrating binary variables that control whether a line is active or not. Our objective
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is to decrease the number of active lines while still satisfying demand. While this
is similar to the optimal switching problem [16], here we start from the ACOPF
formulation rather than its DC counterpart. We shall present a (nonconvex) MINLP
formulation of the network design problem derived from the ACOPF, and two
convex MINLP relaxations. While there is little hope of solving even the tiniest
ACOPF instances with the nonconvex MINLP, we show that some results for small
ACOPF instances can be obtained using convex MINLPs.

The rest of this paper is organized as follows. We present the ACOPF formulation
and a nonconvex MINLP formulation for the corresponding network design problem
in Sect. 2. We then propose some new mixed-integer SOCP (MISOCP) relaxations
in Sect. 3. We test our formulations with some standard instances in Sect. 4.

2 The ACOPF Formulation

Modeling the ACOPF can be daunting. Most of the literature refers to Matlab-style
modeling: painstakingly filling the correct components of a huge constraint matrix
with the correct values. This is the low-level kind of interface to MP solvers which
produces “flat” formulations that can be read directly by solvers: extremely fast
in execution, but a debugging nightmare. See [4, Eg. 1.2.1] and [17, 18] for some
introductory material.

Today, most MP formulations are presented in “structured” form: index sets
first, then parameters, decision variables, objective function(s), and constraints, all
parametrized by and quantified over the aforementioned indices. Each MP entity
(parameter, variable, objective, constraint) is stored in a multi-dimensional jagged
array, possibly not completely defined. Structured formulations convey the problem
definition much more clearly than flat ones, at least to MP-versed readers. Detailed
formulations can be found in [19]. Modeling tools such as AMPL [20] allow for
fast(er) debugging.

We model the electrical network as a loopless multi-digraphG = (B,L) where
B is the set of nodes and L the set of arcs. In power engineering terminology a
node is called a bus and an arc is called a line or branch. We assume |B| = n and
|L| = m. Parallel arcs occur whenever parallel cables are deployed on connections
that must transport excessive amounts of power for a single cable. The h-th line
�bah joining two buses b and a is represented by a pair of anti-parallel arcs �bah =
{(b, a, h), (a, b, h)}. We assume thatL is partitioned in two sets L0, L1 with |L0| =
|L1|: for each pair of antiparallel arcs, one is in L0 and the other in L1, according to
the asymmetry of the branch admittance matrix Ybah matrix below.

Ohm’s law expresses the current Ibah injected on a line �bah in function of the
voltages Vb, Va at the endpoints b and a, and of the physical properties of the line.
The fundamental difference with Ohm’s law in DC is that AC yields an asymmetry.
While in DC we have Ibah = −Iabh, in AC we instead have:

∀(b, a, h) ∈ L0 Ibah = Y ff
bahVb+Y ft

bahVa ∧ Iabh = Y tf
bahVb+Y tt

bahVa. (1)
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The Y constants in the above equations are defined as follows [4, 19]:

Ybah =
(
Y ff
bah Y

ft
bah

Y tf
bah Y

tt
bah

)

=
(
( 1
rbah+ixbah + i bbah2 )/τ

2
bah − 1

(rbah+ixbah)τbahe−iνbah
− 1
(rbah+ixbah)τbaheiνbah

1
rbah+ixbah + i

bbah
2

)

,

(2)

where r, x, b, τ, ν measure some physical properties of the line, and are given as
part of the instance. The suffixes ff, ft, tf, tt to Y stand for “from-from”, “from-to”,
“to-from”, and “to-to”: they are a reminder of the direction of the routed quantities
w.r.t. the line �bah.

We can now introduce sets, parameters and decision variables of the ACOPF.

• Sets: B, L and a set G of generators partitioned as {Gb | b ∈ B}, where Gb
contains the generators attached to bus b.

• Parameters: power demand (or load) S̃b , shunt admittance Ab; voltage mag-
nitude bounds V b, V b at each bus b ∈ B; admittance matrix Ybah; upper
bound S̄bah to injected power magnitude; lower/upper bounds η

bah
, ηbah to phase

difference at each line (b, a, h) ∈ L; cost coefficientsCg2, Cg1, Cg0; lower/upper
bounds S g,S g to power generated at g ∈ G ; a reference bus r ∈ B.

• Decision variables: voltageVb at bus b ∈ B, injected current Ibah, injected power
Sbah at each line (b, a, h) ∈ L, and generated power Sg at each generator g ∈ G .

All variables range in C. Among the parameters, the power magnitude, voltage
magnitude, phase difference bounds, cost coefficients are in R; r ranges in the bus
set; the generated power bounds are in C. Limited to this paper we assume that, for
two complex numbers α = αr + iαc and β = βr + iβc, α ≤ β means αr ≤ βr
and αc ≤ βc. We also recall that |α| = √

(αr)2 + (αc)2 is the magnitude of α, that
α∗ = αr − iαc is the conjugate of α, and that |α|2 = α α∗.

We present now objective function and constraints of what we call the (S, I, V )-
formulation of the ACOPF.

• Objective function: min
∑

g∈G
(Cg2(S r

g)
2+Cg1S r

g +Cg0), which is quadratic and

separable in generated power.

• Bound constraints: on voltage magnitude V 2
b ≤ |Vb|2 ≤ V

2
b for each b ∈ B;

on power magnitude |Sbah|2 ≤ S̄2
bah for each (b, a, h) ∈ L; on phase difference

tan(η
bah
)(Vb Va

∗)r ≤ (Vb Va∗)c ≤ tan(ηbah)(Vb Va
∗)r together with (Vb Va∗)r ≥

0 for (b, a, h) ∈ L0; on generated power S g ≤ Sg ≤ S g for each g ∈ G .
Moreover, we have V c

r = 0 and V r
r ≥ 0 on the reference bus.

• Functional constraints:

– Power flow equations:

∀b ∈ B
∑

(b,a,h)∈L
Sbah + S̃b = −Ab∗|Vb|2 +

∑

g∈Gb
Sg. (3)
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– The relationship between S, V, I :

∀(b, a, h) ∈ L Sbah = Vb Ibah∗. (4)

– Ohm’s laws Eq. (1), which we write equivalently as:

∀(b, a, h) ∈ L0 Ibah = Y ff
bahVb + Y ft

bahVa (5)

∀(b, a, h) ∈ L1 Ibah = Y tf
abhVa + Y tt

abhVb. (6)

2.1 The Network Design ACOPF

We now introduce a binary variable ybah for each (b, a, h) in L. We have ybah = 1
iff the corresponding line is active, and we must ensure that both antiparallel arcs are
active/inactive at the same time by ybah = yabh. We control activation/deactivation
of a line by limiting the injected power magnitude bound:

∀(b, a, h) ∈ L |Sbah|2 ≤ S̄2
bahybah. (7)

In order to ensure that Eq. (7) does not impose constraints on Vb and Va when the
line (b, a, h) is not active, we introduce a new complex variable zbah in Eq. (4),
such that:

∀(b, a, h) ∈ L Sbah = Vb Ibah∗ + zbah, (8)

and

∀(b, a, h) ∈ L |zbah|2 ≤M2
bah(1− ybah), (9)

where Mbah is a large enough constant. Note that Eqs. (7)–(9) do not cut the
global optima of the ACOPF: it suffices to set ybah = 1 for each (b, a, h) ∈ L
to see this. Instead, we add an objective function min

∑
(b,a,h)∈L0

ybah. We can
tackle this bi-objective MINLP either by scalarization or by adding a constraint∑
(b,a,h)∈L0

ybah ≤ ξ and letting ξ vary in {1, . . . ,m/2}. In this paper we consider
scalarization approach, so that the objective function becomes:

min
∑

g∈G
(Cg2(S

r
g)

2 + Cg1S
r
g + Cg0)+ ρ

∑

(b,a,h)∈L0

ybah, (10)

where ρ > 0 is a scalar weight which we set to 1 for testing purposes. We denote
the network design ACOPF problem with binary variables on lines by ACOPFL.
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3 Linearizing Relaxations

The material in this section is motivated by the solution difficulty posed by the
nonconvex MINLP formulation of the ACOPFL. First of all we propose some valid
relaxation for ACOPF problem.

The decision variables I for current can be eliminated from the (S, I, V )-
formulation by replacing them in Eq. (4) with their expressions in Eqs. (5)–(6).
This yields the (S, V )-formulation, which is still a nonconvex NLP. In turn, using
Eqs. (7)–(10), this NLP yields a nonconvex MINLP formulation for the ACOPFL.

3.1 (S, V,X)-Relaxation

The only nonlinear terms appearing in the nonconvex constraints of the ACOPF
(S, V )-formulation are quadratic in voltage: they are products Vb Va∗ for some
b, a ∈ B. Every such product term can be linearized, i.e. replaced by a new
(complex) variable Xba for b, a ∈ B (we do not include the corresponding defining
constraint Xba = Vb Va∗). Let us call this the (S, V,X)-relaxation. This turns out
to be a convex QCQP (more specifically a SOCP). The quadratic terms are: S 2

g

in the minimizing objective and |Sbah|2 in the LHS of the power magnitude bound
constraints.

3.2 (S, V,X)-SDP

Note that the (S, V,X)-relaxation is an exact reformulation if we enforce X =
VV H, where the apex stands for “hermitian transpose”, i.e. the transpose of the
componentwise complex conjugate. Accordingly, sinceX is a PSD rank-one matrix,
we get a stronger relaxation w.r.t. the (S, V,X)-relaxation presented in Sec. 3.1, if
we replace X = V V H by X � 0, which yields a complex SDP relaxation called
(S, V,X)-SDP.

3.3 (S, V,X)-12DDP

Given the scarcity of off-the-shelf mixed-integer SDP solvers, we consider a DDP
approximation of the PSD cone [14]: since every Diagonally Dominant (DD) matrix
is also PSD [21], the constraint “X is DD” yields an inner approximation (i.e. a
restriction) of the complex SDP.
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Writing the DDP constraints corresponding to X � 0 requires splitting X into

real and imaginary parts, which yields X̄ =
(
Xrr Xrc

Xcr Xcc

)

∈ R
2n×2n, where Xrr =

(Xr
ba),X

cc = (Xc
ba),X

rc linearizes the matrix (V r
bV

c
a ), andXcr linearizes the matrix

(V c
b V

r
a). We remark that Xrr,Xcc are symmetric matrices, while Xrc,Xcr are not;

on the other hand, Xrc
ba = Xcr

ab for each b, a ∈ B.
Now the DDP inner approximation of X̄ � 0 states that any diagonal component

of X̄ is greater than or equal to the sum of the absolute values of the components in
the same row. This corresponds to:

∀b ∈ B Xrr
bb ≥

∑

a∈B
a �=b

T rr
ba +

∑

a∈B
T rc
ba (11)

∀b ∈ B Xcc
bb ≥

∑

a∈B
a �=b

T cc
ba +

∑

a∈B
T cr
ba, (12)

where T̄ =
(
T rr T rc

T cr T cc

)

is a real variable matrix such that −T̄ ≤ X̄ ≤ T̄ [14].

The issue with inner DDP approximations is that they may be infeasible even if
the corresponding SDP is feasible. Experimentally, this was verified to be the case
in every ACOPF instance we tested. This issue can be addressed algorithmically
[14], but this would require solving a sequence of DDPs, which would in turn take
excessive time. Instead, we chose to only impose Eq. (11), which yielded feasible
“half-DDP” relaxations (which we refer to as (S, V,X)- 1

2 DDP relaxation) of the
tested ACOPF instances. Note that we do not have a general feasibility proof for
1
2 DDP relaxations. So far, we have not found any counterexamples yet, either.

3.4 Jabr Relaxation

Another SOCP relaxation of the ACOPF, called “Jabr relaxation”, was proposed
in [22]. It can be constructed from the (S, V )-formulation as follows:

1. transform cartesian coordinates V r, V c to polar coordinates v, θ by replacing
V r = v cos θ and V c = v sin θ : this will result with nonlinear terms in
vbva cos(θb − θa) and vbva sin(θb − θa);

2. define an index set R = {(b, b) | b ∈ B} ∪ {(b, a) | (b, a, 1) ∈ L};
3. linearize (replace) the nonlinear terms with new variables cba = vbva cos(θb−θa)

and sba = vbva sin(θb − θa) for all (b, a) ∈ R: this also yields cba = cab,
sba = −sab, c2

ba + s2
ba = v2

bv
2
a (&) for all (b, a, 1) ∈ L0, as well as sbb = 0 and

cbb = v2
b (†) for each b ∈ B;
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4. replace v2
b, v

2
a in (&) with cbb, caa by means of (†), and relax (&) to a convex

(conic) constraint c2
ba + s2

ba ≤ cbbcaa;
5. replace |Vb|2 in the voltage magnitude bounds with cbb;
6. remark that Vb Va∗ = cba+isba , and infer the phase difference bounds as cba ≥ 0

and tan(η
bah
)cba ≤ sba ≤ tan(ηbah)cba for each (b, a, h) ∈ L0;

7. the injected power variables Sbah satisfy the linear equations:

∀(b, a, h) ∈ L0 (Sbah)
r = (Y ff

bah)
r
cbb + (Y ft

bah)
r
cba + (Y ft

bah)
c
sba

∀(b, a, h) ∈ L0 (Sbah)
c = −(Y ff

bah)
c
cbb + (Y ft

bah)
r
sba − (Y ft

bah)
c
cba

∀(b, a, h) ∈ L1 (Sbah)
r = (Y tt

abh)
r
cbb + (Y tf

abh)
r
cba + (Y tf

abh)
c
sba

∀(b, a, h) ∈ L1 (Sbah)
c = −(Y tt

abh)
c
cbb + (Y tf

abh)
r
sba − (Y tf

abh)
c
cba.

3.5 ACOPFL Relaxations

We derive ACOPFL relaxations from the (S, V,X)-relaxation, the (S, V,X)- 1
2 DDP

and Jabr relaxations of the ACOPF, by employing the binary variables y as in
Sect. 2.1, i.e. by imposing Eqs. (7)–(9) and minimizing Eq. (10). A few preliminary
results showed that the active lines do not form a connected set at the optimum. In
order to enforce connectivity, we therefore also added a set of multicommodity flow
constraints on added variables f badeh, defined for each distinct pair b, a ∈ B and line
(d, e, h) ∈ L:

∀b < a ∈ B
∑

(b,d,h)∈L
f babdh −

∑

(d,b,h)∈L
f badbh = 1

∀b < a ∈ B
∑

(d,a,h)∈L
f badah −

∑

(a,d,h)∈L
f baadh = 1

∀b < a ∈ B, d ∈ B � {b, a}
∑

(e,d,h)∈L
f baedh −

∑

(d,e,h)∈L
f badeh = 0,

as well as the linking constraints: ∀b < a ∈ B, (d, e, h) ∈ L f badeh ≤ ydeh.
In Table 1, we shall refer to the ACOPFL relaxations from (S, V,X)- 1

2 DDP, and
Jabr as “ddp”, and “Jabr” respectively.
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4 Computational Experiments

The standard reference testbed for computational assessments in ACOPF is the
PGLib library [23], which also includes “case files” from MATPOWER [18]. We
compare performances of the two convex MINLP relaxations of the ACOPFL (ddp
and Jabr) on the small case instances casei for i ∈ {5, 9, 14, 18, 22, 24, 30}. Our
implementation is carried out in AMPL [20]. We solve both formulations, which
are of the Mixed-Integer SOCP sort, with CPLEX 12.9 [24], which is given 300s
as maximum CPU time. Only instance “case5” is solved using Baron, because
AMPL failed to successfully pass it to Cplex.

The results in Table 1 are obtained on a a 2.53GHz Intel(R) Xeon(R) CPU with
49.4 GB RAM. They show that 300s are only sufficient to obtain meaningful results
for small instances.

An encouraging feature of the results in Table 1 is that the slacker ddp relaxation
takes less time to solve than Jabr, provides a worst bound, but still identifies a valid
connectivity for active lines for all the tested instances. In Fig. 1, e.g., we report two
solutions found by solving the ddp relaxation, which appear to be the same found by
Jabr relaxation, as well as the two different solutions obtained by solving the same
instance “case30” with ddp, and Jabr.

In Table 2 we report results from the (S, V,X)-relaxation of ACOPFL on slightly
larger instances, solved using CPLEX limited to 7200s. When solutions are found
atypically quickly (e.g. case69, case85), it is because the networks have no
cycles.
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Risk Assessment in Transactions Under
Threat as Partially Observable Markov
Decision Process

Vassil Vassilev, Doncho Donchev, and Demir Tonchev

Abstract This paper presents a theoretical model and algorithms for calculating
the security risks for planning active counteractions in transaction processing under
security threats. It is a part of an integrated cybersecurity framework, which
combines AI-based planning of active counteractions with Machine Learning for
the detection of security threats during transaction processing. The risk assessment
is based on the optimal strategy for decision making which minimizes the security
risks in controlled transactions modeled as Partially Observable Markov Decision
Process (POMDP). By statistical reduction, this model is converted into a Markov
Decision Process (MDP) with full information so that the algorithm for calculating
the risks can use the standard dynamic programming. Although developed primarily
for applications in fintech industry, this framework can be adapted to a wide
range of business process workflows that incorporate both synchronous operations
and asynchronous events caused by human errors, technical faults, or external
interventions.

Keywords Transaction processing · Security threats · Risk assessment ·
Partially-observable Markov decision process · Statistical reduction

1 Introduction

Cybersecurity becomes critical for successful digital transformation of the busi-
nesses in many areas of human activity—fintech industry, e-commerce, business
process management, healthcare, public services, etc. Over the last three years we
have been working on a hybrid AI-based framework which combines the power of
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logical analysis of security policies, from one side, with machine learning for data
analytics, on the other. Such a framework must secure the transaction processing
by accounting for both the threat intelligence, obtained in advance from security
experts, and the security risks assessed in real time. Our approach to planning
is rooted in the traditional AI planning introduced by McCarthy in the situation
calculus, but follows different approach from both conceptual and theoretical point
of view, which allows to avoid some of the problems encountered in the original
deterministic planning such as the qualification and frame problems. Instead of
combining the information from the real world with the planning heuristics in a
single representational language, like in the original situation calculus, we have
adopted multi-level problem formalization which separates the domain ontology
from the security policies and adds two more levels: analytical level of decision
making for selecting appropriate actions and applying potential counteractions to
the security threats, and implementation level for executing ML algorithms for
security analytics to detect potential security threats at the different steps of the
transactions [8]. For the first three levels of the framework we have adopted the
standard languages of the Semantic Web—OWL, SWRL and RDF, which have
direct logical interpretation [7], while the implementation level utilizes a variety
of ML algorithms for detection [9]. In this article we will present an approach for
assessment of the security risks at each step of the transactions in the presence of
security threats, which is necessary for planning of suitable counteractions during
execution of the transactions and progressing towards completion of the transaction.

The paper is organised as follows. First we will briefly review the research in
risk assessment from cybersecurity perspective and will set the problem in the
context of a hybrid AI-based cybersecurity framework which accounts both the
security policies and the threat intelligence to execute active counteractions against
the threats detected during transaction execution. After this preliminaries we will
introduce the POMDP model, will preform statistical reduction to MDP model and
will describe the algorithms for risk assessment, based on the optimal strategy for
controlling the transaction under threats. We will illustrate the use of the algorithm
by analyzing the decision threshold, which guides the choice of counteraction along
the transaction based on the optimal strategy. After brief information about the
current state of implementation of the framework we will finish with a discussion
and our plans about the future research in this direction.

2 Brief Review of the Relevant Research

The advances in heuristic planning for intelligent control of the transactions and the
need to account stochastic factors which interfere with the execution of the trans-
actions, such as errors, faults and intrusions, focused the attention on continuous
planning and re-planning. Unfortunately, the heuristic planning faces the need to
account the security risks which does not fit within the deterministic models used
as a base for the planning algorithms. An adequate formalization of the stochastic
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planning problem requires working with POMDP model which is significantly
more complex than the two popular deterministic models—the classical state-
space search and the MDP [1]. An excellent overview of the different models and
algorithms for non-deterministic planning from AI perspective is provided in [2].
Despite some recent adoptions of POMDP for the purpose of risk assessment [3–6],
the adoption of POMDP remains valuable for mostly offline analytics due to the
need to the need to solve multi-step optimization problem of large complexity.

The major contribution of our research is in the integration of the purely
deterministic method for controlling the transactions under threat with the stochastic
method for decision making using the risk assessment as a heuristic function,
which is based on the original POMDP model but reduced to a tractable MDP
problem. This reduction makes possible to use more efficient recurrent algorithms
for optimization, based on the standard dynamic programming methodology which
for realistic transaction lengths can be executed in real time.

3 Controlling Transactions and Decision Making

Contemporary transaction processing requires planning and controlling the execu-
tion of a sequence of operations to reach the goal state, namely the commit point
of the transaction. In our security framework [8] each step of the transaction is
modeled as a separate situation. Along the multi-step transition from situation to
situation the transactions face multiple challenges due to the unpredictability of
the factors which may influence the process—security threats which may require
neutralization, safety threats which may need mitigation or logical non-determinism
for choosing alternative options. In accordance with our theoretical framework
we are considering both synchronous activities (in our framework they are called
actions) and asynchronous activities (it events). While the actions change the
situations in a deterministic way, the event are the main stochastic factors since
they may or may not trigger actions, and also can happen at any time. This way the
analytical level can be modelled naturally as a directed AND-OR graph. Choosing
suitable operation based on risk assessment when the transactions execute under
security threats would allow to implement control algorithms with guaranteed
chances for successful commit of the transaction.

As an illustration, Fig. 1 presents one such graph which models a typical
transaction for reading the emails in the presence of potential security threats on
analytical level. The graph nodes represent situations and are painted in white,
green or red; the solid arrows represent the deterministic transitions from situation
to situation, while the events and threats are associated with the situations in a
non-deterministic way and painted in blue and black, respectively. Some of the
actions are normal actions which progress the transaction towards its commit
situation, which can be prescribed using suitable heuristics, while other actions are
outside of the control since they are triggered by asynchronous events or caused by
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Fig. 1 Threat in the email

security threats. The situations, events and threats can be described qualitatively and
quantitatively using various items, colored in yellow.

This graph can be created entirely automatically using the domain ontology and
the security policies of the framework. However, in order to implement the control
strategy, we need to deal with the non-determinism. The graph contains multiple
decision points which cannot be resolved without additional information and this is
where we need to make informed decision choice of an action to be executed.

4 Transactions Under Threat as POMDP

Before we specify the model we will make some assumptions which can be lifted at
a later stage:

1. We will omit the descriptions, which use concepts of the type Item and will
consider only Situation, Action and Event taxonomies.

2. There will be no distinction between situations, free of any threats, between
situations, which are result of malicious actions and between transient situ-
ations. So the model will consider only the top classes of the taxonomy—
SafeSituation, DangerousSituation and TransientSituation.
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3. There will be no distinction between different malicious actions and between
different counteractions—we will consider only the top roles in the action
taxonomies MaliciousAction and CounterAction.

4. We assume that the counteractions always bring the system back to a safe
situation in a single step. This also means that all transient situations are safe.

5. Only events relevant to the threats will be considered (class Threat). The non-
threatening events will be addressed by the security policies on logical level.

The above assumptions makes it possible to apply a reduction of the original
POMDP problem with partial information to an MDP problem with full information
and to use the recurrent algorithm of dynamic programming for solving it. This way,
we can have a quantitative evaluation of the risk in each situation incrementally.

Due to the presence of asynchronous events, which can be either unpre-
dictable, but anticipated—like many malicious interventions, or unexpected, but
predictable—such as human or technical errors, we must model the transactions
under threat as POMDP, rather than as MDP which requires full information. Our
model has the following elements:

1. State space S = {saf e, danger, deadend}—corresponds to the different top-
level types of situations from risk viewpoint

a. saf e Situations along the normal transactions in absence of any threats
b. danger Situations in which the system is under the influence of security

threats but is still able to recover
c. deadend Situations in which the system experiences severity and crashes

completely under the security threats

2. Control space C = {noact, respond}—corresponds to the different top-level
types of counteractions for risk mitigation

a. noact—no control intervention, the system goes straight to the next situation
according to the planned action in order to continue its normal track of
execution of the current transaction

b. respond—counteraction, which brings the system back to a safe situation
after malicious action

3. Observation space Z = {nothreat, threat, crash}—corresponds to the differ-
ent top-level types of events from security viewpoint

a. nothreat—asynchronous event, which is non-threatening and does not
require counteraction

b. threat—detection of malicious intervention which requires counteraction
c. crash—losing control of the system without chance for recovery

4. Transition kernel q(sn+1|sn, cn+1)—probability of the transition from situation
sn to situation sn+1 under control cn+1, calculated as follows

• q(saf e|saf e) = p, p is the probability for absence of threats after transition
from a safe situation
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• q(danger|safe) = 1−p, 1−p is the probability for presence of threats after
transition from a safe situation

• q(saf e|danger, respond) = 1 because the counteraction in a dangerous
situation eliminates the threat

• q(deadend|danger, noact) = 1 because the absence of counteraction in
dangerous situation leads to an inevitable deadend of the system

• q(deadend|deadend)= 1 since there is no way out of the deadend

5. Occurrence kernel t (zn|sn)—probability of occurrence of event zn in state sn,
calculated as follows

• t (nothreat|saf e) = p11—probability of not observing threat in a safe state
• t (nothreat|danger) = p12—probability of not observing threat in a danger-

ous stage (false negative)
• t (threat|saf e) = p21—probability of observing threat in a safe state (false

positive)
• t (threat|danger) = p22—probability of observing threat in a dangerous

state
• t (crash|deadend) = 1—probability of observing the system crash under

threat

Let’s denote the matrix with entries pij , i, j = 1, 2 by P . Its transpose PT is a
stochastic matrix since

p11 + p21 = p12 + p22 = 1.

6. Rewards—quantitative measures of the costs of the actions taken as follows

a. Current reward r(c) calculated as follows: r(noact) = 0, r(respond) = −c
where c > 0 is the cost for using respond

b. Final reward R(s) calculated as follows: R(saf e) = R(danger) = 1 if either
the transaction terminates normally or the threat occurs after finalizing it, and
R(deadend) = 0 if the crash occurs during the transaction.

7. HorizonN—length of the transaction, calculated as the number of safe situations
in it.

5 Optimal Strategy for Counteracting and Its Cost

The solution of the risk assessment task can be obtained as a byproduct of the
calculation of the optimal strategy for control of the transactions.

Definition Security decision φ(s) is a function which on each step of the transaction
s chooses either noact or respond .
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The security decisions may modify the original transactions by enforcing
respond actions in some of the situations. Therefore, they can extend the transaction
path. If the security decisions are wrong it might be even possible to end the
transaction in a deadend situation. In order to maximize the chances to make the
right decisions we will account all information available at the time of decision
making, which will turn the security decision into a stochastic function of the
parameters of the POMDP model.

Definition Decision policy π = (φ(1), φ(2), . . . , φ(N)) is a collection of security
decision functions such that on each step n of the transaction, φ(n) depends only on
the past history till time n, and the prior probabilities of the states at time 0, that is
before the transaction has begun.

We assume that the prior probability of state deadend is 0, since otherwise any
policy makes no sense. Therefore, the sum of the prior probabilities of the other two
states is equal to 1, and the prior distribution of the states at time 0 is determined by
the prior probability x of state saf e. So, we are now looking for a decision policy
π which maximizes the total reward vπ (x) = Eπx (R(stateN) − cK), where Eπx is
the expectation, corresponding to the policy π and the prior probability x, and K
is the number of times when we apply the action respond . In the above expression
R(stateN ) is the final income which we get in the last step of the transaction.

Definition Value function of the POMDP model is the function

v(x) = max
π
vπ (x)

Definition The policy π such that v(x) = vπ (x) is an optimal policy.

The optimal policy π of the POMDP maximizes the chances to avoid a crash
during the transaction, taking into account the total price of counteractions. It solves
the following optimization problem:

vπ (x) = Eπx (R(sN )− cK), (1)

where x the prior probability of the state saf e in the moment n = 0, sN is
the final state of the controlled process, and K is the total number of times
when the counteraction has been used. Here, Eπx is the mathematical expectation
corresponding to π and x.

To calculate the optimal strategy we will follow the standard procedure for
reducing the POMDP model with partially observable states to a MDP model
with fully observable states which would allow to apply the standard algorithm
of dynamic programming [7]. The reduction can be done by following the steps
bellow:

1. Constructing sufficient statistics for the POMDP model by solving the filtration
equations
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2. Building a model with fully observable states using the sufficient statistics from
step one

3. Solving Bellman’s equation for the MDP model built in step two making use of
the dynamic programming algorithm

This gives us the optimal strategy in both POMDP and MDP models. Based on
it we can now estimate the risks.

Definition The risk corresponding to the prior probability x of the state saf e of the
POMDP model is equal to 1− v(x), where

v(x) = sup
π
vπ (x), (2)

is the value function of the model.

So the risk in each state can be assessed if the optimal strategy is known. In the
general case this is a difficult problem, but fortunately, for the special case of our
POMDP there is an elegant solution based on statistical reduction of the POMDP
model to deterministic MDP model.

Let fn (resp. gn), n = 0, 1,. . . , N − 1, be 3x1-vectors with elements equal to the
prior (resp. posterior) probabilities of the states saf e, danger and deadend during
the transaction. We assume that fn(1) and gn(1) correspond to state saf e, fn(2)
and gn(2)—to state danger , and fn(3) and gn(3)—to state deadend .

We can think of these vectors as points in the two-dimensional simplex in R3

(Fig. 2). In order to exclude the trivial case of a system’s breakdown before any
transaction has begun, we assume that f0(3) = 0. Thus, we have f0(1) = x,
f0(2) = 1− x, where x is the same as in formulas (1) and (2). The other vectors fn
and gn satisfy the following relations:

Fig. 2 Situation simplex
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• Since the state deadend is absorbing, gn(3) = 0 or 1. If gn(3) = 1, then fm(3) =
gm(3) = 1 for all m > n.

• Making use of the Bayes formula, the coordinates of the vector gn can be
calculated as follows:

gn(1) = fn(1)p21

fn(1)p21 + fn(2)p22
:= '1(fn(1), fn(2)), (3)

gn(2) = fn(2)p22

fn(1)p21 + fn(2)p22
, gn(3) = 0, (4)

if zn = threat;

gn(1) = fn(1)p11

fn(1)p11 + fn(2)p12
:= '2(fn(1), fn(2)), (5)

gn(2) = fn(2)p12

fn(1)p11 + fn(2)p12
, gn(3) = 0, (6)

if zn = nothreat;

gn(1) = 0, gn(2) = 0, gn(3) = 1, (7)

if zn = crash.

On the other hand, if gn(3) = 0 then the coordinates of fn+1 are

fn+1(1) = pgn(1), fn+1(2) = (1− p)gn(1), fn+1(3) = gn(2), (8)

whenever cn = noact;

fn+1(1) = p, fn+1(2) = 1− p, fn+1(3) = 0, (9)

if cn = respond where '1(x, 1−x) and '2(x, 1−x) are the posterior probabilities
to remain safe after detecting absent or present threats, respectively.

The last equations show that if we consider the vectors gn, n = 0, 1,. . . , N − 1,
as points in the two-dimensional simplex, they are located either in the vertex
of the simplex, corresponding to state deadend , or on the edge, connecting the
vertices corresponding to states danger and saf e. On the other hand, the location
of the points on this edge is entirely determined by a single coordinate, say that
which is equal to the posterior probability of the state saf e. This observation plays
an important role for reducing the POMDP model to a MDP model with fully
observable states.

According to the general theory of POMDP (see [1]), sufficient statistics allow to
reduce the initial POMDP problem to a fully observable MDP problem on the base
of posterior probabilities gn, n = 0, 1, . . .N − 1.
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We consider the following fully observable MDP model. Its state space is the set
S = (0, 1) ∪ {∗}, where ∗ is an isolated point.

Definition The controlled process in the model with complete information is
defined as

xn =
{∗, if gn(3) = 1
gn(1), if gn(3) = 0

, n = 0, 1, . . . N − 1.

Let us note, that in view of (3), (5), and the total probability formula, the initial
distribution of x0 is the following:

x0 =
{
'1(x, 1− x) with probability p21x + p22(1− x)
'2(x, 1− x) with probability p11x + p12(1− x) .

The fact that PT is a stochastic matrix implies that the distribution of x0 is a
proper probability distribution. The same holds for all distributions that appear in
the definition of the transition kernel t ({y}|x, c) of the model with fully observable
states. The filtration equations (3)–(9), and the total probability formula motivate us
to define it as follows:

t ({y}|x, c) =
⎧
⎨

⎩

pxp21 + (1− p)xp22, y = '1(px, (1− p)x)
pxp11 + (1− p)xp12, y = '2(px, (1− p)x)
1− x, y = ∗

provided that c = noact ,

t ({y}|x, c) =
{
pp21 + (1− p)p22, y = '1(p, 1 − p)
pp11 + (1− p)p12, y = '2(p, 1 − p) ,

provided that c = respond ,

t (∗|∗, ·) = 1.

In all other cases we set t ({y}|x, ·) = 0. The final reward is

R(x) = 1, x ∈ (0, 1), R(∗) = 0.

The other elements of the model—state space C, running reward r and horizon N
remain unchanged after the reduction.

Consider the functions

Vn(x) = max
π
Eπx (�

N−1
k=n r(ck+1)+ R(xN)), n = 0, 1, . . . N − 1. (10)
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They satisfy the Bellman’s equation

Vn(x) = max(V noactn (x), V
respond
n (x)), (11)

and the final condition

VN(x) = R(x). (12)

In (11), V noactn (x) and V respondn (x) are one-step ahead estimates of both actions
noact and respond:

V noactn (x) = (pxp21 + (1− p)xp22)Vn+1('
1(px, (1 − p)x))

+ (pxp11 + (1− p)xp12)Vn+1('
2(px, (1 − p)x)),

V
respond
n (x) = −c+ (pp21 + (1− p)p22)Vn+1('

1(p, 1 − p))
+ (pp11 + (1− p)p12)Vn+1('

2(p, 1 − p)).

Let us note that since after action respond the system instantly falls into a saf e
state (x = 1), the right-hand side of the last formula does not depend on x, but still
depends on n.

The optimal strategy ϕn+1 at any moment of time n = 0, 1, . . . , N − 1 is the
following:

ϕn+1(x) =
{
noact, if Vn(x) = V noactn (x)

respond, if Vn(x) = V noactn (x)
.

These equations can be solved backwards, starting with the state of successful
completion of the transaction. For example, for n = N − 1 we get:

VN−1(x) = max(1− c, x),

ϕN(x) =
{
noact, if x ≥ 1− c (above the threshold)
respond, if x < 1− c (bellow the threshold)

The remaining iterations until reaching the beginning of the transaction can be
performed recursively, taking the previously calculated solution as terminal.

Finally, the connection between the value functions in both models is given by
the formula

v(x) = (xp21 + (1− x)p22)V0('
1(x, 1− x))

+(xp11 + (1− x)p12)V0('
2(x, 1− x)).
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6 Analysis of the Results

In this section we will analyse the results of applying the optimal strategy to the
problem for risk assessment. The model parameters used in the calculations are as
follows:

• p11 = 0.9 is the probability for not detecting attack in a safe situation
t (nothreat|saf e)

• p22 = 0.9 is the probability for detecting an attack in a dangerous situation
t (threat|danger)

• p = 0.9 is the probability of not having an attack after transition from a safe
situation q(saf e|saf e)

• r(respond) = −0.1 is the cost of responding to a threat
• N ∈ {1..50} is the horizon of the transaction.

Table 1 presents the optimal policy threshold for making decision to counteract
which can be done by comparing it to the posterior probability to remain safe at
different steps of the transaction. The risk has been calculated for four different prior
probabilities. Their choice reflects the most typical cases of potential distribution of
the threats as follows:

• 1.0: No threats are expected in the beginning of the transaction. This is the case
when we are operating clean computer, browser or ATM machine.

• 0.25: Low probability to start a transaction in a safe state. This is the case when
it is very likely for threats to occur immediately after starting the transaction (for
example infected computer, spyware in the browser or tampered ATM machine).

• 0.50: Equal probabilities for presence and absence of attacks at the beginning of
the transaction. This is a case of maximum uncertainty about the threats, i.e., we
have a weak threat intelligence.

Table 1 Risk thresholds of the optimal strategy for different prior probabilities of having threat

Remaining Probability

steps threshold 0.25 0.5 0.75 1.0

1 0.9 0.1 0.1 0.0552 0.0018064

2 0.87134 0.12866 0.127227 0.083137768 0.030414629

3 0.842985516 0.157014484 0.15416376 0.110777719 0.058717893

5 0.787180101 0.212819899 0.207178904 0.165176837 0.114422501

7 0.732558117 0.267441883 0.259069789 0.218422348 0.168945816

10 0.652789319 0.347210681 0.334850147 0.296180972 0.248570520

15 0.550343126 0.449656874 0.43217403 0.39604552 0.350831653

20 0.404677698 0.595322302 0.570556187 0.53804018 0.496233951

30 0.181781435 0.809352173 0.782307637 0.755319458 0.718727575

50 4.04E-05 0.98990967 0.979799118 0.969688567 0.959630849
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Fig. 3 Decision threshold

• 0.75: More likely to start in a safe state at the beginning but possible intrusion
at a later step. This is statistically safe prediction when using clean computer,
browser or ATM machine.

The first column of the table contains the number of remaining steps till
completion of the transaction, while the second—the threshold of the optimal
strategy. Figure 3 illustrates the evolution of the threshold in function of the
remaining steps of the transaction. It shows that it is higher when there are fewer
remaining steps of the transaction, because counteracting towards the end of the
transactions is more efficient due to lower costs. The remaining columns of the
table contain the estimations of the risk for fixed priory probabilities. They show
that when increasing the prior probability the risks decrease, which matches the
intuition and is confirmed for other fixed values of the probability parameter as
well. At the same time, the results also show that the risks increase with the
length of transactions, which also matches the intuition. These results give enough
evidence that estimating the risks on the base of the optimal strategy can be an
adequate heuristic to compare alternative paths through the graph for planning
countermeasures.

7 Conclusion and Future Plans

Our hybrid cybersecurity framework employs a number of enabling technologies.
The risk assessment component presented here adds a decision-making heuristic for
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choosing an optimal counteraction to neutralize the security threats and commit the
transaction, despite the threats.

The method of assessing the security risks based on POMDP model presented
here can be used for further analysis of the risk-related problems. Particularly
interesting would be to investigate the impact of false negatives p12 and false
positives p21 of the data analytics engines on the security risks and the possibility
to account more information about the transactions for further tunning of the
control strategy. We are also planning to add reinforcement learning capabilities
to the framework for further tuning of the model and improving the algorithms for
assessment.

Although developed primarily for applications in fintech industry, this framework
can be adapted to a wide range of business process workflows—production line
fault management, critical infrastructure protection, public safety management,
autonomous agent control, etc.
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A Decomposition Approach
to the Clinical Pathway Deployment
for Chronic Outpatients
with Comorbidities

Paola Cappanera, Marco Gavanelli, Maddalena Nonato, and Marco Roma

Abstract Most chronic patients with comorbidities are cared for at home. Still,
they must get treatments, consultancy, and tests at specialized medical units in a
hospital setting, according to a given frequency set by their clinical pathways. As
such demand is known in advance, it could be scheduled to ensure ideal frequency,
avoid potential visit repetitions that arise in case of comorbidities, and minimize
hospital access by pursuing decision coordination. Booking involves setting a date
for each health service contained in the pathway, and fixing a time on that day, i.e.
building a master plan that spans the planning horizon, and a specific daily agenda
for each day. The master plan handles time constraints on the dates, while each
daily agenda must comply with the staffing level at each care unit for that day and
allow transfer time for patients receiving care at different units. Tackling the master
plan together with the daily agendas is rather complex. We present a logic-based
Benders decomposition approach where the Master Problem solves the master plan
with respect to a relaxation of the units resource constraints, and the subproblems
return no-good cuts to the master when their daily agenda problem is not feasible.
We present an Answer Set Programming based approach for the Master Problem, as
part of a broader project aimed to tackle the whole problem for the first time.
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1 Introduction

Human life expectancy is increasing world-wide, mostly due to progresses in
medical science which have raised survival rates to life threatening diseases. At the
same time, though, unhealthy lifestyles such as sedentary habits and high-calorie
diets are becoming more common. As a consequence, the number of people who
are affected by several chronic diseases at a time, so called comorbidities, is steadily
raising. A recent study estimates that more than half of the population over 65 in
Europe suffers from two or more non transmissible chronic diseases (NCDs) [3].
It adds to that number the share of patients having survived the acute phase of
COVID-19 illness but still experiencing the symptoms of long-COVID syndrome.
To increase life quality and keep public spending at bay, such patients are not
hospitalized but live at home, often receiving health care at their own domicile.
Nevertheless, they need to frequently access a hospital setting to receive treatments
and consultancy at specialized medical units, and take periodic tests to monitor their
health condition.

Well-assessed medical guidelines are available for the care of chronic patients
affected by a specific morbidity, such as diabetes, hypertension, chirrosis, obesity,
kidney and heart failure, among many other NCDs. Medical protocols based on
such guidelines include recommendations concerning drug based therapies as well
as specific health services a patient should receive at given frequencies, which must
necessarily be delivered within a hospital setting. Such services include illness-
specific treatments (such as dialysis for patients with renal failure), consultancy,
and tests, along with more general check up activities (such as blood tests or X
rays) that are common to several different illness-specific protocols. Once enrolled
in a monitoring and control program, an NCD patient will be given a personalized
care plan, built along the above mentioned protocols, to be followed for good and
subject to periodic revaluation based on the patient’s health status.

In case of comorbidities, different protocols get merged into a single care plan.
Service frequencies and drug dosages are then adjusted and tailored to the individual
patient, yielding a personalized clinical pathway [2] (PDTA in Italian). Even though
an increased level of coordination among different specialists has been highly
advocated, along with patient-centered team working, the use of the so-called family
nurse—who acts as a single point of contact between the patient and the care
facilities—is not yet common practice, at least in Italy. When lacking, no one
is in charge of i) ensuring the timely realization of the clinical pathway, and ii)
exploiting the advantages of the best synchronization of the different activities the
pathway is made of. Actually, because of the periodic health service components
of a clinical pathway, an NCD patient may ask for a hospital appointment quite
frequently, according to some regularity set in the PDTA. However, the patient
is often the one in charge of the booking task. In particular, current practice is
what we call independent incremental booking, i.e., as soon as a health service has
been administered, the appointment for the next occurrence is tentatively booked,
potentially along with any correlated secondary activity—think of check up exams
whose results are to be brought along when seeing the specialist. When booking, the
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patient asks for an ideal date, but this decision is rather constrained: beside abiding
by service frequency, additional time constraints might have to be taken into account
because of necessity as well as opportunity. The former concerns precedence and/or
minimum and maximum time gaps in between the date of the primary activity
(i.e., the visit) and the secondary ones (i.e., the exams), as well as services that
have some kind of interaction. For example, in case of a cardiopathic oncological
patient, a chemotherapy session may alter the results of EKG if taken too soon after
the treatment. Regarding the latter (i.e., opportunity), when the different medical
protocols that got merged into a single care plan share the same health service,
redundancies may arise, yielding a waste of time and money. For example, follow-
up visits of different diseases may require the same tests to be taken right prior
to the visit, while not too soon as results may need time. A single exam session
could serve the purpose for both visits, had their dates been synchronized. Finally,
frail patients, such as those with comorbidities, should keep the number of hospital
access to the minimum, particularly during pandemic situations. Therefore, it is
advisable to concentrate different health services on the same date, if possible. As
service capacity in public hospitals is limited (in terms of daily working hours
and number of operators) while the number of NCDs patients steadily increases,
scheduling complex clinical pathways while delivering services in a timely manner
to all patients is increasingly challenging and calls for optimization-based decision
support tools. In particular, much could be gained from a centralized management
able to exploit complete knowledge of service requests and resource availability to
yield a feasible and effective medium term plan. However, the resulting scheduling
problem is rather complex, which motivated this study.

In this paper, we tackle the scheduling of clinical pathways of NCD patients with
comorbidities (NCDs Agenda in the following) by an iterative two level approach,
exploiting decomposition: for a given planning horizon, at each iteration, at the
higher level the Master Problem (MP) sets up a tentative master plan which assigns
a date to each health service that complies with the time constraints of each pathway,
by solving a relaxed problem with respect to resource availability. At the inner level,
a Sub Problem SP(h) is solved for each day h. SP(h) builds the daily agenda, i.e., the
fine grained schedule of day h, setting the timing of each service MP has assigned
to h, while taking into account a full representation of resource availability on day
h as well as patient transfer between medical units. Each SP returns a no good-like
cut to the MP in case a patient cannot be served and the process iterates until all SPs
provide a feasible schedule for the day. Then, the daily agendas are consistent and
all together provide a feasible NCDs Agenda for the planning period.

We believe this is the first time that the NCDs Agenda problem is formally
introduced. This study is part of a larger project aimed at selecting the best
solution technology to tackle this challenging planning problem. In particular,
here we discuss and present the details of an Answer Set Programming (ASP)
based deployment of the Master Problem. The paper is organized as follows:
Sect. 2 formalizes the NCDs-Agenda problem and outlines the decomposition
based solution approach. Related papers are mentioned in Sect. 3. Fundamentals
of ASP technology are recalled in Sect. 4 where the ASP based model for the
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MP is presented. Preliminary computational results are discussed in Sect. 5, where
conclusions are drawn and on going works are sketched.

2 A Decomposition Approach for the NCDs Agenda Problem

Let us formally introduce the problem components and its constraints, ranging from
those concerning individual patients—regarding the frequency of the same service
as well as the timing of related pairs of services—up to those affecting different
patients who share the same care unit on the same day. Consider the input data
described in Table 1. In the following, s ∈ S(π) will be written as s ∈ π to simplify
the notation.

Each pathway must be scheduled complying with three types of time-constraints,
i.e., Frequency, Interdiction, and Necessity, so called FIN constraints in the follow-
ing. Frequency is ensured once the date of the oth occurrence of S(π) belongs to
[h∗oπ − ρ, h∗oπ + ρ], ∀o ∈ [1, .., nπ ], ∀π ∈ cp(p), ∀p ∈ P .

Given two health services si , sj in the same pathway, and letting τ (s) be the
appointment date of s, the following constraints may be given:

• forward (backward) interdiction: τ (si) = h ⇒ τ (sj ) /∈ [h, .., h + δ] ([h −
δ, .., h]).

• forward (backward) necessity: τ (si) = h⇒ τ (sj ) ∈ [h+ δ+ 1, .., h+ δ+�] ∧
τ (sj ) /∈ [h, .., h+ δ] (τ (sj ) ∈ [h− δ−�, .., h− δ− 1] ∧ τ (sj ) /∈ [h− δ, .., h]).

Interdiction constraints are satisfied even if sj is never scheduled, while necessity
constraints require sj to be given a date within a time window next but not too close
to si . Examples regarding interdiction include the case of one service affecting the

Table 1 Input data: notation

Symbol Description

H = {h} A planning horizon (indexed by h)

S A set of health services

P = {p} A set of patients (indexed by p)

cp(p) = {π} Clinical pathway of p ∈ P , defined as its set of packets π

π = 〈S(π),H(π), n(π)〉 A packet, as a triplet

S(π) ⊆ S The services of packet π , which come as a whole even if delivered

at different care units

H(π) ⊆ H Time horizon in which S(π) are provided with the same frequency

n(π) Number of repetitions of S(π) during H(π) (so called occurrences)

h∗oπ ∈ H(π) The ideal date of π , centered in the middle of the oth of the n(π)

equally large sub-intervals of H(π)

ρ Tolerance with respect to the ideal date (time windows of consecutive

occurrences of the same packet are disjoint)
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results or the effectiveness of another service when too close in time, i.e. at least δ
days must elapse between the two dates.
Necessity typically concerns the timing of a primary activity and a secondary one
which is functional to the first one only if sufficiently but not too close in time.

Any time constraint on s ∈ π propagates on all the services in the same packet.
Therefore, the available options for feasible dates may become rather limited,
despite of tolerance. For a given staffing level, an incremental booking process—
which to our knowledge is common practice in most cases—may fail to find
time-feasible dates with enough residual capacity to accommodate all requests,
since previous booking has been done without knowledge of incoming demand.
Furthermore, incremental booking may not be able to synchronize and aggregate
different services on the same day, thus spreading appointments for the same patient
on several dates. On the contrary, frail patients should minimize the number of
trips to the hospital. At the same time, though, strong aggregation challenges the
scheduling of daily agendas, that set the timing of the planned health services. In
fact, such timing must allow patients to carry out all their activities in sequence,
even when they are provided at different hospital care units and time for transfer is
not negligible. Furthermore, interaction among patients must be considered when
they receive service from the same care unit, as they compete for operators’ time
and other limited resources.

Summing up, the NCDs Agenda problem consists of scheduling the clinical
pathways of all patients in P for the current planning horizonH by taking decisions
at two levels: (1) for each p ∈ P and each π ∈ cp(p), assign a time feasible
date τ (s) to each s ∈ π for each occurrence 1, .., nπ , so that FIN constraints are
satisfied; (2) for each day h and for each patient p such that ∃ s ∈ π , π ∈ cp(p),
and τ (s) = h, set a starting and an ending time for each s so that: (i) the services of
each patient can be feasibly sequenced; (ii) an operator can deliver each s with no
preemption within her/his working shift, serving at most one patient at a time. At this
stage of the project, operators in the same unit have identical skills but potentially
different shifts.

As the whole problem, encompassing both levels of decisions, is quite complex,
a decomposition approach inspired by Hooker and Ottosson [9] is investigated.

Let the day of each service be given (i.e., τ (s) is known). Then, the remaining
problem can be decomposed in one scheduling problem SP(h) for each day.
In particular, SP(h) can be restated in the machine scheduling framework as a
multistage open shop with identical parallel machines with set up times and no
preemption, by modeling each patient p as a job whose tasks are the services in
S(p, h), where S(p, h) denotes the set of services s of patient p with τ (s) = h;
each care unit is seen as a pool of identical machines, one per operator, which are
active during time periods that map the working shifts. Sequence dependant set up
times refer to the walking distance between units within the hospital, or model the
case of some rest to be taken in between two services, such as after a treatment
before a test. As said, the problem can be modeled as a classical Open Shop, whose
constraints ensure there is no overlapping between services of the same patient, as
well as between those provided by the same operator. The primary objective is to
serve as many requests as possible with no overtime.
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At the higher level, the Master Problem (MP) builds the master plan by solving
the date assignment problem taking into account FIN constraints plus a relaxation
of the daily problem. MP can be stated as a constrained multidimensional [12]
multiple-choice [16] binary knapsack problem, since:

• Each occurrence of S(π) is seen as an item in a |U |-dimension space, where |U |
denotes the number of care units. If S(π) contains no services provided by unit
u its size on that dimension is 0, otherwise it is the sum of the duration of such
services. The item profit is the number of services in S(π).

• Each day h is seen as a multidimensional knapsack with |U | dimensions, and
each dimension u has capacity equal to Cuh , i.e., the sum of the duration of the
working shifts of the operators on duty at unit u on day h.

MP aims at selecting the maximum profit subset of items by placing each item in at
most one knapsack so that, for each knapsack, capacities are not violated, and FIN
constraints are met.

As MP disregards the details of the daily agendas, it returns an upper bound to
the number of requests that can be timely scheduled at the hospital. If SP(h) fails to
accommodate some requests, this information is returned to MP as a no-good cut
which is added to the MP constraints. Indeed, no-good cuts carry the information
that if (an occurrence of) some packets of some patients have been scheduled on day
h then (an occurrence of) the packet of another patient cannot be served on the same
day. Rather than explicitly modeling the constraints of each subproblem into the
MP, the infeasible master plans MP would choose are forbidden. Thus, subproblems
certify whether or not the current master plan can be mapped to a feasible schedule.
In addition, by putting together the schedules computed by each SP(h), a feasible
solution can be built by dropping what MP has left out of the master plan as well
as what each SP(h) has scheduled overtime. At each iteration, then, a lower bound
on the number of unscheduled requests as well as an upper bound is computed.
Therefore, once each SP(h) has returned a feasible solution, the problem is solved
to optimality. Clearly, when demand exceeds capacity, some services will not be
scheduled even at optimality. In those cases the objective function could weight
patients according to their status, as in [15]. Anyway, dropped requests can be
rerouted to other health structures, such as private clinics integrated into the health
care network.

Figure 1 depicts the interaction between the MP and the subproblems; it shows an
example with 2 patients and 2 units, red and blue, with equal starting time. However,
the red one is operative for 4 time slots on both days, while the blue one has 4 slots
available on day 1 and 5 on day 2. Patient p1 asks for a packet made of a 2-slot
service from the red unit and a 3-slot service from the blue one, while p2 asks for
a 2-slot red service. According to the MP, both patients can be feasibly assigned
to day 1 (bold left arrows, outcoming from each patient). On the contrary, SP(1)
detects infeasibility since p1 services cannot be delivered in sequence within the
working hours of day 1. Thus SP(1) returns a no-good cut to the MP. At the next
iteration p1 is expected to be assigned to day 2 (dotted right arrow outcoming from
p1).
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Fig. 1 MP and SP(h) interaction

Finally, to mimic progressive planning in the long term, a rolling horizon
mechanism was implemented. As patient history in terms of recent past matters,
the planning horizon of two successive iterations should overlap. In particular,
the services whose ideal date falls within the far left of H inherit, as a tentative
date, the one computed in the last iteration. Only slight variations are admitted and
penalized by the second term of theMP objective function. As ASP naturally allows
hierarchical objective functions, MP aims, in this order, to minimize (1) the number
of services not present in the master plan; (2) the displacement in time regarding the
services in the far left end ofH ; (3) the number of patients’ trips to the hospital (see
Sect. 4).

3 Related Papers

The scientific literature on outpatient appointment scheduling is quite rich and
still growing—see [1] for a general review and [14] specifically for the multi-
appointment case, covering the case of multiple appointments on the same day,
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as well as appointment series, where patients need to revisit the same set of
resources more than once. Here, we just mention a few. Among those tackling offline
deterministic scheduling, ASP is the modelling framework adopted in [8], with
the purpose of minimizing unscheduled prescriptions, patient indirect waiting time,
and the number of hospital trips. To handle larger instances, patients are clustered
based on priority and then groups are scheduled one at a time. While [8] tackles
a multidisciplinary service for chronic patients, the planning horizon (from 1 to
4 weeks) spans a single packet occurrence per patient. In [5] patients requiring
multiple appointments or series of treatments are addressed, with at most one
medical interaction per visit, and the scheduling problem is modelled as a Markov
decision process to handle demand uncertainty, and it is heuristically solved. [17]
addresses patients booking series of appointments rather than a single one, and
proposes a Markov decision model and a much more tractable Index Policy. Finally,
[15] schedules multi-mode outpatients of a gastroenterology clinic by exploiting
logic-based Benders decomposition in a very similar way to our, i.e., the master
problem sets the agenda and the 2-level nested subproblems handle the scheduling
part. However, there is no synchronization nor interdiction or necessity constraints,
since the patient is seen only once during each planning horizon. To our knowledge,
despite of many similarities, none has addressed the NCDs Agenda problem so far,
that revolves around the notion of clinical pathway.

4 An ASP Based Approach

Logic programming is one of the four programming paradigms [13]; a logic program
consists of a set of clauses, in the form of implications Head ← Body, where
Head is an atom (or a disjunction) and Body is a conjunction of literals (atoms,
possibly negated). Atoms can have parameters that can be variables or constants. An
atom (or a clause) is ground if it does not contain variables. A Declarative Semantics
provides a formal meaning to a logic program by assigning a truth value to each
ground atom in such a way to satisfy all the clauses. ASP is a logic programming
language relying on the Stable Models semantics [7]; a logic program can have
zero, one, or more than one stable models. In ASP, each solution to a combinatorial
problem is associated with a stable model. There exist several solvers, based on
different technologies; however, the best-performing ones are based on a two-phase
solution scheme: a grounding phase, that generates a ground program equivalent
to the original one, followed by a solving phase, in which a stable model of the
ground program is computed. The ground program can be built by substituting to
the variables in each clause all the possible constants appearing in the program
(although modern grounders may avoid generating useless clauses), and, in the
worst case, it is exponentially larger than the original one. One of the best ASP
solvers is Clasp [6], which finds stable models by using technologies developed in
SAT solvers such as conflict graphs, conflict-directed clause learning, and restarts.
These technologies are very efficient in proving satisfiability/unsatisfiability of
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a problem; optimization problems are usually transformed into a sequence of
satisfiability problems. ASP solvers can solve problems up to �P2 . As a rule of
thumb, to get an efficient solving algorithm one should produce programs whose
grounding is not too large; for example, if some parameter of an atom can take a
large variety of different values, the ground program can be very large.

Beside the basic syntax for clauses, recent ASP solvers accept several extensions
[4]. A clause of the formatL ≤ {Head} ≤ U ← Body states that, in case theBody
is true, then the solver can choose the truth value of the atom in Head; this is the
usual syntax for defining decision variables in optimization problems. The bounds
L and U are optional; if they are present, then the number of true atoms matching
with Head in the stable model must be between L and U . If a clause is without
head,← Body, then the head is intended as the literal false, it is called an Integrity
Constraint (IC) and in all stable models the Body must be false.

The ASP formulation takes as input the description of the instance by means of
a set of predicates. Predicate patient(p) is true for each patient p; the set of
services is provided by predicate service(s, u, rc) where s identifies the service,
u is the resource type (e.g., the care unit) and rc the resource consumption (service
duration). Predicate resource(h, u,Cuh) provides the capacity Cuh of each care
unit u per each day h ∈ H . An interdiction of δ days between two services
si and sj is declared through the predicate interdiction(si, sj , δ), while
necessity(si, sj , (δ, δ + �)) states that service si requires sj to be scheduled
between [δ, δ +�] days in advance.

The main decision MP takes is the schedule of each packet π for each patient;
the next clause declares that if o is an occurrence of packet π ∈ cp(p) and its ideal
date is h∗oπ , then π should be scheduled within a tolerance τoπ from the ideal date.

0 ≤ {schedule(p, cp, π, o, h) : horizon(h), h ∈ [h∗oπ − τoπ , .., h∗oπ + τoπ ]} ≤ 1
← occurrence(p, cp, π, o), ideal_date(p, cp, π, o, h∗oπ ).

Actually, the number of scheduled days for such packet occurrence is required to
lie in {0, 1}: in fact, a packet could be not scheduled, and the number of scheduled
packet occurrences should be maximized (see the primary objective function).

In ASP, problem constraints are usually imposed as ICs, that are denials, or
implications with a false conclusion (in the syntax, the false conclusion is omitted).
The body of the implication must always be false.

Interdiction between services is implemented by the following IC:

← schedule(p, cp1, π1, o1, h1), schedule(p, cp2, π2, o2, h2),
s1 ∈ π1, s2 ∈ π2, interdiction(s1, s2, δ), h1 < h2 ≤ h1 + δ.

stating that if service s1 interdicts s2 for δ days, the two services are scheduled for
the same patient, and the day h2 when s2 is scheduled is between h1 and h1 + δ,
then such schedule is inconsistent.

Necessity is dealt with by the following IC; if a necessity is not satisfied within
the planning horizon nor it can be postponed beyond it, then the schedule is
inconsistent

← schedule(p, cp1, π1, o1, h1), s1 ∈ cp1, necessity(s1, s2,_),
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not satisfies_necessity(p, cp1, π1, o1, s1, s2),
not necessity_beyond_horizon(p, cp1, π1, o1, s1, s2).

where the two predicates used in the IC are defined as

satisfies_necessity(p, cpA, πA, oA, sA, sB)← sA ∈ πA
necessity(sA, sB, (δ, δ +�)), schedule(p, cpA, πA, oA, hA),
schedule(p, cpB, πB, oB, hB), sb ∈ πB, hA + δ ≤ hB ≤ hA + δ +�.

necessity_beyond_horizon(p, cpA, πA, oA, sA, sB)← hA + δ +� > maxH,
necessity(sA, sB, (δ, δ +�)), schedule(p, cpA, πA, oA, hA), sA ∈ πA.

while the following IC imposes the above mentioned condition τ (sj ) /∈ [h, .., h+
δ]:
← schedule(p, cp1, π1, o1, h1),schedule(p, cp2, π2, o2, h2), s1 ∈ π1, s2 ∈ π2,

necessity(s1, s2, (δ,_)), h1 < h2 ≤ h1 + δ.
Given a limit Cuh of available resources in day h, if the sum of the consumption

of resources of type u exceeds Cuh , then the schedule is inconsistent:

← h ∈ H,
∑
Sh
c > Cuh, resource(h, u,Cuh).

where Sh = {(c, p, s)|schedule(p, cp, π, o, h), s ∈ π,service(s, rt, c)}.
The objective is hierarchical, and defined through the so-called weak constraints,

i.e., integrity constraints that can be relaxed, with the objective to maximize the
number of the satisfied ones. Weak constraints are identified syntactically by using
� as implication symbol. Each weak constraint can have a priority and a weight:
the ASP solver searches the solution maximizing the weighted sum of the highest-
priority weak constraints; among those solutions, the weight of satisfied second-
highest-priority weak constraints is maximized, and so on.

The highest-priority weak constraint in our ASP program maximizes the number
of scheduled packets whose ideal date lays within the horizon:

�occurrence(p, cp, π, o), not schedule(p, cp, π, o,_),
ideal_date(p, cp, π, o,D), horizon(D).

The second-highest priority weak constraints minimize the number of day changes
with respect to the schedule computed in the previous period. The schedule of the
previous period is taken as input as a predicate prev_schedule.

� prev_schedule(p, cp, π, o, h1), schedule(p, cp, π, o, h2), h1 �= h2.

The objective function with least priority minimizes the number of hospital trips.

trip(p, h)← patient(p), schedule(p, cp, π, o, h).
�trip(p, h).

At the end of the paper, a list of the main predicates has been provided.
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5 Computational Results and Conclusions

Preliminary computational results have been obtained on randomly generated path-
ways, inspired by well assessed and publicly available medical guidelines for the
most common NDCs (such as [10] and [11] for diabetes), with service frequencies
correlated to the severity of the patient. With such paradigm in mind, first, a set
of services has been created, each one with a duration randomly picked within a
given interval, according to uniform distribution. Then, time constraints between
services have been generated, and protocols have been built as clusters of (packets
of) services. For each patient, a pathway is build by picking one or more protocols
and setting the value of its parameters (horizon and frequency) according to a
uniform distribution within each range of values. For each combination of number
of patients in {40, 80, 160} and length of the planning horizon in {60, 120, 150},
5 instances are generated. The number of resources is 20 for all instances. With
regard to efficiency and efficacy, Fig. 2a and b show the average (computed across
the 5 instances) ratio between the number of not scheduled occurrences and the total
number of occurrences in the instance, in dependence of (1) number of patients for a
fixed planning horizon length (2a) and in dependence of (2) both number of patients
and planning horizon length (2b). In Fig. 2a colored bars correspond to different
time limits, while in Fig. 2b the colors correspond to different number of patients
and the time limit is fixed to 600 seconds. Percentage values upon the bars represent
the percentage of instances solved to optimality with respect to the first component
of the hierarchical objective function. Experiments have been run on a Windows 10
OS, i7-4510U CPU machine. With regard to solution quality, measured in terms of
satisfaction of service requests, Fig. 3 shows, separately for each instance (x-axis),
boxplots reporting the distribution, among patients, of the ratio between number
of satisfied occurrences and number of total occurrences requested by a patient.
Very similar results have been obtained when the ratio is computed taking into

Fig. 2 Acceptance rates. (a) Acceptance ratio by time out. (b) Acceptance ratio by planning
horizon



224 P. Cappanera et al.

Fig. 3 Satisfaction of service requests

account the time requested by service occurrences instead of their number. Time
limit is fixed to 1200 seconds and planning horizon is fixed to 120 working days.
We can observe that up to 80 patients the request acceptance ratio is very high for
(almost) all the patients, while for 160 patients the ratio can be quite low even when
the time limit is increased. On the bigger instances, the dissatisfaction related to
not accepted requests is not equally distributed among patients. Further analysis is
needed to understand if this depends on instance structure and to evaluate the impact
of dynamically generated cuts and bounds on the performance of the proposed
methodology.

In a historical moment such as the one we are living, limiting the number of
accesses by frail patients to health facilities is of paramount importance both to
reduce costs and especially to limit the risk of infections. It is equally important
to ensure uniformity of care across the country and among patients. It therefore
becomes essential to deploy their clinical paths in order to pursue these objectives.
Preliminary results show that the proposed approach is well able to respond to these
needs in a short computational time up to 80 patients.

Appendix: Table of Predicates

Input predicates:

horizon(h): h is a day in the horizon
interdiction(si, sj , δ): declares an interdiction of δ days between two ser-

vices si and sj
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necessity(si , sj , (δ, δ +�)): service si requires sj to be scheduled between
[δ, δ +�] days in advance.

patient(p): true for each p that is a patient (provides the list of patients)
prev_schedule(p, cp, π, o, h1): In the schedule computed in the previous

period, occurrence o of packet π in pathway cp for patient p was scheduled
on day h1.

resource(h, u,Cuh): the capacity of care unit u in day h is Cuh .
service(s, u, rc) : s is a service, u is the corresponding resource type and rc is

its resource consumption

Predicates corresponding to decision variables of the optimization problem:

schedule(p, cp, π, o, h): occurrence o of packet π in clinical pathway cp(p)
for patient p is scheduled in day h

Computed predicates:

occurrence(p, cp, π, o): o is an occurrence of packet π ∈ cp(p) for patient
p

ideal_date(p, cp, π, o, h∗oπ ): the ideal date of occurrence o of packet π in
the clinical pathway cp(π) for patient p is h∗oπ

satisfies_necessity(p, cp1, π1, o1, s1, s2): the necessity of occurrence
o1 of packet π1 in pathway cp1 of patient p is satisfied by service s2

necessity_beyond_horizon(p, cp1, π1, o1, s1, s2): the necessity of
occurrence o1 of packet π1 in pathway cp1 of patient p is satisfied by service s2,
which can be postponed beyond the horizon.

trip(p, h) patient p has a trip to the hospital on day h.
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Optimal Sample Size for Evidence
and Consensus in Phase III Clinical Trials

Fulvio De Santis and Stefania Gubbiotti

Abstract Design and analysis of clinical trials imply decisions that often involve
multiple parties. We focus here on one of the main design issues in phase III
trials, that is the choice of the sample size, that influences the final probability of
success of the experiment, i.e. showing evidence of superiority of a new treatment
over the standard one. Bayesian Statistics allows one to exploit pre-experimental
information and uncertainty that can be translated into probability distributions for
the effects-difference parameter. Sometimes sources of prior knowledge can be
in striking contrast (skeptimism vs optimism), possibly leading to divergent final
post-experimental conclusions. We propose a sample size criterion that controls
not only the achievement of minimal evidence of superiority but also posterior
consensus. The method is illustrated for trials involving binary outcomes with
normal approximation for the log odds ratio with application to a comparative study
of two interventions for diabetic patients with coronary artery disease.

Keywords Bayesian inference · Clinical trials · Hellinger distance · Power ·
Sample size

1 Introduction

Phase III clinical trials are randomized experiments designed to establish the
superior efficacy of a novel treatment with respect to a placebo or the standard-
of-care. Criteria for sample size determination are typically based on the idea
of making the chance of success sufficiently large. The definition of success is
related to the ability of the experiment to provide evidence in favor of superiority,
i.e. in favor of the hypothesis that the effects-difference parameter θ exceeds a
minimally significant clinical threshold δ. Bayesian Statistics allows one to exploit
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pre-experimental information and uncertainty on the unknown parameter that is
translated into a prior probability distribution. Prior information is combined with
experimental evidence via Bayes theorem, yielding a posterior distribution for the
parameter of interest that is the basis to evaluate efficacy of the novel treatment.
More specifically we declare success of the experiment if the posterior probability
that θ is above δ is sufficiently large.

Some recent articles (see for instance [7]) deal with the problem of sample size
determination for clinical trials in the presence of multiple (two, for simplicity)
and contrasting sources of prior information. The proposed methods are based on
the concept of consensus between specific summaries of the posterior distributions
induced by the two alternative priors. Criteria that control posterior consensus in
general do not guarantee minimal evidence provided by the posteriors, whereas
generation of statistical evidence is typically the ultimate purpose of a clinical
trial. In [4] a two-fold criterion based on intervals estimates is proposed, that
takes into account both consensus and evidence. The idea is to select the minimal
sample size that simultaneously guarantees a pre-posterior large chance to have final
consensus and minimal evidence of superiority. In this paper we propose a further
consensus&evidence criterion, that quantifies posterior agreement using a relative
measure of global distance between the posterior distributions, that is the Hellinger
distance.

This article is related to the literature on the following fields: (i) Bayesian exper-
imental design and sample size determination (see [2, 3, 9, 10]); (ii) measurement
of conflict/consensus of Bayesian procedures in the presence of multiple sources of
prior information (see [4, 7, 11]); (iii) use of Hellinger distance in Bayesian analysis
of clinical trials (see [5, 8]).

The paper is organized as follows. In Sect. 2 we formalize how to quantify
consensus and evidence in the presence of two alternative priors. In Sect. 3 the
proposed sample size determination criterion is implemented for the log odds ratio
using the normal approximation. An example is provided in Sect. 4. Finally, Sect. 5
reports a discussion.

2 Methodology

Let θ be a real one-dimensional parameter denoting the unknown effects-difference.
Also, let Xn be the data based on n observations with density or probability mass
function fn(·|θ). We assume to be interested in assessing whether θ (on a suitable
scale) is larger than a threshold δ, that is a clinically significant difference between
two treatments. Adopting a Bayesian perspective, let π(θ) be the prior density of θ ,
xn the observed data and π(θ |xn) the corresponding posterior density. We say that
the experiment yielding xn is successful at a prespecified level εs ∈ [0, 1] if P(θ >
δ|xn) > εs . Suppose that two alternative sources of prior information are available
and formalized by two prior densities πa(θ) and πb(θ). Given the observed sample
xn, the corresponding posteriors πa(θ |xn) and πb(θ |xn) yield two different posterior
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probabilities of success Pj (θ > δ|xn), j = a, b, and the experiment provides the
minimal posterior evidence of success if:

Sn(xn) = min{Pa(θ > δ|xn),Pb(θ > δ|xn)} > εs. (1)

In addition to Sn, used to quantify minimal evidence in favor of superiority, we
can also take into account the degree of agreement of the two posterior distributions
πa(θ |xn) and πb(θ |xn). A natural choice is to consider a measure based on a relative
distance, such as for instance the Hellinger distance between the two posterior
densities:

d[πa(·|xn), πb(·|xn)] =
(

1−
∫

R

√
πa(θ |xn) · πb(θ |xn)dθ

) 1
2

. (2)

Therefore, we have posterior consensus at degree εc ∈ [0, 1] if

Cn(xn) = 1− d[πa(·|xn), πb(·|xn)] > εc. (3)

Note that, since d[·, ·] ranges in [0, 1], Cn(xn) provides a relative measure of
consensus. Before the experiment is carried out, Xn and the posterior probabilities
Pj (θ > δ|Xn), j = a, b, as well as Sn(Xn) and Cn(Xn), are all random objects.
Following the standard approach, sample size determination can be based on the
average behavior of Sn(Xn) and Cn(Xn), resulting in the following expectation
criterion:

n∗ = max{n : ns, nc}, (4)

where ns = min{n : esn > εs}, nc = min{n : ecn > εc} and esn = E[Sn(Xn)],
ecn = E[Cn(Xn)] and E[·] is the expected value taken with respect to the sampling
distribution of the data f (xn|θd), where θd is a design value, that is a prefixed guess
value for θ that describes the design scenario. Since θd represents the target effects-
difference to be detected, in superiority trials it is convenient to set θd > δ. In this
paper we follow this conditional approach. As an alternative, one could resort to
the so-called predictive approach that relies on the specification of an additional
prior density πd(θ) instead of the single guess value θd and models uncertainty on
the parameter (see [10] and [2] for details). By averaging the sampling distribution
f (xn|θ) with respect to πd(θ) we obtain the predictive distribution md(xn) =∫
� f (xn|θ)πd(θ)dθ . It is straightforward to check that f (xn|θd) arises as a special

case of md(xn) when a point-mass design prior distribution on the single value θd
is chosen. In this sense the conditional approach is a special case of the predictive
one.
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3 Bayesian Analysis with Normal Distributions

Assume now that data relevant to θ are summarized by a statistic Yn with (at least
approximately) normal distribution of parameters (θ, σ 2/n). This model can be used
in phase III two-arms clinical trials in one of the following setups (see [9]):

• θ is the true difference in mean responses and yn is the difference of the sample
means in the two arms (normal data);

• θ is the log odds ratio (log OR) and yn is the sample log OR (binary data);
• θ is the log hazard ratio and yn is a function of the log-rank test statistics (survival

data).

Specifically we assume that σ 2 is known. If we set σ = 2, n can be interpreted as
the effective number of observations (for instance in the second and third cases n
is the total number of events occuring in the two arms). We assume that πj (θ) is a
normal density of mean μj and variance σ 2/nj , where nj is the prior sample size,
j = a, b. From standard conjugate analysis the posterior density of θ is normal with
parameters μ̄j = (nyn + njμj )/(n + nj ), σ̄j = σ/(n + nj ), j = a, b. In order to
define Sn according to Eq. (1) note that Pj (θ > δ|yn) = 1−� [(δ − μ̄j )/σ̄j

]
, j =

a, b, where �(·) is the standard normal cdf. It is easy to check that the Hellinger
distance between the two posteriors is

d[πa(·|xn), πb(·|xn)] =
(

1−
√

2σ̄aσ̄b
σ̄ 2
a + σ̄ 2

b

· exp

{

−1

4

(μ̄a − μ̄b)2
σ̄ 2
a + σ̄ 2

b

}) 1
2

,

which yields the expression of Cn given by Eq. (3).

Remark The values of d andCn depend crucially on the difference |μ̄a−μ̄b| as well
as on na and nb. To have a better insight consider the special case na = nb = no,
which occurs when the precision of the two sources of prior information is the same.

In this case, since σ̄ 2
j = σ̄ 2

o = σ 2/(n + no), then d =
√

1− exp

{

− 1
2

(
μ̄a−μ̄b

2σ̄o

)2
}

is a monotone function of the effect size |μ̄a−μ̄b |
σ̄o

ranging in [0, 1], that is a relative
measure of the discrepancy between the two posterior means. More specifically,

d =
√

1− exp
{
− 1

8

(μa−μb
σ

)2 · n2
o

n+no
}

which tends to 0 as n → ∞ as fast as e− cn .

However, the convergence is influenced by the “prior” effect size |μa−μb |
σ

and the
prior sample size no. For a given fixed non negligible effect size, the larger no with
respect to n the slower the convergence to 0.

Following the conditional approach, determination of the optimal sample size
according to (4) requires the computation of esn and ecn with respect to the sampling
distribution of Yn|θd that is N(θd, 4/n). For each n the values of esn and ecn are
obtained as Monte Carlo approximations.
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4 Example

In this section we consider an example inspired by the real data application of
[1] in which coronary artery bypass graft (CABG) is compared with percutaneous
coronary intervention (PCI) in diabetic patients with multivessel coronary artery
disease in terms of survival (here we assume that log OR > 0 favours CABG
with respect to PCI). In the original paper a Bayesian analysis is performed: the
prior distribution for the log OR, based on a metanalysis of 8 historical trials, is
combined with the likelihood of the data of the FREEDOM trial. The posterior
distribution of the log OR shows evidence in favour of CABG (e.g. posterior mean
0.545 with 95% credible interval [0.342, 0.734] corresponding to a reduction in
mortality risk between 29%–52%). Here we assume this posterior as one of the
two prior distributions, say πa , e.g. a normal density of parameters μa = 0.545,
na = 376, to be used in the design of a new hypothetical trial. As an alternative in [1]
the Authors also consider a skeptical prior yielding a second posterior distribution
for the log OR representing a milder preference towards CABG with respect to
PCI (e.g. posterior mean 0.198 with 95% credible interval [0, 0.4], corresponding
to a reduction in mortality risk between 0%–23%). We take this posterior as the
prior distribution πb, e.g. a normal density of parameters μb = 0.198, nb = 390.
In addition, in order to define superiority in terms of the posterior probability that
θ > δ, we set δ = 0.36 corresponding to a 30% reduction in mortality in the
experimental treatment arm. Finally, as described in Sect. 2 our proposed method
requires the specification of a design scenario. Here we consider θd = 0.69, which
corresponds to a 50% reduction in mortality due to CABG.

Figure 1 panel (a) represents the plots of esn and ecn as functions of n with the
prior distributions defined above. The sample size required to reach the success
threshold εs = 0.9 is ns = 476, whereas for a sample size as large as 1000 the
average consensus ecn is at most slightly larger than 0.4. The small values of ecn
depend on the large values of the prior sample sizes na and nb as discussed in the
final remark of Sect. 3. In order to have a better insight on the crucial effect of
na and nb on both consensus and evidence measures, we consider the same prior
means μa and μb but we assume the prior sample sizes to be discounted by a factor
γ ∈ (0, 1). As an example in panel (b) we set γ = 0.1 and we obtain γ na = 37.6
and γ nb = 39. In this case the values of ecn are remarkably larger than those of panel
(a), yielding nc = 546 for a threshold εc = 0.9. With respect to panel (a), the values
of esn are larger as well, yielding a much smaller ns = 171 for the same εs = 0.9.
This depends on the minor impact of the more skeptical prior which is decisive in
determining the numerical values of Sn in (1) since Pa(θ > δ|yn) > Pb(θ > δ|yn).
For comparison, in Fig. 1 we also consider a non-informative prior for πb (nb = 0)
in contrast with the same πa (panel c) and its discounted version (panel d). Note
that the non-informative prior is less skeptical towards the new treatment than the
original πb. As a consequence both the values of esn and ecn in panel (c) are larger
than those observed in panel (a). The optimal value nc of panel (d) is smaller than
that of panel (b), due to the minor distance between the posteriors induced by the
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Fig. 1 Plots of esn and ecn as functions of n for two alternative choices of the two priors πa and
πb: (a) μa = 0.545, na = 376 μb = 0.198, nb = 390; (b) μa = 0.545, na = 37.6 μb = 0.198,
nb = 39.0. (c) μa = 0.545, na = 376, nb = 0; (d) μa = 0.545, na = 37.6, nb = 0. The optimal
sample size thresholds are εs = εc = 0.9

non-informative prior and the discounted πa . Note that the values of esn in panels (c)
and (d) are the same since Pa(θ > δ|yn) > Pb(θ > δ|yn) and therefore they only
depend on the non-informative prior in both cases. Table 1 summarizes the optimal
sample sizes in the different four prior setups considered for several choices of the
thresholds εs and εc (for simplicity we set εs = εc). Due to the behavior of esn and ecn
increasing with n, the larger the thresholds the larger the optimal sample sizes. For
illustrative purposes, we fix here a maximum sample size as large as 1000. When the
prior sample sizes are not discounted (see setups (a) and (c)) it is very hard to reach
posterior consensus, unless we consider a much smaller threshold (e.g. εc = 0.7
in setup (c)). As a consequence, the optimal sample size based on criterion (4) is
also unfeasible (i.e. n∗ is larger than 1000). Conversely, when prior information
is downweighted (see setups (b) and (d)) the number of observations required to
simultaneously achieve consensus and evidence seems to be reasonably moderate.
Notice that it may also happen that nc < ns (e.g. setup (b) with εs = εc = 0.7) and
therefore n∗ = ns .
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Table 1 Optimal sample sizes for several choices of the thresholds εs = εc, given the following
alternative choices of the priors πa and πb: (a) μa = 0.545, na = 376 μb = 0.198, nb = 390;
(b) μa = 0.545, na = 37.6 μb = 0.198, nb = 39.0. (c) μa = 0.545, na = 376, nb = 0; (d)
μa = 0.545, na = 37.6, nb = 0

εc = εs 0.9 0.8 0.7

(a)

ns 476 363 292

nc > 1000 > 1000 > 1000

n∗ = max{ns , nc} > 1000 > 1000 > 1000

(b)

ns 171 98 60

nc 546 104 22

n∗ = max{ns , nc} 546 104 60

(c)

ns 120 53 21

nc > 1000 > 1000 574

n∗ = max{ns , nc} > 1000 > 1000 574

(d)

ns 119 55 21

nc 159 57 28

n∗ = max{ns , nc} 159 57 28

5 Conclusions

The present paper deals with a sample size determination criterion defined to achieve
two main goals: evidence (with respect to the aim of the trial, i.e. superiority) and
consensus (in the presence of more than one source of prior information). Some
comments are in order.

1. The main motivation of the proposed approach is that the optimal sample size
based on a single goal might be inadequate to guarantee the other one as well. For
instance, as shown by numerical examples (see Sect. 4), the sample size based
on evidence only might be too small to provide consensus as well, i.e. ns < nc.
In other examples the opposite situation can be observed.

2. The measure of consensus defined in Eq. (3) is based on the overall discrepancy
between the posterior distributions induced by the competing priors. This
releases us from selecting an arbitrary posterior summaries as in [7] and [4].

3. The choice of the design value θd and of thresholds involved in the criterion in
general strongly influences the resulting sample sizes, but it is problem-specific.

4. We investigated the crucial impact of na and nb on the consensus measure and
therefore on nc and n∗. Specifically if the prior sample sizes attached to the two
competing priors are excessively large, then the number of observations required
to reach consensus can be unaffordable.
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5. In the normal model considered in this paper all the posterior quantities are
available in closed-form formulae that allow a straightforward interpretation.
In more general setups lack of available analytical results can be supplied by
standard simulations, that are used here for the predictive analysis only.

Finally, here is a list of potential further developments.

1. In order to take into account the joint preposterior variability of (Sn, Cn) we can
replace the expectation criterion with the probability criterion (see [2]).

2. Implementation of the sample size criteria based on the joint control of consensus
and evidence can be extended to alternative models relevant to applications in
clinical trials, such as models for binary, count and survival data.

3. Success of the experiment is formalized for superiority trials. In the future we
plan to extend the methodology to experiments with different goals, such as non-
inferiority or equivalence studies.

4. We would like to generalize this approach to experiments with multiple sources
of prior information.

5. The need of discounting historical information mentioned in point 4 of the
previous list of comments, might be addressed resorting to the power prior
methodology (see [6]).
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Novel Applications of the Team
Orienteering Problem in Health Care
Logistics

Roberto Aringhieri, Sara Bigharaz, Davide Duma, and Alberto Guastalla

Abstract The team orienteering problem is a routing problem belonging to the
class of the vehicle routing problems with profits. We present two problems arising
in the health care logistics that are modelled as team orienteering problem. To
the best of our knowledge, these are the first applications to health care logistics
problems. The former is a problem arising in the digital contact tracing system as
a measure for the containment of the Covid-19 pandemic. The latter is a problem
arising in post-disaster management to transport the injured to hospitals. We discuss
the novelty of some of their features with respect to the current literature. We present
and discuss the mathematical formulation of a new variant of the team orienteering
problem that includes such new features.

Keywords Team orienteering problem · Health care logistics · Fairness

1 Introduction

The Team Orienteering Problem (TOP) [6, 7] is a routing problem belonging to the
class of the Vehicle Routing Problems with Profits. The TOP is characterised by
the fact that not all customers can be served. This implies the need to consider two
different decisions [2], that is (i) which customers to serve, and (ii) how to cluster
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the customers to be served in different routes (if more than one) and order the visits
in each route. The customer selection is driven by a profit associated with each
customer that makes such a customer more or less attractive.

To the best of our knowledge [11, 16, 17], the TOP framework is never applied
to the modelling and the solution of health care logistics problems. We present two
problems arising in the health care logistics. The former is a problem arising in the
digital contact tracing system as a measure for the containment of the Covid-19
pandemic, that is the Daily Swab Test Collection Problem (DSTCP) [3]. The latter
is a problem arising in post-disaster management, that is the Ambulance Routing
Problem (ARP) to transport the injured to hospitals [4]. We present an integer linear
programming formulation for the DSTCP while a graph formulation is presented
for the ARP. We discuss the novelty of some of their features with respect to the
current literature. Finally we present and discuss the mathematical formulation of a
new variant of the TOP that includes such new features. Conclusions close the work.

2 The Daily Swab Test Collection Problem

Basically the DSTCP consists in organising the daily collection of swab tests
reaching the house of the contact(s) of a positive case detected the day(s) before in
accordance with the framework validated in [9] and depicted in Fig. 1. A set of teams
are in charge of collecting the swab tests. We suppose that the number of required
tests are larger than the daily capacity of all teams in terms of working time. We
would remark that this hypothesis represents the situation in which the pandemic is
rapidly spreading over a given geographic area. Each team travels around the city
collecting the swab tests. The selection of which tests should be collected is driving
by a priority associated to each person in accordance with her/his health status and
social connections. The priority represents the need of testing some people before
other since they could become a spreader of the virus and/or they belong to more
risky class of people (e.g., elderly and/or frail people). The priority accounts also
the time spent waiting for the swab for those people not selected the days before.
Finally, time is crucial since we have to take into account both travel times and
service times for collecting the swab(s) at home.

Let P = {1, . . . n} be a set of places where a number bp (p ∈ P ) of swab tests
should be collected. The collection of the swab tests follows an integer priority rp :
the greater the priority is, the greater the importance of collecting such a swab test
is. After reaching a place p ∈ P , we suppose to have an estimate of the time t+p and
t−p respectively needed to dress and to undress the personal protective equipment,

the time thp to reach the house (which can not be negligible in the case of large
buildings), and the time tsp to collect a single swab test. Therefore, the overall time
tp needed to perform all the operations needed to collect a swab test at the place
p ∈ P is equal to tp = t+p + 2 thp + (bp tsp)+ t−p .

Let M = {1, . . . k} be a set of medical teams in charge of collecting swab tests
during their work-shift whose maximum duration is equal to tmax. The teams start
their work-shift from a depot 0 ending at the laboratory n+ 1. Depot and laboratory
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Fig. 1 DSTCP: description of digital contact tracing (source [9])

could be the same place. Considering P+ = P ∪ {0, n+ 1}, let tpq be the travelling
time to reach q ∈ P+ from p ∈ P+.

We are now ready to propose the integer linear programming model for the
DSTCP. Let us introduce the following decision variables:

• xpqm = 1 if the team m ∈ M visits the place q ∈ P+ after visiting the place
p ∈ P+, 0 otherwise;

• ypm = 1 if the place p ∈ P+ is visited by team m ∈ M , 0 otherwise;
• upm is an integer representing the position of the place p ∈ P+ in the path of the

team m ∈ M .

The objective function seeks to maximise the overall priority of the swab tests
collected:

max z =
∑

m∈M

∑

p∈P
rp bp ypm. (1)



238 R. Aringhieri et al.

Constraint 2 ensures that each team starts their work-shift from the depot ending at
the laboratory:

∑

m∈M

∑

q∈P
x0qm =

∑

m∈M

∑

p∈P
xp(n+1)m = k. (2)

Constraints 3 ensure that every place is visited at most once:

∑

m∈M
ypm ≤ 1, p ∈ P. (3)

Constraints 4 guarantee the connectivity of the work-shift of each medical team:

∑

q∈P∪{0}
xqpm =

∑

q∈P∪{n+1}
xpqm = ypm, p ∈ P,m ∈ M. (4)

Constraints 5 ensure that the duration of each work-shift is less than or equal to the
maximum duration:

∑

p∈P∪{0}

∑

q∈P∪{n+1}
tpqxpqm +

∑

p∈P
tpypm ≤ tmax, m ∈ M. (5)

Finally, the constraints 6 and 7 are necessary to prevent subtours in accordance
with the Miller-Tucker-Zemlin formulation for the Travelling Salesman Problem
(TSP) [13]:

2 ≤ upm ≤ n+ 2, p ∈ P ∪ {n+ 1},m ∈ M. (6)

upm − uqm + 1 ≤ (n+ 1)(1− xpqm), p, q ∈ P ∪ {n+ 1},m ∈ M. (7)

We remark that the above formulation is an adaptation of that presented in [17].

3 Ambulance Routing Problem

When a disaster occurs, initial data about the damages and injuries is collected
as fast as possible. The dispatcher classifies patients’ requests according to their
severity and locations. The ambulances staffed by medical crew are dispatched
to affected areas immediately to treat wounded people and transport patients to
hospitals as needed. Two groups of patients based on a triage system can be
considered in the affected area [15]. Red patients should be transported to hospitals
because they suffer from serious injuries. Green patients are people who are slightly
injured and need first aid directly in the field, which can be provided by the
ambulances or by other rescue services.



Novel Applications of the Team Orienteering Problem in Health Care Logistics 239

Priority scores for green patients are introduced to define which of them is less
or more urgent, that is a preference about who should be rescued in a short time.
Therefore, each green patient has a score that can be interpreted as urgency level
weights. Maximising the overall score for green patients can be considered as a
goal to provide an efficient service. As travel time can provide the limitation for each
ambulance, all the green patients cannot be visited and those with the higher scores
should have the priority. To satisfy the needs of patients, an ambulance starts its tour
from a depot (e.g., hospitals or medical centres) to visit patients in affected areas
and returns to a hospital. The personnel of the ambulance treats a green patient in
the field and visit another green patient in its tour while after visiting the red patient,
the ambulance have to pick the patient and take her/him to a hospital.

The ARP based on the TOP can be formulated to find the optimal tour for a
number of ambulances in the following graph to deliver the services to patients in a
disaster.

Note that in the TOP each node can be visited once except for the source node
and the destination node. Then, we can define a network on a complete graph
E = (N,A), whereN is the set of nodes representing locations over the considered
area and A = (i, j) : i, j ∈ N is the set of arcs indicating the connections between
each pair of such locations. Three main types of nodes are considered in this
problem: (i) green patients (setG), (ii) red patients (set R), and (iii) actual hospitals
(set O). To these node types, we add several dummy nodes in order to bring the
problem in the TOP framework, that is: (iv) the dummy source and destination depot
nodes 1 and n, and (v) several dummy hospitals (setD), which are replications of the
actual hospital nodes (i.e. they have same coordinates of the original nodes of the
set O) that allows us to visit two or more times the same actual hospital visiting
two different nodes. The number of replications of each actual hospital node is
computed in such a way to allow the visit of such nodes as starting hospital for the
assigned ambulances and for the medical care of all the red patients (worst case).
Furthermore, we indicate with P = G∪R the set of all patients and withH = O∪D
the set of all (actual and dummy) hospitals. Therefore, N = P ∪ H ∪ {1, n}. We
set n = |N | and we enumerate all nodes from 1 to n. The priority score of green
patients is denoted by si , while the set of available ambulances is indicated with K .
An example of the introduced graph and the related solution is illustrated in Fig. 2.

Nodes of sets G, R and O are coloured in green, red and white, respectively.
Labels on green nodes indicate the scores si , i ∈ G. In correspondence of each
node of O , several replications are provided in order to suit our problem to the
TOP framework; such nodes, in grey, are the elements of D. Black nodes represent
the dummy depots {1, n}. Two ambulance tours are represented by the sequence
of coloured arcs (orange and blue) from the source depot to the destination depot:
continuous arcs indicate the actual moving of the ambulance between two physical
places represented by the nodes, while dashed arcs are only used to connect the
dummy depots to the actual hospital where the ambulance is located at the beginning
and at the end. The connections of the node 1 are set in accordance with the instance
of the problem: the first arc visited by the tour of an ambulance is that between 1
and one of the nodes related to the hospital in which it actually is located at the
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Fig. 2 ARP: efficient solution representing the ambulance tours in a disaster

beginning. Such an initial location is given by the parameter lhk , which is equal to
1 if the ambulance k ∈ K is initially parked at the hospital. The connections of
the node n have the same meaning, but they are part of the solution because there
is not any constraint about the final destination of the ambulances (except that it is
on a hospital node). Furthermore, we observe that each intermediate node is visited
at most once: if a hospital needs to be visited twice or more, then a different node
belonging to H , and related to that hospital, is visited every time; for instance, the
orange tour visits the actual hospital node firstly and a dummy node for the second
visit. We remark that red nodes must be visited once, while green, white and grey
nodes could be not visited.

Since the locations of patients and hospitals are identified, the travel time
between a pair of nodes i, j ∈ N is defined as tij , where:

• tij = tj i for each i, j ∈ N ;
• tij = 0 if i ∈ {1, n}, j ∈ H ;
• tij = 0 if i, j ∈ H are replications of the same actual hospital.

We take into account also the time spent by the ambulance on the nodes, to which
we will always refer as the service time fi , i ∈ N \ {1, n}. Such time represents:
(i) the on-place treatment duration when i ∈ G, (ii) the preparation time spent on
the place when i ∈ R, and (iii) the time spent to release a red patient to the hospital
when i ∈ H . We assume that hospitals can accept red patients regardless of the
hospital capacity, and an ambulance can only carry one red patient at a time without
giving other patients treatment in the meantime. We fix a maximum time Tmax for
each ambulance to provide treatments to patients and to complete its tour moving to
a hospital.
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4 A New Variant of the Team Orienteering Problem

Erdogan and Laporte [8] introduces the Orienteering Problem with Variable Profits
(OPVP) in which a single vehicle can collect the whole profit at the customer after
a discrete number of “passes” or spending a continuous amount of time. As in the
classical orienteering problem, the objective is to determine a maximal profit tour
for the vehicle, starting and ending at the depot, and not exceeding a travel time
limit. An attempt to extend this approach to the TOP is reported in [18] in which the
score of visiting an attraction is different depending on the time of visit.

Salazar-Aguilar et al. [1] introduce an extension of the TOP by considering the
multi-district aspect, a set of mandatory and optional tasks located in several districts
and some incompatible tasks which cannot be carried out during the same day.
The problem is called the Multi-District TOP (MDTOP). It is required to perform
all mandatory tasks over the planning horizon, while the optional tasks are only
executed if time permits.

The DSTCP and the ARP have service times at nodes as in [8] while the ARP
has mandatory and optional nodes as in [1]. Similarly to [1], the ARP has subset of
incompatible nodes, that is a subset of nodes from which is not possible to reach
a different subset of nodes. To the best of our knowledge, this is the first research
attempt to consider all these aspects at the same time. This attempt can be view as
a new variant of the TOP, that we call TOP with Service Time and Mandatory and
Incompatible Nodes (TOP-ST-MIN).

Let P = {1, . . . n} be a set of nodes to which is associated a score rp : the greater
the score is, the greater the importance of serving such a node is. For each node p ∈
P , we suppose to have an estimate of the time tp required to serve the corresponding
node. Let P ∗ ⊂ P be the set of mandatory nodes, that is those nodes that must be
visited by a team. Finally, let C = [cpq] be the compatibility matrix, that is cpq = 0
when the pair of nodes p, q ∈ P are incompatible, cpq = 1 otherwise.

Let M = {1, . . . k} be a set of teams in charge of serving the nodes during their
tour whose maximum duration is equal to tmax. The teams start their tour from the
starting depot 0 ending at the ending depot n+ 1. Starting and ending depots could
be the same node. Considering P+ = P ∪ {0, n + 1}, let tpq be the travelling time
to reach q ∈ P+ from p ∈ P+.

We are now ready to propose the integer linear programming model for the TOP-
ST-MP. Let us introduce the following decision variables (similarly to those for the
DSTCP):

• xpqm = 1 if the team m ∈ M visits the node q ∈ P+ after visiting the node
p ∈ P+, 0 otherwise;

• ypm = 1 if the place p ∈ P+ is visited by team m ∈ M , 0 otherwise;
• upm is an integer representing the position of the node p ∈ P+ in the path of the

team m ∈ M .
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max z =
∑

m∈M

∑

p∈P
rpypm, (8a)

∑

m∈M

∑

p∈P
x0qm =

∑

m∈M

∑

p∈P
xp(n+1)m = k, (8b)

∑

m∈M
ypm ≤ 1, p ∈ P, (8c)

∑

m∈M
ypm = 1, p ∈ P ∗, (8d)

∑

q∈P∪{0}
xqpm =

∑

q∈P∪{n+1}
xpqm = ypm, P ∈ P, m ∈ M, (8e)

∑

q∈P∪{0}

∑

q∈P∪{n+1}
tpqxpqm +

∑

q∈P
tpypm ≤ tmax, m ∈ M, (8f)

xpqm ≤ cpq, p, q ∈ P, m ∈ M, (8g)

2 ≤ upm ≤ n+ 2; p ∈ P ∪ {n+ 1}, m ∈ M, (8h)

upm − uqm + 1 ≤ (n− 1)(1− xpqm) p, q ∈ P ∪ {n+ 1}, m ∈ M,
(8i)

The mathematical model is similar to that presented in Sect. 2: actually,
the constraints (8b), (8c), (8e), (8f), (8h) and (8i) have the same meaning of
the corresponding constraints for the DSTCP. Constraints (8d) ensure that the
compulsory nodes are visited by the tour of one team while constraints (8g) models
the incompatibility among subsets of nodes.

The above formulation makes use of a compatibility matrix to model the
information regarding the incompatibility among subsets of nodes. We are aware
that this can result in a not efficient mathematical formulation but this choice seems
to be the most general and suitable to represent several types of compatibility arising
in the analysis of real problems.

Although an example of incompatibility is depicted for the ARP in Sect. 3,
a further example come out of an adaptation of the Black-and-White Travelling
Salesman Problem (BWTSP) [5, 10]. The BWTSP is defined on an undirected graph
where the set of nodes is partitioned into two sets of nodes, the set of black nodes
B and the set of white nodes W . Each edge e ∈ E is associated with a cost and a
distance. The objective is to find a TSP tour with minimum total length in which the
path between every two consecutive black nodes contains at most Q white nodes
and has a distance of at most L.
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Fig. 3 ARP: fairness solution representing the ambulance tours in a disaster

4.1 Fairness

As discussed in Sect. 3, the objective function that maximises the overall green
patient score is a goal to provide an efficient service. On the contrary, red patients
are suffering from serious injuries and should be transferred as soon as possible to
hospitals in such a way to receive the most appropriate treatment with an adequate
medical equipment. From this perspective, minimising the maximum waiting time
for red patients can be considered as a goal to provide fair services.

Considering the solution depicted in Fig. 2, we can observe that in the orange
tour a red patient is visited after a green patient. Such a tour can not be an optimal
solution using a fairness objective function: as a matter of fact, a change of the
visit order of those patients can minimise the value of the maximum waiting time.
Generally, we expect that setting a fairness objective function, red patients are all
visited at the beginning of the tours, as depicted in Fig. 3.

As discussed in [12, 14], modelling fairness is in itself challenging since the
concept of fairness can vary in accordance with the context of problem. This results
in modelling approaches determining solutions with different quality. Examples
of different concepts of fairness are (i) the Rawlisan approach in which usually
the focus is on maximising the minimum outcome, (ii) the fairness recognised as
deviation measure, and (iii) the deprivation approach, which is less used due to its
difficulty.

Including fairness in the TOP and in the TOP-ST-MIN could be a research area
which should be further emphasised considering also the price of fairness, a quality
measure introduced by Nicosia et al. [14], which is a comparison between the
system optimum solution and a fair solution. Further, our experience [4] showed
that including fairness results in a more challenging optimisation problem.
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5 Conclusions

In this paper we report two problems arising in the health care logistics. The
former is a problem arising in the digital contact tracing system as a measure
for the containment of the Covid-19 pandemic, that is the Daily Swab Test
Collection Problem (DSTCP) [3]. The latter is a problem arising in post-disaster
management, that is the Ambulance Routing Problem (ARP) to transport the injured
to hospitals [4]. After discussing the novelty of some of their features with respect
to the current literature, we introduced a new variant of the TOP including in the
TOP framework three features, that is (i) service times at nodes, (ii) mandatory and
optional nodes, and (iii) subset of incompatible nodes. We call such a variant TOP
with Service Time and Mandatory and Incompatible Nodes (TOP-ST-MIN). We
also highlighted the importance of including the concept of fairness in such a new
variant of the TOP.
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Abstract The management of queues is a complex problem, and it requires special
attention in dynamic environments where information changes over time. This work
focuses on an outpatient facility system where patients are attended by identical
parallel servers offering different services. Each patient requires service and expects
to receive it within a given target time, after which, a tardiness is created. The
objective of the problem is to minimize the total tardiness while defining which
services each server will offer during the working hours. The arrival of patients is
dynamic, and the server’s configurations of services can be updated from time to
time. To solve the problem, we propose a local search-based heuristic that locally
assigns a configuration to each server based on the improvement reached in terms
of total tardiness. The heuristic is tested on realistic instances, considering different
settings, showing its superiority over the solution currently implemented on the
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1 Introduction

Queue management is a widely known problem in many real-world situations,
from everyday shopping to care services. This problem has been addressed by
a variety of methods, from simple queuing rules to sophisticated algorithms of
operations research [10, 11]. The optimization of queues is particularly challenging
for healthcare systems that include multiple queues, dynamic arrival of patients,
random service times, different priorities, multiple servers, among others [12].

In this work, we are interested in optimizing the queue of patients in an outpatient
facility system, which differs, for example, from an emergency department in a
hospital or fast food service systems. Our problem is motivated by a health care
facility application, where patients arrive dynamically during the system operating
hours. We have a queue with patients waiting for service. We know the service
each patient demands (e.g., cardiology, radiology, blood analysis, or even a ticket
payment) and the expected time to perform the service. The system comprises a
single queue, and multiple identical servers working in parallel, each fulfilling a
list of services. The servers are equipped with queue management software that
provides information about services and patients. The work originates from joint
research with an industrial partner and concerns data coming from a large hospital
booking facility (Centro Unico di Prenotazione—CUP).

The configuration (i.e., list of services) associated with each server can change
during the time horizon, so the server by which patients will be served may change
during the time. This change may help at reducing the patients’ waiting time in
queue, balancing herding and congestion. In addition, each patient has a desired
target time, depending on the requested service, within which the patient should be
served. Patients requiring the same service are assisted according to a first-in, first-
out (FIFO) policy. The objective is to decide which services each server will offer
through the time horizon, so the list of services can change from time to time, so as
to minimize the total tardiness based on the patients’ target times.

The literature about problems where the flow of patients in the healthcare system
have to be optimized is extensive. The survey by Abdalkareem et al. [1] discusses
the recent contributions on healthcare scheduling, focusing on the scheduling of
patients, nurses, operation rooms, surgeries, and others. The authors comment on
problem characteristics, mathematical formulations, available data sets, solution
methods, and open challenges as, e.g., considering the dynamic nature of the
problems, using big data analytic, and solving problems in an integrated way.
Worthington et al. [12] focused on queuing models assuming an infinite number
of servers. The authors consolidated and simplified the existing theories, providing
generic pseudocode and identifying future opportunities regarding infinite-server
models.

At the same time, many contributions regarding multiple servers and single/-
multiple queuing systems can be found in the literature. Kaboudan [3] proposed
a dynamic-server algorithm to handle a multi-server system that operates a single
queue with all servers always offering the same services. The algorithm considers
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a threshold parameter to control the number of people in the queue and then
periodically adjusts the number of open servers. People are served following a FIFO
policy. Lan et al. [5] investigated a system with a finite number of servers and
a capacitated queue in a fast-food company. The authors developed a heuristic to
allocate workers to the servers and then balance the queue size using a cumulative
probability function. Kumar and Omar [4] worked on queuing model to deal with a
stress testing system in a semiconductor assembling industry. The authors used the
mean value analysis to determine the mean waiting time and the throughput rate for
a five-stage queue system with a re-entrant line at the second stage.

Slegers et al. [7] modeled a cluster computing system with multi servers and
multi queues. Jobs are separated by type and have specific queues entering the
system according to an independent interrupted Poisson process. The authors
described the system with a Markov decision process. They presented four heuristic
policies, two of them requiring a priori knowledge of the system and the others
requiring none. Su et al. [8] focused on improving the operational efficiency of the
registration process in a hospital. This registration system has three counters and
three respective queues. Through simulation experiments, the authors redesigned
the system to have a single queue and multiple servers with a prepared queue,
reducing the patients’ waiting time and then improving the service quality. In Vass
and Szabo [9] the objective is to reduce the patients’ waiting time. The authors used
queuing models to evaluate an emergency department in Romania with more than
50,000 registered patients, concluding that it is necessary to implement a dynamic
allocation of the medical staff. Recently, Harper [2] investigated the influence of
service times and workload to measure servers’ behaviors. The author assumed the
service times depending on the queue length and used switching thresholds to have
different service speeds, the presence of workload fatigue, and service breakdown.

For the problem under investigation, we propose a local search-based heuristic
that updates the servers’ list of services (configurations). Differently from the
literature (e.g., [3, 5], servers can hold different configurations (i.e., offer different
services) over the time horizon. The heuristic simulates the impact on the facility’s
total tardiness for each configuration, from time to time, assigning the best
configuration to each server. The FIFO policy is used to schedule patients with
the same service, and the service time is estimated from previous historical data.
The heuristic is applied to solve realistic instances, and its results are comparatively
better than the facility solutions for all scenarios we have tested.

The remainder of this work is structured as follows. In Sect. 2, we formally
describe the problem, introducing notation, constraints, and the objective function.
In Sect. 3, we present the heuristic and comment on its main steps. In Sect. 4, we
introduce the realistic instances and detail the comparison performed under different
configurations. Finally, in Sect. 5, we give some concluding remarks and point out
some directions for continuing this research.
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2 Problem Description

The problem considers a time horizon T over which we need to determine the
configuration (i.e., list of services) to be dynamically assigned to M available
servers. Each server initially receives a configuration, and within � units of time,
the configuration can be updated to reduce the expected total tardiness. There is a
queue of patients, and each patient requires a single service. In other words, each
required service imposes the patient to be served by one from a subset of admissible
servers. There is a set S of services, and each server m offers a subset of services
(configuration), including the possibility of having no service at a given period (i.e.,
the server is closed). Besides that, servers may offer the same services and can
perform all services if necessary.

Each patient i ∈ I has an arrival time ri , which is when i enters the queue and
starts waiting for a demanded service si ∈ S with an expected service time pi , which
depends on the service, and a due (target) time di , depending on the arrival time and
the demanded service. Even if patients require different services, they are all part
of a single queue. When a server calls a patient, the server expects to service the
patient within pi units of time, a value obtained from previous historical data. The
service to patient i can be performed in the time interval [t; t + pi) only if there is
at least one server whose list of services contains the service si in this time interval.
The objective is to serve all patients minimizing the facility’s total tardiness.

Patients with the same service are assisted by a FIFO policy shared among the
servers offering such a service and managed by the facility’s management software.
If we consider that: (1) a list of services defines each server; (2) at each period there
are at most M servers opened simultaneously in parallel; and (3) for each server,
there is a number of possible configurations of services it offers; then our goal is
to define which of these configurations are assigned to the servers at every period
of � units of time in the horizon T , so as to minimize the total tardiness. Suppose
ti is the time at which patient i is called by a server, then the total tardiness is∑
i∈I max (0; ti − di).
We provide a mathematical model to the static version of the problem (i.e.,

when all data are precisely known in advance). The model uses two sets of binary
variables. The first set, xijt , is defined for each patient i ∈ I , server j ∈ J =
{1, 2, . . . ,M}, and time t ∈ {ri, . . . , T − pi}. This variable takes value one if
patient i starts being served by server j at time t , and zero otherwise. The second
set, yjkt , is defined for each server j ∈ J , configuration k ∈ C, where C is the set
of configurations, and time t ∈ {0,�, 2�, . . . , &T/�'�}. This variable assumes
value one if configuration k is assigned to server j from time t to t + � − 1, and
zero otherwise. Therefore, we can define the mathematical model as follows:

min
∑

i∈I

T−pi∑

t=ri
cit

⎛

⎝
∑

j∈J
xij t

⎞

⎠ (1)
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subject to:

∑

j∈J

T−pi∑

t=ri
xij t = 1 i ∈ I, (2)

∑

i∈I

t+pi−1∑

s=t
xijs ≤ 1 j ∈ J, t ∈ {0, . . . , T }, (3)

∑

k∈C
yjkt = 1 j ∈ J, t ∈ {0,�, 2�, . . . , &T/�'�}, (4)

xijt ≤
∑

k∈Ci
yjk&t/�'� i ∈ I, j ∈ J, t ∈ {ri, . . . , T − pi}, (5)

yjkt ∈ {0, 1} j ∈ J, k ∈ C, t ∈ {0,�, 2�, . . . , &T/�'�}, (6)

xijt ∈ {0, 1} i ∈ I, j ∈ J, t ∈ {0, 1, . . . , T }. (7)

Objective function (1) seeks the minimization of the total tardiness, where cit =
max{0, t−di} represents the tardiness of patient i if he/she starts being served at time
t . Constraints (2) state that all patients must be served. Constraints (3) guarantee that
a server can serve at most a patient at a time. Constraints (4) force each server to
have a configuration assigned to it at each time the configurations can change. In
Constraints (5), we assure that a patient i is a server j at time t only if at this time
this server is assigned with a configuration k ∈ Ci , where Ci ⊆ C represents the set
of configurations that can serve the demanded service of i. Finally, Constraints (6)
and (7) define the domain of the variables.

It is important to notice that model (1)–(7) is general and does not impose the
FIFO rule on being followed. Besides that, if there exists only one configuration inC
providing all services, we have a particular version of the problem, i.e., the identical
parallel machine scheduling problem, with release dates and aiming to minimize
the total tardiness. This problem is referenced as P |rj |∑j Tj in the scheduling
notation and is known to be NP-hard (see Lenstra et al. [6]), justifying the proposal
of heuristic methods.

3 Proposed Heuristic

We propose a heuristic that locally searches for the services to assign to each server
to minimize the total tardiness. Servers can offer services from the set S, in a way
that is limited by a set C of configurations, where each configuration is a subset of
services (C ⊆ 2S). The setC is defined by the healthcare facility. The configurations
include the possibility of a server having no service (closed server). Patients with the
same service are served by a FIFO policy based on their arrival time, implying that
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patients with a smaller arrival time but requiring different services being served later
on. The heuristic starts by randomly assigning to each server an initial configuration.
Then, it updates the servers configurations every � units of time. A pseudocode is
provided in Algorithm 1.

Algorithm 1: Local search-based heuristic
1: current_assignment ← initial list of services based on historical data
2: best_assignment ← current_assignment
3: current_cost ← Cost(current_assignment, 0)
4: for t ← �, 2�, 3�, . . . , T do
5: for m← 1, 2, . . . ,M do
6: best_list ← current list of services of m
7: for all lists of services c ∈ C do
8: current_assignment ← update the list of services of m to be c
9: cost_m← Cost(current_assignment, t)

10: if cost_m < current_cost then
11: current_cost ← cost_m
12: best_list ← c

13: best_assignment ← current_assignment with m having best_list
14: return best_assignment

In Algorithm 1, we start with pre-defined lists of services, each list assigned
to a server. The loop in lines 4–13 iterates over the time horizon, assuming that
decisions are taken every � units of time. These decisions are based on a local
search that identifies, at time t , the best configurations to assign to each server m.
The cost of changing the list of services of a server is calculated by the function
Cost() described in Algorithm 2. We notice that some servers may not have their list
of services updated in the case this not incur in a reduction of the total tardiness.

Algorithm 2: Return the Cost() of solution s given the time t
1: cost ← tardiness of solution given the patients serviced until time t
2: queue← all patients that have not received a service
3: for t ime← t, t + 1, t + 2, . . . , T do
4: for m← 1, 2, . . . ,M do
5: ifm is free at t ime then
6: i ← patient in the queue with the smallest release date (ri ≥ t) and that can be

serviced by m; otherwise, go to line 4
7: schedule patient i to the server m starting at time t ime;
8: if t ime + pi > di then cost ← cost + ((time + pi)− di)
9: Update the queue by removing the scheduled patients

10: return cost

At line 1 of Algorithm 2, variable cost receives the tardiness solution s has until
the time t , that is, considering all patients already serviced (before t) and patients
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receiving service during time t . The loop at lines 3–9 is responsible to reschedule
all patients whose release time is greater than or equal to t and that are not receiving
service. The idea is to update the solution, considering the current queue, once we
have changed the list of services of a server. At line 6, we select a patient with
the FIFO policy if there is a patient that can be served by server m; otherwise, we
consider the next server. This patient is assigned to m and starts receiving service at
time t , with the expected completion time t + pi . If this generates tardiness, i.e., if
t + pi > di then we update the solution cost (line 8).

4 Computational Results

We implemented the proposed heuristic in C++ and performed numerical tests on
realistic instances obtained from the outpatient facility system. These instances
corresponded to 15 working days in December 2019. They consider M = 13
servers, operating from 7 AM to 4 PM. The facility provides |S| = 9 services,
and each server can perform any configuration (list of services) from the set C.
The computer used in the experiments was an Intel Core i7-7500U processor with
2.70 GHz, 12 GB of RAM, and Windows 10 operating system.

We evaluate the performance of the proposed heuristic considering the total
tardiness (Z), but we also discuss the total number of tardy patients (NT ) and the
average tardiness per tardy patient (Z/NT ), comparing the heuristic solutions with
the existing ones provided by the facility system.

We present the results in Tables 1 and 2. These tables contain the following
information: instance number, instance size (i.e., number of patients on that day),
facility solutions, and solutions obtained with the proposed heuristic under different
values of �. The heuristic runs 10 times with different seeds, and we show the
average results for each instance. The last line of the table contains the average
values over all 15 instances. We omit in tables the computing time of the heuristic
because in the worst case, it is less than 5 seconds, and just 0.5 seconds on average.

In Table 1, we analyze the heuristic with four different values of � (15, 30, 60,
and 120 minutes). To provide a fair comparison with the evaluation of the solutions
at the facility, we increased all service times by 30%. This value takes into account
the losses of productivity due to the necessary breaks in the activities of the workers
operating the servers. We assume the set C is composed of the configurations
already defined by the facility system. The size of the instances shows an intense
flow of patients throughout the facility system, with more than 900 requests being
served per day. Observing the total tardiness, the difference is large between the
solutions. The facility solutions have an average tardiness value equal to 16,815.8,
while the proposed heuristic achieves much better values, which ranges from 1179.0
when � = 15 to 1388.0 when � = 120. The improvement is indeed impressive,
but it might be caused by many different causes. First of all, the facility starts with
a set of configurations that is the same for every day, and very rarely performs
dynamic changes during the execution of the activities. Secondly, if performed,
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these changes are due to manual interventions of the head of the system while
visually looking at the current situation, and is thus not based on solid and complete
information. Finally, we adopt mean values from the distribution of the service
times that are derived from the real-world historical data; however, this distribution
might be inaccurate in some cases, as it does not contemplate different speeds of
the workers that might be used when, for example, the system is not crowded. The
heuristic can return better values of total tardiness when the server configuration is
updated every small time interval (i.e., � = 15). Regarding the number of tardy
patients, the facility solutions have an average of 760.8 against 138.2 patients of
the heuristic with � = 15. Although the heuristic achieves the best overall average
of the number of tardy patients when the servers’ list of services is updated every
large interval of time (i.e., � = 120), this happens for only 3 instances. In most
of the remaining instances, the number of tardy patients is smaller when � = 15.
In terms of average tardiness per tardy patient, our experiments confirm that better
results can be achieved for small values of �. Besides that, we notice that there is
no direct relation between the number of requests per day and the total tardiness,
meaning that even instances with fewer requests may lead to large tardiness. The
latter is more dependable on the number of patients arriving close to each other or
with the same arrival time.

The results of the second analysis we perform with the heuristic are shown in
Table 2. We evaluate the impact of changing set C, considering different lists of
services than those defined by the facility system. We denominate the current lists
of services byCcur , having an average of five services per list. On the other hand, we
define the following configurations: C1, where each configuration contains exactly
one of the services in the set S; C2, where each configuration contains exactly two of
the services in S; C3, where each configuration contains exactly three of the services
in S; and,Call , containing only one configuration with all services in S. We consider
all possibilities of lists of services with one (C1), two (C2), and three services (C3).
For these tests, we consider 13 servers, the expected service time, and � = 60
minutes. Although this value of � has not allowed the best results in Table 1, it is
following the facility preferences to update the server configuration.

It is important to recall that the results of Table 2 do not assume the increase of
30% in the expected service times, as previously assumed in Table 1, since the aim of
this new table is to compare different configurations among them, and not to contrast
the results with those obtained in the real-world facility solution. Observing the
results, the larger the number of services per list, the better are the results. In terms
of total tardiness, we decrease from an overall value of 3834.8, withC1, to 86.5, with
Call . The same behavior happens considering the number of tardy patients, going
from 303.0 to 30.4, respectively. We also notice a large decrease in the tardiness
per tardy patient when going from C1 to Call . The heuristic, using the current (lists
of services) of the facility (Ccur ), presents competitive solutions in terms of total
tardiness when compared with the case where each server can offer all services
(Call).
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5 Concluding Remarks

Concerned about reducing the total tardiness of a health care facility that services
patients over a time horizon, we propose a local search-based heuristic to assign lists
of services (configurations) to identical parallel servers. As patients are dynamically
arriving over time, the servers can have their list of services updated accordingly.
The proposed heuristic decides, for each server and from time to time, the list of
services that may generate the smallest total tardiness. This choice is based on
simulating the facility behavior with the patients in the queue, where their expected
service time is deducted from historical data.

The results show that the heuristic can reduce the total tardiness of the facility
system if decisions are updated between small intervals of time (e.g., every 15
minutes), including the number of tardy patients. On the other hand, using small
intervals to update decisions is not convenient for the facility system, which prefers
to update the lists of services every 60 minutes. Even in this case, the total tardiness
is much better compared to the facility solutions, decreasing from an overall average
of 16,815.8–1205.3 (about 93%). Another positive impact we observe in reducing
the total tardiness is when each server can offer all available services. Both total
tardiness and number of tardy patients reduced significantly from the case with a
single service to the one with all possible services per list. It is important to mention
that the results obtained with the facility current lists of services are comparable
with the latter, being an interesting choice to not overload the servers.

Future works may consider the patients receiving multiple services. It would also
be interesting to evaluate the impact of different policies (e.g., based on the earliest
due date rule) compared to the FIFO one, besides the priority that some patients have
over others. Attention should be given to other heuristics to handle the problems of
assigning services to servers and of scheduling patients in an integrated way.

Acknowledgments Thiago Alves de Queiroz would like to thank the support given by
the National Council for Scientific and Technological Development (CNPq grant number
311185/2020-7).

References

1. Abdalkareem, Z.A., Amir, A., Al-Betar, M.A., Ekhan, P., Hammouri, A.I.: Healthcare schedul-
ing in optimization context: a review. Health Technol. 11, 445–469 (2021)

2. Harper, P.R.: Server behaviours in healthcare queueing systems. J. Oper. Res. Soc. 71(7),
1124–1136 (2020)

3. Kaboudan, M.A.: A dynamic-server queuing simulation. Comp. Oper. Res. 25(6), 431–439
(1998)

4. Kumar, S., Omar, M.K.: Stochastic re-entrant line modeling for an environment stress testing
in a semiconductor assembly industry. Appl. Math. Comput. 173(1), 603–615 (2006)

5. Lan, C.H., Lan, T.S., Chen, M.S.: Optimal human resource allocation with finite servers and
queuing capacity. Int. J. Comput. Appl. Technol. 24(3), 156–160 (2005)



258 B. Bolsi et al.

6. Lenstra, J., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems. In: Hammer,
P., Johnson, E., Korte, B., Nemhauser, G. (eds.) Studies in Integer Programming. Annals of
Discrete Mathematics, vol. 1, pp. 343–362. Elsevier, Amsterdam (1977)

7. Slegers, J., Mitrani, I., Thomas, N.: Evaluating the optimal server allocation policy for clusters
with on/off sources. Perform. e Eval. 66, 453–467 (2009)

8. Su, Q., Yao, X., Su, P., Shi, J., Zhu, Y., Xue, L.: Hospital registration process reengineering
using simulation method. J. Healthcare Eng. 1(1), 67–82 (2010)

9. Vass, H., Szabo, Z.K.: Application of queuing model to patient flow in emergency department.
case study. Procedia Econ. Finance 32, 479–487 (2015)

10. Weiss, E.N., Tucker, C.: Queue management: elimination, expectation, and enhancement. Bus.
Horiz. 61(5), 671–678 (2018)

11. Worthington, D.: Reflections on queue modelling from the last 50 years. J. Oper. Res. Soc.
60(sup1), S83–S92 (2009)

12. Worthington, D., Utley, M., Suen, D.: Infinite-server queueing models of demand in healthcare:
a review of applications and ideas for further work. J. Oper. Res. Soc. 71(8), 1145–1160 (2020)



Global Optimization of a Turbine Design
via Neural Networks and an Evolutionary
Algorithm

Pranath Kumar Gourishetty, Giovanni Pesare, Walter Lacarbonara,
and Giuseppe Quaranta

Abstract This work discusses an effective approach to find the optimal solution for
constrained engineering design problems. Specifically, the computational platform
herein implemented exploits a neural network and a differential evolution algorithm,
and it leverages on a parametric finite element modelling for the fully automation of
the design process. The presented approach is applied to the design of the rear flange
of a low-pressure turbine casing for an aircraft engine, whose shape is optimized in
order to reduce the manufacturing cost while preserving the overall integrity through
the fulfilment of stress-based constraints.

Keywords Global optimization · Differential evolution · Structural design ·
Parameter optimization

1 Introduction

This study is concerned with the search for the optimal solution in an engineering
design problem subjected to constraints. Within this framework, the optimal design
of the scallops in the rear flange of a low pressure turbine (LPT) of an aircraft
engine is tackled. The design problem is aimed to reduce the manufacturing cost
and it includes constraints related to the maximum stress experienced when a hoop
pressure is applied radially in outward direction (Fig. 1).

The manufacturing cost can be minimized by shape optimization of the flange
through reduction of the scallops number, redistribution of the scallops and modi-
fication of the scallop shape. A sub-model of the casing including the rear flange
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Fig. 1 Rear flange of a low
pressure turbine of an aircraft
engine

only is developed by using shell elements in order to reduce the computational time
of the optimization process. Neural network and differential evolution algorithm
[1] are employed to address the design problem. Most of the previous works require
mathematical modelling of the design space to solve for the shape optimization. This
hybrid neural network and differential evolution algorithmic approach can automate
the mathematical modelling by parametric design and numerical simulation of the
design space using commercially available CAE software. The input parameters and
output data of the simulation models are used to train the neural network. Differen-
tial evolution algorithms use the trained neural network for global optimization of
the parameters in the design space.

2 Finite Element Model

A 3D sub-model of the rear flange of the LPT has been first elaborated (Fig. 2).
Next, a sub-model with shell elements is carried out by using Altair Hyperworks in
order to reduce the elaboration time of the optimization process (Fig. 3). Suitable
boundary conditions are enforced in the sub-model, and a hoop pressure of 5.66
MPa with total force equal to 100 kN is applied along the radially outward direction
(Fig. 4). The rear flange is designed to have 72 scallops, out of which 13 are not
included in the optimization domain in order to achieve optimal stress distribution.
Therefore, the shape of 59 scallops (Fig. 5) can be optimized in order to reduce the
manufacturing cost without compromising the structural integrity of the flange. A
total of 5 possible levels is considered for each scallop (Fig. 6).
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Fig. 2 3D sub-model and sub-model with shell elements

Fig. 3 Dimensions and mass of the sub-model. The diameter is 0.715 m while the height is 0.078
m. The mass is 4.943 kg

Fig. 4 Boundary and loading conditions. The yellow boundary is clamped. The radial hoop
pressure is 5.66 MPa resulting in a force of 100 kN
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Fig. 5 Scallops distribution

Fig. 6 Details about the five levels in the scallop
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3 Elaboration of the Training Dataset

Element sets are created for each scallop level. These sets are passed as arguments
to each scallop level. Models with random levels of scallops are generated using
a Python sub-routine. These random models are simulated in ANSYS APDL by
fixing the boundary conditions and the outward hoop pressure. At the end of each
random model simulation, another Python sub-routine sorts out the element with
maximum von Mises stress and returns the corresponding stress value as output.
The models with the random levels in the scallops are saved as X matrix whose
dimension is # randommodels×# scallops. The corresponding maximum von Mises
stress values are saved as Y vector whose dimension is # random models× 1. Saved
data are converted into pickle files using Pandas framework and employed to train
a neural network with the aim of predicting the maximum von Mises stress for
a given scallop configuration. This, in turn, will support the constrained optimum
design stage. A dataset including 5000 random scallop configurations is created.

4 Neural Network

The dataset is used to train a neural network consisting of 3 hidden layers by
means of Keras and Scikit learning frameworks [2]. The final settings adopted for
neural network training are listed in Table 1. These parameters are tuned using the
Hyperopt framework available in Python. Figure 7 shows training and validation
loss curves whereas Table 2 provides the details about the loss functions for training,
validation and testing. The efficiency of the trained network is finally validated by
comparing the results with ANSYS APDL.

Table 1 Settings for neural
network training

Parameter Choice

No. of hidden layers 3

Layer sizes 30, 15, 4

Layer activations [‘relu’, ‘relu’, ‘relu’]

Dropouts [0.1, 0.2, 0.3]

Kernel regularizers [0, 0, 0]

Activity regularizers [0, 0, 0]

Default learning rate (LRDEF) 1e-4

Optimizers Adam(lr=LRDEF)

Loss Mean squared error

No of epochs 3000

Batch size 16
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Fig. 7 Training and validation loss curves

Table 2 Outcomes of the
neural network training

Results

Time taken to train the network 2525.3 s

RMSE of the training 11.212226584

RMSE of the validation 11.1598499726

RMSE of the testing 11.6003906503

MAPE of the training 2.00932532841%

MAPE of the validation 1.9883635694%

MAPE of the testing 2.0658584809%

5 Global Optimization Results

The main goal of the design optimization is to reduce the number of scallops or
decrease the scallops depth by increasing the levels in each scallop while fulfilling
the imposed stress-based constraints. In fact, this allows to reduce the manufacturing
cost of the rear flange of the LPT while ensuring its integrity. Hence, the design
variables are the number of levels in all scallops whereas constraints are imposed for
the maximum von Mises stress. The trained neural network is employed to predict
the maximum von Mises stress value for a given scallop configuration. A differential
evolution algorithm [3] is employed to solve this constrained optimization problem.
The final results are listed in Table 3 for different threshold values on the maximum
von Mises stress.
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Table 3 Optimal results

Stress=500 MPa Stress=480 MPa Stress=520 MPa

Constraint on Von Mises Levels

Scallop 1 3 0 4

Scallop 2 3 2 3

Scallop 3 2 2 4

Scallop 4 4 3 4

Scallop 5 3 3 4

Scallop 6 3 4 4

Scallop 7 4 4 4

Scallop 8 4 4 4

Scallop 9 4 3 4

Scallop 10 4 4 4

Scallop 11 4 4 4

Scallop 12 4 4 4

Scallop 13 3 4 4

Scallop 14 3 4 3

Scallop 15 3 4 4

Scallop 16 4 4 3

Scallop 17 4 2 4

Scallop 18 4 3 4

Scallop 19 4 4 4

Scallop 20 4 4 4

Scallop 21 4 4 3

Scallop 22 4 2 3

Scallop 23 4 3 4

Scallop 24 3 4 4

Scallop 25 4 4 4

Scallop 26 4 4 4

Scallop 27 4 3 4

Scallop 28 4 4 3

Scallop 29 4 4 3

Scallop 30 3 4 4

Scallop 31 4 3 4

Scallop 32 4 3 3

Scallop 33 3 3 4

Scallop 34 3 3 4

Scallop 35 3 3 4

Scallop 36 4 3 3

Scallop 37 3 4 4

Scallop 38 4 4 4

Scallop 39 3 3 4

Scallop 40 4 4 3

(continued)
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Table 3 (continued)

Stress=500 MPa Stress=480 MPa Stress=520 MPa

Constraint on Von Mises Levels

Scallop 41 4 4 4

Scallop 42 4 3 3

Scallop 43 4 3 4

Scallop 44 4 3 4

Scallop 45 3 4 3

Scallop 46 3 3 3

Scallop 47 3 4 4

Scallop 48 4 2 3

Scallop 49 3 3 4

Scallop 50 4 2 4

Scallop 51 4 4 3

Scallop 52 4 4 3

Scallop 53 4 3 3

Scallop 54 2 4 4

Scallop 55 4 3 4

Scallop 56 3 4 4

Scallop 57 3 3 4

Scallop 58 3 2 3

Scallop 59 3 3 4

6 Conclusions

This study proposed a computational intelligence-aided approach for the solution
of a constrained engineering design problems. The case study tackled the optimum
design of the rear flange of a low-pressure turbine casing for an aircraft engine. A
neural network was employed to provide a surrogate model, and it was trained by
means of results obtained, thanks to a parametric finite element sub-model. Next, a
differential evolution algorithm was adopted to look for the scallops configuration
that minimizes the manufacturing cost while fulfilling stress-based constraints. The
results have demonstrated that the implemented platform is effective in solving
complex constrained optimization design problems in an affordable way.
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