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Preface

Plant stress management is an amalgamation of various conventional and advanced techniques
that can help immensely in the augmentation of crop productivity in the presence of stress.
Plants are continuously exposed to different abiotic (salinity, drought, temperature, heavy
metal, ultraviolet, ozone, etc.) and biotic (bacteria, fungi, viruses, etc.) stresses which exerts
utmost damage to their growth, development, and productivity. In the present scenario of
climate change, scientists all over the world are engrossed with strategizing the management
of plant stresses with new and improved techniques. The book has been designed in such a
way so that a complete understanding of the plant responses to different abiotic and biotic
stresses can be portrayed. The book will deliver the recent advances in the field of plant
biology, viz., microbiology, pathology, physiology, molecular biology, biotechnology, plant
breeding, and allied fields such as agroecology, nanobiotechnology, sustainable agriculture,
climate-resilient agriculture, etc., for enhancing plant productivity and crop protection. The
mechanisms at the genomic, proteomic, and metabolomic levels will also be described to
facilitate the development of climate-resilient crop plants. An important section of the book
will also focus on the role of different microbes in the mitigation of various abiotic and biotic
stresses. Additionally, the book attempts to describe new-age techniques like nanotechnology,
OMICS, metabolite engineering, and remote-sensing for the management and detection of
plant stresses to achieve the goal of sustainable development in the new decade.

Siliguri, India Swarnendu Roy
Siliguri, India Piyush Mathur
Raiganj, India Arka Pratim Chakraborty
Siliguri, India Shyama Prasad Saha
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Understanding and Management of Abiotic and
Biotic Stress in Plants



Plant Responses Under Abiotic Stress
and Mitigation Options Towards Agricultural
Sustainability

Kuntal Bera , Puspendu Dutta , and Sanjoy Sadhukhan

Abstract

Plants are continually exposed to various environmental
extremities during their growing period. As such, plants
have to constantly struggle with different abiotic and
biotic factors. Biotic factors can be controlled to a certain
extent through the application of pesticides or by adopting
various crop protection techniques. But the adverse
impacts of abiotic stress elements such as drought, high
temperature, salinity, heavy rainfall, snowfall, UV radi-
ations, hazardous chemicals, air pollutants, etc., are very
difficult to manage. Plants usually adopt various mech-
anisms involving alteration in anatomical, physiological,
biochemical functions, or regulation of different
stress-responsive genes, signaling pathways, etc. Abiotic
stresses cause modifications in plant metabolism that
leads to enhanced production of different secondary
metabolites like polyamines, phenol, proline, etc., which,
in turn, act directly or indirectly to build up abiotic stress
tolerance by activating different stress response systems.
Starch, the major reserve material of plants plays a key
role in stress mitigation. Plants remobilize their reserve
starch during stress conditions to provide energy. This
chapter aims to discuss briefly how plants perceive
different kinds of stresses, transduce early signals within
their system, elicit different types of responses, or how
these stress responses are determined genetically.
Attempts have also been made to illustrate what options
would be helpful to attain agricultural sustainability
through the mitigation of stresses.
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1 Introduction

Any kind of environmental factor that adversely affects plant
growth and productivity are considered abiotic stress. Abi-
otic stresses are the environmental extremities that mostly
include drought, salinity, high or low temperatures, UV
radiations, hazardous chemicals, air pollutants, etc., leading
to huge yield loss every year. Abiotic stress is not always a
true natural phenomenon, rather anthropogenic influences
such as long-term indiscriminate use of natural resources by
humans also result in the generation of specific abiotic stress
in a particular region. For example, over lifting of ground-
water for agricultural uses, deforestation of large areas can
lead to extreme drought or high-temperature stress in near
future. Further, heavy metals and other toxic chemicals as
emitted from rapidly growing chemical-based industries lead
to an increase in heavy metals and other toxic compounds to
the soil and that results in deterioration of soil health or thus
adversely affects the crop stand. As the emissions of
greenhouse gases (mainly CO2, CH4, and N2O) are the main
causes of global warming, that is, resulting in the rise of
seawater level by melting the ice reservoirs. A meta-analysis
study indicates that the average global temperature will
increase 2.0–4.9 °C by the end of 2100 (Raza et al. 2019).
Though there are many reasons behind global climate
change, it is thought that the consolidated reason behind the
global climatic change is the revolution in industrialization
(Dutta et al. 2020). Mainly the anthropogenic causes
including extensive use of fossil fuels to support the rapid
industrialization, urbanization, deforestation, burning of
agricultural wastes, excessive use of non-biodegradable
commodities, etc., play a major role in changing the cli-
mate. Moreover, climate change is also being induced due to
a break in hydrological cycles that causes alteration in
atmospheric behaviour. Consequently, this leads to exposing
plants to severe and extreme climatic situations that
adversely affect the morphological, developmental, cellular,
and molecular processes in plants (Chaudhry and Sidhu
2021).

Out of the total arable land of the world, which is about
24.2% of the total geographical land of the world, only
10.6% is potentially cultivated and the rest is not practicable
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for farming due to abiotic stresses (Das and Tzudir 2021).
Worldwide about 42% of yield loss is accounted for every
year due to several abiotic stresses. Only the drought stress
leads to about 27% yield loss per year in the tropical regions
of the world. Further, it has been estimated that 50% of the
world’s arable land will be damaged due to high-level
salinity by the year 2050 (Hasanuzzaman et al. 2014). The
biggest challenge is to ensure feed for the rapidly increasing
global population. The global population is predicted about
9 billion by 2050 and the food requirements are expected to
rise about 85% of total present needs (FAOSTAT 2017). But
the global food security is under severe threat as different
abiotic stresses can cause up to 70% annual yield loss of
major food crops worldwide (Waqas et al. 2019).

Plants usually adopt two major strategies to combat these
abiotic stresses. These strategies include stress avoidance
and stress tolerance or acclimation (Kosová et al. 2011). The
stress acclimation by the plants is chiefly facilitated through
the changes in gene expression, alterations in the transcrip-
tome, proteome, and metabolome of the plant (Koyro et al.
2012). Researchers are focussed on understanding different
components involved in the molecular excitation and
expression of different pathways under different abiotic
stresses (Haak et al. 2017). Elucidation of the exact mech-
anisms behind the plant's acclimation to abiotic stresses
would lead us to achieve sustainability in agricultural pro-
duction as the main challenges in sustainable agriculture
practices are the development of crops with desired agro-
nomical traits and stress-resilient capabilities. Further, to
develop stress-resistant high-yielding crop varieties, it is
essential to have better insight into different aspects of plant
systems such as physiological, biochemical, and molecular
changes during stress and also about the regulatory network
of gene expression (Yadav et al. 2020).

With this perspective, the present chapter aims to cate-
gorize different abiotic stresses and the plant responses under
such stress conditions. Further, attempts have been taken to
illustrate the mechanisms or strategies adopted by plants
towards mitigation of abiotic stresses.

2 Definition and Classification of Abiotic
Stresses

The environment is made of both living and non-living
components. The interaction between these two components
and the negative impacts of these interactions on any living
component can be defined as stress. The abiotic stress only
relates the negative impacts of some non-living compo-
nents of the environment on the living components and in
the context of abiotic stress, these non-living components are
often known as abiotic factors such as temperature, salt,
water, light, radiation, chemicals, and heavy metals and
these factors responsible for related stresses (Fig. 1).

2.1 Nature of Stress Factors

Worldwide agriculture is greatly affected by the three major
abiotic factors, viz., high temperature, salinity, and water
scarcity or drought. All these stresses have a wide geo-
graphical distribution and they limit the crop yield and thus
cause a serious threat to the food security of the
ever-growing global population (Fedoroff et al. 2010). At the
average rate of temperature anomaly of 0.2 °C per year, it is
predicted that the global average temperature will be
increased by 1.8–4 °C at the end of 2100 (Hasanuzzaman
et al. 2013). Heat stress or high-temperature stress is initiated

Fig. 1 Different abiotic stress
factors
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when the environmental temperature increases above the
optimal temperature for the plant. The regulating factors of
heat stress include the quality, intensity, and duration of light
exposed to the plant. On contrary, low temperature is also
abiotic stress faced by higher plants and it affects normal
growth and development by altering the functions of cellular
components or their metabolism on plants. Thus,
low-temperature stress has also a huge impact on impeding
the geographical distribution of plant species. It can be
classified into two types, viz., chilling (0–15 °C) and
freezing (<0 °C) stress (Fig. 1) (Ritonga and Chen 2020).
Plants acclimatize with low temperature through very com-
plex mechanisms that include the accumulation of cryopro-
tectant compounds such as soluble sugars, prolines, types of
flavonoids and anthocyanins, changes in the composition of
cellular membranes such as lipid and protein, and also
changes in the plant’s transcriptomic and proteomic status
(Leuendorf et al. 2020).

Drought, on the other hand, is described as a lack of water
over an extended period. It may occur due to several reasons
like low rainfall, accumulation of excessive salts into the
rhizospheric region, extreme temperature fluctuation, and high
intensity of light. Due to the complex multidimensional nature
of drought, it can be classified into four categories, these are
(1) meteorological drought, which is the consequence of dry
weather and very low or no precipitation, (2) hydrological
drought represent by the low and restricted supply of surface
and ground waters which come across after a prolonged
meteorological drought, (3) agricultural drought can be
defined as a decrease in soil water levels and crop failures,
which relentlessly affects the worldwide crop production and
food security, and (4) socio-economic drought, that is, the
ultimate consequences of other three droughts as it restricts
the supply and demand chain of our everyday needs and huge
monetary losses (Ahluwalia et al. 2021; Wojtyla et al. 2020;
Zia et al. 2020). Currently, more than 55 million people
worldwide are being affected by drought and this number may
be about 700 million by 2030 as predicted in the United
Nations World Water Development Report, 2018 (UNESCO
World Water Assessment Programme 2018). In terms of land
affected by drought, only in India, about 42% of arable land
facing drought (Gogoi and Tripathi 2019) out of 159.7 million
hectares of agricultural land (Himani 2014). Further, water-
logging is emerging as major abiotic stress due to drastic
changes in the current climatic scenario. As such increase in
the intensity and frequency of flood occurrence make the
situation worse (Kaur et al. 2021). About 16% of irrigated
arable lands all over the world are affected by waterlogging
caused either by natural or anthropological means (Zheng
et al. 2021). The regions of the world such as Southeast Asia,
East Africa, and the northern part of South America are
expected to be affected by waterlogging more frequently
(Voesenek and Bailey‐Serres 2015; Zheng et al. 2021). As a

result of waterlogging conditions, primarily roots are affected
with severe hypoxia due to slowing down of oxygen diffusion
rate by nearly 104 times than that in the air (Panozzo et al.
2019; Kaur et al. 2021).

Soil salinity is another major threat to crop production
worldwide. Salinity affects about 900 million hectares of
land which is nearly 20% of the total land on Earth, and also
covers about half of the total irrigated land worldwide
(Velmurugan et al. 2020). The accumulation of salts into the
soil can be a result of natural phenomena like the physical
and chemical weathering of rocks. This is because weath-
ering leads to the formation of soluble salts such as chlorides
(Cl−), sulphates (SO4

2−), and carbonates (HCO3
−) of

sodium, calcium or magnesium. Further, the movement of
soluble salts through the rivers and other water channels, and
then using this salt contaminated water for irrigation pur-
poses causes salt deposition in soil (Sharma et al. 2016). Salt
accumulation may also be due to high evaporation, lack of
sufficient precipitation, and intrusion of seawater into the
coastal lands (Kumar and Sharma 2020). The anthropogenic
reasons for soil salinity include an unplanned restricted
drainage system, use of low depth groundwater during irri-
gation, inappropriate or poor irrigation practices in low
rainfall areas, excessive use of chemical-based fertilizers,
and soil amendments like lime and gypsum, dumping of
industrial as well as domestic sewage sludge onto the soil
(Bui 2017; Kumar and Sharma 2020).

Further, the energy sources such as light are an important
developmental signal that can also negatively affect the
plant’s growth and also act as a modulator for respective
stress responses. Both the quality and the quantity of light
(the intensities of light exceeded over light saturation point
(PPFD) are the two main aspects of light stress. These two
factors are being constantly changed due to sunny or cloudy
skies and seasonal shifts like spring with canopy closure due
to the sun’s inclination (Casal 2013; Kozai 2016; Roeber
et al. 2021). Another cause of light stress is photoperiodism,
that is, the period of light exposure received by plants in the
ratio of day and night (Thoma et al. 2020). UV-B and UV-A,
an integral part of the light spectrum reaching the earth's
surface, also cause severe damages that include damage to
DNA and protein, excessive production of reactive oxygen
species (ROS), and other changes in the cellular functioning
of a plant (Müller-Xing et al. 2014).

Heavy metals are the transition metals characteristics with
an atomic mass higher than 0.002 kg with approximate
molecular weight and density of 5 N/m3 and 5 g/cm3,
respectively (Rascio and Navari-Izzo 2011; Singh et al.
2020). There are two main sources of heavy metals, viz.,
natural resources such as weathering of rocks, mineral ores,
volcanic ashes or lava deposition and anthropological
influence such as urban development, rapid industrialization,
waste of electricity generation plants, sewages from mining
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or refinery industries (Singh et al. 2020). There are two cat-
egories of these metals that induce stress to the plants either
due to deficiency or abundance. Some of these are metals
such as Cu, Zn, Mn, Ni, Fe, Co, Mo, Se, etc., are essential but
others such as Cd, As, Pb, Cr, Hg, Al, etc., are the
nonessential metals. The major events of metal toxicity in
agriculture are observed for Cd, As, Pb, Cr, and Cu (Singh
et al. 2020). The essential metals take part in several bio-
chemical reactions like transfer of electrons in different
pathways, activation of enzymes, synthesis of different pig-
ments, and also in the redox reactions (Fageria et al. 2009;
Chaffai and Koyama 2011), whereas the nonessential metals
don’t have any role in the biological reactions or plants
growth, rather they are the toxic for the plants even at low
concentration as they compete with the essential metals for the
same protein binding sites (Torres et al. 2008). The deficiency
in the required concentration of essential metals to carry out
normal cellular functioning of plants is known as nutrient
deficiency. Although at higher concentrations some essential
metals may also cause serious damage to the plants. Gener-
ally, an increased concentration of the nonessential metals
over the toxic limit is referred to as heavy metal stress.

3 Effects of Abiotic Stresses

3.1 Heat Stress

Overexploitation of fossil fuels to meet the demand of the
ever-increasing population is the major cause of global
warming and associated climate change. Heat stress has
recently been come up as a major factor that contributes to a
significant reduction of crop yield every year (Zhou et al.
2016; Shukla et al. 2019; Hassan et al. 2021). Heat stress
leads to oxidative stress in plants through the overproduction
of ROS in plants. The main effects of ROS under heat stress
include disruption of membrane stability by promoting per-
oxidation of lipid constituents of the membrane, and thereby
leads to the disintegration of membrane or increases mem-
brane leakage (Balal et al. 2016). The disintegration of the cell
membrane has been reported to promote the passive efflux of
ions from the cytosol. Further, membrane disintegration is
considered to be irreversible, and that ultimately leads to plant
death (Ilík et al. 2018). Heat stress also limits the overall plant
growth and crop yield as the rate of photosynthesis is severely
affected due to reduced chlorophyll biosynthesis or Rubisco
activity under heat stress (Balal et al. 2016; Zhou et al. 2016;
Masouleh and Sassine 2020). It has also been reported that
continuous exposure of plants to a fairly high temperature or
for a shorter time with extremely high temperature lead to
denaturation of proteins and inactivation of different enzymes
along with a loss of membrane integrity. Moreover, contin-
uous heat stress also alters the anatomical structures of various

subcellular organelles including changes in the shape of
chloroplasts, bulging of stomatal lamellae, changes in struc-
tural organizations of thylakoids, and these changes resulted
in downward functioning of photosynthesis and respiratory
activities (Lipiec et al. 2013). Heat stress also alters ion and
osmotic homeostasis at the cellular level as it eventually
interrupts the pool of molecular chaperones that are involved
in sustaining protein homeostasis as well as in DNA stabi-
lization (Rai et al. 2020). Heat stress may also cause to
increase in the soil temperature and this situation is accom-
panied by a scarcity of soil water content or drought. The
occurrence of such a situation magnifies the stress effects on
plants. Pollen sterility and damage in female reproductive
organs have been reported under the combined effect of heat
and drought due to alterations in the phenology and viability
of pollens, changing morphology and anatomical construction
of pistils. For example, the combined effect of these stress
intensify intensifying lipid peroxidation and/or decreasing
nitrogen oxide production in stigmatic papilla cells of wheat
(Fábián et al. 2019). Further, the concurrent effects of these
two stresses in terms of biosynthesis of photosynthetic pig-
ments, accumulation of osmolytes like soluble sugars and free
prolines, enzymatic and non-enzymatic antioxidants, and the
nutrient uptake have been reported to be more intense than
individual effects in maize (Hussain et al. 2019).

3.2 Low-Temperature Stress

Similar to heat stress, cold stress also causes huge crop loss
every year mainly in the subtropical and temperate regions
of the world. Field crops like Oryza sativa, Zea mays,
Solanum lycopersicum, Glycine max, Gossypium hirsutum
cannot acclimatize with cold stress. The growth and devel-
opment of these species are severely affected under cold
stress, and this limits the geographical distribution of these
plant species only within tropical or subtropical regions
(Ding et al. 2019). Cold stress causes severe disturbances at
the morphological, cellular, and/or molecular levels. Low
temperature below the optimal level (15 °C) causes lower
germination along with stunted seedlings, chlorosis and
necrosis and wilting of leaves, membrane damage due to
acute dehydration associated with freezing, altered viscosity
of cytoplasm, disrupted integrity of intracellular organelles,
loss of organelle compartmentalization, disruption of normal
flow of photosynthesis, reduced enzymatic activities, desta-
bilization of protein complexes, disruption of DNA strands
and secondary structure of RNA, accumulation of ROS, and
ultimately may lead to death. Furthermore, cold stress during
anthesis causes severe damages to the reproductive organs of
the plants including increased pollen sterility, distortion of
pollen tubes, ovule abortion or flower dropping (Yadav
2010; Thakur and Nayyar 2013; Atayee and Noori 2020).
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Freezing stress refers to the type of cold stress when the
temperature drops below 0 °C. It leads to the formation of
ice crystals in the intracellular fluid and ultimately causes
severe damages to the membrane integrity as well as meta-
bolic processes (Atayee and Noori 2020).

3.3 Drought Stress

Drought or water deficit stress is one of the major abiotic
stresses that also adversely affect crop production world-
wide. Primarily drought affects the normal growth of plants
by changing their water retention capacity and water use
efficiency. Such alterations cause to decrease in water pres-
sure within the leaves and finally result in wilting of leaves
as the first recognized symptom (Zeppel et al. 2015; Fathi
and Tari 2016). Generally, drought induces changes in var-
ious aspects of plants including morphological, anatomical,
phenological, physio-biochemical, and molecular changes.
Water is known as the most essential component for every
living things on the Earth. Thus, the scarcity of water can
also cause several negative effects on plants including
reduced seed germination, prolonged or absolute dormancy,
root proliferation at early growth stages, wilting of leaves,
and reduced the size of leaves and/or stems. Water stress
also causes to loss of turgor pressure in leaves and reduces
stomatal conductance. Further, it reduces the rate of photo-
synthesis and transpiration by affecting the electron transport
chain. Drought stress also enhances the generation of ROS
that leads to the disintegration of chloroplast and damages
the thylakoid structure. Drought is generally concurrent with
heat stress and soil salinity, and the combined effects of
these stresses amplify the negative impacts on the plant's
growth and development. Drought together with heat shows
a similar type of effects but with a greater magnitude of
injuries including damage of PS-II, reduce the activity of
RuBisCO, significantly increase of leaf temperature,
decrease stomatal conductance, and reducing the concen-
tration of photosynthetic pigments (Ahluwalia et al. 2021).
Exposure of Solanum lycopersicum to both drought and heat
stress has been reported to reduce the concentration of
chlorophyll and carotenoids by 80% and 57%, respectively
(Raja et al. 2020). The reproductive stage is greatly affected
by the combined effect of both as these stresses negatively
affect the pollen and pistil development, disrupt ovule
functions, and ultimately resulted in low grain weight (Pra-
sad et al. 2011). The combined effects of drought and heat
lead to an increase in the generation of ROS and malondi-
aldehyde accumulation, downregulating the activities of
antioxidant enzymes like CAT and APX in maize (Hussain
et al. 2019). Proline acts as the major osmoprotectant under
drought stress. But excessive proline exhibits toxicity,
whereas sucrose acts as the main osmoprotectant when the

plants are exposed to the combined stresses (Cohen et al.
2021). Though there are several similarities in the adverse
impact of drought and salinity stress, they differ in their
manifestations. For example, roots elongation to the deeper
level of soil in search of water is the natural adaptation by
plants under severe drought, but roots become thicker and
accumulate more ions like Na+ and Cl− under salinity stress
(Lee et al. 2004; Sahin et al. 2018). Excessive production of
reactive oxygen species (ROS) is another effect under the
combined stress of drought and salinity that leads to a higher
degree of lipid peroxidation, a mutation in DNA strands, and
obvious cell damage (Kumar et al. 2019). The combined
stress of drought and salinity has been reported to increase
abscission of leaves and flowers, early senescence, and
premature cell death (Ahmed et al. 2015; Sahin et al. 2018).

3.4 Waterlogging Stress

Waterlogging poses a serious threat to sustainable agricul-
ture particularly in the region where heavy rainfall is quite
frequent. In the agricultural aspect, flooding is the result of
either intensive and/or extensive rainfall over a period or
overflowing of water from the small to large water bodies
like rivers. Waterlogging not only causes crop losses, rather
its effect encompasses economic and social aspects as floods
cause heavy loss to livestock and seed stocks, spreading of
diseases, destruction of infrastructures, agricultural yield
loss, and obvious food shortage (Fukao et al. 2019). The
crop loss by waterlogging during 2006–2016 has been
estimated to the tune of billions of dollars (FAO 2017).
Several alterations as takes place in soil during flooding
include disruption of soil properties like pH, redox potential,
and the soil O2 level. Waterlogging stresses are classified
into two categories depending on the O2 availability, and
these are (i) hypoxia (refers to a deficiency of O2) and
(ii) anoxia (refers to the complete absence of O2). It has been
reported that there is a metabolic shift from aerobic to
anaerobic fermentation to supply the ATP required for sus-
taining the metabolic processes of the plant particularly
when it undergoes oxygen restrictions (Ashraf 2012). Fur-
ther, waterlogging or flooding conditions can be classified
into two groups depending on the water depth over the land
in respect to plant height. These are either complete sub-
mergence or superficial that covers only the root to the
middle part of a plant. However, both types of flooding cause
hypoxia (<21% O2) by reducing the flow of oxygen from the
air to the plants (Lee et al. 2011; Sasidharan et al. 2017).
Several negative impacts of flooding include increasing the
vulnerability of plants to pathogen attack, hindering expo-
sure of plants to light, and causing disturbances in stomatal
conductance. It also leads to a decrease in net CO2 assimi-
lation rate, hydraulic conductivity of roots, which affects
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adversely the translocation of carbohydrates. It has also been
reported that waterlogging decreases PS-II efficiency by
disrupting the chloroplast membrane, limits the activity of
RuBPC (ribulose bisphosphate carboxylase), leads to reduce
the rate of photosynthesis, and that are ultimately reflected in
crop losses (Ashraf 2012; Hsu et al. 2013; Tsai et al. 2016;
Yeung et al. 2018; Fukao et al. 2019). Further, it generates
nutrient deficiencies in the plant and causes damage to the
cell membrane integrity by enhancing the production of
ROS. It is also evident that waterlogging would initiate
autophagy or adaptive mechanisms of sequestrating the
damaged cellular components to the vacuoles to prevent
programmed cell death (PCD) as found in several plants like
Triticum aestivum Arabidopsis, Zea mays (Zhou et al. 2021).

3.5 Salinity Stress

Like other stresses, salinity is also considered major stress
that poses a severe threat to global crop production and food
security. Salinity has several negative impacts on the phys-
iological and biochemical functioning of plants including
germination of seeds or prolonging seed dormancy (Zhang
and Dai 2019). It has been reported that salt stress decreases
water potential, as well as reduces food reserve in germi-
nating seeds, which, in turn, restricts effective seed germi-
nation of broccoli and cauliflower (Wu et al. 2019). Salinity
enhances the dormancy in seeds of Arabidopsis thaliana by
masking phosphatase activity in seeds (Nasri et al. 2016).
Germination rates are reduced under salt stress due to
increased accumulation of soluble carbohydrates, starch, and
abscisic acid content but reduced levels of GA3 (Arif et al.
2020). Plants exposed to high soil salinity disrupt the
structural integrity of stomata and chloroplasts so decreases
photosynthetic pigment concentrations and ultimately lead to
a fall in photosynthetic rate. It has been reported that salt
stress reduces net photosynthesis, Fv/Fm ratio, stomatal
conductance, and transpiration rate in rocket plants (Hni-
ličková et al. 2017). Salt stress has also been reported to
significantly reduce gaseous exchange, the efficiency of
PS-II, stomatal conductance, water potential of soil and leaf.
Salinity also leads to osmotic stress in plants as it prevents
ascent of sap by lowering turgor pressure. Ionic imbalances
within the cell are the major consequences of salt stress. The
toxicity by ions of Na+ and Cl− creates a physiological
drought by reducing the osmotic potential of soil water and it
leads to induce a nutrient deficiency in plants (Khan et al.
2019). Deposition of Na+ causes to reduce the life span of
leaves and creates necrosis (Khan and Bano 2016). The
cytoplasmic composition and its viscosity are also altered by
salt stress (Ali and Xie 2020). The detrimental effects of salt
stress are often observed in leguminous plants. Salinity

reduces the size and volume of nodules per plant and also
hampers the nodulation as it lowers the pressure of the
peripheral cells of the nodules or leads to a very low release
of bacteria due to the enlargement of infection thread and/or,
stimulated accumulation of phenolic compounds (Shahid
et al. 2020).

3.6 Light Stress

Sunlight is one of the major inputs for plant growth as it
provides the necessary energy for the metabolic functionality
of plants by photosynthesis. But sometimes sun energy,
particularly when it comes in the form of high-intensity light
along with the integral ultraviolet (UV) rays, can cause
potential damage to DNA, protein, and other cellular com-
ponents. Solar UV rays are composed of UV-A (315–
400 nm), UV-B (280–315 nm), and UV-C (<280 nm). But
it is only UV-A and part of UV-B reaching the earth's sur-
face as the total UV-C plus most of the UV-B are absorbed
by the stratospheric ozone layer (McKenzie et al. 2011). But
the hazardous effects of UV-B have increased significantly
in recent decades as more amounts of UV-B are now
reaching the earth due to the excessive release of
chlorofluorocarbon (CFC) in the atmosphere that results in
depletion of the ozone layer (Müller-Xing et al. 2014). The
high-intensity light over the photosynthetic requirement
disturbs photosynthetic processes, particularly PS-II that
leads to photoinhibition. Photoinhibition is a state where
light reduces the photosynthetic efficiency either by
decreasing the rate of O2 evolution or CO2 assimilation. But
photoinhibition represents a complex mechanism at the
molecular level, and it involves the degradation of D1 pro-
tein which is a part of the reaction centre of PS-II (Takahashi
and Badger 2011; Vass 2012; Tyystjärvi 2013). It has been
reported that the entire process of photoinhibition, as well as
its repair mechanism, depends on the membrane fluidity of
the thylakoid membrane (Yamamoto 2016). Excessive light
may also cause oxidative damage by increasing ROS accu-
mulation (Roeber et al. 2021). Some specific and dynamic
transcriptional changes during expression of certain genes
such as CRY1, HY5, PAP1/PAP2, ELIP1/ELIP2 have been
reported under extreme light stress (Consentino et al. 2015;
Jourdan et al. 2015; Maier and Hoecker 2015; Li et al. 2018;
Huang et al. 2019; Brelsford et al. 2019). Further, pho-
toperiod is a state where plants are exposed to a longer
period of light and it can also cause photoperiod stress or
circadian stress (Nitschke et al. 2016; Nitschke 2017). Some
specific genes such as ZAT12 and BAP1 have been reported
to be expressed with induction of oxidative stress specifi-
cally at night after a long period of light exposure. A re-
duction in the maximum quantum efficiency of PS-II has
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been observed on the very next day of photoperiod stress.
Further, a repeated happening of this event has been reported
to cause PCD (Abuelsoud et al. 2020).

3.7 Heavy Metal Stress

Heavy metal stress is also a major hazard as it hinders the
growth and development of crop plants. Heavy metal indu-
ces excessive accumulation of ROS in plant cells, and then it
leads to cellular apoptosis associated with membrane per-
oxidation severe damage to nucleic acids, oxidation of
proteins, or inhibition of key enzymes required for several
metabolic processes (Flora 2011; Shahid et al. 2014). Acute
heavy metal stress has been reported to cause nutrient defi-
ciency by restricting nutrient uptake through roots due to
overproduction of ROS or RNS burst, and it ultimately
results in accelerated senescence in leaves, and/or cell death
(Gallego and Benavides 2019). Few effects under cadmium
(Cd) stress are chlorosis of leaf, rolling of leaf lamina,
stunted growth, hindrance in the stomatal opening, increased
membrane permeability, limited absorption, and its mobi-
lization of nitrate from root to shoot by decreasing the
activity of nitrate reductase (Singh et al. 2020). A higher
concentration of arsenic (As) interacts with several meta-
bolic processes. The two forms of arsenic, i.e., arsenate
(AsV) and arsenite (AsIII) can easily be absorbed by the
plants, and AsV is then converted into AsIII within the cell.
Arsenic damages the photosynthetic system by disrupting
the chloroplast membrane and also inhibits nutrient home-
ostasis by competing with essential metals. Arsenic also
disturbs the carbohydrate, lipid, protein, and sulphur meta-
bolisms of plants. Moreover, arsenic induces the accumu-
lation of ROS, which, in turn, causes membrane damage
through lipid peroxidation (Finnegan and Chen 2012; Wei
et al. 2020; Singh et al. 2020; Zhang et al. 2021).

Lead toxicity to plants includes chlorosis of leaves,
restricted growth, blackening of the root system, reduced
mineral nutrition (N, P, and K) and water balance, damaged
membrane structure, increased electrolyte leakage, and
accumulation of MDA. Lead also disrupts the ultrastructure
of chloroplast, interrupts with electron transport or Calvin
cycle by inhibiting the activities of associated enzymes,
causes deficiency in the content of CO2 by inducing stomatal
closure, reduces several parameters associated with seed
germination in various crops. It also restricts the activity of –
SH containing enzymes and inhibits the cell division at the
meristematic region of the root tip (Singh et al. 2020; Sofy
et al. 2020; Wei et al. 2020). Another heavy metal, chro-
mium is easily absorbed by the plants due to high solubility
particularly of chromium-IV (Cr(IV)). After entering into the
plant system, Cr(IV) is converted into less soluble but highly
toxic Cr(III). Apart from reducing growth, wilting of leaves,

or lowering vigour index, the major toxicity of chromium
includes overproduction of ROS that leads to oxidative
stress, damage DNA and protein structures, induce lipid
peroxidation, alters ultrastructure of thylakoids, inhibits
d-aminolevulinic acid dehydratase that involves in chloro-
phyll biosynthesis, and ultimately limits photosynthetic
activity (Singh et al. 2020; Sharma et al. 2020).

Another heavy metal, copper is an essential mineral
associated with several cellular constituents and metabolic
processes including mitochondrial respiration, electron
transport during photosynthesis. It also acts as a responder to
oxidative stress, synthesis of proteins, used in various hor-
mone signaling cascades, cell wall metabolism, a cofactor in
numerous enzymes such as cytochrome c oxidase,
polyphenol oxidase, Cu/Zn superoxide dismutase, amino
oxidase, plastocyanin, and laccase (Nazir et al. 2019; Zhang
et al. 2019). However, excessive uptake of Cu can cause
serious hazards to the plants including reduced growth of
plants, barred uptake of essential nutrition leading to nutrient
deficiency in plants, reduced pigment concentration,
decreased photosynthetic rate, hampered root development,
halted leaf expansion. Moreover, copper accumulation in the
plant has been reported to generate ROS that leads to
damage the key constituents of the cell-like nucleic acid,
proteins, lipids, and enzymes (Lillo et al. 2019; Zhang et al.
2019; Ameh and Sayes 2019, Jaime-Pérez et al. 2019).

4 Plant Responses to Stress Factors

Being sessile, plants are always being exposed to this con-
stantly changing environment. Such environmental changes
have often been proved as stressful to the plants. However,
plants adapt various mechanisms to sensing stress, and such
adaptation techniques have always been fundamental ques-
tions to the scholars of the respective field. Generally, plants
adapt multiple strategies ranging from morpho-physiological
to biochemical or molecular levels to survive against dif-
ferent stresses. Scientists have divided the stress responses of
plants into two main categories, viz., stress avoidance and
stress tolerance or known as stress acclimation. Stress
avoidance is the adaptation taken by the plants for a limited
period mostly until the stress condition remains and these
adaptations mainly involve morpho-physiological alter-
ations. But stress tolerance is physiologically active and
mediated through distinct changes in the biochemical or
even at the genetic level by changing the expression of
different genes and these finally lead to the changes of
plant’s transcriptome, proteome, and metabolome (Chaudhry
and Sidhu 2021; Marothia et al. 2020). It is noteworthy that
plants undergo stress escape through morphological adap-
tations under major environmental stresses like heat,
drought, waterlogging, salinity, and high light. But the
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adaptations involve physio-biochemical changes like modi-
fying molecular signaling cascade and expression of several
genes have been found under low temperature and heavy
metal stress.

4.1 Morpho-Physiological Responses

Morpho-physiological adaptations are mainly involved
either for stress avoidance or stress escaping for a certain
period. These responses include stunted growth, several
changes in shape and size of leaves, structural changes of the
cell membrane, changes in stomatal appearance, rate of
transpiration, water relation, water use efficiency, changes in
ionic imbalance, and structural disintegration of cell orga-
nelles like chloroplast or thylakoid. The
morpho-physiological responses of plants under various
stresses have been described below.

4.1.1 Heat
Heat stress induces several morpho-physiological alterations
in plants. One of the very common responses under intense
heat is the curling and rolling of leaf blades parallel to sunrays
to check the excessive absorption of solar light. Other
strategies adopted by plants under prolonged heat stress
include intensive transpiration to lower the leaf temperature,
increase the number of trichomatous of stomata, induce
stomatal closure, dense hairs are observed on leaves and/or
stems, large vessels are formed within leaves’ cells, reduce
leaf size to minimize light or heat absorption. Further, it
induces changes in the leaf orientation against light, deposi-
tion of silicon compounds, cuticle or waxy substances on leaf
epidermis to restrict water loss. Prolonged heat stress also
causes to increase in xylem vessels in the vascular bundle of
the root as well as of shoot and root length. Although some
plants undergo early heading to check the heavy yield loss
under heat stress through enhanced retention of green leaves
at anthesis. But this adaptation depends on the genotypes,
accumulation of different osmolytes, and enhanced photo-
synthesis (Srivastava et al. 2012; Hasanuzzaman et al. 2013;
Tiwari et al. 2020; Hassan et al. 2021).

4.1.2 Drought
Plants can escape drought by modulating vegetative or
reproductive growth in two different ways. One of these
mechanisms is rapid phonological development that involves
the reduced duration of crop growth with minimum seed
production before soil water depletes. As such these plants
don’t reveal any special modification in terms of morphology,
physiology, or biochemical responses. Whereas the other
strategy is developmental plasticity when the plants show
reduced growth with a little number of flowers and seeds
under a dry spell, but with the onset of wet seasons, extensive

growth and increased seed yield is observed. Several adap-
tation mechanisms like increased root number increase,
enhanced root length improved hydraulic conductance, and
minimized rate of transpiration rate are very common under
drought stress to maintain higher water content within the
tissues either by minimizing water loss or maximizing water
uptake. Higher water content in plant tissues induces several
positive responses such as maintenance of turgor pressure and
elasticity of cells, as well as enhancement of protoplasmic
resistance. Further, the accumulation of ABA content in the
mesophyll cell as well as in the guard cell of stomata leads to
stomatal closure under drought stress. Another adaptation to
protect photosynthetic apparatus from severe damage involves
the restricted generation of ROS as achieved either through
stomatal closure, or reduced metabolic activities (Ahluwalia
et al. 2021; Basu et al. 2016; Chun et al. 2021; Fathi and Tari
2016; Zia et al. 2020).

4.1.3 Waterlogging
Several morpho-physiological adaptations to escape water-
logging conditions include the emergence of adventitious
roots that help the plant stick to the surface or enhance the
water and nutrient uptake, anatomical changes such as the
formation of aerenchyma cells in the root tissues to facilitate
transportation of various gases from the aboveground plant
parts to the root system. The appearance of floating adven-
titious roots helps in maintaining the balance between O2

and CO2 levels within plants during waterlogging condi-
tions. The formation of aerenchyma cells also helps to
connect the adventitious roots to the stem and facilitate
diffusion of O2 from surrounding water to aerial shoots.
Moreover, the formation of aerial roots in some species has
been found as an important adaptation by plants to maintain
metabolic balance under submergence. Further, it has been
found that waterlogging leads to the formation of structural
barriers in the root to prevent oxygen loss from the root
apices that are termed a barrier to radial oxygen loss (ROL).
ROL has also been observed to inhibit the invasion of
phytotoxins in the root meristems. The floral development
gets delayed under waterlogging to save a lot of energy.
Accumulation of ethylene to the roots under hypoxic con-
ditions is another very common mechanism of adaptation
since it is associated with the development of adventitious
roots and the formation of aerenchymatous tissues (Sauter
2013; Voesenek and Bailey-Serres 2015; Ayi et al. 2016;
Rodríguez et al. 2018; Fukao et al. 2019; Ejiri and Shiono
2019; Eysholdt‐Derzsó and Sauter 2019, Li et al. 2019;
Garcia et al. 2020, Pedersen et al. 2021, Sharma et al. 2021).

4.1.4 Salinity
Plants tend to adapt themselves through several
morpho-physiological alterations to maintain normal water
potential during salinity stress conditions. The carbon
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dioxide fixation mechanism is shifted from C3 to C4 or CAM
in certain plants, viz., Mesembryanthemum crystallinum and
Atriplex lentiformis since such shifting in CO2 metabolism
allow these plants to reduce water losses through transpira-
tion as well as to tolerate long-term salinity. Apart from their
succulence nature, changes in root architecture are another
adaptive response by salt-tolerant plants under salinity.
A rapid reduction in root length, root diameter, or mean
surface area helps the plants to maintain water status by
regulating the uptake of water and ions. Further, the devel-
opment of many small stomata under salt stress is another
adaptive mechanism under salt stress. Moreover, prompt
accumulation of ABA in photosynthetic tissues has been
reported to stabilize the stomatal conductance under high
salinity. The role of the vacuole is also very important under
salinity stress as excess sodium is transported by H+/Na+

antiporter present in cellular membrane and tonoplast and
finally stored into the vacuole. Such accumulation of Na+ in
vacuoles helps in maintaining Na homeostasis (Carillo et al.
2019; Ijaz et al. 2019; Zhao et al. 2020; Ayub et al. 2020;
Guan et al. 2020).

4.1.5 Light
Plants employ several adaptation mechanisms to escape
from both high and low light stress conditions. Some
morpho-physiological responses under high light stress
include modified leaf orientations, reduced rosette diameters,
changed leaf angle against the direction of light exposure,
altered leaf reflectance, lowering light exposure of leaf
through downward bending of leaf lamina to minimize
excessive light absorption and development of air-filled hairs
in leaf surfaces. Further, increasing stomatal as well as
hydraulic conductance, deposition of inorganic materials on
leaf surfaces important physiological adaptation mechanisms
under high light stress. Moreover, changes in the chloroplast
positioning are yet another strategy to combat high light
stress where chloroplasts move towards the sidewalls of the
cell from the surface of the cell to avoid excessive absorption
of light. It has also been observed that prolonged high light
with or without enough groundwater can cause heat and/or
drought stress, respectively. In such conditions, plants’
morpho-physiological responses vary accordingly to the
specific stress. However, plants respond in opposite ways
during low light stress. So the chloroplast moves from the
side-wall of the cell surface to a strategic spreading
throughout the cell surface that leads to absorb more light.
By and large, the adaptation techniques of plants to light
stress have been explored at the biochemical and transcrip-
tomic levels, and these have been discussed in later parts of
this chapter. Apart from high and low light stress, the UV-B
spectrum is another component of solar radiation that has
been reported to cause severe damages to plants. Although
the adaptation against UV-B radiation is mostly achieved

through alterations at the molecular level, a few
morpho-physiological responses such as a reduced expan-
sion of cells at the epidermis, shortened inflorescence stem,
the reduced diameter of leaf rosette, increased the number of
flowering stems, and accumulation of flavonoids in the
epidermal and sub-epidermal cells have also been observed
under UV-B stress (Christie et al. 2015; Ghorbanzadeh et al.
2020; Hectors et al. 2014; Müller-Xing et al. 2014; Suetsugu
et al. 2016; Yang et al. 2019).

4.1.6 Heavy Metal Toxicity
Plants’ responses to overcome heavy metals stress are
broadly divided into two groups such as extracellular
defence and intracellular scavenging or detoxification to
heavy metals. The extracellular defence strategies include
secretion of inorganic ions, water, metal-binding amino
acids, sugars, bicarbonates, protons, CO2, mucilage sub-
stances, siderophores, allelopathic compounds, etc., as root
exudates. Then the root exudates form several stable ligand
complexes to reduce metal toxicity, make redox barriers, and
also alter the pH of the rhizosphere. Further, root exudates
facilitate ectomycorrhizal and arbuscular mycorrhizal asso-
ciation with plants, and it then prevents the uptake of heavy
metals by plant roots as heavy metals get absorbed, adsor-
bed, or chelated within the mycorrhizal cell. But the scav-
enging and detoxification mechanisms get started only when
the heavy metals enter into the cells. The scavenging
mechanisms involve the production of stable ligand com-
pounds like carboxylic acids (citrate, malate, etc.), amino
acids (histidine, glutamate, proline, etc.), nicotinamide, and
phytate that reduce the toxicity level of heavy metals by
binding them into complex compounds and sequestrating
them into the apoplastic spaces, cell wall, plasma membrane,
vacuoles, and other organelles (Arif et al. 2019; Choppala
et al. 2014; Dalvi and Bhalerao 2013; Hossain et al. 2012;
Iqbal et al. 2020; Singh et al. 2020).

4.2 Biochemical Responses

Biochemical responses of plants under stress exposure have
mostly involved the formation of ROS or induction of
oxidative stresses, and scavenging of ROS. ROS are mainly
generated in chloroplasts, mitochondria, apoplasts, peroxi-
somes, or several other sites having high redox potentiality
to provide electrons to the atmospheric O2 under different
abiotic stresses (Rodríguez-Serrano et al. 2016; Takagi et al.
2016; Vaahtera et al. 2014). Various ROS derivatives gen-
erated during stress include singlet oxygen (1O2), hydrogen
peroxide (H2O2), superoxide radical (O2

−), hydroxyl radical
(OH�), alkoxy radicals (RO�), and peroxy radicals (ROO�),
which have been known to create oxidative stress and found
to be highly toxic to the cellular components (Gilroy et al.
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2016; Liu and Yang 2020). The ROS play dual roles within
the cell. However, the negative (toxic) or positive (signal
transduction) role of ROS depend on the balance between
the ROS generation and its scavenging, and such equilib-
rium is most often disturbed by the prevailing stress condi-
tions like high temperature, drought, salinity, high light and
heavy metal toxicity (Baxter et al. 2014; Zhu 2016). The
stability of the equilibrium state of ROS depends on the
proper stress signaling towards ROS formation, the reac-
tivity of its diffusion, the baseline of ROS metabolism, and
the effective recognition of ROS signaling in different cell
organelles (Mittler 2017). The toxicity of ROS is neutralized
by membrane-bound NADPH oxidases including both
rubidium hydroxides (RBOHs) and
NADPH-dependent-oxidases (NOXs), or also by several
enzymatic and non-enzymatic antioxidants. Enzymatic
antioxidants include APX, CAT, SOD, DHAR, GPX, GR,
GST, MDHAR, and PPO while non-enzymatic antioxidants
include AsA, flavonoids, reduced GSH, tocopherols (a, b, c,
and d), carotenoids, phenolics, free amino acids like argi-
nine, histidine or proline (Liu and Yang 2020). Similar to the
ROS, the above antioxidants also have various subcellular
localizations such as in cytoplasm, chloroplast, mitochon-
dria, peroxisome, apoplasts, endoplasmic reticulum, plasma
membrane, or other non-green plastids (Liu and Yang 2020).

The temperature-sensitiveness of enzymatic antioxidants has
been studied and it has been reported that the accumulations of
APX, CAT, and SOD are accelerated at the initial stage of high
temperature (50 °C) exposure, but these enzymes get declined
under prolonged exposure to high temperature. Further, POD
and GR have also been reported to witness a declining trend
under exposure between 20 °C and 50 °C temperatures. The
average temperature at which the antioxidant status is between
35 °C and 40 °C in heat tolerance species while in
heat-sensitive species this temperature is 30 °C (Chakraborty
and Pradhan 2011). Superoxide is continually formed in
chloroplast and mitochondria because of electron leakage, but
at the same time, SOD acts as a first-line defence to protect the
cell from superoxide toxicity or superoxide-mediated damages
under heat stress. SOD converts superoxides into H2O2 and
then the enzymes such as APX, CAT, and POD regulate the
scavenging of H2O2. In the presence of Fe2+ and Fe3+, H2O2

forms OH� (hydroxyl radical) by Haber–Weiss reaction and the
OH� radicals are extremely dangerous for membranes, proteins,
lipids, DNA, and other macromolecules of the cell. But several
antioxidants like flavonoids, proline, sugars, GR, GSH, etc.,
can effectively scavenge hydroxyl radicals (Tiwari et al. 2020;
Liu and Yang 2020). An increased accumulation of H2O2 and
MDA has been reported in tomato plants under individual heat,
drought, and/or combined stress. Accumulation of MDA under
these stresses is an indicator of membrane injury since MDA is
formed by the lipid peroxidation of bio-membranes (Zandalinas

et al. 2018). The accumulation of prolines also gets enhanced
under the same stress combinations. Prolines help to tolerate
heat and drought stress by stabilizing subcellular components,
scavenging free radicals, and maintaining the redox balance of
cellular buffer (Nurdiani et al. 2018). In moth beans, heat stress
has been reported to cause increased accumulation of GPOX,
SOD, and CAT along with non-enzymatic antioxidants as
proline and sugars (Harsh et al. 2016).

ROS are generated in plants as an inexorable conse-
quence of drought stress. While in low concentration, ROS
act as secondary messengers to initiate several metabolic
pathways, but excessive accumulation of ROS induces
oxidative damage to the cellular components. The various
damaging roles of ROS include lipid peroxidation at the cell
membrane, disruption of membrane integrity, fragmentation
of peptide chains, altering protein structure and functions,
rupturing of DNA strands, removal of nucleotides from the
DNA strand, inducing PCD, etc. (Sharma et al. 2012).
Further, one of the primary responses under drought con-
ditions is the closing of stomata to restrict water loss through
transpiration. But gaseous exchange through stomata is also
hampered as a definite consequence of early closure of
stomata under drought stress. It, therefore, leads to a
decrease in the rate of photosynthesis and also affects the
Calvin cycle, and causes to decrease in the regeneration of
electron acceptors through feedback inhibition or due to low
consumption of NADPH or ATP. These events, in turn,
promote higher production and accumulation of ROS within
cellular compartments (Chiappero et al. 2019). However,
different enzymatic (APX, CAT, SOD, POD, etc.) and
non-enzymatic antioxidants (proline, soluble sugars, car-
otenoids, etc.) come into action to cope with such overpro-
duction of ROS and damage caused by them (Etesami and
Maheshwari 2018; Chiappero et al. 2019; Zia et al. 2020). It
is worthy to mention that C4 and CAM plants have better
tolerance against drought as compared to C3 plants. C4

plants possess a special ‘Kranz wreath structure’ which helps
to improve water use efficiency (WUE) in C4 plants than C3
plants. Further, this special anatomical feature helps to
assimilate more CO2 that results in higher production of
organic matter, and this, in turn, saves the C4 plants from
early death under drought conditions. On the other hand,
CAM plants adapt a unique mechanism to reduce water loss
from the plants. These plants absorb CO2 and fix it into
malic acid at night since the stomata of CAM plants remain
open during the night. However, decarboxylation of malic
acid provides CO2 for the Calvin cycle to operate in the
daytime when stomata remain closed, and as such transpi-
ration loss during the day can be avoided successfully (Yang
et al. 2021).

Similarly, the other abiotic stresses like salinity also
induce generations of ROS due to stomatal closure. It,
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therefore, leads to a higher accumulation of Na+ as well as
disruption of photosynthesis, and consequently, the surplus
of absorbed light promotes ROS production. ROS produc-
tion in apoplast is facilitated by several genes encoding
enzymes such as plasma membrane-bound respiratory burst
oxidase homologs (AtRbohD and AtRbohF), apoplastic
DAO, POD, and PAO (Miller et al. 2010b). The genes like
AtRbohD and AtRbohF get upregulated under salt stress and
provide hypersensitive responses to salinity. Further,
AtRbohD/AtRbohF induced production of ROS has been
reported to enhance the movement of K+ into the cytosol and
that, in turn, decreases the Na+/K+ ratio (Ma et al. 2012).
AtRbohD facilitates the long-distance signal transport upon
exposure to various environmental stimuli whereas AtRbohF
has been found to decrease the transport of Na+ from root to
shoot as it limits the distribution of Na+ in xylem sap (Miller
et al. 2009; Jiang et al. 2012). Apart from the usual oxidative
damage to the cellular components, ROS can also interrupt
the ionic homeostasis within the cell under salt stress.
Moreover, it activates different ROS susceptible ion chan-
nels such as Ca2+, K+, Na+, GORK like K+ efflux, annexin
mediated conductance, Ca2+ pump ion channels, and these
result in altered functions of several organelles like chloro-
plast. However, some enzymes such as CAT, SOD, APX or
GR, and some non-enzymatic antioxidants like ascorbate,
glutathione, and tocopherols have also been reported to be
accumulated for scavenging the ROS (Bose 2014, Hanin
et al. 2016; Demidchik 2018; Zhao et al. 2020).

Both the quality and quantity of light are important as any
imbalance can induce severe damage to PS-I or PS-II. As a
consequence, it can create energy discrepancy between
photosystems and also trigger stoichiometric adjustments of
photosynthetic complexes which may lead to generating
reactive oxygen species (Tikkanen and Aro 2014; Zavafer
et al. 2015). The generation of excessive ROS is directly
related to oxidative damage of chloroplast and also to pho-
toinhibition in photosystems which ultimately results in
reduced growth and yield of the crop plants. However, plants
activate buffering mechanisms to maintain the balance
between light-induced ROS accumulation and scavenging,
as well as to improve photosynthetic efficiency by inducing
cyclic photosynthetic electron flow (CEF) and
non-photochemical quenching (NPQ) (Murchie 2017; Yang
et al. 2018). The mechanism of CEF is related to the
absorption of excess light energy around the PS-I and also
the re-utilization of reducing equivalents produced by PS-I
with the generation of ATPs but without accumulation of
NADPH (Shikanai 2014). Whereas, NPQ helps to effectively
eliminate surplus light energy from PS-II involving associ-
ated chlorophyll-bound quenching process, zeaxanthin for-
mation by VAZ cycle, state transition or photoinhibition
quenching (Kulasek et al. 2016; Ruban 2016).

ROS generation is also the primary indicator of heavy
metal stress. ROS particularly at low concentrations acts as
signaling molecules to induce an antioxidant system while
excessive production leads to cellular damage as happened
in other stresses (Gokul et al. 2016). The signaling system
mediated by ROS has been found to upregulate antioxidant
enzymes to scavenge the reactive oxygen species under
heavy metal stress. H2O2 has often been observed as a signal
amplifier in plants as it has the longest life span among the
reactive oxygen species. Glutathione is a small
non-enzymatic antioxidant that serves as a substrate of
glutathione-dependent enzymes including glutathione per-
oxidase (GPOX) and glutathione S-transferase (GST).
Both GPOX and GST play vital roles in the successful
scavenging of ROS (Ding et al. 2017). Another aspect of
glutathione-mediated tolerance to heavy metal stress
involves the transportation and storage of the reduced sulfurs
derived from cysteine. These reduced sulfurs then bind
directly to the heavy metals or induce indirect synthesis of
phytochelatins from glutathione by phytochelatin synthases.
Phytochelatins have a higher degree of affinity to heavy
metals, and thus these can effectively bind with heavy metals
and then transport them to the vacuole (Hasanuzzaman et al.
2017; Jacquart et al. 2017). It is now well studied that glu-
tathione can induce heavy metal tolerance by alleviating the
oxidative stress and scavenging ROS through glutathione
S-transferase and glutathione peroxidase or inducing syn-
thesis of phytochelatins (Keyster et al. 2020).

Waterlogging or flooding also leads to oxidative stress by
generating ROS. However, plants induce
antioxidant-mediated defence mechanisms including both
enzymatic and non-enzymatic systems to cope with the
damage as made by ROS under waterlogging. It has also been
reported that enzymatic antioxidants such as CAT, POD,
POX, SOD, APX, and GR as well as non-enzymatic antiox-
idants such as AsA, reduced GSH, proline, carotenoids, and
xanthophylls are involved to scavenge ROS under water-
logged conditions (Amador et al. 2012; Arbona et al. 2008;
Ashraf 2012; Gomathi et al. 2015; Ou et al. 2011).

4.3 Molecular Responses

Plants can quickly sense the type and intensity of the stress,
and then they try to escape from the stress effects through
some alterations at the molecular level. By sensing the
characteristics of various stresses, plants initiate several
kinds of changes through molecular networks including
signaling, initiation or termination of different pathways to
develop short or long-term tolerance. Some common
responses including phytohormonal modulation, generation
or scavenging of ROS, changes in protein framework,
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expression or depression of several transcription factors,
miRNA mediated response, etc., are associated with the
development of abiotic stress tolerance so that plants can
acclimatize according to the surrounding stress condition
and continue its growth and development.

Phytohormones which are involved in stress responses
are often known as stress hormones, and major stress hor-
mones include abscisic acid (ABA), ethylene (ET), and
salicylic acid (SA) (Tiwari et al. 2017). Out of these stress
hormones, abscisic acid has an exclusive role in interplay-
ing with other stress hormones (Fig. 2).

Abiotic stresses enhance the accumulation of ABA which
ultimately leads to the expression of several genes encoding
different proteins (Xiong et al. 2014). These proteins, in turn,
play an important role as enzymes to lower oxidative dam-
age, transduce different signals, or as transcription factors
like AP2/ERF, bZIP, MYB, NAC, and WRKY which act as
early responders in the perception of stress signals and
rapidly enhance the activation of ABA inducing genes and
build ABA-dependent framework in tolerance against
respective abiotic stresses (Xiong et al. 2014; Basu and
Rabara 2017). ABA signaling is associated with three clas-
ses of proteins, viz., (1) pyrabactin resistance/ pyrabactin
resistance like PYR/PYL/RCARs that act as receptors, while
(2) PP2Cs negatively and (3) SNF1-related kinase2s or

SnRK2s (SRK2D/SnRK2.2, SRK2I/SnRK2.3, and
SRK2E/SnRK2.6/OST1) positively regulates ABA trans-
duction pathway (Danquah et al. 2014; Vishwakarma et al.
2017). Further, (Luo et al. 2013) have reported that two
proteins from G-protein-coupled plasma membrane recep-
tors (GTG1 and GTG2) interact with GPA1 and involves in
ABA signaling. AREB and ABFs are transcription factors of
class bZIP present in the promoter region of ABA inducible
genes and activated through multi-domain phosphorylation
by SNRK2s. Then they promote the expression of
ABF2/AREB1, ABF3, and ABF4/AREB2 that act as a
positive regulator to ABA signaling (Verma et al. 2013;
Yoshida et al. 2014).

Another important stress hormone is ethylene (ET). ET
plays important roles such as ripening of fruits, senescence,
germination of seed, abscission of leaves and petals, root
initiation, epinastic stimulation, gravitropism and it also
involves several stress-responsive mechanisms (Gamalero
and Glick 2012; Upreti and Sharma 2016). Receptors that
involves in ET perception exhibit two types of regulation as
one type (ETR1/2, ETS1/2, EIN3, ELI1) involves in positive
regulation whereas other receptors (CTR1, EIN4) are asso-
ciated with negative regulation of ethylene (Qiu et al. 2012).
CTR1 involves the degradation of EIN2 in absence in ET.
Thus, it involves the downregulation of ET by decreasing

Fig. 2 Crosstalk between ABA and other phytohormones [IAA—Indole acetic acid, BRs—Brassinosteroids, CK—Cytokinin, ET—Ethylene, GA
—Gibberellin, JA—Jasmonic acid, SA—Salicylic acid, SL—Strigolactone]
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the stability of ET transcription factors (Černý et al. 2016).
But EIN2 releases a nuclear localization signal when it
undergoes proteolytic cleavage, and then the signal involves
the transduction of EIN3 and EIL1 which are the major TFs
involved in the early expression of ET genes (Chang et al.
2013; Zhang et al. 2014). Both MPK3 and MPK6 play a
crucial role in ET signaling and its response, as stabilization
of EIN3 is promoted by them. Further, it has been reported
that MPK3 and MPK6 are involved in the phosphorylation
of ACS that, in turn, enhance ET signaling and ET pro-
duction (Hahn and Harter, 2009). EFR1 is important for
regulating the expression of ESE1 and building tolerance
against salt stress (Zhang et al. 2011; Wang et al. 2013b).
Alternatively, expression of ERF can be enhanced by ET
under salt stress through the binding with ESE1 to DRE and
GCC box found in the promoter region of salt-induced genes
such as COR15A, HLS1, P5CS2, and RD29A (Zhang et al.
2011; Wang et al. 2013b). Moreover, Keunen et al. (2016)
have observed overexpression of EIN3 during heavy metal
stress. EIL1/EIN3 act as a bridge in ET and JA mediated
signaling and stress adaptive mechanisms since they can be
suppressed by JAZs proteins. It has been reported that JAZs
activate histone deacetylases 6 which bind with EIL1 and
EIN3 and form a complex that prevents DNA binding of
EIN3, and thus it prevents JA induced signaling (Zhu et al.
2011; Wang et al. 2013b).

Salicylic acid (SA) is another very important stress hor-
mone that involves stress signaling and response mecha-
nisms consisting of a complex and well-coordinated
pathway under different abiotic stress conditions like heat,
drought, salinity, osmotic, and heavy metal stress (Khan
et al. 2015). Various developmental processes like seed
germination, seedling establishment, nitrogen metabolism,
photosynthesis, cellular proliferation, changes in stomatal
aperture, respiration, antioxidant defence system, delaying
plant senescence, etc., are positively influenced by SA (Khan
et al. 2015; Nazar et al. 2015). NPR1 plays a crucial role in
salicylic acid-mediated transcriptional reprograming, and it
interacts with bZIP transcription factors of the TGA family
(An and Mou 2011; Yan and Dong 2014). NPR3 and NPR4
are the two homologues of NPR1 under ubiquitin-induced
protein degradation. NPR3 and NPR4 control the activity of
NPR1 at high or low SA concentrations, respectively (Fu
et al. 2012).

As the by-products of aerobic metabolism, ROS are
continuously produced within distinct cellular components
such as apoplast, chloroplast, mitochondria, and peroxi-
somes. Besides toxic effects, ROS works as a valuable sig-
naling molecule in plant defence and is also involved in the
regulation of various physiological processes under various
abiotic stress conditions (He et al. 2018). For example,
apoplastic ROS production depends on various enzymatic

stimuli such as RBOHs and plasma membrane-localized
NADPH oxidases that are activated after bond establishment
between EF-hand motifs in the N-terminal cytosolic region
and Ca2+ with associated phosphorylation by RLCKs
(Kimura et al. 2017). Sometimes two distinct isoforms of
RBOH (RBOHD and RBOHF) are present in Arabidopsis
and they can regulate the ROS production under both abiotic
and biotic stress. H2O2 influences the MAPK pathways by
oxidizing the –SH group of cysteine residues and thus it
masks the expression of repressor proteins to MAPKs such
as PTPs (Jalmi and Sinha 2015; Liu and He 2017). It has
been reported that stress tolerance by GSTs and HSPs is
upregulated by MAPK3 and MAPK6 kinases in Arabidop-
sis. Further, H2O2 enhances the prompt responses of GSTs
and HSPs by mediating several kinase cascades such as
ANP1, MAPKKK, and OXI1 involved in MAPK3/6,
NDPK2 kinases (Liu and He 2017).

Stress tolerance at the cellular level involves specific
proteins function and the associated expression of genes.
These proteins can be classified into three groups according
to their function (Miller et al. 2010a; Gautam et al. 2020):

(a) Transcription factors involved in signaling cascades and
transcriptional regulations

Transcriptional factors like DREB (Wang et al. 2019),
WRKY (Banerjee and Roychoudhury 2015), LEA, NAM,
ATAF, and CUC (Singh and Laxmi 2015) are mostly
involved in the signaling pathway and tolerance response
against abiotic and biotic stresses. These transcriptional
factors are involved in the biosynthesis of various osmo-
protectants, expression and regulation of various genes
encoding various proteins, phytohormones, or secondary
metabolites (Singh and Laxmi 2015; Banerjee and Roy-
choudhury 2015; de Zelicourt et al. 2016; Wang et al. 2019).

(b) Proteins associated with defence against membrane
damage

Membrane damage is one of the primary phenomena that
happen to plant cells under various abiotic stresses (Rawat
et al. 2021). Several proteins such as HSPs, LEAs,
plasma-membrane proton ATPase, etc., help to maintain
membrane stability, fluidity, restore membrane functionality,
and also prevent membrane damage during various abiotic
stress conditions (Usman et al. 2015; Banerjee and Roy-
choudhury 2016; Gautam et al. 2020). The expression of
ZmLEA3 protein in the tobacco plant is associated with
chilling and osmotic stress (Janmohammadi et al. 2015).
Rice root cell has been identified with 8
membrane-associated proteins under exposure to salt stress
(Duan et al. 2012).
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(iii) Proteins involved in the regulation of uptake and
transport of ions, and water relation

The ions like Na+ and Cl− are generally stored in the vacuole
and adjusted by several osmolytes such as proline, sorbitol,
mannitol, and glycine betaine (Sharma 2016). But the ionic
imbalance is a common phenomenon during salt stress. The
vascular sequestration of Na+ and Cl− is generally mediated
by vacuolar H+-ATPase and the H+-pyrophosphatase (Yin
et al. 2015). These enzymes prompt electrochemical proton
gradients which, in turn, activate the Na+/H+ antiporter and
lead to Na+ isolation into vacuoles. It is noteworthy that Na+

efflux protein in the plasma membrane is the only Na+/H+

antiporter in the plasma membrane. It functions in Na+

sequestration and builds tolerance against negative impact
due to over-accumulation of Na+/Cl− within the plant system
(Yin et al. 2015; Sze and Chanroj 2018). Apart from vac-
uolar Na+/H+ antiporter, AtNHX1 and the K+/Na+ sym-
porters are also involved in a similar kind of tolerance
mechanism in plants (Zhu et al. 2016; Sze and Chanroj
2018; Al Hassan 2018). Besides, it has also been reported
that Cl-sequestration is mediated by voltage-dependent
chloride channel proteins and cation chloride
co-transporters in rice and Arabidopsis (Zhang et al. 2018).
Moreover, aquaporins are the important channel proteins
that play a crucial role in the transportation of small and
uncharged solutes through plasma membranes during heat or
drought stress (Gautam et al. 2020). The function of aqua-
porins is mediated by intrinsic proteins including PIPs, TIPs,
small basic intrinsic proteins, Nodulin 26-like intrinsic pro-
teins, and X-intrinsic proteins (Pou et al. 2013; Zargar et al.
2017; Gautam et al. 2020).

Micro-RNAs (miRNAs) are single-stranded noncoding
RNA molecules of *22 nucleotides and are also involved in
the regulation of gene expression associated with stress
response (Espinoza-Lewis and Wang 2012). They play an
important role in many important developmental processes
in plants such as the development of roots, leaf morpho-
genesis, reproductive organ identity, and also actively par-
ticipate in various signal transduction during various abiotic
stresses (Shriram et al. 2016) (Table 1). Wani et al. (2020)
have defined the different steps of miRNA-mediated stress
response. It has been described that miRNA-mediated stress
response is a multistep process that includes the expression
of miRNA genes followed by the synthesis of miRNAs and
finally miRNA-mediated genetic regulation under influence
of various abiotic stresses. The process is initiated with
transcription of primary miRNA from miRNA genes and
then miRNA precursor is formed from the primary miRNA
through cleavage and stem-loop structure formation. The
very next step is associated with miRNA duplex formation
and this process is controlled by dicer like enzyme present in
the nucleus. This miRNA duplex is then transported to the

cytoplasm where it gets unwounded and is formed into
single-stranded mature miRNA. The newly mature miRNA
is then entered in a ribonucleoprotein complex,
RNA-induced silencing complex, and participates in gene
expression. miRNA regulates target genes positively or
negatively gene expression can be regulated by mRNA
cleavage or translational repression, and ultimately helps in
developing stress tolerance (Fig. 3).

5 Management Strategies Towards
Agricultural Sustainability Under Abiotic
Stresses

Although the plant has its own strategies to cope with the
damaging effects of abiotic stresses sometimes these adap-
tation or tolerance strategies of plants are not sufficient. In
this context, external mitigation options as practised by
humans to support the plants against abiotic or biotic stresses
or to bypass the stress situation by adopting certain novel
strategies are important. Though there are numerous strate-
gies or methods taken in, by humans we have categorized
some of the very common mitigation options to minimize
agricultural losses. These options have been divided into
three board categories:

1. Agro-technological interventions
2. Use of biological remedies
3. Transgenic breeding and/or using biotechnological tools.

5.1 Agro-Technological Interventions
to Sustainable Agriculture

Agricultural researchers are always involved in inventing
and establishing new technologies and methods to protect
plants from the adverse effects of various abiotic stresses.
These technologies have provided opportunities to upgrade
the existing traditional means of agricultural practices. Some
of the agro-technologies or methods which have directed
abiotic stress management to a new horizon are discussed
below. Hydroponics and Aeroponics—In a hydroponic
system, plants are grown in a soilless medium particularly in
water. Whereas, in aeroponics, plant roots remain naked in
the air mostly in a moist environment. Both hydroponic and
aeroponic system is not only beneficial for agricultural
production, rather it has also been proved to be very effective
in terms of stress avoidance. These types of farming are done
in a closed and safe environment, and thus plants are not
affected by harsh environmental factors. In these farmings,
all necessary nutrients are provided and environmental
parameters such as humidity, temperature, light source, etc.,
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are closely monitored so that plants would get a healthy
environment for their growth and development.

5.1.1 Seed Priming
The priming of seeds before sowing is an important
agro-technological intervention. Pre-sowing soaking of
seeds in water is the most primitive form of seed priming
which is known as hydropriming. But various priming
agents have been identified with the advancement of science.
The interests in exploring such seed priming methods are
also increasing day by day due to their potentiality towards
global food security either through yield improvement or
developing stress tolerance in crop plants. Besides
hydropriming, some of the important and established agents

are phytohormones, different chemicals like KNO3, NaCl,
and NaOCl, priming with PGPRs, PGPF, and AMFs,
priming with quorum sensing chemicals, use of metallic
solutions like Al, Cd, etc., use of various nanoparticles and
various physical agents including some of the
extra-terrestrial factors like magnetic field, ultraviolet radi-
ation, gamma radiation, etc. (Bera et al. 2021).

5.1.2 Use of Drones in Agriculture
Plants are often provided with external application of certain
chemicals to build tolerance against stress factors. These
chemicals mostly act as external stimuli to activate some
specific pathways within the plant, and finally help the plants
to withstand the stress conditions. Although it is possible to

Table 1 Upregulation and downregulation of various miRNAs under various abiotic stresses. (Upregulated: " and Downregulated: #)
Kinds of
stress

Plant species miRNA
Upregulated/downregulated

References

Salinity Zea mays miR164# Shan et al. (2020)

Arabidopsis
thaliana

microRNA399" Pegler et al. (2021)

Solanum
lycopersicum

miR156", miR398" Çakır et al. (2021)

Heat Arabidopsis
thaliana

miR824" Szaker et al. (2019)

Solanum
lycopersicum

miR319" Shi et al. (2019)

Populus
trichocarpa

miR396" Zhao et al. (2021)

UV Triticum
aestivum

miR165/166/167", miR393", miR159" Wang et al. (2013a)

Arabidopsis
thaliana

miR398" Gao et al. (2016)

Arabidopsis
thaliana

miR158", miR165/166/167", miR391", miR393", miR824", miR828", miR846",
miR159# and miR164#, miR171#, miR822#

Zhou (2020)

Drought Solanum
lycopersicum

miR156" Visentin et al. (2020)

Lolium
multiflorum

miRNA156i", miRNA845a", and miRNA2937#, miRNA3980b# Demirkol (2021)

Zea mays miR159/160", miR167", miR389a", miR393", miR397b", miR402" Das and Mondal (2021)

Cold Manihot
esculenta

miR159", miR164", miR396" Li et al. (2020)

Hemerocallis
fulva

miR159", miR166", miR396", miR319", miR167_1", miR167_2" Huang et al. (2020)

Taxillus
chinensis

miR408" Fu et al. (2021)

Heavy
metal

Oryza sativa miR528" Liu et al. (2015)

Arabidopsis
thaliana

miR156", and miR156# Zhang et al. (2020)

Phaseolus
vulgaris

miR1511" Ángel Martín‐
Rodríguez et al. (2021)
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spray these chemicals manually with the use of manpower in
a small area of land, but, it is quite impossible to accomplish
this task manually in a vast area of agricultural land. How-
ever, the use of drones can make this possible and easy.
Heavy carrier drones can carry several litres of these
chemicals and can spray over the plants from a very short
distance from the plant tops.

5.1.3 Use of Greenhouses
Agricultural practices inside the greenhouses particularly
during a moderate or extreme cold can help to bypass the
stress environment. It is because greenhouses works on the
principle of retaining heat inside, so that the plants can
effectively avoid chilling stress or its negative impacts.
Greenhouses have also been found to be effective during
high temperatures if the required environment and sufficient
water are provided. However, this intervention requires
some modification and technological support.

5.1.4 Rainwater Management
Effective harvesting and management of rainwater can be
very useful in agriculture. Stored rainwater can be used
during heavy drought spells in summer or where

groundwater is not sufficient to support farming. Rainwater
is mainly conserved during the end of summer and monsoon
season. There are two major types of storage for rainwater
conservation, and they can be either underground storage or
aboveground storage.

5.1.5 Shade Tree Plantation
Shade trees are very important for the effective growth and
development of various crops like tea, cocoa, coffee, etc.
Shading can provide a homologous canopy to these crop
plants, protect them from extreme heat or light injuries, and
even take part important role in managing pests under field
conditions.

5.2 Use of Biological Remedies

5.2.1 Bio-fertilizer
The use of chemical fertilizers and their exploitation would
lead to pollution of groundwater by eutrophication of water
bodies and also pollute the air. In this regard, organic
farming through the use of bio-fertilizers would be a better
approach towards agricultural sustainability particularly

Fig. 3 Schematic representation
of miRNA mediated stress
response in plants
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under changing climate scenarios. Bio-fertilizers do not
cause any harm or manipulate soil microflora, rather
bio-fertilizers promote the association between soil and
arbuscular mycorrhiza fungi (AMF) and plant
growth-promoting rhizobacteria (PGPR), It has been proved
to be effective in developing tolerance against various abi-
otic stresses or improving the nutrient cycle in soil, and thus
to enhance crop productivity (Bhardwaj et al. 2014).
Besides, the use of bio-fertilizers would be helpful to pro-
mote plant growth and development even under harsh
environmental conditions through maintaining the richness
of the soil in terms of micro and macronutrients, facilitating
effective nitrogen fixation, solubilizing potassium and
phosphate, and releasing plant growth regulating substances,
etc. (Bhardwaj et al. 2014; Yimer and Abena 2019).

5.2.2 Bio-accumulators
The process of accumulating different organic and inorganic
(particularly toxic heavy metals and trace elements) compounds
in the plant body is known as phytoremediation (Yan et al.
2020). Heavy metal toxicity is one of the important abiotic
stresses, but several plants can remove these metal compounds
from the soil. Such plants are known as ‘hyper accumulators’,
or bio-accumulators (Reeves et al. 2018). Hyperaccumulators
are those plants that can accumulate up to 10 to 500 times more
metal ions than other plants (Kraj et al. 2021). Some of the
hyperaccumulator plants are Pteris vittata (threshold value of
arsenic accumulation > 1000 lg g−1), Arabidopsis halleri
(threshold value of cadmium > 100 lg g−1), Aeolanthus
biformifolius (threshold value of copper > 300 lg g−1), Noc-
caea rotundifolia subsp. Cepaeifolia (threshold value of
lead > 1000 lg g−1), and Noccaea caerulescens (threshold
value of zinc > 3000 lg g−1) (Reeves et al. 2018).

5.2.3 Use of PGPR and PGPF
There are some root-associated rhizobacteria and fungi
which can enhance tolerance to various biotic and abiotic
stress factors. These bacteria are commonly known as plant
growth-promoting rhizobacteria (PGPR) and the fungi are
called plant growth-promoting fungi (PGPF). Some of the
well-known PGPRs like Glomus mosseae, Glomus clarum,
Glomus intraradices BEG 123, Pseudomonas fluorescens
Aur6, Chryseobacterium balustinum Aur9, Bacillus mega-
terium, Bacillus cereus, Arthrobacter sp., and Bacillus
subtilis can provide a positive response against salinity stress
(Kumar et al. 2019). On the other hand, plant root associa-
tion with Arthrobacter brasilense Sp245, Bacillus mega-
terium, Glomus sp., Pseudomonas polymyxa, Rhizobium
tropici, Pseudomonas putida P45, Pseudomonas putida
H-2-3, and Achromobacter piechaudii would build up a
strong defence against drought, and with Azospirillum sp.,
Azotobacter sp., Klebsiella pneumoniae, Gluconacetobacter
diazotrophicus, Thiobacillus thiooxidans, Streptomyces

tendae F4, and Pseudomonas aeruginosa BS2 would help to
continue natural growth and development of several plants
under various heavy metals contaminated soil
(Abbaszadeh-Dahaji et al. 2016; Kumar et al. 2019, 2020).
Plant growth-promoting fungi (PGPF) are the
non-pathogenic fungi that live in a symbiotic association
with host plants and play a beneficial role in sustainable
agriculture by providing various advantages to the host plant
(Govindasamy et al. 2018). Associations between plant roots
and PGPF such as Trichoderma harzianum TSTh, Exophiala
pisciphila GM25 (DSE strain), Cladosporium cladospori-
oides E-162, Rhizophagus irregularis strain EEZ 58, Rhi-
zophagus intraradices and Funneliformis mosseae, and
Piriformospora indica have been proved as successful mit-
igators of drought stress in various crop species (Pedranzani
et al. 2016; Amiri et al. 2017; Repas et al. 2017; Dastogeer
et al. 2017; Zhang et al. 2017; Li et al. 2017). Negative
impacts of salinity are effectively tolerated by certain crop
species after making association with PGPFs such as Piri-
formospora indica (Abdelaziz et al. 2017), Glomus clarum
(Elhindi et al. 2016), Funneliformis mosseae and Rhizoph-
agus irregularis (Pollastri et al. 2018), and Rhizophagus
irregularis strain EEZ 58 (Pedranzani et al. 2016). Exo-
phiala pisciphila has been reported to mitigate
cadmium-mediated stress (He et al. 2017). Moreover,
Phialophora mustea Pr27, Leptodontidium Pr30, Cadophora
Fe06 have also been observed with several positive effects
on plants under trace elements contaminated soil (Berthelot
et al. 2017).

5.2.4 Quorum Sensing Approach
Quorum sensing molecules are the means of interaction
between the bacterial community and the host plant. The
most extensively studied class of quorum sensing molecule
is N-acyl homoserine lactones (AHL) (Shrestha et al. 2020).
On the perception of these molecules, several changes occur
within bacteria in terms of activation or deactivation of
several quorum sensing regulated genes that lead to several
effects like alteration in the virulence factors in bacteria,
formation of biofilms, chemotaxis movement, etc. (Bellezza
et al. 2014). It is now well established that plants’ responses
to certain QS molecules are very specific and depend on the
length of the acyl side-chain which is connected with a
homoserine lactone ring (Shrestha et al. 2020). Although
some of the responses of certain QS molecules have been
studied and established but are not fully explored. The effect
of a particular QS molecule may vary across different spe-
cies. In Medicago truncatula, oxo-C14-HSL synthesized by
Ensifer meliloti induces root nodulation (Veliz-Vallejos et al.
2014), but the effects of the same QS molecule differs in the
response in Arabidopsis sp. and Hordeum vulgare as it
promotes resistance against the pathogenic bacteria Pseu-
domonas syringae and a pathogenic fungus Blumeria
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graminis, respectively (Shrestha et al. 2019). Priming of
Arabidopsis seeds with oxo-C14-HSL enhances the accu-
mulation of oxylipin in the distal tissues that leads to
stomatal closure, accumulation of callose and phenolic
compounds within plants (Schenk and Schikora 2015).
Further, it has been reported that oxo-C6-HSL promotes the
expression of genes associated with auxin and cytokinin
signaling pathways (Zhao et al. 2016). In seedlings of Ara-
bidopsis, oxo-C8-HSL has been reported to enhance the
accumulation of proteins associated with several cellular
activities like carbon metabolism, biosynthesis of other
proteins and plant resistance against various abiotic and
biotic stresses (Miao et al. 2012; Ding et al. 2016).

5.3 Transgenic Breeding and/or Using
Biotechnological Tools

5.3.1 Transgenic Breeding
Traditional breeding techniques have been practised for a
long time to achieve the desired traits of crop plants. But
with the technological and scientific up-gradation during the
last two decades, traditional breeding merged with trans-
genic modifications that have led this method to a new
height. Transgenic breeding has many advantages over
conventional breeding techniques since transgenic breeding
offers a great possibility of manipulation of the genes for the
introduction of desired traits into the crop plants through
QTL mapping (Anwar and Kim 2020; Shen et al. 2018).
This method of breeding gives us easy access to identify the
desired genes, miRNAs, TFs that are involved in various
metabolic activities, signaling pathways, expression of var-
ious genes, etc., and also widen our knowledge regarding
molecular and physiological mechanisms stress responses or
improved crop productivity (Anwar and Kim 2020).

5.3.2 Using Biotechnological Tools
Nowadays, the advancement in several biotechnological
tools has led molecular research to a new level. Thus,
identification of desired gene and its placement to the new
genome with greater accuracy, and also the development of
required transgenic lines have been made possible due to the
introduction of modern molecular or biotechnological tools
such as next-generation sequencing, mapping of quantitative
trait loci (QTL) (Anwar and Kim 2020), identification of
miRNA and its signaling pathway analysis
(Djami-Tchatchou et al. 2017), genome editing with
CRISPR-Cas9 (Tang et al. 2017), marker-assisted selection
(MAS) (Kumar et al. 2018; Anwar and Kim 2020), genomic
selection (GS) (Anwar and Kim 2020).

6 Conclusion

Being incessantly exposed to nature, the plant community as
a whole is directly affected by various abiotic stresses. Thus,
the adverse impacts like the ecological imbalance, eco-
nomical loss to a country, area or society as well as global
food crisis are of great concern, particularly under the abiotic
stresses. The frequent occurrence of abiotic stresses or cli-
matic extremes has become a common phenomenon with the
alarmingly increasing rate of temperature anomaly or
changing global climates. Though the plants are suffered a
lot from abiotic stresses the plants’ responses and complex
mechanisms of adaptation to abiotic stresses are of interest to
the researchers. Plants can easily withstand up to a certain
degree of abiotic stress or bypass it through various mech-
anisms including morpho-physiological modifications, bio-
chemical changes, and/or alterations in the molecular
signaling pathway. The effects vary depending on the types
and intensity of abiotic stress upon which plants are being
exposed and thus, the manifestations of various stresses are
also different. But sometimes it needs to provide the external
stimuli which we often termed as stress mitigation strategies
when the stress environment goes beyond the plant’s toler-
ance level. Thus, the adoption and integration of different
technological or other means of stress mitigation strategies
would be effective for the sustainability of agricultural pro-
duction under environmental extremities.

References

Abbaszadeh-Dahaji P, Omidvari M, Ghorbanpour M (2016) Increasing
phytoremediation efficiency of heavy metal-contaminated soil using
PGPR for sustainable agriculture. In: Choudhary D, Varma A,
Tuteja N (eds) Plant-microbe interaction: an approach to sustainable
agriculture, 1st edn. Springer, Singapore, pp 187–204. https://doi.
org/10.1007/978-981-10-2854-0_9

Abdelaziz ME, Kim D, Ali S et al (2017) The endophytic fungus
Piriformospora indica enhances Arabidopsis thaliana growth and
modulates Na+/K+ homeostasis under salt stress conditions. Plant
Sci 263:107–115

Abuelsoud W, Cortleven A, Schmülling T (2020) Photoperiod stress
alters the cellular redox status and is associated with an increased
peroxidase and decreased catalase activity. BioRxiv. https://doi.org/
10.1101/2020.03.05.978270

Ahluwalia O, Singh PC, Bhatia R (2021) A review on drought stress in
plants: implications, mitigation and the role of plant growth
promoting rhizobacteria. Resour Environ Sustain 5. https://doi.
org/10.1016/j.resenv.2021.100032

Ahmed IM, Nadira UA, Bibi N et al (2015) Tolerance to combined
stress of drought and salinity in barley. In: Mahalingam R
(eds) Combined stresses in plants, 1st edn. Springer, Cham,
pp 93–121. https://doi.org/10.1007/978-3-319-07899-1

Plant Responses Under Abiotic Stress and Mitigation Options … 21

http://dx.doi.org/10.1007/978-981-10-2854-0_9
http://dx.doi.org/10.1007/978-981-10-2854-0_9
http://dx.doi.org/10.1101/2020.03.05.978270
http://dx.doi.org/10.1101/2020.03.05.978270
http://dx.doi.org/10.1016/j.resenv.2021.100032
http://dx.doi.org/10.1016/j.resenv.2021.100032
http://dx.doi.org/10.1007/978-3-319-07899-1


Al Hassan M (2018) Comparative analyses of plant responses to
drought and salt stress in related taxa: a useful approach to study
stress tolerance mechanisms. Doctoral Dissertation, Universitat
Politècnica de València

Ali S, Xie L (2020) Plant growth promoting and stress mitigating
abilities of soil born microorganisms. Recent Pat Food Nutr Agric
11(2):96–104

Amador ML, Sancho S, Bielsa B et al (2012) Physiological and
biochemical parameters controlling waterlogging stress tolerance in
Prunus before and after drainage. Physiol Plant 144(4):357–368

Ameh T, Sayes CM (2019) The potential exposure and hazards of
copper nanoparticles: a review. Environ Toxicol Pharmacol
71:103220

Amiri R, Nikbakht A, Rahimmalek M et al (2017) Variation in the
essential oil composition, antioxidant capacity, and physiological
characteristics of Pelargonium graveolens L. inoculated with two
species of mycorrhizal fungi under water deficit conditions. J Plant
Growth Regul 36(2):502–515

An C, Mou Z (2011) Salicylic acid and its function in plant immunity
F. J Integr Plant Biol 53(6):412–428

Ángel Martín-Rodríguez J, Ariani A, Leija A et al (2021) Phaseolus
vulgaris MIR1511 genotypic variations differentially regulate plant
tolerance to aluminum toxicity. Plant J 105(6):1521–1533

Anwar A, Kim JK (2020) Transgenic breeding approaches for
improving abiotic stress tolerance: recent progress and future
perspectives. Int J Mol Sci 21(8):2695

Arbona V, Hossain Z, López-Climent MF et al (2008) Antioxidant
enzymatic activity is linked to waterlogging stress tolerance in
citrus. Physiol Plant 132(4):452–466

Arif N, Sharma NC, Yadav V et al (2019) Understanding heavy metal
stress in a rice crop: toxicity, tolerance mechanisms, and amelio-
ration strategies. J Plant Biol 62(4):239–253

Arif Y, Singh P, Siddiqui H et al (2020) Salinity induced physiological
and biochemical changes in plants: an omic approach towards salt
stress tolerance. Plant Physiol Biochem 156:64–77

Ashraf MA (2012) Waterlogging stress in plants: a review. Afr J Agric
Res 7(13):1976–1981

Atayee AR, Noori MS (2020) Alleviation of cold stress in vegetable
crops. J Sci Agric 4:38–44

Ayi Q, Zeng B, Liu J et al (2016) Oxygen absorption by adventitious
roots promotes the survival of completely submerged terrestrial
plants. Ann Bot 118(4):675–683

Ayub MA, Ahmad HR, Ali M et al (2020) Salinity and its tolerance
strategies in plants. In: Tripathi DK (eds) Plant life under changing
environment: responses and management. Elsevier, pp 47–76.
https://doi.org/10.1016/C2018-1-02300-8

Balal RM, Shahid MA, Javaid MM et al (2016) The role of selenium in
amelioration of heat-induced oxidative damage in cucumber under
high temperature stress. Acta Physiol Plant 38(6):1–14

Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and
regulation of expression during abiotic stress responses. Sci World J
807560. https://doi.org/10.1155/2015/807560

Banerjee A, Roychoudhury A (2016) Group II late embryogenesis
abundant (LEA) proteins: structural and functional aspects in plant
abiotic stress. Plant Growth Regul 79(1):1–17

Basu S, Rabara R (2017) Abscisic acid-An enigma in the abiotic stress
tolerance of crop plants. Plant Gene 11:90–98

Basu S, Ramegowda V, Kumar A et al (2016) Plant adaptation to
drought stress. https://doi.org/10.12688%2Ff1000research.7678.1

Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress
signalling. J Exp Bot 65(5):1229–1240

Bellezza I, Peirce MJ, Minelli A (2014) Cyclic dipeptides: from bugs to
brain. Trend Mol Med 20(10):551–558

Bera K, Dutta P, Sadhukhan S (2021) Seed priming with non-ionizing
physical agents: plant responses and underlying physiological

mechanisms. Plant Cell Rep 15:1–21. https://doi.org/10.1007/
s00299-021-02798-y

Berthelot C, Blaudez D, Leyval C (2017) Differential growth promotion
of poplar and birch inoculated with three dark septate endophytes in
two trace element-contaminated soils. Int J Phytoremediation 19
(12):1118–1125

Bhardwaj D, Ansari MW, Sahoo RK et al (2014) Biofertilizers function
as key player in sustainable agriculture by improving soil fertility,
plant tolerance and crop productivity. Microb Cell Fact 13(1):1–10

Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in
halophytes in the context of salinity stress tolerance. J Exp Bot 65
(5):1241–1257

Brelsford CC, Morales LO, Nezval J et al (2019) Do UV-A radiation
and blue light during growth prime leaves to cope with acute high
light in photoreceptor mutants of Arabidopsis thaliana? Physiol
Plant 165(3):537–554

Bui EN (2017) Causes of soil salinization, sodification, and alkalin-
ization. Oxford Res Encyclop Environ Sci. https://doi.org/10.1093/
acrefore/9780199389414.013.264

Çakır Ö, Arıkan B, Karpuz B et al (2021) Expression analysis of
miRNAs and their targets related to salt stress in Solanum
lycopersicum H-2274. Biotechnol Biotechnol Equip 35(1):283–290

Carillo P, Raimondi G, Kyriacou MC et al (2019)
Morpho-physiological and homeostatic adaptive responses triggered
by omeprazole enhance lettuce tolerance to salt stress. Sci Hortic
249:22–30

Casal JJ (2013) Photoreceptor signaling networks in plant responses to
shade. Annu Rev Plant Biol 64:403–427

Černý M, Novák J, Habánová H et al (1864) (2016) Role of the
proteome in phytohormonal signaling. Biochim Biophys Acta
Proteins Proteom 8:1003–1015

Chaffai R, Koyama H (2011) Heavy metal tolerance in Arabidopsis
thaliana. Adv Bot Res 60:1–49

Chakraborty U, Pradhan D (2011) High temperature-induced oxidative
stress in Lens culinaris, role of antioxidants and amelioration of
stress by chemical pre-treatments. J Plant Interact 6(1):43–52

Chang KN, Zhong S, Weirauch MT et al (2013) Temporal transcrip-
tional response to ethylene gas drives growth hormone
cross-regulation in Arabidopsis. Elife 2. https://doi.org/10.7554/
eLife.00675

Chaudhry S, Sidhu GPS (2021) Climate change regulated abiotic stress
mechanisms in plants: a comprehensive review. Plant Cell Rep 5:1–
31

Chiappero J, del Rosario Cappellari L et al (2019) Plant growth
promoting rhizobacteria improve the antioxidant status in Mentha
piperita grown under drought stress leading to an enhancement of
plant growth and total phenolic content. Ind Crops Prod 139:111553

Choppala G, Saifullah Bolan N, Bibi S et al (2014) Cellular
mechanisms in higher plants governing tolerance to cadmium
toxicity. Crit Rev Plant Sci 33(5):374–391

Christie JM, Blackwood L, Petersen J, Sullivan S (2015) Plant
flavoprotein photoreceptors. Plant Cell Physiol 56(3):401–413

Chun HC, Sanghun L, Choi YD et al (2021) Effects of drought stress on
root morphology and spatial distribution of soybean and adzuki
bean. J Integrat Agric 20(10):2639–2651

Cohen I, Zandalinas SI, Huck C et al (2021) Meta-analysis of drought
and heat stress combination impact on crop yield and yield
components. Physiol Plant 171(1):66–76

Consentino L, Lambert S, Martino C et al (2015) Blue-light dependent
reactive oxygen species formation by Arabidopsis cryptochrome
may define a novel evolutionarily conserved signaling mechanism.
New Phytol 206(4):1450–1462

Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal
toxicity: an overview of avoidance, tolerance and uptake mecha-
nism. Ann Plant Sci 2(9):362–368

22 K. Bera et al.

http://dx.doi.org/10.1016/C2018-1-02300-8
http://dx.doi.org/10.1155/2015/807560
https://doi.org/10.12688%2Ff1000research.7678.1
http://dx.doi.org/10.1007/s00299-021-02798-y
http://dx.doi.org/10.1007/s00299-021-02798-y
http://dx.doi.org/10.1093/acrefore/9780199389414.013.264
http://dx.doi.org/10.1093/acrefore/9780199389414.013.264
http://dx.doi.org/10.7554/eLife.00675
http://dx.doi.org/10.7554/eLife.00675


Danquah A, de Zelicourt A, Colcombet J et al (2014) The role of ABA
and MAPK signaling pathways in plant abiotic stress responses.
Biotechnol Adv 32(1):40–52

Das R, Mondal SK (2021) Plant miRNAs: biogenesis and its functional
validation to combat drought stress with special focus on maize.
Plant Gene 27. https://doi.org/10.1016/j.plgene.2021.100294

Das R, Tzudir L (2021) Climate Change and Crop Stresses. Biot Res
Today 3(5):351–353

Dastogeer KM, Li H, Sivasithamparam K et al (2017) A simple and
rapid in vitro test for large-scale screening of fungal endophytes
from drought-adapted Australian wild plants for conferring water
deprivation tolerance and growth promotion in Nicotiana ben-
thamiana seedlings. Arch Microb 199(10):1357–1370

de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules
and ABA during abiotic stress signaling. Trend Plant Sci 21
(8):677–685

Demidchik V (2018) ROS-activated ion channels in plants: biophysical
characteristics, physiological functions and molecular nature. Int J
Mol Sci 19(4):1263

Demirkol G (2021) miRNAs involved in drought stress in Italian
ryegrass (Lolium multiflorum L.). Turkish J Bot 45(2):111–123

Ding L, Cao J, Duan Y et al (2016) Retracted: Proteomic and
physiological responses of Arabidopsis thaliana exposed to salinity
stress and N-acyl-homoserine lactone. Physiol Plant 158(4):414–
434

Ding N, Wang A, Zhang X et al (2017) Identification and analysis of
glutathione S-transferase gene family in sweet potato reveal
divergent GST-mediated networks in aboveground and under-
ground tissues in response to abiotic stresses. BMC Plant Biol 17
(1):1–15

Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering
cold tolerance regulatory mechanisms in plants. New Phytol 222
(4):1690–1704

Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K et al (2017)
Functional roles of microRNAs in agronomically important plants
—potential as targets for crop improvement and protection. Front
Plant Sci 8:378

Duan J, Zhang M, Zhang H et al (2012) OsMIOX, a myo-inositol
oxygenase gene, improves drought tolerance through scavenging of
reactive oxygen species in rice (Oryza sativa L.). Plant Sci
196:143–151

Dutta P, Chakraborti S, Chaudhuri KM et al (2020) Physiological
responses and resilience of plants to climate change. In: Rakshit A
(ed) New frontiers in stress management for durable agriculture.
Springer, Singapore, pp 3–20

Ejiri M, Shiono K (2019) Prevention of radial oxygen loss is associated
with exodermal suberin along adventitious roots of annual wild
species of Echinochloa. Front Plant Sci 10:254

Elhindi K, Sharaf El Din A, Abdel-Salam E et al (2016) Amelioration
of salinity stress in different basil (Ocimum basilicum L.) varieties
by vesicular-arbuscular mycorrhizal fungi. Acta Agric Scand B Soil
Plant Sci 66(7):583–592

Espinoza-Lewis RA, Wang DZ (2012) MicroRNAs in heart develop-
ment. Curr Top Dev Biol 100:279–317

Etesami H, Maheshwari DK (2018) Use of plant growth promoting
rhizobacteria (PGPRs) with multiple plant growth promoting traits
in stress agriculture: Action mechanisms and future prospects.
Ecotoxicol Environ Saf 156:225–246

Eysholdt-Derzsó E, Sauter M (2019) Hypoxia and the group VII
ethylene response transcription factor HRE2 promote adventitious
root elongation in Arabidopsis. Plant Biol 21:103–108

Fábián A, Sáfrán E, Szabó-Eitel G, Barnabás B, Jäger K (2019) Stigma
functionality and fertility are reduced by heat and drought co-stress
in wheat. Front Plant Sci 10:244

Fageria N, Filho MB, Moreira A et al (2009) Foliar fertilization of crop
plants. J Plant Nutr 32(6):1044–1064

FAOSTAT (2017) http://www.fao.org/faostat/en/#data. Accessed 2
August 2017

Fathi A, Tari DB (2016) Effect of drought stress and its mechanism in
plants. Int J Life Sci 10(1):1–6

Fedoroff NV, Battisti DS, Beachy RN et al (2010) Radically rethinking
agriculture for the 21st century. Sci 327(5967):833–834

Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant
metabolism. Front Physiol 3:182

Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility.
Free Radical Bio Med 51(2):257–281

Fu J, Wan L, Song L et al (2021) Identification of MicroRNAs in
Taxillus chinensis (DC.) Danser seeds under cold stress. BioMed
Res Int 2021:5585884. https://doi.org/10.1155/2021/5585884

Fu ZQ, Yan S, Saleh A et al (2012) NPR3 and NPR4 are receptors for
the immune signal salicylic acid in plants. Nature 486(7402):228–
232

Fukao T, Barrera-Figueroa BE, Juntawong P et al (2019) Submergence
and waterlogging stress in plants: a review highlighting research
opportunities and understudied aspects. Front Plant Sci 10:340

Gallego SM, Benavides MP (2019) Cadmium-induced oxidative and
nitrosative stress in plants. In: Hasanuzzaman M, Vara Prasad MN,
Fujita M (eds) Cadmium toxicity and tolerance in plants: from
physiology to remediation. Elsevier, pp 233–274. https://doi.org/10.
1016/C2017-0-02050-5

Gamalero E, Glick BR (2012) Ethylene and Abiotic Stress Tolerance in
Plants. In: Ahmad P, Prasad M (eds) Environmental Adaptations
and stress tolerance of plants in the era of climate change, 1st edn.
Springer, New York, pp 395–412

Gao S, Yang L, Zeng HQ et al (2016) A cotton miRNA is involved in
regulation of plant response to salt stress. Sci Rep 6(1):1–14

Garcia N, da-Silva CJ, Cocco KLT et al (2020) Waterlogging tolerance
of five soybean genotypes through different physiological and
biochemical mechanisms. Environ Exp Bot 172:103975

Garcia-Sanchez F (2020) Insights into the physiological and biochem-
ical impacts of salt stress on plant growth and development agron
10(7):938

Gautam A, Pandey P, Pandey AK (2020) Proteomics in relation to
abiotic stress tolerance in plants. In: Tripathi DK (eds) Plant life
under changing environment. Elsevier, pp 513–541. https://doi.org/
10.1016/C2018-1-02300-8

Ghorbanzadeh P, Aliniaeifard S, Esmaeili M et al (2020) Dependency
of growth, water use efficiency, chlorophyll fluorescence, and
stomatal characteristics of lettuce plants to light intensity. J Plant
Growth Regul 40:2191–2207

Gilroy S, Białasek M, Suzuki N et al (2016) ROS, calcium, and electric
signals: key mediators of rapid systemic signaling in plants. Plant
Physiol 171(3):1606–1615

Gogoi A, Tripathi B (2019) 42% India’s land area under drought,
worsening farm distress in election year. https://www.indiaspend.
com/42-indias-land-area-under-drought-worsening-farm-distress-in-
election-year/

Gokul A, Roode E, Klein A et al (2016) Exogenous 3, 3′-
diindolylmethane increases Brassica napus L. seedling shoot
growth through modulation of superoxide and hydrogen peroxide
content. J Plant Physiol 196:93–98

Gomathi R, Rao PG, Chandran K et al (2015) Adaptive responses of
sugarcane to waterlogging stress: an overview. Sugar Tech 17
(4):325–338

Govindasamy V, George P, Raina SK et al (2018) Plant-associated
microbial interactions in the soil environment: role of endophytes in
imparting abiotic stress tolerance to crops. In: Bal S, Mukherjee J,
Choudhury B et al (eds) Advances in crop environment interaction,

Plant Responses Under Abiotic Stress and Mitigation Options … 23

http://dx.doi.org/10.1016/j.plgene.2021.100294
http://www.fao.org/faostat/en/#data
http://dx.doi.org/10.1155/2021/5585884
http://dx.doi.org/10.1016/C2017-0-02050-5
http://dx.doi.org/10.1016/C2017-0-02050-5
http://dx.doi.org/10.1016/C2018-1-02300-8
http://dx.doi.org/10.1016/C2018-1-02300-8
https://www.indiaspend.com/42-indias-land-area-under-drought-worsening-farm-distress-in-election-year/
https://www.indiaspend.com/42-indias-land-area-under-drought-worsening-farm-distress-in-election-year/
https://www.indiaspend.com/42-indias-land-area-under-drought-worsening-farm-distress-in-election-year/


1st edn. Springer, Singapore, pp 245–284. https://doi.org/10.1007/
978-981-13-1861-0_10

Guan Q, Tan B, Kelley TM et al (2020) Physiological changes in
Mesembryanthemum crystallinum during the C3 to CAM transition
induced by salt stress. Front Plant Sci 11:283

Haak DC, Fukao T, Grene R et al (2017) Multilevel regulation of
abiotic stress responses in plants. Front Plant Sci 8:1564

Hahn A, Harter K (2009) Mitogen-activated protein kinase cascades
and ethylene: signaling, biosynthesis, or both? Plant Physiol 149
(3):1207–1210

Hanin M, Ebel C, Ngom M et al (2016) New insights on plant salt
tolerance mechanisms and their potential use for breeding. Front
Plant Sci 7:1787

Harsh A, Sharma Y, Joshi U et al (2016) Effect of short-term heat stress
on total sugars, proline and some antioxidant enzymes in moth bean
(Vigna aconitifolia). Ann Agric Sci 61(1):57–64

Hasanuzzaman M, Naha K, Alam M et al (2014) Potential use of
halophytes to remediate saline soils. BioMed Res Int 2014. https://
doi.org/10.1155/2014/589341

Hasanuzzaman M, Nahar K, Alam M et al (2013) Physiological,
biochemical, and molecular mechanisms of heat stress tolerance in
plants. Int J Mol Sci 14(5):9643–9684

Hasanuzzaman M, Nahar K, Anee TI et al (2017) Glutathione in plants:
biosynthesis and physiological role in environmental stress toler-
ance. Physiol Mol Biol Plant 23(2):249–268

Hassan MU, Chattha MU, Khan I et al (2021) Heat stress in cultivated
plants: nature, impact, mechanisms, and mitigation strategies—a
review. Plant Biosyst 155(2):211–234

He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of
land plants and chances for engineering multistress tolerance. Front
Plant Sci 9:1771

He Y, Yang Z, Li M et al (2017) Effects of a dark septate endophyte
(DSE) on growth, cadmium content, and physiology in maize under
cadmium stress. Environ Sci Pollut Res 24(22):18494–18504

Hectors K, Van Oevelen S, Geuns J et al (2014) Dynamic changes in
plant secondary metabolites during UV acclimation in Arabidopsis
thaliana. Physiol Plant 152(2):219–230

Himani G (2014) An analysis of agriculture sector in Indian economy.
IOSR J Humanit Soc Sci (IOSR-JHSS) 19(1):47–54

Hniličková H, Hnilička F, Martinkova J et al (2017) Effects of salt
stress on water status, photosynthesis and chlorophyll fluorescence
of rocket. Plant Soil Environ 63(8):362–367

Hossain MA, Piyatida P, da Silva JAT et al (2012) Molecular
mechanism of heavy metal toxicity and tolerance in plants: central
role of glutathione in detoxification of reactive oxygen species and
methylglyoxal and in heavy metal chelation. J Bot 2012. https://doi.
org/10.1155/2012/872875

Hsu FC, Chou MY, Chou SJ et al (2013) Submergence confers
immunity mediated by the WRKY22 transcription factor in
Arabidopsis. Plant Cell 25(7):2699–2713

Huang C, Jiang C, Zhang H (2020) Identification of cold stress
responsive microRNAs in cold tolerant and susceptible Hemero-
callis fulva by high throughput sequencing. https://doi.org/10.
21203/rs.3.rs-41470/v1

Huang J, Zhao X, Chory J (2019) The Arabidopsis transcriptome
responds specifically and dynamically to high light stress. Cell Rep
29(12):4186–4199

Hussain HA, Men S, Hussain S et al (2019) Interactive effects of
drought and heat stresses on morpho-physiological attributes, yield,
nutrient uptake and oxidative status in maize hybrids. Sci Rep 9
(1):1–12

Ijaz B, Sudiro C, Jabir R et al (2019) Adaptive behaviour of roots under
salt stress correlates with morpho-physiological changes and
salinity tolerance in rice. Int J Agric Biol 21(3):667–674

Ilík P, Špundová M, Šicner M et al (2018) Estimating heat tolerance of
plants by ion leakage: a new method based on gradual heating. New
Phytol 218(3):1278–1287

Iqbal N, Nazir N, Nauman M et al (2020) agronomic crop responses
and tolerance to metals/metalloids toxicity. In: Hasanuzzaman M
(ed) Agronomic crops, vol 3. Springer, Singapore, pp 191–208

Jacquart A, Brayner R, Chahine JMEH et al (2017) ’Cd2+ and Pb2+

complexation by glutathione and the phytochelatins. Chem Biol
Interact 267:2–10

Jaime-Pérez N, Kaftan D, Bína D et al (1860) (2019) Mechanisms of
sublethal copper toxicity damage to the photosynthetic apparatus of
Rhodospirillum rubrum. Biochim Biophys Acta Bioenerg 8:640–
650

Jalmi SK, Sinha AK (2015) ROS mediated MAPK signaling in abiotic
and biotic stress-striking similarities and differences. Front Plant Sci
6:769

Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature
tolerance in plants: changes at the protein level. Phytochem 117:76–
89

Jiang C, Belfield EJ, Mithani A et al (2012) ROS-mediated vascular
homeostatic control of root-to-shoot soil Na delivery in Arabidop-
sis. EMBO J 31(22):4359–4370

Jourdan NF, Martino C, El-Esawi M et al (2015) Blue-light dependent
ROS formation by Arabidopsis cryptochrome-2 may contribute
toward its signaling role. Plant Signal Behav 10(8): e1042647

Kaur G, Vikal Y, Kaur L et al (2021) Elucidating the
morpho-physiological adaptations and molecular responses under
long-term waterlogging stress in maize through gene expression
analysis. Plant Sci 304:110823

Keunen E, Schellingen K, Vangronsveld J et al (2016) Ethylene and
metal stress: small molecule, big impact. Front Plant Sci 7:23

Keyster M, Niekerk LA, Basson G et al (2020) Decoding heavy metal
stress signalling in plants: towards improved food security and
safety. Plant 9(12):1781

Khan MIR, Fatma M, Per TS et al (2015) Salicylic acid-induced abiotic
stress tolerance and underlying mechanisms in plants. Front Plant
Sci 6:462

Khan N, Bano A (2016) Modulation of phytoremediation and plant
growth by the treatment with PGPR, Ag nanoparticle and untreated
municipal wastewater. Int J Phytorem 18(12):1258–1269

Khan N, Bano A, Babar MA (2019) The stimulatory effects of plant
growth promoting rhizobacteria and plant growth regulators on
wheat physiology grown in sandy soil. Arch Microb 201(6):769–
785

Kimura S, Waszczak C, Hunter K et al (2017) Bound by fate: the role
of reactive oxygen species in receptor-like kinase signaling. Plant
Cell 29(4):638–654

Kosová K, Vítámvás P, Prášil I et al (2011) Plant proteome changes
under abiotic stress—contribution of proteomics studies to under-
standing plant stress response. J Proteom 74(8):1301–1322

Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in
plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental
adaptations and stress tolerance of plants in the era of climate
change, 1st edn. Springer, New York, pp 1–28

Kozai T (2016) Why LED lighting for urban agriculture? In: Kozai T,
Fujiwara K, Runkle E (eds) LED lighting for urban agriculture, 1st
edn. Springer, Singapore, pp 3–18. https://doi.org/10.1007/978-
981-10-1848-0_1

Kraj W, Pietrzykowski M, Warczyk A (2021) The antioxidant defense
system and bioremediation. In: Hasanuzzaman M, Prasad NV
(eds) Handbook of bioremediation. Elsevier, pp 205–220. https://
doi.org/10.1016/B978-0-12-819382-2.00012-0

Kulasek M, Bernacki MJ, Ciszak K et al (2016) Contribution of PsbS
function and stomatal conductance to foliar temperature in higher
plants. Plant Cell Physiol 57(7):1495–1509

24 K. Bera et al.

http://dx.doi.org/10.1007/978-981-13-1861-0_10
http://dx.doi.org/10.1007/978-981-13-1861-0_10
http://dx.doi.org/10.1155/2014/589341
http://dx.doi.org/10.1155/2014/589341
http://dx.doi.org/10.1155/2012/872875
http://dx.doi.org/10.1155/2012/872875
http://dx.doi.org/10.21203/rs.3.rs-41470/v1
http://dx.doi.org/10.21203/rs.3.rs-41470/v1
http://dx.doi.org/10.1007/978-981-10-1848-0_1
http://dx.doi.org/10.1007/978-981-10-1848-0_1
http://dx.doi.org/10.1016/B978-0-12-819382-2.00012-0
http://dx.doi.org/10.1016/B978-0-12-819382-2.00012-0


Kumar A, Patel JS, Meena VS et al (2019) Recent advances of PGPR
based approaches for stress tolerance in plants for sustainable
agriculture. Biocatal Agric Biotechnol 20:101271

Kumar A, Sandhu N, Dixit S et al (2018) Marker-assisted selection
strategy to pyramid two or more QTLs for quantitative trait-grain
yield under drought. Rice 11(1):1–16

Kumar P, Sharma PK (2020) Soil salinity and food Security in India.
Front Sustain Food Syst 4:174

Kumar V, Singh G, Chauhan RS et al (2020) Role of plant growth–
promoting rhizobacteria in mitigation of heavy metals toxicity to
Oryza sativa L. In: Shah MP, Rodriguez-Couto S, Sevinç Şengör S
(eds) Emerging technologies in environmental bioremediation.
Elsevier, pp 373–390. https://doi.org/10.1016/C2019-0-00488-8

Lee G, Duncan RR, Carrow RN (2004) Salinity tolerance of seashore
paspalum ecotypes: shoot growth responses and criteria. HortS-
cience 39(5):1138–1142

Lee SC, Mustroph A, Sasidharan R et al (2011) Molecular character-
ization of the submergence response of the Arabidopsis thaliana
ecotype Columbia. New Phytol 190(2):457–471

Leuendorf JE, Frank M, Schmülling T (2020) Acclimation, priming and
memory in the response of Arabidopsis thaliana seedlings to cold
stress. Sci Rep 10(1):1–11

Li B, Gao K, Ren H et al (2018) Molecular mechanisms governing
plant responses to high temperatures. J Integr Plant Biol 60(9):757–
779

Li C, Liu D, Lin Z et al (2019) Histone acetylation modification affects
cell wall degradation and aerenchyma formation in wheat seminal
roots under waterlogging. Plant Growth Regul 87(1):149–163

Li S, Cheng Z, Peng M (2020) Genome-wide identification of miRNAs
targets involved in cold response in cassava. Plant Omic 13(1):57–
64

Li Y, Li H, Li Y et al (2017) Improving water-use efficiency by
decreasing stomatal conductance and transpiration rate to maintain
higher ear photosynthetic rate in drought-resistant wheat. Crop J 5
(3):231–239

Lillo F, Ginocchio R, Ulriksen C et al (2019) Evaluation of connected
clonal growth of Solidago chilensis as an avoidance mechanism in
copper-polluted soils. Chemosphere 230:303–307

Lipiec J, Doussan C, Nosalewicz A et al (2013) Effect of drought and
heat stresses on plant growth and yield: a review. Int Agrophys 27
(4):463–477

Liu Q, Hu H, Zhu L et al (2015) Involvement of miR528 in the
regulation of arsenite tolerance in rice (Oryza sativa L.). J Agric
Food Chem 63(40):8849–8861

Liu S, Yang R (2020) Regulations of reactive oxygen species in plants
abiotic stress: An integrated overview. In: Tripathi DK (eds) Plant
life under changing environment: responses and management.
Elsevier, pp 323–353. https://doi.org/10.1016/C2018-1-02300-8

Liu Y, He C (2017) A review of redox signaling and the control of
MAP kinase pathway in plants. Redox Biol 11:192–204

Luo X, Bai X, Sun X et al (2013) Expression of wild soybean
WRKY20 in Arabidopsis enhances drought tolerance and regulates
ABA signalling. J Exp Bot 64(8):2155–2169

Ma L, Zhang H, Sun L et al (2012) NADPH oxidase AtrbohD and
AtrbohF function in ROS-dependent regulation of Na+/K+ home-
ostasis in Arabidopsis under salt stress. J Exp Bot 63(1):305–317

Maier A, Hoecker U (2015) COP1/SPA ubiquitin ligase complexes
repress anthocyanin accumulation under low light and high light
conditions. Plant Signal Behav 10(1):e970440

Marothia D, Kaur N, Pati PK (2020) Abiotic Stress Responses in
Plants: Current Knowledge and Future Prospects. In: Fahad S
(eds) Abiotic stress in plants. IntechOpen, London, UK. https://doi.
org/10.5772/intechopen.93824

Masouleh SSS, Sassine YN (2020) Molecular and biochemical
responses of horticultural plants and crops to heat stress. Ornam
Hortic 26:148–158

McKenzie RL, Aucamp PJ, Bais AF et al (2011) Ozone depletion and
climate change: impacts on UV radiation. Photochem Photobiol Sci
10(2):182–198

Miao C, Liu F, Zhao Q et al (2012) A proteomic analysis of
Arabidopsis thaliana seedling responses to
3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing
signal. Biochem Biophys Res Commun 427(2):293–298

Miller DJ, Zhang YM, Subramanian C et al (2010a) Structural basis for
the transcriptional regulation of membrane lipid homeostasis. Nat
Struct Mol Biol 17(8):971–975

Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010b) Reactive oxygen
species homeostasis and signalling during drought and salinity
stresses. Plant Cell Environ 33(4):453–467

Miller G, Schlauch K, Tam R et al (2009) The plant NADPH oxidase
RBOHD mediates rapid systemic signaling in response to diverse
stimuli. Sci Signal 2(84):ra45–ra45

Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19
Müller-Xing R, Xing Q, Goodrich J (2014) Footprints of the sun:

memory of UV and light stress in plants. Front Plant Sci 5:474
Murchie EH (2017) Safety conscious or living dangerously: what is the

‘right’ level of plant photoprotection for fitness and productivity?
Plant Cell Environ 40(8):1239–1242

Nasri N, Maatallah S, Kaddour R et al (2016) Effect of salinity on
Arabidopsis thaliana seed germination and acid phosphatase
activity. Arch Biol Sci 68(1):17–23

Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves
photosynthesis and growth through increase in
ascorbate-glutathione metabolism and S assimilation in mustard
under salt stress. Plant Signal Behav 10(3):e1003751

Nazir F, Hussain A, Fariduddin Q (2019) Hydrogen peroxide modulate
photosynthesis and antioxidant systems in tomato (Solanum lycop-
ersicum L.) plants under copper stress. Chemosphere 230:544–558

Nitschke S, Cortleven A, Iven T et al (2016) Circadian stress regimes
affect the circadian clock and cause jasmonic acid-dependent cell
death in cytokinin-deficient Arabidopsis plants. Plant Cell 28
(7):1616–1639

Nitschke S, Cortleven A, Schmülling T (2017) Novel stress in plants by
altering the photoperiod. Trends Plant Sci 22(11):913–916

Nurdiani D, Widyajayantie D, Nugroho S (2018) OsSCE1 encoding
SUMO E2-conjugating enzyme involves in drought stress response
of Oryza sativa. Rice Sci 25(2):73–81

Ou L, Dai X, Zhang Z et al (2011) Responses of pepper to waterlogging
stress. Photosynthetica 49(3):339

Panozzo A, Dal Cortivo C, Ferrari M et al (2019) Morphological
changes and expressions of AOX1A, CYP81D8, and putative PFP
genes in a large set of commercial maize hybrids under extreme
waterlogging. Front Plant Sci 10:62

Pedersen O, Sauter M, Colmer TD et al (2021) Regulation of root
adaptive anatomical and morphological traits during low soil
oxygen. New Phytol 229(1):42–49

Pedranzani H, Rodríguez-Rivera M, Gutiérrez M et al (2016)
Arbuscular mycorrhizal symbiosis regulates physiology and per-
formance of Digitaria eriantha plants subjected to abiotic stresses
by modulating antioxidant and jasmonate levels. Mycorrhiza 26
(2):141–152

Pegler JL, Oultram JM, Grof CP et al (2021) Molecular manipulation of
the miR399/PHO2 expression module alters the salt stress response
of Arabidopsis thaliana. Plant 10(1):73

Pollastri S, Savvides A, Pesando M et al (2018) Impact of two
arbuscular mycorrhizal fungi on Arundo donax L. response to salt
stress. Plant 247(3):573–585

Plant Responses Under Abiotic Stress and Mitigation Options … 25

http://dx.doi.org/10.1016/C2019-0-00488-8
http://dx.doi.org/10.1016/C2018-1-02300-8
http://dx.doi.org/10.5772/intechopen.93824
http://dx.doi.org/10.5772/intechopen.93824


Pou A, Medrano H, Flexas J et al (2013) A putative role for TIP and
PIP aquaporins in dynamics of leaf hydraulic and stomatal
conductances in grapevine under water stress and re-watering.
Plant Cell Environ 36(4):828–843

Prasad P, Pisipati S, Momčilović I et al (2011) Independent and
combined effects of high temperature and drought stress during
grain filling on plant yield and chloroplast EF-Tu expression in
spring wheat. J Agron Crop Sci 197(6):430–441

Qiu L, Xie F, Yu J et al (2012) Arabidopsis RTE1 is essential to
ethylene receptor ETR1 amino-terminal signaling independent of
CTR1. Plant Physiol 159(3):1263–1276

Rai KK, Pandey N, Rai SP (2020) Salicylic acid and nitric oxide
signaling in plant heat stress. Physiol Plant 168(2):241–255

Raja V, Qadir SU, Alyemeni MN et al (2020) Impact of drought and
heat stress individually and in combination on physio-biochemical
parameters, antioxidant responses, and gene expression in Solanum
lycopersicum. 3 Biotech 10(5):1–18

Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating
plants: how and why do they do it? and what makes them so
interesting? Plant Sci 180(2):169–181

Rawat N, Singla-Pareek SL, Pareek A (2021) Membrane dynamics
during individual and combined abiotic stresses in plants and tools
to study the same. Physiol Plant 171(4):653–676

Raza A, Razzaq A, Mehmood SS et al (2019) Impact of climate change
on crops adaptation and strategies to tackle its outcome: a review.
Plant 8(2):34

Reeves RD, Baker AJ, Jaffré T et al (2018) A global database for plants
that hyperaccumulate metal and metalloid trace elements. New
Phytol 218(2):407–411

Repas TS, Gillis DM, Boubakir Z et al (2017) Growing plants on oily,
nutrient-poor soil using a native symbiotic fungus. PloS One 12
(10):e0186704

Ritonga FN, Chen S (2020) Physiological and molecular mechanism
involved in cold stress tolerance in plants. Plants 9(5):560

Rodríguez ME, Doffo GN, Cerrillo T et al (2018) Acclimation of
cuttings from different willow genotypes to flooding depth level.
New For 49(3):415–427

Rodríguez-Serrano M, Romero-Puertas MC, Sanz-Fernández M et al
(2016) ’Peroxisomes extend peroxules in a fast response to stress
via a reactive oxygen species-mediated induction of the peroxin
PEX11a. Plant Physiol 171(3):1665–1674

Roeber VM, Bajaj I, Rohde M et al (2021) Light acts as a stressor and
influences abiotic and biotic stress responses in plants. Plant Cell
Environ 44(3):645–664

Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quench-
ing: mechanism and effectiveness in protecting plants from
photodamage. Plant Physiol 170(4):1903–1916

Sahin U, Ekinci M, Ors S et al (2018) Effects of individual and
combined effects of salinity and drought on physiological, nutri-
tional and biochemical properties of cabbage (Brassica oleracea
var. capitata). Sci Hortic 240:196–204

Sasidharan R, Bailey-Serres J, Ashikari M et al (2017) Community
recommendations on terminology and procedures used in flooding
and low oxygen stress research. New Phytol 214(4):1403–1407

Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16
(3):282–286

Schenk ST, Schikora A (2015) AHL-priming functions via oxylipin
and salicylic acid. Front Plant Sci 5:784

Shahid M, Pourrut B, Dumat C et al (2014) Heavy-metal-induced
reactive oxygen species: phytotoxicity and physicochemical
changes in plants. Rev Environ Cont Toxicol 232:1–44

Shahid MA, Sarkhosh A, Khan N et al (2020) Impact of quorum
sensing molecules on plant growth and immune system. Front
Microb 11:1545

Shan T, Fu R, Xie Y et al (2020) Regulatory mechanism of maize (Zea
mays L.) miR164 in salt stress response. Russ J Genet 56(7):835–
842

Sharma A, Kapoor D, Wang J et al (2020) Chromium bioaccumulation
and its impacts on plants: an overview. Plant 9(1):100

Sharma A, Rana C, Singh S et al (2016) Soil salinity: causes, effects,
and management in cucurbits. Handbook Cucurbits Growth Cult
Pract Physiol 6(4):419–434

Sharma N (2016) Antioxidant response to salt stress in rice cultivars.
Punjab Agricultural University, Ludhiana

Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species,
oxidative damage, and antioxidative defense mechanism in plants
under stressful conditions. J Bot. https://doi.org/10.1155/2012/
217037

Sharma S, Sharma J, Soni V et al (2021) Waterlogging tolerance: A
review on regulative morpho-physiological homeostasis of crop
plants. J Water Land Dev. https://doi.org/10.24425/jwld.2021.
137092

Shen L, Wang C, Fu Y et al (2018) QTL editing confers opposing yield
performance in different rice varieties. J Integr Plant Biol 60(2):89–
93

Shi X, Jiang F, Wen J (2019) Overexpression of Solanum habrochaites
microRNA319d (sha-miR319d) confers chilling and heat stress
tolerance in tomato (S. lycopersicum). BMC Plant Biol 19(1):1–17

Shikanai T (2014) Central role of cyclic electron transport around
photosystem I in the regulation of photosynthesis. Curr Opin
Biotechnol 26:25–30

Shrestha A, Elhady A, Adss S et al (2019) Genetic differences in barley
govern the responsiveness to N-Acyl homoserine lactone. Phyto-
biom J 3(3):191–202

Shrestha A, Schikora A (2020) AHL-priming for enhanced resistance
as a tool in sustainable agriculture. FEMS Microbiol Ecol 96
(12):fiaa226

Shriram V, Kumar V, Devarumath RM et al (2016) MicroRNAs as
potential targets for abiotic stress tolerance in plants. Front Plant Sci
7:817

Shukla P, Skea J, Slade R et al (2019) Technical summary. In:
Shukla PR, Skea J, Slade R et al (eds) Technical summary: climate
change and land: an IPCC special report on climate change,
desertification, land degradation, sustainable land management,
food security, and greenhouse gas fluxes in terrestrial ecosystems.
Center for International Forestry Research (CIFOR), Bogor,
Indonesia, pp 37–74

Singh D, Laxmi A (2015) Transcriptional regulation of drought
response: a tortuous network of transcriptional factors. Front Plant
Sci 6:895

Singh S, Yadav V, Arif N et al (2020) Heavy metal stress and plant life:
uptake mechanisms, toxicity, and alleviation. In: Tripathi DK
(eds) Plant life under changing environment. Elsevier, pp 271–287.
https://doi.org/10.1016/C2018-1-02300-8

Sofy MR, Seleiman MF, Alhammad BA et al (2020) Minimizing
adverse effects of pb on maize plants by combined treatment with
jasmonic, salicylic acids and proline. Agron 10(5):699

Srivastava S, Pathak AD, Gupta PS et al (2012) Hydrogen
peroxide-scavenging enzymes impart tolerance to high temperature
induced oxidative stress in sugarcane. J Environ Bio 33(3):657

Suetsugu N, Higa T, Gotoh E et al (2016) Light-induced movements of
chloroplasts and nuclei are regulated in both
cp-actin-filament-dependent and-independent manners in Arabidop-
sis thaliana. PLoS One 11(6):e0157429

Szaker HM, Darkó É, Medzihradszky A et al (2019)
miR824/AGAMOUS-LIKE16 module integrates recurring environ-
mental heat stress changes to fine-tune poststress development.
Front Plant Sci 10:1454

26 K. Bera et al.

http://dx.doi.org/10.1155/2012/217037
http://dx.doi.org/10.1155/2012/217037
http://dx.doi.org/10.24425/jwld.2021.137092
http://dx.doi.org/10.24425/jwld.2021.137092
http://dx.doi.org/10.1016/C2018-1-02300-8


Sze H, Chanroj S (2018) Plant endomembrane dynamics: studies of K+/
H+ antiporters provide insights on the effects of pH and ion
homeostasis. Plant Physiol 177(3):875–895

Takagi D, Takumi S, Hashiguchi M et al (2016) Superoxide and singlet
oxygen produced within the thylakoid membranes both cause
photosystem I photoinhibition. Plant Physiol 171(3):1626–1634

Takahashi S, Badger MR (2011) Photoprotection in plants: a new light
on photosystem II damage. Trends Plant Sci 16(1):53–60

Tang X, Lowder LG, Zhang T et al (2017) A CRISPR–Cpf1 system for
efficient genome editing and transcriptional repression in plants.
Nature Plant 3(3):1–5

Thakur P, Nayyar H (2013) Facing the cold stress by plants in the
changing environment: sensing, signaling, and defending mecha-
nisms. In: Tuteja N, Singh Gill S (eds) Plant acclimation to
environmental stress, 1st edn. Springer, New York, pp 29–69.
https://doi.org/10.1007/978-1-4614-5001-6

Thoma F, Somborn-Schulz A, Schlehuber D et al (2020) Effects of light
on secondary metabolites in selected leafy greens: a review. Front
Plant Sci 11:497

Tikkanen M, Aro E-M (2014) Integrative regulatory network of plant
thylakoid energy transduction. Trends Plant Sci 19(1):10–17

Tiwari S, Lata C, Singh Chauhan P et al (2017) A functional genomic
perspective on drought signalling and its crosstalk with
phytohormone-mediated signalling pathways in plants. Current
Genom 18(6):469–482

Tiwari S, Patel A, Singh M et al (2020) Regulation of temperature
stress in plants. In: Tripathi DK (eds) Plant life under changing
environment. Elsevier, pp 25–45. https://doi.org/10.1016/B978-0-
12-818204-8.00002-3

Torres MA, Barros MP, Campos SC et al (2008) Biochemical
biomarkers in algae and marine pollution: a review. Ecotoxicol
Environ Saf 71(1):1–15

Tsai KJ, Lin CY, Ting CY et al (2016) Ethylene-regulated glutamate
dehydrogenase fine-tunes metabolism during anoxia-reoxygenation.
Plant Physiol 172(3):1548–1562

Tyystjärvi E (2013) Photoinhibition of photosystem II. Int Rev Cell
Mol Biol 300:243–303

UNESCO World Water Assessment Programme (2018) The United
Nations world water development report 2018: nature-based
solutions. UNESCO, Paris. https://unesdoc.unesco.org/ark:/48223/
pf0000261424

Upreti K, Sharma M (2016) Role of plant growth regulators in abiotic
stress tolerance. In: Rao N, Shivashankara K, Laxman R (eds) Abi-
otic stress physiology of horticultural crops, 1st edn. Springer, New
Delhi, pp 19–46. https://doi.org/10.1007/978-81-322-2725-0_2

Usman MG, Rafii MY, Ismail MR et al (2015) Expression of target
gene Hsp70 and membrane stability determine heat tolerance in
chili pepper. J Am Soc Hortic Sci 140(2):144–150

Vaahtera L, Brosché M, Wrzaczek M et al (2014) Specificity in ROS
signaling and transcript signatures. Antioxid Redox Signal 21
(9):1422–1441

Vass I (2012) Molecular mechanisms of photodamage in the Photo-
system II complex. Biochim Biophys Acta Bioenerg 1817(1):209–
217

Veliz-Vallejos DF, van Noorden GE, Yuan M et al (2014) A
Sinorhizobium meliloti-specific N-acyl homoserine lactone
quorum-sensing signal increases nodule numbers in Medicago
truncatula independent of autoregulation. Front Plant Sci 5:551

Velmurugan A, Swarnam P, Subramani T et al (2020) Water demand
and salinity. In: Farahani MHDA, Vatanpour V, Taheri A
(eds) Desalination-challenges and opportunities. IntechOpen, Lon-
don, UK

Verma S, Nizam S, Verma PK (2013) Biotic and abiotic stress
signaling in plants. In: Sarwat M, Ahmad A, Abdin M (eds) Stress

signaling in plants: genomics and proteomics perspective, vol 1.
Springer, New York, pp 25–49

Visentin I, Pagliarani C, Deva E et al (2020) A novel
strigolactone-miR156 module controls stomatal behaviour during
drought recovery. Plant Cell Environ 43(7):1613–1624

Vishwakarma K, Upadhyay N, Kumar N et al (2017) Abscisic acid
signaling and abiotic stress tolerance in plants: a review on current
knowledge and future prospects. Front Plant Sci 8:161

Voesenek LA, Bailey-Serres J (2015) Flood adaptive traits and
processes: an overview. New Phytol 206(1):57–73

Wang B, Sun Y, Song N et al (2013a) Identification of UV-B-induced
microRNAs in wheat. Genet Mol Res 12(4):4213–4221

Wang F, Cui X, Sun Y et al (2013b) Ethylene signaling and regulation
in plant growth and stress responses. Plant Cell Rep 32(7):1099–
1109

Wang W, Gao T, Chen J et al (2019) The late embryogenesis abundant
gene family in tea plant (Camellia sinensis): Genome-wide
characterization and expression analysis in response to cold and
dehydration stress. Plant Physiol Biochem 135:277–286

Wani SH, Kumar V, Khare T et al (2020) miRNA applications for
engineering abiotic stress tolerance in plants. Biol 75(7):1063–1081

Waqas MA, Kaya C, Riaz A et al (2019) Potential mechanisms of
abiotic stress tolerance in crop plants induced by thiourea. Front
Plant Sci 10:1336

Wei L, Zhang M, Wei S et al (2020) Roles of nitric oxide in heavy
metal stress in plants: cross-talk with phytohormones and protein
S-nitrosylation. Environ Pollut 259:113943

Wojtyla Ł, Paluch-Lubawa E, Sobieszczuk-Nowicka E et al (2020)
Drought stress memory and subsequent drought stress tolerance in
plants. In: Hossain MA (eds) Priming-mediated stress and
cross-stress tolerance in crop plants. Elsevier, pp 115–131. https://
doi.org/10.1016/B978-0-12-817892-8.00007-6

Wu L, Huo W, Yao D et al (2019) Effects of solid matrix priming
(SMP) and salt stress on broccoli and cauliflower seed germination
and early seedling growth. Sci Hortic 255:161–168

Xiong H, Li J, Liu P et al (2014) Overexpression of OsMYB48-1, a
novel MYB-related transcription factor, enhances drought and
salinity tolerance in rice. PloS One 9(3):e92913

Yadav S, Modi P, Dave A et al (2020) Effect of abiotic stress on crops.
In: Hasanuzzaman M (eds) Sustainable crop production. IntechO-
pen, London, UK

Yadav SK (2010) Cold stress tolerance mechanisms in plants. a review.
Agron Sustain Dev 30(3):515–527

Yamamoto Y (2016) Quality control of photosystem II: the mecha-
nisms for avoidance and tolerance of light and heat stresses are
closely linked to membrane fluidity of the thylakoids. Front Plant
Sci 7:1136

Yan A, Wang Y, Tan SN et al (2020) Phytoremediation: a promising
approach for revegetation of heavy metal-polluted land. Front Plant
Sci 11:359

Yan S, Dong X (2014) Perception of the plant immune signal salicylic
acid. Curr Opin Plant Biol 20:64–68

Yang B, Tang J, Yu Z et al (2019) Light stress responses and prospects
for engineering light stress tolerance in crop plants. J Plant Growth
Regul 38(4):1489–1506

Yang X, Lu M, Wang Y et al (2021) Response mechanism of plants to
drought stress. Hortic 7(3):50

Yang X, Xu H, Shao L et al (2018) Response of photosynthetic
capacity of tomato leaves to different LED light wavelength.
Environ Exp Bot 150:161–171

Yeung E, van Veen H, Vashisht D et al (2018) A stress recovery
signaling network for enhanced flooding tolerance in Arabidopsis
thaliana. PNAS 115(26):6085–6094

Yimer D, Abena T (2019) Components, mechanisms of action, success
under greenhouse and field condition, market availability,

Plant Responses Under Abiotic Stress and Mitigation Options … 27

http://dx.doi.org/10.1007/978-1-4614-5001-6
http://dx.doi.org/10.1016/B978-0-12-818204-8.00002-3
http://dx.doi.org/10.1016/B978-0-12-818204-8.00002-3
https://unesdoc.unesco.org/ark:/48223/pf0000261424
https://unesdoc.unesco.org/ark:/48223/pf0000261424
http://dx.doi.org/10.1007/978-81-322-2725-0_2
http://dx.doi.org/10.1016/B978-0-12-817892-8.00007-6
http://dx.doi.org/10.1016/B978-0-12-817892-8.00007-6


formulation and inoculants development on biofertilizer. Biomed J
Sci and Tech Res 12:9366–9371

Yin X, Liang X, Zhang R et al (2015) Impact of phenanthrene exposure
on activities of nitrate reductase, phosphoenolpyruvate carboxylase,
vacuolar H+-pyrophosphatase and plasma membrane H+-ATPase in
roots of soybean, wheat and carrot. Environ Exp Bot 113:59–66

Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014)
ABA-dependent and ABA-independent signaling in response to
osmotic stress in plants. Curr Opin Plant Biol 21:133–139

Zandalinas SI, Mittler R, Balfagón D et al (2018) Plant adaptations to
the combination of drought and high temperatures. Physiol Plant
162(1):2–12

Zargar SM, Nagar P, Deshmukh R et al (2017) Aquaporins as potential
drought tolerance inducing proteins: towards instigating stress
tolerance. J Proteom 169:233–238

Zavafer A, Cheah MH, Hillier W et al (2015) Photodamage to the
oxygen evolving complex of photosystem II by visible light. Sci
Rep 5(1):1–8

Zeppel MJ, Harrison SP, Adams HD et al (2015) Drought and
resprouting plants. New Phytol 206(2):583–589

Zhang D, Liu X, Ma J et al (2019) Genotypic differences and
glutathione metabolism response in wheat exposed to copper.
Environ Exp Bot 157:250–259

Zhang J, Hamza A, Xie Z et al (2021) Arsenic transport and interaction
with plant metabolism: Clues for improving agricultural productiv-
ity and food safety. Environ Pollut 290. https://doi.org/10.1016/j.
envpol.2021.117987

Zhang J, Yu J, Wen CK (2014) An alternate route of ethylene receptor
signaling. Front Plant Sci 5:648

Zhang L, Ding H, Jiang H et al (2020) Regulation of cadmium
tolerance and accumulation by miR156 in Arabidopsis. Chemo-
sphere 242:125168

Zhang L, Li Z, Quan R et al (2011) An AP2 domain-containing gene,
ESE1, targeted by the ethylene signaling component EIN3 is
important for the salt response in Arabidopsis. Plant Physiol 157
(2):854–865

Zhang Q, Dai W (2019) Plant response to salinity stress. In: Dai W
(ed) Stress physiology of woody plants, 1st edn. CRC Press, Boca
Raton, pp 155–173. https://doi.org/10.1201/9780429190476

Zhang Q, Gong M, Yuan J et al (2017) Dark septate endophyte
improves drought tolerance in Sorghum. Int J Agric Biol 19(1):53–
60

Zhang S, Gao MR, Fu HY et al (2018) Electric field induced permanent
superconductivity in layered metal nitride chlorides hfncl and zrncl.
Chin Phys Lett 35(9):097401

Zhao C, Zhang H, Song C et al (2020) Mechanisms of plant responses
and adaptation to soil salinity. Innovation 1(1):100017

Zhao Q, Li M, Jia Z et al (2016) AtMYB44 positively regulates the
enhanced elongation of primary roots induced by
N-3-oxo-hexanoyl-homoserine lactone in Arabidopsis thaliana.
Mol Plant-Microb Interact 29(10):774–785

Zhao Y, Xie J, Wang S et al (2021) Synonymous mutation of miR396a
target sites in Growth Regulating Factor 15 (GRF15) enhances
photosynthetic efficiency and heat tolerance in poplar. J Exp Bot 72
(12):4502–4519

Zheng J, Ying Q, Fang C et al (2021) Alternative oxidase pathway is
likely involved in waterlogging tolerance of watermelon. Sci Hortic
278:109831

Zhou H, Guo S, An Y et al (2016) Exogenous spermidine delays
chlorophyll metabolism in cucumber leaves (Cucumis sativus L.)
under high temperature stress. Acta Physiol Plant 38(9):1–12

Zhou LL, Gao KY, Cheng LS et al (2021) Short-term
waterlogging-induced autophagy in root cells of wheat can inhibit
programmed cell death. Protoplasma 258:891–904

Zhou Z (2020) The role of miRNAs in regulating the expression of
flavonol pathway genes and its possible impact on the crosstalk
between UV-B and flg22 signal cascades in Arabidopsis thaliana.
https://nbn-resolving.org/urn:nbn:de:gbv:8-mods-2020-00085-3

Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell
167(2):313–324

Zhu M, Shabala L, Cuin TA et al (2016) Nax loci affect SOS1-like Na+/
H+ exchanger expression and activity in wheat. J Exp Bot 67
(3):835–844

Zhu Z, An F, Feng Y et al (2011) Derepression of ethylene-stabilized
transcription factors (EIN3/EIL1) mediates jasmonate and ethylene
signaling synergy in Arabidopsis. PNAS 108(30):12539–12544

Zia R, Nawaz MS, Siddique MJ et al (2020) Plant survival under
drought stress: Implications, adaptive responses, and integrated
rhizosphere management strategy for stress mitigation. Microbiol
Res 242. https://doi.org/10.1016/j.micres.2020.126626

28 K. Bera et al.

http://dx.doi.org/10.1016/j.envpol.2021.117987
http://dx.doi.org/10.1016/j.envpol.2021.117987
http://dx.doi.org/10.1201/9780429190476
https://nbn-resolving.org/urn:nbn:de:gbv:8-mods-2020-00085-3
http://dx.doi.org/10.1016/j.micres.2020.126626


Plant Viruses: Factors Involved in Emergence
and Recent Advances in Their Management
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Abstract

Plant viruses comprise one of the most important groups
of plant pathogens, sometimes causing up to 100% yield
loss. Today, nearly 47% of the emerging and re-emerging
plant pathogens are viruses. They are more notorious than
the other plant pathogens because they can sequester and
reprogram the host cellular machinery for their own
benefit. This also makes their management a challenge,
when compared to other groups of plant pathogens such
as bacteria and fungi. A number of plant viruses are
transmitted by biotic agents like insects and nematodes;
therefore, the management practices of the viruses are
often indirect and based on the management of those
pests. Nevertheless, recent advances in biotechnology,
such as transgenic approaches, RNA interference, and
CRISPR/Cas technology, are gaining importance as
promising tools for the management of this influential
group of pathogens. In this chapter, we discuss some of
the important factors involved in the emergence and
re-emergence of plant viruses, and the potential of some
of the advanced biotechnological tools in their manage-
ment. We enlist some successful examples too and
summarize the relatively old and well-known but proven
tools used for the same purpose.

Keywords

Biotechnology tools � Emergence and re-emergence �
Factors � Molecular tools � Plant virus management

Abbreviations

AGO Argonaute
amiRNA Artificial miRNA
AMV Alfalfa mosaic virus

Avr Avirulence
BaMV Bamboo mosaic virus
BBTV Banana bunchy top virus
BCTV Beet curly top virus
BDMV Bean dwarf mosaic virus
BeYDV Bean yellow dwarf virus
BnYDV Bean yellow disorder virus
BSCTV Beet severe curly top virus
BSV Banana streak virus
CABYV Cucurbit aphid-borne yellows virus
CBSD Cassava black streak disease
CBSV Cassava brown streak virus
CC Coiled coil
CGMMV Cucumber green mottle mosaic virus
ChiVMV Chilli veinal mottle virus
CLCBV Cotton leaf curl Burewala virus
CLCuKoV Cotton leaf curl Khokhran virus
CLCuMB Cotton leaf curl Multan betasatellite
CLCuRV Cotton leaf curl Rajasthan virus
CMV Cucumber mosaic virus
CP Coat protein
CPMR Coat protein-mediated resistance
CRISPR/Cas9 Clustered regularly interspersed

palindromic repeats-associated protein9
CTV Citrus Tristeza virus
CVYV Cucumber vein yellowing virus
CYVV Clover yellow vein virus
DCL Dicer-like protein
DNA Deoxy ribonucleic acid
eIFs Eukaryotic translation initiation factors
ER Extreme resistance
ETI Effectors-triggered immunity
FnCas9 Francisellanovicida
GRSV Groundnut ringspot virus
hp-PTGS Hairpin RNA-induced PTGS
HR Hypersensitive response
HV Helper virus
ihp Intron hairpin
IMPDH Inosine monophosphate dehydrogenase
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JA Jasmonic acid
kDa Kilo Dalton
LCV Lettuce chlorosis virus
LMV Lettuce mosaic virus
LRR Leucine-rich repeat
MAPK Mitogen-activated protein kinase
MiRNAs MicroRNAs
miR-mimic MiRNA mimic technology
MP Movement protein
MSV Maize streak virus
NA Neuraminidase
NB Nucleotide binding
NBS Nucleotide-Binding Site
NSP Nuclear Shuttle Protein
ORF Open reading frame
PDR Pathogen-Derived Resistance
PDV Prune dwarf virus
PepMV Pepino mosaic virus
PMV Peach mosaic virus
PLRV Potato leaf roll virus
PNRSV Prunus necrotic ringspot virus
PPV Plum pox virus
pri-miRNAs Primary microRNAs
PR Pathogenesis-related genes
PRSV Papaya ringspot virus
PTGS Post-transcriptional gene silencing
PTI Pathogen molecular pattern (PAMP)-

triggered immunity
PVMV Pepper veinal mottle virus
PVX Potato virus X
PVY Potato virus Y
PYVV Potato yellow vein virus
R gene Resistance gene
RBSDV Rice black-streaked dwarf virus
RBV Ribavirin
RDRp/RDR RNA-dependent RNA Polymerase
Rep Replicase protein
RISC RNA-induced silencing complex
RNA Ribonucleic acid
RNAi RNA interference
ROS Reactive oxygen species
RSV Rice stripe virus
RTBV Rice tungro bacilliform virus
RTSV Rice tungro spherical virus
SA Salicylic acid
sat-RNAs Satellite RNAs
scFv Single-chain variable fragment
SCMV Sugarcane mosaic virus
SCYLV Sugarcane yellow leaf virus
sgRNA Single-stranded guided RNA
siRNAs Small interfering (si)RNAs
S-PTGS Sense gene-induced post-transcriptional

gene silencing

TAS Trans-acting siRNA
TCV Turnip crinkle virus
TIR Toll-Interleukin1-like receptor
TLCYnV Tomato leaf curl Yunnan virus
TEV Tobacco etch virus
TMV Tobacco mosaic virus
ToLCNV Tomato leaf curl New Delhi virus
ToMV Tomato mosaic virus
TRV Tobacco rattle virus
TRSV Tobacco ringspot virus
TSV Tobacco streak virus
TSWV Tomato spotted wilt virus
TYLCV Tomato yellow leaf curl virus
TYLCSV Tomato yellow leaf curl Sardinia virus
TuMV Turnip mosaic virus;
TYMV Turnip yellow mosaic virus
VbMS Virus-based microRNA silencing
WMV-Tr Watermelon mosaic virus Turkish isolate
WMVBV Wild melon vein banding virus
WSMoV Watermelon silver mottle virus
WSMV Wheat streak mosaic virus
ZYMV Zucchini yellow mosaic virus

1 Introduction

Agricultural and horticultural crops are susceptible to a
broad set of pathogens like bacteria, fungi, and viruses
(Borrelli et al. 2018), and plant viruses account for
approximately 30% of plant diseases (Boualem et al. 2016).
Viruses are single-stranded or double-stranded DNA or
RNA pathogens packed inside a protein coat (capsid) which
survive within the host by acquiring host internal machinery
and utilizing it for intracellular movement and transmissions
(Islam et al. 2017). Viral diseases are a major threat to
sustainable and productive agriculture worldwide, resulting
in huge yield loss every year (Mumford et al. 2016).

The crucial factors driving virus emergence are (i) their
ability to rapidly evolve and adapt in changing environ-
ments, (ii) introduction of plant material carrying the virus
and their insect vector to a new region and international
borders, (iii) global climate change affecting the distribution
of host and viral vectors, and (iv) monocropping with low
genetic diversity and high plant density, which favours
pathogens and pest multiplication (Anderson et al. 2004).
Unlike bacteria or fungi that can be treated with antibacterial
or antifungal agents, curing virus-infected plants is chal-
lenging due to its obligate intracellular parasitic nature.

Disease management strategies require knowledge of
plant-virus interactions and effective measures to control viral
diseases. It relies on preventing viruses from entering host
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cells or developing disease resistance through multiple
approaches. These include the use of certified planting
materials (Novy et al. 2007), controlling vectors population,
and implementation of clean agricultural practices (Fereres
and Moreno 2009). In addition, the use of attenuated virus
strains to increase the resistance responses (Ichiki et al. 2005)
and, in some cases, breeding to obtain cultivars with elevated
resistance levels act as an alternative strategy to reduce the
viral load and prevent crop loss (Ma et al. 2004). Here, the
recent advances in the management of plant viruses and the
progress of procedures used for virus detection are reviewed.
This chapter includes basic concepts of the emergence of new
viral diseases in plants along with the important management
strategies for disease control aimed to guide plant pathologists
to design and apply more accurate detection and efficient
management of plant virus diseases.

2 Emerging Plant Viral Diseases and Factors
Driving Virus Emergence

The emergence of new viral diseases in plants has gained
immense importance in the past few decades. The constant
environmental changes, accidental introduction of infected
planting materials to new habitats facilitated by global
trades, and population expansion of viral vectors provide
conditions that permit the emergence of new virus species or
strains (Anderson et al. 2004). This results in complexity in
plant-virus interactions, which can cause disease outbreaks,
and insect carriers may amplify this complexity and the
disease severity. Most of the plant viruses imposing threat to
global food security fall in seven major genera: Bego-
moviruses, Carlaviruses, Crinivirus, Ipomoviruses, Poty-
viruses, Torradoviruses, and Tospoviruses (Ertunc 2020).

Understanding the mechanisms of emergence or
re-emergence of plant viruses requires knowledge of host
distribution, their spread by various vectors, and the beha-
viour of the vectors. Several factors drive the emergence of
indigenous viruses and enhance disease severity in the
introduced cropping environment. Some of the emerging
plant viruses, along with their host range, symptoms, geo-
graphical distribution, and potential mechanisms of evolu-
tion and virulence are enlisted in Table 1.

2.1 Changes in Agricultural Practices

Changes in agricultural practices such as (i) crop intensifi-
cation and extensification, (ii) loss of genetic diversity
through replacement of traditional cultivars and landraces by
virus susceptible cultivars, and (iii) the introduction of

alternate hosts and excessive use of agrochemicals can
facilitate the rate of virus movement or increase potential for
viruliferous vectors to migrate from native hosts to the
introduced crops (Morales and Anderson 2001; Fargette
et al. 2006; Jones 2009).

2.2 Molecular Alterations in Virus Genomes

Molecular alteration of viral genetic components can also
drive the evolution of new virus species or virulent strains.
These alterations include mutations, recombination,
pseudo-recombination, reassortment, evolution, symbiosis or
ability to cause mixed infection with other virus species, the
genetic drift of virus variants arising from geographical
isolation, the introduction of satellite viral components into
existing strains, and viral genome integration in host genome
causing episomal infection (Gibbs et al. 2008; Jones 2009;
Zaidi et al. 2017; Rojas et al. 2018). Other determinants
include founder effects and population bottlenecks involved
with vector transmission or the spread of the virus within
individual plants and genome integration (Jones 2009).

2.3 Altered Biology

The principal factors associated with the crucial alterations
in biology include the introduction of new and more efficient
virus-vector species, biotypes, or variants of existing vector
species, expansion in the natural host range, circumvention
of host defences in introduced crops, and infection intro-
duced hosts with more remarkable adaptation (Anderson
et al. 2004; Fargette et al. 2006; Gibbs et al. 2008; Jones
2009).

2.4 Climate Change

The changes in climatic conditions can assist in the spread of
newly acquainted viruses and their vectors, threatening crop
yield both directly and indirectly (Ertunc 2020). Direct
consequences like altered rainfall patterns and higher wind
speeds and indirect factors like regional alterations greatly
influence the dynamics of plant virus epidemics and alter the
geographic distribution, rate of evolution, relative abun-
dance, and host adaptation of these viruses. This contributes
to a favourable spread of newly introduced viruses and their
vectors (Jones 2009). Trebicki (2020) investigated certain
factors, such as elevated CO2, increased temperature, and
water availability which either as a single factor or in
combination might influence the plant virus epidemiology.
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Table 1 Emerging plant viruses, their host range, symptoms, geographical distribution, and potential mechanisms of evolution and virulence

Virus name
(Strain)

Host Symptoms Vectors Geographical
distribution

Potential mechanisms of
evolution and virulence

References

Genus: Badnavirus

Cacao
swollen shoot
disease

Cacao Leaf discolouration,
stem/root swelling

Mealybug South America,
West Africa

Recombination events
between intergenic region
(IR) and open reading
frame (ORF2)

Muller (2016)

Genus: Begomovirus

Tomato
yellow leaf
curl Mali
virus

Tomato, Common
bean, Nicotiana
benthamiana

Upward leaf curling
and yellowing in
tomato, leaf curl,
crumpling with
interveinal yellowing
in common bean

Whitefly Mali, West
Africa

Recombination between
two begomovirus species,
Tomato yellow leaf curl
virus-Mild and Hollyhock
leaf crumple virus

Chen et al.
(2009)

TLCYnV Tomato, N.
benthamiana, N.
tabacum, Petunia
hybrida

Upward leaf curling,
vein thickening

Whitefly Yunnan, China C4 protein of TLCYnV
suppresses
post-transcriptional gene
silencing or transcriptional
gene silencing via
inhibiting viral genome
methylation

Xie et al. (2013)

ToLCNV Tomato, Potato,
Chilli, Cucurbits
(Zucchini,
cucumber, and
melon), N.
benthamiana

Leaf curling Whitefly Southeast Asia,
Southern
Europe (Spain
and Italy),
North Africa
(Tunisia), and
Iran

Pseudo-recombination of
ToLCNV with other
begomoviruses and
betasatellites

Zaidi et al.
(2017)

Tomato
yellow leaf
curl Sardinia
virus
(TYLCSV)

Tomato, Potato,
Common bean

Leaf curling,
mottling, chlorotic
leaf margins

Whitefly Spain Genetic exchanges
achieved through
inter-species
recombination

Diaz-Pendon
et al. (2019)

Tomato curly
stunt virus

Tomato Leaf curling,
stunting, foliar
chlorosis

Whitefly South Africa,
Mosambique

Intra- or inter-specific
recombination with
Replicase (Rep) gene and
Coat protein (CP) gene
leading to speciation

Sande et al.
(2021)

Genus: Mastrevirus

Maize streak
virus
(MSV-A)

Maize (main host);
also infects wheat,
barley, rye, oats,
sugarcane, finger
millet, pearl millet,
and sorghum

Chlorotic streaks on
leaves, stunted
growth, and failure
to produce cobs or
seed

Leafhopper Different parts
of Africa

Probably intra-strain or
inter-strain recombination
events of MSV-A with
ancestral MSV-B variant

Varsani et al.
(2008),
Shepherd et al.
(2010)

Genus: Potyvirus

PVY Syria
(PVY SYR)

Potato, weed, N.
tabacum

Necrotic ringspot,
mosaic patterns

Aphids Syria Recombination between
PVYNTN and PVYNW

strains

Ali et al. (2010)

Watermelon
mosaic virus
Turkish
isolate
(WMV-Tr)

Watermelon, melon,
zucchini, and
squash

Mosaic, mottle, vein
banding, and leaf
deformation

Aphids Adana
province of
Turkey

Recombination Kamberoglu
et al. (2015)

(continued)
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Table 1 (continued)

Virus name
(Strain)

Host Symptoms Vectors Geographical
distribution

Potential mechanisms of
evolution and virulence

References

Bean common
mosaic virus
(BCMV-Az)
recombinant
isolate

Azuki bean Mosaic and necrotic
symptoms, vain
banding

Aphids China Recombinant and potential
new strain originating from
the cowpea isolate R and
common bean isolate US10

Li et al. (2016)

PVY isolate
(HLJ-C-44)

Potato, N. tabacum Mosaic symptoms Aphids Heilongjiang
province of
China

Recombination between
PVYN and PVYNW strains

Han et al.
(2017)

Sudan WMV Cucumber,
zucchini, common
bean, N.
benthamiana, N.
tabacum

Prominent mosaic
and chlorosis on leaf
lamina

Aphids Sudan Interspecific recombinant
between Moroccan
WMV (MWMV) and Wild
melon vein banding virus
(WMVBV)-like viruses

Desbiez et al.
(2017)

New isolates
of Sweet
potato
feathery
mottle virus
and Sweet
potato virus C

Sweet potato, Iris
setosa

Mosaic, crinkling,
chlorosis, chlorotic
blotches, purple
ringspot

Aphids Western and
Northern
Australia,
Southeast Asia
(East Timor)

High frequency of intra-
and inter-phylogroup
recombination

Maina et al.
(2018)

ChiVMV-
Guangxi and
Yunnan
isolate

Pepper Mosaic mottling,
twisted or fallen
leaves, vein banding,
and reduced fruit
size

Aphids Guangxi and
Yunnan
province of
China

Rao et al. (2020)

Genus: Potexvirus

Pepino
mosaic virus
(PepMV)

Pepino, tomato Yellow mosaic,
necrotic spots,
blotching

Mechanical
and seed
transmission

Europe,
Southern
American
continent

Martelli and
Galitelli (2009),
Ertunc (2020)

Genus: Crinivirus

Potato yellow
vein virus

Potato Yellow spots Whitefly South America Multiple genetic
recombinations in the
minor capsid protein
(CPm) coding region of
PYVV

Chaves-Bedoya
et al. (2014)

Lettuce
chlorosis
virus Spain

Lettuce, bean Yellowing of leaves
showing necrosis,
chlorotic leaves

Whitefly Spain Crossover recombination
of intact open reading
frames (ORFs) between
bean yellow disorder virus
(BnYDV) and LCV

Ruiz et al.
(2018)

Genus: Polerovirus

Sugarcane
yellow leaf
virus
(SCYLV)

Sugarcane Yellow leaf Aphids China Potential recombinant
events between genotypes

Lin et al. (2014)

Cucurbit
aphid-borne
yellows virus
(CABYV)

Melon Yellowing disease Aphids,
whitefly

Brazil Probably inter- and
intraspecific recombination

Costa et al.
(2019)

Recombinant
CABYV

Melon Chlorosis and
stunting symptoms

Whitefly Europe, Africa,
Asia, and
America

Recombination between
the common type CABYV
and an unknown
polerovirus

Costa et al.
(2020)

(continued)
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3 Transmission of Plant Viruses

Plant viruses are transmittedmajorly by insect vectors. Among
them, aphids, whiteflies, and thrips are the most important
ones, and all of them are positively affected by global climate
change. Other vectors include planthoppers, leafhoppers, and
mealybugs (Lv et al. 2017; Ertunc 2020). Aphids are the main
transmitting agents in the temperate regions: they transmit
more than 275 virus species distributed among 19 genera
(Canto et al. 2009). In general, an increase in temperature
could make earlier incubation of overwintering eggs of aphids
and may catalyze the process of reaching the minimum
threshold of population size required for migration (Bell et al.
2015; Wu et al. 2020). This can affect the phenological syn-
chronicity between aphids and host plants (Dewar and Watt
1992). In such a situation, insects that reach adulthood before
host plant germination may seek alternate hosts as a means for
survival, resulting in expansion of the host range (Paradis et al.
2008). In field-grown vegetables with a temperate climate, the
five most economically important plant viruses transmitted by
aphids are Cucumber mosaic virus (CMV), Lettuce mosaic
virus (LMV), Papaya ringspot virus (PRSV), Potato virus Y
(PVY), and Turnip mosaic virus (TuMV) (Ertunc 2020).
Other important aphid-transmitted viruses of horticultural

crops include Banana bunchy top virus (BBTV), Bean yellow
mosaic virus, Chilli veinal mottle virus (ChiVMV), Citrus
Tristeza virus (CTV), and Zucchini yellow mosaic virus (
ZYMV) (Krishnareddy 2013).

Many emerging plant viruses are also transmitted by
whiteflies (Hemiptera: Aleyrodidae) belonging to the gen-
era Bemisia and Trialeurodes. These include tomato-
infecting viruses such as Tomato chlorosis virus, Tomato
yellow leaf curl virus (TYLCV), Tomato leaf curl New
Delhi virus (ToLCNV), and Tomato leaf curl Yunnan
virus (TLCYnV); Tobacco curly shoot virus (Li et al. 2005;
Xie et al. 2013; Fiallo-Olive and Navas-Castillo 2019);
cassava-infecting East African cassava mosaic virus (Zhou
et al. 1997); Sweet potato chlorotic stunt virus (Gamarra
et al. 2010); Tobacco mosaic virus (TMV) (Hanssen et al.
2010); and Bean golden mosaic virus and Bean dwarf
mosaic virus (BDMV, Navas-Castillo et al. 2011).

Besides aphids and whiteflies, thrips belonging to the
order Thysanoptera are known vectors transmitting several
plant viruses (Jones 2005), and several viruses belonging to
the genus Tospoviruses (family: Bunyaviridae) are trans-
mitted by thrips (Rojas and Gilbertson 2008). These include
Tomato spotted wilt virus (TSWV), Impatiens necrotic spot
virus, and Iris yellow spot virus causing a widespread in
vegetables, ornamentals, and floral crops (Ertunc 2020).

Table 1 (continued)

Virus name
(Strain)

Host Symptoms Vectors Geographical
distribution

Potential mechanisms of
evolution and virulence

References

Pod pepper
vein yellows
virus

Pod pepper plants
(Capsicum
frutescens)

Interveinal leaf
yellowing and fruit
discolouration

Aphids Yunnan, China Single recombination event
with Pepper vein yellows
virus and Tobacco vein
distorting virus

Zhao et al.
(2021)

Genus: Carlavirus

Potato virus
M

Pepino, tomato Leaf rolling, mosaic
patterns

Aphids China Recombination in the
TGB2-TGB3-CP region

Ge et al. (2014)

Genus: Tobamovirus

Tomato
brown rugose
fruit virus

Tomato Mosaic patterns,
necrotic lesions

Mechanical
transmission

Middle East,
Europe,
Mexico, USA,
and China

Probably due to
recombination among
various tomato-infecting
tobamoviruses

Salem et al.
(2016)

Cucumber
green mottle
mosaic virus
(CGMMV)

Cucurbit sps Leaf mottling,
mosaic patterns

No
information
available

Europe, USA,
Canada, and
Australia

Recombination Bertin et al.
(2021)

Genus: Tospovirus

New TSWV
isolates
(YNta, YNrp,
and YNgp)

Tobacco, red
pepper, and green
pepper

Ringspot, black
streak and tip
dieback

Thrips China Recombination events in
the 5′ half of the RNA

Zhang et al.
(2016b)
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4 Management Strategies

Management of plant viral diseases is a matter of vital
concern and importance as virus-induced diseases are not
liable towards direct disease management methods. Several
disease management techniques have been applied in the
case of diseases caused by plant viruses to minimize their
incidence on crop plants. The following section enlists some
of such strategies. A schematic representation of different
virus resistance strategies developed over the past decades is
shown in Fig. 1.

4.1 Cross Protection

Cross protection is one of the conventional management
strategies to protect plants by inoculating with a mild strain
(called the primary virus/strain) of a virus against one or
more acute strains (called the secondary virus/strain) of the
same virus. The method was first demonstrated in the case of
TMV (McKinney 1929). This method of crop protection had
been successfully employed to administer many plant viru-
ses, such as ZYMV, PepMV, and CTV (Rast 1972; Müller
and Costa 1977; Lin et al. 2007; Aguero et al. 2018; Huang
et al. 2019). A recent study showed the utilization of
cross-protection by modifying the viral RNA silencing

suppressor against the watermelon strain PRSV (Huang et al.
2019). However, the milder strain of the virus protecting one
crop variety may sometimes cause severe diseases on other
varieties growing elsewhere. This had become a limiting
factor for the application of this classical method (Tabassum
et al. 2012).

4.2 Pathogen-Derived Resistance

Resistance to viruses has been accomplished in various
plants through the usage of genes derived from the virus
itself, and this method is known as pathogen-derived resis-
tance (PDR, Sanford and Johnston 1985). The idea of PDR
is correlated with cross-protection wherein inoculation of the
host with a mild strain can cross-protect the host from
infection by severe strains of the same or very closely related
viruses (Sanford and Johnston 1985). The concept of PDR is
based on the engineering of resistance in susceptible hosts
through the use of genetic elements, for example, coding and
non-coding sequence elements, from a pathogen’s very own
genome (Gottula and Fuchs 2009). Common genes utilized
to confer viral PDR include coat proteins, replicases,
movement proteins, defective interfering RNAs and DNAs,
and non-translated RNAs (Beachy 1997). According to
Tabassum et al. (2012), as a result of expressing viral genes

Fig. 1 Schematic illustration of various virus resistance strategies
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in plants along such as the coat protein (CP), movement
protein (MP), and replicase (Rep) protein genes target a step
crucial during viral replication and infection, and thus, virus
resistance was achieved. Among all these genes, the CP
gene is the most widely and commonly used transgene using
which virus-resistant transgenic plants have been developed;
the Rep and the MP genes also have been used in several
instances (reviewed by Varma et al. 2002).

The efficacy of PDR was first confirmed by expressing
the CP gene of TMV in transgenic tobacco against TMV
infection (Abel et al. 1986). The CP gene is associated with
viral replication and is also subjected to viral uncoating
(Beachy et al. 1990). The CP-mediated resistance (CPMR)
has been widely used, and so far, several important plant
viruses have been targeted utilizing this approach (Galvez
et al. 2014). These include CMV, TYLCV, Potato virus X
(PVX), PVY, Potato leaf roll virus (PLRV), Potato mosaic
virus, ZYMV, WMV, and PRSV (reviewed by Malnoe et al.
1994; Dasgupta et al. 2003; Galvez et al. 2014). Among
them, CPMR in PRSV was a major success in the United
States when Fitch et al. (1992), by expressing the PRSV CP
gene, succeeded in producing transgenic papaya showing
resistance. Among the others, while Kaniewski et al. (1990)
found successful CPMR was achieved against PVY, in
squash, success was achieved against CMV, ZYMV as well
as WMV using the CPs of the cognate viruses (Lindbo and
Falk 2017). The use of CPMR is hypothesized to have
multiple mechanisms working against different viruses
(Beachy 1997; Bendahmane et al. 2007).

The viral MP accumulated in the plasmodesmata allows
cell-to-cell movement of the virus (Beachy 1997). The first
MP-mediated resistance was demonstrated in tobacco plants
with a defective MP through the plasmodesmata (Lapidot
et al. 1993; Galvez et al. 2014). Transgenic plants expressing
MP gene showed resistance against a large number of
viruses like Cowpea mosaic virus, Cabbage leaf curl virus,
CMV, PLRV, PVY, PVX, TMV, Tomato mottle virus,
Tobacco rattle virus (TRV), Tobacco ringspot virus
(TRSV), Alfalfa mosaic virus (AMV), Peanut chlorotic
streak virus, etc. (reviewed by Sudarshana et al. 2007; Cillo
and Palukaitis 2014). In DNA viruses belonging to the genus
Begomovirus, the truncated MP gene also conferred resis-
tance to heterologous and homologous viruses upon trans-
genic expression (Duan et al. 1997; Hou et al. 2000;
Sudarshana et al. 2007). Sudarshana et al. (2007) observed
that the viruses of the families Comoviridae and
Caulimoviridae encoded a specialized protein that forms a
tubule from the infected to adjacent cells allowing the traf-
ficking of virions instead of depending on the
plasmodesmata-modifying protein. However, despite pro-
viding a broad-spectrum resistance, over-expressed MP
transgene was also shown to be toxic to plant cells (Khan
et al. 2014).

The viral replicase gene (Rep) is associated with virus
replication and genome integrity (Tabassum et al. 2012).
Golemboski and co-workers (1990) first reported engineered
viral resistance for TMV by utilizing genes encoding for
viral RNA-dependent RNA polymerase (RdRp) (Prins et al.
2008) which consisted of a 54 kDa fragment of the replicase
gene (Beachy 1997). According to Galvez and co-workers
(2014), resistance achieved by replicase was observed to be
durable and significant. Related works were carried out for
several other viruses like AMV, PLRV, PVY, CPMV, Pea
early browning virus, Rice yellow mottle virus, TYLCV,
Wheat yellow mosaic virus, and ZYMV (Dasgupta et al.
2003; Cillo and Palukaitis 2014; Galvez et al. 2014; Khan
et al. 2014). Resistance studies in Geminiviruses with viral
replication-associated proteins showed that those viral pro-
teins interacted with the host polymerases (Galvez et al.
2014).

Several studies conducted to achieve the Rep-mediated
resistance showed that different mechanisms function in
different viruses (Marano and Baulcombe 1998). Neverthe-
less, this resistance is generally definite and usually limited
to homologous viral strains (Palukaitis and Zaitlin 1997).

4.3 Plantibodies

Plantibodies can be referred to as plant-derived recombinant
antibodies to achieve resistance against pathogens (Schots
et al. 1992). The concept of plantibody is an animal strategy
intended to fight against pathogens in the plant kingdom
(Shamim et al. 2013). Hiatt et al. (1989) first demonstrated
the expression of recombinant antibodies in transgenic
tobacco plants. Initially, the capability of plant-derived
antibodies to hinder plant viruses was shown utilizing a
single-chain variable fragment (scFv) against Artichoke
mottled crinkle virus by Tavladoraki et al. (1993). In another
study, Jahromi et al. (2009) demonstrated that the CP21, the
major CP of Beet necrotic yellow vein virus, had a higher
affinity toscFv; however, there was no further research on
this candidate approach. Besides CPs, other structural pro-
teins such as MPs and Rep proteins can also be targeted by
recombinant antibodies (Safarnejad et al. 2011). Nine such
scFvs having conserved target domains in TSWV MP were
created that exhibited antibodies in the cytosol of transgenic
tobacco plants upon transgenic production (Zhang et al.
2008). Similarly, Safarnejad et al. (2008) generated two
scFvs recognizing distinct epitopes of Rep proteins of
TYLCV. Plantibody-mediated resistance has been demon-
strated against devastating CTV in citrus, and this approach
gave resistance in 40–60% of the plants (Cervera et al.
2010). The most commonly utilized crops for the production
of plantibodies include alfalfa, potato, rice, soybean,
tobacco, tomato, and wheat (Tilahun et al. 2019). The
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plantibody approach, therefore, has been concluded to be
useful if applied as a substitution or along with classical
breeding techniques to manage plant viral diseases; how-
ever, several challenges such as optimization of cytosolic
antibody accumulation, different patterns of glycosylation,
and inadequate expression in some plants limit their
wide-scale acceptability (Safarnejad et al. 2011).

4.4 Satellite RNA

Satellite RNAs (sat-RNAs) confers resistance against viruses
which relies upon a helper virus (HV) for their replication
and invasion in the infected plants (Kong et al. 1997). Lin
and Lin (2017) stated that an interesting feature of sat-RNAs
is their ability to interfere with the replication of the HV due
to their homology with the HV genomes in them at the 5′
and 3′ regions. Reports have demonstrated symptom-
attenuating capacity of sat-RNA against AMCV, Bamboo
mosaic virus, CMV, Peanut stunt virus, Grapevine fanleaf
virus, Cymbidium ringspot virus, TRSV, and Groundnut
rosette virus that was achieved via transgenic approach
(reviewed by Lin and Lin 2017). Varma et al. (2002) had
nicely reviewed the successful application of sat-RNAs for
establishing resistance against Cucumo- and Nepoviruses by
transgenic approaches.

Meanwhile, DNA satellites have been found useful for
resistance breeding against geminiviruses too. By exploiting
the satellite hairpin construct, Khatoon et al. (2016) reported
resistance against Cotton leaf curl Rajasthan virus
(CLCuRV) in cotton. An intron hairpin (ihp) RNAi construct
of bC1 gene of CLCuMB (Cotton leaf curl Multan
betasatellite) was designed and developed in transgenic N.
benthamiana plants conferring potential resistance against
cotton leaf curl disease (Akhtar et al. 2017). However, this
strategy cannot fully provide resistance to eradicate the virus
and, at times, can also induce minor mutations leading to
necrosis (Hussain and Khan 2018).

4.5 Ribozyme

Ribozymes are self-cleaving RNA structures that provide
resistance in transgenic plants (Symons and Uhlenbeck
1991). Transgenic tomato plants have been reported to
achieve effective resistance against Citrus exocortis viroid
using the ribozyme technique (Atkins et al. 1995). De Feyter
et al. (1996) demonstrated a hammerhead ribozyme gene to
conferred resistance in transgenic tobacco against TMV. In
another study, utilization of ribozyme provided resistance
against two potyviruses (WMV and ZYMV) in transgenic
melon plants (Huttner et al. 2001). Although ribozymes are
effective and specific against plant viruses, not much has

been explored and achieved with this relatively new tech-
nology against plant viruses.

4.6 R Gene-Mediated Resistance
and Management

Plant resistance gene (R) genes play a critical role in plant
immunity through gene-for-gene resistance or race-specific
resistance by directly or indirectly recognizing the avirulence
(Avr) gene encoded by diverse pathogens such as bacteria,
fungi, and viruses. The flax/flax rust fungus system was the
first experiment to demonstrate gene-for-gene resistance
(Flor 1955). The vast majority of R genes encode R-proteins
which are highly conserved throughout species and also
have a high degree of structural similarity. The majority of
them are distinguished by the presence of nucleotide-binding
(NB) and leucine-rich repeat (LRR) motifs (Takken et al.
2006). Activation of R genes is typically associated with
programmed cell death response, as evidenced by the rapid
formation of necrotic lesions (a hypersensitive response,
HR) or, in rare cases, extreme resistance (ER), during which
no necrosis is evident. HR leads to pathogen
effectors-triggered immunity (ETI) and is considered as an
effective way of plants defence against viral infection. The
recognition of the pathogen-encoded Avr gene by a cognate
dominant R gene initiates the hypersensitive reactions
(Moffett 2009). The Avr/R protein interactions potentially
induce a mitogen-activated protein kinase (MAPK)
signaling cascade, resulting in the rapid accumulation of
reactive oxygen species (ROS) and defence hormones like
salicylic acid (SA) and jasmonic acid (JA). HR is coupled
with calcium ion influx, callose accumulation at the plas-
modesmata, membrane permeability alteration, and a dra-
matic transcriptional reprogramming that results in the
expression of pathogenesis-related (PR) genes at the cellular
level (Pallas and García 2011; Mandadi and Scholthof
2012).

Through HR, the invading viruses (and other pathogens)
are restricted to the point of entry/invasion, where infections
are prevented. In contrast to the gradual commencement of
antiviral RNA interference (RNAi), the R gene response is
often quick and results in virus containment within three to
four days (de Ronde et al. 2014).

Dominant R genes are divided into two groups: those that
encode NB-LRRs and those that do not. The majority of
R genes are of the NB-LRR type and encode proteins that,
regardless of the pathogen they detect, have three domains:
(i) the Nucleotide-Binding Site (NBS) in the protein's core,
(ii) a Leucine-Rich Repeat (LRR) at the protein's
C-terminus, and (iii) a Coiled coil (CC) or Toll-Interleukin
1-like receptor (TIR) domain at the protein's N-terminus
(Moffett 2009). The LRR proteins play a critical role in
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determining the specificity of the target proteins of patho-
gens and this domain is constantly evolving due to selection
pressure to increase its specificity towards new target
pathogens (Boualem et al. 2016). After pathogen recogni-
tion, NB-LRR proteins serve as molecular switches,
switching between a constitutively inactive ‘on’ conforma-
tion and an active ‘off’ state. Intramolecular interactions
occur between the LRR domain which is folded back over
the NBS domain and N-terminal dimers, TIR, or CC domain
which keeps the NB-LRRs protein in ‘off’ mode, thus lim-
iting unwanted activation of NB-LRRs-mediated reactions
(Takken and Goverse 2012).

Over the past decade, a significant number of R genes
have been cloned and characterized along with their cognate
Avr genes. The first viral R gene to be cloned and charac-
terized was a tobacco resistance gene (N) that encodes a
TIRNB-LRR protein that confers resistance to TMV in
tobacco (Whitham et al. 1994). The cognate Avr gene of
TMV was the 50 kDa helicase domain, p50, from the viral
replicase complex (Padgett et al. 1997). In the case of TMV
resistance, N recognizes the p50 helicase domain directly
(Ueda et al. 2006). The interaction of the potato Rx1 and Rx2
resistance gene (a typical CC-NB-LRR protein) with their
cognate Avr, i.e., PVX coat protein (CP), limits PVX

replication independently of the CP-triggered HR cell death
(Bendahmane et al. 1995). Few other R genes discovered so
far in plant viruses are as follows: Sw5 for TSWV resistance
(Brommonschenkel et al. 2000), tm2 for TMV resistance,
RTM1 for Tobacco etch virus (TEV) resistance (Chisholm
et al. 2000), RTM2 for Plum pox virus (PPV) resistance
(Whitham et al. 2000), RTM3 for LMV resistance (Decroocq
et al. 2009), HRT for Turnip crinkle virus (TCV) resistance
(Cooley et al. 2000), and RCY1 for resistance against CMV
(Takahashi et al. 2001).

Verlaan and colleagues (2013) had lately isolated and
characterized an R gene (Ty-1) that encodes for an
RNA-dependent RNA polymerase (RdRp) which is specu-
lated to impart resistance against TYLCV. Three other
resistance genes, namely Tm-1, JAX1, and Scmv1 have been
shown to limit replication of Tomato mosaic virus (ToMV),
Potexviruses, and Sugarcane mosaic virus (SCMV),
respectively, at the single-cell level (Ishibashi et al. 2012;
Yamaji et al. 2012; Gustafson et al. 2018). Another such
R gene (STV11) has been isolated from rice, which has been
reported to protect against the Rice stripe virus (RSV) by
limiting viral replication (Wang et al. 2014). Some latest
examples of such plant R genes effective against plant virus
along with their Avr determinants are enlisted in Table 2.

Table 2 Antiviral R genes in plants and their avirulence (Avr) determinants

Plant R gene Avr Virus References

Solanum
tuberosum

Y-1 Unknown PVY Vidal et al. (2002)

S. lycopersicum Tm-22 Movement protein (MP) ToMV Lanfermeijer et al. (2005)

Poncirus
trifoliata

Cv
(locus)

Unknown CTV Yang et al. (2003)

Phaseolus
vulgaris

I locus Unknown BCMV, WMV, ZYMV Vallejos et al. (2006)

P. vulgaris PvVTT1 Nuclear Shuttle Protein (NSP) BDMV Zhou et al. (2007), Gururani et al.
(2012)

P. vulgaris PvCMR1 2a gene CMV Seo et al. (2006)

Vigna mungo CYR1 CP Mung bean yellow mosaic
virus

Maiti et al. (2012)

Cucumis melo Pv1 and
Pv2

Unknown PRSV Anagnostou et al. (2000), Brotman
et al. (2013)

Capsicum
annuum

Pvr4 Nib (RNA-dependent RNA
polymerase)

PVY, Pepper mottle virus
(PepMoV)

Kim et al. (2015, 2017)

C. chinense Tsw RNA silencing suppressor TSWV Kim et al. (2017)

N. tabacum TPN 1 Unknown PVY Michel et al. (2018)

Arabidopsis
spp

RCY1 2B CMV Ando et al. (2019)

S. lycopersicum Sw5a AC4 ToLCNV Sharma et al. (2021)
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4.7 Recessive Resistance

Recessive resistance of plants against viruses is based on the
finding that viruses require several host factors (also known
as susceptibility factors) to infect (Truniger and Aranda
2009). Resistance results from the failure of interaction
between such plant factors with the viruses. According to
Fraser (1990), susceptibility factors are dominant because of
being encoded by dominant susceptibility alleles, and
resistance based on the failure of interaction between host
factors and a viral component necessitates the presence of all
gene copies in the (resistant) recessive form. This is why this
type of resistance is referred to as recessive resistance. Many
of the recessive virus-resistant genes in plants encode
eukaryotic translation initiation factors (eIFs), such as
eIF4E, eIF4G, and similar proteins, and they have been quite
well-studied. In addition to its presumed role in viral RNA
replication and translation initiation, eIF4E is involved in
cell-to-cell migration as well (Kang et al. 2005a; Lellis et al.
2002). The number of members of the eIF4E family varies
by species. For example, the eIF4E family in tomato consists
of two eIF4E homologs (eIF4E1 and eIF4E2) and one eIF
(iso) 4E homolog (Yoon et al. 2020). The bulk of the
recessive resistance genes known for plant viruses has been
identified for potyviruses which express translation initiation
factors of the 4E or 4G families (eIF4E/eIF4G) (Truniger
and Aranda 2009). To facilitate translation, the latter pro-
teins must interact with the cap structure on viral transcripts.
Viruses that encode their own cap-like structure (such as
VPg in the case of potyviruses) require interaction with the
translation initiation factors eIF4E/eIF4G for translation,
which causes selection pressure on the host to prevent the
interaction between VPg and eIF4E, resulting in recessive
resistance. This interaction is crucial for potyviral infectivity.
The eIF4E1 confers resistance to a variety of potyviruses,
including PVY, TEV, and PepMoV (Yoon et al. 2020).
Furthermore, mutations in these host factors can prevent
them from interacting with the VPg, limiting viral replication
and infection (de Oliveira et al. 2019). For example, CMV
movement is inhibited in Arabidopsis by cum1 and cum2
mutations (Yoshii et al. 1998a, b). CUM1 and CUM2 encode
the eukaryotic translation initiation factors eIf4E and eIF4G
(Yoshii et al. 2004). Similar observations have been made in
several viruses infecting tobacco, pepper, and pea. The
Pvr11 (previously known as pvr21) and sbm1 mutations at a
gene expressing eIF4E were discovered in pepper and pea
(Ruffel et al. 2002; Gao et al. 2004) conferring resistance to
PVY and Pea seed-borne mosaic virus. Similarly, PVY
resistance in tomatoes has also been linked to induced
mutations in eIF4E (Piron et al. 2010). Besides, knock-out
mutation of eIF4E2 (Elf4E homologs) leads to the

development of resistance against Pepper veinal mottle virus
(PVMV) in tomatoes (Moury et al. 2020).

A quicker and more precise way to produce recessive
genetic resistance to viral infections is CRISPR/Cas9
(Clustered regularly interspersed palindromic
repeats-associated protein 9)-mediated genome editing of
host factors. Chandrasekaran et al. (2016), using this
approach, found that knocking down the eukaryotic initia-
tion factor, eIF4E in cucumber, leads to resistance against
several plant viruses, including Cucumber vein yellowing
virus (CVYV), PRSV-W, and ZYMV. In another study,
Pyott et al. (2016) achieved resistance to TuMV by deletion
of the gene, eIF(iso)4E, in A. thaliana, using CRISPR/Cas9
approach. Similarly, rice with resistance to Rice tungro
spherical virus (RTSV) has been established by editing the
elF4G gene (Macovei et al. 2018), and Clover yellow vein
virus (CYVV) resistance was established in A. thaliana by
targeting the elF4E1 gene (Bastet et al. 2018). Very recently,
CRISPR/Cas9-mediated editing in tomato eIF4E1 success-
fully created tomato resistance against PepMoV (Yoon et al.
2020). Thus, characterization of host factors in which
mutations disrupt viral pathogenesis is a new and emerging
avenue for breeding virus resistance.

Research on such so-called recessive R genes has pri-
marily concentrated on the Potyviridae family so far. It could
be due to their economic relevance, the relative abundance
of recessive resistance for potyviruses, and/or the relative
simplicity with which these viruses may be experimentally
altered (Truniger and Aranda 2009). However, naturally
occurring genetic resistance can be difficult to find in some
viral families like the Geminiviridae (Kang et al. 2005b).

4.8 RNA Interference

Antiviral RNA silencing {also known as RNA interference
(RNAi) and, in the early days, post-transcriptional gene
silencing (PTSG)} is one of the first innate immune responses
that all plant viruses encounter when infecting a host. In
eukaryotes, it's a naturally occurring gene-regulation system
(Kuo and Falk 2020). RNAi is a host response triggered by
double-stranded RNA (dsRNA), and it entails sequence-
specific recognition of mRNAs based on their sequence
homology and then suppressing their expression either by
ribonuclease-directed destruction or by inhibiting translation
(Tabassum et al. 2012). Themajority of plant-infecting viruses
contain single-strandedRNAas their geneticmaterial and they
replicate their genomes in the plant cell cytoplasm through
dsRNA intermediates. This dsRNA-triggered RNA silencing
is regarded as a pathogenmolecular pattern (PAMP)-triggered
immunity (PTI) in plants (Ding 2010).
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RNA silencing is classified into two major branches:
small interfering (si) RNAs, which are generated by long
dsRNA and are one of the characteristics of defence through
antiviral RNA interference, and (host genome encoded)
microRNAs (miRNAs), which play a critical role in gene
regulation (Sharma et al. 2013; Lecellier and Voinnet 2004).
The antiviral RNAi response acts against all RNA and DNA
viruses (Incarbone and Dunoyer 2013). When the plant
encounters the virus, the already active RNAi will recognize
and eliminate the incoming viral RNA before the virus can
multiply and establish itself, although it is a long process that
does not result in total viral infection eradication. Plants,
fortunately, can be genetically modified to incorporate and
express additional genes, allowing plants to be engineered
for specialized antiviral RNAi-based resistance.

4.8.1 Small Interfering RNA
and MicroRNA-Triggered Gene
Silencing/Mechanism of RNAi

The small interfering RNA (siRNA) pathway in plants is
triggered by viral dsRNA molecules derived from replicative
intermediates or secondary RNA folding structures. These
structures are recognized in cell cytoplasm by a Dicer-like
(DCL) protein, a host RNase type III-like enzyme, and
cleaved into siRNA (Kuo and Falk 2020). Plants, unlike
animals, have evolved to use at least four DCLs. In Ara-
bidopsis, four DCLs were reported: DCL 1, 2, 3, and 4
(Gasciolli et al. 2005; Fukudome and Fukuhara 2017). The
siRNAs produced are unwound and only one strand, the
so-called guide strand, is recruited into a functional protein
complex named RNA-induced silencing complex (RISC).
RISC is represented by the Argonaute (AGO)/slicer family
of proteins. When the RISC containing the guide RNA
interacts subsequently with an RNA that has complete
homology to the guide RNA (through Watson–Crick base
pairing), then the AGO proteins mediate the mRNA cleav-
age, leading to RNA degradation (Tabassum et al. 2012). In
the scenario of incomplete complement, if there are only a
few mismatches, translation of target mRNA is blocked by
the association of the RISC-guide strand complex and the
target mRNA. Another key protein involved in RNAi
machinery is RNA-dependent RNA Polymerase (RDR). Its
key role is to generate dsRNA from single-stranded RNA
which is eventually processed into secondary siRNA by
DCL proteins (Csorba et al. 2009). These secondary viral
siRNAs enhance antiviral RNA silencing by either targeting
viral mRNA in the initially infected cells or alerting neigh-
bouring cells and systemic tissue through plasmodesmata
and phloem tissues, respectively. This process is known as

transitive silencing, and it is required to establish an RNAi
response to combat viruses both locally and systemically
(Sijen et al. 2001).

Almost the same mechanism operates in microRNA
(miRNA)-triggered gene silencing. miRNAs processed from
stem-loop precursors (shRNA and/or hpRNA) are known as
primary microRNAs (pri-miRNAs) that are targeted by
DCLs in the nucleus, followed by RISC assembly and
subsequent degradation of homologous RNA in a
sequence-specific manner (Kuo and Falk 2020).

4.8.2 Transgenics Developed by RNAi
Based on the techniques used to activate antiviral silencing,
the process underlying can be classified into four categories:
(i) sense gene-induced post-transcriptional gene silencing
(S-PTGS), (ii) hairpin RNA-induced PTGS (hp-PTGS),
(iii) artificial miRNA-induced PTGS (amiRNA), and
(iv) trans-acting siRNA generated PTGS (ta-siRNA)
(Sanan-Mishra et al. 2021). In a recent report on the case of
the Sri Lankan cassava mosaic virus, it was demonstrated
that antiviral silencing and resistance can be achieved using
both sense and antisense approaches (Gogoi et al. 2019).
A few examples of transgenically induced RNAi-mediated
plant resistance against a few major viral diseases are
mentioned below.

Sense and Antisense Induced PTGS
Sense gene-induced PTGS (S-PTGS) was practised in the
early 90s and was very successful in the effort of generating
viral resistance to viruses like TSWV (Gielen et al. 1991),
TEV (Lindbo et al. 1993), and PRSV (Fitch et al. 1992). In
S-PTGS, the RDR proteins play a critical role. Transcripts
from transgenic loci activate RDR6 to generate comple-
mentary RNA strands, which are then processed into siRNA
by DCLs from viral dsRNAs, and then degradation of target
mRNA through the RISC complex occurs (Singh et al.
2019). This amplifies the antiviral silencing induced by
siRNA obtained from viral replication, and silencing can
occur either before or after viral infection.

After S-PTGS was tested in the 1990s, antisense RNA
expression had also been tested for viral resistance (Khalid
et al. 2017). Because the silencing mechanism behind these
techniques is similar to that of S-PTGS, it is classified as
antisense (AS-PTGS). Even before the discovery of RNA
interference (RNAi), the targeted expression of both S-PTGS
and AS-PTGS RNA to interfere with a specific target
sequence was widely utilized in plants and is still widely
utilized till recently, and some of such examples are listed in
Table 3.
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Table 3 Recent RNAi-based approaches applied for resistance against plant viruses

Crop Virus(es) Virus group Target
gene/genomic
region

Mechanism References

N.
benthamiana

Cotton leaf curl Khokhran virus
(CLCuKoV) and Cotton leaf
curl Multan virus

Geminivirus Repsyn130
(Truncated Rep
protein)

S-PTGS Yousaf et al. (2013)

N.
benthamiana

TSWV Tospovirus CP S-PTGS Jan et al. (2000)

N.
benthamiana

TEV Potyvirus CP S-PTGS Voloudakis et al. (2005)

N.
benthamiana

PPV Potyvirus Cylindrical
Inclusion (CI),
NIa-NIb-CP,
Hc-Pro

S-PTGS Wittner et al. (1998), Guo
et al. (1998), Barajas et al.
(2004)

N.
benthamiana

CTV Closterovirus CP hp-PTGS Roy et al. (2006)

N.
benthamiana

Groundnut ringspot virus,
TSWV, Tomato chlorotic spot
virus

Tospovirus Nucleoprotein
(N)

hp-PTGS Bucher et al. (2006)

N.
benthamiana

Prune dwarf virus, Prunus
necrotic ringspot virus
(PNRSV), Tobacco streak virus
(TSV)

Ilavirus CP hp-PTGS Liu et al. (2007)

N.
benthamiana

Peach mosaic virus Trichovirus CP hp-PTGS Liu et al. (2007)

N.
benthamiana

PPV Potyvirus CP, P1, P3, P4,
Hc-Pro

hp-PTGS Liu et al. (2007), Di
Nicola-Negri et al. (2005)

N.
benthamiana

PVY Potyvirus Nib, CP hp-PTGS Xu et al. (2009), Jiang et al.
(2011)

N.
benthamiana

Tomato ringspot virus Nepovirus CP hp-PTGS Liu et al. (2007)

N.
benthamiana

CBSV and Cassava brown
streak Uganda virus

ipomovirus CP hp-PTGS Patil et al. (2011)

N.
benthamiana

CMV Cucumovirus CP and 2b hp-PTGS Chen et al. (2004), Qu et al.
(2007)

N.
benthamiana

TSV Ilarvirus CP hp-PTGS Pradeep et al. (2012)

N.
benthamiana

CLCBV Geminivirus Pre CP(V2) amiRNA Ali et al. (2013)

N.
benthamiana

PVY Potyvirus CI, NIa, Nib,
and CP

amiRNA Song et al. (2014)

N.
benthamiana

WSMoV Tospovirus Rep amiRNA Kung et al. (2012)

N.
benthamiana

Cotton leaf curl kokhran
virus-Burewala

Geminivirus
(Begomovirus)

CP hp-PTGS Yasmeen et al. (2016)

N.
benthamiana

CLCuKoV and CLCuMB Geminivirus
(Begomovirus)

bC1 hp-PTGS Akhtar et al. (2021)

N.
benthamiana

Potato spindle tuber viroid Pospiviroid TAS1c TAS Carbonell and Daròs (2017)

N.
benthamiana

TSWV and TuMV Tospovirus and
Potyvirus

TAS1c TAS Carbonell et al. (2019)

(continued)
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Table 3 (continued)

Crop Virus(es) Virus group Target
gene/genomic
region

Mechanism References

N.
benthamiana

PPV Potyvirus TAS1c TAS Zhao et al. (2015)

N. tabacum ToLCNV Geminivirus – TAS Singh et al. (2015)

N. tabacum CMV Cucumovirus 1a, Rep S-PTGS Anderson et al. (1992),
Canto and Palukaitis (2001)

N. tabacum CMV Cucumovirus CP hp-PTGS Kalantidis et al. (2002)

N. tabacum ToLCNV Geminivirus AV1 and AV2 amiRNA Vu et al. (2013)

N. tabacum Mungbean yellow mosaic
virus-Vigna

Geminivirus CP, Rep, MP,
NSP

S-PTGS Shivaprasad et al. (2006)

N. tabacum PVY Potyvirus HC-Pro amiRNA Simon-Mateo and Garcia
(2006)

N. tabacum PVY Potyvirus CP S-PTGS Masmoudi et al. (2002)

N. tabacum TSWV, TCSV Tospovirus N S-PTGS Gielen et al. (1991), Prins
et al. (1995)

N. tabacum PVY Potyvirus CP hp-PTGS Jiang et al. (2011)

N. tabacum CMV Cucumovirus 2b amiRNA Qu et al. (2007)

A. thaliana CMV, TuMV Cucumovirus,
Potyvirus

TAS3 TAS/amiRNA Chen et al. (2016)

A. thaliana TuMV Potyvirus CP amiRNA Lafforgue et al. (2013)

A. thaliana CMV Cucumovirus 30 UTR
(RNA3)

amiRNA Duan et al. (2008)

A. thaliana TuMV, Turnip yellow mosaic
virus (TYMV), TSWV

Potyvirus,
Tymovirus,
Tospovirus

HC-Pro, P69, N amiRNA Niu et al. (2006)

L.
esculentum

Tomato leaf curl Gujarat virus Geminivirus – TAS Singh et al. (2015)

L.
esculentum

TSWV Tospovirus N S-PTGS Nervo et al. (2003)

L.
esculentum

PepMV Flexiviridae – S-PTGS Leibman et al. (2021)

L.
esculentum

TYLCV Geminivirus Rep hp-PTGS Fuentes et al. (2006)

L.
esculentum

CMV Cucumovirus 2a, 2b, 3’ UTR amiRNA Zhang et al. (2011a)

L.
esculentum

ToLCNV Geminivirus AV1 and AV2 amiRNA Vu et al. (2013)

Oryza sativa Rice tungro bacilliform virus
(RTBV) and RTSV

Tungrovirus and
Waikavirus

ORF IV S-PTGS Anand et al. (2021)

O. sativa Rice black-streaked dwarf virus
(RBSDV)

Fijivirus S1, S2, S6, and
S10

hp-PTGS Wang et al. (2016a)

O. sativa RBSDV, Rice dwarf virus, Rice
gall dwarf virus, Rice grassy
stunt virus, RSV

Fijivirus,
Phytoreovirus,
Reovirus,
Tenuivirus

P9-1, Pns6, P8,
Pns12, Pns9,
pC5, pC3

hp-PTGS Sasaya et al. (2014)

O. sativa RTBV and RTSV Tungrovirus and
Waikavirus

ORF IV hp-PTGS Tyagi et al. (2008), Roy
et al. (2012), Valarmathi
et al. (2016)

(continued)
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Table 3 (continued)

Crop Virus(es) Virus group Target
gene/genomic
region

Mechanism References

O. sativa RBSDV and RSV Fijivirus and
Tenuivirus

CP amiRNA Sun et al. (2016)

Triticum
aestivum

WSMV Tritimovirus CP and Nib S-PTGS Sivamani et al. (2000)

T. aestivum WSMV Tritimovirus Nia and 5'UTR-
P1-Hc-Pro-P3

hp-PTGS and
amiRNA

Fahim et al. (2010, 2012)

T. aestivum WSMV Tritimovirus CP hp-PTGS Cruz et al. (2014)

Solanum
tuberosum

PVX Potexvirus ORF2 hp-PTGS Arif et al. (2012)

S. tuberosum PVX Potexvirus CP S-PTGS Doreste et al. (2002)

S. tuberosum PVY Potyvirus CP and Hc-Pro S-PTGS and
hp-PTGS

Arif et al. (2012)

S. tuberosum PVY Potyvirus CP hp-PTGS Missiou et al. (2004)

Glycine max AMV Alfamovirus Rep hp-PTGS Zhang et al. (2011b)

G. max Bean pod mottle virus Comovirus Rep hp-PTGS

G. max Soybean mosaic virus (SMV) Potyvirus Rep hp-PTGS

G. max SMV Potyvirus Hc-Pro hp-PTGS Gao et al. (2015)

Citrullus
lanatus

WSMoV, CMV, CGMMV,
WMV

Tospovirus,
Cucumovirus,
Tobamovirus,
Potyvirus

N, CP S-PTGS Lin et al. (2012)

Cucumis
melo

ZYMV Potyvirus CP S-PTGS Wu et al. (2010)

Zea mays Maize dwarf mosaic virus Potyvirus P1 and CP hp-PTGS Zhang et al. (2013)

Z. mays RBSDV Fijivirus P6 amiRNA Xuan et al. (2015)

Carica
papaya

PRSV Potyvirus CP and HC-Pro S-PTGS Fitch et al. (1992), Tennant
et al. (2005), Kung et al.
(2009), Kung et al. (2015)

Musa
paradisiaca

BBTV Babuvirus Rep hp-PTGS Elayabalan et al. (2013),
Shekhawat et al. (2012)

Vitis vinifera GFLV Nepovirus CP amiRNA Jelly et al. (2012)

Arabidopsis TuMV Potyvirus CP amiRNA Lafforgue et al. (2013)

Arabidopsis CMV 30 UTR
(RNA3)

amiRNA Duan et al. (2008)

A. thaliana TuMV, TYMV, TSWV Potyvirus,
Tymovirus,
Tospovirus

HC-Pro, P69, N amiRNA Niu et al. (2006)
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Hairpin RNA-Induced PTGS
In hairpin RNA-induced PTGS (hp-PTGS) technology,
silencing vectors are designed using fragments of both the
sense and antisense viral DNA/cDNA linked by a
non-complementary spacer sequence. When these constructs
are heterologously expressed in transgenic plants, they pro-
duce transcripts that fold itself into dsRNA due to the
self-complementary nature of sense and antisense viral
sequences with a single-stranded loop, resulting in hpRNA.
The dsRNA is converted into siRNAs, which provide
resistance to the associated viruses through the RNAi
machinery. Waterhouse et al. (1998) first demonstrated
antiviral resistance against PVY in tobacco using this tech-
nique. Currently, this technology is used in many crops to
combat various viruses (RNA and DNA); in most cases, the
level of resistance obtained against target viruses in trans-
genic plants was reported to be highly efficient (Smith et al.
2000).

Artificial MicroRNA
Another potential tool in functional genomics for RNAi is
artificially created miRNAs (amiRNAs). AmiRNAs, like
microRNAs, are single-stranded, around 21 nt long, and are
created by substituting mature miRNA sequences of duplex
within the natural pre-miRNAs. These miRNAs have
favourable RISC loading characteristics, allowing the cre-
ation of an artificial miRNA gene (Tiwari et al. 2014). This
amiRNA, upon plant transformation, can effectively target
viral genes with high specificity and prevent viral accumu-
lation and have been adapted to produce virus-resistant
plants (Duan et al. 2008). First transgenic plants developed
through amiRNA-mediated resistance to TYMV andTuMV
was reported in Arabidopsis (Niu et al. 2006). In the same
year, Simon-Mateo and Garcia (2006) also reported trans-
genic tobacco resistant to PPV through transgenically
expressed amiRNAs. To date, various transgenic plants were
developed and found to be highly resistant to viruses like
Watermelon silver mottle virus, ToLCNV, Cotton leaf curl
Burewala virus (CLCBV), and Wheat streak mosaic virus
(WSMV) (Singh et al. 2019) (Table 3).

Trans-Acting SiRNA
Trans-acting siRNAs (ta-siRNA) are secondary siRNAs that
are encoded from TAS genes. TAS transcripts are targeted
by miRNAs and processed into dsRNA by RDR6 protein
and cleaved into multiple 21 nt ta-siRNAs in a stepwise
pattern by DCL (Wu et al. 2012). These generated 21 nt
ta-siRNA targets its cognate viruses. A single miRNA target
is enough to produce multiple ta-siRNAs, which may then
be integrated into a vector to trigger the synthesis of siRNAs
and, eventually, gene silencing. Chen et al. (2016) engi-
neered Arabidopsis TAS (TAS3a) genes to express artificial

ta-siRNAs and established TAS-mediated virus resistance
against TuMV and CMV. Various viral resistant plants are
developed by exploiting this technology (reviewed by Car-
bonell 2019).

Multiple Virus Resistance Through RNAi
For the first time, RNAi-based transgenic resistance against
multiple viruses at the same time was successfully applied to
the commercially cultivated Destiny III yellow crookneck
squash, which was designed to exhibit simultaneous RNAi
resistance against two potyviruses (ZYMV, WMV) and one
cucumovirus (CMV) (Fuchs et al. 1998). A similar strategy
was also utilized to give resistance to Cassava black streak
disease (CBSD) which is caused by two distinct but related
viruses: CBSV and Ugandan cassava brown streak virus
(Tomlinson et al. 2018). Recently, Kenya Agricultural
Research and Livestock Organization have arrived in a stage
of open cultivation and marketing of this transgenic
CBSD-resistant cassava (https://cassavaplus.org/news/kalro-
seeks-approval-to-introduce-disease-resistant-gm-cassava-2/
). Gonsalves (2006) reported the adoption of genetically
engineered PRSV-resistant papaya, which was produced in
Hawaii when there were no other options for managing
PRSV.

4.9 MicroRNAs in Plant Virus Resistance

Multiple studies support that plant miRNAs play a critical role
in regulating the expression of a family of endogenous plant
resistance genes such as NBS-LRR resistance (R) genes and
affecting RNA silencing factors and hormone signaling
(Naqvi et al. 2010; Zhai et al. 2011; Shivaprasad et al. 2012; Li
et al. 2012; Zhang et al. 2016a). Antiviral silencing compo-
nents, such as AGO or RDR/ RdRp genes, which are involved
in the biogenesis and synthesis of siRNA, are natural targets of
different plant miRNAs.MiR444 has been reported to enhance
resistance against rice stripe virus (RSV) by upregulating the
RDR1-mediated RNA silencing pathway, mir444 has been
found to interact with RdRp1-inhibiting proteins (Wang et al.
2016b). On the other hand, rice AGO18 boosts antiviral RNAi
against RSV by sequestering miR168 and miR528, which
suppresses the major antiviral effector AGO1 expression
leading to the inhibition of the formation of RISC. These
processes cause the miR528 target L-ascorbate oxidase gene
to accumulate, which is involved in catalyzing L-Ascorbic
acid oxidation and thereby activating ROS-mediated resis-
tance to RSV infection. This results in improved antiviral
defence (Wu et al. 2017). Brassica miR1885was the first plant
miRNA to be identified to target an R gene (He et al. 2008).
Since then, a variety of miRNAs have been demonstrated or
predicted to target R genes involved in viral resistance. Two
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tobacco miRNAs, nta-miR6019 and nta-miR6020, encoding
the resistance TIR-NB-LRR protein have been shown to
provide resistance against TMV in transgenic tobacco.
Over-expression of these miRNAs reduced TIR-NB-LRR
transcript level and weakened N-mediated TMV resistance by
cleaving the mRNA of the tobacco N gene, indicating that
miR6019 and miR6020 play key roles in viral resistance (Li
et al. 2012; Deng et al. 2018). Recently, transgenic
over-expression of mutant miR393 in rice was found to give
increased vulnerability to RBSDV by inhibiting the auxin
receptor TIR1 (Zhang et al. 2019a).

MiRNAs have also been manipulated for virus resistance
breeding; an innovative technique is miRNA mimic tech-
nology (miR-mimic). MiRNA mimic is dsRNA molecules
that have been chemically synthesized to resemble normal
miRNA duplexes (Meng et al. 2012). Virus-based micro-
RNA silencing (VbMS) was developed which is an efficient
virus-based method for directing the development of miRNA
target mimic (TM) molecules that bind to target mRNA
molecules and inhibit their production through degradation
or translational repression. Using this technology, vectors
CMV-based vector system was developed to study miRNA
functions in maize (Liu et al. 2019). Zhao and colleagues
(2020) developed silenced endogenous miRNAs in N. ben-
thamiana and tomato plants using TRV and PVX-based
VbMS methods. Thus, VbMS is an effective, robust, and
high-throughput approach for screening and examining the
role of miRNAs in plants.

4.9.1 CRISPR-Cas System
The concept of genome engineering has recently emerged as
a promising tool to confer desirable traits in plants (Zaidi
et al. 2016). Among these genome engineering technologies,
the CRISPR-Cas system shave recently evolved as one of
the most sought-after methods of gene editing because of its
specificity, efficiency, and reproducibility (Yin and Qiu
2019). The CRISPR-Cas system depends on the idea of
bacterial immunity (adaptive immunity) that acts against
invading viruses. Recent advances in CRISPR
genome-editing technology expand new opportunities to
engineer resistance against plant viral diseases (Borrelli et al.
2018). Plants can achieve viral resistance against various
pathogens using CRISPR-Cas systems either through
manipulation of plant genome (plant-mediated resistance) or
virus genome (virus-mediated resistance) (Fig. 2) (Varanda
et al. 2021).

4.9.2 Virus Resistance via CRISPR
Engineered plant viral resistance via CRISPR was first
applied against a few geminiviruses by targeting the virus’s
genome directly inside the plant cell (Baltes et al. 2015; Ji
et al. 2015). Zaidi and co-workers (2020) had reviewed the

capability of CRISPR to confer resistance in plants by tar-
geting the genomes of both DNA and RNA viruses that was
demonstrated by inhibition or impaired accumulation of
viruses. Ali et al. (2015) delivered single-stranded guided
RNA (sgRNA) molecules via TRV vector into N. ben-
thamiana to target coding and non-coding sequences of
TYLCV genome and found lesser viral DNA accumulation
and reduced symptoms. Resistance could also be obtained
against Beet curly top virus (BCTV) and Merremia mosaic
virus (MeMV) following the same approach (Ali et al.
2015). Baltes et al. (2015) and Ji et al. (2015) also could
successfully target Bean yellow dwarf virus (BeYDV) and
Beet severe curly top virus (BSCTV) in N. benthami-
ana plants. In another study, Ali et al. (2015) suggested that
the CRISPR-Cas9 system with a sgRNA targeting a con-
served region can target multiple begomoviruses concur-
rently. They could successfully confer such concurrent
inhibition of CLCuKoV, TYLCV, TYLCSV, MeMV,
BCTV-Worland, and BCTV-Logan in N. benthamiana
plants. Tripathi et al. (2019) utilized a similar concept of the
CRISPR-Cas9 mechanism to achieve resistance against
banana streak disease by targeting endogenous Banana
streak virus (eBSV). In a recent study, a significant reduction
in viral DNA accumulation was observed in the case of
Chilli leaf curl virus which was targeted with CRISPR-Cas9
with multiple sgRNA target sites (Roy et al. 2019).

As the classical SpCas9 from Streptococcus pyogenes can
only recognize dsDNA, protection against RNA viruses was
more challenging to accomplish using the CRISPR-Cas9
system. Nevertheless, further investigation and characteri-
zation of related nucleases led to the discovery of enzymes
that provided immunity against RNA viruses (Borrelli et al.
2018). Zhang et al. (2018) first reported resistance engi-
neered against RNA viruses, CMV and TMV, in transgenic
N. benthamiana and A. thaliana by expressing FnCas9
(Francisella novicida) and a specific RNA-targeting sgRNA,
CMV and TMV accumulation was reduced 40–80% in the
transgenic plants upon infection (Zhang et al. 2018). One
year later, Zhang et al. (2019c) achieved resistance against
Southern rice black-streaked dwarf virus, an RNA virus
targeting rice via CRISPR-Cas13a system. Aman et al.
(2018) also exploited a similar approach using the Cas13a
system to target the TuMV RNA genome in both N. ben-
thamiana and A. thaliana plants. Broad-spectrum resistance
was obtained against multiple strains of PVY by targeting
conserved PVY coding regions in transgenic potato
expressing CAS13a/sgRNA constructs (Zhan et al. 2019).
Despite the promises of this system, the potential evolution
of CRISPR-resistant viruses has been one of the significant
concerns with this strategy; however, perhaps this could be,
to some extent, addressed by the application of multiplex
editing strategies (Zaidi et al. 2020).
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4.9.3 CRISPR-Mediated Resistance via Plant
Factors

CRISPR-mediated resistance via host factors manipulates
susceptibility factors required for a viral infection to enhance
plant immunity and restrict viral multiplication. Several
studies had reported such resistance against DNA and RNA
viruses using CRISPR/Cas9. Translation initiation-like fac-
tors, elF4E, elF4G, and their isoforms, are known to require
in the infection process of viruses (Sanfaçon 2015). Chan-
drasekaran et al. (2016) developed virus-resistant plants by
targeting eIF4E via the CRISPR-Cas9 system, and resistance
was obtained against Potyviruses (ZYMV and PRSV) and
Ipomovirus (CVYV) in cucumber. In another study, resis-
tance was achieved against CYVV by targeting the elF4E1
gene using CRISPR-Cas9 in A. thaliana (Bastet et al. 2018).
Pyott et al. (2016) utilized a similar approach in Arabidopsis
by editing eIF(iso)4E to obtain resistance against Potyvirus.
Double mutations on nCBP-1 and nCBP-2, belonging to the
elF4E family in cassava, were performed using the

CRISPR-Cas9 system, and resistance could be achieved
against CBSV (Gomez et al. 2019). As this
CRISPR-mediated resistance targeting the host susceptibility
genes can be carried out following transgene-free protocols,
it has been emerging as a better approach to achieve viral
immunity (Zaidi et al. 2020). Various CRISPR-Cas systems
targeting the host susceptibility genes have been developed
to achieve virus resistance in several crop plants (reviewed
by Varanda et al. 2021).

4.10 Other Strategies

4.10.1 Quarantine Measures
Plant quarantine measures limit the dispersal of pathogens
(including viruses) and plant products. Regulations for plant
quarantine are promoted nationally and internationally to
prevent the spread of detrimental pests and pathogens
(Chand et al. 2017). Chand et al. (2017) highlighted that the

Fig. 2 Illustration of CRISPR-Cas systems conferring resistance to
plant viruses. This system can specifically target viral DNA (Cas9
system) or RNA (Cas13/FnCas9 system) genomes for their degradation
or translational inhibition. Apart from targeting the viral genome,
CRISPR technologies can be utilized by manipulating the plant genome

via different approaches, including (i) biomimicking through introduc-
ing specific mutations in the plant genome, (ii) disrupting known plant
susceptibility genes to avoid viral recognition, and (iii) integration of
disease resistance genes by Cas9 via homology-directed repair
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vigilance of pathogens should be a fundamental factor of
plant quarantine control. These measure of quarantine con-
trol in plants mainly involves evaluating the risk factor
(pathogens), preference of clean-planting material, viral
examination, micropropagation, and genetic fidelity analysis,
and concerning these factors, plants produced according to
the directive of the schemes are given corresponding cer-
tificates (Kumar et al. 2020). Lee (2020) reported exclusion
of plant viruses like citrus canker, CTV, PPV, etc., from
California, USA, via various quarantine measures.

4.10.2 Pest Control Monitoring
Transmission of plant viruses occurs via vectors like insects,
nematodes, etc. for plant-to-plant spread, and therefore, plant
viral diseases can be efficiently administered by restricting
the population of their vectors with a suitable pest control
measure (Kumar et al. 2020). Bragard et al. (2013) men-
tioned the utilization of non-host trap plants to draw the
attention of vectors to reduce the disease transmission on the
crop of interest. The use of insecticides against insect vectors
is being used directly as early as the 1930s (Kumar et al.
2020). Other than insecticides, oil sprays, pesticides, viri-
cides, botanicals, etc. are efficient prevention for several
viral diseases in plants; however, frequent use of such might
be harmful in the long run (Kunkalikar et al. 2006). In recent
times, remote sensing technologies, such as visible and
near-infrared spectral sensors, fluorescence and thermal
sensors, and synthetic aperture radar and light detection and
ranging systems, have been applied to monitor plant
pathogens and diseases, including viral diseases (Zhang
et al. 2019b).

4.10.3 Chemotherapy
Chemotherapy is a preventive measure to control plant viral
diseases by delaying the virus multiplication (Matthews
1953). This strategy is based on antiviral drugs used to
restrict or interfere with specific steps of the virus life cycle.
They include nucleoside analogues inhibiting replication and
protease inhibitors preventing protein processing (Rubio
et al. 2020). Antiviral drugs like inosine monophosphate
dehydrogenase (IMPDH) inhibitors, S-adenosyl homocys-
teine hydrolase inhibitors, and neuraminidase (NA) in-
hibitors and chemical compounds such as ribavirin
(Virazole), azidothymidine, and 2-thiouracil are primarily
used in chemotherapy (Chauhan et al. 2019). The agents of
chemotherapy applied in plants have different modes of
action; however, they have not been studied in much detail
(Panattoni et al. 2013). Therefore, there are not many suc-
cessful examples of utilization of this approach against plant
viruses. Nevertheless, chemotherapy has been a successful

and the most frequently used technique in potatoes to
eradicate viruses (Panattoni et al. 2013). In a very recent
study, Chauhan et al. (2019) reported the application of
selective chemotherapy agents like IMPDH, NA inhibitors,
or purine biosynthesis inhibitors to be effective against
Grapevine leafroll-associated virus-1 and -3.

4.10.4 Cryotherapy
Cryotherapy is an approach that utilizes long-term conser-
vation of genetic resources under ultra-low temperature,
generally at −196 °C (Engelmann 2004). In this technique,
pathogens like viruses can be eradicated when exposed to
the lethal effects of low temperatures, producing virus-free
plants with greater frequency (Brison et al. 1997). Through
shoot tip cryopreservation, successful eradication of BSV in
bananas was reported by Helliot et al. (2002). Vieira et al.
(2015) mentioned that cryotherapy of shoot tips is an effi-
cient technique to eliminate virus complex from garlic too.
Although the method has merits like management of large
numbers of plantlets and independence of shoot tip size,
extensive consumption of certain gases like Argon and
Nitrogen, uninterrupted supply of power, etc. are some of the
factors limiting its wide-scale application (Chauhan et al.
2019).

4.10.5 Meristem-Tip Culture
Meristem-tip culture is another widely utilized technique for
eliminating viruses (Nehra and Kartha 1994). Lassois et al.
(2012) suggested this technique to be the most efficient
procedure to eliminate viruses associated with phloem under
aseptic conditions and in a suitable nutrient medium.
Meristem-tip culture has been shown to be suitable for
abolishing plant viruses like Peanut stripe virus, SCYLV,
and Piper yellow mottle virus (Chauhan et al. 2019). Nev-
ertheless, contamination, variability, and high price are some
disadvantages of this technique (Chauhan et al. 2019).

4.10.6 Thermotherapy
Plant thermotherapy produces virus-free plants by cleavage
of the viral RNA, disrupting the virus particle, inhibiting
viral movement, or inactivation of viral replicase (Conci and
Nome 1991; Hull 2002; Rubio et al. 2020). Plant ther-
motherapy can kill the pathogen with limited effect on the
host (Chauhan et al. 2019). In this method, the heat can be
applied via air, water, or vapour (Grondeau et al. 1994). The
temperature required for this method is 52–55 °C for 10–
30 min, and it was found that raised temperature funda-
mentally led to the decrease in viral diseases by disrupting
the viral ssRNA and dsRNA synthesis (Chauhan et al.
2019). At first, this technique was implemented in vivo or
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in vitro in plants but in course of time, it was integrated with
the meristem culture method (Lassois et al. 2012). It was
observed by Modaressi et al. (2016) that thermotherapy
works more efficiently when applied with other methods like
chemotherapy, for example, to eradicate Arabis mosaic
virus, PNRSV from in vitro raised infected plants. In a
similar experiment merging thermotherapy and cryotherapy
treatments, Raspberry dwarf virus could be successfully
eliminated from the meristem tips of raspberry plants (Wang
et al. 2008). According to Panattoni et al. (2013), plant
thermotherapy was the most commonly applied technique in
sanitation protocols during 1991–2010.

5 Conclusion

Due to their small genome size, inanimate nature, multi-host
life cycle, and relatively frequent occurrence of mutations,
recombination, and pseudo-recombination among or within
their genomes, the emergence and re-emergence of viruses
are becoming a serious threat to human health and
well-being. Lately, the global pandemic of COVID-19,
caused by a coronavirus, had, at one point in time, brought
the entire civilization to a near standstill. Its impact is far
from over yet after two years of its emergence. A similar
situation is quite common in the case of plant viruses. The
emergence and re-emergence of plant viral diseases such as
cotton leaf curl disease, tomato yellow leaf curl disease, and
cassava mosaic disease had caused havoc to several nations
across Asia, Europe, and Africa in the last few decades.
However, despite this situation, certain policymakers still do
not see plant viruses as important pathogens, and therefore,
research on plant viruses is yet to gain the required
momentum. Nevertheless, plant scientists, across the world,
are putting efforts into harnessing the potential of advanced
tools in the management of plant viruses, and commendable
success has been achieved too. It is expected that more
emphasis will soon be put on this area.

References

Abel PP, Nelson RS, De B et al (1986) Delay of disease development in
transgenic plants that express the Tobacco mosaic virus coat protein
gene. Science 232:738–743

Aguero J, Gómez-Aix C, Sempere RN et al (2018) Stable and broad
spectrum cross-protection against Pepino mosaic virus attained by
mixed infection. Front Plant Sci 9:1–12

Akhtar S, Akmal M, Khan JA (2017) Resistance to cotton leaf curl
disease in transgenic tobacco expressing bC1 gene derived
intron-hairpin RNA. Indian J Biotechnol 16:56–62

Akhtar S, Tahir MN, Amin I et al (2021) Amplicon-based RNAi
construct targeting beta-C1 gene gives enhanced resistance against
cotton leaf curl disease. 3 Biotech 11:1–10

Ali I, Amin I, Briddon RW et al (2013) Artificial microRNA-mediated
resistance against the monopartite begomovirus Cotton leaf curl
Burewala virus. Virol J 10:1–8

Ali MC, Maoka T, Natsuaki T et al (2010) PVYNTN-NW, a novel
recombinant strain of Potato virus Y predominating in potato fields
in Syria. Plant Pathol 59:31–41

Ali Z, Abulfaraj A, Idris A et al (2015) CRISPR/Cas9-mediated viral
interference in plants. Genome Biol 16:1–11

Aman R, Ali Z, Butt H et al (2018) RNA virus interference via
CRISPR/Cas13a system in plants. Genome Biol 19:1–9

Anagnostou K, Jahn M, Perl-Treves R (2000) Inheritance and linkage
analysis of resistance to Zucchini yellow mosaic virus, Watermelon
mosaic virus, Papaya ringspot virus and powdery mildew in melon.
Euphytica 116:265–270

Anand A, Pinninti M, Tripathi A et al (2021) Coordinated action of
RTBV and RTSV proteins suppress host RNA silencing machinery.
BioRxiv. https://doi.org/10.1101/2021.01.19.427099

Anderson JM, Palukaitis P, Zaitlin M (1992) A defective replicase gene
induces resistance to Cucumber mosaic virus in transgenic tobacco
plants. Proc Natl Acad Sci USA 89:8759–8763

Anderson PK, Cunningham AA, Patel NG et al (2004) , Emerging
infectious diseases of plants: pathogen pollution climate change and
agrotechnology drivers. Trends EcolEvol 19:535–544

Ando S, Miyashita S, Takahashi H (2019) Plant defense systems
against Cucumber mosaic virus: lessons learned from
CMV-Arabidopsis interactions. J Gen Plant Pathol 85:174–181

Arif M, Azhar U, Arshad M et al (2012) Engineering broad-spectrum
resistance against RNAviruses in potato. Transgenic Res 21:303–311

Atkins D, Young M, Uzzell S et al (1995) The expression of antisense
and ribozyme genes targeting citrus exocortis viroid in transgenic
plants. J Gen Virol 76:1781–1790

Baltes NJ, Hummel AW, Konecna E et al (2015) Conferring resistance
to geminiviruses with the CRISPR–Cas prokaryotic immune
system. Nat Plants 1:1–4

Barajas D, Tenllado F, Gonzalez-Jara P et al (2004) Resistance to Plum
pox virus (PPV) inNicotiana benthamlana plants transformedwith the
PPVHC-PRO silencing suppressor gene. J Plant Pathol 86:239–324

Bastet A, Lederer B, Giovinazzo N et al (2018) Trans-species synthetic
gene design allows resistance pyramiding and broad-spectrum
engineering of virus resistance in plants. Plant Biotechnol 16:1569–
1581

Beachy RN (1997) Mechanisms and applications of pathogen-derived
resistance in transgenic plants. Curr Opin Biotechnol 8:215–220

Beachy RN, Loesch-Fries S, Tumer NE (1990) Coat protein-mediated
resistance against virus infection. Annu Rev Phytopathol 28:451–
472

Bell JR, Alderson L, Izera D et al (2015) Long-term phenological
trends, species accumulation rates, aphid traits and climate: five
decades of change in migrating aphids. J AnimEcol 84:21–34

Bendahmane A, Farnham G, Moffett P et al (2002) Constitutive
gain-of–function mutants in a nucleotide binding site–leucine rich
repeat protein encoded at the Rx locus of potato. Plant J 32:195–204

Bendahmane A, Kohm BA, Dedi C et al (1995) The coat protein of
Potato virus X is a strain-specific elicitor of Rx1-mediated virus
resistance in potato. Plant J 8:933–941

Bendahmane M, Chen I, Asurmendi S et al (2007) Coat
protein-mediated resistance to TMV infection of Nicotiana tabacum
involves multiple modes of interference by coat protein. Virol J
366:107–116

Bertin S, Faggioli F, Gentili A et al (2021) Emerging and re-emerging
plant viruses. In: Encyclopedia of virology. Elsevier, pp 8–20

Borrelli VM, Brambilla V, Rogowsky P et al (2018) The enhancement
of plant disease resistance using CRISPR/Cas9 technology. Front
Plant Sci 9:1–15

48 R. Saikia et al.

http://dx.doi.org/10.1101/2021.01.19.427099


Boualem A, Dogimont C, Bendahmane A (2016) The battle for survival
between viruses and their host plants. CurrOpinVirol 17:32–38

Bragard C, Caciagli P, Lemaire O et al (2013) Status and prospects of
plant virus control through interference with vector transmission.
Annu Rev Phytopathol 51:177–201

Brison M, de Boucaud MT, Pierronnet A et al (1997) Effect of
cryopreservation on the sanitary state of a cv Prunus rootstock
experimentally contaminated with Plum Pox Potyvirus. Plant Sci
123:189–196

Brommonschenkel SH, Frary A, Frary A et al (2000) The
broad-spectrum tospovirus resistance gene Sw-5 of tomato is a
homolog of the root-knot nematode resistance gene Mi. Mol Plant
Microbe Interact 13:1130–1138

Brotman Y, Normantovich M, Goldenberg Z et al (2013) Dual
resistance of melon to Fusarium oxysporum races 0 and 2 and to
Papaya ring-spot virus is controlled by a pair of
head-to-head-oriented NB-LRR genes of unusual architecture.
Mol Plant 6:235–238

Bucher E, Lohuis D, van Poppel PM et al (2006) Multiple virus
resistance at a high frequency using a single transgene construct.
J Gen Virol 87:3697–3701

Canto T, Aranda MA, Fereres A (2009) Climate change effects on
physiology and population processes of hosts and vectors that
influence the spread of hemipteran-borne plant viruses. Glob Chang
Biol 15:1884–1894

Canto T, Palukaitis P (2001) A cucumber mosaic virus (CMV) RNA 1
transgene mediates suppression of the homologous viral RNA 1
constitutively and prevents CMV entry into the phloem. J Virol
75:9114–9120

Carbonell A (2019) Secondary small interfering RNA-Based silencing
tools in Plants: An update. Front Plant Sci 10:687

Carbonell A, Daròs JA (2017) Artificial microRNAs and synthetic
transacting small interfering RNAs interfere with viroid infection.
Mol Plant Pathol 18:746–753

Carbonell A, López C, Daròs JA (2019) Fast-forward identification of
highly effective artificial small RNAs against different tomato
spotted wilt virus isolates. Mol Plant Microbe Interact 32:142–156

Cervera M, Esteban O, Gil M et al (2010) Transgenic expression in
citrus of single-chain antibody fragments specific to Citrus tristeza
virus confers virus resistance. Transgenic Res 19:1001–1015

Chand P, Singh A, Vishwakarma R et al (2017) Plant quarantine: an
effective approach for prevention of alien pest and disease. Bull Env
Pharmacol Life Sci 6:7–12

Chandrasekaran J, Brumin M, Wolf D et al (2016) Development of
broad virus resistance in non-transgenic cucumber using
CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

Chauhan P, Singla K, Rajbhar M et al (2019) A systematic review of
conventional and advanced approaches for the control of plant
viruses. J Appl Biol Biotechnol 7:89–98

Chaves-Bedoya G, Cubillos K, Guzman-Barney M (2014) First report
of recombination in Potato yellow vein virus (PYVV) in Colombia.
Trop Plant Pathol 39:234–241

Chen L, Cheng X, Cai J et al (2016) Multiple virus resistance using
artificial trans-acting siRNAs. J Virol Methods 228:16–20

Chen LF, Rojas M, Kon T et al (2009) A severe symptom phenotype in
tomato in Mali is caused by a reassortant between a novel
recombinant begomovirus (Tomato yellow leaf curl Mali virus) and
a betasatellite. Mol Plant Pathol 10:415–430

Chen YK, Lohuis D, Goldbach R et al (2004) High frequency induction
of RNA-mediated resistance against Cucumber mosaic virus using
inverted repeat constructs. Mol Breed 14:215–226

Chisholm ST, Mahajan SK, Whitham SA et al (2000) Cloning of the
Arabidopsis RTM1 gene, which controls restriction of long-distance
movement of tobacco etch virus. Proc Natl Acad Sci USA 97:489–
494

Cillo F, Palukaitis P (2014) Transgenic resistance. Adv Virus Res
90:35–146

Conci V, Nome SF (1991) Virus free garlic (Allium sativum L.) plants
obtained by thermotherapy and meristem tip culture. J Phytopathol
132:186–192

Cooley MB, Pathirana S, Wu HJ et al (2000) Members of the
Arabidopsis HRT/RPP8 family of resistance genes confer resistance
to both viral and oomycete pathogens. Plant Cell 12:663–676

Costa TM, Blawid R, Aranda MA et al (2019) Cucurbit aphid-borne
yellows virus from melon plants in Brazil is an interspecific
recombinant. Arch Virol 164:249–254

Costa TM, Inoue-Nagata AK, Vidal AH et al (2020) The recombinant
isolate of cucurbit aphid-borne yellows virus from Brazil is a
polerovirus transmitted by whiteflies. Plant Pathol 69:1042–1050

Cruz LF, Rupp JLS, Trick HN et al (2014) Stable resistance to Wheat
streak mosaic virus in wheat mediated by RNAi. In Vitro Cell Dev
Biol-Plant 50:665–672

Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral
mechanism. Adv Virus Res 75:35–230

Dasgupta I, Malathi VG, Mukherjee SK (2003) Genetic engineering for
virus resistance. Curr Sci 84:341–354

De Feyter R, Young M, Schroeder K et al (1996) A ribozyme gene and
an antisense gene are equally effective in conferring resistance to
Tobacco mosaic virus on transgenic tobacco. Molec Gen Genet
250:329–338

de Oliveira LC, Volpon L, Rahardjo AK et al (2019) Structural studies
of the eIF4E-VPg complex reveal a direct competition for capped
RNA: implications for translation. Proc Natl Acad Sci USA
116:24056–24065

de Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance
against plant viruses. Front Plant Sci 5:1–17

Decroocq V, Salvador B, Sicard O et al (2009) The determinant of
potyvirus ability to overcome the RTM resistance of Arabidopsis
thaliana maps to the N-terminal region of the coat protein. Mol
Plant Microbe Interact 22:1302–1311

Deng Y, Wang J, Tung J et al (2018) A role for small RNA in
regulating innate immunity during plant growth. PLoS Pathog 14:
e1006756

Desbiez C, Wipf-Scheibel C, Millot P et al (2017) New species in the
Papaya ringspot virus cluster: insights into the evolution of the
PRSV lineage. Virus Res 241:88–94

Dewar RC, Watt AD (1992) Predicted changes in the synchrony of
larval emergence and budburst under climatic warming. Oecologia
89:557–559

Di Nicola-Negri E, Brunetti A, Tavazza M et al (2005) Hairpin
RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes
for efficient and predictable resistance to the virus. Transgenic Res
14:989–994

Diaz-Pendon JA, Sanchez-Campos S, Fortes IM et al (2019) Tomato
yellow leaf curl sardinia virus, a begomovirus species evolving by
mutation and recombination: a challenge for virus control. Viruses
11:2–25

Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol
10:632–644

Doreste V, Ramos PL, Enriquez GA et al (2002) Transgenic potato
plants expressing the Potato virus X (PVX) coat protein gene
developed resistance to the viral infection. Phytoparasitica 30:177–
185

Duan CG, Wang CH, Fang RX et al (2008) Artificial microRNAs
highly accessible to targets confer efficient virus resistance in plants.
J Virol 82:11084–11095

Duan YP, Powell CA, Purcifull DE et al (1997) Phenotypic variation in
transgenic tobacco expressing mutated geminivirus
movement/pathogenicity (BC1) proteins. Mol Plant Microbe Inter-
act 10:1065–1074

Plant Viruses: Factors Involved in Emergence and Recent Advances … 49



Elayabalan S, Kalaiponmani K, Subramaniam S et al (2013) Devel-
opment of Agrobacterium-mediated transformation of highly valued
hill banana cultivar Virupakshi (AAB) for resistance to BBTV
disease. World J Microbiol Biotechnol 29:589–596

Engelmann F (2004) Plant cryopreservation: progress and prospects. In
Vitro Cell Dev Biol Plant 40:427–433

Ertunc F (2020) Emerging plant viruses. In: Emerging and re-emerging
viral pathogens. Elsevier Academic Press, pp 1041–1062

Fahim M, Ayala-Navarrete L, Millar AA et al (2010) Hairpin RNA
derived from viral NIa gene confers immunity to wheat streak
mosaic virus infection in transgenic wheat plants. Plant Biotechnol J
8:821–834

Fahim M, Millar AA, Wood CC et al (2012) Resistance toWheat streak
mosaic virus generated by expression of an artificial polycistronic
microRNA in wheat. Plant Biotechnol J 10:150–163

Fargette D, Konate G, Fauquet C et al (2006) Molecular ecology and
emergence of tropical plant viruses.AnnuRev Phytopathol 44:235–260

Fereres A, Moreno A (2009) Behavioural aspects influencing plant
virus transmission by homopteran insects. Virus Res 141:158–168

Fiallo-Olive E, Navas-Castillo J (2019) Tomato chlorosis virus, an
emergent plant virus still expanding its geographical and host
ranges. Mol Plant Pathol 20:1307–1320

Fitch MM, Manshardt RM, Gonsalves D (1992) Virus resistant papaya
plants derived from tissues bombarded with the coat protein gene of
Papaya ringspot virus. Biotechnology 10:1466–1472

Flor HH (1955) Host-parasite interactions in flax rust-its genetics and
other implications. Phytopathology 45:680–685

Fraser RSS (1990) The genetics of resistance to plant viruses. Annu
Rev Phytopathol 28:179–200

Fuchs M, Tricoli DM, Carney KJ et al (1998) Comparative virus
resistance and fruit yield of transgenic squash with single and
multiple coat protein genes. Plant Dis 82:1350–1356

Fuentes A, Ramos PL, Fiallo E et al (2006) Intron-hairpin RNA derived
from replication associated protein C1 gene confers immunity to
Tomato yellow leaf curl virus infection in transgenic tomato plants.
Transgenic Res 15:291–304

Fukudome A, Fukuhara T (2017) Plant dicer-like proteins:
double-stranded RNA-cleaving enzymes for small RNA biogenesis.
J Plant Res 130:33–44

Galvez LC, Banerjee J, Pinar H et al (2014) Engineered plant virus
resistance. Plant Sci 228:11–25

Gamarra HA, Fuentes S, Morales FJ et al (2010) Bemisiaafersensulato,
a vector of Sweet potato chlorotic stunt virus. Plant Dis 94:510–514

Gao L, Ding X, Li K et al (2015) Characterization of Soybean mosaic
virus resistance derived from inverted repeat-SMV-HC-Pro genes
in multiple soybean cultivars. Theor Appl Genet 128:1489–1505

Gao Z, Johansen E, Eyers S et al (2004) The potyvirus recessive
resistance gene, sbm1, identifies a novel role for translation
initiation factor eIF4E in cell-to-cell trafficking. Plant J40:376–385

Gasciolli V, Mallory AC, Bartel DP et al (2005) Partially redundant
functions of Arabidopsis DICER-like enzymes and a role for DCL4
in producing trans-acting siRNAs. Curr Biol 15:1494–1500

Ge B, He Z, Zhang Z et al (2014) Genetic variation in potato virus M
isolates infecting pepino (Solanum muricatum) in China. Arch Virol
159:3197–3210

Gibbs A, Gibbs M, Ohshima K et al (2008) More about plant virus
evolution: past, present, and future. Origin and evolution of viruses.
Elsevier Academic Press, pp 229–250

Gielen JJ, de Haan P, Kool AJ (1991) Engineered resistance to Tomato
spotted wilt virus, a negative-strand RNA virus. Biotechnology
9:1363–1367

Gogoi A, Kaldis A, Dasgupta I et al (2019) Sense- and
antisense-mediated resistance against Sri Lankan cassava mosaic
virus (SLCMV) in Nicotiana benthamiana. Biol Plant 63:455–464

Golemboski DB, Lomonossoff GP, Zaitlin M (1990) Plants trans-
formed with a Tobacco mosaic virusnonstructural gene sequence
are resistant to the virus. Proc Natl Acad Sci 87:6311–6315

Gomez MA, Lin ZD, Moll T et al (2019) Simultaneous
CRISPR/Cas9-mediated editing of cassava eIF 4E isoforms
nCBP-1 and nCBP-2 reduces cassava brown streak disease
symptom severity and incidence. Plant Biotechnol J 17:421–434

Gonsalves D (2006) Transgenic papaya: development, release, impact
and challenges. Adv Virus Res 67:317–354

Gottula J, Fuchs M (2009) Toward a quarter century of
pathogen-derived resistance and practical approaches to plant virus
disease control. Adv Virus Res 75:161–183

Grondeau C, Samson R, Sands DC (1994) A review of thermotherapy
to free plant materials from pathogens, especially seeds from
bacteria. Crit Rev Plant Sci 13:57–75

Guo HS, Cervera MT, Garcia JA (1998) Plum pox potyvirus resistance
associated to transgene silencing that can be stabilized after different
number of plant generations. Gene 206:263–272

Gururani MA, Venkatesh J, Upadhyaya CP et al (2012) Plant disease
resistance genes: current status and future directions. Physiol Mol
Plant Pathol 78:51–65

Gustafson TJ, de Leon N, Kaeppler SM (2018) Genetic analysis of
Sugarcane mosaic virus resistance in the Wisconsin diversity panel
of maize. Crop Sci 58:1853–1865

Han S, Gao Y, Fan G et al (2017) A novel recombined Potato virus Y
isolate in China. Plant Pathol J 33:382–392

Hanssen IM, Lapidot M, Thomma BP (2010) Emerging viral diseases
of tomato crops. Mol Plant Microbe Interact 23:539–548

He XF, Fang YY, Feng L et al (2008) Characterization of conserved
and novel microRNAs and their targets, including a TuMV-induced
TIR-NBS-LRR class R gene-derived novel miRNA in Brassica.
Elsevier FEBS Letters 582:2445–2452

Helliot B, Panis B, Poumay Y et al (2002) Cryopreservation for the
elimination of Cucumber mosaic and Banana streak viruses from
banana (Musa spp.). Plant Cell Rep 20:1117–1122

Hiatt A, Caffferkey R, Bowdish K (1989) Production of antibodies in
transgenic plants. Nature 342:76–78

Hou YM, Sanders R, Ursin VM et al (2000) Transgenic plants
expressing geminivirus movement proteins: abnormal phenotypes
and delayed infection by Tomato mottle virus in transgenic tomatoes
expressing the Bean dwarf mosaic virus BV1 or BC1 proteins. Mol
Plant Microbe Interact 13:297–308

Huang XD, Fang L, Gu QS et al (2019) Cross protection against the
watermelon strain of Papaya ringspot virus through modification of
viral RNA silencing suppressor. Virus Res 265:166–171

Hull R (2002) Matthews’ plant virology. Academic Press. San Diego,
California, p 1001

Hussain A, Khan JA (2018) Biotechnological approaches for engi-
neering resistance against viruses in plants. Plant Arch 18:1191–
1208

Huttner E, Tucker W, Vermeulen A et al (2001) Ribozyme genes
protecting transgenic melon plants against potyviruses. Curr Issues
Mol Biol 3:27–34

Ichiki TU, Nagaoka EN, Hagiwara K et al (2005) Integration of
mutations responsible for the attenuated phenotype of Pepper mild
mottle virus strains results in a symptomless cross-protecting strain.
Arch Virol 150:2009–2202

Incarbone M, Dunoyer P (2013) RNA silencing and its suppression:
novel insights from in planta analyses. Trends Plant Sci 18:382–392

Ishibashi K, Mawatari N, Miyashita S et al (2012) Coevolution and
hierarchical interactions of Tomato mosaic virus and the resistance
gene Tm-1. PLoS Pathog 8:1–12

Islam W, Zaynab M, Qasim M et al (2017) Plant-virus interactions:
Disease resistance in focus. Hosts Viruses 4:5–20

50 R. Saikia et al.



Jahromi ZM, Salmanian AH, Rastgoo N et al (2009) Isolation of
BNYVV coat protein-specific single chain Fv from a mouse phage
library antibody. Hybridoma 28:305–313

Jan FJ, Fagoaga C, Pang SZ et al (2000) A single chimeric transgene
derived from two distinct viruses confers multi-virus resistance in
transgenic plants through homology-dependent gene silencing.
J Gen Virol 81:2103–2109

Jelly NS, Schellenbaum P, Walter B et al (2012) Transient expression
of artificial microRNAs targeting Grapevine fanleaf virus and
evidence for RNA silencing in grapevine somatic embryos.
Transgenic Res 21:1319–1327

Ji X, Zhang H, Zhang Y et al (2015) Establishing a CRISPR-Cas-like
immune system conferring DNA virus resistance in plants. Nat
Plants 1:1–4

Jiang F, Wu B, Zhang C et al (2011) Special origin of stem sequence
influence the resistance of hairpin expressing plants against PVY.
Biol Plant 55:528–535

Jones DR (2005) Plant viruses transmitted by thrips. Eur J Plant Pathol
113:119–157

Jones RA (2009) Plant virus emergence and evolution: origins, new
encounter scenarios, factors driving emergence, effects of changing
world conditions, and prospects for control. Virus Res 141:113–130

Kalantidis K, Psaradakis S, Tabler M et al (2002) The occurrence of
CMV-specific short RNAs in transgenic tobacco expressing
virus-derived double-stranded RNA is indicative of resistance to
the virus. Mol Plant Microbe Interact 15:826–833

Kamberoglu MA, Desbiez C, Caliskan AF (2015) Characterization of
an emerging isolate of Watermelon mosaic virus in Turkey. Int J
Agric Biol 17:211–215

Kang BC, Yeam I, Frantz JD et al (2005a) Thepvr1 locus in Capsicum
encodes a translation initiation factor eIF4E that interacts with
Tobacco etch virusVPg. Plant J 42:392–405

Kang BC, Yeam I, Jahn MM (2005b) Genetics of plant virus resistance.
Annu Rev Phytopathol 43:581–621

Kaniewski W, Lawson C, Sammons B et al (1990) Field resistance of
transgenic russeetburbank potato to effects of infection by Potato
virus X and Potato virus Y. Biotechnology 8:750–754

Khalid A, Zhang Q, Yasir M et al (2017) Small RNA based genetic
engineering for plant viral resistance: application in crop protection.
Front Microbiol 8:1–11

Khan AJ, Akhtar S, Mansoor S et al (2014) Engineering crops for
resistance to geminiviruses. In: Plant virus-host interaction. Elsevier
Academic Press, pp 291–323

Khatoon S, Kumar A, Sarin NB et al (2016) RNAi-mediated resistance
against cotton leaf curl disease in elite Indian cotton (Gossypium
hirsutum) cultivar Narasimha. Virus Genes 52:530–537

Kim SB, Kang WH, Huy HN et al (2017) Divergent evolution of
multiple virus-resistance genes from a progenitor in Capsicum spp.
New Phytol 213:886–899

Kim SB, Lee HY, Seo S et al (2015) RNA-dependent RNA polymerase
(NIb) of the potyviruses is an avirulence factor for the
broad-spectrum resistance gene Pvr4 in Capsicum annuum cv.
CM334. PLoS ONE 10:1–11

Kong Q, Wang J, Simon AE (1997) Satellite RNA-mediated resistance
to Turnip crinkle virus in Arabidopsis involves a reduction in virus
movement. Plant Cell 9:2051–2063

Krishnareddy M (2013) Impact of climate change on insect vectors and
vector-borne plant viruses and phytoplasma. Climate-resilient
horticulture: adaptation and mitigation strategies. Springer, India,
pp 255–277

Kumar S, Kumari A, Raj R et al (2020) Management of viral diseases of
crops. In: Applied plant virology. Elsevier Academic Press, pp 575–592

Kung YJ, Bau HJ, Wu YL et al (2009) Generation of transgenic Papaya
with double resistance to Papaya ringspot virus and Papaya
leaf-distortion mosaic virus. Phytopathology 99:1312–1320

Kung YJ, Lin SS, Huang YL et al (2012) Multiple artificial microRNAs
targeting conserved motifs of the replicase gene confer robust
transgenic resistance to negative-sense single-stranded RNA plant
virus. Mol Plant Pathol 13:303–317

Kung YJ, You BJ, Raja JA et al (2015) Nucleotide sequence-
homology-independent breakdown of transgenic resistance by more
virulent virus strains and a potential solution. Sci Rep 5:1–10

Kunkalikar S, Byadgi AS, Kulkarni VR et al (2006) Management of
Papaya ringspot virus disease. Ind J Virol 17:39–43

Kuo YW, Falk BW (2020) RNA interference approaches for plant
disease control. Biotechniques 69:469–477

Lafforgue G, Martínez F, Niu QW (2013) Improving the effectiveness
of artificial microRNA (amiR)-mediated resistance against Turnip
mosaic virus by combining two amiRs or by targeting highly
conserved viral genomic regions. J Virol 87:8254–8256

Lanfermeijer FC, Warmink J, Hille J (2005) The products of the broken
Tm-2 and the durable Tm-22 resistance genes from tomato differ in
four amino acids. J Exp Bot 56:2925–2933

Lapidot M, Gafny R, Ding B et al (1993) A dysfunctional movement
protein of Tobacco mosaic virus that partially modifies the plasmod-
esmata and limits virus spread in transgenic plants. Plant J 4:959–970

Lassois L, Lepoivre P, Swennen R et al (2012) Thermotherapy,
chemotherapy, and meristem culture in banana. In: Protocols for
micropropagation of selected economically-important horticultural
plants. Humana Press, Totowa, NJ, pp 419–433

Lecellier CH, Voinnet O (2004) RNA silencing: no mercy for viruses?
Immunol Rev 198:285–303

Lee RF (2020) Exclusion of plant viruses by certification and
quarantine programs. In: Applied plant virology. Academic Press,
pp 763–775

Leibman D, Ortega-Parra N, Wolf D et al (2021) A transgenic RNAi
approach for developing tomato plants immune to Pepino mosaic
virus. Plant Pathol 70:1003–1012

Lellis AD, Kasschau KD, Whitham SA et al (2002)
Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an
essential role for eIF (iso) 4E during potyvirus infection. Curr Biol
12:1046–1051

Li F, Pignatta D, Bendix C et al (2012) MicroRNA regulation of plant
innate immune receptors. Proc Natl Acad Sci USA 109:1790–1795

Li Y, Cao Y, Fan Z, Wan P (2016) Identification of a naturally
occurring Bean common mosaic virus recombinant isolate infecting
azuki bean. J Plant Pathol 98:129–133

Li Z, Xie Y, Zhou X (2005) Tobacco curly shoot virus DNAb is not
necessary for infection but intensifies symptoms in a host-dependent
manner. Phytopathology 95:902–908

Lin CY, Ku HM, Chiang YH et al (2012) Development of transgenic
watermelon resistant to Cucumber mosaic virus and Watermelon
mosaic virus by using a single chimeric transgene construct.
Transgenic Res 21:983–999

Lin KY, Lin NS (2017) Interfering satellite RNAs of Bamboo mosaic
virus. Front Microbiol 8:787

Lin SS, Wu HW, Jan FJ et al (2007) Modifications of the helper
component-protease of Zucchini yellow mosaic virus for generation
of attenuated mutants for cross protection against severe infection.
Phytopathology 97:287–296

Lin YH, Gao SJ, Damaj MB et al (2014) Genome characterization of
Sugarcane yellow leaf virus from China reveals a novel recombi-
nant genotype. Arch Virol 159:1421–1429

Lindbo A, Silva-Rosales L, Proebsting WM (1993) Induction of a
highly specific antiviral state in transgenic plants: implications for
regulation of gene expression and virus resistance. Plant Cell
5:1749–1759

Lindbo JA, Falk BW (2017) The impact of “coat protein-mediated virus
resistance” in applied plant pathology and basic research. Phy-
topathology 107:624–634

Plant Viruses: Factors Involved in Emergence and Recent Advances … 51



Liu X, Liu S, Wang R et al (2019) Analyses of miRNA functions in
maize using a newly developed ZMBJ-CMV-2bN81-STTM vector.
Front Plant Sci 10:1277

Liu ZR, Scorza R, Hily JM et al (2007) Engineering resistance to
multiple Prunus fruit viruses through expression of chimeric
hairpins. J Am Soc Horti Sci 132:407–414

Lv MF, Xie L, Wang HF et al (2017) Biology of Southern rice
black-streaked dwarf virus: a novel fijivirus emerging in East Asia.
Plant Pathol 66:515–521

Ma G, Chen P, Buss GR et al (2004) Genetics of resistance to two
strains of Soybean mosaic virus in differential soybean genotypes.
J Hered 95:322–326

Macovei A, Sevilla NR, Cantos C et al (2018) Novel alleles of rice
eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer
resistance to Rice tungro spherical virus. Plant Biotechnol J
16:1918–1927

Maina S, Barbetti MJ, Martin DP et al (2018) New isolates of Sweet
potato feathery mottle virus and Sweet potato virus C: biological
and molecular properties, and recombination analysis based on
complete genomes. Plant Dis 102:1899–1914

Maiti S, Paul S, Pal A (2012) Isolation, characterization, and structure
analysis of a non-TIR-NBS-LRR encoding candidate gene from
MYMIV-resistant Vigna mungo. Mol Biotechnol 52:217–233

Malnoë P, Farinelli L, Collet G, Reust W (1994) Small-scale field tests
with transgenic potato, cv. Bintje, to test resistance to primary and
secondary infections with Potato virus Y. Plant Mol Biol 25:963–
975

Mandadi KK, Scholthof KBG (2012) Characterization of a viral
synergism in the monocot Brachypodiumdistachyon reveals dis-
tinctly altered host molecular processes associated with disease.
Plant Physiol 160:1432–1452

Marano M, Baulcombe D (1998) Pathogen-derived resistance targeted
against the negative-strand RNA of tobacco mosaic virus: RNA
strand-specific gene silencing? Plant J 13:537–546

Martelli GP, Galitelli D (2009) Emerging and re-emerging virus
diseases of plants. In: Mahy BWJ, Van Regenmortel MHV
(eds) Desk encyclopedia of plant and fungal virology. Academic
Press, p 632

Masmoudi K, Yacoubi I, Hassairi A et al (2002) Tobacco plants
transformed with an untranslatable form of the coat protein gene of
the Potato virus Y are resistant to viral infection. Eur J Plant Pathol
108:285–292

Matthews REF (1953) Chemotherapy and plant viruses. Microbiology
8:277–288

McKinney H (1929) Mosaic diseases in the Canary Islands, West
Africa and Gibraltar. J Agric Res 39:577–578

Meng Y, Shao C, Wang H et al (2012) Target mimics: an embedded
layer of microRNA-involved gene regulatory networks in plants.
BMC Genomics 13:1–12

Michel V, Julio E, Candresse T et al (2018) NtTPN1: a RPP8-like R
gene required for Potato virus Y-induced veinal necrosis in tobacco.
The Plant J 95:700–714

Missiou A, Kalantidis K, Boutla A et al (2004) Generation of
transgenic potato plants highly resistant to potato virus Y
(PVY) through RNA silencing. Mol Breed 14:185–197

ModarresiChahardehi A, Rakhshandehroo F, Mozafari J et al (2016)
Efficiency of a chemo-thermotherapy technique for eliminating
Arabis mosaic virus (ArMV) and Prunus necrotic ringspot virus
(PNRSV) from in vitro rose plantlets. J Crop Protect 5:497–506

Moffett P (2009) Mechanisms of recognition in dominant R gene
mediated resistance. Adv Virus Res 75:1–229

Morales FJ, Anderson PK (2001) The emergence and dissemination of
whitefly-transmitted geminiviruses in Latin America. Arch Virol
146:415–441

Moury B, Lebaron C, Szadkowski M et al (2020) Knock-out mutation
of eukaryotic initiation factor 4E2 (eIF4E2) confers resistance to
pepper veinal mottle virus in tomato. Virology 539:11–17

Muller E (2016) Cacao Swollen Shoot Virus (CSSV): history, biology,
and genome. Cacao diseases. Springer, Cham, pp 337–358

Müller GW, Costa AS (1977) Tristeza control in Brazil by preimmu-
nization with mild strains. In: Proc Int Soc Citric, pp 868–872

Mumford RA, Macarthur R, Boonham N (2016) The role and
challenges of new diagnostic technology in plant biosecurity. Food
Sec 8:103–109

Naqvi AR, Haq QM, Mukherjee SK (2010) MicroRNA profiling of
Tomato leaf curl New delhi virus (ToLCNV) infected tomato leaves
indicates that deregulation of mir159/319 and mir172 might be
linked with leaf curl disease. Virol J 7:1–16

Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging
virus diseases transmitted by whiteflies. Annu Rev Phytopathol
49:219–248

Nehra NS, Kartha KK (1994) Meristem and shoot tip culture:
requirements and applications. Plant cell and tissue culture.
Springer, Dordrecht, pp 37–70

Nervo G, Cirillo C, Accotto GP et al (2003) Characterisation of two
tomato lines highly resistant to tomato spotted wilt virus following
transformation with the viral nucleoprotein gene. J Plant Pathol
85:139–144

Niu QW, Lin SS, Reyes JL et al (2006) Expression of artificial
microRNAs in transgenic Arabidopsis thaliana confers virus
resistance. Nat Biotechnol 24:1420–1428

Novy RG, Gillen AM, Whitworth JL (2007) Characterization of the
expression and inheritance of potato leafroll virus (PLRV) and potato
virus Y (PVY) resistance in three generations of germplasm derived
from Solanum etuberosum. Theor Appl Genet 114:1161–1172

Padgett HS, Watanabe Y, Beachy RN (1997) Identification of the TMV
replicase sequence that activates the N gene-mediated hypersensi-
tive response. Mol Plant Microbe Interact 10:709–715

Pallas V, García JA (2011) How do plant viruses induce disease?
Interactions and interference with host components. J Gen Virol
92:2691–2705

Palukaitis P, Zaitlin M (1997) Replicase-mediated resistance to plant
virus disease. Adv Vir Res 48:349–377

Panattoni A, Luvisi A, Triolo E (2013) Elimination of viruses in plants:
twenty years of progress. Span J Agric Res 1:173–188

Paradis A, Elkinton J, Hayhoe K et al (2008) Role of winter
temperature and climate change on the survival and future range
expansion of the hemlock woolly adelgid (Adelgestsugae) in eastern
North America. Mitig Adapt Strateg Glob Chang 13:541–554

Patil BL, Ogwok E, Wagaba H et al (2011) RNAi-mediated resistance
to diverse isolates belonging to two virus species involved in
Cassava brown streak disease. Mol Plant Pathol 12:31–41

Piron F, Nicolaï M, Minoïa S et al (2010) An induced mutation in
tomato eIF4E leads to immunity to two potyviruses. PloS One 5:
e11313

Pradeep K, Satya VK, Selvapriya M et al (2012) Engineering resistance
against Tobacco streak virus (TSV) in sunflower and tobacco using
RNA interference. Biol Plant 56:735–741

Prins M, de Haan P, Luyten R et al (1995) Broad resistance to
tospoviruses in transgenic tobacco plants expressing three tospoviral
nucleoprotein gene sequences. Mol Plant Microbe Interact 8:85–91

Prins M, Laimer M, Noris E et al (2008) Strategies for antiviral
resistance in transgenic plants. Mol Plant Pathol 9:73–83

Pyott DE, Sheehan E, Molnar A (2016) Engineering of
CRISPR/Cas9-mediated potyvirus resistance in transgene-free Ara-
bidopsis plants. Mol Plant Pathol 17:1276–1288

Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus
resistance in plants. J Virol 81:6690–6699

52 R. Saikia et al.



Rao S, Chen, X, Qiu S et al (2020) Identification of two new isolates of
Chilli veinal mottle virus from different regions in China: molecular
diversity, phylogenetic and recombination analysis. Front Microbiol
11:616171

Rast ATB (1972) M II-16, an artificial symptomless mutant of tobacco
mosaic virus for seedling inoculation of tomato crops. Neth J Plant
Pathol 78:110–112

Rojas MR, Gilbertson RL (2008) Emerging plant viruses: a diversity of
mechanisms and opportunities. Plant virus evolution. Springer,
Berlin, Heidelberg, pp 27–51

Rojas MR, Macedo MA, Maliano MR et al (2018) World management
of geminiviruses. Annul Rev Phytopathol 56:637–677

Roselló S, Díez MJ, Nuez F (1998) Genetics of tomato spotted wilt
virus resistance coming from Lycopersicon peruvianum. Eur J Plant
Pathol 104:499–509

Roy A, Zhai Y, Ortiz J et al (2019) Multiplexed editing of a
begomovirus genome restricts escape mutant formation and disease
development. PloS One 14:e0223765

Roy G, Sudarshana MR, Ullman DE et al (2006) Chimeric cDNA
sequences from Citrus tristeza virus confer RNA silencing-mediated
resistance in transgenic Nicotiana benthamiana plants. Phytopathol-
ogy 96:819–827

Roy S, Banerjee A, Tarafdar J et al (2012) Transfer of transgenes for
resistance to rice tungro disease into high-yielding rice cultivars
through gene-based marker-assisted selection. J Agri Sci 150:610–
618

Rubio L, Galipienso L, Ferriol I (2020) Detection of plant viruses and
disease management: relevance of genetic diversity and evolution.
Front Plant Sci 11:1092

Ruffel S, Dussault MH, Palloix A et al (2002) A natural recessive
resistance gene against potato virus Y in pepper corresponds to the
eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075

Ruiz L, Simón A, García C et al (2018) First natural crossover
recombination between two distinct species of the family Clos-
teroviridae leads to the emergence of a new disease. PloS One 13:
e0198228

Safarnejad MR, Fischer R, Commandeur U (2008) Generation and
characterization of functional recombinant antibody fragments
against tomato yellow leaf curl virus replication-associated protein.
Commun Agric ApplBiol Sci 73:311–321

Safarnejad MR, Jouzani GS, Tabatabaie M et al (2011)
Antibody-mediated resistance against plant pathogens. Biotech
Adv 29:961–971

Salem N, Mansour A, Ciuffo M et al (2016) A new tobamovirus
infecting tomato crops in Jordan. Arch Virol 161:503–506

Sanan-Mishra N, Abdul Kader Jailani A, Mandal B (2021) Secondary
siRNAs in plants: biosynthesis, various functions, and applications
in virology. Front Plant Sci 12:610283

Sande OF, Orílio AF, Chipiringo BA et al (2021) Speciation driven by
recombination in the evolution of tomato curly stunt virus in
Mozambique. Plant Pathol 70:994–1002

Sanfaçon H (2015) Plant translation factors and virus resistance.
Viruses 7:3392–3419

Sanford JC, Johnston SA (1985) The concept of parasite-derived
resistance—deriving resistance genes from the parasite’s own
genome. J Theor Biol 113:395–405

Sasaya T, Nakazono-Nagaoka E, Saika H et al (2014) Transgenic
strategies to confer resistance against viruses in rice plants. Front
Microbiol 4:409

Schots A, De Boer J, Schouten A (1992) ‘Plantibodies’: a flexible
approach to design resistance against pathogens. Neth J Plant Pathol
98:183–191

Seo YS, Rojas MR, Lee JY et al (2006) A viral resistance gene from
common bean functions across plant families and is up-regulated in

a non-virus-specific manner. Proc Natl Acad Sci USA 103:11856–
11861

Shamim M, Pandey P, Singh A et al (2013) Role of biotechnology in
plant diseases management: an overview. J Genetic Environ Res
Conserv 1:215–221

Sharma N, Sahu PP, Prasad A et al (2021) The Sw5a gene confers
resistance to ToLCNDV and triggers an HR response after direct
AC4 effector recognition. Proc Natl Acad Sci1 USA 18:
e2101833118

Sharma N, Sahu PP, Puranik S et al (2013) Recent advances in plant–
virus interaction with emphasis on small interfering RNAs
(siRNAs). Mol Biotech 55:63–77

Shekhawat UK, Ganapathi TR, Hadapad AB (2012) Transgenic banana
plants expressing small interfering RNAs targeted against viral
replication initiation gene display high-level resistance to banana
bunchy top virus infection. J Gen Virol 93:1804–1813

Shepherd DN, Martin DP, Van der Walt E et al (2010) Maize streak
virus: an old and complex ‘emerging’pathogen. Mol Plant Pathol
11:1–12

Shivaprasad PV, Chen HM, Patel K et al (2012) A microRNA
superfamily regulates nucleotide binding site–leucine-rich repeats
and other mRNAs. Plant Cell 24:859–874

Shivaprasad PV, Thillaichidambaram P, Balaji V et al (2006)
Expression of full-length and truncated Rep genes from Mungbean
yellow mosaic virus-Vigna inhibits viral replication in transgenic
tobacco. Virus Genes 33:365–374

Sijen T, Fleenor J, Simmer F et al (2001) On the role of RNA
amplification in dsRNA-triggered gene silencing. Cell 107:465–476

Simon-Mateo C, Garcia JA (2006) MicroRNA-guided processing
impairs Plum pox virus replication, but the virus readily evolves to
escape this silencing mechanism. J Virol 80:2429–2436

Singh A, Taneja J, Dasgupta I et al (2015) Development of plants
resistant to tomato geminiviruses using artificial trans-acting small
interfering RNA. Mol Plant Pathol 16:724–734

Singh K, Dardick C, Kumar Kundu J (2019) RNAi-Mediated resistance
against viruses in perennial fruit plants. Plants 8:1–18

Sivamani E, Brey CW, Dyer WE et al (2000) Resistance to wheat
streak mosaic virus in transgenic wheat expressing the viral
replicase (NIb) gene. Mol Breed 6:469–477

Smith NA, Singh SP, Wang MB et al (2000) Total silencing by
intron-spliced hairpin RNAs. Nature 407:319–320

Song YZ, Han QJ, Jiang F et al (2014) Effects of the sequence
characteristics of miRNAs on multi-viral resistance mediated by
single amiRNAs in transgenic tobacco. Plant PhysiolBiochem
77:90–98

Sudarshana MR, Roy G, Falk BW (2007) Methods for engineering
resistance to plant viruses. Mol Biol 354:183–195

Sun F, Fang P, Li J et al (2016) RNA-seq-based digital gene expression
analysis reveals modification of host defense responses by rice
stripe virus during disease symptom development in Arabidopsis.
Virol J 13:1–13

Symons RH, Uhlenbeck OC (1991) Ribozymes. Critical Rev Plant Sci
10:189–234

Tabassum B, Nasir IA, Aslam U et al (2012) How RNA interference
combat viruses in plants. Func Genomics, Rijeka: InTech, pp 113–
130

Takahashi H, Suzuki M, Natsuaki K et al (2001) Mapping the virus and
host genes involved in the resistance response in cucumber mosaic
virus infected Arabidopsis thaliana. Plant Cell Physiol 42:340–347

Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins:
molecular switches of plant defence. CurrOpin Plant Biol 9:383–
390

Takken FL, Goverse A (2012) How to build a pathogen detector: structural
basis of NB-LRR function. CurrOpin Plant Biol 15:375–384

Plant Viruses: Factors Involved in Emergence and Recent Advances … 53



Tavladoraki P, Benvenuto E, Trinca S et al (1993) Transgenic plants
expressing a functional single-chain Fv antibody are specifically
protected from virus attack. Nature 366:469–472

Tennant P, Ahmad MH, Gonsalves D (2005) Field resistance of coat
protein transgenic papaya to Papaya ringspot virus in Jamaica.
Plant Dis 89:841–847

Tilahun H, Negash G, Fesseha H (2019) An insight review on
application of plantibodies. Ind J Pure App Biosci 7:29–41

Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated
gene silencing in plants: progress and perspectives. Plant Mol Biol
86:1–18

Tomlinson KR, Bailey AM, Alicai T et al (2018) Cassava brown streak
disease: historical timeline, current knowledge and future prospects.
Mol Plant Pathol 19:1282–1294

Trebicki P (2020) Climate change and plant virus epidemiology. Virus
Res 286:1–7

Tripathi JN, Ntui VO, Ron M et al (2019) CRISPR/Cas9 editing of
endogenous banana streak virus in the B genome of Musa
spp. overcomes a major challenge in banana breeding. Com-
munBiol 2:1–11

Truniger V, Aranda M (2009) Advances in virus research. Adv Virus
Res 75:119–159

Tyagi H, Rajasubramaniam S, Rajam MV et al (2008)
RNA-interference in rice against Rice tungro bacilliform virus
results in its decreased accumulation in inoculated rice plants.
Transgenic Res 17:897–904

Ueda H, Yamaguchi Y, Sano H et al (2006) Direct interaction between
the tobacco mosaic virus helicase domain and the ATP-bound
resistance protein, N factor during the hypersensitive response in
tobacco plants. Plant Mol Biol 61:31–45

Valarmathi P, Kumar G, Robin S et al (2016) Evaluation of virus
resistance and agronomic performance of rice cultivar ASD 16 after
transfer of transgene against Rice tungro bacilliform virus by
backcross breeding. Vir Genes 52:521–529

Vallejos CE, Astua-Monge G, Jones V et al (2006) Genetic and
molecular characterization of the I locus of Phaseolus vulgaris.
Genetics 172:1229–1242

Varanda CM, Félix MDR, Campos MD et al (2021) Plant viruses: from
targets to tools for CRISPR. Viruses 13:141

Varma A, Jain RK, Bhat AI (2002) Virus resistant transgenic plants for
environmentally safe management of viral diseases. https://nopr.
niscair.res.in/handle/123456789/19852

Varsani A, Shepherd DN, Monjane AL et al (2008) Recombination,
decreased host specificity and increased mobility may have driven
the emergence of maize streak virus as an agricultural pathogen.
J Gen Virol 89:2063

Veerlaan MG, Hutton SF, Ibrahem RM et al (2013) The tomato yellow
leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code
for DFDGD-class RNA–dependent RNA polymerases. PLoS Genet
9:e1003399

Vidal S, Cabrera H, Andersson RA et al (2002) Potato gene Y-1 is an
N gene homolog that confers cell death upon infection with potato
virus Y. Mol Plant Microbe Interact 15:717–727

Vieira RL, da Silva AL, Zaffari GR et al (2015) Efficient elimination of
virus complex from garlic (Allium sativum L.) by cryotherapy of
shoot tips. Acta Physiol Plant 37:1733

Voloudakis AE, Aleman-Verdaguer ME, Padgett HS et al (2005)
Characterization of resistance in transgenic Nicotiana benthamiana
encoding N-terminal deletion and assembly mutants of the tobacco
etch potyvirus coat protein. Arch Virol 150:2567–2582

Vu TV, Choudhury NR, Mukherjee SK (2013) Transgenic tomato
plants expressing artificial microRNAs for silencing the pre-coat
and coat proteins of a begomovirus, Tomato leaf curl New Delhi
virus, show tolerance to virus infection. Virus Res 172:35–45

Wang F, Li W, Zhu J et al (2016a) Hairpin RNA targeting multiple
viral genes confers strong resistance to rice black-streaked dwarf
virus. Int J Mol Sci 17:1–12

Wang H, Jiao X, Kong X et al (2016b) A signaling cascade from
miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant
Physiol 170:2365–2377

Wang Q, Cuellar WJ, Rajamäki ML et al (2008) Combined thermother-
apy and cryotherapy for efficient virus eradication: relation of virus
distribution, subcellular changes, cell survival and viral RNA
degradation in shoot tips. Mol Plant Pathol 9:237–250

Wang Q, Liu Y, He J et al (2014) STV11 encodes a sulphotransferase
and confers durable resistance to rice stripe virus. Nat Commun
5:1–8

Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and
gene silencing in plants can be induced by simultaneous expression
of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–
13964

Whitham S, Dinesh-Kumar SP, Choi D et al (1994) The product of the
Tobacco mosaic virus resistance gene N: similarity to Toll and the
interleukin-1 receptor. Cell 78:1101–1115

Whitham SA, Anderberg RJ, Chisholm ST et al (2000) Arabidopsis
RTM2 gene is necessary for specific restriction of tobacco etch virus
and encodes an unusual small heat shock–like protein. Plant Cell
12:569–582

Wicker T, Zimmermann W, Perovic D et al (2005) A detailed look at 7
million years of genome evolution in a 439kb contiguous sequence
at the barley Hv-eIF4E locus: recombination, rearrangements and
repeats. Plant J 41:184–194

Wittner A, Palkovics L, Balazs E (1998) Nicotiana benthamiana plants
transformed with the plum poxvirus helicase gene are resistant to
virus infection. Virus Res 53:97–103

Wu HW, Yu TA, Raja JA et al (2010) Double-virus resistance of
transgenic oriental melon conferred by untranslatable chimeric
construct carrying partial coat protein genes of two viruses. Plant
Dis 94:1341–1347

Wu J, Yang R, Yang Z et al (2017) ROS accumulation and antiviral
defence control by microRNA528 in rice. Nat Plants 3:1–7

Wu L, Mao L, Qi Y (2012) Roles of dicer-like and argonaute proteins
in TAS-derived small interfering RNA-triggered DNA methylation.
Plant Physiol 160:990–999

Wu Y, Li J, Liu H et al (2020) Investigating the impact of climate
warming on phenology of aphid pests in China using long-term
historical data. Insects 11:167

Xie Y, Zhao L, Jiao X et al (2013) A recombinant begomovirus
resulting from exchange of the C4 gene. J Gen Virol 94:1896–1907

Xu L, Song YZ, Zhu JH et al (2009) Conserved sequences of replicase
gene-mediated resistance to potyvirus through RNA silencing.
J Plant Biol 52:550–559

Xuan N, Zhao C, Peng Z et al (2015) Development of transgenic maize
with anti-rough dwarf virus artificial miRNA vector and their
disease resistance. Sheng Wu Gong Cheng Xue Bao 31:1375–1386

Yamaji Y, Maejima K, Komatsu K et al (2012) Lectin-mediated
resistance impairs plant virus infection at the cellular level. Plant
Cell 24:778–793

Yang ZN, Ye XR, Molina J et al (2003) Sequence analysis of a
282-kilobase region surrounding the Citrus tristeza virus resistance
gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol
131:482–492

Yasmeen A, Kiani S, Butt A et al (2016) Amplicon-based RNA
interference targeting V2 gene of Cotton Leaf Curl Kokhran virus-
burewala strain can provide resistance in transgenic cotton plants.
Mol Biotechnol 58:807–820

Yin K, Qiu JL (2019) Genome editing for plant disease resistance:
applications and perspectives. Phil Trans R Soc B 374:1–8

54 R. Saikia et al.

https://nopr.niscair.res.in/handle/123456789/19852
https://nopr.niscair.res.in/handle/123456789/19852


Yoon YJ, Venkatesh J, Lee JH et al (2020) Genome editing of eIF4E1 in
tomato confers resistance to pepper mottle virus. Front Plant Sci 11:1–11

Yoshii M, Nishikiori M, Tomita K et al (2004) The Arabidopsis
cucumovirus multiplication 1 and 2 loci encode translation initiation
factors 4E and 4G. J Virol 78:6102–6111

Yoshii M, Yoshioka N, Ishikawa M et al (1998a) Isolation of an
Arabidopsis thaliana mutant in which accumulation of cucumber
mosaic virus coat protein is delayed. Plant J 13:211–219

Yoshii M, Yoshioka N, Ishikawa M et al (1998b) Isolation of an
Arabidopsis thaliana mutant in which the multiplication of both
cucumber mosaic virus and turnip crinkle virus is affected. J Virol
72:8731–8737

Yousaf S, Rasool G, Amin I et al (2013) Interference of a synthetic rep
protein to develop resistance against cotton leaf curl disease. Int J
Agric Biol 15:1140–1144

Zaidi SSEA, Mahas A, Vanderschuren H et al (2020) Engineering
crops of the future: CRISPR approaches to develop climate-resilient
and disease-resistant plants. Genome Biol 21:1–19

Zaidi SSEA, Martin DP, Amin I et al (2017) Tomato leaf curl New
Delhi virus: a widespread bipartite begomovirus in the territory of
monopartite begomoviruses. Mol Plant Pathol 18:901–911

Zaidi SSEA, Tashkandi M, Mansoor S (2016) Engineering plant
immunity: using CRISPR/Cas9 to generate virus resistance. Front
Plant Sci 7:1673

Zhai J, Jeong DH, De Paoli E et al (2011) MicroRNAs as master regulators
of the plant NB-LRR defense gene family via the production of phased,
trans-acting siRNAs. Genes Dev 25:2540–2553

Zhan X, Zhang F, Zhong Z et al (2019) Generation of virus-resistant
potato plants by RNA genome targeting. Plant Biotechnol J
17:1814–1822

Zhang X, Li H, Zhang J et al (2011a) Expression of artificial
microRNAs in tomato confers efficient and stable virus resistance in
a cell-autonomous manner. Transgenic Res 20:569–581

Zhang X, Sato S, Ye X et al (2011b) Robust RNAi-based resistance to
mixed infection of three viruses in soybean plants expressing
separate short hairpins from a single transgene. Phytopathology
101:1264–1269

Zhang C, Ding Z, Wu K et al (2016a) Suppression of jasmonic
acid-mediated defense by viral-inducible microRNA319 facilitates
virus infection in rice. Mol Plant 9:1302–1314

Zhang Z, Wang D, Yu C et al (2016b) Identification of three new
isolates of Tomato spotted wilt virus from different hosts in China:
molecular diversity, phylogenetic and recombination analyses.
Virol J 13:1–12

Zhang H, Tan X, Li L et al (2019a) Suppression of auxin signalling
promotes rice susceptibility to Rice black streaked dwarf virus
infection. Mol Plant Pathol 20:1093–1104

Zhang J, Huang Y, Pu R et al (2019b) Monitoring plant diseases and
pests through remote sensing technology: A review. Comput
Electron Agric 165:104943–104956

Zhang T, Zhao Y, Ye J et al (2019c) Establishing CRISPR/Cas13a
immune system conferring RNA virus resistance in both dicot and
monocot plants. Plant Biotechnol J 17:1185–1187

Zhang MY, Zimmermann S, Fischer R et al (2008) Generation and
evaluation of movement protein-specific single-chain antibodies for
delaying symptoms of Tomato spotted wilt virus infection in
tobacco. Plant Pathol 57:854–860

Zhang T, Zheng Q, Yi X et al (2018) Establishing RNA virus resistance
in plants by harnessing CRISPR immune system. Plant Biotechnol J
16:1415–1423

Zhang ZY, Wang YG, Shen XJ et al (2013) RNA interference-mediated
resistance to maize dwarf mosaic virus. Plant Cell Tissue Organ
Cult 113:571–578

Zhao J, Rios CG, Song J (2020) Potato virus X-based microRNA
silencing (VbMS) in potato. J vis Exp 159:1–9

Zhao K, Yin Y, Hua M et al (2021) Pod pepper vein yellows virus, a
new recombinant polerovirus infecting Capsicum frutescens in
Yunnan province, China. Virol J 18:1–8

Zhao M, San León D, Mesel F et al (2015) Assorted processing of
synthetic transacting siRNAs and its activity in antiviral resistance.
PLoS ONE 10:1–14

Zhou X, Liu Y, Calvert L et al (1997) Evidence that DNA-A of a
geminivirus associated with severe cassava mosaic disease in
Uganda has arisen by interspecific recombination. J Gen Virol
78:2101–2111

Zhou YC, Garrido-Ramirez ER, Sudarshana MR et al (2007) The
N-terminus of the begomovirus nuclear shuttle protein (BV1)
determines virulence or avirulence in Phaseolus vulgaris. Mol Plant
Microbe Interact 20:1523–1534

Plant Viruses: Factors Involved in Emergence and Recent Advances … 55



Crop Plants Under Metal Stress and Its
Remediation

Banashree Sarma, Lina Gogoi, Nirmali Gogoi, and Rupam Kataki

Abstract

Soil contamination with heavy metals is a huge concern
now. Agricultural soils in the world are slight to
moderately affected by heavy metal toxicity. Heavy
metals such as cadmium, arsenic, chromium, lead,
mercury, and iron are highly toxic and increased accu-
mulation can lead to degradation of the ecosystem.
A higher concentration of heavy metals in agricultural
soils has tremendous detrimental effects on plant growth
and food safety. The primary hazard in plants exposed to
these metals lies in oxidative damage due to their ability
to produce reactive oxygen species which consequently
cause lipid peroxidation, enzyme inactivation, damage to
cellular organelles, and DNA. Unfortunately, metals such
as mercury, cadmium, lead, iron, etc. are essential for
plant growth, but excess of them triggers oxidative
damage in the plant. The prime objective of this chapter is
to discuss the effects of heavy metals on plant growth,
development and yield and to summarize the economical
and eco-friendly remediation measures that increase the
tolerance of plants to heavy metals.
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Bioremediation �Heavy metals �Organic amendments �
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Abbreviations

APX Ascorbate peroxidase
CAT Catalase
CEC Cation exchange capacity
DAP Di-ammonium phosphate

DOC Dissolved organic carbon
DTPA Diethylenetriamine pentaacetic acid
GR Glutathione reductase
H2O2 Hydrogen peroxide
O2

− Superoxide radical
OH− Hydroxyl radical
OM Organic matter
ROS Reactive oxygen species (ROS)
SOD Superoxide dismutase (SOD)

1 Introduction

Among the abiotic stresses, heavy metal toxicity has become
a major concern due to enhanced environmental pollution.
The term “Heavy metal” refers to the group of metal or
metalloids with atomic densities five times and greater than
water or greater than 4 g cm−3 (Gill 2014). However, these
metals have become indispensable for life in the course of
evolution because of their redox activity under physiological
conditions or Lewis acid strength (Palmer and Guerinot
2009). These properties also have been the reason for their
toxicity if present in excess, the primary threat being the
production of reactive oxygen species (ROS). Heavy metals
include lead (Pb), chromium (Cr), arsenic (As), iron (Fe),
cadmium (Cd), mercury (Hg), cobalt (Co), copper (Cu),
manganese (Mn), silver (Ag), zinc (Zn), and the platinum
group elements. Heavy metals give significant toxic effects
on ecology, nutrition, and environmental evolutionary pro-
cesses. Among the heavy metals, As, Cd, Cr, Pb, and Hg are
ranked as prior elements due to their high degree of toxicity
even at low concentrations. Concentration ranges of some
heavy metals in plants are presented in Table 1. Due to their
non-decomposable or non-degradable property, heavy met-
als have a deleterious biological impact (Jaleel et al. 2009).
They are bio-accumulative and sometimes biomagnified, and
accumulate in the food chain from the producer level and
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then through uptake at the consumer level (Nagajyoti et al.
2010). Agricultural practices such as long-term use of
phosphate fertilizers, pesticides, sewage sludge application,
dust from smelters, industrial waste, irrigation with con-
taminated water, etc. act as the major contributor to heavy
metals (Yadav 2010). Plants absorb these metals easily either
by roots or sometimes plant leaves act as the entry point of
heavy metals when they are deposited from the atmosphere
on the leaf surfaces as particulate matter (Nagajyoti et al.
2010). Heavy metals also trigger variation in the cell cycle,
apoptosis, or carcinogenesis by disrupting the cellular
organelles and components like lysosomes, mitochondria,
carbohydrates, proteins, DNA, nuclei, etc. (Beyersmann and
Hartwig 2008). Heavy metal toxicity causes disturbances to
building blocks of protein structure and commonly forms
bonds with the sulfhydryl groups resulting in restricting the
activities of vital enzymes, respiration, and photosynthesis
(Hall 2002), disrupting the electron transport chain (Qadir
et al. 2004) or disturbing the metabolism of essential ele-
ments (Yadav 2010). Physiologically, ROS generation, such
as hydroxyl free radicles (OH−), superoxide free radicals
(O2

−), or non-free radicles like hydrogen peroxide (H2O2),
causes oxidative stress by disturbing the cellular equilibrium
(Sytar et al. 2013). However, different physical, chemical,
and biological processes at soil media control the fate of the
heavy metals in soil. Moreover, the antioxidative system,
constituting both enzymes (superoxide dismutase (SOD),
ascorbate peroxidase (APX), catalase (CAT), glutathione
reductase (GR), etc.) and non-antioxidants (glutathione,
ascorbate, carotenoids, phenolics, etc.) detoxifies the ROS
(Syed et al. 2018). These necessitate the understanding on
elevated activities/concentration of the antioxidants support
given to the plants to combat oxidative stress induced by
heavy metals (Syed et al. 2018).

2 Effects on Crop Growth and Development

2.1 Cadmium

Cadmium (Cd) is usually present in uncontaminated soils at
a concentration below 0.5 mg kg−1 but depending on parent
material, its concentration can reach up to 3.0 mg kg–1 (Nazar
et al. 2012). Human activities have contributed about 13,000
out of the total 30,000 tons of annual addition of Cd to the
environment (Gallego et al. 2012) while weathering of rocks,
volcanoes, and forest fires naturally release about 25,000
tons of Cd per year into the environment (Shahid et al.
2019). Anthropogenic activities such as industrial processes,
application of phosphate fertilizers in agricultural fields,
irrigation water, etc. (Du et al. 2013; Kosolsaksakul et al.
2014) along with atmospheric deposition are the major
inputs of Cd in agricultural soils.

From soil, plants take up Cd easily, which are transported
to the seeds and fruits and consequently enter into the food
chain (Rabelo et al. 2017). However, Cd availability is
governed by soil characteristics such as soil cation exchange
capacity, soil pH, organic matter (OM), soil salinity, and soil
texture (Lin et al. 2015). Cadmium, in the form Cd2+, is
highly phytotoxic and its detrimental effects on the physio-
logical processes result in growth inhibition. Yang et al.
(2010) reported the differential responses of Cd accumula-
tion capacities of 28 species of vegetables of 5 common
vegetable species, namely, cowpea (Vigna sesquipedalis
Koern.), kidney pea (Phaseolus vulgaris L.), bitter gourd
(Momordica charantia L.), cucumber (Cucumis sativus L.),
and squash (Cucurbita pepo L.) and concluded that plant
response to Cd stress was a function of genotypic variation.
Leaf chlorosis and rolling of the leaves are the primary
visible symptoms of Cd stress in the aerial plant parts (Liu
et al. 2013). Zhang et al. (2021) reported decreased ratio of
green leaves, accelerated leaf senescence, and decreased
both upper and lower plant biomass in Cd-treated plants
compared to control. Cadmium inhibits the activity of root
Fe(III) reductase and affects transporter responsible for Fe
(II) uptake resulting in a deficiency of Fe2+, which seriously
affects photosynthesis (Chang et al. 2003). In contrast,
research also suggested that Cd at a low concentration pro-
moted root growth and is beneficial for nutrient and water
absorption. This is due to the stimulation in the exchange in
the root cell wall to reject Cd2+ and thus is an important
means for plants to adapt to adversity (Liu et al. 2013; Zhang
et al. 2021). The uptake, transportation, and use of elements
such as K, Mg, P, and Ca and water by plants are affected by
Cd. Cd inhibits nitrate reductase activity, and thus impedes
uptake and transport of nitrate from roots to shoots (He et al.

Table 1 Concentration ranges of some heavy metals in plants
(Nagajyoti et al. 2010)

Heavy metal Range in land plants (µg g−1 dry wt.)

Cd 0.1–2.4

As 0.02–7

Cr 0.2–1

Pb 1–13

Hg 0.005–0.02

Fe 140

Co 0.05–0.5

Zn 8–100

Mn 15–100

Mo 1–10
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2017). Balestrasse et al. (2003) reported decreased assimi-
lation of primary ammonia in nodules of soybean plants due
to Cd stress. Thus, if it is not rapidly detoxified within a
short spell, it triggers secondary metabolism, growth inhi-
bition, and finally cell death (Schutzendubel and Polle
2002). Prolonged exposure to Cd triggers oxidative stress
that results in growth inhibition by inducing a transient
reduction of growth-stimulating hormones and inhibition of
the antioxidative enzymes giving rise to H2O2 accumulation.
Cadmium toxicity has been found to affect the permeability
of plasma membrane resulting in a reduction of water bal-
ance (Sidhu et al. 2017). Rupture of the cellular structures in
Sedum alfredii, a perennial herb, under different levels of Cd
concentration, has been reported by Jin et al. (2008).
Reduction in photosynthesis due to inhibition of chlorophyll
biosynthesis, chloroplast metabolism, and suppression of
CO2 fixing enzyme has been reported by (Raziuddin et al.
2011). The worst effect of Cd toxicity is the effect on the
anatomic and structural features of cells (Kupper et al.
2000). Lower mitotic index and chromosomal aberration in
various plant species under Cd stress have also been reported
(He et al. 2017). Mondal et al. (2020) reported lesser yield in
bean in Cd-treated plants compared to the control.

2.2 Arsenic

Arsenic (As), the most toxic metalloid, is ubiquitous in many
ecosystems and its distribution is a global concern as it is
highly toxic to all life forms. The permissible limit of As in
agricultural soils is 20 mg kg−1 soil, while a concentration
of as low as 5 ppm is reported to be toxic for sensitive crops
(Garg and Singla 2011). Arsenic occurs in the soil naturally
in two inorganic forms, namely, arsenite [As(III)] and
arsenate [As(V)]. Human exposure to As occurs through
contaminated drinking water and solid food through the food
chain when crops are contaminated with As. The metalloid
finds its way into farming systems through natural geo-
chemical processes, application of As-based pesticides,
irrigation with As-polluted groundwater, fertilization with
As-contaminated solid wastes, mining, etc. (Meharg et al.
2008).

Arsenic is non-essential to plants and roots are usually the
foremost part of the plant to get exposed to As where it
hinders root extension (Finnegan and Chen 2012). As(V) is
absorbed by root through high-affinity phosphate trans-
porters and disrupts the flow of energy in cells. Upon
translocation to the shoot, it obstructs normal plant growth
by disrupting biomass accumulation and stem expansion
(Garg and Singla 2011). Sharma (2012) stated that As(III)
can inactivate important enzymes in plants. As(V) has also
reported decline in germination rate of Brassica (Srivastava
et al. 2009). Decreased plant height with increasing As

concentrations and a similar trend in root length, leaf num-
ber, and plant biomass of lentils were reported by Ahmed
et al. (2006). Several other studies on As toxicity reported
loss of root and shoot fresh and dry biomass, cessation of
fruit development, and loss of yield (Shaibur et al. 2008;
Srivastava et al. 2009). Haque et al (2015) reported a
reduction of 6.29%–23.69% in tuber production of potato
cultivars in As-contaminated soil compared to controls.
Miteva (2002) and Shaibur et al. (2008) reported decreased
vegetative growth in tomato and sorghum, respectively,
upon exposure to a higher concentration of As. Straight head
disease in rice, a physiological disorder characterized by the
sterility of the florets/spikelets leading to reduced grain
yield, was significantly increased by As contamination
(Smith et al. 2010). These detrimental effects of As are due
to its reaction with the sulfhydryl (-SH) groups of tissue
proteins and enzymes resulting in inhibition of cellular
function (Stoeva and Bineva 2003).

Arsenic injures the chloroplast membrane and disrupts
the photosynthetic process (Stoeva and Bineva 2003) by
significantly decreasing the pigment synthesis. Lack of
adaptation to As stress reduces the CO2 fixation rate and
functional activity of photosystem II (Stoeva and Bineva
2003). Arsenic hinders the pathway of oxidative phospho-
rylation and impedes the mitochondrial enzymes through
cellular respiration. Arsenic in excess amount stimulates free
radicals and ROS formation resulting in oxidative stress
(Srivastava et al. 2005). In the early growth stage of maize,
As stimulates lipid peroxidation and increases malondi-
aldehyde accumulation (Stoeva et al. 2004). Increased levels
of thiobarbituric acid-reactive substances in the fronds of
ferns were reported by Srivastava et al. (2005) as a result of
exposure to As(V) indicating As-induced oxidative stress in
ferns. However, numerous plant species have developed As
tolerance by suppressing the high-affinity P/As uptake sys-
tem but undergoes detoxification within plant cells to less
phytotoxic forms (Finnegan and Chen 2012). Application of
arbuscular mycorrhizal fungi is found to be effective against
As toxicity in the crop grown in As-contaminated soil
(Smith et al. 2010).

2.3 Lead

Erosion and volcanic eruption are natural sources of Pb that
adds only a minute fraction of total contamination in the
environment (Yokel and Delistraty 2003). While anthro-
pogenic practices like smelting, burning of fossil fuels,
electroplating, steel industry, atmospheric deposition, min-
ing, use of pesticides, printing, irrigation, etc. have elevated
Pb concentration in the environment (Gottesfeld et al. 2018).
Soil pH and texture are the important factors that govern the
dynamics and concentration of Pb (Zulfiquar et al. 2019).
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WHO (1996) recommended 2 mg kg−1 soil as the threshold
level of Pb for plants and 50–300 mg kg−1 for agricultural
soils. Lead does not have any beneficial role in the entire
biological system but the morpho-physiological and bio-
chemical processes are severely affected if the threshold
limits are exceeded (Kushwaha et al. 2018). Lead toxicity
has deleterious effects on seed germination of different crop
cultivars. Lead markedly impaired the endosperm starch
solubilization and hinders a-amylase activity that retards
seed germination (Gautam et al. 2010). Deleterious effects of
Pb on seed germination have been reported in maize (Hus-
sain et al. 2013), rice (Gautam et al. 2010), and wheat (Yang
et al. 2010). Due to the toxic effects of Pb on cell division,
chlorophyll synthesis, and transpiration, the seedling growth
declined (Hadi 2015). Leaving aside the aerosol exposure of
Pb, roots are the first part of exposure and Pb retards root
growth at a very faster rate and blackens roots. It is followed
by a significant reduction in root volume, lateral root for-
mation, total biomass root length and diameter, and root
nutrient uptake (Fahr et al. 2013). The reduced nutrient
uptake could be due to the strong interaction with potassium
(K) ions because of their similar radii (K+: 1.33 Å and Pb2+:
1.29 Å), and hence these two ions compete to enter into the
plant through the same K+ channels reducing the overall
nutrient uptake (Gopal and Rizvi 2008). The concentration
and severity of Pb toxicity decrease with increasing distance
of the aerial parts from roots as Pb binds more in lignified
tissues rather than non-lignified tissues (Sharma and Dubey
2005). In the aerial parts, the fresh-dry biomass and growth
tolerance index of leaves, shoot, and root are negatively
correlated to the increasing Pb concentration in many crops
such as tomato, pea, beans, maize, etc. (Shua et al. 2002; Jaja
and Odoemena 2004). Possibly, the enlarged interphase
induced by Pb decreases division leading to stunted plant
growth. In leaves, Pb decreases the turgor of guard cells that
in turn lessens the cell wall plasticity and closure of the
stomata (Sharma and Dubey 2005). The decreased turgor
can be attributed to the Pb-induced decrease in the concen-
tration of amino acids, sugar, and other molecules. Similar to
other abiotic stress, Pb induces overproduction of ROS in
plants that promote oxidative stress and lipid peroxidation in
plants. The produced ROS oxidizes the nucleic acids and
proteins of the cells (Yadav 2010), and thus the functioning
of cellular organelles such as peroxisomes, mitochondria,
and chloroplast is significantly disrupted (Malecka et al.
2008). Lead exposure intensifies the activities of antioxidant
enzymes like SOD, CAT, APX, glutathione S-transferase,
and monodehydroascorbate reductase (Zulfiqar et al. 2019).
On the other hand, Pb inactivates more than 100 plant
enzymes by replacing the essential metals of metalloen-
zymes or by interacting with the –SH and –COOH func-
tional groups at the active sites of enzymes (Zulfiqar et al.
2019). Lead concentrations bring down the plant protein

pool which was primarily linked with accelerated oxidative
damage or due to extensive use of protein to detoxify Pb
stress and cessation of N metabolism (Chatterjee et al. 2004).
Reduced nutrient and water uptake increased oxidative stress
and curtailed C-fixation due to Pb-induced toxicity are the
main causes of decreased crop yield. A substantial decline in
economic yield of around 25–30% in sugarcane and wheat
subjected to Pb was reported by Misra et al. (2010) and
Rehman et al. (2017), respectively.

2.4 Chromium

Chromium (Cr), a metal pollutant, is a subject of growing
concern for its detrimental effects on the biological system
(Srivastava et al 2021). Cr concentration in natural soils
ranges between 5 and 1,000 mg kg−1 (ATSDR 1998). It
naturally occurs in rocks, soil, plants, animals, and volcanic
dust and gases (ATSDR 1998) while leather and paint
industries are the major anthropogenic contributors. It exists
in nature in several oxidation states from +2 to +6. The
trivalent [Cr(III)] and hexavalent [Cr(VI)] are the most
common forms in the terrestrial environment which inter-
change and the balance regulated by three reactions, namely,
oxidation/reduction, precipitation/dissolution, and
adsorption/desorption (Ertani et al. 2017). Cr(VI) predomi-
nates in surface waters and aerobic soils and is highly
mobile, bioavailable, and toxic. The availability of the forms
of Cr is pH dependent and at pH < 4, Cr(III) dominates in
the environment (Ertani et al. 2017). Seed germination, the
first physiological process to be affected by Cr, is a function
of the level of tolerance of the species (Srivastava et al.
2021). Cr(III) is reported to inhibit germination in Glycine
max, Vigna radiata (Jun et al. 2009). The reduced seed
germination can be ascribed to the suppression of amylase
activity resulting in decreased sugar transport toward seed
embryo axes and overexpression of the protease activity
(Kumar et al. 2016). A decrease of 4–7% was observed in
the germination of pigeon pea exposed to 40 to 100 ppm Cr
(Dotaniya et al 2014). Roots of seedling and plants, the first
plant organ to experience direct exposure, undergo visible
decreased root growth and modifications in the root mor-
phology (Zhao et al. 2019). This decreased root growth can
arrest cell elongation, and decrease mitotic index and cell
division in the root tips (Sundaramoorthy et al. 2010).
Arduini et al. (2006) documented the development of light
blue deposits on M. sinensis roots under Cr(III) exposure.
The transport of Cr(III) is a passive-mechanism mediated
while that of Cr(VI) is an active process involving sulfate
transporters and energy (Srivastava et al. 2021). However,
accumulation of Cr is generally higher in roots than shoot
which could be attributed to immobilization by cation
binding and storage of Cr in the vacuoles of the root cells
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(Mangabeira et al. 2014) which acts as a defensive mecha-
nism against Cr toxicity. The lower nutritional flow to the
aboveground plant parts consequently results in stunted
shoot and leaf growth, reduced plant height, and extension of
stem and leaf senescence (Shanker et al. 2005). A significant
drop in height in Helianthus annuus L. under Cr exposure
was documented by Fozia et al. (2008). About 50% reduc-
tion in leaf number was documented by Kumar et al. (2016)
in wheat plants grown in the 0.5 mM Cr(VI)-contaminated
soil.

Chromium toxicity in particular reduces CO2 fixation,
electron transport, suppression of photosynthetic enzymes,
and photophosphorylation resulting in reduced photosyn-
thetic efficiency of plants (Shanker et al. 2009). Alterations
in chloroplast ultrastructure due to unusual development of
lamellar system and inefficiency of the mesophyll cells could
be the reasons for lower plant photosynthetic efficiency
(Schiavon et al. 2009). Reduction in stomatal transpiration,
conductance, and CO2 assimilation are also reported under
Cr toxicity exposed to chromium (Schiavon et al. 2009).
This can be attributed to the modification of the spongy
parenchyma cellular structure and reduction in the meso-
phyll stomatal. The decreased level of transpiration is
hypothesized to affect the movement of water in the xylem
(Ertani et al. 2017). Chromium(VI) also restricts nitrogen
(N) assimilation, decreases the levels of nitrate and nitrite
reductase, urease, and glutamate dehydrogenase (Shanker
et al. 2009). The decrease in the activity of the enzyme as the
concentration of the external Cr increased might be because
of the inhibitory effect of Cr ions on the enzyme system
itself. Furthermore, Cr exposure also triggers the activities of
antioxidant enzymes such as SOD, CAT, lipid peroxidase,
etc. The activity of SOD was reported to increase by 29% in
pea plants Cr(VI) (Dixit et al. 2002). The generation of ROS
and lipid peroxidation are higher when plants are exposed to
Cr(VI) than that of Cr(III) form of Cr (Scoccianti et al.
2008). Inactivation of electron transport in mitochondria
exposed to Cr(VI) results in enhanced O2

− generation and
accumulation of ROS (Dixit et al. 2002). Overall severe
effects on the plant biochemical and physiological processes
result in a reduction in the yield of crops exposed to Cr.
Kumar et al. (2016) reported a total loss of harvestable parts
of carrot when exposed to Cr at 270 or 810 kg ha−1.
Wyszkowski and Radziemska (2010) reported that the yield
of spring grown barley (Hordeum vulgare) was significantly
decreased upon exposure to Cr.

2.5 Mercury

Mercury (Hg) is the only heavy metal that also exists in
liquid form at room conditions and biomagnifies at each
trophic level once it enters the food chain. The high

solubility of the metal and easiness of the metal to shift to
the gaseous phase are the two most important properties for
its wide application and usability (Clarkson and Magos
2006). Naturally, Hg is present in the form of ores and
mineral-bound forms while emission from coal-burning
thermal power plants (TPPs) is the main anthropogenic
source. Deposition of the atmospheric Hg into the ground
and water due to oxidation is another source of the addition
of Hg into the soil (Lindberg et al. 2007). Additionally, the
application of Hg-containing fertilizers and pesticides con-
tributes greatly to Hg accumulation in agricultural soil (Han
et al. 2002). Hg exists in different forms like Hg, HgS, Hg2+,
and methyl-Hg. Among different species, Hg2+ is the most
available form in agricultural soil that forms organic and
inorganic compounds. Moreover, it is easily absorbed while
methylmercury (MeHg) is the most hazardous compound of
Hg in the environment. However, the uptake of Hg by plants
is a function of numerous parameters such as cation
exchange capacity, soil pH, soil aeration, and plant species
(Patra et al. 2004).

The toxic level of Hg2+ can induce visible injuries and
physiological disorders in plants. Many Hg forms are related
to seed injuries and reduce seed viability. Hg interrelates
with the –SH system and forms a complex S–Hg–S bridge
which in turn disrupts the stability of the –SH group and
drastically reduces the seed’s germination and subsequent
growth of the young embryo (Patra and Sharma 2000). Hg is
imported into the root cells possibly through Cu, Fe, or Zn
channels/transporters as these transporters typically have
broad substrates (Patra and Sharma 2000; Clemens 2006). In
roots, Hg suppresses the differentiation of roots possibly due
to the secretion of mucilaginous substance epidermal surface
(Patra and Sharma 2000). Du et al. (2005) reported a sig-
nificant accumulation of Hg on the surfaces of rice roots
promoted by the hyper-adsorption due to the presence of
arsenate. Thus, the accumulation of Hg is a function of other
soil parameters. Approximately, 80% of the Hg absorbed is
trapped by the roots by binding it onto the cell wall (Wang
and Greger 2004). Although most of the Hg accumulated by
plants remains in roots yet a small proportion is translocated
to aerial parts/shoots via. xylem uploading (Wang 2004). Hg
has been reported to result in stunted aerial growth in tomato
(Cho and Park 2000), wheat (Ge et al. 2009), etc. Damage in
the ultrastructure could be the direct reason for growth
inhibition of plants upon Hg exposure. Binding of Hg with
the –SH groups of enzymes upon exposure significantly
disrupts the functioning of the metabolic enzymes and cel-
lular functions (Raj and Maiti 2019). Scanning electron
microscopy analysis of Indian mustard (Brassica juncea)
exposed to Hg showed decreased intercellular spaces,
deformed cell shape, and abnormality in vacuoles in leaves
(Shiyab et al. 2009). Hg exposure also reduces transpiration
rate, chlorophyll concentration, photosynthesis, water
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uptake, and collapses thylakoid (Azevedo and Rodriguez
2012). Hg2+ binds to water channel proteins of plants, which
induces closure of leaf stomata and obstructs the flow of
water in plants (Cargnelutti et al. 2006). High levels of Hg
cause loss of K, Mn, Mg, and accumulation of Fe that
interfere with the mitochondrial activity resulting in trig-
gering expression of the ROS and oxidative stress (Chen and
Yang 2012). Hg encouraged the accumulation of O2

− and
H2O2 in alfalfa (Medicago sativa) leaves in a
dose-dependent manner as reported by Gill and Tuteja
(2010). The cumulative effect of Hg on cellular structure,
biochemical processes, and production of ROS results in a
declined yield in the crops and accumulation in the edible
parts of plants. Sheker et al. (2011) reported a decrease in
fruit yield in tomato exposed to Hg. Although studies on the
effects of Hg genotoxicity are scarce, yet deleterious errors
in the genetic materials of crop plants’ species have been
demonstrated as Hg ions form covalent bonds and easily
deform the outer electron shells (Azevedo and Rodriguez
2012). However, thermal treatment, soil washing, and soil
amendments are some of the ways to reduce the effects of
Hg toxicity in plants (Chen and Yang 2012).

2.6 Iron

Iron (Fe) is one of the most abundant elements in the earth’s
crust but is the least accessible micronutrient for plants
specially grown under oxygen-rich and basic-to-neutral soil
conditions. In plants, Fe is usually about 140 lg g−1 dry
weight (Anjum et al. 2015). Iron is present in the agricultural
soil in two forms, viz., Fe3+ (insoluble and cannot be taken
up by plants) and Fe2+ (soluble form for plant uptake)
(Becker and Asch 2005). Iron is naturally present in all types
of soil while mining, Fe-processing industries, Fe applica-
tion in agricultural soil in the form of fertilizers, and irri-
gation with Fe-containing water are the anthropogenic
sources of Fe contamination (Gill 2014). Iron is an essential
element for the entire biological system as it plays important
role in photosynthesis, chloroplast development, and
chlorophyll biosynthesis (Rasheed et al. 2020). Iron is a
major constituent of all the cell redox systems such as heme
proteins including cytochromes, CAT, APX and leghe-
moglobin and iron-sulfur proteins including ferredoxin,
aconitase, and SOD (Filho et al. 2020). Globally, about 18%
of soils are suffering either from Fe toxicity or Fe deficiency
(Dufey et al. 2015). The toxicity or deficiency is a function
of change in soil pH, soil nutrient status, and
aerobic/anaerobic condition of the soil (Audebert and Sah-
rawat 2000). However, the heavy metal toxicity of Fe is
dominant in acidic and submerged reduced soil (Mahender
et al. 2019). Therefore, worldwide submerged rice, among
other crops, is one of the important crops to be worst affected

by Fe toxicity (Dufey et al. 2015). Fe toxicity in seed
reduces the mitotic activity in the meristem tissue of the
embryo, blockage of water transport for soaking and
sometimes shows clastogenic effects on chromosomes as
described in studies of crops such as papaya (Filho et al.
2020) and sunflower (Chakravarty and Srivastava 1992).
Roots affected by Fe toxicity become flimsy, coarse, short,
blunted, and develop dark brown color (Fageria et al. 2008).
Nevertheless, the roots regain their white color with the
withdrawal of Fe toxicity (Sahrawat 2010). The expression
of visible symptoms of Fe toxicity under flooded conditions
is more prominent in the leaf tissues. With the microbial
reduction of insoluble Fe3+ to Fe2+ under anaerobic condi-
tions (Becker and Asch 2005), Fe2+ is absorbed by the root
cells and is acropetally translocated via xylem flow and
transpiration stream into the leaves. Typically, discoloration
of lower leaves from green to reddish-brown occurs as
minute spots near or at the tips of the leaves which further
disperses toward their bases called “Bronzing”. Further
exposure to Fe results in these brown spots growing and
coalescing on the leaf intervenes leading to leaf drying and
senescence (Nagajyoti et al. 2010). The change in color of
leaves and roots is useful visual diagnostic characteristics of
Fe stress. Inside the leaves, excess Fe2+ triggers Fenton
reaction and produces hydroxyl radicals and ROS which
cause irreversible damage to the cell structural components
like membrane lipid, protein, and genetic materials
(DNA) (Arora et al. 2002) and lead to an accumulation of
oxidized polyphenols (Yamauchi and Peng 1995). The
production of ROS results in oxidization of chlorophyll,
chlorosis, and decreases the photosynthesis which conse-
quently acts as a major factor for yield reduction (Onaga
et al. 2016). Iron toxicity in tobacco, soybean is accompa-
nied by the reduction of plant photosynthesis and yield and
the increase in oxidative stress and APX activity (Nagajyoti
et al. 2010). However, Fe toxicity is a complex nutrient
disorder associated with the deficiencies of other nutrients,
especially P, Ca, Mg, K, and Zn and these nutrients are
closely related to the tolerance mechanism against Fe toxi-
city in plants (Sahrawat 2010). Heavy metal-induced effects
on plants have been presented in Table 2.

3 Remediation Strategies

3.1 Bioremediation

Heavy metal pollution is one of the greatest environmental
problems today that impacts crop production and food
quality due to the excessive use of agricultural inputs like
fertilizers, pesticides, and mulches that result in heavy metal
contamination of soils (Su 2014). Heavy metals can come
from various sources such as natural, agricultural, industrial
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Table 2 Effects of heavy metals on different plants

Heavy
metals

Plants Heavy metal-induced effects References

Cadmium
(Cd)

Tobacco (Lycopersicon esculentum) An accumulation of Cd, increased lipid peroxidation,
and decreased superoxide dismutase and catalase
activity

Islam et al.
(2009)

Brassica sp. Reduction in photosynthesis due to inhibition of
chlorophyll biosynthesis, chloroplast metabolism, and
suppression of CO2 fixing enzyme

Raziuddin et al.
(2011)

Catharanthus roseus Leaf chlorosis and rolling of the leaves Liu et al. (2013)

Canna orchioides Decreased ratio of green leaves; accelerated leaf
senescence; and decreased biomass of stems, leaves,
and roots

Zhang et al.
(2021)

Arsenic
(As)

Lentil (Lens culinaris) Root length, leaf number, and plant biomass Ahmed et al.
(2006)

Brassica sp. Declined germination rate Srivastava et al.
(2009)

Rice (Oryza sativa) Straighthead disease (sterility of the florets/spikelets),
reduced grain yield

Smith et al.
(2010)

Carrot (Daucus carota), lettuce (Lactuca sativa),
spinach (Spinacia oleracea), sunflower
(Helianthus annuus)

Decline in growth, photosynthetic pigments, and
increased production of stress biomarkers

Bergqvist et al.
(2014)

Lead (Pb) Spinacea oleracea Reduce fresh and dry weight, reduction in
chlorophyll, and N and protein concentration affect
more in roots than shoots

Kibria et al.
(2010)

Sugarcane (Saccharum sinense) 25–30% reduction in yield Misra et al.
(2010)

Wheat (Triticum aestivum) Reduced yield Rehman et al.
(2017)

Chickpea (Cicer arietinum), horse gram
(Macrotyloma uniflorum)

Higher activities of antioxidant enzymes like SOD,
CAT, APX, glutathione S-transferase, etc

Zulfiqar et al.
(2019)

Chromium
(Cr)

Tomato (Lycopersicon esculentum) Decreases plant nutrients Shanker et al.
(2005)

Soybean (Glycine max), Mung bean (Vigna
ratiata)

Inhibit germination Jun et al. (2009)

Indian mustard (Brassica juncea) Reduced stomatal transpiration, conductance, and
CO2 assimilation

Schiavon et al.
(2009)

Mercury
(Hg)

Tomato (Lycopersicon esculentum) Stunted growth of shoot Cho and Park
(2000)

Rice (Oryza sativa) Hg accumulation on root surfaces Du et al. (2005)

Indian mustard (Brassica juncea) Decreased intercellular spaces, deformed cell shape,
and abnormality in leaf vacuoles

Shiyab et al.
(2009)

Barley (Hordeum vulgare) Loss/reduction of economic yield Wyszkowski
and
Radziemska
(2010)

Iron (Fe) Rice (Oryza sativa) Flimsy, coarse, short, blunted roots with dark brown
color, and bronzing of leaves

Fageria et al.
(2008)

Alfalfa (Medicago sativa) Accumulation of O2
− and H2O2 Gill and Tuteja

(2010)

Papaya (Carica papaya) Clastogenic effects on chromosomes Filho et al.
(2020)

Crop Plants Under Metal Stress and Its Remediation 63



solid waste, inland effluent, atmospheric sources, and more.
Mines and electroplating, metallurgical smelting as well as
agricultural pesticides and fertilizers have affected a great
many areas worldwide (Zhang et al. 2011). A few pesticides
are organic–inorganic compounds and some contain heavy
metals such as Hg, As, Cu, Zn, and other heavy metals as
well as pure minerals. Metals, on the other hand, are not
degradable and so remain in the environment for long
periods; when present at high concentrations, metals have
adverse effects on plant metabolism (Ferraz et al. 2012).
There is a need for a variety of innovative treatment methods
for the removal of heavy metal ions from the soil, water, and
wastewater. The removal of heavy metals from soil and
water through microbes has been proposed as an efficient
and economical alternative (Ahirwar et al. 2016). A variety
of microorganisms are capable of degrading, detoxifying,
and accumulating various harmful compounds, both organic
and inorganic. In the process of bioremediation, the waste is
destroyed or rendered harmless by using natural biological
activity in the ecosystem (Siddiquee et al. 2015). Degrada-
tion or detoxification of hazardous ingredients can be
achieved by bacterial, fungal, or plant metabolic processes
(Qazilbash 2004). As part of a bioremediation process,
several techniques like biofilters, bioventing, biosorption,
composting, bioaugmentation, bioreactors, land farming, and
biostimulation are used (Qazilbash 2004). Factors that
influence the optimization of these methods include avail-
able microbial population engaged in degradation of pollu-
tants, type of contaminants, soil pH, presence of oxygen or
other electron acceptors, as well as nutritional levels (Khan
et al. 1997). It has been shown that some microbes can
tolerate heavy metals by removing them from the environ-
ment or breaking them down into less toxic or completely
benign forms, which then they can metabolize and use for
growth (Qazilbash 2004). Microorganisms participate in
biosorption by adsorbing metals on the surface of the cell
and linking them with extracellular polymers (Gupta and
Diwan 2017). An outer cell shield is responsible for the
sorption properties of microorganisms. In the surface layers
of cellular membranes, active groups of compounds link
metals together. Bioaccumulation takes place when the
contaminant is absorbed in a faster rate than it is lost. The
process of bioaccumulation affects the sensitivity of living
organisms to chemicals. Up to a certain point, organisms can
tolerate chemicals, but when these levels exceed that point,
the chemicals are toxic and pose a threat to the organism.
Chemically sensitive organisms differ greatly based on their
types and the chemicals they are exposed to (Mishra and
Malik 2013). Many environmental bacteria species accu-
mulate metals in their cells, in their cell walls, and areas
bordering their cytoplasm. Metals undergo oxidation,
reduction, methylation, and demethylation through micro-
biological reactions. Microorganisms participate in reactions

through their enzymatic systems. Some reactions of signifi-
cantly toxic or valuable metal reduction may be of practical
use, such as bacteria isolated from tannery sewers reduced
Cr(VI) to less toxic Cr(III), which can be removed from the
environment (Kisielowska et al. 2010).

3.1.1 Bacteria
Regardless of their size and ubiquity, bacteria are important
biosorbents due to their resilience and ability to grow under
controlled conditions under a wide range of environmental
conditions (Srivastava et al. 2015). The high
surface-to-volume ratio and potential chemisorption sites
(teichoic acid) on their cell walls account for their high
biosorption capacity (Mosa et al. 2016). Moreover, mixing
cultures makes bacteria more stable and allows them to
survive longer (Sannasi et al. 2006). Bacterial species such
as Flavobacterium, Pseudomonas, Enterobacter, Bacillus,
and Micrococcus are studied on their abilities to bioreme-
diate heavy metals (Igir et al. 2018). The metabolic advan-
tage of consortium cultures, which are appropriate for
application in the field, lies in their ability to biosorb metals
(Kader et al. 2007). A reduction of 78% in chromium
(Cr) was demonstrated using a bacterial consortium of
Acinetobacter sp. and Arthrobacter sp. at 16 mg L−1 metal
ion concentration (De et al. 2008). An extensive amount of
Pb was removed using Micrococcus luteus. The elimination
ability was 1965 mg/g under ideal conditions (Puyen et al.
2012). The biosorption of Pb, Cr, and Cd in tannery effluent
Bacillus subtilis, B. megaterium, Aspergillus niger, and
Penicillium sp. was studied and B. megaterium recorded the
highest Pb reduction (2.13–0.03 mg L−1), followed by B.
subtilis (2.13–0.04 mg L−1) (Abioye et al. 2018). A. niger
showed the highest ability to reduce the concentration of Cr
(1.38–0.08 mg L−1) followed by Penicillium sp. (1.38–
0.13 mg L−1), while B. subtilis exhibited the highest ability
to reduce the concentration of Cd (0.4–0.03 mg L−1) fol-
lowed by B. megaterium (0.04–0.06 mg L−1) after 20 days.
By using bacterial consortia, Cr, Zn, Cu, Pb, and Co were
effectively eliminated within less than 2 h for Pb and Cu
(Abbas et al. 2014).

3.1.2 Fungi
As biosorbents, fungi are widely used to remove toxic metals
with an excellent capacity for metal adsorption and recovery
(Fu et al. 2012). Metal recovery may occur in vacuoles, on
the cell surface, and in the extracellular environment
(Kisielowska et al. 2010). Through the activity of microor-
ganisms, heavy metal compounds may crystallize or pre-
cipitate, which results in the transformation of the metal into
forms sparingly, lowering the toxicity of the compounds and
may take part in biogeochemical cycles. As a known
industrial technology, bioleaching uses the metabolic prod-
ucts of microbes, bacteria, and fungi to extract metals from
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sulfide materials (Kisielowska et al. 2010). It is primarily
connected with two processes: the creation of various
organic acids within the living environment (citric acid,
gluconic acid, and oxalic acid) and the production of com-
plexion agents that fungi can bioleach (Tarekeng et al.
2020). The following types of fungi may be found under
such conditions: Aspergillus sp., Penicillium sp., Rhizopus
sp., Mucor sp., Alternaria sp., and Cladosporium sp. owing
to their biochemical abilities and high resistance to pH and
temperature. Several studies have found that both active and
lifeless fungi are essential for the adhesion of inorganic
chemicals (Tiwari et al. 2013). Srivastava and Thakur (2006)
also investigated the recovery of chromium in tannery
wastewaters by using Aspergillus sp. In a bioreactor system,
85% of chromium was removed from the synthetic medium,
compared to 65% from the tannery effluent which can be
attributed to the presence of organic pollutants that hinder
the growth of the organism. Bioaccumulation studies on
Coprinopsis atramentaria tested its ability to bioaccumulate
76% of Cd2+ at a 1 mg L−1 Cd2+ concentration, and 94% of
Pb2+ at an 800 mg L−1 Pb2+ concentration. Due to this, it has
been proven to be an effective heavy metal accumulator
(Lakkireddy and Kues 2017). The method described by Park
et al. (2005) provides the possibility of converting toxic Cr
(VI) to less toxic or nontoxic Cr(III) by way of dead fungal

biomass. Additionally, Luna et al. (2016) stated that Can-
dida sphaerica produces biosurfactants that are 90% efficient
at removing Fe, 95% efficient at removing Zn, and 79%
efficient at removing Pb. The bioconversion of Cr(VI) to Cr
(III) has been performed by several yeast strains such as
Hansenula polymorpha, Saccharomyces cerevisiae, Yar-
rowia lipolytica, Rhodotorula pilimanae, Pichia guillier-
mondii, and Rhodotorula mucilage (Chatterjee et al. 2012).
Among microbes, biosorption abilities vary significantly, as
do microbial biomasses. Every microbial cell is capable of
biosorption in different conditions, depending on how it has
been pre-treated and how it is being tested. As physical,
chemical, and bioreactor conditions alter, microbes must
adapt to facilitate biosorption. Microorganism-mediated
heavy metal remediation has been shown in Table 3.

3.2 Soil Amendments

3.2.1 Organic Soil Amendments
In the past, organic soil amendments have been used to
immobilize soil heavy metals by changing their speciation
from highly bioavailable (i.e., free metal) to much less
bioavailable forms (like metal oxides and carbonates)
(Walker et al. 2004). A major characteristic of these

Table 3 Remediation of heavy metals by microorganisms

Microbes Metal Result References

Aspergillus sp. Cr 85% of Cr was removed from the synthetic medium Srivastava
and Thakur
(2006)

Acinetobacter sp.
Arthrobacter sp.

Cr A reduction of 78% in Cr was demonstrated using
bacterial consortium

De et al.
(2008)

Micrococcus luteus Pb An extensive amount of Pb was removed. The
elimination ability was 1965 mg g−1 under ideal
conditions

Puyen et al.
(2012)

Candida sphaerica Fe
Zn
Pb

Produces biosurfactants that are 90% efficient at
removing Fe, 95% efficient at removing Zn, and 79%
efficient at removing Pb

Luna et al.
(2016)

Coprinopsis atramentaria Cd
Pb

Bioaccumulate 76% of Cd2+ at a 1 mg L−1 Cd2+

concentration and 94% of Pb2+ at an 800 mg/L Pb2+

concentration

Lakkireddy
and Kues
(2017)

Bacillus megaterium
B. subtilis

Pb Recorded the highest Pb reduction (2.13 to 0.03 mg
L−1) by B. megaterium, followed by B. subtilis (2.13–
0.04 mg/L)

Abioye
et al. (2018)

Aspergillus niger
B. subtilis

Cr
Cd

Highest ability to reduce the concentration of Cr
(1.38–0.08 mg L−1)
Highest ability to reduce the concentration of Cd
(0.4–0.03 mg L−1)

Abioye
et al. (2018)

Hansenula polymorpha, Saccharomyces cerevisiae,
Yarrowia lipolytica, Rhodotorula pilimanae, Pichia
guilliermondii, Rhodotorula mucilage

Cr The bioconversion of Cr (VI) to Cr (III) Tarekeng
et al. (2020)

Dead fungal biomass Convert toxic Cr (VI) to less toxic or nontoxic Cr (III) Tarekeng
et al. (2020)
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amendments is their ability to bind with a variety of metal
(loid)s, including Pb, Cd, Cr, and Cu (Alvarenga et al. 2009;
Walker et al. 2004). For organic soil amendments, the most
commonly used ones are biosolids, bark and wood chips,
composts from different sources, manures, sawdust, sewage
sludge, and wood ash (Karaca 2004; Sabir et al. 2013).
Organic amendments are relatively cheap, compared to other
soil amendments, and they often facilitate revegetation of
contaminated soils. Metal extraction depends on the kind of
soil, the initial organic matter (OM) content, and the rate of
OM transformation over time. A significant change in metal
availability can be attributed to OM decomposition, resulting
in an array of organic acids being released over time (Lwin
et al. 2018). Increased decomposition of OM is also asso-
ciated with an increase in dissolved organic carbon (DOC),
which contributes to increased metal release (Martinez et al.
2003). Moreover, decomposition of OM can decrease the
OM's surface area and decrease its cation exchange capacity
(CEC), and ultimately release metals over time (Lwin et al.
2018). Cow, pig, and sheep manure, for example, reduced
the amounts of Diethylenetriamine Penta Acetic Acid
(DTPA)-extractable Ni in soil because they combined
strongly with OM (Lwin et al. 2018). In a sandy loam soil,
Alamgir and Islam (2011) showed that applying farmyard
manure (FYM) between 10 and 20 tones ha−1 significantly
reduced Cd and Pb concentrations in the shoots and roots of
amaranth. Additionally, Walker et al. (2004) also found that
manure application reduced plant tissue concentration of
three metals (Cu, Zn, and Pb), compared to plants grown in
self-fermented compost, which was most likely due to ele-
vated soil pH from manure application.

Furthermore, application of green waste compost
decreased uptake of Cu, Pb, and Zn in Greek Cress by 21,
54, and 16 percent, respectively, in calcareous contaminated
soils (Van Herwijnen et al. 2007). Liu et al. (2009) reported
that the application of compost effectively decreased Cd
toxicity in wheat by more than half, increasing the growth of
wheat by decreasing Cd uptake by wheat tissue. Positive
impacts of compost application can be accounted for by
several factors. These include a high pH, Cd complexion
with OM, and co-precipitation with P. The overall retention
of metal(loid)s by organic amendments is a consequence of
surface charging (Clark et al. 2007) and metal adsorption
onto metal-binding compounds such as phosphates and
carbonates (Gondar and Bernal 2009). It is also important to
note that composted organic amendments affect remediated
metal(loid) mobility and bioavailability in soils depending
on soil type, metal(loid) specifics, and amendment charac-
teristics (Walker et al. 2004; Bernal et al. 2007). Several
studies have suggested that amending contaminated soils
with compost may increase metal(loid) mobility, especially
As (Cao et al. 2003; Hartley et al. 2010). The use of organic
soil amendments improved soil physical characteristics, such

as particle size distribution, cracking patterns, and porosity,
where the development of better soil structural characteris-
tics may be able to inhibit the dispersion of
metal-contaminated particles by the formation of
water-stable aggregates. Organic amendments also contain a
large amount of N, P, and other essential elements such as
Ca, Mg, and Fe which are vital to plant growth (Butler et al.
2008), and which directly improve soil fertility. Long-term
use of these amendments bears consideration of the negative
environmental impacts. These organic amendments fre-
quently provide pathogens, high salt levels (KCl and NaCl),
and can introduce new sources of heavy metals (Nicholson
et al. 2003). As a carbonaceous material, biochar has more
recently been used to absorb heavy metals from soils and
water. Biochars of various sources are known to reduce
metal mobility and availability by including plant residues
(Dias et al. 2007; Paraskeva et al. 2008) and animal manures
(Gercel and Gercel 2007; Lima and Marshall 2005). Biochar
often has alkaline properties (which increase soil pH upon
application) as well as the release of available P, K, and Ca
(resulting from a high CEC) which are associated with soil
metal stabilization. Beesley and Marmiroli (2011) concluded
that biochar application reduced Cd and Zn leachate con-
centrations by an additional 300- and 45-fold, respectively.
Park et al. (2011) also examined the effect of 5% (w/w)
chicken-manure-derived biochar on the concentration of
1 M NH4NO3-extractable Cd and Pb, while green
waste-derived biochar reduced extractable Cd and Pb by 30
and 37%, respectively. Beesley et al. (2010) applied
hardwood-derived biochar to a multi-element (As, Cu, Cd,
and Zn)-contaminated soil and found that while Cd and Zn
were immobilized, As and Cu were mobilized. In addition to
being highly aromatic, the associated functional groups give
the biochar particle’s surface a negative charge, resulting in
higher CEC in soil, enhanced nutrient retention (Cheng et al.
2008; Kammann et al. 2015).

3.2.2 Inorganic Amendments
Liming is primarily intended to buffer soil acidity. However,
it has increasingly been used as a method for managing heavy
metal toxicity in soils (Kaitibie et al. 2002). Khan and Jones
(2008) found that lime applied to an abandoned copper mine
tailings site reduced DTPA-extractable metals like Zn, Co,
and Fe by 75, 81, and 85%, respectively. Tlustos et al. (2006)
also found that the addition of CaO and CaCO3 increased soil
pH to 7.3 and reduced CaCl2 extractable Zn, Cd, and Pb by
80, 50, and 20%, respectively. Due to changes in soil pH
caused by lime addition, metals can also be hydrolyzed or
precipitated with carbonates, thus allowing lime to act as a
precipitating agent for metals in soil (Lwin et al. 2018).
Among the effects of lime on soil is an increase in Ca satu-
ration and altered particle charge density, which affects the
dispersion of soil particles and helps in soil aggregate
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formation as well as improved soil structure (Lwin et al.
2018). Naturally occurring gypsum (mined as well as indus-
trially produced) and gypsum-like by-products contribute to
the treatment of soils contaminated with heavy metals. In a
study conducted by Tsunematsu et al. (2012), gypsum pow-
der was found to reduce the concentration of dissolved As
released from soils to 0.01 mg dm−3. A study by Vink et al.
(2010) also demonstrated that soil sulfide formation was
greatly accelerated by the addition of gypsum. As little as 3%
of gypsum could significantly decrease Cd and Pb root con-
centrations in medicinal plants (Kim et al. 2016). Gypsum is
widely used in the reclamation of sodic soils to block sodium
ions from reaching exchange sites. Despite not being a liming
agent, gypsum is an excellent source of calcium and sulfur
nutrients for plants. The addition of Ca through gypsum can
overcome dispersion and promote flocculation and structural
development in heavy metal-contaminated soils. As part of
in situ remediation of metal-contaminated soils, phosphorus
(P)-containing amendments are commonly applied (Hong
et al. 2010). Various P amendments exist, including synthetic
and natural apatites, hydroxyl apatites, rock phosphate,
phosphate-based salts, and di-ammonium phosphate
(DAP) for remediation of metal-contaminated soils. It has
been reported that phosphate compounds can immobilize
metals like Cd, Cu, Pb, and Zn by reducing their bioavail-
abilities (Bolan et al. 2014). Bolan et al. (2014) demonstrate
that P-based compounds improve metal immobilization via
direct metal adsorption or substitution by the phosphate
compound, as well as through P anion-induced metal
adsorption and precipitation as metal(loid) phosphates. Metal
(loid)-P precipitation has been demonstrated to be one of the
main mechanisms for immobilizing metals, such as Pb and
Zn. Adding phosphate to arsenic-contaminated soil can
induce competitive anion exchange, which increases As(VI)
leaching from soil (Maier et al. 2019). As and P have very
similar chemical characteristics and compete for adsorption
sites (e.g., iron hydroxide and OM surfaces); thus, the
mobility of As in soil has been greatly enhanced by the
addition of P-rich agents (Maier et al. 2019; Cao et al. 2003).
Aside from that, P fertilizers (e.g., single superphosphate,
triple superphosphate, mono-ammonium phosphate and
DAP) may contain elevated levels of Cd. There is extensive
evidence that long-term P fertilizers use increased Cd con-
centration in surface soils and that P fertilizers add to this
concentration (Mann et al. 2002).

4 Conclusion

Considerable attention has been paid to understanding heavy
metal contamination, its impact on the ecosystem, and pos-
sible remediation. Plant’s heavy metal uptake and tolerance
vary with a variety of factors, which could play a role in how

plants survive and grow in contaminated soils. However,
despite several findings, the underlying mechanisms of
heavy metal stress are still not clearly understood, and more
research is needed. Microbial remediation of heavy metal
contamination is an economical and eco-friendly solution.
Monitoring and managing the heavy metal remediation
further requires characterization of its fate and behavior in
the environment. The research gap in this area makes it
difficult to understand all possible environmental impacts of
heavy metals. Therefore, a close link between research and
developmental efforts assessing the emerging heavy metal
pollutants and the tools, equipment, and know-how that
support these challenges is the need of the hour.
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Exploiting Host Resistance in Management
of Vascular Wilt in Major Pulses of India
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Abstract

Pulses are one of the most important food crops of the
world owing to their 20–25% protein content by weight.
India with a large economically weaker section and a
major vegetarian population depends on pulses for its
protein and food security. Several biotic and abiotic
factors are responsible for a poor and unstable yield of
pulses. Out of these, biotic stresses caused by Fusarium
oxysporum the causal organism of vascular wilt is the
most destructive causing yield loss of about 20–25%. For
the management of fusarium wilt, an integrated manage-
ment strategy where different practices are included
should be used. One of the next most effective strategies
for the management of vascular wilt is the use of genetic
resistance in host plants. Screening for resistance source,
introgression and using resistant cultivar is the most
effective, reliable, and safer alternative to chemical
treatments that can be combined with other management
practices in integrated management strategy.
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1 Introduction

The pulses are known to supply dietary protein to the pre-
dominantly vegetarian people of the Indian subcontinent as
seed protein content in various pulses varies from 20–25%

by weight. The amino acids present in pulses complement
with cereals and make a perfect blend when consumed as
Dal-Roti. The tender plant parts and grains form excellent
feed and concentrate to improve animal health also. Besides,
being the source of vegetarian protein, deep roots of pulse
crops are known to open up the soil to the deeper strata and
fix atmospheric nitrogen symbiotically through bacteria
present which helps in improving soil fertility and texture.
The role of pulses in human, animal, and soil health is well
known (Stagnari et al. 2017). Therefore, pulses occupy an
important position in Indian agriculture. India is one of the
largest producers of pulses in the world (FAOSTAT 2019).
Major pulses that are grown in India are chickpea (gram),
pigeon pea (arhar/tur), lentil (masoor), mungbean, pea, and
various other minor pulses. In India, pulses are cultivated on
about 29.46 million ha of land with an annual production of
22.95 million tonnes (FAOSTAT 2019). The major pulses
growing states are Madhya Pradesh, Maharashtra, Uttar
Pradesh, Karnataka, Andhra Pradesh, Rajasthan, Gujarat,
Chhattisgarh, Bihar, Orissa, and Jharkhand (Trivedi et al.
2017, Singh et al. 2018) indicating widespread cultivation in
India.

Several factors are responsible for the poor and unstable
yield of pulse crops, the most important being biotic and
abiotic stresses. Yield loss assessment suggests annual yield
losses to the tune of 5 to 30% due to various stresses
(Table 1). Among various biotic stresses, soil-borne fungal
pathogens are major production and productivity constraints
limiting higher productivity of pulses in different
agro-ecological regions. Soil-borne fungal pathogens of
legumes cause seed and seedling blights, root rots, and wilts.
Out of these diseases, vascular wilt caused by Fusarium
oxysporum is the most destructive disease of pulses causing
yield loss of about 20-25% (Table 1) and under favourable
conditions, it can reach epidemic proportion causing 100%
crop loss (Jendoubi et al. 2017; Sinha et al. 2018). Further,
F. oxysporum is known to cause plant mortality leading to
yield loss and reduced seed size (Haware and Nene 1980).
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2 Pathogen Biology and Epidemiology

Fusarium oxysporum Schlecht. emend. Snyder & Hansen
(Fo) is a soil-borne fungus found in cultivated and unculti-
vated soils worldwide. Its phytopathogenic strains are
organised into 120 formae specials (ff. spp.) i.e., special
forms based on host species specificity (Armstrong
and Armstrong 1981; Fourie et al. 2011; Leslie and Sum-
merell 2006; Lombard et al. 2019). The formae specials
infecting the pulses are listed in Table 1.

Butler first recorded wilt on chickpea in India in 1918, but
its etiology was not determined properly until 1940. Prasad
and Padwick reported its etiology and confirmed that F.
oxysporum f. sp. ciceris is the causal agent of wilt in chickpea
(Prasad and Padwick 1939). Lentil wilt causing entity, F.
oxysporum f. sp. lentis, was first time reported by Booth
(1971). Similarly, etiology of other forma specialis abbrevi-
ated f. sp. (plural: formae specials, plural ff. spp.) infecting
different edible legumes and causing wilt were discovered.
Now it is scientifically proven that F. oxysporum causes wilt
in pulses and is a common factor that limits the quality and
yield of edible legumes in all pulse growing areas. The dis-
ease is found in most Asian, African, Southern European, and
American countries. In India, the disease is widely distributed
and known to cause huge yield losses in almost all pulses
growing regions however disease severity varies from loca-
tion to location with the crops (Gaur and Chaturvedi 2004). In
addition to formae specials, the majority of Fo ff.
spp. infecting pulses are further categorised in races and
pathotypes (Table 1) based on their virulence pattern on dif-
ferent plant genotypes (Sampaio et al. 2020).

Chlamydospores are the primary inoculum for Fusarium
wilt. They start their germination after being stimulated by
germinating seeds and root exudates of host and non-host
plants. The chlamydospores can survive in soil and plant
debris for more than 5 years (Haware et al. 1996), and so
infested soil are the main sources of primary inoculum.
Infected seeds are the next source of primary inoculum. F.
oxysporum f. sp. cicer is known to be present in seeds from
infected plants. Chlamydospore-like structures have been
observed in the hilum region of the seeds, and they
co-germinate with the seed and infect the emerging seedling.
The infection rate and severity are much higher in plants
grown from infected seeds plants raised from healthy seeds
grown in sick soil (Haware et al. 1978). The movement of the
pathogen is essential for the spread of the pathogen to
disease-free soils and geographic areas. Infected seeds having
dirt are involved in the long-distance dispersal of the pathogen
and its introduction into virgin lands (Pande et al. 2007).
Dispersal of infected plant debris and soil through human
activity, contaminated machinery, and irrigation water are
responsible for the short-distance spread of the pathogen.

3 Symptoms of Wilt Disease

The main symptom of wilt is loss of rigidity and drooping of
plant parts including leaves and tender branches in a pro-
gressive manner leading to plant death (Agrios 2005,
Michielse 2009). Plants infected early during the seedling
stage usually show wilting and die quickly. Older plants
when infected show varied symptoms like yellowing of
leaves, epinasty, defoliation, stunting, and formation of the

Table 1 Fusarium oxysporum ff.
spp. and its respective races
causing Fusarium wilt in several
legume species (Gaur and
Chaturvedi 2004, Jha et al. 2020)

Crop Causal organism Races Growing states % Yield loss

Chickpea Fusarium
oxysporum f.
sp.ciceri (Foc)

Eight races
(0,1B/C,
1A,2,3,4, and 6)

Eastern U.P., Bihar,
Jharkhand, Assam, W.B.,
Rajasthan, Gujarat,
Maharashtra, M.P.,
Chhattisgarh, Orissa, A.P.,
Karnataka, and T.N

10–40% and
even 100%
under
favourable
condition

Pigeon
pea

Fusarium udum
Butler

– U.P., Bihar, Jharkhand, W.B.,
Rajasthan, Gujarat,
Maharashtra, M.P.,
Chhattisgarh, A.P., Karnataka
and T.N

10–15% and
even up to
100% in
favourable
condition

Lentil Fusarium
oxysporum f.
sp. Lentis (Fol)

Eight
races/pathotypes

Bundelkhand and Eastern U.P.,
Haryana and Rajasthan

20–25% and
even 100% in
favourable
condition

Pea Fusarium
oxysporum Schl
f. sp. pisi Snyd
and Hans.(Fop)

Four races (1, 2,
5 and 6)

All crop growing areas 30–100%
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adventitious roots followed by permanent wilting and death
(Table 1). Plants often collapse and lie flat on the ground;
necrosis and discolouration could also be observed in the
collar region. Often brown discolouration of internal root
tissue is visible in infected plants. The infection can occur at
any stage of the plant, and affected plants can be found in
patches or favourable conditions spread across the whole
field (Nene and Reddy 1987; Jiménez-Díaz et al. 2015).

The progression of the disease can be understood very
well by taking example of chickpea where clear cut symp-
toms can be observed at various crop growth stages
reflecting disease progression. In the case of chickpea, the
disease usually starts appearing after three weeks of sowing.
The first symptom appears in form of drooping of leaves and
tender stems, later pale coloured leaves, shrunken stems
above and below ground followed by plants collapsing flat
onto the ground can be seen (Fig. 1a). Upon
vertical/longitudinal splitting of infected roots and stem,
brown to black coloured vascular tissues can be seen in form
of a streak (Fig. 1b). Fusarium wilt of chickpea can be
confused with other diseases like damping off, dry root rot,
Phoma blight, and Phytophthora root rot but may be dis-
tinguished from these based on discolouration of the internal
root tissue. Similarly, in chickpea and lentil, the disease in

the field can be seen at the seedling stage (early wilting) or in
advance crop growth stages (late wilting) showing typical
symptoms of sudden drooping and drying of leaves and
seedling mortality (Arya et al. 2019). Sometimes apparently
healthy-looking roots having reduced proliferation and
nodulation with internal discolouration of the vascular sys-
tem can be seen. Microscopic observation of basal
stem/roots of infected plants usually reveals masses of
hyphae and conidia in the vascular bundles and dis-
colouration of vascular cells. At an advanced stage, the
vasculature is often found to be clogged by fungal mycelium
and host defence responses like gels, gums, and tyloses.
These structures and exudates prevent the movement of
water from the soil thus resulting in wilting (Agrios 2005).
Histological distortions occur in the vascular tissues of
affected roots and stem as a result of cavity formation
between phloem and xylem, xylem and medulla, and phloem
and cortical parenchyma, as well as anomalous cellular
proliferation in the vascular cambium. This together with the
formation of optically dense gels and occlusions in xylem
vessels (but not of tyloses), probably contributes to retarded
vascular flow of water and nutrients as well as the devel-
opment of morphological symptoms (Jimenez-Díaz et al.
1989, Jimenez-Díaz et al. 2015).

Fig. 1 Symptom of wilted chickpea plant. a Drooping of leaves and b Xylem browning in the infected plant
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4 Management of Wilt

Fusarium wilt of pulse crops is a monocyclic disease where
the pathogen produces only one infection cycle per host
cycle. Here disease development is driven by the pathogen's
primary inoculums which is usually some resting or sur-
viving structure resistant to desiccation or freezing, such as
chlamydospores or mycelium in crop residues. This inocu-
lum is dispersed when the soil is prepared by ploughing and
disking the crop residues. When seeds germinate and roots
grow in such soils, the seeds come in contact with the resting
propagules of the pathogen and become infected. The new
inoculum is not dispersed in the soil till the field is prepared
again and so cannot initiate a new infection; hence, there is
only one complete infection cycle per crop cycle (Arya et al.
2019). As the primary inoculum is a sturdy resting structure
like chlamydospore that can withstand unfavourable condi-
tions, therefore exclusion of the pathogen and reduction of
the primary inoculum are the main targets of the disease
management strategies (Jiménez-Díaz et al. 2015).

The management of Fusarium wilt is difficult due to the
nature of its primary inoculum. Chemical control is one of
the most effective modes of control used by farmers of
developed nations to manage soil-borne diseases in crops.
Methyl bromide was extensively used as a fumigant in many
parts of the world for controlling soil-borne diseases. Con-
ventional synthetic chemical fungicides and fumigants are
required to be applied at regular intervals throughout the
growing season of the crop to save the crop. However, this
approach has numerous disadvantages such as high cost due
to which it could not be adopted in developing or
underdeveloped countries, human health hazards, damage to
the ecosystem, ozone layer depletion, and reduction of
non-target beneficial microorganisms in the soil (Panth et al.
2020). The frequent and indiscriminate use of fungicides can
lead to fungicide resistance (Panth et al. 2020; Zhao et al.
2017). Therefore, the use of such fungicides is being phased
out after the implementation of the Montreal Protocol in
1986. Many different disease control measures were tried in
the past which include the following.

4.1 Quarantine and Use of Disease Free Seeds

Wilt disease of pulse crops is responsible for huge loss to the
pulse industry and is caused by subspecies of Fusarium
oxysporum specific to the crop. For example, F. oxysporum
f. sp. pisi infects pea, F. oxysporum f. sp. lentis infects lentil,
and F. oxysporum f. sp. ciceris infects chickpea. Further, the
prevalence of different races within each subspecies makes
breeding for resistance more challenging. Though there are

resistant sources available to different races of this pathogen
still they are few. The pathogen is very long-lived in the soil
(as chlamydospores) and can increase in a field each time
you replant the susceptible crop. Since resistance breakdown
is a reoccurring phenomenon, therefore, the seeds to be used
need to be tested for Fusarium wilt agents.

4.2 Sowing into Soils with no History

As this pathogen is soil-borne and survives in the soil in
form of the resting spores. It is, therefore, necessary that the
selection of fields be in such a way that the soil is free of
pathogens. For instance, the fields which have not been used
for the cultivation of the crops that are prone to Fusarium
attack can be chosen for cultivation.

4.3 Reduction or Elimination of Inoculum in Soil

This can be achieved by using cultural, chemical, physical,
and biological methods. The soil solarisation is the best
method as a cultural practice where the heat generated by
solarization may not kill a pathogen outright, but the
organism may be weakened, resulting in a reduction of its
aggressiveness for its host and greater susceptibility to attack
by other components of the soil microflora. The other
methods include flooding, removal of infected crop debris,
burning which can lead to the thermal killing of Fo
chlamydospores for reducing the risk to subsequent crops.

4.4 Growing of Resistant Cultivars

Many resistant varieties of different pulse crops are now
available which contributes to being the most practical and
economically efficient control measure for management
(Table 2). However, this is a continual activity of the
breeding programme to ensure the resistance to the race level
and thus the varieties developed can be specifically resistant
to a particular race of the pathogen.

4.5 Seed Treatment with Fungicides
or Biocontrol Agents

The seed treatment with chemical and biological agents
separately or in combination viz. propineb, hexaconazol,
zineb, Pseudomonas fluorescens, Trichoderma spp., Bacillus
spp., etc., have provided much-needed relief in the man-
agement of wilt diseases in pulse crop.
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Table 2 List of Resistant/Tolerant/Moderately resistant sources against Fusarium wilt in different pulses (Compiled for this study from AICRP
reports and DAC data)

Variety Source Year Area of adoption Zone/State of
India

Yield
(Q/h)

Remarks

Chickpea

Raj Vijay Gram 121 RVSKVV,
Gwalior

2021 CZ 18–20 Resistant

IPCMB19-3 IIPR, Kanpur 2021 CZ 20–21 Resistant

GLK 17301 RVSKVV,
Gwalior

2021 CZ 13–14 Resistant

IPK 13-163 RVSKVV,
Gwalior

2021 CZ 19.7 Resistant

RSGK 13-414 RVSKVV,
Gwalior

2021 CZ 17–18 Resistant

Raj Vijay Gram 210 RVSKVV,
Gwalior

2021 CZ 18–21 Resistant

Phule Vikram (Phule G
01808)

MPKV, Rahuri 2020 CZ 22.94 Resistant

SA-1 (Supper Annigeri-1) ARS, Gulbrga 2020 SZ and CZ 18.35 Highly Resistant

IPC 2005-62 IIPR, Kanpur 2020 CZ 13.5 Moderately Resistant

IPC 2004-98 IIPR, Kanpur 2020 CZ 15–
17.5

Moderately Resistant

IPC 2004-01 IIPR, Kanpur 2020 CZ 15–
17.5

Moderately Resistant

RLB Chana -1 RLBCAU,
Jhansi

2020 SZ 17.18 Resistant

Sabour chana-1 BAU, Sabour 2020 Uttar Pradesh 22–24 Moderately Resistant

BGM 10216 IARI, New
Delhi

2020 CZ 13.62 Tolerant

Pusa Parvati (BG 3062) IARI, New
Delhi

2020 CZ 23.62 Tolerant

Haryana Chana No. 7 (H
12-55)

CCSHAU,
Hisar

2020 SZ&CZ 18.35 Highly Resistant

RSG 974 (Abhilasha) RARI,
Duragapura

2010 Rajasthan Moderately resistant

Purva GNG 2299 ARS,
Sriganganagar

2019 NEPZ 15 Tolerant

PDKV Kanchan Dr. PDKV,
Akola

2019 Maharashtra 19.35 Resistant

RVS 204 CoA,
RVSKVV,
Sehore

2019 Madhya pradaesh 20–25 Resistant

RVS 205 CoA,
RVSKVV,
Sehore

2019 Madhya pradaesh 20–25 Resistant

PDKV Kanchan Dr. PDKV,
Akola

2019 Maharashtra 19.35 Resistant

IPC 2006-77 IIPR, Kanpur 2019 CZ 20–22 Moderately Resistant

RVKG CoA,
RVSKVV,
Sehore

2019 Madhya Pradesh 20–22 Moderately Resistant

Pant gram 5 GBPUA&T,
Pantnagar

2017 NWPZ 22.15 Tolerant

(continued)
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Table 2 (continued)

Variety Source Year Area of adoption Zone/State of
India

Yield
(Q/h)

Remarks

GNG 2171 ARS,
Sriganganagar

2017 NWPZ 20.14 Tolerant

GJG 0809 JAU, Junagarh 2017 NHZ 16 Moderately Resistant

GNG 2144 ARS,
Sriganganagar

2016 NWPZ 22 Tolerant

JGK -5 JNKVV,
Jabalpur

2016 CZ 15–17 Resistant

CSJ 515 RARI,
Durgapura

2016 NWPZ 24 Resistant

JG -36 JNKVV,
Jabalpur

2016 CZ 18–20 Tolerant

Vallabh Kabuli Chana-1
(WCGK-2000-16)

SVBPU A&T,
Modipuram

2015 NWPZ 23 Moderately resistant

JSC 55 (RVG 202) CoA,
RVSKVV,
Sehore

2012 CZ 20 Resistant

JSC 56 (RVG203) CoA,
RVSKVV,
Sehore

2012 CZ 19 Moderately resistant

Raj Vijay Kabuli gram 101
(JSC 42)

RVSKVV,
Gwalior

2012 Madhya Pradesh 15–20 Resistant

Raj Vijay gram 201 (JSC
40)

CoA,
RVSKVV,
Sehore

2012 Madhya Pradesh 20–25 Resistant

HK 4 (HK 05-169) CCSHAU,
Hisar

2012 NEPZ 15 Resistant

Surya (MRG-1004) ARS, Madira 2009 Andhra Pradesh 20–22 Tolerant

JAKI 9218 Dr. PDKV,
Akola

2008 Maharashtra 18.65 Resistant

Pigeon Pea

Warangal Kandi-1
(WRGE-97)

ANGRAU,
Hyderabad

2020 Telangana 12–21 Moderately resistant

Raj Vijay Arhar 19 (RVA
19) (RVSA-16-1)

CoA,
RVSKVV,
Sehore

2020 SZ 12–15 Moderately resistant

Telangana Kandi
(WRGE-93)

ANGRAU,
Hyderabad

2020 SZ 17 Moderately resistant

Tirupati Kandi 59
(TRG-59)

ANGRAU, RS,
Guntur

2020 Andhra Pradesh 16–17 Tolerant

Krishna (LRG 105) ANGRAU, RS,
Guntur

2020 Andhra Pradesh 14.64 Resistant

IPH 15-03 IIPR, Kanpur 2020 Delhi, Haryana, Punjab, Uttar
Pradesh

15.95 Resistant

IPA 206 IIPR, Kanpur 2020 Uttar Pradesh 10.63 Resistant

Chhattisgarh Arhar-1 (RPS
2007-10)

IGKV, Raipur 2020 Chhattisgarh 18–20 Moderately resistant

CO 9 (CRG 2012-25) NPRC, Vamban 2019 SZ 17 Moderately resistant

GT-104 (NPMK-15-05) NAU, Navsari 2019 Gujarat 18.9 Resistant

DA-2012-1 (Rajendra
Arhar-1)

Dr. RPCAU
Bihar

2019 Bihar 28–30 Moderately resistant

(continued)
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Table 2 (continued)

Variety Source Year Area of adoption Zone/State of
India

Yield
(Q/h)

Remarks

BDN 716
(BDN 2008-7)

ARS, Badnapur 2017 Maharashtra 21–22 Resistant

Amaravathi (LRG-52) ANGRAU, RS,
Guntur

2017 Andhra Pradesh 14.69 Moderately resistant

GRG 881 ARS, Gulbarga 2016 Karnataka 13–16 Resistant

LRG 52 RARS, Lam 2015 Andhra Pradesh 15–18 Moderately resistant

ICPH 2740 ICRISAT,
Hyderabad

2015 Telangana 15–16 Resistant

PKV TARA (TAT—9629) Dr. PDKV,
Akola

2013 CZ Resistant

Phule T 0012 MPKV, Rahuri 2012 CZ 18–20 Moderately resistant

BDN 711 (BDN2004-3) ARS,
Badanapur

2012 Maharashtra 15–23 Moderately resistant

TS-3R ARS, Gulbarga 2011 Karnataka 11–17 Resistant in Kharif and late
sown cropping system

Lentil

IPL 329 IIPR, Kanpur 2021 Uttar Pradesh 12–18 Tolerant

IPL 225 IIPR, Kanpur 2021 Uttar Pradesh 10–11 Resistant

Chhattisgarh Masoor -1
(RL 3-5)

IGKV, Raipur 2020 Chhattisgarh 10–11 Resistant

Kota Masoor-4 (RKL 58 F
3715)

AU, Kota 2020 CZ 18.76 Resistant

IPL 534 IIPR, Kanpur 2020 Madhya Pradesh (including other
states of CZ)

16–18 Resistant

L-4729 IARI, New
Delhi

2020 CZ 17–18 Moderately resistant

VL Masoor-148 VPKAS,
Almora

2020 NHZ 11–12 Moderately resistant

LL 1373 PAU, Ludhiana 2020 NWPZ 15–16 Moderately resistant

Raj Vijay Lentil 13-5 CoA,
RVSKVV,
Sehore

2019 Madhya Pradesh, Chhattisgarh
and parts of Rajasthan

12 Moderately resistant

RVL-13-7 (Raj Vijay Lentil
13-7)

CoA,
RVSKVV,
Sehore

2019 Madhya Pradesh, Chhattisgarh
and Rajasthan

12 Resistant

Shekhar 4 (KLB 345) CSAUA&T,
Kanpur

2018 Uttar Pradesh 18–20 Resistant

L 4727 IARI New Delhi 2018 CZ 11–15 Moderately resistant

Shekhar 5 (KLS 122) CSAUA&T,
Kanpur

2018 Uttar Pradesh 16–18 Resistant

IPL 321 IIPR, Kanpur 2018 Uttar Pradesh 9–10 Resistant

RVL 11-6 CoA,
RVSKVV,
Sehore

2017 CZ 11–12 Tolerant

Pant Lentil–9 (PL 098) GBPUA&T,
Pantnagar

2016 Uttarakhand 13–14 Resistant

L 4717 (Pusa Ageti
Masoor)

IARI, New
Delhi

2016 CZ 12–13 Resistant

KLB 2008-4 (Krati) CSAUA&T,
Kanpur

2015 Uttar Pradesh 18–20 Resistant

(continued)
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4.6 Good Cultural Practices

Good cultural practices include cultural practices such as
intercropping, timely seeding, clean cultivation, and crop
rotation. It is well known that early planted pulse crops are
usually affected more by disease and delayed planting can be
a better alternative to address this issue. Further, the plant
spacing is also crucial because the shallow root system in
widely spaced crops makes it susceptible to wilt disease
when subjected to moisture stress. Similarly, the seeds must
be planted at proper depth (10-12 cm) to reduce the disease
incidence as the shallow sown crop can be affected by the
disease. The other method of good practices includes inter-
cropping. For instance, intercropping of wheat, barley, lin-
seed, and mustard with chickpea has proved to be effective
in reducing the wilt incidence and increasing the yield of
chickpea (Agarwal et al. 2002). The lowest wilt incidence is

reported in chickpea with intercropping and mixed cropping
with linseed (Lodhi et al. 2016). Mixed cropping of chickpea
with wheat and berseem gives measurable disease control
(Hari and Khirbat 2009).

However, none of these measures eliminates the causal
agent from the soil due to the nature of the propagule.
Moreover, their effects like the conventional fungicides are
not instant and total. These measures require persistent
efforts over a while to become effective. Therefore, for the
management of fusarium wilt, dependence on a single
method needs to be avoided (Katan 1999, 2000) and an
integrated management strategy whereby different practices
are included, should be used (Haware et al. 1990,
Jimenez-Díaz and Jimenez-Gasco 2011).

The next most effective strategy to manage vascular wilt
diseases next to the use of a synthetic fungicide is the use of
genetic resistance in host plants. Breeding and using

Table 2 (continued)

Variety Source Year Area of adoption Zone/State of
India

Yield
(Q/h)

Remarks

KLS 09-3 (Krish) CSAUA&T,
Kanpur

2015 Uttar Pradesh 18–20 Resistant

IPL 316 IIPR, Kanpur 2013 CZ 14–15 Tolerant

Shalimar Masoor-2 SKUAST-K
Srinagar

2013 Kashmir Valley 12.85 Moderately resistant

VL Masoor 133 (VL133) VPKAS,
Almora

2011 Uttarakhand 11 Resistant

VL Masoor 514(VL514) VPKAS,
Almora

2011 Uttarakhand and Hills 9–10 Moderately resistant

VL Masoor 133 (VL 133) VPKAS,
Almora

2010 Uttarakhand 11.25 Resistant

Pant L 8 (Pant L 063) GBPUA&T,
Pantnagar

2010 NWPZ 15–16 Moderately resistant

Pant Lentil 7 (PL 024) GBPUA&T,
Pantnagar

2010 Punjab, Haryana, UP 15 Resistant

Pant Lentil-6 (PL 02) GBPUA&T,
Pantnagar

2010 Uttarakhand 11 Resistant

V L Masoor 129 VPKAS,
Almora

2010 Uttarakhand 9 Resistant

Shekhar Masoor 3
(KLB-320)

CSAU&T,
Kanpur

2009 Uttar Pradesh 14 Moderately resistant

Shekhar Masoor 2
(KLB-303)

CSAU&T,
Kanpur

2009 Uttar Pradesh 14 Moderately resistant

Moitree WBL 77 PORS,
Berhampore

2009 East UP, Bihar, Jharkhand,
Assam & WB

15 Resistant

Pea

VL Matar 47 (VL47) VPKAS,
Almora

2011 Uttarakhand 14 Resistant

NHZ (North Hill Zone): Himachal Pradesh, Jammu & Kashmir, Uttarakhand; NWPZ (North West Plain Zone): Punjab, Haryana, Delhi, Rajasthan,
Western Uttar Pradesh; NEPZ (North East Plain Zone): Uttar Pradesh, Bihar, Jharkhand, Odisha, Assam, West Bengal; CZ (Central Zone):
Madhya Pradesh, Gujarat, Maharashtra, the southern part of Rajasthan and Bundelkhand tracts of Uttar Pradesh; and SZ (South Zone): Andhra
Pradesh, Telangana, Karnataka, Tamil Nadu and south-east part of Odisha.
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resistant cultivars is the most effective, reliable, and safe
alternative to chemical treatments that can be combined with
other management practices in an integrated management
strategy. However, as we try to exploit a resistance source
meanwhile the pathogen also may evolve to overcome the
resistance. So, identifying a novel source of resistance and
incorporating it in the breeding programme is a constant
process and newer sources are to be identified continually.

5 Genetics of Resistance

Plants show two types of resistance viz., quantitative and
qualitative resistance. Genes associated with qualitative
resistance (R-genes) usually provides a complete resistance
and are therefore also known asmajor genes. R-genes aremost
dominant and usually code for pathogen recognition proteins
(Nelson et al. 2018). Some of the known R-genes found in
major legumes against Fusarium wilt are given in Table 3.

On the other hand, quantitative disease resistance
(QDR) has a phenotype of incomplete or partial resistance
and is controlled by multiple genes. These genes do not
show any pronounced effect and are known as minor genes
(Nelson et al. 2018). These genomic loci are usually mapped
as quantitative trait loci (QTLs). A major resistance quanti-
tative trait locus (QTL) Fnw4.1 (Fusarium near wilt) in pea
against Fo f. sp. race 2 was located in linkage group LG4, as
reported by McPhee et al. (2012). Bani et al. (2018) could
identify an oligogenic control, with nine SNPs
(single-nucleotide polymorphisms) associated with seven
candidate resistance genes against F. oxysporum f.
sp. phaseoli on chromosomes 4, 5, 7, and 8 in common bean
using genome-wide association studies (GWAS) on a Por-
tuguese accessions collection. Once genes and genomic loci
that confer disease resistance are identified they are incor-
porated in the genome of non-resistant genotypes that are
superior in other traits by breeding programmes.

There are two main mechanisms involved in the plant
immune response-pathogen associated molecular pattern
(PAMP)-triggered immunity (PTI) also known as basal
resistance and effector-triggered immunity (ETI). Upon
exposure to the wilt pathogen, plants recognize
pathogen-associated molecular patterns (PAMPs) through
their pathogen pattern-recognition receptors (PRRs) (Nelson
et al. 2018). Pathogen-associated molecular pattern (PAMP)-
triggered immunity is a broad-spectrum non-host resistance,
the phenomenon which makes plants resistant to almost all
the microbial pathogens (Lee et al. 2017). PTI is a
broad-spectrum resistance that is triggered in response to
conserved pathogen features (PAMPs). It can also contribute
to quantitative resistance. By contrast, effector-triggered
immunity forms the basis of qualitative resistance.

6 Conventional Breeding

The conventional method of breeding has the following
steps (i) screening germplasm to identify resistance sources,
(ii) hybridization of selected parents, (iii) selection and
evaluation of hybrids, and (iv) testing and release of new
varieties. Screening of germplasm for identification and
characterization of resistant sources is the first step in any
classical breeding program for Fusarium wilt resistance. It
involves mass screenings of large germplasm collections of
the same or sometimes related legume species. In search of
the resistant donors for Fusarium wilt, efficient screening
methods are essential. The identification of resistance sour-
ces starts normally with mass screenings of large germplasm
collections of accessions from the same, or less frequently,
related species. The resistance mechanisms of the most
promising resistance sources identified through these mass
approaches can then be further explored through more
detailed screening methods in a smaller number of selected
accessions.

Mass screening is performed directly in the sick field
(Fig. 2). The sick field could be naturally infested but most
often artificially created wilt-sick plots are used where F.
oxysporum is the only dominant pathogen. Controlled
environments, like greenhouse or growth chambers, are used
only to optimise disease development conditions or
small-scale screening during the non-conducive environ-
ment. In this, the parameters are based mainly on whole
plant, leaves, or xylem direct observations, and less com-
monly, on the root aspect. The phenotyping technique allows
the screening of a large number of different genetic acces-
sions under natural environmental conditions. For this, a
naturally infected field can be used but the most common
alternative approach is the use of artificially infected fields
through wilt-sick plots as the homogenization of the disease
pressure across the field is crucial. Further, in a naturally
infected field, the co-infection of other pathogens including
nematodes is also a constraint that can lead to interference in
the results (Personal information). On the other hand, the
controlled environments where the optimum conditions can
be managed for the disease development which in turn can
facilitate the screening throughout the year, i.e. apart from
crop season. One such method is the root dip technique
where the roots of 7-10 days old seedlings are given a cut
and later these are immersed in the inoculum suspension
which permits the direct entry of the pathogen and thus the
development of disease shall be faster leading to strong
symptom development. Secondly, the phenotyping of the
germplasm under hydroponics where the 7-10 days seed-
lings developed through hydroponic were exposed to the
inoculum by allowing the inoculum to flow with the
Hoagland solution for 4-5 days. This technique is similar to
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the root dip technique and the symptoms develop strongly
and faster thus permitting the screening of a large number of
germplasm in a short period.

However, this inoculation process is a priori excluding
the screening for resistance mechanisms that might be
associated with the root penetration stage. Yet, there are
clear indications of the existence of other resistance mech-
anisms acting at earlier stages. Focus on identifying variation
for these mechanisms would add layers of resistance that
will increase the efficacy and durability of major resistance
genes (Sampaio et al. 2020). Several other screening meth-
ods wherein the germplasm can be phenotyped includes
transmission electron microscopy and light, electron,
fluorescence and laser confocal microscopy which allows an
initial characterization of the resistance mechanisms among
pea, lentil, and chickpea (Sampaio et al. 2020). Various
strategies have been developed for the screening of wilt
resistant genetic resources. Nene and Haware 1980 and
Thaware et al. 2017 proposed and used a 0–5 scale for
screening on a larger scale.

After screening and identification of the resistance source
the introgression of the genomic regions responsible for

conferring resistance into non-resistant genotypes is
accomplished by crossing and selection. For instance, in
chickpea, single crosses between Desi-type parents carrying
Fo resistance, with Kabuli-type parents, characterized by
their large seed size and seed quality, have been successfully
adopted in Fusarium wilt resistance breeding programs
(Gaur et al. 2007a). If accurate and precise data regarding the
genetic basis of resistance is available usually an established
methodology like backcross breeding is commonly used to
introgress resistance into superior varieties. For example,
when resistance is conferred by a single gene such as in
chickpea against Fo f. sp. ciceris race 5, backcross breeding
has been commonly used to introgress resistance into
well-adapted varieties (Gaur et al. 2012).

7 Integrated Breeding Approaches

The exploitation of host plant resistance for the management
of any disease remains a most effective and economical way
to minimize yield losses likely to be caused by plant
pathogens. The identification of stable donors possessing

Fig. 2 Screening of chickpea germplasm in wilt sick plot Jhansi, India. The picture shows a Resistant lines b Highly susceptible checks c Late
wilting check
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genes conferring resistance against fusarium wilt in several
pulses including chickpea and lentil has paved the way for
the development and release of highly resistant varieties of
chickpea (H 82-2, DCP 92-3, JG 315, JG 16, JG 63, Pusa
547, Pusa 362, Vijay, KWR 108, GBM 2, etc.), lentil (DPL
62, IPL 316, JL 3, Pusa Vaibhav, etc.), pigeon pea (IPA 203,
IPA 206, Narendra Arhar 1, Azad Arhar 1, BSMR 736, etc.),
and pea (VL Matar 47) (Personal unpublished data). The
large scale adoption of wilt resistant varieties ensured higher
productivity in traditional areas where wilt was used to cause
huge yield losses, and it is also evident from the enhanced
productivity of these crops.

While conventional resistance breeding can be very
successful it involves tedious processes for screening and
repeated back-crossing. Moreover, fast-evolving pathogens
like Fusarium sp have a dynamic relationship with the host
and can overcome resistance hence resistance breeding is a
continuous process requiring constant incorporation of genes
from new sources. Also due to phenomena like linkage drag
resistance may be evaded by fast-evolving pathogens
(Veillet et al. 2020; Sperschneider et al. 2015) which war-
rants for pyramiding of genes conferring resistance against
particular disease e.g. Fusarium wilt causing vascular wilt
has 6-7 races in India, therefore pyramiding of genes to
develop multiracial resistant chickpea varieties is inevitable.

Genome sequencing and genetic mapping can facilitate
rapid identification of genes or Quantitative Trait Loci
(QTLs) for their deployment in a systematic breeding pro-
gram. The development of robust trait linked markers will
certainly increase the efficiency of the selection of desirable
segregants from large segregating populations. The use of
molecular markers closely linked to genes or QTLs con-
trolling Fusarium wilt resistance allows a faster and more
precise breeding (Sampaio et al. 2020). Significant progress
has been made for genomics-assisted breeding in lentil,
chickpea, and pea including the development of genomic
resources, high-density linkage maps, identification of can-
didate genes for functional genomics, development of draft
genomes, and identification of Single nucleotide polymor-
phism (SNP) and Simple sequence repeats (SSR) markers
linked tightly with traits of breeders’ interest (Kumar et al.
2021; Pratap et al. 2017).

Marker-assisted backcrossing (MABC) is the simplest
way to introgress genes/QTLs, particularly a finite number
of QTL(s)/gene(s) experiencing strong and durable effects
on the phenotype (Varshney et al. 2012; Xu et al. 2012). For
instance, in chickpea, marker-assisted backcrossing
(MABC) has allowed the targeted transfer of genomic
regions conferring FW resistance (foc 4) from WR 315 to
Annigeri 1 and JG 74, two elite yet FW-sensitive elite
chickpea cultivars. The wilt resistant chickpea varieties viz.,

Super Annegeri 1 and Improved JG 74 were developed
(Mannur et al. 2019) and later one more wilt resistant
chickpea variety IPCMB 19-3 has been notified in 2021 for
cultivation in central India. Genomics-assisted breeding
approaches such as marker-assisted selection (MAS),
haplotype-based breeding, allele modification through gen-
ome editing, and genomic selection (GS) in general are
expected to be key components of designing future crops
(Varshney et al. 2021; Jha et al. 2021). The genomic
selection allows for simultaneous selection of multiple traits
compared to traditional marker-assisted selection (Jha et al.
2021). The availability of several genome sequences of
vascular pathogens has inspired novel research efforts to
unravel the molecular basis of vascular wilt diseases. To
design novel strategies to combat vascular wilt diseases,
understanding the (molecular) biology of vascular pathogens
and the molecular mechanisms underlying plant defence
against these pathogens is crucial (Yadeta and Thomma
2013).

Cazzola et al. (2021) rightly pointed out that crop
breeding is a time-consuming process and most of the tra-
ditional breeding programs take 10–15 years to release any
improved cultivar. In view of a breeder to develop a model
of the expected change in a trait in response to selection,
reduced seed to seed duration (generation turnover duration)
is the most powerful parameter for increasing genetic gain.
In past, breeders use to take advantage of offseason gener-
ation advancement at an appropriate location to fix genes in
a breeding program. Shuttle breeding, double haploids, and
in vitro culture are some of the methodologies that have been
developed so far; however, they have not been implemented
efficiently in the breeding programs for pulses. In this con-
text, speed breeding emerges as a technology that allows
advancement by 4–5 generations per year under a controlled
environment where immature seeds/embryos are used to
develop plants and harvest seeds. This method has been
found most useful for the development of mapping popu-
lations. It was recommended for the chickpea that the
countries with environmental conditions similar to southern
India, having short chickpea season (e.g., Myanmar), can try
to take three generations per year (Gaur et al. 2007b). This
method uses optimal light quality; light intensity, day length,
and temperature control to accelerate photosynthesis and
flowering, coupled with early seed harvest. Samineni et al.
(2020) demonstrated that rapid generation advances
(RGA) in chickpea can produce up to seven generations per
year and enable speed breeding. Their results were having
encouraging implications for breeding programs: rapid pro-
gression toward homozygosity, development of mapping
populations, and reduction in time, space, and resources in
cultivar development (speed breeding).
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The transgenic technology also offers ample potential to
develop resistant varieties having genes from other species
or genera. Genetic engineering techniques permit the
simultaneous use of several desirable genes in a single event,
thus, allowing the introduction of novel genes/traits into elite
cultivars. Earlier, Amian et al. (2011) stressed enhancing
transgenic pea resistance against fungal diseases through the
stacking of two antifungal genes (chitinase and glucanase)
where stable inheritance of the antifungal genes in the
transgenic plants was demonstrated.

8 Conclusion

Breeding for disease resistance will always be a priority
from the breeder’s point of view and therefore sourcing
novel variations of disease resistance from unexploited lan-
draces and wild relatives shall provide a way of broadening
the genetic base. Knowledge about the pathogen has
improved, but the challenges remain as the region-specific
races need to be identified and exploited as there are prob-
ably differences in the reaction of different cultivars against
different races of the pathogen infecting it. Thus, information
on the distribution of races will be of great importance for
breeding programs for the development of race-specific
resistant genotypes. Further, there is also a need to explore a
set of host differentials for correlating the pathogenicity. The
robust phenotyping techniques for resistant donors for the
pathogen are also required. Due to limited work carried out
for host-pathogen interaction studies, the management of the
disease management remains elusive and thus MAS and
MABC offers a great opportunity for improved efficiency
and effectiveness in the selection of plant genotypes with a
desired combination of traits.

It is also important to explore non-transgenic approaches
including RNAi technology and virus-induced gene silenc-
ing (VIGS) to understand the molecular mechanisms of host
resistance in these pulse crops. Further, integrated disease
management for wilt in these crops will remain a top priority
area apart from the exploitation of host plant resistance to
narrow down the yield losses due to Fusarium wilt in these
pulses. An efficient combination of the frontier technologies
like MAS, MABC, etc. needs to be integrated with con-
ventional methods of the handling of segregating generation
to enhance selection efficiency. Similarly, technologies such
as transgenic development, gene silencing, or genome edit-
ing are going to play a major role in the creation of new
variations. The integration of new approaches will certainly
accelerate the development of resistant cultivars having
targeted genes/QTLs in less time (Jha et al. 2021).
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Atmospheric Nitric Oxide (NO) Regulates
Ozone (O3)-induced Stress Signaling
in Plants: Ally or Foe?

Soumya Mukherjee

Abstract

Atmospheric nitric oxide (NO) acts both beneficial and
detrimental to plant growth. However, accuracy and
precision of NO analysis in natural sites remain a major
hurdle for conducting such investigations. Community
assemblage, forest canopy and anthropogenic activities
play a vital role in NO emission and its exchange in
plants. Ecosystems in the humid tropics are characterized
by higher biological activities thus leading to increased
emission of atmospheric gases. Nitric oxide emission due
to biological activity mostly involves its exhalation from
the soil. NO liberated due to microbial activity thus
depends upon the climate and ecosystem of a particular
area. Apart from photolytic reduction of NO2, there are
other abiotic sources of NO accumulation like ammonia
oxidation, fossil fuel burning and automobile emission.
Urbanization effects on vegetation are usually manifested
by a reduction in plant growth, chlorosis and altered
metabolic activity of the plant. Among various gaseous
components (natural and pollutants) present in air mix-
tures, nitrogen oxides (NOx; NO2, NO) are major
photochemical pollutants increasing in the urban areas.
However, beneficial effects of nitric oxide appear to be a
specialised effect operative by the reduction in tropo-
spheric ozone and upregulation of nitrogen metabolism.
Atmospheric NO, ozone and CO2 interaction require
much attention to plant growth and stress management.
Atmospheric pollutants are crucial in regulating gaseous
diffusion through foliar parts of different plant systems.
Recent developments have suggested that nitric
oxide-mediated modulation of plant growth response
operates through the regulation of tropospheric ozone
levels. Current understandings thus provide substantial
insights into the facet of plant-environment interaction
with nitric oxide formation.

Keywords

Abiotic stress�Nitric oxide�Nitrogen oxides�Ozone�
Reactive oxygen species

1 Introduction

Nitric oxide is a colourless, chemically active gaseous free
radical prevalent in the atmosphere. Among various gaseous
components (natural and pollutants) present in air mixtures,
nitrogen oxides (NOx; NO2, NO) are major photochemical
pollutants increasing in the urban areas (Peterson 1969;
Lovett et al. 2000). Extensive industrialization in the urban
areas of developing countries has led to an alarming increase
in sulphur and nitrogen oxide levels in air ranging from 20 to
150 ppb (Fowler and Cape 1982). Diurnal fluctuations of air
pollutants in urban and rural areas largely depend upon
meteorological factors. According to Law and Mansfield
(1982), the presence of NOx as an atmospheric component
cannot be avoided in rural and urban areas. This pertains to
the emission of NOx mainly originating from the combustion
of fossil fuels. Investigations across the past few decades
have revealed both beneficial and detrimental effects of
nitrogen oxides on plant growth and development (Freed-
man 1995; Gregg et al. 2003). Nitric oxide formation results
from a reaction of nitrogen and oxygen catalyzed by the high
heat of combustion. A lower amount of nitric oxide has also
been reported to be present in unpolluted areas far away
from the access of anthropological activities. The beneficial
effects of nitric oxide as a gaseous pollutant is not only
limited to its physiological response but also triggers alter-
ations in the levels of O3 and OH radicals in the atmosphere
(Bakwin et al. 1990). Nevertheless, the beneficial effects of
gaseous pollutants on urban plantations have been recon-
sidered through various investigations. In this context, it is
important to understand the process of nitric oxide flux and
its turnover between soil and atmosphere. Different content
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of atmospheric nitric oxide has been reported in forest and
grassland ecosystems of tropical and temperate areas. Vari-
ous terrestrial and extra-terrestrial sources of atmospheric
NO influence plant growth in a concentration-dependent
manner. The context of pollutant-NO affecting plant growth
was initially investigated by Anderson and Mansfield
(1979). The authors reported a concentration-dependent
response of NO on the growth of tomato plants. Following
such preliminary investigations, various reports have been
documented on the potential role of atmospheric NO on
plant growth. Air in polluted urban areas contains various
poisonous emissions causing inhibitory effects to plant
growth. However, irrespective of such deleterious factors
elevated temperature and increased CO2 percentages often
contribute to enhanced plant growth in urban areas (Idso
et al. 2001). Investigations have deciphered the
multi-factorial effect of anthropogenic activities on atmo-
spheric composition in relation to vegetation growth.
Edaphic factors of nutrient status, precipitation levels,
microbial activity and nitrogen turnover are not the sole
factors affecting the rate of plant growth. Current under-
standings of the effect of atmospheric NO on plant growth
shall provide interesting insights into the aspect of
plant-environment interactions.

2 Sources of Atmospheric Nitric Oxide
Generation

2.1 Abiogenic Sources of NO Emission

Various biotic and abiotic sources contribute to the accu-
mulation of NOx levels in the atmosphere. An equilibrium
exists between NO and NO2 formation in form of a
non-enzymatic reaction in the atmosphere. Nitric oxide
formation in the atmospheric layers beyond the troposphere
is mostly associated with the conjugation of charged nitro-
gen species to form their respective oxides (Fig. 1). Charged
nitrogen species combine with oxygen to form NO in the
thermosphere (Norton and Barth 1970). However, NO
formed at the thermosphere is not penetrable into the lower
layers of the stratosphere or mesosphere. Photochemical
decomposition of nitrous oxide in the stratosphere leads to
the liberation of NO. Free nitrogen and oxygen species
produced as an act of ionization by cosmic rays also con-
tribute to NO formation in the stratosphere (Warneck 1972;
Nicolet and Petermans 1972). Extensive investigations have
been reported for the understanding of NO accumulation in
the troposphere. This amount of NO originating from the
natural or anthropogenic activity is of active interest to
biological interactions. Photochemical decomposition of
NO2 caused by solar radiation leads to NO formation in the
troposphere (Hargreaves et al. 1992). NO being chemically

active, a small proportion of it upon oxidation is immedi-
ately converted back to NO2. In this context, it is worth
mentioning that reaction equilibrium exists between ozone
and NO levels present in the atmosphere. NO combines with
O3 to form NO2 (Fig. 1). This reaction remains an important
basis for variable O3 levels affecting physiological responses
in plants growing in rural and urban areas. This mechanism
shall be elaborated in the following section of the chapter.
Apart from photolytic reduction of NO2, there are other
abiotic sources of NO accumulation like ammonia oxidation,
fossil fuel burning and automobile emission. Atmospheric
lightening is an important source of NOx generation.
Lightening has been reported to result in a high ratio of
NO/NO2 (Stark et al. 1996). However, the magnitude and
percentage of NO accumulation from lightning flash need to
be investigated. A higher amount of NOx and O3 accumu-
lation in the troposphere often results due to lightning in the
humid climatic conditions.

2.2 Biogenic Sources of NO Emission

Nitric oxide emission due to biological activity mostly
involves its exhalation from the soil. NO liberated due to
microbial activity thus depends upon the climate and
ecosystem of a particular area. Soils in both tropical and
temperate areas have been reported to contribute up to 15%
of NOx levels present in the atmosphere (Logan 1983).
Among various soil systems, it has been observed that fertile
and humid lands invariably liberate higher NO flux in the
atmosphere in comparison with dry unfertile soils (Slemr
and Seiler 1984; Williams et al. 1987; Johansson and San-
huenza 1988). Bakwin et al. (1990) reported that photo-
chemical activity leading to NOx formation in lower
altitudes of the humid tropical area is important for NO
generation. This has been attributed to increased solar UV
flux and elevated atmospheric moisture in the tropics.
Ecosystems in the humid tropics are characterized by higher
biological activities thus leading to increased emission of
atmospheric gases. Bakwin et al. (1990) suggested that
tropical forests are a greater sink for soil-generated NO in
wet weather conditions. The authors interestingly concluded
that soil texture and moisture levels were important deter-
minants of NO exchange capacity between the soil and
atmosphere. Greater air-filled spaces of dry sandy/loamy soil
allowed a higher flux of NO escaping in the atmosphere.
Thus tropical forests were concluded to act differently in wet
and dry seasons respectively. Furthermore, nitrate fertiliza-
tion exhibited a concomitant rise in NO levels. Soil-based
NO liberation is mostly associated with the biogenic activity
of autotrophic or heterotrophic nitrifiers. Some other activ-
ities also include anaerobic denitrification and nitrate respi-
ration by fermenters (Anderson and Levine 1987). The
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authors reported that the proportion of NO liberation was
higher for autotrophic nitrifiers present in aerobic soil. Nitric
oxide thus produced results from oxidation of hydroxy-
lamine or nitrite reduction. The aerobic process of NO bio-
genesis largely depends upon the levels of oxygen and
moisture prevalent in the soil.

3 Nitric Oxide-Mediated Modulation of Plant
Stress Response Operates Through
Regulation of Tropospheric Ozone Levels

Ozone is a major secondary atmospheric pollutant known to
affect plant growth and physiology. The concentration of
ozone in the atmosphere is mostly seasonal and depends
upon the intensity of sunlight and temperature (Lane 1983).
The ozone layer prevalent in the stratosphere shields the
entry of harmful mutagenic UV-B wavelengths from enter-
ing into the troposphere. However, apart from the beneficial
effects, tropospheric ozone affects plant growth by acting as
a pollutant. Ozone formation and breakdown is differentially
regulated by the levels of nitrogen oxides present at the
different layers of the atmosphere. Ozone freely diffuses

across plant membranes and produces ROS in the apoplastic
spaces. These results in oxidative damage to plants mani-
fested by chlorosis, stomatal closure and stunted growth.
The evolutionary relationships of NO and ozone have been
interpreted to have been associated with the primitive
atmosphere where ozone was a predominant molecule
emitted as a result of photolysis of oxygen (Feelisch and
Martin 1995). In this context, NO generation proved bene-
ficial which detoxified the effect of ozone. Primitive
cyanobacterial members respiring in such an atmosphere
could involve NO generation as a defence mechanism. The
authors also speculated that L-arginine mediated NO
biosynthesis in mammalian cells resulted from the transfor-
mation of nitrification–denitrification reactions of prokary-
otes. Nitric oxide combines with ozone in the troposphere to
liberate nitrogen dioxide. Plants growing in different areas
subjected to the variable composition of atmospheric gases
reveal a difference in their growth and biomass accumulation
(Gregg et al. 2003, 2006). Two similar investigations
reported by Gregg et al. (2003, 2006) involved the effect of
nitrogen oxide and ozone responsible for variable growth of
cottonwood trees (Populus deltoides). Interestingly enough,
the authors reported that reduced growth of Populus in the

Fig. 1 Diagrammatic representation of nitric oxide-ozone interaction in the atmosphere-plant interface and its role in stress management in plants
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rural areas was attributed to detrimental effects of persis-
tently higher ozone content. Correspondingly, urban areas
experienced better tree growth facilitated by a reduction in
ozone levels. Increased levels of NOx in the urban areas
counter decreased the ozone levels. Monitoring of pollutant
levels in rural and urban areas revealed more than a ten-fold
increase in NOx levels in the rural atmosphere. This resulted
in decreased ozone levels. The parameters implied for
monitoring tree growth mostly included height and
root-shoot biomass. Model-based predictions revealed that
altered temperature and carbon/nitrogen turnover in rural
areas were not the sole determinants of increased biomass
accumulation of the cottonwood plants. Gregg et al. (2003)
reported that implying similar conditions of soil, nutrient
status and CO2 levels in both rural and urban sites the
investigations revealed doubling of biomass of urban grown
plants. Thus, ozone accumulation in urban areas was subject
to NOx mediated scavenging reaction. Therefore, higher
levels of NOx resulted from photochemical reactions and
automobile emissions in the urban site. Populus deltoides
has been reported to exhibit uniform growth pattern and
variable responses to external pollutants. Thus the plant
response was successfully monitored as a phytometer (Wait
et al. 1999). The effects of urban and rural atmospheric
constituents on plant growth were found to be consistent
across two consecutive growing seasons. Urban areas are
reported to be characterized by low humidity and high CO2

concentrations. This results in lower stomatal conductance of
plants which partially lowers the deleterious effects of
atmospheric pollutants (Jones 1996). NOx mediated ozone
scavenging was found to be consistent in all urban sites
monitored for plant growth. Earlier investigations on the
effect of NOx on ozone levels revealed that nitric oxide
levels act as indicators of ozone reduction in the urban
polluted atmosphere (Milford et al. 1994). However, an
increase in collective and total NOx levels may increase
ozone levels as reported by Crutzen (1973). Thus these
reports accentuate the fact that nitric oxide exerts partial
effects on plant growth by reducing ozone levels in the urban
atmosphere.

4 Nitrogen Oxides (NOx) Collectively
Regulate Stomatal Conductance and Foliar
Flux Rates of Nitric Oxide in Plants

Atmospheric pollutants are crucial in regulating gaseous
diffusion through foliar parts of different plant systems.
Atmospheric constituents in the phyllosphere regulate vari-
ous parameters like mesophyll tissue diffusion pressure,
stomatal conductance and water retention status of leaf cells.
In this context, it is worth mentioning that nitrogen oxides
(NOx) collectively affect the rate of NO diffusion across

stomatal apertures. Teklemariam and Sparks (2006) reported
the importance of leaf nitrogen content and ascorbic acid
levels to act as major determinants of NO flux rate in foliar
surfaces. Apart from considering stomatal conductance and
partial pressure gradient of gases the authors also reported
that internal factors are essential for diffusion of NO and
NO2 in foliar parts of different plant species. Since stomatal
conductance is mostly a function of the osmotic state of
guard cells it is worthwhile to consider the water potential
measures during altered physiological conditions. The
authors (Teklemariam and Sparks 2006) reported lower than
expected values for NO flux rates in the leaves which could
otherwise be higher due to conductance. Thus, leaf nitrogen
content and ascorbic acid levels in mesophyll tissue were
identified as major endogenous factors affecting NO and
NO2 flux. According to Mansfield et al. (1993) nitrogen
oxides along with ozone and sulphur dioxide affect the water
potential of stomatal cells. Thus, it is difficult to assess the
sole effect of nitric oxide on stomatal conductance and its
diffusion. The mixture of nitrogen oxide pollutants, carbon
dioxide and sulphur dioxide are common urban pollutants.
However, the saturation levels or external ambient levels of
nitric oxide in the phyllosphere regulate NO flux in relation
to internal NO generation. Interestingly, the compensation
point of NO flux in scot pine was regulated both by UV-B
irradiance and stomatal conductance (Raivonen et al. 2006).
Endogenous levels of NO production are elicited in response
to UV-B incidence which in turn regulates external NO
diffusion. NO deposition and conductance in foliar regions
are also subject to various factors like atmospheric moisture
levels, canopy coverage and light intensity (Hanson and
Lindberg 1991; Stocker et al. 1993). Forests in humid
weather conditions have been reported to act as major sinks
for NO liberated from soils. The ventilated NO levels over
tropical forest canopies have thus been found to be lower
(Jacob and Wofsy 1990). Investigations suggest that 20–
50% of the total soil-emitted NO is absorbed by forests
(Yienger and Levy 1995; Lerdau et al. 2000). The variable
sensitivity of laboratory instruments implied for NOx turn-
over has raised questions regarding the correctness of the
NO compensation point. Delaria et al. (2018) reported a
comparison of NO and NO2 exchange rates across the foliar
surface of California oak (Quercus agrifolia). NO deposition
velocities in the leaves were observed to be lower than that
of NO2. A higher rate of internal leaf resistance was attrib-
uted to slower NO diffusion. Interestingly NO compensation
point was observed at a concentration range of 0.74–
3.8 ppb. This suggests that endogenous NO production and
ambient external NO levels result in a lower NO compen-
sation point in forest areas. Breuninger et al. (2012) sug-
gested that the rate of photochemical reaction in the
atmosphere (formation of NOx) influences the compensation
point of NO. According to Stella et al. (2013) the internal
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leaf resistance is important in the regulation of NO diffusion
across mesophyll cells. Apoplastic pH, ascorbate levels and
nitrate reductase (NR) activity have also been reported to be
responsible for determining steady-state foliar exchange of
nitrogen oxides (Eller and Sparks 2006). From an ecological
perspective, it appears that the type of forest canopy deter-
mines the amount of ventilated NO released after its
absorption by the forest sink. Sparks et al. (2003) anticipated
that increased absorption of peroxyacetyl nitrate (PAN) by
plants may reduce up to 3% of the total world’s NOx
emission. Urbanization has led to a significant increase in
CO2 concentrations in the atmosphere. This increased CO2

levels in combination with water uptake in plants collec-
tively regulate stomatal conductance. However, as present
investigations report, NO flux and exchange in foliar parts
largely depend upon the associated pollutant composition,
internal resistance, endogenous NO levels and intensity of
UV radiations. Although natural vegetations appear to act as
a significant sink of NO, the intensity of NO diffusion is
subject to both biotic and abiotic factors.

5 Evidences for Atmospheric Nitric
Oxide-Induced Modulation of Plant
Growth and Metabolism: Insights to Stress
Management

Various investigations have revealed both detrimental and
growth-promoting effects of atmospheric nitric oxide on plant
systems. The effects have mostly been manifested through
alterations in carbon and nitrogen metabolism. To assess the
effect of NO on plant growth it has been applied separately or
in a mixture with NO2 to mimic the effects of nitrogen oxides
acting as pollutants. Preliminary investigations by Anderson
and Mansfield (1979) have revealed the effects of nitric oxide
on the growth of tomato plants. A critical level of NO (40–80
pphm) was determined which on exceeding its limit showed
detrimental effects to plant growth. The authors reported that
NO was all the more beneficial in nitrogen-deficient soils
being applied in the experimental setups. However, the
growth-promoting effect was variable among different culti-
vars of tomato. The modern F1 hybrid (Sonato) exhibited
growth-promoting effects in response to 40 pphm NO, thus
suggesting its better growth in the presence of NOx pollu-
tants. Extra-physiological concentrations of NO as high as
3500 ppb has been reported to be growth inhibitory to plants
(Mansfield et al. 1982). NOx has been reported to persist as an
atmospheric pollutant in urban air mostly in combination with
SO2. The effect of SO2 appears to be deleterious as it operates
through the inhibition of nitrite reductase enzyme activity.
Down-regulation of NR activity results in the accumulation of
nitrite toxicity in the cells. Thus, the detrimental effects of NO

as a pollutant is expected to be higher when present in a
mixture of pollutants. Caporn (1989) reported the detrimental
effects of NOx on the photosynthesis rates of Lactuca sativa
L. Application of NOx in presence of a high concentration of
CO2 led to a decrease in photosynthesis rate in per unit area of
leaves. This was, however, not attributed to any change in
stomatal conductance. Different inhibition rates were
observed at high and low CO2 concentrations applied to the
plants. NOx has been reported to be a major automobile
pollutant affecting the growth of plants (Bell et al. 2011).
Interestingly CO2 mediated photosynthetic inhibition has been
reported to be recovered by nitric oxide (included as a part of
NOx) in glasshouse lettuce (cvs Pascal and Talent). Supple-
mentation of nitric oxide along with high CO2 led to the
elevation of enzyme activities namely RUBISCO (E.C.
4.1.1.39), 3PGA phosphokinase (E.C. 2.7.2.3) and
NADP-G3P dehydrogenase (E.C. 1.2.1.13). Additionally, the
activity of PEP carboxylase (E.C. 4.1.1.31) was increased at a
higher rate. The activity of nitrite reductase (E.C. 1.7.7.1) was
increased in both the cultivars in response to nitric oxide flux.
These observations provide indications that atmospheric NO
can circumvent the photosynthetic loss caused by high CO2

concentrations in urban areas. Interesting insights into nitric
oxide-induced regulation of nitrogen metabolism has been
obtained by Wellburn et al. (1980). Different cultivars of
tomato were observed to show differential responses to
exogenous NO for both short and long term exposures at
concentration ranges of 40–250 pphm. NO-sensitive cultivars
exhibited an alteration in the enzyme activities associated with
reductive amination pathways. A reduction in nitrate reduc-
tase activity was attributed to being a long term effect of NO
exposure. However, in NO pollution resistant variety (sonata)
the changes in the rate of N-metabolism were less prominent.
Thus the fact that NO appears to act as a beneficial gaseous
molecule is true at its lower concentration of 40 pphm. This
low level NO facilitates the incorporation of nitrogen through
the activity of GS-GOGAT pathway. However, higher con-
centrations of NO (>100 pphm) appear detrimental in terms of
photosynthetic efficiency and crop yield. Nevertheless, the
effectiveness or growth inhibitory role of NO exposure is
largely regulated by the available CO2 and SO2 concentra-
tions, stomatal conductance and internal cell resistance.
Among various edaphic factors, water uptake and nitrogen
availability are also some of the crucial factors affecting NO
flux. In contrast to the effects in tomato plants, pepper plants
exhibited less sensitivity to NO in terms of enzyme activity
modulations (Murray and Wellburn 1985). Further investi-
gations are necessary to decipher the metabolic changes
associated with exogenous NO exposure. In this context
critical analysis of cellular homoeostasis, free radical estima-
tion and biomolecular-crosstalk analysis are required to be
performed.
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6 Nitric Oxide-Ozone Interaction in Plants:
Recent Updates

Nitric oxide (NO) along with reactive oxygen species
(ROS) is intimately associated with the regulation of several
stress responses in plants. Not much information is available
to elaborate NO-O3 crosstalk in different plant systems.
Ozone functions as an elicitor of ROS-induced stress which
subsequently instigates signaling cascade accompanied by
localized cell death. Ahlfors et al. (2009a) have demon-
strated that O3 application brings about a transient accu-
mulation of NO in Arabidopsis leaves which coincided with
the hypersensitive reaction in leaf tissues. Interestingly, the
authors also reported that the application of NO or O3 donors
(alone or in combination) were effective in triggering some
stress-related genes. NO has been observed to be a potential
modulator of O3-induced defence signaling where NO
attenuated O3-mediated SA biosynthetic genes and reduced
SA accumulation in Arabidopsis (Ahlfors et al. 2009a).
Thus, NO could have a possible beneficial role in O3-
induced stress responses. Since NO is an important regulator
of ROS signaling, transient expression of NO-mediated
secondary messengers are likely to modulate O3-induced
signaling pathways in plants. Although persuasive at pre-
sent, extensive future investigations are required to sum-
marize the integrative roles of NO and O3 in plants. It is
important to understand that both SA and ethylene are
positive regulators of ROS-induced stress signaling in
plants. In another previous report by Ahlfors et al. (2009b)
NO was reported to modulate hypersensitive responses and
gene expression in O3-stressed Arabidopsis plants. It was
also evident that O3 stress resulted in transient NO accu-
mulation in the vicinity of lesions formed on the leaf surface.
Transcriptome analysis has affirmed that NO downregulated

the O3-induced expression of SA biosynthesis or SA sig-
naling genes in Arabidopsis (Ahlfors et al. 2009b).
NO-producing mutants revealed that endogenous NO gen-
eration was crucial for modulating O3 responses in plant
organs. Ethylene formation occurs as an early signaling
event associated with O3-stress in plant cells (Kangasjärvi
et al. 2005). In this context, it is interesting to know that NO
and ethylene act in combination in modulating O3-induced
genes, namely Alternative oxidase (Ederli et al. 2006).

Apart from the cytochrome chain, the plant mitochondrial
electron transport chain also contains an alternative pathway
which is comprised of a single homodimeric protein called
the alternative oxidase (AOX). O3 application has been
observed to activate the AOX pathway in tobacco plants
(Nicotiana tabacum L. cv BelW3) (Ederli et al. 2006).
Furthermore, NO, ethylene, SA and jasmonic acid (JA) have
been observed to be associated with the expression of the
AOX1a gene during O3 stress. Ozone application was pri-
marily associated with hydrogen peroxide generation in the
mitochondria which were further accompanied by rapid NO
accumulation in the leaf tissues. The authors reported that
NO-dependent regulation of AOX1a mRNA expression was
orchestrated by JA and ET signaling routes. Although NO
and ethylene exert regulatory roles in upregulating AOX1a
expression under O3 stress, according to the authors, the role
of NO was crucial and indispensable for the regulation of
alternate oxidase pathways (Fig. 2).

In the light of recent trends in investigations pertaining to
NO in plant biology, it is important to focus on more work
related to NO-O3 interactions. Various anthropological
activities have led to an alarming increase in atmospheric O3

and NO production. Although NO has a beneficial role in
plants, excess atmospheric NO is likely to interfere with the
physiology and metabolism of plants. In an instance in 1996,

Fig. 2 The integrative roles of
NO and O3 in regulating stress
signaling in plants. NO mitigates
O3 stress by promoting
hypersensitive reaction, represses
SA accumulation (Ahlfors et al.
2009b) and associates with
ethylene and JA signaling. NO
mediates the gene expression of
alternate oxidase (AOX1a) during
tolerance to O3 stress (Ederli et al
2006)
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working pharmacologists at the Free University of Berlin
observed the regulatory effects of exogenous NO in experi-
ments with guanylate cyclase (Friebe et al. 1996). The analysis
of enzyme activity was undertaken in the vicinity of Berlin
inner-city circular highway where they observed that atmo-
spheric NO functioned as a positive regulator of guanylate
cyclase enzyme. Thus, although plants undergo NO-mediated
beneficial effects in evading O3 stress, it is also important to
understand that plants possess mechanisms to prevent NO
interference from endogenous or atmospheric sources.
Plant-derived non-symbiotic haemoglobins function in palli-
ating hypoxia stresswhich is known to generate a considerable
amount of NO (Dordas et al. 2003). These non-symbiotic
haemoglobins from various plant systems like A. thaliana,
barley and alfalfa have been reported to be involved in
NADPH-dependent catabolism of NO to nitrate (Igamberdiev
et al. 2004; Perazzolli et al. 2004; Seregelyes et al. 2004).

7 Future Perspectives

Community assemblage, forest canopy and anthropogenic
activities play a vital role in NO emission and its exchange
in plants. The fact that atmospheric nitric oxide acts both
beneficial and detrimental to plants has been supported by
various investigations. However, accuracy and precession of
NO analysis in natural sites remain a major hurdle for these
investigations. Furthermore, open-top chamber measure-
ments of NO flux in the foliar surface are difficult in mim-
icking the natural conditions. The composition of
atmospheric pollutants at any time is much transient and
subject to essential factors like weather conditions, wind
direction, seasonal fluctuation and extent of anthropogenic
activities. Thus it is difficult to obtain a consistent physio-
logical response to exogenous NO exposure in crop plants.
Urbanization effects on vegetation are usually manifested by
a reduction in plant growth, chlorosis and altered metabolic
activity of the plant. However, the beneficial effects of nitric
oxide appear to be a specialised effect operative by the
reduction in tropospheric ozone and up-regulation of nitro-
gen metabolism. Increased urbanization has caused exten-
sive atmospheric pollution in the troposphere. Thus serious
concerns have developed to overcome the problems of glo-
bal warming and crop productivity. In this context, it is
necessary to develop simulation models and perform
multi-factorial analysis for NO acting as a beneficial gaseous
biomolecule on earth. Numerous reports have established the
role of endogenous NO in plant signaling and biochemistry.
However, atmospheric NO, ozone and CO2 interaction
require much attention concerning plant growth in the
environment. Current understandings thus provide substan-
tial insights into the facet of plant-environment interaction.

There are requirements for extensive investigations for NO
liberation and exchange across diverse ecological sites.
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Brassinosteroids: A Wonder Growth
Regulator to Alleviate Abiotic Stresses
in Plants

Somveer Jakhar , Kavita Rani , and Sombir Singh

Abstract

Abiotic stresses like rising or falling temperature, insuf-
ficient or abundant water, high salinity, heavy metals, and
UV radiation are all detrimental to the plants’ growth and
development, affecting agriculture productivity and thus
reducing sustainability around the world. These stresses
are key limiting factors for crop productivity and
sustainability around the world. As diverse abiotic
stresses frequently occur concurrently in the field, it is
becoming increasingly important to empower crops with
multi-stress tolerance to alleviate the load of environ-
mental changes and to meet the need for population
expansion. There are several reports on the current state
of different stresses that are limiting plant growth and
yield. Moreover, there is an inadequacy of research on
sustainable approaches for reducing the negative impacts
of abiotic stress on plants. Brassinosteroids (BRs) are a
new class of plant growth hormones that have a strong
growth-promoting effect. BRs are thought to be pleio-
tropic growth regulators since they affect a variety of
physiological processes in plants, including growth, seed
germination, rhizogenesis, senescence and abiotic stress
tolerance. In this chapter, we have aimed to provide an
insight into BR-mediated plant responses under various
abiotic stresses and mechanisms of BR-triggered abiotic
stress tolerance.
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MDA Malondialdehyde
POD Peroxide
PSII Photosystem II
RBOH1 Respiratory burst oxidase homolog 1
ROS Reactive oxygen species
SA Salicylic acid
SOD Superoxide dismutase
STP Signal transduction pathway
TFs Transcription factors

1 Introduction

Plants experience both biotic and abiotic stress throughout
their life span which greatly decreases their productivity.
A plant’s reactions to such stresses are very complex which
includes disruption in metabolism and many cellular, phys-
iological and molecular adaptations. The detrimental impact
of non-living forces on living organisms in a certain envi-
ronment is known as abiotic stress. Drought, heavy metal
toxicity, high and low temperature and salinity are some of
the abiotic stresses that seriously decrease the crop yield
globally (Aninbon et al. 2016). All these have the potential
to threaten agriculture and disrupt ecosystem health, thereby
causing significant losses in agricultural yield (Wania et al.
2016). Abiotic stresses are the most important yield-limiting
factors (Zörb et al. 2019). Extreme temperatures, drought,
flooding, saltiness and heavy metal stress all have an impact
on plant development and production (Table 1). Around
90% of agricultural land is susceptible to one or maybe more
than one of the aforementioned stresses (dos Reis et al.
2012), which may lead up to 70% of productivity loss in
important food crops (Mantri et al. 2012). According to
reports based on the combination of change in climate and
crop production models, the yield of essential crops would
continue to decline, thereby posing a severe threat to food
safety (Tigchelaar et al. 2018). During the previous two
decades (1990–2013), the amount of salt in irrigated areas
has surged by 37% (Qadir et al. 2014). Drought stress has
become more common and severe because of changes in
rainfall patterns and a rise in evaporation and transpiration
caused by global warming (Dai 2011). According to new
meta-analysis research, the global mean temperature would
rise by 2–4.9 °C by 2100 (Raftery et al. 2017). At the same
time, increased heavy metal pollution in agricultural areas is
reducing food yield while also posing severe health concerns
to humans (Rehman et al. 2018).

Brassinosteroids (BRs) are steroidal hormones derived
from plants that are low-molecular-weight compounds
occurring universally in algae to angiosperms (Khripach
et al. 1999; Takatsuto 1994). BRs play a crucial part in

various physiological processes in particular cell elongation,
cell division, germination, nutrition, photosynthesis, pollen
germination, pollen tube formation, fertilization, fruit set,
fruit quality, senescence and biotic and abiotic stresses
(Bajguz and Hayat 2009; Albrecht et al. 2012; Fariduddin
et al. 2013). BRs also have an important role in the differ-
entiation of tracheary elements, stimulation of ATPases and
hormonal signaling (Kroutil et al. 2010; Gruzska 2013).
Besides this, BRs gained special attention because of their
crucial role in the alleviation of many abiotic stresses (Vriet
et al. 2013). BR-mediated stress response is a complex
mechanism that involves enhancement in protein synthesis,
defensive molecules and activation and deactivation of
crucial enzymes (Bajguz and Hayat 2009). Earlier research
indicated that BR controls different physiological, growth
and developmental processes such as cell elongation,
stomatal conductance, leaf expansion, development of the
flower, male sterility and stress tolerance (Li et al. 2016a,
b). BRs upregulate several cell division and
differentiation-related genes (Bergonci et al. 2014). They
have the potential to induce cell division and xylem differ-
entiation (Nemhauser et al. 2004). They are also reported to
regulate replication and transcription in plants (Khripach
et al. 2003), activation of several enzymes (Hasan et al.
2008), and enhance fruit set (Fu et al. 2008). Besides that,
BRs can resist osmotic stress (Vardhini and Rao 2003), low
and high-temperature stress (Fariduddin et al. 2011), salinity
stress (Hayat et al. 2007) and various heavy metals mediated
stresses (Yusuf et al. 2011).

2 Brassinosteroids

Brassinosteroids (BRs) are a class of plant steroid hormones
that were first isolated about 40 years ago from Brassica
napus pollens (Grove et al. 1979). Nearly 70 related com-
pounds have been reported that differ in structure and
physiological activity (Li et al. 2016a, b), but the most
bioactive of these are brassinolide, 24-epibrassinolide, and
28-homobrassinolide. BRs are analogous to animal steroid
hormones, which promote processes from embryonic
development to adult homeostasis (Bergonci et al. 2014),
through a complex pathway of signal transduction. Previous
studies confirmed that BR regulates different physiological
and plant development processes, like leaf expansion, cell
elongation, photomorphogenesis, flower development, stress
tolerance, male sterility and stomatal stimulation (Tao et al.
2015; Li et al. 2016a, b). Like their animal counterparts, BRs
stimulate thousands of genes linked to cell division and
differentiation (Bergonci et al. 2014), which contributes to
the regulation of all the growth processes (Abbas et al.
2013). Brassinosteroids not only influences plant develop-
mental processes but (Liu et al. 2014; Wei et al. 2015a, b),
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Table 1 Brassinosteroid mediated stress alleviation in different crop plants

Abiotic stress Plant used Dose Impact of BRs References

Heat stress Solanum
lycopersicum

0.2 lM
EBR

• EBR treatment can promote photosynthesis by boosting the activities
of key enzymes for antioxidant (SOD, CAT, GR and SOD) that
reduces lipid peroxidation under stress

Ogweno
et al. (2008)

Solanum
lycopersicum

0.2 lM
EBR

• Upregulation of transcription level of defence-related genes such as
APX5, GR1, Cu–Zn SOD, CAT1, NPR1, PR1, HSP90 and WRKY1

• BRs stimulate H2O2 accumulation in the apoplast (by
activating/inducing RBOH1-NADPH oxidase) acts as a key signal to
regulate BR-induced high-temperature stress tolerance

Zhou et al.
(2014)

Brassica
napus

1 lM EBR Enhances HSP synthesis during heat stress Dhaubhadel
et al. (2002)

Cold stress Solanum
lycopersicum

0.1 lM
EBR

• The use of exogenous EBR improves cold tolerance by decreasing
oxidative damage

Xia et al.
(2018)

Cucumis
sativus

0.1 lM
EBR

• Exogenous EBR application improves CO2 assimilation and reduces
the photoinhibition of PSII under cold stress mediated by the
activation of enzymes involved in the AsA-GSH cycle and redox
equilibrium

Jiang et al.
(2013a, b)

Vitis vinifera 0.1 mg/L
EBR-
ethanol
solution

• EBR application modifies the AsA-GSH cycle component under cold
stress temporarily, resulting in improved cold tolerance in seedlings of
grapes

Chen et al.
(2019)

Grapevines 0.3 lM
EBR

• Increases grapevine tolerance to cold stress by increasing
antioxidative potential, which reduces membrane lipid peroxidation
under stress circumstances

Xi et al.
(2013)

Brassica
campestris

0.1 lM
EBR

• EBR application under low temperature improves the chlorophyll
biosynthesis at the transcriptional level and photosynthesis-related
genes

Zhao et al.
(2019)

Capsicum
annuum L

15 lM
EBR

• 15 lM EBR was shown to be the most effective concentration for
reducing chilling-induced damage in green bell pepper fruits

Wang et al.
(2012)

Mangifera
indica

10 lM
EBR

• EBR protects fruits against chilling-induced damage by enhancing the
protein levels such as remorin, ABA stress ripening-like protein, and
temperature-induced lipocalin and type II SK2 dehydrin

Li et al.
(2012a)

Drought stress Solanum
lycopersicum

0.01 lM
EBR

• EBR treatment improves drought tolerance, as seen by increased
photosynthetic capacity, leaf hydration status, and antioxidant
defence under stress circumstances

Yuan et al.
(2012)

Capsicum
annuum

0.01 mg/L
EBR

• Exogenous BR treatment to pepper leaves enhanced the light
utilization efficiency and the dissipation of excitation

energy in the PSII antennae under drought

Hu et al.
(2013)

Chorispora
bungeana

0.1 lM
EBR

• Exogenous BR application can enhance tolerance to drought caused
by polyethylene glycol (PEG) treatment

Li et al.
(2012b)

Brassica
napus

1 lM EBR • EBR-induced increased transcript levels of BnDREB and BnCBF5
(two key drought-responsive genes) partly contribute to BR-induced
enhanced tolerance to drought

Kagale et al.
(2007)

Brassica
juncea

0.01 lM
HBL

• Post-drought treatment with HBL at 30 days after sowing could
remarkably improve both growth and photosynthesis after 60 days of
sowing

Fariduddin
et al. (2009a,
b)

Salinity stress Cucumis
sativus

0.1 lM
EBL

• EBR treatment increased activities of key antioxidant enzymes,
decreased Na+ and Cl− ion concentrations, and improved K+ and Ca2+

ion concentrations
• BR enhanced tolerance to salinity stress by improving photosynthesis,
nitrogen use efficiency and total polyamines

Yuan et al.
(2012)

Vigna
radiate

0.01 lM
HBL

• HBL can reduce the combined stress caused by salt and high
temperatures

Hayat et al.
(2010)

(continued)
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stimulation of cell division and elongation (Bergonci et al.
2014), and vascular differentiation and expression of several
genes (Choudhary et al. 2012). BR improves plant tolerance
to diverse forms of abiotic stress (Wei et al. 2015a, b).

2.1 History

Mitchell and Whitehead published a paper in the Botanical
Gazette in 1941 marked a beginning of a research programme
that ultimately lead to the discovery of the most bioactive plant
steroid hormones, i.e. brassinolide and other brassinosteroids.
In that paper, they presented the previous pieces of evidence
demonstrating that pollen extract often contains
growth-promoting properties. After that Mitchell and his col-
laborators in the USDA, studied over thirty years on the
organic pollen extracts from various plants to identify de novo
plant hormones. Brassica napus pollen was used to extract the
growth-promoting compound named “brassins”. In the
second-internode bean bioassay (Mandava 1988), brassins
impacted cell division and elongation and were shown to
improve the yield. Focusing on such preliminary findings, the
brassins were assigned hormonal status by Mitchell et al.
(1970), “since these are unique plant-derived translocatable
chemical compounds that have triggered observable develop-
ment when administered to another plant in minute quantities”.
A 227 kg of bee-collected Brassica pollens were collected
by the coordinated efforts of many USDA laboratories and the
chemical composition of the brassin was discovered in B.
napus (Steffens 1991). Brassinolide is the net result of 4 mg

pure material that was evaluated via single-crystal X-ray
analysis (Grove et al. 1979).

2.2 Chemical Structure

Brassinolide is a 5a-cholestane polyhydroxylated derivative
(Fig. 1). Plants, therefore, comprise a steroid that promotes
growth with a structural affinity to animal steroid hormones
derived from cholesterol. The BR family contains BL
(brassinolide) and approximately sixty-eight other BRs
including some conjugates (Bajguz 2011). These are dis-
similar to brassinolides because of differences in A ring at
C-2 and C-3; lactone, ketone and deoxo in C-6 in the B ring;
the stereochemistry of the side chain hydroxy groups; the
presence or lack of a methyl or ethyl group at C-24. In ring
A or in the side chains the conjugates are glycosylated,
myristoylated and laurylated hydroxyls. Most of the identi-
fied BRs are metabolic products or biosynthetic precursors
of brassinolides (BL's), while in some plants castasterone is
the direct precursor of BL biosynthesis.

2.3 Occurrence

BRs are distributed from lower to higher plants everywhere
in the plant kingdom (Xia et al. 2011). BRs are found in
many plant organs including seeds, anthers, leaves, pollen,
roots, stems and flowers (Bajguz and Tretyn 2003). To date,
over 70 BR analogues have been extracted from 66 plant

Table 1 (continued)

Abiotic stress Plant used Dose Impact of BRs References

Heavy
metal
stress

Cd Solanum
lycopersicum

0.1 lM
EBR

• Improves Cd stress tolerance by boosting photosynthesis,
photosynthetic pigment content, photochemical efficiency of
photosystems, activity antioxidative and detoxification-related
enzymes at translational and transcriptional levels

Ahammed
et al. (2013)

Brassica
juncea

0.01 lM
EBR or
HBL

• In Cd-contaminated soils, treatment of EBR or HBL can improve crop
quality and quantity

Hayat et al.
(2012)

Solanum
lycopersicum

EBR or
HBL (0.01
lM)

• Can significantly boost photosynthetic rate in the leaves of tomatoes
subjected to Cd stress up to 60 days

Hasan et al.
(2011)

Cicer
arietinum

HBL 0.01
lM

• HBL treatment reduces Cd toxicity in Cicer arietinum by increasing
the amounts of both enzymatic and non-enzymatic antioxidants

Hasan et al.
(2008)

Solanum
lycopersicum

HBL 10
nM

• HBL treatment might ameliorate Cd-induced growth reduction,
photosynthesis and PSII photochemistry problems

Singh and
Prasad
(2017)

Cr Nicotiana
tabacum

EBR
0.1 lM

• EBR prevented chloroplast damage and aided in the development of
grana and thylakoids

Bukhari
et al. (2016)

ZnO Solanum
lycopersicum

EBR 5 nM • MS medium supplemented with EBR boosts the antioxidant enzymes
activities and redox balance

Li et al.
(2016b)
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species including 56 angiosperms (44 dicots and 12 mono-
cots), 6 gymnosperms, 1 pteridophyte, 1 bryophyte and 2
algae (Clouse and Sasse 1998). Castasterone, brassinolide
and typhasterol are the most commonly distributed BRs.
Bajguz and Tretyn (2003) reported that the composition of
brassinosteroids varies in plants according to the species.

2.4 Mode of Action of Brassinosteroids

Over the last decade, the signal transduction route for BR was
extensively explored (Fig. 2) and various investigations estab-
lished a complex signal transduction pathway (STP) for BR
required for the growth and development of plants. The signal
transduction pathway (STP) demonstrates that BR is detected by
the cell surface BRASSINOSTERIOD INSENSITIVE 1
(BRI1) receptor kinase, which activates the transcription factors
BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMS
SUPPRESSOR 1 (BES1) to generate stress tolerance. Exoge-
nous BR binds to BRI1, causing it to associate with
BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and
dissociate from BRI1 KINASE INHIBITOR 1 (BKI1, Fig. 2).
BRI1 activation requires sequential transphosphorylation of
BRI1 and BAK1 to phosphorylate BR-SIGNALING KINASE
1 (BSK1) and increase BRI1 SUPPRESSOR 1 (BSU1) activity.
Furthermore, the activated BSU1 suppresses the
BRASSINOSTEROID INSENSITIVE 2 (BIN2) by dephos-
phorylating the phospho-tyrosine residue of BIN2, leading to
the accretion of unphosphorylated BZR1 and BZR2/BES1
transcription factors. Then, these two transcription factors, i.e.
dephosphorylated BES1 and BZR1 move to the nucleus and
help in regulating the BR-targeted genes to enhance tolerance of
plants under stress by increasing the capacity of antioxidant
enzymes (Takeuchi et al. 1996; Vardhini et al. 2015), regulating
the accumulation of endogenous hormones (Wei et al. 2015a, b;
Wu et al. 2017), and upregulating thousands of genes (Li et al.
2016a, b, Fig. 2).

3 Role of Brassinosteroids

3.1 Germination

The effect of brassinosteroids on seed germination in stress
conditions and their vitality had been evaluated through
germination test by various workers in Brassica juncea,
Triticum aestivum, Nicotiana tabacum, Lepidum sativus
(Steber and McCourt 2001; Leubner-Metzger 2001; Hayat
et al. 2003; Sharma and Bhardwaj 2007). Shrivastva et al.
(2011) examined different parameters of seed germination
under the influence of BRs, such as germination speed
coefficient, emergence index, germination rate index and
relative seed germination in mung bean and found that BRs
substantially promoted the seed germination by enhancing
germination speed, germination rate index, emergence index,
germination velocity coefficient and relative seed germina-
tion compared to control. Likewise, Ahammed et al. (2012)
also found increased seed germination in 24-Epibrassinolide
treated tomato plants. Brassinosteroids also facilitated seed
germination by improving the tobacco seedling embryo's
growth potential (Leubner-Metzger 2001). Brassinosteroids
can also overcome abscisic acid-mediated germination
inhibition in Arabidopsis plants (Steber and McCourt 2001).
BRs are effective in mitigating cadmium toxicity and
increasing seed germination of radish (Anuradha and Rao
2007). Under saline conditions, brassinolide seed priming
resulted in considerable increases in germination parameters
in Vigna mungo (Singh and Jakhar 2018), barley and com-
mon bean (Abd El-Fattah 2006). BRs greatly improved the
growth of radish seedlings under water stress conditions
(Mahesh et al. 2013). Treatments alone with Brassinos-
teroids also brought good improvement in the growth of
seedlings and supplementing BRs to water-stressed plants
not only protected the seedlings but also increased further
growth (Mahesh et al. 2013).

Fig. 1 Structures of three natural Brassinolide
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3.2 Growth

Clouse and Sasse (1998) reported that Brassinosteroids
(BRs) are natural compounds that promote growth and have
agricultural applications. Many types of brassinosteroids
analogues have been created in an attempt to minimize the
cost of BR production and boost BR stability, including the
spirostane analogue of BR, BB6 and MH5 having Brassi-
nosteroid like structural characteristics. Mazorra et al. (2004)
reported that co-application of EBL and two other brassi-
nosteroids analogues MH5 and BB6 reversed
BR-inhibitor-induced dwarfism. The study confirmed that

MH5 and BB6 are not only structural analogues to BR but
also possess BR like growth-promoting activity (Mazorra
et al. 2004). BRs enhanced the mitotic index in the root tip
cells of Allium cepa (Howell et al. 2007), and aided in the
proliferation of Nicotiana tabacum cells (Miyazawa et al.
2003). Chen et al. (2010) studied that BR biosynthesis
mutant dwf7-1 Arabidopsis had slower rates of cell division.
Initially, the increase in growth by BRs was considered as a
result of cell elongation. Though, later, BR was also seen to
play a significant role in cell division. At present, BRs are
recognized to control numerous aspects of growth as well as
development in addition to cell elongation and division, like

Fig. 2 Signal Transduction Pathway of BR. a Absent BRs, BRI1
(receptor of BR) is inhibited by its C-terminus and down regulator
BKI1, which prevents it from interacting with other substrates (BSKs
and BAKI). BSU1 is inactive, hence BIN2 functions like active kinase
and phosphorylates BZR1/BES1, which is either maintained in the
cytoplasm by 14-3-3-3 proteins or destroyed with 26S proteasome.
b BRs present, BRs received by the extracellular domain of BRI1,
inducing BKI1 dissociation from the cell membrane, the interaction
between BAK1 and BRI1, and their transphosphorylation results in the
formation of a BR receptor complex completely active in nature. Once

the phosphorylation of BSKs occurs by BRI1 kinases, these bind to
BSU1 resulting in enhancing BSU1’s activity thereby causing dephos-
phorylation and inhibition of BIN2. When BSKs are phosphorylated by
BRI1 kinases, they bind to BSU1, increasing BSU1 activity and
inducing dephosphorylation and BIN2 inhibition. Therefore, dephos-
phorylated BES1/BZR1 stores in the nucleus and drafts proteins in
BIN1 and Myb30 to form distinct transcriptional complexes that further
binds to E-boxes of promoter regions of BR response genes and
regulate their expression. The mechanism of bHLH regulation genes is
still evolving
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plant reproduction, photomorphogenesis, xylem differentia-
tion, and response to biotic and abiotic stresses (Nolan et al.
2019). According to Ali et al. (2019), BRs also influenced
root elongation, cotyledon development, leaf development
and plant biomass. Fathima et al. (2011) investigated the
influence of BRs on different growth parameters and it was
noticed that supplementation of BR (3%) showed the high-
est vegetative growth in Vigna mungo and Gossypium hir-
sutum. Jia et al. (2019) reported that in Arabidopsis under
low Nitrogen conditions, BSK3 enhances Brassinosteroid
sensitivity and signaling to amplify the extent of root
elongation.

3.3 Reproduction

Pollens are the richest reservoir of natural BRs and cause
elongation of the pollen tube (Hewitt et al. 1985). On the
contrary, these genes are suppressed in BR mutants showing
the abnormality in pollen and anther growth (Ye et al. 2010).
Vogler et al. (2014) investigated that 24-EBL plays a sig-
nificant role in the germination and development of Ara-
bidopsis pollen. Further, expression analysis suggests that
one of the BR biosynthesis enzyme promoters
CYP90A1/CPD was greatly expressed in the reproductive
tract which promotes germination and growth of pollens.
Brassinosteroids also control ovule growth (Huang et al.
2013), pollen grain growth (Ye et al. 2010), embryo sac
(Perez-España et al. 2011) and seed formation (Jiang et al.
2013a, b). BR deficient and insensitive mutants of Ara-
bidopsis demonstrate postponed flowering, indicating a
further function for BRs in controlling floral initiation
(Azpiroz et al. 1998). Nole-Wilson et al. (2010) observed
that BRs play a vital role in the development of gynoecium
and ovules.

3.4 Senescence

In addition to decreased fertility, most BR mutants also
exhibit increased longevity and delayed senescence. Appli-
cation of BRs postponed senescence by significantly low-
ering the production of ethylene and the rate of respiration in
Ziziphus jujuba fruits (Zhu et al. 2010). Hayat et al. (2012)
confirmed that BR administered plants bear more fruit, as
BRs delay the senescence cycle before and after pollination.
Delayed senescence was also associated with accelerated
photosynthesis (Yu et al. 2004) which in turn was attributed
to faster translocation of photosynthates (Fuji and Saka
2001). The application of 28-HBL, kinetin and the interac-
tion of both plant regulators has been confirmed to postpone

senescence and abscission in the leaves of mung bean
(Fariduddin et al. 2004). Additionally, Saglam-Çag (2007)
stated that BR can induce or postpone senescence in a
dose-dependent manner.

3.5 Photosynthesis

Photosynthesis is a vital event that converts light energy into
an accessible chemical form of energy and takes place in all
green plants (Pan et al. 2012). The application of 24-EBL
enhances crop yield and photosynthetic capacity by regu-
lating the sugar metabolism which reveals the regulatory
function of BRs in photosynthesis (Jiang et al. 2012).
Exogenous application of BRs improved photosynthetic
efficiency by raising the level of CO2 assimilation,
RUBISCO activity and triggering the stomatal conductance
(Gruszka 2013). Spraying of 28-HBL on the foliage of
Vigna radiata influences photosynthesis in terms of
improving net photosynthetic rate, carboxylation and leaf
chlorophyll quality (Farriduddin et al. 2006). Application of
24-EBL has been reported to upregulate the expressions of
rbcS, rbcL, other photosynthetic genes and the function of
RUBISCO (Xia et al. 2009). Overall BRs stimulate photo-
synthesis by stimulating the genes of the Calvin cycle and by
stimulating the different photosynthetic enzymes in cucum-
ber plants (Xia et al. 2009). BRs are also known to protect
the photosynthetic pigments by either enabling or inducing
the chlorophyll biosynthesis enzymes, retaining the effi-
ciency of PS II and improving the efficiency of photosyn-
thetic carbon fixation (Siddiqui 2018). BRs are known to
improve the efficiency of photosynthesis by increasing the
level of CO2 assimilation.

3.6 Yield

By upregulating the transcription of seed developmental
pathways, BRs positively regulate the development of seed
and seed weight (Jiang et al. 2013a, b). In addition, BR
significantly influences the growth of ovules and the pro-
duction of seeds (Huang et al. 2013). BRs are well docu-
mented for controlling the architecture and yield of rice
grains (Zhang et al. 2018). Enhanced BR content can lead to
more production in rice (Wu et al. 2008). Brassinosteroids
also control rice seed size and weight in a positive way
(Sahni et al. 2016). Tomato plants treated with BR displayed
an improved fruit set (Hayat et al. 2012). Exogenous use of
BRs was also known to increase groundnut growth and yield
and this growth stimulation was correlated with enhanced
nitrogen fixation (Vardhini and Rao 1998).
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4 Role of Brassinosteroids in Abiotic Stresses

4.1 Salinity Stress

Salinity stress develops when the salts are elevated above the
tolerance limits. Plant encounters three main challenges
under salt stress, namely, osmotic stress, ion toxicity and
oxidative damage which alter the normal cell structure by
interfering with other cellular functions. The development of
ROS under the severity of salt stress changes the antioxidant
enzyme activity and results in oxidative damage (Smirnoff
1998). Membrane transporters such as carriers, channels,
antiporters and symporters also exhibit modified behaviour
to retain concentrations of ions. Salinity hampers the dis-
tribution of ions and the homeostasis of ions within the cell
(Zhu 2003). Plants have inherent antioxidant machinery to
maintain a dynamic balance of ROS to avoid oxidative
damages caused by salt stress. Antioxidants and antioxidant
enzymes are part of this system. SOD, CAT, and POD are
the most common enzymatic ROS scavenging systems
(Song et al. 2006).

Alteration of various components of the antioxidative
protective mechanism through BRs in salinity-treated plants
has been comprehensively documented (Abbas et al. 2013;
Sharma et al. 2013; Fig. 3). Treatment with 28-HBL
enhanced antioxidant enzyme activity in salinity exposed
maize plants (Arora et al. 2008). Exogenous application of
24-EBL can help to alleviate the detrimental impact of salt
stress in wheat cultivars grown under saline conditions by
increasing the CAT and POD activity (Shahbaz and Ashraf
2007). Brassinolide treatment has been known to improve
the activity of CAT, SOD and GR of saline-grown Sorghum
plants, implying that they are capable of overcoming the
negative effects of salinity stress (Vardhini 2011). Applica-
tion of 24-EBL to salt-stressed seeds of Cucumis
sativus cultivars stimulated the activity of numerous
antioxidant enzymes like SOD, CAT, POD which ultimately
enhanced the growth and photosynthetic efficiency
(Fariduddin et al. 2013). Exogenous application of 24-EBL
substantially decreased oxidative damage in salt-exposed
Oryza sativa seedlings and increased seedling growth by
enhancing APX activity (Ozdemir et al. 2004). Exogenously
used 24-EBL to Oryza sativa grown under salt stress con-
ditions showed an increase in protein levels, proline con-
tents, the activity of antioxidant enzymes and eventually
growth (Sharma et al. 2013). Salt stressed Solanum melon-
gena seedlings showed decreased electrolyte leakage,
superoxide production, MDA, H2O2 possibly due to
increased activity of antioxidative enzymes and GSH and
AsA when subjected with 24-EBL (Ding et al. 2012).

Treatment of mungbean with 28-HBL neutralized the stress
produced by salinity by promoting antioxidant enzyme
activity and proline content, which in effect enhanced water
potential and MSI (Hayat et al. 2010). In related research,
Rady (2011) recorded that spraying 24-EBL to kidney beans
subjected to salt stress enhanced the RWC and MSI, as a
result of substantial elevations in antioxidant enzyme activ-
ity and proline content. Application of 24-EBL in salinity
stressed Pisum sativum, greatly increased the activity of
POD, SOD and CAT enzymes that supported plants to
enhance photosynthetic efficiency, stomatal conductance,
total chlorophyll content, seedling height (Shahid et al.
2011).

4.2 Heavy Metal Stress

The Industrial Revolution and anthropogenic activities re-
sulted in increased leakage of hazardous metals into the
environment and are non-degradable. Plants have the
incredible capacity to absorb these heavy metals. Even
though certain metals are required for the majority of redox
reactions necessary for cellular activities but a high level of
all metals, including those required for plant growth and
metabolism, induce harmful consequences. Toxic metals by
interacting with functional groups of molecules in cells,
notably proteins and polynucleotides cause damage to plants
(Chary et al. 2008). The consequences might include growth
inhibition, decreased net photosynthetic rate, reduced pho-
tosynthetic pigment content, carbohydrates and the proline
content, increased malondialdehyde content. Numerous
plant hormones play an important function during oxidative
stress. BRs, on the other hand, not only control numerous
physiological and morphogenetic responses in plants but
also aid in the reduction of biotic as well as abiotic stresses
(Vardhini 2016, Fig. 3). 24-EBL and 28-HBL
pre-soaked seeds of Brassica juncea ameliorate
co-induced toxicity by increasing germination percent-
age, root and stem length (Sharma and Bhardwaj 2007,
Fariduddin et al. 2009a, b). By maintaining the organization
of grana and thylakoids in Nicotiana tabacum chloroplasts,
EBR (24-epibrassinolide) prevents the effects of chromium
induced damage (Ahammed et al. 2020). Owing to their
capacity to sustain ion absorption into plant cells, BRs
reduced metal uptake and also regulated ROS-induced lipid
breakdown and improved antioxidative enzyme activity
under metal stress (Cd, Al, Cu and Ni) (Fariduddin et al.
2014). 24-EBR reduced the zinc toxicity of soybean plants
by improving the activity of APX, CAT and SOD enzymes
(dos Santos et al. 2020) as mentioned in Table 1.
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4.3 Drought Stress

The growth and development of plants essentially rely on
water. Drought stress or water shortages are severe issues
that restrict the production of various crops. They can impair
plants’ antioxidant systems, reduce chlorophyll content,
reduce photosynthetic activity and compromise membrane
integrity (Wei et al. 2015a, b). BR-treated radish seedlings
when subjected to water stress showed elevation in the
activity of antioxidative enzymes and reduction in the
drought stress-mediated ill effects (Mahesh et al. 2013). BR
improved chlorophyll accumulation, total protein levels,
stomatal conductance and membrane stability in maize
(Talaat and Shawky 2016) and tomato (Behnamnia 2015).
The accumulation of ABA (Abscisic acid) is closely linked
to drought resistance. Exogenous BR treatment has been
shown in studies to increase ABA levels and reduce the

negative effects of drought on plants (Wang et al. 2019).
Studies show that BR treatments can help plants cope with
the long-term effects of drought. For example, in a study,
Brassica juncea plants exposed to a week of drought stress
during their early growth stage demonstrate reduced growth
and photosynthetic rate even after 60 days of sowing.
However, a post-drought application of 0.01 lM HBL at 30
days after sowing significantly improved both growth and
photosynthetic rate (Fariduddin et al. 2009a, b). These
results show that BRs decrease the detrimental impacts of
drought stress and increase plant production (Fig. 3).

4.4 Heat Stress

Plant growth hormones such as BR, ABA, JA, SA and GA)
play a vital role in signal transduction pathways to boost the

Fig. 3 Proposed mechanism of BR-induced regulation of abiotic stress
response (Heat stress, Heavy metal stress, Cold stress, Salt stress) in
plants. The process of BR-induced stress tolerance via the generation of
ROS in the apoplast is depicted in this proposed working model.
Exogenous BR application or endogenous BR modulation through BR
biosynthetic gene stimulates the development of RBOH1-NADPH
oxidase which ultimately produce ROS in the apoplast. These ROS
signals mediated by BR disrupt the redox equilibrium, activating
transcription factors (TFs) that govern transcription of BR-regulated
genes and stress-responsive genes, enhancing tolerance to abiotic

stimuli via protein accumulation. Notably, activation of the
mitogen-activated protein kinase (MAPK) is required for
BR-mediated stress tolerance, and RBOH1 MAPK, H2O2 work
together in a positive feedback cycle to mediate BR-induced H2O2

build-up and subsequent signaling. Both stomatal opening and closure
have been reported to be regulated by BR. Stomatal opening is induced
by a low concentration of BR, which regulates H2O2-dependent redox
poise, whereas stomatal closure is induced by a high concentration of
EBR, which increases endogenous ABA levels
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plant defence system (Acharya and Assmann 2009). Out of
these phytohormones, BR regulates plant development and
a wide range of physiological responses under abiotic
stresses (such as high temperatures, Wu et al. 2017). By
regulating physiological and antioxidant defence mecha-
nisms, BR exhibited a compelling response towards
high-temperature stress in Ficus concinna (Jin et al. 2015),
Brassica, and Arabidopsis (Kagale et al. 2007). Reduced
glutathione (GSH), GSH/GSSG, oxidized glutathione
(GSSG), ascorbate (AsA), oxidized ascorbate (DHA) levels
and key antioxidant enzyme activity (APX, GR, CAT, POD
and SOD) increased significantly in Ficus concinna plants
treated with BR and subjected to elevated temperature stress
(Jin et al. 2015). It may be inferred that BR can reduce
high-temperature stress via boosting antioxidant defences,
both enzymatic and non-enzymatic, as well as the glyoxalase
system (Fig. 3).

4.5 Low-Temperature Stress

Cold stress is severe abiotic stress that inhibits the growth
and development of plants in many regions of the globe,
causing significant physiological damage to plants (Hussain
et al. 2018). Due to chilling stress plant development is
slowed, photosynthetic processes are disrupted, chlorophyll
levels are depleted, and flower buds are aborted, leading to
suppressed production and economic losses. By modifying
physiological, morphological and biochemical attributes of
tomato extrinsic BR treatment was found to improve toler-
ance to chilling stress (Shu et al. 2016; Fig. 3). BR reduces
the negative impacts caused by low temperature and cold
stress via boosting chlorophyll content, photosynthesis rate,
glucose metabolism, defence enzymes, gene expression,
endogenous plant hormone concentrations and activation of
signal transduction pathways (Eremina et al. 2016). Besides
this, BRs are known to enhance salicylic acid (SA), jasmonic
acid (JA) and ethylene biosynthetic pathways involving the
role of BRs in alleviating low-temperature stress through a
synergistic cross-talk with JA, SA and the ethylene signaling
pathway (Wei et al. 2015a, b). Such findings indicate that
BR protects plants from chilling stress by triggering cold
stress response genes such as C-REPEAT/DEHYDRATION-
RESPONSIVE ELEMENT BINDING FACTOR (CBF) tran-
scriptional regulators that control cold responsive (COR)
gene expression and C-REPEAT/DEHYDRATION-
RESPONSIVE ELEMENT (CRT/DRE) is promoter of
COR genes, which is bound by the CRT/DRE BINDING
FACTOR (CBF/DREB) family of APETALA 2 (AP2)
domain transcription factors (TFs), signal transduction
pathways (BR and ethylene signaling pathway) and defence
systems (Eremina et al. 2016; Shu et al. 2016).

5 Brassinosteroids in Agronomic Practices

The exploration of the potential of BRs for use in agricultural
experiments started in the 1970s in the USA which
showed positive effects (Mandava 1991). The introduction of
BRs into modern agricultural practices and numerous field
trials has revealed the fact that BRs can improve biomass and
yield by improving the quantity and quality of different food
crops. Studies performed in Japan and the USSR demon-
strated the effectiveness of BRs as agricultural chemicals in
the early 1980s (Takeuchi 1992). Implementation of BRs in
agriculture was endorsed by Khripach et al. (2000), who
reported that BRs play a crucial role in increasing the quality
and quantity of crops and this hormone was also regarded as
natural, non-toxic and environmentally friendly. Brassinos-
teroids have a critical function to play in enhancing crop yield
and production. Brassinosteroids also increased the number
of ears, weight and length of kernels per ear (Ali et al. 2008).
Findings have shown that the foliar application of BL im-
proves yields of wheat, mustard rice, maize and tobacco
(Braun and Wild 1984). A piece of compelling evidence has
emerged over the years about their ability to increase yield as
well as improvement of crop quality (Prusakova et al. 1999).
EBL—the active component of the plant growth promoter
‘Epin2’ has been officially documented in Russia and Belarus
since 1992 and is prescribed for the treatment of agricultural
plants, such as barley, cucumbers, potatoes, tomatoes and
peppers (Moiseev 1998). While several brassinosteroids like
24-Epibrassinolides are commercially available and used in
some countries but more detailed studies are needed on dose,
method and period of application, plant or cultivar suitability
and relation of brassinosteroids with other phytohormones,
as many of the results were observed through experiments in
greenhouses or small fields. Preliminary studies on easy
metabolization, crop yield enhancement and anti-stress
effects were seen in serradella and tomato at very low con-
centrations suggest brassinosteroids as ecologically safe
growth promoters with promising use in horticulture and
agriculture (Khripach et al. 2000).

6 Biosafety of Brassinosteroids

Brassinosteroids are naturally occurring non-toxic and envi-
ronmentally friendly compounds so that the application of
BRs at a large scale would not involve any ethical concerns.
Therefore, in addition to its use in agriculture, it makes BRs an
ideal candidate for use in therapeutics. Scientists researched
biosafety before their commercial application in human wel-
fare. Since BRs are the natural components of all plants, BRs
are ingested extensively by mammals (Bhardwaj et al. 2012).
The toxicological tests carried out in the Sanitary-Hygienic
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Institute of Belarus for EBL have been used to confirm their
biosafety. These studies showed that 0.2% EBL did not cause
inflammation in mucous membranes when administered to
rabbit eyes (Bhardwaj et al. 2012). Furthermore, the Ames test
performed at Russia's Toxicological and Hygienic Regulation
Scientific Research Centre gave negative results on muta-
genic activity (Khripach et al. 2000). EBL showed
non-toxicity and pronounced adaptogenic effects in repeated
studies. The toxicity effect of HBL onWistar rats was studied
and reported that HBL is non-teratogenic at doses as high as up
to 1g/kg body weight (Murkunde and Murthy 2010).

7 Conclusion

Abiotic stress is a major cause of productivity loss across the
globe. Regarding this, plant growth regulators (PGRs) espe-
cially brassinosteroids have emerged as a wonderful sustain-
able option. Brassinosteroids are widely recognized for their
important functions in promoting plant growth, development
and metabolism, as well as their capability to alleviate abiotic
stresses in plants. Considerable progress has been made in
understanding the significance of BR signaling and commu-
nication, however, the interconnection of these signals lead-
ing to plant abiotic stress resistance needs further exploration.
Observations on the effects of BRs at multiple stages, as well
as the integration of these inputs, will most likely give a road
map for tackling the challenge more holistically. Furthermore,
the complexities of BR homeostasis, which is heavily reliant
on its synthesis, degradation, and transport, must be investi-
gated from the perspective of abiotic stresses. Understanding
the interactions of different phytohormones with BRs is also
very important. Inquiries into these interactions at the sig-
naling level must be explored and understanding their regu-
lation by abiotic stress will contribute to future information in
this field. Furthermore, the advancement in genomics and
proteomics resulting in the uncovering of crucial genes and
proteins associated with stress responses in plants provide
greater opportunities for investigating the significance of BR
signaling in stress alleviation.
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Structural and Functional Role of Plant
Dehydrins in Enhancing Stress Tolerance

Gurumayum Suraj Sharma

Abstract

Plants need to adapt to extremes of environmental
conditions in which they thrive, which could otherwise,
disrupt the physiological processes. These hostile envi-
ronments include extremes of temperature, pH, dehydra-
tion and desiccation, high extracellular salt
concentrations, etc. Plants are known to employ several
mechanisms to counter these hostile conditions. One such
mechanism of adaptation involves the intracellular accu-
mulation of certain proteins; called dehydrins (DHNs).
DHNs mainly constitute a family of proteins induced as a
response to several abiotic stress conditions, including
drought and desiccation, cold and freezing stress, along
with several other associated stress, such as osmotic and
oxidative stress. These proteins are ubiquitous in distri-
bution and are found in a wide range of organisms,
including yeast, cyanobacteria, algae and higher plants.
Although they are known to play a crucial role in plant’s
adaptations and responses to hostile stress conditions, the
precise mechanism of action for these proteins has not yet
been fully established. Owing to their accumulation under
several stress conditions, one basic function assigned to
DHNs is the protection and maintenance of the cell’s
macromolecular structure and architecture. The proposed
mode of action of these proteins accumulated under stress
is that they stabilize membrane structure by directly
interacting with cellular and organellar membranes,
preserve the structural and functional property of cellular
macromolecules (proteins, DNA, etc.) and provide pro-
tection against oxidative stress. The present chapter
highlights the plant’s response to abiotic stress with
special reference to the structural compositions and the
functional aspects of DHNs.

Keywords

a-helix � Dehydrins � Intrinsically disordered proteins �
Late embryogenesis abundant proteins � Reactive oxygen
species

Abbreviations

ABA Abscisic acid
CD Circular dichroism
DHNs Dehydrins
IDP/IUP Intrinsically disordered proteins/Intrinsically

unstructured proteins
LDH Lactate dehydrogenase
LEA Late embryogenesis abundant
LEAPdb LEA protein database
RAB Responsive to ABA
ROS Reactive oxygen species
SDS Sodium dodecyl sulphate

1 Introduction

Plants need to adapt to extremes of environmental conditions
that would ordinarily disrupt life-giving physiological and
cellular processes. These hostile environments involve
stresses, such as extremes of temperature, pH, cellular
dehydration, desiccation, high extracellular salt, and even
the presence of denaturing concentrations of cellular
metabolites and free radicals inside the cells (Yancey 2003,
2004; Yancey et al. 1982). Plant’s responses to such stresses
are complex and vary significantly with several alterations at
physiological and molecular levels. These include accumu-
lation of protective solutes or osmolytes (sugars, amino
acids, methylamines, etc.) that are thought to be compatible
with macromolecular structure and function; or gross alter-
ations in gene expression profiles and transcription factors,
regulation of signal transductions, structural and metabolic
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remodelling, that involve several plant hormones (Ingram
and Bartels 1996). Amongst the different abiotic stress
mentioned above, drought represents one of the most com-
mon hostile environment and pose a serious threat that
adversely affects plant growth, health, yield and productivity
(Riyazuddin et al. 2021). The extreme state of drought and
desiccation may also lead to several related conditions, out
of which, accumulation of reactive oxygen species
(ROS) and oxidative stresses are some of the most common
downstream phenomena. Such conditions may further lead
to cellular membranes dysfunction, ionic imbalance, and
oxidation of major biomacromolecules. Plants adapt to such
environmental conditions through the accumulation of a
number of different enzymatic and non-enzymatic antioxi-
dants that help maintain cellular homeostasis (Halder et al.
2018) and minimize these negative harmful effects.

Additionally, plants also deploy another counter-measure
to circumvent such abiotic stresses, which involve the
expression of a class of proteins called Late Embryogenesis
Abundant (LEA) proteins. LEA proteins comprise a group of
diverse proteins induced in response to various environ-
mental stresses (Battaglia et al. 2008; Bies-Etheve et al.
2008; Cuming 1999; Hundertmark and Hincha 2008; Tun-
nacliffe and Wise 2007). LEA proteins are non-catalytic in
nature, which protect plant cells and tissues from damage by
several abiotic stresses. Their accumulation is known to be
one of the prominent components of plant adaptation to
these extreme environmental conditions. This diverse col-
lection of proteins may be classified into more than seven
distinct groups with the classification depending on the
nomenclature (Hundertmark and Hincha 2008) and based on
their structural properties and conserved sequences (Batta-
glia et al. 2008). Amongst these LEA proteins, dehydrins
(DHNs) are known to be accumulated to a relatively higher
amount in different tissues, during drought, desiccations and
associated stresses, and are grouped into type II LEA pro-
teins (Liu et al. 2017a, b; Tommasini et al. 2008). DHNs are
involved in protecting drought and desiccation via different
mechanisms, through chelating ions, maintaining mem-
branes stability and acting as molecular chaperones (Tun-
nacliffe and Wise 2007). Furthermore, DHNs can also
function as ROS scavengers, thus helping in the maintenance
of cellular membrane integrity, enzymes stabilization and
cellular homeostasis. Some of the most common stress
conditions encountered by plants, the physiological changes
these stress may induce and counter mechanisms employed
to overcome these hostile environments are highlighted in
Fig. 1. The current chapter aims towards providing an
overview of late embryogenesis abundant [LEA] proteins
with special reference to DHNs and their exclusive role in
maintaining cellular integrity and homeostasis under
drought.

2 Late Embryogenesis Abundant [LEA]
Proteins and Dehydrins (DHNs)

Late embryogenesis abundant (LEA) proteins, as the name
suggests, were originally discovered to be accumulated
during the late developmental stages of the embryo in seeds
(Dure et al. 1981; Galau et al. 1986). The final stages of seed
development and maturation are usually accompanied by a
drastic reduction in water content within the seed. Several
physiological and metabolic alterations can be observed
during this process, which include a rapid increase in the
abscisic acid (ABA) content, changes in gene expression and
protein profiles (storage proteins and LEA proteins), etc.
(Goldberg et al. 1989; Skriver and Mundy 1990). LEA
proteins are commonly accumulated during this final
developmental stage. Since seeds are known to possess an
ability to withstand extreme desiccation at later stages, these
groups of proteins have been attributed to confer desiccation
tolerance in plants (Cuming 1999; Dure et al. 1981; Galau
et al. 1986). Apart from seeds, several LEA proteins are also
known to be accumulated in vegetative tissues that are
exposed to dehydration, osmotic stress, low temperature and
freezing (Bies-Etheve et al. 2008; Bray 1993; Dure et al.
1989; Hundertmark and Hincha 2008). A number of LEA
proteins have been isolated from different plants, since the
time of their discovery and description. Some LEA-like
genes may be induced only by ABA or other environmental
cues (Battaglia et al. 2008; Hand et al. 2011).

Based on the presence of specific domains, LEA proteins
may be broadly categorized into seven distinct subgroups
(Dure et al. 1989). With ever-increasing information and
newly described members, variations in the expression
profiles and their distributions, the classification of LEA has
been subjected to various rearrangements with time (Batta-
glia and Covarrubias 2017; Battaglia et al. 2008;
Bies-Etheve et al. 2008; Hundertmark and Hincha 2008;
Tunnacliffe et al. 2005). Group I, Group II and Group III
comprise the majority of LEA groups and contain the most
members of the protein family. Additionally, a unique LEA
protein database (LEAPdb) has also been made available,
currently, that contains non-redundant and curated entries for
several available LEA proteins (Hunault and Jaspard 2010).
Amongst the LEA proteins, dehydrins (DHNs) comprise a
distinct set of protein family which is grouped into the
Group II LEA proteins. Most DHNs are shown to be com-
monly accumulated in dehydrating plant tissues, such as
maturing seeds, or in different vegetative tissues that are
subjected to environmental stress, most importantly drought
and desiccation. Since the expressions of many DHNs are
known to increase via the treatment of the phytohormone
ABA, they are also being termed as RAB (Responsive to
ABA) proteins. The induction of DHNs in plants is known to
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provide tolerance to a plethora of environmental stresses
conditions (Hara 2010) providing a clear indication that
these proteins participate in establishing stress tolerance of
plants. However, it remains unclear how these proteins
confer such protection or how they actually function.

In addition to their production during later stages of
embryogenesis and mature seeds and stress, DHNs are also
known to accumulate in response to changes in photoperiod.
Initially, the term “dehydrin” was introduced intending to
mean “dehydration-induced proteins” (Close et al. 1989).
The term, however, has become widely used to include
proteins with specific sequence homology rather than
expression characteristics.

3 Distribution

LEA proteins are known to be ubiquitous in nature, occur-
ring amongst various plant species belonging to different
groups, from lower plant, including mosses (e.g. Tortula,
Physcomitrella) (Oliver and Solomon 2004), vascular seed-
less plants such as spike moss and ferns (Alpert 2005; Oliver
et al. 2000; Reynolds and Bewley 1993) to gymnosperms
and flowering plants (Bray 1993). Other photosynthetic

organisms, such as algae and cyanobacteria have also been
shown to accumulate these proteins at different conditions
and phases (Honjoh et al. 1995). Additionally, they have
now also been identified in some microorganisms
(Garay-Arroyo et al. 2000; Stacy et al. 1999), fungi (Bor-
ovskii et al. 2000), protozoa, rotifers, nematodes (Browne
et al. 2004; Solomon et al. 2000), insects and crustacean
(Hand et al. 2007; Hoekstra et al. 2001; Tunnacliffe et al.
2005; Tunnacliffe and Wise 2007).

Group I LEA proteins have been reported to be present in
the bacterium Bacillus subtilis (Stacy et al. 1999), in several
soil bacterial species. The proteins have also been shown to
be found in the crustacean, Artemia franciscana. Similarly,
Group III LEA proteins are widely distributed in a number
of prokaryotes, including Deinococcus radiodurans (Battista
et al. 2001), Haemophilus influenza (Dure 2001), etc. In
Caenorhabditis elegans, the expression of LEA is known to
be directly correlated with the survival of the nematode
under several environmental conditions, such as extreme
dehydration and desiccation, heat stress and osmotic stress
(Gal et al. 2004). Other anhydrobiotic organisms such as the
nematodes Steinernema feltiae (Boswell et al. 2014; Solo-
mon et al. 2000) and Aphelencus avenae (Browne et al.
2004), as well as the bdelloid rotifer Philodina roseola

Fig. 1 A schematic representation of major stress encountered by plants and the counter mechanisms employed to overcome these hostile
environments
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(Lubzens et al. 2010), the chironomid Polypedilum vander-
planki (Wise and Tunnacliffe 2004) and the crustacean A.
franciscana (Hand et al. 2007; Wang et al. 2007) also
accumulate Group III LEA proteins in their extreme desic-
cated states. The correlation of LEA proteins in seed matu-
ration stages, during water stress in vegetative plant organs,
and in anhydrobiotic (desiccation-induced dormancy) ani-
mals suggests that LEA proteins represent a widespread
adaptation to water deficit; however, their precise functions
remain unclear.

4 Sequence and Structural Organization
of DHNs

Originally identified as the D-11 family in cotton embryos,
this group of LEA, i.e. DHNs, comprises one of the most
studied and characterized groups of LEA proteins. DHNs
show high variations in their molecular weight profiles, with
the smallest dehydrin being 9.6 kDa (Labhilili et al. 1995)
and the largest being 70 kDa (Kim et al. 2012). Addition-
ally, these variations in the molecular weight profiles, a huge
discrepancy exists regarding their molecular weights that
reflect their anomalous behaviour when run on SDS PAGE,
endowed due to their unordered structural features
(Receveur-Bréchot et al. 2006).

Most DHNs may be characterized according to their
common conserved structural motifs (Close 1996). One
distinctive feature of DHNs is the K-segment, a highly
conserved, Lys-rich 15-residue motif of the sequence
“EKKGIMDKIKEKLPG” (Campbell and Close 1997). This
sequence has been reported to be found ranging from one to
eleven copies within a single polypeptide. The a-helix of
DHNs may help maintain protein structural and functional
integrity, and stabilize the cellular membranes under envi-
ronmental stress conditions. The K3S-type dehydrin
CuCOR19, from Citrus unshiu is known to assume an
a-helical structure in the presence of sodium dodecyl sul-
phate (SDS) (Hara et al. 2001). The K-segment of DHN1
(from maize) plays an essential role in binding anionic
phospholipid vesicles, giving rise to a-helical conformation.
Such interaction and a conformational switch of the
K-segment accounts for the overall changes in DHNs upon
binding to SDS or anionic phospholipid vesicles (Koag et al.
2009). The K-segment of DHN-5 (from wheat) is of prime
importance in conferring protection and maintaining func-
tional activities to LDH (lactate dehydrogenase) and
b-glucosidase in vitro (Drira et al. 2013). Additionally, the
lysine-rich segment of the disordered stress protein
CDeT11-24 (from Craterostigma plantagineum) is crucial in
its protective function and enzyme stabilization from hostile
conditions caused by water stress (Petersen et al. 2012).
Furthermore, the Lti30 (a cold-induced DHN) has been

demonstrated to possess the ability to bind cellular mem-
branes through its K-segments. Upon such binding, the
segment tends to fold gradually into an a-helical structure on
the cellular membrane. The K-segments of the DHN Lti30
trap the negatively charged lipid head electrostatically
(Eriksson et al. 2016; Liu et al. 2017a, b), thus demon-
strating its unique property in membrane stabilization and
maintaining cellular integrity under stress.

An additional motif that is also found in this group of
proteins is the Y-segment (due to the presence of a Tyr
residue). This motif is shown to possess a conserved con-
sensus sequence VTD [E/Q] YGNP (Battaglia et al. 2008),
with Asp and Gly-Asn-Pro residues being highly conserved.
This segment is usually found in one to thirty-five tandem
copies in the N-terminus of the protein and possesses a
similar amino acid sequence to the nucleotide-binding
domain found in chaperones of several plants and bacteria.
The Y-segment, representing a conserved segment [V/T]D
[E/Q]YGNP, is usually found in various tandem copies in
the N-terminus of DHNs (Campbell and Close 1997). The
segment also possesses a sequence similarity to the
nucleotide-binding site of plant and bacterial chaperones
[(V/T) DEYGNP]. However, the Y-segment has no actual
nucleotide-binding property on its own (Close 1996; Hughes
et al. 2013; Liu et al. 2017a, b).

Another common motif in DHNs is the S-segment
(named so as it consists of five to seven Ser residues in a
row) and is often preceded by Ser-Asp. The S-segment is
known to act as a site for protein phosphorylation (Campbell
et al. 1998). The phosphorylation of the S-segment is con-
sidered a key event in promoting DHNs interaction with
specific signal peptides, which is further followed by their
translocation into the nucleus (Close 1996). Phosphorylation
of the S-segment may be initiated by a protein kinase, which
influences the location and the ability to bind metal ions
(Alsheikh et al. 2003). The three amino acid residues EDD
of the maize DHN Rab17 is known to serve as the CKII
phosphorylation recognition site (Jensen et al. 1998; Liu
et al. 2017a, b). Additionally, phosphorylation is also known
to regulate the ion-binding properties of most DHNs (Heyen
et al. 2002).

A much less conserved motif called the U-segment is
found interspersed between K-segments, which are shown to
be rich in polar amino acid residues (Close 1996; Dure et al.
1989). Contrary to the above-mentioned conserved motifs,
neither the sequences of the U-segments nor their lengths
appear to be conserved. Thus, the U-segments may be
defined as all of the residues located between the three
conserved segments, i.e. the Y-segments, the S-segments
and the K-segments. Analyses of amino acid residues
composition of the U-segments (i.e. all sequences without
the Y-, S- or K-segments) reveals that the topmost common
amino acids are Gly, Gln, and Thr, while Phe, Cys and Trp
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are present � 1% of the time (Graether and Boddington
2014).

The presence and arrangement of different motifs and the
segments in a single polypeptide allow further classification
of DHN proteins into five different subgroups (Campbell and
Close 1997; Vaseva et al. 2014). DHNs that only contain the
K-segment are classified under the K-subgroup, and those
that include the S-segment followed by K-segment are in the
SK-subgroup. In addition, there are the YSK-, YK- and
KS-subgroups. Based on the presence of the conservative
segments, DHNs may be subdivided into five distinct sub-
classes, namely YnSKn, Kn, SKn, YnKn and KnS [see
Table 1] (Close 1997; Eriksson et al. 2011; Hanin et al.
2011; Hara 2010; Hundertmark and Hincha 2008).
Depending on the types of environmental cues, all DHNs
may show different responses to a number of abiotic factors
(Allagulova et al. 2003; Rorat et al. 2006).

In aqueous solutions, DHN molecules are present in the
conformation of a random coil, which lacks a finite
three-dimensional structure. Thus, DHNs appear to be
unstructured and share many typical characters with other
types of intrinsically disordered/unstructured proteins
(IDPs/IUPs) due to the low proportion of intramolecular
H-bonds. These proteins are known to be extensively
hydrophilic in nature due to the presence of a large amount
of charged, polar amino acid residues with a low percentage
of nonpolar and hydrophobic amino acids. The polypeptide
usually consists of a high number of Ala, Gly and Ser
residues with very minimal hydrophobic residues because of
which these proteins lack a well-defined secondary structure
in solution. As a result, the polypeptide thus tends to remain
hydrated entirely and assume no hydrophobic core,
explaining the structural disordered nature. Thus, this
intrinsic property of the protein provides a wide array of
functional adaptability under different stressful environ-
ments. Accordingly, they tend to change their conforma-
tional status according to the changes in their ambient

microenvironment and water availability. The
inter-conversion between the disordered states and ordered
states could be the key to how DHNs perform their
functions.

5 Protective Roles of DHNs in Plants Under
Stress

5.1 Membrane Binding Properties of DHNs:
Mechanism Towards Membrane
Stabilization Under Stress

DHNs, like other IDPs, are characterized by their highly
unordered structures in the aqueous environment. However,
they are known to undergo significant change in confor-
mation, with gain in structure, when bound to a particular
ligand. One of the best pieces of evidence for the role of
DHNs in stress protection came from studies with their
binding with biological membranes. Conformational analy-
ses of DHNs in association with different membrane systems
in vitro revealed a switch from its unordered characteristics
to an a-helical structure (Graether and Boddington 2014).

One of the first kinds of such reports came from studies in
cowpea DHN (Ismail et al. 1999). The protein shows a
negative peak around 200 nm in the far UV CD spectrum,
which is a characteristic feature of random coils and IDPs.
However, upon interaction with SDS micelles, a significant
alteration in the spectrum was observed with a shift in the
peak intensity, from 200 nm towards 220 nm region. Such
conformational switch from random coil structure to an
a-helix forms the basis of gain in protein function, a phe-
nomenon termed as “moonlighting” (Tompa 2002). In the
case of DHNs, alterations in protein solution properties and
the environment (such as availability of water) could induce
certain conformational and functional attributes of the pro-
tein molecules. The a-helical structure, thus formed, can

Table 1 Classification of DHN proteins based on the presence of different segments in the polypeptide, their proposed function in stress tolerance
and localization

DHN
types

DHNs Proposed function Localization Host plant References

Kn P80/DHN5 Increased tolerance to cold stress Cytoplasmic Barley Bravo et al. (2003)

SKn ERD10
ERD14

Membrane binding, Metal binding, ROS
scavenging, Drought tolerance and Chaperone
function

Nuclear and
cytoplasmic

Arabidopsis Kovacs et al. (2008),
Maszkowska et al.
(2019)

KnS DHN13 Chaperone function, Antioxidant property Nuclear Maize Liu et al. (2017a, b),
Rorat et al. (2006)

YnKn PCA 60 Increased tolerance to cold stress Nuclear, plastid
and cytoplasmic

Peach Artlip et al. (1997),
Wisniewski et al. (1999)

YnSKn DHN-5 Drought tolerance Nuclear and
cytoplasmic

Wheat Allagulova et al. (2020),
Brini et al. (2007)
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interact with partly dehydrated surfaces of various other
proteins and also with surfaces of biological membranes
undergoing water stress. It is proposed that several
K-segments within single a DHN molecule may assume a
bundle-like structure when present in a-helical conforma-
tion. Such conformational transitions enhance the amphi-
pathic nature in the protein–protein or protein–membrane
interactions (Ingram and Bartels 1996). Interactions of
DHNs with dehydrated protein surfaces may enhance the
formation of more amphipathic alpha-helical structures.
These mechanisms collectively could protect other protein
molecules from further loss of water, thus protecting the
hydration shell and resisting further alterations in the gross
protein conformation. Such interactions between partly
dehydrated surfaces of maize DHN1 molecules and other
proteins and/or biological membranes could be the major
driving force for the basis of protective functions of DHNs
(Hanin et al. 2011; Koag et al. 2003). However, the binding
propensities for DHNs tend to vary as per the variation in
charge of the membrane partner. In most cases, DHNs were
shown to have higher tendencies to bind negatively charged
membrane, with a significant gain in its helical structure. In
contrast, neutral membranes or membranes containing only
zwitterionic lipids consisting of only PC or phos-
phatidylethanolamine (PE) were found to have lesser ten-
dencies to bind DHNs. Additionally, there were no
transitions from random coil to a-helical structure observed
in case of PC liposome (Koag et al. 2003; Soulages et al.
2003).

In a recent study carried out on LEA11 and LEA25 from
Arabidopsis, glycerol and trifluoroethanol were shown to
induce an a-helical conformation in the proteins under
in vitro conditions. This observed folding and compaction
were further enhanced in the presence of membranes when
added in the form of liposomes. Furthermore, stability assays
of the liposomes also revealed a cryoprotective function of
LEA11 and LEA25 proteins (Bremer et al. 2017). The study
points towards a close association between the membrane
association and stabilizing properties of these unordered
proteins with several other factors, namely, drought, freez-
ing, etc., that may lead to intracellular solute accumulation.

5.2 Ion Binding and Reactive Oxygen Species
(ROS) Scavenging

Several DHNs, containing relatively high amounts of reac-
tive amino acid residues towards their surface in their
slightly folded conformations are known to possess reactive
oxygen species (ROS) scavenging and metal ion-binding
properties. Such functions are known to be mediated by
direct interactions between amino acid residue and the

prevalent ROS species, such as superoxide anion radical;
singlet oxygen; hydroxyl radical and hydrogen peroxide, or
a variety of metal ions. It is due to this property, DHNs can
carry out the function as antioxidants, in ion sequestration,
or even in metal ion transports. Studies involving transgenic
tobacco had shown that overexpression of maize DHN
(ZmDHN13) resulted in an enhanced tolerance of the plant
to oxidative stress. It was reported that the conserved seg-
ments in ZmDHN13 exhibited a cooperative effect in
response to environmental stresses in vivo (Liu et al. 2017a,
b).

The ion-binding properties of most DHNs are well doc-
umented with a direct correlation with protein phosphory-
lation. An initial report of the calcium-binding of a
phosphorylated DHN came from studies with DHN-like
proteins, associated with vacuoles, wherein phosphorylation
was found to regulate the binding (Heyen et al. 2002).
Additionally phosphorylated DHN VCaB45 (from celery)
was shown to possess an apparent calcium-binding property.
However, dephosphorylated DHN was found to possess no
such binding. The observation provided a clear indication of
the role of such modification in activating the
calcium-binding function (Hara 2010). The ion-binding
properties seem to be confined to acidic DHNs, though not
elucidated entirely. This came from the observation that the
RAB18 (a neutral DHN) did not show any calcium-binding
even when it was phosphorylated (Alsheikh et al. 2003,
2005).

Another common property endowed to DHNs is their
metal ion bindings. Almost all DHNs (acidic, neutral and
basic) are shown to possess this metal ion-binding function.
The citrus DHN, CuCOR15 has been shown to bind a
variety of metal ions, including Cu2+; Co2+; Ni2+; Zn2+; Fe2
+; Fe3+ (Hara et al. 2005). A positive effect of enhanced
DHNs expression on plant heavy-metal tolerance has been
demonstrated (Xu et al. 2008). Unlike calcium binding,
which is regulated by phosphorylation at key residues,
bivalent metal ion binding may proceed without any phos-
phorylation event. The observation thus provides a hint that
metal ions could be a common target for several DHNs
under different cellular environments. In fact, desiccation
may lead to an enhanced leakage of metal ions from cellular
organelles and membranes, thereby increasing their con-
centrations in the cytoplasm. It is believed that the
metal-binding of DHNs may reduce various types of damage
caused by free metals. A common notion is that His residues
play a critical role in this metal binding property of DHNs
and may be crucial in buffering the harmful effects of
increased levels of metal ions within the cell. Additionally,
such a mechanism may also be crucial as sensors of metal
levels in the intracellular environments (Hara 2010; Kawachi
et al. 2008; Persans et al. 2001).
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5.3 Protective Function of DHNs Against
Drought and Desiccation

Drought and desiccation represent one of the most common
hostile conditions that may have a profound effect on plant
health and growth at different stages and have drastic effects
at anatomical and morphological levels, up to the molecular
levels. Furthermore, drought and desiccation can also lead to
a plethora of associated secondary stress conditions, such as
oxidative and osmotic stress, which could directly affect the
plant health and growth (Osakabe et al. 2014; Yu et al.
2018). A number of DHNs are directly related to providing
tolerance against drought and desiccation.

Overexpression studies have shown that DHNs are
associated with conferring protection against loss of water,
ion leakage and oxidative stress in plant tissues (Brini et al.
2007; Guo et al. 2019; Halder et al. 2017; Verma et al.
2017). In Arabidopsis, overexpression of DHN5 (from
wheat) was shown to enhance the drought tolerance when
subjected to stress. Plants with transgenic DHN5 proteins
were also shown to possess enhanced recovery and robust
growth under desiccated conditions (Brini et al. 2007).
Additionally, DHNs exhibit a protective role in the photo-
synthetic apparatus, by maintaining thylakoid and chloro-
plast membranes stability under drought (Hanin et al. 2011;
Shakirova et al. 2016). DHNs overexpression has been
shown to maintain fresh weight and brings about improved
photosynthesis under drought stress. Such protective func-
tions were attributed towards the reduction in the stomata
density and opening, as well as enhancing the photosynthetic
pigments and accumulation of compatible solutes contents
within the cell (Xie et al. 2012; Yang et al. 2019). Moreover,
overexpression of several other DHNs associated genes is
also known to impart stress tolerance under drought (Liu
et al. 2020).

Several in vitro and in vivo studies have indicated that
DHNs possess potent chaperone function (Kovacs et al.
2008; Nguyen et al. 2020). For instance, the Arabidopsis
thaliana ERD14 is known to counter the heat-induced
functional activity loss and aggregation propensities of
several client proteins. Studies carried out using lysozyme,
luciferase, citrate synthase and alcohol dehydrogenase con-
cluded that DHNs could be responsible for maintaining
native state structural integrity thereby preserving their
enzymatic activity (Kovacs et al. 2008; Murvai et al. 2021).
Since cellular proteins are potentially exposed to an
increased risk of aggregation and denaturation during
drought and desiccation, induction of chaperoning activity of
DHNs could be of an essential function in circumventing

such risk. However, the chaperone activity of DHNs remains
inconclusive, as they are not able to initiate reactivation of
already denatured proteins. In fact, most DHNs (and other
disordered proteins with large exposed side chains) possess
certain unique properties that allow them to interact readily
with water molecules. It is argued that DHNs can bind a
large amount of water and at the same time retain their
functional ability to interact with a large number of solute
ions simultaneously. Such property enables DHNs to retain
water and buffer to counteract the increase in ion concen-
tration during an extreme state of drought and desiccation
(Tompa et al. 2006). Such mechanism accounts for some of
the most important roles they play under stress conditions,
including chaperoning function and protection of macro-
molecular structures of proteins and enzymes. Another
possible explanation is that DHNs prevent interactions
between membrane bilayers and can chelate metal ions
(whose concentrations are elevated under extreme loss of
water). Nevertheless, DHNs remain to play a crucial role in
rescuing molecular and cellular integrity under extreme
states of drought and desiccation.

5.4 Cryoprotective Functions of DHNs

Low temperature is considered to be a major environmental
stress and is known to promote the expression of several
DHN proteins. This directly correlates to the cryoprotective
properties of DHNs in general. Under the extreme
low-temperature regime, DHNs are proposed to bind ice,
thus conferring a cryoprotective property by behaving as
antifreeze proteins (possess the ability to bind to and prevent
the growth of ice crystals) (Wisniewski et al. 1999) which
are known to be distributed in diverse organisms, including
plants. Several DHNs have been demonstrated to keep
enzymes functionally active even after freezing at very low
temperatures (−20 °C) and subsequent thawing (Kazuoka
and Oeda 1994). Such cryoprotective function was reported
in A. thaliana COR15a protein for the first time (Lin and
Thomashow 1992). The cryoprotective activity has been
reported for several dehydrin proteins since then, including
COR85 from spinach (Kazuoka and Oeda 1994), WCS120
from wheat (Houde et al. 1995), PCA60 from peach (Wis-
niewski et al. 1999), CuCOR19 from Citrus unshiu (Hara
et al. 2001), DHN5 from barley (Bravo et al. 2003), etc. It is
noteworthy to mention that the presence of K-segments in
such DHNs is of prime importance for such cryoprotective
function in DHNs (Reyes et al. 2008) since it plays a crucial
role in regulating the overall structure of DHN proteins. This
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was further corroborated by the observation that such cry-
oprotective functions were lost upon the removal of the
K-segments from the polypeptide sequence.

In essence, freezing and low-temperature stresses are
known to induce an increased crowding in the intracellular
milieu, which can be attributed to extracellular ice crystals
formation, directly leading to dehydration. Under in vitro
conditions, crowding induced by high glycerol concentra-
tions has been shown to impart partial folding of COR15
proteins from Arabidopsis (Artus et al. 1996; Bremer et al.
2017; Steponkus et al. 1998; Thalhammer et al. 2014).

6 Conclusion and Future Perspectives

Several mechanisms of how DHNs confer protection against
a wide range of stress have been put forth (Fig. 2). However,
most of their functional characterization came from in vitro
studies, which do not strictly replicate the in vivo physio-
logical and macromolecular environments. Thus, a clear
picture of how DHNs function in vivo remains to be eluci-
dated. Nevertheless, most DHNs possess a very potent
chaperoning function in preserving the macromolecular
structure and activity of their client proteins and cellular

membranes (Kovacs et al. 2008; Murvai et al. 2021; Nguyen
et al. 2020), thus providing a clear indication of their pro-
tective role under stress. Additionally, since DHNs are
usually unstructured in their native state, they may maintain
their functional status without a significant conformational
limitation when subjected to different solvent conditions and
stressful environments. A better understanding of the func-
tional aspects of each domain in the protein could yield
insights into how these proteins behave in different envi-
ronments (Hara 2010).

Of the several abiotic and biotic stress conditions,
drought and desiccation form the major threats directly
hampering crop productivity in arid and semi-arid zones,
throughout the globe in recent years. Drought accounts for a
major reason for crop failure and financial loss in the agri-
cultural sector globally (Gupta et al. 2020; Riyazuddin et al.
2021). The current environmental crisis and climate change
have led to a rapid depletion in freshwater supply and the
shrinking size of cultivable land. In the face of such a situ-
ation, the future agricultural practice would depend heavily
on stress-tolerant crops that can resist extremes of environ-
mental conditions. The involvement of DHNs in providing
tolerance to a wide spectrum of stress is well documented
and established. The current genetic engineering approach in

Fig. 2 A schematic representation of the proposed mechanism of DHNs in conferring tolerance to different environmental stress conditions
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manipulating the expression profile of important crop plants
would provide a promising outcome in developing new
stress-tolerant crops in near future. Furthermore, future
works focused on understanding the possible involvement of
DHNs in the modulation of plant defence systems to
pathogen attacks would be a promising avenue in stress
physiological response in plants.
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Adaptation of Microalgae to Temperature
and Light Stress

Sarita Kumari, Srota Satapathy, Mrittika Datta, and Savindra Kumar

Abstract

Microalgae, the photosynthetic autotrophs, are considered
an important base of the food web. Furthermore,
microalgae also have the potential to be a great candidate
for sustainable sources of energy, soil conditioner,
bioactive compounds and other economically important
products as well as an alternative mode of agriculture. It is
a well-known fact that the survival, growth and produc-
tivity of any organism including microalgae are strongly
affected not only by their physiological and biochemical
processes but also by biotic and abiotic factors in the
environment. In the present scenario when global climate
change which is one of the most important issues
worldwide may also have a great impact on microalgal
growth. Although there are many more but increased
temperature and elevated light intensity (including ultra-
violet radiations) are the two main repercussions of global
climate change. Given that growth is balanced under a
specific set of environmental conditions, therefore many
microalgae can adapt to these two major stresses or
extreme conditions. Interestingly by virtue of nature, we
humans are blessed by such adaptation of microalgae
which presents a source of a sustainable source of energy,
valuable products and alternative modes of agriculture. In
the present scenario where we are facing extreme climate
changes, global warming and ozone depletion, under-
standing this adaptive behaviour of microalgae will be
very useful so that we are future-ready to face such
extreme stress conditions.
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UVR Ultraviolet Radiation
UV A Ultraviolet A
UV B Ultraviolet B

1 Introduction

It is not the strongest of the species that survives, nor the most
intelligent. It is the one that is most adaptable to change—
Charles Darwin

Adaptation is the process by which all living forms attain
the ability to sustain in the changing environment. Bacteria
algae, fungi, protistans, and micro-invertebrates live in
almost all of the habitats available on Earth, from the
so-called ‘normal ambient’ environments to the harshest
places. Microalgae, which originate dates back to 3.5 billion
years, are one of the most fascinating life forms in this
regard (Woese et al. 1990). Microalgae have an incredible
ability to adapt to these abnormal ambients. Such environ-
ments are also known as ‘stress’ that pushes the entity to
undergo physiological and chemical changes to thrive in the
changing environment. Generally, the term “stresses” is used
for microalgae when there is overproduction of secondary
metabolites such as carotenoids and triacylglycerols
(Borowitzka 2018). However, this term is also being used in
another context by different authors in pieces of literature.
Like mechanics, in biology, this term is also used in the
sense of ‘strain’ but a wide range of other ill-defined
meanings are also very common. All those definitions of
stress are very subjective and depend in part on the disci-
pline (medicine, psychology, ecology, physiology, etc.), the
organism(s) and the type of stressor under consideration (i.e.
physical, nutritional, biochemical) (Borowitzka 2018). We
can define stress as the adverse conditions (physical or
biological) that more or less prevent the particular species
from obtaining its optimum growth in the desired time; in
short, disturbs their normal physiological functioning
(Munns and Tester 2008).

Although the word stress has negative connotations
without any doubt it may not always be harmful. Therefore
Lichtenthaler (1988) differentiated stress between ‘eu-stress’
and ‘dis-stress’, where eu-stress is activating, stimulating
stress and a positive element for plant development, whereas
dis-stress is a severe and a real stress that causes damage and
thus harms the plant and its development (Borowitzka 2018).
Similarly, Schulte (2014) classified environmental factors in
two categories (1) stressful and (2) non-stressful. There is a
very thin line between stressful and non-stressful factors for
example microalgae are exposed to a constantly changing
environment, and it appears that the microalgae acclimate to
an ‘average’ state if these environmental changes are more

or less regular. Such adjustment should be treated as ‘reg-
ulation’ and regulation cannot be considered a stress
response (Minagawa 2011). The capability to adapt to a
surrounding depends on two major factors, biotic and abi-
otic. These stresses can be classified broadly as biotic and
abiotic stress which can be further classified in different
subcategories (Fig. 8.1). Like in any other organism the term
‘response against stress’ is also widely used in the algal
literature very often. Amongst all the different kinds of stress
temperature and light play the most important role in the
growth and survival of microalgae (Jabri et al. 2021).
Therefore, an attempt has been made in this chapter to
summarize the adaptation of microalgae during their
encounter with these two stress or extreme conditions.

2 What are Microalgae?

Microalgae are a diverse group of prokaryotic and eukary-
otic photosynthetic organisms which are being used as space
food, single-cell proteins, biofertilizers, biofuel as well as
important members of wastewater treatment plants.
Microalgae can grow much faster than higher plants as well
as have ability to convert solar energy into biomass and
other bioactive molecules to produce different high-value
products with commercial interest (Elisabeth et al. 2021).
Therefore Chisti (2007) defined them as “sunlight-driven
cell factories that convert carbon dioxide to potential bio-
fuels, foods, feeds and high-value bioactive compounds

Fig. 8.1 Common abiotic and biotic stresses faced by microalgae

124 S. Kumari et al.



which are also useful in bioremediation applications, soil
conditioning”. At present when the entire world is facing
climate change-related problems and simultaneously rapid
urbanization happening around the world followed by the
massive demand for clean energy resources, microalgae have
proven that they can play a pivotal role in building a sus-
tainable future for the people in future green cities (Chew
et al. 2021). In this review, the term microalgae were used
for all unicellular and simple multicellular photosynthetic
prokaryotic or eukaryotic micro-organisms.

3 Responses of Microalgae in Stressed
Environments

The equilibrium of the physiological processes and compo-
sition of an organism in balance with its environment is
known as homeostasis. Stress is also known as the disruption
of homeostasis due to a stressor and the stress response
represents the changes in cell metabolism during acclimation
and the restoration of homeostasis. It also affects an indi-
vidual’s performance and impairs its growth and reproduc-
tion. The industrialization of microalgae requires
standardized quality parameters to obtain bioactive com-
pounds with high added value at a commercial level. Many
factors such as temperature, light or pH would make it more
difficult to maintain the viability of the culture and protect
the yield and condition of the target molecules in
microalgae-based industries (Elisabeth et al. 2021). Whether
or not a factor is considered stressful depends on the target
organism, intensity, duration and the recurrence of that stress
(Wahl et al. 2011). Streptophyte green algae which colo-
nized land about 450–500 million years ago that gave origin
to the terrestrial plants was also possible probably due to the
emergence of the mechanism to tolerate drought stress. This
transition could have been possible only after many physi-
ological adaptations of those green algae linked to the eco-
logical conditions characterizing modern terrestrial habitats
(Pierangelini et al. 2017, 2019). There are many stages of
stress response such as alarm, regulation, acclimation,
adaptation and finally once homeostasis is restored the cell is
no longer stressed (Borowitza 2018). As microalgae are a
major primary producer of the food chain in both marine and
terrestrial ecosystems, it is of great significance to under-
stand the impact of such stress and extreme condition
physiological and biochemical processes (Teoh et al. 2010).
According to Peck et al. (2005), any organisms have a
limited number of responses that ensure their survival in
changing environments. These are (1) coping with the
change using internal physiological flexibility and capacities,
(2) evolving adaptations to the new conditions, or (3) mi-
grating to areas consistent with survival. Recently Liu et al.
(2021) summarized the microalgal strategies to adopt

towards the light (light/dark, high-light, dark, chromatic and
photosynthetic) or temperature (geothermal, snowball earth
cold, or low temperature). Figure 8.2 depicts a simplified
diagrammatic representation of such responses under a stress
condition. In response to a stressor, the original homeostasis1
of the cells is disrupted initiating an alarm signal leading to a
‘response’ which initiates ‘acclimation’ processes to restore
homeostasis. Initially, there is a decline in metabolism. Once
the cells have fully acclimated (i.e. homeostasis is restored),
a new steady-state or homeostasis2 is achieved (new
steady-state may be higher than the original steady-state or it
may also be lower. If the new conditions persist long ade-
quately, the cells may also go for genetic changes to adapt to
the new conditions. On the other hand, cell death may occur
if the initial stressor is too disruptive (acute stress) and
acclimation may not be possible. Similarly, if the acclima-
tion response requires more resources than are available to
allow full acclimation, cell death may occur (chronic stress)
(Fig. 8.2) (Borowitzka 2018). Temperature and light are two
important stressors and microalgal response to these two
stressors depend on the magnitude and duration of stress
condition. Any sort of variations in these environmental
factors may change microalgal growth kinetics, macro-
molecular composition and physiological properties,
including cell membrane permeability and fluidity (Jabri
et al. 2021). For example, to maintain the photosynthetic
efficiency under changing light conditions, microalgae used
not only modified light-harvesting but also a different energy
transfer process (Ueno et al. 2019). These two key factors
not only determine the structure and function of algal
communities or ecosystem functioning but also in enhancing
lipid productivity and then biofuel or other valuable com-
pounds production. Thus, in the coming sections of the
review article, we will discuss microalgal responses to
changing environments.

4 Microalgal Adaptations to Temperature

Temperature is not only one of the key abiotic environ-
mental factor but also its ease of measurement make a vast
body of knowledge exists concerning its effects on living
organisms. According to Brock (1970), the average tem-
perature of the earth is about 12 °C and the majority of
living organisms are adapted to live in a moderate range of
temperatures around this mean. However, it has been con-
firmed that the global temperature increased steadily over the
last few decades and Intergovernmental Panel on Climate
Change (IPCC) indicate that the average global surface
temperature will likely rise a further 0.5 to 1.6 °C by 2030,
and rising to 1.1 to 6.4 °C by 2100 (Teoh et al. 2010). This
increase in global temperature is a critical issue and has a
great impact on all living organisms, including algae (Barati
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et al. 2019). Microalgae are an ideal group in which to study
the fundamental physiological responses in fluctuating or
extreme temperatures. Many microalgae are not only adap-
ted to survive at above or below the average temperature but
also some microalgae live at a temperature that is extremely
high or low by human standards such as Chroococcidiopsis,
Cyanidium, Galdieria, and Cyanidioschyzon.

Extremely high or low-temperature environments usually
have relatively simple species composition and short food
chains. Our understanding of the biology of these high or
low-temperature habitats is essential if we are to predict and
control the consequences of thermal pollution by various
industrial sources. Microalgal species have been reported
from a wide range of temperatures, but no photosynthetic
organisms have been reported that grow beyond 75 °C,
possibly due to the instability of chlorophylls beyond this
threshold (Varshney et al. 2015).

Many microalgal species are psychrophiles (cold-loving)
such as Chroococcidiopsis, Oscillatoria, Lyngbya, Micro-
coleus, Nostoc and Phormidium. Some psychrophiles also
grow on snow and ice such as Chlamydomonas nivalis,
Chloromonas, Mesotaenium, Chlorosarcina and Chlorella
(Hoham and Ling 2000; Leya 2013). Usually, these psy-
chrophiles build up massive blooms resulting in a macro-
scopically visible pigmentation of the snow. One of such
common green algae Chlamydomonas nivalis produce
colourful spores and gives snow its characteristic bright red,
pink, or yellow-green colour (Seckbach 2015). Psychrophilic

microalgae of Arctic and Antarctic or other extreme cold
environments may appear green (actively dividing sexual
and asexual stages of the cell) or red (due to carotenoids,
produced especially in resting stages). The catalytic effi-
ciency of the enzymes from such psychrophilic microalgae
like Chlamydomonas, Chloromonas, Microglena, Chlorella
and Scenedesmus are adapted to cold temperatures. They are
also adapted to tolerate the increased water viscosity, which
roughly doubles in going from 37 to 0 °C (Varshney et al.
2015). Recently Zheng et al. (2020) compared many
parameters like growth, photosynthetic activity, membrane
lipid peroxidation, and antioxidant activity of psychrophilic
microalgae Chlamydomonas nivalis with the model alga C.
reinhardtii, under growing temperature and low tempera-
tures. Their study reveals that photosynthetic activities C.
reinhardtii was badly damaged by low temperature indi-
cating a significant decrease in photosynthetic pigments (Chl
a, Chl b, and Car) content and photosynthetic activity.
Furthermore, this situation may also lead to photo-oxidative
damage to the membrane system, proteins, lipids and DNA
inside the cell. Contrary to this photosynthetic activities were
maintained under these conditions in C. nivalis by reducing
the light-harvesting ability of photosystem II and enhancing
the cyclic electron transfer around photosystem I (Zheng
et al. 2020). These two adaptations help this alga limit the
damage to the photosystem from excess light energy and
result in ATP production, supporting cellular growth and
other physiological processes. In addition, reactive oxygen

Fig. 8.2 Diagrammatic
representation of the response to a
stressor over time ( Adopted from
Borowitzka 2018)
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species levels were regulated by increased cyclic electron
transfer rate, carotenoid content, and antioxidant enzyme
activities to reduce photo-oxidative damage to the cell.
Controlled transport of nutrients and metabolic waste prod-
ucts in and out of the cells is an integral part of cellular
metabolism. Therefore, maintaining cell membranes fluidity
under freezing temperatures is of utmost importance which
is mainly done by increasing the unsaturated bonds (MUFA,
PUFA) for looser packing of lipids and decreased tempera-
ture of solidification (Lyon and Mock 2014). Sun et al.
(2018) also believed that lipid and carotenoid accumulation
machinery can be triggered by the stress conditions to
minimize the adverse effect of such stress conditions.
A combined effect of high temperature and high light may
help in more polar natural lipid accumulation in microalgae
Monoraphidium dybowskii after conversion of carbohydrates
and proteins (He et al. 2018). Some properties of
ribulose-1,5-bisphosphate carboxylase/oxygenase
(RUBISCO) was also adapted according to changing tem-
perature. A comparative study of psychrophilic and meso-
philic unicellular algae done by Devos et al. (2002) reveals
that although psychrophilic “cold” RUBISCO enzymes were
limited at low temperatures than that found with the enzyme
of the mesophilic alga but it showed a greater thermosen-
sitivity. This thermosensitivity may be a result of the sub-
stitution of a very highly conserved residue
(cysteine247 ! serine in the large subunit) from genes
encoding small and large subunits of RUBISCO. On the
other hand, high production of the RUBISCO can counter-
balance its poor catalytic efficiency at low temperature is
also a great example of adaptation at low temperature
(Devos et al. 2002). Microalgae Coccomyxa subellipsoidea
was the first polar eukaryote whose genome has been
sequenced. Like psychrophilic prokaryotes, the genome of
eukaryotic microalgae suggests similar adaptive routes such
as cold-induced desaturation of fatty acids in membrane
lipids, protective mechanisms against increased amounts of
solubilized oxygen and reactive oxygen species (ROS),
synthesis of antifreeze lipoproteins and glycoproteins, and

global change in the amino acid composition of encoded
proteins to decrease protein structural rigidity (Médigue
et al. 2005). Some of the specific genes potentially involved
in the adaptive process are enlisted in Table 8.1.

Despite all the above-mentioned adaptation in Coc-
comyxa subellipsoidea, the optimal growth temperature is
close to 20 °C which indicate that this microalga is not fully
specialized to grow in a permanent cold environment (Blanc
et al. 2012). Suzuki et al. (2019) succeeded to optimize
growth and PUFA production in bubble-tube and flat-plate
photobioreactors when they cultivated a cold-loving polar
microalga (Koliella Antarctica) at an enhanced 15 °C.
Recently, Young and Schmidt (2020) summarized physio-
logical adaptations of high-latitude marine microalgae to
environmental changes. They explained during winter when
light, temperatures and microalgal biomass are all low to
survive microalgae remain in a resting state with limited
metabolic activity (but maintain photosynthetic machinery
and utilize storage compounds). In ice to compensate for
reduced brine volume, production of extracellular polymeric
substances (EPS) and ice-binding proteins (IBPs) restructure
brine space, and along with compatible solutes, aid survival
over winter. During early spring with increasing brine vol-
ume and lowering salinity, low light is sufficient to stimulate
microalgal blooms in and under bottom ice and to begin
release of compatible solutes. During late spring/summer
when most of the ice has melted, high light boosts primary
production in the marginal ice zone (dominated by larger
centric diatoms and flagellates) and sympagic microalgal
communities, such as Melosira sp. and pennate diatoms sink
rapidly (Young and Schmidt 2020).

Any organism including microalgae required certain
adaptation not only in low/extreme low temperature but also
high/extreme high temperature for their growth, survival and
productivity. In literature, the effect of high temperatures,
above optimal temperatures, on growth is seldom reported
and often described as more deleterious than the effect of
low temperatures on growth (Ras et al. 2013). Three decades
ago Raven and Geider (1988) explained the detailed effect of

Table 8.1 Adaptive strategies to
cope with low temperatures and
potential adaptation in C.
subellipsoidea ( Adapted from
Blanc et al. 2012; Médigue et al.
2005)

Adaptive strategy Specific genes potentially involved in the process

Increased fluidity of cellular membranes at
low temperature

Lipid biosynthesis genes, including FA synthase type I,
FA desaturases, lipases

Reduction of the freezing point of cytoplasm
and stabilization of macromolecules

Production of antifreeze lipoproteins, exopolysaccharides
and glycoproteins: lipid biosynthesis genes, including FA
synthase type I and FA ligases; carbohydrate metabolism
genes

Protection against reactive oxygen species Dioxygen-dependant FA desaturases,
DOPA-dioxygenase, loss of the gene encoding
photosystem I subunit PsaN

Maintain catalytic efficiency at low
temperatures

No apparent change in global amino acid composition
relative to mesophilic plants and green algae
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temperature on algal growth. Some of the thermophilic
microalgae and their adaption were explained in detail four
decades ago by Brock (1976, 1978) and Fogg (2001).
Temperature coefficient or Q10 or Arrhenius functions is a
factor by which a biological rate is increased by a 10 °C rise
in the temperature. This Q10 or Arrhenius functions is being
used to determine the relationship between temperature at a
given biological rate such as algal growth and photosyn-
thesis (Teoh et al. 2010). Recently Jabri et al. (2021) showed
a high level of acclimation by microalgae Nannochloropsis
to high temperature like in harsh desert conditions.
Microalgae deployed different strategies to counteract the
effect of above optimal temperatures such as energy
re-balancing and cell shrinking (Ras et al. 2013). Cell
shrinking adaptation or the plasticity of microalgae to
unfavourably warm conditions can offer a long term solution
for future outdoor cultures. Starting from the increase in the
metabolic rate of organisms to displacement or even mor-
tality of sensitive organisms are some of the common effects
of enhanced temperature. Some of the common effects of
changing temperature are (1) increase/decrease in total fatty
acid/saturated/MUFA/PUFA content; (2) ratio of unsaturated
and saturated fatty acid may also change with fluctuating
temperature; (3) change in total carbohydrates/protein con-
tent. A strong reorganization of Nannochloropsis sp was
observed during high light and temperature in relation to
constant conditions, with a marked increase in cell volume
and lipid content and a simultaneous reduction in protein
(Jabri et al. 2021). Generally, common microalgal develop-
ment parameters like photosynthesis, respiration and growth
decline exceeded higher than optimal temperatures possibly
due to the imbalance between energy demand and ATP
production, inactivation or denaturation of proteins involved
in photosynthesis (Ras et al. 2013). However, these
responses of microalgae to temperature changes varied with
species. Hanagata et al. (1992) reported that Chlorella was
better able to tolerate very high temperatures than Scene-
desmus, though both microalgae had similar growth rates at
lower temperatures. Teoh et al. (2013) performed a very
unique experiment where aimed to find out the response of
the Antarctic, temperate, and tropical microalgae to tem-
perature stress. In their experiment microalgal species of
Chlamydomonas, Chlorella from all three Antarctic, tem-
perate and tropical regions along with Navicula (from the
Antarctic & temperate) and Amphiprora (from tropical)
region grew over specific temperature ranges of 4 °C to 30 °
C, 4 °C to 32 °C, and 13 °C to 38 °C, respectively. They
reported Chlorella as the most tolerant alga whereas if fur-
ther warming of Earth occurs, Navicula is likely to have the
most deleterious consequences than the other two Antarctic
microalgae. Some high altitude area creates a dynamic
environment with a high level of temporal and spatial
heterogeneity due to seasonal formation and melting of sea

ice every year. Because of such high-level temperature
adaptation (from polar, temperate to tropical). Lee et al.
(2018) called Chlorella a “eurythermal algae”. Barati et al.
(2018, 2019) studied physiological and molecular responses
of microalgae to elevated temperature and reported that
proteins and enzymes of microalgae remain protected by
molecular chaperones or degrade denatured proteins in
processes involving ubiquitin. According to Barati et al.
(2019) microalgae can show their adaptation towards to
temperature stress in various ways such as (1) membrane
homeostasis and lipid content; (2) protein homoeostasis;
(3) carbohydrate homoeostasis; (4) compatible solutes;
(5) oxylipins and polyamines; (6) antioxidant defence;
(7) photosynthetic efficiency; (8) DNA damage and repair
mechanisms and (9) programmed cell death (PCD).
Microalgae of such regions are truly specialized for this
environment. Hormidiella parvula, Streptosarcina costari-
cana, Streptosarcina arenaria and Streptofilum capillatum
showed a temperature dependence of photosynthesis similar
to respiration to cope with the high temperature (Pierangelini
et al. 2019). Hu et al. (2021) used adaptive evolution tech-
nology to check the adaptive evolution of microalgae Schi-
zochytrium sp. under high temperature for efficient
production of docosahexaenoic acid. Under high tempera-
ture by using this technology Hu et al. (2021) were able to
increase cell dry weight, lipid yield and DHA yield by
225%, 431% and 435% respectively. Furthermore, enhanced
performance of the adaptive strain of Schizochytrium
sp. might be related to the lower intracellular ROS, higher
accumulation of pigments and less expression of HSP pro-
teins. The above study shows that there is a great need to
understand how these physiological responses of microalgae
impact larger processes (ecosystem productivity, biogeo-
chemical cycles) in these areas. It will help us for modelling
high or low-latitude environments now and into the future.

5 Microalgal Adaptations to Light

Based on available data relating to microalgal adaptations to
different photon flux densities shows a high-level adaptation
of different microalgal groups towards light intensities. In
general, dinoflagellates and blue-green algae are considered
as best suited members for superior growth and photosyn-
thesis under low light conditions. Although, diatoms also
tend to be able to grow at very low light diatoms can also
tolerate a relatively high light environment (Richardson et al.
1983). Many microalgae can survive in unfavourable envi-
ronmental conditions that would shut down cellular pro-
cesses in most organisms because of their adaptation to
physiological mechanisms. Microalgae that grow on high
latitudes are characterized not only by extremely low tem-
peratures but also complete darkness in winter and
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continuous light and high UV in the summer (Lyon and
Mock 2014). There are many reports on microalgae and their
adaptation to varying light intensities. For example, five
decades ago Jøsrgensen (1969) described Chlorella and the
Cyclotella as two types of microalgal adaptation to different
light intensities. Chlorella (green algae) type adapt by
changing the pigment content and Cyclotella (diatoms) type
by enhancing the light saturation in low light or vice-versa
without changing the pigment content. The growth rate of
microalgae also gets affected to adapt itself in low light
stress. Ferro et al. (2018) reported negatively influenced
growth rates, biomass concentration, carbohydrates and
lipids content of Chlorella, Scenedesmus and Desmodesmus
species under low light conditions. Molecular analysis of the
light adaptation in the Yellow-green Xanthophycean alga
Pleurochloris meirinqensis analysed by Biichel et al. (1988)
revealed that chlorophyll a content and the dry weight on per
cell basis is increased in low light with a reduced maximal
photosynthetic capacity per chlorophyll. Whereas, in high
light more photosystem I and cytochrome f in chlorophyll
with twice diadinoxanthin and b-carotene were recorded
than low light. The experiment done by Beardall and Morris
(1976) with Phaeodactylum tricomutum at reduced light
intensities reported (a) increased chlorophyll content;
(b) decreased rate of light-saturated photosynthesis expres-
sed on a chlorophyll, cell number or cell protein basis; and
(c) decreased activity of RuDP carboxylase.

As discussed above continuous exposure to high light
could limit the photosynthetic rate in microalgae by inducing
photoinhibition. Therefore, it has been observed that
microalgae usually adapt their pigment content according to
the environment. Some microalgae like Chlamydomonas
raudensis have very unique adaptations towards fluctuating
light. C. raudensis has an extremely high PSII to PSI stoi-
chiometry to maximize the harvesting of low light whereas
in response to tenfold increased irradiance much faster
growth rates were observed rather than exhibiting photoin-
hibition. On the other hand, some microalgae like Chlorella
maintain an optimal photosynthetic activity under changing
light conditions by balancing PSI and PSII light absorption
(Morgan-Kiss et al. 2006, 2008). Non-photochemical
quenching (NPQ) is a mechanism employed by many
microalgae especially diatoms (including polar diatoms) to
protect themselves from the adverse effects of high light
intensity (Lacour et al. 2020). This mechanism dissipates
excess energy by violaxanthin-zeaxanthin or
diadinoxanthin-diatoxanthin or xanthophyll cycle (binding
of xanthophylls pigment to the LHCx family of fucoxanthin
chlorophyll proteins) to prevent photoinhibition and cellular
damage (Lepetit et al. 2013; Robinson et al. 1997). All such
studies prove that there is a clear link between the natural
light environment of species/ecotypes and quenching effi-
ciency amplitude (Lacour et al. 2020). Rmiki et al. (1996)

explained the role of carotenoids in the photo adaptive
response especially through the operation of xanthophyll
cycles. Sometimes cold or dark treatment may help in
reducing the effect of heat stress for instance cold or dark
treatments (not both) to Nannochloropsis oceanica reported
in overcoming heat stress. The impact of this treatment was
also observed not only in larger chloroplast with more thy-
lakoid membrane but also significantly induced EPA and
carotenoids biosynthesis (Chua et al. 2020). Genome anal-
ysis comparison of polar diatom Fragilariopsis cylindrus
with other temperate species also revealed a large expansion
in the LHCx gene family in polar diatoms (Green et al.
2013). Similarly, microarray studies done by Park et al.
(2010) with the polar diatom Chaetoceros neogracile also
revealed significant elevations in LHCx proteins and
antioxidant proteins but light harvesting proteins were sig-
nificantly reduced at increased irradiance. By observing the
delayed fluorescence spectra, light harvesting chlorophyll
protein (LHCs) and photosystems (PSs) regulate their
interactions in many green algae. Ueno et al. (2019)
demonstrated that Chlamydomonas reinhardtii and Chlor-
ella variabilis cells grown under different light qualities
primarily modified the associations between LHCs and PSs
(PSII and PSI). Much improved activity of an important
antioxidant protein catalase was reported during high light
exposure in sea-ice diatom Entomoneis kufferathii to protect
cells from oxidative damage (Schriek 2000). Janknegt et al.
(2008) studied oxidative stress responses in the marine
Antarctic diatom Chaetoceros brevis during photoacclima-
tion and reported elevated levels in superoxide dismutase
activity, in addition to xanthophyll cycling, also to be
important for dissipating ROS.

Like adaptation against high light, the survival of any
photoautotrophic organism in the polar region during win-
ters depends upon how much they are adapting themselves
for low light. Seasonal and spatial distributions of microal-
gae also depend upon their dark adaptations. Some polar
diatoms and green algae accumulate specific carbohydrate
storage molecules such as glucan and are utilized during
periods of darkness (Morgan-Kiss et al. 2006; van Oijen
et al. 2004). In addition, many polar microalgae also uptake
sugars, starches or other dissolved organic material for
energetic breakdown while densely packed pigments and
their binding proteins with better thylakoid fluidity facilitate
efficient photosynthesis at dark or very low light (Lyon and
Mock 2014). Furthermore, Neven et al. (2011) also reported
plasticity in southern ocean phytoplankton to inorganic
carbon uptake. Adaptation of cellular lipids is considered as
one of the mechanisms of adaptation of microalgae to
varying incident light intensity. Khotimchenko and
Yakovleva (2005) reported an abundance of structural
components of the cell membranes (such as sulfoquinovosyl
diacylglycerol, phosphatidylglycerol and phosphatidyl
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choline} in Tichocarpus crinitus to low light, while 1.5 fold
increase in the level of storage lipids, triacylglycerols at high
light intensity. However, no significant differences in the
fatty acid composition in T. crinitus remain unchanged while
grown under different light conditions. The genome of a
polar psychrotolerant green eukaryotic microalga Coc-
comyxa subellipsoidea reveals adaptation of microalgae in
the form of enrichment in amino acid transporters and per-
meases to uptake organic nutrient sources (Blanc et al.
2012). Similarly, Parker et al. (2008) gave genomic insights
into marine diatoms and their adaptability for recovering
carbon and nitrogen depleted during photorespiration. Many
genes of unknown function are generally considered as an
adaptation of these psychrophilic microalgae. Perhaps, these
strongly differentially-regulated gene codes those proteins
which are required for unique signaling and transcription
factor proteins which do not need to be expressed at the
same concentrations as metabolic enzymes (Lyon and Mock
2014). A transcriptomic and metabolomic study done by
Patelou et al. (2020) on Nannochloropsis gaditana revealed
extensive metabolic adaptations triggered by different chro-
matic qualities of light. They observed (1) an overall
induction in both transcripts and metabolites, involved
mainly in amino acid metabolism, under red filtered light;
(2) decreased carbohydrate concentration and elevated
polyunsaturated fatty acids content under blue filtered light;
(3) lowest responses in metabolite and gene transcript levels
in green filtered light.

Photosynthetically active radiation or PAR (400–700 nm)
produced very little or no growth inhibition in general.
However, some microalgae can tolerate intense PAR or even
the range of UV-A (315–400 nm) or UV-B radiation (280–
315 nm) or both. Ultraviolet radiation also plays an impor-
tant role in the adaptive strategy of microalgae in their high
altitude habitats. Unusual changes in UV radiation can
inhibit many biological processes in microalgae. There are
many microalgal biomolecules such as nucleic acid
(DNA/RNA) and proteins that can be damaged by directly
absorbing the UV-B radiation or indirectly affected by var-
ious UV-induced photochemical reactions (Karsten and
Holzinger 2014). To mitigate or prevent such biologically
harmful UV effects many soil crust microalgae rely on
several different strategies which can be broadly classified
into three categories (1) avoidance (self-shading, cell
aggregation); (2) protective mechanism (mucilage/cell wall,
physiological acclimation, antioxidant potential, protective
substances, de novo protein synthesis) and (3) repair of
DNA. Some green algae like Klebsormidium make
multi-layered mat-like structures or self-shading by sur-
rounding cells or filamentous algae which act as an ‘um-
brella’ (a protective mechanism) for individual filaments
(Karsten et al. 2010). A similar thick mat-like protective
layer was also reported for Zygnema as an umbrella

protection from high UVR to PAR ratio by self-shading
(Holzinger et al. 2009; Pichrtová et al. 2013). In addition,
Holzinger and Lütz (2006) also reported the formation of
various asexual spores and permanent stages like akinetes in
Zygnema to cope with UV radiation. A unique chemically
closely related, colourless, water-soluble, polar and zwitte-
rionic amino acid derivatives or mycosporine-like amino
acids (MAAs) act as nature’s sunscreens in many algae by
absorbing UV-A/B wavelengths radiations (Bandaranayake
1998). These photochemically stable amino acids can dis-
sipate the absorbed UVR energy in the form of harmless heat
without generating photochemical reactions (Karsten and
Holzinger 2014). Hormidiella parvula, Streptosarcina
costaricana, Streptosarcina arenaria and Streptofilum
capillatum all four species accumulated different amounts of
mycosporine-like amino acids (MAAs) to show protection
against ultraviolet radiation (Pierangelini et al. 2019). Kar-
sten et al. (2009) summarized knowledge of UVR effects on
the ultrastructure of marine algal (mostly macro) cells of
different systematic positions from polar to cold-temperate
regions. Similarly, a detailed study on microalgae Dunaliella
salina was done by Tian and Yu (2009) revealed that UV-B
radiation can bring various kinds of ultrastructure changes
such as swelled thylakoid, accumulated lipid globules, dis-
integrated cristae, reduced vacuoles and loose cisternae.

6 Role of Stress Adapted Microalgae
in Biotechnology

Clean water, world food demand, air pollution and renewable
energy resources have become critical issues worldwide in the
twenty-first century. Scientists believe that microalgae will
surely play an important role as a potential source of livestock
feed, pharmaceuticals, and alternative fuels. Despite the large
biodiversity of marine microalgae species and the almost
unlimited availability of seawater, there are still some hurdles
from realizing the undisputed potential provided by algae.
Therefore, critical studies need to be conducted in regards to
the algal species and the biomass production concerning algae
technology (Chew et al. 2021). Like any other extremophiles,
microalgae too adapted to extremes of environmental condi-
tions which makes them the subject of some interest for
biotechnology. Despite extensive worldwide research and
development the commercial potential of microalgae on a
large scale in a sustainable economic process is limited. One
of the major constraints in achieving this goal is unfavourable
outdoor conditions. However, two extremophiles Dunaliella
and Spirulina already set the benchmark for commercial
production of natural sources of b-carotene and as a food and
feed additive respectively. Varshney et al. (2015) explored the
potential of psychrophilic and thermophilic microalgae in
biotechnology. Some of the common extremophilic
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microalgal products are astaxanthin (Chlamydomonas niva-
lis); a-tocopherol (vitamin E) and xanthophyll cycle pigments
(Raphidonema sp.); sucrose, glucose, glycerol (Mesotaenium
berggrenii and Chloromonas sp.); myxoxanthophylls and
canthaxanthin (Nostoc commune); thermostable restriction
enzyme (Phormidium sp.); thermostable phosphate kinase
(Thermosynechococcus elongates); lutein a xanthophyll
(Desmodesmus); phycocyanin (Galdieria sulphuraria). In
addition, Galdieria sulphuraria and Chlorella sorokiniana
along with other microorganisms also commonly used in
wastewater treatment (Varshney et al. 2015). Essential
omega-3 fatty acids eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) are allegedly involved in the
regulation of membrane fluidity and thylakoid membrane
functioning of many polar and cold-temperate marine
microalgal (Boelen et al. 2013). Therefore, such species are
suitable candidates for commercial EPA and DHA produc-
tion. Recently Cheregi et al. (2019) established the potential
of local strains of microalgae in developing the biotechno-
logical approach in Nordic countries.

Microalgae can also provide many other value-added
products, and more recently, interest has focused on lipids
and carotenoids (Sun et al. 2018). The lipid content of
microalgae is usually in the range of 20–50% of dry weight
and can be as high as 80% (Chisti 2007). Microalgal lipids
can be used for the production of biodiesel (14–20 carbon
fatty acids) or as health food supplements polyunsaturated
fatty acids (PUFAs) (more than 20 carbon fatty acids) such
as docosahexaenoic acid (DHA) and eicosapentaenoic acid
(EPA). Recently Maneechote and Cheirsilp (2021) have
proved the effectiveness of stepwise increasing of

physicochemical factors to induce acclimation and adaptive
evolution of microalgae. Many enzymes for biosynthesis and
modification of membrane lipids, which are required by
microalgae like Coccomyxa subellipsoidea for their adapta-
tion in a cold environment, are of potential interest in
developing technologies for converting lipids into diesel fuel
or valuable fatty acids (Blanc et al. 2012). Microalgal car-
otenoids are not only responsible for light harvesting in
photosynthetic metabolism but also have anti-oxidant prop-
erties in alleviating certain cancers, premature ageing, car-
diovascular diseases, and arthritis (Chen et al. 2017;
Vershinin 1999). Carotenoids are also used as colouring
agents and dyes in various industries. Under stress condi-
tions, microalgae can overproduce these lipids or car-
otenoids. Sun et al. (2018) summarized recent works on the
manipulation of stress factors, including cultivation models
and the development of novel stress-tolerant microalgae
strains, which is mainly focused on overcoming the negative
effects of stress-based strategies. Manipulation of stress
factors can be done by multistage cultivation strategies to
achieve maximum production of desired products. There-
fore, there is a great potential of using light, temperature,
salinity or other abiotic factors as environmental stress to
improve biomass, lipid, astaxanthin, b-carotenoids, PUFAs
or any other valuable content in microalgae. Therefore,
Paliwal et al. (2017) used abiotic stresses as tools for
metabolites in microalgae to influence PUFAs, phyco-
biliproteins and carotenoids. This review can be summarized
in Fig. 8.3 that provides several examples of potential
biotechnological applications of such special microalgae and
the ranges of tolerated extremes.

Fig. 8.3 Diagrammatic representation of the microalgal response to a stress condition and its possible three outcome
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7 Conclusion

Multiple factors affect the growth and occurrence of
microalgae. Microalgae have potential as sustainable sources
of energy, valuable products and alternative modes of agri-
culture. However, it is a challenge for mass outdoor culti-
vation due to their low survival under harsh conditions and
competition from other undesired species. Therefore, extre-
mophilic or stress-tolerant microalgae have a role to play by
virtue of their ability to grow under stressed or extreme
environments. This review proved that our understanding of
morphological, physiological and molecular adaptations of
microalgae has improved a lot in the last few decades which
make them specialists of a particular niche. However, the
authors still feel that it is only the beginning and extensive
research needs to be done in terms of the physiology,
molecular biology, metabolic engineering and outdoor cul-
tivation trials before their true potential is realized.
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Halopriming: Sustainable Approach
for Abiotic Stress Management in Crops
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Abstract

Halopriming is a salt-based, pre-sowing approach that
harmonies metabolic processes required for improving
seed quality, enhanced emergence rate and healthy
seedling vigour by controlling temperature and seed
moisture content in the early stages of germination while
preventing the seed from transitioning to complete germi-
nation. An aerated aqueous solution of different inorganic
salts, viz., KNO3, KH2PO4, KCl, NaCl, CaCl2, Ca(NO3)2,
CaSO4, CuSO4, Mg(NO3)2, ZnSO4, etc. alone or in
combination is applied to the seeds followed by redrying
to their actual weight before sowing into seedbeds to
achieve halopriming. Halopriming of seeds prevent seed

degradation, breaks dormancy and induces systemic
resistance to different abiotic stresses in the seedlings of
various crops with amended physiological attributes,
improved functional biochemistry andmetabolic processes
with subcellular changes despite some of its major
limitations in terms of prolonged storage of imbibed
(pre-soaked) seeds. On priming of the seeds, accumulation
of osmolytes, and upregulation of antioxidant enzymes and
signaling cascades are achieved in the seeds that persist
even after germination in the seedlings as well. The
technique has been proved beneficial for improved crop
establishment and greater uniformity, increased plant
performances with higher agricultural productivity and
further for sustainable agricultural practices under the
regime of abiotic environmental stresses to meet sustain-
able future food demand. The current study, therefore, is a
compilation of literature to explore different dimensions of
a simple, cost-effective, eco-friendly and potent haloprim-
ing technique, which could help to integrate seed germi-
nation, agricultural production and yield attributes in the
pertaining changing climatic conditions.
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°C Degree celsius
APX Ascorbate peroxidase
AQP Aquaporins
Ca(NO3)2 Calcium nitrate
Ca++ Calcium ion
CaCl2 Calcium chloride
CaSO4 Calcium sulphate
CAT Catalase
Cl− Chloride ion

T. Gour � Ratan Lal � K. Sharma (&)
Department of Botany, Mohanlal Sukhadia University, Udaipur,
Rajasthan, India
e-mail: kdsharmadu@gmail.com; drkdsharma@mlsu.ac.in

M. Heikrujam
Department of Botany, Maitreyi College, University of Delhi,
Delhi, India

A. Gupta
Department of Agriculture, Rajasthan Govt, Jaipur, Rajasthan,
India

V. Singh
Department of Botany, Swami Shraddhanand College, University
of Delhi, Delhi, India

A. Vashishtha
Department of Botany, Department of Plant Protection, C. C. S.
University, Meerut, India

L. K. Agarwal
Department of Chemistry, Mohanlal Sukhadia University,
Udaipur, Rajasthan, India
e-mail: lokeshkumar@mlsu.ac.in

R. Kumar
Department of Botany, Hindu College, University of Delhi, Delhi,
India

S. P. K. Chetri
Department of Botany, Dimoria College, Khetri, Kamrup Metro,
Assam, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Roy et al. (eds.), Plant Stress: Challenges and Management in the New Decade,
Advances in Science, Technology & Innovation, https://doi.org/10.1007/978-3-030-95365-2_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95365-2_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95365-2_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95365-2_9&amp;domain=pdf
mailto:kdsharmadu@gmail.com
mailto:drkdsharma@mlsu.ac.in
mailto:lokeshkumar@mlsu.ac.in
https://doi.org/10.1007/978-3-030-95365-2_9


CuSO4 Copper sulphate
GPOX Guaiacol peroxidase
GR Glutathione reductase
H2O2 Hydrogen peroxide
K+ Potassium ion
KCl Potassium chloride
KH2PO4 Potassium dihydrogen phosphate
KNO3 Potassium nitrate
LEA Late embryogenesis abundant
Mg(NO3)2 Magnesium nitrate
Na+ Sodium ion
NaCl Sodium chloride
POD Peroxidase
ROS Reactive oxygen species
SOD Superoxide dismutase
ZnSO4 Zinc nitrate

1 Introduction

As the World’s population increases the global food security
seems a great challenge ahead in order to sustain food pro-
duction. In the era of rapid global climate changes, a wide
range of environmental stresses severely affects the bio-
chemical and physiological processes in plants which causes
a reduction in agricultural production efficiency by 71% (Qin
et al. 2010; Kaya et al. 2013; Petrov et al. 2015;
Pirasteh-Anosheh and Hashemi 2020). The level of stress
stimulation and the growth stage at which the plants are
affected have a direct relationship with the impact of stress
on plants. Among the various phases, seed germination and
seedling establishment are essential aspects of a plant’s life
cycle in both natural and stressful environments (Kumar
et al. 2016a). Since seed germination is highly sensitive to
changing environmental conditions, therefore, treating seeds
chemically or physically before sowing in the agriculture
fields is a pre-sowing procedure, commonly known as seed
priming has been seen as a viable biological approach that
focuses on the management and production of crops to
survive them under the stressful conditions (Ashraf et al.
2008). The method of seed priming requires pre-exposure to
abiotic stress and treating seeds with some physical or
chemical agents for a period of time to induce physiological
conditions and bring metabolic changes in the seeds making
them more likely to germinate further imparting stress tol-
erance in the seedlings in terms of increased seedling vital-
ity, root length, photosynthetic efficiency and crop yield
(Basra et al. 2005b; Bruggink et al. 1999; Hussain et al.
2016; Ibrahim 2016; Kaur et al. 2005; Karim et al. 2020;
Kumar and Rajalekshmi 2021; Lal et al. 2018; Taylor and
Harman 1990; Wojtyla et al. 2016).

There are various types of seed priming technology, viz.,
hydropriming, osmopriming, halopriming, biopriming, solid
matrix priming, nutripriming, thermopriming and seed
priming with plant growth regulators and other organic
sources (Ashraf and Foolad 2005; Eskandari et al. 2013;
Jisha et al. 2013; Maiti and Pramanik 2013; Nawaz et al.
2013; Paparella et al. 2015; Sher et al. 2019). Among the
numerous seed priming techniques, halopriming is a simple
and inexpensive agrotechnique that is simple, cost-effective
and ideal for recommending to farmers for improved seed-
ling emergence, germination consistency with greater uni-
formity, improved plant performance, high vitality, crop
stand and higher yield in a variety of environmental cir-
cumstances (Ashraf and Rauf 2001; Basra et al. 2005a; Bose
and Mishra 1999, Sadeghi and Robati 2015, Zhu and Wang
2008). Halopriming is a long-term biological strategy that
involves soaking of seeds in the aerated solutions of inor-
ganic salts viz. calcium chloride (CaCl2), calcium sulphate
(CaSO4), copper sulphate (CuSO4), monopotassium phos-
phate (KH2PO4), magnesium sulphate (MgSO4), potassium
chloride (KCl), potassium nitrate (KNO3), sodium chloride
(NaCl) and zinc sulphate (ZnSO4) followed by drying and
sowing into the agrifields (Table 1). Halopriming induces the
pre-germination metabolic pathways by preventing radicle
protrusion and decreased emergence time for enhanced
nutrient uptake, optimization of germination consistency and
germination rate with greater uniformity, improved plant
performance, high vitality and crop yield in horticulture,
floriculture and field crops even in adverse environmental
conditions (Biju et al. 2017; Farooq et al. 2007, 2013; Guo
et al. 2012; Iseri et al. 2014; Jisha and Puthur 2014; Nawaz
et al. 2013; Patade et al. 2012; Pawar and Laware 2018; Sen
and Puthur 2020; Srivastava et al. 2010).

Therefore, prospects, possibilities and mechanisms of
halo-priming technology in the agroecosystems have been
summarized in the present study.

2 Halopriming and Seed Germination

Seed priming improved the plant’s biochemical profile by
raising a-amylase function and soluble sugar content during
seed germination even at low temperatures (Anaytullah and
Bose 2007). Halopriming has been reported to enhance seed
efficiency and seedling vitality of watermelon (Demir and
Mavi 2004), rice (Farooq et al. 2006), maize (Kumari et al.
2017), and in several other crops. Seed priming with dif-
ferent inorganic salts such as NaCl, KCl and CaCl2 has a
beneficial impact on pepper germination under salinity stress
by speeding up imbibition, allowing the seeds to faster
metabolic function (Aloui et al. 2014). The salt-sensitive
(PI94341) and salt-tolerant (Kharchia 65) genotypes of
wheat (Triticum aestivum L.), primed with KCl and NaCl
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increased germination percentage, triggered physiological
attributes such as chlorophyll content and decreases mean
germination time (Saddiq et al. 2019). Sesame seeds
(Sesamum indicum L.) primed with CaCl2 enhanced ger-
mination up to 88.75%, improved vigour and productivity
(Tizazu et al. 2019). Halopriming with NaCl proved to be
superior in maize and tomato for fast emergence, shoot and
root length and other attributes such as photosynthetic

pigments (Akter et al. 2018; González-Grande et al. 2020).
NaCl priming enhanced breaking off hard seed coat which
facilitates 20.56% seedling emergence in okra (Jonah et al.
2019). A better effect on crop productivity and a number of
tillers per panicle was observed in different rice (Oryza
sativa L.) varieties on priming with NaCl (Riadi et al. 2020).

Halopriming with NaCl and CaCl2 improved germination
and seedling growth parameters in maize (Zea mays) as

Table 1 Differential responses of halopriming on seeds of different crops

Crop Halopriming
agents

Concentration Duration Germination/seedling
growth %

Metabolomics Enhance tolerance
against stress

References

Vigna
unguiculata

CaCl2 1% 12 h 86.66 – Karim et al. (2020)

Abelmoschus
esculentus

CaCl2 and
KNO3

1 and 2% 18 and
6 h

64 Antioxidants enzymes field
emergence, lipid peroxidation,
reserve mobilizing enzymes,
viability, vigour index

Oxidative stress Sharma et al. (2014)

Triticum sp. CaCl2, KCl
and NaCl

100 mM 12 h Antioxidant enzyme activities
(CAT, POD, APX)

Salt stress Islam et al. (2015)

Solanum
lycopersicum

KNO3 25 mM 24 h 81.33 a-Amylase activity Salt stress Nawaz et al. (2011)

Papaver rhoeas
and P. dubium

KNO3 0.5 gL−1 24 h 50.1 and 49.61 – Temperature, light
regimes, pH, salt
and osmotic
stresses

Golmohammadzadeh
et al. (2020)

Nigella sativa KNO3 −1 MPa 24 h 98 POX activity increased Oxidative stress Espanany et al.
(2016)

Allium cepa KNO3 150 mM 6 days 42.5 Soluble sugars like raffinose,
sucrose, glucose, and fructose
contents were monitored, higher
cytochrome c oxidase activity

– Thakur et al. (2020)

Brassica rapa
subsp. Pekinensis

KNO3 200 mmol/L 8 h 34 Modulating POD, SOD, CAT,
protein, sugar and proline content

Drought stress Yan (2015)

Solanum
lycopersicum

Mg(NO3)2 7.5 mM 24 h 98.7 Superoxide dismutase activity Temperature stress Nafees et al. (2019)

Triticum sp. Mg(NO3)2 7.5 mM 10 h 94 Soluble and insoluble sugar
contents and activity of a-amylase

Under heavy metal
stress (HgCl2)

Kumar et al. (2016a)

Cajanus cajan NaCl 50 mM 2 h – beta-cyano-L-alanine,
O-Acetylsalicylic

Salt stress Biswas et al. (2018)

Nigella sativa NaCl 1 and 2%
(w/v)

24 h 88 – Salinity stress Gholami et al. (2015)

Vigna mungo NaCl 50 mM 2 h 76 35 compounds altered
significantly under salinity

Salt stress Biswas and Saha
(2020)

Abelmoschus
esculentus

NaCl 3% 12 h 72.15 – – Tania et al. (2020)

Psophocarpus
tetragonolobus

NaCl 125 mM 48 h 82.49 Enhance the germinability,
antioxidant enzymes and
biochemical activities

Oxidative stress Kumar and
Rajalekshmi (2021)

Vigna radiata NaCl 6 h – – NaCl and PEG
stress

Jisha and Puthur
(2014)

Oryza sativa NaCl 75 mM 12 h 73 Generation of reactive oxygen
species (ROS), accumulation of
malondialdehyde, activities of
enzymatic and content of
non-enzymatic antioxidants and
chlorophyll a fluorescence

Reduced the
excess ROS
generation and
oxidative stress

Sen and Puthur
(2020)

Nigella sativa Urmia lake
salt and Urea

5 M 16 h 74.6 Enhanced peroxidase and catalase
activity

Osmotic stress Ghiyasi et al. (2019)
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compared to nonprimed seeds under salinity (Gebreegziab-
her and Qufa 2017). Sorghum seeds (Sorghum bicolor L.)
treated with different inorganic salts such as NaCl, KCl and
CaCl2 provoked healthy germination and early seedling
growth (Chen et al. 2021). Cowpea seeds (Vigna unguicu-
lata (L.) Walp.) primed with CaCl2 improve carbohydrate
content, photosynthetic pigments and biomass production
(Farooq et al. 2020). Priming of peanut seeds variety (Tainan
9) with CaCl2 showed high germination, increase shoot
length, root length and reduced mean germination time
(Jeammuangpuk et al. 2020).

KNO3 serves as a nutrient and initiator for pre-germination
metabolic events such as increased water imbibition, cell
division and elongation, essential germination and other growth
activity in seedlings of rice (Dhillon et al. 2021). Priming of
rice (Oryza sativa L.) cultivars KDML105 and
RD15KDML105 with KNO3 increased imbibition pattern,
germination percentage and uniform germination of seedlings
(Ruttanaruangboworn et al. 2017). Rice seedlings primed with
2.5 and 5% KNO3 improved emergence percentage by 70 and
94% compared with control (54%) in dry conditions (Ali et al.
2021a). Priming of Capsicum frutescens with NaCl and KNO3

enhances germination potential, final germination percentage,
plant length and reduce mean germination time (Robledo
2020). Citrullus lanatus (Thunb.) (Watermelon) seeds and
China aster seeds (Callistephus chinensis L.) primed with
KNO3 enhanced survival percentage of seeds, germination
indices, plant height, shoot and root length, root dry matter and
vigour index (Barbosa et al. 2016; Wani et al. 2020). Priming
of cotton and soybean seeds with KNO3 improved germination
and seed vigour under salt stress conditions (Miladinov et al.
2015; Nazir et al. 2014). Priming with ZnSO4 improved ger-
mination percentage, vigour, photosynthetic pigment and sugar
content in Momordica charantia seeds (Bukhari et al. 2021).
On-farm seed priming of maize and pea with ZnSO4 enhanced
the length and number of grains/pods and yield attributes in
both crops (Sharma et al. 2021).

3 Halopriming and Abiotic Stress Tolerance

Environmental stresses, such as salinity, temperature
extremes (heat and cold), drought, osmotic stress, nutrient
deficiency and heavy metal toxicity cause adaptation issues
to seedlings and challenge seedling emergence of plumules
and radicles, and seedling growth and development leading
to yield losses (Ghiyasi et al. 2019; Hasanuzzaman et al.
2012). Seed priming treatment mitigates the detrimental
consequences of different abiotic stress (salinity, drought,
heat, cold, heavy metals, etc.) responses via modifying the
antioxidant metabolism and enhancing the accumulation of
osmolytes (Basra et al. 2005a; Guan et al. 2009; Kausar and
Ashraf 2003; Kumar et al. 2016a; Saha et al. 2010).

Halopriming with NaCl induces a physiological response
in maize seeds that interact with plant stress memory causing
the plants to respond swiftly and effectively to upcoming
adverse environmental conditions (El-Sanatawy et al. 2021).
The improved salt tolerance index (STI) based on growth
parameters, such as shoot length, root length and relative
water content in NaCl primed seeds were reported in sesame
seeds and Vigna mungo L. (Biswas and Saha 2020;
Mohammadi et al. 2013). NaCl pretreatments also efficiently
reduced the harmful effects of salt stress facilitating effective
germination due to increased K and Ca content and
decreasing Na accumulation in stems and leaves of Cucumis
melo (Sivritepe et al. 2005). Fenugreek seeds (Trigonella
foenum-greacum) and tomato (Solanum lycopersicum
cv.’Río Grande) primed with NaCl mitigated the deleterious
effect of salt stress, significantly (González-Grande et al.
2020; Mohammadi et al. 2013). Sorghum seeds (Sorghum
bicolor L.) treated with different concentrations of inorganic
salts ameliorated the efficacy of saline stress (Chen et al.
2021). Besides, halopriming has also been reported to be
beneficial for enhanced seed germination, seedling growth
under drought and induced salt resistance in pepper (Amjad
et al. 2007), Triticum aestivum L. (Afzal et al. 2008), sug-
arcane (Patade et al. 2012), Vigna radiata (L.) Wilczek
varieties (Jisha and Puthur 2014) and Cajanus cajan L.
(Biswas et al. 2018).

Seed priming with calcium salts has proved to be more
efficient and cost-effective in enhancing plant stress resis-
tance (Jafar et al. 2012; Tabassum et al. 2017), as the cal-
cium serves as a secondary messenger in signal transduction
(White and Broadley 2003) and promotes osmolyte and
antioxidant production in stress conditions (Farooq et al.
2017). Halo-conditioning with CaCl2 enhances crop estab-
lishment and confers cis-tolerance on salt-affected lands in
wheat (Feghhenabi et al. 2020; Tamimi 2016; Yasmeen et al.
2013) and cowpea (Vigna unguiculata (L.) Walp.; Farooq
et al. 2020). Seed priming with CaCl2 increased seedling
development, seedling establishment, plant length, grain
number, grain weight, grain yield and tillers number under
drought stress in wheat (Hussian et al. 2013). It was also
elucidated when CaCl2 primed seed supplemented by KCl
stimulated salt tolerance in rice varieties that is revealed by
increased germination performance, seedling emergence and
dry weight under saline conditions (Afzal et al. 2012). The
seeds of rice and maize primed with NaCl, KCl, CaCl2 and
KNO3 solution enhance resistance against salt stress and
exhibited improved growth (Gebreegziabher and Qufa 2017;
Theerakulpisut et al. 2016). By priming with inorganic salts
NaCl and KCl, salt-sensitive wheat (Triticum aestivum L.)
genotype PI.94341 mitigated the negative effects of salinity
stress through physiological seed enhancement (Saddiq et al.
2019). Halopriming with CaCl2, KNO3 and NaCl show a
significant effect in alleviating salt-induced oxidative stress
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in rice (Oryza sativa L. cv.) (Riadi et al. 2020;
Tahjib-Ul-Arif et al. 2019). In addition to this, the devas-
tating effects of salinity stress on sunflower (Bajehbaj 2010;
Kaya et al. 2006) and melon (Oliveira et al. 2019) seeds
were reduced by treating them with KNO3. Nigella sativa
seeds primed with ZnSO4 and KNO3 increased germination
percentage, germination rate and seedling growth under
severe water stress (Fallah et al. 2018).

Among various abiotic stressors, Chilling (0–15 °C) is
one of the most destructive abiotic stress which severely
reduces crop yield (Thakur et al. 2010). Cold stress reduces
membrane permeability and disturbs ion transport at the
cellular level (Ahmad and Prasad 2011). Consequently, cold
stress reduces seed emergence rates, causes seedling failure
and accelerates the production of free radical ions (Yu and
Rengel 1999). Under chilling stress, halo-priming facilitated
the crop establishment and growth by enhancing germina-
tion rate and physiological parameters in Chickpea (Cicer
arietinum) and hairy vetch (Vicia villosa) (Farooq et al.
2017; Yusefi-Tanha et al. 2019). Peanut seeds primed with
CaCl2 showed enhanced storability and faster germination
under low-temperature conditions (Jeammuangpuk et al.
2020). Priming with KNO3 followed by drying also allowed
cotton seeds to be cold tolerant and produced vigorous
seedlings (Cokkizgin and Bölek 2015). The priming of
maize and eggplant seeds with Ca(NO3)2 promoted germi-
nation rate, radicle protrusion rate index and seedling dry
mass under low and high-temperature conditions (Gouveia
et al. 2017; Salles et al. 2019). Batista et al. (2016) observed
that palisade grass (Brachiaria brizantha cv. MG-5) seeds
primed with Ca(NO3)2 and KNO3 improved physiological
seed quality resulting in seeds with great stress tolerance
under high temperature (Batista et al. 2016).

Heavy metals have been reported to reduce the germi-
nation parameters of a developing seedling. Halopriming
with Mg(NO3)2 and Ca(NO3)2 reduced the severity of heavy
metal (HgCl2) stress in wheat var-HUW-468 during the
germination process by increasing endosperm a-amylase
activity and soluble sugar content resulting in enhanced
germination percentage, seedling emergence and growth
performance (Kumar et al. 2016a). Black cumin seeds
haloprimed with KNO3 also had the highest germination
percentage (100%), plumule length, and dry weight miti-
gating cadmium toxicity (Espanany et al. 2016). Priming of
garden cress (Lepidium sativum) with NaCl and KCl pro-
motes seed germination, boosts seedling growth and devel-
ops seedling resistance under hazardous metals stress (Nouri
and Haddioui 2021). Besides, different responses of condi-
tioning of seeds, i.e. seed priming in several crops under the
regime of different abiotic stresses have also been summa-
rized in Table 1.

4 Halopriming and Anti-oxidative Responses

Seed priming allows morphological, physiological and bio-
chemical changes leading to enhanced stress tolerance and
amelioration of the adverse effects of abiotic stress in plants
by up-regulating the activity of antioxidant enzymes (Ashraf
et al. 2008; Basra et al. 2005b; Bussotti et al. 2014; Chiu
et al. 1995; Chang and Sung 1998; Chandra Nayaka et al.
2010; Guan et al. 2009; Kausar and Ashraf 2003; Kumar
et al. 2016a; Thakur et al. 2019).

Peroxidases probably played a vital role in reducing
oxidative damage and hydrogen peroxide content. An
enhanced guaiacol peroxidase content was found to play
important role in haloprimed pea (Pisum sativum L.) under
chilling effect (Yusefi-Tanha et al. 2019). Halopriming with
125 mM NaCl enhanced germination, antioxidant enzymes
(CAT, APX, SOD and POD) and biochemical activities in
winged bean [Psophocarpus tetragonolobus (L.) DC.;
Kumar and Rajalekshmi (2021)]. NaCl priming of fenugreek
seeds (Trigonella foenum-graecum) activated the antioxidant
machinery that alleviated negative effects of salt stress and
maintain ionic balance (Mahmoudi et al. 2020). Antioxidant
enzyme activities (CAT, POD, APX) of wheat (Triticum
aestivum L.) cultivars, Lu26s (salt-tolerant) and Lasani-06
(salt-sensitive) were found to be significantly increased after
halopriming (Islam et al. 2015). Halopriming with KCl
significantly increased the activity of antioxidants in chicory
(Sadeghi and Robati 2015). Haloprimed Cowpea seeds
(Vigna unguiculata (L.) Walp.) with CaCl2 increases total
antioxidants activity up to 22.2% under salt stress (Farooq
et al. 2020).

Halopriming greatly increased SOD, CAT, APX and
GPOX (guaiacol peroxidase) activities in primed seeds
compared to non-primed seeds of different Oryza sativa
varieties (Sen and Puthur 2021). KNO3 substantially esca-
lated CAT activity within the FARO44 rice seedlings that
scavenged ROS indicated increased tolerance to drought (Ali
et al. 2021a, b). Under salinity stress, rice seeds (Oryza
sativa L. cv. BRRI dhan29) primed with KNO3 mitigated the
adverse effects of reactive oxygen species, i.e. H2O2 and O−

radical by up-regulating the activity of antioxidant enzymes
such as APX at the seedling stage (Tahjib-Ul-Arif et al.
2019). Priming of Chinese cabbage (Brassica rapa
subsp. pekinensis) with KNO3 significantly enhanced POD,
SOD and CAT activity under drought stress conditions (Yan
2015). Priming with KNO3 showed increased POD activity
in Silybum marianum L. and nitrate reductase activity in
tomato under salinity stress (Lara et al. 2014; Zavariyan
et al. 2015). KNO3 primed sesame seeds (Sesame indium L.)
increased the CAT and POD enzyme activities (Kumar et al.
2016b). Ca(NO3)2 treatment enhanced the activity of various
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antioxidant enzymes such as CAT, APX, SOD, GR and
POD in germinating cucumber seeds (Fan et al. 2017). Halo
primed tomato seeds with magnesium nitrate [Mg(NO3)2]
significantly increased antioxidant enzyme activities such as
SOD, POD, APX, and CAT at different temperature regimes
(Nafees et al. 2019). Under water stress circumstances, seed
priming of black cumin (Nigella sativa L.) with ZnSO4

increased CAT activity in seedlings (Fallah et al. 2018).
Priming with ZnSO4 also increased POD activity signifi-
cantly in fruits and leaves of Momordica charantia (Bukhari
et al. 2021).

5 Halopriming and Production of Osmolytes

Halopriming stimulates seed metabolism by producing
osmolytes and/or signalling agents, thus facilitating germi-
nation and improved growth and yield performances. Osmo-
lytes are compatible solutes that accumulate within plant cells
and act as osmoticum to hold water by lowering the osmotic
potential, protecting macromolecules and cell membranes
from oxidative stress and dehydration (Fahad et al. 2017;
Tabassum et al. 2018; Verslues and Juenger 2011).

NaCl priming in tomato seeds resulted in the accumula-
tion of osmoregulating defence molecules (anthocyanin and
proline) and activation of the antioxidative enzyme mecha-
nism (Sahin et al. 2011). Among the three varieties of Vigna
radiata, haloprimed Pusa Ratna showed a 50% increase in
proline content in normal conditions (Jisha and Puthur
2014). Priming of pepper (Capsicum annuum L.) seeds with
CaCl2 resulted in a significant increase in proline content
under salinity stress to protect from oxidative stress (Aloui
et al. 2014). Halopriming significantly increased leaf proline
and phenolic contents under salt stress in both salt-sensitive
Lasani-06 and resistant Lu26s wheat cultivars (Islam et al.
2015). Sesame (Sesame indium L.) and rice seeds primed
with different concentrations of KNO3 enhanced proline
accumulation in seedlings to maintain osmoprotection
(Kumar et al. 2016b; Tahjib-Ul-Arif et al. 2019).

Tomato seeds primed with magnesium nitrate (Mg(NO3)2
enhanced production of osmolytes, proline and sugar that
preserved plant cell structure and metabolism (Nafees et al.
2019). Halopriming treatment of soybean seeds with ZnSO4

and CaCl2 showed increased soluble sugar and proline
content under soda saline-alkali stress (Dai et al. 2017).
Priming of Nigella sativa and Momordica charantia seeds
with ZnSO4 significantly enhanced proline and phenolic
compounds to ameliorate the stress effects (Bukhari et al.
2021; Fallah et al. 2018).

6 Mechanism of Halopriming

Halopriming is a pre-sowing method that includes exposing
the seeds first to a salt solution for a certain period allowing
them for partial hydration followed by washing with water
and re-drying to original moisture content (Fig. 1). There are
two important characteristics of priming such as desiccation
tolerance and seed sustainability (Ellis and Hong 1994; Hay
and Probert 1995; Gurusinghe and Bradford 2001). Priming
enhances the sustainability of low vigour seeds (Varier et al.
2010). The time required for salt treatment is crop-specific
and depends upon its variety or cultivar and the priming
process activates pre-germinative metabolic activity to start
the germination process without radicle emergence (Basra
et al. 2003; Bradford 1986; Chen and Arora 2013; Dell’A-
quila and Tritto 1991; Giri and Schillinger 2003; Ibrahim
2016; Paparella et al. 2015; Pill 2020). The metabolic
activity includes water imbibition, activation of proteins,
enzymes, hormones and signal transduction facilitating the
breaking of seed dormancy (Ajouri et al. 2004). Under salty
alkali stress, halopriming has been linked to a larger osmotic
adjustment, more antioxidant defence system activities, more
photosynthetic pigment levels, better membrane integrity
and more added starch accumulation regulated by bio-
chemical, physiological and molecular mechanisms related
to development of embryo, protrusion of plumule and radicle
and further with vigorous seedling growth and development
(Bewley 1997; Bewley and Black 2013; Lutts et al. 2016;
Rajjou et al. 2012).

The process of germination is divided into three stages,
viz., imbibition phase (first phase), lag phase (second phase)
and growth phase (third phase) (Bewley and Black 1994,
2013; Daszkowska-Golec 2011; Eskandari et al. 2013;
Rosental et al. 2014). On priming of the seeds, rapid water
absorption facilitates protein synthesis and respiratory
activity via mRNA and DNA in the imbibition phase or first
phase. Up-regulation of antioxidant enzymes and the accu-
mulation of osmolytes and activation of ROS-mediated
signalling pathways have also been documented during the
first phase of imbibition (Paparella et al. 2015). The second
phase is concerned with controlled water uptake and the start
of various physiological processes associated with germi-
nation, such as the synthesis of proteins and the availability
of soluble sugars (Varier et al. 2010). During the last phase,
a marked increase in water intake takes place along with
radicle protrusion developed from the seed coat (Bewley and
Black 1994; Waqas et al. 2019). Further, the stress resistance
of seedlings has been linked to the persistence of the
antioxidant mechanism activated and metabolic changes that
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occurred during the hydration of seeds, even after germi-
nation, in the seedlings as well (Paparella et al. 2015).
Re-drying is essential for seed storage (Di Girolamo and
Barbanti 2012). It prevents quality loss that is caused by
severe deterioration of seeds (Di Girolamo and Barbanti
2012; Halmer 2004; Maiti 2011; Parera and Cantliffe 1994;
Varier et al. 2010). Priming can also be characterized as a
form of preparative germination phase and the lag phase may
be extended (Nonogaki et al. 2010). When a primed seed is
in the growth phase, it can survive a restoration to its original
moisture content without vigour loss thus primed seeds can
be stored for a period till the time of sowing (Di Girolamo
and Barbanti 2012; Ibrahim 2016; Rajjou et al. 2012; Taylor
et al. 1998). However, the primed seeds have a drawback in
utilizing the process for commercial purposes with shorter
shelf life than seeds that haven’t been primed, so seeds
should be processed properly before planting (Ibrahim
2019). Seed priming enhances germination by regulating
DNA repair mechanisms, decaying antioxidant scavenging
enzymes like catalase, de novo nucleic acid, and protein
synthesis, and production of sterols and fatty acids (Afzal
et al. 2002; Chen and Arora 2011; Kubala et al. 2015;
Paparella et al. 2015; Rajjou et al. 2012). Halopriming can
affect seed osmotic balance by increasing K+ and Ca2+

uptake while decreasing Na+ and Cl− absorption thus
maintaining cell turgor by balancing membrane potential

(Ibrahim 2016; Quintero et al. 2018). Priming triggers ROS
scavenging mechanism by enhancing the activity of free
radical scavenging enzymes such as catalase (CAT), super-
oxide dismutase (SOD), peroxidase (POD), ascorbate per-
oxidase (APX), glutathione reductase (GR) and expression
of other stress-responsive proteins that include aquaporins
(AQP), dehydrins and late embryogenesis abundant
(LEA) proteins (Anaytullah and Bose 2012; Bohnert and
Shen 1998; Kumar and Rajalekshmi 2021; Lara et al. 2014;
Mittal and Dubey 1995; Sadeghi and Robati 2015; Vander
Willigen et al. 2006).

7 Factors Affecting Halopriming

The efficacy of seed priming has been strongly linked with
various physical factors such as temperature, aeration, salt
concentration, light, priming process, duration of treatment,
dehydration after priming, oxygen availability, storage
conditions, etc. and certain biological factors like species
and its cultivar and variety, age of the seeds, seed vitality
and quality (Corbineau and Come 2006; Farooq et al. 2012;
Maiti and Pramanik 2013; Parera and Cantliffe 1994). Aer-
ation is the most effective and critical factor that influences
seed respiration, seed sustainability and seedling protrusion
(Bujalski and Nienow 1991; Heydecker et al. 1973; Fig. 2).

Fig. 1 Mechanism of halo
priming for enhanced stress
tolerance in seeds
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Temperature is another critical factor affecting seed ger-
mination. For priming and germination, the optimal tem-
perature varies from 15 to 30 °C (Wahid et al. 2008),
however, haloprimed seeds can endure in low and
high-temperature regimes. Magnesium nitrate (Mg(NO3)2
primed seeds at 40 °C showed the optimum germination
ratio, fresh and dry weight of seedlings, shoot and root
length, and overall seedling length up to 10 days (Nafees
et al. 2019). Haloprimed seeds of a tomato hybrid variety
(Lycopersicon esculentum Mill. NUN 5024) performed well
at 40 °C and room temperature (35/28 °C, day/night), but
poorly at 10 and 25 °C. Potassium primed seeds of Papaver
rhoeas (55.01%) and Papaver dubium (49.61%) showed
maximum germination rate on 25 and 20 °C temperatures,
respectively, and the minimum germination (7.55%) was
observed at 10 °C in either case (Golmohammadzadeh et al.
2020).

Duration of treatment solution also influenced the seed
emergence, significantly (Wahid et al. 2008). By increasing
the duration of ZnSO4 treatment from 4 to 12 h, the greatest
influence on yield attributes was recorded in 12-h duration in
maize and pea crops (Sharma et al. 2021). Papaver rhoeas
and P. dubium seeds primed for 24 h with 0.5 g/L KNO3

solutions showed maximum seed germination and lowest

germination when primed with 4g/L g/L KNO3 for 96 h
(Golmohammadzadeh et al. 2020). Soaking of perennial rye
seeds at 125 mM NaCl for 24 h enhanced germination
percentage (Araghi Shahri et al. 2015). Soaking of three
wheat varieties (Sherodi, Fajer, and Taram) for 12, 24, or
36 h in 0.5 or 1% calcium chloride (CaCl2) solutions, 24 h
exposure was found to be effective in terms of increased
germination percentage in all three varieties in either case
(Yari et al. 2012). Priming of China aster seeds (Callistephus
chinensis (L.) with KNO3 at 12 and 18 h, though priming
duration for 12 h proved to be more favourable for seedling
establishment in field conditions (Wani et al. 2020).

The concentration of priming agents is also a crucial
factor for enhanced growth attributes in different crops. The
optimum concentration of CaCl2 for gerbera was 25 mM
and for Zinnia elegans, it was 50 mM CaCl2 (Ahmad et al.
2017). Maize seeds primed with 4000 ppm NaCl had a
higher germination index and a shorter mean germination
time than seeds primed with 8000 ppm NaCl (El-Sanatawy
et al. 2021). Priming with 1.0% KNO3 was more effective to
enhance seed emergence and uniform germination of rice
cultivars, but priming with 2.0% KNO3 showed a lesser
effect on seedlings (Ruttanaruangboworn et al. 2017).
Halopriming with different concentrations of KNO3 (10–

Fig. 2 Various factors prompting the plant responses during the process of halopriming
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30 ppm) of Capsicum frutescens seeds, showed the highest
influence on radicle and plumule length as well as fresh and
dry biomass was observed at 25 ppm KNO3 (Robledo
2020). Among the various concentrations of ZnSO4, priming
with 1% ZnSO4 has been shown to be more efficient than
priming with 2 and 3% ZnSO4 in maize and pea crops
(Sharma et al. 2021).

The type of halopriming agents and cultivar/variety of the
seeds are also some other determinants for better growth and
development. In various inorganic salts, priming with CaCl2
proved to be stronger than other halopriming agents in
mitigating salinity-induced suppression of germination in
rice (Oryza sativa L. cv. BRRI dhan29) (Tahjib-Ul-Arif
et al. 2019). Haloprimed seeds of two wheat (Triticum
aestivum L.) cultivars, Inqlab-91 and SARC-1 with NaCl,
CaCl2 and CaSO4 in saline environment showed cultivar
dependent differential responses and CaCl2 or CaSO4 proved
to be more effective than NaCl as a priming agent in miti-
gating the adverse effects of salinity on wheat growth (Afzal
et al. 2008). Likewise, haloprimed seeds of two rice culti-
vars, Shaheen Basmati and Basmati 2000 with 2.2% CaCl2
and KCl for 36 h showed optimum results with CaCl2 in
terms of increased germination potential, germination rate,
seedling growth and salinity resistance in both cultivars
(Afzal et al. 2012). Contrary to this, in the case of black
seeds (Nigella sativa), of the various priming agents, viz.,
NaCl, CaCl2, KNO3, CuSO4 and ZnSO4 tested NaCl proved
to be the most efficient to combat salt stress in terms of
higher germination efficacy and further growth and devel-
opment (Gholami et al. 2015). The effects of the two halo-
priming agents, CaCl2 and NaCl on maize physiology were
distinct. CaCl2 priming increased the germination process,
while NaCl priming enhanced seed maturity and yield
(Gebreegziabher and Qufa 2017). In the case of tomato
seeds, KNO3 was more successful than the other haloprim-
ing agents in increasing final germination, germination rate
and seedling vigour (Farooq et al. 2005). Of the different
inorganic salts such as NaCl and KCl, CaCl2 proved to be
the most efficient halopriming agent for improving Sorghum
crop establishment (Chen et al. 2021). Halopriming of
Capsicum frutescens with varying concentrations of two
inorganic salts, i.e. NaCl and KNO3, KNO3 was found to be
more effective than NaCl (Riadi et al. 2020). Pigeon pea
seeds were primed with different salts, viz. ZnSO4, CaCl2
and KCl and ZnSO4 showed maximum germination up to
92% (Vanitha and Kathiravan 2019).

8 Conclusion and Future Prospects

Since managing seeds is much easier for farmers in com-
parison to managing crops in the field, therefore, halo
priming has been regarded as a viable remedy for

germination issues and in the reduction of the risk of poor
stand establishment when seeds are cultivated in adverse
environments. The goal of the potent seed priming technique
is to synchronize the emergence and protection of seeds
against abiotic influences during the crucial seedling estab-
lishing phase, resulting in a uniform stand and increased
production in the near future. Halopriming technique has
proved promising in breaking seed dormancy, improving
germination and yield potential of crops and rendering sys-
temic resistance to abiotic stresses in a range of environ-
mental conditions. As a result, halopriming would be a
promising technique in the time ahead for sustainable food
security and to sustain green agricultural practices with
much fewer threats to the environment.
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Naturally Growing Native Plants
of Wastelands: Their Stress Management
Strategies and Prospects in Changing
Climate

Nabanita Bhattacharyya

Abstract

Industrial and mining waste dumping is among the most
concerning anthropogenic causes of the formation of
stress-laden wastelands, which are characterized by loss
of plant cover and subsequent land degradation. Under
the pressure of changing climate, the revival of the
degraded wastelands into productive lands becomes a
sustainable option to meet the basic survival demands of
the increasing human population. Restoration of vegeta-
tion cover is a widely accepted eco-friendly approach for
remediation of degraded wastelands over physical or
chemical strategies. However, the successful establish-
ment of plants in wastelands is a difficult process due to
the phytotoxic nature of the wasteland soils. Therefore,
the use of naturally growing native plants, which thrive
well in the adverse soil properties of degraded lands with
little or no agronomical effort, is an effective option.
Some of these plants might have phytoremediation
potential, which is a sustainable technology for the
remediation of contaminants including heavy metals from
soil and water by using plants. Documentation of such
stress-tolerant naturally growing plants of various waste-
lands and studying their mechanism of tolerance are
among the major emerging areas of research in recent
times. Such efforts may help in finding novel plant
species that are more stress-tolerant with greater potential
of creating vegetation cover on degraded wastelands.
Therefore, for the benefit of interested researchers and
policymakers, an attempt has been made to review and
comprehensively document the discrete information, from
available sources, on naturally growing native plants of
various industrial and mining wastelands, their stress
management strategies and phytoremediation prospects in
changing climate.
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Dumpsites � Heavy metal � Native plants �
Phytoremediation � Stress � Wastelands
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1 Introduction

Wastelands are the landmasses that are degraded due to
various natural or anthropogenic factors and are lying
underutilized as non-productive land due to lack of appro-
priate water and soil management practices (Sarma 2006;
Singh et al. 2003). Industrial and mining waste dumping are
the two most concerning anthropogenic causes of wasteland
formation post-industrialization era. Millions of hectares of
land have been turned into wastelands in developed and
developing countries due to gross mismanagement and
unsustainable practices over the landmasses as a result of the
indiscriminate scale of industrialization and mining activities
(Zhu et al. 2018). Industrial and mining waste dumping areas
are notorious sources of pollution and contamination that
add various pollutants of organic and inorganic nature
including toxic heavy metals to the environment. There is
increasing evidence that heavy metal pollution of industrial
and mined areas causes health damage to the local inhabi-
tants (Lei et al. 2015; Shen et al. 2017; Xiao et al. 2017;
Santucci et al. 2018). Therefore, rehabilitation of such
wastelands should be a priority concern to be addressed for
the respective governments, as public health and shortage of
cultivable lands are among the burning problems of recent
times. The most significant impact of dumping exercise is
the loss of plant cover that leads to land degradation. Area of
arable land is depleting fast with the increase in human
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population due to increase in agriculture, industrialization
and urbanization and hence, remediation of degraded
wastelands is the much-talked need of the hour to meet the
requirements of the increasing population (Bhattacharyya
2012).

The various abiotic stresses encountered by the plants in
wastelands are water stress (flood and drought), temperature
stress (high and low temperature), nutrient deficiency or
overburden, heavy metal contamination, salt stress etc. (Das
et al. 2021; Franzaring et al. 2018). The consequences of
land degradation in wastelands are soil erosion, depletion of
natural resources, lower productivity, groundwater deple-
tion, shortage of drinking water, reduction in species
diversity etc. Most of the potential productive lands have
turned into wastelands due to gross mismanagement and
unsustainable exploitation of its biosphere (Bhattacharyya
2012). Available physical or chemical strategies for reme-
diation of degraded wastelands are temporary with multiple
limitations, such as the threat of irreversible changes in soil
properties, disturbance in native soil microflora, chances of
secondary pollution as well as high cost of the processes
(Jutsz and Gnida 2015). Therefore, sustainable biological
methods like the restoration of vegetation cover on degraded
sites are widely accepted as eco-friendly approaches (Wong
2003). Phytoremediation is a solar-driven, eco-friendly,
sustainable and inexpensive technology with impressive
public acceptance, where plants are used for the remediation
of various contaminations including toxic heavy metals from
soil and water (Marrugo-Negrete et al. 2016; Maharet al.
2016; Ali et al. 2013). Having great biomass with consid-
erable metal tolerance capacity are among the important
criteria to be the perfect plant species for phytoremediation
(McGrath et al. 2002; McGrath and Zhao 2003). However,
the successful establishment of plants in wastelands is a
difficult process due to the stressful and phytotoxic nature of
the wasteland soils (Bradshaw 1997). Moreover, restoration
of natural dynamics of ecological succession in degraded
soil of wastelands is required for systematic conversion into
arable land and thoughtful and logical selection of plants is
crucial for that purpose.

In this regard, the use of naturally growing native plants
with inherent capabilities to adapt and withstand the adverse
environment, soil properties and toxicity level of degraded
lands can prove to be an effective option and information
about such plant species from various wastelands may be
beneficial in creating vegetation cover successfully in
degraded sites (Yoon et al. 2006; Das et al. 2021). Several
studies reveal the presence of numerous plant species
growing naturally on industrial and mining wastelands,
which can be prospected for their capabilities to clean up the
environment by proper research-based approach and man-
agement. Therefore, realizing the discrete nature of such

information, an attempt has been made to review and com-
prehensively document the available information on natu-
rally growing native plants of various degraded wastelands
including pulp and paper mill dumpsites, fly ash dumpsite of
the thermal power plant as well as various metal mine tailing
areas along with their stress management strategies and
prospects in changing climate, for the better benefit of
interested researchers, environmentalists and policymakers.

2 Pulp and Paper Mill Waste Dumpsite

Designated as one of the most notorious environment
degraders, pulp and paper industries are the sources of a
variety of wastes that are discharged into the environment in
solid, liquid and gaseous forms (Buyukkamaci and Koken
2010). The most important solid wastes generated by a paper
mill are the lime sludges, which are often disposed to nearby
low-lying areas to form barren dumpsites without vegetation
that are prone to be turned into degraded lands (Phukan and
Bhattacharyya 2003). Analyses of various stress indices in
established bio-monitor plants like Ricinus communis L.
(Euphorbiaceae) as well as investigation of soil physico-
chemical properties and nutrition status confirmed the stress
burden and phytotoxicity of such degraded dumpsites (Das
et al. 2021). However, despite of the unfavorable and harsh
condition for vegetation growth, a few species of plants,
with ethnomedicinal and economic importance, were
reported to be grown naturally in paper mill dumpsite
(Table 1), some of which had also been reported from
mining and industrial dumpsites as tolerant natural vegeta-
tion (Das et al. 2021). These plants possibly have inherent
capabilities to withstand stress and hence can be prospected
to create vegetation cover by following proper management
practices with minimal effort, in an attempt to recover paper
mill dumpsites into arable lands in course of time.

3 Copper Mine Tailings

Finely ground wastes produced after copper are extracted
from the ores and during the beneficiation process is called
the copper tailings. High concentrations of toxic heavy
metals like lead (Pb), zinc (Zn), arsenic (As) and cadmium
(Cd) were found to be present in such copper mine tailings,
from which several plant species were reported despite of
metal overburdens (Table 2). It was suggested that the plants
like Imperata cylindrica, Cynodon dactylon and Paspalum
distichum that were dominant among all other species could
have phytoremediation potentials for future revegetation
programs in copper mine tailing sites (Chen et al. 2005;
Zhan and Sun 2012).
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4 Antimony Mine Area

Antimony mine areas are contaminated with multiple heavy
metals including a very high amount of antimony (Sb), As,
Cd, as well as comparable concentrations of copper (Cu), Pb
and Zn to the corresponding background values of study
areas (Long et al. 2018). There were reports on several

native plant species growing naturally in those areas
(Table 3) and heavy metals were accumulated mainly on the
aerial parts of those plants revealing their phytostabilization
potential against multi-heavy metal pollution. Among all the
colonized plants, Bidens bipinnata L. (Family: Asteraceae)
was found to be the most suitable species in the antimony
mine area considering the metal accumulation level and
growing abundance of the plant.

Table 1 Native plants of paper
mill dumpsite (Das et al. 2021)

Sl.
no

Name of plant Family Type of stress tolerated

1 Calotropis gigantea (L.)
Dryand.

Asclepiadaceae Nutrient overburden, toxic trace elements,
excess amount of calcium

2 Chromolaena odorata (L.) R.
M. King & H Rob.

Asteraceae

3 Mikania scandens (L.) Willd. Asteraceae

4 Ricinus communis L. Euphorbiaceae

5 Rotheca serrata (L.) Steane &
Mabb.

Lamiaceae

6 Senna sophera (L.) Roxb. Fabaceae

7 Solanum myriacanthum Dunal. Solanaceae

Table 2 Native plants of copper
mine tailings (Chen et al. 2005;
Llerena et al. 2021; Zhan and Sun
2012)

Sl
no

Name of plant Family Type of stress tolerated

1 Imperata cylindrica var. major
(Nees) C.E. Hubb

Poaceae Heavy metals like Pb, Zn, As, Cd, Cu and
Cr contamination

2 Cynodon dactylon (L.) Per. Poaceae

3 Setaria viridis (L.) Beauv. Poaceae

4 Coreopsis drummondii Torr. Et
Gray

Asteraceae

5 Inula ensifolia L. Asteraceae

6 Erigeron acris L. Asteraceae

7 Kummerowia striata (Thunb.)
Schindl.

Leguminosae

8 Cyperus rotundus L. Cyperaceae

9 Pteris cretica L. Pteridaceae

10 Pteris vittata L. Pteridaceae

11 Miscanthus floridulus (Labill.)
Warb

Poaceae

12 Saussurea japoinca (Thunb.) Dc. Asteraceae

13 Paspalum distichum L. Poaceae

14 Phragmites communis Trin. Poaceae

15 Miscanthus sinensis Poaceae

16 Zoysia sinica Poaceae

17 Hippochaete debilis (Roxb. ex
Vaucher) Ching

Equisetaceae
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5 Gold Mine Area

Mercury (Hg) is used in the amalgamation process for the
recovery of the gold during the Artisanal and small-scale
gold mining (ASGM) process and therefore gold mines are
considered as one of the major sources of Hg pollution in the
environment (Marrugo et al. 2007). Improper handling of Hg
has led to the contamination of different sections of the
environment, threatening human health in surrounding areas
(Olivero and Johnson 2002). There were reports on several
native herbs and sub-shrubs that grow naturally on gold
mine areas as promising plants for Hg remediation (Table 4)
among which Jatropha curcas L., Capsicum annuum L.,
Piper marginatum Jacq. and Stecherus bifidus Willd. were
found to be highly potential to be used in phytoremediation
(Marrugo-Negrete et al. 2016).

6 Mercury Mining Area

Highly toxic inorganic and organic forms of Hg are accumu-
lated and biomagnified at various trophic levels through food
chains (Lindberg et al. 2007; Xia et al. 2010). Methylmercury
(MMHg), an organic form of Hg, is the most toxic form of Hg
(WHO and IPCS 1990) that poses a serious health risk to both
humans and wildlife. One of the worst instances of Hg con-
tamination in higher trophic levels is the Minamata disease
that occurred in Japan after consumption of fish and other
seafood contaminated with MMHg. The most prevalent
anthropogenic sources of Hg are the mercury mining and
retorting of cinnabar ores that release elemental Hg into the
surrounding environment and generate numerous wastelands
of Hg-rich mine tailings (Gray et al. 2004; Qiu et al. 2005,
2013). Therefore, there were attempts to identify native plant
species from Hg mining areas that could effectively accumu-
late both organic and inorganicHg as promising candidates for
phytoremediation of Hg-contaminated soil. A total of 49
species under 29 families of plants (Table 5) were reported
from heavily Hg-contaminated wastelands of the mercury

mining area of cinnabar ore mine tailings (calcines) in the
Wanshan region of southwestern China (Qian et al. 2018), out
of which Eremochloa ciliaris (L.) Merr., Buddleja lindleyana
Fortune, Equisetum giganteum L., Artemisia herba-alba
Asso, Plantago asiatica L., and Sonchus oleraceus L. were
proved to be the most Hg-tolerant species. Considering the
accumulation of total Hg in aerial and underground parts, E.
ciliaris and A. hispidus had been suggested as potential
hyperaccumulators and candidates for phytostabilization
respectively, in abandoned Hg mining sites.

7 Lead–Zinc (Pb/Zn) Mining Area

There were reports of erosion of unstable Pb/Zn mine tail-
ings from the dumping sites and the spread of contaminants
from mining wastes into the nearby farmlands and water
bodies. Soils in these mining wastelands turn acidic and
polluted with toxic heavy metals like Cd, Pb and Zn, which
are serious health hazards. Several plant species, mostly
herbaceous plants, were reported to be growing naturally on
Pb/Zn mine tailings with heavy metal accumulation potential
above the standard phytotoxic level in Thailand, China and
Morocco (Hasnaoui et al. 2020; Rotkittikhun et al. 2007;
Shu et al. 2002; Xiao et al. 2018; Zhu et al. 2018). In Pb/Zn
mining areas, the contents of Cd, Pb and Zn in the most
analyzed plants exceed the normal ranges and the phytotoxic
level. Various plant species including Crassocephalum
crepidioides, Solanum nigrum, Bidens pilosa, Erigeron
canadensis, Ageratum conyzoides, Crepidiastrum denticu-
latum and Echinochloa crus-galli showed strong capability
in accumulation and transport of Cd and they could be used
as good candidates for Cd-phytoextraction (Table 6). Among
all the species, C. crepidioides demonstrated the basic
characteristics of a Cd-hyperaccumulator, as Cd concentra-
tion in the aerial part of this species exceeded the threshold
of Cd-hyperaccumulator. The lower translocation ratios for
Cd, Cu, Zn and Pb in Pteris vittata and Carex chinensis
make them suitable for phytostabilization in the study area
(Zhu et al. 2018).

Table 3 Native plants of
antimony mine area (Long et al.
2018)

Sl
no

Name of plant Family Type of stress tolerated

1 Boehmeria nivea (L.) Gaudich. Urticaceae Heavy metals like Sb, As, Pb, Cd, Cu and Zn
contamination2 Symphyotrichum subulatum (Michx.)

G.L.Nesom
Asteraceae

3 Bidens bipinnata L. Asteraceae

4 Miscanthus sinensis Andersson Poaceae

5 Erigeron Canadensis L. Asteraceae

6 Artemisia umbrosa (Besser)
Turcz. ex Verl.

Asteraceae
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8 Coal Mine Dumpsites

Coal mine overburden dumps, produced during coal mining,
create devastated landscapes with degraded soil that cannot
support the natural growth of vegetation (Arshi 2017).
Nevertheless, in a few elaborative studies, a total of 114 and
102 plant species were recorded from coal mine dumpsites
of West Bengal (WB) and Jharkhand (JK), India, respec-
tively (Table 7). Nine species from WB, namely, Cassia
fistula L., Emblica officinalis Gaertn., Dalbergia sissoo
Roxb., Azadirachta indica A.Juss., Pongamia glabra Vent.,
Albizia lebbeck (L.) Benth, Holoptelea integrifolia (Roxb.)
Planch., Acacia auriculiformis Benth. and Swietenia
macrophylla King were tested for their phytoremediation
potential against various stresses including heavy metals Cd
and Hg (Kar and Palit 2019). These plants could grow well
with an increase in biomass and could change the soil con-
ditions by reducing the heavy metal content of degraded
wasteland into a favorable condition for plant growth.
Studies suggest the potential of these nine plants for
revegetation of wastelands. A total of ten species namely
Vachellia farnesiana (L.) Wight & Arn., Alternanthera
sessilis (L.) R.Br. ex DC., Croton bonplandianus Baill.,
Chrysopogon lancearius (Hook.f.) Haines, Cynodon

dactylon (L.) Pers., Lantana camara L., Launaea nudi-
caulis (L.) Hook.f., Phyllanthus niruri L., Saccharum
spontaneum L. and Xanthium strumarium L. were found to
be growing naturally in the core mining area of coal mine in
JK, which indicated their better adaptation to more adverse
environmental conditions (Arshi 2017). However, more than
a hundred other reported plants from coal mine areas are yet
to be tested for their phytoremediation capabilities with
potential research endeavors.

9 Dumpsite of Thermal Power Plants

With the increase in urbanization, coal-based thermal power
plants have been increased in considerable numbers to meet
the increased demand for energy. As a result, bulk genera-
tion of solid wastes in the form of fly ashes is creating havoc
in the surrounding environment. Fly ashes are considered as
serious pollutants of soil, air and water as they contain toxic
metals like Cr, Cd, Zn, Pb and nickel (Ni) as well as create
other stresses for vegetation growth like alkaline pH, less
nitrogen and organic carbon in the dumping sites (Pandey
et al. 2016). Therefore, management of fly ash dumpsite by
removal or stabilization of heavy metals with eco-friendly
approaches like phytoremediation practices has gained much

Table 4 Native plants of gold mining area (Marrugo-Negrete et al. 2016)

Sl no Name of plant Family Type of stress tolerated

1 Tabebuia rosea (Bertol.) Bertero ex A.DC. Bignoniaceae High level of Hg contamination

2 Cecropia peltata L. Utricaceae

3 Cyperus ferax Rich. Cyperaceae

4 Cyperus luzulae (L.) Retz. Cyperaceae

5 Eleocharis interstincta (Vahl) Roem. & Schult. Cyperaceae

6 Cyperus blepharoleptos Steud. Cyperaceae

7 Jatropha curcas L. Euphorbiaceae

8 Phyllanthus niruri L. Phyllanthaceae

9 Ricinus communis L. Euphorbiaceae

10 Senna alata (L.) Roxb. Fabaceae

11 Stecherus bifidus Willd. Gleicheniaceae

12 Ceiba pentandra (L.) Gaertn. Malvaceae

13 Guazuma ulmifolia Lam. Malvaceae

14 Thalia geniculata L. Marantaceae

15 Calathea lutea (Aubl.) E.Mey. ex Schult. Marantaceae

16 Muntingia calabura L. Muntingiaceae

17 Psidium guajava L. Myrtaceae

18 Ludwigia octovalvis (Jacq.) P.H.Raven Onagraceae

19 Piper marginatum Jacq. Piperaceae

20 Pityrogramma calomelanos (L.) Link Pteridaceae

21 Capsicum annuum L. Solanaceae
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Table 5 Native plants of Hg mining area (Qian et al. 2018)

Sl no Plant Family Type of stress tolerated

1 Allium tuberosum Rottler ex Spreng. Amaryllidaceae High level of Hg contamination

2 Arthraxon hispidus (Thunb.) Makino Poaceae

3 Aster ageratoides Turcz. Asteraceae

4 Symphyotrichum subulatum (Michx.) G.L.Nesom Asteraceae

5 Brassica rapa L. Brassicaceae

6 Buddleja lindleyana Fortune Scrophulariaceae

7 Buddleja officinalis Maxim. Scrophulariaceae

8 Campylotropis trigonoclada (Franch.) Schindl. Fabaceae

9 Chamaecrista nomame (Makino) H.Ohashi Fabaceae

10 Oxybasis glauca (L.) S.Fuentes, Uotila & Borsch Amaranthaceae

11 Chromolaena odorata (L.) R.M.King & H.Rob. Asteraceae

12 Cibotium barometz (L.) J.Sm. Cyatheaceae

13 Cirsium japonicum DC. Asteraceae

14 Clerodendrum bungei Steud. Lamiaceae

15 Erigeron canadensis L. Asteraceae

16 Coriaria nepalensis Wall. Coriariaceae

17 Corydalis edulis Maxim. Papaveraceae

18 Thelypteris acuminata (Houtt.) C.V.Morton Aspleniaceae

19 Debregeasia orientalis C.J.Chen Urticaceae

20 Puhuaea sequax (Wall.) H.Ohashi & K.Ohashi Fabaceae

21 Equisetum giganteum L. Equisetaceae

22 Eremochloa ciliaris (L.) Merr. Poaceae

23 Euphorbia esula L. Euphorbiaceae

24 Reynoutria multiflora (Thunb.) Moldenke Polygonaceae

25 Gynura bicolor (Roxb. ex Willd.) DC. Asteraceae

26 Artemisia herba-alba Asso Asteraceae

27 Bidens bipinnata L. Asteraceae

28 Houttuynia cordata Thunb. Saururaceae

29 Imperata cylindrica (L.) P.Beauv. Poaceae

30 Crepidiastrum sonchifolium (Bunge) Pak & Kawano Asteraceae

31 Macleaya cordata (Willd.) R.Br. Papaveraceae

32 Mentha canadensis L. Lamiaceae

33 Neyraudia reynaudiana (Kunth) Keng ex Poaceae

34 Oenanthe javanica (Blume) DC. Apiaceae

35 Oenothera glazioviana Micheli Onagraceae

36 Sonchus brachyotus DC. Asteraceae

37 Plantago asiatica L. Plantaginaceae

38 Portulaca oleracea L. Portulacaceae

39 Lobelia nummularia Lam. Campanulaceae

40 Primula sikkimensis Hook. Primulaceae

41 Rumex acetosa L. Polygonaceae

42 Rumex japonicas Houtt. Polygonaceae

43 Sedum bulbiferum Makino Crassulaceae

44 Sedum emarginatum Migo Crassulaceae

45 Pseudogynoxys chenopodioides (Kunth) Cabrera Asteraceae

46 Sonchus oleraceus L. Asteraceae

47 Swertia bimaculata (Siebold & Zucc.) Hook.f. & Thomson ex C.B.Clarke Gentianaceae

48 Telosma cordata (Burm.f.) Merr. Apocynaceae

49 Xanthium strumarium L. Asteraceae
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Table 6 Native plants of lead–
zinc mining area (Hasnaoui et al.
2020; Rotkittikhun et al. 2007;
Shu et al. 2002; Xiao et al. 2018;
Zhu et al. 2018)

Sl no Plant Family Type of stress tolerated

1 Thysanolaena latifolia (Roxb. ex
Hornem.) Honda

Poaceae Heavy metals like Cd, Pb, Zn
contamination

2 Chenopodium album L. Amaranthaceae

3 Cirsium arvense (L.) Scop. Asteraceae

4 Setaria viridis (L.) P.Beauv. Poaceae

5 Silybum marianum (L.) Gaertn. Asteraceae

6 Tagetes erecta L. Asteraceae

7 Paspalum distichum L. Poaceae

8 Cynodon dactylon (L.) Pers. Poaceae

9 Erigeron canadensis L. Asteraceae

10 Artemisia lavandulaefolia DC. Asteraceae

11 Crassocephalum
crepidioides (Benth.) S.Moore

Asteraceae

12 Crepidiastrum denticulatum (Houtt.)
Pak & Kawano

Asteraceae

13 Pseudogynoxys
chenopodioides (Kunth) Cabrera

Asteraceae

14 Ageratum conyzoides L. Asteraceae

15 Taraxacum mongolicum Hand.-Mazz. Asteraceae

16 Bidens pilosa L. Asteraceae

17 Pteris vittata L. Pteridaceae

Pteridium revolutum (Blume) Nakai Dennstaedtiaceae

18 Echinochloa crus-galli (L.) P.Beauv. Poaceae

19 Centella asiatica (L.) Urb. Apiaceae

20 Buddleja davidii Franch. Scrophulariaceae

21 Solanum nigrum L. Solanaceae

22 Carex chinensis Retz. Cyperaceae

23 Dysphania ambrosioides (L.)
Mosyakin & Clemants

Amaranthaceae

24 Reseda alba L. Resedaceae

25 Convolvulus althaeoides L. Convolvulaceae

26 Sulla spinosissima (L.) B.H.Choi &
H.Ohashi

Fabaceae

27 Phragmites australis (Cav.) Trin. ex
Steud.

Poaceae

28 Lotus corniculatus L. Fabaceae

29 Capsella bursa-pastoris (L.) Medik. Brassicaceae

30 Scolymus hispanicus L. Asteraceae

31 Rapistrum rugosum (L.) All. Brassicaceae

32 Cistus libanotis L. Cistaceae

33 Agathophora alopecuroides (Delile)
Fenzl ex Bunge

Amaranthaceae

34 Hirschfeldia incana (L.) Lagr.-Foss. Brassicaceae

35 Macrochloa tenacissima (L.) Kunth Poaceae

36 Artemisia herba-alba Asso Asteraceae

37 Capsella bursa-pastoris (L.) Medik. Brassicaceae
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Table 7 Native plants of coal mine dumpsite (Arshi 2017; Kar and Palit 2019)

Sl no Plant Family Type of stress tolerated

1 Andrographis echioides Nees Acanthaceae Loose soil particles to support plant roots, challenges like soil erosion, dust, water pollution, heavy metal
toxicity, deficiency in major nutrients and microbial activities in the soil system

2 Andrographis paniculata Nees Acanthaceae

3 Hygrophila
auriculata (Schumach.) Heine

Acanthaceae

4 Rostellularia diffusa (Willd.)
Nees

Acanthaceae

5 Ruellia tuberosa L. Acanthaceae

6 Rungia pectinata (L.) Nees Acanthaceae

7 Agave sisalana Perrine Agavaceae

8 Trianthema portulacastrum L. Aizoaceae

9 Alangium lamarckii Thwaites Alangiaceae

10 Alternanthera
paronychioides A.St.-Hil.

Amaranthaceae

11 Alternanthera pungens Kunth Amaranthaceae

12 Alternanthera sessilis (L.) R.Br.
ex DC.

Amaranthaceae

13 Alternanthera tenella Colla Amaranthaceae

14 Amaranthus spinosus L. Amaranthaceae

15 Amaranthus viridis L. Amaranthaceae

16 Gomphrena celosioides Mart. Amaranthaceae

17 Ouret sanguinolenta (L.)
Kuntze

Amaranthaceae

18 Mangifera indica L. Anacardiaceae

19 Semecarpus anacardium L.f. Anacardiaceae

20 Annona reticulata L. Annonaceae

21 Annona squamosa L. Annonaceae

22 Alstonia scholaris (L.) R.Br. Apocynaceae

23 Catharanthus roseus (L.) G.
Don

Apocynaceae

24 Holarrhena pubescens Wall. ex.
G. Don

Apocynaceae

25 Thevetia neriifolia Juss. ex
Steud.

Apocynaceae

26 Borassus flabellifer L. Arecaceae

27 Phoenix sylvestris (L.) Roxb. Arecaceae

28 Calotropis gigantea (L.) W.T.
Aiton

Asclepiadaceae

29 Calotropis procera W.T.Aiton Asclepiadaceae

30 Hemidesmus indicus (L.) R.Br.
ex Schult.

Asclepiadaceae

31 Pergularia daemia (Forssk.)
Chiov.

Asclepiadaceae

32 Blumea axillaris (Lam.) DC. Asteraceae

33 Blumea lacera (Burm.f.) DC. Asteraceae

34 Cnicus wallichii Hook.f. Asteraceae

35 Eclipta alba (L.) Hassk. Asteraceae

36 Launaea nudicaulis (L.) Hook.
f.

Asteraceae

37 Mikania scandens (L.) Willd. Asteraceae

38 Spilanthes paniculata Wall. Asteraceae

39 Tridax procumbens L. Asteraceae

40 Vernonia cinerea (L.) Less. Asteraceae

41 Vicoa indica (L.) DC. Asteraceae

42 Xanthium strumarium L. Asteraceae

(continued)
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Table 7 (continued)

Sl no Plant Family Type of stress tolerated

43 Chromolaena odorata (L.) R.
M.King & H.Rob.

Asteraceae

44 Cleome gynandra L. Capparaceae

45 Cleome viscosa L. Capparaceae

46 Siphonodon celastrineus Griff. Celastraceae

47 Terminalia arjuna (Roxb. ex
DC.) Wight & Arn.

Combretaceae

48 Terminalia bellirica (Gaertn.)
Roxb.

Combretaceae

49 Terminalia elliptica Willd. Combretaceae

50 Commelina benghalensis
Forssk.

Commelinaceae

51 Evolvulus alsinoides (L.) L. Convolvulaceae

52 Ipomoea cairica (L.) Sweet Convolvulaceae

53 Ipomoea maxima (L.f.) Sweet Convolvulaceae

54 Ipomoea pes-tigridis L. Convolvulaceae

55 Ipomoea pinnata Hochst. ex
Choisy

Convolvulaceae

56 Hellenia speciosa (J.Koenig) S.
R.Dutta

Costaceae Nakai

57 Coccinia cordifolia Cogn. Cucurbitaceae

58 Trichosanthes cucumerina L. Cucurbitaceae

59 Cyperus rotundus L. Cyperaceae

60 Kyllinga monocephala Muhl. Cyperaceae

61 Schoenoplectiella
articulata (L.) Lye

Cyperaceae

62 Tacca leontopetaloides (L.)
Kuntze

Dioscoreaceae

63 Shorea robusta C.F.Gaertn. Dipterocarpaceae

64 Acalypha indica L. Euphorbiaceae

65 Croton bonplandianus Baill. Euphorbiaceae

66 Emblica officinalis Gaertn. Euphorbiaceae

67 Euphorbia antiquorum L. Euphorbiaceae

68 Euphorbia hirta L. Euphorbiaceae

69 Euphorbia prostrata Aiton Euphorbiaceae

70 Jatropha curcas L. Euphorbiaceae

71 Jatropha gossypiifolia L. Euphorbiaceae

72 Phyllanthus amarus Schumach.
& Thonn.

Euphorbiaceae

73 Tragia involucrata L. Euphorbiaceae

74 Acacia auriculiformis A.Cunn.
ex Benth.

Fabaceae

75 Acacia floribunda (Vent.)
Willd.

Fabaceae

76 Atylosia scarabaeoides (L.)
Benth.

Fabaceae

77 Bauhinia variegata L. Fabaceae

78 Butea monosperma (Lam.)
Kuntze

Fabaceae

79 Cajanus scarabaeoides (L.)
Thouars

Fabaceae

80 Cassia alata L. Fabaceae

81 Cassia fistula L. Fabaceae

82 Cassia obtusifolia L. Fabaceae

83 Cassia siamea Lam. Fabaceae

84 Cassia sophera L. Fabaceae

85 Cassia tora L. Fabaceae

86 Crotalaria juncea L. Fabaceae

87 Crotalaria linifolia L.f. Fabaceae

(continued)
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Table 7 (continued)

Sl no Plant Family Type of stress tolerated

88 Dalbergia sissoo Roxb. ex DC. Fabaceae

89 Desmodium gangeticum (L.)
DC.

Fabaceae

90 Entada gigas (L.) Fawc. &
Rendle

Fabaceae

91 Grona triflora (L.) H.Ohashi &
K.Ohashi

Fabaceae

92 Indigofera latifolia Micheli Fabaceae

93 Pithecellobium dulce (Roxb.)
Benth.

Fabaceae

94 Pongamia pinnata (L.) Pierre Fabaceae

95 Senna hirsuta (L.) H.S.Irwin &
Barneby

Fabaceae

96 Senna occidentalis (L.) Link Fabaceae

97 Tephrosia purpurea (L.) Pers. Fabaceae

98 Tephrosia villosa (L.) Pers. Fabaceae

99 Teramnus labialis (L.f.) Spreng. Fabaceae

100 Vachellia farnesiana (L.) Wight
& Arn.

Fabaceae

101 Vachellia nilotica (L.) P.J.H.
Hurter & Mabb.

Fabaceae

102 Flacourtia indica (Burm.f.)
Merr.

Flacourtiaceae

103 Clerodendrum viscosum Vent. Lamiaceae

104 Gmelina arborea Roxb. Lamiaceae

105 Hyptis suaveolens (L.) Poit Lamiaceae

106 Leonurus sibiricus L. Lamiaceae

107 Leucas aspera (Willd.) Link Lamiaceae

108 Leucas cephalotes (Roth)
Spreng.

Lamiaceae

109 Ocimum canescens A.J.Paton Lamiaceae

110 Tectona grandis L.f. Lamiaceae

111 Vitex negundo L. Lamiaceae

112 Abutilon indicum (L.) Sweet Malvaceae

113 Bombax ceiba L. Malvaceae

114 Sida acuta Burm.f. Malvaceae

115 Sida cordata (Burm.f.) Borss.
Waalk.

Malvaceae

116 Sida cordifolia L. Malvaceae

117 Sterculia urens Roxb. Malvaceae

118 Urena lobata L. Malvaceae

119 Azadirachta indica A.Juss. Meliaceae

120 Melia azedarach L. Meliaceae

121 Swietenia macrophylla King Meliaceae

122 Stephania japonica (Thunb.)
Miers

Menispermaceae

123 Albizia lebbeck (L.) Benth. Mimosaceae

124 Trigastrotheca pentaphylla (L.)
Thulin

Molluginaceae

125 Artocarpus heterophyllus Lam. Moraceae

126 Artocarpus lacucha Buch.-
Ham.

Moraceae

127 Ficus benghalensis L. Moraceae

128 Ficus cunea Steud Moraceae

129 Ficus racemosa L. Moraceae

130 Ficus religiosa L. Moraceae

131 Streblus asper Lour. Moraceae

132 Syzygium cumini (L.) Skeels Myrtaceae

133 Boerhavia diffusa L. Nyctaginaceae

(continued)
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Table 7 (continued)

Sl no Plant Family Type of stress tolerated

134 Mirabilis jalapa L. Nyctaginaceae

135 Argemone mexicana L. Papaveraceae

136 Pedalium murex L. Pedaliaceae

137 Phyllanthus urinaria L. Phyllanthaceae

138 Phyllanthus virgatus G.Forst Phyllanthaceae

139 Mecardonia procumbens (Mill.)
Small.

Plantaginaceae

140 Andropogon pumilus Roxb. Poaceae

141 Aristida adscensionis L. Poaceae

142 Chloris barbata Sw. Poaceae

143 Chrysopogon aciculatus (Retz.)
Trin.

Poaceae

144 Chrysopogon lancearius (Hook.
f.) Haines

Poaceae

145 Cynodon dactylon (L.) Pers. Poaceae

146 Eragrostis coarctata Stapf Poaceae

147 Eulaliopsis binata (Retz.) C.E.
Hubb.

Poaceae

148 Heteropogon contortus Beauv.
ex Roem. & Schult.

Poaceae

149 Oplismenus compositus P.
Beauv.

Poaceae

150 Panicum maximum Jacq. Poaceae

151 Poa annua L. Poaceae

152 Saccharum munja Roxb. Poaceae

153 Saccharum spontaneum L. Poaceae

154 Sporobolus indicus (L.) R.Br. Poaceae

155 Polygonum barbatum L. Polygonaceae

156 Ziziphus mauritiana Lam. Rhamnaceae

157 Ziziphus oenoplia (L.) Mill. Rhamnaceae

158 Dentella repens J.R.Forst. & G.
Forst.

Rubiaceae

159 Spermacoce hispida L. Rubiaceae

160 Scoparia dulcis L. Plantaginaceae

161 Aegle marmelos (L.) Corrêa Rutaceae

162 Atalantia monophylla DC. Rutaceae

163 Madhuca longifolia (J.Koenig
ex L.) J.F.Macbr.

Sapotaceae

164 Ailanthus excelsa Roxb. Simaroubaceae

165 Datura metel L. Solanaceae

166 Physalis minima L. Solanaceae

167 Solanum nigrum L. Solanaceae

168 Solanum sisymbriifolium Lam Solanaceae

169 Solanum surattense Burm.f. Solanaceae

170 Solanum virginianum L. Solanaceae

171 Triumfetta rhomboidea Jacq. Tiliaceae

172 Holoptelea integrifolia (Roxb.)
Planch.

Ulmaceae

173 Lantana camara L. Verbenaceae

174 Phyla nodiflora (L.) Greene Verbenaceae

175 Cayratia trifolia (L.) Domin Vitaceae

176 Tribulus terrestris L. Zygophyllaceae
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importance in recent times. Several plants have been
reported (Table 8) to be growing naturally in fly ash
dumpsites of thermal power plants of Bihar and Jharkhand,
India, which are worth to be prospected for their phytore-
mediation potentials (Kumari et al. 2011, 2016; Pandey et al.

2016). Ipomoea carnea Jacq., Lantana camara L. and
Solanum virginianum L. were the three most abundant
species found in the fly ash dump sites of Patratu thermal
power plant, Jharkhand, India (Pandey et al. 2016). Pteris
vittata L., growing in fly ash dumpsites of a thermal power

Table 8 Native plants of fly ash dumpsite of thermal power plant (Kumari et al. 2011, 2016; Pandey et al. 2016)

Sl. no Plant Family Type of stress tolerated

1 Azolla pinnata R.Br Salviniaceae Alkaline pH, less nitrogen and organic carbon; rich in heavy metals like Cr, Cd,
Zn, Pb, Al, Si, As, Fe and Ni2 Ceratopteris thalictroides

(L.) Brongn
Pteridaceae

3 Hydrilla verticillata (L.f.)
Royle

Hydrocharitaceae

4 Marsilea minuta L. Marsileaceae

5 Typha latifolia L. Typhaceae

6 Achyranthes aspera L. Amaranthaceae

7 Argemone mexicana L. Papaveraceae

8 Amaranthus spinosus L. Amaranthaceae

9 Thelypteris
prolifera (Retz.) C.F.Reed

Aspleniaceae

10 Chenopodium album L. Amaranthaceae

11 Cannabis sativa L. Cannabaceae

12 Senna tora (L.) Roxb Fabaceae

13 Calotropis procera (Aiton)
W.T.Aiton

Apocynaceae

14 Croton
bonplandianus Baill

Euphorbiaceae

15 Cynodon dactylon (L.) Pers Poaceae

16 Datura metel L. Solanaceae

17 Diplazium
esculentum (Retz.) Sw

Aspleniaceae

18 Eclipta prostrata (L.) L. Asteraceae

19 Erigeron annuus (L.) Desf Asteraceae

20 Ipomoea carnea Jacq Convolvulaceae

21 Lantana camara L. Verbenaceae

22 Linum usitatissimum L. Linaceae

23 Momordica charantia L. Cucurbitaceae

24 Parthenium hysterophorus
L.

Asteraceae

25 Phyllanthus urinaria L. Phyllanthaceae

26 Plumbago zeylanica L. Plumbaginaceae

27 Persicaria hydropiper (L.)
Delarbre

Polygonaceae

28 Pteris vittata L. Pteridaceae

29 Tripidium
bengalense (Retz.) H.
Scholz

Poaceae

30 Stellaria media (L.) Vill Caryophyllaceae

31 Solanum virginianum L. Solanaceae
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plant of Bihar, significantly accumulated toxic heavy metals
like As, Cu and Cr in its above-ground parts, which revealed
its potential as a suitable species for phytoremediation of
metal contamination (Kumari et al. 2011). Typha latifolia L.
and Azolla pinnata R.Br. were found to be the most efficient
metal hyper-accumulator aquatic species and Croton bon-
plandianus Baill. was suggested to be the best metal accu-
mulator terrestrial species for various heavy metals of
thermal power plant dumpsites in Bihar (Kumari et al. 2016).
As evidenced by better translocation of metals from below
ground to above-ground parts I. carnea and L. camara were
suggested to be promising species for phytoextraction. On
the other hand, S. virginianum was considered as a better
candidate for phytostabilization of metals in fly ash dump-
sites, as metals were mostly found in the below-ground parts
of the plant (Pandey et al. 2016).

10 Stress Management Strategies

In order to thrive in stress conditions, plants implement vari-
ous mechanisms and adaptation strategies, such as enhance-
ment of water-absorbing capacity by promoting root growth,
increase in water-holding capacity through stomatal regula-
tion, improvement in osmotic regulation by accumulation of

osmoprotectants as well as reduction in oxidative damages by
regulation of enzymatic and non-enzymatic antioxidant
defense systems. In a broad sense, plants deploy two mecha-
nisms as strategies for stress management, which include
(i) mechanism of stress avoidance and (ii) mechanism of stress
tolerance (Fig. 1).

10.1 Mechanism of Stress Avoidance

Stress avoidance strategy is one of the adaptive mechanisms
acquired by plants to survive environmental stresses in course
of evolution. Activation of avoidance mechanisms such as
reduced physiological function like absorption and transport
of water and minerals, reduced vegetative growth, early
flowering, leaf shedding, accelerated senescence, as well as
loss of biomass or yield, allow plants to escape the potentially
detrimental effects of stressful conditions (Maggio et al.
2018). In most of the cases naturally occurring plant species
of mine tailings have possibly developed the mechanism of
avoidance to endure the stress of high levels of metal con-
taminations, as evidenced by relatively low metal concen-
trations found in the aerial parts in comparison to very high
concentrations in underground parts (Chen et al. 2005). Plants
in stress conditions can avoid stress by the synthesis of

Fig. 1 Strategies for the management of stress in plants
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callose, microbial interaction, limitation of the metal assimi-
lation by the roots, the removal of excess metals as well as by
binding metal in the cell wall (Jutsz and Gnida 2015).

10.1.1 Synthesis of Callose
Callose (b-1, 3 glucans) is a polysaccharide that is synthe-
sized in a plant cell by the action of enzyme b-1, 3-glucan
synthetase and is deposited on the outer side of the cell
membrane. This polysaccharide reduces the diffusion of
metal ions into the cell and thus serves as the earliest defense
strategy in the presence of stress including heavy metal
(Jutsz and Gnida 2015).

10.1.2 Microbial Interaction

Mycorrhizal Association
Mycorrhiza is the symbiotic relationship between
non-pathogenic fungi and higher plant roots. Mycorrhizal
fungi reduce the penetration of metals like Zn, Pb, Cu, Cd,
Ni, Mn, Fe etc. into the plant cells by secreting metal
chelating agents, such as organic acids, phenolic com-
pounds, siderophores and phosphate ions forming insoluble
metal salts. Metals are adsorbed on the surface of mycor-
rhizal fungal cells with the help of precipitated sulfides and
hydrated iron oxides. Another strategy is the accumulation
and immobilization of metal ions in the arbuscules, vesicles
and hyphae of mycorrhizal fungi as well as metal detoxifi-
cation by binding with metallothionein and vacuole
polyphosphates within the fungal cells (Jutsz and Gnida
2015).

The Arbuscular mycorrhizal (AM) symbioses enhance
the antioxidant defense system, improve water absorption,
nutrient uptake, photosynthetic efficiency and maintain
nutrient balance under stress conditions (Estrada et al. 2013;
Santander et al. 2017, 2020). In several cases, metal (Zn, Cu
etc.) contaminated wastelands are first colonized by
non-mycorrhizal plant species followed by mycorrhizal
species in course of ecological succession (Chen et al. 2005;
Gucwa-Przepiora and Turnau 2001; Turnau 1998). Mycor-
rhizal colonization increases the tolerance capacity of plants
to toxic heavy metal contamination making the mycorrhizal
association a better application for remediation purposes
than the application of either non-mycorrhizal plants or
free-living micro-organisms alone (Haselwandter and
Bowen 1996; Leyval et al. 1997). There is a need for more
information on the role of the mycorrhizal association in the
stabilization and remediation of contaminants for better
planning and management of wastelands with the help of
native tolerant plants.

Rhizospheric and Non-rhizospheric Microbial
Interaction
Studies involving the PCR-DGGE approach to sequence
nifH genes from environmental DNA extracted from tailing
samples revealed the presence of considerable diversity of
free-living nitrogen-fixing microbial communities in rhizo-
sphere and non-rhizosphere of native plants growing on
wastelands of copper mine tailings. Less than 90% sequence
identity with bacteria in the available databases suggested
the presence of novel nitrogen fixers in copper mine tailings
that were possibly capable of modifying the degraded min-
ing sites into a favorable site for plant growth (Zhan and Sun
2012).

Endophytic Microbiota
There are evidences that endophytic microbiota, that colo-
nize a plant’s internal tissues without causing any apparent
harm to the host plant, confer resistance and tolerance to
various abiotic stresses by increasing the levels of antioxi-
dants or by the production of phytohormones, like indolea-
cetic acid (IAA) and cytokinin, that are responsible for plant
growth as well as disease suppression in stress-laden
ecosystems (Baltruschat et al. 2008; Brígido et al. 2019;
Lata et al. 2018; Orozco-Mosqueda et al. 2018; Rajkumar
et al. 2009; Rashid et al. 2012; Rho et al. 2018). Therefore,
systematic study on the diversity of endophytic microbiota
of native plants of wastelands can provide beneficial infor-
mation on the possible mechanism of stress tolerance in
these plants.

10.1.3 Limitation of the Metal Assimilation
by the Roots

As another avoidance strategy in a stressed condition,
especially in a heavy metal contaminated environment, roots
exude some substances including organic acids, simple
sugars, phenols, amino acids, polysaccharide gels etc. which
bind metal ions and thus limit their assimilation by plants.
Sometimes roots change the pH of the rhizosphere causing a
reduction in metal availability. In some cases, roots produce
an oxidizing zone around them resulting in the formation of
oxidized forms of metals, which are less soluble and thus
less available to plants (Meier et al. 2012; Miransari 2011).

10.1.4 Removal of Excess Metals
Plants can remove excess metals such as copper, nickel,
zinc, iron and manganese by forming crystals with the
involvement of salt glands present on leaf epidermis as well
as through hydathodes and ectoderms. Another strategy is to
avoid metal stress is by transporting them to the aging leaves
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and subsequent removal of the leaves. Sometimes heavy
metals are accumulated and sequestrated in fibers and idio-
blasts to get rid of their harmful effects (Olko 2009).

10.1.5 Binding Metal in the Cell Wall
Immobilization of toxic metal ions in the cell wall is another
stress avoidance mechanism. Dissociation of cell wall
components like cellulose, hemicelluloses and pectins lead
to the production of negatively charged groups that are
eventually saturated with calcium. In the case of the heavy
metal contaminated environment, calcium ions are compet-
itively replaced by metal cations, and thereby heavy metals
are immobilized in the cell wall. Sometimes, the cell wall
becomes highly lignified or suberized in the presence of
heavy metals, by the increase in transverse bonds among cell
wall components like phenols, proteins and saccharides
making the wall more compact, stiffer and hence less per-
meable to heavy metals (Miransari 2011).

10.2 Mechanism of Stress Tolerance

When contaminants or stress factors such as metal ions
overcome the plant protective barriers and penetrate their
cells by evading all the strategies of stress avoidance, plants
deploy a second set of strategies for detoxifying the stress
factors and tolerating stress effects. Rapid and effective
detoxification of stressors including heavy metals is crucial
for the survival of a particular plant species in a stressed
condition. Plants install a bunch of mechanisms for stress
tolerance, for instance, activation of molecular chaperons,
antioxidant defense systems, metal binding with chelators
like phytochelatins, metallothioneins, organic acids and
amino acids and subsequent transportation and accumulation
of metals in vacuoles as well as induction of quick cell repair
system (Miransari 2011).

10.2.1 Chaperones
Chaperones are also referred to as heat shock proteins
(HSPs), which are accumulated in cytoplasm and all cellular
compartments of all kinds of living organisms to protect
other proteins from being degraded and to re-establish cel-
lular homeostasis under various stresses including tempera-
ture stress, water stress, salinity stress, osmotic and oxidative
stress (Wang et al. 2004; Singh et al. 2019). Various stresses
affect the proper folding of proteins and thus affect the
protein functions. The molecular chaperones bind to the
nascent polypeptide chain and stabilize unfolded and par-
tially folded polypeptides by minimizing the protein aggre-
gation and thus facilitate proper folding and errorless
transportation of proteins to various subcellular locations

(Roy et al. 2019). Some of the chaperones are assisted by
certain co-chaperones, such as the HSP70-HSP90 organizing
protein (HOP), during protein folding (Toribio et al. 2020).
Elaborative investigation on cellular chaperones and
co-chaperons in native plants of industrial and mining
wastelands can unfold significant information about the
stress tolerance mechanisms of plants for crop improvement
programs.

10.2.2 Antioxidant Defense Mechanisms
Excessive exposure of plants to abiotic stresses, like salinity,
drought, cold, heavy metals, UV irradiation etc., increases
the production of reactive oxygen species (ROS), such as
singlet oxygen, superoxide radical, hydroxyl radical and
hydrogen peroxide in different cellular compartments
including primarily the chloroplast, mitochondria and per-
oxisome as well as in some secondary sites like plasma
membrane, endoplasmic reticulum, cell wall and the apo-
plast (Das and Roychoudhury 2014). Production of ROS by
various cellular metabolic pathways results in lipid peroxi-
dation and oxidative damage to pigments, carbohydrates,
proteins and nucleic acids that eventually lead to plant cell
death (Foyer 2018). The balance between ROS production
and elimination is essential for normal cellular homeostasis
and under environmental stress conditions, this delicate
balance is disturbed (Miller et al. 2010). Plants modulate
various stresses by changing the enzymatic and
non-enzymatic antioxidant systems for scavenging ROS,
which reduce oxidative damage and thereby enhance the
plant tolerance to various stresses and sustain growth.
Enzymatic ROS scavenging components involve the actions
of superoxide dismutase (SOD), catalase (CAT), ascorbate
peroxidase (APX), guaiacol peroxidase (GPX), glutathione
reductase (GR), mono dehydroascorbate reductase
(MDHAR) and dehydroascorbate reductase (DHAR),
whereas non-enzymatic antioxidants include mainly the
osmolyte proline as well as other biomolecules like ascorbic
acid (AA), reduced glutathione (GSH), a-tocopherol, car-
otenoids and flavonoids (Das and Roychoudhury 2014;
Santander et al. 2020).

It was found that Ricinus communis plants that were
naturally growing in a phytotoxic paper mill dumpsite
showed a significantly higher level of proline and ascorbic
acid than control, indicating induction of non-enzymatic
antioxidant system as stress mitigation strategy (Das et al.
2021). In another study, a decrease in the lipid peroxidation
as indicated by decreased malondialdehyde content with the
increase in activities of antioxidant enzymes such as catalase
and superoxide dismutase was observed in two native, metal
hyperaccumulator plant species (Baccharis salicina and
Chenopodiastrum murale) of a Cu mine wasteland (Llerena
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et al. 2021). Detailed investigation on antioxidant defense
mechanisms of potential native plants of wastelands can be a
game-changer in crop improvement challenges in coming
ages of changing climate.

10.2.3 Metal-Binding Mechanism
Cells contain certain metal-binding molecules such as phy-
tochelatins, different amino acids, glutathione, organic acids
like malic acid, citric acid and oxalic acid. In the cytoplasm,
metal ions are transported to the vacuole by attaching to the
thiol groups of glutathione. Inside the vacuole, the complex
undergoes decomposition and resulting metal ions subse-
quently bind to phosphates which are a more immobilized
form of metals (Miransari 2011). Similarly, metals like iron
and nickel can be transported to the vacuole and through the
xylem vessels by associating with the carboxyl group
(COOH) of organic acids like malic acid and citric acid.
Amino acid histidine also forms complex with metals like
nickel, zinc and copper in hyper-accumulator plants e.g.
Alyssum lesbiacum, as evidenced by a manifold increase in
histidine concentration in xylem after exposure to the metal.
Similarly, another amino acid, nicotinamide, can chelate
some metals including iron, copper and zinc (Singla-Pareek
et al. 2006).

Some proteins known as metallothionein and phy-
tochelatins are also involved in heavy metal tolerance and
accumulation. Metallothioneins and phytochelatins help in
the chelation of metal ions in the cytosol with subsequent
compartmentalization of metals in the vacuoles. These pro-
teins repair the stress-damaged proteins as well as remove and
degrade proteins that fail to attain their native conformations
(Hasan et al. 2017). Metallothioneins (MTs) are low molec-
ular weight, cysteine-rich proteins that are involved in the
detoxification of metals from the cytoplasm by binding metal
ions like Cu, Cd and Zn ions with thiol groups. Correlation
betweenMTRNA levels and differences in tolerance to heavy
metals could be observed in Arabidopsis ecotypes that
revealed their role in protection against abiotic stress (Murphy
and Taiz 1995). Studies revealed that the native plants
growing in copper (Cu) contaminated areas of a Cu mine in
Arequipa, Peru, developed tolerance mechanisms, by
enhanced MT production along with other stress-related
physiological responses like changes in photosynthetic pig-
ments, sugar contents, malondialdehyde contents and an-
tioxidant enzyme activities (Llerena et al. 2021).

Phytochelatins (PCs) are small cysteine-rich peptides and
products of the biosynthetic pathway, which are synthesized
from reduced glutathione by enzyme phytochelatin syn-
thetase in response to metal-induced stress. They can
detoxify heavy metals, particularly cadmium by the mech-
anism of chelation and subsequent transportation from the

cytoplasm to the vacuole. These peptides are important for
maintaining metal homeostasis in cells as metals can be
released from the immobilized complex whenever required
for other uses, for instance, to produce metalloenzymes
(Ahmad et al. 2019; Guo et al. 2008; Hasan et al. 2017; Liu
et al. 2015; Pochodylo and Aristilde 2017).

During the process of ameliorating metal toxicity, besides
the binding of metal ions by peptides like MTs and PCs,
transportation of arrested metal ions from the cytosol to the
vacuole for sequestration is equally crucial which involves
the transporter proteins like ATP-dependent vacuolar pumps
(V-ATPase and VPPase) and a bunch of other tonoplast
transporters (Sharma et al. 2016). Isolation and characteri-
zation of MTs, PCs and transporter proteins in native plants
of various wastelands can unravel the understanding of their
stress management mechanisms in the stressed environment.

10.2.4 Repair of Cell Damage
Prompt and effective repair of stress-caused damages of cell
components is an important strategy of plants for stress
tolerance. Heat shock proteins (HSPs), which are expressed
in plant cells exposed to stress conditions including high
temperatures, heavy metal stress and others, help in the
repair process (Singla-Pareek et al. 2006).

11 Climate Change, Land Degradation
and the Prospect of Native Plants

Climate change affects adversely and intensifies severely the
effects of abiotic stresses on crop production as plants
experience multifactorial abiotic stresses including an ele-
vated concentration of CO2, temperature (low and high),
waterlogging, drought, sunshine intensity as well as chemi-
cal factors like pH and heavy metals, in course of changing
climate along with global warming and environmental pol-
lution (Onyekachi et al. 2019; Pareek et al. 2020; Zandalinas
et al. 2021). It has been predicted that in the coming years,
climate change will bring about unavoidable ecological
damages as well as widespread and severe crop yield losses
which will threaten the food security of the growing global
population (Ferguson 2019). Although most of the plants
adapt to individual stress by various mechanisms, an
increase in the number of different co-occurring multifac-
torial stress factors affect physiological processes of plants
related to growth and survival, as well as the microbiome
diversity that plants depend on. Therefore, it is important to
the development of elite crop varieties with enhanced tol-
erance to multifactorial stress combinations that are con-
ferred by changing climate, to meet the demands of a
growing population. In this respect, biotechnological and
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breeding efforts to exploit the physiological and biochemical
mechanisms of stress management are critical (Ferguson
2019). Advanced methods of biotechnology and genetic
engineering tools can be used for developing stress-tolerant
crops by introgression of the genes that are involved in stress
management in naturally tolerant plants (Bhatnagar-Mathur
et al. 2008; Ahanger et al. 2017). In this context, to ensure
the viability of crop improvement efforts under the context
of a dynamically changing environment, native plant species
from stress-laden wastelands can be exploited on a priority
basis to harness the stress-tolerant gene resources for better
stress management.

Climate change and land degradation are two interde-
pendent phenomena, cyclically affecting each other. Climate
change is one of the major factors that lead to land degra-
dation and affect subsequent sustainable development
(Kumar and Das 2014). An increase in dry climates and
decrease in polar climates result in shifts of climate zones,
which have direct consequences on respective ecosystems
and thereby on land fertility. Crop productivity, irrigation
needs and management practices determine the land use
pattern. Changes in land use and land cover due to loss of
vegetation productivity are the two major impacts of global
warming. On the other hand, land use changes alter the
chemical composition, air quality, temperature, humidity and
dynamics like the strength of winds of the atmosphere,
which can amplify the consequences of climate change (Jia
et al. 2019). Therefore, under the apparent pressure of
changing climate and increasing human population, there
remain no other options than reviving the degraded waste-
lands into productive lands to meet the subsequent increas-
ing demands of basic survival needs like food, medicine and
many other essential commodities. This is because the total
arable land is not going to increase with the growing need
for food grains for the expanding population which is pro-
jected to be doubled by 2050 (Bhattacharyya 2012).
Therefore, emphasis has been put to remediate and utilize
wastelands, which have the adequate potential to support the
majority of the underprivileged population in solving basic
problems like hunger and malnutrition in near future. By
implementing scientific management techniques, wastelands
can be transformed to produce fuel, fodder, forage, essential
oil, medicine or vegetation cover to check further soil
degradation. Hence, naturally growing native plants of
wastelands can serve in two ways: (i) by providing genetic
resources that are the molecular basis of the physiological
and biochemical mechanism of stress management strategies
for crop improvement programs to produce elite
climate-resilient crops; and (ii) by remediating stress-laden
wastelands into productive lands by creating vegetation
cover with little effort.

12 Conclusion

Although wastelands like industrial and mining dumpsites
are characterized by adverse physicochemical and biological
properties of soil, still numerous plant species have been
reported to thrive well in stressful conditions with little or no
agronomical effort. Herbaceous and shrub species usually
adapt faster to these conditions than other plant species
because of their shorter life cycles, which allow them to
produce various genotypes in a shorter time. Documentation
of such stress-tolerant naturally growing native plants of
various wastelands and studying their mechanisms of toler-
ance are two major emerging areas of research in recent
times. Such efforts may help in finding novel plant species
that are more stress-tolerant with greater potential of creating
vegetation cover. However, more comprehensive investiga-
tions with modern multi-omics approaches are required to
understand the underlying mechanisms of stress tolerance in
those species, which will help improve the adaptation of
economically important species of interest in stress-laden
wastelands. Discovering important tolerance pathways,
functions of antioxidant enzymes, osmolyte accumulation,
membrane-bound transporters involved in efficient com-
partmentation of harmful ions and accumulation of toxic
heavy metals as well as resistance mechanisms against pests
and pathogens by the native plants of wastelands are some of
the vital areas for future research-based study.
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Vulnerability and Resilience of Sorghum
to Changing Climatic Conditions: Lessons
from the Past and Hope for the Future

Rita Sharma and Mukul Joshi

Abstract

Climate change poses a serious threat to crop productiv-
ity. The rise in CO2 levels, air temperature, soil salinity
and variability in precipitation are the key factors that
contribute to yield loss. Sorghum stands in the arid and
semi-arid regions of the world that are particularly
vulnerable to climate change. A comprehensive assess-
ment of its vulnerability and resilience is required to
adopt appropriate mitigation strategies. Here, we provide
an overview of the projected and observed impact of the
rise in temperature, CO2, salinity, drought and flooding
stress on plant physiology, growth and development, and
overall productivity of sorghum. While an increase in
CO2 has been projected to enhance sorghum yields, a
decrease in precipitation along with temperature rise
would negatively impact sorghum productivity. Although
sorghum is moderately tolerant to salinity and waterlog-
ging, screening of germplasm for selection of improved
varieties and development of tolerant cultivars is neces-
sary for superior performance. The best agricultural
practices, technological advances, and genetic enhance-
ment desirable to mitigate the impact of climate change
on sorghum productivity have been discussed.

Keywords

Climate change � Drought stress � Flooding � Genetic
engineering � Heat stress � Sorghum
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1 Introduction

With the continuous degradation of soil quality, rise in
temperature and CO2 levels, and increase in the frequency of
extreme weather events, such as heatwaves, floods and dry
spells, climate change poses a serious threat to food security,
worldwide (Schmidhuber and Tubiello 2007; Muluneh
2021). The small-scale sustenance farms in rural areas of
developing countries are more vulnerable to this challenge
due to limited resources and adaptive capacity. Apparently,
timely assessment of the level of sensitivity and vulnerability
of the major crop plants to the changing climatic conditions
is imperative to adopt appropriate adaptation strategies (Raza
et al. 2019). Also, with the increase in population, decrease
in resources, and changing nutritional requirements, taking
cognizance of alternate crop plants with better resilience to
adverse environmental conditions and higher nutritional
value is necessary.

Sorghum, also known as camel of cereals, with its ability
to grow on marginal lands is a spotlight candidate for crop
diversification. It requires significantly less moisture for its
growth compared to other staple crops with an estimated
need of 332 kg water per kg of total dry matter, while wheat
requires 514 kg, maize 368 kg and barley 434 kg of water
per kg of the total accumulated dry matter (Rao et al. 2014).
According to a recent study, adoption of alternate cereals
with higher water use efficiency such as maize, finger millet,
pearl millet and sorghum instead of rice can reduce the water
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requirement of India by 33% besides improved nutritional
yields (Davis et al. 2018).

Sorghum is a multipurpose crop with all parts of the plant
utilizable for food, feed, fuel or other value-added products
(Mathur et al. 2017). With a high abundance of phenolic
acids, tannins and flavonoids, sorghum is a rich source of
antioxidants as well. Furthermore, it is a gluten-free alter-
native food grain with high nutrient, protein, and fibre
content. While the grains are mostly consumed by humans
or used as animal feed; the leafy biomass and crop residue,
left after harvesting grains (stover), is used as quality fodder
for livestock. Furthermore, the sugars accumulated in the
sweet sorghum stalks and, lignocellulosic biomass are used
for biofuel production (Mathur et al. 2017).

Sorghum is mainly cultivated in drier environments on
shallow or deep clay soils with pH ranging from 5.5 to 8.5. It
is a short-day plant with a growing season of about 115–
140 days. Being a C4 crop, it has high photosynthetic effi-
ciency. The optimum temperature for seed germination is 15
°C while optimal vegetative and reproductive growth has
been reported in temperatures ranging between 27 and 30 °C
(Assefa et al. 2010). Due to extensive fibrous root system,
sorghum can draw moisture from deeper layers of soil and
therefore, can grow in both irrigated and rainfed conditions
though the yields are significantly affected under suboptimal
conditions. With moderate tolerance to saline and alkaline
soils, sorghum can also be grown on marginal lands with
minimal input requirements (Huang 2018). Figure 1 illus-
trates some of the key characteristics of sorghum that make it
a climate-ready crop for the future.

More than 40 million hectares of land are under sorghum
cultivation worldwide while >4 million hectares are used for
sorghum cultivation in India (World Agricultural Production
Statistics by USDA, Aug 2021). The major producers of
sorghum worldwide are the USA, Nigeria, India, Mexico,
China, Sudan and Argentina. Mostly grown for animal feed

in America, Europe and Australia, sorghum feeds almost
half a billion people in over 90 countries of the developing
world. While 90% production area of sorghum is in Africa
and Asia, the highest production is reported from America
(38.6%) followed closely by Africa (38.5%) with only
18.6% from Asia (Bhagavatula et al. 2013). The primary
reason for this discrepancy in sorghum yields is the limited
availability of resources and the rain-fed farming system
practised in most of the Asian and African continents. The
smallholder farmers with limited adaptive capacity and
resources in these regions are, therefore, more vulnerable to
stochastic variations in temperature and rainfall associated
with the changing climatic conditions. Furthermore, since
the impact of climate change would be spatially variable, the
local impact might be more drastic than global predictions
(Cooper et al. 2008; Srivastava et al. 2010; Raza et al. 2019).
Therefore, understanding the resilience and vulnerability of
the staple crops to climate change at the global, regional,
national as well as local levels is crucial.

2 Impact of Climate Change on Sorghum
Growth and Productivity

The key factors with a major impact on sorghum growth and
productivity include a rise in CO2 levels, air temperature,
soil salinity and variability in rainfall/precipitation. Based on
the geographical location and level of precipitation, some
parts of the world have been predicted to experience pro-
longed dry spells leading to drought conditions while
unexpected rains will lead to flooding. The impact of each of
these factors on plant physiology, growth and development
and, the overall yield has been illustrated in Fig. 2 and
detailed in sections below.

2.1 Impact of Rising CO2 Levels

The global CO2 levels have been projected to reach between
421 and 936 ppm by the year 2100 (IPCC 2013). The
increasing levels of atmospheric CO2 will not only raise air
temperature but will also affect precipitation patterns and
water content in the soil. Generally, C3 plants are more
vulnerable to elevated CO2 than C4 plants because CO2

levels in C4 plants are at near saturation, and photorespira-
tion is suppressed within the bundle sheath cells of C4 plants
(Wand et al. 1999). Some of the studies reported higher
photosynthetic rates and water use efficiency in response to
an increase in CO2 levels in C4 plants particularly under
water-limiting conditions (Hamim 2005; Lopes et al. 2011).
Furthermore, analysis of sorghum leaves in response to
elevated CO2 levels (700 µl L−1) revealed two folds
decrease in cell wall thickness of bundle cells compared to

Fig. 1 Key sorghum traits that make it suitable for large scale
plantation under changing climatic conditions

170 R. Sharma and M. Joshi



plants grown at ambient (350 µl L−1) CO2 levels thereby,
affecting bundle sheath conductance though no change was
observed in the quantum yield (Watling et al. 2000). The
modification of the C4 phenotype in response to elevated
CO2 levels indicates the higher flexibility of C4 plants
towards climate change.

Sorghum has also been reported to exhibit a significant
reduction in transpiration rate in response to an increase in
CO2 levels under well-irrigated conditions resulting in
increased water-use efficiency (Conley et al. 2001). Further,
an increase in biomass production with continuous carbon
gain and a significant rise in C:N ratio has been reported in
sorghum in response to elevated CO2 under drought condi-
tions (Ottman et al. 2001; Torbert et al. 2004). As an
increase in both root and shoot biomass enhances water
absorption; this considerably benefits the crop under low
water conditions (Chaudhuri et al. 1986; Ottman et al. 2001;
Wall et al. 2001). However, CO2 increase coupled with

drought has been reported to induce reactive oxygen species,
thereby, affecting the synthesis of carbohydrates, proteins,
lipids and nucleic acids (Ahmad et al. 2018). Some studies
reported reduced protein concentration and hence, nutritional
quality with an increase in CO2 due to reduced assimilation
of nitrates (Taub et al. 2008). However, grain protein content
has been reported to increase in response to elevated CO2

under drought conditions (De Souza et al. 2015).
Overall, sorghum yields have been predicted to remain

unaffected by elevated CO2 levels under well-irrigated con-
ditions (Ottman et al. 2001; Leakey 2009), while an increase
in CO2 under drought stress conditions has been projected to
enhance grain yields and nutritional quality of sorghum
(Samarakoon and Gifford 1996; Ghannoum et al. 2000; Ott-
man et al. 2001; von Caemmerer and Furbank 2003; Vu and
Allen 2009). Further, the selection of appropriate genotypes
and maintaining nitrogen levels can maximize the benefits of
elevated CO2 levels (Asadi and Eshghizadeh 2021).

Fig. 2 Impact of climate change on sorghum growth, development and
productivity. The upper panel shows the key stress conditions that are
predicted to emerge due to climate change. The impact on plant
physiology, growth and development and overall productivity of each

stress condition has been illustrated. The dashed red line highlights the
key abiotic stress conditions and the purple dashed line highlights biotic
stress conditions that will augment in response to climate change
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2.2 Impact of Increase in Salinity

Salinity is one of the most important abiotic stresses that
negatively impact plant growth and development, worldwide
(Parida and Das 2005). The rising sea levels may result in
more saline lands in Sub-Saharan Africa and South Asia
where sorghum is a staple crop for millions. Sorghum is
moderately salt-tolerant and is believed to tolerate up to 4.5
and 6.8 dSm−1 of electrical conductivity in response to water
and soil stress, respectively (Ayers and Westcot 1985).
However, further increase in salinity above this threshold
has been reported to cause yield reductions of 16% per soil
salinity unit (Francois et al. 1984; Tanji and Kielen 2002).
Sorghum seedlings subjected to 8.0 dSm−1 for 40 days
reduced dry weight by 51–76% in different genotypes (Niu
et al. 2012).

Some of the adaptation strategies used by sorghum to
combat salinity stress include (a) limiting bioaccumulation
and transport of Na+ from roots to upper parts of the plant,
(b) compartmentalization of Na+ and (c) selective absorption
of K+ and Ca2+ over Na+ (de Lacerda et al. 2005; Yan et al.
2015; Shakeri et al. 2020). The sweet sorghum cultivars
have been shown to maintain high sugar in stems under salt
stress conditions by protecting photosystem assembly,
enhancing photosynthetic efficiency and sucrose biosynthe-
sis while simultaneously inhibiting sucrose degradation
(Yang et al. 2020). Dehnavi et al. (2020) investigated
salinity tolerance in ten sorghum genotypes at germination
and seedling stages and concluded that seedling traits can be
used to select salt-tolerant genotypes in sorghum.

2.3 Impact of Increase in Temperature

The global temperature has been projected to increase by
3.7–4.8 °C in the twenty-first century which will be per-
ceived as heat stress by plants (IPCC 2014). An increase in
temperature leads to deformation of chloroplasts and
reduced activity of Rubisco and pigment concentration,
thereby, reducing the rate of photosynthesis and carbon
assimilation (Brooks and Farquhar 1985). With direct impact
on gas exchange and rate of respiration and water use effi-
ciency, the impact of heat stress is visible in the form of leaf
wilting, reduction in leaf area, plant height, flower number,
duration of growth, pollen viability and seed set thereby,
reducing the overall biomass and grain yield of the plant
(Schoper et al. 1986; Srivastava et al. 2010).

The Crop Environment Resource Synthesis (CERES)-
Sorghum model has been used to simulate grain sorghum
yield and water use efficiency with change in temperature
and precipitations associated with elevated CO2 levels using
Free-Air Carbon dioxide Enrichment (FACE) analysis in
western regions of the United States (Fu et al. 2016).

Authors reported that the increased yields in grain sorghum
in response to elevated CO2 would likely be compensated by
the decrease in yields with elevated temperature indicating
that temperature rise is a major driver of global climate
change. Further, narrowing of diurnal temperature amplitude
which is calculated as the difference between maximum
daytime and minimum night-time temperature, has also been
predicted to impact sorghum growth observed in the form of
narrowing of leaf area as well as reduced total sugars and
biomass. The carbon trade-offs are also altered due to an
increase in dark phase respiration with no change in pho-
tosynthesis (Sunoj et al. 2020).

Sorghum is a C4 plant with an optimum temperature for
photosynthesis higher than C3 plants. The optimum tem-
perature ranges from 21 to 35 °C for seed germination, 26–
34 °C for vegetative growth and development and 25–28 °C
for reproductive growth in sorghum (Maiti 1996). Maximum
yields and dry matter have been reported at 27/22 °C
(day/night temperatures) (Downes 1972). The reproductive
stages including panicle initiation, flowering and grain filling
are more sensitive to heat stress in sorghum compared to the
vegetative stages as some of the most crucial developmental
events including meiosis, anthesis, pollen germination and
tube growth, fertilization and early embryo formation hap-
pen during these stages (Downes 1972; Craufurd et al. 1998;
Hammer and Broad 2003; Prasad et al. 2006). Therefore,
high temperature stress at these stages leads to a significant
decrease in floret fertility, seed set and seed weight along
with altered concentration and composition of carbohydrates
and starch (Siddique et al. 1999; Jain et al. 2007;
Djanaguiraman et al. 2014). Heat stress has also been
reported to accelerate female development thereby, reducing
the receptive duration for the pollen. Maximum decline in
seed set was observed in grain sorghum when plants were
exposed to heat stress at the flowering stage (Prasad et al.
2008).

The decline in yield in response to heat stress has been
mainly attributed to faster growth, reduction of phenophase
and duration of seed-filling (Chowdhury and Wardlaw 1978;
Kiniry and Musser 1988; Attri and Rathore 2003; Fuhrer
2003). The duration of exposure to heat stress also deter-
mines the overall impact on plant growth and productivity in
sorghum (Prasad et al. 2006, 2015).

Heat stress also adversely impacts grain quality traits in
sorghum by affecting starch biosynthesis and accumulation,
protein digestibility and amylose to amylopectin ratio
(Hurkman et al. 2003; Li et al. 2013; Wu et al. 2016; Impa
et al. 2019). The altered starch composition further nega-
tively impacts saccharification efficiency, thereby reducing
ethanol yields (Ananda et al. 2011). In addition, grain har-
diness, micronutrient content, tannins and flavonoid are also
adversely impacted (Taleon et al. 2012; Wu et al. 2016).
Further, the management of insects and pests would be a

172 R. Sharma and M. Joshi



major challenge due to their enhanced developmental rate
and overwintering in response to the rise in temperature
(Nguyen et al. 2013; Djanaguiraman et al. 2014; Prasad et al.
2015; Singh et al. 2015).

2.4 Impact of Drought

Drought is a major concern in developing countries where
rain-fed agriculture is predominant and is the basis of
livelihood and socio-economic system. The intensity and
frequency of drought are expanding particularly in arid and
semi-arid regions of the world which are major producers of
sorghum. In India, sorghum is cultivated as both Kharif
(rainy) and Rabi (post-rainy) crops and is also mostly
rain-fed in the warm semi-arid regions. The daily water
requirement of sorghum depends on the type of soil, crop
transpiration, soil water evaporation, water stress and the
growth stages, however, a short-season sorghum cultivar
typically requires 450–700 mm of water irrigation during the
growing season (Tolk and Howell 2001). On per daily basis,
sorghum needs approximately 1–2.5 mm water at the early
growth stage and 7–10 mm at the boot stage. However, the
maximum daily requirement of water increases from the
boot stage to anthesis which then gradually decreases during
grain filling and maturation (Assefa et al. 2010). Under
rainfed conditions, sorghum can extract about 90% of the
total water from 0 to 1.65 m of soil depth while the rooting
depth of sorghum can reach up to 2.5 m (Rachidi et al.
1993). The water level at soil depths of 1.0–1.8 m is
important towards the end of the season (Moroke et al.
2005).

Drought stress due to reduced soil water content below
the minimum requirement at either pre-or post-flowering
stages results in significant yield loss in Sorghum (Kebede
et al. 2001). Exposure to drought conditions at the vegetative
and reproductive stage in sorghum has been reported to
reduce more than 36–55% yield, respectively, indicating that
the reproductive stage of sorghum is more sensitive to
drought stress (Assefa et al. 2010). Water stress before
anthesis affects tiller count, tillering number of panicles and
number of seeds per panicle, whereas, post-anthesis water
stress affects transpiration efficiency, CO2 fixation and car-
bohydrate translocation ultimately leading to premature
senescence (Xin et al. 2008).

Water scarcity at the pre-flowering stage also decreases
the net rate of photosynthesis due to reduced photosystem II
and phosphoenolpyruvate carboxylase (PEPCase) activities
while stomatal closure further negatively impacts stomatal
conductance and carbon assimilation (Jagtap et al. 1998).
Studies have also reported a decrease in biomass content and
plant height, increase in photorespiration and accumulation
of reactive oxygen species in response to drought stress

(Perry et al. 1983; Gano et al. 2021). Conversely, water
deficit at the reproductive stage not only inhibits the gamete
development but also affects fertilization and subsequent
seed development. The decrease in the total number of
panicles, number of seeds per panicle and individual grain
size are also observed (Saini 1997; McWilliams 2003;
Chadalavada et al. 2021). Although spikelet sterility, in
response to drought stress, adversely impacts grain yield, the
overall reduction in grain yield may be compensated by
tillers that emerge at the later stage (Manjarrez-Sandoval
et al. 1989). Overall, drought stress at the early booting stage
affects both seed size and number, while water stress at later
stages mainly influences seed size (Eck and Musick 1979).
Depending on the severity, drought stress has also been
shown to reduce the activity of various enzymes involved in
starch biosynthesis and accumulation (Hurkman et al. 2003;
Pang et al. 2018). Reduction in activities of several enzymes
including starch synthase, starch branching as well as
debranching enzymes has also been reported in response to
drought stress (Yi et al. 2014). A recent study reported a
change in quantity, crystal density and chemical composition
of epicuticular wax in sorghum leaves in response to
post-flowering drought stress (Sanjari et al. 2021).

Some studies have reported an increase in grain protein
content coupled with a decrease in protein digestibility in
response to drought stress (De Souza et al. 2015; Impa et al.
2019; Sarshad et al. 2021). In a few reports, increased kernel
hardness and protein content were also observed compared
to well-irrigated conditions (Wu et al. 2008; Njuguna et al.
2018). A recent study reported reduced grain hardness with a
simultaneous decrease in weight and size under low soil
moisture conditions in sorghum (Pang et al. 2018). Another
study reported a reduction in individual grain size as well as
diameter due to a decrease in duration of grain-filling but an
increase in grain hardness in response to water stress (Impa
et al. 2019). Since protein content was shown to be inversely
proportional to starch content, increased protein content may
lead to the formation of more starch–protein complexes
thereby, decreasing the availability of starch for hydrolysis
(Zhan et al. 2003; Wu et al. 2007). Ananda et al. (2011)
reported increased ethanol yields from drought-stressed
grain samples compared to controls, whereas contrary to
this, Pang et al. (2018) observed a positive impact of irri-
gation capacity on bioethanol yields. The crude fibre content
in drylands grown sorghum has also been reported to decline
compared to irrigated lands (Wu et al. 2007). The same
study reported no significant reduction in mineral content
(ash) under drylands. On the contrary, Impa et al. (2019)
showed reduced micronutrient concentration under moisture
stress. An increase in tannin content in response to a
decrease in soil moisture has also been reported (Njuguna
et al. 2018). Overall, these studies suggest a negative impact
of water stress on grain yields and quality in sorghum.
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The stay-green trait is particularly important in sorghum to
deal with drought stress. It confers the plant ability to delay
the onset and slow down the rate of progression of leaf
senescence by retaining chlorophyll during the post-
flowering stage (Harris et al. 2007). As leaf senescence is
negatively correlated with plant yield, delay in senescence
mitigates reduced yield under water stress conditions. Stay
green is also associated with reduced canopy size and cov-
erage, tiller number and water usage during the vegetative
stage thereby, increasing water availability during grain fill-
ing (Borrell et al. 2014). However, a more recent study
indicated that canopy size before flowering has little effect on
stay-green phenotype while post-flowering canopy exhibited
a stronger association (Liedtke et al. 2020). Further studies
linking stay-green QTL with associated genes and pathways
are in progress and would be instrumental in understanding
the molecular mechanism underlying stay-green-mediated
drought tolerance (Kiranmayee et al. 2020).

2.5 Impact of Flooding Stress

With extreme changes in precipitation levels, waterlogging
would be a major constraint to plant growth and produc-
tivity. Inhibition of aerobic respiration due to waterlogging
leads to a significant decline in the rate of photosynthesis,
stomatal conductance and transpiration thereby, restricting
plant growth and development (Pardales et al. 1991;
McDonald et al. 2002; Zhang et al. 2016). Rapid depletion
of O2 in wet soils also leads to denitrification further
impacting the grain yield. Subsequently, the nutrient uptake
decreases leading to stunted growth and reduced grain
quality (Setter and Belford 1990; Promkhambut et al. 2011a;
Zhang et al. 2016). A yield loss of 0.2 t h−1 per day is
estimated in sorghum due to waterlogging. Though the
severity of the adverse effects of waterlogging depends on
the stage of development, the early growth stage is more
susceptible compared to reproductive stages (Orchard and
Jessop 1984; Pardales et al. 1991; Linkemer et al. 1998;
McDonald et al. 2002). Flooding stress for 20 days at the
early growth stage severely impaired both primary root and
shoot growth in sorghum (Promkhambut et al. 2011a).
Stunted root and shoot growths in turn adversely affect the
stalk yield ultimately affecting seed set and grain yields
(Promkhambut et al. 2011a).

However, the overall impact of waterlogging has been
shown to vary in different genotypes with varying levels of
resilience to flooding stress. Development of nodal roots and
aerenchyma in nodal and lateral roots, allocation of more
biomass to shoot and conservation of root surface are some of
the acclimation strategies adopted by sorghum to flooding
stress in tolerant genotypes (Promkhambut et al. 2010, 2011b).

3 Key Strategies to Mitigate the Impact
of Climate Change on Sorghum
Productivity

With the increase in area under cultivation of sorghum and
changing climate scenario, it is imperative to devise appro-
priate strategies to ensure optimum yields and avoid
unprecedented consequences in the future. These would
involve adopting best agricultural practices, leveraging
technological advances in the field and focused efforts for
appropriate germplasm screening and crop improvement
using both conventional breeding and biotechnological tools
(Fig. 3).

3.1 Best Agricultural Practices/Crop
Management Strategies

Based on the climate modelling and simulation studies for
predicting climate change and its impact on sorghum pro-
ductivity, several recommendations have been made over the
past few years that can be adopted by farmers, policymakers
and other stakeholders to ensure optimum productivity and a
sustained marketplace for sorghum (Fig. 3).

Simulation of climate models in India predicted a decline
in sorghum yields primarily due to a rise in temperature and
shift in monsoon season (Srivastava et al. 2010; Sandeep
et al. 2018; Saravanakumar and Balasubramanian 2018).
However, by shifting sowing dates, use of long-duration
varieties and supplemental irrigation, the adverse impacts of
the shift in monsoon can be significantly reduced. Delayed
sowing in some regions may also help in avoiding exposure
to heat stress especially at the crucial stages of plant
development. Sorghum yields in African countries such as
Ghana are more sensitive to variability in precipitation in the
growing season primarily because most of the agricultural
area is rain-fed (Chemura et al. 2020). Implementation of
irrigation techniques in such regions is recommended for
sustained productivity. Another recent study in Sudanian
regions of West Africa suggested that along with preponing
the sowing date, deliberate choice of improved medium
maturity varieties over local landraces can significantly
reduce the negative impact of climate change on sorghum
yields in these regions (Akinseye et al. 2020). It should also
be noted that planting high-yielding varieties may not
always be beneficial for overall productivity due to their
higher vulnerability to environmental stresses.

Flood recession farming where crop plants are planted in
flooded areas after the water recedes is also practised for
sorghum. Seed priming, application of nitrogen fertilizers,
planting on raised beds and improved drainage can help
reduce the yield loss due to waterlogging in these areas
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while salt leaching and high irrigation volume can decrease
the negative impact of salinity stress (Calone et al. 2020;
Traore et al. 2020). Treatment of seeds with appropriate
priming agents has recently been reported to alleviate the
negative impact of salt stress on seed germination in sor-
ghum (Chen et al. 2021). Likewise, decreasing planting
density, judicious application of fertilizers, using pure lines,
regular pest management, crop rotation, use of the
multi-cropping system, establishment of wind protection
belts and soil amelioration are some of the best agricultural
practices that can be adopted to mitigate the impact of cli-
mate change (Sonobe et al. 2010; Raza et al. 2019; Fatima
et al. 2020).

3.2 Technological Advances

Farmers with decades of experience in sorghum planting are
not only aware of the shift in regional climatic patterns but
have also been using their empirical knowledge to minimize
the associated negative impact. Technological advances
coupled with this knowledge have the potential to revolu-
tionize the agricultural sector. The combination of artificial
intelligence with big data analytics is already being used to
facilitate precision agriculture where both input and output
are carefully monitored to accurately manage the crops
(Linaza et al. 2021). Smart sensing devices to monitor the
status of nutrients and water in the soil as well as the status of
crop health followed by automated weeding and delivery of
the required nutrients, water and chemicals using drones and

robotics will reduce the farm labour (Talaviya et al. 2020).
Further, the relay of real-time data using mobile devices and
implementation of control systems after taking inputs from
the farmers would help in establishing an ideal agricultural
ecosystem (Altieri and Nicholls 2017; Sung 2018).

More accurate weather forecasting systems, remote
sensing and modelling strategies are also being used for
predicting crop performance and to suggest corrective
measures (Arora 2019). Performance of these models can be
improved with the help of unmanned air vehicles, known as
drones, to close the existing data gaps, minimize errors in
data collection and apply deep learning models to identify
unknown features that can directly or indirectly influence
crop yield.

Further, the availability of financial assistance for the
implementation of advanced technologies, technical training
and clear communication between technology developers,
farmers and other stakeholders is essential for successful
implementation of these strategies at the ground level.
Taking farmer perception and willingness to accept new
technologies is also very important. A semi-structured
questionnaire-based survey of farmer perception (352 Sor-
ghum farmers with 25–28 years of experience) in Sudanian
and Sahelian zones of Mali reported that the availability of
drought-tolerant varieties with better water use efficiency has
higher chances of adoption by experienced farmers (Traoré
et al. 2021). Similar surveys to understand ground-level
problems, perception of farmers and understanding of their
needs is important to drive technological innovations with
practical solutions.

Fig. 3 Mitigation strategies to reduce the negative impact of climate change on sorghum productivity
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3.3 Genetic Screening and Enhancement

The overall performance of sorghum cultivars in response to
abiotic stresses varies with the genotypes, hence, screening
and selection of appropriate cultivars as per local needs are
required. Several studies focusing on changes in physiologi-
cal parameters in response to abiotic stress treatments have
identified key parameters for quick screening of germplasm
for stress tolerance in sorghum (Krishnamurthy et al. 2007;
Kausar et al. 2012; Almodares et al. 2014; Ding et al. 2018;
Huang 2018; Mbinda and Kimtai 2019; Muller et al. 2020).

However, the low inheritability of yield traits and the
impact of environmental factors can lead to confounding
results. Therefore, testing of selected lines at the target
location is crucial. Since some of the landraces exhibiting
high tolerance to environmental stresses may not be suitable
for cultivation, these germplasm resources can be leveraged
for developing high yielding varieties with improved nutri-
tional content and, biotic and abiotic stress tolerance using a
combination of conventional plant breeding and modern
biotechnological tools (Varshney et al. 2021). A recent study
involving comparative analysis of salinity tolerance of 21
sorghum accessions overlaid on their phylogenetic place-
ment suggested that salinity tolerance likely originated in
combination with or because of drought tolerance during
sorghum domestication (Henderson et al. 2020). However,
salinity tolerance was lost in later lineages which were no
longer exposed to salinity conditions. Based on their
observations, the authors proposed that the landrace durra
can serve as a valuable resource for genetic improvement of
salinity tolerance in sorghum by using it as a parent line in
breeding programmes or using functional genomic approa-
ches (Henderson et al. 2020). The high-quality SNP and
indel data for durra landraces concerning 43 other sorghum
genotypes are already available and can be leveraged to
dissect the molecular basis of salinity tolerance (Mace et al.
2013). Likewise, screening of 44 sorghum genotypes com-
prising improved cultivars, landraces and wild relatives,
revealed Lodoka, a landrace, as the most drought-tolerant
genotype further underscoring the importance of screening
and deployment of germplasm for engineering stress toler-
ance in sorghum (Ochieng et al. 2021). Field trials of sor-
ghum cultivars in Brazil identified key genotypes of
sorghum with better grain stability under water stress con-
ditions (Batista et al. 2019). International Crops Research
Institute for the Semi-Arid Tropics, India has identified the
sorghum germplasm for drought tolerance at different stages
of development (Prasad et al. 2021). Further, the develop-
ment of cost-effective and reproducible screening techniques
would facilitate large-scale examination of sorghum germ-
plasm in response to individual and combined stress treat-
ments in the future.

Several drought-resistant cultivars with high photosyn-
thetic efficiency such as stay-green phenotype that reduces
water uptake and facilitates more efficient use of soil mois-
ture during grain filling have been identified (Borrell et al.
2014). BTX642 cultivar, the source of stay-green trait, has
been used to mitigate the impact of post-flowering drought
in sorghum (Borrell and Hammer 2000; Jordan et al. 2010;
Kassahun et al. 2010). In fact, the stay-green genotypes are
also resistant to some of the stress conditions such as lodging
and charcoal rot (Reddy et al. 2007). Similarly, BTX623 is a
heat-tolerant cultivar and therefore, can be used for the
introgression of heat-tolerant traits in cultivated varieties
(Singh et al. 2015). Furthermore, genotypes exhibiting early
morning flowering, photosensitive traits, higher seed filling
rate and longer seed filling duration need to be identified to
compensate for yield loss due to heat and drought stress.

Sorghum is susceptible to a wide range of pests such as
shoot fly, stem borer, midge, head bug, aphids, armyworms
and locusts therefore, pest management is also crucial for
large scale cultivation of sorghum. Grain mould, rust,
anthracnose, downy mildew, leaf blight and charcoal rot are
the major diseases that can significantly impact sorghum
productivity (Das 2019). With a rising temperature and more
intensive rains; the severity of these diseases is projected to
increase in the future requiring identification and engineer-
ing of disease-resistant lines (Reddy et al. 2011).

Investigation of the molecular mechanism of biotic and
abiotic stress tolerance would facilitate the selection of
appropriate candidates for plant engineering. Some of the
studies aimed at elucidating transcriptomic dynamics in
response to stress treatments revealed differential accumu-
lation of heat shock transcription factors in response to heat
stress in sorghum (Johnson et al. 2014; Nagaraju et al.
2019). Similarly, in addition to transcription factors, aqua-
porin genes that play important role in water transport have
also been associated with waterlogging stress tolerance in
sorghum (Ram and Sharma 2013; Kadam et al. 2017).
Likewise, transcriptomic and proteomic studies in response
to abiotic stress treatments unveiled key genetic components
likely responsible for stress tolerance in sorghum (Ngara
et al. 2012; Johnson et al. 2014; Zhang et al. 2019). Phy-
logenomic studies of key gene families further provide a clue
to functional associations between candidate genes and
stress pathways (Francis et al. 2016; Maheshwari et al. 2019;
Baillo et al. 2020; Mathur et al. 2020; Nagaraju et al. 2020;
Singh et al. 2020; Fan et al. 2021). Hybrid breeding in
conjunction with recent biotechnological tools such as
CRISPR/Cas technology can be adopted to characterize
these candidate genes further (Reddy et al. 2011; Boyles
et al. 2019). The candidate genes and QTLs characterized so
far, for their role in drought and/or heat stress in sorghum
have been recently reviewed (Prasad et al. 2021). These can
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be leveraged to design and develop abiotic stress-resilient
sorghum genotypes.

A recent study reported changes in root-associated bac-
teria of sorghum in response to salinity stress indicating that
sorghum plants might be manipulating the root bacterial
communities to adapt to saline soils (Yukun et al. 2021).
Analysis of phenotypic variability in conjunction with
genetic variability using genome-wide association studies
(GWAS) studies has the potential to identify nucleotide
polymorphism associated with stress tolerance and
environment-gene-stress tolerance associations in sorghum
(Chen et al. 2017).

4 Conclusions and Future Prospects

Although sorghum is better equipped to deal with changing
climate scenarios, its overall vulnerability varies based on
the geographical location, exposure to climate change,
choice of varieties and availability of resources. Climate
modelling has the potential to predict the performance of
crop plants under future environmental conditions. Several
studies have been carried out at different scales that indicate
sorghum stands in tropical countries are more vulnerable to
climate change where about one-third of the resource-poor
population is residing compared to temperate regions.
Although the magnitude of severity is predicted to vary in
different agroecology zones, all modelling and
simulation-based studies predicted severe negative impact of
climate change on sorghum yields by the end of the
twenty-first century (Msongaleli et al. 2013; Gebrekiros
et al. 2016; Eggen et al. 2019; Zewdu et al. 2020).

Analysis of climate change impact on biomass yield of
sorghum in the United States revealed irrigation practices,
vapour pressure deficit and technological advances as the
most important predictors of sorghum productivity in the
United States (Huntington et al. 2020). Whereas, rise in
temperature and variability in precipitation seems to be the
major factors affecting sorghum productivity in Asian and
African countries (Akinseye et al. 2019).

The combination of different stresses can further con-
found the effect of climate change on plant yield. For
example, high temperature exacerbates the impact of drought
stress in sorghum (Ndlovu et al. 2021). Similarly, damage
caused to roots that have already been exposed to flooding
stress would make them more prone to root pathogens. Even
the positive impact of CO2 is also limited to water stress
conditions (Grossi et al. 2015). The impact of fertilization on
vulnerability to climate change also needs to be assessed to
calculate trade-offs on overall productivity. For example, the
application of nitrogen fertilizers would increase absolute
yields of the crop but also enhance the sensitivity of crops to
climate change leading to a net reduction in the relative yield

of sorghum (Sultan et al. 2014). A recent study reported
disruption in the symbiotic association of sorghum roots
with arbuscular mycorrhizal fungi in response to drought
adding another dimension to stress response dynamics in
plants (Varoquaux et al. 2019). Therefore, no blanket
approach can be applied to all the sorghum-growing regions
to mitigate the impact of climate change. Specific strategies
at different scales must be devised as per local geographical
conditions and the composition of companion microbial
communities.
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Recent Updates in Plant Disease
Management

Sukhjeet Kaur and Rupeet Gill

Abstract

The ever-rising human population, declining arable land
and concerns about food and nutritional security has
become a major challenge for society, worldwide. In
order to secure adequate food supplies, the last few
decades were focused to enhance crop productivity by
using significant resource inputs, intensive crop cultiva-
tion, monoculture of genetically superior plant varieties
for higher yield and quality. These practices proved to be
unsustainable in the long term due to over-exploitation of
the available natural resources, irrigation water, cultivable
soil and biodiversity. All this caused soil health depletion
and made pest and disease management more difficult.
Therefore, emphasis is now being given to the develop-
ment of a sustainable plant disease management system,
ensuring food security with minimum adverse effects on
the ecosystem. Due to the awareness about human and
environmental health concerns, rules and regulations
about the use of chemical pesticide in agriculture has
become more strict and led to the ban of several
chemicals. Scientists are exploring safer strategies to
manage pests and pathogens globally. The recent
advances in molecular biology have strengthened plant
pathology providing better opportunities for disease
diagnosis and management. The application of genetic
engineering, genome editing and recombinant DNA
technology facilitated the scientists to improve biological
control agents with enhanced activity against pathogens,

genetic improvement of crop plants for pathogen resis-
tance, silencing of pathogen genes vital for their growth,
development and pathogenicity. This chapter includes a
brief overview of the recent advancement in plant disease
diagnosis and management.
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qPCR Quantitative PCR
RNAi RNA interference
ROS Reactive oxygen species
SA Salicyclic acid
SAR Systemic acquired resistance
SBI Sterol biosynthesis inhibitors
SEM Scanning electron microscope
siRNAs Small interfering RNAs
SMS Single-molecule sequencing
SNP Single-nucleotide polymorphism
TALENs Transcription activator-like effector nucleases
TGS Third-generation sequencing
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1 Introduction

Plant pathology is a dynamic field concerned with a detailed
study of plant diseases caused by biotic and abiotic factors.
Plant pathology science involves the study of mechanisms of
inducing diseases in plants and efforts for their survival by
overcoming diseases and achieving plants full genetic
potential. It is worth studying all practical efforts needed to
achieve the noble goal of providing safe and diverse food for
our ever-increasing global population. On one side, societal
demand for total, high-quality and diverse food are
increasing due to the booming global population which is
expected to reach 9 billion in 2050 (Godfray et al. 2010). On
the other side, we have diminishing arable lands and
depleting natural resources, reducing the potential for an
increase in agricultural productivity (Ray et al. 2013). Fur-
thermore, monocultures, intensification and other high
resources (fertilizer, water and pesticides) input agriculture
practices aimed at maximum yield as the sole target, thereby
facilitating the evolution and epidemics of plant diseases
globally (Zhan et al. 2015). In the coming future, what is
required is that much greater emphasis must be given to
sustainable plant disease management strategies that ensure
food security and societal development but also pose less
adverse impacts on environments and natural resources. To
meet the challenge, the approach has to be multifaceted.
Three components (society, economics and ecology) should
be considered in future plant disease management strategies.
Providing safe and adequate food for society is always the
most important task of plant disease management.

Plant health management strategies preventing crop los-
ses (yield and quality) enhance production and significantly
contribute towards food security and safety. With an

increasing world population and its food requirement, agri-
cultural research in the twentieth century remained focused
on increasing crop productivity (Strange and Scott 2005).
Despite all the scientific and technological advancements
and their contributions in controlling diseases which sig-
nificantly reduced the occurrence and severity of epidemics
to date, plant protection is still a big challenge for agricul-
tural scientists, and it is more complex now than ever before
(Sommerhalder et al. 2010). Furthermore, many plant dis-
ease management strategies together with many agronomic
practices used in modern agriculture have also generated
unintended problems including loss of biodiversity and other
natural resources (Gonthier et al. 2014), environmental
deterioration and accelerated evolution in pathogens (Zhan
and McDonald 2013).

Ecological management of plant diseases is not a simple
return to farming systems of ancient times. Rather, it aims to
use the evolutionary principles and thinking to maximize the
regulatory functions of nature to create suitable environ-
ments for healthy hosts ensuring high and stable yield
through the efficient use of natural and societal resources
including high disease resistance to create environments
adverse for the infection, reproduction, transmission and
evolution of pathogens (Lucas 2011). To achieve the goal of
sustainable plant disease management, a multidisciplinary
collaboration involving natural and biological sciences such
as plant pathology, breeding, agronomy, soil science, envi-
ronmental science, economics and social science is needed
(Dun-chun et al. 2016).

Modern plant pathology has been greatly accelerated with
the aid of molecular tools and advancements in plant disease
control strategies. Since the last few decades, molecular
plant pathology has been proved very helpful by introducing
several new ways and providing better opportunities for
disease diagnosis and control (Lévesque 2007). In this
regard, biotechnology and genetic engineering played a key
role. Molecular techniques such as DNA-based identification
of plant pathogen(s), rapid sequencing, quantitative real-time
PCR (qPCR), diagnostic assays, biomarkers and
whole-genome sequencing greatly improved the way of
pathogen(s) detection, disease diagnosis and management
(Kumar et al. 2016). For an effective management strategy to
be devised, the foremost requirement is timely detection and
correct identification of the pathogen. This field has been
revolutionized with modern-day technologies like poly-
merase chain reaction and its modifications,
nano-diagnostics, on-field diagnostics and many more
(Schena et al. 2013). As stated earlier, the management
component needs to be in accordance with the society,
economics and ecological balance. The recent trend in sci-
entists working on the management aspect has been in
synchronization with the above-said statement. The concept
of integrated disease management itself is about the
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above-mentioned statement. More and more work on the use
of biological control measures including bio-agents and
bio-products, host plant resistance including various
approaches of marker-assisted selection, sequencing, gen-
ome editing, transgenics, green chemistry fungicides, etc.,
(Gandhi and Rao 2019) is being done by plant pathologists
all over the world. These strategies can be very precisely
combined in many different ways and combinations to
achieve the desired level of management, with minimum
ill-effects to ecological balance and the economical level of
farmers.

2 Pathogen Detection and Disease
Management

As defined by Agrios (2005), ‘Disease’ can be defined as ‘a
physiological disorder or structural abnormality that is
deleterious or harmful to the plant or its part or product that
reduces its economic value’. In order to manage plant
pathogens and restrict their movement as well as secondary
spread in new geographical areas, early and timely detection
is a prerequisite. Thus, plant disease diagnosis and detection
of plant pathogens are critical and integral parts of successful
disease management and serve as the first and crucial line of
defence. Although, symptomatology remains the foremost
criterion for the identification of disease, other high sensi-
tivity methods like serological, biochemical and molecular
assays are useful for the correct and concrete diagnosis of
plant diseases (De Boer and Lopez 2012). The requirement
and interest for quick, exact, delicate, standard, high
throughput and simultaneous detection of pathogens have
risen in recent times due to intensive cropping. Several other
techniques have been in use in recent years for the detection
and diagnosis of plant diseases.

2.1 Electron Microscopy (EM)

In this technique, the microscope uses a beam of electrons as
the source of illumination. The specimen to be studied is
mounted on a copper grid containing apertures covered with
a thin film of plastic. Scanning electron microscope
(SEM) produces high-quality three-dimensional images and
has been potentially used for detection and identification of
plant pathogenic fungi like Colletotrichum lindemuthianum
in seeds of common bean (Phaseolus vulgaris L.) among
many other pathogens (Alves and Pozza 2012). Cryo-SEM
is mostly used when the imaging samples are having mois-
ture. This technique delivers three-dimensional in situ
visualization of fungal invasion within roots and is broadly
applicable for the identification of necrotrophic plant
pathogenic fungi. EM has become an essential tool for the

detection and analysis of virus replication. It has enabled
scientists to unravel the in-depth impact of viral infections
on the host plants. EM combined with confocal laser scan-
ning microscopy, facilitated the high-resolution imaging
analysis of host cells and tissues (Richert-Pöggeler et al.
2019). However, it does have some constraints as it can be
technically challenging, time-consuming and require
expensive equipment including microscopes. Also, in the
early stages of infection or resistant reaction, it may not
always be clear where the pathogen is located. It can be
challenging to find the pathogen along the surface of the
organ (root, stem or leaf) as well as within the organ in a
specific cell type or tissue. This can lead to additional
frustration and expenses concerning both microscopy and a
researcher’s time.

2.2 Serological Techniques

Serological reactions that are in vitro antigen–antibody
reactions provide methods for the diagnosis of disease and
the identification and quantification of antigens and anti-
bodies. These techniques include (i) Immuno-sorbent
Electron Microscopy (ISEM)—ISEM is a combination of
the serological specificity and visualization of electron
microscopy. It may serve as an ideal confirmatory test for
very small samples if the EM facility and specific antisera
are available (Narayanasamy 2011); (ii) Enzyme-Linked
Immuno-sorbent Assay (ELISA) is a plate-based assay
technique for detecting and quantifying soluble substances
such as peptides, proteins, antibodies and hormones. The
antigen (target molecule) is immobilized on a solid surface
(microplate) and then complexed with an antibody that is
linked to a reporter enzyme and detected by incubation with
the appropriate substrate to produce a measurable product
(Lopez et al. 2003). Depending upon the technique, the
number of antibodies used and antigen being detected, Elisa
may be DAS (double antibody sandwich) or DAC (direct
antigen coating procedure) ELISA. Various types of ELISA
have been widely used in the detection of plant viruses
including potato viruses like PV-X, PV-Y; tomato viruses
like tomato leaf curl virus and mosaic virus (Fegla et al.
2001) and cucumber viruses like cucumber mosaic virus
(Abd El-aziz and Younes 2019), among many other viruses.
Recently, there are several times in which ELISA has been
employed for specific detection of plant pathogenic fungi,
e.g., Rhizoctonia solani, Pythium spp. and Sclerotinia
(Kamraj et al. 2012). (iii) Dot Immuno-binding Assay
(DIBA)—This technique follows the same principle as
ELISA, except that a nylon or nitrocellulose membrane is
used instead of a solid matrix-like polystyrene plate along
with a precipitating chromogenic substrate. (iv) Tissue
Immuno Blot Assay (TIBA)—It is a variation in DIBA in
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which freshly cut samples of the leaf blade, stem, root or an
insect is blotted on to the membrane, which is detected by
labelled antibodies. A direct-TIBA procedure has been
developed to detect Fusarium spp. in the transverse sections
from stems and crown regions of cucumber and tomato
plants.

2.3 Polymerase Chain Reaction-Based
Diagnostics

PCR is a very popular and widely used technique in the
detection of plant pathogens. This technique is compara-
tively inexpensive, highly sensitive and requires much less
skill to perform. PCR carries out the amplification of a
specific DNA sequence, generating multiple copies of the
sequence in the repetitive cyclic process of DNA denatura-
tion, primer annealing and elongation. Initially, ITS primers
were mostly used in generic identification but with
advancing science, more and more specific primers are being
developed and used for the purpose. In addition to simple
PCR, for accurate detection of plant pathogens different
types of modified PCR are being used, viz., (i) Nested PCR
—It is a modification of standard PCR technique, as it uses
two different sets of primers involved in two consecutive
runs. The amplified product of the first round is used as a
template for the second round. Generally, initial primer pair
is used to generate a PCR product which may also have
amplified some non-target sequences. Then a more specific
second set of primers is used to amplify a particular area
from the initially amplified sequence. This technique has
been exploited in many pathogens targeting very specific
regions for their correct detection and identification.
Single-nucleotide polymorphism (SNPs) in FOW1 gene in
Fusarium oxysporium fsp. chrysanthemi was exploited for
its identification using the nested PCR technique (Li et al.
2010). (ii) Multiplex PCR—This is a very useful technique
to detect multiple pathogens/strains present in a single dis-
eased sample as it allows simultaneous and yet sensitive
detection of different target DNAs, reducing cost as well as
time. This is very useful in plant pathology because most of
the time, a single host is infected with various pathogens and
this helps in reducing the initial number of tests required
(James et al. 2006). This technique has been successfully
used in the detection of various pathogens like simultaneous
detection and differentiation of powdery mildew fungi,
Podosphaera xanthii and Golovinomyces cichoracearum
infection sunflower (Chen et al. 2008). (iii) Real-Time PCR
—This is also known as quantitative PCR or qPCR as it
amplifies and quantifies a targeted DNA sequence. In this
PCR technique, the progress of the reaction can be moni-
tored by a detector or camera while the amplicons accu-
mulate at each cycle. This eliminates the need for any

post-PCR processing procedures like gel electrophoresis.
The amplicons are detected using chemistries based on the
fluorescence emission signal proportionally produced with
each cycle. Majorly, four chemistries are used in real-time
PCR: SYBR green, TaqMan probe, Molecular beacons and
scorpion PCR method. This has been exploited in the
detection and identification of various pathogens including
Rhizoctonia solani, species of Fusarium, oomycete patho-
gens including Phytophthora and many more (Nezhad
2014).

2.4 Isothermal Nucleic Acid Amplification-Based
Diagnostics

This technique facilitates the amplification of the target
DNA sequence while incubating at a single temperature.
This differs from a PCR reaction in terms of complexity,
specificity and sensitivity as many enzymes and primers are
involved. It includes several methods: (i) Nucleic acid
sequence-based amplification (NASBA)—This technique is
a very sensitive, transcription-mediated amplification system
for in vitro replication of nucleic acids. This assay targets
rRNA rather than mRNA, as the latter is highly unstable
(Zhang 2013). NASBA follows a two-stage protocol: initial
denaturation and primer annealing, then the cyclic phase for
target amplification. It requires two primers and three
enzymes: reverse transcriptase, RNase and DNA-dependent
RNA polymerase. The first primer initiates reverse tran-
scription after which RNase degrades the RNA–cDNA
hybrid molecules. The second primer binds to this cDNA
and initiates the synthesis of the complementary strand.
After this, the RNA polymerase makes multiple RNA copies
of the gene. This technology has been applied for the
detection of several plant viruses such as Potato virus Y,
bacteria like Clavibacter michiganensis and R. solana-
cearum (Szemes and Schoen 2003) and fungi such as
Candida sp. and Aspergillus sp. (Zhao and Perlin 2013). (ii)
Molecular Inversion Probe (MIP) Assay-Based Diagnos-
tics—This has been utilized for the detection of plant
pathogens and can detect as little as 2.5 ng of pathogen
DNA due to high specificity. MIPs are single-stranded DNA
molecules that contain two regions complementary to the
target DNA that flank the available SNP. A specific assay
has been developed based on MIPs along with microarray
having a detection limit of 5 pg of pathogen DNA for the
detection of economically important plant pathogens
including oomycetes (Phytophthora spp. and Pythium spp.),
fungi (Rhizoctonia spp., Fusarium spp. and Verticillium
spp.) and a nematode (Meloidogyne spp.) (Lau et al. 2014).
(iii) Loop-Mediated Isothermal Amplification (LAMP)—
LAMP is based on the principle of auto cycling strand dis-
placement DNA synthesis performed by the Bst polymerase
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derived from Bacillus stearothermophilus (isolated from hot
springs having temperature 70 °C, with polymerization and
5′–3′ exonuclease activity) for the detection of a specific
DNA sequence (Chang et al. 2012). Amplification can be
carried out in a simple and inexpensive device like a water
bath at temperatures between 60 and 65 °C (Rigano et al.
2014). The technique makes use of four specially designed
primers, a pair of outer and inner primers, which together
recognize six distinct sites flanking the DNA sequence to be
amplified. The final amplified product consists of a mixture
of stem-loop DNA strands with various stem lengths and
structures with multiple loops (De Boer and Lopez 2012).

2.5 Array-Based Diagnostics

Arrays both, microarrays and macroarrays, hold promise for
quick and accurate detection and identification of plant
pathogens due to multiplex capabilities of the system. Array
refers to reverse dot blot assays in which assorted DNA
probes are bound to a fixed matrix (e.g. nylon membrane or
microscope slides for microarrays) in a highly regular pattern
(De Boer and Lopez 2012). The macroarray technology is
now commercially available in four European countries
under the name DNA Multiscan for the test of plant patho-
gens (Tsui et al. 2011). A typical microarray slide can
contain up to 30,000 spots (Webster et al. 2004). ssDNA
probes are irreversibly fixed as an array of discrete spots to a
surface of glass, membrane or polymer. Each probe is
complementary to a specific DNA sequence (genes, ITS,
ribosomal DNA) and hybridization with the labelled Para-
digm Shift in complementary sequence provides a signal that
can be detected and analysed.

2.6 Sequencing-Based Diagnostics

(i) Next-Generation Sequencing (NGS)—NGS techniques
also referred to as second-generation sequencing
(SGS) emerged in 2005 using commercial Solexa sequenc-
ing technology. In this technique, sequencing reaction is
detected on amplified clonal DNA templates by emulsion or
solid-phase PCR methods (Nezhad 2014). It involves iso-
lation of total DNA or RNA from a diseased plant, elimi-
nation of host nucleic acid, enrichment of pathogen DNA
and exploitation of different NGS technologies. A number of
both known and unknown plant pathogenic fungi have been
detected using NGS, e.g. Phytophthora infestans in sweet
potato (Neves et al. 2013). (ii) Third-Generation Sequenc-
ing (TGS)—More recent single-molecule sequencing tech-
nologies are known as third-generation sequencing (TGS).
TGS also referred to as single-molecule sequencing
(SMS) uses single-DNA molecules for sequence reactions

without the need for DNA template amplification. TGS has
been used in plant genomics and pathogen detection.

2.7 Nano-Diagnostics

(i) Quantum Dots (QDs)—QDs are nanometer-scale semi-
conductor nanoparticles that fluoresce when stimulated by an
excitation light source and are defined as particles with
physical dimensions smaller than the exciton Bohr radius.
QDs are ultrasensitive nanosensors based on fluorescence
resonance energy transfer (FRET) that can detect a very low
concentration of DNA and do not require separation of
unhybridized DNA (Khiyami et al. 2014). QDs are linked to
specific DNA probes to capture target DNA, which binds to
a fluorophore-labelled reporter strand and thus forming
FRET donor–acceptor assembly. Unbound DNA strands
produce no fluorescence but the binding of even a small
amount of target DNA (50 copies) may produce a very
strong FRET signal. (ii) Nanobiosensor—In these, biolog-
ical molecules (DNA, antibody and enzyme) are used as
target-recognition groups which are coated on to the
biosensor platform. Biosensors are integrated receptor–
transducer devices. These molecules detect both the presence
and concentration of target analytes. Then the information is
passed on through the transducer for the analysis on a
computer. These nanobiosensors can detect and quantify
even very minute amounts of the pathogen in the titre.
Fluorescent silica nanoparticles (FSNPs) combined with
antibodies as a biomarker have been studied as the probe,
which successfully detected plant pathogens such as Xan-
thomonas axonopodis pv. vesicatoria that cause bacterial
spot diseases in Solanaceae plant (Perera et al. 2002). (iii)
Portable Devices and Kits—On-site diagnosis of plant
pathogens require portable devices and such a portable
system in the form of PCR termed Palm PCR was developed
by a Company in Korea in which DNA can be amplified in
less than 25 min. The portable system presents a highly
functional and user-friendly way to perform different types
of PCR tests for both beginners and experienced researchers.
(iv) Lab on a Chip—A Lab on a chip is a new
microtechnique that possesses several advantages such as
portability, low reagent consumption, short reaction times
and on-site diagnosis. The first lab-on-a-chip system in the
field of plant pathology was developed for rapid diagnosis of
Phytophthora species (Julich et al. 2011). A portable
real-time microchip PCR system was developed for the
detection of Fusarium oxysporum f. sp. lycopersici
(Fol) strains (Koo et al. 2013). (v) Phytophthora Test Kits
—The Alert test kit for Phytophthora has been used to detect
all common Phytophthora species. Pathogen detection can
be accomplished when as little as 0.5% of a plant’s roots are
infected (http://danrcs.ucdavis.edu).
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3 Biological Control and Plant Disease
Management

Biological control of pathogens implies the utilization of
microbial antagonists to suppress diseases and the microbial
antagonist that conquers the pathogen is called the biological
control agent (BCA) (Chaur 1998). The BCAs antagonistic
to plant pathogens are generally fungal or bacterial strains
isolated from the rhizosphere or phyllosphere of the plants.
The knowledge of biological control dates back to the 1900s
when suppression of plant pathogen activity by the accu-
mulation of its metabolites was reported by Potter in 1908.
Since then antagonistic behaviour of many microbial agents
especially fungi and bacteria have been studied and exploi-
ted by many scientists against different plant pathogens
(Sanford 1926).

Most of the microbial antagonists exhibit several direct or
indirect mechanisms of action for disease control which
includes; antibiosis (production of inhibitory metabolite or
antibiotic by the antagonist), mycoparasitism (when antag-
onist derives some or all of its nutrients from the fungal
host), induced resistance (induction of plant defence
response against pathogens) and growth enhancement
(where BCAs enhance plant growth and reduce the effects of
the disease by releasing microbial hormones, viz., indolea-
cetic acid and gibberellic acid), secretion of extracellular
hydrolytic enzymes, competition for nutrients and space and
inactivation of pathogen phytotoxins (Deketelaere et al.
2017; O’Brien 2017). Even though the value of biological
control agents in managing plant pathogens has been well
known only very few have been successful in the field.
Unfortunately, most of the biocontrol agents proved to be
effective under some particular controlled environmental
conditions such as in vitro laboratory assays, pot experi-
ments or greenhouse studies as compared to large-scale field
trials.

In recent years, with increased awareness about the
harmful effects of chemical residues on human and envi-
ronmental health, biological control of plant pathogens is
being exploited for their better efficacy in the field. In order
to make biological control a successful plant disease man-
agement strategy, scientists have exploited different ways to
enhance their field efficacy and shelf life. For sustainable
disease management, emphasis is now being given on the
use of mixtures of bioagents, integration of bioagents with
soil amendments like neem cake, farmyard manure etc. or
with minimum use of chemicals (Vinale et al. 2009).

A number of studies revealed that mixed-use of more than
one bioagent gave better disease management under different
conditions in different crops like against late blight in potato
(Slininger et al. 2007) and chilli (Muthukumar et al. 2011);
against Phytophthora capsici in potato (Kim et al. 2008);

Botrytis cinerea causing grey mould in tomato (Le Floch
et al. 2009). This might be due to combinations of more than
one mode of disease control as each bioagent has its different
mode of action. However, in the case of mixed use of
bioagents, one needs to consider both synergistic as well as
antagonistic interactions between various bioagents. The
control efficacy achieved against F. oxysporum f. sp. melonis
causing Fusarium wilt in muskmelon was less when a
mixture of two strains of Pseudomonas putida was used for
seed treatment as compared when both the strains were used
individually Bora et al. 2004. The antagonistic effect was
also observed among three commercial biocontrol products
(Sentinel, Serenade and Trianum) used against Botrytis
cinerea in strawberries when applied together as a mixture
(Xu et al. 2010). Kumar et al. (2020) found that combined
application of neem cake + Pseudomonas fluorescens
resulted in significantly higher yield and lowestMeloidogyne
incognita in cluster bean.

The use of BCA in integration with fungicide or
nematicide can enhance the efficacy of BCA and minimise
the use of chemicals provided that fungicide or nematicide
has no adverse effect on the BCA. The application of
Bacillus megaterium along with a low dose of carbendazim
fungicide enhanced the disease control against Fusarium
crown and root rot on tomato and also performed better than
the treatment with a tenfold higher dose of the fungicide
(Omar et al. 2006). Similarly, combined application of rhi-
zobacteria Pseudomonas fluorescens and a tenfold less dose
of benomyl was better than treatment with either alone and
gave disease control comparable to the full dose of the
fungicide alone (Nobutaka et al. 2006). Gilardi et al. (2008),
also reported that foliar application of Bacillus subtilis with
fungicide, azoxystrobin resulted in the highest crop yield and
disease control against powdery mildew on zucchini under
greenhouse conditions. Similarly, enhancement in disease
control using a BCA and fungicide mix was observed
against powdery scab of potato (Nakayama and Sayama
2013); Combined application of Pseudomonas fluorescens,
Mesorhizobium cicero and Trichoderma harzianum along
with the fungicide Vitavax® resulted in minimum Fusarium
wilt incidence in chickpea with maximum yield (Dubey et al.
2015). Moreover, in field experiments of rice, the combi-
nation of T. harzianum, P. fluorescens and carbendazim
were most effective against Magnaporthe oryzae as com-
pared to their application (Jambhulkar et al. 2018).

Further, the development of modern biotechnological
techniques in recent years has enormously developed the
biological control of plant diseases. The application of
genetic engineering, genomics and recombinant DNA tech-
nology enabled the scientists to improve antagonistic
microbial strains with enhanced biocontrol activity against
pathogens (Droby 2006; O’Brien 2017). The pathogen
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inhibition potential of Trichoderma virens was greatly
enhanced with the introduction of multiple lytic enzyme
encoding genes into the T. virens genome (Djonovic et al.
2007). The resulting new T. virens strain produced a com-
bination of glucanases and exhibited enhanced antagonistic
activity against Pythium ultimum, Rhizoctonia solani and
Rhizopus oryzae.

Despite the direct use of antagonistic organisms, antimi-
crobial metabolites (biochemical compounds, essential oils,
chitin or chitosan, etc.) produced by microbes with phy-
topathogenic properties are being extensively exploited
(Glare et al. 2012; Verma et al. 2020). The production of
antimicrobial metabolites is considered the most potent
mode of action of biological control microbes (Raaijmakers
and Mazzola 2012; Verma et al. 2020). Antimicrobial
metabolites with broad-spectrum activity have been reported
to be produced by biocontrol bacteria belonging to the genus
Agrobacterium, Bacillus, Pantoea, Pseudomonas, Serratia,
Stenotrophomonas, Streptomyces and many others (Köhl
et al. 2019; Keswani et al. 2020). Antimicrobial metabolites,
especially lipopeptides (surfactin, fengycin and iturin), have
been reported from Bacillus and antibiotic metabolites
(DAPG, pyrrolnitrin and phenazine) have been investigated
from Pseudomonas (Ongena and Jacques 2008; Raaijmakers
and Mazzola 2012). DAPG, produced by different strains of
fluorescent Pseudomonas spp., has shown broad-spectrum
toxicity against plant-parasitic nematodes, fungi, protists,
bacteria and peronosporomycetes (de Souza et al. 2003;
Islam and Fukushi 2010). Serratia spp. are reported to
produce various bacteriocins and antibiotics including
prodigiosin, carbapenem, oocydin A, serratamolide, alth-
iomycin, zeamine and serrawettin W1 and W2 which have
antifungal, antibacterial and antiprotozoal activities (Wil-
liamson et al. 2008; Jafarzade et al. 2013). Several studies
have assessed and proved the potential of Trichoderma
secondary metabolites (SMs) in the biological control of
phytopathogens (Hermosa et al. 2014; Keswani et al. 2014,
2020; Al-Ani 2019). Secondary metabolites known as
Harzianolide isolated from T. harzianum strains exhibited
antifungal properties against different plant pathogens and
has also behaved as a plant growth promoter and systemic
resistance inducer (Vinale et al. 2008). Many compounds
such as 6-PAP, gliovirin, gliotoxin, viridian, etc., with
antimicrobial potential have been investigated from Tricho-
derma and closely related genera such as Clonostachys
(former Gliocladium) (Ghorbanpour et al. 2018).
A broad-spectrum antimicrobial activity has been observed
for diverse SMs during in vitro assays, in which pathogens
of agricultural interest belonging to Botrytis, Fusarium,
Rhizoctonia, Phytophthora, Pythium, Penicillium, Sclero-
tinia, Stachybotrys, Colletrotrichum, Penicillium, Aspergil-
lus or Gaeumannomyces genera among others were used as
targets. The secondary metabolites of microbial origin being

target specific, eco-friendly and biodegradable may serve as
a potential alternative or supplement to the use of chemicals
in plant protection (Prabavathy et al. 2008; Mathivanan et al.
2008; Jayaprakashvel and Mathivanan 2011).

4 Fungicides and Plant Disease
Management

Worldwide plant pathogens caused an estimated 20% loss.
The value of plant diseases loss was calculated to be about
2,000 billion dollars per year (Pimentel 2009). Fungicide is a
compound that is toxic to fungi. They were developed after
the great famines. Recently, it has become increasingly
difficult for growers to control crop diseases. With more
intensive cropping, new diseases have arisen which are
devastating if not controlled. In addition, new races and
more aggressive pathotypes of pathogens have arisen.
Genetic resistance of crops towards diseases has been in
many cases short-lived, and GMOs have only limited suc-
cess for disease control and acceptability. All these changes
require the rapid development of chemical control measures
—new-generation fungicides. Today, a wide range of
fungicides is available, and new products are being intro-
duced to the market at regular intervals.

Despite the broad range of fungicides available on the
market, innovative chemicals having novel and robust
modes of action are needed. New chemistry fungicides dis-
covered with available or new modes of actions are neces-
sary for soilborne diseases, other fungal and bacterial and,
possibly, viral diseases as these are a continuous challenge
for crops. Resistance management and control of adapted
plant pathogens are effectively performed by fungicides
having novel modes of action, which are important because
of their systemic and curative capability, and longevity
(Leadbeater 2015). Among the 57 modes of action groups
known thus far, the major market share, almost 70%,
belongs to a few groups. Among them, some fungicides with
a high to medium induced resistance risk have more share, as
compared to low resistance risk fungicides (McDougall
2014). This shows that there is a great need for the continued
availability of diverse and effective modes of action in the
market for resistance management and effective plant disease
control.

Valuable and innovative new fungicides can be discov-
ered within the established mode of action groups or in areas
with completely novel modes of action (more of a challenge
since a good balance has to be found between high activity
against the target plant disease and safety to humans and the
environment). Fungicides having a novel mode of action
(preferably with low resistance risk) are of course of special
interest, since they play a key role in disease control in
modern, adapted population of plant pathogens and also in
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resistance management strategies, but equally important are
new fungicides with established modes of action with
enhanced characteristics such as systematicity, curativity and
longevity of disease control. Generally, a new crop protec-
tion product takes around 10 years and approximately 260
million USD to be developed (from discovery to first sales).
This high cost of product development, which is driven by
the extensive studies required on efficacy, safety to humans,
safety to the environment, safety to other organisms, pro-
duction optimization, etc., is, on the one hand, a burden to
industry. On the other hand, this high investment and the
science required to successfully bring a new product to
market and maintain it is an assurance of the safety of the
fungicides and other plant protection products on the market
today to consumers. It has also resulted in new advances and
innovation in fungicide invention which includes high
activity against plant diseases at very low use rates (reducing
the environmental burden), the development of more toxi-
cologically benign chemistries and the achievement of crop
protection via new technologies such as seed treatment, tree
injection, etc. The process of identifying an active ingredient
is only the start of the Research and Development process.
For every active ingredient tested, only one in tens or hun-
dreds of thousands makes it to the market. This is because
there are a number of different obstacles that need to be
overcome before a crop protection product is ready to go to
market. Despite these high hurdles, it is clear that the
industry has been very successful in discovering and
bringing new fungicides to the market over the past
75 years. Key fungicide introductions till the mid-1900s
included majorly Thiram, Zineb, Nabam, Captan, Blasti-
cidin S, Maneb, Dodine, Dicloran, etc., among others. In the
late-1900s, the market was then captured by fungicides like
Mancozeb, Captafol, Chlorothalonil, Kasugamycin, Car-
boxin, Oxycarboxin, Benomyl, Tridemorph, Thiophanate,
Thiophanate-Methyl, Carbendazim, Fosetyl-Al, Metalaxyl,
Propamocarb, Etaconazole, Propiconazole among many
others as around 50 new fungicides were introduced over
these 30 years. In and around year 2000, fungicides which
were introduced included Benalaxyl, Penconazole,
Triflumizole, Diniconazole, Hexaconazole, Cyproconazole,
Myclobutanil, Tebuconazole, Pyrifenox, Tetraconazole,
Fenbuconazole, Dimethomorph, Fenpiclonil, Fludioxonil,
Epoxiconazole, Bromuconazole, Pyrimethanil, Fluazinam,
Azoxystrobin, Kresoxim-Methyl, Famoxadone, Mefenoxam,
Quinoxyfen, Fenhexamid, Trifloxystrobin, Cyazofamid,
Acibenzolar-S-Methyl and many others. After these, till
now, around 35–40 fungicides have been introduced with
many chemicals in the pipeline and are ready to be released
in the market. These mainly included Picoxystrobin, Pyra-
clostrobin, Prothioconazole, Zoxamide, Ethaboxam, Ben-
thiavalicarb, Mandipropamid, Boscalid Meptyldinocap,
Ipconazole, Isotianil, Proquinazid, Ametoctradin,

Valifenalate, Penthiopyrad, Bixafen, Fluxapyroxad, Ben-
zovindiflupyr, Pyribencarb, Fenpyrazamine, Isofetamid,
Oxathiapiprolin, etc. (Leadbeater 2015).

4.1 New-Generation Fungicides

Revolutions in Chemistry and Biochemistry leads to the
development of novel and site-specific chemicals.
New-generation fungicides have novel modes of action
which had a significant impact on plant disease control.
These are ecologically safer and are required in a lower dose.
These are broad-spectrum fungicides and of site-specific
action with low phytotoxicity and ecologically safer. The
specific fungicides with systemic properties were regarded
as true progress in crop protection. In new-generation
fungicides, the majorly exploited mode of action and their
respective group of fungicides are as follows: (a) Com-
plex III inhibitors—these include Strobilurins and other
complexes III inhibitors, (b) Succinate dehydrogenase
(complex II) inhibitors—Anilides and Pyridinyl- Ethyl
Benzamide, (c) NADH inhibitors (complex I)—Aminoalkyl
pyrimidines (d) Uncouplers of Oxidative Phosphorylation—
Dinitrophenol, Arylhydrazins, Diarylamines (e) Signal
transduction inhibitors—Phenylpyrroles and Dicarbox-
imides (f) Cell division inhibitors—Benzamides (g) Sterol
Biosynthesis Inhibitors (SBI)—SBI class I, II, III (h) Nucleic
acid inhibitors—Phenylamide (Leadbeater 2012). Their use
has to be regulated as per FRAC guidelines to sustain their
efficacy levels (Kuck et al. 2012).

4.2 Action of New-Generation Fungicides

4.2.1 Fungicides Acting on Oxidative
Phosphorylation

These include complex—I, II and III inhibitors. The inhi-
bitors can be divided into three classes: (a) Inhibitors of
electron transport, (b) Inhibitors of phosphorylation,
(c) Uncouplers. For example, Strobilurins, Boscalid,
Penthiopyrad.

4.2.2 Uncouplers of Oxidative Phosphorylation
Uncouplers have effects on ATP synthase. Various chemi-
cals cause uncoupling by increasing the permeability of the
membrane to protons and other small ions (Kuck et al.
2012).

4.2.3 New Sterol Biosynthesis Inhibitors
(SBI) Group Fungicides

SBI fungicides have been the most important group of
specific fungicides worldwide. Fungi have specific sterols
that differ from those in plants and animals. Fungal cell
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membranes are characterized by a common dominant sterol
component, ergosterol (Anonymous 2010), e.g. Tetracona-
zole, Epoxiconazole, Triticonazole.

4.2.4 Fungicides Acting on Signal Transduction
Phenylpyrroles and phenoxyquinolines come under this
group. They regulate the high osmolarity glycerol pathway.
These are responsible for causing conidial and hyphal cells
to swell and burst after the generation of high internal turgor
pressure, e.g. Quinoxyfen.

4.2.5 Fungicides Acting on Mitosis and Cell
Division

An anti-tubulin fungicide for the control of oomycete
pathogens—zoxamide, was discovered and commercialized
by Rohm and Haas Company in 2001. It is responsible for
the inhibition of microtubule functions. The primary targets
for zoxamide are a late blight on potatoes and downy mildew
on vines and vegetables.

4.2.6 New-Generation Metalaxyl
Nucleic acid synthesis inhibitors—Metalaxyl-M (also
known as Mefenoxam) was introduced by Syngenta in the
market. Like metalaxyl, metalaxyl-M controls all pathogens
of the Oomycetes. In all applications, the outstanding level
of control by Metalaxyl-M is achieved at up to half the rate
of its predecessor metalaxyl and its use is safe to the envi-
ronment (Gandhi and Rao 2019).

4.3 General Mechanism of Induced Resistance

All plants possess an intrinsic capacity to defend themselves
against attacks by pathogens. Induced resistance is typically
a systemic response with long-lasting effects. Two major
types of induced resistance have been identified: Systemic
acquired resistance (SAR), which depends on salicylic acid
(SA); and induced systemic resistance which requires jas-
monic acid (JA) and ethylene, but not SA. SAR is most
efficient against biotrophic and hemibiotrophic pathogens
and leads to the expression of pathogenesis-related (PR) ge-
nes; in contrast, necrotrophic pathogens are generally con-
trolled by induced systemic resistance (ISR).

Products (i) Probenazole (PBZ)—A new granular for-
mulation of PBZ in combination with insecticides was
launched. On treating rice with PBZ, the induction of PR
genes (PBZ 1 and Os PR1a) has been reported, resulting in
the induction of SA signaling pathway. (ii) Acibenzolar S
methyl (ASM) is the most widely investigated molecule as a
positive marker of SAR in various species of plants. ASM
directly activates the PR-1 gene and improves callose
deposition.

Fungicides, despite certain limitations, continue to play a
crucial role in the management of plant diseases. In their
history of more than a century, several fungicide classes
have been introduced starting from multi-site inorganic salts
to organic compounds with protectant action and then to
single-site systemic fungicides with curative activity. How-
ever, site-specific fungicides are regularly confronted with
the problem of resistance. New compounds with novel
modes of action are introduced to manage resistance to the
existing fungicides and to provide more effective options for
the control of devastating diseases. Technological advances
such as combinatorial chemistry, high-throughput screening
and bio-rational screen designs have revolutionized the
synthesis and development of new fungicide active ingre-
dients (Thind 2012). However, stringent regulatory pressure
has impacted the discovery of new active ingredients and
this has led to the decline in the introduction rate of new
fungicides. In future, natural compounds hold promise to
serve as new fungicide leads in place of more toxic synthetic
compounds.

5 Agronanotechnology and Disease
Management

Nanotechnology is a technology involving everything of
nanoscale, i.e. materials having 0.1–100 nm size, with many
potential applications in daily life. Nanotechnology high-
lights the uses of submicron particles, molecules or indi-
vidual atoms in biological, chemical and physical systems.
Nanotechnology research involves the rediscovery of the
biological effects of existing antimicrobial agents by con-
trolling their size to modify their effect. Various inorganic
and organic antimicrobial particles of nano-size were used to
control bacterial, fungal and viral pathogens (Elshafie et al.
2019; Mohamed et al. 2021).

In recent years, products of nano-fertilizers or
nano-pesticides containing nanomaterials have been devel-
oped into agricultural practices. Recently, biological mate-
rials such as microorganisms, plant extracts, marine
organisms and micro-fluids have been used to synthesize
nanoparticles (especially metallic ones) (Singh et al. 2018).
Nanoparticles bioreduction using primary and secondary
metabolites of plant extracts “green synthesis” are the most
stable, economic and eco-friendly nanoparticles (Shabaaz
Begum et al. 2020). These primary and secondary metabo-
lites of plant extracts can not only promote plant growth,
suppress fungal pathogens and efficiently reduce diseases of
crops but can also synthesize eco-friendly nanoparticles
via acting as an electron shuttle, besides assisting in the
stabilization and reduction of metal ions (Banerjee et al.
2014).
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The antimicrobial activity of nanoparticles may be related
to several mechanisms. The nanoparticles can either directly
interact with the microbial cells, e.g. interrupting trans-
membrane electron transfer, disrupting/penetrating the cell
envelope or oxidizing cell components, or produce sec-
ondary products (e.g. reactive oxygen species (ROS) or
dissolved heavy metal ions) that cause damage.
Anti-microbial mechanisms of different nanoparticles:

• Titanium dioxide—Antibacterial activity significantly
greater in light, photocatalytic ROS production and some
additional mechanism may be involved.

• Zinc Oxide—Oxidative stress (ROS generation), inter-
action with proteins, DNA and lipids, membrane disor-
ganization and release of Zn ions.

• Gold—Membrane potential modification and ATP level
decrease and inhibition of tRNA binding to the ribosome.

• Silver—Induction of oxidative stress (ROS), the release
of ions—death due to binding to the cell membrane,
formation of “pits” on their surfaces, penetrate to cause
DNA damage, protein inactivation, DNA condensation
and loss of replication ability and disrupt the
lipopolysaccharide or porins.

• MgO and CaO nanoparticles—Generation of superoxide,
increase in pH by their hydration, damage cell membrane
causing leakage of contents and death.

• Copper Nanoparticles—Ions cause toxicity either directly
through the cellular membrane or intracellularly.

Some nanoparticles have been tested and reported by
various workers for their anti-microbial activity, those are as
under:

(i) Nanosilver: It is the most studied and utilized nanopar-
ticle for Bio-system. It has long been known to have strong
inhibitory and bactericidal effects as well as a broad spec-
trum of antimicrobial activities. Silver nanoparticles, which
have a high surface area and a high fraction of surface atoms,
have a high antimicrobial effect. Nanosilver colloid is a well
dispersed and stabilized silver nano particle solution and is
more adhesive on bacteria and fungus, hence are a better
fungicide. Krishnaraj et al. (2012) used leaf extract of Aca-
lypha indica for rapid synthesis of silver nanoparticles and
reported their antifungal activity at a concentration of 15 mg
against several phytopathogenic fungi such as Rhizoctonia
solani, Sclerotinia sclerotiorum, Alternaria alternata,
Botrytis cinerea, Macrophomina phaseolina and Curvularia
lunata. Relatively few studies were conducted on silver
nanoparticles used to control fungal diseases in plants
in vivo. These studies demonstrated that silver nanoparticles
significantly affect the colonial formation of spores of plant
pathogenic fungi. Thus, the precautionary application of

silver nanoparticles in agriculture may result in the superior
efficiency of these nanoparticles due to their direct contact
with the spores along with germ tubes of plant pathogenic
fungi that suppress fungal viability.

(ii) Zinc Oxide Nanoparticles (ZnO NPs)—A study was
conducted to synthesize inexpensive and eco-friendly zinc
oxide nanoparticles by extract of Parthenium hysterophorus
L. leaves and demonstrated that these nanoparticles could
effectively reduce Aspergillus flavus and Aspergillus niger
growth. Senthilkumar and Sivakumar (2014) used aqueous
leaves extract of green tea (Camellia sinensis) to synthesize
zinc oxide nanoparticles and confirmed their antifungal
activity against Aspergillus fumigatus, Aspergillus flavus and
Aspergillus niger. Lakshmeesha et al. (2019) reported bio-
fabrication of ZnO NPs using buds extract of flowers and
confirmed ability of these nanoparticles to control Fusarium
graminearum via inhibiting its mycelial growth and myco-
toxins production. In another study, zinc oxide nanoparticles
biofabricated by Eucalyptus globules were proved to exhibit
fungicidal effects on pathogenic fungi infecting apple orch-
ards such as Alternaria mali, Diplodia seriata, etc. Conse-
quently, these nanoparticles can control fungal diseases and
protect fruit crops.

(iii) Gold Nanoparticles (Au NPs)—Green synthesis of
antimicrobial Au NPs by diverse extracts of either fresh
leaves or flowers of Magnolia kobus and Diopyros kaki,
Azadirachta indica, Mentha piperita, alfalfa, Helianthus
annuus (sunflower), Moringa oleifera and Artemisia dra-
cunculus have been described. Additionally, the most fre-
quently used reducing agents for Au NPs synthesis are
sodium borohydride and sodium citrate. These Au NPs were
also reported to exhibit efficient in vitro anti-fungal action
that can be applied in the field of agriculture to control
several phytopathogenic fungi. An example of this is Au
NPs synthesized by aqueous extract of Abelmoschus escu-
lentus seeds have demonstrated fungicidal effects on
Aspergillus niger, Aspergillus flavus and Puccinia graminis
var. tritici (Jayaseelan et al. 2012).

(iv) Copper Nanoparticles (Cu NPs)—Green synthesis of
copper nanoparticles by leaf extract of Magnolia, Euphorbia
nivulia stem latex, Carica papaya leaf extract and Aloe Vera
leaf extract has been described. Shende et al. (2015)
demonstrated the green synthesis of these nanoparticles
using Citrus medica and confirmed their inhibitory effects on
various Fusarium species. Therefore, after establishing the
in vitro antifungal potentiality of copper nanoparticles
against various phytopathogenic fungi, they can be applied
in the management of plant fungal diseases (Banik and
Perez-de-Luque 2017).
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(v) Nanocarbon: Recently, scientists have reported that
when they planted tomato seeds in soil that contained carbon
nanotubes; these CNTs could not only penetrate the hard
coat of germinating tomato seeds but also exerted a
growth-enhancing effect. They envisaged that the enhanced
growth was due to increased water uptake caused by pene-
tration of CNT. This could be a boon for using CNT as a
vehicle to deliver desired molecules into the seeds during
germination that can protect them from diseases. Since it is
growth-promoting, it will not have any toxic or inhibiting or
adverse effect on the plant.

(vi) Nanosilica–Silver composite: Silicon (Si) is known to
be absorbed into plants to increase disease resistance and
stress resistance. Aqueous silicate solution, used to treat
plants, is reported to exhibit excellent preventive effects on
pathogenic microorganisms causing powdery mildew or
downy mildew in plants. Moreover, it promotes the physi-
ological activity and growth of plants and induces disease
and stress resistance in plants. But, since silica has no direct
disinfection effects on pathogenic microorganisms in plants,
it does not exhibit any effect on established diseases. Silver
in an ionic state exhibits high antimicrobial activity but ionic
silver is unstable. A new composition of nano-sized silica
silver for control of various plant diseases, which consisted
of nanosilver combined with silica molecules and
water-soluble polymer. It showed antifungal activity against
Pythium ultimum, Magnaporthe grisea, Colletotrichum
gloeosporioides, Botrytis cinerea and, Rhizoctonia solani
with 100% growth inhibition at 10 ppm concentration
(Elamawi et al. 2018). Whereas, Bacillus subtilis, Azoto-
bacter chrococuum, Rhizobium tropici, Pseudomonas syr-
ingae and Xanthomonas compestris pv. vesicatoria showed
100% growth inhibition at 100 ppm.

(vii) Nanoalumino-Silicate: Leading chemical companies
are now formulating efficient pesticides at the nano scale.
One such effort is the use of alumino-silicate nanotubes with
active ingredients (Youssef et al. 2019). The advantage is
that alumino-silicate nanotubes sprayed on plant surfaces are
easily picked up in insect hairs. Insects actively groom and
consume pesticide-filled nanotubes. They are biologically
more active and relatively more environmentally safe
pesticides.

(viii) Mesoporous Silica Nanoparticles: Mesoporous Silica
nanoparticles can deliver DNA and chemicals into plants
thus, creating a powerful new tool for targeted delivery into
plant cells. Lin’s research group has developed porous, silica
nanoparticles systems that are spherical and the particles
have arrays of independent porous channels. The channels
form a honeycomb-like structure that can be filled with
chemicals or molecules. These nanoparticles have a unique

“capping” strategy that seals the chemical inside. They have
also demonstrated that the caps can be chemically activated
to pop open and release the cargo inside the cells where it is
delivered (El-Baky and Amara 2021). This unique feature
provides total control for timing the delivery. Plant cells
have a rigid cell wall. Hence to penetrate it, they had to
modify the surface of the particle with a chemical coating. It
has been successfully used to introduce DNA and chemicals
into Arabidopsis, tobacco and corn plants. The other
advantage is that with the mesoporous nanoparticles, one can
deliver two biogenic species at the same time.

6 Host Resistance, Genome Editing
and Disease Management

The ability of the host to limit or ward off pathogens is
known as host resistance. It includes diverse mechanisms
such as physical or structural barriers (cuticle, cell wall),
antimicrobial compounds, enzyme inhibitors, post-infection
defences like cell wall reinforcement (lignification, callose
formation, suberin production), production of antimicrobial
proteins, enzymes, etc., and hypersensitive response (Ahuja
et al. 2012; Chisholm et al. 2006; Collinge 2009; Jones and
Dangl 2006; Uma et al. 2011). The utilization of genetic
resistance for crop protection is the most economical
approach to limit yield losses caused by pathogens. Growing
resistant varieties not only ensure protection against diseases
but also conserve time, energy and money spent on other
methods of control. Further, in the case of viral diseases,
phytoplasma wilts and rusts, the use of resistant varieties (if
available) can only be the practical measure to manage such
diseases. Also, in the case of crops of low cash value,
development of resistant varieties can be most acceptable
and economical as compared to other measures of disease
management and use of chemicals. Breeding for disease
resistance is thus one of the major components of crop
improvement programmes. It requires continuous updates
regarding the pathogen adaptation to plant genotypes. The
advancement in molecular biology continues to unveil the
mechanisms which enable pathogens to parasitize host plants
and how plants defend them against pathogen parasitism.
The knowledge of molecular biology is being implemented
and utilized for enhancing resistance against pathogens in
crop species and accelerating resistance breeding in the field.
The advancement in molecular biology has enabled scien-
tists to identify and map and clone several resistance genes
in different crops against different pathogens (McDowell and
Woffenden 2003; Gururani et al. 2012). The identification
and validation of molecular markers corresponding to dif-
ferent resistance genes in different crops, viz., wheat, rice,
pulses and vegetables have empowered the breeders to uti-
lize those genes and speed up the resistance breeding

Recent Updates in Plant Disease Management 193



programmes (Goutam et al. 2015; Meziadi et al. 2016; Sahu
et al. 2019; Yadav et al. 2017).

More recently, genome editing techniques have broad-
ened the approaches to engineering host resistance. Genome
editing technology is strengthening genetic improvement of
plant disease resistance and accelerating the resistance
breeding programmes by enabling accurate and targeted
genome modifications.

Genome editing means making precise changes to the
genomic DNA of a cell or organism. It involves the use of
sequence-specific nucleases for recognizing specific DNA
sequences and producing double-stranded DNA breaks
(DSBs) at targeted sites. These DSBs are overhauled by;
(i) the nonhomologous ending-joining (NHEJ) pathway and;
(ii) the homologous recombination (HR) pathway (Voytas
and Gao 2014). Generally, cells make use of the NHEJ
pathway for repairing DSBs. But, NHEJ is error prone and
usually results in insertion or deletion mutations. In the
presence of a donor DNA template, DSBs are likely to be
repaired by the HR pathway, which results in precise base
changes or gene replacement. There are major four types of
sequence-specific nucleases being used for genome editing;
(i) Meganucleases (MNs); (ii) zinc finger nucleases (ZFNs);
(iii) transcription activator-like effector nucleases (TALENs)
and the clustered regularly interspaced short palindromic
repeats (CRISPR)/associated protein (CRISPR/Cas9) sys-
tem. Among these, CRISPR/Cas9 is being most exploited in
comparison to other genome editing technologies as it is less
expensive, requires less know-how for implementation and
have a high success rate. CRISPR/Cas9 technology also
makes it possible to target several genes simultaneously with
a single molecular construct, e.g. simultaneous mutation of
14 different genes by a single construct has been demon-
strated using CRISPR in Arabidopsis (Peterson et al. 2016)
and cloning of four gRNAs has been reported in maize, by
the ISU Maize CRISPR platform (Char et al. 2017).

CRISPR/Cas genome editing systems consist of a single
guide RNA (sgRNA) and a Cas protein that exhibits
nuclease activity. The CRISPR/Cas tools have been explored
mainly against viral, fungal and bacterial disease resistance.
CRISPR-edited plants for virus resistance have targeted
ssDNA geminivirus genomes (Ali et al. 2015, 2016; Baltes
et al. 2015) and achieved resistance to begomoviruses (Ali
et al. 2015, 2016). Because of the innate ability of Cas13 to
process pre-CRISPR RNA into functional CRISPR RNA,
the multiplex targeting of several viral mRNAs could be
markedly improved through this alternative system (Aman
et al. 2018). For bacterial blight resistance in rice,
CRISPR/Cas9-mediated mutagenesis of OsSWEET13 was
performed in rice for achieving resistance against
c-proteobacterium Xanthomonas oryzae pv. oryzae (Zhou
et al. 2015). To achieve resistance against rice blast disease
(causal agent; Magnaporthe oryzae), resistant phenotypes

were produced through CRISPR/Cas9 by disrupt-
ing OsERF922 and OsSEC3A genes in rice (Wang et al.
2016; Ma et al. 2018). Among others, TALEN-based gen-
ome editing was reported against the bacterial blight of rice
caused due to Xanthomonas oryzae pv. Oryzae by insertion
or deletion in rice (Li et al. 2012) and against Powdery
mildew (casual organism: Blumeria graminis f. sp. tritici) in
wheat (Wang et al. 2014). The replication of begomoviruses,
Tomato yellow leaf curl China virus (TYLCCNV) and
Tobacco curly shoot virus (TbCSV) was inhibited using
artificial zinc finger nucleases which targets the conserved
nucleotide motif of the virus (Chen et al. 2014).

7 RNA Interference and Plant Disease
Management

RNA interference (RNAi) is a natural regulatory mechanism
in eukaryotes that involves the use of small double-stranded
RNA (dsRNA) molecules as triggers to direct
homology-dependent control of gene activity. The small
single-stranded RNAs (� 21–24 nucleotides) can be classi-
fied into two types, i.e. small-interfering RNAs (siRNAs)
and microRNAs (miRNAs). The miRNAs are encoded by
the plant genome and generally play a role in the regulation
of gene expression. While siRNAs can be of exogenous
origin from viruses or artificial supply (Matranga and
Zamore 2007). RNAi is a novel technology in the field of
functional genomics with massive potential for managing
plant diseases by the silencing of specific genes responsible
for infection in the host plant, in a homology-dependent
manner, before their translation. RNAi has been studied and
used to knock down targeted genes and their expression in
plants, microorganisms and lower animals. The technology
has been successfully exploited to develop resistance against
fungal, bacterial, viral pathogens, insects and nematodes
(Niehl et al. 2018; Singh 2005).

Management of the fungal pathogens using RNAi is
attributed to silencing of the target gene encoding particular
functions related to the pathogen growth, development and
pathogenicity. For example in Fusarium graminearum
mycelium formation or growth was inhibited by silencing
the 14a-demethylase and Chs3b (Cheng et al. 2015; Koch
et al. 2013). In Phytophthora infestans, silencing of PiGPB1
resulted in impaired appressoria formation by the fungus
(Jahan et al. 2015).

In the case of viral pathogens, replication of the viral
nucleic acids is the main target of silencing. Silencing is
achieved using antisense strategies or using the coat protein
or by silencing pathogenicity-related genes directly. Simi-
larly, in the case of bacterial pathogens, resistance or control
is based on the silencing of genes responsible for
pathogenicity or by silencing those genes that are negative
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regulators of the host defence, rendering the bacterial
pathogen unable to establish the infection, e.g. in Agrobac-
terium tumefaciens, if the genes required for tumorogenesis
(gall, iaaH, iaaM and ipt genes) are silenced, no tumours are
produced and the disease is controlled (Escobar et al. 2001).
In Pseudomonas syringae genes which are negative regula-
tors of defence genes in the hosts were silenced to manage
the pathogen (Katiyar-Aggarwal et al. 2006;
Katiyar-Aggarwal and Jin 2007). In the case of
plant-parasitic nematodes, silencing of genes essential for
establishing a feeding site by the nematode in the host helps
in reducing infection, i.e. silencing of 16D10 dsRNA
responsible for Meloidogyne spp. host integration reduced
the number of eggs laid by the nematode. However, despite
various studies and developments, delivering RNAi gene
silencing in the field, is not yet established or standardized
on a large scale. Further, social ethics and apprehensions
regarding the adoption of transgenic crops all over the world
have restricted the technology to a few regions only.
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Heat Stress in Wheat: Impact
and Management Strategies Towards
Climate Resilience
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Abstract

Climate change adaptation and mitigation strategies for
agriculture are crucial for future food security. In 2015,
the United Nations (UN) adopted 17 Sustainable Devel-
opment Goals (SDGs) for achieving a better sustainable
future for all, intending to achieve them by 2030 using a
holistic approach (https://sdgs.un.org/). Among these,
SDG2 proposes achieving sustainable food security by
integrating it with developing resilient agriculture prac-
tices (Target 2.4) to mitigate the impact of future climate
change. Wheat is one of the cereal crops which provide
the primary energy requirement of the human diet
globally and is cultivated in over 215 Mha worldwide.
Wheat is a cool-season annual; hence, it is sensitive to
heat stress during all stages of its development, particu-
larly during the reproductive stage. By the end of the
twenty-first century, global mean temperatures are pro-
jected to be 1.8–4.0 °C warmer. With no mitigation
strategies in place, yield losses are predicted for wheat in
all major wheat-producing countries due to the impact of
heat stress. Besides shortening the crop cycle, high
temperature affects the morphological, physiological, and
molecular responses in wheat’s vegetative and reproduc-
tive phases. A better understanding of plant responses to
heat stress has practical implications for developing
novel methods for sustainable and climate-resilient wheat
cultivation. This chapter will discuss the impact of heat
stress on wheat phenology, development, physiology,
metabolism, and gene expression and various manage-
ment strategies to mitigate the impact of heat stress in
wheat.

Keywords
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1 Introduction

Wheat (Triticum aestivum L.), along with maize and rice, are
the major source of calories for humans and livestock
globally (Lobell and Gourdji 2012). Wheat is cultivated
globally in over 215 Mha, with a global yield exceeding 765
Mtonnes (FAOSTAT 2019). India is the second largest
producer globally, producing more than 100 Mtonnes, and
China, the leading producer of wheat worldwide, produces
more than 130 Mtonnes (FAOSTAT 2019). Wheat is culti-
vated over different agro-climatic zones with an optimum
growing temperature of about 25 °C, with minimum and
maximum growth temperatures of 3–4 °C and 30–32 °C,
respectively (Curtis 2002). FAO estimated that by 2050
world would need around 840 Mtonnes of wheat to meet the
future demand of approximately 9 billion people. This
increased demand has to be achieved with less available land
and projected climate changes, such as high temperature and
rainfall distribution (Sharma et al. 2015). Global mean
temperatures have increased by 0.8 °C since the 1850s, and
it is projected that by the end of the twenty-first century, the
global mean temperature could be 1.8–4.0 °C warmer than
at the end of the previous century (IPCC 2014). It is also
very likely that more intense heat waves will occur more
often and may last longer (IPCC 2014). With little or no
mitigation efforts, the global mean temperature is more
likely to exceed 4 °C above pre-industrial levels, which,
combined with increased food demand, would pose a greater
risk to global and regional food security by the end of this
century (IPCC 2014). A global study on historical trends of
climate change and wheat yield between 1980 and 2008
estimated that rather than precipitation, it was the warming
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trends that imparted a negative impact on wheat yields
(Lobell et al. 2011).

Hence, heat stress caused due to high temperatures will
be one of the critical limiting factors to future crop pro-
ductivity worldwide. With no mitigation strategies in place,
with every 1 °C global temperature increase, different sim-
ulation methods have estimated global wheat yield losses to
be around 6% (Asseng et al. 2014; Liu et al. 2016, Zhao
et al. 2017). Yield losses are projected for all top
wheat-producing countries of the world. The estimated yield
loss in the United States and France are similar to the global
average. In contrast, India and Russia are more vulnerable to
temperature increases, with yield losses estimated to be
higher than the worldwide average (Zhao et al. 2017).
Another important factor not receiving adequate attention is
the impact of climate change on the increase in soil tem-
peratures. Warmer soil temperature requires deeper sowing
depth under rainfed conditions. Further, increased soil tem-
peratures will lead to reduced coleoptile length, delayed
emergence, and poor crop establishment, leading to subse-
quent yield losses in cereals (Rebetzke et al. 2016).

High temperatures cause heat stress which disturbs the
cellular homeostasis and cause adverse effects on the growth
and development of plants (Hall 2001; Mathur et al. 2014).
These effects of heat stress depend on the magnitude, timing
and duration of the stress, and the developmental stage of the
plant exposed to heat stress (Balla et al. 2019). High tem-
perature also increases soil temperature and may lead to
reduced availability of soil moisture for plants (Rebetzke
et al. 2016). Heat stress disturbs the plant water relations,
alters metabolic activity, hormone level, and gene expression
(Abdelrahman et al. 2019; Akter and Rafiqul Islam 2017;
Sattar et al. 2020). Hence, understanding its impact and
mitigation strategies for heat stress in wheat is necessary for
sustainable climate-resilient wheat production.

2 Heat Stress and Plants

Heat stress can be defined as the rise in temperature for a
sufficient time above a threshold level that can cause irre-
versible damage to plant function and development. Differ-
ent crop species differ in their sensitivity to heat stress.
Cool-season annuals such as barley, mustard, pea, and wheat
are more sensitive to heat stress than warm-season annuals
like finger millet, mung bean, sorghum, and tobacco (Hall
2001). The effect of heat stress in a plant is directly pro-
portional to the duration of stress and the plant's growth
stage exposed to heat. When exposed to heat stress, distinct
parts of a plant may encounter different temperatures and
respond differently. For example, reproductive tissues are
more susceptible to heat than vegetative tissues (Balla et al.
2019; Jagadish et al. 2021). Poor germination, reduction in

photosynthesis, leaf senescence, a decline in pollen viability,
reduced production with smaller grain size are the major
outcomes of heat stress in the plants (Ugarte et al. 2007).
During vegetative growth, heat stress can damage the pho-
tosynthetic components and reduce the CO2 fixing potential.
Heat stress also affects electron transport, differentially
affecting PSII and PSI (Ruelland and Zachowski 2010). Heat
stress is reported to cause leaf wilting, leaf curling, leaf
yellowing, and reduction in shoot growth, root growth, root
number, root diameter, plant length, and biomass (Wassie
et al. 2019). Plants at the reproductive stage are susceptible
to heat stress due to damage to male and female reproductive
tissues, with anthers (male reproductive tissue) being more
sensitive to heat stress (Aiqing et al. 2018; Santiago et al.
2021). During the reproductive stage, heat can damage floral
bud development, flowering, pollen development, pollen
germination, and pollen tube growth (Ferguson et al. 2021).
Substantial reduction in pollen viability, embryo abortion,
and poor seed production are all outcomes of heat stress
(Ozga et al. 2016). Rising temperatures alter carbon meta-
bolism and disrupt reproductive growth, thereby reducing
crop yield under heat stress (Abdelrahman et al. 2019;
Bergkamp et al. 2018; Ferguson et al. 2021). Heat stress
critically alters the plant membrane fluidity and permeabil-
ity, causes disassembly of the cytoskeleton, changes in
protein conformation, disabling enzyme activities, causing
metabolic and redox imbalance (Ruelland and Zachowski
2010). Plants under heat stress undergo a remarkable
reduction in their biomass, relative water content (RWC),
chlorophyll content, and an increase in electrolyte leakage
(EL) and malondialdehyde (MDA) content (Sattar et al.
2020; Wassie et al. 2019).

3 Impact of Heat Stress on Wheat

Being a cool-season plant, wheat is more sensitive to heat
stress. The effects of heat stress are complex as it may alter
the growth and physiology of the plants by influencing the
availability of water and nutrients. Apart from shortening the
crop cycle, high temperature affects the morphological,
physiological, biochemical, and molecular responses in
vegetative and reproductive phases (Farooq et al. 2011).
Though every developmental stage is affected by heat stress,
the pre-flowering and anthesis stages are most sensitive to
heat stress (Bheemanahalli et al. 2019; Cossani and Rey-
nolds 2012). Wheat is vulnerable to high temperature as it
accelerates the leaf senescence (Balla et al. 2019; Wang et al.
2011), decreases the photosynthetic rate (Balla et al. 2019;
Ristic et al. 2007), pollen viability and starch biosynthesis
(Begcy et al. 2018), disturbs the chlorophyll content and
rubisco activity (Degen et al. 2020; Demirevska-Kepova
et al. 2005). Heat stress in wheat can also shorten the grain
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filling period (Dias et al. 2008, 2009) and drastically affect
seed germination and seedling emergence (Tewolde et al.
2006). Early maturation, antioxidant production, disturbance
in physiology and developmental stages, upregulation of
heat tolerance genes, alteration in membrane lipid compo-
sitions are some of the heat-induced responses in wheat
(Fig. 13.1).

3.1 Phenology

Plant phenology, in general, can be stated as a timing of the
plant life cycle events such as flowering, leaf bursting, and
fruiting. The phenological response of a plant is extremely
sensitive to environmental drivers and thus greatly affected
by climate change. (Chuine and Régnière 2017; Menzel
et al. 2006). Therefore, phenological change is an indication
of climate change, and it is an effective tool to assess
regional and global climate change. Understanding pheno-
logical change in wheat is essential to develop measures for
different climatic conditions and crop management. High
temperature can reduce the life period of crop plants by
disturbing their overall phenological duration. Phenological
events in wheat such as the timing of shooting, heading, and
harvest have undergone a significant advance over the past
several decades as per the studies in Germany, the U.S.
Great Plains, and China (Estrella et al. 2007; Hu et al. 2005;
Ren et al. 2019; Tao et al. 2006). It was estimated that
climate change would impact wheat by advancing heading

dates by an average of 1 week by the middle of this century
and 2–3 weeks by the end of this century (Gouache et al.
2012). High temperature in wheat can reduce the grain filling
stage, reduce time duration between heading and maturity of
wheat (Mohammadi et al. 2012), and reduce the period
between successive phenological events (Zahedi and Jenner
2003). Further, it hastens the development stages to such an
extent that necessary nutrient supply cannot be met (Blum
et al. 2001; Laghari et al. 2012). Shortening of the overall
growth period and vegetative growth period is the significant
phenological impact of climate change on wheat that can
lead to yield reduction (Ren et al. 2019). Phenological
adjustment of various developmental phases has proven to
be the convenient strategy for wheat to adapt under a heat
stress environment (Gouache et al. 2012). To overcome the
impact of high temperature, the crop calendar should be
adjusted towards earlier heading dates on an average of over
5.6 days in the near future and close to 19 days in the far
future (Gouache et al. 2012).

3.2 Development

Development in the plant life cycle includes a broad spec-
trum of processes, such as the formation of the zygote,
embryo development, seed germination, and development of
the mature vegetative plant, formation of flower, fruit, and
seed set. High temperatures can restrict these developmental
processes in plants. At every developmental stage, all

Fig. 13.1 Impact of heat stress on wheat
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agronomic traits are badly affected under high temperatures.
Good seed germination is one of the critical prerequisites to
get a good and uniform crop. Under high temperatures, the
first developmental stage to be distressed is seed germina-
tion. Significant effects on seed germination under heat stress
are poor germination percentage, reduction in the growth of
radicle and plumule, and abnormal seedling growth (Kumar
et al. 2011; Piramila et al. 2012). The optimum temperature
for seed germination in wheat is 20–25 °C. A linear decrease
in coleoptile length in wheat genotypes were observed with
an increase in temperature from 15 to 35 °C (Rebetzke et al.
2016). In warmer soils, decrease in coleoptile length may
delay the emergence of shoot above the soil surface,
resulting in the poor establishment of seedlings and subse-
quently affecting the yield (Rebetzke et al. 2016). The
vegetative development has a threshold temperature of
around 15–30 °C in wheat (Porter and Gawith 1999). Heat
stress also impairs vegetative growth like shoot, root
development, and leaf appearance.

At the reproductive stage, heat stress causes significant
loss of yield in crops including wheat (Begcy et al. 2018).
During the reproductive phase, wheat plants undergo many
crucial development processes such as spikelet initiation,
floral organs differentiation, male and female sporogenesis,
pollination, and fertilization. Heat stress can impair any
stage of these developmental processes, leading to a lower
grain set (Rawson and Bagga 1979; Saini and Aspinall
1982; Aiqing et al. 2018). During the terminal spikelet
stage, accelerated reproductive development was observed
with an increase in temperature from 10 °C to 19 °C,
whereas spikelet initiation was delayed and the number of
spikelet primordia reduced with temperatures above 20 °C
(Porter and Gawith 1999; Slafer and Rawson 1995). The
optimum temperature was determined to be 10.6 °C for the
terminal spikelet stage, 21 °C for anthesis, and 20.7 °C for
grain filling (Porter and Gawith 1999). Compared with the
post-flowering stage, pre-flowering stage and anthesis are
much susceptible to high temperature (Ni et al. 2018; Yang
et al. 2013). Heat stress can lead to no flowering or flowers
may be unable to form fruit and seed. Saini and Aspinall
(1982) reported that floret formation at high temperatures
(above 30 °C) could lead to sterility. Five days before or
after anthesis are particularly sensitive to heat stress, which
reduces grain numbers (Wheeler et al. 1996). Short exposure
to high temperature at flowering and pre-flowering stage led
to reduced yield and grain number per spike, resulting from
defective pollen germination and pollen tube growth (Yang
et al. 2013). Pollen viability and tolerance to heat stress
appears to be cultivar-specific, for example. It was observed
that when moderate heat stress was applied during the pollen
development stage, the viability of pollen was better in
Australian cultivars compared to European cultivars (Begcy
et al. 2018). High temperature induces pollen and anther

sterility and shows an adverse effect on ovary development,
resulting in improper embryo development, reduced grain
number, and grain filling (Mondal et al. 2013). Temperature
more than 31 and 35 °C limits the success of pollination and
grain filling, respectively (Porter and Gawith 1999). The
growth and development of a plant decline under heat stress
due to source and sink limitations that restrict grain set and
grain filling (Alghabari et al. 2021). Heat stress causes
inhibition of photosynthesis, thereby limiting the available
photosynthetic assimilates required for grain filling (Blum
et al. 1994). Translocation of assimilates to the developing
grain is hindered due to heat stress during the grain filling
stage, thereby significantly reducing final kernel weight
(Bergkamp et al. 2018). High temperatures between 30 and
38 °C during the reproductive phase decrease the average
grain mass on the main stem by 20–44% among wheat
genotypes (Tahir and Nakata 2005). Temperatures near 31 °
C in the daytime and 20 °C in night-time can shrink grain
size due to structural change in the endosperm and aleurone
layer (Dias et al. 2008). The duration and rate of grain filling
determine the final grain yield in wheat. Yin et al. (2009)
reported that at a temperature of 25 °C and above, grain
growth duration was reduced by several days with an
increase in grain growth rate. Heat stress during flowering
resulted in a reduced number of seeds and seed weight per
spike. This effect is more prominent on primary spikes fol-
lowed by the main spike suggesting pre-anthesis-associated
events such as gametogenesis and gamete development to be
more susceptible to heat stress (Bheemanahalli et al. 2019).
Studies on the impact of heat stress on source–sink rela-
tionships in wheat under heat stress showed that there is no
significant difference in the supply of assimilates between
control and heat-stressed plants during flowering or grain
filling time suggesting no source limitation (Abdelrahman
et al. 2019). Grain weight is more affected by heat stress
during the anthesis stage compared to the grain-filling stage
(Alghabari et al. 2021).

3.3 Physiology

3.3.1 Water Relations and Photosynthesis
Water relations generally deals with how a plant manages
the hydration of a cell. It is determined by characteristics
such as leaf water potential, transpiration rate, and stomatal
conductance. High temperature disturbs leaf stomatal con-
ductance and leaf water relation. Heat stress may lead to
dehydration inside plant tissue and further obstruct the
development of a plant (Akter and Rafiqul Islam 2017). Heat
stress often coexists with water shortage (Simões-Araújo
et al. 2003). Global warming and subsequent temperature
rise can become detrimental to plants due to the scarcity of
water. In wheat, a rise in temperature results in the reduction
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of water potential and relative water content in leaves to a
great extent (Farooq et al. 2009). Despite the sufficient
quantity of water in the soil, the reduced leaf water content
in wheat due to exposure to high temperature proves that
heat stress has negative consequences on root conductance
(Morales et al. 2003). Physiological response of flag leaf
during terminal heat stress showed a reduction in the relative
water content (RWC), turgor potential, and increase in the
water potential of flag leaf (Sattar et al. 2020). Maximum
water is lost in the daytime under heat stress due to the rapid
rate of transpiration, which may disturb some of the physi-
ological processes in the plant.

Wheat is a C3 crop, and it has a lower optimum tem-
perature for photosynthesis than C4 plants. Photosynthesis is
a heat susceptible physiological event that leads to poor
growth in wheat (Feng et al. 2013). Damage to photosyn-
thetic apparatus, lower photosynthetic rate, and premature
leaf senescence are some of the adverse effects of heat stress
in wheat (Ashraf and Harris 2013; Mathur et al. 2014).
Protochlorophyllide (Pchlide) synthesis was inhibited by
70% under heat stress in wheat seedlings (Kumar Tewari and
Charan Tripathy 1998). Accelerated flag-leaf senescence
caused by heat stress could be attributed to lower levels of
photosynthetic pigments and a decline in photosynthetic
activity (Balla et al. 2019). Further, reduced photosynthetic
activity results in a gradual reduction in net assimilation and
stomatal conductance with an increased duration of heat
stress (Balla et al. 2019). The decrease in photosynthetic
assimilation was associated with a decrease in photochemi-
cal activities (Chovancek et al. 2019). Stroma and thylakoids
are the two main sites in the chloroplast, which are highly
sensitive towards high temperatures. Heat stress in wheat
disrupts the thylakoid membrane and thus leads to reduced
photosynthesis rate due to disturbance in membrane-
associated electron carriers and enzymes (Ristic et al.
2008). High temperature of around 35–45 °C can lead to the
destacking of thylakoids membrane in wheat (Mathur et al.
2010). Decreased photosynthetic rate and grain yield per
plant and increased thylakoid membrane damage were
observed due to heat stress during anthesis and grain filling
(Djanaguiraman et al. 2020). PSII is relatively more sensi-
tive to high-temperature stress than PSI and hence readily
affected by heat stress (Marutani et al. 2012; Mathur et al.
2014). High temperature leads to disproportional flow of
electrons to the acceptor site of PSII due to impairment of
the oxygen-evolving complex I (De Ronde et al. 2004).

High temperature disturbs intercellular CO2 concentration
and deactivates the rubisco, thereby limiting CO2 fixation
(Mathur et al. 2014). The deactivation of rubisco occurs at
high temperatures due to the production of inhibitory com-
pounds exceeding the capacity of rubisco activase to remove
them from the catalytic sites of Rubisco (Salvucci and
Crafts-Brandner 2004). In wheat leaves, heat stress in the

dark lead to a decrease in the abundance of rubisco subunit
and rubisco activase. An irreversible decrease in photosyn-
thetic pigments, soluble proteins, rubisco-binding protein,
were also observed (Demirevska-Kepova et al. 2005). Heat
stress in wheat accelerates the leaf senescence, reduces
chlorophyll content, changes chlorophyll a/b ratio and
damages chloroplast integrity (Al-Khatib and Paulsen 1984;
Haque et al. 2014).

3.3.2 Redox Status
In plants, high temperature increases the level of reactive
oxygen species (ROS) such as superoxide radical (O2

−),
hydrogen peroxide (H2O2), and hydroxyl radical (OH−),
causing oxidative stress and disturbing the redox home-
ostasis of the cell (Marutani et al. 2012; Suzuki et al. 2011).
ROS are highly reactive and can potentially react and cause
damage to intracellular components, including cell death at
high concentrations. ROS is also generated in organelles like
peroxisomes and mitochondria, along with the reaction
centers of PSI and PSII of the chloroplast. ROS causes
autocatalytic peroxidation of lipid molecules, which are the
major component of cell and organelle membranes, thereby
influencing membrane fluidity and stability (Hasanuzzaman
et al. 2013; Narayanan et al. 2016). Heat stress leads to
photoinhibition, and the generation of ROS during pho-
toinhibition could cause chlorophyll degradation, damage to
PSII components, and inactivation of enzymes involved in
CO2 assimilation thereby reducing the photosynthetic rate in
plants experiencing heat stress (Djanaguiraman et al. 2018).
Higher ROS generation could induce the processes of early
senescence with a reduction in the photosynthetic capacity of
the leaves in sensitive genotypes (Chovancek et al. 2019).
Studies on short-term and long-term heat stress in wheat
showed increased accumulation of superoxide radical (O2

−)
and hydrogen peroxide (H2O2) (Hasanuzzaman et al. 2013).
With increasing temperature, a gradual increase in the
accumulation of H2O2 was observed in wheat seedlings
(Kumar 2012). Oxidative stress elevates membrane lipid
peroxidation, promotes electrolyte leakage, and decreases
membrane thermostability in wheat (Savicka and Škute,
2010). High temperature mediated membrane damage and
reduction in antioxidant levels in wheat was observed in
different stages of wheat growth, viz. seedling stage, anthesis
stage, and grain filling stage (Djanaguiraman et al. 2018).

Management of oxidative stress has been correlated with
tolerance to abiotic stress in many studies (Hasanuzzaman
et al. 2012). Similarly, thermotolerance requires the
deployment of mechanisms that can reduce oxidative dam-
age under heat stress. Several studies on thermotolerant and
susceptible genotypes have confirmed a positive correlation
between heat stress tolerance and increased enzymatic or
non-enzymatic ROS scavengers (De Pinto et al. 2015). Heat
tolerance in different wheat genotypes is correlated with the
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capability of catalase (CAT) and ascorbate peroxidase
(APX) to efficiently scavenge H2O2 (Dash and Mohanty
2002). A significant increase in CAT and SOD activity
under heat stress was also observed in flag leaves during
terminal heat stress (Sattar et al. 2020). Higher MDA content
was observed in heat-sensitive genotypes of wheat. In con-
trast, higher antioxidant enzymes and lower MDA levels
were observed in heat-tolerant genotypes, showing a nega-
tive correlation with membrane damage and heat suscepti-
bility index (Hameed et al. 2011).

3.4 Biochemistry and Metabolism

The biochemistry and metabolism of a plant cell are affected
by environmental stresses, influencing the metabolite content
such as carbohydrates, protein, amino acids, production of
several allergens, toxins, and various secondary metabolites.
Starch is the most abundant carbohydrate in wheat, and it is
made up of amylose and amylopectin. Starch synthases have
a central role in the biosynthesis of starch. The effect of high
temperature on starch accumulation in wheat grains is usu-
ally attributed to the direct effect of heat stress on the
enzymes involved (Ferris 1998). Rijven (1986) reported that
starch synthase from wheat was inactivated in vivo and
in vitro at temperatures above 30 °C. A decline in starch
biosynthesis and grain growth was also observed in wheat
due to a heat stress-induced decrease in starch synthase
activity (Prakash et al. 2003, 2004). There is a remarkable
reduction in leaf total soluble sugar accumulation and plant
biomass in wheat after imposing high-temperature stress at
35/27 °C of heat-primed seedlings (Wang et al. 2014).
Decrease of sucrose content and increase of fructose and
glucose content were observed in different winter wheat
cultivars under heat stress (Mirosavljević et al. 2021). Under
high temperatures, the activity of enzymes involved in
nutrient metabolism like nitrate reductase is reduced in
wheat (Klimenko et al. 2006).

Grain protein concentration increased when heat stress
was imposed early during grain fill and the influence of heat
stress on protein quality varied with different cultivars
(Castro et al. 2007). Diminished levels of the essential amino
acids in the grain and decreased sedimentation index fol-
lowing heat stress were also observed (Dias et al. 2008).
Genotype dependent increase in proline content and increase
in the activity of catalase, guaiacol peroxidase, and SOD
were observed in wheat subjected to short-term heat stress
(Gupta et al. 2013). An increase in proline content and total
soluble sugars is also observed in wheat plants exposed to
high temperatures during the grain-filling or anthesis stage
(Alghabari et al. 2021). Relatively higher accumulation of
proline was observed under heat stress in heat-tolerant
genotypes compared to heat-susceptible genotypes (Ahmed

and Hasan 2011; Katakpara et al. 2016). The biochemical
response of flag leaf during terminal heat stress showed
higher proline, soluble proteins, and soluble sugar levels was
observed under heat stress compared to control (Sattar et al.
2020). Protein folding is adversely affected under heat stress,
resulting in disruption of metabolism and molecular pro-
cesses. Heat shock proteins (HSPs) are synthesized to miti-
gate this effect, which acts as a molecular chaperone and
retain homeostasis in protein folding. Accumulation of HSPs
was associated with thermal tolerance in wheat (Krishnan
et al. 1989; Xiaozhi et al. 1995). Chloroplast protein syn-
thesis elongation factor, EF-Tu and EF-1a, were accumu-
lated under heat stress in wheat, and cultivars with greater
accumulation of EF-Tu exhibited better tolerance to heat
stress (Bukovnik et al. 2009; Ristic et al. 2008). Metabolites
are the final products of cellular processes, and hence
studying the metabolic profile of a plant can provide a
snapshot of the biological state of that plant under a par-
ticular developmental stage or stress condition (Abdelrah-
man et al. 2019). Narayanan et al. (2016) observed
significant changes in the lipid profiles in both heat-tolerant
and susceptible wheat genotypes under high temperatures.
Higher amounts of sterol glycoside [SG] and saturated
species of acylated sterol glycoside [ASG], and lower
amounts of ox-lipids were present in Ventnor (heat-tolerant
genotype) compared to Karl 92 (heat-susceptible genotype).
Heat stress also differentially influenced the molar percent-
age of unsaturated lipid species, monogalactosyldiacylglyc-
erol (MGDG) and digalactosyl diacylglycerol (DGDG) in
wheat (Djanaguiraman et al. 2020). Metabolomic analysis of
wheat following post-anthesis heat stress showed a 1.5-fold
or higher differential accumulation of 64 known metabolites.
Further, aminoacyl-tRNA biosynthesis and plant secondary
metabolite biosynthesis pathways are most affected
(Thomason et al. 2018).

3.5 Gene Expression

Plant adaptive mechanisms against heat stress are under
multigene control. Hence, in many plant species, molecular
response under heat stress was explored to understand the
mechanism of heat stress tolerance. Effect of heat stress on
gene expression profile in different developmental stages of
wheat (i.e. developing seed, 10-d-old seedlings and unfer-
tilized flower) was reported (Chauhan et al. 2010). Heat
stress significantly affects the gene expression in wheat
seedlings, with several thousand genes being differentially
regulated within 1 h of heat stress (Liu et al. 2015). Tran-
scriptome analysis of wheat grain and flag leaf resulted in
identifying 1705 differentially expressed genes (DEGs)
under heat stress (Su et al. 2019). Large-scale analysis of
gene expression in contrasting wheat genotypes for
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thermotolerance showed that a large number of genes are
differentially expressed between thermotolerant and sus-
ceptible genotypes as well (Qin et al. 2008). Comparison of
gene expression between heat-tolerant and susceptible cul-
tivars of wheat showed that several heat-responsive candi-
date genes such as Hsp90, Hsp-Sti, hypothetical Dnaj,
ClpB1, PPIase, GAPDH, PSBR, etc., were upregulated in
heat-tolerant wheat cv. C306 compared to cv. HD2967 under
heat stress during post-anthesis stage (Vishwakarma et al.
2018). High temperature was also shown to rapidly alter the
rubisco activase (Rca) gene expression. Among the three
isoforms of the Rubisco activase (Rca) in the wheat genome,
heat-stable Rca1b transcript increased 40-fold within 4 h of
heat stress, whereas control plants showed no expression of
Rca1b (Degen et al. 2020).

Genes encoding Heat Shock Proteins (HSP), Heat Stress
Transcription Factors (HSFs) are some of the early response
genes induced during heat stress in wheat (Qin et al. 2008;
Ohama et al. 2017). ROS scavenging and HSP related gene
upregulation in high temperature was correlated with heat
tolerance (Suzuki et al. 2014). Heat shock proteins (HSPs) act
as molecular chaperones maintaining the homeostasis of
protein folding. Higher HSP transcripts and protein levels
were observed in some of the wheat genotypes with acquired
thermotolerance (Vierling and Nguyen 1992; Sky-
las et al. 2002). Heat shock transcription factors (HSFs) are
transcription factors that regulate the expression of HSPs and
play an essential role in the thermotolerance of plants.
Wheat TaHsfA6f was upregulated several-fold within 1 h of
heat stress, suggesting it is an early heat response gene (Bi
et al. 2020). TaHsfA2–10 was induced highly under heat
stress in the seedling stage (Guo et al. 2020). The role of
miRNAs in heat stress was also studied in wheat with many
heat stress-responsive miRNAs; their tissue-specific expres-
sion and their targets were identified in wheat (Kumar et al.
2014; Ni et al. 2018). For example, TamiR159 was down-
regulated early under heat stress in wheat. Transgenic rice
plants overexpressing TamiR159 were more susceptible to
heat stress, suggesting a role for TamiR159 in the heat stress
tolerance of wheat (Wang et al. 2012). Upregulation of var-
ious HSPs was observed in developing grains of different
genotypes of wheat irrespective of their tolerance to heat
stress (Rangan et al. 2020). Based on the comparative tran-
scriptome profiling of the developing grain of three wheat
genotypes under heat stress Rangan et al (2020) suggested
that 6-phosphogluconate dehydrogenase (pgd3), S6 RPS6-2
ribosomal protein, peptidylprolyl isomerases, plasma mem-
brane proton ATPase, heat shock cognate70, FtsH protease,
and RuBisCO activase B might have a crucial role in heat
stress tolerance. While comparing Australian and European
cultivars, Begcy et al. (2018) observed that heat shock factor
genes (HSFs) were expressed in substantial levels in

heat-tolerant cultivars compared to susceptible ones and
suggested that relatively stable expression of HSFs in Aus-
tralian cultivars is associated with their high level of acquired
heat stress tolerance. A recent genome-wide analysis of
TaHSF genes in wheat showed that a significant number of
TaHSFs are located on chromosome 3 (Duan et al. 2019).
This is particularly interesting since chromosomes 3A and 3B
are known to harbour quantitative trait loci for heat stress
tolerance in wheat (Ni et al. 2018).

4 Management Strategies

Wheat is a staple food of many geographical areas, and heat
stress has a drastic effect on wheat, making wheat production
highly vulnerable to future climate change, as discussed
above. The temperature increase due to climate change is
expected to badly affect different stages of wheat production
from sowing to harvesting and ultimately lead to an overall
reduction in yield. Conventional breeding programs were
primarily aimed at developing resistance to diseases, pests,
and yield enhancement. Considering the impact of heat stress
on wheat, it is necessary to focus the future breeding programs
on developing varieties tolerant to heat stress. Management
strategies involving agronomical practices and biotechno-
logical approaches for sustainable wheat cultivation under
heat stress are discussed below and presented in Fig. 13.2.

4.1 Agronomical Practices

By exploiting and adjusting some agronomical practices,
wheat and many other crops can be cultivated at high tem-
peratures. These practices include maintaining proper time
and method of sowing, cultivar choice, using beneficial
microbes and exogenous protectants and growth regulators.

4.1.1 Time of Sowing, Choice of Cultivar, Tillage,
and Mulching Practices

A suitable sowing time and method is considered an excel-
lent agronomical practice and non-monetary input for opti-
mal plant growth and yield (Kajla et al. 2015). Modification
in planting method and date of sowing with the appropriate
wheat variety can ease the adverse effect of heat stress (Akter
and Rafiqul Islam 2017). Proper planting time can avoid the
warm and desiccating wind during the flowering and
grain-filling period. For example, early planting appears to
be a successful approach to avoid summer heat for spring
wheat (Reilly et al. 2003). Nainwal and Singh (2000), in
their experiment, reported a reduction in various growth
parameters in late sown crops as it may be due to the
reduction in the cellular activity like cell division and
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expansion. Selection and breeding of thermotolerant culti-
vars are necessary to overcome the negative effect of heat
stress in wheat. Better grain yield was also observed in
heat-tolerant wheat varieties than heat-susceptible varieties
in wheat (Ali et al. 2019). Heat-tolerant wheat varieties
generally exhibit lower membrane damage and are better
able to cope with oxidative stress than heat-susceptible
wheat genotypes (Khanna-Chopra and Chauhan 2015).
Choosing an appropriate variety of wheat such as PBW-373,
Kaushambi (HW 2045), Naina (K-9533), and Parbhani-51,
which are heat-tolerant varieties, is very crucial to overcome
the adverse effect of high temperature (Jena et al. 2017).
Various cropping practices will help in adapting agriculture
to climate change. Proper crop rotation and intercropping
may reduce the harmful effects of climate change on agri-
culture without affecting the economic advantages. The
planting method and tillage practice perform a crucial role in
placing seeds in proper depth, ensuring the better emergence
and growth of a crop. No-till and zero-tillage systems can
conserve moisture, keep the soil temperature low during the
day and hence protect the seedling against high temperature
during its initial growth period (Jena et al. 2017).
Zero-tillage practice for wheat in a rice–wheat system of
Indo-Gangetic plain can save up to 20–25% of water in
irrigation (Gupta et al. 2002). Zero-tillage advances planting
time, thereby conserving soil moisture and also escaping
terminal heat effect in wheat (Gupta et al. 2002).

Heat stress will have a direct impact on the availability of
water in the soil. Mulching is considered to be important
agronomic practice in conserving the soil moisture and
helping in adjusting the soil temperature. Mulching has been
proved to be beneficial for wheat by improving water use
efficiency, growth, and yield under semi-arid conditions
(Chakraborty et al. 2008). Early sowing with one additional

dose of nitrogen and irrigation at the grain filling stage was
found to most suitable adaptation option for reducing the
impact of terminal heat stress in wheat in current and future
heat stress scenarios (Dubey et al. 2020). Cultivating crops
with a proper planting time, using appropriate variety, short
life cycle, crop rotation, irrigation technique, weeding,
mulching, etc., are some of the agronomical practices that
help adapt wheat cultivation to climate change.

4.1.2 Application of Beneficial Microbes
The microbiome is the second genome of an organism with
up to trillions of microbes, including bacteria, fungi, lichens,
actinomycetes, etc., are residing in it and with it. The plant
microbiome provides an essential ecosystem service as it
enhances plant growth and alleviates abiotic stress such as
high temperatures. Through a symbiotic association with
plants, the plant microbiome help plants to cope up with
adverse conditions such as high-temperature stress by
enhancing the bioavailability of nutrient and water uptake,
reducing oxidative stress, producing plant hormones, and
regulating various signaling pathways (Arif et al. 2020). The
application of such plant-associated microorganisms was
shown to alleviate different abiotic stresses in diverse plant
species (Lata et al. 2018). Under heat stress conditions,
arbuscular mycorrhizal fungi (AMF) increased the number
of grains per spike in wheat and altered nutrient allocation
and tiller nutrient composition (Cabral et al. 2016).

Plant growth-promoting rhizobacteria (PGPR, Root
microbiome) are considered compatible and favorable for
wheat growth as it attributes protection against high tem-
perature (Nain et al. 2009). PGPR nullify the effect of ROS
produced due to heat stress by increasing the activity of
catalase, peroxidase, and other antioxidant enzymes. Alter-
ing the microbiome by inoculating with a PGPR consortium

Fig. 13.2 Management strategies for improving wheat resilience to future climatic (high temperature) conditions
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can further enhance heat tolerance. For example, the treat-
ment of wheat plants with Bacillus amyloliquefa-
ciens and Azospirillum brasilense enhanced heat stress
tolerance in wheat by reducing ROS levels (Abd El-Daim
et al. 2014). PGPR priming with Bacillus safensis protected
wheat seedlings from heat stress by maintaining cell viability
and antioxidative response. This protection is associated
with a reduced level of ROS, less membrane damage,
enhanced chlorophyll content, increased expression of redox
enzymes and osmolyte accumulation (Sarkar et al. 2021).
A recent study by Shekhawat et al. (2021) showed that a root
endophyte Enterobacter sp. SA187 induces thermotolerance
in wheat. Under field conditions characterized by low rain-
fall and high temperatures, application of Enterobac-
ter sp. SA187 resulted in increased plant height, seeds per
spike, and seed weight. Further, a consistent increase in
grain yield was also obtained (Shekhawat et al. 2021). An
invasive weed associated bacteria was also shown to confer
heat stress tolerance in wheat by enhancing the content of
osmoprotectant and the activity of antioxidant enzymes CAT
and APX. These examples signify that utilizing plant-
associated microbes can be a potentially sustainable
approach to wheat cultivation under heat stress.

4.1.3 Application of Exogenous Protectants
and Growth Regulators

Another method to tackle the negative effect of high tem-
perature is by supplying an adequate and balanced amount of
nutrients and protectants, which can safeguard the plant by
nullifying the adverse effect of heat stress (Waraich et al.
2012). Osmoprotectants (such as proline, trehalose, glycine
betaine), phytohormones (like indole acetic acid, gibberellic
acid, salicylic acid abscisic acid), signaling molecules, some
trace elements, and essential nutrients are some of the pro-
tectants that can be applied exogenously to ameliorate
thermotolerance in wheat (Upreti and Sharma 2016). Several
studies on different plant species proved that exogenous
application of osmolytes could protect plants against heat
stress. Proline is an amino acid that acts as a membrane
protectant and plays a crucial role in maintaining the protein
structure and helping in scavenging ROS (Hameed et al.
2011). Further, under heat stress, proline decreases the
hydrogen peroxide level, enhances the soluble sugar accu-
mulation, and protects the tissue from heat. Exogenously
applying trehalose can elevate the amount of endogenous
trehalose, further enhancing the photosynthesis capacity in
wheat under high temperatures (Luo et al. 2010). Similarly,
another osmoprotectant glycine betaine (GB), also exhibited
beneficial effects on plants under heat stress when applied
exogenously (Yang et al. 2006). Applying glycine betaine
through foliar feeding enhances the thermotolerance in
wheat by raising the chlorophyll and GB content under heat
stress with improved stomatal conductance (Wang et al.

2014). There are various phytohormones whose exogenous
application can help in adapting to heat stress. Application of
phytohormones like abscisic acid, indole acetic acid, and
gibberellic acid improved the grain yield in wheat under
high-temperature stress (Cai et al. 2014).

Kumar et al. (2014), reported that foliar spray of
(100 mM) salicylic acid (SA) could ameliorate the heat
tolerance in wheat by modulating the osmolyte accumula-
tion, expression of stress-associated proteins, and total
antioxidant capacity under heat stress. Applying (0.5 mM)
SA also showed superior protection against heat stress by
reducing ethylene formation through decreasing ACS
(1-aminocyclopropane carboxylic acid synthase) activity.
Further, a reduction in the loss of chlorophyll and rubisco
activity was observed (Khan et al. 2013). The use of
a-tocopherol and SA increased membrane stability in wheat,
stabilized photosynthesis, and increased yield (Sandhu et al.
2018). Treatment of wheat plantlets with salicylic acid and
hydrogen sulfide, independently or in combination,
increased resistance to heat stress with increased accumu-
lation of antioxidant enzymes and reduced lipid peroxidation
(Karpets et al. 2020). Exogenous application of methyl jas-
monate (MeJA) protected PSII, provided stability to photo-
synthetic apparatus and CO2 assimilation under heat stress in
wheat (Fatma et al. 2021). The study also showed that
exogenous MeJA application enhanced the expression of
psbA and psbB under normal and heat-stressed conditions,
increased antioxidant activity, and decreased oxidative
damage under heat stress (Fatma et al. 2021).

Nitric oxide (NO) acts as a signaling molecule and plays a
crucial function in thermotolerance in the plant during heat
stress. Applying NO exogenously can protect wheat seed-
lings from heat stress by upregulating antioxidant defence
and glyoxalase system (Hasanuzzaman et al. 2012; Waraich
et al. 2012). Under heat stress condition, NO3

– delays
abscisic acid synthesis and increase cytokinin activity, while
K+ application induces photosynthetic activity and boost
grain yield (Singh et al. 2011). Exogenous application of
inorganic nutrient elements such as selenium, calcium,
magnesium, zinc, and nitrogen were also beneficial and
protective against heat stress in wheat (Ali et al. 2019).
Selenium is a trace element when applied exogenously,
enhancing the antioxidant activity and chlorophyll content. It
also helps improve the osmotic-adjustment capacity of wheat
under heat stress (Iqbal et al. 2015). Applying potassium
orthophosphate (KH2PO4) as a foliar spray after anthesis can
increase thermotolerance, delay the heat stress-induced leaf
senescence, and improve yield (Dias and Lidon 2010).
Exogenous calcium promotes heat tolerance by inducing the
activity of antioxidants like guaiacol peroxidase, SOD, and
CAT in wheat. Calcium can guard chlorophyll against
photo-destruction and maintain stomatal function, thereby
decreasing the impact of heat stress through transpiration
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(Dias et al. 2009). Recent studies showed that the application
of polyamines (spermine and spermidine) could alleviate
heat stress-induced injury during grain filling in wheat (Jing
et al. 2020). Under high temperature, both spermine and
spermidine application increased grain weight in
heat-resistant and heat-susceptible wheat varieties with a
significant increase in superoxide dismutase (SOD), perox-
idase (POD), and catalase (CAT) activity during grain filling
(Jing et al. 2020). Foliar application of potassium nitrate
(KNO3) during the booting and anthesis stage helped in
mitigating the effect of terminal heat stress and improved the
yield of late sown wheat under field conditions (Singh and
Singh 2020). Exogenous application of natural growth pro-
moting substances like moringa leaf extract and sorghum
water extract was also shown to be useful in alleviating the
impact of heat stress in wheat (Afzal et al. 2020).

4.2 Biotechnological Strategies

Previously, breeders main target was to establish high
yielding variety and undoubtedly, they were successful only
in improving yield under optimum conditions but not under
stressful conditions. In recent decades, the advancement of
molecular biology and a greater understanding of the
mechanism of heat stress tolerance led to identifying several
genes responsible for thermotolerance in wheat. Harnessing
the available genetic resources using advanced breeding
techniques and exploiting wild relatives to increase genetic
diversity can help develop climate-resilient wheat.

4.2.1 Molecular Breeding
The availability of genetic diversity within species is a
prerequisite for any breeding program. Conventional
breeding may help improve temperature tolerance in crop
plants and can mitigate the adverse effect of heat to a certain
extent. Usually, conventional breeding is executed in the
same climate region where the crop will be eventually be
produced. Therefore, the selection of breeding lines in
tropical regions occurs under tropical conditions (Driedonks
et al. 2016). Using the ancestor Triticum tauschii as a donor
parent, recurrent selection has been used to enhance grain
size and grain filling rate in BC1F6 plants of T. aes-
tivum under heat stress (Gororo et al. 2002).

However, crop improvement using conventional breeding
is a time-consuming process with limitations such as
selecting superior genotypes based on phenotypes. Heat
tolerance in wheat is quantitative, regulated by multiple
genes or quantitative trait loci (QTL) (Blum 1988). So, it is
difficult to select a thermotolerant wheat variety through
traditional breeding. In molecular or marker-assisted breed-
ing, DNA markers that are tightly linked to phenotypic traits
help in the selection. Another advantage of using molecular

markers is that they are not affected by the environment as
with morphological or biochemical markers and can be
detected at any stage of the plant life cycle. Utilizing dif-
ferent traits as indicators, several QTL associated with heat
tolerance were identified in wheat. QTL mapping associated
with heat tolerance and using it in a marker-assisted selec-
tion can develop heat-tolerant wheat varieties. QTL for heat
tolerance in wheat were reported using different traits like
grain fill duration, canopy temperature depression, yield,
senescence-related traits, heat susceptibility index, and
thousand-grain weight (Paliwal et al. 2012). QTL trait
associated with heat stress was reported on different chro-
mosomes, for example, chromosome 1B, 1D, 2A, 2B, 2D,
3BS, 5A, 6A, 6B, 6D for grain filling duration
(GFD) (Ogbonnaya et al. 2017; Shirdelmoghanloo et al.
2016), 1A, 2A, 3B, 4A, 5B for number of grains (Pinto et al.
2010), 1B, 1D, 2A, 2B, 3B, 4D, 5A, 5B, 5D, 6A, 6B, 6D,
7A, 7B, 7DS for days to maturity (Ogbonnaya et al. 2017)
and 7BL for canopy temperature depression (Paliwal et al.
2012). Determining constitutive QTL for heat tolerance
plays a crucial role in successful MAS breeding. Stable
QTLs were identified in wheat, and QTL on chromosome 2B
and 7B alone or together were suggested to be used in
marker-assisted breeding to obtain enhanced heat stress
tolerance in wheat (Paliwal et al. 2012). Near-isogenic lines
(NILs) targeting major heat tolerance QTL on chromosome
7a were also developed (Lu et al. 2020). Understanding the
molecular mechanism of heat tolerance and identifying
the genes responsible can speed up the breeding for
heat-tolerant varieties. MAS is considered one of the effi-
cient methods for complex traits such as heat stress tolerance
(Janni et al. 2020). With the availability of well-annotated
genome sequences, marker-assisted recurrent selection
(MARS) and genomic selection (GS) can aid in the devel-
opment of new cultivars.

4.2.2 Genetic Engineering
Limitations of hybridization-based breeding programs such
as linkage drag can be overcome by modern genetic engi-
neering approaches. Genetic engineering can help develop
heat-tolerant crops by incorporating the desired gene of
interest into the crop genome without disturbing the total
yield. However, the complexity of the genome, like large
genome size, high ploidy number, repetitive DNA sequence,
and low transformation efficiency of hexaploid wheat, make
it challenging to alter genetically. There are innumerable
examples of genetically engineered transgenic plants devel-
oped to overcome biotic and abiotic stresses. Genome
sequence accessibility, along with modern genome editing
techniques, provides opportunities for altering any desirable
trait. Clustered regularly interspaced short palindromic
repeats (CRISPR/Cas9), Zinc finger nuclease (ZFNs), and
Transcription activator-like effector nuclease (TALENS) are
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examples of genome editing techniques that are precise and
allow site-specific editing within the genome. Since the first
knockout of Mildew Locus O (Mlo) using TALEN for
generating stable genome-edited wheat plants, successful
genome editing was achieved in wheat at several loci of
interest (Smedley et al. 2021).

Several wheat genes were functionally characterized for
their role in heat stress tolerance by homologous and
heterologous expression studies (Ni et al. 2018). Overex-
pression of TaHsfA6f in wheat resulted in improved ther-
motolerance with upregulation of several HSP genes and
other heat stress protection genes (Xue et al. 2014).
A heat-induced ferritin gene (TaFER-5B), when cloned and
overexpressed in wheat, transgenic plants exhibited
enhanced thermotolerance. Further, TaFER-5B can com-
plement the heat-sensitive ferritin mutant of Arabidopsis
(Zang et al. 2017). High temperature-induced accumulation
of EF-Tu was studied in various cultivars of wheat, and it
was found that the greater accumulation of EF-Tu is asso-
ciated with enhanced tolerance to heat stress (Ristic et al.

2008). When a maize plastidial protein synthesis elongation
factor (EF-Tu), was overexpressed in wheat, transgenic
plants displayed reduced thermal aggregation of leaf pro-
teins, reduced heat injury to thylakoids, and enhanced rate of
CO2 fixation under heat stress (Fu et al. 2008). Transgenic
wheat plants overexpressing rice soluble starch synthase
genes exhibited longer photosynthetic duration and
increased thousand kernel weight under heat stress (Tian
et al. 2018). A wheat phosphoenolpyruvate carboxylase
kinase-related kinase gene, TaPEPKR2, when overex-
pressed, provided enhanced tolerance to heat and drought
stress in wheat and Arabidopsis (Zang et al. 2018). Over-
expression of a transcription activator TaHsfC2a-B resulted
in upregulation of heat protection genes with improved
thermotolerance but not dehydration tolerance in transgenic
wheat plants (Hu et al. 2017). In addition to the genes dis-
cussed above, other genes functionally characterized for
their ability to confer heat stress tolerance in wheat are given
in Table 13.1. Thus, with a better understanding of the
molecular mechanism of heat stress tolerance in wheat and

Table 13.1 Genetic engineering for improved heat stress tolerance in wheat

Source of
gene

Gene name Trans-host Studied by Result References

Zea mays EF-Tu (elongation factor) Wheat Overexpression Transgenic plants displayed reduced thermal
aggregation of leaf proteins, reduced heat injury to
thylakoids, and enhanced rate of CO2 fixation under
heat stress

Fu et al.
(2008)

Atriplex
hortensis

BADH (Betaine aldehyde
dehydrogenase)

Wheat Overexpression Greater tolerance to high temperature through
stabilization of lipid composition of the membrane.
Glycine betaine over-accumulation led to increased
photosynthesis under heat stress

Wang
et al.
(2010)

Triticum
aestivum

TaHsfA6f (heat shock factor) Wheat Overexpression Improved thermotolerance with upregulation of
several HSP genes and other heat stress protection
genes

Xue et al.
(2015)

Zea mays PEPC (phosphoenolpyruvate
carboxylase)

Wheat Overexpression Increased photochemical efficiency and increased
expression of photosynthetic genes. Transgenic
wheat lines exhibited a lower rate of superoxide anion
production, H2O2, and malondialdehyde content
under high-temperature stress

Qi et al.
(2016)

Vigna
eylindrica

VeFER (ferritin) Wheat Overexpression Reduced MDA content in transgenic plants after heat
treatment. Improved thermal stability of cell
membranes

Zhao et al.
(2016)

Triticum
aestivum

TaFER-5B (ferritin) Wheat Overexpression Transgenic plants exhibited enhanced
thermotolerance. TaFER-5B can complement the
heat-sensitive ferritin mutant of Arabidopsis

Zang et al.
(2017)

Oryza
sativa

SS I (soluble starch synthase I
gene)

Wheat Overexpression Increased thousand kernel weight under heat stress Tian et al.
(2018)

Triticum
aestivum

TaPEPKR2
(phosphoenolpyruvate
carboxylase kinase-related
kinase)

Wheat Overexpression Enhanced tolerance to heat and drought stress in
wheat

Zang et al.
(2018)

Triticum
aestivum

TaHsfC2a-B (heat shock
factor)

Wheat Overexpression Upregulation of heat protection genes with improved
thermotolerance in transgenic wheat plants

Hu et al.
(2017)
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advancement in genome editing tools, genetic improvement
of wheat against heat stress can be achieved speedily.

5 Conclusion

As a consequence of climate change, the global mean tem-
perature is more likely to exceed 4 °C above pre-industrial
levels, with more intense heat waves like to occur more often
and may last longer. Heat stress is a major constraint for
wheat production worldwide as it critically affects the
development and reproductive period of the crop. Agro-
nomical practices such as modification of crop calendars and
the use of heat-tolerant cultivars can help mitigate the impact
of heat stress in wheat. Though there is progress in the
genetic improvement of heat stress tolerance in wheat using
breeding and genetic engineering approaches, the complete
molecular mechanism of heat stress tolerance in wheat is yet
to emerge to exploit the full potential of modern genome
editing techniques. The utilization of eco-friendly approa-
ches like the application of biostimulants and beneficial
microorganisms has proven to be a successful strategy in
reducing the adverse effect of high temperature. However,
more field studies are required to establish their use in the
sustainable agriculture of wheat. An integrated approach of
agronomic practices and biotechnological approaches can
improve heat stress tolerance in wheat and make it more
resilient to the impacts of future climate change.
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Plant–Microbe Interactions in Combating
Abiotic Stresses

Namrata Konwar, Khomdram Niren Singh, and Diganta Narzary

Abstract

There is a significant decline in crop yield, quality of crops
and soil fertility worldwide due to increased biotic and
abiotic stresses that are either induced naturally or due to
anthropogenic factors such as rapid urbanization and
industrialization. Interaction of plants with several benefi-
ciary microbes such as Plant Growth-Promoting Microbes
(PGPM) comprising of actinomycetes, rhizospheric bacte-
ria, and fungi help the plants to survive during abiotic stress
conditions such as extreme temperatures (very low or very
high temperature), flood or drought conditions, high salinity
stress, heavy metal stress, nutrient deficiency and oxidative
damages. Abiotic stresses harm plant growth, cellular
morphology and physiology through obstruction in cellular
pathways or gene regulation inside the cell. These microbes
employ stress tolerance mechanisms in plants, such as the
production of anti-oxidants, exopolysaccharides (EPS),
phytohormones, osmolytes, formation of biofilms and
siderophores, through various biosynthetic pathways. Here,
in this chapter, we review recent findings in successful
employment of microbial inoculation that induce abiotic
stress tolerance in crop plants and study the role of bioactive
metabolites liberated by microbes in association with plants
which may help design strategies and tools for the
development of improved and efficient microbial inoculant
for optimizing plant growth in crop fields under adverse
abiotic stressed conditions.

Keywords
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Abbreviations

ABA Abscisic acid
ACC 1-Aminocyclopropane-1-carboxylate
APX Ascorbate peroxidase
CAT Catalase
CK Cytokinin
DHAR Dehydroascorbate reductase
EPS Exopolysaccharides
GSH Glutathione
GP Guaiacol peroxidase
GPX Glutathione peroxidase
GR Glutathione reductase
HSP Heat-shock proteins
IAA Indole-3-acetic acid
JA Jasmonic acid
MDA Malondialdehyde
MDHAR Monodehydroascorbate reductase
Pas Polyamines
PGPB Plant growth-promoting bacteria
PGPM Plant growth-promoting microbes
PGPR Plant growth-promoting rhizobacteria
POD Peroxidase
ROS Reactive oxygen species
MAP Mitogen-activated proteins
SA Salicylic acid
SOD Superoxide dismutase

1 Introduction

There is a sharp decline in crop yield, quality of crops and
soil fertility worldwide due to increased biotic and abiotic
stresses. Biotic and abiotic stresses can be induced either
naturally or by anthropogenic factors. Rapid urbanization
and industrialization without sufficient regulations related to
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environmental health is a major cause of significant loss in
crop yield, and this poses a potential threat to global food
security (Egamberdieva et al. 2017a). Abiotic stress refers to
the negative effects of non-living factors on living organisms
in a given environment. The abiotic stress load can result
from extreme temperatures (very low or very high temper-
ature), flood or drought conditions, salinity, heavy metals,
UV radiation, nutrient deficiency, or oxidative damage
(Chaves et al. 2004). These stressful conditions adversely
restrict plant growth and development (Fig. 1a) and show a
negative effect on agricultural yield. High temperatures lead
to an abrupt increase in the denaturation of cellular proteins
in plants, which can lead to plant death, while low temper-
atures severely impair the metabolic processes within the
plant cell by changing membrane properties and inhibiting
various enzymatic reactions (Andreas et al. 2011).

Diverse spectra of epiphytic and endophytic microor-
ganisms colonize the leaf zone (phyllosphere) or root zone
(rhizosphere) of the host plants. They can either have a
beneficial, neutral or adverse effect on the host plant (Bais
et al. 2006). The rhizosphere consists of three different
zones: endorhizosphere, rhizoplane and ectorhizosphere.
The endorhizosphere comprises part of the cortex and
endodermis in which microbes reside in the apoplastic
regions, the medial zone which includes the root surface and
mucilage is the rhizoplane, while the outermost zone which
extends from the rhizoplane to the soil is the ectorhizosphere

(Lynch 1990). The phyllosphere, on the other hand, refers to
the entire above-ground part of the plants and can be divided
into caulosphere (stems), phylloplane (leaves), anthosphere
(flowers) and carposphere (fruits) (Cid et al. 2018).

In newly germinating seeds, the developing plant inter-
acts with a variety of microbes by releasing certain bioactive
organic compounds through the roots in the soil that aid the
active development of microbial growth around the plant
root. This phenomenon is known as the rhizospheric effect
(Morgan et al. 2001). The rhizospheric microbes synthesize
a variety of biologically active compounds like hormones,
enzymes, and compatible solutes and also some anti-fungal
or anti-bacterial metabolites that help increase disease
resistance capacity in plants (Fig. 1b). These plant-microbial
interactions play a vital role in plant growth, nutrient
acquisition and development (Vorholt 2012; Sorty et al.
2016; Egamberdieva et al. 2017b). The species type and
stage of development of plants also play a crucial role in
determining the composition of the microbial communities
in the rhizosphere (Broecking et al. 2008). The rhizospheric
bacteria, also commonly known as plant growth-promoting
rhizobacteria (PGPR), protect their host plant from various
abiotic stresses, apart from various other beneficial effects
such as providing nutrients, phytostimulation and biological
control against pathogens (Kloepper et al. 1978). Under
several stress conditions, PGPR promotes the growth and
development of plants through various direct and indirect

Fig. 1 Various effects of abiotic stress on crop plants. a Plants under abiotic stress. b Plants under the influence of microbes in abiotic stress
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mechanisms that include: (1) production of phytohormones
such as indole-3-acetic acid, cytokinins, abscisic acid and
ethylene; (2) bacterial release of exopolysaccharides;
(3) 1-Aminocyclopropane-1-carboxylic acid (ACC) deami-
nase; (4) induced systemic tolerance; (5) nitrogen fixation;
(6) nutrient mobilization and (7) siderophore production
(Farooq et al. 2009; Hayat et al. 2010; Porcel et al. 2014).

In the phyllosphere region, Proteobacteria together with
Bacteroides and Actinobacteria are found to be dominant
colonizers (Bodenhausen et al. 2013). Phyllospheric micro-
biota secretes various phyllosphere-specific metabolites that
help to counter harsh climate by protecting against harmful
UV rays, reactive oxygen species (ROS) and dehydration
(Vorholt 2012). The phyllosphere microbiota penetrates the
leaf cuticles through stomatal openings and wounds caused
by lytic enzymes and osmotic pressure (Sivakumar et al.
2020). In this chapter, we will discuss the various abiotic
stresses in plants such as drought stress, salinity stress,
temperature stress and heavy metal stress in detail. We will
also discuss the microbial interaction with plants and their
possible role in abiotic stress mitigation.

2 Drought and Salinity Stress in Plants
and Its Mitigation with the Help
of Microbes

Drought stress in plants decreases seed germination capabil-
ity, inhibits photosynthesis, creates membrane disintegration,
and increases ROS such as hydroxyl radical (OH•), singlet
oxygen (1O2), hydrogen peroxide (H2O2), and superoxide
anions (O2

.−) (Greenberg et al. 2008). They also trigger a
decline in leaf water potential and stomatal opening, reduced
leaf size, seed number, seed viability and suppresses root
growth (Xu et al. 2016). Due to the lack of water in the soil,
there is also an increased amount of electrically charged ions
such as Na+, Ca2+, K+, Cl− and NO3−, which may lead to ion
toxicity and osmotic stress in plants (Daffonchio et al. 2014).
Overall, drought stress harms agricultural productivity.

A low rate of stomatal conductance and transpiration
occurs during salt stress which decreases the CO2 concen-
tration by disturbing the carbon metabolism within the plant
cell (Geilfus et al. 2015). As a result of reduced intercellular
CO2 concentration inside the cell, oxidized NADP

+, which is
the final electron (e−) acceptor at Photosystem I during
photosynthesis is depleted and the electrons are later trans-
ferred to O2 for generating free radicals, like O2

.− (Mehler
1951; Krieger-Liszkay 2005). It also triggers the synthesis of
hydrogen peroxide (H2O2) in the peroxisome (Wingler et al.
2000) that further converts to ROS, like hydroxyl (.OH)
radicals. Excessive accumulation of ROS compounds inside
the plant cells seems to have harmful effects on the plant as
they lead to metabolic disorders, oxidation of cellular

proteins, destruction of nucleic acids, dis-organization of
membranes, lipid peroxidation, and premature senescence
(Moller et al. 2007). Synthesis of ROS mostly occurs in
Photoelectron transport (PET) in the chloroplast, Respiratory
electron (e−) transport (RET) in mitochondria, peroxisomes,
and NADPH oxidase in the plasma membrane by several
enzymes like oxalate oxidase and amine oxidase (Hossain
and Dietz 2016).

Antioxidant enzymes provide tolerance against salinity
stress and lower oxidative stress by sequestering or scav-
enging the harmful ROS in the plant cells in several ways.
Antioxidant enzymes use electron donors to dismutate O2

.−

into H2O2 and O2, and ascorbic acid to convert H2O2 to H2O
and thiol-mediated pathways using nucleophiles such as
GSH (Glutathione), thioredoxin (TRX) or glutaredoxins
(GRX) for reducing H2O2 into H2O (Hossain and Dietz
2016; Noctor et al. 2014).

Inadequate amount of rainfall, extensive irrigation and
weathering of soil increases soil salinity. Salinity increases
hyper-osmotic stress in plants which results in a water-deficit
condition. However, some plants have in-built mechanisms
to tolerate the deleterious effect of drought and salinity
stress. Some drought-tolerant and salinity tolerant plants
counteract the negative effects of salinity and drought by
synthesizing and accumulating osmolytes such as proline or
raffinose, which has the capability of stabilizing proteins and
maintaining cell turgor pressure by osmotic adjustment and
scavenging ROS generated due to stress responses. Some
halophytes of Brassicaceae such as Thellungiella halophila
combat salt stress by preventing the salts from entering the
roots through membrane filtration, whereas Lobularia mar-
itima accumulates and detoxifies salt by compartmentaliza-
tion (Daffonchio et al. 2014). Other succulents in the
Aizoaceae, Cactaceae and Crassulaceae families have per-
manently adaptive morphological features for combating
drought and salinity stress, such as thick, fleshy swollen
stems, reduced stomata, Crassulacean acid metabolism
(CAM), waxy, hairy or spiny outer surface with reduced
stomata (Daffonchio et al. 2014).

Most crops, however, do not have adaptive morphologi-
cal or physiological properties sufficiently advanced to
withstand adverse drought conditions. However, it is known
that several root-associated microbes help plants to with-
stand drought and salinity stress by producing various plant
growth regulators or plant hormones such as cytokinin (CK),
gibberellin (GB), indole-3-acetic acid (IAA), salicylic acid
(SA), abscisic acid (ABA) and jasmonic acid (JA), which
improve plants’ antioxidant potential, exopolysaccharide
production and the accumulation of compatible osmolytes.
This leads to an improvement in the photosynthetic capacity
and membrane stability in plants, also promotes cell division
and stomatal regulation, stimulates the growth of the root
system, improves the root structure, improves the acquisition
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of water and nutrients and reduces damages within the plant
cell caused by oxidative stress (Egamberdieva et al. 2017a).
Thus, the application of such beneficial microbes having
drought and salinity tolerance can impart drought and
salinity stress resistance in plants and improve the quality of
crops in agriculture.

2.1 Drought-Salinity Tolerant Bacteria
and Their Mechanism of Tolerance

2.1.1 Production of Rhizoexudates
and Exopolysaccharides (EPS) by Bacteria

Exopolysaccharides are high molecular weight carbohydrate
molecules attached to the outer surface of many soil bacteria
that have a slimy appearance. Drought tolerant bacteria
produce EPS on their cell surface, which improve water
retention in the rhizospheric region and protect the root
surface from mechanical damage caused by the hardness of
the soil under stress conditions (Kasim et al. 2016;
Hasanuzzaman et al. 2019).

EPS production by PGPR strains during water-deficit
conditions results in the development of an extensive root
system, increased shoot growth and total dry weight in plants
(Awad et al. 2012). EPS also binds excessive cations making
it unavailable to plants under stress and offering resistance to
salinity in plants (Vardharajula et al. 2011). It has been
reported that application of EPS enriched Azospirillum strain
AbV5, Pseudomonas putida strain GAP-P45, Bacillus sp.,
Rhizobium leguminosarum (LR-30), Mesorhizobium ciceri
(CR-30 and CR39), Phyllobacterium brassicacearum strain
STM196, Trichoderma sp., Sinorhizobium sp., Funneli-
formis sp., Rhizophagus sp., Claroideoglomus sp., Kocuria
sp., Glomus sp., Suillus sp., Paecilomyces sp. in the field
provides drought and salinity stress resistance in several
plants (Duddridge et al. 1980; Vardharajula et al. 2011;
Shukla et al. 2012; Bano et al. 2013; Bresson et al. 2013;
Kasim et al. 2013; Armada et al. 2014; Hussain et al. 2014;
Kang et al. 2014; Hashem et al. 2015; Sandhya and Ali
2015; Tiwari et al. 2015; Oliveira et al. 2017; Li et al. 2020;
Pasbani et al. 2020).

Under water surplus conditions such as flooding, the plant
roots become hypoxic or oxygen-limited. This leads to
several harmful effects on plant growth and development
such as reduced photosynthesis, excess production of free
radicals, phytotoxin accumulation, and membrane
dis-organization causing chlorosis, necrosis, and ultimately
plant death (Najeeb et al. 2015; Voesenek et al. 2015). In
low oxygen conditions, plants produce increased amounts of
ACC synthase which ultimately converts to ethylene
(Nascimento et al. 2012). Certain ACC
deaminase-producing bacteria have been reported that can
help terrestrial plants tolerate the adverse effects of

waterlogging by lowering ethylene levels and promoting
plant growth. For example, inoculation of Pseudomonas
sp. UW4 in Cucumis sativa and Brassica napus has shown
elevated shoot and root growth during water-logging stress
conditions (Farwell et al. 2007; Ali and Kim 2018).

2.1.2 Phytohormone Production by PGPR Strains
Many PGPR strains such as Azospirillum, Acetobacter,
Alcaligenes, Bradyrhizobium, Enterobacter, Pseudomonas,
Rhizobium and Xanthomonas are known to produce plant
growth regulators or plant hormones such as auxins, cyto-
kinin, salicylic acid, jasmonic acid and gibberellic acid
which promotes plant growth (Xiong et al. 2021). PGPR also
helps alleviate the negative effects of drought and salinity
stress by inducing vascular tissue differentiation, adventi-
tious and lateral root proliferation, and improving root
architecture under abiotic stresses (Patten and Glick 1996;
Vessey 2003; Verbon and Liberman 2016). It has been
reported that cucumber plants treated with the PGPR strains
(Burkholderia cepacia SE4, Promicromonospora sp. SE188,
and Acinetobacter calcoaceticus SE370), and soybean plants
treated with Pseudomonas putida H-2-3 showed an
increased amount of endogenous gibberellic acid production
under drought and salinity stress when compared to the
control one (Kang et al. 2014).

In normal conditions, the production of ethylene in plants
helps in fruit ripening and also regulates growth and senes-
cence, however during stress conditions it increases abruptly
which has a deleterious effect on the germination of seeds and
root proliferation (Iqbal et al. 2017). The increased amount of
ethylene in plant tissues also result in stunted root and shoot
growth in plants. Many rhizobacteria and a wide range of soil
microbes have been shown to produce ACC deaminase that
can hydrolyze ACC enzyme which is the precursor for
ethylene production (C2H4) (Bal et al. 2013; Khan et al.
2021). Therefore, employing ACC deaminase-producing
rhizobacteria in crop plants can help lessen excess ethylene
production by hydrolysis of ACC enzyme thus protecting the
plant from its negative effects like loss of chlorophyll, stem
shortening, leaf abscission and seed dormancy (Khan et al.
2021). Treatment of Pisum sp. with potential ACC
deaminase-producing bacterial strains (Variovorax para-
doxus 5C-2 and Pseudomonas spp.), and pepper plant (Piper
nigrum) inoculated with Bacillus licheniformis K11 showed
reduced shoot ethylene production, improved nitrogen con-
tent in seed, improved nodulation, and improved water use
efficiency under drought and salinity stress (Belimov et al.
2009; Lim and Kim 2013; Zahir et al. 2009). In another
study, Azospirillum brasilense and Phyllobacterium brassi-
cacearum strain STM 196 was found to alleviate ABA
content in Arabidopsis thaliana which improved the biomass
content and water utilization efficiency during drought and
salinity stress (Bresson et al. 2013; Cohen et al. 2015).
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2.1.3 Osmolyte Production by Bacteria
PGPRs associated with rhizospheric soil assist plants under
salinity stress by enhancing osmolyte accumulation. Osmo-
lytes are inert solute that accumulates inside the plant cell to
maintain homeostasis within the cell when exposed to var-
ious abiotic stress due to heat, low temperature, osmotic
shock, drought, heavy metals, salinity, etc. (Jogawat 2019).
Osmolytes include various biochemical compounds such as
sugars, polyamines, secondary metabolites, amino acids and
polyols. During stress conditions, the biosynthesis of com-
monly occurring osmolytes that increases inside the plant is
—mannitol, raffinose, stachyose, glycine betaine, trehalose
and proline (Abdelaal et al. 2021). They protect the plant
cells by neutralizing and detoxifying the accumulated inor-
ganic salts and thus protect the cells from oxidative damages
(Burg et al. 2008).

PGPR employs several mechanisms to combat osmotic
stress during salinity stress conditions such as by endoge-
nous accumulation of intracellular osmolytes in bacterial
cells (Qurashi et al. 2011). Bacteria living in extreme halo-
philic environments induce the expression of proline
biosynthesis genes proH, proJ and proA that help in survival
in high saline conditions (Saum and Müller 2007). In
genetically modified Arabidopsis thaliana with introgression
of proBA genes from Bacillus subtilis enhanced the proline
synthesis in the plant helping it to overcome the salt stress
(Chen et al. 2007). Likewise, Capsicum annum inoculated
with Bacillus fortis SSB21 increased the biosynthesis of
proline and upregulation of stress-related genes CAPIP2,
CaKR1, CaOSM1 and CAChi2 to overcome saline condi-
tions (Yasin et al. 2018). Similarly, when Oceanobacillus
profundus Pmt2 and Staphylococcus saprophyticus ST1 are
inoculated to Lens esculenta var. Masoor 93 plants growing
in salt stress conditions, there was an improvement in growth
parameters and endogenous osmolytes accumulation in the
plants (Qurashi et al. 2011). However, during exposure to
high salt conditions, plants mostly prefer to uptake osmo-
lytes liberated by salt-tolerant–PGPR, instead of synthesiz-
ing de-novo (Zhu et al. 2015; Fatima et al. 2019).
Accumulation of osmolytes in cells under osmotic and water
stresses makes the osmotic potential inside the cell negative
that causes endosmosis of water which helps in maintaining
the turgor pressure, ion homeostasis and integrity of cells
(Sharma et al. 2019). It was observed that salt-tolerant PGPR
strains like Azospirillum spp., Bacillus sp. through accu-
mulation of proline, glycine betaine, and trehalose by several
biosynthetic pathways supports the growth and development
of rice and maize plants in both drought and salinity stress
conditions (Rodríguez-Salazar et al. 2009; Vardharajula
et al. 2011).

Co-inoculation of the PGPR strains, Rhizobium and
Pseudomonas was found useful to overcome the baneful
effects of drought and facilitate plant growth under saline

conditions in Zea mays (Bano and Fatima 2009). Upon
exposure to drought and salinity stress, microbial inoculation
trigger the production of osmolytes and their accumulation
in the plant cell which is regulated by various factors like
nutrient availability in the rhizosphere, duration of osmotic
stress, and several cell signaling processes such as ABA
signaling, calcium signaling, ROS-MAP kinase, hydrogen
sulphide (H2S), nitric oxide (NO), polyamines (PAs), phy-
tochromes, as well as downstream gene regulation factors,
particularly some of the transcription factors (TFs) (DeFalco
et al. 2010; Golldack et al. 2014; Jalmi and Sinha 2015; He
et al. 2018; Cha-um et al. 2019). Plants inoculated with
osmolyte producing PGPR have shown a significant increase
in accumulation of proline content in shoot under induced
drought and salinity stress and further aids in balancing
cytosolic acidity, decrease in lipid peroxidation by seques-
tering ROS, and helps in stabilization of membrane proteins
(Bharti et al. 2016; Oosten Van et al. 2017; Chandra et al.
2018a, b).

The enhanced production of free amino acids and soluble
sugar content in maize plants under drought stress were
reported when PGPR strains such as Proteus penneri Pp1,
Pseudomonas aeruginosa Pa2, Alcaligenes faecalis AF3,
Azospirillum lipoferum and Bacillus sp. were inoculated,
thereby helping plants in the regulation of cellular physiol-
ogy and restoring cell turgidity under drought and salt stress
(Bano et al. 2013; Kaushal and Wani 2016). Bacterial strains
such as Bacillus megaterium, Enterobacter sp. and Bacillus
thuringiensis can increase the accumulation of shoot proline
and the potassium ion (K+) concentration, which decreases
the stomatal conductivity and thus increases the resistance of
plants to drought stress (Armanda et al. 2014). Rascovan
et al. (2016) recovered a variety of microorganisms such as
Pseudomonas, Paraburkholderia and Pantoea associated
with wheat and soybean roots which have phosphorous
solubilization, N2 fixation, IAA and ACC deaminase pro-
duction properties. Inoculation of Arabidopsis sp. with
Azospirilum brasilense sp245, and Brassica oxyrrhiza with
Pseudomonas libanensis TR1 and Pseudomonas reactans
Ph3R3 showed increased proline levels and relative water
content in leaves and decreased stomatal conductance and
malondialdehyde in leaves (Cohen et al. 2015; Ma et al.
2016a, b).

2.1.4 Antioxidant Enzymes Production
Antioxidant enzymes produced by plants can also protect
them from various stress-related damages. Plants inoculated
with PGPR have been reported to survive abiotic stress
conditions through antioxidant enzymes production (Rad-
hakrishnan and Baek 2017). Enhancement of antioxidant
production becomes significantly crucial under abiotic stress
in plants as they provide the catalysis ability during ROS
scavenging mechanism and aids in the detoxification
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mechanism in plant cells (Singh et al. 2016). There are
several reports which state that PGPR-associated plants
showed improved drought resistance by antioxidant enzyme
production. Inoculation of PGPR strains such as Bacillus
cereus Pb25 and Azospirillum sp. showed an increased
promotion of plant growth and significantly decreased
oxidative stress markers such as plant malondialdehyde
(MDA), lipoxygenase and xanthine oxidase under salinity
stress through the production of antioxidant enzymes such as
superoxide dismutase (SOD), ascorbate peroxidase (APX),
glutathione reductase (GR) and peroxidase (POD) (Vard-
harajula et al. 2011; Damodaran et al. 2014; Thiombiano
et al. 2014; Ma et al. 2015; Islam et al. 2014; Li et al. 2020).

2.2 Drought-Salinity Tolerant Fungi and Their
Mechanism of Tolerance

Fungal symbionts are generally seen associated with almost
every plant where they express a wide range of relationships
with their hosts including symbiotic, mutualistic, commen-
salism or parasitic behaviour. In the rhizosphere, plant root
secretes several root exudates, chiefly strigolactones that
attract many beneficiaries and mutualistic fungal interactions
such as arbuscular mycorrhizal and endophytic fungal
associations (Breuillin et al. 2010; Khan et al. 2021). It is
seen that mutualistic fungi can increase plant growth,
reproductive success and confer biotic and abiotic tolerance
to their host plants.

2.2.1 Role of Mutualistic Fungi in Drought Stress
A mutualistic fungal association such as arbuscular mycor-
rhizal fungi (AMF) with plants are seen to increase water
uptake, osmotic balance, photosynthetic rate, stimulate
antioxidant properties, maintain ionic homeostasis to protect
against oxidative damage, and trigger plant growth during
salinity stress (Sheng et al. 2011; Auge et al. 2014; Hidri
et al. 2016; Chen et al. 2017; Khalloufi et al. 2017).
A meta-analysis experiment conducted by Dastogeer et al.
(2020) shows that most of the photosynthetic parameters
increased more in AMF-treated plants than in
non-AMF-treated plants under salinity stress with improve-
ments in water status in plant cells, enlarged leaf area, higher
stomatal conductance which further helps in the assimilation
of carbon dioxide (Wu et al. 2015; Chen et al. 2017).
Mycorrhizal association in plants significantly reduces the
degradation of photosystem II reaction core proteins (D1 and
D2) under salinity stress and thus helps in the proper func-
tioning of photosystem II (Porcel et al. 2016; Chen et al.
2017; Hu et al. 2017). AMF is also seen to increase the
accumulation of inorganic ions like Potassium, Calcium and
elevate biomass under salinity stress (Pan et al. 2020). It has
been observed that AMF inoculation increased plant growth

traits more efficiently in dicots than in monocots
(Weishampel and Bedford 2006). A fungus Piriformis indica
colonizes the roots of many plants and fosters growth and
boosts seed and biomass production by improving the
absorption of nitrates and phosphate and confers resistance
to abiotic stress (Waller et al. 2005). Neotyphodium spp. are
found to enhance drought tolerance to its host plants such as
—Festuca pratensis, Perennial Ryegrass and Festuca ari-
zonica (Barker et al. 1997; Morse et al. 2002). Curvularia
protuberata offers heat-drought resistance to its host plants
like Dichanthelium lanuginosum, Leymus mollis, Oryza
sativa, Lycopersicon esculentum, Triticum aestivum and
Citrullus lanatus (Rodriguez et al. 2008). In Oryza sativa,
mycorrhizae compartmentalize the sodium ions (Na+) in the
vacuoles by upregulating OsNHX3 (sodium/hydrogen
exchanger), and it also enhances the removal of the
cytosolic Na+ to the apoplastic channel through the increased
expression of OsSOS1 and OsHKT2 (Porcel et al. 2016).

The increased phosphorous (P) uptake in
AMF-inoculated plants aids in maintaining membrane
integrity by lessening ionic leakage, restricting toxic ions
with vacuoles which consequently helps to combat with
adverse effects of drought and salinity (Rinaldelli and
Mancuso 1996; Evelin et al. 2012). It is seen that increased P
absorption in AMF-colonized plants is due to the secretion
of acid and alkaline phosphatase by fungal hyphae that
release P in easily absorbable form by plants by encoding
high-affinity phosphate transporter genes (GvPT, GiPT, and
GmosPT), which can release P even at low concentrations
(Nacoon et al. 2020).

2.2.2 Antioxidant Production by Fungi
During oxidative stress conditions, the levels of oxidative
stress markers such as malondialdehyde (MDA), lipoxyge-
nase and xanthine oxidase in plants are seen to rise (Asada
and Takahashi 1987; Sharma et al. 2012; Ozgur et al. 2013;
Bose et al. 2014; Kumar et al. 2017). However, it has been
reported that AMF-colonized plants show a notable decrease
in oxidative stress markers such as MDA levels, lower levels
of electrical leakage and high levels of antioxidant enzymes
(POD and SOD) production, which indicates less oxidative
stress compared to non-AMF colonized plants (Dastogeer
et al. 2020).

Endophytes, a group of microorganisms (often bacteria or
fungi) that grow within the plant tissues, have a diverse range
of relationships (obligate or facultative) with the host plant
(Petrini 1991). They penetrate inside the host by producing
cell wall degrading enzymes and colonize inside the roots,
stems and flowers of the plant (De Vries et al. 2001; Lata
et al. 2018). They confer abiotic stress tolerance by synthe-
sizing anti-stress biochemicals to avoid or mitigate abiotic
stresses (Schulz et al. 1999). Endophytic fungi like Phoma
glomerata and Penicillium sp. are reported to significantly
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increase plant biomass, related growth parameters, assimila-
tion of essential nutrients such as potassium, calcium, mag-
nesium, and reduced the sodium toxicity in cucumber plants
under NaCl and polyethylene glycol (PEG)-induced salinity
and drought stresses (Waqas et al. 2012).

3 Role of Microbes in Combating
Temperature Stress in Plants

Excessive heat stress and cold conditions—both act as sig-
nificant abiotic stress in plant growth and productivity. The
major effects of temperature stress are changes in plasma
membrane components (extreme heat increases
membrane-fluidity while extreme cold makes them more
rigid), reduced water content (through excessive transpira-
tion), impaired photosynthesis activity and enzyme func-
tioning, cell division, and plant growth (Kumar et al. 2018).
Plants employ various mechanisms to overcome heat stress
which includes the production of phytohormones such as
jasmonic acid, heat shock proteins, accumulation of enzymes
and osmolytes. Heat-shock proteins (HSP20, HSP60,
HSP70, HSP90, HSP100) and ROS scavenging enzymes
(ascorbate peroxidase and catalase) are major functional
proteins that enable the plant to tolerate heat stress (Kotak
et al. 2007; Qu et al. 2013; Singh et al. 2016). But most crop
plants are unable to tolerate extreme heat stress and cold
shock. The use of microbes can help to reduce the adverse
effects of heat and cold stress in plants.

Some microbes have intrinsic properties to tolerate heat
and cold stress that can prove to be effective in protecting
membrane proteins, and nucleic acid of the host plant to live
under such extreme conditions. Based on growth, microbes
are divided into two groups, psychrophilic and psy-
chrotrophic microorganisms. The growth of psychrophilic
microbe lies maximum at or below 15 °C, while psy-
chotropic microbes grow at above 15 °C. The bacterial
strains Pseudomonas cedrina, Brevundimonas terrae,
Arthrobacter nicotianae that can adapt to low temperature
showed plant growth-promoting abilities under cold stress
(Yadav et al. 2014). In seeds of Solanum lycopersicum,
endophytic bacteria Pseudomonas vancouverensis
OB155-gfp and Pseudomonas frederiksbergensis
OS261-gfp protect the plant cells against cold/chilling stress
through upregulation of genes like CBFs, COR15a, COR78,
LeCBF1, LeCBF3 and TomLOX that reduce membrane
damage and ROS level (Subramanian et al. 2015). Associ-
ation of the fungus Curvularia protuberata and its mycov-
irus, Curvularia thermal tolerance virus (CThTV) with a
grass species Dichanthelium lanuginosum enabled the plant
to survive soil temperatures ranging between 38 and 65 °C

in Yellowstone National Park (Redman et al. 2002). An
endophytic fungus, Burkholderia phytofirmans PsJN that
colonizes the roots of Arabidopsis thaliana induces the
accumulation of pigments in the cold response pathway
through downregulation of rbcL and COR78 genes (Su et al.
2015). Thus, the application of these microbes in crop plants
may be beneficial in upregulating plant growth and
improving plant resistance capacity against extreme
temperatures.

4 Microbe-Mediated Heavy Metal Stress
Tolerance in Plants

Several anthropogenic activities such as mining, modern
agricultural practices, fertilizer applications, smelting and
sewage disposal, unplanned human habitations and rapid
industrialization have prolonged detrimental effects on our
environment (Aydinalp and Marinova 2009), and these lead
to the heavy metal pollution in soil, water and air. Plants
absorb these heavy metals, high concentrations of which
often affect plant growth and survival; and may also have
detrimental effects on human health as they ultimately enter
into the food chain (Zhuang et al. 2014). Some of these
metals viz. Zn, Cu, Mo, Co and Ni are essential
micro-nutrients that are needed in trace amounts as they
function as co-factors for various enzymatic reactions. But
metals like Cd and Pb are present in pesticides having no
distinctive advantageous role in plant growth and become
toxic if their concentration exceeds over a certain limit
(Gough et al. 1979; Adriano 1986; Gücel et al. 2009; Ashraf
et al. 2010; Sharma and Ali 2011; Gill and Tuteja 2011; Ali
et al. 2011, 2012, 2014, 2016, 2017).

Some metals (Fe, Ni, Mn, Cu, Sn, Co, As, Pb, Se, Cd,
Hg, Cr, Al, Zn and Be) can cause morphological abnor-
malities and metabolic disorders that often lead to yield
reduction in plants to a great extent when their concentration
rises beyond supra-optimal values (Xiong et al. 2014; Amari
et al. 2017). These abnormalities also trigger the accumu-
lation of ROS, e.g. superoxide anion radical (O2

.−), H2O2

and hydroxyl radical (OH−), resulting in disruption of the
redox homeostasis of cells (Gill and Tuteja 2010; Pourrut
et al. 2011; Ibrahim et al. 2015; Shahid et al. 2015).

Many plant-associated microbes have been shown to
reduce metal accumulation in plant tissues and improve
microbe-assisted metal tolerance against a metalliferous
environment by reducing the bioavailability of metals in the
soil through various mechanisms (Table 1) (Tiwari and Lata
2018). Plant-associated microbes, namely, bacteria and
fungi, are known to exhibit plant-growth-promoting traits
under heavy metal stress in plants via several direct and
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indirect mechanisms such as the formation of biofilms,
siderophores, exopolysaccharides and phytohormone pro-
duction (Tiwari et al. 2012, 2015). Some microbes can alter
the bioavailability of metals from the soil by chelation,
acidification and precipitation. Heavy metal tolerant
(HMT) microorganisms release several organic acids like
gluconic acid, oxalic acid, malic acid, which lower the pH of
the soil and aids in the sequestration of metal ions (Ullah
et al. 2015; Mishra et al. 2017).

HMT microorganisms perform various mechanisms to
avoid heavy metal stress including (a) translocation of
metals across the cytoplasmic membrane, (b) bio-absorption
and bioaccumulation of metals to the cell walls, (c) metal
entrapment in the extracellular capsules, (d) heavy metals
precipitation and (e) metal detoxification via oxidation–re-
duction mechanisms (Zubair et al. 2016). The use of such
HMT microbes alone or in a consortium can serve as an
effective microbial remediation in plants growing in polluted
areas (Mishra et al. 2017).

4.1 Bacteria-Mediated HM Stress Tolerance
in Plants

Some plant growth-promoting microbes (PGPM) also assist
plants to tolerate and/or accumulate heavy metals directly or
indirectly. The major processes that are involved in the direct
uptake process by plants under the influence of PGPM consist
of solubilization, bioavailability and accumulation of heavy
metals (Vymazal and Brezinová 2016). Siderophore forma-
tion is an important mechanism through which
plant-associated microbes aid in the removal of heavy metals
from metal-contaminated soil. Siderophore is an organic
compound with a low molecular weight that chelates heavy
metals and increases their availability in the rhizosphere.
Siderophore primarily chelates with ferric iron (Fe3+), but
also has a high affinity with other metals and form complexes
and undergo exocytosis and thus help in Fe absorption (Saha
et al. 2016; Złoch et al. 2016). It has been found that rhizo-
spheric bacteria are more potent in the production of side-
rophore than endophytic bacteria (Ma et al. 2016a, b; Złoch
et al. 2016). PGPM also secrete low molecular weight organic
acids such as gluconic, oxalic and citric acids which are
effective in mobilization of heavy metals and play an effective
role in phytoremediation (Janoušková et al. 2006; Ullah et al.
2015). Mobility of heavy metals such as As, Cr, Hg and Se is
highly influenced by oxidation or reduction reaction as some
metals are more soluble in their lower oxidation state than the
higher oxidation state (Bolan et al. 2014).

Bio-methylation of heavy metals such as Pb, Hg, Se, As
and Sn is another method for mobilization of heavy metals
which involves the transfer of methyl group through bacte-
rial activity (Bolan et al. 2014). Some bacteria and fungi

synthesize a group of metal-binding cysteine-rich peptides
(enzymes), i.e. phytochelatins (PCs) in response to heavy
metal stress which confers abiotic stress tolerance to their
host plants growing in a metalliferous environment (Gadd
2010, 2014). Sulphate-reducing bacteria reduce the
bioavailability of sulphate-containing heavy metals in plants
by converting toxic metals into insoluble forms of metal
sulphides (Khan et al. 2021).

Heavy-metal-tolerant PGPR including Bacillus, Pseu-
domonas, Streptomyces and Methylobacterium have shown
the potential to improve the growth and production of crops
by reducing the detrimental effects of heavy metals during
heavy metal stress (Table 1) (Sessitsch et al. 2013). Bacterial
species like Bacillus cereus, Bradyrhizobium sp. 750, Cur-
tobacterium sp. NM1R1, Ochrobactrum cytisi, Pseu-
domonas azotoformans strain ASS1, P. moraviensis and
P. putida reduces detrimental effects during heavy metal
stress caused by Cu, Cd, Pb, Ni, Zn, Hg and As in many
plant species (Dary et al. 2010; Pandey et al. 2013; Kamran
et al. 2015; Hassan et al. 2017; Román-Ponce et al. 2017).
Pseudomonas and Gigaspora aid in the tolerance of heavy
metals directly through upregulation of plant ethylene levels
by increasing ACC enzyme levels (Friesen et al. 2011).

The use of microbes with some additives in the plants
grown in heavy metal polluted soil is more beneficial than
without additives (Mishra et al. 2017), for example, the
addition of thiosulfate with metal-tolerant microbes elevates
the mobilization and uptake of As and Hg in Brassica juncea
and Lupinus albus, stimulating bioavailability and phy-
toextraction and can be used in the biocontrol and biore-
mediation process simultaneously in polluted soils (Franchi
et al. 2017; Tiwari and Lata 2018).

Like rhizospheric bacteria, some of the endophytic bac-
teria also have metal resistance properties and promote plant
growth under metal stress by directly providing mineral
nutrient and plant growth regulator enzymes (Table 1)
(Sziderics et al. 2007; Kafle et al. 2018). Some of the
endophytic microbes can synthesize nitrogenase enzymes
under the metals stress and poor nitrogen conditions by
providing abundant nitrogen to the associated plants. In
Populus trichocarpa and Salix sitchensis, four bacterial
endophytic genera Burkholderia, Rahnella, Sphingomonas,
and Acinetobacter were isolated and found to have the
ability to synthesize nitrogenase enzyme to fix atmospheric
nitrogen (N2) which promotes plant growth during heavy
metal stress (Kafle et al. 2018). Alleviation of certain stress
hormones also confers heavy metal tolerance in plants such
as increase in the levels of ACC deaminase by bacteria
Pseudomonas and Gigaspora promote heavy metal tolerance
directly through the regulation of plant ethylene levels
(Friesen et al. 2011; Ghosh et al. 2019).

In recent times, the use of genetically transformed PGPR
has been suggested for the elimination of toxic metals as
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Table 1 Different abiotic stress, microbes used, and the induced stress tolerance mechanisms developed in plants due to microbial interaction

Abiotic stress in
plants

Microbes used Microbially induced tolerance mechanism
in plants

References

Drought and salinity
stress in maize (Zea
mays)

Glomus versiforme, Azospirillum lipoferum,
Bacillus sp., Kocuria rhizophila, Bacillus
sp. and Enterobacter sp.

Increased accumulation of proline, sugars,
free amino acids and decrease electrolyte
leakage and facilitate water uptake. It also
reduces the activity of antioxidants
enzyme (catalase, glutathione peroxidase)
and regulates plant hormones (IAA,
salicylic acid, and ABA levels)

Vardharajula et al. (2011),
Bano et al. (2013), Ma et al.
(2015), Begum et al. (2019),
Li et al. (2020)

Drought and salinity
stress in rice (Oryza
sativa)

Azospirillum sp., Trichoderma harzianum Increased photosynthetic activity and
promote root growth independent of water
status and delay drought response

Ruíz-Sánchez et al. (2011),
Shukla et al. (2012)

Drought and
Salinity stress in
Pinus halepensis

Pseudomas fluorescens Increased photosynthetic activity Rincón et al. (2008)

Drought stress in
Soybean (Glycine
max)

Pseudomonas putida H-2-3 Regulate plant hormone levels and
antioxidants by declining superoxide
dismutase, flavonoids, and radical
scavenging activity

Kang et al. (2014)

Drought and salinity
stress in Wheat
(Triticum aestivum)

Rhizophagus intraradices, Funneliformis
mosseae, F. geosporum, Bacillus
amyloliquefaciens 5113, Azospirillum
brasilense NO40, Rhizobium
leguminosarum (LR-30), R. phaseoli
(MR-2) and Mesorhizobium ciceri (CR-30
and CR39)

Increased pigment production; production
of catalase, exopolysaccharide, and IAA;
and improved homeostasis, growth, and
drought tolerance index

Kasim et al. (2013), Hussain
et al. (2014), Mathur et al.
(2018)

Drought stress in
Lavandula dentate

Bacillus thuringiensis Improved physiological and metabolic
activities and reduced ROS elements

Armada et al. (2014)

Drought stress in
Cicer arietinum L

Pseudomonas putida MTCC5279, Bacillus
subtilis, Bacillus thuringiensis, Bacillus
megaterium

Osmolyte accumulation and scavenge of
ROS and enhanced transcription of
stress-responsive gene expression

Tiwari et al. (2015), Khan
et al. (2019)

Drought stress in
Lettuce (Lactuca
sativa)

Azospirillum sp. Promote growth, biomass, pigments,
chlorophyll, chroma and antioxidant
capacity

Fasciglione et al. (2015)

Drought stress in
Arabidopsis

Azospirilum Brasilense Sp 245,
Phyllobacterium brassicacearum strain
STM196

Decreased Malonialdehyde and increased
proline, water levels, and water use
efficiency

Bresson et al. (2013), Cohen
et al. (2015)

Drought stress in
Brassica oxyrrhina

Pseudomonas libanensis TR1,
Pseudomonas reactans Ph3R3

Increased plant growth, leaf relative water
and pigment content

Ma et al. (2016a, b)

Drought stress in
Medicago
truncatula

Sinorhizobium medicae Improved root architecture and
acquisition of nutrients

Staudinger et al. (2016)

Drought stress in
Pinus sylvestris

Suilus sp. Facilitate nutrients and water through
vascular tissues

Duddridge et al. (1980)

Salinity stress in
Panicum turgidum

Funneliformis mosseae, Rhizophagus
intraradices, Claroideoglomus etunicatum

Enhanced chlorophyll content, nutrient
uptake, and antioxidant enzymes like
SOD, POD, CAT and GR

Hashem et al. (2015)

Salinity stress in
Pisum Sativum L

Rhizoglomus intraradices, Funneliformis
mosseae, Rhizoglomus fasciculatum and
Gigaspora sp.

Accumulation of compatible solutes;
decrease cellular-membrane leakage of
electrolyte

Parihar et al. (2020)

High-temperature
stress in Triticum
aestivum

Pseudomonas brassicacearum, Bacillus
thuringiensis, Bacillus subtilis, Bacillus
velezensis 5113

Secretion of Heat-shock proteins, increase
the production of compatible solutes and
phytohormones

Ashraf et al. (2019a, b), Abd
El-Daim et al. (2019)

High-temperature
stress in Tomato
(Lycopersicon
esculentum)

Bacillus cereus Enhanced biofilm formation, reducing
ABA levels, and increased HSP levels

Khan et al. (2019)

(continued)
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Table 1 (continued)

Abiotic stress in
plants

Microbes used Microbially induced tolerance mechanism
in plants

References

Low-temperature
stress in Cucumis
sativus L. cv.
Zhongnong No. 26

Rhizophagus irregularis Improved phosphorus (P) uptake, induced
of Pi transporter gene

Ma et al. (2015)

Low-temperature
stress in Solanum
melongena L

Funneliformis mosseae, Claroideoglomus
etunicatum, Rhizophagus irregularis, and
Diversispora versiformis

Improved photochemical reactions,
antioxidant defence systems, and reduced
membrane damages

Pasbani et al. (2020)

Low-temperature
stress in Solanum
lycopersicum L. cv.
Zongza 9

Funneliformis mosseae Reduced levels of MDA, H2O2 and O− 2,
induced activities of antioxidant enzymes
APX, MDHAR, GR, and DHAR,
expression levels

Liu et al. (2015)

Nutrient deficiency
in Nicotiana
tabacum L. cv. Petit
Havanna

Rhizophagus intraradices Promote phosphorous (P) absorption Del-Saz et al. (2017)

Nutrient deficiency
in Sorghum bicolor
L

Glomus intraradices,
Glomus mosseae,
Glomus aggregatum,
Glomus etunicatum

Promotion of Iron (Fe) absorption,
increase in siderophore, upregulation of
SbDMAS2 (deoxymugineic acid synthase
2), SbNAS2 (nicotianamine synthase 2),
and SbYS1 (Fe-phytosiderophore
transporter yellow stripe), increased
S-containing antioxidant metabolites
(Methionine, Cysteine, and GSH) and
enzymes (CAT, SOD and GR)

Prity et al. (2020)

Nutrient deficiency
in Poncirus
trifoliata

Glomus versiforme Promote growth, iron (Fe) absorption, and
increase in Phenylalanine ammonia-lyase
activity (PAL) enzyme activity

Li et al. (2015)

Heavy metal stress
in Helianthus
annuus L

Funneliformis mosseae, Rhizophagus
intraradices, Claroideoglomus etunicatum

Provide tolerance against heavy metals
such as Cd, Increase in shoot/root
biomass, accumulation of pigments,
antioxidant enzymes such as SOD, POD,
CAT, GPX and GR

Abd Allah et al. (2015)

Heavy metal stress
in Robinia
pseudoacacia L

Funneliformis mosseae, Rhizophagus
intraradices

Increased metal tolerance against Lead
(Pb), Higher gas exchange capacity,
enhanced superoxide dismutase (SOD),
ascorbate peroxidases (APX) and
glutathione peroxidase (GPX)

Yang et al. (2014)

Heavy metal stress
in Triticum aestivum

Bacillus cereus, Pseudomonas moraviensis,
Enterobacter ludwigii, Klebsiella
pneumonia

Increased metal tolerance against Hg, Cu,
Cr, Co, Cd, Ni, Mn and Pb

Hassan et al. (2017);
Gontia-Mishra et al. (2016)

Heavy metal stress
in Brassica nigra

Microbacterium sp. CE3R2,
Curtobacterium sp. NM1R1, Kocuria sp.
CRB15

Increased metal tolerance against Zn, Pb,
Cu and As

Román-Ponce et al. (2017),
Hansda and Kumar (2017)

Heavy metal stress
in Brassica napus

Bacteroidetes bacterium, Pseudomonas
fluorescens

Increased metal tolerance against Cd, Cu,
Pb and Zn

Dabrowska et al. (2017)

Heavy metal stress
in Oryza sativa

Klebsiella pneumoniae Increased metal tolerance against Cd Pramanik et al. (2017)

Heavy metal stress
in Panicum
virgatum

Azospirillum sp. Increased metal tolerance against Pb and
Cd

Arora et al. (2016)

Heavy metal stress
in Zea mays

Enterobacter sp., Leifsonia sp. Increased metal tolerance against Cd Ahmad et al. (2015)
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they serve as a novel phytobacterial strategy to mitigate
heavy metal stress (Ullah et al. 2015). Since genetically
transformed bacteria possess one or more encoding genes for
remediation of heavy metals, therefore they can perform
better as metal chelators, metal homeostasis, transporters,
metal uptake regulators and can produce more efficient
biodegradative enzymes (Singh et al. 2011; Tiwari and Lata
2018). In PGPR strains like Pseudomonas putida,
Mesorhizobium huakuii, Enterobacter cloacae, and Ralsto-
nia eutropha, the genes coding for phytochelatin synthase,
metallothionein, ACC deaminase have been modified for
enhanced bio-remedial activity against most of the heavy
metals such as—Cd, Cu, Zn, As, Hg and Ag. Thus, these
strains can be employed to confer metallic stress in eco-
nomically beneficial plants to improve yield and crop health
(Valls et al. 2000; Nie et al. 2002; Sriprang et al. 2002, 2003;
Wu et al. 2006; Ike et al. 2007, 2008; Yong et al. 2014;
Ullah et al. 2015).

4.2 Fungi-Mediated HM Stress Tolerance
in Plants

Fungal cell walls possess efficient metal-binding properties
because of the presence of negative charge in various
functional groups, e.g. carboxylic, amine, sulfhydryl or
phosphate, in different wall components (Tobin 2001; Ong
et al. 2017). AMF are also one of the most prominent soil
microorganisms that are involved in reducing metal toxicity
to their host plant (Leyval et al. 1997; Meharg and Cairney
2003).

Several mechanisms have been hypothesized for the
transport of toxic metal ion and their allocation in plant roots
in the presence of AMF that includes (a) deposition of heavy
metals and bound to the cell wall in the vacuoles of AMF,
(b) metal sequestration by siderophores in the soil or into
root apoplast, (c) metals bound to metallothioneins or phy-
tochelatins inside the plant or fungal cells, (d) metal trans-
porters at the tonoplast of both plants and fungi catalyze the
transport of metals from cytoplasm, (e) oxalate crystal pro-
duction for immobilization and detoxification of toxic metals
(Jan and Parray 2016). Numerous filamentous fungi
belonging to the genera Trichoderma, Penicillium, Asper-
gillus, and Mucor possess the ability to tolerate heavy metal
stress (Ezzouhri et al. 2009; Tripathi et al. 2013, 2017;
Oladipo et al. 2018). A dark septate endophytic (DSE) fungi,
Exophiala pisciphila isolated from Zea mays was shown to
elevate antioxidant enzyme activity under prolonged Cd
stress (Wang et al. 2016).

It has been reported that the fungus, Laccaria bicolor
encodes some putative heavy metal transporter genes for Zn,
Cu and Mn ions (Martin et al. 2008). Two genes, i.e.
HcZnT1 and OmZnT1 encode for zinc membrane

transporters have been reported in ectomycorrhizal fungi
such as Hebeloma cylindrosporum and Oidiodendron maius,
respectively (Khouja et al. 2013; Blaudez and Chalot 2011).
Six genes encoding putative metal tolerance proteins are
found in the genome sequencing of ectomycorrhizal asso-
ciation in Populus trichocarpa (Tuskan et al. 2006; Migeon
et al. 2010); of them, PtMTP1 protein act as a Zn transporter
that facilitates Zn transfer into the vacuole (Blaudez et al.
2003), whereas PtMTP11.1 and PtMTP11.2 proteins are
involved in Mn exocytosis (Peiter et al. 2007; Migeon et al.
2010). The fungus Paxillus involutus can aid in Cd detoxi-
fication by binding Cd to the cell wall and accumulation of
Cd in the vacuole (Blaudez et al. 2000). Thus, such
plant-associated HMT fungal species can be potent micro-
bial remediation agents that can be employed in agricultural
fields for quality improvement and survival of crops in
contaminated lands.

5 Conclusion

To meet the global food requirements and feed the world
population, there is a need to increase crop productivity and
quality, plant immunity to suppress unwanted parasitic and
pathogenic attacks, and at the same time to enhance agri-
cultural sustainability. The declining of global food pro-
duction is directly linked to industrialization, environmental
pollution and decline in the forest area. In addition to biotic
stress, various abiotic stress such as heavy metal stress,
drought stress, salinity stress and temperature stress is also
responsible for a reduction in plants’ growth and yield.
Symbiotically associated microbes have been known to use
several strategies to overcome these abiotic stress in their
host plants like—detoxification of heavy metal stresses
through binding of metals to the cell wall in the vacuoles for
exocytosis, metal sequestration, transportation of heavy
metals through metal transporters; reduction of drought and
salinity stress by releasing hormones and osmolytes that
increase water uptake, osmotic balance, and maintain ionic
homeostasis in a plant cell; overcoming of temperature stress
by releasing several heat-shock proteins, ROS scavenging
proteins, and enzymes, antioxidants, etc.; overcoming of the
nutritional deficiency by increasing bioavailability of nitro-
gen, phosphorous and other essential macro- and
micro-nutrients through various enzymatic reactions.

Thus, the use of beneficial microbes such as AMF,
PGPB, PGPR or endophytes in the crop fields has enormous
potentiality in promoting plant growth and nutrient absorp-
tion in stressful environments. The use of microbial inocu-
lums should be encouraged as it also acts as environmentally
friendly active alternatives to chemical fertilizers or pesti-
cides. Efforts should be made for the enhancement of
shelf-life and a viable load of microbial inoculation at the
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time of application, as well as developing faith in farmers for
consistent utilization of such environmentally friendly
inoculants in their crop fields.

At present, there is a need for advanced tools and tech-
niques and extensive research on plant–microbe interactions
to understand more about microbes’ molecular, cellular, and
physiological responses during stress, its effect on the plants
and environment, and their efficiency rates when exploited
commercially in agro-ecosystems. Genetically edited or
engineered microbes will undoubtedly have greater potential
in enriching plant growth or reducing soil toxicity as com-
pared to non-genetically modified microbes, but they should
be allowed for commercialization only after completely
analyzing their impact on the ecosystem. Microorganisms
being highly useful, their further exploitation in optimizing
plant growth in adverse abiotic stressed conditions is
expected in agriculture.

References

Abd Allah EF, Abeer H, Alqarawi AA et al (2015) Alleviation of
adverse impact of cadmium stress in sunflower (Helianthus annuus
L.) by arbuscular mycorrhizal fungi. Pak J Bot 47:785–795

Abd El-Daim IA, Bejai S, Meijer J (2019) Bacillus velezensis 5113
induced metabolic and molecular reprogramming during abiotic
stress tolerance in wheat. Sci Rep 9:1–18

Abdelaal K, AlKahtani M, Attia K et al (2021) The role of plant
growth-promoting bacteria in alleviating the adverse effects of
drought on plants. Biology 10:520. https://doi.org/10.3390/
biology10060520

Adriano DC (1986) Trace elements in terrestrial environments.
Springer Verlag, New York, p 533. https://doi.org/10.1007/978-1-
4757-1907-9

Ahmad I, Akhtar MJ, Asghar HN et al (2015) Differential effects of
plant growth-promoting Rhizobacteria on maize growth and
cadmium uptake. J Plant Growth Regul 35:303–315. https://doi.
org/10.1007/s00344-015-9534-5

Ali I, Khan TA, Asim M (2011) Removal of arsenic from water by
electrocoagulation and electrodialysis techniques. Sep Purif Rev 40
(1):25–42. https://doi.org/10.1080/15422119.2011.542738

Ali I, Khan TA, Asim M (2012) Removal of arsenate from ground
water by electrocoagulation method. Environ Sci Pollut Res 19
(5):1668–1676. https://doi.org/10.1007/s11356-011-0681-3

Ali I, Al-Othman ZA, Alwarthan A et al (2014) Removal of arsenic
species from water by batch and column operations on bagasse fly
ash. Environ Sci Pollut Res 21(5):3218–3229. https://doi.org/10.
1007/s11356-013-2235-3

Ali I, AL-Othman ZA, Alwarthan A, (2016) Molecular uptake of congo
red dye from water on iron composite nano particles. J Mol Liq
224:171–176. https://doi.org/10.1016/j.molliq.2016.09.108

Ali I, Alothman ZA, Alwarthan A (2017) Supra molecular mechanism
of the removal of 17-b-estradiol endocrine disturbing pollutant from
water on functionalized iron nano particles. J Mol Liq 241:123–129.
https://doi.org/10.1016/j.molliq.2017.06.005

Ali S, Kim WC (2018) Plant growth promotion under water: decrease
of waterlogging-induced ACC and ethylene levels by ACC
deaminase-producing bacteria. Front Microbiol 9:1096. https://doi.
org/10.3389/fmicb.2018.01096

Amari T, Ghnaya T, Abdelly C (2017) Nickel, cadmium and lead
phytotoxicity and potential of halophytic plants in heavy metal
extraction. S Afr J Bot 111:99–110. https://doi.org/10.1016/j.sajb.
2017.03.011

Arora K, Sharma S, Monti A (2016) Bio-remediation of Pb and Cd
polluted soils by switch grass: a case study in India. Int J Phytorem
18:704–709. https://doi.org/10.1080/15226514.2015.1131232

Armada E, Roldán A, Azcon R (2014) Differential activity of
autochthonous bacteria in controlling drought stress in native
Lavandula and salvia plants species under drought conditions in
natural arid soil. Microb Ecol 67:410–420. https://doi.org/10.1007/
s00248-013-0326-9

Asada K, Takahashi M (1987) Production and scavenging of active
oxygen in photosynthesis. In: Photoinhibition: topics of photosyn-
thesis. Elsevier Science Publishers, Amsterdam, pp 227–287.
https://doi.org/10.1002/9781119324928.ch9

Ashraf M, Ozturk M, Ahmad MSA (2010) Toxins and their phytore-
mediation. In: Plant adaptation and phytoremediation. Springer,
Dordrecht, pp 1–34. https://doi.org/10.1007/978-90-481-9370-7

Ashraf A, Bano A, Ali SA (2019a) Characterisation of plant
growth-promoting rhizobacteria from rhizosphere soil of
heat-stressed and unstressed wheat and their use as bio-inoculant.
Plant Biol 21:762–769. https://doi.org/10.1111/plb.12972

Ashraf MF, Yang S, Ruijie W et al (2019b) Capsicum annuum HsfB2a
positively regulates the response to Ralstonia solanacearum
infection or high temperature and high humidity forming transcrip-
tional cascade with CaWRKY6 and CaWRKY40. Plant Cell
Physiol 59(12):2608–2623. https://doi.org/10.1093/pcp/pcy181

Augé RM, Toler HD, Saxton AM (2014) Arbuscular mycorrhizal
symbiosis and osmotic adjustment in response to NaCl stress: a
meta-analysis. Front Plant Sci 5:562. https://doi.org/10.3389/fpls.
2014.00562

Awad N, Turky A, Abdelhamid M et al (2012) Ameliorate of
environmental salt stress on the growth of Zea mays L. plants by
exopolysaccharides producing bacteria. J Appl Sci Res 8:2033–
2044

Aydinalp C, Marinova S (2009) The effects of heavy metals on seed
germination and plant growth on alfalfa plant (Medicago sativa).
Bulg JAgric Sci 15(4):347–350

Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in
rhizosphere interactions with plants and other organisms. Ann Rev
Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.
032905.105159

Bal HB, Nayak L, Das S et al (2013) Isolation of ACC deaminase
producing PGPR from rice rhizosphere and evaluating their plant
growth promoting activity under salt stress. Plant Soil 366:93–105.
https://doi.org/10.1007/s11104-012-1402-5

Bano A, Fatima M (2009) Salt tolerance in Zea mays following
inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:
405–413. https://doi.org/10.1007/s00374-008-0344-9

Bano Q, Ilyas N, Bano A et al (2013) Effect of Azospirillum inoculation
on maize (Zea mays L.) under drought stress. Pak J Bot 45:13–20

Barker DJ, Hume DE, Quigley PE (1997) Negligible physiological
responses to water deficit in endophyte-infected and uninfected
perennial ryegrass. In: Bacon CW, Hill NS (eds) Neoty-
phodium/grass interactions, pp 137–139. https://doi.org/10.1007/
978-1-4899-0271-9_20

Belimov AA, Dodd IC, Hontzeas N et al (2009) Rhizosphere bacteria
containing 1-aminocyclopropane-1-carboxylate deaminase increase
yield of plants grown in drying soil via both local and systemic
hormone signalling. New Phytol 181:413–423

Begum N, Ahanger MA, Su Y et al (2019) Improved drought tolerance
by AMF inoculation in maize (Zea mays) involves physiological
and biochemical implications. Plants 8:579. https://doi.org/10.3390/
plants8120579

228 N. Konwar et al.

http://dx.doi.org/10.3390/biology10060520
http://dx.doi.org/10.3390/biology10060520
http://dx.doi.org/10.1007/978-1-4757-1907-9
http://dx.doi.org/10.1007/978-1-4757-1907-9
http://dx.doi.org/10.1007/s00344-015-9534-5
http://dx.doi.org/10.1007/s00344-015-9534-5
http://dx.doi.org/10.1080/15422119.2011.542738
http://dx.doi.org/10.1007/s11356-011-0681-3
http://dx.doi.org/10.1007/s11356-013-2235-3
http://dx.doi.org/10.1007/s11356-013-2235-3
http://dx.doi.org/10.1016/j.molliq.2016.09.108
http://dx.doi.org/10.1016/j.molliq.2017.06.005
http://dx.doi.org/10.3389/fmicb.2018.01096
http://dx.doi.org/10.3389/fmicb.2018.01096
http://dx.doi.org/10.1016/j.sajb.2017.03.011
http://dx.doi.org/10.1016/j.sajb.2017.03.011
http://dx.doi.org/10.1080/15226514.2015.1131232
http://dx.doi.org/10.1007/s00248-013-0326-9
http://dx.doi.org/10.1007/s00248-013-0326-9
http://dx.doi.org/10.1002/9781119324928.ch9
http://dx.doi.org/10.1007/978-90-481-9370-7
http://dx.doi.org/10.1111/plb.12972
http://dx.doi.org/10.1093/pcp/pcy181
http://dx.doi.org/10.3389/fpls.2014.00562
http://dx.doi.org/10.3389/fpls.2014.00562
http://dx.doi.org/10.1146/annurev.arplant.57.032905.105159
http://dx.doi.org/10.1146/annurev.arplant.57.032905.105159
http://dx.doi.org/10.1007/s11104-012-1402-5
http://dx.doi.org/10.1007/s00374-008-0344-9
http://dx.doi.org/10.1007/978-1-4899-0271-9_20
http://dx.doi.org/10.1007/978-1-4899-0271-9_20
http://dx.doi.org/10.3390/plants8120579
http://dx.doi.org/10.3390/plants8120579


Bharti N, Pandey SS, Barnawal D et al (2016) Plant growth promoting
rhizobacteria Dietzianatrono limnaea modulates the expression of
stress responsive genes providing protection of wheat from salinity
stress. Sci Rep 6:34768. https://doi.org/10.1038/srep34768

Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and
subcellular compartmentation in the ectomycorrhizal fungus Pax-
illus involutus. Microbiology 146:1109–1117. https://doi.org/10.
1099/00221287-146-5-1109

Blaudez D, Chalot M (2011) Characterization of the ER-located zinc
transporter ZnT1 and identification of a vesicular zinc storage
compartment in Hebeloma cylindrosporum. Fungal Genet Biol
48:496–503. https://doi.org/10.1016/j.fgb.2010.11.007

Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial commu-
nities associated with the leaves and the roots of Arabidopsis
thaliana. PLoS ONE 8(2). https://doi.org/10.1371/journal.pone.
0056329

Bolan N, Kunhikrishan A, Ramya T et al (2014) Remediation of heavy
metal(loid)s contaminated soils–to mobilize or to immobilize? J
Hazard Mater 266:141–166. https://doi.org/10.1016/j.jhazmat.2013.
12.018

Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in
halophytes in the context of salinity stress tolerance. J Exp Bot
65:1241–1257. https://doi.org/10.1093/jxb/ert430

Bresson J, Varoquaux F, Bontpart T et al (2013) The PGPR strain
Phyllobacterium brassicacearum STM196 induces a reproductive
delay and physiological changes that result in improved drought
tolerance in Arabidopsis. New Phytol 200:558–569. https://doi.org/
10.1111/nph.12383

Breuillin F, Schramm J, Hajirezaei M et al (2010) Phosphate
systemically inhibits development of arbuscular mycorrhiza in
Petunia hybrida and represses genes involved in mycorrhizal
functioning. Plant J 64:1002–1017. https://doi.org/10.1111/j.1365-
313X.2010.04385.x

Broeckling CD, Broz AK, Bergelson J et al (2008) Root exudates
regulate soil fungal community composition and diversity. Appl
Environ Microbiol 74:738–744. https://doi.org/10.1128/aem.02188-
07

Burg MB, Ferraris JD, (2008) Intracellular organic osmolytes: Function
and regulation. J Biol Chem 283:7309–7313

Chandra D, Srivastava R, Glick BR et al (2018a) Drought-tolerant
Pseudomonas spp. improve the growth performance of finger millet
(Eleusine coracana (L.) Gaertn.) under non-stressed and
drought-stressed conditions. Pedosphere 28:227–240. https://doi.
org/10.1016/S1002-0160(18)60013-X

Chandra D, Srivastava R, Sharma A (2018b) Influence of IAA and
ACC deaminase producing fluorescent pseudomonads in alleviating
drought stress in wheat (Triticum aestivum). Agric Res 7:290–299.
https://doi.org/10.1007/s40003-018-0305-y

Cha-um S, Rai V, Takabe T (2019) Proline, glycinebetaine, and
trehalose uptake and inter-organ transport in plants under stress.
Osmoprotectant-mediated abiotic stress tolerance in plants.
Springer, Cham, pp 201–223

Chaves MM, Oliveira MM (2004) Mechanisms underlying plant
resilience to water deficits : prospects for water-saving agriculture.
J Exp Bot 55:2365–2384. https://doi.org/10.1093/jxb/erh269

Chen M, Wei H, Cao J et al (2007) Expression of Bacillus subtilis
proBA genes and reduction of feedback inhibition of proline
synthesis increases proline production and confers osmotolerance in
transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

Chen J, Zhang H, Zhang X et al (2017) Arbuscular mycorrhizal
symbiosis alleviates salt stress in black locust through improved
photosynthesis, water status, and K+/Na+ homeostasis. Front Plant
Sci 8:1739. https://doi.org/10.3389/fpls.2017.01739

Cid FP, Maruyama F, Murase K et al (2018) Draft genome sequences
of bacteria isolated from the Deschampsia Antarctica phyllosphere.

Extremophiles 22:537–552. https://doi.org/10.1007/s00792-018-
1015-x

Cohen AC, Bottini R, Pontin M et al (2015) Azospirillum brasilense
ameliorates the response of Arabidopsis thaliana to drought mainly
via enhancement of ABA levels. Physiol Plant 153:79–90. https://
doi.org/10.1111/ppl.12221

Dabrowska G, Hrynkiewicz K, Trejgell A et al (2017) The effect of
plant growth-promoting rhizobacteria on the phytoextraction of Cd
and Zn by Brassica napus L. Int J Phytoremediation 19:597–604.
https://doi.org/10.1080/15226514.2016.1244157

Daffonchio D, Hirt H, Berg G (2014) Plant-Microbe Interactions and
Water Management in Arid and Saline Soils. In: Principles of
plant-microbe interactions. Springer, Cham, pp 265–276. https://
doi.org/10.1007/978-3-319-08575-3_28

Damodaran T, Sah V, Rb, Rai et al (2014) Isolation of salt tolerant
endophytic and rhizospheric bacteria by natural selection and
screening for promising plant growth-promoting rhizobacteria
(PGPR) and growth vigour in tomato under sodic environment.
Afr J Microbiol Res 7:5082–5089. https://doi.org/10.5897/
AJMR2013.6003

Dary M, Chamber-Pérez MA, Palomares AJ et al (2010) In situ
phytostabilisation of heavy metal polluted soils using Lupinus
luteus inoculated with metal resistant plant-growth promoting
rhizobacteria. J Hazard Mater 177:323–330. https://doi.org/10.
1016/j.jhazmat.2009.12.035

Dastogeer KMG, Zahan MI, Tahjib-Ul-Arif M et al (2020) Plant
salinity tolerance conferred by arbuscular mycorrhizal fungi and
associated mechanisms: a meta-analysis. Front Plant Sci 11. https://
doi.org/10.3389/fpls.2020.588550

DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2
+ sensors in plant signalling. Biochem J 425:27–40. https://doi.org/
10.1042/bj20091147

Del-Saz NF, Romero-Munar A, Cawthray GR et al (2017) Arbuscular
mycorrhizal fungus colonization in Nicotiana tabacum decreases the
rate of both carboxylate exudation and root respiration and increases
plant growth under phosphorus limitation. Plant Soil 416:97–106.
https://doi.org/10.1007/s11104-017-3188-y

De Vries RP, Visser J (2001) Aspergillus enzymes involved in
degradation of plant cell wall polysaccharides. Microbiol Mol Biol
Rev 65:497–522

Duddridge JA, Malibari A, Read DJ (1980) Structure and function of
mycorrhizal rhizomorphs with special reference to their role in
water transport. Nature 287:834–836

Egamberdieva D, Wirth S, Behrendt U et al (2017a) Antimicrobial
activity of medicinal plants correlates with the proportion of
antagonistic endophytes. Front Microbiol 8:199. https://doi.org/10.
3389/fmicb.2017.00199

Egamberdieva D, Wirth SJ, Alqarawi AA et al (2017b) Phytohormones
and beneficial microbes: essential components for plants to balance
stress and fitness. Front Microbiol 8:2104. https://doi.org/10.3389/
fmicb.2017.02104

Evelin H, Giri B, Kapoor R (2012) Contribution of glomus intraradices
inoculation to nutrient acquisition and mitigation of ionic imbalance
in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–
217. https://doi.org/10.1007/s00572-011-0392-0

Ezzouhri L, Castro E, Moya M et al (2009) Heavy metal tolerance of
filamentous fungi isolated from polluted sites in Tangier, Morocco.
Afr J Microbiol Res 3:35–48

Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress:
effects, mechanisms and management. In: Sustainable agriculture.
Springer, Dordrecht, pp 153–188. https://doi.org/10.1007/978-90-
481-2666-8_12

Farwell AJ, Vesely S, Nero V et al (2007) Tolerance of transgenic
canola plants (Brassica napus) amended with plant
growth-promoting bacteria to flooding stress at a

Plant–Microbe Interactions in Combating Abiotic Stresses 229

http://dx.doi.org/10.1038/srep34768
http://dx.doi.org/10.1099/00221287-146-5-1109
http://dx.doi.org/10.1099/00221287-146-5-1109
http://dx.doi.org/10.1016/j.fgb.2010.11.007
http://dx.doi.org/10.1371/journal.pone.0056329
http://dx.doi.org/10.1371/journal.pone.0056329
http://dx.doi.org/10.1016/j.jhazmat.2013.12.018
http://dx.doi.org/10.1016/j.jhazmat.2013.12.018
http://dx.doi.org/10.1093/jxb/ert430
http://dx.doi.org/10.1111/nph.12383
http://dx.doi.org/10.1111/nph.12383
http://dx.doi.org/10.1111/j.1365-313X.2010.04385.x
http://dx.doi.org/10.1111/j.1365-313X.2010.04385.x
http://dx.doi.org/10.1128/aem.02188-07
http://dx.doi.org/10.1128/aem.02188-07
http://dx.doi.org/10.1016/S1002-0160(18)60013-X
http://dx.doi.org/10.1016/S1002-0160(18)60013-X
http://dx.doi.org/10.1007/s40003-018-0305-y
http://dx.doi.org/10.1093/jxb/erh269
http://dx.doi.org/10.3389/fpls.2017.01739
http://dx.doi.org/10.1007/s00792-018-1015-x
http://dx.doi.org/10.1007/s00792-018-1015-x
http://dx.doi.org/10.1111/ppl.12221
http://dx.doi.org/10.1111/ppl.12221
http://dx.doi.org/10.1080/15226514.2016.1244157
http://dx.doi.org/10.1007/978-3-319-08575-3_28
http://dx.doi.org/10.1007/978-3-319-08575-3_28
http://dx.doi.org/10.5897/AJMR2013.6003
http://dx.doi.org/10.5897/AJMR2013.6003
http://dx.doi.org/10.1016/j.jhazmat.2009.12.035
http://dx.doi.org/10.1016/j.jhazmat.2009.12.035
http://dx.doi.org/10.3389/fpls.2020.588550
http://dx.doi.org/10.3389/fpls.2020.588550
http://dx.doi.org/10.1042/bj20091147
http://dx.doi.org/10.1042/bj20091147
http://dx.doi.org/10.1007/s11104-017-3188-y
http://dx.doi.org/10.3389/fmicb.2017.00199
http://dx.doi.org/10.3389/fmicb.2017.00199
http://dx.doi.org/10.3389/fmicb.2017.02104
http://dx.doi.org/10.3389/fmicb.2017.02104
http://dx.doi.org/10.1007/s00572-011-0392-0
http://dx.doi.org/10.1007/978-90-481-2666-8_12
http://dx.doi.org/10.1007/978-90-481-2666-8_12


metal-contaminated field site. Environ Pollut 147:540–545. https://
doi.org/10.1016/j.envpol.2006.10.014

Fasciglione G, Casanovas EM, Quillehauquy V et al (2015) Azospir-
illum inoculation effects on growth, product quality and storage life
of lettuce plants grown under salt stress. Sci Hortic 195:154–162.
https://doi.org/10.1016/j.scienta.2015.09.015

Fatima T, Arora NK (2019) Plant growth-promoting rhizospheric
microbes for remediation of saline soils. In: Arora NK, Narendra K
(eds) Phyto and Rhizo remediation. Singapore, Springer, pp 121–
146. https://doi.org/10.1007/978-981-32-9664-0_5

Franchi E, Rolli E, Marasco R et al (2017) Phytoremediation of a multi
contaminated soil: mercury and arsenic phytoextraction assisted by
mobilizing agent and plant growth promoting bacteria. J Soils
Sediments 17:1224–1236. https://doi.org/10.1007/s11368-015-
1346-5

Friesen ML, Porter SS, Stark SC et al (2011) Microbially mediated
plant functional traits. Annu Rev Ecol Evol Syst 42:23–46. https://
doi.org/10.1146/annurev-ecolsys-102710-145039

Gadd GM (2010) Metals, minerals, and microbes: geomicrobiology and
bioremediation. Microbiology 156:609–643

Gadd GM, Bahri-Esfahani J, Li Q et al (2014) Oxalate production by
fungi: Significance in geomycology, biodeterioration and bioreme-
diation. Fungal Biol Rev 28:36–55

Geilfus CM, Mithofer A, Ludwig-Muller J et al (2015)
Chloride-inducible transient apoplastic alkanizations induce stomata
closure by controlling abscissic acid distribution between leaf
apoplast and guard cells in salt-stressed Vicia faba. New Phytol
208:803–816. https://doi.org/10.1016/j.jplph.2012.09.019

Ghosh D, Gupta A, Mohapatra S (2019) A comparative analysis of
exopolysaccharide and phytohormone secretions by four drought
tolerant rhizobacterial strains and their impact on osmotic-stress
mitigation in Arabidopsis thaliana. World J Microbiol Biotechnol
35:1–15. https://doi.org/10.1007/s11274-019-2659-0

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant
machinery in abiotic stress tolerance in crop plants. Plant Physiol
Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants:
probing the role of sulfur. Plant Signal Behav 6:215–222. https://
doi.org/10.4161/psb.6.2.14880

Golldack D, Li C, Mohan H et al (2014) Tolerance to drought and salt
stress in plants: unravelling the signalling networks. Front Plant Sci
5:151. https://doi.org/10.3389/fpls.2014.00151

Gontia-Mishra I, Sapre S, Sharma A et al (2016) Alleviation of mercury
toxicity in wheat by the interaction of mercury-tolerant plant growth
promoting rhizobacteria. J Plant Growth Regul 35:1000–1012.
https://doi.org/10.1007/s00344-016-9598-x

Gough LP, Shacklette HT, Case AA (1979) Element concentrations
toxic to plants, animals and man. U.S. Geological Survey,
Washington, DC:146. https://doi.org/10.3133/b1466

Greenberg BM, Huang XD, Gerwing P et al (2008) Phytoremediation
of salt impacted soils: green house and field trials of plant growth
promoting rhizobacteria (PGPR) to improve plant growth and salt
phyto-accumulation. In: Phytoremediation: management of envi-
ronmental contaminants, vol 5. Springer, Cham, pp 627–637.
https://doi.org/10.1007/978-3-319-52381-1_2

Gücel S, Ozturk M, Yucel E et al (2009) Studies on the trace metals in
the soils and plants growing in the vicinity of Copper Mining Area
—Lefke, Northern Cyprus. Fresenius Environ Bull 18(3):360–368

Hansda A, Kumar V (2017) Cu-resistant Kocuria sp. CRB15: a
potential PGPR isolated from the dry tailing of Rakha copper mine.
3 Biotech 7:132. https://doi.org/10.1007/s13205-017-0757-y

Hashem A, Abd_Allah EF, Alqarawi AA, et al (2015) Arbuscular
mycorrhizal fungi enhances salinity tolerance of Panicum turgidum
Forssk by altering photosynthetic and antioxidant pathways. J Plant
Inter 10:230–242. https://doi.org/10.1080/17429145.2015.1052025

Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity
by the application of plant growth promoting rhizobacteria and
effects on wheat grown in saline sodic field. Int J Phytoremediation
19:522–529. https://doi.org/10.1080/15226514.2016.1267696

Hasanuzzaman M, Fujita M, Oku H et al (2019) Plant tolerance to
environmental stress: role of phyto-protectants, 1st edn. CRC Press,
Boca Raton, p 448. https://doi.org/10.1201/9780203705315

Hayat R, Ali S, Amara U et al (2010) Soil beneficial bacteria and their
role in plant growth promotion: a review. Ann of Microbiol 60:579–
598. https://doi.org/10.1007/s13213-010-0117-1

He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of
land plants and chances for engineering multistress tolerance. Front
Plant Sci 9:1771. https://doi.org/10.3389/fpls.2018.01771

Hidri R, Barea JM, Mahmoud OMB et al (2016) Impact of microbial
inoculation on biomass accumulation by Sulla carnosa prove-
nances, and in regulating nutrition, physiological and antioxidant
activities of this species under non-saline and saline conditions.
J Plant Physiol 201:28–41. https://doi.org/10.1016/j.jplph.2016.06.
013

Hu W, Zhang H, Chen H et al (2017) Arbuscular mycorrhizas influence
Lycium barbarum tolerance of water stress in a hot environment.
Mycorrhiza 27:451–463. https://doi.org/10.1007/s00572-017-0765-
0

Hossain MS, Dietz KF (2016) Tuning of redox regulatory mechanisms,
reactive oxygen species and redox homeostasis under salinity stress.
Front Plant Sci 7:548. https://doi.org/10.3389/fpls.2016.00548

Hussain MB, Zahir ZM, Asghar NH et al (2014) Can catalase and
exopolysaccharides producing rhizobia ameliorate drought stress in
wheat? Int J Agric Biol 16:3–13

Ibrahim MA, Khan PR, Hegazy SS et al (2015) Improving the
phytoextraction capacity of plants to scavenge heavy-metal infested
sites. Environ Rev 23:1–22

Ike A, Sriprang R, Ono H et al (2007) Bioremediation of cadmium
contaminated soil using symbiosis between leguminous plant and
recombinant rhizobia with the MTL4 and the PCS genes. Chemo-
sphere 66:1670–1676. https://doi.org/10.1016/j.chemosphere.2006.
07.058

Ike A, Sriprang R, Ono H et al (2008) Promotion of metal accumulation
in nodule of Astragalus sinicus by the expression of the
iron-regulated transporter gene: subsp. rengei B3. J Biosci Bioeng
105:642–648. https://doi.org/10.1263/jbb.105.642

Iqbal N, Khan NA, Ferrante A et al (2017) Ethylene role in plant
growth, development and senescence: interaction with other phy-
tohormones. Front Plant Sci 8:475. https://doi.org/10.3389/fpls.
2017.00475

Islam F, Yasmeen T, Ali Q et al (2014) Influence of Pseudomonas
aeruginosa as PGPR on oxidative stress tolerance in wheat under
Zn stress. Ecotoxicol Environ Saf 104:285–293. https://doi.org/10.
1016/j.ecoenv.2014.03.008

Jalmi SK, Sinha AK (2015) ROS mediated MAPK signalling in abiotic
and biotic stress-striking similarities and differences. Front Plant Sci
6:769. https://doi.org/10.3389/fpls.2015.00769

Jan S, Parray JA (2016) Use of mycorrhiza as metal tolerance strategy
in plants. In: Approaches to heavy metal tolerance in plants.
Springer, Singapore, pp 57–68. https://doi.org/10.1007/978-981-10-
1693-6_4

Janoušková M, Pavlíková D, Vosátka M (2006) Potential contribution
of arbuscular mycorrhiza to cadmium immobilisation in soil.
Chemosphere 65:1959–1965. https://doi.org/10.1016/j.
chemosphere.2006.07.007

Jogawat A (2019) Osmolytes and their role in abiotic stress tolerance in
plants. Molecular plant abiotic stress: biology and biotechnology,
vol 12. Wiley Blackwell, Chichester, pp 91–104

Kafle A, Garcia K, Peta V et al (2018) Beneficial plant microbe
interactions and their effect on nutrient uptake, yield, and stress. In:

230 N. Konwar et al.

http://dx.doi.org/10.1016/j.envpol.2006.10.014
http://dx.doi.org/10.1016/j.envpol.2006.10.014
http://dx.doi.org/10.1016/j.scienta.2015.09.015
http://dx.doi.org/10.1007/978-981-32-9664-0_5
http://dx.doi.org/10.1007/s11368-015-1346-5
http://dx.doi.org/10.1007/s11368-015-1346-5
http://dx.doi.org/10.1146/annurev-ecolsys-102710-145039
http://dx.doi.org/10.1146/annurev-ecolsys-102710-145039
http://dx.doi.org/10.1016/j.jplph.2012.09.019
http://dx.doi.org/10.1007/s11274-019-2659-0
http://dx.doi.org/10.1016/j.plaphy.2010.08.016
http://dx.doi.org/10.4161/psb.6.2.14880
http://dx.doi.org/10.4161/psb.6.2.14880
http://dx.doi.org/10.3389/fpls.2014.00151
http://dx.doi.org/10.1007/s00344-016-9598-x
http://dx.doi.org/10.3133/b1466
http://dx.doi.org/10.1007/978-3-319-52381-1_2
http://dx.doi.org/10.1007/s13205-017-0757-y
http://dx.doi.org/10.1080/17429145.2015.1052025
http://dx.doi.org/10.1080/15226514.2016.1267696
http://dx.doi.org/10.1201/9780203705315
http://dx.doi.org/10.1007/s13213-010-0117-1
http://dx.doi.org/10.3389/fpls.2018.01771
http://dx.doi.org/10.1016/j.jplph.2016.06.013
http://dx.doi.org/10.1016/j.jplph.2016.06.013
http://dx.doi.org/10.1007/s00572-017-0765-0
http://dx.doi.org/10.1007/s00572-017-0765-0
http://dx.doi.org/10.3389/fpls.2016.00548
http://dx.doi.org/10.1016/j.chemosphere.2006.07.058
http://dx.doi.org/10.1016/j.chemosphere.2006.07.058
http://dx.doi.org/10.1263/jbb.105.642
http://dx.doi.org/10.3389/fpls.2017.00475
http://dx.doi.org/10.3389/fpls.2017.00475
http://dx.doi.org/10.1016/j.ecoenv.2014.03.008
http://dx.doi.org/10.1016/j.ecoenv.2014.03.008
http://dx.doi.org/10.3389/fpls.2015.00769
http://dx.doi.org/10.1007/978-981-10-1693-6_4
http://dx.doi.org/10.1007/978-981-10-1693-6_4
http://dx.doi.org/10.1016/j.chemosphere.2006.07.007
http://dx.doi.org/10.1016/j.chemosphere.2006.07.007


Soybean—biomass, yield and productivity. Intechopen, pp 1–20.
https://doi.org/10.5772/intechopen.81396

Kamran MA, Syed JH, Eqani SA et al (2015) Effect of plant
growth-promoting rhizobacteria inoculation on cadmium (Cd) up-
take by Eruca sativa. Environ Sci Pollut Res Int 22:9275–9283.
https://doi.org/10.1007/s11356-015-4074-x

Kang SM, Radhakrishnan R, Khan AL et al (2014) Gibberellin
secreting Rhizobacterium, Pseudomonas putida H-2-3 modulates
the hormonal and stress physiology of soybean to improve the plant
growth under saline and drought conditions. Plant Physiol Biochem
84:115–124. https://doi.org/10.1016/j.plaphy.2014.09.001

Kasim WA, Osman ME, Omar MN et al (2013) Control of drought
stress in wheat using plant-growth-promoting bacteria. J Plant
Growth Regul 32:122–130. https://doi.org/10.1007/s00344-012-
9283-7

Kasim WA, Gaafar RM, Abou Ali RM et al (2016) Effect of biofilm
forming plant growth promoting rhizobacteria on salinity tolerance
in barley. Ann Agric Sci 61:217–227. https://doi.org/10.1016/j.
aoas.2016.07.003

Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria:
drought stress alleviators to ameliorate crop production in drylands.
Ann Microbiol 66:35–42. https://doi.org/10.1007/s13213-015-
1112-3

Khalloufi M, Martínez-Andújar C, Lachaâl M et al (2017) The
interaction between foliar GA3 application and arbuscular mycor-
rhizal fungi inoculation improves growth in salinized tomato
(Solanum lycopersicum L.) plants by modifying the hormonal
balance. J Plant Physiol 214:134–144. https://doi.org/10.1016/j.
jplph.2017.04.012

Khan N, Ali S, Shahid MA et al (2021) Insights into the Interactions
among roots, rhizosphere, and rhizobacteria for improving plant
growth and tolerance to abiotic stresses: a review. Cells 10:1551.
https://doi.org/10.3390/cells10061551

Khan N, Bano A (2019) Rhizobacteria and abiotic stress management.
Plant growth promoting rhizobacteria for sustainable stress man-
agement. Springer, Singapore, pp 65–80

Khouja HR, Abba S, Lacercat-Didier L et al (2013) OmZnT1 and
OmFET, two metal transporters from the metal-tolerant strain Zn of
the ericoid mycorrhizal fungus Oidiodendron maius, confer zinc
tolerance in yeast. Fungal Genet Biol 52:53–64. https://doi.org/10.
1016/j.fgb.2012.11.004

Kloepper JW, Schroth MN (1978) Plant growth Promoting rhizobac-
teria on radishes. In: Proceedings of 4th international conference on
plant pathologie bacteriologie INRA, Angers, pp 879–882

Kotak S, Larkindale J, Lee U et al (2007) The complexity of the heat
stress response in plants. Curr Opin Plant Biol 10:310–316. https://
doi.org/10.1016/j.pbi.2007.04.011

Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis.
J Exp Bot 56:337–346. https://doi.org/10.1093/jxb/erh237

Kumar D, Al Hassan M, Naranjo MA et al (2017) Effects of salinity
and drought on growth, ionic relations, compatible solutes and
activation of antioxidant systems in oleander (Nerium oleander L.).
PloS ONE 12:e0185017. https://doi.org/10.1371/journal.pone.
0185017

Kumar A, Verma JP (2018) Does plant—Microbe interaction confer
stress tolerance in plants: a review? microbiological research, vol
207. ISSN 0944–5013:41–52. https://doi.org/10.1016/j.micres.
2017.11.004

Lata R, Chowdhury S, Gond SK et al (2018) Induction of abiotic stress
tolerance in plants by endophytic microbes. Lett Appl Microbiol 66
(4):268–276. https://doi.org/10.1111/Iam.12855

Leyval C, Tumau K, Haselwandter K (1997) Interactions between
heavy metals and mycorrhizal fungi in polluted soils: physiological,
ecological and applied aspects. Mycorrhiza 7:139–153

Li JF, He XH, Li H et al (2015) Arbuscular mycorrhizal fungi increase
growth and phenolics synthesis in Poncirus trifoliate under iron
deficiency. Sci Horti 183:87–92. https://doi.org/10.1016/j.scienta.
2014.12.015

Li X, Sun P, Zhang Y et al (2020) A novel PGPR strain Kocuria
rhizophila Y1 enhances salt stress tolerance in maize by regulating
phytohormone levels, nutrient acquisition, redox potential, ion
homeostasis, photosynthetic capacity and stress-responsive. Environ
Exp Bot 174. https://doi.org/10.1016/j.envexpbot.2020.104023

Lim JH, Kim SD (2013) Induction of drought stress resistance by
multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant
Pathol J 29:201

Liu H, Yuan M, Tan SY et al (2015) Enhancement of arbuscular
mycorrhizal fungus (Glomus versiforme) on the growth and Cd
uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol
89:44–49. https://doi.org/10.1016/j.apsoil.2015.01.006

Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant
Soil 129:1–10. https://doi.org/10.1007/BF00011685

Ma Y, Oliviera RS, Nai F et al (2015) The hyperaccumulator Sedum
plumbizincicola harbors metal-resistant endophytic bacteria that
improve its phytoextraction capacity in multi-metal contaminated
soil. J Environ Manage 156:62–69. https://doi.org/10.1016/j.
jenvman.2015.03.024

Ma Y, Rajkumar M, Zhang C et al (2016a) Inoculation of Brassica
oxyrrhina with plant growth promoting bacteria for the improve-
ment of heavy metal phytoremediation under drought conditions.
J Hazard Mater 320:36–44. https://doi.org/10.1016/j.jhazmat.2016.
08.009

Ma Y, Rajkumar M, Zhang C et al (2016b) The beneficial role of
bacterial endophytes in heavy metal phytoremediation. J Environ
Manage 174:14–25. https://doi.org/10.1016/j.jenvman.2016.02.047

Mathur S, Tomar RS, Jajoo A (2018) Arbuscular Mycorrhizal fungi
(AMF) protects photosynthetic apparatus of wheat under drought
stress. Photosyn Res 39:227–238. https://doi.org/10.1007/s11120-
018-0538-4

Martin F, Aerts A, Ahrén D et al (2008) The genome of Laccaria
bicolor provides insights into mycorrhizal symbiosis. Nature
452:88–92. https://doi.org/10.1038/nature06556

Meharg AA, Cairney J (2003) Ericoid mycorrhiza: A partnership that
exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740.
https://doi.org/10.1046/j.1351-0754.2003.0555.x

Mehler AH (1951) Studies on reactions of illuminated chloroplasts.
I. Mechanisms of the reduction of oxygen and other Hill reagents.
Arch Biochem Biophys 33:65–77. https://doi.org/10.1016/0003-
9861(51)90082-3

Migeon A, Blaudez D, Wilkins O et al (2010) Genome-wide analysis of
plant metal transporters, with an emphasis on poplar. Cell Mol Life
Sci 67:3763–3784. https://doi.org/10.1007/s00018-010-0445-0

Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress
in plants and remediation of soil by rhizosphere microorganisms.
Front Microbiol 8:1706. https://doi.org/10.3389/fmicb.2017.01706

Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to
cellular components in plants. Annu Rev Plant Biol 58:459–481.
https://doi.org/10.1146/annurev.arplant.58.032806.103946

Morgan JAW, Whipps JM (2001) Methodological approaches to the
study of rhizosphere carbon flow and microbial population dynam-
ics. In: Pinton A, Varanini Z, Nannipieri P (eds) The rhizosphere.
Biochemistry and organic substances at the soil-plant interface.
Marcel Dekker, New York, USA, pp 373–409

Morse LJ, Day TA Faeth SH (2002) Effect of Neotyphodium
endophyte infection on growth and leaf gas exchange of Arizona
fescue under contrasting water availability regimes. Environ Exp
Bot 48:257–268

Nacoon S, Jogloy S, Riddech N et al (2020) Interaction between
phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on

Plant–Microbe Interactions in Combating Abiotic Stresses 231

http://dx.doi.org/10.5772/intechopen.81396
http://dx.doi.org/10.1007/s11356-015-4074-x
http://dx.doi.org/10.1016/j.plaphy.2014.09.001
http://dx.doi.org/10.1007/s00344-012-9283-7
http://dx.doi.org/10.1007/s00344-012-9283-7
http://dx.doi.org/10.1016/j.aoas.2016.07.003
http://dx.doi.org/10.1016/j.aoas.2016.07.003
http://dx.doi.org/10.1007/s13213-015-1112-3
http://dx.doi.org/10.1007/s13213-015-1112-3
http://dx.doi.org/10.1016/j.jplph.2017.04.012
http://dx.doi.org/10.1016/j.jplph.2017.04.012
http://dx.doi.org/10.3390/cells10061551
http://dx.doi.org/10.1016/j.fgb.2012.11.004
http://dx.doi.org/10.1016/j.fgb.2012.11.004
http://dx.doi.org/10.1016/j.pbi.2007.04.011
http://dx.doi.org/10.1016/j.pbi.2007.04.011
http://dx.doi.org/10.1093/jxb/erh237
http://dx.doi.org/10.1371/journal.pone.0185017
http://dx.doi.org/10.1371/journal.pone.0185017
http://dx.doi.org/10.1016/j.micres.2017.11.004
http://dx.doi.org/10.1016/j.micres.2017.11.004
http://dx.doi.org/10.1111/Iam.12855
http://dx.doi.org/10.1016/j.scienta.2014.12.015
http://dx.doi.org/10.1016/j.scienta.2014.12.015
http://dx.doi.org/10.1016/j.envexpbot.2020.104023
http://dx.doi.org/10.1016/j.apsoil.2015.01.006
http://dx.doi.org/10.1007/BF00011685
http://dx.doi.org/10.1016/j.jenvman.2015.03.024
http://dx.doi.org/10.1016/j.jenvman.2015.03.024
http://dx.doi.org/10.1016/j.jhazmat.2016.08.009
http://dx.doi.org/10.1016/j.jhazmat.2016.08.009
http://dx.doi.org/10.1016/j.jenvman.2016.02.047
http://dx.doi.org/10.1007/s11120-018-0538-4
http://dx.doi.org/10.1007/s11120-018-0538-4
http://dx.doi.org/10.1038/nature06556
http://dx.doi.org/10.1046/j.1351-0754.2003.0555.x
http://dx.doi.org/10.1016/0003-9861(51)90082-3
http://dx.doi.org/10.1016/0003-9861(51)90082-3
http://dx.doi.org/10.1007/s00018-010-0445-0
http://dx.doi.org/10.3389/fmicb.2017.01706
http://dx.doi.org/10.1146/annurev.arplant.58.032806.103946


growth promotion and tuber inulin content of Helianthus tuberosus
L. Sci Rep 10:4916. https://doi.org/10.1038/s41598-020-61846-x

Najeeb U, Bange MP, Tan DK et al (2015) Consequences of
waterlogging in cotton and opportunities for mitigation of yield
losses. AoB Plants 7:plv080. https://doi.org/10.1093/aobpla/plv080

Nascimento F, Brígido C, Alho L et al (2012) Enhanced chickpea
growth-promotion ability of a Mesorhizobium strain expressing an
exogenous ACC deaminase gene. Plant Soil 353:221–230. https://
doi.org/10.1007/s11104-011-1025-2

Nie L, Shah S, Rashid A et al (2002) Phytoremediation of arsenate
contaminated soil by transgenic canola and the plant
growth-promoting bacterium Enterobacter cloacae CAL2. Plant
Physiol Biochem 40:355–361. https://doi.org/10.1016/S0981-9428
(02)01375-X

Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen
metabolism in drought: not so cut and dried. Plant Physiol
164:1636–1648. https://doi.org/10.1104/pp.113.233478

Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC,
Maboeta MS (2018) Heavy metal tolerance traits of filamentous
fungi isolated from gold and gemstone mining sites. Braz J
Microbiol 49(1):29–37. https://doi.org/10.1016/j.bjm.2017.06.003

Oliveira AL, Santos OJ, Marcelino PR et al (2017) Maize inoculation
with Azospirillum brasilense Ab-V5 cells enriched with
exopolysaccharides and polyhydroxybutyrate results in high pro-
ductivity under low N fertilizer input. Front Microbiol 8:1873

Ong GH, Ho XH, Shamkeeva S, Manasha Savithri Fernando AS,
Wong LS (2017) Biosorption study of potential fungi for copper
remediation from Peninsular Malaysia. Remediat J 27(4):59–63.
https://doi.org/10.1002/rem.21531

Van Oosten MJ, Pepe O, De Pascale S et al (2017) The role of
bio-stimulants and bio effectors as alleviators of abiotic stress in
crop plants. Chem Biol Technol Agric 4:5. https://doi.org/10.1186/
s40538-017-0089-5

Ozgur R, Uzilday B, Sekmen AH et al (2013) Reactive oxygen species
regulation and antioxidant defence in halophytes. Funct Plant Biol
40:832–847. https://doi.org/10.1071/FP12389

Pan J, Peng F, Tedeschi A et al (2020) Do halophytes and glycophytes
differ in their interactions with arbuscular mycorrhizal fungi under
salt stress? a meta-analysis. Bot Stud 61:1–13. https://doi.org/10.
1186/s40529-020-00290-6

Pandey S, Ghosh PK, Ghosh S et al (2013) Role of heavy metal
resistant Ochrobactrum sp. and Bacillus spp. strains in bioremedi-
ation of a rice cultivar and their PGPR like activities. J Microbiol
51:11–17. https://doi.org/10.1007/s12275-013-2330-7

Parihar M, Rakshit A, Rana K et al (2020) The effect of arbuscular
mycorrhizal fungi inoculation in mitigating salt stress of Pea (Pisum
sativum L.). Commun Soil Sci Plant Anal 51(11):1545–1559.
https://doi.org/10.1080/00103624.2020.1784917

Pasbani B, Salimi A, Aliasgharzad N et al (2020) Colonization with
arbuscular mycorrhizal fungi mitigates cold stress through improve-
ment of antioxidant defense and accumulation of protecting
molecules in eggplants. Scien Horti 272. https://doi.org/10.1016/j.
scienta.2020.109575

Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic
acid. Can J Microbiol 42:207–222

Peiter E, Montanini B, Gobert A et al (2007) A secretory
pathway-localized cation diffusion facilitator confers plant man-
ganese tolerance. Proc Natl Acad Sci USA 104:8532–8537. https://
doi.org/10.1073/pnas.0609507104

Petrini O (1991) Fungal endophytes of tree leaves. Microbial ecology
of leaves, New York. Springer-Verlag, NY, pp 179–197

Pourrut B, Jean S, Silvestre J et al (2011) Lead-induced DNA damage
in Vicia faba root cells: potential involvement of oxidative stress.
Mutat Res 726:123–128. https://doi.org/10.1016/j.mrgentox.2011.
09.001

Porcel R, Zamarreno AM, Garcia-mina JM et al (2014) Involvement of
plant endogenous ABA in Bacillus megaterium PGPR activity in
tomato plants. BMC Plant Biol 14:36

Porcel R, Aroca R, Azcon R et al (2016) Regulation of cation
transporter genes by the arbuscular mycorrhizal symbiosis in rice
plants subjected to salinity suggests improved salt tolerance due to
reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–684.
https://doi.org/10.1007/s00572-016-070

Pramanik K, Mitra S, Sarkar A et al (2017) Characterization of
cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted
rice seedling growth by alleviating phytotoxicity of cadmium.
Environ Sci Pollut Res 24:24419–24437. https://doi.org/10.1007/
s11356-017-0033-z

Prity SA, Sajib SA, Das U et al (2020) Arbuscular mycorrhizal fungi
mitigate Fe deficiency symptoms in sorghum through
phytosiderophore-mediated Fe mobilization and restoration of redox
status. Protoplasma 257:1373–1385. https://doi.org/10.1007/
s00709-020-01517-w

Qu AL, Ding YF, Jiang Q et al (2013) Molecular mechanisms of the
plant heat stress response. Biochem Biophys Res Commun
432:203–207. https://doi.org/10.1016/j.bbrc.2013.01.104

Qurashi AW, Sabri AN (2011) Osmoadaptation and plant growth
promotion by salt tolerant bacteria under salt stress. Afr J Microbiol
Res 5(21):3546–3554. https://doi.org/10.5897/AJMR11.736

Radhakrishnan R, Baek KH (2017) Physiological and biochemical
perspectives of non-salt tolerant plants during bacterial interaction
against soil salinity. Plant Physiol Biochem 116:116–126. https://
doi.org/10.1016/j.plaphy.2017.05.009

Rascovan N, Carbonetto B, Perrig D, et al (2016) Integrated analysis of
root microbiomes of soybean and wheat from agricultural fields. Sci
Rep 6:28084. https://doi.org/10.1038/srep28084

Redman RS, Sheehan KB, Stout RG et al (2002) Thermotolerance
generated by plant/fungal symbiosis. Science 298:1581–1581.
https://doi.org/10.1126/science.1072191

Rinaldelli E, Mancuso S (1996) Response of young mycorrhizal and
nonmycorrhizal plants of olive tree (Olea europaea L.) to saline
conditions. I. Shortterm electrophysiological and long-term vege-
tative salt effects. Adv Hortic Sci 10:126–134

Rincón A, Valladares F, Gimeno TE et al (2008) Water stress responses
of two Mediterranean tree species influenced by native soil
microorganisms and inoculation with a plant growth promoting
rhizobacterium. Tree Physiol 28:1693–1701. https://doi.org/10.
1093/treephys/28.11.1693

Rodriguez RJ, Henson J, Volkenburgh EV et al (2008) Stress tolerance
in plants via habitat-adapted symbiosis. ISME J 2:404–416. https://
doi.org/10.1038/ismej.2007.106

Rodríguez-Salazar R, Suárez R, Caballero-Mellado J et al (2009)
Trehalose accumulation in Azospirillum brasilense improves
drought tolerance and biomass in maize plants. FEMS Microbiol
Lett 296:52–59. https://doi.org/10.1111/j.1574-6968.2009.01614.x

Román-Ponce B, Reza-vázquez DM, Gutiérrez-paredes S et al (2017)
Plant growth-promoting traits in rhizobacteria of heavy
metal-resistant plants and their effects on Brassica nigra seed
germination. Pedosphere 27:511–526. https://doi.org/10.1016/
S1002-0160(17)60347-3

Ruíz-Sánchez M, Armada E, Muñoz Y et al (2011) Azospirillum and
arbuscular mycorrhizal colonization enhance rice growth and
physiological traits under well-watered and drought conditions.
J Plant Physiol 168:1031–1037. https://doi.org/10.1016/j.jplph.
2010.12.019

Saha M, Sarkar S, Sarkar B et al (2016) Microbial siderophores and
their potential applications: a review. Env Sci Pollut Res 23:3984–
3999. https://doi.org/10.1007/s11356-015-4294-0

Sandhya V, Ali SZ (2015) The production of exopolysaccharide by
Pseudomonas putida gap_p45 under various abiotic stress

232 N. Konwar et al.

http://dx.doi.org/10.1038/s41598-020-61846-x
http://dx.doi.org/10.1093/aobpla/plv080
http://dx.doi.org/10.1007/s11104-011-1025-2
http://dx.doi.org/10.1007/s11104-011-1025-2
http://dx.doi.org/10.1016/S0981-9428(02)01375-X
http://dx.doi.org/10.1016/S0981-9428(02)01375-X
http://dx.doi.org/10.1104/pp.113.233478
http://dx.doi.org/10.1016/j.bjm.2017.06.003
http://dx.doi.org/10.1002/rem.21531
http://dx.doi.org/10.1186/s40538-017-0089-5
http://dx.doi.org/10.1186/s40538-017-0089-5
http://dx.doi.org/10.1071/FP12389
http://dx.doi.org/10.1186/s40529-020-00290-6
http://dx.doi.org/10.1186/s40529-020-00290-6
http://dx.doi.org/10.1007/s12275-013-2330-7
http://dx.doi.org/10.1080/00103624.2020.1784917
http://dx.doi.org/10.1016/j.scienta.2020.109575
http://dx.doi.org/10.1016/j.scienta.2020.109575
http://dx.doi.org/10.1073/pnas.0609507104
http://dx.doi.org/10.1073/pnas.0609507104
http://dx.doi.org/10.1016/j.mrgentox.2011.09.001
http://dx.doi.org/10.1016/j.mrgentox.2011.09.001
http://dx.doi.org/10.1007/s00572-016-070
http://dx.doi.org/10.1007/s11356-017-0033-z
http://dx.doi.org/10.1007/s11356-017-0033-z
http://dx.doi.org/10.1007/s00709-020-01517-w
http://dx.doi.org/10.1007/s00709-020-01517-w
http://dx.doi.org/10.1016/j.bbrc.2013.01.104
http://dx.doi.org/10.5897/AJMR11.736
http://dx.doi.org/10.1016/j.plaphy.2017.05.009
http://dx.doi.org/10.1016/j.plaphy.2017.05.009
http://dx.doi.org/10.1038/srep28084
http://dx.doi.org/10.1126/science.1072191
http://dx.doi.org/10.1093/treephys/28.11.1693
http://dx.doi.org/10.1093/treephys/28.11.1693
http://dx.doi.org/10.1038/ismej.2007.106
http://dx.doi.org/10.1038/ismej.2007.106
http://dx.doi.org/10.1111/j.1574-6968.2009.01614.x
http://dx.doi.org/10.1016/S1002-0160(17)60347-3
http://dx.doi.org/10.1016/S1002-0160(17)60347-3
http://dx.doi.org/10.1016/j.jplph.2010.12.019
http://dx.doi.org/10.1016/j.jplph.2010.12.019
http://dx.doi.org/10.1007/s11356-015-4294-0


conditions and its role in soil aggregation. Microbiology 84:512–
519. https://doi.org/10.1134/S0026261715040153

Saum SH, Müller V (2007) Salinity-dependent switching of osmolyte
strategies in a moderately halophilic bacterium: glutamate induces
proline biosynthesis in Halobacillus halophilus. J Bacteriol
189:6968–6975. https://doi.org/10.1128/jb.00775-07

Schulz B, Römmert AK, Dammann U et al (1999) The endophyte - host
interaction: a balanced antagonism. Mycol Res 103:1275–1283.
https://doi.org/10.1017/S0953756299008540

Sessitsch A, Kuffner M, Kidd P, et al (2013) The role of
plant-associated bacteria in the mobilization and phytoextraction
of trace elements in contaminated soils. Soil Biol Biochem 60
(100):182–194. https://doi.org/10.1016/j.soilbio.2013.01.012

Shahid M, Khalid S, Abbas G et al (2015). Heavy metal stress and crop
productivity. In: Crop production and global environmental issues.
Springer International Publishing, Cham, pp 1–25.

Sharma S, Ali I (2011) Adsorption of Rhodamine B dye from aqueous
solution onto acid activated mango (Magnifera indica) leaf powder:
equilibrium, kinetic and thermodynamic studies. J Toxicol Environ
Health Sci 3(10):286–297

Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species,
oxidative damage, and antioxidative defense mechanism in plants
under stressful conditions. J Bot 2012. https://doi.org/10.1155/
2012/217037

Sharma A, Shahzad B, Kumar V et al (2019) Phytohormones regulate
accumulation of osmolytes under abiotic stress. Biomolecules 9
(7):285. https://doi.org/10.3390/biom9070285

Sheng M, Tang M, Zhang F et al (2011) Influence of arbuscular
mycorrhiza on organic solutes in maize leaves under salt stress.
Mycorrhiza 21:423–430. https://doi.org/10.1007/s00572-010-0353-
z

Shukla N, Awasthi RP, Rawat L et al (2012) Biochemical and
physiological responses of rice (Oryza sativa L.) as influenced by
Trichoderma harzianum under drought stress. Plant Physiol
Biochem 54:78–88. https://doi.org/10.1016/j.sjbs.2014.12.001

Singh JS, Abhilash PC, Singh HB et al (2011) Genetically engineered
bacteria: an emerging tool for environmental remediation and future
research perspectives. Gene 480:1–9. https://doi.org/10.1016/j.gene.
2011.03.001

Singh R, Singh S, Parihar P et al (2016) Reactive oxygen species
(ROS): Beneficial companions of plants’ developmental processes.
Front Plant Sci 7:1299. https://doi.org/10.3389/fpls.2016.01299

Sivakumar N, Sathishkumar R, Selvakumar G et al (2020) Phyllo-
spheric microbiomes: diversity, ecological significance, and
biotechnological applications. In: Yadav A, Singh J, Rastegari A,
Yadav N (eds) Plant microbiomes for sustainable agriculture.
sustainable development and biodiversity, vol 25. Springer, Cham.
https://doi.org/10.1007/978-3-030-38453-1_5

Sorty AM, Meena KK, Choudhary K et al (2016) Effect of plant growth
promoting bacteria associated with halophytic weed (Psoralea
corylifolia L.) on germination and seedling growth of wheat under
saline conditions. Appl Biochem Biotechnol 180:872–882. https://
doi.org/10.1007/s12010-016-2139-z

Sriprang R, Hayashi M, Yamashita M et al (2002) A novel
bioremediation system for heavy metals using the symbiosis
between leguminous plant and genetically engineered rhizobia.
J Biotechnol 99:279–293. https://doi.org/10.1016/S0168-1656(02)
00219-5

Sriprang R, Hayashi M, Ono H et al (2003) Enhanced accumulation of
Cd2+ by a Mesorhizobium sp. transformed with a gene from
Arabidopsis thaliana coding for phytochelatin synthase. Appl
Environ Microbiol 69:1791–1796. https://doi.org/10.1128/AEM.
69.3.1791-1796.2003

Staudinger C, Tershani VM, Quintana EG et al (2016) Evidence for a
rhizobia-induced drought stress response strategy in Medicago
truncatula. J Proteom 136:202–213. https://doi.org/10.1016/j.jprot.
2016.01.006

Subramanian P, Mageswari A, Kim K et al (2015) Psychrotolerant
endophytic Pseudomonas sp. strains OB155 and OS261 induced
chilling resistance in tomato plants (Solanum Lycopersicum Mill.)
by activation of their antioxidant capacity. Mol Plant Microb Int
28:1073–1081. https://doi.org/10.1094/mpmi-01-15-0021-r

Su F, Jacquard C, Villaume S et al (2015) Burkholderia phytofirmans
PsJN reduces impact of freezing temperatures on photosynthesis in
Arabidopsis thaliana. Front Plant Sci 6:810. https://doi.org/10.
3389/fpls.2015.00810

Sziderics AH, Rasche F, Trognitz F et al (2007) Bacterial endophytes
contribute to abiotic stress adaptation in pepper plants (Capsicum
annuum L.) Can J Microbiol 53:1195–1202. https://doi.org/10.
1139/W07-082

Thiombiano AME, Hilou A, Jean BM et al (2014) In vitro antioxidant,
lipoxygenase and xanthine oxidase inhibitory activity of fractions
and macerate from Pandiaka angustifolia (vahl) hepper. J App
Pharm Sci 4:9–13. https://doi.org/10.7324/JAPS.2014.40102

Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance
due to plant-associated microbes: an overview. Front Plant Sci
9:452. https://doi.org/10.3389/fpls.2018.00452

Tiwari S, Singh SN, Garg SK (2012) Stimulated phytoextraction of
metals from fly ash by microbial interventions. Environ Technol
33:2405–2413. https://doi.org/10.1080/09593330.2012.670269

Tiwari S, Lata C, Chauhan PS et al (2015) Pseudomonas putida attunes
morphophysiological, biochemical and molecular responses in
Cicer arietinum L. during drought stress and recovery. Plant
Physiol Biochem 99:108–117. https://doi.org/10.1016/j.plaphy.
2015.11.001

Tobin JM (2001) Fungal metal biosorption. Br Mycol Soc Symp Ser
23:424–444. https://doi.org/10.1017/CBO9780511541780.016

Tripathi P, Singh PC, Mishra A et al (2013) Trichoderma inoculation
ameliorates arsenic induced phytotoxic changes in gene expression
and stem anatomy of chickpea (Cicer arietinum). Ecotoxicol
Environ Saf 89:8–14. https://doi.org/10.1016/j.ecoenv.2012.10.017

Tripathi P, Singh PC, Mishra A et al (2017) Arsenic tolerant
Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer
arietinum). Environ Pollut 223:137–145. https://doi.org/10.1016/j.
envpol.2016.12.073

Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black
cottonwood, Populus trichocarpa (Torr. & Gray). Science
313:1596–1604. https://doi.org/10.1126/science.1128691

Ullah A, Heng S, Munis MFH et al (2015) Phytoremediation of heavy
metals assisted by plant growth promoting (PGP) bacteria: a review.
Environ Exp Bot 117:28–40. https://doi.org/10.1016/j.envexpbot.
2015.05.001

Valls M, Atrian S, de Lorenzo V et al (2000) Engineering a mouse
metallothionein on the cell surface of Ralstonia eutropha CH34 for
immobilization of heavy metals in soil. Nat Biotechnol 18:661–666

Vardharajula S, Ali SZ, Grover M et al (2011) Drought-tolerant plant
growth promoting Bacillus spp.: effect on growth osmolytes, and
antioxidant status of maize under drought stress. J Plant Interact
6:1–14. https://doi.org/10.1080/17429145.2010.535178

Verbon EH, Liberman LM (2016) Beneficial microbes affect endoge-
nous mechanisms controlling root development. Trends Plant Sci
21:218–229. https://doi.org/10.1016/j.tplants.2016.01.013

Vessey JK (2003) Plant growth promoting rhizobacteria as biofertil-
izers. Plant Soil 255:571–586. https://doi.org/10.1023/A:
1026037216893

Plant–Microbe Interactions in Combating Abiotic Stresses 233

http://dx.doi.org/10.1134/S0026261715040153
http://dx.doi.org/10.1128/jb.00775-07
http://dx.doi.org/10.1017/S0953756299008540
http://dx.doi.org/10.1016/j.soilbio.2013.01.012
http://dx.doi.org/10.1155/2012/217037
http://dx.doi.org/10.1155/2012/217037
http://dx.doi.org/10.3390/biom9070285
http://dx.doi.org/10.1007/s00572-010-0353-z
http://dx.doi.org/10.1007/s00572-010-0353-z
http://dx.doi.org/10.1016/j.sjbs.2014.12.001
http://dx.doi.org/10.1016/j.gene.2011.03.001
http://dx.doi.org/10.1016/j.gene.2011.03.001
http://dx.doi.org/10.3389/fpls.2016.01299
http://dx.doi.org/10.1007/978-3-030-38453-1_5
http://dx.doi.org/10.1007/s12010-016-2139-z
http://dx.doi.org/10.1007/s12010-016-2139-z
http://dx.doi.org/10.1016/S0168-1656(02)00219-5
http://dx.doi.org/10.1016/S0168-1656(02)00219-5
http://dx.doi.org/10.1128/AEM.69.3.1791-1796.2003
http://dx.doi.org/10.1128/AEM.69.3.1791-1796.2003
http://dx.doi.org/10.1016/j.jprot.2016.01.006
http://dx.doi.org/10.1016/j.jprot.2016.01.006
http://dx.doi.org/10.1094/mpmi-01-15-0021-r
http://dx.doi.org/10.3389/fpls.2015.00810
http://dx.doi.org/10.3389/fpls.2015.00810
http://dx.doi.org/10.1139/W07-082
http://dx.doi.org/10.1139/W07-082
http://dx.doi.org/10.7324/JAPS.2014.40102
http://dx.doi.org/10.3389/fpls.2018.00452
http://dx.doi.org/10.1080/09593330.2012.670269
http://dx.doi.org/10.1016/j.plaphy.2015.11.001
http://dx.doi.org/10.1016/j.plaphy.2015.11.001
http://dx.doi.org/10.1017/CBO9780511541780.016
http://dx.doi.org/10.1016/j.ecoenv.2012.10.017
http://dx.doi.org/10.1016/j.envpol.2016.12.073
http://dx.doi.org/10.1016/j.envpol.2016.12.073
http://dx.doi.org/10.1126/science.1128691
http://dx.doi.org/10.1016/j.envexpbot.2015.05.001
http://dx.doi.org/10.1016/j.envexpbot.2015.05.001
http://dx.doi.org/10.1080/17429145.2010.535178
http://dx.doi.org/10.1016/j.tplants.2016.01.013
http://dx.doi.org/10.1023/A:1026037216893
http://dx.doi.org/10.1023/A:1026037216893


Voesenek LA, Bailey-Serres J (2015) Flood adaptive traits and process:
an overview. New Phytol 206:57–73

Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev
Microbiol 10:828–840. https://doi.org/10.1038/nrmicro2910

Vymazal J, Březinová T (2016) Accumulation of heavy metals in
aboveground biomass of Phragmites australis in horizontal flow
constructed wetlands for wastewater treatment: a review. Chem
Eng J 290:232–242. https://doi.org/10.1016/j.cej.2015.12.108

Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus
Piriformospora indica reprograms barley to salt-stress tolerance,
disease resistance, and higher yield. Proc Natl Acad Sci USA
102:13386–13391. https://doi.org/10.1073/pnas.0504423102

Wang JL, Li T, Liu GY et al (2016) Unravelling the role of dark septate
endophyte (DSE) colonizing maize (Zea mays) under cadmium
stress: physiological, cytological and genic aspects. Sci Rep
6:22028. https://doi.org/10.1038/srep22028

Waqas M, Khan AL, Kamran M et al (2012) Endophytic fungi produce
gibberellins and indoleacetic acid and promotes host-plant growth
during stress. Molecules 17:10754–10773. https://doi.org/10.3390/
molecules170910754

Weishampel PA, Bedford BL (2006) Wetland dicots and monocots
differ in colonization by arbuscular mycorrhizal fungi and dark
septate endophytes. Mycorrhiza 16:495–502. https://doi.org/10.
1007/s00572-006-0064-7

Wingler A, Lea PJ, Quick WP et al (2000) Photorespiration: metabolic
pathways and their role in stress protection. Phil. Trans R Soc
Lond B 355:1517–1529. https://doi.org/10.1098/rstb.2000.0712

Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering
plant-microbe symbiosis for rhizoremediation of heavy metals.
Appl Environ Microbiol 72:1129–1134. https://doi.org/10.1128/
AEM.72.2.1129-1134.2006

Wu N, Li Z, Liu H et al (2015) Influence of arbuscular mycorrhiza on
photosynthesis and water status of Populus cathayana Rehder
males and females under salt stress. Acta Physiol Plant 37:183.
https://doi.org/10.1007/s11738-015-1932-6

Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S Dumat C
(2014) Lead and cadmium phytoavailability and human bioacces-
sibility for vegetables exposed to soil or atmospheric pollution by
process ultrafine particles. J Environ Qual 43(5):1593–1600

Xiong Q, Hu J, Wei H et al (2021) Relationship between plant roots,
rhizosphere microorganisms, and nitrogen and its special focus on

rice. Agriculture 11:234. https://doi.org/10.3390/agriculture
11030234

Xu Z, Jiang Y, Jia B et al (2016) Elevated –CO2 response of stomata
and its dependence on environmental factors. Front Plant Sci 7:657.
https://doi.org/10.3389/fpls.2016.00657

Yadav J, Verma JP, Jaiswal DK et al (2014) Evaluation of PGPR and
different concentration of phosphorus level on plant growth, yield
and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128.
https://doi.org/10.1016/j.ecoleng.2013.10.013

Yang Y, Han X, Liang Y et al (2014) The combined effects of
Arbuscular Mycorrhizal Fungi (AMF) and lead (Pb) stress on Pb
accumulation, plant growth parameters, photosynthesis, and antiox-
idant enzymes in Robinia pseudoacacia L. PLoS ONE 10. https://
doi.org/10.1371/journal.pone.0145726

Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A (2018)
Halotolerant plant-growth promoting rhizobacteria modulate gene
expression and osmolyte production to improve salinity tolerance
and growth in Capsicum annum L. Environ Sci Pollut Res 25
(23):23236–23250. https://doi.org/10.1007/s11356-018-2381-8

Yong X, Chen Y, Liu W et al (2014) Enhanced cadmium resistance and
accumulation in Pseudomonas putida KT2440 expressing the
phytochelatin synthase gene of Schizosaccharomyces pombe. Lett
Appl Microbiol 58:255–261. https://doi.org/10.1111/lam.12185

Zahir ZA, Ghani U, Naveed M et al (2009) Comparative effectiveness
of Pseudomonas and Serratia sp. containing ACC-deaminase for
improving growth and yield of wheat (Triticum aestivum L.) under
salt-stressed conditions. Arch Microbiol 191:415–424

Zhu M, Zhou M, Shabala L et al (2015) Linking osmotic adjustment
and stomatal characteristics with salinity stress tolerance in
contrasting barley accessions. Funct Plant Biol 42 (3):252–263
doi:https://doi.org/10.1071/FP14209

Zhuang P, Lu H, Li Z et al (2014) Multiple exposure and effects
assessment of heavy metals in the population near mining area in
South China. PLoS ONE 9:e94484. https://doi.org/10.1371/journal.
pone.0094484

Złoch M, Thiem D, Kopiuch RG et al (2016) Synthesis of siderophores
by plant-associated metallotolerant bacteria under exposure to Cd2+.
Chemosphere 156:312–325. https://doi.org/10.1016/j.chemosphere.
2016.04.130

Zubair M, Shakir M, Ali Q et al (2016) Rhizobacteria and phytore-
mediation of heavy metals. Environ Technol Rev 5:112–119.
https://doi.org/10.1080/21622515.2016.1259358

234 N. Konwar et al.

http://dx.doi.org/10.1038/nrmicro2910
http://dx.doi.org/10.1016/j.cej.2015.12.108
http://dx.doi.org/10.1073/pnas.0504423102
http://dx.doi.org/10.1038/srep22028
http://dx.doi.org/10.3390/molecules170910754
http://dx.doi.org/10.3390/molecules170910754
http://dx.doi.org/10.1007/s00572-006-0064-7
http://dx.doi.org/10.1007/s00572-006-0064-7
http://dx.doi.org/10.1098/rstb.2000.0712
http://dx.doi.org/10.1128/AEM.72.2.1129-1134.2006
http://dx.doi.org/10.1128/AEM.72.2.1129-1134.2006
http://dx.doi.org/10.1007/s11738-015-1932-6
http://dx.doi.org/10.3390/agriculture11030234
http://dx.doi.org/10.3390/agriculture11030234
http://dx.doi.org/10.3389/fpls.2016.00657
http://dx.doi.org/10.1016/j.ecoleng.2013.10.013
http://dx.doi.org/10.1371/journal.pone.0145726
http://dx.doi.org/10.1371/journal.pone.0145726
http://dx.doi.org/10.1007/s11356-018-2381-8
http://dx.doi.org/10.1111/lam.12185
http://dx.doi.org/10.1071/FP14209
http://dx.doi.org/10.1371/journal.pone.0094484
http://dx.doi.org/10.1371/journal.pone.0094484
http://dx.doi.org/10.1016/j.chemosphere.2016.04.130
http://dx.doi.org/10.1016/j.chemosphere.2016.04.130
http://dx.doi.org/10.1080/21622515.2016.1259358


Cadmium Stress Management in Plants:
Prospects of Plant Growth-Promoting
Rhizobacteria
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Abstract

Cadmium (Cd) pollution in agricultural soils has become
a great concern for global food security and the environ-
ment. Cd is a nonessential heavy metal and a group-I
carcinogen. Excessive uses of phosphate fertilizers,
dispersal of municipal waste, sewage sludge disposal
and atmospheric deposition have polluted agricultural
soils with cadmium. Accumulation of Cd in crops may
cause severe damages to plant growth and agricultural
productivity. Human beings get exposed to cadmium
toxicity through the food chain. In recent times, plant
growth-promoting rhizobacteria (PGPR)-mediated Cd
detoxification in plants emerged as an excellent alterna-
tive to physicochemical approaches as it is economical
and environmentally sustainable. Generally, PGPR
enhances plant growth by nitrogen fixation, producing
phytohormones, ACC deaminase (ACCD), siderophores,
and solubilizing inorganic or organic phosphates. PGPR
enhance Cd bioremediation through different mecha-
nisms, such as biosorption, complexation, chelation,
sequestration and biotransformation. The application of
Cd resistant PGPR to alleviate Cd stress in plants has an
exciting prospect, and early findings look promising for
boosting food security, especially in contaminated soil,
for the increasing global population.

Keywords
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ABC ATP-binding cassette
ACC 1-Aminocyclopropane-1-carboxylic acid
ACCD 1-Aminocyclopropane-1-carboxylic acid
APX Ascorbate peroxidase
ASA Ascorbic acid
CAT Catalase
CAX Cation/proton exchangers
CDF Cation Diffusion Facilitator
CBA Capsule Biogenesis/Assembly
Cd Cadmium
Czc Cobalt/zinc/cadmium
DHAR Dehydroascorbate reductase
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QB A secondary plastoquinone
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RuBisCo Ribulose-1, 5-bisphosphate carboxylase
ROS Reactive Oxygen Species
SAM S-Adenosyl-1-methionine
SOD Superoxide dismutase
TF Transfer Factor
WHO World Health Organization
ZIP ZRT-IRT-like Proteins

1 Introduction

Agricultural soil health deteriorated considerably in the last
few decades due to heavy metal contamination in soil. In
general, heavy metals are found in the earth’s crust; how-
ever, heavy metal contamination is mainly the consequence
of increased industrial activities, combustion of coal and
petroleum products, mining, smelting, use of agrochemicals
(e.g. fertilizers) and disputed agricultural practices, such as
the release of industrial effluents, municipal wastes and
sewage sludge in agricultural soils. Atmospheric deposition,
geogenic activities such as weathering, leaching and vol-
canism have also contributed to heavy metal pollution to a
great extent (Kubier et al. 2019; Singh et al. 2021). Heavy
metals are non-biodegradable; most show toxicity even at a
low concentration and accumulate in the soil. Consequently,
they adversely impact the functions of all the living entities
present there and eventually invade the food chain via edible
crops and pose a major threat to human well-being and food
safety (Kumar 2012; Sharma and Archana 2016).

Heavy metals may be classified as a group of metals that
have a high atomic weight and high density (>5 g cm−3)
(Nies 1999). They may be essential in trace amounts (e.g.
Mn, Cu, Fe and Zn) or nonessential with no known physi-
ological role (e.g. Cd, Hg, As and Pb) (Shanmugaraj et al.
2019). Cadmium (Cd) is highly mobile in soils and is the
most toxic nonessential metal with a long biologic half-life.
Cadmium is a trace element in the earth’s crust (0.2 mg/kg)
and generally occurs as oxides, sulfides, and carbonates in
zinc, lead, and copper ores. In the past, cadmium was used
mainly in metal electroplating, pigments and stabilizers for
plastics. In recent decades, the use of cadmium has been
growing up for its application in cadmium-nickel batteries,
the modern electronics and communication industry, and the
power industry. Cadmium is also released into the envi-
ronment, naturally through volcanic activity and weathering,
but mostly it is released into the environment through
municipal waste incineration, fossil fuel combustion and
smelting. Use of phosphate fertilizers and pesticides, irri-
gation with municipal waste, and sewage sludge are mainly
liable for agricultural soil contamination with cadmium
(Fig. 1). Cadmium content in agricultural soils ranges

between 0.01 and 1 mg kg−1, averaging 0.36 mg kg−1

worldwide (WHO 2000; Kubier et al. 2019). The World
Health Organization (WHO) has recommended a guideline
value of 3 µg/L for cadmium in drinking water (WHO
2010).

Chronic Cd exposure causes kidney damage, respiratory
disorders, cardiovascular disorder, hypertension, cerebral
infarction, disorders in glucose, calcium and vitamin-D
metabolism, bone lesions, osteoporosis, and diabetes in
humans. Cadmium also has embryotoxic, teratogenic and
carcinogenic effects. It has been reported in several studies
that the lung, kidney, breast and prostate are the primary
target organs for Cd carcinogenicity. The first documented
chronic cadmium poisoning incidence was the Itai-Itai dis-
ease that occurred in Japan in the 1950s. Cadmium is toxic
to living beings even at a low level, and has been classified
as a Group-I carcinogen to humans by International Agency
for Research on Cancer (IARC) in 1993 (WHO 2000; Hu
et al. 2016; Khan et al. 2017b). Cadmium entry into the
human body takes place mainly through the dietary intake
(e.g. cereals, vegetables) and bio-accumulates in different
organs as it is non-degradable, persistent, and has a bio-
logical half-life of 10–35 years. In comparison to other
cereals, the accumulation of cadmium in rice is much higher
and, therefore, increases the health risk in manifold of the
rice-consuming population of the world (Hu et al. 2016;
Kubier et al. 2019).

Besides animal toxicity, cadmium exhibits phytotoxicity
even at a low concentration. Cadmium is easily absorbed by
roots of crop plants, especially rice and other cereals and
leafy vegetables, during cultivation in Cd-polluted soil and
can be translocated to the aerial parts. Cadmium accumula-
tion in plant parts severely damages crop productivity
(Bolan et al. 2014). Cadmium toxicity triggers diverse
morphological, physio-biochemical, and molecular distur-
bances in plants, such as stunting overall plant growth,
wilting, senescence, reduced photosynthesis, reduced pig-
ment synthesis, leaf chlorosis, inhibition of seed germina-
tion, interference in nutrient uptake and disruption in the
electron transport chain. Cadmium stimulated oxidative
stress may also injure plasma membranes and a variety of
different biological molecules, such as nucleic acids and
proteins, by generating an excessive amount of reactive
oxygen species (ROS) (Gallego et al. 2012; Roy et al. 2016;
Moradi et al. 2019; El Rasafi et al. 2020).

Many traditional methods, such as soil dressing, soil
removal, chemical washing, soil liming, electrochemical
treatment, reverse osmosis, biochar amendment, bio-slurries
and other agronomic approaches, are used for
cadmium-contaminated soil remediation. These conven-
tional physicochemical Cd remediation methods are usually
expensive, require high maintenance and skilled labour, and
typically cause harm to the soil in the long run by the
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resultant secondary toxic products (Volesky 2001; Vinod
and Sashidhar 2011; Singh and Gadi 2012). Phytoremedia-
tion through hyperaccumulator plants is a possible alterna-
tive technique for the bioremediation of contaminated sites.
However, they have little practical value in the heavy metal
toxicity alleviation from the soil due to their slow growth
rate and small biomass (Blaylock et al. 1997; Kayser et al.
2000).

Bioremediation involving microorganisms has attracted
increasing interest in recent years (Dixit et al. 2015). The
free-living rhizospheric bacteria that assist in plant growth
and development are generally regarded as plant
growth-promoting rhizobacteria (PGPR). The approach of
using PGPR to alleviate heavy metal stress, including cad-
mium, is environment-friendly and inexpensive. PGPR also
promote plant growth by producing growth promoters
(Kloepper et al. 1980; Pramanik et al. 2017; Abbas et al.
2018). Microbial remediation of heavy metal toxicity
involves bioadsorption, bioaccumulation, complexation,
precipitation and biotransformation. PGPR like Bacillus
subtilis, Burkholderia gladioli, Citrobacter spp., Enter-
obacter aerogenes and Pseudomonas spp., have been found
effective in mitigating Cd toxicity in plants (Kumar 2012;
Pramanik et al. 2018; Khanna et al. 2019a; Halim et al.
2020). In this chapter, we summarized Cd uptake, its toxicity

and plant response to cadmium stress. Furthermore, we have
discussed Cd tolerance strategies found in PGPR and the
different PGPR mechanisms involved in Cd detoxification in
plants.

2 Cadmium Uptake and Transport in Plants

Cadmium is readily taken into the inside of plant root and then
translocated to the aerial plant parts. The uptake of Cd in the
higher plants is regulated by diverse aspects of soil and plant
characteristics, such as soil type, soil pH, presence of organic
matter, Cd availability, plant species, and their genotypes,
plant age and growth stage, presence of organic matter,
mineral elements, and nutrients. The adsorption and com-
plexation of Cd with soil minerals regulate its mobilization
and bioavailability in soil. An increase in soil pH and organic
matter stimulates Cd immobilization in soil mainly through
precipitation and chelation. Cd ions could be absorbed by root
cell transmembrane carriers, meant for uptake of essential
micronutrients, such as Ca2+, Fe2+, Mg2+, Cu2+ and Zn2+

(Dalcorso et al. 2008; El Rasafi et al. 2020; Halim et al. 2020).
The presence of Zn in ample amount in soil decreases Cd
uptake by plants as both of them use the same route to gain
entry into the root cell. It is worth noting that modulation of

Fig. 1 Sources of cadmium in agricultural soil
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soil conditions through soil management approaches can
significantly change the bioavailability of Cd (Hu et al. 2016).
The quotient of Cd concentration in the plant to that in the soil
defines the Cd transfer factor (TF), which ranges between
0.01 and 0.3 (Smolders 2001). Plant root cell walls can
transport cadmium to the xylem through passive transport
(diffusion) (Redjala et al. 2011). Cd can be transported
symplastically in root cortical cells through membrane
transporters, such as zinc transporter [ZIP], iron transporter
[IRT]) and metals pumping ATPase (Gallego et al. 2012; Wu
et al. 2015; Yamaguchi et al. 2011; Sebastian and Prasad
2018). Also, natural resistance-associated macrophage pro-
tein (NRAMP) family, cation/proton exchangers (CAX),
P-type ATPase, lysosomal cystine transporter (LCT) family
and ATP-binding cassette (ABC) transporters distribute Cd in
different plants parts (Gallego et al. 2012; Song et al. 2017; El
Rasafi et al. 2020). Cd ions are chelated to organic molecules
and distributed to different parts of the plant body through
xylem and phloem translocation after xylem loading via
apoplast or symplast route (Dalcorso et al. 2008).

3 Phytotoxicity of Cadmium

Due to the toxic effects of Cd, plants and other living beings
have no use for it. However, a few diatoms present in seawater
utilize Cd in the enzyme Cd-carbonic anhydrase (Lane and
Morel 2000). In plants, the bioaccumulation of Cd causes
severe toxicity symptoms, such as reduced photosynthesis,
chlorosis, wilting, altered enzyme activities, altered mem-
brane functioning, stunted growth and development, and
finally, plant death. However, the severity of Cd toxicity
depends on plant species and their genotypes (Shanmugaraj
et al. 2019). Cd binding with sulfhydryl groups in proteins,
due to its high affinity for it, interferes with protein configu-
ration, inhibits enzymatic activities and their regulation (Hall
and Brown 2002). Also, Cd2+ ions can displace chemically
identical cations, such as Cu2+, Ca2+, Zn2+ and Fe2+, from
catalytic sites of enzymes. The released free ions increase the
oxidative stress and could cause damage by the Fenton
reaction triggered by free Fe/Cu ions (Roy et al. 2016).

3.1 Effect on Plant Root

Roots accumulate more Cd, like other heavy metals, than
above-ground parts and show initial symptoms of Cd toxi-
city (Singh and Shah 2015). Cd interferes with the
micronutrient (Ca, Mg, Zn, K, P and Fe) uptake by the roots
and thus, disturbs the plant-water balance. Cd+2 ions mainly
bind with the negatively charged components of the cell
walls of the root. Exposure to Cd inhibits root growth and

lateral root formation but stimulates root hair formation
(Benavides et al. 2005; Daud et al. 2009). Cd could disrupt
the growth and elongation of the root in a dose-dependent
manner, as seen in soybean (Sahile et al. 2021). The
reduction of root length, decline in root surface area and
swelling of root diameter affect the nutrient uptake capacity
of roots. Cd forms a callus-like structure in the root through
enlargement of parenchyma cells and unorganized cell dif-
ferentiation (Halim et al. 2020). Cd stress changes the
appearance of the root system, and the roots become rigid,
necrotic, decomposing, twisted, and mucilaginous. Brown-
ing of the root is commonly associated with cd stress (Rascio
and Navari-Izzo 2011; Abbas et al. 2017). In tomato plants,
roots become thick and sturdy under Cd stress (Chaffei et al.
2004). Cd stress injures the DNA and the nucleoli in the
root-cap and root tip cells (Seth et al. 2008). Also, prolonged
exposure to Cd could increase the nucleus number in the
differentiated root cells and disrupt the mitotic index, induce
chromosomal anomaly, irregular mitotic behaviour, and
affect micronucleus formation when exposed to Cd (Fusconi
et al. 2006; Shanmugaraj et al. 2019).

3.2 Effect on Photosynthetic Apparatus

When a plant counters Cd contamination in its vicinity, it
affects photosynthetic growth parameters, such as total
chlorophyll and carotenoid contents, photochemical efficacy,
and intensity of photosynthesis. Cd exposure causes leaf roll,
damages chlorophyll content in old leaves and inhibits
biosynthesis of chlorophyll in newer ones to cause leaf
chlorosis (He et al. 2008; Xue et al. 2013). In several eco-
nomically important crops, such as Pisum sativum, Zea
mays, Hordeum vulgare, Brassica juncea, Triticum and
Oryza sativa, inhibition of photosynthesis due to a short and
long period of Cd exposure was well documented (Ci et al.
2010; Popova et al. 2012; Irfan et al. 2014; Pramanik et al.
2018; Almuwayhi 2021). Cd toxicity also triggers stomatal
closing and, subsequently, a reduction in photosynthetic
activity in higher plants. Cd strongly binds with several
proteins involved in photosystems I (PSI) and II (PSII). Cd
toxicity also injures the light-harvesting complex (Küpper
et al. 2007; Haider et al. 2021). Ribulose-1, 5-bisphosphate
carboxylase (RuBisCo), and phosphoenolpyruvate carboxy-
lase (PEPCase) are essential enzymes for CO2 fixation dur-
ing photosynthesis. Cd replaces cofactor Mg+2, needed for
the carboxylation step of Calvin cycle, of enzyme RuBisCo
and inhibits its activity. It also decreases the activity of
PEPCase (Siedlecka et al. 1998; Tran and Popova 2013). Cd
toxicity also reduces the e− flow from QA to QB by altering
the QB binding site. Cd ions can bind competitively at
Ca-binding sites and replace Ca+2 ions in Ca/Mn clusters of
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the water-splitting complex of PSII (Sigfridsson et al. 2004;
Faller et al. 2005). Cd exposure induces striking changes in
chloroplast number and ultrastructure, resulting in distortion
of shape and size of thylakoids (Najeeb et al. 2011). Cd
stress also deforms thylakoid discs and grana, decreases
stored starch, and plastoglobuli deposit, as reported in Picris
divarticata, Hordeum vulgare, Oryza sativa L.) and Brassica
(Ying et al. 2010; Wang et al. 2011; Elhiti et al. 2012;
Parmar et al. 2013).

3.3 Effect on Plant Growth and Biomass

Cadmium toxicity negatively affects general growth, induces
growth deformities in many species of plants (Haider et al.
2021). A substantial decrease in the leaf growth and devel-
opment was reported in Capsicum annuum L. and Brassica
oleracea L. under Cd exposure (León et al. 2002; Jinadasa
et al. 2016). Also, Cd toxicity decreased shoot and root growth
of Solanum tuberosumL. at 60 mg/kg of Cd in pot trials, shoot
dry matter of cucumber at 0.05 mM of Cd concentration, and
the development of root, stem, and leaves of pepper at 2 mM
and 10 mMofCd, respectively, in the hydroponic system (Xin
et al. 2014; Hassan et al. 2016). The long-term effect of Cd
stress exhibits a rapid and significant decline in crop yields,
especially in cereal production, due to disruption of nutrient
uptake and photosynthesis in plants (Rizwan et al. 2016). Plant
growth inhibition under Cd stress is well reported in many
species, such as rice (Oryza sativa), rape plant (Brassica napus
L.), mungbean (Vigna mungo), chickpea (Cicer arietinum L.),
tomato (Lycopersicon esculentum L.), sorghum (Sorghum
bicolour), lentil (Lens culinaris L.), durum wheat (Triticum
turgidum) and soybean ((Glycine max L.) (Rizwan et al. 2012;
Mondal et al. 2013; Roy et al. 2016; Dutta et al. 2018; Pra-
manik et al. 2018; Pal and Sengupta 2019; Zhao et al. 2019;
Zhi et al. 2020; Bansal et al. 2021).

3.4 Effect on Seed Germination

Cadmium toxicity to plants diminishes water content in
seedlings and delays the breaking of seed dormancy, and
ultimately, the seed fails to germinate. The failure of seed
germination severely hampers crop productivity. The inhi-
bitory effect of reduced water content for embryos resulting
from Cd stress was reported in seedling and seed germina-
tion of Arabidopsis sp., and cowpea (Vigna unguicu-
lata L.) (Li et al. 2005; Vijayaragavan et al. 2011). Water
deficiency, endospermic starch immobilization, and a
decrease in sugar transport to the embryo resulted in the
failure of seed germination (Kuriakose and Prasad 2008).
Under Cd exposure, low activity of hydrolyzing enzymes,

such as a-amylase, has resulted in slow transport of stored
foods (Kalai et al. 2016; Haider et al. 2021). Under Cd
stress, seeds were failed to germinate in sunflower
(Helianthus Annuus) by >50% after being treated with 40
and 50 mg kg−1 Cd, wheat by 31% at 0.03–4.8 mM of Cd,
soybean by 8.0% at 5 mg/L, lettuce by 19% at 5 mg/L,
sugarbeet by 18% at 5 mg/L and rice by 100% at 1.0 mM of
Cd (Ahsan et al. 2007; Jadia and Fulekar 2008; Li et al.
2013; de Souza Guilherme et al. 2015). However, a little
increase in germination at low Cd concentration was
reported due to the limiting effect of metal on free oxygen
radicals and nitric oxide, which regulate oxidative stress
(Shanying et al. 2017). Moreover, Cd has a strong affinity
for the Ca-calmodulin binding sites. The binding of Cd to
calmodulin greatly affects metabolic activity and seed ger-
mination (Huybrechts et al. 2019).

3.5 Oxidative Stress

Cadmium toxicity in plants is mainly caused due to reactive
oxygen species (ROS) generation and change in the
antioxidant system, which increases oxidative stress. How-
ever, Cd is redox-inactive and cannot transfer single elec-
trons to generate reactive oxygen species (ROS). Cd toxicity
may generate ROS indirectly through the alternation of the
electron transfer chain by disrupting chloroplasts and also by
damaging antioxidant defence (Gallego et al. 2012). ROS
examples include superoxide (O2

¯), hydrogen peroxide
(H2O2), and hydroxyl radicals (OH¯). In plants, Cd-induced
oxidative damage results in lipid and protein peroxidation,
and consequently, disrupts lipid-rich plasma membrane, as
well as DNA (Younis et al. 2016; Shanmugaraj et al. 2019).
Plants have evolved an advanced antioxidant system to
manage oxidative stress that primarily involves enzymatic,
such as glutathione reductase (GR), peroxidase (POX),
superoxide dismutase (SOD), glutathione peroxidase (GPX),
ascorbate peroxidase (APX), catalase (CAT), monodehy-
droascorbate reductase (MDHAR), dehydroascorbate
reductase (DHAR) and non-enzymatic antioxidants, such as
a-tocopherols, non-protein amino acids, alkaloids, phenolic
compounds, carotenoids, ascorbic acid (ASA) and reduced
glutathione (GSH). Cd stress alters the activity of antiox-
idative enzymes and non-enzymatic antioxidants (El Rasafi
et al. 2020). Under the exposure to Cd, the activity of GR
and APX increases in wheat. GR activity also increases in
rapeseed (Brassica juncea L.), cotton, and mungbean (Vigna
mungo L.) (Gill and Tuteja 2010; Tran and Popova 2013).
However, the scavenging activities of POX in rapeseed,
SOD, and CAT in sunflower, common bean, and pea,
decrease under Cd stress (Sandalio et al. 2001; Markovska
et al. 2009; Haider et al. 2021).
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4 Cadmium Detoxification Mechanisms
in Plant

To manage Cd toxicity, plants can employ either or both
tolerance and avoidance approaches. To avoid Cd toxicity,
plants minimize the uptake of Cd through the roots by
immobilization. In the tolerance approach, plants store and
accumulate Cd in vacuoles, bind it to cell walls, phy-
tochelatins (PCs), peptides, amino acids and proteins. Stress
signaling pathways and signaling molecules, such as jas-
monic acid, salicylic acid, ethylene and nitric oxide, take
part in key pathways to reduce toxic effects of Cd in plants
(Tran and Popova 2013; Haider et al. 2021). Plants have
several strategies to minimize Cd stress, such as immobi-
lization, dissemination, expulsion, chelation, vacuolar
sequestration and compartmentalization, synthesis of
stress-signaling molecules and proteins. Plants can immo-
bilize Cd in the rhizosphere by secreting root exudates which
contain several low- and high molecular weight organic
compounds, including proteins, polysaccharides and phe-
nolic compounds. In the root cell wall, pectins, having
egg-box structures, and hemicelluloses are the primary site
for cd binding and retention. The plasma membrane can
exclude Cd ions from entering the cytosol and help in efflux
from the cell. Under Cd stress, plants activate the synthesis
of phytochelatin, small metal-binding peptides linked to
sulfur metabolism. Phytochelatins with thiolic (–SH) groups
of Cys chelates Cd to form complex structures, and as a
result, prevent dissemination of free Cd+2 ions inside the
cytosol. Synthesis of metallothioneins also helps in the
chelation of Cd in the cytosol. Plant vacuoles play a very
significant role in Cd detoxification by sequestrating it with
the help of different ions and metabolites inside the vacuoles.
Vacuolar sequestration checks the distribution of free Cd
ions inside the cell. Vacuoles have ATPases, NRAMP
family transporters, Ca2+ ion transporters, and ATP-binding
cassette (ABC) type C transporters in their wall, which
controls Cd detoxification in the cell vacuole. In Arabidop-
sis, heavy metal ATPase3 (HMA3) in roots regulates Cd
concentration in leaves by accumulating Cd in the roots (Di
Toppi and Gabbrielli 1999; Halim et al. 2020). Plant
antioxidant defence mechanisms can also minimize oxida-
tive damages caused by Cd toxicity (Wang et al. 2008).

5 Mechanisms of Cadmium Tolerance
in Plant Growth-Promoting Rhizobacteria

Plant-associated non-symbiotic rhizospheric bacterial strains
that assist in plant growth, directly or indirectly, are regarded
as Plant growth promoting rhizobacteria (PGPR) (Glick

1995). PGPR plays a significant part in increasing agricul-
tural yield through plant–microbe interaction even in con-
taminated soil. They are also utilized for the remediation of
heavy metals, including Cd, polluted sites. Cd-tolerant
PGPR, which helps in phytoextraction to remove Cd from
the soil, improve Cd mobilization and bioavailability,
increase root surface area for Cd uptake, and elevate
translocation of Cd from root to aerial parts to boost Cd
accumulation in plants. However, many PGPR strains help
in plant growth promotion without raising Cd levels in
edible crops that grow in contaminated soils. Several
mechanisms have evolved in Cd-tolerant PGPR to cope with
the heavy metal toxicity, and as a result, reduce Cd stress in
plants. These include efflux, extracellular complexation,
biosorption, precipitation, biotransformation and sequestra-
tion (Sharma and Archana 2016).

After entry into the cell, Cd must be rapidly and effec-
tively removed from the cell or transformed into a
non-or-less toxic form. The energy-dependent cadA efflux
transporter protein, encoded by cadA gene of plasmid pI258
in Staphlococcus aureus, is involved in the removal of
cadmium from the cell (Ganesan 2008). The gene CadB
located on the same plasmid also confers Cd resistance by
changing the binding site (Wheaton et al. 2015). The Cad
system was also reported in Ralstonia sp. CH34. The cadA
gene codes for cadmium resistance. The cadB gene expres-
sion is possible only when there is no cadA gene. Alcali-
genes eutrophus confers Cd resistance due to the presence of
the Czc system which effluxes cadmium and other heavy
metals (zinc and cobalt) (Nies 2003; Hynninen 2010). The
efflux system for Cd resistance, consisting of czcB and
smtAB gene, is also present in the E. coli P4 strain (Khan
et al. 2015). P-type ATPases, cation diffusion facilitator
(CDF) family, CBA (Capsule biogenesis/assembly) family,
and chemiosmotic family of transporters help in the efflux of
Cd ions and Cd resistance (Nies 2003).

Biosorption plays a significant role in minimizing Cd
toxicity to the bacterial cell under Cd exposure. The
biosorption of Cd ions depends on metal adsorption, com-
plexation, and bioaccumulation and makes it non-available
to other organisms (Coelho et al. 2015). Metallothioneins in
bacteria are cysteine-rich low molecular weight cytoplasmic
proteins that help in positively charged metal (Cd) binding
(Naik and Dubey 2017). Many bacteria with negatively
charged cell walls or envelop can bind with dissolved Cd+2

cations. Bacterial exopolysaccharides (EPSs) with their
anionic groups play a significant part in absorbing Cd ions
from their vicinity. Metal biotransformations through
oxido-reduction reactions, methylation and demethylation
confer resistance against heavy metals in bacteria (Silver and
Phung 2005).
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6 Cadmium Resistant PGPR in Cadmium
Detoxification in Plants

Cd bioavailability in the rhizospheric region has been the
major reason for Cd toxicity in plants. The use of PGPR
strains for plant growth and minimization of Cd uptake in
edible crops provides an efficient, ecologically sustainable
alternative strategy for bioremediation and maintaining food
safety. However, in non-hyperaccumulator plants, Cd-
tolerant PGPR could lower the uptake and distribution of
Cd into the above-ground plant parts; whereas in hyperac-
cumulator plants, it may facilitate the Cd uptake and bioac-
cumulation in the plant. Cd resistant PGPR, such as Bacillus
sp., Pseudomonas spp., Burkholderia sp., Ochrobactrum,
Chryseobacterium sp., Enterobacter sp., Serratia sp., Kleb-
siella sp., reduce a significant amount of the Cd content in
edible crops (Table 1). PGPR can alleviate cadmium toxicity
through several mechanisms, ensuing plant growth. PGPR
characters, such as the production of plant growth regulators
including IAA, 1-aminocyclopropane-1-carboxylate deami-
nase (ACCD) production, siderophore production, organic
acid secretion, and phosphate solubilization (Fig. 2), help in
plant growth enhancement and minimization of Cd toxicity in
Cd-polluted soil (Table 2) (Pramanik et al. 2018).

6.1 Cadmium Immobilization in Soil

PGPR-induced Cd stabilization in soil has great importance
for diminishing Cd bioaccumulation in crops and simulta-
neously enhancing agricultural productivity and crop qual-
ity. PGPR can reduce the mobilization and phytoavailability
of Cd by acting directly as biosorbents or as bioaccumulators
(Voleskya and Holant 1995). Due to the high area-to-volume
ratio of the bacterial cell and many metal attachment sites,
PGP bacteria can act as excellent biosorbents (Gadd 1990).
Cd binding extracellular polymers, such as exopolysaccha-
rides and proteins, are produced by PGPR strains and could
bind a substantial quantity of harmful heavy metals includ-
ing Cd to immobilize them by precipitating as insoluble
sulfides and oxides. Cd ions bind to the polyphosphate
bodies, phytochelatins (PCs), metallothioneins (MTs) and
other proteins to form various types of metal complexes, as
reported in Pseudomonas putida. Chelator-Cd complexes are
then transported to the vacuole for sequestration (Rayner and
Sadler 1989; Dong et al. 2007). The release of organic
molecules and slimes outside the bacterial cell wall increase
Cd biosorption and sequestration in the root (Madhaiyan
et al. 2007).

6.2 Cadmium Precipitation

PGP bacteria have anions, such as sulfides and phosphates on
their cell walls. Cd2+ ions could bind with these negatively
charged surfaces. The binding and subsequent precipitation of
Cd2+ reduces its phytoavailability (Lamelas et al. 2006). For
example, sulfate-reducing bacteria carried out sulfate reduction
in presence of organic substances or H2, and as a by-product,
precipitate less soluble Cd sulfides (CdS) (Violante et al. 2010;
Menon and Voordouw 2018). Also, PGPR under Cd and other
heavy metals exposure produce H2S that reacts with free Cd+2

extracellularly to precipitate, as CdS.

6.3 Plant Growth-Promoting Activities
to Counter Cadmium Toxicity

6.3.1 Nitrogen Fixation
Nitrogen (N) is by far the most vital micronutrient for plant
growth enhancement and agricultural productivity. It also
enhances Cd tolerance in plants, with the production of
nitrogen metabolites, such as GSH and phytochelatins, which
play a significant part in defence against Cd toxicity. The
presence of nitrogen in agricultural soil increases RuBisCo
activity and photosynthetic yield, along with Cd tolerance
(Jalloh et al. 2009). PGPR can fix free atmospheric nitrogen,
act as a biofertilizer and remove N limitation in soil for plants.
It was reported in a study that N2-fixing Cd-tolerant Klebsiella
mobilis promotes grain production in barley and reduces Cd
concentration under Cd stress (Pishchik et al. 2002).

6.3.2 Phosphorus Solubilization
Phosphorus (P) also plays a significant function in overall
plant growth and crop productivity. Complexation and
biosorption of Cd with the phosphate groups present in the cell
wall play significant roles in regulating Cd uptake and distri-
bution in plant parts. P amendment in Cd-polluted soil
enhances the quantity of chlorophyll and, as a result, improves
photosynthetic yield in Zea mays (Jiang et al. 2007). ( Many
bacteria are capable of organic and inorganic phosphate
complexes solubilization in soils, resulting in enhancement of
P bioavailability. Application of phosphate solubilizers in
Cd-polluted soils stimulates Cd immobilization as a result of
the precipitation of Cd-phosphate complexes (Park et al.
2010). Similarly, many zinc solubilizing PGPR increases Zn
phytoavailability (Saravanan et al. 2011). It is believed that Zn
solubilization in the soil is an efficient strategy to promote crop
productivity by limiting Cd bioavailability to plants and
diminishing Cd uptake through roots.
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Table 1 Cadmium resistant PGPR-plant interaction in alleviating cadmium stress in plants

PGPR strains Plant Cd concentration Effects and mechanisms References

Pseudomonas sp. K32 Oryza sativa Exhibit resistance to
4000 lg/ml of Cd

Improve rice seedling growth through IAA
production, nitrogen-fixation and phosphate
solubilization under Cd stress; Cd bioaccumulation
by the strain reduces Cd uptake by plant

Pramanik
et al.
(2021)

Bacillus licheniformis Spinacia
oleracea L

25, 75 and 125 ppm of
Cadmium chloride
(CdCl2)

With the exogeneous application of melatonin,
enhance antioxidant enzymes (SOD, POX, CAT)
activity, inhibits lipid peroxidation and chlorophyll
damage

Asif et al.
(2020)

P. fluorescens 21,
P. putida 23

Hordeum
vulgare L

10 mg Cd kg−1 soil Increase root growth, decrease Cd content in roots
and improve mineral nutrition of the plant; Cd
immobilization in soil organic matter due to Cd
sequestration by bacterial siderophores

Shabayev
et al.
(2020)

Enterobacter sp. EG16,
Enterobacter
ludwigii DJ3

Lycopersicon
esculentum L

50 and 100 mg kg−1

of CdCl2 concentration
Improve shoot and root dry weight, decrease Cd
transport to aerial parts; Cd immobilization due to
bacterial adsorption, bioaccumulation and chelation,
resulting in a decrease in Cd bioavailability in soil

Li et al.
(2020)

Serratia sp. CP-13 Linum
usitatissimum
L

5–10 mg Cd kg−1 Increase plant biomass, antioxidation, photosynthetic
pigments, minerals uptake, decrease lipid
peroxidation through IAA production, ACC
deaminase activity and phosphate solubilization

Shahid
et al.
(2019)

Bacillus cereus M4 Oryza sativa
L

Cd exposure of
1.0 mg/kg soil

Reduce Cd uptake and bioaccumulation in rice,
reduce oxidative stress by producing Glutathione,
enhance IAA production

Wang
et al.
(2019)

Pseudomonas
aeruginosa,
Burkholderia gladioli

Lycopersicon
esculentum L

Cd stress of 0.4 mM Enhances photosynthetic pigment content, fresh
weight, root and shoot length through the production
of phytohormone, mineral uptake, N2 fixation;
Production of Cd chelating thiol compounds reduces
Cd bioavailability in soil and bioaccumulation in
seedling

Khanna
et al.
(2019a)

Klebsiella michiganensis Oryza sativa
L

Cd concentrationof
200 lg/ml

Promotes plant growth through IAA production,
ACC deaminase activity and phosphate solubilization
reduces Cd bioavailability due to Cd sequestration

Mitra et al.
(2019)

Paenibacillus
sp. ISTP10

Gossypium
hirsutum L

60 mg of Cd kg−1 of
dry soil

Increase chlorophyll content, plant fresh and dry
weight, shoot and root length through N2 fixation,
phosphorous solubilization, production of IAA, EPS,
ammonia, HCN, and siderophores

Kumari
and
Thakur
(2018)

Enterobacter Aerogenes
MCC 3092

Oryza sativa
L

Show resistance to
4000 mg ml−1 Cd

Enhance chlorophyll pigments, increase shoot and
root length through IAA production, N2 fixation,
phosphate solubilization, and ACC deaminase
activity

Pramanik
et al.
(2018)

Serratia marcescens
RSC-14

Solanum
nigrum

Cd resistance up to
4 mM (minimum
inhibitory
concentration)

Enhance plant growth, root elongation through
bacterial cell wall binding, Cd efflux, production of
(IAA), antioxidant enzymes, non-enzyme
antioxidants, acetoin, butanediol, and phosphate
solubilization, three CzcD proteins provide Cd
tolerance and transportation

Khan et al.
(2017a)
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6.3.3 Secretion of Organic Acid
Excretion of organic acids, such as gluconic acid, succinic
acid, salicylic acid, oxalic acid and citric acid by PGPR, are
well reported. These organic acids help in Cd detoxification
in plants by chelating with free Cd+2 ions. The release of
organic acids by PGPR is a well-known mechanism that
affects the mobility of Cd ions in rhizospheric soil by
altering soil pH, organic matter contents and ionic strength
(Halim et al. 2020). For instance, gluconic acid production
by glucose dehydrogenase enzyme was studied in many
PGPR. It was reported that gluconic acid produced by
Enterobacter asburiae enhances growth in Vigna radi-
ata under Cd exposure. Organic acids also upregulate
antioxidant defence systems, such as SOD and POX under
Cd stress (Goldstein 1995; Kavita et al. 2008), and help in
phosphate solubilization in soil.

6.3.4 Siderophore Production
Siderophores play an important role in improving the iron
status of the plant. It also binds with heavy metals to restrict
metal mobility and increase accumulation (Rajkumar et al.
2010). These are low molecular weight compounds released
by rhizospheric bacteria that bind to iron (Fe+3) ions with
great affinity. Siderophores, with their iron-binding ability,
improve iron bioavailability which would result in plant
growth. Also, the increase in iron level, in return, would
affect the uptake of Cd, thus imparting Cd resistance. In
Pseudomonas sp., synthesis of green pigmented siderophore,
i.e. pyoverdine, has been reported under Cd stress (Dao et al.
1999). It enhances plant growth and reduces Cd intake in
Vigna mungo (Tripathi et al. 2005). Siderophore producing
P. aeruginosa also enhances iron intake in Brassica
sp. under Cd stress (Sinha and Mukherjee 2008).

6.3.5 ACC Deaminase Production
Ethylene, a stress-signaling molecule, is produced
from L-methionine through the intermediate products,
S-adenosyl-1-methionine (SAM) and 1-aminocyclopropane-
1-carboxylic acid (ACC). Ethylene triggers the production of
SOD, APX and ROS, which ultimately results in senescence
in plants. ACC deaminase (ACCD) cleaves the immediate
ethylene precursor, ACC, to produce a-ketoglutarate and
ammonia, and resultantly, reduce ethylene formation. The
production of ACCD plays a significant role in Cd resistance
mechanisms in plants (Glick 2005; Saleem et al. 2007).
ACCD activity stimulates seed germination, root formation

in tomato and plant growth in mustard and rape plants under
Cd stress (Grichko et al. 2000; Belimov et al. 2001).

6.3.6 IAA Production
PGP traits, such as root hair formation and root elongation,
shoot elongation, are immensely controlled by the produc-
tions of phytohormones, e.g. IAA, gibberellins and cytoki-
nins. IAA production is regarded as one of the widely
accepted plant growth-promoting traits for PGPR. IAA
produced by PGPR strains enhances root elongation in
Brassica napus (Sheng and Xia 2006). Plant growth pro-
motion and alleviation of Cd toxicity by IAA producing
Enterobacter aerogenes MCC 3092 and Pseudomonas
sp. SNA5 in rice and wheat, respectively, was reported when
exposed to Cd (Verma et al. 2015; Pramanik et al. 2018).

7 Conclusions and Future Prospects

PGPR has been enhancing crop productivity and crop
quality in stressed soil through different plant
growth-promoting mechanisms. With the recent interesting
progress, bioremediation of cadmium stress in plants
through PGPR has emerged as a promising technique.
However, the use of PGPR on a commercial scale will
require much deliberation regarding the preservation of the
quality and efficacy of the PGPR product and delivery
mechanisms. Future studies will also look into the bacterial
genes responsible for PGP traits. It might help in developing
and designing bacteria with many PGP traits. The use of
genetically engineered PGPR will be more effective in
reducing Cd toxicity and plant growth promotion with their
multifunctional PGP traits (Glick 2012). Rapid improvement
and application of modern tools and nanotechnology open
the door for the production of PGPR-mediated bionanohy-
brids, nano-fertilizers and biosensors. These bionanohybrids
will play a vital role in Cd immobilization and maintaining
macro and micronutrient balance in the rhizospheric soil.
Future improvement and advancement of PGPR-based new
technology in Cd detoxification in soil and plants will guide
and bring in agricultural prosperity in the coming decades.

In recent decades, rapid accretion in anthropogenic
activities led to cadmium contamination in the environment.
The increase of cadmium pollution in the agricultural soil
has led many scientists to focus on developing rapid,
low-cost and efficient Cd detoxification technologies for
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Fig. 2 Mechanisms of PGPR in alleviating cadmium stress in plant

Table 2 Mechanisms of PGPR for cadmium detoxification in plants

Plant
growth-promoting
traits

Mechanisms of plant
growth

Cd detoxification
mechanisms

Examples of PGPR strains References

ACC deaminase
(ACCD)
production

Alteration of ethylene,
which enhances
senescence, synthesis by
producing a-ketoglutarate
and ammonia; NH4

+ act as
N-source

Indirectly decreases
Cd-stimulated ROS
generation and
decreases oxidative
damage

Pseudomonas sp., Pseudomonas
fluorescens, Enterobacter
aerogenes MCC 3092, Azoarcus
sp. CIB, Klebsiella michiganensis

Govindasamy et al.
(2015), Pramanik et al.
(2018), Mitra et al.
(2018b),
Fernández-Llamosas et al.
(2020), Halim et al.
(2020)

IAA production Act as a plant growth
regulator, enhance root
hair development and root
elongation

Stimulates Cd
biosorption and
translocation;
decrease oxidative
damage

Azospirillum spp., Bacillus
subtilis, Enterobacter sp. strain
EG16, Pseudomonas putida,
Lysinibacillus varians strain
KUBM17,
Klebsiella michiganensis,
Bacillus cereus strain ALT1

Bhattacharyya and Jha
(2012), Chmielowska-Bąk
et al. (2014), Chen et al.
(2016), Mitra et al.
(2018b), Sahile et al.
(2021)

P solubilization Enhance phosphate
bioavailability by
converting insoluble
phosphorus to a soluble
form

Precipitation of
cadmium-phosphate
compounds

Burkholderia sp., Azotobacter
sp., Bradyrhizobium sp.,
Klebsiella michiganensis,
Leifsonia sp., Enterobacter sp.,
Enterobacter ludwigii GAK2

Bhattacharyya and Jha
(2012), Guo and Chi
(2014), Ahmad et al
(2016), Mitra et al.
(2018b), Adhikari et al.
(2020)

Zn solubilization Increase Zn bioavailability Reduce Cd uptake Pseudomonas aeruginosa,
Serratia liquefaciens,
Pseudomonas moraviensis,
Enterobacter hormaechei,
Pseudomonas frederiksbergensis

Saravanan et al. (2011),
Kumar et al. (2019), Fahsi
et al. (2021)

(continued)
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plants. Further research on how plant growth-promoting
rhizobacteria interact with Cd ions and plants in response to
cadmium stress would allow us to comprehend the knowl-
edge of the phytoavailability of cadmium in rhizospheric soil
effectively. The knowledge about these processes provides
insight into the strategies employed by bacteria for Cd
detoxification in plants. It would also aid in the prediction of
the plant response in a stressed environment. This chapter
summarizes the current understanding of natural and
anthropogenic sources of cadmium contamination, the
intricate interaction between rhizospheric growth-promoting
bacteria, soil and plant under Cd stress. Here, PGPR acts as a
mediator that regulates bioavailable Cd level and their
detoxification in plant cells in a sustainable manner. The
knowledge about these processes offers valuable insights
into the strategies for developing PGPR-based bioremedia-
tion technologies to mitigate the growing risk of Cd toxicity
for worldwide agricultural yield and productivity.
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Harnessing the Power of Microbes
to Overcome Heavy Metal Stress in Crop
Plants

Khomdram Niren Singh and Diganta Narzary

Abstract

The declining of crop productions due to various biotic
and abiotic factors is evident these days. Among the
various factors, heavy metal stress is one of the major
abiotic factors which is responsible for lower crop
productivity that needs to be addressed and resolved.
There are a few ways to overcome heavy metal stress in
crop plants, which require appropriate selection for
effective results. Many strains of microbes (bacteria,
fungi, algae) have intrinsic properties to either absorb,
uptake, or change the chemical properties of metals
available to the plants. There are several reports that claim
the effective use of microbes in mitigation/bioremediation
of heavy metal contamination in soil and water. Being
microbial treatment of the heavy metal contaminated soil
is one of the best options available in terms of their
cost-effectiveness and environmental friendliness in over-
coming metal stress in crop plants. Therefore, in this
chapter, we have highlighted and discussed the various
sources of heavy metal contamination in crop fields, their
toxic effects on crop plants, the various mechanism
adopted by plants to resist the toxic effects of heavy
metals, and the microbial potential in bioremediation of
heavy metals that include the heavy metal resistance and
uptake mechanism in microbes, their effective use in
bioremediation, and finally, we have discussed the
application of advanced technologies such as genetic
engineering and omics technology in the field of micro-
biology for their potential use in the bioremediation of
heavy metals.
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1 Introduction

The growing world population and food crisis cannot be
ignored, and an estimated 155 million people worldwide
have suffered acute food insecurity according to GRFC
reports in 2021 (Global Report on Food Crises 2021).
Therefore, to meet the world’s food needs, it has become a
very important and challenging task for mankind to increase
the global food production capacity by all possible means.
As we know, the quality of the soil is the key factor in food
production. The deterioration of soil quality due to increas-
ing human interference, industrialization, and other anthro-
pogenic activities is the main reason for the reduced food
production capacity, however, soil quality can be improved
by using appropriate soil treatment methods. The contami-
nation of heavy metal(s)/metalloid(s) in soil is one of the
important factors that often creates tremendous plant stress
resulting in decreased plant growth and food production.

The stress experienced in a plant when exposed to dif-
ferent external factors such as physiological, biological, or
chemical that affect plant growth, reproduction, and pro-
ductivity is known as plant stress. As mentioned earlier,
heavy metal(s)/metalloid(s) is one of the major abiotic fac-
tors responsible for stress in crop plants, but some of them
(e.g., Fe, Cu, Mn, Mo, Zn, Ni, Co) are required as
micronutrients for enzyme stabilization and metabolic reac-
tions in plants (Bruins et al. 2000; Alloway 2013), whereas
many of them are non-essential heavy metals (e.g., As, Al,
Be, Cd, Cr, Hg, and Pb), i.e., not required in plant meta-
bolism. Both essential and non-essential heavy metals are
highly toxic to plants if present at high concentrations in the
soil, which often leads to a drastic effect on the plant growth
and metabolism (Tiwari and Lata 2018). In China alone,
over 20 million hectares of agricultural land are contami-
nated with heavy metals (He et al. 2020). The order of metal
toxicity reported in plants is Cd > Co > Hg > Mn > Pb > Cr
(Chibuike and Obiora 2014), whereas the order of metal
inducing mutagenic effects in plants is: Hg, Cd > Zn, Pb, Cu,
Ni, Co, Al, Cr > Mn (Küpper and Andresen 2016). Heavy
metal toxicity varies with the plant species, specific metal,
concentration, chemical form, and soil composition (Naga-
jyoti et al. 2010). Heavy metal pollution in the soil not only
affects plant growth and metabolism, but it can also enter
into the food chain system that ultimately reaches the human
body and causes the body to suffer serious illness, disorders,
disabilities, and cancer (Iyengar and Nair 2000; Türkdoǧan
et al. 2003; Briffa et al. 2020).

Microbes are small living organisms that generally have
short generation times and small genome sizes, which allows
them to adapt quickly to a changing environment (Bleuven
and Landry 2016). Their habitats on earth are so vast that
they have been reported from all the spheres of the earth.

The utilization of microbes and microbial products is a
decade-old practice and is well associated with the growth
and development of humankind. Microbes have been uti-
lized for the large-scale production of a wide variety of
biochemicals and metabolites such as amino acids, vitamins,
alcohols, drugs, antioxidants, immuno-suppressants,
enzymes, and enzyme inhibitors (Demain and Sanchez 2009;
Demain 2014; Gupta et al. 2014). There are also several
reports on microbes being used for cleaning heavy metal
contaminated environments such as sewage and soil
(Congeevaram et al. 2007; Chaturvedi 2011; Bhattacharya
and Gupta 2013; Marzan et al. 2017). The ability of
microbes to remove heavy metals can be harnessed for
effective use in the fields to remove or reduce the toxicity of
heavy metals and their stress on plants.

This chapter discusses microbes and their potential use as
bioremediation tools to overcome heavy metal stress expe-
rienced in crop plants. The first section of the chapter pro-
vides an overview of heavy metal pollution in arable land
and its influence on plant growth. The second section pro-
vides the heavy metal signaling and tolerance in crop plants.
The third section deals with the heavy metal resistance in
microbes and their potential for the bioremediation of heavy
metals to improve crops. The final section provides the
recent advancement in omics technology for heavy metal
bioremediation.

2 Heavy Metal Contamination in Croplands
and Their Influences on Plant Growth

Heavy metals are those having an atomic number above 20
and an atomic density above 5 g/cm (Duffus 2002). Their
toxicity in plants is determined by their bioavailability in the
soil (Hossain et al. 2012) and the degree of resistance that a
plant develops against them (Hossain et al. 2012). Their
toxic effect on plants mainly involves disruption of impor-
tant enzyme function and ion regulation, which inhibits
DNA and protein formation (Hossain et al. 2012). The
various effects of heavy metals on plants are listed in
Table 1.

2.1 Sources of Heavy Metal Pollution in Soil

Heavy metals occur naturally in trace amounts
(<1000 mg/kg) in the soil and are generally non-toxic to the
living plants and animals at such low concentrations (Wuana
and Okieimen 2011). The man-made disturbance in the
geochemical cycle of metals can, however, lead to an
accumulation of heavy metals in a concentration that is far
above the defined background of heavy metals in the soil
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Table 1 Toxic effects of heavy
metal exposure on plants

Heavy metals Toxic effects on plants References

Aluminium
(Al)

It mainly affects the root system and causes reduced
plant growth. In the root system, it causes stunted and
brittle roots, poor development of root hair, swollen, and
damaged root apices. Al interferes with the replication of
DNA and cell divisions in the root system, also reduces
root respiration, and interferes with the enzymes
governing polysaccharide deposition in the cell wall

Panda et al. (2009),
Bojórquez-Quintal et al.
(2017)

Arsenic (As) Inhibits root extension and proliferation, severely
inhibits plant growth, compromises reproductive ability.
At high concentrations, As interferes with critical
metabolic and physiological processes and may lead to
the death of the plant

Finnegan and Chen (2012),
Kalita et al. (2018)

Cadmium
(Cd)

Causes chlorosis and shunted plant growth. Inhibition of
plant growth and necrosis occurs at a higher level. Cd
also decreases seed germination

Haider et al. (2021)

Chromium
(Cr)

Alter germination process, also negatively affects the
growth of root, stem, and leaves. High Cr concentration
causes degradation of photosynthetic pigments which
leads to deficiency in light-harvesting capacity

Shanker et al. (2005),
Srivastava et al. (2021)

Cobalt (Co) It mainly affects on growth and metabolism of plants. It
causes leaf fall, discoloured veins, greening inhibition,
reduced shoot size. A high concentration of Co also
leads to the production of ROS, OH− radicals, H2O2

radicals in plants and also alter antioxidant enzyme
activities, which may lead to the dysfunction of plants

Palit et al. (1994), Mahey
et al. (2020)

Copper (Cu) It mainly damages plant roots in the form of root cuticle
disruption, reduction of root hair proliferation, and
deformation of the root structure

Sheldon and Menzies
(2005)

Iron (Fe) It causes discolouration of leaves and stunted root
systems in plants. It leads to reduced chlorophyll content
in plants and therefore limited photosynthetic activities.
Higher Fe concentration leads to the production of ROS
which causes damages to DNA, proteins, carbohydrates,
and lipids which further leads to cellular death

Li et al. (2016a), Zahra
et al. (2021)

Lead (Pb) Inhibits plant growth, germination of seed, development
of seed, elongation of a root, transpiration, chlorophyll
production, and reduction of protein content

Pourrut et al. (2011)

Mercury (Hg) Inhibits plant growth, effects on nodulation and N2

fixation of legumes, decreases photosynthetic activity,
water uptake, and antioxidant enzymes

Mondal et al. (2015)

Manganese
(Mn)

It causes interveinal chlorosis, the appearance of pale
mottled leaves, and the development of grey speck in
leaves in severe conditions. It also causes necrotic spots
on older leaves

Alejandro et al. (2020)

Molybdenum
(Mo)

Molybdenum toxicity is extremely rare in plants. Mild
effects include turning leaves yellow and reducing
seedling growth

Bittner (2014)

Nickel (Ni) The negative effects/toxic effects of Ni include reduced
seed germination, reduced root and shoot growth, and
reduced biomass accumulation. Higher Ni concentration
also induces chlorosis, necrosis, and wilting

Bhalerao et al. (2015),
Hassan et al. (2019)

Zinc (Zn) It causes curling of young leaves; shoot stunting, leaf
tips death, and chlorosis. A high concentration of Zn in
the soil leads to reduced growth, reduced photosynthetic
rate, imbalanced nutrition, and enhanced production of
ROS

Rout and Das (2003), Kaur
and Garg (2021)
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(D’Amore et al. 2005; Zhang and Wang 2020). Heavy metal
pollution in the soil is mainly associated with anthropogenic
activities such as mining, industry, use of fertilizers and
pesticides in farmland, and other vehicular sources (Wuana
and Okieimen 2011; Zhang et al. 2020b) which are
described below.

2.1.1 Fertilizers and Pesticides
To counteract the nutrient deficiency in the soil, fertilizers
are often added to the arable land regularly. However, it has
been found that commercially available fertilizers often
contain traces of impurities such as As, Cr, Cd, and Pb
which after several years of use in the soil can increase the
heavy metal load in many folds (Atafar et al. 2010; Nacke
et al. 2013). The use of phosphate fertilizers also adversely
increases the heavy metal concentration of Cd, Cu, Pb, and
Zn in the soil (Thomas and Ogundayomi 2012).

2.1.2 Industrial and Municipal Wastewater
Irrigation of soils with municipal and industrial wastewater
is widely practised in urban areas around the world. The
municipal and industrial wastewater is mostly contaminated
with various heavy metals (As, Cd, Cr, Cu, Fe, Hg, Ni, Pb,
Tl, and Zn) (Al Enezi et al. 2004; Barakat 2011; Kinuthia
et al. 2020), and therefore, irrigation with such wastewater
act as a source of soil pollution. The vegetables grown on
soils that were irrigated with wastewater from industrial and
municipal wastewater showed a high concentration of heavy
metal accumulations (Jan et al. 2010a, b; Khan et al. 2013).

2.1.3 Mining Industries
The mining of minerals, metals, and coal through surface or
opencast mining contributes to severe soil pollution. Heavy
metals are naturally occurring substances in many parent
rock materials and soils of various types (Ali et al. 2019;
Singh and Narzary 2021). The excavation of such heavy
metal-laden overburdened materials during the mining pro-
cess exposes the heavy metals and acts as a major source of
pollution for the natural environment. The seepage water
that carries heavy metals from the mining area (mineral
dump or overburden dump) through drainage systems found
its way to the arable soil either directly or indirectly via the
water. The reports on heavy metal contamination of soils in
the vicinity of the mining areas have already been docu-
mented in many studies (Jung and Thornton 1996; Zeng
et al. 2018; Nguyen et al. 2020).

2.1.4 Atmospheric Deposition
The accumulation of heavy metals from polluted air is also a
major source of soil pollution. Emissions from vehicles to
the air lead to the release of toxic heavy metals such as Cu,
Pb, and Zn into the air (Popescu 2011) and act as a source of
soil pollution near roadsides and urban areas. Metals such as

As, Cd, and Pb are highly volatile and at high temperatures
volatilize into the air, which later on oxidizes and condenses,
and becomes a source of soil pollution (Smith 1995; Artiola
et al. 2019). Atmospheric deposition contributes to the major
heavy metal contamination in agricultural land in England
and Wales where 85% of the Hg, 78% of the Pb, 60% of the
Ni, 56% of the As, and 53% of the Cd accounts for annual
deposition (Nicholson et al. 2003). In one of the studies,
deposition of 20–85% of Cu and Cd in the shoot of Brassica
chinensis L. from atmospheric source via soil has also been
documented (Liu et al. 2019).

2.2 Bioavailability of Heavy Metals

When it comes to the question of the toxicity of a heavy
metal, it is not the total heavy metal content that is respon-
sible for the toxicity, but only a fraction that is available for
absorption/entry to the plants and organisms that causes
toxicity (Peijnenburg et al. 2007; Scheckel et al. 2009).
According to Kim et al. (2015), the bioavailability of heavy
metals in soil concerning plant uptake comprises three steps
of a complex and dynamic process, as given below.

(a) Environmental availability
The total available heavy metals in the soil include both
the potential fraction that can be dissolved in pore water
and the actual fraction.

(b) Environmental bioavailability
The fraction of dissolved heavy metals in the pore water
available for plant/microorganisms to be taken up.

(c) Toxicological bioavailability
The amount/fraction of heavy metals in soil which can
induce plant physiologically for its bioaccumulation or
other effects based on translocation, detoxification, and
metabolism.

The bioavailability of heavy metals depends on the type
of soil and the fraction of heavy metals that can be dissolved
in the pore water (Antoniadis et al. 2017). The heavy metal
when dissolved often reaches a dynamic equilibrium that is
strongly influenced by the pH, moisture, organic carbon,
clay, sulfide, carbonate, and metal oxide contents of the soil
(Okoro and Fatoki 2012; Kim et al. 2015; O’Connor et al.
2019). Bioavailability also varies for different heavy metals.
For example, although Pb is found 100 times higher than Hg
and 40 times higher than Cd due to its high natural back-
ground in soil (Mulligan et al. 2001; O’Connor et al. 2019),
the bioavailability of Pb in the soil is comparatively lower
than that of Hg and Cd since Pb forms insoluble compounds
such as pyromorphite and is also strongly adsorbed on other
soil minerals such as manganese oxide (Hettiarachchi and
Pierzynski 2004). On the other hand, the bioavailability of
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Cd in the soil is very high, as it is mainly available in an
exchangeable form and its adsorption potential on soil
minerals is rather low (Shahid et al. 2017).

2.3 Influence of Toxic Heavy Metals on Plants

When expose to high heavy metal concentrations, plants
experience a major growth effect caused due to the accu-
mulation of heavy metals into the cell, where there is a
subsequent inhibition of photosynthesis and growth, altered
water and nutrient balance, chlorosis, and senescence, which
ultimately leads to plant death (Singh et al. 2016). Heavy
metals when taken up by plants, cause the formation of free
radicals such as reactive oxygen species (ROS) in the plant
cells, followed by uncontrolled oxidation chain reactions and
eventual damage of biomolecules such as DNA, RNA,
proteins, and lipids (Phaniendra et al. 2015). Most plant
species are susceptible to high concentrations of heavy
metals in the soil, but the metallophytes that can grow in the
presence of high metal concentrations are the exceptions.
For example, Brassica napus and B. juncea can tolerate high
metal concentrations as well as accumulate heavy metals in
their cells (Mourato et al. 2015). The influence of high
concentrations of heavy metals in plants has been reported in
many studies (Table 1). Li et al. (2007) reported inhibition of
seed germination and seedling growth in wheat after expo-
sure to a high As concentration. It has also been reported that
As reduces the length of plumule and radicles in sunflowers
(Imran et al. 2013), reduces photosynthesis and enzyme
activity, changes the nutrient balance and protein metabo-
lism, and damages the chloroplast membrane in plants (Li
et al. 2006; Singh et al. 2009; Ahsan et al. 2010; Arikan et al.
2022). Singh et al. (2007) reported a decrease in germination
percentage and reduced length of plumule and radicle when
exposed to a high concentration of Cu. Tamás et al. (2009)
found overexpression of the dehydration-stress-related gene
in barley as an early sign of exposure to Cd and Hg which is
similar to the early sign of drought stress. The formation of
stress signaling molecules, oxidative stress, and depletion of
glutathione has also been reported in plant roots when
exposed to heavy metals (Hernández et al. (2012).

3 Molecular Mechanism of Heavy Metal
(HM) Toxicity and Tolerance in Plants

3.1 Molecular Mechanism of HM Toxicity
in Plants

The molecular mechanism of HM toxicity can be grouped
into three categories based on their different physical and
chemical properties:

(a) Redox-active groups, which include HMs such as Co,
Cr, Cu, and Fe that are involved in redox reactions and
the production of reactive oxygen species (ROS) di-
rectly through auto-oxidation and Fenton reaction
(Dietz et al. 1999; Schützendübel and Polle 2002)

(b) Redox-inactive groups, comprising HMs such as Al,
Cd, Hg, Ni, Zn, etc. that causes oxidative stress in
plants indirectly by blocking essential functional groups
in biomolecules that disrupt the antioxidant defence
systems, interrupt the electron transport chain, and
induce lipid peroxidation (Hossain et al. 2012)

(c) Displacement of essential metal ions from biomole-
cules, which leads to the inhibition or loss of enzyme
functions, e.g., displacement of Mg2+ by other divalent
cations such as Co2+, Ni2+, and Zn2+ in ribulose
1,5-bisphosphate carboxylase/oxygenase that ultimately
leads to the loss of cellular function (Schützendübel and
Polle 2002).

3.2 Molecular Mechanism of HM Tolerance
in Plants

Many plant species have evolved to tolerate heavy metals by
employing various mechanisms made up of several
inter-related physiological and molecular mechanisms. It has
been reported that plants use two mechanisms to cope up
with the elevated HM concentrations:

(a) constitutive mechanisms, which are constitutively pre-
sent in most of the phenotypes and

(b) adaptive mechanisms, which are only present in
HM-tolerant phenotypes (Meharg 1994).

Some of the adaptive mechanisms adopted by HM tol-
erant plants are membrane exclusion, immobilization,
uptake, transport restriction, chelation, and sequestration of
HMs, antioxidant and glyoxalase upregulation, stress protein
induction, and biosynthesis of prolines and polyamines, and
other signaling molecules such as nitric oxide and salicylic
acid (Hossain et al. 2012; Shrivastava et al. 2019). Some of
the mechanisms that plants adopt to tolerate heavy metals are
described below in detail.

3.2.1 Exclusion of HMs as a First Defense
Mechanism in Plants

Once the bioavailable HMs are present in the soil, they enter
the plants via the roots and later translocate into the shoots.
The mode of HM transfer in plant cells can be either
extracellular where HM ions enter the plant cells through
apoplast, or intracellular where HM ions are transferred from
one cell to another through symplast. HMs usually enter the
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plant cell by ATP-dependent pathway through specific or
unspecific ion carriers and channels. Therefore, plants pro-
tect themselves as the first line of defence against the toxic
effects of HMs by checking/avoiding the entry of excess
heavy metals into the body, which occurs either through
precipitation of the HMs or through the formation of metal
complex in the root zone (Hossain et al. 2012). Precipitation
of HMs occurs when plants increase their rhizospheric pH
by excreting phosphate ions. In addition to phosphate, root
exudation of malate, citrate, and oxalate in crop plants
(maize, sorghum, and tomato) has been reported in response
to heavy metal stress, stabilizing the HMs in the root envi-
ronment (Pellet et al. 1995; Pinto et al. 2008; Zhu et al.
2011; Ghori et al. 2019). Iron plaque formation in the root
zone of Oryzae sativa due to the release of oxygen and
oxidizing agents in the root surface has also been reported
(Chen et al. 1980; Liu et al. 2008; Li et al. 2019). All of
these can act as an important mechanism for preventing HMs
from entering plants by reducing the HMs available for
uptake.

3.2.2 Compartmentation/sequestration of HMs
Inside the Plant Cell Vacuoles

When HMs enter the plant cell, as one way of defence
mechanism plants sequestered HMs inside the vacuolar
compartments either by direct transport or vesicular cycling.
In hyperaccumulator plants, HMs are stored/
compartmentalized in leaf cell vacuoles after the efficient
transport of HMs from the root to the shoot. However, in
non-hyperaccumulator plants, HMs are mostly stored in root
vacuoles. The vacuolar compartmentalization of HMs
depends on two proton pumps viz., vacuolar proton-ATPase
(V-ATPase) and vacuolar proton-pyrophosphatase (V-PPase)
(Sharma et al. 2016). The combined proton motive force of
V-ATPase and V-PPase at tonoplast creates a proton gradient
and membrane potential for the transport of compounds
including heavy metals in the vacuoles (Krebs et al. 2010).
Therefore, vacuoles act as suitable stores for excess heavy
metals in plants. Several heavy metal transporter proteins so
far characterized are ATP-binding cassette (ABC) transporter,
ABC transporters of the mitochondria (ATM), Calcium cation
antiporter (CAX), cation diffusion facilitator (CDF) protein
family, copper transporter (COPT) protein family,
iron-regulated transporter (IRT) like protein family,
zinc-regulated transporter (ZRT) like protein family, and so on
(Lee et al. 2005; Chiang et al. 2006; Krämer et al. 2007;Dubey
2010). Compartmentalization of HMs in the vacuole is
demonstrated in barley where Zn and Cd were sequestered in
vacuoles with increased exposure to Zn and Cd (Brune et al.
1994, Thomas and Reid 2021).

3.2.3 Complexation of HMs by Metallothionein
and Phytochelatins

Metallothionein (MT) is a low molecular weight, a
cysteine-rich metal-binding protein found in Golgi mem-
branes. MT is expressed by the MT gene when the plant is
exposed to heavy metal stress conditions at various stages of
growth (Cobbett and Goldsbrough 2002). They play an
important role in metal detoxification and metal homeostasis
in plants (Macovei et al. 2010), in addition, they play a role
in redox maintenance (Macovei et al. 2010), ROS scav-
enging activities (Wong et al. 2004), repairing plasma
membrane (Mishra and Dubey 2006), and also maintaining
the growth and repair of damaged DNA (Grennan 2011).

Phytochelatins (PCs) are low molecular weight thiol rich
peptides that are synthesized from glutathione (GSH) by the
enzyme phytochelatin synthase (PCS) (Emamverdian et al.
2015). They have a strong affinity for HMs and are induced
by HMs such as, As, Cd, Cu, Hg, Pb, Zn, Sr, St, Au, Sb, and
Se in corn and wheat (Yu et al. 2019). PCs are synthesized in
the cytoplasm, where they form stable metal-phytochelatin
complexes and are then are transported to vacuoles as their
final destination (Chaffai and Koyama 2011; Javed et al.
2019).

3.2.4 Mechanisms of Hyperaccumulation
Some plant species are defined as hyperaccumulators. They
can survive in a high concentration of heavy metals due to
their hyperaccumulation capacity. Hyperaccumulators have
a very high HM uptake capacity at the root membrane level
and a very high HM translocation capacity from root to
shoot through the xylem. It has been reported that the
expression of the HM transporter gene in the plasma mem-
brane of roots of the hyperaccumulating plant Thlaspi
caerulescens is very high (Pence et al. 2000; Lombi et al.
2001; Sytar et al. 2021). Thus, hyperaccumulator plants, like
T. caerulescens under HM stress enhance HM translocation
from root to shoot and enhance the accumulation of HMs in
the leaf or their above-ground tissues, and less accumulation
of HMs in the root vacuoles (Lasat et al. 2000; Sytar et al.
2021).

3.2.5 Antioxidant Defence System in Plants
Antioxidants are compounds that are responsible for pro-
tecting cells from damage caused by reactive oxygen species
(ROS). The antioxidant defence system comprises
non-enzymatic components as well as enzymatic compo-
nents. Non-enzymatic antioxidant components are composed
mainly of ascorbate (ASA) and glutathione (GSH), including
alkaloids, carotenoids, flavonoids, and tocopherol (Pandey
2018). On the other hand, the enzymatic antioxidant
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components consist of superoxide dismutase, catalase, glu-
tathione peroxidase, glutathione S-transferase, phospholipid-
hydroperoxide glutathione peroxidase, ascorbate peroxidase,
guaiacol peroxidase, monodehydroascorbate reductase, and
glutathione reductase (Pandey 2018).

ASA and GSH are strong antioxidants as they can donate
an electron to most of the enzymatic and non-enzymatic
reactions (Blokhina et al. 2003). ASA has direct scavenging
activity of 1O2, O�

2 and OH radicals and also H2O2 reducing
activity (Foyer and Noctor 2011). On the other hand, the
enzymatic action of superoxide dismutase (SOD) can
directly convert O�

2 to reduced H2O2 (another ROS) (Kor-
drostami et al. 2019), which in turn is detoxified by another
set of the enzymatic antioxidant system, e.g., ascorbate
peroxidase, catalase, peroxidase, glutathione peroxidase
(Pandey 2018).

3.2.6 Heat Shock Proteins
Heat Shock Proteins (HSPs) are stress proteins that are
expressed when cells experience temperature stress as well
as heavy metal stress. They are known as molecular chap-
erones and play an important role in cellular functions such
as the folding and unfolding of proteins, as well as assembly,
aggregation, and disaggregation of proteins (Sottile and
Nadin 2018). However, under certain stress conditions such
as heavy metal stress and temperature stress, HSPs play an
important role in protecting and repairing proteins and also
maintaining cellular homeostasis (Rhee et al. 2009).

4 Microbial Bioremediation of Heavy Metals
in Reducing Metal Stress in Crop Plants

In some plants despite showing some tolerance to heavy
metals, heavy metal stress drastically reduces the plants’
growth and production (Tiwari and Lata 2018). Microbes are
one of the useful natural machinery systems which can be
utilized for the bioremediation of heavy metal-contaminated
crop fields. This will greatly reduce the stress due to heavy
metals in crop plants. Microbial bioremediation is the
employment of microbes such as bacteria, fungi, and algae
or their products to remove the contaminants (e.g., heavy
metals) or to convert them to their non-toxic form in the
environment (Tekere 2019). Microbial bioremediation is
mainly carried out by two mechanisms, one is biosorption
and the other is bioaccumulation (Fernández et al. 2018).
Biosorption occurs on the cell surface while bioaccumula-
tion takes place within the cell (Timková et al. 2018). The
biosorption generally adsorbs the positively charged heavy
metals non selectively to the cell surface and is fast, and
therefore the uptake capacity of heavy metal is higher in
biosorption than in bioaccumulation where heavy metals are

transported from extracellular to the intracellular space via
energy-dependent mechanism (Timková et al. 2018). How-
ever, biosorption is disadvantageous than bioaccumulation,
since the heavy metal bound to the surface during the
biosorption process is reversible under certain physico-
chemical changes in the environment, which is not in the
case with bioaccumulation (Malik 2004).

Not all microbes have the ability to perform HM biore-
mediation. The bioremediation efficiency of microbes may
also vary from strain to strain and from metal to metal.
Besides, some microbes are highly tolerant to a wide range of
HMs and others to only a few heavy metals. Therefore,
considering all these factors in mind, adequate scientific
investigation is required to identify the correct microbial
species and combinations of microbes for a given contami-
nated site. Considering that, the use of microbial consortium
is more advantageous than using a single strain of microor-
ganism for heavy metal bioremediation (Kang et al. 2016), a
well-designed microbial consortium is always a better option.

4.1 Heavy Metal Uptake and Detoxification
Mechanism in Microbes

Many strains of microbes are resistant to HMs, which can be
inherited or acquired during exposure to elevated HM con-
ditions. The resistant microbes have several protective
mechanisms against the toxic effects of HMs, from the
restriction of HMs entry into the cell through various
binding/biosorption mechanisms on the cell surface to the
detoxification or compartmentalization of HMs within the cell
or their exclusion from the cell after they get entry into the cell
(Fig. 1). The various mechanisms that microorganisms use to
cope with the elevated heavy metal concentration in the soil
can involve one or more of the following mechanisms:

(a) HMs biosorption at the cell surface such as adsorption,
precipitation, complexation, or ion exchange

(b) Extracellular sequestration which is metal-metabolite
complexation in the periplasmic space

(c) Intracellular sequestration which is complexation or
chelation of metal ions by various compounds,
enzymes, and regulatory molecules inside the intracel-
lular space

(d) The metal transformation which involves methylation,
oxidation, reduction, and dealkylation of metal or
organo-metal compounds and

(e) Exclusion of metal ions/metal complex out of the cell
which is either through volatilization of volatilizable
metal compounds or through efflux mechanism
(Javanbakht et al. 2014; Diep et al. 2018; Rehan and
Alsohim 2019).
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HMs can enter the microbial cell either via a diffusion
mechanism which is an energy-independent mechanism or
via bioaccumulation through various membrane protein
complexes or membrane transport protein, which is an
energy-dependent mechanism (Diep et al. 2018).

4.1.1 Biosorption
Biosorption occurs at the cell surface of the cell wall or cell
membrane, they are non-specific, non-metabolic, and do not
discriminate between live and dead cells (Fomina and Gadd
2014). The presence of anionic moieties in the microbial cell
surface such as carboxyl, carbonyl, hydroxyl, sulfhydryl,
and phosphoryl groups provides the binding sites for heavy
metals in the cell wall, where they immobilize the metal ions
for uptake (Volesky 2003; Michalak et al. 2013; Fomina and
Gadd 2014). In the below subsections, various mechanisms
by which HMs are biosorbed in the cell wall are given
below.

Adsorption
Adsorption of heavy metals on the cell surface may occur
either due to van der wall force or due to electrostatic
interaction which is rapid, and reversible (Javanbakht et al.
2014). The heavy metal absorption mechanism of Cd, Cu,
Co, Zn, and U on the dead biomass of fungi and algae is

mainly due to the electrostatic interactions between the cell
wall and the metal ions (Igiri et al. 2018).

Complexation
The metal removal by complex formation on the cell wall is
also one of the important biosorption mechanisms adopted by
microorganisms. Certain groups such as amino, carboxyl,
thiol, hydroxyl, phosphate, etc., present in the cell wall are
involved in the complexation of heavy metals in the cell wall
(Sag and Kutsal 2001). A complex compound formed can be
positive, negative, or neutral charge and usually consists of
one or more central atoms surrounded bymany other atoms or
groups of atoms. The complex compound when its central
atom is bound or attached with other ligands through two or
more coordinating atoms is termed as chelate (Naja et al.
2010). In some cases, microbes produce organic acids such as
citric acid, malic acid, lactic acid, fumaric acid, etc. on their
cell surface which chelates the metals to form organo-metal
molecules (Javanbakht et al. 2014). It has been reported that
the sole removal mechanism of Cu+2 from aqueous solution is
by complexation with anionic ligand (CO�2

3 , OH− and SO�2
4 )

present in the microbial cell surface (Sarioglu et al. 2009), and
also the main mechanism for absorption of heavy metals (Ca,
Cd, Cu, Hg,Mg, and Zn) in Pseudomonas syringae is through
complexation (Javanbakht et al. 2014).

Fig. 1 Mechanisms involved in the microorganisms mediated alleviation of heavy metal stress
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Ion Exchange
Ion exchange is another important defence mechanism
adopted by microorganisms, where heavy metals are absor-
bed through ion exchange between metal ions and the
microbial cell wall preventing entry of toxic metals into their
intracellular space. The microbial cell wall contains
polysaccharides as one of the major components where the
exchange of metal ions takes place with the ions already
present in the polysaccharide (Javanbakht et al. 2014).
Extracellular polymeric substance (EPS) is also secreted in
some cases of bacteria which facilitates absorption of metal
ions by ion exchange (Mwandira et al. 2020). Some exam-
ples of absorption due to ion exchange are biosorption of Pb
(II) and Cd (II) in biomass of fungus Lactarius scrobiculatus
(Anayurt et al. 2009), and fungus Amanita rubescens (Sari
and Tuzen 2009), biosorption of Pb+2 in marine
alga Gelidium amansii (El-Naggar et al. 2018), and
biosorption of Pb (II) and Zn (II) in EPS of Oceanobacillus
profundus (Mwandira et al. 2020).

Precipitation
Precipitation of metals may occur either on the cell surface
or in the solution when microbial cells secrete hydrogen
sulfide (H2S) or inorganic phosphate outside the cell.
Microbial precipitation of heavy metals occurs either as a
result of metabolic processes or dissimilatory reduction of
metals (Valls and de Lorenzo 2002). Precipitation of metals
by microbial metabolism generated alkalinity has been
demonstrated in a study by Remoudaki et al. (2003). In
another study, precipitation of HMs to insoluble metal sul-
fides by H2S production by yeast cells has been demon-
strated (Minney and Quirk 1985).

4.1.2 Bioaccumulation
Bioaccumulation involves extracellular as well as intracel-
lular processes that depend on many physical, chemical, or
biological mechanisms (Fomina and Gadd 2014). The
bioaccumulation process starts when the microbial cells
uptake HMs inside the intracellular space through a
metabolically active process, followed by HMs sequestration
by proteins and peptide ligands present there in the cyto-
plasm (Mishra and Malik 2013). The fate of metals inside
the intracellular space may be different where they may be
transformed into different compounds via oxidation, reduc-
tion, methylation, and alkylation, or compartmentalized
inside the vacuoles in the case of fungi, or they may be
excreted out (Mahmoud 2021).

4.1.3 Diffusion
HM ions can also be transported to intracellular space via
energy independent diffusion mechanism which usually

functions for the transportation of other metabolically
important ions such as sodium, potassium, and magnesium.
Diffusion is the passive form of transportation mechanism
which does not require ATP during the process and the metal
ions pass through the permeable membrane across a con-
centration gradient mimicking other metabolically important
ions. The membrane permeability greatly accounts for the
uptake of metal ions in this process (Mane et al. 2011),
which is affected by temperature. Increasing temperature
increases the membrane permeability and the rate of diffu-
sion of metal ions in microbial cells (Ayangbenro and
Babalola 2017).

4.1.4 Extracellular Sequestration
Microbes produce several metabolites such as phosphate,
glutathione, oxalate, sulfur, etc., in their cell membrane which
can bind metals, forming metal-metabolite complexes accu-
mulating in the periplasmic space and thus, preventing the
passage through the membrane. Copper-resistant bacteria,
when exposed to copper, induce proteins such as CopA and
CopB, both periplasmic proteins, and CopC, an outer mem-
brane protein that binds the copper ions preventing copper
toxicity (Andrei et al. 2020). Metal precipitation using
microbes (bioprecipitation) used for the bioremediation of
heavy metals in effluents and other aqueous solutions is also
an example of an extracellular sequestration mechanism.
Bioprecipitation occurs via the excretion of certain metabo-
lites by the microbial cells such as carbonate, sulfide, phos-
phate, and hydroxide, out of which sulfide precipitation
produces the most stable precipitation product (Kumari et al.
2016). Metal immobilization via carbonate precipitation has
also been reported (Kumari et al. 2016). Geobacter
spp. (Iron-reducing bacterium) and Desulfuromonas
spp. (sulfur-reducing bacterium) can reduce the toxic form of
metals to their non-toxic forms.G. metallireducens have been
reported to reduce toxic Mn (VI) to less toxic Mn (II), and
toxic U (VI) to less toxic U (IV) (Gavrilescu 2004). Similarly,
G. sulfurreducens and G. metallireducens have been reported
to reduce toxic Cr (VI) to less toxic Cr (III) (Gavrilescu 2004).

4.1.5 Intracellular Sequestration
Intracellular sequestration can be defined as the complexa-
tion of metal ions inside the cell cytoplasm by various
compounds, enzymes, and regulatory molecules such as
metallothionein (MT), glutathione (GSH), and polyphos-
phate present inside the intracellular space. The mechanism
is triggered as a protective mechanism to protect the essen-
tial cellular components when more and more metal ions
enter the intracellular space either through diffusion or via
active transport (Raja Sathendra et al. 2018). In yeasts, metal
accumulation is mainly due to ATP-dependent
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bioaccumulation and intracellular sequestration rather than
ATP-independent biosorption (Gadd 1994). However, the
percentage of the metal absorbed via extracellular or intra-
cellular pathway may vary from microbe to microbe and
from strain to strain (Sedlakova-Kadukova et al. 2019).
Intracellular sequestration of metals such as Cd, Cu, and Zn
have been reported in Pseudomonas putida and Cd in Rhi-
zobium leguminosarum (Igiri et al. 2018).

4.1.6 Methylation of Metals
Methylation of metals inside the microbial cell cytoplasm
occurs as a part of the detoxification mechanism or as a part
of cellular metabolism in forming intermediates. One or
more methyl groups may be added to the metals and may
play a significant role in metal bioremediation. Methylation
of metals increases the permeability of metals across the cell
membrane and in some instances volatilization of volatiliz-
able methylated-metal compounds, which helps regulate
metal homeostasis in the cell cytoplasm. Methylation of
metals such as As, Bi, Cd, Ge, Hg, Pb, Sb, Se, Sn, Te, and Tl
has been reported in microbes (Thayer 2002). Methylation of
Hg (II) to form gaseous methyl mercury has also been
reported in bacteria viz. Bacillus spp., Escherichia spp.,
Clostridium spp., and Pseudomonas spp. (Ma et al. 2019;
Priyadarshanee et al. 2022). Methylation of other metals
such as Arsenic to gaseous arsines, Selenium to volatile
dimethyl selenide, and lead to dimethyl lead has also been
reported (Ramasamy et al. 2007).

4.1.7 Reduction of Metals
Microbes use metals as electron donors by reducing them.
This changes the oxidation state of metals from one oxida-
tion state to another and reduces their toxicity. The reduction
of heavy metals from their toxic form to non-toxic form by
the enzyme activities of microbes has been reported in many
studies. Reduction of Cr(VI) to Cr(III), Hg(II) to Hg(0), and
Se(V) to Se(0) are a few examples of reduction of heavy
metals from toxic form to their non-toxic form due to the
microbial enzyme action (Mishra et al. 2012; Tan et al.
2016; Liu and Wiatrowski 2017).

4.1.8 Vacuolar Compartmentation of Heavy
Metals

The vacuoles present in fungus plays an important role in
fungal metabolism and has a wide variety of functions like
degradation of macromolecules, storage of small molecules
and biosynthetic precursors (amino acids and polyphos-
phates), regulation of cytosolic ions, pH, and amino acid
concentration in the intracellular space (Klionsky et al. 1990;
Yang et al. 2017; Ying and Feng 2018; Nguyen et al. 2019;
Demes et al. 2020). Vacuoles also have an important func-
tion in the maintenance and regulation of metal ion con-
centration in the cytosol, by storing extra metal ions inside

the vacuolar compartment. Thus, vacuoles play an important
role in regulating the essential metabolic functions as well as
detoxifying the potentially toxic metals in fungi (Priyadar-
shini et al. 2021).

4.2 Bioremediation Approaches

Bioremediation of contaminated sites can be achieved by
either addition of microbes having heavy metal bioremedi-
ation capacity or stimulating the growth of native microbes
already present in the heavy metal polluted sites. These have
been described below.

4.2.1 Bioaugmentation
Bioaugmentation is the introduction of microbes directly
into the contaminated sites for bioremediation. The microbes
used for the bioaugmentation may be of natural origin or
genetically engineered, and the application may involve
either a single strain or multiple strains. However, the
bioaugmentation method employing a consortium of multi-
ple microbial strains is considered to be more effective than
using a single microbial strain type (Emenike et al. 2018).
Since the bioaugmentation process involves the direct
application of microbes to the contaminated area, both biotic
and abiotic factors influence the microbial growth as well as
the bioremediation processes.

4.2.2 Biostimulation
Biostimulation is another approach that can be used for the
bioremediation of heavy metals in a contaminated environ-
ment. It involves stimulating the already present microbial
community in the contaminated site to flourish and resist
more heavy metals by providing them with suitable growth
conditions (Adams et al. 2015). The nutrients such as car-
bon, nitrogen, phosphorus, and oxygen can be added to
enhance the growth of the native microbiota, which helps
enhance the bioremediation process (Bundy et al. 2002;
Al-Sulaimani et al. 2010).

4.3 Bacterial Bioremediation and Reduction
of Heavy Metal Stress in Plants

Bioremediation of heavy metal contaminated sites using
bacteria have been studied widely. Bacteria can help the
plants in two ways, one by reducing the metal stress expe-
rienced in plants by directly removing or decreasing the
toxic metals bioavailable to the crop plants, and other by
providing nutrients and chemicals, which promotes and
induce plants for their growth, proliferation, and metal tol-
erance under the heavy metal stress condition. A class of
bacteria called plant growth-promoting rhizobacteria
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(PGPR) have been shown to induce various tolerant mech-
anisms in plants against heavy metal stress conditions
besides improving plant growth (Swamy et al. 2019; He
et al. 2020). Many other bacteria have also been reported to
show bioremediation capacity to different heavy metals in a
wide range of heavy metal contaminated sites (Table 2). Due
to their high efficiency in metal removal, eco-friendly and
low cost, the use of bacteria for bioremediation of heavy
metals is suggested by many scientists for reducing heavy
metal stress in plants. Emenike et al. (2017) conducted
bioremediation of heavy metal contaminated soil using a
consortium of bacteria containing Bacillus sp., Lysinibacil-
lus sp., and Rhodococcus sp. and reported a reduction of
72% Al, 41% Cd, 88% Cu, 65% Mn, and 71% Pb. Fauziah
et al. (2017) also reported individual bioremediation poten-
tial of bacteria such as Bacillus thuringiensis, Lysinibacillus
sphaericus, and Rhodococcus wratislaviensis to Al, Cd, Cr,
Fe, Ni, Pb, and Zn from heavy metal contaminated soil. It
has been suggested that immobilization of bacteria in sodium
alginate beads, chitosan beads, or other materials, before use
in the field is a very critical factor for achieving successful
bioremediation as it protects the bacterial cell against the
direct effect of extrinsic factors and ensures viability over a
long period in the application site (Zommere and Nikolajeva
2017). The other advantage of immobilization is the pre-
vention of inhibition between the interacting bacteria when
applied in the form of a consortium, which otherwise neg-
atively affects the bioremediation efficiency (Zommere and
Nikolajeva 2017).

4.3.1 PGPR in Reducing Heavy Metal Stress
in Plants

The use of plant growth-promoting rhizobacteria (PGPR) for
heavy metal bioremediation is also widely studied. PGPR
improves plant growth by producing volatile organic com-
pounds which control plant pathogens, increasing nutrient
uptake in plants, and reducing the toxic effects of heavy
metals by producing siderophores, amino acids, proteins,
and 1-aminocyclopropane-1-carboxylate (ACC) deaminase
(Swamy et al. 2019; He et al. 2020). In one of the studies,
the reduction in heavy metal contents and improvement in
crop production was reported as a result of the application of
heavy metal tolerant PGPR such as Bacillus, Methylobac-
terium, Pseudomonas, and Streptomyces in the cropland
(Sessitsch et al. 2013). Several other studies also reported the
reduction in the bioavailability of heavy metals and
improvement of crop production with the application of
PGPR in soil (Solano et al. 2008; Ma et al. 2011; Prasad
et al. 2019; Bano and Javed 2021). In another study, Pandey
et al. (2013) demonstrated the growth improvement in rice
cultivar with the application of two metal resistant PGPR
isolates, Ochrobactrum sp. (resistant to Cd) and Bacil-
lus spp. (resistant to Pb and As). Therefore, the use of PGPR

is one great option for reducing heavy metal stress in crop
plants and promoting their growth and production.

4.4 Fungal Bioremediation and Reduction
of Heavy Metal Stress in Plants

Fungi are one of the key organisms for breaking down many
natural and xenobiotic materials. They are also considered to
be one of the important groups of organisms that play
important role in the global geochemical cycle. The use of
fungi for bioremediation of contaminants is known as
mycoremediation (Rhodes 2014). Like PGPR, a group of
plant root-associated fungi called arbuscular mycorrhizal
fungi (AMF) are very promising as they can improve plant
growth under the metal stress by providing nutrients,
improving water absorption, and controlling stomata con-
ductivity, and they can also reduce the bioavailability of the
heavy metal concentration in the soil by various mechanisms
such as immobilization inside their cell, precipitation and
chelation in their cell surface, and compartmentalization in
their vacuoles (Dhalaria et al. 2020). The use of fungi as a
bioremediator has also certain advantages as they can col-
onize diverse niches and habitats and leave no harmful
products on the treatment sites. Since many of them are also
isolated from various heavy metal contaminated sites, their
use as a bioremediator is more logical and efficient, as their
chance of survival in a metal-contaminated environment is
always high. So far there have been many reports on the use
of fungi as bioremediation agents for the bioremediation of
various heavy metals (Table 2). Saccharomyces cere-
visiae was found to bind up to 65–79% of Pb and Cd from
contaminated soils (Damodaran et al. 2011). In another
study, Aspergillus sp. was found to remove 65% of Cr
contaminant from tannery effluents (Srivastava and Thakur
2006a). The removal of various other heavy metals such as
Cd, Zn, Fe, Ni, Pb, Ag, Th, Ra, and U using various com-
mon filamentous fungi from the contaminated wastewater
was also documented (Bishnoi and Garima 2005). There-
fore, fungi can be an effective agent for the bioremediation
of cropland contaminated with heavy metals. However, the
efficiency of mycoremediation will also depend on multiple
factors such as selection of fungal strain, use of different
combinations of fungi, abiotic factors such as pH, tempera-
ture, moisture content, etc.

4.4.1 Arbuscular Mycorrhizal Fungi in Reducing
Heavy Metal Stress in Plants

Arbuscular mycorrhizal fungi (AMF) are reported as one of
the most potent fungi for bioremediation of cropland as they
can uptake HMs from the rhizospheric zone and store them
in their vesicles which is analogous to vacuoles of other
fungi, thus preventing the plants against HM stress (Dhalaria
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Table 2 List of microorganisms used for heavy metal bioremediation

Heavy metal Microorganisms References

Bacteria

Arsenic (As) Stenotrophomonas sp. Bahar et al. (2012)

Sporosarcina ginsengisoli Achal et al. (2012), Coelho et al. (2015)

Desulfovibrio desulfuricans Kim (2015)

Cadmium (Cd) Bacillus laterosporus Zouboulis et al. (2004)

Bacillus licheniformis

Pseudomonas veronii Vullo et al. (2008)

Desulfovibrio desulfuricans Joo et al. (2015)

Kocuria rhizophila Haq et al. (2015)

Rhodobacter sphaeroides Peng et al. (2018)

Microbacterium oxydans Dabir et al. (2019)

Rhodococcus sp. Dabir et al. (2019)

Chromium (Cr) Bacillus laterosporus Zouboulis et al. (2004)

Bacillus licheniformis

Pseudomonas aeruginosa Kang et al. (2005)

Bacillus subtilis Mangaiyarkarasi et al. (2011)

Staphylococcus sp. Kumar et al. (2011)

Streptomyces sp.

Bacillus cereus Kanmani et al. (2011), Dong et al. (2013), Coelho et al. (2015)

Pseudomonas putida Balamurugan et al. (2014)

Kocuria rhizophila Haq et al. (2015)

Desulfovibrio desulfuricans Joo et al. (2015)

Enterobacter cloacae Rahman et al. (2015)

Cellulosimicrobium sp. Bharagava and Mishra (2018)

Cobalt (Co) Pseudomonas aeruginosa Kang et al. (2005)

Serratia marcescens Marrero et al. (2009)

Copper (Cu) Methylobacterium organophilum Kim et al. (1996)

Pseudomonas jessenii Rajkumar and Freitas (2008)

Pseudomonas sp.

Pseudomonas veronii Vullo et al. (2008)

Micrococcus luteus Puyen et al. (2012)

Kocuria flava Coelho et al. (2015)

Lead (Pb) Methylobacterium organophilum Kim et al. (1996)

Bacillus firmus Salehizadeh and Shojaosadati (2003)

Bacillus iodinium De et al. (2008)

Staphylococcus sp. Kumar et al. (2011)

Streptomyces sp.

Micrococcus luteus Puyen et al. (2012)

Enterobacter cloacae Kang et al. (2015)

Rhodobacter sphaeroides Li et al. (2016b)

Pseudomonas sp. Kalita and Joshi (2017)

Gemella sp. Marzan et al. (2017)

Micrococcus sp. Marzan et al. (2017)

Pararhodobacter sp. Mwandira et al. (2017)

Microbacterium oxydans Dabir et al. (2019)

Rhodococcus sp. Dabir et al. (2019)

(continued)
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Table 2 (continued)

Heavy metal Microorganisms References

Mercury (Hg) Bacillus cereus Sinha et al. (2012)

Vibrio fluvialis Saranya et al. (2017)

Nickel (Ni) Pseudomonas aeruginosa Kang et al. (2005)

Pseudomonas jessenii Rajkumar and Freitas (2008)

Pseudomonas sp.

Desulfovibrio desulfuricans Joo et al. (2015)

Zinc (Zn) Pseudomonas jessenii Rajkumar and Freitas (2008)

Pseudomonas sp.

Pseudomonas veronii Vullo et al. (2008)

Desulfovibrio desulfuricans Kim (2015)

Rhodobacter sphaeroides Peng et al. (2018)

Fungi

Arsenic (As) Rhizophagus intraradices Spagnoletti and Lavado (2015)

Aspergillus niger Acosta-Rodríguez et al. (2018)

Aspergillus sp. Segura et al. (2018)

Penicillium sp.

Talaromyces sp. Nam et al. (2019)

Cadmium (Cd) Trichoderma viride Joshi et al. (2011)

Pleurotus platypus Vimala and Das (2011)

Saccharomyces cerevisiae Farhan and Khadom (2015)

Trichoderma brevicompactum Zhang et al. (2020a)

Rhizophagus irregularis Wang et al. (2020)

Chromium (Cr) Aspergillus niger Srivastava and Thakur (2006b)

Aspergillus sp. Congeevaram et al. (2007)

Aspergillus sp. Fukuda et al. (2008)

Penicillium sp. Fukuda et al. (2008)

Aspergillus versicolor Taştan et al. (2010)

Gloeophyllum sepiarium Achal et al. (2011)

Trichoderma longibrachiatum Joshi et al. (2011)

Rhizopus oryzae Sukumar (2011)

Rhizophagus irregularis Kullu et al. (2020)

Trichoderma brevicompactum Zhang et al. (2020a)

Cobalt (Co) Aspergillus niger Acosta-Rodríguez et al. (2018), Cárdenas González et al. (2019)

Paecilomyces sp. Cárdenas González et al. (2019)

Penicillium sp.

Copper (Cu) Phanerochaete chrysosporium Iqbal and Edyvean (2004)

Aspergillus niger Dursun (2006)

Aspergillus versicolor Taştan et al. (2010), Coelho et al. (2015)

Aspergillus flavus Gazem and Nazareth (2012)

Rhizopus oryzae Fu et al. (2014)

Trichoderma brevicompactum Zhang et al. (2020)

(continued)
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Table 2 (continued)

Heavy metal Microorganisms References

Lead (Pb) Phanerochaete chrysosporium Iqbal and Edyvean (2004)

Botrytis cinereal Akar et al. (2005)

Aspergillus niger Dursun (2006)

Aspergillus terreus Joshi et al. (2011)

Aspergillus flavus Gazem and Nazareth (2012)

Saccharomyces cerevisiae Farhan and Khadom (2015)

Aspergillus fumigatus Gill et al. (2021)

Mercury (Hg) Aspergillus niger Acosta-Rodríguez et al. (2018), Khan et al. (2019)

Aspergillus flavus Khan et al. (2019)

Aspergillus fumigatus

Aspergillus terreus

Nickel (Ni) Aspergillus sp. Congeevaram et al. (2007)

Aspergillus versicolor Taştan et al. (2010), Coelho et al. (2015)

Aspergillus niger Joshi et al. (2011)

Silver (Ag) Pleurotus platypus Das et al. (2010)

Aspergillus alliaceus Cecchi et al. (2017)

Clonostachys rosea

Trichoderma harzianum

Zinc (Zn) Phanerochaete chrysosporium Iqbal and Edyvean (2004)

Aspergillus niger Acosta-Rodríguez et al. (2018)

Trichoderma brevicompactum Zhang et al. (2020a)

Algae

Arsenic (As) Annochloropsis sp. Upadhyay et al. (2016)

Botryococcus braunii Podder and Majumder (2016)

Chlorella vulgaris Upadhyay et al. (2016)

Anabaena sp. Ranjan et al. (2018)

Cadmium (Cd) Arthrospira indica Kiran et al. (2012)

Hydrodictyon reticulatum Ammari et al. (2016)

Cladophora rupestris Zhang et al. (2019)

Microcystis aeruginosa Deng et al. (2020)

Chromium (Cr) Cladophora glomerata Al-Homaidan et al. (2018)

Enteromorpha intestinalis

Microspora amoena

Chlorella sp. Losada et al. (2018)

Scenedesmus sp. Losada et al. (2018)

Cobalt (Co) Scenedesmus bernardii Fawzy et al. (2020)

Synechocystis pevalekii

Chlorella vulgaris Kim et al. (2020)

Haematococcus sp.

Vacuoliviride crystalliferum Kim et al. (2020)

(continued)
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et al. 2020). They also secrete glomalin, a glycoprotein that
binds heavy metals by forming glycoprotein–metal com-
plexes which help reduce the toxic metals available for
uptake by the plants (Dhalaria et al. 2020). One example of
AMF which can accumulate heavy metals is Glomus
intraradices, which can accumulate large amounts of HMs
like Zn, Cu, and Cd in their subcellular structures (cell wall,
cytoplasm, and vacuoles) (González-Guerrero et al. 2008).
AMF such as Rhizophagus intraradices has been shown to
reduce As stress in soybean plants by decreasing the expo-
sure to As toxicity which leads to the decrease As accu-
mulation (Spagnoletti and Lavado 2015). In another study,
Gunathilakae et al. (2018) showed the increased remediation
of Cd from contaminated water with the co-inoculation of
AMF and water hyacinth Eichhornia crassipes (Mart.)
Solms.

4.5 Algae in Reducing Heavy Metal Stress
in Plants

Microalgae are the major group of microorganisms that are
photosynthetic and found mostly in aquatic environments.
Due to their high efficiency in HM bioremediation, some-
times microalgae are termed as a wonder organism
(Sreekumar et al. 2020). The bioremediation using algae is
termed phycoremediation. Microalgae work by either
bio-assimilation or biosorption mechanism to reduce the
heavy metals available to the plants (Sreekumar et al. 2020).

To date, algae have been found efficient for the bioremedi-
ation of several toxic HMs viz. Cd, Cr, Co, Cu, Fe, Hg, Ni,
Pb, and Zn. Immobilized Chlamydomonas reinhardtii in
alginate beads has been reported for potential bioremediation
of Hg2+ and Pb2+ (Bayramoǧlu et al. 2006). Similarly,
Spirulina spp. and P. lanceolatum have been reported as
potential bioremediator of Ni2+ and Zn2+ (Doshi et al. 2008;
Sbihi et al. 2012). Living or non-living and free or immo-
bilized forms of C. vulgaris have been used many times for
the bioremediation of Cu2+ and Hg2+ from contaminated
sites (Suresh Kumar et al. 2015). Mostly used algal taxa for
heavy metal bioremediation belongs to Anabaena, Lyngbya,
Microcystis, Oscillatoria, Spirulina, Synechocystis, Micro-
cystis, etc. (Bhattacharya et al. 2015).

4.6 Genetically Engineered Microorganisms
for Heavy Metal Bioremediation

Any microorganisms whose genetic make-up has been
altered or modified using recombinant DNA technology are
termed genetically engineered microorganisms (GEM) or
genetically modified microorganisms (GMM). In GEM, a
foreign gene of novel quality from other organisms is
inserted into their genome through recombinant DNA tech-
nology. Therefore, GEM can inherit multiple functions from
different organisms, making them more efficient in any
purpose than their natural counterparts. Bioremediation of
heavy metals using GEM has been reported in several

Table 2 (continued)

Heavy metal Microorganisms References

Copper (Cu) Chlamydomonas reinhardtii Flouty and Estephane (2012)

Chlorella vulgaris Suresh Kumar et al. (2015)

Fucus vesiculosus El-Naggar et al. (2021)

Lead (Pb) Spirulina sp. Chen and Pan (2005)

Chlamydomonas reinhardtii Bayramoǧlu et al. (2006)

Mercury (Hg) Chlamydomonas reinhardtii Bayramoǧlu et al. (2006)

Chlorella vulgaris Suresh Kumar et al. (2015)

Nickel (Ni) Planothidium lanceolatum Doshi et al. (2008), Sbihi et al. (2012)

Spirulina sp.

Zinc (Zn) Planothidium lanceolatum Doshi et al. (2008), Sbihi et al. (2012)

Spirulina sp.

Microcystis aeruginosa Deng et al. (2020)
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studies (Gupta and Singh 2017; Diep et al. 2018). Despite
having greater efficiency in heavy metal bioremediation,
GEMs are restricted only to the laboratory scale and not in
the field conditions due to the high risk associated with the
uncontrolled release of them into the environment and
probable horizontal gene transfer. Most of the genetic
modifications carried out in microbes for heavy metal
bioremediation involve the insertion of metal uptake genes
such as merA for mercury removal and ArsM for arsenic
removal into the competent cells (Ojuederie and Babalola
2017). Other modifications involve cloning and expression
of phytochelatin (PC) synthase gene, manganese transporter
gene (mntA), and metallothionein (MT) gene for uptake and
accumulation of cadmium (Kim et al. 2005; Gupta and
Singh 2017). Genetically engineered Pseudomonas putida
strain KT2442::mer73 containing mer TPAB operon has
been reported for efficient removal of mercury ion in a
three-phased fluidized bed (TPFB) bioreactor (Deckwer
et al. 2004). In another study, E. Coli was genetically
engineered by incorporating heavy metal capturing gene
(encoding SynHMB protein) and a synthetic type VI secre-
tory system (T6SS) cluster of Pseudomonas putida for the
effective removal of Cd2+ and Pb2+ (Zhu et al. 2020).

Recently, genome editing technology based on cas9
protein called Clustered Regularly Interspaced Short Palin-
dromic Repeats (CRISPER)-Cas9 technology has been
developed which has a wide scope of application (Kan-
chiswamy et al. 2016). CRISPER-Cas9 technology however
has not been utilized yet for editing genes in the microbial
system for heavy metal bioremediation purposes, but there
are some reports on the use of this technology for the
reduction of heavy metals in plants (DalCorso et al. 2019).
The CRISPER-Cas9 system has very high specificity in gene
sequence editing, therefore this technology can be a boost
for the bioremediation of heavy metals using microbes in the
future (Jaiswal and Shukla 2020). This technology can be
implemented for the improvement of heavy metal bioreme-
diation potential in microbes which can be achieved either
by editing a gene of interest or modulating the gene
expression for the synthesis of metal ligands or other metal
biosorption/bioaccumulation pathways.

5 Omics Technology in Heavy Metal
Bioremediation

Omics technologieswhich include genomics, transcriptomics,
proteomics, metabolomics, metagenomics, metatranscrip-
tomics, and metaproteomics are the advanced molecular tools
that are useful for studying the structural and functional
properties of a single organism or a group of organisms

(microbiome). Genomics, transcriptomics, proteomics, and
metabolomics are termed traditional omics technology which
is a lengthy process and requires the isolation of individual
microbes from the environment. On the other hand, metage-
nomics, metatranscriptomics, and metaproteomics are regar-
ded as advanced omics tools or post-genomics tools since the
structure and functions ofmicrobes at the community level can
be studied at one go in a very rapid way.

Genomic analysis is necessary for the prediction and/or
identification of gene(s) associated with the HM resistance
or accumulation of an organism. Ayangbenro and Babalola
(2020) analysed the genome of bacteria Bacillus cereus
NWUAB01 and reported putative genes for the resistance
and uptake of heavy metals such as As, Cd, Cr, Pb, and Zn.
Thus genome study helps in the proper understanding of the
mechanism of resistance and transport of heavy metals
which is important to design and improve a microorganism
for efficient bioremediation purposes. The genomic analysis
provides the total gene contents of an organism, but it does
not provide which genes are expressed and which are not.
The transcriptomic study, therefore, is another branch of
omics which provides the expression profiles of an organ-
ism. Transcriptomics is the study of the total mRNA of an
individual organism and it helps in finding genes in
microorganism which is expressed when they are exposed to
various physiological conditions. Therefore, using tran-
scriptomic tools, one can find out the genes exactly
responsible for heavy metal bioremediation. Accordingly,
Lu et al. (2017) reported the upregulation of six new heavy
metal resistance genes viz. CueO (a multicopper oxidase
gene), Omp (an outer membrane protein), YedYZ (a sulfite
oxidoreductase gene), and three other hypothetical protein
genes in bacterium Sinorhizobium meliloti CCNWSX0020
through transcriptomic analysis. Proteomic analysis, on the
other hand, provides the phenotypes of the microorganisms
that are not possible in genomic analysis. The proteomic
analysis allows us to identify the key proteins involved and
their changes in the structure and function in a given envi-
ronmental condition (Singh et al. 2020). It also allows us to
study the upregulation and downregulation of various pro-
tein sets on exposure to a particular heavy metal or other
types of pollutants (Hivrale et al. 2015). In bioremediation
studies, the proteomics approach is very useful in analysing
the physiological changes occurring inside microbes as well
as observing the regulation of related genes. Proteomics also
helps in identifying unknown genes and proteins in microbes
that are involved in specific heavy metal bioremediation. For
example, Chuanboon et al. (2019) discovered a new cad-
mium binding protein DUF326-like domain in Enterobacter
cloacae which are involved in the tolerance and accumula-
tion of Cd.
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In any natural ecosystem, microbes live in a community
and they show a complex network of interactions. The
community structure of an ecosystem may change with the
changing environmental conditions. As some groups of
microbes are more favourable to a particular environment
than the other, microbial succession is a phenomenon in
such changing environment. The successional change of
microbial structure and metabolism at the community level
can be studied through various meta-omics technologies
such as metagenomics, metatranscriptomics, and metapro-
teomics. Metagenomics is the study of environmental
genomics or community genomics by directly taking envi-
ronmental DNA from an environmental sample representing
the microbiome (Riesenfeld et al. 2004). Thus, they provide
the overall genome content and the structural or taxonomic
composition of an environmental microbiome. Metatran-
scriptomics, on the other hand, is the study of expression
profiles of microbial community genes by taking the total
mRNA directly from the environment (Aguiar-Pulido et al.
2016) and they provide the total functional profile of an
environment. Metaproteomics also called community pro-
teomics or environmental proteomics is the quantitative and
qualitative study of all the proteins collected from an envi-
ronment (Bharagava et al. 2019). However, the use of single
meta-omics technology has certain limitations such as
metagenomics alone cannot identify the expression of genes,
metatranscriptomics which employs mRNA are highly
unstable, and metaproteomics alone cannot give complete
bioremediation pictures and therefore the use of
multi-meta-omics or microbiome technologies is suggested
as a preferred approach for better understanding the molec-
ular mechanisms involved in bioremediation (Malik et al.
2021). Noble genes responsible for the biodegradation of
aromatic compounds have been identified in a study con-
ducted by Yadav et al. (2015) using comparative metage-
nomics and real-time qPCR. However, this kind of work
employing omics technology for heavy metal bioremediation
is very rare to find and can be employed as an effective tool
in the future.

6 Prospects of Microorganisms in Heavy
Metal Stress Management

Microbes have been studied for bioremediation of a wide
range of heavy metals and isolated from a wide range of
contaminated sites. We also know their effectiveness in the
bioremediation of heavy metals and underlying heavy metal
absorption and detoxification mechanism, but despite this,
their application in the field is still rare and mostly limited to
the laboratory condition or pilot scale. For a successful usage
of microbes in the field, it becomes very important to study
rigorously and systematically the various microbial strains

keeping in mind the specific type of HMs contamination to
be treated. Since, microbes may be tolerant to only some
groups of heavy metals and may be sensitive to other metals,
prior screening of microbial strains to different heavy metals
at different concentrations is very important to identify the
potential multi-metallotolerant strains. Microbiome study of
rhizospheric soils taken from the croplands treated with
potent microorganisms can help in a proper understanding of
the mechanisms that the microbes detoxify or accumulate the
HMs while in association with the crop plants.

7 Conclusion

Heavy metal pollution in cropland in both urban and rural
areas due to natural and anthropogenic activities is of great
concern because of its accountable impact on global crop
production. There are many approaches for remediation of
heavy metal polluted soils, but bioremediation using
microbes (bacteria, fungi, and algae) are eco-friendly, less
expensive, and leaves no toxic chemicals upon application.
Therefore, microbial bioremediation is regarded as the gold
option for cleaning heavy metal pollution in cropland.
Free-living metallotolerant microbes with heavy metal
accumulating capacity could be used to remove the HM
contaminants from the croplands. Alternatively, the use of
metal accumulating or detoxifying PGPR or AMF can be
applied together with the crop plants to overcome the HM
stresses in the crop fields. Some improved genetically
engineered microorganisms (GEMs) have already been
developed for HM bioremediation, but their application in
the field is not widely accepted due to various ethical con-
cerns, including the possibility of horizontal transfer of an
artificial or modified gene from the GEM to other naturally
occurring microbes. However, in recent years, the develop-
ment of eco-friendly hyperaccumulator microbes through
gene-editing technology is very much possible which can be
used for either bioremediation or reduction of HM stress in
croplands.
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Halotolerant Plant Growth Promoting
Rhizobacteria: A Futuristic Direction to Salt
Stress Tolerance
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and Dinakar Challabathula

Abstract

Salinity is one of the most devastating abiotic stresses
known to affect all the major processes such as germina-
tion, photosynthesis, water relations, nutrient uptake,
reproduction, etc., affecting the growth and yield of the
majority of the plants. High salinity-induced decrease in
water potential causing osmotic stress and accumulation of
salt-induced oxidative damage are major causes for the
limitation in plant growth, productivity and cell death in
the majority of plants. Employment of Plant Growth
Promoting Bacteria (PGPB) is a well-studied alternative
for the protection of plants from salinity stress-induced
detrimental effects. Since rhizospheric bacterial commu-
nities have a direct influence on the physiology and
development of plants, identification and characterization
of plant beneficial microbes are important. Halotolerant
Plant Growth Promoting Rhizobacteria (PGPR) are ben-
eficial microbes that colonize internal and external parts of
the plant roots and play a pivotal role in improving plant
growth and alleviating the adverse effects of salinity stress.
They influence the physiology and development of plants
by producing various plant growth-promoting traits that
have a direct effect on the growth and stress tolerance of
plants. Efforts are taken to identify and characterize the
PGPR from different rhizosphere zones and prepare the
consortia for agricultural applications thereby reducing the
usage of synthetic fertilizers and agrochemicals. In the
current chapter, we describe the general effects of salinity
stress in plants, highlighting the importance of employ-
ment of PGPR either in isolation or consortia for the

preparation of bioformulations for agricultural applica-
tions and improvement of salinity tolerance.
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ABA Abscisic acid
ACC 1-Aminocyclopropane-1-carboxylic acid
IAA Indole-3-acetic acid
PGPB Plant growth promoting bacteria
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1 Introduction

An increase in soil salinity is one of the adverse abiotic stress
conditions that occur through natural and anthropogenic
reasons. Accumulation of water-soluble salts in the soil is
the main cause of soil salinization, having a strong impact on
agricultural productivity and environmental health (Rahman
et al. 2021). Soil salinity changes the fertile land to unpro-
ductive land, ultimately resulting in loss of crop productivity
and economical loss. The high salt accumulation in the soils
can be due to low precipitation, weathering of native rocks,
geological deposits, ground water with high salt, poor agri-
cultural practices, evapotranspiration and lack of rainfall to
flush the salts (Parihar et al. 2015; Hanin et al. 2016). The
soils having an electrical conductivity of the saturation soil
extract of more than 4 deciSiemens/meter (dS/m−1) at 25 °C
are considered saline soils. However, the limit can be low-
ered to 2 dS m−1 for the fruits and ornamental plants which
can be seriously affected by the salinity range of 2–4 dS m−1.
Compared to normal soil, saline soils show an excessive
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amount of ionic salts, higher electrical conductivity and
lower water potential. Although sodium and chloride are the
dominant ions present in saline soils, chlorides and sulphates
of sodium, calcium and magnesium are also commonly
present. The irrigation water contains calcium, magnesium
and sodium and upon water evaporation, calcium and
magnesium often precipitate into carbonates leaving sodium
in the soil. Accumulation of sodium and chloride in the soil
restricts the nutrient-ion activities and generates external
osmotic potential restricting the influx of water into the roots
thereby resulting in water deficit in plants (Acosta-Matos
et al. 2017). Salinity stress is known to adversely affect crop
productivity by reducing the net cultivable area, especially in
arid and semiarid areas all over the world (Singh and Roy-
choudhury 2021). High salinity is known to cause ion tox-
icity, oxidative stress and alteration of metabolism leading to
reduced growth, development and crop productivity (Parihar
et al. 2015). The situation warrants the development of
sustainable methods to increase the productivity of saline
soils without causing any damage to the environment
(Guzmán et al. 2021). Although breeding for salt-tolerant
plants and the development of transgenic plants with salt
tolerance capacity can be the solution, the approaches are
cumbersome and time-consuming. Under these circum-
stances, microbes with the potential for plant growth pro-
motion seem to be a viable option. Soil being a reservoir for
diverse microorganisms such as bacteria, fungi and archaea
is known to host microbes that have the inherent capacity to
tolerate high concentrations of salt in soil and possess plant
growth-promoting traits. These salt-tolerant microbes par-
ticularly bacteria are important for promoting the growth and
improving crop productivity in arid and semiarid regions
(Egamberdieva et al. 2019). Additionally, several of the
bacteria colonize the plant roots and are involved in
imparting beneficial effects to the plants. These bacteria are
termed Plant Growth Promoting Rhizobacteria (PGPR).

Extensive studies have been performed on the bacteria
belonging to the genera, Acetobacter, Achromobacter,
Acinetobacter, Alcaligenes, Arthrobacter, Azoarcus, Azoto-
bacter, Bacillus, Burkholderia, Enterobacter, Exiguobac-
terium Gluconacetobacter, Methylobacterium,
Microbacterium, Ochromobacter Paenibacillus, Pantoae,
Pseudomonas, Rhodococcus, Staphylococcus, Serratia, Ste-
notrophomonas and Streptococcus for their plant
growth-promoting traits (Babalola 2010; Dodd and
Perez-Alfocea 2012; Chauhan et al. 2015; Egamberdieva
et al. 2019). Additionally, since many species of the phy-
tomicrobiome are non-culturable, metagenomics approaches
were utilized to decipher the variation in the composition of
the microbiome genotype wise (Hirsch and Mauchline 2012;
Wintermans et al. 2016). Researchers have used either a
single bacterium or a consortium of bacteria under controlled
laboratory conditions, greenhouse and field conditions for

analysing plant growth promotion in plants (Chauhan et al.
2015). The PGPR strains have also been utilized for com-
mercial agriculture. The ability of the plant growth pro-
moting bacteria to colonize the plant roots and their efficient
release of stimulants are critical determinants for evaluating
the suitability of utilizing the plant growth promoting bac-
teria as inoculants for crop improvement and increased
productivity under salinity stress conditions. Additionally,
research also indicated that the plants efficiently control the
composition of the rhizomicrobiome by producing root
exudates of varying compositions (Chaparro et al. 2012;
Trabelsi and Mhamdi 2013; Zhang et al. 2017). The root
exudates as a source of reduced carbon serve as signals to
attract specific microbes, favouring their growth, modulate
the expression of several genes and induce the cell to cell
signaling by quorum sensing (Meneses et al. 2011; Alquéres
et al. 2013; Beauregard et al. 2013; Massalha et al. 2017;
Smith et al. 2017). In the current chapter, the general effects
of salinity stress in plants are briefly outlined with a major
focus on highlighting the importance of employment of
halotolerant PGPR either in isolation or consortia for
agricultural applications and improvement of salinity
tolerance.

2 Salt Stress in Glycophytes

Based on the plant’s ability to grow and survive under saline
environments, they are classified as glycophytes
(salt-sensitive) and halophytes (salt-tolerant). Among the
angiosperms, while a majority of the crop species are gly-
cophytes whose growth is compromised under saline stress
conditions, halophytic plants survive, reproduce and com-
plete their life cycle under high saline soils since they are
endowed with varied mechanisms to tolerate salinity
(Flowers et al. 1977; Mishra and Tanna 2017; Chen et al.
2018). Salt stress in glycophytic plants affects morphologi-
cal, physiological and biochemical functions seriously
affecting their growth and development at every stage of
their life cycle. Salinity stress seriously affects germination,
photosynthesis, water relations, nutrient balance, growth and
development of crops leading to increased oxidative damage
and a drastic reduction in yield (Parihar et al. 2015). Salinity
stress in glycophytic plants seriously affects photosynthesis,
increases the production of reactive oxygen species thereby
causing damage to DNA, membrane lipids and proteins
triggering cell death. The decrease in photosynthesis during
salinity stress is mainly due to a decrease in chlorophyll
content, reduced photosystem II efficiency and electron
transport rate (Acosta-Matos et al. 2017).

High salinity in the soil is known to inhibit plant growth
either by reducing its ability to take up water, causing water
deficit or dehydration in cells or causing excess
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accumulation of ions resulting in ionic stress (Tester and
Davenport 2003; Munns and Tester 2008). The net move-
ment of the water is zero when the salt concentration in the
soil is equal to that of the plant, however, the higher salt
concentration in the soil leads to movement of water from
the plant to the soil causing physiological drought and cel-
lular dehydration (Munns and Tester 2008). While physio-
logical drought imposed by high salinity does not lead to a
build-up of either Na+ or Cl− ions, whereas the physiological
and metabolic processes that are affected are similar to
drought stress-affected plants. Contrary to this, ionic stress
induced by excess accumulation of Na+ or Cl− ions during
salinity stress causes oxidative stress leading to damage and
cell death. While Na+ is a non-essential element in the
majority of the plants, its intracellular accumulation during
salinity stress interferes with K+ uptake leading to stomatal
regulation disturbance causing water loss through transpi-
ration. Compared to Na+ ions, Cl− ions are essential for the
regulation of turgor pressure, pH and enzyme activities in
the plant cell cytoplasm. Accumulation of Cl− ions cause
disturbance in the production of chlorophyll and cause
chlorine toxicity symptoms (Tavakkoli et al. 2011; Parihar
et al. 2015). Salinity stress-induced excess accumulation of
Na+ in plants causes ionic stress leading to disturbances in
K+ ion efflux thereby causing an imbalance in cellular
homeostasis and oxidative stress (Tester and Davenport
2003; Munns and Tester 2008). High salinity-induced
accumulation of Na+ or Cl− leads to a decrease in uptake
of essential nutrients such as phosphorus (P), potassium
(K+), nitrogen (N) and calcium (Ca+2) (Zhu 2001). While
maintenance of high tissue and cytosolic K+/Na+ ratios are
required for salt tolerance, salinity stress-induced Na+ ac-
cumulation in the cytoplasm leads to K+ ion efflux from both
leaf and root cells leading to activation of K+ outward rec-
tifier channels (GORK, guard cell outward rectifying
K+ channel) for exclusion of K+ ions (Wang et al. 2009;
Demidchik et al. 2014; Shabala and Pottinson 2014). The
ability of the plants to retain intracellular K+ ions is a very
important feature for salt stress tolerance since K+ is an
essential nutrient important for many enzymatic reactions
and participates in a plethora of plant physiological functions
(Ahmad and Maathius 2014; Assaha et al. 2017).

Since the accumulation of high levels of Na+ ions is
detrimental for plants, regulating Na+ transport in leaves of
glycophytic plants is very crucial for salt tolerance. Plant
roots exposed to salt in the soil activate several signaling
cascades restricting Na+ influx into the roots and reducing its
translocation. While halophytes compartmentalize the Na+

ions effectively into the vacuoles, the majority of the gly-
cophytic plants succumb to death due to overaccumulation
of Na+ ions in the cytoplasm (Bartels and Dinakar 2013).
The reduced influx and increased efflux along with seques-
tration of Na+ ions into the vacuole are the major

determinants of plants aiding in acclimation or tolerance to
salinity stress. Salinity stress-induced accumulation of
compatible osmolytes and increased antioxidants to scav-
enge the reactive oxygen species leading to a decrease in
oxidative stress are considered important strategies to com-
bat salinity stress by plants (Bartels and Dinakar 2013;
Flowers et al. 2015; Acosta-Motos et al. 2017; Liang et al.
2018). The uptake of Na+ from the soil by the roots is
reported to occur through high-affinity K+ transporters
(HKTs), K+ channels, Arabidopsis K+ transporter (AKT1),
high-affinity K+ uptake transporter (AKT1), cyclic
nucleotide-gated channels (CNGCs) and glutamate receptors
(GLRs) (Tester and Davenport 2003; Hanin et al. 2016;
Assaha et al. 2017). Additionally, SOS1, a plasma
membrane-localized Na+/H+ antiporter is known to transport
Na+ from root to shoot in both glycophytes and halophytes
under salinity stress conditions (Munns and Tester 2008;
Shabala 2013; Foster and Miklavcic 2019; Gupta et al.
2021). High salt in the soil favours the absorption of Na+ by
the roots which moves through the xylem with the aid of
transporters and reaches the shoot and the leaf blades
(Munns and Tester 2008). Hence, downregulation of the
genes coding for Na+ influx transporters may be are required
to limit the Na+ uptake by the roots in glycophytic plants.
Although glycophytic plants can withstand mild salinity
stress by operating various stress tolerance mechanisms,
increased salinity accelerates oxidative damage resulting in
cell death.

3 Mitigation of Salinity Stress
by Halotolerant Plant Growth Promoting
Rhizobacteria

Salt tolerance mechanisms in plants are intricate and com-
plex requiring the operation of multiple metabolic pathways
and activation of a network of genes. Although salt tolerance
in crops can be attained by conventional breeding approa-
ches and genetic engineering, long-duration along with high
costs for generating breeding varieties and public acceptance
of the genetically modified crops are major concerns
(Egamberdieva et al. 2019; Bakka and Challabathula 2020).
Under these circumstances, the usage of beneficial
microorganisms for stress amelioration is gaining impor-
tance for salinity stress management in plants. PGPR are
rhizospheric or endophytic bacteria capable of colonizing
either in the interior or exterior parts of plant roots imparting
plant beneficial effects and mitigation of salt stress.
Although PGPR constitutes only around 2–5% of the rhi-
zospheric bacteria, reports suggest that they can be effec-
tively used under nutrient deficiency conditions as a
replacement for chemical fertilizers aiding in the improve-
ment of soil fertility (Grover et al. 2021). In recent years,
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usage of halophilic/halotolerant PGPR has gained impor-
tance, since they are environment friendly and their inocu-
lation to glycophytic crops species has shown remarkable
improvement in stress tolerance and increased productivity
(Egamberdieva et al. 2019). Halotolerant PGPR has the
inherent ability to tolerate high amounts of salts and is found
in areas such as coastal dunes, saline deserts, hypersaline
lakes, salt marshes, and inland salt seas. Although they are
usually isolated from the high saline environment, they do
not require high salt for their growth (Bremer and Kramer
2019). One of the adaptative strategies employed by halo-
tolerant bacteria to survive in high salt conditions is the
maintenance of lower intracellular levels of ions along with
the accumulation of compatible solutes to balance the
osmotic level inside the cytoplasm than the outer medium
(Bremer and Kramer 2019). Along with this, the halotolerant
PGPR have evolved several mechanisms to protect the cel-
lular integrity thereby coping with salinity stress conditions.
Accumulation of compatible solutes, activation of different
salt efflux systems, reduced generation of ROS, limitation in
oxidative damage is some of the mechanisms they operate to
withstand high salinity stress (Egamberdieva et al. 2019).
The halotolerant PGPR employs diverse mechanisms such
as the production of phytohormones, possessing ACC
deaminase activity, production of exopolysaccharides, and
osmolytes which are directly or indirectly involved in the
amelioration of salt stress in crop plants (Egamberdieva et al.
2016; Mishra et al. 2021). Additionally, activation of plant
defence responses and antioxidant enzymes is observed in
PGPR inoculated plants during salinity stress conditions to
protect plant cells from oxidative stress. The list of plant
growth promoting bacteria and their beneficial effects on
plants in modulating the expression of plant genes and their
involvement in salinity tolerance is shown recently by
Mishra et al. (2021). The changes that are observed in the
aerial and underground plant organs upon inoculation with
PGPR under salinity stress conditions is shown in Fig. 1.

4 Attributes of Halotolerant Plant Growth
Promoting Rhizobacteria

4.1 Production of Phytohormones

4.1.1 Indole-3-Acetic Acid
Halotolerant PGPR is known to produce a variety of phy-
tohormones such as auxins, gibberellins, cytokinins and
abscisic acid for plant growth, development and increased
salt stress tolerance (Dodd et al. 2010; Dodd and
Perez-Alfocea 2012). Among the auxins, indole-3-acetic
acid (IAA) produced by the bacteria stimulates root growth
and cell division not only under normal conditions but also
under salt stress conditions. Halotolerant PGPR such as

Azotobacter, Arthrobacter, Azospirillum, Pseudomonas,
Stenotrophomonas and Rahnella are known to produce IAA
under salt stress conditions (Piccoli et al. 2011; Egam-
berdieva et al. 2018). During tryptophan-dependent IAA
synthesis, the PGPR utilizes the tryptophan released from
the root exudates and converts them into IAA (Backer et al.
2018a, b). The IAA produced by the PGPR acts like a sig-
naling molecule to trigger auxin signaling in plant roots
along with causing induction in the expression of phyto-
hormone related genes, defence genes and antioxidant genes
resulting in increased auxin signaling, production of longer
roots, increased root biomass and enhancement in plant
growth and development (Hong et al. 1991; Spaepen et al.
2014; Ruzzi and Aroca 2015; Lorente et al. 2016). Although
L-tryptophan has been identified as the main precursor for
IAA biosynthesis, tryptophan independent mechanisms of
IAA biosynthesis also exist possibly by using other small
molecules produced from the root exudates (Myo et al.
2019). Identification and characterization of intermediates of
IAA biosynthesis from bacteria and plants revealed the
existence of significant similarity in the biosynthesis of IAA
by tryptophan-dependent pathways in PGPR and plants
(Spaepen et al. 2007; Spaepen and Vanderleyden 2011).
Protection from salt stress-induced yield loss has been
reported in different crops species such as tomato, cotton,
and wheat by the inoculation of IAA producing PGPR such
as Psuedomonas putida, Streptomyces sp., Leclercia ade-
carboxylata MO1 and Azospirillum sp. (Egamberdieva et al.
2008, 2019; Yao et al. 2010; Piccoli et al. 2011; Sadeghi
et al. 2012; Kang et al. 2019).

4.1.2 Gibberellins
Gibberellins are a group of hormones that are known to
stimulate seed germination with multiple growth attributing
functions in plants. Gibberellins regulate reproductive
organ formation and development, cell division and elon-
gation, promote ripening of fruits, stimulate hypocotyl
extension and stem growth (Plackett and Wilson 2016;
Urbanova and Leubner-Metzger 2016). Many gibberellin
producing bacteria such as Acinetobacter calcoaceti-
cus, Bacillus pumilus, Bacillus licheniformis, Azospirillum
sp., etc., have been isolated and their ability to induce
endogenous gibberellin biosynthesis thereby promoting
plant growth was reported (Bottini et al. 2004; Kang et al.
2009). Although a significant increase in the production of
gibberellins was observed in the shoots of tomato,
cucumber, radish and red pepper plants inoculated with
PGPR strains Bacillus cereus MJ-1, Leifsonia soli SE134
and Promicromonospora sp. SE188, the mechanism of
bacterial mediated synthesis of gibberellins in plants
and their role in conferring salt tolerance to inoculated
plants is not clearly understood (Joo et al. 2005; Kang
et al. 2012, 2014).

280 K. Bakka et al.



4.1.3 Cytokinins
Cytokinins which are involved in cell proliferation and dif-
ferentiation in plants are known to be produced by PGPRs.
Compared to auxins, although the role and functions of
bacterially synthesized cytokinins were not studied in detail,
reports suggested that PGPR effectively produce cytokinins
which may be are important for plant growth and develop-
ment under normal and stress conditions. The PGPR—
Pseudomonas entomophila, Pseudomonas stutzeri, Pseu-
domonas putida, Pseudomonas syringae and Pseudomonas
monteilli isolated from the rhizosphere of Pennisetum
glaucum, Helianthus annus and Zea mays plants produced
cytokinins not only under normal conditions but also under
osmotic stress conditions (Sandhya et al. 2010b). Increased
cytokinin levels in the shoot and root tissues of Platycladus
orientalis and Arabidopsis thaliana plants upon inoculation
with cytokinin producing PGPR strains Bacillus subtilis and
Bacillus megaterium were observed suggesting the impor-
tance of bacterially synthesized cytokinin for inducing
cytokinin synthesis along with plant growth promotion
(Ortíz-Castro et al. 2008; Liu et al. 2013). Several halotol-
erant bacteria such as Arthrobacter sp., Bacillus sp., Halo-
monas sp., Azospirillum sp. and Pseudomonas sp. are known

to produce cytokinins and promote cell division leading to
growth in plants (Egamberdieva et al. 2019). Furthermore,
organic volatiles emitted by PGPR Bacillus subtilis SYST2
led to increased cytokinin content and increased expression
of cytokinin biosynthesis genes in tomato plants indicating
the involvement of PGPR for increased synthesis of cyto-
kinins in plants (Tahir et al. 2017). Although PGPR are
known to synthesize cytokinins directly, they are also known
to employ different mechanisms to induce cytokinin levels in
plants to promote plant growth, however, the detailed
underlying mechanisms of PGPR induced cytokinin medi-
ated stress tolerance in plants is not clearly understood.

4.1.4 Abscisic Acid
Abscisic acid (ABA) is a stress hormone specifically syn-
thesized in plants that are exposed to abiotic stress condi-
tions such as salt, drought, cold, etc. It is the central
regulator of abiotic stress tolerance mechanisms and is
known to activate stress tolerance genes coordinating an
array of functions for the growth and development of plants.
Several of the halotolerant PGPR such as Proteus mirabilis,
Bacillus megaterium, Bacillus licheniformis, Pseudomonas
fluorescens, Achromobacter xylosoxidans, Azospirillum

Fig. 1 Schematic representation of the effect of PGPR inoculation in aerial and underground plant organs of glycophytic plants under salinity
stress conditions. The changes that are observed in PGPR inoculated and uninoculated glycophytic plants during salinity stress are shown
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brasilense and Azospirillum lipoferum, are known to syn-
thesize ABA (Karadeniz et al. 2006; Forchetti et al. 2007;
Cohen et al. 2009; Salomon et al. 2014). Inoculation of these
bacteria in the majority of the instances showed increased
ABA levels in plants correlating with stress tolerance (Sal-
omon et al. 2014; Cohen et al. 2015). Although the role of
PGPR synthesized ABA in plants and its influence on the
growth and development of plants under salt stress condi-
tions is not clearly understood, modulation in ABA synthesis
and ABA-dependent signaling pathways in plants upon
PGPR inoculation contribute to the stress tolerance and
enhanced plant growth under salt stress conditions is shown
in few studies (Yao et al. 2010; Bharti et al. 2016; Barnawal
et al. 2017). Inoculation of halotolerant PGPR Dietzia
natronolimnaea STR1 to wheat plants showed upregulation
of ABA-responsive genes and induced salinity tolerance
suggesting the bacterial mediated modulation of ABA
responses in plants (Bharti et al. 2016). Additionally, the
expression of salt overly sensitive (SOS) pathway genes and
ion transporter genes were also modulated in inoculated
plants indicating the upregulation of salt tolerance mecha-
nisms and enhanced protection against salt stress (Bharti
et al. 2016).

4.1.5 ACC Deaminase Activity
The presence of ACC deaminase activity is one of the key
characteristics that is observed in halotolerant PGPR for
decreasing endogenous ethylene levels in plant cells thereby
improving their plant growth. Stress induces the expression
of 1-aminocyclopropane-1-carboxylic acid synthase (ACC
synthase) genes which upon translation catalyzes the con-
version of S-adenosylmethionine to ACC leading to ethylene
accumulation in plants. Although ethylene as a plant hor-
mone is implicated in the regulation of various plant phys-
iological processes, stress-induced ethylene production and
accumulation promotes senescence and is detrimental for
plant growth and development wherein it serves as an
indicator for plants’ sensitivity towards stress (Glick 2014;
Müller and Munné-Bosch 2015). Abiotic and biotic stresses
cause a substantial increase in ethylene levels causing
adverse effects on the growth of the plants (Dubois et al.
2018). Halotolerant PGPR with ACC deaminase activity
hydrolyzes ACC to ammonia and a-ketobutyrate, signifi-
cantly decreasing the ethylene levels in the plants (Gamalero
and Glick 2015; Singh et al. 2015a, b; Gupta and Pandey
2019). The produced ammonia and a-ketobutyrate are uti-
lized by the bacteria as nitrogen and carbon sources (Glick
2014). Inoculation of ACC deaminase producing bacteria
Stenotrophomonas maltophilia SBP9 to wheat plants stim-
ulated the plant growth under salinity stress conditions and
augmented the resistance against abiotic and biotic stresses
(Singh and Jha 2017). In another study, the improvement in
growth along with other physiological properties was

observed in plants inoculated with ACC deaminase
enzyme-producing PGPR Pseudomonas fluorescens and
P. migulae strains under salt stress (Egamberdieva et al.
2011; Ali et al. 2014). ACC deaminase producing PGPR
such as Variovorax paradoxus 5C-2, Bacillus amylolique-
faciens SQR9, Arthrobacter sp., Brevibacterium sp., Gra-
cilibacillus sp., Virgibacillus sp., Salinicoccus sp.,
Pseudomonas sp., Pseudomonas fluorescens, Exiguobac-
terium sp., Alcaligenes sp., Bacillus sp. and Ochrobactrum
sp. induced salt tolerance and stimulated the growth in
tomato, rice, maize and pea plants under salt stress condi-
tions suggesting the efficacy of PGPR with ACC deaminase
activity for the amelioration of salt stress responses and
phytoremediation in crop plants (Bal et al. 2013; Ali et al.
2014; Wang et al. 2016; Habib et al. 2016; Aslam and Ali
2018; Kang et al. 2019).

4.2 Exopolysaccharides

While exopolysaccharide production is considered as one of
the characteristic features of rhizobacteria, the amount of
production and its composition varies in different halotol-
erant PGPR inhabiting different ecological niches.
Exopolysaccharide production by the bacteria is considered
as a protection mechanism employed to survive under
environmental stress conditions such as salinity, tempera-
ture, heavy metals or pollution (Morcillo and Manzanera
2021). Many halotolerant PGPR secrete exopolysaccharides
that form biofilms promoting cell to cell aggregation facili-
tating the rhizobacterial anchorage and adhesion to root
surfaces. Exopolysaccharides are formed with either homo
or heteropolysaccharides binding to the surface of the cell
and play an important role in nutrient acquisition, formation
of hydrophilic biofilms, water transport to the roots and
regulation of soil aggregation favouring the growth of plants
under salt stress conditions (Dar et al. 2021; Morcillo and
Manzanera 2021). The exopolysaccharides produced by the
halotolerant PGPR form rhizo-sheaths, a physical barrier
around the host plant roots complexing with the Na+ ions
decreasing their availability to the inoculated roots thereby
decreasing Na+ toxicity under salt stress conditions.
Exopolysaccharides of halotolerant PGPR such as Pseu-
domonas sp. AK1, Bradyrhizobium japonicum and Bacillus
subtilis have the potential to bind to Na+ ions limiting their
uptake by the roots of soybean thereby maintaining normal
growth under salinity stress conditions by maintaining K+/
Na+ balance (Han and Lee 2005; Kasotia et al. 2016).
Inoculation of exopolysaccharide producing PGPR Bacillus
subtilis to Arabidopsis thaliana significantly decreased the
influx of Na+ ions to the roots by downregulating the
expression of HKT1/K+ transporter (Zhang et al. 2008).
Helianthus annus plants inoculated with exopolysaccharide
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producing Pseudomonas aeruginosa showed enhanced salt
stress tolerance along with increased growth, development
and yield (Tewari and Arora 2014). In another study,
increased plant growth and improved soil stability are
observed in Chickpea plants inoculated with the
exopolysaccharide producing halotolerant PGPR Halomo-
nas variabilis (HT1) and P. rifietoensis (RT4) suggesting the
importance of PGPR secreted exopolysaccharides for plant
salinity tolerance (Qurashi and Sabri 2012; Dar et al. 2021).

4.3 Osmoprotectants

Halotolerant PGPR exposed to salt stress conditions accu-
mulate osmoprotectants such as proline, trehalose,
polyamines and glycine betaine in their cytosol to maintain
osmotic balance inside the cell. While secretion of root
exudates attracts the halotolerant PGPR to colonize the root
surface and other internal tissues, the osmolytes secreted by
halotolerant PGPR are absorbed by the plant roots thereby
helping in the osmotic adjustment of plants during salinity
stress (Chandran et al. 2021). Although salinity-induced
accumulation of osmolytes is also observed in plants, the
bacterial osmolytes mimic the plant metabolites during the
plant–microbe interaction and the response in bacteria is
quicker (Ilangumaran and Smith 2017). Salt stress-induced
accumulation of osmolytes such as proline, glycine betaine,
polyamines, quaternary ammonium compounds and other
amino acids are reported in many plant species inoculated
with halotolerant PGPR (Sandhya et al. 2010a; Wang et al.
2016). The accumulation of these metabolites in the cyto-
plasm of the plant cell renders osmotic adjustment and
protects the macromolecules such as proteins, nucleic acids
and lipids from oxidative damage during salinity stress
conditions (Parihar et al. 2015; Acosta-Motos et al. 2017).
Inoculation of PGPR such as Burkholderia, Arthrobacter,
Bacillus, Rhizobium and Pseudomonas are reported to
increase the proline content in plants during salinity stress
(Bano and Fathima 2009; Choudhary 2012). Increased pro-
line accumulation along with reduced ROS generation,
reduced lipid peroxidation and upregulation of
stress-responsive genes is observed in Capsicum plants
inoculated with PGPR Bacillus fortis SSB21 (Yasin et al.
2018). While exogenous application of glycine betaine in
salt-stressed soybean plants improved salt tolerance along
with increased antioxidant enzyme activities and decreased
intracellular Na+ levels, inoculation of halotolerant PGPR
Bacillus HL3RS14 and Bacillus subtilis BERA71 increased
the accumulation of glycine betaine in plants and protected
the plants from salinity stress-induced oxidative damage
(Malekzadeh 2015; Hashem et al. 2016a, b; Mukhtar et al.
2020). Maize plants inoculated with Azospirillum brasilense
harbouring a yeast trehalose biosynthesis gene showed

higher trehalose levels along with an increase in leaf and root
biomass (Rodríguez-Salazar et al. 2009). These kinds of
studies signify the importance of osmolytes for increased
stress tolerance.

4.4 Antioxidant Enzymes

The Reactive Oxygen Species (ROS) are continuously pro-
duced in different organelles as metabolic by-products dur-
ing normal conditions in plant cells. Under salt stress
conditions, the production of ROS such as hydrogen per-
oxide, hydroxyl ion, superoxide ions and singlet ions is
aggravated posing a threat of oxidative damage (Sharma
et al. 2012). Increased ROS causes oxidative stress leading
to damage to nucleic acids, proteins and lipids finally
resulting in cell death (Apel and Hirt 2004; Gill and Tuteja
2010; Hasanuzzaman et al. 2020). Management of ROS in
plant cells although is efficiently done by antioxidant sys-
tems comprising of enzymatic (superoxide dismutase, cata-
lase, peroxidase, glutathione reductase, etc.) and
non-enzymatic components (ascorbate, glutathione, car-
otenoids, flavonoids, etc.) to protect the cells from oxidative
damage, salinity stress-induced aggravation in ROS causes
inactivation of antioxidant systems leading to cell damage
(Miller et al. 2010). Inoculation of halotolerant PGPR to
plants is reported to increase the potential of plants to pro-
duce more antioxidant enzymes during salinity stress con-
ditions. Higher amounts of antioxidant enzymes such as
superoxide dismutase, catalase, peroxidase and glutathione
reductase were reported in plants inoculated with halotoler-
ant PGPR (Islam et al. 2016; Ha-Tran et al. 2021). Soybean
plants inoculated with PGPR Bacillus firmus SW5 showed
increased expression of genes encoding antioxidant enzymes
suggesting better protection from salinity stress-mediated
injury (El-Esawi et al. 2018). The Abelmoschus esculentus
plants inoculated with Bacillus megaterium UPMR2 and
Enterobacter sp. UPMR18 showed improvement in germi-
nation rate and increased growth correlating with decreased
ROS levels and increased superoxide dismutase, catalase
and ascorbate peroxidase activities (Habib et al. 2016).

4.5 Siderophores

The halotolerant PGPR possess specialized strategies to
overcome iron (Fe) limitation by using chelators called
siderophores which can extract Fe from Fe3+ complexes in
soil aiding in the supply of usable iron to the plants (Ferreira
et al. 2019). Since Fe is an essential micronutrient important
for photosynthesis, respiration and chlorophyll biosynthesis
in plants and salinity stress is known to reduce the avail-
ability of Fe due to lower release of iron-chelating
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compounds, the halotolerant PGPR chelates the Fe and
provides the nutrient to the plants for their survival under
stress conditions (Abbas et al. 2015; Chakraborty et al. 2016;
Ferchichi et al. 2016). The secretion of siderophores by
halotolerant PGPR is considered as an alternative strategy
for Fe uptake by plants facilitating improved nutrition along
with inhibition of phytopathogens under salt stress condi-
tions. While the bacterial genera Bacillus, Burkholderia,
Enterobacter and Grimontella are known to produce high
siderophores, improvement of salinity tolerance in plants
such as alfalfa, corn, wheat and mungbean has been
observed upon inoculation with siderophore producing
halotolerant PGPR (Ramadoss et al. 2013; Singh et al.
2015a, b; Souza and Ambrosini 2015; Zhu et al. 2020).

4.6 Other Mechanisms

Phosphate solubilization is another important plant growth
promoting trait possessed by halotolerant PGPR. Since the
majority of the phosphorous in the native soils will be in an
insoluble form, strategies for increasing the bioavailability of
phosphorous in the usable form for plants are required.
Phosphorus in plants is a macronutrient that plays a vital role
in the growth and development of plants for improving
photosynthesis, root growth, cell division, flower and seed
formation, resistance to plant diseases, etc. Being the second
most important macronutrient, it is also an essential com-
ponent of nucleic acids, enzymes, nucleotides and phos-
pholipids (Souza and Ambrosini 2015). Often the
phosphorous fertilizers are sprayed onto the crops to protect
them from deficiency symptoms, however, continuous usage
negatively affects the soil pH, soil structure and microbiome.
Utilization of plant growth promoting bacteria with phos-
phate solubilization potential is an alternative way for sup-
plementing phosphorous to the plants thereby improving
crop productivity. The halotolerant PGPR are known to
solubilize inorganic soil phosphates, through the production
of organic acids particularly gluconic and carboxylic acids,
and hydroxyl ions (Rodríguez et al. 2006; Sharma et al.
2013; Anand et al. 2016). The bacteria belonging to the
genera Bacillus, Rhodococcus, Arthrobacter, Serratia,
Chryseobacterium, Gordonia, Phyllobacterium and Delftia
are known to produce acids such as citric acid, gluconic acid,
lactic acid, succinic acid and propionic acids to solubilize
inorganic phosphates and supply phosphorous to the plants
(Chen et al. 2006). Roots and rhizospheric soil are reservoirs
for phosphate solubilizing bacteria. The rhizosphere of the
rice plants dominated by the genera Burkholderia, Cedecea,
Cronobacter, Enterobacter, Pantoea and Pseudomonas
showed phosphate solubilization potential leading to
improved plant growth (Costa et al. 2013; Granada et al.
2013; Souza et al. 2013, 2014). The halotolerant PGPR are

also known to release a wide variety of secondary metabo-
lites and volatile organic compounds for improvement of
plant growth and salt stress tolerance. The PGPR are
reported to produce polyamines that induce polyamine
biosynthesis in host plants resulting in increased photosyn-
thesis, growth and biomass under stress conditions and
producing HCN as biocontrol for controlling the pathogenic
microbes in the rhizosphere (Kumar et al. 2015; Backer et al.
2018a, b). The volatile organic compounds released by the
PGPR Bacillus subtilis promoted the biosynthesis of choline
and glycine betaine in host plants along with inhibition of
Na+ ion transport to root cells resulting in improved salt
stress tolerance (Zhang et al. 2008; Timmusk et al. 2014;
Backer et al. 2018a, b; Lopes et al. 2021).

5 Methods of Inoculation of Halotolerant
PGPR to Plants

Although a majority of the halotolerant PGPR show high
potential for plant growth promotion and salinity stress
amelioration under laboratory conditions, the favourable
responses are often not observed under field conditions
mainly due to the inoculation methods used and due to
variations in soil and fluctuations in external environmental
factors such as light and temperature (Lopes et al. 2021).
Although carbon, nitrogen, organic matter content, water
availability and pH are the main factors determining the
growth of the microorganisms, the soil type, the geograph-
ical location and seasonality also play a crucial role in the
establishment and survival of halotolerant PGPR on the
rhizospheric zone (Bossio et al. 1998; Drenovsky et al. 2004;
Garcia-Pausas and Paterson 2011; Kristin and Miranda
2013). Alterations in the soil conditions are known to
modify the microbiome diversity. While low soil moisture
content is detrimental to the growth of bacteria, high soil
moisture content generally observed during flooding reduces
oxygen availability resulting in the decrease of microbial
biodiversity (Gouda et al. 2018). Increasing the efficacy of
the bacteria to colonize the soil, root or seed is an effective
way to establish PGPR-plant connection to observe a bac-
terial mediated increase in the growth of plants under salinity
stress conditions. The compatibility of the bacterial strain to
the roots of the host plants along with the stability of the
bacteria in the soil is critical for establishing effective col-
onization thereby having a consistent growth performance of
the plants (Egamberdieva et al. 2018; Lopes et al. 2021).
While microbial inoculants are mainly inoculated onto
seeds, soil, roots and leaves, improvement of the plant—
PGPR interaction and evaluating the responses of PGPR to
changing environmental conditions are important to have
efficient bacterial inoculation to see the desired plant growth
promoting effect (Callaghan 2016) (Fig. 2b).
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Since salinity stress induces serious changes in the
composition of the rhizospheric environment, different
methods such as inoculation of the halotolerant PGPR to
seeds, soil amendments by directly adding the inoculum
onto soil and dipping of the roots in the PGPR suspension
before transplanting are employed to ensure efficient inoc-
ulation of the bacteria to the plants thereby increasing the
efficiency of bacteria for survival and colonization (Mah-
mood et al. 2016). Since the method of PGPR inoculation
determines the survival efficacy of the bacteria, several
methods such as seed priming with PGPR, seed priming
with bioformulations, soil drenching, foliar application and
root dipping were developed to increase the colonization
efficiency of the PGPR to the plant tissues (Fig. 2b). Several
modifications of every method have also been evaluated and
standardized. Different methods employed for the efficient
inoculation of halotolerant PGPR are shown in Fig. 2.

Inoculation of the halotolerant PGPR to seeds is an effi-
cient method since it delivers the microorganisms to soil and
ensures efficient root colonization (Philippot et al. 2013).
Different methods of seed inoculation such as (i) Seed bio-
priming, involving immersion of the seeds in the PGPR
microbial suspension for a definite period followed by dry-
ing, initiates the physiological processes inside the cell
thereby ensuring colonization of PGPR (Taylor and Harman
1990) (ii) Film coating, involving the coating of the PGPR
inoculum in a film as a thin layer on the seed surface
complexing with methylcellulose, paraffin oils and
polysaccharide materials is used to increase the adherence
capacity of the PGPR to roots (iii) Slurry coating, involving
inoculation of PGPR to the surface of the seeds by using
carriers such as peat (Fig. 2b1). However, the survival of the
inoculum in the seed is stronger and efficient in the bio-
primed seeds, than film coating and slurry coating inoculums

Fig. 2 Diagrammatic representation of different methods of halotol-
erant PGPR inoculation in plants. a Depiction of different steps such as
isolation of halotolerant bacteria from rhizosphere combined with lab

and field studies for analysing plant growth promotion. b Different
methods of inoculation of halotolerant PGPR to seeds, leaves and roots
of glycophytic plants
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(Callaghan 2016). Biopriming of the seeds of maize with
different strains of Azotobacter and Azospirillum showed a
significant increase in growth, development and yield
(Sharifi 2011). Inoculation of Rhizobia and Bacillus species
to the seeds of Oryza sativa and Cicer arietinum L. plants
resulted in increased biomass production (Ullah et al. 2017;
Khan et al. 2019).

Decoding the signaling components and the metabolites
involved in plant-PGPR interaction during salt stress con-
ditions is important to modify the Phyto microbiome for
increasing the colonization potential of the bacteria. The
bioformulations with the signaling molecules like AHL
(N-acyl homoserine lactone) which is a known elicitor of
plant–microbe interactions evokes biochemical and molec-
ular changes to avert salinity-induced injuries in plants
(Zhou et al. 2017). The external application of osmopro-
tectants like glycine betaine and proline along with halo-
tolerant PGPR to the seeds helps in the initial acclimatization
of the bacterial inoculants to the salinity stress (Arif and
Ghoul 2018). Exopolysaccharides and organic acids are used
as adjuvants for maintenance of osmotic equilibrium, water
activity, cell protection and better mineral solubilization,
respectively (Sunita et al. 2020, Fig. 2b).

Soil inoculation is done by either drenching the soil in
PGPR solution or by incorporating PGPR into soil mixed
with a substrate in the form of microcapsules. This method
provides an advantage over other methods by increasing the
PGPR density over indigenous soil microbiota. Soil inocu-
lations with microcapsules lead to a gradual release of
inoculum offering a higher probability for root colonization
and viability (Hernandez-Montiel et al. 2017, Fig. 2b3).
Foliar PGPR inoculation usually involves spraying of PGPR
solution on foliar regions of the plant and the interaction
between plant leaf surface and microorganism leads to
improved growth and yield in plants (Efthimiadou et al.
2020). Foliar microinjection of PGPR is also practised,
however, the foliar spray is found to be a superior method
(Basha et al. 2006, Fig. 2b4). Root inoculation involves a
submersion of seedling roots for a definite period in PGPR
solution, thereby improving root colonization of bacteria. In
rice plants, the root inoculation was found to be more
effective than the seed inoculation method resulting in
increased panicle length and plant height (Ullah et al. 2017,
Fig. 2b5). In soybean, tomato and cucumber plants, hydro-
ponics has been used to provide the roots with a continuous
source of PGPR inoculum wherein inoculated plants showed
a remarkable increase in yields respectively (Gagnè et al.
1993; Gül et al. 2013; Yasmin et al. 2020). Inoculation of
Burkholderia phytofirmans PsJN to the roots of Vitis vini-
fera increased the plant’s tolerance to low-temperature
stress, modified the carbohydrate levels in leaves and
increased plants growth (Fernandez et al. 2012).

6 Usage of Halotolerant PGPR
as an Alternative to Chemical Fertilizers

Increased population growth demanding for higher agricul-
tural productivity, nutrient deficiency in soils and abiotic
stress factors causing a serious decline in crop productivity
are the major factors that created a demand for chemical
fertilizers in agriculture applications worldwide (Scagliola
et al. 2021). Excessive usage and application of chemical
fertilizers in agricultural fields were found to be a serious
threat to soil quality causing pollution to the environment
and having significant detrimental effects on human health
(Zhang et al. 2018; Scagliola et al. 2021). Additionally, the
depletion of nutrients and soil biodiversity that occurs due to
the application of chemical fertilizers on agricultural soils
has created an urgent need to recycle the available organic
resources and alternative sources such as beneficial rhizo-
spheric microbes for improving plant growth under stress
conditions and restoring the soil fertility. Soil is heteroge-
nous with innumerable microorganisms such as bacteria and
fungi interacting with others and each other through sym-
biosis, antagonism, mutualism, parasitism and saprophytism.
The halotolerant PGPR are considered as suitable candidates
either in isolation or in consortia to improve the plant growth
directly by producing plant growth promoting traits, by
enhancing the nutrient bioavailability to the roots and indi-
rectly helping the host plants by restricting the growth of
phytopathogenic organisms near to rhizosphere and acti-
vating systemic resistance against plant pathogens (Maras-
toni et al. 2019; Kolega et al. 2020). The halotolerant PGPR
is known to colonize in the rhizosphere or the interior of the
plant and act like biofertilizers aiding in increasing the
availability of nutrients and production of siderophores for
iron uptake. Research has convincingly demonstrated that
inoculating plants with halotolerant PGPR or treating plants
with the signaling compounds released by the PGPR stim-
ulates plant growth even under high salinity stress conditions
(Backer et al. 2018a, b).

Halotolerant PGPR is equipped with a plethora of
mechanisms to cope up with salinity stress in the soil and
provide benefit to host plants. These halotolerant PGPR can
be applied to the agricultural fields as bioinoculants or
multifunctional PGPR-based formulations to improve crop
productivity not only under optimal conditions but also
under salinity stress conditions. Application of halotolerant
PGPR like Bacillus subtilis, Bacillus amyloliquefaciens
NBRISN13, Enterobacter sp., Lysinibacillus sp., Pseu-
domonas strain 002 and S. sciuri SAT-17 to rice, wheat and
maize plants promoted plant growth, decreased intracellular
ROS levels by increasing the antioxidant enzyme activities,
increased osmolyte accumulation and modulated the
expression of salt stress-responsive genes during salinity
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stress (Upadhyay and Singh 2015; Singh and Jha 2016;
Nautiyal et al. 2013; Zerrouk et al. 2016; Rima et al. 2018;
Sarkar et al. 2018; Damodaran et al. 2019). Further,
Azospirillum, Bacillus, Burkholderia, Enterobacter,
Flavobacterium, Pseudomonas, Rhizobium, Frankia, Kleb-
siella, Clostridium, Serratia and Streptomyces are known to
increase agricultural productivity under salinity stress con-
ditions (Abhilash et al. 2016; Oosten et al. 2017; Gouda
et al. 2018). Research findings highlight the importance of
phytohormones, phosphate solubilization potential, side-
rophore production, ACC deaminase activity, production of
osmoprotectants and modulation in antioxidant defences as
key elements for ameliorating the salinity stress responses in
halotolerant PGPR inoculated crop species (Egamberdieva
et al. 2019; Kumar Arora et al. 2020; Shilev 2020). Usage of
halotolerant PGPR as a whole or preparation of bioinocu-
lants or bioformulations not only improves the crop growth
and productivity but also helps the plants survive under high
salinity conditions. Hence, the halotolerant PGPR can be
considered as an alternative to chemical fertilizers due to
various growth promoting attributes under salinity stress
conditions and environment-friendly nature.

7 Commercialization

The interaction of the PGPR with plant roots and its effect on
the plant growth promotion is a complex process involving
several steps such as root exudation followed by attachment,
colonization by the PGPR, the release of phytohormones,
release of volatile organic compounds by the PGPR and
finally influencing the growth of the plant. Any microbe if
identified as a potential PGPR through isolation and char-
acterization should colonize and show the plant growth
promoting traits. Although many of the halotolerant PGPR
have been isolated from different rhizospheric zones and
characterized for their plant growth promoting traits, many of
the bacteria fail to colonize the root system under field con-
ditions and hence they cannot be exploited for commercial
purposes. However, they may be important for plant growth
promotion and restoration of soil fertility by employing
unexplored and uncharacterized mechanisms. Single PGPR,
consortia of PGPR or the signal molecules can be exploited
for commercialization and can be used for enhancing agri-
cultural productivity. The process involves PGPR isolation,
screening, laboratory pot tests, field trials, development of
formulation, formulation testing, product registration and
availability in the market (Backer et al. 2018a, b, Fig. 2a).

Halotolerant PGPR can be isolated from the rhizospheric
zones of the salt-tolerant plants and their characterization is
done based on biochemical and molecular characteristics

(Bakka and Challabathula 2020; Taj and Challabathula
2021). Further, they are screened for the presence of plant
growth promoting traits and growth inhibition of plant
pathogens. While the biochemical characterization is done
based on Bergey’s manual of determinative bacteriology,
DNA and RNA-based homology testings are mostly used for
molecular characterization. The cultivable bacteria with high
plant growth promoting activity are selected and are tested
under laboratory and field conditions for preparing the
consortia (Backer et al. 2018a, b). For the isolation of
potential signal compounds also referred to as biostimulants,
the entire PGPR culture supernatant tested positive for plant
growth promotion will be fractionated by HPLC and the
individual active compounds are isolated, purified and sub-
jected to mass spectrometry for identification. Formulations
are done with either consortium comprising of multiple
PGPR isolates or by using a single PGPR isolate (Backer
et al. 2018a, b; Scagliola et al. 2021). To minimize the loss
of bioactivity of the PGPR in formulations and for even
distribution, stickers/binders such as corn flour, car-
boxymethyl cellulose; surfactants such as Tween 80; desic-
cants such as silica gel and anhydrous sodium sulphate;
dispersants like microcrystalline cellulose; thickeners like
xanthan gum; stabilizers such as lactose and sodium ben-
zoate; and UV protectants are added (Schisler et al. 2004;
Callaghan 2016; Backer et al. 2018a, b; Egamberdieva et al.
2019). Although recent studies indicated biochar as the
promising carrier material for PGPR inoculations mainly due
to its porosity and nutrient content and its feasibility to be
applied as seed coatings replacing peat-based inoculants
(Backer et al. 2018a, b), due to variations in biological,
physical and chemical properties of the produced biochar, it
can harm soil fertility and growth of microbes and plants
(Nguyen et al. 2017; Wang et al. 2017). The formulations
can be liquid-based, talc-based, saw-dust-based, fly
ash-based, encapsulation-based and peat-based with specific
advantages and disadvantages upon inoculation onto differ-
ent plant species (Gopalakrishan et al. 2016). Liquid-based
formulations can be sprayed onto the seeds before sowing or
seeds can be drenched in the inoculum. Isolation of halo-
tolerant PGPR that can sustain plant growth under salinity
stress conditions in laboratory and field conditions is cum-
bersome. Further, isolating the halotolerant PGPR with high
efficacy, multiple benefits, long shelf life and high root
colonization rate is achievable. However, preparation of the
formulations that can be applied on the field with a high
success rate combined with commercialization requires a
strong research link between the public and private funded
universities, research organizations with private industries to
observe augmentation in the production of crops under
salinity conditions.
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8 Conclusion

High salinity poses a serious threat to agricultural systems
worldwide and inoculation of halotolerant PGPR has shown
increased salinity stress tolerance along with growth pro-
motion in not only model plants but also in many agricul-
turally important crop species. Compared to the usage of
fertilizers and pesticides for plant growth promotion and
removal of pests which were reported to have negative
effects on the soil and environment, inoculation of halotol-
erant PGPR as bioinoculants is an environment friendly
approach. Additionally, the halotolerant PGPR were repor-
ted to replenish the fertility of the soil and protect the plants
from pathogens. Over the past few years, many halotolerant
PGPR with plant beneficial effects have been isolated from
different rhizospheric zones and were efficiently character-
ized. However, the significant effects were always observed
under laboratory conditions and their suitability to be used as
bioinoculants under field conditions is questionable. At this
juncture, steps are necessary for the isolated and
well-characterized halotolerant PGPR to be used as products
for commercial agriculture particularly for mitigating the
salinity stress in plants. Since stressor-specific and
non-specific responses are observed in plants exposed to
abiotic stress conditions, the bioformulations with a single
bacterium, consortia of bacteria or the signal molecules
should be custom-made for their usage for saline soils to
observe the improvement of salt tolerance in plants. Isolation
of new halotolerant bacterial strains with potent plant growth
promoting traits, improvements in inoculation technologies
for increasing the efficiency of inoculum along with the
survival of the bacteria and preparation of novel bioformu-
lations are key to combat the challenges of crop growth and
productivity in saline soils.
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Outside the Cell Surface: Encoding the Role
of Exopolysaccharide Producing
Rhizobacteria to Boost the Drought
Tolerance in Plants

Mamun Mandal , Soumya Chatterjee , and Sukanta Majumdar

Abstract

Broad ranges of microbes are present in the soil; some of
them can produce exceptionally hydrated polymers (such
as exopolysaccharides) outside the cell wall which have a
tremendous role in adverse conditions. Exopolysaccha-
rides (EPS) play a crucial role in microbes as help-
ful substances in several physiological parameters and
provide a safe environment against stress conditions. EPS
producing rhizobacteria show an enormous effect on plant
growth promotion under drought conditions by increasing
water holding capacity. The environment exclusively
benefits from EPS because these rhizobacteria benefi-
cially change the soil physicochemical properties that also
aggregate soil particles around the root zone. Rhizobac-
terial EPS can balance soil moisture and entrap a
sufficient amount of nutrients for plant growth and
development even in sandy soil. EPS producing PGPR
survival and existence increases by biofilm architecture
because EPS effectively participates in biofilm formation,
microbial aggregation, and communication with other
microbes. In addition, EPS helps in nodule formation,
siderophore production, and protection from desiccation,
surface attachment, bioremediation, plant–microbe inter-
action, and other plant-promoting attributes in water
limiting conditions. This chapter highlights
EPS-producing bacteria and their impact on plant growth
under drought stress.

Keywords

Drought stress � Exoploysaccharides � Plant growth
promoting rhizobacteria � Mitigation

Abbreviations

CPS Capsular polysaccharides
EPS Exopolysaccharides
PGPR Plant growth promoting bacteria
LPS Lipopolysaccharides
Pap Pseudomonas Acidic polysaccharide
RAS Root adhering soil
RIDER Rhizobacterial-induced drought endurance and

resilience
RS Rhizosheath
WHC Water holding capacity

1 Introduction

Crop plants continuously face various types of biotic and
abiotic stresses during their life cycle that decrease their
growth and development. Abiotic stress factors include heat,
chilling, drought, salinity, and nutrient deficiency (Pouri
et al. 2019). Among them, drought stress may range from
short and moderate to extremely intense and prolonged-time
duration can limit crop growth and yields. Drought condition
is expected to create serious plant growth and development
difficulties to higher than 50% of the arable fields by 2050
(Kasim et al. 2013; Vurukonda et al. 2016). Drylands such
as arid, semi-arid, and dry sub-humid lands take up around
40% of the terrestrial ecosystem. This percentage gradually
increases because the amount of annual rainfall is continu-
ously decreasing due to environmental pollution, climate
changes, and decreased biodiversity (Millennium Ecosystem
Assessment 2005). Water scarcity conditions predominating
in drylands hinder crop plants production as the limited
availability of water changes biochemical, morphological,
and physiological processes (Debaeke and Aboudrare 2004).
As a result, cellular dehydration increases, which excites
osmotic stress, therefore impeding cell enlargement (Bartels
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and Sunkar 2005). Drought stress causes loss of turgor
pressure by reducing water potential, stomatal closure,
nutrient deficiency, oxidative stress, and cell membrane
integrity disruption by denaturation of protein. Stomatal
closure in response to water deficiency generates deteriora-
tion in photosynthesis rate (Alcázaret al. 2011; Yang et al.
2010). In the current situation, drought stress is among the
most devastating abiotic stresses that adversely affect global
food security.

For higher crop production, chemical fertilizers are used
worldwide, but these are used in an enormous amount that
negatively alters the environmental condition along with
water quality also declines. The chemical fertilizers appli-
cation in excessive amounts can further be dangerous to
regular consumers. Consequently, it is compulsory to utilize
natural and eco-friendly substitutes, which can help in
healthy crop production and reduce environmental contam-
ination (Arora et al. 2018). In this aspect, the use of
biostimulants/biofertilizers can be a more suitable alternative
for healthy crop production in a nonhazardous way (Rajput
et al. 2019). Organic cultivation is developing as a better
substitute for increasing crop yield even under biotic and
abiotic stress conditions (Verma et al. 2019). In organic
cultivation, several types of biofertilizers such as farmyard
manure, vermicompost, and microbes-based bio inoculant
are practised to get sustainable agricultural targets and mit-
igation of water and soil contamination.

Under drought conditions, the application of plant growth
promoting bacteria (PGPR) in a plant can be beneficial not
only to amplify productivity but also to help in the mitiga-
tion of soil contamination (Nazari and Smith 2020). PGPR
alleviates the impression of water deficiency on plants
through the rhizobacterial-induced drought endurance and
resilience (RIDER) process, which involves morphological,
cellular, and genetic changes (Kaushal and Wani 2016).
A variety of RIDER mechanisms include (1) changes in root
morphology; (2) modification of phytohormonal activity
levels like indole-3-acetic acid (IAA), abscisic acid (ABA),
cytokinins (CK), gibberellic acid (GA) Khalid et al. 2006);
(3) 1-aminocyclopropane-1-carboxylate (ACC) deaminase to
decrease the amount of ethylene production; (4) antioxidant
defence enzymes and non-enzymatic components; (5) en-
hancing the siderophore and biofilm production; and
(6) bacterial exopolysaccharides (EPS) (Oleńska et al. 2020).
PGPR also accumulates several osmolytes (such as glycine
betaine, proline and trehalose) and some compatible organic
solutes (like polyamines, sugars, and amino acids), which
are associated with metabolic adjustment. The production of
volatile organic compounds, dehydrins, and heat-shock
proteins also play a pivotal role in imparting drought stress
tolerance (Vurukonda et al. 2016). This chapter mainly
focused on the role of EPS and EPS producing PGPR in
drought conditions. The term exopolysaccharides were

suggested by Sutherland (Sutherland 1972), which is the
essential component for biofilm production. EPS producing
rhizobacteria have great strategies to rescue the plant from
water desiccation in soil. Polysaccharides have a hygro-
scopic character and therefore, can hold a higher amount of
water in the micro-environment colony in contrast to bulk
soil in drought conditions (Roberson and Firestone 1992).
Polysaccharides producing rhizobacteria can control higher
soil moisture and promote plant growth also in granular
soils. They also release a higher amount of soluble carbo-
hydrates in the plant rhizospheric zone, so the plant survival
rate increases. Besides this EPS produced by rhizospheric
bacteria, through the adjoining mineral contents, can make
rhizosheath encompassing the roots of the plant. This helps
to defend the plant from aridness for a higher period which
can further lead to rising in the establishment of micro and
macro-aggregates as an additional effect (Khan et al. 2017).
So, if the density of EPS producing bacterial community is
increased in the plant rhizospheric zone, it might be bene-
ficial for the plants under a drought stress environment.

2 Classification, Chemical Nature,
and Structure of Bacterial EPS

Bacteria generate several types of biopolymers with diverse
chemical compositions by using simple to complicated
substrates. Several of these biopolymers provide a similar
function, while many others are particular for specific taxa
and contribute to individual biological activity (Anderson
et al. 1990). Based on cellular location two types of
biopolymers are found in bacterial species, viz. (a) intracel-
lular and (b) extracellular. Intracellular biopolymers are very
rare, and their use is also restricted. On the other hand,
extracellular biopolymers are very common in bacterial taxa.
The extracellular biopolymers are collectively known as the
extracellular polymeric substance which is divided into four
main classes, viz. polyamides, inorganic polyanhydrides,
polyesters, and polysaccharides (Rehm 2010; Ruas-Madiedo
et al. 2002). In the extracellular polymeric substance,
polysaccharide components are most abundant (Dogsa et al.
2005). Three major types of polysaccharides are found, such
as capsular polysaccharides (CPS), EPS, and lipopolysac-
charides (LPS). Cohesive layers of surface-associated CPS
are covalently bound generally, anatomically located at the
outside of the bacteria cells (Whitfield et al. 2020). CPS
covers the bacterial cells and protects them from bacterio-
phage attack, phagocytosis, osmotic stress, and desiccation.
EPS excreted as slime layers are not tightly attached to the
bacterial cells which can be separated easily (Angelin and
Kavitha 2020). Nevertheless, the difference between loosely
bound and unbounded extracellular polymeric substances is
related or dependent on the functional and structural
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relationship of the cell. Bacterial EPS is synthesized and
released into the exterior environment or maybe sometimes
synthesized extracellularly with the help of cell wall attached
enzymes (Nwodo et al. 2012). The diversity of bacterial EPS
is categorized by chemical structure, charge, molecular
weight, linkage bonds, functionality, and presence of sub-
stitution and repeated side-chains (Castro-Bravo et al. 2018).
According to the chemical composition, EPS can be divided
into two groups based on monosaccharides composition:
(i) homopolysaccharides (HoPs) and (ii) heteropolysaccha-
rides (HePs) (Osemwegie et al. 2020). HoPs have one type
of monosaccharide whereas HePs are contained of repeating
units, have varied in size from disaccharides to heptasac-
charides (MohdNadzir et al. 2021).

Based on the bond linkages and monomeric units, HoPs
can be divided into four categories thus; glucans (a-D-glu-
cans and b-D-glucans), fructans, sialic acids, and poly-
galactans (Sutherland 1990). On the other hand, the
categorization of HePs is a complex process because it can
be classified in many ways. Generally, it is observed that
HePs are classed into these groups based on the repeating
units of D-galactose, D-glucose, L-rhamnose, and derivatives
(Bajpai et al. 2016) (Fig. 18.1). In addition to sugar, other
types of substituents such as organic acids, amino acids,
inorganic acids, amino sugars, uronic acids are also found in
HePs (Table 18.1).

Acetan, alginates, heparin, xanthan, gellan are some
examples of HePS (Sanalibaba and Çakmak 2016). The

information regarding the monomers and the chemical bonds
of some EPS has been represented in Table 18.2.

EPS are biosynthesized generally in the late logarithmic
or logarithmic phase, sometimes also produced in the sta-
tionary phase. Although, the maximum amounts synthesize
only during the logarithmic phase than the stationary phase.
The production of EPS quality and quantity varies with
bacterial strains type. Although, physicochemical factors
such as temperature, incubation time, pH, medium compo-
sition (carbon/nitrogen ratios and cation sources), and
salinity also plays a vital role in EPS yield (Angelin and
Kavitha 2020; Moghannem et al. 2017).

3 Genetics of EPS Production

The diverse groups of EPS-producing bacterial communities
are found in different niches. So, these bacterial communities
contain a diverse set of gene/gene clusters. These are
involved in the EPS formation, which effectively participates
in plant growth promotion and maintains lifestyle in adverse
conditions. Although the molecular mechanisms and
inducers of EPS biosynthesis are not well known in rhi-
zobacteria to date, many bacterial species are known to
contain specific gene/gene clusters (Lu et al. 2018). For
example, Blanco-Romero et al (2020) found a novel gene
cluster pap (Pseudomonas acidic polysaccharide; size 2 kb)
in the well-known PGPR strain, Pseudomonas fluorescens

Fig. 18.1 Classification of bacterial EPS production
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Table 18.1 List of the common substituent of bacterial EPS

Substituent Linkage Charge Examples of bacteria References

Non-carbohydrate Organic acids

Acetate Ester None K. oxytoca Moghannem et al. (2017)

Succinate Ester Negative Rhizobium spp., Sinorhizobium meliloti,
Agrobacterium spp.

Sutherland (2001), Mishra
and Jha (2013)

Propionate Ester None Escherichia coli Li et al. (2021)

Hydroxybutanoate Ester None Rhizobium leguminosarum, R. trifolii Sutherland (2001), Mishra
and Jha (2013)

Glycerate Ester Negative Sphingomonas elodea, Pseudomonas
elodea

Sutherland (2001), Mishra
and Jha (2013)

Pyruvate Ketal Negative Klebsiella spp. Sutherland (1972)

Amino acids

L-glutamate – Negative Klebsiella aerogenes Sutherland (2001)

Serine – None E. coli Li et al. (2021)

Inorganic acids

Sulphate – Negative Haloferaxmediterranea, Cyanobacteria,
Phormidium sp.

Sutherland (2001), Mishra
and Jha (2013)

Carbohydrate Pentose sugars

D-arabinose – None Azospirillum brasilense Mora et al. (2008)

D-xylose – None K. oxytoca Moghannem et al. (2017)

Hexose sugars

D-glucose – None Pseudomonas spp., Bacillus spp. Ali et al. (2020)

D-galactose – None K. oxytoca Moghannem et al. (2017)

D-mannose – None Pseudomonas spp. Ali et al. (2020)

L-rhamnose – None Sphingomonas spp. Roca et al. (2015)

L-fucose – None K. oxytoca Moghannem et al. (2017)

Amino sugars

D-glucosamine – Positive Pseudomonas spp. Ali et al. (2020)

D-galactosamine – None Methanobacterium formicicum Sutherland (2001), Mishra
and Jha (2013)

N-acetyl-D-
glucosamine

– None Streptococcus sp. Roca et al. (2015)

N-acetyl-D-
galactosamine

– None Vibrio neocaledonicus Sutherland (2001), Mishra
and Jha (2013)

Uronic acids

D-glucuronic acids – Negative Klebsiella oxytoca Moghannem et al. (2017)

L-iduronic acids – Negative Butyrivibrio fibrisolvens Roca et al. (2015)

D-galacturonic
acids

– Negative Klebsiella oxytoca Moghannem et al. (2017)

D-mannuronic
acid

– Negative K. oxytoca Moghannem et al. (2017)
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F113. Another study demonstrated that, Anabaena sp. PCC
7120 contains EPS producing exoD domain. In
Anabaena sp. PCC 7120, EPS production was enhanced in
lower sulfate concentrations with the increases of alr2882
(gene ID) expression (Kharwar et al. 2021). The genome
of Paenibacillus polymyxa WLY78, an N2-fixing bacteria,
contains two putative gene clusters, such as the
pep-1 clusters (13 kb) and pep-2 clusters (20 kb), where the
only pep-2 clusters are involved in EPS and biofilm for-
mation (He et al. 2021). For the alginate biosynthesis, the
alg gene is responsible but some alg genomic region func-
tions are not the same in all rhizospheric PGPR (Fig. 18.2).
Like, in the case of P. fluorescens F113 (Blanco-Romero
et al. 2020), the alg44 gene (2 kb) is performed in C-di-GMP
binding but in the case of Pseudomonas chlororaphis
PcPCL1606 (Heredia-Ponce et al. 2020a) and Pseudomonas
syringae pv. syringae UMAF0158 (Heredia-Ponce et al.
2020b) this gene performs as a hemolysin-D. The same type
of distinguishable putative functions is also found in the case
of psl gene clusters (Fig. 18.2). Many others EPS responsive
gene/gene clusters found in PGPR and are summarized in
Fig. 18.3 with their putative functions, and their different
type of functional activity in plant growth promotion under
water limiting conditions are discussed in Table 18.3.

4 Role of EPS on the Plant Under Drought
Stress Condition

Rhizobacteria can produce a higher quantity of EPS in
presence of drought conditions compared to non-stressed
conditions. Production of EPS also enhanced with the
increase of drought intensity. EPS are mainly essential ele-
ments of the extracellular matrix which always serves 40–
95% of the bacterial mass. The major roles presented by
bacterial EPS are (a) soil aggregation, (b) surface attach-
ment, (d) biofilm formation, (f) microbial aggregation,
(e) plant–microbe interaction, and (g) bioremediation, and
many others (Fig. 18.4). Due to plant–microbe interaction
plant roots through EPS also forms rhizosheath (RS), which
increases adherence of root-soil. This RS provides the active
site for bacteria-soil interaction and helps in micro aggre-
gates. Hence, EPS can change root morphology by forming
RS and also increase the root hair numbers in adverse con-
ditions (Karthik and Arulselvi 2016). Bacterial EPS might
reserve carbon, for the complete degradation required a
broad range of different enzymes because EPS are generally
complex types. EPS formed an extensive network with other
bacterial EPS (Costa et al. 2018). In addition, many studies

revealed that rhizobacterial EPS can entrap the nutrients like
minerals, soluble/insoluble metals, and ions on their EPS
matrix with soil particles (Flemming et al. 2016). In most
cases, bacterial EPS are negatively charged in presence of
carboxyl and hydroxyl functional groups (Ding et al. 2018)
that influence the metal biosorption. Many other binding
sites and their diverse chemical natures (pH, ionic strength,
surface properties, metal content, molecular weight, and
branching) are responsible for nutrient entrapment (Costa
et al. 2018). These properties have increased the bioavail-
ability of nutrients for plants in the rhizosphere under water
deficiency conditions. Some EPS producing bacterial species
and their functional role in adverse conditions are listed in
Table 18.4. The different mechanisms of EPS-producing
bacteria in plant growth promotion under stress conditions
are briefly described below.

4.1 Soil Physicochemical Properties
and Aggregation of Soil

Physicochemical properties of the soil are the main criteria in
the agricultural field. Because it affects several biological
processes that negatively impress on the productivity of the
crop. But the different types of biotic and abiotic stress
change the biochemical and physicochemical characters of
soil and cause it incompatible for maximum yield of the
crop, also reducing the rhizospheric bacterial activity (Mil-
lennium Ecosystem Assessment 2005). By changing the
physicochemical properties of infertile soil, improving the
soil fertility rate for sustainable agriculture (Naseem et al.
2018). The interactions amid the plant roots, soil, water, and
bacteria in the rhizosphere cause alterations in structural and
physicochemical properties of the rhizospheric soil. EPS
producing PGPR plays a significant function in soil texture
and health maintenance. In soil organic matter, EPS are the
very important active constituents that have a slimy texture
and ionic charges. So, bacterial EPS acts like glue substances
and gets attached to ions and clay. As a result, they can hold
solid particles together and form various types of soil
aggregates, such as micro aggregates and macroaggregates
of <250 lm and >250 lm in diameter respectively.Rhizo-
biaceae, Hyphomicrobiaceae, and Comamonadaceae family
bacteria significantly produce EPS and LPS which can help
in soil aggregation and reclamation during soil formation
(Vuko et al. 2020). Rhizobacteria establish an association
with plants and then plant roots produce exudates or organic
carbon, which stimulates the microbial community growth.
Then the rhizospheric bacteria release mucilaginous EPS
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Table 18.2 Chemical configuration of Homo and Hetero-exopolysaccharide

EPS Molecular
weight (Da)

Monomers Linkage References

Homopolysaccharides Dextran 106–109 Glucose a-1,6 glycosidic bonds; in some
cases 1,2-, 1,3 or 1,4 bonds are also
present

Díaz-Montes
(2021)

Mutan 5.654 � 103 Glucose a-1,3-D-glucan Koo et al.
(2010)

Alternan l06–l07 Glucose a-1,3 and a-1,6 glycosidic bonds Gupta and
Diwan
(2016)

Reuteran – Glucose a-1,4 glycosidic bonds Gupta and
Diwan
(2016)

Curdlan 5 � 104–2 �
106

Glucose b-1,3-D-glucan and a-1,3-b-D-
glucans

Gupta and
Diwan
(2016)

Levan 5.044 � 102 Fructose b-2,6 glycosidic bonds Monsan et al.
(2001)

Inulin-type (4.62–
6.2) � 103

Fructose b-2,1 glycosidic bonds Angelin and
Kavitha
(2020)

Cellulose * 106 Glucose b-1,4 Angelin and
Kavitha
(2020)

Scleroglucan 7.145 � 102 Glucose b-1,3 and b-1,6 Osemwegie
et al. (2020)

Pullulan (3.62–
4.8) � 105

Maltriose a-1,4 and 1,6 Osemwegie
et al. (2020)

Poly-galactans 1.8016 � 102 Galactose Pentameric repeating unit of
galactose

Angelin and
Kavitha
(2020)

Heteropolysaccharides Alginate (0.3–
1.3) � 106

a-L-guluronosyl and b-D-
mannurosyl

1,4 bonds Marshall
et al. (2019)

Xanthan (2.0–
50) � 106

Glucose, mannose,
glucuronic acid, acetyl and
pyruvil residues

b-1,4; b-1,2 and b-1,3 Angelin and
Kavitha 2020

Hyaluronan 7.766 � 102 N-acetyl-glucosamine and
Glucuronic acid

Alternate b-1,4 and b -1,3 bonds Freitas et al.
(2011)

Gellan 15–4 � 105 Rhamnose, glucose and
glucuronic acid

1,3-b-D-glucose, 1,4-b-D-glucuronic
acid, 1,4-b-D-glucose, and 1,4-a-L-
rhamnose

Angelin and
Kavitha
(2020)

Succinoglycan 5 � 103–
1�106

Glucose and galactose b-1,3 and 1,6 Medeot et al.
(2016)

Welan *1.0 � 106 Glucose, glucuronic acid,
and rhamnose

a-1,3 and a-1,6 Coleman
et al. (2008)
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that promotes aggregation of soil and enhances the quantity
of root adhering soil (RAS). Increasing the RAS aggregation
amount forms a protective environmental condition where
plant nutrients and water uptake improve. So, the bioavail-
ability of nutrients (N, Fe, P, and K) enhances, thus pro-
moting plant growth in adverse conditions (Rashid et al.
2016). Plants treated with EPS producing Planomicrobium
chinense and Bacillus cereus show resistance to drought
stress, which was seen due to improving the soil texture by
EPS (Khan and Bano 2019). Under drought stress, rhi-
zobacterial strains like B. licheniformis, B. amyloliquefa-
ciens, B. subtilis, B. thuringiensis, and Paenibacillus
favisporus increase the RAS/RT (root tissue) ratio by
EPS-production (Vardharajula et al. 2011). P. fluorescens
produced alginate by alginate synthesizing genes like algB,
alg44 and algD which can hold a higher amount of water by
soil colonization in dehydrating conditions (Marshall et al.
2019).

4.2 Water Holding Capacity

EPS have intense water holding capacity (WHC). Xanthan
can hold 15 times more water than its weight. But on the
other hand, dextran had a lesser WHC for structural differ-
ences (Costa et al. 2018). Bacterial EPS are hydrated bio-
molecules with 97% (more or less) water holding capacity in

the polymeric matrix. The availability of water also
improved the soil structure, physicochemical and biochem-
ical properties. Water potential in rhizospheric soil is the
pivotal parameter that defines the bioavailability of oxygen,
water, nutrients to microorganisms and plants (Naseem and
Bano 2014). EPS can protect soil texture, microorganisms,
and plants in water scarcity conditions and also provide
hydrating conditions. Rhizobacterial EPS can form the
bridge between soil particles and clay that increases water
holding capacity in the plant root zone. In addition to these
functions, microorganisms still maintain nutrient diffusion
and physiological function even in dry conditions. EPS
producing soil bacteria Pseudomonas sp. can hold water
greater than many times of it's weight. When applied in
sandy soil the it increase moisture content by holding more
water in comparision to uninoculated soil (Roberson and
Firestone 1992). The EPS producing Cyanobacteria such
as Phormidium 94a (Vicente-García et al. 2004) and Nostoc
calcicola (Bhatnagar et al. 2014), isolated from arid regions
showed the water retention capacity and express a strategy of
nutrient entrapment and endurance.

4.3 Significance of EPS in Symbiosis

In the establishment of a symbiotic relationship between
plants and nitrogen-fixing bacteria, polysaccharides play a

Fig. 18.2 A comparative diagram of PGPR gene clusters: A. Compare
the alg gene clusters functions between Pseudomonas fluorescens F113
(Blanco-Romero et al. 2020), P. chlororaphis PcPCL1606
(Heredia-Ponce et al. 2020a) and P. syringae pv. syringae UMAF0158

(Heredia-Ponce et al. 2020b); B. compare the psl gene clusters
functions between P. chlororaphis PcPCL1606 and P. syringae pv.
syringae UMAF0158
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significant role in plants, such as Leucaena sp., Trifolium
sp., Medicago sp., and Pisum sp. (Sharma et al. 2020). EPS
contributes intrinsic roles in establishing the first connection
between bacteria and the surface of the plant. Extracellular
polymeric substances are the fundamental molecules in
many legume plants for nodulation at the rhizospheric zone,
which are also considered as signaling molecules (Nod
factors) necessary for identifying specific host plants (Ghosh
and Maiti 2016). Nod factors modulate the cytokinin
biosynthesis and improve nutrition and nodule formation in
soybean plants under water deficiency conditions (Prudent
et al. 2016). Although the exact molecular mechanisms are
not still determined completely. As an example, to penetrate
alfalfa nodules including establishing the successful symbi-
otic relation, Sinorhizobium meliloti has to synthesize suc-
cinoglycan. On the other hand, mutants cannot produce
succinoglycan, synthesize excessive or transformed EPS,
which decreases the ability of infectious activity and sym-
biosis process (Cheng and Walker 1998). Rhizobium sullae
produces fucose-rich EPS which can help in nodule forma-
tion in Hedysarum coronarium L. plant. This strain also
produces Kdo-rich CPS, LPS, and cyclic b-(1,2)-glucans
(Gharzouli et al. 2013). The Rhizobium-legume symbiosis
requires specific chemical signaling between the symbiotic
partners. In addition to the flavonoids and Nod factors that

initiate the symbiotic program, like EPS, LPS, CPS, and
cyclic b-(1,2)-glucans play essential roles in the formation of
the infection thread and are successful in symbiosis by
nodule development in nutrient deficiency or stressful con-
ditions. Nevertheless, the precise functions of these complex
carbohydrates are still being investigated. Hydrogenophaga
sp. (SL48) and Rhizobium sp. (SL42) were co-inoculated
with Bradyrhizobium japonicum (532C) in soybean plant;
shoot dry weight, root dry weight, flowering significantly
increased via nodule formation under stress conditions
(Ilangumaran et al. 2021). Lotus japonicus produces EPR3
receptor that binds with only bacteria which synthesize
specific type EPS (Mesorhizobium loti strain R7A) and
permits infection thread formation (Kawaharada et al. 2015).

4.4 Microbial Aggregation

The phenomenon of bacterial aggregation is of great interest
for agriculture application because it promotes bacterial
survival, dispersal, and facilitates adhering to the plant root
surfaces. The bacterial cell surface components act a key role
in bacterial cell aggregation (Bogino et al. 2013). EPS par-
ticipates in aggregation and surface colonization of
plant-associated bacteria (Burdman et al. 2000). A.

Fig. 18.3 Different type genes/gene clusters and their putative
functions: A. pep gene clusters of Paenibacillus polymyxa WLY78
(He et al. 2021); B. wss gene of Pseudomonas syringae pv. syringae

UMAF0158 (Heredia-Ponce et al. 2020b); C. pap gene, D. pga gene
and E. lsc gene of Pseudomonas fluorescens F113 (Blanco-Romero
et al. 2020)
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brasilense, a wild-type strain promotes plant growth by
producing monomeric-based EPS. In a
fructose-supplemented medium, A. brasilense (Sp7) pro-
duced glucose, and arabinose-rich EPS during the stationary
and death phase of growth (Mora et al. 2008) which helped
in bacterial cell aggregation. The exoC (phosphomannomu-
tase), exoB (UDP-glucose 4-epimerase), and phbC
(poly-b-hydroxybutyrate synthase) mutant strains produced
arabinose-rich EPS and showed potential capacity in the
bacterial aggregation process. But while the mutant not
produce LPS (dTDP 4-rhamnose reductase; rmlD) and

glucose-rich EPS, they failed to successfully aggregate the
cell (Bahat-Samet et al. 2004). Thus, the bacterial cell
aggregate mechanism could establish a protected plant
growth that gives survival efficacy in a harsh environment.

4.5 Biofilm Formation

Biofilms are protected against hostile conditions, by their
secretion of EPS, which is suspected to defend these cells,
from heavy metals too. Drought tolerant B.

Table 18.3 Genes of
exopolysaccharides and their
functions in plant growth

Bacteria Gene clusters or genes of EPS
producing

Role in plant
growth
promotion

References

A. brasilense rmlD (dTDP 4-rhamnose reductase),
phbC (poly-beta-hydroxyburyrate
synthase), exoC
(phosphomannomutase), and exoB
(UDP-glucose 4′-epimerase)

Aggregate the
bacterial cell in
rhizospheric
zone

Bahat-Samet
et al. (2004)

Paenibacilluspolymyxa
WLY78

pep-2 gene cluster of P. polymyxa
WLY78 genome

Formed biofilm
which helped in
nitrogenase
synthesis and
activity by
providing
microaerobic
environment

He et al. (2021)

Pseudomonas putida algD (promoter of alginate
biosynthesis)

Formed biofilm
and microcolony
by alginate
production in
water limiting
conditions

Li et al. (2010)

P. fluorescensPf0-1 algB, alg44 and algD (producing
some important product in alginate
synthesis)

Soil
colonization and
water holding
capacity

Marshall et al.
(2019)

P. chlororaphis
PcPCL1606;
P. syringae pv.
syringae UMAF0158

Psl (polysaccharide synthesis loci)
gene cluster

Display plant
colonization and
antagonistic
activity by the
biofilm
formation

Heredia-Ponce
et al. (2020a, b)

P. fluorescens SBW25 wss operon (cellulose) Helps in plant–
microbe
interactions and
improved the
nutrient
supplement

Gal et al. (2003)

P. fluorescens F113 pga
(poly-b-1,6-N-acetyl-glucosamine),
pap (Pseudomonas acidic
polysaccharide), alg (alginate), lsc
(levan)

Formation of
biofilm in
rhizosphere,
host-bacteria
interaction and
colonization

Blanco-Romero
et al. (2020)
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amyloliquefaciens-54 synthesized biofilms which can posi-
tively induce tomato plant’s growth by increasing expression
levels of stress-responsive genes, such as tdi65, lea, and
ltpg2 (Wang et al. 2019). It also observed that the extra-
cellular matrix encapsulates, the differentiated cell popula-
tion of a microbial community in biofilms. In microbial
communities, biofilms differentiated cell populations are
encapsulated by bacteria-made extracellular matrices. Bac-
terial species residing in the most natural, clinical, and
industrial setup are valuable for forming biofilms. Apart
from that, bacteria like the Rhizobacterium living at the root
of plants, are known to form micro-colonies or biofilm-like
structures (Nayak et al. 2020). Biofilms also stimulate root
exudates and therefore enhance soil accumulation, increase
microbial biomass and improve water potential to plants.
Consequently, viscous extracellular matrix production at the
rhizosphere possesses a powerful selectivity edge, especially

when they are under stress. Mechanical stability of the
biofilm is also due to the matrix, which interacts with various
low molecular weight solutes and macromolecules that is
responsible for the formation of many microenvironments in
the biofilm (Khan et al. 2020). P. chlororaphis
(Heredia-Ponce et al. 2020a) and P. syringae (Here-
dia-Ponce et al. 2020b) secret some EPS in their extracel-
lular matrix that contributes to an effective role in formation
of biofilm. P. syringae synthesizes some psl (polysaccharide
synthesis loci)-like polysaccharides and alginate in extra-
cellular matrix components which are strongly involved in
biofilm formation and niche competition. Interestingly,
Heredia-Ponce et al. (2020b) evaluated the presence psl-like
gene cluster in all strains of the P. chlororaphis phylogroup
which indicates that this EPS could be related to the biofilm
architecture in this species. P. putida mt2 created a hydrated
micro-environment by producing alginate, cellulose and a

Fig. 18.4 A comparative diagram of plant growth under drought conditions: a. effect of drought stress in plants; b. representation showed
different functions of EPS producing PGPR under drought conditions
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Table 18.4 EPS producing PGPR and their functional role

Examples of PGPR (source) Quantity of EPS
production

Secreted
product

Functional Role References

Pseudomonas putida
(Rhizospheric soil)

63.30 lg/ml (NS) Glucose,
mannose,
and
rhamnose

Increased the plant biomass, survival rate, and
root adhering soil/root tissue ratio of sunflower
seedlings under drought stress conditions

Sandhya
et al. (2009)

Pseudomonas aeruginosa and
Bacillus coagulans (Collected
from culture collection)

– – Increased the different parameters of plant
growth under water stress conditions

Yadav et al.
(2018)

Planomicrobium chinense and
Bacillus cereus

– Sugar,
Protein,
Uronic acid

Improved plant growth and drought tolerance
under rainfed conditions

Khan and
Bano (2019)

Pseudomonas fluorescens (Soil) 11.63 mg/mg
protein (NS)

Sucrose Improved the plant growth in adverse
environments feature by water deficiency
conditions

Niu et al.
(2018)

Enterobacter hormaechei (Soil) 5.44 mg/mg protein
(NS)

Pseudomonas migulae (Soil) 3.33 mg/mg protein
(NS)

Bacillus amyloliquefaciens
(Rhizospheric soil)

4.88 mg mg−1 (NS);
32.4 mg mg−1 (DS)

Glucose,
mannose,
xylose, and
raffinose

Improved relative water content, root adhering
soil/root tissue ratio, leaf water potential, plant
biomass, aggregate stability and reduced leaf
water loss, the activity of antioxidant enzymes
in drought conditions

Vardharajula
et al. (2011)

Paenibacillus favisporus
(Rhizospheric soil)

2.46 mg mg−1 (NS);
18.9 mg mg−1 (DS)

Glucose and
raffinose

Bacillus licheniformis
(Rhizospheric soil)

2.98 mg mg−1

(NS) 19.8 mg mg−1

(DS)

Glucose and
mannose

Bacillus thuringiensis
(Rhizospheric soil)

2.39 mg mg−1 (NS);
18.2 mg mg−1 (DS)

Bacillus subtilis (Rhizospheric
soil)

2.69 mg mg−1 (NS);
22.3 mg mg−1 (DS)

Bacillus thuringiensis, Bacillus
subtilis, and Bacillus
megaterium (Rhizospheric soil
of chickpea)

– Sugar,
protein,
uronic acid

By changing physiology and biochemical
properties in the plant, increased growth and
drought tolerance potentiality

Khan et al.
(2019)

Azospirillum brasilense and
Bacillus subtilis (Soil)

– Protein,
sugar, and
uronic acid

Promote plant growth under drought stress Ilyas et al.
(2020)

Proteus penneri, Pseudomonas
aeruginosa, and
Alcaligenesfaecalis (Soil)

– Sugar,
Protein,
Uronic acid

Plant growth significantly increases in drought
conditions

Naseem and
Bano (2014)

Fluorescent Pseudomonas
strain Psd (Soil)

– Alginate Possesses PGP properties, high Zn2
+ biosorption ability, and also showed
biocontrol potentiality

Upadhyay
et al. (2017)

NS—Non-stressed; DS—Drought-stressed

Outside the Cell Surface: Encoding the Role … 305



novel putida exopolysaccharide A (pea) that can help in the
formation of biofilm architecture which protects from des-
iccation stress and increase survival efficiency (Chang et al.
2007; Nielsen et al. 2011). Not only P. putida but also
P. aeruginosa PAO1 and P. syringae pv. syringae B728a
produces alginate and shows stress tolerance activity under
water-limiting conditions by producing EPS-rich biofilm
(Chang et al. 2007). By the expression of algD promoter,
P. putida produced alginate within the biofilm under
water-limiting conditions which have also a relationship
with microcolony formation. The alg8 gene is the second
gene in the algD operon which has an important role in
alginate gene expression during biofilm formation; many
others single transduction networks regulate and modulate
the algD operon activity at transcriptional levels (Chang
et al. 2007; Li et al. 2010).

4.6 Improved Plant–microbe Interactions

Plant-associated rhizobacteria can interact with the aerial
parts, rhizospheric zone, or even the vascular system of the
plant host using a great diversity of EPS. Beneficial bacteria
produce EPS in the rhizospheric zone, which can improve
the plant–microbe interaction. Among all the EPS, cellulose,
alginate, and Psl (contains D-glucose D-mannose, and L-
rhamnose) are mainly studied in rhizobacteria that have an
important role in plant–microbe association (Blanco-Romero
et al. 2020). As an example, P. chlororaphis PcPCL1606
(Heredia-Ponce et al. 2020a) and P. syringae pv. syringae
UMAF0158 (Heredia-Ponce et al. 2020b) synthesize
Psl EPS in presence of a psl-like gene cluster which shows
significant roles in colonizing the soil and roots of plants;
some other pseudomonads by using these mechanisms also
help in the surface colonization and participate against some
stressors. Though bacterial cellulose is synthesized by sev-
eral biosynthesis and regulation mechanisms which have
been shown a common role of this constituent is to help the
establishment of effective role in plant-microbes interactions
(Heredia-Ponce et al. 2020a). P. aeruginosa produced algi-
nate and Psl have a beneficial effect on plant-microbes
interactions and microcolony formation (Heredia-Ponce
et al. 2021; Zhao et al. 2014). P. fluorescens SBW25 is a
potential rhizobacterium that helps in plant nutrition and
health by producing a cellulosic type of EPS which requires
the colonization of plant root surfaces and promotes plant
growth (Gal et al. 2003). During plant-bacteria interactions,
the bacterial cellulose of SBW25 strain contributes to the
beneficial ecological performance in the sugar beet phyllo-
sphere and rhizosphere. Recently one study revealed that

P. fluorescens F113 strain produced biofilm around plant
rhizospheric zone by some extracellular matrix
(ECM) (Blanco-Romero et al. 2020). This ECM is mainly
composed of lipids, proteins, DNA, and EPS including
alginate, levan, poly-N-acetyl-glucosamine (PNAG), and
Pseudomonas acidic polysaccharide (Pap) which have a
crucial role in host plant-bacteria interaction and rhizosphere
colonization for plant growth promotion (Blanco-Romero
et al. 2020). The polysaccharide of pea produced by
P. putida mt2 in water-limiting conditions is typically
involved in the production of galactose, glucose, and
mannose-rich polymer that has an important contribution to
rhizosphere colonization and cell–cell interactions which is
necessary for pellicle formation (Nielsen et al. 2011).

4.7 ACC-Deaminase and Antioxidant Activity

In plants, drought stress causes biochemical and physiolog-
ical disorders such as hormonal concentration imbalance
including stimulated ethylene production. Ethylene is one
type of growth hormone that is required for plants at a lower
concentration; it decreases the root growth in presence of a
higher concentration which also leads to retard the plants’
growth and development (Wang et al. 2019). Under stress
conditions, ethylene is synthesized from ACC, thus any
disturbance on ACC synthesis can decrease ethylene pro-
duction (Gupta and Pandey 2019). Previously reported that
during the improvement of plant growth under drought
conditions B. velezensis D3 (Nadeem et al. 2020) and
Pseudomonas sp. (Ali et al. 2014) performed better when it
pause both EPS-producing and ACC-deaminase activity than
the other strains which pause only one of the above activities.

At the cellular level, huge damages occur due to oxidative
stress under water limiting conditions; from this injury,
imbalance status occurs between the reactive oxygen species
production and their detoxifying enzymes. Plants produce
some antioxidants enzymes like catalase, superoxide dis-
mutase, peroxidase, glutathione peroxidase, ascorbate per-
oxidase, glutathione reductase, and transferase that detoxify
the reactive free radicals. Therefore, by boosting the pro-
duction of antioxidants PGPR can facilitate in imparting
drought tolerance in plants (Ilyas 2020). For example,
Pseudomonas oryzihabitans, Pantoea brenneri, Acineto-
bacter calcoaceticus, Pseudomonas putida, Chryseobac-
terium sp. isolated from halophytes and drought-tolerant
plants contain one or more numbers of antioxidant mecha-
nisms involving genes (such as cat, pox, sod, gpx, gr, and
gst) that control the plants from great damages (Leontidou
et al. 2020).
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4.8 Antagonistic Activity

Rhizobacteria protect the plant by the inhibition of various
soil-borne plant pathogens by producing EPS. B. subtilis
requires an extracellular matrix for antagonistic activity,
which is also involved in biofilm formation and promotes
bacterial cell colonization on the plant root surface. This
extracellular matrix is encoded
by tapA-sipW-tasA and epsA-O operons (Chen et al. 2013).
Extracted EPS from the P. aeruginosa PF23 showed highly
antagonistic activity against Macrophomina phaseolina (80–
90%) under stress conditions and promoted plant growth in a
greenhouse (Tewari and Arora 2014). Alginate is produced
in extreme amounts by some strains of P. syringae after the
exposure of copper that is generally applied for the reduction
of disease incidence which is caused by some plant patho-
gens (Kidambi et al. 1995). P. chlororaphis PCL1606 strain
produced alginates, psl-like polysaccharides and other extra
polymeric substances (Fap-like fibre) which helped in bio-
film formation and niche competition. Psl-like EPS performs
a significant role in surface adhering and contributes to
biocontrol activity against the Rosellinia necatrix which is
responsible for the formation of white root rot disease in
avocado plants (Heredia-Ponce et al. 2020a). Generally,
biocontrol agents (viz P. chlororaphis, P. putida, etc.) can
synthesize EPS-rich biofilms, and several pieces of evidence
suggest that biofilm formation capability should deliberate in
assessing their effective crucial role (Pandin et al. 2017).
P. putida A1, rhizobacteria act as effective biocontrol agent
against some plant pathogenic soil born bacterial disease
(including Ralstonia solanacearum, Xanthomonas pv. ory-
zae, X. citri subsp. citri and X. oryzae pv. oryzicola) by
forming biofilms (Sun et al. 2017) as well as promotes the
tomato plant growth by the colonization on the root surface
area and found to microbial aggregation around wound sites.
P. simiae PICF7 is a rhizospheric bacteria, involved in
biofilm formation that can effectively suppress Verticillium
wilt disease in olive plants, caused by the plant pathogenic
soil-borne fungus Verticillium dahlia (Montes-Osuna et al.
2021).

4.9 Accumulation of Osmolytes and Sugars

At the cellular level, osmotic adjustment is a fundamental
adaptation mechanism that maintains the cells’ turgor pres-
sure at high levels and also protects cellular organelles,
different enzymes, proteins, and membranes from oxidative
damage in stress conditions. Under drought conditions,
plants accumulate several compatible organic
solute/osmolytes such as proline, glycine, sugars (glucose,

sucrose, and raffinose, etc.), some proteins (dehydrins),
betaine, quaternary ammonium compounds, polyhydric
alcohols, and polyamines (Vurukonda et al. 2016). EPS
producing PGPR like P. aeruginosa (Pa2), Proteus penneri
(Pp1), and Alcaligenes faecalis (AF3) showed that the
accumulation of soluble sugar and proline induced tolerance
of plants in drought stress, proline also behaves as an
antioxidant defence mechanism and signaling molecule
(Naseem and Bano 2014). Inoculation of Bacillus subtilis
and A. brasilense strains in wheat plants improved the pro-
line and sugar content in plants that can help to maintain the
water status of the cell and other metabolisms which protect
from dehydration (Ilyas et al. 2020). Compatible
solutes/osmolytes accumulation in plant vacuoles mainly
proline and sugars insist in the enzyme inactivation,
decreases the osmotic potential and maintains membrane
integrity under water scarcity conditions. Leontidou et al.
(2020) detected different osmoprotectant genes like
betaine-aldehyde dehydrogenase, choline dehydrogenase,
and proline dehydrogenase in drought tolerant PGPR gen-
omes thus, P. oryzihabitans, Pantoea brenneri, Acineto-
bacter calcoaceticus, P. putida which are involved in
drought stress responses.

5 Conclusion and Future Perspectives

The application of PGPR in the agricultural field is an
important practice in the present time. In agronomy, among
other obstacles, drought stress became a very relentless
threat now-a-days as the growth of different plants and their
productivity is very badly abated by this. The uses of
EPS-producing bacteria related to plant growth are playing a
major role to increase future food security globally. Under
drought conditions, the application of EPS and PGPR not
only helps the plant but also the property of soil and the
morphology of root changes. On the physiological and
molecular level, the combination of PGPR and EPS gener-
ally triggered the osmotic response and induced a few novel
genes which help the plant to survive and grow under heavy
drought stress. Through plant breeding and genetic engi-
neering, drought stress-tolerant plant production became
easy, but it is very time-consuming and cost-effective.
Inoculation of EPS producing PGPR strains in the agricul-
tural field to overcome the drought stress is getting interest
as it is very environment friendly and less cost-effective.

A few rhizobacterial EPS has been reported till now. But
there are a lot of rhizobacterial EPS that show high water
contain capacity (welan, dextran), which help to overcome
the drought stress, which has not been well studied so far.
So, research is needed to know more about the diversity of
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rhizobacterial EPS. In future, research is necessary to gather
more knowledge regarding the identification of the particular
microbes, application of delivery methods, and more infor-
mation about the stress mitigation mechanisms. Overall the
future should be focused on: (1) To expand knowledge
insight in the biosynthetic path of EPS synthesis in Rhi-
zobacteria; (2) To know more about in drought stress con-
ditions how the EPS producing bacteria sense the signal it
needs to produce more EPS or active via plant root-specific
pattern-recognition; (3) To decode the activation
pathway/mechanisms behind the advantageous properties of
rhizobacterial EPS in plants. Such knowledge will enhance
the understanding of the complicated process of interaction
between eukaryotes and prokaryotes.
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Potential of Plant Growth Promoting
Rhizobacteria for Enhancement of Plant
Growth and Its Role in Improving Soil Health
Under Abiotic Stress

Shyama Prasad Saha and Deepika Mazumdar

Abstract

With the increase of population worldwide, we have been
introduced to a significant challenge in the recent decade
which is to feed the population that is growing at an
alarming rate. There are several factors responsible which
affect the mass production of crops/feed such as the
limitation of agricultural land, environmental damage,
and especially the number of biotic and abiotic stresses
such as drought, salinity, and heavy metal. To overcome
those stress barriers several scientific approaches such as
the use of chemical fertilizers, pesticides, and herbicides,
are adopted, which have their drawbacks in the environ-
mental perspective. Therefore, in the context of sustain-
able agriculture, the use of plant growth promoting
rhizobacteria (PGPR) is a good alternative approach
which not only enhances plant growth under controlled
environment but also helps plants to alleviate several
biotic and abiotic stresses. PGPR produce various phy-
tohormones, exopolysaccharides, organic acids, and small
bioactive molecules which play an important role in the
overall improvement in the plants’ health not only in the
fertile environment but also under stress conditions.
Hence, this chapter mainly focuses on the mode of action
of various PGPR and highlights their role in stress
conditions to improve plant growth.

Keywords

Drought � Exopolysaccharides � Heavy metal stress �
PGPR � Phytohormones � Salinity

1 Introduction

Since the beginning of agricultural practices, one of the
important challenges we face today is how to enhance
agricultural productivity to feed the growing population.
According to the Global Agricultural Productivity
(GAP) Index 2018, the current growth rate of crop produc-
tivity is not enough to meet the food demand of an
ever-increasing world population that is estimated to be 10
billion people in 2050 (GAP Report 2018). In agroecosys-
tems enhancing crop productivity is very difficult and very
much influenced by environmental conditions, management
techniques, and farming systems (Egamberdieva et al. 2019).
A number of abiotic factors which are imposing challenges
in agro-systems are salinity, drought, temperature, chemical
pesticides and fertilizer application, soil pH, and contami-
nation of heavy metal hampering crop production (Egam-
berdieva et al. 2019). Although various abiotic stress
management strategies are adopted to overcome all these
stress challenges, those strategies are very costly and hence
not being able to adopt by the farmers. Thus, an alternative
method is always required to achieve the aim of high crop
production under stressed conditions. PGPR is one such
strategy that is useful in the proper growth of crops in
stressed conditions. There are a number of microorganisms
reported which can promote the growth and yield of a plant
in drought, saline, acidic/alkaline, and other abiotic condi-
tions. Arthrobacter, Pseudomonas, and Enterobacter are
reported to alleviate crop production (Niu et al. 2018). The
volume of the soil which directly surrounds the root system
is known as rhizosphere and harbours a huge variety of
microorganisms (Dessaux et al. 2009). These microbes may
have neutral, positive, or negative effects on the plant. The
group of rhizospheric bacteria competent in colonizing the
root environment is known as rhizobacteria (Kloepper et al.
1991). There is a mutualistic association between PGPR and
plants.
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The structural design of the root plays a vital role in plant
growth and development. It helps in the uptake of water,
nutrients, and minerals, and provides the plant with a strong
anchorage in the soil. The main and secondary branching of
the root depends on the continuous incorporation of internal
and environmental factors (Asari et al. 2017). On the one
hand, the plant synthesizes and secretes a wide range of
compounds like sugars, amino acids, proteins, organic acids,
various enzymes, etc. through the root exudates which pro-
vide nutrition to the rhizobacteria, and on the other hand
these bacteria promote the growth of the plants (Asari et al.
2017). Microorganisms usually found in the rhizosphere are
termed rhizobacteria. But several microbes that reside on the
surface of the root are termed as rhizoplane microbes and
some microbes that live inside the root system are known as
endophytic microbes (Barea et al. 2005). PGPR includes the
species of Agrobacterium, Azotobacter, Azospirillum,
Bacillus, Burkholderia, Chromobacterium, Erwinia,
Flavobacterium, Micrococcus, Pseudomonas, Serratia, etc.
(Bhattacharyya and Jha 2012). Rhizobacteria may be
free-living or in a symbiotic relationship with plants. Groups
of PGPR like Allorhizobium, Azorhizobium, Bradyrhizo-
bium, Mesorhizobium, and Rhizobium belonging to the
family Rhizobiaceae grow in a symbiotic relationship with
plants (Niu et al. 2018). PGPR have various characteristics
that can either directly or indirectly promote the growth of
plant under biotic or abiotic stress conditions (Casson et al.
2009). There are numerous reports on the mechanisms used
by PGPR. Some mechanisms which directly facilitate plant
growth are nitrogen fixation, phytohormone production,
organic and inorganic phosphate solubilization, and iron
entrapment by bacterial siderophores (Glick et al. 1999). In
stress conditions, PGPR leads to the synthesis of enzymes
like 1-aminocyclopropane-1-carboxylate (ACC) deaminase
which is related to stress signaling (Glick et al. 1999).
According to the report of Arshad et al. (2007), there are
many PGPR that alleviate drought stress effects in plants by
reducing plant ethylene levels that are usually increased by
unfavourable conditions. In this respect, those rhizobacteria
which are drought tolerant can be more beneficial than others
to grow in a new drought environment in sufficient numbers
to deliver beneficial effects on plants (Arshad et al. 2007).

2 Insight into the Attributes of PGPR

Numerous research works have been reported on the bene-
ficial effect of PGPR on plant growth and yield (Cardinale
et al. 2015; Sang-Mo et al. 2014). These mechanisms
employed by the PGPR directly or indirectly help in the
stimulation of plant growth, development, and yield. Direct
mechanisms involve facilitation in the uptake of nutrients,
nitrogen fixation, solubilization of complex nutrients,

production of components under stressed conditions, pro-
duction of phytohormones, etc. (Casson et al. 2009). They
also indirectly promote plant growth by producing side-
rophores, antibiotics, hydrolytic enzymes, hydrogen cyanide
(HCN), etc. Hence, the PGPR constitute the leading driving
force in restoring soil health (Babalola and Glick 2012;
Ahemad and Kibret 2014).

2.1 Direct Mechanisms

2.1.1 Nitrogen Fixation
Nitrogen (N) is one of the important macroelements required
for the growth, development, and productivity of plants.
Plants take up nitrogen from the soil in the form of ammo-
nium ions (NH4

+), nitrites (NO2
−), and nitrates (NO3

−).
PGPR can convert atmospheric nitrogen into ammonia by
the process of nitrogen fixation. N2-fixing microorganisms
are of symbiotic and non-symbiotic nature. Symbiotic N2-
fixers form symbiotic association with leguminous (e.g.,
Rhizobium species) and non-leguminous (e.g., Frankia)
plants (Ahemad and Khan 2012; Zahran 2001). The
non-symbiotic N2-fixing bacteria include cyanobacteria,
Azotobacter, Azospirillum, Gluconacetobacter diazotrophi-
cus (Bhattacharyya and Jha 2012); but they can add only a
small amount of the fixed N2 compared to the total N
requirement of the plant (Glick 2012). Symbiotic N2-fixing
rhizobia under the family Rhizobiaceae lead to the formation
of the nodules wherein the rhizobia reside as intracellular
symbionts. Diazotrophic microbes (free-living N2 fixers) are
capable of establishing a non-obligate interaction with the
host plants (Glick et al. 1999). N2-fixing microorganisms
carry out nitrogen fixation with the help of a complex
enzyme system known as nitrogenase which is a
two-component metalloenzyme consisting of dinitrogenase
reductase (iron protein) and dinitrogenase (Glick 2012).

2.1.2 Solubilization of Organic and Inorganic
Phosphorous

The next important plant growth-limiting nutrient after N is
phosphorus (P). Despite soil being a large reservoir of
organic and inorganic P, the amount available to plants is
generally very limited. Phosphorous available in the soil is
present in insoluble form and so is not readily available to
plants. Monobasic (H2PO4) and dibasic (HPO4

2−) ions are
the forms of P absorbed by plants (Bhattacharyya and Jha
2012). The chemical P fertilizers added in the agricultural
fields are not completely taken up by the plants. The excess
portion is rapidly converted into insoluble complexes in the
soil which leads to a change in the pH of the soil (Zaidi et al.
2009). Application of microorganisms with phosphate sol-
ubilizing activity is widely known as phosphate solubilizing
microorganisms (PSM), which may improve the soil health,
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and hence can be an alternative to chemical P-fertilizers
(Khan et al. 2006). Some of the bacterial genera like Azo-
tobacter, Bacillus, Enterobacter, Erwinia, Microbacterium,
Pseudomonas, Serratia, etc. are reported to be the most
significant PSB (Bhattacharyya and Jha 2012). The mecha-
nism of action of PSM is the secretion of low-molecular
weight organic acids which carry out the solubilization of
insoluble P (Zaidi et al. 2009). The presence and perfor-
mances of PSM are strictly affected by environmental factors
especially under stress conditions (Ahemad and Khan 2010,
2012).

2.1.3 Solubilization of Potassium
Potassium (K) is another very important element required for
the growth, metabolism, and development of plants. K can
enhance plant resistance to diseases, pests, and abiotic
stresses and activates different enzymes and proteins
responsible for various plant processes such as starch syn-
thesis, nitrate reduction, energy metabolism, and photosyn-
thesis (Gallegos-Cedillo et al. 2016; Hussain et al. 2016).
K is present as mineral forms in the soil and most of them
are unavailable to plant (Sparks and Huang 1985). PGPR
could solubilize the insoluble K to soluble forms by various
mechanisms. During the solubilization process of K, the
major mechanisms involved are the production of the
organic acids, inorganic acids, and protons (acidolysis
mechanism) (Sheng et al. 2008; Maurya et al. 2014;
Meena et al. 2014). In the acidolysis process, H+ are
released which can help to dissolve the mineral K resulting
in the release of readily available soluble K. There are
numerous reports in which several organic acids such as
citric, fumaric, gluconic, glycolic, lactic, malic, malonic,
oxalic, propionic, succinic, and tartaric acids are mentioned
to be produced and secreted by K solubilizing bacteria,
which are effective in releasing K from insoluble mineral to
soluble K (Krishnamurthy 1989; Hu et al. 2006; Sheng and
He 2006; Liu et al. 2012; Prajapati et al. 2012, 2013;
Saiyad et al. 2015).

2.1.4 Phytohormones Production
Plant hormones also known as phytohormones are the signal
low molecular weight produced within the plants that occur
in extremely low concentrations. The term phytohormone
was coined by Went and Thimann in 1937 (Went and Thi-
mann 1937). Phytohormones play a significant role in plant
metabolism and development. These are the endogenous
secondary metabolites that effectively activate plant defence
response against both biotic and abiotic stresses. Further-
more, these molecules act as regulators of the growth,
development, and physiological processes of the plants.
PGPR produce several phytohormones such as auxins,
cytokinins, ethylene, gibberellin, and abscisic acid. There are
reports of PGPR producing phytohormones that promote the

health of the plants. Generally, IAA is responsible for plant
cell division and differentiation. It stimulates seed germina-
tion rate and also enhances the rate of development of xylem
and root. According to a report by Patten and Glick (1996),
80% of microorganisms isolated from the rhizosphere of
various crops can synthesize auxins. IAA produced by
PGPR promotes the plant root surface area and length
helping in greater access to soil nutrients. PGPR produce
auxins to affect host physiological processes for their benefit
(Shih-Yung 2010). In 2012, Glick has reported that rhi-
zobacterial IAA loosens plant cell walls and helps in
enhancing the amount of root exudation providing nutrients
for growth and colonization of rhizobacteria. Hence,
PGPR IAA is recognized as an important effector molecule
in plant–microbe interactions (Spaepen and Vanderleyden
2011). For the synthesis of IAA, tryptophan is an important
amino acid that is the main precursor (Zaidi et al. 2009).
Anthranilate, a precursor for tryptophan, represses IAA
synthesis. By this mechanism, tryptophan finely regulates
the IAA biosynthesis with a negative feedback regulation on
the enzyme anthranilate synthase and thus suppressing
anthranilate formation which ultimately results in an indirect
induction of IAA synthesis (Spaepen et al. 2007). There are
other important phytohormones that impart the positive
effects of rhizobacteria in plants. These include abscisic acid
(ABA), cytokinins (CKs), ethylene, and gibberellins (GAs).
In addition to these classical phytohormones, there are some
other molecules including salicylic acid, jasmonic acid,
nitric oxide, strigolactones, and brassinosteroids, which have
been known to function as plant growth regulators. Many of
the proteins such as some transcription factors and protein
kinases involved in phytohormone signaling have been
studied. The phytohormone signaling system influence
osmotic balance and salt tolerance mechanisms and regulate
acclimatization of a plant to salinity (Lyu et al. 2019).

2.1.5 Production
of 1-Aminocyclopropane-1-Carboxylate
(ACC) Deaminase

Ethylene also known as a stress hormone gets increased
under stress conditions like drought, salinity, extreme soil
pH, heavy metal contamination, and pathogenicity. This
affects the overall performance of the plants in a negative
way. The high level of ethylene in plants signifies defoliation
and ageing which can reduce crop productivity (Saleem et al.
2007; Bhattacharyya and Jha 2012). PGPR also have a
special attribute, i.e., production of ACC deaminase which
plays a vital role in stressed conditions. Plants treated with
PGPR producing the ACC deaminase prove increased
growth and development. ACC deaminase induces salt tol-
erance and reduces drought stress in plants by reducing the
level of ethylene (Nadeem et al. 2007; Zahir et al. 2008).
Various bacterial genera have been reported which can
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produce ACC deaminase. These are Acinetobacter, Alcali-
genes, Azospirillum, Bacillus, Burkholderia, Enterobacter,
Pseudomonas, Serratia, etc. (Shaharoona et al. 2007;
Nadeem et al. 2007; Zahir et al. 2008; Kang et al. 2010).
ACC is an important precursor for ethylene production. The
mechanism of action of ACC deaminase produced by PGPR
is to break down ACC into 2-oxobutanoate and NH3

(Arshad et al. 2007). ACC deaminase producers also tend to
reduce the effects of phytopathogens like viruses, bacteria,
and fungi. Not only that, but these bacteria also relieve the
stress from high temperature, high light intensity, heavy
metals contamination, polyaromatic hydrocarbons, radiation,
insect attack, and water-logging condition (Glick 2012;
Lugtenberg and Kamilova 2009). The direct effects of ACC
deaminase producing PGPR on the inoculated seeds or roots
are root elongation, root nodulation, shoot growth, mineral
uptake, etc. in many crop plants (Shaharoona et al. 2007;
Nadeem et al. 2007; Glick 2012).

2.2 Indirect Mechanisms

The main indirect mechanisms of PGPR are related to their
biocontrol activity which involves competition for nutrients,
production of antifungal metabolites, niche exclusion, and
siderophores production and induced systemic resistance
(Lugtenberg and Kamilova 2009). Various antifungal
metabolites like, HCN, 2, 4-diacetylphloroglucinol, pyolu-
teorin, pyrrolnitrin, phenazines, tensin, and viscosinamide
are produced by many rhizobacteria (Bhattacharyya and Jha
2012). Interaction of some PGPR with the plant roots pro-
motes plant resistance against some phytopathogenic
microbes like bacteria, fungi, and viruses. Such phenomenon
of acquired resistance in the plant is called induced systemic
resistance (ISR) (Lugtenberg and Kamilova 2009). ISR
involves ethylene and jasmonic acid signaling pathways
within the plants that can stimulate the plant defence
responses against a large group of phytopathogens (Glick
2012).

2.2.1 Siderophore Production
Iron is an important micronutrient for almost all forms of life.
Siderophore production is a very important attribute of
PGPR. Siderophore not only sequester iron but also other
heavy metals. Thus, soil contaminated with heavy metals can
be improved by the application of potent PGPR. In soil, iron
occurs mainly in the form of Fe3+, which is likely to form
insoluble hydroxides and oxy-hydroxides. These insoluble
forms of iron make it unavailable to both plants and
microorganisms (Rajkumar et al. 2010). Siderophores are
low molecular weight water-soluble iron-chelating ligands
produced by rhizobacteria which are having a high affinity for

iron produced under low iron stress (Verbon et al. 2017;
Kumar et al. 2016). On the one hand, it is acting as a solu-
bilizing agent for insoluble iron complexes and helps in iron
nutrition, and on the other hand, it inhibits phytopathogen.
Siderophore producing PGPR compete for iron with the
pathogens and thus create iron deficiency leading to the death
of pathogens (Khurana and Sharma 2000; Sharma and Kaur
2010; Schiessl et al. 2017; Shaikh et al. 2016). Siderophores
are not only forming a stable complex with Fe but also form
complexes with other heavy metals like Al, Cd, Cu, Ga, In,
Pb, and Zn (Kiss and Farkas 1998; Neubauer et al. 2000).
Chelation and release of iron, uptake of siderophore-Fe
complexes directly, or by a ligand exchange reaction are
different mechanisms by which plants acquire and assimilate
iron from bacterial siderophores (Schmidt 1999). There are
several studies on plant growth promotion via
siderophore-mediated Fe-uptake, obtained by inoculations of
plants with siderophore-producing rhizobacteria (Rajkumar
et al. 2010). For example, under iron-limited conditions, a
siderophore-mediated iron transport system is reported in oat
plants and siderophores-producing rhizobacteria which
delivers iron to the plant (Crowley and Kraemer 2007).

2.2.2 Production of Hydrogen Cyanide (HCN)
Cyanide is considered one of the typical attributes of rhi-
zobacteria as it is a phytotoxic agent capable of inhibiting
the main enzymes involved in vital plant metabolic pro-
cesses (Bakker and Schippers 1987). However, its applica-
tion as a biocontrol agent is increasing (Rajkumar et al.
2010). HCN is produced during the initial stationary growth
phase of bacteria. It is not playing any role in growth,
storage of energy, or primary metabolism, but it generally
plays a significant ecological role as a selective advantage is
bestowed on the HCN producing strains (Vining 1990).

2.2.3 Production of Protective Enzymes
A number of compounds are produced by PGPR which
controls phytopathogenic agents and indirectly promotes
plant growth (Meena et al. 2014). Enzymes like chitinase,
b-1, 3-glucanase, and ACC deaminase are generally
involved in the degradation of cell walls of phytopathogens
neutralizing them (Goswami et al. 2014). Mostly fungal cell
walls are composed of b-1, 4-N-acetyl-glucosamine and
chitin, and hence their growth is inhibited by b-1,
3-glucanase and chitinase-producing bacteria. In a report by
Ramadan et al. (2016), fusarium wilt causative organisms
like Fusarium oxysporum and Fusarium udum can be
inhibited by Sinorhizobium fredii KCC5 and Pseudomonas
fluorescens LPK2. Also in another report by Islam et al.
(2016) Rhizoctonia solani and Phytophthora capsici, the
most devastating crop pathogens in the world can be
inhibited by the application of PGPR.
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2.2.4 Production of Volatile Organic Compounds
(VOCs)

PGPR produce several volatile organic compounds (VOCs)
which are low molecular weight (MW) compounds. These
include aldehydes, alcohol, acids, hydrocarbons, ketones,
and terpenes (Bhattacharyya and Lee 2017). Some examples
of VOCs like indole, 2,3-butanediol, cyclohexane, benzene,
benzene (1-methylnonadecyl), 2-(benzyloxy) ethanamine,
3-hydroxy-2-butanone (acetoin), methyl, decane,
1-chlorooctadecane, 1-(N-phenylcarbamyl)- 2- morpholino
cyclohexene, dodecane, 11-decyldocosane, tetradecane,
2,6,10-trimethyl dotriacontane can promote the growth of
plants (Ryu et al. 2003; Minerdi et al. 2011; Kanchiswamy
et al. 2015). In the absence of pathogens, they can also
promote plant growth and confer resistance against abiotic
stresses (Bhattacharyya et al. 2015). According to Zou et al.
(2010), VOCs like 2-pentylfuran show an increase of fresh
weight of Arabidopsis thaliana, with an optimum dose of
10 g. Several bacterial species from diverse genera produc-
ing VOCs include Arthrobacter, Bacillus, Serratia, and
Pseudomonas which enhance plant growth. Acetoin and 2,
3-Butanediol produced by Bacillus sp. are most effective for
inhibiting the growth of fungal pathogens and promoting the
growth of the plants (Santoro et al. 2016). It has been
reported by Sharifi and Ryu (2016), that VOCs produced by
PGPR are an important factor for excelling plant-induced
systemic resistance (ISR).

3 Role of PGPR in Various
Stressed/challenging Conditions

3.1 Drought

Drought is one of the major challenges faced by the farmers.
It is responsible for the reduction in crop productivity in arid
and semi-arid regions leading to a shortage of food.
A change in the patterns of global air temperature and pre-
cipitation lead to longer drought periods. Scientists all over
the world are trying to find out strategies to combat this
challenge. Some of the strategies are the development of
drought-resistant crops, traditional breeding, use of low
water irrigation systems, or water-saving irrigation.
Although these strategies are useful, their use is highly
labour intensive, costly, and highly technical. Therefore, an
alternative method is highly required to achieve the aim of
high crop production under dry conditions. PGPR is useful
in the proper growth of crops in stressed conditions. There
are a number of microorganisms reported which can promote
the growth and yield of a plant under drought conditions.
Arthrobacter, Pseudomonas, and Enterobacter are reported
to alleviate crop production (Niu et al. 2018).

To increase the osmotic potential under the condition of
low water availability, the plant synthesizes certain osmo-
lytes which help them to adapt to the drought condition
(Farooq et al. 2009). PGPR also synthesize and extracellu-
larly secrete several osmolytes that help to increase the plant
drought tolerance potential. Yuwono et al. (2005) reported
that IAA produced by plant growth promoting rhizobacteria
is one of the crucial factors that help plants to combat
drought stress. Affecting the ethylene pathway in plant root
rhizosphere, ACC deaminase producing PGPR also help the
plant to alleviate drought stress. Due to the ACC deaminase
activity, ethylene production is significantly reduced which
in turn lowers the damage caused by low water scarcity
(Mayak et al. 2004). Mayak et al. (2004), also noticed that
ACC deaminase producer Achromobacter piechaudii help
the tomato and pepper plant to adapt to drought stress and
their biomass get enhanced as compared to the control plant.
Inoculation of Maize plant with Azospirillum brasilense has
been found to have higher water content as compared to
control plant. Plant proline content both in root and shoot
were found to be significantly higher when plants were
treated with low water activity tolerant bacteria (Casanovas
et al. 2002). By accumulating chemicals related to plant
growth promotion, PGPR under drought stress can improve
the availability of micronutrients in plants (Creus et al.
2004). In this same study, it has also been reported that the
content of Mg, K, and Ca in wheat grains were increased
upon inoculation of PGPR. PGPR produce exopolysaccha-
rides (EPS) which are complex carbohydrates released in the
environment and are found to have an important role in
protecting plants under desiccation (Pal and Sharma 1999).
The important phenolic compound salicylic acid (SA) pro-
duced by PGPR which has an important role in plant cell
signaling was also found to protect plants under desiccation.
SA induces the production of various genes in plants such as
antioxidants, chaperons, and heat shock proteins (hsp) which
has a direct role in protecting plants under temperature
increased due to the water scarcity in the environment
(Jumali et al. 2011) (Table 1).

3.2 Heavy Metal Contamination

Cu2+, Fe2+, Zn2+, and P have very limited mobility in soil.
Plant root exudates contain organic acids and enzyme
phosphatase that help to mobilize insoluble phosphorus. On
the other hand, carbon present in the plant root exudates
supports the growth of microorganisms present in the rhi-
zosphere, and hence indirectly help to solubilize phospho-
rous by the microorganisms. It had been observed that plants
treated with IAA (a hormone that is produced by PGPR)
induced approximately 52% increased liberation of
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carbohydrates in plant root exudates as compared to the
plant group treated with soluble phosphorus (Wittenmayer
and Merbach 2005). Micro- and macronutrient uptake by
maize plants was found to be increased when the plant was
treated with PGPR such as Bacillus polymyxa BcP26 and
Pseudomonas alcaligenes PsA15, Mycobacterium phlei
MbP18. This stimulation of nutrient uptake and absorption
of nitrogen, phosphorus, and potassium was found to be
observed in calciols than fertile soil (Egamberdiyeva 2007).
Plant root colonizing microorganisms also secrete
metal-chelating compounds such as siderophores which
influence plants by the uptake of various metal ions through
its chelating mechanism (Egamberdiyeva and Kucharova
2009; Dimkpa et al. 2009). Acidification of the soil change
the redox potential of the soil and thus change the

microenvironment. Microorganisms can use this mechanism
to increase the bioavailability of nutrients in the soil (Gadd
2004). Volatilization by methylation, autotrophic leaching,
and heterotrophic leaching are the mechanisms of metal
mobilization in bacteria, whereas the reduction of heavy
metal can be done by sorption to cellular materials followed
by intracellular quenching and precipitation as insoluble
organic and inorganic molecules (Gadd 2004). Klebsiella
mobilis CIAM 880 was found to enhance the growth of
barley plants in comparison to control plants under cad-
mium contaminated soil. Potters et al. (2007) reported that
the ability of a plant to face several challenging condi-
tions like heavy metal toxicity and nutrient deficiency is
actually due to the effect of phytohormones produced by
PGPR.

Table 1 Effect of PGPRs on crop plant under stress condition

PGPRs Stress
condition

Effect Plants References

Achromobacter
piechaudii

Drought Produced glucosyl glycerol (GG) which help to adapt
to water deficit condition

Solanum lycopersicum Alavi et al. (2013)

Arthrobacter
sp. and B. subtilis

Salinity Increased dry weight of the plant Triticum aestivum Upadhyay et al.
(2012)

Bacillus cereus Salinity Plant growth enhancement Oryza sativa, Vigna
mungo, Cicer arietinum

Chakraborty et al.
(2011)

Bacillus
lentimorbus

Antioxidant Increased production of antioxidant in plant and
enhance plant root growth

Lactuca sativa, Spinacea
oleracea, Daucus carota

Nautiyal et al. (2008)

Brachybacterium
sp.

Heavy
metal

Increased the K+ content in plant Arachis hypogaea Shukla et al. (2012)

Burkholderia sp. Drought Increased the plant chlorophyll and water content Cucumis sativus Kang et al. (2014)

Burkholderia
phytofirmans PsJN

Low
temperature

Higher plant biomass, root growth and adaptation to
low temperature

Vitis vinifera Ait et al. (2006)

Curtobacterium sp. Drought Production of osmoregulant proline Hordeum vulgare Cardinale et al.
(2015)

Geobacillus sp. Drought Enhance photosynthesis and proline production Zea mays Abdelkader and
Esawy (2011)

Haererohalobacter
sp.

Heavy
metal

Increased K+ level Arachis hypogaea Shukla et al. (2012)

Oceanobacillus sp. Drought Increased exopolysaccharide production in root
exudates

Lens esculentus Qurashi and Sabri
(2011)

P. putida H-2,3 Drought Regulation of stress hormones, antioxidants. Also,
secrete gibberellic acid (GA) which promote plant
growth

Glycine max Sang-Mo et al.
(2014)

Pantoea sp. Salinity Salt tolerance through ACC deaminase activity Vigna radiata Panwar et al. (2016)

Pseudomonas
putida

Heat Plant growth enhancement by synthesis of
high-molecular weight protein and cellular metabolites

Wheat Ali et al. (2011)

Serratia sp. Salinity,
Drought

Production of exopolysaccharides in root exudates Triticum aestivum Singh and Jha
(2016), Nadeem et al.
(2013)

Variovorax sp. Salinity Increased salinity stress through the production of
ACC deaminase

Pisum sativum Wang et al. (2016)
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3.3 Salinity

Soil salinity is another serious issue for global food security.
It is estimated at present that about 62 million hectares or
20% of the world’s agricultural land are affected by salinity.
Excess amount of soluble salt deposited in cultivable land
directly affects crop yields. The physiological and metabolic
processes of plants are highly affected due to the uptake of a
high amount of salt which even impacts their survival. The
various conventional methods of getting rid of salinity in soil
involving leaching, flushing, scraping, or adding of gypsum,
CaCl2, etc. are not producing good results and also adversely
affect the agroecosystems. For a long time, breeding
salt-tolerant plants and developing salt-resistant crop vari-
eties are some methods that are not able to solve the prob-
lem. Hence the search for a sustainable method that can
increase the crop productivity of saline soil without affecting
the environment is necessary (Kumar et al. 2019).

Microbes tolerant to salt are also able to thrive under high
ionic and osmotic stress. A diverse group of microorganisms
have been isolated from extreme saline, alkaline soils and
found to have plant growth promoting activity. Numerous
abiotic and biotic stresses that plants generally encounter
were being neutralized by these bacteria. Recent literature
suggested that PGPR can be used to enhance the produc-
tivity of plants facing salt stress and restore the agroe-
cosystem. According to Sultana et al. (2020), two locally
isolated PGPR strains identified as Bacillus tequilensis and
Bacillus aryabhattai show salt tolerance and plant growth
promoting characteristics under saline conditions. Inocula-
tion upon plants revealed that these strains were capable of
increasing the rate of transpiration, photosynthesis, and
stomatal conductance of three varieties of rice, consequently
leading to higher crop productivity. Given this promising
potential, the Bacillus tequilensis and Bacillus aryabhattai
strains would be a potent candidate for biofertilizer practices
for reclamation of salinity in saline-affected coastal areas.

4 Conclusion

Sustainable agriculture suggests not only the condition
where crop production will be carried out in adequate
quantity without hampering human health and the environ-
ment but also where both the crop producers and consumers
were benefitted. But the major constraints are the different
kinds of biotic and abiotic stresses in the environment.
PGPR can play an important role to mitigate these stress
conditions and improve plant health. With its diverse
mechanisms of action such as triggering N2 fixation, phos-
phate solubilization, zinc solubilization, phytohormone
production, siderophore production, and acting as a bio-
control agent PGPR help in the enhancement of crop yield,

control environmental pollution, and reduce the use of
chemical fertilizer which further helps in sustainable agri-
culture. Soil agriculture health can be restored by the use of
the consortia of PGPR microbes under challenging stress
conditions.
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Soil Application of Plant Growth Promoting
Fungi for Sustainable Agriculture in the New
Decade

Parimal Mandal and Zerald Tiru

Abstract

The plant rhizosphere is a micro-ecosystem at the vicinity
of the plant root system comprising hot spot zone of the
microbial community (like fungi, bacteria, virus, insect,
etc.) interacting with each other by several mechanisms
influenced by root exudates. The fungal community,
which are non-pathogenic and promote the growth of
plants are called plant growth promoting fungi (PGPF), is
a major focusing area for sustainable agriculture. It was
experienced that the non-judicious application of numer-
ous chemical fertilizers and fungicides is liable to enhance
environmental pollution, deteriorate soil health, and
increase human health hazards in course of biological
magnification due to the non-degradable nature of these
chemicals. Presently, plant growth promoting fungi
(PGPF) are getting much more attention for sustainable
agriculture as it is supposed to be economically more
viable due to its effectiveness and harmlessness to the
environment. Different mechanisms are involved for plant
growth promotion such as the production of plant growth
substances (e.g., indole acetic acid, soluble phosphate,
etc.), antagonistic activity against the pathogen (through
antibiosis, competition, and mycoparasitism), and induc-
tion of systemic resistance (ISR) in a plant through the
expression of defense-related enzymes (such as peroxi-
dase, polyphenol oxidase, and chalcone synthase) and
defense chemicals (such as phytoalexin and
anti-microbial phenolic compounds) for conferring struc-
tural and chemical barrier against a pathogen. PGPF is
also known to increase the health of soil with the addition
of humus by decomposing plant debris in the rhizosphere.

Keywords

Environmental pollution � Induced systemic resistance �
Mycoparasitism � Plant growth promoting fungi �
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Abbreviations

AFP Antifungal protein
BOFs Bio-organic fertilizers
ET Ethylene
GA Gibberellic acid
HCN Hydrogen cyanide
HSPs Heat shock proteins
IAA Indole Acetic Acid
ISR Induced systemic resistance
JA Jasmonic acid
PAL Phenylalanine ammonia lyase
PGPF Plant growth promoting fungi
POX Peroxidise
P Phosphorus
PPO Polyphenol oxidase
PR proteins Pathogenesis-related proteins
ROS Reactive oxygen species
SA Salicylic acid
SAR Systemic acquired resistance
VOCs Volatile Organic compounds

1 Introduction

The worldwide human population is predicted to reach
approximately 9.7 billion by the year 2050 from the current
population of 7.9 billion in 2021 (Hashem et al. 2021). This
explosion of human population has created a huge problem
of food security all over the world; and hence, it is now a
global challenge to increase food production by above 70%
of the current levels to feed the ever-increasing population
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(Murali et al. 2021). Further, various problems such as dis-
eases, pests, droughts, indiscriminate use of hazardous
chemical pesticides, pollution, and global warming due to
conventional agricultural practices have vastly affected the
quantity and quality of food production (Saba et al. 2012). In
order to supply food to the ever-increasing population and
ensure food security, pre- and post-harvest diseases must be
controlled very cautiously. Apart from diseases, many of the
other problems faced, are associated with traditional culti-
vation practices of crops, and pollution of soil occurs as a
result of excessive and uncontrolled use of inorganic fertil-
izers (Babu et al. 2015).

The present objective is to develop new approaches for
the management of diseases caused by various agents,
including pests, bacteria, fungi, nematodes, etc. Adopting
the use of some of the beneficial soil microbiome including
fungi can greatly improve soil health, control diseases by
antagonistic mechanisms and induced systemic resistance
(ISR), promote plant growth, and create a better option than
the use of inorganic chemical fertilizers (Bhardwaj et al.
2014). Recently, rhizosphere-dwelling plant growth pro-
moting fungi (PGPF) has been validated as one of the
effective biocontrol agents for eco-friendly management
strategies of plant diseases, and they may also serve as an
alternative strategy to boost the growth of plant and trigger
defense mechanisms in plants. Hence, The application of
PGPF reduces the use of inorganic chemical fertilizers
and also helps the plants to mitigate various biotic and
abiotic stresses through various mechanisms.

Many PGPF species like Trichoderma, Talaromyces,
Fusarium, Phytophthora, Penicillium, Rhizoctonia, Glio-
cladium, and Phoma have been reported by various inves-
tigators for their significant contribution in plant growth
promotion, enhancement of innate immunity, and production
of other important secondary metabolites in plants (Hyaku-
machi 1994; Hyakumachi and Kubota 2004; Murali et al.
2021; Naziya et al. 2020). All the beneficial attributes
(Fig. 1) of PGPF are associated with their root colonizing
efficacy, ability to produce growth hormones, mineralization,
nutrient uptake, disease control by antagonistic mechanisms,
and defense strategies against pathogen which includes
induction of systemic resistance (ISR) and systemic acquired
resistance (SAR) through the production of defense
enzymes, defense chemicals, and pathogenesis-related pro-
teins (PR-proteins) in plants (Islam et al. 2014;
Nogueira-Lopez et al. 2020). These potential PGPF would
play a significant role in agriculture for sustainable produc-
tivity, management of soil health, and restoration of the
environment as a cost-effective input for coming decades
which could be a great relief in future for food security.

2 Rhizosphere

In the natural environment, plants share a micro-ecosystem
at the vicinity of the plant root system comprising hot spot
zone of the microbial community (like fungi, bacteria,
viruses, and insects) interacting with each other by several
mechanisms influenced by root exudates. Some of these
plant-microbial interactions protect plants against pathogenic
microorganisms and provide nutrients to plants (Igiehon and
Babalola 2018). The plant rhizosphere harbours both bene-
ficial and pathogenic microorganisms comprising up to 1011

microbes per gram of soil and above 3000 prokaryotic
species in general; and therefore, it represents a composite
ecosystem on earth (Hossain et al. 2017a, b; Mendes et al.
2013). Microorganisms involved in rhizospheric soil include
bacteria, fungi, nematodes, viruses, arthropods, oomycetes,
protozoa, algae, and archaea (Akinola and Babalola 2021).
Among the microbial community inhabiting the rhizospheric
zone, bacteria and fungi are the most common microorgan-
isms which have been studied extensively for their beneficial
impact on plant life through their mutual biological activi-
ties. This rhizospheric zone offers great opportunities for
plant–microbial interactions, and therefore significantly
affects plant growth, disease resistance, and nutrient recy-
cling (Akinola and Babalola 2021).

Plant roots are extremely significant for mineral nutrient
uptake and productivity, and therefore there is an extreme
need to explore plant–microbial interactions at the rhizo-
sphere. Plants establish a positive interaction with a diverse
group of microorganisms through their roots and a large
fraction of these vastly complex microbial groups have not
been characterized (Igiehon and Babalola 2018). The inti-
mate association between plants and root colonizing

Fig. 1 Diversified function of plant growth promoting fungi
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microbial community is brought about by root exudates
reflecting the microbial community structure and function
for qualitative productivity (Gahan and Schmalenberger
2014; Hossain et al. 2017a, b). Root exudates supply major
requirements like primary metabolites including carbohy-
drates, amino acids, and organic acids; and secondary
metabolites such as flavonoids, glucosinolates, and auxins to
the microbial community for their proliferation; and hence
establish a mutual relationship with plants (Badri and
Vivanco 2009; Vives-Peris et al. 2020). It is assumed that
some chemical signals produced and secreted by the root
may be deployed to improve beneficial microbial coloniza-
tion of the root for sustainable agriculture in the near future
(Igiehon and Babalola 2018). Therefore, understanding the
microbial interactions in the rhizosphere is crucial towards
organic farming methods that are less dependent on the use
of conventional inorganic chemical fertilizers which imparts
negative impacts on surroundings (Rascovan et al. 2016).

3 Plant Growth Promoting Fungi (PGPF)

The soil-dwelling fungal community which are
non-pathogenic and promote the growth of plants are called
plant growth promoting fungi (PGPF). PGPF are a hetero-
geneous group of non-pathogenic saprophytic fungi that
establish a close association with plants and increase the
improvement of plant growth and health through several
activities (Naziya et al. 2020). Further, fungi under PGPF
may differ distinctly from each other with respect to their
taxonomy, habitats, physiology, and even to their interac-
tions with plants. A fungus that promotes the growth of a
plant may or may not have a similar effect upon the growth
of another plant, and also act differently under different
environmental conditions (Hossain et al. 2017a, b). Not all
fungi that promote plant growth are considered as PGPF, for
example, mycorrhizal fungi, which are known to boost the
growth of the plants, are not considered as PGPF. An
important feature that gives PGPF a different identity is that
the PGPF are non-symbiotic saprotrophic fungi that live
freely on a zone of soil at the vicinity of the root or the
interior of the root itself, whereas mycorrhizal fungi behave
as obligate biotrophs and develop an intimate association
with the roots of most host plants (Hossain et al. 2017a, b;
Mehrotra 2005). Therefore, the term PGPF is not absolute,
rather it is an operational term (Bent 2006). Root coloniza-
tion ability is considered as one of the most important
characteristics of PGPF which helps to promote plant growth
(Islam et al. 2014). Fungi of the genera such as Aspergillus,
Fusarium, Penicillium, Piriformospora, Phoma, and Tri-
choderma are the strains mostly used in research as PGPF
(Hossain et al. 2017a, b; Javaid et al. 2020; Masunaka et al.
2009). The non-pathogenic fungi such as Pythium

oligandrum and Phytophthora cryptogea colonizing the root
ecosystems are also considered as PGPF (Attitalla et al.
2001; Benhamou et al. 2012; Bent 2006). The role of PGPF
is crucial in rhizosphere and is known to play a very sig-
nificant role in plant growth and development, and soil
health. As both pathogenic and non-pathogenic fungal
communities inhabit the rhizosphere, it is exceedingly urgent
to know their mode of interactions and consequences. With
respect to plant pathogens, fungi are one of the most noxious
soil-borne pathogenic microorganisms that cause serious
root disease in plants and pose a serious threat to soil
micro-ecological balance, plant health, and agricultural
productivity (Doehlemann et al. 2017). The fate of a suc-
cessful infection, i.e., whether it immediately becomes
symptomatic or remains asymptomatic, may depend upon
the tissue in which the infection begins (Sukno et al. 2008).
The growth or activity of soil-borne pathogenic fungi can be
inhibited by PGPF present in the rhizosphere (Raaijmakers
et al. 2009). The activity and effects of PGPF like Tricho-
derma, Gliocladium, Penicillium, and non-pathogenic F.
oxysporum on plant growth, productivity, nutrient avail-
ability, disease suppression, and soil health are well
documented.

3.1 Plant Growth Promotional Activities
of PGPF

Plant growth promoting fungi (PGPF) are universally known
for their eco-friendly role in the overall growth of the plant
and subsequent improvement of yield and quality of the
plant. Their role in seed germination, seedling vigour, shoot
growth, root growth, photosynthetic efficiency, flowering
and yield are the most commonly realized attributes (Hos-
sain and Sultana 2020). However, the plant growth promo-
tional activities of PGPF are attributed to the production of
plant growth hormone and mineralization and as such many
more (Fig. 2).

3.1.1 Production of Plant Growth Hormone
Plant growth hormones also called phytohormones help to
regulate the growth of the plants through various develop-
mental processes. Plant growth promoting fungi (PGPF) can
exogenously produce phytohormones such as auxins (IAA),
gibberellins, and cytokinin. IAA and gibberellins are
responsible for inducing important physiological responses
at different stages of plant development (Islam et al. 2014).
The IAA is one of the highly important phytohormones
which is widely distributed and is essential for the devel-
opment of plants. Exogenous applications of IAA stimulate
root formation and root hair development. Thereby
enhancing nutrient absorption by the plants which consec-
utively increases plant biomass (Fu et al. 2015). PGPFs like
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Trichoderma, Penicillium, Aspergillus, Fusarium,
Talaromyces, and Mortierella are reported for IAA pro-
duction in host plants like chickpea, rice, and wheat, which
facilitates increased growth and yield (Abri et al. 2015;
Kumar et al. 2017; Murali et al. 2021). Apart from IAA, GA
is another important phytohormone produced by fungi such
as Fusarium, Aspergillus, and Penicillium, and is reported to
deal with abiotic stress along with plant growth and devel-
opmental activities (Syamsia et al. 2021). The GA produced
by the fungi Cladosporium species in wheat and cucumber
plants was known to enhance plant growth (Hamayun et al.
2010). It has also been reported that endophytic fungi such
as Penicillium citrinum and Aspergillus fumigatus poten-
tially promote plant growth by secreting gibberellins
(GAs) in the rhizosphere (Ahmad et al. 2010). Another
important plant growth regulator, cytokinin has been repor-
ted to be produced by PGPF which can also trigger plant
growth promotional activities (Hossain and Sultana 2020).
The most important phytohormone, cytokinin (predomi-
nantly zeatin), elicited by Piriformospora spp., Phoma spp.,
and Trichoderma spp. caused growth promotion in melon
and Arabidopsis (Martínez-Medina et al. 2014; Speakman
and Kruger 1984). Piriformospora indica produces low

amounts of auxins, but relatively high levels of cytokinins
and stimulate plant growth promotion in Arabidopsis
(Vadassery et al. 2008).

3.1.2 Mineralization
Minerals deficiency is one of the major problems in agri-
culture. Deficiency occurs when their availability in the soil
becomes lower than the requirement. Deficiency may occur
due to the absence of minerals in the soil or lack of mobility
or poor solubility of the minerals (Rengel and Marschner
2005). The unavailability of minerals is an important factor
in reducing the yield and quality of the crop. The availability
of minerals in the rhizosphere is controlled by combined
effects of soil properties, plant characteristics, and the
interaction of roots with associated microorganisms (Jones
et al. 2004; Rengel and Marschner 2005). The mutual
interaction of rhizospheric fungi may compensate for the
deficiency of minerals by simply making them available to
plant and enhancing their uptake. Phosphorus is the second
most important plant mineral nutrient after nitrogen and
exists in different organic and inorganic form (Alam et al.
2002). Deficiency of phosphorus (P) in the soil is one of the
most important chemical factors limiting plant growth and

Fig. 2 PGPF in contributing
overall growth of the plant
through direct and indirect
mechanisms
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hence phosphate-containing fertilizers are widely used to
achieve optimum yields. Soluble forms of P fertilizer are
easily precipitated as insoluble forms, and therefore exces-
sive and repeated application of P fertilizer to soil is required
which could be harmful to the soil ecosystem and also
appears to be a quite expensive affair. PGPF in the rhizo-
sphere greatly increase the availability of P to plants through
the solubilization of phosphate. Many investigators have
reported that active conversion of insoluble phosphate to
soluble primary and secondary orthophosphate ions by
phosphate solubilizing fungi (PSF) may be a viable alter-
native to P fertilizers (Alam et al. 2002; Chabot et al. 1996;
Pal 1998). Many PGPF can solubilize the unavailable P and
release it through their metabolic activities by secreting
organic acids which directly dissolve the rock phosphate or
chelate calcium ions (Mwajita et al. 2013). The mineraliza-
tion and solubilization of complex organic phosphorous into
their simple forms are known to be catalyzed by
PGPF-produced enzymes such as phytase and phosphatases;
and inorganic acids (HCl, nitric acid, sulphuric acids) and
organic acids like a-ketobutyric acid, malic acid, glyoxylic
acid, succinic acid, oxalic acid, fumaric acid, gluconic acid,
tartaric acid, citric acid, 2-ketogluconic acids (Altomare et al.
1999; Gyaneshwar et al. 2002; Murali et al. 2021). Rhizo-
spheric fungi like Penicillium, Aspergillus, Trichoderma,
Phoma, Rhizoctonia, Rhizopus, and Alternaria have been
documented for their efficiency in solubilizing the insoluble
phosphate (Alori et al. 2017; Dotaniya and Meena 2015).

Among the PGPF, different Trichoderma strains have
been exploited to enhance mineralization and mineral
absorption of Fe, N, P, and K, and increase the accessibility
of ammonium, nitrogen, zinc, copper, iron, and manganese
(Molla et al. 2012). Many PGPF compete for nutrients by
decreasing Fe availability for the pathogens, and thereby
limiting their growth by producing siderophores. Iron
(siderophore-Fe complexes) released by PGPF is also taken
up instantly by plants through ligand exchange reactions
(Altomare et al. 1999; Berg 2009). A hydroponic culture
experiment has shown the significant increase in iron status
of cucumber and maize in the presence of ferrated side-
rophore mixture (1 µM) obtained from a culture of Peni-
cillium chrysogenum (Hordt et al. 2000). The ammonia and
HCN produced by various Trichoderma isolates have also
been reported to contribute to plant growth promotion
activity (Naziya et al. 2020).

3.2 Abiotic Stress Management

Crop plants are often subjected to different kinds of abiotic
stress which include heavy metal stress, water stress, tem-
perature stress, and salinity stress. These stresses are major
limiting factors for plant growth. They have the great

potentiality for substantial damage to crop plants and con-
sequently reduce the yield and productivity of the crops all
over the world. The incidence of abiotic factors affecting
plants is still on the rise. Plant root colonizing microbes are
capable of influencing plant physiological processes,
including tolerance to abiotic and biotic stresses through
different mechanisms like induction of osmoprotectants and
heat shock proteins (HSPs) in plant cells (Zaidi et al. 2014).
Plant growth promoting fungi (PGPF) are known for allevi-
ating different abiotic stresses. Penicillium species isolated
from the rhizospheric soil of peanut was found to improve the
salinity tolerance ability in sesame plants along with defense
activity against pathogen and plant growth promotion (Rad-
hakrishnan et al. 2014). Trichoderma harzianum enhances
root growth and helps in water absorption and nutrient uptake
under osmotic stress. The role of a different strain of Tri-
choderma for attenuating the oxidative, salinity, drought, and
osmotic stress in the plant has been well documented (Zaidi
et al. 2014). The PGPF such as Microsphaeropsis, Mucor,
Steganosporium, Phoma, Aspergillus, Alternaria, and Pey-
ronellaea have been reported to protect Arabidopsis plants
from heavy metal accumulation (Murali et al. 2021).
A common mechanism to improve the level of tolerance
under abiotic stress employed by the fungi could be the
amelioration of destruction triggered by ROS under stressful
conditions. It has been reported that Trichoderma helps the
plants to raise the activities of antioxidant enzymes and
consequently protects the plants against ROS formation and
membrane damage in plants under stress (Guler et al. 2016).

3.3 Management of Disease

Plant disease caused by different pathogens is one of the
major detrimental factors for food production all over the
world (Shimizu et al. 2013). Plant disease management
through chemical fungicides does not hold good for today
and in near future. It is dangerous not only for plants but
may also pose a serious threat to soil microbial community
and surroundings. Therefore, finding a sustainable solution
to manage the problem is quite a big challenge. However,
the use of microorganisms to induce resistance in plants
against pathogens is gaining appreciation from all over the
world for its consistency and sustainability (Bejarano and
Puopolo 2020). PGPF may adopt different strategies to
protect the plant from invading pathogens by inducing
defense resistance in plants apart from their usual role in
plant growth promotion. Application of PGPF in the plant is
one of the eco-friendly disease management strategies that
cause a long-lasting induction of plant innate immunity. The
ability of PGPF to colonize the plant root, help the plant to
take up nutrients and trigger plant growth is considered to be
the first and foremost mechanism towards sustainable
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disease management (Hossain et al. 2017a, b; Murali et al.
2013). Apart from this, PGPF directly or indirectly partici-
pate in disease management in a plant (Hossain and Sultana
2020; Jogaiah et al. 2013; Muslim et al. 2019; Tiru et al.
2020; Yedidia et al. 1999). The major disease management
strategies adopted by PGPF can be summarized as follows:

3.3.1 Antagonism
Plants often get attacked by diverse groups of the pathogen
which causes serious diseases and consequently reduce
productivity and yield. The disease-causing pathogens can
be controlled by PGPF which has been referred as
bio-control mechanism. The bio-control mechanism can be
achieved through the antagonistic efficacy of microorgan-
isms. PGPF restrict the pathogen and reduce the damage by
several mechanisms which include antibiosis via inhibition
of pathogen by antibiotics and surface-active compounds
called biosurfactants; competition for colonization sites,
nutrients, and minerals; parasitism by the production of
extracellular cell wall-degrading enzymes such as chitinase
and b-1,3-glucanase (Berg et al. 2005). Different PGPF,
namely, Trichoderma, Gliocladium virens, Phoma sp.,
Fusarium equiseti, and Penicillium simplicissimum have
been reported to be antagonistic against Rhizoctonia solani,
Pythium aphanidermatum, Pythium irregulare, Sclerotium
rolfsii, Fusarium oxysporum, Pseudomonas syringae, and
Colletotrichum orbiculare (Lewis et al. 1998; Murali et al.
2021; Sreenivasaprasad and Manibhushanrao 1990). Patale
and Mukadam (2011) have successfully tested the antago-
nistic activity of Trichoderma viride and Trichoderma har-
zianum against seven pathogenic fungi, namely, Aspergillus
niger, A. flavus, Phytophthora sp., Fusarium oxysporum,
Rhizoctonia solani, Penicillium notatum, and Alternaria
solani. Gliovirin, an antibiotic produced by Gliocladium
virens, was shown to inhibit the growth of Pythium ultimum
(Howell and Stipanovic 1983). Aspergillus giganteus also
has been reported to produce an antifungal protein
(AFP) which shows antifungal property against Botrytis
cinerea in Geranium plants (Moreno et al. 2003). The
non-pathogenic Fusarium oxysporum isolated from soil
microflora has been reported to inhibit pathogenic Fusarium
via competition for carbon source and nutrients at the site of
infection (Kaur et al. 2011). However, antagonistic property
of PGPF cannot be considered alone as a factor for the
management of disease caused by pathogen attack; other
attributes like plant growth promotion, disease suppression
via antibiotic production, mycoparasitism, competition for
nutrient, and colonization of spaces also contribute to dis-
ease management (Akinola and Babalola 2021).

3.3.2 Induction of Disease Resistance
Induction of disease resistance is the mechanism of resis-
tance that develops in plants upon the pathogen attack. The

most studied forms of induced resistance are systemic
acquired resistance (SAR) triggered by necrotizing patho-
gens, and ISR triggered by root-colonizing microbes, like
Trichoderma spp. (Romera et al. 2019; Walters et al. 2005).
SAR is characterized by increased levels of endogenous
salicylic acid (SA) with the expression of pathogenesis-
related proteins (PR-proteins), while ISR is characterized by
jasmonic acid (JA) and ethylene (ET)-mediated pathway and
production of defense enzymes and defense chemicals for
structural barrier (Van Loon 2000). The most prominent
species of Trichoderma, Penicillium, Fusarium, and Phoma
have profound ability to stimulate immune response upon
pathogen attack and are one of the safest modes for trig-
gering ISR (Jogaiah et al. 2013). In this connection, the
application of Trichoderma harzianum and Penicillium
chrysogenum has been known to stimulate ISR against
downy mildews of sunflower and pearl millet (Murali et al.
2013; Nagaraju et al. 2012). Plant growth promoting fungi
(PGPF) such as Phoma sp., Cladosporium sp. and Ampe-
lomyces sp. also triggered ISR in Arabidopsis plants
against Pseudomonas syringae pv. tomato through the pro-
duction of volatile organic compounds (VOCs) (Naznin
et al. 2014). Trichoderma spp. has been reported to trigger
ISR in some agriculturally important crops such as rice,
wheat, bean, maize, cucumber, lettuce, cotton, tobacco, and
tomato and Rhododendron against fungi and bacteria, and
even virus (Hossain et al. 2017a, b). Induction of resistance
is associated with the production of various types of defense
enzymes such as phenylalanine ammonia-lyase (PAL),
polyphenol oxidase (PPO), chitinase, peroxidase (POX), and
b-1,3 glucanase. (Jogaiah et al. 2013; Prasannath 2017; Wu
et al. 2019). The PGPF-induced systemic resistance was
found to be associated with a high increase in plant
defense-related enzymes such as POX, PPO, and PAL in
cucumber cultivars (Hassan et al. 2014). It was investigated
that Trichoderma viride—a biocontrol agent—elicited the
production of POX, PPO, and PAL enzymes to mitigate the
Fusarium and Alternaria induced stress in Vigna mungo
(Surekha et al. 2014). The antioxidant enzymes like super-
oxide dismutase (SOD), CAT, and POX played important
roles in reducing damage caused by pathogen, with delay in
symptom development in pear calli (Zhao et al. 2012).
Biochemical analysis revealed that inoculation of cucumber
plants with Trichoderma harzianum increased peroxidase
and chitinase activities as a part of defense response
(Yedidia et al. 1999). Enhanced activity of PAL and POX
enzymes was reported when cucumber, chilli, pearl millet,
and Salvia seedlings were subject to challenge inoculation
with PGPF (Hassan et al. 2014; Murali and Amruthesh
2015; Zhou et al. 2018). Plant growth promoting Fungus
(PGPF) Penicillium oxalicum isolated from rhizospheric soil
of pearl millet showed a significant increase of chitinase
activity (Murali and Amruthesh 2015). Trichoderma
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atroviride TRS25 enhanced the PPO and PAL enzyme
activity when the cucumber plant was challengingly inocu-
lated with Rhizoctonia solani (Nawrocka et al. 2018).
Defense enzymes such as PPO and PAL are associated with
the synthesis of cell wall components, thickening, lignifi-
cation, and callose deposition following the biosynthetic
processes triggered by PGPF (Abhayashree et al. 2017).
Expression of POX and PAL plays a key role in the
biosynthesis of phenolic compounds, and lignin which not
only restrict the extent of pathogen attack but contribute
significantly to enhancing the mechanical strength of the
host cell wall (Bruce and West 1989; Karthikeyan et al.
2006). PGPF-treated chilli seedlings enhanced the activity of
PAL and POX upon challenge inoculation with the accu-
mulation of lignin and callose deposition (Naziya et al.
2020). The PGPF-Penicillium simplicissimum GP17-2 trea-
ted cucumber plant showed an increase in lignin formation
apart from other defense-related enzymes like chitinase,
peroxidise, and b-1,3 glucanase (Shimizu et al. 2013). The
soil-borne fungi Trichoderma harzianum induced a signifi-
cant change in root architecture of Arabidopsis thaliana
through callose deposition (Alonso-Ramírez et al. 2015).
Trichoderma spp. are highly studied worldwide for their role
in controlling the plant pathogen through the production of
cell wall degrading enzymes such as cellulases, chitinases,
and glucanases (Nogueira-Lopez et al. 2020). With
enhanced activities of glucanases and chitinases, Tricho-
derma sp. was reported to induce the resistance in chickpea
against dry root rot and wilt diseases (Dubey et al. 2011;
Lavanya et al. 2017). Trichoderma hamatum T382 involved
in inducing systemic resistance against Botrytis cinerea in
Arabidopsis thaliana stimulating the defense enzymes such
as glucanases, chitinases, and other pathogenesis-related
proteins of the SA and Et-pathways (Lavanya et al. 2017;
Mathys et al. 2012). The soil application of Pseudomonas
fluorescens, Trichoderma viride, and T. harzianum in com-
bination with chitin induced the phenolics and defense
enzymes such as POX, PAL, chitinase, and b-1,3-glucanase
in the Ganoderma lucidum infected palms seedlings (Kar-
thikeyan et al. 2006).

4 Bioformulations

Biocontrol agents (bio-agent) comprising fungi have become
attractive in terms of sustainable management of diseases
and improved quality of crop productivity (Hussain et al.
2020). The antagonistic property of PGPF can be success-
fully exploited through proper identification of efficient
bio-control agents, their multiplication, and formulation for
delivery. A large number of bio-based products are being
produced and sold worldwide in the form of granules, wet-
table powders, dusts, and aqueous or oil-based liquid

products using different carriers to control fungal pathogens
(Ardakani et al. 2009; Nega 2014). Apart from these, various
agricultural wastes have also been recognized as potent
organic carriers for many bio-control agents. Different
organic and inorganic carrier materials have been studied for
the effective delivery of bio-control inoculants (Hossain and
Sultana 2020). Several microbial antagonists have been
successfully patented and evaluated for their commercial
usage to control the pathogen, and these agents are fre-
quently recommended worldwide for plants disease man-
agement (El Ghaouth et al. 2002; O’Brien 2017). However,
the ideal conditions required for the development of
high-efficiency formulations of biofertilizer include the
selection of potent strains, shelf life, storage, application
technology, quality control, biosafety, registration, and
marketing strategies (Keswani et al. 2016). Trichoderma-
based formulation was developed using the scrapping
method with the biomass of fungi having high
colony-forming units and long shelf life (Singh and Nautiyal
2012). The application of Trichoderma-based bio-fertilizer
(composted of cattle manure + inoculum) not only produced
the antifungal compound which may suppress the pathogen
but potentially improved grassland biomass (Zhang et al.
2018). A Trichoderma-based spray-dried flowable powder
formulation was developed using a CO2 generating disper-
sant system, based on polyacrylic acid, citric acid, sodium
bicarbonate, and polyvinyl alcohol as adhesives and lecithin
as wetting agent (Oancea et al. 2016). Bio-organic fertiliz-
ers (BOFs) enriched with Trichoderma and animal manure
have been found not only to cause plant growth promotion
but also found to have the controlling effect against Fusar-
ium wilt in cucumber plants (Chen et al. 2011; Zhang et al.
2013, 2016). The foliar sprays of the liquid formulation of
Penicillium oxalicum (6 � 106 CFU ml−1) with sodium
alginate (0.5%) and Tween 80 (0.01%) substantially
improved the yield and acted as biofungicide for controlling
mango malformation (Haggag and El Soud 2013). The
greenhouse experiment of Trichoderma and Talaromyces-
based bioformulations with talc and rice bran showed their
effectiveness in controlling sugar beet damping-off disease
(Kakvan et al. 2013). Bioformulation with use of antago-
nistic fungi such as Trichoderma and Talaromyces along
with organic and inorganic carriers such as rice bran and talc
has performed well for controlling garlic white rot disease in
greenhouse conditions (Mahdizadehnaraghi et al. 2015).

5 Conclusion and Future Prospects

Understanding the beneficial aspects of PGPF, and thereby
subsequent application of the same is extremely important
for developing new strategies for the management of crop
disease and better yield of a crop. Though the use of PGPFs
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is already successful in many countries, some countries are
still lagging behind this and continue to use chemical
fungicides for disease management. Therefore, it is very
important to address the issues related to the successful use
of PGPF. It has been noticed that the practical use of PGPF
is often hindered by inconsistency in their performance and
may be due to variations in genotype, environment, and
other factors. In order to popularize the widespread use of
PGPF, the development of some innovative and effective
techniques for their mass culture, formulation, and applica-
tion of these fungi are urgently needed to be addressed.
Above all, it is also very important to convince the different
stakeholders including the farmers. The recent development
in molecular tools and techniques can give more insight and
elaborate on the mechanisms and outcome of plant–micro-
bial interaction. The PGPF can be made more effective and
promising in every aspect through the application of inno-
vative knowledge of biotechnology like the development of
genetically modified strains with improved features and
expression of PGPF genes in target plants to confer benefi-
cial properties. Further, the active and justified participation
of private industry in product research and development
could be more effective and may help to overcome the
problems and issues.
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Deep Insights into the Role of Endophytic
Fungi in Abiotic Stress Tolerance in Plants

Prabha Toppo and Piyush Mathur

Abstract

Fungal endophytes live inside the plants and play a
significant role in their fitness and survival under extreme
conditions of stress. Due to climatic uncertainties and
variability, it has been observed that a number of abiotic
stresses hamper plant growth considerably and have
become a major concern for scientists all around the
world. Abiotic stresses like salinity, drought, temperature
as well as heavy metal toxicity are frequently encountered
and affect plant health and agricultural crop productivity.
Numerous studies have shown the immense potential of
endophytic fungi in the modulation of plant responses
towards various stresses. Endophytic fungi stimulate plant
growth, lower oxidative stress, increase nutrient uptake,
and alter levels of various phytohormones in plants grown
in stressed conditions. All such changes escalate plant
adaptive response and enhance their tolerance capability
to withstand stress. Endophytic are also known to
augment the accumulation of various osmoprotectants
that enable the plant to maintain osmotic balance under
various stresses and sustain better growth. Additionally, a
number of reports have suggested that these endophytic
fungi affect the host plant system at cellular and molecular
levels. Endophytic fungi regulate the molecular expres-
sion of several genes, transcription factors, and proteins in
response to stress. Concomitantly, under stress condi-
tions, endophytic fungi encourage the synthesis of various
secondary metabolites that play a crucial role in enhanc-
ing plant resistance against abiotic stress. Therefore,
endophytic fungi are now considered to act as a dominant
player in the development of biostimulants or biofertil-
izers for sustaining agricultural productivity. The present
chapter will delineate the role of endophytic fungal

symbioses in abiotic stress tolerance in plants and their
associated mechanisms. Moreover, the chapter also
entails an account of novel strategies for the application
of endophytic fungal inoculants in agricultural fields.
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1 Introduction

Endophytes are well known for their mutualistic association
with plants as they impart several beneficial effects without
causing any deterrent harm (Saikkonen et al. 1998; Khare
et al. 2018). A large number of fungal endophytes are
associated with different plant parts, and this association
between fungal partner (holobiont) and host plant is
observed to be highly specific in terms of micro-niches
(Dudeja and Giri 2014; Gouda et al. 2016; Stępniewska and
Kuźniar 2013). Several researchers have isolated these
endophytic fungi from conventional culture-dependent
approaches but a huge diversity of these endophytic fungi
have still not been explored as most of the endophytes are
not culturable (Zheng et al. 2021). To overcome this prob-
lem, modern-day approaches have helped widely in this
respect; techniques like metagenomics assisted easy isolation
and identification of these endophytic fungi directly from
soil and plant samples saving time and resources (Adeleke
and Babalola 2021; Kohout et al. 2012; Li et al. 2010).

Fungal endophytes have been very well associated with
almost every group of plant kingdom, i.e., starting from
algae, lichens, bryophytes to lower cryptograms, i.e., pteri-
dophytes, gymnosperms and to the most advanced angios-
perms growing in wild and under cultivation (Verma et al.
2017). Interestingly, fungal endophytes have also been iso-
lated from plant parts growing in extreme conditions and this
enormous diversity of these fungal endophytes in different
conditions may be correlated with their huge beneficial role
in the ecosystem and its processes (Sangamesh et al. 2018).

Plants are now facing many stresses in the present sce-
nario due to which huge losses in crop productivity and food
security have been observed (Raza et al. 2019). Extensive
use of chemical fertilizers or pesticides has also affected soil
quality as well as the nutrient content of food crops (Prashar
and Shah 2016). The utilization of endophytic fungi is a
most sustainable approach with a multifarious positive role
that benefits both crops and their surrounding environment.
In the last few years, there is an upsurge in the number of
studies regarding the isolation and identification of endo-
phytic fungi and their prospective role in agriculture as
biostimulants or biofertilizers (Al-Ani et al. 2021; De Silva
et al. 2019; Lugtenberg et al. 2016). These endophytic fungi
have proved to be valuable for augmenting crop growth and
productivity and enhancing the stress tolerance ability of
plants against various abiotic and biotic stresses (Lu et al.
2021). As evident from the number of previous studies,
endophytic fungi sustain the growth of crop plants in the
presence of various abiotic stresses such as salinity, tem-
perature, drought, heavy metals (HMs), and ultraviolet
radiation (UV) (Bouzouina et al. 2021; Guler et al. 2016;
Hussain et al. 2021; El-Sayed et al. 2019).

Endophytic fungi are known to secrete various
growth-promoting substances like phytohormones indole
acetic acid (IAA), cytokinins (CKs), and gibberellins
(GAs) that helped to substantiate plant growth (Badawy
et al. 2021; Hamayun et al. 2017). Concomitantly, many
studies have shown that these endophytic fungi release
various secondary metabolites responsible for increasing the
defence of plants such as phenols, flavonoids, and lignins
(Yan et al. 2021). Endophytes also enable the nutrient and
water uptake ability of plants from the soil by bringing about
changes in root architecture (Verma et al. 2021b). Endo-
phytic fungi also maintain the ionic balance and redox
homeostasis of plants and regulate the levels of various
osmoprotectants such as proline and glycine betaine under
salinity and drought stress (Gupta et al. 2021; Kour et al.
2020). Endophytic fungi are known to protect the plants
from oxidative stress under various stresses by enhancing the
production of various antioxidative enzymes such as catalase
(CAT), peroxidase (POX), and superoxide dismutase
(SOD) (Fecht-Christoffers et al. 2006; Guler et al. 2016).
A meta-analysis study on endophyte and growth promotion
under stress has been observed by the work of Rho et al.
(2018). The study showed 96 endophytic fungal strains
stimulated growth in 42 plant species under drought, salin-
ity, and nitrogen deficiency.

Endophytic fungi also modulate the functioning of vari-
ous genes, transcription factors at the cellular and molecular
levels. Studies have reported that endophytic fungi enhance
the expression of various stress-responsive genes and pro-
teins such as COR, DREB, heat shock proteins (HSPs), and
phytochelatins (PCs), and alleviate the plant from various
stresses (Bilal et al. 2020; Ogbe et al. 2020). Interestingly,
these genes are regulated under the effect of several tran-
scription factors such as WRKY, MAPK, and
calcium-dependent kinases (CDKs) that affect stress signal-
ing pathways (Khare et al. 2018).

The present chapter will entail the role of endophytic
fungi in abiotic stress alleviation. The chapter will also
highlight the stress alleviation mechanisms and associated
changes in gene expression in plants.

2 Endophyte-Mediated Phytohormones
Production Under Non-stressed
and Stressed Conditions

Phytohormones like IAA, GAs, CKs, ABA, Et are well
pronounced for their role in various physiological and bio-
chemical processes in plants such as cell division, growth,
senescence, and germination. At the same time, these phy-
tohormones assist plants in facing different types of abiotic
stresses such as drought, salinity, temperature, HMs, and
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UV. A number of the previous article have shown the effi-
cient production of these phytohormones by endophytic
fungi in the different host plants. These endophytic fungi
stimulate enhanced production of phytohormones well under
normal and in stressed conditions and stimulate growth
promotion in host plants (Egamberdieva et al. 2017; Yan
et al. 2019). Khan et al. (2013) reviewed the GA3 production
by endophytic fungi and revealed the substantial role of
endophytic fungi in abiotic stress tolerance of crop plants.
Recently, Wu et al. (2020) demonstrated the changes in the
gene expression pattern of different phytohormones like
IAA, GA, ABA, SA, JA in response to endophyte inocula-
tion. The study showed that an Anteaglonium (T010) a DSE
affects the expression of genes involved in phytohormones
in Vaccinium corymbosum L. plants; there was an increase in
transcript expression of genes for IAA and SA biosynthesis
while a decrease was observed for GA, ABA, and JA as
evident from transcriptomics data (Wu et al. 2020). Simi-
larly, the production of IAA by endophyte was shown by the
work of Khan et al. (2015b) where endophytes (Fusarium
tricinctum RSF-4L and Alternaria alternata RSF-6L) have
been shown to induce production of IAA under in vitro
studies. Priyadharsini and Muthukumar (2017) showed
growth-promoting attributes by a DSE Curvularia genicu-
lata as well as IAA production under in vitro conditions.
Bilal et al. (2018) revealed growth-promoting attributes of
two endophytic fungi Aspergillus fumigatus TS1 and
Fusarium proliferatum BRL1 as well as phytohormones
production mainly GA and IAA under in vitro conditions.

Phytohormone modulation by endophytic fungi has been
observed in many previous studies under stressed conditions.
Waqas et al. (2012) showed altered levels of different phy-
tohormones in salt and drought-stressed rice plants inocu-
lated with two endophytes Phoma glomerata LWL2 and
Penicillium sp. LWL3. There was increased accumulation of
GA and IAA that led to growth promotion while decreased
levels of two stress-responsive hormones ABA and JA that
led to mitigating effects from salt and drought stress. Jan
et al. (2019) reported that endophytic fungi, Yarrowia
lipolytica FH1, isolated from the spines of Euphorbia milli
produced different metabolites in maize that reduced the
negative effects of salt stress. Endophytic fungus inoculated
plants were able to accumulate higher IAA and low levels of
ABA hormones that played an important role in controlling
the root growth, reducing ROS production, abscission, and
promoting overall growth of maize plants (Fecht-Christoffers
et al. 2006). A study by Waqas et al. (2015) showed the
inoculation of endophyte Paecilomyces formosus LWL1 to
heat-stressed rice plants led to decreased production of ABA
and JA production and further promoted growth. Recently,
Hamayun et al. (2021) demonstrated that inoculation of an
endophyte Gliocladium cibotii to heat-stressed soybean and
sunflower plants led to decreased concentration of ABA.

Stress amelioration effects of endophytic fungi were seen in
the work of Ripa et al. (2019), where endophytic fungi
isolated from wheat plants showed IAA producing properties
as well as growth-promoting traits. Additionally, the study
also showed that these different fungal endophytes were
capable of multiple stress tolerance like drought, salinity,
and HMs. Alleviating effects of endophytes were also seen
from the work carried out by Hamayun et al. (2017) in
salt-stressed soybean plants. There was increased production
of GA3 while decreased production of ABA and JA in
response to inoculation of Porostereum spadiceum AGH786
in the presence of salt stress. A study by Khan et al. (2012)
demonstrated a remarkable increase in GA3 levels and IAA
levels in salt-stressed cucumber plants due to inoculation
with Paecilomyces formosus LHL10 and exhibited
growth-promoting effects in the presence of salt stress.
Ameliorating effects of endophytic fungi from HMs stress
via increased production of phytohormones IAA have been
observed in a study by Ikram et al. (2018) that demonstrated
increased production of IAA by Penicillium roqueforti in
wheat plants grown under HMs stressed soil. Wheat plants
inoculated with P. roqueforti in the presence of different
HMs showed better growth and phytostabilization due to the
secretion of IAA. Similarly, an endophyte Paecilomyces
formosus LHL10 alleviated soybean plants from Ni stress
via modulation of different hormones as evident from gene
expression data (Bilal et al. 2017). There was increased
transcription expression of genes involved in the synthesis of
IAA and GA while decreased transcript expression of genes
involved in ABA and JA (Bilal et al. 2017). In another study,
fungal endophyte Penicillium janthinellum LK5 (PjLK5) led
to increased expression of SA in Al-stressed tomato plants
and assisted in growth promotion under Al stress (Khan
et al. 2015a).

3 Endophytes-Mediated Secondary
Metabolites Production Under Stressed
Conditions

It has been observed that fungal endophytes prevent the
plant from oxidative stress under different stresses through
the production of various secondary metabolites like phe-
nolics, alkaloids, etc., and osmoprotectants like proline and
glycine betaine that helps to maintain ROS balance in plants
(Ogbe et al. 2020). Endophytic fungi secrete a large number
of secondary metabolites that play a crucial role in abiotic
stress management as evident from the work of Qin et al.
(2019). The study showed an increase in concentration of N-
(4-hydroxystyryl) formamide (NFA), an analogue of cou-
marin with inoculation of an endophyte Aspergillus fumi-
gatus SG-17 to drought-stressed rice plants (Qin et al. 2019).
In a different study, inoculation with endophytic fungi
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Gliocladium cibotii led to the enhanced concentration of
phenolics under heat stress in soybean and sunflower plants.
Plants inoculated with G. cibotii showed improved growth
and lower oxidative stress under heat stress conditions
(Hamayun et al. 2021). A study revealed that Penicillium
resedanum LK6, an endophytic fungus isolated from leaves
of Solanum nigrum, alleviated capsicum plants from heat
stress, and inoculated plants showed higher biomass as well
as increased accumulation of proline and flavonoids (daid-
zin, daidzein, and m-glycitin) (Khan et al. 2013). Similarly,
an increase in total flavonoid content was observed in soy-
bean plants grown under HMs stress inoculated with
Aspergillus welwitschiae (Hussain et al. 2021). Interestingly,
endophytic fungi are considered a great reservoir of sec-
ondary compounds that have wide applications not only in
agriculture but also in pharmaceuticals as well as in
biotechnology (Torres-Mendoza et al. 2020).

4 Endophytic Fungi and Abiotic Stress
Alleviation in Plants

4.1 Salinity

Salinity is the major limiting factor and a great threat to
agricultural food production mostly for semi-arid or arid
regions (Munns and Tester 2008; Tufail et al. 2021). Most of
the agricultural land worldwide have been severely affected
and some reports suggest that around 50% of arable lands
will be under serious salinity risk by 2050 (Ciftci et al. 2010;
Chandrasekaran et al. 2014; Gupta and Huang 2014; Rubin
et al. 2017). Soil exposure with Na+ ions obstructs the
plants’ regular physiological functions as well as the yield of
crops production (Gupta et al. 2021). Simultaneously, soil
salinity can disrupt the ion distribution and metabolism in
the cell (Raghuwanshi and Prasad 2018). In terms of soil
salinity stress the plants are subjected to ion toxicity,
osmotic stress, nutritional (N, K, P, Ca, Fe, Zn) deficiencies,
and oxidative stress which inhibits water uptakes (Bano and
Fatima 2009; Talaat and Shawky 2013).

Different types of salt-tolerant fungi have been explored
to improve crop growth under salinity stress. Bouzouina
et al. (2021) reported that in wheat plant the application of
endophytic fungi (Chaetomium coarctatum and Alternaria
chlamydospore) enhanced the plant growth rate, relative
water content (RWC), the balance of ions (Na+ and K+),
along with sugar and proline levels under salt stress (Fig. 1).
Another study reported that dark septate endophytic fungi
(DSE) Sordariomycetes sp1-B’2 and Melanconiella elegans-
21W2 improved the growth of cowpea plants under saline
conditions (Farias et al. 2020). In another study, Aspergillus
ochraceus has been reported for the enhancement of 15–
30% of seawater stress tolerance in barley as plants

inoculated with A. ochraceus showed enhanced growth
traits, higher IAA accumulation, increased concentration of
antioxidant compounds, and increased content of leaf pig-
ments, sugars, and protein (Badawy et al. 2021). Abdelaziz
et al. (2019) reported the growth-promoting activity of Pir-
iformospora indica in Arabidopsis thaliana under salt stress.
These fungi help the plants to manage salts by improving the
higher expression of ion channels like HKT1, KAT1, and
KAT2 that lower the ions (Na+/K+) ratio. Lanza et al. (2019)
also reported that root endophytic fungi Serendipita indica
(formerly Piriformospora indica) co-cultivation in Ara-
bidopsis plants under saline conditions improves plant
growth by maintaining Na+ concentration. Moreover, two
fungal endophytes Penicillium brevicompactum and
P. chrysogenum isolated from roots of two Antarctic plants,
Colobanthus quitensis and Deschampsia antarctica, express
NHX1 gene (Molina-Montenegro et al. 2020). The
up-regulation of vacuolar NHX1 Na+/H+ antiporters helps to
store Na+ in vacuoles and regulates the Na+/K+ ions con-
centration resulting in tolerance towards salt stress in tomato
and lettuce (Molina-Montenegro et al. 2020) (Fig. 1).
Table 1 enlists the various studies that reported positive
effects of endophytic fungi in the amelioration of salinity
stress in different plants.

4.2 Drought

Drought is a recurring, more extreme, and unpredictable
rapidly changing climatic condition that affects crop pro-
duction throughout the world especially in dry and semi-arid
areas (Attafi et al. 2021; Kogan et al. 2019). Drought stress
strongly influences plant growth and yield (Bartlett et al.
2019; Park et al. 2021; Sperry et al. 2002; Tardieu et al.
2017; Ullah et al. 2021). Plants respond to drought stress by
modulation of their physiological and biochemical mecha-
nisms (Basu et al. 2016; Zandalinas et al. 2018).

Symbiotic association of endophytic fungi such as Peni-
cillium minioluteum with Chenopodium quinoa enhances the
performance of the crop under severe drought.
Endophyte-inoculated plants showed a 40% improvement in
root growth (González-Teuber et al. 2018). Different studies
have shown that endophytic fungi inoculation improves
plant resistance through improved root architecture (Gon-
zález-Teuber et al. 2017), prevents membrane damage to
cells (Xu et al. 2017), elevates antioxidant enzyme activities
(Guler et al. 2016), increases chlorophyll content (Idhan
et al. 2018), and enriches osmoregulatory network (Tyagi
et al. 2017) (Fig. 1). Endophytic fungi protect the
drought-stressed plant from ultrastructural damage (includ-
ing mitochondria), alter root morphology, and influence the
balance of endogenous hormones (IAA, ABA) (Liu and Wei
2019). Guler et al. (2016) studied the effect of Trichoderma
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atroviride ID20G application to drought-stressed maize
seedlings and demonstrated that enhancement of fresh and
dry weight of roots increased chlorophyll and carotenoid
contents and prevented membrane damage. In a different
study, endophytic fungi Trichoderma atroviride ID20G
isolated from roots of tea plant helped in reducing the toxic
effects of drought stress. Endophyte-inoculated plants under
drought stress showed a lower rate of lipid peroxidation,
increased hydrogen peroxide (H2O2) level, and elevated
antioxidant enzyme activity (e.g., SOD, CAT) (Guler et al.
2016). Li et al. (2019), investigated the roles of DSE
Paraphoma sp., Embellisia chlamydospora, and Cladospo-
rium oxysporum isolated from Hedysarum scoparium
growing in extreme drought conditions. When these isolates
were inoculated in H. scoparium, inoculated plants showed
increased root biomass and length. DSE such as Acroca-
lymma vagum, Paraboeremia putaminum, and Fusarium
acuminatum which colonize the Licorice (Glycyrrhiza
uralensis) plants help their host to survive drought through
increased biomass production, glycyrrhizin content, and
nutrient absorption (He et al. 2019). A study showed positive
effects of five endophytic fungi in amelioration of drought
stress in barley plants (Hordeum murinum subsp. mur-
inum); inoculated plants showed a high number of tillers,
increased grain yield, and higher shoot biomass (Murphy
et al. 2015). Various studies that demonstrated the beneficial
effects of endophytic fungi in tolerance of drought stress in
different plants have been depicted in Table 2.

4.3 Temperature

The temperature of the Earth’s surface has significantly
increased from 0.3 to 5 °C in the last few years which is
above-normal temperature (Rennenberg et al. 2006; Khan
et al. 2013). Due to increased temperature, crop plants are
now facing huge losses in their yield and productivity, and at
the same time, it affects plants’ physiological, biochemical,
and molecular responses. There are several reports that state
that under temperature stress in plants there is a decrease in
the fluidity of plasma membrane, changes in metabolite and
osmolyte concentrations, modification in essential amino
acids composition, alteration in protein structures, etc.
(Djanaguiraman et al. 2018; Muhlemann et al. 2018; Wahid
et al. 2007; Takahashi and Shinozaki 2019; Zinn et al. 2010).

Fungal endophytes play a crucial role in the alleviation of
temperature stress in crop plants as evident from the number
of previous studies. It has been observed these endophytic
fungi are associated with plants growing in extreme condi-
tions and sustain the growth of these plants. Some thermo-
tolerant endophytic fungi have been reported by Sangamesh
et al. (2018) from plants growing in the Thar Desert,
Rajasthan. Some of the dominant endophytic fungi that were
isolated were ACJ-2, ACJ-5 (Aspergillus flavus), SAP-3
(Aspergillus sp.), SAP-6, LAS-4 (Aspergillus sp.), and
LAS-6 (Chaetomium sp.). Studies have demonstrated that
the application of endophytic fungi, Gliocladium cibotii,
which was isolated from Verbena officinalis improved plant

Fig. 1 Endophytic fungi mediated abiotic stress amelioration mechanisms in plants
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growth and increased ROS degrading enzymes (like ascorbic
acid oxidase, CAT, glutathione reductase (GR), POD, and
SOD) content in Glycine max and Helianthus annuus
exposed to heat stress (Hamayun et al. 2021) (Fig. 1).
Likewise, the study conducted by Ismail et al. (2021)

showed that the endophytic fungi, Aspergillus foetidus
(AdR-13), isolated from Adiantum capillus-veneris,
increased chlorophyll content, height, and biomass of G.
max and H. annuus. A thermophilic endophytic fungus
Thermomyces sp. isolated from the roots of desert-adapted

Table 1 A list of recent studies
depicting the effect of endophytic
fungi in the alleviation of salinity
stress in different host plants

Endophytic fungi Host plant Effects on host plant References

Epichloë sp. Hordeum
vulgare

• Increased biomass
• Higher N, P, and K+ contents
• Lower Na+

• Lower ratios of C:N, C:P, Na+:K+ and
higher ratio of N:P

Song et al.
(2015)

Trichoderma
harzianum

Brassica
juncea

• Improved uptake of essential elements
•Modulation of osmolytes and antioxidants
• Restricted Na+ uptake

Ahmad
et al.
(2015)

Piriformospora indica
(PiHOG1)

Oryza sativa • Increased biomass
• Increased shoot and root lengths
• Enhanced photosynthetic rate, pigment,
and proline contents

• Delayed phosphorylation

Jogawat
et al.
(2016)

Trichoderma
longibrachiatum

Triticum
aestivum

• Increased water content in leaves and
roots

• Higher chlorophyll content and shoot
proline content

Zhang
et al.
(2016)

Trichoderma sp. Oryza sativa • Increased chlorophyll content, decreased
MDA and H2O2 contents, increased
proline and phenolics concentration

Rawat
et al.
(2016)

Piriformospora indica
(DSM11827)

Medicago
truncatula

• Increased antioxidant enzymes activities
• Increased hyphae density in roots
• Reduced malondialdehyde
(MDA) activity, Na+ content, and relative
electrolyte conductivity (REC)

Li et al.
(2017)

Porostereum
spadiceum AGH786

Glycine max • High GAs
• Low ABA
• Enhanced endogenous level of two
isoflavones including daidzin and
genistein

Hamayun
et al.
(2017)

Piriformospora indica Arabidopsis
thaliana

• Lower Na+/K+ ratio
• Increased KAT1 and KAT2 expression

Abdelaziz
et al.
(2017)

Piriformospora indica Zea mays • Decreased levels of Na+ and K+ in roots Yun et al.
(2018)

Sordariomycetes
sp1-B’2 Melanconiella
elegans-21W2

Vigna
unguiculata

• Increased leaf concentration of K
• Decreased leaf concentration of Ca, Na,
and Cl

Farias et al.
(2020)

Chaetomium
coarctatum and
Alternaria
chlamydospora

Triticum
durum

• Higher proline content Bouzouina
et al.
(2021)

Serendipita indica Hordeum
vulgare

• Enhanced plant growth
• Up-regulation of several proteins
involved in photosynthesis and
carbohydrate metabolism

Sepehri
et al.
(2021)

Epichloë bromicola Hordeum
brevisubulatum

• Higher conducting tissues
• Increased thickness of leaf veins,
epidermis in different organs

Chen et al.
(2021)
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plant Cullen plicata ameliorated cucumber plants from heat
stress. Inoculated cucumber plants showed better adaptation,
higher photosynthetic rate as well as higher water content,
and increased root length (Ali et al. 2018).

Cold stress, like high temperature, is another big chal-
lenge for the plants which affects plant growth and pro-
ductivity. Cold stress is mainly due to lower temperature and
has a significant impact on the physio-hormonal character-
istics of crops and lower crop yields. Low-temperature stress
severely impacts the vegetative state such as the seedling
stage generally in the areal parts of the plants especially the
shoots (stems and leaves) as compared to roots (Andrews
1987; Yadav 2010a) and reproductive phases of the plant life
cycle such as abscission of flowers, sterility of both male and
female organs, and ultimately decreased yields due to failed
fruit production (Foolad and Lin 2000; Nishiyama 1995;
Thakur et al. 2010). A study on barley seed grown under
low-temperature stress exhibited significantly better survival
rates in presence of root endophytic fungi Chaetomium
globosum, Epicoccum nigrum, and Piriformospora indica.
Results showed that seed inoculated with endophyte
P. indica have higher nutrient input, early flowering, and
higher grain dry weight (Murphy et al. 2014). Additionally,
a study carried out by Rosa et al. (2010) revealed that fungal
endophytes associated with the leaves of Colobanthus
quitensis such as Aspergillus sp., Cadophora sp., Davidiella
sp., Entrophospora sp., Fusarium sp., Geomyces sp.,
Gyoerffyella sp., Microdochium sp., Mycocentrospora sp.,

and Phaeosphaeria sp. provided resistance to the host plants
against freezing temperatures as well as high rates of UV
radiation via increased production of melanin. Fungal mel-
anin is an amorphous polymer and has the properties to
transduce electromagnetic radiation into metabolic energy
that may be helpful for survival at extremely low tempera-
ture areas such as the north and south pole of the Earth that
are exposed to high UV radiation (Cordero and Casadevall
2017; Dadachova et al. 2007; Robinson 2001). Besides this,
another work reported that the application of a combination
of calcium nitrate with endophytic fungi Epichloë
sp. imparts better survivability of Festuca sinensis plant at
lower temperatures (Zhou et al. 2021). Inoculated plants
showed higher total chlorophyll content, increased soluble
sugar, and higher root metabolic pathways that increase the
plant survival rate at cold temperatures (Zhou et al. 2021).
Some of the studies that showed the affirmative response of
endophytic fungi in alleviation of temperature stress in dif-
ferent plants have been revealed in Table 3.

4.4 Heavy Metal/Metalloids Tolerance

Endophytic fungi have been shown to play an incredible role
in increasing tolerance of plants towards heavy metal and
metalloid stress. Many endophytic fungi (like Aspergillus
niger DR02, Trichoderma atroviride DR17 and DR19,
Alternaria sp. DR45, Annulohypoxylon stigyum DR47, and

Table 2 A list of recent studies
depicting the effect of endophytic
fungi in the alleviation of drought
stress in different host plants

Endophytic fungi Host plant Effects on host plant References

Cladosporium sp. Nicotiana
benthamiana

• Increased root dry mass and relative
water content

• Differential accumulation of metabolic
compounds like cytosine, diethylene
glycol, etc.

Dastogeer et al.
(2017)

Penicillium
minioluteum

Chenopodium
quinoa

• Improved plant growth and root
formation

González-Teuber
et al. (2018)

Nectria
haematococca

Solanum
lycopersicum

• Higher proline accumulation
• Enhanced growth of the host plant

Valli and
Muthukumar
(2018)

12 endophytic fungi Oryza sativa • Regulated contents of NADPH
oxidases, antioxidants, and heat shock
proteins

Qin et al. (2019)

Neocamarosporium
chichastianum
N. goegapense
Periconia
macrospinosa

Cucumis
sativus
Solanum
lycopersicum

• Increased proline and antioxidants
levels

Moghaddam et al.
(2021)

Acrocalymma
vagum

Ormosia
hosiei

• Increased leaf length and width
• Increased leaf area, leaf dry weight,
and leaf thickness

• Higher photosynthetic pigments and
increased net photosynthetic rate

Liu and Wei
(2021)
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Talaromyces wortmannii DR49) are the producers of various
enzymes such as polysaccharide degradation enzymes
mainly xylanases, cellulases, lipases, amylases, and pro-
teases that help in the degradation of hydrocarbons and are
found to be heavy metal resistant (Corrêa et al. 2014; Robl
et al. 2013). A study showed that Aspergillus welwitschiae,
endophytic fungi, efficiently alleviate metal stress from
soybean plant and inoculated plants demonstrated higher
root and shoot length, increased fresh/dry mass, higher
antioxidative enzymes activity such as CAT, ascorbic acid
oxidase (AAO), and POD (Hussain et al. 2021) (Fig. 1).

Shadmani et al. (2021) isolated DSE fungi and non-DSE
fungi from the roots of Hordeum vulgare and evaluated their
tolerance in Cd-contaminated soil. It was found that
Alternaria sp. (TBR5) and Bipolaris zeicola (Tw26) showed
the highest tolerance to Cd on 0.9 mg kg−1 and inoculated
barley plants showed enhanced growth and development,

higher chlorophyll content, increased fresh and dry weight as
well as higher root weight. Similarly, Yu et al. (2021) found
that working on DSE fungi Exophiala pisciphila, under Zn,
Cd, and Pb stressors, on pre-treatment of E. pisciphila with
200 lM exogenous melatonin, dramatically boosted the
activity of SOD. After exposure to HMs, the melatonin
concentration becomes higher within two days and E. pis-
ciphila tryptophan decarboxylase (EpTDC1) and serotonin
N-acetyltransferase (EpSNAT1) were transcriptionally
up-regulated. Further, these genes overexpressed in Ara-
bidopsis thaliana enhanced its heavy metal-induced stress
tolerance.

Endophytes-mediated bioremediation is one of the most
promising tools for in-situ bioremediation methods for
contaminants soil (Dixit et al. 2015; Xiao et al. 2010).
Higher concentrations of heavy metals can cause trouble to
plants by producing excessive reactive oxygen species

Table 3 A list of recent studies
depicting the effect of endophytic
fungi in the alleviation of
temperature stress in different
host plants

Endophytic fungi Host plant Effect on host plant References

507 endophytic fungal
Dominating fungi were Aspergillus flavus
(ACJ-2, ACJ-5), Aspergillus sp., (SAP-3,
SAP-6, LAS-4) Chaetomium sp. (LAS-6)

Oryza sativa • Higher shoot and root
growth

Sangamesh
et al. (2018)

Aspergillus japonicas (EuR-26) Helianthus
annuus
Glycine max
Oryza sativa

• Improved plant biomass
• Higher content of
phenolics, flavonoids,
soluble sugars, proteins,
and lipids

• Increased ABA levels
• Increased activity of
catalase and ascorbic acid
oxidase

Hamayun
et al. (2018)

Thermomyces sp. Cucumis
sativus

• Enhanced photosynthesis
and water use efficiency

• Increased antioxidant
enzyme activities and
metabolite pool

Ali et al.
(2018)

Thermomyces lanuginosus Cullen
plicata

• Enhanced
growth-promoting
activity

Ali et al.
(2019)

Aspergillus niger (SonchL-7) Helianthus
annuus
Glycine max
Oryza sativa

• Increased plant height
and biomass

• Higher chlorophyll
contents

• Lowered lipid
peroxidation and reactive
oxygen species (ROS)

• Enhanced proline and
phenolics concentration

Ismail et al.
(2020)

Paecilomyces formosus LHL10
Penicillium funiculosum LHL06

Glycine max • Increased plant growth
• Higher photosynthetic
activity

• Decreased lipid
peroxidation

• Enhanced micronutrient
uptake

Bilal et al.
(2020)
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(ROS) by preventing the antioxidant system, disrupting the
electron transport chain, and disturbing the metabolism of
essential elements (Edwards et al. 2000; Lushchak 2011;
Opdenakker et al. 2012; Verma et al. 2021a; Yadav 2010b;
Yin et al. 2015; Yu et al. 2021). The generation of ROS
creates a significant imbalance, which causes dramatic
physiological problems for the plant, which we refer to as
“oxidative stress” (Morina et al. 2010; Kováčik et al. 2010).
Various metals like Cu, Fe, Pb, Cd, Cr, As, Hg, Cr, and Zn,
have the capacity to induce the formation of ROS
(Duquesnoy et al. 2010; Vanhoudt et al. 2010; Márquez--
García et al. 2011; Körpe and Aras 2011).

A study showed elevation of some compounds by
endophytic fungi Daldinia eschscholtzii such as naptho-
flavone, syringaldehyde, 3,4,5-trimethoxy benzoic acid,
2-furoic acid, and gossypetin 3′ O glycoside that prevent
ROS-mediated oxidative damage to the Abutilon indicum
plant (Musthafa et al. 2021). Endophytic fungi JP4 (50 lM)
alleviate Cd stress in seeds of Oryza sativa cv. Liaoxing
No.1 w grown in a pot by enhancing pigment content and
photosynthetic rate, and also increases antioxidative
enzymes such as SOD, CAT, POD, and GR as well as
ascorbic acid (ASA) and glutathione (GSH) content (Ma
et al. 2019). Exogenous application of a dominant
root-associated DSE fungus Exophiala pisciphila H93
ameliorated the effect of Cd stress in maize and improved
growth via production of antioxidant systems, as well as
converted toxic forms into inactive Cd (Wang et al. 2016).
Endophytic-mediated mitigation of HMs stress in different
host plants can be visualized in Table 4.

4.5 Ultraviolet B (UV-B) Radiation

UV-B is electromagnetic radiation that ranges from 280 to
315 nm and it becomes a shorter wavelength with high
energy (Kim et al. 2015). Due to the high energy of UV-B
radiation, it causes biological damages to several plants and
that becomes a point of concern (Sharma et al. 2017). The
increased intensity of UV-B light due to depletion of the
stratospheric ozone layers can have a disproportionately
damaging effect on plant cells as well as change their
physiological, biochemical, and molecular profile (Bornman
et al. 2015, 2019). Plants are highly sensitive to excessive
UV-B radiation and are unable to avoid the radiation that
causes direct or indirect effects towards basic plant metabolic
processes such as growth, photosynthesis, respiration, and
reproduction (Suchar and Robberecht 2016; Zlatev et al.
2012; Mpoloka 2008). To date, only a handful of informa-
tion is available regarding endophytic fungi and the ame-
lioration of UV radiation stress on plants (Ramos et al.
2018). One of the studies by Ramos et al. (2018) reported
the effect of UV-B on Antarctic pearlwort (Colobanthus

quitensis) plant inhabited with fungal endophytes, namely,
Penicillium sp., Alternaria sp., and Geomyces sp. It was
observed that the plants were severely affected by photo-
chemical efficiency, cell damage, and reproductive biomass
at different levels or duration of UV-B. However, due to the
presence of fungal endophytes, plants survived well under
extreme conditions of UV and showed higher biomass, high
numbers of flowers, lower oxidative stress as shown by
decreased lipid peroxidation. In addition, there were changes
in some phytohormone content like salicylic acid, jasmonate,
IAA, and ABA in the shoots of plants.

There are reports that stated the ability of endophytic
fungi in protection of plants from UV radiation by enhancing
the production of different secondary metabolites involved in
the plants defence system. For instance, in a study reported
by El-Sayed et al. (2019) two endophytic fungi Aspergillus
fumigatus TXD105 and Alternaria tenuissima TER995
associated with Taxodium distichum and Terminalia arjuna
plants significantly enhanced the production of paclitaxel by
16.25 and 19.86% on exposure to UV and gamma irradia-
tion, respectively. Simultaneously, another study by Lu et al.
(2021) reported that endophytic fungus Phomopsis sp. XP-8
isolated from the bark of Eucommia ulmoides when
co-cultured with UV radiation for certain periods (20 min)
enhances production of oligomeric proanthocyanidins
(100 lm) that has the potential to improve plant health. The
study also showed that endophytic fungi have potentially
increased the production of other secondary metabolites such
as resveratrol up to 240.57 lg/l. Resveratrol has a stilbenoid,
a kind of natural phenolic compound that participates in
many signaling pathways (Ahmadi and Ebrahimzadeh
2020). Furthermore, high intensities of solar UV-B radiation
on Colobanthus quitensis (Antarctic pearlwort) plant in
presence of fungal endophytes have shown that flavonoids (a
phenolic metabolite) play a critical role to protect plants
under excessive light (Ramos et al. 2018).

5 Endophyte-Mediated Modulation
at the Molecular and Cellular Level Under
Different Abiotic Stress

All the abiotic stresses such as high temperature, drought,
salinity as well as heavy metal toxicity largely impact the
plants and are a serious threat to agronomic important crops
and ultimately damages the environments (Abo Nouh et al.
2021; Singh and Kalamdhad 2011; Saxena et al. 2016). In
the presence of different stresses, plants often face oxidative
burst and cellular damage (Abo Nouh et al. 2021). To cope
up with stresses plants regulate their biochemical and
physiological profile as seen in the above sections of the
chapter. Additionally, plants fine-tune gene regulatory net-
works and showed variation in transcript levels of different
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stress-responsive genes, transcription factors as well other
signaling components (Fig. 1).

Various research approaches have given an idea about a
complete understanding of how plants respond to salinity
stress at combined levels of molecular, physiological, and
biochemical processes. Alternative splicing (AS) is a sig-
nificant gene expression modulator that has the potential to
increase proteome diversity while at the same time regulates
mRNA levels (Duque 2011). Similarly, Sampangi-Ramaiah

et al. (2019) reported that endophyte-induced alteration in
the frequency of alternative splicing events in plants is
subjected to salinity stress. Alternative splicing of transcripts
events per gene decreased from 2.28 to 2.11 upon colo-
nization of an endophytic fungus, Fusarium sp. in IR-64 rice
plants, under 150 mM saline stress. On the other hand,
drought stress affects plant health by decreasing photosyn-
thetic rate, modulating cellular redox potential, brings about
hormonal imbalance, induces oxidative damage by

Table 4 A list of recent studies
depicting the effect of endophytic
fungi in the alleviation of heavy
metal (HMs) stress in different
host plants

Heavy
metal

Endophytic fungi Host plant Effects on host plant References

Cd Paraphaeosphaeria sp.
SR46

Zea mays • Increased plant growth
• Increased Cd cycling and
restoration

An et al.
(2015)

Cu, Zn,
Pb

Phialocephala fortinii
Rhizodermea
veluwensis
Rhizoscyphus sp.

Clethra
barbinervis

• Enhanced growth
enhancement

• Increased nutrient uptake
• Decreased HMs
concentration

Yamaji et al.
(2016)

Pb, Cu Serendipita indica Ocimum
basilicum

• Increased shoot and root
dry weight

Sabra et al.
(2018)

Cd, As,
Pb

Acrocalymma vagu
(NYN8C05 and
NYN8G01)

Nicotiana
tabacum

• Increased leaf size
• Reduced toxicity of HMs

Jin et al.
(2018)

Hg2+ Aspergillus sp. A31
Curvularia geniculata
P1
Lindgomycetaceae P87
Westerdykella sp. P71

Aeschynomene
fluminensis
Zea mays

• Increased host biomass Pietro-Souza
et al. (2020)

Cr, As Aspergillus
welwitschiae

Glycine max • Enhanced growth
• Higher root, shoot length,
and fresh/dry

• Increased enzymatic
antioxidants like CAT,
AAO, POD

Hussain et al.
(2021)

Ni, Cd,
Cu, Pb,
Cr, Al

Paecilomyces formosus
LHL10 Penicillium
funiculosum LHL06

Glycine max • Enhanced plant growth
promotion

• Increased levels of
carbohydrates, minerals,
amino acids, and
antioxidants

Bilal et al.
(2021)

Cd, Zn,
Pb

Exophiala pisciphila Arabidopsis
thaliana

• Increased activity of
antioxidant enzyme SOD

• Reduced HMs
accumulation

Yu et al.
(2021)

Cd, Cr Aspergillus flavus
(Ch-01)

Solanum
lycopersicum

• Increased plant
growth-promoting activity

• Increased transcript
expression of SlGSH1 and
SlPCS1 genes

Aziz et al.
(2021)

Cd Piriformospora indica Nicotiana
tabacum

• Increased expressions of
genes of POD, glutathione
synthase (GS)

• Upregulation of
photosynthesis-related
proteins

Su et al.
(2021)
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increasing ROS which ultimately results in cellular mem-
brane damage (Cohen et al. 2015). Qin et al. (2019) isolated
12 strains of endophytic fungi (Aspergillus fumigatus SG-17,
A. oryzae HY-1, A. tubingensis MG-23, A. flavus MY-15,
Fusarium concentricum HG-2, Alternaria alternata MY-22,
A. tenuissima SG-5, Chaetomium globosum QY-1, Fomi-
topsis palustris SG-16, Penicillium oxalicum SG-4, SY-15,
Pestalotiopsis microspore SG-6) from Myricaria laxiflora
and evaluated their drought stress effects in rice cv. Nip-
ponbare by applying crude extracts of endophytic fungi.
Predominant Aspergillus fumigatus SG-17 functioned most
effectively and exhibited relatively higher antioxidant
capacity. Follow-up MS and NMR analysis showed the
compound (Z)-N-(4 hydroxyethyl) formamide (NFA) which
is responsible for antioxidant activity an analogue of cou-
marin and regulating reactive oxygen species (ROS) com-
pounds such as NADPH oxidases, antioxidants, and heat
shock proteins.

An experiment revealed that inoculation with Piriformo-
spora indica on two tomato cultivars superluna and caspian
grown under drought stress ameliorates the negative effect of
drought. The study revealed that increased expression of
LEA14, TAS14, GAI, and P5CS under drought stress assisted
the plant in overcoming drought (Azizi et al. 2021). Simi-
larly, temperature stress can cause changes in gene expres-
sion, differential expression of proteins, altered
concentration of bioactive metabolites, hormonal signaling
alterations, antioxidant enzyme activity, etc. (Raza et al.
2021).

Ghorbanpour et al. (2018) postulated that inoculation of
Trichoderma harzianum AK20G strain (endophytic fungi) to
cold stressed tomato (Solanum lycopersicum L. cv. CaljN3)
elevated the expression level of NAC1 dehydrin TAS14 and
P5CS in comparison to non-inoculated. Results showed that
T. harzianum was found to effectively mitigate the negative
effects of cold stress, resulting in increased photosynthetic
and growth rates. T. harzianum was also found to minimize
lipid peroxidation and electrolyte leakage while enhancing
leaf water content and proline accumulation. Another study
by Bodjrenou et al. (2021) demonstrated endophytic fungi
(Serendipita indica) that helped the Musa acuminata cv.
Tianbao plant to tolerate high-temperature stress. The study
revealed that S. indica inoculated leaf of banana plant sus-
tains the growth and enhances tolerance of plants by regu-
lating microRNAs (miRNAs). A set of 278 differentially
abundant miRNAs in response to heat stress regulates the
genes involved in heat shock protein, peroxidase, tran-
scription factor, phenylalanine, sucrose synthase, protein
kinase, and 7-hydroxymethyl chlorophyll. Further, gene
ontology (GO) and Kyoto encyclopedia of genes and gen-
omes (KEGG) pathway enrichment analyses uncover the
differentially expressed (DE) miRNAs that were signifi-
cantly associated with nutrient sources uptake, secondary

metabolism, growth regulators, auxin-responsive factor,
signal transduction pathways.

Increased heavy metal accumulation and its toxicity have
severely affected both plants as well as animals. In plants, a
symbiotic association of endophytic fungi and their host
plant has been shown to develop tolerance against metal
toxicity via the expression of regulatory genes. For example,
inoculation of endophytic fungi Aspergillus flavus (Ch-01)
to tomato plants grown under heavy metal (Cd, Cr)
improved its growth via up-regulation of SlGSH1 and
SlPCS1 genes that in turn enhanced physicochemical traits
under HMs stress (Aziz et al. 2021). A study reported by
Bilal et al. (2020) a synergistic association of endophytic
fungi (Paecilomyces formosus LHL10 and Penicillium
funiculosum LHL06) enhances Glycine max resistance to
combined abiotic stresses like metal toxicity, drought, and
extreme temperature. Endophytic fungi reduce the metal
toxicity by down-regulating heavy metal ATPase genes such
as GmHMA13, GmHMA14, and GmHMA18 expression and
a few genes like GmDREB2, GmDREB1B, GmERD1,
GmRD20, heat shock protein 90 (include GmHsp90A2 and
GmHsp90A1) expression lowered endogenous ABA and JA.

6 Conclusion

Available literature suggested that there are about 300,000
plants species in the world that harbour one or more endo-
phytic fungi. Each endophytic fungi have its functions that
helped plants to improve growth and development, and
adaptability to environmental stresses (biotic or abiotic).
Endophytic fungi quickly respond in the stimulation of
immune defence through modulation of phytohormone sig-
naling, production of novel secondary metabolites through
responses in different stresses (high temperature, drought,
heavy metal, salinity, etc.), and preparing for plant defence
response pathways. However, further molecular experi-
mental research is needed to confirm these mechanisms that
increase host lifetime health fitness and crop productivity.
The development of metagenomic analysis techniques over
the last decade has revealed new aspects of endophytic
fungal diversity, such as the identification of new
unculturable/culturable species with lesser time and the
establishment of endophytic fungal diversity, which reveal
physiological and ecological functions of the complex host
plant and their interactions. Future studies and evaluating the
potential of advanced agronomical strategies to preserve the
natural variety of plant endophytic fungi should become a
key component of developing sustainable agroeconomic
ways. Additionally, these endophytic fungi are a large
reservoir of different metabolites, which are known for the
production of commercially important enzymes that makes
powerful resources to use in pharmaceutical and different
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industrial purposes. At the same time, these endophytes are
used as environmentally beneficial bioremediation agents to
remove heavy metals and other harmful contaminants from
water and soil.
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Post-Green Revolution Degradation
of Agricultural Land in India: Role
of Mycorrhizae in the Sustainability
of Agriculture and Ecosystems

Prashanta Kumar Mitra and Vivekananda Mandal

Abstract

The Green Revolution in India was initiated in the 1960s
by introducing high-yielding varieties of rice and wheat to
increase food production; this led to the loss of specific
indigenous crops from cultivation and caused the extinc-
tion. India lost more than 1 lakh indigenous rice varieties
after the 1970s, which took several thousand years to
evolve. There is a clear indication of increasing con-
sumption of chemical fertilizer in Indian agriculture over
the past decades; urea showed the highest consumption in
agriculture. A significant fraction of the heavily used
pesticides and commercial fertilizers accumulates in the
soil and severely affects soil properties and micro-flora,
leading to soil degradation. Mycorrhiza-assisted remedi-
ation (MAR) is an aspect of bioremediation that can be
used to treat both organic and inorganic pollutants. It has
received much attention in recent years because it
enhances the establishment/re-establishment of vegetation
on the remediated soil and can equally be achieved at a
reasonable cost, which will help to resist abiotic stress,
disease, pathogen attack; and increase nutrient availability
and growth of plants leading to greater yield. Five plant
genes, namely CASTOR, POLLUX, NUP85, NUP133,
and CYCLOPS, were identified, which were required to
develop the mycorrhizal symbiosis in the plant root.
Using mycorrhiza-assisted remediation (MAR) to
re-establish a sustainable agricultural ecosystem and
increase plants’ nutrient uptake capacity, stress resistance,
and disease resistance could be a sustainable approach for
satisfying food demand without damaging the ecosystem.

Keywords

Bioremediation � Crop yield �Mycorrhiza � Post-Green
Revolution � Research trend � Sustainable agriculture

1 Introduction

The key term “agriculture” originates from Latin agricul-
tura, from ager, agr- “field” + “cultura” growing, cultiva-
tion. The cultivation of certain wild plants (agriculture) has
narrowly been conceptualized to feed the human population,
feed domesticated animals, and meet the significant eco-
nomic demand of society and global transformation (https://
www.sciencedaily.com/terms/agriculture.htm). Based on the
ecosystems and environmental factors, certain crops have
been cultivated in certain geographical provinces, for
example, rice, millets, and soybean production
in Asia, wheat farming in Europe, etc. (Leff et al. 2004).
However, this trend leads to the disruption of terres-
trial habitats in specific ways. Over time, the anthropogenic
interferences for clearing vegetation or treat-
ing the soil caused various localized changes. The demand
for such domestication and massive cultivation of crops has
revolutionized global agriculture and economics to meet the
demand of ever-expanding human civilization, commonly
termed the Green revolution.

1.1 Post-Green Revolution Agricultural
Practices and Soil Degradation

The Green Revolution in India was initiated in the 1960s
with the introduction of high-yielding varieties of rice and
wheat for increasing food production (Eliazer et al. 2019).
Green Revolution has doubled the production of wheat and
rice due to major government initiatives, but the post-Green
Revolution scenario is that we lost many indigenous
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varieties of rice and millets due to constant reduction in
cultivation and declined production (Eliazer et al. 2019).
Globally, India possesses the second-largest agricultural land
with 20 agro-climatic zones and about 157.35 million hec-
tares of land under cultivation (Anonymous 2017). During
the Green Revolution era, major crops cultivated were rice,
millets, sorghum, wheat, maize, and barley (Anonymous
1963; Hall 1964 (Fig. 1).

Rice and millets were produced more than wheat, barley,
and maize combined. The crops that once were major staples
became fodder crops in the past few decades after the Green
Revolution. Meanwhile, India lost more than 1 lakh
indigenous rice varieties after the 1970s, which had taken
several thousand years to evolve, and traditional rice vari-
eties have decreased to 6000 (Anonymous 2012; Nelson
et al., 2019). This loss of species was mainly due to the focus
on subsidized high-yielding hybrid crops production and the
emphasis on monoculture by the government (Eliazer et al.
2019). Green Revolution influenced the increase in

consumption of chemical fertilizer in Indian agriculture and
also forced research toward chemical fertilizers over the past
decades, and urea found the highest increasing trend of
agricultural use, and Potash found with the lowest (Fig. 2).
In a comparison of research interest between the application
of pesticides, fungicides, and mycorrhizae for
increasing/retaining crop yield, pesticide was found to be the
most widespread research interest in various disciplines from
different institutes in India during the Green Revolution and
post-Green Revolution era (Fig. 3a), and mycorrhiza was
found the least preferred topic among Indian researchers
(Fig. 3b).

Urea was the highest preferred chemical fertilizer in
agricultural practices during the last few decades; it may be
hypothesized that reducing soil quality also increased
nitrogen demand in agricultural fields and hence
nitrogen-based chemical fertilizers (Fig. 4a). Green Revo-
lution strongly influenced research interest in academia
about agricultural practices and crops; there is concrete

Fig. 1 Indian scenario of major
crops like rice, wheat, millet, and
maize cultivating areas for the last
few decades
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evidence of a research gap that could have had precious
objectives for sustainable agriculture research (Fig. 4b1, b2).

The Food and Agricultural Organization (FAO) of the
United Nations predicted that world food production
requires to be increased by 70% to cope with the growing
demand (Gill and Garg 2014). Increasing food production at
a global scale depends on developing more infrastructure for
production, which creates more burden on the ecosystem,
thus increasing food production faced with ever-growing
challenges (Gill and Garg 2014). Urbanization, industrial-
ization, and increased food demand enforced more chemical
agents, which accumulated over the years as pollutants in the
environment, and soil pollution is a global problem directly
concerned with agriculture (Raffa and Chiampo 2021).
Therefore increasing world population has put tremendous
pressure on the existing agricultural system, and since the
1940s, soil amendments are being used in higher quantities
than in the past (Gill and Garg 2014). After 1945, the
agrochemical field grew rapidly and introduced various
insecticides, fungicides, herbicides, and other chemicals to
control pests and ensure yields (Raffa and Chiampo 2021).

Over the past era, newly developed pesticides targeted a
broad spectrum of pests, and frequent use of these chemi-
cals have posed a significant challenge to the targeted pests
causing them to disperse and/or adapt to new environments.
The adaptation of the pest to the new environment ulti-
mately resulted in an increased pest resurgence and the
appearance of pesticide-resistant pests (Gill and Garg
2014). A significant fraction of the used pesticides and
commercial fertilizers accumulates in the soil; repeated use
significantly affect soil properties, soil micro-flora diver-
sity, biochemical reactions, and enzymatic activity (Gill
and Garg 2014). Vital biochemical reactions such as
nitrogen fixation, nitrification, ammonification, etc., when
influenced by the accumulated pesticides and chemical
fertilizers, augment synergistic and additive interactions
between pesticides, microorganisms, and soil properties,
ultimately governing soil degradation (Gill and Garg 2014).
Chemical fertilizers, pesticides, have also been reported to
influence the mineralization of soil organic matter, ulti-
mately degrading soil quality and reducing crop produc-
tivity (Gill and Garg 2014).

Fig. 2 Comparison of chemical fertilizer consumption between the years 2002 and 2018 in India (Anonymous 2019, 2020, 2021)
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1.2 Soil Remediation

A variety of soil remediation approaches have been devel-
oped in past decades to reclaim contaminated soil which
mainly took mechanical or physio-chemical techniques into
focus, such as soil incineration, excavation and landfill, soil
washing, solidification, and electric field application. Cost
efficiency and results determine the success of large-scale
commercial processes, and our current methods are unable to
attain that balance; reports indicated high cost and ineffi-
ciency as the major limitations of these physicochemical
approaches, and additive to that these methods are prone to
cause irreversible changes to the physicochemical and bio-
logical properties of soils leading to the deterioration of the
soil ecosystem and introducing secondary pollutions (Yan
et al. 2020; Wan et al. 2020). Therefore, cost-effective,
efficient, and environment-friendly remediation technologies
are crucial to reclaim contaminated soil (Yan et al. 2020;

Wan et al. 2020). A summarized flowchart representing soil
remediation approaches are given below (Fig. 5).

2 Why Are Mycorrhizae Essential
in Sustainable Agriculture?

2.1 Soil Remediation by Mycorrhizae

Mycorrhiza-assisted remediation (MAR) is a low cost, effi-
cient, and sustainable bioremediation approach applicable
for both organic and inorganic pollutants (Fig. 6). In recent
years, it is slowly gaining attention for effectively enhancing
the establishment/re-establishment of vegetation on the
remediated soil at a reasonable low cost even though it is a
time-consuming process.

Using arbuscular mycorrhizal fungi (AMF) infested
hyper-accumulator plants were found as a promising strategy

Fig. 3 Comparison of the number of published literature enlisted in PubMed
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to increase phytoremediation efficiency (Chibuike 2013).
AMF is one of the most critical soil microorganisms that
form a symbiotic association with most terrestrial plants,
which helps the host plants to uptake and transport phos-
phorus (P) along with water and other relatively immobile
soil nutrients, and promotes plant growth stress tolerance
(Yang et al. 2016).

In most environmental conditions, arbuscular mycorrhizal
(AM) fungi help to improve plant growth directly by pro-
viding access to more nutrients, especially Phosphorus, to
the plants. The AM symbiosis improves disease resistance
in host plants and also suppresses the growth of
non-mycorrhizal weeds. In addition, AM fungi help exude
photosynthetically derived carbon into the mycorrhizo-
sphere, stabilizing soil aggregates and promoting other soil
organisms’ growth. A glycoprotein named Glomalin, pro-
duced by AM fungi, acts as a protective coating on fungal
hyphae which helps to retain water and nutrients from being
lost before it reaches the host plant and protects the hyphae
from microbial attack. Glomalin also stabilizes soil aggre-
gates by forming a polymer-like lattice on the aggregate
surface. AM fungi engineer well-structured soil with the

distribution of water-stable aggregates and pore spaces that
resist wind and water erosion, improve air and water infil-
tration, and help plant and microbial growth (Siddiqui and
Futai 2008).

The mutualistic relationships between AMF and most of
the terrestrial plant species help to adapt different biotic and
abiotic conditions, along with the promotion of plant growth,
disease resistance, and stress resistance, and hence utilization
of this naturally selected relationship for developing an
eco-friendly, efficient biological alternative to chemical fer-
tilizers and pesticides for higher productivity in agriculture,
horticulture, and forestry is recommended (Shuab et al.
2017).

2.2 AM Fungi a Crucial Global Player
in Sustainable Agriculture

The AMF placed under the phylum Glomeromycota are
considered to be a less diverse ancient group of root sym-
bionts that originated alongside the first land plants. The AM
fungi engage in symbiosis with about 80% of land plants,

Fig. 4 Principal component analysis showing the correlation between parameters, created with literature search results from PubMed
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and the group contains about 250 morphologically defined
and 350 to 1000 molecularly defined AM fungi. In this
relationship, the fungus receives plant-synthesized carbon
while exchanging to the plant an increased nutrient, but
while considering a wider scale, the symbiosis influences
plant–plant interactions and the structure of plant commu-
nities affecting agricultural production. To avoid errors, the
identification of AM fungal taxa is principally dependent on
DNA-based methods and are classified into approximately
species-level taxonomic units using clustering algorithms
(Davison et al. 2015). Most of the classification approaches
generate operational taxonomic units (OTUs) that are either
which cannot be readily compared or very difficult to com-
pare between different studies or study areas; hence many
geographic regions, biomes, and ecosystems remained
entirely unstudied (Davison et al. 2015). Davison et al.
(2015) tried to compare the global distribution of AM fungi
and their community composition, a summarized figure is
given in Fig. 7.

3 AM Fungi in Stress Resistance, Disease
Resistance, and Crop Production

3.1 Stress Resistance

Abiotic stresses, such as drought, salinity, extreme temper-
atures, and exposure to pollutants, result in soil deterioration
resulting in reduced crop yield worldwide, and AM fungi
helps to increase tolerance to abiotic and biotic stresses
(Lenoir et al. 2016). AM fungi promote salinity tolerance
by enhancing nutrient acquisition, producing plant growth
hormones, improving rhizospheric and soil conditions,
changing gene expressions, altering biochemical (accumu-
lation of antioxidants, proline, betaine, etc.) and influencing
physiology (photosynthetic activity, relative permeability,
water relation, nodulation and nitrogen fixation, etc.) (Ada-
mec and Andrejiová 2018). AM symbiosis increases the
resistance of plants to drought by improving soil structure
and stability, which helps increase the water retention of soil
(Adamec and Andrejiová 2018). AMF symbiosis protects
plants from several heavy metals in the soil. Recent studies
with electron-dispersive X-ray spectrometry (EDXA)
showed that Zn, Cu, and Cd are accumulated in the cell wall,
but cytoplasm was essentially found free of these elements,
while other studies showed that Glomalin was produced by
AM fungi in large quantities and got released into the soil
keeping a significant amount of metal immobilized, thus
helping host plants from heavy metal stress (Adamec and
Andrejiová 2018). AM fungi result in a well-established
temperature-related stress defence by alleviating oxidative
stress and protecting the photosynthetic apparatus in myc-
orrhizal host plants, increasing host plants’ tolerance (Ada-
mec and Andrejiová 2018).

3.2 Disease Resistance

Mycorrhizal roots are often found with intense fungal col-
onization, both intercellularly and intracellularly, releasing
many molecular signals like chitin oligomers. Plants can
recognize these signals, which trigger defence responses in
host plants. Pathogens are also well equipped and usually
produce inhibitors against plant defence known as effectors.
Recent studies found numerous effectors and are predicted to
occur in the AMF genomes; assumptions are made that
lowering the host defence mechanisms to allow AM fungal
infection and colonization of the roots could be the best
possible reason for AMF producing those effectors. How-
ever, the general defence of mycorrhizal plants remains
active to cope with rhizospheric pathogens. Mycorrhizal
plants exhibit increased disease resistance, and experiments

Fig. 5 Flow chart showing summarized general technologies for soil
remediation approaches (Redrawn after Wan et al. 2020)

354 P. K. Mitra and V. Mandal



with split root systems revealed that the entire host plant
gains protection against pathogens; this phenomenon is ter-
med systemic acquired resistance (SAR). Mycorrhizal plants
can be primed to react faster and more robust to pathogen
attacks by triggering a phenomenon known as induced
systemic resistance (ISR) (Chen et al. 2018).

3.3 Crop Production

For enhancing crop production across the globe, chemical
fertilizers and pesticides had been used heavily, which led to

the degradation of soil health and its biodiversity at all levels
sustainable agricultural practices are very less popular that
resulted in demolishing agricultural ecosystems throughout
the globe, which makes it the uttermost necessity to replace
conventional agricultural approaches with cost-effective
eco-friendly and sustainable implementation. The strategy
of manipulating soil microbial communities and their inter-
actions within the agri-ecosystems and their rhizosphere
seems promising. AM enormously enhance transport of
inorganic nutrients, micronutrients, the absorption rate of
fertilizers; produce a glycoprotein named Glomalin (which
helps improve the soil structure); increase water availability

Fig. 6 Mycorrhizal impacts on sustainable agriculture (Redrawn after Chen et al. 2021)

Fig. 7 Comparison of global
distribution and similarity of
AMF taxa (Redrawn from
Davison et al. 2015)
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to their host plant; resist abiotic stress, disease, pathogen
attack; and thus directly or indirectly promote plant growth
and produce a greater yield (Sharma et al. 2017).

4 Molecular Insights of Host-Mycorrhizae
Association

Successful formation of mycorrhizae with AM fungi relies
on the appropriate expression of host genes and their phys-
iological responses. Complex molecular interaction between
the host plant and the AM fungus is required for successful
root colonization. The plant root exudes Strigolactones
(SLs) and stimulates AM fungal spores for germination. SLs
originate from the carotenoid biosynthetic pathway.
Carotenoid-cleavage-dioxygenase 7 and 8 (CCD7 and
CCD8) play significant roles in SL biosynthesis; also, it was
reported that plant hormone abscisic acid derived from the
carotenoid biosynthetic pathway is involved in regulating
SLs production. In turn, the fungal hyphae produce “Myc
factors,” a class of diffusible molecules that are identified
and perceived by plant roots. After perceiving the Myc
factor, the host triggers a rapid elevation in the intracellular
calcium ion modifying the cellular architecture and tran-
scriptional programming in the root. AM fungi also secrete
lipochitooligosaccharides that stimulate the formation of
mycorrhizae. The genes encoding germin-like, nodulin
26-like, and other proteins are activated at the appressorium
stage and have a crucial role in mycorrhizal colonization.
The gene ENOD11 encodes proline-rich protein that helps in
activating epidermal cells before and during the formation of
pre-penetration apparatus formation (PPA), and at the late
stage of mycorrhizal development. Mutants of Lotus
japonicus were used to identify five genes, namely CAS-
TOR, POLLUX, NUP85, NUP133, and CYCLOPS that are
required to develop the mycorrhizal symbiosis (Mohanta and
Bae 2015).

5 Conclusion: Need of the Hour

India has been climbing the ladder of higher economic
growth during the last two decades, but the growth also
inflates the food price because of the very sluggish and
uneven agricultural growth. The increase in per capita
income increased the food demand significantly, but agri-
cultural production would not cope with the growing
demand (Sasmal 2015).

India's economy is growing at 9% and has acquired the
third largest place in Asia, behind China and Japan. Green
Revolution was armed with high-yielding seeds, canal irri-
gation, and chemical fertilizers during the mid-1960s and
was hailed as the foolproof solution to world hunger. A large

country like India requires more than 210 million tons of
grain, with a constantly increasing demand to feed its peo-
ple. India thus desperately needs agricultural diversification
and innovative approaches for improving yield (Ago-
ramoorthy 2008). To achieve the goal of producing more
than 210 tonnes of grain, we should take some serious steps
toward mycorrhiza-assisted remediation (MAR) approaches
and re-establishment of the sustainable agricultural ecosys-
tem at a low cost. The AM symbiosis would be a low cost,
efficient, sustainable approach having tremendous potential
for agricultural production, conservation, and restoration of
ecosystems.
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Integrated OMICS Approaches to Ameliorate
the Abiotic Stress in Brassica Napus

Tripti Sharma and Astha Gupta

Abstract

Brassica napus L. commonly known as rapeseed or
canola is a member of the family Brassicaceae and
developed through hybridization of Brassica rapa
(turnip) and B. oleracea (cabbage). It is an allotetraploid
(2n = 4x = 38, AACC) that has arisen from diploid
genomes of B. oleracea (n = 9, CC) and B. rapa (n = 10,
AA). The crop is economically important for its edible
root, greens, oil yield, biodiesel fuel and food for
livestock. Also, it is a rich source of essential fatty acids
like linoleic acid (17.11–20.92%), oleic acid (56.80–
64.92%) and palmitic acid (4.18–5.01%). Rapid changes
in environmental conditions result in abiotic stress for
plants, however, they are also prone to attack by pests and
pathogens causing biotic stress. Under both the stress
conditions, overall production and yield of a crop are
compromised. Several pathways regulate the expression
of genes involved in the stress response that includes the
perception of external stress by plant receptors which
elicit production of Reactive Oxygen Species (ROS),
secondary messengers (Ca2+/Calmodulin), accumulation
of stress-responsive phytohormones and cascade of
stress-responsive pathways. There exists an interplay
between various physiological and biochemical pathways
to produce a stress response. Furthermore, ‘OMICS’
refers to the integration of genomics, transcriptomics,
proteomics, metabolomics and phenomics together with
genome editing approaches like CRISPR/Cas9. With the
development of OMICS strategies, it has been possible to
gain insights into the underlying mechanisms of stress
response to decipher the candidate genes, regulatory
components like transcription factors, proteins and other
metabolites involved. Further, multiple OMICS
approaches, i.e. ‘Panomics’ will unravel new avenues

for the production of varieties with improved stress
tolerance without compromising with yield and other
essential attributes.
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ABA Abscisic Acid
AT Associative transcriptomics
An Net photosynthetic rate
CBFs C-repeat-binding factors
Ci Internal carbon dioxide concentration
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DEGs Differentially Expressed genes
DEMs Differentially Expressed Metabolites
DEPs Differentially Expressed proteins
DFR Dihydroflavonol 4reductase
DSI Drought stress index
E Transpiration rate or evapotranspiration
FW Fresh weight
GA Gibberellin
GEMs Gene Expression Markers
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Gsw Stomatal conductance to water vapor
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PRK Phosphoribulokinase
QTL Quantitative Trait Locus
RL Root length
SL Shoot length
R/S root to shoot length ratio
PV Phenotypic Variation
WT Waterlogging tolerance
SNPs Single Nucleotide Polymorphisms
RIL Reciprocal Inbred Line
ROS Reactive oxygen species
SSR Simple Sequence Repeates
IP Intron polymorphic
SAT Serine Acetyltransferase
SEM Scanning Electron Microscopy
SPAD Soil Plant Analysis Development
TRI Triosephosphate isomerase
Trx Thioredoxins
WGS Whole genome sequencing
WTC Waterlogging tolerance coefficient

1 Introduction

Erratic changes in the climatic conditions globally project
stress to the normal growth and development of a plant. These
stress conditions are commonly grouped under abiotic stres-
ses, which include heat, drought, cold, waterlogging, salinity
and deficiency of nutrients, and biotic stresses that include
attack by herbivores and other pathogens. However, approx-
imately 40% of the total world land area is affected by water
deficit or drought stress (Gad et al. 2021). This severely
affects seed germination, plant development, growth and yield
at a significant level. Drought is expected to be a major abiotic
stress in future that may affect crop productivity. This has
urged scientists to develop varieties capable of adapting to
changing environmental conditions without affecting the crop
yield. Oilseed crops are most desirable and important for oil
production and also have an industrial application that
includes sunflower, safflower, soybean, groundnut and Bras-
sica. Therefore, there is a need to focus on these economically
significant crops to understand and explore the genes/loci,
process and biological pathways under abiotic stress condi-
tions for further improvement.

Several species of genus Brassica belongs to the family
Brassicaceae that includes Brassica rapa, B. oleracea, B.
carinata, B.juncea and B. napus L. Rapeseed
(2n = 4x = 38) is an economically important crop that adds
to commercial value by producing high-grade vegetable oil,
biodiesel fuel and contributing to food for animals. Edible
oil obtained from B. napus is nearly 12% of the total market
worldwide (Paterson et al. 2001). Nearly 50% of the

vegetable oil supply in China is met by rapeseed (Ding et al.
2020). Meal cake obtained as a by-product forms a
protein-rich food for livestock (Wanasundara et al. 2016). Its
agronomic importance is of particular interest for researchers
to enhance its yield by genetic improvement.

Drought affects the plant productivity and
yield through alterations of physiological mechanisms and
metabolic pathways (Zhu et al. 2016). Therefore, making
drought-tolerant high yielding varieties have become a major
goal for researchers. Likewise, waterlogging is also known
to affect rapeseed at the seedling establishment stage as well
as at maturity. Significant reduction in yield, i.e. 1.1–34.9%,
6.5–55.5% and 8.7–93.2% has been observed at the seedling
stage, seedling establishment stage and at maturity, respec-
tively (Zou et al. 2014). A large number of studies have been
carried out to study the physiological effects of waterlogging
stress in rapeseed that includes reduced stomatal conduc-
tance, photosynthetic rate, etc. (Zhou et al. 1997; Ku et al.
2009). Molecular studies have been carried out to study
transcriptional level response to waterlogging (Lee et al.
2014; Zou et al. 2013, 2015). However, there are few studies
on genetic mechanisms of waterlogging tolerance (WT).

Soil salinity hinders the growth, development and yield of
the plants due to the presence of high concentrations of salts
in soil that shows deleterious effects on metabolism, physi-
ology and disturb cellular homeostasis. As a result, Reactive
Oxygen Species (ROS) accumulation occurs and oxidative
stress is imposed on a plant (Triantaphylides and Havaux
2009). According to reports, 7% of the total land area across
the world and more than 20% of the arable land is saline
(Flowers et al. 1997; Munns and Tester 2008; Parida et al.
2004). Roots are the primary organs to sense salt concen-
tration in soil and to elicit a response to maintain function-
ality and relay the signal to shoot for modification in shoot
function (Zhao et al. 2013). Hence, understanding the
responsive mechanisms to salinity in roots is essential to
improve salt tolerance in plants.

Since different abiotic stress conditions pose threats and
limitations to the productivity of crop species including
Brassica (Raza et al. 2021) therefore, developing tolerant
varieties has become a major concern to maintain production
levels. Researchers have employed various approaches for
understanding the underlying molecular mechanisms
responsible for tolerance to various stress conditions, to
develop varieties capable of withstanding stress without
compromising with yield and rather achieve higher yield.
Integrated molecular approaches and OMICS are fruitful to
explore the candidate genes/loci, proteins, metabolic pro-
cesses and pathways that are involved in crop improvements
(Rana et al. 2020). Some of these approaches are QTL
identification, transcriptomics analysis, proteomics and
transgenic approach that are helpful to develop the abiotic
tolerance varieties.
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2 Brassica napus: An Oilseed Crop

Brassica napus L. commonly known as rapeseed or canola
(2n = 4x = 38, AACC), is a member of the family Brassi-
caceae (Fig. 1). The family Brassicaceae, also known as the
mustard family includes 419 genera and 4130 species some
of which are Arabidopsis thaliana, B. rapa, B. oleracea and
Eruca sativa. Furthermore, B. napus is an allotetraploid that
has arisen from the hybridization of genomes of B.rapa and
B. oleracea, each contributing genome A and C respectively
(Cheung et al. 2009). It is mainly grown in Europe, China
and Canada for its edible oil content, industrial derivatives
and source of food for livestock. It is an economically
important crop that adds to commercial value by producing
high-grade vegetable oil, therefore ranking second in global
oil production after soybean (Raza 2021). The oil obtained

from rapeseed accounts for 30.6–48.3% of the dry weight and is
rich in essential fatty acids like linoleic acid (17.11–20.92%),
oleic acid (56.80–64.92%) and palmitic acid (4.18–5.01%)
(Raza et al. 2021). Brassica plant has a yellow colour flower
(Fig. 1) and its inflorescence has a high content of carbohy-
drates, sugars (fructose, glucose, raffinose and sucrose), essential
n-3 fatty acid, a-linolenic acid, n-6/n-3 fatty acids and phyto-
chemicals like tocopherols, lycopene, phenols, flavonoids and
also the highest antioxidant properties. It is also a source of
biodiesel fuel and contributes to food for animals. Edible oil
obtained from B.napus accounts for nearly 12% of the total
market worldwide (Paterson et al. 2001). Its agronomic
importance is of particular interest for researchers to enhance its
yield by genetic improvement. Advancement in high throughput
sequencing techniques and phenomics has enhanced the reser-
voir of available genetic information of this species.

Fig. 1 Representation of Brassica crops growing in School of Agricultural Sciences, Sharda University, Greater Noida
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3 Environmental Stresses

Agriculture produce is greatly dependent on prevailing envi-
ronmental conditions to the extent that changes in environ-
mental or climatic conditions affect the quality as well as
quantity of produce. Fluctuations in climate pose serious
stress to the normal growth of a plant. Deviations from
optimum temperature, water availability, soil pH are the main
factors of abiotic stresses. Major abiotic stresses concerning
crop productivity are heat, drought, cold, salinity, alkalinity
and waterlogging. According to USDA-FAO reports, salinity
and drought stress respectively affect 20% and 26% of agri-
cultural land (American Geophysical Union; https://sites.agu.
org). Among the aforesaid abiotic stresses, salt stress is the
second most limiting stress for crop production affecting
agricultural land mainly in arid and semi-arid regions of the
world. Abiotic stress induces adverse effects on plant physi-
ology, metabolism, biochemical and molecular processes.

The impact of several abiotic stresses like temperature (Du
et al. 2016) and waterlogging (Lv et al. 2016; Xu et al. 2015) has
been studied in several crops including rapeseed (Raza et al.
2021). Changing climate due to advancements in urbanization
and industrialization is a major threat to crop productivity. Like
other crops, rapeseed is also subjected to stressful conditions that
interfere with biochemical, physiological and molecular aspects
of plant growth, subsequently affecting the yield. Adopting
strategies to produce plants with improved abiotic stress toler-
ance and enhanced oilseed production is the fundamental aim.

Environmental stress is perceived by sensors or receptors
of plants eliciting the downstream components of the
stress-responsive pathway (Osakabe et al. 2013). The earliest
response upon stress perception involves the production of
Reactive Oxygen Species (ROS), Ca2+/ Calmodulin complex
and accumulation of stress regulating plant hormones
(Mohanta et al. 2018). Further, these relay the stress response
via secondary messengers that include Protein kinases (PKs),
Protein Phosphatases (PPs), Calcium-dependent protein
kinases (CDPKs), Mitogen-activated protein kinase (MAPKs)
and CBL-interacting protein kinase (CIPKs) (Mohanta et al.
2018). These secondary messengers work by regulating
Transcription Factors (TFs) and the expression of
stress-responsive genes. Further, TFs and stress-responsive
genes help to adjust or overcome stress by modulating
metabolic, biochemical and molecular mechanisms.

4 Integrated ‘OMICS’ Approaches for Abiotic
Stress Management

OMICS approach is the combined associative analysis of
multiple approaches that include genomics, epigenetics,
QTL mapping, transcriptomics analysis, proteomics and

transgenic study (Fig. 2). This integrated approach would be
fruitful to explore the candidate genes/loci, proteins, meta-
bolic processes and pathways which has been explained
below:

4.1 QTL Mapping for Identification of Candidate
Genes for Abiotic Stress Tolerance

Quantitative traits responsible for plant adaptability to various
abiotic stresses need to be genetically evaluated to develop
tools or approaches directed towards improving a plant’s
capacity to adjust to environmental stress and enhance pro-
ductivity (Gad et al. 2021). Since the response of plants under
undesirable environmental conditions is a net result of inter-
actions between genes and environment, identification and
analysis of Quantitative Trait Locus (QTLs) give an insight
into the quantitative traits that may regulate one or more
phenotypic traits. This approach has been already used in
common bean (Sandhu et al. 2018), rapeseed (Zhou et al.
2014), peanut (Zhao et al. 2016) and wheat (Wang et al.
2018). A quantitative trait locus corresponding to a particular
phenotypic variation could be identified and employed for
improving phenotype. Drought tolerance in many crops like
Arabidopsis, Oryza sativa, Triticum aestivum and Glycine
max had been studied using QTL maps.

Germination-related traits under drought stress have been
studied in detail in B. napus to understand the effect of
drought on seed germination (Gad et al. 2021). Germination
percentage (GP), root and shoot length (RL and SL), root to
shoot length ratio (R/S), fresh weight (FW) and drought
stress index (DSI) of these traits were investigated. Based on
the QTL maps in B. napus, the genetics governing seed
germination under drought stress was dissected. Further, the
candidate genes in the QTLs linked with drought tolerance at
the germination stage have also been identified. This study
also highlighted the importance of root-to-shoot length ratio
(R/S) in the phenotypic analysis for drought tolerance at the
seedling stage. Similar results have been reported in wheat
by Dhanda et al. (2004). Therefore, R/S may be regarded as
an important morphological trait to study the effect of
drought stress. Thirty-nine QTLs were identified for studied
germination-related indexes in this study and were compiled
into 36 consensuses QTLs. Out of these consensus QTLs, 18
QTLs affected DSI of four traits notably GP, RL, SL and
R/S. Many of these QTLs were found clustered on chro-
mosome 1 and chromosome 9. Studies in tomato (Foolad
et al. 2003) and wheat (Wang et al. 2009) have also iden-
tified QTLs for drought tolerance at seed germination and
early growth stages, respectively.

Colinearity between the physical and genetic maps of B.
napus facilitated the identification of 256 candidate genes, of
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which 128 genes had SNP/InDel variations. Functional
annotation of candidate genes highlighted BnaC03g44440D
gene on QTL qR/S-13-1 to be associated with R/S, having
orthologous gene XERICO in A. thaliana. Upregulation of
XERICO enhanced tolerance to drought in A. thaliana (Ko
et al. 2006). Similarly, A. thaliana DREB2 gene ortholog
BnaC03g37030D was also detected in QTL qR/S-13-1.
Overexpression of A. thaliana DREB2 gene has been
reported to increase tolerance to drought in tobacco, apple
and A. thaliana (Liao et al. 2017; Sharma et al. 2019; Chen
et al. 2016).

Salt tolerance-related QTLs, and genes were also deter-
mined in B. napus (Lang et al. 2017). Further, the structure
and expressions profile of the identified candidate genes has
been studied and a new set of markers for salt tolerance to be
used for Marker-Assisted Selection (MAS) has also been
developed. Using 532 of the developed molecular markers a
linkage map spanning 1341.1 cm distance was constructed

to mine salt tolerance-related loci. A large number of these
QTLs (i.e. 45), associated with the morphological and
physiological parameters and accounting for a Phenotypic
Variation (PV) of 4.80–51.15% were found in F2:3 popula-
tions. Additionally, QTL—qSPAD5 linked with chlorophyll
was found on linkage group 5 and Bra003640 was identified
as the primary gene responsible for salt tolerance. Specific to
this QTL region two Intron polymorphic (IP) markers were
developed and the QTL location was narrowed down to
390 kb region.

Similarly, cold resistance-related QTLs and candidate
genes in the QTL region using B. napus genetic map was
determined (Huang et al. 2018). Further, they designed cold
resistance-related markers to aid in MAS. SSR marker
derived genetic linkage map covering 1317.70 cM distance
was hence constructed and 11 QTLs (PV—1.09–42.50%)
for desired traits were mapped (Huang et al. 2018). The
identified QTLs were majorly mapped on linkage group

Fig. 2 Interaction of environmental stress (like heat, cold, salinity,
alkalinity and nutrient deficiency) with the plant causes alteration in its
genetic material, i.e. DNA. These alterations occur in specific genes that
are responsible for stress amelioration in plants. According to the central
dogma, the changes from DNA are passed on to the RNA transcripts and
further to the proteins (expression molecules) and metabolites produced
from these genes and transcripts. The development of OMICS techniques
including Genomics, Transcriptomics, Proteomics and Metabolomics has
allowed understanding the modulations in gene architecture. Genomics
allows the identification of the QTLs underlying a specific stress response
and furthers the candidate genes in these QTL regions. Transcriptomics
studies the changes in RNA transcripts through techniques like SAGE

and RNA sequencing to identify the differentially expressed genes
(DEGs) under stress conditions which allow for the identification of
candidate genes and key pathways through KEGG analysis. The changes
at the gene level are expressed via proteins and metabolites which are
studied through Proteomics and Metabolomics studies. The differentially
expressed proteins (DEPs) and differentially expressed metabolites
(DEMs) are identified with the help of these two techniques which
further facilitate the identification of important metabolic pathways that
play an important role under stress conditions. The candidate genes may
be introgressed in desired variety through Marker-Assisted Selection
(MAS), likewise, gene manipulation through transgenic approaches may
lead to the development of abiotic stress-tolerant varieties
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(LG) 6 (qSPADYL-6, qMDAYS-6 and qSPADYS-6), LG3
and LG7 with a possibility that the same gene controls these
QTLs. The study identified two candidate genes viz.
BnaA08g05330D and BnaA08g15470D known to code for
cold-regulated proteins (Huang et al. 2018). These genes
were similar to stress-responsive proteins, namely,
Bra039858 and Bra010579. The development of SSR
markers related to cold resistance in rapeseed has helped
distinguish cold-resistant varieties from cold-sensitive
varieties.

Genetic mechanisms involved in waterlogging tolerance
(WT) and corelation between WT and seedling biomass has
also been deciphered in B. napus (Ding et al. 2020). This
study involved the identification of QTLs related to WT and
seedling biomass, along with the identification of stable
QTLs and associated candidate genes. A total of 1468 Single
Nucleotide Polymorphisms (SNPs) were identified in GIL
population (GH01 recurrent parent) and 1450 SNPs in ZIL
population (ZS9 recurrent parent). Out of the 66 QTLs
identified for WT, 20 QTLs were common to both genetic
backgrounds and were combined into 6 QTL clusters.
Similar findings have been reported for QTLs related to
branch number and spikelet number per panicle in Recip-
rocal Inbred Line (RILs) in rice (Mei et al. 2006). Interest-
ingly, 12 candidate genes were identified in 6 QTL clusters
some of which had a role in the degradation of RNA or
protein or oxidation–reduction reactions (Ding et al. 2020).
Moreover, 6 QTLs, namely, qWTA7-1, qWTA7-2, qWT7-1,
qWTC7-2, qWTC1 and qWTC6 were detected in both
genetic backgrounds suggesting that they can be applied in
MAS breeding programmes for enhanced WT. Molecular
mechanisms governing waterlogging stress in important
crops like rice (Lasanthi Kudahettige et al. 2007), cotton
(Christianson et al. 2010), A.thaliana (Voesenek and
Bailey-Serres 2013) and rapeseed (Zou et al. 2015) have
already been worked out.

4.2 Transcriptomics Analysis to Explore
the Differentially Expressed Genes (DEGs)

Transcriptomics provides an understanding of how abiotic
stress is regulated in plants, novel genes and other regulatory
pathways involved in stress response with the help of tran-
scriptome profiling. Next-Generation Sequencing
(NGS) technology, RNA-Seq profiling, microarray, Serial
Analysis of Gene Expression (SAGE), Expressed Sequence
Tags (ESTs) are some techniques that are generally used for
studying gene expression profiles to identify candidate
genes, their functional annotation and key regulatory
pathways.

Despite, studies on the regulation of abiotic stress
response at the transcriptional level in several crops, the

understanding of transcriptional regulation to multiple abi-
otic stress in response in rapeseed is still enigmatic. There-
fore, to unravel the molecular mechanisms involved in the
response of rapeseed to multiple abiotic stress, the tran-
scriptome dynamics have been investigated. The key genes
regulated in response to dehydration, salt (NaCl), cold and
Abscisic Acid (ABA) stress in rapeseed have been investi-
gated and 30,908 differentially expressed genes (DEGs)
have been identified (Zhang et al. 2019). Out of these, 2568
DEGs were upregulated while 4376 DEGs were downreg-
ulated under all the four abiotic stresses whereas,225
upregulated and 295 downregulated genes were associated
with Transcription Factors. Core genes identified to be reg-
ulated by all four stress conditions were ERD15, LEA14,
RAB18 and transcription factors of ERF, MYBR1 and bZIP
families. However, NaCl and ABA stress shared genes
belonging to the glyoxalase 1 family (Zhang et al. 2019).
Further, Gene Ontology (GO) enrichment of upregulated and
downregulated DEGs showed the importance of biological
processes like water deprivation, osmotic stress, response to
oxygen-containing compounds and lipids in abiotic stress
response. This is in concurrence with the fact that a major
part of the transcriptome is regulated by four abiotic stresses,
namely, dehydration, salt, cold and abscisic acid (Coolen
et al. 2016). The two unannotated genes BnaAnng17910D
and BnaCnng23520DA identified by Zhang et al. (2019) in
their study, correspond to the Arabidopsis At1g01470.1
gene (a member of LEA14 family). Both these genes were
found to be upregulated in all four stress conditions. Kimura
et al. (2003) have reported similar results under cold,
drought, light and salt stresses in Arabidopsis. Studies have
also reported the role of dehydrin proteins in salinity,
drought and extreme temperature conditions (Lv et al. 2018;
Hara et al. 2013). Upregulation of dehydrin encoding genes
points towards their similar roles in rapeseed (Zhang et al.
2019). Induction of genes of the ERD15 family under
dehydration conditions has also been reported by Kiyosue
et al. (1994). Studies have reported the role of this family as
a regulator of many stress-related signaling pathways like
salicylic acid-dependent defense pathway, ABA response,
drought, wounding and cold (Kariola et al. 2006; Alves et al.
2011; Yu et al. 2017).

Differential cold tolerance in two early maturing rapeseed
varieties, subjected to cold shock, i.e. chilling at 4 ºC and
freezing at −4 ºC temperatures, followed by cold acclimation
has been studied (Xin et al. 2019). With the help of RNA
sequencing, a total of 47,328 DEGs were investigated in
early maturing varieties of rapeseed. The further analysis
enabled the identification of conserved as well as novel
genes and pathways involved in eliciting plants’ response to
cold shock. KEGG pathway analysis provides an under-
standing of the functions of different genes (Kanehisa et al.
2007). This analysis showed enrichment of primary
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metabolism, hormone signal transduction pathway (con-
served), circadian rhythms and plant–pathogen interaction
pathways (novel) in the transcripts found to be differentially
expressed. Many studies have reported the importance of
hormone signaling pathways in plants’ response to abiotic
stress (Verma et al. 2016; Sharma et al. 2017).

Since, few studies have been reported on the interplay of
regulatory networks involved in cold resistance, at the
transcriptional and metabolome levels in rapeseed. The
study reported by Jian et al. (2020) analysed the candidate
genes and metabolome dynamics in response to
low-temperature stress in various rapeseed ecotypes (spring
and winter) through metabolome and transcriptome analysis.
This study involved five lines of each, spring and winter
ecotype and concluded spring ecotype to be comparatively
more sensitive to low temperature than the winter ecotype.
Several responsive genes and metabolites were identified out
of which the common ones exhibited higher fold change in
the winter ecotypes. After cold treatment, 28,512 DEGs and
47 Differentially Expressed Metabolites (DEMs) were found
in the winter ecotype whereas 25,460 DEGs and 41 DEMS
were found in the spring ecotype. Of these, a significant
proportion of 46.2% DEGs and a small proportion of 6
DEMs were common in both the ecotypes. Further, 81 of the
DEMs corresponded to primary metabolites—sugars, amino
acids and organic acids. Identification of a significant num-
ber of metabolites and stress-responsive genes in this study
by Jian et al. (2020) provides evidence for the presence of a
complex regulatory network in cold tolerance in rapeseed.
The data obtained in this study also suggests the distinct role
of secondary metabolism, ABA, signal transduction, tran-
scription factors and lipids in cold stress in the two rapeseed
ecotypes.

Associative transcriptomics (AT) allows researchers to
combine transcriptomics with association mapping, to
understand the genetics governing complex traits. This
strategy has been exploited in a considerable number of
allopolyploid crops like wheat and rapeseed to generate
markers for Marker-Assisted Breeding (MAB). In a study
AT, was used to elucidate the candidate genes linked with
freezing or low temperature (LT) tolerance in 123 accessions
of B.napus (Huang et al. 2020). Considering photosynthetic
efficiency to be the key determinant of LT tolerance, the
genetic loci for photosynthetic gas exchange parameters
including net photosynthetic rate (An), internal carbon
dioxide concentration (Ci), stomatal conductance to water
vapour (Gsw) and transpiration rate or evapotranspiration
(E) were studied. Based on 201 SNPs and 147 Gene
Expression Markers (GEMs) detected twenty-two candidate
genes were identified. Among these candidate genes, the
Cab026133.1 gene (ortholog of Arabidopsis AT2G29300.2)
coding for tropinone reductase (BnTR1) was found to be
linked with transpiration rate. Ectopic expression of this

gene enhanced transpiration rate, alkaloid content and LT
tolerance in transgenic Arabidopsis plants (Huang et al.
2020). Photosynthesis in rapeseed is influenced by
C-repeat-binding factors (CBFs), particularly CBF5 and
CBF7 improve energy conservation at low temperature
(Dahal et al. 2012; Savitch et al. 2005). Among the
dehydration-responsive element-binding factors (CBF1–
CBF3), CBF-2 negatively regulates response to low tem-
perature while CBF-1 and CBF-3 regulate it positively in
Arabidopsis (Novillo et al. 2004, 2012). BnTR1 transgenic
lines showed enhanced expression of positive regulators and
repressed expression of a negative regulator. In concurrence
with earlier studies on the accumulation of important
metabolites under stress (Thalmann and Santelia 2017),
alkaloid levels were found to be high in transgenic lines
under control and low temperature conditions in comparison
to wild type (Huang et al. 2020).

4.3 Proteomics Approach for Abiotic Stress
Tolerance in Brassica Napus

Proteome encompasses the complete set of expressed pro-
teins in an organism at a specific time (e.g. under stress
conditions) in a particular cell or tissue. Advancements in
whole-genome sequencing (WGS) and Mass spectrometry
(MS) approaches have enabled understanding of the pro-
teome of a plant species.

As discussed in previous sections, stress induces alter-
ations at the genome and transcriptome level. Alterations at
these levels are expressed in proteins synthesized under
stress conditions. To gain an insight into physiological
processes involved in salt tolerance at the seedling stage in
rapeseed, proteomic analysis was employed to identify the
changes that the structural proteins and enzymes undergo
when exposed to salinity stress (Dolatabadi et al. 2019).
Further, the key proteins, molecular pathways and candidate
genes involved in conferring salinity tolerance were deter-
mined by LC–MS/MS mass spectrometry. While significant
differences (at 5% probability) were observed in various
physiological traits studied under salinity stress, the highest
and lowest proline content was found in 300 mm and 0 mm
concentrations of sodium chloride (NaCl), respectively.
Further protein identification by 2-DE and PDQuest software
revealed 110 repeatable protein spots. Out of these 110
repeatable spots, 44 spots had significantly changed as
determined by the IF index, while 7 spots showed significant
change on basis of the student’s t-test (at 5% probability).
Proteins identified by LC–MS/MS mass spectrometry were
found to be associated with photosynthesis and energy
production. Under salinity stress, spots corresponding to
enzyme Phosphoribulokinase (PRK) known to be involved
in carbohydrate metabolism (Caruso et al. 2008), alpha and
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beta chloroplast ATP synthase, Triosephosphate isomerase
(TPI), glyceraldehyde 3-phosphate dehydrogenase and
RuBisCo was increased in abundance (Dolatabadi
et al.2019). Enzyme TPI is known to have a role in energy
production pathways like gluconeogenesis,
pentose-phosphate pathway and fatty acid biosynthesis
(Sharma et al. 2012), glyceraldehyde 3-phosphate dehydro-
genase and RuBisCo have a major role in carbon fixation
(Guo et al. 2012; Tanou et al. 2009). Contrary to the
above-discussed study, previous studies have reported a
decline in the activity of Calvin cycle enzymes like PRK as a
strategy to cope up with stress (Bandehagh et al. 2011;
Podda et al. 2013). However, elevated levels of PRK
observed in the study by Dolatabadi et al. (2019) could be an
indicator of this genotype’s sensitivity to salt stress. A sim-
ilar decrease in the activity of alpha and beta subunits of
enzyme ATP synthase, pivotal for conversion of ADP to
ATP along a proton gradient has been reported under salt
stress (Kang et al. 2012, Banaei-Asl et al. 2015), specifically
in sensitive genotypes (Huseynova et al. 2007). A similar
reduction in TPI concentrations has also been reported under
stress conditions resulting in the production of free radicals
(Sharma et al. 2012). Proline is synthesized as an osmo-
protectant in plants exposed to high salt concentrations, its
elevated concentrations observed in plants exposed to stress
can be attributed to reduced activity of oxidative enzymes
(Parihar et al. 2014). Although some studies have docu-
mented an increase in the concentration of sodium ion and
sodium to potassium ratio in roots as well as shoots on
salinity exposure (Dolatabadi et al. 2012), there are several
reports on reduced levels of potassium ions in roots and
shoots of plants under salt stress has been which can be due
to antagonistic relationship between sodium and potassium
ions (Parida and Das 2005).

The research gap in the studies concerning proteomic
changes in B. napus roots under salt stress has been
addressed by Kholghi et al. (2019) in their study on
screening of 14 genotypes for their comparative salt stress
tolerance. Salt stress-responsive proteins were isolated from
roots of most tolerant (Safi-7) and susceptible genotypes
(Zafar), by Polyacrylamide gel electrophoresis (PAGE) and
differentially expressed proteins (DEPs) were determined by.
Salt stress resulted in a decrease in dry weight of root as well
as shoots and root potassium content in both the genotypes
with more pronounced effects in the sensitive cultivar. While
the chlorophyll content reduced significantly only in the
sensitive genotype, electrolyte leakage and sodium content
increased in stressed plants, both being lower in Zafar as
compared to Safi-7. Reduction in biomass was attributed to
disturbed physiological and biochemical activities under
stress, which could have resulted in a reduction in leaf
number and leaf area (Craine 2005; Yunwei et al. 2007).
Another reason for the decrease in biomass could impede the

breaking down of reserved nutrients following their
translocation to growing parts (Xu et al. 2008). Salinity can
cause burning of plant leaves and other parts resulting in
degradation of photosynthetic pigment chlorophyll as evi-
dent from the SPAD value indicating reduced chlorophyll
content in sensitive genotype. Electrolyte leakage is used as
a measure of damage to the cell membrane under stress
conditions (Thiaw and Hall 2004). Content of sodium ions
was higher in plants exposed to stress which can be the
primary reason for reduced plant growth as a high concen-
tration of Na ion interferes with K ion uptake, hindering the
activity of various cytoplasmic enzymes resulting in
impaired metabolism (Xiong et al. 2002; Hasegawa et al.
2000). Approximately 60 differentially abundant spots were
explored and 35 proteins were identified in roots of Zafar
and Safi-7 cultivars by MALDI-TOF MS analysis. The
occurrence of one protein at more than one spot in the gel
can be explained due to post-translational modifications like
phosphorylation and glycosylation which change the charge
and molecular weight of proteins. The presence of more
protein spots in the tolerant cultivar under salt stress in
comparison to control conditions shows that the root pro-
teome of the tolerant cultivar (Safi-7) is more active under
salt stress. Functional categorization of proteins enabled the
identification of proteins involved in the metabolism of
amino acids, glycolysis, various heat shock proteins (HSP 70
and HSP90-2), mitochondrial electron transport chain, car-
bohydrate and nitrogen metabolism and redox regulation.

Waterlogging is known to affect B. napus at all devel-
opmental stages, significantly. Studies have defined Water-
logging tolerance coefficient (WTC) as a measure of
waterlogging tolerance. Transcriptome analysis of the tol-
erant variety ZS9 under waterlogging stress revealed 4432
differentially expressed genes (DEGs) (Zou et al. 2013,
2014). Quantitative proteomic analysis approach—Isobaric
tags for relative and absolute quantification-based quantita-
tive proteomic analysis (iTRAQ) has been employed to
determine more stress-responsive genes in the roots of tol-
erant—ZS9 and sensitive—GH01 cultivar, at germination
stage (Xu et al. 2018). This study provided insight into the
differentially expressed proteins under waterlogging condi-
tions and if their expression was governed by genetic
background.

Roots being the prime organs expected to be affected by
waterlogging were phenotypically analysed and showed
retarded growth in sensitive genotype under waterlogging
conditions. This was further supported by cytological studies
showing withered parenchyma cells in sensitive genotypes.
Other physiological parameters like length of root and shoot
and fresh weight were also found to be affected by water-
logging with more pronounced effects in the sensitive GH01
genotype, suggesting better adaptation of ZS9 to waterlog-
ging stress. Several studies have reported that ZS9 has a
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better ability to grow and recover from waterlogging in field
conditions at germination, seedling and maturity stage (Chen
et al. 2006). Further, protein analysis through iTRAQ lead to
the identification of 7736 proteins (Xu et al. 2018), of which
700 proteins showed varied levels of expression. The pro-
teins that were commonly expressed at different time inter-
vals were enriched with gene ontology studies. GO analysis
showed these proteins to be involved in stress response,
oxidation–reduction processes, transcription and
hormone-induced responses. Some proteins were overlap-
ping between the two genotypes having the same or different
fold change tendency. KEGG pathway analysis of signifi-
cantly accumulated or reduced proteins showed proteins
enriched in hormone signal transduction, ribosomes, meta-
bolism of starch and sucrose, oxidative phosphorylation,
ribosomes, plant–pathogen interaction and amino acid
biosynthesis. Proteins involved in the ethylene signaling
pathway, phosphorylation of proteins and metabolism were
also detected in both genotypes. Ethylene has been reported
to be critical for waterlogging stress response in plants
(Muller and Munne-Bosch 2015) as it influences the for-
mation of aerenchyma or adventitious roots
(Eysholdt-Derzso and Sauter 2019, Yamauchi et al. 2016).
Earlier studies have also reported the importance of
phosphorylation-mediated signaling mechanism in abiotic
stress response as well as plant growth and development
(Bonhomme et al. 2012, Hashiguchi and Komatsu 2016,
Kline et al. 2010, Vu et al. 2018, Zhang et al. 2014).

The role of RGA homolog BnaA6.RGA in drought
response has also been demonstrated (Wu et al. 2020). It has
been found to act as a positive regulator of tolerance to water
deficit by increasing sensitivity to ABA and resulting in a
decrease in water loss due to stomatal closure (regulated by
BnaA6.RGA) under drought conditions. Further, this homo-
log is also found to interact directly with Arabidopsis ABF2
ortholog BnaA10.ABF2 and regulate the expression of other
drought-responsive genes. This study also highlighted the
importance of Gibberellin (GA) and ABA pathway crosstalk
in elucidating stress response. Gain of function mutant bnaa6.
rga-D exhibited greater drought tolerance along with a
hypersensitive response of its stomatal closure to ABA (Wu
et al. 2020). In contrast, the quadruple mutant bnarga exhib-
ited reduced tolerance to drought and reduced hypersensitive
response to ABA. However, no significant difference in
drought tolerance was observed in wild type and single
BnaRGA mutant, indicating functional redundancy in
BnaRGA genes involved in this process. Physical interaction
between ABA signaling transcription factor BnaA10.ABF2
and BnaRGAs were also found. Further, expression levels of
BnaC9.RAB18—a drought-responsive genewas enhanced by
protein complex BnaA10.ABF2-BnaA6.RGA.

4.4 Implementation of Transgenic Technique
for Abiotic Stress Tolerance

The transgenic technique has gained momentum for the
development of stress-tolerant varieties. These methods rely
on the genetic manipulation of genes involved in regulating
the stress response. However, investigation of the trans-
genics under stress conditions and understanding the
response of manipulated genes at a physiological and cel-
lular level remains a challenge.

In an attempt to produce transgenic B. napus oilseed
plants with improved tolerance to salt stress, Arabidopsis
genes coding for cytosolic h-type Thioredoxin (Trx) pro-
teins, namely, AtTrx-h2 and AtTrx-h3 were isolated to
produce transgenics overexpressing Trx proteins (Ji et al.
2020). Thioredoxins (Trxs) are a group of proteins with
antioxidant activity, encoded by a multigene family ubiq-
uitously. H-type Trx proteins found in Arabidopsis are
localized in the cytoplasm as well as other subcellular
organelles. Their primary function is to elicit a response to
pathogen attack and abiotic stresses. Transgenic lines over-
expressing genes coding for cytosolic h-type Trxs (viz.
AtTrx-h2 and AtTrx-h3) were generated. It was observed
that transgenic lines expressing AtTrx-h2 in heterologous
fashion had improved tolerance to saline conditions as evi-
dent from their chlorophyll content and higher fresh weight
when grown in 50 mm NaCl. These plants also showed
reduced levels of hydrogen peroxide and higher activity of
enzymes with antioxidant activity like superoxide dismutase,
catalase and peroxidase.

The role of flavonoids, including anthocyanin, has been
reported in protecting plants from oxidative stress caused
due to various abiotic stresses. In another study designed to
assess whether enhanced anthocyanin levels improved salt
tolerance in rapeseed, Arabidopsis gene coding for dihy-
droflavonol 4-reductase (DFR) was expressed in an ectopic
manner (Kim et al. 2017). Shoots of transgenic AtDFR-OX
displayed increased levels of transcripts of DFR, which was
directly proportional to the accumulation of anthocyanin.
AtDFR-OX shoots were found to have a lesser accumulation
of reactive oxygen species (ROS) under high mannitol and
NaCl concentration as compared to wild type showing the
successful integration of the DFR gene in these transgenics.
However, it was also found that shoots of the transgenic
plants had improved tolerance to salt stress and higher
chlorophyll quantities when compared to wild type grown
under the same conditions.

Enzyme Serine Acetyltransferase (SAT) acts to limit
Cysteine (Cys) biosynthesis in a rate-limiting manner (Rajab
et al. 2019). This enzyme from tobacco is insensitive to
feedback mechanism. NtSAT4 gene from tobacco was used
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in a study to create overexpression constructs targeted for
expression in plastid, mitochondria and cytosol (Rajab et al.
2019). In this study, the NtSAT4 gene was cloned and over-
expressed in B. napus using cotyledonary explants via tissue
culture technique. The gene was targeted for expression in
cytosol, mitochondria and plastid. Experiments aimed to
obtain stable transformants overexpressing the gene of interest
and hence enhancing plants’ ability to produce glutathione in
response to heavy metals. To obtain stable transformants,
various transformation techniques like tissue culture and floral
dip methods were used, with a specific combination of phy-
tohormones to induce callus, root and shoot formations
accordingly. Shoots could be successfully regenerated on MS
media supplemented with 3 mg/L BAP while 3 mg/L IBA
contained in ½ strength MS media could induce root forma-
tion in OSCAR cultivar. The transgenic lines were selected on
a selection media with a 50 mg/L concentration of antibiotic
Kanamycin. Integration of NtSAT4 was confirmed by setting
up PCR using gene-specific primers. Further, acclimatization
of transgenic lines was done successfully by transferring them
to soil and glasshouse environments. These lines exhibited the
enhanced capacity to produce glutathione and cysteine con-
ferring plant tolerance to a variety of abiotic stresses including
heavy metals.

Cuticular wax is an important component of plant defense
machinery for combating biotic as well as abiotic stresses,
mainly water loss. Therefore, genetic manipulation of genes
involved in the synthesis and modification of plant cuticular
wax can reduce water loss and enhance efficiency to with-
stand water deficit. The synthesis of cuticular waxes is
genetically controlled. The genes involved in their synthesis
and modification are members of the KCS gene family
having homologs in A. thaliana, namely, KCS1and CER1.
In a study, homologs of KCS1 and CER1 genes in B. napus
viz. BnKCS1-1, BnKCS1-2 and BnCER1-2 were isolated to
characterize their expression patterns in cultivars (Zhong-
shuang 11-ZS11 and NoWAX) with varying wax traits
(Wang et al. 2020). These genes were overexpressed in B.
napus, to study their effects on the structure and components
of cuticle wax and further interpret the importance of mod-
ifications in cuticular wax on plant growth and development
as well as response to water deficiency in soil (Wang et al.
2020). The findings of this study by Wang et al. (2020)
suggested that ABA and drought stress both induced for-
mation BnKCS1-2 and BnKCS1-1 transcripts whereas
BnCER1-2 transcripts were formed only under drought. On
the other hand, the application of methyl jasmonate or
exposure to cold resulted in retarded expression of all three
transcripts. Transgenic lines with overexpression of these
genes exhibited enhanced deposition of cuticular wax.
Whereas, in non-transformed lines, BnKCS1-2 and
BnKCS1-1 overexpression resulted in accumulation of high
amounts of secondary alcohol, alkanes and aldehydes and

reduced amount of ketones. BnCER1-2 overexpression in
non-transgenic lines resulted in reduced levels of secondary
metabolites, increased levels of alkanes and no pronounced
effects on other components of wax. Transgenic lines
showed deposition of wax crystals in much higher density
due to overexpression of the three genes, as observed in
Scanning Electron Microscopy (SEM) studies (Wang et al.
2020). These lines also showed improved tolerance to
drought conditions and a lower water loss rate.

5 Conclusion

Frequent changes in climate conditions that occur due to
global warming are a major concern in the present scenario.
The rapidly changing environment in the form of abiotic
stress interferes with the normal growth and development of
crop species including rapeseed, globally. As a consequence,
the yield of several crops is drastically affected due to dis-
turbance in physiological processes and cellular homeostasis
of the plant. This causes impediments in meeting up the
demand of food supply. To overcome these hurdles and
maintain the requisite supply and demand chain, it is
essential to understand the mechanism behind stress
response. This would help identify the key players govern-
ing the ability of the plant to withstand a stressful environ-
ment. Manipulating these components of the molecular
machinery of plants, using appropriate biotechnological
tools can help develop varieties with desirable traits like
abiotic tolerance and better or enhanced yield.

6 Future Thrust

As discussed in this chapter, ‘OMICS’ tools like genomics,
transcriptomics and proteomics along with transgenic
approaches have enabled the identification and development
of useful genomics resources. The complex network of
biological pathways governing response to various abiotic
stresses in rapeseed has been unravelled to a great extent.
Further, the status of the plant transcriptome, metabolome
and proteome as modified under stressful environments has
also been understood. With the help of QTL mapping and
transcriptome analysis, the candidate genes and regulatory
pathways involved in stress response have been deciphered.
Identification of differentially expressed proteins through
proteomic studies can help target potential proteins for better
stress response. These genomic resources can lay the foun-
dation for further work to gain in-depth knowledge of the
molecular mechanisms. However, abiotic stress tolerant and
high yielding rapeseed variety may be developed by amal-
gamation of available potential ‘OMICS’ tech-
niques and ‘Panomics’ approach.
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Proteomics—A Powerful Tool
for Understanding Saline Stress Response
in Germinating Seed

Anup Kumar Sarkar and Sanjoy Sadhukhan

Abstract

Understanding the mechanism of seed germination in
salt-affected habitats is very helpful to develop outstand-
ing salt-resistant varieties with high seed vigour. Under a
stressful condition, such as salinity, the efficiency of seed
germination, and the development of a viable seedling,
the critical drivers of plant species proliferation is
hampered. Like other organisms, plants also rapidly
adapt to environmental changes by modulating their
protein content or activity at any stage of life from seed
germination to its maturation. In the present scenario,
proteins may be considered as the main effectors of
biological responses to specific environmental conditions.
For this reason, proteomics has become a powerful
technique in biomolecular research and its uses as a tool
for protein and peptide quantization is widely recognized
by many researchers of Biology and Chemistry. In
addition, it can also be used to quantify the activity of
signaling and metabolic pathways in a multiplex and
comprehensive manner. For a better understanding of
how germinating seeds respond to salt stress, several
researchers examined the changes that occurred in the
proteome of various seeds during germination. Recently,
several proteomic analyses of seed germination had been
applied in several crop plants for the improvement of salt
resistance or salt tolerance. In this chapter, the authors
have summarized the development in proteomic investi-
gations of seed germination under salt stress. Contempo-
rary issues and future perspectives were also explored,
which may prove useful in future research.
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1 Introduction

Proteomics is an emerging discipline of biological science
that is widely used for the quantitative and qualitative
characterization of proteins as well as their interactions on a
gene scale. Since its discovery, it has been extensively
investigated to gain a better understanding of the biological
process, including gene expression, post-translational mod-
ification, and interaction of proteins with other protein or
non-protein molecules (Singh et al. 2018). Integration of
proteomics in experimental plant science promotes a better
understanding of metabolism related to many biological
processes. It is a fact that the majority of the biological
processes in plants are characterized by one or a few specific
sets of proteins. The function of each protein depends on its
molecular structure, subcellular localization and
post-translational modifications. Proteomics is simply
defined as the study of proteomes whereas the term “pro-
teome” can be defined as the overall protein content of a cell
that is characterized by its localization, interactions,
post-translational modifications, and turnover, at a particular
time (Aslam et al. 2017). Proteomics, in other words, is the
study of a cell’s entire protein composition, including its
expression, structure, functions, interactions, and modifica-
tions at each given stage. Advancements in proteomics have
been widely applied to the study of seed germination in
recent years. Understanding of the physiology and metabo-
lism of germination at the cellular and molecular levels has
evolved at a rapid rate during the last decade due to out-
standing advancement. Proteomic approaches have com-
plemented experimental efforts to catalogue many
physiological events of plants including germination events.
Each stage of the seed-to-seed cycle of plant development
including seed germination is characterized by a specific set
of proteins (Oracz and Stawska 2016).

Proteins as the basic building block of cell and subcel-
lular structure directly assert the potential function of genes
via enzymatic catalysis, molecular signaling, and biophysi-
cal interactions in germinating seeds. Germination of seeds
is a multistage process requiring the coordinated expression
of numerous genes in different tissues (Potokina et al. 2002).
Several investigators opined that changes in the gene
expression at the transcript level do not always result in
changes in protein level, and hence modifications of the
proteome should be examined, as proteins act as direct plant
response agents against stress (Gygi et al. 1999;
Bogeat-Triboulot et al. 2007). Proteomic advancements have
enhanced genetic and molecular understanding of responses
in developing seeds under salt-induced stress.

2 Seed Germination

During seed germination, the quiescent embryonic cells shift
into a metabolically active state in which complex bio-
chemical and physiological changes occur (Sheoran et al.
2005). Germination commences when seeds are immersed in
water, followed by disintegration of the endosperm cell
walls, enzymatic digestion of starch and proteins to provide
nutrients for the growing plant, and emergence of the radical
from the seed (Osama et al. 2021). Both the embryo and
endosperm have a crucial role in seed germination. From the
embryo, initially the radical protrudes, followed by plumule,
and eventually develops into a new plant. On the other hand,
the endosperm provides nutrients to the growing embryo for
seedling development. The embryo contains the vast
majority of the genetic information that governs germina-
tion. Systematic interaction between embryo, seed coat, and
intermediate endosperm is a prerequisite for successful
germination. Following imbibition, the substrate and energy
starvation influence the embryo to produce phytohormones,
primarily Gibberellic Acid (GA), which initiates a signaling
cascade that leads to the synthesis of a-amylases and other
hydrolytic enzymes (He et al. 2015).

Proteins and peptides play a crucial role in regulating every
step of seed germination starting from imbibition to auto-
trophic seedling formation. Imbibition of the seed with
watermarks is a major change in protein metabolism. Large
amounts of storage proteins are accumulated for use as an
initial source of reduced nitrogen by the germinating seedling.
For most plants, the transition from seed to seedling stage
marks the transition from the stage of the life cycle most
impervious to the stage most susceptible in respect to external
environmental factors like drought, salinity, heat, water log-
ging, etc. (Downie 2001). Seeds and young seedlings are
frequently confronted with salinity than vigorously growing
plants because germination usually occurs in the uppermost
soil layers, which is the site with the highest accumulated
soluble salts (Almansouri et al. 2001). The molecular mech-
anism of salt response during the germination stage is extre-
mely complex. Promotion of fast germination under stress
may seem to be desirable, although it exposes the newly
sprouted seedling at risk of death if the adverse conditions
persist or increase; as the embryo is exposed to the external
environment with all of its reserves already depleted (Nanda
et al. 2019). Seeds must adjust their physiology and devel-
opment to assure their survival under changing conditions
within a time range. Seed germination is typically associated
with numerous metabolic, cellular, and molecular events, the
majority of which are directly or indirectly dependent on
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proteins. During seed germination, which is a multistep pro-
cess, proteolytic enzymes are required to break down the seed
protein (Shutov and Vaintraub 1987). Different proteins, such
as catalytic protein, germination-stimulating hormone,
detoxification and defence-related proteins, and proteins
involved in cell wall reinforcement, all ofwhich stimulate seed
germination (Dogra et al. 2013). To a certain extent, the pro-
tein content of seeds is influenced by the activity of the
translation machinery, which constantly changes based on
physiological state (Oracz and Stawska 2016). Thus, the
integration of proteomic technologies is an effective strategy
to promote a better understanding of mechanisms in response
to environmental stresses.

Germination involves several events, including cell
elongation, degradation of proteins, macromolecular syn-
thesis, respiration, alterations of subcellular structure. Sev-
eral researchers have reported the activity of some key
enzymes of glycolysis, pentose phosphate pathway (PPP),
tricarboxylic acid cycle (TCA cycle), and amino acid
metabolism during germination. Metabolism-related pro-
teins, particularly those involved in major and minor car-
bohydrate metabolism such as glycolysis, TCA cycle,
fermentation, gluconeogenesis and glyoxylate cycle, and
pentose phosphate pathway (PPP) are considered as the
most abundant proteins in the germinating seeds (He and
Yang 2013). Germination-specific proteins in the embryo
that are catabolic and associated with the mobilization of
food reserves from the endosperm also account for a sig-
nificant percentage of seed proteins. Endogenous factors
such as the proteinaceous plant hormones like abscisic acid
(ABA) and gibberellins (GA) play a significant role in reg-
ulating early seed germination by countering the process of
dormancy, which is a barrier to the completion of germi-
nation of a mature, intact, viable seed (Tuan et al. 2018).
Proteins are essential for cellular function, and proteomics
technology is an effective method for studying the total
expressed proteins in an organism or cell type at a specific
time. Cells and subcellular components of germinating seed
must deal with a multitude of stimuli in the biotic and abiotic
environment, which disrupt the water balance in the cytosol
and affect several metabolisms, influencing the success of
germination. The role of proteins in plant stress response is
crucial since proteins are directly involved in shaping novel
phenotypes by adjustment of physiological traits to an
altered environment (Kosova et al. 2018). Protein-related
features are widely recognized as a tool for studying the
effect of abiotic stress because, in most cases, proteins can be
altered by translocation or degradation or post-translational
modification (Li et al. 2020; Ramazi and Zahiri 2021;
Matamoros and Becana 2021). Numerous research studies
have examined the use of proteomics to solve many unex-
plained aspects of seed germination. With the increasing
availability of genome sequence data and the advancement

of mass spectrometric (MS) technology, proteomics has
been widely applied in analysing the mechanisms of the seed
germination process under various abiotic stresses such as
salinity and has proven to be very powerful. Plant abiotic
stress response depends greatly on proteins for two reasons:
firstly, by modulating physiological features to adapt to
changes in the environment, proteins play a direct role in the
establishment of novel plant phenotypes; and secondly,
proteins are the critical executors of cellular mechanisms and
key players in the maintenance of cellular homeostasis (Liu
et al. 2015).

3 Salinity and Its Impact on Seed
Germination

Soil salinity is a significant issue in agriculture, particularly
since, the majority of crop plants have low salt tolerance. It
is one of the major factors that are harmful to most plants
due to its side effects in the form of osmotic stress and ion
toxicity on growth and development (Ismail and Horie
2017). In general, the total amount of dissolved mineral salts
in water and soil imparts salinity. These salts comprise
electrolytes of anions (majorly CO3

2−, SO4
2−, Cl−, NO3

−,
and HCO3

−) and cations (majorly Ca2+, K+, Mg2+, Na+). As
low as 40 mM NaCl generates an osmotic pressure of
0.2 MPa and this stress manifests shoot growth arrest and
senescence in most salt-sensitive plants (Munns and Tester
2008). Salt induces osmotic stress by declining water
potential and water availability in soil, which leads to
dehydration at the cellular level; and is strongly associated
with the production of reactive oxygen species (ROS). They
are highly reactive and cytotoxic, which reacts with vital
biomolecules, such as lipids, proteins, and nucleic acid
(Abou Zeid and Hassan 2011; Kang et al. 2014).

Salt tolerance is a complex trait that involves different
aspects of the genetic architecture, biochemistry, and phys-
iology of the plant (Gandullo et al. 2021). Some plants
involve the activation of various stress-regulated genes via
integrated cellular and molecular responses that help cells to
adapt and achieve cellular homeostasis (Jones 2007; Latif
et al. 2016). Salt stress is developed from an excessive
concentration of salts, especially sodium chloride (NaCl) in
soil. Root triggers several cellular and molecular events in
response to salt stress, such as (a) changes in carbohydrate
and energy metabolism, (b) alterations in ion homeostasis
and membrane trafficking, (c) ROS scavenging, and (d) dy-
namic reconfiguration of cytoskeleton and redistribution of
cell wall components (Ghosh and Xu 2014). To survive,
plants must respond appropriately to fluctuating environ-
ments both internal and external and these responses result
from intricate coordinated changes in the quantities and
activities of biomolecules including DNA, RNA, proteins,
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and other metabolites. The synthesis, modification, local-
ization, and degradation of proteins in the cells are crucial
for plants to survive under stressful environments, in which
post-translational alteration of proteins increase the varia-
tions of gene products and influence almost all cellular
processes (Fulzele and Bennett 2018).

Several workers have isolated and identified a large
number of diverse proteins, which play pivotal roles in
sustaining homeostasis and attaining stress resilience in
plants (Kosova et al. 2018). Proteins involved in signal
perception were found to be more abundant during the early
stages of salt stress (Zhao et al. 2013). These include
(a) receptors in the plasma membrane (PM) or the cyto-
plasm, (b) G-protein, (c) Ca2+ signaling protein or
calcium-binding proteins (CBP), (d) phosphor-proteins
involving activation of a kinase cascade, and (e) ethylene
receptors (Ghosh and Xu 2014). For a particular
protein-mediated trait, the total amount of that protein pre-
sent under any specific conditions can affect its functional
activities and the phenotype of its respective biological
system. To fully understand cellular machinery, it is just not
enough to identify the proteins that exist; it is also necessary
to delineate all of their interactions. Recently described,
networks of the protein interactions reflect a higher level of
proteome organization than basic representations of protein
networks (Cong et al. 2019). Several proteomic-based
investigations have provided new insight into plant respon-
ses and adaptation against high salinity. Protein profiling or
mapping of a cell, tissue, plant parts, or whole plant is
critical for a functional recognition of each protein and its
metabolic pathways in salt-induced stress conditions because
it is a valuable natural genetic resource that may aid in the
discovery of genes and gene products conferring tolerance to
various stressful situations like salinity (Fig. 1).

The field of proteomics may be divided into three broad
areas—expression proteomics (also called differential pro-
teomics), functional proteomics, and structural proteomics
(Graves and Haystead 2002). Expression proteomics is
concerned with the study of overall changes in protein
expression and provides information on specific changes in a
biological system under various physiological and
stress-induced conditions. Functional proteomics explains
the understanding of the protein functions as well as
unravels molecular mechanisms within the cell that depends
on the identification of the interacting protein partners. Such
proteomics often provides a detailed description of the cel-
lular signaling pathways. Structural proteomics aids in
understanding the three-dimensional conformation and
structural complexities of functional proteins. Structural
prediction of a protein is performed by directly determining
the sequence of amino acids or from the gene with a method
called homology modelling. With the help of this technique,
it is possible to recognize all the proteins present in a

complex system such as cell membranes, ribosomal sub-
units, and membrane-bound cell organelles and also to
characterize all the protein interactions that are possible
between these proteins and protein complexes (Agrawal
et al. 2011; Fox 2012; Aryal et al. 2014).

4 Journey and Major Achievements
of Proteomics

The terms “proteome” and “proteomics” were coined by
Marc Wilkins and colleagues in 1994 (Ezzell 2002). Ever
since, the field of proteomics has flourished at a fast pace,
with significant advancements in the original
methods/technologies making proteomic technologies more
autonomous, high-throughput, robust, and dependable. Pro-
teomics is a technical term that refers to the study of proteins
using mass spectrometric (MS) technology. On the other
hand, the proteome of an organism is technically defined as
the sum of the proteins in existence either throughout its life
cycle or in response to changing conditions or a specific
abnormal state. In other words, it is a complex system,
representing a result of interconnected dynamic properties of
individual proteins (Larance and Lamond 2015). Proteomics
has the potential to complement the information generated
by genomics. Proteomics-based technologies are used in a
variety of research settings, including the detection of vari-
ous diagnostic markers, mechanisms related to pathogenic-
ity, changes in expression patterns in response to various
signals, and the interpretation of functional protein pathways
in various diseases (Aslam et al. 2017). Seed proteome
comprises a diverse collection of functionally distinct pro-
teins that undergo highly dynamic qualitative and quantita-
tive changes to meet seed requirements throughout the
development and germination. Many post-translational
changes, chemical interactions, and a plethora of proteins
generated from alternative mRNA splicing contribute to the
dynamic and complex nature of the seed proteome (Rajjou
et al. 2011; Chaudhary et al. 2019; Tappiban et al. 2021).
Proteomics is more reliable than transcriptomics to study
plant stress responses as the transcribed gene may be dif-
ferentially translated or even may not be translated. The
primary goal of proteomics is to make an inventory of all
proteins encoded in the genome and to investigate protein
features such as expression level, post-translational alter-
ations, and the ability to interact with other protein and
non-protein molecules (Chandrasekhar et al. 2014; Feist and
Hummon 2015). The generations of proteomics platforms
(gel, label, gel-free/label-free, targeted) that have appeared in
the last two decades are being exploited in describing protein
profiles, post-translational modifications, and interactions
(Komatsu and Jorrin-Novo 2021).
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5 Tools and Techniques Used in Proteomics

Proteomics is quite a complicated technique since it entails
the analysis and categorization of the entire protein signa-
tures of a genome. Following this, proteomics seeks to
characterize the proteome qualitatively and/or quantitatively
with a thorough understanding of the nature and complexity
of a specific research target (Smolikova et al. 2020). Pro-
teomics is significantly more difficult than genomics, since,
although an organism’s DNA remains relatively constant,

the proteome differs in a spatio-temporal fashion in a cell.
Distinct genes are expressed in distinct cell types, which
means that the basic set of proteins synthesized in a cell even
must be determined for a better understanding of proteomic
research. The most common technologies used in proteomics
are two-dimensional sodium dodecyl sulfate–polyacry-
lamide gel electrophoresis (2D SDS-PAGE) for protein
separation, mass spectrometry (MS), and protein identifica-
tion through manual interpretation or database correlation of
mass spectra. The simulation of such steps is required for a
successful proteome experiment, but it is dependent on

Fig. 1 Different methods of
identification of proteins.
a Proteomic workflow based on
Mud-PIT, b 2D-liquid
chromatography-based proteomic
workflow, c 1D-Gel-LC–
MS/MS-based proteomic
workflow
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precise knowledge of the factors affecting each step (Droit
et al. 2005; Chandrasekhar et al. 2014; Mitra et al. 2016).
With the advancement of technology, it is now possible to
identify a considerable portion of a proteome’s proteins.
Proteomic techniques have become increasingly popular in
recent years due to significant advances in sensitivity,
accuracy. There are a few steps in proteomic analysis to
identify a biomarker.

5.1 Collection, Pretreatment, and Preparation
of the Samples

Proteome analysis in plants entails analysing proteins from a
range of sources, including cell suspension cultures, various
organs, tissues, organelles, and subcellular compartments.
There is no universal protocol for protein extraction and
solubilization due to the high level of diversity in source
material and huge variations in composite proteins in con-
texts of cellular distribution, molecular weight, isoelectric
point, hydrophobicity, and post-transcriptional modifications
(Leimgruber 2005). Furthermore, in comparison to animal
and fungal tissues, most plant tissues have low protein con-
centrations and high endogenous protease concentrations,
which severely impede downstream protein separation and
protein detection procedures (Hurkman and Tanaka 1986;
Rose et al. 2004; Westermeier and Marouga 2005; Carpentier
et al. 2008; Jorrin-Novo et al. 2009). Non-protein compo-
nents found in plant cells and tissues, such as lipids, nucleic
acids, polysaccharides, polyphenols, pigments, and sec-
ondary metabolites, interact with proteins during extraction
(Carpentier et al. 2008). To achieve a better result, before
analysing any previously uncharacterized proteome, protein
extraction and solubilization processes must be optimized
and validated for their effective extraction capacities while
avoiding protein degradation and extraction of non-protein
components (des Francs et al. 1985; Rabilloud 1996).

5.2 Purification and Separation of Proteins

The conventional techniques for the purification of proteins
are chromatography based such as ion-exchange chro-
matography (IEC), size exclusion chromatography (SEC),
and affinity chromatography (Gronberg et al. 2011). These
techniques may be limited to the analysis of a few specific
proteins but also incapable to determine protein expression
level. To date, a large number of techniques have been used
to separate and characterize various proteins in different
plant species, including 2-dimensional liquid chromatogra-
phy (2D-LC), polyacrylamide gel electrophoresis (PAGE),

sodium dodecyl sulfate (SDS)-PAGE, Pro-Q Diamond stain,
2-D gel electrophoresis, mass spectrometry, Coomassie
brilliant blue (CBB)-stained 2-DE, MALDI-TOF, fluores-
cence 2-D PAGE, non-gel-based LC–MS, ion-exchange
chromatography (IEC), and 2-D difference GE (2D-DIGE)
(Reuben-Kalu and Eke-Okoro 2020; Mustafa and Komatsu
2021). All these tactics have produced considerable results
in protein characterization.

5.3 Identification of Proteins

Remarkable improvements in mass spectrometry have
facilitated the identification of proteins by de novo
sequencing without pre-existing knowledge of the relevant
gene sequences (Chen et al. 2020; Ma et al. 2013). In the
context of classical technique, mass spectroscopy provides a
high-throughput strategy for large-scale protein identifica-
tion when compared to other protein detection methods such
as Edman degradation micro-sequencing (Rhee et al. 2006).
Furthermore, a variety of protein sequencing and identifi-
cation approaches have emerged intending to increase the
sensitivity of proteomics at the single-molecule level and as
an alternative to sequencing or identifying proteins, several
of these techniques rely on fluorescence and nanopores for
single-molecule detection (Alfaro et al. 2021).

5.4 Verification of Proteins

The identified peptides must subsequently be verified. There
are several proteomic techniques to verify proteins, involv-
ing ELISA, and western blot (Liu et al. 2014; Wang et al.
2015a). Finally, verified proteins are searched against a
particular protein database to obtain a list of proteins (Ghosh
and Xu 2014).

5.5 Database Searching

There are several types of servers (Table 1) that can be used
to check for biomarkers that have been discovered or iden-
tified by searching for proteins based on their data.

5.6 Protein–protein Interactions (PPIs) Analysis

Protein–protein interactions (PPIs) analysis is used to track
the physical relationship between selected biomarkers and
their interactions. STRING software (https://string-db.org)
can be used to accomplish PPI analysis.
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Table 1 List of different servers used in proteomics

Type of server Name of the
server

Link References

Database PIR http://pir.georgetown.edu/ George et al. (1986)

OWL http://www.bioinf.man.ac.uk/dbbrowser/OWL/ Bleasby et al. (1994)

TrEMBL http://kr.expasy.org/sprot/ Boeckmann et al. (2003)

SwissProt http://kr.expasy.org/sprot/

UniParc http://www.pir.uniprot.org/database/archive.shtml Leinonen et al. (2004)

UniProt http://www.pir.uniprot.org/ Bairoch et al. (2005)

RefSeq https://www.ncbi.nlm.nih.gov/refseq/ Pruitt et al. (2005)

UniRef http://www.pir.uniprot.org/database/nref.shtml Suzek et al. (2007)

nr http://www.ncbi.nlm.nih.gov/BLAST/ Yu and Zhang (2013)

BLAST DELTA-BLAST https://blast.ncbi.nlm.nih.gov Altschul et al. (1997)

PSI-BLAST https://blast.ncbi.nlm.nih.gov Altschul et al. (1997)

PHI-BLAST https://blast.ncbi.nlm.nih.gov Zhang et al. (1998)

TBLASTN https://blast.ncbi.nlm.nih.gov Gertz et al. (2006)

BLASTP http://blast.ncbi.nlm.nih.gov Mahram and Herbordt (2015)

Protein domain servers ScanProsite http://us.expasy.org/tools/scanprosite/ Falquet et al. (2002)

SIRW http://sirw.embl.de/index.html Ramu (2003)

PATTINPROT http://pbil.ibcp.fr/html/pbiljndex.html Ziegler et al. (2003)

ProWleScan http://hits.isb-sib.ch/cgi-bin/PFSCAN Huang et al. (2004)

CD server http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.
shtml

Marchler-Bauer et al. (2007)

InterProScan http://www.ebi.ac.uk/lnterProScan/ Mulder and Apweiler (2007)

Motif-based alignment server Match Box http://www.sciences.fundp.ac.be/biologie/bms/help.
html

Depiereux and Feytmans
(1992)

Dialign http://bibiserv.techfak.uni-bielefeld.de/dialign/ Morgenstern et al. (1998)

Gibbs http://bayesweb.wadsworth.org/gibbs/gibbs.html Thompson et al. (2003)

BlockMakei http://blocks.fhcrc.org/make_blocks.html McEntyre and Gibson (2004)

MEME http://meme.sdsc.edu/meme/website/meme.html Bailey et al. (2009)

Protein structure databases PDB http://www.rcsb.org/pdb/ Berman et al. (2000)

SCOP http://scop.mrc-lmb.cam.ac.uk/scop/ Lo Conte et al. (2000)

MMDD http://www.ncbi.nlm.nih.gov/Structure/ Chen et al. (2003)

SwissModel http://swissmodel.expasy.org/repository/ Schwede et al. (2003)

CATH http://www.biochem.ucl.ac.uk/bsm/cath/ Knudsen and Wiuf (2010)

ModBase http://alto.compbio.ucsf.edu/modbase-cgi/index.cgi Pieper et al. (2014)

Protein structure analysis
server

LigProt http://bip.weizmann.ac.il/oca-bin/lpccsu Sobolev et al. (1999)

CASTp http://sts.bioe.uic.edu/castp/index.php Binkowski et al. (2003)

ProtSkin http://www.mcgnmr.ca/ProtSkin/intro/ Comeau and Krisch (2008)

ConSurf http://consurf.tau.ac.il/ Celniker et al. (2013)

Protein structure prediction
sever

EBI http://biotech.ebi.ac.uk:8400/ Rodriguez-Tome et al. (1996)

O-GlycoBase http://www.cbs.dtu.dk/services/NetOGIyc/ Gupta et al. (1999)

PhosphoBase http://www.cbs.dtu.dk/services/NetPhos Kreegipuu et al. (1999)

ESyPred3D http://www.fundp.ac.be/urbm/bioinfo/esypred Lambert et al. (2002)

PredictProtein http://www.embl-heidelberg.de/predictprotein Rost et al. (2004)

Whatlf http://www.cmbi.kun.nl/gv/servers/WIWWWI Sanchez-Pulido et al. (2004)

SwissModel http://www.expasy.org/swissmod Waterhouse et al. (2018)
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5.7 Statistical Analysis

The statistical study may be carried out using Statistical
Analysis Software (SAS) or the Statistical Package for
Social Sciences (SPSS) (Delwiche and Slaughter 2019;
Lafler 2001). This programme is a sophisticated analytical
technique that can save time when compared to tradi-
tional tools that take a lengthy period.

It is fact that proteomic analysis can rely either on
top-down or bottom-up strategies (Jorrin-Novo et al. 2015;
Lazarus et al. 2017). In the first case, ions of individual
proteins with a molecular weight below 25 KDa are mea-
sured directly, including fragmentation and MS/MS acqui-
sition of protein fragment ions. On the other hand, the
bottom-up strategy includes proteolytic digestion of protein
mixtures before MS and MS/MS analysis of the resulting
proteolytic peptide-specific ions (Chmelik et al. 2009;
Catherman et al. 2014; Gillet et al. 2016). Mass spectrometry
with LC–MS-MS and MALDI-TOF/TOF being widely used
equipment is the central among current proteomics (Aslam
et al. 2017). Proteomic approaches allow for the identifica-
tion of protein markers that can be used to determine optimal
storage conditions (Baginsky 2009), which in turn provide
information about physiological changes occurring during
seed germination and seedling development.

Methodology and instrumentation have advanced signif-
icantly over the last three decades, and proteomics has
emerged as a key focus in the field of biological research.
Plant research has significantly profited from proteomics
technology by analysing and discovering metabolic path-
ways and protein activities, as well as identifying protein–
protein interactions in the model as well as crop plant sys-
tems (Fukao 2012). The workflow of a standard proteomics
experiment is vital for the success of an experiment and it
usually includes a good experimental design, an appropriate
extraction/fractionation/purification protocol that considers
the need of different samples (tissue/cells or organelle), a
suitable separation protocol, protein identification, statistical
analysis, and validation. Proteomics can be broadly divided
into two areas viz. protein expression mapping and protein
interaction mapping and the remaining areas of proteomics
research work are post-translational modification, protein–
protein interaction, structural proteomics, functional pro-
teomics, proteome mining (Singh et al. 2018).

6 Proteomics in Plant Science

Proteomics is one of the most appealing areas with advanced
techniques that are currently developing at a breakneck pace
and deal with all aspects of plant sciences. Working on crop
plants and well-known model plants, the technique has
gained wide acceptance in plant science research.

Technically, proteomics is the branch of functional geno-
mics, which deals with the study of proteins including
mRNA analysis and genomic analysis (Singh et al. 2018). In
the case of plant physiology, this technology has been
extremely useful in determining and identifying proteins,
expression profile, post-translational modifications (PTMs),
and protein–protein interactions under stress and non-stress
conditions. Rapid upgradation in tools and methodologies of
proteomics has enlightened newer insight in plant science.
Proteins are now regarded as the workhorses of living cells
of plants, and their abnormal abundance is regularly used to
study stress responses. The creation of an extraction tech-
nique is the first major hurdle, and possibly the most
result-determining phase in plant proteomics investigations.
Different approaches in proteomics include protein extrac-
tion followed by separation of proteins either by gel-based
method (2D electrophoresis, two-dimensional difference gel
electrophoresis) or non-gel-based method (Isotope Coded
Affinity Tag, Isobaric Tagging for Relative and Absolute
Quantification, Stable Isotope Labelling by amino acid in
Cell culture, Multidimensional Protein Identification Tech-
nique) (Fig. 1) and then quantification and identification
using mass spectrometry and database comparison (Singh
et al. 2018). Comparative proteome analysis leads to the
detection of proteins involved in a variety of biological
processes, such as protein synthesis, redox regulation, pri-
mary and secondary metabolism, or disease- and
defence-related processes (Karmakar et al. 2019; Witzel
et al. 2007). The proteome of an organism or a tissue is too
complex to allow direct identification of the proteins.
Therefore, developments along two routes were essential, a
gel-based route and a gel-free route (Sergeant and Renaut
2010). Fluctuations in gene expression level can easily be
determined by analysis of proteome to discriminate between
two biological states of the cell. The use of proteomics in
plant biology research has grown significantly in recent
years, with advances in both qualitative and quantitative
analysis inaugurating a new era of “Second Generation Plant
Proteomics” (Jorrin-Novo et al. 2009). Plant proteomic
studies were first conducted in Zea mays (Touzet et al.
1996). Protein expression patterns in plant tissues and organs
have been used as a remarkable research tool that is mainly
used to detect changes or assess the influence of environ-
mental stresses on protein expression. In addition, it is fre-
quently used to trace the alteration during plant–microbe
interaction, events of pathogenesis, and breeding methods.
Understanding proteomics at the cellular and subcellular
levels allows for the identification of precise regulatory
targets for plant immunity (Liu et al. 2019). The proteomic
study of the salt-sensitive pathway revealed critical infor-
mation about cellular and subcellular Na+ transport (Lou
et al. 2020). A lot of proteomic experiments enlightened the
adaptive responses of the cell membrane to environmental
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stresses (Zamani et al. 2010; Takahashi et al. 2013; Chen
and Weckwerth 2020). Some of the proteomic studies were
also based on cell organelles like mitochondrion, chloro-
plast, nucleus, etc. A recent investigation in plants has rec-
ognized five categories of proteins viz. (a) heat shock
proteins (HSPs), (b) late embryogenesis abundant proteins
(LEA proteins), (c) osmolyte biosynthetic enzymes, (d) pro-
teins involved in carbon metabolism, and (e) enzyme scav-
engers of ROS, which are directly related to salt tolerance
mechanisms in plants and are present in varying abundance
(Rodziewicz et al. 2014). Proteomics has evolved into a
powerful tool to obtain protein-related quantitative data,
especially for hydrophobic and low-abundant proteins in
cells and organelles under different environmental condi-
tions, such as salt stress, drought stress, virus-infected states,
and heavy metal stress. Cao et al. (2016) have reported that
more than 3900 proteins were present in highly purified rice
plasma membranes. Proteomics can provide information
regarding storage mobilization from endosperm to germi-
nating embryos of seeds. In a proteomic analysis of endo-
sperm in germinating Jatropha curcas seeds, it was shown
that the oil mobilization was initiated during germination,
and then the oil was consumed for early seedling develop-
ment (Yang et al. 2009). The study also indicated the sig-
nificant change in abundance of proteins during germination,
most of which are associated with numerous storage lipid
mobilization pathways including b-oxidation, glyoxylate
cycle, glycolysis, citric acid cycle, gluconeogenesis, pentose
phosphate pathway, etc. Components of signal transduction
pathways have also been identified through this technique.
Sakamoto et al. (2008) showed that a transmembrane protein
with an ankyrin-repeat motif influences the abscisic
acid-induced accumulation of ROS during salinity. Under
salt stress, nuclear small ubiquitin-like modifier proteases are
engaged in protein modification activities (Conti et al. 2008).
Abbasi and Komatsu (2004) studied salt-responsive proteins
in rice using a proteomic technique, which indicated that an
oxygen-evolving enhancer protein expressed in the leaf
sheath and leaf blade of rice showed a coordinated response
to salt stress. With the help of proteomic and biochemical
analyses, Zhang et al. (2021) revealed that protein abun-
dance is related to several metabolic processes including
chlorophyll biosynthesis, proline metabolism, and tricar-
boxylic acid cycle metabolism pathway in some cultivars of
Brassica napus, which was greatly suppressed by salt stress.
When it comes to biological sectors like agriculture and
microbiology, proteomics is widely applied. There has been
a lot of work, put into the development of salt-tolerant
genotypes in agriculturally important crop plants, and con-
ventional breeding has shifted towards the use of transgen-
ics, large-scale transcript and protein profile data, and QTL
discovery.

Jiang et al. (2007) conducted a proteome analysis of
Arabidopsis roots stressed with 150 mM NaCl and found the
regulation of 200 protein spots whereas Wang et al. (2008)
found that 110 proteins were differentially expressed in
contrasting wheat genotypes exposed to 200 mM NaCl.
According to a survey of protein function based on homol-
ogy, some proteins play an important part in numerous
physiological processes of plants including germination.
Proteomics is widely used to better understand how plants
interact with other organisms. This technique is also com-
monly used to study the plant–insect interactions, which aid
in the identification of potential genes involved in the plant’s
defence response to herbivores (Sangha et al. 2013; Rustagi
et al. 2021). With the help of proteomic analysis, Vannini
et al. (2021) have shown the underlying mechanism of
modulation of growth and defence in plants by mycorrhizal
fungus and plant growth-promoting bacteria. The applica-
tions of plant proteomics in scientific research are still in the
budding stage.

7 Proteomics in Understanding Saline Stress
Response in Germinating Seed

Salinity is globally one of the most formidable barriers to
seed germination and many researchers reported that many
proteins are intricately involved in salt stress responses in
germinating seeds. Consequently, proteomics, under its
capacity to yield definitive information on protein identity,
localization, transcriptional and post-translational modifica-
tion, and the accuracy of in silico gene model prediction in
the plant, has become an integral component of all
large-scale “omic” and systems approaches in understanding
the rich complexity of physiology and biochemistry of seed
germination under salinity (Table 2). Since proteins are
associated with the majority of the metabolic events in the
seed, and in addition to being crucial structural components
in the cytoskeleton, membranes, cytoplasmic organelles, and
cell wall, it makes perfect sense to analyse the proteome of a
seed or a seed tissue or a specific cell type or even a sub-
cellular compartment (Wang et al. 2015b). Proteins con-
tribute to stress-adaptation mechanisms that involve changes
in the cell cytoplasm, cytoskeleton, plasma membrane, and
intracellular compartment combination, as well as changes in
their biochemical activities (Bogeat-Triboulot et al. 2007;
Lau et al. 2020; Sun et al. 2020). Protein accumulation
changes in response to stress are intimately linked to the
phenotypic response of the plant to stress (Bandehagh et al.
2021). Identification and characterization of salt-responsive
proteins through research in high-throughput proteomics is a
fundamental reason for producing salt-tolerant plant vari-
eties. This technology aids in the investigation of adaptive
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Table 2 Proteomic studies related to germinating seed and/or salt stress response

Name of the plant The outcome of proteomic studies related to germinating seed and/or salt stress
response

References

Abelmoschus
esculentus L.

In proteomic studies, a total of 7179 proteins were identified from seedlings, with
quantitative information available for 5774 of them. There were 317 differentially
expressed proteins (DEPs) in the NaCl/control comparison group, with 165 proteins
upregulated and 152 proteins downregulated in the presence of NaCl

Zhan et al. (2019)

Amaranthus cruentus
L.

Root proteome revealed that plants exposed to salinity stress modify about 77 proteins,
including enzymes involved in ROS scavenging, nucleotide metabolism, and fatty
acid and vitamin production

Huerta-Ocampo et al.
(2014)

Arabidopsis thaliana
L.

Comparative proteomic analyses of roots showed changes in protein abundance in
response to treatment with NaCl. Most of them are stress-responsive proteins and few
are involved in ROS scavenging, signal transduction, translation, cell wall
biosynthesis, protein translation, processing and degradation, and metabolism of
energy, amino acids, and hormones

Jiang et al. (2007)

Carbonylation of several important metabolic proteins, e.g. glycolytic enzymes,
mitochondrial ATP synthase, and Rubisco increased during germination without any
apparent ill effects on the seeds, which germinated at high rates and grew vigorously

Job et al. (2005)

Proteomic analyses of seeds during germination revealed that the accumulation of
cruciferin (the main seed storage protein in Arabidopsis) occurred by de novo
synthesis during after-ripening to provide an additional source of amino acids and
nitrogen to seedlings

Chibani et al. (2006)

Methionine-related enzymes become abundant during seed germination Gallardo et al. (2002, 2014,
2001)

Measure differential protein expression and de novo protein synthesis. It was found
that some proteins were not present in the mature seeds, but were synthesized during
germination

Galland et al. (2014)

Beta vulgaris L. Proteomic analysis of seed reported that 758 proteins which interfere and reconstruct
the metabolic status

Catusse et al. (2008)

Brassica napus L. Proteomic studies reported 130 differentially expressed proteins that were mainly
involved in storage (23.4%), energy metabolism (18.9%), protein metabolism
(16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism
(4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division
(3.6%), and some unclear functions (2.7%)

Gu et al. (2016)

Proteomic studies on seed recognized 323 proteins, where 233 proteins were identified
with 3 unique peptides-2S albumins like napin seed storage proteins (SSPs), 11/12S
globulin like cruciferin SSPs, and 7S globulin like vicilin SSPs

Rahman et al. (2021)

Cajanus cajan (L.)
Millsp.

Proteomic analysis of seeds reveals the accumulation of 373 seed proteins and many
of them are stress-related proteins

Krishnan et al. (2017)

Capsicum annuum L. A total of 4,693 proteins were identified through proteomic study of seedlings, among
which 3,938 were yielded quantitative information

Zhang et al. (2019)

Cicer arietinum L. The proteomic analysis showed that dehydration induces the accumulation of more
proteins related to photosynthesis, stress response, gene transcription, signaling,
protein biogenesis, and protein degradation in tolerant genotypes in comparison to
sensitive genotypes

Vessal et al. (2020)

Coffea arabica L. Ten proteins have been found that appear to influence plant development in various
ways, either directly or indirectly, by being involved in plant growth or as an
intermediate in a metabolic pathway that could influence seed germination

Franco et al. (2009)

Cucumis sativus L. Melatonin alleviates the inhibitory effect of high salinity on cucumber seed
germination primarily by regulating energy production

Zhang et al. (2017)

Cyclobalanopsis
gilva (Blume) Oerst

The b-amylase activity was four-fold higher in successfully germinated seeds
compared to non-germinated seeds

Zaynab et al. (2021)

Helianthus annuus L. Proteome analysis revealed an increase in proteins associated with metabolism and
energy from the first hours of imbibition, followed by a decrease in proteins associated
with protein metabolism and seed storage in germinating seeds compared to
non-germinating seeds

Xia et al. (2018)

(continued)
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Table 2 (continued)

Name of the plant The outcome of proteomic studies related to germinating seed and/or salt stress
response

References

Jatropha curcas L. Proteomic analysis of endosperm provides information regarding mobilization of
storage material in germinating seed

Yang et al. (2009)

Lepidium sativum L. Proteomic characterization of the micropylar endosperm revealed the presence of
proteins involved in protein folding, protein defence, and stability

Muller et al. (2010)

Leymus chinensis
(Trin.) Tzvelev

A significant increase in reactive oxygen species (ROS) during after-ripening is one of
the vital drivers to regulate seed dormancy release by modulating cytoskeleton and
chromatin

Hou et al. (2019)

Nelumbo nucifera
Gaertn

The proteome composition of lotus seed embryos, mature endosperm, and immature
endosperm differed significantly, according to the proteomics study. Immature
endosperm included 122 non-redundant proteins and the embryo contained 141
non-redundant proteins while mature endosperm contained 66 non-redundant proteins

Moro et al. (2015)

Nicotiana tabacum L. Proteomic analysis showed the relationship between seed persistent syndrome and
storage protein content and processing

Onelli et al. (2017)

Oryza sativa L. The proteomic analysis reported several salt-responsive proteins in the root including
ABA-responsive protein, ascorbate peroxidase, etc

Salekdeh et al. (2002)

Salinity modulates several proteins associated with photosynthesis, photorespiration,
signal transduction, regulation of metabolism, defence against oxidative stress, control
of ion channel, and protein folding

Nohzadeh Malakshah et al.
(2007)

Existence of novel protein candidates associated with salinity stress Yan et al. (2005), Jiang
et al. (2007)

In the proteomic studies abundance of 63 proteins was observed to decrease during
germination, while the abundance of 69 proteins was increased (including 20 induced
proteins)

Yang et al. (2007)

Detection of alteration in protein phosphorylation Chitteti and Peng (2007)

Presence of salinity stress-responsive protein in root apoplast, which plays a putative
role in stress signaling

Zhang et al. (2009)

Cysteine and Methionine-related enzymes have been observed to change in abundance
during the germination of seeds

Whitcomb et al. (2020)

More than 800 phosphoproteins are identified, out of which, 149 changed in amount
during germination. Most of them are involved in phosphorylation and influence
reprogramming cellular metabolism in germinating seed

Han et al. (2014a, 2014b)

Eleven genes in salt stress treated seeds were expressed early during the seed
imbibitions and some of the expressed proteins are might be applicable for the
improvement of seed germination under salt stress

Xu et al. (2017)

Pisum sativum L. Seed germination in optimal conditions enhanced the accumulation of different
proteins involved in glycolysis, Krebs cycle, synthesis of fatty acids, cell growth,
cellular transport, and detoxification whereas osmotic stress decreased the aggregation
of all of them except enzymes of Krebs cycle

Brosowska-Arendt et al.
(2014)

The abundance of SBP65 (belonging to group 3 of LEA proteins) continuously
decreased after 18 h of germination coinciding with the loss of desiccation tolerance

Wang et al. (2012)

Methionine-related enzymes become abundant during seed germination

Triticum aestivum L. Seed endosperm also responds to abiotic stressors like salinity by altering protein
compositions

Yan et al. (2021)

Proteomic investigations combined with mRNA analysis revealed that after-ripening
seeds have lower levels of disulfide isomerase, which promotes proteolysis and, as a
result, breaking of seed dormancy and initiation of germination

Gao et al. (2013)

Proteomic analyses of dry and after-ripening seeds have demonstrated that imbibition
of after-ripening seeds led to substantial repression of glucose/ribitol dehydrogenase
compared to dry seeds, thus implying that suppression of glucose and ribitol
dehydrogenase homologs 1 (GRDs) may be related to the germination

The abundance of methionine-related enzymes has been found to change during seed
germination

Fercha et al. (2013)

(continued)
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responses in germinating seeds and seedlings to abiotic
stresses such as salinity (Fig. 2). At present, in the NCBI
database, more or less one lakh forty thousand publications
related to proteomics are indexed, of which nearly sixteen
thousand publications are associated with
proteome/proteomics stress studies and around six hundred
publications mention proteome/proteomics research related
to plant salinity stress (https://www.ncbi.nlm.nih.gov). Pro-
teomics is considered to be the best way of establishing
large-scale gene expression profiling during the germination
and post-germination events because this methodology
depends largely on storage proteins as well as proteins
synthesized de novo from stored mRNAs (Rajjou et al. 2006,

2008; Catusse et al. 2008). Proteomics offers a broad array
of applications in protein profile analysis under salt-induced
stress conditions, but its primary function is to identify genes
and proteins responsible for plant salinity stress response and
tolerance mechanisms (Wang et al. 2014). Proteomics can
also be used to compare the differential expression of pro-
teomes between control (non-stressed) and stressed plants or
between different species or varieties of any species. Many
relevant studies have been conducted in many plants for the
comparative analysis of proteomes (Table 2). Various pro-
teomics studies of seed germination in recent years have
revealed that some of the germination-specific proteins
involved in energy production and cell structure

Table 2 (continued)

Name of the plant The outcome of proteomic studies related to germinating seed and/or salt stress
response

References

Vigna radiata (L.) R.
Wilczek

The expression of a vast number of proteins involved in stress response and plant
growth was affected by salinity. During seed germination, 111 proteins were
upregulated and 149 proteins were down-regulated, according to quantitative evidence

Yu et al. (2020), Alharby
and Hakeem (2021)

Zea mays L. Proteomic studies have revealed that alterations in splicing factors and transcription
factors are thought to be of crucial importance in response to early salt stress. The
genes involved in ABA and GA have converged as principal targets for adjusting
hormone balance non-germinated seed

Chen et al. (2021)

Fig. 2 Proteomics of seed
germination under saline stress:
accomplishments and future
directions
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maintenance are produced from long-lived mRNAs.
Researchers often used comparative two-dimensional elec-
trophoresis (2-DE) of complete germinating seeds of dif-
ferent species with a time course sampling to provide a
broad picture of protein mobilisation during seed germina-
tion (Yang et al. 2007; He et al. 2011; He and Yang 2013;
Mouzo et al. 2018). Mass spectrometric (MS) identification
of unknown proteins in non-model species, is carried out by
correlating sequences available in similar evolutionary origin
or/and even the entire database and this identification
methodology has been extensively recognized by modern
researchers (Sobhanian et al. 2010; Li et al. 2011; Sinha and
Chattopadhyay 2011; Yu et al. 2011; Debez et al. 2012). In
any organism, data from the genome and inferred protein
sequences can be used to recognize proteins and track
sequential changes in protein expression within that organ-
ism under different physiological conditions. In the current
scenario, the majority of proteomic research has focused on
the unfavourable impact of influences on seed survivability
and germination ability. The majority of this research has
focused on a specific organ or tissue, such as whole ger-
minating sprouts, seeds, endosperm, or embryos. Using
proteomics, numerous essential proteins have been discov-
ered in germinating seeds of many crop plants. A multitude
of germination-related information was discovered in addi-
tion to their identification, enhancing our understanding of
the germination process (Table 3). The physiological and
molecular scenario of seed coat imbibition and mobilization
of reserve foods can be provided through proteomic inves-
tigations. Proteomic analysis reveals that the enzymes
involved in starch breakdown and mobilization, such as
a-amylases and b-amylases increase significantly over three
days following imbibition (Miernyk and Hajduch 2011).
Nowadays, studies are performed to address various issues
related to seed germination including the importance of
differentially expressed proteins during germination (Teis-
seire and Guy 2000; Devi and Prasad 2005).

Plants are unable to escape unfavourable or stressful
conditions due to their immobile nature, thus they require
robust defence mechanisms to deal with unfavourable
environmental changes such as salinity, drought, and heat
stress. Under stressful conditions, plants usually activate
signaling kinase cascades, regulate ion channels, accumulate
reactive oxygen species, and secrete hormones, and when
the stress is relieved, homeostasis is restored (Ahmad et al.
2010, 2012, 2016; Ahmed et al. 2013; Ashraf et al. 2014;
Rejeb et al. 2014; Ziogas et al. 2015; Molassiotis et al.
2016). Every change for increased tolerance in plants is
largely driven by the modification of gene expression and
protein conformation that safeguards and preserves cellular
components’ function and structure. The significant num-
ber of biological issues about plant stress response remains
unresolved even after the completion of genome sequencing.

As many of the stress adaptations of cells or organisms are
the responsibility of proteins and peptides, proteomic anal-
ysis can therefore resolve these unresolved concerns. Plants
always experience a significant change in protein expression
in response to abiotic stressors like salinity; therefore, a
proteomic approach will be extremely valuable in explaining
the role of protein accumulation under stress circumstances
and its relationship to stress tolerance (Wang et al. 2019).
Furthermore, because protein localization and activity vary
depending on the situation, therefore, it will be critical to
identify and understand the biological information included
in protein expression study in many cell types and situations.
Different proteins from different plants have been identified
that serve key functions in support of homeostasis and salt
stress tolerance in plants (Table 3). Since proteins can be
widely acknowledged as direct effectors of the stress
response, it is highly important to investigate changes in
proteome level to recognize potential protein markers whose
abundance could be associated with changes in physiologi-
cal indices under salt-induced stress. Plant proteome
responses to salt stress depend on its intensity, duration, and
the organ examined (Ji et al. 2016; Wang et al. 2019). Much
effort has also been put into cataloguing organellar and
cellular proteins such as stress sensors, signal transducers,
transcription factors, chaperones, and so on in a variety of
salt-sensitive plant species. Shewry and Casey (1999) have
revealed some amazing understanding of the seed proteome
of legume crop plants, as well as their fluctuations in
response to stressors, which may have a considerable impact
on the quality and nutritional quality of these plants. Pro-
teomics not only monitors protein abundance and protein
interactions, but also recognizes translation and
post-translation regulations so that new insights into plant
modifications under abiotic stress like salinity are provided
(Salekdeh et al. 2002). Seeds undergo some alterations in
response to salinity, which may result in the accumulation or
depletion of specific metabolites, resulting in the imbalance
in the levels of a relatively small set of cellular proteins,
which could increase, decrease, appear, or disappear after
salt treatment (Kong-Ngern et al. 2005). Stress proteins
could be used as important molecular markers for the
improvement of salt tolerance and an approach to overex-
pressing these genes in different plants under controlled
conditions has been quite successful (Soltabayeva et al.
2021). However, proteins produced under salt stress are not
always associated with salt tolerance; consequently, using
proteins as a salt tolerance indicator depends on the nature of
the plant species or cultivar (Amini et al. 2007). To avoid the
adverse effect of salinity plant evolves some modifications in
gene expression which may lead to accumulation or deple-
tion of certain metabolites resulting in the imbalance in the
level of a relatively small set of cellular proteins (Jia et al.
2015; Mahmoodzadeh 2009). Such proteins may increase,

Proteomics—A Powerful Tool for Understanding Saline Stress … 387



Table 3 Some saltresponsive proteins identified by proteomic analysis

Plants Parts/Tissue Protein ID Status under
salinity

Function References

Amaranthus
cruentus L.

Mesophyll and
bundle sheath
chloroplast

ATP synthase subunits Accumulated Promote salt tolerance Joaquin-Ramos
et al. (2014)

Mesophyll and
bundle sheath
chloroplast

Electron Cycling Proteins

Arabidopsis
thaliana L.

Seed HY5 Down
regulated

Control seed germination
through regulation of
nucleo-cytoplasmic
partitioning of constitutive
photomorphogenesis 1

Yu et al. (2016)

XIW1 Upregulated Promote ABA responses and
inhibiting seed germination

Cai et al. (2020)

Seedling Salt tolerance homolog 2 Upregulated Positive regulator of
photomorphogenesis

Datta et al. (2007)

Beta vulgaris
L.

Seedling Osmotin-like protein Upregulated Osmotic stress tolerance Hajheidari et al.
(2005)

Glycine decarboxylase Upregulated Protection of membrane
proteins and provide
constitutive adaptation to the
plasma membrane

Wakeel et al.
(2011)Ferredoxin-NADP-reductase

Aminomethyl transferase

Chenopodium
quinoa Wild

Leaves Desiccation-responsive
protein 29B

Upregulated Regulate stomatal
movement and provide salt
tolerance

Rasouli et al.
(2021)

Osmotin-like protein
OSML13

Upregulated Osmotic stress regulation by
osmotic adjustment

Polycystin-1, lipoxygenase,
alpha-toxin, and
triacylglycerol lipase
(PLAT) domain-containing
protein 3-like

Upregulated Osmotic stress regulation by
osmotic adjustment

Chenopodium
quinoa Wild

Leaves Dehydrin early responsive
to dehydration
(ERD14)

Upregulated Play a regulatory role in
stomata under salinity
condition

Glycine max
L.

Hypocotyls/Root LEA proteins Upregulated Protective roles in salt stress
tolerance

Aghaei et al. (2009)

Seed LEA proteins Seed and hypocotyls
development

Glyceraldehyde 3-phosphate
dehydrogenase

Protective roles in salt stress
tolerance

Xu et al. (2011)

Glutathione S-transferase 9 Protective roles in salt stress
tolerance

Seed maturation protein
PM36

Protective roles in salt stress
tolerance

Hordeum
vulgare L.

Seedling HvNHX1 Upregulated Ion homeostasis and cell
redox homeostasis

Wu et al. (2014)

(continued)
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Table 3 (continued)

Plants Parts/Tissue Protein ID Status under
salinity

Function References

Lactuca sativa
L.

Leaf of Seedling Superoxide dismutase Upregulated Provide salinity tolerance Lucini et al. (2015)

Nicotiana
tobaccum L.

Seedling Osmotin Upregulated Osmotic stress tolerance Abdin et al. (2011)

Nicotiana
tobaccum L.

Seedling Chitinases Upregulated Cell wall modifications
during plan development

Dani et al. (2005)

Nicotiana
tobaccum L.

Seedling Germin-like protein Upregulated Cell wall modifications
during plan development

Oryza sativa
L.

Leaf LEA proteins Upregulated Prevention of water stress
and seed dehydration

Chourey et al.
(2003)

Oryza sativa
L.

Seedling Ascorbate peroxidase Upregulated Improved leaf sheath and
leaf blade

Abbasi and
Komatsu (2004)

Oryza sativa
L.

Seedling Dehydro ascorbate reductase Upregulated Improved leaf sheath and
leaf blade

Oryza sativa
L.

Seedling Superoxide dismutase Upregulated Improved leaf sheath and
leaf blade

Oryza sativa
L.

Leaf ROS detoxifying enzymes Upregulated Promote salt tolerance Parker et al. (2006)

Oryza sativa
L.

Leaf ATP synthase beta subunit Upregulated Promote salt tolerance

Oryza sativa
L.

Leaf RuBisCo activase Upregulated Promote salt tolerance

Oryza sativa
L.

Root ROS detoxifying enzymes Upregulated Protect from oxidative
damage

Salekdeh et al.
(2002), Chitteti and
Peng (2007)

Oryza sativa
L.

Root Caffeoyl
CoA-Omethyltrasferase

Upregulated Promote salt tolerance Salekdeh et al.
(2002)

Pisum sativum
L.

Whole plant Cu-ZnSOD-II Upregulated Protect from superoxide and
H2O2-mediated oxidative
damage

Hernandez et al.
(1995)

Setaria italica
(L.) P. Beauv

Seedlings ATP synthase beta-subunit Up-regulated Enhancing plant salt
tolerance

Veeranagamallaiah
et al. (2008)

Setaria italica
(L.) P. Beauv

Seedlings Caffeoyl
CoA-Omethyltrasferase

Upregulated Enhancing plant salt
tolerance

Solanum
tuberosum L.

Shoot ATP synthase beta subunit Upregulated Enhancing plant salt
tolerance

Aghaei et al. (2008)

Solanum
tuberosum L.

Shoot Heat shock proteins Upregulated Enhancing plant salt
tolerance

Solanum
tuberosum L.

Shoot Osmotin-like protein Upregulated Enhancing plant salt
tolerance

Sorghum
bicolor L.

Seedlings Malate dehydrogenase Upregulated ROS scavenging Ngara et al. (2012)

Sorghum
bicolor L.

Seedlings Ascorbate Peroxidase Upregulated ROS scavenging

Triticum
aestivum L.

Seedlings Glycine
dehydrogenase

Upregulated Improved protein
biosynthesis

Caruso et al. (2008)

Triticum
aestivum L.

Seedlings Glutamine synthase Upregulated Improved protein
biosynthesis

(continued)
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decrease, appear, or disappear during salinity (Kong-Ngern
et al. 2005). Knowing the involvement of these
stress-inducing proteins, the mechanisms of salt tolerance in
plants would be easier to explain.

Protein markers can provide comprehensive knowledge
about physiological changes occurring during seed germi-
nation and about the condition of the stored material of
seeds. Proteomic approaches enable the evaluation of pro-
tein markers which can be useful in the determination of
optimal conditions for germination. The proteomic tech-
nique has been used extensively in a recent study to
investigate germination in salt-susceptible plants (Table 2).
Proteomics is routinely employed in comprehensive pro-
filing of complex protein extracts and delivers valuable
qualitative and quantitative information on protein
dynamics in plants including their seed biology. Seed
proteins are classified as structural, storage, and physio-
logically active proteins and all of them have been found to
play a role in germination under both ideal and stressful
conditions (Table 3). Seed protein research is being con-
ducted to better understand metabolic regulation at both the
transcriptional and post-translational levels. Proteomic
analyses of salt stress responses in germinating seeds are
highly necessary to ensure a greater understanding of the
entire process of germination and post-germination events
because salinity is responsible for post-translation modifi-
cations, such as removal of signal peptides, phosphoryla-
tion, and glycosylation. Such studies are also important for
understanding protein activities and subcellular localization

(Yan et al. 2005). Till today, considerable proteomic works
on seed germination in different plants has been performed,
such as Nicotiana tabacum (Dani et al. 2005; Abdin et al.
2011; Onelli et al. 2017), Lycopersicon esculentum (Chen
et al. 2009), Thea sinensis (Chen et al. 2011), Fagus syl-
vatica (Pawłowski 2007), Acer platanoides (Pawłowski
2009), Arabidopsis thaliana (Chibani et al. 2006; Rajjou
et al. 2006), Cress (Muller et al. 2010), Beta vulgaris
(Catusse et al. 2008), Medicago truncatula (Boudet et al.
2006), Hordeum vulgare (Finnie et al. 2004), Glycine max
(Cheng et al. 2010; Ma et al. 2014), Zea mays (Fu et al.
2011), and Oryza sativa (He et al. 2011), etc.

Numerous proteomic investigations have been conducted
on rice, maize, and Arabidopsis germinating seeds. Pro-
teomic analysis revealed that the viability loss of Ara-
bidopsis seed is related to protein changes in dry seeds and
an inability of low-viability seeds to produce a normal
proteome during germination (Rajjou et al. 2008). In a
systematic proteomic analysis of NaCl-stressed germinating
maize seeds, it was the expression of proteins that respond to
abscisic acid signals increased in response to salt stress
(Meng et al. 2014). Xu et al. (2017) conducted experiments
to identify proteins that contribute to seed germination under
salt stress and discovered 14 proteins involved in seed
imbibition in rice. From the study, it was concluded that the
early imbibition process is mediated by protein catabolism
rather than by de novo protein synthesis and the majority of
these proteins were involved in energy supply and storage.
Cheng et al. (2017) reported that glucose-1-phosphate

Table 3 (continued)

Plants Parts/Tissue Protein ID Status under
salinity

Function References

Vigna radiate
(L.) R.
Wilczek

Seedlings Oxygen-evolving enhancer
protein 1

Upregulated Improve
photosynthesis-related
proteins

Alharby and
Hakeem (2021)

Vigna radiate
(L.) R.
Wilczek

Seedlings RUBISCO Upregulated Keep their photosynthetic
efficiency

Vigna radiata
(L.) R.
Wilczek

Seedlings Heat shock protein 70 Induced Plays a great role in plants
during salinity stress
exposure

Vigna radiata
(L.) R.
Wilczek

Seedlings RUBP/oxygenase activase Upregulated Keep their photosynthetic
efficiency

Vigna radiata
(L.) R.
Wilczek

Seedlings Rubber elongation factor
protein (REF)

Upregulated Promote salt tolerance

Vigna radiata
(L.) R.
Wilczek

Seedlings Pathogen related protein 10 Upregulated HSP-involved signal
transduction process

Zea mays L. Seedlings NHX1 Upregulated Ion transport Neubert et al.
(2005)
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adenylyltransferase large subunit (GAS) protein in imbibed
seed under salt stress as well as in water stress are expressed
suggesting that these proteins are required for seed germi-
nation under various conditions including salinity. Accord-
ing to a proteomics study, salt stress causes downregulation
of metabolically relevant proteins in the hypocotyl of soy-
bean seedlings (Sobhanian et al. 2010). Proteomic analysis
has revealed that MMDH1 (Mitochondrial malate dehydro-
genase) was one of the 95 proteins that significantly accu-
mulated during Arabidopsis seed germination (Fu et al.
2005). Melatonin increases seed germination under high
saline conditions, as shown in a proteomics study. In a
proteomics study, it was shown that the inhibitory effect of
excessive salinity on cucumber seed germination was eased
by the application of 1 lM melatonin (Zhang et al. 2014).
Further study showed that during germination of cucumber
seeds under salt stress, storage protein showed an increasing
abundance after melatonin treatment, including two
globulin-like proteins (P13744 and Q8W1C2) and two
vicilin-like proteins (Q39651 and Q9ZWI3) (Zhang et al.
2017). Gu et al. (2016) conducted a proteomic study on the
protein expression pattern of seed germination of Brassica
napus by using differential fluorescence two-dimensional gel
electrophoresis. The expression pattern of proteins showed
that heterotrophic metabolism could be activated in the
process of seed germination and that the onset of defence
mechanisms might start during seed germination.

Protein function depends not only on the molecular
structure of the protein but also on its subcellular localization
and post-translational modifications (Kosova et al. 2018).
Protein function is closely related to subcellular localization
because different cell components provide different physio-
logical and biochemical environments (such as pH and redox
conditions) or potential acting substrates (Liu et al. 2019).
Thus, in recent times, researchers have also set their focus on
subcellular proteins during germination. Different gel-based
and gel-free proteomics approaches are used to characterize
mitochondrial proteomes of germinating seeds. Diverse
methodologies have been used to track the changes in
mitochondrial protein abundance during seed germination,
including (a) a direct study of the global mitochondrial
proteome variations using isolated organelles from germi-
nating seeds (Howell et al. 2006; Wang et al. 2015b); (b) a
targeted approach to study specific mitochondrial proteins in
isolated organelles from germinating seeds (Logan et al.
2001; Taylor et al. 2010) (c) an indirect approach to describe
the changes of mitochondrial proteomes in germinating
seeds, using total seed protein extracts to identify and
measure mitochondrial proteins (Law et al. 2012) (d) an
indirect study to describe the variations in the total proteome
in germinating seeds, in which mitochondrial proteins have
been detected among many other proteins. The dynamics of
mitochondrial protein abundance in germinating seeds have

been observed in many plant species, such as Oryza sativa
(Howell et al. 2006, 2007; Taylor et al. 2010; Han et al.
2014a), Pisum sativum (Wang et al. 2012), Arabidopsis
thaliana (Gallardo et al. 2001; Fu et al. 2005; Law et al.
2012; Galland et al. 2014), and Zea mays (Logan et al.
2001). Tan et al. (2013) summarized the results from 13
different studies in which proteomics had been used to study
the effect of a range of environmental conditions on the
germinating seed proteome. The analysis also showed that
the largest protein groups affected by abiotic stresses were
proteins associated with glycolysis, storage protein mobi-
lization, protein processing, osmotic homeostasis, and ROS
scavenging. The characterization of protein–protein inter-
actions is essential to the understanding of the molecular role
of the cell in the execution of various biological functions
including germination and stress responses. Proteomic
studies also revealed that the radicle protrusion from imbi-
bed seed requires only protein translation, implying that
germination-specific proteins are translated from stored
mRNAs (Sano et al. 2012).

8 Future Aspects of Proteomics
in the Improvement of Salt-Resistant Seed
Germination

Proteomics is growing rapidly in plant sciences, with
numerous researches on seed germination having been
conducted and published. This is an appealing method for
investigating seed germination because it allows researchers
to gather a large amount of data from a small amount of
tissue. Large-scale gene expression analysis at both the
mRNA and protein levels has been used to uncover the
characteristics of seed germination in both normal and
salt-induced stress conditions, due to considerable advances
in omics technology. The investigation of salt-induced
changes in the seed proteome would highlight important
genes associated with germination owing to the advent of a
high resolution of protein separation by two-dimensional gel
electrophoresis (2-DE) and protein identification by mass
spectrometry and database search. Though there have been
major proteomic advances using several plant species, much
of the knowledge gained on seed germination processes and
salt stress response mechanisms have been gained from work
using Arabidopsis and Oryza as their completed genome
sequences are more or less publicly available (Jorrin et al.
2007; Jorrin-Novo et al. 2009). With the increasing avail-
ability of plant genome sequences and the advancement of
mass spectrometry (MS) technology, proteomics has been
widely applied in analysing the mechanisms of different
biological processes including seed germination and proved
to be a very powerful tool to study stress responses. Protein
quantitative studies may expand by improvising new
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techniques, known as second-generation proteomics, that
exceed a few limits related to technical analytical variability,
delivering data with greater repeatability, and protein com-
parison in between different organs or among various growth
stages (Roveda-Hoyos and Fonseca-Moreno 2011). Fur-
thermore, improving the understanding of the identified key
metabolic proteins involved in salt tolerance can be imple-
mented into biotechnological applications, regarding
recombinant/transgenic formation.

9 Conclusion

Proteomic techniques have recently become extensively
used in plant science research, and they may be useful to
seed science research as well. It has gained huge attention
worldwide due to the easy handling of the proteomic anal-
ysis tools and the accuracy of the results. It offers a new
approach to discovering proteins and pathways associated
with physiological phenomena and stress responses in
plants. As proteins represent one of the important compo-
nents of seed, critical for germination and seedling devel-
opment; during the past decade proteomics has become an
important tool of seed research. In addition, proteomics also
makes it possible to address physiological changes by
characterization of alteration in protein abundances (ex-
pression) simultaneously with an assessment of
post-translational modification patterns, which might be
informative in the sense of salt-induced alterations in ger-
minating seeds. Seed germination and seedling development
are largely dependent on the metabolic status of reserve
substances, especially of storage proteins. Thus, knowledge
of the seed proteome, as well as its dynamics in response to
environmental and biological stressors, may be helpful for
the understanding of the physiological process. Proteomics
has aided our understanding of a variety of phenomena, yet
it is still insufficient for a thorough comprehension of a
biological system. This technology helps to promote stron-
ger links between people working in different fields of sci-
ence creating future concepts of crop improvement through
seed biology.
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Role of Secondary Metabolites
and Prospects of Engineering Secondary
Metabolite Production for Crop
Improvement

Rakhi Chakraborty

Abstract

Plant secondary metabolites impart significant contribu-
tions in defense, stress tolerance, reproduction and are also
involved in plant growth regulation and crop yield. They
are of diverse chemical nature and biological functions,
depending on their biosynthesis within a plant cell. Major
classes of plant secondary metabolites that help regulate
plant growth and development include—phytohormones,
phenolics, terpenoids, nitrogen-containing compounds
(alkaloids, non-protein amino acids and cyanogenic gly-
cosides) and sulphur-containing compounds (glucosino-
lates, phytoalexin, defensin, etc.). They are synthesized in a
relatively small amount within plant cells and exert their
specific functions through several complex signaling
pathways. Large-scale production of plant secondary
metabolites is thus considered as one of the important
strategies for crop improvement. Application of physical
(UV-rays, gamma radiation, etc.), chemical (salicylic acid,
jasmonic acid, melatonin, etc.) and biological elicitors
(cyanobacteria, fungal and bacterial species), induction of
polyploidy, nanotechnological approaches, epigenetic
modification (gene overexpression, gene silencing, histone
modification, etc.), transgenesis (homologous or heterolo-
gous transfer of one or more genes of specific secondary
metabolite biosynthetic pathway), transcriptional and
post-transcriptional regulation, etc., have been successfully
applied in several crop plants for the increased production
of desired secondary metabolites. However, most of the
studies remain confined to the laboratory scale due to
several constraints, viz. altered expression pattern, genetic
instability, bioavailability, bioactivity, lack of desired
quality and quantity of the products, etc. In this chapter,
specific functions of plant secondarymetabolites regulating
the growth and development of crop plants have been

thoroughly discussed.Moreover, the engineering strategies
for large-scale production of secondary metabolites along
with the challenges have also been elaborated.

Keywords

Cellular signaling � Crop improvement � Genetic
engineering � Metabolic regulation � Nanotechnology �
Plant secondary metabolites

Abbreviations

ABA Abscisic acid
AP2/ERF APETALA 2/ethylene-responsive element

binding factor
APX Ascorbate peroxidase
BABA b-Aminobutyric acid
BR Brassinosteroid
CAT Catalase
CRISPR/Cas9 Clustered regularly interspaced short

palindromic repeat/CRISPR associated
protein 9

DELLA Aspartate-glutamate-leucine-leucine-alanine
DREB Dehydration-responsive element-binding

protein
2,4-D 2,4-Dichlorophenoxyacetic acid
ETR1 Ethylene receptor 1
ERS1 Ethylene response sensor 1
GABA c-Aminobutyric acid
GR Glutathione reductase
GSA1 Grain size and abiotic stress tolerance1
HY5 Elongated hypocotyl 5
HLS1 Hookless 1
JA Jasmonic acid
MYB My elob lastosis
NO Nitric oxide
ODC Ornithine decarboxylase
ORCA3 Octadecanoid-derivative responsive

Catharanthus APETALA2-domain

R. Chakraborty (&)
Department of Botany, Acharya Prafulla Chandra Roy
Government College, Himachal Vihar, Matigara, Siliguri, 734010,
West Bengal, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Roy et al. (eds.), Plant Stress: Challenges and Management in the New Decade,
Advances in Science, Technology & Innovation, https://doi.org/10.1007/978-3-030-95365-2_25

401

https://orcid.org/0000-0002-3980-9961
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95365-2_25&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95365-2_25&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95365-2_25&amp;domain=pdf
https://doi.org/10.1007/978-3-030-95365-2_25


POX Peroxidase
PVP Polyvinyl pyrrolidone
ROS Reactive oxygen species
SA Salicylic acid
SBHA Suberoyl-bis-hydroxamic acid
SOD Superoxide dismutase
TIA Terpenoid indole alkaloid
TILLING Targeting induced local lesions in genomes
UDP Uridine diphosphate

1 Introduction

Secondary metabolites in plants are defined as low molecular
weight by-products of primary metabolism that are usually
not directly involved in the primary growth of plants but
play an immense role in crop protection or yield improve-
ment by interacting with several biotic and abiotic factors.
Secondary metabolites are produced from primary metabo-
lites via various metabolic pathways under certain physio-
logical conditions (Ahmed et al. 2017). According to
Delgoda and Murray (2017), there are about 2,00,000 sec-
ondary metabolites of diverse chemical nature produced by
different plants, though not all of them are biologically
active. Their expression patterns are also differentially reg-
ulated by complex signaling pathways involving several
enzymes and genes. Depending on their biological functions,
secondary metabolites are grouped into several major clas-
ses. Plant growth regulators or phytohormones occupy an
important group of secondary metabolites that can regulate
growth and development and also aid in defense against a
wide range of biotic and abiotic stresses (Erb and Klieben-
stein 2020). Other major classes include nitrogen-containing
compounds (alkaloids, cyanogenic glycosides and
non-protein amino acids) terpenoids, phenolic compounds
and sulphur-containing compounds (glucosinolates, defen-
sin, phytoalexins, etc.) that directly or indirectly help in
promoting crop improvement under several unfavourable
environmental conditions. Diversity of plant secondary
metabolites is also correlated with their multifaceted func-
tional attributes, viz. protection against herbivores, patho-
genic microorganisms and weeds, facilitating pollination and
fertilization by attracting pollinators, establishing symbiotic
association with mycorrhizal fungi and providing tolerance
against environmental stress factors (Zhang et al. 2020a).
Plant secondary metabolites also serve as excellent sources
of pharmaceuticals, agrochemicals, food additives, flavour-
ing agents, cosmetics and many other industrial products due
to their effective antimicrobial, antioxidant, insecticidal and
other beneficial properties (Tiwari and Rana 2015). The
basic skeletons of all the secondary metabolites are synthe-
sized via three major metabolic pathways, viz. shikhimic

acid pathway, isoprenoid pathway or mevalonic acid path-
way and the polyketide pathway, which are further modified
by series of addition, deletion and substitution depending on
the specific requirement (Teoh 2016). In general, plants
produce secondary metabolites in very low concentrations,
however, production increases under the adverse environ-
mental condition that is attributed to increased stress toler-
ance. The complex interaction between several genes and
transcription factors is known to be responsible for regulat-
ing the levels of secondary metabolite production in plants
(Jan et al. 2021).

Crop production is influenced by a range of external and
internal factors, viz. soil condition, temperature, light
intensity, humidity, nutrient status, gene expression and
regulation, signaling pathways, etc. Slight variation in any of
these factors can cause significant alterations in the growth
and yield of crops. Many advanced strategies have been
adopted in the recent past to optimize crop yield throughout
the year. Targeting secondary metabolite biosynthetic path-
ways is one such tool for yield improvement. Advancement
in genetic engineering and biotechnological tools are being
utilized to dissect the secondary metabolite biosynthetic
pathways for decoding their specific functions in plants both
in laboratory and field conditions. This review attempts to
present an overview of major secondary metabolites in
plants and their functions in plant growth and development.
It also focuses on the advanced metabolic engineering
techniques for their increased production and the problems
for the implementation of these techniques in the agricultural
sector.

2 Role of Secondary Metabolites in Plant
Growth and Development

2.1 Phytohormones

Phytohormones play a significant role in plant growth and
development (Table 1). They act as chemical messengers
and target specific plant tissue to elicit certain physiological
responses under several environmental conditions. For
example, ethylene triggers the signaling pathway and inter-
acts with other hormones for eliciting developmental
responses. Ethylene is a gaseous hormone with a simple
structure that regulates leaf development, flower develop-
ment, fruit ripening, seed germination, etc. Dubois et al.
(2018) showed that mutation in positive and negative regu-
lators of the ethylene signaling pathway showed altered
growth patterns. For example, the mutation in ethylene
receptor proteins, viz. ETR1 and ERS1 showed decreased
leaf growth, whereas overexpression of Auxin-Regulated
Gene involved in Organ Size (ARGOS) and ARGOS-LIKE
(ARL) caused a negative feedback regulation of ethylene

402 R. Chakraborty



response and stimulated growth in Arabidopsis (Shi et al.
2015). Several reports are available depicting the complex
interaction of ethylene with other phytohormones during
growth and development. According to Iqbal et al. (2017),
auxin stimulates endogenous ethylene biosynthesis and
thereby regulates shoot apical meristem and leaf develop-
ment in tomato and Arabidopsis. However,
auxin-independent ethylene responses are also observed in
common beans (Phaseolus vulgaris) (Keller et al. 2004).
Ethylene also influences ABA sensitivity and acts syner-
gistically with gibberellin during various stages of seed
germination. Post-germination developmental changes, viz.

apical hook formation, hypocotyl growth, root initiation, etc.
are also found to be regulated by the combined interaction of
phytohormones, viz. auxin, cytokinin, ethylene, jasmonic
acid, salicylic acid and brassinosteroids via regulation of
several genes and transcription factors like YUCCA1,
YUCCA5, HLS1, HY5, MYC2, DELLA, etc. (Ahammed
et al. 2020). Sami et al. (2019) reported the crosstalk
between the phytohormones with glucose in modulating
plant developmental responses via hexose-dependent and
hexose-independent signaling pathways. ABA, BR, SA,
auxin, ethylene and GA help to minimize the adverse effects
of salinity stress by interacting with signaling molecules like

Table 1 An overview of the role
of plant secondary metabolites in
plant growth and development

Secondary
metabolites

Role in plant development

Phytohormones • Growth and development of vegetative organs, viz. stem, root and leaves
• Flower initiation and development, fruit ripening, seed germination and
post-germination developmental changes

• Alleviation of environmental stresses by ROS scavenging, ion homeostasis,
accumulation of osmoprotectants, increased activity of antioxidative enzymes, etc

• Regulation of major metabolic pathways—photosynthesis, glycolysis, pyruvate
metabolism, TCA cycle, shikimic acid pathway, alkaloid biosynthesis, etc.

Terpenoids • Regulation of photomorphogenetic responses- choloroplast organization and
chlorophyll biosynthesis, apical hook opening, expansion of cotyledons, root
development, etc.

• Increased insect pollination, decreased spread of weeds, increased resistance
against pests, fungal and microbial pathogens

• Biosynthesis of phytoalexins, prevention of oxidative damage, increased biomass
production under stress condition

Coumarins • Growth regulation of vegetative organs, increased nutrient uptake from the soil
• Stimulate symbiotic association with mycorrhizae and growth of beneficial soil
microflora

• ROS scavenging, reduced lipid peroxidation and membrane destabilization,
reduced Na+ toxicity, increased activity of antioxidant enzymes under abiotic
stress

• Increased disease resistance

Flavonoids • Growth promotion under stress condition
• ROS scavenging, ion homeostasis, increased activity of enzymatic and
non-enzymatic antioxidants, increased osmoregulation, reduced heavy metal
toxicity

• Enhanced resistance against insects, fungal and bacterial pathogens
• Increased nutrient accumulation

Cyanogenic
glycosides

• Accumulation and allocation of nitrogen in plants under stress condition
• Stimulate growth and developmental responses under adverse environmental
conditions

• Increased defense against herbivores

Non-protein
amino acid

• Reduce oxidative damage by preventing ROS formation, electrolyte leakage and
lipid peroxidation

• Confer stress tolerance by activation of antioxidative enzymes, maintaining
osmotic balance and redox homeostasis, overexpression of heat-shock proteins

• Increased chlorophyll content, photosynthetic efficiency, relative water content,
regulation of carbohydrate and amino acid metabolism, regulation of expression of
stress-responsive genes

Glucosinolates • Promote root growth, chlorophyll content, biomass production
• Increased osmoregulation, aquaporin synthesis, stomatal closure under drought
condition

• Increased resistance against fungal and bacterial pathogens
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NO, ROS and Ca+2 and stimulate plant growth by main-
taining ion homeostasis, reducing oxidative damage,
upregulation of genes for secondary metabolite biosynthesis,
accumulation of osmoprotectants, increased biomass pro-
duction under several abiotic stress condition (Amir et al.
2019). Interaction of NO with phytohormones like cytoki-
nin, ethylene and auxin resulted in increased salinity toler-
ance in Lactuca sativa by regulating Na+ accumulation,
antioxidant activities, mineral uptake and photosynthetic rate
(Campos et al. 2019). Crosstalk between strigolactones and
other phytohormone signaling pathways also led to plant
growth promotion under normal and abiotic stress conditions
by the formation of adventitious roots, regulation of shoot
branching, inhibition of bud growth, promotion of secondary
growth, leaf senescence, seed germination, internode elon-
gation and nutrient uptake, etc. (Yang et al. 2019). Kumari
and Parida (2018) showed that molecular crosstalk between
ABA and JA brought about stomatal closure, reduced tran-
spiration, regulation of major metabolic pathways, viz. gly-
colysis, pyruvate metabolism, TCA cycle, shikimic acid
pathway, gluconeogenesis, alkaloid biosynthesis, etc. under
saline condition. Exogenous application of gibberellic acid
showed growth promotion in wheat cultivars by stimulating
higher accumulation of proline along with the increased
activity of Rubisco and antioxidant enzymes (peroxidase and
superoxide dismutase) under saline conditions (Manjili et al.
2012).

2.2 Terpenoids

Terpenoids are the largest group of plant secondary
metabolites and confer important roles in plant defense and
crop vigour. Yu et al. (2018) reported the functional attri-
bution of Terpenoid Indole Alkaloids (TIAs) during the
process of photomorphogenesis in Catharanthus roseus.
They observed the light stimulated activation of TIA
biosynthetic enzymes and TIA accumulation (tabersonine,
catharanthine, vindoline, vinblastine and vincristine) at the
time of cotyledon opening. The combined interaction of
auxin and cytokinin with terpenoid biosynthetic pathway in
the morphogenesis and structural organization of chloro-
plasts in Artemisia alba has also been described by (Danova
et al. 2018). Terpenoids were also known to improve the rate
of plant reproduction and stimulate crop protection by
increasing the rate of insect pollination, decreasing the
spread of weeds and invader plants and reducing damages
caused by pests and microbes in several agriculturally
important crops, viz. apple, blueberry, tomato, etc. (Abbas
et al. 2017). Terpenoid phytoalexins (zealexins and kau-
ralexins) were known to induce root growth and biomass
accumulation along with prevention of oxidative damage
under various biotic and abiotic stress conditions (Akhi et al.

2021). Terpenes may also influence the expression of genes
involved in plant defense mechanisms by acting as chemical
messengers and regulating the adaptive features of plants
under various biotic and abiotic stress (Zwenger and Basu
2008). For instance, 7-epizingiberene and R-curcumene
were reported to increase insect resistance in tomatoes
(Bleeker et al. 2011). b-caryophyllene could also induce
resistance against microbial pathogens via jasmonic acid
signaling, whereas isoprene and a- and b-pinene confer
resistance via salicylic acid signaling in Arabidopsis thali-
ana (Frank et al. 2021). Wang et al. (2020) showed that
sesquiterpenes secreted from glandular trichomes of wild
tomato (Solanum habrochaites) could be responsible for
conferring repellence against the potato aphid Macrosiphum
euphorbiae. They highlighted the role of b-caryophyllene,
a-humulene, a-santalene, a-bergamotene and
b-bergamotene in affecting the survivorship and feeding
behaviour of the aphid population. Capsidiol was known to
be accumulated in Nicotiana attenuata in response to
Alternaria alternata infection, and confer resistance against
this fungal pathogen independent of jasmonic acid and
ethylene signaling pathways (Song et al. 2019). Habash et al.
(2020) evaluated the impact of a sesquiterpene, nootkatone
against Heterodera schachtii parasitism on A. thaliana. They
pointed out that nootkatone specifically decreased the
number of nematodes and upregulated the defense-related
genes involved in salicylic acid, jasmonic acid and ethylene
biosynthetic pathways. The significance of terpenoids in
plant growth and development is summarized in Table 1.

2.3 Phenolic Compounds

2.3.1 Coumarins
Coumarins are produced via phenylpropanoid pathway and
involved in plant defense against pathogens, management of
abiotic stresses and hormonal regulation. Coumarins along
with reduced glutathione helped to ameliorate salinity stress
and improve crop production in tomatoes by detoxifying
ROS and methylglyoxal via enhancing the activities of
glyoxalase enzymes (Table 1). Significant reduction in lipid
peroxidation, membrane destabilization and Na+ toxicity
was also observed (Parvin et al. 2020). Sultana et al. (2020)
also observed that the exogenous application of coumarin
effectively enhances vegetative growth and antioxidant
enzyme activities (catalase, ascorbate peroxidase and gua-
iacol peroxidase) in sorghum seedlings on exposure to dif-
ferent concentrations of NaCl. Conversely, regulation of
seed germination by coumarins was also observed in Bras-
sica parachinensis via the reduction in ROS accumulation
and decreased GA biosynthesis (Chen et al. 2021). Cou-
marin accumulation was also shown to confer increased
resistance in A. thaliana against soft rot causing bacteria

404 R. Chakraborty



Dickeya spp. (Perkowska et al. 2021). Sarashgi et al. (2021)
showed that coumarins present in root exudates of Brassi-
caceae plant species (Brassica napus, Raphanus sativus and
Sinapis alba) play an important role in iron accumulation.
Overexpression of genes involved in the coumarin biosyn-
thetic pathway helped to mitigate the mycorrhizal incom-
patibility in A. thaliana. It was also experimentally proved
that root secreted coumarins, especially scopoletin can
improve pre-penetration signaling and established chemical
communication between the host and the arbuscular myc-
orrhizal fungus Rhizophagus irregularis (Cosme et al.
2021). Coumarins were also known to promote lateral root
growth in A. thaliana by inhibiting basipetal transport of
auxin and altering microtubule cortical array organization
(Bruno et al. 2021). Scopoletin exuded from roots could
improve plant growth by establishing an association with
rhizospheric microorganism Pseudomonas simiae and Ara-
bidopsis thaliana (Stringlis et al. 2018). In vitro experiments
with plant-derived coumarins showed improved soil char-
acteristics and also stimulated the growth of beneficial soil
microflora (Niro et al. 2016). Seed priming of Vicia faba
with different concentrations of coumarin showed improved
vegetative growth by the enhanced accumulation of primary
and secondary metabolites, viz. carbohydrates, proteins,
phytohormones, phenolics, etc. (Saleh et al. 2015). Abe-
navoli et al. (2004) showed that different concentrations of
coumarin could affect root growth parameters in different
types of maize seedlings in hydroponic cultures by regulat-
ing lateral root formation, root length and branching pat-
terns. Coumarins also facilitate nitrate uptake from the soil,
increased accumulation of nitrate in root cells and translo-
cation of nitrates from root to shoot in durum wheat seed-
lings. The diameter of the xylem vessels of the root cells and
the increased respiration rates were also found in response to
coumarin treatment (Abenavoli et al. 2001).

2.3.2 Flavonoids
Flavonoids play a major role in plant growth in several adverse
environmental conditions (Table 25.1). Liang and He (2018)
experimentally demonstrated the protective role of nine antho-
cyanins, viz. pelargonidin 3-robinobioside, pelargonidin 3,5-di-
(6- acetylglucoside), pelargonidin 3-(600-p-coumarylglucoside)-
5-(6000-acetylglucoside), pelargonidin 3-
(600-malonylglucoside)-7-(6000-caffeylglucoside), cyanidin
3-rutinoside, cyanidin 3-O-[b-DXylopyranosyl-(1->2)-
[(4-hydroxybenzoyl)-(->6)-b-D-glucopyranosyl-(1->6)]-
b-D-galactopyranoside], cyanidin 3-lathyroside, cyanidin 3-[6-
(6-sinapylglucosyl)-2-xylosylgalactoside] and cyanidin
3,5-diglucoside (600,6000-malyl diester) during low nitrogen
stress condition by enhancing seed germination rate in
A. thaliana. Apigenin helped to mitigate the adverse effects of

salinity stress by improving the activities of enzymatic (catalase
and ascorbate peroxidase) and non-enzymatic antioxidants (car-
otenoids and flavonoids) andmaintaining K+/Na+ homeostasis in
rice seedlings (Mekawy et al. 2018). Li et al. (2019) observed that
the MYB- stimulated enhanced synthesis and accumulation of
flavonoids help to increase plant growth in A. thaliana under
saline conditions. They elucidated that the overexpression of
MYB transcription factor (MYB111) during salinity stress con-
dition, in turn, activate the major enzymes of flavonoid biosyn-
thesis, viz. chalcone synthase, flavanone carboxylase and
flavanol synthase 1. Caliskan et al. (2017) have revealed the
significance of phenolic compounds in salinity tolerance in
Hypericum pruinatum. Their study showed increased accumu-
lation of phenolics, viz. chlorogenic acid, rutin, hyperoside, iso-
quercetine, quercitrine and quercetine in salt-stressed plants.
Similar enhancement in flavonoid biosynthesis was also
observed in Camellia sinensis subjected to drought stress. The
activation of enzymes, viz. chalcone synthesis1,
cinnamate-4-hydroxylase, flavonoid 3ʹ5ʹ hydroxylase and
flavanone-3-hydroxylase lead to increased accumulation of a
good number of flavonoids (myricetin, quercetin and kaemp-
ferol) that successfully ameliorate the adverse effects of drought
and promote plant growth by maintaining cellular antioxidative
status (Sun et al. 2020). Increased expression of three key
enzymes of phenolic metabolism, viz. Shikimate Dehydrogenase
(SKDH), Cinnamyl Alcohol Dehydrogenase (CAD) and
Polyphenol Oxidase (PPO) associated with enhanced accumu-
lation of phenolics could alleviate the adverse effects of Zn and
Cd toxicity in Kandelia obovata (Chen et al. 2019). Phenolic
acids and flavonoids (quercetin, catechin, apigenin, o-coumaric
acid, luteolin, etc.) showed enhanced scavenging of free radicals
like superoxide and peroxide anions, that in turn provide better
insect resistance and antibiosis in winter triticale (Czerniewicz
et al. 2017). Anthocyanin accumulation in leaves of Euphorbia
pulcherrima showed higher antioxidant activities associated with
tolerance against photo-oxidative stress (Moustaka et al. 2020).
Oleuropein was known to protect salt-stressed olive plants by
accelerating biomass production via increased antioxidative
defense and osmoregulation (Petridis et al. 2012). Munné-Bosch
and Alegre (2003) showed that the synergistic action of carsonic
acid and a-tocopherol prevent oxidative damages and promote
the growth of rosemary and sage plants under drought stress.
A similar accumulation of anthocyanins and flavonols was
observed inA. thaliana, whichmight be responsible for increased
antioxidant activities in response to drought (Nakabayashi et al.
2014). UV-B LED light pre-treatment in lettuce showed
enhanced accumulation offlavonoids that in turn helped to confer
resistance against downy mildew (McLay et al. 2020). Consti-
tutive expression of a UDP-dependent glycosyltransferase
(OsUGT706C2) stimulated flavonoid biosynthesis in rice, which
in turn contributed to UV-B tolerance and crop improvement
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(Zhang et al. 2020b). Li et al. (2021) showed that increased
flavonoid content helped to enhance antioxidant activity and crop
yield in drought-affected maize plants. Overexpression of GSA1
that encodes a UDP-glucosyltransferase which helped to regulate
flavonoid accumulation, grain size and abiotic stress tolerance in
rice (Dong et al. 2020).

2.4 Nitrogen-Containing Compounds

2.4.1 Cyanogenic Glycosides
Cyanogenic glycosides are by-products of amino acid meta-
bolism and can produce toxic hydrogen cyanides by enzy-
matic hydrolysis. Siegień et al. (2021) showed that a higher
accumulation of two major cyanogenic glycosides, namely
linamarin and lotaustralin could function as nitrogen reser-
voirs in flax leaves under low nitrogen conditions. According
to the studies of Sohail et al. (2020), dhurrin stimulated the
rapid growth of germinating seedlings of sorghum and helped
to adapt to dry climatic conditions by serving as a nitrogen
source. In another experiment, Myrans et al. (2021) also
showed that cyanogenic glycosides play a divergent role in
the allocation of nitrogen according to their availability in
wild and cultivated sorghum species that eventually con-
tribute to plant defense against environmental stresses and
also improve crop growth. However, according to Cuny et al.
(2019), two cyanogenic glycosides (limanarin and lotaus-
tralin) played a significant role in defense against herbivores
rather than in growth promotion in Phaseolus lunatus.

2.4.2 Non-protein Amino Acids and Derivatives
Non-protein amino acids are generally referred to the amino
acids other than the proteinogenic amino acids.
c-aminobutyric acid (GABA) is a well-known amino acid
that rapidly accumulates in plant tissues under stress and
known to regulate plant growth and development. GABA
has been known to alleviate oxidative damage and denatu-
ration of chlorophyll molecules under high-temperature
stress by stimulating activities of antioxidant enzymes
(SOD, CAT, POX, APX and GR), overexpression of
heat-shock proteins, accumulation of osmolytes and by
lowering electrolyte leakage and lipid peroxidation in
Agrostis stolonifera (Zeng et al. 2021). Similar heat toler-
ance was also conferred by exogenous application of GABA
in wheat seedlings by regulation of amino acid metabolism
and maintenance of redox homeostasis that in turn help to
grow the plants under such adverse environmental condi-
tions (Wang et al. 2021). GABA signaling could modulate
stomatal movement in leaves of A. thaliana and suffice
optimum water resilience under drought stress. Overex-
pression of Glutamate Decarboxylase 2 gene (GAD2) in turn
was found to be responsible for increased biosynthesis of

GABA via Ca+2/calmodulin signaling (Xu et al. 2021). Wu
et al. (2020) also found that exogenous application of GABA
into tomato plants helped to reduce Na+ uptake and accu-
mulation in roots and leaves, prevent ROS formation and
lipid peroxidation and also improve plant growth under
NaCl stress. Sita and Kumar (2020) pointed out the role of
GABA in the alleviation of multiple abiotic stress factors in
leguminous plants by modulating carbohydrate and amino
acid metabolism and maintaining antioxidative mechanisms
and membrane stability. In this context, Priya et al. (2019)
also elaborated the thermo-protective effect of GABA on
Vigna radiata by enhancement of reproductive function
under high-temperature stress. Post-harvest exogenous
application of GABA could mitigate the toxic impacts of
low-temperature storage by reducing the activities of
lipooxygenases and phospholipases and accelerating
antioxidative activities of SOD and CAT in cucumber fruits
(Malekzadeh et al. 2017). Dopamine, an amino acid
derivative, could act as a signal molecule in plant growth and
development and protect against various abiotic stresses by
regulating the expression of major stress-responsive genes
involved in senescence, chlorophyll degradation, nitrate
transport, etc. (Liu et al. 2020). Dopamine application could
increase biomass production of apple seedlings by enhanc-
ing the rate of photosynthesis and chlorophyll content and
decreasing the accumulation of ROS under alkali stress (Jiao
et al. 2019). Exogenous application of b-Aminobutyric Acid
(BABA) has been shown to improve Relative Water Content
(RWC), photosynthetic efficiency and antioxidant activities
in Vicia faba through the over-expression of
stress-responsive genes, viz. VfGST, VfMYB, VfDHN, VfLEA,
VfERF, VfNCED, VfWRKY, VfHSP and VfNAC under
drought stress (Abid et al. 2020). Kim et al. (2013) also
studied the effect of BABA on seedling growth of Kimchi
cabbage by inducing resistance against Alternaria brassici-
cola and Colletotrichum higginsianum (Table 1).

2.5 Sulphur-Containing Compounds

2.5.1 Glucosinolates
Glucosinolates are a group of plant secondary metabolites
with S-b-d-glucopyrano unit anomerically connected to an
O-sulphated (Z)-thiohydroximate (Blažević et al. 2020).
Glucosinolates are found to be indirectly involved in crop
improvement by increasing resistance against ZnO nanopar-
ticle toxicity in A. thaliana (Tao et al. 2021). Tao and
co-workers also showed that treatment with ZnO nanoparti-
cles promoted increased accumulation of glucosinolates that
in turn helped to mitigate the adverse effect of the nanopar-
ticles on root growth, chlorophyll content and plant biomass.
Glucosinolates like isothiocyanates, glucobrassicin, sinigrin,

406 R. Chakraborty



glucoiberin, etc. were known to confer greater resistance
against a wide range of plant pathogens (Rhizoctonia solani,
Fusarium sp., Alternaria solani, Aspergillus flavus, etc.) and
indirectly involved in crop protection and improvement
(Poveda et al. 2020). Eom et al. (2018) conducted a tran-
scriptome analysis study to elucidate the role of glucosinolate
metabolism in Chinese cabbage (Brassica rapa
ssp. pekinensis) in response to drought stress. Differential
expression of several drought-responsive genes, viz.
AP2/ERFs, bHLHs, NACs, bZIPs and particularly, BrbZIPs
were found to be involved in improving plant tolerance by
increased accumulation of glucosinolates in leaves and pre-
venting water loss by inducing stomatal closure. In this
connection, a marked increase in glucosinolate accumulation
was also observed under the influence of drought and salinity
stress in different Brassicaceae crops, viz. Brassica rapa, B.
juncea, B. oleracea, B. napus, etc. (Essoh et al. 2020). It was
also shown that the glucosinolates confer abiotic stress tol-
erance by the overexpression of MYB genes (especially

MYB28 and MYB29), involved in increased aquaporin
synthesis and osmoregulation (Essoh et al. 2020) (Table 1).

3 Strategies to Regulate Secondary
Metabolite Production

Several strategies have been adopted to increase the pro-
duction of secondary metabolites beneficial for crop growth
and improvement (Fig. 1). A detailed account of these
strategies is discussed in the following sub-sections and the
major studies depicting the use of these elicitors in the
improvement of crop plants are also enlisted in Table 2.

3.1 Chemical Elicitors

Exogenous application of plant growth regulators (salicylic
acid and 24-epi-brassinolide) showed improved secondary
metabolite production in Brassica nigra under salinity stress

Fig. 1 Commonly known
elicitors that are being used for
the engineering of secondary
metabolites in plants for the
improvement of crop production
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Table 2 Studies depicting the strategies to engineer secondary metabolite production in plants for crop improvement

Plant species Approach used for elicitation Effect on crop improvement References

Arabidopsis thaliana Overexpression of TOGT1 gene Enhanced scopoletin production Wang and Hou
(2009)

Arabidopsis thaliana Complete pathway transfer of dhurrin
biosynthesis from sorghum

Enhanced dhurrin production Tattersall et al.
(2001)

Arabidopsis thaliana Heterologous overexpression of PnJAZ1
gene from Pohlia nutans

Helped in seed germination and seedling
growth under salt stress by regulating JA
and ABA biosynthesis

Liu et al. (2019)

Arabidopsis thaliana Heterologous overexpression of
CrUGT87A1gene from Carex rigescens

Increased flavonoid accumulation,
antioxidative activities and improved
salinity tolerance

Zhang et al. (2021)

Atropa belladonna Transgenesis and overexpression of ODC
gene

Increased production of putrescine,
N-methyl putrescine, hyoscyamine and
anisodamine

Zhao et al. (2020)

Bambusa multiplex Histone deacetylase inhibition by suberoyl
bis-hydroxamic acid and trichostatin A

Increased production of 3-O-p-coumaroyl
quinic acid and 3-O-feruloyl quinic acid

Nomura et al.
(2021)

Brassica nigra Exogenous application of gibberellic acid
salicylic acid (1 mM) and
24-epi-brassinolide (0.1 lM)

Improved secondary metabolite production
under salt stress

Ghassemi-Golezani
et al. (2020)

Brassica rapa Foliar application of thiamine (100 mM) Enhanced secondary metabolite production,
increased photosynthetic rate and
antioxidant activity under drought stress

Jabeen et al. (2021)

Brassica rapa Single amino acid modification of CAX1a
transporter by TILLING technique

Increased IAA and GA content with
improved salinity tolerance

Navarro-León et al.
(2020)

Capsicum
frutescens

Seed treatment with colchicine (300 mg/L)
and oryzalin (30 mg/L)

Increased capsaicin production by tetraploid
plants

Pilankong et al.
(2017)

Catharanthus roseus Application of PVP-coated cobalt
nanoparticles (10, 15 and 20 mg/L)

Concentration-dependent increase in
accumulation of alkaloids in cell suspension
culture

Fouad and Hafez
(2018)

Catharanthus roseus Transgenesis and overexpression of geranyl
diphosphate synthase and geraniol synthase

Increased accumulation of vindoline and
catharanthine

Kumar et al. (2018)

Catharanthus roseus Seed treatment with colchicine (0.2%
aqueous solution)

Tetraploid explants showed increased
production of terpenoid indole alkaloids
along with an increased number of stomata
and larger leaves

Xing et al. (2011)

Centella asiatica Elicitation with Colletotricum
gloeosporioides

Promotes biosynthesis of asiaticoside Gupta and
Chaturvedi (2019)

Convolvulus sepium,
Withania somnifera,
A. thaliana, Tylophora
tanakae

Transgenesis and overexpression of fungal
crypt gene

Enhanced biosynthesis of calystegine,
withaferin, tylophorin, etc. in hairy root
culture

Chaudhuri et al.
(2009)

Coriandrum sativum Regulation of photosynthetic photon flux
density (300 lL) and root-zone temperature
(30 °C)

Increased accumulation of phenolics and
flavonoids and biomass production along
with enhanced antioxidant activity

Nguyen et al.
(2019)

Cuminum cyminum Treatment with 2,4-D (2.5 mg/L) and
kinetin (0.5 mg/L)

Increased essential oil synthesis and callus
induction

Farvardin et al.
(2017)

Datura metel,
Hyoscyamus muticus

Transgenesis with tobacco pmt gene Increased production of scopolamine (in
Datura) and hyoscyamine (in Hyoscyamus)
in hairy root culture

Moyano et al.
(2003)

Dracocephalum
forrestii

LED light (blue, red, blue + red and white)
exposure

Increased phenolics and flavonoid content in
shoot culture

Weremczuk-Jeżyna
et al. (2021)

Echinacea purpurea Exogenous application of gibberellic acid
(0.025 lM)

Accumulation of caffeic acid and lignin in
hairy root culture

Abbasi et al. (2012)

(continued)
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Table 2 (continued)

Plant species Approach used for elicitation Effect on crop improvement References

Echinacea purpurea Treatment with ZnO microparticles
(150 mg/L) and ZnO nanoparticles
(75 mg/L)

Increased biomass and flavonoid
accumulation in in vitro callus culture

Karimi et al. (2018)

Glycyrrhiza uralensis,
Tropaeolum majus,
Ocimum basilicum

UV-B treatment (280–320 nm) Stimulated secondary metabolite
biosynthesis

Yavas et al. (2020)

Helianthus annuus Application of biofabricated silver
nanoparticles with Euphorbia helioscopia
leaf extract (60 mg/L)

Enhanced growth and secondary metabolite
production

Batool et al. (2021)

Hyoscyamus
reticulatus

Treatment with ZnO nanoparticles
(100 mg/L)

Growth promotion and increased synthesis
of hyoscyamine and scopolamine

Asl et al. (2019)

Hypericum perforatum Treatment with dextran, pectin and chitin
(100 mg/L)

Increased biosynthesis of hypericin and
pseudohypericin in shoot culture

Simic et al. (2014)

Hypericum perforatum Elicitation with Colletotrichum
gloeosporioides, Aspergillus niger,
Fusarium oxysporum, Saccharomyces
cerevisiae, and Botrytis cinerea

Enhanced accumulation of xanthones,
flavonoids and phenolics

Shakya et al. (2019)

Hypericum perforatum Elicitation with Agrobacterium
tumefaciens, A. rhizogenes and
Stenotrophomonas maltophilia

Increased accumulation of flavonols,
flavanols, lignin, etc

Shakya et al. (2019)

Lactuca sativa Chitosan-coated microcapsules combined
with calcium and copper ions and
Trichoderma viridae

Enhanced secondary metabolite production
and increased antioxidant activities

Jurić et al. (2020)

Leucojum aestivum Exogenous melatonin treatment (10 lM) Increased alkaloid content in in vitro cell
culture

Ptak et al. (2019)

Lithospermum
erythrorhizon

Agrobacterium-mediated transformation of
ubiA gene from E. coli

Promotes shikonin production Boehm et al. (2000)

Mentha spicata Silencing of MSYABBY5 gene Enhances terpene biosynthesis in peltate
glandular trichomes

Wang et al. (2016)

Nicotiana
benthamiana

Heterologous expression of IbC4H gene
from Ipomoea batatas

Enhanced polyphenol biosynthesis and
increased antioxidant activity

Wang et al. (2017)

Nicotiana tabacum,
A. thaliana

Overexpression of PAP1 gene Increased accumulation of flavonoids Gantent and
Memelink (2002)

Ocimum basilicum,
Origanum vulgare

Exogenous application of IBA (0.1 mg/L)
and BA (2 and 4 mg/L)

Increased phenolic content in vitro shoot
culture

Karalija et al.
(2016)

Panax ginseng Exogenous application of linoleic acid and
a-linolenic acid (5 lM/L)

Increased biosynthesis of ginsenoside along
with biomass production

Wu et al. (2009)

Papaver somniferum Silencing of 4’OMT2 gene Increased biosynthesis of
benzylisoquinoline alkaloids

Alagoz et al. (2016)

Papaver somniferum Elicitation with poppy mosaic virus Stimulates production of alkaloids––
codeine, papaverine, narcotine, etc

Zaim et al. (2014)

Passiflora edulis Elicitation with TMV, telosma mosaic virus
and cucumber mosaic virus

Increased biosynthesis of polyphenols and
flavonoids

Mishra et al. (2020)

Pelargonium spp.,
Withania somnifera

Homologous and heterologous
overexpression of DXS gene from
Pelargonium

Increased biosynthesis of essential oil (in
Pelargonium) and withanolide (Withania
somnifera)

Jadaun et al. (2017)

Prunella vulgaris Application of silver and gold nanoparticles Enhanced phenolic and flavonoids
accumulation and increased antioxidant
activity

Fazal et al. (2016)

Psoralea corylifolia,
Capsicum annum,
Stevia rebaudiana,
Panax ginseng

Gamma irradiation (20 kGy) Enhanced production of psoralen,
capsaicinoids, stevioside and ginsenoside,
respectively

Vardhan and Shukla
(2017)

(continued)
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(Ghassemi-Golezani et al. 2020). Application of Gibberellic
Acid (GA3) in hairy root cultures of Echinacea purpurea
showed enhanced accumulation of caffeic acid derivatives
and lignin (Abbasi et al. 2012). Indole Butyric Acid
(IBA) and Benzyladenine (BA) also showed elevation in the
accumulation of phenolics and flavonoids along with
increased antimicrobial activity in Ocimum basilicum and
Origanum vulgare (Karalija et al. 2016). 2,4-D and kinetin
also showed increased essential oil synthesis in Cuminum
cyminum (Farvardin et al. 2017). Exogenous application of
melatonin has been shown to stimulate biomass production
and accumulation of many Amaryllidaceae alkaloids (espe-
cially lycorine and galanthamine) in in vitro cell cultures of
Leucojum aestivum (Ptak et al. 2019). Melatonin could also
enhance phenolics and flavonoid content and antioxidant
activity by upregulation of the STS gene and ethylene sig-
naling in grape berries (Xu et al. 2017). Foliar application of

vitamin B1 (thiamin) also stimulated secondary metabolite
production, antioxidant activity and growth promotion in
Brassica rapa, subjected to drought stress (Jabeen et al.
2021). Polysaccharides such as dextran, pectin and chitin
also acted as elicitors for the biosynthesis of phenolics, fla-
vonoids and napthodianthrones (hypericin and pseudohy-
pericin) in Hypericum perforatum shoot cultures (Simic
et al. 2014). Exogenous application of essential fatty acids
(linoleic acid and a-linolenic acid) also helped to elicit the
production of phenolics, flavonoids and ginsenoside along
with increased biomass production and antioxidant activity
in Panax ginseng, cultured in bioreactors (Wu et al. 2009).
Immobilization of cells of Solanum chrysotrichum within the
calcium-alginate gel matrix showed significant enhancement
in the production of antimycotic saponin––spirostanol
(Charlet et al. 2000). Salicylic acid, jasmonic acid and
methyl jasmonate also act as regulators of secondary

Table 2 (continued)

Plant species Approach used for elicitation Effect on crop improvement References

Rubia cordifolia Transgenesis with rol genes Stimulates increased biosynthesis of
anthraquinones

Bulgakov et al.
(2010)

Salvia dolomitica Controlled exposure to drought Increased production of terpenoids,
phenolics and flavonoids

Caser et al. (2019)

Salvia miltiorrhiza Inhibition of DNA methylation by
5-azacytosine (10 lM)

Increased phenolic acid biosynthesis in
hairy root culture

Yang et al. (2018)

Salvia miltiorrhiza CRISPR/Cas9 mediated targeted
mutagenesis of SmRAS gene

Increased production of rosmarinic acid Zhou et al. (2018)

Saussurea involucrata Transgenesis and overexpression of chi
gene from Saussurea medusa

Increased production of naringenin,
apigenin and total flavonoid in hairy root
culture

Li et al. (2006)

Solanum
chrysotrichum

Cell immobilization within
calcium-alginate gel beads (0.1 to
0.8 mol/L Ca and 1–1.5% w/v alginate)

Enhanced spirostanol production Charlet et al. (2000)

Solanum tuberosum Transgenesis and overexpression of RIP
gene

Increased production of sesquiterpenes and
glycoalkaloids

Matthews et al.
(2005)

Solanum tuberosum Induction of polyploidy by colchicine and
oryzalin

Increased sesquiterpene production by
tetraploid plants in vitro

Cara et al. (2020)

Stevia rebaudiana Seed treatment with colchicine (0.6%
aqueous solution)

Tetraploid plants showed increased
stevioside production along with increased
leaf size and chlorophyll content

Yadav et al. (2013)

Tanacetum
parthenium

Treatment with ZnO nanoparticles
(2000 ppm)

Increased production of terpenolide and
essential oil, mineral absorption and crop
yield

Shahhoseini et al.
(2020)

Taxus chinensis Application of pulse electric field (50 Hz,
10 V/m)

Enhanced taxuyunnanine C production Ye et al. (2004)

Tripterygium wilfordii,
Catharanthus roseus

Homologous and heterologous
overexpression of class I TGA transcription
factor from Tripterygium wilfordii

Stimulates biosynthesis of sesquiterpene and
pyridine alkaloids

Han et al. (2020)

Vitis vinifera Exogenous melatonin treatment Promotes endogenous melatonin and
flavonoid level coupled with fruit ripening

Xu et al. (2017)

Vitis vinifera Elicitation with Grapevine red
blotch-associated virus

Increased biosynthesis of flavonoids and
anthocyanin

Blanco-Ulate et al.
(2017)
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metabolite biosynthesis in Withania somnifera, Gymnema
sylvestre, Panax ginseng, etc. (Chodisetti et al. 2015;
Sivanandhan et al. 2013; Thanh et al. 2005). According to
Gantait and Mukherjee (2021), inhibition of spindle fibre
formation or induction of polyploidy can also be considered
effective in manipulating secondary metabolite production in
several plants. They showed that treatment with colchicine
and oryzanol in different culture conditions can significantly
increase biosynthesis of alkaloids (capsaicin, vincristine,
etc.), terpenoids (andrographolide, a-gualene, limonene,
etc.), glycosides (stevioside, rebaudioside, bacoside etc.),
lactones (artimisinin, wedelolactone, etc.) total phenolics,
flavonoids (quercetin, kaempferol, chlorogenic acid, etc.) in
several polyploid plant species––Catharanthus roseus,
Capsicum fruitescens, Aquilaria malaccensis, Sphagneticola
calendulacea, Andrographis paniculata, Stevia rebaudiana,
Bacopa monnieri, Eucommia sp., Citrus limon, etc.

3.2 Physical Elicitors

Induction of light stress by exposurewith LED lights of different
wavelengths (blue, red, blue-red 30%:70% and white;
k = 430 nm, 670 nm, and kЄ = 430–670 nm) showed signif-
icant enhancement in the biosynthesis of phenolic andflavonoid
derivatives (chlorogenic acid, caffeic acid, salvianolic acid,
apigenin p-coumarylrhamnoside, methyl rosmarinate, etc.) in
in vitro shoot culture of Dracocephalum forrestii
(Weremczuk-Jeżyna et al. 2021). UV-B radiation was also
found to induce biosynthesis and accumulation of flavonoids,
tannins, isoprenoids, glucosinolates in Glycyrrhiza uralensis,
Tropaeolummajus,Ocimumbasilicum andmany others (Yavas
et al. 2020). Gamma irradiation also showed similar enhance-
ment in biosynthesis and accumulation of psoralen in Psoralea
corylifolia, capsaicinoids in Capsicum annum, stevioside in
Stevia rebaudiana, ginsenoside in Panax ginseng by activating
the key enzymes of secondary metabolism, viz. phenylalanine
ammonia-lyase, chalcone synthase, squalene synthase, etc.
(Vardhan and Shukla 2017). Ye et al. (2004) elucidated the
efficiency of pulse electric field for stimulation of secondary
metabolite biosynthesis in Taxus chinensis. Regulation of pho-
tosynthetic photon flux density and root temperature was shown
to stimulate the biosynthesis and accumulation of total flavo-
noids, chlorogenic acid, rutin, trans-2-decenal in addition to
increased antioxidant activity and crop yield in coriander
(Nguyen et al. 2019). Caser et al. (2019) reported the implication
of controlled drought conditions could modulate terpenoid,
phenolics and flavonoid biosynthesis in Salvia dolomitica.
Narayani and Srivastava (2017) reported similar elicitation of
secondary metabolite production by several abiotic (heat shock,
osmotic stress, ultrasound, ozone exposure, etc.) and biotic
factors (extract of algae, fungi, bacteria, microbe-derived chi-
tosan, pectin, cyclodextrin, etc.) in in vitro cell culture.

3.3 Microparticles and Nanoparticles as Elicitors

Sustainable utilization of chitosan-coated microcapsules
combined with calcium and copper ions and Trichoderma
viridae on the enhanced production of secondary metabolites
and significant increments in antioxidant activities was
observed in Lactuca sativa (Jurić et al. 2020). Application of
silver and gold nanoparticles in callus culture of Prunella
vulgaris showed enhanced production of phenolics and fla-
vonoid content along with increased antioxidant activity
(Fazal et al. 2016). Seedling treatment of Tanacetum
parthenium with zinc oxide nanoparticles showed improved
crop yield, mineral absorption along with the biosynthesis of
essential oil and sesquiterpene lactones (parthenolide)
(Shahhoseini et al. 2020). Nano ZnO also helped to increase
root growth coupled with increased phenolic content,
antioxidant activity and increased accumulation of tropane
alkaloids (hyoscyamine and scopolamine) by upregulation of
hyoscyamine-6-beta-hydroxylase (h6h) gene in Hyoscyamus
reticulatus (Asl et al. 2019). Application of different con-
centrations of ZnO nanoparticles and microparticles on the
Echinacea purpurea callus extract showed enhanced accu-
mulation of flavonoids, which could be correlated with its
anticancer activity (Karimi et al. 2018). Biofabrication of
silver nanoparticles with the leaf extract of Euphorbia
helioscopia showed enhanced growth parameters and sec-
ondary metabolite production in Helianthus annuus, in dif-
ferent developmental stages (Batool et al. 2021). Polyvinyl
Pyrrolidone (PVP) coated cobalt nanoparticles also stimu-
lated alkaloid biosynthesis in cell suspension culture of
Catharanthus roseus under oxidative stress conditions
(Fouad and Hafez 2018).

3.4 Biotic Elicitors

Elicitation of secondary metabolite production with the help
of microbial extract was found to be useful in Hypericum
perforatum (Shakya et al. 2019). The addition of cell culture
filtrates of Colletotrichum gloeosporioides, Aspergillus
niger, Fusarium oxysporum, Saccharomyces cerevisiae, and
Botrytis cinerea have shown increased accumulation of
xanthones, flavonoids and phenolic substances in shoot and
suspension culture of H. perforatum. Apart from the fungal
elicitors, several bacterial species, viz. Agrobacterium
tumefaciens, A. rhizogenes and Stenotrophomonas mal-
tophilia also showed the enhanced synthesis of flavonol,
flavanol, lignin and other phenolics in H. perforatum (Sha-
kya et al. 2019). A Co-cultivation system using an endo-
phytic fungus Colletotrichum gloeosporioides stimulated the
biosynthesis of asiaticoside content in Centella asiatica
(Gupta and Chaturvedi 2019). Many cyanobacterial genera,
viz. Synechocystis, Synechococcus and Anabaena are
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successfully transformed with plant-derived genes to pro-
duce important secondary metabolites like- limonene,
p-coumaric acid, caffeine, carotenoid, etc. (Xue and He
2015). Viral infection often acted as elicitors for secondary
metabolite production in the host plants. For example,
cucumber mosaic virus elicits the production of polyphenols
and flavonoids in Passiflora edulis, Grapevine red
blotch-associated virus elicits flavonoid and anthocyanin
synthesis in Vitis vinifera, poppy mosaic virus elicits alka-
loid production in Papaver somniferum, etc. (Mishra et al.
2020).

3.5 Biotechnological Approaches

3.5.1 Regulation at DNA Level
Epigenetic regulation (DNA methylation, histone modifica-
tion, RNAi transcription) of selected metabolic pathways
was also found to be significant for modulation of secondary
metabolites production in the plant cell (Brzycki et al. 2021).
Yang et al. (2018) have confirmed the role of a DNA
methylation inhibitor (5-azacytosine) in increasing the
expression of major genes involved in phenolic acid
biosynthesis in Salvia miltiorrhiza. However, the opposite
result was observed when a donor for DNA methylation,
SAM (S-adenosyl methionine), was added. Similarly, treat-
ment of suspension culture of Bambusa multiplex cells with
two histone deacetylase inhibitors (SBHA and trichostatin
A) showed enhanced biosynthesis of cryptic secondary
metabolites (Nomura et al. 2021). Gene silencing approaches
through RNA interference are also extensively used to
enhance the production of plant secondary metabolites for
crop improvement (Rajam 2020). The silencing of a novel
gene (MSYABBY5) showed increased terpene biosynthesis in
the peltate glandular trichome of Mentha spicata. On the
contrary, heterologous expression of MSYABBY5 repressed
secondary metabolite production in Ocimum basilicum and
Nicotiana sylvestris (Wang et al. 2016). Attempts have also
been made through gene silencing via RNA interference by
topical application of dsRNA (Deguchi et al. 2020).

3.5.2 Transcriptional Regulation
and Transgenesis

Transcriptional regulation of MYB and bHLH
protein-encoding genes (C1 and R), AP2/ERF-domain
transcription factor ORCA3, DREB2A and DREB2B pro-
teins are also being successfully implemented in Catharan-
thus roseus, Arabidopsis thaliana and several other plants
for engineering biosynthesis of anthocyanins, flavonoids,
terpenoid indole alkaloids, etc. (Memelink et al. 2001).
Overexpression of genes of secoiridoid pathway (geraniol
synthase and geranyl diphosphate synthase) stimulated the
accumulation of commercially important monoterpene

indole alkaloids (vindoline and catharanthin) in transgenic
C. roseus (Kumar et al. 2018). Similar overexpression of
ornithine decarboxylase (ODC) gene showed increased
biosynthesis of tropane alkaloids, viz. putrescine, N-methyl
putrescine, hyoscyamine and anisodamine in Atropa bel-
ladonna hairy root cultures. Transcriptional and
post-transcriptional regulation of several transcription fac-
tors, viz. WRKY, MYB, bHLH, APETALA2/Ethylene
Responsive-Factor (AP2/ERF), Jasmonate-responsive ERF
(JRE), Basic Leucine Zipper (bZIP), SQUAMOSA
Promoter-binding protein-Like (SPL), etc. could help mod-
ulate the biosynthesis of several classes of terpenoids and
flavonoids—monoterpenes, sesquiterpenes, diterpenes,
triterpenes, steroidal lactones, etc. in several crop species
(Nagegowda and Gupta 2020). Similarly, homologous and
heterologous overexpression of class I TGA transcription
factor from Tripterygium wilfordii stimulated the biosyn-
thesis of sesquiterpene and pyridine alkaloids (Han et al.
2020). Agrobacterium-mediated transgenesis of
cannabinoid-synthesizing genes was also successfully
applied for increased metabolite production in hemp (Can-
nabis sativa) in tissue culture. Manipulation of the shikonin
biosynthetic pathway with the introduction of the
4-hydroxybenzoate-3-polyprenyltransferase (ubiA) gene
from E. coli had successfully enhanced shikonin production
in Lithospermum erythrorhizon (Boehm et al. 2000). Acti-
vation of cryptic gene clusters by co-cultivation or epige-
netic modification of several endophytes (Fusarium mairei,
Trichoderma atroviridae, Enterophosphospora sp., etc.) also
helped in large-scale production of high-value plant sec-
ondary metabolites like taxol, berberine, camptothecin,
vincamine (Venugopalan and Srivastava 2015).

According to Chandra and Chandra (2011), the formation
of hairy root lines by the transformation of T-DNA from
Agrobacterium rhizogenes could offer a useful strategy for
the increased production of secondary metabolites. For
instance, incorporation of the chalcone isomerase (chi) gene
from Saussurea medusa into the genome of Saussurea
involucrata showed increased production of naringenin,
apigenin and total flavonoid content. Moreover, binary
vectors formed by combining the T-DNA of the Ri-plasmid
and putrescine N-methyltransferase (pmt) gene showed
enhanced production of scopolamine and hyoscyamine by
upregulation of tropane alkaloid biosynthetic pathway in
Datura metel and Hyoscyamus muticus (Moyano et al.
2003). Transformation of Rubia cordifolia hairy root cul-
tures with rol genes boosted the plant cells for increased
production of secondary metabolites (Bulgakov et al. 2010).
Transgenic A. belladonna also showed enhanced biosyn-
thesis of hyoscyamine and anisodamine due to overexpres-
sion of the ODC gene (Zhao et al. 2020). Transgenic
mimicry of pathogen attack could also lead to increased
secondary metabolite production in several crop species,
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suggesting a suitable method for eliciting defense responses
in plants. A. rhizogenes mediated transfer of fungal
b-cryptogein gene (crypt) resulted in improved growth and
enhanced accumulation of calystegine, polyphenols, with-
aferin, tylophorin, etc. in Convolvulus sepium, Withania
somnifera, A. thaliana and Tylophora tanakae (Chaudhuri
et al. 2009). Genetically modified potato cultivars con-
structed using Ribosome-Inactivating Protein-coding gene
(RIP) from maize, showed enhanced synthesis and accu-
mulation of sesquiterpenes and glycoalkaloids under a range
of biotic and abiotic stress conditions (Matthews et al. 2005).
Adventitious root culture using bioreactors is considered
useful for large-scale production of plant secondary
metabolites, viz. ginsenoside, resveratrol, camptothecin,
vindoline, etc. (Kumar 2015). Catalytic synthesis of glyco-
conjugate involving the multigene superfamily of glycosyl-
transferases can also be employed in the production and
modification of plant secondary metabolites. For instance,
reduced expression of Tobacco Glycosyltransferase (TOGT)
in transgenic tobacco plants showed decreased glycosylation
of scopoletin that impaired resistance against TMV. Whereas
overexpression of the TOGT1 gene led to increased resis-
tance against Potato Virus Y by enhancing scopoletin syn-
thesis (Wang and Hou 2009). Transgenic overexpression of
1-deoxy-D-Xylulose-5-phosphate Synthase (DXS) gene from
Pelargonium spp. showed enhanced production of sec-
ondary metabolites in both homologous (essential oil in
Pelargonium spp.) and heterologous conditions (withanolide
in W. somnifera) (Jadaun et al. 2017). Heterologous
expression of cinnamate 4-hydroxylase gene from Ipomoea
batatas (IbC4H) showed enhanced drought tolerance asso-
ciated with increased polyphenol biosynthesis and antiox-
idative activities in transgenic tobacco (Wang et al. 2017).
Liu et al. (2019) showed that overexpression of a jasmonate
ZIM-domain gene from a moss Pohlia nutans (PnJAZ1) in
A. thaliana regulated ABA signaling pathways and induced
seed germination and seedling growth under salinity stress.
Overexpression of an anthocyanin-producing gene (pro-
duction of anthocyanin pigment 1, PAP1) showed enhanced
accumulation of anthocyanin by regulating the enzymes of
flavonoid biosynthetic pathways in Nicotiana tabacum and
A. thaliana (Gantet and Memelink 2002). Ma et al. (2019)
reported the efficient application of a fungal host Yarrowia
lipolytica for the heterologous synthesis of plant terpenoids
by the introduction of terpene synthase and modifying the
mevalonate pathway. Nascimento and Fett-Neto (2010)
pointed out the effective transformation of entire
plant-derived metabolic pathway genes from one species to
another. For instance, complete pathway transfer of cyano-
genic glycoside dhurrin from Sorghum bicolor to Ara-
bidopsis thaliana was carried out successfully for increased
herbicide resistance (Tattersall et al. 2001). Zhang et al.
(2021) reported that overexpression of a UV-B responsive

UDP-sugar glycosyltransferase gene from Carex rigescens
(CrUGT87A1) showed increased salinity tolerance in A.
thaliana by stimulating flavonoid biosynthesis and antiox-
idative activity. Bleeker et al. (2012) successfully transfer
the biosynthetic pathway to produce a sesquiterpene
(7-epizingiberene) from the wild tomato into a greenhouse
cultivated variety for enhanced herbivore resistance.

3.5.3 Molecular Engineering Techniques
Several reports are depicting the significant contributions of
molecular engineering approaches in the modulation of
secondary metabolite biosynthesis for crop improvement.
Sabzehzari et al. (2020) have demonstrated the significance
of Clustered Regularly Interspaced Short Palindromic
Repeat (CRISPR)-mediated transcriptional regulation of
secondary metabolite production in several crop plants by
silencing the enzymes of biosynthetic pathways. In this
context, genome editing of 4′OMT2 (3′-
hydroxyl-N-methylcoclaurine 4′-O-methyltransferase) gene
by CRISPR/Cas9 system helped in mass production of
bioactive benzylisoquinoline alkaloids (papaverine, codeine,
thebaine, laudanosine, noscapine, s-reticuline and morphine)
in Papaver somniferum by converting them into biofactories
(Alagoz et al. 2016). Genome editing of SmRAS (rosmarinic
acid synthase) gene through CRISPR/Cas9 helped in regu-
lating the biosynthetic pathway in Salvia miltiorhiza (Zhou
et al. 2018). Genetic manipulation of Morphogenic Regu-
lator (MR) gene during somatic embryogenesis was found to
be helpful in increased production of cannabinoids in vitro.
Targeting Induced Local Lesions In Genomes (TILLING)
mutation technique of cation/H+ exchangers transporters
showed improved salinity tolerance and crop growth in
Brassica rapa by influencing phytohormone signaling and
ion homeostasis (Navarro-León et al. 2020). Stable Isotope
Labelling by Amino acids in Cell culture (SILAC) approach
was successfully employed for enhancing the secondary
metabolism pathways in plants (Martínez-Esteso et al.
2015). Multiple Reaction Monitoring (MRM) would also be
an innovative approach in targeting the key enzymes and
transporter proteins of plant secondary metabolic pathways
for enhanced production and crop improvement (Martíne-
z-Esteso et al. 2015). Isolation of plant extracellular vesicles
and nanovesicles from different plant sources have also been
proved to be useful for plant bioprocess engineering of
secondary metabolite production (Woith et al. 2021). Wany
et al. (2014) mentioned the significance of functional geno-
mic approaches for enhancing secondary metabolite pro-
duction via antisense- or sense gene suppression of
metabolic pathways, production of novel compounds, reg-
ulation by compartmentalization in many plants (A. thaliana,
Ocimum americanum, etc.). Jain et al. (2013) mentioned that
cell suspension culture in bioreactors could be helpful for
large-scale bioproduction of saponins from Bacopa
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monnieri. Biotechnological approaches were applied to
identify and characterize the genes responsible for climate
resilience (SiATG8a, SiASR4, SiMYB56, EcbZIP17,
EcGBF3, PgNAC21, PgeIF4A, etc.) in millets and were
successfully introduced into several crop plants (tobacco,
rice, Arabidopsis, etc.) for improved stress tolerance and
crop performance (Singh et al. 2021). Ferrari (2010) sum-
marized the importance of the data pool retrieved from
transcriptomics, proteomics and metabolomics for develop-
ing novel techniques of secondary metabolite production.
Careful dissection of the signaling network could offer a
detailed understanding of elicitor induction for the modula-
tion of metabolic pathways.

4 Constraints of Plant Secondary Metabolite
Production and Future Prospects

A large number of external and internal factors regulate the
biosynthesis of secondary metabolites in plants. Verma and
Shukla (2015) have classified the factors into four broad
categories—genetic, ontogenic, morphogenetic and envi-
ronmental factors. The complex interplay between these
factors, in turn, affects plant secondary metabolism in several
different manners. Metabolic engineering of secondary
metabolite biosynthetic pathways has faced some challenges
regarding the desired concentration, bioavailability, absorp-
tion criteria and bioactivity of the compounds specifically
used as food products (Davies and Espley 2013). In this
connection, Nascimento and Fett-Neto (2010) pointed out
some major drawbacks of developing novel engineering
strategies for plant secondary metabolite production. These
include—lack of availability of sustainable plant sources,
constraints regarding transformation and regeneration,
proper evaluation of synthesis and accumulation in different
developmental and environmental conditions, problems in
proper identification of metabolic intermediates, difficulties
in separating the actual plant metabolic reactions from that
of the endophytes or plant–endophyte interaction and the
lack of knowledge regarding the intracellular and intercel-
lular transport mechanism of secondary metabolites in the
plant. Plant tissue and organ culture have been successfully
employed for large-scale production of medicinally impor-
tant plant secondary metabolites for many years. However,
the culture conditions, media requirements, cultivation
techniques showed great variation in yield and quality of the
final products (Isah et al. 2018). Large-scale production of
secondary metabolites is still not obtained by using
cyanobacterial biofactories due to the absence of specific
proteins and transcription factors required for

post-translational modifications of some enzymes involved
in plant secondary metabolism (Xue and He 2015). Tiago
et al. (2017) pointed out several limitations regarding the
production of secondary metabolites in plants, viz. complex
interaction of soil and environmental factors on the
biosynthesis of secondary metabolites, pleiotropy of genes
encoding the biosynthesis of secondary metabolites, multiple
regulations of biosynthetic genes, obtaining superior geno-
types, toxicity symptoms, etc. According to Brzycki et al.
(2021), a combination of traditional approaches such as
metabolic engineering and cellular engineering techniques
with modern targeted epigenetic engineering could over-
come the production deficit of secondary metabolites in
plants. Recently, the extensive use of mathematical mod-
elling approaches like Response Surface Method (RSM),
Artificial Neural Network (ANN), Kriging and the
ANN-RSM combined approach in plant biotechnology
helped to maximize the yield of secondary metabolites by
selecting high-performance cell lines, optimizing the culture
conditions and improving cell permeability (Amdoun et al.
2021). Decoding the mechanism of induction of plant sec-
ondary metabolite production in response to environmental
stresses and increased resistance against herbivores would
help to optimize the targeted gene manipulation for
achieving enhanced crop yield (Kessler and Kalske 2018).

5 Conclusion

Secondary metabolites play a significant role in plant growth
and affect crop production in various ways. Biosynthesis and
the function of plant secondary metabolites are tightly reg-
ulated by several genes and transcription factors that are
involved in complex crosstalks between them. Biotic and
abiotic elicitors stimulate the biosynthesis of secondary
metabolites by different molecular mechanisms. Overex-
pression of these transcription factors by differential
expression of these genes, modification at the transcriptional
and translational level, induction and maintenance of poly-
ploidy, production of new transgenic crops, use of
nanoparticles, etc. are considered effective engineering
approaches in increasing secondary metabolite production
for crop improvement. Although there are some concerns
regarding the sensitivity and specificity of these techniques,
several reports are available citing successful implementa-
tions of genetic engineering approaches towards crop
improvement. Future scope lies in a detailed understanding
of the signaling cascade of the secondary metabolites and
their specific molecular interaction with the other compo-
nents responsible for plant growth and development.
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Interventions of Nanotechnology
for the Growth and Stress Tolerance in Crop
Plants

Mahima Misti Sarkar , Ashis Sarkar , and Swarnendu Roy

Abstract

Agriculture is one of the important sources to fulfill the
demand of human food requirements. The conventional
methods of increasing crop production presently depend
upon chemical substances, which are harmful to the
environment as a major proportion of the applied chem-
icals get accumulated in the environment. Therefore, a
sustainable and environment-friendly method to produce
food from comparatively diminishing agricultural fields to
feed the rapidly growing world population is the need of
the hour. To address the present scenario, nanotechnology
has emerged as a potential tool for the development of
sustainable and productive agricultural systems. Nanopar-
ticles owing to their tiny size and surface chemistry are
relatively easier to be absorbed by plants and most
importantly impart negligible toxic effects on the agricul-
tural system. The other advantages of using nanoparticles
lie within their flexibility in shape, size, solubility, and
other features, which make them a suitable carrier for
beneficial agrochemicals. Therefore, this chapter will
focus on the different types of nanoparticles available,
their mechanism of uptake, and their potential to stimulate
crop improvement either by directly boosting the plant
growth or by indirectly managing the losses incurred due
to the effects of abiotic or biotic stresses.

Keywords
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Functionalization � Nanotechnology � Surface chemistry

Abbreviations

AgNPs Silver nanoparticles
APX Ascorbate peroxidase

CAT Catalase
CBN Carbon-based nanomaterials
EL Electrolyte leakage
HANPs Hydroxyapatite nanoparticles
MDA Membrane lipid peroxidation
MgONPs Magnesium oxide nanoparticles
MSI Membrane stability index
MWNTs Multi-walled nanotubes
NPK Nitrogen–phosphorus–potassium
NPs Nanoparticles
PAL Phenylalanine lyase
POX Peroxidase
PPO Polyphenyl oxidase
PR Pathogenesis-related gene
ROS Reactive oxygen species
RWC Relative water content
SA Salicylic acid
SiNPs Silica nanoparticles
SOD Superoxide dismutase
STE Sieve-tube elements
SWNTs Single-walled nanotubes
TiO2NPs Titanium dioxide nanoparticles
TMV Tobacco mosaic virus
ZnONPs Zinc oxide nanoparticles

1 Introduction

The transition of the human race from hunter-gatherers to
builders of modern hi-tech cities came along in centuries and
we as humans have been constantly driving life-changing
innovations to improve every aspect of our life. Among
these, the introduction of agriculture has been certainly
decisive in ensuring food security and thus has greatly
influenced the development of human civilization (Balkr-
ishna et al. 2021). Although a steady and ascending
advancement has been inducted since the beginning of
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agriculture, the past century has witnessed very fast agri-
cultural innovations like mechanization, marker-assisted
breeding, and the development of transgenic crops (Mou-
lick et al. 2020). By 2050, the human population is expected
to touch the 10 billion mark, therefore, approximately 50%
more food would be required to sustain the global population
(Mora et al. 2020). The current agricultural approaches seem
to be non-supportive for feeding this ever-growing human
population due to various rising concerns, viz. continuous
reduction of soil fertility, water availability; increased pro-
liferation of pathogens and pests, toxic chemicals in soil,
climate change, etc. (Moulick et al. 2020). To counteract
these adversities researchers have focused on improving the
soil health, microbiome, biofertilizers, biopesticides, bio
fungicides, etc. In this connection, the “smart agriculture”
approach is gaining importance which advocates for the
development of safer and potent pesticides, remote sensors,
next-generation bio-sensors to monitor soil health, satellite
technology, etc. (Moulick et al. 2020; Mora et al. 2020).

Among the current scientific progressions, nanotechnol-
ogy has emerged as an impending tool for solving the global
food crisis. Nanotechnology essentially refers to the study of
nanosized (1–100 nm) materials, which can exist in liquid,
gaseous, or solid states (Buzea et al. 2007; Ghosh and
Pal 2007). The nanosized materials usually exhibit some
unique properties due to their “small size effect”, “quantum
effect”, “macroscopic quantum tunnelling effect”, and “sur-
face effect” (Hu and Xianyu 2021). Nanomaterials hold
some exclusive physicochemical properties and great flexi-
bility to associate with various biomolecules along with
other nanomaterials (Sanzari et al. 2019). The term
“nanoparticles” has been introduced by Norio Taniguchi in
the early 1970s, whereas the traces of nanoparticles (NPs) in
nature can be found as early as thousand years back (Pra-
manik et al. 2020). In recent times, NPs are gradually
gaining attention for their variety of agronomical applica-
tions and their role in the improvement of crop productivity.
Several studies have reported that the metal-based NPs have
been extensively used in agriculture as fertilizers, antimi-
crobial and antifungal agents to increase crop yield (Panáček
et al. 2009; Rizwan et al. 2017; Rajput et al. 2018a; Huang
et al. 2018). The role of NPs in abiotic stress management
has also been well studied in many plants and has shown
promising results, e.g., NPs of zinc oxide, copper oxide,
silicon dioxide, etc. potentially improved crop productivity
by reducing the negative effects of heavy metals and drought
stress (Biju et al. 2017; Cui et al. 2017; Hussain et al. 2018;
Rajput et al. 2018b). Recent advancements in analytical
techniques and bioinformatics tools or “omics approaches”
gave insight into the molecular mechanisms and also
bestowed the status of metabolites, proteins, and genes in
plants under biotic and abiotic stress (Kumar et al. 2015).
The application of engineered nanomaterials in “omics”-

based approach or system biology can deliver illustrious
output in agronomical research via sensitive and precise
screening of the biomolecules like metabolites (metabo-
lomics), proteins (proteomics), mRNA (transcriptomics),
and genes (genomics) in an organism (Quanbeck et al. 2012;
Majumdar and Keller 2020).

Several studies have suggested that the interaction
between plants and NPs is immensely complex and
dynamic. The effect of NPs on plants depends on several
factors such as the method of administration, stability,
transformation, bioavailability, aggregation, application
media, interaction efficacy of NPs with plant and soil, tox-
icity, and the fate of NPs in the environment (Bradford et al.
2002; Hotze et al. 2010; Lin et al. 2010a, b; Amde et al.
2017; Yadav et al. 2018). The uptake, translocation, and
accumulation of NPs inside the plant deeply rely on various
aspects like size and shape of NPs, physicochemical prop-
erties of the NPs, application methodologies, environmental
components (soil, water, microbes), plant physiology, and
anatomy (Pérez-de-Luque 2017; Sanzari et al. 2019).
Besides, the location of applied NPs and their positive roles
in plants has been elucidated through advanced imaging
techniques e.g., single particle inductively coupled plasma
mass spectrometry (sp-ICP-MS) and synchrotron-based
imaging, advanced electron microscope (Castillo-Michel
et al. 2017; Keller et al. 2018; Avellan et al. 2019). This
book chapter provides an overview of the types of agro-
nomically useful NPs, their current status, applications in
crop improvement under stress, and futuristic applications.

2 Status of the Use of Nanotechnology
in Crop Improvement

Nanotechnology is emerging in its great role to fulfill the
nutrition needs of crops. Nowadays, nanonutrition is
emerging as a promising tool in the agricultural sector and
thus exploring the potential of nanoparticles in this context is
of great interest (Ditta and Arshad 2016). Nanoparticles have
been examined to have a tremendous impact on plant growth
by regulating the primary and secondary metabolism (Jasim
et al. 2017). In the agricultural field, nanotechnology is
emerging as an alternative tool to reduce agricultural inputs,
enhance food value, improve shelf life with improved
nutrient contents, maintain freshness and quality of food,
enhance micronutrients, and antioxidant absorption (Kanjana
2015). Nanoparticles are believed to confer novel applica-
tions in various aspects like crop management, crop
improvement, protection of crops through genetic modula-
tions, controlled release of agrochemicals (nutrients, fertil-
izers, pesticides, herbicides), target-specific delivery of
biomolecules, detection of diseases and pests, seed man-
agement and their protection from pathogens (Chinnamuthu
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and Boopathi 2009). The advancement of nanotechnology is
currently directed toward the development of nanosensors
for monitoring soil conditions, nutrition availability, man-
agement of pathogen and pests, detection of hazardous or
toxic substances, and also other environmental factors
associated with plant growth and development (Cheng et al.
2016). Nanosensors can be used effectively to deliver fer-
tilizers, microelements, growth-promoting biomolecules,
pesticides, etc. to ensure healthy crop production without
compromising product quality and also assuring the devel-
opment of sustainable agricultural practices (Cheng et al.
2016). Nanosensors are also used as a detecting agent of
plant pathogens using DNA, antibody, and volatile com-
pounds as biosensing receptors. Nanosensors are a reliable
method of disease detection because it is nondestructive,
economical, minimally invasive, and easy-to-use systems
with enhanced detection limit, specificity, sensitivity, and
on-site detection of plant pathogens (Kashyap et al. 2019).
Nano fertilizers can be synthesized either by the encapsu-
lation of nutrient molecules within porous nanomaterials or
by surface coating of nanomaterials by nutrient molecules.
Nanopesticides or nanoplant protectors are
nanomaterial-based developments that confer plant protec-
tion against pathogens, insects, and weeds, increasing their
effectiveness and durability (Kumari et al. 2020). Nano
formulation of any substance prevents undesirable loss by
avoiding their interaction with soil, air, water, and
microorganisms and thus prevents the leaching, evaporation,
or even the degradation of the substances outside the plant
body (Shang et al. 2019). But for the vast application of
nanoformulation, further ecotoxicological studies along with
a correct and safe application strategy of nanomaterials in
agriculture need to be formulated (Bratovcic et al. 2021).

3 Nanoparticles and Their Types

Commonly studied nanomaterials are commercially pro-
duced by humans, while some nanoparticles are also unin-
tentionally created during various natural processes such as
degradation by the volcanic eruption, water, wind current,
etc. (Panpatte et al. 2016). The formation of nanomaterials
commonly follows two major processes, i.e., “top-down”
(creation of nanomaterials from macro-size materials by
physical method) and “bottom-up” (atomic and molecular
rearrangement which gives rise to nanoscale materials by
chemical or biological method) (Das and Das 2019). These
nanoscale materials can be present in various shapes (tubu-
lar, spherical, or asymmetrical), form (one, two, or three
dimensions), arrangement (solitary, multiple, or aggregated),
and surface chemistry (presence and absence of charge or

free groups). In general, the nanoparticles can be categorized
into three major groups, i.e., polymeric, metals, and non-
metals (Fig. 1).

3.1 Polymeric NPs

3.1.1 Liposomes and Micelles
Liposomes are lipid-based vesicles commonly synthesized
by hydration of dry phospholipids and can be created in
various sizes, structures, and compositions. The foremost
aim to use liposomes is their competency to fuse with cell
membranes and deliver their fillings directly inside the
cytoplasm (Ealia and Saravanakumar 2017). Thus, different
therapeutic molecules (both hydrophobic and hydrophilic)
can be filled inside the hollow core of the lipid layer and
delivered to the targeted site (Oberholzer and Luisi 2002;
Patil and Jadhav 2014). There are major three types of
liposomes, i.e., small unilamellar, large unilamellar, and
multilamellar classified based on the number of lipid bilay-
ers. Furthermore, the feasibility of surface modifications
with other polymers or polyethylene glycol (PEG) chains
gives an upper hand in the target-specific efficient delivery of
different molecules (Gabizon et al. 1994). Apart from lipo-
somes, a few other nanostructured polymeric NPs, e.g.,
micelle, microemulsions, nanoemulsions have been cur-
rently gaining attention in agronomical research due to their
commendable role as a nanodelivery system for different
molecules like enzymes, nutrients, food antimicrobials,
nutraceuticals, etc. (Srinivasan et al. 2019).

3.1.2 Dendrimers
Dendrimers are organic polymers (polyamidoamine,
polypropylene imine, polyether-copolyester, peptide) and
well-studied NPs for their unique features like higher
monodispersity, hyper branching, compartmental structures,
etc. Their branch number can be adjusted and ranges in size
from 1 to 5 nm (Caminade et al. 2012; Ealia and Sara-
vanakumar 2017). In recent times, these polymeric NPs have
been extensively used in various therapeutic approaches.
Moreover, some assembled dendrimers are capable of
encapsulating various biologically active components and
delivering them to the targeted sites to enhance disease
resistance and stress tolerance to improve agricultural pro-
ductivity (Chauhan et al. 2020; Sikder et al. 2021).

3.1.3 Nanogels
Another polymeric or nonfluid colloidal nanomaterial (based
on amphiphilic polysaccharides, cholesterol, etc.) that swells
and forms gels when it comes in contact with fluids, is
regarded as nanogels. The diameter of nanogels typically lies
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under 100 nm and shows unique properties like swelling
ability, size flexibility with much higher water content, and
formation of natural or synthetic polymers (Alemán et al.
2007; Tahara and Akiyoshi 2015). The use of nanogels is
widespread in cell culture, biosensors, molecular delivery,
etc. (Tahara and Akiyoshi 2015; Sharma et al. 2016; Neamtu
et al. 2017). A recent study suggested that alginate-based
nanogels can potentially deliver small molecular pesticides,
which improves plant resistance against tobacco mosaic
virus (TMV) and enhance the growth in N. benthamiana (Lv
et al. 2021).

3.1.4 Chitosan
Chitosan is a polysaccharide-based biopolymer generally
found in the exoskeleton of Crustaceans. Chitosan-based
nanostructures show lower toxicity, higher surface-to-volume
ratio, easier availability, enhanced mobility, etc. making them
one of the effective polymer-based NPs for agronomical
research (Kashyap et al. 2015; Mohammed et al. 2017).
Chitosan nanoparticles also established some essential prop-
erties like biodegradability, biocompatibility, greater perme-
ability, good capability to form film, etc., and also can be
employed as a dynamic delivery vehicle (Shukla et al. 2013).

Fig. 1 Agronomically important
nanoparticles and their
classification
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In addition, these NPs may also interact with different
metal-based NPs (Ag and Cu) and serve as a possible thera-
peutic agent against pathogenic microbes and improve crop
productivity (Agnihotri et al. 2012;Brunel et al. 2013).

3.2 Metal-Based NPs

3.2.1 Metals
In recent times, metals-based NPs like gold, platinum, silver,
zinc, copper, cadmium, cobalt, iron, and others are gaining
attention due to their role in countless biological applications.
These nanoparticles can be synthesized practically from all
metals by both “top-down” as well as “bottom-up” methods
(Salavati-niasari et al. 2008). The NPs hold some unique
physiochemical characteristics such as nanoscale size (10–
100 nm), shapes (cylindrical or spherical), surface features
(pore size, high surface area to volume ratio, surface charges,
etc.), structure (crystals or amorphous), color, and stability
under various environmental factors (Ealia and Saravanaku-
mar 2017). Among the metal-based NPs, the noble metals
(gold, silver, platinum) have shown promising competence in
functionalization with many functional groups, e.g., poly-
mers, peptides, RNA, or DNA (Fan et al. 2018). These
functionalized NPs can potentially target diverse groups of
plant cells and improve plant growth via increasing cellular
penetration, biomolecular recognition, gene or drug delivery,
tissue engineering, etc. (Fan et al. 2018).

3.2.2 Metal Oxides
Nanoparticles of metal oxides are the modified form of
metal-based NPs, synthesized from the respective metallic
NPs via altering their properties, for example, at room
temperature in presence of oxygen, iron nanoparticles
(Fe) instantly form iron oxide (Fe2O3) by oxidation
(Sanchez-Moreno et al. 2016). Few frequently synthesized
metal oxide NPs are zinc oxide (ZnO), titanium dioxide
(TiO2), iron oxide (Fe2O3), magnetite (Fe3O4), copper oxide
(CuO), aluminum oxide (Al2O3), etc. Some advantages of
using metal-based oxides are easy producibility, higher sta-
bility, simpler engineering to prepare required shape, size,
and porosity, easier integration or functionalization with
various molecules, etc. (Sanchez-Moreno et al. 2016).

3.2.3 Metal Sulfides
Another leading form of metal-based NPs is metal sulfides.
The transformation of metal or metal oxide NPs into metal
sulfides is facilitated by reshaping the chemical arrangement
called sulfidation, thereby, reducing the hazards of using
metal-based NPs (Devi et al. 2015). Some well-studied and
agronomically important metal sulfides are silver sulfide
(Ag2S), copper sulfide (CuS), zinc sulfide (ZnS), cadmium

sulfide (CdS), iron sulfide (FeS), and lead sulfide (PdS) NPs.
A current study suggested the use of iron sulfide NPs can
elevate plant growth and crop yield by improving iron
content, redox status, expression of Rubisco, GS, and
GOGAT genes in Brassica juncea (Rawat et al. 2017).

3.2.4 Nutrient Based
The growth and development of plants are directly regulated
by the availability of both macroelements (nitrogen, phos-
phorus, and potassium) and microelements (zinc, copper,
iron, manganese, etc.) in the soil. Thus, an introduction of
nanostructured macro and microelements has shown a
promising result in sustainable agricultural production (Kalia
et al. 2019). The nanoformulation of nutrients transforms the
physical properties like shape, size, crystallinity, dimen-
sions, topography, etc., which positively progresses the
uptake of nanosized nutrients by plant roots via interaction
with soil components (Kalia et al. 2019). Further, the surface
of nanofertilizer permits a large number of modifications
using various types of biomolecules along with other NPs.
The seed priming and foliar application of engineered
nanofertilizers (surface modification by nanochitosan and
CNTs) significantly improved the growth and yield as well
as reduced harvesting duration of French beans (Abdel-Aziz
et al. 2019). Among the nutrient-based NPs, hydroxyapatite
(HA) has emerged as a well-known biomaterial. Though it
has been extensively studied for biomedical applications,
HA can serve as a potential nutrient source for phosphorous
to improve plant biomass and crop yield (Madanayake et al.
2021). The HANPs offer greater flexibility to transform the
surface and can be attached with various other nutrients or
NPs. Some surface-modified HANPs have shown sustained
discharge of several nutrients or metabolites (amino acids,
chitosan, carboxymethyl cellulose, etc.) and established
higher agricultural productivity (Kottegoda et al. 2011;
Marchiol et al. 2019; Madanayake et al. 2021).

3.3 Nonmetal NPs

3.3.1 Carbon Based
A well-defined arrangement of carbon atoms in different
shapes and sizes gives rise to various types of NPs like
fullerenes, graphene, carbon nanotubes, carbon black, car-
bon fibers, etc. Fullerene is a spherical arrangement of car-
bon molecules (C60), where approximately 28–1500 carbon
atoms adhere together by sp2 hybridization and forms
globular assembly with diameters up to 4–36 nm (Ealia and
Saravanakumar 2017). Another well-studied carbon-based
nanostructure is graphene. Graphene is a hexagonal allo-
tropic structure of carbon atoms and it is a honeycomb-like
assembly in a 2D planar surface with an estimated thickness
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of 1 nm (Ealia and Saravanakumar 2017). These
honeycomb-like graphene foils further give rise to carbon
nanofibers and carbon nanotubes. Graphene nanofoils are
further twisted in a cup or cone shape to produce carbon
nanofiber. Whereas, the graphene nanofoils are wrapped or
coiled into a hollow cylindrical shape to form nanotubes
(Iijima 1991). Based on the configuration of graphene foil
layers in carbon nanotubes (CNT), it can be classified as
single-walled nanotubes (SWNTs) and multi-walled nan-
otubes (MWNTs). The thickness of SWNTs and MWNTs
are 1 nm and 100 nm respectively with a few millimeters in
length (Ealia and Saravanakumar 2017). Among nonmetallic
NPs, carbon nanotubes have shown great potential as a
therapeutic agent for their variable size and stable geometric
shapes (Yetisgin et al. 2020). Carbon black is an amorphous
or globular-shaped (20–70 nm diameter) material, fabricated
from carbon molecules, and generally the particles aggregate
due to their higher interaction between themselves (Ealia and
Saravanakumar 2017).

3.3.2 Silica Based
In recent times, silica-based NPs have gained attention in
agronomy for their diversified application, flexibility, and
cost-effectiveness. Also, their physiochemical characters,
surface-to-volume ratio, porosity, ability to functionalize a
wide variety of molecules make silica-based NPs a potent
therapeutic agent and delivery vehicle for a large number of
agronomically useful molecules (Yetisgin et al. 2020).
A large surface area of silica-based NPs is enclosed with
polar silanol groups, which helps in water adsorption and
further improves its solubility. Moreover, silica-based NPs
have shown the capability of delivering molecules at tar-
geted sites, e.g., pesticides, phytohormones, nucleic acids,
etc. (Zhao et al. 2017; Sun et al. 2018; Khan et al. 2020).

4 Nanomaterials and Their Mechanism
of Action

4.1 Uptake

The uptake of NPs by plants relies on many factors such as
size, shape, stability, physicochemical properties, surface
charge, and surface functionalization of the nanoparticles,
type of application, and environmental factors like soil,
water, microbial partners, etc. Moreover, the complex
physiology and anatomy of the plants immensely contribute
to the process of NPs uptake and transformation (Pér-
ez-de-Luque 2017; Sanzari et al. 2019). The uptake mech-
anism of most nanomaterials has been well studied in plants.

The NPs with good solubility are majorly applied in the form
of solutions at both plant roots, leaves, and other aerial parts.
However, the uptake of NPs largely takes place via root hairs
and leaf surfaces, while a low absorption rate was reported
via other parts (Ali et al. 2021a).

The dynamics of NPs uptake seem to be a comparatively
complex process from the soil than that of the aerial
absorption by plants. Many aspects like the amount of soil
organic matter, the occurrence of symbiotic partners, secre-
tion of mucilage, and root exudates may influence the NPs
absorption from the soil. For example, root secreted muci-
lage and exudates are found to play a dual role in NPs uptake
by upholding NPs attachment at the root surface, which
improves the rate of NPs internalization and plays a similar
role in trapping and aggregation of NPs (Avellan et al. 2017;
Milewska-Hendel et al. 2017). A superior rate of NPs
absorption was reported at the root tips and adjacent to lat-
eral branch junctions in the case of root-specific uptake,
however, a higher deposition of suberin in upper parts
blocks the infiltration of NPs (Chichiriccò and Poma 2015).
Nanoparticles generally interact with plant roots and are
absorbed by root hairs, subsequently translocated to the
above-ground parts, and finally accumulated in cellular or
subcellular organelles of the plant body (Ali et al. 2021a).
The entrance of NPs through the stomata or pores of the cell
wall is directly correlated with the size of NPs, which also
determines the successive transportations of NPs inside cells
or cellular organelles, accumulation, transport kinetics, and
toxicity (Tripathi et al. 2017). Moreover, a few other
parameters are found to be crucial, e.g., surface area,
hydrophobicity, charge, reactivity, agglomeration for the
uptake and translocation of NPs in plants (Wang et al. 2013;
Kaphle et al. 2018).

Another well-studied mechanism of NPs uptake is
absorption via vegetative parts (preferably foliar uptake).
Application of NPs on the exterior passively uptakes NPs
through natural openings like stomata, hydathodes, or cuti-
cles (Eichert et al. 2008; Kurepa et al. 2010). Furthermore,
some aspects of plant physiology and anatomy need to be
considered to gain better insights into the dynamics of plant–
NPs interactions. For instance, the above-ground parts of
plants are commonly found to be shielded by a layer of
cuticles along with some waxes, which mainly functions as a
protective barricade for above-ground organs, however, the
natural openings remain uncovered and permit the passage
of NPs inside (Sanzari et al. 2019). There are very few
studies that inspected the uptake of NPs via an almost
impermeable cuticle layer, however, studies reported that
TiO2, Ag, and Pb NPs (4–100 nm) can induce holes in the
cuticle layer and infiltrates through it (Schreck et al. 2012;
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Larue et al. 2014; Schwab et al. 2016). The presence of
trichomes on plant organs is generally found to entrap NPs
and allows more time for the internalization of NPs inside
plant tissue (Sanzari et al. 2019). Studies suggested that
wounds and injuries in plant aerial surfaces and hypogeal
parts may serve as a potential route for NPs uptake
(Al-Salim et al. 2011).

4.2 Translocation

The NPs absorbed via aerial and hypogeal parts of the plants
once infiltrated the outer protective layer are generally
mobilized either apoplastically (movement through the cell
wall and extracellular spaces) or symplastically (movement
through cytoplasms which are connected by a large number
of plasmodesmata). In the case of foliar or aerial absorption,
after NPs pass through the cuticle layer, the translocation
toward the vascular bundles involves a few other obstruc-
tions (Bird and Gray 2003; Avellan et al. 2019). The tightly
packed outermost layer of epidermal cells poses the very first
blockade. Beneath the epidermis, chloroplast containing
photosynthetic leaf tissue or mesophyll tissues impedes easy
translocation of NPs (Schwab et al. 2016; Avellan et al.
2019). The movement of NPs can be either symplastic or
apoplastic toward sieve tubes of phloem via the bundle
sheath cells and companion cells. Nanoparticles can move
through symplastic or apoplastic pathways to the bundle
sheath cells that are connected to companion cells and
advance toward sieve-tube elements (STE) of the phloem
(Fig. 2) (Avellan et al. 2021). A similar mechanism of NPs
movement through the plasmodesmata has been described in
some popular plant species like Arabidopsis and rice (Lin
et al. 2009; Geisler-Lee et al. 2013). Moreover, some studies
have also reported that the internalization of NPs inside cells
takes place via endocytosis, pore formation, protein carriers,
etc. (Nel et al. 2009; Lin et al. 2010a, b; Wang et al. 2012;
Palocci et al. 2017).

The root-specific absorption of smaller NPs (3–5 nm)
generally takes place via capillary action, osmotic pressure,
or direct passage through the root epidermal cells (Du
et al. 2011; Pérez-de-Luque 2017). The cell wall of root
epidermal cells usually shows semi-permeable nature and
contains small pores, which allows smaller NPs whereas
restricts the entry of relatively larger NPs (Ali et al. 2021a).
Once, NPs cross the root epidermal cells, they are trans-
ported apoplastically through the extracellular spaces toward
vascular bundles. On the other hand, they cross the endo-
dermis layer symplastically to reach the central vascular

cylinder due to the presence of the Casparian strip and are
transported through the xylem vessels to move unidirec-
tionally to different parts of the plant body (Ali et al. 2021a).

4.3 Accumulation

The fate or bioaccumulation of NPs is predominantly
influenced by the physicochemical properties of NPs and the
plant species. Furthermore, the accumulation of NPs is
regulated by many other factors, which influence the uptake
and translocation. For instance, a study had suggested that
the accumulation of quantum dots (CdSe/ZnS) specifically
takes place inside the cytoplasm and nucleus of the M. sativa
cells (Santos et al. 2010). Another study described that
hydrophilic NPs with a size � 40 nm can enter through the
natural openings like stomata and the foliar application of
such NPs results in accumulation of NPs in the stomata and
skips the vascular routes, and eventually gets distributed to
the different parts of the plant body (Eichert et al. 2008).
Other nanoparticles such as nanosilicon are distributed via
xylem vessels to the different parts of the plant body
including the leaves and deposited under the cell wall in the
form of silica (Ma and Yamaji 2006; Sahebi et al. 2015;
Nawaz et al. 2019). Some other studies suggested that the
internalized NPs can be transported through phloem sieve
tubes besides major transport molecules, i.e., sugars and NPs
also show the bidirectional movement inside phloem, thus
NPs can be effectively accumulated inside various potent
sinks (e.g., young leaves, roots, stems, fruits, grains, etc.)
(Wang et al. 2013; Raliya et al. 2016; Tripathi et al. 2017;
Ruttkay-Nedecky et al. 2017). Nanoparticle dissolution also
plays an important part in deciding the fate of nanoparticle
accumulation. Dissolution occurs in two ways firstly the NPs
can dissolute in their ionic form outside the roots when it
comes in contact with the root exudates, and in the other
case NPs can dissolute after entering inside the plant body.
For example, ZnO NPs get ionized when comes in contact
with root exudates on the root–soil interface and accumulate
as their ionic form in the nuclei, cytoplasm, apoplast of the
endodermal cells, and the vascular bundles (Singh et al.
2018). In a different study, it was observed that both
Cu3(PO4)2�3H2O and CuO NPs, release Cu ions after they
enter the plant tissues and come in contact with the xylem
sap (Borgatta et al. 2018). After entering the plant body, NPs
interact with some biologically active molecules in the cells
and intercellular spaces. Lv et al. (2015) reported that Zn
could be uptaken in the form of Zn2+ released from ZnONPs,
and gets accumulated in the form of ZnPO4 in maize root
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cells following biotransformation inside the plant cells.
Nanoparticles can also penetrate any cells and accumulate
inside the organelles like chloroplast and mitochondria
(Ahmadov et al. 2020).

5 Nanoparticles in Crop Improvement

5.1 Zinc Oxide Nanoparticles (ZnONPs)

Zinc is one of the essential micronutrients required for the
proper growth and development of plants. Zinc deficiency in
plants is observed in the form of retarded growth and low
yield (Merchant 2010). Zinc oxide nanoparticles are con-
sidered a “biosafe material” for all living organisms. They

are known to stimulate seed germination and plant growth
and provide disease resistance and plant protection through
antimicrobial activity (Faizan et al. 2020).
Green-synthesized ZnONPs were observed to increase plant
growth parameters in a better way than the chemically
synthesized ones (Singh et al. 2019). In this connection, the
green-synthesized nanoparticles were smaller in size than the
chemically synthesized nanoparticles, therefore, it was con-
cluded that the smaller sized nanoparticles have greater
potential than the larger ones (Singh et al. 2019). In a dif-
ferent study, when the tomato plant roots were dipped in
ZnONPs solution and transplanted in pots, the plants showed
increased shoot and root length, fresh and dry mass of root
and shoot, leaf area along with better antioxidant activity,
higher accumulation of proline, and increased

Fig. 2 Schematic representation of different approaches of nanopar-
ticle applications. The proposed mechanisms of nanoparticle uptake
and translocation by plants through different routes in different organs.

Movement of nanoparticles inside plant body through apoplastic and
symplastic pathways. The positive effects of nanoparticle application on
plant morphology and physiology
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photosynthetic rate (Faizan et al. 2018). Pretreatment of
seeds with ZnONPs also resulted in increased seed germi-
nation rate and early seedling growth of chili. A significant
increase in root length, shoot length, and the total height of
chili seedlings indicated the positive impact of ZnONPs
(Afrayeem and Chaurasia 2017). Phyco-synthesized
ZnONPs using a green macroalga (Halimeda tuna) when
applied to the cotton (Gossypium hirsutum L.) plants, an
increase in growth and total biomass of the plants was
observed. Additionally, an increase in photosynthetic pig-
ment content, reduction in MDA content, and improved
antioxidant defense were also observed in
nanoparticle-treated plants in comparison to the control
plants (Venkatachalam et al. 2017). Transcriptomic and
metabolomic analysis of iron-deficient tomato plants treated
with ZnONPs foliar spray revealed a significant increase in
the expression of the antioxidative enzyme encoded genes,
transporters, and the enzymes/regulators involved in sec-
ondary metabolism and carbon/nitrogen metabolism. In this
way, ZnONPs improved the levels of antioxidants, sugars,
and amino acids, thus, improving plant health (Sun et al.
2020). These studies, therefore, reveal the potential of
ZnONPs in supporting plant growth and development in a
better way.

5.2 Magnesium Oxide Nanoparticles (MgONPs)

Magnesium is a metal, alkaline in nature, and an essential
element for all living organisms. The ionic state of Mg has
important roles in the formation of biological polyphosphate
compounds like DNA, RNA, and ATP. It is a common
additive to commercial fertilizers because Mg is the crucial
central element in photosynthetic pigments like chlorophylls
(Ramadan et al. 2020). Mineral nanoparticles have the
potential to enhance the growth and development of plants
along with the amelioration of the negative effects of soil
hazards. For example, foliar application of magnesium and
iron oxide nanoparticles to soybean plants resulted in the
improvement of growth parameters (Ramadan et al. 2020).
The application of MgONPs also increased the growth of
tobacco plants by increasing the chlorophyll content and
activity of antioxidant enzymes like POX and SOD when
compared to the bulk Mg-treated plants (Cai et al. 2018).
Green-synthesized magnesium hydroxide nanoparticles
synthesized using Aspergillus niger filtrate when applied to
Zea mays in both in vivo and in vitro conditions improved
plant growth, where shoot height and root length were
increased significantly along with minimum dissipation of
chlorophyll as compared to the bulk Mg-treated plants and
the control plants (Shinde et al. 2020). In another study,
foliar application of MgNPs synthesized from Aspergillus
brasiliensis TFR 23 to wheat plants significantly increased

the activities of enzymes like dehydrogenase, esterase,
alkaline phosphatase, acid phosphatase, nitrate reductase,
which eventually leads to increased uptake and mobilization
of nutrients. Also, the root length and root biomass were
significantly increased indicating the positive role of MgNPs
in crop improvement (Rathore and Tarafdar 2015).

5.3 NPK NPs

The productivity of grain crops is directly influenced by the
abundance and availability of essential nutrients like NPK in
the soil because it is essential for plant growth and devel-
opment. Nitrogen is the main component of proteins and
protoplasm and thus has a great role in plant biomass pro-
duction (Meharg and Marschner 2012). Phosphorus is
involved in important physiological processes such as pho-
tosynthesis, cell division, stimulating root growth, grain
formation, production of energy compounds, nucleic acids,
and protein (Havlin et al. 2005). Potassium also has an
important and essential role in enzyme effectiveness, pho-
tosynthesis, protein synthesis, osmotic regulation, ion bal-
ance, energy transfer, stomatal movements, and stress
resistance in the plant (Marschner 2011). Nowadays, modern
techniques to utilize nano-NPK is increasing the value of the
agricultural product and reducing the wastage of the tradi-
tional NPK fertilizer, which is also responsible for soil and
water pollution (AL-Gym and Al-Asady 2020). NPK
nanoparticle treatment by spraying and mixing with soil on
yellow corn (Zea mays L.) has resulted in a significant
increase in vegetative growth and yield by significantly
increasing plant mean height, the total number of leaves,
total chlorophyll content, number of grains per cop, weight
per 500 grains, grain yield and biological yield (AL-Gym
and Al-Asady 2020). Foliar application of Zn, Fe, and NPK
nanofertilizer on chickpea plants resulted in a significant
increase in plant height, the number of branches, seed
weight, biological yield, and seed yield than the untreated
control plants (Drostkar et al. 2016). Nano-formulated and
sulfate-supplemented NPK fertilizer (CS-NPKS) resulted in
an increase in plant height, the number of leaves, stem
diameter, and chlorophyll content than the untreated and
normal NPK, NPKS treated plants (Dhlamini et al. 2020).

5.4 Silver Nanoparticles (AgNPs)

Silver nanoparticles have been used for improving crop
growth and productivity in recent years. Various reports
have indicated that appropriate concentrations of AgNPs can
play an important role in improving seed germination
(Shelar and Chavan 2015), plant growth (Kaveh et al. 2013;
Sharma et al. 2012; Vannini et al. 2013), photosynthetic

Interventions of Nanotechnology for the Growth … 429



efficiency, and chlorophyll content (Sharma et al. 2012;
Hatami and Ghorbanpour 2013). For example, foliar appli-
cation of AgNPs on fenugreek plant (Trigonella foenum
graecum) resulted in improved growth parameters, increased
biochemical aspects such as photosynthetic pigment, indole
acetic acid contents, and thus enhanced the crop yield.
Further, the quality of seeds (increased percentage of protein
and carbohydrate, flavonoids, phenolics, and tannins con-
tents) was also improved along with increased antioxidant
activity (Sadak 2019). Not only improved growth but
AgNPs was observed to increase the production of a major
phytochemical—diosgenin in the fenugreek plant, which has
medicinal properties (Jasim et al. 2017). Improved germi-
nation parameters like longer shoot and root length,
increased dry mass, and germination speed of lentils was
observed when treated with AgNPs compared to the plants
treated with bulk silver (Hojjat and Hojjat 2016). AgNPs
along with Bacillus cereus LPR2 application in maize plants
resulted in better root and shoot growth than the control
plants (Kumar et al. 2020). AgNPs synthesized using the
culture filtrate of an endophytic fungus (Fusarium Semitec-
tum) when applied to mung bean, pigeon pea, and chickpea
seeds improved the germination percentage, germination
index, root length, and shoot length (Singh et al. 2016).
Similarly, treatment with AgNPs, synthesized from Berberis
lycium root bark extract resulted in better growth and yield
of Pisum sativum. The yielded seed from treated plants was
greater in protein and carbohydrate content than the
untreated control plants (Mehmood and Murtaza 2017).

5.5 Titanium Dioxide Nanoparticles (TiO2NPs)

Titanium dioxide (TiO2) is considered a beneficial element
for plant growth and development and is also widely used in
the agriculture sector. The application of TiO2 was reported
to improve crop performance by stimulating enzyme activ-
ity, increasing chlorophyll content and photosynthesis,
nutrient uptake, stress tolerance, and crop yield and quality
(Chaudhary and Singh 2020). Titanium dioxide nanoparti-
cles are considered an essential nutrient for plant growth and
development (Khot et al. 2012; Fraceto et al. 2016). It was
also reported to increase chlorophylls, carotenoid, and
anthocyanin contents and thus, improved plant growth,
development, and yield (Morteza et al. 2013). The applica-
tion of TiO2NPs imparted a positive role in the growth of
plants such as Brassica napus (Mohammadi et al. 2013),
Solanum lycopersicum, and Vigna radiata (Singh and Lee
2016). Also, 50 mg/L TiO2NPs-treated coriander plants
imparted the accumulation of higher amounts of micronu-
trients (K, Ca, Mg, Fe, Mn, Zn, and B) without exerting any
toxic effects and therefore, resulted in increased root and
shoot biomass (Hu et al. 2019). Aerosol or soil-mediated

application of both ZnONPs and TiO2NPs was also shown to
impart their positive effects on tomato plants in a
dose-dependent manner. They caused varying effects on
plant phenology, chlorophyll contents, fruit yield, and
nutritional quality (Raliya et al. 2015).

5.6 Silica Nanoparticles (SiNPs)

Silicon is not considered an essential element for plants but it
is beneficial for plant growth and development. Silicon is
considered a quasi-essential element that may not be
required for plant growth but its absence can impart a neg-
ative impact on plant growth, development, and reproduc-
tion (Rajput et al. 2021). The major problem of using
commercial silicon fertilizer is its low bioavailability, how-
ever, the use of silica nanoparticles can reduce this problem
by increasing bioavailability (Rajput et al. 2021). In recent
years, SiNPs have been explored to improve plant growth
and development even in the presence of unfavorable envi-
ronmental conditions. The impact of SiNPs directly or
indirectly depends upon their shape, size, and other features
(Rastogi et al. 2017). Both the soil application and foliar
application resulted in enhancement of plant bio-metrics,
physiology, and properties of flowers, which were strongly
linked to the leaf Si content (Attia and Elhawat 2021).
Moreover, all the germination parameters (germination per-
centage, germination speed, vigor index, coefficient of
velocity of germination, germination index, mean germina-
tion time) and growth characteristics (fresh and dry weight,
shoot and root length, relative water content) was reported to
enhance significantly when Cucumis sativus plants were
treated with an aqueous solution of SiNPs (Alsaeedi et al.
2019). A lower concentration of SiNPs was reported to
increase hypocotyl length and flowering of Vicia faba
(Roohizadeh et al. 2015). All the reports supported the
ability of SiNPs in supporting sustainable agricultural
practices.

5.7 Chitosan NPs

Chitosan is a biodegradable, biocompatible, and nontoxic
polymer and it has multiple important and beneficial appli-
cations in the field of biomedical sectors as well as in agri-
culture. It has antimicrobial, antioxidant, and chelating
properties along with modifiable functional groups which
makes it versatile to be used in various applications (Jimé-
nez-Gómez and Cecilia 2020). Chitosan-based nanoparticles
have also promising characteristics for the development of
sustainable agricultural practices (Bandara et al. 2020). To
enhance rapid seedling growth, seed priming/treatment with
chitosan nanoparticles has proved to be effective
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(Kumaraswamy et al. 2018). Foliar application of chitosan
nanoparticles on coffee seedlings showed promising results
on various growth parameters (plant height, stem diameter,
leaf area) along with improved biochemical characteristics
(photosynthetic intensity, chlorophyll content, stomatal
conductance, CO2 concentration in stomata, and nutrient
uptake) (Nguyen et al. 2019). Foliar application of chitosan
nanoparticles synthesized from chitosan of the fungal cell
wall to tomato plants resulted in an improved number of
flowers per plant, number of fruits set per plant, and fruit
fresh weight (Sathiyabama and Parthasarathy 2016). Chi-
tosan nanoparticles when applied to the Robusta coffee
seedlings also increased the nutrient uptake compared to the
application of bulk chitosan. Also, there was a significant
improvement in vegetative growth, chlorophyll content, and
photosynthetic rate (Van et al. 2013). The effectiveness of
bulk NPK fertilizer was enhanced when it was nanoformu-
lated with chitosan nanoparticles. Nanoformulated NPK
resulted in improved plant height, spike weight, crop yield,
and harvest index (Abdel-Aziz et al. 2016). Chitosan
nanoparticles appear to activate the hydrolytic enzymes,
which help in the breakdown of reserve food material such
as proteins, thereby, improving the rate of cell division by
stimulating the phytohormones like auxin and cytokinin and
nutrient uptake efficiency (Kumaraswamy et al. 2018).

5.8 Carbon-Based Nanomaterials (CBN)

Carbon-based nanomaterials are mostly explored in the field
of nanopharmacology, nanomedicine, public health, where
they are used as drug carriers and for targeted delivery (Niazi
et al. 2014; Mohajeri et al. 2019). In-plant systems also,
CBN can be used as germination and growth enhancers,
pesticides, and as a carrier of molecules (DNA, phytohor-
mones, herbicides, fertilizers) to the plant cells (Verma et al.
2019). However, the full potential of CBN is yet to be
realized in the field of sustainable agriculture (Saxena et al.
2014). Carbon-based nanomaterials such as graphene and
multi-walled carbon nanotubes (CNTs) treated sorghum and
sweetgrass seeds were reported to have germination status
(Pandey et al. 2018). Similarly, soil application of CNTs has
resulted in better water absorption by seeds leading to better
germination percentage and seedling growth (Yatim et al.
2015). Multiwalled-CNTs-treated Phoenix dactylifera plants
also showed improved callus growth, accelerated seedling
growth, increased shoot length and leaf number, and
enhanced root number, root length, plantlet length, and hairy
roots along with better adsorption or transportation of
nutrients into the plants (Taha et al. 2016). Application of
carbon nanoparticles on Vigna radiata seedlings resulted in
a significant increase in chlorophyll and protein content and
plant biomass. Moreover, the activities of antioxidant

enzymes like SOD, GOPX (guaiacol peroxidase), APX, and
proline were also increased (Shekhawat et al. 2021).

5.9 Other Nanoparticles in Crop Improvement

Except for the above-described nanoparticles, several other
nanoparticles are being evaluated for crop improvement. For
example, a low concentration of FeNPs was observed to
promote plant growth by altering the leaf organization,
regulating the development of vascular bundles, and
increasing the chloroplast number and grana stacking (Yuan
et al. 2018). Similarly, a low concentration of AuNPs was
observed to improve free radical scavenging potential and
antioxidant enzyme activity along with the alteration in
micro RNAs expression which can regulate different mor-
phological, physiological, and metabolic processes in plants
(Siddiqi and Husen 2016). The gold nanoparticle was also
observed to induce the growth of tomato plants without
imparting any negative impacts (Thakur et al. 2018). Also,
the application of cerium NPs to Calendula officinalis in low
concentration resulted in enhanced antioxidant enzyme
activities, osmolytes content, and chlorophyll content
(Jahani et al. 2019). Similarly, the application of selenium
nanoparticles was also observed to increase seed germina-
tion of Hordeum vulgare without imparting any toxicity
(Siddiqui et al. 2021).

6 Nanomaterials in the Alleviation of Abiotic
and Biotic Stresses

6.1 Abiotic Stress

Plants are often exposed to harsh environments from their
very first day of emergence. There are a large variety of
unfavourable factors which can hamper a plant’s normal
growth, development, and reproduction. These factors
include high salinity, high or low temperature, deficit or over
water availability, heavy metal, UV radiation, etc. These
factors are collectively referred to as abiotic stresses which
can lead to huge losses in crop yield (He et al. 2018). Several
strategies are already implicated to overcome the adverse
stress effect of abiotic stresses on plants, among them,
nanotechnology is presently emerging to its greater potential
(Elsakhawy et al. 2018). In this connection, various
nanoparticles have already been explored for the improve-
ment of crops by negating the impacts of abiotic stresses
(Fig. 3).

Salinity stress mainly hampers plant growth by causing
oxidative damage due to the accumulation of Na+ and Cl− in
the plants. Application of AgNPs was reported to reduce the
effects of salinity stress by reducing oxidative damage and
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accumulation of Na+ and Cl− and enhancing antioxidant
activities (Khan et al. 2020). ZnONPs when applied to the
seawater-stressed okra (Abelmoschus esculentus) plants,
amelioration effects could be observed due to a significant
increase in photosynthetic pigments, antioxidant enzyme
activity (CAT, SOD), and decrease in proline and total
soluble sugars (Alabdallah and Alzahrani 2020). Similarly,
100 mg/L TiO2NPs and 20 mg/L selenium functionalized
chitosan nanoparticles were observed to ameliorate the
adverse effects of salinity stress in Stevia rebaudiana plants
by supporting their growth through increased photosynthetic
performance and antioxidant enzyme activity and decreasing
the contents of H2O2, malondialdehyde (MDA), and elec-
trolyte leakage (EL) (Sheikhalipour et al. 2021). Most
importantly, the essential oil content, stevioside, and
rebaudioside A content were also increased in stressed plants
when treated with nanoparticles (Sheikhalipour et al. 2021).
Chitosan nanoparticles were also observed to reduce the
negative effect of salinity stress of Catharanthus roseus by
activating antioxidant defense, which helps to scavenge the
ROS and by increasing the expression of mitogen-activated
protein kinases (MAPK3), geissoschizine synthase (GS), and

octadecanoid-derivative responsive AP2-domain (ORCA3)
genes, which facilitated higher alkaloid accumulation and
provided better protection against salinity stress (Hassan
et al. 2021). ZnONPs, SiNPs, TiO2NPs, and ferric oxide
nanoparticles when applied to the salinity-stressed Linum
usitatissimum plants, showed improved growth, carbon and
nutrient assimilation, and higher antioxidant activity, thus
preventing the negative effects caused by salinity stress
(Singh et al. 2021a, b).

Application of iron oxide nanoparticles and hydrogel
nanoparticles on drought and cadmium-stressed rice plants
resulted in increased biomass, photosynthetic activity,
antioxidant activity, nutrient accumulation parallelly with
the decreased ROS accumulation than the untreated plants
(Ahmed et al. 2021). Further, the cadmium transporter genes
like Oryza sativa heavy metal ATPase 2 (OsHMA2),
OsHMA3, and Oryza sativa low-affinity cation transporter1
(OsLCT1) were found to be downregulated due to the
application of nanoparticles which reduced the uptake of the
toxic metal (Ahmed et al. 2021). Cadmium-induced toxicity
in wheat plants was found to be reduced with the treatment
of SiNPs, which resulted in enhanced gas exchange capacity,

Fig. 3 Proposed mechanism of negative impacts of abiotic and biotic
stresses on plant body and alleviation of those stresses by using
nanotechnology. On the right side of the plant, there is no implemen-
tation of nanotechnology (nanoparticles) which causes severe physio-
logical, biochemical, and molecular level damage to the plant under

stressed conditions. But on the left side in the presence of nanoparticles
(native/functionalized) plants showing to have better growth and
development along with improved physiological, biochemical, and
molecular status
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chlorophyll content, antioxidant activity, and reduced elec-
trolyte leakage, and accumulation of Cd (Ali et al. 2019).
Arsenate toxicity was also observed to be ameliorated by the
use of SiNPs. In this context, the application of SiNPs was
shown to reduce the accumulation of As and enhance the
components of the ascorbate–glutathione cycle, which is
involved in counter-balancing ROS-mediated damage to
macromolecules (Tripathi et al. 2016). Similarly, cadmium
and arsenic toxicity in Solanum nigrum was reduced by the
application of multi-walled carbon nanotubes (MWCNT).
MWCNT application enhanced the accumulation of cad-
mium and bioconcentration of arsenic and thus negated the
co-contamination-induced toxicity along with a significant
increase in plant growth, mineral accumulation, and
antioxidant defense (Chen et al. 2021).

ZnONPs were also observed to enhance drought stress
tolerance of eggplant (Solanum melongena) by increasing
photosynthetic efficiency, membrane stability index (MSI),
and relative water content (RWC) (Semida et al. 2021).
AgNPs and CuNPs were also observed to reduce drought
stress of wheat plants by enhancing stomatal conductance,
chlorophyll stability index, leaf succulence, and leaf K
content (Ahmed et al. 2020). Chitosan nanoparticles were
also observed to reduce the negative impact of drought stress
by increasing proline accumulation, antioxidative defense,
and reducing H2O2 and MDA content in Catharanthus
roseus plants (Ali et al. 2021b). Heat stress of plants was
also reduced by the application of nanoparticles. For
example, AgNPs were reported to mitigate the negative
effects of heat stress by significantly increasing root length,
shoot length, root number, fresh weight, and dry weight
(Iqbal et al. 2017). Similarly, the negative effect of heat
stress on sorghum plants was reported to be mitigated by the
application of Se nanoparticles. Nanoparticle application
increased pollen germination, seed yield, antioxidant defense
along with the decrease in signature oxidants (Djanaguira-
man et al. 2018). There are several reports on the efficacy of
different nanoparticles in the alleviation of abiotic stresses in
plants, some of which are listed in Table 1.

6.2 Biotic Stress

This has been estimated that 20–40% of crop production is
reduced due to pathogenic attacks (Rahman et al. 2017).
Current disease management is tremendously dependent
upon the application of chemical fungicides, bactericides, and
nematicides, but 90% of the used chemicals are lost in the
environment during or after application in the agriculture field
which ultimately contaminates the environment (Sai et al.
2018). Nanotechnology can be used as an advanced option to
reduce pesticide toxicity by improving its shelf-life and sol-
ubility. There are two ways of using nanoparticles for

agricultural disease management—either the nanoparticles
themselves can act as a disease protectant or they can be used
as a nanocarrier for various kinds of insecticides, fungicides,
herbicides (Worrall et al. 2018). Nanoparticles themselves
can directly kill plant pathogens like bacteria and fungi
(Fig. 3). For example, foliar application of iron oxide
nanoparticles to Nicotiana benthamiana plants imparted
resistance against tobacco mosaic virus (TMV). In this con-
text, the iron oxide nanoparticles were found to increase the
fresh and dry weight of plants, activate antioxidant defense,
and most importantly upregulate salicylic acid (SA) biosyn-
thesis and the expression of SA-responsive
pathogenesis-related (PR) genes (Cai et al. 2020). Similarly
foliar application of MgONPs suspension to the Ralstonia
solanacearum infested tomato plants induced systemic
resistance in the plants against the bacteria by upregulating
some of the defense-related genes like salicylic acid-inducible
PR1, jasmonic acid-inducible LoxA, ethylene-inducible Osm,
and systemic resistance-related GluA (Imada et al. 2016).
ZnONPs were also observed to increase the plant growth,
number of pods, chlorophyll, carotenoid contents, and nitrate
reductase activity in lentil plants inoculated with several
pathogens (Alternaria alternata, Xanthomonas axonopodis
pv. phaseoli, Fusarium oxysporum f. sp. lentis, Pseudomonas
syringae pv. Syringae and Meloidogyne incognita). Most
importantly, the application of ZnONPs reduced the forma-
tion of galls, wilt, blight, nematode multiplication, and leaf
spot disease (Siddiqui et al. 2018b).

Seed priming with nanoparticles is also an efficient tech-
nique to stimulate plant resistance against biotic agents. In this
connection, priming with myogenic selenium nanoparticles
resulted in a 72.9% reduction in the late blight disease of
tomatoes (Joshi et al. 2021). Priming resulted in significant
improvement in cellular and biochemical defenses against
Phytophthora infestans, which could be attributed mainly to
the accumulation of lignin, callose, and an increased level of
phenylalanine lyase (PAL), lipoxygenase (LOX), b-
1,3-glucanase (GLU), superoxide dismutase (SOD) (Joshi
et al. 2020). Similarly, seed priming with SiNPs in pathogen
(Meloidogyne incognita, Pectobacterium betavasculorum,
and Rhizoctonia solani disease complex) inoculated beetroot
(Beta vulgaris) plants resulted in better disease suppression
than the foliar application.Application of SiNPs in this context
enhanced root and shoot dry weight, chlorophyll content and
its fluorescence characteristics, and antioxidative defense
(SOD, CAT, polyphenol oxidase (PPO), and PAL) (Khan and
Siddiqui 2020). But in another study, the foliar application
was more effective than the seed priming of tomato plants in
the presence or absence of pathogens (bacterial pathogens—
Pseudomonas syringae pv. tomato, Xanthomonas campestris
pv. vesicatoria, Pectobacterium carotovorum subsp. Caro-
tovorum and Ralstonia solanacearum; fungal pathogens—
Fusarium oxysporum f. sp. Lycopersici, and Alternaria
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Table 1 Recent experiments reporting the efficacy of nanoparticles in the alleviation of abiotic stresses

Type of nanoparticles Stress Name of the
plant

Alleviating effects References

ZnONPs + SiNPs Salinity Mangifera
indica

Increased plant growth, nutrient uptake, carbon
assimilation, decreased flower malformation,
increased annual fruit yield, and physiochemical
characteristics

Elsheery et al.
(2020)

ZnONPs + melatonin Arsenic stress Glycine max Better growth, increased photosynthesis, low ROS
accumulation, decreased MDA, and H2O2 content

Bhat et al.
(2022)

ZnONPs Salinity Lycopersicon
esculentum

Increased shoot and root length, biomass, leaf
area, increased chlorophyll content, photosynthetic
attributes, enhanced protein content, antioxidative
defense

Faizan et al.
(2021)

SiNPs Mercury (Hg) stress Glycine max Inhibited immobilization and accumulation of Hg,
increased chlorophyll content, decreased
antioxidant activity

Li et al. (2020)

SiNPs Fluoride toxicity Oryza sativa Improved rice health, seed germination, decreased
root ion leakage, proline content, increased
photosynthetic content

Mishra et al.
(2021)

AgNPs + Comamonas
testosterone (bacteria)

Salinity Linum
usitatissimum

Elevated photosynthetic pigments, increased
sugar, proline, and protein content, decreased
H2O2, MDA, increased enzymatic and
non-enzymatic antioxidant defense

Khalofah et al.
(2021)

AgNPs Salinity Pennisetum
glaucum

Reduced oxidative stress and Na and Cl uptake,
maintained ionic balance of cell (Na+, K+, and
Na+/K+ ratio), improved antioxidant defense,
reduced H2O2 and MDA content

Khan et al.
(2021)

S-nitrosoglutathione
loaded chitosan
nanoparticle

Drought Saccharum
officinarum

Increased photosynthetic rate, root/shoot ratio,
delayed release of nitric oxide, increased biomass
allocation to the root system

Silveira et al.
(2019)

Glycol Chitosan coated
selenium nanoparticles

Oxidative stress Panax
ginseng

Reduced ROS accumulation, upregulated
antioxidants’ genes, increased ginsenoside

Abid et al.
(2021)

Chitosan nanoparticle
loaded N-acetyl cysteine

Ozone + oxidative
stress

Triticum
aestivum

Increased leaf antioxidants pool, mainly ascorbic
acid, reduced symptom severity, increased seed
weight

Picchi et al.
(2021)

Chitosan-functionalized
selenium + TiO2NPs

Salinity Stevia
rebawdiania

Increased growth, photosynthetic attributes,
antioxidant enzyme activities, decreased H2O2

NDA and EL, increased essential oil, stevioside,
and rebaudioside A content

Sheikhalipour
et al. (2021)

TiO2NPs + Funneliformis
mosseae (AMF)

Salinity Phaseolus
vulgaris

Increased salinity tolerance, increased molecular
intensity ratio and relative density of chitin
synthases gene, increased colonization

El-Gazzar
et al. (2020)

FeNPs Cadmium
contamination

Triticum
aestivum

Improved morphological parameters,
photosynthetic pigments dry biomass, increased
antioxidative enzyme activities, reduced EL,
decreased Cd concentration in tissues and grains

Hussain et al.
(2019)

FeNPs Cadmium + salinity Triticum
aestivum

Increased nutrient uptake, decreased Na+, Cl−, and
Cd uptake, improved plant growth and
morphophysiological state

Manzoor et al.
(2021)

FeNPs Salinity Eucalyptus
tereticornis

Increased shoot length, chlorophyll content, SOD
activity, soluble sugar content, reduced MDA
content, upregulated salt responsive genes (HKT1,
SOS1, NHX1)

Singh et al.
(2021a, b)
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solani) (Parveen and Siddiqui 2021). Application of ZnONPs
and TiO2NPs also induced disease suppression in beetroot
plants inoculated with bacterial pathogens (Pectobacterium
betavasculorum, Xanthomonas campestris pv. beticola, and
Pseudomonas syringae pv. aptata). Though the ZnONPswere
more efficient than the TiO2NPs, their combined application
improved chlorophyll, carotenoid, SOD, CAT, APX, PAL,
GSH, proline, andH2O2 contents and decreasedMDA content
(Siddiqui et al. 2018a). Exogenous application of TiO2NPs on
fungus (Bipolaris sorokiniana) infected wheat plants was
observed to reduce the disease incidence, percent disease
index, and disease severity by modifying agro-morphological
(root and leaf surface area, fresh and dry weight of plants, and
yield parameters), agro-physiological (chlorophyll content,
relative water content and membrane stability index), and
non-enzymatic metabolites (protein, soluble sugar, soluble
phenol, and flavonoid) (Satti et al. 2021).

Besides the direct action against pathogens, nanoparticles
are also able to carry and deliver agrochemicals in a targeted
way which makes the nanoparticles more efficient toward
plant disease management, simultaneously reducing the
wastage and negative environmental effects of agrochemi-
cals (Fu et al. 2020). For example, polymerized
citric-acid-functionalized multiwalled carbon nanotubes
were used to encapsulate pesticides like zineb and mancozeb
which were used as nanopesticide against Alternaria alter-
nata. It has been observed that this nanohybrid material was

more efficient in terms of toxicity against the fungus than the
bulk pesticide (Sarlak et al. 2014). Mesoporous organosili-
con nanoparticles with calcium carbonate as a capping agent
were used to encapsulate prochloraz (a fungicide) for the
management of Sclerotinia disease. This technique of
fungicide application resulted in intelligent delivery of the
fungicide and protected the potted rapeseed plants from
Sclerotinia disease (Gao et al. 2020). In another case,
mesoporous SiNPs were used for encapsulation of a pesti-
cide spirotetramat for the improved deposition, uptake, and
translocation into cucumber plants, which also ensured
lower accumulation of pesticide in the edible part of the
plants (Zhao et al. 2018). Avermectin-loaded
lanthanum-modified chitosan oligosaccharide nanoparticles
were used against the rice blast disease. Results showed that
the functionalized nanoparticles not only increased the dis-
ease resistance but also improved the growth parameters like
plant height and fresh weight (Liang et al. 2018a).
Prochloraz loaded mesoporous SiNPs capped with chitosan
on the surface can be used as a gatekeeper to protect the
citrus disease at the pre-harvest stage. The use of the pesti-
cide in this way possessed a longer duration and a better
antifungal activity (Liang et al. 2018b). So, from the above
studies, it is clear that nanoparticles are also able to provide
resistance against various kinds of biotic agents without
hampering plant health, some of the studies are also enlisted
in Table 2.

Table 2 Recent experiments reporting the efficacy of nanoparticles in the alleviation of biotic stresses

Type of
nanoparticles

Name of the
plant

Disease-causing agent Alleviating effects References

Bio-fabricated
ZnONPs

Pennisetum
glaucum

Sclerospora graminicola Plasmolyzed and inhibited spore
germination of the pathogen, reduced
disease incidence, increased
lignification, callose deposition,
antioxidative enzyme activity, increased
defense enzyme related gene expression,
and induced systemic resistance

Nandhini et al.
(2019)

Graphene oxide
NPs, ZnONPs

Daucus
carota

Pectobacterium carotovorum,
Xanthomonas campestris, pv.
catotae, Meloidogyne zavanica,
Alternaria dausi, Fusarium solani

Increased plant growth, chlorophyll,
carotenoid and proline content, reduced
galling and nematode multiplication,
reduced soft rot, leaf spot, root rot
indices, bacterial leaf blight

Siddiqui et al.
(2019)

Biogenic
ZnONPs from
Mentha spicata

Datura
stramonium

Tobacco Mosaic Virus Reduced viral accumulation level,
disease severity, upregulated PAL, PR-1,
CHS, POD genes

Abdelkhalek and
Al-Askar (2020)

ZnONPs based
hydrogel

Capsicum
annuum

Fusarium oxysporum Reduced wilt disease symptoms
incidence, enhanced photosynthetic
pigments, soluble sugar, soluble
proteins, total phenols, increased density
of polypeptide peroxidase and
polyphenol oxidase enzymes

Abdelaziz et al.
(2021)

(continued)
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7 Conclusion

In the current scenario, a precise and sustainable innovation
is required in agronomical research to fulfill global food
demand. Among present agricultural innovations, nan-
otechnology is considered a novel approach and exhibited
the capacity to improve plant growth and development by
governing plant morphology, physiology, and molecular
levels. The studies suggested that NPs can be used in the

development of various plant growth promoters, biosensors,
insecticides, pesticides, and various stress alleviators.
Nanoparticles have been opened the passage to develop
“precision farming” and improve agricultural productivity
through the utilization of nanofertilizers, which are also
known as “magic bullets”, and also reducing the usage of
harmful chemical-based fertilizers, insect and pest repulsive
products. Moreover, specified application of nanoparticles in
crop protection from specific pathogens has been shown
promising results. The studies revealed that the application

Table 2 (continued)

Type of
nanoparticles

Name of the
plant

Disease-causing agent Alleviating effects References

ZnONPs and
TiO2 NPs

Solanum
lycopersicum

Bactericera cockerelli Sulc.
(Hemiptera: Triozidae)

Toxic effect of nanoparticles towards B.
cockerelli nymphs resulted in a high
mortality rate up to 100%

Gutiérrez-Ramírez
et al. (2021)

SiNPs Oryza sativa Fusarium fujikuroi Decreased disease severity index,
improved silica content and peroxidase
activity, increased grain yield

Elamawi et al.
(2020)

SiNPs with
Saccharomyces
cerevisiae

Capsicum
annuum

Xanthomonas vesicatoria Reduced disease severity, improved
vegetative growth, mineral contents,
stimulated polyphenol oxidase activity,
enhanced food yield quality parameters

Awad-Allah et al.
(2021)

SiNPs Arabidopsis
thaliana

Pseudomonas syringae Induced systemic acquired resistance,
increased defense related hormone SA

El-Shetehy et al.
(2021)

Biogenic
AgNPs from
Melia
azedarach

Solanum
lycopersicum

Fusarium oxysporum Increased plants growth parameters,
prominently damaged fungal cell wall
and spores, damaged and dead cells with
disintegrated cellular membranes of
fungal hyphae

Ashraf et al. (2020)

Biogenic
AgNPs from
Cladophora
glomerata

Solanum
lycopersicum

Meloidogyne javanica Significantly reduced galls number, egg
masses, females per root system/plant,
mortality of juveniles, increased
expression of PAL and PPO gene
expression

Ghareeb et al.
(2020)

AgNPs
augmented
Calothrix
elenkinii

Lycopersicon
esculentum

Alternaria alternata Reduced disease severity, increased leaf
chlorophyll, carotenoid content, and
polyphenol oxidase activity, increased
antioxidant enzyme activity, high yield

Mahawar et al.
(2020)

Chitosan coated
mesoporous
SiNPs

Citrullus
lanatus

Fusarium oxysporum f. sp. niveum Enhanced innate defense mechanism,
reduced disease severity, and
stress-responsive gene expression,
increased fruit yield

Buchman et al.
(2019)

Chitosan
nanoparticles

Solanum
lycopersicum

Fusarium andiyazi Inhibited radial mycelial growth,
upregulated expression of b-
1,3-glucanase, chitinase, PR-1 and
PR-10 genes

Chun and
Chandrasekaran
(2019)

Chitosan/SiNPs Vitis vinifera Botrytis cinerea Reduced gray mold disease incidence
and severity, significantly increased
antioxidant activity, total phenol and
flavonoid content

Youssef and
Roberto (2021)

Copper sulfide
nanoparticles
(CuS NPs)

Oryza sativa Gibberella fujikuroi (Bakanae
disease)

Significantly reduced disease incidence,
modulated nutrition, and phytohormone
(SA, JA) production

Shang et al. (2020)
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of NPs helps plants in the elicitation of antioxidative defense
mechanisms, which further assist in controlling the genera-
tion of excess ROS. The usage of NPs improved plant
growth and productivity via overcoming the biotic and abi-
otic stress. Furthermore, nanoparticle-based plant advance-
ment revealed a similar fitness to that of genetically modified
plants, which opens a new scope for crop improvement.
Soon, nanobionic plants (disease-resistant, stress-tolerant,
photosynthetically efficient plants) may be introduced due to
the versatility of nanotechnology.
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Remote Sensing Technology—A New
Dimension in Detection, Quantification
and Tracking of Abiotic and Biotic Stresses

Papan Chowhan and Arka Pratim Chakraborty

Abstract

Plant stress results due to the lack of suitable and optimal
conditions for ideal plant growth and development. Stress
may be of any kind like abiotic or biotic that can cause
many harmful effects to the plant. Remote sensing is a
dynamic technique that records changes in electromag-
netic radiation and assists in the quantification of different
stresses. This technique has also been applied to monitor
different abiotic and biotic stresses like nutrient, drought,
salinity, pests and pathogen attack, etc. Numerous
physiological, biochemical and structural crop character-
istics can be measured through remote-sensing-based
techniques and it is fast, cost-effective. Under both biotic
and abiotic stresses, there are notable changes in photo-
synthetic ability and physical structure of the host plant at
both tissue and canopy levels. Due to this, changes in
light absorption pattern by the plant have been observed
that in turn alter the reflectance spectrum. The study of the
vegetative spectral reflectance helps us better understand
the different physiological and chemical processes in
plants due to the attack of pests and pathogens. Interest-
ingly, remote sensing technology can be utilized to track
the effect of various pathogens in different crops and for
their better management. The present chapter aims to
discuss the various applications of remote sensing in
modern farming and their applications in the management
of different abiotic and biotic stresses in crop plants.
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1 Introduction

Due to damage of plants by other living organisms such as
different bacteria, fungi, viruses, parasites, insects, weeds
etc. biotic stress occurs and abiotic stress is the negative
effect of nonliving factors like water, soil moisture, heat etc.
on the plant in a specific environment. The nonliving factors
also influence the environment beyond its normal range to
adversely affect the population performance or individual
physiology of the plant in a significant way. It is difficult to
diagnose the harmful effects caused by these living and
nonliving factors even with close observation. Therefore, the
determination of plant stress is very challenging as it looks
similar and can be a combined result of water deficiency,
disease infection, and others symptoms arising from different
stress factors. For example, the browning of leaves of an oak
tree due to drought or water deficit may look similar to the
leaf browning caused by anthracnose, which is a minor leaf
disease of an oak tree or leaf browning caused by oak wilt
which is a vascular disease (Pritham 2015). Thus, remedial
action for the affected plant or crop should not be done only
by visual observation because it may result in an incorrect
diagnosis. Abdulridha et al. (2019b) used remote sensing
techniques for the detection of laurel wilt disease in the
avocado (Persea americana) plant in presence of other biotic
and abiotic stresses. The use of remote sensing or hyper-
spectral satellite data will help for better monitoring different
biotic and abiotic stresses on a small or large area. Spectral
reflectance measurements techniques are used to identify
different types of plant stress by selecting wavelengths
sensitivity. From previous studies, it was known that plant
stress changed the spectral reflectance pattern both in the
visible range (380–720 nm or F380–F720) and the infrared
range (720–1500 nm or F720–F1500) (Mee et al. 2017). The
magnitude of this change will vary at different wavelengths.
This information helps us to early detect plant stress, par-
ticularly nutrient deficiency. Thus with the help of this
method, we can able to lower the cost and increase the
productivity of the crop. In recent years, many efforts have
been made to develop new methods for the detection of plant
stress. Remote sensing has become an important tool in
agriculture, particularly, leaf temperature, which is an indi-
cator of plant physiological status in response to both biotic
and abiotic stress (Pineda et al. 2021).

2 Effect of Biotic and Abiotic Stresses
in Agriculture

Biotic and abiotic stress caused massive economic losses to
different crops and thus it is a major area of focus in agri-
cultural research (Teshome et al. 2020). Both the economic

decisions and practical development are affected by the
relationship between biotic stress and crop production.
Population dynamics, plant-stressor coevolution, and
ecosystem nutrient cycling have been affected by the biotic
injury on crop yield. The health of the horticultural crop and
natural habitats ecology is also affected by biotic stress
reported by Wang et al. (2003). It also has some major
changes in the host plant because the stressed environment
has an impact on the crops’ growth and development, which
leads to modifications of biochemical and morphological
characteristics of the plant species (Oshunsanya et al. 2019).
Plants are exposed to different biotic and abiotic stress fac-
tors such as water deficiency, high salinity, pathogens, or
weeds, which reduce the crop yield or affect the quality of
harvested products. Arabidopsis thaliana is most commonly
used as a model plant to study the responses of plants to
different factors of biotic and abiotic stress (Mittler 2006).
Whereas biotic stress includes living disturbances, for
example, bacteria, fungi, or pests. Abiotic stress factors are
generally occurring naturally, such as intense sunlight or
wind that cause harm to both plants and animals in a par-
ticular area and it is unavoidable. Abiotic stress factors affect
animals, but plants are highly dependent on different envi-
ronmental factors, so it is constraining. Regarding the
growth and productivity of crops, abiotic stress is the most
harmful factor worldwide. Fernando TM et al. (2004)
reported that abiotic stressors were most harmful when they
occurred together with combinations of abiotic stress factors.
The most common of the stressors are the easiest for people
to identify, but many other less recognizable abiotic stress
factors affect the environments constantly (Wolfe 2007). The
most basic stressors include high winds, extreme tempera-
tures, and drought (Pritham 2015).

3 Application of Remote Sensing
Technology for Monitoring Biotic
and Abiotic Stress

Agricultural production has come through many changes in
technology within the past few years. Farmers can utilize
different advanced technologies such as site-specific appli-
cators and remote sensing data to assist their
decision-making for best crop management practices, which
can improve productivity and also help to protect the envi-
ronment (Sishodia et al. 2020; Huang et al. 2018). Plant
stress can interfere with photosynthetic reactions within the
plant and therefore affect the physical structure of the plant
(Chaves et al. 2009) Thus, remotely sensed data is used to
identify different levels of crop stress, and therefore it helps
the producers by using this information to better crop
management to maximize the crop production. Raikes and
Burpee (1998) suggested that hyperspectral remote sensing
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was one of the advanced and effective techniques in map-
ping and disease monitoring in plants. However, the diffi-
culty in discriminating disease from nutrient stresses
hampers the practical use of this technique, because some
common nutrient stresses like shortage or overuse of nitro-
gen or water could produce similar variations of biochemical
properties and plant morphology and therefore generates
similar spectral responses (Pritham 2015). However, there is
a significant difference in the remedial procedures for
stressed crops between disease and nutrient stresses. For
example, applying fungicide to a water-stressed crop would
lead to a disastrous outcome. Therefore, to discriminate
yellow rust from common nutrient stresses is of practical
importance to crop growers. Traditional methods like
ground-based surveys require high labor costs and produce
low efficiency. Thus, this method is unfeasible for a large
area. But remote sensing technology can provide spatial
distribution information of diseases and pests over a large
area with relatively low cost than the traditional method
(Pritham 2015; Zhang et al. 2012). The presence of diseases
or insect feedings on plants or canopy surface of crops
causes changes in pigment, chemical concentrations, cell
structure, nutrient, water uptake, and gas exchange. These
changes result in differences in color and temperature of the
canopy and therefore affect canopy reflectance characteris-
tics, which can be easily detectable by remote sensing
technology (Raikes and Burpee 1998). Therefore, remote
sensing technology provides a harmless, rapid and
cost-effective method of identifying and quantifying crop
stress from differences in the spectral characteristics of
canopy surfaces affected by different biotic and abiotic stress
agents (Wenjiang et al. 2012).

4 Detecting and Monitoring Plant Nutrient,
Biotic and Abiotic Stress Using Remote
Sensing Techniques

Plants require adequate nutrients in addition to water and
sunlight for their proper growth. The plant requires
macronutrients in greater amounts as compared to
micronutrients, as both these macro and micronutrients are
part of different substances in plant tissue. Shortage of any
of these nutrients, mainly the macronutrients like nitrogen,
potassium and phosphorus can result in different
stress-induced responses in plants such as restriction of
growth of shoots and roots, early defoliation of plant leaves
and also decreased production of biomass. Nutrient surplus
especially nitrogen, due to over-application of fertilizer may
lead to losses via leaching and cause environmental pollu-
tion (Hawkesford et al. 2012). Thus, the nutrient require-
ment is also very important to ensure good health and the
growth of plants. Therefore, in modern agriculture definite

estimation of plant nutrients is based on different leaf optical
properties such as fluorescence, reflectance and transmit-
tance are gaining more importance and it can be done
through different remote sensing techniques. The spectral
reflectance data is related to the chlorophyll content of plant
leaves and depend on the interaction between light pene-
tration through the plant tissue and its absorption, reflection
from the leaf surface or transmitted amount through the leaf
(Ac et al. 2015; Gitelson et al. 2003). Zwiggelaar (1998)
suggested that these optical spectra data were dependent on
the pigment content of leaf of different absorption wave-
lengths as presented in Table 1.

The maximum absorption spectrum is generally found in
the blue (400–500 nm or F400–F500) and red (660–680 nm
or F660–F680) spectral region of the chlorophyll band (Mee
et al. 2017). Healthy plants absorb more blue and red light,
reflect most of the green and infrared light (Cetin et al.
2005). The yellow-green color of chlorosis in plants is due to
the greater absorption of violet light and purple coloring of
leaf margins and stems because of greater green light
absorption by plants in phosphorus-deficient soil (Raun et al.
1998). Nitrogen deficiency reduces leaf chlorophyll content
in plants and leads to lower absorption of light and higher
reflectance in the visible and infrared range as studied on
different crops like barley, wheat, and lettuce (Liu et al.
2004; Pacumbaba and Beyl 2011). Most findings suggest
that the sensitivity of chlorophyll to physiological stress is
effective in measuring the reflected spectra in identifying
nutrient stress in different crop plants. However, spectral
features are not useful in detecting plant stress where more
than one factor is involved. Thus, this method is quite
challenging when discriminating between different stress
factors affecting a plant same time, which is more common
in reality (Mee et al. 2017). Different stressors may affect the
physiology of a plant in a similar way, for example, nutrient
deficiency and disease cause similar changes in leaf pigment
content, moisture, and canopy structure. Therefore, differ-
entiation between crop disease and nutrient stress is difficult
as similar spectral responses may be obtained.

Table 1 Absorption wavelengths of pigments (Mee et al. 2017)

Pigment/molecule Absorption wavelengths (nm)

Chlorophyll a 435, 670–680, 740

Chlorophyll b 480, 650

a-carotenoid 420, 440, 470

b-carotenoid 425, 450, 480

Anthocyanin 400–550

Lutein 425, 445, 475

Violaxanthin 425, 450, 475

Water (molecule) 970, 1450, 1944
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4.1 Nutrient Deficiency of Plants Detected
by Using Chlorophyll Fluorescence

Precise information can be generated through chlorophyll
fluorescence regarding different plant stresses by using the
fluorescence emission pattern of leaves, tissues of the plants.
The chlorophyll fluorescence is captured when parts of light
energy are absorbed by the plant chlorophyll for photosyn-
thesis and reemission of the light occurs when excited with
UV-A (340–360 nm) or blue-green light (Maxwell and
Johnson 2000). The blue-green light is much efficient and
provides more detailed information as it can reach deeper
layers of plant tissue than UV light, which is usually inter-
cepted at the epidermal surface of leaves because very less
amount of UV radiation can pass through the green meso-
phyll cells containing chlorophyll pigments which absorb
the blue and red photons of light (Benediktyová and Nedbal
2009). The fluorescence ratios are a result of the simulta-
neous changes between the four wavelengths, i.e., blue
(F440), green (F520), and red (F690, F740), which is
commonly referred to as blue-green and red spectra. Usually,
blue and green fluorescences are emitted by excitation with
solar-induced light near the 440 and 550 nm spectral regions
whereas fluorescence from the red region of 650–800 nm is
given by the blue-green light excitation. The early detection
of plant stress and nutrient availability depends on F440–
F690 (blue-red) and F440–F740 (blue-red) whereas the ratio
of frequently used chlorophyll content indicator is F690–
F735 (blue-red) spectra (Buschmann et al. 2008; Chaerle and
Van Der Straeten 2000). The fluorescence emission specific
to different plant stresses was successfully detected on dif-
ferent plants, for example, deficiency of nitrogen and zinc on
maize (Zea mays), heat and water stress on Rhododendron
sp., etc. Cadet and Samson (2011) used fluorescence ratios
to detect the deficiency of different nutrients like nitrogen,
potassium, and phosphorus in sunflower (Helianthus
annuus). To differentiate between nitrogen deficiency and
disease infection in wheat plant (Triticum aestivum),
fluorescence ratios can be used. Husna et al. (2015) used
fluorescence sensing techniques to estimate the productivity
and quality of palm oil from palm plants (Elaies guineensis
Jacq.). The use of fluorescence imaging has been extended to
different areas of agriculture like irrigation, water manage-
ment, fertilization, and disease control of crops because of its
potential in sensing plant stress induced by different factors
like water deficit, nutrient deficiency, and disease infection.

4.2 Nutrient Deficiency Detection Using
Thermography

Unlike fluorescence imaging, thermography has been used to
visualize the stomatal movement without the presence of any

light source (Vadivambal and Jayas 2011). The thermal
signal is the change of temperature in the form of radiation
reflected or emitted from the plant. Thermal intensity is
detected by the surrounding temperature and the intensity of
infrared radiation increases with the increase of temperature
(Vadivambal and Jayas 2011). The change in leaf tempera-
ture of a plant generally occurs due to the opening and
closure of stomata. The cooling process in plants is through
the transpiration by stomatal opening and results in a
decrease of temperature with heat loss to the atmosphere.
However, the process of transpiration and stomatal regula-
tion is usually determined by nutrient and water availability
in soil. The transportation of dissolved nutrients and water
from the soil to the plant is disrupted by the water or nutrient
scarcity and nutrient uptake is limited by higher nutrient
concentration in soil (Li et al. 2009). Therefore, as a result,
loss of water is prevented due to closure of stomata and thus
the temperature of the leaf surface increases. This is why
nutrient deficiency affects stomatal regulation and leads to
increased temperature within the plant. Chaerle et al. (2007)
reported that thermal imaging of magnesium-deficient bean
plants under controlled conditions showed higher leaf tem-
perature. Thermography is passive, but it can be active with
the introduction of a stimulus like light to induce a change in
temperature of the targeted subject (Chaerle et al. 2007).
Active thermography can help us to determine leaf internal
heterogeneity in relation to any change or growth due to
disease, whereas passive thermography assesses change of
similar capacity through estimation of water evaporation
(Chaerle and Van Der Straeten 2000). Thermography can
detect plant stress, but it does not useful to differentiate
between the different stressors. Thus, it should be used in
combination with other remote sensing techniques such as
chlorophyll fluorescence to determine and differentiate
between different stresses simultaneously as reported by
Chaerle et al. (2007).

4.3 Detection of Nutrient Deficiency Using
Multispectral and Hyperspectral Imaging

Multispectral systems are useful to measure the reflectance
in broad bands of 40 nm in the red, green, blue, and
near-infrared regions and it can be extended to a maximum
of ten wavelengths (Moshou et al. 2011; Mulla 2013). This
is the main difference between hyperspectral and multi-
spectral imaging techniques. Additional spectral bands are
used in hyperspectral technique and it brings about higher
spectral resolution or narrower bandwidth of about 10 nm or
less in the visible and near-infrared band range. It provides
more details with the broader aspect of functional and
structural characteristics of vegetation (Blackburn 2007; Lee
et al. 2010). Like thermography, the hyperspectral technique
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can be used together with chlorophyll fluorescence to dif-
ferentiate between plant internal responses to stress-based
changes in photosynthetic efficiency and spectral properties
(Murchie and Lawson 2013). Different plant stress levels
such as water content, disease and nutrient status of different
crops have been effectively sensed using hyperspectral dis-
crimination technique (Zhang et al. 2012; Zhang et al. 2006;
Song et al. 2011; Cao et al. 2013). Zhang et al. (2013)
reported that spectral reflectance was more effective at
characterizing the distribution of nutrients such as nitrogen,
phosphorus, and potassium in leaves of Brassica napus.

4.4 Development of Vegetative Indices
by Using Multispectral Wavelengths

By using several selected bands within the visible (blue,
green, and red bands) and near-infrared spectral regions in
multispectral imagery different Vegetation Indices
(VIs) were developed. VI is a dimensionless, radiation-based
measurement derived from the spectral combination of
remote sensing data (Prabhakar et al. 2012). These bands
within the spectral regions are most responsive to the
chlorophyll pigments where plant reflectance is found to be
strongest (Blackburn 2007). The intensity of reflectance light

in a plant is not dependent only on its chlorophyll concen-
tration alone; several other factors such as leaf shape and
geometry, canopy area, etc. may alter the depth of light
absorption and reflectance (Blackburn 2007). The Normal-
ized Difference Vegetative Index (NDVI) is the most fre-
quently used index in multispectral imaging applications as
compared to other Vegetative Index due to its practicality in
detecting physiological variability of plants (Thomason et al.
2007; Tremblay et al. 2011). Generally, at an early stage of
disease visible green range is useful in the detection of plant
infection while reflectance in the near-infrared is more useful
with the increasing severity of infection. Depending on
which spectral region is used, the vegetative indices devel-
oped can be green NDVI (green and NIR), red NDVI (red
and NIR), or red and green vegetation indices (Muñoz--
Huerta et al. 2013; Navarro-Cerrillo et al. 2014) (Table 2).
The red band in the vegetative index corresponds more to
chlorophyll pigment, where radiation absorption is the
maximum and the green band deals with the pigment region
other than chlorophyll (Mulla 2013). Although NDVI is very
useful in detecting plant stress, it comes with certain limi-
tations in terms of sensitivity to higher chlorophyll content.
Indices with narrower bands that develop particularly near
550 and 700 nm are most sensitive to pigment change
(Table 3). Zhao et al. (2005) reported reflectance signal

Table 2 Narrow band vegetation
indices used for abiotic and biotic
stress detection (Prabhakar et al.
2012)

Index Formula References

Normalized pigment chlorophyll
index (NPCI)

(R680 − R430)/(R680 + R430) Penuelas et al.
(1995b)

Structure insensitive vegetation index
(SIPI)

(R800 − R445)/(R800 + R680) Penuelas et al.
(1995a)

Optimized soil-adjusted vegetation
index (OSAVI)

(1 + 0.16) (R800 − R670)/
(R800 + R670 + 0.16)

Rondeaux et al.
(1996)

Water index (WI) R900 nm/R970 nm Penuelas et al.
(1997)

Red-edge vegetation stress index
(RVSI)

(R714 nm + R752 nm)/2 − R733 nm Merton and
Huntington
(1999)

Modified chlorophyll absorption
Reflectance index (MCARI)

[(R700 − R670) − 0.2(R700 − R550)]
(R700/R670)

Daughtry et al.
(2000)

Transformed chlorophyll absorption
reflectance index (TCARI)

3[(R700 − R670) − 0.2(R700 − R550)
(R700/R670)]

Haboudane et al.
(2002)

Disease water stress index 2
(DWSI-2)

R1660/R550 Apan et al. (2004)

Damage sensitive spectral index-2
(DSSI 2)

(R747 − R901 − R537 − R572)/
(R747 − R901) + (R537 − R 572)

Mirik et al.
(2006a)

Aphid index (AI) (R761 − R908)/(R712 − R719) Mirik et al.
(2006b)

Broccoli soft rot index (D725 − D700)/(D725 + D700) Datt (2006)

Bacterial leaf spot index (R550 − R640)/(R550 + R640) Datt (2006)

Sunburn index (R450 − R680)/(R450 + R680) Datt (2006)

R: Reflectance at the corresponding wavelength (nm); D: first-order derivative at the corresponding
wavelength (nm)
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specific to nitrogen scarcity in Sorghum bicolor was found to
be near the 555 and 715 nm wavelengths.

4.5 Using of Satellite and Airborne Platforms
to Real-Time Monitoring of Crop Nutritional
Status and Yield Prediction

It is important to track crop growth and development
dynamics over time in the monitoring of crop conditions.
This provides timely information which can help us to
identify problematic areas affected by various vegetative
factors such as water status, nutrient distribution, disease and

weed encroachment, etc. Different satellite and aircraft
platforms can be used for remote monitoring of crop con-
dition, yield prediction and it can be achieved through the
combining of their multiple image data with suitable
process-based simulation models (Mosleh et al. 2015; Lobell
2013; Sims et al. 2013). For example, data derived from
Moderate Resolution Imaging Spectroradiometer (MODIS)
has been used to forecast crop yield of some crops like
barley, Brassica, peas (Pisum sativum), wheat (Triticum
aestivum L.) etc. (Mkhabela et al. 2011). The advancement
of technology in recent years brought airborne sensors with
both higher spatial, spectral resolutions and shorter revisit
times, but some problems remain unsolved like data

Table 3 Sensitive bands and spectral indices used for detection of biotic stresses in different crops (Prabhakar et al. 2012)

Crop Pest Platform Spectral resolution Optimum bands (in nm)/
indices/technique used

References

Peanut Leaf spot Ground based Multispectral 800 nm Nutter (1989),
Aquino et al.
(1992)

Wheat Cereal aphid Ground based Hyperspectral NPCI Riedell and
Blackmer (1999)

Wheat Yellow rust Ground based Hyperspectral 543, 630, 750,
861 ± 10 nm

Bravo et al. (2003)

Rice Leaf blast Ground based Multispectral (R550/R675),
(R570/R675)

Kobayashi et al.
(2003)

Cotton Armyworm Ground-based
and airborne

Multispectral NDVI Sudbrink et al.
(2003)

Sugarcane Orange rust Space borne Hyperspectral DWSI Apan et al. (2004)

Rubber Corynespora Space borne Multispectral (IRS 1 C) NDVI Ranganath et al.
(2004)

Cotton Spider mite Airborne Hyperspectral (AVIRIS) SMA Fitzgerald et al.
(2004)

Tomato Late blight Ground-based
airborne

Hyperspectral multispectral (ADAR) 5-index feature vector
method

Zhang et al. (2005)

Wheat Greenbug Ground based Multispectral 694, 800 nm Yang et al. (2005,
2009)

Mustard Alternaria Space borne Hyperspectral DWSI Dutta et al.(2006)

Cotton Aphid,
spider mite

Airborne, space
borne

Multispectral (SAMRSS,
QuickBird); hyperspectral (AV-NIR)

NIR is more sensitive Reisig and Godfrey
(2006)

Wheat Green bug Ground based Hyperspectral AI Mirik et al. (2006a)

Wheat Green bug Ground based Hyperspectral DSSI Mirik et al. (2006b)

Wheat Aphid Airborne Multispectral NDVI Elliott et al. (2007)

Tomato Leaf miner Ground based Hyperspectral 800–1100 nm, 1450 and
1900 nm

Xu et al. (2007)

Rice Leaf folder Ground based Hyperspectral 757,445 nm Yang et al. (2007)

Pine Bark beetle Space borne Multispectral (Landsat) LAI Coops et al. (2009)

Conifer Aphid Space borne Hyperspectral ARI Pena and Altmann
(2009)

Rice Bacterial
leaf blight

Ground based Hyperspectral 943 and 1039 nm, MLR Yang (2010)

R: Reflectance
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processing time and higher cost making them less opera-
tional and economically inefficient. Berni et al. (2009) sug-
gested the use of Unmanned Aerial Vehicles (UAVs)
mounted with cheaper thermal and multispectral sensors.
Low-altitude Remote Sensing (RS) using UAVs is a very
useful tool in precision agriculture (Messina and Modica
2020). Compact Airborne Spectrographic Imager (CASI) is
used to detect weed infestation on corn (Goel et al. 2003).

5 Use of Remote Sensing Technology
in Monitoring and Management of Biotic
and Abiotic Stresses in Crop Plants and Its
Applications in Agriculture

5.1 Water Management and Irrigation

Time and rate of irrigation are very important to reduce crop
water stress and achieve maximum crop growth and yield.
A variety of irrigation methods are used by farmers
depending on many factors like water availability, water
management infrastructure at the field (Pardossi et al. 2009).
Many farmers used their farming knowledge and applied
uniform irrigation at regular intervals based on soils and
climate at the location (Boland et al. 2006) Large farmers
often used soil moisture monitoring systems (wired or
wireless moisture sensors) to irrigate (automatically or
manually mode) their fields based on the data of soil mois-
ture and plant water requirements. Different agencies also
provide irrigation advisory services based on the climate and
weather conditions in the area (Eching et al. 2002; Smith and
Munoz 2002).

All of these conventional farming methods generally do
not consider the variability within the field and use a uniform
irrigation rate for the entire field. Remote sensing data can be
used to apply a variable rate of irrigation with commonly
used irrigation systems in the field. The variable rate of
application helps to alleviate water stress due to extreme wet
and dry conditions, achieve uniformly high yields in all parts
of the field, and reduce the water and nutrient losses (Evans
et al. 2013; McDowell 2017). Remote sensing images are
generally collected multiple times during a growing season
of a crop to determine various indicators of crop water
demand such as Evapotranspiration (ET), soil moisture, and
water stress, which are used to estimate the water require-
ment of the crop as well as schedule irrigation in the field.

Remote sensing products like optical, thermal, and
microwave bands are used to develop and test multiple
indices and techniques for water management (Amani et al.
2016). For example, NDVI and Soil Adjusted Vegetation
Index (SAVI) were developed from optical images of remote
sensing data and they can be used to detect water stress and
soil moisture conditions for different crops. These indices, in

combination with forecasted weather data of the area, can be
used for irrigation scheduling in the field. Thermal remote
sensing-based Crop Water Stress Index (CWSI) is another
indicator that is used to estimate the irrigation water demand.
CWSI is extensively used for irrigation management in
many orchards (Egea et al. 2017; Maes and Steppe 2019).
An autonomous multi-sensor (multispectral and thermal
sensor) Unmanned Aerial Vehicle (UAV) system was used
by Katsigiannis et al. (2016) to develop CWSIs maps for
irrigation scheduling and water management in kiwi,
pomegranate, and vine fields. However, more research and
study are needed to establish climate–soil–crop-specific
threshold values to enable irrigation scheduling in different
crop fields by the use of CWSI. Zhang et al. (2019a, b) used
UAV-based Multispectral Remote Sensing techniques for
mapping water stress in maize (Zea mays).

5.2 Evapotranspiration

The major water flux from the Earth’s surface to the atmo-
sphere is Evapotranspiration (ET). It is an important com-
ponent of the hydrologic cycle and water balance on earth.
Conventional methods of ET measurement (e.g., weighing
lysimeter and eddy covariance) are very expensive and they
do not provide spatially variable ET estimates resulting from
the differences in land use, topography, soils of an area, and
other hydrologic processes (Liou and Kar 2014; Verstraeten
et al. 2008). Remote sensing data is often used to estimate
ET, which is required to determine the crop water require-
ments to schedule irrigation and water management (Mendes
et al. 2019; Barker et al. 2018). There are different methods
of ET estimation by using remote sensing data and these
methods can be grouped into three categories: (i) surface
energy balance method, (ii) crop coefficient method, and
(iii) the Penman–Monteith method (Mendes et al. 2019;
Calera et al. 2017). Many studies provided a review of dif-
ferent remote-sensing-based ET estimation techniques (Liou
and Kar 2014; McShane et al. 2017) including a review from
Zhang et al. (2019a, b), which discussed the development
theories of several ET estimation methods along with their
advantages and disadvantages. The surface energy balance
method is an extensively used for ET estimation in the past
few years (Sishodia et al. 2020). Some studies also have
been used as hybrid methods by combining the crop coef-
ficient and energy balance method for ET estimation. In the
surface energy balance method, the net radiation flux (Rn),
soil heat flux (G), and sensible heat flux (H) are usually
calculated from remotely sensed data in visible,
near-infrared, and thermal infrared bands, while the latent
heat flux (ʎET) is calculated as a reminder of the term in the
energy balance equation (Barker et al. 2018; Calera et al.
2017).
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A detailed review was provided by Liou and Kar (2014)
and McShane et al. (2017) regarding various surface energy
balance algorithms used for estimating landscape-scale ET at
high spatial resolution and they discussed their physical
basis, assumptions, and disadvantages. Surface energy bal-
ance techniques are a variety of empirical and physically
based models to solve the energy balance equation fully or
partially for ET estimation. Crop-coefficient-based methods
for ET estimation are dependent on a statistical relationship
between a vegetation index (e.g., NDVI, SAVI) and crop
coefficient. There are numerous methods for the estimation
of ET based on the remote sensing data, each having its
advantages and disadvantages. Some surface energy balance
methods like S-SEBI do not need any ground-based mea-
surements and ET can be estimated only by using remote
sensing data (Liou and Kar 2014). Further studies and
research are needed for the development of
remote-sensing-based ET estimation methods to identify and
determine the spatial–temporal structure of uncertainties in
ET estimation due to process errors, forcing errors, param-
eterization errors, etc.

5.3 Soil Moisture

Remote sensing data received in multiple bands, including
optical, thermal, and microwave, is often used to estimate
soil moisture (Verstraeten et al. 2008; Zhang and Zhou
2016). Thermal and optical remote sensing data are also used
extensively for estimation of soil moisture and ET in a
method called as “triangle” or “trapezoid” method or Land
Surface Temperature-Vegetation Index (LST-VI) method
(Zhang et al. 2016; Carlson 2007; Babaeian et al. 2018).
This method is based on the physical relationship between
the surface temperature of land and the characteristics of its
vegetative cover. Soil moisture estimation by this method is
done through the interpretation of pixel distribution in the
LST-VI plot-space. If an image contains a sufficiently large
number of pixels covering a full range of soil moisture,
vegetation density and when cloud, surface water, and other
outliers are absent, the LST-VI space looks like a triangle or
trapezoid (Carlson 2007). One edge of the LST-VI triangle
or trapezoid falling toward higher temperatures represent the
dry edge and low content of soil moisture, while the opposite
side of the triangle or trapezoid represents the wet edge with
high soil moisture (Petropoulos et al. 2009). A newer gen-
eration of triangular models has been developed recently and
they are tested for high spatial resolution mapping of soil
moisture content in different agricultural applications
(Babaeian et al. 2019; Sadeghi et al. 2017). For the appli-
cation of these models in a diverse range of climatic,
hydrologic, and environmental conditions, more studies are
needed. Mohamed et al. (2019) used remote sensing data for

mapping soil moisture content and their correlations with
crop patterns in arid regions.

5.4 Disease Management

Different diseases of crop plants reduce the significant amount
of crop production and farmer profits. Early detection of plant
disease can help us to control the disease spread and reduce
production losses. Conventional methods such as field
scouting of disease detection are very time-consuming,
labor-intensive, and subject to human error (Ehsani and Maja
2013) and it is difficult to detect the disease during the early
stages with not fully visible symptoms by this method. Fur-
thermore, some diseases do not show any noticeable visible
symptoms at an early stage (Sladojevic et al. 2016). Due to the
difficulties of mapping the spatial extent and disease severity
with the conventional methods, remote sensing techniques
can be used to monitor the disease at the early stages of
development with much efficiency, as it is difficult to detect
the signs of disease with the field scouting method. To
improve the ability to detect different diseases and parasitic
attacks at an early stage of disease development, we can use
different sensors such as thermal sensors and the combination
of their derived data with optical and multispectral sensors
(Zhang et al. 2019a, b). Multiple techniques such as multi-
spectral, hyperspectral, thermal, and fluorescence imaging are
very useful to identify diseases in different crops (Mahlein
2016). Abdulridha et al. (2019a) used a machine learning
method with vegetation indices generated from hyperspectral
UAV images to detect canker disease of citrus plants with an
accuracy of 96% at an early stage of disease development and
stress due to late blight disease of tomato plant was detected
by hyperspectral remote sensing technology (Zhang et al.
2003). The disease-specific Spectral Disease Indices
(SDI) can provide more accuracy of disease detection than the
typically used vegetation indices such as NDVI (Mahlein
et al. 2013; Al-Saddik et al. 2017). By using SDIs, in place of
typical VIs, we can reduce the complexity of disease detection
and increase the system efficiency simultaneously. Remote
sensing can also be used for fast and accurate forecasting of
pests, subsequently reduction of pest damage and manage-
ment costs (Marei 2020). Therefore, further studies are nee-
ded to develop more accurate methods for disease detection
under diverse climatic conditions of field in the real world.

5.5 Crop Monitoring and Yield

Monitoring crop growth and yield are very important to
understand the crop response to the environment and
develop effective management plans for the fieldwork (Peng
et al. 2019). Remote sensing data of crop growth and
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biomass yield can help us to obtain valuable information on
site-specific properties such as soils, topography, manage-
ment (e.g., water, nutrient) and different stressors such as
diseases, weeds, water, nutrient stress etc. (Campos et al.
2019). Remote sensing data is also used for mapping dif-
ferences in tillage and residue management (Yeom et al.
2019). Using hyperspectral images with various machine
learning and classification techniques, we can map tillage
and crop residue in agricultural fields (Hively et al. 2018;
Salas and Subburayalu 2019). This information on crop
conditions and tillage practices can help us to generate
site-specific management plans like variable water, nutrient,
and pesticide application in the field. Crop biophysical
parameters or vegetation indices derived from remote sens-
ing have a strong correlation with crop yield and biomass,
having potential use in crop yield estimation (Peng et al.
2019). Spatial mapping of crop biophysical parameters or
vegetation indices derived from multiple times remote
sensing during a growing season is most likely to provide a
better estimation of crop biomass yield. Toscano et al.
(2019) used remote sensing data for mapping and yield
assessment of durum wheat (Triticum durum). Remote
sensing can also be used in weed mapping using 'Unmanned
Aerial Vehicle' (Huang et al. 2020) and in pest management
(Huang et al. 2012).

6 Conclusion

Remote sensing has many uses and advantages in agriculture
such as crop yield estimation, monitoring crop growth,
estimation of soil moisture, detection of different stresses
and diseases, weather forecasting, etc. (Shanmugapriya et al.
2019). A lot of information has been generated in recent
years on characterizing biotic and abiotic stress using remote
sensing such as multispectral radiometry. Different
management-related challenges along with abiotic and biotic
stressors may be confronted by using remote sensing tech-
nologies to make better agricultural management decisions
(Segarra et al. 2020). It is possible to better understand the
crop stress induced by different pests and diseases with the
help of remote sensing. The differentiation between biotic
and abiotic stresses with much accuracy is also possible by
using hyperspectral radiometry. Reflectance data derived
from ground-based remote sensing technology provides
important information for understanding spectral interactions
between pests damage on the host plants. Remote sensing by
satellite provides a sufficient amount of data for large-scale
studies, but it has some disadvantages such as temporal or
spatial resolution and availability of cloud-free data. Air-
borne systems have higher resolution, time flexibility, and
can provide sufficient time for dissemination of crop pro-
tection advisory. Though the application of airborne remote

sensing technology for detection of biotic and abiotic stress
is popular in many developed countries, it is in its primary
stages of usage in the developing countries because of its
high cost, lack of availability of suitable sensors, small
marginal farm holdings, and diverse range of cropping
systems. Hence, it is quite difficult to use airborne hyper-
spectral remote sensing in these countries. In the past, there
is limited availability of fine spatial resolution, near real-time
data for the application of satellite remote sensing in agri-
culture but now this problem is not a matter of concern with
the launch of new generation satellites. The narrow bands in
hyperspectral sensors can detect the characteristic absorption
peaks of different pigments of plants and other parameters
more accurately and thus provide better information about
plant health. But the availability of hyperspectral data from
different satellite platforms is still in its early stage. Air and
spaceborne remote sensing can provide spatial variability of
biotic and abiotic stress of a large area. With the help of
satellite and digital imaging methods, it is simple and
cost-effective in monitoring the crop situation (Ennouri and
Kallel 2019). Therefore, we can use remote sensing tech-
nology for getting much accurate and reliable information in
crop protection and management.
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