
Chapter 9
The Nonconforming Trefftz Virtual
Element Method: General Setting,
Applications, and Dispersion Analysis
for the Helmholtz Equation

Lorenzo Mascotto, Ilaria Perugia, and Alexander Pichler

Abstract We present a survey of the nonconforming Trefftz virtual element method
for the Laplace and Helmholtz equations. As for the latter, we show a new abstract
analysis, based on weaker assumptions on the stabilization, and numerical results
on the dispersion analysis, including comparison with the plane wave discontinuous
Galerkin method.

9.1 Introduction

In this chapter, we present a survey of a methodology, which dovetails the
nonconforming virtual element setting with the Trefftz paradigm.

The nonconforming virtual element method is an extension of the nonconforming
finite element method to polytopal meshes, which is based on the virtual element
method (VEM) framework. Notably, the continuity constraint of functions in the
approximation spaces are imposed in a weak sense only. Since its inception [6], the
nonconforming VEM has received an increasing attention, and has been analysed
and applied to several problems: general elliptic problems [14]; Stokes and Navier-
Stokes equations [13, 35, 36, 51, 52]; eigenvalue problems [23]; the plate bending
problem [50]; equations involving the biharmonic and 2m-th operators [4, 17];
anisotropic error estimates [15]; the linear elasticity problem [49]; parabolic and
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fractional-reaction subdiffusion problems [34, 53]; the VEM with a SUPG sta-
bilization for advection-diffusion-reaction [11]; fourth order singular perturbation
problems [48]; the Kirchhoff plate contact problem [46]; the medius error analysis
for the Poisson and biharmonic problem [30]. Its comparison with other skeletal
methods such as the hybridized discontinuous Galerkin method (HDG) and the
hybrid high-order (HHO) method is investigated in [21].

Trefftz methods are Galerkin-type methods for the approximation of linear partial
differential equations (PDEs) with piecewise constant coefficients, where the test
and/or trial functions belong to the kernel of the differential operator defining
the PDE to be approximated. Trefftz methods have been applied mainly to time-
harmonic wave propagation problems, but also to advection-diffusion problems and
to wave problems in the time-domain. Typically, Trefftz methods are obtained by
combining these functions (Trefftz function) with the discontinuous Galerkin method
(dG) or with the partition of unity method (PUM). Out of the former category,
restricting ourselves to the Helmholtz problem, we recall several approaches, which
trace back to the ultra weak variational formulation [16]: the wave based method
[19]; discontinuous methods based on Lagrange multipliers [22] and on least square
formulation [43]; the plane wave discontinuous Galerkin (PWDG) method [25, 28];
the variational theory of complex rays [45]; see [29] for an overview of such
methods. We also mention the quasi-Trefftz dG method for the case of smoothly
varying coefficients, where functions that “almost” belong to the kernel of the
operator appearing in the PDE are employed [32, 33]. Instead, the latter category
consists of methods based on approximation spaces of continuous functions given
by the product of pure Trefftz functions with partition of unity, low order, hat
functions. Amongst them, we highlight the classical PUM [7, 8] and its virtual
element version [44].

More recently, the Trefftz gospel has been combined with the nonconforming
VEM setting for the Laplace equation [37], and the Helmholtz equation with
constant [38, 39] and piecewise constant wave number [40]. Albeit the noncon-
forming Trefftz VEM is not an H 1 conforming method, the interelement continuity
is imposed weakly within the approximation spaces, unlike in the dG setting.
Moreover, unlike in the PUM setting, its basis functions are exactly Trefftz.

In this contribution, we review the methods presented in [37–39], and elaborate
a common framework for nonconforming Trefftz VEMs. We start by considering
the simplest case of the Laplace equation in Sect. 9.3. Then, we extrapolate the
core idea of the nonconforming Trefftz VEM approach and extend it to general
linear differential operators of the second order; see Sect. 9.4. In Sect. 9.5, we recast
the case of the Helmholtz equation studied in [38] into the setting of Sect. 9.4.
Additionally, we present a new abstract analysis of the method, which is based on
weaker assumptions on the stabilization than those in [38]. While we refer to [39] for
the implementation details and an extended numerical testing of the nonconforming
Trefftz VEM for the Helmholtz problem, we present in Sect. 9.6 unpublished work
on its numerical dispersion analysis, where the performance of the nonconforming
Trefftz VEM are compared to those of the PWDG method that have been studied
in [24].
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Notation
We employ standard notation for Sobolev spaces. Given s ∈ N and a domain �, we
denote the Sobolev space of order s taking values in the complex field C by Hs(�).
In the special case s = 0, Hs(�) reduces to the Lebesgue space L2(�). We
introduce the Sobolev sesquilinear forms, seminorms, and norms

(·, ·)s,�, | · |s,�, ‖ · ‖s,�.

We define Sobolev spaces of order s ∈ R by interpolation. Analogously, we denote
the Sobolev spaces on ∂� by Hs(∂�). If we consider Sobolev spaces of functions
taking values only in R, we employ the same notation Hs(�) thanks to the trivial
embedding R ↪→ C.

Assume that the domain � is Lipschitz. Then, we can define the standard

Dirichlet trace operator tr∂� : Hs(�) → Hs− 1
2 (∂�) for all s ∈ (1/2, 3/2). Thanks

to this operator, we are allowed to introduce affine Sobolev spaces with boundary

conditions: given g ∈ H
1
2 (∂�),

H 1
g (�) :=

{
v ∈ H 1(�) | tr∂�(v) = g

}
.

Henceforth, as standard in the VEM literature, a quantity is said to be computable
if it can be evaluated using the degrees of freedom of the trial and test spaces under
consideration.

9.2 Polygonal Meshes and Broken Sobolev Spaces

We denote a family of polygonal meshes over a polygonal domain � ⊂ R
2

by {Th}h>0, and the sets of edges and vertices of Th by Eh and Vh, respectively.
In particular, we split Eh into the sets of boundary and internal edges E B

h and E I
h ,

respectively. Given a polygon K ∈ Th, we denote its barycenter, size, set of
edges, set of vertices, and outward normal to ∂K by xK , hK , E K , V K , and nK ,
respectively, and given an edge e ∈ Eh, we denote its size by he.

As customary in polygonal methods, we demand the following shape-regularity
assumption on {Th}h:

there exists a positive constant γ > 0 such that, for all K ∈ Th,

i) K ∈ Th is star-shaped with respect to a ball of radius γ hK ;

ii) every edge e ∈ E K is such that he ≤ hK ≤ γ he.

(9.1)

We introduce the broken Sobolev space associated with the mesh Th

H 1(�,Th) := {v ∈ L2(�) | v ∈ H 1(K) ∀K ∈ Th}, (9.2)
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and endow it with the broken seminorm

|v|21,Th
:=

∑
K∈Th

|vK |21,K ∀v ∈ H 1(�,Th). (9.3)

Given e ∈ E I
h , we define the jump operator across e as follows:

�v�e = v+|e nK+ + v−|e nK− if e ⊂ ∂K+ ∩ ∂K− (9.4)

for all v in H 1(�,Th), where v+ := v|K+ and v− := v|K− .

9.3 The Nonconforming Trefftz Virtual Element Method
for the Laplace Problem

In this section, we focus on the approximation of a two dimensional Laplace
problem by means of the nonconforming Trefftz virtual element method that was
originally introduced in [37]; see also [18] for its conforming version.

The Continuous Problem
Let � ⊂ R

2 be a polygonal domain and g ∈ H
1
2 (∂�). Introduce the following

notation:

Vg := H 1
g (�), V0 := H 1

0 (�), a(·, ·) := (∇·,∇·)0,�.

We consider the following Laplace problem: find a sufficiently smooth u : � → R

such that

{
�u = 0 in �

u = g on ∂�,

which in weak formulation reads

{
find u ∈ Vg such that

a(u, v) = 0 ∀v ∈ V0.
(9.5)

An Explicit Discontinuous Space
Let p ∈ N. Given a sequence {Th}h of polygonal decompositions over � as
in Sect. 9.1, we define the corresponding sequence of discontinuous, piecewise
harmonic polynomials over Th:

S 0,�
p (�,Th) :=

{
q�
p ∈ L2(�) | q�

p |K ∈ Hp(K) ∀K ∈ Th

}
,
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where, for all K ∈ Th,

Hp(K) :=
{
q�
p ∈ Pp(K) | �q�

p = 0
}

.

We recall the following approximation property of discontinuous, piecewise
harmonic polynomials for harmonic functions; see, e.g., [41, Theorem 2.9].

Proposition 9.1 Under the shape regularity assumption (9.1) with constant γ ,
given a harmonic function u ∈ Hs+1(�), s > 0, there exists q�

p ∈ S 0,�
p (�,Th)

such that

|u − q�
p |1,h ≤ chs‖u‖s+1,�.

The positive constant c depends on γ and on the polynomial degree p.

The importance of Proposition 9.1 resides in the fact that there exists a subset of the
space of piecewise polynomials of degree at most p having optimal approximation
properties for harmonic functions. This subset is the space of piecewise harmonic
polynomials of degree at most p, whose local dimension in 2D is 2p + 1, while the
local dimension of the space of complete polynomials of degree at most p is (p +
1)(p + 2)/2.

Design of the VE Trefftz Space
Here, we recall from [37] the definition of local and global nonconforming Trefftz
spaces for the Laplace problem. Given K ∈ Th, define

V �
h (K) := {v�

h ∈ H 1(K) | �v�
h = 0 in K,

∀e ∈ E K ∃q�
p ∈ H

�
p (K) s.t. ne · ∇v�

h |e = ne · ∇q�
p |e}.

(9.6)

Equivalently, we are requiring that the Neumann traces of functions in V �
h (K)

belong to Pp−1(e) for all e ∈ E K . It is more convenient to define V �
h (K) as in (9.6)

in view of the general setting presented in Sect. 9.4 below.
The idea behind the definition of V �

h (K) is as follows. According to the Trefftz
gospel, we consider a local space, which consists of Trefftz functions, i.e., harmonic
functions in our case. A possible way to pick a finite dimensional subspace V �

h (K)

is to require that, on each e ∈ E K , a suitable trace of any element in V �
h (K)

belongs to a suitable explicit finite element space. In our case, we require that the
Neumann traces belong to Pp−1(e), the space of polynomials of degree at most p−1
(dim(Pp−1(e)) = p). By doing this, harmonic polynomials are included in the
space V �

h (K), which yields good approximation properties; see Proposition 9.3
below.
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For any edge e ∈ E K , let {me
α}pα=1 be a basis of Pp−1(e). Consider the following

set of linear functionals on V �
h (K):

v�
h ∈ V �

h (K) �→ 1

he

∫

e

v�
h me

α ∀α = 1, . . . , p, ∀e ∈ E K. (9.7)

Proposition 9.2 The set of functionals in (9.7) is a set of unisolvent degrees of
freedom.

Proof The proof is standard and can be found, e.g., in [37, Section 3.1]. For the sake
of completeness, we recall it here. The number of the functionals in (9.7) is smaller
than or equal to the dimension of V �

h (K). Thus, it suffices to show the unisolvence
of such a set of functionals.

Assume that v�
h ∈ V �

h (K) has the moments in (9.7) all equal to zero. Then, we
have

∫

∂K

v�
h = 0.

Consequently, in order to prove the unisolvence, i.e., that v�
h = 0, it is enough to

show that v�
h has zero gradient. This is a consequence of an integration by parts, and

the fact that v�
h is harmonic, that nK ·∇v�

h |e is a polynomial of degree at most p−1
on each edge e ∈ E K , and that the functionals in (9.7) are zero:

|v�
h |21,K = −

∫

K

�v�
h v�

h +
∫

∂K

nK ·∇v�
h v�

h =
∑

e∈E K

∫

e

nK ·∇v�
h v�

h = 0. (9.8)

�
In the proof of Proposition 9.2, the choice of the local polynomial traces in

the definition of (9.6) is important. More precisely, we fixed polynomial Neumann
traces, for they appear in the integration by Parts (9.8). At the same time, the choice
of the “Dirichlet”-type degrees of freedom in (9.7) is relevant as well, and will play
a role in the construction of the global space.

We define the infinite dimensional, nonconforming spaces

Hnc,�
p (�,Th):=

{
v ∈ H 1(�,Th) |

∫

e

�v�e · ne me
α = 0 ∀α = 1, . . . , p, ∀e ∈ E I

h

}
,

where the broken Sobolev spaces H 1(�,Th) and the jump operator �·� are defined
in (9.2) and (9.4), respectively, and we introduce the global nonconforming Trefftz
virtual element space for the Laplace problem:

V �
h :=

{
v�
h ∈ Hnc,�

p (�,Th) | v�
h |K ∈ V �

h (K) ∀K ∈ Th

}
.
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We obtain the set of global degrees of freedom of the space v�
h by patching the

local ones in (9.7). In particular, we use the Dirichlet edge moments of (9.7) in the
definition of the infinite dimensional, nonconforming space H

nc,�
p (�,Th) in order

to weakly impose the interelement continuity.
We summarize the main features of the space v�

h , highlighting a “duality”
between Dirichlet moments and local Neumann traces, as follows.

Trefftz spaces Contain Harmonic functions

Nonconformity Imposed through Dirichlet moments

Unis. of DOFs in (9.7) Implied by Pol. Neumann traces in (9.6)

For the design of the method, we define spaces that incorporate Dirichlet

boundary conditions. More precisely, given g ∈ H
1
2 (∂�), we define

V �
h,g :=

{
v�
h ∈ V �

h |
∫

e

(v�
h − g)me

α = 0 ∀e ∈ E B
h , ∀α = 1, . . . , p

}
.

The seminorm | · |1,Th
defined in (9.3) is actually a norm in V �

h,0.

Interpolation Properties
An interesting property of the nonconforming Trefftz virtual element space for the
Laplace problem is that, given a harmonic function u ∈ H 1(�), there exists u�

I ∈
V �

h , which approximates u better than any discontinuous, piecewise harmonic
polynomial of degree at most p. This property was originally shown in [37,
Proposition 3.1].

Proposition 9.3 Given a harmonic function u ∈ H 1(�), there exists u�
I ∈ V �

h

such that

|u − u�
I |1,Th

≤ |u − q�
p |1,Th

∀q�
p ∈ S 0,�

p (�,Th),

where the broken Sobolev seminorm is defined in (9.3).

Proof Define u�
I ∈ V �

h as the interpolant of u, i.e.,

∫

e

(u − u�
I )me

α = 0 ∀e ∈ Eh, ∀α = 1, . . . , p, (9.9)

and let q�
p be any function in S 0,�

p (�,Th). For any K ∈ Th, since both (nK ·
∇u�

I )|e and (nK ·∇q�
p )|e belong to Pp−1(e) for all e ∈ E K , Definition (9.9) implies

∫

e

nK · ∇u�
I (u − u�

I ) =
∫

e

nK · ∇q�
p (u − u�

I ) = 0 ∀e ∈ E K. (9.10)
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Therefore, by integrating by parts twice and using (9.10), as well as �u = �u�
I =

�q�
p = 0, we deduce that

|u − u�
I |21,K = −

∫

K

�(u − u�
I )︸ ︷︷ ︸

=0

(u − u�
I ) +

∑

e∈E K

∫

e

nK · ∇(u − u�
I ) (u − u�

I )

(9.10)= −
∫

K

�(u − q�
p )︸ ︷︷ ︸

=0

(u − u�
I ) +

∑

e∈E K

∫

e

nK · ∇(u − q�
p ) (u − u�

I )

= (∇(u − q�
p ),∇(u − u�

I ))0,K ≤ |u − q�
p |1,K |u − u�

I |1,K,

whence the assertion follows. �
Projections and Stabilizations
For future convenience, split

a(u, v) =
∑

K∈Th

aK(u|K, v|K) :=
∑

K∈Th

(∇(u|K),∇(v|K
)
)0,K.

Since the functions in the virtual element space v�
h are not known in closed form, we

cannot compute the local bilinear forms aK(·, ·) applied to functions in v�
h . Rather,

we introduce computable bilinear forms as in the standard virtual element approach
of [10].

To this aim, we need two main ingredients. The first one is a local projection into
harmonic polynomial spaces. Define �

∇,�
p : V �

h (K) → Hp(K) as follows:

{
aK(v�

h − �
∇,�
p v�

h , q�
p ) = 0∫

∂K
(v�

h − �
∇,�
p v�

h ) = 0
∀q�

p ∈ Hp(K), ∀v�
h ∈ V �

h (K). (9.11)

This is a typical VEM projection. Here, we project into the subspace of harmonic
polynomials of degree at most p whereas, in the standard setting [10], the projection
is into the full space of polynomials of degree at most p.

The definition of the degrees of freedom in (9.7) allows us to compute the
projector �

∇,�
p . This is clear for the second condition in (9.11). As for the first

condition, we observe that

aK(�∇,�
p v�

h , q�
p ) = aK(v�

h , q�
p ) = −

∫

K

v�
h �q�

p︸︷︷︸
=0

+
∑

e∈E K

∫

e

v�
h nK · ∇q�

p︸ ︷︷ ︸
∈Pp−1(e)

,

where the right-hand side is computable using (9.7).
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The second ingredient is a computable stabilization on each element, which
is needed since the bilinear form aK(·, ·) is not computable on ker(�∇,�

p ) ×
ker(�∇,�

p ). More precisely, for all K ∈ Th, let SK,� : ker(�∇,�
p ) × ker(�∇,�

p ) →
R be a bilinear form that is computable via the degrees of freedom in (9.7) and
that satisfies the following property: there exist two positive constant α∗ and α∗
independent of the mesh size such that

α∗|v�
h |21,K ≤ SK,�(v�

h , v�
h ) ≤ α∗|v�

h |21,K ∀v�
h ∈ ker(�∇,�

p ). (9.12)

We allow α∗ and α∗ to depend on the shape regularity constant γ in (9.1).
Then, we define

a�
h (u�

h , v�
h ) :=

∑
K∈Th

a
K,�
h (u�

h |K, v�
h |K)

:=
∑

K∈Th

aK(�∇,�
p u�

h |K,�∇,�
p v�

h |K)

+ SK,�((I − �∇,�
p )u�

h |K, (I − �∇,�
p )v�

h |K).

As in [10, 37], the discrete bilinear form a�
h (·, ·) is coercive and continuous with

constants min(1, α∗) and max(1, α∗).

Remark 9.1 We refer to [37, Section 3.3] for an explicit stabilization satisfy-
ing (9.12). There, stability bounds are proven, which are explicit also in terms of
the polynomial degree.

The Method
We have introduced all the ingredients needed for the design of the nonconforming
Trefftz VEM for the Laplace problem:

{
find u�

h ∈ V �
h,g such that

a�
h (u�

h , v�
h ) = 0 ∀v�

h ∈ V �
h,0.

(9.13)

The well-posedness of the method follows from the coercivity and the continuity of
the discrete bilinear form a�

h (·, ·).
Convergence Analysis
The abstract error analysis of method (9.13) is carried out in [37, Theorem 3.3] and
is based on the second Strang’s lemma. The result is that the error of the method
is controlled by the sum of two terms: the best approximation error in the space of
discontinuous, piecewise polynomials and a term that measures the nonconformity
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of the method. The latter is expressed in terms of the bilinear form Nh : H 1(�) ×
H

nc,�
p (�,Th) → R defined as

Nh(u, v) =
∑
e∈Eh

∫

e

∇u · �v�. (9.14)

Theorem 9.1 Let u and u�
h be the solutions to (9.5) and (9.13), respectively. Under

the shape regularity assumption (9.1), the following bound is valid:

|u − uh|1,Th
≤ α∗

α∗

⎧
⎨
⎩6 inf

q�
p ∈S 0,�

p (�,Th)

|u − q�
p |1,Th

+ sup
0 �=v�

h ∈V �
h,0

Nh(u, v�
h )

|v�
h |1,Th

⎫
⎬
⎭ .

As a consequence of Theorem 9.1, Proposition 9.1, and estimates of Nh derived
by standard computations that are typical in nonconforming Galerkin methods, the
convergence of the method follows; see [37, Section 3.5] for more details.

Corollary 9.1 Let u and u�
h be the solutions to (9.5) and (9.13), respectively,

with u ∈ Hs+1(�). Under the shape regularity assumption (9.1) with constant γ ,
the following convergence result is valid:

|u − uh|1,Th
≤ chs‖u‖s+1,�.

Here, c is a positive constant, which depends on γ and on the polynomial degree p.

Overall, the nonconforming Trefftz VEM for the Laplace problem is a modifi-
cation of the standard nonconforming VEM, in the sense that it encodes certain
properties of the solution to the problem within the definition of the VE spaces. The
resulting method has significantly fewer degrees of freedom than a standard VEM
based on complete polynomial spaces, yet keeping the same convergence properties.

9.4 General Structure of Nonconforming Trefftz Virtual
Element Methods

In this section, we pinpoint the structure lying behind the nonconforming Trefftz
VEM for the Laplace equation and extend it to a more general and abstract setting.
In particular, given a homogeneous, linear partial differential equation, we highlight
which ideas we can extend to the new setting and which not. For the sake of
presentation, we assume that the solution to the involved partial differential equation
has to be sought in H 1-type Sobolev spaces with values in the field of complex
numbers C, although generalizations to other problems are possible as well.
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The Continuous Problem
Let � ⊂ R

2 be a polygonal domain and g ∈ Hs(∂�), where s ∈ R. In typical cases,
we have s ∈ {−1/2, 1/2}. Let L : H 1(�) → H−1(�) be a linear differential
operator of the second order and tr∂� : H 1(�) → Hs(∂�), s as above, a trace
operator.

Consider the following abstract problem: find u : � → C such that

{
L u = 0 in �

tr∂�(u) = g on ∂�,

which, in weak formulation, reads

{
find u ∈ V such that

a(u, v) + b(u, v) = G(v) ∀v ∈ W.
(9.15)

Here, we have introduced an affine space V ⊆ H 1(�), a test space W ⊆ H 1(�),
sesquilinear forms a : V × W → C and b : V × W → C, and an antilinear
functional G : W → C. The form b(·, ·) and the functional G(·) accommodate
the treatment of several types of boundary conditions. In particular, they are defined
only on ∂�. In what follows, we assume that a(·, ·), L , and tr∂� are related by the
following identity: for sufficiently smooth u and v,

a(u, v) = −(L u, v)0,� + G(v) − b(u, v). (9.16)

After splitting

a(u, v) =
∑

K∈Th

aK(u|K, v|K),

we demand that, for all K ∈ Th and all sufficiently smooth u and v,

aK(u|K, v|K)=−(L u|K, v|K)0,K +
∑

e∈EK

(tre(u|K), v|K)0,e− bK(u|K, v|K), (9.17)

where tre denotes the restriction to an edge e ∈ Eh of a trace operator tr, which
is not necessarily of the same type as tr∂�, and where bK(·, ·) is a local sequilinear
form.

For example, in Sect. 9.3, we fixed

V = H 1
g (�), W = H 1

0 (�), L = �, tr = Dirichlet trace operator,

a(u, v) = (∇u,∇v)0,�, b(u, v) = 0, G(v) = 0.
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In the abstract formulation (9.15), we can deal with the boundary datum g by tuning
either the trial space V or the right-hand side G(v).

An Explicit Discontinuous Space
The basic tool in the construction of a Trefftz VEM is the existence of finite
dimensional space consisting of globally discontinuous, piecewise smooth func-
tions, which lie in the kernel of the operator L and possess suitable approximation
properties for solutions to problem (9.15). We denote such approximation space
by S 0,L

p (�,Th) and its local counterpart on every element K by SL
p (K), where

the index p ∈ N is related to the local space dimension.
For instance, in Sect. (9.3), we considered as S 0,L

p (�,Th) the space of
discontinuous, piecewise harmonic polynomials of degree at most p, which has
optimal approximation properties in terms of the mesh size; see Proposition 9.1.

Design of the VE Trefftz Space
Given K ∈ Th, we define the local Trefftz virtual element space on K as follows:

V L
h (K) := {vLh ∈ H 1(K) | L (vLh ) = 0 in K,

∀e ∈ E K ∃sLp ∈ SL
p (K) s.t. tre(vLh |e) = tre(sLp |e)}.

(9.18)

The idea behind the construction of V L
h (K) hinges upon the existence of an

infinite dimensional, local space, which consists of functions in the kernel of the
operator L (Trefftz space). We define the finite dimensional subspace V L

h (K)

by requiring that, on each e ∈ E K , a suitable trace belongs to a suitable explicit
finite element space having good approximation properties for functions in the
kernel of L . More precisely, we require that the trace tre on each edge e ∈ E K

of any function in VL
h (K) belongs to tre(SL

p (K)). In this way, we include the

functions in SL
p (K) within the space VL

h (K). The hope is that this will yield
good interpolation properties of the local virtual element space.

In the setting of Sect. 9.3, we obtained a local space of harmonic functions, whose
Neumann trace tre belongs to the space of Neumann traces of harmonic polynomials
on every edge e, namely to Pp−1(e).

As for the degrees of freedom, for all edges e ∈ E K , let {me
α}pL

α=1 be a basis
of tr(SL

p (K)). Consider the following set of antilinear functionals on VL
h (K):

vLh ∈ V L
h (K) �→ c(he)

∫

e

vLh me
α ∀α = 1, . . . , pL , ∀e ∈ E K, (9.19)

where c(he) is a constant depending only on he and providing a suitable scaling of
the degrees of freedom.
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We aim at getting the following result.

Proposition 9.4 The set of functionals in (9.19) is a set of unisolvent degrees of
freedom.

The number of the functionals in (9.19) is smaller than or equal to the dimension
of V L

h (K). Thus, in order to prove Proposition 9.4, it suffices to show the
unisolvence of such a set of functionals.

Using assumption (9.17), we get

aK(vLh , vLh )+bK(vLh , vLh ) = −(L vLh︸ ︷︷ ︸
=0

, vLh )0,K +
∑

e∈E K

( tre(vLh )︸ ︷︷ ︸
∈tre(SL

p (K))

, vLh )0,e = 0.

In general, this is not enough to prove the unisolvence of the DOFs. In case
of the Dirichlet-Laplace problem, this is indeed sufficient; see Proposition 9.2.
Notwithstanding, in the case of the Helmholtz problem in Sect. 9.5 below, we also
need assumptions on the size of the mesh elements; see Proposition 9.7.

Importantly, while the definition of the local spaces is problem-dependent, as it
depends on the elliptic operator and suitable traces associated with the problem
under consideration, the choice of the degrees of freedom is fixed, and always
consists of (suitably scaled) Dirichlet moments; see (9.19).

Next, we construct global nonconforming VE Trefftz spaces for problem (9.15).
We define the infinite dimensional, nonconforming spaces

Hnc,L
p (�,Th):=

{
v ∈ H 1(�,Th) |

∫

e

�v�e · ne me
α = 0 ∀α = 1, . . . , pL , ∀e ∈ E I

h

}
,

where H 1(�,Th) and �·� are defined in (9.2) and (9.4), respectively. Then, the
global nonconforming Trefftz virtual element space for problem (9.15) is defined as

VL
h :=

{
vLh ∈ Hnc,L

p (�,Th) | vLh |K ∈ VL
h (K) ∀K ∈ Th

}
.

We obtain the set of global degrees of freedom of the space VL
h by patching

the local ones in (9.19). In particular, we use the Dirichlet edge moments in the
definition of the infinite dimensional, nonconforming space H

nc,L
p (�,Th) in order

to weakly impose the interelement continuity.
We can summarize the Trefftz feature of the space VL

h and the “duality” between
Dirichlet moments and the local tre-type trace as follows.

Trefftz spaces Contain Functions in ker(L )

Nonconformity Imposed through Dirichlet moments

Unis. of DOFs in (9.19) Implied by Traces of the type tre in (9.18)
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As already mentioned, we incorporate the boundary conditions within the
method either by enforcing them in the trial space or by suitably tuning the
functional G(·) on the right-hand side.

Interpolation Properties
A desirable property of the local space V �

h (K) is that the following result is valid.

Proposition 9.5 Given a function u ∈ H 1(�) in the kernel ofL , there exists uLI ∈
VL

h such that

|u − uLI |1,Th
≤ c|u − sLp |1,Th

∀sLp ∈ S 0,L
p (�,Th),

where the broken Sobolev seminorm is defined in (9.3) and c is a positive constant
independent of the mesh size.

In particular, we wish that functions in the kernel of L can be approximated in V L
h

not worse than in the explicit space S 0,L
p (�,Th). For the Laplace problem the

constant is 1; see Proposition 9.3. Moreover, we expect that uI in Proposition 9.5
can be defined as the interpolant of u through the degrees of freedom in (9.19).

In what follows, we assume that the local sesquilinear forms bK(·, ·) appearing
in (9.17) satisfy

whenever sLp ∈ SL
p (K), vLh ∈ V L

h (K)

then bK(sLp , vLh ) and bK(vLh , sLp ) are computable.
(9.20)

Projections and Stabilizations
Recall the splitting

a(u, v) =
∑

K∈Th

aK(u|K, v|K).

We consider the following discretizations of a and aK :

aLh (uLh , vLh ) :=
∑

K∈Th

a
K,L
h (uLh |K, vLh |K)

:=
∑

K∈Th

aK(�∇,L
p uLh |K,�∇,L

p vLh |K)+SK,L ((I −�∇,L
p )uLh |K, (I −�∇,L

p )vLh |K),

where we have to define the projector �
∇,L
p and the sequilinear form SK,L (·, ·).
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The operator �
∇,L
p : V L

h (K) → SL
p (K) is the projection operator with

respect to the local sesquilinear form aK(·, ·). More precisely, for all K ∈ Th,
we set

{
aK(�

∇,L
p vLh − vLh , sLp ) = 0 ∀vLh ∈ VL

h (K), ∀sLp ∈ SL
p (K)

+computable conditions for the uniqueness of �
∇,L
p vLh .

In the nonconforming Trefftz VEM for the Laplace equation, the computable
condition for uniqueness was on the average on ∂K; see (9.11).

The computability of �
∇,L
p follows from the definitions of the local

spaces V L
h (K) and the degrees of freedom in (9.19), and from the property (9.20):

aK(sLp ,�
∇,L
p vLh ) = aK(sLp , vLh )

= −(L sLp︸ ︷︷ ︸
=0

, vLh )0,K +
∑

e∈E K

( tre(sLp )︸ ︷︷ ︸
∈tre(SL

p (K))

, vLh )0,e − bK(sLp , vLh )︸ ︷︷ ︸
(9.20)

.

The choice of the degrees of freedom in (9.19) allows us to compute the L2-edge
projector �

e,L
p : V L

h (K)|e → tre(SL
p (K)|e), which is defined as

(�e,L
p vLh |e −vLh |e, tre(sLp |e))0,e ∀e ∈ E K, ∀vLh ∈ VL

h , ∀sLp ∈ SL
p (�,Th).

We need this projector for the discretization of the boundary terms, i.e., the
sesquilinear form b(·, ·) and the right-hand side G(·) appearing in (9.15). Such terms
do not appear in the Dirichlet-Laplace setting of Sect. 9.3. They would appear in the
case of the Laplace problem with inhomogenous Neumann boundary conditions.

For future convenience, we introduce the approximations

bLh (uLh , vLh ) ≈ b(uLh , vLh ) GL
h (vLh ) ≈ G(vLh ).

As for the stabilization SK,L , we require it to satisfy two properties: it has to be
computable via the DOFs and it must lead to a well-posed problem. For instance, in
Sect. 9.3, we considered stabilizations leading to coercive and continuous discrete
sesquilinear forms. This is not necessary in all situations. We will see in Sect. 9.5
below that, in the Helmholtz case, the coercivity is not required.
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The Method
With V̂L

h ⊆ V L
h and ŴL

h ⊆ WL
h , which may or not contain information about

the boundary conditions depending on the choice of V , W , b, and G in (9.15), the
nonconforming Trefftz VEM for problem (9.15) reads

{
find uLh ∈ V̂ L

h such that

aLh (uLh , vLh ) + bLh (uLh , vLh ) = GL
h (vLh ) ∀vLh ∈ ŴL

h .
(9.21)

The well-posedness of the method relies on suitable properties of the stabiliza-
tion SK,L (·, ·).
Convergence Analysis
Here, we state the Strang-type result that would be the target of the error analysis
for method (9.21).

Theorem 9.2 Let u and uLh be the solutions to (9.15) and (9.21), respectively.
Under the shape regularity assumption (9.1), the following bound is valid:

|u − uLh |1,Th
≤ c(SK,L ) {A + B + C} ,

where

– c(SK,L ) is a constant possibly depending on the stabilization SK,L ;
– A is the best approximation of u in the explicit spaceS 0,L

p (�,Th), i.e.,

inf
sLp ∈S 0,L

p (�,Th)

‖u − sLp ‖NORM,

where ‖ · ‖NORM is a suitable norm;
– B is a term addressing the nonconformity of the global space;
– C is a term involving the approximation of the boundary terms.

In the light of Theorem 9.2, we could deduce an optimal convergence result from
best approximation estimates in S 0,L

p (�,Th), and bounds on the nonconformity
at interior and boundary edges.

In the setting of the nonconforming Trefftz VEM for the Laplace problem, we
had C = 0 and

c(SK,L ) = α∗

α∗
, A = inf

q�
p ∈S 0,�

p (�,Th)

|u − q�
p |1,Th

, B = sup
0 �=v�

h ∈V �
h,0

Nh(u, v�
h )

|v�
h |1,Th

,

where Nh(u, v) is defined in (9.14).
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An important tool in the proof of Theorem 9.2 is Proposition 9.5, which allows
us to absorb a best approximation term in S 0,�

p (�,Th) in the term A.

Common and Problem-Related Features
We conclude this section with a summary of the common features in nonconforming
Trefftz VEM and the differences depending on the problem under consideration.

Common features:

– in the definition of the local spaces, the existence of an underlying finite
dimensional Trefftz space and the characterization through a given edge trace;

– the definition of Dirichlet-type degrees of freedom;
– the fact that we can control best interpolation errors in VEM spaces by best

approximation errors in explicit discontinuous spaces.

Problem-related features:

– in the definition of the local spaces, the kind of trace used in the characterization;
– how to prove the unisolvence of the DOFs (additional assumptions might be

needed);
– required properties on the stabilization form;
– the definition and the well-posedness of the projections;
– the imposition of the boundary conditions.

9.5 The Nonconforming Trefftz Virtual Element Method
for the Helmholtz Problem

In this section, according to the framework established in Sect. 9.4, we describe the
construction and the main steps of the analysis of a nonconforming Trefftz VEM for
the Helmholtz equation. We follow the framework of [38, 39]. However, we propose
a slightly different analysis, based on milder assumptions on the stabilization form.

The Continuous Problem
Let � ⊂ R

2 be a polygonal domain, g ∈ H− 1
2 (∂�), and k > 0. Introduce the

following space of complex-valued functions and the following sesquilinear forms:

V := H 1(�), a(·, ·) := (∇·,∇·)0,� − k2(·, ·)0,�, b(·, ·) := ik(·, ·)0,∂�.

We consider the following Helmholtz problem endowed with impedance bound-
ary conditions: find a sufficiently smooth u : � → C such that

{
�u + k2u = 0 in �

iku + n� · ∇u = g on ∂�,
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which in weak formulation reads

{
find u ∈ V such that

a(u, v) + b(u, v) = (g, v)0,∂� ∀v ∈ V.
(9.22)

Observe that (9.22) falls in the broader abstract setting (9.15).

An Explicit Discontinuous Space
Let p ∈ N. Given {Th}h a sequence of polygonal decompositions over � as
in Sect. 9.1, we introduce the corresponding sequence of piecewise plane waves
over Th:

PWp(�,Th) :=
{
wp ∈ L2(�) | wp |K ∈ PWp(K) ∀K ∈ Th

}
,

where, for all K ∈ Th, the local space of plane waves PWp(K) is constructed as
follows.

Introduce the set of indices J := {1, . . . , 2p + 1} and the set of pairwise
different and normalized directions {d	}	∈J . In each K ∈ Th, consider the set
of plane waves

w	(x) := eikd	·(x−xK) ∀	 ∈ J , ∀x ∈ K, (9.23)

and define

PWp(K) := span{w	, 	 ∈ J }.

These plane waves belong to the kernel of the Helmholtz operator, i.e.,

�wp + k2wp = 0 ∀wp ∈ PWp(K), ∀K ∈ Th.

Introduce the weighted broken norms and seminorms

| · |2s,Th
:=

∑
K∈Th

| · |2s,K, ‖ · ‖2
s,k,Th

:=
∑

K∈Th

‖ · ‖2
s,k,K

with ‖ · ‖2
s,k,K :=

s∑
j=0

k2(s−j)| · |2j,K ∀K ∈ Th.

For future convenience, we demand that the directions d	 are uniformly separated.
More precisely, we ask that

there exists δ ∈ (0, 1] such that the angle between d	1 and d	2

is larger than or equal to δ(2π/p) for every 	1, 	2 ∈ J , 	1 �= 	2.
(9.24)
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This assumption allows us to recall the following approximation property of
discontinuous, piecewise plane waves for functions in the kernel of the Helmholtz
operator; see, e.g., [42, Theorem 5.2].

Proposition 9.6 Let u ∈ Hs+1(�), s > 0, belong to the kernel of the Helmholtz
operator. Under the shape-regularity assumption (9.1) with constant γ and assump-
tion (9.24) on the directions d	, for all L ∈ R with 1 ≤ L ≤ min(p, s),
there exists wp ∈ PWp(�,Th) such that the following estimate is valid: for
every 0 ≤ j ≤ L,

‖u − wp‖j,k,Th
≤ cpw(hk)hL+1−j‖u‖L+1,k,�,

where

cpw(t) := Ceb t (1 + tj+q+8), b, C ∈ R.

The constant C > 0 depends on p, j , L, γ , and the directions {d	}, but is
independent of k, h, and u. On the other hand, the constant b depends on the
geometric properties of the mesh only. Observe that cpw(hk) remains bounded
as h → 0.

The importance of Proposition 9.6 resides in the fact that there exists a finite
dimensional space, whose dimension is lower than that of the piecewise polynomial
space of degree at most p, locally 2p+1 instead of (p+1)(p+2)/2 in 2D, but with
the same approximation rates for functions in the kernel of the Helmholtz operator.

Design of the VE Trefftz Space
Here, we recall from [38] the definition of local and global nonconforming Trefftz
spaces for the Helmholtz problem. Given K ∈ Th, for all e ∈ E K , introduce the
space

PWp(e) := {we
	 | we

	 = wp |e for some wp ∈ PWp(K)}.

We have that dim(PWp(e)) ≤ dim(PWp(K)). More precisely, the dimension
of PWp(e) gets smaller whenever the restrictions to e of two basis functions
of PWp(K) coincide. Below, we use the notation Ne

PW := dim(PWp(e)).

Given K ∈ Th and e ∈ E K , introduce the local impedance trace operators

trKI (v) := ikv + nK · ∇v, treI (v) := ikv|e + ne · (∇v)|e ∀v ∈ H 1(K),

and define the local space

V H
h (K) := {vH

h ∈ H 1(K) | �vH
h + k2vH

h = 0 in K,

∀e ∈ E K ∃wp ∈ PWp(K) s.t. treI (v
H
h ) = treI (wp)}.

(9.25)
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Equivalently, we are requiring that the impedance trace of functions in V H
h (K)

belongs to PWp(e) for all e ∈ E K .
The idea behind the definition of V H

h (K) is exactly the one described in Sect. 9.4
after formula (9.18), with tre = treI . The inclusion of PWp(K) within V H

h (K) yields
good interpolation properties of the space; see Proposition 9.8 below.

For all edges e ∈ E K , let {we
α}N

e

PW
α=1 be a basis of PWp(e). Consider the

following set of antilinear functionals on V H
h (K):

vH
h ∈ V H

h (K) �→ 1

he

∫

e

vH
h we

α ∀α = 1, . . . , Ne

PW, ∀e ∈ E K. (9.26)

So far, the construction falls in the abstract setting detailed in Sect. 9.4. The first
big difference with respect to the case of the Laplace problem in Sect. 9.3 is in the
proof of the unisolvence of the degrees of freedom, which requires the following
additional assumption: for all K ∈ Th,

k is such that k2 is not a Dirichlet-Laplace eigenvalue on K. (9.27)

As discussed, e.g., in [38, Section 3.1], the condition (9.27) boils down to a threshold
condition on the mesh size.

Proposition 9.7 Under assumption (9.27), the set of functionals (9.26) is a set of
unisolvent degrees of freedom.

Proof The proof can be found, e.g., in [38, Lemma 3.1]. For the sake of complete-
ness, we recall it here. The number of the functionals in (9.26) is smaller than or
equal to the dimension of V �

h (K). Thus, it suffices to show the unisolvence of such
a set of functionals.

Let vH
h ∈ V H

h (K) be such that the functionals (9.26) are zero in vH
h . An

integration by parts and the properties of functions in V H
h (K) yield

|vH
h |21,K − k2‖vH

h ‖2
0,K − ik‖vH

h ‖2
0,∂K

=
∫

K

vH
h (−�vH

h − k2vH
h )

︸ ︷︷ ︸
=0

+
∑

e∈EK

∫

e

vH
h trKI (vH

h )︸ ︷︷ ︸
∈PWp(e)

= 0.

By taking the imaginary part on both sides, we deduce that vH
h has zero trace on ∂K .

Since vH
h also satisfies �vH

h + k2vH
h = 0, assumption (9.27) implies that vH

h = 0,
whence the unisolvence follows. �
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In the present case, the local forms bK in (9.17) of the abstract setting of Sect. 9.4
are given by

bK(uH
h , vH

h ) := ik
∫

∂K

uH
h vH

h .

The forms bK(·, ·) fulfil assumption (9.20) for all K ∈ Th.
Next, we construct global nonconforming Trefftz VE spaces for problem (9.22).

Recalling the definition of the broken Sobolev spaces H 1(�,Th) and of the jump

operator �·� in (9.2) and (9.4), respectively, and that {we
α}N

e

PW
α=1 denotes a basis

of PWp(e), we set

Hnc,H
p (�,Th):=

{
v∈H 1(�,Th) |

∫

e

�v�e ·ne we
α = 0 ∀α=1, . . . , Ne

PW,∀e ∈ E I
h

}
.

Then, we define the global nonconforming Trefftz virtual element space for the
problem (9.22) as

V H
h :=

{
vH
h ∈ Hnc,H

p (�,Th) | vH
h |K ∈ V H

h (K) ∀K ∈ Th

}
.

We obtain the set of global degrees of freedom of the space vH
h by patching the local

ones in (9.26). In particular, we use the Dirichlet edge moments in the definition of
the infinite dimensional, nonconforming space H

nc,H
p (�,Th) in order to weakly

impose the interelement continuity.
As in Sect. 9.4, we summarize the features of the space V H

h (K), including the
“duality” between Dirichlet moments and the local impedance traces trKI as follows.

Trefftz spaces Contain Functions in ker(� + k2)

Nonconformity Imposed through Dirichlet moments

Unis. of DOFs in (9.19) Implied by Traces of the type trKI in (9.25)

Differently from the Laplace case, the boundary conditions are incorporated
within the weak formulation of the problem, and not in the trial and test spaces.

Interpolation Properties
Similarly to the Laplace case, we can approximate any target function u ∈ H 1(�)

by functions in the space vH
h better than by functions in the space of discontinuous,

piecewise plane waves. This was shown in [38, Theorem 4.2].
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Proposition 9.8 Let assumptions (9.1), (9.24), and (9.27) be valid. Moreover, let hk

be sufficiently small; see [38, equation (4.17)]. Given a function u ∈ H 1(�), there
exists uH

I ∈ V H
h such that

‖u − uH
I ‖1,k,Th

≤ cBA(hk)‖u − wp‖1,k,Th
∀wp ∈ PWp(�,Th),

where

cBA(t) := 2c1(1 + c2t
2)(2 + c3t

2),

for three positive constants c1, c2, and c3.

Proof The proof is rather technical. Therefore, we refer to [38, Theorem 4.2] for
details. There, the constants c1, c2, and c3 are provided explicitly. We can define the
function uH

I as the interpolant of u through the degrees of freedom (9.26). �
The target function u in the statement of Proposition 9.8 does not need to belong

to the kernel of the Helmholtz operator. We only require that it belongs to H 1(�).
Clearly, we need to require that u belongs to the kernel of the Helmholtz operator
if we want to combine Proposition 9.6 together with Proposition 9.8 in order to
recover high-order approximation rates in virtual element spaces.

Projections and Stabilizations
Recall the splitting

a(u, v) =
∑

K∈Th

aK(u|K, v|K).

We consider the following discretizations of a and aK :

aH
h (uH

h , vH
h ) :=

∑
K∈Th

a
K,H
h (uH

h |K, vH
h |K)

:=
∑

K∈Th

aK(�∇,H
p uH

h |K,�∇,H
p vH

h |K)

+ SK,H ((I − �∇,H
p )uH

h |K, (I − �∇,H
p )vH

h |K),

(9.28)

where we still have to define the projector �
∇,H
p and the sesquilinear form

SK,H (·, ·). The operator �
∇,H
p : V H

h (K) → PWp(K) is the projection operator
with respect to the local sesquilinear form aK(·, ·). More precisely, for all K ∈ Th,
we set

aK(�∇,H
p vH

h − vH
h ,wp) = 0 ∀vH

h ∈ V H
h (K), ∀wp ∈ PWp(K).
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The computability of such a projector follows from the definition of the local
spaces V H

h (K) and of the degrees of freedom in (9.19):

aK(�∇,H
p vH

h ,w	) = aK(vH
h ,w	)

= −(vH
h , (� + k2)w	︸ ︷︷ ︸

=0

)0,K +
∑

e∈E K

(vH
h , treI (w	)︸ ︷︷ ︸

∈treI (PWp(K))

)0,e − ik
∑

e∈EK

(vH
h , w	︸︷︷︸
∈treI (PWp(K))

)0,e.

In order to have the well-posedness of the projector �
∇,H
p , we do not need to

impose any additional computable condition. Rather, we need to require a threshold
condition on the mesh size that, in addition to (9.27), also guarantees that k2 is not
a Neumann-Laplace eigenvalue. In particular, the following result is valid; see [38,
Proposition 3.1] and [44, Propositions 2.1 and 2.3].

Proposition 9.9 Let the assumptions (9.1), (9.24), and (9.27) be valid. Moreover,
assume that h is sufficiently small, so that k2 is smaller that the first Neumann-
Laplace eigenvalue on each K ∈ Th. Then, the projector �

∇,H
p is well-defined

and continuous. More precisely, there exists a positive constant β(hKk), uniformly
bounded away from zero as hKk → 0, such that

‖�∇,H
p vH

h ‖1,k,K ≤ 1

β(hKk)
‖vH

h ‖1,k,K ∀vH
h ∈ V H

h (K), ∀K ∈ Th. (9.29)

By defining

βmin := min
K∈Th

β(hKk), (9.30)

inequality (9.29) implies

‖�∇,H
p vH

h ‖1,k,K ≤ 1

βmin
‖vH

h ‖1,k,K ∀vH
h ∈ V H

h (K), ∀K ∈ Th. (9.31)

We observe that the choice of the degrees of freedom (9.26) also allows us to
compute the L2-edge projector �

e,H
p : V H

h (K)|e → treI (PWp(K))|e) into traces of
plane waves, which is defined as follows: for all e ∈ E K ,

(�e,H
p vH

h |e − vH
h |e, treI (wp))0,e = 0 ∀vH

h ∈ V H
h (K), ∀wp ∈ PWp(K). (9.32)
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This projector is needed for the discretization of the boundary terms, i.e., the
sesquilinear form b(·, ·) and the right-hand side (g, ·)0,∂� appearing in (9.22). We
introduce

bH
h (uH

h , vH
h ) := ik

∑

e∈E B
h

(�e,H
p uH

h |e,�e,H
p vH

h |e)0,e,

(g, vH
h )0,∂� ≈

∑

e∈E B
h

(g,�e,H
p vH

h |e)0,e.

(9.33)

With respect to the abstract setting in Sect. 9.4, the form G(·) is here given by

G(vH
h ) :=

∫

∂�

gvH
h .

The last ingredient we need is a stabilization SK,H (·, ·) for all K ∈ Th, which
is computable via the degrees of freedom (9.26) and satisfies certain properties. So
far, we have recalled the setting of [38]. Here, we weaken the assumptions on the
stabilization demanded there, and yet deduce the well-posedness and convergence
for the method.

More precisely, for all K ∈ Th, we require that

SK,H (vH
h , vH

h ) ≥ |vH
h |21,K −(1+CS)k2‖vH

h ‖2
0,K ∀vH

h ∈ ker(�∇,H
p ) (9.34)

and the continuity

|SK,H (uH
h , vH

h )| ≤ CC‖uH
h ‖1,k,K‖vH

h ‖1,k,K ∀uH
h , vH

h ∈ ker(�∇,H
p ), (9.35)

where CS and CC are two positive constants independent of k, with CS a sufficiently
small, positive constant to be fixed below; see Eq. (9.41).

With these choices, we are in a position to prove the following “weak” version
of the Gårding inequality.

Proposition 9.10 For every K ∈ Th, let the stabilization SK,H (·, ·) satisfy (9.34).
Then, the following Gårding-type inequality is valid:

RE[aH
h (vH

h , vH
h ) + bH

h (vH
h , vH

h )] + 2k2‖vH
h ‖2

0,�

+ CSk2
∑

K∈Th

‖(I − �∇,H
p )vH

h ‖2
0,K ≥ ‖vH

h ‖2
1,k,Th

∀vH
h ∈ V H

h ,
(9.36)

where CS is the same constant as in (9.34).
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Proof The proof follows along the same lines as the one of [44, Proposition 4.2].
For the sake of completeness, we carry out the details here. From (9.33), (9.28), and
simple algebra, we get

RE[aH
h (vH

h , vH
h ) + bH

h (vH
h , vH

h )] + 2k2‖vH
h ‖2

0,� = aH
h (vH

h , vH
h ) + 2k2‖vH

h ‖2
0,�

=
∑

K∈Th

{
aK(�∇,H

p vH
h ,�∇,H

p vH
h ) + 2k2‖�∇,H

p vH
h ‖2

0,K

}

+
∑

K∈Th

{
SK,H ((I −�∇,H

p )vH
h , (I −�∇,H

p )vH
h ) + 2k2‖(I −�∇,H

p )vH
h ‖2

0,K

}

+
∑

K∈Th

4k2
RE

[∫

K

�∇,H
p vH

h (I −�
∇,H
p )vH

h

]
.

Then, using (9.34) and simple calculations, we deduce

RE[aH
h (vH

h , vH
h ) + bH

h (vH
h , vH

h )] + 2k2‖vH
h ‖2

0,�

≥
∑

K∈Th

{
|�∇,H

p vH
h |21,K + k2‖�∇,H

p vH
h ‖2

0,K

}

+
∑

K∈Th

{
|(I − �∇,H

p )vH
h |21,K + (1 − CS)k2‖(I − �∇,H

p )vH
h ‖2

0,K

}

+
∑

K∈Th

2RE

[∫

K

∇�∇,H
p vH

h ∇(I − �
∇,H
p )vH

h

]

+
∑

K∈Th

2k2
RE

[∫

K

�∇,H
p vH

h (I − �
∇,H
p )vH

h

]
.

Thus, we have

RE[aH
h (vH

h , vH
h ) + bH

h (vH
h , vH

h )] + 2k2‖vH
h ‖2

0,� + CSk2
∑

K∈Th

‖(I − �∇,H
p )vH

h ‖2
0,K

≥
∑

K∈Th

{
|�∇,H

p vH
h |21,K + |(I − �∇,H

p )vH
h |21,K

+2RE

[∫
K

∇�∇,H
p vH

h · ∇(I − �
∇,H
p )vH

h

]}

+
∑

K∈Th

{
k2‖�∇,H

p vH
h ‖2

0,K + k2‖(I − �∇,H
p )vH

h ‖2
0,K
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+2k2
RE

[∫

K

�∇,H
p vH

h (I − �
∇,H
p )vH

h

]}

=
∑

K∈Th

(
|vH

h |21,K + k2‖vH
h ‖2

0,K

)
= ‖vH

h ‖2
1,k,Th

,

whence the assertion follows. �
Assuming (9.35), we also get the continuity of the discrete sesquilinear

form aH
h (·, ·) in (9.28).

Proposition 9.11 Under assumption (9.35), the discrete sesquilinear form aH
h (·, ·)

in (9.28) satisfies

aH
h (uH

h , vH
h ) ≤ 1 + CC(1 + βmin)

2

β2
min

‖uH
h ‖1,k,Th

‖vH
h ‖1,k,Th

, (9.37)

where CC is the constant in (9.35) and βmin is defined in (9.30).

Proof We have

aH
h (uH

h , vH
h ) =

∑
K∈Th

{
aK(�∇,H

p uH
h ,�∇,H

p vH
h )

+SK,H
(
(I − �∇,H

p )uH
h , (I − �∇,H

p )vH
h

)}

(9.35)≤
∑

K∈Th

{
‖�∇,H

p uH
h ‖1,k,K‖�∇,H

p vH
h ‖1,k,K

+CC‖(I − �∇,H
p )uH

h ‖1,k,K‖(I − �∇,H
p )vH

h ‖1,k,K

}

(9.31)≤
∑

K∈Th

1 + CC(1 + βmin)
2

β2
min

‖uH
h ‖1,k,K‖vH

h ‖1,k,K

≤ 1 + CC(1 + βmin)
2

β2
min

‖uH
h ‖1,k,Th

‖vH
h ‖1,k,Th

.

�
Remark 9.2 In [38], the assumption on the stabilization SK,H (·, ·) was slightly
stronger than (9.34), namely we required

SK,H (vH
h , vH

h ) ≥ |vH
h |21,K − k2‖vH

h ‖2
0,K ∀vH

h ∈ ker(�∇,H
p ). (9.38)
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This assumption results in the following stronger version of the Gårding inequality:

RE[aH
h (vH

h , vH
h ) + bH

h (vH
h , vH

h )] + 2k2‖vH
h ‖2

0,� ≥ ‖vH
h ‖2

1,k,Th
∀vH

h ∈ V H
h .

As we will see in Theorem 9.3 below, the present weaker setting still allows us
to derive an abstract error analysis for the method (9.39) below. The advantage of
the new setting is that the design of a computable stabilization SK,H (·, ·) becomes
easier.

For a stronger version of Theorem 9.3 below, relying on the assumption (9.38)
instead of (9.36), we refer to [38, Theorem 4.3].

The Method
We have introduced all the ingredients needed for the design of the nonconforming
Trefftz VEM for the Helmholtz problem:

{
find uH

h ∈ V H
h such that

aH
h (uH

h , vH
h ) + bH

h (uH
h , vH

h ) = (g,�
e,H
p vH

h ) ∀vH
h ∈ V H

h .
(9.39)

The well-posedness of the method follows by using a Schatz-type argument, as
detailed in Theorem 9.3 below.

Convergence Analysis
In the following theorem, we prove well-posedness and abstract error estimates for
method (9.39). In particular, the error of the method is controlled by two terms:
a best approximation estimate in discontinuous, piecewise plane wave spaces and
an estimate of the approximation of the boundary condition g. For simplicity, an
additional term involving the nonconformity of the method, which is hidden in
the proof, is not explicitly reported. Proposition 9.8 is used in order to absorb an
interpolation error term within the best approximation in discontinuous, piecewise
plane wave spaces.

Theorem 9.3 Let the solution u to (9.5) be in H 2(�). Let the number of local
plane wave directions in (9.23) be 2p + 1, with p ≥ 2. Let the assumptions (9.1)
and (9.27) on the meshes, the assumption (9.24) on the local plane wave directions,
and the assumptions (9.34) and (9.35) on the local stabilization forms be valid.
Additionally, we require that hk2 is sufficiently small; see [38, eqt. (4.65)]. Then,
there exists a unique solution uH

h to the method (9.39), and the following a priori
estimate is valid:

‖u − uH
h ‖1,k,Th

� c1(h, k)‖u − wp‖1,k,Th
+ h c2(h, k)|u − wp|2,Th

+ h
1
2 c2(h, k)

( ∑

e∈E B
h

‖g − �e,H
p g‖2

0,e

)1/2 ∀wp ∈ PWp(�,Th).
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Indeed, we can express c1 and c2 explicitly; see the statement of [38, Theorem 4.3].
Moreover, hk � 1 implies that

c1(h, k) � (1 + CC)(1 + k), c2(h, k) � 1 + k.

Proof The proof follows along the same lines as that of [38, Theorem 4.3]. For this
reason, we only present the modifications that are due to the validity of the weaker
Gårding-type inequality (9.36); see Remark 9.2.

We first observe that, for all uH
I ∈ V H

h ,

‖u − uH
h ‖1,k,Th

≤ ‖u − uH
I ‖1,k,Th

+ ‖uH
I − uH

h ‖1,k,Th
.

We focus on the second term on the right-hand side. For the sake of simplicity,
write δh := uH

I − uH
h . By applying the Gårding-type inequality (9.36), we deduce

‖δh‖2
1,k,Th

≤ RE(aH
h (δh, δh) + bH

h (δh, δh)) + 2k2‖δh‖2
0,�

+ CSk2
∑

K∈Th

‖(I − �∇,H
p )δh‖2

0,K =: I + II + III.
(9.40)

The terms I and II are dealt with exactly as in [38]. As for the term III , we proceed
as follows:

III = CSk2
∑

K∈Th

‖(I − �∇,H
p )δh‖2

0,K ≤ CS‖(I − �∇,H
p )δh‖2

1,k,Th

≤ 2CS(‖δh‖2
1,k,Th

+ ‖�∇,H
p δh‖2

1,k,Th
)

(9.29)≤ 2CS

(
1

β2 + 1

)
‖δh‖2

1,k,Th
.

Picking CS in (9.34), e.g., such that

CS ≤ 1

8

β2
min

β2
min + 1

, (9.41)

with βmin as in (9.30), we get

III ≤ 1

4
‖δh‖2

1,k,Th
.

Thus, we absorb the term III within the left-hand side of (9.40) yielding

3

4
‖δh‖2

1,k,Th
≤ I + II.
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The proof follows then along the same lines as that of [38, Theorem 4.3] with αh =
3/4. Therefore, we omit further details. �
Remark 9.3 In view of Theorem 9.3, the approximation properties in Proposi-
tion 9.6 and some algebra, we deduce that the optimal h-convergence is valid under
suitable regularity assumptions on the solution u to problem (9.22) and on the
boundary datum g. We refer to [38, Theorem 4.4] for a precise statement.

Overall, the nonconforming Trefftz VEM for the Helmholtz problem is a modi-
fication of the standard nonconforming VEM, in the sense that it encodes certain
properties of the solution to the problem within the definition of the VE spaces. The
resulting method has significantly fewer degrees of freedom than a standard VEM
based on complete polynomial spaces, yet keeping the same convergence properties.
Differently from the case of the Laplace problem, we need to resort to nonpolynomial
underlying spaces (plane wave spaces, in our presentation).

9.6 Stability and Dispersion Analysis for the Nonconforming
Trefftz VEM for the Helmholtz Equation

Here, we address the issue of the dispersion analysis for the nonconforming Trefftz
VEM for the Helmholtz equation detailed in Sect. 9.5.

Amongst the difficulties in approximating time-harmonic wave propagation
problems, we highlight the so-called pollution effect [9], which describes the
widening discrepancy between the best approximation error and the discretization
error for large values of the wave number k.

This effect is directly linked to numerical dispersion, representing the failure of
the numerical method to reproduce the correct oscillating behaviour of the analytical
solution. More precisely, for a given wave number k, a continuous problem
with plane wave solution is considered. Its numerical approximation delivers an
approximate solution, which can be interpreted as a wave with a deviated wave
number kn. We can measure this mismatch of the continuous and discrete wave
numbers k and kn separately in terms of the real part and the imaginary part with
the following interpretation. The term | Re (k − kn)| represents the deviation (shift)
of the phase (dispersion), and the term | Im (k − kn)| = | Im (kn)| refers to the
damping of the amplitude (dissipation) of the computed discrete solution. Moreover,
the difference |k − kn| measures the total amount of dispersion and dissipation and
is sometimes referred to as total dispersion or total error.

We summarize the general strategy for a dispersion analysis in the following two
steps:

1. Consider the discretization scheme of the numerical method applied to −�u −
k2u = 0 in R

2 using infinite meshes which are invariant under a discrete group of
translations. Due to translation invariance, it is then possible to reduce the infinite
mesh to a finite one.
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2. Given a plane wave with wave number k travelling in a fixed direction, seek a so-
called discrete Bloch wave solution, which can be regarded as a generalization of
the given continuous plane wave based on the underlying approximating spaces,
and determine for which (discrete) wave number kn this Bloch wave solution
actually solves the discrete variational formulation. This procedure leads to small
nonlinear eigenvalue problems, which need to be solved.

In the framework of standard conforming finite element methods (FEM) for the
Helmholtz problem, a full dispersion analysis was done in [20] for dimensions one
to three. Furthermore, in [9] it was shown that the pollution effect can be avoided
in 1D, but not in higher dimensions, and a generalized pollution-free FEM in 1D
was constructed. Moreover, we highlight the work in [31], where a link between
the results of the dispersion analysis and the numerical analysis was established for
finite elements, and the work in [1], where quantitative, fully explicit estimates for
the behaviour and decay rates of the dispersion error were derived in dependence on
the order of the method relative to the mesh size and the wave number. Also in the
context of nonconforming methods, dispersion analyses have been performed for the
discontinuous Galerkin (DG)-FEM [2, 3], the discontinuous Petrov-Galerkin (DPG)
method [26], and the plane wave discontinuous Galerkin method (PWDG) [24].
Recently, a dispersion analysis for hybridized DG (HDG)-methods has been carried
out in [27], including an explicit derivation of the wave number error for lowest
order single face HDG methods.

Here, we numerically investigate the dispersion and dissipation properties of the
nonconforming Trefftz VEM (ncTVEM), and compare the results to those obtained
in [24] for PWDG, and to those for standard polynomial based FEM.

The remainder of the section is organized as follows. In Sect. 9.6.1, we describe
the abstract setting for the dispersion analysis. Then, in Sect. 9.6.2, we specify
the set of basis functions and the sesquilinear forms defining the numerical
discretization schemes for the ncTVEM. Finally, in Sect. 9.6.3, we numerically
study the dispersion and dissipation and we compare the results with those obtained
with other methods.

9.6.1 Abstract Dispersion Analysis

In this section, we fix the abstract setting for the dispersion analysis employing the
notation of [24].

To this purpose, in order to remove possible dependencies of the dispersion on the
boundary conditions of the problem, we consider the Helmholtz problem (9.22) on
the unbounded domain � = R

2. Let Th := {K} be a translation-invariant partition
of � into polygons with mesh size h := maxK∈Th

hK , where hK := diam(K),
i.e., there exists a set of elements K̂1, . . . , K̂r , r ∈ N, such that the whole infinite
mesh can be covered in a nonoverlapping way by shifts of the “reference” patch
K̂ :=⋃r

j=1 K̂j . In other words, this assumption implies the existence of translation
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Fig. 9.1 Examples of translation-invariant meshes with the corresponding translation vectors ξ 1
and ξ 2: regular Cartesian mesh, triangular mesh, and hexagonal mesh, from left to right

vectors ξ1, ξ2 ∈ R
2, such that every element K ∈ Th can be written as a

linear combination with coefficients in N0 of one of the reference polygons K̂	,
	 = 1, . . . , r . Some examples for translation-invariant meshes are shown in Fig. 9.1.
Moreover, we denote by E K the set of edges belonging to K .

Let u(x) = eikd·x, d ∈ R
2 with |d| = 1 be a plane wave with wave number

k and traveling in direction d. We denote by Vn the global approximation space
resulting from the discretization of (9.22) using a Galerkin based numerical method,
and by V̂n ⊂ Vn a minimal subspace generating Vn by translations with

ξn := n1ξ1 + n2ξ2, n = (n1, n2) ∈ Z
2. (9.42)

More precisely, depending on the structure of the method, V̂n is determined as
follows.

1. Vertex-related basis functions: In this case, V̂n is the span of all basis functions
related to a minimal set of vertices {νi}λ(0)

i=1, λ(0) ∈ N, such that all the other mesh
vertices are obtained by translations with ξn of the form (9.42). An example is
the FEM.

2. Edge-related basis functions: Similarly as above, the space V̂n is in this case the
span of all basis functions related to a minimal set of edges {ηi}λ(1)

i=1, λ(1) ∈ N,
such that all the other edges of the mesh are obtained by translations with ξn of
the form (9.42). This is, for instance, the case of the ncTVEM [38, 39].

3. Element-related basis functions: Here, the space V̂n is simply given as the span
of all basis functions related to a minimal set of elements {σi}λ(2)

i=1, λ(2) ∈ N, such
that all other elements of the mesh are obtained by a translation with a vector ξn

of the form (9.42). One representative of this category is the PWDG [25, 28].

In the following, we will refer to these minimal sets of vertices {νi}λ(0)

i=1, edges

{ηi}λ(1)

i=1, and elements {σi}λ(2)

i=1 as fundamental sets of vertices, edges, and elements,
respectively.
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As a direct consequence, every vn ∈ Vn can be written as

vn(x) =
∑

n∈Z2

v̂n(x − ξn), v̂n ∈ V̂n.

Next, we define the discrete Bloch wave with wave number kn and traveling in
direction d by

un(x) =
∑

n∈Z2

eiknd·ξn ûn(x − ξn), (9.43)

where ûn ∈ V̂n, and kn ∈ C with Re(kn) > 0. Note that, since ûn ∈ V̂n, the infinite
sum in (9.43) is in fact finite. Furthermore, given d ∈ R

2 with |d| = 1, the Bloch
wave un in (9.43) satisfies

un(x + ξ�) = eiknd·ξ�un(x),

for all � ∈ Z
2. This property follows directly by using the definition of the Bloch

wave:

un(x + ξ�) =
∑

n∈Z2

eiknd·ξn ûn(x + ξ� − ξn) =
∑

n∈Z2

eiknd·ξn ûn(x − ξn−�)

= eiknd·ξ�

∑

m∈Z2

eiknd·ξm ûn(x − ξm) = eiknd·ξ�un(x).

Therefore, Bloch waves can be regarded as discrete counterparts, based on the
approximation spaces, of continuous plane waves.

We introduce the global (continuous) sesquilinear form

a(u, v) :=
∑

K∈Th

aK(u, v) :=
∑

K∈Th

[ ∫

K

∇u ·∇v −k2
∫

K

uv

]
∀u, v ∈ H 1(R2), (9.44)

and we denote by an(·, ·) the global discrete sesquilinear form defining the
numerical method under consideration. In Sect. 9.6.2 below, we will specify V̂n

and an(·, ·) for the ncTVEM and the PWDG.
Next, we define the discrete wave number kn ∈ C as follows.

Definition 9.1 Given k > 0 and d ∈ R
2 with |d| = 1, the discrete wave number

kn ∈ C is the number with minimal |k − kn|, for which a discrete Bloch wave un of
the form (9.43) is a solution to the discrete problem

an(un, v̂n) = 0 ∀v̂n ∈ V̂n. (9.45)



9 Nonconforming Trefftz VEM 395

Due to the scaling invariance of the mesh, we can assume that h = 1. The wave
number k on a mesh with h = 1 corresponds to the wave number k0 = k

h0
on a

mesh with mesh size h0.
Having this, the general procedure in the dispersion analysis now consists in

finding those discrete wave numbers kn ∈ C and coefficients ûn ∈ V̂n, for which a
Bloch wave solution of the form (9.43) satisfies (9.45), and to measure the deviation
of kn from k afterwards. This strategy results in solving small nonlinear eigenvalue
problems. In fact, by plugging the Bloch wave ansatz (9.43) into (9.45) and using
the sesquilinearity of an(·, ·), we obtain

∑

n∈Z2

eiknd·ξnan(̂un(· − ξn), v̂n) = 0 ∀v̂n ∈ V̂n. (9.46)

Let {χ̂s}�s=1 ⊂ V̂n be a set of basis functions for the space V̂n that are related to
fundamental elements, vertices, or edges, depending on the method. Then, we can
expand ûn in terms of this basis as

ûn =
�∑

t=1

ut χ̂t .

Plugging this ansatz into (9.46), testing with χ̂s , s = 1, . . . , �, and interchanging
the sums (this can be done since the infinite sum over n is in fact finite) yields

�∑
t=1

ut

⎛
⎝∑

n∈Z2

eiknd·ξnan(χ̂t (· − ξn), χ̂s)

⎞
⎠ = 0 ∀s = 1, . . . , �, (9.47)

which can be represented as

�∑
t=1

T s,t (kn)ut = 0 ∀s = 1, . . . , �, (9.48)

with

T s,t (kn) :=
∑

n∈Z2

eiknd·ξnan(χ̂t (· − ξn), χ̂s). (9.49)

The matrix problem corresponding to (9.48) has the form

T (kn)u = 0, (9.50)

where T : C → C
�×� is defined via (9.49), and u = (u1, . . . , u�)T ∈ C

�. We
highlight that T is a holomorphic map and (9.50) is a small nonlinear eigenvalue
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problem, which can be solved using, e.g., an iterative method as done in [24], or
a direct method based on a rational interpolation procedure [47] or on a contour
integral approach [5, 12]. For the numerical experiments presented in Sect. 9.6.3,
we will make use of the latter, which we will denote by contour integral method
(CIM) in the sequel. Due to the use of plane wave related basis functions, deriving
an exact analytical solution to (9.50) is not possible even for the lowest order case.

9.6.2 Minimal Generating Subspaces

In this section, we specify the minimal generating subspaces V̂n, the corresponding
sets of basis functions {χ̂s}�s=1, and the sequilinear forms an(·, ·) for the ncTVEM
and the PWDG [25, 28]. The basis functions for these two methods are edge-related
and element-related, respectively. In Figs. 9.2, 9.3, and 9.4, the stencils related to
the fundamental sets of vertices, edges, and elements are depicted for these three
methods and the meshes in Fig. 9.1.

Before doing that, we recall some notation from Sect. 9.5. Let {dj }pj=1, p =
2q + 1, q ∈ N, be a set of equidistributed plane wave directions. We denote by

wj(x) := eikdj ·x, j = 1, . . . , p, (9.51)

the plane wave with wave number k and traveling along the direction dj . Further-
more, for every K ∈ Th, we set wK

j := wj |K , and we introduce the bulk place
waves space

PWp(K) := span{wK
j , j = 1, . . . , p}.

The Case of ncTVEM
Let now {ηi}λ(1)

i=1 be a fundamental set of edges. Then, the set of basis functions

{χ̂ (1)
s }�s=1 spanning the minimal generating subspace V̂ (1)

n is given by the union of

the canonical basis functions related to {ηi}λ(1)

i=1. More precisely, for s ↔ (i, j),
i ∈ {1, . . . , λ(1)} and j ∈ Jηi , i.e. we identify s with the edge index i and the
index j associated with the j -th plane wave basis function on this edge as above,

χ̂ (1)
s = χ̂

(1)
(i,j) := �(ηi,j),

where �(ηi,j) is defined elementwise as follows. If K ∈ Th is an element
abutting the edge ηi , then �(ηi,j)|ηi

coincides with the local canonical basis function

associated with the (global) edge ηi and the j -th orthogonalized edge plane wave

basis function; otherwise �(ηi,j) is zero. Clearly, � =∑λ(1)

i=1 p̃ηi .

As for the sesquilinear form a
(1)
n (·, ·), it coincides with that in (9.28), where the

projector �
e,H
p is defined in (9.32).
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The Case of PWDG
For PWDG, we refer to [24] for a full dispersion analysis. For the sake of
completeness, we shortly recall here the definitions of the minimal generating
subspace and the sesquilinear form adapted to our setting.

The global approximation space V (2)
n is given by

V (2)
n := {vn ∈ L2(R2) : vn|K ∈ PWp(K) ∀K ∈ Th}.

Moreover, the global sesquilinear form a
(2)
n (·, ·) is defined by

a(2)
n (un, vn) :=

∑
K∈Th

aK(un, vn) −
∫

Eh

�un� · {{∇nvn}}

− β

ik

∫

Eh

�∇nun� �∇nvn� −
∫

Eh

{{∇nun}} · �vn�

+ ikα

∫

Eh

�un� · �vn� ∀un, vn ∈ V (2)
n .

(9.52)

where aK(·, ·) is given in (9.44), Eh is the mesh skeleton, α, β > 0 are the flux
parameters, and ∇n is the broken gradient. For v = un or vn, �v� is the standard
trace jump as defined in (9.4), and, on a given edge e, denoting by K− and K+ its
adjacent elements,

{{∇nv}} := 1

2

(∇v|K+ + ∇v|K−
)
, �∇nv� := ∇v|K+ · nK+ + ∇v|K− · nK−

are the trace average and normal jump, respectively, of ∇nv. Recall that Th is a
partition of � = R

2, thus all edges in Eh are shared by two elements.
Let now {σi}λ(2)

i=1 be a fundamental set of elements. Then, the basis functions

{χ̂ (2)
s }�s=1 are given by {wσi

j }i=1,...,λ(2),j=1...,p, where s ↔ (i, j), i.e. s is identified

with the element index i and the plane wave direction index j , and � = λ(2)p.
As mentioned above, the minimal generating subspace V̂ (2)

n ⊂ V (2)
n is simply the

span of the basis functions {χ̂ (2)
s }�s=1, and the sesquilinear form a

(2)
n (·, ·) is given

in (9.52).

Overview of the Stencils Generating the Minimal Subspaces
In Figs. 9.2, 9.3, and 9.4, we illustrate the stencils of the basis functions for the
ncTVEM and the PWDG, employing the meshes made of squares, triangles, and
hexagons, respectively, depicted in Fig. 9.1. The fundamental sets of vertices, edges,
and elements are displayed in dark-blue, and the translation vectors ξ1 and ξ2 in red.
Furthermore, the supports of the basis functions spanning the minimal generating
subspaces are coloured in light-blue for the ncTVEM. Due to the locality of the basis
functions, only those associated with the vertices, edges, and elements displayed in
dark-blue and dark-yellow contribute to the sum (9.47). Integration only has to be
performed over the elements Kζ and the adjacent edges.
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Fig. 9.2 Stencils of the basis functions related to the fundamental sets of edges (ncTVEM) and
elements (PWDG), respectively, from left to right, when employing the meshes made of squares in
Fig. 9.1

Fig. 9.3 Stencils of the basis functions related to the fundamental sets of edges (ncTVEM) and
elements (PWDG), respectively, from left to right, when employing the meshes made of triangles
in Fig. 9.1

Fig. 9.4 Stencils of the basis functions related to the fundamental sets of edges (ncTVEM) and
elements (PWDG), respectively, from left to right, when employing the meshes made of hexagons
in Fig. 9.1
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9.6.3 Numerical Results

In this section, after fixing some parameters for the different methods in Sect. 9.6
and specifying the quantities to be compared, we present a series of numerical
tests using the meshes portrayed in Fig. 9.1. Firstly, in Sect. 9.6.3.1, we investigate
the qualitative behaviour of dispersion and dissipation depending on the Bloch
wave angle ϑ in Definition 9.43. Then, in Sect. 9.6.3.2, we compare the dispersion
and dissipation errors against the effective plane wave degree q and against the
dimensions of the minimal generating subspaces. Finally, in Sect. 9.6.3.3, the
dependence of the errors on the wave number is studied.

Choice of the Parameters in PWDG and the Stabilizations in the ncTVEM
We use the choice of the flux parameters of the ultra weak variational formulation
(UWVF), i.e. α = β = 1/2, in PWDG, and we employ the stabilization terms
suggested in [38, 39] for the ncTVEM.

As for the ncTVEM, we employ a modified D-recipe stabilization detailed in [39,
Section 4]. More precisely, for all K ∈ Th, consider the set of local canonical basis
function {ϕH

i } of V H
h (K). For all ϕH

i and ϕH
j basis functions, we consider

SK,H (ϕH
i , ϕH

j ) = aK(�∇,H
p ϕH

i ,�∇,H
p ϕH

j ).

An essential element in the implementation of the method is the orthogonalization-
and-filtering process detailed in [39, Algorithm 2]. The basic idea is that the plane
waves on each edge e used in the definition of the degrees of freedom are first
orthogonalized in L2(e). Then, all combinations of plane waves that are close to be
linearly dependent to others are eliminated. This is explained in Algorithm 1.

A consequence of this approach is that, after few steps of both the h- and p-
versions of the method, the accuracy improves with an extremely slow growth of
the number of degrees of freedom. This results in the so called cliff-edge effect,
which was observed in [39, 40]; we shall exhibit such fast decay of the error notably
for the p-version in Figs. 9.8, 9.9, 9.11, and 9.12.

Numerical Quantities
Given a wave number k > 0 and kn the discrete wave number in Definition 9.1, we
will study the following quantities:

– the dispersion error | Re (k − kn)|, which describes the difference of the propa-
gation velocities of the continuous and discrete plane wave solutions;

– the dissipation error | Im (kn)| = | Im (k − kn)|, which represents the difference
of the amplitudes (damping) of the continuous and discrete plane wave solution;

– the total error |k − kn|, which measures the total deviation of the continuous and
discrete wave numbers.
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Algorithm 1
Let σ > 0 be a given threshold.

1. For all edges e ∈ Eh:

a. Assemble the matrix Ge associated with the L2(e) inner product:

(Ge)j,	 = (we
	,w

e
j )0,e ∀j, 	 = 1, . . . , Ne

PW,

where we recall that Ne

PW := dim(PWp(e)), and {we
r }

Ne

PW
r=1 denotes the original basis of

PWp(e).
b. Compute the eigenvalue/eigenvector decomposition of Ge:

GeQe = Qe�e,

where Qe is a matrix whose columns are right-eigenvectors of Ge, and �e is a diagonal
matrix of the corresponding eigenvalues.

c. Remove the columns of Qe corresponding to the eigenvalues with absolute value smaller
than σ . Denote by N̂e

PW ≤ Ne

PW the number of remaining columns, and re-label them

by 1, . . . , N̂e

PW.

d. For 	 = 1, . . . , N̂e

PW, set

ŵe
	 :=

Ne

PW∑
r=1

Qe
r,	 we

r .

The new, filtered basis {ŵe
	}

N̂e

PW
	=1 is L2(e) orthogonal.

2. For all K ∈ Th, the new basis of V H
h (K) is built by using the filtered basis {ŵe

	}
N̂e

PW
	=1 instead

of the original basis {we
r }

Ne

PW
r=1 for each e ∈ E K .

9.6.3.1 Dependence of Dispersion and Dissipation on the Bloch Wave
Angle

In this section, we study dispersion and dissipation of the different methods in
dependence on the angle ϑ of the direction d in the definition of the Bloch wave
in (9.43). Importantly, we are interested in a qualitative comparison of the methods.
A quantitative comparison should be performed in terms of the dimensions of the
minimal generating subspaces instead of the effective degrees, and is discussed in
Sect. 9.6.3.2 below.

To this purpose, in Figs. 9.5, 9.6, and 9.7, the numerical quantities | Re (k − kn)|
and | Im (kn)| are plotted against ϑ for the meshes made of squares, triangles, and
hexagons, respectively, shown in Fig. 9.1. We took k = 3 and q = 7 for all those
types of meshes (Figs. 9.5, 9.6, and 9.7, left). Moreover, for k = 10, we chose q =
10 for the squares (Fig. 9.5, right) and the triangles (Fig. 9.6, right), and q = 13
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Fig. 9.5 Dispersive and dissipative behaviour of PWDG and ncTVEM in dependence on the polar
angle ϑ of the Bloch wave direction d in (9.43) on the meshes made of squares in Fig. 9.1, with k =
3 and q = 7 (left), and k = 10 and q = 10 (right)
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Fig. 9.6 Dispersive and dissipative behaviour of PWDG and ncTVEM in dependence on the polar
angle ϑ of the Bloch wave direction d in (9.43) on the meshes made of triangles in Fig. 9.1, with
k = 3 and q = 7 (left), and k = 10 and q = 1 (right). The colour legend is the same as in Fig. 9.5

for the hexagons (Fig. 9.7, right). We remark that the latter choice for q on the
meshes made of hexagons is purely for demonstration purposes, in order to obtain
a reasonable range for the errors, where one can see the behaviour more clearly.
Moreover, the wave number k here (mesh size h = 1) corresponds to the wave
number k0 = k

h0
on a mesh with mesh size h0.

The dispersion and dissipation are zero, up to machine precision, for choices
of the Bloch wave direction d in (9.43) coinciding with one of the plane wave
directions {dj }pj=1 (here we always took equidistributed directions dj , where
d1 = (1, 0)). This follows directly from the fact that, in this case, the Bloch
wave satisfying (9.45) coincides with the corresponding plane wave traveling along
the direction d. Moreover, for the ncTVEM, the dispersion error dominates the
dissipation error, whereas for PWDG the dissipation dominates the dispersion.
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Fig. 9.7 Dispersive and dissipative behaviour of PWDG and ncTVEM in dependence on the polar
angle ϑ of the Bloch wave direction d in (9.43) on the meshes made of hexagons in Fig. 9.1,
with k = 3 and q = 7 (left), and k = 10 and q = 13 (right). The colour legend is the same as in
Fig. 9.5

9.6.3.2 Exponential Convergence of the Dispersion Error Against the
Effective Degree q

Here, we investigate the dependence of dispersion and dissipation on the effective
plane wave degree q (namely, p = 2q + 1 bulk plane waves). For fixed
wave number k, we will observe exponential convergence of the total error for
increasing q , as already seen in [24] for PWDG. This result is not unexpected
since also the p-versions for the discretization errors have exponential convergence,
provided that the exact analytical solution is smooth; see [28] for PWDG, and
the numerical experiments in [38] for the ncTVEM, respectively. Moreover, we
will make a comparison of these methods in terms of the total error versus the
dimensions of the minimal generating subspaces.

To this purpose, we consider the following range for the wave number: k ∈
{2, 3, 4, 5}. We recall again that k corresponds to k0 = k

h0
on a mesh with mesh

size h0.

Dispersion and Dissipation vs. Effective Degree q

In Figs. 9.8, 9.9, and 9.10, the relative dispersion error | Re(k − kn)|/k and the
relative damping error | Im(kn)|/k are displayed against q , for the meshes made of
squares, triangles, and hexagons, respectively. The maxima of the relative dispersion
and the relative dissipation, respectively, are taken over a large set of Bloch wave
directions d. After a preasymptotic regime, we observe exponential convergence of
the dispersion error for all methods and the dissipation error for the PWDG. The
dispersion error is consistently smaller for the PWDG than for the ncTVEM.

Dispersion and Dissipation vs. Dimensions of Minimal Generating Subspaces
From a computational point of view, it is also important to consider a comparison of
the dispersion errors in terms of the dimensions of the minimal generating subspaces
(density of the degrees of freedom). We directly compare the relative total dispersion
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Fig. 9.8 Relative dispersion (left) and relative dissipation (right) for the different methods in
dependence on the effective degree q and the wave numbers k = 2, . . . , 5 on the meshes made
of squares in Fig. 9.1. The maxima over a large set of Bloch wave directions d are taken
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Fig. 9.9 Relative dispersion (left) and relative dissipation (right) for the different methods in
dependence on the effective degree q and the wave numbers k = 2, . . . , 5 on the meshes made
of triangles in Fig. 9.1. The maxima over a large set of Bloch wave directions d are taken. The
colour legend is the same as in Fig. 9.8

errors |kn − k|/k, thus measuring the total deviation of the discrete wave number
from the continuous one. As above, the maxima over a large set of Bloch wave
directions are taken. In Fig. 9.11, those errors are displayed for the meshes in
Fig. 9.1. For the ncTVEM, we can recognize the cliff-edge effect, meaning that, at
some point, the dispersion error decreases without increase of the dimension of the
minimal generating subspace. This effect has already been remarked in [39, 40] for
the discretization error and is a peculiarity of the orthogonalization-and-filtering
process mentioned in [39, Algorithm 1]. Moreover, we can observe a direct
correlation between the density of the degrees of freedom, which depends on
the shape of the meshes, see Figs. 9.2, 9.3, and 9.4, and the error plots (larger
cardinalities of the fundamental sets lead to larger errors; as mentioned above, for
ncTVEM, the filtering process leads to dimensionality reductions).
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Fig. 9.10 Relative dispersion (left) and relative dissipation (right) for the different methods in
dependence on the effective degree q and the wave numbers k = 2, . . . , 5 on the meshes made of
hexagons in Fig. 9.1. The maxima over a large set of Bloch wave directions d are taken. The colour
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Comparison with the Standard FEM
Here, we highlight the advantages of using full Trefftz methods (ncTVEM, PWDG)
in comparison to standard polynomial based methods, such as the FEM, whose
dispersion properties were studied in, e.g., [1, 9, 20, 31]. For simplicity, we focus
on the meshes made of squares in Fig. 9.1, since, in this case, the basis functions in
the FEM have a tensor product structure and an explicit dispersion relation can be
derived [1, Theorem 3.1]:

cos(kn) = Rq(k), (9.53)

where, denoting by [·/·]z cot z and [·/·]z tan z the Padé approximants to the functions
z cot z and z tan z, respectively,

Rq(2z) := [2N0/2N0 − 2]z cot z − [2Ne + 2/2Ne]z tan z

[2N0/2N0 − 2]z cot z + [2Ne + 2/2Ne]z tan z

,

with N0 := �(q + 1)/2� and Ne := �q/2�. From (9.53), one can see that only
dispersion plays a role in the FEM. In Fig. 9.12, we display the relative total
dispersion errors against the effective degree q (left) and against the dimensions
of the minimal generating subspaces (right) for fixed k = 3. Similar results are
obtained for other values of k and are not shown. One can clearly notice that the
dispersion error for the FEM is lower than for the other methods, when comparing
it in terms of q , but higher, when comparing it in terms of the dimensions of the
minimal generating subspaces.

effective/polynomial degree q

10-15

10-10

10-5

100

m
ax

 |k
-k

h|/k

Squares; k=3

ncTVEM
PWDG
FEM

2 4 6 8 10 5 10 15 20

dimension of the minimal generating subspace

10-15

10-10

10-5

100

m
ax

 |k
-k

h|/k

Squares; k=3

Fig. 9.12 Comparison of the relative total dispersion errors for ncTVEM, PWDG, and the
standard polynomial based FEM on a mesh made of squares as in Fig. 9.1 for fixed wave number
k = 3, in dependence on the effective/polynomial degree q (left) and the dimension of the minimal
generating subspaces (right). The maxima over a large set of Bloch wave directions d are taken
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9.6.3.3 Algebraic Convergence of the Dispersion Error Against the Wave
Number k

We study the dispersion and dissipation properties of the three methods with respect
to the wave number k. Due to the fact that h = 1, and k is related to the wave
number k0 on a mesh with mesh size h0 by k = kh = k0h0, the limit k → 0
corresponds in fact to an h-version with h0 → 0 for fixed k0. We will observe
algebraic convergence of the total dispersion error in terms of k. This resembles the
algebraic convergence of the discretization error in the h-version, proved in [25, 39]
for the ncTVEM and the PWDG, respectively.

For the numerical experiments, we fix the effective degrees q = 3, 5, 7. We
employ once again the meshes made of squares and triangles in Fig. 9.1. Similar
results have been obtained on the mesh made of hexagons. In Fig. 9.13, the relative
total errors |k − kn|/k determined over a large set of Bloch wave directions d are
depicted against k. Algebraic convergence can be observed. Furthermore, larger
values of q lead to smaller errors. The peaks occurring in the convergence regions
of the ncTVEM could be related to the presence of Neumann eigenvalues, and
Dirichlet and Neumann eigenvalues, that have to be excluded in the construction of
the ncTVEM, respectively, in order to have a well-posed variational formulation.
Moreover, the oscillations for larger and smaller values of k are related to the
pre-asymptotic regime and the instability regime, which are typical of wave based
methods.

In Table 9.1, we list some relative total errors for different values of k. They
indicate a convergence behaviour of

max
|k − kn|

|k| ≈ O(kη), k → 0, (9.54)

where η ∈ [2q − 1, 2q]. This was already observed in [24] for PWDG.
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Fig. 9.13 Relative total dispersion in dependence on the wave number k for fixed effective degrees
q = 3, 5, 7. The maxima over a large set of Bloch wave directions d are taken. As meshes, those
made of squares (left) and triangles (right) in Fig. 9.1 are employed
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Table 9.1 Rates of the relative total error for k → 0

Squares Triangles

Method k
|k−kn|

k
k

|k−kn|
k

Rate k
|k−kn|

k
k

|k−kn|
k

Rate

q = 3 PWVEM 2 1.50e−03 0.3 4.59e−08 5.48 2 2.71e−04 0.3 3.42e−09 5.95

ncTVEM 2 9.04e−03 0.3 3.69e−07 5.33 2 1.07e−03 0.3 4.09e−08 5.36

PWDG 2 1.71e−03 0.3 1.04e−07 5.11 2 3.87e−04 0.3 3.04e−08 4.98

q = 5 PWVEM 2 3.68e−06 0.8 5.09e−10 9.70 3 2.17e−05 2 4.54e−07 9.53

ncTVEM 2 6.48e−06 0.8 1.21e−09 9.37 3 5.91e−06 2 1.47e−07 9.11

PWDG 2 4.56e−07 0.8 1.47e−10 8.77 3 7.75e−07 2 1.97e−08 9.06

q = 7 PWVEM 4 1.55e−05 2 2.23e−09 12.76 6 7.79e−05 4 5.57e−07 12.19

ncTVEM 4 5.93e−06 2 6.54e−10 13.15 6 6.01e−06 4 3.39e−08 12.77

PWDG 4 2.92e−07 2 2.33e−11 13.62 6 7.10e−07 4 2.76e−09 13.69
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Fig. 9.14 Relative dispersion (left) and relative dissipation (right) in dependence on the wave
number k for fixed q = 5 on the meshes made of squares in Fig. 9.1. The maxima over a large set
of Bloch wave directions d are taken

Remark 9.4 Clearly, similarly as above, dispersion and dissipation can be investi-
gated again separately from each other. Here, we only show the results, depicted in
Fig. 9.14, for fixed q = 5 and varying k on the meshes made of squares. As already
observed, one can deduce that the ncTVEM are dispersion dominated, whereas
dissipation plays a major role for the PWDG.
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