
Chapter 10
The Conforming Virtual Element Method
for Polyharmonic and Elastodynamics
Problems: A Review

Paola F. Antonietti, Gianmarco Manzini, Ilario Mazzieri, Simone Scacchi,
and Marco Verani

Abstract In this chapter we review recent results on the conforming virtual element
approximation of polyharmonic and eleastodynamics problems. The structure and
the content of this review is motivated by three paradigmatic examples of applica-
tions: classical and anisotropic Cahn-Hilliard equation and phase field models for
brittle fracture, that are briefly discussed in the first part of the chapter. We present
and discuss the mathematical details of the conforming virtual element approxi-
mation of linear polyharmonic problems, the classical Cahn-Hilliard equation and
linear elastodynamics problems.

10.1 Introduction

In the recent years, there has been a tremendous interest to numerical methods that
approximate partial differential equations (PDEs) on computational meshes with
arbitrarily-shaped polytopal elements. One of the most successful method is the
virtual element method (VEM), originally proposed in [16] for second-order elliptic
problems and then extended to a wide range of applications.

The VEM was originally developed as a variational reformulation of the nodal
mimetic finite difference (MFD) method [15, 37, 38, 73, 78] for solving partial
differential equation problems on unstructured polygonal meshes. A survey on
the MFD method can be found in the review paper [74] and the research mono-
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graph [18]. The VEM inherits the flexibility of the MFD method with respect to
the admissible meshes and this feature is well reflected in the many significant
applications using polytopal meshes that have been developed so far, see, for
example, [6, 19, 21, 23, 24, 27, 28, 30, 45, 48, 49, 54, 82, 84, 87, 88, 94, 99].
Meanwhile, the mixed VEM for elliptic problems were introduced in setting a la‘
Raviart-Thomas in [22] and in a BDM-like setting in [39]. The nonconforming
formulation for diffusion problems was proposed in [13] as the finite element
reformulation of [72] and later extended to general elliptic problems [32, 47], Stokes
problem [44], eigenvalue problems [63], and the biharmonic equation [7, 100].
equation [7]. Moreover, the connection between the VEM and the finite elements on
polygonal/polyhedral meshes is thoroughly investigated in [43, 77], between VEM
and discontinuous skeletal gradient discretizations in [55], and between the VEM
and the BEM-based FEM method in [46].

The virtual element method combines a great flexibility in using polytopal
meshes with a great versatility and easiness in designing approximation spaces with
high-order continuity properties on general polytopal meshes. These two features
turn out to be essential in the numerical treatment of the classical plate bending
problem, for which a C1-regular conforming virtual element approximation has
been introduced in [36, 53]. Virtual elements withC1- regularity have been proposed
to solve elliptic problems on polygonal meshes [19] and polyedral meshes in [26],
the transmission eigenvalue problem in [80], the vibration problem of Kirchhoff
plates in [83], the buckling problem of Kirchhoff-Love plates in [81]. The use of
C1-virtual elements has also been employed in the conforming approximation of the
Cahn-Hilliard problem [6] and the von Kármán equations [76], and in the context of
residual based a posteriori error estimators for second-order elliptic problems [21].

Higher-order of regularity of the numerical approximation is also required when
addressing PDEs with differential operators of order higher than two as the already
mentioned biharmonic problem and the more general case of the polyharmonic
equations. An example of the latter is found in the work of Reference [9].

In this chapter we consider three paradigmatic examples of applications where
the conforming discretization requires highly regular approximation spaces. The
first two examples are the classical and the anisotropic Cahn-Hilliard equations, that
are used in modelling a wide range of problems such as the tumor growth, the origin
of the Saturn rings, the separation of di-block copolymers, population dynamics,
crystal growth, image processing and even the clustering of mussels, see [6] and the
references therein. The third example highlights the importance of coupling phase
field equations with the elastodynamic equation in the context of modelling fracture
propagation (see also [3] for a phase-field besed VEM and the references therein).
These three examples motivate the structure of this review, where we consider the
conforming virtual approximation of the polyharmonic equation, the classical Cahn-
Hilliard equation and the time-dependent elastodynamics equation.

Historically, the numerical approximation of polyharmonic problems dates back
to the eighties [34], and more recently, this problem has been addressed in the
context of the finite element method by [14, 62, 67, 93, 97]. The conforming
virtual element approximation of the biharmonic problem has been addressed in
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[36, 53]. while a non-conforming approximation has been proposed in [7, 100, 101].
In Sect. 10.2, we review the conforming virtual element approximation of poly-
harmonic problems following [9, 12]. A nonconforming approximation is studied
in [52].

The Cahn-Hilliard equation involves fourth-order spatial derivatives and the
conforming finite element method is not really popular approach because pri-
mal variational formulations of fourth-order operators requires the use of finite
element basis functions that are piecewise-smooth and globally C1-continuous.
Only a few finite element formulations exists with the C1-continuity property,
see for example [57, 58], but in general, these methods are not simple and easy
to implement. This high-regularity issue has successfully been addressed in the
framework of isogeometric analysis [65]. The virtual element method provides
a very effective framework for the design and development of highly regular
conforming approximation, and in Sect. 10.3 we review the method proposed in [6].

Alternative approaches are offered by nonconformingmethods [59] or discontin-
uous methods [98]), but these methods do not provide C1-regular approximations.
Another common strategy employed in practice to solve the Cahn-Hilliard equation
by finite elements resorts to mixed methods; see, e.g., [56, 60, 68] for the contin-
uous and discontinuous setting, respectively. Recently, mixed based discretization
schemes on polytopal meshes have been addressed in [50] in the context of the
Hybrid High Order Method, and in [75] in the context of the mixed Virtual Element
Method. However, mixed finite element methods requires a bigger number of
degrees of freedom, which implies, as a drawback, an increased computational cost.

Very popular strategies for numerically solving the time-dependent elastodynam-
ics equations in the displacement formulation are based on spectral elements [61,
69], discontinuous Galerkin and discontinuos Galerkin spectral elements [4, 5, 91].
High-order DG methods for elastic and elasto-acoustic wave propagation problems
have been extended to arbitrarily-shaped polygonal/polyhedral grids [8, 10] to
further enhance the geometrical flexibility of the discontinuous Galerkin approach
while guaranteeing low dissipation and dispersion errors. Recently, the lowest-order
Virtual Element Method has been applied for the solution of the elastodynamics
equation on nonconvex polygonal meshes [85, 86]. See also [17] for the approx-
imation of the linear elastic problem, [20] for elastic and inelastic problems on
polytope meshes, [96] for virtual element approximation of hyperbolic problems.
In Sect. 10.4, we review the conforming virtual element method of arbitrary order
of accuracy proposed in [11].

10.1.1 Paradigmatic Examples

In this section, we briefly describe some relevant applications whose mathematical
modelling involves partial differential equations with higher order spatial operators
or the combination of the elastodynamics equation and higher-order spatial partial
differential equations.
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10.1.1.1 Cahn-Hilliard Equation

Phase field models, which date back to the works of Korteweg [70], Cahn and
Hilliard [40–42], Landau and Ginzburg [71] and van der Waals [92], have been
classicaly employed to describe phase separation in binary alloys.

Consider a bounded domain � ⊂ R
d , d = 1, 2, 3, filled with components A

and B presenting different properties and let cA(x) and cB(x) be their relative
nonuniform mass fraction for every x ∈ �. We assume that ci(·) : � → [0, 1]
for i ∈ {A,B} and cA(x) + cB(x) = 1. Choosing one of the two functions and
renaming it as c(x), Cahn and Hilliard, under the additional hypothesis that the
mixture is isothermal and the molar volume is uniform and independent of the
pressure, proposed a model minimizing the energy functional

E(c) =
∫

�

(
F(c) + ε2

2
|∇c|2

)
dx, (10.1)

where F(c) is the Helmholtz single-component free-energy density

F(c) = 2κBTcc(1 − c) + κBT
(
c ln(c) + (1 − c) ln(1 − c)

)
.

Here, κB is the Boltzmann constant, T the temperature and Tc the critical temper-
ature threshold. If T ≥ Tc the behaviour is trivial since F(c) presents a single
global minimum at c = 1/2, and therefore the minimization of (10.1) returns a
homogeneous distribution c(x) = 1/2 for all x ∈ �. On the other hand, if T ≤ Tc,
a physically relevant double-well appears in the graph of the function.

Let us briefly comment on the structure of the energy functional (10.1). The first
term takes into account the interfacial nature of the phenomenon: it increases the
energy in those region of the space where both A and B are present (thus c exhibits
a high gradient). The second term penalizes the measure of the interface separating
the two phases. However, even if the interface separating the substances looks sharp
from a macroscopic point of view, there is experimental evidence of an intermediate,
diffusive, stripe; the term ε2 is such that ε is proportional to the thickness of the
stripe.

In the mathematical treatment of this problem, it is convenient to introduce the
so-called order parameter, which we still denote by c(x) and we define as c(x) =
cA(x) − cB(x) so that c(·) : � → [−1, 1].

Employing the order parameter, the energy functional (10.1) remains unmodified
(up to a multiplicative constant), while F(c) becomes

F(c) = −c0c
2 + c1

(
(1 + c) ln(1 + c) + (1 − c) ln(1 − c)

)
c0 > c1 > 0

as we fixed T < Tc. Recalling the assumption that the phenomenon mimimizes
the energy (10.1) over time and denoting by ċ the time derivative of c, we get the
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following differential description of the phenomenon

ċ + ∇ · J = 0 in �, (10.2)

where the flux J is defined as

J = −M(c)∇
(

δE(c)

δc

)
= M(c)∇(F ′(c) − ε2�c).

The function M(c) is the mobility of the substances and measures how much the
molecules are free to move. The typical choices for the boundary conditions on the
domain boundary � are:

n · M(c)∇(F ′(c) − ε2�c) = 0 on �, (10.3)

∂nc = 0 on �, (10.4)

where n is the unit normal vector to � pointing out of �. The conservation of c

follows from the integration of (10.2) and an application of the divergence theorem,
which formally gives the relation ∂t

∫
� c dx = 0. In practice, the following choices

for M(c) and F(c) are common

F(c) = 1

4
(c2 − 1)2,

M(c) = constant.

Setting for simplicity M(c) = 1, problem (10.2) takes the simpler form of the
nonlinear fourth-order parabolic equation:

ċ + ∇ · ∇(F ′(c)) − ε2�2c = 0 in �.

Note the presence of the fourth-order term �2c, whose numerical treatment, as it
will be clear in the sequel of the paper, requires special care.

10.1.1.2 Anisotropic Cahn-Hilliard Equation

We consider the following modified free energy density

E(c) =
∫

�

γ (n)

ε

(
F(c) + ε2

2
|∇c|2

)
dx, (10.5)

where function γ (n) describes the anisotropic property and n = ∇c
|∇c| is the interface

unit normal vector. When γ (n) = 1 the H−1-gradient flow of (10.5) leads to the
Cahn-Hilliard equation of the previous section. In the anisotropic case, function γ
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depends on n in a non-trivial way. For instance, the so-called four-fold symmetric
anisotropic function is defined as follows:

γ (n) = 1 + α cos(ϑ) (10.6)

where ϑ is the orientation angle of the normal vector to the interface and α is the
intensity of the anisotropy. For sufficiently large values of α, the corresponding
Cahn-Hilliard equation becomes ill-posed and needs to be regularized [95]. To this
end, we consider an extra regularizing term G (c) in the energy functional (10.5),
which takes the form

E(c) =
∫

�

γ (n)

ε

(
F(c) + ε2

2
|∇c|2

)
+ β

2
G (c) (10.7)

where β > 0 is a regularization parameter. A possible choice for the extra term G is
the following (see, e.g., [51] for other possible choices)

G (c) = ε|�c|2 (10.8)

for which the corresponding H−1-gradient flow of the energy (10.7) gives rise to
the following anisotropic Cahn-Hilliard equation

ċ − 1

ε
�

(
γ (n)

ε
F ′(c) − ε∇ · m + βε�2c

)
= 0 (10.9)

with

m = γ (n)∇c + P∇nγ (n)

(
F(c)

ε2 |∇c| + 1

2
|∇c|

)

where P = I − n ⊗ n, I being the identity matrix and ∇nγ (n) is the gradient vector
containing the partial derivatives of γ (n) with respect to the components of the
normal n.

In view of the subsequent discussion on the numerical approximation of higher-
order spatial differential operators, it is important to highlight the presence of the
sixth-order term �3c in (10.9).

10.1.1.3 A High Order Phase Field Model for Brittle Fracture

A popular approach for the numerical solutions of fracture models is based on
introducing discontinuities into the displacement field by means of remeshing or by
enriching the set of basis functions by inserting discontinuities using the partition
of unity method. An alternative approach is the variational approach to brittle
where the solution to the fracture problem is searched as the minimizer of an
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energy functional. The corresponding numerical solution hinges upon the phase-
field implementation and the fracture problem is reformulated as a system of partial
differential equations completely determininig the evolution of the cracks. For a
short overview of these two classes of methods see, e.g., [33] and the references
therein.

Recently, in [33] the variational approach to brittle fracture has been extended by
proposing a fourth-order model for the phase-field approximation. The presence of
higher-order derivative terms in the phase-field equation leads to a greater regularity
of the solution. In the sequel, we briefly summarize the resulting differential
problem so to highlight the interplay between the elastodynamics equation (cf.
Eq. (10.10a) below) and the fourth-order phase field equation (cf. Eq. (10.10b)
below). The unknowns of the problem are the displacement field u : � → R

d d =
2, 3 and the continuous phase field variable c : � → [0, 1] describing the crack
(c = 1 away from the crack and c = 0 at the crack). Let λ and μ denote the usual
the Lamé constants and ε = 1

2 (∇u + ∇uT ) the symmetric gradient. Since ε is a
real symmetric matrix, there exists a real orthogonal matrix P and a real diagonal
matrix � such that ε = P�PT . We define the matrix �+ = diag(〈λ1〉, 〈λ2〉, 〈λ3〉)
where 〈x〉 is the Heaviside function, the matrix �− = � − �+, and the matrices
ε± = P�±PT . Using these matrices, we introduce the functions

ψ+
e (ε) = 1

2
λ〈trε〉2 + μtr[(ε+)2],

ψ−
e (ε) = 1

2
λ(trε − 〈trε〉)2 + μtr

(
(ε − ε+)2

)
,

and define the stress tensor as

σ (u) = c2
∂ψ+

e

∂ε
+ ∂ψ−

e

∂ε
.

Finally, the differential problem reads as:

ρü − ∇ · σ (u) = f in � × (0, T ], (10.10a)

4�0c

gc

ψ+
e (ε)c − 2�20�c + �40�

2c = 1 in � × (0, T ], (10.10b)

u = gD on �D × (0, T ], (10.10c)

σ (u)n = gN on �N × (0, T ], (10.10d)

�c = 0 in ∂� × ×(0, T ], (10.10e)

∇(�40�c − 2�20c)n = 0 in ∂� × ×(0, T ], (10.10f)

(u, u̇) = (u0,u1) in � × {0}, (10.10g)



418 P. F. Antonietti et al.

where we split ∂� = �D ∪�N for the Dirichlet and Neumann boundary conditions,
and �0 > 0 is suitable length scale parameter.

10.1.2 Notation and Technicalities

Throughout the paper, we consider the usual multi-index notation. In particular, if v

is a sufficiently regular bivariate function and α = (α1, α2) a multi-index with α1,
α2 nonnegative integer numbers, the function Dαv = ∂ |α|v/∂x

α1
1 ∂x

α2
2 is the partial

derivative of v of order |α| = α1 +α2 > 0. For α = (0, 0), we adopt the convention
that Dαv coincides with v. Also, for the sake of exposition, we may use the shortcut
notation ∂xv, ∂yv, ∂xxv, ∂xyv, ∂yyv, to denote the first- and second-order partial
derivatives along the coordinate directions x and y; ∂nv, ∂tv, ∂nnv, ∂nt v, ∂ttv to
denote the first- and second-order normal and tangential derivatives along a given
mesh edge; and ∂m

n v and ∂m
t v to denote the normal and tangential derivative of v

of order m along a given mesh edge. Finally, let n = (nx, ny) and τ = (τx, τy) be
the unit normal and tangential vectors to a given edge e of an arbitrary polygon P,
respectively. We recall the following relations between the first derivatives of v:

∂nv = ∇vT n = nx∂xv + ny∂yv, ∂τ v = ∇vT τ = τx∂xv + τy∂yv, (10.11)

and the second derivatives of v:

∂nnv = nT H(v)n, ∂nτ v = nT H(v)τ , ∂ττ v = τ T H(v)τ , (10.12)

respectively, where the matrix H(v) is the Hessian of v, i.e., H11(v) = ∂xxv,
H12(v) = H21(v) = ∂xyv, H22(v) = ∂yyv.

We use the standard definitions and notation of Sobolev spaces, norms and
seminorms [1]. Let k be a nonnegative integer number. The Sobolev space Hk(ω)

consists of all square integrable functions with all square integrable weak derivatives
up to order k that are defined on the open bounded connected subset ω of R2. As
usual, if k = 0, we prefer the notation L2(ω). Norm and seminorm in Hk(ω) are
denoted by || · ||k,ω and | · |k,ω, respectively, and (·, ·)ω denote the L2-inner product.
We omit the subscript ω when ω is the whole computational domain �.

Given the mesh partitioning �h = {P} of the domain � into elements P, we
define the broken (scalar) Sobolev space for any integer k > 0

Hk(�h) =
∏
P∈�h

Hk(P) = {
v ∈ L2(�) : v|P ∈ Hk(P)

}
,

which we endow with the broken Hk-norm

||v||2k,h =
∑
P∈�h

||v||2
k,P ∀ v ∈ Hk(�h), (10.13)
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and, for k = 1, with the broken H 1-seminorm

|v|21,h =
∑
P∈�h

||∇v||2
0,P ∀ v ∈ H 1(�h). (10.14)

We denote the linear space of polynomials of degree up to � defined on ω by
P�(ω), with the useful conventional notation that P−1(ω) = {0}. We denote the
space of two-dimensional vector polynomials of degree up to � on ω by

[
P�(ω)

]2;
the space of symmetric 2 × 2-sized tensor polynomials of degree up to � on ω by
P
2×2
�,sym(ω). Space P�(ω) is the span of the finite set of scaled monomials of degree

up to �, that are given by

M�(ω) =
{ (

x − xω

hω

)α

with |α| ≤ �

}
,

where

– xω denotes the center of gravity of ω and hω its characteristic length, as, for
instance, the edge length or the cell diameter for d = 1, 2;

– α = (α1, α2) is the two-dimensional multi-index of nonnegative integers αi with
degree |α| = α1 + α2 ≤ � and such that xα = x

α1
1 x

α2
2 for any x ∈ R

2.

We will also use the set of scaled monomials of degree exactly equal to �, denoted
byM ∗

� (ω) and obtained by setting |α| = � in the definition above.
Finally, we use the letter C in the estimates below to denote a strictly positive

constant whose value can change at any instance but that is independent of the
discretization parameters such as the mesh size h. Note that C may depend on the
the polynomial order, on the constants of the model equations or the variational
problem, like the coercivity and continuity constants, or even constants that are
uniformly defined for the family of meshes of the approximation while h → 0, such
as the mesh regularity constant, the stability constants of the discrete bilinear forms,
etc. Whenever it is convenient, we will simplify the notation by using expressions
like x � y and x � y to mean that x ≤ Cy and x ≥ Cy, respectively, C being the
generic constant in the sense defined above.

10.1.3 Mesh Assumptions

Throughout the paper we assume that T = {
�h

}
h
is a family of decompositions of

the computational domain�, where each mesh �h is a collection of nonoverlapping
polygonal elements P with boundary ∂P, such that �̄ = �P∈�h

P̄. Each mesh is
labeled by the mesh size h, the diameter of the mesh, defined as usual by h =
maxP∈�h

hP, where hP = supx,y∈P |x − y|. We assume the mesh sizes of family
T form a countable subset ofH = (0,∞) having zero as its unique accumulation
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point. We denote the set of mesh vertices v by Vh and the set of mesh edges e by
Eh Moreover, the symbol hv is a characteristic lenght associated with each vertex;
more precisely, hv is the average of the diameters of the polygons sharing vertex v.
We consider the following mesh regularity assumptions:

(M) There exists a positive constant γ , mesh regularity constant, which is
independent of h (and P) and such that for K ∈ �h there hold:

– (M1) P is star-shaped with respect to every point of a ball of radius γ hP,
where hP is the diameter of P;

– (M2) for every edge e of the cell boundary ∂P of every cell P of �h, it
holds that he ≥ γ hP, where he denotes the length of e.

All the results contained in the rest of the paper are obtained under assumptions
(M1)–(M2).

10.2 The Virtual Element Method for the Polyharmonic
Problem

10.2.1 The Continuous Problem

Let � ⊂ R
2 be a open, bounded, convex domain with polygonal boundary �. For

any integer p ≥ 1, we introduce the conforming virtual element method for the
approximation of the following problem:

(−�)pu = f in �, (10.1a)

∂
j
nu = 0 for j = 0, . . . , p − 1 on �, (10.1b)

(recall the conventional notation ∂0nu = u). Let

V ≡ H
p

0 (�) = {
v ∈ Hp(�) : ∂

j
nv = 0 on �, j = 0, . . . , p − 1

}
.

Denoting the duality pairing between V and its dual V ′ by
〈·, ·〉, the variational

formulation of the polyharmonic problem (10.1) reads as: Find u ∈ V such that

a(u, v) = 〈
f, v

〉 ∀v ∈ V, (10.2)

where, for any nonnegative integer �, the bilinear form is given by:

a(u, v) =

⎧⎪⎨
⎪⎩

∫
�

∇��u · ∇��v dx for p = 2� + 1,

∫
�

��u ��v dx for p = 2�.
(10.3)
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Whenever f ∈ L2(�) we have

〈
f, v

〉 = (f, v) =
∫

�

f v dV dx. (10.4)

where (·, ·) denotes the L2-inner product. The existence and uniqueness of the
solution to (10.2) follows from the Lax-Milgram Theorem because of the continuity
and coercivity of the bilinear form a(·, ·) with respect to ‖ · ‖V = | · |p,� which is
a norm on H

p

0 (�). Moreover, since � is a convex polygon, from [64] we know
that u ∈ H 2p−m(�) ∩ H

p

0 (�) if f ∈ H−m(�), m ≤ p and it holds that
||u||2p−m ≤ C||f ||−m. In the following, we denote the coercivity and continuity
constants of a(·, ·) by α and M , respectively.

Let P be a polygonal element and set

aP(u, v) =

⎧⎪⎨
⎪⎩

∫
P ∇��u · ∇��v dx for p = 2� + 1,

∫
P ��u ��v dx for p = 2�.

For an odd p, i.e., p = 2� + 1, a repeated application of the integration by parts
formula yields

aP(u, v) = −
∫
P

�pu v dx +
∫

∂P
∂n(�

�u) ��v ds

+
�∑

i=1

(∫
∂P

∂n(�
p−iu) �i−1v ds −

∫
∂P

�p−iu ∂n(�
i−1v) ds

)
,

(10.5)

while, for an even p, i.e., p = 2�, we have

aP(u, v) =
∫
P

�pu v dx

+
�∑

i=1

(∫
∂P

∂n(�
p−iu) �i−1v ds −

∫
∂P

�p−iu ∂n(�
i−1v) ds

)
.

(10.6)

10.2.2 The Conforming Virtual Element Approximation

The conforming virtual element discretization of problem (10.2) hinges upon three
mathematical objects: (1) the finite dimensional conforming virtual element space
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V
p
h,r ⊂ V ; (2) the continuous and coercive discrete bilinear form ah(·, ·); (3) the

linear functional
〈
fh, ·〉.

Using such objects, we formulate the virtual element method as: Find uh ∈ V
p
h,r

such that

ah(uh, vh) = 〈
fh, vh

〉 ∀vh ∈ V
p

h,r . (10.7)

The existence and uniqueness of the solution uh is again a consequence of the Lax-
Milgram theorem [35, Theorem 2.7.7, page 62].

10.2.2.1 Virtual Element Spaces

For p ≥ 1 and r ≥ 2p − 1, the local Virtual Element space on element P is defined
by

V
p

h,r(P) =
{
vh ∈ Hp(P) : �pvh ∈ Pr−2p(P), vh ∈ Pr (e), ∂i

nvh ∈ Pr−i (e),

i = 1, . . . , p − 1 ∀e ∈ ∂P
}
,

with the conventional notation that P−1(P) = {0}. The virtual element space V
p
h,r(P)

contains the space of polynomials Pr (P), for r ≥ 2p − 1. Moreover, for p = 1,
it coincides with the conforming virtual element space for the Poisson equation
[16], and for p = 2, it coincides with the conforming virtual element space for
the biharmonic equation [36]. The requirement vh ∈ Hp(P) implies that suitable
compatibility conditions for vh and its derivatives up to order p − 1 must hold at
the vertices of the polygon (see, e.g., [66, Theorems 1.5.2.4 and 1.5.7.8] and [29,
Section 5]).

We characterize the functions in V
p
h,r(P) through the following set of degrees of

freedom:

(D1) h
|ν|
v Dνvh(v), |ν| ≤ p − 1 for any vertex v of the polygonal boundary ∂P;

(D2) h−1
e

∫
e
qvh ds for any q ∈ Pr−2p(e) and any edge e of the polygonal

boundary ∂P;

(D3) h
−1+j
e

∫
e
q∂

j
nvh ds for any q ∈ Pr−2p+j (e), j = 1, . . . , p − 1 and any edge

e of ∂P;

(D4) h−2
P

∫
P

qhvh dx for any q ∈ Pr−2p(P).

Here, as usual, we assume that P−n(·) = {0} for n ≥ 1. Figure 10.1 illustrates
the degrees of freedom on a given edge e for p = 1, 2, 3 (Laplace, biharmonic,
and triharmonic case) and r = 2p − 1, 2p; the corresponding internal degrees of
freedom (D4) are absent in the case r = 2p − 1, while reduce to a single one in the
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Fig. 10.1 Edge degrees of freedom of the Virtual Element space V
p

h,r (P) for the polyharmonic
problem with p = 1 (top panels, Laplace operator), p = 2 (middle panels, bi-harmonic operator),
p = 3 (bottom panels, tri-harmonic operator). Here, p is the order of the partial differential
operator; r = 1, 2, . . . , 6 are the integer parameters that specify the degree of the polynomial
subspace Pr (P) of the VEM space V 3

h,r (P). The (green) dots at the vertices represent the vertex
values and each (red) vertex circle represents an order of derivation. The (black) dot on the edge
represents the moment of vh|e ; the arrows represent the moments of ∂nvh|e ; the double arrows
represent the moments of ∂nnvh|e. The corresponding internal degrees of freedom (D4) are absent
in the case r = 2p − 1, while reduce to a single one in the case r = 2p

case r = 2p. Finally, we note that in general the internal degrees of freedom (D4)
make it possible to define the L2-orthogonal polynomial projection of vh onto the
space of polynomial of degree r − 2p.

The dimension of V
p
h,r(P) is

d(V
p
h,r (P)) = p(p + 1)

2
NP + NP

p−1∑
j=0

(r − 2p + j + 1) + (r − 2p + 1)(r − 2p + 2)

2
,

where NP is the number of vertices, which equals the number of edges, of P.
In [9], it is proved that the above choice of degrees of freedom is unisolvent in

V
p

h,r(P).

Building upon the local spaces V
p
h,r(P) for all P ∈ �h, the global conforming

virtual element space V
p
h,r is defined on � as

V
p

h,r =
{
vh ∈ H

p

0 (�) : vh|P ∈ V
p

h,r (P) ∀P ∈ �h

}
. (10.8)

We remark that the associated global space is made ofHp(�) functions. Indeed, the
restriction of a virtual element function vh to each element P belongs to Hp(P) and
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glues with Cp−1-regularity across the internal mesh faces. The set of global degrees
of freedom inherited by the local degrees of freedom are:

– h
|ν|
v Dνvh(v), |ν| ≤ p − 1 for every interior vertex v of �h;

– h−1
e

∫
e
qvh ds for any q ∈ Pr−2p(e) and every interior edge e ∈ Eh;

– h
−1+j
e

∫
e
q∂

j
nvh ds for any q ∈ Pr−2p+j (e) j = 1, . . . , p − 1 and every interior

edge e ∈ Eh;

– h−2
P

∫
P

qvh dx for any q ∈ Pr−2p(P) and every P ∈ �h.

10.2.2.2 Modified Lowest Order Virtual Element Spaces

In this section, we briefly discuss the possibility of introducing modified lowest
order virtual element spaces with a reduced number of degrees of freedom with
respect to the corresponding lowest order ones that were introduced previously. The
price we pay is a reduced order of accuracy since the polynomial functions included
in such modified spaces has a lower degree.

For the sake of presentation we start from the case p = 3, while we refer the
reader to [36] for the case of p = 2 and Sect. 10.3.2.1 where the reduced virtual
space is employed in the context of the approximation of the Cahn-Hilliard problem.
Consider the modified local virtual element space:

Ṽ 3
h,5(P) =

{
vh ∈ H 3(P) : �3vh = 0, vh ∈ P5(e), ∂nvh ∈ P3(e),

∂nnvh ∈ P2(e) ∀e ∈ ∂P
}

with associated degrees of freedom:

(D1’) h
|ν|
v Dνvh(v), |ν| ≤ 2 for any vertex v of ∂P;

(D2’) he

∫
e
∂nnvh ds for any edge e of ∂P.

In Ref. [9], we proved that the degrees of freedom (D1’) and (D2’) are unisolvent
in Ṽ 3

h,5(P) and this space contains the linear subspace of polynomials of degree
up to 4. Moreover, the associated global space obtained by gluing together all the
elemental spaces Ṽ 3

h,5(P) reads as:

Ṽ 3
h,5 =

{
vh ∈ H 3

0 (�) : vh|P ∈ Ṽ 3
h,5(P) ∀P ∈ �h

}
, (10.9)

is made of H 3(�) functions.
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Analogously, in the general case we can build the modified lowest order spaces
containing the space of polynomials of degree up to 2p − 2:

Ṽ
p

h,2p−1(P) =
{
vh ∈ Hp(P) : �pvh = 0, vh ∈ P2p−1(e), ∂i

nvh ∈ P2p−2−i (e),

i = 1, . . . , p − 1 ∀e ∈ ∂P
}
,

with associated degrees of freedom:

(D1’) h
|ν|
v Dνvh(v), |ν| ≤ p − 1 for any vertex v of ∂P;

(D2’) h
−1+j
e

∫
e
q∂i

nvh ds for any q ∈ Pj−2(e) and edge e of ∂P, j = 1, . . . , p−1.

10.2.2.3 Discrete Bilinear Form

To define the elliptic projection�
∇,P
r : V

p
h,r(P) → Pr (P), we first need to introduce

the vertex average projector �̂P : V
p

h,r(P) → P0(P), which projects any smooth
enough function defined on P onto the space of constant polynomials. To this end,
consider the continuous function ψ defined on P. The vertex average projection of
ψ onto the constant polynomial space is given by:

�̂Pψ = 1

NP

∑
v∈∂P

ψ(v). (10.10)

Finally, we define the elliptic projection�
∇,P
r : V

p
h,r(P) → Pr (P) as the solution

of the following finite dimensional variational problem

aP(�∇,P
r vh, q) = aP(vh, q) ∀q ∈ Pr (P), (10.11)

�̂PDν�∇,P
r vh = �̂PDνvh |ν| ≤ p − 1. (10.12)

According to Reference [9], such operator has two important properties:

(i) it is a polynomial-preserving operator in the sense that �
∇,P
r q = q for every

q ∈ Pr (P);

(ii) �
∇,P
r vh is computable using only the degrees of freedom of vh.

We write the symmetric bilinear form ah : V
p

h,r × V
p

h,r → R as the sum of local
terms

ah(uh, vh) =
∑
P∈�h

a
h,P(uh, vh), (10.13)
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where each local term a
h,P : V

p
h,r(P) × V

p
h,r(P) → R is a symmetric bilinear form.

We set

ah,P(uh, vh) = aP(�∇,P
r uh,�

∇,P
r vh) + SP(uh − �∇,P

r uh, vh − �∇,P
r vh),

(10.14)

where SP : V
p
h,r(P) × V

p
h,r(P) → R is a symmetric positive definite bilinear form

such that

σ∗aP(vh, vh) ≤ SP(vh, vh) ≤ σ ∗aP(vh, vh) ∀vh ∈ V
p

h,r (P) with �∇,P
r vh = 0,

(10.15)

for two some positive constants σ∗, σ ∗ independent of h and P. The bilinear form
a
h,P(·, ·) has the two fundamental properties of r-consistency and stability [9]:

(i) r-Consistency: for every polynomial q ∈ Pr (P) and function V
p
h,r(P)we have:

a
h,P(vh, q) = aP(vh, q); (10.16)

(ii) Stability: there exist two positive constants α∗, α∗ independent of h and P
such that for every vh ∈ V

p

h,r (P) it holds:

α∗aP(vh, vh) ≤ a
h,P(vh, vh) ≤ α∗aP(vh, vh). (10.17)

10.2.2.4 Discrete Load Term

We denote by fh the piecewise polynomial approximation of f on �h given by

fh|P = �
0,P
r−pf, (10.18)

for r ≥ 2p − 1 and P ∈ �h. Then, we set

〈
fh, vh

〉 =
∑
P∈�h

∫
P

fhvh dx (10.19)

which implies, using the L2-orthogonal projection, that

〈
fh, vh

〉 =
∑
P∈�h

∫
P

�
0,P
r−p f �

0,P
r−pvh dx =

∑
P∈�h

∫
P

f �
0,P
r−pvh dx. (10.20)
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The right-hand side of (10.20) is computable by a combined use of the degrees of
freedom (D1)–(D4) and the enhanced approach of Reference [2].

10.2.2.5 VEM Spaces with Arbitrary Degree of Continuity

In this section we briefly sketch the construction of global virtual element spaces
with arbitrary high order of continuity. More precisely, we consider the local virtual
element space defined as before, for r ≥ 2p − 1:

V
p
h,r(P) =

{
vh ∈ Hp(P) : �pvh ∈ Pr−2p(P), vh ∈ Pr (e), ∂

j
nvh ∈ Pr−j (e),

j = 1, . . . , p − 1 ∀e ∈ ∂P
}
.

Differently from the previous section, we make the degrees of freedom depend
on a given parameter t with 0 ≤ t ≤ p − 1. For a given value of t we choose the
degrees of freedom as follows

(D1) h
|ν|
v Dνvh(v), |ν| ≤ p − 1 for any vertex v of P;

(D2) h−1
e

∫
e
vhq ds for any q ∈ Pr−2p(e), for any edge e of ∂P;

(D3) h
−1+j
e

∫
e
∂

j
nvhq ds for any q ∈ Pr−2p+j (e) and edge e ∈ ∂P, j =

1, . . . , p − 1;

(D4’) h−2
P

∫
P

qvh dx for any q ∈ Pr−2(p−t )(P);

where as usual we assume P−n(·) = {0} for n = 1, 2, 3, . . ..
This set of degrees is still unisolvent, cf. [9]. Moreover, for r ≥ 2p − 1 it

holds that Pr (P) ⊂ V
p
h,r(P). Finally, it is worth noting that the choice (D4’), if

compared with (D4), still guarantees that the associated global space is made of
Cp−1 functions.

However, in this latter case we can use the degrees of freedom (D1)–(D4’)
to solve a differential problem involving the �p−t operator and Cp−1(�) basis
functions. For the sake of exposition, let us consider the following two examples, in
the context of the Laplacian and the Bilaplacian problem.

1. Choosing p and t such that p − t = 1 we obtain a Cp−1-conforming virtual
element method for the solution of the Laplacian problem. For example, for
p = 3, t = 2 and r = 5, the local space V 3

h,5(P) endowed with the corresponding
degrees of freedom (D1)–(D4’) can be employed to build a global space made of
C2 functions. It is also worth mentioning that the new choice (D4’), differently
from the original choice (D4), is essential for the computability of the elliptic
projection, see (10.11)–(10.12), with respect to the bilinear form aP(·, ·) =∫
P ∇(·)∇(·) dx.
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2. Choosing p and t such that p − t = 2 we have a Cp−1-conforming virtual
element method for the solution of the Bilaplacian problem. For example, for
p = 3, t = 1 and r = 5, similarly to the previous case, the space V 3

h,5(P)

together with (D1)–(D4’) provides a global space of C2 functions that can be
employed for the solution of the biharmonic problem.

It is worth remembering that C1-regular virtual element basis function has been
employed, e.g., in [21] to study residual based a posteriori error estimators for the
virtual element approximation of second order elliptic problems. Moreover, the
solution of coupled elliptic problems of different order can take advantage from
this flexibility of the degree of continuity of the basis functions. Indeed, for the sake
of clarity consider the conforming virtual element approximation of the following
simplified situation:

−�u1 = f1 in �1,

�2u2 = f2 in �2,

u1 = u2 on � = �1 ∩ �2,

∂nu1 = ∂nu2 on �,

u1 = 0 on ∂�1 \ �,

u2 = 0 on ∂�2 \ �,

∂nu2 = 0 on ∂�2 \ �.

Handling the coupling conditions on � asks for the use of C1-regular virtual basis
functions not only in �2 where the bilaplacian problem is defined, but also in
�1, where the second order elliptic problem is defined. Indeed, a simple use of
C0-basis functions in �1, which would be natural given the second order of the
problem, would not allow the imposition (or at least a simple imposition) of the
gluing condition on the normal derivatives.

10.2.2.6 Convergence Results

The following convergence result in the energy norm holds (see [9] for the proof).

Theorem 10.1 Let f ∈ Hr−p+1(�) be the forcing term at the right-hand side, u

the solution of the variational problem (10.2) and uh ∈ V
p

h,r the solution of the
virtual element method (10.7). Then, it holds that

||u − uh||v ≤ Chr−(p−1)(|u|r+1 + |f |r−p+1
)
. (10.21)

Moreover, the following convergence results in lower order norms can estab-
lished [9].
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Theorem 10.2 (Even p, Even Norms) Let f ∈ Hr−p+1(�), u the solution of the
variational problem (10.2) with p = 2� and vh ∈ V

p

h,r the solution of the virtual
element method (10.7). Then, there exists a positive constant C independent of h

such that

|u − uh|2i ≤ Chr+1−2i
(
|u|r+1 + |f |r−(p−1)

)
, (10.22)

for every integer i = 0, . . . , � − 1.

Theorem 10.3 (Even p, Odd Norms) Let f ∈ Hr−p+1(�), and u the solution of
the variational problem (10.2) with p = 2� and uh ∈ V

p
h,r the solution of the virtual

element method (10.7). Then, there exists a positive constant C independent of h

such that

|u − uh|2i+1 ≤ Ch(r+1)−(2i+1)
(
|u|r+1 + |f |r−(p−1)

)
, (10.23)

for every integer i = 0, . . . , � − 1.

Theorem 10.4 (Odd p, Even Norms) Let u be the solution of the variational
problem (10.2) and uh ∈ V

p
h,r the solution of the virtual element method (10.7).

Then, there exists a positive constant C independent of h such that

|u − uh|2i ≤ Ch(r+1)−2i
(
|u|r+1 + |f |r−(p−1)

)
, (10.24)

for every integer i = 0, . . . , � − 1.

Theorem 10.5 (Odd p, Odd Norms) Let u be the solution of the variational
problem (10.2) and uh ∈ V

p
h,r the solution of the virtual element method (10.7).

Then, there exists a positive constant C independent of h such that

|u − uh|2i+1 ≤ Ch(r+1)−(2i+1)
(
|u|r+1 + |f |r−(p−1)

)
, (10.25)

for every integer i = 0, . . . , � − 1.

10.3 The Virtual Element Method for the Cahn-Hilliard
Problem

10.3.1 The Continuous Problem

Let � ⊂ R
2 be an open, bounded domain with polygonal boundary �, ψ : R →

R with ψ(x) = (1 − x2)2/4 and φ(x) = ψ ′(x). We consider the Cahn-Hilliard
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problem: Find u(x, t) : � × [0, T ] → R such that:

u̇ − �
(
φ(u) − γ 2�u

) = 0 in � × [0, T ], (10.1a)

u(·, 0) = u0(·) in �, (10.1b)

∂nu = ∂n

(
φ(u) − γ 2�u

) = 0 on ∂� × [0, T ], (10.1c)

where ∂n denotes the (outward) normal derivative and γ ∈ R
+, 0 < γ � 1,

represents the interface parameter. On the domain boundary we impose a no flux-
type condition on u and the chemical potential φ(u) − γ 2�u.

To define the variational formulation of problem (10.1a)–(10.1c) we introduce
the three bilinear forms:

a�(v,w) =
∫

�

(∇2v) : (∇2w) dx ∀v,w ∈ H 2(�),

a∇(v,w) =
∫

�

∇v · ∇w dx ∀v,w ∈ H 1(�),

a0(v,w) =
∫

�

v w dx ∀v,w ∈ L2(�),

(∇2 being the Hessian operator) and the semi-linear form

r(z; v,w) =
∫

�

φ′(z)∇v · ∇w dx ∀z, v,w ∈ H 2(�).

Finally, introducing the functional space

V = {
v ∈ H 1(�) : ∂nv = 0 on �

}
, (10.2)

which is a subspace of H 1(�).
The weak formulation of problem (10.1a)–(10.1c) reads as: Find u(·, t) ∈ V

such that

a0(u̇, v) + γ 2a�(u, v) + r(u; u, v) = 0 ∀v ∈ V, (10.3a)

u(·, 0) = u0. (10.3b)

10.3.2 The Conforming Virtual Element Approximation

In this section, we introduce the main building blocks for the conforming virtual
discretization of the Cahn-Hilliard equation, report a convergence result and collect
some numerical results assessing the theoretical properties of the proposed scheme.
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10.3.2.1 A C1 Virtual Element Space

We briefly recall the construction of the virtual element space Wh ⊂ H 2(�) that we
use to discretize (10.3a)–(10.3b); see [6] for more details.

Given an element P ∈ �h, the augmented local space Ṽ
h|P is defined by

Ṽ
h|P =

{
v ∈ H 2(P) : �2v ∈ P2(P), v|∂P ∈ C0(∂P), v|e ∈ P3(e) ∀e ∈ ∂P,

∇v|∂P ∈ [
C0(∂P)

]2
, ∂nv|e ∈ P1(e) ∀e ∈ ∂P

}
, (10.4)

with ∂n denoting the (outward) normal derivative.

Remark 10.1 The space Ṽh|P corresponds to the space Ṽ
p

h,2p−1(P) with p = 2
introduced in Sect. 10.2.2.2.

We consider the two sets of linear operators from Ṽ
h|P into R denoted by (D1)

and (D2) and defined as follows:

(D1) contains linear operators evaluating vh at the n = n(P) vertices of P;
(D2) contains linear operators evaluating ∇vh at the n = n(P) vertices of P.

The output values of the two sets of operators (D1) and (D2) are sufficient to
uniquely determine vh and ∇vh on the boundary of P (cf. Sect. 10.2.2.2).

We use of the following local bilinear forms for all P ∈ �h

a�

P(v,w) =
∫
P

(∇2v) : (∇2w) dx ∀v,w ∈ H 2(P), (10.5)

a∇
P(v,w) =

∫
P

∇v · ∇w dx ∀v,w ∈ H 1(P), (10.6)

a0P(v,w) =
∫
P

v w dx ∀v,w ∈ L2(P). (10.7)

Now, we introduce the elliptic projection operator �
�,P
2 : Ṽh|P → P2(P)

defined by

a�

P(�
�,P
2 vh, q) = a�

P(vh, q) ∀q ∈ P2(P), (10.8)

((�
�,P
2 vh, q))P = ((vh, q))P ∀q ∈ P1(P), (10.9)

for all vh ∈ Ṽ
h|P where ((·, ·))P is the Euclidean scalar product acting on the vectors

that collect the vertex function values, i.e.

((vh,wh))P =
∑
v∈VP

vh(v) wh(v) ∀vh,wh ∈ C0(P).
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As shown in [6], the operator �
�,P
2 : Ṽh|P → P2(P) is well defined and uniquely

determined on the basis of the informations carried by the linear operators in (D1)
and (D2).

Hinging upon the augmented space Ṽ
h|P and employing the projector �

�,P
2 we

define our virtual local space

W
h|P = {

v ∈ Ṽ
h|P : a0P(�

�,P
2 (v), q) = a0P(v, q) ∀q ∈ P2(P)

}
. (10.10)

Since Wh|P ⊂ Ṽh|P, operator �
�,P
2 is well defined on Wh|P and computable by

using the values provided by (D1) and (D2). Moreover, the set of operators (D1) and
(D2) constitutes a set of degrees of freedom for the space Wh|P. Finally, there holds
P2(P) ⊆ Wh|P.

We now introduce two further projectors on the local space W
h|P, namely �

0,P
2

and �
∇,P
2 , that will be employed together with the above projector �

�,P
2 to build

the discrete counterparts of the bilinear forms in (10.5). Operator �
0,P
2 : Wh|P →

P2(P) is the standard L2 projector on the space of quadratic polynomials in P. This
is computable by means of the values of the degrees of freedom (D1) and (D2)

(cf. [6]). To define �
∇,P
2 : W

h|P → P2(P) we need the additional bilinear form

a∇(·, ·) : Wh|P × Wh|P → R that is given by

a∇(v,w) =
∫

�

∇v · ∇w dx ∀v,w ∈ H 1(�).

Operator �
∇,P
2 is the elliptic projection defined with respect to a∇(·, ·):

a∇
P(�

∇,P
2 vh, q) = a∇

P(vh, q) ∀q ∈ P2(P), (10.11a)
∫
P

�
∇,P
2 vhdx =

∫
P

vh dx. (10.11b)

Such operator is well defined and uniquely determined by the values of (D1) and
(D2) [6].

We are now ready to introduce the global virtual element space, which defined
as follows

Wh = {
v ∈ V : v|P ∈ W

h|P ∀P ∈ �h

}
.

The virtual element functions in Wh and their gradients are continuous fields on �,
so this functional space is a conforming subspace of H 2(�). The global degrees of
freedom of Wh are obtained by collecting the elemental degrees of freedom, so the
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dimension of Wh is three times the number of the mesh vertices, and every virtual
element function vh defined on � is uniquely determined by

(i) its values at the mesh vertices;
(ii) its gradient values at the mesh vertices.

Finally, we recommended to scale the degrees of freedom (D2) by some local
characteristic mesh size hv in order to obtain a better condition number of the final
system.

10.3.2.2 Virtual Element Bilinear Forms

We start by introducing the discrete versions of the elemental bilinear form forms
in (10.5). Let P ∈ �h be a generic mesh element and sP(·, ·) : Wh|P × Wh|P → R

the positive definite bilinear form given by:

sP(vh,wh) =
∑
v∈VP

(
vh(v) wh(ν) + h2v ∇vh(v) · ∇wh(v)

)
∀vh,wh ∈ W

h|P,

where hv is a characteristic mesh size lenght associated with node v, e.g., the
maximum diameter among the elements having v as a vertex.

Recalling (10.5), we consider the virtual element bilinear forms:

a�

h,P(vh,wh) = a�

P(�
�,P
2 vh,�

�,P
2 wh) + h−2

P sP
(
vh − �

�,P
2 vh,wh − �

�,P
2 wh

)
,

(10.12)

a∇
h,P(vh,wh) = a∇

P(�
∇,P
2 vh,�

∇,P
2 wh) + sP

(
vh − �

∇,P
2 vh,wh − �

∇,P
2 wh),

(10.13)

a0
h,P(vh,wh) = a0P(�

0,P
2 vh,�

0,P
2 wh) + h2PsP

(
vh − �

0,P
2 vh,wh − �

0,P
2 wh

)
(10.14)

for all vh, wh ∈ W
h|P. Under the mesh regularity conditions of Sect. 10.1.3, we can

prove the consistency and stability of the discrete bilinear forms. Let the symbol †
stands for “�”, “∇” or “0”. We have:

(A) (polynomial consistency) a
†
h,P(p, vh) = a

†
P(p, vh) ∀p ∈ P2(P), vh ∈

W
h|P;

(B) (stability) there exist two positive constants c∗ and c∗ independent of h and the
element P ∈ �h such that

c∗a†P(vh, vh) ≤ a
†
h,P(vh, vh) ≤ c∗a†P(vh, vh) ∀vh ∈ W

h|P.
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A consequence of the above properties is that the bilinear form a
†
h,P(·, ·)

is continuous with respect to the relevant norm, which is H 2 for (10.12), H 1

for (10.13), and L2 for (10.14). For every choice of †, the corresponding global
bilinear form is

a
†
h(vh,wh) =

∑
P∈�h

a
†
h,P(vh,wh) ∀vh,wh ∈ Wh.

(10.1a)–(10.1c)
We now turn our attention to the semilinear form r(·; ·, ·), which we can also

write as the sum of elemental contributions:

r(z; v,w) =
∑
P∈�h

rP(z; v,w) ∀z, vw ∈ H 2(�)

where

rP(z; v,w) =
∫
P

(3z2 − 1)∇v · ∇wdx ∀P ∈ �h.

On each element P, we approximate the term z(x)2 by means of its cell average,
which we compute using the L2(P) bilinear form a0

h,P(·, ·):

z2h|P ≈ |P|−1 a0
h,P(zh, zh),

where we recall that |P| is the area of element P. This approach has the correct
approximation properties and preserves the positivity of z2.

We therefore propose the following approximation of the local nonlinear forms

r
h,P(zh; vh,wh) = ̂φ′(zh)|P a∇

h,P(vh,wh) ∀zh, vh,wh ∈ W
h|P,

where ̂φ′(zh)|P = 3 |P|−1 a0
h,P(zh, zh) − 1. The global form is then assembled as

rh(zh; vh,wh) =
∑
P∈�h

r
h,P(zh; vh,wh) ∀zh, vhwh ∈ Wh.

10.3.2.3 The Discrete Problem

The virtual element discretization of problem (10.3a), (10.3b) follows a Galerkin
approach in space combined with a backward Euler time-stepping scheme. Consider
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the functional space

W 0
h = Wh ∩ V = {

v ∈ Wh : ∂nv = 0 on ∂�
}
,

which includes the boundary conditions. Then, we introduce the semi-discrete
approximation: Find uh(·, t) in W 0

h such that

a0h(u̇h, vh) + γ 2a�
h (uh, vh) + rh(uh; uh, vh) = 0 ∀vh ∈ W 0

h , (10.15)

uh(0, ·) = u0,h(·), (10.16)

where u0,h is a suitable approximation of u0 in W 0
h and a0h(·, ·), a�

h and rh are the
virtual element bilinear forms defined in the previous section.

To formulate the fully discrete scheme, we subdivide the time interval [0, T ] into
N uniform sub-intervals of length k = T/N by means of the time nodes 0 = 0 <

1 < . . . < N−1 < N = T , and denote the virtual element approximation of the
solution u(·, ) at u(·, i ) in W 0

h by ui
h,k . The fully discrete problem reads as: Given

u0hk = u0,h ∈ W 0
h , find ui

hk ∈ W 0
h , i = 1, . . . , N such that

k−1a0h(u
i
hk − ui−1

hk , vh) + γ 2a�
h (ui

hk, vh) + rh(ui
hk, u

i
hk; vh) = 0 ∀vh ∈ W 0

h .

(10.17)

The semidiscrete Virtual Element formulation given in (10.15)–(10.16) con-
verges to the exact solution of problem (10.3a)–(10.3b) according to the result stated
in this theorem and proved in [6].

Theorem 10.6 Let u be the solution of problem (10.3a)–(10.3b). Let uh be the
virtual element approximation provided by (10.15)–(10.16) and assume that

||uh||L∞(�) ≤ C

for all t ∈ (0, T ] and some positive contant C independent of h. Then, it holds that

||u − uh||L2(�) � h2

for every ∈ [0, T ].

10.3.3 Numerical Results

In this test, taken from [6] we study the convergence of our VEM discretization
applied to the Cahn-Hilliard problem with a load term f obtained by enforcing as
exact solution u(x, y, t) = t cos(2πx) cos(2πy). The parameter γ is set to 1/10 and
the time step size � is 1e − 7. The H 2, H 1 and L2 errors are computed at t = 0.1
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on four quadrilateral meshes discretizing the unit square. The time discretization is
performed by the Backward Euler method. The resulting non-linear system (10.17)
at each time step is solved by the Newton method, using the l2 norm of the relative
residual as a stopping criterion. The tolerance for convergence is 1e − 6.

The results reported in Table 10.1 show that the VEM method converges is
convergent with a convergence rate close to 2 in the L2 norm as expected from
Theorem 10.6. In the H 2 and H 1 seminorms, the method converges with order 1
and 2 respectively, as we can expect from the FEM theory and the approximation
properties of the virtual element space. Finally, in Fig. 10.2 we report the results of a
spinoidal decomposition. For completeness, we recall that spinodal decomposition
is a physical phenomenon consisting of the separation of a mixture of two or more
components to bulk regions of each, which occurs when a high-temperaturemixture
of different components is rapidly cooled. We employ an initial datum u0 chosen
to be a uniformly distributed random perturbation between −1 and 1. Results are
consistent with the literature, cf. [6].

Table 10.1 H 2, H 1 and L2 errors and convergence rates α computed on four quadrilateral meshes
discretizing the unit square [6]

h |u − uh|H 2(�) α |u − uh|H 1(�) α ||u − uh||L2(�) α

1/16 1.35e−1 – 8.57e−2 – 8.65e−2 –

1/32 5.86e−2 1.20 2.20e−2 1.96 2.20e−2 1.97

1/64 2.79e−2 1.07 5.53e−3 1.99 5.52e−3 1.99

1/128 1.38e−2 1.02 1.37e−3 2.01 1.37e−3 2.01

Fig. 10.2 Spinoidal decomposition on the unit square at three temporal frames for a Voronoi
polygonal mesh of 4096 elements
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10.4 The Virtual Element Method for the Elastodynamics
Problem

10.4.1 The Continuous Problem

We consider an elastic body occupying the open, bounded polygonal domain
� ⊂ R

2 with Lipschitz boundary �. We assume that boundary � can be split
into the two disjoint subsets �D and �N , so that � = �D ∪ �N and with
the one-dimensional Lebesgue measure (length) |�D ∩ �N | = 0. For the well-
posedness of the mathematical model, we further require length of �D is nonzero,
i.e., |�D| > 0. Let T > 0 denote the final time. We consider the external load
f ∈ L2

(
0, T ; [L2(�)]2), the boundary function gN ∈ C1

(
0, T ; [H 1/2

0,�N
]2), and the

initial functions u0 ∈ [H 1
0,�D

(�)]2, u1 ∈ [L2(�)]2. For such time-dependent vector
fields, we may indicate the dependence on time explicitly, e.g., f(t) := f(·, t) ∈
[L2(�)]2, or drop it out to ease the notation when it is obvious from the context.

The equations governing the two-dimensional initial/boundary-value problem of
linear elastodynamics for the displacement vector u : � × [0, T ] → R

2 are:

ρü − ∇ · σ (u) = f in � × (0, T ], (10.1)

u = 0 on �D × (0, T ], (10.2)

σ (u)n = gN on �N × (0, T ], (10.3)

u = u0 in � × {0}, (10.4)

u̇ = u1 in � × {0}. (10.5)

Here, ρ is the mass density, which we suppose to be a strictly positive and
uniformly bounded function and σ (u) is the stress tensor. In (10.2) we assume
homogeneous Dirichlet boundary conditions on �D . This assumption is made only
to ease the exposition and the analysis, as our numerical method is easily extendable
to nonhomogeneous Dirichlet boundary conditions.

We denote the space of the symmetric, 2× 2-sized, real-valued tensors by R2×2
sym

and assume that the stress tensor σ : � × [0, T ] → R
2×2
sym is expressed, according

to Hooke’s law, by σ (u) = Dε(u), where, ε(u) denotes the symmetric gradient of
u, i.e., ε(u) = (∇u+ (∇u)T

)
/2, andD = D(x) : R2×2

sym −→ R
2×2
sym is the stiffness

tensor

Dτ = 2μτ + λtr(τ )I (10.6)

for all τ ∈ R
2×2
sym. In this definition, I and tr(·) are the identity matrix and the trace

operator; λ and μ are the first and second Lamé coefficients, which we assume to
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be in L∞(�) and nonnegative. The compressional (P) and shear (S) wave velocities
of the medium are respectively obtained through the relations cP = √

(λ + 2μ)/ρ

and cS = √
μ/ρ.

Let V = [
H 1

�D
(�)

]2 be the space of H 1 vector-valued functions with null trace
on �D . We consider the two bilinear formsm(·, ·), a(·, ·) : V×V → R defined as

m(w, v) =
∫

�

ρw · v dx ∀w, v ∈ V, (10.7)

a(w, v) =
∫

�

σ (w) : ε(v) dx ∀w, v ∈ V, (10.8)

and the linear functional F(·) : V → R defined as

F(v) =
∫

�

f · v dx +
∫

�N

gN · v ds ∀v ∈ V. (10.9)

The variational formulation of the linear elastodynamics equations reads as: For
all t ∈ (0, T ] find u(t) ∈ V such that for t = 0 it holds that u(0) = u0 and
u̇(0) = u1 and

m(ü, v) + a(u, v) = F(v) ∀v ∈ V. (10.10)

As shown, for example, by Raviart and Thomas (see Theorem 8–3.1 [90]) the
variational problem (10.10) is well posed and its unique solution satisfies u ∈
C0

(
0, T ;V) ∩ C1

(
0, T ; [L2(�)]2).

10.4.2 The Conforming Virtual Element Approximation

In this section we introduce the main building blocks for the conforming virtual ele-
ment discretization of the elastodynamics equation, report stability and convergence
results and collect some numerical results assessing the theoretical properties of the
proposed scheme.

10.4.2.1 Virtual Element Spaces

Let k ≥ 1 be an integer number. The global virtual element space is defined as

Vh
k :=

{
v ∈ V : v|P ∈ Vh

k (P) for every P ∈ �h

}
(10.11)
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where Vh
k (P) = [

V h
k (P)

]2
, with

V h
k (P) :=

{
vh ∈ H 1(P) : vh|

∂P
∈ C(∂P), vh|e ∈ Pk(e) ∀e ∈ ∂P, �vh ∈ Pk(P),

(
vh − �∇

k vh, μh

)
P = 0 ∀μh ∈ Pk(P)\Pk−2(P)

}
,

(10.12)

where �∇
k : H 1(P) ∩ C0(P) → Pk(P) is the usual elliptic projection of a function

vh on the space of polynomials of degree k, cf. (10.11)–(10.12).
Each virtual element function vh ∈ V h

k (P) is uniquely characterized by

(C1) the values of vh at the vertices of P;
(C2) the moments of vh of order up to k −2 on each one-dimensional edge e ∈ ∂P:

1

|e|
∫
e
vh m ds, ∀m ∈ Mk−2(e), ∀e ∈ ∂P; (10.13)

(C3) the moments of vh of order up to k − 2 on P:

1

|P|
∫
P

vh m dx, ∀m ∈ Mk−2(P). (10.14)

As usual, the degrees of freedom of the global space Vh
k are provided by

collecting all the local degrees of freedom (which allow the computation of the
elliptic projection �∇

k ), and their unisolvence is an immediate consequence of the
unisolvence of the local degrees of freedom for the elemental spaces V h

k (P).

10.4.2.2 Discrete Bilinear Forms

In the virtual element setting, we define the bilinear forms mh(·, ·) and ah(·, ·) as
the sum of elemental contributions, which are respectively denoted by m

h,P(·, ·)
and a

h,P(·, ·):

mh(·, ·) : Vh
k × Vh

k → R, with mh(vh,wh) =
∑
P∈�h

m
h,P(vh,wh),

ah(·, ·) : Vh
k × Vh

k → R, with ah(vh,wh) =
∑
P∈�h

a
h,P(vh,wh).

The local bilinear form m
h,P(·, ·) is given by

m
h,P(vh,wh) =

∫
P

ρ�0
kvh · �0

kwh dV + SPm (vh,wh), (10.15)
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where SPm (·, ·) is the local stabilization term. The bilinear formm
h,P depends on the

orthogonal projections �0
kvh and �0

kwh, which are computable from the degrees

of freedom of vh and wh. The local form SPm (·, ·) : Vh
k × Vh

k → R can be
any symmetric and coercive bilinear form that is computable from the degrees of
freedom and for which there exist two strictly positive real constants σ∗ and σ ∗
such that

σ∗mP(vh, vh) ≤ SPm (vh, vh) ≤ σ ∗mP(vh, vh) vh ∈ ker
(
�0

k

) ∩ Vh
k (P).

(10.16)

Computable stabilizations SPm (·, ·) are provided by resorting to the two-dimensional
stabilizations of the effective choices for the scalar case proposed in the literature
[54, 79].

The local bilinear form ah,P is given by

a
h,P(vh,wh) =

∫
P
D�0

k−1(ε(vh)) : �0
k−1(ε(wh)) dV + SPa (vh,wh), (10.17)

where SPa (·, ·) is the local stabilization term. The bilinear form a
h,P depends on

the orthogonal projections �0
k−1∇vh and �0

k−1∇wh, which are computable from

the degrees of freedom of vh and wh. On its turn, SPa (·, ·) : Vh
k × Vh

k → R can
be any symmetric and coercive bilinear form that is computable from the degrees
of freedom and for which there exist two strictly positive real constants σ ∗ and σ ∗
such that

σ ∗aP(vh, vh) ≤ SPm (vh, vh) ≤ σ ∗aP(vh, vh) vh ∈ ker
(
�0

k

) ∩ Vh
k (P).

(10.18)

Moreover, the bilinear form SPa (·, ·) must scale with respect to h like aP(·, ·), i.e.,
as O(1). As before, we can define computable stabilizations SPa (·, ·) by resorting to
the two-dimensional stabilizations for the scalar case proposed in the literature [54,
79]. As usual, the discrete bilinear forms ah,P(·, ·) and mh,P(·, ·) satisfy the k-
consistency and stability properties. The stability constants may depend on physical
parameters and the polynomial degree k [11, 24].

10.4.2.3 Discrete Load Term

We approximate the right-hand side (10.21) of the variational formulation by means
of the linear functional Fh(·) : Vh

k → R
2 given by

Fh(vh) =
∫

�

f · �0
k−2(vh) dV +

∑
e∈�N

∫
e
gN · vh ds ∀vh ∈ Vh

k . (10.19)



10 The Conforming VEM for Polyharmonic and Elastodynamics Problems: A Review 441

The linear functional Fh(·) is clearly computable since the edge trace vh|e is a
known polynomial and �0

k(vh) is computable from the degrees of freedom of vh.
Moreover, Fh(·) is a bounded functional. In fact, when gN = 0 using the stability
of the projection operator and the Cauchy-Schwarz inequality, we note that

|Fh(vh)| ≤
∣∣∣∣
∫

�

f(t) · �0
k−2(vh) dV

∣∣∣∣ ≤ ||f(t)||0
∣∣∣
∣∣∣�0

k−2(vh)

∣∣∣
∣∣∣
0

≤ ||f(t)||0 ||vh||0 ∀t ∈ [0, T ]. (10.20)

This estimate is used in the proof of the stability of the semi-discrete virtual element
approximation (see Theorem 10.7).

10.4.2.4 The Discrete Problem

The semi-discrete virtual element approximation of (10.10) reads as: For all t ∈
(0, T ] find uh(t) ∈ Vh

k such that for t = 0 it holds that uh(0) = (u0)I and u̇h(0) =
(u1)I and

mh(üh, vh) + ah(uh, vh) = Fh(vh) ∀vh ∈ Vh
k . (10.21)

Here, uh(t) is the virtual element approximation of u and vh is the generic test
function in Vh

k , while (u0)I and (u1)I are the virtual element interpolants of the
initial solution functions u(0) and u̇(0).

We carry out the time integration by applying the leap-frog time marching
scheme [89] to the second derivative in time üh. To this end, we subdivide the
interval (0, T ] into NT subintervals of amplitude �t = T/NT and at every time
level tn = n�t we consider the variational problem for n ≥ 1:

mh(u
n+1
h , vh) − 2mh(un

h, vh) + mh(u
n−1
h , vh) + �t2ah(un

h, vh)

= �t2Fn
h (vh) ∀vh ∈ Vh

k , (10.22)

and initial step

mh(u1h, vh) − mh(u0, vh) − �tmh(u1, vh) + �t2

2
ah(u0, vh)

= �t2

2
F 0

h (vh) ∀vh ∈ V h
k .

The leap-frog scheme is second-order accurate, explicit and conditionally sta-
ble. [89] It is straightforward to show that these properties are inherited by the
fully-discrete scheme (10.22).
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10.4.2.5 Stability and Convergence Analysis for the Semi-Discrete
Problem

We employ the energy norm

|||vh(t)|||2 =
∣∣∣
∣∣∣ρ 1

2 v̇h(t)

∣∣∣
∣∣∣2
0
+ |vh(t)|21, t ∈ [0, T ], (10.23)

which is defined for all vh ∈ Vh
k . The local stability property of the bilinear forms

mh(·, ·) and ah(·, ·) implies the equivalence relation

mh(v̇h, v̇h) + ah(vh, vh) � |||vh(t)|||2 � mh(v̇h, v̇h) + ah(vh, vh) (10.24)

for all time-dependent virtual element functions vh(t) with square integrable
derivative v̇h(t).

The hidden constants in (10.24) are independent of the mesh size parameter
h [11]. However, they may depend on the stability parameters, the physical
parameters and the polynomial degree k [25]. It is worth noting that the dependence
on k does not seem to have a relevant impact on the optimality of the convergence
rates in the numerical experiments of Sect. 10.4.3. The following stability result has
been proved in [11].

Theorem 10.7 Let f ∈ L2
(
0, T ; [L2(�)]2) and let uh ∈ C2

(
0, T ;Vh

k

)
be the

solution of (10.21). Then, it holds

|||uh(t)||| � |||(u0)I ||| +
∫ t

0
||f(τ )||0,� dτ. (10.25)

The hidden constant in � is independent of h, but may depend on the model
parameters and approximation constants and the polynomial degree k.

We point out that in the case of f null external force, i.e. f = 0, the above bound
reduces to

|||uh(t)||| � |||(u0)I |||

that is the virtual element approximation is dissipative.
Now, we recall [11] the convergence of the semi-discrete virtual element

approximation in the energy norm (10.23).

Theorem 10.8 Let u ∈ C2
(
0, T ; [Hm+1(�)]2), m ∈ N, be the exact solution of

problem (10.10). Let uh ∈ Vh
k be the solution of the semi-discrete problem (10.21).
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For f ∈ L2
(
(0, T ); [

Hm−1(�)
]2)

we have that

sup
0<t≤T

|||u(t) − uh(t)||| � hμ

km
sup

0<t≤T

(
||u̇(t)||m+1 + ||u(t)||m+1

)

+
∫ T

0

(
hμ+1

km

(||ü(τ)||m+1 + ||u̇(τ)||m+1
) + hμ

km

( ||ü(τ)||m+1 + ||u̇(τ)||m+1
))

dτ

+
∫ T

0
h

∣∣∣
∣∣∣(I − �0

k−2
)
f(τ)

∣∣∣
∣∣∣
0
dτ, (10.26)

where μ = min(k,m). The hidden constant in “�” is independent of h, but may
depend on the model parameters and approximation constants, the polynomial
degree k, and the final observation time T .

Finally, we state the convergence result in the L2 norm, whose proof is again
found in [11].

Theorem 10.9 Let u be the exact solution of problem (10.10) under the assumption
that domain � is H 2-regular and uh ∈ Vh

k the solution of the virtual element method

stated in (10.21). If u, u̇, ü ∈ L2
(
0, T ; [

Hm+1(�) ∩ H 1
0 (�)

]2)
, with integer m ≥

0, then the following estimate holds for almost every t ∈ [0, T ] by setting μ =
min(m, k):

||u(t) − uh(t)||0 � ||uh(0) − u0||0 + ||u̇h(0) − u1||0 + hμ+1

km+1

(
||ü||L2(0,T ;[Hm+1(�)]2)

+ ||u̇||L2(0,T ;[Hm+1(�)]2) + ||u||L2(0,T ;[Hm+1(�)]2)
)

+
∫ T

0

∣∣∣
∣∣∣(1 − �0

k−2

)
f(τ)

∣∣∣
∣∣∣2
0
dτ. (10.27)

The hidden constant in “�” is independent of h, but may depend on the model
parameters and approximation constants �, μ∗, and the polynomial degree k, and
the final observation time T .

10.4.3 Numerical Results

In this section, we report from [11] a set of numerical results assessing the
convergence properties of the virtual element discretization by using a manufactured
solution on three different mesh families, each one possessing some special feature.

In particular, we let � = (0, 1)2 for t ∈ [0, T ], T = 1, and consider initial
condition u0, boundary condition g and forcing term f determined from the exact
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2hseM1hseM

Mesh 3

Fig. 10.3 Base meshes (top row) and first refined meshes (bottom row) of the following mesh
families from left to right: randomized quadrilateral mesh; mainly hexagonal mesh; nonconvex
octagonal mesh

solution:

u(x, y, t) = cos

(
2π t

T

) (
sin2(πx) sin(2πy)

sin(2πx) sin2(πy)

)
. (10.28)

To this end, we consider three different mesh partitionings, denoted by:

– Mesh 1, randomized quadrilateral mesh;
– Mesh 2, mainly hexagonal mesh with continuously distorted cells;
– Mesh 3, nonconvex octagonal mesh.

The base mesh and the first refined mesh of each mesh sequence are shown in
Fig. 10.3.

The discretization in time is given by applying the leap-frog method with �t =
10−4 and carried out for 104 time cycles in order to reach time T = 1.

For these calculations, we used the VEM approximation based on the conforming
space V h

k with k = 1, 2, 3, 4 and the convergence curves for the three mesh
sequences above are reported in Figs. 10.4, 10.5, and 10.6. The expected rate of
convergence is shown in each panel by the triangle closed to the error curve and
indicated by an explicit label. The results are in agreement with the theoretical
estimates. To conclude, Fig. 10.7 shows the semilog error curves obtained through
a“p”-type refinement calculation for the previous benchmark, i.e. for a fixed 5 × 5
mesh of type I the order of the virtual element space is increased from k = 1 to
k = 10. We employ two different implementations, namely in the first case the
space of polynomials of degree k is generated by the standard scaled monomials,
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Fig. 10.4 Convergence plots for the virtual element approximation of Problem (10.1)–(10.5) with
exact solution (10.28) using family Mesh 1 of randomized quadrilateral meshes. Error curves are
computed using the L2 norm (left panels) and H 1 norm (right panels) and are plot versus h

Fig. 10.5 Convergence plots for the virtual element approximation of Problem (10.1)–(10.5) with
exact solution (10.28) using family Mesh 2 of mainly hexagonal meshes. Error curves are computed
using the L2 norm (left panels) and H 1 norm (right panels) and are plotted versus h

while in the second one we consider an orthogonal polynomial basis. The behavior
of the VEM when using nonorthogonal and orthogonal polynomial basis shown in
Fig. 10.7 is in accordance with the literature, see, e.g., [31, 79].
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Fig. 10.6 Convergence plots for the virtual element approximation of Problem (10.1)–(10.5) with
exact solution (10.28) using family Mesh 3 of nonconvex octagonal meshes. Error curves are
computed using the L2 norm (left panels) and H 1 norm (right panels) and are plotted versus h

Fig. 10.7 Convergence plots for the virtual element approximation of Problem (10.1)–(10.5) with
exact solution (10.28) using family Mesh 1 of randomized quadrilateral meshes. Error curves are
computed using k-refinement the L2 norm (left panel) and H 1 norm (right panel) and are plot
versus the number of degrees of freedom by performing a refinement of type “p” on a 5 × 5
mesh. Each plot shows the two convergence curves that are obtained using monomials (circles)
and orthogonalized polynomials (squares)
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