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Preface

The possibility of making use of arbitrarily shaped polygonal/polyhedral meshes in
a Galerkin framework like that of the Finite Element Method (FEM) has aroused
a large wave of interest among mathematicians and engineers during the last
two decades. Handling such kind of meshes is indeed an edge when treating
computational domains with a complex geometry, and the number of potential
benefits that are worth mentioning is quite long. Efficient algorithms can easily
be devised for grid refinement and de-refinement by conveniently adding/removing
nodes and edges and through agglomeration techniques. Very simple but effective
mesh cutting techniques can also be implemented to deal with cracks in materials. In
this setting, moving domains and mesh gluing techniques make it possible to deal
with hybrid-dimensional problems, layer approximation, independent sub-domain
mesh combination, etc.

Robust and accurate numerical schemes, sometimes logically and conveniently
regrouped in “families”, have thus been proposed to the numerical community and
widely investigated in the last two decades such as the Virtual Element Method
(VEM), the Polygonal/Polyhedral Finite Element Method (PFEM), the Mimetic
Finite Difference (MFD) method, the weak Galerkin (wG) method, the Polygonal
Discontinuous Galerkin (PDG) methods, the Hybrid High-Order (HHO) method,
and their many variants.

The VEM was first proposed in 2013 by Beirao da Veiga, Brezzi, Cangiani,
Manzini, Marini, and Russo, and since then has rapidly set itself as one of
the leading technologies in this field. Unique to the VEM among the methods
previously mentioned is the interpretation of the functional approximation spaces
as provided by the solutions of elementwise Partial Differential Equation (PDE)
problems. Ancestors of the VEM can be drawn back to the compatible and mimetic
discretization proposed since the mid-1960s by Samarski’s school in Moscow.
Limiting the historical range to this century, it is worth mentioning the Mimetic
Finite Difference method, which, in 2005, stemmed out of the collaboration of Prof.
F. Brezzi, from the University of Pavia and IMATI-CNR, and Drs. M. Shashkov and
K. Lipnikov, from Los Alamos National Laboratory in Los Alamos, NM.
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viii Preface

Effectively, the MFD approach is somehow in between finite differences and
finite elements, since the discrete solution can be represented by a collection of
degree of freedom–like nodal values as in finite differences rather than a function,
but the discrete scheme is built according to a sort of variational formulation where
grid functions are used as test and trial functions. L2 and H 1 inner products
used in the variational formulations are approximated by discrete scalar products
mimicking their continuous counterparts and aiming at consistency and stability
in accordance with the Lax principle that states that stability and convergence are
equivalent for a consistent scheme. Elementwise constructions of related stiffness
and mass matrices make the implementation structurally similar to that of the FEM.
MFD schemes have been applied to a wide range of problems, and the flexibility
in using polygonal and polyhedral meshes without the need to integrate complex
shape functions, as it happens in polygonal FEM, has made them very successful.
Eventually, limitations of the MFD method came out and had to be addressed by
numerical mathematicians. Nonetheless, a wide literature of MFD schemes for
different applications is currently available, and MFD schemes are still employed
in production codes.

The limitations of the MFD method are basically two: the first one is of
practical character and related to the extension to nonlinear PDEs, and the second
one is of theoretical nature with some “psychological” aspects, which are not
less important. Mathematical models involving nonlinear PDEs can hardly be
handled in an iterative way without an explicit knowledge of the intermediate
approximate solutions. Even the most elementary approach, based, for example, on
Picard Iterations, requires the evaluation of nonlinear functionals and/or multilinear
forms that may nonlinearly depend on the solution, and in MFD, this solution is
not available numerically unless pursuing some “ad hoc” reconstruction or post-
processing from the degrees of freedom. The most theoretical issue was conversely
related to the absence of the shape functions (or of an equivalent definition of them),
which makes the convergence analysis and the derivation of error estimates quite
cumbersome. Hermetic language and notation made it also somehow difficult to
appreciate the interesting novelties of the MFD approach.

Objectively speaking, the Virtual Element Method was very successful in
addressing these two key points, and providing a solid Galerkin background and
a formal finite element backbone to mimetic discretization. Despite being born as a
bridge between the FEM and the MFD method, the VEM has soon turned out into
a new original paradigm for the numerical resolution of PDEs due to the significant
advantages it offers in a broad and somehow initially unexpected range of directions.
Indeed, the possibility of building approximation spaces, with the associated set of
degrees of freedom but without the need of explicitly specifying the construction of
the corresponding basis functions, provides a strong tool that simplifies and drives
its application to new and more complex problems. Specifically, the novel idea of
using projectors in order to build the discrete bilinear forms made the construction of
the approximate weak formulations more systematic. The use of projectors allowed,
indeed, the extension to a whole new range of nonlinear problems that were out of
reach for MFD.
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Herein, the few fundamental concepts are the following, briefly mentioned in
this paragraph as a sort of a VEM in a nutshell. Element by element, the local finite
element space is virtual in the sense that it is defined implicitly by all the solutions
of a suitable local partial differential equation problem. Based on such principle, all
associated shape functions are also virtual, and they never need to be explicitly
computed in any practical implementation of the method. Elemental degrees of
freedom are carefully chosen to have some special polynomial projections of the
virtual element functions directly computable and guarantee certain conformity
conditions when glued together to form the global virtual element spaces. Such
projectors are used to build the discrete forms needed in the variational formulation
of the problem according to the classical Galerkin paradigm. To avoid the ensuing
non-physical kernel that stems out of the presence of the projections, an ad-hoc
stabilization term is finally added to the discrete formulation.

A major advantage in the VEM approach is the possibility to construct discrete
spaces featuring higher-order continuity properties, for example, C1 and C2 or
even higher global regularity. Novel competitive elements/schemes also on classical
triangular/quadrilateral and tetrahedral/hexahedral grids can thus be designed to
preserve important physical features/constraints, such as the divergence-free nature
of the magnetic field in Maxwell equations and the velocity in incompressible
Navier-Stokes equations, or the symmetry of a tensor field in the Hellinger-Reissner
formulation of elasticity. Doubtlessly, the number of degrees of freedom in a
VEM formulation can be bigger when compared to FEM on quadrilaterals and
hexahedra, but serendipity makes it possible to reduce such number and obtain more
computationally efficient schemes with less degrees of freedom than standard FEM.

The Virtual Element Method has enjoyed a large success in these years, and
many articles were published from researchers all over the world to address
theoretical challenges that are peculiar to this methodology, such as, for instance,
the development of interpolation estimates on general polygonal/polyhedral meshes
under different mesh assumptions, and the design and analysis of stabilization
strategies that are robust with respect to the mesh geometry. Highest priority in the
design of the method has also been given to applications from fluid mechanics, solid
mechanics, and geophysics and, specifically, to phase transition problems, time-
dependent parabolic and hyperbolic problems, problems in electro-magnetism, and
topology optimization, just to mention a few. Examples of open-source codes that
illustrate the most practical and technical aspects of the implementation are also
available and publicly accessible from open software repositories.

Generally speaking, the large interest on the VEM triggered the launch of
this volume, which presents snapshots of state-of-the-art advances in some of
the fields mentioned above. Ranging through challenging problems in the field
of computational mechanics, fluid dynamics, wave propagations phenomena, and
magneto-hydrodynamics, the various chapters of this volume review a number of
modern topics of the VEM for the numerical approximation of linear and non-linear
PDEs. Each invited paper has been authored by some of the most active scientists
within the VEM research community. Additionally, it is worth mentioning that most
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of the authors of different chapters have also jointly collaborated to the development
of the virtual element method in other scientific areas.

The chapters in this volume can be roughly classified into three groups, starting
from three chapters that discuss more technical and theoretical aspects such as the
generality of the meshes suitable to the VEM, the implementation of the VEM for
linear and nonlinear PDEs, and the construction of discrete hessian complexes in
three dimensions in the VEM framework:

– Chapter 1, “VEM and the Mesh”, by Tommaso Sorgente, Daniele Prada, Daniela
Cabiddu, Silvia Biasotti,Giuseppe Patanè, Micol Pennacchio, Silvia Bertoluzza,
Gianmarco Manzini, and Michela Spagnuolo

– Chapter 2, “On the Implementation of Virtual Element Method for Non-
linear Problems over Polygonal Meshes”, by Dibyendu Adak, M Arrutselvi, E
Natarajan, and S Natarajan

– Chapter 3, “Discrete Hessian Complexes in Three Dimensions”, by Long Chen
and Xuehai Huang

Effective VEMs for applied mathematical modeling are presented in the second
group, which comprises the following seven chapters focusing on the numerical dis-
cretization of paradigmatic linear and non-linear partial differential problems from
computational mechanics, fluid dynamics, and wave propagation phenomena:

– Chapter 4, “Some Virtual Element Methods for Infinitesimal Elasticity Prob-
lems”, by Edoardo Artioli, Stefano de Miranda, Carlo Lovadina, Luca Patruno,
and Michele Visinoni

– Chapter 5, “An Introduction to Second-Order Divergence-Free VEM for Fluido-
dynamics”, by Lourenço Beirão da Veiga and Giuseppe Vacca

– Chapter 6, “Virtual Marriage à la Mode: Some Recent Results on the Coupling of
VEM and BEM”, by Gabriel N. Gatica, Antonio Márquez, and Salim Meddahi

– Chapter 7, “Virtual Element Approximation of Eigenvalue Problems”, by
Daniele Boffi, Francesca Gardini, and Lucia Gastaldi

– Chapter 8, “Virtual Element Methods for a Stream-Function Formulation of the
Oseen Equations”, by David Mora and Alberth Silgado

– Chapter 9, “The Non-conforming Trefftz Virtual Element Method: General
Setting, Applications, and Dispersion Analysis for the Helmholtz Equation”, by
Lorenzo Mascotto, Ilaria Perugia, and Alexander Pichler

– Chapter 10, “The Conforming Virtual Element Method for Polyharmonic and
Elastodynamics Problems: A Review”, by Paola F. Antonietti, Gianmarco
Manzini, Ilario Mazzieri, Simone Scacchi, and Marco Verani

Solid mechanics modeling of materials with fractures, magneto-hydrodynamics
phenomena, and contact solid mechanics using the VEM are addressed in the last
three chapters:

– Chapter 11, “The Virtual Element Method in Nonlinear and Fracture Solid
Mechanics”, by Edoardo Artioli, Sonia Marfia, and Elio Sacco
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– Chapter 12, “The Virtual Element Method for the Coupled System of Magneto-
hydrodynamics”, by Sebastián Naranjo Álvarez, Vrushali Bokil, Vitaliy Gyrya,
and Gianmarco Manzini

– Chapter 13, “Virtual Element Methods for Engineering Applications”, by Peter
Wriggers, Fadi Aldakheel, and Blaž Hudobivnik

The ultimate goal of this work, and our greatest hope and willingness on
serving as the editors of this volume, is to make the fascinating world of virtual
elements known and interesting to as many scientists as possible so to attract other
research communities to the development of the VEM beyond that of the numerical
mathematicians.

Milano, Italy Paola F. Antonietti
Milano, Italy Lourenço Beirão da Veiga
Pavia, Italy Gianmarco Manzini
September 2022
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Chapter 1
VEM and the Mesh

Tommaso Sorgente, Daniele Prada, Daniela Cabiddu, Silvia Biasotti,
Giuseppe Patanè, Micol Pennacchio, Silvia Bertoluzza, Gianmarco Manzini,
and Michela Spagnuolo

Abstract In this work we report some results, obtained within the framework of the
ERC Project CHANGE, on the impact on the performance of the virtual element
method of the shape of the polygonal elements of the underlying mesh. More in
detail, after reviewing the state of the art, we present (a) an experimental analysis of
the convergence of the VEM under condition violating the standard shape regularity
assumptions, (b) an analysis of the correlation between some mesh quality metrics
and a set of different performance indexes, and (c) a suitably designed mesh quality
indicator, aimed at predicting the quality of the performance of the VEM on a given
mesh.

1.1 Introduction

Geometrically complex domains are frequently encountered in mathematical mod-
els of real engineering applications. Their representation in some discrete form
is a key aspect in the numerical approximation of the solutions of the partial
differential equations (PDEs) describing such models and can be extremely difficult.
The finite element method has been proved to be very successful as it allows
the computational domains to be discretized by using triangular and quadrilateral
meshes in 2D and tetrahedral and hexahedral meshes in 3D. Meshes with more
complex elements, even admitting curved edges and faces, can be considered in
the finite element formulation through reference elements and suitable remappings
onto the problem space. To obtain accurate solutions, stringent constraints must be
imposed, for example on the internal angles of the triangles and tetrahedra, thus
requiring in extreme situations meshes with very small sized elements. To alleviate
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meshing issues, we can resort to numerical methods that are designed from the very
beginning to provide arbitrary order of accuracy on more generally shaped elements.
A class of methods with these features is the class of the so called polytopal element
method, or PEM for short, that make it possible to numerically solve PDEs using
polygonal and polyhedral grids.

The PEMs allow the user to incorporate complex geometric features at different
scales without triggering mesh refinement, thus achieving high flexibility in the
treatment of complex geometries. Moreover, nonconformal meshes can be treated in
a straightforward way, by automatically including hanging nodes (i.e., T-junctions),
and the design of refinement and coarsening algorithms is greatly simplified.

Such polytopal methods normally rely on a special design, as a straightforward
generalization of the FEM is not possible because the finite element variational
formulation requires an explicit knowledge of the basis functions. This requirement
typically implies that such basis functions are elements of a subset of scalar and
vector polynomials, and, as a consequence, the FEM is mostly restricted to meshes
with elements having a simple geometrical shape, such as triangles or quadrilaterals.

The virtual element method (VEM) is a very successful example of PEM. The
VEM formulation and implementation are based on suitable polynomial projections
that we can always compute from the degrees of freedom of the basis functions.
Since the explicit knowledge of the basis functions for the approximation space is
not required, the method is dubbed as virtual. This fundamental property allows the
virtual element to be formulated on meshes with elements having a very general
geometric shapes.

The VEM was originally formulated in [11] as a conforming FEM for the
Poisson problem by rewriting in a variational setting the nodal mimetic finite
difference (MFD) method [10, 14, 32, 33, 51, 55] for solving diffusion problems on
unstructured polygonal meshes. A survey on the MFD method can be found in the
review paper [52] and the research monograph [13]. The VEM scheme inherits the
flexibility of the MFD method with respect to the admissible meshes and this feature
is well reflected in the many significant applications that have been developed so
far, see, for example, [2, 4–8, 15–17, 20–25, 38, 40, 41, 45, 47, 57, 59, 62, 63, 72].
Since the VEM is a reformulation of the MFD method that generalizes the FEM
to polytopal meshes as the other PEMs, it is clearly related with many other
polytopal schemes. The connection between the VEM and finite elements on
polygonal/polyhedral meshes is thoroughly investigated in [37, 46, 54], between
VEM and discontinuous skeletal gradient discretizations in [46], and between the
VEM and the BEM-based FEM method in [39]. The VEM has been extended to
convection-reaction-diffusion problems with variable coefficients in [16]. The issue
of preconditioning the VEM has been considered in [3, 26, 27, 36].

If on one hand, the VEM makes it possible to discretize a PDE on computational
domains partitioned by a polytopal mesh, on the other hand this flexibility poses the
fundamental question of what is a “good” polytopal mesh. All available theoretical
and numerical results in the literature strongly support the fact that the quality of
the mesh is crucial to determine the accuracy of the method and its effectiveness
in solving problems on difficult geometries. This fact is not surprising as such
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dependence of the behavior of the numerical approximation in terms of accuracy,
stability, and overall computational cost on the quality of the underlying mesh has
been a very well known fact for decades in the finite element framework and has
been formalized in concepts like mesh regularity, shape regularity, etc. However, the
concept of shape regularity of triangular/tetrahedral and quadrangular/hexahedral
meshes is well understood [29, 44, 66], but the characterization of a good polytopal
mesh is still subject to ongoing research. Optimal convergence rates for the virtual
element approximations of the Poisson equation were proved in H 1 and L2 norms,
see for instance [1, 9, 11, 18, 30, 31, 43]. These theoretical results involve an
estimate of the approximation error, which is due to both analytical assumptions
(interpolation and polynomial projections of the virtual element functions) and
geometrical assumptions (the geometrical shape of the mesh elements).

A major point here is that the polytopal framework provides an enormous
freedom to the possible geometric shapes of the mesh elements. This freedom makes
it difficult to identify which geometric features may have a negative effect on the
performance of the VEM. Various geometrical (or regularity) assumptions have
been proposed to ensure that all elements of any mesh of a given mesh family in
the refinement process are sufficiently regular. Many papers prove the convergence
of the VEM and derive optimal error estimates under the assumption that the
polygonal elements are star-shaped with respect to all the points in a disc whose
diameter is comparable with the diameter of the elements itself. This assumption is
combined with a second scaling assumption on the mesh elements in the sequence
of refined meshes that is used in the numerical approximation. For example, we
can assume that either the length of all the edges or the distance between any two
vertices of a polygonal element scale comparably with the element diameter, or even
weaker conditions. These assumptions guarantee the VEM convergence and optimal
estimates of the approximation error with respect to different norms. However, as
already observed from the very first papers, cf. [1], the VEM seems to maintain its
optimal convergence rates also when we use mesh families that do not satisfy the
usual geometrical assumptions. Since the VEM was proposed in 2013, many more
examples have accumulate in the literature (some also reviewed in this chapter)
that show that a virtual element solver on a simple model problem as the Poisson
equation may still provide a very good behavior, even if all the theoretical conditions
of the analysis are violated. Good behavior means that the VEM is convergent and
the loss of accuracy is significant only when the degeneracy of the meshes becomes
really extreme. This suggests that more permissive shape-regularity criteria should
be devised so that the VEM can be considered as effective, and a lot of work
still has to be carried out to identify the specific issues that may negatively affect
its accuracy. Clearly, these points are also crucial to support the design of better
polygonal meshing algorithm for the tessellation of computational domains.

Understanding the influence of the geometrical characteristics of the elements on
the performance of the VEM and, more generally, of the PEM, is one of the goals
that the unit based at the Istituto di Matematica Applicata e Tecnologie Informatiche
del CNR is pursuing within the Advanced Grant Project New CHallenges in
(adaptive) PDE solvers: the interplay of ANalysis and GEometry (CHANGE),
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whose final goal is the design of tools embracing geometry and analysis within
a multi-level, multi-resolution paradigm. Indeed, a deeper understanding of such
an interrelation can provide, on the one hand, the geometry processing community
with information on the requirements to be incorporated into the meshing tools in
order to generate “good” polytopal meshes, and, on the other hand, the mathematical
community with possible new directions to pursue in the theoretical analysis of the
VEM.

In Sect. 1.5 we review the main results of a recent work aimed at identifying
the correlation between the performance of the virtual element method and a set
of polygonal quality metrics. To this end, a systematic exploration was carried
out to correlate the performance of the VEM and the geometric properties of the
polygonal elements forming the mesh. In such study, the performance of the VEM
is characterized by different “performance indexes”, including (but not limited to)
the accuracy of the solution and the conditioning of the associated linear system.
The quality “metrics” measuring the “goodness” of a mesh are built by considering
several geometric properties of polygons (see Sect. 1.5.1) from the simplest ones
such as areas, angles, and edge length, to most complex ones as kernels, inscribed
and circumscribed circles. The individual quality metrics of the polygonal elements
of a mesh are combined in a single quality metric for the mesh itself by different
aggregation strategies, such as minima, maxima, averages, worst case scenario and
Euclidean norm. The numerical experiments to collect the results are performed on
a family of parametric elements, which is designed to progressively stress one or
more of the proposed geometric metrics, enriched with random polygons in order to
avoid a bias in the study.

A second critical point developed in Sect. 1.6, is the connection between the
performance of the method and how the regularity of the mesh refinements impacts
on the approximation process. Note indeed that the way the geometric objects
forming a mesh as edges and polygons (and faces and polytopal elements in 3D)
scale is crucial in all possible geometric assumptions. It is a remarkable example
shown in Sect. 1.4.1 that even the star-shaped assumption can be violated on
a sequence of rectangular meshes (rectangular elements are star-shaped!) if the
element aspect ratio scales badly when the mesh is refined. See also [68] for more
details. To study how the geometrical conditions that are found in the literature may
really impact on the convergence and accuracy of the VEM, we gradually introduce
several pathologies in the mesh datasets used in the numerical experiments. These
datasets systematically violate all the geometrical assumptions, and enhance a
correlation analysis between such assumptions and the VEM performance. As
expected from other works in the literature, these numerical experiments confirm
the remarkable robustness of the VEM as it fails only in very few and extreme
situations and a good convergence rate is still visible in most examples. To quantify
this correlation, we build an indicator that measure the violation of the geomet-
rical assumptions. This indicator depends uniquely on the geometry of the mesh
elements. A correspondence is visible between this indicator and the performance
of the VEM on a given mesh, or mesh family, in terms of approximation error and
convergence rate. This correspondence and such an indicator can be used to devise a
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strategy to evaluate if a given sequence of meshes is suited to the VEM, and possibly
to predict the behaviour of the numerical discretization before applying the method.

The chapter is organized as follows. In Sect. 1.2, we present the VEM and the
convergence results for the Poisson equation with Dirichlet boundary conditions.
In Sect. 1.3.1, we detail the geometrical assumptions on the mesh elements that
are used in the literature to guarantee the convergence of the VEM. In Sect. 1.3.2
we review the major theoretical results on the error analysis that are available
in the virtual element literature, reporting the geometrical conditions assumed in
each result. In Sect. 1.4.1, we present a number of datasets which do not satisfy
these assumptions, and experimentally investigate the convergence of the VEM
over them. In Sect. 1.5 we present the statistical analysis of the correlation between
some notable mesh quality metrics and a selection of quantities measuring different
aspects of the performance of the VEM. In Sect. 1.6, we propose a mesh quality
indicator to predict the behaviour of the VEM over a given dataset. In Sect. 1.7 we
present the open source benchmarking software tools PEMesh [35], developed at
IMATI.

1.2 Model Problem

The elliptic model problem that we focus on in this paper is the Poisson equation
with Dirichlet boundary conditions. In this section, we briefly review the strong and
weak forms of the model equations and recall the formulation of its virtual element
discretization.

The Poisson Equation and Its Virtual Element Discretization Let � be an open,
bounded, connected subset of R

2 with polygonal boundary �. We consider the
Poisson equation with homogeneous Dirichlet boundary conditions, whose strong
form is:

−�u = f in �, (1.1)

u = 0 on �. (1.2)

Remark that, while, for the sake of simplicity, we consider here homogeneous
Dirichlet boundary conditions, the method that we are going to present also applies
to the non homogeneous case, the extension being straightforward. The variational
formulation of problem (1.1)–(1.2) takes the form: Find u ∈ H 1

0 (�) such that

a(u, v) = F(v) ∀v ∈ H 1
0 (�), (1.3)
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with the bilinear form a(·, ·) : H 1(�)×H 1(�)→ R and the right-hand side linear
functional F : L2(�)→ R respectively defined as

a(u, v) =
∫
�

∇u · ∇v dx (1.4)

and

F(v) =
∫
�

f v dx, (1.5)

where we implicitly assumed that f ∈ L2(�). The well-posedness of the weak
formulation (1.3) can be proven by applying the Lax-Milgram theorem [64, Section
2.7], thanks to the coercivity and continuity of the bilinear form a(·, ·), and to the
continuity the linear functional F(v).

We consider here the virtual element approximation of Eq. (1.3), mainly based
on [1, 11], which provides an optimal approximation on polygonal meshes when the
diffusion coefficient is variable in space.

The discrete equation will take the form: Find uh ∈ V h
k such that

ah(uh, vh) = Fh(vh) vh ∈ V h
k , (1.6)

where uh, V h
k , ah(·, ·), Fh(·) are the virtual element approximations of u, H 1

0 (�),
a(·, ·), and F(·). In the rest of this section we recall the construction of these
mathematical objects.

Mesh Notation Let T = {�h}h∈H be a family of decompositions �h of the
computational domain � into a finite set of nonoverlapping polygonal elements E.
Each of the members �h of the family T will be referred to as the mesh. The mesh
size h, which also serves as subindex, is the maximum of the diameters of the mesh
elements, which is defined by hE = supx,y∈E |x− y|. We assume that the mesh
sizes of the mesh family T are in a countable subset H of the real line (0,+∞)

having 0 as its unique accumulation point. We let ∂E denote the polygonal boundary
of E, which we assume to be nonintersecting and formed by straight edges e. The
center of gravity of E will be denoted by xE = (xE, yE) and its area by |E|. We
denote the edge mid-point xe = (xe, ye) and its length |e|, and, with a small abuse
of notation, we write e ∈ ∂E to indicate that edge e is running throughout the set
of edges forming the elemental boundary ∂E. In the next section we will discuss in
detail the different assumptions on the mesh family T , under which he convergence
analysis of the VEM and the derivation of the error estimates in the L2 and H 1 are
carried out in the literature.
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The Virtual Element Spaces Let k ≥ 1 integer and E ∈ �h a generic
mesh element. We define the local virtual element space V h

k (E), following to the
enhancement strategy proposed in [1]:

V h
k (E) =

{
vh ∈ H 1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) ∀e ∈ ∂E,

�vh ∈ Pk(E), and

∫
E

(vh −�
∇,E
k vh) q dV = 0 ∀q ∈ Pk(E)\Pk−2(E)

}
. (1.7)

Here, �∇,Ek is the elliptic projection that will be discussed in the next section; Pk(E)
and Pk(e) are the linear spaces of the polynomials of degree at most k, which are
respectively defined over an element E or an edge e according to our notation;
and Pk(E)\Pk−2(E) is the space of polynomials of degree equal to k − 1 and k. By
definition, the space V h

k (E) containsPk(E) and the global space V h
k is a conforming

subspace of H 1(�). The global conforming virtual element space V h
k of order k

built on mesh �h is obtained by gluing together the elemental approximation spaces,
that is

V h
k :=

{
vh ∈ H 1

0 (�) : vh|E ∈ V h
k (E) ∀E ∈ �h

}
. (1.8)

On every mesh �h, given an integer k ≥ 0, we also define the space of discontinuous
piecewise polynomials of degree at most k, Pk(�h), whose elements are the
functions q such that q|E ∈ Pk(E) for every E ∈ �h.

The Degrees of Freedom For each element E and each virtual element function
vh ∈ V h

k (E), we consider the following set of degrees of freedom [11]:

(D1) for k ≥ 1, the values of vh at the vertices of E;
(D2) for k ≥ 2, the values of vh at the k − 1 internal points of the (k + 1)-point

Gauss-Lobatto quadrature rule on every edge e ∈ ∂E.
(D3) for k ≥ 2, the cell moments of vh of order up to k − 2 on element E:

1

|E|
∫
E

vh q dV ∀q ∈ Pk−2(E). (1.9)

It is possible to prove that this set of values is unisolvent in V h
k (E), cf. [11]; hence,

every virtual element function is uniquely identified by it. The global degrees of
freedom of a virtual element function in the space V h

k are given by collecting
the elemental degrees of freedom (D1)-(D3) for all vertices, edges and elements.
Their unisolvence in V h

k is an immediate consequence of their unisolvence in every
elemental space V h

k (E).
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The Elliptic Projection Operators The elliptic projection operator �
∇,E
k :

H 1(E) → Pk(E), whose definition is required in (1.7) and which will be
instrumental in the definition of the bilinear form ah in the following, is given, for
any vh ∈ V h

k (E), by:

∫
E

∇�∇,Ek vh · ∇q dV =
∫
E

∇vh · ∇q dV ∀q ∈ Pk(E), (1.10)

∫
∂E

(
�
∇,E
k vh − vh

)
dS = 0. (1.11)

Equation (1.11) allows us to remove the kernel of the gradient operator from the
definition of �∇,Ek , so that the k-degree polynomial �∇,Ek vh is uniquely defined

for every virtual element function vh ∈ V h
k (E). Furthermore, projector �

∇,E
k

is a polynomial-preserving operator, i.e., �∇,Ek q = q for every q ∈ Pk(E).
By assembling elementwise contributions we define a global projection operator
�∇k : H 1(�) → Pk(�h), which is such that �∇k vh|E = �

∇,E
k (vh|E) ∀E ∈ �h. A

key property of the elliptic projection operator is that the projection �
∇,E
k vh of any

virtual element function vh ∈ V h
k (E) is computable from the degrees of freedom

(D1)–(D3) of vh associated with element E.

Orthogonal Projections From the degrees of freedom of a virtual element function
vh ∈ V h

k (E) we can also compute the L2(E) orthogonal projections �
0,E
k vh ∈

Pk(E), cf. [1]. In fact, �0,E
k vh of a function vh ∈ V h

k (E) is, by definition, the
solution of the variational problem:

∫
E

�0
kvh q dV =

∫
E

vh q dV ∀q ∈ Pk(E). (1.12)

The right-hand side is the integral of vh against the polynomial q , and, when q is
a polynomial of degree up to k − 2, it is computable from the degrees of freedom
(D3) of vh. When q is a polynomial of degree k − 1 or k, it is computable from
the moments of �∇,Ek vh, cf. (1.7). Clearly, the orthogonal projection �0,E

k−1vh is also
computable. Also here we can define a global projection operator �0

k : L2(�) →
P(�h), which projects the virtual element functions on the space of discontinuous
polynomials of degree at most k built on mesh �h. This operator is obtained by
assembling the elemental L2-orthogonal projections �0,E

k vh for all mesh elements

E, that is
(
�0

kvh
)
|E = �

0,E
k (vh|E).
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The Virtual Element Bilinear Forms Taking advantage of the elliptic and
orthogonal projectors we can now define the virtual element bilinear form ah(·, ·) :
V h
k ×V h

k → R. We start by splitting the discrete bilinear form ah(·, ·) as the sum of
elemental contributions

ah(uh, vh) =
∑
E∈�h

aEh (uh, vh), (1.13)

where the contribution of every element is a bilinear form aEh (·, ·) : V h
k (E) ×

V h
k (E) → R, approximating the corresponding elemental bilinear form aE(·, ·) :

H 1(E)×H 1(E)→ R,

aE(v,w) =
∫
E

∇v · ∇w dV, ∀v,w ∈ H 1(E).

The bilinear form aEh (·, ·) on each element E is itself split as the sum of two
contributions: by

aEh (uh, vh) =
∫
E

∇�∇,Ek uh · ∇�∇,Ek vh dV+ (1.14)

SEh

((
I −�

∇,E
k

)
uh,

(
I −�

∇,E
k

)
vh

)
.

The stabilization term SEh (·, ·) in (1.14) can be any computable, symmetric, positive
definite bilinear form defined on V h

k (E) such that

c∗aE(vh, vh) ≤ SEh (vh, vh) ≤ c∗aE(vh, vh) ∀vh ∈ V h
k (E) ∩ ker

(
�
∇,E
k

)
,

(1.15)

for two positive constants c∗ and c∗. Property (1.15) states that that SEh (·, ·) scales

like aE(·, ·) with respect to hE . As �∇,Ek is a polynomial preserving operator, the
contribution of the stabilization term in the definition of aEh (·, ·) is zero one (or both)
of the two entries is a polynomial of degree less than or equals to k.

Condition (1.15), is designed so that aEh (·, ·) satisfies the two following funda-
mental properties:

– k-consistency: for all vh ∈ V h
k (E) and for all q ∈ Pk(E) it holds that

aEh (vh, q) = aE(vh, q); (1.16)

– stability: there exist two positive constants α∗, α∗, independent of h and E,
such that

α∗aE(vh, vh) ≤ aEh (vh, vh) ≤ α∗aE(vh, vh) ∀vh ∈ V h
k (E). (1.17)
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In our implementation of the VEM, we consider the stabilization proposed
in [56], that is we set:

SEh (vh,wh) =
Ndofs∑
i=1

A E
iiDOFi (vh)DOFi (wh), (1.18)

where A E = (
A E

ij

)
is the matrix stemming from the implementation of the first

term in the bilinear form aEh (·, ·). More precisely, let φi be the i-th “canonical”
basis functions generating the virtual element space, which is the function in
V h
k (E) whose i-th degree of freedom for i = 1, . . . , Ndofs (according to a suitable

renumbering of the degrees of freedom in (D1), (D2), and (D3)), has value equal to
1 and all other degrees of freedom are zero. The i, j -th entry of matrix A E is given
by

A E
ij := aE

(
�
∇,E
k φi,�

∇,E
k φj

)
. (1.19)

The stabilization in (1.18) is sometimes called the “D-recipe stabilization” in the
virtual element literature. Observe that, if we instead replace A P with the identity
matrix, we get the the so called “dofi-dofi (dd) stabilization” originally proposed
in [11]:

S
E,dd
h (vh,wh) =

Ndofs∑
i=1

DOFi (vh)DOFi (wh). (1.20)

The stabilization (1.20) underlies many of the convergence results available from
the literature, which we briefly review in Sect. 1.3.2.

The Virtual Element Forcing Term We approximate the right-hand side of (1.6),
by splitting it into the sum of elemental contributions and approximating every local
linear functional by replacing vh with �

0,E
k vh:

F(vh) =
∑
E∈�h

(
f,�

0,E
k vh

)
E
. where

(
f,�

0,E
k vh

)
E
=
∫
E

f �
0,E
k vh dV .

(1.21)

Approximation Properties in the Virtual Element Space Under a suitable
regularity assumption on the mesh family T (see assumption G1 in the next
section), we can prove the following estimates on the projection and interpolation
operators:

1. for every s with 1 ≤ s ≤ k + 1 and for every w ∈ Hs(E) there exists a wπ ∈
Pk(E) such that

|w − wπ |0,E + hE |w −wπ |1,E ≤ ChsE |w|s,E ; (1.22)
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2. for every s with 2 ≤ s ≤ k + 1, for every h, for all E ∈ �h and for every
w ∈ Hs(E) there exists a wI ∈ V h

k (E) such that

|w −wI |0,E + hE |w − wI |1,E ≤ ChsE |w|s,E . (1.23)

Here, C is a positive constant depending only on the polynomial degree k and on
some mesh regularity constants that we will present and discuss in the next section.

Main Convergence Properties Thanks to the coercivity and continuity of the
bilinear form ah(·, ·), and to the continuity of the right-hand side linear functional(
f,�0

k ·
)
, by applying the Lax-Milgram theorem [64, Section 2.7], we obtain the

well-posedness of the discrete formulation (1.6).
Let then u ∈ Hk+1(�) be the solution to the variational problem (1.3) on a

convex domain � with f ∈ Hk(�). Let uh ∈ V h
k be the solution of the virtual

element method (1.6) on every mesh of a mesh family T = {�h} satisfying a
suitable set of mesh geometrical assumptions. Under suitable assumptions on the
mesh family T , it is possible to prove that the following error estimates hold:

– the H 1-error estimate holds:

||u− uh||1,� ≤ Chk
(||u||k+1,� + |f |k,�

) ; (1.24)

– the L2-error estimate holds:

||u− uh||0,� ≤ Chk+1 (||u||k+1,� + |f |k,�
)
. (1.25)

Constant C in (1.24) and in (1.25) may depend on the stability constants α∗ and α∗,
on mesh regularity constants which we will introduce in the next section, on the size
of the computational domain |�|, and on the approximation degree k. Constant C is
normally independent of h, but for the most extreme meshes it may depend on the
ratio between the longest and shortest edge lengths, cf. Sect. 1.3.2.

Finally, we note that the approximate solution uh is not explicitly known
inside the elements. Consequently, in the numerical experiments of Sect. 1.4.2, we
approximate the error in the L2-norm as follows:

||u− uh||0,� ≈ ||u−�0
kuh||0,�,

where �0
kuh is the global L2-orthogonal projection of the virtual element approxi-

mation uh to u. On its turn, we approximate the error in the energy norm as follows:

|u− uh|1,� ≈ ah(uI − uh, uI − uh)

where uI is the virtual element interpolant of the exact solution u.
In this work, we are interested in checking whether optimal convergence rates

put forward by these estimates are maintained on different mesh families that may
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display some pathological situations. From a theoretical viewpoint, the convergence
estimates hold under some constraints on the shapes of the elements forming the
mesh, called mesh geometrical (or regularity) assumptions. We summarize the
major findings from the literature in Sect. 1.3.2 and in the next sections we will
investigate how breaking such constraints may affect these results.

1.3 State of the Art

Various geometrical (or regularity) assumptions have been proposed in the literature
to ensure that all elements of all meshes in a given mesh family in the refinement
process are sufficiently regular. These assumptions guarantee the convergence of
the VEM and optimal estimates of the approximation error with respect to different
norms.

In this section, we overview the geometrical assumptions introduced in the VEM
literature to guarantee the convergence of the method, and we provide a list of the
main convergence results based on such assumptions.

1.3.1 Geometrical Assumptions

We start by reviewing the geometrical assumptions appeared in the VEM literature
since their definition in [11]. Note that these assumptions are defined for a single
mesh �h, but the conditions contained in them are required to hold independently
of the mesh size h. As a consequence, when an assumption is imposed to a mesh
family T = {�h}h, it has to be verified simultaneously by every �h ∈ T .

It is well-known from the FEM literature that the approximation properties of
a method depend on specific assumptions on the geometry of the mesh elements.
Classical examples of geometrical assumptions for a family of triangulations
{�h}h→0, are the ones introduced in [44] and [73], respectively:

(a) Shape regularity condition: there exists a real number γ ∈ (0, 1), independent
of h, such that for any triangle E ∈ �h we have

rE ≥ γ hE, (1.26)

being hE the longest edge in E and rE its inradius;
(b) Minimum angle condition: there exists an angle α0 > 0, independent of h, such

that for any triangle E ∈ �h we have

αE ≥ α0, (1.27)

being αE the minimal angle of E.
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When we turn our focus on polygonal meshes, a preliminar consideration is
needed on the definition of the polygonal elements. It is commonly accepted, even
if not always explicitly specified, that a mesh �h has to be made of a finite number
of simple polygons, i.e. open simply connected sets whose boundary is a non-
intersecting line made of a finite number of straight line segments.

The other regularity assumptions proposed in the VEM literature to ensure
approximation properties have been deduced in analogy to the similar conditions
developed for the FEMs. The main assumption, which systematically recurs in every
VEM paper, is the so-called star-shapedness of the mesh elements.

Assumption G1 There exists a real number ρ ∈ (0, 1), independent of h, such that
every polygon E ∈ �h is star-shaped with respect to a disc with radius

rE ≥ ρhE.

We denote rE the radius of the greatest possible inscribed disk in E and star center
the center of such disk, where it exists. We stress the fact that G1 does not accept
polygons star-shaped with respect to a single point, as both ρ and hE are greater
than zero, and we conventionally say that rE = 0 if E is not star-shaped (Fig. 1.1).
Assumption G1 is nothing but the polygonal extension of the classical shape
regularity condition for triangular meshes. In fact, any triangular element E is star-
shaped with respect to its maximum inscribed disk (the one with radius rE) and the
diameter hE coincides with its longest edge. Moreover, G1 can also be stated in the
following weak form, as specified in [11] and more accurately in [30]:

Assumption G1-Weak There exists a real number ρ ∈ (0, 1), independent of h,
such that every polygon E ∈ �h can be split into a finite number N of disjoint
polygonal subcells E1, . . . , EN where, for j = 1, . . . , N ,

(a) element Ej is star-shaped with respect to a disc with radius rEj ≥ ρhEj ;
(b) elements Ej and Ej+1 share a common edge.

From a practical point of view, Assumptions G1 and G1-weak are almost equiva-
lent, and they are treated equivalently in all papers reviewed in Sect. 1.3.2.
Assumption G1 plays a key role in most of the theoretical results regarding
polygonal methods. It is needed by the Bramble-Hilbert lemma [64], an important

Fig. 1.1 The element in (a)
is star-shaped with respect to
the disk B but not with
respect to the disk B′, while
the element in (b) is not
star-shaped with respect to
any disk
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result on polynomial approximation that is often used for building approximation
estimates, and also by the following lemma.

Lemma 1.1 If a mesh �h satisfies Assumption G1 then for all polygons E ∈ �h

there exists a mapping F : B1 → E, with the Jacobian J of F satisfying

||J ||2 � h, | det(J )| � h2 and ||J−1||2 � h−1, (1.28)

and, for a sufficiently regular u, the following relations hold

||u||0,E  hE ||u ◦ F ||0,B1, ||u||0,∂E  h
1/2
E ||u ◦ F ||0,∂B1,

|u|1,E  |u ◦ F |1,B1, |u|1/2,∂E  |u ◦ F |1/2,∂B1,

where all the implicit constants only depend on the constant ρ from G1.

Thanks to the relations in Lemma 1.1, inequalities that we have on the unit circle
B1, such as the Poincaré inequality or the trace inequalities, may be transferred to
the polygon E by a “scaling” argument.

In the very first VEM paper [11], where the method was introduced, Assump-
tion G1 was followed by another condition on the maximum point-to-point distance.

Assumption G2-Strong There exists a real number ρ ∈ (0, 1), independent of h,
such that for every polygon E ∈ �h, the the distance di,j between any two vertices
vi, vj of E satisfies

di,j ≥ ρhE.

In fact, Assumption G2-strong was soon replaced in the following works [1, 18] and
[30] by a weaker condition on the length of the elemental edges. This new version
allows, for example, the existence of four-sided polygons with equal edges but one
diagonal much smaller than the other.

Assumption G2 There exists a real number ρ ∈ (0, 1), independent of h, such that
for every polygon E ∈ �h, the length |e| of every edge e ∈ ∂E satisfies

|e| ≥ ρhE.

The Authors consider a single constant ρ for both Assumption G1 and G2 and refer
to it as the mesh regularity constant or parameter.
Under Assumption G1-weak and G2, it can be proved [30] that the simplicial
triangulation of E determined by the star-centers of E1, . . . , EN satisfies the shape
regularity and the minimum angle conditions. The same holds under Assumptions
G1 and G2, as a special case of the previous statement. Moreover, Assumption G2
implies that for 1 ≤ j, k ≤ N it holds hEj /hEk ≤ ρ−|j−k|.
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As already mentioned in the very first papers, these assumptions are more restrictive
than necessary, but at the same time they allow the VEM to work on very general
meshes. For example, Ahmad et al. in [1] state that:

Actually, we could get away with even more general assumptions, but then it would be long
and boring to make precise (among many possible crazy decompositions that nobody will
ever use) the ones that are allowed and the ones that are not.

In the subsequent papers [18] and [31] Assumption G1 is preserved, but
Assumption G2 is substituted by the alternative version:

Assumption G3 There exists a positive integer N , independent of h, such that the
number of edges of every polygon E ∈ �h is (uniformly) bounded by N .

The Authors show how Assumption G2 implies Assumption G3, but Assump-
tion G3 is weaker than Assumption G2, as it allows for edges arbitrarily small with
respect to hE . Both combinations G1+G2 and G1+G3 imply that the number of
vertices of E and the minimum angle of the simplicial triangulation of E obtained
by connecting all the vertices of E to its star-center, are controlled by the constant
ρ.

Another step forward in the refinement of the geometrical assumptions was made
by Beirão Da Veiga et al. in [9]. Besides assuming G1, the Authors imagine to
“unwrap” the boundary ∂E of each element E ∈ �h onto an interval of the real
line, obtaining a one-dimensional mesh IE . The mesh IE can be subdivided into
a number of disjoint sub-meshes I 1

E, . . . ,I
N
E , corresponding to the edges of E.

Then, the following condition is assumed.

Assumption G4 There exists a real number δ > 0, independent of h, such that for
every polygon E ∈ �h:

(a) the one-dimensional mesh IE can be subdivided into a finite number N of
disjoint sub-meshes I 1

E, . . . ,I
N
E ;

(b) for each sub-mesh I i
E , i = 1, . . . , N , it holds that

maxe∈I i
E
|e|

mine∈I i
E
|e| ≤ δ.

Each polygon E corresponds to a one-dimensional mesh IE , but a sub-mesh
I i

E ⊂ IE might contain more than one edge of E, cf. Fig. 1.2. Therefore
Assumption G4 does not require a uniform bound on the number of edges in each
element and does not exclude the presence of small edges. Mesh families created by
agglomeration, cracking, gluing, etc. of existing meshes are admissible according
to G4.
As we will see in the next section, possible assumption pairs requested in the
literature to guarantee the convergence of the VEM are given by combining G1
(or, equivalently, G1-weak) with either G2-strong, G2, G3 or G4.



16 T. Sorgente et al.

Fig. 1.2 Examples of admissible elements according to Assumption G4. Red dots indicate the
vertices of the element

Last, we report a condition (together with its weaker version) that appears in the
literature related to the non-conforming version of the VEM, which we do not cover
in this work. It is defined for instance in [28], but it can also be found under the
name of local quasi-uniformity.

Assumption G5 There exists a real number γ ∈ (0, 1), independent of h, such that
for every polygon E ∈ �h, for all e, e′ adjacent edges of E it holds that

1

γ
≤ |e|
|e′| ≤ γ.

In this case, the polygonal elements of the mesh are allowed to have a very large
number of very small edges, provided that every two consecutive edges scale
proportionally. This assumption also has a weak version, in which we essentially
ask that, for every E ∈ �h, a part of ∂E satisfies G5 and the remaining part satisfies
G3.

Assumption G5-Weak There exist a real number γ ∈ (0, 1) and a positive integer
N , both independent of h, such that for every polygon E ∈ �h, the set EE of the
edges of E can be split as EE = E 1

E ∪ E 2
E , where E 1

E and E 2
E are such that

– for any pair of adjacent edges e, e′ ∈ EE with e ∈ E 1
E , the inequality holds

1

γ
≤ |e|
|e′| ≤ γ ;

– E 2
E contains at most N edges.

Assumption G5-weak allows for situations where a large number of small edges
coexists with some large edges. We can think of families of meshes for which
such an assumption is not satisfied, but they would be extremely pathological.
Assumptions G5 and G5-weak are here reported for the sake of completeness
but are not considered in the analysis of the following sections, as they refer to a
different context.



1 VEM and the Mesh 17

1.3.2 Convergence Results in the VEM Literature

In this section, we briefly overview the literature on the main results of the
convergence analysis of the VEM method. For each article, we explicitly report
(if available) the theoretical results and highlight the geometric assumptions used,
reporting the abstract energy error, the H 1 error estimate, and the L2 error. For a
greater uniformity of the presentation with the rest of the chapter, we have slightly
modified some notations and introduced minimal variations to some statements of
the theorems.

Basic Principles of Virtual Elements Methods [11]
This is the paper in which the VEM method was introduced and defined. In the
original formulation, the paper introduced the regular conforming virtual element
space. For simplicity and with a small abuse of notation, the regular conforming
virtual element space is denoted by V h

k as in (1.8) and (1.7):

V h
k :={vh ∈ H 1(�) : vh|E ∈ V h

k (E) ∀E ∈ �h}, (1.29a)

where

V h
k (E) := {vh ∈ H 1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) ∀e ∈ ∂E, (1.29b)

and �vh ∈ Pk−2(E)},

and the dofi-dofi formulation S
E,dd
h defined in (1.20) is used for the stabilization

bilinear form.
There, the authors introduced the concept of simple polygon and the geometric regu-
larity assumptions G1 and G2-strong. The following statement on the convergence
of VEM in the energy norm is general and largely used in the VEM literature, even
if not explicitly stated in [11]. To this purpose, for functions v ∈ H 1(�h) the broken
H 1-seminorm is defined as follows:

|v|h,1 :=
⎛
⎝∑

E∈�h

|∇v|20,E
⎞
⎠

1/2

. (1.30)

Theorem 1.3.1 (Abstract Energy Error) Under the k-consistency and stability
assumptions defined in Sect. 1.2, cf. (1.16) and (1.17), the discrete problem has
a unique solution uh. Moreover, for every approximation uI ∈ V h

k of u and every
approximation uπ of u that is piecewise in Pk(�h), we have

|u− uh|1,� ≤ C(|u− uI |1,� + |u− uπ |h,1 + Fh), (1.31)
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where C is a constant depending only on α∗ and α∗ (the constants in (1.17)), and,
for any h, Fh = |f − fh|V h

k

′ is the smallest constant such that

(f, v) − 〈fh − f, v〉 ≤ Fh|f |1 ∀v ∈ V h
k .

In [11] it was claimed that it is possible to estimate the convergence rate in terms of
the L2 error using duality argument techniques.

Equivalent Projectors for Virtual Element Methods [1]
In [1], the enhanced VEM space (1.7) adopted in this chapter replaces V h

k (E)

(in [1] the enhanced VEM space is named “modified VEM space”). This paper
uses the dofi-dofi stabilization. Under the geometrical assumptions G1 and G2,
the paper provides an explicit estimation of H 1 and L2 errors and introduces the
Theorem 1.3.1 for the abstract energy error.

Theorem 1.3.2 (H 1 Error Estimate) Assuming G1, G2, let the right-hand side f
belong to Hk−1(�), and that the exact solution u belong to Hk+1(�). Then

||u− uh||1,� ≤ C|h|k|u|k+1,� (1.32)

with C a positive constant independent of h.

Theorem 1.3.3 (L2 Error Estimate) Assuming G1, G2 and with � convex, let
the right-hand side f belong to Hk(�), and that the exact solution u belong to
Hk+1(�). Then

||u− uh||0,� + |h|||u− uh||1,� ≤ C|h|k+1|u|k+1,�, (1.33)

with C a constant independent of h.

Stability Analysis for the Virtual Element Method [18]
This contribution deals with the regular conforming VEM space (1.29) defined
in [11]. The paper [18] provides a new estimation of the abstract energy error
and analyses the H 1 error with respect to two different stabilization techniques.
Moreover, new analytical assumptions on the bilinear form ah(·, ·) to replace (1.17)
are introduced:

aEh (vh, vh) ≤ C1(E)|||vh|||2E, for all vh ∈ V h
k (E); (1.34a)

|||q|||2E ≤ C2(E)a
E
h (q, q), for all q ∈ Pk(E), (1.34b)

being ||| · |||E a discrete semi-norm induced by the stability term and C1(E),C2(E)

positive constants which depend on the shape and possibly on the size of E. In
this paper, the estimate is necessary for the polynomials q ∈ Pk(E) only, while
in the standard analysis in [11] a kind of bound (1.34a)(b) was required for every
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vh ∈ V h
k (E). Thus, even when C1(E) and C2(E) can be chosen independent of E,

on V h
k (E) the semi-norm induced by the stabilization term may be stronger than the

energy aEh (·, ·)1/2.

Theorem 1.3.4 (Abstract Energy Error) Under the stability assumptions (1.34a),
let the continuous solution u of the problem satisfy u|E ∈ VE for all E ∈ �h, where
VE ⊆ V h

k (E) is a subspace of sufficiently regular functions. Then, for every uI ∈ V h
k

and for every uπ such that uπ |E ∈ Pk(E), the discrete solution uh satisfies

|u− uh|1,� � Cerr(h) (Fsh + |||u − uI ||| + |||u − uπ ||| + |u− uI |1,� + |u− uπ |h,1),
(1.35)

where the constant Cerr(h) is given by

Cerr(h) = max
{

1, C̃(h)C1(h), C̃(h)
3/2
√
C∗(h)C1(h)

}
.

From the previous theorem, the following quantities are derived from the constants
in (1.34a):

C̃(h) = max
E∈�h

{1, C2(E)}, C1(h) = max
E∈�h

{C1(E)},

C∗(h) = 1

2
max
E∈�h

{min{1, C2(E)
−1}}.

In [18] the stability term SEh (·, ·) is considered as the combination of two contribu-
tions: the first, S∂Eh , related to the boundary degrees of freedom; the second, SoEh ,
related to the internal degrees of freedom. In the following statements, we restrict
the analysis to S∂Eh without losing generality. In this case,S∂Eh is expressed in the

dofi-dofi form S
∂E,dd
h defined in (1.20), or in the trace form introduced in [72]:

S
∂E,tr
h (vh,wh) = hE

∫
∂E

∂svh∂swhds, (1.36)

where ∂svh denotes the tangential derivative of vh along ∂E.

Theorem 1.3.5 (H 1 Error Estimate with dofi-dofi Stabilization) Assum-
ing G1, G3, let u ∈ Hs(�), s > 1, be the solution of the problem with SEh = S

∂E,dd
h .

Let uh be the solution of the discrete problem, then it holds

||u− uh||1,� � C(h)hs−1|u|s,� 1 < s ≤ k + 1, (1.37)
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with

C(h) = max
E∈�h

(log(1+ hE/hm(E))),

where hm(E) denotes the length of the smallest edge of E.

Corollary 1.1 Assuming G1 and G2 instead, then c(h) � 1 and therefore

||u− uh||1,� � hs−1|u|s,� 1 < s ≤ k + 1.

Theorem 1.3.6 (H 1 Error Estimate with trace Stabilization) Under Assump-
tion G1, let u ∈ Hs(�), s > 3/2 be the solution of the problem with SEh = S

∂E,tr
h .

Let uh be the solution of the discrete problem, then it holds

||u− uh||1,� � hs−1|u|s,� 3/2 < s ≤ k + 1. (1.38)

Some Estimates for Virtual Element Methods [30]
In [30], the enhanced VEM space is defined as in the following:

V h
k (E) :=

{
vh ∈ H 1(E) : vh|∂E ∈ Pk(∂E),

∃ qvh(= −�vh) ∈ Pk(E) such that∫
E

∇vh · ∇wh dx =
∫
E

qvhwh dx ∀wh ∈ H 1
0 (E),

and �
0,E
k vh −�

∇,E
k vh ∈ Pk−2(E)

}
.

(1.39)

i.e., in a slightly different but equivalent way than (1.7). In this work, the Authors
consider different types of stabilization, but the convergence results are independent
of SEh . The geometrical assumptions used in [30] are G1 and G2.

Theorem 1.3.7 (Abstract Energy Error) Assuming G1, G2, if f ∈ Hs−1(�) for
1 ≤ s ≤ k, then there exists a positive constant C depending only on k and ρ from
G1 such that

|u− uh|1,� ≤ C( inf
v∈V h

k

|u− v|1,� + inf
w∈Pk(�h)

|u−w|h,1 + hs |f |s−1,�). (1.40)

Theorem 1.3.8 (H 1 Error Estimate) Assuming G1, G2, if u ∈ Hs+1(�) for 1 ≤
s ≤ k, then there exists positive constants C1, C2 depending only on k and ρ from
G1 such that

|u− uh|1,� + |u−�∇k uh|h,1 ≤ C1h
s |u|s+1,�. (1.41)
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Theorem 1.3.9 (L2 Error Estimate) Assuming G1, G2, with � convex, if u ∈
Hs+1(�) for for 1 ≤ s ≤ k, then there exists a positive constant C depending
only on �, k and ρ from G1 such that

||u− uh||0,� ≤ Chs+1|u|s+1,�. (1.42)

Virtual Element Methods on Meshes with Small Edges or Faces [31]
In this paper, error estimates of the VEM are yield for polygonal or polyhedral
meshes possibly equipped with small edges (d = 2) or faces (d = 3). In this case,
the VEM space is formulated as (1.39) (i.e., the so-called enhanced space). The local
stabilizing bilinear form is considered in both the dofi-dofi (SE,dd

h ) and in the trace

(SE,trh of (1.36)) formulations. The Authors introduce also the constants:

H := sup
E∈�h

(
maxe∈∂E he

mine∈∂E he

)
, αh :=

{
ln (1+H ) with S

E,dd
h

1 with S
E,tr
h

(1.43)

The geometrical assumptions considered in this work are G1 and G3. In particular,
a mesh-dependent energy norm || · ||h := √

ah(·, ·) and a functional h : V h
k →

Pk(�h) are introduced. The function h is defined as:

h =
{
�0

1 if k = 1, 2

�0
k−1 if k ≥ 3.

(1.44)

Theorem 1.3.10 (Abstract Energy Error) Assuming G1, G3, let u and uh be the
solutions of the continuous and discrete problems. We have:

||u− uh||h � inf
w∈V h

k

||u−w||h + ||u−�∇k u||h+ (1.45)

√
αh

⎛
⎝||u−�∇k u||h,1 + sup

w∈V h
k

(f,w −hw)

|w|1,�

⎞
⎠ . (1.46)

Theorem 1.3.11 (H 1 Error Estimate) Assuming G1, G3, if the solution u belongs
to Hs+1(�) for some 1 ≤ s ≤ k, we have:

||u− uh||h � √αhhs |u|s+1,�, and (1.47)

|u− uh|1,� +√αh
[
|u−�∇k uh|h,1 + |u−�0

ku|h,1
]
� αhh

s |u|s+1,�. (1.48)
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Theorem 1.3.12 (L2 Error Estimate) Assuming G1, G3, if the solution u belongs
to Hs+1(�) for some 1 ≤ s ≤ k, we have:

||u− uh||0,� ≤ C αhh
s+1|u|s+1,�. (1.49)

The notation A � B denotes that A ≤ CB, with a positive constant C depending
on: (i) the mesh regularity parameter ρ of G1, (ii) the degree k in the case of SE,trh ,

and (iii) the maximum number of edges N of G3 in the case of SE,dd
h .

Sharper Error Estimates for Virtual Elements and a Bubble-Enriched Ver-
sion [9]
This paper shows that the H 1 interpolation error |u−uI |1,E on each element E can
be split into two parts: a boundary and a bulk contribution. The intuition behind this
work is that it is possible to decouple the polynomial order on the boundary and in
the bulk of the element. Let ko and k∂ be two positive integers with ko ≥ k∂ and let
k = (ko, k∂). For any E ∈ �h, the generalized virtual element space is defined as
follows:

V h
k :={vh ∈ H 1

0 (�) : vh|E ∈)V h
k (E), ∀E ∈ �h}, (1.50a)

where

V h
k (E) := {vh ∈ H 1

0 (E) :vh|∂E ∈ C0(∂E), vh|e ∈ Pk∂ (e) ∀e ∈ ∂E, (1.50b)

and �vh ∈ Pko−2(E)}.

For ko = k∂ , the space V h
k (E) coincides with the regular virtual element space in

(1.29). In addition, given a function v ∈ H 1
0 ∩Hs(�h), on each element E ∈ �h the

interpolant function Ihv is defined as the solution of an elliptic problem as follows:

{
�Ihv = �

0,E
ko−2�v in E

Ihv = vb on ∂E,

where vb is the standard 1D piecewise polynomial interpolation of v|∂E .

Theorem 1.3.13 (Abstract Energy Error) Under Assumption G1, let u ∈
H 1

0 (�h) ∩ Hs(�h) with s > 1 be the solution of the continuous problem and
uh ∈ V h

k be the solution of the discrete problem. Consider the functions

eh = uh −Ihu, eI = u−Ihu, eπ = u− uπ , eu = uπ −Ihu,
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where uπ ∈ Pko (�h) is the piecewise polynomial approximation of u defined in
Bramble-Hilbert Lemma. Then it holds that

|u− uh|21,� + α ah(eh, eh) �α2
∑
E∈�h

h2
E ||f − fh||20,E + α2|eπ |21,�h

+ (1.51)

α|eI |21,� + α
∑
E∈�h

σE (1.52)

where α is the coercivity constant and σE := SEh ((I −�
∇,E
k0

)eu, (I −�
∇,E
k0

)eu).

Theorem 1.3.14 (H 1 Error Estimate with dofi-dofi Stabilization) Assum-
ing G1, G4, let u ∈ H 1

0 (�h) be the solution of the continuous problem and uh ∈ V h
k

be the solution of the discrete problem obtained with the dofi-dofi stabilization.
Assume moreover that u ∈ Hk̄(�h) with k̄ = max{ko + 1, k∂ + 2} and f ∈ Hko−1.
Then it holds that

|u− uh|21,� � α
∑
E∈�h

(
(α +NE)

1/2h
ko
E + h

k∂
∂E

)2
, (1.53)

where h∂E denotes the maximum edge length, α is the constant defined in (1.43),
and NE is the number of edges in E.

Theorem 1.3.15 (H 1 Error Estimate with trace Stabilization) Under Assump-
tion G1, let u ∈ H 1

0 (�h) be the solution of the continuous problem and uh ∈ V h
k

be the solution of the discrete problem obtained with the trace stabilization. Assume
moreover that u ∈ Hk̄(�h) with k̄ = max{ko + 1, k∂ + 2} and f ∈ Hko−1. Then it
holds that

|u− uh|21,� �
∑
E∈�h

(
h
ko
E + h

k∂
∂E

)2
. (1.54)

1.4 Violating the Geometrical Assumptions

We are here interested in testing the behaviour of the VEM on a number of mesh
“datasets” which systematically stress or violate the geometrical assumptions from
Sect. 1.3.1. This enhances a correlation analysis between such assumptions and the
VEM performance, and we experimentally show how the VEM presents a good
convergence rate on most examples and only fails in very few situations.
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1.4.1 Datasets Definition

We start with defining the concept of dataset over a domain �, that for us will be
the unit square [0, 1]2.

Definition 1.1 We call a dataset a collection D := {�n}n=0,...,N of discretizations
of the domain � such that

(i) the mesh size of �n+1 is smaller than the mesh size of �n for every n =
0, . . . , N − 1;

(ii) meshes from the same dataset follow a common refinement pattern, so that they
contain similar polygons organized in similar configurations.

Each mesh �n can be uniquely identified via its size as �h, therefore every dataset
D can be considered as a subset of a mesh family: D = {�h}h∈H ′ ⊂ T , being H ′
a finite subset of H .

Together with the violation of the geometrical assumptions, we are also interested
in measuring the behaviour of the VEM when the sizes of mesh elements and edges
scale in a nonuniform way during the refinement process. To this purpose, for each
mesh �n ∈ D we define the following scaling indicators and study their trend for
n→ N :

An = maxE∈�n |E|
minE∈�n |E|

and en = maxe∈�n |e|
mine∈�n |e|

. (1.55)

We designed six particular datasets in order to cover a wide range of combina-
tions of geometrical assumptions and scaling indicators, as shown in Table 1.1. For
each of them we describe how it is built, how An and en scale in the limit for n→ N

and which assumptions it fulfills or violates.
Note that none of the considered datasets (exception made for the reference dataset
DTriangle) fulfills any of the sets of assumptions required by the convergence analysis
found in the literature, cf. Sect. 1.3.2.
Each dataset is built around (and often takes its name from) a particular polygonal
element, or elements configurations, contained in it, which is meant to stress one
or more assumptions or indicators. The detailed construction algorithms, together
with the explicit computations of An and en for all datasets, can be found in [68,
Appendix B], while the complete collection of the dataset can be downloaded at
https://github.com/TommasoSorgente/vem-quality-dataset.

Reference Dataset The first dataset, DTriangle, serves as a reference to evaluate
the other datasets by comparing the respective performance of the VEM over each
one. It contains only triangular meshes, built by inserting a number of vertices
in the domain through the Poisson Disk Sampling algorithm [34], and connecting
these vertices in a Delaunay triangulation through the Triangle library [65]. The
refinement is obtained by increasing the number of vertices generated by the Poisson
algorithm and computing a new Delaunay triangulation. The meshes in this dataset
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perfectly satisfy all the geometrical assumptions and the indicators An and en are
almost constant.

Hybrid Datasets Next, we define some hybrid datasets, which owe their name
to the presence of both triangular and polygonal elements (meaning elements with
more than three edges). A number of identical polygonal elements (called the initial
polygons) is inserted in �, and the rest of the domain is tessellated by triangles with
area smaller than the one of the initial polygons. These triangles are created through
the Triangle library, with the possibility to add Steiner points [65] and to split the
edges of the initial polygons, when necessary, with the insertion of new vertices.
The refinement process is iterative, with parameters regulating the size, the shape
and the number of initial polygons.

We defined two hybrid datasets, DMaze and DStar shown in Fig. 1.3, as they
violate different sets of geometrical assumptions. Other choices for the initial
polygons are possible, for instance considering the ones in Sect. 1.5.3.

Dataset DMaze is named after a 10-sided polygonal element E, called “maze”,
spiralling around an external point. Progressively, as n → N , each mesh �n

in DMaze contains an increasing number of mazes E with decreasing thickness.
Concerning the scaling indicators, we have An ∼ an for a constant e < a < 3
and en ∼ n log(n), and the geometrical assumptions violated by this dataset are:

G1 because every E is obviously not star-shaped;
G1-weak because of the decreasing thickness of the mazes. Indeed, it would be

trivial to split E into a collection of star-shaped elements Ei (rectangles, for
instance), but as n→ N each radius rEi would decrease faster than the respective
diameter hEi , unless considering an infinite number of them. Therefore, it

Fig. 1.3 Meshes �0,�2,�4,�6 from datasets DMaze and DStar
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Fig. 1.4 Evolution of the ratio rE/hE for the meshes in datasets DStar and DJenga

would not be possible to bound the ratio rEi /hEi from below with a global ρ
independent of h;

G2, G2-strong because the length of the shortest edge e of E decreases faster
than the diameter hE .

Dataset DStar is built by inserting star-like polygonal elements, still denoted by
E. As n → N , the number of spikes in each E increases and the inner vertices
are moved towards the barycenter of the element. Both indicators An and en scale
linearly, and the dataset violates the assumptions:

G1 each star E is star-shaped with respect to the maximum circle inscribed in it,
but as shown in Fig. 1.4, the radius rE of such circle decreases faster than the
elemental diameter hE , therefore it is not possible uniformly bound from below
the quantity rE/hE with a global ρ;

G1-weak in order to satisfy it, we should split each E into a number of sub-
polygons, each of them fulfilling G1. Independently of the way we partition E,
the number of sub-polygons would always be bigger than or equal to the number
of spikes in E, which is constantly increasing, hence the number of sub-polygons
would tend to infinity;

G2-strong because the distance between the inner vertices of E decreases faster
than hE (but G2 holds, because the edges scale proportionally to hE);

G3 because the number of spikes in each E increases from mesh to mesh,
therefore the total number of vertices and edges in a single element cannot be
bounded uniformly.

Mirroring Datasets As an alternative strategy to build a sequence of meshes
whose elements are progressively smaller, we adopt an iterative mirroring tech-
nique: given a mesh M defined on �, we generate a new mesh M ′ containing four
adjacent copies of M , opportunely scaled to fit �.
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Fig. 1.5 Meshes �0,�1,�2,�3 from datasets DJenga, DSlices and DUlike

The starting point for the construction of a dataset is the first base mesh �̂0, which
coincides with the first computational mesh �0. At every step 1 ≤ n ≤ N , a
new base mesh �̂n is built from the previous base mesh �̂n−1. The computational
mesh �n is then obtained by applying the mirroring technique 4n times to the base
mesh �̂n. This construction allows us to obtain a number of vertices and degrees of
freedom in each mesh that is comparable to that of the meshes at the same refinement
level in datasets DMaze and DStar.

The n-th base mesh �̂n of dataset DJenga (Fig. 1.5, top) is built as follows.
We start by subdividing the domain (0, 1)2 into three horizontal rectangles with
area equal to 1/4, 1/2 and 1/4 respectively. Then, we split the rectangle with
area 1/2 vertically, into two identical rectangles with area 1/4. This concludes the
construction of the base mesh �̂0, which coincides with mesh �0. At each next
refinement step n ≥ 1, we split the left-most rectangle in the middle of the base
mesh �̂n−1 by adding a new vertical edge, and apply the mirroring technique to
obtain �n. Despite being made entirely by simple rectangular elements, this mesh
family is the most complex one: both An and en scale like 2n and it breaks all the
assumptions.
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G2, G2-strong because the ratio |e|/hE decreases unboundedly in the left rect-
angle E, as shown in Fig. 1.4. This implies that a lower bound with a uniform
constant ρ independent of h cannot exist;

G1, G1-weak since the length of the radius rE of the maximum disc inscribed
into a rectangle is equal to 1/2 of its shortest edge e, the ratio rE/hE also
decreases;

G3 because the number of edges of the top (or the bottom) rectangular element
grows unboundedly;

G4 because the one-dimensional mesh built on the boundary of the top rect-
angular element cannot be subdivided into a finite number of quasi uniform
sub-meshes. In fact, either we have infinite sub-meshes or an infinite edge ratio.

For the dataset DSlices (Fig. 1.5, middle), the n-th base mesh �̂n is built as
follows. First, we sample a set of points along the diagonal (the one connecting the
vertices (0, 1) and (1, 0)) of the reference square [0, 1]2, and connect them to the
vertices (0, 0) and (1, 1). In particular, at each step n ≥ 0, the base mesh �̂n contains
the vertices (0, 0) and (1, 1), plus the vertices with coordinates (2−i , 1 − 2−i ) and
(1− 2−i , 2−i ) for i = 1, . . . , n+ 2. Then, we apply the mirroring technique. Since
no edge is ever split, we find that en ∼ c, while An ∼ 2n. The dataset DSlices violates
assumptions

G1, G1-weak because, up to a multiplicative scaling factor depending on h, the
radius rE is decreasing faster than the diameter hE , which is constantly equal to√

2 times the same scaling factor. Moreover, any finite subdivisions of the mesh
elements would suffer the same issue;

G2-strong the vertices sampled along the diagonal have accumulation points
at (0, 1) and (1, 0), therefore the distance between two vertices decreases
progressively.

In DUlike (Fig. 1.5, bottom), we build the mesh �̂n at each step n ≥ 0 by inserting
2n equispaced U -shaped continuous polylines inside the domain, creating as many
U -like polygons. Then, we apply the mirroring technique as usual. Edge lengths
scale exponentially and areas scale uniformly, i.e., en ∼ 2n, An ∼ c, and the violated
assumptions are:

G1, G1-weak, G2, G2-strong for arguments similar to the ones seen for DMaze;
G3 in order to preserve the connectivity, the lower edge of the more external

U -shaped polygon in every base mesh must be split into smaller edges before
applying the mirroring technique. Hence the number of edges of such elements
cannot be bounded from above.

Multiple Mirroring Datasets As a final test, we modified datasets DJenga, DSlices
and DUlike in order to particularly stress the scaling indicators An and en.
We obtained this by simply inserting four new elements at each step instead of one.
The resulting datasets, DJenga4, DSlices4 and DUlike4, are qualitatively similar to the
correspondent mirroring datasets above. Each of these datasets respects the same
assumptions of its original version, but the number of elements at each refinement
step now increases four times faster. Consequently, the indicators An and en change
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from 2n to 24n, but An remains constant for DUlike4, and en remains constant for
DSlices4.

1.4.2 VEM Performance over the Datasets

We solved the discrete Poisson problem (1.3) with the VEM (1.6) described in
Sect. 1.2 for k = 1, 2, 3 over each mesh of each of the datasets defined in Sect. 1.4.1,
using as groundtruth the function

u(x, y) = sin(πx) sin(πy)

2π2
, (x, y) ∈ � = (0, 1)2. (1.56)

This function has homogeneous Dirichlet boundary conditions, and this choice was
appositely made to prevent the boundary treatment from having an influence on the
approximation error.

Performance Indicators After computing the solution of the problem on a
particular dataset, we want to measure the performance of the method over that
dataset, that is, the accuracy and the convergence rate. We selected, among many
possible alternatives, some quantities which can indicate if the error between the
continuous solution u and the computed solution uh is small and if the VEM worked
properly in the computation of uh. A more complete and accurate analysis of the
possible performance indicators can be found in Sect. 1.5.2.

The approximation error might be measured in different norms: the most widely
used in our framework are the relative H 1-seminorm and the relative L2-norm (in
the following we use the generic term norms to indicate both of them):

|u− uh|1,�
|u|1,� and

||u− uh||0,�
||u||0,� .

In Figs. 1.6 and 1.7 we plot the two norms of the error generated by the VEM on
each dataset as the number of DOFs increases (that is, as n→ N).

Another quantity, not directly related to the error, which can be of interest is the
condition number of the matrices G and H (with the notation adopted in [12]):

cond(G) = ‖G‖‖G−1‖, cond(H) = ‖H‖‖H−1‖

Matrix G is involved in the computation of the local stiffness matrix and the
projector �∇k , while matrix H is involved in the computation of the local mass
matrix and the projector �0

k .
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Fig. 1.6 L2-norm and H 1-seminorm of the approximation errors of the reference, hybrid and
mirroring datasets for k = 1, 2, 3

Fig. 1.7 L2-norm and H 1-seminorm of the approximation errors of the reference and multiple
mirroring datasets for k = 1, 2, 3

Last, as an estimate of the error produced by projectors �∇k and �0
k , represented

by matrices �∇
k and �0

k , we check the identities

|�∇
k D− I| = 0 and |�0

kD− I| = 0, (1.57)

where for k < 3 we have �0
k := �∇

k . The computation of the projectors is obviously
affected by the condition numbers of G and H, but the two indicators are not
necessarily related.
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Condition numbers and identity values for k = 1, 2, 3 are reported in Table 1.2. All
of these quantities are computed element-wise and the maximum value among all
elements of the mesh is selected.

Performance The VEM performs perfectly over the reference dataset DTriangle,
and this guarantees for the correctness of the method. The approximation error
evolves in accordance to the theoretical results (the slopes being indicated by the
triangles) both in L2 and in H 1 norms for all k values, and condition numbers and
optimal errors on the projectors �0

k and �∇k remain optimal.
For the hybrid datasets DStar and DMaze, errors decrease at the correct rate for

most of the meshes, and only start deflecting for very complicated meshes with
very high numbers of DOFs. These deflections are probably due to the extreme
geometry of the star and maze polygons and not to numerical problems, as in both
datasets we have cond(G) < 106 and cond(H) < 109, which are still reasonable
values. Projectors seem to work properly: |�∇

k D − I| remains below 10−8 and
|�0

kD − I| below 10−7. In a preliminary stage of this work, we obtained similar
plots (not reported here) using other hybrid datasets built in the same way, with
polygons surrounded by triangles. In particular, we did not notice big differences
when constructing hybrid datasets as in Sect. 1.4.1 with any of the initial polygons
of Sect. 1.5.3.

On the meshes from mirroring datasets An or en may scale exponentially instead
of uniformly, as reported in Table 1.1. This reflects to cond(G) and cond(H), which
grow up to, respectively, 1010 and 1014 for DJenga in the case k = 3. Nonetheless,
the discrepancy of the projectors identities (1.57) remains below 10−5, which is not
far from the results obtained with datasets DMaze and DStar. The method exhibits
an almost perfect convergence rate on dataset DJenga, even though L2 and H 1 errors
are bigger in magnitude than the ones measured for hybrid datasets. DSlices produces
even bigger errors and a non-optimal convergence rate, and DUlike is the dataset with
the poorest performance, but the VEM still converges at a decent rate for k > 1.
This may be due to the fact that for k = 1 the DOFs correspond to the vertices of
the mesh, which are disposed in a particular configuration that generates horizontal
bands in the domain completely free of vertices, and therefore of data. For k > 1

Table 1.1 Summary of the geometrical conditions violated and the asymptotic trend of the
indicators An and en for all datasets. G1w and G2s stand for G1-weak and G2-strong,
respectively, and a is a constant such that e < a < 3

Dataset DTriangle DMaze DStar DJenga DSlices DUlike

G1, G1w, G2s × × × × ×
G2 × × ×
G3 × × ×
G4 ×
An c an n 2n 2n c

en c n log(n) n 2n c 2n
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instead, we have DOFs also on the edges and inside the elements, hence the
information is more uniformly distributed.

In the case of multiple mirroring datasets the method diverges badly on all
datasets (see Fig. 1.7), and this is principally due to the very poor condition numbers
of the matrices involved in the calculations (see Table 1.2). The plots relative to
datasets DJenga4 and DSlices4 maintain a similar trend to those of DJenga and DSlices
in Fig. 1.6, until numerical problems cause cond(G) and cond(H) to explode up
to over 1030 for DJenga4 and 1018 for DSlices4. In such conditions, the projection
matrices �∇

k and �0
k become meaningless and the method diverges. The situation

slightly improves for DUlike4: cond(H) is still 1016, but the discrepancy of �∇
k and

�0
k remain acceptable. As a result, the method on DUlike4 does not properly explode,

but the approximation error and the convergence rate are much worse than those
seen for DUlike in Fig. 1.6.

As a preliminary conclusion, by simply looking at the previous plots we observe
that the relationship between the geometrical assumptions respected by a certain
dataset and the performance of the VEM on it is not particularly strong. In fact,
we obtained reasonable errors and convergence results on datasets violating several
assumptions (all of them, in the case of DJenga).

1.5 Mesh Quality Metrics

The aim of this section is to introduce some geometrical parameters, that we will
refer to as quality metrics, which are potentially well suited to measure the shape
regularity of a polygon, and study, statistically, the behavior of a VEM solver, as
such measures degrade. In the following we present a list of polygon quality metrics
and different strategies to combine them to form a quality metric for a polygonal
tessellation. We will also introduce a list of parameters providing us with different
ways of measuring the performance of the VEM solver at hand.

1.5.1 Polygon Quality Metrics

Different parameters provide us with some information on how much an element is
far from being “nice”, and the different assumptions presented in Sect. 1.3.1 give
us a first list of possibilities. In the following we present the list of polygon quality
metrics that we singled out for our study.

– Circumscribed circle radius (CC): this is defined as the radius of the smallest
circle fully containing P . The parameter CC is computed by treating the vertices
of P as a point cloud and running the Welzl’s algorithm to solve the minimum
covering circle problem [71]. We point out that this choice does not yield the
classical definition of circumscribed circle, requiring that all the vertices of
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Fig. 1.8 To be able to scale on general polygons, we define the radius of the circumscribed circle
(CC) as the radius of the smallest circle containing the polygon itself. (Left) For a skinny triangle,
CC is the radius of the smallest circle that passes through the endpoints of its longest edge (green),
and not of the circle passing through all its three vertices (red). (Right) A general polygon and its
CC

the polygon lie on the circle, that does not necessarily exist for all polygons
(Fig. 1.8).

– Inscribed circle radius (IC): this is defined as the radius of the biggest circle fully
contained in P . For the computation of IC, starting from a Voronoi diagram of
the edges of P , we select the corner in the diagram that is furthest from all edges
as center of the circle. The radius of the IC is the minimum distance between such
point and any of the edges of P . For the computation of the diagram of the set
of edges, which, differently from the point case, has curved boundaries between
cells, we apply the Boost Polygon Library [67].

– Circle ratio (CR): the ratio between IC and CC. Differently from the previous
two, this measure does not depend on the scale of the polygon, and is always
defined in the range (0, 1].

– Area (AR): the area of the polygon P .
– Kernel area (KE): the area of the kernel of the polygon, defined as the set of

points p ∈ P from which the whole polygon is visible. If the polygon is convex,
then the area of the polygon and the area of the kernel are equal. If the polygon
is star-shaped, then the area of the kernel is a positive number. If the kernel is not
star-shaped, then the kernel of the polygon is empty and KE will be zero.

– Kernel-area/area ratio (KAR): the ratio between the area of the kernel of P and
its whole area. For convex polygons, this ratio is always 1. For concave star-
shaped polygons, KAR is strictly defined in between 0 and 1. For non star-shaped
polygons, KAR is always zero.

– Area/perimeter ratio (APR), or compactness: defined as 2π∗area(P )
perimeter(P )2 . This

measure reaches its maximum for the most compact 2D shape (the circle), and
becomes smaller for less compact polygons.

– Shortest edge (SE): the length of the shortest edge of P .
– Edge ratio (ER): the ratio between the length of the shortest and the longest edge

of P .
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Fig. 1.9 Polygon shape
regularity expressed in terms
of the ratio between the radius
maximal ball inscribed in the
kernel of the polygon (d), and
the radius of the maximal ball
inscribing the element (D)

– Minimum vertex to vertex distance (MPD), which is the minimum distance
between any two vertexes in P . MPD is always less then or equal to SE. In case
the two vertexes realizing the minimum distance are also extrema of a common
edge, MPD and SE are equals.

– Minimum angle (MA): the minimum inner angle of the polygon P .
– Maximum angle (MXA): the maximum inner angle of the polygon P .
– Number of edges (NS ): the number of edges of the polygon.
– Shape regularity (SR): the ratio between the radius of the circle inscribed in the

kernel of the element and the radius CC of the circumscribed circle (Fig. 1.9).
This assumes the value 0 for polygons which are not star shaped.

Remark that, while in triangular elements all the previous metrics are strictly
bound to each other, for general polygons this is not the case, and, given a couple of
such metrics, it is in general possible to find sequences of polygons for which one
of the two degenerates, while the other stays constant. Remark also that some of the
metrics, namely CR, KAR, APR, ER, MA, MXA, NS and SR, are scale invariant,
and only depend on the shape of the polygon and not on its size.

Aggregating Polygon Quality Metrics into Mesh Quality Metrics Let now
consider a tessellation �h = {Pi, i = 1, · · · , N} with N elements. For m being
any of the above polygon quality metrics we can consider the vector

m(�h) = (m(P1), · · · ,m(PN)).

Starting from such a vector we can define a measure of the quality of the whole
mesh, by following different strategies. More precisely, we considered the following
possibilities.

– Average

mav(�h) = average(m(�h)) = 1

N

N∑
i=1

m(Pi).
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– Euclidean norm

ml2
(�h) = ‖m(�h)‖2 =

(
N∑
i=1

m(Pi)
2

)1/2

– Maximum

mmax(�h) = max{m(Pi), i = 1, ·, N}

– Minimum

mmin(�h) = min{m(Pi), i = 1, ·, N}

To these four strategies, we add a fifth strategy, namely we define mworst as the
one, between mmin and mmax, that singles out the worst polygon. More precisely,
for m ∈ {IC,CR,KE,KAR,APR, SE,ER,MPD,MA, SR} we set

mworst(�h) = mmin(�h),

while for m ∈ {CC,MXA,NS } we set

mworst(�h) = mmax(�h).

1.5.2 Performance Indicators

Let us now consider how we can measure the performance of a PDE solver.
Depending on the context, saying that a solver is “good” can have different
meanings. Typically, the first thing that comes to mind, is that a solver is good
when the error between the computed and the true solution is small. However the
error might be measured in different norms: for instance, while the most natural
norm in our framework is the H 1 norm (which is spectrally equivalent to the energy
norm), if one is interested in the point value of the solution, the right information on
the accuracy of the method is provided by the L∞ norm of the error. The L2 norm
of the error is also frequently used to measure the accuracy. On the other hand,
other quantities, not directly related to the error, can be of interest. For instance,
if the problem considered involves inexact data, in order to limit the effect on the
computed solution of the error on the data, the condition number of the stiffness
matrix in the linear system of equations stemming from the discrete problem (1.6)
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should be kept as small as possible, compatibly with the known fact that such a
quantity increases as the mesh size decreases. The condition number of the stiffness
matrix is also of interested if one aims at solving a large number of different
problems, therefore needing a good computational performance of the numerical
method. Here we introduce the different performance indicators that we chose to
consider in our statistical analysis of the the Virtual Element Method.

Energy Norm Error The first indicator that we consider is the error between the
computed solution uh and the continuous solution u, measured in the energy norm.
We recall that the quantity on the left hand side of inequality (1.24) is not com-
putable. What is then usually done is to evaluate instead some computable quantity,
such as the energy norm relative to the discrete equation, or the broken H 1(�h)

norm of u − �∇uh. For our statistical analysis we chose, as first performance
indicator

p1 =
√
ah(uh − uI , uh − uI )√

ah(uI , uI )
.

Observe that this indicator depends on the data f and g of the model problem
considered, so that for different values of such data we have different values of
the indicator.

L∞ Error In the finite element framework, under a shape regularity condition
for the underlying triangular/quadrangular mesh, it is possible to bound, a priori,
the maximum pointwise error. More precisely, under suitable assumptions on the
discretization space which are satisfied by the most commonly used finite elements,
if uh is the finite element solution to Problem (1.1)–(1.2) defined on a quasi uniform
triangular/quadrangular grid of mesh size h, it is possible to prove (see [64]) that

‖u− uh‖0,∞,� ≤ Chkmax‖u‖k,∞,�.

While to our knowledge the problem of giving an L∞ a priori bound on the error for
the virtual element method has not yet been addressed in the literature, measuring
the error in such a norm is relevant to many applications. It is then interesting to
measure such an error and see how it is affected by the shape of the elements of the
tessellation. However, also in this case, as we do not have access to the point values
of the discrete function uh, we will instead compute, as a performance indicator, the
quantity

p2 = maxi |dofi (uh − u)|
maxi |dofi (u)

.

Also this indicator depends on the data f and g of the model problem considered.
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L2 Error The third quantity that we consider, is the L2 norm of the error. As usual,
the proof of an inequality of the form (1.25) involves a duality argument and relies
on the same a priori interpolation estimates used for proving (1.24). It requires,
therefore, the same shape regularity assumption on the tessellation. As for the H 1

and the L∞ norm errors, the L2 norm of the error is not computable, and we replace
it, in our experiments with the quantity

p3 = ‖uh −�0
ku‖0,�

‖�0
ku‖0,�

,

Also this indicator depends on the data f and g of the model problem considered.

Condition Number The condition number of the global stiffness matrix has a
twofold effect:

– it provides reliable information on the efficiency of iterative solvers for the
linear system arising from the discretization, ad on the need (or lack thereof)
of resorting to some kind of preconditioning;

– more importantly, it provides a bound on how errors are propagated and, possibly,
amplified, in the solution process. We recall, in fact, that the condition number is
defined as

κ(R) = ‖R‖ ‖R−1‖,

where R is the stiffness matrix stemming from Eq. (1.6). A large condition
number for R might signify that the norm of R−1 is large. In turn, this implies
that possible errors on the evaluation of right hand side of (1.6), which might
derive not only from round off, but also from error on the data, are amplified
by the solver resulting in a possibly much larger error in the computed discrete
solution.

Estimating, a priori, the condition number of the stiffness matrix R is not difficult
and relies on the use of an inverse inequality of the form

‖vh‖1,� ≤ Cinvh
−1
min‖vh‖0,�. (1.58)

Under Assumptions G1 and G2, such an inequality can be proven to hold with a
constant Cinv independent of the polygon. If (1.58) holds, and if the chosen scaling
for degrees of freedom is such that, letting vh ∈ Vh and v the vector of its degrees
of freedom, we have

‖vh‖2
0,�  vT v (1.59)
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(if Assumptions G1 and G2 hold, this is always possible [27, 42]), then, for λ eigen-
value of R and v corresponding eigenvector, with vh denoting the corresponding
function in Vh, we can write

vT v � ‖vh‖2
0,� ≤ ‖vh‖2

1,� � ah(vh, vh) = vT Rv = λvT v,

as well as

λvT v = vT Rv = ah(vh, vh) � ‖vh‖2
1,� ≤ Cinvh

−2
min‖vh‖0,� � Cinvh

−2vT v

finally yielding

vT v � λvT v � Cinvh
−2
minvT v,

which implies

κ2(R) � Cinvh
−2
min.

While the geometry of the elements also affects the implicit constant in the above
inequality in different way (in particular through the continuity and coercivity
constants and through the constants implicit in the equivalence relation (1.59)), we
underlined here the effect of the constant appearing in the inverse inequality (1.58).
Observe that if Assumption G2 is violated, then Cinv is known to explode as the
ratio between the diameter and the length of the smaller edge.

As computing the condition number exactly can be, for large matrices, extremely
expensive, we used, as the performance indicator p4, a lower estimate of the 1-norm
condition number, computed by the Lanczos method, according to [49, 50].

Condition Number After Preconditioning As already observed, for ill conditioned
stiffness matrices, it is customary to resort to some form of preconditioning, and,
consequently, a fairer estimation of the efficiency attained by a given solver requires
taking into account the effect of preconditioning. Several approaches are available
to precondition the stiffness matrix arising from the VEM discretization. We recall,
among others, preconditioners based on domain decomposition, such as Schwarz
[36], and FETI-DP and BDDC [26, 27], and multigrid [3]. Here we rather consider
a simpler algebraic preconditioner, namely, the Incomplete Choleski factorization
preconditioner [48]. Also here we use, as the preformance indicator p5, the lower
estimate of the 1-norm condition number of the preconditioned stiffenss marix,
computed according to [49, 50].

Constant in the Error Estimate While the theoretical error bound (1.24) puts
forward the dependence of the error, measured in the H 1(�) norm, on the diameter
of the largest element in the tessellation, the correlation analysis which, we will
present in Sect. 1.5.3, shows a higher correlation of the error with the average
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diameter size, suggesting that, in practice, an estimate such as

‖u− uh‖1,� ≤ C(u)hkav (1.60)

might hold. Of course, for fixed tessellation �h and solution u an equality will hold
in (1.60), for a suitable constant C(u) depending on the tessellation �h. We then
use such a constant as a performance indicator p6:

p6 = p1

hkav
.

Aubin-Nitsche Trick Constant In the finite element framework, the Aubin-Nitsche
duality trick allows to bound the L2-norm of the error as

‖u− uh‖0,� ≤ CANhmax‖u− uh‖1,�,

from which a bound of the form (1.25) immediately results. While an analogous
estimate cannot be proven for the VEM method, for which (1.25) is proven directly,
as, once again, the two quantities ‖u − uh‖0,� and hmax‖u − uh‖1,� are both
positive and finite, the above inequality can be replaced by an equality for a given
constant CAN, depending on the data and on the tessellation. Also in this case our
correlation suggests to replace, in an estimate of this kind, the diameter hmax of
the largest element with the average diameter, and we propose, as a performance
indicator, the quantity

p7 = p2

havp1
.

Effectiveness of the Preconditioner The last performance indicator aims at eval-
uating if and how the geometry of the tessellation affects the effectiveness of the
preconditioner by comparing the condition number of the preconditioned stiffness
matrix with the one of the same matrix without any preconditioning. More precisely,
the last performance indicator is defined as

p8 = p5

p4
.

Remark that we expect p8 to be less than 1. p8 close to 1 indicates an ineffective
preconditioner, while p8 � 1 indicates that the preconditioner is performing its
role, while p8 ≥ 1 indicates the failure of the preconditioning algorithm.
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1.5.3 Results

We considered two different test problem corresponding to two different solutions
to the Poisson equation (1.1)–(1.2), both with � = (0, 1)2.

Test 1 For the first test problem, the groundtruth is, once again,

u1(x, y) = sin(πx) sin(πy)

2π2
.

Test 2 For the second test problem the groundtruth is the Franke function, namely

u2(x, y) := 3

4
e−
(
(9x−2)2+(9y−2)2

)
/4 + 3

4
e−
(
(9x+1)2/49+(9y+1)/10

)

+ 1

2
e−
(
(9x−7)2+(9y−3)2)/4 + 1

5
e−
(
(9x−4)2+(9y−7)2)

.

We solved each problem with the VEM solver of order k = 1, 2, 3 on 260
hybrid tessellations explicitly designed to progressively stress the polygon quality
metrics described in Sect. 1.5.1. Specifically, a family of parametric polygons have
been designed: the baseline configuration of each polygon (P(0)) does not present
critical geometric features, and 20 versions of the same polygon are generated by
progressively deforming the baseline by a parameter t. Each polygon (its baseline
version and its deformations) is placed at the center of a canvas representing the
squared domain [0, 1]2. the space of the domain complementary to the polygon is
filled with triangles [53, 65]. Figure 1.10 shows the list of our parametric polygons
and how they have been used to generate the dataset. Note that the parametric
polygons “maze” and “star” are similar to the initial polygons of the hybrid datasets
defined in Sect. 1.4.1, meaning that they contain the same pathologies even if edges
and areas scale differently. The resulting meshes, however, have little in common, as
meshes from DMaze and DStar contain several of such polygons with different sizes.

For each test case we compute the 5 performance indexes p1, p2, p3, p6, p7
corresponding to each tessellation. Moreover, for each tessellation, we computed
the three performance indexes p4, p5 and p8, for a grand total of 13 performance
indexes for each tessellation. We then computed the Spearman correlation index
[58, 69] between the 14 quality metrics, with the five aggregation methods, and the
13 performance indexes. The results are displayed in Fig. 1.11. As the Euclidean
norm aggregation method gives results that are substantially similar to the average
aggregation method and as the worst aggregation method summarized the most
significant of the minimum and maximum aggregation methods, we only show the
results for average and worst aggregation method.

We next consider the cases that result in the overall lowest and highest correlation
index. For such cases, we present the related scatterplots (displayed either in semi-
logarithmic or in logarithmic scale). More precisely the scatterplot corresponding
to low correlation are shown in Fig. 1.12, while in Fig. 1.13 we can look at the
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Fig. 1.10 A subset of meshes in our dataset. On the left column, the list of names associated to
parametric polygons (in red). On the top row, the values of the deformation parameter
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Fig. 1.11 Mesh metrics (average agglomeration method, top and worst agglomeration method,
bottom) vs Performance metrics for k equals 1 through 3

Fig. 1.12 Scatterplots corresponding to an absolute value of the Spearman correlation lower than
.03. On the x-axis the geometric metric, on the y-axis the performance metric
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Fig. 1.13 Scatterplots corresponding to an absolute value of the Spearman correlation greater than
.9. On the x-axis the geometric metric, on the y-axis the performance metric

scatterplots corresponding to the high correlation cases. The first thing that jumps
to the eye is that all high correlation case except one correspond to the average
aggregation method, while the converse holds for the low correlation (all cases but
two correspond to the worst aggregation method). Looking at Fig. 1.12 we also
see that the SR metric has low correlation with the error in the energy norm. This
confirms the experimental observations, already pointed out in the literature, and
is particularly interesting, as it shows that violating Assumption G1, which is the
commonly used assumption in the analysis of VEM methods, does not necessarily
result in a deterioration of the accuracy of the method. This suggests to try to carry
out the convergence analysis in the absence of such a bound (and, in particular, for
meshes of non star shaped polygons). The minimum and maximum angle also seem
to have little correlation with the error. Conversely, two quantities that are clearly
highly correlated with several of the metrics are the constants in the error estimate
p(1)6 and p(2)6 and the Aubin Nitsche trick constants p(1)7 and p(2)7 . We also observe
that the constant in the error bound is highly correlated with the highest number
of edges. This is also very interesting, as it suggests that even a single polygon
with a high number of edges can affect the performance of the method. It is then
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worth devoting some effort to the design of variants of the VEM, aimed at attaining
robustness with respect to the number of edges.

Comparison Between Methods of Different Orders The previously presented set
of tests is also aimed at gaining some insight on the combined influence of geometry
and order of the method on the performance of the method itself. Theoretical results
on the performance of the VEM rarely track the dependence of the constant in
the inequality on the order k of the method. Notable exceptions are [17, 19], that
however, in order to give an a priori error bound bound, require the polygonal
meshes to satisfy the very restrictive assumptions G1 and G2. Focusing on three
of the performance indexes, which we expect to be scale independent, and on
the six scale independent geometric quality measures, we present the superposed
scatter plots for k = 1, 2 and 3. The resulting comparison yields some interesting
observations. In Fig. 1.14, we see that the Aubin-Nitsche constant for k = 2 and
3 is lower and less spread out than for k = 1. The opposite happens for the
constant in the classical error bound of the form (1.24). Such constant increases
as k increases (as it is to be expected), but it also appear that higher values of k
amplify the negative influence of the bad quality of the mesh (Fig. 1.15). Figure 1.16

Fig. 1.14 Relation between Aubin-Nitsche constant and the scale invariant metrics for k = 1, 2
and 3
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Fig. 1.15 Relation between the constant in the classical a priori error bound and the scale invariant
metrics for k = 1, 2 and 3

is particularly interesting: for k = 2, the incomplete Choleski preconditioner is less
effective than it is for k = 1 and 3, and it even appears to be failing in a number
of cases, giving an effectiveness index > 1. This might be the consequence of a
difference between odd and even order method, that is sometimes encountered in
non conforming discretizations.

1.6 Mesh Quality Indicators

In this section we define a mesh quality indicator, that is, a scalar function capable
of providing insights on the behaviour of the VEM over a particular mesh �h, before
actually computing the approximated solution uh. This indicator depends uniquely
on the geometry of the mesh elements, but has interesting correspondences with the
performance of the VEM, in terms of approximation error and convergence rate.
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Fig. 1.16 Relation between the effectiveness of the incomplete Choleski preconditioner and the
scale invariant metrics for k = 1, 2 and 3

1.6.1 Definition

We start from the geometrical assumptions defined in Sect. 1.3.1. The driving idea
is that instead of imposing an absolute condition that a mesh can only satisfy or
violate, we want to measure how much the mesh satisfies or violate that condition.
This approach is more accurate, as it captures small quality differences between
meshes, and it does not exclude a priori all the particular cases of meshes only
slightly outside the geometrical assumptions.
From each geometrical assumption Gi, i = 1, . . . , 4, we derive a scalar function
�i : {E ⊂ �h} → [0, 1] defined element-wise, which measures how well the
element E ∈ �h meets the requirements of Gi from 0 (E does not respect Gi) to 1
(E fully respects Gi).
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From assumption G1 we derive the indicator �1, which can be interpreted as an
estimate of the value of the constant ρ from G1 on the polygon E:

�1(E) = k(E)

|E| ,

being k(E) the area of the kernel of a polygon E, defined as the set of points in
E from which the whole polygon is visible (cf. (KE) of Sect. 1.5.1). Therefore,
�1(E) = 1 if E is convex, �1(E) = 0 if E is not star-shaped and �1(E) ∈ (0, 1) if
E is concave but star-shaped.

Similarly, the function �2 returns an estimate of the constant ρ introduced in G2,
expressed trough the ratio |e|/hE:

�2(E) = min(
√|E|, mine∈∂E |e|)

max(
√|E|, hE) .

The insertion of the quantity
√|E| is needed in order to scale the indicator in the

range [0, 1] and to avoid pathological situations.
Function �3 is a simple counter of the number of edges of the polygon, which

penalizes elements with numerous edges as required by G3:

�3(E) = 3

# {e ∈ ∂E} .

It returns 1 if E is a triangle, and it decreases as the number of edges increases.
Last, we recall from Sect. 1.3.1 that the boundary of a polygon E can be

considered as a 1-dimensional mesh IE , which can be subdivided into disjoint
sub-meshes I 1

E, . . . ,I
N
E , each one containing possibly more than one edge of E.

In practice, we consider as a sub-mesh the collection of all edges whose vertices
lie on the same line. An example is shown in Fig. 1.17, where the boundary
of the top bar element E in the base mesh of DJenga is represented by a mesh

Fig. 1.17 One-dimensional
mesh
IE = {I 1

E,I
2
E,I

3
E,I

4
E} for

the top bar element E of a
DJenga base mesh
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IE = {I 1
E,I

2
E,I

3
E,I

4
E}. The sub-meshes I 1

E,I
2
E and I 3

E contain, respectively,
the left, top and right edge of E, while I 4

E contains all the aligned edges in the
bottom of E.
The indicator �4 returns the minimum ratio between the smallest and the largest
element in every IE , that is a measure of the quasi-uniformity of IE imposed by
G4:

�4(E) = min
i

mine∈I i
E
|e|

maxe∈I i
E
|e| .

Combining together �1, �2, �3 and �4, we define a global function � : {�h}h →
[0, 1] which measures the overall quality of a mesh �h. Given a dataset D , we can
study the behaviour of �(�h) for h → 0 and determine the quality of the meshes
through the refinement process. In particular, we combine the indicators with the
formula �1�2 + �1�3 + �1�4 as it reflects the way in which these assumptions are
typically imposed: G1 and G2, G1 and G3 or G1 and G4 (but not, for instance, G2
and G3 simultaneously):

�(�h) =
√

1

# {E ∈ �h}
∑
E∈�

�1(E)�2(E)+ �1(E)�3(E)+ �1(E)�4(E)

3
.

(1.61)

We list some observations on the newly defined mesh quality indicator �:

– we have �(�h) = 1 if and only if �h contains only equilateral triangles, �(�h) =
0 if and only if �h contains only non star-shaped polygons, and 0 < �(�h) < 1
otherwise;

– the indicator � only depends on the geometrical properties of the mesh elements
(because the same holds for �1, �2, �3 and �4), therefore it can be computed
before applying the numerical scheme;

– the construction of � is easily upgradeable to future developments: whenever
new assumptions on the features of a mesh should come up, one simply needs to
introduce a new function �i that measures the violation of the new assumption
and opportunely insert it into Eq. (1.61);

– similarly, this indicator is easily extendable to other numerical schemes by
substituting the assumptions designed for the VEM with the assumptions on the
new scheme, and defining the relative indicators �i .

1.6.2 Results

We evaluated the indicator � over the datasets defined in Sect. 1.4.1; results are
shown in Fig. 1.18. We want to investigate if the � values of the meshes of a certain
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Fig. 1.18 Indicator � for all datasets from Sect. 1.4.1

dataset in Fig. 1.18, computed before solving the problem, are somehow related to
the performance of the VEM over the meshes of the same dataset, shown in Figs. 1.6
and 1.7, in terms of error approximation and convergence rate.

Since � does not depend on the polynomial degree k nor on the type of norm
used, we have to consider an hypothetical average of the plots for the different k
values and for the different norms (L2 and H 1) from Figs. 1.6 and 1.7.
As already seen, for an ideal dataset made by meshes containing only equilateral
triangles, � would be constantly equal to 1. We assume this value as a reference
for the other datasets: the closer � is on a dataset to the line y = 1, the smaller is
the approximation error that we expect that dataset to produce. Similarly, the more
negative is the � slope, the worse is the convergence rate that we expect the method
to obtain over that dataset.

For meshes belonging to DTriangle, � is almost constant and very close to 1, thus
foreseeing the excellent convergence rates and the low errors relative to DTriangle in
every sub-figure of Fig. 1.6.

The plots for DMaze and DStar in Fig. 1.18a are close to the DTriangle one, hence
we expect the method to perform similarly over the three of them. This is confirmed
by Fig. 1.6: DMaze and DStar are almost coincident and very close to DTriangle until
the very last meshes, especially in the L2 plots.

The DJenga plot in Fig. 1.18a suggests a perfect convergence rate but greater error
values with respect to the previous three, and again this behaviour is respected in
Fig. 1.6.
The curve relative to DSlices in Fig. 1.18a is quite distant from the ideal value of
1. Moreover, the curve keeps decreasing from mesh to mesh, even if we may
assume that it would flatten within few more meshes. Looking at Fig. 1.6, we
notice that DSlices produces an error significantly higher than the previous ones
(DTriangle,DMaze,DStar,DJenga), and in some cases the H 1 error convergence rate
is significantly lower than the theoretical estimate, thus confirming the prediction.
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Last, the � values in Fig. 1.18a predict huge errors and a completely wrong conver-
gence rate for DUlike. In fact, this dataset is the one with the worst performance in
Fig. 1.6, where the VEM does not even always converge (for example in the case
k = 1 with the H 1 seminorm).

As far as multiply refined datasets are concerned, we note that, since � only
depends on the geometry of the elements, it is not affected by numerical errors.
The � plot for DJenga4 in Fig. 1.18b is very similar to the one relative to DJenga in
Fig. 1.18a, therefore we should expect DJenga4 in Fig. 1.7 to perform similarly to
DJenga in Fig. 1.6. This is actually the case, at least until the finest mesh for k = 3
where numerical problems appear which � is not able to predict.
Also DSlices4 and DSlices are similar in Fig. 1.18, but � decreases faster on the first
than on the second one, reaching a � value of ∼ 0.2 instead of ∼ 0.34 within a
smaller number of meshes. Again, this information is correct because the method
performs similarly over DSlices4 and DSlices until condition numbers explode, in the
last two meshes for every value of k.
Last, the � plot of DUlike4 is significantly worse than any other (including the one of
DUlike), both in terms of distance from y = 1 and slope. In Fig. 1.7 we can observe
how, even if DUlike4 does not properly explode (as it suffers less from numerical
problems, cf. Table 1.2), the approximation error and the convergence rate are the
worst among all the considered datasets.

Summing up these results, we conclude that the indicator � is able, up to a certain
accuracy, to predict the behaviour of the VEM over the considered datasets, both in
terms of error magnitude and convergence rate. Looking at the � values it is possible
to estimate in advance if a mesh or a dataset is going to be more or less critical for
the VEM, and it is possible to compare the values relatives to different meshes and
datasets to understand which one is going to perform better. The prediction may be
less accurate in presence of very similar performance (e.g. the case of DMaze and
DStar) or in extremely pathological situations, where numerical problems become
so significant to overcome any influence that the geometrical features of the mesh
may have on the performance (e.g. the last meshes of DJenga4 and DSlices4).

1.7 PEMesh Benchmarking Tool

Main existing tools for the numerical solution of PDEs include VEMLab [61], which
is an open source MATLAB library for the virtual element method and Veamy,
which is a free and open source C++ library that implements the virtual element
method (C++ version of [61]). This library allows the user to solve 2D linear
elasto-static problems and the 2D Poisson problem [60]. Additional tools include
the 50-lines MATLAB implementation of the lowest order virtual element method
for the two-dimensional Poisson problem on general polygonal meshes [70] and the
MATLAB implementation of the lowest order Virtual Element Method (VEM) [56].

In this context, PEMesh [35] (Fig. 1.19) is an open-source software tool for
experiments on the analysis and design of polytopal meshes for PEM solvers.
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Fig. 1.19 (a) Main window of PEMesh and (b) examples of PEM solver results. On the top, both
solver output and ground truth are color-mapped on the input polygon meshes, while on the bottom
a set of linear plots show how solver performances vary in the data set

PEMesh is an advanced graphical tool that seamless integrates the geometric design
of 2D domains and PEM simulations. It supports the design and generation of
complex input polygonal meshes by stressing geometric properties and provides the
possibility to solve PEMs on the generated meshes. Furthermore, PEMesh allows
us to correlate several geometric properties of the input polytopal mesh with the
performances of PEM solvers, and to visualise the results though customisable
and interactive plots. PEMesh also supports to evaluate the dependence of the
performances of a PEM solver on geometrical properties of the input polygonal
mesh. PEMesh includes four main modules, which are briefly described in the
following.
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Polygon mesh generation & loading allow us to load one or more existing meshes
or to generate new ones from scratch by either exploiting a set of polytopal elements
available in the module or providing an external polytopal element. In this way, the
user can easily generate a large set of options and parameters.
We used this module for the generation of most of the datasets considered in this
work: DTriangle,DStar,DMaze and all datasets from Sect. 1.5.3. The mirroring and
multiple mirroring datasets defined in Sect. 1.4.1 have been generated separately
and then loaded into the software to be used in the subsequent modules.

Geometric analysis allows the user to perform a deep analysis of geometric
properties of the input polygonal meshes, to correlate each of them with the others,
and to visualise the results of this analysis though scatter plots (see Fig. 1.20).

PEM solver allows the user to run a PEM solver and to analyse its performances
on input polygonal meshes. Any PEM solver, which is run from command line,
can be integrated in the software together with its output. The PEM and ground-
through (if any) solutions of the PEM are shown directly on the meshes, while the
performances of the solver are visualized through linear plots.
This module has been used for solving the problem and analyzing the performance
of the VEM over all datasets in this work.

Correlation visualization allows the user to analyse the correlation between
geometric properties of the polygonal meshes and numerical performances of the
PEM solver. Then, the results are visualised as customizable scatter plots, as shown
in Fig. 1.21.

Fig. 1.20 PEMesh window specialized on the visualization of the correlation between geometric
metrics. The right side of the window provides some visualization options to enable the possibility
to select which metrics to be visualized and how (i.e. size, color, ...)
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Fig. 1.21 PEMesh window specialized on the visualization of the correlation of geometric metrics
and PEM performances. The right side of the window provides some visualization options to enable
the possibility to select which metrics to be visualized and how (i.e. size, color, ...)

PEMesh provides the possibility to solve PEMs on a polygonal mesh and to
visualize the performances of any PEM solver. To this end, the PEM solver is not
part of the tool, but is handled as an external resource that is called by PEMesh
graphical interface. Through a general approach, PEMesh assumes that the selected
PEM solver takes an input mesh and returns both the solution and the ground-
truth (if any) of a PDE, together with statistics (e.g., approximation accuracy,
condition number of the mass and stiffness matrices) of the PEM solver. Then,
the results of the PEM solver are visualised in a specialized window, and the
numerical and geometric metrics are shown as linear plots (Fig. 1.19b). Finally, a
set of visualization options are available for the customisation of color-maps and
linear plots. Through a modular and customisable system, PEMesh allows us to run
any PEM solver, thus providing an easy way to generate complex discrete polytopal
meshes and to study the correlation between geometric properties of the input mesh
and numerical PEMs solvers.
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Chapter 2
On the Implementation of Virtual
Element Method for Nonlinear Problems
over Polygonal Meshes

Dibyendu Adak, M. Arrutselvi, E. Natarajan, and S. Natarajan

Abstract We present the details of the implementation of the Virtual Element
Method (VEM) for nonlinear elliptic and parabolic problems, over polygonal
meshes. The VEM implementation of a nonlinear problem does not follow the
traditional way of implementation of the nonlinear problems as done in finite
element/finite volume or finite difference methods. To facilitate this, suitable
projection operators are used for the nonlinear terms that are rewritten in terms
of the degrees of freedom associated with the virtual element space and thus are
computable. We explicitly present the discretization and include sample codes that
will help readers with the basic implementation of the nonlinear problems.

2.1 Introduction

Although, the traditional Galerkin methods such as the finite elements are very
appealing, they have two major drawbacks: (a) they require an explicit form of the
basis functions and (b) the domain discretization is restricted to simplex elements,
thus increasing the meshing burden. Further, the unknown field variables over the
simplex elements are approximated with polynomials, hence, a very fine mesh is
required to capture steep gradients in the solution. In the last decade, there has been
a growing interest in numerical methods that can accommodate elements with more
general shapes and sizes. This has led to the development of a variety of numerical
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techniques, such as, the Mimetic Finite Difference Methods [8, 9, 13], Weak
Galerkin Methods [40, 50], Polygonal Finite Element Method (PFEM) [21, 44, 46],
Scaled boundary finite element methods [41, 42] and the Virtual Element Method
(VEM) [12, 23, 47, 48]. These methods are very similar to each other because
they require suitable discrete formulation of the model problem avoiding traditional
approach. Both the polygonal finite element and the virtual element method can
work with polygonal meshes, but a VEM when compared to the PFEM is that the
latter requires an explicit form of the basis functions to compute the bilinear and the
linear forms. The basis functions over polytopes are rational polynomials, and thus
require high order numerical quadrature rules. To the best of author’s knowledge,
conventional polygonal finite elements are restricted to quadratic elements [34, 43].
In the case of the VEM, no such explicit form of the basis functions is required and
higher order elements even in higher dimensions can be constructed.

The virtual element method, originally introduced in [12], is a generalization
of Galerkin’s finite element method over polygonal meshes. The greatest devel-
opment of Mimetic Finite Difference Method is the VEM satisfying the Galerkin
orthogonality property on polygonal meshes. In contrast with the FEM, the virtual
element space consists of non-polynomial basis functions that are implicitly defined
on the VEM space. To avoid this issue, suitable projection operators are introduced,
which are computable from the degrees of freedom (DoFs) associated with the
virtual element space. These projection operators approximate the basis functions
optimally and make the discrete scheme computable from the DoFs. The VEM is
designed to approximate the model problem over polygonal elements irrespective
of their shape and size. Further, the construction of the VEM space in three
dimension is also feasible and the matrices corresponding to the discrete bilinear
forms can be computed using matrix multiplication avoiding numerical integration.
The virtual element method can be treated as numerical technique on polygonal
meshes. The primary difference with other numerical methods on polygonal meshes,
however, is that the computation of nonpolynomial part from the DoFs. In practice,
the nonpolynomial part is approximated ensuring same scaling as polynomial
consistency part.

Since its inception, the VEM has been used to approximate several model
problems. Some of them include Stokes equations [5, 17, 26], elasticity problem
[10, 14], plate bending problems [23, 30, 52], parabolic and hyperbolic equations
[47, 48], stationary convection diffusion equation [19] and elliptic equation [11, 16],
eigenvalue problem [28, 35, 38, 39], mixed virtual element [15, 24, 25, 36], contact
problem [51], obstacle problem [32, 49]. The nonconforming counterpart of VEM
has been proposed by Ayuso et al. in [22], later extended to general elliptic
equation,plate bending problem and Stokes equation in [26, 27, 52]. An open
source C++ library has been developed by Ortiz-Bernardin et al. [20]. Sutton [45]
developed a 50-line MATLAB implementation for the lowest order VEM for the
two-dimensional Poisson’s problem. Dhanush and Natarajan implemented the VEM
into the commercial finite element software Abaqus [33] based on the user defined
subroutines for thermo-elasticity.
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However, most of the highlighted works deal with linear model problems. To the
best of the authors’ knowledge, limited research has been focused on employing the
VEM for nonlinear problems. By employing the standard linearization technique,
Antonietti et al. [6] introduced the C 1 VEM for the Cahn-Hilliard problem.
Beirão da Veiga et al. designed a new projection operator to approximate the
trilinear term in the Navier-Stokes equation [18]. Adak et al. [2, 3], extended the
VEM to semilinear parabolic and hyperbolic equations. The nonlinear term was
approximated by employing the L2 projection operator. Motivated by the work of
Sutton [45] and Ortiz-Bernardin et al. [20], the main objective of this chapter is
to present the details of the implementation of the VEM for nonlinear elliptic and
parabolic problems over polygonal meshes.

2.1.1 Structure of the Chapter

In this chapter, we introduce the quasilinear parabolic equation in Sect. 2.2. In
Sect. 2.3, we discuss the virtual element approximation of the resulting nonlinear
problem. Section 2.4 presents the details of the computation of the projection
operators and the corresponding discrete bilinear form. The fully discrete scheme
is presented in Sect. 2.5. The Newtwon-Raphson iterative scheme and fixed point
scheme are briefly discussed in the same section to solve the nonlinear system
of equations. Further, we also discuss the VEM for quasilinear elliptic equation
as a special case. In Sect. 2.6, we present a simple MATLAB implementation
of the VEM for nonlinear equations. The section also presents the fundamental
matrices and the Jacobian matrix for a quadrilateral and a polygonal element for
the lowest order VEM. In Sect. 2.7, a few test cases are presented to show the
convergence properties and the accuracy of the virtual element formulation over
polygonal meshes, followed by conclusions in the final section.

2.1.2 Basic Notation

Before we discuss the virtual element framework for the nonlinear problems, we
first present the notation that are followed in this chapter. Let {�h}h be a family of
decompositions of � into polygonal elements. Let K be an element with diameter
hK and Ndof

K be the total number of vertices of a polygonK . Let us define the mesh
diameter as h := max

K∈Th

(hK). For a Banach space H with norm ‖·‖H , and a function

ω : [0, T ] → H , which is Lebesgue measurable, the following norms are defined:

‖ω‖L2(0,T ;H) :=
( ∫ T

0
‖ω‖2

H ds
)1/2

and ‖ω‖L∞(0,T ;H) := ess sup
0≤t≤T

‖ω(·, t)‖H .
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Fig. 2.1 (a) Domain discretized with polygons; (b) representative polygonal element, ‘open’
circles denote the vertex nodes, ‘filled’ squares are the edge nodes and ‘open’ square represents the
centroid of the element. Vector ni is the outward unit normal to the edge ei connecting the vertex
nodes Vi and Vi+2

We define,

L2(0, T ;H) = {ω : (0, T ] → H : ‖ω‖L2(0,T ;H) <∞}.

Also, we assume that ∂K denotes the boundary of a polygonal element K , which
is subdivided into n(K) edges. Figure 2.1 shows a schematic of one of such
decompositions of a domain �. Further, the following assumptions on the mesh
regularity [7] are considered:

Assumption 2.1 (Mesh Regularity)

– Every polygon is star-shaped with respect to a ball of radius greater than γ hK ,
where γ denotes a real positive constant.

– For all K ∈ �h, each side e of K is such that the length of e is greater than c hK ,
where c denotes a positive constant.

– There exists a positive constant � ∈ N such that n(K) ≤ �, for all elements
K ∈ �h.

For a given polygon K ⊂ R
2, and for a given integer k ≥ 2, we denote the linear

space of polynomials of degree k by Pk(K). This space is a subspace of local virtual
element space that will be defined in the next section. The dimension of Pk(K) is:

Nk = dim Pk(K) = (k + 1)(k + 2)

2
.
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2.2 Governing Equations

Consider the following quasilinear parabolic equation

⎧⎪⎪⎨
⎪⎪⎩

Dt u−∇ · (κ(u)∇u) + b(x) · ∇u+ c(x) u = f (u, t) in �, t ∈ (0, T )

u = 0 on � = ∂�, t ∈ (0, T )

u(0, x) = u0(x) in �

(2.2.1)

κ(u) is a 2 × 2 diffusivity tensor with κ(u)ij = κij (x, t; u) and b(x) is a 1 × 2
convective coefficient with entries bi(x). As demanded by the analysis, we make the
following reasonable assumptions:

– κij (x, t; u), bi(x), c(x) are L∞(�).
– BK

0 = sup
x
‖b(x)‖(L2(K))2 <∞.

– CK
0 = sup

x∈K
c(x) <∞

– f (u, x) ∈ L2(�) ∀� ∈ R

Now by multiplying the first equation in (2.2.1) by the test function v and
employing the Gauss divergence theorem, the weak formulation of the prob-
lem (2.2.1) reads as: Find u ∈ H 1

0 (�) such that:

⎧⎪⎪⎨
⎪⎪⎩

(Dtu, v)+ (κ(u)∇u,∇v)+
(b · ∇u, v) + (c u, v) = (f (u), v) ∀v ∈ H 1

0 (�) for a.e. t ∈ [0, T ]
u(0) = u0,

(2.2.2)

where,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Dtu, v) =
∫

�

Dtu v, (κ(u)∇u,∇v) =
∫

�

κ(u)∇u · ∇v

(b · ∇u, v) =
∫

�

b · ∇u v, (c u, v) =
∫

�

c u v, (f (u), v) =
∫

�

f (u) v

Further, we would like to assume the following assumption on the coefficients for
the existence and uniqueness of solution of (2.2.2) [31, Theorem 12.1] and [37].

Assumption 2.2

– κij (x, t; u) be Carathéodory function satisfying

u �−→ κij (x, t; u) is continuous a.e. (x, t) ∈ �× R
+.
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Moreover, we assume that for some constants K̂ ,K0

0 < K̂ ≤ |κij (x, t; u)| ≤ K0 a.e. (x, t) ∈ �× R
+, ∀u ∈ R.

– f : (� × R) → R is a Carathéodory function and satisfies for some constant
F0 > 0,

|f (x, u)− f (x, ω)| ≤ F0|u− ω| ∀x ∈ �,∀u, v ∈ R.

– μ(x) := c(x)− 1
2∇ · b(x) ≥ μ0 > 0 for a.e. x ∈ � and assume that ∇ · b(x) ∈

L∞(�).

Theorem 2.3 Under the above Assumptions 2.2, there exists a solution

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ L2(0, T ;H 1
0 (�)),Dtu ∈ L2(0, T ;H 1

0 (�)′),

u(0) = u0,

(Dtu, v) + (κ(u)∇u,∇v) + (b · ∇u, v)+ (c u, v) =
(f (u), v) for a.e.t ∈ (0, T ],∀v ∈ H 1

0 (�).

Proof Splitting the convective term (b · ∇u, v) into symmetric and non-symmetric
part and then using Assumption 2.2 and Brouwer fixed point theorem, we can prove
the existence and uniqueness of the weak solution of (2.2.2) ��

2.3 Virtual Element Framework

In this section, we discuss the construction of the two and three dimensional virtual
element spaces that were originally introduced in [11]. Unlike the finite element
space, the virtual element space consists of polynomial functions and unknown
functions that can be approximated using polynomial projection operators. These
projection operators are computable from the information available from the degrees
of freedom (DoFs) of the discrete space.

For each element K , we define:

– the standard L2 projection operator �0
k,K : L2(K)→ Pk(K);

– the elliptic projection operator �∇k,K : H 1(K)→ Pk(K) such that

(∇�∇k,Ku,∇q) = (∇u,∇q) ∀ q ∈ Pk(K) \ P0(K),

P 0(�∇k,Ku) = P 0(u),
(2.3.1)



2 VEM for Nonlinear Problems 65

where the operator P 0 is defined as

P 0(φ) := 1

|∂K|
∫
∂K

φ if k ≥ 1,

and P0(K) is set of constant polynomial on K . Further, we can discretize the
operator ∇ using the vector valued L2 projection operator �0

k−1,K : (L2(K))2 →
(Pk−1(K))2.

The global projection operators�0
k , and �∇k , and �0

k−1,K are defined as �0
k|K =

�0
k,K and �∇k |K = �∇k,K , and �0

k−1|K = �0
k−1,K . Upon utilizing the projection

operators, for the polygonal elementK ∈ �h, we introduce the local virtual element
space in two dimensions. Let

H k(K) := {v ∈ H 1(K), v|∂K ∈ C o(∂K) : v|e ∈ Pk(e) ∀ e ∈ ∂K,�v ∈ Pk(K)

and
∫
K

(�∇k,Kv − v)q = 0∀ q ∈ Pk \ Pk−2(K)},
(2.3.2)

where Pk \Pk−2(K) denotes the set of scaled monomials of degrees k and k−1, i.e.

Pk \ Pk−2(K) :=
{(x− xK

hK

)α
, |α| = k

}
∪
{(x− xK

hK

)α
, |α| = k − 1

}
,

where, α signifies multi-index and defined as α := (α1, α2, · · · , αd), and the
element xα := x

α1
1 x

α2
2 , · · · , xαdd . xK denotes the centroid of K . The global space

is defined as follows

H k
h := {v ∈ H 1

0 (�)| v|K ∈H k(K),∀K ∈ �h}. (2.3.3)

For a typical function ω ∈ H 1
0 (K), we introduce the set of functionals:

• (d1) The values of ω at each vertex of the element K .
• (d2) On each edge s ⊂ ∂K , the moments of ω of order k − 2 i.e.,

1

|s|
∫
s

ωmα ∀ mα ∈ Pk−2(s).

• (d3) The cell moment up to order k − 2,

∫
K

ω mα, ∀mα ∈ Pk−2(K)
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The set of functional (d1) − (d3) forms the degrees of freedom (DoFs) for the
local space H k(K). Using the projection operators �0

k,K and �0
k−1, we discretize

the bilinear form locally on each polygon K as:

MK
h (uh, vh) :=

∫
K

�0
k,Kuh �

0
k,Kvh + ScK((I −�0

k)uh, (I −�0
k)vh)

(2.3.4)

A K
h (uh; uh, vh) :=

∫
K

κ(�0
k,Kuh)�

0
k−1,K(∇uh) · �0

k−1,K(∇vh)

+ SK(uh; (I −�0
k,K)uh, (I −�0

k,K)vh) (2.3.5)

BK
h (uh, vh) :=

∫
K

b ·�0
k−1,K(∇uh)�0

k,Kvh (2.3.6)

CK
h (uh, vh) :=

∫
K

c(x)�0
k,Kuh�

0
k,Kvh

+ sup
x∈K

c(x)ScK((I −�0
k)uh, (I −�0

k)vh) (2.3.7)

FK
uh
(vh) :=

∫
K

f (�0
k,Kuh) �

0
k,Kvh (2.3.8)

The stabilizers SK(zh; uh, vh) and ScK(uh, vh) in (2.3.5) and (2.3.7) are defined as:

SK(zh; uh, vh) := κ(�0
k,Kzh)

Ndof
K∑
j=1

dofj (uh)dofj (vh), (2.3.9)

ScK(uh, vh) := h2
K

Ndof
K∑
j=1

dofj (uh)dofj (vh). (2.3.10)

The polynomial parts of Ah(·; ·, ·) and Mh scale as 1 and h2
K respectively. The

nonpolynomial parts of the discrete bilinear forms SK(zh; uh, vh) and ScK(uh, vh)

scale as the polynomial parts. For the non-symmetric convection part, we consider
only the polynomial part of the discrete function. Although, only polynomial part is
considered, it has been shown that this choice does not affect the efficiency and/or
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the accuracy of the numerical scheme [27]. The global discrete forms are defined as
sum of local contributions as:

Mh(uh, vh) =
∑
K∈�h

MK
h (uh, vh) Ah(uh; uh, vh) =

∑
K∈�h

A K
h (uh; uh, vh)

(2.3.11)

Bh(uh, vh) =
∑
K∈�h

BK
h (uh, vh) Ch(uh, vh) =

∑
K∈�h

CK
h (uh, vh) (2.3.12)

Fuh(vh) =
∑
K∈�h

FK
uh
(vh). (2.3.13)

2.4 Computation of the Projection Operators and Discrete
Bilinear Forms

Once the bilinear forms are defined, the next step is to compute the bilinear
forms given in Eqs. (2.3.4)–(2.3.8). To be able to compute them, let the set β̃ =
{φ1, · · · , φ

Ndof
K

} form a basis of the finite dimensional space H k(K). Using the

matrix representation of the projection operators, we will compute the discrete
bilinear forms. From the degrees of freedom associated with H k(K), we can
compute the projection operators �0

k,K ,�∇k,K , and �0
k−1,K . In continuation, we

would like to highlight that the projection operator �0
k,K is not computable on the

virtual element space of order k defined in [3, 4, 48]. To avoid this issue, Ahmad et
al. [4] has modified the virtual element space by imposing the condition

∫
K

(�∇k,Kφi −�0
k,Kφi) q = 0 ∀q ∈ Pk \ Pk−2(K) and φi ∈ β̃. (2.4.1)

For any basis function φi , �∇k,Kφi ∈ H k(K). Therefore, �∇k φi can be written as
linear combination of the basis functions such as

�∇k φi =
Ndof
K∑
j=1

φj (�
∇)ji, (2.4.2)

where �∇ is the matrix representation of the projection operator �∇k,K in terms of
basis function β̃. Following [12, Equation 3.18],we can express this matrix as:

�∇ = DG−1B, (2.4.3)
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where

D =

⎡
⎢⎢⎢⎢⎣

dof1(m1) dof1(m2) . . . dof1(mNK )

dof2(m1) dof2(m2) . . . dof2(mNK )
...

...
. . .

...

dof
Ndof
K

(m1) dof
Ndof
K

(m2) . . . dof
Ndof
K

(mNK )

⎤
⎥⎥⎥⎥⎦
Ndof
K ×Nk

G =

⎡
⎢⎢⎢⎣

P0m1 P0m2 . . . P0mNk

0 (∇m2,∇m2)0,K . . . (∇m2,∇mNk )0,K
...

...
. . .

...

0 (∇mNk ,∇m2)0,K . . . (∇mNk ,∇mNk )0,K

⎤
⎥⎥⎥⎦
Nk×Nk

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

P0φ1 P0φ2 . . . P0φ
Ndof
K

(∇m2,∇φ1) (∇m2,∇φ2) . . . (∇m2,∇φ
Ndof
K

)

...
...

. . .
...

(∇mNk ,∇φ1) (∇mNk,∇φ2) . . . (∇mNk ,∇φNdof
K

)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

where Ndof
K = dim(Hk(K)), Nk = dim(Pk(K)) and dof1(·) is the i th degree of

freedom of vh. By using the DoFs associated with the virtual element space,we
can easily compute matrix D. The computation of G requires the integration of the
polynomials mα on the polygonal element K . Further, the computation of matrix B
follows from the integration by parts:

(∇mα,∇φi)K = −
∫
K

φi �mα +
∫
∂K

∇mα · ν φi, (2.4.4)

where ν is outward unit normal vector to the element boundary ∂K . The right hand
side of (2.4.4) can be computed by using DoFs (d1) − (d3). Since dofj (φi) = δij ,
it holds that

∫
K φi �mα = 1 if φi is the basis function corresponding to this cell

moment and 0 for the other cases. The term
∫
∂K ∇mα · ν φi can be computed from

the DoFs (d1)-(d2). Further, �∇k,Kφi ∈ Pk(K) for all basis function φi . Therefore,

we can write �∇k,Kφi in terms of monomials mα, i.e.,

�∇k,Kφi =
Nk∑
α=1

(�∇∗ )αimα,
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where �∇∗ denotes the matrix representation of �∇k,K when the projection is
expanded on the monomial basis functions. It can be computed as

�∇∗ = G−1B.

Using the DoFs (d1)− (d3) and the condition (2.4.1), the orthogonal L2 projection
operator �0

k,K can be evaluated. By using the monomial basis of Pk(K), we can
explicitly write

�0
k,Kφi =

Nk∑
α=1

(�0∗)αimα,

where �0∗ is the matrix representation of �0
k,K in terms of the monomial basis

functions, which can be computed as

�0∗ = H−1C, (2.4.5)

where, H is defined as

(H)α,β := (mα,mβ)K. (2.4.6)

In (2.4.1), we define C as

Cα,i := (mα, φi)K . (2.4.7)

which is the right hand side of the orthogonal projection problem. At the implemen-
tation level of condition (2.4.1) for Nk−2 + 1 ≤ α ≤ Nk ,

Cα,i := (mα,�
∇
k,Kφi) = (HG−1B)α,i .

Further, �0
k,Kφi can be expressed in terms of the basis function of H k(K) as

�0
k,Kφi =

Ndof
K∑
j=1

(�0)αj φj .

The coefficient matrix �0 can be computed by using matrices D, H and C as

�0 = DH−1C.

Next, we present the computable forms of the bilinear forms given in
Eqs. (2.3.4)–(2.3.8). Of these, the quasi-linear diffusion term requires special
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attention. This is due to the presence of the nonlinear term. The quasilinear diffusion
term is written as:

Ah(uh; uh, vh) =
∫
K

κ(�0
k,Kuh)�

0
K−1,k∇uh ·�0

K−1,k∇vh

+ κ(�0
k,Kuh)

Ndof∑
i=1

dofi ((I −�0
k)uh)dofi ((I −�0

k)vh).

(2.4.8)

By using uh = ∑Ndof
K

j=1 dofj (uh)φj , and choosing vh = φi in (2.4.8), we write
Eq. (2.4.8) in discrete form as:

Ah(

Ndof
K∑
j=1

dofj (uh)φj ;
Ndof
K∑
j=1

dofj (uh)φj , φi) =

∫
K

κ(

Ndof
K∑
j=1

dofj (uh)�0
k,Kφj )

Ndof
K∑
j=1

dofj (uh)�0
k−1,K∇φj ·�0

k−1,K∇φi

+ κ(

Ndof
K∑
j=1

dofj (uh)�0
k,Kφj )

Ndof
K∑
j=1

dofj (uh)SK((I −�0
k,K)φj , (I −�0

k,K)φi).

(2.4.9)

Following [27], we would like to discuss the computation of the vector valued L2

projection operator �0
k−1,K . Using orthogonality property of �0

k−1,K , we can write

(�0
k−1,K∇φi,mα)K = (∇φi,mα)K =

∫
∂K

mα · νφids−
∫
K

φi∇ ·mαdK. ∀mα ∈ Pk−1(K)× Pk−1(K).

(2.4.10)

ν is outward unit normal vector. We define the vector containing polynomial entries
as

�0
k−1∇φi = [�0

k−1
∂φi

∂x
�0

k−1
∂φi

∂y
], (2.4.11)
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and expand in term of monomials as:

�0
k−1,K

∂φi

∂x
=

Nk−1∑
α=1

mα(�
0,x
k−1,K)αi . (2.4.12)

�
0,x
k−1,K is the coefficient matrix defined by:

Hk−1,K�
0,x
k−1,K = Rx

K, (2.4.13)

where, the matrix Hk−1,K is defined in (2.4.6) for monomials mα ∈ Pk−1(K). The
right hand side matrix is defined as

(Rx
K)αi =

∑
e⊂∂K

∫
e

mανxφids

︸ ︷︷ ︸
σ1

− (φi,
∂mα

∂x
)K︸ ︷︷ ︸

σ2

mα ∈ Pk−1(K). (2.4.14)

The term σ1 can be computed from edge and vertex degrees of freedom (d1)-
(d2) and the term σ2 can be computed form the cell momentum (d3). The term
corresponding to the bilinear form (2.4.8) can be written as

(
κ(�0

k,Kuh)�
0
k−1,K∇φi,�0

k−1,K∇φj
)
=
(
κ(�0

k,Kuh)�
0
k−1,K

∂φi

∂x
,

�0
k−1,K

∂φj

∂x

)
+
(
κ(�0

k,Kuh)�
0
k−1,K

∂φi

∂y
,�0

k−1,K
∂φj

∂y

)
.

(2.4.15)

In the above equation, the term
(
κ(�0

k,Kuh)�
0
k−1,K

∂φi
∂x

,�0
k−1,K

∂φj
∂x

)
can be written

in terms of the monomials as

(
κ(�0

k,Kuh)�
0
k−1,K

∂φi

∂x
,�0

k−1,K
∂φj

∂x

)

=
Nk−1∑
α,β=1

(
κ(�0

k,Kuh)mα,mβ

)
K
(�

0,x
k−1)αi(�

0,x
k−1)βj

=
Nk−1∑
α,β=1

(
κ(

Ndof
K∑
j=1

dofj (uh)�0
k,Kφj )mα,mβ

)
K
(�

0,x
k−1)αi(�

0,x
k−1)βj

=
Nk−1∑
α,β=1

(
κ(

Ndof
K∑
j=1

dofj (uh)
Nk∑
z=1

(�0∗)zjmz)mα,mβ

)
K
(�

0,x
k−1)αi(�

0,x
k−1)βj .

(2.4.16)
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By choosing vh = φi in BK
h (·, ·) (defined in (2.3.6)), the convective term can be

written as

BK
h (uh, φi) =

∫
K

Ndof∑
j=1

dofj (uh)(b ·�0
k−1,K∇φj )�0

k,Kφi . (2.4.17)

Further, we can write the scalar product explicitly as

b ·�0
k−1,K(∇φj ) = b1�

0
k−1,K

∂φj

∂x
+ b2�

0
k−1,K

∂φj

∂y
. (2.4.18)

Using (2.4.18), we can write the convective term as

∫
K

b ·�0
k−1,K∇φj�0

k,Kφi =
Nk∑
α=1

Nk−1∑
β=1

(b1mα,mβ)K(�
0
k,K)αi(�

0,x
k−1,K)βj

+
Nk∑
α=1

Nk−1∑
β=1

(b2mα,mβ)K(�
0
k,K)αi(�

0,y
k−1,K)βj .

(2.4.19)

By choosing vh = φi in (2.3.7) and explicit expression of discrete function uh, the
reaction term can be written as:

CK
h (uh, φi) =

∫
K

Ndof
K∑
j=1

dofj (uh)�0
k,Kφj�

0
k,Kφi+

Ndof
K∑
j=1

dofj (uh)SK((I −�0
k,K)φj , (I −�0

k,K)φi).

(2.4.20)

With the polynomial consistency part of (2.3.7), given by:

∫
K

�0
k,Kφi�

0
k,Kφj =

Nk∑
α,β=1

∫
K

mαmβ dK (�0∗)αi(�0∗)βj , (2.4.21)

where �0∗ is the coefficient matrix corresponding to the operator �0
k,K defined

in (2.4.5).

Remark 2.1 In (2.2.1), the convection and the reaction terms are linear which can
be updated easily in Newton-Raphson method. In this work, we will primarily focus
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on the implementation technique of the nonlinear terms such as nonlinear diffusion
and load terms.

By choosing vh = φi in (2.3.10), the nonlinear force term can be written as:

(fh(uh), φi) =
∑
K∈�h

f
(Ndof

K∑
j=1

dofj (uh)�
0
kφj

)
�0

kφi. (2.4.22)

Further, by using the L2 projection operator on K , the nonlinear force function f (u)
is discretized as follows

(fh(uh), φi) := (f (�0
kuh), φi)

=
∑
K∈�h

∫
K

�0
k,Kf (

Ndof
K∑
j=1

dofj (uh)�0
k,Kφj )φi

=
∑
K∈�h

∫
K

f (

Ndof
K∑
j=1

dofj (uh)�0
k,Kφj )�

0
k,Kφi

=
∑
K∈�h

∫
K

f (

Ndof
K∑
j=1

dofj (uh)�0
k,Kφj )�

0
k,Kφi.

=
∑
K∈�h

∫
K

f (

Ndof
K∑
j=1

dofj (uh)

Ndof
K∑
α=1

(�0∗)αjmα)

Ndof
K∑
α=1

(�0∗)αimα.

(2.4.23)

Remark 2.2 The nonlinear load term (fh(uh), φi) can be computed using the
projection operator �0

k,K which is described in (2.4.23). This procedure demands
computation of the polynomial integration over polygon K which is numerically
expensive. In case of time dependent problem, this numerical integration has to be
computed at each iteration which is numerically expensive. Following [1], we could
define the nonlinear load term as (fh(uh), φi) := (Ih(f (uh)),�

0
k,Kφi) for linear

VEM space. Using the properties of the interpolation operator Ih [1, Section 3.2],
we rewrite the discrete load term as

(fh(uh), φi) := M̃F̃, (2.4.24)

where M̃ is the matrix corresponding to the polynomial consistency part of MK
h (·, ·)

and the (̃F)i := f (dofi (uh)). Equation (2.4.24) reduces the computational cost
effectively since we need just multiplication of matrices.
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The stabilizers SK and ScK can be approximated using the matrix representation
of the projection operator �0

k . Now, we would like to discuss the approximation.
Recalling the definition of D matrix, we have the matrix relation

�0 = D�0∗, (2.4.25)

where the coefficient matrices �0 and �0∗ are defined in beginning of this section.
With the choice of the basis functions and (2.4.25), the stabilizing term can be
approximated as follows:

SK((I −�0
k)φi , (I −�0

k)φj ) ≈ C(hK)
(
(I−�0)T (I−�0)

)
ij
, (2.4.26)

since dofr ((I −�0
k)φi) = (I −�0)ir , where C(hK) is the scaling factor ensuring

same scaling as the polynomial part of the polynomial consistency part of the
discrete bilinear forms.

2.5 Fully Discrete Scheme

We employ the virtual element method and the Crank-Nicolson scheme for dis-
cretizing the space variable and the time variable, respectively [29]. Let (Un)n∈N
be a sequence of approximations of (uh) at time t = tn. The fully discrete scheme
is obtained by a partition of non-overlapping sub interval [tn−1, tn] of [0, T ], where
n = 1, 2, · · · , NT with time-step �tn := tn − tn−1 such that T = ∑NT

n=1 �tn.
To reduce the computational complexity, we split [0, T ] into equal time-step, i.e.
�tn = �t for all n. The fully discrete scheme for the Eq. (2.2.1) reads: Find
Un ∈H k

h such that:

Mh

(Un − Un−1

�t
, vh

)
+ Ah

(Un + Un−1

2
; U

n + Un−1

2
, vh

)
+Bh

(Un + Un−1

2
, vh

)

+ Ch

(Un + Un−1

2
, vh

)
=
〈
fh

(Un + Un−1

2

)
, vh

〉
∀vh ∈H k

h .

(2.5.1)

Equation (2.5.1) is nonlinear due to the presence of the nonlinear diffusion
coefficient. The first step is to linearize the system, which is done by adopting the
Taylor series expansion of the unknown solution. The resulting linear system is then
solved by using the Newton-Raphson method.
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Let U n be the initial guess and Un := U n + δun, where δun is the increment in
the solution vector. We rewrite (2.5.1) as

Mh

(
U n + δun − Un−1, vh

)
+�t Ah

(U n + δun + Un−1

2
; U

n + δun + Un−1

2
, vh

)

+�tBh

(U n + δun + Un−1

2
, vh

)
+�t Ch

(U n + δun + Un−1

2
, vh

)
=

�t
〈
fh

(U n + δun + Un−1

2

)
, vh

〉
.

Using Taylor’s expansion and neglecting the terms O(δund), d ≥ 2, the following
linear system of equations is obtained:

Jac δun = R, (2.5.2)

where, R and Jac are the residual force vector and the Jacobian matrix, respectively,
given by:

(R)i := �t
〈
fh

(U n + Un−1

2

)
, φi

〉
−Mh

(
U n − Un−1, φi

)
−

�t Ah

(U n + Un−1

2
; U

n + Un−1

2
, φi

)

−�tBh

(U n + Un−1

2
, φi

)
−�t Ch

(U n + Un−1

2
, φi

)
.

(2.5.3)

and the Jacobian matrix is given

(Jac)ij =Mh

(
φj , φi

)
+�t Ah

(U n + Un−1

2
; φj

2
, φi

)
+�t bh

(U n + Un−1

2
; φj

2
, φi

)

+�t Bh

(φj
2
, φi

)
+�t Ch

(φj
2
, φi

)
−

�t
〈
Duf

(
�0

k

U n + Un−1

2

)�0
kφj

2
, �0

kφi

〉
.

(2.5.4)
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The discrete form bh(; , ) is locally defined as

bh(zh;uh, vh)|K = bKh (zh;uh, vh) :=
∫
K

κu(�
0
kzh)�

0
kuh�

0
k−1,K∇zh ·�0

k−1,K∇vh

+ κu(�
0
0,Kzh)�

0
0,Kuh

Ndof
K∑
j=1

dofj (zh −�0
k,Kzh)dofj (vh −�0

k,Kvh).

(2.5.5)

and we write δun = ∑Ndof
j=1 dofj (δun)φj . Clearly, �0

0,K denotes constant L2

projection operator on polygon K and we introduce the column vector (δun)j =
dofj (δun). Equation (2.5.2) can be written in matrix form as

(
M+�t J1 +�t J2 + �t

2
B + �t

2
C − �t

2
FU n+Un−1

)
δun

= �t F−M(U n − Un−1)−�t A−�t (B + C )(U n + Un−1),

(2.5.6)

where

(J1)ij := Ah

(U n + Un−1

2
;φj , φi

)
, (2.5.7)

(J2)ij := bh

(U n + Un−1

2
; φj , φi

)
. (2.5.8)

(B)ij :=
∫
K

(b ·�0
k−1,K∇φj )�0

k,Kφi (2.5.9)

(C )ij :=
∫
K

�0
k,Kφj�

0
k,Kφi + SK((I −�0

k,K )φj , (I −�0
k,K )φi) (2.5.10)

(FU n+Un−1 )ij :=
∑
K∈�h

∫
K

fu(

Ndof
K∑
j=1

(
dofj (U n)+ dofj (Un−1)

2
)�0

k,Kφj )�
0
k,Kφj�

0
k,Kφi

(2.5.11)

(A)i := Ah

(U n + Un−1

2
; U

n + Un−1

2
, φi

)
(2.5.12)

(F)i :=
〈
fh

(U n + Un−1

2

)
, φi

〉
(2.5.13)

and M denotes the matrix representation corresponding to the discrete bilinear form
Mh(φi, φj ).
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For stationary case, the discrete scheme (c.f. (2.5.1)) is rewritten after ignoring the
transient term as: Find uh ∈H k

h such that

Ah(uh; uh, vh)+Bh(uh, vh)+ Ch(uh, vh) = Fuh(vh) ∀vh ∈H k
h . (2.5.14)

The nonlinear system of equation (2.5.14) can be solved using Newton-Raphson
method. Let ũh be the initial guess and the solution of the discrete scheme is uh =
ũh + δu. The increment in the solution vector, δu is computed by solving a linear
system of equations in a iterative process: Find δu ∈H k

h such that

Ah(ũh; δu, vh)+ bh(ũh; δu, vh)+Bh(δu, vh)+ Ch(δu, vh)

− 〈Duf (�
0
kũh)�

0
kδu,�

0
kvh〉 = 〈 f (�0

kũh),�
0
kvh 〉 −Ah(ũh; ũh, vh)

−Bh(ũh, vh)− Ch(ũh, vh) ∀vh ∈H k
h .

(2.5.15)

In matrix form, (2.5.15) can be written as:

Jac δu = R, (2.5.16)

where, Jac = [J1 + J2 +B + C − Fu] and R denotes the matrix representation
of the discrete bilinear form 〈 f (�0

kũh),�
0
kvh 〉 −Ah(ũh; ũh, vh) −Bh(ũh, vh) −

Ch(ũh, vh).

2.6 Implementation

In this section, we discuss the implementation of the VEM fundamental matrices
and the computation of different terms in the model problem (see (2.5.1)). In
particular, we focus on the lowest order implementation of the VEM for the
nonlinear system considered in this paper. With appropriate changes, the presented
code can be extended to higher order VEM and also to treat other types of non-
linearities that may arise. For the computation of the VEM fundamental matrices,
viz., B, D and G, we refer the reader to [12] for the theoretical explanation and
to [45] for the Matlab® code. In this section, we present a code to compute the
Jacobian matrix (c.f. (2.5.7)) and the right hand side force vector (c.f. (2.5.13)) in
Listings (2.1)–(2.2), respectively.

Listing 2.1 Computation of the Jacobian matrix
f u n c t i o n [ J1 , J2 ]= g e t J a c o b i a n ( coord , a0 , D, G, B , p h i s t r , $ \ l d o t s $
pix , p i y )
% p u r p o s e :
% t o compute t h e j a c o b i a n m a t r i x f o r t h e q u a s i l i n e a r
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% d i f f u s i o n term ,
% −\ nab la ( k ( u ) \ nab la u )
% i n p u t s :
% coord − c o o r d i n a t e s o f t h e c u r r e n t e l e m e n t
% D, G, B , − f u n d a m e n t a l VEM m a t r i c e s
% a0 − s o l u t i o n v e c t o r
% pix , p i y − g r a d i e n t o f t h e b a s i s f u n c t i o n
% o u t p u t s :
% J1 , J2 − J a c o b i a n m a t r i c e s .
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% number o f v e r t i c e s o f t h e c u r r e n t e l e m e n t
numVert = s i z e ( coord , 1 ) ;

% g e t t h e area o f t h e c u r r e n t e l e m e n t
area_com = coord ( : , 1 ) . ∗ coord ( [ 2 : end , 1 ] , 2 ) . . .
− coord ( [ 2 : end , 1 ] , 1 ) . ∗ coord ( : , 2 ) ;
Areap = 0 . 5 ∗ abs ( sum ( area_com ) ) ;
% g e t t h e g e o m e t r i c c e n t r o i d o f t h e e l e m e n t
c e n t r o i d = sum ( ( coord + coord ( [ 2 : end , 1 ] , : ) ) . ∗ . . .

r epmat ( area_com , 1 , 2 ) ) / ( 6 ∗ AreaP ) ;
% Compute t h e d i a m e t e r by l o o k i n g a t
% e v e r y p a i r o f v e r t i c e s
h_d = 0 ;
f o r i = 1 : ( numVer−1)

f o r j = ( i + 1 ) : numVer
h_d = max ( h_d , norm ( coord ( i , : ) − coord ( j , : ) ) ) ;

end
end

% g e t q u a d r a t u r e p o i n t s o v e r t h e t r i a n g l e
xw= T r i G a u s s P o i n t s ( 8 ) ;

% i n i t i a l i z e t h e m a t r i c e s . . .
NP= l e ng t h (xw ( : , 1 ) ) ;
Nw= z e r o s ( numVert , numVert ) ;
N= z e r o s ( numVert , numVert ) ;

% t h e s t a b i l i z a t i o n te rm
phidg =D∗ inv (G)∗B ;
I = eye ( numVert , numVert ) ;
s t r 2 =( I−phidg ) ’∗ ( I−phidg ) ;

f o r i =1 : numVert
i f i ~=numVert

xv =[ x ( i ) x ( i +1) x_d ] ;
yv =[ y ( i ) y ( i +1) y_d ] ;

e l s e
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xv =[ x ( n ) x ( 1 ) x_d ] ;
yv =[ y ( n ) y ( 1 ) y_d ] ;

end
xn=xv ( 1 ) ∗ ( ones (NP,1)−xw( : , 1 )−xw ( : , 2 ) ) + . . .

xv ( 2 )∗xw ( : , 1 ) + xv ( 3 )∗xw ( : , 2 ) ;
yn=yv ( 1 ) ∗ ( ones (NP,1)−xw( : , 1 )−xw ( : , 2 ) ) + . . .

yv ( 2 )∗xw ( : , 1 ) + yv ( 3 )∗xw ( : , 2 ) ;

% g e t t h e s c a l e d monomials
M=[ ones (NP , 1 ) ( xn−x_d∗ones (NP , 1 ) ) / h_d , . . .

( yn−y_d∗ones (NP , 1 ) ) / h_d ] ;
ZZ=M∗ p h i s t r ∗a0 ;

% t h e n o n l i n e a r d i f f u s i o n c o e f f i c i e n t
a11 = ( 1 . / ( ( 1 + ZZ ) . ∗ ( 1 + ZZ ) ) ) ;
a12 =1+ZZ ; a21=a12 ;
a22 = 1 + ( 1 . / ( 1 + ZZ .∗ZZ ) ) ;

mx=M( : , 1 ) ∗ p i x ; my=M( : , 1 ) ∗ p i y ;
Xw11= repmat ( ( xw ( : , 3 ) . ∗ a11 ) , 1 , numVert ) ;
Xw12= repmat ( ( xw ( : , 3 ) . ∗ a12 ) , 1 , numVert ) ;
Xw22= repmat ( ( xw ( : , 3 ) . ∗ a22 ) , 1 , numVert ) ;
N2=mx’∗ ( Xw11 .∗mx)+my ’∗ ( Xw22 .∗my ) + . . .

mx’∗ ( Xw12 .∗my)+my’∗ ( Xw12 .∗mx ) ;
Nw = Nw + Areap∗N2 ;

% t h e g r a d i e n t o f t h e n o n l i e n a r
% d i f f u s i o n c o e f f i c i e n t
a11u =−2.∗(1+ZZ ) . ∗ a11 .∗ a11 ;
a12u= ones (NP , 1 ) ; a21u=a12u ;
a22u =−2.∗ZZ . ∗ ( 1 . / ( 1 + ZZ .∗ZZ ) ) . ∗ ( 1 . / ( 1 + ZZ .∗ZZ ) ) ;

npx=mx∗a0 ; npy=my∗a0 ;
Xwx11= repmat ( ( xw ( : , 3 ) . ∗ a11u .∗ npx ) , 1 , numVert ) ;
Xwx22= repmat ( ( xw ( : , 3 ) . ∗ a22u .∗ npy ) , 1 , numVert ) ;
Xwx12= repmat ( ( xw ( : , 3 ) . ∗ a12u .∗ npx ) , 1 , numVert ) ;
Xwx21= repmat ( ( xw ( : , 3 ) . ∗ a21u .∗ npy ) , 1 , numVert ) ;

Mp=M∗ p h i s t r ;
N3=mx’∗ ( Xwx11 .∗Mp)+my’∗ ( Xwx22 .∗Mp ) + . . .

my ’∗ ( Xwx21 .∗Mp)+my’∗ ( Xwx12 .∗Mp ) ;
N = N + Areap∗N3 ;

end
ml =(sum ( a0 ) / numVert ) ;
ml1 = 1 / ( 1 + ml ) ; ml2=ml1∗ml1 ; ml3 =1+1/ (1+ml∗ml ) ;
dup0pro =(−2∗(1+ml ) / ( ( 1 + ml ) ^ 4 ) ) + (−2 )∗ml / ( ( 1 + ml∗ml ) ^ 2 ) ;
A0=a0 ’∗ ( I−phidg ) ; xx = ( 1 / numVert )∗ ones ( s i z e ( a0 ’ ) ) ;
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A1=xx ∗ ( I−phidg ) ;

% t h e j a c o b i a n f o r t h e q u a s i l i n e a r d i f f u s i o n te rm
J1 = Nw+( ml2+ml3 )∗ s t r 2 ;
J2 = N+ dup0pro ∗ (A1’∗A0 ) ;
end

Listing 2.2 Computation of the right hand side force vector

f u n c t i o n [ F ]= getRHS ( coord , a l p h a k )
% i n p u t s :
% coord − c o o r d i n a t e s o f t h e c u r r e n t e l e m e n t
% a lp h a k − v e c t e x v a l u e (DoF)
% o u t p u t s :
% F − r h s v e c t o r
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x = c o o r d ( : , 1 ) ; y = co o r d ( : , 2 ) ;
numVert= s i z e ( coord , 1 ) ;

% g e t t h e f u n d a m e n t a l m a t r i c e s . . .
[D, B , G,H] = getVEM_matr ices ( co o rd ) ;

C=H∗ inv (G)∗B ;
p h i s t a r = inv (H)∗C ;

% g e t t h e d ia me te r , area o f t h e e l e m e n t and t h e c e n t r o i d
[ h_d , AreaP , x_d , y_d ] = g e tDiam _ area ( co o rd ) ;

xw= T r i G a u s s P o i n t s ( 8 ) ; % g e t t h e i n t e g r a t i o n p o i n t s

% i n i t i a l i z e t h e f o r c e m a t r i x
F= z e r o s ( numVert , numVert ) ;

f o r r =1 : numVert
f o r s =1 : numVert

f f 1 =0 ;
f o r i =1 : numVert

i f i ~=numVert
xv =[ x ( i ) x ( i +1) x_d ] ;
yv =[ y ( i ) y ( i +1) y_d ] ;

e l s e
xv =[ x ( numVert ) x ( 1 ) x_d ] ;
yv =[ y ( numVert ) y ( 1 ) y_d ] ;

end
z1 =0 ;
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% lo o p o v e r g a u ss p o i n t s
f o r j =1 : s i z e ( xw , 1 )

xn=xv (1)∗(1−xw( j ,1)−xw( j , 2 ) ) + . . .
xv ( 2 )∗xw( j , 1 ) + xv ( 3 )∗xw( j , 2 ) ;

yn=yv (1)∗(1−xw( j ,1)−xw( j , 2 ) ) + . . .
yv ( 2 )∗xw( j , 1 ) + yv ( 3 )∗xw( j , 2 ) ;

x v l =( xn−x_d ) / h_d ; y v l =( yn−y_d ) / h_d ;
prdd1= p h i s t a r ( 1 , r )∗1+ p h i s t a r ( 2 , r )∗ x v l ;
p rdd2= p h i s t a r ( 3 , r )∗ y v l ;

p rd1 =prdd1+ prdd2 ;
p rde1= p h i s t a r ( 1 , s )∗1+ p h i s t a r ( 2 , s )∗ x v l ;
p rde2= p h i s t a r ( 3 , s )∗ y v l ;

% f v e c −
z1 = z1 + f v e c ∗prd1 ∗ prd2∗xw( j , 3 ) ;

end
f f 1 = f f 1 + AreaP∗z1 ;

end
F ( r , s )= f f 1 ;

end
end

Next, we will present two worked examples in which we compute the VEM
fundamental matrices B, D and G for a 4-noded quadrilateral element and a
pentagon. The coordinates of the elements are given in Fig. 2.2. Further, we have
chosen scalar valued convection coefficients as b = [2 3]1×2 and the reaction
coefficient c = 1 and the Jacobian is computed at the first step, with an initial
guess U0 = [0]

Ndof
K ×1

.

Fig. 2.2 A quadrilateral and
a pentagon, where Vi are the
coordinates of the element

(a) (b)
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Square For a square consider the following coordinates: V 1(0, 0), V 2(0.1039, 0),
V 3(0.1062, 0.1102), V 4(0, 0.1169). The VEM fundamental matrices for a square
are given by:

B =
⎡
⎢⎣

0.2500 0.2500 0.2500 0.2500
−0.3700 0.3490 0.3700 −0.3490
−0.3290 −0.3363 0.3290 0.3363

⎤
⎥⎦ G =

⎡
⎢⎣

1.0000 0.0032 −0.0015
0 0.4785 0
0 0 0.4785

⎤
⎥⎦

D =

⎡
⎢⎢⎢⎣

1.0000 −0.3295 −0.3610
1.0000 0.3285 −0.3610
1.0000 0.3432 0.3371
1.0000 −0.3295 0.3790

⎤
⎥⎥⎥⎦

The quasi-linear, reaction and convection term is given by:

J1 =

⎡
⎢⎢⎣

1.9710 −0.5537 −0.4979 −0.9195
−0.5537 1.0485 −1.0070 0.5121
−0.4979 −1.0070 2.0247 −0.5199
−0.9195 0.5121 −0.5199 0.9272

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣
−0.0686 −0.0123 0.0686 0.0123
−0.0673 −0.0121 0.0673 0.0121
−0.0678 −0.0122 0.0678 0.0122
−0.0691 −0.0124 0.0691 0.0124

⎤
⎥⎥⎦

C =

⎡
⎢⎢⎣

0.0041 −0.0023 0.0032 −0.0021
−0.0023 0.0045 −0.0024 0.0032
0.0032 −0.0024 0.0043 −0.0022
−0.0021 0.0032 −0.0022 0.0040

⎤
⎥⎥⎦ J2 =

[
0
]

4×4

Pentagon For the pentagon shown in Fig. 2.2b, the coordinates are: V 1(0.2163, 0),
V 2(0.3373, 0), V 3(0.3375, 0.0884), V 4(0.2599, 0.1205) and V 5(0.2180, 0.0877).
The VEM fundamental matrices are given by:

B =
⎡
⎣ 0.2000 0.2000 0.2000 0.2000 0.2000
−0.2565 0.2586 0.3524 −0.0021 −0.3524
−0.3490 −0.3547 0.2265 0.3497 0.1275

⎤
⎦

G =
⎡
⎣1.0000 −0.0158 0.0401

0 0.4291 0
0 0 0.4291

⎤
⎦
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D =

⎡
⎢⎢⎢⎢⎢⎣

1.0000 −0.3523 −0.3069
1.0000 0.3558 −0.3069
1.0000 0.3571 0.2104
1.0000 −0.0972 0.3980
1.0000 −0.3423 0.2062

⎤
⎥⎥⎥⎥⎥⎦

The quasi-linear, reaction and convection term is given by:

J1 =

⎡
⎢⎢⎢⎢⎢⎣

1.9287 −0.2951 −0.3340 −0.5991 −0.7005
−0.2951 1.1663 −1.3093 0.0099 0.4282
−0.3340 −1.3093 2.2161 −0.2445 −0.3283
−0.5991 0.0099 −0.2445 2.0625 −1.2288
−0.7005 0.4282 −0.3283 −1.2288 1.8295

⎤
⎥⎥⎥⎥⎥⎦

J2 =
[
0
]

5×5

B =

⎡
⎢⎢⎢⎢⎢⎣

−0.0595 −0.0209 0.0528 0.0399 −0.0123
−0.0647 −0.0227 0.0574 0.0433 −0.0134
−0.0511 −0.0179 0.0454 0.0342 −0.0106
−0.0446 −0.0156 0.0396 0.0299 −0.0092
−0.0467 −0.0164 0.0414 0.0313 −0.0096

⎤
⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎣

0.0044 −0.0022 0.0029 0.0009 −0.0032
−0.0022 0.0048 −0.0035 0.0018 0.0022
0.0029 −0.0035 0.0064 −0.0032 −0.0002
0.0009 0.0018 −0.0032 0.0069 −0.0043
−0.0032 0.0022 −0.0002 −0.0043 0.0077

⎤
⎥⎥⎥⎥⎥⎦

Remark 2.3 We have computed the Jacobian with the initial guess as column
vector containing zeros. Initially, J2 contains zeros but after few iterations, J2
matrix contains significant digits. Therefore, neglecting J2 could severely affect the
convergence of the scheme and consequently, numerical solution. We would also
like to highlight that J2 depends on initial guess of the solution Un

0 .

2.7 Numerical Examples

This section is dedicated to demonstrate the robustness of the VEM to handle
polygonal meshes and to discuss the convergence properties in spatial and temporal
variables. The optimal order of convergence of the numerical solution in the L2 and
H 1 norms are demonstrated. First, we examine quasilinear elliptic problem and later
we extend the discussion for quasi linear parabolic problem.

For the numerical studies, four different types of meshes are employed, viz.,
distorted square, non-convex polygons, regular polygons and smoothed Voronoi, see
Fig. 2.3 for a representative mesh for each category. Since uh is defined implicitly,



84 D. Adak et al.

Fig. 2.3 Domain discretized with different discretizations. (a) Distorted square. (b) Non-convex
polygons. (c) Regular polygons. (d) Smoothed voronoï

in order to evaluate error numerically, we borrow the idea form [19]. The errors eh,0
and eh,1 are defined as

• L2-norm error : eh,0 =
√ ∑

K∈Th

‖u−�0
k,Kuh‖2

L2(K)
,

• H 1-norm error : eh,1 =
√ ∑

K∈Th

‖∇(u−�∇k,Kuh)‖2
L2(K)

.

Furthermore, rh,0 and rh,1 denote rate of convergence in L2-norm and H 1 semi-
norm.



2 VEM for Nonlinear Problems 85

Table 2.1 Mesh parameters with degrees of freedom (Dof) and number of elements (NE )

Distorted squares Regular polygons Smoothed voronoi Non-convex

h Dof NE Dof NE Dof NE Dof NE

1/5 64 49 862 430 162 80 1201 400

1/10 225 196 3322 1660 601 300 4801 1600

1/20 841 784 13042 6520 2599 1300 19201 6400

1/40 3249 3136 51682 25840 9998 5000 76801 25600

1/80 11236 11025 205762 102800 47959 24000 307201 102400

The virtual element approximation of orders k = 1,2 and 3 are performed on four
different types of meshes; Fig. 2.3 shows a schematic of different types of meshes
employed in this study, viz., namely distorted squares, regular hexagons, random
polygons and non-convex polygons. The Newton method with tolerance 10−12 was
employed to solve the resulting nonlinear system. The size of the element is kept
the same for all the meshes, this leads to different number of elements (NE) and
degrees of freedom (Dof) for the meshes considered in this study. Table 2.1, presents
the mesh size (h) and the corresponding Dof for distorted square, hexagons, non-
convex and Smoothed voronoi meshes.

Example 1
Consider the quasi-linear elliptic problem, (2.2.1), but without the convection term
and the reaction term. In this problem, we choose the polynomial exact solution as
u(x, y) = x (x − 1)2 y (y − 1)2 and a non-constant coefficient as:

κ(u) :=
⎡
⎢⎣

1

( 1+ u )2 1+ u

1+ u 1+ 1

( 1+ u2 )

⎤
⎥⎦ .

The convergence of the error in the L2 norm and H 1 seminorm is shown in Figs. 2.4,
2.5 for distorted squares, regular polygons and smoothed Voronoi and non-convex
meshes, respectively. The results are presented for different orders, viz., k = 1, 2
and 3. It can be inferred that the results from the present framework based on the
VEM yields accurate results and converges with optimal convergence rates as the
mesh is refined. Further, we would like to highlight that one can use backward Euler
scheme for the time discretization, which converges in first order. Therefore, very
small values of �t will be demanded to achieve optimal order of convergence in
spatial direction.

Example 2
Next, we consider the model problem with the transient term. The exact solution was
chosen as u(x, y, t) = exp(t) x (x − 1)2 y (y − 1)2. The coefficient parameters and
computational domain are same as previous example,i.e. unit square and the time
interval is chosen as t ∈ (0, 1] with T = 1. In this case, the domain is discretized
with distorted square and non-convex elements. For spatial discretization, we



86 D. Adak et al.

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

Mesh size

 L
2  E

rr
or

s

k=1
k=2
k=3
slope=2
slope=3
slope = 4

(a) 2 errors

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Mesh size

 H
1  E

rr
or

s

k=1
k=2
k=3
slope=1
slope=2
slope =3

(b) 1 errors

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Mesh size

 L
2  E

rr
or

s

k=1
k=2
k=3
slope=2
slope=3
slope = 4

(c) 2 errors

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Mesh size

 H
1  E

rr
or

s

k=1
k=2
k=3
slope=1
slope=2
slope =3

(d) 1 errors

Fig. 2.4 Convergence of the error in the L2 and H 1 for (a,b) Distorted squares and (c,d) Regular
polygons for k = 1, 2 and 3

employ the VEM orders k = 1, 2 and 3 and for the temporal, we adopt the Crank-
Nicholson scheme, which is unconditionally stable, with �t = O(hk+1). The
Crank-Nicolson scheme is second order convergence hence the solution converges
faster than backward Euler scheme. The nonlinear equations were solved using the
Newton’s method with a tolerance 10−12. The convergence of the error inL2 andH 1

norm with mesh size for two different type of discretization is depicted in Tables 2.2,
2.3, 2.4 at final time T = 1. The rate of convergence (roc) is also shown in the table.
It can be inferred that the present framework yields accurate results and converges
with an optimal rate in both L2 and H 1 norms for both the meshes.

Example 3
In this example, we consider the following semilinear problem:

∂u

∂t
−�u = (u− u2)+ g(x, t) on �× T (2.7.1)
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Fig. 2.5 Convergence of the error in the L2 and H 1 for (a,b) Smoothed Voronoi and (c,d) Non-
convex poylgons for k = 1, 2 and 3

Table 2.2 k=1: Convergence of the errors in L2 and H 1 norm for the transient problem. The rate
of convergence (roc) is also given

Distorted square Non-convex mesh

h L2 error roc H 1 error roc L2 error roc H 1 error roc

1/4 2.1596×10−3 – 3.7899×10−2 – 2.2615×10−3 – 4.0376×10−2 –

1/8 5.7290×10−4 1.91 1.9323×10−2 0.97 6.0861×10−4 1.89 1.9914×10−2 1.01

1/16 1.5056×10−4 1.92 9.8291×10−3 0.97 1.5639×10−4 1.96 9.8289×10−3 1.01

1/32 3.7716×10−5 1.99 4.9410×10−3 0.99 3.9537×10−5 1.98 4.8746×10−3 1.01

over a square domain � = [0, 1]2 and time, T = (0, 1] and g(x, t) is chosen such
that u(x, t) = et sin(πx) sin(πy) is the exact solution to the problem. In this case,
the nonlinearity is only on the right hand size forcing term and for the numerical
study the domain is discretized only with polygonal meshes. Tables 2.5, 2.6, 2.7
shows the convergence of the error in the L2 and H 1 norm with mesh refinement.
It is inferred that the present framework yields optimal rate of convergence in the
respective norms.
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Table 2.3 k=2: Convergence of the errors in L2 norm and H 1 semi-norm for the transient
problem. The rate of convergence (roc) is also given

Distorted square Non-convex mesh

h L2 error roc H 1 error roc L2 error roc H 1 error roc

1/4 1.0350×10−4 – 5.3891×10−3 – 1.1662×10−4 – 6.1972×10−3 –

1/8 1.4096×10−5 2.87 1.4347×10−3 1.90 1.4073×10−5 3.05 1.5782×10−03 1.97

1/16 1.8461×10−6 2.93 3.6961×10−4 1.95 1.6931×10−6 3.05 3.9464×10−4 1.99

1/32 2.3377×10−7 2.99 9.3103×10−5 1.99 2.1153×10−7 3.01 9.8760×10−5 1.99

Table 2.4 k=3: Convergence of the errors in L2 norm and H 1 semi-norm for the transient
problem. The rate of convergence (roc) is also given

Distorted square Non-convex mesh

h L2 error roc H 1 error roc L2 error roc H 1 error roc

1/4 8.412×10−6 – 5.8018×10−4 – 1.3841×10−5 – 6.6240×10−4 –

1/8 5.6470×10−7 3.89 7.6407×10−5 2.92 8.0998×10−7 4.09 7.9991×10−5 3.04

1/16 3.5387×10−8 3.99 9.5650×10−6 2.99 5.0149×10−8 4.02 9.7130×10−6 3.04

Table 2.5 k=1: Convergence
of the errors in L2 norm and
H 1 semi-norm for Eq. (2.7.1).
The rate of convergence (roc)
is also given

h L2 error roc H 1 error roc

1/5 2.5421×10−3 – 1.1388×10−2 –

1/10 5.9296×10−4 2.10 5.5768×10−3 1.03

1/20 1.4319×10−4 2.05 2.8667×10−3 0.96

1/40 3.6046×10−5 1.99 1.4234×10−3 1.01

1/80 8.9492×10−6 2.01 7.0190×10−4 1.02

Table 2.6 k=2: Convergence
of the errors in L2 norm and
H 1 semi-norm for Eq. (2.7.1).
The rate of convergence (roc)
is also given

h L2 error roc H 1 error roc

1/5 9.6422×10−4 – 6.4534×10−2 –

1/10 1.3072×10−4 2.88 1.6937×10−2 1.92

1/20 1.4279×10−5 3.19 3.8228×10−3 2.14

1/40 1.7742×10−6 3.01 9.4151×10−4 2.01

1/80 2.1375×10−7 3.04 2.3145×10−4 2.02

Table 2.7 k=3: Convergence
of the errors in L2 norm and
H 1 semi-norm for Eq. (2.7.1).
The rate of convergence (roc)
is also given

h L2 error roc H 1 error roc

1/5 4.1565×10−5 – 3.3546×10−3 –

1/10 2.6784×10−6 3.95 4.3964×10−4 2.93

1/20 1.6547×10−7 4.02 5.3857×10−5 3.03

Example 4
In this example, we would like to show the rate of convergence in time variable.
The nonlinear coefficient κ(u) is chosen as 1/(1+ u)2 and reaction and convection
coefficient chosen as zero. The right hand side force function f is computed by
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Table 2.8 Results are
computed on smoothed
Voronoi mesh for linear VEM
space with mesh size,
h = 1/80

�t L2 error roc

1/2 1.501×10−02 -

1/4 3.762×10−03 1.99

1/8 9.431×10−04 1.87

1/16 2.311×10−04 1.97

considering u = exp(t) (x − x2)(y− y2) as exact solution of (2.2.2). The errors are
computed using the formula

e0,T ,h,0 :=
⎛
⎝�t

NT∑
n=1

⎛
⎝ ∑

K∈�h

‖u(tn)−�0
k,KU

n‖2

⎞
⎠
⎞
⎠

1/2

, (2.7.2)

for time step �t = 1/2, 1/4, 1/8, 1/16 with fixed mesh size h = 1/80. The posted
rate of convergence is ≈ 2 that is optimal rate of convergence for Crank-Nicolson
scheme (Table 2.8).

2.8 Conclusion

In this chapter, we have presented the details of the implementation the virtual
element method for nonlinear elliptic and parabolic equations over polytopes. The
chapter also includes Matlab® codes to compute the VEM fundamental matrices
and the Jacobian matrix that results from the linearization of the model problem.
To the best of authors’ knowledge, this is the first open source implementation of
the VEM for nonlinear problems. Although, the code given in this chapter is for the
lowest order (i.e., k = 1) VEM, the code can be generalized for higher order VEM.
Interested readers can download the codes from https://github.com/nsundar/vem.
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Chapter 3
Discrete Hessian Complexes in Three
Dimensions

Long Chen and Xuehai Huang

Abstract A family of conforming virtual element Hessian complexes on tetrahe-
dral meshes are constructed based on decompositions of polynomial tensor spaces.
They are applied to discretize the linearized time-independent Einstein-Bianchi
system with optimal order convergence.

3.1 Introduction

Let � be a bounded Lipschitz domain in R
3. The Hessian complex, also known as

grad-grad complex, in three dimensions reads as [6, 41]

P1(�)
⊂−→ H 2(�)

hess−−→ H (curl,�; S) curl−−→ H (div,�;T) div−→ L2(�;R3) −→ 0,

where P1(�) is the linear polynomial space, H 2(�) and L2(�;R3) are standard
Sobolev spaces, H (curl,�; S) is the space of symmetric matrices whose curl is
in L2(�;T), and H (div,�;T) is the space of trace-free matrices whose div is
in L2(�;R3). Here both curl and div are applied to matrices row-wisely. Given
a tetrahedral mesh of domain �, we shall construct discrete Hessian complexes
with conforming virtual element spaces and apply to solve the linearized Einstein-
Bianchi (EB) system [42].

Finding finite elements with continuous derivatives (the so-called C1 element),
symmetry, or trace-free leads to higher number of degrees of freedom. To avoid this
issue, Arnold and Quenneville-Belair [42] use multipliers to impose the weak H 2-
conforming and weak symmetry and obtain an optimal order discretization of the EB
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system. In [32] Hu and Liang construct the first finite element Hessian complexes
in three dimensions. The lowest order complex starts with the P9 C 1-element
constructed in [46] and consists of P7 for H (curl,�; S) and P6 for H (div,�;T),
where Pk stands for the polynomail space of degree k. Although the practical
significance may be limited due to the high polynomial degree of the elements,
the work [32] is the first construction of conforming discrete Hessian complexes
consisting of finite element spaces in R

3, and it motivates us to the development of
simpler methods.

We shall use ideas of virtual element methods (VEMs) to construct discrete
Hessian complexes with fewer degrees of freedom. The virtual element developed
in [9, 10] is a generalization of the finite element on tensorial/simplicial meshes to
a general polyhedral mesh and can be also thought of as a variational framework
for the mimetic finite difference methods [18, 36]. Compared with the standard
finite element methods mainly working on tensorial/simplicial meshes, VEMs have
a variety of distinct advantages. The VEMs are, foremost, highly adaptable to the
polygonal/polyhedral, and even anisotropic quadrilateral/hexahedral meshes. For
problems with complex geometries, this leads to great convenience in the mesh
generation, e.g., discrete fracture network simulations [15], and the elliptic interface
problems in three dimensions [26]. Another trait of VEMs is its astoundingly
painless construction of smooth elements for high-order elliptic problems. For
instance, H 2-conforming VEMs have been constructed in [3, 13, 17] which shows a
simple and elegant construction readily to be implemented. A uniform construction
of the Hm-nonconforming virtual elements of any order k and m on any shape of
polytopes in R

n with constraint k ≥ m has been developed in [24, 33]. One more
merit is that the virtual element space can be devised to be structure preserving, such
as the harmonic VEM [27, 37] and the divergence-free Stokes VEMs [12, 45]. VEMs
for de Rham complex [11] and Stokes complexes [14] have been also constructed
recently.

In the construction of the VEM spaces, the subtlest and a key component is the
well-posedness of a local problem with non-zero Dirichlet boundary conditions.
Take an H 2-conforming VEM space as an example. Given data (f, g1, g2), consider
the biharmonic equation with Dirichlet boundary condition on a polyhedron K

�2v = f in K, v = g1, ∂nv = g2 on ∂K. (3.1.1)

When g1 = g2 = 0, the existence and uniqueness is a consequence of the Lax-
Milligram lemma on H 2

0 (K). The classical way to deal with the non-zero Dirichlet
boundary condition (g1, g2) is to find a lifting vb ∈ H 2(K) with vb = g1, ∂nv

b =
g2 and change (3.1.1) to the homogenous boundary condition with modified source
f − �2vb . Such lifting is guaranteed by trace theorems of Sobolev spaces which
is usually established for smooth domains. For polyhedral domains, however,
compatible conditions [20] are needed. Although the traces g1 and g2 are defined
piece-wisely on each face F of K , for H 2-functions, (g2|FnF +∇F (g1|F )) |e
should be single-valued across each edge e of the polyhedron K , for F containing
edge e. That is g1 and g2 cannot be chosen independently.
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For vector function spaces, characterization of the trace spaces and correspond-
ing compatible conditions is harder as tangential and normal components of the
trace should be treated differently. We refer to [14, Appendix A] for the discussion
of the well-posedness of the biharmonic problem of vector functions with a non-
homogeneous boundary conditions, and refer to [19] and references therein for the
trace of H(curl,�), where variants of space H 1/2(∂�) are introduced. Specifically
a lifting for the trace of a function in H(curl,�) on a Lipschitz domain is explicitly
constructed in [44] which is highly non-trivial.

We are not able to characterize the trace space of H (curl,�; S) and thus cannot
follow the classical approach of VEM to define the shape function space using
local problems. Instead we still consider tetrahedron element K and combine
finite element and virtual element spaces. We first establish a polynomial Hessian
complex and corresponding Koszul complex, which leads to the decomposition

Pk(K; S) = ∇2
Pk+2(K)⊕ sym(Pk−1(K;T)× x) k ≥ 1.

Based on this decomposition, we can construct a virtual element space

�(K) = ∇2W(K)⊕ sym(V (K)× x),

where W(K) is an H 2-conforming VEM space and V (K) = Pk−1(K;T) is an
H(div)-conforming finite element space. Degrees of freedom for �(K) are carefully
chosen so that the resulting global space �h is H(curl)-conforming and its L2-
projection to Pk(S) is computable. Our construction is different from the approach
in [32] for constructing a finite element Hessian complex, where characterization of
polynomial bubble functions is crucial.

Our H 2-conforming virtual element W(K) is slightly different from those
constructed in [3, 13, 17]. Again we take the advantage of K being a tetrahedron
to construct an element so that when restricted to each face, v|F ∈ Pk+2(F ) is an
Argyris element [4, 16] and (∂nv)|F ∈ Pk+1(F ) is a Hermite element [28].

The H (div,�;T) finite element V (K) = Pk−1(K;T) is a variant of finite
element spaces constructed in [32] for k ≥ 3. The space Q(K) = Pk−2(K;R3).

The four local spaces (W(K),�(K),V (K),Q(K)) will contain polynomial
spaces (Pk+2,Pk,Pk−1,Pk−2) with 2k(k−1) non-polynomial shape functions added
in W(K) and �(K) with k ≥ 3. For the lowest order case, i.e., k = 3, the
dimensions are (68, 132, 80, 12) which are more tractable for implementation.

We show the constructed discrete spaces form a discrete Hessian complex

P1(�)
⊂−→ Wh

∇2−→ �h
curl−−→ V h

div−→ Qh −→ 0.

Optimal order discretization of the linearized EB system is obtained consequently.
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During the construction, integration by parts is indispensable and therefore the
dual complex: div-div complex as well as its polynomial versions are also presented.
Finite elements for div-div complex are recently constructed in [22, 23].

The rest of this paper is organized as follows. Some matrix and vector operations
are shown in Sect. 3.2. In Sect. 3.3 Hessian complex and divdiv complex are
presented. Several polynomial complexes are explored in Sect. 3.4. A family
of conforming virtual element Hessian complexes are constructed in Sect. 3.5.
In Sect. 3.6, the conforming virtual element Hessian complexes are adopted to
discretize the linearized EB system.

3.2 Matrix and Vector Operations

In this section, we shall survey the notation system for operations for vectors and
tensors used in the solid mechanic [34]. In particular, we shall distinguish operators
applied to columns and rows of a matrix. The presentation here follows our recent
work [23, 25].

3.2.1 Matrix-Vector Products

The matrix-vector product Ab can be interpreted as the inner product of b with the
row vectors of A. We thus define the dot operator A · b := Ab. Similarly we can
define the row-wise cross product from the right A × b. Here rigorously speaking
when a column vector b is treated as a row vector, notation bᵀ should be used. In
most places, however, we will sacrifice this precision for the ease of notation. When
the vector is on the left of the matrix, the operation is defined column-wise. For
example, b ·A := bᵀA. For dot products, we will still mainly use the conventional
notation, e.g. b ·A · c = bᵀAc. But for the cross products, we emphasize again the
cross product of a vector from the left is column-wise and from the right is row-
wise. The transpose rule still works, i.e. b×A = −(Aᵀ × b)ᵀ. Here again, we mix
the usage of column vector b and row vector bᵀ.

The ordering of performing the row and column products does not matter which
leads to the associative rule of the triple products

b ×A× c := (b ×A)× c = b × (A× c).

Similar rules hold for b · A · c and b · A × c and thus parentheses can be safely
skipped when no differentiation is involved.
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For two column vectors u, v, the tensor product u⊗ v := uvᵀ is a matrix which
is also known as the dyadic product uv := uvᵀ with more clean notation (one ᵀ is
skipped). The row-wise product and column-wise product with another vector will
be applied to the neighboring vector:

x · (uv) = (x · u)vᵀ, (uv) · x = u(v · x),
x × (uv) = (x × u)v, (uv)× x = u(v × x).

3.2.2 Differentiation

We treat Hamilton operator ∇ = (∂1, ∂2, ∂3)
ᵀ as a column vector. For a vector

function u = (u1, u2, u3)
ᵀ, curl u = ∇ × u, and div u = ∇ · u are standard

differential operations. Define ∇u := ∇uᵀ = (∂iuj ), which can be understood
as the dyadic product of Hamilton operator ∇ and column vector u.

Apply these matrix-vector operations to the Hamilton operator ∇, we get
column-wise differentiation∇·A,∇×A, and row-wise differentiation A·∇,A×∇.
Conventionally, the differentiation is applied to the function after the ∇ symbol. So
a more conventional notation is

A · ∇ := (∇ ·Aᵀ)ᵀ, A×∇ := −(∇ ×Aᵀ)ᵀ.

By moving the differential operator to the right, the notation is simplified and the
transpose rule for matrix-vector products can be formally used. Again the right most
column vector ∇ is treated as a row vector ∇ᵀ to make the notation cleaner.

In the literature, differential operators are usually applied row-wisely to tensors.
To distinguish with ∇ notation, we define operators in letters which are applied
row-wisely

grad u := u∇ᵀ = (∂jui) = (∇u)ᵀ,

curl A := −A×∇ = (∇ ×Aᵀ)ᵀ,

div A := A · ∇ = (∇ ·Aᵀ)ᵀ.

3.2.3 Matrix Decompositions

Denote the space of all 3× 3 matrices by M, all symmetric 3× 3 matrices by S, all
skew-symmetric 3×3 matrices by K, and all trace-free 3×3 matrices by T. For any
matrix B ∈ M, we can decompose it into symmetric and skew-symmetric parts as

B = sym(B)+ skw(B) := 1

2
(B + Bᵀ)+ 1

2
(B − Bᵀ).
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We can also decompose it into a direct sum of a trace free matrix and a diagonal
matrix as

B = devB + 1

3
tr(B)I := (B − 1

3
tr(B)I )+ 1

3
tr(B)I .

Define the sym curl operator for a matrix A

sym curl A := 1

2
(∇ ×Aᵀ + (∇ ×Aᵀ)ᵀ) = 1

2
(∇ ×Aᵀ −A× ∇).

We define an isomorphism of R3 and the space of skew-symmetric matrices K as
follows: for a vector ω = (ω1, ω2, ω3)

ᵀ ∈ R
3,

mskw ω :=
⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ .

Obviously mskw : R3 → K is a bijection. We define vskw : M → R
3 by vskw :=

mskw−1 ◦ skw.
We will use the following identities which can be verified by direct calculation.

skw(grad u) = 1

2
mskw(curl u), (3.2.1)

skw(curlA) = 1

2
mskw

[
div(Aᵀ)− grad(tr(A))

]
,

div mskw u = − curlu,

2 div vskw A = tr curl A, (3.2.2)

curl(uI ) = −mskw grad(u).

More identities involving the matrix operation and differentiation are summarized
in [6]; see also [23, 25].

3.2.4 Projections to a Plane

Given a plane F with normal vector n, for a vector v ∈ R
3, we have the orthogonal

decomposition

v = �nv +�F v := (v · n)n+ (n× v)× n.

The matrix representation of �n is nnᵀ and �F = I − nnᵀ. The vector �⊥F v :=
n×v is also on the plane F and is a rotation of �F v by 90◦ counter-clockwise with



3 Discrete Hessian Complexes in Three Dimensions 99

respect to n. We treat Hamilton operator ∇ = (∂1, ∂2, ∂3)
ᵀ as a column vector and

define

∇⊥F := n×∇, ∇F := �F∇ = −n× (n× ∇).

For a scalar function v,

gradF v := ∇F v = �F (∇v),
curlF v := ∇⊥F v = n× ∇v,

are the surface gradient and surface curl of v, respectively. For a vector function v,
∇F · v is the surface divergence

divF v := ∇F · v = ∇F · (�F v).

By the cyclic invariance of the mix product and the fact n is constant, the surface
rot operator is

rotF v := ∇⊥F · v = (n×∇) · v = n · (∇ × v),

which is the normal component of ∇ × v. The tangential trace of ∇ × v is

n× (∇ × v) = ∇(n · v)− ∂nv.

By definition,

rotF v = − divF (n× v), divF v = rotF (n× v).

Note that the three dimensional curl operator restricted to a two dimensional plane
F results in two operators: curlF maps a scalar to a vector, which is a rotation
of gradF , and rotF maps a vector to a scalar which can be thought as a rotated
version of divF . The surface differentiations satisfy the property divF curlF = 0
and rotF gradF = 0 and when F is simply connected, ker(divF ) = img(curlF ) and
ker(rotF ) = img(gradF ).

Differentiation for two dimensional tensors on face F can be defined similarly.

3.3 Two Hilbert Complexes for Tensors

In this section we shall present two Hilbert complexes for tensors: the Hessian
complex and the divdiv complex. They are dual to each other. The Hessian complex
will be used for the construction of shape function spaces and the divdiv complex
for the degrees of freedom.
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Recall that a Hilbert complex is a sequence of Hilbert spaces {Vi} connected by
a sequence of closed densely defined linear operators { di}

0 −→ V1
d1−→ V2

d2−→ · · · dn−2−→ Vn−1
dn−1−→ Vn −→ 0,

satisfying the property img( di ) ⊆ ker( di+1), i.e., di+1 ◦ di = 0. In this paper, we
shall consider domain complexes only, i.e., dom( di) = Vi . The complex is called
an exact sequence if img( di ) = ker( di+1) for i = 1, . . . , n. We usually skip the
first 0 in the complex and use the embedding operator to indicate d1 is injective. We
refer to [5] for background on Hilbert complexes.

3.3.1 Hessian Complexes

The Hessian complex in three dimensions reads as [6, 41]

P1(�)
⊂−→ H 2(�)

hess−−→ H (curl,�; S) curl−−→ H (div,�;T) div−→ L2(�;R3) −→ 0.
(3.3.1)

For the completeness we shall prove the exactness following [41] and refer to [6]
for a systematical way of deriving complexes from complexes.

Lemma 3.1 Assume � is a bounded Lipschitz domain in R
3. It holds

div H 1(�;T) = L2(�;R3). (3.3.2)

Proof First consider v = ∇w ∈ L2(�;R3) with w ∈ H 1(�). There exists φ ∈
H 2(�;R3) satisfying 2 div φ = −3w. Take τ = wI + curl mskw φ ∈ H 1(�;M).
It is obvious that div τ = div(wI ) = v. It follows from (3.2.2) that

tr τ = 3w + tr curl mskw φ = 3w + 2 div vskw mskw φ = 3w + 2 div φ = 0.

Next consider general v ∈ L2(�;R3). There exists τ 1 ∈ H 1(�;M) satisfying
div τ 1 = v. Then there exists τ 2 ∈ H 1(�;T) satisfying div τ 2 = 1

3∇(tr τ 1). Now
take τ = dev τ 1 + τ 2 ∈ H 1(�;T). We have

div τ = div(dev τ 1)+ div τ 2 = div(dev τ 1)+ 1

3
∇(tr τ 1) = div τ 1 = v.

Thus (3.3.2) follows. ��
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Lemma 3.2 Assume � is a bounded and topologically trivial Lipschitz domain in
R

3. It holds

curl H 1(�; S) = H (div,�;T) ∩ ker(div). (3.3.3)

Proof By [29, Theorem1.1], for any τ ∈ H (div,�;T)∩ker(div), there exists σ 1 ∈
H 1(�;M) such that

τ = curl σ 1.

Thanks to (3.2.2), we have

2 div vskw σ 1 = tr curl σ 1 = tr τ = 0.

Hence there exists v ∈ H 2(�;R3) such that vskw σ 1 = 1
2 curl v. Then apply mskw

and use (3.2.1) to get

skw σ 1 = 1

2
mskw curl v = skw(grad v).

Taking σ = σ 1 − grad v, we have σ ∈ H 1(�; S) and curl σ = τ . ��
Theorem 3.1 Assume � is a bounded and topologically trivial Lipschitz domain in
R

3. Then (3.3.1) is a Hilbert complex and exact sequence.

Proof It is obvious that (3.3.1) is a complex and H 2(�) ∩ ker(hess) = P1(�). As
results of (3.3.2) and (3.3.3), we have

div H (div,�;T) = L2(�;R3), curl H (curl,�; S) = H (div,�;T) ∩ ker(div).

We only need to prove H (curl,�; S) ∩ ker(curl) = hess H 2(�). For any σ ∈
H (curl,�; S) ∩ ker(curl), there exists v ∈ H 1(�;R3) such that

σ = grad v.

Since σ is symmetric, by (3.2.1), we have

mskw(curl v) = 2 skw(grad v) = 2 skw(σ ) = 0,

which means curl v = 0. Hence there exists w ∈ H 2(�) that v = ∇w and
consequently σ = hess w ∈ hess H 2(�). ��
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As a result of the Hessian complex (3.3.1), we have the Poincaré inequality [6,
the inequality above (14)]

‖τ‖0 � ‖ curl τ‖0 (3.3.4)

for any τ ∈ H (curl,�; S) satisfying

(τ ,∇2w) = 0 ∀ w ∈ H 2(�).

When � ⊂ R
2, the Hessian complex in two dimensions becomes

P1(�)
⊂−→ H 2(�)

hess−−→ H (rot,�; S) rot−→ L2(�;R2) −→ 0,

which is a rotation of the elasticity complex [7, 30].

3.3.2 divdiv Complexes

The div div complex in three dimensions reads as [6, 41]

RT
⊂−→ H 1(�;R3)

dev grad−−−−→ H (sym curl,�;T) sym curl−−−−→ H (div div,�; S) div div−−−→ L2(�) −→ 0,

(3.3.5)

where RT := {ax + b : a ∈ R, b ∈ R
3} is the lowest order Raviart-Thomas space.

A proof of the following theorem can be found in [6, 23, 41].

Theorem 3.2 Assume � is a bounded and topologically trivial Lipschitz domain in
R

3. Then (3.3.5) is a Hilbert complex and exact sequence.

When � ⊂ R
2, the div div complex in two dimensions becomes (cf. [21])

RT
⊂−→ H 1(�;R2)

sym curl−−−−→ H (div div,�; S) div div−−−→ L2(�) −→ 0.

3.4 Polynomial Complexes for Tensors

In this section we consider Hessian and divdiv polynomial complexes on a bounded
and topologically trivial domain D ⊂ R

3. Without loss of generality, we assume
(0, 0, 0) ∈ D.

Given a non-negative integer k, let Pk(D) stand for the set of all polynomials in
D with the total degree no more than k, and Pk(D;X) denote the tensor or vector
version. Let Hk(D) := Pk(D)/Pk−1(D) be the space of functions spanned by the
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homogenous polynomials of degree k. Denote by QD
k the L2-orthogonal projector

onto Pk(D), and QD
k the tensor or vector version.

3.4.1 De Rham and Koszul Polynomial Complexes

First we recall the polynomial de Rham complex

R
⊂−→ Pk+1(D)

∇−→ Pk(D;R3)
∇×−−→ Pk−1(D;R3)

∇·−→ Pk−2(D)→ 0, (3.4.1)

and the Koszul complex going backwards

Pk+1(D)
x·←− Pk(D;R3)

x×←− Pk−1(D;R3)
x←− Pk−2(D)←− 0. (3.4.2)

Those two complexes can be combined into one

(3.4.3)

We refer to [8] for a systematical derivation of (3.4.1)–(3.4.2) and focus on two
decompositions of vector polynomial spaces Pk(D;R3) based on (3.4.3). One
subspace is the range space of a differential operator in the de Rham complex from
left to right and another is the range space of the Koszul operator.

The first one is, for an integer k ≥ 1,

Pk(D;R3) = ∇Pk+1(D)⊕ x × Pk−1(D;R3),

which leads to

Pk(D;R3) = ∇Hk+1(D)⊕N Dk−1,

where

N Dk−1 := Pk−1(D;R3)⊕ x ×Hk−1(D;R3) = Pk−1(D;R3)+ x × Pk−1(D;R3)

is the first family of Nédélec element [39]. Note that the component x ×
Hk−1(D;R3) can be also written as ker(x·) ∩ Hk(D;R3) by the exactness of
the Koszul complex (3.4.2), which unifies the notation in both two and three
dimensions.

The second decomposition is, for an integer k ≥ 1,

Pk(D;R3) = ∇ × Pk+1(D;R3)⊕ xPk−1(D), (3.4.4)
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which leads to

Pk(D;R3) = ∇ ×Hk+1(D;R3)⊕RTk−1,

where

RTk−1 := Pk−1(D;R3)⊕ xHk−1(D) = Pk−1(D;R3)+ xPk−1(D)

is the Raviart-Thomas face element in three dimensions [40, 43].

3.4.2 Hessian Polynomial Complexes

By the Euler’s formula, for an integer k ≥ 0,

x · ∇q = kq ∀ q ∈ Hk(D). (3.4.5)

Due to (3.4.5), for any q ∈ Pk(D) satisfying x · ∇q + q = 0, we have q = 0. And

Pk(D) ∩ ker(x · ∇) = P0(D), (3.4.6)

Pk(D) ∩ ker(x · ∇ + �) = 0 (3.4.7)

for any positive number �.

Lemma 3.3 The operator div : dev(Pk(D;R3)xᵀ)→ Pk(D;R3) is bijective.

Proof Since div dev(Pk(D;R3)xᵀ) ⊆ Pk(D;R3) and

dim dev(Pk(D;R3)xᵀ) = dimPk(D;R3),

it suffices to show that div : dev(Pk(D;R3)xᵀ)→ Pk(D;R3) is injective.
For any q ∈ Pk(D;R3) satisfying div dev(qxᵀ) = 0, we have

div(qxᵀ)− 1

3
∇(xᵀq) = div(dev(qxᵀ)) = 0. (3.4.8)

Since xᵀ div(qxᵀ) = (x · ∇)(xᵀq)+ 2xᵀq, we obtain

(
x · ∇ + 5

3

)
(xᵀq) = xᵀ

(
div(qxᵀ)− 1

3
∇(xᵀq)

)
= 0.

By (3.4.7), we have xᵀq = 0. In turn, it follows from (3.4.8) that (x · ∇ + 3)q =
div(qxᵀ) = 0, which together with (3.4.7) gives q = 0. ��
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Lemma 3.4 For k ∈ N, k ≥ 2, the polynomial Hessian complex

P1(D)
⊂−→ Pk+2(D)

hess−−→ Pk(D; S) curl−−→ Pk−1(D;T) div−→ Pk−2(D;R3) −→ 0
(3.4.9)

is exact.

Proof It is obvious ∇2(Pk+2(D)) ⊆ Pk(D; S) ∩ ker(curl). By identity (3.2.2),

tr(curl τ ) = 2 div(vskw τ ) ∀ τ ∈ H 1(D;M).

Hence we have curl(Pk(D; S)) ⊆ Pk−1(D;T) ∩ ker(div). Therefore (3.4.9) is a
complex.

We then verify this complex is exact. By the polynomial version of de Rham
complex (3.4.1), we have hess Pk+2(D) = Pk(D; S) ∩ ker(curl), and

dim curlPk(D; S) = dimPk(D; S)− dim hess Pk+2(D) = 1

6
k(k + 1)(5k + 19).

Thanks to Lemma 3.3, we get divPk−1(D;T) = Pk−2(D;R3). And then

dim(Pk−1(D;T) ∩ ker(div)) = dimPk−1(D;T)− dimPk−2(D;R3) = dim curlPk(D; S),

which means Pk−1(D;T)∩ker(div) = curlPk(D; S). Therefore the complex (3.4.9)
is exact. ��

Define operator π1 : C 1(D)→ P1(D) as

π1v := v(0, 0, 0)+ xᵀ(∇v)(0, 0, 0).

It is exactly the first order Taylor polynomial of v at (0, 0, 0). Obviously

π1v = v ∀ v ∈ P1(D). (3.4.10)

We present the following Koszul-type complex associated to the Hessian com-
plex.

Lemma 3.5 For k ∈ N, k ≥ 2, the polynomial complex

0
⊂−→ Pk−2(D;R3)

dev(vxᵀ)−−−−−→ Pk−1(D;T) sym(τ×x)−−−−−−→ Pk(D; S) xᵀτx−−−→ Pk+2(D)
π1−→ P1(D)

(3.4.11)

is exact.
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Proof For any v ∈ Pk−2(D;R3), it follows

sym((dev(vxᵀ))× x) = sym((vxᵀ)× x)− 1

3
(xᵀv) sym(I × x) = 0.

For any τ ∈ Pk−1(D;T), we have

xᵀ(sym(τ × x))x = xᵀ(τ × x)x = 0.

It is trivial that π1(x
ᵀτx) = 0 for any τ ∈ Pk(D; S). Thus (3.4.11) is a complex.

Next we prove that the complex (3.4.11) is exact. By the Taylor’s theorem, we
get Pk+2(D) ∩ ker(π1) = xᵀ

Pk(D; S)x, and

dim xᵀ
Pk(D; S)x = dimPk+2(D)− 4 = 1

6
(k + 5)(k + 4)(k + 3)− 4.

For any τ ∈ Pk(D; S) satisfying xᵀτx = 0, there exists q ∈ Pk−1(D;R3) such
that τx = q × x = (mskw q)x, that is (τ −mskw q)x = 0. As a result, there exists
ς ∈ Pk(D;M) such that

τ = mskw q + ς × x.

From the symmetry of τ , we obtain

τ = sym(mskw q+ς×x) = sym(ς×x) = sym(dev ς×x) ∈ sym(Pk−1(D;T)×x).

Hence

dim sym(Pk−1(D;T)×x) = Pk(D; S)− dim xᵀ
Pk(D; S)x = 1

6
k(k+ 1)(5k+ 19).

Since dim dev(Pk−2(D;R3)xᵀ) = dimPk−2(D;R3), we have

dimPk−1(D;T) = dim dev(Pk−2(D;R3)xᵀ)+ dim sym(Pk−1(D;T)× x).

Thus the complex (3.4.11) is exact. ��
Combining the two complexes (3.4.9) and (3.4.11) yields

Unlike the Koszul complex for vector functions, we do not have the identity property
applied to homogenous polynomials. Fortunately decomposition of polynomial
spaces using Koszul and differential operators still holds.
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It follows from (3.4.10) and the complex (3.4.11) that

Pk+2(D) = xᵀ
Pk(D; S)x ⊕ P1(D), k ≥ 0.

Then we give the following decompositions for the polynomial tensor spaces
Pk(D; S) and Pk−1(D;T). Again one subspace is the range space of a differential
operator in the Hessian complex from left-to-right and another is the range space in
the Koszul type complex from right-to-left.

Lemma 3.6 For k ∈ N, we have the decompositions

Pk(D; S) = hess Pk+2(D)⊕ sym(Pk−1(D;T)× x) k ≥ 1, (3.4.12)

Pk−1(D;T) = curl Pk(D; S)⊕ dev(Pk−2(D;R3)xᵀ) k ≥ 2. (3.4.13)

Proof Noting that the dimension of space in the left hand side is the summation
of the dimension of two subspaces in the right hand side in (3.4.12) and (3.4.13),
we only need to prove the sum is direct. The direct sum of (3.4.13) follows from
Lemma 3.3. We then focus on (3.4.12).

For any τ = ∇2q with q ∈ Pk+2(D) satisfying τ ∈ sym(Pk−1(D;T) × x), it
follows from the fact (x · ∇)x = x that

(x ·∇)(x ·∇q−q) = (x ·∇)(x ·∇q)−x ·∇q = xᵀ((x ·∇)∇q) = xᵀ(∇2q)x = 0.

Apply (3.4.6) to get x · ∇q − q ∈ P0(K), which together with (3.4.5) gives q ∈
P1(D). Thus the decomposition (3.4.12) holds. ��

When D ⊂ R
2, the Hessian polynomial complex in two dimensions

P1(D)
⊂−→ Pk+2(D)

hess−−→ Pk(D; S) rot−→ Pk−1(D;R2) −→ 0 (3.4.14)

has been proved in [22], which is a rotation of the elasticity polynomial complex [7].

3.4.3 Divdiv Polynomial Complexes

In this subsection we present divdiv polynomial complexes derived in [22, 23] and
refer to [23] for proofs.

Lemma 3.7 For k ∈ N, k ≥ 2, the polynomial complex

RT
⊂−→ Pk+2(D;R3)

dev grad−−−−→ Pk+1(D;T) sym curl−−−−→ Pk(D; S) div div−−−→ Pk−2(D) −→ 0
(3.4.15)

is exact.
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Define operator πRT : C 1(D;R3)→ RT as

πRT v := v(0, 0, 0)+ 1

3
(div v)(0, 0, 0)x.

Apparently

πRT v = v ∀ v ∈ RT . (3.4.16)

We have the following Koszul-type complex.

Lemma 3.8 For k ∈ N, k ≥ 2, the polynomial complex

0
⊂−→ Pk−2(D)

xxᵀ−−→ Pk(D; S) ×x−→ Pk+1(D;T) ·x−→ Pk+2(D;R3)
πRT−−→ RT −→ 0

(3.4.17)

is exact.

Those two complexes (3.4.15) and (3.4.17) are connected as

It follows from (3.4.16) and the complex (3.4.17) that

Pk(D;R3) = (Pk−1(D;T) · x)⊕RT k ≥ 1.

We then move to the space Pk+1(D;T) and Pk(D; S).
Lemma 3.9 We have the decompositions

Pk(D;T) = (Pk−1(D; S)× x)⊕ dev gradPk+1(D;R3) k ≥ 1,

and

Pk(D; S) = sym curl Pk+1(D;T)⊕ xxᵀ
Pk−2(D) k ≥ 2.

When D ⊂ R
2, the divdiv polynomial complex in two dimensions

RT
⊂−→ Pk+1(D;R2)

sym curl−−−−→ Pk(D; S) div div−−−→ Pk−2(D) −→ 0 (3.4.18)

has been proved in [22] and used to construct a finite element divdiv complex in two
dimensions.
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3.5 A Conforming Virtual Element Hessian Complex

In this section we shall construct virtual element and finite element spaces and
obtain a discrete Hessian complex (k ≥ 3):

P1(�)
⊂−→ Wh

∇2−→ �h
curl−−→ V h

div−→ Qh −→ 0, (3.5.1)

where

– Wh is an H 2(�)-conforming virtual element space containing piecewise Pk+2
polynomials;

– �h is an H (curl,�; S)-conforming virtual element space containing piecewise
Pk polynomials;

– V h is an H (div,�;T)-conforming finite element space containing piecewise
Pk−1 polynomials;

– Qh is piecewise Pk−2(R
3) polynomial which is obviously conforming to L2(�).

The domain � is decomposed into a triangulation Th consisting of tetrahedrons.
That is each element K ∈ Th is a tetrahedron. Extension to general polyhedral
meshes will be explored in a future work.

In [32], a finite element Hessian complex has been constructed and the lowest
polynomial degree for (Wh,�h,V h,Qh) is (9, 7, 6, 5) and ours is (5, 3, 2, 1) but
with a few additional virtual shape functions in Wh and �h.

For each element K ∈ Th, denote by nK the unit outward normal vector to
∂K , which will be abbreviated as n. Let Fh, Eh and Vh be the union of all faces,
edges and vertices of the partition Th, respectively. For any F ∈ Fh, fix a unit
normal vector nF . For any e ∈ Eh, fix a unit tangent vector te and two unit normal
vectors ne,1 and ne,2, which will be abbreviated as n1 and n2 without causing any
confusions. For K being a polyhedron, denote by F (K), E (K) and V (K) the set
of all faces, edges and vertices of K , respectively. For any F ∈ Fh, let E (F ) and
V (F ) be the set of all edges and vertices of F , respectively. For each e ∈ E (F ),
denote by nF,e the unit vector being parallel to F and outward normal to ∂F .

3.5.1 H(div)-Conforming Element for Trace-Free Tensors

For an integer k ≥ 3, we choose Pk−1(K;T) as the shape function space. Its trace vn

on each face F is in Pk−1(F ;R3). In the classic H(div) element for vector functions,
such trace can be determined by the face moments

∫
F
(vn) · q for q ∈ Pk−1(F ;R3).

For the tensor polynomial with additional structure, e.g., here is the trace-free, face
moments cannot reflect to this property. One fix is to introduce the nodal continuity
of each component of the tensor so that the structure of the tensor is utilized.
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For any F ∈ F (K), let P⊥k−1,2(F ) ⊆ Pk−1(F ) be the L2-orthogonal complement

space of P2(F ) in Pk−1(F ) with respect to the L2-inner product (·, ·)F on face
F . Denote by P

⊥
k−1,2(F ;Rd ) the vector version of P

⊥
k−1,2(F ) with d = 2, 3. Let

P
⊥
k−2,RT(K;R3) ⊆ Pk−2(K;R3) be the L2-orthogonal complement space of RT in

Pk−2(K;R3) with respect to the inner product (·, ·)K .

Lemma 3.10 Let F ∈ F (K) be a triangular face and v ∈ Pk−1(F ). If

v(a1) = v(a2) = v(a3) = 0, (v, q)F = 0 ∀ q ∈ P1(F )⊕ P
⊥
k−1,2(F )

with a1, a2 and a3 being the vertices of triangle F , then v = 0.

Proof Since v ∈ Pk−1(F ) and (v, q)F = 0 for all q ∈ P
⊥
k−1,2(F ), we get v ∈

P2(F ). Let (λ1, λ2, λ3) be the barycentric coordinate of point x with respect to F .
Since v(a1) = v(a2) = v(a3) = 0, we have v = c1λ2λ3 + c2λ3λ1 + c3λ1λ2, where
c1, c2 and c3 are constants. Now taking q = λi with i = 1, 2, 3, we obtain

1

60
|F |

⎛
⎝1 2 2

2 1 2
2 2 1

⎞
⎠
⎛
⎝c1

c2

c3

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ .

Noting that the coefficient matrix is invertible, it follows c1 = c2 = c3 = 0. ��
Next we use the H(div;T) polynomial bubble function space introduced in [32]

to characterize the interior part. Denote by

Bk−1(K;T) := Pk−1(K;T) ∩H 0(div,K;T),

where H 0(div,K;T) := {τ ∈ H (div,K;T) : τn|∂K = 0}. In [32], a constructive
characterization of Bk−1(K;T) is given by

Bk−1(K;T) =
4∑

i=1

∑
1≤j<l≤4
j,l "=i

λj λlPk−3(K)nit
ᵀ
j,l , (3.5.2)

where (λ1, λ2, λ3, λ4) is the barycentric coordinate of point x with respect to K ,
and tj,l := xl − xj with the set of vertices V (K) := {x1, x2, x3, x4}. That is on
each face use the normal vector and an edge vector to form a traceless matrix and
extend to the whole element by the scalar edge bubble function. It was proved in
[32] that

divBk−1(K;T) = P
⊥
k−2,RT(K;R3). (3.5.3)

The sum in (3.5.2), however, is not a direct sum. We present a refined character-
ization of the bubble function below.
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Lemma 3.11 We have

Bk−1(K;T) =
4∑

i=1

⊕
1≤j<l≤4
j,l "=i

λjλlP
Fijl
k−3(K)nit

ᵀ
j,l ⊕

4∑
i=1

∑
1≤j<l≤4
j,l "=i

bFiPk−4(K)nit
ᵀ
j,l ,

(3.5.4)

where bFi is the cubic face bubble function corresponding to face Fi and

P
Fijl
k−3(K) := span

{
λ
α1
i λ

α2
j λ

α3
l : α1, α2, α3 ∈ N, α1 + α2 + α3 = k − 3

}
.

Proof By λjλlPk−3(K) = λjλlP
Fijl
k−3(K)+bFiPk−4(K), it follows from (3.5.2) that

Bk−1(K;T) =
4∑

i=1

∑
1≤j<l≤4
j,l "=i

λjλlP
Fijl
k−3(K)nit

ᵀ
j,l +

4∑
i=1

∑
1≤j<l≤4
j,l "=i

bFiPk−4(K)nit
ᵀ
j,l .

Next we prove

∑
1≤j<l≤4
j,l "=i

λjλlP
Fijl
k−3(K)tj,l +

∑
1≤j<l≤4
j,l "=i

bFiPk−4(K)tj,l

=
⊕

1≤j<l≤4
j,l "=i

λj λlP
Fijl
k−3(K)tj,l ⊕

∑
1≤j<l≤4
j,l "=i

bFiPk−4(K)tj,l .

Consider i = 4. Assume there exist qjl ∈ P
F4jl
k−3(K) and pjl ∈ Pk−4(K) for 1 ≤ j <

l ≤ 3 such that

λ1λ2q12t1,2+λ1λ3q13t1,3+λ2λ3q23t2,3+bF4p12t1,2+bF4p13t1,3+bF4p23t2,3 = 0.

Hence

(λ1λ2q12 + λ1λ3q13 + bF4(p12 + p13))t1,2 + (λ2λ3q23 + λ1λ3q13 + bF4(p23 + p13))t2,3 = 0,

which implies

λ2q12 + λ3q13 + λ2λ3(p12 + p13) = 0, λ2q23 + λ1q13 + λ1λ2(p23 + p13) = 0.

Therefore q12 = q13 = q23 = 0, as required. ��
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By (3.5.4), we have

dimBk−1(K;T) = 12

(
k − 1

2

)
+ 8

(
k − 1

3

)
= 2

3
(k − 1)(k − 2)(2k + 3)

= 2

3
(2k3 − 3k2 − 5k + 6),

dim(Bk−1(K;T)∩ker(div)) = 1

6
k(k+1)(5k−17)+8 = 1

6
(5k3−12k2−17k)+8.

Now we define an H(div)-conforming finite element for trace-free tensors with k ≥
3. Take Pk−1(K;T) as the space of shape functions. The degrees of freedom are
given by

v(δ) ∀ δ ∈ V (K), (3.5.5)

(vn, q)F ∀ q ∈ P1(F ;R3)⊕ P
⊥
k−1,2(F ;R3), F ∈ F (K), (3.5.6)

(v, q)K ∀ q ∈ dev gradPk−2(K;R3)⊕ (Bk−1(K;T) ∩ ker(div)). (3.5.7)

We can also replace the degree of freedom (3.5.7) by

(v, q)K ∀ q ∈ Bk−1(K;T). (3.5.8)

Thanks to the explicit formulation of bubble functions (3.5.2), the implementation
using (3.5.8) will be easier. On the other hand, (3.5.7) will be helpful when defining
discrete spaces for H (curl,K; S).
Lemma 3.12 The degrees of freedom (3.5.5)–(3.5.7) are unisolvent for
Pk−1(K;T).
Proof First of all the number of the degrees of freedom (3.5.5)–(3.5.7) is

32+36+[6k(k+1)−72]+[1

2
(k3−k)−4

]+1

6
(5k3−12k2−17k)+8 = 4

3
k(k+1)(k+2),

which equals to dimPk−1(K;T).
Take any v ∈ Pk−1(K;T) and suppose all the degrees of freedom (3.5.5)–

(3.5.7) vanish. Applying Lemma 3.10 to each component of vn, we get v ∈
Bk−1(K;T). It follows from the integration by parts and the first part of the degrees
of freedom (3.5.7) that div v = 0, i.e., v ∈ Bk−1(K;T)∩ ker(div). Finally we arrive
at v = 0 by using the second part of the degrees of freedom (3.5.7). ��
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The global finite element space is

V h := {vh ∈ H (div,�;T) : vh|K ∈ Pk−1(K;T) ∀ K ∈ Th, all degrees of

freedom (3.5.5)–(3.5.7) are single-valued},

For v ∈ V h, by Lemma 3.10, the trace vn|F ∈ Pk−1(F ;R3) is determined uniquely
by the degree of freedom (3.5.5)–(3.5.6). Therefore V h ⊂ H (div,�;T) is a
conforming finite element space.

3.5.2 H 2-Conforming Virtual Element

To define an H 2-conforming virtual element in three dimensions, we shall adapt
two dimensional H 2-conforming virtual elements constructed in [3, 17] and three
dimensional C1 virtual element in [13].

Define an H 2-conforming virtual element space on tetrahedron K

W̃(K) := {v ∈ H 2(K) :�2v ∈ Pk−2(K), both v|∂K and ∇v|∂K are continuous,

v|F ∈ Pk+2(F ), ∂nv|F ∈ Pk+1(F ) for each F ∈ F (K)}.

The space of degrees of freedom N (K) consists of

v(δ),∇v(δ),∇2v(δ) ∀ δ ∈ V (K), (3.5.9)

(v, q)e ∀ q ∈ Pk−4(e), e ∈ E (K), (3.5.10)

(∂ni v, q)e ∀ q ∈ Pk−3(e), e ∈ E (K), i = 1, 2, (3.5.11)

(v, q)F ∀ q ∈ Pk−4(F ), F ∈ F (K), (3.5.12)

(∂nv, q)F ∀ q ∈ Pk−2(F ), F ∈ F (K), (3.5.13)

(v, q)K ∀ q ∈ Pk−2(K). (3.5.14)

The space W̃ (K) is not empty as Pk+2(K) ⊂ W̃ (K). Its dimension is, however,
not so clear from the definition. There is a compatible condition given implicitly in
the definition of the local space W̃ (K). As the trace of a function in H 2(K), the
boundary value v|∂K and ∂nv|∂K are compatible in the sense that ∇v|F = ∇F v +
(∂nv)|FnF should be continuous on edges [20, Theorem 5]. The degree of freedom
∇2v(δ) is also questionable for a function v ∈ H 2(K) only. In the classic finite
element space, this is not an issue as shape functions are polynomials.
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For a more rigorous verification of unisolvence, we introduce data space

D(K) = {(f, v0, v1, v2, u
e
0,u

e
1, u

F
0 , u

F
1 ) : f ∈ Pk−2(K), v0 ∈ P0(V (K)),

v1 ∈ P0(V (K),R3), v2 ∈ P0(V (K),S), ue0 ∈ Pk−4(E (K)),

ue
1 ∈ Pk−3(E (K),R2), uF0 ∈ Pk−4(F (K)), uF1 ∈ Pk−2(F (K))}.

Obviously dimD(K) = dimN (K). For function v ∈ W̃ (K)∩C2(K), the mapping

(�2v, v(δ),∇v(δ),∇2v(δ),Qe
k−4v,Q

e
k−3(∂ni v),Q

F
k−4v,Q

F
k−2(∂nv)),

for all δ ∈ V (K), e ∈ E (K) and F ∈ F (K), is from W̃ (K) ∩ C2(K)→ D(K).
Let Pk(∂K) be the function space which is continuous on the boundary ∂K

and its restriction to each face is a polynomial of degree at most k. Given a
data (f, v0, v1, v2, u

e
0,u

e
1, u

F
0 , u

F
1 ) ∈ D(K), using (v0, v1, v2, u

e
0,u

e
1, u

F
0 ), we can

determine a Pk+2(F ) Argyris element [4, 16] and consequently define a function
g1 ∈ Pk+2(∂K). Similarly using (v1, v2,u

e
1, u

F
1 ), we can determine a Pk+1(F ) Her-

mite element [28] and consequently a function g2 ∈ Pk+1(∂K). By the unisolvence
of the Argyris element and Hermite element in two dimensions, we know (g1, g2)

is uniquely determined by (v0, v1, v2, u
e
0,u

e
1, u

F
0 , u

F
1 ) and (g2|FnF +∇F (g1|F )) |e

is single-valued across each edge e ∈ E (K).
Given data (f, g1, g2), we consider the biharmonic equation with Dirichlet

boundary condition

�2v = f in K, v = g1, ∂nv = g2 on ∂K. (3.5.15)

As g1, g2 are compatible in the sense g2n + ∇∂K(g1) ∈ Pk+1(∂K;R3) with
Pk+1(∂K;R3) being the vector version of Pk+1(∂K), by the trace theorem ofH 2(K)

on polyhedral domains [20, Theorem 5], there exists vb ∈ H 2(K) such that

vb|∂K = g1, ∂nv
b|∂K = g2.

Indeed vb can be chosen as a polynomial in Pmax{k+1,9}(K) using the C 1 finite
element constructed in [46]. Then consider the biharmonic equation with the
homogenous boundary condition

�2v0 = f −�2vb in K, v0 = 0, ∂v0 = 0 on ∂K.

The existence and uniqueness of v0 is guaranteed by the Lax-Milligram lemma.
Setting v = vb + v0 gives a solution to (3.5.15). The uniqueness of the solution
to (3.5.15) is trivial.
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Therefore we have constructed an embedding operator L : D(K)→ W̃ (K) and
L is injective. We shall choose

W(K) = L (D(K))

and by construction L : D(K) → W(K) is a bijection. Functions in W(K) are
defined as solutions to (3.5.15) which may still not be smooth enough to take nodal
values of the Hessian.

To be consistent with finite element notation, we still use the form
∇2v(δ) but understand it with the help of L . For v ∈ W(K), L −1v =
(f, v0, v1, v2, u

e
0,u

e
1, u

F
0 , u

F
1 ) ∈ D(K). We define ∇2v(δ) ∈ W ′(K) by

∇2v(δ) := v2. (3.5.16)

That is we understand ∇2v as a functional defined on W(K) which will match the
vertex value of the hessian if v is smooth enough. Other degrees of freedom (3.5.9)–
(3.5.13) can be understood in a similar fashion. The interior moment (3.5.14) keeps
unchanged and the relation of (3.5.14) and f ∈ L −1v is discussed below.

Lemma 3.13 The degrees of freedom (3.5.9)–(3.5.14) are unisolvent for W(K).

Proof First of all dimW(K) = dimN (K) = 1
6 (k

3 + 24k2 + 35k + 60). Take
any v ∈ W(K) and suppose all the degrees of freedom (3.5.9)–(3.5.14) vanish. By
the unisolvence of the Argyris element and Hermite element in two dimensions, we
have v ∈ H 2

0 (K). It follows from the integration by parts that

‖∇2v‖2
0,K = (�2v, v)0,K = 0,

as �2v ∈ Pk−2(K) and the vanishing degree of freedom (3.5.14). Thus v = 0. ��
As dimPk+2(K) = 1

6 (k
3+12k2+47k+60), there are 2k(k−1) shape functions

in W(K) are non-polynomials and thus are treated as virtual. The L2-projection
of ∇2v to Pk(K,S) can be computed by degrees of freedom using the following
Green’s identity [23]: for τ ∈ Pk(K,S) and v ∈ W(K),

(∇2v, τ )K = (div div τ , v)K +
∑

F∈F (K)

∑
e∈E (F )

(n
ᵀ
F,eτn, v)e

+
∑

F∈F (K)

[
(nᵀτn, ∂nv)F − (2 divF (τn)+ ∂n(n

ᵀτn), v)F
]
.

As div div τ ∈ Pk−2(K), the first term can be computed by (3.5.14). On the
boundary, v|F is a Pk+2(F ) Argyris element, and ∂nv|F is a Pk+1(F ) Hermite
element and thus all boundary terms are computable. In particular by choosing
τ ∈ ∇2

Pk+2(K), we can compute an H 2-projection of v to Pk+2(K), that is
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�Kv ∈ Pk+2(K) is determined by

(∇2�Kv,∇2q)K = (∇2v,∇2q)K ∀ q ∈ Pk+2(K), (3.5.17)

(�Kv, q)K = (v, q)K ∀ q ∈ P1(K). (3.5.18)

We have the following properties of �K . Obviously �K is a projector, i.e.,

�Kq = q ∀ q ∈ Pk+2(K).

By the standard Bramlbe-Hilbert lemma, we have

hiK |v −�Kv|i,K � h2
K inf

q∈Pk+2(K)
|v − q|2,K ∀ v ∈ H 2(K), i = 0, 1, 2.

(3.5.19)

Remark 3.1 The C1 macro-element on the Alfeld split in [1, 31, 35] has the same
degrees of freedom on boundary as (3.5.9)–(3.5.13). We can construct a conforming
macro-element Hessian complex on the Alfeld split following the approach in this
paper. Here we present the lowest order C1 macro-element, i.e. k = 3. For any
tetrahedron K , let Alfeld split TA(K) be the set of the four subtetrahedra obtained
by connecting xK to each of the vertices of K , where xK is the barycenter of K .
The shape function space of the lowest order C1 macro-element on the Alfeld split
in [1, 31, 35] is given by

WA(K) := {v ∈ H 2(K) : v|K ′ ∈ P5(K
′) for each K ′ ∈ TA(K)}.

And the degrees of freedom are

v(δ),∇v(δ),∇2v(δ) ∀ δ ∈ V (K), (3.5.20)∫
e

∂ni v ds ∀ e ∈ E (K), i = 1, 2, (3.5.21)

(∂nv, q)F ∀ q ∈ P1(F ), F ∈ F (K), (3.5.22)

(∇v,∇q)K ∀ q ∈ W̊A(K), (3.5.23)

where W̊A(K) := {v ∈ WA(K) : all the degrees of freedom (3.5.20)–(3.5.22)
vanish}. �
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For any F ∈ F (K), both v|F and ∂nF v|F are determined by the degrees of
freedom (3.5.9)–(3.5.13) on the face F . Thus we can define the H 2-conforming
virtual element space

Wh := {vh ∈ H 2(�) : vh|K ∈ W(K) for each K ∈ Th, all degrees of

freedom (3.5.9)–(3.5.14) are single-valued}.

Let I�h : H 4(�) → Wh be the nodal interpolation operator with respect to
the degrees of freedom (3.5.9)–(3.5.14). For each tetrahedron K , by the scaling
argument and the norm equivalence on the finite dimensional spaces (cf. [28,
Section 3.1]), it holds

hiK |v − I�h v|i,K � hk+2
K |v|k+2,K ∀ v ∈ Hk+2(�), i = 0, 1, 2. (3.5.24)

Here we take the advantage that the element is a tetrahedron and by transferring
back to the reference element, one can show the constant in (3.5.24) depends only
on the shape regularity of the element.

3.5.3 Trace Complexes

We have the following trace complexes

(3.5.25)

where bF := a · n(x · n)|F + b, and

(3.5.26)

In (3.5.25) and (3.5.26), on the bottom of the diagram, all functions are evaluated
on one face F . We present the concrete form instead of trace operators of Sobolev
spaces as we will work mostly on polynomial functions when restricting to faces.
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The trace complexes will motivate the correct continuity and degrees of freedom
on edges and faces. For example, the 2 × 2 symmetric matrix �F τ�F ∈
H(rotF , F,S) and the vector nᵀτ�F ∈ H(rotF , F,R2) imply the tangential
continuity of τt on edges. The face moments for nᵀτ�F will come from that
of the Nédélec element. The face moments for �F τ�F will be based on the
decomposition build-in the polynomial complex (3.4.18).

One important relation is the commutative diagram build-in the trace complex.
For example, the third block of (3.5.25) and (3.5.26) implies rotF (τ�F ) =
(curl τ )n|F which can be verified easily by definition.

As divF (τ × n) = rotF (τ�F ), i.e., divF is a rotation of rotF , the trace τ × n ∈
H(divF , F ) and conclusion for τ × n can be transfer to τ�F and vice verse.

3.5.4 H(curl)-Conforming Element for Symmetric Tensors

Motivated by the decomposition (3.4.12), we take the space of shape functions

�(K) := ∇2W(K)⊕ sym(Pk−1(K;T)× x).

The degrees of freedom are given by

curl τ (δ) ∀ δ ∈ V (K), (3.5.27)

τ (δ) ∀ δ ∈ V (K), (3.5.28)

(τ t, q)e ∀ q ∈ Pk−2(e;R3), e ∈ E (K), (3.5.29)

(�F τ�F , q)F ∀ q ∈ P0(F,S)⊕ sym∇⊥F P⊥k−1,2(F ;R2)⊕ xxᵀ
Pk−4(F ),

F ∈ F (K), (3.5.30)

(nᵀτ�F , q)F ∀ q ∈ P0(F,R
2)⊕∇⊥F P⊥k−1,2(F )⊕ Pk−2(F )x, F ∈ F (K),

(3.5.31)

(curl τ , q)K ∀ q ∈ Bk−1(K;T) ∩ ker(div), (3.5.32)

(τ , xxᵀq)K ∀ q ∈ Pk−2(K). (3.5.33)

From the decomposition (3.4.12), we know that Pk(K; S) ⊂ �(K). The
dimension of the space is

dim �(K) = dimW(K)− 4+ dim sym(Pk−1(K;T)× x) = k3 + 8k2 + 9k + 6.
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The number of the degrees of freedom (3.5.27)–(3.5.33) is

32+ 24+ 18(k − 1)+ (6k2 − 6k − 24)+ (4k2 − 16)

+1

6
(5k3 − 12k2 − 17k + 48)+ 1

6
(k3 − k) = k3 + 8k2 + 9k + 6,

which agrees with dim �(K). In (3.5.30)–(3.5.31) we separate the trace τ�F into
the tangential-tangential part �F τ�F and the tangential-normal part nᵀτ�F . Most
of the shape functions in �(K) are polynomials except 2k(k − 1) non-polynomial
ones in the form ∇2v for some v ∈ W(K) and ∇2v(δ) should be understood in the
sense of (3.5.16).

Although there are non-polynomial shape functions, the trace τ ×n on each face
is always polynomial and determined by (3.5.27)–(3.5.31).

Lemma 3.14 For each F ∈ F (K) and any τ ∈ �(K), τ × n|F ∈ Pk(F ;M) is
determined by the degrees of freedom (3.5.27)–(3.5.31) on face F .

Proof First of all, we show although τ ∈ �(K) may be from a virtual element
space, its trace τ × n|F ∈ Pk(F ;M). To see this, it suffices to check (∇2v)�F for
v ∈ W(K). Using notation in Sect. 3.2, it is straightforward to verify that

�F∇2v�F = ∇2
F (v|F ), n · ∇2v�F = ∇F (∂nv|F ).

As v|F ∈ Pk+2(F ) and ∂nv|F ∈ Pk+1(F ) are polynomials, τ × n|F is a polynomial
of degree k.

Assume all the degrees of freedom (3.5.27)–(3.5.31) on face F are zeros.
We are going to prove this polynomial is vanished. The vanishing degrees of
freedom (3.5.28)–(3.5.29) imply τ t |e = 0 for every e ∈ ∂F as τ t |e ∈ Pk(e;R3).
Then τ × n|F ∈ H 0(divF , F ). Using the integration by parts and the vanishing
degrees of freedom (3.5.30)–(3.5.31), we obtain

(divF (τ × n), q)F = (τ × n, gradF q)F = 0 ∀ q ∈ P1(F ;R3)⊕ P
⊥
k−1,2(F ;R3).

Using the relation − divF (τ × n) = (curl τ )n|F ∈ Pk−1(F ;R3) and the vanishing
degree of freedom (3.5.27), we know divF (τ × n)(δ) = 0 for all δ ∈ V (F ).
Applying Lemma 3.10, we acquire divF (τ × n) = 0 which is equivalent to
rotF (τ�F ) = 0.

The tangential component τ�F can be further decomposed into two com-
ponents: the tangential-tangential part �F τ�F and the tangential-normal part
nᵀτ�F . Noting that nᵀτ�F ∈ H0(rotF , F ) ∩ Pk(F ;R2) and rotF (nᵀτ�F ) =
0, which implies nᵀτ�F⊥∇⊥F H 1(F ). We get from the vanishing degrees of
freedom (3.5.31) that

(nᵀτ�F , q)F = 0 ∀ q ∈ Pk−1(F ;R2),
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where we use the decomposition Pk−1(F ;R2) = ∇⊥F Pk(F ) ⊕ xPk−2(F ) which is
a two dimensional version of (3.4.4). Due to the unisolvence of the second-type
Nédélec element [40], we get nᵀτ�F = 0.

For the tangential-tangential part, as �F τ�F ∈ Pk(F ; S), by the Hessian
complex (3.4.14) in two dimensions, there exists wF ∈ Pk+2(F ) such that
�F τ�F = ∇2

FwF and wF(δ) = 0 for each δ ∈ V (F ). Then we get from the
vanishing degrees of freedom (3.5.28)–(3.5.29) that

∇2
FwF (δ) = 0 ∀ δ ∈ V (F ),

(∂t (∇FwF ), q)e = 0 ∀q ∈ Pk−2(e;R3), e ∈ E (F ),

which indicate ∂t (∇FwF )|e = 0 for each e ∈ E (F ). As a result wF ∈ H 2
0 (F ). Due

to the vanishing degrees of freedom (3.5.30),

(wF , divF divF (xxᵀq))F = (∇2
FwF , xxᵀq)F = 0 ∀ q ∈ Pk−4(F ).

Therefore by divF divF (xxᵀ
Pk−4(F )) = Pk−4(F ), cf. (3.4.18), and the unisolvence

of the Argyris element, it follows that wF = 0. ��
To show the unisolvence, we adapt the unisolvence proof of three dimensional

H(curl)-conforming virtual element in [11]. We take the advantage of the fact
that K is a tetrahedron and curl �(K) is polynomial. The approach of using local
problems is troublesome as for symmetric matrices, the well-posedness of curl− div
system with non-homogenous Dirichlet boundary condition is unclear. A crucial and
missing part is the characterization of the trace space of H (curl,�; S).
Lemma 3.15 The degrees of freedom (3.5.27)–(3.5.33) are unisolvent for �(K).

Proof Take any τ ∈ �(K) and suppose all the degrees of freedom (3.5.27)–(3.5.33)
vanish. We are going to prove τ = 0.

With vanishing degrees of freedom (3.5.27)–(3.5.31), we have proved that τ ∈
H 0(curl,K; S). Then curl τ ∈ Bk−1(K,T) ∩ ker(div), together with the vanishing
degree of freedom (3.5.32) implies curl τ = 0.

Using integration by parts, with τ × n|∂K = 0 and curl τ = 0,

(τ , sym curl σ )K = (curl τ , σ )K + (τ × n, σ )∂K, (3.5.34)

we conclude that τ⊥ sym curl σ for any σ ∈ H (sym curl;M).
Use the fact div div τ ∈ Pk−2(K) and div div : xxᵀ

Pk−2(K) → Pk−2(K) is
a bijection, cf. Lemma 3.9, we can find a polynomial xxᵀq with q ∈ Pk−2(K)

such that div div(τ − xxᵀq) = 0 and thus τ = xxᵀq + sym curl σ for some
σ ∈ H (sym curl;M).
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Then by the vanishing degree of freedom (3.5.33),

(τ , τ )K = (τ , xxᵀq + sym curl σ )K = 0,

which implies τ = 0. ��
We now discuss how to compute the L2-projection of an element τ ∈ �(K)

to Pk(K; S). By Lemma 3.14, we can determine the piecewise polynomial τ × n

on the boundary and (curl τ )n|F . Together with (3.5.32), curl τ ∈ Pk−1(K;T) is
determined. Then, using (3.5.34), we can compute the L2-projection to the subspace
sym curl Pk+1(K;T). Use the degree of freedom (3.5.33), we can compute the
L2-projection to the subspace xxᵀ

Pk−2(K). Finally, recalling that Pk(K; S) =
xxᵀ

Pk−2(K)⊕sym curlPk+1(K; S), the L2-projection to Pk(K; S) will be obtained
by combining the projection to each subspace and an orthogonalization step.

Define the global finite element space

�h := {τh ∈ L2(�; S) : τh|K ∈ �(K) ∀ K ∈ Th, all degrees of

freedom (3.5.27)–(3.5.33) are single-valued}.

It follows from Lemma 3.14 that �h ⊂ H (curl,�; S).
For any sufficiently smooth and symmetric tensor τ defined on tetrahedron

K , let I c
Kτ ∈ �(K) be the nodal interpolation of τ based on the degrees of

freedom (3.5.27)–(3.5.33). We have

I c
Kτ = τ ∀ τ ∈ �(K),

and by the scaling argument and the norm equivalence on the finite dimensional
spaces (cf. [28, Section 3.1])

‖τ − I c
Kτ‖0,K + hK‖ curl(τ − I c

Kτ )‖0,K � hk+1
K |τ |k+1,K ∀ τ ∈ H k+1(K; S).

(3.5.35)

Again by transferring back to the reference tetrahedron, one can show the constant
in (3.5.35) depends only on the shape regularity of the tetrahedron. For any
sufficiently smooth and symmetric tensor τ defined on �, let I c

hτ ∈ �h be defined
by (I c

hτ )|K := I c
K(τ |K) for each K ∈ Th.

If τ ∈ H 1(K; S) satisfying curl τ ∈ Pk−1(K;T), due to Lemma 5.38 in [38]
and Lemma 4.7 in [2], the interpolation I c

Kτ is well-defined, and it follows from
the integration by parts and Lemma 3.12 that

curl(I c
Kτ ) = curl τ . (3.5.36)
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Moreover, by the scaling argument we have

‖τ − I c
Kτ‖0,K � hK |τ |1,K. (3.5.37)

Remark 3.2 We can define an H(curl)-conforming macro-element for symmetric
tensors. Let WA(K) be the H 2-conforming macro-element defined in Remark 3.1.
Take the space of shape functions

�A(K) := ∇2WA(K)⊕ sym(P2(K;T)× x).

And the degrees of freedom are given by

curl τ (δ) ∀ δ ∈ V (K), (3.5.38)

τ (δ) ∀ δ ∈ V (K), (3.5.39)

(τ t, q)e ∀ q ∈ P1(e;R3), e ∈ E (K), (3.5.40)

(n× τ × n, q)F ∀ q ∈ P0(F,S), F ∈ F (K), (3.5.41)

(nᵀτ�F , q)F ∀ q ∈ P0(F,R
2)⊕ P1(F )x, F ∈ F (K), (3.5.42)

(curl τ , q)K ∀ q ∈ B2(K;T) ∩ ker(div), (3.5.43)

(τ , qI)K ∀ q ∈ W̊A(K). (3.5.44)

The degrees of freedom (3.5.38)–(3.5.44) are the same as (3.5.27)–(3.5.33)
except (3.5.44), which is inspired by (3.5.23) when defining WA. One advantage of
using the macro-element is that the shape functions are piecewise polynomial and
thus no need to compute the L2-projection. �

3.5.5 Discrete Conforming Hessian Complex

In this subsection we will prove the sequence (3.5.1) forms a discrete Hessian
complex in three dimensions.

The polynomial space for L2(�) is simply discontinuous Pk−2 space

Qh := {qh ∈ L2(�;R3) : qh|K ∈ Pk−2(K;R3) ∀ K ∈ Th}.

Lemma 3.16 It holds

div V h = Qh. (3.5.45)
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Proof It is apparent that div V h ⊆ Qh. Conversely taking any ph ∈ Qh, by (3.3.2)
there exists v ∈ H 1(�;T) such that div v = ph. Choose v1 ∈ V h determined by

v1(δ) = 0,

(v1n, q)F = (vn, q)F ∀ q ∈ P1(F ;R3)⊕ P
⊥
k−1,2(F ;R3),

(v1, q)K = (v, q)K ∀ q ∈ dev gradPk−2(K;R3)⊕ (Bk−1(K;T) ∩ ker(div))

for each δ ∈ Vh, F ∈ Fh and K ∈ Th. It follows from the integration by parts that

(div(v − v1), q)K = 0 ∀ q ∈ P1(K;R3),K ∈ Th,

which means div(v − v1)|K ∈ P
⊥
k−2,RT(K;R3). Employing (3.5.3), there exists

v2 ∈ V h such that div(v − v1) = div v2. Therefore div vh = div v = qh by setting
vh = v1 + v2. ��
Lemma 3.17 Assume� is a topologically trivial domain. Then we have the discrete
Hessian complex

P1(�)
⊂−→ Wh

∇2−→ �h
curl−−→ V h

div−→ Qh −→ 0. (3.5.46)

Proof It is easy to see that (3.5.46) is a complex as all discrete spaces are
conforming. We check the exactness of this complex. First of all, Wh ∩ ker(∇2) =
P1(�). Then

dim∇2Wh = dimWh−4 = 10#Vh+(3k−7)#Eh+(k2−3k+3)#Fh+ 1

6
(k3−k)#Th−4.

For any τh ∈ �h ∩ ker(curl), there exists w ∈ H 2(�) satisfying τh = ∇2w.
On each element K , we have ∇2(w|K) ∈ ∇2W(K), which means w|K ∈ W(K).
Noting that ∇2w is single-valued at each vertex in Vh. Then w ∈ Wh. This indicates
�h ∩ ker(curl) = ∇2Wh, and

dim curl �h = dim �h − dim∇2Wh

= 14#Vh + (3k − 3)#Eh + 1

2
(5k2 − 3k − 20)#Fh

+ (k3 − 2k2 − 3k + 8)#Th − dim∇2Wh

= 4#Vh + 4#Eh + 1

2
(3k2 + 3k − 26)#Fh + 1

6
(5k3 − 12k2 − 17k + 48)#Th + 4.
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On the other side, it holds from (3.5.45) that

dim V h ∩ ker(div) = dim V h − dimQh

=8#Vh + 1

2
(3k2 + 3k − 18)#Fh + 2

3
(2k3 − 3k2 − 5k + 6)#Th − 1

2
(k3 − k)#Th

=8#Vh + 1

2
(3k2 + 3k − 18)#Fh + 1

6
(5k3 − 12k2 − 17k + 24)#Th.

Hence we acquire from the Euler’s formula that

dim V h ∩ ker(div)− dim curl �h = 4(−#Th + #Fh − #Eh + #Vh − 1) = 0,

which yields V h ∩ ker(div) = curl �h. ��
Remark 3.3 When the topology of � is non-trivial, it is assumed to be captured by
the triangulationTh. As all discrete spaces are conforming, the co-homology groups
defined by the Hessian complex is preserved in the discrete Hessian complex. �
Remark 3.4 When � is a topologically trivial domain, the following macro-element
Hessian complex based on the Alfeld split

P1(�)
⊂−→ WA

h

∇2−→ �A
h

curl−−→ V h
div−→ Qh −→ 0

is also exact, where

WA
h := {vh ∈ H 2(�) : vh|K ∈ WA(K) for each K ∈ Th, all degrees of

freedom (3.5.20)–(3.5.23) are single-valued},
�A

h := {τh ∈ L2(�; S) : τh|K ∈ �A(K) ∀ K ∈ Th, all degrees of

freedom (3.5.38)–(3.5.44) are single-valued}. �

3.5.6 Discrete Poincaré Inequality

Due to the exactness of the discrete Hessian complex, we have the following discrete
Poincaré inequality.

Lemma 3.18 Assume � is a topologically trivial domain. For any τh ∈ �h

satisfying

(τh,∇2wh) = 0 ∀ wh ∈ Wh,
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it holds the discrete Poincaré inequality

‖τh‖0 � ‖ curl τh‖0. (3.5.47)

In general,

‖τh‖0 ≤ ‖ curl τh‖0 + sup
wh∈Wh

(τh,∇2wh)

‖wh‖2
∀ τh ∈ �h.

Proof Since curl τh ∈ H (div,�;T), by (3.3.3) there exists τ ∈ H 1(�; S) such
that

curl τ = curl τh, ‖τ‖1 � ‖ curl τh‖0. (3.5.48)

By (3.5.36), we have

curl(I c
hτ ) = curl τ = curl τh.

It follows from the complex (3.5.46) that τh − I c
hτ ∈ ∇2Wh. Hence we obtain

from (3.5.37) and (3.5.48) that

‖τh‖2
0 = (τh, τh) = (τh, I

c
hτ ) ≤ ‖τh‖0‖I c

hτ‖0 � ‖τh‖0‖τ‖1,

which means (3.5.47).
For a general τh ∈ �h, by the exact sequence (3.5.46), we have the L2-

orthogonal Helmholtz decomposition

τh = ∇2vh + τ 0
h,

and τ 0
h⊥∇2Wh whose L2-norm can be controlled by (3.5.47) ‖τ 0

h‖0 �
‖ curl τ 0

h‖0 = ‖ curl τh‖0. The first part ∇2vh is the L2-projection of τh to ∇2Wh

and thus

‖∇2vh‖0 = sup
wh∈Wh/P1(�)

(∇2vh,∇2wh)

‖∇2wh‖0
= sup

wh∈Wh/P1(�)

(τh,∇2wh)

‖∇2wh‖0
.

Then we use Poincaré inequality

‖wh‖0 � ‖∇2wh‖0 ∀wh ∈ Wh/P1(�)

to finish the proof. ��
The discrete Poincaré inequality (3.5.47) is the discrete version of Poincaré

inequality (3.3.4). The L2-inner product (·, ·) and norm ‖ · ‖0 can be changed to
an equivalent one and similar results still hold.



126 L. Chen and X. Huang

3.6 Discretization for the Linearized Einstein-Bianchi System

In this section we will apply the constructed conforming virtual element Hessian
complex to discretize the time-independent linearized Einstein-Bianchi system.

3.6.1 Linearized Einstein-Bianchi System

Consider the time-independent linearized Einstein-Bianchi system [42]: find σ ∈
H 2(�), E ∈ H (curl,�; S) and B ∈ L2(�;T) such that

(σ, τ )− (E,∇2τ ) = 0 ∀ τ ∈ H 2(�), (3.6.1)

(∇2σ, v)+ (B, curl v) = (f , v) ∀ v ∈ H (curl,�; S), (3.6.2)

(B,ψ)− (curlE,ψ) = 0 ∀ ψ ∈ L2(�;T), (3.6.3)

where f ∈ L2(�; S). Here following [32, 42] we switch the notation and use σ, τ

for functions in H 2 and E, v for functions in H (curl,�; S).
To show the well-posedness of the linearized Einstein-Bianchi system (3.6.1)–

(3.6.3), we introduce the product space

X = H 2(�)×H (curl,�; S)×L2(�;T)

and the bilinear form A(·, ·) :X ×X → R as

A(σ,E,B; τ, v,ψ) := (σ, τ)−(E,∇2τ)−(∇2σ, v)−(B, curl v)+(B,ψ)−(curl E,ψ).

It is easy to prove the continuity

A(σ,E,B; τ, v,ψ) � (‖σ‖2 + ‖E‖H(curl) + ‖B‖0)(‖τ‖2 + ‖v‖H(curl) + ‖ψ‖0)

(3.6.4)

for any σ, τ ∈ H 2(�), E, v ∈ H (curl,�; S) and B,ψ ∈ L2(�;T). The well-
posedness of (3.6.1)–(3.6.3) is then derived from the following inf-sup condition.

Lemma 3.19 For any σ ∈ H 2(�),E ∈ H (curl,�; S) and B ∈ L2(�;T), it holds

‖σ‖2 + ‖E‖H(curl) + ‖B‖0 � sup
(τ,v,ψ)∈X

A(σ,E,B; τ, v,ψ)

‖τ‖2 + ‖v‖H(curl) + ‖ψ‖0
. (3.6.5)

Proof For ease of presentation, let

α = sup
(τ,v,ψ)∈X

A(σ,E,B; τ, v,ψ)

‖τ‖2 + ‖v‖H(curl) + ‖ψ‖0
.
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Then it follows from the Poincaré inequality that

‖E‖0 � ‖ curl E‖0 + sup
τ∈H 2(�)

(E,∇2τ )

‖τ‖2

≤ ‖ curl E‖0 + ‖σ‖0 + sup
τ∈H 2(�)

(E,∇2τ )− (σ, τ )

‖τ‖2

≤ ‖ curl E‖0 + ‖σ‖0 + α. (3.6.6)

On the other side, we have

A
(
σ,E,B; σ,−E−∇2σ,

1

2
(B−curl E)

)
= ‖σ‖2

0+|σ |22+
1

2
‖B‖2

0+
1

2
‖ curl E‖2

0.

Hence we get from the definition of α and (3.6.6) that

‖σ‖2
0 + |σ |22 +

1

2
‖B‖2

0 +
1

2
‖ curl E‖2

0

≤α(‖σ‖2 + ‖E + ∇2σ‖H(curl) + 1

2
‖B − curl E‖0)

�α(‖σ‖2 + ‖E‖0 + ‖ curl E‖0 + ‖B‖0)

�α(‖σ‖2 + ‖ curl E‖0 + ‖B‖0)+ α2,

which yields

‖σ‖2 + ‖ curl E‖0 + ‖B‖0 � α.

Finally the inf-sup condition (3.6.5) follows from the last inequality and (3.6.6).
��

As a result of (3.6.4) and the inf-sup condition (3.6.5), the variational formu-
lation (3.6.1)–(3.6.3) of the linearized Einstein-Bianchi system is well-posed, and

‖σ‖2 + ‖E‖H(curl) + ‖B‖0 � ‖f ‖(H (curl,�;S))′ .

It follows from (3.6.3) that B = curl E, which can be eliminated from the
system, so the linearized Einstein-Bianchi system (3.6.1)–(3.6.3) is equivalent to
find E ∈ H (curl,�; S) and σ ∈ H 2(�) such that

a(E, v)+ b(v,∇2σ) = (f , v) ∀ v ∈ H (curl,�; S), (3.6.7)

b(E,∇2τ )− c(σ, τ ) = 0 ∀ τ ∈ H 2(�), (3.6.8)
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where

a(E, v) = (curl E, curl v), b(E,∇2τ ) = (E,∇2τ ), c(σ, τ ) = (σ, τ ).

Then the inf-sup condition (3.6.5) is equivalent to

‖σ‖2 + ‖E‖H(curl) � sup
τ∈H 2(�)

v∈H (curl,�;S)

a(E, v)+ b(v,∇2σ)+ b(E,∇2τ )− c(σ, τ )

‖τ‖2 + ‖v‖H(curl)

for any σ ∈ H 2(�) and E ∈ H (curl,�; S).
In summary, the simplified EB system (3.6.7)–(3.6.8) can be thought of as a

generalization of Maxwell equations for E ∈ H(curl,�;R3) to the tensor version
E ∈ H(curl,�; S). The scalar potential σ is also changed from H 1(�) to H 2(�)

as the underline complex is changed from the de Rham complex to the Hessian
complex.

3.6.2 Conforming Discretization

With conforming subspaces Wh and �h, we could directly consider the Galerkin
approximation of (3.6.7)–(3.6.8). However, as pointwise information of functions
in virtual element spaces are not available, the L2-inner product (·, ·) involved in
b(·, ·) and c(·, ·) are not computable.

Remark 3.5 If we use the macro-elements WA and �A defined on the Alfeld split,
cf. Remarks 3.1 and 3.2, the shape functions are piecewise polynomials and thus
b(·, ·) and c(·, ·) are computable. �

We will replace them by equivalent and accurate approximations which can be
thought of as numerical quadrature. First introduce two stabilizations

S0
K(σ, τ ) := hK(σ, τ )∂K + h3

K(∂nσ, ∂nτ )∂K,

S1
K(E, v) := h2

K(curl E, curl v)K + hK(E × n, v × n)∂K,

which are computable as all integrands are polynomials.

Lemma 3.20 For each tetrahedron K ∈ Th, we have

S0
K(τ, τ ) � ‖τ‖2

0,K ∀ τ ∈ W(K) ∩ ker(QK
k−2), (3.6.9)

S1
K(v, v) � ‖v‖2

0,K ∀ v ∈ �(K) ∩ ker(QK
k ). (3.6.10)
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Proof By the norm equivalence on the finite dimensional spaces and the scaling
argument, it is sufficient to prove S0

K(·, ·) and S1
K(·, ·) are squared norms for the

spaces W(K)∩ker(QK
k−2) and �(K)∩ker(QK

k ), respectively. Again as the element
is a tetrahedron, by transferring back to the reference element, one can show the
constants in (3.6.9) and (3.6.10) depends only on the shape regularity of the element.

Assume τ ∈ W(K) ∩ ker(QK
k−2) and S0

K(τ, τ ) = 0. Then τ ∈ H 2
0 (K). By the

integration by parts and the definition of W(K), it follows

‖∇2τ‖2
0,K = (�2τ, τ )K = (�2τ,QK

k−2τ )K = 0,

which results in τ = 0. Hence S0
K(·, ·) is a squared norm for the space W(K) ∩

ker(QK
k−2).

Assume v ∈ �(K) ∩ ker(QK
k ) and S1

K(v, v) = 0. Apparently v ∈
H 0(curl,�; S) ∩ ker(curl). Then there exists w ∈ W(K) ∩ H 2

0 (K) satisfying
v = ∇2w. Since v ∈ ker(QK

k ), we get

(w, div div q)K = (∇2w, q)K = 0 ∀ q ∈ Pk(K; S),

which together with complex (3.4.15) implies

(w, q)K = 0 ∀ q ∈ Pk−2(K).

Therefore w = 0 and v = 0. ��
With these two stabilizations, define local bilinear forms

bK(E, v) := (QK
k E,QK

k v)K + S1
K(E −QK

k E, v −QK
k v),

cK(σ, τ ) := (Q̃K
k+2σ, Q̃

K
k+2τ )K + S0

K(σ − Q̃K
k+2σ, τ − Q̃K

k+2τ ),

where Q̃K
k+2σ := QK

k−2σ+(I−QK
k−2)�

Kσ . Recall that �K is the H 2-projection to
Pk+2(K) defined by (3.5.17)–(3.5.18). The L2-projection QK

k+2σ is not computable
but QK

k−2σ is using the interior moments. Then Q̃K
k+2σ is to augment QK

k−2σ by the
higher degree part from �Kσ . It is obvious that

bK(E, q) = (E, q)K ∀ E ∈ H 1(K; S) ∪ �(K), q ∈ Pk(K; S), (3.6.11)

cK(σ, q) = (Q̃K
k+2σ, q)K ∀ σ ∈ H 2(K) ∩W(K), q ∈ Pk+2(K). (3.6.12)

And we obtain from (3.6.9) and (3.6.10) that

bK(v, v) � ‖v‖2
0,K ∀ v ∈ �(K), (3.6.13)

cK(τ, τ ) � ‖τ‖2
0,K ∀ τ ∈ W(K). (3.6.14)
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Then we have from the Cauchy-Schwarz inequality that

bK(E, v) � ‖E‖0,K‖v‖0,K ∀ E, v ∈ �(K), (3.6.15)

cK(σ, τ ) � ‖σ‖0,K‖τ‖0,K ∀ σ, τ ∈ W(K). (3.6.16)

We propose the following conforming mixed virtual element method for the
variational formulation (3.6.7)–(3.6.8): find Eh ∈ �h and σh ∈ Wh such that

a(Eh, vh)+ bh(vh,∇2σh) = (f ,Qhvh) ∀ vh ∈ �h, (3.6.17)

bh(Eh,∇2τh)− ch(σh, τh) = 0 ∀ τh ∈ Wh, (3.6.18)

where Qhvh ∈ L2(�; S) is given by (Qhvh)|K := QK
k (vh|K) for each K ∈ Th

and

bh(Eh,∇2τh) :=
∑
K∈Th

bK(Eh|K,∇2τh|K), ch(σh, τh) :=
∑
K∈Th

cK(σh|K, τh|K).

For any Eh, vh ∈ �h and σh, τh ∈ Wh, it follows from (3.6.15)–(3.6.16) that

Ah(Eh, σh; vh, τh) ≤ (‖Eh‖H(curl) + ‖σh‖2)(‖vh‖H(curl) + ‖τh‖2),

where

Ah(Eh, σh; vh, τh) := a(Eh, vh)+ bh(vh,∇2σh)+ bh(Eh,∇2τh)− ch(σh, τh).

Following the proof of Lemma 3.18, we will have

‖vh‖0 � ‖ curl vh‖0 + sup
τh∈Wh

bh(vh,∇2τh)

‖τh‖2
. (3.6.19)

We then prove the discrete inf-sup condition.

Lemma 3.21 For any Eh ∈ �h and σh ∈ Wh, it holds

‖Eh‖H(curl) + ‖σh‖2 � sup
vh∈�h

τh∈Wh

Ah(Eh, σh; vh, τh)
‖vh‖H(curl) + ‖τh‖2

. (3.6.20)

Proof For ease of presentation, let

α = sup
vh∈�h

τh∈Wh

Ah(Eh, σh; vh, τh)
‖vh‖H(curl) + ‖τh‖2

.
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Since

sup
τh∈Wh

bh(Eh,∇2τh)

‖τh‖2
= sup

τh∈Wh

bh(Eh,∇2τh)− ch(σh, τh)+ ch(σh, τh)

‖τh‖2

� ‖σh‖0 + α,

we get from the discrete Poincaré inequality (3.6.19) that

‖Eh‖0 � ‖ curl Eh‖0 + ‖σh‖0 + α. (3.6.21)

On the other side, by the fact a(Eh,∇2σh) = 0 we have

Ah(Eh, σh;Eh +∇2σh,−σh) = a(Eh,Eh)+ bh(∇2σh,∇2σh)+ ch(σh, σh),

which combined with (3.6.13)–(3.6.14) implies

‖σh‖2
2+‖ curl Eh‖2

0 � α(‖σh‖2+‖Eh+∇2σh‖H(curl)) � α(‖σh‖2+‖Eh‖H(curl)).

Hence

‖σh‖2
2 + ‖ curl Eh‖2

0 � α2 + α‖Eh‖0.

Finally combining the last inequality and (3.6.21) gives (3.6.20). ��
From now on we always denote by Eh ∈ �h and σh ∈ Wh the solution of the

mixed method (3.6.17)–(3.6.18).

Lemma 3.22 Assume E ∈ H k+1(�; S) and σ ∈ H k+2(�). Then

bh(vh,∇2I�h σ)− b(vh,∇2σ) � hk‖vh‖0|σ |k+2, (3.6.22)

bh(I
c
hE,∇2τh)− b(E,∇2τh) � hk+1|E|k+1|τh|2, (3.6.23)

(σ, τh)− ch(I
�
h σ, τh) � hk+1

K ‖σ‖k+1,K‖τh‖2,K. (3.6.24)

Proof For each K ∈ Th, we acquire from (3.6.11), (3.6.15) and (3.5.24) that

bK(vh,∇2I�h σ)− (vh,∇2σ)K

= bK(vh,∇2I�h σ −QK
k (∇2σ))− (vh,∇2σ −QK

k (∇2σ))K

� ‖vh‖0,K‖∇2I�h σ −QK
k (∇2σ)‖0,K + ‖vh‖0,K‖∇2σ −QK

k (∇2σ)‖0,K

� ‖vh‖0,K(|σ − I�h σ |2,K + ‖∇2σ −QK
k (∇2σ)‖0,K) � hkK‖vh‖0,K |σ |k+2,K.
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Thus

bh(vh,∇2I�h σh)− b(vh,∇2σ) =
∑
K∈Th

(
bK(vh,∇2I�h σh)− (vh,∇2σ)K

)

� hk‖vh‖0|σ |k+2,

i.e. (3.6.22).
Similarly it holds from (3.6.11), (3.6.15) and (3.5.35) that

bK(I
c
hE,∇2τh)− (E,∇2τh)K = bK(I

c
hE −QK

k E,∇2τh)− (E −QK
k E,∇2τh)K

� (‖I c
hE −QK

k E‖0,K + ‖E −QK
k E‖0,K)|τh|2,K

� hk+1
K |E|k+1,K |τh|2,K,

which yields (3.6.23).
Employing (3.6.12), (3.6.16), (3.5.19) and (3.5.24), we get

(σ, τh)K − cK(I�h σ, τh)

= (σ − Q̃K
k+2σ, τh)K − cK(I�h σ − Q̃K

k+2σ, τh)+ (Q̃K
k+2σ, τh − Q̃K

k+2τh)K

= (σ − Q̃K
k+2σ, τh)K − cK(I�h σ − Q̃K

k+2σ, τh)+ (�Kσ −QK
k−2�

Kσ, τh − Q̃K
k+2τh)K

�
(
‖σ − Q̃K

k+2σ‖0,K + ‖I�h σ − Q̃K
k+2σ‖0,K

)
‖τh‖0,K

+ ‖�Kσ −QK
k−2�

Kσ‖0,K‖τh − Q̃K
k+2τh‖0,K

�
(
‖σ −�Kσ‖0,K + ‖σ − I�h σ‖0,K

)
‖τh‖0,K + h2

K‖�Kσ −QK
k−2�

Kσ‖0,K |τh|2,K
� hk+1

K ‖σ‖k+1,K‖τh‖2,K .

Therefore (3.6.24) is true. ��
Theorem 3.3 Let Eh ∈ �h and σh ∈ Wh be the solution of the mixed
method (3.6.17)–(3.6.18) and let E and σ be the solution of (3.6.7)–(3.6.8). Assume
E ∈ H k+1(�; S), σ ∈ Hk+2(�) and f ∈ H k(�; S). We have

‖E −Eh‖H(curl) + ‖σ − σh‖2 � hk (|E|k+1 + ‖σ‖k+2 + |f |k) .

Proof Take any vh ∈ �h and τh ∈ Wh. We get from the variational formula-
tion (3.6.7)–(3.6.8), (3.5.35) and estimates (3.6.22)–(3.6.24) that

Ah(I
c
hE, I�h σ ; vh, τh)− (f , vh)

= a(I chE −E, vh)+ bh(vh,∇2I�h σ)− b(vh,∇2σ)
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+ bh(I
c
hE,∇2τh)− b(E,∇2τh)+ (σ, τh)− ch(I

�
h σ, τh)

� hk|E|k+1‖ curl vh‖0 + hk‖vh‖0|σ |k+2 + hk+1|E|k+1|τh|2 + hk+1‖σ‖k+1‖τh‖2.

Since

(f , vh −Qhvh) = (f −Qhf , vh) ≤ ‖f −Qhf ‖0‖vh‖0 � hk|f |k‖vh‖0,

we achieve from the mixed method (3.6.17)–(3.6.18) that

Ah(I
c
hE − Eh, I

�
h σ − σh; vh, τh)

= Ah(I
c
hE, I�h σ ; vh, τh)− (f ,Qhvh)

= Ah(I
c
hE, I�h σ ; vh, τh)− (f , vh)+ (f , vh −Qhvh)

� hk|E|k+1‖ curl vh‖0 + hk(|σ |k+2 + |f |k)‖vh‖0 + hk+1|E|k+1|τh|2
+ hk+1‖σ‖k+1‖τh‖2.

Now it follows from the inf-sup condition (3.6.20) that

‖I c
hE −Eh‖H(curl) + ‖I�h σ − σh‖2 � sup

vh∈�h

τh∈Wh

Ah(I
c
hE − Eh, I

�
h σ − σh; vh, τh)

‖vh‖H(curl) + ‖τh‖2

� hk(|E|k+1 + ‖σ‖k+2 + |f |k).

Thus we acquire from (3.5.35) and (3.5.24) that

‖E −Eh‖H(curl) + ‖σ − σh‖2

≤ ‖E − I c
hE‖H(curl) + ‖σ − I�h σ‖2 + ‖I c

hE −Eh‖H(curl) + ‖I�h σ − σh‖2

� hk(|E|k+1 + ‖σ‖k+2 + |f |k),

as required. ��
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Chapter 4
Some Virtual Element Methods
for Infinitesimal Elasticity Problems

Edoardo Artioli, Stefano de Miranda, Carlo Lovadina, Luca Patruno,
and Michele Visinoni

Abstract The chapter presents Virtual Element Methods for linear elasticity. In
particular, displacement based methods stemming from the principle of virtual
works for 2D problems, and mixed methods based on the Hellinger-Reissner
variational principle for 2D and 3D problems are discussed and detailed. A series
of numerical examples for each set of methods are given in order to show the
characteristic features of the newly developed methods and to assess their accuracy
and convergence properties.

4.1 Introduction

This chapter presents a review of two families of Virtual Element Methods that
have been recently studied by the authors in the framework of small strain small
displacement linear elasticity problems (see [6, 8, 9, 44]).

The Virtual Element Method (VEM) is a recently introduced numerical method
[18, 20] for the approximation of general PDEs, and can be seen as generalization
of the classical Finite Element Method (e.g. [15, 49, 60]) and as evolution of
modern mimetic schemes (see for instance [21, 34, 35]). Differing from standard
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Finite Element methods, the VEM structure allows using very general polygonal or
polyhedral meshes, which entails the capability of hanging vertices, highly distorted
irregular polygonal element shapes, as well as curvilinear polygons [12, 13, 27].
As more recent works testify, mesh generation and adaptivity (local refinement/de-
refinement) can be exploited in a very versatile form to give highly powerful and
accurate schemes for applied physics and engineering problems requiring such
complex features, which, for some selected applications, may result in methods
quite more robust than established ones [16, 17, 25, 28, 36, 38].

The basic idea underneath the VEM is to use approximating functions which
are solution to suitable local partial differential equations (hence the possibility to
easily implement highly regular discrete spaces, see for instance [33]) departing
from the standard local polynomial approximation approach. Price to pay is that
these discrete non-polynomial shape functions are not explicitly known pointwise
but only over the element boundary. Such limited information (the actual degrees
of freedom of a VEM method) is indeed sufficient to derive suitable projection
operators that enable computation of all the relevant element arrays and lead to
a stiffness matrix and the right-hand side vector. A key ingredient of the method
is represented by suitable quadrature rules for general convex/concave/curvilinear
polygons/polyhaedra avoiding the explicit construction of the local basis functions
[14, 57–59].

The interest in VEM has largely grown over recent years not only in the numer-
ical analysis community (see for instance [19, 22, 24, 29, 31–33, 37, 42, 43, 51])
but in the applied mathematics and engineering ones as well, as confirmed by the
many recent contributions among which we here mention a representative list in the
framework of elasticity and, more in general, of computational mechanics [1–3, 6–
11, 19, 22–27, 37, 40, 47, 48, 55, 61–64].

In the aforementioned setting, the present chapter represents a review of some
recently proposed virtual element methods for two and three-dimensional linear
elasticity. The methods are grouped as primal or displacement based methods, and
mixed (i.e. stress/displacement) formulations, respectively. The former are based
on the principle of virtual works, the latter on the classical Hellinger-Reissner
variational principle. While the first family represents the typical VEM counterpart
of standard Lagrangian finite elements and are based on a projection operator
mapping local displacements of any chosen order to approximated polynomial
strains, the second family is an innovative mixed VEM capable of naturally
representing Cauchy stress symmetry and preserve inter-element traction continuity,
notably non-trivial tasks in mixed finite element formulations [5, 30]. This issue
can be efficiently solved in the VEM framework which enables the design of
accurate and computationally light methods. Furthermore, the particular structure
of the approximation spaces involved in the Hellinger-Reissner VEM schemes,
easily allows to perform the so-called hybridization procedure to efficiently solve
the resulting linear system and to design a suitable higher-order post-processing of
the displacement field (see [45], where the ideas of [4] are developed in the elasticity
problem framework). It is also worth remarking that hybridization is instead hardly
applicable for the available conforming FEM schemes.
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The outline of the paper is the following. In Sect. 4.2 we review the weak
forms for linear elasticity, in primal and mixed form, respectively, in the realm of
infinitesimal strain and small displacements. In Sect. 4.3 we explore the relevant
Virtual Element Methods for the previously recalled boundary value problems:
primal methods based on the principle of virtual works refer to two-dimensional
domains, while, in the case of mixed methods cast in the framework of the
Hellinger-Reissner variational formulation, discussion tackles both 2D and 3D
numerical schemes. Last, in Sect. 4.4 a selection of numerical results, aiming at
confirming numerical features and theoretical predictions on the examined methods,
is presented.

4.2 Elasticity Formulation with Infinitesimal Strain

In this section we briefly present the elasticity problem in its simplest framework,
i.e. within the infinitesimal strain theory and for a linear constitutive law (for
a comprehensive description of the elasticity theory, one may look at classical
monographs, such as [39, 50, 54], for instance). We thus consider the following
first-order differential system.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find (σ ,u) such that

− div σ = f in �

σ = Cε(u) in �

u|∂� = 0

(4.2.1)

Above, σ is the symmetric stress field and u is the displacement field. Moreover, �
is a sufficiently regular domain of Rd , with d = 2, 3, while f represents the applied
loads. Finally, ε(·) is the symmetric gradient operator, i.e.

ε(·) = 1

2

(
∇(·)+∇(·)T

)
,

div is the usual vectorial divergence operator acting on second-order tensors (thus,
div τ is, in Cartesian components: ∂τij

∂xj
; Einstein’s summation convention is here

adopted), and C is the fourth-order symmetric and uniformly positive-definite
elasticity tensor. Here we only consider homogeneous boundary conditions, but
other cases can be treated using exactly the same techniques employed in the more
classical Finite Element Method.
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4.2.1 Primal Form

The easiest formulation of the elasticity problem (4.2.1) is the so-called primal
formulation. It simply consists of the elimination of the stress field, by substituting
the second equation of (4.2.1) into the first one. Thus, the differential problem now
becomes

⎧⎪⎪⎨
⎪⎪⎩

Find u such that

− div(Cε(u)) = f in �

u|∂� = 0

(4.2.2)

Since we are going to deal with a Galerkin method to approximate the solution to
problem (4.2.2), we introduce the following (standard) variational formulation.

{
Find u ∈ V such that

d(u, v) = (f, v) ∀v ∈ V,
(4.2.3)

where V = H 1
0 (�)d with d = 2 or d = 3, (·, ·) represents the usual L2 inner

product, and the bilinear form d(·, ·) : V × V → R is defined by

d(u, v) = (Cε(u), v) =
∫
�

Cε(u) : v. (4.2.4)

It is well-known that problem (4.2.3) is a continuous and elliptic problem, so well-
posed. In particular, it holds:

||u||V ≤ C||f||0, (4.2.5)

where C is a constant depending on � and on the material tensor C.

4.2.2 Mixed Form

We now introduce the so called Hellinger-Reissner mixed formulation of prob-
lem (4.2.1). Defining D = C

−1, and a(σ , τ ) = (Dσ , τ ), the variational formulation
of problem (4.2.1) reads:

⎧⎪⎪⎨
⎪⎪⎩

Find (σ ,u) ∈ � × U such that

a(σ , τ )+ (div τ ,u) = 0 ∀τ ∈ �

(div σ , v) = −(f, v) ∀v ∈ U

(4.2.6)
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where U = L2(�)d , the loading f ∈ L2(�)d and

� = {τ ∈ H(div;�) : τ is symmetric} .

Above, H(div;�) denotes the space of tensor in L2(�)d×d , whose divergence is in
L2(�)d . Furthermore, given a functional space X, Xd×d

s denotes the d×d symmet-
ric tensors whose components belong to X. It is well known that Problem (4.2.6) is
well-posed (see [30], for instance). in particular, it holds:

||σ ||� + ||u||U ≤ C||f||0, (4.2.7)

where C is a constant depending on � and on the material tensor C.

Remark 4.1 As discussed in [30], estimate (4.2.7) does not break down for nearly
incompressible materials. More precisely, considering the constitutive law:

Cε = 2με + λtr(ε)Id ∀symmetric tensor ε, (4.2.8)

with λ,μ > 0 Lame’s parameters, Id the identity matrix and tr(·) the trace operator,
the constant C in (4.2.7) can be chosen independent of λ.

4.3 Virtual Element Methods for Elasticity

Similarly to the Finite Element procedure, the starting point for the design of a
Virtual Element scheme is the introduction of the computational domain mesh.
Accordingly, let {Th}h be a sequence of decompositions of � into general polygonal
(for d = 2) or polyhedral (for d = 3) elements E with

hE : diameter(E), h = sup
E∈Th

hE.

In what follows, |E| and |e| = he will denote the d-volume of E and the length
of the side e ∈ ∂E, respectively; for d = 3, |f | and hf denote the area and the
diameter of the face f ∈ ∂E, respectively.

We suppose that for all h, each element E in Th fulfils the following assump-
tions:

– (A1) E is star-shaped with respect to a ball of radius greater or equal to γ hE ,
– (A2) for every edge e ∈ ∂f , we have |e| ≥ γ hf ≥ γ 2 hE ,
– (A3) (only for d = 3) for every face f ∈ ∂E we have hf ≥ γ hE and f is

star-shaped with respect to a disk of radius greater or equal to γ hf ,

where γ is a positive constant. We remark that the hypotheses above, though not too
restrictive in many practical cases, can be further relaxed, as noted in [18].
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Moreover, in what follows we suppose that C is constant inside each element E.

4.3.1 Primal Methods Based on Virtual Work Principle

A virtual element method (VEM) for problem (4.2.2) is constructed following a
procedure that closely resembles the Finite Element approach, i.e. by restricting the
original variational formulation (4.2.3) to the discrete space Vh and approximating
the ensuing terms:

{
find uh ∈ Vh such that

dh(uh, vh) = (f, vh)h ∀ vh ∈ Vh,
(4.3.1)

where

– Vh ⊂ V is the approximation virtual space;
– dh(·, ·) : Vh×Vh → R is a discrete bilinear form approximating the continuous

form d(·, ·);
– (f, vh)h is the term approximating the virtual work of the external load.

Furthermore, the method above is constructed by defining local (elemental)
quantities and then by suitably glueing together the local contributions. For this
primal formulation we focus on the 2D case; the 3D extension may be done using
the ideas of [18] for the laplacian operator.

4.3.1.1 The Local Space

Let k be a positive integer, representing the “degree of accuracy” of the method.
Then, given an element E ∈ Th, we define:

Vh(E) =
{
vh ∈ (H 1(E) ∩ C0(E))2 : �vh ∈ Pk−2(E)

2,

vh|e ∈ Pk(e)
2 ∀e ∈ ∂E

}
,

(4.3.2)

where Pk(E) denotes the space of polynomials of degree (up to) k defined on E,
with the agreement that P−1(E) = {0}.

The following important observations hold:

– the functions vh ∈ Vh(E) are explicitly known on ∂E;
– the functions vh ∈ Vh(E) are not explicitly known inside the element E;
– it holds Pk(E)2 ⊆ Vh(E) (that is important for approximation).

In what follows, the integermE = m will denote the number of edges in the polygon
E (we will drop the subscript E if there is no risk of confusion). A sample polygon
with m = 5 edges is represented in Fig. 4.1 with indication of vertexes and edges.
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Fig. 4.1 A sample polygon
with m = 5. (From: E.
Artioli, L. Beirão da Veiga, C.
Lovadina, and E. Sacco,
Arbitrary order 2D virtual
elements for polygonal
meshes: Part I, elastic
problem, Comput. Mech. 60
(2017), 355–377. Reproduced
with permission)

Taking into account that the unknown vector vh ∈ Vh(E) has two components,
for any E ∈ Th, the degrees of freedom for Vh(E) will be:

– 2m pointwise values

vh → vh(νi )

at corners νi of E, i = 1, 2, ..,m,
– 2m(k − 1) pointwise values

vh → vh(xej )

at edge internal nodes {xej } (i.e. not comprising extrema of edge e), j =
1, . . . , k − 1, being m the number of edges of a polygon;

– 2 k(k−1)
2 moments of the unknown field over the element, not associated with a

specific location over E:

vh → 1

|E|
∫
E

vh · pk−2 ∀pk−2 ∈ Pk−2(E)
2.

Sample figures for the degrees of freedom are shown in Fig. 4.2.
The dimension of the space Vh(E) results

n = dim(Vh(E)) = 2mk + k(k − 1) , (4.3.3)

where 2m degrees of freedom are associated with the m corners of ∂E, 2m(k − 1)
degrees of freedom are associated with the m edges (with (k − 1) internal nodal
points per edge), and k(k − 1) degrees of freedom are the moments. A local
“Lagrange-type” basis for the space Vh(E) can be chosen as follows: the i-th
function of the local basis is given by the unique function in Vh(E) that has unit
value on the i-th degree of freedom and vanishes for the remaining ones.
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Fig. 4.2 Sample degrees of freedom for k = 1 (left), and for k = 2 (right). (From: E. Artioli,
L. Beirão da Veiga, C. Lovadina, and E. Sacco, Arbitrary order 2D virtual elements for polygonal
meshes: Part I, elastic problem, Comput. Mech. 60 (2017), 355–377. Reproduced with permission)

4.3.1.2 The Local Bilinear Form

As already mentioned, the discrete bilinear form is built element by element,
assuming:

dh(uh, vh) =
∑
E∈Th

dhE(uh, vh) ∀uh, vh ∈ Vh. (4.3.4)

On the other hand, since the functions of the space Vh are not know explicitly inside
the elements, the bilinear forms dhE(·, ·) cannot be evaluated by standard Gauss
integration. The construction of the local discrete form dhE(·, ·), a key point in the
VEM, is performed following the procedure described in the following.

Since neither the function vh nor its gradient are explicitly computable in the
element interior points, the method proceeds by introducing a projection operator
GE , representing the approximated strain associated with the virtual displacement,
defined as:

GE : Vh(E) −→ Pk−1(E)
2×2
s (4.3.5)

vh �→ GE(vh),

where we recall that Pk−1(E)
2×2
s denotes the space of 2×2 symmetry tensors whose

components are in Pk−1(E). It is noted that dim(Pk−1(E)
2×2
s ) = 2 k(k+1)

2 .
Given vh ∈ Vh(E), such an operator GE is defined as the unique function

GE(vh) ∈ Pk−1(E)
2×2
s that satisfies the condition:

∫
E

GE(vh) : ε =
∫
E

ε(vh) : ε, ∀ε ∈ Pk−1(E)
2×2
s . (4.3.6)
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This operator represents the best approximation of the strains (in the square integral
norm) in the space of piecewise polynomials of degree (k − 1). Although the
functions in Vh(E) are virtual, the right hand side in (4.3.6) (and thus the operator
GE) turns out to be computable with simple calculations, see [6].

Once computed, the GE operator approximates the internal work part associated
to the equilibrium weak formulation as follows:

dhE(uh, vh) =
∫
E

CGE(uh) : GE(vh)+ sE (uh, vh) (4.3.7)

with sE(·, ·) a stabilizing term, needed to preserve the coercivity of the system.
For instance, one may consider the following structure, now standard in the Virtual
Element community:

sE (uh, vh) = tr(C)
n∑

i=1

i(uh − Pkuh)i(vh − Pkvh), (4.3.8)

where Pk : Vh(E) → Pk(E)
2 is a suitable projection and i(wh) represents the

i-th degree of freedom evaluation of wh ∈ Vh(E). We refer to [6] for details.

4.3.1.3 The Local Loading Term

Also the loading term (f, vh)h, see (4.3.1), is constructed by summing local
contributions. Accordingly, it holds

(f, vh)h =
∑
E∈Th

(f, vh)E,h,

where, for each E ∈ Th, (f, vh)E,h is an approximation of the term:

∫
E

f · vh. (4.3.9)

Introducing P 0
k−2f as the L2-projection of f, we thus set

(f, vh)E,h =
∫
E

(P 0
k−2f) · vh =

∫
E

f · (P 0
k−2vh). (4.3.10)

which is a computable quantity, see for instance [18].
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4.3.1.4 The Discrete Scheme

As in standard FE methods, the global space Vh ⊆ V is built by assembling the
local spaces Vh(E) as usual:

Vh = {vh ∈ V : vh|E ∈ Vh(E) ∀E ∈ Th}. (4.3.11)

The discrete scheme now reads, cf. (4.3.1):

{
Find uh ∈ Vh such that

dh(uh, vh) = (f, vh)h ∀ vh ∈ Vh.
(4.3.12)

4.3.1.5 Mixed Methods Based on Hellinger Reissner Principle: 2D Case

As for the primal VEM formulation of Sect. 4.3.1, all the contributions to the
bilinear and linear forms are locally defined, and then suitably glued together to
form the global discrete problem.

4.3.1.6 The Local Spaces

Given a polygon E ∈ Th with mE = m edges, we first introduce the space of local
infinitesimal rigid body motions:

RM(E) =
{

r(x) = a+ b(x− xC)⊥ a ∈ R
2, b ∈ R

}
. (4.3.13)

Here above, given c = (c1, c2)
T ∈ R

2, c⊥ is the clock-wise rotated vector c⊥ =
(c2,−c1)

T , and xC is the barycenter of E. We remark that for a non-convex E the
centroid xC may lie outside the element; however, this does not cause any trouble,
neither in the design nor in the analysis of the methods.

The description of the local spaces is divided into two different instances: a low-
order case and a general high-order case.

The Lowest-Order Case
For each edge e of ∂E, we introduce the space

R(e) =
{

t(s) = c+ c3 s n c = (c1, c2)
T ∈ R

2, c3 ∈ R, s ∈ [−1/2, 1/2]
}
.

(4.3.14)

Here above, s is a local linear coordinate on e, such that s = 0 corresponds to the
edge midpoint. Furthermore, n is the outward normal to the edge e. Hence, R(e)
consists of vectorial functions which have the edge tangential component constant,
and the edge normal component linear along the edge. Therefore, the local stresses
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are the stress solutions of suitable elastic problems where tractions are imposed on
the whole element boundary. Of course, this is a virtual space, in that those solutions
are not analytically available.

Our local approximation space for the stress field is then defined by

�h(E) =
{
τh ∈H(div;E) : ∃w∗ ∈ H 1(E)2 such that τh = Cε(w∗);

(τh n)|e ∈ R(e) ∀e ∈ ∂E; div τh ∈ RM(E)
}
.

(4.3.15)

The definition above suggest to take the following functionals as degrees of
freedom in �h(E).

– For each edge e ∈ ∂E, given τh ∈ �h(E):

τh −→
∫
e

τhn , τh −→
∫
e

s τhn · n. (4.3.16)

We remark that, once (τh n)|e = ce+ c3,es n is given for all e ∈ ∂E, cf. (4.3.14),
the quantity div τh ∈ RM(E) is determined. Indeed, denoting with ϕ : ∂E → R

2

the function such that ϕ|e = ce + c3,es n, integration by parts gives

∫
E

div τh · r =
∫
∂E

ϕ · r ∀r ∈ RM(E), (4.3.17)

allows to compute div τh using the ce’s and the c3,e’s. More precisely, setting
(cf. (4.3.13))

div τh = αE + βE(x− xC)⊥, (4.3.18)

from (4.3.17) we infer

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αE = 1

|E|
∫
∂E

ϕ = 1

|E|
∑
e∈∂E

∫
e

ce

βE = 1∫
E
|x− xC |2

∫
∂E

ϕ · (x− xC)⊥

= 1∫
E
|x− xC |2

∑
e∈∂E

∫
e

(ce + c3,es n) · (x− xC)⊥.

(4.3.19)
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Fig. 4.3 Schematic
description of the local
degrees of freedom for the
low-order method

The local approximation space for the displacement field is simply defined by,
see (4.3.13):

Uh(E) =
{

vh ∈ L2(E)2 : vh ∈ RM(E)
}
. (4.3.20)

We notice that dim(�h(E)) = 3m, while dim(Uh(E)) = 3.
In Fig. 4.3 the local degrees of freedom for stresses and displacements are

schematically depicted: arrows represent traction degrees of freedom (cf. (4.3.16)),
and crosses represent the displacement degrees of freedom (cf. (4.3.20)).

Remark 4.2 We notice that the degrees of freedom (4.3.16), which are defined edge
by edge, allow to easily glue the elemental stress contributions, complying the
H(div;�) regularity requirement. In addition, Eq. (4.3.17) highlights that the L2-
projection of div τh ontoRM(E) is determined by the boundary tractions (τhn)|∂E .
Therefore, if we use (4.3.16), we cannot restrict the condition div τh ∈ RM(E) in
(4.3.15). For instance, we cannot require div τh ∈ P0(E)

2 because the boundary
traction (τhn)|∂E typically leads to a div τh for which

∫
E

div τh · (x− xC)⊥ "= 0.

Indeed, for a τh such that (τh n)|e ∈ R(e) (cf. (4.3.15)), in general it holds

∫
∂E

τhn · (x− xC)⊥ "= 0.

We also remark that selecting piecewise constant tractions on ∂E does not alleviate
the trouble.

The Case of General k ≥ 1
For any integer k ≥ 1, we first need to introduce the space

RM⊥
k (E) =

{
pk(x) ∈ Pk(E)

2 :
∫
E

pk · r = 0 ∀r ∈ RM(E)

}
. (4.3.21)
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Hence, the following L2-orthogonal decomposition holds:

Pk(E)
2 = RM(E)

⊕
RM⊥

k (E). (4.3.22)

Our local approximation space for the stress field is then defined by

�h(E) =
{
τh ∈H(div;E) : ∃w∗ ∈ H 1(E)2 such that τh = Cε(w∗);

(τh n)|e ∈ Pk(e)
2 ∀e ∈ ∂E; div τh ∈ Pk(E)

2
}
.

(4.3.23)

We remark that, due to the decomposition (4.3.22), we may write div τh = rτ +
pτ for a unique couple (rτ ,pτ ) ∈ RM(E)× RM⊥

k (E).
We now notice that the RM(E)-component rτ of div τh is completely deter-

mined once (τh n)|e = pk,e ∈ Pk(e)
2 is given for all e ∈ ∂E. Indeed, let us denote

with ϕ : ∂E → R
2 the function such that ϕ|e = pk,e. Using an integration by parts

and the orthogonal decomposition (4.3.22), we have:

∫
E

rτ · r =
∫
E

div τh · r =
∫
∂E

τhn · r =
∫
∂E

ϕ · r ∀r ∈ RM(E), (4.3.24)

which allows to compute rτ using the pk,e’s. More precisely, setting (cf (4.3.13))

rτ = αE + βE(x− xC)⊥, (4.3.25)

from (4.3.24) we infer

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αE = 1

|E|
∫
∂E

ϕ = 1

|E|
∑
e∈∂E

∫
e

pk,e

βE = 1∫
E
|x− xC |2

∫
∂E

ϕ · (x− xC)⊥

= 1∫
E |x− xC |2

∑
e∈∂E

∫
e

pk,e · (x− xC)⊥.

(4.3.26)

The equations above suggest to take the following functionals as degrees of
freedom in �h(E).

– For each edge e ∈ ∂E, given τh ∈ �h(E):

τh −→
∫
e

τhn · pk ∀pk ∈ Pk(e)
2. (4.3.27)
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– In the polygon E, given τh ∈ �h(E):

τh −→
∫
E

div τh · ψk ∀ψk ∈ RM⊥
k (E). (4.3.28)

Indeed, the following Lemma holds, cf. [9].

Lemma 4.1 If τh ∈ �h(E), then

⎧⎪⎪⎨
⎪⎪⎩

∫
e

τhn · pk = 0 ∀pk ∈ Pk(e)
2, ∀e ∈ ∂E;

∫
E

div τh · ψk = 0 ∀ψk ∈ RM⊥
k (E),

(4.3.29)

imply τh = 0.

Alternatively, one may consider the following degrees of freedom (useful for the
implementation purposes).

– For each edge e ∈ ∂E, given τh ∈ �h(E), the first subset of degrees of freedom
is the set of values of τhn at k+1 distinct points in e (for instance, the k+1 Gauss-
Lobatto nodes). Another possible choice, which has been used in our numerical
tests of Sect. 4.4.1.2 is the following: for each e, we introduce a local linear
coordinate s ∈ [−1, 1]; for both components of τh ∈ �h(E), the degrees of
freedom are the k + 1 coefficients of their expansion with respect to the basis
{1, s, s2, . . . , sk}.

These 2(k+1) values account for the degrees of freedom described in (4.3.27).
– In the polygon E, let us choose a basis {ϕi} (i = 1, . . . , (k + 1)(k + 2)− 3) for

RM⊥
k , see (4.3.22). Then, for each τh ∈ �h(E), we may write

div τh = α + β(x− xC)⊥ +
mk∑
i=1

γiϕi (x), (4.3.30)

where nk = (k + 1)(k + 2)− 3.
The values {γ1, . . . , γnk } can be taken as the second subset of degrees of

freedom. They account for the degrees of freedom described in (4.3.28), while
{α, β} are computed according with (4.3.19).

The construction of the basis {ϕi} can be done starting from the usual
polynomial basis (or from the scaled one (see [20], for instance) and performing
an L2-orthogonalization procedure with respect to the space RM(E). This
approach has been followed for the numerical results presented in Sect. 4.4.1.2.
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Fig. 4.4 Schematic
description of the local
degrees of freedom for k = 1

The local approximation space for the displacement field is simply defined by,
see (4.3.13):

Uh(E) =
{

vh ∈ L2(E)2 : vh ∈ Pk(E)
2
}
, (4.3.31)

and a set of degrees of freedom can be defined in a standard way.
We notice that dim(�h(E)) = 2(k + 1)m + nk , while dim(Uh(E)) = (k +

1)(k + 2). In Fig. 4.4 the local degrees of freedom for stresses and displacements
are schematically depicted for k = 1: again, arrows represent traction degrees
of freedom (cf. (4.3.27)), bullets represent the divergence degrees of freedom
(cf. (4.3.28)), crosses represent the displacement degrees of freedom (cf. (4.3.31)).

4.3.1.7 The Local Bilinear Forms

Given E ∈ Th, we first notice that, for every τh ∈ �h(E) and vh ∈ Uh(E), the
term

∫
E

div τh · vh (4.3.32)

is computable from the knowledge of the degrees of freedom, since both fac-
tors are polynomials, whatever the low-order or the general case is considered
(see (4.3.15), (4.3.20), (4.3.23) and (4.3.31)). Therefore, there is no need to
introduce any approximation. Instead, the term

aE(σ h, τh) =
∫
E

Dσ h : τh (4.3.33)

is not computable for a general couple (σ h, τh) ∈ �h(E) × �h(E). We then
must introduce a suitable approximation ahE(·, ·) of aE(·, ·). To this end, for every
non-negative integer k we need to define the projection operator �E (we use the
convention that for the low-order scheme k = 0).
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Given E ∈ Th, following [8, 9], we first need to introduce the space:

�̃(E) =
{
τ ∈ H(div;E) : ∃w ∈ H 1(E)2such that τ = Cε(w)

}
. (4.3.34)

The projection operator �E onto the space

Sk(E) = C ε(Pk+1(E)
2) =

{
C ε(pk+1) : pk+1 ∈ Pk+1(E)

2
}

(4.3.35)

is thus defined by:

⎧⎪⎪⎨
⎪⎪⎩

�E : �̃(E)→ Sk(E)

τ �→ �Eτ

aE(�Eτ ,πk) = aE(τ ,πk) ∀πk ∈ Sk(E).

(4.3.36)

We remark that (4.3.36) is equivalent to find pk+1 ∈ Pk+1(E)
2 such that

∫
E

C ε(pk+1) : ε(qk+1) =
∫
E

τ : ε(qk+1) ∀qk+1 ∈ Pk+1(E)
2. (4.3.37)

Remark 4.3 Obviously, pk+1 is defined up to a term in RM(E). In addition, we
observe that since C constant in E, it holds Sr(E) = Pr (E)

2×2
s if r = 0, 1; however,

if C varies in E, the construction above can still be performed, though Sk(E) is not
even a polynomial space.

We now set

ahE(σ h, τh) = aE(�Eσ h,�Eτh)+ sE ((Id −�E)σ h, (Id −�E)τh)

=
∫
E

D(�Eσ h) : (�Eτh)+ sE ((Id −�E)σ h, (Id −�E)τh) ,

(4.3.38)

where sE(·, ·) is a suitable stabilization term. We propose the following choice:

sE(σ h, τh) = κE hE

∫
∂E

σ hn · τhn, (4.3.39)

where κE is a positive constant to be chosen. For instance, in the numerical examples
of Sect. 4.4.1.2, κE is set equal to 1

2 tr(D|E); however, any norm of D|E can be used.
A possible variant of (4.3.39) is provided by

sE(σ h, τh) = κE
∑
e∈∂E

he

∫
e

σ hn · τhn. (4.3.40)
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4.3.1.8 The Local Loading Term

We need to consider the term, see (4.2.6):

(f, vh) =
∫
�

f · vh =
∑
E∈Th

∫
E

f · vh. (4.3.41)

We remark that, since vh ∈ RM(E), computing (4.3.41) is possible once a suitable
quadrature rule is available for polygonal domains. For such an issue, see for
instance [52, 53, 57].

4.3.1.9 The Discrete Scheme

We are now ready to introduce the discrete scheme. We introduce a global
approximation space for the stress field, by glueing the local approximation spaces
(see (4.3.15) for the low-order scheme, (4.3.23) for the general case):

�h =
{
τh ∈ H(div;�) : τh|E ∈ �h(E) ∀E ∈ Th

}
. (4.3.42)

For the global approximation of the displacement field, we take (see (4.3.20) for
the low-order scheme, (4.3.31) for the general case):

Uh =
{

vh ∈ L2(�)2 : vh|E ∈ Uh(E) ∀E ∈ Th

}
. (4.3.43)

Furthermore, given a local approximation of aE(·, ·), see (4.3.38), we set

ah(σ h, τh) =
∑
E∈Th

ahE(σ h, τh). (4.3.44)

The method we consider is then defined by

⎧⎪⎪⎨
⎪⎪⎩

Find (σ h,uh) ∈ �h × Uh such that

ah(σ h, τh)+ (div τh,uh) = 0 ∀τh ∈ �h

(div σ h, vh) = −(f, vh) ∀vh ∈ Uh.

(4.3.45)

For this problem the following error estimate holds true, see [8, 9].

||σ − σ h||� + ||u− uh||U � C hk, (4.3.46)

where C = C(�, σ ,u) is independent of h but depends on the domain � and on
the Sobolev regularity of σ and u.
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4.3.2 Mixed Methods Based on Hellinger Reissner Principle:
3D Case

We now present a scheme, detailed in [44], which can be seen as the 3D extension
of the 2D method introduced in [8]. Again, the bilinear and linear forms are locally
defined, then are suitably glued together to form the global quantities which give
rise to the final discrete problem.

4.3.2.1 The Local Spaces

To describe the local spaces involved in the VEM discretization, we first need to
introduce the local space RM(E) of infinitesimal rigid body motions in an element
E. In the 3D case, we set

RM(E) =
{

r(x) = α + ω ∧ (x− xE
)

s.t. α, ω ∈ R
3
}
, (4.3.47)

whose dimension is 6. Furthermore, for a given face f ∈ ∂E, we introduce:

Th(f ) =
{
ψ(x̃) = tf + a

[
nf ∧ (x(x̃)− xf )

]+ p1(x̃)nf ,

s.t. a ∈ R, p1(x̃) ∈ P1(f )
}
,

(4.3.48)

where nf the outward normal to the face f , and tf is an arbitrary vector tangent
to the face f . Above, x(x̃) is the three dimensional position vector of a point on
f , determined by the two local coordinates x̃. The dimension of such a space is 6,
indeed:

– The three dimensional tangent vector t is determined by a linear combination of
two given linearly independent tangential vectors t1 and t2, i.e.

t = b1t1 + b2t2.

– The rotational term a
[
nf ∧ (x(x̃) − xf )

]
is determined by a single scalar value

a ∈ R.
– The polynomial p1(x̃) ∈ P1(f ) is a two variable polynomial with respect to the

local face coordinate system so it is determined by three parameters, and here we
use:

p1(x̃) = c1 + c2(x̃ − x̃f )+ c3(ỹ − ỹf ).

Therefore, this space consists of vector functions whose tangential component is
a 2D face rigid body motion (the first two terms of (4.3.48)), while the normal
component is a linear two-variable polynomial (the last term of (4.3.48)).
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We are now ready to introduce our local approximation space for the stress field:

�h(E) =
{
τh ∈H(div;E) : ∃w∗ ∈ H 1(E)3 such that τh = Cε(w∗);

(τh n)|f ∈ Th(f ) ∀f ∈ ∂E; div τh ∈ RM(E)
}
.

(4.3.49)

Accordingly, for the local space �h(E) the following degrees of freedom can be
taken, see also (4.3.48).

– For each face f of the element E, the three degrees of freedom which determine
the tangential component of the tractions:

τh −→
∫
f

(τh n)|f ·
[
θf + α

[
nf ∧ (x(x̃)− xf )

]]
. (4.3.50)

Above, α ∈ R and θf is an arbitrary vector tangential to the face f .
– For each face f of the element E, the three degrees of freedom which determine

the normal component of the tractions:

τh −→
∫
f

(τh n)|f ·
[
q1(x̃)nf

]
∀ q1(x̃) ∈ P1(f ). (4.3.51)

Therefore, we infer that the dimension of the space (4.3.15) is

dim(�h(E)) = 6 nEf ,

nEf being the number of element faces.
For the space �h(E), the divergence of any element is determined by the values

of its normal component on the boundary ∂E. In fact, in [44] the following result
has been proved.

Proposition 4.1 Let τh ∈ �h(E), then div τh is completely determined by
(τh n)|f , with f ∈ ∂E face of E. More precisely, setting (cf (4.3.47))

div τh = αE + ωE ∧
(
x− xE

)
, (4.3.52)

it holds

αE = 1

|E|

⎛
⎝∑

f∈∂E

∫
f

(τh n)

⎞
⎠ ,
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Fig. 4.5 Schematic description of the local degrees of freedom for the 3D method: stresses (left);
displacements (right)

and ωE is the unique solution of the 3× 3 linear system

∫
E

(
x− xE

) ∧ [ωE ∧
(
x− xE

)] = ∑
f∈∂E

∫
f

(
x− xE

) ∧ (τhn). (4.3.53)

The local approximation space for the displacement field is defined by,
see (4.3.47):

Uh(E) =
{

vh ∈ L2(E)3 : vh ∈ RM(E)
}
. (4.3.54)

Accordingly, for the local space Uh(E) the following degrees of freedom can be
taken:

vh −→
∫
E

vh · r ∀ r ∈ RM(E). (4.3.55)

It follows that dim(Uh(E)) = 6.
In Fig. 4.5 the local degrees of freedom for stresses and displacements are

schematically depicted.

4.3.2.2 The Local Forms

As for the 2D case, given E ∈ Th, the term

(div τh, vh)E =
∫
E

div τh · vh
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is computable for every τh ∈ �h(E) and vh ∈ Uh(E) via degrees of freedom. For
this reason, we do not need to introduce any approximation of the terms (div τ ,u)
and (div σ , v) in problem (4.2.6).

The local bilinear form

aE(σ h, τh) =
∫
E

Dσ h : τh

is instead not computable for a general couple (σ h, τh) ∈ �h(E) × �h(E) and
needs to be approximated. Similarly to the low-order 2D case, we introduce �E :
�h(E)→ P0(E)

3×3
s (see also Remark 4.3), by requiring

∫
E

�E τh : π0 =
∫
E

τh : π0 ∀π0 ∈ P0(E)
3×3
s . (4.3.56)

This is a projection operator onto the constant symmetric tensor functions and it
is computable. D|E is constant. Indeed, we notice that each π0 ∈ P0(E)

3×3
s can be

written as the symmetric gradient of a linear vectorial function, i.e. π0 = ε(p1), with
p1 ∈ P1(E)

3. Hence, using the divergence theorem, the right-hand side of (4.3.56)
becomes∫

E

τh : π0 =
∫
E

τh : ε(p1) = −
∫
E

div τh · p1 +
∫
∂E

(τhn) · p1

which is clearly computable (see also Proposition 4.1). Then, the approximation of
aE(·, ·) reads:

ahE(σ h, τh) = aE(�E σ h,�Eτh)+ sE ((I −�E)σ h, (I −�E)τh)

=
∫
E

D(�Eσ h) : (�Eτh) dE + sE ((I −�E)σ h, (I −�E)τh) ,

(4.3.57)

where sE(·, ·) can be chosen, for instance (cf. (4.3.39) in the 2D setting), as:

sE(σ h, τh) = κE hE

∫
∂E

(σ hn) · τhn, (4.3.58)

Above, κE is a positive constant to be chosen according to D.

4.3.2.3 The Local Loading Term

Finally, the local load term

(f, vh)E =
∫
E

f · vh.

does not need to be approximated, since it is computable via quadrature rules for
polyhedral domains, because vh ∈ RM(E).
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4.3.2.4 The Discrete Scheme

Once we have defined all the local forms, the discrete scheme construction follows
exactly the same lines of the 2D case, see Sect. 4.3.1.9. Hence the method reads

⎧⎪⎪⎨
⎪⎪⎩

Find (σ h,uh) ∈ �h × Uh such that

ah(σ h, τh)+ (div τh,uh) = 0 ∀τh ∈ �h

(div σ h, vh) = −(f, vh) ∀vh ∈ Uh.

(4.3.59)

For this problem the following error estimate holds true, see [44].

||σ − σ h||� + ||u− uh||U � C h. (4.3.60)

4.4 Numerical Results

In all the numerical campaigns, both 2D and 3D, the mesh size parameter is chosen
to be the average edge length, still denoted with h, with an abuse of notation. We
remark that, under mesh assumptions (A1)–(A3) and for a quasi-uniform family of
meshes, such a parameter is indeed equivalent to both hE and max{hE : E ∈ Th}.

Furthermore, the stabilization parameter is set κE = 1, see (4.3.39) and (4.3.58).
We remark that this is essentially compatible with the choice κ = 1

2 tr(D). In fact,
if the strain an stress tensors are described using the Voigt notation, the matrix D is
given by (here below the 2D case is displayed, but an analogous situation occurs in
3D):

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2μ+ λ

4μ(μ+ λ)
− λ

4μ(μ+ λ)
0

− λ

4μ(μ+ λ)

2μ+ λ

4μ(μ+ λ)
0

0 0
1

μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, for our choice of the parameters (but also for the nearly incompressible case)
the trace tr(D) is of the order of the unity.
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4.4.1 2D Numerical Tests

For the 2D case we report our numerical results selecting the following three
problems.

The first two tests are defined on the unit square domain � = [0, 1]2, with a
given analytical solution and a corresponding body force density f, indicated in the
following:

• Test a

⎧⎨
⎩
u1 = x3 − 3xy2

u2 = y3 − 3x2y

f = 0
(4.4.1)

• Test b

⎧⎨
⎩
u1 = u2 = sin(πx) sin(πy)
f1 = f2 = −π2

[− (3μ+ λ) sin(πx) sin(πy)
+(μ+ λ) cos(πx) cos(πy)

] (4.4.2)

A homogeneous and isotropic elastic body is considered. Material parameters are
assigned in terms of Lamé constants λ = 1, μ = 1. Plain strain regime is invoked.

Test a presents Dirichlet non-homogeneous boundary conditions, zero load-
ing and polynomial displacements; whereas Test b has Dirichlet homogeneous
boundary conditions, a trigonometric unit-area load function f and trigonometric
displacements.

• Cook’s membrane
The third numerical test applies to classical 2D Cook’s membrane problem

[65]. Geometry of the domain � is reported in Fig. 4.6, where H1 = 44, H2 =
16, L = 48. Material parameters are Young modulus E = 70, and Poisson
ratio ν = 1/3. The left edge is clamped, while a constant tangential traction
q = 6.25 · 10−3 is assigned on the right edge of the domain.

As far as the mesh adopted are concerned, for Test a quadrilaterals are used, as
represented in Fig. 4.7. More precisely, they respectively are: squares (a), rhombic
and concave quadrilaterals (b).

Sample meshes adopted in Test b are instead portrayed in Fig. 4.8. They comprise
non-uniform quadrilaterals (a), uniform convex hexagons (b), and centroid-based
Voronoi polygons (c), respectively.

Regarding the Cook’s membrane, the problem is solved using two types of
meshes: a structured quadrilateral mesh with equal number of subdivisions along
each side of the membrane (see Fig. 4.9a), and centroid based [resp. random-based]
Voronoi unstructured tessellations (see Fig. 4.9b).
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Fig. 4.6 Cook’s membrane. Geometry, loading and boundary conditions. (From: E. Artioli, L.
Beirão da Veiga, C. Lovadina, and E. Sacco, Arbitrary order 2D virtual elements for polygonal
meshes: Part I, elastic problem, Comput. Mech. 60 (2017), 355–377. Reproduced with permission)

(a) (b)

Fig. 4.7 Test a sample meshes. Uniform mesh of squares (a); Distorted concave rhombic
quadrilaterals (b). (From: E. Artioli, L. Beirão da Veiga, C. Lovadina, and E. Sacco, Arbitrary
order 2D virtual elements for polygonal meshes: Part I, elastic problem, Comput. Mech. 60 (2017),
355–377. Reproduced with permission)

4.4.1.1 Primal Formulation

Test a is used to compare accuracy level and convergence rate of the proposed primal
VEM to standard displacement based FEM, using meshes with only quadrilaterals:
linear and quadratic VEMs are compared to Lagrangian linear and quadratic
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(a) (b) (c)

Fig. 4.8 Test b sample meshes. Non-uniform mesh of convex quadrilaterals (a); Uniform mesh of
hexagons (b); Voronoi tessellation (c). (From: E. Artioli, L. Beirão da Veiga, C. Lovadina, and E.
Sacco, Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem, Comput.
Mech. 60 (2017), 355–377. Reproduced with permission)

(a) (b)

Fig. 4.9 Cook’s membrane. Sample meshes: quad mesh (a); centroid-based Voronoi tessellation
(b). (From: E. Artioli, L. Beirão da Veiga, C. Lovadina, and E. Sacco, Arbitrary order 2D virtual
elements for polygonal meshes: Part I, elastic problem, Comput. Mech. 60 (2017), 355–377.
Reproduced with permission)

quadrilateral finite elements, respectively indicated in the following as Q4 and Q9
[65]. Test b is instead analyzed with general polygonal meshes only testing VEM
solutions of order k = 1, 2, 3, respectively.
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In this test, accuracy and convergence levels are evaluated resorting to the
following:

• Energy error norm:

D1 = |||uh − u|||ε =
⎛
⎝∑

E∈Th

∫
E

‖ε(uh)− ε(u)‖2

⎞
⎠

1/2

(4.4.3)

where ε(u) is the exact strain field, and ε(uh) here denotes (with a little abuse
of notation) the strain field according to either a FEM or a VEM solution. In
particular, for the FEM solution, ε(uh) is exactly computed, while for the VEM
solution, such a strain field is obtained by means of (4.3.5).

• Discrete H 1 error norm:

D2 = |||uh − u|||1,h =
⎛
⎝∑

e∈Eh
he

∫
e

∥∥∥∥∂uh
∂te

− ∂u
∂te

∥∥∥∥
2
⎞
⎠

1/2

(4.4.4)

where te denotes the uniquely defined unit tangent vector to any edge e.

Figure 4.10a–d shows the h-convergence plots in terms of error D1 and D2 for
the Q4, Q9 FEM, and k = 1, k = 2 VEM solutions, confirming the expected linear
and quadratic convergence for linear and quadratic elements, respectively, and that
the VEM method slightly outperforms the FEM of same order in terms of error D1
and D2.

D2 error plots indicate that, for distorted meshes, the VEM solution on the mesh
skeleton is more accurate than the FEM solution. Instead, D1 error levels seem to
indicate that the VEM suffers from a slight lack of accuracy in terms of strain if
compared to the corresponding FEM. This may be justified by the fact that VEM
strains are indeed computed by a suitable projection and not explicitly from the
local displacements. More sophisticated strain post-processing procedures could be
devised to overcome this issue and yield comparably or even more accurate results
than FEM.

It is nonetheless quite remarkable that all the errors shown in Fig. 4.10 are
actually comparable; showing that even for conforming quadrilaterals (i.e. a case
where FEM are very accurate) the VEM grants equally accurate results.

Figures 4.11a–c show the h-convergence plots in terms of error D1 for the
k = 1, k = 2, and k = 3 VEM solutions. Clearly, these plots show the expected
convergence rates, which, as seen in the previous campaign Test a, result quite
robust regardless of mesh distortion.

The D2-error patterns deployed by the h-convergence plots in Fig. 4.12 induce
similar comments to the previous results.
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Fig. 4.10 VEM in primal form. Test a convergence plot. Error norms D1-D2 vs element size h.
FEM Q4 and Q9; VEM k = 1 and k = 2, m = 4. Uniform meshes of squares (a),(b); Distorted
concave rhombic quadrilaterals (c),(d)

For the Cook’s membrane problem, the first mesh type (see Fig. 4.9a) is adopted
for linear and quadratic VEMs in comparison with the same Q4 and Q9 FEM
discretization; the second mesh type (see Fig. 4.9b) is adopted for VEM solutions
only. Convergence results are reported in terms of mesh refinement monitoring
u2(A), the vertical displacement of point A (see Fig. 4.6), as can be appreciated
in Fig. 4.13a,b, where a reference solution corresponding to an overkilling solution,
obtained with the hybrid-mixed CPE4I element [41], is indicated with a black dotted
line. It is observed that quadrilateral VEMs have a slight edge in terms of accuracy
with respect to Lagrangian finite elements of the corresponding order, while the
polygonal VEMs from the centroid-based Voronoi tessellation slightly outperform
the random-based VEMs.

4.4.1.2 Hellinger-Reissner Mixed Formulation

The accuracy and the convergence rate assessment is carried out for the 2D mixed
formulation, using the following error norms:
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Fig. 4.11 VEM in primal form. Test b convergence plot. Error D1 vs element size h. VEM k = 1,
2, 3. Non-uniform meshes of convex quadrilaterals (a) uniform meshes of hexagons (b); Voronoi
tessellations (c)

• Discrete error norms for the stress field:

Eσ =
⎛
⎝∑

e∈Eh
κe he

∫
e

|(σ − σ h)n|2
⎞
⎠

1/2

, (4.4.5)

where κe = κ = 1
2 tr(D) (the material is here homogeneous). We remark that the

quantity above scales like the internal elastic energy, with respect to the size of
the domain and of the elastic coefficients.

We make also use of the L2 error on the divergence:

Eσ ,div =
⎛
⎝∑

E∈Th

∫
E

| div(σ − σ h)|2
⎞
⎠

1/2

. (4.4.6)
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Fig. 4.12 VEM in primal form. Test b convergence plot. Error D2 vs element size h. VEM k = 1,
2, 3. Non-uniform meshes of convex quadrilaterals (a); uniform meshes of hexagons (c); Voronoi
tessellations (d)

• L2 error norm for the displacement field:

Eu =
⎛
⎝∑

E∈Th

∫
E

|u− uh|2
⎞
⎠

1/2

= ||u− uh||0. (4.4.7)

Low-Order Scheme
We now present the numerical results obtained with the scheme based on the
choices (4.3.15) and (4.3.20).

Figure 4.14 reports the h-convergence of the proposed method for Test a. As
expected, the asymptotic convergence rate is approximately equal to 1 for all the
considered error norms and meshes. It is noted that, in this case, the Eσ ,div plots are
not reported because such a quantity is captured up to machine precision for all the
considered computational grids.
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Fig. 4.13 VEM in primal form. Cook’s membrane. Convergence results for vertical displacement
of point A. Quad mesh with FEM Q4 and Q9; VEM k = 1 and k = 2 (a); Centroid-based and
random-based Voronoi tessellations with VEM k = 1 and k = 2 (b). Reference solution based
on overkilling size mesh of quadrilateral CPE4I hybrid-mixed finite elements. (From: E. Artioli,
L. Beirão da Veiga, C. Lovadina, and E. Sacco, Arbitrary order 2D virtual elements for polygonal
meshes: Part I, elastic problem, Comput. Mech. 60 (2017), 355–377. Reproduced with permission)

Figure 4.15 reports h-convergence for Test b. Asymptotic converge rate is
approximately equal to 1 for all investigated mesh types and error measures,
including Eσ ,div. These results highlight the expected optimal performance of
the proposed VEM approach and its robustness with respect to the adopted
computational grid.

Regarding the Cook’s membrane problem, convergence results are reported in
Fig. 4.16 in terms of mesh refinement monitoring u2(A), the vertical displacement
of point A (see Fig. 4.6), approximated as the vertical displacement at the centroid
of the closest polygon. The reference solution is indicated with a dotted red line
corresponding to an overkilling accurate solution obtained with the hybrid-mixed
CPE4I element [41].

Finally, contours representing the von Mises equivalent stress distributions are
reported in Fig. 4.17. We remark that, inside the polygons, the stress distribution σ h

is not known, but its projection �Eσ h onto the constant tensors is (cf. (4.3.56)).
Thus, we have used this latter quantity to compute the von Mises equivalent stress
displayed in Fig. 4.17. Finally, the results refer to the case ν = 1/3, being the nearly
incompressible case extremely similar.

Nearly Incompressibility Regime
A problem on the unit square domain� = [0, 1]2, with known analytical solution, is
considered. A nearly incompressible material is chosen by selecting Lamé constants
as λ = 105, μ = 0.5. The test is designed by choosing a required solution for the
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Fig. 4.14 h-convergence results for Test a on structured and unstructured meshes: (a) and (b) Eσ

error norm plots, (c) and (d) Eu error norm plots

displacement field and deriving the load f accordingly. The displacement solution is
as follows:

{
u1 = 0.5(sin(2πx))2 sin(2πy) cos(2πy)
u2 = −0.5(sin(2πy))2 sin(2πx) cos(2πx).

(4.4.8)

Figure 4.18 reports the results obtained for both structured and unstructured
meshes. In can be clearly seen that the proposed method shows the expected
asymptotic rate of convergence also in this case.

Higher-Order Schemes
We now present the numerical results for Test a and Test b, obtained with the scheme
based on the choices (4.3.23) and (4.3.31), for k = 1, 2, 3.

Results for k = 1 Figure 4.19 reports the h-convergence of the proposed method
for Test a when k is equal to 1. The asymptotic convergence rate is approximately
equal to 2 for all the considered error norms and meshes, as expected. The Eσ ,div
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Fig. 4.15 h-convergence results for Test b on structured and unstructured meshes: (a) and (b) Eσ

error norm plots, (c) and (d) Eσ ,div error norm plots, (e) and (f) Eu error norm plots

plots are not reported for this case because such a quantity is captured up to machine
precision for all the considered computational grids.

Figure 4.20 reports h-convergence for Test b. Asymptotic converge rate is
approximately equal to 2 for all investigated mesh types and error measures. These
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Fig. 4.16 Convergence of the tip vertical displacement vA = u2(A)

Fig. 4.17 Contours representing the von Mises equivalent stress distributions for ν = 1/3: (a)
Quad, (b) CVor, (c) RVor

results highlight the expected optimal performance of the proposed VEM approach
and its robustness with respect to the adopted computational grid.

Results for k = 2 Figure 4.21 reports the h-convergence of the proposed method
for Test a when k is equal to 2. The asymptotic convergence rate is approximately
equal to 3 for all the considered error norms and meshes, as expected. In this case
the Eσ and Eσ ,div plots are not reported because such quantities are captured up to
machine precision for all the considered computational grids.

Figure 4.22 reports h-convergence for Test b. Also in this case results confirm
the soundness of the proposed approach.

Results for k = 3 Results in terms of h-convergence obtained for k = 3 are shown.
In this case only Test b is reported, being Test a captured exactly up to machine
precision by the proposed numerical scheme. In particular, Fig. 4.23 reports h-
convergence graphs for Test b. The convergence rate is approximately equal to 4
for all the considered error norms and meshes, as expected.
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Fig. 4.18 Results for the nearly incompressible test on structured and unstructured meshes: (a)
and (b) convergence of Eσ , (c) and (d) convergence of Eσ ,div, (e) and (f) convergence for Eu

4.4.2 3D Numerical Results

We here present the numerical results of the 3D Virtual Element Method based on
the spaces detailed in (4.3.49) and (4.3.54).



4 Some Virtual Element Methods for Infinitesimal Elasticity Problems 171

Fig. 4.19 h-convergence results for Test a on structured and unstructured meshes for k = 1: (a)
and (b) Eσ error norm plots, (c) and (d) Eu error norm plots

Accuracy Assessment on a Cubic Domain
We consider the standard unit cube � = [0, 1]3 as computational domain and we
take the following four mesh types, see Fig. 4.24:

• Cube, a mesh composed by standard structured cubes;
• Tetra, a Delaunay tetrahedralization of the domain �;
• CVT, a Voronoi tassellation obtained by the Lloyd algorithm [46];
• Random, a Voronoi tassellation achieved with random control points.

Meshes CVT and Random have some elements with small faces and edges, in
such a way that at least one of the assumptions (A1), (A2) and (A3) is not satisfied.
However, the numerical results show that the scheme is fairly robust with respect
to this geometric situation. These two types of meshes are build via the voro++
library [56]. Moreover, the whole numerical scheme is developed inside the vem++
library, a c++ code realized at the University Milano–Bicocca during the CAVE
project (https://sites.google.com/view/vembic/home).
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Fig. 4.20 h-convergence results for Test b on structured and unstructured meshes for k = 1: (a)
and (b) Eσ error norm plots, (c) and (d) Eσ ,div error norm plots, (e) and (f) Eu error norm plots
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Fig. 4.21 h-convergence results for Test a on structured and unstructured meshes for k = 2: (a)
and (b) Eu error norm plots

The accuracy and the convergence rate assessment is carried out using the obvi-
ous 3D versions of the error quantities Eσ , Eσ ,div and Eu defined in (4.4.5), (4.4.6)
and (4.4.7).

• Test a.

We consider an elastic problem where a trigonometric solution is a-priori
selected. Accordingly, the applied loads are determined. Moreover, homogeneous
Dirichlet boundary conditions are imposed on three faces of the cube (x = 0, y = 0,
z = 0), as well as homogeneous Neumann boundary conditions on the remaining
faces. The material is homogeneous and isotropic; the displacement solution and the
loads are as follows:

⎧⎪⎪⎨
⎪⎪⎩

u1 = u2 = u3 = 10 S(x, y, z)
f1 = −10π2((λ+ μ) cos(πx) sin(πy + πz)− (λ+ 4μ)S(x, y, z))
f2 = −10π2((λ+ μ) cos(πy) sin(πx + πz)− (λ+ 4μ)S(x, y, z))
f3 = −10π2((λ+ μ) cos(πz) sin(πx + πy)− (λ+ 4μ)S(x, y, z)),

where S(x, y, z) = sin(πx) sin(πy) sin(πz). The Lamé constants are here set as
λ = 1 and μ = 1.

Figure 4.25 reports h-convergence of the proposed method for Test a. As
expected, for the considered method, the asymptotic convergence rate is approx-
imately equal to 1 for all error norms and meshes. In addition, the convergence
graphs of each type of mesh are close to each others and this fact confirms the
robustness of the proposed method with respect to the element shape.

• Test b.

We consider a problem with polynomial solution, non-homogeneous Dirichlet
boundary conditions and zero loading. Again, the Lamé constants are λ = 1 and
μ = 1. As in the previous examples, the test is defined by choosing a required
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Fig. 4.22 h-convergence results for Test b on structured and unstructured meshes for k = 2: (a)
and (b) Eσ error norm plots, (c) and (d) Eσ ,div error norm plots, (e) and (f) Eu error norm plots
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Fig. 4.23 h-convergence results for Test b on structured and unstructured meshes for k = 3: (a)
and (b) Eσ error norm plots, (c) and (d) Eσ ,div error norm plots, (e) and (f) Eu error norm plots
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Cube Tetra

CVT Random

Fig. 4.24 Overview of adopted meshes for convergence assessment numerical tests

solution and deriving the corresponding body load (f = 0):

⎧⎪⎪⎨
⎪⎪⎩

u1 = 2x3 − 3xy2 − 3xz2

u2 = 2y3 − 3yx2 − 3yz2

u3 = 2z3 − 3zy2 − 3zx2

f = 0

We remark that this is a typical example where the displacement field is nontrivial,
while stresses are divergence-free. As expected, this latter feature is numerically
satisfied by the proposed VEM scheme, as shown by Fig. 4.26, where also the other
errors are displayed.

• L-shaped domain test.

In this subsection, we consider a problem for which we do not know the
analytical solution. First of all, we take the 3D L-shaped domain � = A \B, where
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Fig. 4.25 Test a. h-convergence results for all meshes

A = [0, 2]×[0, 1]×[0, 2]while B = (1, 2]×[0, 1]× (1, 2]. The problem we study
is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (σ ,u) such that

− div σ = f in �

σ = Cε(u) in �

u = 0 in ∂�D

σn = 0 in ∂�N0

σn = ψ in ∂�N1,
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Fig. 4.26 Test b. h-convergence results for all meshes

where the boundary ∂� is divided into three regular disjoint parts:

∂�D = {(x, y, z) ∈ ∂� : z = 2}
∂�N1 = {(x, y, z) ∈ ∂� : x = 2}
∂�N0 = ∂� \ (∂�D ∪ ∂�N1).

Furthermore, we take the loading term f = (0, 0,−0.001)T and boundary traction
ψ = (0, 0,−0.008)T . The material is again homogeneous and isotropic with Lamé
coefficients λ = 1 and μ = 1. For this simulation we only use a Tetra mesh.

In Fig. 4.27 we report both the mesh of our domain, and the deformed body. We
also overlap the two images to better appreciate the load effects. Finally, contours
representing the von Mises equivalent stress distribution are reported in Fig. 4.28.
The discrete stress distribution σ h is not known inside the polyhedrons, but its
projection �Eσ h onto the constant tensors is computable. Thus, in Fig. 4.28 we
have used this latter quantity to approximate and display the von Mises equivalent



4 Some Virtual Element Methods for Infinitesimal Elasticity Problems 179

Fig. 4.27 L-shaped domain test. Contours representing the problem: (a) unloaded body and (b)
deformed body

Fig. 4.28 L-shaped domain test. Contours representing the von Mises equivalent distribution: (a)
front view and (b) rear view

stress. As already mentioned, the analytical solution to this problem is not available.
However, Fig. 4.28 shows that both the computed deformed shape, and the von
Mises equivalent stress distribution are qualitatively realistic.

4.5 Conclusions

We have discussed the application of the Virtual Element Method for linear
elastostatic problems. In particular, both displacement based schemes and mixed
methods based on the Hellinger-Reissner variational principle have been considered.
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For the more standard primal (i.e. displacement based) schemes, only the 2D case
has been detailed, but the usual techniques (see [20], for instance) can be used for
the extension to 3D problems. On the contrary, for the mixed (Hellinger-Reissner)
methods both 2D and 3D cases have been considered. More precisely, a whole
family of 2D schemes has been presented, while in 3D only a low-order method
has been extensively detailed. However, we remark that also in the 3D case it is
possible to design high-order schemes, inspired by the 2D framework. This will be
the topic of future communications. All the presented schemes has been supported
by numerical results which show the actual performance of our VEMs.

We may conclude that the Virtual Element Method for elasticity problems
definitely deserves to be considered as a valid alternative to other more standard
approaches, such as the Finite Element Methods.
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Chapter 5
An Introduction to Second Order
Divergence-Free VEM
for Fluidodynamics

Lourenço Beirão da Veiga and Giuseppe Vacca

Abstract The present contribution constitutes an introduction and a survey of the
“divergence-free” Virtual Element Method (VEM) for the Stokes and Navier-Stokes
equations. It is a survey since it reviews all the main concepts regarding this kind
of Virtual Elements and it is an introduction since it is written, both in terms of
presentation and details, in order to be easily readable for newcomers. In particular
we show the construction of the divergence-free virtual element velocity space for
the Stokes equation and its enhanced version for the Navier-Stokes equation, and the
explicit computation of the projection operators. We exhibit both the 2D (straight
and curved polygons) and the 3D case. Furthermore we explore the main features
and the advantages of the “divergence-free” construction. We believe the present
paper constitutes a good reading for researchers that have some minimal knowledge
of virtual elements and want to understand the “divergence-free” VEM approach for
fluid mechanics.

5.1 Introduction

The Virtual Element Method is a recent technology for the discretization of partial
differential equations; after its introduction in [8, 9], it soon enjoyed a wide success
in the Numerical Analysis and Engineering communities. It can be considered as
a generalization of the Finite Element Method (FEM) that incorporates ideas from
Mimetic Finite Differences [10, 54] and is able to handle general polytopal meshes,
also including hanging nodes and non-convex elements. Although the main and
initial motivation of VEM is to use more general grids, it was soon recognized
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that the flexibility of Virtual Elements may also lead to other advantages. One such
example is the construction introduced in [13] (see also [4]) for the discretization of
the Stokes problem.

In the above paper the authors propose a family of VEM velocity spaces of
general order k, with k positive integer, that is conforming in H 1 but has a
divergence that is piecewise polynomial of degree k − 1. As a consequence, when
coupled with a simple piecewise polynomial pressure space of degree k− 1, it leads
to a scheme that, in addition to being inf-sup stable, guarantees a truly divergence-
free velocity solution (as opposed to a relaxed divergence-free condition as it
happens in standard FEM). There are many advantages of divergence-free schemes
when compared to standard inf-sup stable ones, an example being that the discrete
velocity error is not polluted by the pressure. Although the above VEM scheme
is not pressure-robust (in the sense of [50]) it still retains many advantages when
compared with standard FEM [22], in addition to the possibility of using general
meshes.

Later, in [16, 64], the authors developed a more advanced velocity space that
allowed to extend the method also to the Navier-Stokes and Brinkman equations.
In [15, 18], the discrete Stokes complex structure laying behind the above discrete
spaces (in 2D and 3D) was unveiled, leading also to alternative schemes such as
those based on potentials (for a glimpse at the related FEM literature we refer to
[7, 40]). Computational and implementation aspects, also related to linear algebra
solvers, where further detailed and investigated in [37, 38], while in [35] the authors
studied the method from the standpoint of hp analysis. In [41, 59] some right-hand
side modifications are proposed in order to build a VEM scheme that is also pressure
robust for the Stokes problem. In [20] a model fluid interaction problem is analyzed
using mesh cutting techniques in combination with the above VEM approach. It
must also be noted that the specific Finite Element literature on divergence-free and
pressure robust methods is very wide, see for instance [47–49] and [44, 50, 52, 53].
Outside the divergence-free framework, there have been also other developments
on Virtual Element Methods for fluid mechanics problems, such as non-conforming
methods [32, 56–58, 66], non-standard mixed formulations [29–31, 42, 43, 60] and
further derivations [34, 65]. Finally, a few references about the application of other
polytopal technologies (such as polygonal FEM, polygonal DG, HHO, HDG) to
fluid mechanic problems are [2, 5, 6, 23, 33, 36, 39, 55, 61].

The present contribution is somehow in between a survey and an introduction
of the “divergence-free” Virtual Element Method for the Stokes and Navier-
Stokes problems. It is a survey since it reviews all the fundamental concepts on
“divergence-free” Virtual Elements and it is an introduction since it is written, both
in terms of presentation and details, in order to be easily readable for newcomers. In
particular, in order to reduce the technical aspects and highlight the main points in
the construction, we make the choice of presenting the method only for the second-
order case (k = 2). Moreover, we show in detail the proofs that are fundamental
for the construction and the comprehension of the method, but we refer to previous
literature for the (more technical) proofs involved in the stability and convergence of
the scheme. We believe the present paper constitutes a good reading for researchers
that have some minimal knowledge of virtual elements (such as that given in the
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foundational paper [8]) and want to understand “divergence-free” virtual elements
for fluid mechanics.

The paper is organized as follows. After briefly reviewing the Navier-Stokes
equations in Sect. 5.2, in Sect. 5.3 we present some notation and preliminaries.
Virtual Elements in two space dimensions are presented in Sect. 5.4, while in
Sect. 5.5 we present a variant that allows also for curved edges. Virtual Elements
in three space dimensions are presented in Sect. 5.6. The discretization of the
problem is presented in Sect. 5.7, in a unified way that encompasses both dimension
two and three. In Sect. 5.8 the analysis of the scheme and of the divergence-free
properties are presented; this section included important aspects such as the reduced
formulation and a quick survey of the underlying discrete complex structure. Finally,
we present some basic numerical test in Sect. 5.9.

We close this introduction with some standard notation. Let � ⊂ R
d with

d = 2, 3 be the computational domain, we denote with x = (x1, . . . , xd) the
independent variable. With a usual notation the symbols ∇ and � denote the
gradient and the Laplacian for scalar functions, while �, ∇, ε, div and curl
denote the vector Laplacian, the gradient and the symmetric gradient operator, the
divergence operator and (in three space dimensions) the curl operator for vector
fields, whereas div denotes the vector value divergence operator for tensor fields.
In two space dimensions, with a small abuse of notation, we denote by curl the
“rotated” gradient operator. Throughout the paper, we will follow the usual notation
for Sobolev spaces and norms [1]. Hence, for an open bounded domain ω, the norms
in the spaces Ws

p(ω) and Lp(ω) are denoted by ‖·‖Ws
p(ω)

and ‖·‖Lp(ω) respectively.
Norm and seminorm in Hs(ω) are denoted respectively by ‖·‖s,ω and |·|s,ω, while
(·, ·)ω and ‖ · ‖ω denote the L2-inner product and the L2-norm (the subscript ω may
be omitted when ω is the whole computational domain �).

5.2 The Navier-Stokes Equation

We consider the steady Navier–Stokes equation on a polygonal simply connected
domain � ⊆ R

d with d = 2, 3 (for more details, see for instance [46])

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find (u, p) such that

− ν div(ε(u))+ (∇u)u−∇p = f in �,

div u = 0 in �,

u = 0 on ∂�,

(5.1)

where u, p are the velocity and the pressure fields respectively, ν ∈ R, ν > 0 is
the viscosity of the fluid and f ∈ [L2(�)]d represents the volume source term. For
sake of simplicity we here consider Dirichlet homogeneous boundary conditions,
different boundary conditions can be treated as well. Let us define the continuous
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spaces

V :=
[
H 1

0 (�)
]d

, Q := L2
0(�) =

{
q ∈ L2(�) s.t.

∫
�

q d� = 0

}

endowed with natural norms, and the continuous forms

a(·, ·) : V × V → R, a(u, v) :=
∫
�

ε(u) : ε(v) d� , (5.2)

b(·, ·) : V ×Q→ R, b(v, q) :=
∫
�

q divv d� , (5.3)

c(·; ·, ·) : V × V × V → R, c(w; u, v) :=
∫
�

(∇u)w · v d� , (5.4)

for all u, v,w ∈ V and q ∈ Q. Then the variational formulation of Problem (5.1)
reads as follows:

⎧⎪⎪⎨
⎪⎪⎩

find (u, p) ∈ V ×Q, such that

ν a(u, v)+ c(u; u, v)+ b(v, p) = (f , v) for all v ∈ V ,

b(u, q) = 0 for all q ∈ Q.

(5.5)

It is well known that (see for instance [22, 46]) the problem (5.5) is well posed
assuming suitable bounds on the external load f and the viscosity ν. To this end,
in the context of the analysis of incompressible flows, it is useful to introduce the
concept of Helmholtz–Hodge projector (see for instance [50, Lemma 2.6] and [44,
Theorem 3.3]). For every w ∈ [L2(�)]2 there exist w0 ∈ H(div; �) and ζ ∈
H 1(�)/R such that

w = w0 +∇ ζ, (5.6)

where w0 is L2-orthogonal to the gradients, that is (w0, ∇ϕ) = 0 for all ϕ ∈ H 1(�)

(which implies, in particular, that w0 is solenoidal, i.e. div w0 = 0). The orthogonal
decomposition (5.6) is unique and is called Helmholtz–Hodge decomposition, and
P(w) := w0 is the Helmholtz–Hodge projector of w.

Let C denote the continuity constant of c(·; ·, ·) with respect to the H 1-norm.
Combining the argument in [46, Theorem IV.2.2] and the definition of Helmholtz–
Hodge projector, it can be shown than under the assumption

(A0) Diffusion Dominated Assumption γ := C ‖P(f )‖
H−1

ν2 < 1
Problem (5.5) is well-posed and the unique solution (u, p) ∈ V ×Q is such that

|u|[H 1(�)]2 ≤
‖P(f )‖H−1

ν
. (5.7)
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Let us introduce the kernel of the bilinear form b(·, ·) that corresponds to the
functions in V with vanishing divergence

Z := {v ∈ V s.t. div v = 0} . (5.8)

Then, Problem (5.5) can be formulated in the equivalent kernel form:

{
find u ∈ Z, such that

ν a(u, v)+ c(u; u, v) = (f , v) = (P(f ), v) for all v ∈ Z.
(5.9)

We can observe by a direct computation, that, for a fixed w ∈ Z, the bilinear form
c(w; ·, ·) is skew symmetric, i.e.

c(w;u, v) = −c(w; v,u) for all u, v ∈ V .

Therefore, the trilinear form c(·; ·, ·), for w ∈ Z, is equal to its skew-symmetric
part, defined as:

cskew(w; u, v) := 1

2

(
c(w; u, v)− c(w; v,u)

)
for all u, v,w ∈ V . (5.10)

However, at the discrete level c(·; ·, ·) and cskew(·; ·, ·) will lead to different bilinear
forms, in general.

Clearly if we neglect the nonlinear convective term in (5.1) we recover the linear
Stokes equation. We finally remark that the proposed approach can be trivially
extended to more general situations such as non-constant viscosity coefficients
and different boundary conditions. Moreover different definitions of the trilinear
form (5.4) can be also taken into account as explored in [18].

5.3 Notations and Preliminaries

We now introduce some basic tools and notations useful in the construction and the
theoretical analysis of Virtual Element Methods.

Let {�h }h be a sequence of decompositions of the domain � ⊂ R
d into

general polytopal elements E where h := supE∈�h
hE . We suppose that {�h }h

fulfils the following assumption: there exists a positive constant � such that for any
E ∈ {�h }h
(A12D) Mesh Assumption in 2D

– E is star-shaped with respect to a ball BE of radius≥ � hE ;
– any edge e of E has length ≥ � hE .



190 L. Beirão da Veiga and G. Vacca

(A13D) Mesh Assumption in 3D

– E is star-shaped with respect to a ball BE of radius≥ � hE ;
– every face f of E is star-shaped with respect to a disk Bf of radius≥ � hE ;
– any edge e of E has length ≥ � hE .

We remark that the hypotheses above, though not too restrictive in many practical
cases, could possibly be further relaxed, combining the present analysis with the
studies in [14, 24, 25].

Using standard VEM notations, for n ∈ N and m ∈ R
+ let us introduce the

spaces:

– Pn(ω): the set of polynomials on ω ⊂ � of degree ≤ n (with P−1(ω) = {0}),
– Pn(�h) := {q ∈ L2(�) s.t q|E ∈ Pn(E) for all E ∈ �h},
– Hm(�h) := {v ∈ L2(�) s.t v|E ∈ Hm(E) for all E ∈ �h}
equipped with the broken norm and seminorm

‖v‖2
Hm(�h)

:=
∑
E∈�h

‖v‖2
Hm(E) , |v|2Hm(�h)

:=
∑
E∈�h

|v|2Hm(E) .

In the followingO will denote a general geometrical entity (polyhedron or polygon)
having diameter hO , measure |O|, centroid xO = (xO,1, . . . , xO,d). A natural basis
associated with the space Pn(O) is the set of normalized monomials

Mn(O) := {mα, with |α| ≤ n} (5.11)

where, for any multi-index α = (α1, . . . , αd) ∈ N
d

mα :=
d∏

i=1

(
xi − xO,i

hO

)αi
and |α| :=

d∑
i=1

αi .

Moreover for any m ≤ n we denote with

P̂n\m(O) = span {mα, with m+ 1 ≤ |α| ≤ n} .

Note that the following useful polynomial decompositions hold [11, 37, 38]:

[Pn(O)]2 = ∇Pn+1(O)⊕
(
x⊥Pn−1(O)

)
if dim(O) = 2,

[Pn(O)]3 = ∇Pn+1(O)⊕ (x ∧ [Pn−1(O)]3) if dim(O) = 3,
(5.12)

where x⊥ = (x2,−x1).
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For any O , let us introduce the following polynomial projections:

– the L2-projection �
0,O
n : L2(O)→ Pn(O), given by

∫
O
qn(v − �0,O

n v) dO = 0 for all v ∈ L2(O) and qn ∈ Pn(O), (5.13)

with obvious extension for vector functions �0,O
n : [L2(O)]d → [Pn(O)]d and

tensor functions �0,O
n : [L2(O)]d×d → [Pn(O)]d×d ;

– the H 1-seminorm projection �
∇,O
n : H 1(O)→ Pn(O), defined by

⎧⎪⎪⎨
⎪⎪⎩

∫
O
∇ qn · ∇(v − �∇,On v) dO = 0 for all v ∈ H 1(O) and qn ∈ Pn(O),

∫
∂O

(v − �∇,On v) ds = 0 ,

(5.14)

with extension for vector fields �∇,On : [H 1(O)]d → [Pn(O)]d .

Finally, recalling that the virtual element functions, in general, are not known in
explicit form, we conclude the section with the following definition.

Definition 5.1 A quantity (depending on a function living in a discrete space with
given degrees of freedom operators) is said to be computable if it can be computed
using, as unique information, the degree of freedom values.

5.4 Virtual Element Spaces in 2D

In the present section we outline an overview of the second order Virtual Element
discretization of the Stokes and Navier–Stokes equation in the 2D case. In [13] the
authors introduced a Virtual Element space associated to a Stokes-like problem,
such that the discrete kernel of the bilinear form b(·, ·) is exactly divergence-free.
Taking the inspiration from [3], in [16, 64] the authors presented an enhanced Virtual
space that allows the explicit knowledge of the L2-projection onto the polynomial
space of corresponding degree.

Below we will give some basic tools and a brief overview of such spaces; we
restrict our attention to the second order case which allows for an easier presentation
for newcomers. First in Sect. 5.4.1 we review the Virtual Elements for Stokes flow
and later in Sect. 5.4.2 we examine the enhanced Virtual Elements for the Navier-
Stokes equation.

In the following we will denote by E a general polygon having �e edges e, while
ne
E (resp. nE) will denote the unit vector that is normal to the edge e (resp. to ∂E)

and outward with respect to E.
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5.4.1 Virtual Elements for Stokes

We consider on each polygonal element E ∈ �h the finite dimensional virtual space

V S
h(E) :=

{
v ∈ [H 1(E)]2 s.t. (i)�v +∇s = 0, for some s ∈ L2

0(E),

(ii) div v ∈ P1(E) ,

(iii)v|∂E ∈ [C0(∂E)]2, v|e ∈ [P2(e)]2 ∀e ∈ ∂E

}

(5.15)

where all the operators and equations above are to be interpreted in the distributional
sense. We note that, in standard VEM fashion, the definition of V S

h(E) is associated
to a PDE within the element, in this case a Stokes-like variational problem on E and
the virtual element functions are implicitly defined and not known in a closed form.

We here summarize the main properties of the virtual space V S
h(E) (we refer [13]

for a deeper analysis and the general order case).

Property 5.1 (Polynomial Inclusion) [P2(E)]2 ⊆ V S
h(E).

Proof For any p2 ∈ [P2(E)]2 we have

(i) �p2 ∈ [P0(E)]2, then by (5.12), there exists s ∈ P1(E) ∩ L2
0(E) s.t. �p2 =

−∇s;
(ii) div p2 ∈ P1(E);
(iii) p2|∂E ∈ [C0(∂E)]2 and p2|e ∈ [P2(e)]2 for all edge e ∈ ∂E. ��

Property 5.2 (Dimension and Degrees of Freedom) The dimension of V S
h(E) is

given by

dim(V S
h(E)) = 4 �E + 2 . (5.16)

Moreover, the following linear operators DV, split into three subsets (see Fig. 5.1)
constitute a set of DoFs for V S

h(E):

– DV1: the values of v at the vertexes of the polygon E,
– DV2: the values of v at the midpoint of every edge e ∈ ∂E,
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Fig. 5.1 DoFs for V S
h(E). We denote DV1 with the green dots, DV2 with the orange dots and DV3

with the red squares [18]

– DV3: the scaled moments of div v

1

hE

∫
E

div v

(
x1 − xE,1

hE

)
dE

1

hE

∫
E

div v

(
x2 − xE,2

hE

)
dE .

Proof It is well-known (see for instance [11]) that given

p1 ∈ P1(E) , and g2 ∈ [C0(∂E)]2 , g2|e ∈ [P2(e)]2 for all e ∈ ∂E,

satisfying the compatibility condition

∫
E

p1 dE =
∫
∂E

g2 · nE de (5.17)

there exists a unique v ∈ [H 1(E)]2 such that

�v +∇s = 0 and div v = p1 in E, v|e = g2|e for all e ∈ ∂E,

for some s ∈ L2
0(E). It follows that the dimension of V S

h(E) is given by the
dimension of the data set that is

dim(V S
h(E)) = dim([C0(∂E)]2

⋂
e∈∂E

[P2(e)]2)+ dim(P1(E))− 1

where the term−1 ensues from the compatibility condition (5.17), that corresponds
to (5.16).

We now prove that the linear operators DV are a unisolvent set of degrees of
freedom for the virtual space V S

h(E). We start noting that the dimension of V S
h(E)

equals the number of functionals in DV and thus we only need to show that if all the
values DV(v) vanish for a given v ∈ V S

h(E), then v ≡ 0.
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It is clear that DV1(v) = DV2(v) = 0 implies v|∂E ≡ 0. Being div v ∈ P1(E),
by the definition of basis M1(E) (cf. (5.11)) there exist c0, c1, c2 ∈ R such that

div v = c0 + c1
x1 − xE,1

hE
+ c2

x2 − xE,2

hE
. (5.18)

Then, recalling that DV3(v) = 0,

∫
E

(div v)2 dE = c0

∫
E

div v dE +
∫
E

div v

(
c1
x1 − xE,1

hE
+ c2

x2 − xE,2

hE

)
dE

c0

∫
∂E

v · nE ds + c1

∫
E

div v

(
x1 − xE,1

hE

)
dE + c2

∫
E

div v

(
x2 − xE,2

hE

)
dE = 0 .

Therefore div v ≡ 0. Finally, employing the definition of V S
h(E), we infer

‖∇v‖2
0,E =

∫
E

∇v : ∇v dE = −
∫
E

�v · v dE =
∫
E

∇s · v dE = −
∫
E

s div v dE = 0 .

Then DV(v) = 0 implies v ≡ 0, and the proof is complete. ��
Remark 5.1 We observe that for any v ∈ V S

h(E), the DoFs DV uniquely determine
v|∂E and allow us to compute exactly (cf. Definition 5.1) div v, i.e. to determine the
coefficients c0, c1, c2 in (5.18). Indeed simple computations yield

• |E|c0 =
∑
e∈∂E

∫
e

v · ne
E de

•
2∑

i=1

ci

∫
E

(
xi − xE,i

hE

)(
xj − xE,j

hE

)
dE =

∫
E

div v

(
xj − xE,j

hE

)
dE j = 1, 2,

and notice that the left-hand side matrix is computable, whereas the right-hand side
employs only the DoFs DV3.

More generally, let v a sufficiently regular function defined on E that satisfies
(ii) and (iii) in (5.15), then the linear operators DV uniquely determine v|∂E and
div v.

Property 5.3 (Polynomial Projections) The DoFs DV allow us to compute exactly
(cf. (5.14) and (5.13) and Definition 5.1)

�
∇,E
2 : V S

h(E)→ [P2(E)]2 ,
�

0,E
0 : V S

h(E)→ [P0(E)]2 ,
�

0,E
1 : ∇V S

h(E)→ [P1(E)]2×2 .

Proof We here limit to prove the first item, the last two follow by analogous
techniques. By definition of H 1-projection (5.14), in order to determine, for any
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v ∈ V S
h(E), the polynomial �∇,E2 v we need to compute

∫
E

∇v : ∇p2 dE for all p2 ∈ [P2(E)]2.

Integrating by parts and employing the polynomial decomposition (5.12), we infer

∫
E

∇v : ∇p2 dE =
∫
∂E

v · (∇p2nE) de −
∫
E

v · q0 dE (q0 := � p2 ∈ [P0(E)]2)

=
∫
∂E

v · (∇p2nE) de −
∫
E

v · ∇q1 dE (q1 ∈ P1(E),∇q1 := q0)

=
∫
∂E

v · (∇p2 − q1I )nE de +
∫
E

div v q1 dE

(5.19)

that, recalling Remark 5.1, is a computable expression. ��
We stress that the property above shows that the degrees of freedom DV allow

us to compute exactly the L2-projection �0,E
0 . On the other hand we are not able to

compute exactly from the DoFs the L2-projection onto the space of polynomials of
degree ≤ 2.

5.4.2 Enhanced Virtual Elements for Navier-Stokes

The goal of this section is to introduce, taking the inspiration from [3], a different
virtual space V E

h(E) to be used in place of the space V S
h(E) in such a way that:

– Properties 5.1, 5.2, 5.3 are sill valid for V E
h(E),

– the full projection �
0,E
2 : V E

h(E)→ [P2(E)]2 is computable by the DoFs DV.

We preliminary observe that in order to compute �0,E
2 v we need to compute

∫
E

v · p2 dE for any p2 ∈ [P2(E)]2.

Referring to (5.12), let q3 ∈ P3(E) and q1 ∈ P1(E), s.t. p2 = ∇q3 + x⊥q1. Then,
using the same argument in the proof of Property 5.3, we infer
∫
E

v · p2 dE =
∫
E

v · (∇q3 + x⊥q1) dE

=
∫
∂E

v · nE q3 de −
∫
E

div v q3 dE +
∫
E

v · x⊥q1 dE ,

(5.20)

that is actually not computable since we have no way to compute
∫
E

v · x⊥q1 dE.
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To construct V E
h(E) we proceed as in [3]: we enlarge the space in order to have

the computability of the missing moments
∫
E v · x⊥q1 dE, and then we put the so-

called “enhanced constraints” to recover the right dimension of the space.
We consider on each element E ∈ �h the finite dimensional virtual space

V E
h(E) :=

{
v ∈ [H 1(E)]2 s.t. (i)�v + ∇s ∈ x⊥P1(E), for some s ∈ L2

0(E),

(ii) div v ∈ P1(E) ,

(iii) v|∂E ∈ [C0(∂E)]2, v|e ∈ [P2(e)]2 ∀e ∈ ∂E

(iv)
(
v −�

∇,E
2 v, x⊥p1

)
E
= 0 ∀p1 ∈ P1(E)

}

(5.21)

In the following we prove the main properties for the enhanced space V E
h(E) (we

refer to [64] for a deeper analysis and the general order case).

Property 5.4 (Polynomial Inclusion) [P2(E)]2 ⊆ V E
h(E).

Proof The items (i), (ii) and (iii) follow by Property 5.1. The item (iv) is satisfied
being �

∇,E
2 p2 = p2 for all p2 ∈ [P2(E)]2. ��

Property 5.5 (Dimension and Degrees of Freedom) The dimension of V E
h(E) is

equal to that in (5.16). As DoFs in V E
h(E) we can take DV.

Proof We preliminary define an augmented virtual local space Wh(E) by taking

Wh(E) :=
{
v ∈ [H 1(E)]2 s.t. (i)�v + ∇s = x⊥P1(E), for some s ∈ L2

0(E),

(ii) div v ∈ P1(E) ,

(iii)v|∂E ∈ [C0(∂E)]2, v|e ∈ [P2(e)]2 ∀e ∈ ∂E

}

(5.22)

Now we prove that the dimension of Wh(E) is

dim(Wh(E)) = 4 �E + 5 (5.23)

and as DoFs for Wh(E) we can take the linear operators DV plus

– DW: the moments

∫
E

v · x⊥ dE ,

∫
E

v · x⊥ x1 dE ,

∫
E

v · x⊥ x2 dE .
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The proof is virtually identical to that given in Property 5.2 for V E
h(E). For any

data set (x⊥q1, p1,g2) that satisfies the compatibility condition (5.17) there exists
a unique couple (v, s) ∈ Wh(E)× L2

0(E) s.t.

�v +∇s = x⊥q1 and div v = p1 in E, v|e = g2|e for all e ∈ ∂E.

(5.24)

Moreover, let us assume that there exist two different data sets (x⊥q1, p1,g2)

and (x⊥q̃1, p̃1, g̃2) satisfying the compatibility condition (5.17), which correspond
respectively to the couples (v, s), (v, s̃) ∈ Wh(E)× L2

0(E) (i.e. same velocity and
different pressures). Then it is straightforward to see that

p1 = p̃1 , g2 = g̃2 , and ∇(s − s̃) = x⊥(q1 − q̃1) .

Therefore, we get rot(x⊥(q1−q̃1)) = 0. Employing (5.12), rot : x⊥P1(E)→ P1(E)

is an isomorphism, then we conclude that q1 = q̃1. Thus, there is an injective map
(x⊥q1, p1,g2) �→ v that associates a given compatible data set (x⊥q1, p1,g2) to
the velocity field v that solves (5.24). It follows that the dimension of Wh(E) is

dim(Wh(E)) = dim([C0(∂E)]2
⋂
e∈∂E

[P2(e)]2)+ dim(P1(E))+ dim(P1(E))− 1

where the term−1 ensues from the compatibility condition (5.17), that corresponds
to (5.23). We now prove that the linear operators DV + DW are a unisolvent set of
DoFs for the virtual space Wh(E). The dimension of Wh(E) corresponds to the
number of operators in DV + DW and thus we need to show that DV(v) = 0 and
DW(v) = 0 implies v ≡ 0. Using the same arguments of Property 5.2, DV(v) = 0
imply v|∂E ≡ 0 and div v ≡ 0. Furthermore, employing the definition of Wh(E) we
infer

‖∇v‖2
0,E =

∫
E

∇v : ∇v dE = −
∫
E

�v · v dE

=
∫
E

∇s · v dE −
∫
E

x⊥p1 · v dE (�v +∇s = x⊥p1, p1 ∈ P1(E))

= −
∫
E

s div v dE −
∫
E

x⊥p1 · v dE = 0

where in the last identity we used DW(v) = 0. Therefore v ≡ 0.
Now neglecting the independence of the additional 3 conditions in V E

h(E) with
respect to Wh(E) (i.e. item (iv) in (5.21)) it holds that

dim(V E
h(E)) ≥ dim(Wh(E))− 3 = 4 �E + 2 . (5.25)
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We now prove that a function v ∈ V E
h(E) such that DV(v) = 0 is identically

zero. Indeed, same computations in (5.19), show that DV(v) = 0 implies that
�
∇,E
2 v would be zero, implying that all its moments are zero, in particular, since

v ∈ V E
h(E), all the moments DW of v are also zero. Then we conclude that v is

zero. Therefore, from (5.25), we obtain that the dimension of V E
h(E) is actually

4 �E + 2, and that the DoFs DV are unisolvent for V E
h(E). ��

Property 5.6 (Polynomial Projection) The DoFs DV allow us to compute exactly
(cf. (5.14) and (5.13) and Definition 5.1)

�
∇,E
2 : V E

h(E)→ [P2(E)]2 ,
�

0,E
2 : V E

h(E)→ [P2(E)]2 ,
�

0,E
1 : ∇V E

h(E)→ [P1(E)]2×2 .

Proof Our focus is to prove the second item. According to (5.20) and employing
the definition of V E

h(E) we infer

∫
E

v · p2 dE =
∫
∂E

v · nE q3 de −
∫
E

div v q3 dE +
∫
E

�
∇,E
2 v · x⊥q1 dE

that, recalling also Remark 5.1, is a computable expression. ��

5.5 Virtual Elements on Curved Polygons

In the present section we introduce the second order Virtual Elements for the
Stokes/Navier-Stokes equation on polygonal meshes with curved edges. We follow
the approach detailed in the reference [17], other possible ways dealing with VEM
on curved polygons can be found in [19, 21].

We consider that problem (5.1) is posed on a bounded Lipschitz domain � ⊂ R
2

whose boundary ∂� is made up of a finite number of smooth curves {�i}i=1,...,N . We
assume that each curve �i of ∂� is sufficiently smooth, for instance we require that
�i is of class C2, i.e. there exists a given regular and invertible C2-parametrization
γi : Ii → �i for i = 1, . . . , N , where Ii ⊂ R is a closed interval. In the following
we will drop the index i from all the involved maps in order to obtain a lighter
notation. It is important to note that the proposed approach is also valid for internal
curved interfaces. However, to keep the presentation simple we assume only curved
elements on the boundary, being its extension straightforward.

Let �h be a decomposition of � into general polygons E completed along ∂�

by curved elements whose boundary contains an arc ⊂ ∂� (see [17]). With a slight
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abuse of notation, we define the following maps to deal with both straight and curved
edges:

– for any curved mesh edge e, we call γ : Ie := γ−1(e) ⊂ I → e the restriction of
γ : I → ∂� having image e,

– for any straight mesh edge e with endpoints xe1 and xe2 , we denote by γ : Ie :=
[0, he] → e the standard affine map γ (t) = t

he
(xe2 − xe1)+ xe1 .

Now for each mesh edge e we consider the following mapped polynomial space

P̃n(e) := {̃q = q ◦ γ−1 : q ∈ Pn(Ie)}

i.e. P̃n(e) is made of all functions that are polynomials with respect to the
parametrization γ . It is important to note that for any edge mesh e it holds that

– Pn(E)|e = P̃n(e) if e is straight,
– P0(E)|e ⊂ P̃n(e) and in general Pk(E)|e "⊂ P̃n(e), for 0 < k ≤ n, if e is curved.

On each possibly curved polygonal element E ∈ �h we define the local space

V S
h(E) :=

{
v ∈ [H 1(E)]2 s.t. (i)�v +∇s = 0, for some s ∈ L2

0(E),

(ii) div v ∈ P1(E) ,

(iii)v|∂E ∈ [C0(∂E)]2, v|e ∈ [̃P2(e)]2 ∀e ∈ ∂E

}

(5.26)

that is the “curved” counterpart of the space (5.15). Using analogous technique to
that in Sect. 5.4.2 it is possible to define its enhanced version V E

h(E).
We briefly list the main properties of the spaces V S

h(E) and V E
h(E).

Property 5.7 (Approximation) Differently to the standard case with straight edges,
[P2(E)]2 "⊂ V S

h(E) but it holds [P0(E)]2 ⊂ V S
h(E). The same applies to V E

h(E).
Nevertheless, the spaces V S

h(E) and V E
h(E) enjoy optimal approximation properties

[17].

Property 5.8 (Dimension and Degrees of Freedom) The dimension of V S
h(E) is

equal to that in Property 5.2. As DoFs in V S
h(E) we can take DV (see Fig. 5.2)

with the following definition of DV2

– DV2: the values of v at the image through γ of the midpoint of Ie for every
e ∈ ∂E.

The same applies to V E
h(E).
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Fig. 5.2 DoFs for V S
h(E). We denote DV1 with the green dots, DV2 with the orange dots and DV3

with the red squares

Property 5.9 (Polynomial Projections) The spaces V S
h(E) and V E

h(E) satisfy Prop-
erty 5.3 and Property 5.6 respectively. However we observe that, in the light of
Property 5.7, the polynomial projectors in general fall outside to the spaces.

5.6 Virtual Element Spaces in 3D

The aim of this section is to develop the second order divergence-free Virtual
Elements in three dimensions. This is the natural extension of the 2D VEM of
Sect. 5.4, combined with the construction in [3]. We refer to [15] for a deeper
analysis of the 3D VEM for the general order case.

We will denote with E ∈ �h a general polyhedron having �V vertexes xV , �e
edges e and �f faces f , while n

f
E (resp. nE) will denote the unit vector that is

normal to the face f (resp. to ∂E) and outward with respect to E. Moreover for any
face f of E, τ

f

1 and τ
f

2 are two orthogonal unit vectors lying on f and such that

τ
f
1 ∧ τ

f
2 = n

f
P . We denote with xf := (xf 1, xf 2) the independent variable (i.e. a

local coordinate system on f associated with the axes τ
f
1 and τ

f
2 ). The tangential

differential operators are denoted by a subscript f . Therefore the symbols ∇f and
�f denote the gradient and Laplacian for scalar functions. For instance if f lies

on the plane x3 = 0 and τ
f

1 and τ
f

2 are associated with the coordinate system in

xf := (x1, x2) then ∇f ϕ =
(

∂ϕ
∂x1

,
∂ϕ
∂x2

)
and �f ϕ = ∂2ϕ

∂x2
1
+ ∂2ϕ

∂x2
2

, while ∇ ϕ =(
∂ϕ
∂x1

,
∂ϕ
∂x2

,
∂ϕ
∂x3

)
and �ϕ = ∂2ϕ

∂x2
1
+ ∂2ϕ

∂x2
2
+ ∂2ϕ

∂x2
3

.

Inspired by Ahmad et al. [3], in order to define the VEM space in 3D we proceed
in two steps: we first introduce suitable VEM spaces related to the faces of the
element, then we define the local spaces defined on the polyhedron. The faces
spaces have to be careful chosen in order to accommodate the computability of
the projection operators.
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5.6.1 Face Spaces

Let n ≥ 0, we define on each face f of an element E ∈ �h the face space

B
n(f ) :=

{
v ∈ H 1(f ) s.t. (i)�f v ∈ Pn(f ),

(ii) v|∂f ∈ C0(∂f ), v|e ∈ P2(e) ∀e ∈ ∂f

(iii)
(
v −�

∇,f
2 v, p̂n

)
E
= 0 ∀p̂n ∈ P̂n\0

}

(5.27)

For n = 0 we obtain the standard (second order) 2D VEM space from [8] while for
higher values of n we obtain progressively more “enhanced” versions (for instance
the case n = 2 recovers the second order space from [3]).

We here limit to sketch the main properties of the spaces Bn(f ) (we refer to [3]).

Property 5.10 (Polynomial Inclusion) P2(f ) ⊆ B
n(f ).

Property 5.11 (Dimension and Degrees of Freedom) The dimension of B
n(f ) is

given by

dim(Bn(f )) = 2 �e,f + 1 , (5.28)

where �e,f is the number of edges of the face f . Moreover, the following linear
operators DB, split into three subsets constitute a set of DoFs for Bn(f ):

– DB1: the values of v at the vertexes of the polygon f ,
– DB2: the values of v at the midpoint of every edge e ∈ ∂f ,
– DB3: the scaled moment of v

1

hf

∫
f

v df .

Property 5.12 (Polynomial Projections) The DoFs DB allow us to compute exactly
(cf. (5.14) and (5.13) and Definition 5.1)

�
∇,f
2 : Bn(f )→ P2(f ) , �

0,f
n : Bn(f )→ Pn(f ) .

Finally, let us set

B
S(f ) := B

1(f ) , B
E(f ) := B

3(f ) . (5.29)

The former is the face space associated with the VEM for the Stokes equation, the
latter is suited to compute the full L2-projection onto P2 (see Property 5.18 below).
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5.6.2 Virtual Elements for Stokes

Referring to (5.29), we consider on each polyhedral element E ∈ �h the finite
dimensional virtual space

V
3,S
h (E) :=

{
v ∈ [H 1(E)]3 s.t. (i)�v +∇s = 0, for some s ∈ L2

0(E),

(ii) div v ∈ P1(E) ,

(iii)v|∂E ∈ [C0(∂E)]3, v|f ∈ [BS(f )]3 ∀f ∈ ∂E

}

(5.30)

We explore the usual properties for the space V
3,S
h (E).

Property 5.13 (Polynomial Inclusion) [P2(E)]3 ⊆ V
3,S
h (E).

Proof For any p2 ∈ [P2(E)]3 we have

(i) �p2 ∈ [P0(E)]3, then by (5.12), there exists s ∈ P1(E) ∩ L2
0(E) s.t. �p2 =

−∇s;
(ii) div p2 ∈ P1(E);
(iii) p2|∂E ∈ [C0(∂E)]2 and by Property 5.10, p2|e ∈ [P2(f )]3 ⊆ [BS(f )]3 for

all face f ∈ ∂E.

��
Property 5.14 (Dimension and Degrees of Freedom) The dimension of V

3,S
h (E) is

given by

dim(V
3,S
h (E)) = 3 �V + 3 �e + 3 �f + 3 . (5.31)

Moreover, the following linear operators DV, split into three subsets (see Fig. 5.3)
constitute a set of DoFs for V

3,S
h (E):

– DV1: the values of v at the vertexes of E and at the midpoint of every edge of E,
– DV2: the face moments of v (split into normal and tangential components) for

every face f ∈ ∂E

1

hf

∫
f

v · nf
E df

1

hf

∫
f

v · τf
i df for i = 1, 2,

– DV3: the scaled moments of div v

1

hE

∫
E

div v

(
xi − xE,i

hE

)
dE for i = 1, 2, 3.
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Fig. 5.3 DoFs for V
3,S
h (E). We denote DV1 with the red dots, DV2 with the blue squares and DV3

with the green triangles

Proof We only sketch the proof since it follows the guidelines of Property 5.2.
Employing Property 5.11, the DoFs DV1 and DV2 are unisolvent to determine the
boundary space, then it holds that

dim([C0(∂E)
⋂
f∈∂E

[BS(f )]3) = 3 �V + 3 �e + 3 �f . (5.32)

Using the same argument in Property 5.2 it holds that

dim(V
3,S
h (E)) = dim([C0(∂E)

⋂
f∈∂E

[BS(f )]3)+ dim(P1(E))− 1

where −1 ensues from the compatibility condition (5.17), that, combined
with (5.32) corresponds to (5.31). Now the result follows by proving that DV(v) = 0
implies that v is identically zero, which can be easily shown first working on ∂E

and then inside E using respectively Property 5.11 and the same computations in
Property 5.2. ��
Remark 5.2 Employing Property 5.11 and extending to the 3D case the observation
in Remark 5.1, we have that for any sufficiently regular v defined on E that satisfies
(ii) and (iii) in (5.30), the linear operators DV allow to compute (cf. Definition 5.1)
�

0,f
1 (v|f ) for all f ∈ ∂E and div v.

Property 5.15 (Polynomial Projections) The DoFs DV allow us to compute exactly
(cf. (5.14) and (5.13) and Definition 5.1)

�
∇,E
2 : V

3,S
h (E)→ [P2(E)]3 ,

�
0,E
0 : V

3,S
h (E)→ [P0(E)]3 ,

�
0,E
1 : ∇V

3,S
h (E)→ [P1(E)]3×3 .
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Proof We prove the first item, the last two follow analogous techniques. By
definition of H 1-projection (5.14), in order to determine, for any v ∈ V

3,S
h (E),

the polynomial �∇,E2 v we need to compute

∫
E

∇v : ∇p2 dE for all p2 ∈ [P2(E)]3.

Using the same computations in (5.19) and definition (5.13), we infer

∫
E

∇v : ∇p2 dE =
∫
∂E

v · (∇p2 − q1I)nE df +
∫
E

div v q1 dE

=
∑
f∈∂E

∫
f

�
0,f
1 v · (∇p2 − q1I)n

f

E df +
∫
E

div v q1 dE

that, recalling Remark 5.2, is a computable expression. ��
As for the bi-dimensional case, we stress that actually we are not able to compute
the L2-projection onto the space of polynomials of degree ≤ 2.

5.6.3 Enhanced Virtual Elements for Navier-Stokes

In analogy with Sect. 5.4.2, in the present subsection we introduce a virtual space
V

3,E
h (E) to be used in place of the space V

3,S
h (E) in such a way that:

– Properties 5.13, 5.14, 5.15 are sill valid for V
3,E
h (E),

– the full projection �
0,E
2 : V 3,E

h (E)→ [P2(E)]3 is computable by the DoFs DV.

We preliminary observe that in order to compute �0,E
2 v we need to compute

∫
E

v · p2 dE for any p2 ∈ [P2(E)]3.

Referring to (5.12), let q3 ∈ P3(E) and q1 ∈ [P1(E)]3, s.t. p2 = ∇q3 + x ∧ q1.
Then, using the same argument in (5.20), we infer

∫
E

v · p2 dE =
∫
E

v · (∇q3 + x ∧ q1) dE

=
∫
∂E

v · nE q3 df −
∫
E

div v q3 dE +
∫
E

v · (x ∧ q1) dE ,

(5.33)
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that is actually not computable since we have no way to compute the boundary
integral

∫
∂E

v · nE q3 df and the bulk integral
∫
E

v · (x ∧ q1) dE. Therefore to

construct V
3,E
h (E), proceeding as in [3], we enlarge the space in order to have the

computability of the missing moments
∫
∂E

v · nE q3 df and
∫
E

v · x⊥q1 dE, and
then we put the so-called “enhanced constraints” to keep the right dimension of the
space.

We thus consider on each polyhedral element E ∈ �h the “enhanced” virtual
space

V
3,E
h (E) :=

{
v ∈ [H 1(E)]3 s.t. (i)�v + ∇s ∈ x ∧ [P1(E)]3, for some s ∈ L2

0(E),

(ii) div v ∈ P1(E) ,

(iii) v|∂E ∈ [C0(∂E)]3, v|f ∈ [BE(f )]3 ∀f ∈ ∂E

(iv)
(
v −�

∇,E
2 v, x ∧ p1

)
E
= 0 ∀p1 ∈ [P1(E)]3

}

(5.34)

We here summarize the usual properties for the space V 3,E. Property 5.16 is a direct
consequence of Property 5.13 (with the same argument of Property 5.4), whereas
Property 5.17 follows by Properties 5.5 and 5.14.

Property 5.16 (Polynomial Inclusion) [P2(E)]3 ⊆ V
3,E
h (E).

Property 5.17 (Dimension and Degrees of Freedom) The dimension of V
3,E
h (E) is

equal to that in Proposition 5.14. As DoFs in V
3,E
h (E) we can take DV.

Property 5.18 (Polynomial Projection) The DoFs DV allow us to compute exactly
(cf. (5.14) and (5.13) and Definition 5.1)

�
∇,E
2 : V

3,E
h (E)→ [P2(E)]3 ,

�
0,E
2 : V

3,E
h (E)→ [P2(E)]3 ,

�
0,E
1 : ∇V

3,E
h (E)→ [P1(E)]3×3 .

Proof Our focus is to prove the second item. According to (5.33) and employing
the definition of V

3,E
h (E) and Property 5.11 we infer

∫
E

v · p2 dE =
∫
∂E

v · nE q3 df −
∫
E

div v q3 dE +
∫
E

v · (x ∧ q1) dE

=
∑
f∈∂E

∫
f

�
0,f
3 v · nE q3 df −

∫
E

div v q3 dE +
∫
E

�
∇,E
2 v · (x ∧ q1) dE

that is a computable expression. ��
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5.7 Virtual Element Problem

5.7.1 Global Spaces

Let �h be a decomposition of the domain � ⊂ R
d with d = 2, 3 into general

polytopal elements E. The total number of internal vertexes, internal edges, internal
faces (if d = 3) and elements in the mesh �h are denoted respectively with LV , Le,
Lf , LE .

For any E ∈ �h, let V h(E) denote one of the enhanced virtual element spaces
introduced in Sects. 5.4.2, 5.5 and 5.6.3. The global virtual element space is defined
by

V h := {v ∈ V s.t. v|E ∈ V h(E) for all E ∈ �h} . (5.35)

By Properties 5.5, 5.8 and 5.17 we infer that the dimension of V h is

dim(V h) = 2LV + 2Le + 2LE , if d = 2,

dim(V h) = 3LV + 3Le + 3Lf + 3LE , if d = 3.
(5.36)

The discrete pressure space is given by the piecewise polynomial functions of degree
one, i.e. Qh(E) is simply defined by

Qh(E) := P1(E) , (5.37)

having dimension dim(Qh(E)) = d + 1. The corresponding DoFs are chosen,
defining for each q ∈ Qh(E)

– DQ: the scaled moments

1

|E|
∫
E

q dE ,
1

|E|
∫
E

q

(
xi − xE,i

hE

)
dE for i = 1, . . . , d .

The global space is given by

Qh := {q ∈ Q s.t. q|E ∈ Qh(E) for all E ∈ �h} , (5.38)

and the dimension of Qh is

dim(Qh) = (d + 1) LP − 1 . (5.39)

We finally mention the following results: the former states that the space V h

has an optimal interpolation order of accuracy (see Proposition 4.2. in [13] and
Theorem 4.1 in [16]), the latter concerns the inf-sup stability of the couple of spaces
(V h,Qh) (see Proposition 4.3 in [13]).
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Proposition 5.1 Under the mesh assumption (A1), let v ∈ [Hs(�h)]d with 1 <

s ≤ 3. Then there exists vh ∈ V h such that

‖v − vh‖0,� + h‖∇v −∇vh‖0,� � hs |v|Hs(�h)

where the hidden constant depends only on the shape regularity constant � in
assumption (A1).

Proposition 5.2 Given the discrete spaces V h and Qh defined in (5.35) and (5.38)
respectively, there exists a positive constant β̂, independent of h, such that

sup
vh∈V h, vh "=0

b(vh, qh)

‖∇vh‖0,�
≥ β̂ ‖qh‖0,� for all qh ∈ Qh.

Remark 5.3 In principle it might make sense to consider on each polygonal element
E ∈ �h the “degree one version” of the virtual element space (5.15), i.e.

V S
h(E) :=

{
v ∈ [H 1(E)]2 s.t. (i)�v +∇s = 0, for some s ∈ L2

0(E),

(ii) div v ∈ P0(E) ,

(iii)v|∂E ∈ [C0(∂E)]2, v|e ∈ [P1(e)]2 ∀e ∈ ∂E

}

coupled with the pressures space Qh(E) := P0(E). However in general the couple
of spaces (V S

h,Qh) is not inf-sup stable. For example on triangular meshes this
choice leads to the couple ([P1(E)]2,P0(E)) that is not inf-sup stable (see for
instance [22]).

The “degree one version” of the method has been introduced in [4]. The idea
is that, as for standard FEM, adding an edge-based DoF representing the normal
component of the velocities will grant an inf-sup stable couple. Therefore we define
the space

V S
h(E) :=

{
v ∈ [H 1(E)]2 s.t. (i)�v +∇s = 0, for some s ∈ L2

0(E),

(ii) div v ∈ P0(E) ,

(iiiA) v|∂E ∈ [C0(∂E)]2,

(iiiB) v|e · τ e
E ∈ P1(e) , v|e · ne

E ∈ P2(e) ∀e ∈ ∂E

}

where τ e
E will denote the unit vector that is tangent to the edge e. The resulting

couple (V S
h,Qh) is inf-sup stable. Notice that this couple can be seen as the

extension of the so-called reduced ([P2(E)]2,P0(E)) to general polygonal meshes.
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5.7.2 Discrete Forms

On the basis of Properties 5.6, 5.9 and 5.18, following a standard procedure in the
VEM framework, we define the computable (in the sense of Definition 5.1) discrete
local forms

aEh (u, v) :=
∫
E

(
�

0,E
1 ε(u)

)
:
(
�

0,E
1 ε(v)

)
dE +S E

(
(I −�

0,E
2 )u, (I −�

0,E
2 )v

)
,

(5.40)

c
o,E
h (w; u, v) :=

∫
E

[(
�

0,E
1 ∇ u

)
�

0,P
2 w

]
·�0,E

2 v dE , (5.41)

c
skew,E
h (w; u, v) := 1

2

(
c
o,E
h (w; u, v)− c

o,E
h (w; v,u)

)
, (5.42)

for all w, u, v ∈ V h(E), where clearly

�
0,E
1 ε(v) = �

0,E
1 ∇ v + (�

0,E
1 ∇ v)T

2

and the symmetric stabilizing form S E : V h(E)× V h(E)→ R satisfies

‖∇v‖2
0,E � S E(v, v) � ‖∇v‖2

0,E for all v ∈ V h(E) ∩Ker(�0,E
2 ). (5.43)

The condition above essentially requires the stabilizing term S E(v, v) to scale as
‖∇v‖2

0,E that is hd−2. For instance, a standard choice for the stabilization is the
D-recipe stabilization introduced in [12].

Remark 5.4 Recalling Property 5.7, if E is a curved polygon the stabilizing form
has to be defined onto the sum space (V h(E)+ [P2(E)]2), i.e.

S E : (V h(E)+ [P2(E)]2)× (V h(E)+ [P2(E)]2)→ R .

The global virtual forms are defined by simply summing the local contributions:

ah(u, v) :=
∑
E∈�h

aEh (u, v) ,

ch(w; u, v) :=
∑
E∈�h

c
skew,E
h (w; u, v) ,

(5.44)

for all w, u, v ∈ V h. We point out that

– the symmetry of ah(·, ·) together with (5.43) easily implies that ah(·, ·) is
continuous and coercive with respect to the H 1-norm, i.e. there exist two positive
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constants α̂ and α s.t

α̂‖∇v‖2
0,� ≤ ah(v, v) ≤ α‖∇v‖2

0,� for all v ∈ V h; (5.45)

– the discrete trilinear form ch(·; ·, ·) is skew-symmetric and is continuous with
respect to the H 1-norm, i.e. there exists a positive constant Ĉ s.t.

|ch(w; u, v)| ≤ Ĉ‖∇w‖0,�‖∇u‖0,�‖∇v‖0,� for all w,u, v ∈ V h.

(5.46)

Finally the approximated load f h ∈ [P2(�h)]d is given by

f h|E := �
0,E
2 f for all E ∈ �h (5.47)

therefore the discrete right hand side

(f h, v) :=
∑
E∈�h

∫
E

�
0,E
2 f · v dE for all v ∈ V h (5.48)

is computable (cf. Properties 5.6, 5.9 and 5.18 and Definition 5.1).

5.7.3 Divergence-Free Velocity Solution

Referring to the discrete spaces (5.35), (5.38), the discrete forms (5.44), the div
form (5.3) and the approximated load term (5.47) the virtual element approximation
of the Navier-Stokes equation is given by

⎧⎪⎪⎨
⎪⎪⎩

find (uh, ph) ∈ V h ×Qh, such that

ν ah(uh, vh)+ ch(uh; uh, vh)+ b(vh, ph) = (f h, vh) for all vh ∈ V h,

b(uh, qh) = 0 for all qh ∈ Qh.
(5.49)

The crucial observation is that, definitions (5.35) and (5.38) along with Proposi-
tion 5.2 implies that

div V h = Qh . (5.50)

Therefore the second equation of (5.49), along with property (5.50), implies that the
discrete velocity uh ∈ V h is exactly divergence-free. More generally the discrete
kernel

Zh := {vh ∈ V h s.t. b(vh, qh) = 0 for all qh ∈ Qh} (5.51)



210 L. Beirão da Veiga and G. Vacca

is a subspace of the continuous kernel Z (cf. (5.8)), i.e.

Zh ⊆ Z . (5.52)

Then, Problem (5.49) can be formulated in the equivalent kernel form:

{
find uh ∈ Zh, such that

ν ah(uh, vh)+ ch(uh; uh, vh) = (f h, vh) = (P(f h).vh) for all vh ∈ Zh.
(5.53)

The well-posedness of the discrete problems is stated in the following theorem. Note
that an analogous result could be stated making use of a discrete Helmholtz–Hodge
projector (cf. Assumption A0), but the result below is more suitable to the current
presentation.

Theorem 5.1 Referring to (5.45), (5.46) and (5.47) under the assumption

(Â0) γ̂ := Ĉ ‖f h‖Z∗h
α̂2ν2 < 1

with the usual definition of dual norm, Problem (5.49) is well-posed and the unique
solution (uh, ph) ∈ V h ×Qh is such that

|uh|[H 1(�)]2 ≤
‖f h‖Z∗h
α̂ν

. (5.54)

5.8 Convergence Results and Exploring the Divergence-Free
Property

The goal of the present section is to describe the main benefits of the proposed VEM
scheme, in addition to the capability (shared by any VEM scheme) of using general
polytopal meshes. The divergence-free property and the kernel inclusion (5.52)
entail a range of advantages explored in the following subsections

– Section 5.8.1: the error components partly decouple, namely the influence of the
pressure in the velocity error is weaker with respect to standard inf-sup stable
elements (see [16]);

– Section 5.8.2: the scheme in (5.49) is equivalent to a suitable reduced problem,
observing the internal DoFs DV3 (and the associated pressures DoFs) can be
automatically ignored in the final linear system (see [13]);

– Section 5.8.3: the proposed Virtual Element enjoys an underlying discrete Stokes
complex structure (see [15, 18]);

– Section 5.8.4: the space V h is uniformly stable for the Darcy equation (see [64]).
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5.8.1 Convergence Results

We here state the optimal convergence result for the proposed Virtual Element
scheme (5.49). We refer to Theorem 4.6 in [16] for the proof.

Proposition 5.3 Under the assumptions (A0), (Â0) and (A1), let (u, p) ∈ V ×
Q be the solution of Problem (5.5) and (uh, ph) ∈ V h × Qh be the solution of
Problem (5.49). Assuming moreover u,f ∈ [H 3(�h)]d and p ∈ H 2(�h) then

|u− uh|1 ≤ h2 F (u; ν, γ )+ h4 H (f ; ν) , (5.55)

‖p − ph‖0 ≤ h2 |p|H 2(�h)
+ h2 K (u; ν, γ )+ h4 |f |[H 3(�h)]d (5.56)

for suitable functions F , H , K independent of h.

Note that the error components partly decouple: notably, the velocity error does
not depend directly on the discrete pressures, but only indirectly through the
approximation of the loading and convection terms and such dependence on the full
load is much weaker with respect to standard mixed schemes. In some situations
the partial decoupling of the errors induces a positive effect on the velocity
approximation.

In particular, assume that the load in (5.5) is a gradient field, i.e. f = ∇ζ , then
P(∇ζ ) = 0 and thus the solution of (5.1) satisfies u = 0 (cf. (5.7)). From (5.55)
and since (∇ζ, zh) = 0 for all zh ∈ Zh, and assuming f ∈ [H 3(�h)]d one can
easily derive

‖uVEM
h ‖V ≤

‖f h‖Z�
h

α̂ ν
= ‖f h − f ‖Z�

h

α̂ ν
� h4

ν
|f |[H 3(�h)]d .

Notice that in the same situation the velocity solution of classical mixed finite
element methods would have the form

‖uFEM
h ‖V � h2

ν
|f |[H 1(�h)]d .

Remark 5.5 In the context of the approximation of the Navier–Stokes equation, a
numerical method is said to be pressure-robust (see e.g. [50]) if the discrete velocity
solution depends only on the Helmholtz–Hodge projector P(f ) of the load f (as it
happens for the exact velocity field). For instance, in the situation aforementioned,
if the load is a gradient field, the discrete velocity solution uPR

h computed by
means of a pressure-robust method satisfies uPR

h = 0. Hence method (5.49) is not
pressure-robust; on the other hand the dependence on the full load is much weaker
with respect to standard mixed schemes. Suitable modifications of the right-hand
side (5.48) have been proposed in [41, 59] in order to get a real pressure-robust
VEM scheme. These approaches are based on a Raviart-Thomas interpolation of
the test functions with respect to a subtriangulation of the mesh �h.
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5.8.2 Reduced Virtual Elements

In this section we show that Problem (5.49) is equivalent to a suitable reduced prob-
lem, involving significantly fewer degrees of freedom. Recalling that the discrete
solution satisfies div uh = 0, by definition of DoFs DV3 (cf. Properties 5.2, 5.5, 5.14
and 5.17), one can immediately set to zero all DV3 degrees of freedom, and
correspondingly eliminate also the associated discrete pressures. Hence referring
to (5.21) and (5.34), on each polytopal element E, let us define the reduced space:

V R
h (E) := {v ∈ V h(E) s.t. div v ∈ P0(E)} (5.57)

i.e. we replace the item (ii) in (5.21) and (5.34) taking P0(E) in the place of P1(E).
We briefly list the main properties of the space V R

h (E).

Property 5.19 (Polynomial Inclusion) Let PR
2 (E) ⊂ [P2(E)]d denote the set of

vector valued polynomials of degree 2 having constant divergence. Then P
R
2 (E) ⊆

V R
h (E).

Property 5.20 (Dimension and Degrees of Freedom) The dimension of V R
h (E) is

given by

dim(V R
h (E)) = 4 �E if d = 2,

dim(V R
h (E)) = 3 �V + 3 �e + 3 �f if d = 3.

(5.58)

As DoFs in V R
h (E) we can take DV1 and DV2 defined in Property 5.2 and

Property 5.14 for the 2D and the 3D case respectively (see Fig. 5.4 for the 2D case).

Property 5.21 (Polynomial Projections) The space V R
h (E) satisfies Property 5.6

and Property 5.18 for d = 2, 3 respectively. However we observe that, in the light
of Property 5.19, the polynomial projectors in general fall outside to the spaces.

The global space V R
h is obtained in the standard fashion by gluing the local spaces:

Fig. 5.4 DoFs for V h(E). We denote DV1 with the green dots and DV2 with the orange dots [18]
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V R
h := {v ∈ V s.t. v|E ∈ V R

h (E) for all E ∈ �h} . (5.59)

Concerning the reduced space for the pressures we simply take

QR
h := {q ∈ Q s.t. q|E ∈ P0(E) for all E ∈ �h} . (5.60)

Referring to the discrete spaces (5.59), (5.60), the discrete forms (5.44), the div
form (5.3) and the approximated load term (5.47), we consider the reduced problem
given by

⎧⎪⎪⎨
⎪⎪⎩

find (uR
h , p

R
h ) ∈ V R

h ×QR
h , such that

ν ah(u
R
h , vh)+ ch(u

R
h ; uR

h , vh)+ b(vh, p
R
h ) = (f h, vh) for all vh ∈ V R

h ,

b(uR
h , qh) = 0 for all qh ∈ QR

h .
(5.61)

It can be shown that, under the assumption (Â0), Problem (5.61) is well posed.
Moreover the discrete reduced kernel

ZR
h := {vh ∈ V R

h s.t. b(vh, qh) = 0 for all qh ∈ QR
h }

satisfies ZR
h = Zh ⊂ Z. The following proposition is easy to check and states the

relation between problem (5.49) and the reduced Problem (5.61).

Proposition 5.4 Under the assumption (Â0), let (uh, ph) ∈ V h × Qh and
(uR

h , p
R
h ) ∈ V R

h × QR
h be the solution of Problem (5.49) and Problem (5.61),

respectively. Then

uR
h = uh , and pR

h = �
0,E
0 ph on every E ∈ �h.

It is trivial to check that the reduced scheme (5.61) has 2dLE DoFs less when
compared with the original one (5.49).

Remark 5.6 (Virtual Elements and FEM) The proposed Virtual Elements is
different even on standard triangular/quadrilateral meshes or tetrahedral/hexahedral
meshes from already-known inf-sup stable finite elements. Focusing on the
bi-dimensional case and triangular meshes (see Table 5.1), we now briefly
compare our VEM approach with the Crouzeix-Raviart element ([P2(E) +
B3(E)]2,P1(E)), where B3(E) denotes the cubic bubble on E. We notice that
dim(V h(E)) = dim([P2(E) + B3(E)]2) and both spaces contain the polynomial
space [P2(E)]2. However the two methods do not coincide: for the VEM scheme
it holds div V h(E) = P1(E) (cf. (5.50)), while for the FEM scheme it holds
div(([P2(E) + B3(E)]2]) "⊂ P1(E), because the divergence of a cubic bubble
function is not a linear polynomial. This argument shows that the two approaches
are indeed different, and in particular the Crouzeix-Raviart element does not deliver
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Table 5.1 Finite elements and virtual elements: velocities and pressures spaces

a divergence-free velocity solution. Similar arguments apply for the P2-P0 element
([P2(E)]2,P0(E)) and the Taylor-Hood element ([P2(E)]2,Pcont

1 (E)) compared
with the reduced VEM V R

h (E). Other interesting comments about the comparison
with FEM can be found in [26].

5.8.3 Stokes Complex and curl Formulation

In the present subsection we investigate the underlying Stokes complex structure of
the Virtual Element Method for Stokes and Navier–Stokes. For simplicity we here
describe the 2D Stokes complex [18], the extension to the three-dimensional case is
more technical and requires a more careful analysis (we refer the interested reader
to [15], see also [7, 46]).

Assume that � ∈ R
2 is a simply connected domain. Let us consider the space

� := H 2
0 (�) =

{
ϕ ∈ H 2(�) s.t. ϕ = 0,

∂ϕ

∂n
= 0 on ∂�

}
. (5.62)

The 2D de Rham complex is provided by [47]:

0
i−−−−−→ �

curl−−−−−−→ V
div−−−−−→ Q

0−−−−−→ 0 , (5.63)
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where i denotes the mapping that to every real number r associates the constant
function identically equal to r and we recall that a sequence is exact if the range of
each operator coincides with the kernel of the following one.

As a consequence of (5.63) we have the following characterization of the kernel
Z (cf. (5.8))

curl(�) = Z . (5.64)

Then, Problem (5.9) can be formulated in the following curl formulation:

{
find ψ ∈ �, such that

ν a(curlψ, curlϕ)+ c(curlψ; curlψ, curlϕ) = (f , curlϕ) for all ϕ ∈ �.

(5.65)

Since the formulation (5.65) is equivalent to Problem (5.9) (in turn equivalent to
Problem (5.5)), the well-posedness of curl formulation follows from assumption
(A0).

Referring to (5.35) and (5.38), our goal is to construct a conforming virtual
element space �h ⊂ � such that

0
i−−−−−→ �h

curl−−−−−−→ V h
div−−−−−→ Qh

0−−−−−→ 0 , (5.66)

is an exact sub-complex of (5.63). To this end we consider on each polygonal
element E ∈ �h the finite dimensional virtual space [27]

�h(E) :=
{
ϕ ∈ H 2(E) s.t. (i)�2ϕ = P1(E),

(ii) ϕ|∂E ∈ C0(∂E), ϕ|e ∈ P3(e) ∀e ∈ ∂E ,

(iii)∇ϕ|∂E ∈ [C0(∂E)]2, ∇ϕ|e ∈ [P2(e)]2 ∀e ∈ ∂E ,

(iv)
(

curlϕ −�
∇,E
2 curlϕ, x⊥p1

)
E
= 0 ∀p1 ∈ P1(E)

}

(5.67)

We here summarize the main properties of the virtual space �h(E) we refer to
[18, 27] for the various proofs.

Property 5.22 (Polynomial Inclusion) P3(E) ⊆ �h(E).

Property 5.23 (Dimension and Degrees of Freedom) The dimension of �h(E) is
given by

dim(�h(E)) = 4 �E . (5.68)
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Fig. 5.5 DoFs for �h(E). We denote D�1 with the blue dots, D�2 with the red circles and D�3
with the green lines [18]

Moreover, the following linear operators D�, split into three subsets (see Fig. 5.5)
constitute a set of DoFs for �h(E):

– D�1: the values of ϕ at the vertexes of the polygon E,
– D�2: the values of he∇ϕ at the vertexes of the polygon E,
– D�3: the values of he

∂ϕ
∂n

at the midpoint of every edge e ∈ ∂E.

Property 5.24 (Polynomial Projection) The DoFs D� allow us to compute exactly
(cf. (5.14) and (5.13)and Definition 5.1)

�
∇,E
2 : curl(�h(E))→ [P2(E)]2 ,

�
0,E
2 : curl(�h(E))→ [P2(E)]2 ,

�
0,E
1 : ∇curl(�h(E))→ [P1(E)]2×2 .

The global virtual element space is defined by

�h := {ϕ ∈ �h(E) s.t. ϕ|E ∈ �h(E) for all E ∈ �h} . (5.69)

By Property 5.23 we infer that the dimension of �h is

dim(�h) = 3LV + Le . (5.70)

We now prove that the triad {�h,V h,Qh} (cf. (5.69), (5.35), (5.38)) realizes the
exact sequence (5.66).

Proposition 5.5 The sequence (5.66) constitutes an exact complex.

Proof We need to verify that the image of each operator in (5.66) coincides with
the kernel of the next one. Recalling (5.50), we only need to prove that

(i1) curl(�h) ⊆ Zh , (i2) Zh ⊆ curl(�h) . (5.71)

Let us analyse the inclusion (i1). Let ϕ ∈ �h, clearly curlϕ ∈ Z. Therefore,
we need to verify that (curlϕ)|E ∈ V h(E) for all E ∈ �h. It is evident that
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the constraints (i.e. the item (iv)) in definition (5.67) are the curl version of the
constraints in definition (5.21). Concerning the condition on the skeleton ∂E, we
observe that items (ii) and (iii) in (5.67) easily imply that

v|∂E = (curlϕ)|∂E ∈ [C0(∂E)]2 and v|e = (curlϕ)|e ∈ [P2(e)]2 . (5.72)

Inside the element, by simple calculations and by item (i) in (5.67), we infer
rot �v = rot �(curlϕ) = �2ϕ ∈ P1(E). In the light of (5.12), rot : x⊥P1(E) →
P1(E) is an isomorphism, then there exists p1 ∈ P1(E) such that rot �v =
rot x⊥p1. Since E is simply connected, there exists s such that �v + ∇s = x⊥p1,
i.e. (i) in (5.21). That concludes the proof for (i1).

The inclusion (i2) follows by a dimensional argument. In fact, from (5.70)
and (5.36) combined with (5.51), easily follows that

dim(curl(�h))− dim(Zh) = dim(�h)− dim(Zh)− 1

= (3LV + Le)− (2LV + 2Le −NE)− 1 = 0

by Euler formula. Therefore we can conclude that curl(�h) = Zh. ��
In the light of Proposition 5.5 we can characterize the divergence-free discrete

kernel Zh as curl(�h). Therefore referring to (5.69), (5.44) and (5.47) we can
set the virtual element approximation of the Navier–Stokes equation in the curl
formulation:
{

find ψh ∈ �h, such that

ν ah(curlψh, curlϕh)+ ch(curlψh; curlψh, curlϕh) = (f h, curlϕh) ∀ϕh ∈ �h.

(5.73)

We stress that the linear system associated to Problem (5.73) has 2(LE − 1) less
DoFs even if considering the reduced Problem (5.61).

5.8.4 Stability in the Darcy Limit and Brinkman Equation

The focus of this subsection is on describing the VEM for the Brinkman problem.
The Brinkman equation describes fluid flow in complex porous media with a
viscosity coefficient highly varying so that the flow is dominated by the Darcy
equation in some regions of the domain and by the Stokes equation in others. We
consider the Brinkman equation on a polytopal simply connected domain � ⊆ R

d

with d = 2, 3 (see for instance [28])

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find (u, p) such that

− ν div(ε(u))+ K
−1u−∇p = f in �,

div u = 0 in �,

u = 0 on ∂�,

(5.74)
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where u, p are the velocity and the pressure fields, respectively, ν ∈ R, ν > 0 is
the viscosity of the fluid, K is a uniformly symmetric positive definite tensor and
denotes the permeability tensor of the porous media and f ∈ [L2(�)]d represents
the volume source term. Notice that if ν approaches zero (5.74) becomes a singular
perturbation of the classic Darcy equation.

We assume that ν and K are piecewise constants with respect to E ∈ �h and let
νE , κE and κiE denote the L∞-norm of ν, K and K

−1 respectively on the element
E. Then recalling Properties 5.6 and 5.18 let us define for all u, v ∈ V h(E) the
computable bilinear form

mE
h (u, v) :=

∫
E

K
−1�

0,E
2 u ·�0,E

2 v dE + κiER
E
(
(I −�

0,E
2 )u, (I −�

0,E
2 )v

)
,

(5.75)

where the symmetric stabilizing form RE : V h(E)× V h(E)→ R satisfies

‖v‖2
0,E � RE(v, v) � ‖v‖2

0,E for all v ∈ V h(E) ∩ Ker(�0,E
2 ). (5.76)

The global approximated bilinear form mh(·, ·) : V h × V h → R is thus defined by
summing the local contributions, i.e.

mh(u, v) :=
∑
E∈�h

mE
h (u, v) for all u, v ∈ V h. (5.77)

Referring to the discrete spaces (5.35), (5.38), the discrete form in (5.77) and (5.44)
and the div form (5.3) and the approximated load term (5.47), the virtual element
approximation of the Brinkman equation is given by [64]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

find (uh, ph) ∈ V h ×Qh, such that

ν ah(uh, vh)+mh(uh, vh)+ b(vh, ph) = (f h, vh) for all vh ∈ V h,

b(uh, qh) = 0 for all qh ∈ Qh.

(5.78)

Mathematically, the Brinkman equations can be viewed as a combination of
the Stokes and the Darcy equations, that can change from place-to-place in the
computational domain. Therefore, numerical schemes for Brinkman equations have
to be carefully designed to accommodate both Stokes and Darcy simultaneously.
Let us define the norm

|||v|||2 := ν‖∇v‖2
0,� + ‖K−1/2v‖2

0,� + ‖div v‖2
0,� .

Employing the kernel inclusion (5.52), the stability bounds in (5.43) and (5.76), it
holds that

ν ah(v, v)+mh(v, v) � |||v|||2 for all v ∈ Zh, (5.79)
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i.e. the discrete form ah(·, ·)+mh(·, ·) is uniformly stable (w.r.t. ν, K and h) on the
discrete kernel. Notice that for classical inf-sup stable Stokes finite elements one
has

ν a(v, v)+
∫
�

K
−1v · v d� � min

E∈�h

max{h2
E, νE}|||v|||2 for all v ∈ ZFEM

h ,

i.e. the bilinear form associated with the Brinkman equation is not uniformly
coercive on the discrete kernel (being in general ZFEM

h "⊂ Z).
On the basis of (5.79) we have the following results (we refer to [64] for the

proof).

Theorem 5.2 Problem (5.78) is well-posed and the unique solution (uh, ph) ∈
V h ×Qh is such that

|||uh||| � |||f h|||Z∗h .

Proposition 5.6 Under the assumption (A1), let (u, p) ∈ V × Q be the solution
of Problem (5.74) and (uh, ph) ∈ V h × Qh be the solution of Problem (5.78).
Assuming moreover u,f ∈ [H 3(�h)]d and p ∈ H 2(�h) then

|||u− uh|||2 �
∑
E∈�h

min
{
νE, h

2
Eκ

i
E

}
h4 |u|23,E +

∑
E∈�h

min

{
h2
E

νE
, κE

}
h6 |f |23,E ,

‖p − ph‖0 � |||u− uh||| + h2 |p|H 2(�h)
.

5.9 Numerical Tests

In this section we present two numerical experiments (in two space dimensions)
to test the practical performances of the proposed VEM scheme (5.49). In the
first academic test we numerically verify the theoretical convergence rate of
Proposition 5.3. The second test assesses the method for the driven cavity problem.
More numerical tests can be found, for instance, in [13, 15, 16, 18, 64]. Advices
and details regarding coding can be found in [38], see also [9]. We here limit
such discussion in showing the Newton linearization strategy (see for instance [62])
adopted to solve the non non linear equation (5.49). The Newton method applied to
the (5.49) reads

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

until convergence find (un+1
h , pn+1

h ) ∈ V h ×Qh, such that

ν ah(u
n+1
h , vh)+ ch(u

n+1
h ; un

h, vh)+ ch(u
n
h; un+1

h , vh)+
+ b(vh, p

n+1
h ) = (f h, vh)+ ch(u

n
h; un

h, vh) for all vh ∈ V h,

b(un+1
h , qh) = 0 for all qh ∈ Qh.
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starting from (u0
h, p

0
h) = (0, 0). Notice that at each step of the Newton iteration the

solution un+1
h is still divergence-free, therefore the linearization procedure does non

affect the divergence-free property of the final discrete solution.

Test 1. Error Convergence
In this test we examine the convergence properties of the proposed scheme (5.49) in
the light of Proposition 5.3. In order to compute the VEM error between the exact
solution uex and the VEM solution uh, we consider the computable error quantities

err(uh,H
1) :=

⎛
⎝∑

E∈�h

‖∇uex −�
0,E
1 ∇uh‖2

L2(E)

⎞
⎠

1/2

,

err(uh, L
2) :=

⎛
⎝∑

E∈�h

‖uex −�
0,E
2 uh‖2

L2(E)

⎞
⎠

1/2

.

For the pressure error we simply take err(ph, L2) := ‖p − ph‖0,�.

We consider the Navier-Stokes equation on the unit square � = [0, 1]2, the
viscosity is ν = 1, the load term and the Dirichlet boundary conditions are chosen
in accordance with the analytical solution

uex(x, y) = ex
(

sin y + y cos y − x sin y
−x cos y − y sin y − cos y

)
pex(x, y) = sin(πx) cos(4πy) .

The domain � is partitioned with the following sequences of polygonal meshes:
QUADRILATERAL distorted meshes, TRIANGULAR meshes, CVT (Centroidal
Voronoi Tessellations) meshes, RANDOM Voronoi meshes (see Fig. 5.6). For the
generation of the Voronoi meshes we used the code Polymesher [63]. For each
family of meshes we take the sequence with diameter h = 2−2, 2−3, 2−4, 2−5, 2−6.

In Fig. 5.7 we display the errors err(uh,H
1), err(uh, L

2) and err(ph, L2)

for the the sequences of meshes aforementioned. We notice that the theoretical
predictions of Proposition 5.3 are confirmed, moreover we observe that the method
is robust with respect to the mesh distortion.

Fig. 5.6 Test 1. Example of the adopted polygonal meshes
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Fig. 5.7 Test 1. Convergence lines for the VEM (5.49)

Test 2. Driven Cavity
In the present test we consider the driven cavity problem on the domain� = [0, 1]2.
We take viscosity ν = 100, f = 0 and Dirichlet boundary conditions

u|� = (1, 0)T , and u|∂�\� = 0 ,

where � := [0, 1] × {1}. For this problem an exact solution is not available.
The domain is partitioned with a sequence of Cartesian meshes with diameter
h = 2−2, 2−3, 2−4, 2−5, 2−6. In Fig. 5.8 we show the quiver of the numerical
velocity uh (left) and the contour plot of |uh| (right) obtained with the mesh with
h = 2−5. The plots appear similar to the results obtained by several authors (see for
instance [45, 51]).

Moreover the approximated L2-norm of the numerical solution, i.e.

norm(uh, L
2) :=

⎛
⎝∑

E∈�h

‖�0,E
2 uh‖2

L2(E)

⎞
⎠

1/2

converges to the value obtained with a finite volume solver≈2.62e−01. The results
are exhibited in Table 5.2.
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Fig. 5.8 Test 2. Quiver of the numerical velocity uh (left), contour plot of |uh| (right)

Table 5.2 Test 2. Approximated L2-norm of the numerical solution

1/h 4 8 16 32 64

norm(uh, L
2) 2.3576e−01 2.4293e−01 2.5169e−01 2.5679e−01 2.5955e−01

5.10 Conclusions

In the present contribution we gave an overview of the so-called divergence-free
virtual elements for the Navier-Stokes equation. In particular we showed how to
explore the flexibility of virtual elements construction in order to design a virtual
element space for the velocities such that the discrete velocity solution is pointwise
divergence-free. We stress that this feature is not shared by most of the standard
mixed FEMs, where the divergence-free constraint is imposed only in a weak
(relaxed) sense. In addition to the important flexibility of dealing with general
(possibly curved) polygonal meshes and polyhedral meshes, we showed that the
divergence-free construction of the proposed virtual element entails the following
advantages:

1. the error components partly decouple, namely the influence of the pressure in the
velocity error is weaker with respect to standard inf-sup stable elements;

2. the resulting scheme is equivalent to a suitable reduced problem, observing the
internal DoFs can be automatically ignored in the final linear system;

3. it enjoys an underlying discrete Stokes complex structure;
4. the discrete velocity space is uniformly stable for the Darcy equation.
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Chapter 6
A Virtual Marriage à la Mode: Some
Recent Results on the Coupling of VEM
and BEM

Gabriel N. Gatica, Antonio Márquez, and Salim Meddahi

Abstract The aim of this chapter is to present in a unified way some recent results
on the combined use of the virtual element method (VEM) and the boundary
element method (BEM) to numerically solve linear transmission problems in 2D
and 3D. As models we consider an elliptic equation in divergence form holding
in an annular domain coupled with the Laplace equation in the corresponding
unbounded exterior region, and an acoustic scattering problem determined by a
bounded obstacle and a time harmonic incident wave, so that the scattered field,
and hence the total wave as well, satisfies the homogeneous Helmholtz equation.
Both sets of corresponding equations are complemented with proper transmission
conditions at the respective interfaces, and suitable radiation conditions at infinity.
We employ the usual primal formulation and the associated VEM approach in the
respective bounded regions, and combine it, by means of either the Costabel & Han
approach or a recent modification of it, with the boundary integral equation method
in the exterior domain, thus yielding two possible VEM/BEM schemes. The first
method is valid only in 2D and considers the main variable and its normal derivative
as unknowns, whereas the second one, which includes additionally the trace of the
former as a third unknown, is applicable in both dimensions. The well-posedness of
the continuous and discrete formulations is established and a priori error estimates
together with corresponding rates of convergence are derived. Finally, several
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numerical examples in 2D illustrating the performance of the proposed discrete
schemes are reported.

6.1 Introduction

The concept “marriage à la mode” was originally employed in [36], one of the
seminal papers on the subject back in the 70’, to refer to the combined use (also
named coupling) of the finite element (FEM) and boundary element (BEM) methods
and the advantages of performing this “marriage”. The mathematical fundamentals
of this novel idea was provided either around the same time or short after in
[10, 35] and [26], and the first resulting method, which uses a single boundary
integral equation arising from the Green representation formula of the solution, is
known nowadays as the Johnson & Nédélec approach. Until a couple of decades
after, the applicability of this technique, being based on the compactness of a
boundary integral operator involved and the Fredholm theory, was restricted mainly
to transmission problems involving the Laplace operator. For other problems of
interest, such as the Lamé system, the compactness property does not hold and hence
the method could not be employed to this model.

The aforementioned limitation motivated the coupling procedures by Costabel
and Han in [17] and [24], respectively, which were both based on the incorporation
of a second boundary integral equation, namely the one that is obtained after
applying the normal derivative (or traction in the case of elasticity) to the Green
formula. In this way, the former technique yielded a symmetric and non-positive
definite scheme, whereas the latter, on the contrary, gave rise to a non-symmetric
but elliptic system. However, one simply refers to either one of them as the Costabel
& Han method since they only differ in the sign of a common integral identity.
In turn, the historical drawback of the Johnson & Nédélec coupling method, was
surprisingly solved in [31] (see also [32] and [33]), where it was shown that actually
all Galerkin schemes for this approach are stable, thus extending its use to other
elliptic equations and to arbitrary polygonal/polyhedral domains.

On the other hand, the virtual element method (VEM) has become during the
last decade a very promising technique to numerically solve diverse linear and
nonlinear boundary value problems in continuum mechanics. Among its many
applications, we can mention linear elasticity, plate bending problems, the Steklov
eigenvalue problem, acoustic vibration, and diverse models in fluid mechanics.
In particular, the latter includes stream function-based, divergence free, and non-
conforming virtual element methods for the classical velocity-pressure formulation
of the Stokes equation, primal virtual element approaches for the Darcy, Brinkman,
and Navier-Stokes models, and dual-mixed variational formulations yielding mixed
virtual element schemes for the Stokes equation, the linear and nonlinear Brinkman
problems, the nonlinear Stokes equation arising from quasi-Newtonian Stokes
flows, and the Navier-Stokes equations, as well. A representative, though not
exhaustive, list of works concerning theoretical and applied aspects of VEM, besides
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certainly the other chapters of the present proceedings, includes [2–4], [5, 7–9, 11–
14, 23, 29, 34] and the references therein.

In the same direction as above, and aiming to continue extending the applicability
of VEM, we have recently introduced and analyzed in [21] and [22], up to our
knowledge for the first time, the combined use of VEM and BEM for solving
transmission problems in 2D and 3D. The own advantages of each method, properly
discussed in those references, are certainly transferred to the combined use of them.
The main purpose of this chapter is precisely to present a unified treatment of the
main tools and results from [21] and [22]. While specific models are considered
there, the main motivation of these works and hence of the present one, is to settle
the main basis allowing to analyze later on any other particular model of interest that
is solved via the coupling of VEM and BEM. In particular, this might be the case for
unbounded domains with a bounded complex heterogeneous region for which the
corresponding partitions are constructed in a much easier way by using nonconvex
elements. Other recent contributions on the coupling of VEM and BEM, mainly
referring to computational and applied aspects of it, are presented in [1] and [18].

Our models from [21] and [22] are described in what follows. To this end, we
let �0 and O be two simply connected and bounded polygonal/polyhedral domains
in R

d , d = 2, 3, with boundaries �0 := ∂�0 and � := ∂O , respectively, such that
�0 ⊆ O . In addition, we introduce the annular region � := O \�0 and the exterior
domain Oe := R

d \O (see Fig. 6.1 below), and denote by n the unit outward normal
to � pointing towards Oe.

The first model consists of an elliptic equation in divergence form holding in �

coupled with the Laplace equation in the unbounded exterior region Oe, together
with transmission conditions on the interface � and a suitable radiation condition at
infinity, that is we look for u : �→ R and ue : Oe → R such that

− div(κ∇u) = f in � , u = 0 on �0 ,

u = ue on � , κ
∂u

∂n
= ∂ue

∂n
on � ,

�ue = 0 in Oe , ue(x) = O
(|x|−1) as |x| → ∞ ,

(6.1)

Fig. 6.1 2D geometry of the
model problems
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where f ∈ L2(�) and κ ∈ L∞(�) are given functions. Additionally, we assume
that there exists a constant κ > 0 such that

κ ≤ κ(x) ≤ κ := ‖κ‖L∞(�) for almost all x ∈ � .

Throughout the rest of the paper we call (6.1) the Poisson model.
In turn, in order to define the second model we let ϑ : Rd → C be a complex-

valued piecewise constant function satisfying Re
(
ϑ(x)

)
> 0 and Im

(
ϑ(x)

) ≥ 0
for all x ∈ R

d , and such that 1 − ϑ(x) has a compact support contained in O .
Also, we let κ > 0 be a given constant, and let w be a function satisfying the
Helmholtz equation�w+κ2w = 0 in R

d . Then, we consider an obstacle occupying
O with refractive index given by ϑ , and assume that w acts as a time harmonic
incident wave, so that the scattered field us , and hence the total wave u := w+us as
well, satisfy the homogeneous Helmholtz equation in Oe. In this way, the resulting
coupled problem, which is complemented with suitable transmission conditions on
� and the Sommerfeld radiation condition at infinity, reduces to find u : O → C

and us : Oe → C such that

�u+ κ2ϑ(x) u = 0 in O ,

u = us + w on � ,
∂u

∂n
= ∂us

∂n
+ ∂w

∂n
on � ,

�us + κ2 us = 0 in Oe ,

∂us

∂r
− ıκus = o(r

1−d
2 ) when r := |x| → ∞ .

(6.2)

The above is named from now on the Helmholtz model.
The rest of the chapter is organized as follows. In Sect. 6.2 we first describe the

basic aspects of the boundary integral equation method (BIEM), and then introduce
and analyze the Costabel & Han and modified Costabel & Han coupling methods.
The discrete VEM/BEM schemes for the Costabel & Han approach as applied
to both models from Sect. 6.1 are studied in Sect. 6.3 for the 2D case. Next, in
Sect. 6.4 we explain the necessity of introducing the modified Costabel & Han
coupling procedure in the 3D case and introduce and analyze its applicability to
the VEM/BEM scheme for the Poisson model. Finally, in Sect. 6.5 we illustrate the
performance of our discrete methods with several numerical results in 2D.

We end this section with some notations to be employed throughout the rest of
the paper. In particular, given a real number r ≥ 0 and a polyhedron G ⊆ R

d ,
d ∈ {2, 3}, we denote by ‖ · ‖r,G and | · |r,G , respectively, the norm and seminorm
of the usual Sobolev space Hr (G ) (cf. [27]). Also, we use the convention L2(G ) :=
H0(G ), and for all t ∈ (0, 1] we let H−t (∂G ) be the dual of Ht (∂G ) with respect
to the pivot space L2(∂G ). In addition, we set P−1 = {0}, and for a nonnegative
integer m, Pm is the space of polynomials of degree ≤ m. Then, given a set D ⊆
R
d , d ∈ {2, 3}, Pm(D) stands for the restriction of Pm to D.
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6.2 The Coupling Procedures

Here we introduce and analyze the continuous formulations of the two coupling
procedures that we utilize for the combination of VEM and BEM. Both approaches
require the basic aspects of the boundary integral equation method (BIEM) as
applied to the Laplace and Helmholtz equations, which is addressed in the following
section.

6.2.1 BIEM for Laplace and Helmholtz

We begin by letting γ and γn be the trace and normal trace operators, respectively,
on �, acting either from O (equivalently from �) or from Oe. Then, the harmonic
solution ue in the exterior domain Oe (cf. third row of (6.1)) can be represented by
the Green formula

ue(x) =
∫
�

∂E(|x − y|)
∂ny

γ u(y) dsy −
∫
�

E(|x − y|)λ(y) dsy ∀ x ∈ Oe ,

(6.3)

where

E(|x − y|) :=

⎧⎪⎪⎨
⎪⎪⎩

1

4π

1

|x − y| if d = 3 ,

− 1

2π
log |x − y| if d = 2 ,

is the fundamental solution of the Laplace operator, and, according to the transmis-
sion conditions at the second row of (6.1), γ u = γ ue and λ := γn(κ∇u) = γn(∇ue)
are the Cauchy data on the interface �. Then, applying γ and γn from Oe to (6.3)
and its gradient, respectively, and employing the jump conditions on � of the two
potentials in the right hand side of (6.3), we arrive at (cf. [25, 30])

γ ue =
( id

2
+K

)
γ u − V λ on � , (6.4)

and

γn(∇ue) = −Wγu +
( id

2
−Kt

)
λ on � , (6.5)

where V , K , Kt are the boundary integral operators representing the single, double
and adjoint of the double layer, respectively, id is a generic identity operator, and W

is the hypersingular operator. In this way, replacing γ ue and γn(∇ue) by γ u and λ,
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respectively, (6.4) and (6.5) become

0 =
( id

2
−K

)
γ u + V λ on � , (6.6)

and

λ = −Wγu +
( id

2
−Kt

)
λ on � . (6.7)

In turn, denoting by H
(1)
0 the Hankel function of order 0 and first type, it can be

proved that the solution us of the homogeneous Helmholtz equation in Oe (cf. third
row of (6.2)) admits the integral representation

us(x) =
∫
�

∂Eκ(|x − y|)
∂ny

γ us(y) dsy −
∫
�

Eκ (|x − y|)λ(y) dsy ∀x ∈ Oe ,

(6.8)

where

Eκ (|x − y|) :=

⎧⎪⎪⎨
⎪⎪⎩

ı

4
H

(1)
0 (κ |x − y|) if d = 2 ,

eıκ|x−y|

4π |x − y| if d = 3 ,

is the fundamental solution of the Helmholtz equation with wave number κ , and

λ := γn(∇us) = ∂us

∂n
. Next, proceeding similarly to the derivation of (6.6)

and (6.7), which means now applying γ and γn to (6.8), and taking into account
the corresponding jump properties of the potentials involved (see again [25, 30]),
we arrive at

0 =
( id

2
−Kκ

)
γ us + Vκλ , (6.9)

and

λ = −Wκγu
s +

( id

2
−Kt

κ

)
λ , (6.10)

where Vκ , Kκ , Kt
κ , and Wκ are the boundary integral operators representing

the single, double, adjoint of the double, and hypersingular layer potentials,
respectively.

We end this section with some useful properties of the boundary integral
operators involved in (6.6)–(6.7) and (6.9)–(6.10). Indeed, V , K , Kt, and W are
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formally defined at almost every point x ∈ � by

Vλ(x) :=
∫
�

E(|x − y|)λ(y) dsy ,

Kϕ(x) :=
∫
�

∂E(|x − y|)
∂ny

ϕ(y) dsy ,

Ktλ(x) :=
∫
�

∂E(|x − y|)
∂nx

λ(y) dsy ,

Wϕ(x) := − ∂

∂nx

∫
�

∂E(|x − y|)
∂ny

ϕ(y) dsy ,

(6.11)

for suitable functions λ and ϕ, whereas Vκ , Kκ , Kt
κ , andWκ are defined analogously

to (6.11) by replacing E by Eκ . Moreover, the main mapping properties of these
operators are collected in the following lemma (cf. [30]).

Lemma 6.1 The operators

V, Vκ : H−1/2+σ (�)→ H 1/2+σ (�), K, Kκ : H 1/2+σ (�)→ H 1/2+σ (�)

Kt, Kt
κ : H−1/2+σ (�)→ H−1/2+σ (�), W, Wκ : H 1/2+σ (�)→ H−1/2+σ (�),

are continuous for all σ ∈ [−1/2, 1/2].
Furthermore, we now let

〈·, ·〉 be both the inner product in L2(�) and the duality
pairing between H−1/2(�) and H1/2(�) with respect to the pivot space L2(�), and
introduce the subspaces

H1/2
0 (�) := {ϕ ∈ H1/2(�) : 〈

1, ϕ
〉 = 0}

and

H−1/2
0 (�) := {μ ∈ H−1/2(�) : 〈

μ, 1
〉 = 0} .

Then, we have the following lemma providing ellipticity-type properties of the
operators V and W (cf. [27, 30]).

Lemma 6.2 There exist positive constants αV , CV , and αW such that

〈
μ̄, V μ

〉 ≥ αV ‖μ‖2−1/2,�

{
∀μ ∈ H−1/2

0 (�), if d = 2 ,

∀μ ∈ H−1/2(�), if d = 3 ,
(6.12)

〈
μ̄, V μ

〉
�
+ ∣∣〈μ̄, 1

〉∣∣2 ≥ CV ‖μ‖2−1/2,� ∀μ ∈ H−1/2(�) if d = 2 , (6.13)
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and

〈
Wϕ, ϕ̄

〉 ≥ αW ‖ϕ‖2
1/2,� ∀ϕ ∈ H1/2

0 (�) . (6.14)

We end this section by stressing that the operators associated to the Helmholtz
equation, that is Vκ , Kκ , Kt

κ , and Wκ , may be regarded as compact perturbations of
those corresponding to the Laplacian, that is V , K , Kt, and W . In fact, we have the
following lemma (cf. [30]).

Lemma 6.3 The operators

Vκ − V : H−1/2(�)→ H 1/2(�), Kκ −K : H 1/2(�)→ H 1/2(�)

Kt
κ −Kt : H−1/2(�)→ H−1/2(�), Wκ −W : H 1/2(�)→ H−1/2(�),

are compact.

6.2.2 The Costabel & Han Coupling

Our first coupling method, which makes use of the pairs of boundary integral
equations (6.6)–(6.7) and (6.9)–(6.10) to reformulate problems (6.1) and (6.2) in
the bounded domains � and O , respectively, is due to Costabel and Han (cf. [17]
and [24]). More precisely, the reformulation of (6.1) reads: Find u : � → R and
λ : �→ R such that

− div(κ∇u) = f in � , u = 0 on �0 ,

κ
∂u

∂n
= λ on � ,

0 =
( id

2
−K

)
γ u + V λ on � ,

λ = −Wγu +
( id

2
−Kt

)
λ on � ,

(6.15)

whereas the one of (6.2) becomes: Find u : O → C and λ : �→ C such that

�u+ κ2ϑ(x) u = 0 in O ,

γ u = γ us + γw on � ,
∂u

∂n
= λ+ ∂w

∂n
on � ,

0 =
( id

2
−Kκ

)
γ us + Vκλ on � ,

λ = −Wκγu
s +

( id

2
−Kt

κ

)
λ on � .

(6.16)
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Then, introducing the spaces

X := {
v ∈ H1(�) : v|�0 = 0

}
and X := X ×H−1/2

0 (�) ,

multiplying the first equation of the first row of (6.15) by v ∈ X, integrating the

resulting expression by parts, replacing λ = κ
∂u

∂n
on � by the right hand side of

the fourth row of (6.15), and finally testing the third row of (6.15) against μ ∈
H−1/2

0 (�), we arrive at the variational formulation: Find (u, λ) ∈ X such that

∫
�

κ∇u · ∇v + 〈Wγu, γ v
〉 − 〈λ,( id

2
−K

)
γ v
〉 =

∫
�

f v ∀v ∈ X ,

〈
μ,V λ

〉+ 〈μ,( id

2
−K

)
γ u
〉 = 0 ∀μ ∈ H−1/2

0 (�) .

(6.17)

Equivalently, (6.17) can be rewritten as: Find (u, λ) ∈ X such that

A
(
(u, λ), (v, μ)

) = F(v, μ) ∀ (v, μ) ∈ X , (6.18)

where

A
(
(z, ξ), (v, μ)

) := a(z, v)+ 〈Wγz, γ v
〉+ 〈μ,V ξ

〉

+ 〈μ,( id

2
−K

)
γ z
〉− 〈ξ,( id

2
−K

)
γ v
〉
,

(6.19)

with

a(z, v) :=
∫
�

κ∇z · ∇v , (6.20)

and

F(v, μ) :=
∫
�

f v , (6.21)

for all (z, ξ), (v, μ) ∈ X.
Proceeding similarly to the derivation of (6.17), we readily find that the varia-

tional formulation of (6.16) reads: Find (u, λ) ∈ X := H1(O)×H−1/2(�) such that

Aκ

(
(u, λ), (v, μ)

) = F(v, μ) ∀(v, μ) ∈ X , (6.22)
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where

Aκ

(
(z, ξ), (v, μ)

) := aκ(z, v) +
〈
Wκγ z, γ v

〉+ 〈μ,Vκξ 〉

+ 〈μ,( id

2
−Kκ

)
γ z
〉− 〈ξ,( id

2
−Kκ

)
γ v
〉
,

(6.23)

with

aκ(z, v) :=
∫
O
∇z · ∇v − κ2

∫
O
ϑzv , (6.24)

and

F(v, μ) := 〈∂w
∂n
+Wκγw, γ v

〉 + 〈μ,( id

2
−Kκ

)
γw
〉
,

for all (z, ξ), (v, μ) ∈ X.

6.2.3 The Modified Costabel & Han Coupling

We now consider the modified Costabel & Han coupling method that was introduced

for the first time in [21, Section 4.2]. More precisely, in addition to λ = κ
∂u

∂n
(cf. (6.15)) or λ = γn(∇us) (cf. (6.16)), this approach introduces the trace ψ := γ u

or ψ := γ us as a boundary unknown as well of the formulation. As a consequence,
instead of (6.3) and (6.8), the harmonic function ue and the scattered field us are
computed as

ue(x) =
∫
�

∂E(|x − y|)
∂ny

ψ(y) dsy −
∫
�

E(|x − y|)λ(y) dsy ∀ x ∈ Oe ,

and

us(x) =
∫
�

∂Eκ(|x − y|)
∂ny

ψ(y) dsy −
∫
�

Eκ(|x − y|)λ(y) dsy ∀x ∈ Oe ,

respectively, whence the corresponding pairs of identities (6.6)–(6.7) and (6.9)–
(6.10) become

0 =
( id

2
−K

)
ψ + Vλ on � ,

λ = −Wψ +
( id

2
−Kt

)
λ on � ,
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and

0 =
( id

2
−Kκ

)
ψ + Vκλ on � ,

λ = −Wκψ +
( id

2
−Kt

κ

)
λ on � .

Then, proceeding as for the derivation of (6.18), but additionally adding and
subtracting the expression 〈λ, ϕ〉 with arbitrary ϕ ∈ H1/2

0 (�), and imposing weakly
the relation ψ = γ u in H1/2(�), the modified Costabel & Han formulation of (6.1)
reduces to: Find (u,ψ, λ) ∈ X̃ := X ×H1/2

0 (�)× H−1/2(�) such that

Ã
(
(u,ψ, λ), (v, ϕ,μ)

) = F̃(v, ϕ,μ) ∀ (v, ϕ,μ) ∈ X̃ , (6.25)

where

Ã
(
(z, φ, ξ), (v, ϕ,μ)

) = a
(
(z, φ, ξ), (v, ϕ,μ)

) + 〈
Wφ,ϕ

〉

+ 〈μ,V ξ
〉 − 〈

ξ,
( id

2
−K

)
ϕ
〉 + 〈

μ,
( id

2
−K

)
φ
〉
,

(6.26)

with

a
(
(z, φ, ξ), (v, ϕ,μ)

) = a(z, v) − 〈
ξ, γ v − ϕ

〉 + 〈
μ, γ z− φ

〉
, (6.27)

a being defined by (6.20), and

F̃(v, ϕ,μ) :=
∫
�

f v , (6.28)

for all (z, φ, ξ), (v, ϕ,μ) ∈ X̃.
Analogously, proceeding similarly to the derivation of (6.25), but now imposing

weakly the relation ψ = γ us in H1/2(�), the modified Costabel & Han formulation
of (6.2) reads: Find (u,ψ, λ) ∈ X̃ := H1(O)×H1/2

0 (�)× H−1/2(�) such that

Ãκ

(
(u,ψ, λ), (v, ϕ,μ)

) = F̃(v, ϕ,μ) ∀ (v, ϕ,μ) ∈ X̃ , (6.29)

where

Ãκ

(
(z, φ, ξ), (v, ϕ,μ)

) := aκ
(
(z, φ, ξ), (v, ϕ,μ)

) + 〈
Wκφ, ϕ

〉

+ 〈μ,Vκξ 〉 + 〈
μ,
( id

2
−Kκ

)
φ
〉 − 〈

ξ,
( id

2
−Kκ

)
ϕ
〉 (6.30)
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with

aκ
(
(z, φ, ξ), (v, ϕ,μ)

) := aκ(z, v) −
〈
ξ, γ v − ϕ

〉 + 〈
μ, γ z − φ

〉
,

aκ given by (6.24), and

F̃(v, ϕ,μ) := 〈∂w
∂n

, γ v〉 + 〈μ, γw〉 ,

for all (z, φ, ξ), (v, ϕ,μ) ∈ X̃.

6.2.4 Solvability Analysis

In this section we address the solvability of the Costabel & Han and modified
Costabel & Han coupling procedures as applied to the Poisson (cf. (6.18), (6.25))
and Helmholtz (cf. (6.22), (6.29)) models.

We begin the analysis with the formulations (6.18) and (6.25). Indeed, bearing in
mind the definitions of the bilinear forms A (cf. (6.19)) and Ã (cf. (6.26)), we easily
deduce from Lemmas 6.1 and 6.2 that there exist positive constants ‖A‖, ‖Ã‖, α,
and α̃, such that

A(z, ξ), (v, μ) ≤ ‖A‖ ‖(z, ξ)‖ ‖(v, μ)‖ ∀ (z, ξ), (v, μ) ∈ X ,

Ã(z, φ, ξ), (v, ϕ,μ) ≤ ‖Ã‖ ‖(z, φ, ξ)‖ ‖(v, ϕμ)‖ ∀ (z, φ, ξ), (v, ϕ,μ) ∈ X̃ ,

A(v, μ), (v, μ) ≥ α ‖(v, μ)‖2 ∀ (v, μ) ∈ X ,

and

Ã(v, ϕ,μ), (v, μ) ≥ α ‖(v, ϕ,μ)‖2 ∀ (v, ϕ,μ) ∈ X̃ ,

where

‖(v, μ)‖2 := ‖v‖2
1,� + ‖μ‖2−1/2,�

and

‖(v, ϕ,μ)‖2 := ‖v‖2
1,� + ‖ϕ‖2

1/2,� + ‖μ‖2−1/2,� .

In this way, since the boundedness of the linear functionals F (cf. (6.21)) and F̃
(cf. (6.28)) follow from a simple application of the Cauchy-Schwarz inequality,
we conclude the well-posedness of problems (6.18) and (6.25) as a straightforward
consequence of the foregoing estimates and the Lax-Milgram lemma.
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Next, we deal with the solvability analysis of (6.22) and (6.29). To this end,
we now introduce the compact perturbations (fact to be confirmed later on) of the
bilinear forms A and Ã that are obtained from (6.23) and (6.30), respectively, by
taking κ = 0, by replacing Vκ , Kκ , Kt

κ , and Wκ by V , K , Kt, and W , respectively,
and by adding suitable one-dimensional terms, that is

A0
(
(z, ξ), (v, μ)

) := a(z, v)+
( ∫

�

z
)( ∫

�

v
)
+ 〈Wγz, γ v

〉 + 〈μ,V ξ
〉

+ 〈ξ, 1
〉〈
μ, 1

〉+ 〈μ,( id

2
−K

)
γ z
〉− 〈ξ, ( id

2
−K)γ v

〉
(6.31)

for all (z, ξ), (v, μ) ∈ X, and

Ã0
(
(z, φ, ξ), (v, ϕ,μ)

) = a
(
(z, φ, ξ), (v, ϕ,μ)

) + (
∫
�

z
)( ∫

�

v
)
+ 〈

Wφ,ϕ
〉

+ 〈μ,V ξ
〉+ 〈ξ, 1

〉〈
μ, 1

〉 + 〈
μ,
( id

2
−K

)
φ
〉 − 〈

ξ,
( id

2
−K

)
ϕ
〉

(6.32)

for all (z, φ, ξ), (v, ϕ,μ) ∈ X̃. Then, bearing in mind now (6.31), (6.32), and
the definitions of Aκ (cf. (6.23)) and Ãκ (cf. (6.30)), we easily deduce thanks
to Lemma 6.1 that all these bilinear forms are bounded. Equivalently, there exist
positive constants denoted ‖Aκ‖, ‖A0‖, ‖Ãκ‖, and ‖Ã0‖ > 0, such that for each
∗ ∈ {κ, 0} there hold

∣∣A∗((z, ξ), (v, μ))∣∣ ≤ ‖A∗‖ ‖(z, ξ)‖ ‖(v, μ)‖ (6.33)

for all (z, ξ), (v, μ) ∈ X, and

∣∣Ã∗((z, φ, ξ), (v, ϕ,μ))∣∣ ≤ ‖Ã∗‖ ‖(z, φ, ξ)‖ ‖(v, ϕ,μ)‖ (6.34)

for all (z, φ, ξ), (v, ϕ,μ) ∈ X̃. In addition, if follows from Lemma 6.2 that A0 and
Ã0 are both elliptic, which means that there exist positive constants α0, α̃0, such
that

Re
(
A0
(
(v, μ), (v̄, μ̄)

)) ≥ α0 ‖(v, μ)‖2 ∀(v, μ) ∈ X , (6.35)

and

Re
(
Ã0
(
(v, ϕ,μ), (v̄, ϕ̄, μ̄)

)) ≥ α̃0 ‖(v, ϕ,μ)‖2 ∀(v, ϕ,μ) ∈ X̃ . (6.36)

Regarding the ellipticity of Ã0 given by the foregoing equation, we stress here that,
due to the inequalities (6.12) and (6.13), the expression

〈
ξ, 1

〉〈
μ, 1

〉
is needed in the
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definition of Ã0 (cf. (6.32)) only for the 2D analysis, and hence it is omitted for the
3D one.

Next, we let X′ and X̃
′ be the duals of X and X̃ pivotal to L2(O) × L2(�) and

L2(O) × L2(�) × L2(�), respectively, which yields X ⊂ L2(O) × L2(�) ⊂ X
′

and X̃ ⊂ L2(O)× L2(�)× L2(�) ⊂ X̃
′ with dense inclusions. Thus, we denote by

[ ·, · ] the corresponding duality pairings, and let Aκ : X → X′, A0 : X → X′,
Ã κ : X̃ → X̃

′
, and Ã 0 : X̃ → X̃

′
be the linear operators induced by Aκ , A0, Ãκ ,

and Ã0, respectively, that is, for each ∗ ∈ {κ, 0}
[
A∗(z, ξ), (v, μ)

] := A∗
(
(z, ξ), (v, μ)

)

for all (z, ξ), (v, μ) ∈ X, and

[
Ã ∗(z, φ, ξ), (v, ϕ,μ)

] := Ã∗
(
(z, φ, ξ), (v, ϕ,μ)

)

for all (z, φ, ξ), (v, ϕ,μ) ∈ X̃. It is clear from (6.33) and (6.34) that Aκ , A0,
Ã κ , and Ã 0 are all bounded. In addition, (6.35) and (6.36) guarantee that A0 and
Ã0 are isomorphisms. Furthermore, we easily deduce from Lemma 6.3 and the
compactness of the canonical injection from H1(O) into L2(O), that Aκ − A0 :
X→ X

′ and Ã κ − Ã 0 : X̃→ X̃
′ are compact, whence Aκ and Ã κ are Fredholm

operators of index zero.
Furthermore, we recall from [22, Theorem 2.1] the following result.

Theorem 6.1 A function u ∈ H1
loc(R

d ) satisfying (6.2) with w = 0 vanishes
identically everywhere.

We are now in position to establish the conditions under which problems (6.18)
and (6.29) are uniquely solvable.

Theorem 6.2 Assume that κ2 is not an eigenvalue of the Laplacian in O with a
Dirichlet boundary condition on�. Then, problems (6.18) and (6.29) are well posed.

Proof The proof is adapted from [28, Theorem 3.2]. According to our previous
analysis, the Fredholm alternative is applicable and therefore the proof reduces
to show uniqueness of solution for (6.18) and (6.29). In what follows we restrict
ourselves to (6.18), the proof for (6.29) being analogous. To this end, given a
solution (u0, λ0) ∈ H1(O) × H−1/2(�) of (6.18) with w = 0, we introduce the
function

ũ(x) :=

⎧⎪⎨
⎪⎩
u0(x) ∀ x ∈ O,∫
�

∂Eκ(|x − y|)
∂ny

us(y) dσy −
∫
�

Eκ(|x − y|)λ0 dσy ∀ x ∈ Oe .

It is easy to verify that u0 solves the equation

�u0 + κ2ϑ(x) u0 = 0 in O , (6.37)



6 Recent Results on the Coupling of VEM and BEM 241

and that q := ũ|Oe
is a radiating solution of the Helmholtz equation with wave

number κ , that is

�q + κ2q = 0 in Oe,
∂q

∂r
− ıκq = o(r

1−d
2 ) r := |x| → ∞ . (6.38)

Furthermore, using the jump relations of the acoustic potential layers we obtain

γ q =
( id

2
+Kκ

)
γ u0 − Vκλ0 on � , (6.39)

λ0 = −Wκγu0 +
( id

2
−Kt

κ

)
λ0 on � , (6.40)

from which, comparing in particular (6.4) and (6.39), we deduce that

γ q = γ u0. (6.41)

In turn, subtracting equations (6.5) and (6.40) yields

( id

2
−Kt

κ

)(∂u0

∂n
− λ0

)
= 0 , (6.42)

and using that, under our hypothesis on k, operator id
2 −Kt

κ is injective (cf. [16]),
we deduce from (6.42) the identity

∂q

∂n
= ∂u0

∂n
on � . (6.43)

Finally, equations (6.37), (6.38), (6.41) and (6.43) show that ũ ∈ H1
loc(R

d ) is a
solution of (6.2) with w = 0, and therefore Theorem 6.1 ensures that such a function
ũ should vanish identically in R

d , which ends the proof. ��
Finally, as a consequence of Theorem 6.2 and the Fredholm alternative we

conclude that the operators Aκ : X→ X
′ and Ã κ : X̃→ X̃

′ are bijective.

6.3 The Costabel & Han VEM/BEM Schemes in 2D

In this section we introduce and analyze the discrete VEM/BEM schemes for the
Costabel & Han coupling procedure as applied to the Poisson and Helmholtz models
in the 2D case. Similar analyses hold for the modified Costabel & Han approach,
and hence they are omitted. We begin with some fundamental notations and results
on VEM in 2D.
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6.3.1 Preliminaries

From now on we assume that there exist polygonal partitions ∪Ii=1�i = � and
∪Ii=1O i = O , and an integer k ≥ 1, such that f |�i ∈ Hk(�i), κ |�i ∈ Wk+1,∞(�i),
and ϑ|Oi

∈ C for all i ∈ {1, . . . , I}. Then we let {Fh}h be a family of partitions of
� (resp. of O), constituted of connected polygonsF ∈ Fh of diameter hF ≤ h, and
assume that the meshes {Fh}h are aligned with each �i (resp. Oi), i ∈

{
1, . . . , I

}
.

For each F ∈ Fh the boundary ∂F is subdivided into straight segments e, which
are referred to in what follows as edges. In particular, we introduce the set

Eh :=
{

edges of Fh : e ⊆ �
}
.

In addition, we assume that the family
{
Fh

}
h

of meshes satisfy the following
conditions: There exists ρ ∈ (0, 1) such that

(A1) each F of {Fh}h is star-shaped with respect to a disk DF of radius ρhF ,
(A2) for each F of {Fh}h and for all edges e ⊆ ∂F it holds |e| ≥ ρhF .

Then, for each F of {Fh}h, we introduce the projection operator �
∇,F
k :

H1(F ) → Pk(F ), which, given v ∈ H1(F ), is uniquely characterized by (see
[6])

∫
F

∇(�∇,Fk v) · ∇p +
( ∫

∂F

�
∇,F
k v

)( ∫
∂F

p
)
=
∫
F

∇v · ∇p +
( ∫

∂F

v
)( ∫

∂F

p
)

(6.44)

for all p ∈Pk(F ). Moreover, we let �F
k be the L2(F )–orthogonal projection onto

Pk(F ) with vectorial counterpart �F
k : L2(F )2 → Pk(F )

2, and following [2] we
introduce, for k ≥ 1, the local virtual element space

Xk
h(F ) :=

{
v ∈ H1(F ) : v|e ∈Pk(e), ∀e ⊆ ∂F,

�v ∈Pk(F ), �F
k v −�

∇,F
k v ∈ Pk−2(F )

}
.

(6.45)

It can be shown (cf. [2]) that the degrees of freedom of Xk
h(F ) consist of:

(i) the values at the vertices of F , and additionally for k ≥ 2
(ii) the moments of order ≤ k − 2 on the edges of F , and

(iii) the moments of order ≤ k − 2 on F .

We are then allowed to introduce the global virtual element space as

Xk
h :=

{
v ∈ X(resp. H1(�)) : v|F ∈ Xk

h(F ) ∀F ∈ Fh

}
. (6.46)
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On the other hand, for any integer k ≥ 0, we denote by Pk(Fh) the space of
piecewise polynomials of degree ≤ k with respect to Fh, and let �F

k be the
global L2(�)-orthogonal (resp. L2(O)-orthogonal) projection onto Pk(Fh), which
is assembled cellwise, i.e.

(�F
k v)|F := �F

k (v|F ) ∀F ∈ Fh , ∀ v ∈ L2(�) (resp. v ∈ L2(O)) .

(6.47)

Similarly, for any q ∈ L2(�)2 (resp. q ∈ L2(O)2), �F
k q is defined by (�F

k q)|F =
�F

k (q|F ) for all F ∈ Fh. It is important to notice that Pk(F ) ⊆ Xk
h(F ) and that

the projectors �∇,Fk v and �F
k v are computable for all v ∈ Xk

h(F ). Furthermore, it
is also easy to check that �F

k−1∇v is explicitly known for all v ∈ Xk
h(F ) (cf. [6]).

Hereafter, given any positive functions Ah and Bh of the mesh parameter h, the
notation Ah � Bh means that Ah ≤ CBh with C > 0 independent of h, whereas
Ah  Bh means that Ah � Bh and Bh � Ah. Then, under the conditions on Fh,
the technique of averaged Taylor polynomials introduced in [20] permits to prove
the following error estimates,

‖v−�F
k v‖0,F +hF |v−�F

k v|1,F � h�+1
F |v|�+1,F ∀ � ∈ {0, 1, . . . , k

}
, (6.48)

‖v −�
∇,F
k v‖0,F + hF ‖v −�

∇,F
k v‖1,F � h�+1

F |v|�+1,F ∀ � ∈ {1, 2, . . . , k
}

(6.49)

for all v ∈ H�+1(F ). In turn, the local interpolation operator IFk : H2(F )→ Xk
h(F )

is defined for each v ∈ H2(F ) by imposing that v − IFk v has vanishing degrees of
freedom, which satisfies (cf. [9, Lemma 2.23])

‖v − IFk v‖0,F + hF

∣∣∣v − IFk v

∣∣∣
1,F

� h�+1
F |v|�+1,F ∀� ∈ {1, 2, . . . , k

}
(6.50)

for all v ∈ H�+1(F ). In addition, we denote by IFk the global virtual element
interpolation operator, i.e., for each v ∈ C 0(�) (resp. v ∈ C 0(O)), we set locally

(IFk v)|F = IFk (v|F ) ∀F ∈ Fh . (6.51)

On the other hand, in order to approximate the unknown λ ∈ H−1/2
0 (�), we

introduce the non-virtual (but explicit) subspace

�k−1
h :=

{
μ ∈ L2(�) : μ|e ∈ Pk−1(e), ∀e ∈ Eh ,

∫
�

μ = 0
}
, (6.52)
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and let �E
k−1 : L2(�) → �k−1

h be the L2(�)-orthogonal projection. In addition,
we let

{
�1, . . . , �J

}
be the set of segments constituting �, and for any t ≥ 0 we

consider the broken Sobolev space Ht
b(�) :=

∏J
j=1 Ht (�j ) endowed with the graph

norm

‖ϕ‖2
t,b,� :=

J∑
j=1

‖ϕ‖2
t,�j

∀ϕ ∈ Ht
b(�) .

Next, we recall from [30] the approximation property of the operator �E
k−1.

Lemma 6.4 Assume that μ ∈ H−1/2(�) ∩ Hr
b(�) for some r ≥ 0. Then,

∥∥∥μ−�E
k−1μ

∥∥∥−t,� � hmin{r,k}+t ‖μ‖r,b,� ∀ t ∈ {0, 1/2}.

6.3.2 The Costabel & Han VEM/BEM Scheme for Poisson

In this section we introduce and analyze the VEM/BEM scheme for the continuous
formulation (6.18) in the 2D case.

6.3.2.1 The Discrete Setting

For all F ∈ Fh we let SFh be the symmetric bilinear form defined on H1(F )×H1(F )

by

SFh (v,w) := h−1
F

∑
e⊆∂F

∫
e

πe
k v π

e
kw ∀ v, w ∈ H1(F ) , (6.53)

where πe
k is the L2(e)-projection onto Pk(e). It is shown in [9, Lemma 3.2] that

SFh (v, v)  aF (v, v) ∀ v ∈ Xk
h(F ) such that �

∇,F
k v = 0 , (6.54)

where aF is the local version of a, that is

aF (v,w) :=
∫
F

κ ∇v · ∇w ∀ v, w ∈ H1(F ) . (6.55)
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It is important to notice that SFh is computable on Xk
h(F ) × Xk

h(F ) since πe
k v =

v ∈Pk(e) for all v ∈ Xk
h(F ), and that, by symmetry, there holds

SFh (v,w) ≤ SFh (v, v)
1/2 SFh (w,w)

1/2 � aF (v, v)1/2 aF (w,w)1/2

for all v, w ∈ Xk
h(F ) satisfying �

∇,F
k v = �

∇,F
k w = 0. Next, for each F ∈ Fh

we introduce

aFh (v,w) :=
∫
F

κ �F
k−1∇v ·�F

k−1∇w + SFh (v−�∇,Fk v,w−�∇,Fk w) , (6.56)

and let ah be the global extension of it, that is

ah(v,w) =
∑
F∈Fh

aFh (v,w) ∀ v, w ∈ Xk
h . (6.57)

We now stress, as shown in [6], that the first term defining aFh is also computable on
Xk
h(F ) × Xk

h(F ) even if κ is not a polynomial function. Indeed, using the fact that
�F

k−1 is self-adjoint and integrating by parts, we find that there holds

∫
F

κ �F
k−1∇v · �F

k−1∇w =
∫
F

�F
k−1

(
κ �F

k−1∇v
) · ∇w

= −
∫
F

div
(
�F

k−1

(
κ �F

k−1∇v
))
w +

∫
∂F

�F
k−1

(
κ �F

k−1∇v
) · n∂F w

for all v, w ∈ Xk
h(F ). Then, we notice that the first term on the right hand side

of the foregoing identity is computable thanks to the moments of w on F of order
≤ k − 2, whereas the second one is computable as well since each factor of it is a
known polynomial.

We now let Xh := Xk
h × �k−1

h and introduce the discrete version of
problem (6.18): Find (uh, λh) ∈ Xh such that

Ah

(
(uh, λh), (vh, μh)

) = Fh(vh, μh) ∀ (vh, μh) ∈ Xh , (6.58)

where

Ah

(
(zh, ξh), (vh, μh)

) := ah(zh, vh)+
〈
Wγzh, γ vh

〉+ 〈μh, V ξh
〉

+ 〈μh,
( id

2
−K

)
γ zh)

〉− 〈ξh,
( id

2
−K

)
γ vh)

〉
,

(6.59)

for all (zh, ξh), (vh, μh) ∈ Xh, and

Fh(vh, μh) :=
∫
�

(�F
k−1f ) vh ∀ (vh, μh) ∈ Xh . (6.60)
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We stress that, due to the degrees of freedom of the virtual element subspace Xk
h

(cf. (6.46)), and thanks to the non-virtual character of the finite element subspace
�k−1

h (cf. (6.52)), all the terms in (6.59) involving the boundary integral operators
are computable

6.3.2.2 Solvability and a Priori Error Analyses

We begin with the boundedness property of Ah.

Lemma 6.5 There hold

|aFh (z, v)| � ‖z‖1,F ‖v‖1,F ∀F ∈ Fh , ∀ z, v ∈ H1(F ) , (6.61)

and

|Ah

(
(z, η), (v, μ)

)| � ‖(z, η)‖ ‖(v, μ)‖ ∀ (z, η), (v, μ) ∈ Xh . (6.62)

Proof The local estimate (6.61) is basically a consequence of the Cauchy-Schwarz
inequality and the fact that (see [6])

SFh (z−�
∇,F
k z, v −�

∇,F
k v) � |z−�

∇,F
k z|1,F |v −�

∇,F
k v|1,F � |z|1,F |v|1,F ,

(6.63)

whereas (6.62) follows from (6.61) and the mapping properties provided by
Lemma 6.1. ��

The following lemma recalls from [6] some useful estimates between aF and aFh ,
which involve the local operators �F

k and IFk .

Lemma 6.6 For each F ∈ Fh there hold

|aF (�F
k z, vh)− aFh (�

F
k z, vh)| � hkF ‖z‖k+1,F ‖vh‖1,F (6.64)

for all (z, vh) ∈ Hk+1(F )×Xk
h(F ),

|aF (vh, IFk z)− aFh (vh, I
F
k z)| � hF ‖vh‖1,F ‖z‖2,F (6.65)

for all (z, vh) ∈ H2(F )×Xk
h(F ), and

|aF (�F
k z, I

F
k v)− aFh (�

F
k z, I

F
k v)| � hk+1

F ‖z‖k+1,F ‖v‖2,F (6.66)

for all (z, v) ∈ Hk+1(F )×H2(F ).
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Proof For the proof of (6.64) we refer to [6, Lemma 5.5], whereas (6.65) can be
proved as explained in [6, Remark 5.1]. In turn, (6.66) follows by combining the
proofs of (6.64) and (6.65). ��

The Xh-ellipticity of the bilinear form Ah is established next.

Lemma 6.7 There holds

Ah

(
(v, μ), (v, μ)

)
� ‖(v, μ)‖2 ∀ (v, μ) ∈ Xh . (6.67)

Proof We begin by observing, thanks to (6.13) and (6.14), that for all (v, μ) ∈ Xh

we obtain

Ah

(
(v, μ), (v, μ)

) = ah(v, v)+
〈
Wγv, γ v

〉 + 〈μ,Vμ
〉 ≥ ah(v, v) + αV ‖μ‖2−1/2,� .

(6.68)

On the other hand, according to the definition of aFh (cf. (6.56)), noting that certainly

there holds �∇,Fk

(
v −�

∇,F
k v

) = 0, and then employing (6.54) and the fact that

|v −�
∇,F
k v|1,F = ‖∇v − ∇�∇,Fk v‖0,F ≥ ‖∇v −�F

k−1∇v‖0,F ,

we deduce that

aFh (v, v) �
∥∥∥�F

k−1∇v
∥∥∥2

0,F
+ aF (v −�

∇,F
k v, v −�

∇,F
k v)

�
{ ∥∥∥�F

k−1∇v
∥∥∥2

0,F
+ |v −�

∇,F
k v|21,F

}

�
{ ∥∥∥�F

k−1∇v
∥∥∥2

0,F
+
∥∥∥∇v −�F

k−1∇v
∥∥∥2

0,F

}
� |v|21,F .

(6.69)

In this way, the proof follows from the definition of ah (cf. (6.57)), (6.68), and (6.69).
��

As a consequence of Lemmas 6.5 and 6.7, a straightforward application again of
the Lax-Milgram lemma shows that (6.58) admits a unique solution (uh, λh) ∈ Xh.
Moreover, we have the following a priori error estimate.

Theorem 6.3 Under the assumption that u ∈ X ∩∏I
i=1 H2(�i), there holds

‖(u, λ)− (uh, λh)‖ �
∥∥∥(u, λ)− (IFk u,�E

k−1λ)

∥∥∥

+ sup
wh∈Xk

h

|a(u,wh)− ah(I
F
k u,wh)|

‖wh‖1,�
+
∥∥∥f −�F

k−1f

∥∥∥
0,�

.
(6.70)
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Proof From the definitions of F and Fh (cf. (6.18) and (6.60)) we have that

sup
(vh,μh)∈Xh
(vh,μh) "=0

∣∣F(vh, μh)− Fh(vh, μh)
∣∣

‖(vh, μh)‖ ≤
∥∥∥f −�F

k−1f

∥∥∥
0,�

.

In turn, according to the definitions of A and Ah (cf. (6.19) and (6.59)) it readily
follows that

A((vh, μh), (wh, ξh))− Ah((vh, μh), (wh, ξh)) = a(vh,wh)− ah(vh,wh)

for all (vh, μh), (wh, ξh) ∈ Xh. In addition, adding and subtracting u to the first
component of a, and using the boundedness of this bilinear form, we obtain

∣∣a(vh,wh)− ah(vh,wh)
∣∣ � {

‖u− vh‖ ‖wh‖1,� +
∣∣a(u,wh)− ah(vh,wh)

∣∣}

for all vh, wh ∈ Xk
h. Hence, bearing in mind the foregoing estimates, a straightfor-

ward application of the first Strang Lemma (cf. [15, Theorem 4.1.1]) to the context
given by (6.18) and (6.58) gives

‖(u, λ)− (uh, λh)‖ � inf
(vh,μh)∈Xh

{
‖(u, λ)− (vh, μh)‖

+ sup
wh∈Xk

h
wh "=0

∣∣a(u,wh)− ah(vh,wh)
∣∣

‖wh‖1,�

}
+
∥∥∥f −�F

k−1f

∥∥∥
0,�

.

(6.71)

Next, since X ∩ ∏I
i=1 H2(�i) ⊆ C 0(�) and H1/2

b (�) ⊆ L2(�), we deduce
by hypotheses that u ∈ C 0(�) and λ = κ∇u · n ∈ L2(�), which implies that
IFk u and �E

k−1λ are meaningful. In this way, taking in particular (vh, μh) =
(IFk u,�E

k−1λ) ∈ Xh in (6.71) we arrive at (6.70) and conclude the proof. ��
It remains to bound the supremum in (6.70), for which we begin by noticing that

for each wh ∈ Xk
h there holds

a(u,wh)− ah(I
F
k u,wh) =

∑
F∈Fh

{
aF (u,wh) − aFh (I

F
k u,wh)

}
, (6.72)

where each term of the sum in (6.72) can be decomposed as

aF (u,wh) − aFh (I
F
k u,wh) = aF (u−�F

k u,wh)

+ aF (�F
k u,wh)− aFh (�

F
k u,wh) + aFh (�

F
k u− IFk u,wh) .

(6.73)
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Then, employing the boundedness of aF (cf. (6.55)) and aFh (cf. (6.61)), we obtain

|aF (u−�F
k u,wh)| �

∥∥∥u−�F
k u

∥∥∥
1,F

‖wh‖1,F

and

|aFh (�F
k u− IFk u,wh)| �

{ ∥∥∥u− IFk u

∥∥∥
1,F

+
∥∥∥u−�F

k u

∥∥∥
1,F

}
‖wh‖1,F ,

respectively, which, replaced back in (6.73) and then in (6.72), yields

sup
wh∈Xk

h

|a(u, wh)− ah(I
F
k u,wh)|

‖wh‖1,�
�
∥∥∥u− IFk u

∥∥∥
1,�

+
( ∑

F∈Fh

∥∥∥u−�F
k u

∥∥∥2

1,F

)1/2

+ sup
wh∈Xk

h

∑
F∈Fh

∣∣aF (�F
k u,wh)− aFh (�

F
k u,wh)

∣∣

‖wh‖1,�
.

(6.74)

Note that we used here that
∥∥∥u− IFk u

∥∥∥2

1,�
=

∑
F∈Fh

∥∥∥u− IFk u

∥∥∥2

1,F
. Hence,

employing (6.74) in (6.70), we find that

‖(u, λ)− (uh, λh)‖ �
{ ∥∥∥(u, λ)− (IFk u,�E

k−1λ)

∥∥∥ +
( ∑

F∈Fh

∥∥∥u−�F
k u

∥∥∥2

1,F

)1/2

+ sup
wh∈Xk

h

∑
F∈Fh

∣∣aF (�F
k u,wh)− aFh (�

F
k u, wh)

∣∣

‖wh‖1,�
+
∥∥∥f −�F

k−1f

∥∥∥
0,�

}
.

(6.75)

The foregoing a priori error estimate together with the regularity assumptions
on u and f , and the approximation properties of the projection and interpolation
operators involved, allow us to establish the rates of convergence of our VEM/BEM
scheme (6.58). More precisely, we have the following result.

Theorem 6.4 Assuming that u ∈ X∩∏I
i=1 Hk+1(�i) and f ∈∏I

i=1 Hk(�i), there
holds

‖(u, λ)− (uh, λh)‖ := ‖u− uh‖1,� + ‖λ− λh‖−1/2,�

� hk
I∑

i=1

{
‖u‖k+1,�i

+ ‖f ‖k,�i

}
.

(6.76)



250 G. N. Gatica et al.

Proof We first notice from (6.64) (cf. Lemma 6.6) that

∣∣aF (�F
k u,wh)− aFh (�

F
k u,wh)

∣∣ � hkF ‖u‖k+1,F ‖wh‖1,F ∀F ∈ Fh ,

which implies

sup
wh∈Xk

h

∑
F∈Fh

∣∣aF (�F
k u,wh)− aFh (�

F
k u,wh)

∣∣

‖wh‖1,�
� hk

I∑
i=1

‖u‖k+1,�i . (6.77)

Then, by applying (6.48) and (6.50), we readily deduce that

∥∥∥u− IFk u

∥∥∥
1,�

+
( ∑

F∈Fh

∥∥∥u−�F
k u

∥∥∥2

1,F

)1/2

+
∥∥∥f −�F

k−1f

∥∥∥
0,�

� hk
I∑

i=1

{
‖u‖k+1,�i

+ ‖f ‖k,�i

}
.

(6.78)

In turn, by hypothesis λ = κ∇u · n satisfies λ|�j ∈ Hk−1/2(�j ) on each straight
segment �j , j ∈ {1, . . . , J }, constituting �, and therefore Lemma 6.4 and the trace
theorem yield

∥∥∥λ−�E
k−1λ

∥∥∥−1/2,�
� hk

J∑
j=1

‖λ‖k−1/2,�j
� hk

I∑
i=1

‖u‖k+1,�i
. (6.79)

Finally, replacing (6.77), (6.78), and (6.79) in (6.75) we obtain (6.76) and conclude
the proof. ��

We end this section by stressing that rates of convergence for u in the L2(�)-
norm, and for a computable approximation û of u in a broken H1(�)-norm, can
also be derived. In fact, under a suitable regularity hypothesis on the solution of
the dual problem to (6.18), and assuming that u ∈ X ∩∏I

i=1 Hk+1(�i) and f ∈∏I
i=1 Hk(�i), there holds (cf. [21, Theorem 3.7])

‖u− uh‖0,� � hk+1
I∑

i=1

{
‖u‖k+1,�i

+ ‖f ‖k,�i

}
.

In turn, introducing the fully computable approximation of u given by û :=
�F

k uh, defining the broken H1(�)-seminorm

|u− û|1,b,� :=
⎧⎨
⎩
∑
F∈Fh

|u− ûh|21,F

⎫⎬
⎭

1/2

,
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and assuming that u ∈ X ∩∏I
i=1 Hk+1(�i) and f ∈∏I

i=1 Hk(�i), there holds (cf.
[21, Theorem 3.8])

‖u− ûh‖0,� + h |u− û|1,b,� � hk+1
I∑

i=1

{
‖u‖k+1,�i

+ ‖f ‖k,�i

}
.

6.3.3 The Costabel & Han VEM/BEM Scheme for Helmholtz

In what follows we introduce and analyze the VEM/BEM scheme for the continuous
formulation (6.22) in the 2D case.

6.3.3.1 The Discrete Setting

We also make use of the symmetric bilinear form SFh (cf. (6.53)) for each F ∈ Fh,
and notice now from [9, Lemma 3.2] that

SFh (v, v̄)  aF0 (v, v̄) ∀v ∈ Xk
h(F ) such that �∇,Fk v = 0,

where aF0 is the local version of a0, that is

aF0 (z, v) :=
∫
F

∇z · ∇v ∀ z, v ∈ H1(F ) . (6.80)

In addition, by symmetry there holds

SFh (z, v) ≤ SFh (z, z)
1/2 SFh (v, v)

1/2 � aF0 (z, z)
1/2 aF0 (v, v)

1/2 (6.81)

for all z, v ∈ Xk
h(F ). Next, for each F ∈ Fh we introduce

aF0,h(z, v) := aF0 (�
∇,F
k z,�

∇,F
k v) + SFh (z −�

∇,F
k z, v −�

∇,F
k v) ∀ z, v ∈ Xk

h(F ) ,

(6.82)

and

aFκ,h(z, v) := aF0,h(z, v)− κ2ϑF

∫
F

(�F
k−1z)(�

F
k−1v) ∀ z, v ∈ Xk

h(F ) , (6.83)

where ϑF = ϑ|F ∈ C. We also let a0,h and aκ,h be the corresponding global
extensions of aF0,h and aFκ,h, respectively, that is

a0,h(z, v) :=
∑
F∈Fh

aF0,h(z, v)
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and

aκ,h(z, v) :=
∑
F∈Fh

aFκ,h(z, v) ∀ z, v ∈ Xk
h. (6.84)

Then, denoting Xk
h := Xk

h × �k−1
h , the discrete version of problem (6.22) reduces

to: Find (uh, λh) ∈ Xk
h such that

Aκ,h

(
(uh, λh), (vh, μh)

) = F(vh, μh) ∀(vh, μh) ∈ Xk
h , (6.85)

where

Aκ,h

(
(zh, ξh), (vh, μh)

) := aκ,h(zh, vh)+
〈
Wκγ zh, γ vh

〉+ 〈μh, Vκξh
〉

+ 〈μh,
( id

2
−Kκ

)
γ zh

〉− 〈ξh,
( id

2
−Kκ

)
γ vh

〉

for all (zh, ξh), (vh, μh) ∈ Xk
h.

6.3.3.2 Solvability and a Priori Error Analyses

For the solvability of (6.85), we now introduce the perturbation of the bilinear form
Aκ,h given by

A0,h
(
(zh, ξh), (vh, μh)

) := a0,h(zh, vh)+
{∫

�

zh

}{∫
�

vh

}
+ 〈Wγzh, γ vh

〉

+ 〈μh, V ξh
〉+ 〈ξh, 1

〉〈
μh, 1

〉+ 〈μh,
( id

2
−K

)
γ zh

〉− 〈ξh,
( id

2
−K

)
γ vh

〉
(6.86)

for all (zh, ξh), (vh, μh) ∈ Xk
h. Next, the boundedness of Aκ,h and A0,h, and the

ellipticity of A0,h, are provided by the following two lemmas.

Lemma 6.8 There exist positive constants Mκ and M0, independent of h, such that
for each ∗ ∈ {κ, 0} there hold

|A∗,h
(
(zh, ξh), (vh, μh)

)| ≤ M∗ ‖(zh, ξh)‖ ‖(vh, μh)‖

for all (zh, ξh), (vh, μh) ∈ Xk
h.

Proof Starting from the corresponding definitions (cf. (6.59) and (6.86)), it suf-
fices to employ the mapping properties of the boundary integral operators (cf.
Lemma 6.1), and then notice from (6.80), (6.81) and [6], that for each F ∈ Fh
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there holds

SFh (zh −�
∇,F
k zh, vh −�

∇,F
k vh)

� |zh −�
∇,F
k zh|1,F |vh −�

∇,F
k vh|1,F � |zh|1,F |vh|1,F

for all zh, vh ∈ Xk
h(F ). ��

Lemma 6.9 There exist a positive constant β0, independent of h, such that

Re
{
A0,h

(
(vh, μh), (v̄h, μ̄h)

)} ≥ β0 ‖(vh, μh)‖2 ∀ (vh, μh) ∈ Xk
h .

Proof Bearing in mind the definition (6.86), and proceeding as in the deduction
of (6.35), we first apply the positivity properties of the boundary integral operators
(cf. Lemma 6.2). In this way, noticing from (6.82), (6.80) and (6.54) that for each
F ∈ Fh there holds

aF0,h(v, v̄) = |�∇,Fk v|21,F + SFh (v −�
∇,F
k v, v̄ −�

∇,F
k v̄)

� |�∇,Fk v|21,F + |v −�
∇,F
k v|21,F � |v|21,F ∀ v ∈ Xk

h(F ) ,

we arrive at the required inequality and conclude the proof. ��
Furthermore, thanks to Lemmas 6.8 and 6.9, and the boundedness esti-

mate (6.33), we can apply the Lax-Milgram lemma to introduce the Galerkin
projection-type operator Rh : X → Xk

h, which, given (z, ξ) ∈ X, is uniquely
characterized by

A0,h
(
Rh(z, ξ), (vh, μh)

) = A0
(
(z, ξ), (vh, μh)

) ∀ (vh, μh) ∈ Xk
h .

(6.87)

Moreover, it readily follows from the aforementioned classical lemma that Rh is
uniformly bounded in h with ‖Rh‖ ≤ ‖A0‖/β0. The approximation property of
this operator is established next. As usual, given a finite dimensional subspace Xh

of a normed space X, we set for each x ∈ X, dist(x,Xh) := inf
xh∈Xh

‖x − xh‖.

Theorem 6.5 There exists a positive constant C, independent of h, such that

‖Rh(z, ξ)− (z, ξ)‖ ≤ C
{

dist
(
(z, ξ),Xk

h

) + ( ∑
F∈Fh

|z−�
∇,F
k z|21,F

)1/2}

(6.88)

for all (z, ξ) ∈ X.
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Proof Given (z, ξ) ∈ X and (zh, ξh) ∈ Xk
h, we first observe by triangle inequality

that

‖Rh(z, ξ)− (z, ξ)‖ ≤ ‖(vh, μh)‖ + ‖(z, ξ)− (zh, ξh)‖ , (6.89)

with (vh, μh) := Rh(z, ξ) − (zh, ξh) ∈ Xk
h, so that in what follows we focus

on estimating ‖(vh, μh)‖. In fact, applying the ellipticity property (6.67), the
identity (6.87), the boundedness of A0 (cf. (6.33)), and the fact that the difference
between A0 and A0,h (cf. (6.31), (6.86)) reduces to a0 − a0,h, we obtain

β0 ‖(vh, μh)‖2 ≤ Re
{
A0,h

(
(vh, μh), (v̄h, μ̄h)

)}

= Re
{
A0
(
(z, ξ), (v̄h, μ̄h)

)− A0,h
(
(zh, ξh), (v̄h, μ̄h)

)}

≤ ∣∣A0
(
(z, ξ)− (zh, ξh), (v̄h, μ̄h)

)∣∣
+∣∣A0

(
(zh, ξh), (v̄h, μ̄h)

)− A0,h
(
(zh, ξh), (v̄h, μ̄h)

)∣∣
≤ ‖A0‖ ‖(z, ξ) − (zh, ξh)‖ ‖(vh, μh)‖

+
∑
F∈Fh

∣∣∣aF0 (zh, v̄h)− aF0,h(zh, v̄h)

∣∣∣ .

(6.90)

Then, subtracting and adding �
∇,F
k z in the first component of the expres-

sion aF0,h(zh, v̄h), using that aF0,h(�
∇,F
k z, vh) = aF0 (�

∇,F
k z,�

∇,F
k vh) =

aF0 (�
∇,F
k z, vh) (which follows from (6.82) and after taking (v, p) = (vh, 1)

and (v, p) = (vh,�
∇,F
k z) in (6.44)), and employing the triangle inequality and the

boundedness of aF0 and aF0,h, the latter being consequence of (6.81), we find that

∣∣aF0 (zh, v̄h)− aF0,h(zh, v̄h)
∣∣ ≤ ∣∣aF0 (zh −�

∇,F
k z, v̄h)

∣∣+ ∣∣aF0,h(zh −�
∇,F
k z, v̄h)

∣∣
� |zh −�

∇,F
k z|1,F |vh|1,F �

{
|zh − z|1,F + |z−�

∇,F
k z|1,F

}
|vh|1,F .

In this way, summing up over F ∈ Fh, it follows that

∑
F∈Fh

∣∣aF0 (zh, v̄h)− aF0,h(zh, v̄h)
∣∣

�
{
|zh − z|1,O +

( ∑
F∈Fh

|z−�
∇,F
k z|21,F

)1/2} |vh|1,O
�
{
‖(z, ξ)− (zh, ξh)‖ +

( ∑
F∈Fh

|z−�
∇,F
k z|21,F

)1/2} ‖(vh, μh)‖ ,
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which, combined with (6.90), yields

‖(vh, μh)‖ � ‖(z, ξ)− (zh, ξh)‖ +
( ∑
F∈Th

|z−�
∇,F
k z|21,F

)1/2
.

Finally, replacing the foregoing inequality back into (6.89) and taking infimum with
respect to (zh, ξh) ∈ Xk

h, we arrive at (6.88) and finish the proof. ��
Having proved Theorem 6.5, we now employ classical density arguments, the

approximation properties provided by (6.49), (6.50), and Lemma 6.4, and the
uniform boundedness of Rh, to deduce that

lim
h→0

‖Rh(z, ξ)− (z, ξ)‖ = 0 ∀ (z, ξ) ∈ X , (6.91)

or, equivalently, that Rh converges pointwise to the identity operator in X.
The unique solvability and associated stability estimate of the VEM/BEM

scheme (6.85) follows from the discrete inf-sup condition for Aκ,h, which is
established next. For later use, we now let 〈·, ·〉X be the inner product of X.

Theorem 6.6 Assume that κ2 is not an eigenvalue of the Laplacian in O with a
Dirichlet boundary condition on �. Then, there exist positive constants h0 and ακ ,
independent of h, such that for each h ≤ h0 there holds

sup
(zh,ξh)∈Xk

h
(zh,ξh) "=0

∣∣Aκ,h

(
(zh, ξh), (vh, μh)

)∣∣
‖(zh, ξh)‖ ≥ ακ ‖(vh, μh)‖ ∀ (vh, μh) ∈ Xk

h .

(6.92)

Proof We first employ the bijectivity of Aκ : X → X′ to deduce the existence
of a bounded operator ! : X → X such that, given (z, ξ) ∈ X, !(z, ξ) ∈ X is
uniquely characterized by the identity

Aκ

(
!(z, ξ), (v, μ)

) = 〈(z, ξ), (v, μ)〉X ∀ (v, μ) ∈ X ,

which implies, in particular, that

Aκ

(
!(z, ξ), (z, ξ)

) = ‖(z, ξ)‖2 ∀ (z, ξ) ∈ X . (6.93)

Then, given (vh, μh) ∈ Xk
h, we set (z+h , ξ

+
h ) := Rh!(vh, μh) ∈ Xk

h, and observe
that certainly

sup
(zh,ξh)∈Xk

h
(zh,ξh) "=0

∣∣Aκ,h

(
(zh, ξh), (vh, μh)

)∣∣
‖(zh, ξh)‖ ≥

∣∣Aκ,h

(
(z+h , ξ

+
h ), (vh, μh)

)∣∣
‖(z+h , ξ+h )‖ . (6.94)
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In turn, adding and subtracting the bilinear forms Aκ , A0, and A0,h, so that

Aκ,h = A0,h + (Aκ − A0)+ (A0 − A0,h)+ (Aκ,h − Aκ ) ,

and noticing from the definitions of Aκ , A0, Aκ,h, andA0,h (cf. (6.19), (6.31), (6.59),
and (6.86)), that

(
A0 − A0,h

)(
(z+h , ξ

+
h ), (vh, μh)

) =
∫
O
∇z+h · ∇vh − a0,h(z

+
h , vh)

and

(
Aκ,h − Aκ

)(
(z+h , ξ

+
h ), (vh, μh)

) = aκ,h(z
+
h , vh) − aκ(z

+
h , vh)

= a0,h(z
+
h , vh)−

∫
O
∇z+h · ∇vh

+ κ2
∑
F∈Fh

ϑF

∫
F

{
z+h vh −

(
�F

k−1z
+
h

) (
�F

k−1vh
)}

,

(6.95)

we readily arrive at

Aκ,h

(
(z+h , ξ

+
h ), (vh, μh)

) = A0,h
(
Rh!(vh, μh), (vh, μh)

)

+ [CRh!(vh, μh), (vh, μh)
]

+ κ2
∑
F∈Fh

ϑF

∫
E

{
z+h vh −

(
�F

k−1z
+
h

) (
�F

k−1vh
)}

,

(6.96)

where C := Aκ −A0 : X → X′ is a compact operator. Hence, starting from (6.96),
denoting by I the identity operator from X into itself, letting ϑM be the maximum
value of |ϑF |, F ∈ Fh, and employing the characterization of Rh (cf. (6.87)), the
orthogonality condition satisfied by �F

k−1, the identity (6.93), the approximation
properties of �F

k−1 (cf. (6.48)), and the fact that Rh is uniformly bounded, we find
that

Aκ,h

(
(z+h , ξ

+
h ), (vh, μh)

) = A0
(
!(vh,μh), (vh, μh)

) + [
CRh!(vh, μh), (vh, μh)

]

+ κ2
∑
F∈Fh

ϑF

∫
F

{
z+h vh −

(
�F

k−1z
+
h

) (
�F

k−1vh
)}

= Aκ

(
!(vh,μh), (vh, μh)

) + [
C
(
Rh − I

)
!(vh,μh), (vh, μh)

]

+ κ2
∑
F∈Fh

ϑF

∫
F

{
z+h −�F

k−1z
+
h

} {
vh −�F

k−1vh

}

≥
{

1− ‖C (Rh − I
)‖‖!‖} ‖(vh, μh)‖2
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− κ2ϑM
∑
F∈Fh

∥∥z+h −�F
k−1z

+
h

∥∥
0,F

∥∥vh −�F
k−1vh

∥∥
0,F

≥
{

1− ‖C (Rh − I
)‖‖!‖} ‖(vh, μh)‖2 − Ch2‖(z+h , ξ+h )‖ ‖(vh, μh)‖

≥
{

1− ‖C (Rh − I
)‖‖!‖ − Ch2

}
‖(z+h , ξ+h )‖ ‖(vh, μh)‖ ,

where C is a positive constant depending on κ and ϑM , but independent of h, and
the last inequality uses that ‖(vh, μh)‖ � ‖(z+h , ξ+h )‖. Finally, the compactness
of C and the pointwise convergence of Rh − I to zero (cf. (6.91)) guarantee that
lim
h→0

‖C (Rh − I)‖ = 0, which, together with the foregoing estimate and (6.94),

yield (6.92) for a sufficiently small h0. ��
Under the same assumptions of Theorem 6.6, and as a straightforward conse-

quence of (6.92), we conclude that, given F ∈ X′ and h ≤ h0, the VEM/BEM
scheme (6.85) has a unique solution (uh, λh) ∈ Xk

h.
We now turn to provide a priori error bounds and associated rates of convergence

for the solution of the VEM/BEM scheme (6.85). For this purpose, we first define the
discrete analogue of ! (though with respect to the second component of the bilinear
form involved), namely the operator !h : Xk

h → Xk
h that, given (vh, μh) ∈ Xk

h, is
uniquely characterized by the equation

Aκ,h

(
(zh, ξh),!h(vh, μh)

) = 〈(zh, ξh), (vh, μh)〉X ∀ (zh, ξh) ∈ Xk
h ,

so that, in particular,

Aκ,h

(
(vh, μh),!h(vh, μh)

) = ‖(vh, μh)‖2 ∀ (vh, μh) ∈ Xk
h . (6.97)

Note that the above identity and the discrete inf-sup condition (6.92) yield

‖!h‖ ≤ 1

ακ
. (6.98)

Hence, we have the following Cea-type estimate, which makes use of �F
k−1

(cf. (6.47)), the global L2(O)-orthogonal projection onto Pk−1(Fh).

Theorem 6.7 Assume that κ2 is not an eigenvalue of the Laplacian in O with a
Dirichlet boundary condition on �, and let h0 > 0 be the constant whose existence
is guaranteed by Theorem 6.6. Then, there exists a constant C > 0, independent of
h, such that for each h ≤ h0 there holds

‖(u, λ) − (uh, λh)‖

≤ C

⎧⎨
⎩dist

(
(u, λ),Xk

h

)+ ( ∑
F∈Fh

∥∥u−�
∇,F
k u

∥∥2
1,F

)1/2 + ∥∥u−�F
k−1u

∥∥
0,O

⎫⎬
⎭ .

(6.99)
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Proof We begin by observing, thanks to the triangle inequality, that

‖(u, λ)− (uh, λh)‖ ≤ ‖(u, λ) − (vh, μh)‖ + ‖(zh, ξh)‖ ∀ (vh, μh) ∈ Xk
h ,

(6.100)

where (zh, ξh) := (uh, λh) − (vh, μh). Then, setting (z+h , ξ
+
h ) := !h(zh, ξh) ∈

Xk
h, employing the identity (6.97) and the fact thatAκ

(
(u, λ), ·) andAκ,h

(
(uh, λh),·

)
coincide on Xk

h (which follows from (6.18) and (6.58)), adding and subtracting
(vh, μh) in the first component of Aκ , using the uniform boundedness of !h

(cf. (6.98)) and the identity provided by the first row of (6.95), and then adding and
subtracting u in the first component of aκ , we obtain

‖(zh, ξh)‖2 = Aκ,h

(
(uh, λh),!h(zh, ξh)

) − Aκ,h

(
(vh, μh),!h(zh, ξh)

)

= Aκ

(
(u, λ)− (vh, μh),!h(zh, ξh)

)+ (Aκ − Aκ,h

)(
(vh, μh), (z

+
h , ξ

+
h )
)

≤ ‖Aκ‖α−1
κ ‖(u, λ) − (vh, μh)‖ ‖(zh, ξh)‖ +

∣∣aκ(vh, z+h )− aκ,h(vh, z
+
h )
∣∣

≤
(
‖Aκ‖ + ‖aκ‖

)
α−1
κ ‖(u, λ)− (vh, μh)‖ ‖(zh, ξh)‖

+ ∣∣aκ(u, z+h )− aκ,h(vh, z
+
h )
∣∣ .

(6.101)

In this way, we now focus on estimating the last term on the right hand side of the
foregoing equation. Indeed, according to the definitions of aκ and aκ,h (cf. (6.24)
and (6.83)–(6.84)), we first obtain

∣∣aκ(u, z+h )− aκ,h(vh, z
+
h )
∣∣ ≤ ∑

F∈Fh

∣∣aFκ (u, z+h )− aFκ,h(vh, z
+
h )
∣∣

≤
∑
F∈Fh

∣∣aF0 (u, z+h )− aF0,h(vh, z
+
h )
∣∣

+ κ2
∑
F∈Fh

|ϑF |
∣∣∣∣
∫
F

{
uz+h −

(
�F

k−1vh
)(
�F

k−1z
+
h

)} ∣∣∣∣ .
(6.102)

Next, adding and subtracting �
∇,F
k u in the first component of aF0 (u, z

+
h ), recalling

that there holds aF0 (�
∇,F
k u, z+h ) = aF0,h(�

∇,F
k u, z+h ) (cf. proof of Theorem 6.5),
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and thanks to the uniform boundedness of aF0,h, we find that

∣∣aF0 (u, z+h )− aF0,h(vh, z
+
h )
∣∣ = ∣∣aF0 (u−�

∇,F
k u, z+h ) + aF0 (�

∇,F
k u, z+h )− aF0,h(vh, z

+
h )
∣∣

= ∣∣aF0 (u−�
∇,F
k u, z+h ) + aF0,h(�

∇,F
k u− vh, z

+
h )
∣∣

�
{∥∥u−�

∇,F
k u

∥∥
1,F +

∥∥�∇,Fk u− vh
∥∥

1,F

}
‖z+h ‖1,F

�
{∥∥u−�

∇,F
k u

∥∥
1,F + ‖u − vh‖1,F

}
‖z+h ‖1,F .

(6.103)

In turn, the orthogonality condition satisfied by �F
k−1 and the triangle inequality

yield

∣∣∣∣
∫
F

{
uz+h −

(
�F

k−1vh
)(
�F

k−1z
+
h

)} ∣∣∣∣ =
∣∣∣∣
∫
F

{
u− (�F

k−1vh
)}

z+h

∣∣∣∣
≤
{∥∥u− vh

∥∥
0,F +

∥∥u−�F
k−1u

∥∥
0,F

}
‖z+h ‖0,F .

(6.104)

Hence, plugging (6.103) and (6.104) in (6.102), and applying the Cauchy-Schwarz
inequality, we deduce the existence of a positive constant C1, depending on κ and
ϑM , but independent of h, such that

∣∣aκ(u, z+h )− aκ,h(vh, z
+
h )
∣∣ ≤ C1

{( ∑
F∈Fh

∥∥u−�
∇,F
k u

∥∥2
1,F

)1/2

+ ∥∥u− vh
∥∥

1,O + ∥∥u−�F
k−1u

∥∥
0,O

}
‖z+h ‖1,O .

(6.105)

Thus, replacing (6.105) back into (6.101), and bounding ‖z+h ‖1,O by α−1
κ ‖(zh, ξh)‖,

we conclude that

‖(zh, ξh)‖ ≤ C2

{∥∥(u, λ)− (vh, μh)
∥∥

+
( ∑
F∈Fh

∥∥u−�
∇,F
k u

∥∥2
1,F

)1/2 + ∥∥u−�F
k−1u

∥∥
0,O

}
,

(6.106)

where C2 is a positive constant depending on ‖Aκ‖, ‖aκ‖, ακ , and C1, but
independent of h. Finally, combining (6.100) and (6.106), and then taking infimum
over (vh, μh) ∈ Xk

h, we arrive at (6.99). ��
The rates of convergence of our discrete scheme are provided next. To this end,

we recall from (6.51) that IFk stands for the global virtual element interpolation
operator. Then, we have the following result.
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Theorem 6.8 Assume that κ2 is not an eigenvalue of the Laplacian in O with a
Dirichlet boundary condition on �, and that both u and the datum w belong to
H1(O) ∩∏I

i=1 Hk+1(Oi ). In addition, let h0 > 0 be the constant whose existence
is guaranteed by Theorem 6.6. Then, there exists a constant C0 > 0, independent of
h, such that for each h ≤ h0 there holds

‖(u, λ)− (uh, λh)‖ ≤ C0 h
k

I∑
i=1

‖u‖k+1,Oi
. (6.107)

Proof We begin by observing that H1(O) ∩ ∏I
i=1 Hk+1(Oi ) ⊆ C 0(O), which

implies that IFk u is meaningful. Furthermore, we have that λ = γn

(∇(u − w)
) ∈

H−1/2(�) ∩ Hk−1/2
b (�) ⊆ L2(�), whence �E

k−1λ is meaningful as well, and hence

dist
(
(u, λ),Xk

h

) ≤ ‖u− ITk u‖1,� + ‖λ−�E
k−1λ‖−1/2,� .

In this way, replacing the foregoing estimate back into (6.99), applying the approxi-
mation properties of IFk (cf. (6.50)), �E

k−1 (cf. Lemma 6.4), �∇,Fk (cf. (6.49)), and

�F
k−1 (cf. (6.48)), and employing the trace inequality

‖λ‖k−1/2,b,� �
I∑

i=1

‖u‖k+1,�i ,

we are led to (6.107), thus concluding the proof. ��

6.4 The Modified Costabel & Han VEM/BEM Schemes in 3D

In spite of the plural sense of its title, in this section we introduce and analyze the
discrete VEM/BEM scheme for the modified Costabel & Han coupling procedure
as applied to the Poisson model only, in the 3D case. The corresponding analysis for
the Helmholtz model arises from a suitable combination of the tools to be employed
in what follows with those utilized in Sect. 6.3.3. We refer to [22, Section 6] for
details.

We begin by stressing that the Costabel & Han coupling procedure, that is
the variational formulation (6.18), is not applicable to a VEM/BEM coupling in
three dimensions. In fact, as it will become clear below from definitions (6.108)
and (6.109), the restriction of a VEM function vh to the boundary of a given
element in 3D is not a polynomial function but a virtual function as well. As a

consequence, the term
〈
μh, (

id
2 − K)γ vh)

〉
of the bilinear form Ah (cf. (6.59))

defining (6.58), is not computable. Moreover, it is easy to show that, replacing this

term by
〈
μh, (

id
2 − K)�F

k γ vh)
〉
, implies a dramatic loss of accuracy because, as



6 Recent Results on the Coupling of VEM and BEM 261

� is a polyhedral Lipschitz boundary, the boundary integral operator K does not
yield any further regularity. Summarizing, the fact that the original Costabel & Han
coupling method is only applicable to a VEM/BEM scheme in 2D has motivated the
introduction of the modified version that we employ in this section.

Similarly as in Sect. 6.3.1, we previously need to collect some fundamental
notations and results on VEM in 3D.

6.4.1 Preliminaries

We let {Th}h be a family of decompositions of � into polyhedral elements E of
diameter hE ≤ h, and assume again that the meshes {Th}h are aligned with each
of the subdomaines �i , i = 1, . . . , I mentioned at the beginning of Sect. 6.3.1. In
turn, the boundary ∂E of each E ∈ Th is subdivided into planar faces denoted by
F , and we let Fh be the set of faces of Th that are contained in �. In addition,
we assume that the family {Th}h of meshes satisfy the following conditions: There
exists ρ ∈ (0, 1) such that

(B1) each E of {Th}h is star-shaped with respect to a ball BE of radius ρhE ,
(B2) for each E of {Th}h, the diameters hF of all its faces F ⊆ ∂E satisfy hF ≥

ρhE ,
(B3) the faces of each E ∈ {Th}h, viewed as two-dimensional elements, satisfy the

properties (A1) and (A2) (cf. Sect. 6.3.1) with the same ρ.

Next, given an integer k ≥ 1 and E ∈ Th, and bearing in mind the
definition (6.45), we set

Xk
h(∂E) :=

{
v ∈ C 0(∂E) : v|F ∈ Xk

h(F ) ∀F ⊆ ∂E
}
, (6.108)

and introduce the local virtual element space

Wk
h(E) :=

{
v ∈ H1(E) : v|∂E ∈ Xk

h(∂E), �v ∈Pk(E) ,

�E
k v −�

∇,E
k v ∈ Pk−2(E)

}
,

(6.109)

where, analogously to the 2D case (cf. Sect. 6.3.1),�E
k is now the L2(E)–orthogonal

projection onto Pk(E), and the projection operator �∇,Ek : H1(E) → Pk(E) is
defined as in (6.44) after replacing F with E. In addition, the degrees of freedom of
Wk

h (E) consist of:

(i) the values at the vertices of E,
(ii) the moments of order ≤ k − 2 on the edges of E,
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(iii) the moments of order ≤ k − 2 on the faces of E, and
(iv) the moments of order ≤ k − 2 on E.

We can then define the global virtual element space as

Wk
h :=

{
v ∈ X : v|E ∈ Wk

h (E) ∀E ∈ Th

}
. (6.110)

In addition, and coherently with the notations of Sect. 6.3.1, given any integer
k ≥ 0, we let �E

k and �T
k be the L2–orthogonal projections onto Pk(E) and

Pk(Th), respectively, and denote by �E
k and �T

k their corresponding vectorial

counterparts. Here again, we stress that Pk(E) ⊆ Xk
h(E) and that �∇,Ek v, �E

k v

and �E
k−1∇v are all computable for each v ∈ Xk

h(E) (cf. [2]). In turn, we let
IEk : H2(E) → Wk

h (E) be the local interpolation operator, which is uniquely
determined by the degrees of freedom of Wk

h (E), and whose corresponding global
operator is denoted ITk : H2(�) → Wk

h . The error estimates satisfied by the

operators �E
k , �

∇,E
k and IEk are given by analogue versions of (6.48), (6.49)

and (6.50), respectively, in which F is replaced with E.
Furthermore, we also introduce the simplicial submesh Fh of � obtained by

subdividing each face F ∈ Fh into the set of triangles that arise after joining
each vertex of F with the midpoint of the disc with respect to which F is star-
shaped. Since we are assuming that the meshes satisfy conditions (A1) and (A2)
(cf. Sect. 6.3.1), the triangles T ∈ Fh have a shape ratio that is uniformly bounded
with respect to h. According to the above, and in order to approximate the non-
virtual boundary unknowns of our scheme (cf. Sect. 6.4.2 below), we now introduce
the piecewise polynomial spaces

�k−1
h :=

{
μh ∈ L2(�) : μh|T ∈ Pk−1(T ) ∀T ∈ Fh

}
(6.111)

and

"k
h :=

{
ϕh ∈ C 0(�) : ϕh|T ∈Pk(T ) ∀T ∈ Fh

}
∩ H1/2

0 (�) . (6.112)

Thus, we let �F
k−1 be the L2(�)-orthogonal projection onto �k−1

h , and let L F
k :

C 0(�) → "k
h be the corresponding global Lagrange interpolation operator of

order k. Then, denoting by {�1, . . . , �J } the open polygons, contained in different
hyperplanes of R3, such that � = ∪Jj=1�j , we now recall from [30] the following

approximation properties of �F
k−1 and L F

k .

Lemma 6.10 Assume that μ ∈ H
−1/2
0 (�) ∩ Hr

b (�) for some r ≥ 0. Then

∥∥∥μ−�
F
k−1μ

∥∥∥−t,� � hmin{r,k}+t ‖μ‖r,b,� ∀ t ∈ {0, 1/2} .
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Proof See [30, Theorem 4.3.20]. ��
Lemma 6.11 Assume that ϕ ∈ H

r+1/2
b (�) ∩ H 1(�) for some r > 1/2. Then

∥∥∥ϕ −L F
k ϕ

∥∥∥
t,�

� hmin{r+1/2,k+1}−t ‖ϕ‖r+1/2,b,� ∀ t ∈ {0, 1/2, 1} .

Proof See [30, Proposition 4.1.50]. ��

6.4.2 The Discrete Setting

According to the finite dimensional subspaces defined in (6.110), (6.111),
and (6.112), we now propose the following discrete formulation for (6.25): Find
(uh,ψh, λh) ∈ X̃h := Wk

h ×"k
h ×�k−1

h such that

Ãh

(
(uh,ψh, λh), (vh, ϕh, μh)

) = F̃h(vh, ϕh, μh) ∀ (vh, ϕh, μh) ∈ X̃h ,

(6.113)

where

Ãh

(
(zh, φh, ξh), (vh, ϕh, μh)

) = ah
(
(zh, φh, ξh), (vh, ϕh, μh)

) + 〈
Wφh, ϕh

〉

+ 〈μh, V ξh
〉 − 〈

ξh,
( id

2
−K

)
ϕh
〉 + 〈

μh,
( id

2
−K

)
φh
〉
,

(6.114)

ah
(
(zh, φh, ξh), (vh, ϕh, μh)

) = ah(zh, vh) −
∑
F∈Fh

∫
F

ξh �
F
k−1(γ vh − ϕh)

+
∑
F∈Fh

∫
F

μh �
F
k−1(γ zh − φh) ,

(6.115)

and

F̃h(vh, ϕh, μh) :=
∫
�

�T
k−1f vh (6.116)

for all (zh, φh, ξh), (vh, ϕh, μh) ∈ X̃h. We notice here that the bilinear form ah
forming part of the definition of ah (cf. (6.115)) is defined as in Sect. 6.3. Namely,
denoting by E (E) and F (E) the sets of edges and faces, respectively, of a given
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E ∈ Th, we introduce

SEh (v, z) :=
∑

e∈E (E)

∫
e

�e
kv �

e
kz + h−1

E

∑
F∈F (E)

∫
F

�F
k−2v �

F
k−2z

for all v, z ∈ Wk
h (E), set

aEh (v, z) :=
∫
E

κ �E
k−1∇v ·�E

k−1∇z + SEh (v −�
∇,E
k v, z −�

∇,E
k z) (6.117)

for all v, z ∈ H1(E), and define

ah(v, z) :=
∑
E∈Th

aEh (v, z)

for all v, z ∈ Wk
h . Furthermore, we stress that the boundary terms in (6.115) are

certainly induced by the corresponding boundary terms in (6.26). More precisely,
the fact that the discrete version of the second term on the right hand side of (6.26),
that is

〈
ξh, γ vh − ϕh

〉
, is not computable since the virtual trace γ vh is not known,

suggests to replace γ vh−ϕh by a suitable projection such as �F
k−1(γ vh−ϕh), thus

yielding the new term
∑
F∈Fh

∫
F

ξh �
F
k−1(γ vh − ϕh). An analogue reason explains

the replacement of
〈
μh, γ zh − φh

〉
by

∑
F∈Fh

∫
F

μh �
F
k−1(γ zh − φh). In turn, the

use here of the global orthogonal projector �F
k−1 : L2(�) → �k−1

h , equivalently
the local projections �F

k−1 on each face F of Fh, is strongly motivated by the

fact that λh and μh live in the subspace �k−1
h , which allows to apply later on

the corresponding orthogonality condition, a key property for the derivation of
the a priori error estimate and the associated rates of convergence (see below
Theorem 6.9, estimate (6.124), and Theorem 6.10, all in Sect. 6.4.3).

Finally, we highlight that the discrete problem (6.113) is meaningful since
SEh (·, ·) is computable on Wk

h (E)×Wk
h (E). Moreover, it can be shown that SEh (v, z)

scales like aE(v, z) := ∫
E
κ∇v · ∇z on the kernel of �∇,Ek in Wk

h (E). In other
words, the three-dimensional counterpart of (6.54) holds true (cf. [9, Section 5.5]),
which implies, in particular, that we have the corresponding 3D versions of (6.63)
and (6.69) as well.
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6.4.3 Solvability and a Priori Error Analyses

We begin by introducing further notations to be employed later on. In fact, for any
s ≥ 0 we define the broken Sobolev spaces

Hs (Th) :=
∏

E∈Th

Hs(K) , Hs (Fh) :=
∏

F∈Fh

Hs (F ) ,

which are endowed with the Hilbertian norms and corresponding seminorms, given
respectively, by

‖v‖2
s,Th

:=
∑
E∈Th

‖v‖2
s,E , ‖ϕ‖2

s,Fh
:=

∑
F∈Fh

‖ϕ‖2
s,F .

and

|v|2s,Th
:=

∑
E∈Th

|v|2s,E , |ϕ|2s,Fh
:=

∑
F∈Fh

|ϕ|2s,F ,

for all v ∈ Hs(Th) and for all ϕ ∈ Hs (Fh). In addition, we set as usual H0(Th) =
L2(Th) and H0(Fh) = L2(Fh).

Now, concerning the solvability of (6.113), we first notice that the boundedness
of Ãh follows exactly as proved for the 2D case (cf. Sect. 6.3.3). Thus, we continue
the analysis with the X̃h-ellipticity of Ãh with respect to the usual product norm of
X̃.

Lemma 6.12 There holds

Ãh

(
vh, ϕh, μh

)
,
(
vh, ϕh, μh

)
� ‖(vh, ϕh, μh)‖2

for all
(
vh, ϕh, μh

) ∈ X̃h.

Proof Given (vh, ϕh, μh) ∈ X̃h, it follows from (6.114) and (6.115) that

Ãh

(
vh, ϕh, μh

)
,
(
vh, ϕh, μh

) = ah(vh, vh) +
〈
Wϕh, ϕh

〉 + 〈
μh, V μh

〉
,

and hence the 3D version of (6.69) and Lemma 6.1 finish the proof. ��
As a consequence of the previous analysis and the Lax-Milgram lemma, we

conclude that (6.113) has a unique solution (uh,ψh, λh) ∈ Xh. Next, in order to
establish the corresponding a priori error estimate, we follow the same notations
from Sect. 6.3.1 and for each planar face F ∈ Fh we let �F

k be the L2(F )-
orthogonal projection onto Pk(F ) with vectorial counterpart �F

k . In addition, �F
k

and �F
k stand for their global extensions to L2(�) and L2(�)2, respectively, which
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are assembled cellwise. The approximation properties of �F
k (and hence of �F

k ,
�F

k and �F
k ) are exactly those given by (or derived from) (6.48).

The 3D analogue of Theorem 6.3 is given by the following result.

Theorem 6.9 Under the assumption that u ∈ X ∩∏I
i=1 H2(�i), there holds

‖(u,ψ, λ)− (uh, ψh, λh)‖

�
∥∥∥f −�T

k−1f

∥∥∥
0,�

+ ‖(u,ψ, λ)− (ITk u,LF
k ψ,�

F
k−1λ)‖

+ sup
(wh,φh,ξh)∈X̃h
(wh,φh,ξh)"=0

∣∣a((u, ψ, λ), (wh, φh, ξh)
)− ah

(
(ITk u,L F

k ψ,�
F
k−1λ), (wh, φh, ξh)

)∣∣
‖(wh, φh, ξh)‖ .

(6.118)

Proof We follow basically the same sequence of arguments provided in the proof of
Theorem 6.3. Indeed, according to the definitions of F̃ (cf. (6.28)), F̃h (cf. (6.116)),
Ã (cf. (6.26)–(6.27)) and Ãh (cf. (6.114)–(6.115)), which yields, in particular

(
Ã− Ãh

)(
(vh, ϕh, μh), (wh, φh, ξh)

) = (
a− ah

)(
(vh, ϕh, μh), (wh, φh, ξh)

)

for all (vh, ϕh, μh), (wh, φh, ξh) ∈ X̃h, and using the boundedness of a, we find
that a direct application of the first Strang Lemma (cf. [15, Theorem 4.1.1]) to the
context given now by (6.25) and (6.113), gives

‖(u,ψ, λ) − (uh,ψh, λh)‖

�
∥∥∥f −�T

k−1f

∥∥∥
0,�

+ inf
(vh,ϕh,μh)∈X̃h

{
‖(u,ψ, λ)− (vh, ϕh, μh)‖

+ sup
(wh,φh,ξh)∈X̃h
(wh,φh,ξh) "=0

∣∣a((u,ψ, λ), (wh, φh, ξh)
)− ah

(
(vh, ϕh, μh), (wh, φh, ξh)

)∣∣
‖(wh, φh, ξh)‖

}
.

(6.119)

Thanks to the hypothesis we have that both u and ψ = γ u are continuous, and

hence ITk u and L F
k ψ are meaningful. In addition, the fact that u ∈ ∏I

i=1 H2(�i)

implies that λ = κ∇u · n ∈ H1/2
b (�) ⊆ L2(�), and hence �F

k−1λ is meaningful as

well. In this way, taking in particular (vh, ϕh, μh) = (ITk u,L F
k ψ,�

F
k−1λ) ∈ X̃h

in (6.119) we arrive at (6.118) and conclude the proof. ��
Analogously to the analysis for the 2D case, we now aim to estimate the

supremum in (6.118), for which we first notice from the definitions of a (cf. (6.27))



6 Recent Results on the Coupling of VEM and BEM 267

and ah (cf. (6.115)), and using that ψ = γ u, that

a
(
(u,ψ, λ), (wh, φh, ξh)

)− ah
(
(ITk u,L F

k ψ,�
F
k−1λ), (wh, φh, ξh)

)

= a(u,wh)− ah(I
T
k u,wh) − 〈λ, γwh − φh〉

+
∫
�

�
F
k−1λ�

F
k−1(γwh − φh) −

∫
�

ξh �
F
k−1(γ I

T
k u−L F

k ψ)

(6.120)

for all (wh, φh, ξh) ∈ Xh. Then, in what follows we proceed to estimate the right
hand side of (6.120) by splitting it into the three expressions determined by the first
and second terms, the third and fourth terms, and the fifth term, respectively.

Firstly, recalling that κ has been assumed to be piecewise constant, and noting
that certainly ∇�E

k u ∈ Pk−1(E)
3, we deduce, according to the definition of aEh

(cf. (6.117)), that

aEh (�
E
k u,wh) = aE(�E

k u,wh) ∀E ∈ Th , ∀wh ∈ Wk
h (E) ,

and therefore, adding and subtracting �E
k u in the first components of aE and aEh ,

we readily find that

a(u,wh)− ah(I
T
k u,wh) =

∑
E∈Th

{
aE(u−�E

k u,wh) + aEh (�
E
k u− IEk u,wh)

}

for all wh ∈ Wk
h . In this way, thanks to the foregoing identity and the boundedness

of aE and aEh , the latter being proved similarly to the proof of Lemma 6.5, and then
adding and subtracting u in the expression resulting from bounding aEh , we arrive at

∣∣a(u,wh)− ah(I
T
k u,wh)

∣∣ � {
|u− ITk u|1,� + |u−�T

k u|1,Th

}
|wh|1,� .

(6.121)

Secondly, noting that �F
k−1(γwh − φh) ∈ �k−1

h (cf. (6.111)), and employing

the orthogonality condition satisfied by �
F
k−1, as well as the symmetry of �F

k−1, we
obtain
∫
�

�
F
k−1λ�

F
k−1(γwh − φh) =

∫
�

λ�F
k−1(γwh − φh) =

∫
�

�F
k−1λ (γwh − φh) ,

which yields

−〈λ, γwh − φh〉 +
∫
�

�
F
k−1λ�

F
k−1(γwh − φh) = 〈�F

k−1λ− λ, γwh − φh〉 ,
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and hence, according to the duality pairing between H−1/2(�) and H1/2(�), and
using the trace theorem, we obtain

∣∣ ∫
�

�
F
k−1λ�

F
k−1(γwh − φh) − 〈λ, γwh − φh〉

∣∣
� ‖λ −�F

k−1λ‖−1/2,�

{
‖wh‖1,� + ‖φh‖1/2,�

}
.

(6.122)

Finally, adding and subtracting γ u = ψ , we readily get

−
∫
�

ξh �
F
k−1(γ I

T
k u−L F

k ψ) =
∫
�

ξh �
F
k−1

(
γ (u− ITk u)− (ψ −L F

k ψ)
)
,

from which, applying the Cauchy-Schwarz inequality in L2(�) and the inverse
inequality satisfied by �k−1

h (cf. (6.111)), we find that

∣∣ ∫
�

ξh �
F
k−1(γ I

T
k u−L F

k ψ)
∣∣

� h−1/2
{
‖γ (u− ITk u)‖0,� + ‖ψ −L F

k ψ‖0,�

}
‖ξh‖−1/2,� .

(6.123)

Consequently, using (6.121), (6.122), and (6.123) to bound (6.120), and then
replacing the resulting estimate into (6.118), we arrive at the a priori error estimate

‖(u,ψ, λ)− (uh, ψh, λh)‖ �
∥∥∥f −�T

k−1f

∥∥∥
0,�

+ |u− ITk u|1,� + ‖ψ −L F
k ψ‖1/2,�

+ ‖λ−�
F
k−1λ‖−1/2,� + |u −�T

k u|1,Th
+ ‖λ−�F

k−1λ‖−1/2,�

+ h−1/2
{
‖γ (u− ITk u)‖0,� + ‖ψ −LF

k ψ‖0,�

}
.

(6.124)

The foregoing inequality constitutes the key estimate to derive the rates of
convergence of the present 3D VEM/BEM scheme. In this regard, and in order to
bound one of the terms involved, we also need the scaled trace inequality (cf. [19,
Lemma 1.49]), which says that for each E ∈ Th there holds

‖v‖2
0,∂E �

{
h−1
E ‖v‖2

0,E + hE |v|21,E
}

∀ v ∈ H1(E) . (6.125)

Indeed, we end this section with the following main result.

Theorem 6.10 Assuming that u ∈ X ∩ ∏I
i=1 Hk+1(�i) and f ∈ ∏I

i=1 Hk(�i),
there holds

‖(u,ψ, λ) − (uh,ψh, λh)‖ � hk
I∑

i=1

{
‖u‖k+1,�i

+ ‖f ‖k,�i

}
. (6.126)
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Proof We first observe, thanks to the regularity assumption on u, that ψ = γ u ∈
Hk+1/2
b (�) and λ = κ∇u · n ∈ Hk−1/2

b (�). Throughout the rest of the proof we
identify the terms on the right hand side of (6.124) according to the order they
have been written there, from left to right and from up to down. Thus, applying the
3D versions of (6.48) (to the first and fifth terms), (6.50) (to the second term), and
Lemma 6.4 (to the sixth term), and using by the trace inequality that ‖λ‖k−1/2,b,� ≤
c
∑I

i=1 ‖u‖k+1,�i , we obtain

‖f −�T
k−1f ‖0,� + |u− ITk u|1,� + |u−�T

k u|1,Th
+ ‖λ −�F

k−1λ‖−1/2,�

� hk
I∑

i=1

{
‖f ‖k,�i + ‖u‖k+1,�i

}
.

(6.127)

In turn, invoking Lemmas 6.11 and 6.10 to bound the third and fourth terms,
respectively, and employing also by trace theorem that ‖ψ‖k+1/2,b,� ≤
c
∑I

i=1 ‖u‖k+1,�i , we find that

‖ψ −L F
k ψ‖1/2,� + ‖λ−�

F
k−1λ‖−1/2,�

� hk
{
‖ψ‖k+1/2,b,� + ‖λ‖k−1/2,b,�

}
� hk

I∑
i=1

‖u‖k+1,�i .

(6.128)

Furthermore, a straightforward application of Lemma 6.11 to the eighth term, gives

‖ψ −L F
k ψ‖0,� � hk+1/2 ‖ψ‖k+1/2,b,� ,

and hence

h−1/2 ‖ψ −L F
k ψ‖0,� � hk

I∑
i=1

‖u‖k+1,�i . (6.129)

Next, employing the scaled trace inequality (6.125) and the 3D version of (6.50),
we obtain that for each face F of an element E ∈ Th there holds

h−1
F

∥∥γ (u− IEk u
)∥∥2

0,F ≤ h−1
F

∥∥γ (u− IEk u
)∥∥2

0,∂E

� h−2
E

∥∥u− IEk u
∥∥2

0,E +
∣∣u− IEk u

∣∣
1,E � h2k

E ‖u‖2
k+1,E ,
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from which we arrive at

h−1/2
∥∥γ (u− ITk u

)∥∥
0,� � hk

I∑
i=1

‖u‖k+1,�i
. (6.130)

Finally, utilizing (6.127), (6.128), (6.129), and (6.130) in (6.124), we get (6.126)
and conclude the proof. ��

6.5 Numerical Results

In this section we show that the numerical rates of convergence delivered by the
VEM/BEM schemes (6.58), (6.85), and the 2D version of (6.113) are in accordance
with the theoretical ones. For simplicity, we restrict our tests to two-dimensional
model problems and to the lowest polynomial degree k = 1.

In what follows h andN stand for the meshsize and the total number of degrees of
freedom, respectively, of each partition of �. In addition, the individual and global
errors are defined by

e(u) := ‖u− û‖0,� + |u− û|1,b,�, e(λ) := ‖λ− λh‖−1/2,�, e(ψ) := ‖ψ − ψh‖1/2,�,

with corresponding rates of convergence

r(�) := log(e(�)/e′(�))
log(h/h′)

∀ � ∈ {u, λ,ψ} ,

where h and h′ denote two consecutive meshsizes with errors e and e′. Note here
that the exact error for u, that is ‖u − uh‖1,�, is not computable since uh, being
virtual, is not known explicitly in �. This is the reason why e(u) is defined above
with û (cf. the end of Sect. 6.3.2) instead of uh.

6.5.1 Convergence Tests for the Poisson Model

We first investigate the performance of the discrete schemes (6.58) and (6.113)
when applied to problem (6.1). We point out that the VEM/BEM discretization
method (6.113) has been introduced and analyzed in the 3D case only. However,
it is not difficult to see that it is also applicable to two-dimensional problems.

We choose κ = 1 so that the harmonic function u(x) = x1 + x2

|x|2 , x := (x1, x2),

is a solution of problem (6.1) with a nonhomogeneous Dirichlet boundary condition
on �0. We consider two different geometry settings. In the first example, we take
�0 = (−0.25, 0.25)2 and O = (−0.5, 0.5)2, and use a sequence of meshes
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Table 6.1 Convergence history of the VEM/BEM schemes (6.58) and (6.113) for Poisson,
Example 1

h N e(u) r(u) e(λ) r(λ)

1/64 3521 2.914E−01 − 1.066E−01 −
1/128 13,185 1.458E−01 0.999 5.327E−02 1.001

1/256 50,945 7.292E−02 1.000 2.663E−02 1.000

1/512 200,193 3.646E−02 1.000 1.332E−02 1.000

h N e(u) r(u) e(ψ) r(ψ) e(λ) r(λ)

1/64 3777 2.914E−01 − 7.522E−03 − 1.068E−1 −
1/128 13,697 1.458E−01 0.999 2.659E−03 1.500 5.338E−02 1.001

1/256 51,969 7.292E−02 1.000 9.454E−04 1.492 2.669E−02 1.000

1/512 202,241 3.646E−02 1.000 3.387E−04 1.481 1.335E−02 1.000

Table 6.2 Convergence history of the VEM/BEM schemes (6.58) and (6.113) for Poisson,
Example 2

h N e(u) r(u) e(λ) r(λ)

1/64 7197 3.488E−01 − 1.053E−01 −
1/128 27,529 1.749E−01 0.997 5.294E−02 0.993

1/256 107,683 8.743E−02 1.001 2.656E−02 0.996

1/384 240,512 5.825E−02 1.002 1.774E−02 0.996

h N e(u) r(u) e(ψ) r(ψ) e(λ) r(λ)

1/64 7459 3.488E−01 − 1.744E−02 − 1.053E−01 −
1/128 28,047 1.749E−01 0.997 6.559E−03 1.539 5.295E−02 0.994

1/256 108,713 8.743E−02 1.001 2.472E−03 1.402 2.655E−02 0.997

1/384 242,054 5.825E−02 1.002 1.349E−03 1.493 1.772E−02 0.997

constructed out of square elements. In turn, in the second example, we select �0 ={
x ∈ R

2 : x2
1 + x2

2 < 0.252
}

and O = (−0.5, 0.5)2, and employ a sequence of
Voronoi meshes initially generated from random seeds and subsequently smoothed
using Lloyd’s relaxation algorithm.

The convergence history of both schemes are reported in Tables 6.1 and 6.2 for
Examples 1 and 2, respectively. There we can see that the rates of convergence
predicted by Theorems 6.4 and 6.10, that is O(h) for k = 1, are confirmed for each
one of the unknowns in both examples. The higher rate provided by the unknown
ψ for the scheme (6.113) must be simply understood as a proper super convergence
behavior of this particular exact solution u. In addition, we observe that, except
for the additional direct approximation ψh of the trace of u provided by (6.113),
both VEM/BEM schemes behave very similarly since, at each partition, they yield
basically the same errors for each common unknown. Certainly, the advantage
of (6.113) with respect to (6.58) is that the former is applicable in 2D and 3D,
whereas the latter is restricted to 2D. In turn, the advantage of (6.58) with respect
to (6.113), which is obviously valid only in 2D, is that the former, having one
less boundary unknown, is a bit cheaper than (6.113) in terms of the total number
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Table 6.3 Convergence history of the VEM/BEM scheme (6.85) for Helmholtz with κ = 2

h N e(u) r(u) e(λ) r(λ)

1/64 3951 2.920E−01 − 7.550E−01 −
1/128 15,336 1.464E−01 0.966 3.584E−01 1.021

1/192 34,133 9.715E−02 1.050 2.394E−01 1.035

1/256 60,430 7.259E−02 0.962 1.757E−01 1.020

Table 6.4 Convergence history of the VEM/BEM scheme (6.113) adapted for Helmholtz with
κ = 1

h N e(u) r(u) e(λ) r(λ) e(ψ) r(ψ)

1/64 4113 2.882E−01 − 1.280E−01 − 5.682E−03 −
1/128 15,666 1.447E−01 0.965 6.467E−02 0.962 2.735E−03 0.997

1/192 34,620 9.602E−02 1.051 4.345E−02 1.019 1.800E−03 1.072

1/256 61,089 7.178E−02 0.960 3.240E−02 0.969 1.352E−03 0.945

of degrees of freedom. This is illustrated in the present examples by the second
columns of Tables 6.1 and 6.2.

6.5.2 Convergence Tests for the Helmholtz Model

We finally report numerical results carried out with the method based on the
scheme (6.85) (cf. Sect. 6.3.3) and with an adaptation of scheme (6.113) for
problem (6.2).

We consider problem (6.2) with ϑ = 1, �0 =
{
x ∈ R

2 : x2
1

0.52 + x2
2

0.72 < 1
}
,

O = {
x ∈ R

2 : x2
1

1.12 + x2
2

1.52 < 1
}
, and use a sequence of successively refined

Voronoi meshes of the domain � = O \�0. We select the incident wave w in such
a way that the exact solution is given in the following closed form

u(x) =

⎧⎪⎨
⎪⎩
(1+ ı)

x1 + x2

|x|2 in �

H
(1)
0 (κ |x|) in Oe.

We observe from Tables 6.3 and 6.4 that the expected linear convergence rate of
the error is attained in each variable for both schemes.
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Chapter 7
Virtual Element Approximation
of Eigenvalue Problems

Daniele Boffi, Francesca Gardini, and Lucia Gastaldi

Abstract We discuss the approximation of eigenvalue problems associated with
elliptic partial differential equations using the virtual element method. After recall-
ing the abstract theory, we present a model problem, describing in detail the
features of the scheme, and highlighting the effects of the stabilizing parameters.
We conclude the discussion with a survey of several application examples.

7.1 Introduction

In this chapter we discuss the use of the Virtual Element Method (VEM) for the
approximation of eigenvalue problems associated with partial differential equations.
Eigenvalue problems are present in several applications and are the object of an
appealing and vast research area. It is known that the analysis of numerical schemes
for the approximation of eigenmodes is based on suitable a priori estimates and
appropriate compactness assumptions (see, for instance [4, 10, 29]).

Moreover, a good knowledge of the spectral properties of a discretization scheme
is essential for the stability analysis of transient problems. It is well known, for
instance, that the solution of parabolic and hyperbolic linear evolution problems
(heat/wave equation) can be presented as a Fourier series in terms of eigenfunctions
and eigenvalues of the corresponding elliptic eigenproblem (Laplace eigenproblem).
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We refer the interested reader to [36] for more information and to [13, 14] for an
example of how things can go wrong if the eigenvalue problem is not correctly
approximated.

The virtual element method has been successfully used for the approximation
of several eigenvalue problems. Starting from the pioneering works [26, 32],
where the analysis of the Steklov and the Laplace eigenproblems was developed,
other applications of VEM to eigenvalue problems include an acoustic vibration
problem [8], plates models [34, 35], linear elasticity [31], and a transmission
problem [33]. Moreover, nonconforming, p, and hp VEM have been considered
in [21, 27] for the Laplace eigenvalue problem.

The above mentioned references make use of classical tools for the spectral
analysis, such as the Babuška–Osborn theory [4] for compact operators or the
Descloux–Nassif–Rappaz theory [24] for non-compact operators, typically adopted
in connection with a shift procedure. In the case of the mixed formulation for the
Laplace eigenproblem [30], the conditions introduced in [11, 12] are considered.

An important feature of VEM, as compared to standard FEM, is that suitable
stabilizing forms, depending on appropriate parameters, have to be introduced in
order to guarantee consistency and stability of the approximation. Indeed, as it is
well known, the matrices assembled for the discretization are computed by the use of
suitable projection operators. This is due to the virtual nature of the basis functions
corresponding to the degrees of freedom at the interior of the elements. The lack of
knowledge of such basis functions is compensated by adding appropriately chosen
stabilization terms. Typical theoretical results state that, for given choices of the
stabilization parameters, the discrete solution converges to the continuous one with
optimal order asymptotically in h or p. In the case of eigenvalue problems, the
presence of the stabilizing forms may introduce artificially additional eigenmodes
and we have to make sure that they will not pollute the portion of the spectrum
we are interested in. Some of the above mentioned references address this issue
even if they are not conclusive in this respect. In [15] we presented a systematic
study of the eigenvalue dependence on the parameters. If the discrete eigenvalue
problem can be written in the form Au = λMu, with A and M depending linearly
on the stabilizing parameters α and β, respectively, then the quick and easy recipe
is to pick a sufficiently large α and a small (possibly zero) β. Such discussion is
summarized in Sect. 7.5.

After describing the general setting of a variationally posed eigenvalue problem
in Sect. 7.2, we recall the basic theory for the VEM approximation of the Laplace
eigenproblem in Sect. 7.3. The case of nonconforming,p, and hp VEM is treated in
Sect. 7.4. As already mentioned, Sect. 7.5 deals with the choice of the stabilizing
parameters. Finally, Sect. 7.6 presents a survey of applications of VEM to the
discretization of eigenproblems of interest.

In this chapter, we adopt the usual notation || · ||s,D and | · |s,D for norm and
seminorm in the Sobolev space Hs(D). When D = � we omit the subindex �.
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Later on we shall use also the broken Sobolev space: let Th be a decomposition
of � into a finite number of subdomains, we set

Hs
h =

{
v ∈ L2(�) : v|P ∈ Hs(P ) ∀P ∈ Th

}

endowed with the corresponding broken norm

||v||s,h =
⎛
⎝∑

P∈Th

||v||2s,P
⎞
⎠

1
2

.

7.2 Abstract Setting

Let V and H be two Hilbert spaces such that V ⊂ H with dense and compact
embedding, and a(·, ·) and b(·, ·) be two continuous and symmetric bilinear forms
defined on V × V and H × H , respectively. We consider the following eigenvalue
problem in variational form: find (λ, u) ∈ R× V with u "= 0 such that

a(u, v) = λb(u, v) ∀v ∈ V. (7.1)

The source problem associated with problem (7.1) reads: given f ∈ H , find u ∈ V

such that

a(u, v) = b(f, v) ∀v ∈ V. (7.2)

We assume that a(·, ·) is coercive on V , that is there exists α > 0 such that

a(v, v) ≥ α||v||2V ∀v ∈ V.

Under these assumptions, there exists a unique solution u ∈ V of problem (7.2)
satisfying the following stability estimate

||u||V ≤ C||f ||H . (7.3)

We then consider the solution operator T : H → V ⊂ H defined as follows:

Tf = u, u ∈ V,

with u the unique solution of the source problem (7.2). Since problem (7.2) is
well posed, T is a well defined, self-adjoint linear bounded operator. Thanks to
the compact embedding of V in H , it turns out that T is also compact. The same
conclusions apply to the situation when V is not compact in H , by assuming
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directly the compactness of the operator T . We observe that (λ, u) is an eigenpair
of problem (7.1) if and only if

( 1
λ
, u
)

is an eigenpair of T . Thanks to the spectral
theory of compact operators, we have that the eigenvalues of problem (7.1) are real
and positive and form a divergent sequence

0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ . . . ; (7.4)

conventionally, we repeat them according to their multiplicities. The corresponding
eigenfunctions ui are chosen with the following properties

||ui ||H = 1, a(ui, ui) = λi,

and so that they form an orthonormal basis both in V and in H .
We introduce a Galerkin type discretization of problems (7.1) and (7.2). To this

end, let Vh ⊂ V be a finite dimensional subspace of V , and ah : Vh × Vh → R

and bh : H × H → R two discrete symmetric continuous bilinear forms. Then,
the discrete eigenvalue problem and the discrete source problems are given by: find
(λh, uh) ∈ R× Vh with uh "= 0 such that

ah(uh, vh) = λhbh(uh, vh) ∀vh ∈ Vh, (7.5)

and, given f ∈ H , find uh ∈ Vh such that

ah(uh, vh) = bh(f, vh) ∀vh ∈ Vh. (7.6)

In order to guarantee existence, uniqueness, and stability of the solution to the
discrete source problem (7.6), we assume that the discrete bilinear form ah is
coercive.

Similarly to the continuous case, we introduce the discrete solution operator Th :
H → Vh ⊂ H defined by

Thf = uh,

with uh ∈ Vh the unique solution to the discrete source problem (7.6). Th is a self-
adjoint operator with finite range, hence it is compact and has Nh positive discrete
eigenvalues

0 < λh,1 ≤ λh,2 ≤ · · · ≤ λh,Nh ,

where Nh denotes the dimension of Vh. Moreover, the discrete eigenfunctions uh,i
span Vh and can be chosen as an orthogonal basis satisfying

||uh,i ||H = 1, a(uh,i, uh,i ) = λh,i ∀i = 1, . . . Nh.
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We recall some results of the spectral approximation theory for compact opera-
tors [4, 10, 29]. In the following we denote by δ(E, F ) the gap between the spaces
E and F , that is

δ(E, F ) = max(δ̂(E, F ), δ̂(F,E)) with δ̂(E, F ) = sup
u∈E||u||H=1

inf
v∈F ||u− v||H .

Theorem 7.1 Let us assume that

||T − Th||L (H,H) → 0 as h→ 0. (7.7)

Let λi be an eigenvalue of problem (7.1) with multiplicity equal to m, namely λi =
λi+1 = · · · = λi+m−1. Then, for h small enough such that Nh ≥ i +m− 1, exactly
m discrete eigenvalues λh,i = λh,i+1 = · · · = λh,i+m−1 converge to λi .

Moreover, let Ei be the eigenspace of dimension m associated with λi and
Eh,i = ⊕i+m−1

j=i span(uh,j ) be the direct sum of the eigenspaces associated with
the discrete eigenvalues. Then

δ(Ei ,Eh,i)→ 0 as h→ 0, (7.8)

where δ(E, F ) denotes the gap between the spaces E and F .

Theorem 7.2 Using the same notation as in Theorem 7.1, then there exists a
positive constant C independent of h such that

δ(Ei ,Eh,i) ≤ C||(T − Th)|Ei ||L (H,H). (7.9)

Let ϕ1, . . . , ϕm be a basis of the eigenspace Ei corresponding to the eigenvalue λi .
Then, for = j = i, . . . , i +m− 1

|λj − λj,h| ≤ C
( m∑

l,k=1

|((T − Th)ϕk, ϕl)H | + ||(T − Th)|Ei ||L (H,H)

)
, (7.10)

where (·, ·)H stands for the scalar product in H .

Remark 7.1 The solution operator could also be defined as TV : V → V such that
for all f ∈ V , TV f is the solution to problem (7.2). If TV is compact, then one can
obtain results similar to those presented above with due modifications.

7.2.1 Model Problem

Let � ⊂ R
d (d = 2, 3) be an open bounded Lipschitz domain. As a model problem,

we consider the Laplace eigenvalue equation with homogeneous Dirichlet boundary
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conditions:

−�u = λu in �

u = 0 on ∂�.
(7.11)

Setting

V = H 1
0 (�) H = L2(�)

a(u, v) =
∫
�

∇u · ∇v dx b(u, v) =
∫
�

uv dx
(7.12)

the weak formulation of (7.11) fits the above abstract setting. Here and in what
follows, we set aD(u, v) = ∫

D
∇u · ∇v dx and bD(u, v) = ∫

D
uv dx.

Later on we will use the following additional regularity result [1, 28]: if f ∈
L2(�) there exists r ∈ ( 1

2 , 1
]

such that u ∈ H 1+r (�), with

||u||1+r ≤ C||f ||0. (7.13)

The regularity index r depends on the maximum interior wedge angle of �. In
particular, if the domain is convex r can be taken equal to 1.

7.3 Virtual Element Approximation of the Laplace
Eigenvalue Problem

In this section, we consider the Laplace eigenproblem and, after recalling the
definition and the approximation properties of VEM, we present the discretization
of the eigenvalue problem (7.1) and the relative convergence analysis. We treat in
detail only the two dimensional case; for the three dimensional one, which can be
analyzed with the same arguments, we refer to [26, 27].

7.3.1 Virtual Element Method

We denote by Th a family of polygonal decomposition of �, by hP the diameter
of the element P ∈ Th, by h the maximum of such diameters, and by Eh the set of
the edges of the mesh. Moreover, E 0

h and E ∂
h stand for the subset of internal and

boundary edges, respectively.
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We suppose that for all h, there exists a constant � such that each elementP ∈ Th

is star-shaped with respect to a disk with radius greater than �hP , and for every edge
e ∈ ∂P it holds that he ≥ �hP (see [5]). We observe that the scaling assumption
implies that the number of edges in the boundary of each element is uniformly
bounded over the whole mesh family Th. However, there is no restriction on the
interior angles of the polygons which can be convex, flat, or concave.

Let k ≥ 1 be a given integer, we denote by Pk(P ) the space of polynomials of
degree at most equal to k. We introduce the enhanced virtual element space Vh of
order k (see [2]). We consider the local space

V k
h (P ) =

{
v ∈ Ṽ k

h (P ) :
∫
P

(v −�∇k v)p dx = 0 ∀p ∈ (Pk \ Pk−2)(P )

}
,

(7.14)

with the following definitions:

Ṽ k
h (P ) =

{
v ∈ H 1(P ) : v|∂P ∈ C0(∂P ), v|e ∈ Pk(e) ∀e ∈ ∂P,�v ∈ Pk(P )

}

�∇k : Ṽ k
h (P )→ Pk(P ) is a projection operator defined by

aP (�∇k v − v, p) = 0 ∀p ∈ Pk(P )∫
∂P

(�∇k v − v) ds = 0.

(7.15)

In (7.14), (Pk\Pk−2)(P ) stands for the space of polynomials in Pk(P ) L
2-othogonal

to Pk−2(P ).
As shown in [2], it is possible to compute �∇k vh for all vh ∈ V k

h (P ) using the
following degrees of freedom: the values v(Vi) at the vertices Vi of P , the scaled
moments up to order k − 2 on each edge e ⊂ ∂P , and on the element P .

The global virtual element space is obtained by gluing together the local spaces,
that is

V k
h =

{
v ∈ H 1

0 (�) : v|P ∈ V k
h (P ) ∀P ∈ Th

}
.

From now on, we denote by Nh the dimension of V k
h .

We highlight that, differently from finite elements, we do not have at hand the
explicit knowledge of the basis functions of V k

h ; in this sense the basis functions
are virtual. On the other hand, polynomials of degree at most k are in the VEM
space; this will guarantee the optimal order of accuracy. Actually, the following
approximation results hold true, see [5, 17, 20].
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Proposition 7.1 There exists a positive constant C, depending only on the polyno-
mial degree k and the shape regularity �, such that for every s with 1 ≤ s ≤ k + 1
and for every v ∈ Hs(�) there exists vπ ∈ Pk(P ) such that

‖v − vπ‖0,P + hP |v − vπ |1,P ≤ ChsP |v|s,P . (7.16)

Moreover, there exists a constant C, depending only on the polynomial degree k and
the shape regularity �, such that for every s with 1 ≤ s ≤ k + 1, for every h, and
for every v ∈ Hs(�) there exists vI ∈ V k

h such that

‖v − vI‖0 + hP |v − vI |1 ≤ ChsP |v|s . (7.17)

Notice that vπ is defined element by element, and does not belong to the space
H 1(�). We shall denote its broken H 1-seminorm by |vπ |1,h.

7.3.2 The VEM Discretization of the Laplace Eigenproblem

In the VEM context, the discrete bilinear forms ah(·, ·) and bh(·, ·) are written as
sum over the elements P ∈ Th of local contributions aPh (·, ·) and bPh (·, ·) for all
P ∈ Th, that is

ah(·, ·) =
∑
P∈Th

aPh (·, ·), bh(·, ·) =
∑
P∈Th

bPh (·, ·).

For the readers’ convenience, we recall here the discrete source problem (7.6): given
f ∈ L2(�), find uh ∈ V k

h such that

ah(uh, vh) = bh(f, vh) ∀vh ∈ V k
h . (7.18)

It is well known that solving this problem is equivalent to solve a linear system of
equations Au = f, where A is the Nh×Nh matrix corresponding to the form ah and
f is the vector with components bh(f, ϕh) with ϕh the basis functions of V k

h .
We now address the issue of the construction of the discrete bilinear forms along

the lines of [5]. First of all, they are required to be similar to the continuous ones

aPh (vh, vh) ≈ aP (vh, vh), bPh (vh, vh) ≈ bP (vh, vh),

where by m ≈ n we denote as usual that (1/C)m ≤ n ≤ Cm with C independent
of h.

We underline that the continuous forms a(·, ·) and b(·, ·) in general are not
computable on the basis functions, except for those which are polynomials. Hence
we need to project the elements of V k

h (P ) onto Pk(P ). This could be done locally



7 Virtual Element Approximation of Eigenvalue Problems 283

as follows:

aPh (uh, vh) = aP (�∇k uh,�∇k vh) ∀uh, vh ∈ Th, (7.19)

but it might happen that a non vanishing element uh ∈ V k
h (P ) is such that �∇k uh =

0, and so the form aPh (uh, vh) = 0 for all vh ∈ V k
h (P ). In this case the local

contribution to the matrix Ah results to be singular and the global matrix might lack
control on some components of V k

h . To avoid this eventuality, we add a stability
term as follows:

aPh (uh, vh) = aP (�∇k uh,�∇k vh)+ SPa ((I −�∇k )uh, (I −�∇k )vh), (7.20)

where SPa (·, ·) is a symmetric positive definite bilinear form defined on V k
h (P ) ×

V k
h (P ) scaling like aP (·, ·).

For proper choices of SPa , it turns out that aPh (·, ·) fulfils the following local
stability and consistency properties for all P ∈ Th.

Stability: there exists two positive constants a∗ and a∗ such that for all vh ∈
V k
h (P )

a∗aP (vh, vh) ≤ aPh (vh, vh) ≤ a∗aP (vh, vh). (7.21)

Consistency: for all vh ∈ V k
h (P ) and for all pk ∈ Pk(P ) it holds

aPh (vh, pk) = aP (vh, pk). (7.22)

In order to deal with the right hand side in (7.18), we define another projection
operator �0

k from L2(P ) onto Pk(P ) as

bP (�0
kf, pk) = bP (f, pk) ∀pk ∈ Pk(P ), ∀P ∈ Th.

This projection operator is computable starting from the degrees of freedom as well.
Thus the local contribution to the right hand side is given by

bPh (f, vh) = bP (�0
kf, vh) ∀vh ∈ V k

h (P ), ∀P ∈ Th. (7.23)

With the above definitions, the discrete source problem is well-posed and its solution
converges to the continuous one with optimal order, (see [2, 5]): there exists a
positive constant C, independent of h such that

||u− uh||1 ≤ C

⎛
⎝|u− uI |1 + |u− uπ |1,h + sup

vh∈V k
h

|b(f, vh)− bh(f, vh)|
|vh|1

⎞
⎠ ,

(7.24)
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where uI ∈ V k
h and uπ are defined in Proposition 7.1. We observe that the last term

in (7.24) is a consistency term in the spirit of the first Strang Lemma [22, Th. 4.1.1].
Indeed, the VEM discretization provides a conforming discrete subspace of V , but
the bilinear forms ah and bh differ from the continuous ones. The consistency error
generated by the difference between a and ah is already incorporated in the first two
terms on the right hand side of (7.24), while the one related to b depends on the
properties of the source term f . In particular, if f ∈ L2(�) we obtain that the error
converges to zero with optimal order depending on the regularity of the solution u:

||u− uh||1 ≤ C
(
hr |u|1+r + h||f ||0

)
.

We now turn to the virtual element discretization of the eigenvalue problem (7.1).
Let us recall the discrete formulation: find (λh, uh) ∈ R×V k

h with uh "= 0 such that

ah(uh, vh) = λhbh(uh, vh) ∀vh ∈ V k
h , (7.25)

where, using definition (7.23)

bPh (uh, vh) = bP (�0
kuh, vh) = bP (�0

kuh,�
0
kvh). (7.26)

The following generalized algebraic eigenvalue problem corresponds to the discrete
eigenvalue problem:

Au = λhMu, (7.27)

where A and M are the Nh ×Nh matrices associated with the bilinear forms ah and
bh, respectively.

As observed for the form aPh , it might happen that �0
kuh = 0 for a non vanishing

uh and thus bPh (uh, vh) = 0 for all vh ∈ V k
h . This means that the local contribution

to the matrix M has a non trivial kernel similarly to what we have observed for the
form aPh and some components of V k

h may not be controlled by the global mass
matrix. It is then natural to add a stabilization term as follows:

bPh (uh, vh) = bP (�0
kuh,�

0
kvh)+ SPb ((I −�0

k)uh, (I −�0
k)vh), (7.28)

where SPb is a symmetric positive definite bilinear form defined on V k
h (P )×V k

h (P )

scaling as bP (·, ·), that is there exist two positive constants β∗ and β∗ such that for
all P ∈ Th it holds

β∗bP (vh, vh) ≤ SPb (vh, vh) ≤ β∗bP (vh, vh) ∀vh ∈ V k
h (P ),with �0

kvh = 0.
(7.29)

Remark 7.2 It is out of the aims of this paper to discuss the choice of algorithms
for the solution of the algebraic eigenvalue problem Au = λMu. Nevertheless, the
presence of the stabilizing parameters may influence such choice. For instance, if the
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matrix M is singular and A is not, then it might be convenient to solve the reciprocal
system Mu = λ−1Au. The definition itself of solution for problems like this can be
difficult to give, in particular, when both A and M are singular and their kernels have
a non trivial intersection. On the other hand if u belongs to the kernel of M and not
to that of A, we may conventionally say that it is an eigenfunction corresponding to
the eigenvalue λ =∞.

From now on, unless explicitly stated, we shall consider the discrete eigenvalue
problem (7.25) with the local form bPh defined as in (7.28).

7.3.3 Convergence Analysis

In this section we show the convergence of the discrete eigenpairs to the continuous
ones by applying Theorem 7.1 and prove a priori error estimates.

In order to apply Theorem 7.1 we need to prove L2-error estimates for the source
problems (7.2) and (7.6). For the sake of completeness, we report here the proof,
(see [2, Theorem 3]).

Theorem 7.3 Given f ∈ L2(�), let u ∈ H 1
0 (�) and uh ∈ V k

h denote the solutions
to (7.2) and to (7.6), respectively. Then there exists a constant C independent of h
such that

||u− uh||0 ≤ Cht
(
|u− uI |1 + |u− uπ |1,h + ||f −�0

kf ||0
)
, (7.30)

where t = min(r, 1), being r the regularity index of the solution u, see (7.13) and
uI and uπ are defined in Proposition 7.1.

Proof We use a duality argument and denote by ψ ∈ H 1
0 (�) the solution to

a(ψ, v) = b(u− uh, v) ∀v ∈ H 1
0 (�). (7.31)

Since u − uh ∈ L2(�), then ψ ∈ H 1+r (�) with ||ψ||1+r ≤ C||u − uh||0. Let
ψI ∈ V k

h be the interpolant of ψ given by Proposition 7.1, then for t = min(r, 1) it
holds

||ψ − ψI ||0 + h|ψ − ψI |1 ≤ Ch1+t ||u− uh||0. (7.32)

We have that

||u− uh||20 = b(u− uh, u− uh) = a(u− uh,ψ)

= a(u− uh,ψ − ψI )+ a(u− uh,ψI ) = I + II.
(7.33)
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We first estimate the term I as follows

I = a(u− uh,ψ − ψI ) ≤ C
(|u− uh|1ht ||u− uh||0

)
. (7.34)

Then

II = a(u− uh,ψI ) = b(f,ψI )− ah(uh,ψI )+ ah(uh,ψI )− a(uh,ψI )

= [b(f,ψI )− bh(f,ψI )] + [ah(uh,ψI )− a(uh,ψI )]
= III + IV .

We have that

III =
∑
P

(
bP (f,ψI )−bP (�0

kf,�
0
kψI )−SPb ((I−�0

k)f, (I−�0
k)ψI )

)
. (7.35)

It holds

bP (f,ψI )− bP (�0
kf,�

0
kψI ) = bP (f −�0

kf,ψI −�0
kψI )

≤ Cht ||f −�0
kf ||0||u− uh||0

(7.36)

and

SPb ((I −�0
k)f, (I −�0

k)ψI )
)
≤ β∗||(I −�0

k)f ||0||(I −�0
k)ψI ||0

≤ Cht ||(I −�0
k)f ||0||u− uh||0.

(7.37)

Finally, estimating the term IV with standard VEM argument, we obtain

IV ≤ C
(
||u− uh||1 + ||u−�0

ku||1,h
)
ht ||u− uh||0.

Putting together all the estimates, we conclude the proof. ��
The L2-error estimate proved above implies the uniform convergence stated in

Theorem 7.1 (see [26, Theorem 6.1]).

Theorem 7.4 Let Th and T be the families of operators associated with prob-
lems (7.6) and (7.2), respectively. Then the following uniform convergence holds
true:

||T − Th||L (L2(�),L2(�)) → 0 for h→ 0.

Proof Given f ∈ L2(�), let Tf and Thf be the solutions to problems (7.2)
and (7.6), respectively. Then, using the L2-estimate of Theorem 7.3, the interpola-
tion and approximation results in Proposition 7.1, and the stability condition (7.13),
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we obtain

||Tf − Thf ||0 ≤ Cht ||f ||0,

where t = min(k, r), k ≥ 1 is the order of the method, r the regularity exponent
in (7.13), and C a constant independent of f and h. From this inequality it follows
that

||T − Th||L (L2(�),L2(�)) = sup
f∈L2(�)

||Tf − Thf ||0
||f ||0 ≤ Cht ,

which implies the uniform convergence. ��
We now turn to error estimates for the approximation of the eigenvalues and

the eigenfunctions. First of all we state a result on the rate of convergence for the
solutions to the source problems when f is smooth.

Proposition 7.2 Assume that f ∈ H 1+s1(�) and that the solution u of prob-
lem (7.2) belongs to H 1+s2(�) for some s1 and s2 greater than 0, then the
estimate (7.30) implies

||u− uh||0 ≤ Cht
(
hmin(k,s2)|u|1+s2 + h1+min(k,s1)|f |1+s1

)
(7.38)

where t = min(1, r).

Remark 7.3 We point out that an eigenfunction u can be seen as the solution of a
source problem with right hand side equal to λu, which belongs at least to H 1

0 (�).
Hence the second term in the right side of (7.38) is at least of first order. In general,
if the domain is non convex, the solution u to (7.2) belongs at least to H 1+r(�) with
r ∈ ( 1

2 , 1], even if the right hand side is more regular, see (7.13). However, it might
happen that u is more regular, for example that it belongs to the space H 1+s(�)

with s ≥ r , then estimate (7.38) reduces to

||u− uh||0 ≤ Cht+min(k,s)|u|1+s. (7.39)

Taking into account the above L2-estimates and using the abstract Theorem 7.2,
we obtain the optimal rate of convergence for the approximation of the eigenpairs
(see [26, Theorem 6.1]).

Theorem 7.5 Let λi be an eigenvalue of problem (7.1), with multiplicity m (that is
λi = · · · = λi+m−1) and let Ei be the corresponding eigenspace. We assume that
all the elements in Ei belong to H 1+s(�) for some s ≥ r (see (7.13)). Moreover,
let Ei,h = ⊕i+m−1

j=i span(uh,j ), where uh,j is the discrete eigenfunction associated
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with λh,j . Then, for h small enough, there exists a constant C independent of h such
that

δ(Ei ,Ei,h) ≤ Cht+min(k,s) (7.40)

with t = min(1, r).

Proof The result directly stems from (7.9). Indeed,

δ(Ei ,Ei,h) ≤ C||(T − Th)|Ei ||L (L2(�),L2(�)) = C sup
u∈Ei||u||0=1

||(T − Th)u||0. (7.41)

Since u ∈ Ei , it holds that u ∈ H 1+s(�) with ||u||1+s ≤ C||u||0 (see (7.13)). Hence
the result follows from estimate (7.39). ��

Now we state the a priori error estimates for the eigenvalues (see [26, Theo-
rem 6.1]).

Theorem 7.6 Using the notation of Theorem 7.5, there exists a constant C inde-
pendent of h, but depending on λi such that the following error estimate for the
eigenvalues holds true:

|λj − λj,h| ≤ Ch2 min(k,s) for j = i, . . . , i +m− 1.

Proof We apply Theorem 7.2. Thanks to (7.41), it remains to bound the first term
in (7.10). This is equivalent to estimate b((T − Th)w, z) for all w and z in Ei . After
some computations we get

b((T − Th)w, z) = a(T z, (T − Th)w)

= a((T − Th)z, (T − Th)w)+ b(Thz,w)− bh(Thz,w)

− a(Thz, Thw)+ ah(Thz, Thw)

= I ′ + II ′ + III ′.

We estimate separately the three terms. It is straightforward to obtain

I ′ ≤ ||(T − Th)z||1||(T − Th)w||1 ≤ Ch2 min(k,s). (7.42)

In order to estimate the second term, we proceed as in (7.35) by writing it as a sum
over the elements P ∈ Th,

II ′ =
∑
P

(
bP (Thz−�0

k(Thz),w −�0
kw)− SPb ((I −�0

k)Thz, (I −�0
k)w)

)

≤ C
∑
P

||(I −�0
k)Thz||0,P ||I −�0

k)w||0,P ≤ Ch2 min(k,s).

(7.43)
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Finally,

III ′ =
∑
P

(
aPh (Thz−�0

kT z, Thw −�0
kT w)− aP (Thz −�0

kT z, Thw −�0
kT w)

)

≤ C
∑
P

(
|Thz − T z|1,P + |(I −�0

k)T z|1,P
)

(
|Thw − T w|1,P + |(I −�0

k)T w|1,P
)
≤ Ch2 min(k,s).

(7.44)

Collecting estimates (7.42)–(7.44) yields the required estimate. ��
Bearing in mind Remark 7.1, we state the rate of convergence for the error in the

approximation of the eigensolutions with respect to the H 1-norm. To this aim we
denote by δ1(E, F ) the gap between the spaces E and F measured in the H 1-norm.

Theorem 7.7 Using the same notation as in Theorem 7.5, and assuming that all the
elements in Ei belong to H 1+s(�) for some s ≥ r , then for h small enough, there
exists a constant C independent of h such that

δ1(Ei ,Ei,h) ≤ Chmin(k,s).

Remark 7.4 The above analysis has been carried on considering the stabilized
discrete bilinear form bh, whose local counterpart is given in (7.28). However,
in [26] it has been shown that the results stated in Theorems 7.5–7.7 hold true also
when bh is defined using the non-stabilized local version in (7.26).

7.3.4 Numerical Results

Here and in the following sections devoted to the numerical experiments, we focus
on the solution to problem (7.11) on a square and an L-shaped domain. It is well
known that in the first test case the eigenfunctions are analytic, while in the latter
they can be singular due to the presence of a reentrant corner in the domain. All the
results that we are going to present are not new, including the figures which have
been already published in [21, 26, 27].

The implementation of the method requires a precise definition for the stabiliza-
tion terms. Here we are going to consider one possible choice, other possibilities are
reported in [26]. For vh and wh in V k

h (P ), the stabilizing bilinear forms SPa (vh,wh)

and SPb (vh,wh) (see (7.20) and (7.28)) are defined using the local degrees of
freedom associated to V k

h (P ). Let NP be the dimension of V k
h (P ), then v and

w stand for the vectors in R
NP with components the local degrees of freedom
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associated to vh and wh. More precisely, we set

SPa (vh,wh) = αP v%w and SPb (vh,wh) = βP h
2
P v
%w, (7.45)

where αP and βP are constants independent of h. The numerical results we report
here are obtained choosing αP as the mean value of the eigenvalues of the local
matrix associated to the consistency term aP (�∇k vh,�∇k wh). The parameter βP is
given by the mean value of the eigenvalues of the local mass matrix associated to

1
h2
P

bP (�0
kvh,�

0
kwh). With this definition αP and βP depend only on the shape of

P .

Square Domain Let � be the square (0, π)2, then the eigensolutions of (7.11) are
given by

λi,j = (i2 + j2) for i, j ∈ N, with i, j "= 0

ui,j (x, y) = sin(ix) sin(jy) for (x, y) ∈ �.
(7.46)

We consider different refinements of a Voronoi mesh, an example of them is shown
in Fig. 7.1 left. Figure 7.2 reports the error for the first six eigenvalues obtained with
different polynomial degrees k = 1, 2, 3, 4 on meshes with size h = π

8 ,
π
16 ,

π
32 ,

π
64 .

The slopes of the lines corresponding to the error for each eigenvalue clearly reflects
the theoretical rate of convergence stated in Theorem 7.6. For k = 4 the error
is close to the machine precision for the two last refinements, therefore the effect
of propagation of rounding error prevents further decreasing. Remark 7.4 points
out that the stabilization on the right hand side is not necessary at the theoretical
level. In order to understand if it might impact the numerical results, we report in
Table 7.1 a comparison between the errors obtained using the stabilized or non-
stabilized bilinear form bh, corresponding to the first four distinct eigenvalues for

Fig. 7.1 Examples of Voronoi mesh of the unit square and the L-shaped domain
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Fig. 7.2 Rate of convergence for the first six eigenvalues on the square domain. Top left: k = 1,
top right: k = 2, bottom left: k = 3, bottom right: k = 4. (From: F. Gardini and G. Vacca. Virtual
element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal., 38(4):2026–
2054, 2018. Oxford University Press. Reproduced with permission)

k = 1 and k = 4. It might be appreciated that the magnitude of the error is actually
the same. A more detailed discussion on the role of the stabilizing parameters will
performed in Sect. 7.5.

L-Shaped Domain The Laplace eigenvalue problem with Neumann boundary
conditions on the non convex L-shaped domain � = (−1, 1)2 \ (0, 1) × (−1, 0)
(displayed in Fig. 7.1 right with an example of the used Voronoi mesh) is a
well-known benchmark test to check the capability of the numerical scheme to
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Fig. 7.3 Rate of convergence for the first eigenvalue (left) and the third one (right) on the L-
shaped domain (From: F. Gardini and G. Vacca. Virtual element method for second-order elliptic
eigenvalue problems. IMA J. Numer. Anal., 38(4):2026–2054, 2018. Oxford University Press.
Reproduced with permission)

approximate singular eigensolutions. The analysis presented above for the Dirichlet
eigenvalue problem extends analogously to this situation. In Fig. 7.3, we show the
convergence history for the first and the third eigenvalues computed with k = 1, 2, 3
and the stabilization parameter chosen as in (7.45). The reference value for the
eigenvalues has been taken form the benchmark solution set [23]. Due to the
presence of the reentrant corner, the first eigensolution is singular belonging to
H 1+r (�) with r = 2/3 − ε, hence the rate of convergence for the first eigenvalue
results to be 4/3. On the other hand, the third eigenfunction is analytic and the
scheme provides the correct O(h2k) rate of convergence.

7.4 Extension to Nonconforming and hp Version of VEM

This section is devoted to the presentation of the nonconforming, p and hp

versions of the discrete virtual space and reports the main results relative to the
approximation of the eigenvalue problem. In particular, we are going to report on
the results of [21, 27].
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7.4.1 Nonconforming VEM

We start by treating the nonconforming case following [27]. With the aim of
constructing the nonconforming space, we need some definitions. Let P+ and P−
be two elements sharing the edge e and n±e the outward unit normal vector to ∂P±.
The jump of v across any internal edge e is [[v]] = v+n+e + v−n−e , where v± is the
restriction of v to P±. If e ∈ E ∂

h we set [[v]] = vene.
The construction of the nonconforming virtual element space is based on a

different definition of the local space V k
h (P ). More precisely, instead of imposing

that the functions have a continuous trace along the element boundary, we prescribe
the normal derivative on each edge of P to be a polynomial of degree k − 1, that is
V k
h (P ) is given by (7.14) and (7.15) with

Ṽ k
h (P ) =

{
vh ∈ H 1(P ) : ∂vh

∂n
∈ Pk−1(P ) ∀e ⊂ ∂P, �vh ∈ Pk(P )

}
. (7.47)

The degrees of freedom are given by the moments of vh of order up to k−1 on each
edge e of P and the moments up to order k − 2 on P . As in the conforming case,
�∇k vh can be exactly evaluated by means of these degrees of freedom.

The global nonconforming virtual element space is then defined for, k ≥ 1, as

V
k,nc
h =

{
vh ∈ H 1,nc(Th; k) : vh|P ∈ V k

h (P ) ∀P ∈ Th

}
, (7.48)

where as in the finite element framework,

H 1,nc(Th; k) =
{
v ∈ H 1

h :
∫
e

[[v]] · nep ds = 0 ∀p ∈ Pk−1(e), ∀e ∈ Eh

}
,

(7.49)

being ne the outward normal unit vector to e with orientation fixed once and for all.
It is clear that V k,nc

h is not a subspace of H 1
0 (�), this will imply that in the error

analysis we have to take into account a consistency error.
Proposition 7.1 still holds true with vI being the interpolant of v constructed

using the above degrees of freedom, see for example [20].
The discrete eigenvalue problem reads: find (λh, uh) ∈ R × V

k,nc
h with uh "= 0

such that

ah(uh, vh) = λhbh(uh, vh) ∀vh ∈ V
k,nc
h , (7.50)

where the bilinear forms ah and bh are defined in (7.20) and in (7.28). We recall also
the discrete source problem: given f ∈ L2(�) find uh ∈ V

k,nc
h such that

ah(uh, vh) = bh(f, vh) ∀vh ∈ V
k,nc
h . (7.51)
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We define, as usual, the resolvent operator Th : L2(�)→ L2(�) with Thf = uh ∈
V
k,nc
h solution to (7.51) . We notice that in this case Th cannot be defined with range

in H 1
0 (�), therefore we shall obtain a result similar to Theorem 7.7 with the gap

measured in the broken H 1-norm.
The analysis of the nonconforming case can be carried on with the same

arguments used in the conforming case, stemming from the broken H 1-norm
estimate for the error of the solution of the source problem. We start with the
following result proved in [3]: there exists a positive constant C independent of
h such that

||u− uh||1,h ≤ C
(
|u− uI |1,h + |u− uπ |1,h

+ sup
vh∈V k,nc

h

|b(f, vh)− bh(f, vh)|
|vh|1,h + sup

vh∈V k,nc
h

Rh(u, vh)

|vh|1,h
)
,

(7.52)

where

Rh(u, vh) =
∑
P∈Th

aP (u, vh)− b(f, vh) =
∑
e∈E 0

h

∫
e

∇u · [[vh]] ds. (7.53)

The term Rh(u, vh) represents an additional consistency error which, in the spirit of
the second Strang Lemma [22, Th. 4.2.2], is due to the fact that the discrete functions
are not continuous across inter-element edges. With standard arguments using the
degrees of freedom of the nonconforming virtual elements on the element boundary
and a Poincaré inequality (see [16]), one can prove that for u ∈ H 1+r (�), with
r > 1/2, (see [3, Lemma 4.1])

Rh(u, vh) ≤ Chr ||u||1+r |vh|1,h ∀vh ∈ V
k,nc
h . (7.54)

In order to obtain the uniform convergence of Th to T , we first show the L2-error
estimate for the solution to the source problem. In the case of a convex domain, a
similar result can be found in [3, Theorem 4.5].

Theorem 7.8 Let f ∈ L2(�), u ∈ H 1
0 (�) and uh ∈ V

k,nc
h be the solutions to (7.2)

and (7.51), respectively. Then there exists a constant C, independent of h, such that
for t = min(1, r)

||u− uh||0 ≤ Cht
(
|u− uh|1,h + |u− uπ |1,h

+ ||f −�0
kf ||0 + sup

vh∈V k,nc
h

Rh(u, vh)

|vh|1,h
)
.

(7.55)
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Proof The proof follows the same lines as that of Theorem 7.3. We have to take
into account the consistency error. Let ψ ∈ H 1

0 (�) be the solution to (7.31), then
we have

‖u− uh‖2
0 =

∑
P

(
aP (u− uh,ψ − ψI )+ aP (u− uh,ψI )

)
+Rh(ψ, uh).

Thanks to (7.34) and (7.54), it remains to estimate the second term in the sum, which
can be split as follows:

∑
P

aP (u,ψI ) = b(f,ψI )+Rh(u,ψI )

∑
P

aP (uh,ψI ) = bh(f,ψI )+
∑
P

(
aP (uh,ψI )− aPh (uh,ψI )

)
.

We use again (7.54) and observe that the other terms can be estimated as the terms
III and IV in the proof of Theorem 7.3. Putting together all the estimates yields the
required bound. ��

Assuming that f ∈ H 1+s1(�) and that the solution u to problem (7.2) belongs
to H 1+s2(�) for some s1 > 0 and s2 > 1

2 , then we obtain again the bound (7.38).
This optimal rate of convergence yields the rate convergence for the gap between the
eigenspaces and for the eigenvalue error as in Theorems 7.5 and 7.6. The analogous
result as the one in Theorem 7.7 can be obtained if the gap is measured using the
broken H 1-norm.

Numerical results confirming the theory are presented in [27] where the domain
is a square or L-shaped. The nonconforming VEM has been tested on four different
types of meshes including also non convex elements providing always optimal
rate of convergence in the case of analytic eigenfunctions. In particular, in [27] a
comparison of the rate of convergence between conforming and nonconforming
approximation has been presented showing very close behavior. The benchmark
with the L-shaped domain has been also considered and again the results agree with
those presented in Fig. 7.3.

7.4.2 hp Version of VEM

Let us now recall briefly the p and hp version of the virtual element method and
show how these methods can be applied to the discretization of the eigenvalue
problem. We refer, in particular, to [21] although we are considering the simpler
model problem (7.11), and to [7] for the basic principles of hp virtual elements.

In this case the spaces we are considering, are labeled with a subindex n ∈ N

and refer to conforming polygonal decompositions of � denoted by Tn. Given an
element P ∈ Tn and the polynomial degree p ∈ N, V p

n (P ) is the local virtual space
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and coincides with the space V k
h (P ), with the due changes in the notation. Hence

the global space V
p
n is the subspace of H 1

0 (�) defined as V
p
n = {vn ∈ H 1

0 (�) :
vn|P ∈ V

p
n (P ) ∀P ∈ Tn}. Analogously, we shall use the subindex n instead of h in

all the definitions involving discrete quantities.
The results of approximation in the space V

p
n are similar to those in Propo-

sition 7.1, but trace the dependence on the degree p, so that the exponential
convergence of the error can be deduced (see [21, Theorem 2.1, and Corollary 2.3]).

Proposition 7.3 Given P ∈ Tn and u ∈ H 1+s(P ), s > 0, for all p ∈ N, there
exists uπ ∈ Pp(P ) and a constant C independent of p, such that

|u− uπ |�,P ≤ C
h

1+min(p,s)−�
P

p1+s−� ||u||1+s,P for 0 ≤ � ≤ s.

Moreover, given u ∈ H 1
0 (�) with u|P ∈ H 1+s(P ) for all P ∈ Tn and for some

s ≥ 1, there exists uI ∈ V
p
n such that

|u− uI |1 ≤ C
hmin(p,s)

ps−1

⎛
⎝∑

P∈Tn

||u||21+s,P
⎞
⎠

1
2

.

We point out that the use of high degree p is convenient in the approximation of
smooth (piecewise smooth) functions.

The approximation of the eigenvalue problem (7.11) can be written introducing
the local discrete bilinear forms already used in the h-conforming case (7.20)
and (7.28). Then the discrete eigenvalue problem reads: find (λn, un) ∈ R × V

p
n

with un "= 0 such that

an(un, vn) = λnbn(un, vn) ∀vn ∈ V
p
n . (7.56)

As it is standard for eigenvalue problems, we associate the discrete source problem:
given f ∈ L2(�) find un ∈ V

p
n such that

an(un, vn) = bn(f, vn) ∀vn ∈ V
p
n . (7.57)

In order to take advantage of the approximation properties listed in Proposition 7.3,
we define the resolvent operator T on H 1(�) in the spirit of Remark 7.1. Hence for
f ∈ H 1(�), Tf = u is the solution to the continuous source problem (7.2), while
in the discrete case, Tnf = un ∈ V

p
n stands for the solution to (7.57).

The convergence of eigensolutions derives from the uniform convergence of Tn
to T , which in turn is a consequence of the error estimates for the source problem
(see [21, Theorem 3.2]).

Theorem 7.9 Given f ∈ H 1(�), let u ∈ H 1
0 (�) and un ∈ V

p
n be the solutions

to (7.2) and (7.57), respectively. Assume that the restrictions of f and u to every
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element P ∈ Tn belong to H 1+s(P ) for some s ≥ 0, then there exists a constant C
independent of h and p such that

|u− un|1 ≤ C
hmin(p,s)

ps−1

(
h2||f ||1+s,n + ||u||1+s,n

)
.

For the proof it is enough to combine Proposition 7.3 with standard VEM arguments.
In [21], a precise dependence of C on the ellipticity constant of the form a and the
constants in (7.21), and (7.29) is obtained. In particular, it is shown that the constants
in (7.21) and (7.29) might depend on p, as we shall see later.

The result in Theorem 7.9, together with the arguments of [7, Section 5], yields
the following exponential convergence (see [21, Theorem 3.3]):

Theorem 7.10 Let u and un be as in Theorem 7.9, and assume that u is the
restriction on � of an analytic function defined on an extension of �. Then there
exist two positive constants C and c independent of the discretization parameters
such that

|u− un|1 ≤ Cexp(−cp).

Theorem 7.9 implies the uniform convergence of ||T − Tn||L (H 1(�),H 1(�)) to zero,
more precisely one can show that under the same assumptions as in Theorem 7.10
it holds true:

||T − Tn||L (H 1(�),H 1(�)) ≤ Cexp(−cp).

Then, applying Theorems 7.6 and 7.7, we obtain the spectral convergence both
for the error in the approximation of the eigenvalues, and the gap between the
continuous and the discrete eigenspaces, provided the eigenfunctions are analytic.
For the details, we refer to [21]. Figure 7.4 shows the convergence of the p-version
of VEM in comparison with the h-version with fixed p = 1, 2, 3 for the test case
on the square (0, π)2 with exact values given by (7.46). The domain is partitioned
into a family of Voronoi meshes, and for the p-version the coarsest one employed
for the h version has been used. These results has been obtained using the so called
diagonal recipe for the stabilization of a defined as

S̃Pa (ϕi, ϕj ) = max(1, aP (�∇k ϕi,�∇k ϕj ))δij

where ϕi is the canonical basis in Vn(P ) and δij is the Kroenecker index, and the
following choice for the stabilization of b

SPb (un, vn) =
hP

p2

∫
∂P

unvn ds,

which satisfies (7.29) with β∗(p) � p−6 and β∗(p) � 1.
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Fig. 7.4 Convergence of the error for the first four distinct Dirichlet eigenvalues of the Laplace
operator on the unit square domain. On the x-axis, the square root of the number of degrees of
freedom is reported (From: Čertík, F. Gardini, G. Manzini, L. Mascotto, and G. Vacca. The p- and
hp-versions of the virtual element method for elliptic eigenvalue problems. Comput. Math. Appl.,
79(7):2035–2056, 2020. Elsevier. Reproduced with permission)

Although these values inserted in the estimates reported in Theorem 7.9 might
seem pessimistic, in reality the numerical results seem to be not affected by the
behavior of the stability constants.

If the eigenfunctions are not smooth enough, the spectral convergence of p

version of VEM cannot be achieved. However, as in the finite element method,
one can resort to the hp approach which combines the p and the h versions using
locally geometrical refined meshes where the solution is singualar. For the source
problem, the analysis of the exponential convergence of the hp VEM in presence
of corner singularities has been tackled in [7]. The paper [21] merely investigates
numerically the convergence of the hp approximation of the eigenvalues, showing
the exponential decay in terms of the cubic root of the number of degrees of freedom,
in the case of eigenfunctions with finite Sobolev regularity. We report in Fig. 7.5
the convergence of the error for the first four distinct eigenvalues of the Laplace
eigenproblem with Neumann boundary condition on the L-shaped domain obtained
in [21]. It is well-known that the first eigenfunction is singular. In order to recover
the spectral convergence the hp-version of VEM has been applied on a graded mesh
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Fig. 7.5 Convergence of the error for the first four distinct Neumann eigenvalues of the Laplace
operator on the L-shaped domain. Comparison of the hp-version with the h-version with p =
1, 2, 3. On the x-axis, we report the cubic root of the number of degrees of freedom. (From: Čertík,
F. Gardini, G. Manzini, L. Mascotto, and G. Vacca. The p- and hp-versions of the virtual element
method for elliptic eigenvalue problems. Comput. Math. Appl., 79(7):2035–2056, 2020. Elsevier.
Reproduced with permission)

with a non uniform distribution of p. The domain has been divided into layers
around the reentrant corner and the local polynomial degree of Vn(P ) increases
as the layer is farer from the singularity. The results show spectral convergence with
respect to the cubic root of the number of degrees of freedom for the hp-version.

7.5 The Choice of the Stabilization Parameters

In Sect. 7.3 we have seen that an effective VEM approximation of eigenvalue
problems requires the introduction of appropriate stabilization parameters. In
practice, the discrete problem has the form of the following algebraic generalized
eigenvalue problem

Au = λMu (7.58)
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where both the involved matrices A and M depend on the stabilization parameters
introduced for the VEM discretization.

The results of the previous sections assume that such parameters have been fixed
and show the convergence of the method when the meshsize goes to zero and/or p
goes to ∞. By doing so, it is implicitly understood that the convergence behavior
depends on the choice of the parameters. In this section we want to discuss this
dependence and see how the discrete solution is influenced by such choice. We
would like to make it clear from the very beginning that the optimal strategy for
the choice of the parameters is still the object of ongoing research and that the aim
of our presentation is more related to the description of the phenomenon than to
an ultimate answer to the open questions. Nevertheless, the easy and quick recipe
will be that the parameter related to A should be large enough, while the parameter
related to M should be small enough and possibly equal to zero.

The results presented in this section are a condensed version of what is published
in [15]. The interested reader will find there a more general theory and more specific
numerical tests.

Although the general picture of VEM approximation of eigenvalue problems
is more complicated, the following simplified setting proves useful in order to
understand its main features.

7.5.1 A Simplified Setting

We assume that all matrices are symmetric and that A = A1 + αA2 and M =
M1 + βM2, where α ≥ 0 and β ≥ 0 play the role of the stabilization parameters.
More precisely, we assume that

(i) A1 and M1 are positive semidefinite;
(ii) A2 and M2 are positive semidefinite and positive definite on the kernel of A1

and M1, respectively;
(iii) A2 and M2 vanish on the orthogonal complement of the kernel of A1 and M1,

respectively.

In [15] we have studied several examples and described the spectrum of the
generalized eigenvalue problem (7.58) as a function of α and β. The main features
are easily understood with a simple example when α or β are constant.

When β > 0 is constant, then M is positive definite and the eigenvalues of (7.58)
are all positive, possibly vanishing for α = 0 (see assumption (i) above), and
are formed by two families: the first one is independent on α and corresponds to
eigenvectors v orthogonal to the kernel of A1 and to the eigenvalues λ that satisfy

A1v = λMv
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Fig. 7.6 Eigenvalues of (7.58) for β > 0 fixed [15]

(see assumption (iii) above), while the second family contains eigenvectors w in the
kernel of A1 and the eigenvalues λ = αμ where (μ,w) satisfies

A2w = μMw

(see assumption (ii) above). In particular the second family contains eigenvalues
growing linearly with α and includes, for α = 0, the eigenvalue λ = 0 with
eigenspace equal to the kernel of A1.

Figure 7.6 gives a graphical indication of the eigenvalues of (7.58) as a function
of α when β > 0 is fixed: the horizontal lines correspond to the eigenvalues of the
first family, while the linearly increasing curves starting at the origin correspond to
the eigenvalues of the second family.

The second case that is useful to discuss is when α > 0 is fixed and β is varying.
This case is analogous to the previous one with the roles of A and M exchanged.
This means that A is positive definite and the behavior of the solutions (ω,u) to the
following eigenvalue problem

Mu = ωAu



7 Virtual Element Approximation of Eigenvalue Problems 303

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

ei
ge

nv
al

ue
s

Case 2

Fig. 7.7 Eigenvalues of (7.58) for α > 0 fixed [15]

is analogous to the one depicted in Fig. 7.6 with α replaced by β. Since the original
eigenmodes of problem (7.58) are given by (λ,u) = (1/ω,u) for ω "= 0 and
(∞,u) for ω = 0, it turns out that the eigenvalues in this case are split again into
two families: the first one is independent of β and corresponds to eigenvectors v
orthogonal to the kernel of M1 and to the eigenvalues λ = 1/ω that satisfy

M1v = ωAv

while the second family contains eigenvectorsw in the kernel of M1 and eigenvalues
λ = 1/(βω) where (ω,w) satisfies

M2w = ωAw.

In particular, the second family contains eigenvalues that behave like decreasing
hyperbolas tending to zero as β goes to infinity. For β = 0 the eigenvalues of the
second family degenerate to λ = ∞ with eigenspace equal to the kernel of M1.

Figure 7.7 shows the behavior of the eigensolution of (7.58) for fixed α > 0
and varying β: the horizontal lines correspond to the eigenvalues of the first family
while the hyperbolas represent those of the second one.
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7.5.2 The Role of the VEM Stabilization Parameters

The general setting of the problems we have discussed in Sect. 7.3 does not fit
exactly the simplified framework presented in the previous subsection. In particular,
the matrices A and M do not satisfy the assumptions made above. Nevertheless, a
similar splitting into a matrix that is singular due to the presence of the projection
operator and a stabilizing matrix that takes care of the kernel of the singular part is
present both in A and M. Actually, the numerical experiments reveal a dependence
on the parameters that resembles pretty much the one presented in Figs. 7.6 and 7.7.

Redirecting the interested reader to [15] for more details, we report here only
some results related to the properties of the matrices A and M, together with
some numerical experiments corresponding to the simplified situations of Figs. 7.6
and 7.7. All the presented results are taken from [15].

We consider � as the square of side π and introduce a sequence of five Voronoi
meshes of polygons with increasing number of elements from N = 50 to N = 800.
Table 7.2 reports the dimension of the kernels of the two matrices A1 and M1 as a
function of the meshsize and of the degree of approximation k. As it is known, both
matrices are non singular in the lowest order case for k = 1; the matrix M2 is non
singular for k = 2 as well for the considered meshes.

For completeness, we also computed the lowest eigenvalue of the generalized
problem

A1u = λM1u

that is reported in Table 7.3. The fact that the value of the eigenvalue is decreasing
as the number of elements increases, confirms the need for a stabilization.

In the rest of this section we show and comment some results of our computations
of the eigenvalues of the Dirichlet problem for the Laplace operator in the case of
the mesh N = 200.

Table 7.2 Dimension of the
kernels of A1 and M1 with
respect to the degree k and
the number of elements N in
the mesh

k N = 50 N = 100 N = 200 N = 400 N = 800

Kernel of A1

1 0 0 0 0 0

2 3 30 99 258 565

3 27 94 246 588 1312

Kernel of M1

1 0 0 0 0 0

2 0 0 0 0 0

3 0 1 43 182 504

Table 7.3 First eigenvalues of A1x = λB1x for different meshes

N = 50 N = 100 N = 200 N = 400 N = 800

1.92654e+00 1.74193e+00 1.06691e+00 6.81927e−01 5.54346e−01
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Fig. 7.8 Eigenvalues computed for β = 1 and α ∈ [0, 10] with k = 3 [15]

Figure 7.8 reports the computed eigenvalues in the range [0, 40], for β = 1 and
α ∈ [0, 10] with elements of degree k = 3. Comparing these results with Fig. 7.6 it
is easy to recognize the horizontal lines corresponding to the good eigenvalues we
are interested in. At the same time it is apparent the presence of some oblique lines
that correspond to spurious modes introduced by the stabilization of A.

Figure 7.9 shows the eigenfunctions corresponding to the marked values of
Fig. 7.8 that belong to the same oblique line. It can be seen that the eigenfunctions
look similar to each other, which confirms the analogy with the situation presented
in Fig. 7.6.

Several other cases when β ≥ 0 is fixed and α is varying are reported in Fig. 7.10
for different values of k.

The last computations of this section involve the situation when α > 0 is fixed
and β is varying.

Figure 7.11 shows the behavior of the eigenvalues for different values of α and
k and with β varying in the interval [0, 5]; the analogies with the simplified case
shown in Fig. 7.7 are evident.

In conclusion, the reader might wonder what is our suggestion for the choice
of the parameters. The answer is not immediate and is not definitive. One clear
message is that the dependence on β may have more dangerous effects than the
one on α. As a rule of thumb, our numerical tests indicate that α should be chosen
large enough, possibly using the same criteria adopted for the source problem, while
small values of β (or even β = 0) are preferable. Clearly, a small value of β leads to
an ill-conditioned problem: the limit case β = 0 may corresponds to a degenerate
eigenvalue problem where the matrix M is singular. As it is typical for eigenvalue
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Fig. 7.9 Eigenfunctions associated with the marked eigenvalues of Fig. 7.8 [15]

problems, if h is not small enough the eigenvalues are not yet well resolved and
the dependence on the parameters might be more complicated to analyze and may
lead to useless results. In order to better illustrate how large values of β can produce
wrong results, in Fig. 7.12 we show the computation of the first four eigenvalues
with α = 10, k = 1, and β ∈ [0, 400]. Each subplot represents one of the first four
eigenvalues as function of β; different colors correspond to different meshes. These
plots should be compared to Fig. 7.11. In particular, Fig. 7.11c shows computations
for the same values of α and k on the mesh N = 200. We comment in detail the
behavior of the approximation to the fourth eigenvalue shown in the bottom/right
subplot of Fig. 7.12; similar considerations apply to the other eigenvalues. First
of all, it is clear that if h is small enough then the solution is correct: when
N = 6400 the fourth computed eigenvalue is independent on β and provides a
good approximation of λ = 8. On the coarsest mesh, however, the results obtained
are useless in order to predict the correct value of the fourth eigenvalue: for large
values of β the computed eigenvalue is much smaller than 8 and tends to zero as β
increases; for a value of β between 10 and 20 the computed eigenvalue crosses the
line λ = 8 and it becomes much larger for smaller values of β reaching a value of
approximately 12 for β = 0. The results for the next mesh for N = 400 are similar
for large β but are significantly different after the red line crosses the value λ = 8.
For values of β smaller than the crossing point, the computed eigenvalue remains
closer to the correct value of the exact solution. Another interesting phenomenon
related to this curve is that when it reaches λ = 2 and, more evidently, λ = 5, the
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Fig. 7.10 Eigenvalues with fixed k and β ≥ 0 and varying α ∈ [0, 10] [15]. (a) k = 1, β = 0,
α ∈ [0, 10]. (b) k = 1, β = 1, α ∈ [0, 10]. (c) k = 1, β = 5, α ∈ [0, 10]. (d) k = 2, β = 0,
α = [0, 10]. (e) k = 2, β = 1, α = [0, 10]. (f) k = 2, β = 5, α = [0, 10]. (g) k = 3, β = 0,
α = [0, 10]. (h) k = 3, β = 1, α = [0, 10]. (i) k = 3, β = 5, α = [0, 10]

curve seems to bend and to be attracted for a while by the first and second (double)
eigenvalue. This behavior is due to the fact that the curve is crossing other computed
eigenvalues which are not plotted in this figure and, after the crossing, it continues
along another hyperbola.

7.6 Applications

We conclude this paper with a discussion on the application of VEM to eigenvalue
problems arising from various models and formulations. We start with a presentation
of the mixed formulation for our model problem and then we continue with other
applications following the chronological order of the related publications.
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Fig. 7.11 Eigenvalues with fixed k and α > 0 and varying β ∈ [0, 5] [15]. (a) k = 1, α = 0.1,
β ∈ [0, 5]. (b) k = 1, α = 1, β ∈ [0, 5]. (c) k = 1, α = 10, β ∈ [0, 5]. (d) k = 2, α = 0.1,
β = [0, 5]. (e) k = 2, α = 1, β = [0, 5]. (f) k = 2, α = 10, β = [0, 5]. (g) k = 3, α = 0.1,
β = [0, 5]. (h) k = 3, α = 1, β = [0, 5]. (i) k = 3, α = 10, β = [0, 5]

7.6.1 The Mixed Laplace Eigenvalue Problem

In [30] the mixed formulation of the Laplace eigenvalue is considered. The
following usual mixed formulation is consider:� = H(div;�), U = L2(�), so that
we are seeking for λ ∈ R and a non vanishing u ∈ U such that for σ ∈ H(div;�) it
holds

(σ , τ )+ (div τ , u) = 0 ∀τ ∈ �

(div σ , v) = −λ(u, v) ∀v ∈ U.

It is well known that the analysis of the approximation of the Laplace eigenvalue
in mixed form requires particular care because of the lack of compactness of the
solution operator with respect to the component σ . The analysis of [30] extends the
theory of [11] to the virtual element method. The discrete spaces are constructed as
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Fig. 7.12 First four eigenvalues depending on β for α = 10 and k = 1 [15]

follows: the space � is approximated by the following space described in [19]

�h = {τh ∈ � : (τh · n)|e ∈ Pk(e) ∀e ∈ Eh, div τh|P ∈ Pk−1(P ),

rot τh|P ∈ Pk−1(P ) ∀P ∈ Th}

while the space U is approximated by a standard piecewise discontinuous space

Uh = {vh ∈ U : vh|P ∈ Pk−1(P ) ∀P ∈ Th}.

The matrix form of the approximate problem reads

(
A B%
B 0

)(
σ

u

)
= −λ

(
0 0
0 M

)(
σ

u

)
.

In this case, the matrix M does not contain any stabilization parameter since the
space Uh is a standard mass matrix arising from discontinuous finite elements. The
same applies to the matrix B that can be constructed directly by using the degrees of
freedom of the spaces�h andUh. Hence, the only matrix that requires a stabilization
is A.

The analysis of [30] shows, using the tools of [11] and the properties of the spaces
�h and Uh, the following uniform bound for the solution of the source problem with
right hand side f ∈ L2(�):

‖σ − σ h‖0 + ‖u− uh‖0 ≤ Cht‖f ‖0



310 D. Boffi et al.

where t = min(k, r), r being such that u ∈ H 1+r (�) (see (7.13)). From this
estimate the convergence of the eigenvalues and eigenfunctions follows by standard
arguments and an appropriate definition of the solution operator (see Sect. 7.2
and [10]).

7.6.2 The Steklov Eigenvalue Problem

Another formulation where the stabilization parameter enters only the matrix on the
left hand side of the discrete system, is given by the so called Steklov eigenvalue
problem

�u = 0 in �

∂u

∂n
= λu on ∂�.

A more general setting could be actually considered by taking the second equation
only on a subset �0 of ∂� and homogeneous Neumann boundary conditions on
the remaining part of the boundary. We refer to [32] for the analysis of its VEM
discretization.

The variational formulation is obtained by considering V = H 1(�) and seeks
for λ ∈ R and a non vanishing u ∈ V such that

∫
�

∇u · ∇v dx = λ

∫
∂�

uv ds ∀v ∈ V.

Since the bilinear form on the left hand side is not H 1(�)-elliptic, the analysis is
based on the use of a shift argument by adding the boundary integral on both sides of
the eigenvalue problem in weak form. Hence, the resolvent operator and its discrete
counterpart are defined using the shifted problem. In this case, it is necessary to
consider T : V → V in order to give sense to the datum of the source problem.

The approximation of the problem makes use of the standard VEM spaces
described in Sect. 7.3. As we have seen before, the discrete problem requires to
introduce a discretization of the bilinear form on the left hand side, with the addition
of a stabilization term. Whereas, the integral on the right hand side can be computed
using the degrees of freedom on the element boundaries.

For f ∈ H 1(�), the solution to the associated source problem belongs to
H 1+r (�), with r > 1

2 . This implies that the resolvent operator is compact on V ,
so that the analysis in [32] relies on the standard theory for compact operators that
we have recalled in Sect. 7.2. In particular, it is based on the following uniform
convergence of Th to T :

‖(T − Th)f ‖1 ≤ Chr‖f ‖1 ∀f ∈ H 1(�),
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which in turn gives the same rate of convergence for the gap between eigenspaces
and double rate of convergence for the eigenvalue error.

The matrix form of the discrete problem is

Au = λMu,

where A depends on the stabilization parameter αP . In [32] one can find an
interesting test case which models the sloshing modes of a two dimensional fluid
contained in a square. In this test case, � is the unit square and its boundary is
divided into two parts: �0 the top side of the square and �1 the remaining three
sides. On �0 the Steklov condition is imposed, while on �1 homogeneous Neumann
condition is enforced. The convergence analysis with fixed parameter αP = 1 for
all P ∈ Th confirms the theoretical results. The paper contains, for the first time,
the study of the effect of the stability on the computed eigenvalues on a fixed mesh.
It has been observed that, when αP is independent of the element P and varies
from 4−3 to 43 spurious eigenvalues appear among the correct ones. In Fig. 7.13,
we plot the first 16 eigenvalues reported in [32, Table 3]. These eigenvalues were
been obtained using a triangular mesh, considering the middle point of each edge
as a new vertex of the polygon. Each side of the square has been divided into 8
parts and virtual elements with k = 1 are applied. The plot on the right is a zoom
of the one on the left. The dotted black horizontal lines represent the first 3 exact
eigenvalues. One can see that for αP > 1 the spurious eigenvalues seems to be
proportional to the stabilization parameter and this appears to be in agreement with
the analysis reported in Sect. 7.5, while the approximation of the three correct ones
is independent of αP .
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Fig. 7.13 First 16 eigenvalues for 4−3 ≤ αP ≤ 43
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7.6.3 An Acoustic Vibration Problem

The next application has been considered in [8] and is an example where only the
matrix on the right hand side of the discrete algebraic system contains a parameter.

The model describes the free vibrations of an inviscid compressible fluid within
a bounded rigid cavity �. The simplest model consists in finding eigenvalues λ ∈ R

and non vanishing eigenfunctions u ∈ H0(div;�) such that

∫
�

div u div v dx = λ

∫
�

u · v dx ∀v ∈ H0(div;�).

Here H0(div;�) is the subspace of H(div;�) of functions with vanishing trace of
the normal component on ∂�.

The approximation is performed by the following VEM space that has been
designed taking inspiration from [6, 19]:

Vh = {vh ∈ H0(div;�) : (vh · n)|e ∈ Pk(e) ∀e ∈ Eh, div vh|P ∈ Pk(P ),

rot vh|P = 0 ∀P ∈ Th}.

The discretized problem has the classical form

Au = λMu

and the matrix A can be formed directly using the degrees of freedom since the
divergence of elements in Vh are piecewise polynomials. On the other hand, the
mass matrix M should be constructed by using the typical VEM approach and
requires a stabilization in order to control the non polynomial part of the space
Vh.

The convergence analysis of [8] is performed as in case of standard finite
elements [9] by shifting the solution operator in order to deal with the kernel
of the divergence operator, and by exploiting the theory of [24] related to the
analysis of non compact operators. More precisely, the continuous solution operator
T : H0(div;�)→ H0(div;�) is defined as the solution T f ∈ H0(div;�) of

∫
�

divT f div v dx +
∫
�

T f · v dx =
∫
�

f · v dx ∀v ∈ H0(div;�)

and its discrete counterpart Th : Vh → Vh is defined as the solution Thfh ∈ Vh of

∫
�

div Thfh div vh dx +
∫
�

Thfh · vh dx =
∫
�

fh · vh dx ∀vh ∈ Vh.
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The theory of [24] consists in showing the following mesh dependent uniform
convergence

lim
h→0

sup
fh∈Vh‖fh‖div=1

‖(T − Th)fh‖div = 0

together with the density of Vh in H0(div;�). In particular, in [8] it is proved the
following estimate

sup
fh∈Vh‖fh‖div=1

‖(T − Th)fh‖div ≤ Chs,

where s ∈] 1
2 , 1] is the regularity index of the solution to the associated source

problem. This results implies that for h small enough the virtual element method
does not introduce spurious eigenvalues interspersed among the physical ones
we are interested in. Optimal error estimates depending on the regularity of the
eigenfunctions follow by combining the technique of [25] with the first Strang
lemma.

The above theoretical results were obtained when the stability parameter βP
is positive. The numerical experiments show that for k = 0 the optimal second
order rate of convergence for the eigenvalues can be achieved for several choices
of meshes. The effect of the stability constant has also been investigated. In
Fig. 7.14, we plot the first eigenvalue for βP ranging from 2−6 to 26 for different
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Fig. 7.14 First eigenvalue with 2−6 ≤ β ≤ 26 and different meshes
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square meshes as reported in [8, Table 4]. It can be seen that as the mesh gets
finer the results are less sensible to the value of βP , while for coarse meshes
the behavior looks similar to that shown in Fig. 7.12 corresponding to Case 2 in
Sect. 7.5. Moreover, although the choice βP = 0 is not covered by the theory, the
computational results appear to be very accurate in this case, and also this is in
agreement with the observations reported in Sect. 7.5.

7.6.4 Eigenvalue Problems Related to Plate Models

The computation of vibration frequencies and modes of an elastic solid is a very
important topic in engineering applications. This and the following sections are
devoted to report on the results obtained in [31, 34, 35] concerning the use of VEM
to approximate the eigenvalues of the Kirchhoff–Love model for plates and of linear
elasticity equations.

We consider a plate whose mean surface, in its reference configuration, occupies
a polygonal bounded domain � ⊂ R

2. The plate is clamped on its whole boundary.
Let u denote the transverse displacement and λ the vibration frequency, then the
plate vibration problem, modeled by Kirchhoff–Love equations reads: find λ ∈ R

and a non vanishing u such that:

�2u = λu in �

u = ∂u

∂n
= 0 on ∂�.

The corresponding weak form reads: find (λ, u) ∈ R×H 2
0 (�) with u "= 0 such that

∫
�

D2u : D2v dx = λ

∫
�

uv dx ∀v ∈ H 2
0 (�), (7.59)

where D2v denotes the Hessian matrix of v. The associated resolvent operator T
is defined for all f ∈ H 2

0 (�) as the solution Tf of the corresponding source
problem. It results to be self adjoint and compact thanks to the fact that Tf belongs
to H 2+s(�) for some s ∈] 1

2 , 1] being the Sobolev regularity for the biharmonic
equation with homogeneous Dirichlet boundary conditions.

We recall here the construction of the virtual elements space proposed in [35]
which differs from those presented in the previous sections since C1-regularity
is required for approximating functions in H 2

0 (�). Given a sequence {Th}h of
decompositions of � into polygons P , we introduce first the following finite
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dimensional space:

Vh(P ) =
{
vh ∈ H 2(P ) : �2vh ∈ P2(P ), vh|∂P ∈ C0(∂P ),

∇vh|∂P ∈ C0(∂P )2, vh|e ∈ P3(e),
∂vh

∂n

∣∣∣
e
∈ P1(e) ∀e ∈ ∂P

}
.

The corresponding degrees of freedom are the values of vh and ∇vh at the vertices
of P . Using these degrees of freedom it is possible to define a projection operator
��

2 : Vh(P ) → P2(P ) ⊆ Vh(P ) by solving for each v ∈ Vh(P ) the following
problem:

aP�(�
�
2 v, q) = aP�(v, q) ∀q ∈ P2(P )

((��
2 v, q))P = ((v, q))P ∀q ∈ P1(P ),

where

aP�(u, v) =
∫
P

D2u : D2v dx, ((v, q))P =
NP∑
i=1

u(Vi)v(Vi) ∀u, v ∈ H 2(P ),

and Vi i = 1, . . . , NP are the vertices of P .
Then the local virtual space is:

Wh(P) =
{
vh ∈ Vh(P ) :

∫
P

(��
2 vh − vk)q dx = 0 ∀q ∈ P2(P )

}
.

Thanks to this characterization of Wh(P), the L2(P )-projection operator onto
P2(P ) coincides with ��

2 .
With the above definitions, the global virtual space is defined as:

Wh = {vh ∈ H 2
0 (�) : vh|P ∈ Wh(P)}

and the discrete bilinear forms are given for all uh, vh ∈ Wh by

ah(uh, vh) =
∑
P∈Th

aP�,h(uh, vh), bh(uh, vh) =
∑
P∈Th

bP�,h(uh, vh),

with

aP�,h(uh, vh) = aP�(�
�
2 uh,�

�
2 vh)+ sP�,a(uh −��

2 uh, vh −��
2 vh)

bP�,h(uh, vh) =
∫
P

��
2 uh�

�
2 vh dx + sP�,b(uh −��

2 uh, vh −��
2 vh).
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As usual the stabilization terms sP�,a and sP�,b have been added in order to guarantee
consistency and stability.

With the above definitions, the discrete counterpart of equation (7.59) reads: find
(λh, uh) ∈ R×Wh with u "= 0 such that

ah(uh, vh) = λhbh(uh, vh) ∀vh ∈ Wh.

After introducing the resolvent operator Th : Wh → Wh as the mapping
that associates to any fh ∈ Wh the solution Thfh to the corresponding source
problem, the convergence analysis follows from the theory developed in [24, 25]
and gives optimal rate of convergence for the gap between continuous and discrete
eigenspaces according to the regularity of the eigenfunctions and double rate of
convergence for the eigenvalue error.

The numerical results require that the choice for the stabilization terms is made
precise, therefore using the degrees of freedom of the local space one can set

sP�,a(uh, vh) = αP

NP∑
i=1

(uh(Vi)vh(Vi)+ h2
Vi
∇uh(Vi) · ∇vh(Vi))

sP�,b(uh, vh) = βP

NP∑
i=1

(uh(Vi)vh(Vi)+ h2
Vi
∇uh(Vi) · ∇vh(Vi))

for all uh, vh ∈ Wh(P). In the numerical experiments presented in [35], the stabi-
lization parameters αP and βP are chosen as the mean value of the eigenvalues of
the local matrices aP�(�

�
2 uh,�

�
2 vh) and

∫
P
��

2 uh�
�
2 vh dx, respectively. Hence,

the matrices A and M of the associated algebraic eigenvalue problem Au = λMu
depend on stabilization parameters and we shall discuss later on their choice.

The numerical results reported in [35] show that the first four eigenvalues
converge to the exact or extrapolated values with quadratic rate in agreement with
the theoretical results.

In order to analyze the effect of the parameters on the computed eigenvalues,
in [35] it has been done the choice to multiply the stabilizing forms sP�,a and sP�,b

by the same value of the parameter. This makes very difficult to compare the results
with the behavior described in Sect. 7.5, since the better choice would be to take
large values of αP and small ones of βP . Coherently, the conclusions of [35] is that
the optimal choice is for value of the parameter in the middle.

We end this subsection with some consideration relative to the buckling problem
of a clamped plate, which can be formulated as a spectral problem of fourth order
as follows: given a plane stress tensor field η : � → R

2×2, find the non vanishing



7 Virtual Element Approximation of Eigenvalue Problems 317

deflection of the plate u and the eigenvalue (the buckling coefficient) λ such that

�2u = −λ div(η∇u) in �

u = ∂u

∂n
= 0 on ∂�.

Setting a�(u, v) =
∫
�
D2u : D2v dx and bb(u, v) =

∫
�

η∇u∇v dx the weak
problem can be written as (7.59) with bb(u, v) on the right hand side instead of the
L2(�)-scalar product.

The virtual element discretization of this problem has been discussed in [34]
using virtual element spaces of any degree k ≥ 2 introduced in [18]:

Vh(P ) =
{
vh ∈ Ṽh(P ) :

∫
P

(vh −��
k vh)q dx = 0 ∀q ∈ P

∗
k−3(P ) ∪ P

∗
k−2(P )

}

where P
∗
�(P ) denotes homogeneous polynomials of degree � with the convention

that P∗−1(P ) = {0}. In the definition above the following notation have been used:
for r = max(3, k) and s = k − 1

Ṽh(P ) =
{
vh ∈ H 2(P ) : �2vh ∈ Pk−2(P ), vh|∂P ∈ C0(∂P ),

∇vh|∂P ∈ C0(∂P )2, vh|e ∈ Pr (e),
∂vh

∂n

∣∣∣
e
∈ Ps (e) ∀e ∈ ∂P

}
.

and ��
k : H 2(P ) → Pk(P ) ⊆ Ṽh(P ) is the computable projection operator

solution of local problems:

aP�(�
�
k v, q) = aP�(v, q) ∀q ∈ Pk(P ) ∀v ∈ H 2(P )

̂��
k v = v̂, ̂∇��

k v = ∇̂v

with v̂ = 1
NP

∑NP

i=1 v(Vi), and Vi the NP vertices of P . Then the discrete bilinear
form ah is the sum of local terms composed by a consistency and a stabilizing part

aPh (uh, vh) = aP�(�
�
k uh,�

�
k vh)+ sP�,a(uh −��

k uh, vh −��
k vh).

On the other hand the discrete right hand side can be constructed using the degrees
of freedom without the necessity of stabilizing

bPb (uh, vh) =
∫
P

η��
k−1uh�

�
k−1vh dx.

The analysis of this problem follows the same lines as the one for the vibrating plate
reported above. In [34] the theoretical results are confirmed by several numerical
experiments showing that the method produces accurate solutions.
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Another eigenvalue problem that involves a fourth order operator and whose
approximation has been analyzed when VEM spaces are used, can be found in [33]
where a transmission problem is considered.

7.6.5 Eigenvalue Problems Related to Linear Elasticity
Models

In this section we report on the analysis presented in [31] about the VEM
approximation of the linear elasticity eigenvalue problem in two space dimensions.
We consider the functional space V = H 1

�D
(�)2, where �D is the part of ∂�

where homogeneous Dirichlet boundary condition are imposed, that is where the
displacement of the structure is prescribed and equal to zero. The equation we are
interested in is: find λ ∈ R and u ∈ V different from zero such that

∫
�

C ε(u) : ε(v) dx = λ

∫
�

�u · v dx,

where � > 0 is the density of the material, ε is the symmetric gradient, and the
compliance tensor C is defined as

C τ = 2μτ + λtr(τ )I,

μ and λ being the Lamé constants.
It is well known that the problem under consideration is associated with a

compact resolvent operator, so that the analysis of its approximation relies on the
standard Babuška–Osborn theory.

The VEM discretization makes use of the natural vectorial generalization Vh ⊂
V based on the local standard spaces (7.14) and of the projection operator defined
as in (7.15) with the due modifications.

The discrete problem has the standard form of a generalized eigenvalue problem
Au = λMu, where both matrices A and M contain a stabilization parameter. The
analysis, both a priori and a posteriori, is performed for a given choice of the
stabilizing parameters, which is analogous to the one described in Sect. 7.3.4 As
in [35], see also Sect. 7.6.4, in [31] a study on the dependence of the stabilizing
parameters is performed when the parameters of A and M are chosen equal to each
other. It turns out that when the parameter is not too large or not too small, the first
eigenvalues of the considered example are not polluted by spurious modes. This is
compatible with what we have found in Sect. 7.5, although a safer choice would
imply to take a larger parameter for stabilizing the matrix A and a smaller one (or
even zero) for M.
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Chapter 8
Virtual Element Methods for a
Stream-Function Formulation
of the Oseen Equations

David Mora and Alberth Silgado

Abstract The aim of this work is to analyze virtual element methods to solve the
Oseen equations in terms of the stream-function on simply connected polygonal
domains. The methods are based on a C1-conforming discretization of arbitrary
order k ≥ 2. Under standard assumptions on the computational domain, we establish
that the resulting schemes converge with an optimal order in H 2(�). The proposed
methods have the advantages of using general polygonal meshes and the possibility
to compute further variables of interest, such as the velocity, the vorticity and
the pressure. Finally, we report some numerical test illustrating the behavior of
the virtual schemes and supporting our theoretical results on different families of
polygonal meshes.

8.1 Introduction

The numerical solution of the time-dependent Navier-Stokes equations is still a great
challenge of computational fluid dynamics. Using time discretization and lineariza-
tion, the generalized Oseen problem arises as an important subproblem. Different
formulations and discretizations have been proposed and analyzed in the last years
for the Oseen equations; see for instance [2, 6, 10–12, 21, 25, 28, 33, 34, 39] and the
references therein.

The aim of the present work is to introduce and analyze conforming virtual
element methods (VEM) to solve the Oseen equations on polygonal simply con-
nected domains, formulated in terms of the stream-function of the velocity field. We
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observe that it corresponds to a fourth order PDE. Thus, a conforming discretization
requires globally C1 continuity. Among the important advantages of VEM, in this
work, we will exploit the possibility of easily implement global discrete spaces of
H 2(�) (see [24, 36]) to solve the Oseen problem.

The VEM introduced in [13] is a recent generalization of the finite element
method that allows to use general polygonal/polyhedral meshes. The method has
been applied successfully in a large range of problems in fluid mechanics; see
for instance [8, 16, 17, 19, 26, 27, 29, 35, 37, 40, 42, 44, 45, 48, 49], where
Stokes, Brinkman, Stokes–Darcy, Navier-Stokes and Boussinesq equations have
been recently developed.

Recently in [47], it has been presented a C1 VEM method for the Brinkman
problem written in terms of the stream-function. In this work, we will extend these
results to the generalized Oseen problem, where an additional term is presented
in the momentum equation. There are several advantages of utilizing the stream-
function formulation for fluid flow problems: there is only one scalar variable, the
incompressible condition is satisfied automatically, the stream-function is one of the
most useful tools in flow visualization. Moreover, further variables of interest, such
as the velocity, the fluid vorticity and the pressure, can be easily obtained from the
VEM discrete stream-function. In fact, we will show that we compute the velocity
by a simple postprocess and we recover the fluid pressure by solving a primal
formulation of a second order elliptic problem with right hand side coming from
the discrete stream-function (see [43, 47]). We note that there are other procedures
to recover fluid pressure. For instance, in [32] has been presented an algorithm for
pressure recovery which is based on a mixed finite element discretization with inf-
sup stable pairs. In addition, we will propose a novel strategy to recover the fluid
vorticity, which is key in several applications [5, 20, 38], from the virtual element
stream-function solution with the help of a proper polynomial projector.

This paper is concerned with a non-symmetric VEM discretization of arbitrary
order k ≥ 2 for the Oseen equations formulated in terms of the stream-function,
which will be analysed using the Lax-Milgram Theorem and we will show well-
posedness provided a CFL type condition is satisfied (cf. (8.33)). Under standard
assumptions on the polygonal meshes, we establish optimal order error estimates in
H 2(�). Moreover, we show that velocity, vorticity and pressure can be recovered
(cf. Sect. 8.5). We also derive error estimates for these fields. In particular, under
the assumptions that the family of polygonal meshes is quasi-uniform and that
the continuous solutions are sufficiently smooth (pressure and stream-function), we
write an error estimate in H 1(�) for the fluid pressure. In summary, the advantages
of the proposed VEM methods are: the use of general polygonal meshes and the
possibility to recover further variables of interest for fluid flow problems.

The rest of the paper is organized as follows: In Sect. 8.2, we introduce the
variational formulation of the Oseen problem in terms of the stream-function. We
prove existence and uniqueness of this formulation by using the Lax-Milgram
Theorem. In Sect. 8.3, we present the virtual element discretization of arbitrary order
k ≥ 2. We also prove the existence and uniqueness of the discrete formulation. In
Sect. 8.4, we obtain error estimates for the stream-function in H 2(�). In Sect. 8.5,
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we recover other important variables for fluid flow problems from the discrete
stream-function, such as the velocity u, the fluid vorticity ω and the fluid pressure
p. In Sect. 8.6, we report a set of numerical examples which allows us to assess the
performance of the proposed method.

Throughout the paper, we will follow the usual notation for Sobolev spaces and
norms [1]. We will denote a simply connected polygonal Lipschitz bounded domain
of R2 by � and n = (ni)1≤i≤2 is the outward unit normal vector to the boundary
∂�. For D an open bounded domain, the L2(D) inner product will be denoted by
(·, ·)0,D . Moreover, c andC, with or without subscripts, tildes, or hats, will represent
a generic constant independent of the mesh parameter h, assuming different values
in different occurrences.

8.2 Model Problem

Let � ⊂ R
2 be a simply connected polygonal domain with boundary � := ∂�.

The incompressible Oseen equations are given by the following set of equations
and boundary condition:

−ν�u+ (∇u)β + γu+∇p = f in �,

div u = 0 in �,

u = 0 on �,

(p, 1)0,� = 0,

(8.1)

where u : �→ R
2 is the velocity field, p : �→ R is the pressure field, f : �→ R

2

is the external body force, ν > 0 the kinematic viscosity, β ∈ W 1,∞(�)2 with
divβ = 0 a given convective velocity field, and γ ∈ L∞(�) a given scalar function,
respectively. We assume that there exists γ0 such that γ (x) ≥ γ0 > 0 for almost all
x ∈ �.

The standard velocity-pressure variational formulation of the Oseen problem
reads as follows: find (u, p) ∈ H 1

0 (�)2 × L2
0(�), such that

ν

∫
�

∇u : ∇v+
∫
�

(∇u)β · v+
∫
�

γu · v−
∫
�

p div v =
∫
�

f · v ∀v ∈ H 1
0 (�)2,

∫
�

q div u = 0 ∀q ∈ L2
0(�),

where L2
0(�) := {q ∈ L2(�) : (q, 1)0,� = 0

}
.

Let us introduce the space of divergence-free functions

V :=
{

v ∈ H 1
0 (�)2 : div v = 0

}
.
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Since � is a simply connected domain, a well known result states that a vector
function v ∈ V if and only if there exists a scalar function ϕ ∈ H 2(�), which is
called stream-function, such that

v = curl ϕ ∈ H 1
0 (�)2.

The functionϕ is defined up to a constant (see [41]). Thus, we consider the following
space

X :=
{
ϕ ∈ H 2(�) : ϕ = ∂nϕ = 0 on �

}
,

where ∂n denotes the normal derivative. We endow X with the norm

‖ϕ‖X := |ϕ|2,� ∀ϕ ∈ X.

Then, choosing ψ ∈ X the stream-function of the velocity field u ∈ V (i.e.
u = curl ψ), we write the following equivalent weak formulation of the Oseen
problem: find ψ ∈ X such that

ν

∫
�

D2ψ : D2φ+
∫
�

(∇curlψ)β ·curlφ+
∫
�

γ curlψ ·curlφ =
∫
�

f·curlφ ∀φ ∈ X,

where “:” denotes the usual scalar product of 2 × 2-matrices and D2φ :=
(∂ij φ)1≤i,j≤2 denotes the Hessian matrix of φ. We rewrite this variational problem
as follows: find ψ ∈ X such that

O(ψ, φ) := νA(ψ, φ)+ B(ψ, φ) + C(ψ, φ) = F(φ) ∀φ ∈ X, (8.2)

where A : X × X → R, B : X × X → R and C : X × X → R are the bilinear
forms and F : X→ R is a linear functional, defined as follows:

A(ψ, φ) :=
∫
�

D2ψ : D2φ, ∀ψ,φ ∈ X, (8.3)

B(ψ, φ) :=
∫
�

(∇curl ψ)β · curl φ ∀ψ,φ ∈ X, (8.4)

C(ψ, φ) :=
∫
�

γ curl ψ · curl φ ∀ψ,φ ∈ X, (8.5)

F(φ) :=
∫
�

f · curl φ ∀φ ∈ X. (8.6)

The following lemma establishes some properties for the bilinear forms and the
linear functional previously defined.
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Lemma 8.1 There exist positive constants Cβ and Cγ such that the forms defined
in (8.3)–(8.6) satisfy the following properties:

|A(ϕ, φ)| ≤ ‖ϕ‖X‖φ‖X ∀ϕ, φ ∈ X,

A(φ, φ) ≥ ‖φ‖2
X ∀φ ∈ X,

|B(ϕ, φ)| ≤ Cβ‖ϕ‖X‖φ‖X ∀ϕ, φ ∈ X,

|C(ϕ, φ)| ≤ Cγ ‖ϕ‖X‖φ‖X ∀ϕ, φ ∈ X,

C(φ, φ) ≥ γ0|φ|21,� ∀φ ∈ X,

|F(φ)| ≤ ‖F‖−2,�‖φ‖X ∀φ ∈ X.

As a consequence of Lemma 8.1, the fact that div β = 0, and the Lax-Milgram
Theorem, we state the solvability of the continuous problem (8.2).

Theorem 8.1 There exists a unique ψ ∈ X solution to problem (8.2), which
satisfies the following continuous dependence on the data

‖ψ‖X ≤ C‖F‖−2,�,

where C is a positive constant.

Remark 8.1 In this work, we will require an additional regularity for the unique
solution of problem (8.2). More precisely, in what follows we assume that there
exists s > 1/2 such that ψ ∈ H 2+s(�). This additional regularity will play an
important role in the error analysis (cf. Sects. 8.4 and 8.5).

The goal of this paper is to propose a conforming C1-VEM of arbitrary order
to solve problem (8.2) and to prove that the method is optimally convergent. In
addition, we will propose simple post-processes from the discrete stream-function
to recover the velocity, pressure and vorticity fields.

8.3 Virtual Element Methods

In this section, we will write C1-virtual element discretizations for the numerical
approximation of problem (8.2). We start by introducing some notations and
assumptions to construct a discrete virtual subspace Xk

h, for arbitrary order k ≥ 2
and to write the discrete bilinear forms and the discrete linear functional to propose
the discrete scheme.

Let {�h}h>0 be a sequence of decompositions of � into general polygonal
elements K . Let hK denote the diameter of the element K and h the maximum
of the diameters of all the elements of the mesh, i.e., h := maxK∈�h hK . In what
follows, we denote by NK the number of vertices of K , by vi a generic vertex of K ,



326 D. Mora and A. Silgado

with i ∈ {1, . . . , NK } and by e a generic edge of �h. In addition for all e, we denote
by he the length of edge and we define a unit normal vector neK that points outside
of K . Moreover, we denote by xe and xK the midpoint of e and the baricenter of K ,
respectively.

For the theoretical analysis, we will consider the following assumptions: there
exists a real number C�h > 0 such that, for every h and every K ∈ �h,

A1 : the ratio between the shortest edge and the diameter hK of K is larger than
C�h ;

A2 : K is star-shaped with respect to every point of a ball of radius C�hhK .

8.3.1 Virtual Spaces and Polynomial Projections Operator

We will denote by P�(D) the space of polynomial functions defined locally in D
and being of total degree ≤ � and by M

∗
�(K) the set of scaled monomials defined

on each polygon K:

M
∗
�(K) :=

{(
x− xK
hK

)a

: |a| = �

}
, (8.7)

where for a non-negative multi-index a = (a1, a2), we set |a| := a1 + a2 and xa =
x
a1
1 x

a2
2 , with x = (x1, x2). Now, we define Mk(K) := ⋃

�≤k M∗
�(K) =: {mj }dkj=1

as a basis of Pk(K), where dk = dim(Pk(K)). Moreover we consider the set of the
scaled monomials defined on each edge e:

M�(e) :=
{

1,
x − xe

he
,

(
x − xe

he

)2

, . . . ,

(
x − xe

he

)�}
.

Now, for any integer k ≥ 2 and for every polygon K ∈ �h, we introduce the
following preliminary local virtual space:

X̃k
h(K) :=

{
φh ∈ H 2(K) : �2φh ∈ Pk−2(K), φh|∂K ∈ C0(∂K), φh|e ∈ Pr (e) ∀e ∈ ∂K,

∇φh|∂K ∈ C0(∂K)2, ∂neK
φh|e ∈ Pα(e) ∀e ∈ ∂K

}
,

where r := max{3, k} and α := k − 1.
Next, for a given φh ∈ X̃k

h(K), we introduce the following sets of linear operators
from the local virtual space X̃k

h(K) into R:

– D1 : contains linear operators evaluating φh at the NK vertices of K;
– D2 : contains linear operators evaluating hvi∇φh at the NK vertices of K;

– D3 : for r > 3, the moments
1

he

∫
e

q(ζ )φh(ζ ) dζ ∀q ∈ Mr−4(e), ∀ edge e;



8 Virtual Element Methods for a Stream-Function Formulation of the Oseen Equations 327

– D4 : for α > 1, the moments
∫
e

q(ζ )∂neK
φh(ζ ) dζ ∀q ∈Mα−2(e), ∀ edge e;

– D5 : for k ≥ 4, the moments
1

h2
K

∫
K

q(x)φh(x) dx ∀q ∈ Mk−4(K), ∀
polygon K ,

where hvi corresponds to the average of the diameters corresponding to the elements
with vi as a vertex.

Now, we decompose into local contributions the bilinear forms A(·, ·), B(·, ·)
and C(·, ·):

A(ϕ, φ) =
∑
K∈�h

AK(ϕ, φ) :=
∑
K∈�h

∫
K

D2ϕ : D2φ ∀ϕ, φ ∈ X,

B(ϕ, φ) =
∑
K∈�h

BK(ϕ, φ) :=
∑
K∈�h

∫
K

(∇curl ϕ)β · curl φ ∀ϕ, φ ∈ X,

C(ϕ, φ) =
∑
K∈�h

CK(ϕ, φ) =
∑
K∈�h

∫
K

γ curl ϕ · curl φ, ∀ϕ, φ ∈ X.

In what follows, we are going to build discrete version of the local bilinear forms.
With this aim, for each polygon K , we define the following projector:

�
k,D
K : X̃k

h(K) −→ Pk(K) ⊆ X̃k
h(K),

φh �−→ �
k,D
K φh,

where �k,D
K φh is the solution of the local problems:

AK(�
k,D
K φh, q) = AK(φh, q) ∀q ∈ Pk(K),

̂
�

k,D
K φh = φ̂h,

̂∇�k,D
K φh = ∇̂φh,

with (̂·) is defined as follows:

ϕ̂h := 1

NK

NK∑
i=1

ϕh(vi ) ∀ϕh ∈ C0(∂K), (8.8)

and vi , 1 ≤ i ≤ NK , are the vertices of K .
The following result establishes that the projector�k,D

K is fully computable using
the sets D1 − D5 (see [36]).
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Lemma 8.2 The operator �k,D
K : X̃k

h(K) → Pk(K) is explicitly computable for
every φh ∈ X̃k

h(K), using only the information of the linear operators D1 − D5.

For each K ∈ �h our local virtual space is given by:

Xk
h(K) :=

{
φh ∈ X̃k

h(K) :
∫
K
q∗�k,D

K
φh =

∫
K
q∗ φh, ∀q∗ ∈M

∗
k−3(K) ∪M

∗
k−2(K)

}
,

(8.9)

where M
∗
k−3(K) and M

∗
k−2(K) are scaled monomials of degree k − 3 and k − 2,

respectively (see (8.7)), with the convention that M∗−1(K) = ∅ (for further details,
see [36]).

It is easy to observe that Pk(K) ⊆ Xk
h(K) ⊆ X̃k

h(K). Moreover, the sets of linear
operators D1 − D5 constitutes a set of degrees of freedom for Xk

h(K) (see [36]).
Additionally, we note that the condition appearing in the definition of the local space
Xk
h(K) will be useful to construct an L2-projection which will be employed to build

the discrete bilinear forms. In fact, we consider the L2(K)-projection onto Pk−2(K).
For each φ ∈ L2(K), �k−2

K φ ∈ Pk−2(K) satisfies

∫
K

qφ =
∫
K

q(�k−2
K φ) ∀q ∈ Pk−2(K).

The following lemma establishes that �k−2
K is computable on Xk

h(K). The proof
follows from the definition of the local virtual space and the set of degrees of
freedom.

Lemma 8.3 The operator �k−2
K : Xk

h(K)→ Pk−2(K) is explicitly computable for
each φh ∈ Xk

h(K), using only the information of the degrees of freedom D1 − D5.

Now, for k ≥ 2, we will consider the following projection onto the polynomial
space Pk−1(K)2: we define �k−1

K : L2(K)2 → Pk−1(K)2, for each v ∈ L2(K)2 by

∫
K

q · v =
∫
K

q ·�k−1
K v ∀q ∈ Pk−1(K)2. (8.10)

Using integration by parts, it is easy to see that for any φh ∈ Xk
h(K), the vector

function �k−1
K curl φh ∈ Pk−1(K)2 can be explicitly computed from the degrees of

freedom D1 − D5 (see [47]).
Now, we will establish a stability property of the projector �k−1

K . We will use the
following inverse inequality for polynomials on polygons, which holds true under
assumption A2 (see [15, Remark 6.1]).

Lemma 8.4 If the assumption A2 is satisfied, then there exists C̃ > 0, independent
of h, such that

|q|1,K ≤ C̃h−1
K ‖q‖0,K ∀q ∈ P�(K), � ≥ 0.
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Thus, using Lemma 8.4 the projector �k−1
K satisfies the following stability

property: let K ∈ �h, then for each φh ∈ Xk
h(K), there exists CN > 0, independent

of K and h, such that

|�k−1
K curl φh|1,K ≤ CN |φh|2,K. (8.11)

Now, for k ≥ 2, we introduce an additional projector which will be used to write

the virtual scheme; we define �
k,∇⊥
K : Xk

h(K) −→ Pk(K) ⊆ Xk
h(K) for each

φh ∈ Xk
h(K) as the solution of the following local problem:

∫
K

curl �k,∇⊥
K φh · curl q =

∫
K

curl φh · curl q ∀q ∈ Pk(K),

̂
�

k,∇⊥
K φh = φ̂h,

where (̂·) has been defined in (8.8). The following result states that this operator is
fully computable using the sets D1 − D5 (see [47, Lemma 3.4]).

Lemma 8.5 The operator �
k,∇⊥
K : Xk

h(K) → Pk(K) ⊆ Xk
h(K) is explicitly

computable for each φh ∈ Xk
h(K), using only the information of the set of degrees

of freedom D1 − D5.

Now, we introduce the global virtual space to approximate the solution of
problem (8.2). For every decomposition �h of � into polygons K , we define

Xk
h :=

{
φh ∈ X : φh|K ∈ Xk

h(K)
}
.

8.3.2 Construction of the Local and Global Discrete Forms

In this section, we will construct the discrete version of the continuous local
bilinear forms and the right hand side, using the projection operators introduced
in Sect. 8.3.1.

First, let S K
D (·, ·) and S K

curl (·, ·) be any symmetric positive definite bilinear
forms to be chosen as to satisfy:

c0A
K(φh, φh) ≤ SK

D (φh, φh) ≤ c1A
K(φh, φh) ∀φh ∈ Xk

h(K), with �
k,D
K

φh = 0,

c2C
K(φh, φh) ≤ SK

curl (φh, φh) ≤ c3C
K(φh, φh) ∀φh ∈ Xk

h(K), with �
k,∇⊥
K

φh = 0,

(8.12)

with c0, c1, c2 and c3 positive constants independent of h and K . We will introduce
bilinear forms S K

D (·, ·) and S K
curl (·, ·) satisfying (8.12) in Sect. 8.6.
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For all ψh, φh ∈ Xk
h(K) we now define the local discrete bilinear forms

Ah,K(ψh, φh) := AK
(
�

k,D
K ψh,�

k,D
K φh

)
+S K

D

(
ψh −�

k,D
K ψh, φh −�

k,D
K φh

)
,

(8.13)

Bh,K(ψh, φh) :=
∫
K

(
∇�k−1

K curl ψh

)
β ·�k−1

K curl φh, (8.14)

Ch,K(ψh, φh) :=
∫
K

γ �k−1
K curl ψh ·�k−1

K curl φh (8.15)

+S K
curl

(
ψh −�

k,∇⊥
K ψh, φh −�

k,∇⊥
K φh

)
.

Next, for all ψh, φh ∈ Xk
h, we define the global discrete bilinear form as follows:

Ah : Xk
h ×Xk

h → R, Ah(ψh, φh) :=
∑
K∈�h

Ah,K(ψh, φh), (8.16)

Bh : Xk
h ×Xk

h → R, Bh(ψh, φh) :=
∑
K∈�h

Bh,K(ψh, φh), (8.17)

Ch : Xk
h ×Xk

h → R, Ch(ψh, φh) :=
∑
K∈�h

Ch,K(ψh, φh). (8.18)

We note that the bilinear form Bh(·, ·) is immediately extendable to the continu-
ous space X.

The following result establishes the usual consistency and stability properties
for the discrete local forms Ah,K(·, ·) and Ch,K(·, ·). The proof follows standard
arguments in the VEM literature (see [9, 13, 14]). We omit further details.

Proposition 8.1 The local bilinear form Ah,K(·, ·), Ch,K(·, ·) defined in (8.13) and
(8.15) respectively, on each element K satisfy

– Consistency: for all h > 0 and for all K ∈ �h, we have that

Ah,K(q, φh) = AK(q, φh) ∀q ∈ Pk(K), ∀φh ∈ Xk
h(K). (8.19)

– Stability and boundedness: There exist positive constants αi, i = 0, 1, 2, 3
independent of K , such that:

α0A
K(φh, φh) ≤ Ah,K(φh, φh) ≤ α1A

K(φh, φh) ∀φh ∈ Xk
h(K), (8.20)

α2C
K(φh, φh) ≤ Ch,K(φh, φh) ≤ α3C

K(φh, φh) ∀φh ∈ Xk
h(K). (8.21)

The next step consists in constructing a computable approximation of the linear
functional defined in (8.6). With this aim, we define, for each element K , the
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following computable term:

Fh,K(φh) :=
∫
K

�k−1
K f · curl φh ≡

∫
K

f ·�k−1
K curl φh ∀φh ∈ Xk

h(K).

Thus, we consider the following approximation of the functional defined in (8.6):

Fh(φh) :=
∑
K∈�h

Fh,K(φh) ∀φh ∈ Xk
h. (8.22)

The following lemma establishes some properties for the discrete forms defined
in (8.16), (8.17), (8.18), and (8.22).

Lemma 8.6 There exist positive constants CAh,CBh, C2 and CFh , independent of
h, such that the forms defined in (8.16)–(8.22) satisfy the following properties:

|Ah(ψh, φh)| ≤ CAh ‖ψh‖X‖φh‖X ∀ψh, φh ∈ Xk
h, (8.23)

Ah(φh, φh) ≥ α0 ‖φh‖2
X ∀φh ∈ Xk

h, (8.24)

|Bh(ψh, φh)| ≤ CBh‖ψh‖X‖φh‖X ∀ψh, φh ∈ Xk
h, (8.25)

|Ch(ψh, φh)| ≤ C2 ‖ψh‖X‖φh‖X ∀ψh, φh ∈ Xk
h, (8.26)

Ch(φh, φh) ≥ α2γ0|φh|21,� ∀ψh, φh ∈ Xk
h, (8.27)

|Fh(φh)| ≤ CFh‖f‖0,�‖φh‖X ∀φh ∈ Xk
h. (8.28)

Proof The proof of these properties follow standard arguments in the VEM
literature (see [9, 13, 14]). Nevertheless, we will prove the property (8.25). Indeed,
let ψh, φh ∈ Xk

h, then using the definition of the bilinear form Bh(·, ·) and the
Cauchy-Schwarz inequality, we have that

|Bh(ψh, φh)| ≤
∑
K∈�h

∣∣∣∣
∫
K

(
∇�k−1

K curl ψh

)
β ·�k−1

K curl φh

∣∣∣∣

≤
∑
K∈�h

‖β‖L∞(K)‖∇�k−1
K curl ψh‖0,K‖�k−1

K curl φh‖0,K

≤ ‖β‖L∞(�)

∑
K∈�h

|�k−1
K curl ψh|1,K‖curl φh‖0,K

≤ CN‖β‖L∞(�)

∑
K∈�h

|ψh|2,K |φh|1,K

≤ CN‖β‖L∞(�)‖ψh‖X|φh|1,�
≤ CNCp‖β‖L∞(�)‖ψh‖X‖φh‖X,

(8.29)
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where we have used the inequality (8.11) and Cp > 0 is the constant such that

|φh|1,� ≤ Cp‖φh‖X,

which is independent of h and K , for all K ∈ �h. Then, taking CBh :=
CNCp‖β‖L∞(�) > 0, we conclude the proof. ��
Remark 8.2 We observe that using the projector �k,∇⊥

K , it is possible to construct
alternative discrete bilinear forms in (8.14) and (8.15). More precisely, we can
consider the following computable discrete forms:

B̃h,K(ψh, φh) :=
∫
K

(
∇curl �k,∇⊥

K ψh

)
β · curl �k,∇⊥

K φh, (8.30)

C̃h,K(ψh, φh) :=
∫
K

γ curl �k,∇⊥
K ψh · curl �k,∇⊥

K ψh (8.31)

+S K
curl

(
ψh −�

k,∇⊥
K ψh, φh −�

k,∇⊥
K φh

)
.

With these new forms, it is possible to write a different discrete formulation to solve
the Oseen problem. We will test the discrete method derived with these forms in the
numerical result section (see Sect. 8.6.3).

8.3.3 Discrete Formulation

Now we write the discrete formulation by using the discrete forms and employing
the results of the previous sections we establish existence and uniqueness for our
discrete scheme.

The virtual element discretization reads as follows: find ψh ∈ Xk
h such that

Oh(ψh, φh) := νAh(ψh, φh)+ Bh(ψh, φh)+ Ch(ψh, φh) = Fh(φh) ∀φh ∈ Xk
h.

(8.32)

The following result establishes that the bilinear form Oh(·, ·) is elliptic.

Lemma 8.7 Let CN be the constant such that (8.11) holds true. Suppose that

C2
N‖β‖2

L∞(�)

2νγ0α0α2
< 1, (8.33)
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then there exists α̂ > 0, independent of h, such that

Oh(φh, φh) ≥ α̂‖φh‖2
X ∀φh ∈ Xk

h.

Proof Let φh ∈ Xk
h. Then, using (8.24), (8.27), and (8.29) we get

Oh(φh, φh) = νAh(φh, φh)+ Bh(φh, φh)+ Ch(φh, φh)

≥ να0‖φh‖2
X − CN‖β‖L∞(�)‖φh‖X|φh|1,� + α2γ0|φh|21,�

≥ να0‖φh‖2
X −

C2
N‖β‖2

L∞(�)

2α2γ0
‖φh‖2

X −
α2γ0

2
|φh|21,� + α2γ0|φh|21,�

=
(
να0 −

C2
N‖β‖2

L∞(�)

2α2γ0

)
‖φh‖2

X +
α2γ0

2
|φh|21,�

≥
(
να0 −

C2
N‖β‖2

L∞(�)

2α2γ0

)
‖φh‖2

X,

where we have used the Young inequality. Then, taking α̂ := να0−
C2
N‖β‖2

L∞(�)

2α2γ0
>

0, the proof is complete. ��
As a consequence of the previous lemma, we have the following result.

Theorem 8.2 Suppose that (8.33) holds true. Then, there exists a unique ψh ∈ Xk
h

solution to problem (8.32) satisfying the following estimate

‖ψh‖X ≤ C‖f‖0,�,

where C is a positive constant independent of h.

Remark 8.3 Assumption (8.33) holds provided one selects γ appropriately. For
instance, when the Oseen system is derived as a time discretisation of Navier-
Stokes equations, this parameter represents the inverse of the timestep. Thus, the
aforementioned relation can be regarded as a CFL-type condition at a discrete level.

8.4 Error Analysis

In the present section, we develop an error analysis for the discrete virtual element
scheme presented in Sect. 8.3. We start with some preliminary results.
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8.4.1 Preliminary Results

We will use the following broken H�-seminorm, for each integer � > 0:

|φ|�,h :=
⎛
⎝ ∑

K∈�h

|φ|2�,K
⎞
⎠

1/2

,

which is well defined for every φ ∈ L2(�) such that φ|K ∈ H�(K) for all K ∈ �h.
Next, we recall the estimate for the interpolant φI ∈ Xk

h of φ (see [9, 18]).

Proposition 8.2 Assume that A1 and A2 are satisfied. Then, for each φ ∈ Hδ(�),
there exist φI ∈ Xk

h and C > 0, independent of h, such that

‖φ − φI‖m,� ≤ Chδ−m|φ|δ,�, m = 0, 1, 2, 2 ≤ δ ≤ k + 1, k ≥ 2.

Now, invoking the Scott-Dupont Theory (see [22]) for the polynomial approxi-
mation, we have

Proposition 8.3 If the assumption A2 is satisfied, then there exists a constant C >

0, such that for every φ ∈ Hδ(K), there exists φπ ∈ Pk(K), k ≥ 0, such that

‖φ − φπ‖m,K ≤ Chδ−mK |φ|δ,K, 0 ≤ m ≤ δ ≤ k + 1, � = 0, 1, . . . , [δ],

where [δ] denoting largest integer equal or smaller than δ ∈ R.

We are going to use the following standard approximation property (see [22, 26]):

Lemma 8.8 There exists a constant C > 0, independent of hK , such that for all
v ∈ Hδ(K)2

‖v−�k−1
K v‖m,K ≤ Chδ−mK |v|δ,K 0 ≤ m ≤ δ ≤ k, k ≥ 1.

Now, we continue with the following bound for the continuous and discrete linear
functionals.

Proposition 8.4 Let k ≥ 2. Assume that f ∈ L2(�)2 such that f|K ∈ Hk−2(K)2

for each K ∈ �h. Let F(·) and Fh(·) be the functionals defined in (8.6) and (8.22),
respectively. Then, we have the following estimate:

‖F − Fh‖ := sup
φh∈Xk

h
φh "= 0

|F(φh)− Fh(φh)|
‖φh‖X

≤ Chk−1|f|k−2,h.
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Since γ is a scalar function, the bilinear form Ch,K(·, ·) does not satisfy the
consistency property. Nevertheless, we have the following auxiliary results which
will be useful to prove the error estimates.

Lemma 8.9 Let K ∈ �h and let γ be a smooth scalar field defined on K . For any
p,q smooth enough vector fields defined on K , we have

(γ p,q)0,K − (γ �k−1
K

p,�k−1
K

q)0,K ≤‖γ p−�k−1
K

(γ p)‖0,K‖q−�k−1
K

q‖0,K

+ ‖p−�k−1
K p‖0,K‖γ q−�k−1

K (γ q)‖0,K

+ ‖γ ‖L∞(K)‖p−�k−1
K

p‖0,K‖q−�k−1
K

q‖0,K .

Proof The proof follows adding and subtracting suitable terms and using the
properties of the projection �k−1

K . We omit further details. ��
As an immediate consequence of Lemma 8.9, we have the following result.

Lemma 8.10 For all K ∈ �h and for all ϕh, φh ∈ Xk
h(K), we have that

CK(ϕh, φh)− Ch,K(ϕh, φh)

≤ ‖γ curl ϕh −�k−1
K (γ curl ϕh)‖0,K‖curl φh −�k−1

K curl φh‖0,K

+ ‖γ curl φh −�k−1
K (γ curl φh)‖0,K‖curl ϕh −�k−1

K curl ϕh‖0,K

+ Cγ ‖curl φh −�k−1
K curl φh‖0,K‖curl ϕh −�k−1

K curl ϕh‖0,K

+ sKcurl (ϕh −�
k,∇⊥
K ϕh, φh −�

k,∇⊥
K φh),

where Cγ > 0 is a constant depending on the function γ .

For the bilinear forms BK(·, ·) and Bh,K(·, ·), we have the following analogous
result.

Lemma 8.11 For all K ∈ �h and for all ϕh, φh ∈ Xk
h(K), we have that

BK(ϕh, φh)− Bh,K(ϕh, φh)

≤ ‖(∇curl ϕh)β −�k−1
φh
[(∇curl ϕh)β]‖0,K‖curl φh −�k−1

K curl φh‖0,K

+ ‖β‖L∞(K)|curl ϕh −�k−1
K curl ϕh|1,K‖�k−1

K curl φh‖0,K .

Proof Let ϕh, φh ∈ Xk
h(K). Then, by using the definition of the bilinear forms

BK(·, ·) and Bh,K(·, ·), adding and subtracting suitable terms and using the
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properties of the projection �k−1
K , we have

BK(ϕh, φh)− Bh,K(ϕh, φh)

=
∫
K

(∇curl ϕh)β · (curl φh −�k−1
K curl φh)

+
∫
K

(∇curl ϕh − ∇�k−1
K curl ϕh)β ·�k−1

K curl φh

=
∫
K

(
(∇curl ϕh)β −�k−1

K [(∇curl ϕh)β]
)
· (curl φh −�k−1

K curl φh)

+
∫
K

(∇curl ϕh − ∇�k−1
K curl ϕh)β ·�k−1

K curl φh

≤ ‖(∇curl ϕh)β −�k−1
K [(∇curl ϕh)β]‖0,K‖curl φh −�k−1

K curl φh‖0,K

+ ‖β‖L∞(K)|curl ϕh −�k−1
K curl ϕh|1,K‖�k−1

K curl φh‖0,K,

where in the last step we have used the Cauchy-Schwarz inequality. ��

8.4.2 A Priori Error Estimates

We start with the following result.

Lemma 8.12 Suppose that (8.33) holds true. Let ψ and ψh be the unique solutions
of problem (8.2) and problem (8.32), respectively. Suppose that ψ ∈ H 2+s(�),
β ∈ Ws−1,∞(�)2 and γ ∈ W 1+s,∞(�), for 1/2 < s ≤ k − 1, then there exists a
constant C > 0, independent of h, such that

‖ψ − ψh‖X ≤ C
(
‖F − Fh‖ + ‖ψ − ψI ‖X + |ψ − ψπ |1,h + |ψ − ψπ |2,h + hs‖ψ‖2+s,�

)
,

for all ψI ∈ Xk
h and for all ψπ ∈ L2(�) such that ψπ |K ∈ Pk(K) for all polygon

K ∈ �h.

Proof Let ψI ∈ Xk
h. We set δh := ψh − ψI , then

‖ψ − ψh‖X ≤ ‖ψ − ψI‖X + ‖δh‖X. (8.34)

We will bound the second term above, we begin by using Lemma 8.7, adding
and subtracting the term O(ψ, δh) and using the definition of the continuous and
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discrete problems (8.2) and (8.32), respectively, we have

α̂‖δh‖2
X ≤ Oh(δh, δh)

= Oh(ψh, δh)− Oh(ψI , δh)

= Fh(δh)− Oh(ψI , δh)

= Fh(δh)− F(δh)+O(ψ, δh)− Oh(ψI , δh)

= (Fh(δh)− F(δh))+
∑

K∈�h

{
νAK(ψ, δh)+ BK(ψ, δh)+ CK(ψ, δh)

}

−
∑

K∈�h

{
νAh,K(ψI , δh)+ Bh,K(ψI , δh)+ Ch,K(ψI , δh)

}

= (Fh(δh)− F(δh))+
∑

K∈�h

{
νAK(ψ − ψπ, δh)− νAh,K(ψI − ψπ, δh)

}

+
∑

K∈�h

{
BK(ψ, δh)− Bh,K(ψI , δh)

}

+
∑

K∈�h

{
CK(ψ, δh)− Ch,K(ψI , δh)

}

=: TF +
∑

K∈�h

{TA} +
∑

K∈�h

{TB } +
∑

K∈�h

{TC} ,

(8.35)

where we have added and subtracted ψπ ∈ Pk(K) for all K ∈ �h (recall k ≥ 2)
and we have used the consistency property (8.19). Next, we bound each term on the
right hand side above.

For the term TF , we have

TF ≤ ‖F − Fh‖‖δh‖X. (8.36)

Now, for the term TA, we use the continuity of the bilinear forms AK(·, ·) and
Ah,K(·, ·), together with the triangular inequality to obtain that

TA = ν
{
AK(ψ − ψπ, δh)+ Ah,K(ψI − ψπ, δh)

}

≤ C(|ψ − ψπ |2,K |δh|2,K + |ψI − ψπ |2,K |δh|2,K)
≤ C

(|ψ − ψπ |2,K + |ψ − ψI |2,K
) |δh|2,K.

(8.37)
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For term TB , we add and subtract BK(ψI , δh),

TB = BK(ψ, δh)− Bh,K(ψI , δh)

= BK(ψ, δh)− BK(ψI , δh)+ BK(ψI , δh)− Bh,K(ψI , δh)

= BK(ψ − ψI , δh)+
(
BK(ψI , δh)− Bh,K(ψI , δh)

)

≤ C|ψ − ψI |2,K |δh|2,K +
(
BK(ψI , δh)− Bh,K(ψI , δh)

)
,

(8.38)

where we have used the continuity ofBK(·, ·). To bound the second term on the right
hand side above, we use Lemma 8.11 along with the stability and approximation
properties of projector �k−1

K . We have that

BK(ψI , δh)− Bh,K(ψI , δh)

≤ ‖(∇curl ψI )β −�k−1
K [(∇curl ψI )β]‖0,K‖curl δh −�k−1

K curl δh‖0,K

+ ‖β‖L∞(K)|curl ψI −�k−1
K

curl ψI |1,K‖�k−1
K

curl δh‖0,K

≤ C‖(∇curl ψI )β −�k−1
K [(∇curl ψI )β]‖0,K hK |δh|2,K

+ C‖β‖L∞(K)|curl ψI −�k−1
K

curl ψI |1,K |δh|2,K
= ChK |δh|2,KE1 + C|δh|2,KE2.

(8.39)

In what follows, we bound the terms E1 and E2. For the term E1, we have

E1 := ‖(∇curl ψI )β −�k−1
K

[(∇(curl ψI )β]‖0,K

≤ ‖(∇curl ψI )β − (∇curl ψ)β‖0,K + ‖(∇curl ψ)β −�k−1
K

[(∇curl ψ)β]‖0,K

+ ‖�k−1
K [(∇curl ψ)β] −�k−1

K [(∇curl ψI )β]‖0,K

≤ ‖(∇curl (ψI − ψ))β‖0,K + ‖(∇curl ψ)β −�k−1
K
[(∇curl ψ)β]‖0,K

+ ‖(∇curl (ψ − ψI ))β‖0,K

≤ 2‖β‖L∞(K)|ψ −ψI |2,K + hs−1
K |∇(curl ψ)β|s−1,K

≤ 2‖β‖L∞(K)|ψ −ψI |2,K + hs−1
K
‖β‖Ws−1,∞(K)‖∇(curl ψ)‖s−1,K

≤ 2‖β‖L∞(K)|ψ −ψI |2,K + hs−1
K ‖β‖Ws−1,∞(K)‖ψ‖2+s,K,

(8.40)
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where we have used the approximation and stability properties of projector �k−1
K .

Now, for the term E2, we proceed as follows,

E2 := |curl ψI −�k−1
K curl ψI |1,K

≤ |curl ψI − curl ψ|1,K + |curl ψ −�k−1
K curl ψ|1,K

+ |�k−1
K curl ψ −�k−1

K curl ψI |1,K
≤ C

(
|ψ − ψI |2,K + hs |curl ψ|1+s,K + |�k−1

K curl (ψ − ψI )|1,K
)

≤ C(|ψ − ψI |2,K + hs |curl ψ|1+s,K + |ψ − ψI |2,K)
≤ C(|ψ − ψI |2,K + hs |ψ|2+s,K),

(8.41)

where, once again, we have used the approximation and stability properties of �k−1
K .

Inserting (8.40) and (8.41) into (8.39), we obtain

BK(ψI , δh)− Bh,K(ψI , δh)

≤ C(‖β‖L∞(K)hK |ψ − ψI |2,K + hsK‖β‖Ws−1,∞(K)‖ψ‖2+s,K)|δh|2,K
+ C‖β‖L∞(K)(|ψ − ψI |2,K + hs‖ψ‖2+s,K)|δh|2,K

≤ C(|ψ − ψI |2,K + hsK‖ψ‖2+s,K)|δh|2,K.
(8.42)

Now, using estimate (8.42), from (8.38), we obtain

TB ≤ C(|ψ − ψI |2,K + hsK‖ψ‖2+s,K)|δh|2,K. (8.43)

By using Lemma 8.10 and repeating analogous arguments as above, we can prove
that

TC ≤ C
(
|ψ − ψI |2,K + |ψ − ψπ |1,K + hs+1

K ‖ψ‖2+s,K
)
|δh|2,K. (8.44)

Then, inserting (8.36), (8.37), (8.43), and (8.44) into (8.35) and employing the
Hölder inequality (for sequences), we obtain

α̂‖δh‖X ≤ C
(
‖F − Fh‖ + ‖ψ − ψI ‖X + |ψ −ψπ |1,h + |ψ − ψπ |2,h + hs‖ψ‖2+s,�

)
,

(8.45)

Therefore, the proof follows from (8.34) and (8.45). ��
The following result establishes the convergence order of our discrete scheme.

Theorem 8.3 Let k ≥ 2 and f ∈ L2(�)2 such that f|K ∈ Hk−2(K)2 for each
K ∈ �h. Suppose that (8.33) holds true. Let ψ and ψh be the unique solutions
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of problem (8.2) and problem (8.32), respectively. We suppose that ψ ∈ H 2+s(�),
β ∈ Ws−1,∞(�)2 and γ ∈ W 1+s,∞(�), for 1/2 < s ≤ k − 1, then there exists a
constant C > 0, independent of h, such that

‖ψ − ψh‖X ≤ Chs
(|f|k−2,h + ‖ψ‖2+s,�

)
.

Proof The result follows from Lemma 8.12 and Propositions 8.2, 8.3, and 8.4. ��

8.5 Recovering the Velocity, Vorticity and Pressure Fields

The solution of the proposed virtual element method (8.32) delivers an approxima-
tion of the stream-function field. We remark that one of the advantages of solving
fluid flow problems through a stream-function formulation is the possibility of
computing further variables of interest, such as the velocity u, the fluid pressure
p and the fluid vorticity ω. In this section, we will present strategies to recover
these three fields. We compute a discrete velocity and discrete vorticity as a simple
postprocess of the computed stream-function using suitable projections, while to
recover the pressure we will write a generalized Poisson problem with data coming
from the computed stream-function and the load term f, then we propose a discrete
virtual scheme, based on the C0 enhanced virtual element space from [3] to
approximate the pressure. Besides, in this section we will establish error estimates
in a brokenH 1-norm for the velocity and in the L2-norm for the vorticity. Moreover,
under the assumptions that � is a convex domain and that the family of polygonal
meshes �h is quasi-uniform also we will establish an error estimate for the pressure
in the H 1-norm.

8.5.1 Computing the Velocity Field

We start by noticing that if the stream-function ψ ∈ X is the unique solution of
(8.2), then we have that the velocity u satisfies:

u = curl ψ. (8.46)

At the discrete level, we compute a discrete velocity as a post-processing of the
computed stream-function ψh ∈ Xk

h as follows: if ψh is the unique solution of
problem (8.32), then the function

uh := �k−1curl ψh, (8.47)
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is an approximation of the velocity, where �k−1 is defined in L2(�)2 by

(�k−1v)|K = �k−1
K (v|K) ∀K ∈ �h.

The following result establishes the accuracy of the discrete velocity.

Theorem 8.4 Assume that the hypotheses of Theorem 8.3 holds true, then there
exists a positive constant C, independent of h, such that

|u− uh|1,h ≤ Chs
(|f|k−2,h + ‖ψ‖2+s,�

)
.

Proof From (8.46) and (8.47), triangular inequality and property (8.11), we have

|u− uh|21,h = |curl ψ −�k−1curl ψh|21,h
=

∑
K∈�h

|curl ψ −�k−1
K curl ψh|21,K

≤ C
∑

K∈�h

(|curl ψ −�k−1
K

curl ψ |21,K + |�k−1
K

(curl ψ − curl ψh)|21,K
)

≤ C

⎛
⎝ ∑
K∈�h

h2s
K ‖curl ψ‖2

1+s,K +
∑

K∈�h

|�k−1
K

curl (ψ − ψh)|21,K

⎞
⎠

≤ Ch2s

⎛
⎝ ∑
K∈�h

‖ψ‖2
2+s,K + CN

∑
K∈�h

|ψ − ψh|22,K

⎞
⎠

≤ C(h2s‖ψ‖2
2+s,� + ‖ψ − ψh‖2

X)

≤ Ch2s
(
|f|2k−2,h + ‖ψ‖2

2+s,�
)
,

where we have used the approximation properties of projector �k−1
K and Theo-

rem 8.3. The proof is complete. ��

8.5.2 Computing the Fluid Vorticity

Now, we will present an strategy to recover the fluid vorticity ω, which is key
in several important applications in fluid mechanics (see [4, 7, 20, 38]). First, we
remark that ω = rot u, then using the identity u = curl ψ , we have that

ω = rot u = rot(curl ψ) = −�ψ. (8.48)

We introduce an L2-ortogonal projection which will be used to construct the
discrete vorticity. For k ≥ 2 and for each K ∈ �h, we consider the L2-projection
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onto Pk−2(K): for v ∈ L2(K), �k−2
K v ∈ Pk−2(K) is the unique function such that

(v −�k−2
K v, q)0,K = 0 ∀q ∈ Pk−2(K). (8.49)

We have the following approximation result (see [14, 22]).

Proposition 8.5 Let �k−2
K be the projection defined in (8.49). Then, the following

approximation property holds true: there exists a constant Ĉ, independent of hK ,
such that

‖v −�k−2
K v‖m,K ≤ Ĉhδ−mK |v|δ,K ∀v ∈ Hδ(K), 0 ≤ m ≤ δ ≤ k − 1, k ≥ 2.

Now, we compute a discrete vorticity as follows: if ψh ∈ Xk
h is the unique

solution of (8.32), then the function

ωh := −�k−2(�ψh), (8.50)

is an approximation of the vorticity, where we have used the notation

(�k−2v)|K = �k−2
K (v|K) ∀v ∈ L2(�) and ∀K ∈ �h.

Remark 8.4 We observe that for each φh ∈ Xk
h(K) the polynomial function

�k−2
K (�φh) ∈ Pk−2(K), k ≥ 2, is computable using the degrees of freedom

D1 − D5, where Xk
h(K) is the local virtual space defined in (8.9). Indeed, for each

φh ∈ Xk
h(K) and for all q ∈ Pk−2(K), we have

∫
K

q �k−2
K (�φh) =

∫
K

q �φh

=
∫
K

φh�q −
∫
∂K

φh ∂nq +
∫
∂K

q ∂nφh,

since �q ∈ Pk−4(K), the first integral on the right hand side above is computable
using the output values of the set D5. Moreover, the boundary terms are fully
computable using the information of D1 − D4.

We are now ready to prove the following convergence result for the discrete
vorticity.

Theorem 8.5 Assume that the hypotheses of Theorem 8.3 holds true, then there
exists a positive constant C, independent of h, such that

‖ω − ωh‖0,� ≤ Chs
(|f|k−2,h + ‖ψ‖2+s,�

)
.
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Proof From (8.48) and (8.50), triangular inequality, we have

‖ω − ωh‖2
0,� = ‖�ψ −�k−2(�ψh)‖2

0,�

=
∑
K∈�h

‖�ψ −�k−2
K (�ψh)‖2

0,K

≤ C
∑
K∈�h

(‖�ψ −�k−2
K (�ψ)‖2

0,K + ‖�k−2
K (�ψ −�ψh)‖2

0,K

)

≤ C

⎛
⎝ ∑

K∈�h

h2s
K ‖�ψ‖2

s,K +
∑
K∈�h

‖�k−2
K �(ψ − ψh)‖2

0,K

⎞
⎠

≤ Ch2s

⎛
⎝ ∑

K∈�h

‖ψ‖2
2+s,K +

∑
K∈�h

‖�(ψ − ψh)‖2
0,K

⎞
⎠

≤ C(h2s‖ψ‖2
2+s,� + ‖ψ − ψh‖2

X)

≤ Ch2s
(
|f|2k−2,h + ‖ψ‖2

2+s,�
)
,

where we have used Proposition 8.5 and Theorem 8.3. The proof is complete. ��

8.5.3 Computing the Fluid Pressure

Now, we will present an strategy to recover the fluid pressure. We will follow recent
results presented in [47] for the Brinkman equations.

We start by considering the following Hilbert space:

H̃ 1(�) :=
{
q ∈ H 1(�) : (q, 1)0,� = 0

}
.

By using the identity−�u = curl (rot u)−∇(div u) in the momentum equation
of problem (8.1) and the fact that u = curl ψ , we have that

f = −ν �u+ (∇u)β + γ u+∇p
= ν (curl (rot u)− ∇(div u))+ (∇u)β + γ u+∇p
= ν curl (rot(curl ψ)) + (∇curl ψ)β + γ curl ψ +∇p,

where we have used that div u = 0 in � (cf. (8.1)). Now using the identity
rot(curl ψ) = −�ψ , the above equality can be rewritten as follows:

∇p = f− γ curl ψ − (∇curl ψ)β + ν curl (�ψ). (8.51)
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Then, by testing (8.51) with ∇q for q ∈ H̃ 1(�), we get the following variational
problem to calculate the fluid pressure: find p ∈ H̃ 1(�) such that

D∇ (p, q) = Gψ(q) ∀q ∈ H̃ 1(�), (8.52)

where D∇ : H̃ 1(�)× H̃ 1(�)→ R is defined by

D∇(p, q) :=
∫
�

∇p · ∇q ∀p, q ∈ H̃ 1(�) (8.53)

and Gψ : H̃ 1(�)→ R is the functional defined by:

Gψ(q) :=
∫
�

f · ∇q − γ curl ψ · ∇q − (∇curl ψ)β · ∇q + ν curl (�ψ) · ∇q ∀q ∈ H̃ 1(�).

(8.54)

From now on, we assume that � is a convex domain. As a consequence, we have
an additional regularity for the unique solution of problem (8.2). More precisely, we
have that ψ ∈ H 3(�) and that there exists a positive constant C such that

‖ψ‖3,� ≤ C‖f‖0,�.

As an immediate consequence of the above regularity result, the generalized
Poincaré inequality and the Lax-Milgram Theorem, we have the following result.

Theorem 8.6 There exists a unique p ∈ H̃ 1(�) solution of problem (8.52). In
addition, there exists C > 0 such that

‖p‖1,� ≤ C‖f‖0,�.

In what follows, we will propose a lowest order discrete virtual element scheme
to approximate the fluid pressure over the same polygonal mesh �h used to solve
the stream-function discrete formulation (8.32). With this aim, we split the bilinear
form D∇(·, ·), as a contribution element by element as follows:

D∇ (p, q) :=
∑
K∈�h

DK∇ (p, q) =
∑
K∈�h

∫
K

∇p · ∇q, ∀p, q ∈ H̃ 1(�).

(8.55)

Now, for each polygon K ∈ �h, we consider the finite-dimensional space
W̃h(K), defined as

W̃h(K) :=
{
qh ∈ H 1(K) ∩ C0(∂K) : qh|e ∈ P1(e) ∀e ⊂ ∂K, �qh ∈ P0(K)

}
.
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The following set of linear operator is defined for all qh ∈ W̃h(K):

P1 : the values of qh at the vertices of K .

We define the projector�∇K : W̃h(K)→ P1(K) ⊆ W̃h(K) for each qh ∈ W̃h(K)

as the solution of

DK∇ (�∇Kqh, p1) = DK∇ (qh, p1) ∀p1 ∈ P1(K),

̂�∇Kqh = q̂h,

where (̂·) is defined in (8.8). We note that the operator �∇K is explicitly computable
using the set P1 (see [14]). In addition, using this projection and the definition of
W̃h(K), we introduce our local virtual space:

Wh(K) :=
{
qh ∈ W̃h(K) : (qh −�∇Kqh, 1)0,K = 0

}
.

It is easy to observe that P1(K) ⊆ Wh(K) ⊆ W̃h(K). Moreover, we have that the
set P1 constitutes a set of degrees of freedom for Wh(K) and operator �∇K is also
computable using only the set P1 (see [14]).

Now, we define the following global virtual space to approximate the discrete
pressure

Wh :=
{
qh ∈ H̃ 1(�) : qh|K ∈ Wh(K)

}
.

Next, we will continue with the construction of the discrete version of the bilinear
form and the linear functional introduced in (8.53) and (8.54), respectively. To do
that, we consider an L2-orthogonal projection. For each K ∈ �h, we define �0

K :
L2(K)2 → P0(K)2 as the unique function such that

∫
K

(v−�0
Kv) · q = 0 ∀q ∈ P0(K)2.

It is easy to check that �0
K∇qh is fully computable, using the degrees of freedom

P1, for each qh ∈ Wh(K).
Let S K∇ (·, ·) be any symmetric positive definite bilinear form such that

c4D
K∇ (qh, qh) ≤ S K∇ (qh, qh) ≤ c5D

K∇ (qh, qh) ∀qh ∈ Wh(K), with �∇Kqh = 0,
(8.56)

for some positive constants c4 and c5 independent of K . We will make a choose for
S K∇ (·, ·) satisfying (8.56) in Sect. 8.6.
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Then, we set

Dh
∇ (ph, qh) :=

∑
K∈�h

D
h,K
∇ (ph, qh) ∀ph, qh ∈ Wh, (8.57)

where

D
h,K
∇ (ph, qh) :=

∫
K

�0
K∇ph ·�0

K∇qh+S K∇
(
ph−�∇Kph, qh−�∇Kqh

)
, (8.58)

for all ph, qh ∈ Wh(K).
The following result gives us consistency and stability properties of the local

discrete bilinear form D
h,K
∇ (·, ·).

Proposition 8.6 The local bilinear forms DK∇ (·, ·) and D
h,K
∇ (·, ·) defined in (8.55)

and (8.58), respectively, satisfy the following properties:

– Consistency: for each h > 0 and each K ∈ �h, we have

D
h,K
∇ (qh, p1) = DK∇ (qh, p1) ∀p1 ∈ P1(K), ∀qh ∈ Wh(K). (8.59)

– Stability: there exist positive constants α4, α5, independent of hK and K , such
that

α4D
K∇ (qh, qh) ≤ D

h,K
∇ (qh, qh) ≤ α5D

K∇ (qh, qh) ∀qh ∈ Wh(K). (8.60)

The next step consists in constructing an approximation of the right hand side
(8.54), which depends on the stream-function ψ and the source term f. With this
aim, from now on, we assume that the discrete problem (8.32) has been solved
with k = 3. So, ψh ∈ X3

h is available and satisfies the error bound presented in
Theorem 8.3.

Now, for each K ∈ �h and each qh ∈ Wh(K), we define the following discrete
linear functional:

Gψh,K(qh) :=
∫
K

f ·�0
K∇qh −

∫
K

(
∇�2

Kcurl ψh

)
β ·�0

K∇qh

−
∫
K

γ�2
Kcurl ψh ·�0

K∇qh + ν

∫
K

curl (�1
K(�ψh)) ·�0

K∇qh,

where �2
K and �1

K are the projections defined in (8.10) and (8.49), for k = 3,
respectively. We have that Gψh,K(·) is fully computable for each K ∈ �h using the
set degrees of freedom P1.
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We define the following global computable linear functional:

Gψh(qh) :=
∑
K∈�h

Gψh,K(qh) ∀qh ∈ Wh. (8.61)

Therefore, we propose the following virtual element discretization of lowest
order to recover the fluid pressure: Given ψh ∈ X3

h, find ph ∈ Wh such that

Dh∇(ph, qh) = Gψh(qh) ∀qh ∈ Wh. (8.62)

We observe that by virtue of (8.60) the bilinear form Dh
∇(·, ·) is bounded.

Moreover, the following result states that it is also elliptic.

Lemma 8.13 There exists a constant αp > 0, independent of h, such that

Dh
∇(qh, qh) ≥ αp ‖qh‖2

1,� ∀qh ∈ Wh.

Next, we will prove that the linear functional defined in (8.61) is bounded. To do
that, we consider the following approximation result (see [22]).

Proposition 8.7 If the assumption A2 is satisfied, then there exists a constant C >

0, such that for every v ∈ H 2(K), there exists vπ ∈ P1(K) such that

‖v − vπ‖0,K + hK |v − vπ |1,K ≤ Ch2
K |v|2,K.

Now, we present an interpolation result in the virtual space Wh (see [30, 46]).

Proposition 8.8 If the assumptions A1 and A2 are satisfied, then there exists a
constant C > 0, independent of h, such that for each v ∈ H 2(�) there exists
vI ∈ Wh such that

‖v − vI‖0,� + h|v − vI |1,� ≤ Ch2|v|2,�.

To prove that the functional Gψh(·) defined in (8.61) is bounded we will assume
that the family of polygonal meshes �h is quasi-uniform. More precisely, from now
on, we will assume the following:

A3: For each h > 0 and for each K ∈ �h, there exists a constant ĉ > 0,
independent of h, such that hK ≥ ĉ h.

The following result establishes that the linear functionalGψh(·) defined in (8.61)
is bounded under assumptions A1,A2 and A3.

Lemma 8.14 Let ψ ∈ H 3(�) be the unique solution of problem (8.2) and let ψh ∈
X3
h be the unique solution of problem (8.32). We assume that A1−A3 are satisfied,

then the functional Gψh : Wh → R defined in (8.61) is bounded.
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Proof The result follows repeating the arguments used in the proof of Proposi-
tion 4.20 of [47]. ��

As a consequence of Lemmas 8.13, 8.14 and the Lax-Milgram Theorem, we have
the following result.

Theorem 8.7 The discrete virtual element scheme (8.62) admits a unique solution
ph ∈ Wh and there exists C > 0, independent of h, such that

‖ph‖1,� ≤ C
(‖f‖0,� + |f|1,h

)
.

In what follows, we will establish the order of convergence of the discrete
scheme (8.62) under the assumptions A1 − A3 and the additional regularity results
p ∈ H 2(�) and ψ ∈ H 4(�). This additional regularity for the stream-function can
be attained, for instance, if f ∈ L2(�)2 and � is a rectangular domain (see [23]).
We begin with the following result which proof follows standard arguments in the
VEM literature (see [13, 31]).

Proposition 8.9 Let p and ph be the unique solutions of problems (8.52) and
(8.62), respectively. If the assumptions A1 − A3 are satisfied, then there exists
C > 0, independent of h, such that

‖p − ph‖1,� ≤ C
(‖Gψ −Gψh‖ + ‖p − pI‖1,� + |p − pπ |1,h

)
,

for all pI ∈ Hh and for each pπ ∈ L2(�) such that pπ |K ∈ P1(K) for all K ∈ �h,
where

‖Gψ −Gψh‖ := sup
qh∈Wh
qh "= 0

|Gψ(qh)−Gψh(qh)|
‖qh‖1,�

.

Now, we will bound the term ‖Gψ −Gψh‖.
Proposition 8.10 Let f ∈ L2(�)2 such that f|K ∈ H 1(K)2 for all K ∈ �h. Let
ψ ∈ H 4(�) and ψh ∈ X3

h be the unique solutions of problems (8.2) and (8.32),
respectively. Let Gψ(·) and Gψh(·) be the linear functionals defined in (8.54) and
(8.61), respectively. Then, there exists C > 0, independent of h, such that

∥∥Gψ −Gψh
∥∥ ≤ Ch

(‖ψ‖4,� + |f|1,h
)
.
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Proof Let qh ∈ Wh, then using the definition of Gψ(·) and Gψh(·), and the Cauchy-
Schwarz inequality, we have

|Gψ(qh)−Gψh(qh)| ≤
∑
K∈�h

∣∣∣∣
∫
K

f ·
(
∇qh −�0

K∇qh
)∣∣∣∣

+
∑
K∈�h

∣∣∣∣
∫
K

(∇curl ψ)β · ∇qh − (∇�2
Kcurl ψh)β ·�0

K∇qh
∣∣∣∣

+
∑
K∈�h

∣∣∣∣
∫
K

γ curl ψ · ∇qh − γ�2
Kcurl ψh ·�0

K∇qh
∣∣∣∣

+
∑
K∈�h

ν

∣∣∣∣
∫
K

curl (�ψ) · ∇qh − curl
(
�1

K(�ψh)
)
·�0

K∇qh
∣∣∣∣

:= T1 + T2 + T3 + T4.

Now, repeating the arguments used in the proof of Proposition 4.23 of [47], we
have that

T1 ≤ Ch|f|1,h‖qh‖1,�, (8.63)

T3 ≤ Ch(‖ψh‖X + |f|1,h + ‖ψ‖4,�)‖qh‖1,�, (8.64)

and

T4 ≤ Ch
(‖ψ‖4,� + |f|1,h

) ‖qh‖1,�. (8.65)

Thus, in what follows, we are going to estimate the term T2. We start by adding
and subtracting suitable terms, and employing the triangular inequality, we have that

T2 ≤
∑
K∈�h

∣∣∣∣
∫
K

(∇curl ψ)β · (∇qh −�0
K∇qh)

∣∣∣∣

+
∑
K∈�h

∣∣∣∣
∫
K

[
∇(curl ψ −�2

Kcurl ψh)
]
β ·�0

K∇qh
∣∣∣∣

=: I + II.

(8.66)
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In that follows, we will bound the terms I and II . We begin with the term I . By
using the properties of the operator �0

K , we get

I : =
∑
K∈�h

∣∣∣∣
∫
K

[
(∇curl ψ)β −�0

K

(
(∇curl ψ)β

)] · (∇qh −�0
K∇qh)

∣∣∣∣

≤
∑
K∈�h

‖(∇curl ψ)β −�0
K

(
(∇curl ψ)β

)‖0,K‖∇qh −�0
K∇qh‖0,K

≤ C
∑
K∈�h

hK |(∇curl ψ)β|1,K‖∇qh‖0,K

≤ Ch

⎛
⎝ ∑

K∈�h

|(∇curl ψ)β|21,K
⎞
⎠

1/2⎛
⎝ ∑

K∈�h

‖∇qh‖2
0,K

⎞
⎠

1/2

≤ Ch‖(∇curl ψ)β‖1,�|qh|1,�
≤ Ch‖β‖W 1,∞(�)‖∇(curl ψ)‖1,�‖qh‖1,�

≤ Ch‖ψ‖3,�‖qh‖1,�.

(8.67)

Now, we continue by estimating II (cf. (8.66)). By using the approximation
properties of operator �2

K , we obtain that

II : =
∑
K∈�h

∣∣∣∣
∫
K

[
∇(curl ψ −�2

Kcurl ψh)
]
β ·�0

K∇qh
∣∣∣∣

≤
∑
K∈�h

‖β‖L∞(K)‖∇(curl ψ −�2
Kcurl ψh)‖0,K‖�0

K∇qh‖0,K

≤ C‖β‖L∞(�)

∑
K∈�h

|curl ψ −�2
Kcurl ψh|1,K‖∇qh‖0,K

≤ C
∑
K∈�h

(
|curl ψ −�2

Kcurl ψ|1,K + |�2
Kcurl (ψ − ψh)|1,K

)
‖∇qh‖0,K

≤ C
∑
K∈�h

(
hK‖curl ψ‖1,K + CN |ψ − ψh|2,K

) ‖∇qh‖0,K

≤ Ch(|f|1,h + ‖ψ‖4,�)‖qh‖1,�,

(8.68)
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where we have added and subtracted the term �2
Kcurl ψ , and used (8.11) together

with the Hölder inequality. Then, inserting (8.67) and (8.68) into (8.66), we obtain

T2 ≤ Ch
(‖ψ‖4,� + |f|1,h

) ‖qh‖1,�. (8.69)

Finally, the proof follows from the estimates (8.63)–(8.65) and (8.69). ��
The following theorem provides the rate of convergence of our virtual element

scheme (8.62) to recover the fluid pressure. The proof follows from Propositions 8.9,
8.10, 8.7, and 8.8.

Theorem 8.8 Let f ∈ L2(�)2 such that f|K ∈ H 1(K)2 for all K ∈ �h. Let ψ ,
ψh, p and ph be the unique solutions of problems (8.2), (8.32), (8.52), and (8.62),
respectively. Suppose that A1 − A3 are satisfied, p ∈ H 2(�) and ψ ∈ H 4(�).
Then, there exists C > 0, independent of h, such that

‖p − ph‖1,� ≤ Ch
(‖ψ‖4,� + |f|1,h

)
.

8.6 Numerical Results

In this section, we present three numerical experiments in order to illustrate the
practical performance of the proposed virtual element methods (8.32) and (8.62)
and to confirm the theoretical results established in previous sections. We will test
the method for the cases k = 2 and k = 3 on different polygonal meshes.

Now, we introduce the bilinear forms S K
D (·, ·) and S K

curl (·, ·) (cf. (8.12)) to
complete the virtual element discretization (8.32). We take (see [9, 24, 47]):

S K
D (ψh, φh) := σK

Ndof
K∑

i=1

dofi (ψh)dofi (φh) ∀ψh, φh ∈ Xk
h(K),

S K
curl (ψh, φh) := σK

γ

Ndof
K∑

i=1

dofi (ψh)dofi (φh) ∀ψh, φh ∈ Xk
h(K),

where for each polygon K ∈ �h, Ndof
K denote the number of degrees freedom of

Xk
h(K) and dofi , with 1 ≤ i ≤ dim(Xk

h(K)), denote the operator that to each
smooth enough function φ associates the ith local degree of freedom dofi (φ) and the
parameters σK, σK

γ > 0 are multiplicative factors to take into account the physical

magnitudes and the h-scaling. On the other hand, the bilinear form S K∇ (·, ·) (cf.
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Fig. 8.1 Sample meshes. �1
h, �2

h and �3
h

(8.56)), is given by (see [13, 46]):

S K∇ (ph, qh) :=
NK∑
i=1

ph(vi )qh(vi ) ∀ph, qh ∈ Wh(K).

We have tested the method by using the following families of meshes (Fig. 8.1):

– �1
h: Distorted concave rhombic quadrilaterals;

– �2
h: Trapezoidal meshes;

– �3
h: Sequence of CVT (Centroidal Voronoi Tessellation).
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In order to compute the VEM errors, we consider the following computable error
quantities.

ei (ψ) = error(ψ,H i) :=
⎛
⎝ ∑

K∈�h

|ψ −�
k,D
K ψh|2i,K

⎞
⎠

1/2

, i = 0, 1, 2.

e1(p) = error(p,H 1) :=
⎛
⎝ ∑

K∈�h

∣∣∣p −�∇Kph
∣∣∣2
1,K

⎞
⎠

1/2

,

e0(ω) = error(ω,L2) :=
⎛
⎝ ∑

K∈�h

∥∥∥ω −�k−2
K (�ψh)

∥∥∥2

0,K

⎞
⎠

1/2

.

Moreover, if h, h′ denote two consecutive mesh sizes with their respective errors
ei and e′i , then we will compute experimental rates of convergence for each variable
as follows:

ri (·) := log(ei (·)/e′i (·))
log(h/h′) , i = 0, 1, 2.

8.6.1 Test 1: Smooth Solution

In this test we solve the Oseen equations (8.1) on the square domain � := (0, 1)2.
We take ν = 1, γ = 100, and the load term f and boundary conditions in such a
way that the analytical solution is given by:

u(x, y) =
(

2x2(1− x)2y(y − 1)(2y − 1)
−2y2(1− y)2x(x − 1)(2x − 1)

)
, ω(x, y) = rot u = −�ψ,

p(x, y) = x3 + y3 − 1

2
and ψ(x, y) = x2(1− x)2y2(1− y)2.

Moreover, we consider the following convective velocity:

β(x, y) =
(

sin(x) sin(y)
cos(x) cos(y)

)
.

Table 8.1 shows the convergence history of the virtual element scheme (8.32)
applied to our test problem for k = 2. In addition, Table 8.2 shows the convergence
history of the virtual element schemes (8.32) and (8.62) for k = 3. In both cases,
we have considered meshes �1

h.
It can be seen from Tables 8.1 and 8.2 that the methods converge with an optimal

order for all the variables.
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Table 8.1 Test 1. Errors and experimental rates for the stream-function ψh and vorticity ωh, using
the meshes �1

h, k = 2, ν = 1 and γ = 100

h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) e0(ω) r0(ω)

1/4 7.473458e−4 – 3.931137e−3 – 3.515403e−2 – 2.579728e−2 –

1/8 1.219438e−4 2.61 8.002679e−4 2.29 1.606165e−2 1.13 8.728651e−3 1.56

1/16 1.750743e−5 2.80 1.633574e−4 2.29 7.852990e−3 1.03 3.750317e−3 1.21

1/32 3.151107e−6 2.47 3.947501e−5 2.04 3.894174e−3 1.01 1.738230e−3 1.10

1/64 6.698881e−7 2.23 9.958959e−6 1.98 1.942167e−3 1.00 8.414948e−4 1.04

Table 8.2 Test 1. Errors and experimental rates for the stream-function ψh, pressure ph and
vorticity ωh using the meshes �1

h, k = 3, ν = 1 and γ = 100

h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) e1(p) r1(p) e0(ω) r0(ω)

1/4 1.852106e−4 – 1.106299e−3 – 1.949383e−2 – 3.158359e−1 – 1.970323e−2 –

1/8 1.405414e−5 3.72 1.110736e−4 3.31 5.057026e−3 1.94 1.622020e−1 0.96 5.128756e−3 1.94

1/16 1.027443e−6 3.77 1.160837e−5 3.25 1.285563e−3 1.97 8.253523e−2 0.97 1.303501e−3 1.97

1/32 7.173524e−8 3.84 1.230588e−6 3.23 3.062095e−4 2.06 4.055215e−2 1.02 3.103413e−4 2.07

1/64 4.450005e−9 4.01 1.352796e−7 3.18 7.017355e−5 2.12 1.986404e−2 1.02 7.098042e−5 2.12

Figure 8.2 shows plots of the exact (left) and computed (right) stream-function,
pressure and vorticity, obtained with the virtual element methods analyzed in this
paper, using the meshes �1

h, with h = 1/32, k = 3 and ν = 1.
In Fig. 8.3 we depict approximate velocity field obtained from the discrete

stream-function using the meshes �1
h, with h = 1/32, k = 3, ν = 1 and γ = 100.

8.6.2 Test 2: Solution with Boundary Layer

In this numerical experiment, we solve the Oseen equations (8.1) on the square
domain � := (0, 1)2. We take ν = 10−3, γ = 50 and the load term f and boundary
conditions in such a way that the analytical solution is given by:

u(x, y) = 2

λ2

(
x2y(eλ(x−1) − 1)2(eλ(y−1) − 1)(eλ(y−1) + λyeλ(y−1) − 1)
−xy2(eλ(y−1) − 1)2eλ(x−1) − 1)(eλ(x−1) + λxeλ(x−1) − 1)

)
,

ω(x, y) = rot u = −�ψ, p(x, y) = ex+y − (e − 1)2,

and

ψ(x, y) = 1

λ2 x
2y2(1− eλ(x−1))2(1− eλ(y−1))2,

where λ = 0.5/
√
ν, while the convective velocity is β = (1, 1). We observe that ψ

has a boundary layer on the top-right corner of the domain for small values of ν.
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Fig. 8.2 Test 1. Exact (left) and computed (right) stream-function, pressure and vorticity, using
the VEM methods (8.2) and (8.62) with �1

h, h = 1/32, k = 3, ν = 1 and γ = 100

Table 8.3 shows the convergence history of our virtual element scheme (8.32)
applied to the present test for k = 2, while Table 8.4 shows the convergence history
of the virtual element schemes (8.32) and (8.62) for k = 3. In both cases, the set of
decompositions utilized is �2

h.
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Fig. 8.3 Test 1. Velocity field obtained from the discrete stream-function with �1
h, h = 1/32,

k = 3, ν = 1 and γ = 100

Table 8.3 Test 2. Errors and experimental rates for the stream-function ψh and vorticity ωh, using
the meshes �2

h, k = 2, ν = 10−3 and γ = 50

h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) e0(ω) r0(ω)

1/8 2.784694e−4 – 2.973866e−3 – 9.076308e−2 – 5.838607e−2 –

1/16 1.030198e−4 1.43 1.690738e−3 0.81 7.965350e−2 0.18 4.042055e−2 0.53

1/32 1.926182e−5 2.14 6.324576e−4 1.41 5.785738e−2 0.46 3.638668e−2 0.15

1/64 1.992073e−6 3.27 1.607822e−4 1.97 3.321376e−2 0.88 2.211350e−2 0.71

1/128 3.418173e−7 2.54 3.208248e−5 2.32 1.593417e−2 1.05 9.492817e−3 1.22

Table 8.4 Test 2. Errors and experimental rates for the stream-function ψh, pressure ph and
vorticity ωh using the meshes �2

h, k = 3, ν = 10−3 and γ = 50

h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) e1(p) r1(p) e0(ω) r0(ω)

1/8 2.197659e−4 – 2.548761e−3 – 8.465258e−2 – 2.466608e−1 – 8.483406e−2 –

1/16 4.584130e−5 2.26 1.000595e−3 1.34 5.882760e−2 0.52 1.244517e−1 0.98 5.890052e−2 0.52

1/32 3.579805e−6 3.67 2.019404e−4 2.30 2.659083e−2 1.14 6.250501e−2 0.99 2.659606e−2 1.14

1/64 2.381437e−7 3.90 3.314490e−5 2.60 8.793503e−3 1.59 3.130231e−2 0.99 8.787307e−3 1.59

1/128 3.084086e−8 2.94 4.223090e−6 2.97 2.148259e−3 2.03 1.565467e−2 0.99 2.144776e−3 2.03
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In this numerical example, we notice that the rate of convergence predicted by
Theorems 8.3, 8.5, and 8.8 is attained by all the variables, in the corresponding
norms. However, in Table 8.4 we observe a degeneracy of the optimal convergence
rate for the stream-function in the L2-norm, we attribute this to the existence of the
boundary layer on the top-right corner of the domain.

Figure 8.4 shows plots of the exact (left) and computed (right) stream-function,
pressure and vorticity, obtained with the virtual element methods analyzed in this
paper, using the meshes �2

h, with h = 1/64, k = 3, ν = 10−3 and γ = 50.
Figure 8.5 shows the approximate velocity field obtained from the discrete

stream-function and the streamlines using the meshes �2
h, with h = 1/64, k = 3,

ν = 10−3 and γ = 50.

8.6.3 Test 3: Solution with Non Homogeneous Dirichlet
Boundary Conditions

The aim of this numerical test is twofold: consider small values of viscosity and
solve the Oseen equations (8.1) on the square domain � := (0, 1)2 with the
proposed scheme (8.32) and with the scheme obtained by using the projection

�
k,∇⊥
K to discretize (8.17)–(8.18) (cf. Remark 8.2).
We take ν = 10−7, γ = 100, β = (1, 1) and the load term f and boundary

conditions in such a way that the analytical solution is given by:

u(x, y) = 1

4π2

(
ex

2+y2
sin(2πx)(y cos(2πy)− π sin(2πy))

−ex2+y2
cos(2πy)(x sin(2πx)+ π cos(2πx))

)
, ω(x, y) = rot u,

p(x, y) = sin(x)− sin(y) and ψ(x, y) = 1

8π2 sin(2πx) cos(2πy)ex
2+y2

.

Table 8.5 shows the convergence history of the scheme (8.32) and the scheme

obtained by using the projection �
k,∇⊥
K to discretize (8.17)–(8.18) for k = 2 with

meshes �3
h.

In this numerical example, we notice that the rate of convergence predicted by
Theorems 8.3 and 8.5 is attained by all the variables for both methods. However,
we have not proved any order of convergence for the second method (denoted by

�
k,∇⊥
K ).
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Fig. 8.4 Test 2. Exact (left) and computed (right) stream-function, pressure and vorticity, using
the VEM methods (8.2) and (8.62) with �2

h, h = 1/64, k = 3, ν = 10−3 and γ = 50
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Fig. 8.5 Test 2. Velocity field and streamlines obtained from the discrete stream-function with �2
h,

k = 3, ν = 10−3 and γ = 50

Table 8.5 Test 3. Errors and experimental rates for the stream-function ψh and vorticity ωh, using
the meshes �3

h, k = 2, ν = 10−7 and γ = 100

h e2(ψ) r2(ψ) e0(ω) r0(ω) e2(ψ) r2(ψ) e0(ω) r0(ω)

�k−1
K curl �

k,∇⊥
K

1/4 7.353181e−1 – 4.192605e−1 – 7.080137e−1 – 3.472549e−1 –

1/8 3.884964e−1 0.92 1.422766e−1 1.55 3.794077e−1 0.90 1.070817e−1 1.69

1/16 2.110175e−1 0.88 7.320291e−2 0.95 2.071037e−1 0.87 6.068313e−2 0.81

1/32 1.032265e−1 1.03 3.079478e−2 1.24 1.013613e−1 1.03 2.376248e−2 1.35

1/64 5.059447e−2 1.02 1.499318e−2 1.03 4.957692e−2 1.03 1.100301e−2 1.11

1/128 2.512584e−2 1.00 6.807878e−3 1.13 2.476607e−2 1.00 5.318140e−3 1.04
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Chapter 9
The Nonconforming Trefftz Virtual
Element Method: General Setting,
Applications, and Dispersion Analysis
for the Helmholtz Equation

Lorenzo Mascotto, Ilaria Perugia, and Alexander Pichler

Abstract We present a survey of the nonconforming Trefftz virtual element method
for the Laplace and Helmholtz equations. As for the latter, we show a new abstract
analysis, based on weaker assumptions on the stabilization, and numerical results
on the dispersion analysis, including comparison with the plane wave discontinuous
Galerkin method.

9.1 Introduction

In this chapter, we present a survey of a methodology, which dovetails the
nonconforming virtual element setting with the Trefftz paradigm.

The nonconforming virtual element method is an extension of the nonconforming
finite element method to polytopal meshes, which is based on the virtual element
method (VEM) framework. Notably, the continuity constraint of functions in the
approximation spaces are imposed in a weak sense only. Since its inception [6], the
nonconforming VEM has received an increasing attention, and has been analysed
and applied to several problems: general elliptic problems [14]; Stokes and Navier-
Stokes equations [13, 35, 36, 51, 52]; eigenvalue problems [23]; the plate bending
problem [50]; equations involving the biharmonic and 2m-th operators [4, 17];
anisotropic error estimates [15]; the linear elasticity problem [49]; parabolic and
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fractional-reaction subdiffusion problems [34, 53]; the VEM with a SUPG sta-
bilization for advection-diffusion-reaction [11]; fourth order singular perturbation
problems [48]; the Kirchhoff plate contact problem [46]; the medius error analysis
for the Poisson and biharmonic problem [30]. Its comparison with other skeletal
methods such as the hybridized discontinuous Galerkin method (HDG) and the
hybrid high-order (HHO) method is investigated in [21].

Trefftz methods are Galerkin-type methods for the approximation of linear partial
differential equations (PDEs) with piecewise constant coefficients, where the test
and/or trial functions belong to the kernel of the differential operator defining
the PDE to be approximated. Trefftz methods have been applied mainly to time-
harmonic wave propagation problems, but also to advection-diffusion problems and
to wave problems in the time-domain. Typically, Trefftz methods are obtained by
combining these functions (Trefftz function) with the discontinuous Galerkin method
(dG) or with the partition of unity method (PUM). Out of the former category,
restricting ourselves to the Helmholtz problem, we recall several approaches, which
trace back to the ultra weak variational formulation [16]: the wave based method
[19]; discontinuous methods based on Lagrange multipliers [22] and on least square
formulation [43]; the plane wave discontinuous Galerkin (PWDG) method [25, 28];
the variational theory of complex rays [45]; see [29] for an overview of such
methods. We also mention the quasi-Trefftz dG method for the case of smoothly
varying coefficients, where functions that “almost” belong to the kernel of the
operator appearing in the PDE are employed [32, 33]. Instead, the latter category
consists of methods based on approximation spaces of continuous functions given
by the product of pure Trefftz functions with partition of unity, low order, hat
functions. Amongst them, we highlight the classical PUM [7, 8] and its virtual
element version [44].

More recently, the Trefftz gospel has been combined with the nonconforming
VEM setting for the Laplace equation [37], and the Helmholtz equation with
constant [38, 39] and piecewise constant wave number [40]. Albeit the noncon-
forming Trefftz VEM is not an H 1 conforming method, the interelement continuity
is imposed weakly within the approximation spaces, unlike in the dG setting.
Moreover, unlike in the PUM setting, its basis functions are exactly Trefftz.

In this contribution, we review the methods presented in [37–39], and elaborate
a common framework for nonconforming Trefftz VEMs. We start by considering
the simplest case of the Laplace equation in Sect. 9.3. Then, we extrapolate the
core idea of the nonconforming Trefftz VEM approach and extend it to general
linear differential operators of the second order; see Sect. 9.4. In Sect. 9.5, we recast
the case of the Helmholtz equation studied in [38] into the setting of Sect. 9.4.
Additionally, we present a new abstract analysis of the method, which is based on
weaker assumptions on the stabilization than those in [38]. While we refer to [39] for
the implementation details and an extended numerical testing of the nonconforming
Trefftz VEM for the Helmholtz problem, we present in Sect. 9.6 unpublished work
on its numerical dispersion analysis, where the performance of the nonconforming
Trefftz VEM are compared to those of the PWDG method that have been studied
in [24].
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Notation
We employ standard notation for Sobolev spaces. Given s ∈ N and a domain �, we
denote the Sobolev space of order s taking values in the complex field C by Hs(�).
In the special case s = 0, Hs(�) reduces to the Lebesgue space L2(�). We
introduce the Sobolev sesquilinear forms, seminorms, and norms

(·, ·)s,�, | · |s,�, ‖ · ‖s,�.

We define Sobolev spaces of order s ∈ R by interpolation. Analogously, we denote
the Sobolev spaces on ∂� by Hs(∂�). If we consider Sobolev spaces of functions
taking values only in R, we employ the same notation Hs(�) thanks to the trivial
embedding R ↪→ C.

Assume that the domain � is Lipschitz. Then, we can define the standard

Dirichlet trace operator tr∂� : Hs(�)→ Hs− 1
2 (∂�) for all s ∈ (1/2, 3/2). Thanks

to this operator, we are allowed to introduce affine Sobolev spaces with boundary

conditions: given g ∈ H
1
2 (∂�),

H 1
g (�) :=

{
v ∈ H 1(�) | tr∂�(v) = g

}
.

Henceforth, as standard in the VEM literature, a quantity is said to be computable
if it can be evaluated using the degrees of freedom of the trial and test spaces under
consideration.

9.2 Polygonal Meshes and Broken Sobolev Spaces

We denote a family of polygonal meshes over a polygonal domain � ⊂ R
2

by {Th}h>0, and the sets of edges and vertices of Th by Eh and Vh, respectively.
In particular, we split Eh into the sets of boundary and internal edges E B

h and E I
h ,

respectively. Given a polygon K ∈ Th, we denote its barycenter, size, set of
edges, set of vertices, and outward normal to ∂K by xK , hK , E K , V K , and nK ,
respectively, and given an edge e ∈ Eh, we denote its size by he.

As customary in polygonal methods, we demand the following shape-regularity
assumption on {Th}h:

there exists a positive constant γ > 0 such that, for all K ∈ Th,

i) K ∈ Th is star-shaped with respect to a ball of radius γ hK ;

ii) every edge e ∈ E K is such that he ≤ hK ≤ γ he.

(9.1)

We introduce the broken Sobolev space associated with the mesh Th

H 1(�,Th) := {v ∈ L2(�) | v ∈ H 1(K) ∀K ∈ Th}, (9.2)
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and endow it with the broken seminorm

|v|21,Th
:=

∑
K∈Th

|vK |21,K ∀v ∈ H 1(�,Th). (9.3)

Given e ∈ E I
h , we define the jump operator across e as follows:

�v�e = v+|e nK+ + v−|e nK− if e ⊂ ∂K+ ∩ ∂K− (9.4)

for all v in H 1(�,Th), where v+ := v|K+ and v− := v|K− .

9.3 The Nonconforming Trefftz Virtual Element Method
for the Laplace Problem

In this section, we focus on the approximation of a two dimensional Laplace
problem by means of the nonconforming Trefftz virtual element method that was
originally introduced in [37]; see also [18] for its conforming version.

The Continuous Problem
Let � ⊂ R

2 be a polygonal domain and g ∈ H
1
2 (∂�). Introduce the following

notation:

Vg := H 1
g (�), V0 := H 1

0 (�), a(·, ·) := (∇·,∇·)0,�.

We consider the following Laplace problem: find a sufficiently smooth u : �→ R

such that

{
�u = 0 in �

u = g on ∂�,

which in weak formulation reads

{
find u ∈ Vg such that

a(u, v) = 0 ∀v ∈ V0.
(9.5)

An Explicit Discontinuous Space
Let p ∈ N. Given a sequence {Th}h of polygonal decompositions over � as
in Sect. 9.1, we define the corresponding sequence of discontinuous, piecewise
harmonic polynomials over Th:

S 0,�
p (�,Th) :=

{
q�p ∈ L2(�) | q�p |K ∈ Hp(K) ∀K ∈ Th

}
,
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where, for all K ∈ Th,

Hp(K) :=
{
q�p ∈ Pp(K) | �q�p = 0

}
.

We recall the following approximation property of discontinuous, piecewise
harmonic polynomials for harmonic functions; see, e.g., [41, Theorem 2.9].

Proposition 9.1 Under the shape regularity assumption (9.1) with constant γ ,
given a harmonic function u ∈ Hs+1(�), s > 0, there exists q�p ∈ S 0,�

p (�,Th)

such that

|u− q�p |1,h ≤ chs‖u‖s+1,�.

The positive constant c depends on γ and on the polynomial degree p.

The importance of Proposition 9.1 resides in the fact that there exists a subset of the
space of piecewise polynomials of degree at most p having optimal approximation
properties for harmonic functions. This subset is the space of piecewise harmonic
polynomials of degree at most p, whose local dimension in 2D is 2p+ 1, while the
local dimension of the space of complete polynomials of degree at most p is (p +
1)(p + 2)/2.

Design of the VE Trefftz Space
Here, we recall from [37] the definition of local and global nonconforming Trefftz
spaces for the Laplace problem. Given K ∈ Th, define

V�
h (K) := {v�h ∈ H 1(K) | �v�h = 0 in K,

∀e ∈ E K ∃q�p ∈ H
�
p (K) s.t. ne · ∇v�h |e = ne · ∇q�p |e}.

(9.6)

Equivalently, we are requiring that the Neumann traces of functions in V �
h (K)

belong to Pp−1(e) for all e ∈ E K . It is more convenient to define V �
h (K) as in (9.6)

in view of the general setting presented in Sect. 9.4 below.
The idea behind the definition of V �

h (K) is as follows. According to the Trefftz
gospel, we consider a local space, which consists of Trefftz functions, i.e., harmonic
functions in our case. A possible way to pick a finite dimensional subspace V �

h (K)

is to require that, on each e ∈ E K , a suitable trace of any element in V �
h (K)

belongs to a suitable explicit finite element space. In our case, we require that the
Neumann traces belong to Pp−1(e), the space of polynomials of degree at most p−1
(dim(Pp−1(e)) = p). By doing this, harmonic polynomials are included in the
space V �

h (K), which yields good approximation properties; see Proposition 9.3
below.
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For any edge e ∈ E K , let {me
α}pα=1 be a basis of Pp−1(e). Consider the following

set of linear functionals on V �
h (K):

v�h ∈ V �
h (K) �→ 1

he

∫
e

v�h m
e
α ∀α = 1, . . . , p, ∀e ∈ E K. (9.7)

Proposition 9.2 The set of functionals in (9.7) is a set of unisolvent degrees of
freedom.

Proof The proof is standard and can be found, e.g., in [37, Section 3.1]. For the sake
of completeness, we recall it here. The number of the functionals in (9.7) is smaller
than or equal to the dimension of V �

h (K). Thus, it suffices to show the unisolvence
of such a set of functionals.

Assume that v�h ∈ V�
h (K) has the moments in (9.7) all equal to zero. Then, we

have
∫
∂K

v�h = 0.

Consequently, in order to prove the unisolvence, i.e., that v�h = 0, it is enough to
show that v�h has zero gradient. This is a consequence of an integration by parts, and
the fact that v�h is harmonic, that nK ·∇v�h |e is a polynomial of degree at most p−1
on each edge e ∈ E K , and that the functionals in (9.7) are zero:

|v�h |21,K = −
∫
K

�v�h v�h +
∫
∂K

nK ·∇v�h v�h =
∑
e∈E K

∫
e

nK ·∇v�h v�h = 0. (9.8)

��
In the proof of Proposition 9.2, the choice of the local polynomial traces in

the definition of (9.6) is important. More precisely, we fixed polynomial Neumann
traces, for they appear in the integration by Parts (9.8). At the same time, the choice
of the “Dirichlet”-type degrees of freedom in (9.7) is relevant as well, and will play
a role in the construction of the global space.

We define the infinite dimensional, nonconforming spaces

Hnc,�
p (�,Th):=

{
v ∈ H 1(�,Th) |

∫
e

�v�e · ne me
α = 0 ∀α = 1, . . . , p, ∀e ∈ E I

h

}
,

where the broken Sobolev spaces H 1(�,Th) and the jump operator �·� are defined
in (9.2) and (9.4), respectively, and we introduce the global nonconforming Trefftz
virtual element space for the Laplace problem:

V �
h :=

{
v�h ∈ Hnc,�

p (�,Th) | v�h |K ∈ V�
h (K) ∀K ∈ Th

}
.
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We obtain the set of global degrees of freedom of the space v�h by patching the
local ones in (9.7). In particular, we use the Dirichlet edge moments of (9.7) in the
definition of the infinite dimensional, nonconforming space Hnc,�

p (�,Th) in order
to weakly impose the interelement continuity.

We summarize the main features of the space v�h , highlighting a “duality”
between Dirichlet moments and local Neumann traces, as follows.

Trefftz spaces Contain Harmonic functions

Nonconformity Imposed through Dirichlet moments

Unis. of DOFs in (9.7) Implied by Pol. Neumann traces in (9.6)

For the design of the method, we define spaces that incorporate Dirichlet

boundary conditions. More precisely, given g ∈ H
1
2 (∂�), we define

V �
h,g :=

{
v�h ∈ V �

h |
∫
e

(v�h − g)me
α = 0 ∀e ∈ E B

h , ∀α = 1, . . . , p

}
.

The seminorm | · |1,Th
defined in (9.3) is actually a norm in V �

h,0.

Interpolation Properties
An interesting property of the nonconforming Trefftz virtual element space for the
Laplace problem is that, given a harmonic function u ∈ H 1(�), there exists u�I ∈
V�
h , which approximates u better than any discontinuous, piecewise harmonic

polynomial of degree at most p. This property was originally shown in [37,
Proposition 3.1].

Proposition 9.3 Given a harmonic function u ∈ H 1(�), there exists u�I ∈ V �
h

such that

|u− u�I |1,Th
≤ |u− q�p |1,Th

∀q�p ∈ S 0,�
p (�,Th),

where the broken Sobolev seminorm is defined in (9.3).

Proof Define u�I ∈ V �
h as the interpolant of u, i.e.,

∫
e

(u− u�I )m
e
α = 0 ∀e ∈ Eh, ∀α = 1, . . . , p, (9.9)

and let q�p be any function in S 0,�
p (�,Th). For any K ∈ Th, since both (nK ·

∇u�I )|e and (nK ·∇q�p )|e belong to Pp−1(e) for all e ∈ E K , Definition (9.9) implies
∫
e

nK · ∇u�I (u− u�I ) =
∫
e

nK · ∇q�p (u− u�I ) = 0 ∀e ∈ E K. (9.10)
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Therefore, by integrating by parts twice and using (9.10), as well as �u = �u�I =
�q�p = 0, we deduce that

|u− u�I |21,K = −
∫
K

�(u− u�I )︸ ︷︷ ︸
=0

(u− u�I )+
∑
e∈E K

∫
e

nK · ∇(u− u�I ) (u− u�I )

(9.10)= −
∫
K

�(u− q�p )︸ ︷︷ ︸
=0

(u− u�I )+
∑
e∈E K

∫
e

nK · ∇(u− q�p ) (u− u�I )

= (∇(u− q�p ),∇(u− u�I ))0,K ≤ |u− q�p |1,K |u− u�I |1,K,

whence the assertion follows. ��
Projections and Stabilizations
For future convenience, split

a(u, v) =
∑
K∈Th

aK(u|K, v|K) :=
∑
K∈Th

(∇(u|K),∇(v|K ))0,K.

Since the functions in the virtual element space v�h are not known in closed form, we
cannot compute the local bilinear forms aK(·, ·) applied to functions in v�h . Rather,
we introduce computable bilinear forms as in the standard virtual element approach
of [10].

To this aim, we need two main ingredients. The first one is a local projection into
harmonic polynomial spaces. Define �∇,�p : V �

h (K)→ Hp(K) as follows:

{
aK(v�h −�

∇,�
p v�h , q

�
p ) = 0∫

∂K
(v�h −�

∇,�
p v�h ) = 0

∀q�p ∈ Hp(K), ∀v�h ∈ V �
h (K). (9.11)

This is a typical VEM projection. Here, we project into the subspace of harmonic
polynomials of degree at most p whereas, in the standard setting [10], the projection
is into the full space of polynomials of degree at most p.

The definition of the degrees of freedom in (9.7) allows us to compute the
projector �∇,�p . This is clear for the second condition in (9.11). As for the first
condition, we observe that

aK(�∇,�p v�h , q
�
p ) = aK(v�h , q

�
p ) = −

∫
K

v�h �q�p︸︷︷︸
=0

+
∑
e∈E K

∫
e

v�h nK · ∇q�p︸ ︷︷ ︸
∈Pp−1(e)

,

where the right-hand side is computable using (9.7).
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The second ingredient is a computable stabilization on each element, which
is needed since the bilinear form aK(·, ·) is not computable on ker(�∇,�p ) ×
ker(�∇,�p ). More precisely, for all K ∈ Th, let SK,� : ker(�∇,�p )× ker(�∇,�p )→
R be a bilinear form that is computable via the degrees of freedom in (9.7) and
that satisfies the following property: there exist two positive constant α∗ and α∗
independent of the mesh size such that

α∗|v�h |21,K ≤ SK,�(v�h , v
�
h ) ≤ α∗|v�h |21,K ∀v�h ∈ ker(�∇,�p ). (9.12)

We allow α∗ and α∗ to depend on the shape regularity constant γ in (9.1).
Then, we define

a�h (u
�
h , v

�
h ) :=

∑
K∈Th

a
K,�
h (u�h |K, v�h |K)

:=
∑
K∈Th

aK(�∇,�p u�h |K,�∇,�p v�h |K)

+ SK,�((I −�∇,�p )u�h |K, (I −�∇,�p )v�h |K).

As in [10, 37], the discrete bilinear form a�h (·, ·) is coercive and continuous with
constants min(1, α∗) and max(1, α∗).

Remark 9.1 We refer to [37, Section 3.3] for an explicit stabilization satisfy-
ing (9.12). There, stability bounds are proven, which are explicit also in terms of
the polynomial degree.

The Method
We have introduced all the ingredients needed for the design of the nonconforming
Trefftz VEM for the Laplace problem:

{
find u�h ∈ V �

h,g such that

a�h (u
�
h , v

�
h ) = 0 ∀v�h ∈ V �

h,0.
(9.13)

The well-posedness of the method follows from the coercivity and the continuity of
the discrete bilinear form a�h (·, ·).
Convergence Analysis
The abstract error analysis of method (9.13) is carried out in [37, Theorem 3.3] and
is based on the second Strang’s lemma. The result is that the error of the method
is controlled by the sum of two terms: the best approximation error in the space of
discontinuous, piecewise polynomials and a term that measures the nonconformity
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of the method. The latter is expressed in terms of the bilinear form Nh : H 1(�) ×
H

nc,�
p (�,Th)→ R defined as

Nh(u, v) =
∑
e∈Eh

∫
e

∇u · �v�. (9.14)

Theorem 9.1 Let u and u�h be the solutions to (9.5) and (9.13), respectively. Under
the shape regularity assumption (9.1), the following bound is valid:

|u− uh|1,Th
≤ α∗

α∗

⎧⎨
⎩6 inf

q�p ∈S 0,�
p (�,Th)

|u− q�p |1,Th
+ sup

0 "=v�h ∈V�
h,0

Nh(u, v
�
h )

|v�h |1,Th

⎫⎬
⎭ .

As a consequence of Theorem 9.1, Proposition 9.1, and estimates of Nh derived
by standard computations that are typical in nonconforming Galerkin methods, the
convergence of the method follows; see [37, Section 3.5] for more details.

Corollary 9.1 Let u and u�h be the solutions to (9.5) and (9.13), respectively,
with u ∈ Hs+1(�). Under the shape regularity assumption (9.1) with constant γ ,
the following convergence result is valid:

|u− uh|1,Th
≤ chs‖u‖s+1,�.

Here, c is a positive constant, which depends on γ and on the polynomial degree p.

Overall, the nonconforming Trefftz VEM for the Laplace problem is a modifi-
cation of the standard nonconforming VEM, in the sense that it encodes certain
properties of the solution to the problem within the definition of the VE spaces. The
resulting method has significantly fewer degrees of freedom than a standard VEM
based on complete polynomial spaces, yet keeping the same convergence properties.

9.4 General Structure of Nonconforming Trefftz Virtual
Element Methods

In this section, we pinpoint the structure lying behind the nonconforming Trefftz
VEM for the Laplace equation and extend it to a more general and abstract setting.
In particular, given a homogeneous, linear partial differential equation, we highlight
which ideas we can extend to the new setting and which not. For the sake of
presentation, we assume that the solution to the involved partial differential equation
has to be sought in H 1-type Sobolev spaces with values in the field of complex
numbers C, although generalizations to other problems are possible as well.
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The Continuous Problem
Let � ⊂ R

2 be a polygonal domain and g ∈ Hs(∂�), where s ∈ R. In typical cases,
we have s ∈ {−1/2, 1/2}. Let L : H 1(�) → H−1(�) be a linear differential
operator of the second order and tr∂� : H 1(�) → Hs(∂�), s as above, a trace
operator.

Consider the following abstract problem: find u : �→ C such that

{
L u = 0 in �

tr∂�(u) = g on ∂�,

which, in weak formulation, reads

{
find u ∈ V such that

a(u, v)+ b(u, v) = G(v) ∀v ∈ W.
(9.15)

Here, we have introduced an affine space V ⊆ H 1(�), a test space W ⊆ H 1(�),
sesquilinear forms a : V × W → C and b : V × W → C, and an antilinear
functional G : W → C. The form b(·, ·) and the functional G(·) accommodate
the treatment of several types of boundary conditions. In particular, they are defined
only on ∂�. In what follows, we assume that a(·, ·), L , and tr∂� are related by the
following identity: for sufficiently smooth u and v,

a(u, v) = −(L u, v)0,� +G(v)− b(u, v). (9.16)

After splitting

a(u, v) =
∑
K∈Th

aK(u|K, v|K),

we demand that, for all K ∈ Th and all sufficiently smooth u and v,

aK(u|K, v|K)=−(L u|K, v|K)0,K+
∑
e∈EK

(tre(u|K), v|K)0,e− bK(u|K, v|K), (9.17)

where tre denotes the restriction to an edge e ∈ Eh of a trace operator tr, which
is not necessarily of the same type as tr∂�, and where bK(·, ·) is a local sequilinear
form.

For example, in Sect. 9.3, we fixed

V = H 1
g (�), W = H 1

0 (�), L = �, tr = Dirichlet trace operator,

a(u, v) = (∇u,∇v)0,�, b(u, v) = 0, G(v) = 0.
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In the abstract formulation (9.15), we can deal with the boundary datum g by tuning
either the trial space V or the right-hand side G(v).

An Explicit Discontinuous Space
The basic tool in the construction of a Trefftz VEM is the existence of finite
dimensional space consisting of globally discontinuous, piecewise smooth func-
tions, which lie in the kernel of the operator L and possess suitable approximation
properties for solutions to problem (9.15). We denote such approximation space
by S 0,L

p (�,Th) and its local counterpart on every element K by SL
p (K), where

the index p ∈ N is related to the local space dimension.
For instance, in Sect. (9.3), we considered as S 0,L

p (�,Th) the space of
discontinuous, piecewise harmonic polynomials of degree at most p, which has
optimal approximation properties in terms of the mesh size; see Proposition 9.1.

Design of the VE Trefftz Space
Given K ∈ Th, we define the local Trefftz virtual element space on K as follows:

VL
h (K) := {vLh ∈ H 1(K) | L (vLh ) = 0 in K,

∀e ∈ E K ∃sLp ∈ SL
p (K) s.t. tre(vLh |e) = tre(sLp |e)}.

(9.18)

The idea behind the construction of VL
h (K) hinges upon the existence of an

infinite dimensional, local space, which consists of functions in the kernel of the
operator L (Trefftz space). We define the finite dimensional subspace VL

h (K)

by requiring that, on each e ∈ E K , a suitable trace belongs to a suitable explicit
finite element space having good approximation properties for functions in the
kernel of L . More precisely, we require that the trace tre on each edge e ∈ E K

of any function in VL
h (K) belongs to tre(SL

p (K)). In this way, we include the

functions in SL
p (K) within the space VL

h (K). The hope is that this will yield
good interpolation properties of the local virtual element space.

In the setting of Sect. 9.3, we obtained a local space of harmonic functions, whose
Neumann trace tre belongs to the space of Neumann traces of harmonic polynomials
on every edge e, namely to Pp−1(e).

As for the degrees of freedom, for all edges e ∈ E K , let {me
α}p

L

α=1 be a basis
of tr(SL

p (K)). Consider the following set of antilinear functionals on VL
h (K):

vLh ∈ VL
h (K) �→ c(he)

∫
e

vLh me
α ∀α = 1, . . . , pL , ∀e ∈ E K, (9.19)

where c(he) is a constant depending only on he and providing a suitable scaling of
the degrees of freedom.
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We aim at getting the following result.

Proposition 9.4 The set of functionals in (9.19) is a set of unisolvent degrees of
freedom.

The number of the functionals in (9.19) is smaller than or equal to the dimension
of VL

h (K). Thus, in order to prove Proposition 9.4, it suffices to show the
unisolvence of such a set of functionals.

Using assumption (9.17), we get

aK(vLh , vLh )+bK(vLh , vLh ) = −(L vLh︸ ︷︷ ︸
=0

, vLh )0,K+
∑
e∈E K

( tre(vLh )︸ ︷︷ ︸
∈tre(SL

p (K))

, vLh )0,e = 0.

In general, this is not enough to prove the unisolvence of the DOFs. In case
of the Dirichlet-Laplace problem, this is indeed sufficient; see Proposition 9.2.
Notwithstanding, in the case of the Helmholtz problem in Sect. 9.5 below, we also
need assumptions on the size of the mesh elements; see Proposition 9.7.

Importantly, while the definition of the local spaces is problem-dependent, as it
depends on the elliptic operator and suitable traces associated with the problem
under consideration, the choice of the degrees of freedom is fixed, and always
consists of (suitably scaled) Dirichlet moments; see (9.19).

Next, we construct global nonconforming VE Trefftz spaces for problem (9.15).
We define the infinite dimensional, nonconforming spaces

Hnc,L
p (�,Th):=

{
v ∈ H 1(�,Th) |

∫
e

�v�e · ne m
e
α = 0 ∀α = 1, . . . , pL , ∀e ∈ E I

h

}
,

where H 1(�,Th) and �·� are defined in (9.2) and (9.4), respectively. Then, the
global nonconforming Trefftz virtual element space for problem (9.15) is defined as

VL
h :=

{
vLh ∈ Hnc,L

p (�,Th) | vLh |K ∈ VL
h (K) ∀K ∈ Th

}
.

We obtain the set of global degrees of freedom of the space VL
h by patching

the local ones in (9.19). In particular, we use the Dirichlet edge moments in the
definition of the infinite dimensional, nonconforming space Hnc,L

p (�,Th) in order
to weakly impose the interelement continuity.

We can summarize the Trefftz feature of the space VL
h and the “duality” between

Dirichlet moments and the local tre-type trace as follows.

Trefftz spaces Contain Functions in ker(L )

Nonconformity Imposed through Dirichlet moments

Unis. of DOFs in (9.19) Implied by Traces of the type tre in (9.18)
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As already mentioned, we incorporate the boundary conditions within the
method either by enforcing them in the trial space or by suitably tuning the
functional G(·) on the right-hand side.

Interpolation Properties
A desirable property of the local space V �

h (K) is that the following result is valid.

Proposition 9.5 Given a function u ∈ H 1(�) in the kernel of L , there exists uLI ∈
VL
h such that

|u− uLI |1,Th
≤ c|u− sLp |1,Th

∀sLp ∈ S 0,L
p (�,Th),

where the broken Sobolev seminorm is defined in (9.3) and c is a positive constant
independent of the mesh size.

In particular, we wish that functions in the kernel of L can be approximated in VL
h

not worse than in the explicit space S 0,L
p (�,Th). For the Laplace problem the

constant is 1; see Proposition 9.3. Moreover, we expect that uI in Proposition 9.5
can be defined as the interpolant of u through the degrees of freedom in (9.19).

In what follows, we assume that the local sesquilinear forms bK(·, ·) appearing
in (9.17) satisfy

whenever sLp ∈ SL
p (K), vLh ∈ VL

h (K)

then bK(sLp , vLh ) and bK(vLh , sLp ) are computable.
(9.20)

Projections and Stabilizations
Recall the splitting

a(u, v) =
∑
K∈Th

aK(u|K, v|K).

We consider the following discretizations of a and aK :

aLh (uLh , vLh ) :=
∑
K∈Th

a
K,L
h (uLh |K, vLh |K)

:=
∑
K∈Th

aK(�∇,Lp uLh |K,�∇,Lp vLh |K)+SK,L ((I−�∇,Lp )uLh |K, (I−�∇,Lp )vLh |K),

where we have to define the projector �∇,Lp and the sequilinear form SK,L (·, ·).
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The operator �
∇,L
p : VL

h (K) → SL
p (K) is the projection operator with

respect to the local sesquilinear form aK(·, ·). More precisely, for all K ∈ Th,
we set

{
aK(�

∇,L
p vLh − vLh , sLp ) = 0 ∀vLh ∈ VL

h (K), ∀sLp ∈ SL
p (K)

+computable conditions for the uniqueness of �∇,Lp vLh .

In the nonconforming Trefftz VEM for the Laplace equation, the computable
condition for uniqueness was on the average on ∂K; see (9.11).

The computability of �
∇,L
p follows from the definitions of the local

spaces VL
h (K) and the degrees of freedom in (9.19), and from the property (9.20):

aK(sLp ,�
∇,L
p vLh ) = aK(sLp , vLh )

= −(L sLp︸ ︷︷ ︸
=0

, vLh )0,K +
∑
e∈E K

( tre(sLp )︸ ︷︷ ︸
∈tre(SL

p (K))

, vLh )0,e − bK(sLp , vLh )︸ ︷︷ ︸
(9.20)

.

The choice of the degrees of freedom in (9.19) allows us to compute the L2-edge
projector �e,L

p : VL
h (K)|e → tre(SL

p (K)|e), which is defined as

(�e,L
p vLh |e−vLh |e, tre(sLp |e))0,e ∀e ∈ E K, ∀vLh ∈ VL

h , ∀sLp ∈ SL
p (�,Th).

We need this projector for the discretization of the boundary terms, i.e., the
sesquilinear form b(·, ·) and the right-hand side G(·) appearing in (9.15). Such terms
do not appear in the Dirichlet-Laplace setting of Sect. 9.3. They would appear in the
case of the Laplace problem with inhomogenous Neumann boundary conditions.

For future convenience, we introduce the approximations

bLh (uLh , vLh ) ≈ b(uLh , vLh ) GL
h (vLh ) ≈ G(vLh ).

As for the stabilization SK,L , we require it to satisfy two properties: it has to be
computable via the DOFs and it must lead to a well-posed problem. For instance, in
Sect. 9.3, we considered stabilizations leading to coercive and continuous discrete
sesquilinear forms. This is not necessary in all situations. We will see in Sect. 9.5
below that, in the Helmholtz case, the coercivity is not required.
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The Method
With V̂L

h ⊆ VL
h and ŴL

h ⊆ WL
h , which may or not contain information about

the boundary conditions depending on the choice of V , W , b, and G in (9.15), the
nonconforming Trefftz VEM for problem (9.15) reads

{
find uLh ∈ V̂L

h such that

aLh (uLh , vLh )+ bLh (uLh , vLh ) = GL
h (vLh ) ∀vLh ∈ ŴL

h .
(9.21)

The well-posedness of the method relies on suitable properties of the stabiliza-
tion SK,L (·, ·).
Convergence Analysis
Here, we state the Strang-type result that would be the target of the error analysis
for method (9.21).

Theorem 9.2 Let u and uLh be the solutions to (9.15) and (9.21), respectively.
Under the shape regularity assumption (9.1), the following bound is valid:

|u− uLh |1,Th
≤ c(SK,L ) {A+ B + C} ,

where

– c(SK,L ) is a constant possibly depending on the stabilization SK,L ;
– A is the best approximation of u in the explicit space S 0,L

p (�,Th), i.e.,

inf
sLp ∈S 0,L

p (�,Th)

‖u− sLp ‖NORM,

where ‖ · ‖NORM is a suitable norm;
– B is a term addressing the nonconformity of the global space;
– C is a term involving the approximation of the boundary terms.

In the light of Theorem 9.2, we could deduce an optimal convergence result from
best approximation estimates in S 0,L

p (�,Th), and bounds on the nonconformity
at interior and boundary edges.

In the setting of the nonconforming Trefftz VEM for the Laplace problem, we
had C = 0 and

c(SK,L ) = α∗

α∗
, A = inf

q�p ∈S 0,�
p (�,Th)

|u− q�p |1,Th
, B = sup

0 "=v�h ∈V�
h,0

Nh(u, v
�
h )

|v�h |1,Th

,

where Nh(u, v) is defined in (9.14).
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An important tool in the proof of Theorem 9.2 is Proposition 9.5, which allows
us to absorb a best approximation term in S 0,�

p (�,Th) in the term A.

Common and Problem-Related Features
We conclude this section with a summary of the common features in nonconforming
Trefftz VEM and the differences depending on the problem under consideration.

Common features:

– in the definition of the local spaces, the existence of an underlying finite
dimensional Trefftz space and the characterization through a given edge trace;

– the definition of Dirichlet-type degrees of freedom;
– the fact that we can control best interpolation errors in VEM spaces by best

approximation errors in explicit discontinuous spaces.

Problem-related features:

– in the definition of the local spaces, the kind of trace used in the characterization;
– how to prove the unisolvence of the DOFs (additional assumptions might be

needed);
– required properties on the stabilization form;
– the definition and the well-posedness of the projections;
– the imposition of the boundary conditions.

9.5 The Nonconforming Trefftz Virtual Element Method
for the Helmholtz Problem

In this section, according to the framework established in Sect. 9.4, we describe the
construction and the main steps of the analysis of a nonconforming Trefftz VEM for
the Helmholtz equation. We follow the framework of [38, 39]. However, we propose
a slightly different analysis, based on milder assumptions on the stabilization form.

The Continuous Problem
Let � ⊂ R

2 be a polygonal domain, g ∈ H− 1
2 (∂�), and k > 0. Introduce the

following space of complex-valued functions and the following sesquilinear forms:

V := H 1(�), a(·, ·) := (∇·,∇·)0,� − k2(·, ·)0,�, b(·, ·) := ik(·, ·)0,∂�.

We consider the following Helmholtz problem endowed with impedance bound-
ary conditions: find a sufficiently smooth u : �→ C such that

{
�u+ k2u = 0 in �

iku+ n� · ∇u = g on ∂�,
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which in weak formulation reads

{
find u ∈ V such that

a(u, v)+ b(u, v) = (g, v)0,∂� ∀v ∈ V.
(9.22)

Observe that (9.22) falls in the broader abstract setting (9.15).

An Explicit Discontinuous Space
Let p ∈ N. Given {Th}h a sequence of polygonal decompositions over � as
in Sect. 9.1, we introduce the corresponding sequence of piecewise plane waves
over Th:

PWp(�,Th) :=
{
wp ∈ L2(�) | wp |K ∈ PWp(K) ∀K ∈ Th

}
,

where, for all K ∈ Th, the local space of plane waves PWp(K) is constructed as
follows.

Introduce the set of indices J := {1, . . . , 2p + 1} and the set of pairwise
different and normalized directions {d�}�∈J . In each K ∈ Th, consider the set
of plane waves

w�(x) := eikd�·(x−xK) ∀� ∈J , ∀x ∈ K, (9.23)

and define

PWp(K) := span{w�, � ∈J }.

These plane waves belong to the kernel of the Helmholtz operator, i.e.,

�wp + k2wp = 0 ∀wp ∈ PWp(K), ∀K ∈ Th.

Introduce the weighted broken norms and seminorms

| · |2s,Th
:=

∑
K∈Th

| · |2s,K, ‖ · ‖2
s,k,Th

:=
∑
K∈Th

‖ · ‖2
s,k,K

with ‖ · ‖2
s,k,K :=

s∑
j=0

k2(s−j)| · |2j,K ∀K ∈ Th.

For future convenience, we demand that the directions d� are uniformly separated.
More precisely, we ask that

there exists δ ∈ (0, 1] such that the angle between d�1 and d�2

is larger than or equal to δ(2π/p) for every �1, �2 ∈J , �1 "= �2.
(9.24)
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This assumption allows us to recall the following approximation property of
discontinuous, piecewise plane waves for functions in the kernel of the Helmholtz
operator; see, e.g., [42, Theorem 5.2].

Proposition 9.6 Let u ∈ Hs+1(�), s > 0, belong to the kernel of the Helmholtz
operator. Under the shape-regularity assumption (9.1) with constant γ and assump-
tion (9.24) on the directions d�, for all L ∈ R with 1 ≤ L ≤ min(p, s),
there exists wp ∈ PWp(�,Th) such that the following estimate is valid: for
every 0 ≤ j ≤ L,

‖u− wp‖j,k,Th
≤ cpw(hk)h

L+1−j‖u‖L+1,k,�,

where

cpw(t) := Ceb t (1+ tj+q+8), b, C ∈ R.

The constant C > 0 depends on p, j , L, γ , and the directions {d�}, but is
independent of k, h, and u. On the other hand, the constant b depends on the
geometric properties of the mesh only. Observe that cpw(hk) remains bounded
as h→ 0.

The importance of Proposition 9.6 resides in the fact that there exists a finite
dimensional space, whose dimension is lower than that of the piecewise polynomial
space of degree at most p, locally 2p+1 instead of (p+1)(p+2)/2 in 2D, but with
the same approximation rates for functions in the kernel of the Helmholtz operator.

Design of the VE Trefftz Space
Here, we recall from [38] the definition of local and global nonconforming Trefftz
spaces for the Helmholtz problem. Given K ∈ Th, for all e ∈ E K , introduce the
space

PWp(e) := {we
� | we

� = wp |e for some wp ∈ PWp(K)}.

We have that dim(PWp(e)) ≤ dim(PWp(K)). More precisely, the dimension
of PWp(e) gets smaller whenever the restrictions to e of two basis functions
of PWp(K) coincide. Below, we use the notation Ne

PW := dim(PWp(e)).

Given K ∈ Th and e ∈ E K , introduce the local impedance trace operators

trKI (v) := ikv + nK · ∇v, treI (v) := ikv|e + ne · (∇v)|e ∀v ∈ H 1(K),

and define the local space

V H
h (K) := {vHh ∈ H 1(K) | �vHh + k2vHh = 0 in K,

∀e ∈ E K ∃wp ∈ PWp(K) s.t. treI (v
H
h ) = treI (wp)}.

(9.25)
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Equivalently, we are requiring that the impedance trace of functions in VH
h (K)

belongs to PWp(e) for all e ∈ E K .
The idea behind the definition of V H

h (K) is exactly the one described in Sect. 9.4
after formula (9.18), with tre = treI . The inclusion of PWp(K) within V H

h (K) yields
good interpolation properties of the space; see Proposition 9.8 below.

For all edges e ∈ E K , let {we
α}

Ne

PW
α=1 be a basis of PWp(e). Consider the

following set of antilinear functionals on V H
h (K):

vHh ∈ V H
h (K) �→ 1

he

∫
e

vHh we
α ∀α = 1, . . . , Ne

PW, ∀e ∈ E K. (9.26)

So far, the construction falls in the abstract setting detailed in Sect. 9.4. The first
big difference with respect to the case of the Laplace problem in Sect. 9.3 is in the
proof of the unisolvence of the degrees of freedom, which requires the following
additional assumption: for all K ∈ Th,

k is such that k2 is not a Dirichlet-Laplace eigenvalue on K. (9.27)

As discussed, e.g., in [38, Section 3.1], the condition (9.27) boils down to a threshold
condition on the mesh size.

Proposition 9.7 Under assumption (9.27), the set of functionals (9.26) is a set of
unisolvent degrees of freedom.

Proof The proof can be found, e.g., in [38, Lemma 3.1]. For the sake of complete-
ness, we recall it here. The number of the functionals in (9.26) is smaller than or
equal to the dimension of V �

h (K). Thus, it suffices to show the unisolvence of such
a set of functionals.

Let vHh ∈ VH
h (K) be such that the functionals (9.26) are zero in vHh . An

integration by parts and the properties of functions in VH
h (K) yield

|vHh |21,K − k2‖vHh ‖2
0,K − ik‖vHh ‖2

0,∂K

=
∫
K

vHh (−�vHh − k2vHh )

︸ ︷︷ ︸
=0

+
∑
e∈EK

∫
e

vHh trKI (v
H
h )︸ ︷︷ ︸

∈PWp(e)

= 0.

By taking the imaginary part on both sides, we deduce that vHh has zero trace on ∂K .
Since vHh also satisfies �vHh + k2vHh = 0, assumption (9.27) implies that vHh = 0,
whence the unisolvence follows. ��
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In the present case, the local forms bK in (9.17) of the abstract setting of Sect. 9.4
are given by

bK(uHh , v
H
h ) := ik

∫
∂K

uHh v
H
h .

The forms bK(·, ·) fulfil assumption (9.20) for all K ∈ Th.
Next, we construct global nonconforming Trefftz VE spaces for problem (9.22).

Recalling the definition of the broken Sobolev spaces H 1(�,Th) and of the jump

operator �·� in (9.2) and (9.4), respectively, and that {we
α}

Ne

PW
α=1 denotes a basis

of PWp(e), we set

Hnc,H
p (�,Th):=

{
v∈H 1(�,Th) |

∫
e

�v�e ·ne we
α = 0 ∀α=1, . . . , Ne

PW,∀e ∈ E I
h

}
.

Then, we define the global nonconforming Trefftz virtual element space for the
problem (9.22) as

VH
h :=

{
vHh ∈ Hnc,H

p (�,Th) | vHh |K ∈ V H
h (K) ∀K ∈ Th

}
.

We obtain the set of global degrees of freedom of the space vHh by patching the local
ones in (9.26). In particular, we use the Dirichlet edge moments in the definition of
the infinite dimensional, nonconforming space H

nc,H
p (�,Th) in order to weakly

impose the interelement continuity.
As in Sect. 9.4, we summarize the features of the space V H

h (K), including the
“duality” between Dirichlet moments and the local impedance traces trKI as follows.

Trefftz spaces Contain Functions in ker(�+ k2)

Nonconformity Imposed through Dirichlet moments

Unis. of DOFs in (9.19) Implied by Traces of the type trKI in (9.25)

Differently from the Laplace case, the boundary conditions are incorporated
within the weak formulation of the problem, and not in the trial and test spaces.

Interpolation Properties
Similarly to the Laplace case, we can approximate any target function u ∈ H 1(�)

by functions in the space vHh better than by functions in the space of discontinuous,
piecewise plane waves. This was shown in [38, Theorem 4.2].
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Proposition 9.8 Let assumptions (9.1), (9.24), and (9.27) be valid. Moreover, let hk
be sufficiently small; see [38, equation (4.17)]. Given a function u ∈ H 1(�), there
exists uHI ∈ V H

h such that

‖u− uHI ‖1,k,Th
≤ cBA(hk)‖u− wp‖1,k,Th

∀wp ∈ PWp(�,Th),

where

cBA(t) := 2c1(1+ c2t
2)(2+ c3t

2),

for three positive constants c1, c2, and c3.

Proof The proof is rather technical. Therefore, we refer to [38, Theorem 4.2] for
details. There, the constants c1, c2, and c3 are provided explicitly. We can define the
function uHI as the interpolant of u through the degrees of freedom (9.26). ��

The target function u in the statement of Proposition 9.8 does not need to belong
to the kernel of the Helmholtz operator. We only require that it belongs to H 1(�).
Clearly, we need to require that u belongs to the kernel of the Helmholtz operator
if we want to combine Proposition 9.6 together with Proposition 9.8 in order to
recover high-order approximation rates in virtual element spaces.

Projections and Stabilizations
Recall the splitting

a(u, v) =
∑
K∈Th

aK(u|K, v|K).

We consider the following discretizations of a and aK :

aHh (uHh , v
H
h ) :=

∑
K∈Th

a
K,H
h (uHh |K, vHh |K)

:=
∑
K∈Th

aK(�∇,Hp uHh |K,�∇,Hp vHh |K)

+ SK,H ((I −�∇,Hp )uHh |K, (I −�∇,Hp )vHh |K),

(9.28)

where we still have to define the projector �
∇,H
p and the sesquilinear form

SK,H (·, ·). The operator �∇,Hp : V H
h (K) → PWp(K) is the projection operator

with respect to the local sesquilinear form aK(·, ·). More precisely, for all K ∈ Th,
we set

aK(�∇,Hp vHh − vHh ,wp) = 0 ∀vHh ∈ V H
h (K), ∀wp ∈ PWp(K).
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The computability of such a projector follows from the definition of the local
spaces V H

h (K) and of the degrees of freedom in (9.19):

aK(�∇,Hp vHh ,w�) = aK(vHh ,w�)

= −(vHh , (�+ k2)w�︸ ︷︷ ︸
=0

)0,K +
∑
e∈E K

(vHh , treI (w�)︸ ︷︷ ︸
∈treI (PWp(K))

)0,e − ik
∑
e∈EK

(vHh , w�︸︷︷︸
∈treI (PWp(K))

)0,e.

In order to have the well-posedness of the projector �
∇,H
p , we do not need to

impose any additional computable condition. Rather, we need to require a threshold
condition on the mesh size that, in addition to (9.27), also guarantees that k2 is not
a Neumann-Laplace eigenvalue. In particular, the following result is valid; see [38,
Proposition 3.1] and [44, Propositions 2.1 and 2.3].

Proposition 9.9 Let the assumptions (9.1), (9.24), and (9.27) be valid. Moreover,
assume that h is sufficiently small, so that k2 is smaller that the first Neumann-
Laplace eigenvalue on each K ∈ Th. Then, the projector �

∇,H
p is well-defined

and continuous. More precisely, there exists a positive constant β(hKk), uniformly
bounded away from zero as hKk→ 0, such that

‖�∇,Hp vHh ‖1,k,K ≤ 1

β(hKk)
‖vHh ‖1,k,K ∀vHh ∈ V H

h (K), ∀K ∈ Th. (9.29)

By defining

βmin := min
K∈Th

β(hKk), (9.30)

inequality (9.29) implies

‖�∇,Hp vHh ‖1,k,K ≤ 1

βmin
‖vHh ‖1,k,K ∀vHh ∈ V H

h (K), ∀K ∈ Th. (9.31)

We observe that the choice of the degrees of freedom (9.26) also allows us to
compute the L2-edge projector �e,H

p : V H
h (K)|e → treI (PWp(K))|e) into traces of

plane waves, which is defined as follows: for all e ∈ E K ,

(�e,H
p vHh |e − vHh |e, treI (wp))0,e = 0 ∀vHh ∈ VH

h (K), ∀wp ∈ PWp(K). (9.32)
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This projector is needed for the discretization of the boundary terms, i.e., the
sesquilinear form b(·, ·) and the right-hand side (g, ·)0,∂� appearing in (9.22). We
introduce

bHh (u
H
h , v

H
h ) := ik

∑
e∈E B

h

(�e,H
p uHh |e,�e,H

p vHh |e)0,e,

(g, vHh )0,∂� ≈
∑
e∈E B

h

(g,�e,H
p vHh |e)0,e.

(9.33)

With respect to the abstract setting in Sect. 9.4, the form G(·) is here given by

G(vHh ) :=
∫
∂�

gvHh .

The last ingredient we need is a stabilization SK,H (·, ·) for all K ∈ Th, which
is computable via the degrees of freedom (9.26) and satisfies certain properties. So
far, we have recalled the setting of [38]. Here, we weaken the assumptions on the
stabilization demanded there, and yet deduce the well-posedness and convergence
for the method.

More precisely, for all K ∈ Th, we require that

SK,H (vHh , vHh ) ≥ |vHh |21,K−(1+CS)k
2‖vHh ‖2

0,K ∀vHh ∈ ker(�∇,Hp ) (9.34)

and the continuity

|SK,H (uHh , v
H
h )| ≤ CC‖uHh ‖1,k,K‖vHh ‖1,k,K ∀uHh , vHh ∈ ker(�∇,Hp ), (9.35)

where CS andCC are two positive constants independent of k, with CS a sufficiently
small, positive constant to be fixed below; see Eq. (9.41).

With these choices, we are in a position to prove the following “weak” version
of the Gårding inequality.

Proposition 9.10 For every K ∈ Th, let the stabilization SK,H (·, ·) satisfy (9.34).
Then, the following Gårding-type inequality is valid:

RE[aHh (vHh , vHh )+ bHh (v
H
h , vHh )] + 2k2‖vHh ‖2

0,�

+ CSk
2
∑
K∈Th

‖(I −�∇,Hp )vHh ‖2
0,K ≥ ‖vHh ‖2

1,k,Th
∀vHh ∈ V H

h ,
(9.36)

where CS is the same constant as in (9.34).
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Proof The proof follows along the same lines as the one of [44, Proposition 4.2].
For the sake of completeness, we carry out the details here. From (9.33), (9.28), and
simple algebra, we get

RE[aHh (vHh , vHh )+ bHh (vHh , vHh )] + 2k2‖vHh ‖2
0,� = aHh (vHh , vHh )+ 2k2‖vHh ‖2

0,�

=
∑
K∈Th

{
aK(�∇,Hp vHh ,�∇,Hp vHh )+ 2k2‖�∇,Hp vHh ‖2

0,K

}

+
∑
K∈Th

{
SK,H ((I−�∇,Hp )vHh , (I−�∇,Hp )vHh )+ 2k2‖(I−�∇,Hp )vHh ‖2

0,K

}

+
∑
K∈Th

4k2
RE

[∫
K

�∇,Hp vHh (I−�∇,Hp )vHh

]
.

Then, using (9.34) and simple calculations, we deduce

RE[aHh (vHh , vHh )+ bHh (v
H
h , vHh )] + 2k2‖vHh ‖2

0,�

≥
∑
K∈Th

{
|�∇,Hp vHh |21,K + k2‖�∇,Hp vHh ‖2

0,K

}

+
∑
K∈Th

{
|(I −�∇,Hp )vHh |21,K + (1− CS)k

2‖(I −�∇,Hp )vHh ‖2
0,K

}

+
∑
K∈Th

2RE

[∫
K

∇�∇,Hp vHh ∇(I −�
∇,H
p )vHh

]

+
∑
K∈Th

2k2
RE

[∫
K

�∇,Hp vHh (I −�
∇,H
p )vHh

]
.

Thus, we have

RE[aHh (vHh , vHh ) + bHh (vHh , vHh )] + 2k2‖vHh ‖2
0,� + CSk

2
∑
K∈Th

‖(I −�∇,Hp )vHh ‖2
0,K

≥
∑
K∈Th

{
|�∇,Hp vHh |21,K + |(I −�∇,Hp )vHh |21,K

+2RE

[∫
K

∇�∇,Hp vHh · ∇(I −�
∇,H
p )vHh

]}

+
∑
K∈Th

{
k2‖�∇,Hp vHh ‖2

0,K + k2‖(I −�∇,Hp )vHh ‖2
0,K
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+2k2
RE

[∫
K

�∇,Hp vHh (I −�
∇,H
p )vHh

]}

=
∑
K∈Th

(
|vHh |21,K + k2‖vHh ‖2

0,K

)
= ‖vHh ‖2

1,k,Th
,

whence the assertion follows. ��
Assuming (9.35), we also get the continuity of the discrete sesquilinear

form aHh (·, ·) in (9.28).

Proposition 9.11 Under assumption (9.35), the discrete sesquilinear form aHh (·, ·)
in (9.28) satisfies

aHh (uHh , v
H
h ) ≤ 1+ CC(1+ βmin)

2

β2
min

‖uHh ‖1,k,Th
‖vHh ‖1,k,Th

, (9.37)

where CC is the constant in (9.35) and βmin is defined in (9.30).

Proof We have

aHh (uHh , v
H
h ) =

∑
K∈Th

{
aK(�∇,Hp uHh ,�

∇,H
p vHh )

+SK,H
(
(I −�∇,Hp )uHh , (I −�∇,Hp )vHh

)}

(9.35)≤
∑
K∈Th

{
‖�∇,Hp uHh ‖1,k,K‖�∇,Hp vHh ‖1,k,K

+CC‖(I −�∇,Hp )uHh ‖1,k,K‖(I −�∇,Hp )vHh ‖1,k,K

}

(9.31)≤
∑
K∈Th

1+ CC(1+ βmin)
2

β2
min

‖uHh ‖1,k,K‖vHh ‖1,k,K

≤ 1+ CC(1+ βmin)
2

β2
min

‖uHh ‖1,k,Th
‖vHh ‖1,k,Th

.

��
Remark 9.2 In [38], the assumption on the stabilization SK,H (·, ·) was slightly
stronger than (9.34), namely we required

SK,H (vHh , vHh ) ≥ |vHh |21,K − k2‖vHh ‖2
0,K ∀vHh ∈ ker(�∇,Hp ). (9.38)
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This assumption results in the following stronger version of the Gårding inequality:

RE[aHh (vHh , vHh )+ bHh (v
H
h , vHh )] + 2k2‖vHh ‖2

0,� ≥ ‖vHh ‖2
1,k,Th

∀vHh ∈ VH
h .

As we will see in Theorem 9.3 below, the present weaker setting still allows us
to derive an abstract error analysis for the method (9.39) below. The advantage of
the new setting is that the design of a computable stabilization SK,H (·, ·) becomes
easier.

For a stronger version of Theorem 9.3 below, relying on the assumption (9.38)
instead of (9.36), we refer to [38, Theorem 4.3].

The Method
We have introduced all the ingredients needed for the design of the nonconforming
Trefftz VEM for the Helmholtz problem:

{
find uHh ∈ V H

h such that

aHh (uHh , v
H
h )+ bHh (u

H
h , v

H
h ) = (g,�

e,H
p vHh ) ∀vHh ∈ V H

h .
(9.39)

The well-posedness of the method follows by using a Schatz-type argument, as
detailed in Theorem 9.3 below.

Convergence Analysis
In the following theorem, we prove well-posedness and abstract error estimates for
method (9.39). In particular, the error of the method is controlled by two terms:
a best approximation estimate in discontinuous, piecewise plane wave spaces and
an estimate of the approximation of the boundary condition g. For simplicity, an
additional term involving the nonconformity of the method, which is hidden in
the proof, is not explicitly reported. Proposition 9.8 is used in order to absorb an
interpolation error term within the best approximation in discontinuous, piecewise
plane wave spaces.

Theorem 9.3 Let the solution u to (9.5) be in H 2(�). Let the number of local
plane wave directions in (9.23) be 2p + 1, with p ≥ 2. Let the assumptions (9.1)
and (9.27) on the meshes, the assumption (9.24) on the local plane wave directions,
and the assumptions (9.34) and (9.35) on the local stabilization forms be valid.
Additionally, we require that hk2 is sufficiently small; see [38, eqt. (4.65)]. Then,
there exists a unique solution uHh to the method (9.39), and the following a priori
estimate is valid:

‖u− uHh ‖1,k,Th
� c1(h, k)‖u− wp‖1,k,Th

+ h c2(h, k)|u− wp|2,Th

+ h
1
2 c2(h, k)

( ∑
e∈E B

h

‖g −�e,H
p g‖2

0,e

)1/2 ∀wp ∈ PWp(�,Th).
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Indeed, we can express c1 and c2 explicitly; see the statement of [38, Theorem 4.3].
Moreover, hk � 1 implies that

c1(h, k) � (1+ CC)(1+ k), c2(h, k) � 1+ k.

Proof The proof follows along the same lines as that of [38, Theorem 4.3]. For this
reason, we only present the modifications that are due to the validity of the weaker
Gårding-type inequality (9.36); see Remark 9.2.

We first observe that, for all uHI ∈ V H
h ,

‖u− uHh ‖1,k,Th
≤ ‖u− uHI ‖1,k,Th

+ ‖uHI − uHh ‖1,k,Th
.

We focus on the second term on the right-hand side. For the sake of simplicity,
write δh := uHI − uHh . By applying the Gårding-type inequality (9.36), we deduce

‖δh‖2
1,k,Th

≤ RE(aHh (δh, δh)+ bHh (δh, δh))+ 2k2‖δh‖2
0,�

+ CSk
2
∑
K∈Th

‖(I −�∇,Hp )δh‖2
0,K =: I + II + III.

(9.40)

The terms I and II are dealt with exactly as in [38]. As for the term III , we proceed
as follows:

III = CSk
2
∑
K∈Th

‖(I −�∇,Hp )δh‖2
0,K ≤ CS‖(I −�∇,Hp )δh‖2

1,k,Th

≤ 2CS(‖δh‖2
1,k,Th

+ ‖�∇,Hp δh‖2
1,k,Th

)
(9.29)≤ 2CS

(
1

β2 + 1

)
‖δh‖2

1,k,Th
.

Picking CS in (9.34), e.g., such that

CS ≤ 1

8

β2
min

β2
min + 1

, (9.41)

with βmin as in (9.30), we get

III ≤ 1

4
‖δh‖2

1,k,Th
.

Thus, we absorb the term III within the left-hand side of (9.40) yielding

3

4
‖δh‖2

1,k,Th
≤ I + II.
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The proof follows then along the same lines as that of [38, Theorem 4.3] with αh =
3/4. Therefore, we omit further details. ��
Remark 9.3 In view of Theorem 9.3, the approximation properties in Proposi-
tion 9.6 and some algebra, we deduce that the optimal h-convergence is valid under
suitable regularity assumptions on the solution u to problem (9.22) and on the
boundary datum g. We refer to [38, Theorem 4.4] for a precise statement.

Overall, the nonconforming Trefftz VEM for the Helmholtz problem is a modi-
fication of the standard nonconforming VEM, in the sense that it encodes certain
properties of the solution to the problem within the definition of the VE spaces. The
resulting method has significantly fewer degrees of freedom than a standard VEM
based on complete polynomial spaces, yet keeping the same convergence properties.
Differently from the case of the Laplace problem, we need to resort to nonpolynomial
underlying spaces (plane wave spaces, in our presentation).

9.6 Stability and Dispersion Analysis for the Nonconforming
Trefftz VEM for the Helmholtz Equation

Here, we address the issue of the dispersion analysis for the nonconforming Trefftz
VEM for the Helmholtz equation detailed in Sect. 9.5.

Amongst the difficulties in approximating time-harmonic wave propagation
problems, we highlight the so-called pollution effect [9], which describes the
widening discrepancy between the best approximation error and the discretization
error for large values of the wave number k.

This effect is directly linked to numerical dispersion, representing the failure of
the numerical method to reproduce the correct oscillating behaviour of the analytical
solution. More precisely, for a given wave number k, a continuous problem
with plane wave solution is considered. Its numerical approximation delivers an
approximate solution, which can be interpreted as a wave with a deviated wave
number kn. We can measure this mismatch of the continuous and discrete wave
numbers k and kn separately in terms of the real part and the imaginary part with
the following interpretation. The term |Re (k − kn)| represents the deviation (shift)
of the phase (dispersion), and the term | Im (k − kn)| = | Im (kn)| refers to the
damping of the amplitude (dissipation) of the computed discrete solution. Moreover,
the difference |k − kn| measures the total amount of dispersion and dissipation and
is sometimes referred to as total dispersion or total error.

We summarize the general strategy for a dispersion analysis in the following two
steps:

1. Consider the discretization scheme of the numerical method applied to −�u −
k2u = 0 in R

2 using infinite meshes which are invariant under a discrete group of
translations. Due to translation invariance, it is then possible to reduce the infinite
mesh to a finite one.



392 L. Mascotto et al.

2. Given a plane wave with wave number k travelling in a fixed direction, seek a so-
called discrete Bloch wave solution, which can be regarded as a generalization of
the given continuous plane wave based on the underlying approximating spaces,
and determine for which (discrete) wave number kn this Bloch wave solution
actually solves the discrete variational formulation. This procedure leads to small
nonlinear eigenvalue problems, which need to be solved.

In the framework of standard conforming finite element methods (FEM) for the
Helmholtz problem, a full dispersion analysis was done in [20] for dimensions one
to three. Furthermore, in [9] it was shown that the pollution effect can be avoided
in 1D, but not in higher dimensions, and a generalized pollution-free FEM in 1D
was constructed. Moreover, we highlight the work in [31], where a link between
the results of the dispersion analysis and the numerical analysis was established for
finite elements, and the work in [1], where quantitative, fully explicit estimates for
the behaviour and decay rates of the dispersion error were derived in dependence on
the order of the method relative to the mesh size and the wave number. Also in the
context of nonconforming methods, dispersion analyses have been performed for the
discontinuous Galerkin (DG)-FEM [2, 3], the discontinuous Petrov-Galerkin (DPG)
method [26], and the plane wave discontinuous Galerkin method (PWDG) [24].
Recently, a dispersion analysis for hybridized DG (HDG)-methods has been carried
out in [27], including an explicit derivation of the wave number error for lowest
order single face HDG methods.

Here, we numerically investigate the dispersion and dissipation properties of the
nonconforming Trefftz VEM (ncTVEM), and compare the results to those obtained
in [24] for PWDG, and to those for standard polynomial based FEM.

The remainder of the section is organized as follows. In Sect. 9.6.1, we describe
the abstract setting for the dispersion analysis. Then, in Sect. 9.6.2, we specify
the set of basis functions and the sesquilinear forms defining the numerical
discretization schemes for the ncTVEM. Finally, in Sect. 9.6.3, we numerically
study the dispersion and dissipation and we compare the results with those obtained
with other methods.

9.6.1 Abstract Dispersion Analysis

In this section, we fix the abstract setting for the dispersion analysis employing the
notation of [24].

To this purpose, in order to remove possible dependencies of the dispersion on the
boundary conditions of the problem, we consider the Helmholtz problem (9.22) on
the unbounded domain � = R

2. Let Th := {K} be a translation-invariant partition
of � into polygons with mesh size h := maxK∈Th

hK , where hK := diam(K),
i.e., there exists a set of elements K̂1, . . . , K̂r , r ∈ N, such that the whole infinite
mesh can be covered in a nonoverlapping way by shifts of the “reference” patch
K̂ :=⋃r

j=1 K̂j . In other words, this assumption implies the existence of translation
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Fig. 9.1 Examples of translation-invariant meshes with the corresponding translation vectors ξ 1
and ξ 2: regular Cartesian mesh, triangular mesh, and hexagonal mesh, from left to right

vectors ξ1, ξ2 ∈ R
2, such that every element K ∈ Th can be written as a

linear combination with coefficients in N0 of one of the reference polygons K̂�,
� = 1, . . . , r . Some examples for translation-invariant meshes are shown in Fig. 9.1.
Moreover, we denote by E K the set of edges belonging to K .

Let u(x) = eikd·x, d ∈ R
2 with |d| = 1 be a plane wave with wave number

k and traveling in direction d. We denote by Vn the global approximation space
resulting from the discretization of (9.22) using a Galerkin based numerical method,
and by V̂n ⊂ Vn a minimal subspace generating Vn by translations with

ξn := n1ξ1 + n2ξ2, n = (n1, n2) ∈ Z
2. (9.42)

More precisely, depending on the structure of the method, V̂n is determined as
follows.

1. Vertex-related basis functions: In this case, V̂n is the span of all basis functions
related to a minimal set of vertices {νi}λ(0)i=1, λ(0) ∈ N, such that all the other mesh
vertices are obtained by translations with ξn of the form (9.42). An example is
the FEM.

2. Edge-related basis functions: Similarly as above, the space V̂n is in this case the
span of all basis functions related to a minimal set of edges {ηi}λ(1)i=1, λ(1) ∈ N,
such that all the other edges of the mesh are obtained by translations with ξn of
the form (9.42). This is, for instance, the case of the ncTVEM [38, 39].

3. Element-related basis functions: Here, the space V̂n is simply given as the span
of all basis functions related to a minimal set of elements {σi}λ(2)i=1, λ(2) ∈ N, such
that all other elements of the mesh are obtained by a translation with a vector ξn
of the form (9.42). One representative of this category is the PWDG [25, 28].

In the following, we will refer to these minimal sets of vertices {νi}λ(0)i=1, edges

{ηi}λ(1)i=1, and elements {σi}λ(2)i=1 as fundamental sets of vertices, edges, and elements,
respectively.
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As a direct consequence, every vn ∈ Vn can be written as

vn(x) =
∑
n∈Z2

v̂n(x− ξn), v̂n ∈ V̂n.

Next, we define the discrete Bloch wave with wave number kn and traveling in
direction d by

un(x) =
∑
n∈Z2

eiknd·ξn ûn(x− ξn), (9.43)

where ûn ∈ V̂n, and kn ∈ C with Re(kn) > 0. Note that, since ûn ∈ V̂n, the infinite
sum in (9.43) is in fact finite. Furthermore, given d ∈ R

2 with |d| = 1, the Bloch
wave un in (9.43) satisfies

un(x+ ξ�) = eiknd·ξ�un(x),

for all � ∈ Z
2. This property follows directly by using the definition of the Bloch

wave:

un(x+ ξ�) =
∑
n∈Z2

eiknd·ξn ûn(x+ ξ� − ξn) =
∑
n∈Z2

eiknd·ξn ûn(x− ξn−�)

= eiknd·ξ�

∑
m∈Z2

eiknd·ξm ûn(x− ξm) = eiknd·ξ�un(x).

Therefore, Bloch waves can be regarded as discrete counterparts, based on the
approximation spaces, of continuous plane waves.

We introduce the global (continuous) sesquilinear form

a(u, v) :=
∑
K∈Th

aK(u, v) :=
∑
K∈Th

[ ∫
K

∇u ·∇v−k2
∫
K

uv

]
∀u, v ∈ H 1(R2), (9.44)

and we denote by an(·, ·) the global discrete sesquilinear form defining the
numerical method under consideration. In Sect. 9.6.2 below, we will specify V̂n

and an(·, ·) for the ncTVEM and the PWDG.
Next, we define the discrete wave number kn ∈ C as follows.

Definition 9.1 Given k > 0 and d ∈ R
2 with |d| = 1, the discrete wave number

kn ∈ C is the number with minimal |k − kn|, for which a discrete Bloch wave un of
the form (9.43) is a solution to the discrete problem

an(un, v̂n) = 0 ∀v̂n ∈ V̂n. (9.45)
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Due to the scaling invariance of the mesh, we can assume that h = 1. The wave
number k on a mesh with h = 1 corresponds to the wave number k0 = k

h0
on a

mesh with mesh size h0.
Having this, the general procedure in the dispersion analysis now consists in

finding those discrete wave numbers kn ∈ C and coefficients ûn ∈ V̂n, for which a
Bloch wave solution of the form (9.43) satisfies (9.45), and to measure the deviation
of kn from k afterwards. This strategy results in solving small nonlinear eigenvalue
problems. In fact, by plugging the Bloch wave ansatz (9.43) into (9.45) and using
the sesquilinearity of an(·, ·), we obtain

∑
n∈Z2

eiknd·ξnan(̂un(· − ξn), v̂n) = 0 ∀v̂n ∈ V̂n. (9.46)

Let {χ̂s}s=1 ⊂ V̂n be a set of basis functions for the space V̂n that are related to
fundamental elements, vertices, or edges, depending on the method. Then, we can
expand ûn in terms of this basis as

ûn =
∑
t=1

ut χ̂t .

Plugging this ansatz into (9.46), testing with χ̂s , s = 1, . . . , , and interchanging
the sums (this can be done since the infinite sum over n is in fact finite) yields

∑
t=1

ut

⎛
⎝∑

n∈Z2

eiknd·ξnan(χ̂t (· − ξn), χ̂s)

⎞
⎠ = 0 ∀s = 1, . . . , , (9.47)

which can be represented as

∑
t=1

T s,t (kn)ut = 0 ∀s = 1, . . . , , (9.48)

with

T s,t (kn) :=
∑
n∈Z2

eiknd·ξnan(χ̂t (· − ξn), χ̂s). (9.49)

The matrix problem corresponding to (9.48) has the form

T (kn)u = 0, (9.50)

where T : C → C
× is defined via (9.49), and u = (u1, . . . , u)

T ∈ C
. We

highlight that T is a holomorphic map and (9.50) is a small nonlinear eigenvalue
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problem, which can be solved using, e.g., an iterative method as done in [24], or
a direct method based on a rational interpolation procedure [47] or on a contour
integral approach [5, 12]. For the numerical experiments presented in Sect. 9.6.3,
we will make use of the latter, which we will denote by contour integral method
(CIM) in the sequel. Due to the use of plane wave related basis functions, deriving
an exact analytical solution to (9.50) is not possible even for the lowest order case.

9.6.2 Minimal Generating Subspaces

In this section, we specify the minimal generating subspaces V̂n, the corresponding
sets of basis functions {χ̂s}s=1, and the sequilinear forms an(·, ·) for the ncTVEM
and the PWDG [25, 28]. The basis functions for these two methods are edge-related
and element-related, respectively. In Figs. 9.2, 9.3, and 9.4, the stencils related to
the fundamental sets of vertices, edges, and elements are depicted for these three
methods and the meshes in Fig. 9.1.

Before doing that, we recall some notation from Sect. 9.5. Let {dj }pj=1, p =
2q + 1, q ∈ N, be a set of equidistributed plane wave directions. We denote by

wj(x) := eikdj ·x, j = 1, . . . , p, (9.51)

the plane wave with wave number k and traveling along the direction dj . Further-
more, for every K ∈ Th, we set wK

j := wj |K , and we introduce the bulk place
waves space

PWp(K) := span{wK
j , j = 1, . . . , p}.

The Case of ncTVEM
Let now {ηi}λ(1)i=1 be a fundamental set of edges. Then, the set of basis functions

{χ̂ (1)
s }s=1 spanning the minimal generating subspace V̂ (1)

n is given by the union of

the canonical basis functions related to {ηi}λ(1)i=1. More precisely, for s ↔ (i, j),
i ∈ {1, . . . , λ(1)} and j ∈ Jηi , i.e. we identify s with the edge index i and the
index j associated with the j -th plane wave basis function on this edge as above,

χ̂ (1)
s = χ̂

(1)
(i,j) := "(ηi,j),

where "(ηi,j) is defined elementwise as follows. If K ∈ Th is an element
abutting the edge ηi , then "(ηi,j)|ηi coincides with the local canonical basis function

associated with the (global) edge ηi and the j -th orthogonalized edge plane wave

basis function; otherwise "(ηi,j) is zero. Clearly,  =∑λ(1)

i=1 p̃ηi .

As for the sesquilinear form a
(1)
n (·, ·), it coincides with that in (9.28), where the

projector �e,H
p is defined in (9.32).
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The Case of PWDG
For PWDG, we refer to [24] for a full dispersion analysis. For the sake of
completeness, we shortly recall here the definitions of the minimal generating
subspace and the sesquilinear form adapted to our setting.

The global approximation space V (2)
n is given by

V (2)
n := {vn ∈ L2(R2) : vn|K ∈ PWp(K) ∀K ∈ Th}.

Moreover, the global sesquilinear form a
(2)
n (·, ·) is defined by

a(2)n (un, vn) :=
∑
K∈Th

aK(un, vn)−
∫
Eh

�un� · {{∇nvn}}

− β

ik

∫
Eh

�∇nun� �∇nvn�−
∫
Eh
{{∇nun}} · �vn�

+ ikα
∫
Eh

�un� · �vn� ∀un, vn ∈ V (2)
n .

(9.52)

where aK(·, ·) is given in (9.44), Eh is the mesh skeleton, α, β > 0 are the flux
parameters, and ∇n is the broken gradient. For v = un or vn, �v� is the standard
trace jump as defined in (9.4), and, on a given edge e, denoting by K− and K+ its
adjacent elements,

{{∇nv}} := 1

2

(∇v|K+ + ∇v|K−
)
, �∇nv� := ∇v|K+ · nK+ + ∇v|K− · nK−

are the trace average and normal jump, respectively, of ∇nv. Recall that Th is a
partition of � = R

2, thus all edges in Eh are shared by two elements.
Let now {σi}λ(2)i=1 be a fundamental set of elements. Then, the basis functions

{χ̂ (2)
s }s=1 are given by {wσi

j }i=1,...,λ(2),j=1...,p, where s ↔ (i, j), i.e. s is identified

with the element index i and the plane wave direction index j , and  = λ(2)p.
As mentioned above, the minimal generating subspace V̂ (2)

n ⊂ V (2)
n is simply the

span of the basis functions {χ̂ (2)
s }s=1, and the sesquilinear form a

(2)
n (·, ·) is given

in (9.52).

Overview of the Stencils Generating the Minimal Subspaces
In Figs. 9.2, 9.3, and 9.4, we illustrate the stencils of the basis functions for the
ncTVEM and the PWDG, employing the meshes made of squares, triangles, and
hexagons, respectively, depicted in Fig. 9.1. The fundamental sets of vertices, edges,
and elements are displayed in dark-blue, and the translation vectors ξ1 and ξ2 in red.
Furthermore, the supports of the basis functions spanning the minimal generating
subspaces are coloured in light-blue for the ncTVEM. Due to the locality of the basis
functions, only those associated with the vertices, edges, and elements displayed in
dark-blue and dark-yellow contribute to the sum (9.47). Integration only has to be
performed over the elements Kζ and the adjacent edges.
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Fig. 9.2 Stencils of the basis functions related to the fundamental sets of edges (ncTVEM) and
elements (PWDG), respectively, from left to right, when employing the meshes made of squares in
Fig. 9.1

Fig. 9.3 Stencils of the basis functions related to the fundamental sets of edges (ncTVEM) and
elements (PWDG), respectively, from left to right, when employing the meshes made of triangles
in Fig. 9.1

Fig. 9.4 Stencils of the basis functions related to the fundamental sets of edges (ncTVEM) and
elements (PWDG), respectively, from left to right, when employing the meshes made of hexagons
in Fig. 9.1
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9.6.3 Numerical Results

In this section, after fixing some parameters for the different methods in Sect. 9.6
and specifying the quantities to be compared, we present a series of numerical
tests using the meshes portrayed in Fig. 9.1. Firstly, in Sect. 9.6.3.1, we investigate
the qualitative behaviour of dispersion and dissipation depending on the Bloch
wave angle ϑ in Definition 9.43. Then, in Sect. 9.6.3.2, we compare the dispersion
and dissipation errors against the effective plane wave degree q and against the
dimensions of the minimal generating subspaces. Finally, in Sect. 9.6.3.3, the
dependence of the errors on the wave number is studied.

Choice of the Parameters in PWDG and the Stabilizations in the ncTVEM
We use the choice of the flux parameters of the ultra weak variational formulation
(UWVF), i.e. α = β = 1/2, in PWDG, and we employ the stabilization terms
suggested in [38, 39] for the ncTVEM.

As for the ncTVEM, we employ a modified D-recipe stabilization detailed in [39,
Section 4]. More precisely, for all K ∈ Th, consider the set of local canonical basis
function {ϕHi } of VH

h (K). For all ϕHi and ϕHj basis functions, we consider

SK,H (ϕHi , ϕHj ) = aK(�∇,Hp ϕHi ,�∇,Hp ϕHj ).

An essential element in the implementation of the method is the orthogonalization-
and-filtering process detailed in [39, Algorithm 2]. The basic idea is that the plane
waves on each edge e used in the definition of the degrees of freedom are first
orthogonalized in L2(e). Then, all combinations of plane waves that are close to be
linearly dependent to others are eliminated. This is explained in Algorithm 1.

A consequence of this approach is that, after few steps of both the h- and p-
versions of the method, the accuracy improves with an extremely slow growth of
the number of degrees of freedom. This results in the so called cliff-edge effect,
which was observed in [39, 40]; we shall exhibit such fast decay of the error notably
for the p-version in Figs. 9.8, 9.9, 9.11, and 9.12.

Numerical Quantities
Given a wave number k > 0 and kn the discrete wave number in Definition 9.1, we
will study the following quantities:

– the dispersion error |Re (k − kn)|, which describes the difference of the propa-
gation velocities of the continuous and discrete plane wave solutions;

– the dissipation error | Im (kn)| = | Im (k − kn)|, which represents the difference
of the amplitudes (damping) of the continuous and discrete plane wave solution;

– the total error |k− kn|, which measures the total deviation of the continuous and
discrete wave numbers.
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Algorithm 1
Let σ > 0 be a given threshold.

1. For all edges e ∈ Eh:

a. Assemble the matrix Ge associated with the L2(e) inner product:

(Ge)j,� = (we
�,w

e
j )0,e ∀j, � = 1, . . . , Ne

PW,

where we recall that Ne

PW := dim(PWp(e)), and {we
r }

Ne

PW
r=1 denotes the original basis of

PWp(e).
b. Compute the eigenvalue/eigenvector decomposition of Ge:

GeQe = Qe�e,

where Qe is a matrix whose columns are right-eigenvectors of Ge, and �e is a diagonal
matrix of the corresponding eigenvalues.

c. Remove the columns of Qe corresponding to the eigenvalues with absolute value smaller
than σ . Denote by N̂e

PW ≤ Ne

PW the number of remaining columns, and re-label them

by 1, . . . , N̂e

PW.

d. For � = 1, . . . , N̂e

PW, set

ŵe
� :=

Ne

PW∑
r=1

Qe
r,� w

e
r .

The new, filtered basis {ŵe
�}

N̂e

PW
�=1 is L2(e) orthogonal.

2. For all K ∈ Th, the new basis of VH
h (K) is built by using the filtered basis {ŵe

�}
N̂e

PW
�=1 instead

of the original basis {we
r }

Ne

PW
r=1 for each e ∈ E K .

9.6.3.1 Dependence of Dispersion and Dissipation on the Bloch Wave
Angle

In this section, we study dispersion and dissipation of the different methods in
dependence on the angle ϑ of the direction d in the definition of the Bloch wave
in (9.43). Importantly, we are interested in a qualitative comparison of the methods.
A quantitative comparison should be performed in terms of the dimensions of the
minimal generating subspaces instead of the effective degrees, and is discussed in
Sect. 9.6.3.2 below.

To this purpose, in Figs. 9.5, 9.6, and 9.7, the numerical quantities |Re (k − kn)|
and | Im (kn)| are plotted against ϑ for the meshes made of squares, triangles, and
hexagons, respectively, shown in Fig. 9.1. We took k = 3 and q = 7 for all those
types of meshes (Figs. 9.5, 9.6, and 9.7, left). Moreover, for k = 10, we chose q =
10 for the squares (Fig. 9.5, right) and the triangles (Fig. 9.6, right), and q = 13
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Fig. 9.5 Dispersive and dissipative behaviour of PWDG and ncTVEM in dependence on the polar
angle ϑ of the Bloch wave direction d in (9.43) on the meshes made of squares in Fig. 9.1, with k =
3 and q = 7 (left), and k = 10 and q = 10 (right)
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Fig. 9.6 Dispersive and dissipative behaviour of PWDG and ncTVEM in dependence on the polar
angle ϑ of the Bloch wave direction d in (9.43) on the meshes made of triangles in Fig. 9.1, with
k = 3 and q = 7 (left), and k = 10 and q = 1 (right). The colour legend is the same as in Fig. 9.5

for the hexagons (Fig. 9.7, right). We remark that the latter choice for q on the
meshes made of hexagons is purely for demonstration purposes, in order to obtain
a reasonable range for the errors, where one can see the behaviour more clearly.
Moreover, the wave number k here (mesh size h = 1) corresponds to the wave
number k0 = k

h0
on a mesh with mesh size h0.

The dispersion and dissipation are zero, up to machine precision, for choices
of the Bloch wave direction d in (9.43) coinciding with one of the plane wave
directions {dj }pj=1 (here we always took equidistributed directions dj , where
d1 = (1, 0)). This follows directly from the fact that, in this case, the Bloch
wave satisfying (9.45) coincides with the corresponding plane wave traveling along
the direction d. Moreover, for the ncTVEM, the dispersion error dominates the
dissipation error, whereas for PWDG the dissipation dominates the dispersion.
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Fig. 9.7 Dispersive and dissipative behaviour of PWDG and ncTVEM in dependence on the polar
angle ϑ of the Bloch wave direction d in (9.43) on the meshes made of hexagons in Fig. 9.1,
with k = 3 and q = 7 (left), and k = 10 and q = 13 (right). The colour legend is the same as in
Fig. 9.5

9.6.3.2 Exponential Convergence of the Dispersion Error Against the
Effective Degree q

Here, we investigate the dependence of dispersion and dissipation on the effective
plane wave degree q (namely, p = 2q + 1 bulk plane waves). For fixed
wave number k, we will observe exponential convergence of the total error for
increasing q , as already seen in [24] for PWDG. This result is not unexpected
since also the p-versions for the discretization errors have exponential convergence,
provided that the exact analytical solution is smooth; see [28] for PWDG, and
the numerical experiments in [38] for the ncTVEM, respectively. Moreover, we
will make a comparison of these methods in terms of the total error versus the
dimensions of the minimal generating subspaces.

To this purpose, we consider the following range for the wave number: k ∈
{2, 3, 4, 5}. We recall again that k corresponds to k0 = k

h0
on a mesh with mesh

size h0.

Dispersion and Dissipation vs. Effective Degree q
In Figs. 9.8, 9.9, and 9.10, the relative dispersion error |Re(k − kn)|/k and the
relative damping error | Im(kn)|/k are displayed against q , for the meshes made of
squares, triangles, and hexagons, respectively. The maxima of the relative dispersion
and the relative dissipation, respectively, are taken over a large set of Bloch wave
directions d. After a preasymptotic regime, we observe exponential convergence of
the dispersion error for all methods and the dissipation error for the PWDG. The
dispersion error is consistently smaller for the PWDG than for the ncTVEM.

Dispersion and Dissipation vs. Dimensions of Minimal Generating Subspaces
From a computational point of view, it is also important to consider a comparison of
the dispersion errors in terms of the dimensions of the minimal generating subspaces
(density of the degrees of freedom). We directly compare the relative total dispersion
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Fig. 9.8 Relative dispersion (left) and relative dissipation (right) for the different methods in
dependence on the effective degree q and the wave numbers k = 2, . . . , 5 on the meshes made
of squares in Fig. 9.1. The maxima over a large set of Bloch wave directions d are taken
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Fig. 9.9 Relative dispersion (left) and relative dissipation (right) for the different methods in
dependence on the effective degree q and the wave numbers k = 2, . . . , 5 on the meshes made
of triangles in Fig. 9.1. The maxima over a large set of Bloch wave directions d are taken. The
colour legend is the same as in Fig. 9.8

errors |kn − k|/k, thus measuring the total deviation of the discrete wave number
from the continuous one. As above, the maxima over a large set of Bloch wave
directions are taken. In Fig. 9.11, those errors are displayed for the meshes in
Fig. 9.1. For the ncTVEM, we can recognize the cliff-edge effect, meaning that, at
some point, the dispersion error decreases without increase of the dimension of the
minimal generating subspace. This effect has already been remarked in [39, 40] for
the discretization error and is a peculiarity of the orthogonalization-and-filtering
process mentioned in [39, Algorithm 1]. Moreover, we can observe a direct
correlation between the density of the degrees of freedom, which depends on
the shape of the meshes, see Figs. 9.2, 9.3, and 9.4, and the error plots (larger
cardinalities of the fundamental sets lead to larger errors; as mentioned above, for
ncTVEM, the filtering process leads to dimensionality reductions).
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dimension of the minimal generating subspace

10-15

10-10

10-5

100

m
ax

 |k
-k

n|/k

Squares

k=2
k=3
k=4
k=5

ncTVEM PWDG

dimension of the minimal generating subspace

10-15

10-10

10-5

100

m
ax

 |k
-k

n|/k

Triangles

0 5 10 15 20 5 10 15 20 25 30 35

0 5 10 15 20 25 30

dimension of the minimal generating subspace

10-15

10-10

10-5

100

m
ax

 |k
-k

n|/k

Hexagons

Fig. 9.11 Relative total dispersion error in dependence on the dimensions of the minimal
generating subspaces for different values of k on the meshes in Fig. 9.1



9 Nonconforming Trefftz VEM 405

Comparison with the Standard FEM
Here, we highlight the advantages of using full Trefftz methods (ncTVEM, PWDG)
in comparison to standard polynomial based methods, such as the FEM, whose
dispersion properties were studied in, e.g., [1, 9, 20, 31]. For simplicity, we focus
on the meshes made of squares in Fig. 9.1, since, in this case, the basis functions in
the FEM have a tensor product structure and an explicit dispersion relation can be
derived [1, Theorem 3.1]:

cos(kn) = Rq(k), (9.53)

where, denoting by [·/·]z cot z and [·/·]z tan z the Padé approximants to the functions
z cot z and z tan z, respectively,

Rq(2z) := [2N0/2N0 − 2]z cot z − [2Ne + 2/2Ne]z tan z

[2N0/2N0 − 2]z cot z + [2Ne + 2/2Ne]z tan z
,

with N0 := ((q + 1)/2) and Ne := (q/2). From (9.53), one can see that only
dispersion plays a role in the FEM. In Fig. 9.12, we display the relative total
dispersion errors against the effective degree q (left) and against the dimensions
of the minimal generating subspaces (right) for fixed k = 3. Similar results are
obtained for other values of k and are not shown. One can clearly notice that the
dispersion error for the FEM is lower than for the other methods, when comparing
it in terms of q , but higher, when comparing it in terms of the dimensions of the
minimal generating subspaces.
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Fig. 9.12 Comparison of the relative total dispersion errors for ncTVEM, PWDG, and the
standard polynomial based FEM on a mesh made of squares as in Fig. 9.1 for fixed wave number
k = 3, in dependence on the effective/polynomial degree q (left) and the dimension of the minimal
generating subspaces (right). The maxima over a large set of Bloch wave directions d are taken
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9.6.3.3 Algebraic Convergence of the Dispersion Error Against the Wave
Number k

We study the dispersion and dissipation properties of the three methods with respect
to the wave number k. Due to the fact that h = 1, and k is related to the wave
number k0 on a mesh with mesh size h0 by k = kh = k0h0, the limit k → 0
corresponds in fact to an h-version with h0 → 0 for fixed k0. We will observe
algebraic convergence of the total dispersion error in terms of k. This resembles the
algebraic convergence of the discretization error in the h-version, proved in [25, 39]
for the ncTVEM and the PWDG, respectively.

For the numerical experiments, we fix the effective degrees q = 3, 5, 7. We
employ once again the meshes made of squares and triangles in Fig. 9.1. Similar
results have been obtained on the mesh made of hexagons. In Fig. 9.13, the relative
total errors |k − kn|/k determined over a large set of Bloch wave directions d are
depicted against k. Algebraic convergence can be observed. Furthermore, larger
values of q lead to smaller errors. The peaks occurring in the convergence regions
of the ncTVEM could be related to the presence of Neumann eigenvalues, and
Dirichlet and Neumann eigenvalues, that have to be excluded in the construction of
the ncTVEM, respectively, in order to have a well-posed variational formulation.
Moreover, the oscillations for larger and smaller values of k are related to the
pre-asymptotic regime and the instability regime, which are typical of wave based
methods.

In Table 9.1, we list some relative total errors for different values of k. They
indicate a convergence behaviour of

max
|k − kn|
|k| ≈ O(kη), k→ 0, (9.54)

where η ∈ [2q − 1, 2q]. This was already observed in [24] for PWDG.
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Fig. 9.13 Relative total dispersion in dependence on the wave number k for fixed effective degrees
q = 3, 5, 7. The maxima over a large set of Bloch wave directions d are taken. As meshes, those
made of squares (left) and triangles (right) in Fig. 9.1 are employed
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Table 9.1 Rates of the relative total error for k→ 0

Squares Triangles

Method k
|k−kn|

k
k

|k−kn|
k

Rate k
|k−kn|

k
k

|k−kn|
k

Rate

q = 3 PWVEM 2 1.50e−03 0.3 4.59e−08 5.48 2 2.71e−04 0.3 3.42e−09 5.95

ncTVEM 2 9.04e−03 0.3 3.69e−07 5.33 2 1.07e−03 0.3 4.09e−08 5.36

PWDG 2 1.71e−03 0.3 1.04e−07 5.11 2 3.87e−04 0.3 3.04e−08 4.98

q = 5 PWVEM 2 3.68e−06 0.8 5.09e−10 9.70 3 2.17e−05 2 4.54e−07 9.53

ncTVEM 2 6.48e−06 0.8 1.21e−09 9.37 3 5.91e−06 2 1.47e−07 9.11

PWDG 2 4.56e−07 0.8 1.47e−10 8.77 3 7.75e−07 2 1.97e−08 9.06

q = 7 PWVEM 4 1.55e−05 2 2.23e−09 12.76 6 7.79e−05 4 5.57e−07 12.19

ncTVEM 4 5.93e−06 2 6.54e−10 13.15 6 6.01e−06 4 3.39e−08 12.77

PWDG 4 2.92e−07 2 2.33e−11 13.62 6 7.10e−07 4 2.76e−09 13.69
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Fig. 9.14 Relative dispersion (left) and relative dissipation (right) in dependence on the wave
number k for fixed q = 5 on the meshes made of squares in Fig. 9.1. The maxima over a large set
of Bloch wave directions d are taken

Remark 9.4 Clearly, similarly as above, dispersion and dissipation can be investi-
gated again separately from each other. Here, we only show the results, depicted in
Fig. 9.14, for fixed q = 5 and varying k on the meshes made of squares. As already
observed, one can deduce that the ncTVEM are dispersion dominated, whereas
dissipation plays a major role for the PWDG.
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Chapter 10
The Conforming Virtual Element Method
for Polyharmonic and Elastodynamics
Problems: A Review

Paola F. Antonietti, Gianmarco Manzini, Ilario Mazzieri, Simone Scacchi,
and Marco Verani

Abstract In this chapter we review recent results on the conforming virtual element
approximation of polyharmonic and eleastodynamics problems. The structure and
the content of this review is motivated by three paradigmatic examples of applica-
tions: classical and anisotropic Cahn-Hilliard equation and phase field models for
brittle fracture, that are briefly discussed in the first part of the chapter. We present
and discuss the mathematical details of the conforming virtual element approxi-
mation of linear polyharmonic problems, the classical Cahn-Hilliard equation and
linear elastodynamics problems.

10.1 Introduction

In the recent years, there has been a tremendous interest to numerical methods that
approximate partial differential equations (PDEs) on computational meshes with
arbitrarily-shaped polytopal elements. One of the most successful method is the
virtual element method (VEM), originally proposed in [16] for second-order elliptic
problems and then extended to a wide range of applications.

The VEM was originally developed as a variational reformulation of the nodal
mimetic finite difference (MFD) method [15, 37, 38, 73, 78] for solving partial
differential equation problems on unstructured polygonal meshes. A survey on
the MFD method can be found in the review paper [74] and the research mono-
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graph [18]. The VEM inherits the flexibility of the MFD method with respect to
the admissible meshes and this feature is well reflected in the many significant
applications using polytopal meshes that have been developed so far, see, for
example, [6, 19, 21, 23, 24, 27, 28, 30, 45, 48, 49, 54, 82, 84, 87, 88, 94, 99].
Meanwhile, the mixed VEM for elliptic problems were introduced in setting a la‘
Raviart-Thomas in [22] and in a BDM-like setting in [39]. The nonconforming
formulation for diffusion problems was proposed in [13] as the finite element
reformulation of [72] and later extended to general elliptic problems [32, 47], Stokes
problem [44], eigenvalue problems [63], and the biharmonic equation [7, 100].
equation [7]. Moreover, the connection between the VEM and the finite elements on
polygonal/polyhedral meshes is thoroughly investigated in [43, 77], between VEM
and discontinuous skeletal gradient discretizations in [55], and between the VEM
and the BEM-based FEM method in [46].

The virtual element method combines a great flexibility in using polytopal
meshes with a great versatility and easiness in designing approximation spaces with
high-order continuity properties on general polytopal meshes. These two features
turn out to be essential in the numerical treatment of the classical plate bending
problem, for which a C1-regular conforming virtual element approximation has
been introduced in [36, 53]. Virtual elements withC1- regularity have been proposed
to solve elliptic problems on polygonal meshes [19] and polyedral meshes in [26],
the transmission eigenvalue problem in [80], the vibration problem of Kirchhoff
plates in [83], the buckling problem of Kirchhoff-Love plates in [81]. The use of
C1-virtual elements has also been employed in the conforming approximation of the
Cahn-Hilliard problem [6] and the von Kármán equations [76], and in the context of
residual based a posteriori error estimators for second-order elliptic problems [21].

Higher-order of regularity of the numerical approximation is also required when
addressing PDEs with differential operators of order higher than two as the already
mentioned biharmonic problem and the more general case of the polyharmonic
equations. An example of the latter is found in the work of Reference [9].

In this chapter we consider three paradigmatic examples of applications where
the conforming discretization requires highly regular approximation spaces. The
first two examples are the classical and the anisotropic Cahn-Hilliard equations, that
are used in modelling a wide range of problems such as the tumor growth, the origin
of the Saturn rings, the separation of di-block copolymers, population dynamics,
crystal growth, image processing and even the clustering of mussels, see [6] and the
references therein. The third example highlights the importance of coupling phase
field equations with the elastodynamic equation in the context of modelling fracture
propagation (see also [3] for a phase-field besed VEM and the references therein).
These three examples motivate the structure of this review, where we consider the
conforming virtual approximation of the polyharmonic equation, the classical Cahn-
Hilliard equation and the time-dependent elastodynamics equation.

Historically, the numerical approximation of polyharmonic problems dates back
to the eighties [34], and more recently, this problem has been addressed in the
context of the finite element method by [14, 62, 67, 93, 97]. The conforming
virtual element approximation of the biharmonic problem has been addressed in
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[36, 53]. while a non-conforming approximation has been proposed in [7, 100, 101].
In Sect. 10.2, we review the conforming virtual element approximation of poly-
harmonic problems following [9, 12]. A nonconforming approximation is studied
in [52].

The Cahn-Hilliard equation involves fourth-order spatial derivatives and the
conforming finite element method is not really popular approach because pri-
mal variational formulations of fourth-order operators requires the use of finite
element basis functions that are piecewise-smooth and globally C1-continuous.
Only a few finite element formulations exists with the C1-continuity property,
see for example [57, 58], but in general, these methods are not simple and easy
to implement. This high-regularity issue has successfully been addressed in the
framework of isogeometric analysis [65]. The virtual element method provides
a very effective framework for the design and development of highly regular
conforming approximation, and in Sect. 10.3 we review the method proposed in [6].

Alternative approaches are offered by nonconforming methods [59] or discontin-
uous methods [98]), but these methods do not provide C1-regular approximations.
Another common strategy employed in practice to solve the Cahn-Hilliard equation
by finite elements resorts to mixed methods; see, e.g., [56, 60, 68] for the contin-
uous and discontinuous setting, respectively. Recently, mixed based discretization
schemes on polytopal meshes have been addressed in [50] in the context of the
Hybrid High Order Method, and in [75] in the context of the mixed Virtual Element
Method. However, mixed finite element methods requires a bigger number of
degrees of freedom, which implies, as a drawback, an increased computational cost.

Very popular strategies for numerically solving the time-dependent elastodynam-
ics equations in the displacement formulation are based on spectral elements [61,
69], discontinuous Galerkin and discontinuos Galerkin spectral elements [4, 5, 91].
High-order DG methods for elastic and elasto-acoustic wave propagation problems
have been extended to arbitrarily-shaped polygonal/polyhedral grids [8, 10] to
further enhance the geometrical flexibility of the discontinuous Galerkin approach
while guaranteeing low dissipation and dispersion errors. Recently, the lowest-order
Virtual Element Method has been applied for the solution of the elastodynamics
equation on nonconvex polygonal meshes [85, 86]. See also [17] for the approx-
imation of the linear elastic problem, [20] for elastic and inelastic problems on
polytope meshes, [96] for virtual element approximation of hyperbolic problems.
In Sect. 10.4, we review the conforming virtual element method of arbitrary order
of accuracy proposed in [11].

10.1.1 Paradigmatic Examples

In this section, we briefly describe some relevant applications whose mathematical
modelling involves partial differential equations with higher order spatial operators
or the combination of the elastodynamics equation and higher-order spatial partial
differential equations.
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10.1.1.1 Cahn-Hilliard Equation

Phase field models, which date back to the works of Korteweg [70], Cahn and
Hilliard [40–42], Landau and Ginzburg [71] and van der Waals [92], have been
classicaly employed to describe phase separation in binary alloys.

Consider a bounded domain � ⊂ R
d , d = 1, 2, 3, filled with components A

and B presenting different properties and let cA(x) and cB(x) be their relative
nonuniform mass fraction for every x ∈ �. We assume that ci(·) : � → [0, 1]
for i ∈ {A,B} and cA(x) + cB(x) = 1. Choosing one of the two functions and
renaming it as c(x), Cahn and Hilliard, under the additional hypothesis that the
mixture is isothermal and the molar volume is uniform and independent of the
pressure, proposed a model minimizing the energy functional

E(c) =
∫
�

(
F(c)+ ε2

2
|∇c|2

)
dx, (10.1)

where F(c) is the Helmholtz single-component free-energy density

F(c) = 2κBTcc(1− c)+ κBT
(
c ln(c)+ (1− c) ln(1− c)

)
.

Here, κB is the Boltzmann constant, T the temperature and Tc the critical temper-
ature threshold. If T ≥ Tc the behaviour is trivial since F(c) presents a single
global minimum at c = 1/2, and therefore the minimization of (10.1) returns a
homogeneous distribution c(x) = 1/2 for all x ∈ �. On the other hand, if T ≤ Tc,
a physically relevant double-well appears in the graph of the function.

Let us briefly comment on the structure of the energy functional (10.1). The first
term takes into account the interfacial nature of the phenomenon: it increases the
energy in those region of the space where both A and B are present (thus c exhibits
a high gradient). The second term penalizes the measure of the interface separating
the two phases. However, even if the interface separating the substances looks sharp
from a macroscopic point of view, there is experimental evidence of an intermediate,
diffusive, stripe; the term ε2 is such that ε is proportional to the thickness of the
stripe.

In the mathematical treatment of this problem, it is convenient to introduce the
so-called order parameter, which we still denote by c(x) and we define as c(x) =
cA(x)− cB(x) so that c(·) : �→ [−1, 1].

Employing the order parameter, the energy functional (10.1) remains unmodified
(up to a multiplicative constant), while F(c) becomes

F(c) = −c0c
2 + c1

(
(1+ c) ln(1+ c)+ (1− c) ln(1− c)

)
c0 > c1 > 0

as we fixed T < Tc. Recalling the assumption that the phenomenon mimimizes
the energy (10.1) over time and denoting by ċ the time derivative of c, we get the
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following differential description of the phenomenon

ċ +∇ · J = 0 in �, (10.2)

where the flux J is defined as

J = −M(c)∇
(
δE(c)

δc

)
=M(c)∇(F ′(c)− ε2�c).

The function M(c) is the mobility of the substances and measures how much the
molecules are free to move. The typical choices for the boundary conditions on the
domain boundary � are:

n ·M(c)∇(F ′(c)− ε2�c) = 0 on �, (10.3)

∂nc = 0 on �, (10.4)

where n is the unit normal vector to � pointing out of �. The conservation of c
follows from the integration of (10.2) and an application of the divergence theorem,
which formally gives the relation ∂t

∫
� c dx = 0. In practice, the following choices

for M(c) and F(c) are common

F(c) = 1

4
(c2 − 1)2,

M(c) = constant.

Setting for simplicity M(c) = 1, problem (10.2) takes the simpler form of the
nonlinear fourth-order parabolic equation:

ċ +∇ · ∇(F ′(c))− ε2�2c = 0 in �.

Note the presence of the fourth-order term �2c, whose numerical treatment, as it
will be clear in the sequel of the paper, requires special care.

10.1.1.2 Anisotropic Cahn-Hilliard Equation

We consider the following modified free energy density

E(c) =
∫
�

γ (n)

ε

(
F(c)+ ε2

2
|∇c|2

)
dx, (10.5)

where function γ (n) describes the anisotropic property and n = ∇c
|∇c| is the interface

unit normal vector. When γ (n) = 1 the H−1-gradient flow of (10.5) leads to the
Cahn-Hilliard equation of the previous section. In the anisotropic case, function γ
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depends on n in a non-trivial way. For instance, the so-called four-fold symmetric
anisotropic function is defined as follows:

γ (n) = 1+ α cos(ϑ) (10.6)

where ϑ is the orientation angle of the normal vector to the interface and α is the
intensity of the anisotropy. For sufficiently large values of α, the corresponding
Cahn-Hilliard equation becomes ill-posed and needs to be regularized [95]. To this
end, we consider an extra regularizing term G (c) in the energy functional (10.5),
which takes the form

E(c) =
∫
�

γ (n)

ε

(
F(c)+ ε2

2
|∇c|2

)
+ β

2
G (c) (10.7)

where β > 0 is a regularization parameter. A possible choice for the extra term G is
the following (see, e.g., [51] for other possible choices)

G (c) = ε|�c|2 (10.8)

for which the corresponding H−1-gradient flow of the energy (10.7) gives rise to
the following anisotropic Cahn-Hilliard equation

ċ − 1

ε
�

(
γ (n)

ε
F ′(c)− ε∇ ·m+ βε�2c

)
= 0 (10.9)

with

m = γ (n)∇c + P∇nγ (n)

(
F(c)

ε2 |∇c| +
1

2
|∇c|

)

where P = I− n⊗ n, I being the identity matrix and ∇nγ (n) is the gradient vector
containing the partial derivatives of γ (n) with respect to the components of the
normal n.

In view of the subsequent discussion on the numerical approximation of higher-
order spatial differential operators, it is important to highlight the presence of the
sixth-order term �3c in (10.9).

10.1.1.3 A High Order Phase Field Model for Brittle Fracture

A popular approach for the numerical solutions of fracture models is based on
introducing discontinuities into the displacement field by means of remeshing or by
enriching the set of basis functions by inserting discontinuities using the partition
of unity method. An alternative approach is the variational approach to brittle
where the solution to the fracture problem is searched as the minimizer of an
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energy functional. The corresponding numerical solution hinges upon the phase-
field implementation and the fracture problem is reformulated as a system of partial
differential equations completely determininig the evolution of the cracks. For a
short overview of these two classes of methods see, e.g., [33] and the references
therein.

Recently, in [33] the variational approach to brittle fracture has been extended by
proposing a fourth-order model for the phase-field approximation. The presence of
higher-order derivative terms in the phase-field equation leads to a greater regularity
of the solution. In the sequel, we briefly summarize the resulting differential
problem so to highlight the interplay between the elastodynamics equation (cf.
Eq. (10.10a) below) and the fourth-order phase field equation (cf. Eq. (10.10b)
below). The unknowns of the problem are the displacement field u : �→ R

d d =
2, 3 and the continuous phase field variable c : � → [0, 1] describing the crack
(c = 1 away from the crack and c = 0 at the crack). Let λ and μ denote the usual
the Lamé constants and ε = 1

2 (∇u + ∇uT ) the symmetric gradient. Since ε is a
real symmetric matrix, there exists a real orthogonal matrix P and a real diagonal
matrix � such that ε = P�PT . We define the matrix �+ = diag(〈λ1〉, 〈λ2〉, 〈λ3〉)
where 〈x〉 is the Heaviside function, the matrix �− = � − �+, and the matrices
ε± = P�±PT . Using these matrices, we introduce the functions

ψ+e (ε) =
1

2
λ〈trε〉2 + μtr[(ε+)2],

ψ−e (ε) =
1

2
λ(trε − 〈trε〉)2 + μtr

(
(ε − ε+)2),

and define the stress tensor as

σ (u) = c2 ∂ψ
+
e

∂ε
+ ∂ψ−e

∂ε
.

Finally, the differential problem reads as:

ρü−∇ · σ (u) = f in �× (0, T ], (10.10a)

4�0c

gc
ψ+e (ε)c − 2�2

0�c + �4
0�

2c = 1 in �× (0, T ], (10.10b)

u = gD on �D × (0, T ], (10.10c)

σ (u)n = gN on �N × (0, T ], (10.10d)

�c = 0 in ∂�××(0, T ], (10.10e)

∇(�4
0�c − 2�2

0c)n = 0 in ∂�××(0, T ], (10.10f)

(u, u̇) = (u0,u1) in �× {0}, (10.10g)
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where we split ∂� = �D ∪�N for the Dirichlet and Neumann boundary conditions,
and �0 > 0 is suitable length scale parameter.

10.1.2 Notation and Technicalities

Throughout the paper, we consider the usual multi-index notation. In particular, if v
is a sufficiently regular bivariate function and α = (α1, α2) a multi-index with α1,
α2 nonnegative integer numbers, the function Dαv = ∂ |α|v/∂xα1

1 ∂x
α2
2 is the partial

derivative of v of order |α| = α1+α2 > 0. For α = (0, 0), we adopt the convention
that Dαv coincides with v. Also, for the sake of exposition, we may use the shortcut
notation ∂xv, ∂yv, ∂xxv, ∂xyv, ∂yyv, to denote the first- and second-order partial
derivatives along the coordinate directions x and y; ∂nv, ∂tv, ∂nnv, ∂nt v, ∂ttv to
denote the first- and second-order normal and tangential derivatives along a given
mesh edge; and ∂mn v and ∂mt v to denote the normal and tangential derivative of v
of order m along a given mesh edge. Finally, let n = (nx, ny) and τ = (τx, τy) be
the unit normal and tangential vectors to a given edge e of an arbitrary polygon P,
respectively. We recall the following relations between the first derivatives of v:

∂nv = ∇vT n = nx∂xv + ny∂yv, ∂τ v = ∇vT τ = τx∂xv + τy∂yv, (10.11)

and the second derivatives of v:

∂nnv = nTH(v)n, ∂nτ v = nTH(v)τ , ∂ττ v = τ TH(v)τ , (10.12)

respectively, where the matrix H(v) is the Hessian of v, i.e., H11(v) = ∂xxv,
H12(v) = H21(v) = ∂xyv, H22(v) = ∂yyv.

We use the standard definitions and notation of Sobolev spaces, norms and
seminorms [1]. Let k be a nonnegative integer number. The Sobolev space Hk(ω)

consists of all square integrable functions with all square integrable weak derivatives
up to order k that are defined on the open bounded connected subset ω of R2. As
usual, if k = 0, we prefer the notation L2(ω). Norm and seminorm in Hk(ω) are
denoted by || · ||k,ω and | · |k,ω, respectively, and (·, ·)ω denote the L2-inner product.
We omit the subscript ω when ω is the whole computational domain �.

Given the mesh partitioning �h = {P} of the domain � into elements P, we
define the broken (scalar) Sobolev space for any integer k > 0

Hk(�h) =
∏
P∈�h

Hk(P) = { v ∈ L2(�) : v|P ∈ Hk(P)
}
,

which we endow with the broken Hk-norm

||v||2k,h =
∑
P∈�h

||v||2
k,P ∀ v ∈ Hk(�h), (10.13)
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and, for k = 1, with the broken H 1-seminorm

|v|21,h =
∑
P∈�h

||∇v||2
0,P ∀ v ∈ H 1(�h). (10.14)

We denote the linear space of polynomials of degree up to � defined on ω by
P�(ω), with the useful conventional notation that P−1(ω) = {0}. We denote the
space of two-dimensional vector polynomials of degree up to � on ω by

[
P�(ω)

]2;
the space of symmetric 2 × 2-sized tensor polynomials of degree up to � on ω by
P

2×2
�,sym(ω). Space P�(ω) is the span of the finite set of scaled monomials of degree

up to �, that are given by

M�(ω) =
{ (

x− xω
hω

)α
with |α| ≤ �

}
,

where

– xω denotes the center of gravity of ω and hω its characteristic length, as, for
instance, the edge length or the cell diameter for d = 1, 2;

– α = (α1, α2) is the two-dimensional multi-index of nonnegative integers αi with
degree |α| = α1 + α2 ≤ � and such that xα = x

α1
1 x

α2
2 for any x ∈ R

2.

We will also use the set of scaled monomials of degree exactly equal to �, denoted
by M ∗

� (ω) and obtained by setting |α| = � in the definition above.
Finally, we use the letter C in the estimates below to denote a strictly positive

constant whose value can change at any instance but that is independent of the
discretization parameters such as the mesh size h. Note that C may depend on the
the polynomial order, on the constants of the model equations or the variational
problem, like the coercivity and continuity constants, or even constants that are
uniformly defined for the family of meshes of the approximation while h→ 0, such
as the mesh regularity constant, the stability constants of the discrete bilinear forms,
etc. Whenever it is convenient, we will simplify the notation by using expressions
like x � y and x � y to mean that x ≤ Cy and x ≥ Cy, respectively, C being the
generic constant in the sense defined above.

10.1.3 Mesh Assumptions

Throughout the paper we assume that T = {�h

}
h

is a family of decompositions of
the computational domain�, where each mesh �h is a collection of nonoverlapping
polygonal elements P with boundary ∂P, such that �̄ = �P∈�h

P̄. Each mesh is
labeled by the mesh size h, the diameter of the mesh, defined as usual by h =
maxP∈�h

hP, where hP = supx,y∈P |x− y|. We assume the mesh sizes of family
T form a countable subset of H = (0,∞) having zero as its unique accumulation
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point. We denote the set of mesh vertices v by Vh and the set of mesh edges e by
Eh Moreover, the symbol hv is a characteristic lenght associated with each vertex;
more precisely, hv is the average of the diameters of the polygons sharing vertex v.
We consider the following mesh regularity assumptions:

(M) There exists a positive constant γ , mesh regularity constant, which is
independent of h (and P) and such that for K ∈ �h there hold:

– (M1) P is star-shaped with respect to every point of a ball of radius γ hP,
where hP is the diameter of P;

– (M2) for every edge e of the cell boundary ∂P of every cell P of �h, it
holds that he ≥ γ hP, where he denotes the length of e.

All the results contained in the rest of the paper are obtained under assumptions
(M1)–(M2).

10.2 The Virtual Element Method for the Polyharmonic
Problem

10.2.1 The Continuous Problem

Let � ⊂ R
2 be a open, bounded, convex domain with polygonal boundary �. For

any integer p ≥ 1, we introduce the conforming virtual element method for the
approximation of the following problem:

(−�)pu = f in �, (10.1a)

∂
j
nu = 0 for j = 0, . . . , p − 1 on �, (10.1b)

(recall the conventional notation ∂0
nu = u). Let

V ≡ H
p

0 (�) = {v ∈ Hp(�) : ∂jnv = 0 on �, j = 0, . . . , p − 1
}
.

Denoting the duality pairing between V and its dual V ′ by
〈·, ·〉, the variational

formulation of the polyharmonic problem (10.1) reads as: Find u ∈ V such that

a(u, v) = 〈f, v〉 ∀v ∈ V, (10.2)

where, for any nonnegative integer �, the bilinear form is given by:

a(u, v) =

⎧⎪⎨
⎪⎩

∫
�
∇��u · ∇��v dx for p = 2�+ 1,

∫
�
��u��v dx for p = 2�.

(10.3)
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Whenever f ∈ L2(�) we have

〈
f, v

〉 = (f, v) =
∫
�

f v dV dx. (10.4)

where (·, ·) denotes the L2-inner product. The existence and uniqueness of the
solution to (10.2) follows from the Lax-Milgram Theorem because of the continuity
and coercivity of the bilinear form a(·, ·) with respect to ‖ · ‖V = | · |p,� which is
a norm on H

p

0 (�). Moreover, since � is a convex polygon, from [64] we know
that u ∈ H 2p−m(�) ∩ H

p

0 (�) if f ∈ H−m(�), m ≤ p and it holds that
||u||2p−m ≤ C||f ||−m. In the following, we denote the coercivity and continuity
constants of a(·, ·) by α and M , respectively.

Let P be a polygonal element and set

aP(u, v) =

⎧⎪⎨
⎪⎩

∫
P ∇��u · ∇��v dx for p = 2�+ 1,

∫
P��u��v dx for p = 2�.

For an odd p, i.e., p = 2� + 1, a repeated application of the integration by parts
formula yields

aP(u, v) =−
∫
P
�pu v dx+

∫
∂P

∂n(�
�u)��v ds

+
�∑

i=1

(∫
∂P

∂n(�
p−iu)�i−1v ds −

∫
∂P

�p−iu ∂n(�i−1v) ds

)
,

(10.5)

while, for an even p, i.e., p = 2�, we have

aP(u, v) =
∫
P
�pu v dx

+
�∑

i=1

(∫
∂P

∂n(�
p−iu)�i−1v ds −

∫
∂P

�p−iu ∂n(�i−1v) ds

)
.

(10.6)

10.2.2 The Conforming Virtual Element Approximation

The conforming virtual element discretization of problem (10.2) hinges upon three
mathematical objects: (1) the finite dimensional conforming virtual element space
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V
p
h,r ⊂ V ; (2) the continuous and coercive discrete bilinear form ah(·, ·); (3) the

linear functional
〈
fh, ·

〉
.

Using such objects, we formulate the virtual element method as: Find uh ∈ V
p
h,r

such that

ah(uh, vh) =
〈
fh, vh

〉 ∀vh ∈ V
p

h,r . (10.7)

The existence and uniqueness of the solution uh is again a consequence of the Lax-
Milgram theorem [35, Theorem 2.7.7, page 62].

10.2.2.1 Virtual Element Spaces

For p ≥ 1 and r ≥ 2p− 1, the local Virtual Element space on element P is defined
by

V
p

h,r(P) =
{
vh ∈ Hp(P) : �pvh ∈ Pr−2p(P), vh ∈ Pr (e), ∂

i
nvh ∈ Pr−i (e),

i = 1, . . . , p − 1 ∀e ∈ ∂P
}
,

with the conventional notation that P−1(P) = {0}. The virtual element space V p
h,r(P)

contains the space of polynomials Pr (P), for r ≥ 2p − 1. Moreover, for p = 1,
it coincides with the conforming virtual element space for the Poisson equation
[16], and for p = 2, it coincides with the conforming virtual element space for
the biharmonic equation [36]. The requirement vh ∈ Hp(P) implies that suitable
compatibility conditions for vh and its derivatives up to order p − 1 must hold at
the vertices of the polygon (see, e.g., [66, Theorems 1.5.2.4 and 1.5.7.8] and [29,
Section 5]).

We characterize the functions in V
p
h,r(P) through the following set of degrees of

freedom:

(D1) h
|ν|
v Dνvh(v), |ν| ≤ p − 1 for any vertex v of the polygonal boundary ∂P;

(D2) h−1
e

∫
e
qvh ds for any q ∈ Pr−2p(e) and any edge e of the polygonal

boundary ∂P;

(D3) h
−1+j
e

∫
e
q∂

j
nvh ds for any q ∈ Pr−2p+j (e), j = 1, . . . , p− 1 and any edge

e of ∂P;

(D4) h−2
P

∫
P
qhvh dx for any q ∈ Pr−2p(P).

Here, as usual, we assume that P−n(·) = {0} for n ≥ 1. Figure 10.1 illustrates
the degrees of freedom on a given edge e for p = 1, 2, 3 (Laplace, biharmonic,
and triharmonic case) and r = 2p − 1, 2p; the corresponding internal degrees of
freedom (D4) are absent in the case r = 2p − 1, while reduce to a single one in the
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Fig. 10.1 Edge degrees of freedom of the Virtual Element space V
p

h,r (P) for the polyharmonic
problem with p = 1 (top panels, Laplace operator), p = 2 (middle panels, bi-harmonic operator),
p = 3 (bottom panels, tri-harmonic operator). Here, p is the order of the partial differential
operator; r = 1, 2, . . . , 6 are the integer parameters that specify the degree of the polynomial
subspace Pr (P) of the VEM space V 3

h,r (P). The (green) dots at the vertices represent the vertex
values and each (red) vertex circle represents an order of derivation. The (black) dot on the edge
represents the moment of vh|e ; the arrows represent the moments of ∂nvh|e ; the double arrows
represent the moments of ∂nnvh|e. The corresponding internal degrees of freedom (D4) are absent
in the case r = 2p − 1, while reduce to a single one in the case r = 2p

case r = 2p. Finally, we note that in general the internal degrees of freedom (D4)
make it possible to define the L2-orthogonal polynomial projection of vh onto the
space of polynomial of degree r − 2p.

The dimension of V p
h,r(P) is

d(V
p
h,r (P)) =

p(p + 1)

2
NP + NP

p−1∑
j=0

(r − 2p + j + 1)+ (r − 2p + 1)(r − 2p + 2)

2
,

where NP is the number of vertices, which equals the number of edges, of P.
In [9], it is proved that the above choice of degrees of freedom is unisolvent in

V
p

h,r(P).
Building upon the local spaces V p

h,r(P) for all P ∈ �h, the global conforming

virtual element space V p
h,r is defined on � as

V
p

h,r =
{
vh ∈ H

p

0 (�) : vh|P ∈ V
p

h,r (P) ∀P ∈ �h

}
. (10.8)

We remark that the associated global space is made of Hp(�) functions. Indeed, the
restriction of a virtual element function vh to each element P belongs to Hp(P) and
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glues with Cp−1-regularity across the internal mesh faces. The set of global degrees
of freedom inherited by the local degrees of freedom are:

– h
|ν|
v Dνvh(v), |ν| ≤ p − 1 for every interior vertex v of �h;

– h−1
e

∫
e
qvh ds for any q ∈ Pr−2p(e) and every interior edge e ∈ Eh;

– h
−1+j
e

∫
e
q∂

j
nvh ds for any q ∈ Pr−2p+j (e) j = 1, . . . , p − 1 and every interior

edge e ∈ Eh;

– h−2
P

∫
P
qvh dx for any q ∈ Pr−2p(P) and every P ∈ �h.

10.2.2.2 Modified Lowest Order Virtual Element Spaces

In this section, we briefly discuss the possibility of introducing modified lowest
order virtual element spaces with a reduced number of degrees of freedom with
respect to the corresponding lowest order ones that were introduced previously. The
price we pay is a reduced order of accuracy since the polynomial functions included
in such modified spaces has a lower degree.

For the sake of presentation we start from the case p = 3, while we refer the
reader to [36] for the case of p = 2 and Sect. 10.3.2.1 where the reduced virtual
space is employed in the context of the approximation of the Cahn-Hilliard problem.
Consider the modified local virtual element space:

Ṽ 3
h,5(P) =

{
vh ∈ H 3(P) : �3vh = 0, vh ∈ P5(e), ∂nvh ∈ P3(e),

∂nnvh ∈ P2(e) ∀e ∈ ∂P
}

with associated degrees of freedom:

(D1’) h
|ν|
v Dνvh(v), |ν| ≤ 2 for any vertex v of ∂P;

(D2’) he

∫
e
∂nnvh ds for any edge e of ∂P.

In Ref. [9], we proved that the degrees of freedom (D1’) and (D2’) are unisolvent
in Ṽ 3

h,5(P) and this space contains the linear subspace of polynomials of degree
up to 4. Moreover, the associated global space obtained by gluing together all the
elemental spaces Ṽ 3

h,5(P) reads as:

Ṽ 3
h,5 =

{
vh ∈ H 3

0 (�) : vh|P ∈ Ṽ 3
h,5(P) ∀P ∈ �h

}
, (10.9)

is made of H 3(�) functions.
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Analogously, in the general case we can build the modified lowest order spaces
containing the space of polynomials of degree up to 2p − 2:

Ṽ
p

h,2p−1(P) =
{
vh ∈ Hp(P) : �pvh = 0, vh ∈ P2p−1(e), ∂invh ∈ P2p−2−i (e),

i = 1, . . . , p − 1 ∀e ∈ ∂P
}
,

with associated degrees of freedom:

(D1’) h
|ν|
v Dνvh(v), |ν| ≤ p − 1 for any vertex v of ∂P;

(D2’) h
−1+j
e

∫
e
q∂invh ds for any q ∈ Pj−2(e) and edge e of ∂P, j = 1, . . . , p−1.

10.2.2.3 Discrete Bilinear Form

To define the elliptic projection�∇,Pr : V p
h,r(P)→ Pr (P), we first need to introduce

the vertex average projector �̂P : V p

h,r(P) → P0(P), which projects any smooth
enough function defined on P onto the space of constant polynomials. To this end,
consider the continuous function ψ defined on P. The vertex average projection of
ψ onto the constant polynomial space is given by:

�̂Pψ = 1

NP

∑
v∈∂P

ψ(v). (10.10)

Finally, we define the elliptic projection�∇,Pr : V p
h,r(P)→ Pr (P) as the solution

of the following finite dimensional variational problem

aP(�
∇,P
r vh, q) = aP(vh, q) ∀q ∈ Pr (P), (10.11)

�̂PDν�∇,Pr vh = �̂PDνvh |ν| ≤ p − 1. (10.12)

According to Reference [9], such operator has two important properties:

(i) it is a polynomial-preserving operator in the sense that �∇,Pr q = q for every
q ∈ Pr (P);

(ii) �
∇,P
r vh is computable using only the degrees of freedom of vh.

We write the symmetric bilinear form ah : V p

h,r × V
p

h,r → R as the sum of local
terms

ah(uh, vh) =
∑
P∈�h

a
h,P(uh, vh), (10.13)
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where each local term a
h,P : V p

h,r(P)× V
p
h,r(P)→ R is a symmetric bilinear form.

We set

ah,P(uh, vh) = aP(�
∇,P
r uh,�

∇,P
r vh)+ SP(uh −�∇,Pr uh, vh −�∇,Pr vh),

(10.14)

where SP : V p
h,r(P) × V

p
h,r(P) → R is a symmetric positive definite bilinear form

such that

σ∗aP(vh, vh) ≤ SP(vh, vh) ≤ σ ∗aP(vh, vh) ∀vh ∈ V
p

h,r (P) with �∇,Pr vh = 0,

(10.15)

for two some positive constants σ∗, σ ∗ independent of h and P. The bilinear form
a
h,P(·, ·) has the two fundamental properties of r-consistency and stability [9]:

(i) r-Consistency: for every polynomial q ∈ Pr (P) and function V p
h,r(P) we have:

a
h,P(vh, q) = aP(vh, q); (10.16)

(ii) Stability: there exist two positive constants α∗, α∗ independent of h and P
such that for every vh ∈ V

p

h,r (P) it holds:

α∗aP(vh, vh) ≤ a
h,P(vh, vh) ≤ α∗aP(vh, vh). (10.17)

10.2.2.4 Discrete Load Term

We denote by fh the piecewise polynomial approximation of f on �h given by

fh|P = �
0,P
r−pf, (10.18)

for r ≥ 2p − 1 and P ∈ �h. Then, we set

〈
fh, vh

〉 = ∑
P∈�h

∫
P
fhvh dx (10.19)

which implies, using the L2-orthogonal projection, that

〈
fh, vh

〉 = ∑
P∈�h

∫
P
�

0,P
r−p f�

0,P
r−pvh dx =

∑
P∈�h

∫
P
f �

0,P
r−pvh dx. (10.20)
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The right-hand side of (10.20) is computable by a combined use of the degrees of
freedom (D1)–(D4) and the enhanced approach of Reference [2].

10.2.2.5 VEM Spaces with Arbitrary Degree of Continuity

In this section we briefly sketch the construction of global virtual element spaces
with arbitrary high order of continuity. More precisely, we consider the local virtual
element space defined as before, for r ≥ 2p − 1:

V
p
h,r(P) =

{
vh ∈ Hp(P) : �pvh ∈ Pr−2p(P), vh ∈ Pr (e), ∂

j
nvh ∈ Pr−j (e),

j = 1, . . . , p − 1 ∀e ∈ ∂P
}
.

Differently from the previous section, we make the degrees of freedom depend
on a given parameter t with 0 ≤ t ≤ p − 1. For a given value of t we choose the
degrees of freedom as follows

(D1) h
|ν|
v Dνvh(v), |ν| ≤ p − 1 for any vertex v of P;

(D2) h−1
e

∫
e
vhq ds for any q ∈ Pr−2p(e), for any edge e of ∂P;

(D3) h
−1+j
e

∫
e
∂
j
nvhq ds for any q ∈ Pr−2p+j (e) and edge e ∈ ∂P, j =

1, . . . , p − 1;

(D4’) h−2
P

∫
P
qvh dx for any q ∈ Pr−2(p−t )(P);

where as usual we assume P−n(·) = {0} for n = 1, 2, 3, . . ..
This set of degrees is still unisolvent, cf. [9]. Moreover, for r ≥ 2p − 1 it

holds that Pr (P) ⊂ V
p
h,r(P). Finally, it is worth noting that the choice (D4’), if

compared with (D4), still guarantees that the associated global space is made of
Cp−1 functions.

However, in this latter case we can use the degrees of freedom (D1)–(D4’)
to solve a differential problem involving the �p−t operator and Cp−1(�) basis
functions. For the sake of exposition, let us consider the following two examples, in
the context of the Laplacian and the Bilaplacian problem.

1. Choosing p and t such that p − t = 1 we obtain a Cp−1-conforming virtual
element method for the solution of the Laplacian problem. For example, for
p = 3, t = 2 and r = 5, the local space V 3

h,5(P) endowed with the corresponding
degrees of freedom (D1)–(D4’) can be employed to build a global space made of
C2 functions. It is also worth mentioning that the new choice (D4’), differently
from the original choice (D4), is essential for the computability of the elliptic
projection, see (10.11)–(10.12), with respect to the bilinear form aP(·, ·) =∫
P ∇(·)∇(·) dx.
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2. Choosing p and t such that p − t = 2 we have a Cp−1-conforming virtual
element method for the solution of the Bilaplacian problem. For example, for
p = 3, t = 1 and r = 5, similarly to the previous case, the space V 3

h,5(P)
together with (D1)–(D4’) provides a global space of C2 functions that can be
employed for the solution of the biharmonic problem.

It is worth remembering that C1-regular virtual element basis function has been
employed, e.g., in [21] to study residual based a posteriori error estimators for the
virtual element approximation of second order elliptic problems. Moreover, the
solution of coupled elliptic problems of different order can take advantage from
this flexibility of the degree of continuity of the basis functions. Indeed, for the sake
of clarity consider the conforming virtual element approximation of the following
simplified situation:

−�u1 = f1 in �1,

�2u2 = f2 in �2,

u1 = u2 on � = �1 ∩�2,

∂nu1 = ∂nu2 on �,

u1 = 0 on ∂�1 \ �,
u2 = 0 on ∂�2 \ �,

∂nu2 = 0 on ∂�2 \ �.

Handling the coupling conditions on � asks for the use of C1-regular virtual basis
functions not only in �2 where the bilaplacian problem is defined, but also in
�1, where the second order elliptic problem is defined. Indeed, a simple use of
C0-basis functions in �1, which would be natural given the second order of the
problem, would not allow the imposition (or at least a simple imposition) of the
gluing condition on the normal derivatives.

10.2.2.6 Convergence Results

The following convergence result in the energy norm holds (see [9] for the proof).

Theorem 10.1 Let f ∈ Hr−p+1(�) be the forcing term at the right-hand side, u
the solution of the variational problem (10.2) and uh ∈ V

p

h,r the solution of the
virtual element method (10.7). Then, it holds that

||u− uh||v ≤ Chr−(p−1)(|u|r+1 + |f |r−p+1
)
. (10.21)

Moreover, the following convergence results in lower order norms can estab-
lished [9].
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Theorem 10.2 (Even p, Even Norms) Let f ∈ Hr−p+1(�), u the solution of the
variational problem (10.2) with p = 2� and vh ∈ V

p

h,r the solution of the virtual
element method (10.7). Then, there exists a positive constant C independent of h
such that

|u− uh|2i ≤ Chr+1−2i
(
|u|r+1 + |f |r−(p−1)

)
, (10.22)

for every integer i = 0, . . . , �− 1.

Theorem 10.3 (Even p, Odd Norms) Let f ∈ Hr−p+1(�), and u the solution of
the variational problem (10.2) with p = 2� and uh ∈ V

p
h,r the solution of the virtual

element method (10.7). Then, there exists a positive constant C independent of h
such that

|u− uh|2i+1 ≤ Ch(r+1)−(2i+1)
(
|u|r+1 + |f |r−(p−1)

)
, (10.23)

for every integer i = 0, . . . , �− 1.

Theorem 10.4 (Odd p, Even Norms) Let u be the solution of the variational
problem (10.2) and uh ∈ V

p
h,r the solution of the virtual element method (10.7).

Then, there exists a positive constant C independent of h such that

|u− uh|2i ≤ Ch(r+1)−2i
(
|u|r+1 + |f |r−(p−1)

)
, (10.24)

for every integer i = 0, . . . , �− 1.

Theorem 10.5 (Odd p, Odd Norms) Let u be the solution of the variational
problem (10.2) and uh ∈ V

p
h,r the solution of the virtual element method (10.7).

Then, there exists a positive constant C independent of h such that

|u− uh|2i+1 ≤ Ch(r+1)−(2i+1)
(
|u|r+1 + |f |r−(p−1)

)
, (10.25)

for every integer i = 0, . . . , �− 1.

10.3 The Virtual Element Method for the Cahn-Hilliard
Problem

10.3.1 The Continuous Problem

Let � ⊂ R
2 be an open, bounded domain with polygonal boundary �, ψ : R →

R with ψ(x) = (1 − x2)2/4 and φ(x) = ψ ′(x). We consider the Cahn-Hilliard
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problem: Find u(x, t) : �× [0, T ] → R such that:

u̇−�
(
φ(u)− γ 2�u

) = 0 in �× [0, T ], (10.1a)

u(·, 0) = u0(·) in �, (10.1b)

∂nu = ∂n
(
φ(u)− γ 2�u

) = 0 on ∂�× [0, T ], (10.1c)

where ∂n denotes the (outward) normal derivative and γ ∈ R
+, 0 < γ � 1,

represents the interface parameter. On the domain boundary we impose a no flux-
type condition on u and the chemical potential φ(u)− γ 2�u.

To define the variational formulation of problem (10.1a)–(10.1c) we introduce
the three bilinear forms:

a�(v,w) =
∫
�

(∇2v) : (∇2w) dx ∀v,w ∈ H 2(�),

a∇(v,w) =
∫
�

∇v · ∇w dx ∀v,w ∈ H 1(�),

a0(v,w) =
∫
�

v w dx ∀v,w ∈ L2(�),

(∇2 being the Hessian operator) and the semi-linear form

r(z; v,w) =
∫
�

φ′(z)∇v · ∇w dx ∀z, v,w ∈ H 2(�).

Finally, introducing the functional space

V = {v ∈ H 1(�) : ∂nv = 0 on �
}
, (10.2)

which is a subspace of H 1(�).
The weak formulation of problem (10.1a)–(10.1c) reads as: Find u(·, t) ∈ V

such that

a0(u̇, v) + γ 2a�(u, v)+ r(u; u, v) = 0 ∀v ∈ V, (10.3a)

u(·, 0) = u0. (10.3b)

10.3.2 The Conforming Virtual Element Approximation

In this section, we introduce the main building blocks for the conforming virtual
discretization of the Cahn-Hilliard equation, report a convergence result and collect
some numerical results assessing the theoretical properties of the proposed scheme.
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10.3.2.1 A C1 Virtual Element Space

We briefly recall the construction of the virtual element space Wh ⊂ H 2(�) that we
use to discretize (10.3a)–(10.3b); see [6] for more details.

Given an element P ∈ �h, the augmented local space Ṽ
h|P is defined by

Ṽ
h|P =

{
v ∈ H 2(P) :�2v ∈ P2(P), v|∂P ∈ C0(∂P), v|e ∈ P3(e) ∀e ∈ ∂P,

∇v|∂P ∈
[
C0(∂P)

]2
, ∂nv|e ∈ P1(e) ∀e ∈ ∂P

}
, (10.4)

with ∂n denoting the (outward) normal derivative.

Remark 10.1 The space Ṽh|P corresponds to the space Ṽ
p

h,2p−1(P) with p = 2
introduced in Sect. 10.2.2.2.

We consider the two sets of linear operators from Ṽ
h|P into R denoted by (D1)

and (D2) and defined as follows:

(D1) contains linear operators evaluating vh at the n = n(P) vertices of P;
(D2) contains linear operators evaluating ∇vh at the n = n(P) vertices of P.

The output values of the two sets of operators (D1) and (D2) are sufficient to
uniquely determine vh and ∇vh on the boundary of P (cf. Sect. 10.2.2.2).

We use of the following local bilinear forms for all P ∈ �h

a�P(v,w) =
∫
P
(∇2v) : (∇2w) dx ∀v,w ∈ H 2(P), (10.5)

a∇P(v,w) =
∫
P
∇v · ∇w dx ∀v,w ∈ H 1(P), (10.6)

a0
P(v,w) =

∫
P
v w dx ∀v,w ∈ L2(P). (10.7)

Now, we introduce the elliptic projection operator �
�,P
2 : Ṽh|P → P2(P)

defined by

a�P(�
�,P
2 vh, q) = a�P(vh, q) ∀q ∈ P2(P), (10.8)

((�
�,P
2 vh, q))P = ((vh, q))P ∀q ∈ P1(P), (10.9)

for all vh ∈ Ṽ
h|P where ((·, ·))P is the Euclidean scalar product acting on the vectors

that collect the vertex function values, i.e.

((vh,wh))P =
∑
v∈VP

vh(v) wh(v) ∀vh,wh ∈ C0(P).
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As shown in [6], the operator ��,P
2 : Ṽh|P → P2(P) is well defined and uniquely

determined on the basis of the informations carried by the linear operators in (D1)
and (D2).

Hinging upon the augmented space Ṽ
h|P and employing the projector ��,P

2 we
define our virtual local space

W
h|P =

{
v ∈ Ṽ

h|P : a0
P(�

�,P
2 (v), q) = a0

P(v, q) ∀q ∈ P2(P)
}
. (10.10)

Since Wh|P ⊂ Ṽh|P, operator ��,P
2 is well defined on Wh|P and computable by

using the values provided by (D1) and (D2). Moreover, the set of operators (D1) and
(D2) constitutes a set of degrees of freedom for the space Wh|P. Finally, there holds
P2(P) ⊆ Wh|P.

We now introduce two further projectors on the local space W
h|P, namely �

0,P
2

and �
∇,P
2 , that will be employed together with the above projector ��,P

2 to build

the discrete counterparts of the bilinear forms in (10.5). Operator �0,P
2 : Wh|P →

P2(P) is the standard L2 projector on the space of quadratic polynomials in P. This
is computable by means of the values of the degrees of freedom (D1) and (D2)

(cf. [6]). To define �
∇,P
2 : W

h|P → P2(P) we need the additional bilinear form

a∇(·, ·) : Wh|P ×Wh|P → R that is given by

a∇(v,w) =
∫
�

∇v · ∇w dx ∀v,w ∈ H 1(�).

Operator �∇,P2 is the elliptic projection defined with respect to a∇(·, ·):

a∇P(�
∇,P
2 vh, q) = a∇P(vh, q) ∀q ∈ P2(P), (10.11a)

∫
P
�
∇,P
2 vhdx =

∫
P
vh dx. (10.11b)

Such operator is well defined and uniquely determined by the values of (D1) and
(D2) [6].

We are now ready to introduce the global virtual element space, which defined
as follows

Wh =
{
v ∈ V : v|P ∈ W

h|P ∀P ∈ �h

}
.

The virtual element functions in Wh and their gradients are continuous fields on �,
so this functional space is a conforming subspace of H 2(�). The global degrees of
freedom of Wh are obtained by collecting the elemental degrees of freedom, so the
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dimension of Wh is three times the number of the mesh vertices, and every virtual
element function vh defined on � is uniquely determined by

(i) its values at the mesh vertices;
(ii) its gradient values at the mesh vertices.

Finally, we recommended to scale the degrees of freedom (D2) by some local
characteristic mesh size hv in order to obtain a better condition number of the final
system.

10.3.2.2 Virtual Element Bilinear Forms

We start by introducing the discrete versions of the elemental bilinear form forms
in (10.5). Let P ∈ �h be a generic mesh element and sP(·, ·) : Wh|P ×Wh|P → R

the positive definite bilinear form given by:

sP(vh,wh) =
∑
v∈VP

(
vh(v) wh(ν)+ h2

v ∇vh(v) · ∇wh(v)
)
∀vh,wh ∈ W

h|P,

where hv is a characteristic mesh size lenght associated with node v, e.g., the
maximum diameter among the elements having v as a vertex.

Recalling (10.5), we consider the virtual element bilinear forms:

a�
h,P(vh,wh) = a�P(�

�,P
2 vh,�

�,P
2 wh)+ h−2

P sP
(
vh −�

�,P
2 vh,wh −�

�,P
2 wh

)
,

(10.12)

a∇
h,P(vh,wh) = a∇P(�

∇,P
2 vh,�

∇,P
2 wh)+ sP

(
vh −�

∇,P
2 vh,wh −�

∇,P
2 wh),

(10.13)

a0
h,P(vh,wh) = a0

P(�
0,P
2 vh,�

0,P
2 wh)+ h2

PsP
(
vh −�

0,P
2 vh,wh −�

0,P
2 wh

)
(10.14)

for all vh, wh ∈ W
h|P. Under the mesh regularity conditions of Sect. 10.1.3, we can

prove the consistency and stability of the discrete bilinear forms. Let the symbol †
stands for “�”, “∇” or “0”. We have:

(A) (polynomial consistency) a
†
h,P(p, vh) = a

†
P(p, vh) ∀p ∈ P2(P), vh ∈

W
h|P;

(B) (stability) there exist two positive constants c∗ and c∗ independent of h and the
element P ∈ �h such that

c∗a†
P(vh, vh) ≤ a

†
h,P(vh, vh) ≤ c∗a†

P(vh, vh) ∀vh ∈ W
h|P.
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A consequence of the above properties is that the bilinear form a
†
h,P(·, ·)

is continuous with respect to the relevant norm, which is H 2 for (10.12), H 1

for (10.13), and L2 for (10.14). For every choice of †, the corresponding global
bilinear form is

a
†
h(vh,wh) =

∑
P∈�h

a
†
h,P(vh,wh) ∀vh,wh ∈ Wh.

(10.1a)–(10.1c)
We now turn our attention to the semilinear form r(·; ·, ·), which we can also

write as the sum of elemental contributions:

r(z; v,w) =
∑
P∈�h

rP(z; v,w) ∀z, vw ∈ H 2(�)

where

rP(z; v,w) =
∫
P
(3z2 − 1)∇v · ∇wdx ∀P ∈ �h.

On each element P, we approximate the term z(x)2 by means of its cell average,
which we compute using the L2(P) bilinear form a0

h,P(·, ·):

z2
h|P ≈ |P|−1 a0

h,P(zh, zh),

where we recall that |P| is the area of element P. This approach has the correct
approximation properties and preserves the positivity of z2.

We therefore propose the following approximation of the local nonlinear forms

r
h,P(zh; vh,wh) = φ̂′(zh)|P a∇

h,P(vh,wh) ∀zh, vh,wh ∈ W
h|P,

where φ̂′(zh)|P = 3 |P|−1 a0
h,P(zh, zh)− 1. The global form is then assembled as

rh(zh; vh,wh) =
∑
P∈�h

r
h,P(zh; vh,wh) ∀zh, vhwh ∈ Wh.

10.3.2.3 The Discrete Problem

The virtual element discretization of problem (10.3a), (10.3b) follows a Galerkin
approach in space combined with a backward Euler time-stepping scheme. Consider



10 The Conforming VEM for Polyharmonic and Elastodynamics Problems: A Review 435

the functional space

W 0
h = Wh ∩ V = {v ∈ Wh : ∂nv = 0 on ∂�

}
,

which includes the boundary conditions. Then, we introduce the semi-discrete
approximation: Find uh(·, t) in W 0

h such that

a0
h(u̇h, vh)+ γ 2a�h (uh, vh)+ rh(uh; uh, vh) = 0 ∀vh ∈ W 0

h , (10.15)

uh(0, ·) = u0,h(·), (10.16)

where u0,h is a suitable approximation of u0 in W 0
h and a0

h(·, ·), a�h and rh are the
virtual element bilinear forms defined in the previous section.

To formulate the fully discrete scheme, we subdivide the time interval [0, T ] into
N uniform sub-intervals of length k = T/N by means of the time nodes 0 = 0 <

1 < . . . < N−1 < N = T , and denote the virtual element approximation of the
solution u(·, ) at u(·, i ) in W 0

h by uih,k . The fully discrete problem reads as: Given

u0
hk = u0,h ∈ W 0

h , find uihk ∈ W 0
h , i = 1, . . . , N such that

k−1a0
h(u

i
hk − ui−1

hk , vh)+ γ 2a�h (u
i
hk, vh)+ rh(u

i
hk, u

i
hk; vh) = 0 ∀vh ∈ W 0

h .

(10.17)

The semidiscrete Virtual Element formulation given in (10.15)–(10.16) con-
verges to the exact solution of problem (10.3a)–(10.3b) according to the result stated
in this theorem and proved in [6].

Theorem 10.6 Let u be the solution of problem (10.3a)–(10.3b). Let uh be the
virtual element approximation provided by (10.15)–(10.16) and assume that

||uh||L∞(�) ≤ C

for all t ∈ (0, T ] and some positive contant C independent of h. Then, it holds that

||u− uh||L2(�) � h2

for every ∈ [0, T ].

10.3.3 Numerical Results

In this test, taken from [6] we study the convergence of our VEM discretization
applied to the Cahn-Hilliard problem with a load term f obtained by enforcing as
exact solution u(x, y, t) = t cos(2πx) cos(2πy). The parameter γ is set to 1/10 and
the time step size � is 1e − 7. The H 2, H 1 and L2 errors are computed at t = 0.1
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on four quadrilateral meshes discretizing the unit square. The time discretization is
performed by the Backward Euler method. The resulting non-linear system (10.17)
at each time step is solved by the Newton method, using the l2 norm of the relative
residual as a stopping criterion. The tolerance for convergence is 1e − 6.

The results reported in Table 10.1 show that the VEM method converges is
convergent with a convergence rate close to 2 in the L2 norm as expected from
Theorem 10.6. In the H 2 and H 1 seminorms, the method converges with order 1
and 2 respectively, as we can expect from the FEM theory and the approximation
properties of the virtual element space. Finally, in Fig. 10.2 we report the results of a
spinoidal decomposition. For completeness, we recall that spinodal decomposition
is a physical phenomenon consisting of the separation of a mixture of two or more
components to bulk regions of each, which occurs when a high-temperature mixture
of different components is rapidly cooled. We employ an initial datum u0 chosen
to be a uniformly distributed random perturbation between −1 and 1. Results are
consistent with the literature, cf. [6].

Table 10.1 H 2, H 1 and L2 errors and convergence rates α computed on four quadrilateral meshes
discretizing the unit square [6]

h |u− uh|H 2(�) α |u− uh|H 1(�) α ||u− uh||L2(�) α

1/16 1.35e−1 – 8.57e−2 – 8.65e−2 –

1/32 5.86e−2 1.20 2.20e−2 1.96 2.20e−2 1.97

1/64 2.79e−2 1.07 5.53e−3 1.99 5.52e−3 1.99

1/128 1.38e−2 1.02 1.37e−3 2.01 1.37e−3 2.01

Fig. 10.2 Spinoidal decomposition on the unit square at three temporal frames for a Voronoi
polygonal mesh of 4096 elements
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10.4 The Virtual Element Method for the Elastodynamics
Problem

10.4.1 The Continuous Problem

We consider an elastic body occupying the open, bounded polygonal domain
� ⊂ R

2 with Lipschitz boundary �. We assume that boundary � can be split
into the two disjoint subsets �D and �N , so that � = �D ∪ �N and with
the one-dimensional Lebesgue measure (length) |�D ∩ �N | = 0. For the well-
posedness of the mathematical model, we further require length of �D is nonzero,
i.e., |�D| > 0. Let T > 0 denote the final time. We consider the external load
f ∈ L2

(
0, T ; [L2(�)]2), the boundary function gN ∈ C1

(
0, T ; [H 1/2

0,�N
]2), and the

initial functions u0 ∈ [H 1
0,�D

(�)]2, u1 ∈ [L2(�)]2. For such time-dependent vector
fields, we may indicate the dependence on time explicitly, e.g., f(t) := f(·, t) ∈
[L2(�)]2, or drop it out to ease the notation when it is obvious from the context.

The equations governing the two-dimensional initial/boundary-value problem of
linear elastodynamics for the displacement vector u : �× [0, T ] → R

2 are:

ρü−∇ · σ (u) = f in �× (0, T ], (10.1)

u = 0 on �D × (0, T ], (10.2)

σ (u)n = gN on �N × (0, T ], (10.3)

u = u0 in �× {0}, (10.4)

u̇ = u1 in �× {0}. (10.5)

Here, ρ is the mass density, which we suppose to be a strictly positive and
uniformly bounded function and σ (u) is the stress tensor. In (10.2) we assume
homogeneous Dirichlet boundary conditions on �D . This assumption is made only
to ease the exposition and the analysis, as our numerical method is easily extendable
to nonhomogeneous Dirichlet boundary conditions.

We denote the space of the symmetric, 2× 2-sized, real-valued tensors by R
2×2
sym

and assume that the stress tensor σ : �× [0, T ] → R
2×2
sym is expressed, according

to Hooke’s law, by σ (u) = Dε(u), where, ε(u) denotes the symmetric gradient of
u, i.e., ε(u) = (∇u+ (∇u)T

)
/2, and D = D(x) : R2×2

sym −→ R
2×2
sym is the stiffness

tensor

Dτ = 2μτ + λtr(τ )I (10.6)

for all τ ∈ R
2×2
sym. In this definition, I and tr(·) are the identity matrix and the trace

operator; λ and μ are the first and second Lamé coefficients, which we assume to
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be in L∞(�) and nonnegative. The compressional (P) and shear (S) wave velocities
of the medium are respectively obtained through the relations cP = √(λ+ 2μ)/ρ
and cS = √μ/ρ.

Let V = [H 1
�D

(�)
]2 be the space of H 1 vector-valued functions with null trace

on �D . We consider the two bilinear forms m(·, ·), a(·, ·) : V×V → R defined as

m(w, v) =
∫
�

ρw · v dx ∀w, v ∈ V, (10.7)

a(w, v) =
∫
�

σ (w) : ε(v) dx ∀w, v ∈ V, (10.8)

and the linear functional F(·) : V → R defined as

F(v) =
∫
�

f · v dx+
∫
�N

gN · v ds ∀v ∈ V. (10.9)

The variational formulation of the linear elastodynamics equations reads as: For
all t ∈ (0, T ] find u(t) ∈ V such that for t = 0 it holds that u(0) = u0 and
u̇(0) = u1 and

m(ü, v)+ a(u, v) = F(v) ∀v ∈ V. (10.10)

As shown, for example, by Raviart and Thomas (see Theorem 8–3.1 [90]) the
variational problem (10.10) is well posed and its unique solution satisfies u ∈
C0
(
0, T ;V

) ∩ C1
(
0, T ; [L2(�)]2).

10.4.2 The Conforming Virtual Element Approximation

In this section we introduce the main building blocks for the conforming virtual ele-
ment discretization of the elastodynamics equation, report stability and convergence
results and collect some numerical results assessing the theoretical properties of the
proposed scheme.

10.4.2.1 Virtual Element Spaces

Let k ≥ 1 be an integer number. The global virtual element space is defined as

Vh
k :=

{
v ∈ V : v|P ∈ Vh

k (P) for every P ∈ �h

}
(10.11)



10 The Conforming VEM for Polyharmonic and Elastodynamics Problems: A Review 439

where Vh
k (P) =

[
V h
k (P)

]2
, with

V h
k (P) :=

{
vh ∈ H 1(P) : vh|

∂P
∈ C(∂P), vh|e ∈ Pk(e) ∀e ∈ ∂P, �vh ∈ Pk(P),

(
vh −�∇k vh, μh

)
P = 0 ∀μh ∈ Pk(P)\Pk−2(P)

}
,

(10.12)

where �∇k : H 1(P) ∩ C0(P)→ Pk(P) is the usual elliptic projection of a function
vh on the space of polynomials of degree k, cf. (10.11)–(10.12).

Each virtual element function vh ∈ V h
k (P) is uniquely characterized by

(C1) the values of vh at the vertices of P;
(C2) the moments of vh of order up to k−2 on each one-dimensional edge e ∈ ∂P:

1

|e|
∫

e
vh m ds, ∀m ∈Mk−2(e), ∀e ∈ ∂P; (10.13)

(C3) the moments of vh of order up to k − 2 on P:

1

|P|
∫
P
vh m dx, ∀m ∈Mk−2(P). (10.14)

As usual, the degrees of freedom of the global space Vh
k are provided by

collecting all the local degrees of freedom (which allow the computation of the
elliptic projection �∇k ), and their unisolvence is an immediate consequence of the
unisolvence of the local degrees of freedom for the elemental spaces V h

k (P).

10.4.2.2 Discrete Bilinear Forms

In the virtual element setting, we define the bilinear forms mh(·, ·) and ah(·, ·) as
the sum of elemental contributions, which are respectively denoted by m

h,P(·, ·)
and a

h,P(·, ·):

mh(·, ·) : Vh
k ×Vh

k → R, with mh(vh,wh) =
∑
P∈�h

m
h,P(vh,wh),

ah(·, ·) : Vh
k ×Vh

k → R, with ah(vh,wh) =
∑
P∈�h

a
h,P(vh,wh).

The local bilinear form m
h,P(·, ·) is given by

m
h,P(vh,wh) =

∫
P
ρ�0

kvh ·�0
kwh dV + SPm (vh,wh), (10.15)
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where SPm (·, ·) is the local stabilization term. The bilinear form m
h,P depends on the

orthogonal projections �0
kvh and �0

kwh, which are computable from the degrees

of freedom of vh and wh. The local form SPm (·, ·) : Vh
k × Vh

k → R can be
any symmetric and coercive bilinear form that is computable from the degrees of
freedom and for which there exist two strictly positive real constants σ∗ and σ ∗
such that

σ∗mP(vh, vh) ≤ SPm (vh, vh) ≤ σ ∗mP(vh, vh) vh ∈ ker
(
�0

k

) ∩Vh
k (P).

(10.16)

Computable stabilizations SPm (·, ·) are provided by resorting to the two-dimensional
stabilizations of the effective choices for the scalar case proposed in the literature
[54, 79].

The local bilinear form ah,P is given by

a
h,P(vh,wh) =

∫
P
D�0

k−1(ε(vh)) : �0
k−1(ε(wh)) dV + SPa (vh,wh), (10.17)

where SPa (·, ·) is the local stabilization term. The bilinear form a
h,P depends on

the orthogonal projections �0
k−1∇vh and �0

k−1∇wh, which are computable from

the degrees of freedom of vh and wh. On its turn, SPa (·, ·) : Vh
k × Vh

k → R can
be any symmetric and coercive bilinear form that is computable from the degrees
of freedom and for which there exist two strictly positive real constants σ ∗ and σ ∗
such that

σ ∗aP(vh, vh) ≤ SPm (vh, vh) ≤ σ ∗aP(vh, vh) vh ∈ ker
(
�0

k

) ∩ Vh
k (P).

(10.18)

Moreover, the bilinear form SPa (·, ·) must scale with respect to h like aP(·, ·), i.e.,

as O(1). As before, we can define computable stabilizations SPa (·, ·) by resorting to
the two-dimensional stabilizations for the scalar case proposed in the literature [54,
79]. As usual, the discrete bilinear forms ah,P(·, ·) and mh,P(·, ·) satisfy the k-
consistency and stability properties. The stability constants may depend on physical
parameters and the polynomial degree k [11, 24].

10.4.2.3 Discrete Load Term

We approximate the right-hand side (10.21) of the variational formulation by means
of the linear functional Fh(·) : Vh

k → R
2 given by

Fh(vh) =
∫
�

f ·�0
k−2(vh) dV +

∑
e∈�N

∫
e

gN · vh ds ∀vh ∈ Vh
k . (10.19)
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The linear functional Fh(·) is clearly computable since the edge trace vh|e is a
known polynomial and �0

k(vh) is computable from the degrees of freedom of vh.
Moreover, Fh(·) is a bounded functional. In fact, when gN = 0 using the stability
of the projection operator and the Cauchy-Schwarz inequality, we note that

|Fh(vh)| ≤
∣∣∣∣
∫
�

f(t) ·�0
k−2(vh) dV

∣∣∣∣ ≤ ||f(t)||0
∣∣∣
∣∣∣�0

k−2(vh)
∣∣∣
∣∣∣
0

≤ ||f(t)||0 ||vh||0 ∀t ∈ [0, T ]. (10.20)

This estimate is used in the proof of the stability of the semi-discrete virtual element
approximation (see Theorem 10.7).

10.4.2.4 The Discrete Problem

The semi-discrete virtual element approximation of (10.10) reads as: For all t ∈
(0, T ] find uh(t) ∈ Vh

k such that for t = 0 it holds that uh(0) = (u0)I and u̇h(0) =
(u1)I and

mh(üh, vh)+ ah(uh, vh) = Fh(vh) ∀vh ∈ Vh
k . (10.21)

Here, uh(t) is the virtual element approximation of u and vh is the generic test
function in Vh

k , while (u0)I and (u1)I are the virtual element interpolants of the
initial solution functions u(0) and u̇(0).

We carry out the time integration by applying the leap-frog time marching
scheme [89] to the second derivative in time üh. To this end, we subdivide the
interval (0, T ] into NT subintervals of amplitude �t = T/NT and at every time
level tn = n�t we consider the variational problem for n ≥ 1:

mh(u
n+1
h , vh)− 2mh(unh, vh)+mh(u

n−1
h , vh)+�t2ah(unh, vh)

= �t2Fn
h (vh) ∀vh ∈ Vh

k , (10.22)

and initial step

mh(u1
h, vh)−mh(u0, vh)−�tmh(u1, vh)+ �t2

2
ah(u0, vh)

= �t2

2
F 0
h (vh) ∀vh ∈ V h

k .

The leap-frog scheme is second-order accurate, explicit and conditionally sta-
ble. [89] It is straightforward to show that these properties are inherited by the
fully-discrete scheme (10.22).
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10.4.2.5 Stability and Convergence Analysis for the Semi-Discrete
Problem

We employ the energy norm

|||vh(t)|||2 =
∣∣∣
∣∣∣ρ 1

2 v̇h(t)
∣∣∣
∣∣∣2
0
+ |vh(t)|21, t ∈ [0, T ], (10.23)

which is defined for all vh ∈ Vh
k . The local stability property of the bilinear forms

mh(·, ·) and ah(·, ·) implies the equivalence relation

mh(v̇h, v̇h)+ ah(vh, vh) � |||vh(t)|||2 � mh(v̇h, v̇h)+ ah(vh, vh) (10.24)

for all time-dependent virtual element functions vh(t) with square integrable
derivative v̇h(t).

The hidden constants in (10.24) are independent of the mesh size parameter
h [11]. However, they may depend on the stability parameters, the physical
parameters and the polynomial degree k [25]. It is worth noting that the dependence
on k does not seem to have a relevant impact on the optimality of the convergence
rates in the numerical experiments of Sect. 10.4.3. The following stability result has
been proved in [11].

Theorem 10.7 Let f ∈ L2
(
0, T ; [L2(�)]2) and let uh ∈ C2

(
0, T ;Vh

k

)
be the

solution of (10.21). Then, it holds

|||uh(t)||| � |||(u0)I ||| +
∫ t

0
||f(τ )||0,� dτ. (10.25)

The hidden constant in � is independent of h, but may depend on the model
parameters and approximation constants and the polynomial degree k.

We point out that in the case of f null external force, i.e. f = 0, the above bound
reduces to

|||uh(t)||| � |||(u0)I |||

that is the virtual element approximation is dissipative.
Now, we recall [11] the convergence of the semi-discrete virtual element

approximation in the energy norm (10.23).

Theorem 10.8 Let u ∈ C2
(
0, T ; [Hm+1(�)]2), m ∈ N, be the exact solution of

problem (10.10). Let uh ∈ Vh
k be the solution of the semi-discrete problem (10.21).
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For f ∈ L2
(
(0, T ); [Hm−1(�)

]2)
we have that

sup
0<t≤T

|||u(t)− uh(t)||| � hμ

km
sup

0<t≤T

(
||u̇(t)||m+1 + ||u(t)||m+1

)

+
∫ T

0

(
hμ+1

km

(||ü(τ)||m+1 + ||u̇(τ)||m+1
)+ hμ

km

( ||ü(τ)||m+1 + ||u̇(τ)||m+1
))

dτ

+
∫ T

0
h

∣∣∣
∣∣∣(I −�0

k−2
)
f(τ)

∣∣∣
∣∣∣
0
dτ, (10.26)

where μ = min(k,m). The hidden constant in “�” is independent of h, but may
depend on the model parameters and approximation constants, the polynomial
degree k, and the final observation time T .

Finally, we state the convergence result in the L2 norm, whose proof is again
found in [11].

Theorem 10.9 Let u be the exact solution of problem (10.10) under the assumption
that domain� is H 2-regular and uh ∈ Vh

k the solution of the virtual element method

stated in (10.21). If u, u̇, ü ∈ L2
(
0, T ; [Hm+1(�) ∩ H 1

0 (�)
]2)

, with integer m ≥
0, then the following estimate holds for almost every t ∈ [0, T ] by setting μ =
min(m, k):

||u(t)− uh(t)||0 � ||uh(0) − u0||0 + ||u̇h(0) − u1||0 + hμ+1

km+1

(
||ü||L2(0,T ;[Hm+1(�)]2)

+ ||u̇||L2(0,T ;[Hm+1(�)]2) + ||u||L2(0,T ;[Hm+1(�)]2)
)

+
∫ T

0

∣∣∣
∣∣∣(1−�0

k−2

)
f(τ)

∣∣∣
∣∣∣2
0
dτ. (10.27)

The hidden constant in “�” is independent of h, but may depend on the model
parameters and approximation constants �, μ∗, and the polynomial degree k, and
the final observation time T .

10.4.3 Numerical Results

In this section, we report from [11] a set of numerical results assessing the
convergence properties of the virtual element discretization by using a manufactured
solution on three different mesh families, each one possessing some special feature.

In particular, we let � = (0, 1)2 for t ∈ [0, T ], T = 1, and consider initial
condition u0, boundary condition g and forcing term f determined from the exact
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2hseM1hseM

Mesh 3

Fig. 10.3 Base meshes (top row) and first refined meshes (bottom row) of the following mesh
families from left to right: randomized quadrilateral mesh; mainly hexagonal mesh; nonconvex
octagonal mesh

solution:

u(x, y, t) = cos

(
2π t

T

)( sin2(πx) sin(2πy)

sin(2πx) sin2(πy)

)
. (10.28)

To this end, we consider three different mesh partitionings, denoted by:

– Mesh 1, randomized quadrilateral mesh;
– Mesh 2, mainly hexagonal mesh with continuously distorted cells;
– Mesh 3, nonconvex octagonal mesh.

The base mesh and the first refined mesh of each mesh sequence are shown in
Fig. 10.3.

The discretization in time is given by applying the leap-frog method with �t =
10−4 and carried out for 104 time cycles in order to reach time T = 1.

For these calculations, we used the VEM approximation based on the conforming
space V h

k with k = 1, 2, 3, 4 and the convergence curves for the three mesh
sequences above are reported in Figs. 10.4, 10.5, and 10.6. The expected rate of
convergence is shown in each panel by the triangle closed to the error curve and
indicated by an explicit label. The results are in agreement with the theoretical
estimates. To conclude, Fig. 10.7 shows the semilog error curves obtained through
a“p”-type refinement calculation for the previous benchmark, i.e. for a fixed 5 × 5
mesh of type I the order of the virtual element space is increased from k = 1 to
k = 10. We employ two different implementations, namely in the first case the
space of polynomials of degree k is generated by the standard scaled monomials,
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Fig. 10.4 Convergence plots for the virtual element approximation of Problem (10.1)–(10.5) with
exact solution (10.28) using family Mesh 1 of randomized quadrilateral meshes. Error curves are
computed using the L2 norm (left panels) and H 1 norm (right panels) and are plot versus h

Fig. 10.5 Convergence plots for the virtual element approximation of Problem (10.1)–(10.5) with
exact solution (10.28) using family Mesh 2 of mainly hexagonal meshes. Error curves are computed
using the L2 norm (left panels) and H 1 norm (right panels) and are plotted versus h

while in the second one we consider an orthogonal polynomial basis. The behavior
of the VEM when using nonorthogonal and orthogonal polynomial basis shown in
Fig. 10.7 is in accordance with the literature, see, e.g., [31, 79].
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Fig. 10.6 Convergence plots for the virtual element approximation of Problem (10.1)–(10.5) with
exact solution (10.28) using family Mesh 3 of nonconvex octagonal meshes. Error curves are
computed using the L2 norm (left panels) and H 1 norm (right panels) and are plotted versus h

Fig. 10.7 Convergence plots for the virtual element approximation of Problem (10.1)–(10.5) with
exact solution (10.28) using family Mesh 1 of randomized quadrilateral meshes. Error curves are
computed using k-refinement the L2 norm (left panel) and H 1 norm (right panel) and are plot
versus the number of degrees of freedom by performing a refinement of type “p” on a 5 × 5
mesh. Each plot shows the two convergence curves that are obtained using monomials (circles)
and orthogonalized polynomials (squares)
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Chapter 11
The Virtual Element Method in
Nonlinear and Fracture Solid Mechanics

Edoardo Artioli, Sonia Marfia, and Elio Sacco

Abstract The chapter presents recently developed two-dimensional Virtual Ele-
ment Method (VEM) methodologies for problems of nonlinear inelastic material
behavior, linear/nonlinear material homogenization and cohesive fracture mechan-
ics. A rational approach ranging from theoretical foundations to implementation and
code optimization details is provided, together with a broad gallery of numerical
campaigns confirming the efficiency of the new method.

11.1 Introduction

In the last few years, a new finite element methodology has been proposed; in fact,
Brezzi, Beirão da Veiga and coworkers developed a new numerical technology
for the determination of approximate solution of partial differential equations
named virtual element method (VEM) [7, 14–17, 26]. The VEM represents an
evolution of modern mimetic finite difference schemes, sharing the same variational
background of the finite element method. The main feature of the VEM is to
build discrete approximation spaces suitably chosen as the formal solution of
a prescribed differential operator leading to an accurate Galerkin scheme with
the flexibility to deal with highly general polygonal/polyhedral meshes, including
hanging vertices and non-convex shapes. Thus, the VEM results significantly more
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flexible than standard FEM, as it is possible to discretize the domain by polygons
characterized by any number of edges, without any major limitation. Moreover,
VEM presents several advantages with respect to classical FEM, such as the ability
to accurately deal with complex (possibly curved) geometries, flexibility in mesh
generation, no need of using a parent element for quadrature purposes, arbitrary high
polynomial degree elevation, and very good performances for distorted meshes. For
these reasons, VEM has been successfully implemented in a series of applications
involving material and geometrical nonlinearity [5, 8, 40], unilateral contact [41]
and in micro-mechanical and homogenization problems [2, 9].

In particular, in [8], numerical results remarked the ability of the VEM for-
mulation to get accurate solutions for nonlinear 2D structural problems, including
plasticity, viscoelasticity and shape memory alloy constitutive behavior. In fact, the
solutions obtained using VEM are accurate when compared to FEM ones and, as
a positive byproduct, require in general less iterations than FEM approach when
the same tangent (Newton) algorithm is adopted. Thus, the VEM formulation for
nonlinear 2D structural problems demonstrated the accuracy of the approach and,
also, the simplicity of the implementation into any available FEM code.

An interesting field of application of the VEM approach is the micromechanics
and homogenization of nonlinear composite materials. In [9] the VEM has been
suitably adopted to solve homogenization problems for composites characterized by
nonlinear response of the matrix, which typically represents a quite interesting and
hard test for the assessment of the homogenization procedure. A significant reduced
computational effort in recovering the overall response of the composite was found,
discretizing the internal part of the inclusion by a unique element characterized
by many edges. This approach appeared challenging, opening new opportunities
in designing smart discretizations.

The features of the VEM appear particularly suitable for the development of
a procedure able to follow the crack growth in a solid. Indeed, a standard VEM
method, joined by classical zero-thickness interface elements, have been adopted in
[18] to simulate crack opening processes in concrete aggregates characterized by
complex geometries. The possibility to combine the use of VEM with the minimal
remeshing procedures, i.e. to extend and smartly implement the founding idea at the
basis of the XFEM through an inter-element approach, appears very interesting and
challenging. A nonlinear fracture mechanics procedure within VEM with minimal
remeshing technique has been illustrated in [36]. Crack propagation in 2D solids
adopting the VEM technique within the context of linear elastic fracture mechanics
has been proposed in [33] and, then, in [29] where, as in the present work, a true
mesh refinement process guided by crack propagation is actually implemented. In
the latter work, the advantages of mesh flexibility proper of VEM are highlighted,
while the stress intensity factors are computed by using the interaction domain
integral. An X-VEM formulation for Laplace problem has been proposed in [19].
The presented procedure can be considered as a nontrivial translation of the
extended FEM technique to VEM, obtained by augmenting the standard virtual
element space with an additional contribution that consists of the product of virtual
nodal basis (partition-of-unity) functions with enrichment functions.
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A novel procedure for reproducing the nucleation and propagation of fracture
in 2D cohesive media has been proposed in [11], combining the virtual element
technique with a splitting methodology and a minimal remeshing procedure,
suitably taking advantage of the specific features of VEM mesh adaptivity. A
numerical algorithm has been proposed for reproducing the crack nucleation, the
fracture path generation and tracking. The procedure fundamentally consists in two
steps, i.e. the nucleation and propagation criteria and the adaptive mesh refinement.
Numerical applications have been developed in order to assess the ability of the
proposed procedure to satisfactorily reproduce the crack nucleation and growth in
solids.

In the present chapter, the VEM formulation is reviewed. Then, the following
three developments, in the framework of two-dimensional solid mechanics, are
presented:

– VEM for nonlinear (plasticity, viscoelasticity and shape memery alloy) constitu-
tive response;

– VEM for linear and nonlinear homogenization problems;
– VEM for cohesive fracture mechanics.

Several numerical results are reported illustrating the performances and the
reliability of the VEM formulation.

11.2 Position of the Problem

A two-dimensional (2D) body � subjected to volume forces b, surface forces p on
∂f � and prescribed displacements û on ∂u�, such that ∂u�∪∂f � = ∂� and ∂u�∩
∂f � = ∅, is considered. The body contains a cohesive crack , inside �, where a
cohesive traction t is present. In Fig. 11.1, the body � with the cohesive crack ,
is schematically illustrated. The structural behavior of the body is herein studied

Fig. 11.1 Schematic of the
body with cohesive crack,
subjected to volume and
surface forces
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in the framework of small strain and small displacement formulation, adopting a
Voigt notation so that second order tensors are organized in vectors and fourth order
tensors in matrices. The coordinate system (O, x, y) is introduced in the plane of
the body �.

Neglecting the inertial effects in the equilibrium condition, the governing
equations are:

ε = L u (11.1)

LT σ + b = 0 in � (11.2)

σ = C (ε − π) (11.3)

NT σ = p on ∂f � (11.4)

u = û on ∂u� (11.5)

NT σ = t on , (11.6)

where u = {
ux uy

}T
is the displacement, ε = {

εx εy γxy
}T

is the strain, π ={
πx πy πxy

}T
is a possible inelastic strain, σ = {σx σy σxy

}T
is the stress, C is the

3×3 elasticity matrix, L is the compatibility operator and N is the matrix associated
with the outward unit normal vector n to ∂�, resulting:

L =
⎡
⎣ •,x 0

0 •,y
•,y •,x

⎤
⎦ , N =

⎡
⎣nx 0

0 ny

ny nx

⎤
⎦ , (11.7)

with •,x and •,y indicating the partial derivative with respect to x and y, respectively.
The traction on , is due to the cohesive forces arising because of the crack

opening. These stresses are different from zero in the so-called cohesive process
zone, close to the crack tip, and are zeros when the real crack is formed. The
inelastic strain π can be due to different inelastic phenomena, such as plasticity,
viscoelasticity and shape memory effects. In the next sections, the equations
governing the cohesive response of the fracture and the specific evolution of the
inelastic strain will be presented.

The weak form of the equilibrium equation at a given time t takes the form:

∫
�

[ε (δu)]T C (ε (u)− π) dA =
∫
�

δuT b dA+
∫
∂f �

δuT p dA+
∫
,
δsT t dξ

(11.8)

where s = u+ − u− is the relative displacement evaluated along the fracture line
, and ξ is the curvilinear abscissa on it and δu is a compatible variation of the
displacement field. The left-hand side of Eq. (11.8) represents the variation of the
elastic internal energy of the body �, while the right-hand side the virtual work of
the external forces and of the tractions along the fracture line.
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The weak formulation (11.8) of the strong form Eqs. (11.1)–(11.6), completed
with the equations governing the evolution of the inelastic strain π and the crack
growth, is numerically solved adopting the Virtual Element Method.

11.3 Basis of the VEM in 2D Solid Mechanics

A polygonal discretization of the 2D body � is performed, considering non
overlapping polygons �E characterized by a number m of edges. The discussion
is herein limited to the case of straight edges, even if curved edges can be also
considered in the VEM formulation as proposed in [10]. In Fig. 11.2 the typical
virtual element is drawn, with the Cartesian coordinate system (x, y). Note that the
virtual element (VE) is a polygon characterized by a desired number of straight
edges and vertexes, without any limitation.

11.3.1 Kinematics

Within each element, an approximating displacement field, uh, is considered, whose
explicit expression is not given, as it is not required in the development of the VEM
formulation.

As no explicit expression is given for the displacement field uh within each
VE, the strain cannot be computed using the compatibility Eq. (11.1). Thus, a
consistent strain field is determined as the projection of the compatible strain on an
approximating subspace. In fact, the consistent part of the strain field is explicitly

Fig. 11.2 Typical polygonal
virtual element with the
Cartesian coordinate system
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represented element-wise in the form:

εc = NP ε̂ (11.1)

where ε̂ is a vector of 3 (p + 1) strain parameters and NP is the matrix of the
polynomial approximation functions of degree p.

The projection of the compatible strain on the approximating subspace of the
consistent strain can be simply performed by minimizing the distance:

min
ε̂

∥∥∥NP ε̂ − Luh
∥∥∥2

(11.2)

which leads to:
∫
�E

(
NP
)T (

NP ε̂
)
dA =

∫
�E

(
NP
)T (

Luh
)
dA . (11.3)

Integrating by parts of the right-hand side of Eq. (11.3), it results:

∫
�E

(
NP
)T (

NP ε̂
)
dA =

∫
∂�E

(
NP
)T

NE ũh dA−
∫
�E

(
BP
)T

uh dA (11.4)

with ∂�E the boundary of �E , NE the matrix of the components of the outward
normal to �E , analogously to the one reported in Eq. (11.7), ũh the restriction of
the displacement field to ∂�E and BP = LT NP .

An explicit representation form for the displacement components on the bound-
ary of the VE is assumed. In particular, it is introduced a polynomial approximation
on each straight edge of the element, characterized by a degree k = p + 1, so that
k ≥ 1. Other choices of the approximating displacement on the VE boundary can be
assumed, as discussed in [22]. The displacement field on ∂�E is explicitly written
in terms of the displacements of nodes placed on the vertexes and on the edges of
the polygonal VE. The number of nodes on VE, nd , is related to the degree k of the
polynomial approximation, resulting nd = k m so that the number of nodal degrees
of freedom is 2 k m. Finally, it is set:

ũh = NV Ũ , (11.5)

where Ũ is a vector of nodal displacement and NV is the matrix of the edge-
piecewise polynomial approximation functions of degree k. Note that expression
given in (11.5) is almost formal as from practical point of view, the approximation
of the displacement field on the boundary is explicitly given edge-wise involving
the displacement components of the nodes lying on the edge, according to formula:

ũhe = NV
e Ũe , (11.6)
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Fig. 11.3 Typical VE edge: (a) numbering of the nodes on the edge, (b) local abscissa ξe for the
case k = 3

with clear meaning of the symbols. Normally, the nodes are numbered starting from
the vertexes and, then, introducing the nodes inside the edges, as schematically
illustrated in Fig. 11.3a. The k−1 = p nodes in the typical edge are placed dividing
the edge in k equal parts. On the typical edge e a local abscissa ξe is introduced
whose origin is situated at the mid-length of the edge, as reported in Fig. 11.3b. The
matrix NV

e takes the explicit form:

NV
e = [N1I2 . . . Nk+1I2] , (11.7)

with I2 the 2 × 2 identity matrix and Ni with i = 1, .., k + 1 classical Lagrangian
functions:

Ni = (ξ − ξ1) . . . (ξ − ξi−1)(ξ − ξi+1) . . . (ξ − ξk+1)

(ξi − ξ1) . . . (ξi − ξi−1)(ξi − ξi+1) . . . (ξi − ξk+1)
. (11.8)

Taking into account expression (11.5), the first term of the right-hand side
Eq. (11.4) becomes:

∫
∂�E

(
NP
)T

NEũh dA = B̂ Ũ with B̂ =
∫
∂�E

(
NP
)T

NENV dA

(11.9)

The last term of Eq. (11.4) is a vector that can be evaluated as:

∫
�E

(
BP
)T

uh dA = B̃ q , (11.10)

where the typical component of the vector q is:

∫
�E

xiyjuhα dA with 0 ≤ i + j < p and α = 1, 2 (11.11)
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and B̃ is a suitable matrix. Of course, if p = 0 the BP is null and the integral over
�E in Eq. (11.4) disappears. Note that the values of the components of the vector q
are not known, representing together to the components of Ũ further unknowns to
be determined. The k(k− 1) components of q can be considered as internal degrees
of freedom that are often named as displacement moments or weighted average
displacements in the element.

Finally, Eq. (11.4) can be rewritten as:

G ε̂ = B U , (11.12)

where

G =
∫
�E

(
NP
)T

NP dA B =
[
B̂ B̃

]
U =

{
Ũ
q

}
(11.13)

so that, taking into account Eq. (11.3), the consistent strain results:

εc = � U with � = NPG−1B . (11.14)

In such a way, the consistent strain is determined as function of the 2mk+ k(k−
1) components of the vector U, i.e. of the displacements at the nodes on the VE
boundary, Ũ, and of the internal degrees of freedom q.

As the consistent strain has degree p = k − 1, the space of the associated
displacement field within the virtual element is of degree k; thus, the consistent
displacement field uc can be introduced as:

uc = P(x) d (11.15)

with P(x) the matrix whose components are the basis of the order k polynomial and
d the vector of the coefficients multiplying the functions of the basis. The consistent
displacement at the i−th node of the VE can be computed as uci = P(xi ) d for
i = 1, .., nd , being xi = {xi yi}T the coordinate vector of the i−th node of the VE.
Moreover, the weighted average displacements associated to uc, namely qc, can be
evaluated properly integrating the functions in the matrix P(x).

The vector collecting all the values of the nodal displacements uci of the VE is:

Uc = Dd with Uc =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uc1
uc2
. . .

. . .

ucnd
qc

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(11.16)
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with D obtained simply arranging the matrices P(xi ) and the integral definitions
(11.11).

The displacement vector Uc can be considered as the projection of vector U on
the space of the polynomials of degree k, corresponding to the projected strain εc of
degree p = k− 1. This projection can be, then, determined minimizing the distance
between the vectors U and Uc, leading to:

min
d
|U− Dd‖2 (11.17)

which gives:

d =
(

DT D
)−1

DT U → Uc = �cU with �c = D
(

DT D
)−1

DT ,

(11.18)

so that the matrix �c represents, in some way, the projector of the displacement
field corresponding to the operator � acting on the strain field. Thus, it is possible
to recover the counter-projected displacement field as:

Us = �sU with �s = I−�c . (11.19)

It could be remarked that the consistent strain could be not implicitly kinemati-
cally compatible, as the quantity

r = εcx,yy + εcy,xx + γ c
xy,xy (11.20)

could not be automatically equal to zero. In fact, taking into account Eq. (11.1), the
expression (11.20) leads to:

r =
3
2 (p+1)(p+2)∑

j=1

(
NP

1j,yy +NP
2j,xx − NP

3j,xy

)
ε̂j . (11.21)

11.3.2 Stiffness Matrix

In the VEM formulation, the stress field is determined from the consistent strain; in
other words, the constitutive equation (11.3) is intended in the form:

σ = C
(
εc − π

)
. (11.22)

According to the VEM, the internal force vector � emerging from the variation
of the elastic internal energy for a typical element �E given by the left-hand side of
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Eq. (11.8), is evaluated as:

� =
∫
�E

�T C (� U− π) dA+ τ �s U , (11.23)

where the first term directly comes form the consistent strain, while the second
term derives from the counter-projection of the displacement field. Thus, the global
elastic stiffness matrix of the element is:

K = Kc +Ks , (11.24)

where

Kc =
∫
�E

�T C � dA Ks = τ �s (11.25)

are named the consistent and the stabilization stiffness matrices of the VE, respec-
tively. The factor τ present in the definition of Ks is generally set as function of the
trace of the consistent elastic matrix Kc:

τ = 1

2
trKc . (11.26)

The stabilization term deriving from the counter-projection of the displacement
field is very important as accounts for the energy that is neglected by the consistent
term, playing the fundamental role to avoid free energy element deformations.

11.3.3 Force Vector

The force vector due to the external distributed load b is determined consistently
with the VEM formulation starting from the right-hand side of Eq. (11.8).

The distributed load b is approximated by a polynomial form of degree k − 2,
resulting:

b = b(0) + x b(x) + y b(y) + . . .+ yk−2 b(y
k−2) . (11.27)

Introducing the representation (11.27) in the first term of right-hand side of
Eq. (11.8), written at the single element level, the virtual work of the external force
b is:

Wb =
∫
�E

δuh
T
(

b(0) + x b(x) + y b(y) + . . .+ yk−2 b(y
k−2)
)
dA . (11.28)
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Recalling the expression (11.11) of the components of the vector q, the virtual
work of the mass force can be evaluated as:

Wb = δq1 b
(0)
1 +δq2 b

(0)
2 +δq3 b

(x)
1 +δq4 b

(x)
2 +. . .+δq(k−2)(k−1) b

(yk−2)

2 . (11.29)

Introducing the vector Fq =
{
b
(0)
1 b

(0)
2 . . . b

(yk−2)

2

}T
and recalling the

definition of U in Eq. (11.13), the virtual work becomes:

Wb = δqT Fq = δUT F , (11.30)

where F =
{

0T FqT
}T

is the vector of the external forces associated with the order

k of the VEM formulation.
Note that the polynomial approximation of the mass load b given in formula

(11.27), considering the terms until the degree k − 2, is consistent with the internal
degrees of freedom arranged in the vector q.

The discussed approach for evaluating the external forces associated with
distributed load in the VE is rigorous, but it fails when the interesting case k = 1
is considered. In fact, in this case the vector q disappears. Thus, the force vector is
computed evaluating the virtual work as:

Wb = 1

nd
A δUT b̄ , (11.31)

where the 2 × 2 nd matrix A and the 2 components vector b̄, representing the
resultant force acting on the VE, are defined as:

A = [I2 I2 . . . I2] b̄ =
∫
�E

b dA . (11.32)

Finally, the force vector for k = 1 is:

F = 1

nd
AT b̄ . (11.33)

11.3.4 The Case k = 3

Next, the case p = 2, i.e. k = 3, is considered and an explicit form of the
fundamental matrices and vectors involved in this case is given. Of course, cases
with a lower value of the polynomial approximation can be simply determined just
suitably deleting redundant terms.
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The NP matrix takes the explicit form:

NP =
[
I3 xI3 yI3 x2I3 xyI3 y2I3

]
, (11.34)

with I3 the 3× 3 identity matrix; the matrix NV
e becomes:

NV
e = [N1I2 N2I2 N3I2 N4I2] , (11.35)

with Ni (i = 1, .., 4) the classical Lagrangian functions:

N1 = (ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

(ξ1 − ξ2)(ξ1 − ξ3)(ξ1 − ξ4)
N2 = (ξ − ξ1)(ξ − ξ3)(ξ − ξ4)

(ξ2 − ξ1)(ξ2 − ξ3)(ξ2 − ξ4)

N3 = (ξ − ξ1)(ξ − ξ2)(ξ − ξ4)

(ξ3 − ξ1)(ξ3 − ξ2)(ξ3 − ξ4)
N4 = (ξ − ξ1)(ξ − ξ2)(ξ − ξ3)

(ξ4 − ξ1)(ξ4 − ξ2)(ξ4 − ξ3)

.

(11.36)

The BP matrix is:

BP = [O2×3 J1 J2 2yJ1 yJ1 + xJ2 2xJ2] , (11.37)

being O2×3 the 2× 3 zero matrix and

J1 =
[

1 0 0
0 0 1

]
J2 =

[
0 0 1
0 1 0

]
, (11.38)

so that the matrix B̃ and the vector q take the form:

B̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

O3×2 O3×2 O3×2

JT1 O3×2 O3×2

JT2 O3×2 O3×2

O3×2 2JT1 O3×2

O3×2 JT1 JT2
O3×2 O3×2 2JT2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and q =
∫
�E

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uhx
uhy

x uhx
x uhy
y uhx
y uhy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

dA . (11.39)

The matrix P takes the explicit form:

P =
[
I2 xI2 yI2 x2I2 xyI2 y2I2 x3I2 x2yI2 xy2I2 y3I2

]
, (11.40)
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Thus, the matrix D required for the stabilization term assumes the following block-
partitioned form:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 x1I2 y1I2 . . . y3
1I2

I2 x2I2 y2I2 . . . y3
2I2

...
... . . .
...

...

I2 xnd I2 ynd I2 . . . y3
nd

I2∫
�E

dA I2
∫
�E

x dA I2
∫
�E

y dA I2 . . .
∫
�E

y3 dAI2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11.41)

11.4 Nonlinear Inelastic Material Response

This section presents a set of representative macroscopic nonlinear constitutive
models, adopting the energetic formulation (see [31], for example), in a unified
manner. The first constitutive model is the von Mises plasticity model with linear
isotropic and kinematic strain hardening [37], secondly the generalized Maxwell
viscoelastic model is presented [42]. Lastly, the shape memory alloy model
proposed in [38] and subsequently modified in [12, 24] is presented. The selected
constitutive models aim at giving a broad assessment of the VEM performance
in reproducing typical material nonlinear response of structural elements, giving
a comparison to standard displacement-based finite element schemes.

11.4.1 Plastic Behavior

The von Mises plasticity model with combined linear isotropic/kinematic hardening
is here considered [13].

Infinitesimal strain is additively decomposed into deviatoric e, and volumetric
(spherical) ϑ , parts as:

ε = e+ 1

2
ϑ1 , (11.1)
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where e = devε, ϑ = trε and 1 = {110}T . Both the deviatoric and spherical strains
are decomposed in the elastic and plastic parts:

e = ee + ep (11.2)

ϑ = ϑe (11.3)

such that plastic flow is purely isochoric.
For an isotropic material, Helmholtz free energy density has the form:

ψ = ψe + ψ tr , (11.4)

where:

ψe(εe) = 1

2
K(ϑe)2 +G‖ee‖2 (11.5)

ψ tr(ep) = 1

2
H kin‖ep‖2 (11.6)

with K and G the bulk and shear elastic moduli, respectively, and where H kin is the
linear kinematic hardening parameter.

Owing to a standard thermodynamic procedure, the constitutive equations are
derived as:

σ ′ ∈ ∂eeψ (11.7)

X ∈ −∂epψ , (11.8)

Here, the symbol ∂ represents the subdifferential operator in the sense of Convex
Analysis. In the present case the function ψ is differentiable, and the above
inclusions are indeed equalities involving standard partial differentiation. The
relative stress X in Eq. (11.8) is conveniently rewritten as:

X = σ ′ − α (11.9)

where σ ′ is the stress deviator, and α is the back stress tensor, which result,
respectively:

σ ′ = 2G
(
e− ep) (11.10)

α = H kinep . (11.11)

The activation of the plastic flow is governed by the von Mises yield function
expressed in terms of the relative stress:

f
(
X, ēp) = ‖X‖ −

√
2

2
σy , (11.12)
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which defines the elastic domain as the set E = {X ∈ SymDev : f (X) ≤ 0}, where
SymDev denotes the space of symmetric traceless second-order tensors written in
Voigt notation. The function σy = σy0

+ H iēp represents the uniaxial yield stress,
depending on the initial yield stress σy0

, on the isotropic hardening parameter H i,
and on the accumulated plastic strain, defined as:

ēp =
∫ t

0
‖ėp‖dτ. (11.13)

Plastic flow is governed by the associated law, such that the plastic strain rate and
unit normal to yield domain are related as:

ėp = ζ̇
∂f

∂X
(11.14)

from which it results:

˙̄ep =
√

2

2
ζ̇ . (11.15)

The inelastic problem is completed by the Kuhn-Tucker optimality conditions:

ζ̇ ≥ 0 f ≤ 0 ζ̇ f = 0 . (11.16)

for the plastic rate parameter ζ̇ .
Note that the inelastic strain introduced in the previous section is represented by

the plastic strain, i.e. π = ep.

11.4.2 Viscoelastic Behavior

The considered viscoelastic constitutive model is represented by a linear elastic
element in parallel with M spring-dashpot linear elements, leading to a Helmholtz
internal energy density in the form of:

ψe(ε,w(m)) = 1

2
ε(0)V(0)ε(0) + 1

2

M∑
m=1

w(m)V(m)w(m) . (11.17)

The quantities ε(0) = ε and V(0) are the strain and linear elasticity matrix
associated with the single elastic element, respectively. The terms w(m) and V(m),
m = 1, . . .M , are the partial strains and associated elasticities in the dissipative
spring-dashpots elements [42].
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According to standard thermodynamic arguments, the corresponding constitutive
equation is [42]:

σ (t) = V(0)ε(0)(t)+
M∑

m=1

V(m)w(m)(t) . (11.18)

In the previous evolution law, each partial strain w(m)(t) evolves according to:

ẇ(m) + 1

λ(m)
w(m) = ε̇ , (11.19)

where the terms λ(m) are the coefficients of relaxation. In an integral form, the stress-
strain behavior may be described through a convolutive form as:

σ (t) = V(t)ε(0)+
∫ t

0
V(t − t̃ ) ε̇ dt̃ (11.20)

where the components of V(t) are relaxation moduli functions.
Assuming isotropic material behavior, and considering a purely deviatoric

inelastic response, the above relations simplify to:

(σ)′ = 2G(t)e (11.21)

with (σ)′ = devσ , and e = devε, and with G(t) defined as the shear modulus
relaxation function.

In integral form, the constitutive behavior is described as:

(σ)′(t) =
∫ t

−∞
2G(t − t̃ ) ė dt̃ . (11.22)

The integral equation form may be defined as a generalized Maxwell model by
assuming the shear modulus relaxation function in Prony series form [42]:

G(t) = G

(
μ0 +

M∑
i=1

μi exp(−t/λi )
)
. (11.23)

In this constitutive model, the inelastic strain is given by the set of terms
π = {εin,m} = {w(m)}, m = 1, . . . ,M . Note that the model does not need the
introduction of history variables. Indeed, in every spring-dashpot element, the total
strain is additively decomposed in elastic and viscous parts.
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11.4.3 Shape Memory Alloy Behavior

The present section is devoted to presenting a nowadays classical phenomenological
constitutive model for shape memory alloy materials which mainly proves efficient
for metallic materials [12, 38]. The thermodynamic state variables of this constitu-
tive model are defined as the infinitesimal strain ε, the absolute temperature T , and
the transformation strain etr, assuming the typical strain additive decomposition:

ε = εe + etr (11.24)

into elastic strain, εe, and transformation strain. The traceless tensor function etr is
the inelastic strain associated with the phase transformation which still indicates
that phase transition is isochoric for the present constitutive model for shape
memory alloy materials [34]. Inelastic evolution enforces transformation strain to
be included in the saturation domain S = {

etr ∈ SymDev : c(etr) ≤ 0
}
, where

c(etr) = ‖etr‖2/εL
2 − 1, and εL is a material parameter related to the maximum

transformation strain reached at the end of the forward isothermal transformation
during a uniaxial test. From a modeling point of view, etr being the inelastic strain
capable of representing the reorientation of the product phase in the saturated
condition [12].

The Helmholtz free energy density ψ is assumed like a strictly convex potential
depending on the local thermodynamic state of the material:

ψ(εe, etr, T ) = ψe(εe)+ ψch(etr, T )+ ψ tr(etr) , (11.25)

under the constraint etr ∈ S . Here:

– ψe is the elastic strain energy, which, assuming linear isotropic elastic behavior,
is given by:

ψe(εe) = 1

2
K(trεe)2 +G‖ dev εe‖2 (11.26)

with K the bulk modulus and G the shear modulus;
– ψch is the chemical energy, associated with the thermally-induced martensitic

transformation:

ψch(etr, T ) = β�T +‖etr‖ (11.27)

with β a material parameter related to the dependence of the critical stress on the
temperature, and �T + = 〈T −Mf〉, being Mf the temperature corresponding to
the end of the forward transformation, and 〈•〉 the positive part of the argument;
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– ψ tr is the transformation strain energy, associated with transformation-induced
strain hardening:

ψ tr(etr) = 1

2
h‖etr‖2 (11.28)

with h a material parameter defining the slope of the linear stress-transformation
strain relation in the uniaxial case.

Owing to the principle of maximum inelastic dissipation [28], the thermodynamic
equilibrium state is expressed in terms of the functions thermodynamically conju-
gate to the arguments (εe, etr, T ). By definition:

σ = ∂εeψ

X = −∂etrψ − ∂etrIS
η = −∂T ψ

(11.29)

where σ is the Cauchy stress, X is the symmetric traceless thermodynamic stress,
and η is the entropy density. Equation (11.29)2 is usually rewritten as:

X = (σ)′ − α , (11.30)

where (σ)′ is the stress deviator, and α is the back stress tensor, given by:

α = β�T +∂etr‖etr‖ + h etr + ∂etrIS(etr) . (11.31)

Moreover, the indicator function IS (etr) of the saturation domain is introduced:

{IS (etr) = 0 if c(etr) ≤ 0
IS (etr) = +∞ otherwise

(11.32)

whose subdifferential results:

∂etrIS (etr) =
⎧⎨
⎩
{0} if c(etr) < 0
γ ∂etrc(etr) if c(etr) = 0
∅ if c(etr) > 0

(11.33)

being γ ∈ R
+
0 the Kuhn-Tucker parameter associated with the thermodynamic

reaction explicated by the saturation constraint.
The phase transformation mechanism is governed by a flow law for the trans-

formation strain, defined through a transformation function f (X) which bounds the
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set of admissible thermodynamic stresses as the nonempty, closed elastic domain in
deviatoric stress space:

E = {X ∈ SymDev : f (X) ≤ 0} . (11.34)

The function f (X) is usually expressed similarly to a plasticity yield function,
deviatoric isotropic, and represented in von Mises form in the present context [4]:

f (X) = ||X|| −
√

2

3
σy0

. (11.35)

Accordingly, inelastic flow activation obeys to the following criterion:

{
if f (X) < 0, ėtr = 0
if f (X) = 0, ėtr = 0,OR ėtr "= 0.

(11.36)

In particular, the flow law is obtained by postulating the principle of maximum
inelastic (or transformation) work rate [27, 28], which entails convexity of the elastic
domain, and leads to an associated flow rule in the form:

ėtr = ζ̇∇f (X) (11.37)

being X the admissible thermodynamic stress at equilibrium, with the Kuhn-Tucker
conditions for the inelastic rate parameter ζ̇ :

ζ̇ ≥ 0 , f ≤ 0 , ζ̇ f = 0 . (11.38)

Note that the inelastic strain introduced in the previous section is represented by
the plastic strain, i.e. π = etr.

11.4.4 Numerical Applications

In this section a general assessment of the presented VEM formulation in con-
junction with inelastic material behaviors previously examined is carried out. The
treatment focuses on a set of classical benchmark boundary value problems and on
the comparative evaluation in terms of accuracy with respect to standard Lagrangian
displacement finite element schemes. Interestingly, the same coding environment is
used for both methods, such for instance Newton solver for equilibrium equations
is still retained in the present context, highlighting modularity and versatility of a
VEM platform.
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Fig. 11.4 Geometry,
boundary conditions and
loading for thick-walled
viscoelastic cylinder with
uniform internal pressure.
(From: Artioli, E., Beirao da
Veiga, L., Lovadina, C.,
Sacco, E., Arbitrary order 2D
virtual elements for polygonal
meshes: Part II, inelastic
problem, Computational
Mechanics, 657, 2017.
Springer. Reproduced with
permission)

11.4.4.1 Viscoelastic Cylinder Subjected to Internal Pressure

The first benchmark is the classical thick-walled cylinder with a viscoelastic
constitutive material behavior. The cylinder, subjected to uniform internal pressure,
inner radius Ri = 2 and outer radius Ro = 4. For symmetry, only a quarter
of the cylinder cross section is studied, as reported in Fig. 11.4. Zero normal
displacements are enforced along the radial edges. The material is isotropic and
modeled by viscoelastic response in deviatoric stress-strain only, in compliance with
the constitutive model outlined in Sect. 11.4.2.

The material properties are M = 1 and λ1 ≡ λ = 1 [42]. Young’s modulus and
Poisson’s ratio are E = 1000 and ν = 0.3, respectively. Two sets of viscoelastic
parameters are adopted in the present analysis (cf. (11.23)), i.e. (μ0, μ1)ve1 =
(0.01, 0.99) and, (μ0, μ1)ve2 = (0.3, 0.7), respectively. The former case is tailored
such as the ratio of the bulk modulus to shear modulus for instantaneous loading is
K/G(0) = 2.167 and such as, for extended time loading, say at t = 8, it results
K/G(8) = 216.7. This setup is characterized by a nearly incompressible behavior
for sustained loading cases (at t = ∞ the Poisson ratio results 0.498). The second
material set corresponds to a sort of intermediate response at theoretically infinite
time after loading application.

The simulation regards the structural response for a suddenly applied internal
pressure set equal to 10. The loading history is discretized through 20 equal time
integrations as for the constitutive equation which integrated through a set of
discrete instants tj , j = 1, . . . , 20; by using the generalized Maxwell model in
Prony series form (cf. Eq. (11.23)), solution is reduced to a recursion formula in



11 The Virtual Element Method in Nonlinear and Fracture Solid Mechanics 473

Fig. 11.5 Thick-walled viscoelastic cylinder with uniform internal pressure. (a) structured sym-
metric convex quadrilateral mesh m1; (b) structured skew-symmetric concave quad mesh m2; (c)
unstructured concave quad mesh m3; (d) random-based Voronoi tessellation m4. (From: Artioli,
E., Beirao da Veiga, L., Lovadina, C., Sacco, E., Arbitrary order 2D virtual elements for polygonal
meshes: Part II, inelastic problem, Computational Mechanics, 657, 2017. Springer. Reproduced
with permission)

which each material state is computed by a simple update of the previous one.
Details on the coding of this integration algorithm may be found in [43].

In this context, a comparison is made between the proposed VEM formulation,
for k = 1 and k = 2, and quadrilateral displacement-based finite elements with
four nodes Q4 (linear quadrilateral) and nine nodes Q9 (quadratic quadrilateral)
[43]. Different mesh types are tested, as portrayed in Fig. 11.5a–d. In particular, the
solutions are computed respectively on: a structured convex symmetric quad (a),
a structured skew-symmetric convex/concave quad (b), a random-based concave
quad (c), and a random-based Voronoi convex poly (d) case. Comparison with
FEM solution obviously refers to the case of mesh (a) only. A reference solution
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Fig. 11.6 Thick-walled viscoelastic cylinder with uniform internal pressure. Integration step vs.
radial displacement curves for control points A (higher curve), and B (lower curve). (a) case
(μ0, μ1)ve1 = (0.01, 0.99); (b) case (μ0, μ1)ve2 = (0.3, 0.7). (From: Artioli, E., Beirao da
Veiga, L., Lovadina, C., Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes:
Part II, inelastic problem, Computational Mechanics, 657, 2017. Springer. Reproduced with
permission)

is computed with mixed quadrilateral finite elements (see [42]) on a very fine
space discretization. Response curves for control points A and B (see Fig. 11.4) are
portrayed in Fig. 11.6a–b for the different solutions in comparison with the reference
one, for the two material parameter sets ve1 and ve2 introduced above. It is observed
that the k = 1, 2 VEM formulations present accurate response as well as standard
displacement finite elements, for a convex quadrilateral spatial discretization. VEM
solutions also prove very accurate for non structured convex/concave and highly
distorted polygonal discretizations of the domain, showing the effectiveness of the
newly introduced formulation.

11.4.4.2 Elastoplastic Plate with Circular Hole

A rectangular plate of base 2L = 200 mm and height 2H = 360 mm with a circular
hole of 2R = 100 mm diameter in the center is considered (viz. Fig. 11.7a). The
plate obeys to a von Mises constitutive model (see Sect. 11.4.1), and is characterized
by E = 7000 kg/mm2, ν = 0.3, σy,0 = 24.3 kg/mm2 [42]. Plane strain condition
is retailed, hence any (native 3D) integration algorithm for the constitutive model
reviewed in Sect. 11.4.1 may be properly used for the purpose of updating material
state at the level of a quadrature node in the VEM nonlinear solver framework. In
this numerical campaign, for simplicity, a standard backward Euler scheme with
return mapping projection is adopted as state update algorithm [37].

Owing to symmetry, only a quarter of the perforated plate is discretized as shown
in Fig. 11.7a. Dirichlet boundary conditions are prescribed for normal components
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Fig. 11.7 Plastic plate with
circular hole. Geometry,
boundary conditions, applied
displacement on upper edge.
(From: Artioli, E., Beirao da
Veiga, L., Lovadina, C.,
Sacco, E., Arbitrary order 2D
virtual elements for polygonal
meshes: Part II, inelastic
problem, Computational
Mechanics, 657, 2017.
Springer. Reproduced with
permission)

on symmetry boundary edges and on top and lateral boundaries. A uniform normal
displacement δ = 2 mm is incrementally enforced on the upper edge through 200
equal steps, see Fig. 11.7. Different domain discretizations are taken into account
using the code presented in [39], in particular: a quadrilateral structured [resp.
unstructured] (Quad (s) [resp. Quad (u)]) mesh, a triangular (Tri) mesh, and a
centroid based Voronoi tessellation (viz. Fig. 11.8) are generated. The simulation
is carried out considering virtual element spaces of order k = 1, 2, on the presented
meshes. For comparative accuracy assessment and validation, also triangular [resp.
quadrilateral] displacement based finite elements T 3 (linear), and T 6 (quadratic)
[resp. Q4 (linear), and Q9 (quadratic)] (see [43]) are tested for the first two
mesh types. A reference solution obtained with an overkilling discretization of
quadrilateral mixed finite elements (see [42]) is computed and used for comparison.
It is noted that VEM elements with m = 3, k = 1 and triangular Lagrangian finite
elements T 3 coincide, their results are then reported on a single curve.

The values of horizontal [resp. vertical] displacement of point A [resp. B]
(see Fig. 11.7) at the end of the loading history are reported in Table 11.1 for
accuracy and robustness assessment of the compared different methods, together
with the average number of Newton iterations for an incremental loading step. Good
agreement between linear and quadratic VEM/FEM formulations is observed, with
a slight edge in terms of efficiency in favor of the VEM methodology is found, in
particular when distorted meshes are adopted. The structural response is reported
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Table 11.1 Plastic plate with circular hole. Comparison of accuracy and convergence properties
in terms of displacement components uA and vB at the end of loading history, and average number
of iterations per load step

uA [mm] vB [mm] Avg. iter/step

Linear elmts. Linear elmts.

VEM—Quad (s) 2.538 1.819 4.86

VEM—Quad (u) 2.538 1.818 5.22

VEM—Tri/FEM - T3 2.485 1.823 5.04

VEM—Voronoi 2.540 1.815 4.63

FEM—Q4 (s) 2.692 1.836 5.44

FEM—Q4 (u) 2.689 1.835 6.09

Quadratic elmts. Quadratic elmts.

VEM—Quad (s) 2.720 1.851 6.43

VEM—Quad (u) 2.718 1.851 6.75

VEM—Tri 2.719 1.852 6.11

VEM—Voronoi 2.714 1.852 6.21

FEM—Q9 (s) 2.733 1.853 6.70

FEM—Q9 (u) 2.732 1.855 7.24

FEM—T6 2.719 1.853 6.11

Reference solution 2.741 1.859

in Fig. 11.9, where load-displacement curves for the quadratic methods are reported
with favorable agreement.

11.4.4.3 Shape Memory Alloy Device

The present numerical test proves the ability of the VEM methodology of accurately
modeling and reproducing complex highly nonlinear material behavior of a simple
device made of shape memory alloy material (cf. Sect. 11.4.3).

The device consists of a clamped semicircular arch [6, 24, 25], as shown in
Fig. 11.10a subjected to a uniform applied traction on the free edge. Inner [resp.
outer] radius is Ri = 3.5 mm [resp. Ro = 4.5 mm]. Material parameters for the
constitutive model are: E = 53000 MPa, ν = 0.36, εL = 0.04, Mf = 223 K,
h = 1000 MPa, β = 2.1 MPa/K, σy,0 = 50 Mpa [24].

In this numerical test, plane stress assumption is invoked. The original 3D form
of the constitutive model reviewed in Sect. 11.4.3 is integrated at quadrature point
level with the innovative state update algorithm recently proposed in [3, 4]. To
comply with plane stress condition, a further nonlinear constraint onto the stress
state update procedure is efficiently applied through a reduction algorithm with
nested iterations [23, 43]. In the end, the solution procedure can be viewed as an
initial boundary problem on a 2D domain with three sources of nonlinearity, i.e.
at: state update, plane stress constraint enforcement, overall equilibrium equation
solution level, respectively.
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Fig. 11.8 Plastic plate with circular hole. (a) Quad (s)—structured quadrilateral mesh; (b)
Quad (u)—unstructured quadrilateral mesh; (c) Tri—unstructured triangular mesh; (d) Voronoi—
centroid based tessellation. (From: Artioli, E., Beirao da Veiga, L., Lovadina, C., Sacco, E.,
Arbitrary order 2D virtual elements for polygonal meshes: Part II, inelastic problem, Computa-
tional Mechanics, 657, 2017. Springer. Reproduced with permission)

The structure is subjected to a load-temperature driven loading history which
consisting in 5 pseudo-time branches as indicated in Table 11.2. Assuming pro-
portional loading, the incremental solution procedure is carried out with 40 equal
increments during the first 4 branches and N = 10 equal increments during the
final heating branch. Loading parameters are qmax = 60 N/mm, Troom = 223 K.
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Fig. 11.9 Plastic plate with circular hole. Total vertical reactive force vs. vertical displacement of
upper edge curves. Comparison between VEM formulation and standard FEM for various meshes.
Quadratic VEM (k = 2) and quadratic Lagrangian FEM (T 6, Q9) elements. (From: Artioli, E.,
Beirao da Veiga, L., Lovadina, C., Sacco, E., Arbitrary order 2D virtual elements for polygonal
meshes: Part II, inelastic problem, Computational Mechanics, 657, 2017. Springer. Reproduced
with permission)

(a) (b)

Fig. 11.10 Shape memory alloy arch actuator. (a) Geometry, boundary conditions, applied
load; (b) quadrilateral mesh used in the simulation: reference configuration (grey), deformed
configurations at t = 1 (cyan) and t = 3 (red). (From: Artioli, E., Beirao da Veiga, L., Lovadina,
C., Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: Part II, inelastic problem,
Computational Mechanics, 657, 2017. Springer. Reproduced with permission)
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Table 11.2 Shape memory alloy arch actuator. Loading history branching for applied load and
temperature

Time [−] 0 1 2 3 4 5

load q [N/mm] 0 qmax 0 −qmax 0 0

Temperature T [K] Troom Troom Troom Troom Troom Troom + 80
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Fig. 11.11 Shape memory alloy arch actuator. Applied load vs. point A displacement curve.
(From: Artioli, E., Beirao da Veiga, L., Lovadina, C., Sacco, E., Arbitrary order 2D virtual elements
for polygonal meshes: Part II, inelastic problem, Computational Mechanics, 657, 2017. Springer.
Reproduced with permission)

The VEM solution is obtained with the mesh of quad elements shown in Fig. 11.10b
(grey). The results presented herein refer to the quadratic case, i.e. k = 2.

Deformed configuration snapshots for the adopted mesh at t = 1 (cyan) and
t = 3 (red), respectively, are portrayed in Fig. 11.10b. The functioning curve for
the SMA device in terms of applied load vs. horizontal displacement of point A
shows the classical shape recovery exhibited by the arch device, as can be seen in
Fig. 11.11.

The simple benchmarks proposed in this section highlight clearly how imple-
mentation of the proposed VEM method into existing structural codes results quite
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straightforward and how numerical tools already coded into existing nonlinear
finite element codes translate immediately into the new framework without any
modification.

11.5 Homogenization of Long Fiber Composites

11.5.1 Problem Formulation

At the micro-scale, the special case of composite material characterized by a regular
distribution of inclusions is considered. In particular, a periodic square array of long
fiber composite is introduced; of course, other type of periodic arrangements can be
considered. In this case, a unit cell (UC) �UC with volume V can be introduced
for deriving the overall response of the material. Let a local coordinate system
be introduced at the micro-scale (x, y, z), with the z axis parallel to the direction
of the fiber axis. A 2D rectangular unit cell with dimensions 2 ax × 2 ay in the
plane orthogonal to the fiber and unit thickness in the fiber direction is considered,
as illustrated in Fig. 11.12. Note that a unit dimension is considered along the z

direction as the material along the z−direction is homogeneous.
The displacement and strain fields in this case have to be considered as three-

dimensional. Denoting by E = {
Ex Ey Ez �xy �yz �xz

}T
the overall strain in

�UC , the displacement field is represented in the form as:

ux = Ex x + 1

2
�xy y + 1

2
�xz z + u�x(x)

uy = 1

2
�xy x + Ey y + 1

2
�yz x3 + u�y(x) (11.1)

uz = 1

2
�xz x + 1

2
�yz y + Ez z+ u�z(x) ,

where u� =
{
u�x, u

�
y, u

�
z

}T
is the perturbation displacement, due to the heterogene-

ity of the UC while x = {x, y}T is the position vector of the typical point of �UC .

Fig. 11.12 Schematic of a
unit cell for a fiber-reinforced
composite material with
doubly periodic arrangement
of fibers embedded into the
matrix
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Note that the homogeneity of the material along the z−direction ensures that the
periodic part of the displacements does not depend on z.

Because of the regular arrangement of the inclusions in the composite material,
the perturbation displacement components have to satisfy the periodicity conditions:

u�(ax, y) = u�(−ax, y) y ∈ [−ay, ay]
u�(x, ay) = u�(x,−ay) x ∈ [−ax, ax] . (11.2)

From the formula (11.1), the strain at the typical point of �UC is:

ε(x) = E+ ε�(x) with ε� = L�u� , (11.3)

where ε� represents the periodic part of the strain, with null average, associated with
the displacement u� and L� the 3D compatibility operator, modified with respect to
the one introduced in Eq. (11.1), resulting:

L� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

·,x 0 0
0 ·,y 0
0 0 0
·,y ·,x 0
0 0 ·,y
0 0 ·,x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (11.4)

as all the derivatives with respect to z are zero, because the displacement compo-
nents do not depend on z.

The constitutive laws described in the previous sections are adopted for the
material constituents. In particular, the inclusion is assumed to have a linear elastic
response while the matrix has a nonlinear behavior due to plasticity.

Once the constitutive equation for evaluating the stress in �UC is introduced,
the micromechanical problem can be solved computing the displacement, strain and
stress fields in the UC.

Of course, by averaging the strain field, the overall strain E is given back; the
overall stress � = {�x �y �z �xy �yz �xz

}T is obtained as:

� = 1

V

∫
�UC

σ dV (11.5)
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11.5.2 Computational Homogenization: Smart Use of VEM
Meshing Versatility

This section aims at showing one of the main feature of the VEM technology capa-
ble of reducing computational cost, in performing multiscale structural analysis. The
feature under consideration is the generalized concept of simple polygonal mesh
as opposed to standard conforming mesh required by finite element technology.
The former concept, in general, allows to discretize and refine VEM polygonal
meshes more easily and more efficiently than FEM meshes, saving on mesh size
but retaining the required accuracy features.

The idea underneath the proposed illustrative benchmark is that for a composite
with sufficiently high value of the elastic modulus of the inclusion, the displacement
field varies slowly among the fiber subdomain. This assumption leads to the
possibility of coarsening just locally the discretization, still retaining sufficiently
low fineness of mesh size over the rest of the domain. The numerical test setup
is hence the following: results pertaining to uniform polygonal mesh with 3553
Voronoi polygons are compared with a mesh comprising a single polygon inside
the fiber (so called core region for the fiber), two refined circular crown-shaped
regions across fiber-matrix interface and a matrix region with reasonably fine size.
This particular discretization can be used thanks to the VEM simple meshing asset
which allows polygonal elements with arbitrarily edges. In this test, the central
element in the fiber subdomain is a polygon with 140 equal edges (hence quite
proximal to a circle). Choosing a properly fine mesh at the fiber-matrix interface
is highly recommendable as the displacement gradient components may be high
across this interface, requiring high resolution. A view of the adopted mesh is given
in Fig. 11.13 which, in the following, will be denoted as crown mesh. The overall

Fig. 11.13 Crown unit cell mesh for examined case vf = 0.2. Local mesh refinement across
fiber/matrix interface with two circular crown regions with very fine POLY-mesh and a single poly-
gon with 140 edges for the fiber core. (From: Artioli, E., Marfia, S., Sacco, E., High-order virtual
element method for the homogenization of long fiber nonlinear composites, Computer Methods in
Applied Mechanics and Engineering, 341, 2018. Elsevier. Reproduced with permission)



11 The Virtual Element Method in Nonlinear and Fracture Solid Mechanics 483

0

0.5

1

1.5

2

2.5
104

VEMuf k=1-E11/ 11

VEMuf k=1-E33/ 33

VEMuf k=1-E23/ 23

VEMcr k=1-E11/ 11

VEMcr k=1-E33/ 33

VEMcr k=1-E23/ 23

0 0.05 0.1
0

0.5

1

1.5

2

2.5
104

11
VEMuf k=2-E11/

VEMuf k=2-E33/
33

23

11

VEMuf k=2-E23/

VEMcr k=2-E11/

VEMcr k=2-E33/
33

VEMcr k=2-E23/ 23

Fig. 11.14 Accuracy for smart VEM discretization. Efficiency of crown vs. uniform polygonal
mesh for elasto-plastic composite. (a) k = 1, (b) k = 2, vf = 0.2. (From: Artioli, E., Marfia,
S., Sacco, E., High-order virtual element method for the homogenization of long fiber nonlinear
composites, Computer Methods in Applied Mechanics and Engineering, 341, 2018. Elsevier.
Reproduced with permission)

ratio between uniform and crown mesh number of degrees of freedom is about 4.
The scope is numerically proving that crown mesh results are equally accurate than
those obtained with a uniform (much finer) mesh, despite its “smart” coarseness.

Performed simulations refer to elasto-plastic composite. In particular, in the
former case, material parameters adopted in the previous test are adopted doubling
the fiber Young modulus; in the latter, the material parameters are Ef = 410 GPa,
νf = 0.19, Em = 7.5 GPa, νm = 0.33, σy = 0.2 GPa and H = 0.02 GPa.
Simulations refer to simple monotonic loading histories and results are determined
for k = 1 and k = 2 order of accuracy.

In Fig. 11.14 the overall stress components �11, �33 and �23 are plotted versus
the corresponding overall strain components for k = 1 and k = 2, respectively, for
the elasto-plastic matrix case. It can be noted that the relative errors between the
crown and uniform meshes for the VEM solutions in terms of effective response are
very reduced, practically less than 5% at maximum strain. On the other hand, it is of
interest observing that the computational times for crown mesh are roughly 8 times
smaller than those needed for the uniform mesh discretization. This impressive
result indeed proves the stated point and indicates the efficiency of the proposed
methodology in exploiting the relaxed mesh conformity requirements dealing with
complex domain shapes.
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11.6 Fracture Mechanics

In this section, the aim is to model a cohesive crack growth in an elastic solid. A
body � subjected to a loading history inducing a fracturing process is studied.

In particular, a cohesive fracturing process is studied, adopting an interface
cohesive model, able to account for damage in mode I, in mode II and in mixed
mode, the unilateral effect due to the reclosure of the fracture in compression and
the frictional effect.

A numerical technique is developed in order to reproduce crack initiation and
propagation, exploiting the flexibility of VEM. When the crack arises, a cohesive
interface is introduced in the corresponding virtual element directly dividing it in
two parts joined by the interface. This process is simplified with respect to the
Extended Finite Element approach as the two new generated VEs can have any
number of edges and nodes. Furthermore, the proposed approach is able to follow
crack propagation in the neighbor virtual elements, performing a remeshing close to
the crack tip. The remeshing can be implemented only in narrow area thanks to the
VEM flexibility, keeping computational costs low.

Numerical applications are reported in order to assess the ability of the proposed
procedure to reproduce the crack growth in a solid. The ability of the proposed
procedure to follow a curved crack is investigated. Finally, a comparison with
experimental and numerical results, available in literature, is presented.

11.6.1 Interface Model

The cohesive crack , inside � is modeled introducing an interface. As illustrated in
Fig. 11.15, the displacements of the points of the two surfaces defining the interface,
are denoted as u+ and u−, respectively. Thus, the relative displacement at the
interface is:

s = u+ − u− (11.1)

A cohesive interface model, coupling damage and possible friction, is derived
performing a simple micromechanical analysis on the basis of the approach
proposed in [1, 35].

Fig. 11.15 Fractured body
with a cohesive crack
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At the typical point of the interface a Representative Interface Area (RIA) is
associated. The RIA is simply modeled considering two rigid plates in adhesion; the
total area A of the RIA is split in two parts: an undamaged part Au and a damaged
one Ad , so that Au+Ad = A is the total area of the RIA. The damage parameter D
is introduced as the ratio between the damaged part and the total area:

D = Ad

A
so that Au = (1−D)A , Ad = DA (11.2)

A linear elastic behavior is considered on Au, while a constitutive law charac-
terized by unilateral contact and friction is assumed on Ad . Introducing a local
coordinate reference system (ξt , ξn), with ξt and ξn the axes tangent and normal

to , respectively, the traction tu = {
tut , tun

}T on Au and td = {
tdt , t

d
n

}T
on Ad

results:

tu = K s (11.3)

td = K H
(

s− sdi
)
, (11.4)

where K = diag[Kt,Kn] is a diagonal matrix which collects the stiffness values in
the normal and tangential directions to the interface, H = diag[1 − h(sn), 1], with
h(•) being the Heaviside function:

h(sn) =
{

1 if sn ≥ 0
0 if sn < 0 .

(11.5)

and sdi the inelastic slip relative displacement.
The total, i.e. overall homogenized, value of traction on the RIA is obtained by

weighting the two tractions determined on Au and Ad by Eqs. (11.3) and (11.4) as:

t = K
[
(1−D)s +DH

(
s− sdi

)]
. (11.6)

The evolution of the inelastic slip relative displacement sdi , occurring on the
damaged part of the RIA, is assumed to be governed by the Coulomb friction with
yield function:

ϕ(td) = μ 〈tdn 〉− + |tdt | , (11.7)

where μ is the friction coefficient and the brackets 〈•〉− define the negative part of
the argument variable. A purely tangential slip evolution law is considered for the
inelastic relative displacement vector sdi , as determined by the non-associated flow
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rule:

ṡdi = λ̇

⎧⎨
⎩

tdt

|tdt |
0

⎫⎬
⎭ , (11.8)

and is completed by the classical loading-unloading (Kuhn-Tucker) conditions:

λ̇ ≥ 0 ϕ(td) ≤ 0 λ̇ ϕ(td) = 0 . (11.9)

A model which accounts for the coupling of mode I of mode II of fracture is
considered for the damage evolution. Denoting by s0 n and s0 t the normal and the
tangential relative displacement corresponding to the onset damage for pure mode I
and pure mode II, respectively, the following ratios are introduced:

χn = s0 nt0 n

2GcI

, χt = s0 t t0 t

2GcII

, (11.10)

being t0 n and t0 t the normal and shear peak stresses corresponding to the first
cracking relative displacement, and GcI and GcII the specific fracture energies in
mode I and mode II, respectively.

The equivalent relative displacement ratio is introduced as:

Y =
√
Y 2
n + Y 2

t with Yn = 〈sn〉+
s0 n

Yt = st

s0 t
(11.11)

being Yn and Yt the mode I and mode II relative displacement ratios, respectively,
and the brackets 〈•〉+ defining the positive part of the number.

The damage evolution is assumed to be governed by the following equation:

D = max
history

{
0,min

{
1, D̃

}}
with D̃ = Y − 1

Y (1− χ)
(11.12)

whereas χ is defined as:

χ = 1

α2

[
〈sn〉2+ χn + s2

t χn

]
, (11.13)

with α =
√
〈sn〉2+ + s2

t .
The proposed damage law induces a linear stress-strain softening both in mode I

and in mode II. It can be easily proved [35] that the softening branch remains linear
even for monotone mixed mode of the damage evolution.
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11.6.2 Cracking Process Through VEM Technology

The procedure that governs crack generation and propagation is illustrated in this
section. An undamaged structure is considered and a polygonal mesh of virtual
elements with k = 1 is introduced.

The numerical procedure, able to model the propagation of only one crack during
the loading process, accounts for nucleation and propagation criteria and topological
adaptive mesh refinement and it is made of the following steps. Each step has
a fundamental role into the design of the algorithm for the nonlinear structural
solver.

– Initially there are no cracks in the whole structures.
– At the end of each time step the uniform stress state is evaluated in each virtual

element considering the projected consistent strain given by Eq. (11.22), taking
into account the (11.14) with π = 0 as the body is assumed to be linear elastic,
so that:

σ = C � Ũ (11.14)

– The cracking process starts when the principal tensile stress exceeds the fractur-
ing threshold in a virtual element at the boundary of the body� (see Fig. 11.16a).

– This parent element is subdivided in two slave elements defined by a straight cut-
ting line, simulating the fracture, passing through the parent centroid orthogonal
to the maximum principal stress. The slave VEM can have any number of edges
and nodes.

– Nodes are introduced on the edges of the parent element that are cut by the
fracture. The nodes that represents the crack apex are linked (see Fig. 11.16b).

– An interface element, characterized by the cohesive model described in the
previous section, is introduced along the newly generated fracture surface shared
by the slave elements.

Fig. 11.16 Initial cracking of a boundary element
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slave elmt #3

slave elmt #4

interface elmt #2

a b

linked apex nodes

Fig. 11.17 Cracking propagation: (a) splitting of virtual elements; (b) mesh refinement. (From:
Artioli, E., Marfia, S., Sacco, E., VEM-based tracking algorithm for cohesive/frictional 2D
fracture. Computer Methods in Applied Mechanics and Engineering, 365, 2020. Reproduced with
permission)

– The value of the normal peak stress of the interface is set equal to the fracturing
threshold in the element, i.e. it is t0 n = σf .

– The parent and its adjacent elements undergo a mesh refinement, as depicted in
Fig. 11.17b.

– The equilibrium solution is revaluated for the same loading considering the new
cracked configuration and remeshing.

– A new time step starts and a equilibrium solution is evaluated.
– The next candidate to be cracked is the virtual element that contains the crack tip

on one of its edge. When its maximum principal stress results above the tensile
threshold the element undergoes a similar cracking process as explained in the
previous steps, except that in this case, the fracturing straight line generating the
new slave elements is drawn through the apex to insure fracture path continuity.

It can be underlined that the VEM does not require the definition of a map
between parent and physical element and, for the specific case k = 1 considered
in this work, integration is performed only along edges (and, hence, analytically
evaluated) and not inside the element. This leads to significantly reduced times of
computation.

In the previously outlined procedure, the mesh refinement (see Fig. 11.17b) can
be applied upon request, for elements within a certain distance from crack apex.
This mesh refinement is possible only adopting VEM characterized by a relaxed
mesh conformity concept [14]. This VEM characteristic allows to concentrate the
refinement of the mesh along the crack path only, where the nonlinear phenomena
are concentrated, saving on computational time. The mesh refinement allows to
evaluate the stress state with more accuracy around the crack apex and this
is important in order to evaluate accurately the crack path. Thus, the adaptive
mesh refinement plays a fundamental role in evaluating crack path detection and
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advancement. The user can define the level of mesh refinement at the beginning of
the analysis.

It could be underlined that at the typical time step, once an element has been
cracked, the nonlinearity of the problem is due only to the behavior of the cohesive
interface, simulating the crack and its process zone, introduced in the fractured
elements. At each (Gauss or Lobatto) quadrature point of the interface, the nonlinear
evolutive problem is solved adopting a predictor-corrector procedure.

The numerical procedure is implemented in Matlab language [30].

11.6.3 Numerical Applications

Some numerical applications are performed to verify the effectiveness and the
reliability of the proposed procedure in evaluating the response of fracturing bodies.

An analysis on a realistic domain undergoing curved fracture path is performed
to underline the effectiveness of the newly proposed VEM-based methodology.
Furthermore, a comparison with the results, achieved by the XFEM method [32],
is carried out.

11.6.3.1 Non-Symmetric Three-Point Bending Test with Topological
Adaptive Mesh Refinement

The beam with L = 1 mm and a vertical notch of length L/18 placed at the center
of the bottom edge, represented in Fig. 11.18, is considered.

Fig. 11.18 Non-symmetric three-point bending test: geometry, boundary and loading conditions.
(From: Artioli, E., Marfia, S., Sacco, E., VEM-based tracking algorithm for cohesive/frictional 2D
fracture. Computer Methods in Applied Mechanics and Engineering, 365, 2020. Reproduced with
permission)
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Table 11.3 Non-symmetric three-point bending test: cohesive interface material properties

kn [N/mm3] kt [N/mm3] t0 n [N/mm2] t0 t [N/mm2] GcI [N/mm] GcII [N/mm3] μ

80,000 80,000 0.3 0.3 0.0005 0.01 0.5

The beam is made by a cohesive material whose behavior is linear elastic with
Young modulus E = 104 N/mm2 and Poisson coefficient ν = 0.3, until a stress
threshold is reached, then the crack propagation is modeled by the introduction and
propagation of a cohesive interface whose mechanical properties are reported in
Table 11.3.

A non-symmetric three-point bending test is performed by applying an incre-
mental eccentric vertical displacement δy until a maximum value 9 · 10−4 mm is
reached. The vertical displacement is applied in a region of L/4 width at the top
edge of the beam, as reported in Fig. 11.18.

An initial discretization made of 27 × 9 quadrilateral VEM with four nodes is
introduced.

The crack starts when the maximum principal stress in the VEM at the notch
reaches the tensile threshold. At this point the cohesive interface is introduced in
the virtual element following the procedure illustrated in the previous section. Five
different levels of adaptive mesh refinement are considered, in particular, around the
crack in the process zone, polygons undergo progressive refinement.

In Fig. 11.19, the mechanical response in terms of total vertical reaction Ry

versus the prescribed displacement δy is reported for the different levels of
topological adaptive mesh refinement, denoted by tplref. Increasing tplref values,
convergence is achieved. The mechanical response is initially linear elastic, after the
peak it is characterized by a softening branch due to crack initiation and propagation
following a curved path.

Progressively higher values for tplref induce finer discretizations of the process
zone, and a higher accuracy in modeling the curved crack path at a reasonable
computational cost. The mesh refinement is concentrated around the crack and at
the apex and it evolves during the analysis with the crack propagation. The crack
path goes from the notch to the extrados of the beam where the displacement is
prescribed.

In Fig. 11.20a–e, the beam deformation configuration at the end of the loading
phase is represented for the different refinement levels adopted. It can be remarked
that the results obtained for the different vales of tplref are in good agreement
both in terms of the mechanical response and of the cracking path, confirming the
effectiveness of the proposed adaptive mesh refinement strategy. The five analyses
are run on a Intel(R) Core(TM) i7-4800MQ CPU 2.7 GHz machine and the
computational time for the five adaptive mesh refinement levels are reported in
Table 11.4.
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Fig. 11.19 Non-symmetric three-point bending test: Mechanical responses for different topo-
logical adaptive mesh refinement levels. (From: Artioli, E., Marfia, S., Sacco, E., VEM-based
tracking algorithm for cohesive/frictional 2D fracture. Computer Methods in Applied Mechanics
and Engineering, 365, 2020. Reproduced with permission)

11.6.3.2 Symmetric Three-Point Bending Test and Comparison with
XFEM

The symmetric three-point bending test of a concrete beam, analyzed with the
extended finite element method in [32] and adopting the finite element analysis and
the node release technique in [20], is studied with the proposed VEM approach.
The geometry of the beam is reported in Fig. 11.21, in particular the specimen
is characterized by length h = 0.15, height b = 4h and thickness t = h. The
Young modulus and the Poisson coefficient of the bulk material are E = 36500
MPa, ν = 0.1, respectively, while the tensile stress threshold fu is equal to 3.19
MPa. The cohesive interface material properties are reported in Table 11.5. In
particular, both the normal and tangential stiffness of the interface are set equal
to the Young modulus E of the bulk material while the interface normal and shear
stress thresholds are set equal to the bulk stress threshold fu.

As proposed in [32], the analysis is performed under the plane strain assumption,
while in [20] a plane stress analysis is carried out. No initial crack is modeled
in the beam, as represented in Fig. 11.21, where also the boundary and loading
conditions are reported. A structured initial mesh made by 6 × 11 rectangular
VEM is considered. In order to be able to reproduce the mechanical response of
the beam, characterized by a snap-back branch, the cylindrical arc-length method
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Fig. 11.20 Non-symmetric three-point bending test: Deformed configurations for different topo-
logical adaptive mesh refinements. (From: Artioli, E., Marfia, S., Sacco, E., VEM-based tracking
algorithm for cohesive/frictional 2D fracture. Computer Methods in Applied Mechanics and
Engineering, 365, 2020. Reproduced with permission)

[21] is implemented in the framework of the present approach. This method allows
to describe the snap-back branch with high accuracy.

In Fig. 11.22 the mechanical response of the beam in terms of the load versus
the deflection in the middle of the span is reported for the proposed methodology in
comparison with the results by Moës and Belytschko [32] and by Carpinteri and
Colombo [20]. The results carried out with the proposed VEM approach are in
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Table 11.4 Computational time of the proposed Matlab implementation of the non-symmetric
three-point bending test for different topological adaptive mesh refinements

tplref 1 2 3 4 5

Time 1.1′ 2.5′ 8.4′ 18.1′ 39.2′

Fig. 11.21 Three-point bending test: geometry, boundary and loading conditions. (From: Artioli,
E., Marfia, S., Sacco, E., VEM-based tracking algorithm for cohesive/frictional 2D fracture. Com-
puter Methods in Applied Mechanics and Engineering, 365, 2020. Reproduced with permission)

Table 11.5 Symmetric three-point bending test: cohesive interface material properties

kn [N/mm3] kt [N/mm3] t0 n [N/mm2] t0 t [N/mm2] GcI [N/mm] GcII [N/mm3] μ

36500 36500 3.19 3.19 0.05 0.05 0.5

perfect agreement with the ones presented in [20, 32] in the pre-peak and post-peak
branches.

In Fig. 11.23 the final deformed configuration of the beam is represented. The
proposed method is able to describe accurately the crack initiation and propagation
and it is an alternative tool for describing the mechanical response of cohesive
materials respect to standard established procedures.

11.7 Concluding Remarks

The virtual element method appears a very interesting numerical technique for
solving complex partial differential equations, even in the presence of nonlinearity.
Thus, the VEM formulation for solid mechanics nonlinear plane problems has been
presented, illustrating the methodology for the case of elements with linear and
higher order approximation of the displacement field, together with implementation
details. The stiffness matrix and loading vector have been explicitly derived proving
the straightforward implementability of the method into a computer code for
structural analysis.



494 E. Artioli et al.

Fig. 11.22 Three-point bending test: mechanical response. (From: Artioli, E., Marfia, S., Sacco,
E., VEM-based tracking algorithm for cohesive/frictional 2D fracture. Computer Methods in
Applied Mechanics and Engineering, 365, 2020. Reproduced with permission)

Fig. 11.23 Three-point bending test: deformed configuration. (From: Artioli, E., Marfia, S.,
Sacco, E., VEM-based tracking algorithm for cohesive/frictional 2D fracture. Computer Methods
in Applied Mechanics and Engineering, 365, 2020. Reproduced with permission)

VEM has been successfully implemented and adopted to study the mechanical
response of simple structures made of viscoelastic, plastic or shape memory alloy
material. Furthermore, the problem of homogenization of long fiber composite and
of cohesive body fracturing have been faced adopting VEM tecnology.

Several numerical applications illustrating accuracy and convergence patterns
of the method, and its performances in comparison with a classical finite element
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approach characterized by the same order of approximation of the unknown fields
are presented.

Material nonlinearity laws are implemented in the VEM code substantially in
the same way as in standard FEM framework. Thus, the solution algorithm for the
typical quadrature point can be developed as for the classical FEM implementation
and introduced in VEM code, without substantial changes. Numerical results remark
the ability of the VEM formulation to get accurate solutions for nonlinear 2D
structural problems considering viscoelasticity, plasticity and shape memory alloy
materials. Solutions obtained using VEM are accurate when compared to FEM ones
and require in general less iterations than FEM approach when the same tangent
(Newton) algorithm is adopted.

VEM has been suitably adopted to solve homogenization problems for periodic
composites characterized by nonlinear response of the matrix. The VEM technology
has been detailed for the specific kinematic suitable for the modeling of long fiber
composites. The homogenization analysis of a composite characterized by a quite
stiff elastic inclusion in an elasto-plastic matrix appears very interesting. In fact,
due to the high flexibility of the VEM approach in defining suitable discretization
of the unit cell, a significant reduced computational effort in recovering the overall
response of the composite is found. The idea to discretize the internal part of the
inclusion by a unique element characterized by many edges appears challenging
opening new opportunities in designing smart discretizations. This point represents
an interesting advantage in using the VEM technique compared with other more
classical numerical procedures such as FEM. There are other benefits in using the
VEM approach. In fact, the possibility of using polygonal meshes with arbitrary
number of edges allows easy discretization of complex domains; this leads also to
the development of powerful procedures for adaptive remeshing.

An innovative technique for the evaluation of crack evolution in cohesive media
has been proposed. The developed procedure is based on the use of the virtual
element method, fully taking advantages of the special performances of VEM
technique. The possibility to exploit simple elements with as many edges as
actually needed in the problem under analysis, opens the possibility to split the
initial cracking element in two elements without any limitation and to introduce
between the two new elements a cohesive interface. Indeed, this splitting operation
is very accurate, simple and fast from a computation point of view. Coupled
with the cracking nucleation and evolution algorithm, a fast remeshing technique
has been implemented, again taking advantages of the VEM formulation. In fact,
the possibility to introduce in the mesh elements characterized by a number of
edges as required, without any constraint, allows for a very simple and local
refinement of the discretization. The numerical procedure results very fast; in fact,
full computations for the presented structural examples take only few minutes,
reaching the convergence at each time step with only 2 or 3 iterations.

It can be remarked that although a very simple and straight technique is adopted
for the evaluation of stress in the cracking element, without introducing specific
enrichment of the displacement field or complex (nonlocal) computation of the
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stress at the crack tip, the direction of the crack evolution is satisfactorily determined
in all the numerical applications.

Finally, it would be highlighted that the level of complexity of the proposed
approach is much reduced with respect to other finite element approaches available
in literature for cohesive crack propagation, for what concerns the relevant main bot-
tle necks, namely mesh enrichment, updating and modification, through evolution
of the cracking phenomenon. This makes the proposed new methodology globally
very competitive with respect the available ones.

All the numerical results demonstrate the accuracy of the approach in all the
analyzed field of applications and, also, the simplicity of the implementation into
any available FEM code. These features make the VEM very interesting for a
wide class of structural applications and highlight the possibility of including VEM
elements in available commercial FEM codes element libraries.
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Chapter 12
The Virtual Element Method
for the Coupled System
of Magneto-Hydrodynamics

Sebastian Naranjo Alvarez, Vrushali A. Bokil, Vitaliy Gyrya,
and Gianmarco Manzini

Abstract In this chapter, we apply the framework of the Virtual Element Method
(VEM) to a model in Magneto-HydroDynamics (MHD), that incorporates a cou-
pling between electromagnetics and fluid flow, to construct novel discretizations
for simulating realistic phenomenon in MHD. First, we study two chains of spaces
approximating the electromagnetic and fluid flow components of the model. Then,
we show that this VEM approximation will yield divergence free discrete magnetic
and velocity fields that are important properties in any simulation in MHD. We
present a linearization strategy to solve the VEM approximation which respects the
divergence free condition on the magnetic field. This linearization will require that,
at each non-linear iteration, a linear system be solved. We study these linear systems
and show that they represent well-posed saddle point problems. We conclude by
presenting numerical experiments exploring the performance of the VEM applied
to the subsystem describing the electromagnetics. The first set of experiments
provide evidence regarding the speed of convergence of the method as well as
the divergence-free condition on the magnetic field. In the second set we present a
model for magnetic reconnection in a mesh that includes a series of hanging nodes,
which we use to calibrate the resolution of the method. The magnetic reconnection
phenomenon happens near the center of the domain where the mesh resolution is
finer and high resolution is achieved.
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12.1 Introduction

The number of applications involving electrically charged and magnetized fluids,
for example plasmas, has “skyrocketed” in the last decades and great efforts have
been devoted to the development of predictive mathematical models. One approach
that has withstood the test of time and has become “standard” in the area of plasma
physics is the area called Magneto-HydroDynamics (MHD), which studies the
behavior and the magnetic properties of electrically conducting fluids. The system of
equations that describe MHD are a coupling between an electromagnetic submodel
and a fluid flow submodel. The electromagnetic submodel in MHD is normally
based on Maxwell’s equations while the fluid flow submodel relies on conservation
principles such as mass and momentum conservation. These two submodels are
nonlinearly coupled. Indeed, mass density and momentum distribution in a plasma
are determined by the Lorentz force, which, in turn, is generated by the same plasma
particles moving in the self-consistent electromagnetic field. The details of the MHD
model, its derivation and properties are nowadays well-understood and explained in
many textbooks and review papers, e.g., [46, 70].

The topic of this chapter is the review of a novel discretization method for an
MHD model, in the framework of the Virtual Element Method (VEM), that has
been recently proposed in [72]. In the development of this method we will fix the
approximation degree.

VEM was originally proposed as a variational reformulation of the nodal mimetic
finite difference (MFD) method [14, 34, 35, 60] for solving partial differential
equation problems on unstructured polygonal meshes in a finite element setting. A
survey of the MFD method can be found in the review paper [61] and the research
monograph [15].

Solving partial differential equations (PDEs) on polygonal and polyhedral
meshes has become a central and important issue in the last decades. In fact, the
generality of the admissible meshes makes the VEM highly versatile and very
useful when the mesh must be adapted to the characteristics of the problem. For
example, we can mention problems where the domain boundary deforms in time, or
there are oddly shaped material interfaces to which the mesh must be conformal,
or the mesh needs to be locally refined in those parts of the domain requiring
greater accuracy as in adaptive mesh refinement strategies. In all such situations, the
mesh refinement process may result in highly skewed meshes or meshes with highly
irregular structures and a numerical method must be capable of handling these traits
in order to be robust and provide an accurate approximation to the solution of a
partial differential equation.

The VEM inherits the great mesh flexibility of the MFD in a setting similar to
the finite element method (FEM), so that results and techniques from FEM can be
imported over to VEM. Moreover, VEM makes possible to formulate numerical
approximations of arbitrary order and arbitrary regularity to PDEs in two and
three dimensions on meshes that other methods often consider as pathological.
Because of its origins, VEM is intimately connected with other finite element
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approaches and the fact that VEM is a FEM implies some important advantages
over other discretization methods such as the finite volume methods and the
finite difference methods. The connection between VEM and finite elements on
polygonal/polyhedral meshes was thoroughly investigated in [38, 48, 66], between
VEM and discontinuous skeletal gradient discretizations in [48], and between VEM
and BEM-based FEM method in [37].

The main difference between VEM and FEM is that VEM does not require an
explicit knowledge of basis functions that generates the finite element approxima-
tion space. The formulation of the method and its practical implementations are
based on suitable polynomial projections that are always computable from a careful
choice of the degrees of freedom. VEM was first proposed for the Poisson equa-
tion [6] and, then, extended to convection-reaction-diffusion problems with variable
coefficients in [12]. The effectiveness of the virtual element approach is reflected in
the many significant applications that have been developed in less than a decade see,
for example, [2–5, 12, 13, 19–21, 24–27, 36, 39, 40, 45, 52, 65, 69, 74, 75, 77, 80].
Numerical dispersion can also be greatly reduced on carefully selected polygonal
meshes, see [49, 56]. In these works, the Finite Difference Time Domain (FDTD)
method is applied to a grid of hexagonal prisms and yields much less numerical
dispersion and anisotropy than on using regular hexahedral grids where such method
is normally considered.

One of the main advantages of using a VEM for MHD regards the divergence of
the velocity field. Unlike classical FEM formulations, the method presented in this
chapter yields velocity fields that are exactly divergence free. This is an advantage
that has been widely reported in the VEM literature when applied to problems
in fluid flow, see [17, 23, 43, 79]. The immediate implication of this fact is that
simulations based on the scheme presented will satisfy the law of conservation of
mass exactly, thus adding an added layer of accuracy.

Finally, the divergence of the magnetic field is zero in the Maxwell equations thus
reflecting the absence of magnetic monopoles. Classical numerical discretizations
fail to capture this property when the discrete versions of the divergence and
rotational operators do not annihilate each other at the level of the zero machine
precision, thus leaving a remainder that can significantly be compounded during a
simulation. The consequence of the violation of this divergence-free constraint has
thoroughly been investigated in the literature and it was seen that the numerical
simulations are prone to significant errors [29, 30, 44, 78], as fictitious forces
and an unphysical behavior may appear [44]. Efforts have been devoted to the
development of divergence-free techniques. For example, in [47] the divergence
equation ∇ · B = 0 is taken into account through a Lagrange multiplier that is
additionally introduced in the set of the unknowns; in [59], the divergence-free
condition relies on special flux limiters; in [55] a special energy functional is
minimized by a least squares finite element method. Instead, the VEM considered
in this chapter provides a numerical approximation of the magnetic field that is
intrinsically divergence free as a consequence of a de Rham inequality chain. The
VEM described in the papers of References [7, 8, 21, 22] are also pertinent to this
issue.
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This chapter is structured as follows. In Sect. 12.2, we present the system of
equations of the continuous MHD model and introduce its discrete virtual element
approximation. In Sect. 12.3, we review the formal definition and properties of the
finite dimensional functional spaces of the formulation of VEM. Here, we also
discuss the computability of the orthogonal projection operators and the possibility
of using oblique projection operators, which are orthogonal with respect to a
different inner product. In Sect. 12.4, we present a number of energy estimates
that provide evidence of the stability of the method. In Sect. 12.5, we review a
possible linearization strategy for solving the nonlinear system that results from
virtual element approximation of the MHD model and prove that the approximate
magnetic field is divergence free. In Sect. 12.6, we discuss the well-posedness of
the linear solver in the setting of saddle-point problems. In Sect. 12.7, we assess the
convergence behavior of the method and show an application of the VEM to the
numerical modeling of a magnetic reconnection phenomenon. Finally, in Sect. 12.8,
we give the full picture about the proposed method we outline.

12.2 Mathematical Formulation

Let the computational domain D be an open, bounded, polygonal subset of R
3.

Further assume that there is a magnetized fluid contained in this domain. We denote

by −→u ,
−→
B ,
−→
E and p the velocity, magnetic and electric fields and the pressure of

such a fluid. The evolution of these quantities is governed by the following system
of differential equations:

Incompressibility of the fluid : ∇ · −→u = 0, (12.2.1a)

Conservation of momentum : ∂

∂t

−→
u − R−1

e �
−→
u −−→J ×−→B +∇p = −→f ,

(12.2.1b)

Faraday’s Law : ∂

∂t

−→
B +∇ ×−→E = −→0 , (12.2.1c)

Ohm’s Law : −→
J = −→E +−→u ×−→B , (12.2.1d)

Ampère’s Law : −→
J − R−1

m ∇ ×
−→
B = −→0 , (12.2.1e)

We denote the two dimensional vector whose components are the x, y components
of a three dimensional vector using bold. Thus we denote

−→
B =

(
B

Bz

)
,
−→
E =

(
E

Ez

)
, −→u =

(
u

uz

)
,
−→
J =

(
J

Jz

)
,
−→
f =

(
f

fz

)
.
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In this chapter we will consider that the z-component of the magnetic field is exactly
zero. Moreover, we will also consider that the x and y components of the magnetic
and electric fields and the z-component of the velocity field do not vary in the z-
direction. In summary, we are assuming that

Bz = ∂

∂z
B = ∂

∂z
E = ∂

∂z
uz = 0.

The consequence is that the dynamics only occurs in two dimensions effectively
reducing the dimensionality of the problem. Our goal will be to attain approxima-
tions to the x and y components of the electric and magnetic fields.

Consider an arbitrary, non-empty, cross-section parallel to the x, y-plane of D
denoted by �. The domain � is embedded in R

2 so each point p ∈ � has a fixed
z-value. Applying the aforementioned set of assumptions allows us to predict the
dynamics in � as being ruled by:

Incompressibility of the fluid : div u = 0, (12.2.2a)

Conservation of momentum : ∂

∂t
u− R−1

e �u− J × B +∇p = f ,

(12.2.2b)

Faraday’s Law : ∂

∂t
B + rotE = 0, (12.2.2c)

Ohm’s Law : J = E + u× B, (12.2.2d)

Ampère’s Law : J − R−1
m rot B = 0, (12.2.2e)

Consider a scalar function f : �→ R and vector functions

g,f : �→ R
2, where f =

(
fx

fy

)
, g =

(
gx

gy

)
,

with the sub-indices denoting components of the vector values functions f and g,
rather than differentiation. We define two versions of a cross product:

f × g =
(−fgy

fgx

)
, f × g = fxgy − fygx. (12.2.3)

The two dimensional curl and divergence operators are defined as:

rotE =

⎛
⎜⎜⎝

∂

∂y
E

− ∂

∂x
E

⎞
⎟⎟⎠ , rot B = ∂

∂x
By − ∂

∂y
Bx and div u = ∂

∂x
ux + ∂

∂y
uy.
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The initial conditions we prescribe onto the system are:

u(0) = u0 and B(0) = B0. (12.2.4)

The initial field B0 must be divergence free, as Gauss’s Law for the magnetic field
requires that B remain divergence free throughout its evolution. Gauss’s law, i.e., the
divergence free nature of B, is not explicitly stated in the system of MHD equations.
This is due to the fact that, under the assumption that B0 is divergence free, div B =
0 is a consequence of Faraday’s Law, implying that B is solenoidal for all time. We
have

∂

∂t
(div B) = div

(
∂

∂t
B

)
= div (−rotE) = 0. (12.2.5)

Hence,

div B = div B0 = 0. (12.2.6)

Such condition is a further evidence of the fact that the magnetic field is divergence
free and the violation of this condition will lead to a nonphysical description of a
MHD phenomenon. We close the MHD system by adding the boundary conditions

u = ub and E = Eb on ∂�. (12.2.7)

On using the divergence theorem and the incompressibility condition, we find that

∫
∂�

u · n d� =
∫
�

div u dA = 0, (12.2.8)

which implies the consistency condition

∫
∂�

ub · n d� = 0 (12.2.9)

on the boundary velocity field ub.

12.2.1 Weak Formulation

In this section, we present a weak formulation of problem (12.2.2). Such a
formulation requires the definition of the following inner products and norms.
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We use standard notation that, for the sake of completeness, we will describe in
what follows. For a pair of sufficiently regular real-valued functions f, g : � → R

or vector valued-functions f ,g : �→ R
2 we define

(
f, g

) =
∫
�

fg dx,
(
f ,g

) =
∫
�

f · g dx. (12.2.10)

We will denote the L2-norms by

‖f ‖0,� :=
(∫

�

|f |2 dx
)1/2

, (12.2.11a)

‖f ‖0,� :=
(∫

�

|f |2 dx
)1/2

. (12.2.11b)

The spaces L2(�) and [L2(�)]2 will consist of all those scalar and vector
functions, respectively, that have finite L2-norms. Likewise, the H 1-norms and the
corresponding spaces H 1(�) and [H 1(�)]2 are defined below. We have

‖f ‖1,� :=
(
‖f ‖2

0,� + ‖∇f ‖2
0,�

)1/2
, (12.2.12a)

‖f ‖1,� :=
(
‖f ‖2

0,� + ‖∇f ‖2
0,�

)1/2
. (12.2.12b)

The setting, in space, will require the following functional spaces:

H 1(�) =
{
v ∈ L2(�) : ∇v ∈ [L2(�)]2

}
, (12.2.13a)

H(rot;�) =
{
D ∈ L2(�) : rotD ∈

[
L2(�)

]2
}
, (12.2.13b)

H(div;�) =
{
C ∈

[
L2(�)

]2 : div C ∈ L2(�)

}
, (12.2.13c)

L2
0(�) =

{
q ∈ L2(�) :

∫
�

q dA = 0

}
, (12.2.13d)

H 1
0 (�) =

{
v ∈ H 1 : v|∂� = 0

}
, (12.2.13e)

H0(rot;�) = {D ∈ H(rot;�) : D|∂� = 0
}
, (12.2.13f)

Each of the function spaces in (12.2.13) are endowed with its natural norm. Let us
refer to a generic version of the space from (12.2.13) as S(�) and to its natural norm
as ‖ · ‖S . We say that a function f : [0, T ] → S(�) is continuous in time if it is
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continuous with respect to the natural norm ‖ · ‖S . The space of all time continuous
functions f : [0, T ] → S(�) is denoted as C(0, T ; S(�)). Thus,

C1
(

0, T ;
[
H 1(�)

]2
)
=
{
v : [0, T ] →

[
H 1(�)

]2 : v and
∂v

∂t
are continuous

}
,

(12.2.14a)

C
(

0, T ;L2
0(�)

)
=
{
q : [0, T ] → L2

0(�) : q is continuous
}
, (12.2.14b)

C (0, T ,H(rot;�)) := {E : [0, T ] → H(rot;�) : E is continuous} ,
(12.2.14c)

C1 (0, T ;H(div;�)) =
{
B : [0, T ] → H(div;�) :

B and
∂

∂t
B are continuous

}
.

(12.2.14d)

The weak form of problem (12.2.2a)–(12.2.2e) reads as:
Find

u ∈ C1
(

0, T ; [H 1(�)
]2)

, B ∈ C1 (0, T ;H(div;�)) ,

E ∈ C (0, T ;H0(rot;�)) , p ∈ C
(
0, T ;L2

0(�)
)
,

such that

( ∂

∂t
u, v

)
+ R−1

e

(
∇u,∇v

)
−
(
J ×B, v

)
−
(
p, div v

)
=
(
f , v

)
, (12.2.15a)

(
div u, q

)
= 0, (12.2.15b)

( ∂

∂t
B,C

)
+
(

rotE,C
)
= 0, (12.2.15c)

(
J,D

)
− R−1

m

(
B, rotD

)
= 0, (12.2.15d)

J = E + u× B, u(·, 0) = u0, B(·, 0) = B0 with div B0 = 0, (12.2.15e)

for any v ∈ [H 1
0 (�)

]2
, C ∈ H(div;�), D ∈ H0(rot;�), and q ∈ L2

0(�). In this
formulation we are making implicit that

u = ub and E = Eb along ∂�. (12.2.16)
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12.3 The Virtual Element Method

In the VEM formulation, that will be presented, we will define conforming finite-
dimensional subspaces of the spaces in (12.2.13). To do this we introduce a mesh of
the domain � with size h > 0. Then, we define mesh-dependent finite dimensional
virtual element spaces:

Ph ⊂ L2(�), Vh ⊂ H(rot;�), Eh ⊂ H(div;�) T Vh ⊂
[
H 1(�)

]2
.

(12.3.1a)

Ph,0 ⊂ L2
0(�), Vh,0 ⊂ H0(rot;�), T Vh,0 ⊂

[
H 1

0 (�)
]2

, (12.3.1b)

with the obvious inclusions

T Vh,0 ⊂ T Vh, Vh,0 ⊂ Vh, Ph,0 ⊂Ph. (12.3.2)

These spaces will be formally defined in Sects. 12.3.2, 12.3.3, 12.3.4, and 12.3.6,
respectively. We endow these finite dimensional spaces with the inner products

(
uh, vh

)
T Vh

≈ (uh, vh
)
,

[
uh, vh

]
T Vh

≈ (∇uh,∇vh
)
, (12.3.3a)

(
Bh,Ch

)
Eh
≈ (Bh,Ch

)
,

(
Eh,Dh

)
Vh
≈ (Eh,Dh

)
, (12.3.3b)

(
ph, qh

)
Ph
≈ (ph, qh), (12.3.3c)

which approximate the corresponding inner products in L2(�) and H 1(�) and their
vector variants. In the formulation of the method, we will find it convenient to use a
set of local and global interpolation operators embedding the continuous spaces into
their discrete versions. We denoted the local operators referring to a specific mesh
element P as I Eh

P ,I Vh

P and IPh

P and the corresponding global ones I Eh ,IVh

and IPh . We will also introduce a special projector IT Vh that we will use in
order to attain discrete initial and boundary conditions for the velocity field. Using
this projector will ensure that our discrete approximations of the velocity field are
exactly divergence free.

Having defined the functional spaces, we now turn our attention to the time
variable. To begin we introduce a time-step �t > 0 and the time staggering
parameter 0 ≤ θ ≤ 1. The approximate solutions will be considered at time steps
given by

tn = n�t, tn+θ = (n+ θ)�t.
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These approximations are abbreviated by un
h = uh(·, tn), pn+θ

h = ph(·, tn+θ ),
Bn

h = Bh(·, tn), and En+θ
h = Eh(·, tn+θ ) for the time-dependent vector fields uh

and Bh and the scalar fields Eh and ph, respectively, approximating u, B, E and p.
These vector fields are the solution of the virtual element method, which reads as:
Find

{
(un

h,B
n
h)
}N
n=0 ⊂ T Vh × Eh and

{
(En+θ

h , pn+θ
h ))

}N−1
n=0 ⊂ Vh ×Ph,0, such

that

(un+1
h − un

h

�t
, vh

)
T Vh

+ R−1
e

[
un+θ
h , vh

]
T Vh

+
(
J n+θ
h ,IVh(vh ×�RT Bn+θ

h )
)
Vh︸ ︷︷ ︸

(∗)

−
(
pn+θ
h , div vh

)
Ph

=
(
f h, vh

)
T Vh

, (12.3.4a)

(
div un+θ

h , qh

)
Ph

= 0, (12.3.4b)

(Bn+1
h − Bn

h

�t
,Ch

)
Eh
+
(

rotEn+θ
h ,Ch

)
Eh
= 0, (12.3.4c)

(
J n+θ
h ,Dh

)
Vh
− R−1

m

(
Bn+θ

h , rotDh

)
Eh
= 0, (12.3.4d)

for all vh ∈ T Vh,0,Ch ∈ Eh,Dh ∈ Vh,0 and qh ∈Ph,0. We define

J n+θ
h := En+θ

h +IVh(un+θ
h ×�RT Bn+θ

h ), (12.3.5)

and the fractional step quantities un+θ
h , Bn+θ

h are defined through linear (in time)
interpolations

un+θ
h := (1− θ)un

h + θun+1
h , (12.3.6a)

Bn+θ
h := (1− θ)Bn

h + θBn+1
h . (12.3.6b)

The initial conditions are given as

u0
h = IT Vh (u0), B0

h = I Eh (B0) with div B0 = 0. (12.3.7)

Here, we implicitly assume that for all t ∈ [0, T ]:

Eh(t) = IVh (Eb(t)) and uh(t) = IT Vh (ub(t)) along ∂�.

We note that Eb and ub are only defined along the boundary of � and not in
the interior. Technically the interpolation operator cannot be applied to boundary
functions. Thus, here we use Eb and ub to the interior of �.
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The term labeled as (*) in (12.3.4a) is produced by the approximation

−
(
J × B, v

)
=
(
J, v ×B

)
≈
(
Jh,I

Vh(vh ×�RT Bh)
)
Vh

.

The reason why we use this discretization will be made clear in Sect. 12.4, where we
present the stability estimates in the L2(�) norm. It is important to note that when
θ = 0 the scheme, in time, is a forward Euler step. Whereas if θ = 1 the scheme is
a Backward Euler step.

12.3.1 Mesh Notation and Regularity Assumptions

In this subsection, we present the main notation and the regularity assumptions that
we will make on the mesh.

For ease of exposition, we assume that the computational domain � be an open,
bounded, connected subset of R

2 with polygonal boundary �. We consider the
family of domain partitionings T = {�h}h∈H . Every partition �h, the mesh, is
a finite collection of polygonal elements P, which are such that � = ∪P∈�h

P.
For a polygonal element P ∈ �h, we denote the boundary of P by ∂P, the

outward unit normal to the boundary by nP, its diameter by hP = max
x,y∈P |x−y|,

and its area by |P|. Each elemental boundary ∂P is formed by a sequence of one-
dimensional non-intersecting straight edges e with length he and midpoint xe =
(xe, ye)

T .
To enforce mesh regularity we require that there exists ρ ≥ 0 independent of the

mesh size h > 0, such that

(M1): every polygonal cell P ∈ �h is star-shaped with respect to every point of
some disk of radius ρhP;

(M2): every edge e ∈ ∂P of cell P ∈ �h satisfies he ≥ ρhP.

The regularity assumptions (M1)–(M2) allow us to use meshes with cells having
quite general geometric shapes. For example, non-convex cells or cells with hanging
nodes on their edges are admissible. Nonetheless, these assumptions have some
important implications such as: (i) every polygonal element is simply connected; (ii)
the number of edges of each polygonal cell in the mesh family {�h}h is uniformly
bounded; (iii) a polygonal element cannot have arbitrarily small edges with respect
to its diameter hP ≤ h for h→ 0 and inequality h2

P ≤ C(ρ)|P|h2
P holds, with the

obvious dependence of constant C(ρ) on the mesh regularity factor ρ.

Remark 12.1 It is worth mentioning that virtual element methods on polygonal
meshes possibly containing “small edges” have been considered in [32] for the
numerical approximation of the Poisson problem. The work in [32] extends the
results in [16] for the original two-dimensional virtual element method to the
version of the virtual element method in [1] that can also be applied to problems
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in three dimensions, see [42]. Finally, we note that assumptions (M1)–(M2)
above also imply that the classical polynomial approximation theory in Sobolev
spaces holds [31]. While these assumptions are the minimal necessary to develop
theoretical analysis, in practice they can be significantly weakened.

12.3.2 The Nodal Space

Consider the cell P of the polygonal mesh �h. The formal definition of the nodal
elemental space is

Vh(P) :=
{
Dh ∈ H(rot;P) : Dh|∂P ∈ C(∂P), Dh|e ∈ P1(e) ∀e ∈ ∂P,

rot rotDh = 0 in P
}
. (12.3.8)

Every functionDh ∈ Vh(P) is uniquely determined by the set of degrees of freedom:

(V) the vertex values Dh(v) at the nodes v of cell P.

These are represented by blue disks centered at the nodes, see the sample picture in
Fig. 12.1.

As in the classic finite element method, this property is referred to as the
unisolvency of the degrees of freedom (V), see [68]. Accordingly, every function in
Vh(P) corresponds to one and only one set of degrees of freedom and, conversely,
every set of degrees of freedom corresponds to one and only one function in Vh(P).
To formally state this property we define the operators Rv : C∞(�) → R

N such
that for any D ∈ C∞(�) the image Rv(D) is the array of degrees of freedom of D.
This function can be continuously extended to the full space H(rot;P). The next
theorem states the unisolvency of the finite element previously described.

Theorem 12.1 Define Kv : Vh(P)→ R
N as the restriction of Rv to Vh(P). Then,

Kv is bijective.

Proof Proof of the above theorem is provided in [11]. ��

Fig. 12.1 Representation of
the degrees of freedom of
functions in Vh(P)
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The result of Theorem 12.1 Allows us to define the mappingIVh

P : H(rot;P)→
Vh(P) given by IVh

P = K −1
v ◦Rv.

We endow the space Vh(P) with an L2-like inner product. The usual strategy
for the construction of an inner product in a finite dimensional space relies on
the L2-orthogonal projection onto linear polynomials on P, denoted by �0

P :
Vh(P)→ P1(P). Unfortunately, this projector is not computable in Vh(P). To have
a computable orthogonal projection operator we could change the definition of the
space as in the so called “enhancement approach” [1, 10, 11]. This strategy will,
effectively, change the definition of the space Vh(P) calling into question whether
or not an important De-Rham complex hold, see Sect. 12.3.5. The reality is that such
a diagram holds even in the enhanced scenario, see [8]. However, we were not aware
of this enhanced diagram, instead, we follow a different strategy through a special
polynomial reconstruction operator �P : Vh(P)→ P1(P) satisfying the following
three properties:

(P1) �PDh is computable only from the degrees of freedom of Dh ∈ Vh(P);
(P2) �P preserves all linear polynomials, i.e., for any Dh ∈ P1(P), �PDh =

Dh;
(P3) �P is a bounded operator with respect to L2 norm with the upper bound

constant C� independent of the mesh resolution h, i.e., for any Dh ∈ Vh(P)

‖�PDh‖0,P ≤ C�‖Dh‖0,P. (12.3.9)

We can use this projector to define an inner product in the space Vh that will allow
us to approximate L2-inner product as they appear in (12.3.4). In Sect. 12.3.2.1, we
discuss three possible implementations of the polynomial reconstruction operator.

We define

(
Eh,Dh

)
Vh(P)

= (�PEh,�PDh

)+S v((1−�P)Eh, (1−�P)Dh

)
,

(12.3.10)

where S v is the stabilization bilinear form. According to the standard VEM
construction, S v can be any bilinear form for which there exist two real constants
s∗ and s∗ independent of h such that

s∗‖Dh‖2
0,P ≤ S v(Dh,Dh) ≤ s∗‖Dh‖2

0,P ∀Dh ∈ ker� ∩ Vh(P). (12.3.11)

In practice, we can design the stabilization as in [45, 67]. This inner product defines
the norm in Vh(P) given by |||Dh|||2

Vh(P)

= (
Dh,Dh

)
Vh(P)

. When the projection

operator � satisfies properties (P1)–(P3), the inner product (12.3.10) satisfies two
fundamental properties summarized in the following theorem.
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Theorem 12.2 The inner product
( · , · )Vh(P)

defined in (12.3.10) satisfies

– Linear consistency:

(
p, q

)
Vh(P)

= (p, q) ∀p, q ∈ P1(P) ⊂ Vh(P). (12.3.12)

– Stability: there exists two real constants α∗ and α∗ > 0 independent of h and P
such that

α∗‖Dh‖2
0,P ≤ |||Dh|||2

Vh(P)

≤ α∗‖Dh‖2
0,P. ∀Dh ∈ Vh(P)2. (12.3.13)

Proof To prove the linear consistency (12.3.12), take two polynomial functions
p, q ∈ P1(P). Property (P2) implies that �p = p and �q = q . So, the stabilization
term in (12.3.10) is zero, and we find that

(
p, q

)
Vh(P)

= (�Pp,�Pq
)
P =

(
p, q

)
P.

To prove the lower bound of the stability condition (12.3.13), we add and subtract
�PDh, apply the triangular inequality, the left-most inequality in (12.3.11) and note
that

‖Dh‖2
0,P ≤

(‖�PDh‖0,P + ‖(1 −�P)Dh‖0,P
)2 ≤ 2

(‖�Pvh‖2
0,P + ‖(1 −�P)Dh‖2

0,P
)

≤ 2 max(1, s∗)
((
�PDh,�PDh

)
P +S v((1−�P

)
Dh,

(
1−�P

)
Dh

))

= (α∗)−1(Dh,Dh

)
Vh(P)

= (α∗)−1|||Dh|||2Vh(P )
,

where the lower bound α∗ in (12.3.13) is given by α−1∗ = 2 max(1, s∗).
To obtain the upper bound in (12.3.13), we first note that property (P3) implies

that:

S v((1−�P)Dh, (1−�P)Dh

) ≤ s∗‖(1−�P)Dh‖2
0,P ≤ s∗

(‖Dh‖0,P + ‖�PDh‖0,P
)2

≤ s∗
(‖Dh‖0,P + C�‖Dh‖0,P

)2 ≤ s∗(1+ C�)
2‖Dh‖2

0,P.

To conclude this theorem we use

|||Dh|||2
Vh(P)

= (�PDh,�PDh

)
P +S v((1−�P)Dh, (1−�P)Dh

)

≤ C2
�‖Dh‖2

0,P + s∗(1+ C�)
2‖Dh‖2

0,P ≤ α∗‖Dh‖2
0,P,

where the upper bound α∗ in (12.3.13) is given by α∗ = max(C2
�, s

∗(1+ C�)
2).
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Note that both lower and upper bounds α∗ and α∗ depend only on the upper
bound C� of the projection operator � and are independent of mesh resolution h.

��
The global space Vh is the subset of functions in H(rot;�) whose restriction to

any element P ∈ �h belongs to Vh(P). Formally, we write that

Vh =
{
Dh ∈ H(rot;�) : ∀P ∈ �h Dh|P ∈ Vh(P)

}
. (12.3.14)

We endow the global space Vh with the global inner product

(
Eh,Dh

)
Vh
=
∑
P∈�h

(
Eh|P,Dh|P

)
Vh(P)

∀Eh,Dh ∈ Vh, (12.3.15)

and the global norm ‖Dh‖2
Vh
= (

Dh,Dh

)
The global inner product inherits the

properties of accuracy and stability from the elemental inner product that are stated
in Theorem 12.2.

Corollary 12.1 The inner product
( · , · )Vh

defined in (12.3.15) has the two
properties:

– Linear consistency:

(
p, q

)
Vh
= (p, q) ∀p, q ∈ P1(�h) ⊂ Vh(P). (12.3.16)

– Stability: there exists two real constants α∗ and α∗ > 0 independent of h and P
such that

α∗‖Dh‖2
0 ≤ |||Dh|||2

Vh(P)

≤ α∗‖Dh‖2
0 ∀Dh ∈ Vh(P)2, (12.3.17)

where the lower and upper bound constants α∗ and α∗ > 0 are the same constants
introduced in Theorem 12.2 and P1(�h) is the space of piecewise linear polynomials
built on the mesh �h.

Proof Proof of this Corollary follows immediately from the results of Theo-
rem 12.2. ��

Finally, we introduce the global interpolation operator IVh : H(rot;�)→ Vh,
whose restriction to any cell coincides with the elemental interpolation operator:

IVh(Dh)|P = IVh

P (Dh|P) ∀Dh ∈ Vh P ∈ �h. (12.3.18)
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12.3.2.1 The Polynomial Reconstruction Operators

We discuss here three alternative choices for the oblique projections that can be used
to approximate inner products in the space Vh(P).

(I) Elliptic Projection Operator We denote this projection operator as

�rot
P : Vh(P)→ P1(�). (12.3.19)

For Dh ∈ Vh(P) the elliptic projection operator is the solution to the variational
problem

∫
P

rot
(
Dh −�rot

P Dh

)
· rot q dA = 0 ∀q ∈ P1(P), (12.3.20a)

P0
(
Dh −�rot

P Dh

) = 0, (12.3.20b)

where we use the additional projectorP0(Dh) =∑v∈∂PDh(v) on P0(P) to remove
the kernel of operator rot . The linear polynomial�rot

P Dh is computable because the
integral quantities

∫
P

rotDh · rotq dA ∀q ∈ P1(P), (12.3.21)

are computable from the degrees of freedom (V) of Dh. To prove this statement we
use the Green’s theorem, note that rot rotq = 0, since q ∈ P1(P), and split the
integral on ∂P in the summation of edge integrals to obtain

∫
P

rotDh · rot q dA =
∫
P
Dhrot rotq dA+

∫
∂P

Dht · rot q d�

=
∑
e∈∂P

∫
e

Dht · rotq d�,

where t is the unit tangent vector parallel to e. The edge integrals are computable
because t ·rotq is a known function in P0(e) and we can interpolate the trace Dh|e ∈
P1(e) using the evaluation of Dh at the vertices of edge e, which are known from
the degrees of freedom (V).

(II) Least Squares Polynomial Reconstruction Operator The second reconstruc-
tion operator that we consider is denoted as

�LS

P : Vh(P)→ P1(�). (12.3.22)
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For a function Dh ∈ Vh(P), the linear polynomial �LS

P Dh is the solution of the
Least Squares problem

�LS

P Dh(x) := argmin
q∈P1(P)

∑
v∈∂P

|Dh(xv)− q(xv)|2.

The solution to this problem has a closed form that can be easily written as follows.
Let

{
m1,m2,m3

}
be the scaled monomial basis of P1(P), which is given by:

m1(x, y) = 1, m2(x, y) = x − xP
hP

, and m3(x, y) = y − yP
hP

,

where xP = (xP, yP)
T is the position vector of the barycenter of P. Let

�LS

P Dh(x, y) = am1(x, y)+ bm2(x, y)+ cm3(x, y).

We denote the position vector of the i-th vertex vi by xi , for i = 1, . . . , N , where
N is the number of vertices of P. Then, the coefficient vector ξ = (a, b, c)T is the
solution of the system

Aξ = b with A =

⎛
⎜⎜⎜⎝

m1(x1) m2(x1) m3(x1)

m1(x2) m2(x2) m3(x2)
...

...
...

m1(xN) m2(xN) m3(xN)

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

Dh(x1)

Dh(x2)
...

Dh(xN)

⎞
⎟⎟⎟⎠ .

(12.3.23)

Since A is a maximum rank matrix, the array of the solution coefficients is given by
ξ = (AT

A)−1
A
T b.

(III) Galerkin Interpolation Operator The final projector that we consider in
this chapter is denoted as �

pw

P and is the piecewise linear Galerkin interpolation
on a triangular partition of P. If P is a convex polygon, we can easily build such
triangular partition by connecting its vertices and the barycenter given by the convex
linear combination

x∗v =
∑
v∈∂P

αvxv,
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for some suitable choices of the coefficients αv that are such that 0 ≤ αv ≤ 1 for
every v and

∑
v∈∂P αv = 1. If P is only star-shaped but not necessarily convex, we

can still define an inner point v∗ by a different choice of the coefficients αv. For a
given function Dh ∈ Vh(P), we assume that

�
pw

P Dh(x
∗
v) =

∑
v∈∂P

αvDh(v) and �
pw

P Dh(xv) = Dh(xv) ∀v ∈ ∂P.

Then, in every triangle T with vertices v1, v2 and v∗, we define �
pw

P Dh(x) as the
linear interpolant of the values Dh(v1), Dh(v2), and Dh(v∗).

12.3.3 The Edge Space

The next virtual element space that we consider is the finite dimensional counterpart
of H(div;�). This space was introduced in [11]. Like before, we begin by defining
a local space over a cell P. The formal definition reads as

Eh(P) :=
{
Ch ∈ H(div;P) ∩H(rot;P) : div Ch ∈ P0(P), rot Ch = 0,

Ch|e · n ∈ P0(e) ∀e ∈ ∂P
}
.

(12.3.24)

Every virtual element function Ch ∈ Eh(P) is characterized by the following set of
degrees of freedom

(E) the average of the normal flux on each edge:

∀e ∈ ∂P : 1

|e|
∫
e

Ch · n d�.

These are represented by red arrows pointing out of the cell P, see the sample picture
in Fig. 12.2.

Fig. 12.2 Representation of
the degrees of freedom of
functions in Eh(P)
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In order to properly state the property of unisolvency we introduce Re :
H(div;P) → R

N such that for any C ∈ H(div;P) the array Re(C) is the array
of degrees of freedom of C. This result is stated below

Theorem 12.3 Let Ke : Eh(P) → R
N be the restriction of Re. Then, Ke is

bijective.

In view of the unisolvency of Eh(P), we define the interpolation operator I Eh
P =

K −1
e ◦Re.
Next, we define an important projector in the space Eh(P), namely the orthogonal

projection �0
P : Eh(P) → P0(P) whose image is the solution to the variational

problem

(
Ch −�0

PCh, q
)
P = 0 for all q ∈ [P0(P)

]2
, (12.3.25)

for every Ch ∈ Eh(P). This projector is computable using the degrees of freedom
(E). Pick q ∈ [P0(P)]2, p ∈ P1(P) where the scalar polynomial p is chosen so that
q = ∇p. Then, we apply Green’s theorem and find that

∫
P

Ch · q dA =
∫
P

Ch · ∇p dA = −
∫
P
(div Ch)p dA+

∫
∂P

pCh · n d�

(12.3.26)

for all Ch ∈ Eh(P). We split the integral on ∂P in the summation of line integrals

∫
∂P

Ch · np d� =
∑
e∈∂P

(Ch · n)|e
∫
e

p d�, (12.3.27)

and we note that Ch · n|e is constant on each edge e ∈ ∂P, cf. space defini-
tion (12.3.24), and coincides with the evaluation in (E). In turn, we compute
div Ch ∈ P0(P) by applying the divergence theorem:

div Ch = 1

|P|
∫
∂P

Ch · n d� = 1

|P|
∑
e∈∂P

|e|
(

1

|e|
∫
e

Ch · n d�

)
. (12.3.28)

Note that the polynomial p is determined by the relation ∇p = q and is defined up
to an additive constant factor. If we choose this constant factor equal to the elemental
average of p on P, so that

∫
P p dA = 0, we can make the area integral vanish since

∫
P
(div Ch)p dA = (div Ch)|P

∫
P
p dA = 0. (12.3.29)

In conclusion, the information about a virtual element function Ch in the space
Eh(P) that we need to compute the projection �0

PCh can be read off the degrees of
freedom of Ch.
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We can use �0
P to define the inner product:

(
Bh,Ch

)
Eh(P)

= (�0
PBh,�

0
PCh

)+S e((I −�0
P)Bh, (I −�0

P)Ch)

(12.3.30)

for every possible pair of virtual element functions Bh,Ch ∈ Eh(P). As before, the
stabilization form S e can be any continuous bilinear form for which there exists
two strictly positive constants s∗ and s∗ independent of h such that

s∗‖Ch‖2
0,P ≤ S e(Ch,Ch) ≤ s∗‖Ch‖2

0,P ∀Ch ∈ Eh(P) ∩ ker�0
P ∩ Eh(P).

Practical implementations of S ecan be designed according with [45, 67] for more
examples. The constants s∗ and s∗ are different from those in equation (12.3.11).
This inner product defines the norm

|||Ch|||
Eh(P)

= (Ch,Ch

)1/2
Eh(P)

∀Ch ∈ Eh(P), (12.3.31)

and the two fundamental properties of P0-consistency an stability hold as stated in
the following theorem.

Theorem 12.4 The inner product
( · , · )Eh(P)

defined in (12.3.30) has the two
properties:

– P0-consistency:

(
Ch, q

)
Eh(P)

= (Ch, q
) ∀Ch ∈ Eh(P), q ∈ [P0(P)]2 (12.3.32)

– Stability: there exists two real constants β∗ and β∗ > 0 independent of h and P
such that

β∗‖Ch‖2
0,P ≤ |||Ch|||2

Eh(P)

≤ β∗‖Ch‖2
0,P ∀Ch ∈ Eh(P). (12.3.33)

Proof We omit the proof of this Theorem since it is essentially the same as the
one presented for Theorem 12.2. We just note that here the orthogonality of the
projector �0

PP makes a more general result possible as the consistency condition

is verified if at least one and not necessarily both of the entries of
(
Ch, q

)
Eh(P)

is a

(vector-valued) polynomial field. In fact, if q ∈ [P2(P)
]2

we have that S e((I −
�0
P)Ch, (I−�0

P)q) = 0 because�0
Pq = q. Then, the definition of the orthogonal
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projection �0
P, which is also polynomial-preserving, implies that

(
Bh,Ch

)
Eh(P)

= (�0
PCh,�

0
Pq
)
P =

(
Ch,�

0
Pq
)
P =

(
Ch, q

)
P (12.3.34)

for all Ch ∈ Eh(P) and q ∈ P0(P). ��
We introduce the global virtual element space Eh built on the mesh �h by pasting

together the elemental spaces Eh(P) built on all cells P:

Eh =
{
Ch ∈ H(div;�) : Ch|P ∈ Eh(P) ∀P ∈ �h

}
.

We endow this space with the inner product

(
Bh,Ch

)
Eh
=
∑
P∈�h

(
Bh|P,Ch|P

)
Eh(P)

∀Bh,Ch ∈ Eh, (12.3.35)

and the induced norm

|||Ch|||2Eh
= (Ch,Ch

)
Eh

∀Ch ∈ Eh. (12.3.36)

As for the nodal space, this global inner product and associated norm satisfy the
fundamental properties of P0-consistency and stability, which we state in the next
corollary. These properties imply the exactness of the inner product defined in
(12.3.35) on the piecewise constant functions and that the norm defined in (12.3.30)
is equivalent to the L2 norm. We omit the proof since these properties are an
immediate consequence of Theorem 12.4.

Corollary 12.2 The inner product
( · , · )Eh defined in (12.3.35) has the two

properties:

– Linear consistency:

(
Ch, q

)
Eh(P)

= (Ch, q
) ∀Ch ∈ Eh, q ∈ [P0(�h)]2. (12.3.37)

– Stability: there exists two real constants β∗ and β∗ > 0 independent of h such
that

β∗‖Ch‖2
0,P ≤ |||Ch|||

Eh(P)
≤ β∗‖Ch‖2

0,P ∀Ch ∈ Eh(P). (12.3.38)
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Next, we introduce the global interpolation operator I Eh
P : H(div;�) → Vh.

This operator is defined by gluing together its respective elemental definitions, so
that

I Eh(Ch)|P = I Eh
P (Ch|P)

To end this subsection we will define a second orthogonal projection that we will
use to approximate a term unique to MHD. Consider a cell P and define �RT

P :
Eh(P) → RT0(P). Given Ch ∈ Eh(P) the image �RT

P Ch is the solution to the
variational formulation

(
Ch −�RT

P Ch, q
)
P = 0 for all q ∈ RT0(P), (12.3.39)

where

RT0(P) =
{
a

(
1
0

)
+ b

(
0
1

)
+ c

(
x

y

)
: a, b, c ∈ R

}
.

This projector is also computable using only the degrees of freedom in Eh(P). The
strategy is the same as the one presented for �0

P. Consider q ∈ RT0(P) and p ∈
P2(P) with

∫
P pdA = 0 such that∇p = q. The terms in Green’s Theorem (12.3.26)

can be computed as before with the only difference being that the quadrature rule
used in (12.3.27) needs to be exact for quadratic polynomials.

The global orthogonal projector �RT : Eh → RT0(�h), where RT0(�h) ={
q ∈ H(div;�) : q |P ∈ RT0(P)

}
is defined as

(�RT Ch)|P = �RT

P (Ch|P) ∀P ∈ �h. (12.3.40)

We use �RT to approximate the term “u× B” as can be evidenced in the MHD
variational formulation (12.3.4). The main issue with the aforementioned term is
that we only have access to the fluxes of the magnetic field across the edges while
the inner product in the variational formulation requires nodal evaluations. We
amend this inconsistency by projecting the magnetic field onto the space of vector
polynomial fields RT0(P) and extract the necessary evaluations from this projection.
We note that we could use �0

P to extract these vertex evaluations. However, more
complex MHD models have terms of the form

(
(rot B)× B,D

)
. (12.3.41)

Such a quantity cannot be estimated using �0
P since the codomain of this projector

is the space of constants and their curl is zero. In this case using the projector �RT

is ideal for low order approximations.
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12.3.4 The Cell Space

The final space that we need to define for the electromagnetic part is the space of
piecewise constant functions on �h, i.e., the space of constant polynomials in every
element P:

Ph =
{
qh ∈ L2(�) : qh|P ∈ P0(P) ∀P ∈ �h

}
. (12.3.42)

The degrees of freedom of a function qh ∈Ph are given by

(D) the elemental averages of qh over every cell P ∈ �h

1

|P|
∫
P
qh dA. (12.3.43)

These are represented by red disks in the interior of the cell P, see the sample
picture in Fig. 12.3. It is straightforward to see that such degrees of freedom are
unisolvent in Ph. In fact, the constant value given by restricting a function qh to a
cell is precisely the degree of freedom of qh associated with that cell. We endow the
elemental space Ph with the inner product

(
ph, qh

)
Ph
=
∑
P
|P|ph|Pqh|P ∀ph, qh ∈Ph,

which is the L2(�) inner product of two piecewise constant functions. This inner
product induces the norm

|||qh|||2Ph
= (qh, qh)Ph

, ∀qh ∈Ph,

which is the L2(�)-norm restricted to the functions of Ph, so that

|||qh|||Ph
= ‖qh‖0,� ∀qh ∈Ph.

Fig. 12.3 Representation of
the degrees of freedom of
functions in Ph(P)
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Finally, we define the global interpolation operator IPh : L2(�)→Ph such that
for every q ∈ L2(�) we have:

(IPhq)|P =
1

|P|
∫
P
qh dA ∀P ∈ �h. (12.3.44)

12.3.5 The de Rham Complex

In the previous sections we introduced and discussed the virtual element spaces Vh,
Eh and Ph. It is well-known that the spaces H(rot;�),H(div;�) and L2(�) form
the de Rham chain

(12.3.45)

If � is simply connected, the chain is exact, see [71]. Equivalently, we can say that

rotH(rot;�) = {C ∈ H(div;�) : div C = 0
}
.

In the spirit of constructing a discrete version of the continuous problem, the spaces
Vh,Eh and Ph also form a similar exact de Rham chain

(12.3.46)

This chain was first introduced in [9], and explored in more details and generality
in [11]. It reveals that the set of degrees of freedom are transformed in accordance
with the following diagram:

First we want to show that the chain in (12.3.46) is well-defined. This is to say that
two important inclusions hold. The first is presented in the following lemma.
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Lemma 12.1 Let Vh and Eh be the virtual element spaces defined in (12.3.8)
and (12.3.24) respectively. Then, it holds that

rotVh ⊂ Eh. (12.3.47)

Proof Let P be a mesh cell of �h and take Dh ∈ Vh(P). In view of the definition
of Vh(P), we have that rot rotDh = 0 in P and, clearly, div rotDh = 0 ∈ P0(P).
Moreover, for every edge e ∈ ∂P, we find that (rotDh · n)|e = (∇Dh · t)|e ∈ P0(e).
Consequently, (rotDh)|P ∈ Eh(P), and, thus, rotDh ∈ Eh for every Dh ∈ Eh
proving the inclusion relation in (12.3.47). ��

From Lemma 12.1, we know that rotDh ∈ Eh if Dh ∈ Vh. Moreover, we can
compute the degrees of freedom of rotDh in Eh from the degrees of freedom of Dh

in Vh. In fact, by applying the fundamental theorem of line integrals, we find that

1

|e|
∫
e

rotDh · n d� = 1

|e|
∫
e

∇Dh · t d� = Dh(v2)−Dh(v1)

|e| , (12.3.48)

for every edge e of the polygonal boundary ∂P with endpoints v1 and v2 (oriented
from v1 to v2), where again we used the identity n · rot (Dh) = t · ∇(Dh). In view
of Eq. (12.3.48), we can read the necessary information to identify the image of the
rotational of Vh as a subset of Eh by using the degrees of freedom defined for Vh.

The second inclusion in the chain (12.3.46) is the conclusion of the following
lemma.

Lemma 12.2 Let Eh and Ph be the virtual element spaces defined in (12.3.24),
and (12.3.42). Then, it holds that

divEh ⊂Ph. (12.3.49)

Proof To verify this inclusion, we only need to note that any Ch ∈ Eh(P) is such
that div Ch ∈ P0(P) from the definition of Eh(P). It follows that div Ch ∈ P0(�h) =
Ph for every Ch ∈ Eh, which is the second inclusion relation in (12.3.49). ��

Noting that the divergence of a function in Eh lies in Ph will help us identify
that its divergence can be entirely characterized by its set of degrees of freedom in
Ph. Take Ch ∈ Eh. From the divergence theorem we have that

1

|P|
∫
P

div Ch dA = 1

|P|
∫
∂P

div Ch dA = 1

|P|
∑
e∈∂P

|e|
(

1

|e|
∫
e

Ch · n dA

)
.

(12.3.50)

Hence, we can evaluate the divergence of a function Ch ∈ Eh using only its degrees
of freedom.
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The results summarized by Eqs. (12.3.48) and (12.3.50) are essential in order to
further study the spaces Vh,Eh and Ph and their relationship with the larger spaces
H(rot;�),H(div;�) and L2(�). These spaces form the commutative diagram

(12.3.51)

The proof of this theorem is broken into two lemmas. The first lemma, presented
below, involves the spaces H(rot;�) and H(div;�), and their discrete counterparts
Vh and Eh.

Lemma 12.3 The following identity holds

∀D ∈ H(rot;�) : I Eh ◦ rot (D) = rot ◦IVh(D), (12.3.52)

i.e., the interpolation and the rotational operators commute.

Proof Take a scalar function D ∈ H(rot;�). By definition, the degrees of freedom
of I Eh ◦ rot (D) in Eh are the same of rotD. So, if e is a mesh edge oriented from
endpoint v1 to v2, the theorem of line integral yields:

1

|e|
∫
e

n · rotD d� = 1

|e|
∫
e

t · ∇D d� = D(v2)−D(v1)

|e| . (12.3.53)

In turn, the degrees of freedom of rot ◦IVh (D) are given by

1

|e|
∫
e

n · rot
(
IVh(D)

)
d� = 1

|e|
∫
e

t · ∇IVh(D) d� = IVhD(v2)−IVhD(v1)

|e| ,

(12.3.54)

using again the theorem of line integral yields. The definition of operator IVh is
such that

IVhD(v1) = D(v1) and IVhDh(v2) = D(v2).

Thus, Eqs. (12.3.53) and (12.3.54) imply that the functions I Eh ◦rot (D) and rot ◦
IVh(D) have the same degrees of freedom in Eh and relation (12.3.52) follows
from the unisolvence. ��
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The second lemma involves the spaces H(div;�),L2(�),Eh and Ph.

Lemma 12.4 The following identity holds

∀C ∈ H(div;�) : IPh ◦ div (C) = div ◦I Eh(C), (12.3.55)

i.e., the interpolation and the divergence operators commute.

Proof We prove (12.3.55) by verifying that the two functions in the left and right
side share the same degrees of freedom in Ph. Take a vector-valued field C ∈
H(div;�). By definition, the degrees of freedom of IPh ◦ div (C) in Eh are the
same of div (C). So, if P is a mesh cell, the divergence theorem yields

1

|P|
∫
P

div C dA = 1

|P|
∑
e∈∂P

∫
e

C · n d�. (12.3.56)

In turn, the degrees of freedom of div ◦I Eh(C) are given by

1

|P|
∫
P

divI Eh (C) dA = 1

|P|
∑
e∈∂P

∫
e

I Eh(C) · n d�. (12.3.57)

The definition of operator I Eh is such that

∀e ∈ ∂P :
∫
e

I EhC · n d� =
∫
e

C · n d�.

Thus, Eqs. (12.3.56) and (12.3.57) imply that the two functions IPh ◦ div (C) and
div ◦ I Eh(C) have the same degrees of freedom in Ph and relation (12.3.55)
follows from the unisolvence. ��

We summarize our findings in the following theorem

Theorem 12.5 The chain in (12.3.46) is well-defined and exact, and dia-
gram (12.3.51) is commutative.

Proof Lemmas 12.1 and 12.2 prove that (12.3.46) is well-defined. Lemmas 12.3
and 12.4 prove that diagram (12.3.51) is commutative. Hence, we are only left to
prove that the de Rham chain (12.3.46) is exact, or, equivalently that

rotVh = ker
(
divEh

) = {Ch ∈ Eh : div Ch = 0
}
. (12.3.58)

Take Dh ∈ Vh. Lemma 12.1 implies that rotDh ∈ Eh, and, obviously, div rotDh =
0, so that rotDh ∈ ker

(
divEh

)
as defined in (12.3.58), which implies that rotVh ⊆

ker
(
divEh

)
. Next, consider Ch ∈ Eh with div Ch = 0. Since Eh ⊂ H(div;�), then

Ch ∈ H(div;�) and the exactness of chain (12.3.45) implies the existence of a
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scalar function D ∈ H(rot; ) such that Ch = rotD. Moreover, IVhD ∈ Vh must
verify

rot ◦IVhD = I Eh ◦ rotD = I EhCh = Ch, (12.3.59)

which implies that Ch is the rotational of a function of Vh and, thus, ker
(
divEh

) ⊂
rotVh. ��

12.3.6 Fluid Flow

In this section, we briefly review the virtual element spaces for the discretization of
the fluid-flow equations in the MHD model. These spaces were originally proposed
in [17, 18, 79].

The first virtual element space is used to discretize the pressure. We consider a
subspace of Ph as defined in Sect. 12.3.4. This subspace is given by

Ph,0 =
{
qh ∈Ph :

∫
�

qh dA = 0

}
. (12.3.60)

The degrees of freedom of a function qh ∈Ph,0 are given by

(P’)
∫
P
qh dA for every P ∈ �h.

These degrees of freedom are the same of Ph up to a multiplicative scale factor
equal to 1/|P|. For Ph,0 we prefer this definition because the integral over Ph,0 of
a function qh ∈Ph,0 is given by summing the degrees of freedom of qh:

∫
�

qh dA =
N∑
i=0

dofi (qh).

If we enumerate the cells in the mesh �h as {Pi : 1 ≤ i ≤ N} then the functions
dofi : Ph,0 → R map each function in Ph,0 to the degree of freedom associated
with Pi .

The virtual element space for the velocity approximation reads as

Vh(P) =
{
vh ∈

[
H 1(P)

]2 : vh|∂P ∈
[
B (∂P)

]2
, div vh ∈ P0(P),

−�vh −∇s = 0 for some s ∈ L2
0(P)

}
,

(12.3.61a)
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Fig. 12.4 Representation of
the degrees of freedom of
functions in Vh(P)

where

B (∂P) =
{
v ∈ C0(∂P) : v|e ∈ P2(e) ∀e ∈ ∂P

}
. (12.3.61b)

A function vh ∈ Vh(P) is uniquely characterized by the following degrees of
freedom:

(D1) pointwise evaluations of vh at the vertices of P;
(D2) pointwise evaluations at vh at the midpoint of the edges of ∂P.

These are represented by blue disks centered at the nodes and the mid-point of edges
of the cell P, see the sample picture in Fig. 12.4.

Theorem 12.6 Define the map KVh
: Vh(P)→ R

N such that for any vh ∈ Vh(P)
the array KVh

vh is given by the degrees of freedom pf vh. Then, KVh
is bijective.

Proof The proof is omitted and can be found in [17]. ��
The largest polynomial space that is contained in Vh(P) is the space of

divergence-free, quadratic polynomial vectors, which is formally written as:

P(P) =
{
q ∈ [P2(P)

]2 : div q ∈ P0(P)
}
.

Let E¶ denote the set of vertices and midpoints of the edges forming the polygonal
boundary ∂P, and consider the projector �∇P : Vh(P) → P(P) such that the

vector polynomial�∇Pvh for vh ∈ Vh(P) is the solution to the following variational
problem

∫
P
∇�∇Pvh : ∇q dA =

∫
P
∇vh : ∇q dA ∀q ∈ P(P), (12.3.62a)

P0

(
�∇Pvh

)
= P0(vh), (12.3.62b)
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where

P0(vh) =
∑
v∈E ¶

vh(v). (12.3.63)

We recall that ∇vh, ∇�∇Pvh and ∇q are 2 × 2-sized tensors and “:” is the usual
euclidean scalar product saturating both indices of such tensors, so that

∇v : ∇w =
∑
i,j

(∂vi/∂xj )(∂wi/∂xj ). (12.3.64)

To prove that this projection operator is computable, we need to show that the right-
hand side of (12.3.62a) is computable for every vector-valued field vh ∈ Vh(P) and
q ∈ P(P) using only the degrees of freedom of vh. To this end, we first apply the
Green theorem to find that

∫
P
∇vh : ∇q dA =

∫
∂P

vh∇q · n d�−
∫
P

vh ·�q dA (12.3.65)

Then, we note that �q ∈ [P0(P)
]2 and the scalar polynomial g satisfying that

g = �q · (x − xP) with ∇g = �q and
∫
P
g(x) dA = 0. (12.3.66)

Using this identity in (12.3.65) we see that

∫
P
∇vh : ∇q dA =

∫
∂P

vh · ∇q · n d�−
∫
P

vh ·�q dA

=
∫
∂P

vh · ∇q · n d�+
∫
P
(div vh)g dA−

∫
∂P

gvh · n d�

= (T1)+ (T2)+ (T3).

The boundary integrals (T1) and (T3) are computable since the trace of vh on every
edge of ∂P can be interpolated from its degrees of freedom, while the cell integral
(T2) is zero because div vh ∈ P0(P) and we have that:

(T2) =
∫
P
(div vh)g dA = (div vh)|P

∫
P
g dA = 0.
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Moreover, we can see that div vh is also computable on using the degrees of freedom
of vh and the divergence theorem:

(div vh)|P |P| =
∫
P

div vh dA =
∫
∂P

vh · n d�

so that

(div vh)|P =
1

|P|
∑
e∈∂P

∫
e

vh · n d�.

This formula makes it possible to compute the divergence of vh using only the
boundary information that can be extracted from (D1) and (D2).

To approximate the terms of the MHD variational formulation that depends on
the time derivative of the velocity field, we need the L2-orthogonal projection of
the virtual element vector-valued fields. However, such projection operator is not
directly computable in the space Vh(P), so we change the definition of the space
according to the enhancement strategy in [79] that we briefly review below. First,
we consider the auxiliary finite dimensional functional spaces

G2 (P) = ∇P3(P) (12.3.67)

and its orthogonal complement in [P2(P)]2

G ⊥
2 (P) = {g⊥ ∈ [P2(P)]2 :

(
g⊥,g

)
P = 0 ∀g ∈ G2 (P)

}
. (12.3.68)

Then, we introduce the “extended” virtual element space

Uh(P) =
{
vh ∈

[
H 1(P)

]2 : vh|∂P ∈
[
B (∂P)

]2
, div vh ∈ P0(P)

−�vh − ∇s = g⊥ for some s ∈ L2
0(P), g⊥ ∈ G ⊥

2 (P)
}
.

(12.3.69)

The projector �∇P can also defined in Uh(P) and is computable using only the
information from the degrees of freedom (D1)–(D2). However, the degrees of
freedom (D1)–(D2) are not unisolvent in Uh(P). Instead, they are unisolvent in
T Vh(P), the subspace of Uh(P) that is formally defined as

T Vh(P) =
{
vh ∈ Uh(P) :

(
vh −�∇Pvh,g

⊥)
P
= 0 ∀g⊥ ∈ G ⊥

2 (P) /R2
}
.

(12.3.70)
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Since the degrees of freedom (D1)–(D2) are unisolvent in this space, we can
define a special projection operator IT Vh

P : [H 1(P)
]2 → T Vh(P) such that for

v ∈ [
H 1(P)

]2 its evaluation IT Vh

P (v) ∈ T Vh(P) has the degrees of freedom
determined by the following three criteria on every edge e ∈ ∂P:

(U1) IT Vh

P (v) ∈ P2(P).

(U2) IT Vh

P (v) interpolates v at each node.
(U3)

∫
e
IT Vh(v) · nd� = ∫

e
v · nd�.

Note that, criterion (U1) guarantees that, over each edge, IT Vh

P (v) is entirely
determined by the evaluation at three points. Two of these points are attained by
criterion (U2) since we have that at the endpoints of each edge the evaluation
of u and IT Vh

P (v) agree. The last evaluation given at the midpoint is computed
specifically to satisfy (U3). Having described a method for computing the degrees
of freedom of IT Vh

P (v) the unisolvency of the virtual element will guarantee the

uniqueness of its image and thus IT Vh

P is well-defined.
We define the L2-orthogonal projection operator �0

P : T Vh(P) → P(P), so

that for every vh ∈ T Vh(P), the vector polynomial �0
Pvh is the solution to the

variational problem

(
�0
Pvh − vh, q

)
P = 0. ∀q ∈ P(P). (12.3.71)

We show that�0
Pvh is computable using only the degrees of freedom (D1)–(D2) of

vh. Let vh ∈ T Vh(P) and q ∈ P(P). We consider the decomposition q = ∇g+g⊥
where g ∈ P3(P) and apply the Green theorem to obtain:

∫
P

vh · q dA =
∫
P

vh · ∇g dA+
∫
P

vh · g⊥ dA. (12.3.72)

=
∫
∂P

vh · ng d�−
∫
P

div vhg dA+
∫
P

vh · g⊥ dA. (12.3.73)

The boundary integral on the right is computable as the trace of vh on every edge
is a quadratic polynomial that can be interpolated from the degrees of freedom
freedom (D1)–(D2) of vh. The second integral in the right-hand side is zero
because div vh|P ∈ P0(P) and we can always take a function g with zero elemental
average (alternatively, it can be computed by noting that the divergence of vh is
given by the divergence theorem). To compute the second integral in (12.3.73) we
first write

g⊥ = c + (g⊥ − c), c = 1

|P|
∫
P

g⊥ dA.
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Since c ∈ P0(P) we can find q ∈ P1(P) such that c = ∇q and see that

∫
P

vh · c dA =
∫
∂P

qvh · n d�−
∫
P

div vhq dA.

Finally, we note that g⊥ − c ∈ G ⊥
2 (P) /R2, and the definition of space T Vh(P)

implies that

∫
P

vh · (g⊥ − c) dA =
∫
P
�∇Pvh · (g⊥ − c) dA.

The last integral is computable because �∇Pvh is computable from the degrees of

freedom of vh and g⊥ − c is a known function.
We use the projection operators �0

P and �∇P to define the inner product and
semi-inner product in T Vh(P) as follows

(
uh, vh

)
T Vh(P)

= (�0
Puh,�

0
Pvh

)
P +S T Vh

P
(
(1−�0

P)uh, (1−�0
P)vh

)
,

(12.3.74)

[
uh, vh

]
T Vh(P)

= (∇�∇Puh,∇�∇Pvh
)
P +T T Vh

P
(∇(1−�∇P)uh,∇(I −�∇P)vh

)
,

(12.3.75)

for every uh, vh in T Vh(P). Here, ST Vh

P and T T Vh

P are the stabilizing terms,
i.e., any continuous bilinear forms for which there exist two pairs of strictly positive
constants (t∗, t∗) and (s∗, s∗), which are independent of h, such that

s∗‖vh‖2
0,P ≤ ST Vh

P (vh, vh) ≤ s∗‖vh‖2
0,P ∀vh ∈ T Vh(P) ∩ ker(�0

P),

(12.3.76)

t∗‖∇vh‖2
0,P ≤ T T Vh

P (∇vh,∇vh) ≤ t∗‖∇vh‖2
0,P ∀vh ∈ T Vh(P) ∩ ker(�∇P).

(12.3.77)

In practice, we can design such stabilizations as in [45, 67]. The inner and semi-inner
products respectively defined in (12.3.76) and (12.3.77) satisfy two fundamental
properties, e.g., Polynomial Consistency and Stability, which are stated in the
following theorem.
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Theorem 12.7 The inner product defined in (12.3.76) and semi-inner products
defined in (12.3.77) have the two properties:

– Polynomial Consistency: for every vector-valued field vh ∈ T Vh(P) and
polynomial q ∈ [P2(P)]2 it holds that:

(
vh, q

)
T Vh(P)

= (vh, q)P and
[
vh, q

]
T Vh(P)

= (∇vh,∇q
)
P.
(12.3.78)

– Stability: there exists a pairs of strictly positive constants (t∗, t∗) independent of
h such that

t∗‖vh‖2
0,P ≤

(
vh, vh

)
T Vh(P)

≤ t∗‖vh‖2
0,P, (12.3.79)

and

t∗‖∇vh‖2
0,P ≤

[
vh, vh

]
T Vh(P)

≤ t∗‖vh‖2
0,P. (12.3.80)

for any vh ∈ T Vh(P).

Proof The proof of this theorem uses the same argument of the proof of Theo-
rem 12.2 and is, thus, omitted. ��

The global space T Vh is given by

T Vh =
{
vh ∈

[
H 1(�)

]2 : ∀P ∈ �h vh|P ∈ T Vh(P)
}
.

We will endow this space with an inner product and a semi-inner product beginning
with their local definitions.

(
uh, vh

)
T Vh

=
∑
P∈�h

(
uh, vh

)
T Vh(P)

∀uh, vh ∈ T Vh,

[
uh, vh

]
T Vh

=
∑
P∈�

[
uh, vh

]
T Vh(P)

∀uh, vh ∈ T Vh.

These inner product and semi-inner product induce the norms and semi-norm

|||vh|||T Vh
= (vh, vh)1/2

T Vh
,

∣∣vh∣∣T Vh
= [vh, vh]1/2

T Vh
, (12.3.81a)

|||vh|||1,T Vh
=
(
|||vh|||2T Vh

+ ∣∣vh∣∣2T Vh

)1/2
. (12.3.81b)
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The norm in the topological dual space of T Vh,0 denoted by T V ′
h,0 is:

|||f h|||−1,T Vh
= sup

vh∈T Vh,0\{0}

(
f h, vh

)
T Vh∣∣vh∣∣T Vh

.

The global inner product and semi-inner product and their induced norm and semi-
norm also satisfy the consistency and stability properties as stated in the following
corollary.

Corollary 12.3 The norms and semi-norm in (12.3.81) are equivalent to the

[L2(�)]2 and
[
H 1(�)

]2
inner products and semi-inner product respectively. In

other words, there exists t∗, t∗ > 0 independent of the mesh characteristics such
that for any vh ∈ T Vh it holds that

t∗‖vh‖2
0,� ≤ |||vh|||T Vh

≤ t∗‖vh‖2
0,�, (12.3.82a)

t∗‖∇vh‖2
0,� ≤ |||vh|||2,∇T Vh

≤ t∗‖∇vh‖2
0,�, (12.3.82b)

t∗‖vh‖2
1,� ≤ |||vh|||21,T Vh

≤ t∗‖vh‖2
1,�. (12.3.82c)

Proof This result is an immediate consequence of Theorem 12.7 and we omit the
proof. ��

We can define the global projector IT Vh : [H 1(�)
]2 → T Vh such that

IT Vh (v)|P = IT Vh

P

(
v|P
)

for every P ∈ �h and v ∈ [H 1(�)]2. We also define

the global space T Vh,0 of the functions in T Vh with zero trace on the boundary
of �:

T Vh,0 =
{
vh ∈ T Vh : vh|∂� ≡ 0

}
.

We note that the spaces T Vh and Ph also form a de Rham complex of the form
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Similar to the case in Sect. 12.3.5 this complex is commutative as we prove in the
following Theorem:

Theorem 12.8 For every v ∈ [H 1(�)
]2

we have that

div IT Vh(v) = IPh(div v). (12.3.83)

Proof Consider a cell P ∈ �h then according to the criterion (U3) we have that

∫
∂P

IT Vh (v) · nd� =
∑
e∈∂P

∫
e

IT Vh(v) · nd� =

=
∑
e∈∂P

∫
e

IT Vh(v) · nd� =
∫
∂P

IT Vh (v) · nd�. (12.3.84)

Therefore, since divIT Vh(u) ∈ P0(P) we can use the divergence theorem to
compute its divegence yielding that

divIT Vh (v) = 1

|P|
∫
∂P

IT Vh (v) · nd� = 1

|P|
∫
∂P

v · nd� =

= 1

|P|
∫
P

div vdA = IPh(div v). (12.3.85)

��
Note that the set of degrees of freedom are transformed in accordance to the

diagram:

div

Moreover, we can also guarantee that our scheme yields velocity fields that are
exactly divergence free. We prove this fact in the following Theorem:

Theorem 12.9 Assume that {un
h}Nn=0 solve the discrete formulation (12.3.4) then

∀n ∈ [0, N] : div un
h = 0. (12.3.86)
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Proof For the case n = 0 we know that div u0 = 0, thus by Theorem 12.8 we have
that

div u0
h = divIT Vh(u0) = IPh(div u0) = IPh(0) = 0. (12.3.87)

Let 0 < n ≤ N then, we know by definition of T Vh that div un
h ∈Ph. Moreover,

since IT Vh preserves line integrals we can deduce that

∫
�

div un
hdA =

∫
∂�

IT Vh(ub(n�t)) · nd� =
∫
∂�

uvb(n�t) · nd� = 0.

(12.3.88)

Thus, it is the case that div uh ∈Ph,0. Finally, by Eq. (12.2.2a) we know that div un
h

is orthogonal to every function in Ph,0 implying that

div un
h = 0. (12.3.89)

��
Remark 12.2 Classically in the VEM literature readers will find the more common
interpolation operator IT Vh instead of IT Vh . This operator is set in such a way

that for v ∈ [H 1(�)
]2

the image IVh (v) and preimage v share the exact same
degrees of freedom. However, this operator will not yield a commuting De-Rham
complex. More importantly, unless the initial and boundary conditions ub and u0
are piecewise quadratic polynomials over the set of edges of the mesh the value of
the line integrals will not agree with the intepolated quantities. This will guarantee
that the method will NOT yield divergence free velocity fields since in this case

∫
�

div uhdA =
∫
∂�

uh · nd� =
∫
∂�

IT Vh (u0) · nd� "= 0. (12.3.90)

Rather, the best we can hope for is that the divergence of the velocity field will
vanish as the mesh size shrinks. We amend this deficiency by using the special
projector IT Vh .

Finally, we present a result regarding the stability of the virtual element approxima-
tions using the spaces T Vh,0 and Ph,0, which are specifically chosen to satisfy an
inf-sup condition.

Theorem 12.10 The projector IT Vh : [H 1
0 (�)

]2 → T Vh,0 satisfies

(
divIT Vhv, qh

)
Ph
= (div v, qh

)
Ph

and |||IT Vhv|||1,T Vh
≤ Cπ‖v‖1,�,
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for every vector-valued field v ∈ [H 1
0 (�)

]2
and scalar function qh ∈ Ph,0. Here,

Cπ is a positive, real constant independent of h. As a consequence, the two spaces
T Vh,0 and Ph,0 form an inf-sup stable pair and satisfy

inf
qh∈Ph,0

sup
vh∈T Vh,0

(
div vh, qh

)
Ph

|||vh|||1,T Vh
|||qh|||Ph

> βπ > 0 (12.3.91)

for some real and strictly positive constant βπ .

This theorem provides a major result since a pair of finite element spaces that do
not satisfy such an inf-sup condition will yield unstable simulations of fluid flow
phenomena.

12.4 Energy Estimates

The conforming nature of our VEM allows us to mimic many properties of the
continuous setting. Among them, one of the more important is the preservation of
certain types of estimates in the L2(�)-norm, which are obtained by testing the
variational formulation against the exact solution and applying Gronwall’s lemma,
see [51]. In this section, we present an estimate of this type for the continuous
system (12.2.2a)–(12.2.2e) and its discrete counterpart (12.3.4a)–(12.3.5).

We start with the decompositions

u = û+ ub and E = Ê + Eb, (12.4.1)

where ub and Eb are extensions of the boundary conditions inside the domain and

û ∈ [H 1
0 (�)

]2
and Ê ∈ H0(rot;�) are functions to be found. The extension to the

boundary condition of the velocity field is such that

div ub = 0 in � and ub(x) = 0 if d(x, ∂�) ≥ ε

for h > ε > 0 for a given threshold ε, d(x, ∂�) being the distance between x and
the boundary ∂P. We can construct such an extension ub by defining the domain
�ε =

{
x ∈ � : d(x, ∂�) < ε

}
and taking ub to be the solution to the problem:

−�ûb +∇s = 0 in �ε, (12.4.2a)

div ûb = 0 in �ε, (12.4.2b)

ûb = ub on ∂�, (12.4.2c)

ûb = 0 on ∂(� \�ε). (12.4.2d)
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Problem (12.4.2) is well-posed, cf. [28]. We further decompose the current density
into its values along the boundary and the interior by:

Ĵ = Ê + û×B and Jb = Eb + ub ×B.

The following theorem gives the continuous energy estimate. Similar estimates are
reported in [54, 62, 63].

Theorem 12.11 Let (u,B, E, p) solve the variational formulation (12.2.15a)–
(12.2.15d) in the time interval [0, T ]. Then,

1

2

d

dt

∥∥û∥∥2
0,� +

1

2Rm

d

dt

∥∥B∥∥2
0,� + R−1

e

∥∥∇û
∥∥2

0,� +
∥∥Ĵ∥∥2

0,�

=
(
f , û

)
−
( ∂

∂t
ub, û

)
− R−1

e

(
∇ub,∇û

)
− R−1

m

(
rotEb,B

)
−
(
Jb, Ĵ

)
,

(12.4.3)

and

e−T

2

∥∥û(T )∥∥2
0,� +

e−T

2Rm

∥∥B(T )
∥∥2

0,� +
∫ T

0

(
e−t

2Re

∥∥∇û
∥∥2

0,� +
e−t

2

∥∥Ĵ∥∥2
0,�

)
dt

≤ e−T

2

∥∥û(0)∥∥2
0,� +

e−T

2Rm

∥∥B(0)
∥∥2

0,�

+
∫ T

0

(
e−tRe‖f ‖2−1,� +

e−t

2

d

dt

∥∥ub

∥∥2
0,� + R−1

e e−t
∥∥∇ub

∥∥2
0,�

+ e−t

2Rm

∥∥rotEb

∥∥2
0,� +

e−t

2

∥∥Jb∥∥2
0,�

)
dt. (12.4.4)

For the discrete version of the estimates presented in Theorem 12.11, for any n ∈
[0, N − 1], we decompose

En+θ
h = Ên+θ

h +I Vh(En+θ
b ), (12.4.5)

un+1
h = ûn+1

h + IT Vh(un+1
b ), (12.4.6)

where (Ên+θ
h , ûn+θ

h ) ∈ Vh,0 × T Vh,0 and Eb,ub are such that their evaluations
in � \ �ε are identically zero. The condition on the boundary data is required to
guarantee that the degrees of freedom of these boundary fields all lie along the
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boundary. Next, for any n, 0 ≤ n ≤ N − 1, we define

Ĵ n+θ
h = Ên+θ

h +IVh (̂un+θ
h ×�RT Bn+θ

h ),

J n+θ
h,b = IVh(En+θ

b )+IVh(un+θ
b ×�RT Bn+θ

h ).

The next result is a discrete counterpart of Theorem 12.11.

Theorem 12.12 Let
{
(un

h,B
n
h)
}N
n=0 ⊂ T Vh × Eh and

{
(En+θ

h , pn+θ
h ))

}N−1
n=0 ⊂

Vh ×Ph,0 solve the virtual element formulation (12.3.4a)–(12.3.5). Then, it holds
that

(L1)+ (L2) = (R), (12.4.7)

where

(L1) = �t
(
θ − 1/2

)
⎛
⎝ |||̂u

n+1
h − ûn

h|||2T Vh

�t2
+
|||Bn+1

h − Bn
h|||2Eh

�t2Rm

⎞
⎠

+
⎛
⎝ |||̂u

n+1
h |||2

T Vh
− |||̂un

h|||2T Vh

2�t
+
|||Bn+1

h |||2
Eh
− |||Bn

h|||2Eh

2�tRm

⎞
⎠ ,

(12.4.8a)

(L2) = R−1
e

∣∣̂un+θ
h

∣∣2
T Vh

+ |||Ĵ n+θ
h |||2

Vh
+ (12.4.8b)

(R) =
(
f h, û

n+θ
h

)
T Vh

−
(IT Vhun+1

b − IT Vhun
b

�t
, ûn+θ

h

)
T Vh

− R−1
e

[
IT Vhun+θ

b , ûn+θ
h

]
T Vh

−
(
J n+θ
h,b , Ĵ n+θ

h

)
Vh

− R−1
m

(
rotIVhEn+θ

b ,Bn+θ
h

)
Eh
. (12.4.8c)

If θ ∈ [1/2, 1],

αN
(
|||̂uN

h |||2T Vh
+ R−1

m |||BN
h |||2Eh

)

+
N∑
n=0

γαn
(
R−1
e

∣∣̂un+θ
h

∣∣2
T Vh

+ |||Ĵ n+θ
h |||2

Vh

)
�t
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≤
(
|||IT Vh (u0)|||2T Vh

+ R−1
m |||I Eh(B0)|||2Eh

)

+
N∑
n=0

γαn
(
Re|||f h|||2−1,T Vh

+�t−1|||IT Vh (un+1
b − un

b)|||2T Vh

+ R−1
e

∣∣IVhun+θ
b

∣∣2
T Vh

+ R−1
m |||rotIVhEn+θ

b |||2
Eh
+ |||J n+θ

h,b |||2Vh

)
�t, (12.4.9)

12.5 Linearization

In this section, we are mainly concerned with the development of a solver for the
discrete problem (12.3.4a)–(12.3.5) at a given time instant. For this reason, we keep
θ and n fixed, and we omit them from our notation when not strictly necessary. This
section is based on the reference [41].

In practice, we manipulate arrays of degrees of freedom of virtual element
scalar and vector functions, which we represent as row vectors and denote with the
superscript I , e.g., uI

h is the row vector of degrees of freedom of uh. We introduce
the finite dimensional linear space of column vectors

Xh,0 =
{
(vIh,C

I
h,D

I
h, q

I
h)

T : (vh,Ch,Dh, qh) ∈ T Vh,0 × Eh × Vh,0 ×Ph,0

}
,

equipped with the Euclidean (�2) inner product.
We pose the discrete formulation (12.3.4a)–(12.3.5) in the space Xh. In order to

exploit symmetry in the Jacobian matrix we replace the discrete form of Faraday’s
Law (12.3.4c) given by

(Bh − Bn
h

�t
,Ch

)
Eh
+ (rotEh,Ch

)
Eh
= 0, (12.5.1)

with the equivalent expression

θR−1
m

(Bh − Bn
h

�t
,Ch

)
Eh
+ θR−1

m

(
rotEh,Ch

)
Eh
= 0, (12.5.2)
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and add it to (12.3.4a), (12.3.4b) and (12.3.4d). Then, we define a function G(·) in
such a way that G(xh) · yh is the left hand side of the resulting expression, where
we assume that xh and yh are the column vector given by

xh =
(̂
u
n+1,I
h ,B

n+1,I
h , Ê

n+θ,I
h , p

n+θ,I
h

)T and yh =
(
vIh,C

I
h,D

I
h, q

I
h

)T
.

With these positions, the variational formulation (12.3.4a)–(12.3.5) is equivalent to
the problem:
Find xh ∈Xh such that

G(xh) = 0. (12.5.3)

Indeed, on testing (12.5.3) against yh = (vh, 0, 0, 0) we retrieve (12.3.4a), and the
other three equations can be attained similarly. This is the set up to apply a Jacobian-
free Newton–Krylov method. This method is highly parallelizable and has optimal
speed of convergence.

The Newton method at every iteration will produce an updated estimate for the
zeroes of G according to

x0
h =

(̂
u
n,I
h ,B

n,I
h , Ê

n−1+θ,I
h , p

n−1+θ,I
h

)T
, (12.5.4)

x
(m+1)
h = x

(m)
h + δx

(m)
h , where ∂G(x

(m)
h )δx

(m)
h = −G(xm

h ), (12.5.5)

where ∂G : Xh,0 → L (Xh,0) is the Jacobian of G, the space L (Xh,0) being
the collection of bounded linear operators from Xh,0 to its dual space X ′

h,0. The
reason we substitute (12.3.4c) with (12.5.2) is to attain some symmetry in the
Jacobian matrix (which is useful in the well-posedness analysis). The practical
implementation of this method requires to compute and store the Jacobian matrix,
which may take a lot of computational power and memory. Instead we propose a
Jacobian-Free Krylov method.

At each time step we perform a series on Newton iterations where on each
iteration we solve a linear system of the form

∂G(x)δx = −G(x) (12.5.6)

We approximate δx using a GMRES iteration. One of the major benefits using
GMRES is that we need not know the entries in the Jacobian matrix ∂G. We need
only be able to compute the matrix-vector product ∂G(x)δy for any δy ∈ Xh,0
We can approximate the action of the Jacobian matrix using the operator DG(x) :
Xh,0 →Xh,0 defined using the finite difference approximation:

DG(xh)δxh = G(xh + εδxh)−G(xh)

ε
, (12.5.7)
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with ε = 10−7 (see [57, Page 80]). We emphasize that DG(xh) itself is not
computed, only its action DG(xh)δxh is. Thus, the algorithm updates x

(m+1)
h from

x
(m)
h , with 0 ≤ m ≤ M − 1, as follows:

x
(m+1)
h = x

(m)
h + δx

(m)
h , where DG(x

(m)
h )δx(m) = −G(x

(m)
h ),

(12.5.8a)

with the initial guess x
(0)
h =

⎧⎨
⎩
(̂
u
n,I
h ,B

n,I
h , Ê

n−1+θ,I
h , p

n−1+θ,I
h

)T
n > 0,

(̂
u

0,I
h ,B

0,I
h , 0, 0

)T
n = 0.
(12.5.8b)

We define intermediate approximations at iteration m and the final values through
the degrees of freedom of x

(m)
h and x

(m)
h , respectively:

(
û
n+1,(m),I
h ,B

n+1,(m),I
h , Ê

n+θ,(m),I
h , p

n+θ,(m),I
h

)T = x
(m)
h ,

(
ûn+1
h ,Bn+1

h , Ên+θ
h , pn+θ

h

)
= x

(M)
h .

This Krylov method requires a user-defined input tolerance ηm that we fix as
follows:

‖DG(x
(m)
h )δx(m) +G(x

(m)
h )‖2 ≤ ηm‖G(x

(m)
h )‖2, (12.5.9a)

ηm = min

{
ηmax,max

(
ηBm, γ

εt

‖G(x
(m)
h )‖2

)}
, (12.5.9b)

ηBm = min
{
ηmax,max

(
ηAm, γ η

α
m−1

)}
, ηAm = γ

(
‖G(x

(m)
h )‖2

‖G(x
(m−1)
h )‖2

)α

.

(12.5.9c)

with α = 1.5, γ = 0.9, ηmax = 0.8. The value of εt is chosen to guarantee that the
non-linear convergence has been achieved.

‖G(x
(m)
h )‖2 < εa + εr‖G(x

(0)
h )‖2 = εt , (12.5.10)

εa =
√

#dof× 10−15,, εr = 10−4. (12.5.11)

Where #dof is the sum of the number of degrees of freedom in each of our modeling
spaces. The value of these parameters is chosen in accordance with [9]. However,
this strategy is much more general [50]. The guiding philosophy being a desire
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to guarantee super-linear convergence while simultaneously not over-solving with
unnecessary GMRES iterations.

The non-linear nature of the inexact Newton steps may shed doubt as to whether
or not this solver preserves the divergence free nature of the magnetic and velocity
fields. The following result is a consequence of the Faraday law and the conservation
of mass law. Note that the finite difference approximation to their Jacobian is exact
since both of these laws are linear.

Theorem 12.13 Suppose that δxh solves the problem

DG(xh)δxh = −G(xh). (12.5.12)

Then the velocity component δuh of δxh satisfies that

div δuh = 0. (12.5.13)

Moreover, we must have that

div u
n,(m)
h = 0 ∀n ∈ [0, N],m ∈ [0,M]. (12.5.14)

Proof Firstly, note that div δuh ∈Ph,0 since by definition of T Vh, div δuh ∈Ph

and
∫
�

div δuhdA =
∫
∂�

IT Vh(δuh) · nd� =
∫
∂�

δuh · nd� = 0. (12.5.15)

Next we test (12.5.12) against yh = (0, 0, 0, qIh) yields that

∀qh ∈Ph,0 :
(
div ∂uh, qh

)
Ph
= 0. (12.5.16)

Meaning that div ∂uh is orthogonal to every function in Ph,0 obtaining (12.5.13).
To obtain (12.5.14) we begin by assuming that div u

n,(m)
h , thus by the previous result

we have that

div u
n,(m+1)
h = div u

n,(m)
h + div δuh = 0. (12.5.17)

��
Theorem 12.14 Suppose δxh is a solution of the linear problem

DG(xh)δxh = −G(xh). (12.5.18)

Then we have the following relation for the δBh, δuh components of δxh

div δBh = div (Bn
h − Bh). (12.5.19)
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Proof Testing (12.5.18) against yh = (0,CI
h, 0, 0) yields

�t−1
(
δBh,Ch

)
Eh
+
(

rot δÊh,Ch

)
Eh
−
(Bh − Bn

h

�t
,Ch

)
Eh
−
(

rot Êh,Ch

)
Eh
= 0.

Since Ch can be selected arbitrarily, the relation above is equivalent to

�t−1 [δBh + Bh − Bn
h

] = −rot
(
δÊh + Êh

)
. (12.5.20)

The assertion of the theorem follows by taking the divergence of both sides. ��
Corollary 12.4 If the initial conditions on the magnetic field B0 satisfy that
div B0 = 0 then updates defined by (12.5.8) will satisfy that

div δBn,(m)
h = 0 ∀n ∈ [0, N],m ∈ [0,M].

implying that

div Bn
h = 0 ∀n ∈ [0, N].

Proof The divergence of the initial estimate can be computed using the commuting
property of the diagram in Theorem 12.5. Indeed,

div B0
h = divI Eh(B0) = IPh (div B0) = 0.

Next, suppose that div hB
n
h = 0. Then, by definition we have that div B

n+1,0
h = 0.

For the inductive step we can further assume that div B
n+1,m
h = 0, so that from

Theorem 12.14 we find that

div B
n+1,(m+1)
h = div B

n+1,(m)
h + div δBn+1,(m)

h = div (2B
n+1,(m)
h − Bn

h) = 0,

which implies that assertion of the corollary. ��

12.6 Well-Posedness and Stability of the Linear Solver

The linearization strategy laid out in Sect. 12.5 can be summarized as follows. We
are given a set of initial conditions. Then, at each time step we perform a series of
Newton iterations, each one of these requiring the solution δxh ∈ Xh,0 of a linear
system like:

∂G(xh)δxh = −G(xh). (12.6.1)
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for any given xh ∈Xh,0. To compute the Jacobian ∂G(xh) we use the definition:

[
∂G(xh)δxh

] · yh = lim
ε→0

G(xh + εδxh) · yh −G(xh) · yh

ε
. (12.6.2)

The limit above yields

[∂G(xh)δxh] · yh = �1(yh)+ �2(yh)+ �3(yh)+ �4(yh), (12.6.3)

where xh = (̂uI
h,B

I
h, Ê

I
h, p

I
h)

T , δxh = (δûI
h, δB

I
h, δÊ

I
h, δp

I
h)

T , yh =
(vIh,C

I
h,D

I
h, q

I
h)

T , and

�1(yh) = �t−1
(
δûh, vh

)
T Vh

+ ϑR−1
e

[
δûh, vh

]
T Vh

+ ϑ
(
Êh,I

Vh(vh ×�RT δBh)
)
Vh

+ ϑ
(
δÊh,I

Vh(vh ×�RT Bh)
)
Vh

−
(

div vh, ph

)
Ph

,

�2(yh) = ϑ
(

div δûh, qh

)
Ph

,

�3(yh) = �t−1
(
δBh,Ch

)
Eh
+
(

rot δEh,Ch

)
Eh
,

�4(yh) =
(
δÊh + ϑIVh (̂uh ×�RT δBh + δûh ×�RT Bh),Dh

)
Vh

+ R−1
m ϑ

(
δBh, rot hDh

)
Eh
.

These linear systems are in the form of a saddle-point problem satisfying the
hypothesis of the following theorem, which can be used to prove the well posedness.

Theorem 12.15 Let U and P be Hilbert spaces respectively endowed with the
norms ‖ · ‖U and ‖ · ‖P . Let a : U × U → R, b : U × P → R be two bounded
bilinear forms satisfying the inf-sup conditions

inf
u∈U0

sup
v∈U0

a(u, v)

‖u‖U ‖v‖U > 0, inf
p∈P sup

u∈U
b(u, p)

‖u‖U ‖p‖P > 0, (12.6.4)

where

U0 =
{
u ∈ U : ∀p ∈ P b(u, p) = 0

}
. (12.6.5)
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Then, for every pair of bounded linear functionals f ∈ U ′ and g ∈ P ′ there exists
unique u ∈ U and p ∈ P such that for any v ∈ U and q ∈ P it is the case that

a(u, v)− b(v, p) = f (v) ∀v ∈ U,

b(u, q) = g(q) ∀q ∈ P.

Moreover there exists a constant C > 0 independent of f and g such that

‖u‖U + ‖p‖P ≤ C (‖f ‖U ′ + ‖g‖P ′ ) , (12.6.6)

with the (standard) definition of the norms in the dual spaces:

‖f ‖U ′ = sup
u∈U\{0}

|f (u)|
‖u‖U , ‖g‖P ′ = sup

p∈P \{0}
|g(p)|
‖p‖P . (12.6.7)

Proof A proof of this theorem can be found in [28, 33]. ��
Consider the space:

Xh = T Vh,0 × Eh × Vh,0, (12.6.8)

and the bilinear form ah : Xh × Xh → R, whose evaluation at δξh =
(δûh, δBh, δÊh), ηh = (vh,Ch,Dh) is given by ah(δξh, ηh) = �1(vh)+ �2(Ch)+
�3(Dh), cf. Eq. (12.6.3). Here, and for the remainder of the section, we fix the value
xh = (̂uh,Bh, Êh). We can reformulate problem (12.6.1) as:
Find (δξh, δph) ∈ Xh ×Ph,0 such that for all (ηh, qh) ∈ Xh ×Ph,0 it holds that

ah(δξh, ηh)− bh(vh, δph) = f (ηh), (12.6.9a)

bh(δûh, qh) = g(qh), (12.6.9b)

Where f ∈ X′h and g ∈P ′
h,0 are some appropriate bounded linear functionals and

bh(vh, qh) =
(
div vh, qh

)
Ph

. (12.6.10)

The strategy we follow to prove the well-posedness of the virtual element
approximation proceeds in three steps:

(i) we introduce an auxiliary problem;
(ii) we show that the auxiliary problem and problem (12.6.9) are equivalent;
(iii) we show that the auxiliary problem is well posed.

In the rest of this section we briefly sketch the various steps of this argument, see
Chapter 5 in [73] for details.
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The auxiliary problem is given by: Find (δξh, δph) ∈ Xh ×Ph,0 such that for
all (ηh, qh) ∈ Xh ×Ph,0 it holds that

ah,0(δξh, ηh)− bh(vh, δph) = fh(ηh), (12.6.11a)

bh(δûh, qh) = gh(qh). (12.6.11b)

Note that

ah,0(δξh, ηh) = ah(δξh, ηh)+ θR−1
m

(
div δBh, div Ch

)
Ph

. (12.6.12)

Then, to establish the equivalence between (12.6.9) and (12.6.11), we need to ensure
that approximations using the auxiliary problem (12.6.11) will have divergence free
magnetic fields. This is settled in the following Theorem:

Theorem 12.16 Let δξh = (δûh, δBh, δÊh) ∈ Xh and ph ∈Ph,0 solve (12.6.11).
If the initial conditions on the magnetic field are divergence free, then it holds that
div δBh = 0.

We can leverage the result of this theorem to show that both problems (12.6.9)
and (12.6.11) are equivalent as stated by the following lemma.

Lemma 12.5 The problems (12.6.9) and (12.6.11) are equivalent.

Finally, we present the well-posedness of (12.6.11). Following the framework laid
out in [54], we introduce the norm on Xh,0 such that for any ξh = (uh,Bh,Eh) ∈
Xh,0 we have

|||ξh|||2Xh,0

:= |||vh|||2�t,∇ + |||Eh|||2�t,rot
+ |||Bh|||2

�t,div
, (12.6.13a)

|||uh|||2�t,∇ := �t−1|||uh|||2T Vh
+ ∣∣uh

∣∣2
T Vh

+�t−1|||div uh|||2Ph
,

(12.6.13b)

|||Bh|||2
�t,div

:= �t−1|||Bh|||2Eh
+ |||div Bh|||2Ph

, (12.6.13c)

|||Eh|||2�t,rot
:= |||Eh|||2Vh

+�t|||rotEh|||2Eh
. (12.6.13d)

Well-posedness relies on Theorem 12.15. The first hypothesis established that the
bilinear forms in the formulation of (12.6.11) are continuous

Lemma 12.6 Suppose that�t1/2ûh, ûh,Bh ∈ [L∞(�)]2 and Êh ∈ L∞(�). Then,
the bilinear form ah,0 is continuous in the norms defined in (12.6.13a).

The next lemma guarantees that the bilinear form ah,0 satisfies the inf-sup condition.
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Lemma 12.7 Let θ > 0, and ûh,Bh ∈ [L∞(�)]2 and Êh ∈ L∞(�) . For a �t

small enough, we have that

inf
δξh∈Xh,0

sup
ηh∈Xh,0

ah,0(δξh, ηh)

|||δξh|||Xh

|||ηh|||Xh

≥ C > 0,

where Xh,0 =
{
(vh,Bh,Eh) : div vh = 0

}
and C is a strictly positive, real constant

independent of h and �t .

12.7 Numerical Experiments

In this section, we show some numerical results for the approximation of the
subsystem of (12.2.2a)–(12.2.2e) that describes the electromagnetic part of the
MHD model.

∂

∂t
B + rotE = 0 in �, (12.7.1a)

E + u×B − R−1
m rot B = 0 in �, (12.7.1b)

B(0) = B0 in � (12.7.1c)

E ≡ Eb along ∂�. (12.7.1d)

We present an experimental study of the convergence properties of the VEM and
show the performance when we apply the VEM to the numerical modeling of a
magnetic reconnection model.

12.7.1 Experimental Study of Convergence

The first test that we perform regards the convergence rate of the VEM. We consider
the computational domain � = [−1, 1] × [−1, 1] partitioned by three different
mesh families, a triangular mesh, a perturbed quadrilateral mesh and a Voronoi
Tessellation. We assume that an external velocity field u = (ux, uy)

T is imposed,
whose components are

ux(x, y) = − (x2 + y2 − 1)(sin(xy)+ cos(xy))− 120ex + 100ey

2(50ex − y sin(xy)+ y cos(xy))
, (12.7.2)

uy(x, y) = (x2 + y2 − 1)(sin(xy)+ cos(xy))− 120ex + 100ey

2(50ey + x sin(xy)− x cos(xy))
. (12.7.3)
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The initial and the boundary conditions are set in accordance with the electric and
magnetic fields, which we assume as the exact solutions.

B(x, y, t) =
(

50ey + x sin(xy)− x cos(xy)

50ex − y sin(xy)+ y cos(xy)

)
e−t , (12.7.4)

E(x, y, t) = −(50(ex − ey)+ cos(xy)+ sin(xy)
)
e−t . (12.7.5)

The simulation uses the time discretization given by θ = 1/2 and time step
�t = 0.05h2, and we integrate from t = 0 to t = T , the final time being T = 0.25.
We measure the relative errors of E and B through the mesh dependent norms of
the difference between the exact and numerical solutions divided by the norm of
the exact solution. The results are shown in Fig. 12.5. In each plot, we show three
different convergence curves. These curves refer to the three different possibilities
that we presented in Sect. 12.3.2.1 for the construction of the inner product in the
space Vh. These plots provide evidence that the convergence rate for the electric
field is quadratic while the convergence rate for the magnetic field is linear. In
the case of Voronoi tessellations the convergence plots associated with the inner
product defined by the Galerkin interpolator (GI) show some irregular behavior.
These types of meshes may have arbitrarily small edges conflicting with the criteria
normally used in the VEM. Another possible explanation may have to do with the
G.I, note that this irregular behavior does not happen with the other two sample
inner products.

An important feature of the VEM is that the divergence of the magnetic field
should remain zero throughout the simulation. In Fig. 12.6 we show plots of the
evolution of the L2-norm of the divergence of the magnetic field. These show that
this quantity remains very close, in norm, to the machine epsilon.

12.7.2 Magnetic Reconnection

The next numerical experiment involves a characteristic feature of resistive MHD
– the phenomenon of magnetic reconnection. At very large scales, usually in space
physics, the behavior of plasmas can be well-approximated using ideal MHD. In
this case, according to the Alfven’s Theorem, the magnetic field lines will advect
with the fluid, see Section 4.3 in [46] for a full discussion. This feature is often
referred to as the “frozen-in” condition on the magnetic field. In certain regions of
the Earth’s magnetosphere, namely the magnetopause and magnetotail, the magnetic
reconnection will lead to very thin current sheets that separate regions across which
the magnetic field changes substantially.
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Fig. 12.5 Convergence plots of the VEM developed for the system (12.7.1). The type of mesh
used in the simulation is portrayed in the lower right corner of each plot. The three convergence
curves shown in each plot show the different performance between the three possibilities of the
inner product in the space Vh, see Sect. 12.3.2.1. Each of these inner products is associated with
a projector, they are the elliptic projector (E), the least squares projector (LS) and the Galerkin
interpolator (GI)
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Fig. 12.6 Plots of the time evolution of the square of the L2 norm of the divergence of the
numerical magnetic field. We present three different types of meshes, these are displayed in the
lower right hand corner of each plot

In this numerical experiment, we consider one Harris sheet constrained to the
computational domain � = [−1, 1]2 and given by the following profile of the
magnetic field, first introduced in [53],

B0(x, y) = (tanh y, 0). (12.7.6)

The simplicity of this condition has made it a popular choice in modeling magnetic
reconnection. We will use the expression (12.7.6) as the initial condition for the
magnetic field. We will further assume that the particles in this sheet are subjected
by some external agent to a flow described by

u(x, y, t) = (−x, y). (12.7.7)

This flow will force the magnetic field lines to come together at a single point
making the current density grow. The system becomes highly unstable and the
magnetic field lines begin to tear apart, this phenomenon is called a tearing
instability and magnetic reconnection happens as a response. This process is
described in detail in [58, 76]. We close this model by imposing the boundary
conditions

∀t > 0 : Eb(t) ∈ P0(∂�), and
∫
∂�

Bb(t) · nd� = 0 (12.7.8)

The mesh we are using is refined near the center of the domain �, to guarantee
higher resolution in the region of space where the phenomenon of magnetic
reconnection occurs. The downside of using such a mesh is that a series of hanging
nodes are introduced. This numerical experiment demonstrates the versatility of the
VEM, and the advantage of this method over more classical methods like the FEM
or FDM.

In Fig. 12.7 we display the mesh used along with a set of frames displaying the
evolution in time of the magnetic field. The phenomenon of magnetic reconnection
begins at T = 0 and by T = 0.450 a steady state is achieved.
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Fig. 12.7 Frames displaying the evolution, in time, of the magnetic field. The phenomenon of
magnetic reconnection begins right away and by T = 0.450 a steady state is achieved
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12.8 Conclusions

In this chapter, we developed a VEM for the PDE system of resistive MHD. In
developing this chapter we have introduced two chains of spaces, see Sects. 12.3.5
and the final results in Sect. 12.3.6. One chain of spaces is aimed at approximating
the electromagnetics submodel, while the other applies to the submodel for fluid
flow. There are terms in the MHD equations that couple the two submodels that
require information about both the phenomena of electromagnetics and fluid flow.
Special care needs to be taken in discretizing these terms so that the fully discretized
MHD system satisfies discrete (stability) energy estimates. These estimate are the
main result of Sect. 12.4. They guarantee the stability of the method.

The VEM, when applied to MHD, yields a large system of non-linear equations.
In order to arrive at approximate solutions a linearization strategy has to be
developed. In Sect. 12.5 we developed a Newton iteration to address this issue. We
were able to prove that this linearization strategy will preserve the divergence of
the magnetic and velocity fields such that if the initial conditions are divergence
free then these non-linear iterations will preserve this divergence free property
in the discrete mesh. The analysis of Sect. 12.6 shows that the set of linear
systems that need to be solved are, in fact, well-posed saddle point problems. This
well-posedness result serves as a first step into developing robust preconditioners
following the framework presented in [64].

In Sect. 12.7 we also presented a series of numerical experiments exploring the
subsystem that describes the electromagnetics. These experiments show that the
(lowest-order) VEM is convergent, the speed of convergence is quadratic for the
electric field and linear for the magnetic field. Further experimentation shows that
the divergence of the magnetic field remains well below machine epsilon. We also
present a model for a phenomenon characteristic of resistive MHD, that of magnetic
reconnection. This model accurately describes the behavior of plasmas in tokamaks
as well as many electromagnetic interactions in the magnetosphere of a planet. Our
compatible discretization closely mimics the behavior of the exact solution to our
model. This model was discretized on a mesh that was refined near the center
of the computational domain where reconnection will happen. Using this mesh
will provide higher resolution in the parts of the domain where such resolution
is required and aids in saving computational resources. Other numerical methods
struggle with this type of mesh because it introduces a series of hanging nodes.
However, the VEM performs just as well in this type of mesh.
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Chapter 13
Virtual Element Methods for Engineering
Applications

Peter Wriggers, Fadi Aldakheel, and Blaž Hudobivnik

Abstract Discretization schemes that base on the virtual element method (VEM)
have gained over the last decade interest in the engineering community. VEM was
applied to different problems in elasticity, elasto-plasticity, fracture and damage
mechanics using different theoretical formulations like phase field approaches.
For predictive simulations of such problems as well linear as nonlinear weak
formulations have to be considered. This contribution is concerned with extensions
of the virtual element method to problems of nonlinear nature where VEM
has advantages, like in micromechanics, fracture and contact mechanics. Low-
order formulations for problems in two dimensions, with elements being arbitrary
polygons, are considered.

13.1 Generic Formulation of a Nonlinear Boundary Value
Problem

Generally a nonlinear problem in solid mechanics can be written in a strong or weak
form. Here we state a generic weak form that will be specified in later sections for
the problems at hand. Generally we can write

a(u , v) = b(v) (13.1.1)

where a(u , v) is a nonlinear operator, being nonlinear in the primal variable u and v

is the test function, also known in the engineering literature as virtual displacement.
The term b(v) on the right hand side of (13.1.1) denotes the loading terms. One
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possible form for a(u , v) for a solid occupying the area/volume � under pure
mechanical loading is

a(u , v) =
∫
�

P (u) · ∇ v d� (13.1.2)

where P (u) is the first Piola–Kirchhoff stress tensor which is in general a nonlinear
function of u. Additionally, the right hand side is given by

b(v) =
∫
�

b̄ · v d�+
∫
∂�

t̄ · v d� (13.1.3)

where b̄ are volume loads and t̄ describe tractions at the surface.
For an approximate solution of (13.1.1) we have to select an ansatz for the primal

variable u which we will denote here in a generic way by uh. Hence the weak form
yields

a(uh , v) = b(v) (13.1.4)

where uh is a function with discrete unknown variables at some specific points
within �.

Additionally it is possible to construct a potential U that can be applied
equivalently to the weak form

U(u) −→ EXTREMUM (13.1.5)

Classically the variation of a potential is computed using the directional or Gateaux
derivative

a(u , v)− b(v) = d

dε
U(u+ ε v)

∣∣∣∣
ε=0

= 0 (13.1.6)

which yields the weak form (13.1.1).
When generating virtual elements using automatic differentiation tools it can be

advantageous for numerical efficiency to start from a potential, see e.g. [51]. This
is restricted to formulations where a potential can be constructed like in elasticity.
However it is possible to use potential forms also in more general applications where
no real potential exists. In such cases a pseudo potential Up can be formulated, see
[51] for the general case and e.g. [81] for elasto-plasticity. The idea is to fix during
the computation of the directional derivative some quantities. These are in e.g.
plasticity the history variables h which depend implicitly on u. Then the directional
derivative

d

dε
Up({u ,h} + ε v)

∣∣∣∣
ε=0 ,h=const.

= a(u , v)− b(v) = 0 (13.1.7)
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yields the correct weak form. This methodology can also be applied for the
discretized form (13.1.4) leading to

d

dε
Up({uh ,h} + ε v)

∣∣∣∣
ε=0 ,h=const.

= a(uh , v)− b(v) = 0 (13.1.8)

The potentials U and Up will be specified in the application sections.

13.2 Formulation of the Virtual Element Method

The virtual element method (VEM) is a generalization of the finite element method,
which has, inspired from modern mimetic finite difference schemes, its roots in the
pioneering work by Brezzi et al. [21]. It has proven to be a competitive discretization
scheme for meshes with irregularly shaped elements that can even become non-
convex.

First work related to the linear Poisson problem and linear elasticity can be
found in [6, 10, 12, 36] and [23]. In [15] and [13] the virtual element method
was further developed for problems including curved element boundaries. So far
applications of virtual elements have been devoted to contact problems in [1, 85],
discrete fracture network simulations in [19, 44, 62], isotropic damage in [27] and
phase field modeling of fracture in [2] as well as for plasticity problems in [7, 43, 81]
and homogenization approaches in [8, 56].

In this section we will define the ansatz function uh which has to be inserted in
the weak form (13.1.4) or the potential forms (13.1.6) and (13.1.8).

Following the work of [21], the main idea of the virtual element method is a
Galerkin projection of the unknowns onto a specific ansatz space. The domain � is
partitioned into non-overlapping polygonal elements which need not to be convex
and can have any arbitrary shape with different node numbers, as plotted in Fig. 13.1
representing a bird-like element with vertices xI . Here a low-order approach is
adopted, see [84] and [81], using linear ansatz functions where nodes are placed
only at the vertices of the polygonal elements. Furthermore, the shape functions at
the element boundaries are linear functions.

In this paper we will restrict ourselves to linear ansatz spaces for the virtual
element method since the resulting elements are extremely robust in nonlinear
applications which can be non-smooth, like plasticity, contact or fracture. Generally
a linear ansatz for a virtual element �e has the following properties:

1. The values of the ansatz space uh are known at the vertices.
2. The ansatz uh is linear and only defined along the edges ∂�e of the virtual

element.
3. The ansatz uh has the property �uh = 0 in �e.

Due to this definition the space for the virtual element has linear variation at the
edges of �e and contains harmonic functions that are implicitly known inside �e.
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Fig. 13.1 Polynomial basis function for the virtual element ansatz with vertices xI . (From: F.
Aldakheel, B. Hudobivnik, A. Hussein, P. Wriggers, Phase-field modeling of brittle fracture using
an efficient virtual element scheme, Computer Methods in Applied Mechanics and Engineering
341, 443–466, 2018. Elsevier. Reproduced with permission)

13.2.1 Ansatz Functions for VEM in Two Dimensions

Classically an ansatz space of a of a problem has to be defined for all primal
variables Uh = {uh , qh}, like displacements uh and other variables qh which could
be the temperature θh or the phase field dh in a coupled problem. The virtual element
method relies now on the split of the ansatz into a part U� representing the projected
fields and a remainder (Uh − U�). As an example this split is written here for the
phase field methodology which constitutes a multi-field approach

Uh = U� + (Uh − U�) with U� := {u�, q�}. (13.2.1)

The projection U� is defined at element level by a linear ansatz function N� as

U� =
⎡
⎣u�x

u�y

q�

⎤
⎦ = A N� =

⎡
⎣a1 a4 a7

a2 a5 a8

a3 a6 a9

⎤
⎦
⎡
⎣1
x

y

⎤
⎦ , (13.2.2)

with the unknowns A. The projection U� can now be computed by the Galerkin
projection

∫
�e

∇N� · ∇U� dV
!=
∫
�e

∇N� · GradUh dV, (13.2.3)

as a function of the nodal unknowns of Uh which is shown below.
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Noting that ∇N� and ∇U� are constant due to the linear ansatz in (13.2.2)
equation (13.2.3) can be rewritten as

∇U�|e != 1

�e

∫
�e

GradUh dV = 1

�e

∫
∂�e

Uh ⊗N dA . (13.2.4)

The vector N represents the normal at the boundary ∂�e of the domain �e of a
virtual element �e, see Fig. 13.2. The label �|e denotes element quantities that have
constant value within an element e.

Now the boundary integral in (13.2.4) has to be evaluated. To this end, a linear
ansatz for the primary fields along the element edges is introduced as

(Uh)k =
2∑

j=1

Mk j Uj = (1− ξk)U1 + ξk U2 with ξk = xk

Lk

, (13.2.5)

for a boundary segment k of the virtual element. The local nodes: 1–2 are chosen
in counter-clockwise order and can be found in Fig. 13.2. In (13.2.5) Mk 1 = 1 −
ξk is the ansatz function along a segment k, related to node 1, ξk ∈ {0, 1} is the
local dimensionless coordinate and U1 represents the nodal values at that node. The
ansatz function Mk 2 = ξk is defined in the same way. From (13.2.4)–(13.2.5), the
unknowns a4–a9 can be computed as

∇U�|e =
⎡
⎢⎣
a4 a7

a5 a8

a6 a9

⎤
⎥⎦ = 1

�e

∫

∂�e

Uh ⊗N dA = 1

�e

nV∑
k=1

∫

∂�k

⎡
⎢⎣
ux(x)Nx ux(x)Ny

uy(x)Nx uy(x)Ny

q(x)Nx q(x)Ny

⎤
⎥⎦ dA,

(13.2.6)

Fig. 13.2 Virtual element with nV nodes and local boundary segment of the bird-like polygonal
element. (From: F. Aldakheel, B. Hudobivnik, A. Hussein, P. Wriggers, Phase-field modeling of
brittle fracture using an efficient virtual element scheme, Computer Methods in Applied Mechanics
and Engineering 341, 443–466, 2018. Elsevier. Reproduced with permission)
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where we have used N = {Nx ,Ny }T and Uh = { ux , uy, d }T . The number
of element vertices, nV , coincides with the number of segments (edges) of the
element, for first order VEM. Note that the normal vector N changes from segment
to segment. In the two-dimensional case it can be computed for a segment k as

Nk =
{
Nx

Ny

}
k

= 1

Lk

{
y1 − y2

x2 − x1

}
k

, (13.2.7)

with x = {xi, yi}i=1,2 being the local coordinates of the two vertices of the segment
k. The integral in (13.2.6) can be evaluated for the ansatz functions (13.2.5) exactly
by using the trapezoidal or Gauss–Lobatto rule. By selecting the vertices as the
Gauss–Lobatto points it is sufficient to know only the nodal values

Ue = {U1,U2, . . . ,UnV }, (13.2.8)

at the nV vertices V in Fig. 13.2. Since the ansatz function in (13.2.5) fulfills the
property MI (xJ ) = δIJ the actual form of the function M does not enter the
evaluation of the boundary integrals which makes the evaluation extremely simple.
The unknowns a4 to a9 follow from (13.2.6) by inspection and can be written in
terms of the nodal unknowns Ue, for further details see e.g. [84].

The projection in (13.2.4) does not determine the ansatz U� in (13.2.2) com-
pletely and has to be supplemented by a further condition to obtain the constants a1,
a2 and a3. For this purpose we adopt the condition that the sum of the nodal values
of Uh and of its projection U� are equal. This yields for each element �e

nV∑
I=1

U�(xI ) =
nV∑
I=1

Uh(xI ), (13.2.9)

where xI are the coordinates of the nodal point I and the sum includes all boundary
nodes. Substituting (13.2.2) and (13.2.5) in (13.2.9), results with the three unknowns
a1, a2 and a3 as

⎡
⎣a1

a2

a3

⎤
⎦ = 1

nV

nV∑
I=1

[
UI −∇U�I · xI

] = 1

nV

nV∑
I=1

⎡
⎣uxI − ux,x xI − ux,y yI

uyI − uy,x xI − uy,y yI

qI − q,x xI − q,y yI

⎤
⎦ .

(13.2.10)

Thus, the ansatz function U� of the virtual element is completely defined.
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13.2.2 Ansatz Functions for VEM in Three Dimensions

In the same way as in the previous section the ansatz function can be defined for a
virtual element in a three-dimensional setting. The projection U� in (13.2.1) is now
defined at element level by a linear ansatz function N� as

U� =

⎡
⎢⎢⎣
u�x

u�y

u�z

q�

⎤
⎥⎥⎦ = A N� =

⎡
⎢⎢⎣
a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

a4 a8 a12 a16

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
x

y

z

⎤
⎥⎥⎦ , (13.2.11)

with the unknowns A. As in the two-dimensional case one can use Eqs. (13.2.4) and
(13.2.9) to determine the parameters a1 to a16. The only difference is that now in
(13.2.4) the integration on the right hand side has to be carried out over the faces of
the polyhydral element. For details, see e.g. [43]

13.2.3 Residual and Tangent Matrix of the Virtual Elements

A virtual element that based only on the projectionU� of the displacement and frac-
ture phase-field would lead to a rank deficient element once the number of vertices
is greater than 3 in two-dimensional and 4 in three-dimensional applications. Thus
the formulation has to be stabilized like the classical one-point integrated elements
developed by [16, 33, 50, 61, 68, 69] and [52]. The generic potential functional
defined in (13.1.5) can be rewritten by exploiting the split in (13.2.1). Thus we
have, by summing up all element contributions for the ne virtual elements

U(U) =
ne

A
e=1

U(Ue) with U(Ue) =
[
Uc(U�)|e + Ustab(Uh − U�)|e

]
,

(13.2.12)

based on a consistency part Uc that is constant and an associated stabilization term
Ustab. The consistency term in (13.2.12) can be computed as

Uc(U�)|e =
∫
�e

W(C�) dV −
∫
�e

f · U� dV −
∫
∂�t

t̄ · U� dA (13.2.13)

where the last two terms describe e.g. mechanical, chemical, thermal actions within
the solid, denoted by f , or at its boundary, given by t̄ . The projected constitutive
state variables are given as C� = {C�,∇q�,H } where H is a variable that
depends implicitly on the primal variables and thus has to be kept constant in the
first variation of Uc.
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The projected strain tensor can be computed from the projected displacement as

C� = F T
� F� = [1+∇ u�]T [1+∇ u�] . (13.2.14)

where the deformation gradient ,F� depends linearly on the gradient of the
projected displacement u�.

The primary fields U� are linear functions and their gradient ∇U� is constant
over the area of the virtual element �e, as a consequence, the potential W is
integrated by evaluating the function at the element centroid xc as shown in Fig. 13.2
and multiplying it with domain size �e analogous to the standard Gauss integration
scheme in FEM

∫
�e

W(C�) dV = W(C�)|c �e (13.2.15)

with the label �|c refers to quantities evaluated at the element centroid xc.1

13.2.4 Stabilization of the Method

Next, the stabilization potential has to be derived for the coupled problem based
on the potential (13.2.12). There exist different approaches that can be followed for
stabilization. Form the mathematical point of view a stabilization of the type

Ustab(Uh − U�) = γ

2

nV∑
I=1

[UI − U�(XI )]
2 (13.2.16)

was introduced in many papers starting with [10] based on the weak form. Here
γ is a stabilization parameter that depends on the dimension of the problem, the
constitutive matrix and the mesh size.

Following the work of [84], we introduce a non-linear stabilization procedure,
that takes the form

Ustab(Uh − U�)|e = Û(Uh)
∣∣
e
− Û(U�)

∣∣
e

(13.2.17)

which has a advantage for linear ansatz functions. In such case it allows the
enhancement of the bending behaviour of solid elements by choosing Û in an
adequate way. For the stabilization density function Ŵ , we propose a similar
function to the original density function (13.2.13), however scaled by a constant

1 The above approach can also be used for higher order formulations, see e.g. [26, 82]. However in
these cases the integral in (13.2.15) has to be evaluated based on a sub triangular mesh involving
more computational effort.
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value β as: Ŵ = β W . In (13.2.17), the stabilization with respect to the projected
primary fields Û(U�)

∣∣
e

can be then calculated as in (13.2.15), yielding

Û(U�)
∣∣
e
= β W(C�)|c �e (13.2.18)

The potential Û(Uh)
∣∣
e

is computed by applying a standard FEM procedure, i.e. by
first discretizing the virtual element domain �e into internal triangle element mesh
consisting of nT = nE−2 triangles as plotted in Fig. 13.3 for the bird-like polygonal
element. Note however that this stabilization does not introduce new variables since
only the vertices of the virtual element are used. With that the integral over �e is
transformed into the sum of integrals over triangles. By using a linear ansatz for the
primary fields U, an approximation can be computed for the constitutive variables C
within each triangle �i

m of the inscribed mesh, see [84]. This gives

Û(Uh)
∣∣
e
=
∫
�e

Ŵ (Ch) dV = β

∫
�e

W(Ch) dV = β

nT∑
i=1

�i
e W(Ch)|c

(13.2.19)

where W(Ch)|c is the potential density function evaluated at the triangle centroid
xi
c and �i

e is the area of the i th triangle in the element e, as plotted in Fig. 13.3.
To compute the stabilization parameter β, a connection to the bending problem

was imposed regarding to the bulk energy as outlined in [84]. For �e → 0 the
difference between the potentials will also go to zero: Û(Uh)− Û(U�)→ 0 , thus
the stabilization will not influence a converged solution. The choice of the factor β
will be discussed later in the application sections. Generally, the parameter β has to
lie in the interval: 0 < β ≤ 1. A good choice that works in many cases is provided

Fig. 13.3 Internal triangular mesh of the bird-like polygonal element. (From: F. Aldakheel, B.
Hudobivnik, A. Hussein, P. Wriggers, Phase-field modeling of brittle fracture using an efficient
virtual element scheme, Computer Methods in Applied Mechanics and Engineering 341, 443–466,
2018. Elsevier. Reproduced with permission)
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by β = 0.3. Note that for β approaching zero, the potential U(Uh) in (13.2.12) will
depend only on the projection part Uc(U�), leading to rank deficiency. However,
for β = 1, a pure FEM solution based on macro-elements with the internal mesh as
shown in Fig. 13.3 will be reproduced.

All further derivations leading to the residual vector Re and the tangent matrix
Ke of the virtual element e were performed with the symbolic tool ACEGEN. This
yields for (13.2.12) along with the potentials (13.2.13) and (13.2.17)–(13.2.19) the
following:

Re = ∂U(Ue)

∂Ue

∣∣∣∣
C=const.

and Ke = ∂Re

∂Ue

(13.2.20)

where C refers to fields that have to be constant during differentiation, like history
variables in plasticity, the driving force in phase field methods, the slip in frictional
contact problems, etc.

With these expressions at hand, we adopt a global Newton–Raphson solution
procedure for the coupled problem, resulting in the following algorithm

do n = 1, . . . , convergence

K(Un) �Un+1 = −R(Un)

Un+1 = Un + �Un+1

until ‖R(Un+1)‖ < TOL

(13.2.21)

with

R =
ne

A
e=1

Re, K =
ne

A
e=1

Ke and U =
ne

A
e=1

Ue (13.2.22)

that determines at given global primary fields U their linear increment �U in a
typical Newton-type iterative solution step. This system of nonlinear equations has
to be solved in a nested algorithm, where the displacement and the crack phase-field
are the global unknown variables.

13.3 VEM for Fracturing Solids

In this section, we examine the efficiency of the VEM for predicting the failure
mechanisms in solids due to crack initiation and propagation. The fracture of
solids can be numerically modeled by using discontinuous approaches, where
the displacement field is allowed to have a jump across the crack surface. In
this regard, several methods can be applied, such as (i) the meshless method
[18, 34], (ii) the boundary element method [46, 66] and (iii) the extended finite
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element method (XFEM) [17, 73]. Modeling fracture by using these methods is
based on the calculating of the Stress Intensity Factors (SIF), which is one of the
fundamental quantities in fracture mechanics to measure the strength of the stress
singularity in the vicinity of a crack tip. In the literature, several methods have been
proposed to calculate stress intensity factors. Among these are the displacement
extrapolation method [24], the crack opening displacement (COD) [65], the virtual
crack extension [40], the J-integral [32, 71] and the interaction integral method [91].
In [9, 41]. A hybrid crack element was introduced in [49, 75], which leads to a direct
and accurate computation of the SIFs as well as the coefficients of the higher order
terms in the elastic asymptotic crack tip field.

The above mentioned approaches consider the fracture of solids as a discon-
tinuous interface. The modeling of crack formation can also be achieved using
damage mechanics or a continuum phase-field approaches, which are based on the
regularization of sharp crack discontinuities. Phase-field modeling of fracture has
attracted considerable attention in recent years due to its capability of capturing
complex crack patterns in various problems in solid mechanics. Many efforts have
been focused on the regularized modeling of Griffith-type brittle fracture in elastic
solids. In this regard, [59] proposed a phase-field approach to fracture with a local
irreversibility constraint on the crack phase-field. Work on brittle fracture has been
devoted to the dynamic case, cohesive fracture, multiplicative decomposition of the
deformation gradient into compressive-tensile parts, hydraulic fracturing and fatigue
effects for brittle materials, see e.g. [3, 4, 20, 30, 39, 42, 53, 72, 77].

Here we will discuss the merits of virtual elements when applied to fracturing
processes.

13.3.1 Basic Equations of Elastic Solids

Consider an elastic body � ⊂ R
2 bounded by ∂�. As shown in Fig. 13.4, the

boundary ∂� is subdivided into Neumann boundary conditions on ∂�t , Dirichlet
boundary conditions on ∂�u and a discontinuity interface on �c (crack line in 2-D
and crack surface in 3-D) such that ∂� = ∂�t ∪ ∂�u ∪ �c. The discontinuity �c is
composed of the upper �+c and the lower �−c crack faces.

The crack face �c is assumed to be traction-free, thus

σ ·N+
c = 0 on �+c , and σ ·N−

c = 0 on �−c , (13.3.1)

where N+
c and N−

c are the outward unit normal vectors defined on �+c and �−c ,
respectively. The Neumann ∂�t and Dirichlet ∂�u boundary conditions are given
by

σ ·N = t̄ on ∂�t , and u = ū on ∂�u, (13.3.2)
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Fig. 13.4 Definition of solid
with a crack and boundary
conditions. (From: A.
Hussein, F. Aldakheel, B.
Hudobivnik, P. Wriggers,
P.A. Guidault, O. Allix Finite
Elements in Analysis and
Design 159, 15–32, 2019.
Elsevier. Reproduced with
permission)

where N is the outward unit normal vector of the boundary, u the displacement
vector, ū the prescribed displacement on ∂�u and t̄ the surface traction on ∂�t .
We consider that the body undergoes small deformation, therefore we describe the
strain ε by

ε = 1

2
(∇u+∇T u). (13.3.3)

For a homogeneous isotropic linear elastic material the strain energy density
function W can be expressed as

W({ε) = λ

2
tr2(ε)+ μ tr(ε2), (13.3.4)

where λ and μ are the Lamé constants. The Cauchy stress tensor σ is obtained from
the strain energy W in (13.3.4) by

σ = ∂W

∂ε
= λ tr(ε)I + 2με, (13.3.5)

where I is the second order unit tensor. The variational formulation of the
equilibrium can be obtained by using the principle of a stationary elastic potential.
The potential can be defined in terms of the strain energy density function W and
the external load Uex as

U
(
u
) =

∫
�

W(ε(u)) d� −
∫
�f

f · u dV −
∫
∂�t

t̄ · u dA

︸ ︷︷ ︸
Uex

. (13.3.6)
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13.3.2 Crack Propagation Based on Stress Intensity Factors

In this work, the interaction integral (I-integral) is used to determine the stress
intensity factors in case of a mixed-mode loading [91]. This integral is based on
the classical J-Integral. For a homogeneous isotropic linear elastic material the J-
integral

J =
∫

�

(
W δ1j − σij

∂ui

∂x1

)
Nj d�, (13.3.7)

is path independent where W is the strain energy density given by (13.3.4) and ui is
the displacement field, Nj the outward normal vector to the contour integral �, δ1j
the Kronecker delta and σij are the components of the stress and strain tensor which
are used for the sake of simplification in this section.

For a linear elastic material, [70] has demonstrated that the J-integral of a contour
around the crack tip matches the energy release rate gc. The relationship between
these quantities (J, gc) and the stress intensity factors can be written as

J = gc = K2
I +K2

II

E′
, (13.3.8)

where E′ is given in terms of the Young’s modulus E and the Poisson’s ratio ν as

E′ =
{
E, plane stress
E/(1− ν2), plane strain.

(13.3.9)

In a mixed-mode fracture problem, it is difficult to use the classical form of the J-
integral to calculate the individual stress intensity factor for each fracture mode
separately. To overcome this difficulty, an interaction integral (I-integral) based
on two independent equilibrium states of a cracked body, was introduced in [90].
The first state represents the actual fields (u, ε, σ ) and the second state defines the
auxiliary fields (u(aux)i = K

(aux)
I gIi +K(aux)

II gIIi , σ (aux)
ij = K

(aux)
I f I

i +K(aux)
II f II

i )

in terms of Williams’ functions (gI,IIi , f
I,II

i ), see [78]. By superimposing these
states, the I -integral of the new equilibrium state can be defined as

I =
∫

�

(
W(aux)δ1j − σij

∂u
(aux)
i

∂x1
− σ

(aux)
ij

∂ui

∂x1

)
Nj d�, (13.3.10)

with the interaction strain energy densityW(aux) = σ ·ε(aux) = σ (aux)·ε. Following
[60], the interaction integral for the actual and auxiliary states can be expressed in
terms of the stress intensity factors

I = 2

E′
(KIK

(aux)
I +KIIK

(aux)
II ). (13.3.11)
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By setting K
(aux)
I = 1 and K

(aux)
II = 0 in (13.3.11) the stress intensity factor KI for

mode I can be determined as

KI = E′

2
I with u

(aux)
i = K

(aux)
I gIi and σ

(aux)
ij = K

(aux)
I f I

i . (13.3.12)

Similarly, the same approach can be applied to compute the stress intensity factor
KII for mode II

KII = E′

2
I with u

(aux)
i = K

(aux)
II gIIi and σ

(aux)
ij = K

(aux)
II f II

i .

(13.3.13)

For mixed-mode loading, an equivalent stress intensity factor Kaq(KI,KII) was
introduced to monitor the crack initiation, see [63]. When Kaq exceeds a critical
fracture toughness KIc

Kaq(KI,KII) ≥ KIc , (13.3.14)

the crack begins to propagate. Once a crack has been initiated, the direction of
growth can be predicted using different propagation criteria. In this paper, the
maximum circumferential stress criterion is considered. The circumferential stress
σθθ and the shear stress τrθ in the neighbourhood of the crack tip can be analytically
derived as

σθθ = 1√
2πr

[
KI

4

(
3 cos

θ

3
+ cos

3θ

2

)
+ KII

4

(
−3 sin

θ

2
− 3 sin

3θ

2

)]
,

(13.3.15)

τrθ = 1

2
√

2πr
cos

θ

2
[KI sin θ +KII(3 cos θ − 1)]. (13.3.16)

Generally, it is assumed that the crack propagates from the crack tip in the direction
of the maximum circumferential stress. For this stress state the shear stress in
(13.3.16) is zero which yields the propagation angle θc,l as a function of the stress
intensity factors

θc,l = −2 arctan

⎡
⎢⎢⎣ 2KII

KI

(
1+

√
1+ 8 (KII/KI)

2
)
⎤
⎥⎥⎦ . (13.3.17)

13.3.3 Construction of the Crack Path Using SIF

In this section, the crack path construction procedure during the propagation
will be discussed briefly. More details on this can be found in [44]. The main
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Fig. 13.5 (a) A virtual element �2 composed of 6 nodes and (b) 6 element segments{
S4,5, · · · , S11,4

}
�2

along with theirs position pS = 1, · · · , 6. (From: A. Hussein, F. Aldakheel,
B. Hudobivnik, P. Wriggers, P.A. Guidault, O. Allix Finite Elements in Analysis and Design 159,
15–32, 2019. Elsevier. Reproduced with permission)

Fig. 13.6 A prescribed crack evolution using the introduced cutting technique procedure. (From:
A. Hussein, F. Aldakheel, B. Hudobivnik, P. Wriggers, P.A. Guidault, O. Allix Finite Elements in
Analysis and Design 159, 15–32, 2019. Elsevier. Reproduced with permission)

idea of this approach is the splitting of virtual elements in the direction of
growth. In this procedure arbitrary elements with arbitrary number of nodes
will be produced. This can be easily accomplished by VEM which can deal
with arbitrary element shapes. For the visual representation of the splitting
algorithm, we will explain the procedure using Figs. 13.5 and 13.6 for a
single virtual element �2. As shown in Fig. 13.5, the element �2 consists of
counter-clockwise ordered nodes {N4, N5, N6, N9, N10, N11}�2

and segments{
S4,5, S5,6, S6,9, S9,10, S10,11, S11,4

}
�2

. Hence, the segment S5,6 is composed of
the second and the third local node {N5, N6}�2

.
Now we consider the whole domain depicted in Fig. 13.6. Here, the solid blue

line indicates a pre-existing crack and the dashed red line represents a predicted
crack path, which has to be modeled. This path is defined by (i) the coordinates{
x1,t ip, x2,t ip, x3,t ip

}
, (ii) the constant crack length �a and (iii) the measured angle

between the crack extension and the local coordinate system x1.
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At the beginning of the simulation, we know only the coordinates of the previous
crack tip x1,t ip (node N1) and the increment length�a. The first task is to determine
the coordinates of the new crack tip x2,t ip. For that, we compute the stress intensity
factors KI,KII and obtain from (13.3.17) the propagation angle θc,l . Note that the
angle θc,l is related to the local coordinate system x1, x2. Thus, a transformation to
the global system x, y is needed. Next the following expression is used to compute
the coordinates of the new crack tip x2,t ip

x2,t ip = x1,t ip +
[
�a cos θc,g �a sin θc,g

]T
, (13.3.18)

with the global propagation angle θc,g generated from the previous crack angle
θprev.,g by

θc,g = θc,l + θprev.,g. (13.3.19)

After determining the second crack tip x2,t ip, a new node N14 will be inserted
at the position of x2,t ip. Simultaneously, node N1 of x1,t ip is duplicated to N1′ .
To let the crack within element �1 propagate, we have to spread the information
of this element (nodes and segments) in two groups. While the first group will
be assigned to a newly introduced element �1′ , the second one will belong to the
existing element �1. To propagate within element �2, the intersection point x2,3
between the crack line r = x3,t ip − x2,t ip and the segment S6,9 has to be obtained.
Then, we add a new node N15 at the position of x2,3 and duplicate node N14 to N14′ .
Thus, a new element �2′ will be introduced. Finally, the crack propagation ends
within element �3, where only the elements connectivity is modified and updated
accordingly.

Note that, the outlined procedure can be applied also on the concave (non-
convex) elements, by preforming the cutting procedure multiple times, for each cut
segment, as illustrated in Fig. 13.7. Moreover the crack path depicted in Fig. 13.6 has

a) b) c)

Ωcon.

Fig. 13.7 A prescribed crack evolution during a tensile load condition. (a–b) A crack path on
VEM mesh with a non-convex element �con.. (c) Contour plot of the displacement field ūy , where
red and blue represent the maximum and minimum displacement, respectively. (From: A. Hussein,
F. Aldakheel, B. Hudobivnik, P. Wriggers, P.A. Guidault, O. Allix Finite Elements in Analysis and
Design 159, 15–32, 2019. Elsevier. Reproduced with permission)
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the possibility to change its direction within a virtual element. Due to that, a kinked
crack can be modeled using the virtual element formulation without any restriction,
see Fig. 13.7 as an example of such crack trajectories.

13.3.4 Phase-Field Approach for Brittle Crack Propagation

Now we consider the situation, where the response of fracturing solid at material
points x ∈ � and time t is described by the displacement field u(x, t) and the crack
phase-field d(x, t), with d(x, t) = 0 and d(x, t) = 1 for the unbroken and the
fully broken state of the material, respectively, see Fig. 13.8. Thus the sharp crack
topology �c → �l is regularized by the crack surface functional as outlined in [59]

�l(d) =
∫
�

γl(d,∇d) dV with γl(d,∇d) = 1

2l
d2 + l

2
|∇d|2 . (13.3.20)

It is based on the crack surface density function γl and the fracture length scale l

that governs the width of the diffuse crack, as plotted in Fig. 13.8. The regularized
crack phase-field d is obtained by a minimization principle for the diffusive crack

d = Arg{inf
d
�l(d)} with d = 1 on �c ⊂ �, (13.3.21)

yielding the Euler equation d − l2�d = 0 on � along with the Neumann boundary
condition ∇d · N = 0 on ∂�. Additionally a monotonous growth ḋ ≥ 0 of the
fracture phase-field has to be assured [59].

Fig. 13.8 Solid with a regularized crack and boundary conditions
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The total specific potential of the phase field problem can be written as sum of
the elastic and fracture specific potential

W(ε, d,∇d, ) = Welas(ε, d)+Wfrac(d,∇d). (13.3.22)

Here, the specific fracture energy can be defined as a product of the surface density
function γl (13.3.20) and the Griffith’s critical energy release rate gc

Wf rac(d,∇d) = gcγl(d,∇d). (13.3.23)

The original phase-field formulation, proposed by Francfort and Marigo [35],
splitsWelas in a multiplicative way in the strain energyW and a degradation function
g(d)

Welas(ε, d) = g(d) W(ε), (13.3.24)

where g(d) = (1 − d)2 models the degradation of the stored elastic energy of the
solid due to fracture. It interpolates between the unbroken response for d = 0 and
the fully broken state at d = 1 by satisfying the constraints g(0) = 1, g(1) = 0,
g′(d) ≤ 0 and g′(1) = 0.

In order to enforce a crack evolution only in tension, the stored elastic energy
of the solid is additively decomposed into a positive part W+ due to tension and a
negative part W− due to compression, outlined in [59]

Welas(ε, d) = g(d)W+ +W− with W± = λ

2
〈tr[ε]〉2± + μ tr[(ε±)2],

(13.3.25)

in terms of the Macauly bracket 〈·〉± = (· ± | · |)/2, the positive ε+ =∑3
a=1〈εa〉+ Na ⊗ Na and the negative strain tensors ε− = ε − ε+, which depend

on the principal strains {εa}a=1..3 and the principal strain directions {Na}a=1..3.
The variation of the potential yields

δW = ∂(Welas +Wfrac)

∂d
δd + ∂Wf rac

∂∇d · ∇δd + ∂Welas

∂ε
· δε, (13.3.26)

where the derivative of ∂Welas

∂d
can be defined as a crack driving force H = ∂Welas

∂d
.

To ensure crack irreversibility in the sense that cracks can only grow (i.e. ḋ ≥ 0),
H has to be redefined in as:

H = max
s∈[0,t ]

∂Welas

∂d
≥ 0, where from (13.3.24)

∂Welas

∂d
= W+ , (13.3.27)

Alternatively, to enforce the crack evolution only in tension, the elastic energy
can be additively decomposed in positive ψ+vol and negative ψ−vol volumetric parts
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in terms of the bulk modulus κ = λ+ 2
3μ and a deviatoric part ψiso. As outlined in

the work of [5] the elastic energy can then be written in the form

Welas(ε , d) = g(d) (ψ+vol + ψiso)+ ψ−vol (13.3.28)

with ψ±vol = κ
2 〈tr[ε]〉2± and ψiso = μ tr[ε − tr[ε] 1)2].

Following the recent work of [58] the fracture energy can be redefined in an
incremental way as:

Wfrac(d,∇d,H ) = gcγl(d,∇d)+ η

2�t
(d − dn)

2 + g(d)H (13.3.29)

where �t := t − tn > 0 denotes the time step and η ≥ 0 is a material parameter
that characterizes the viscosity of the crack propagation.

The above introduced variables will characterize the brittle failure response of a
solid, based on the two global primary fields

Global Primary Fields: U := {u, d} , (13.3.30)

the displacement field u and the crack phase-field d . The subsequent constitutive
approach to the phase-field modelling of brittle fracture focuses on the set

Constitutive State Variables: C := {ε, d,∇d,H } , (13.3.31)

reflecting a combination of elasticity with a first-order gradient damage modelling.
The development of the virtual element that handle phase-field brittle fracture in

elastic solids can start from a pseudo potential density functional instead of using the
weak form. This has advantages when the code is automatically generated using the
software tool ACEGEN, see [51]. The pseudo potential density functional depends
on the elastic and the fracture parts and keeps the crack driving force constant
during the first variation. The specific pseudo potential density functional can then
be written as

W(C) = g(d)W++W−+gcγl(d,∇d)+ η

2�t
(d−dn)

2+(1−d)2H (13.3.32)

this leads to the total pseudo potential, see (13.2.15),

U(U) =
∫
�

W(C) dV − Uext (u) (13.3.33)

with the external load Uext (u) defined in (13.3.6). The H and g(d) have to be kept
constant during the derivation procedure of residual to obtain the correct weak form
of the problem.
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13.3.5 Numerical Examples

In this section, the accuracy of the proposed virtual element formulation will
be investigated for brittle crack propagation at small deformations by means of
numerical examples. For comparison purposes, results of the standard finite element
method (FEM) are also demonstrated.

13.3.5.1 Crack Propagation using Phase-Field Approach: Bi-Material
Plate

We model the fracture phenomena of a bi-material specimen under tensile loading
as reported in the recent work of [72]. The aim here is to demonstrate crack phase-
field initiation and branching. The geometrical setup and the loading conditions of
the specimen are depicted in Fig. 13.9a. The size of the specimen is chosen to be:
L = 50 mm and the diameter of notch is D = 10 mm. We fixed the right edge of the
plate in x-direction and applied vertical displacement to the top and bottom edges
until final failure. The material parameters used in the simulation are the same as
in the reference work of [72]. B-material is stiffer than A-material and represents
purely elastic material behavior without fracturing. Young’s modulus is chosen for
A-material as EA = 100 kN/mm2 and for B-material as EB = 200 kN/mm2,
Poisson’s ratio is set to ν = 0.2, the viscosity of the crack propagation ηA =
10−6 kNs/mm2, the critical energy release rate for A-zone as gAc = 10−4 kN/mm
and the stabilization parameter as β = 0.4. Different element formulations are
studied to illustrate the robustness of the proposed VEM. A mesh refinement in
the expected fracture zone is applied, see Fig. 13.9b–c.

Fig. 13.9 Bi-material specimen. (a) Geometry and boundary conditions, (b) triangular finite
element mesh and (c) VEM with Voronoi mesh. (From: F. Aldakheel, B. Hudobivnik, A.
Hussein, P. Wriggers, Phase-field modeling of brittle fracture using an efficient virtual element
scheme, Computer Methods in Applied Mechanics and Engineering 341, 443–466, 2018. Elsevier.
Reproduced with permission)
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d0 1

a b c d

e f g h

Fig. 13.10 Bi-material specimen. Contour plots of the fracture phase-field d for two fracture
length scales l and four different deformation states up to final rupture. (a–d) l1 = 1.25 mm
and (e–h) l2 = 5.0 mm. (From: F. Aldakheel, B. Hudobivnik, A. Hussein, P. Wriggers, Phase-
field modeling of brittle fracture using an efficient virtual element scheme, Computer Methods in
Applied Mechanics and Engineering 341, 443–466, 2018. Elsevier. Reproduced with permission)

Figure 13.10 shows the contour plot of the fracture phase-field d simulated using
the virtual element formulations with a Voronoi mesh, for two different length scales
l1 = 1.25 mm and l2 = 5.0 mm with same length/mesh ratio r = 8. The crack
phase-field initiates at the notch-tip and propagates horizontally up to the interface
between A- and B-zones. Thereafter it branches along the interfaces vertically till
final failure, as documented in the work of [72]. A sharp crack pattern is obtained
for the smaller length scale parameter l, as demonstrated in Fig. 13.10d.

Load-displacement curves for different length scales and elements formulations
of FEM and VEM are displayed in Fig. 13.11a. All simulations show similar
behavior before crack initiation. Thereafter, the force drops sharply at cracking to
a lower level, which represents the residual forces of the undamaged B-zone of the
specimen.

13.3.5.2 Crack Propagation Using Stress Intensity Factors

A. Single-Edge Notched Shear Test

In this benchmark test we consider a square plate with a horizontal notch. The
geometrical setup and the loading conditions of the specimen are the same as in
the reference work of [57] and depicted in Fig. 13.12a. We fixed the bottom and
top edges of the plate in y-direction. Furthermore the bottom is also fixed in x-
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Fig. 13.11 Load–displacement responses for the Bi-material test with two different fracture length
scales. A comparison between different VEM and FEM discretization. (From: F. Aldakheel, B.
Hudobivnik, A. Hussein, P. Wriggers, Phase-field modeling of brittle fracture using an efficient
virtual element scheme, Computer Methods in Applied Mechanics and Engineering 341, 443–466,
2018. Elsevier. Reproduced with permission)

Fig. 13.12 Single-edge notched shear test. Geometry and boundary conditions in (a) and VEM-
mesh in (b). (From: A. Hussein, F. Aldakheel, B. Hudobivnik, P. Wriggers, P.A. Guidault, O. Allix
Finite Elements in Analysis and Design 159, 15–32, 2019. Elsevier. Reproduced with permission)

direction and a pure shear loading at the top edge is applied. The specimen is
discretized by using 1396 virtual elements under plane strain conditions, as sketched
in Fig. 13.12b.

The evolution of the crack-trajectories are depicted in Fig. 13.13 along with the
stress σxx distribution for three different deformation stages up to final failure . The
crack propagates at an angle of 70.45◦ with respect to the initial notch, as shown in
the reference works [31, 57]. By using the proposed cutting techniques outlined in
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Fig. 13.13 Single-edge notched shear test. Contour plots of the stress σxx during the crack
evolution using constant crack increment of �a = 0.1 mm, mesh size he ≈ 0.027 mm and VEM-
mesh with 1396 elements at the beginning. (a) Crack path with 1400 elements, (b) crack path with
1412 elements and (c) final crack with 1423 elements. Red and blue contour-plots represent the
maximum and minimum stresses, respectively. (From: A. Hussein, F. Aldakheel, B. Hudobivnik,
P. Wriggers, P.A. Guidault, O. Allix Finite Elements in Analysis and Design 159, 15–32, 2019.
Elsevier. Reproduced with permission)

Fig. 13.14 Tensile test with two notches and holes. Geometry and boundary conditions in (a) and
VEM with Voronoi mesh in (b). (From: A. Hussein, F. Aldakheel, B. Hudobivnik, P. Wriggers,
P.A. Guidault, O. Allix Finite Elements in Analysis and Design 159, 15–32, 2019. Elsevier.
Reproduced with permission)

Sect. 13.3.3, less elements (about 31 elements) are required to track the crack path
accurately during the simulation.

B. Tensile Test with Two Notches and Holes

To illustrate the capability and the flexible choice of the number of nodes in an
element for VEM, various animals-shaped Voronoi cells (bird, fish, kangaroo, . . . )
are employed in the expected fracture zones (i.e. an area of interest) for the virtual
element formulation. For this purpose, we consider a tensile test with two notches
and holes to demonstrate their effect on the crack-initiation and curved-crack-
propagation. The geometrical setup and the mesh are depicted in Fig. 13.14. Herein,
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Fig. 13.15 Tensile test of the notched specimen with two holes. Normal stress σyy during the
crack evolution (a–f) using VEM-Voronoi mesh with 509 elements at the beginning in (a) Crack
path with 515 elements in (b), crack path with 533 elements in (c), crack path with 558 elements
in (d), crack path with 584 elements in (e) and final crack with 605 elements in (f). Red and blue
corresponds to the maximum and the minimum tensile stresses, respectively. (From: A. Hussein,
F. Aldakheel, B. Hudobivnik, P. Wriggers, P.A. Guidault, O. Allix Finite Elements in Analysis and
Design 159, 15–32, 2019. Elsevier. Reproduced with permission)

the virtual element formulation with various shaped Voronoi cells is employed
around the fractured zones. The material parameters used in the simulation are the
same as in the reference works [2, 57].

Figure 13.15 depicts the crack path evolution along with the stress σyy distri-
bution for different deformation stages. The cracks initiate at the two notches-tip.
Thereafter, the left and the right cracks tends to propagate towards the holes as
shown in Fig. 13.15b. Once the cracks passed the holes, see Fig. 13.15c, they
continue to propagates horizontally till final failure in Fig. 13.15f, resulting with
a mixed-mode fracture.
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13.4 VEM for Contact

Contact constraints have to be considered in many engineering applications which
include parts acting on each other. In many cases the behaviour of the contact has
an influence on the performance of machines, looking for example at friction and
wear. In the field of finite element methods different approaches and discretization
techniques where developed over the last 50 years by many scientists. An overview
can be found in the textbooks of [54] and [80].

Generally contact falls in the category of unilateral problems meaning that no
penetration can take place and the deformation is restricted. These problems have
to be treated as constraint optimization problems since the contact area is a priori
unknown. Within this methodology one has to enforce contact constraints. This
means that the surfaces in contact have to be coupled and contact tractions need
to be transmitted at the interface. This can be achieved by the method of Lagrange
multipliers, the penalty method or other techniques like the augmented Lagrangian
formulation or barrier techniques.

Within a numerical simulation method another essential topic is the discretization
of the contact area. Classical works started from establishing contact pointwise by
evaluating contact along contacting nodes or segments, see for example [37, 87]
and [38]. To increase the robustness of solution schemes the interpolation was
enhanced in [64] or [83] to reach C1-continuity which leads to a continuous and
smooth field of the normal vector. With the method of isogeometric formulation
the surface quality was increased further, this approach is discussed by several
authors (for example [74] and [29]). In order to have a continuous discretization
the so called mortar methods were introduced in recent years. [55] provides a good
overview. Here, by integrating on a virtual mortar domain the contact discretisation
represents both non-matching sides exactly. However the additional discretisation
of non-matching surface patches adds to the complexity of the problem. Another
approach to cope with non-matching interfaces was the use of adaptive meshing. By
simply moving the underlying mesh to match both meshes at the interface, as shown
for contact in [88], leads to a poor mesh quality. This in turn requires additional
effort on mesh smoothing.

Within the virtual element formulation the number of nodes can be arbitrary
large permitting aligned nodes along edges or non-convex elements. This section
is based on the extension of the contact algorithms described in [85] for straight
and [1] for curved virtual elements to finite deformation contact problems including
friction, see [86]. The methodology is based on adjusting non-matching meshes by
simply inserting nodes where a nodal pair along the contact interface is needed.
In this way polygonal elements with new nodes are created along the contact
surface. Since the elements are only changed locally the rest of the mesh is not
affected. A special variant that updates nodal position and nodes within a non-
linear solution procedure allows an application to problems with large deformations
and large tangential sliding. The possibility to adaptively change the inserted nodes
provides the necessary flexibility for large relative tangential displacements along
the interface
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13.4.1 Governing Equations for Finite Elasticity and Contact

The problem description starts from two elastic bodies with the domains �i (i =
1, 2) ⊂ R. Every material point has an initial position X and is mapped to the
position x in the current configuration at time t by

x = ϕ(X, t) = X + u(X, t), (13.4.1)

where u(X, t) denotes the displacement field. Once the deformation is defined the
deformation gradient F follows from

F = Grad(ϕ) = 1+ Grad(u(X, t)), (13.4.2)

where the gradient is computed with respect to the initial configuration X. Here
the right Cauchy-Green tensor C = F T F will be used as a strain measure and
considered in the internal strain energy W .

In order to set-up a boundary value problem boundary conditions, balance and
constitutive equations have to be formulated. Each of the bodies in Fig. 13.16 has
a boundary �i that can be split into the parts �iD , �iN and �iC . On the Dirichlet
boundaries �iD the displacements are prescribed: u = u on�iD . The Neumann
boundaries are related to surface tractions t that can be boldsymbol formulated with
respect to the initial configuration as: P N = t where N the surface normal vector,
P the first Piola–Kirchhoff stress tensor and t are the prescribed surface tractions.

The boundary �C is related to the contact part is an a priori unknown area where
the two bodies come in contact (�1C = �2C), see Fig. 13.16. The contact area can
be defined using the gap between the two surfaces

gn = (x2 − x1) · n1 (13.4.3)

where xi is the deformed position of a point on the surface of �i and n1 the
normal in the current configuration of the body �1.2 The contact normal pressure

Fig. 13.16 Two continuum
bodies �1 and �2 in contact.
Additional to the Neumann
and Dirichlet boundaries
there also is a contact
partition �C of the boundary

2 This choice is arbitrary, also n2 could have been chosen.
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σn = (σ n) ·n is related to the Cauchy stress σ = J−1 P F T in finite deformations.
With the normal pressure the so called Kuhn–Tucker–Karush conditions can be
formulated

gn ≥ 0, σn ≤ 0 and gn σn = 0 . (13.4.4)

These conditions state that the bodies do not interpenetrate each other, the contact
pressure is always negative.

We apply the potential energyU(u) that yields as Euler equations the equilibrium
conditions. For the hyperelastic case the potential energy function is given by

U(u) =
∫
�

[W(u)− f̄ · u] d�−
∫
�N

t̄ · u d� + Uc . (13.4.5)

Here homogeneous compressible isotropic hyperelastic material behaviour is
assumed and a neo-Hookean strain energy function introduced as

W(u) = �

4
[J (u)2 − 1− 2 ln(J (u))] + μ

2
[tr(C(u))− 2− 2 ln(J (u))],

(13.4.6)

where � and μ are the Lamé constants and the Jacobian J = det F represents the
change in volume. The stresses in �1 and �2 follow from the strain energy function
W(u) and the deformation gradient

P (u) = ∂W(u)

∂F
. (13.4.7)

The energy contribution for the contact is only present for segments actually in
contact. For a penalty contact formulation the energy Uc contributing to (13.4.5) is

UP
c (u) =

1

2

∫
�C

[
εn(gn)

2 + εt (gt )
2
]

d� (13.4.8)

with the contact penalty parameters εn for the normal and εt for the tangential
direction. A Lagrangian multiplier approach yields the contribution

ULM
c (u , λn , λt ) =

∫
�C

[λn gn + λt gt ] d� (13.4.9)

with Lagrange multipliers λn and λt for the normal and tangential direction. The
normal gap gn was already defined in (13.4.3). The tangential gap gt will be defined
later. It is here formulated for the stick case which is associated with gt = 0 and
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thus does not allow sliding at the contact interface. Note that the Lagrange multiplier
formulation introduces with λn and λt additional unknowns.

13.4.2 Virtual Element Method for Contact

The general description of the virtual element method was provided in Sect. 13.2.
This yields for finite elastic deformations the consistency part, see (13.2.13),

Uc(u�)|e =
∫
�e

W(C�) d� −
∫
�e

f · u� d�−
∫
∂�t

t̄ · u� d� (13.4.10)

which has the simple constant form for the first part on the right hand side

∫
�e

W(C�) dV = W(C�)|c �e (13.4.11)

for a linear ansatz. The projected constant right Cauchy-Green tensor is given by
C� = [1+∇ u�]T [1+∇ u�], see also (13.2.14).

A stabilisation is needed for the virtual element where the projection {u� only
covers the basic modes. Different stabilization techniques can be employed. Here
we discuss three different approaches to formulate the stabilisation part Ustab

in (13.2.12).

13.4.2.1 Standard Stabilisation

The approach which is described in [10] introduces a pointwise error measure
between the projection and the displacement values uI

du(XI ) = [uI − u�(XI )] (13.4.12)

where uI are just the nodal values at the vertices of the virtual element. When
summed up over all element vertices nV this leads to a stabilisation term

Ustab = γ

2

nV∑
I=1

[du(XI )]T [du(XI )] with γ = γ0
h2
D tr(D)

tr(HT (XI )H(XI ))
.

(13.4.13)

The stabilisation parameter γ includes the element diameter hD as well as the

trace of the constitutive tensor D = ∂2W
∂C ∂C , evaluated at the current deformation.

The matrix H contains the linear ansatz functions and is evaluated at XI . The free
parameter γ0 is usually set to 1.
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Fig. 13.17 Small edges and collapsing nodes in adaptive mesh methods or arbitrary mesh
geometries are creating stability problems

Unfortunately, independently of the factor γ , this element stabilisation leads
to large errors in the vicinity of nodes, where vertices are only apart by a
small distance. Especially in adaptive schemes and at contact surfaces, as shown
in Fig. 13.17, this situation appears frequently, leading to erroneous results. A
demonstration of these errors including a comparison with other stabilisations can
be found in Sect. 13.4.2.4.

13.4.2.2 Edge Stabilisation

Another type of stabilization is taylored to discretizations with collapsing nodes.
Here again the nodal-wise error from (13.4.12) is computed, see left part of Fig.
13.18, but then the difference in errors of two neighbouring nodes I and I + 1 is
introduced as a weighting term. This formulation takes into account the length of
the segment l = |XI+1 − XI |, see right part of Fig. 13.18. In the term

Ustab = γ

nV∑
I=1

1

|XI+1 − XI | [du(XI+1)− du(XI )]T [du(XI+1)− du(XI )]
(13.4.14)

Fig. 13.18 Sketch of the terms for the linear stabilisation approach which includes the distance du
and an edge stabilisation that considers the distance of nodes l
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small edges have a larger impact on the stabilisation. Again the stabilisation factor
γ0 from (13.4.13) needs to be determined. A problem dependent parameter opti-
misation is discussed in [85] for small deformation contact comparing the normal
pressure and tangential gap. In summary it was observed that with an increasing
factor γ0 oscillations in the tangential gap are suppressed and the contact pressure
is represented more accurately. However by exceeding an optimal value for γ0 the
results show a stiffening behaviour. Thus parameters γ that yield optimal results lie
in a small interval which is in practice not sufficient, in particular when working
with unknown problems. Hence γ appears to be problem dependent and needs
further investigation. Even though the results are better than for the stabilization
in Sect. 13.4.2.1 they are not robust, especially for finite deformation problems.

In non-linear problems the stiffness terms depend on the deformation. Thus the
stabilization has to consider such dependencies and hence, different approaches
for non-linear problems were developed taking into account the behaviour of the
constitutive tensor. Associated formulations can be found in [11] and [25].

13.4.2.3 Energy Stabilisation

To create a stabilisation that will lead to a consistent linearisation for non-linear
problems a third approach was developed, see [84]. It is described in Sect. 13.2.4
and can be easily adopted for large deformations. This technique can be employed
for contact problems with no additional formulations.

13.4.2.4 Patch Test and Stabilization Test

A classical test that has to be fulfilled by a discretization scheme is the so called
patch test. In case of contact this test can be simply employed by using a mesh
of two blocks with irregular element spacing in the contact interface. Figure 13.19

Fig. 13.19 Patch for contact discretizations
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Fig. 13.20 Results of the patch test for node-to-node VEM discretization (top) and node-to-
surface FEM discretization (bottom)

depicts the meshes of the two blocks. The lower block has an evenly spaced mesh
while the upper block has an increasining element size from left to right. The upper
block is loaded by a constant pressure load p while the lower block is fixed at the
bottom. For both blocks the same material is assumed and boundary conditions as
well as loading are such that a constant stress state is in both blocks.

The solution with the new node-to-node contact using virtual elements is shown
in the top of Fig. 13.20. It demonstrated that this formulation results in a constant
stress state. Contrary a classical node-to-segment formulation, using a finite element
scheme results in the stress distribution depicted in bottom of Fig. 13.20 where stress
peaks are visible at non-matching nodes within the contact interface.

For the qualitative assessment of different stabilisation methods [14] developed
a similar test. A regular mesh is connected to a Voronoi mesh and loaded by
two pressure. For this type of problem it could be shown in [86] that the edge
stabilisation as well as the energy stabilization will lead to smooth solutions
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for linear and quadratic elements while the standard VEM stabilization yields
oscillations in the stress response.

13.4.3 Contact for Large Deformations Including Friction

The virtual element discretization allows a very simple contact formulation, even
in the case of large strain. The basic idea is to define additional nodes within an
element at the contact interface when contact is detected. Since virtual elements
can have an unlimited number of nodes the addition of nodes does not change the
general discretization. It is only local. This idea which was presented first in [85] for
geometrically linear problems and adopted for contact problems undergoing finite
deformations in [86].

13.4.4 Node Insertion Algorithm

In the general case of finite deformation contact there will be always node to
segment contact. This is now adapted in VEM by the insertion of nodes to be
generated to formulate the contact. For this task a node insertion algorithm has to
be defined. Here the scheme described in [85] is used. The starting point for the
contact search are two contacting surfaces, �1 and �2, each divided into contact
segments which lie between the nodes defining the possible contact interface. Each
point x(ξ)i on the segment c can be described in a parametrised configuration with
respect to the current coordinates

x1(ξ)i = (1− ξ) x1
i−1 + ξ x1

i+1 . (13.4.15)

Following a similar approach as in the node-to-surface description, an orthogonal
projection of each surface node onto the opposite surface provides the correct
contact position. For the projection of a node x2

0 onto a segment c defined by node
x1
i−1 to node x1

i+1, as shown in Fig. 13.21, this leads to

ξ = 1

�2
c

(x1
i+1 − x1

i−1) · (x2
0 − x1

i−1) (13.4.16)

with �c = ‖ x1
i+1 − x1

i−1‖ being the length of segment c. This can be used to define
the normalised tangential vector

ac = 1

�c
(x1

i+1 − x1
i−1) . (13.4.17)

Note that the reference for the normal and tangential vector during the projection is
related to surface c.
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Fig. 13.21 Projection of a
node x2

0 contacting a segment

Fig. 13.22 With the nodal
projection and insertion
algorithm nodes are projected
and inserted symmetrically
onto both contact surfaces

Since the changes only affect one element a node can be inserted in the mesh
at the found position. This creates what is generally known as hanging nodes in
standard FEM, but here only the polygonal mesh is extended by an additional node.
Differing from the standard contact, the projection is carried out for both surfaces,
see Fig. 13.22, leading to a symmetric treatment of contact. This projection creates
contact elements along each side of the current contact interface which can be
described by an adequate interpolation.

The node insertion algorithm is executed for the complete contact surface within
an iteration step of the global Newton–Raphson method before the actual detection
step for active/in-active contact is carried out.

13.4.4.1 Contact Discretization: Frictionless

An approach that enforces the contact constraints gn = 0 without introducing
new variable is the penalty method. It penalizes the constraint equation using the
potential (13.4.8)

Uc n =
∫

�c

εn

2
g2
n d� (13.4.18)
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with the penalty factor εn. The normal contact traction can be obtained as

tn = εn gn . (13.4.19)

For the case of active contact the segments from both sides coincide and therefore
the interpolation is the same. The nodal gap can therefore be written in short by

gn c A =
[
x2
A − x1

A

]
· n1

c . (13.4.20)

The gap function in a contact segment can be interpolated by choosing ansatz
functions for the current surface coordinates. For a segment c between two nodes
the functions N1(ξc) = 1 − ξc and N2(ξc) = ξc interpolate the current coordinates
at the surface �1 as

x1(ξc) =
2∑

A=1

NA(ξc) x1
A (13.4.21)

which is consistent with the linear ansatz for the virtual element. For the surface �2

the similar functionsNA(ηc) using ηc as surface coordinate leads to the interpolation
within the segment c

x2(ηc) =
2∑

A=1

NA(ηc) x2
A . (13.4.22)

Since the normal vector n1
c is constant within a segment c the gap function can be

written as

gn =
[
x2(ηc)− x1(ξc)

]
· n1

c (13.4.23)

Due to the node projection in each step the coordinates ξc and ηc coincide along a
segment c the gap function can be written as

gn(ξc) =
[

2∑
A=1

NA(ξc) x2
A −

2∑
A=1

NA(ξc) x1
A

]
· n1

c (13.4.24)

Note that the current coordinates can be expressed in terms of the displacements as
xαA = Xα

A + uαA for α ∈ 1, 2. Furthermore the surface coordinate ξ depends on the
deformation and with that on the nodal displacements, see (13.4.16). This is also
true for the normal vector n1

c = e3 × ac = e3 × 1/�c (x1
i+1 − x1

i−1) which is related
to the current configuration. Here e3 is the unit vector in the third direction. All
these dependencies have to be considered when the residual and tangent matrix of
the contact potential (13.4.8) are computed.
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Again AceGen is used to compute the residual and tangent matrix

Rc = ∂Uc

∂uc
and Kc = ∂Rc

∂uc
(13.4.25)

where differentiation is performed with respect to the nodal displacements uc =
{u2

1,u2
2,u1

1,u1
2} that are related to a segment.

13.4.4.2 Contact Discretization: Friction

At the contact interface the sliding in tangential direction can be split into a stick and
a sliding phase. This is related to friction which affects tangential movements and
introduces further complexity in the solution of contact problems. No tangential
relative movement at the contact interface is associated with stick and leads to
a constraint as in normal contact. Thus to include frictional stick it is necessary
to constrain the relative tangential movement. In this contribution it is achieved
by using the penalty method, see the second term in (13.4.8) where gt denotes
the tangential relative displacement. The relative tangential displacement can be
computed as

gt (ξ) = [x2(ξc)− x1(ξc)] · ac (13.4.26)

where ac is the tangent vector at the interface c, see (13.4.17). This discretization
leads to a contribution to the potential energy

Uc t =
nc∑
c=1

∫ 1

0

εt

2
g2
t (ξc) lcdξ (13.4.27)

where the stick constraint gt = 0 is enforced by a penalty factor εt .
A Coulomb friction law provides a relation between the normal and tangential

tractions depending on the friction coefficient μ̄. The classical algorithm for
frictional problems is based on an operator split technique which leads to a return
mapping scheme, like in elasto-plasticity, first introduced in [79], see also [54] and
[80]. Here first a ‘trial’ step, assuming stick is computed. After this trial step the
contact state is checked by inserting the computed contact tractions in normal and
tangential direction, see (13.4.19) and tt = εtgt,trial, into the slip function

f tr
s = |εtgt,trial| − |μ̄ εngn| ≤ 0 . (13.4.28)

If the slip function f tr
s is ≤ 0, then the contact state is related to stick in segment

c and the computed variables can be used in the next iteration step. Once the slip
function is violated the contact segment c is in slip state. By assuming that relative
gap function gt can be split into a stick (elastic) and sliding (plastic) part

gt = gt,st ick + gt,slip (13.4.29)
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it is possible to compute within the return mapping algorithm the relative tangential
sliding gt,slip. This yields, see e.g. [80],

gt,slip = f tr
s

εt
= |εt gt,trial| − |μ̄ εn gn|

εt
,∀fs > 0 . (13.4.30)

With the updated tangential gap the contact is recomputed until convergence.
Due to the relative tangential slip the projected nodes do not coincide anymore.

This error can be neglected for small changes during one load step. However, after
each converged load step the nodes in contact are newly projected onto the surface
to keep the error low. Thus the next load step is based on a geometry in which again
node-to-node contact is realized. After reprojecting the nodes, the history variable
due to friction (the slip amount gt,slip) is reset to zero. This is permitted since the
Coulomb friction law does not directly depend on the slip amount gt,slip.

Let us note, that for a sufficiently small step size (which may be necessary
anyway to determine the correct physical behaviour of a frictional problem), good
results can be achieved by fixing the normal and tangential vectors within each load
step which simplifies the linearization.

Again the additions to the stiffness matrix and residuum directly follow by
using (13.4.25), see Sect. 13.4.4.1. Since sliding has no potential formulation it is
necessary to compute the residual by keeping the relative tangential slip constant
during the derivation

Rc = ∂Uc

∂uc

∣∣∣∣
gt,slip=const.

and Kc = ∂Rc

∂uc
. (13.4.31)

This yields a non-symmetric tangent matrix in case of slip.

13.4.5 Numerical Examples

In this section, the virtual element formulation for large deformation contact prob-
lems is verified by means of several examples. These are the classical geometrically
linear Hertz and Mindlin problems, a finite deformaton ironing problem and a wall
mountain of a bolt which provides a mixture of contact and fracture mechanics.

13.4.5.1 Hertzian Contact Problem for Small Deformations

Frictionless Contact The Hertzian contact problem is widely used to verify
contact discretization, as an analytical solution exists for the small deformational
case. In a two-dimensional setting the Hertz problem describes the contact of an
elastic cylinder with an elastic half spaces. Both bodies are considered to have
an infinite extension in longitudinal direction and so a plane strain condition is
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assumed. The feature of this test is, that the two surfaces are geometrically non-
conforming which makes the contact area considerably smaller than the total
surface.

The analytical solution can be found in e.g. [47]. For the two bodies it considers
a relative curvature R∗ = [1 /R1 + 1 /R2]−1 from the two surface radii R1 and R2
and a relative Young’s modulus E∗ = [(1− ν2

1 /E1)+ (1− ν2
2 ) /E2]−1. With these

definitions the width a of the contact area can be computed as a function of the load
F by

a2 = 4R∗ F
π E∗

. (13.4.32)

Furthermore the distribution of the surface stress follows as

p(x) = 2F

π a2

√
a2 − x2 . (13.4.33)

The original setup in 2D is depicted in Fig. 13.23 where a circular cross-section is
loaded with a single point load.

Since the problem is symmetric only half of the original geometry is taken into
account for the discretization where only one quarter of the circle is sufficient
when the single point load is approximated by a distributed load. Figure 13.23
demonstrates the geometry, the boundary conditions and the loading. Both bodies
are additionally fixed in tangential direction along the symmetry axis. The top body
of radius R1 = 10 is loaded by a distributed load pn = 25 which leads back to a
total original force of F = 2Rpn = 500 for the full circle. For the foundation a
Young’s modulus of E2 = 7 · 103 is chosen and a Poisson’s ratio of ν = 0.3. The
indenter is stiffer with a Young’s modulus of E1 = 7 · 104 and a Poisson’s ratio of

Fig. 13.23 Hertz contact of a
two-dimensional cylindrical
body and an elastic halfspace
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Fig. 13.24 Convergence to the maximum contact pressure pn,max for an increasing number of
element divisions and stress distribution σyy for a fine mesh

ν = 0.3. The given constitutive and geometrical parameters lead with Eq. (13.4.33)
to an analytical value of the maximum contact pressure: pn,max = 333.

This test is used to check the accuracy of the node insertion algorithm in the
virtual element method. Hence the geometry is discretized using 4 noded virtual
elements which will at the contact interface to element with more nodes related
to the node insertion. Starting from the mesh in Fig. 13.23 with Ne elements for
each body, the mesh is refined by homogeneously dividing the elements in N parts
along each direction. The maximum pressure, pn,max , can now be compared with
the maximum pressure resulting from the mesh sequence, see Fig. 13.24. After 5
homogeneous refinements convergence is achieved.

Frictional Contact The node insertion algorithm using virtual elements is verified
by the same example with the converged mesh of the frictionless case. Frictional
response is triggered by an additional tangential loading Q at the top surface. For
the Coulomb friction a friction coefficient of μ̄ = 0.2 is chosen.

The analytical solution distinguishes between three cases: full sticking, full
sliding and a mixed stick/slip state. In this example the tangential tractions are
chosen to cause a mixed state where the outer part of the surface reaches a sliding
state but the centre still sticks with the effect that the bodies do not move relative to
each other. The analytical solution, see [48], includes the sticking area −c ≤ x ≤ c

as a part of the full contact area a, see (13.4.32),

c = a

√(
1− Q

μ̄F

)
. (13.4.34)

The resulting tangential traction tt within the sticking area is then given by

tt (x) = μ̄
2F

πa2

(√
a2 − x2 −

√
c2 − x2

)
,∀ − c ≤ x ≤ c (13.4.35)
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Fig. 13.25 Comparison of normal and tangential contact tractions with the analytical solution for
the frictional Hertzian contact problem

while the traction outside the sticking area simply reduces to tt (x) = μ̄ p(x). This
implies that the tangential traction has no influence on the normal contact pressure.
This is only true for examples where the material properties of both bodies are equal,
see [22]. To be able to compare to the analytical solution the Young’s moduli are
chosen equal E1 = E2 = 7× 103. In the graph in Fig. 13.25 the resulting tractions
are compared with analytically computed tractions.

Overall the values are in good agreement. In the transition zone from the sticking
area to the sliding part of the surface the analytical solution depicts a kink while the
numerical result is smooth. This is related to the fact that is that no contact node lies
exactly at the stick-slip border and discretization with linear ansatz functions cannot
produce a kink within a contact segment.

13.4.5.2 Large Deformational Contact: Ironing Problem

The ironing problem demonstrates the ability of the derived methodology to solve
contact problems at finite deformations including large sliding.

This so called ironing problem is similar to those in [89] and [76] which were
discretized with finite elements using a mortar contact formulation. The idea is to
press a deformable indenter into a deformable block and then slide it over the entire
upper surface.
The Neo-Hooke material in (13.4.6) is used to model the material response of the
system. The block has the Lamé constants�2 = μ2 = 2, 692·103 while the indenter
is 10 times stiffer with the Lamé constants �1 = μ1 = 2, 692·104.
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Fig. 13.26 Ironing problem
of a stiff indenter and a larger
and softer base. By pushing
the indenter downwards and
dragging it across the surface
the possibility for large
sliding with friction is shown

Contact is established using the penalty formulation with re-projection as described
in Sect. 13.4.4.2. The penalty parameters are chosen as εn = 7 ·109 and εt = 7 ·104.
For the Coulomb friction law a coefficient μ̄ = 0.3 is selected.

The computations are performed for frictional contact. The frictional case is
computed for an unstructured Voronoi mesh using the virtual element method. The
size of the block’s cross-section is 10× 7. The indenter has a top surface of length
1 and a radius of r = √2. Figure 13.26 depicts the setup of the problem with the
block being meshed by Voronoi cells.

First the indenter is pushed down into the softer block at surface position x = 3
by means of a prescribed displacement uy = −1 at the top surface which is applied
in 20 load steps, see Fig. 13.27 (top left) for the associated σyy stress field. The
vertical prescribed displacement is then fixed and the indentor is dragged along the
surface by applying at the top surface the horizontal ux = 8 in 1000 load steps.

The contour plots on the left of Fig. 13.27 depict the deformed configuration for
a displacement ux = 2.25 at different states of the simulation while the graps on the
right-hand side shows the normal and tangential reaction forces recorded at the top
surface of the indenter for the entire load history.
An increase of the normal reaction during the indentation can be observed. Due to
friction a considerable increase in the tangential force can be noted up to the point
where the contact changes its status from sticking to sliding.
A detailed study of the reaction plot shows a smooth normal reaction and very small
oscillations in the tangential direction. These oscillations where also noted in [67]
and [28] where this issue was resolved with a segment-to-segment mortar approach
or a smooth NURBS discretisation. Compared to the results stated in these papers
the results obtained in this work using the re-projection node-to-node contact are of
comparable accuracy and thus the new approach can be applied for finite tangential
sliding problems.
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Fig. 13.27 Stress contours (left) and contact traction (right) for the ironing problem with friction
for a Voronoi discretization. (top left) initial indentation; (middle left) friction state; (bottom left )
final state, sliding from the block. (middle left) reaction forces in normal and tangential direction

As can be seen, the reactions computed with the Voronoi mesh show slight
oscillations for the normal reaction and oscillations for the frictional response, see
the graph on the right of Fig. 13.27. This can be explained with the coarser mesh and
changing local stiffness due to the Voronoi discretization with elements of different
size. Even for cases with size differences in the two contacting meshes the new
re-projection contact algorithm is robust and stable.
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Fig. 13.28 Wall mounting of a bolt, loading, boundary conditions and virtual element mesh and a
zoom-in of the mesh

13.4.5.3 Wall Mounting of a Bolt

In this example of a wall mounting for a bolt fracture modeling, using the phase
field approach discussed in Sect. 13.3.4, is combined with contact.

A bolt of radius rb = 9.5 [cm] is attached to a mount that is fixed on its left
side to a wall, see Fig. 13.28. On this side all nodes are fixed in vertical direction
and the middle node is fixed in normal direction. The mount has an external radius
of ra = 20 [cm] and an inner radius of ri = 10 [cm]. The distance of the middle
of the bolt from the wall is xb = 20[cm] . The material for the bolt is assumed to
be elastic with a Young’s modulus of Eb = 70000 [kN/cm2] and a Poisson ratio
of νb = 0.3. The mount has a Young’s modulus of Em = 7000 [kN/cm2] and a
Poisson ratio of νm = 0.3. The material of the mount is brittle thus the phase field
approach for brittle fracture can be applied. The associated critical energy release
rate, see (13.3.23), is gmc = 0.1 [kN/cm] and the viscosity of the crack propagation
is ηm = 10−5 [kNs/cm2] for the mount. The fracture length scale l in (13.3.20) is
chosen as l = 0.015 [cm].

The bolt just touches the inner radius of the mount in the beginning of the
simulation. The focus of this simulations is the failure mechanism of the mount due
to loading. Hence the contact analysis plays a minor role which led to the use of a
simple node-to-segment contact discretization using the penalty formulation with a
penalty parameter of εn = 20000 [kN/cm]. Since no tangent movement is expected
friction can be neglected at the contact interface. The load is applied as body force
in the bolt. The energy stabilization is used for the virtual element discretization
with β = 0.4.
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Fig. 13.29 Wall mounting of a bolt, fracture process

Mesh refinement in the expected fracture zone is applied in a adaptive manner.
First a fine mesh around the bolt is used to find the location where the crack starts.
After that the mesh is refined in this area. Here another advantage of the virtual
element scheme pops up which is related to the inserting of arbitrary number of
nodes on each edge of an element in a consistent way. This yields a C0 continuous
mesh, see right side of Fig. 13.28 and thus no hanging nodes occur, as would be in
a finite element discretization.

When increasing the load a crack develops which is demonstrated in Fig. 13.29
for four different load stages showing the deformed configuration of the system. The
crack starts, as is shown in the upper left plot in Fig. 13.29 and then increases to the
wall with a new crack developing, see upper right plot in Fig. 13.29. The the second
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Fig. 13.30 Wall mounting of a bolt, load-delection curve of the fracture process

crack develops further, see lower left plot in Fig. 13.29 until the mount finally fails
with a third crack developing as depicted in the lower right plot in Fig. 13.29.

The associated load displacement curve is depicted in Fig. 13.30 where the total
load is plotted versus the mid displacement of the bolt. One can observe that first
this curve increases almost linearily up to point ➀. Here, at a load of around 900
kN the first crack starts to develop, see left upper plot of Fig. 13.29 leading to a
damaged structure. However the system still has some residual stiffness and the load
be increased further while the second crack develops. In this slope points ➁ and ➂

are associated with the plots in the upper right and lower left part of Fig. 13.29. Note
that the slope of the load deflection curve has a lower gradient. At around 1650 kN,
point ➂ the final failure of the mount is observed, see lower right side of Fig. 13.29
which is related to point ➃ in Fig. 13.30 .

By combining the phase field method with the element cutting technology in
Sect. 13.3.3, see also [45], we are able to predict the cracked deformed configura-
tion, as shown in Fig. 13.31 (left). In this deformation stage the structure exhibits
two main cracks that lead to total failure of the mount. Additionally the von Mises
stress is plotted in Fig. 13.31 (right) just before failure which shows the maximum
stresses around the first crack on the left and the maximum stress at the tip of the
crack on the right.
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Fig. 13.31 Wall mounting of a bolt, fractured structure at failure load

13.5 Conclusion

In this contribution a relatively new discretization technique, the Virtual Element
Method, was presented that introduces some new features to the numerical solution
of problems in engineering. In particular, two directions were considered.

In Part I, a computational framework for crack propagation in isotropic brittle
materials using an efficient virtual element scheme was outlined. One of the key
novel features is the introduction of a robust cutting technique within elements for
brittle crack propagation in 2D problems. Hereby the virtual element method con-
firms its effectiveness, robustness and flexibility in dealing with complex element
shapes and arbitrary number of nodes in an element which can be changed due to the
cutting process during the simulation. Additionally, crack formation was computed
in an efficient way by continuum phase-field approaches to fracture. It is based on
the regularization of sharp crack discontinuities. To this end, we proposed a rigorous
variational-based framework for the fracture phase-field approach undergoing small
strains. We examined the performance of the formulation by means of some
numerical examples. It was shown that, the virtual element method offers a high
degree of flexibility in terms of the element shape, so that cracks can be modeled
with few elements and reduced computational cost.

Part II, explores the application of the virtual element method for large defor-
mations to contact problems. By using a node insertion algorithm it was possible
to create a stable node-to-node contact for frictionless and frictional cases. By
adjusting the mesh adaptively, using re-projection, large tangential movements are
allowed. This was only possible due to the advantage of VEM regarding geometrical
flexibility in shape and number of vertices. The results were verified first with
an analytical solution in the small deformation regime. Then the application to
a finite deformation contact problem was shown. It was observed that for large
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tangential sliding the node-to-node contact leads to smooth traction results and
due to its simplicity is advantageous compared to classical segment based contact
enforcements. Finally an example of a mount system combined contact with failure
analysis using the phase field approach.
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