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Abstract. Majority of lattice-based encryption schemes allow the possi-
bility of decryption failures. It is now understood that this property makes
such encryption systems susceptible to the so-called decryption failure
attack. In such an attack, an adversary can use a large number of cipher-
texts that cause decryption failures to help to recover a private key. In
PQC2020, Bindel and Schanck observed that successful decryptions also
imply some information about the secret as the secret vector must be away
fromcertain spherical caps. In this paper,we revisit this problemby explor-
ing certain geometric properties in lattice based schemes. We are able to
produce more tools for crypt-analysis and operations of these schemes and
provide a more accurate interpretation of the information brought from
successful decryptions to enhance the failure boosting. By using (recent)
precise formulas, we develop some techniques to accurately characterize
relationships between a private key and successful queries to the decryp-
tion oracle. A finer estimation of the valid proportion of key candidates
that can be excluded from successful queries is given. The decryption fail-
ure probability is also more accurately analysed. Our discussion addresses
and corrects previous errors and our experimental data is usable in assess-
ing the IND-CCA security of (R/M)-LWE/LWR based systems.

Keywords: Lattice-based cryptography · Decryption oracle · Failure
boosting · Crypt-analysis

1 Introduction

Lattice-based cryptography has been an important field for research and appli-
cations. Over the past decades, many new ideas have been developed and new
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designs have been proposed. It is believed that several fundamental lattice prob-
lems are resistant to quantum attacks, public key systems using lattice construc-
tion have been a major option for new post-quantum cryptosystems.

The environment for setting up lattice-based encryption systems seems to
be much more complicated than that for the classical public key encryption
systems such as RSA and Elgamal (finite fields version and elliptic curve ver-
sion). Because of the involvements of adding errors and rounding operations,
the decryption is not a deterministic one. Given a valid pair of ciphertext and
private key, one can only assert that such a system recovers the correct plaintext
with overwhelming probability.

In 2018, the impact of decryption failures was studied for measuring the
chosen-ciphertext security of (Ring/Module)-Learning With Errors/Rounding
((R/M)-LWE/LWR)-based primitives by D’Anvers etc. in [10,11]. Their results
show that such an impact could be significant. Especially when the failure prob-
ability is relatively high, the security of (R/M)-LWE/LWR-based schemes could
be reduced. On the other hand, since NIST poses some limits on the number
of available oracle queries, the NIST post-quantum standardization candidates
could be immune to this kind of attack. The authors of [10,11] have developed
failure boosting technique to increase the failure rate in the above work. It is
noted that more ways of achieving failure boosting have been proposed more
recently [9,12–16].

In 2020, Bindel and Schanck [5] considered the problem from a new angle
by arguing that for an imperfectly correct lattice-based public-key encryption
scheme, information about their private key can be leaked even when the answers
for decryption queries are successful. In their refinement of the D’Anvers-Guo-
Johansson-Nilsson-Vercauteren-Verbauwhede failure boosting attack, through a
geometric formulation of the problem, partial information about the private
key can be obtained by calculating (a low order approximation of) a union of
spherical caps. It should be pointed out that the discussion in [5] contains an
error which also affects the correctness of bounds and corresponding experiments.

In this paper, we revisit the problem of using the information brought from
successful queries to enhance the failure boosting. Combining with some recent
mathematical tools, we develop some techniques to characterize the information
about private key more accurately, given that decryption queries all succeed.
Our discussion corrects previous errors and our experimental data is usable in
assessing the security of (R/M)-LWE/LWR-based systems. More specifically, our
contributions are

– We characterize the compression errors (rounding errors) that are used by
several important lattice-based schemes. For the cases of practical interest,
we are able to obtain their precise distributional behavior.

– The information inferred by a successful answer from querying the decryption
oracle is correctly characterized. More precise geometric formulas are used to
calculate the valid proportion of private key candidates that can be excluded
in the decryption failure attack.
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– By refining the (recently confirmed) orthogonality hypothesis, the effect of
more queries and their overlaps are investigated and better estimations are
obtained.

– Using the information of the success of previous queries, a more accurate
posterior decryption failure probability is given according to Bayes’ theorem.

The paper is organized into 6 sections. Necessary terminologies and notations
are introduced in Sect. 2. We discuss the distributional behaviors of compression
errors in Sect. 3. Section 4 reformulates the problem of extracting private key
information from successful queries with more concise formulas. The content of
dealing with general case by using the second-order approximation is included in
Sect. 5 where the overlaps among queries are treated in detail and a more accu-
rate way of estimating posterior decryption failure probability is given. Finally,
experiments of our framework for some NIST post-quantum candidates are con-
ducted in Sect. 6.

2 Preliminaries

We shall introduce necessary terminologies and notations for (R/M-)
LWE/LWR-based encryption schemes.

2.1 (R/M-)LWE/LWR-Based Public-Key Encryption Scheme

First let us fix some notations. Let q be a positive integer. In lattice-based
cryptography, one uses the minimum absolute residue system modulo q, with the
notation “x mods q” denoting the remainder in the range

[− q
2 , q

2

)
of x dividing

by q (remainder with sign). By choosing the representatives accordingly, we may
write

Zq = Z ∩
[
−q

2
,
q

2

)
.

Let n be another positive integer. We will mainly work on the rings R =
Z[x]/(xn + 1) and Rq = Zq[x]/(xn + 1). The �2-norm and �∞-norm are written
as ‖ · ‖ and ‖ · ‖∞ respectively. More precisely, for a = (a0 a1 · · · an−1)T ∈ Z

n
q

or a = a0 + a1x + · · · + an−1x
n−1 ∈ Rq,

‖a‖ =

√√
√
√

n−1∑

i=0

a2
i , ‖a‖∞ = max

0≤i≤n−1
|ai|.

As for α = (α1, · · · , αk)T ∈ Rk
q , its norms are respectively ‖α‖ =

√∑k
j=1 ‖αj‖2

and ‖α‖∞ = max
1≤j≤k

‖αj‖∞.

For integers p, q > 0, we write xq→p =
⌈

px
q

⌋
where �·� is the usual rounding

to the nearest integer. We use a ← χ(X) to denote the sampling a ∈ X according
to the distribution χ, and X can be omitted when there is no ambiguity.
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Table 1. A summary of some security parameters for NIST post-quantum schemes.

PKE.KeyGen() PKE.Enc(pk = (b, seedA)) PKE.Dec (sk = s, c = (v′, b′))

seedA ← U({0, 1}256) A = gen(seedA) ∈ Rk×k
q b′

r = �b′�p→q

A = gen(seedA) ∈ Rk×k
q s′ ← χs′(Rk

q ), e′ ← χe′(Rk
q ), e′′ ← χe′′(Rq) v′

r = �v′�t→q

s ← χs(Rk
q ), e ← χe(Rk

q ) br = �b�p→q v = b
′T
r s

b = �As + e�q→p b′ =
⌈
AT s′ + e′⌋

q→p
m′ = dec (v′

r − v)

v′ =
⌈
bT
r s′ + e′′ + enc(m)

⌋
q→t

return (pk := (b, seedA), sk := s) return c = (v′, b′) return m′

The general model we discuss in this paper is the one that unifies the essential
ideas of several (R/M-)LWE/LWR-based schemes. Here is the description:

The condition for a decryption failure of the (R/M-)LWE/LWR-based public-
key encryption scheme described in the above model was extensively considered
in [10,11]. To explain that, we first define u, u′, u′′ as the errors introduced by
the rounding and reconstruction operations:

⎧
⎨

⎩

u = As + e − br

u′ = AT s′ + e′ − b′
r

u′′ = bT
r s′ + e′′ + enc(m) − v′

r.

Then, we form S =
(−s

e − u

)
, C =

(
e′ + u′

s′

)
and G = e′′−u′′. The following

lemma gives the precise condition for a decryption failure of the scheme.

Lemma 1 [10]. For a fixed triple (S,C,G), the decryption failure occurs if and
only if ‖ST C + G‖∞ > q

4 .

A more convenient way of writing the failure condition just in terms of vectors
with components in Zq was described in [12]. Let α = (α1, · · · , αk)T ∈ Rk

q be a
vector of polynomials, we write α ∈ Z

kn
q to be the concatenation of coefficient

vectors of polynomials α1, · · · , αk, namely

α = (a10, a11, · · · , a1,n−1, · · · , ak0, ak1, · · · , ak,n−1)T

where αj = aj0 + aj1x + · · · + aj,n−1x
n−1.

Fix a positive integer r, an r-rotation of a polynomial vector α =
(α1, · · · , αk)T in Rk

q is

α(r) =
(
xr · α1(x−1) (mod xn + 1), · · · , xr · αk(x−1) (mod xn + 1)

)T ∈ Rk
q .

The following properties of rotations are evident.

1. For any polynomial vector α ∈ Rk
q and r ∈ Z, we have α(n+r) = −α(r) and

α(2n+r) = α(r).
2. For a =

∑n−1
i=0 aix

i ∈ Rq, the coefficients of a(r) satisfy

a
(r)
j =

{
ar−j 0 ≤ j ≤ r
−an+r−j r + 1 ≤ j ≤ n − 1 r, j = 0, 1, · · · , n − 1.



200 H. Wu and G. Xu

3. For any polynomial vectors α, β ∈ Rk
q , we have αT β =

∑n−1
j=0 αT β(j)xj .

Thus, the failure condition of Lemma 1 can also be written as:

∃r ∈ [0, 2n − 1], such that
∣
∣
∣S

T
C(r) + Gr

∣
∣
∣ >

q

4
.

where Gi is the i−th degree coefficient of G, i = 0, 1, · · · , n − 1.

In our setting, the IND-CCA security for PKE schemes is considered. The
adversary has no control on the random variables such as s′, e′, e′′ as they are
the results of hash function calls. This means that s′, e′, e′′ can actually be seen
as being extracted from particular distributions. As shown in Table 1, one treats
s′ ← χs′(Rk

q ), e′ ← χe′(Rk
q ) and e′′ ← χe′′(Rq).

However, the adversary can pick a message and then get the values of s′, e′, e′′.
In a failure boosting attack, the adversary improves his odds of triggering a
decryption failure by searching for s′, e′, e′′ with large norms. The adversary
needs to balance the cost of searching randomness that meet the length condition
with the success rate of finding decryption failures. He only sends ciphertexts
generated by such randomness to the decryption oracle as these ciphertexts have
a failure probability greater than a certain value.

In this paper, we will focus on the case where the attacker only uses values
of s′, e′ with a greater-than-average length (see Sect. 4.1). It is noticed that our
discussion also applies to other cases.

The coefficients of s, s′, e, e′, e′′ are always small. Let η > 0 be a positive
integer. Recall that the centered binomial distribution βη is the probability dis-
tribution defined on the set X = {−η,−η + 1, · · · ,−1, 0, 1, · · · , η} with the
probability assignment at k ∈ X to be

βη(k) =
(

2η

k + η

)
1

22η
.

This distribution has variance η
2 . To sample according to βη, one sample

(a1, · · · , aη, b1, · · · , bη) ← {0, 1}2η and output
η∑

i=1

(ai − bi).

When we write that a polynomial f ∈ Rq or a vector of such polynomials
is sampled from βη, we mean that each coefficient of it is sampled from βη. In
practice, the number η is much smaller than q.

2.2 Spherical Cap

Let d be a positive integer. For vectors u, v ∈ R
d, the angle between u, v is

θ(u, v) = arccos
(

< u, v >

‖u‖ · ‖v‖
)

.

This is a useful notation to describe the difference between two vectors and
is known as “angular distance”. It is an important tool in our analysis through-
out this paper. We will focus more on the directions and the angles instead of
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the length of vectors. In [5], the spherical cap is introduced to characterize the
information available from each successful query.

Definition 1. Let Sd be the unit hypersphere in R
d. For any u ∈ Sd, the spher-

ical cap of angle θ about u is

C(d, u, θ) = {v ∈ Sd : θ(u, v) ≤ θ} .

It is proved in [5] that each successful decryption can rule out key candidates
in the corresponding spherical caps. Thus, the size of the surface area of caps is
closely related to the number of excluded key candidates. Let σd−1 denote the
usual surface measure on Sd, the following heuristic from [5] is useful in applying
surface area of spherical caps to measure points of interest and will be assumed
in our later discussion.

Heuristic 1. For a fixed u ∈ Sd, let v be a uniformly random point on Sd. The
probability of θ(u, v) ≤ θ is

σd−1 (C(d, u, θ)) .

We shall perform some explicit calculation for the surface area of a spherical
cap. In [19], a concise area formula for such a cap is derived in closed form. This
formula involves with the so called incomplete beta function defined by

B(x, ν, μ) =
∫ x

0

tν−1(1 − t)μ−1dt, 0 ≤ x ≤ 1.

Note that B(1, ν, μ) is the usual beta function B(ν, μ) =
∫ 1

0
tν−1(1 − t)μ−1dt =

Γ (ν)Γ (μ)
Γ (ν+μ) . We normalize the incomplete beta function and denote it by

Ix(ν, μ) =
B(x, ν, μ)
B(ν, μ)

.

The formula for the cap surface area of C(d, u, θ) given in [19] is

Acap
d (θ) =

1
2
AdIsin2(θ)

(
d − 1

2
,
1
2

)
,

where Ad = 2π
d
2

Γ( d
2 )

is the surface area of Sd.

As for the surface area of the intersection of two spherical caps, some con-
cise formulas are given in [18]. Let Ad (θ, θ(u1, u2))1 be the intersection area of
C(d, u1, θ) and C(d, u2, θ). The following two cases are of greatest concern to us:

1. When θ(u1, u2) ≥ 2θ,Ad (θ, θ(u1, u2)) = 0.

1 The surface area of the intersection does not depend on u1 or u2. It is only related
to the angle between them.
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2. When θ < θ(u1, u2) < 2θ < 2π − θ(u1, u2),

Ad (θ, θ(u1, u2)) = π
d−1
2

Γ( d−1
2 ) ·

(
Jd

(
θ̃, θ

)
+ Jd

(
θ(u1, u2) − θ̃, θ

))
, where

⎧
⎪⎨

⎪⎩

θ̃ = arctan
(

1
sin(θ(u1,u2))

− 1
tan(θ(u1,u2))

)

Jd(θ1, θ2) =
∫ θ2

θ1

sin(φ)d−2I
1−

(
tan(θ1)
tan(φ)

)2

(
d

2
− 1,

1
2

)
dφ

The formulas for Ad (θ, θ(u1, u2)) for other cases can be found in [18].

3 Compression Errors

As mentioned earlier, there are compression errors u, u′, u′′ in the (R/M-)LWE/
LWR-based schemes. In practice, many schemes based on (R/M-)LWE also have
a step for ciphertext compression, such as Kyber and Newhope, so there are also
compression errors in these schemes. According to our experiments in Sect. 6,
the compression error is sometimes as large as the LWE error when they both
are present. Therefore, it is desirable to consider both errors. However, many
previous works on schemes based on (R/M-)LWE only considered the LWE error
and ignored the compression error. The purpose of this section is to characterize
compression error more precisely by proving that it is essentially a uniform
distribution on certain set. This will be useful in analyzing the distributions of
S,C,G as well as decryption failure later.

Definition 2. Fix two positive integers p < q, the compression error function
CDp,q : Z → Z is defined as

CDp,q(y) = y −
⌈

q

p

⌈
p

q
y

⌋⌋
.

This function measures the difference caused by the rounding and reconstruc-
tion operations. It can be easily extended to the cases of vectors of integers and
polynomials with integer coefficients, by working in a component-wise manner.

Now let us consider the characterization of the distribution of CDp,q(y). In
practice, the only cases of interest are gcd(p, q) = 1 and p|q, so we shall simply
deal with these two cases. But we would like to remark that the discussion also
applies to the general case of gcd(p, q) > 1. The following theorem states the
results whose proof is given in Appendix A.

Theorem 1. For positive integers p < q, characterizations of CDp,q for the
following two cases are:

1. If (p, q) = 1, then CDp,q(y) =
⌈

b
p

⌋
where b = py mods q. Furthermore, if

y is uniformly random chosen from Z or Zq, b is uniformly random in Zq,

CDp,q(y) belongs to
{

−
⌈

q
2p

⌋
, · · · ,

⌈
q
2p

⌋}
and has the same probability at all

of the integer points except −
⌈

q
2p

⌋
and

⌈
q
2p

⌋
.
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2. If p|q, then with m = q
p , CDp,q(y) = d where d = y mods m. Furthermore, if

y is uniformly random chosen from Z or Zq, CDp,q(y) is uniformly random
in Zm.

With this theorem, we are able to analyze the distributions of u, u′ and u′′.
Under the difficulty hypothesis of LWE, As+ e,AT s′ + e′, bT

r s′ + e′ + enc(m)
are computationally indistinguishable from uniform distributions on Rk

q , Rk
q and

Rq respectively. Therefore, when gcd(p, q) = gcd(t, q) = 1, each coefficient of

u, u′ belongs to
{

−
⌈

q
2p

⌋
, · · · ,

⌈
q
2p

⌋}
and has the same probability at all integer

points inside except ±
⌈

q
2p

⌋
, each coefficient of u′′ belongs to

{− ⌈
q
2t

⌋
, · · · ,

⌈
q
2t

⌋}

and has the same probability at all integer points inside except ± ⌈
q
2t

⌋
.

While if t|p|q, each coefficient of u, u′ is computationally indistinguishable
from a uniform random point in Z q

p
, each coefficient of u′′ is computationally

indistinguishable from a uniform random point in Z q
t
.

We use ψk
p,q to denote the compression error distribution for sampling a

vector of k polynomials of degree n − 1 in the following steps

1. choose y ← U(Rk) where U denotes the uniform distribution;
2. return CDp,q(y) mods q.

This distribution will be used in our later discussion of the concrete schemes of
Kyber and Newhope.

4 The Information Inferred by Successful Decryptions

In [5], the authors show that a successful decryption implies that the secret S
(after normalization) stays away from one (or two) spherical caps.2 It is noted
that [5] contains some ideas for rotations of polynomials, but did not use it in a
full extent. In addition, some formulas and experiment settings in [5] do not seem
to be consistent. In this section, we will consider excluding caps corresponding
to each rotation of a polynomial vector. A more accurate and precise calculation
is given using the results in Sect. 3 and some formulas in [19].

4.1 The Relationship Between Successful Decryptions and Caps

We are considering CCA security for schemes where both C and G are obtained
by hash function calls. We can view a pair of (C,G) as a query to the decryption
oracle. Our setting will restrict to the reaction attack, namely, the adversary
only cares if the query succeeds, not what it returns if the decryption fails.

Let S, C be the normalization of S,C, namely, S =
S

‖S‖ , C =
C

‖C‖ . It has

been proven in [5] that the success of query C is related to the fact whether S

2 Two caps are considered at the end of page 8 of [5], but the definition of efficacy on
page 9 contains only one cap.
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belongs to some spherical caps about C. Combined with the analysis of the dis-
tributions of u, u′, u′′ given in Sect. 3, a finer description of the angle information
obtained by a successful decryption can be obtained.

To this end, we know that for each pair of (C,G), the success of the decryption
implies that ∣

∣
∣S

T
C(r) + Gr

∣
∣
∣ ≤ q

4
holds true for all r = 0, 1, · · · , n − 1. Recall that G = e′′ − u′′. The distribution
of the coefficients of u′′ has been discussed in Sect. 3, while the distribution of
the coefficients of e′′ depends on the specific algorithm (and e′′ is available to be
selected by the adversary). So one can find a constant γ such that γ ≥ |Gr|, r =
0, 1, · · · , n − 1. γ should be as small as possible. Therefore, for every successful
query, the information that the attacker can definitely obtain is3

∣
∣
∣S

T
C(r)

∣
∣
∣ ≤ q

4
+ γ, r = 0, 1, · · · , n − 1.

Let θr be the angle between S and C(r) (which is also the angle between S

and C(r)). We denote the distribution that the user uses to pick S by χS , and
the distribution that the attacker uses to pick C by χC . Let S,C be two random
variables with S ← χS ,C ← χC . Suppose that the attacker only selects those C
such that ‖C‖ ≥ E[‖C‖] to query. The attack model assumes that S satisfies

‖S‖ ≥ E[‖S‖].

This means that some private key candidates cannot be treated in the present
setting. However, as we will comment later that this condition can be weakened
to cover a bigger set of private keys with some efficiency trade-off. With the
assumption of ‖S‖ ≥ E[‖S‖], we see that

|cos(θr)| =

∣
∣
∣
∣
∣
∣

〈S,C(r)〉
∥
∥S
∥
∥ ·
∥
∥
∥C(r)

∥
∥
∥

∣
∣
∣
∣
∣
∣
=

∣
∣
∣S

T
C(r)

∣
∣
∣

∥
∥S
∥
∥ ·
∥
∥
∥C(r)

∥
∥
∥

≤
q
4 + γ

∥
∥S
∥
∥ ·
∥
∥
∥C(r)

∥
∥
∥

≤
q
4 + γ

E[‖S‖] · E[‖C‖]
.

Let us denote θ∗ ∈ [
0, π

2

)
to be the angle that satisfies cos θ∗ =

q
4+γ

E[‖S‖]·E[‖C‖] .

If cos(θr) ≥ 0, we have θr ≥ θ∗, this implies that S �∈ C
(
2kn,C(r), θ∗

)
. Similarly,

if cos(θr) < 0, we have S �∈ C
(
2kn,−C(r), θ∗

)
. In summary, for each successful

C, we can exclude key candidates in 2n spherical caps, in the sense that

S �∈ C
(
2kn,±C(r), θ∗

)
, r = 0, 1, · · · , n − 1.

3 q
4
−γ was used to bound the LHS in [5], the experiments were performed accordingly.

Corrections are necessary.
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In the above analysis, the attacker just deals with the set of S such that
‖S‖ ≥ E[‖S‖] since the exact value of ‖S‖ is unknown.4 This condition can
be relaxed. For any β > 0, he can suppose that ‖S‖ ≥ β · E[‖S‖] and the
information he can get is | cos(θr)| ≤

q
4+γ

β·E[‖S‖]·E[‖C‖] . (When β ≤
q
4+γ

E[‖S‖]·E[‖C‖] ,
nothing is available.) It is easy to see that, the larger β is, the larger θ∗ is, the
more information he can obtain, but the less likely S is to satisfy this condition.
Moreover, we assume that the attacker only uses C that satisfies ‖C‖ ≥ E[‖C‖].
That is, given a ciphertext C, if ‖C‖ < E[‖C‖], he will discard it and regenerate
another ciphertext for attack. Similarly, he can also choose to use only longer
queries, but the cost of finding such ciphertexts will increase significantly. In this
paper, we only consider the case where ‖S‖ ≥ E[‖S‖] and all queries used by
the attacker have a length at least E[‖C‖]. In this way, we can always use the
same θ∗ for different queries. It is noticed that our discussion also applies to
other cases.

4.2 The Range of the Proportion of Excluded Key Candidates

Recall that we use θr to denote the angle between S and C(r). The following
lemma from [5] is useful in numerical characterization of the proportion of key
candidates.

Lemma 2. For a fixed S and C ← χC , for any r ∈ [0, 2n − 1], the probability

that θr < θ∗ is σ2kn−1

(
C
(
2kn,C(r), θ∗

))
.

This lemma says that the proportion of key candidates in C
(
2kn,C(r), θ∗

)

is exactly σ2kn−1

(
C
(
2kn,C(r), θ∗

))
. In other words, candidates with a ratio of

σ2kn−1

(
C
(
2kn,C(r), θ∗

))
can be eliminated by each cap.

By the formula we mentioned in Sect. 2 (from [19]), we give an exact and effec-

tive5 way of calculating of σ2kn−1

(
C
(
2kn,C(r), θ∗

))
using the explicit expres-

sion of the surface area of a cap. That is

σ2kn−1

(
C
(
2kn,C(r), θ∗

))
=

Acap
2kn(θ∗)
A2kn

=
1
2
Isin2(θ∗)

(
kn − 1

2
,
1
2

)
.

As mentioned earlier, each successful decryption can help with excluding key
candidates in 2n spherical caps. However, the overlaps among them is not certain.
4 In fact, the adversary might know what ‖S‖ is. In some schemes, s, e are sampled

according to the centered binomial distribution with fixed Hamming weight, such as
LAC. In this case, ‖S‖ is fixed and the attacker can just use the value of ‖S‖. How-
ever, there are also some schemes that use a discrete Gaussian or centered binomial
distribution to sample s, e, such as Kyber and Saber. Some restrictions on ‖S‖ are
necessary.

5 The normal incomplete beta function can be effectively calculated using software
such as Matlab.
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It is easy to see that C
(
2kn,C(r), θ∗

)
∩ C

(
2kn,−C(r), θ∗

)
= ∅, r = 0, 1,

· · · , n−1, but different C
(
2kn,C(r), θ∗

)
may intersect with each other. So the pro-

portion of key candidates that can be excluded by a successful decryption belongs
to [

Isin2(θ∗)

(
kn − 1

2
,
1
2

)
, nIsin2(θ∗)

(
kn − 1

2
,
1
2

)]
.

Then the proportion of key candidates that can be excluded by m successful
decryptions belongs to

[
Isin2(θ∗)

(
kn − 1

2
,
1
2

)
,mnIsin2(θ∗)

(
kn − 1

2
,
1
2

)]
.

We summarize the above analysis as the following proportion.

Proposition 1. Suppose that an adversary has made some successful queries to
the decryption oracle, then the proportion of key candidates that can be excluded
is at least Isin2(θ∗)

(
kn − 1

2 , 1
2

)
.

In this section, we only give a rough range of the proportion of the excluded
key candidates after m successful queries. It is noticed that, if the attacker has
made m successful queries, this proportion could even be mnIsin2

θ∗

(
kn − 1

2 , 1
2

)

when certain conditions are met. In the next section, we shall specify such con-
ditions in terms of overlap reduction by quantifying the overlaps among queries.
Some exact formulas for the overlaps among queries are presented and a finer
range of the proportion is given.

5 The Overlaps Among Queries and the Effect
of Successful Decryptions on the Failure Probability

In Sect. 4, a more accurate calculation of the proportion of key candidates con-
tained in each spherical cap has been developed. However, when considering
several caps corresponding to one or more queries, the intersections of them will
directly affect the attack efficiency. In [5], the notion of efficacy of a query set is
defined to measure the information available from it, and the use of the principle
of inclusion-exclusion to calculate the efficacy is proposed. Due to the complex-
ity of the high-order inclusion-exclusion principle, a first-order approximation to
the efficacy is used in [5].

However, it is noticed that the first-order approximation leads to an over-
estimate of the information available to the attacker, so it can not be used to
calculate the number of queries needed for finding a decryption failure. In this
section, we use a second-order approximation to measure the information from
successful queries to get a lower bound. These two approximations result a fine
range of the proportion of excluded key candidates together.

Let WC denote the set of 2n spherical caps according to the query C, i.e.

WC =
{

C
(
2kn,±C(r), θ∗

)
: r = 0, 1, · · · , n − 1

}
.
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Suppose the attacker has made m successful queries C1, · · · , Cm. Not only
the overlaps among the caps in each WCi

, but also the overlaps among
WC1 , · · · ,WCm

should be considered. The former was considered in [5] as they
only calculated one of the 2n caps in each WCi

, but the latter was left untreated.6

In this section, we consider both of the overlapping situations. We give the
conditions and probability of the first-order approximation. The second-order
approximation is obtained with more precise formulas to quantify the overlaps.
Meanwhile, we come up with some suggestions on how to make the overlaps
smaller.

We shall start by dealing with the simplest case – the overlap between two
spherical caps.

5.1 The Overlap Between Two Spherical Caps

First of all, we need the one-to-one correspondences between angle and inner
product, distance respectively. Two useful relationships are given in the following
proposition and the proofs are given in Appendix B.

Proposition 2. For C1, C2 ∈ Sd, let θ1,2 = θ
(
C1, C2

)
, d1,2 =

∥
∥
∥C1 − C2

∥
∥
∥

and ip1,2 = 〈C1, C2〉, then

1. θ1,2 = arccos (ip1,2) , ip1,2 = cos(θ1,2).
2. θ1,2 = 2arcsin

(
1
2d1,2

)
, d1,2 = 2 sin

(
1
2θ1,2

)
.

Let us consider the overlap between two caps C
(
2kn, C1, θ

∗
)

and

C
(
2kn, C2, θ

∗
)
. We denote C1,2 = C

(
2kn,C1, θ

∗
)

∩C
(
2kn,C2, θ

∗
)
. We will show

that the disjointness of these two caps can be characterized by the inner product,
angle, and distance of C1, C2 respectively. The following theorem is given and
its proof is in Appendix C.

Theorem 2. Let C1, C2 be two points on Sd, then the following are equivalent:

1. C1,2 = ∅.
2. θ1,2 > 2θ∗.
3. ip1,2 < cos (2θ∗).
4. d1,2 > 2 sin θ∗.

The above theorem give strategies for selecting completely disjoint spherical
caps. The adversary can choose one of the angle condition, the distance condition
and the inner product condition to check the disjointness. However, sometimes it
may be impractical to choose completely non-overlapping queries for reasons such
as efficiency. Therefore, the situation where those caps intersect is of interest.
The following proposition is a direct consequence of formulas in [18]. It can be
used to calculate the proportion of key candidates in C1,2.

6 In other words, they assumed that the first order approximation is true.
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Proposition 3. Let C1, C2 be two points on S2kn. Let θ1,2 be as in Proposition
2 and Jd(θ1, θ2) be as in Sect. 2.2. Then, if θ1,2 ≥ 2θ∗, σ2kn−1 (C1,2) = 0. If
θ∗ < θ1,2 < 2θ∗, we have7

σ2kn−1 (C1,2) =
A2kn(θ∗, θ1,2)

A2kn

=
1

2
√

π

Γ (kn)

Γ
(
kn − 1

2

) ·
(

J2kn

(
θ̃1,2, θ

∗)
+ J2kn

(
θ1,2 − θ̃1,2, θ

∗))
,

where θ̃1,2 = arctan
(

1
sin(θ1,2)

− 1
tan(θ1,2)

)
. In particular, if kn is even, we have

σ2kn−1 (C1,2) =
1
2π

· (2kn − 2)!!
(2kn − 3)!!

·
(
J2kn

(
θ̃1,2, θ

∗
)

+ J2kn

(
θ1,2 − θ̃1,2, θ

∗
))

.

The above proposition gives an efficient8 way of calculating the total propor-
tion of the keys candidates inside two intersecting caps by the following relation:

σ
(

C
(
2kn, C1, θ

∗)
∪ C

(
2kn, C2, θ

∗))
= σ

(
C

(
2kn, C1, θ

∗))
+ σ

(
C

(
2kn, C2, θ

∗))
− σ (C1,2) .

From this, we can raise the lower bound in Proposition 1.
As we can see, θ1,2 is an important indicator for characterizing C1,2. However,

because of the tedium of calculating the angles between each pair of queries one
by one, an estimation of θ1,2 is needed. Since we are considering the CCA setting
where queries are the results of hash function calls, we can view each query C
(after normalization) as a uniform random point on S2kn. Then θ1,2 can be
regarded as an angle in random packing on the sphere. To proceed further, we
need some technical argument on this kind of random angles.

The dimension of (R/M-)LWE/LWR-based public-key encryption schemes is
usually very high. There is a folklore conjecture that random vectors in high
dimensional spaces are almost nearly orthogonal. This is also referred to as the
orthogonality hypothesis. Recently, Cai et al. [7] presented a precise formulation
and gave the proof of the orthogonality hypothesis.

Lemma 3 [7]. Let u, v be two random points on Sd, then

Pr
(∣∣
∣θ (u, v) − π

2

∣
∣
∣ ≥ ε

)
≤ K

√
d (cos ε)d−2

for any d ≥ 2 and ε ∈ (
0, π

2

)
, where K is a universal constant.

As indicated in [7], any number K satisfies K ≥ √
π
d

Γ( d
2 )

Γ( d−1
2 ) would be sufficient.

It is remarked that a tighter estimation of K is of great interest in practice.
To this end, we use some results for Wallis type inequalities. Let Pd = (2d−1)!!

(2d)!!

and Pd+ 1
2

= (2d)!!
(2d+1)!! , then it has been proven in [8,17] that

1√
π(d + 4/π − 1)

≤ Pd <
1√

π(d + 1/4)
,

√
π

2
√

d + 9π/16 − 1
≤ Pd+ 1

2
<

√
π

2
√

d + 3/4
.

7 The conditions chosen here are satisfied in all of the schemes in our experiments.
The result can be generalized to the case where θ1,2 < θ∗ by using formulas in [18].

8 The code for computing Jd(θ1, θ2) is given in [18]. Since we have made a slight change
in the definition of Jd(θ1, θ2), a small adjustment to the code is required.
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From these, we can derive a better bound for
√

π
d

Γ( d
2 )

Γ( d−1
2 ) , namely

√
π

d

Γ
(

d
2

)

Γ
(

d−1
2

) ≤
⎧
⎨

⎩

√
π
2 − 2π−4

d if d is even
√

π
2 − 5

2π− 9
16π2

d if d is odd.

Normally, one can simply set K =
√

π
2 . When considering specific schemes, the

dimension d = 2kn is even, so we get the following result about the distribution
of θ1,2 with a better bound:

Corollary 1. Let C1, C2 be two points on S2kn, let θ1,2 be as in Proposition 2.
For any ε ∈ (

0, π
2

)
, we have

Pr
(∣∣
∣θ1,2 − π

2

∣
∣
∣ ≥ ε

)
≤ √

πkn + 4 − 2π (cos ε)2kn−2
.

Let M > 0 be some security parameter and set ε(M) =

arccos
(

2M −1
2M √

πkn+4−2π

) 1
2kn−2 . Then it can be verified that

ε(M) = min
ε∈(0, π

2 )

{√
πkn + 4 − 2π (cos ε)2kn−2 ≥ 1 − 1

2M

}
.

From this, an estimate of the range of θ1,2 is given.

Theorem 3. Let C1, C2 be two points on S2kn. For any given security param-
eter M , we have

π

2
− ε(M) ≤ θ1,2 ≤ π

2
+ ε(M)

with a probability no less than 1 − 1
2M .

Together with Theorem 2, we know that if 2θ∗ < π
2 − ε(M), the probability

of C1,2 = ∅ is bigger than 1 − 1
2M . On the other hand, if 2θ∗ > π

2 + ε(M),
the probability of C1,2 = ∅ is less than 1

2M . It is worth noting that, from our
experiments in Sect. 6, θ∗ is greater than π

4 in most schemes. Hence, C1,2 = ∅ is
almost not true and Proposition 3 is useful in measuring the surface area of the
intersections.

5.2 The Overlaps Among Queries

Suppose that the attacker is making m queries. Just like [Equation (9), [5]], we

only consider one cap for each query Ci, for example, C
(

2kn,C
(0)
i , θ∗

)
. The

reason is that we want to consider the overlaps among the caps of different
queries. This will not make much difference to the result as m � n in practice.

For convenience, for each Ci, we write Ci = C
(

2kn,C
(ri)
i , θ∗

)
, 0 ≤ ri ≤ n − 1

to be the cap used by the attacker.
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It is noted that C
(ri)
i (i = 1, 2, · · · ,m) can be seen as m uniformly random

points on S2kn. Let θi,j (1 ≤ i < j ≤ m) be the angles between C
(ri)
i and C

(rj)
j .

We assume that these angles are independent and identically distributed and
are likely in the range described in Theorem 3 in the sense that

π

2
− ε(M) ≤ θi,j ≤ π

2
+ ε(M) with a probability no less than 1 − 1

2M
.

We use a second-order approximation to estimate the proportion of key can-
didates that can be excluded after m successful queries to get a lower bound,
that is

σ

(
m⋃

i=1

Ci

)

≥
m∑

i=1

σ (Ci) −
∑

1≤i<j≤m

σ (Ci,j) ,

where Ci,j is the intersection of Ci and Cj .
Consequently, we can get a range of the proportion of excluded key candi-

dates, that is

σ

(
m⋃

i=1

Ci

)

∈
⎡

⎣
m∑

i=1

σ (Ci) −
∑

1≤i<j≤m

σ (Ci,j) ,

m∑

i=1

σ (Ci)

⎤

⎦

Now we give a more specific description. It is noted that if 2θ∗ ≥ π
2 − ε(M),

the spherical caps may intersect. From Proposition 3, if θi,j ≥ 2θ∗, we have
σ (Ci,j) = 0. Otherwise, if θi,j < 2θ∗, we have (n is assumed to be even, which is
always true in practice)

σ (Ci,j) =
J2kn

(
θ̃i,j , θ

∗
)

+ J2kn

(
θi,j − θ̃i,j , θ

∗
)

2πPkn−1
,

where θ̃i,j = arctan
(

1
sin(θi,j)

− 1
tan(θi,j)

)
, 1 ≤ i < j ≤ m. Hence,

σ

(
m⋃

i=1

Ci

)
≥ m

2
Isin2 θ∗

(
kn − 1

2
,
1

2

)
−

∑
1≤i<j≤m

J2kn

(
θ̃i,j , θ

∗
)

+ J2kn

(
θi,j − θ̃i,j , θ

∗
)

2πPkn−1
.

We denote the right-hand side of the above inequality by Ω(m), which rep-
resents the second-order approximation of the proportion of key candidates that
can be excluded by m successful decryption. It can be calculated efficiently using
the codes in [18].

On the other hand, if 2θ∗ < π
2 − ε(M), the probability that σ (Ci,j) = 0 is at

least 1 − 1
2M for each pair of (i, j). Hence, one can take M to be a large integer,

then the following

σ

(
m⋃

i=1

Ci

)

=
m

2
Isin2 θ∗

(
kn − 1

2
,
1
2

)



Private Key Information Brought from Successful Decryption Queries 211

holds with a probability no less than
(
1 − 1

2M

)m(m−1)
2 .

There is a little trick for picking a suitable M . Since limx→∞
(
1 − 1

x

)x = 1
e ,

the attacker can take M =
⌈
log2

(
m(m−1)

2

)⌉
to make sure the probability is no

less than 1
e .

In fact, in the case where 2θ∗ < π
2 − ε(M), we can refine our results slightly.

Since θ

(
C

(ri)
i , C

(rj)
j

)
= π − θ

(
C

(ri)
i ,−C

(rj)
j

)
, θ

(
C

(ri)
i ,−C

(rj)
j

)
also belongs

to
[

π
2 − ε(M), π

2 + ε(M)
]

when θi,j ∈ [
π
2 − ε(M), π

2 + ε(M)
]
. So in this case, if

we consider two caps associated with each query, the result can be improved to:

σ

(
m⋃

i=1

C
(

2kn,±C
(ri)
i , θ∗

))

= mIsin2 θ∗

(
kn − 1

2
,
1
2

)
with a probability no

less than
(
1 − 1

2M

)m(m−1)
2 .

Then, Proposition 1 can be further extended to the following theorem.

Theorem 4. Suppose that an adversary has made m successful queries to the
decryption oracle. The proportion of excluded key candidates is greater than
Ω(m). Moreover, for a positive integer M , if 2θ∗ < π

2 − ε(M), this proportion is

at least mIsin2
θ∗

(
kn − 1

2 , 1
2

)
with a probability no less than

(
1 − 1

2M

)m(m−1)
2 .

The experimental data in Sect. 6 shows that, the results of the first-order and
the second-order approximations are usually very close. Therefore, we can always
get a finer range of the proportion of key candidates that can be excluded.

In the analysis above, we only consider one (or two) of the caps for each
query because of the strong correlation between two different rotations of the
same query. Theorem 3 does not apply in this case.9 Moreover, we also give some
results on the overlaps among different caps of the same query in Appendix D.

5.3 The Decryption Failure Probability

In this paper, we have been using the relationship between the fact that C fails
to be correctly decrypted and the event that S belongs to some spherical caps
about C. However, how much are the two different? In this subsection, we discuss
the relationship between their probabilities.

For each query Ci, we write Fi to denote the event that “Ci fails”, Si to
denote the event “Ci succeeds”. We denote P [Fi] to be the unconditional failure
probability of Ci (i.e., the probability is independent of the status of the previous
decryptions). P [Fi] is estimated in [10] for the first time, and is further improved
by [9]. The main idea for calculating P [Fi] is that, the longer Ci is, the more
likely it is to fail.

9 It is noted that, from our experiments, the coefficient vectors of different rotations
of the same query are always nearly orthogonal in practice, so the actual situation
of the attack may be better than that stated in Theorem 4.
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Recall that Ci = C
(

2kn,C
(ri)
i , θ∗

)
, i = 1, 2, · · · ,m. Now let us describe the

relationship between P [Fi] and σ (Ci). Because the failure of Ci is a necessary
condition for S ∈ Ci, the probability of S ∈ Ci should not be greater than that
of Fi, in the sense that

P [Fi] ≥ Pr
[
S ∈ Ci

]
= σ (Ci) .

It should be noted that, since we have scaled up some conditions in the
derivation in Sect. 4.1 and Sect. 5.2, P [Fi] is very unlikely to be σ (Ci).10

Moreover, besides excluding wrong key candidates, the information obtained
by successful decryptions can also give us a more accurate description of the
failure probability of each query. For simplicity, let us take the case of two
queries C1 and C2. We suppose that C1 has been successful, then the posterior
decryption failure probability of C2 will be influenced by C1. According to Bayes’
theorem,

P [F2|S1] =
P [S1|F2]

P [S1]
· P [F2] =

P [S1|F2]
1 − P [F1]

· P [F2] =
1 − P [F1|F2]

1 − P [F1]
· P [F2].

As previously mentioned, P [F1] and P [F2] can be estimated according to [9,
10]. Furthermore, how to estimate the failure probabilities of subsequent queries
after one or more failed queries is exactly what failure boosting studied. The
way of calculating P [F1|F2] is proposed in [12] and improved in [9]. Hence, a
more accurate characterization of the failure probability of C2 can be obtained.

In summary, the method used for calculating the failure probability in failure
boosting can be applied in a similar way to the case where the decryptions
are successful. By using the information obtained by successful decryptions, a
more accurate way of estimating the posterior decryption failure probability is
obtained.

6 (R/M-)LWE-Based Public-Key Encryption Schemes

In the previous sections, by using (recent) precise geometric formulas, we get
some finer numerical indication about the proportion of key candidates that
can be excluded when an adversary makes successful queries to the decryption
oracle. The decryption failure probability of (R/M-)LWE/LWR-based schemes
has been analyzed in terms of more accurate formulations.

In this section, we use our analysis to specific encryption schemes includ-
ing Kyber [3,6], Saber [4], Frodo [20], and Newhope [1]. We adopt m = 264

(the largest number of queries allowed by NIST) and M = log2
(

m(m−1)
2

)
in

10 An experiment in [Table 2, [5]] shows that P [Fi] and σ (Ci) are approximately equal.
This result is due to the incorrect use of q

4
−γ, resulting in an overestimate of σ (Ci).

In fact, from our experiments in Sect. 6, these two values will be very different in all
schemes.
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the following experiments. Given the failure probability δ (available from each
parameter set of each individual scheme), we calculate the following values and
display them in Table 2:

– ε(M), the maximum difference between the angles among queries and π
2 ,

in the sense that, each angle will belong to
[

π
2 − ε(M), π

2 + ε(M)
]

with a
probability at least 1 − 1

2M .
– θ∗, the angle that an attacker can obtain.
– 1

2Isin2 θ∗
(
kn − 1

2 , 1
2

)
, the proportion of key candidates in each spherical cap.

– J2kn

(
π
4 , θ∗), a quantity characterizing the overlaps. The larger J2kn

(
π
4 , θ∗)

is, the bigger the overlaps are.
– Ω̃(m), an estimate of Ω(m), to be exact, an estimate of the second-order

approximation of the proportion of key candidates that can be excluded by
m successful decryption.

The estimation Ω̃(m) of Ω(m) is derived by the following process. Since∣
∣θi,j − π

2

∣
∣ ≤ ε(M) with a probability no less than 1 − 1

2M , and ε(M) is always a
very small angle in practice, we have

θi,j ≈ π

2
and θ̃i,j ≈ arctan(1) =

π

4
.

From the fact that
√

πd +
π

4
<

1
Pd

≤ √
πd + 4 − π for any positive integer d, an

estimate of Ω(m) is obtained:

Ω̃(m) :=
m

2
Isin2 θ∗

(
kn − 1

2
,
1
2

)
− m2J2kn

(
π
4 , θ∗) ·√π(kn − 1)

2π
.

Table 2. A summary of some security parameters for NIST post-quantum schemes.

schemes δ ε(M) θ∗ 1
2
Isin2 θ∗

(
kn − 1

2
, 1
2

)
J2kn

(
π
4

)
Ω̃(m)

Kyber512 2−139 4.87◦ 55.15◦ 2−297 2−796 2−233

Kyber768 2−164 4.08◦ 59.68◦ 2−331 2−805 2−267

Kyber1024 2−174 3.60◦ 66.65◦ 2−258 2−572 2−194

LightSaber 2−120 4.87◦ 56.20◦ 2−278 2−727 2−215

Saber 2−136 4.08◦ 65.90◦ 2−207 2−464 2−143

FireSaber 2−165 3.60◦ 69.54◦ 2−198 2−429 2−134

Newhope512 2−213 4.87◦ 20.03◦ <2−1000 \ \
Newhope1024 2−216 3.60◦ 61.98◦ 2−374 2−876 2−310

Frodo640 2−139 4.42◦ 66.10◦ 2−171 2−382 2−107

As can be seen from Table 2, all schemes except Newhope512 satisfy 2θ∗ >
π
2 + ε(M), so there are overlaps in these cases. However, as the fact that
J2kn

(
π
4

) � Isin2 θ∗
(
kn − 1

2 , 1
2

)
in all schemes, the surface area of the overlap
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between two spherical caps is much smaller than that of these two caps. There-
fore, for these schemes, the effect of overlaps is far from significant and Ω̃(m)
is a sufficiently accurate estimation of the proportion of key candidates that
can be excluded by m successful decryption. As for Newhope512, since it satis-
fies 2θ∗ < π

2 − ε(M), the proportion of excluded key candidates is no less than
mIsin2 θ∗

(
kn − 1

2 , 1
2

)
with overwhelming probability. It is noted that because θ∗

is small in Newhope512, Isin2 θ∗
(
kn − 1

2 , 1
2

)
is too small to be calculated.

Recall that 1
2Isin2 θ∗

(
kn − 1

2 , 1
2

)
is the proportion of key candidates in a sin-

gle spherical cap. We can see that δ � 1
2Isin2 θ∗

(
kn − 1

2 , 1
2

)
in all schemes as

mentioned earlier in Sect. 5.3. Such proportion of key candidates was calculated
in [Table 1 (Adversary B), [5]] using the approximation Qα(χe(2), χe(2)). It is
pointed out that such an approximation is based on an erroneous interpretation
of θ∗ (i.e., incorrect use of q

2 − γ). From the comparisons in Table 3, we can see
that the values given in [5] are significantly bigger than the ones obtained after
correction and by using accurate formulas. It is remarked that experimental data
also shows that the security of those schemes in our discussion is not affected by
knowing the key candidates are excluded from those spherical caps.

Table 3. Comparison with [5]

schemes 2Qα(χe(2), χe(2)) in [5] Isin2 θ∗
(
kn − 1

2 , 1
2

)
in this paper

Kyber512 2−187 2−296

Kyber768 2−169 2−330

Kyber1024 2−178 2−257

LightSaber 2−123 2−278

Saber 2−139 2−206

FireSaber 2−170 2−197

Frodo640 2−146 2−170

In the next subsection, we give the detailed calculation of each parameter
of specific example of Saber. The calculations of other schemes can be seen in
Appendix E.

6.1 Saber

Saber is a MLWR-based lattice scheme, and a third round candidate in NIST’s
post-quantum standardization effort. Its key generation, encryption, decryption
algorithms as well as its common parameter set are given in [4]. The error term
of Saber is the following

ω = s′T u − u′T s + er,

where s, s′ ← βμ, u and u′ is the compression error of As and AT s′ respectively.
er ∈ Rq is a polynomial with uniformly distributed coefficients in the range[− p

2t ,
p
2t

]
. Using the previous notation, we write
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S =
(−s

u

)
, C =

(
u′

s′

)
and G = er.

In Saber, k = 3, n = 256, q = 213, p = 210, t = 24, μ = 4, δ = 2−136. Since
q
p = 8, then from Theorem 1, each coefficient of each polynomial of u, u′ is
uniformly random in Z8. Let Eu be the expected values of ‖u‖. Meanwhile,
Eu′ , Es, Es′ and so on are defined in the same way. Then it can be calculated that
Eu = Eu′ =

√
4224.

As for the norm of s and s′, since each coefficient of each polynomial of s, s′

follows β4, which is centered and has a variance of 2, we have Es = Es′ =
√

1536.
As mentioned in [5], due to the difference in size between the coefficients of

u′ and s′, we need to isotropize C. Let w =
√

Es′
Eu′ , we denote S̃ =

(− s
w

u · w

)

and C̃ =
(

u′ · w
s′
w

)
. It is noted that 〈S̃, C̃〉 = 〈S,C〉 and the expected values of

‖u′ · w‖ ,
∥
∥
∥ s′

w

∥
∥
∥ are both

√Eu′ · Es′ . According to the above, we have

ES̃ = EC̃ =
√

2 × Eu′ · Es′ ≈ 84.88.

It’s easy to see that γ = p
2t = 32, then

θ∗
Saber = arccos

( q
4 + γ

EC̃ · ES̃

)
≈ 65.90◦ and Isin2(θ∗

Saber)

(
kn − 1

2
,
1
2

)
≈ 2−206.

Finally, as J2kn

(
π
4 , θ∗

Saber

) ≈ 2−464 � 2−206 ≈ Isin2(θ∗
Saber)

(
kn − 1

2 , 1
2

)
, the

impact of the overlaps is negligible. Hence, the proportion of excluded key can-
didates after m successful queries is about

Ω̃(m) =
m

2
Isin2 θ∗

Saber

(
kn − 1

2
,
1
2

)
− m2J2kn

(
π
4 , θ∗

Saber

) ·√π(kn − 1)
2π

≈ 2−143.

A The Proof of Theorem 1

Let us consider the distribution of CDp,q(y). First of all, we start with a special
case where p = 1, then

CD1,q(y) = y −
⌈
q

⌈
1
q
y

⌋⌋
.

Let y = aq+b with b being the minimum absolute residue, i.e., b = y mods q,
then

CD1,q(y) = y −
⌈
q

⌈
1
q
y

⌋⌋
= y − q ·

⌈
aq + b

q

⌋
= y − aq = b.

In addition, when y is uniformly random in Z or Zq, CD1,q(y) is uniformly
random in Zq.
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Now we consider the general case. We decompose py into py = aq + b in a
similar manner, where b = py mods q, then

y −
⌈

q

p

⌈
p

q
y

⌋⌋
= y −

⌈
1

p
· q

⌈
1

q
(py)

⌋⌋
= y −

⌈
1

p
· (py − b)

⌋
= y −

⌈
y − b

p

⌋
=

⌈
b

p

⌋
.

In this case, the value of CDp,q(y) entirely depends on b. The following two
situations are of interest in practice.

1. gcd(p, q) = 1
In this case, when y is uniformly random in Z or Zq, b = py mods q is also

uniformly random in Zq, then CDp,q(y) is uniformly random in
⌈
Zq

p

⌋
. In

other words, CDp,q(y) belongs to
{

−
⌈

q
2p

⌋
, · · · ,

⌈
q
2p

⌋}
and has the same

probability at all integer points inside except −
⌈

q
2p

⌋
and

⌈
q
2p

⌋
.

In particular, when q
2 � p, we can roughly think that CDp,q(y) is uniformly

random in
{

−
⌈

q
2p

⌋
, · · · ,

⌈
q
2p

⌋}
.

2. p|q

We denote m = q
p , then

CDp,q(y) = y −
⌈

q

p

⌈
p

q
y

⌋⌋
= y −

⌈
m

⌈
1
m

y

⌋⌋
= CD1,m(y).

We decompose y into y = cm + d, where d = y mods m, then we have

CDp,q(y) = CD1,m(y) = d.

Thus, when y is uniformly random in Z or Zq, CDp,q(y) is uniformly random
in Zm.

B The Proof of Proposition 2

Fig. 1. The construction of C′.

As shown in Fig. 1, let O be the center of Sd. Since C1, C2 ∈ Sd, then
OC1 = OC2 = 1 and

ip1,2 = 〈C1, C2〉 =
∥
∥
∥C1

∥
∥
∥ ·
∥
∥
∥C2

∥
∥
∥ · cos (θ1,2) = cos (θ1,2)
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We denote M to be the midpoint of C1C2. According to the properties of
isosceles triangles, we know that

θ
(
OC1, OM

)
=

1
2
θ1,2 and C1M⊥OM

Hence,

1
2
d1,2 =

∣
∣
∣MC1

∣
∣
∣ =

∣
∣
∣MC1

∣
∣
∣

∣
∣
∣OC1

∣
∣
∣

= sin
(
θ
(
OC1, OM

))
= sin

(
1
2
θ1,2

)

C The Proof of Theorem 2

For C1, C2 ∈ S2kn, let θ1,2, d1,2, ip1,2 and C1,2 be as in Sect. 5, then

C1,2 �= ∅ ⇐⇒ ∃x ∈ S2kn, such that x ∈ C
(
2kn, C1, θ

∗
)

and x ∈ C
(
2kn, C2, θ

∗
)

⇐⇒ ∃x ∈ S2kn, such that θ
(
x, C1

)
< θ∗ and θ

(
x, C2

)
< θ∗.

From the analysis above, to make C1,2 = ∅ true, we need the event that at

most one of θ
(
x,C1

)
≤ θ∗, θ

(
x,C2

)
≤ θ∗ is true for any x ∈ S2kn. It is easy

to find that θ1,2 > 2θ∗ is a sufficient condition for C1,2 = ∅. Because when it is

true, for any x ∈ S2kn, θ
(
x,C1

)
+ θ

(
x,C2

)
≥ θ1,2 > 2θ∗.

Now let us prove that θ1,2 > 2θ∗ is a necessary condition C1,2 = ∅. Using
Proposition 2, we can easily give its equivalent representations, namely, the
disjoint condition about inner product (ip1,2 < cos (2θ∗)) and about distance
(d1,2 > 2 sin(θ∗)). In the following, we take d1,2 > 2 sin(θ∗) as an example to
prove that they are all necessary conditions for C1,2 = ∅. Because these three
conditions are equivalent, this will prove that each of them is a sufficient and
necessary condition for C1,2 = ∅ respectively.

Assume that d1,2 ≤ 2 sin(θ∗), we will show that in this case we can always

find a C ′ ∈ S2kn, such that θ
(
C ′, C1

)
≤ θ∗ and θ

(
C ′, C2

)
≤ θ∗.

Fig. 2. The construction of C′.
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Actually, as shown in Fig. 2, we denote the midpoint of C1 and C2 by M ,
and suppose that the line OM and S2kn intersect at point C ′, then C ′ is the
point we are looking for.

Since OC1 = OC2 = 1, the triangle OC1C2 is an isosceles triangle. Hence,
θ
(
C ′, C1

)
= θ

(
C ′, C2

)
= 1

2θ1,2. Then we have

sin
(
θ
(
C ′, C1

))
=

∣
∣
∣MC1

∣
∣
∣

∣
∣
∣OC1

∣
∣
∣

=
1
2
d1,2 < sin(θ∗).

Since θ∗ < π
2 and θ

(
C ′, C1

)
= 1

2θ1,2 ≤ π
2 , we have

θ
(
C ′, C1

)
< θ∗.

We can prove that θ
(
C ′, C2

)
< θ∗ in a similar way, then we know that C1,2 �= ∅,

since C ′ ∈ C1,2.

D Some Results about the Overlaps among Different
Caps of the Same Query

Let C be a query. Now let us consider the two rotations C(r1), C(r2)(0 ≤ r1 <

r2 ≤ n − 1) of C. Although the angle between C(r1) and C(r2) cannot be accu-
rately described, we can instead use their inner product to analyze the overlap,
achieving exactly the same effect. According to Theorem 2, the overlap between
C
(
2kn,C(r1), θ∗

)
and C

(
2kn,C(r2), θ∗

)
depends entirely on 〈C(r1), C(r2)〉.

It is mentioned in Sect. 2.1 that 〈C(r1), C(r2)〉 is the r2-th degree coeffi-
cient of 〈C(r1), C〉, so we can get 〈C(r1), C(r2)〉 by calculating 〈C(r1), C〉. Let
Ci,u(i = 1, 2, · · · , k;u = 0, 1, · · · n − 1) be the coefficient of the u-th degree coef-
ficient of the i-th polynomial of C. From the properties of rotations given in
Sect. 2.1, 〈C(r1), C(r2)〉 can be represented by

k∑
i=1

(
r1∑

u=0

Ci,r1−uCi,r2−u −
r2∑

u=r1+1

Ci,n+r1−uCi,r2−u +

n−1∑
u=r2+1

Ci,n+r1−uCi,n+r2−u

)
.

The following corollaries can be derived directly from Theorem 2.

Corollary 2. For a given C and its two rotations C(r1), C(r2)(0 ≤ r1 < r2 ≤
n − 1). The following are equivalent:

1. C
(
2kn,C(r1), θ∗

)
∩ C

(
2kn,C(r2), θ∗

)
= ∅.

2. θ
(
C(r1), C(r2)

)
> 2θ∗.

3.
k∑

i=1

(
r1∑

u=0

Ci,r1−uCi,r2−u −
r2∑

u=r1+1

Ci,n+r1−uCi,r2−u +

n−1∑
u=r2+1

Ci,n+r1−uCi,n+r2−u

)

< cos (2θ∗) ‖C‖2.
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Corollary 3. For a given C, the following are equivalent:

1. all the caps C
(
2kn,±C(r), θ∗

)
, r = 0, 1, · · · , n−1 do not intersect each other.

2. 2θ∗ < θ
(
C(r1), C(r2)

)
< π − 2θ∗, for any 0 ≤ r1 < r2 ≤ n − 1.

3.

∣
∣
∣
∣
∣
∣

k∑

i=1

⎛

⎝
r1∑

u=0

Ci,r1−uCi,r2−u −
r2∑

u=r1+1

Ci,n+r1−uCi,r2−u +

n−1∑

u=r2+1

Ci,n+r1−uCi,n+r2−u

⎞

⎠

∣
∣
∣
∣
∣
∣

< cos (2θ∗) ‖C‖2, for any 0 ≤ r1 < r2 ≤ n − 1.

The above corollary deals with the overlaps among 2n spherical caps in WC ,
and gives the conditions for a query C to achieve the best query effect. This may
provide advice to the attacker on how to choose queries.

E (R/M-)LWE-Based Public-Key Encryption Schemes

E.1 Kyber

Kyber is a MLWE-based lattice scheme, and a third round candidate in NIST’s
post-quantum standardization effort. [3] introduces the key generation, encryp-
tion, decryption algorithm of Kyber, and gives its common parameter set. [6]
proves that the error term of Kyber is

ω = eT r + e2 + cv − sT e1 − sT cu,

where e, s, r, e1 ← βη1 , e2 ← βη2 , cu ← ψk
2du ,q, cv ← ψk

2dv ,q. Using the previous
notation, we write

S =
(−s

e

)
, C =

(
e1 + cu

r

)
and G = e2 + cv.

Since all parameter sets of Kyber have q = 3329, then gcd(2du , q) = 1,
gcd(2dv , q) = 1. We denote the j-th degree coefficient of the i-th polynomial of
cu and cv by (cu)i,j and (cv)i,j respectively, then from Theorem 4.1, (cu)i,j =⌈
(bu)i,j

2du

⌋
, where (bu)i,j , i = 1, · · · , k, j = 0, 1, · · · , n − 1 are independent and

all uniformly random in Zq. (cv)i,j =
⌈
(bv)i,j

2dv

⌋
, where (bv)i,j , i = 1, · · · , k, j =

0, 1, · · · , n − 1 are independent and all uniformly random in Zq.
Let us take Kyber768 as an example, then du = 10, dv = 4, η1 = η2 = 2, δ =

2−164. It can be prove that the expected value of |(cu)i,j | is about
√

13
14 . As for

the value of (cv)i,j , since q >> 2dv and q/2
24 ≈ 104, we can approximately think

that (cv)i,j is uniformly random in [−104, 104].
As for the values of other parameters, since ‖G‖∞ ≤ ‖e2‖∞ + ‖cv‖∞ ≈

η2 + 104 = 106, we can take γ = 106. Taking M = log2
(

m(m−1)
2

)
, we have

ε(M) ≈ 4.08◦. As s, e, r, e1, e2 ∼ β2, and the variance of β2 is 1, we have Es =
Ee = Er = Ee1 =

√
768. Since e1, cu are independent, we have D [(cu + e1)i,j ] =

D [(cu)i,j ] + D [(e1)i,j ] = 27
14 , then Ee1+cu

≈ √
1481.
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Just like before, due to the difference in size between the coefficients of
e1 + cu and r, we need to isotropize C. Let w =

√
Er

Ee1+cu
, then we form

S̃ =
(− s

w
e · w

)
and C =

(
(e1 + cu) · w
r
w

)
. It is noted that 〈S̃, C̃〉 = 〈S,C〉 and

the expected values of ‖(e1 + cu) · w‖ ,
∥
∥ r

w

∥
∥ are both

√Ee1+cu
· Er. According to

the above, we have

ES̃ ≈ 40.24 and EC̃ ≈ 46.19.

Then the angle that the attacker can obtain is θ∗
Kyber768 = arccos

( q
4+γ

ES̃ ·EC̃

)
≈

59.68◦, the proportion is Isin2(θ∗
Kyber768)

(
kn − 1

2 , 1
2

) ≈ 2−330. Finally, it can be

calculated that J2kn

(
π
4 , θ∗

Kyber768

)
≈ 2−805 and Ω̃(m) ≈ 2−267.

E.2 Newhope

Newhope is a RLWE-based lattice scheme, which is proposed by Alkim et al.
[2] in 2016. [1] describes in detail the key generation, encryption and decryption
algorithm of Newhope. The error term of Newhope is

ω = es′ − e′s + e′′ + cv,

where e, s, s′, e′, e′′ ← βμ, cv ← ψ8,q. Using the previous notation, we write

S =
(−s

e

)
, C =

(
e′

s′

)
and G = e′′ + cv.

Let us take Newhope1024 as an example, then n = 1024, q = 12289, μ =
8, δ = 2−216. From Theorem 1, since q/2

8 ≈ 768, we can approximately think
that (cv)i,j is uniformly random in [−768, 768].

Now let us calculate the values of other parameters. Taking M =
log2

(
m(m−1)

2

)
, we have ε(M) ≈ 3.60◦. Since ‖G‖∞ ≤ ‖e′′‖∞ + ‖cv‖∞ ≤ 8 +

768 = 776, we can take γ = 776. As S,C ∼ β8, and the variance of β8 is 4, we have
ES = EC =

√
8192. Then the angle is θ∗

Newhope1024 = arccos
( q

4+γ

ES ·EC

)
≈ 61.98◦

and the proportion is Isin2(θ∗
Newhope1024)

(
n − 1

2 , 1
2

) ≈ 2−372.89. Finally, it can be

calculated that J2n

(
π
4 , θ∗

Newhope1024

)
≈ 2−876 and Ω̃(m) ≈ 2−310.

E.3 Frodo

Frodo is a LWE-based lattice scheme, and a second round candidate in NIST’s
post-quantum standardization effort. [20] introduces the basic information about
Frodo. The success condition is

‖E′′′‖∞ <
q

2B+1
,



Private Key Information Brought from Successful Decryption Queries 221

where E′′′ = S′E − E′S + E′′, S, E ∈ Z
n×n
q , S′, E′ ∈ Z

m×n
q , E′′ ∈ Z

m×n
q , and

each of their elements is sampled from the distribution χ (an approximation to
the discrete Gaussian distribution).

Let us take Frodo640 as an example, then q = 215, n = 640, γ = 12,m = n =
8, B = 2 and δ = 2−139. It can be calculated that ε(M) ≈ 4.42◦. [20] gives the
probability distribution function of χ. For any a ← χ, the expected value of a2

is 64895
213 ≈ 7.92.
As S, S′, E,E′, E′′ are all matrices, the angles are uncomputable. Some trans-

formation is needed. We write S = (s1 s2 · · · sn), E = (e1 e2 · · · en) where

si, ei, i = 1, 2, · · · , n are all column vectors. We write S′ =

⎛

⎜
⎝

s′
1

...
s′

m

⎞

⎟
⎠ , E′ =

⎛

⎜
⎝

e′
1

...
e′

m

⎞

⎟
⎠

where s′
j , e

′
j , j = 1, 2, · · · ,m are all row vectors. Then the success condition can

be further expressed as

∣
∣s′

jei − e′
jsi + e′′

ij

∣
∣ <

q

8
, i, j = 1, 2, · · · , 8.

Just like [5], we consider each entry of E′′′ respectively. For each
pair of (i, j), the angle that an attacker can obtain is θ∗

Frodo640 =

arccos
( q

8+γ√
2×n×7.92×√

2×n×7.92

)
≈ 66.10◦, and the proportion is Isin2(θ∗

F rodo640)

(n− 1
2 , 1

2 ) ≈ 2−169.6. Finally, it can be calculated that J2n

(
π
4 , θ∗

Frodo640

)≈ 2−381.6

and Ω̃(m) ≈ 2−106.6.
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