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Abstract. Laconic Function Evaluation (LFE) protocols, introduced by
Quach et al. in FOCS’18, allow two parties to evaluate functions lacon-
ically , in the following manner: first, Alice sends a compressed “digest”
of some function – say C – to Bob. Second, Bob constructs a ciphertext
for his input M given the digest. Third, Alice, after getting the cipher-
text from Bob and in full knowledge of her circuit, can recover C (M )
and (ideally) nothing more about Bob’s message. The protocol is said to
be laconic if the sizes of the digest, common reference string (crs) and
ciphertext are much smaller than the circuit size |C |.

Quach et al. put forward a construction of laconic function evalua-
tion for general circuits under the learning with errors (LWE) assump-
tion (with sub-exponential approximation factors), where all parameters
grow polynomially with the depth but not the size of the circuit. Under
LWE, their construction achieves the restricted notion of selective secu-
rity where Bob’s input M must be chosen non-adaptively before even
the crs is known.

In this work, we provide the first construction of LFE for NC1, which
satisfies adaptive security from the ring learning with errors assumption
(with polynomial approximation factors). The construction is based on
the functional encryption scheme by Agrawal and Rosen (TCC 2017).

Keywords: Functional encryption · Laconic function evaluation ·
Laconic oblivious transfer

1 Introduction

Laconic Function Evaluation (LFE) is a novel primitive that was introduced in
a recent work by Quach et al. [14]. Intuitively, the notion proposes a setting
where two parties want to evaluate a function C in the following manner: Alice
computes a “digest” of the circuit representation of C and sends this digest to
Bob; Bob computes a ciphertext CT for his input M using the received digest
and sends this back to Alice; finally Alice is able to compute the value C (M ) in
the clear without learning anything else about Bob’s input. Put differently, an
LFE protocol is a type of secure multi-party computation[4,9,11] that is Bob-
optimized.
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The work of [14] provided an elegant construction of laconic function eval-
uation for all circuits from LWE. In their construction, the size of the digest,
the complexity of the encryption algorithm and the size of the ciphertext only
scale with the depth but not the size of the circuit. However, under LWE, their
construction only achieves the restricted notion of selective security where Bob’s
input M must be chosen non-adaptively before even the crs is known. More-
over they must rely on LWE with sub-exponential modulus to noise ratio, which
implies that the underlying lattice problem must be hard for sub-exponential
approximation factors. Achieving adaptive security from LWE was left as an
explicit open problem in their work.

In this work, we provide a new construction of LFE for NC1 circuits that
achieves adaptive security. Our construction relies on the ring learning with
errors (RLWE) assumption with polynomial modulus to noise ratio. We start
with the construction by Agrawal and Rosen for functional encryption for NC1

circuits [3] and simplify it to achieve LFE. To achieve a laconic digest, we make
use of the laconic oblivious transfer (LOT) primitive [8,15]. Our main result may
be summarized as follows.

Theorem 1 (LFE for NC1 – Informal). Assuming the hardness of RLWE with
polynomial approximation factors, there exists an adaptively-secure LFE protocol
for NC1.

The authors of [14] also studied the relations between LFE and other primi-
tives, and in particular showed that LFE implies succinct functional encryption
(FE) [6,13]. Functional encryption is a generalisation of public key encryption
in which the secret key corresponds to a function, say f , rather than a user. The
ciphertext corresponds to an input x from the domain of f . Decryption allows to
recover f(x) and nothing else. Succinctness means that the size of the ciphertext
in the scheme depends only on the depth of the supported circuit rather than
on its size [1,3,10]. One can apply, as well, the LFE to FE compiler of [14] to
our new, adaptively secure LFE for NC1, and obtain an alternative variant of
adaptively secure, succinct FE for NC1.

Technical Overview. The techniques that we use exploit the algebraic struc-
ture in the construction by Agrawal and Rosen [3]. Say that the plaintext M ∈
{0, 1}k. If the encryption algorithm obtains a ciphertext CT := {C1, . . . , Ck}
where each Ci encrypts a single bit Mi of plaintext, in isolation from all different
Mj , we say that the ciphertext is decomposable.

The construction supports circuits of depth d and uses a tower of moduli
p0 < p1 < . . . < pd. Building upon a particular levelled fully homomorphic
encryption scheme (FHE) [7], it encrypts each bit of the plaintext, independently,
as follows:

– first multiplication level – the ciphertext consists of a “Regev encoding”:

C1 ← a · s + p0 · e + Mi ∈ Rp1
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where Mi ∈ Rp0 and s←$ Rp1 is a fixed secret term; a←$ Rp1 is provided
through public parameters, while e←χ Rp1 is the noise;

– next multiplication level – two ciphertexts are provided under the same s:

a′ · s + p1 · e′ + C1 ∈ Rp2 and a′′ · s + p1 · e′′ + (C1 · s) ∈ Rp2 .

The computational pattern is repeated recursively up to d multiplication lev-
els, and then for every bit of the input.

– an addition layer is interleaved between any two multiplication layers Ci and
Ci+1: essentially it “replicates” ciphertexts in Ci and uses its modulus pi.

– the public key (the “�a ”s) corresponding to the last layer are also the master
public key mpk of a linear functional encryption scheme Lin-FE [2].

– the decryption algorithm computes C obliviously over the ciphertext, layer
by layer, finally obtaining:

CTC (M ) ← C (M ) + Noise + PKC · s (1)

where PKC is a “functional public key” that depends only on the public key
and the circuit C , and can be viewed as a succinct representation of C . The
term PKC · s occurring in (1) will be cancelled using the functional key skC ,
in order to recover C (M ) plus noise (which can be modded out).

Our Technique. The crux idea when building an LFE is to set the ciphertext to
be essentially the data-dependent part of the FE ciphertext, while the digest to
be PKC . Concretely, the mpk will form the crs. Whenever a circuit C is to be
compressed, a circuit-dependent public value – denoted PKC – is returned as
digest. The receiver of PKC samples its own secret s and computes recursively
the Regev encodings (seen above) as well as PKC · s+Noise’ (the skC -dependent
term). These terms suffice to recover C (M ) from (1) on the sender’s side.

Our construction departs significantly from the approach in [14]. In short,
the original work makes use of generic transforms for obtaining attribute-based
LFEs (AB-LFEs), obtaining AB-LFEs supporting multi-bit outputs, using ideas
behind the transform of [10] to hide the “attribute” in AB-LFE and compressing
the digests via laconic oblivious transfer [8]. On the other hand, we do not need
to go via AB-LFE, making our transformation conceptually simpler. Moreover,
by relying on the adaptive security of the underlying FE scheme that we use, we
obtain adaptive security.

Towards Short Digests. As per [14], we use the laconic oblivious transfer protocol
in the following way: after getting the digest in the form of PKC , we apply a
second compression round, which yields:

(digestLOT, D̂) ← LOT.Compress(crsLOT,PKC ) .

We stress that both compression methods used are deterministic. Put differently,
at any point in time, the sender, in full knowledge of her circuit representation,
can recreate the digest. On the receiver’s side, instead of following the technique
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proposed in [14] – garbling an entire FHE decryption circuit and encrypting
under an ABE the homomorphic ciphertext and the labels – we garble only the
circuit that provides

PKC · s + pd−1 · Noise ,

while leaving the actual ciphertext intact. The advantage of such an approach
resides into its conceptual simplicity, as the size of the core ciphertext Bob sends
back to Alice remains manageable for simple C , and is not suppressed by the
size of the garbling scheme.

Roadmap. Section 2 puts forth the algorithmic and mathematical conventions
to be adopted throughout this work, as well as the definitions of primitives we use
herein. In Sect. 3 we review the decomposable FE scheme proposed by Agrawal
and Rosen in [3]. In Sect. 4, we introduce a new LFE scheme for NC1 circuits,
and show in Sect. 5 how to combine it with laconic oblivious transfer in order to
achieve a scheme with laconic digests.

2 Background

Algorithmic and Mathematical Notation. We denote the security parame-
ter by λ ∈ N

∗ and we assume it is implicitly given to all algorithms in the unary
representation 1λ. An algorithm is equivalent to a Turing machine. Algorithms
are assumed to be randomized unless stated otherwise; PPT stands for “proba-
bilistic polynomial-time” in the security parameter (rather than the total length
of its inputs). Given a randomized algorithm A we write the action of running
A on input(s) (1λ, x1, . . . ) with uniform random coins r and assigning the out-
put(s) to (y1, . . . ) by (y1, . . . )←$ A(1λ, x1, . . . ; r). When A is given oracle access
to some procedure O, we write AO. For a finite set S, we denote its cardinality
by |S| and the action of sampling an element x uniformly at random from X
by x←$ X. We let bold variables such as w represent column vectors. Similarly,
bold capitals stand for matrices (e.g. A). A subscript Ai,j indicates an entry in
the matrix. We overload notation for the power function and write αu to denote
that variable α is associated to some level u in a levelled construction. For any
variable k ∈ N

∗, we define [k] := {1, . . . , k}. A real-valued function Negl(λ) is
negligible if Negl(λ) ∈ O(λ−ω(1)). We denote the set of all negligible functions
by Negl. Throughout the paper ⊥ stands for a special error symbol. We use ||
to denote concatenation. For completeness, we recall standard algorithmic and
cryptographic primitives to be used.

Circuit Representation. We consider circuits as the main model of compu-
tation for representing (abstract) functions. Unless stated otherwise, we use k
to denote the input length of the circuit and d for its depth. As we assume that
circuits have a tree like structure we denote as subcircuits the corresponding
subtrees.
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2.1 Computational Hardness Assumptions

The Learning With Errors (LWE) search problem [16] asks to find the secret
vector s over F

�
q given a polynomial-size set of tuples (A,A · s + e), where A

stands for a randomly sampled matrix over Fk×�
q , while e ∈ F

k represents a small
error vector sampled from an appropriate distribution χ. In rough terms, the
decisional version of the LWE problems, asks any PPT adversary to distinguish
between the uniform distribution and one induced by the LWE tuples.

Definition 1 (Learning With Errors). Let A stand for a PPT adversary.
The advantage of A in distinguishing between the following two distributions is
negligible:

AdvLWE
A (λ) :=

∣
∣Pr[1 ← A(

1λ,A,u
)

] − Pr[1 ← A(

1λ,A,A · s + e
)

]
∣
∣ ∈ Negl(λ)

where s←$Z
�
q, A←$Z

k×�
q , e←χZ

k
q and u←$Z

k
q .

Later, Lyubashevsky, Peikert and Regev [12] proposed a ring version. Let
R := Z[X]/(Xn + 1) for n a power of 2, while Rq := R/qR for a safe prime q
satisfying q ≡ 1 mod 2n.

Definition 2 (Ring LWE). For s←$ Rq, given a polynomial number of sam-
ples that are either: (1) all of the form (a, a ·s+e) for some a←$ Rq and e←χ Rq

or (2) all uniformly sampled over R2
q; the (decision) RLWEq,φ,χ states that a

PPT-bounded adversary can distinguish between the two settings only with neg-
ligible advantage.

2.2 Garbling Schemes

Garbling schemes were introduced by Yao in its pioneering work [18,19], to
solve the famous “Millionaires’ Problem”. Since then, garbled circuits became
a standard building-block for many cryptographic primitives. Their definition
follows.

Definition 3 (Garbling Scheme). Let {Ck}λ be a family of circuits taking as
input k bits. A garbling scheme is a tuple of PPT algorithms (Garble,Enc,Eval)
such that:

– (Γ, sk)←$Garble(1λ,C ): takes as input the unary representation of the security
parameter λ and a circuit C ∈ {Ck}λ; outputs a garbled circuit Γ and a secret
key sk.

– c←$Enc(sk, x): x ∈ {0, 1}k is given as input, as well as the secret key sk; the
encoding procedure returns an encoding c.

– C (x) ← Eval(Γ, c): the evaluation procedure receives as inputs a garbled circuit
and an encoding of x, returning C (x).

We say that a garbling scheme Γ is correct if for all C : {0, 1}k → {0, 1}l

and for all x ∈ {0, 1}k we have that:

Pr
[

C (x) = y
∣
∣
∣

(Γ, sk)←$GS.Garble(1λ,C )∧
y ← GS.Eval(Γ,GS.Enc(sk, x))

]

= 1 .
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Yao’s Garbled Circuit [18]. One of the most pre-eminent types of garbling
schemes is represented by the original proposal of Yao, which considers a family
of circuits of n input wires and outputting a single bit. In his proposal, a circuit’s
secret key can be viewed as two labels (L0

i , L
1
i ) for each input wire, where i ∈

[n]. The evaluation of the circuit at point x corresponds to an evaluation of
Eval(Γ, (Lx1

1 , . . . , Lxn
n )), where xi is the ith bit of x,—thus the encoding c :=

(Lx1
1 , . . . , Lxn

n ).

2.3 Functional Encryption Scheme - Public-Key Setting

We define the notion of functional encryption[6] in the public key-settings and
provide a simulation-based security definition. Roughly speaking, the semantic
security of the functional encryption scheme guarantees the adversary cannot
learn more on M as by knowing only C (M ).

Definition 4 (Functional Encryption - Public Key Setting). Let F =
{Fλ}λ∈N be an ensemble, where Fλ is a finite collections of functions C : Mλ →
Yλ. A functional encryption scheme FE in the public-key setting consists of a
tuple of PPT algorithms (Setup, KeyGen, Enc, Dec) such that:

– (msk,mpk)←$FE.Setup(1λ) : takes as input the unary representation of the
security parameter λ and outputs a pair of master secret/public keys.

– skC ←$FE.KeyGen(msk,C ): given the master secret key and a function C , the
(randomized) key-generation procedure outputs a corresponding skC .

– CT←$FE.Enc(mpk,M): the randomized encryption procedure encrypts the
plaintext M with respect to mpk.

– FE.Dec(CT, skC ): decrypts the ciphertext CT using the functional key skC
in order to learn a valid message C (M) or a special symbol ⊥, in case the
decryption procedure fails.

We say that FE satisfies correctness if for all C : Mλ → Yλ we have that:

Pr

⎡

⎢
⎢
⎣

y = C (M)

∣
∣
∣
∣
∣

(msk,mpk)←$FE.Setup(1λ)∧
skC ←$FE.KeyGen(msk,C )∧
CT←$FE.Enc(mpk,M)∧
y ← FE.Dec(CT, skC )

⎤

⎥
⎥
⎦

= 1 .

A public-key functional encryption scheme FE is semantically secure if there
exists a stateful PPT simulator S such that for any PPT adversary A,

AdvFULL-SIM-FE
A,FE (λ) :=

∣
∣
∣
∣
Pr[FULL-SIM-FEA

FE(λ) = 1] − 1
2

∣
∣
∣
∣

is negligible, where the FULL-SIM-FE experiment is described in Fig. 1 (left).
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Fig. 1. Left: FULL-SIM-FE-security defined for a functional encryption scheme in the
public-key setting. Right: the simulation security experiment FULL-SIM-LFE defined
for a laconic function evaluation scheme LFE.

2.4 Laconic Oblivious Transfer

Definition 5 (LOT). A Laconic Oblivious Transfer (LOT) scheme consists of
a tuple of PPT algorithms (crsGen,Compress,Enc,Dec) with the following func-
tionality:

– crs←$ crsGen(1λ): takes as input the security parameter λ in unary and outputs
a common reference string crs.

– (digest, D̂)←$Compress(crs,D): given a database D and the crs, outputs a
digest of the circuit digest as well as a state of the database D̂.

– CT←$Enc(crs, digest, �,M0,M1): the randomized encryption algorithm takes
as input the common reference string crs, the digest digest, an index position
�, and two messages; it returns a ciphertext CT.

– M ← Dec(crs, digest, D̂,CT, �): the decryption algorithm takes as input D̂, an
index location � the digest digest and the common reference string crs and
outputs a message M .

We require an LOT to satisfy the following properties:

– Correctness: for all (M0,M1) ∈ M × M, for all D ∈ {0, 1}k and for any
index � ∈ [k] we have:

Pr

⎡

⎢
⎢
⎣
M = MD[�]

∣
∣
∣
∣
∣

crs←$ LOT.crsGen(1λ, 1k)∧
(digest, D̂)←$ LOT.Compress(crs,D)∧
CT←$ LOT.Enc(crs, digest, �,M0,M1)∧
M ← LOT.Dec(crs, digest, D̂,CT, �)

⎤

⎥
⎥
⎦

= 1 .

– Laconic Digest: the length of the digest is a fixed polynomial in the security
parameter λ, independent of the size of the database D.
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– Sender Privacy against Semi-Honest Adversaries: there exists a PPT
simulator S such that for a correctly generated crs the following two distribu-
tions are computationally indistinguishable:

∣
∣
∣Pr

[A(
crs,Enc(crs, digest, �,M0,M1)

)] − Pr
[A(

crs, S(crs,D, �,MD[�])
)]

∣
∣
∣ ∈ Negl(λ)

2.5 Laconic Function Evaluation

We described the motivation behind LFE in Sect. 1. We proceed with its definition
from [14].

Definition 6 (Laconic Function Evaluation [14]). A laconic function eval-
uation scheme LFE for a class of circuits Cλ consists of four algorithms (crsGen,
Compress, Enc, Dec):

– crs←$ LFE.crsGen(1λ, 1k, 1d): assuming the input size and the depth of the
circuit in the given class are k and d, a common reference string crs of appro-
priate length is generated. We assume that crs is implicitly given to all algo-
rithms.

– digestC ← LFE.Compress(crs,C ): the compression algorithm takes a descrip-
tion of the circuit C and produces a digest digestC .

– CT←$ LFE.Enc(crs, digestC ,M ): takes as input the message M as well as the
digest of C and produces a ciphertext CT.

– LFE.Dec(crs,CT,C ): if the parameters are correctly generated, the decryption
procedure recovers C (M ), given the ciphertext encrypting M and circuit C
or a special symbol ⊥, in case the decryption procedure fails.

We require the LFE scheme to achieve the following properties:

– Correctness - for all C : {0, 1}k → {0, 1}� of depth d and for all M ∈ {0, 1}k

we have:

Pr

⎡

⎢
⎢
⎣

y = C (M )

∣
∣
∣
∣
∣

crs←$ LFE.crsGen(1λ, 1k, 1d)∧
digestC ← LFE.Compress(crs,C )∧
CT←$ LFE.Enc(crs, digestC ,M )∧
y ← LFE.Dec(crs,C ,CT)

⎤

⎥
⎥
⎦

= 1 .

– Security: there exists a PPT simulator S such that for any stateful PPT
adversary A we have:

AdvFULL-SIM-LFE
A,LFE (λ) :=

∣
∣
∣
∣
Pr[FULL-SIM-LFEA

LFE(λ) = 1] − 1
2

∣
∣
∣
∣

is negligible, where FULL-SIM-LFE is defined in Fig. 1 (right side).

– Laconic outputs: As per [14, p 13–14], we require the size of digest to be
laconic (|digestC | ∈ O(poly(λ))) and we impose succinctness constraints for
the sizes of the ciphertext, encryption runtime and common reference string.
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3 Background on the AR17 FE Scheme

Overview. In this section, we recall a construction of functional encryption for
circuits with logarithmic depth d in input length [3].

3.1 The AR17 Construction for NC1

In [3], the authors provided a functional encryption scheme supporting general
circuits and a bounded number of functional keys. The first distinctive feature
is represented by the supported class of functions, which are now described
by arithmetic, rather than Boolean circuits. This is beneficial, as arithmetic
circuits natively support multiple output bits. Second, the (input-dependent)
ciphertext’s size in their construction is succinct [3, Appendix E], as it grows
with the depth of the circuit, rather than its size. Third, the ciphertext enjoys
decomposability: assuming a plaintext is represented as a vector, each of its k
elements gets encrypted independently. We describe the scheme for NC1 below.

Regev Encodings. We commence by recalling a simple symmetric encryption
scheme due to Brakerski and Vaikuntanathan [7]. Let “s” stand for an RLWE
secret acting as a secret key, while a and e are the random mask and noise:

c1 ← a ∈ Rp

c2 ← a · s + 2 · e + M ∈ Rp

(2)

Recovering the message M (a bit, in this case) is done by subtracting c1 ·s from c2
and then removing the noise through the “mod 2” operator. This plain scheme
comes up with powerful homomorphic properties, and is generalized in [3] to
recursively support levels of encodings. Henceforth, we use the name “Regev
encoding” for the following map between rings E i : Rpi−1 → Rpi

, where:

E i(M ) = ai · s + pi−1 · ei + M ∈ Rpi
. (3)

As a general notation and unless stated, we write as a superscript of a variable
the level to which it is associated.

The NC1 Construction. To be self-contained in the forthcoming parts, we give
an informal specification of AR17’s procedures.

Encryption. The encryption procedure samples a RLWE secret s, and computes
a Regev encoding for each input Mi ∈ Rp0 independently. This step produces the
following set

{E1(Mi)| Mi ∈ Rp0 ∧ i ∈ [k]
}

, where E1 is the encoding mapping
E1 : Rp0 → Rp1 defined in Eq. (3). This represents the Level 1 encoding of Mi.
Next, the construction proceeds recursively; the encoding of Mi corresponding
to Level 2 takes the parent node P (in this case P is E1(Mi)), and obtains on
the left branch:

E2(P ) = E2(E1(Mi)) = a2
1,i · s + p1 · e21,i +

(

(a1
1,i · s + p0 · e11,i + Mi) · s

)

,
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while for the right branch:

E2(P · s) = E2(E1(Mi) · s) = a2
2,i · s + p1 · e22,i +

(
(a1

1,i · s + p0 · e11,i + Mi) · s
)

,

where (a2
1,i, a

2
2,i)←$ R2

p2
and noise terms are sampled from a Gaussian distribu-

tion: (e21,i, e
2
2,i)←χ χ2

p2
. This procedure is executed recursively up to a number of

levels – denoted as d – as presented in Fig. 2.

Fig. 2. The tree encoding Mi in a recursive manner corresponds to ciphertext CTi.

Between any two successive multiplication layers, an addition layer is inter-
leaved. This layer replicates the ciphertext in the previous multiplication layer
(and uses its modulus). As it brings no new information, we ignore additive lay-
ers from our overview. The encoding procedure is applied for each M1, . . . ,Mk.
In addition, Level 1 also contains E1(s), while Level i (for 2 ≤ i ≤ d) also con-
tains E i(s · s). Hitherto, the technique used by the scheme resembles to the ones
used in levelled fully homomorphic encryption. We also remind that encodings
at Level i are denoted as CTi and are included in the ciphertext. The high level
idea is to compute the function C obliviously with the help of the encodings.

However, as we are in the FE setting, the ciphertext also contains additional
information on s. This is achieved by using a linear functional encryption scheme
Lin-FE. Namely, an extra component of the form:

d ← w · s + pd−1 · η (4)

is provided as an independent part of the ciphertext, also denoted as CTind,
where η←χ Rpd

stands for a noisy term and w is part of mpk. d is computed
once, at top level d.

The master secret key of the NC1 construction is set to be the msk for
Lin-FE. The master public key consists of the Lin-FE.mpk (the vector w
appended to ad) as well as of the set of vectors

{

a1,a2, . . . ,ad−1
}

that will be
used by each E i. Once again, we emphasize that the vector ad from Lin-FE.mpk
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coincides with the public labelling used by the mapping Ed. It can be easily
observed that the dimension of ai+1 follows from a first-order recurrence:

|ai+1| = 2 · |ai| + 1 (5)

where the initial term (the length of a1) is set to the length of the input. The
extra 1, which is added per each layer is generated by the supplemental encodings
of the key-dependent messages CTs :=

{E1(s), E2(s2), . . . , Ed(s2)
}

, where s2 :=
s · s, as opposed to a level superscript.

A functional-key skC is issued through the Lin-FE.KGen procedure in the
following way: (1) using the circuit representation C of the considered function
as well as the public set of

{

a1,a2, . . . ,ad
}

, a publicly computable value PKC ←
EvalPK(mpk,C ) is obtained by performing C -dependent arithmetic combinations
of the values in

{

a1,a2, . . . ,ad
}

. Then, a functional key skC is issued for PKC .
The EvalPK(mpk,C ) procedure uses mpk to compute PKC .

Similarly, EvalCT(mpk,CT,C ) computes the value of the function C obliv-
iously on the ciphertext. Both procedures are defined recursively; that is, to
compute PKi

C and CTi
C (x) at level i, PKi−1

C and CTi−1
C (x) are needed. For a better

understanding of the procedures, we will denote the encoding of C i(x)1 by ci, i.e.
ci = E i(C i(x)) and the public key or label of an encoding E i(·) by PK(E i(·)). Due
to space constraints, we defer the full description of the evaluation algorithms
and refer the reader to [3], but provide a summary after presenting decryption.

Decryption works by evaluating the circuit of C (known in plain by the
decryptor) over the Regev encodings forming the ciphertext. At level d, the
ciphertext obtained via EvalCT has the following structure:

CTC (x) ← PKC · s + pd−1 · ηd + pd−2 · ηd−1 + . . . + p0 · η1 + C (x) . (6)

Next, based on the independent ciphertext d ← w · s + pd−1 · η and on the
functional key, the decryptor recovers

PKC · s + pd−1 · η′ ∈ Rpd
. (7)

Finally, C (x) is obtained by subtracting (7) from (6) and repeatedly applying
the mod operator to eliminate the noise terms: (mod pd−1) . . . (mod p0). We
note that correctness should follow from the description of these algorithms.

Ciphertext and Public-Key Evaluation Algorithms Let C n be the circuit
C restricted to some level n. For a better understanding of the procedures, we
will denote the encoding of C n(x) at some gate � by cn

� , and the public key (or
label) of an encoding En(·) by PK(En(·)). Furthermore, Cn are a set of level n
encodings provided by the encryptor as part of the ciphertext, that enable the
decryptor to compute cn.

1 Here, by C i we denote the restriction of the circuit C computing f to level i.
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EvalnPK(∪t∈[n]PK(Ct), �) computes the label for the �th wire in the n level circuit,
from the ith and jth wires of n − 1 level:

1. Addition Level:
– If n = 1 (base case), define PK(c1�) := PK(a1

� · s + p0 · η1
� + M�) := a1

� .
– Otherwise, let un−1

i ← Evaln−1
PK (∪t∈[n−1]PK(Ct), i) and

un−1
j ← Evaln−1

PK (∪t∈[n−1]PK(Ct), j). Set PK(cn
� ) := un−1

i + un−1
j .

2. Multiplication Level:
– If n = 2 (base case), then compute

PK(c2�) := a1
i · a1

j · PK(E2(s2)) − a1
j · PK(E2(c1i · s)) − a1

i · PK(E2(c1j · s)).
– Otherwise, let un−1

i ← Evaln−1
PK (∪t∈[n−1]PK(Ct), i) and

un−1
j ← Evaln−1

PK (∪t∈[n−1]PK(Ct), j). Set

PK(cn
� ) := un−1

i · un−1
j · PK(En(s2))−un−1

j · PK(En(cn−1
i · s))

− un−1
i · PK(En(cn−1

j · s)) .

EvalnCT(∪t∈[n]C
t, �) computes the encoding of the �th wire in the n level circuit,

from the ith and jth wires of n − 1 level:

1. Addition Level:
– If n = 1 (base case), then, set c1� := E1(M�).
– Otherwise, let cn−1

i ← Evaln−1
CT (∪t∈[n−1]C

t, i) and
cn−1
j ← Evaln−1

CT (∪t∈[n−1]C
t, j). Set cn

� ← cn−1
i + cn−1

j .
2. Multiplication Level:

– If n = 2 (base case), then set
c2� := c1i · c1j · E2(s2) − u1

j · E2(c1i · s) − u1
i · E2(c1j · s) .

– Else: cn−1
i ← Evaln−1

CT (∪t∈[n−1]C
t, i), cn−1

j ← Evaln−1
CT (∪t∈[n−1]C

t, j),
un−1

i ← Evaln−1
PK (∪t∈[n−1]PK(Ct), i), un−1

j ← Evaln−1
PK (∪t∈[n−1]PK(Ct), j).

Set CTn
� := cn−1

i · cn−1
j +un−1

i ·un−1
j · En(s2)−un−1

j · En(cn−1
i · s)−un−1

i ·
PK(En(cn−1

j · s)).

4 Laconic Function Evaluation for NC1 Circuits

We show how to instantiate an LFE protocol starting from the AR17 scheme
described above. Furthermore, we show our construction achieves adaptive secu-
rity (Definition 6) under RLWE (Definition 2) with polynomial approximation
factors. Finally, we compare its efficiency to the scheme for general circuits pro-
posed in [14] in Sect. 4.2.

4.1 LFE for NC1 Circuits

The core idea behind our proposal is rooted in the design of the AR17 con-
struction. Specifically, the mpk in AR17 acts as the crs for the LFE scheme.
The compression procedure generates a new digest by running EvalPK on the
fly, given an algorithmic description of the circuit C (the circuit computing the
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desired function). As shown in [3], the public-key evaluation algorithm can be
successfully executed having knowledge of only mpk and the gate-representation
of the circuit. After performing the computation, the procedure sets:

digestC ← PKC .

The digest is then handed in to the other party (say Bob).
Bob, having acquired the digest of C in the form of PKC , encrypts his message

M using the FE encryption procedure in the following way: first, a secret s is
sampled from the “d-level” ring Rpd

; s is used to recursively encrypt each element
up to level d, thus generating a tree structure, as explained in Sect. 3.1. Note
that Bob does not need to access the ciphertext-independent part (the vector
w from Sect. 3.1) in any way. This is a noteworthy difference from the AR17
construction: an FE ciphertext is intended to be decrypted at a latter point, by
(possibly) multiple functional keys. However, this constitutes an overkill when it
comes to laconic function evaluation, as there is need to support a single function
(for which the ciphertext is specifically created).

As a second difference from the way the ciphertext is obtained in [3], we
emphasize that in our LFE protocol Bob computes directly:

PKC · s + pd−1 · ηd ,

where PKC is the digest Alice sent. Thus, there is no need to generate a gen-
uine functional key and to obtain the ciphertext component that depends on
w. Directly, the two former elements constitute the ciphertext, which is sent
back to Alice. Finally, the LFE decryption step follows immediately. Alice, after
computing the auxiliary ciphertext in (6) “on the fly” and having knowledge of
the term in (7), is able to recover C (M ).

Formally, the construction can be defined as follows:

Definition 7 (LFE for NC1 Circuits from [3]). Let FE denote the functional
encryption scheme for NC1 circuits proposed in [3].

– crs←$ crsGen(1λ, 1k, 1d): the crs is instantiated by first running2 FE.Setup

(mpk,msk)←$FE.Setup(1λ, 1k, 1d) .

As described, mpk has the following elements:

{a1, . . . ,ad−1, (ad,w)}
with (ad,w) coming from the mpkLin-FE and msk ← mskLin-FE.
Set crs ← {a1, . . . ,ad} and return it.

– digestC ← Compress(crs,C ): the compression function, given a circuit
description of some function C : {0, 1}k → {0, 1} and the crs, computes
PKC ← EvalPK(a1, . . . ,ad,C ) and then returns:

digestC ← PKC .

2 Note that we need only a part of the mpk generated by FE.Setup, but for simplicity
we call this procedure and drop the unneeded part.



440 R. Roşie

– CT←$Enc(crs, digestC ,M ): the encryption algorithm first samples s←$ Rpd
,

randomness R and computes recursively the Regev encodings3 of each bit:

(CT1, . . . ,CTk,CTs,CTind) ← FE.Enc((a1, . . . ,ad), (M1, . . . ,Mk); s,R)

Moreover, a noise ηd is also sampled from the appropriate distribution χ and

PKC · s + pd−1 · ηd (8)

is obtained. The ciphertext CT that is returned consists of the tuple:
⎛

⎝PKC · s + pd−1 · ηd

︸ ︷︷ ︸

CTa

, CT1, . . . ,CTk,CTs
︸ ︷︷ ︸

CTb

⎞

⎠ . (9)

– Dec(crs,C ,CT): first, the ciphertext evaluation is applied and CTC is
obtained:

CTC ← EvalCT(mpk,C ,CT) . (10)

Then C (M ) is obtained via the following step:

(CTC − CTa) mod pd−1 . . . mod p0 .

Proposition 1 (Correctness). The LFE scheme in Definition 7 enjoys cor-
rectness.

Proof. By the correctness of EvalCT, the structure of the resulting ciphertext at
level d is the following:

PKC · s + pd−1 · ηd + . . . + p0 · η1 + C (M ) . (11)

Given the structure of the evaluated ciphertext in (11) as well as the first
part of the ciphertext described by (9), the decryptor obtains C (M ) as per the
decryption procedure. 
�
Lemma 1 (Security). Let FE denote the FULL-SIM-FE-secure functional
encryption scheme for NC1 circuits described in [3]. The LFE scheme described
in Definition 7 enjoys FULL-SIM-LFE security against any PPT adversary A
such that:

AdvFULL-SIM-LFE
A,LFE (λ) ≤ d · AdvRLWE

A′ (λ) .

Proof (Lemma 1). First, we describe the internal working of our simulator. Then
we show how the ciphertext can be simulated via a hybrid argument, by describ-
ing the hybrid games and their code. Third, we prove the transition between
each consecutive pair of hybrids.

3 Note that we only need the Regev encodings, but for simplicity of notation, we call
the FE.Enc procedure and drop the unneeded part within the FE ciphertext.
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The Simulator. Given the digest digestC , the circuit C , the value of C (M ∗)
and the crs, our simulator SLFE proceeds as follows:

– Samples all Regev encodings forming CTb in Eq. (9) uniformly at random.
– Replaces the functional-key surrogate value PKC · s + pd−1 · ηd with EvalCT −

η∗ − C (M ∗). Observe this is equivalent to running EvalCT with respect to
random Regev encodings, and subtracting a lower noise term and C (M ∗).

The Hybrids. The way the simulator is built follows from a hybrid argument.
Note that we only change the parts that represent the outputs of the intermediate
simulators.

Game0: Real game, corresponding to the setting b = 0 in the FULL-SIM-LFE
experiment.

Game1: We switch from PKC ·s+pd−1 ·ηd to EvalCT(CTb)−η∗ −C (M ∗), such that
during decryption one recovers η∗ + C (M ∗). The transition to the previous
game is possible as we can sample the noise η∗ such that:

SD
(

PKC · s + pd−1 · ηd,EvalCT(CTb) − η∗ − C (M ∗)
)

∈ Negl(λ) .

This game is identical to Game2,0.
Game2.i: We rely on the security of RLWE in order to switch all encodings on

level d − i with randomly sampled elements over the corresponding rings
Rpd+1−i

. Note that top levels are replaced before the bottom ones; the index
i ∈ {0, 1, . . . , d − 1}.

Game2.d: This setting corresponds to b = 1 in the FULL-SIM-LFE experiment.

We now prove the transitions between the hybrid games.

Claim (Distance between Game0 and Game1). There exists a PPT simulator S1

such that for any stateful PPT adversary A we have:

AdvGame0→Game1
A (λ) :=

∣
∣
∣
∣
Pr[GameA

0 (λ) ⇒ 1] − Pr[GameA
1 (λ) ⇒ 1]

∣
∣
∣
∣

is statistically close to 0.

Proof Let D0 (respectively D1) be the distribution out of which CTa is sampled
in Game0 (respectively Game1). The statistical distance between D0 and D1 is
negligible:
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SD(D0,D1) =
1
2

·
∑

v∈Rpd

∣
∣
∣
∣
Pr[v = PKC · s + pd−1 · ηd]

− Pr[v = EvalCT(CTb) − η∗ − C (M ∗)]
∣
∣
∣
∣

=
1
2

·
∑

v∈Rpd

∣
∣
∣
∣
Pr[v = PKC · s + pd−1 · ηd]

− Pr[v = PKC · s +
d−1∑

i=0

pi · μi+1 + C (M ∗) − η∗ − C (M ∗)]
∣
∣
∣
∣

=
1
2

·
∑

v∈Rpd

∣
∣
∣
∣
Pr[v = PKC · s + pd−1 · ηd]

− Pr[v = PKC · s +
d−1∑

i=0

pi · μi+1 − η∗
∣
∣
∣
∣

We can apply the result in [3, p. 27]: we sample the noise term η∗ such that

SD(η∗ ,

d−2∑

i=0

pi · μi+1) ≤ ε .

Thus, the advantage of any adversary in distinguishing between Game0 and
Game1 is statistically close to 0. 
�
Games 1 and 2.0 are identical.

Claim (Distance between Game2.i and Game2.i+1). There exists a PPT simulator
S1 such that for any stateful PPT adversary A we have:

Adv
Game2.i→Game2.i+1
A (λ) :=

∣
∣
∣
∣
Pr[GameA

2.i(λ) ⇒ 1] − Pr[GameA
2.i+1(λ) ⇒ 1]

∣
∣
∣
∣

≤ AdvRLWE
B (λ) .

Proof. The reduction B is given as input a sufficiently large set of elements
which are either: RLWE samples of the form a · s(d−i) + pd−1−i · η(d−i) or u
where u←$ Rpd−i

.
B constructs CTb as follows: for upper levels j > d − i, B samples elements

uniformly at random over Rpj
. For each lower levels j < d − i, R samples

independent secrets sj and builds the lower level encodings correctly, as stated
in Fig. 2.

For challenge level d−i, B takes the challenge values of the RLWE experiment
– say z – and produces the level d− i encodings from the level d−1− i encodings
as follows:

– for each encoding Ed−1−i in level d − i − 1, produce a left encoding in level
d − i:

zd−i
1 + Ed−1−i .
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– for each encoding Ed−1−i in level d − i − 1, produce a right encoding in level
d − i:

zd−i
2 + Ed−1−i · sd−1−i .

Note that sd−1−i is known in plain by B.

Considering level 1 as a special case, the (input) message bits themselves are
encrypted, as opposed to encodings from lower levels.

The first component of the ciphertext – CTa – is computed by getting v ←
EvalCT(C , {Ci}i∈[d]) over the encodings, and then subtracting the noise and the
value C (M ∗).

The adversary is provided with the simulated ciphertext. The analysis of the
reduction is immediate: the winning probability in the case of B is identical to
that of the adversary distinguishing. 
�
Finally, we apply the union bound and conclude with: AdvFULL-SIM-LFE

A,LFE (λ) ≤
d · AdvRLWE

A′ (λ) . 
�
In Sect. 5, we show how the digest can be further compressed.

4.2 Efficiency Analysis

A main benefit of the LFE scheme in Definition 7 is the simplicity of the common
reference string, digest and ciphertext structures. These are essentially elements
over known quotient rings of polynomial rings. The representation size of ele-
ments within rings Rpi

are decided by the prime factors p0, p1, . . . , pd. As stated
in [3, Appendix E] pd ∈ O(B2d

1 ) where B1 denotes the magnitude of the noise
used for Level-1 encodings and being bounded by p1/4 in order to ensure correct
decryption4. However, we observe that a tighter bound may have the following
form: pd ∈ O(B2Mul

1 ), where dMul denotes the number of multiplicative levels in
the circuit.

From the point of view of space complexity, we rely on the original analysis of
[3] that provides guidelines for the size of the primes p0, p1, . . . , pd. We are only
interested in the case stipulating that |pd| belongs to poly(λ). The aforementioned
constraint can be achieved by imposing further restrictions on the multiplicative
depth of the circuit, namely

dMul ∈ O(log(poly(λ))),

meaning that the digest is short enough whenever the circuit belongs to the
NC1 class. Once we obtained a succinctness constraint for the size of elements in
the fields Fpi

over which the coefficients of quotient ring elements are going to
be sampled, we can proceed with an asymptotic analysis of the sizes of digest,
common reference string and ciphertext.

digestC size: consists of n elements, each belonging to O(B2dMul

1 ), where n denotes
the degree of the quotient polynomial in the RLWE definition (Definition 2).
Henceforth, digestC ∈ poly(λ) given the analysis above on the size of pd.

4 Our scheme is intended to support Boolean circuits, thus p0 is set to 2.
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CT size: consists of k “tree-like” structures (Fig. 2), k standing for input length;
each tree is a perfect binary tree having of 2d−1 ring elements. Therefore, the
ciphertext’s size is upper bounded k · 2d · (n ·poly(λ)) and fulfils succinctness
requirements whenever dMul ∈ O(log(poly(λ))).

Enc runtime: the encryption runtime is essentially proportional to the size of
the ciphertext, up to a constant factor needed to perform inner operations
when each node of the tree is built.

crs size: the crs has the size identical to the size of the ciphertext, and inherits
similar succinctness properties.

Handling multiple bits of output. Regarding the ability to support multiple out-
put bits (say �), this is inherent by using an arithmetic circuit and setting

log2(p0)� = �. If binary circuits are needed, then � public evaluation can be
obtained through EvalPK, and the scheme modified by having the garbling cir-
cuit producing � outputs.

Remark 1. Another potentially beneficial point is the ability of the scheme in
Definition 7 (and also Definition 8) to support a bounded number of circuits
without changing the data-dependent ciphertext. This happens when the second
party involved is stateful: given two functions f, g represented through circuits
Cf ,Cg, and assuming the receiver stores s (it is stateful), the Enc algorithm may
simply recompute PKg ·s+pd−1 ·μd in the same manner it has already computed
PKC · s + pd−1 · ηd.

Comparison with [14]. Reflecting on the construction presented by Quach
et al., one can note that its core stems from the attribute-based encryption[17]
scheme in [5], and the post-processing steps of their attribute-based LFE rely
on techniques from [10]; Quach et al. provide a comparison between their AB-
LFE and the underlying ABE; the size of their crs consists of k LWE matrices,
where k is the input length, each entry belonging to Z/qZ. The size of q can
be tracked by inspecting EvalPK ([14, Claim 2.4] and [5, p. 6, 23]): as the noise
grows exponentially with the depth of the circuit, q has to grow accordingly:
q ≈ 2poly(λ,d); in [3] the size of pd grows exponentially with the multiplicative
depth of the circuit, which limits the circuit class our scheme can support.

5 Further Compression for Digest

In this part, we put forth an LFE scheme with a digest independent by the size of
the input, starting from the LFE construction in Sect. 4.1. The main idea consists
in using a laconic oblivious transfer (Definition 5) in order to generate a small
digest.

The bulk of the idea is to observe that the encryption algorithm in Sect. 4.1
outputs a ciphertext having two components: the first one consists of the AR17
ciphertext; the second component is literally PKC · s + pd−1 · ηd. We create an
auxiliary circuit Caux that takes as input PKC and outputs PKC ·s+pd−1 ·ηd. We
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garble Caux using Yao’s garbling scheme [18] and use LOT to encrypt the garbling
labels. Thus, instead of garbling a circuit that produces the entire ciphertext (i.e.
following the template proposed by [14]) we garble Caux. Such an approach is
advantageous, as the complexity of the latter circuit, essentially performing a
multiplication of two elements over a ring, is in general low when compared to
a circuit that reconstructs the entire ciphertext. We present our construction
below:

Definition 8 (LFE for NC1 with Laconic Digest). Let LFE denote the
laconic function evaluation scheme for NC1 circuits presented in Sect. 4.1, LOT
stand for a laconic oblivious transfer protocol and GS denote Yao’s garbling
scheme. LFE stands for a laconic function evaluation scheme for NC1 with digest
of size O(λ):

– crs←$ LFE.crsGen(1λ, 1k, 1d): the crs is instantiated by running the LFE.Setup

crs←$ LFE.Setup(1λ, 1k, 1d) .

Let crsLOT stand for the common reference string of the LOT scheme.
Set crs ← (crs, crsLOT) and return it.

– digestC ← LFE.Compress(crs,C ): the compression function, given a circuit
description of some function C : {0, 1}k → {0, 1} and the crs ← (crs, crsLOT),
computes PKC ← LFE.Compress(crs,C ) and then returns:

digestC ← PKC .

Then, using crsLOT, a new digest/database pair is obtained as:

(digestC , D̂) ← LOT.Compress(crsLOT, digestC ) .

Finally, digestC is returned.
– CT←$ LFE.Enc(crs, digestC ,M ): after parsing the crs as (crsLOT, crs)5, the

encryption algorithm first samples s←$ Rpd
, randomness R and computes

recursively the Regev encodings of each bit:

CTLFE ← LFE.Enc(crs, (M1, . . . ,Mk); s,R)

Moreover, a noise ηd−1 is also sampled from the appropriate distribution χ
and an auxiliary circuit Caux that returns

PKC · s + pd−1 · ηd (12)

is obtained, where PKC constitutes the input and s, pd−1 · ηd are hardwired.

Then, Caux is garbled by Yao’s garbling scheme:

(Γ, {L0
i , L

1
i }t

i=1)←$GS.Garble(Caux)
5 Even if we omit that explicitly, note that crs includes the bulk of mpk in [3], consis-

tently with the execution of the subroutine LFE.Setup.
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and the labels are encrypted under LOT:

Li←$ LOT.Enc(crsLOT, digestC , i, L0
i , L

1
i ),∀ i ∈ [t] .

The ciphertext CT is set to be the tuple (CTLFE, Γ, L1, . . . , Lt).
– LFE.Dec(crs,C ,CT): First, the labels Li corresponding to the binary decom-

position of PKC are obtained:

L
PKC [i]
i ← LOT.Dec(crsLOT, digestC , i, Li)

When feeding Γ with Li, the decryptor recovers PKC · s + pd−1 · ηd−1.

Then, the ciphertext evaluation is applied and CTC is obtained:

CTC ← EvalCT(mpk,C ,CT) . (13)

Then C (M ) is obtained via the following step:
(

CTC − (PKC · s + pd−1 · ηd)
)

mod pd−1 . . . mod p0

Proposition 2 (Correctness). The laconic function evaluation scheme in
Definition 8 is correct.

Proof. By the correctness of the LOT scheme, the correct labels corresponding
to the value of PKC are recovered. By the correctness of the garbling scheme,
when fed with the correct labels, the value of PKC · s + pd−1 · ηd is obtained.
Finally, by the correctness of LFE, we recover C (M ).


�
In the remaining part, we prove the scheme above achieves simulation secu-

rity, assuming the same security level from the underlying primitive.

Theorem 2 (Security). Let Cλ stand for a class of circuits and let LFE denote
the laconic function evaluation scheme put forth in Definition 8. Let GS and
LOT denote the underlying garbling scheme, respectively laconic oblivious trans-
fer scheme. The advantage of any probabilistic polynomial time adversary A
against the adaptive simulation security of the LFE scheme is bounded by:

AdvFULL-SIM-LFE
LFE,A (λ) ≤ AdvFULL-SIM-GS

GS,B1 (λ) + AdvFULL-SIM-LOT
LOT,B2 (λ) + AdvFULL-SIM-LFE

LFE,B3 (λ) .

Proof. (Theorem 2). We prove the scheme enjoys adaptive security. Our proof
makes use of the LFE simulator, and of the simulation security of the garbling
protocol and of the LOT scheme.

Simulator. Our simulator SLFE is obtained in the following manner: first, we
run the simulator of the underlying LFE scheme that will provide the bulk of
the ciphertext. Independently, we run the simulator of the garbled circuit SGS.
In the end, we employ the simulator of the LOT scheme (SLOT) on the labels
obtained from the SGS.

The proof presented herein follows from a hybrid argument. The games are
described below, and the game hops are motivated afterwards:
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Game0: corresponds to the FULL-SIM-LFE experiment, having the b is set to 0.
Game1: in this game, we use the simulator SLOT to simulate the corresponding

component of the ciphertext (i.e. Li) . The distance to the previous game is
bounded by the simulation security of the LOT protocol.

Game2: in this game, we proceed with the following change: we employ the gar-
bled scheme simulator GS for generating the labels corresponding to the sec-
ond component contained within the ciphertext. The game distance to the
previous one is bounded by the simulation security of the garbling scheme.

Game3: we switch the main part of ciphertext to one provided by the SLFE sim-
ulator, the distance to the previous hybrid being bounded by the advantage
in Lemma 1.

Claim (Transition between Game0 and Game1). The advantage of any PPT
adversary to distinguish between Game0 and Game1 is bounded as follows:

AdvGame0→Game1
A1

(λ) ≤ AdvFULL-SIM-LOT
LOT,B1

(λ) .

Proof (Game0 → Game1). We provide a reduction to the LOT security experi-
ment, which initially samples and publishes crsLOT. Let B1 denote the reduction.
B1 simulates the LFE game in front of the PPT bounded adversary A1: (1) First,
it samples crsLFE, and publishes (crsLFE, crsLOT); (2) Next, B1 receives from the
LFE adversary A1 the tuple (C ,C (M ∗)); (3) computes the digest digestC , the
underlying LFE ciphertext, and the garbled circuits with the associated labels.

Next, B1 impersonates an adversary against the LOT security game, by sub-
mitting the tuple

(

PKC · s + pd−1 · ηd, {Li,i0, Li,1}i∈|digestC |
)

.
The LOT game picks a random b ∈ {0, 1} and provides the adversary with

either a correctly generated LOT ciphertext encrypting the labels L0
i , L

1
i under

position i, or by a simulated ciphertext. The latter ciphertext is generated by
SLOT.

Thus B1 obtains the entire LFE ciphertext, which is passed to A1. A1 returns
a bit, indicating its current setting. It is clear that any PPT adversary able to
distinguish between the two settings breaks the LOT security of the underlying
LOT scheme. 
�
Claim (Transition between Game1 and Game2). The advantage of any PPT
adversary to distinguish between Game1 and Game2 is bounded by:

AdvGame1→Game2
A2

(λ) ≤ AdvFULL-SIM-GS
GS,B2

(λ) .

Proof (Game1 → Game2). By the input and circuit privacy of the garbling
scheme, there exists SGS that produces a tuple (Γ̃ , {L̃0

i , L̃
1
i }i∈[t]).

Let B2 denote the reduction, and let A2 denote the adversary against the LFE
game. As for the previous game, B2 samples and publishes crsLFE, A2 provides
(C ,C (M ∗)). B2 builds the LFE ciphertext.

Next, B2 impersonates an adversary against the GS security experiment.
B2 provides the GS game with (Caux,PKC · s + pd−1 · ηd), and receives either
correctly generated garbled circuit and labels or a simulated garbled circuit and
the simulated labels.
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Thus, if A2 distinguishes between the two games, B2 distinguishes between
the two distributions of labels in the GS experiment. 
�
Claim (Transition between Game2 and Game3). The advantage of any PPT
adversary to distinguish between Game2 and Game3 is bounded by:

AdvGame2→Game3
A3

(λ) ≤ AdvFULL-SIM-LFE
LFE,B3

(λ) .

Proof (Game2 → Game3). During the last hop, we rely on the security of the LFE
component for changing elements of the first component of the ciphertext to sim-
ulated ones. It is easy to see that the advantage any adversary has in distinguish-
ing the transition is bounded by the advantage of winning the FULL-SIM-LFE
security experiment against the underlying LFE.

The FULL-SIM-LFE experiment generates crsLFE. B3 samples crsLOT and pro-
vides the resulting crs to A3. The adversary returns (C ,C (M ∗)), which are
forwarded to FULL-SIM-LFE. The experiment generates the ciphertext either
correctly or using SLFE.

Then B3 employs SGS and SLOT to obtain the remaining LFE ciphertext com-
ponents and runs A3 on the full ciphertext. B3 returns the corresponding output
to the setting indicated by A3.

Finally, we remark that this setting simulates exactly the FULL-SIM-LFE
experiment with b = 1. 
�
This completes the proof of Theorem 2. 
�

6 Concluding Remarks

As for the concluding remarks, we note that our work introduces new construc-
tions of laconic function evaluation for the NC1 class. The schemes we propose
follow from the FE scheme in [3] and exploit standard cryptographic tools, such
as laconic oblivious transfer and garbled circuits in order to further reduce the
size of digest.

As open questions, apart from having adaptive security for general circuits,
we would like to see a candidate having a short common reference string, as
our parameters are impractical for high-depth circuits. Another fruitful research
direction would investigate if schemes fulfilling the syntax of special homomor-
phic encodings with succinct ciphertexts can be generically converted into LFEs.
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