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Preface

TheRSAconference has been amajor international event for information security experts
since its inception in 1991. It is an annual event that attracts several hundred vendors and
over 40,000 participants from industry, government, and academia. Since 2001, the RSA
conference has included the Cryptographers’ Track (CT-RSA). This track, essentially
a sub-conference of the main event, provides a forum for the dissemination of current
research in cryptography. This volume represents the proceedings of the 2022 edition of
the Cryptographers’ Track at the RSA Conference.

On the original submission deadline there were 56 submissions. The deadline was
extended by about 10 days and the final number of submissions was 87. As always,
the selection process was challenging. The submissions were anonymous (double-blind
review), and each submission was assigned to at least three reviewers. We followed the
IACR policy on conflicts of interest. We used EasyChair for the submission and review
process. At the conclusion of the review and discussion phase there were 20 accepted
papers and five conditionally accepted papers. This is an acceptance rate of 28.7%.
Subsequently one of the conditionally accepted papers was withdrawn by the authors,
so the final conference program comprised 24 papers.

I am thankful to all ProgramCommitteemembers for producing high-quality reviews
and for actively participating in discussions. My appreciation also goes to all external
reviewers. I am also grateful to those Program Committee members who checked the
conditionally accepted submissions.

I am grateful to Kenny Paterson (the CT-RSA 2021 Program Chair) and Moti Yung
(Chair of theCT-RSASteeringCommittee) for theirwisdom. I also thankLukasZobernig
for setting up the conference webpage and for help with processing the final versions of
the papers for publication.

This year the conference took place online as a virtual conference on March 1–2,
2022.

My sincere thanks go to the Springer team for their assistance in preparing and
producing these proceedings. Last but not least, on behalf of all CT-RSA participants,
I would like to thank Tara Jung and Britta Glade who acted as RSA Conference liaison
to the Cryptographer’s Track. I am very grateful to them for all the work they did in
helping to organize both the in-person conference and also the online conference.

December 2021 Steven D. Galbraith
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Multicast Key Agreement, Revisited

Alexander Bienstock1(B), Yevgeniy Dodis1, and Yi Tang2

1 New York University, New York, USA
{abienstock,dodis}@cs.nyu.edu

2 University of Michigan, Ann Arbor, USA
yit@umich.edu

Abstract. Multicast Key Agreement (MKA) is a long-overlooked natu-
ral primitive of large practical interest. In traditional MKA, an omniscient
group manager privately distributes secrets over an untrusted network
to a dynamically-changing set of group members. The group members
are thus able to derive shared group secrets across time, with the main
security requirement being that only current group members can derive
the current group secret. There indeed exist very efficient MKA schemes
in the literature that utilize symmetric-key cryptography. However, they
lack formal security analyses, efficiency analyses regarding dynamically
changing groups, and more modern, robust security guarantees regard-
ing user state leakages: forward secrecy (FS) and post-compromise secu-
rity (PCS). The former ensures that group secrets prior to state leakage
remain secure, while the latter ensures that after such leakages, users can
quickly recover security of group secrets via normal protocol operations.

More modern Secure Group Messaging (SGM) protocols allow
a group of users to asynchronously and securely communicate with each
other, as well as add and remove each other from the group. SGM has
received significant attention recently, including in an effort by the IETF
Messaging Layer Security (MLS) working group to standardize an epony-
mous protocol. However, the group key agreement primitive at the core of
SGM protocols, Continuous Group Key Agreement (CGKA), achieved by
the TreeKEM protocol in MLS, suffers from bad worst-case efficiency and
heavily relies on less efficient (than symmetric-key cryptography) public-
key cryptography. We thus propose that in the special case of a group
membership change policy which allows a single member to perform all
group additions and removals, an upgraded version of classical Multicast
Key Agreement (MKA) may serve as a more efficient substitute for CGKA
in SGM.

We therefore present rigorous, stronger MKA security definitions that
provide increasing levels of security in the case of both user and group
manager state leakage, and that are suitable for modern applications, such
as SGM. We then construct a formally secure MKA protocol with strong
efficiency guarantees for dynamic groups. Finally, we run experiments

The full version [9] is available as entry 2021/1570 in the IACR eprint archive.
A. Bienstock—Partially supported by a National Science Foundation Graduate
Research Fellowship.
Y. Dodis—Partially supported by gifts from VMware Labs and Google, and NSF grants
1619158, 1319051, 1314568.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. D. Galbraith (Ed.): CT-RSA 2022, LNCS 13161, pp. 1–25, 2022.
https://doi.org/10.1007/978-3-030-95312-6_1
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2 A. Bienstock et al.

which show that the left-balanced binary tree structure used in TreeKEM
can be replaced with red-black trees in MKA for better efficiency.

1 Introduction

Multicast Key Agreement. Multicast Key Agreement (MKA) is a natural primi-
tive of large practical interest that has not received much attention recently. In
MKA, there is an omniscient group manager that privately distributes secrets
through control messages over an untrusted network to a dynamically-changing
set of group members. The secrets delivered via these control messages allow
group members to derive shared group secrets across time. The main security
requirement is that users added to the group are not able to derive old group
secrets while users removed from the group are not able to derive new group
secrets. Traditionally, these derived group secrets could then be used in some
higher-level application, such as digital rights management (DRM) for PayTV,
in which the group manager could broadcast content privately to users in a
unidirectional manner.

There are several works in the literature that propose and study practical
MKA protocols [15,19,23,31,33,35], the best of which achieve O(log nmax) worst-
case communication complexity, where nmax is the maximum number of users
ever in the group. Moreover, all of these protocols utilize efficient symmetric-key
cryptography for the control messages of each operation.

However, prior practical multicast works did not (i) provide formal security
models or proofs, (ii) resolve efficiency issues regarding dynamically changing
groups, nor, importantly, (iii) achieve more modern, robust security notions,
such as privacy surrounding leakages of user secret states. With respect to a
user secret state leakage, optimal security requires:

– Forward Secrecy (FS): All group secrets that were generated before the leak-
age should remain secure.

– Post-Compromise Security (PCS): Privacy of group secrets should be quickly
recovered as a result of normal protocol operations.

Most of these prior schemes base off of the Logical Key Hierarchy (LKH)
from [33,35]. In these schemes, symmetric keys are stored at the nodes of a tree
in which users are assigned to leaf keys and the group secret is the key at the
root. The tree invariant is that users only know the keys at the nodes along the
path from their leaf to the root. Thus in its simplest form, if, for example, a user
is removed, the group manager simply removes their leaf, refreshes the other
keys at the nodes along the path from their leaf to the root, and encrypts these
keys to the children of the corresponding nodes on the path. This strategy thus
achieves O(log nmax) communication and computational complexity.

We state the efficiency in terms of nmax, since these schemes never address
exactly how the tree should be balanced if many users are added or removed
from the group. In order to achieve optimal efficiency of the scheme according to
the lower bound of Micciancio and Panjwani [22], i.e., have communication and



Multicast Key Agreement, Revisited 3

computational complexity of O(log ncurr), where ncurr is the current number of
users in the group, the tree must remain balanced after such operations. However,
this complicates the tree invariant: how should it be maintained so that security
is achieved? Users should never occupy interior nodes nor retain information for
old leaf-to-root paths. The first column of Table 1 summarizes the properties of
traditional practical MKA constructions.

New Applications: Single Administrator Secure Group Messaging. We observe
that today, MKA has several more modern applications, including:

1. Adapting the classical use case of DRM to more modern purposes, such as
live streaming on the internet (e.g., twitch), or

2. Communicating with resource-constrained IoT devices [26], or
3. Enabling Secure Group Messaging (SGM) among the group members.

Here, we focus on SGM and first provide some background: End-to-
end Secure Messaging protocols allow two parties to exchange messages over
untrusted networks in a secure and asynchronous manner. The famous double
ratchet algorithm of the Signal protocol [24] achieves great security and efficiency
in this setting, and is now the backbone of several popular messaging applica-
tions (e.g., Signal, WhatsApp, Facebook Messenger Secret Conversations, etc.)
which are used by billions of people worldwide.

However, allowing groups of users to efficiently exchange messages over
untrusted networks in a secure manner introduces a number of nontrivial chal-
lenges. Such SGM protocols have begun to receive more attention recently: e.g.,
the IETF has launched the message-layer security (MLS) working group, which
aims to standardize an eponymous SGM protocol [5]. In the SGM setting, users
share evolving group secrets across time which enable them to asynchronously
and securely communicate with each other. Furthermore, they are allowed to
asynchronously add and remove other users from the group. However, in prac-
tice, groups typically utilize some stable policy to determine membership change
permissions.

The key agreement primitive at the center of SGM is called Continuous Group
Key Agreement (CGKA) [1,3,32] and is achieved by the TreeKEM protocol in
MLS [8], among others (e.g., [3,34]). Much like MKA, CGKA requires end-to-end
security of the evolving group secrets which can only be known by current group
members, but also FS and PCS with respect to user state leakages. Furthermore,
asynchronous dynamic operations can be performed by any user. It is a hard
problem to design CGKA protocols from minimal security assumptions that are
efficient. All current practical CGKA constructions require Ω(ncurr) communica-
tion in the worst-case, due to complications regarding user-performed dynamic
operations.1 A definitively bad situation is immediately following the creation
of a CGKA group: if many users remain offline for a long time after creation,

1 Most constructions informally claim to have “fair-weather” O(log nmax) communica-
tion complexity [2], i.e., in some (undefined) good conditions, they have O(log nmax)
communication.
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communication complexity may remain Ω(ncurr) during this time (for example,
if the creator performs updates), since only a few users will have contributed
secrets to the group. Additionally, all current CGKA protocols heavily rely on
public-key cryptography (which is of course less efficient than symmetric-key
cryptography).

Although CGKA is usually the best way to distribute keys amongst group
members in the SGM setting, due to its strong functionality guarantees, it clearly
suffers from the above deficiencies. Therefore, more efficient alternatives should
be provided for special cases. One such realistic setting is when the policy for
group membership changes only permits a single group member (administrator)
to add and remove users. In this case, we posit that a great substitute for CGKA
is (a stronger version of) MKA. Therefore, a main contribution of this paper,
upon which we elaborate in the next subsection of the introduction, is providing
a strong formal model of MKA that is suitable for modern uses such as SGM, and
then constructing a protocol which efficiently achieves the security of this model.
This protocol does not heavily rely on public-key cryptography as in CGKA, and
has much more efficient O(log ncurr) communication for operations as opposed
to Ω(ncurr) communication in the worst-case for CGKA. Table 1 compares the
properties of traditional MKA in the literature with CGKA and our more secure,
and efficient, MKA protocol.

We emphasize that the group manager in MKA (who is the single member of
the SGM group with membership change privileges) only generates the secrets
of the group and the control messages by which they are distributed, and can
(should) be viewed as completely divorced from the central delivery server that is
usually a part of SGM protocols such as MLS. Therefore, for example, the group
manager does not need to be always online and the group secrets remain private
from the delivery server, thus providing proper end-to-end security for SGM.
Furthermore, despite the fact that the group manager performs all membership
change operations, actual SGM communications remain asynchronous by using
the group secret from MKA for the Application Key Schedule, as is usually done
with CGKA in MLS [5].

Group Authenticated Key Exchange. MKA and CGKA are closely related to the
setting of Group Authenticated Key Exchange (GAKE) (e.g., [12–14,21]). In
GAKE, several (possibly overlapping) groups of users work together to establish
independent group keys across time. Formal models, constructions, and proofs for
GAKE indeed exist that consider FS and PCS. However, all such constructions
involve a large amount of interaction, requiring many parties to be online, which
is undesirable for the MKA and SGM settings.

1.1 Contributions

Multicast Key Agreement with Optimal User Security. This paper provides a
more rigorous study of practical MKA constructions by first providing a formal
security definition (based on that of [1] for CGKA) which guarantees correctness
and privacy of the protocol, as well as PCS and FS for users. Moreover, our
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Table 1. A comparison of some properties of the traditional MKA construction in
the literature, CGKA constructions, and our optimal MKA construction. The top half
showcases the efficiency advantages of both traditional and our MKA, while the bottom
showcases the functionality advantages of CGKA, and the added security and efficiency
of our MKA with respect to traditional MKA.

Traditional MKA CGKA Our MKA

Efficiency O(log nmax) Ω(ncurr) O(log ncurr)

(“fair-weather”

O(log nmax))

Heavy Use of Public- no yes no

Key Cryptography

Add/Remove group mgr anybodya group mgr

Members PCS/FS no/no yes/yes yes/yes

Group Mgr no/no N/A weakb/yes

PCS/FS

Group Mgr Ω(ncurr) N/A O(1)

Local Storage
a Although in formal definitions of CGKA constructions, any group member
can perform add and remove operations, in practice, a stable policy is needed.
b PCS against group manager corruptions in our construction requires every
group member at the time of corruption to be either removed or updated.

definition allows for partially active security, meaning the delivery service can
send control messages to users in arbitrarily different orders (with arbitrary
delays), but cannot inject or modify control messages. We additionally allow
for adaptive adversaries, achieving security proofs with quasipolynomial loss in
the standard model, and polynomial loss in the random oracle model, using the
proofs of Tainted TreeKEM (a CGKA protocol) in [3] as a template.

We then provide a secure and efficient construction of the primitive based on
LKH that instead utilizes generic tree structures. This protocol moreover utilizes
(dual) pseudorandom functions (dPRFs) [6] and an Updatable Symmetric Key
Encryption (USKE) primitive [7] (which is the symmetric analog to Updatable
Public Key Encryption (UPKE) [1,17,20]) to allow for optimal FS by refreshing
keys in the tree as soon as they are used as an encryption secret key.

Furthermore, we show that if the tree structure used is a left-balanced binary
tree (LBBT), as in most CGKA constructions, then the computational and com-
munication complexity of operations besides creation are O(log nmax). However,
we show that if the protocol uses 2–3 trees or red-black trees (RBTs), this com-
plexity improves to O(log ncurr), thus achieving optimal communication complex-
ity according to the lower bound of [22]. Indeed, we implement our construction
which shows empirically that this theoretical difference between nmax and ncurr

makes RBTs more efficient than LBBTs in practice.2 In Sect. 4.4, we illustrate
2 See https://github.com/abienstock/Multicast-Key-Agreement for the code.

https://github.com/abienstock/Multicast-Key-Agreement
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that in the average case, where updates are performed more often than additions
and removals (which occur at the same rate), RBTs are the most efficient out of
the three trees. Furthermore, in an event in which group membership drastically
decreases, LBBTs are much less efficient than both RBTs and 2–3 trees after
this decrease. Even if group membership gradually decreases over time, RBTs
are still the most efficient of the three.

Adding Security for Group Manager Corruptions. We then add to the security
definition of MKA to allow for corruptions of the group manager state. Despite
these corruptions, our definition still demands immediate FS, i.e. all group secrets
before the corruption should remain secure, and eventual PCS, i.e. after the
group manager has updated or removed all of the members of the group at
the time of the corruption, future group secrets should be secure. While our
above construction already achieves this stronger definition, it relies on the group
manager to store the keys at each node of the tree. Such a requirement assumes
that the group manager has the capability to locally store such large (Ω(ncurr))
amounts of data, as well as handle availability, replication, etc. In an effort to
reduce the local storage of the group manager and securely outsource storage
of the tree to an untrusted remote server, we use the recent work of [10], who
formalize the notion of Forward Secret encrypted RAM (FS eRAM) and apply
it to MKA.3 Intuitively, the security of FS eRAM only allows the adversary to
obtain secrets currently at the nodes of the MKA tree upon corruption of the
group manager, while past secrets at the nodes remain secure.

The work of [10] focuses on a lower bound for FS eRAM and only sketches
its application to MKA, with similar limitations as the prior works on MKA
(no formal analysis of security or dynamism). We therefore provide a similar
result with a fully formal argument that achieves the security of the modified
MKA definition, while retaining asymptotic communication and computational
complexity of our original MKA scheme. Moreover, it enables the group manager
to separate her state into O(1) local storage and O(ncurr) remote storage. The
third column of Table 1 shows the properties of our second construction.

Optimal PCS for Group Manager Corruptions. The security notion described
above allows us to retain the use of efficient symmetric-key encryption for control
messages, while achieving good, but not optimal, eventual PCS for group man-
ager corruptions. Indeed, we show in the full version [9] that to obtain optimal
PCS, i.e., security after one operation following a group manager corruption,
public-key encryption is necessary. Then we show that achieving optimal PCS
(and all the other properties described above) with public-key encryption is
easy: In our construction, we simply replace USKE with UPKE (and the group
manager only remotely, not locally, stores the public keys at the tree nodes).

3 FS eRAM is also known in the literature as, e.g., “secure deletion” [4,25,27–29],
“how to forget a secret” [16], “self-destruction” [18], and “revocability” [11].



Multicast Key Agreement, Revisited 7

2 Preliminaries

In this section we introduce some basic concepts on top of the standard notions
of graph-theoretic trees. For the standard definitions of PRGs, dual PRFs and
CPA-secure symmetric-key encryption, see the full version [9].

For our purposes, every node in a tree has a unique identifier �. For every
node in a tree, there is a unique path from (and including) the node to the root
of the tree, referred to as its direct path. The set of siblings of all nodes along
the direct path of node v is the copath of v. We refer to a connected subgraph
of the tree that includes the root as a skeleton of the tree. For any skeleton, its
frontier consists of those nodes in the tree that are not in the skeleton but have
edges from nodes in the skeleton.

3 Multicast Key Agreement

A Multicast Key Agreement (MKA) scheme allows for a group manager to dis-
tribute secret random values to group members which they can use to obtain
shared key material for some higher-level protocol. The manager (and only the
manager) can make changes to the group, i.e. add and remove members, as well
as help individual parties in the group update their secrets, if needed. There are
many options for what a higher-level protocol can do with the shared group key
material from the MKA scheme, as stated in the introduction.

In this section, we formally define the syntax of MKA schemes and introduce
a security notion that captures correctness, key indistinguishability, as well as
forward secrecy and post-compromise security for group members, even with a
partially active and adaptive adversary that can deliver control messages in an
arbitrary order for each user.

3.1 MKA Syntax

Before we formally define the syntax of MKA, observe that the group manager
will often need to communicate secrets to users with whom she does not share
any prior secrets (e.g., when adding them). Indeed, there are many primitives
that require such delivery of secrets with no prior shared secrets – e.g., CGKA,
Identity-Based Encryption (IBE), Broadcast Encryption (BE), etc. – and all
do so using a secure channel (which may be compromised by an adversary on-
demand). In modern SGM literature, this channel is usually implemented by a
Public Key Infrastructure (PKI), since the parties anyway need a PKI to authen-
ticate each other. For our setting, where all control messages are sent by a single
party (much like IBE and BE), we take a more traditional route by not explicitly
including a PKI for the secure channel used to deliver secret keys. Instead, we
simply model separate out-of-band channels from the group manager to each
user for such messages (which will indeed often be implemented via a PKI). In
the definition, all out-of-band values kID output by group manager algorithms
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are small (security parameter size), and will be sent over the corresponding indi-
vidual out-of-band channel from the group manager to user ID. Moreover, any
out-of-band values input by the user process algorithm will have been retrieved
from their corresponding out-of-band channel from the group manager.

Definition 1 (Multicast Key Agreement (MKA)). An MKA scheme M =
(Minit,Uinit, create, add, rem, upd, proc) consists of the following algorithms:4

– Group Manager Initialization: Minit outputs initial state Γ .
– User Initialization: Uinit takes an ID ID and outputs an initial state γ.
– Group Creation: create takes a state Γ and a set of IDs G = {ID1, . . . , IDn},

and outputs a new state Γ ′, group secret I, control message T , and dictionary
K[·], which stores a small user out-of-band value for every ID ∈ G.

– Add: add takes a state Γ and an ID ID and outputs a new state Γ ′, group
secret I, control message T , and a small out-of-band value for ID, kID.

– Remove: rem takes a state Γ and an ID ID and outputs a new state Γ ′, group
secret I, and a control message T .

– Update: upd takes a state Γ and an ID ID and outputs a new state Γ ′, group
secret I, control message T , and a small out-of-band value for ID, kID.

– Process: proc takes a state γ, a control message T sent over the broadcast
channel, and an (optional) out-of-band value k, and outputs a new state γ′

and a group secret I.

One uses a MKA scheme as follows: Once a group is established by the group
manager using create, the manager may call the add, rem, or upd algorithms. We
note that including an explicit upd algorithm for users enables better efficiency
than the alternative – removing a user and immediately adding her back. After
each operation performed by the group manager, a new epoch is instantiated with
the corresponding group secret computed by the operation. It is the implicit task
of a delivery server connecting the group manager with the members to relay the
control messages to all current group members. The delivery server can deliver
any control message output by the group manager to any user, at any time.
Additionally, the group manager may (directly) send certain members secret
values over the out-of-band channel. Whenever a group member receives a control
message and the corresponding out-of-band secret from the group manager (if
there is one), they use the proc algorithm to process them and obtain the group
secret I for that epoch.

3.2 MKA Efficiency Measures

We introduce four measures of efficiency for MKA schemes. These efficiency
measures are in terms of the number of group members at a certain epoch,
4 We could easily allow for batch operations – as the latest MLSv11 draft does through

the “propose-then-commit” framework [5] – which would be more efficient than the
corresponding sequential execution of those operations, but we choose not to for
simplicity. We also note that updating one user at a time in case of their corruption
is of course much more efficient (and just as secure) than updating the whole group
in case just that user was corrupted.
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ncurr, and the maximum number of group members throughout the execution
of the protocol, nmax. The first is that of worst-case space complexity of the
group manager state, i.e. the size of Γ , which we refer to as s(ncurr, nmax).
The second is that of worst-case communication complexity of control messages
output by the group manager for add, rem, and upd operations, which we refer
to as c(ncurr, nmax). The third is that of worst-case time complexity of group
manager add, rem, and upd operations, which we refer to as t1(ncurr, nmax). The
fourth is that of worst-case time complexity of user proc process algorithms for
control messages output by group manager, which we refer to as t2(ncurr, nmax).
In our construction, using specific tree structures in Sect. 4, the worst-case space
complexity of a user, i.e. the size of γ, is proportional to t2(ncurr, nmax). We
will often refer to these measures without writing them explicitly as functions
of ncurr and nmax (and will sometimes informally conflate ncurr and nmax into a
single value, n, for simplicity).

3.3 MKA Security

We now introduce the formal security definition for MKA schemes that ensures
optimal security for group members against adaptive and partially active adver-
saries. The basic properties any MKA scheme must satisfy for this definition are
the following:

– Correctness even with partially active adversaries: The group manager and
all group members output the same group secret in all epochs, once the group
members have eventually received all control messages in order (with different
messages possibly arbitrarily ordered in between).

– Privacy : The group secrets look random given the message transcript.
– User Forward Secrecy (FS): If the state of any user is leaked at some point,

all previous group secrets remain hidden from the attacker.
– User Post-compromise Security (PCS): Once the group manager performs

updates for every group member whose state was leaked, group secrets become
private again.

All of these properties are captured by the single security game presented in
Fig. 1, denoted by user-mult. In the game the attacker is given access to oracles
to drive the execution of the MKA protocol. We note that the attacker is not
allowed to modify or inject any control messages, but again, they can deliver
them in any arbitrary order. This is because we assume MKA will be used in a
modular fashion, and thus, whichever higher-level application it is used within
will provide authentication (as is also assumed for CGKA). However, we do
assume that the attacker sees all broadcast control messages and can corrupt
out-of-band messages.

Epochs. The main oracles to drive the execution of the game are the oracles
for the group manager to create a group, add users, remove users, and update
individual users’ secrets, as well as the oracle to deliver control messages to users,
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init():
00 b ←$ {0, 1}
01 Γ ← Minit()
02 ∀ID : γ[ID] ← Uinit(ID)
03 t ← 0, ep[·] ← −1
04 chall[·] ← false
05 G[·], I[·], K[·] ← ε
06 pub M [·] ← ε

add-user(ID):
07 req t > 0 ∧ ID �∈ G[t]
08 t ++
09 (Γ ′, I, T, k) ←

add(Γ, ID)
10 I[t] ← I
11 G[t] ← G[t − 1] ∪ {ID}
12 for every ID′ ∈ G[t]:
13 M [t, ID′] ← T
14 K[t, ID] ← k

update-user(ID):
15 req t > 0 ∧ ID ∈ G[t]
16 t ++
17 (Γ ′, I, T, k) ←

upd(Γ, ID)
18 I[t] ← I
19 G[t] ← G[t − 1]
20 for every ID′ ∈ G[t]:
21 M [t, ID′] ← T
22 K[t, ID] ← k

create-group(G):
23 req t = 0
24 t ++
25 (Γ ′, I, T,K) ←

create(Γ,G)
26 I[t] ← I
27 G[t] ← G
28 for every ID ∈ G[t]:
29 M [t, ID] ← T
30 K[t, ID] ← K[ID]

remove-user(ID):
31 req t > 0 ∧ ID ∈ G[t]
32 t ++
33 (Γ ′, I, T ) ← rem(Γ, ID)
34 I[t] ← I
35 G[t] ← G[t − 1] \ {ID}
36 for every ID′ ∈ G[t − 1]:
37 M [t, ID′] ← T

chall(t∗):
38 req I[t∗] �= ε ∧ ¬chall[t∗]
39 I0 ← I[t∗]
40 I1 ←$ I
41 chall[t∗] ← true
42 return Ib

deliver(td, ID):
43 req t ≥ td
44 (γ[ID], I) ← proc(γ[ID],

M [td, ID], (K[td, ID]))
45 if (td = ep[ID] + 1 ∨

(ep[ID] = −1 ∧
added(td, ID))):

46 if removed(td, ID):
47 ep[ID] ← −1
48 return
49 else if I �= I[td]:
50 win
51 if added(td, ID):
52 ep[ID] ← td
53 else:
54 ep[ID] + +

reveal(tr):
55 req I[tr] �= ε ∧ ¬chall[tr]
56 chall[tr] ← true
57 return I[tr]

corrupt(ID):
58 return γ[ID]

corrupt-oob(to, ID):
59 return K[to, ID]

Fig. 1. Oracles for the MKA security game user-mult for a scheme M = (Minit,
Uinit, create, add, rem, upd, proc). Functions added and removed are explained in the text.

i.e. create-group, add-user, remove-user, update-user, deliver. The first
four oracles allow the adversary to instruct the group manager to initiate a new
epoch, while the deliver oracle advances group members to the next epoch in
which they are a group member, if in fact the message for that epoch is the one
being delivered. The game forces the adversary to initially create a group, and
also enables users to be in epochs which are arbitrarily far apart.

Initialization. The init oracle sets up the game and all variables needed to keep
track of its execution. The game initially starts in epoch t = 0. Random bit
b is used for real-or-random challenges, Γ stores the group manager’s current
state, and γ is a dictionary which keeps track of all of the users’ states. The
dictionary ep keeps track of which epoch each user is in currently (−1 if they
are not in the group). Dictionaries G and I record the group members in each
epoch, and the group secret of each epoch, respectively. Dictionary chall is used to
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ensure that the adversary cannot issue multiple challenges or reveals per epoch.
Additionally, K records any out-of-band random values that the group manager
needs to send to any of the group members for each epoch. Finally, M records
all control messages that the group manager associates with group members for
each epoch; the adversary has read access to M , as indicated by pub.

Operations. When the adversary calls any of the oracles to perform operations
to define a new epoch t, the resulting control messages for group members ID are
stored in M with the key (t, ID). Additionally, any associated out-of-band values
for ID are stored in K with the key (t, ID). The oracle create-group causes
the group manager to create a group with members G = {ID1, . . . , IDn}, only
if t = 0. Thereafter, the group manager calls the group creation algorithm and
produces the resulting control message and out-of-band values for their respec-
tive users. In each of the oracles add-user, remove-user, and update-user,
the req statements checks that the call is proper (e.g., that an added ID was not
already in the group); exiting the call if not. Subsequently, the oracles call the
corresponding MKA algorithms, and store the resulting control messages (and
possibly out-of-band values) in M (and K).

Delivering Control Messages and Out-of-Band Values. The oracle deliver is
called with the same arguments (td, ID) that are used as keys for M and K.
The associated control message (and possibly out-of-band value) is retrieved
from M (and K) and run through proc on the current state of ID. The security
game then checks that this is the next message for ID to process, i.e., either
ID is in epoch td − 1, or was added to the group in epoch td, as checked by
the function: added(td, ID) := ID /∈ G[td − 1] ∧ ID ∈ G[td]. If so, the game first
checks if ID is removed from the group in epoch td, as checked by the function:
removed(td, ID) := ID ∈ G[td − 1] ∧ ID /∈ G[tD]. In this case, the game sets
the epoch counter for ID to −1. Otherwise, the game requires that the group
secret I which is output by proc(γ[ID],M [td, ID], (K[td, ID])) is the same as the
secret output by the group manager for that epoch. If it is not, the instruction
win reveals the secret bit b to the attacker (this ensures correctness). Finally,
the epoch counter for ID is set to td. Note: although the security game only
requires correctness for control messages that are eventually delivered in order,
the adversary can choose to deliver them in arbitrary order, and users must
immediately handle them.

Challenges, Corruptions, and Deletions. In order to capture that group secrets
must look random and independent of those for other rounds, the attacker is
allowed to issue a challenge chall(t∗) for any epoch or use reveal(tr) to simply
learn the group secret of an epoch.

We model forward secrecy and PCS by allowing the adversary to learn the
current state of any party by calling the corrupt oracle. Through such corrup-
tions, the security game also prohibits the phenomenon called double joining :
In the specification of a protocol, users may delete certain secrets from their
state, when they are deemed to be useless. However, a user could decide to act
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maliciously by saving all of these old secrets. Double joining is the phenomenon
in which a user has been removed from the group in some epoch, but perhaps
they have saved some secrets that allow them to still derive the group secret for
future epochs. In fact, since the group manager handles all operations, this is the
only way that users can act maliciously. The corrupt oracle on its own prohibits
double joining because if the adversary corrupts some user ID in epoch t and
removes them in some later epoch t′ > t without calling the update oracle before
t′, the group secret for epoch t′ (and all later epochs for which ID is still not a
group member) should be indistinguishable from random. This should hold even
though the adversary can save all information ID can derive from their state at
epoch t and control messages through time t′.

We also allow the adversary to corrupt out-of-band messages sent to a user
in a given epoch by querying the corrupt-oob oracle. Note that since we do
not explicitly require the out-of-band channel to be implemented in a partic-
ular way, the adversary can only corrupt individual messages. However, if for
example a PKI is used without PCS after corruptions to implement the out-of-
band channel, then the adversary in user-mult can simply repeatedly query the
corrupt-oob oracle. Our modeling choice abstracts out the corruption model
of the out-of-band channel, allowing the adversary to decide the consequences
of corruption at a given time.

Avoiding Trivial Attacks. We prevent against trivial attacks by running the
user-safe predicate at the end of the game on the queries q1, . . . ,qq in order
to determine if the execution had any such attacks. The predicate checks for
every challenge epoch t∗ if there is any ID ∈ G[t∗] that was corrupted in epoch
t < t∗; or who was added in epoch t < t∗ and whose corresponding out-of-band
message for that add was corrupted. If so, the predicate checks if the user was
not removed by the group manager or did not have her secrets updated by the
group manager for an operation whose corresponding out-of-band message is not
later corrupted, after t and before or during t∗.

If this were true, then the attacker could trivially compute the group secret in
the challenge epoch t∗ by using the state of corrupted user ID, or her corrupted
out-of-band message, in epoch t and the broadcast control messages and/or
future corrupted out-of-band messages. The predicate is depicted in Fig. 2, which
uses the function q2e(q), that returns the epoch corresponding to query q. Specif-
ically if q = corrupt(ID), if ID is a member of the group when q is made, q2e(q)
corresponds to ep[ID], otherwise, q2e(q) returns ⊥.5 If q = corrupt-oob(t, ID),
then q2e(q) = t. For q ∈ {update-user(ID), remove-user(ID)}, q2e(q) is the
epoch defined by the operation.

Observe that this predicate achieves optimal security for users. For forward
secrecy, if an adversary corrupts a user that is currently at epoch t, for every
epoch 0 < t′ ≤ t, the group secret is indistinguishable from random. For PCS,
if the adversary corrupts a user that is currently at epoch t, or their out-of-
band channel at epoch t if they are added in epoch t, once the group manager

5 Any expression containing ⊥ evaluates to false.



Multicast Key Agreement, Revisited 13

user-safe(q1, . . . ,qq):
60 for (i, j) s.t. qi = corrupt(ID) ∨ (qi = corrupt-oob(t, ID) ∧

added(t, ID)) for some t, ID and qj = chall(t∗) for some t∗:
61 if q2e(qi) < t∗ ∧ �l s.t. 0 < q2e(qi) < q2e(ql) ≤ t∗∧

((ql = update-user(ID) ∧ �m > l s.t.
qm = corrupt-oob(q2e(ql), ID)) ∨ ql = remove-user(ID)):

62 return 0
63 return 1

Fig. 2. The user-safe safety predicate determines if a sequence of calls (q1, . . . ,qq)
allows the attacker to trivially win the MKA game.

updates their secrets in some epoch t′ > t for which the corresponding out-of-
band message is not corrupted (and does the same for every other corrupted
user), the group secret is indistinguishable from random. Additionally, double-
joins are prohibited, since once a user is removed from the group, even if their
state is corrupted before the removal, the group secret of all future epochs in
which the user is not a group member are indistinguishable from random.

Advantage. In the following, a (t, qc, nmax)-attacker is an attacker A that runs
in time at most t, makes at most qc challenge queries, and never produces a
group with more than nmax members. The attacker wins the MKA security
game user-mult if he correctly guesses the random bit b in the end and the safety
predicate user-safe evaluates to true on the queries made by the attacker. The
advantage of A against MKA scheme M is: AdvMuser-mult(A) :=

∣
∣Pr[A wins] − 1

2

∣
∣ .

Definition 2 (MKA User Security). A MKA scheme M is (s, c, t1, t2, t′,
qc, nmax, ε)-secure in user-mult against adaptive and partially active attackers, if
for all (t′, qc, nmax)-attackers, AdvMuser-mult(A) ≤ ε, and the complexity measures
of the group managers and users are s, c, t1, t2.

4 MKA Construction

Our MKA construction is similar to LKH [33,35] described in the introduction,
in which the group manager stores for each epoch, the whole tree with the group
secret at at the root, keys at all other nodes, and n users at the leaves (with no
extra leaves). We call this tree the MKA tree and it has O(n) values in total for
most commonly used trees. Observe that the group manager should be expected
to store Ω(n) amount of information, since she must minimally be aware of the
group members. Users only need to store in their state the secrets along their
direct path, which we will show is size O(log(n)) for most balanced trees.

4.1 MKA Trees

Below, we describe operations on MKA trees needed for our construction. In
addition to modifying the tree, for the purposes of our MKA construction, each
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operation also returns a skeleton (refer back to Sect. 2 for a definition of skeleton
and frontier). This skeleton consists of any new nodes added to the tree, as well
as any nodes in the original tree whose subtree (rooted at that node) has been
modified (i.e., a node has been removed from or added to it by the operation),
and their edges to each other. Every edge in the skeleton is labeled with a color
green or blue with the requirement that for each node v in the skeleton, at
most one of its edges to its children can be colored green. When we specify the
cryptographic details of our MKA scheme, if an edge is blue, it means that the
secret at the parent will be encrypted under a key at the child, whereas if an
edge is green, it means that the secret at the parent will be generated using a
dPRF computation on a key at the child.6 A tree has the following operations:

– Initialize. The τmka ← Init(�1, . . . , �n) operation initializes τmka with n leaves
labeled by (�1, . . . , �n) (which will be user IDs).

– Add. The Add(τmka, �) operation adds a leaf to the tree τmka labeled by � (ID
of added user).

– Remove. The Remove(τmka, �) operation removes the leaf from the tree τmka

with label � (ID of user to be removed).

MKA Tree Efficiency Measures. We say a node in a MKA tree is utilized in a given
epoch if it contains a secret. We assume w.l.o.g., that every interior node of a MKA
tree is utilized, since otherwise, a needless efficiency decrease would result. We refer
to a MKA tree τmka as a (stree(n,m), sskel(n,m), d(n,m),deg(τmka))-tree if it has
degree of nodes bounded by deg(τmka) and given that it contains at maximum m
leaves throughout its existence: with n utilized leaves in any configuration it has
depth d(n,m), stree(n,m) total nodes in the worst case and skeletons formed by
Add or Remove operations with total number of nodes sskel(n,m) in the worst
case. In terms of our MKA scheme, m = nmax is the maximum number of users
in the group throughout the execution of the protocol and n = ncurr is the num-
ber of users in the group at a given epoch. We will often refer to these measures
without writing them explicitly as functions of m and n. It will become clear in
our construction below that measure stree upper bounds MKA efficiency measure
s and measure sskel upper bounds MKA efficiency measures c, t1, t2 as described
in Sect. 3.2 for constant-degree trees.

See the full version [9] for the implementation details and efficiency of three
types of trees that can be used in our MKA construction: LBBTs, 2–3 trees,
and left-leaning red-black trees (LLRBTs) [30]. There we show that LBBTs are
(O(m), O(log m), O(log m), 2)-trees, 2–3 trees are (O(n), O(log n), O(log n), 3)-
trees, and LLRBTs are (O(n), O(log n), O(log n), 2)-trees.

4.2 GUS MKA Protocol

We now describe the cryptographic details of an MKA scheme utilizing a generic
tree structure that achieves security with respect to the user-mult game. We
6 Where we use the standard PRF security of a dPRF dprf on the child’s key (see the

full version [9]).
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denote the scheme GUS (for Generic User Security). GUS makes (black-box)
use of a dPRF dprf and an Updatable Symmetric Key Encryption (USKE)
scheme uske = (UEnc,UDec). USKE is the symmetric analog to the well-known
Updatable Public Key Encryption primitive used in the Secure Messaging Liter-
ature [1,17,20]. USKE schemes compute a new key after each encryption (resp.
decryption) such that if the newest key is exposed, then all plaintexts encrypted
under previous versions of the key remain secure. In the full version [9], we
formally define IND-CPA* security for USKE and show a simple construction
which achieves it, using a PRG and one-time pad encryption (our security notion
and construction are quite similar to that of [7]).We use USKE in GUS to obtain
forward secrecy: Essentially, each node v in the MKA tree τmka for a given epoch
t will store a key k which the manager can use to communicate to the users
at the leaves of the subtree rooted at v information needed to derive the group
secret. If the operation for t causes some information to be encrypted to some
node key k, k must be refreshed (as in USKE): if k is not refreshed, in epoch
t+1, an adversary can corrupt any user storing k and break FS by regenerating
the group secret for epoch t.

GUS is depicted in Fig. 3. Note that the group manager’s state only consists
of the current epoch t and the MKA tree for the current epoch t, which we
denote as τmka. Each user ID stores the current epoch which they are in, tME, as
well as the secrets of their direct path in τmka at tME, which we denote as PID,
and refer to as their secret path.

GUS MKA Group Manager Operations. Here we define operations with
generic trees for how the group manager creates the group, adds and removes
members, and updates key material for members. In initialization, the group
manager simply initializes her MKA tree to be empty, and her epoch t ← 0.

Skeleton Secret Generation. We first describe a procedure to generate the
secrets and any corresponding ciphertexts for a skeleton. The procedure
(I,K,CT, τ ′

mka) ← SecretGen(skeleton, τmka) first initializes sets CT[·] ←
⊥,K[·] ← ⊥ then recursively for each node v in skeleton starting with its leaves:

1. If v is a leaf of skeleton or a node for whom all edges to its children are labeled
blue in skeleton, the procedure samples a random value ks and computes
(kp||k′

d,v||ke,v) ← dprf(ks, kd,v),7 where kd,v is the current dPRF key at v (if
it exists, ⊥ otherwise), ke,v will be the new encryption key at v, k′

d,v will be
the new dPRF key at v, and kp may be used for the parent of v. Then:
(a) The group manager writes (k′

d,v, ke,v, �v) to node v of τmka, where �v is
either a new value if v is new, or its old value otherwise.

(b) Additionally, if v was a leaf node of τmka, the manager sets K[ID] ← ks,
for the label ID of v.

2. Otherwise, it uses the key ks (labeled as kp above) obtained from the child
whose edge from v is green and does the same.

7 We only need to use a dPRF at leaves of the MKA tree for updates in which the
corresponding oob message is corrupted (we could use a PRG elsewhere), but we
use one at all nodes, for all operations, for simplicity.
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GUS-Minit):
64 τmka ← ⊥, t ← 0

GUS-Uinit(ID):
65 ME ← ID, PME ← ⊥, tME ← −1

GUS-create(G = (ID1, . . . , IDn)):
66 t ++
67 (τmka, skeleton) ← Init(τmka, G)
68 (I,K,CT, τmka) ←

SecretGen(skeleton, τmka)
69 T ← (t, create, −1, skeleton,CT)
70 return (I, T,K)

GUS-add(ID):
71 t ++
72 (τmka, skeleton) ← Add(τmka, ID)
73 (I,K,CT, τmka) ←

SecretGen(skeleton, τmka)
74 T ← (t, add, ID, skeleton,CT)
75 kID ← K[ID]
76 return (I, T, kID)

GUS-rem(ID):
77 t ++
78 (τmka, skeleton) ←

Remove(τmka, ID)
79 (I,K,CT, τmka) ←

SecretGen(skeleton, τmka)
80 T ← (t, rem, ID, skeleton,CT)
81 return (I, T )

GUS-upd(ID):
82 t ++
83 skeleton ← SkelGen(τmka, ID)
84 (I,K,CT, τmka) ← SecretGen(skeleton, τmka)
85 T ← (ID, skeleton,CT)
86 kID ← K[ID]
87 return (I, T, kID)

GUS-proc(T = (t, op, ID, skeleton,CT), (kID)):
88 if tME = t − 1 ∨ (tME = −1 ∧

op ∈ {create, add} ∧ ID ∈ {−1,ME}):
89 if op = rem ∧ ID = ME:
90 tME ← −1
91 else:
92 tME ++
93 (PME, I) ← proc(T, (kID))
94 return I

proc(T = (t, op, ID, skeleton,CT)):
95 (kp, �v) ← GetEntrySecret(PME, vME,CT,

skeleton)
96 (PME, I) ← PathRegen(PME, �v, skeleton, kp,

CT)
97 return (PME, I)

proc(T = (t, op,ME, skeleton,CT), kME):
98 (PME, I) ← PathRegen(PME,ME,

skeleton, kME,CT)
99 return (PME, I)

Fig. 3. Generic construction of multicast scheme GUS that achieves security in the
user-mult security game.

3. For every child u of v that has a blue edge from v or is a utilized node
in the frontier of skeleton, it retrieves (kd,u, ke,u, �u) from node u, computes
(k′

e,u, c) ← UEnc(ke,u, ks), ct ← (c, �v, �u), sets CT[u] ← ct, and lastly writes
(kd,u, k′

e,u, �u) to node u.
4. If v is the root, it sets I ← dprf(kp,⊥).

Group Operations. To create a group G = (ID1, . . . , IDn), the manager first
increments t then calls (τ ′

mka, skeleton) ← Init(τmka, G), which initializes the tree
with the IDs in G at its leaves in τmka and returns the skeleton (which will be
the whole tree). Then they call (I,K,CT, τ ′′

mka) ← SecretGen(skeleton, τ ′
mka) to

generate secrets and ciphertexts for skeleton, set T ← (t, create,−1, skeleton,CT)
and return (I, T,K).

To add a user ID to the group, the manager first increments t then calls
(τ ′

mka, skeleton) ← Add(τmka, ID), which adds a leaf for ID to τmka. Then they
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call (I,K,CT, τ ′′
mka) ← SecretGen(skeleton, τ ′

mka) to generate new secrets and
ciphertexts for skeleton, set T ← (t, add, ID, skeleton,CT) and oob value kID ←
K[ID], and return (I, T, kID).

To remove a group member ID from the group, the group manager increments
t then calls (τ ′

mka, skeleton) ← Remove(τmka, ID), which removes the leaf for ID
from τmka. Then they call (I,K,CT, τ ′′

mka) ← SecretGen(skeleton, τ ′
mka) to gener-

ate new secrets and ciphertexts for skeleton, set T ← (t, rem, ID, skeleton,CT),
and return (I, T ).

To update the secrets of a group member ID, the group manager first
increments t, then, in the procedure skeleton ← SkelGen(τmka, ID), forms
the skeleton skeleton, consisting of the nodes on the direct path of vID (the
leaf occupied by ID) and its frontier being the copath of vID. They do so
by traversing the direct path of vID, and for each node v besides vID, they
color the edge to the child of v on the direct path as green. Then they call
(I,K,CT, τ ′

mka) ← SecretGen(skeleton, τmka) to generate new secrets and cipher-
texts for skeleton, set control message T ← (t, up, ID, skeleton,CT) and out-of-
band value kID ← K[ID], and return (I, T, kID).8

GUS MKA User Operations. Here we define operations for how group mem-
bers process changes that the group manager makes to the group, in an effort to
recover the group secret. In initialization, users simply set ME ← ID for input
ID ID, PME ← ⊥, and tME ← −1.

Path regeneration. When processing operations, users will have to regenerate
secret pairs in PID. The procedure (PID, I) ← PathRegen(PID, �w, skeleton, ks,CT):

1. First finds w corresponding to the label �w in skeleton and then traverses the
direct path of w in skeleton to the root vr, while at each node u:
(a) Computes (kp||k′

d,u||ke,u) ← dprf(ks, kd,u), where kd,u is the current
encryption key at u (if it exists, ⊥ otherwise) and writes (k′

d,u, ke,u, �u)
to u in PID.

(b) Then, if the edge in skeleton from u to its parent v is blue, the procedure:
i. Retrieves CT[u] = (c, �v, �u) then computes (k′

p, k
′
e,u) ← UDec(ke,u, c),

and writes (k′
d,u, k′

e,u, �u) to u.
ii. In this case, k′

p is used at v, i.e. ks ← k′
p.

(c) Otherwise, kp is used at v, i.e. ks ← kp.
2. Lastly, it returns I ← dprf(kp,⊥), where kp was generated at the root vr.

Processing Control Messages. A user processing a control message T =
(t, op, ID, skeleton,CT) first checks that either 1. tME = t−1; or 2. tME = −1∧op ∈
{create, add}∧ ID ∈ {−1,ME}. If not, they stop processing. Otherwise, they first
check if op = rem ∧ ID = ME; if so, they set tME ← −1 and stop processing.

Otherwise, they increment tME. Then if ID ∈ {−1,ME}, that user needs
to completely refresh their secret path PME as a result of processing the
8 Note: we do not actually have to include the skeleton, since the tree does not actually

change after updates, but we do for ease of exposition. It should not affect the
complexity of the scheme since its size should be proportional to that of CT.
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operation from which T was generated. Using the dPRF key kME (sent via
an out-of-band channel) for the leaf vME, the user computes (PME, I) ←
PathRegen(PME,ME, skeleton, kME,CT) and returns I.

Otherwise, if ID �∈ {ME,−1}, she needs only change part of her secret path
PME as a result of processing the operation on ID from which T was generated.
She:

1. First finds the node u that is on the direct path of her corresponding leaf vME

and is in the frontier of skeleton.
2. Then retrieves the ciphertext (c, �v, �u) ← CT[u].
3. Next, retrieves (kd,u, ke,u, �u) from u and computes

(kp, k
′
e,u) ← UDec(ke,u, c) to obtain the dPRF key kp used at the parent v of

u, then writes (kd,u, k′
e,u, �u) to u.

We call this operation (kp, �v) ← GetEntrySecret(PME, vME,CT, skeleton). They
then compute (PME, I) ← PathRegen(PME, �v, skeleton, kp,CT) and return I.

4.3 Security of GUS MKA Protocol

Theorem 1 (security of GUS). Let Q be the number of queries an adversary
makes to the oracles of the user-mult game. Assume dprf is a (tdprf , εdprf)-secure
pseudorandom generator, uske is a (tcpa∗, εcpa∗)-CPA*-secure USKE scheme,
and τmka is a (stree, sskel, d,deg(τmka))-tree. Then, GUS is a (stree,deg(τmka) ·
sskel,deg(τmka) · sskel, sskel, t, qc, nmax, ε)-secure MKA protocol with respect to the
user-mult security game for ε ∈ {εS, εRO}, where t ≈ tdprf ≈ tcpa∗. In the standard
model, εS = qc(Q · εdprf + 2εcpa∗ · deg(τmka)) · (2 deg(τmka))d · Q(deg(τmka)·d+1). In
the random oracle model, εRO = qc(εcpa∗ · 2(stree · Q)2 + negl).

The proof of Theorem 1 is provided in the full version [9].

Corollary 1.

1. If the tree used in the GUS protocol is a LBBT, then GUS is
a (O(nmax), O(log nmax), O(log nmax), O(log nmax), t, qc, nmax, ε)-secure MKA
protocol, where εS = O(qcn

2
max · Q2 log(nmax)+1 · (Qεdprf + εcpa∗)) and εRO =

O(qcεcpa∗ · (nmaxQ)2).
2. If the tree used in the GUS protocol is a 2–3 tree or LLRBT, then GUS is a

(O(ncurr), O(log ncurr), O(log ncurr), O(log ncurr), t, qc, nmax, ε)-secure MKA
protocol, where εS = O(qcn

3
curr · Q2 log(ncurr)+1 · (Qεdprf + εcpa∗)) and εRO =

O(qcεcpa∗ · (nmaxQ)2).

Proof. In the full version [9], we show that LBBTs are (nmax, log nmax,
log nmax, 2)-trees, 2–3 trees are (ncurr, log ncurr, log ncurr, 3)-trees and LLRBTs are
(ncurr, log ncurr, log ncurr, 2)-trees. The results follow easily from this. 	
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4.4 Comparison of Trees in GUS

Here we compare the performance of GUS using LBBTs, 2–3 trees, and restricted
LLRBTs empirically (see the full version [9] for the details of these trees; we
use restricted instead of normal LLRBTs simply because they give empirically
slightly better performance).9 We simulate GUS with the different trees on a ran-
domized sequence of Add/Remove/Update operations, starting from a certain
initial group size. The measure we adopt is the number of encryptions per oper-
ation, which encapsulates the goal of reducing communication for bandwidth-
constrained devices.

Following [3] in the TreeKEM context, the scales of the simulations we con-
duct are represented by tree sizes 23, 24, . . . , 214; for simulation with tree size
2i, the initial group size is 2i−1, and the number of operations is 10 · 2i, where
each operation is sampled to be an Add/Remove/Update operation with ratio
1:1:8 (and the user to be removed/updated is chosen uniformly at random from
current group members), as one expects updates to be more frequent.

As shown in the graph at the top left of Fig. 4, although 2–3 trees have better
worst-case complexity O(log ncurr) than the complexity O(log nmax) of LBBTs,
they empirically suffer, likely from the large overhead introduced by degree-
3 nodes. Moreover, although restricted LLRBTs are isomorphic to 2–3 trees,
they lead to dramatically improved efficiency in terms of number of encryptions,
outperforming both 2–3 trees and LBBTs in a stable manner, likely due to
improved asymptotic complexity and also retention of degree-2 nodes.

To see the difference between worst-case O(log ncurr) and (log nmax) complex-
ity, we repeated the simulations, but this time before performing the operations
with 1:1:8 ratio, we first remove a random choice of 99% of the users from the
group (and consequently the number of operations becomes 0.1 · 2i). Removing
a large number of users can happen in practice, e.g., after a popular event or
livestream has concluded. As shown in the graph at the top right of Fig. 4, this
time both 2–3 trees and LLRBTs, which have worst-case complexity O(log ncurr),
have better performance in accordance with the decrease of the group size, while
the performance of LBBTs, which have worst-case complexity O(log nmax), does
not improve even once the group becomes 99% smaller.

To provide more evidence that O(log ncurr) instead of O(log nmax) complexity
makes a difference, we conduct additional simulations with initial tree size 214

while increasing the probability of Remove operations from the previous 10%
to as large as 12.5% (and decreasing the probability of Add operations so that
the 80% probability of Update operations remains). Thus, in these experiments
the group size has a decreasing trend during the execution of the operations.10

As can be observed in the graph at the bottom of Fig. 4, both 2–3 trees and
LLRBTs (complexity O(log ncurr)) benefit from the decreasing trend of group

9 See https://github.com/abienstock/Multicast-Key-Agreement for the code.
10 Note that 12.5% is the threshold such that the group size does not approach zero

in expectation, as the number of operations 10 · 2i is 20 times more than the initial
group size 2i−1 and thus the difference between the probabilities of Remove and Add
operations needs to be less than 1/20 = 5%.

https://github.com/abienstock/Multicast-Key-Agreement
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Fig. 4. Top Left: number of encryptions per operation of GUS using different trees
in simulations with different initial tree sizes. Top Right: same as top left, except
that at the beginning of simulations a random choice of 99% of the users are removed.
Bottom: number of encryptions per operation of GUS using different trees in simulations
with initial tree size 214 and different probabilities of Remove operations. The bands
illustrate one standard deviation under 8 independently repeated experiments.

size, while LBBTs (complexity O(log nmax)) hardly benefit. Besides, the variance
when using LBBTs is dramatically larger than 2–3 trees and LLRBTs, which
verifies that the performance of LBBTs is highly sensitive to the actual choices
of removed users and cannot directly benefit from the decreasing trend of group
size. Moreover, the performance of LLRBTs is stable and is better than that
of LBBTs by roughly at least twice the huge standard deviation, which further
verifies that LLRBTs outperform LBBTs in a stable manner.

5 Adding Security for Group Manager Corruptions

In this section, we introduce a security definition that requires both security
with respect to user corruptions, and FS and eventual PCS for group manager
corruptions: If the secret state of the group manager is leaked at some point,
all previous group secrets remain hidden from the attacker. Furthermore, once
every user has their secrets updated by the group manager or is removed from
the group after her corruption, all future group secrets remain hidden.

Before we formally define this security, we observe that our GUS construction
indeed already achieves it – the MKA tree only stores unused USKE keys and
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thus the adversary learns nothing about old group secrets from corrupting the
group manager (eventual PCS also trivially follows). However, the group man-
ager has large local storage in GUS (the whole MKA tree), which is undesirable.
Therefore, in the full version [9] (due to space limitations) we slightly modify our
GUS construction to create our GMS (Generic Manager Security) construction,
which has the above security, but O(1) local storage and O(n) remote storage
for the group manager. We show how the group manager can use Forward Secret
Encrypted RAM [10] (FS eRAM) in the GUS MKA scheme to achieve this. Intu-
itively, FS eRAM allows a client to securely outsource data storage to some
remote server such that if the client’s secret storage is leaked, in addition to
the outsourced (encrypted) data, then all previously overwritten data remains
secure. Canonical FS eRAM schemes allow for O(1) local storage, O(n) remote
storage, and only introduce O(log n) overhead for Read() and Write() opera-
tions. Thus, GMS simply uses FS eRAM to outsource storage of the MKA tree,
and does everything else as in GUS, so that corruptions of the group manager
are forward secret (and eventual PCS trivially follows). Therefore, group man-
ager local storage is O(1), group manager remote storage is O(n), computational
complexity of the group manager becomes O(log2 n),11 and all other efficiency
measures from GUS stay the same (namely O(log n) communication).

Although eventual PCS as defined in the security definition may be less than
ideal, it allows us to use only symmetric-key encryption for control messages.
We in fact show in the full version [9] that public-key encryption is necessary
for optimal PCS, i.e., security after one operation following a group manager
corruption. Then, we show that achieving optimal PCS (and all the other prop-
erties described above) with public-key encryption is easy: In our construction,
we simply replace USKE with UPKE (and the group manager only remotely
stores the public keys at the tree nodes; with no local storage).

5.1 Group Manager State Separation and Efficiency Measures

For such added properties, we separate the state MKA group manager state Γ
into two components: the secret (local) state, Γsec, which the attacker can only
read upon state corruption of the group manager, and public (remote) state Γpub,
for which the attacker always has read access. We will use s1(ncurr, nmax) to refer
to the worst-case Γsec space complexity in a group with ncurr users currently and
nmax maximum users across all epochs of the protocol execution. We will also use
s2(ncurr, nmax) to refer to the corresponding worst-case Γpub space complexity.

5.2 MKA Security with Group Manager FS and Eventual PCS

To obtain security with respect to group manager corruptions, in addition to
the security captured by user-mult, we create a new security game mgr-mult, in
which we add to the user-mult game an additional oracle mgr-corrupt, which

11 In the full version [9], we also show how to retain GUS’s O(log n) computational
complexity.
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simply returns the secret state of the group manager to the adversary. Observe
that there are now more trivial attacks which the adversary can use to win
mgr-mult (e.g., corrupting the group manager and then challenging before every
user has been updated or removed from the group). We therefore check a new
mgr-safe predicate at the end of the game on the queries q1, . . . ,qq in order
to determine if the execution had any trivial attacks. In addition to that which
user-safe checks for, mgr-safe also checks for every challenge epoch t∗ if the
group manager was corrupted in some epoch t < t∗, and there was any ID ∈ G[t]
that did not have its secrets updated by the group manager (in an operation
for which the oob to ID is not corrupted), and was not removed by the group
manager, after the corruption, but before t∗.

mgr-corrupt():
100 return Γsec

mgr-safe(q1, . . . ,qq):
101 for (i, j) s.t. qi = mgr-corrupt(), qj = chall(t∗) for some t∗:
102 if q2e(qi) < t∗ and ∃ID ∈ G[q2e(qi)] s.t. �l s.t.

0 < q2e(qi) < q2e(ql) ≤ t∗∧ ((ql = update-user(ID) ∧
�m s.t. qm = corrupt-oob(q2e(ql), ID)) ∨
ql = remove-user(ID)):

103 return 0
104 return user-safe(q1, . . . ,qq)

Fig. 5. Oracle and mgr-safe safety predicate introduced in the MKA security game
mgr-mult for a scheme M = (Minit,Uinit, create, add, upd, proc) to capture forward
secrecy and eventual PCS for the group manager, as well as prevent trivial attacks.

Figure 5 denotes both of these changes. The predicate mgr-safe uses q2e() to
additionally return the epoch corresponding to a query to q = mgr-corrupt().
In this case, q2e(q) corresponds to the epoch t that the group manager is in when
the query is made (i.e., the epoch defined by the most recent group manager
operation create-group,add-user, remove-user,update-user).

Advantage. A (t, qc, nmax)-attacker A and AdvMmgr-mult(A) are defined in the same
manner as in Sect. 3.3.

Definition 3 (MKA Security with Group Manager FS and Eventual
PCS). A MKA scheme M is (s1, s2, c, t1, t2, t′, qc, nmax, ε)-secure in mgr-mult
against adaptive, partially active attackers, if for all (t′, qc, nmax)-attackers,
AdvMmgr-mult-na(A) ≤ ε, and the efficiency measures of the group manager and
users are s1, s2, c, t1, t2 as defined in Sects. 3.2 and 5.1.
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Abstract. Goh and Jarecki (Eurocrypt 2003) showed how to get a sig-
nature scheme from the computational Diffie-Hellman assumption, and
they introduced the name EDL for signatures of this type. The cor-
responding EDL family of signature schemes is remarkable for several
reasons: elegance, simplicity and tight security. However, EDL security
proofs stand in the random oracle model, and, to the best of our knowl-
edge, extending this family without using an idealization of hash func-
tions has never been successful.

In this paper, we propose a new signature scheme belonging to the
EDL family, which is simple, natural and efficient, without using the
random oracle model. Our scheme is based on the very same assump-
tion than the Boneh-Boyen scheme, namely the strong Diffie-Hellman
assumption, with the precision that our groups are not bound to being
bilinear. We also make use of a correlation-intractable hash function, for
a particular relation related to discrete-logarithm.

In addition to the theoretical interest of extending the EDL family
without the random oracle model, our scheme is also one of the very few
schemes which achieve discrete-log security properties without relying on
pairings.

Keywords: Public-key cryptography · Signature schemes · Standard
model · Random oracle model · Correlation intractability · Discrete
logarithm problem · Diffie-Hellman problem · EDL signature scheme ·
Boneh-Boyen signature scheme

1 Introduction

Signature schemes have existed since the introduction of public key cryptog-
raphy [26] and constitute one of the most essential tools in the cryptographic
toolbox. Among the various families of schemes that prevail, the so-called on-
line/off-line signatures have the nice property that one can precompute a part
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of the signature beforehand, independently from the signed message, and com-
plete the signature generation very quickly once the message is known. Most
signature schemes derived from the Fiat-Shamir heuristic [31] are inherently
on-line/off-line signature schemes. These schemes are of particular interest in
implementations, especially in constrained environments, and have numerous
applications. Fortunately, there exist generic constructions that one can use to
transform any signature scheme into an on-line/off-line scheme [66] based on
chameleon hashing [52].

Before the advancement of (reductionist) provable security, designing a seem-
ingly secure signature scheme was mainly an art, but with the steady accumula-
tion of knowledge, security definitions and constructions [41,42] have been more
and more precise, up to the point where the security of a signature scheme can
be formally proven under the assumption that some algorithmic problem is hard
to solve [67]. Classically, provably secure signatures divide into two categories:
the ones based on integer factoring such as RSA [61,62], and the ones based
on the discrete log and Diffie-Hellman problems [30,64]. A fundamental break-
through in security proving has been the now widely adopted Random Oracle
(RO) model [4,5], a paradigm that models hash functions used in schemes as
randomly chosen functions. The RO model made it possible to prove the security
of discrete-log based signature schemes such as Schnorr under the discrete-log
assumption thanks to the so-called forking lemma technique [59]. A critical fea-
ture of security proofs, however, resides in the “quality” of the reduction that
goes along with the proof. A security reduction is said to be tight when its suc-
cess probability is close to the adversary’s success probability, otherwise it is said
to be loose [54]. Carefully assessing the tightness of a reduction allows to give
concrete security parameters for which the proof results in a meaningful security
assurance [5,20,65].

The fact that RO-based security proofs do not imply that a scheme is secure
in the real world is known for a long time [14,15,40]. Other works have shown
that separations between the RO and the standard models also apply on non-
pathological signature schemes such as Schnorr [58] and RSA [27,57]. These
limitations as well as the wide adoption of pairings [2,9,10,49] in cryptographic
design have empowered the search for new schemes that achieve provable security
in the standard model. This has resulted in the appearing of new intractability
assumptions such as the strong RSA assumption [25,36] or the strong Diffie-
Hellman assumption on bilinear groups [6].

Even though numerous signature schemes are known today which secu-
rity is proven either in the RO model [10,37,43,60,70] or1 in the standard
model [11,12,23,29] (see also [19,32,45–47,53]), it is striking to observe that,
excluding the use of pairings, very few discrete-log-based signature schemes were
proven secure in the standard model. This includes notably the generic construc-
tion of signature schemes from one-way functions [56,63], [22] (whose signature
size grows logarithmically with the number of signatures) and the generic trans-

1 We remark that other hash function idealizations or instantiations have also been
investigated, e.g., in [34,45].
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formation to turn an identity-based encryption (IBE) scheme into a signature
scheme [8,69] with pairing-free but inefficient IBE proposed in [28]. We can also
list more recent schemes as [1,33] with their proofs based on the DDH assump-
tion in the non-programmable random oracle model.

Contribution. This paper introduces a new, pairing-free signature scheme,
which extends the EDL scheme and its variants [16,18,38,39,48,51] which are
proven under the computational Diffie-Hellman assumption in the random oracle
model. For our construction, we notably borrow ideas to Boneh-Boyen signature
scheme [6,7], whose security proof is based on the strong Diffie-Hellman (SDH)
assumption in the standard model.

At a high-level view, the basic idea behind our construction is to prove that
some group element h is a solution of the SDH problem, i.e., that

h = g
1

x+α

for known g, α and secret (but committed) x. On its own, this part is sim-
ilar to the Boneh-Boyen scheme. However, while Boneh-Boyen signatures use
a bilinear map to prove that h is well-formed, we rather use proofs of equal-
ity of discrete logs for the same purpose, as other schemes in the EDL family.
As explained further in our security proof, we ensure equality of discrete logs,
unless a very unlikely type of collision (that we link to the notion of correlation-
intractability [14]) is found within one of the hash functions, which is typical to
EDL proofs.

We mention that our scheme runs two independent instances of a simpler
scheme and is therefore reminiscent to twin signatures [55] even though the
final signature is obtained in a specific way. Previous schemes like [25] have
also used the principle of a double key and (somehow) a signature which is like
the concatenation of two independent-key related underlying signatures. Finally,
our scheme has strong connections with OR-proofs [1,24,33], since our security
proof is essentially a proof of discrete-log equality in at least one of the two
independent instances.

Road-map. The rest of this paper is organized as follows: the next section pro-
vides some background on signatures and intractability assumptions. Section 3
describes the EDL and Boneh-Boyen signature schemes, as well as other relevant
state of the art regarding pairing-free discrete-log signature schemes. Section 4
is the core of our paper: we describe our new signature scheme and provide a
tight security proof based on the strong Diffie-Hellman assumption and the hash
function intractability. We finally conclude in Sect. 5.

2 Definitions

This section provides some rather informal background on signature schemes
and security notions attached to these. Most of these definitions are classical.
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We also define the intractability assumptions on which are based the security
proofs of the EDL and Boneh-Boyen signature schemes.

2.1 Signature Schemes

A signature scheme Sig = (SetUp,GenKey,Sign,Verify) is defined by the four
following algorithms:

– The set-up algorithm SetUp. On input 1k, algorithm SetUp produces some
common parameters.

– The key generation algorithm GenKey. On input 1k, algorithm GenKey pro-
duces a pair (pk, sk) of matching public (verification) and private (signing)
keys.

– The signing algorithm Sign. Given a message m in a set of messages M and a
pair of matching public and private keys (pk, sk), Sign produces a signature σ.
Often, the signing algorithm is probabilistic.

– The verification algorithm Verify. Given a signature σ, a message m ∈ M and
a public key pk, Verify tests whether σ is a valid signature of m with respect
to pk.

Several security notions have been defined about signature schemes, mainly
based on the seminal work of Goldwasser, Micali and Rivest [41,42]. It is now
customary to ask for the impossibility of existential forgeries, even against adap-
tive chosen-message adversaries:

– An existential forgery is a signature, valid and generated by the adversary,
corresponding to a message which was never submitted to the signature oracle.
The corresponding security notion is called existential unforgeability (EUF).

– The verification key is public, including to the adversary. But more infor-
mation may also be available. The strongest kind of information is definitely
formalized by the adaptive chosen-message attacks (CMA), where the attacker
can ask the signer to sign any message of its choice, in an adaptive way.

As a consequence, we say that a signature scheme is secure if it prevents existen-
tial forgeries, even under adaptive chosen-message attacks (EUF-CMA). This is
measured by the following success probability, which should be negligibly small,
for any adversary A which outputs a valid signature σ on a message m that
was never submitted to the signature oracle, within a “reasonable” bounded
running-time and with at most qs signature queries to the signature oracle:

SuccEUF−CMA
Sig (A, qs) = Pr

[
(pk, sk) ← GenKey(1k), (m,σ) ← ASign(sk;·)(pk) :

Verify(pk;m,σ) = True

]
.

When the signature generation is not deterministic, several signatures may
correspond to the same message. In this case, we do not consider the attacker
successful when it outputs a second signature on a message already submitted
to the signature oracle. Being given a message-signature pair (m,σ), providing a
second signature σ′ on the same message m is captured by the adversarial goal
of malleability [68].
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2.2 Intractability Assumptions

Let us consider a cyclic (multiplicatively written) group G of prime order q
generated by g, i.e., G = {gi, i ∈ Zq}.

DL. Solving the discrete log problem in G consists, given g and y = gx for some
unknown random integer x ∈ Zq, in finding the value of DLg(y) = x.

CDH. Solving the (computational) Diffie-Hellman (CDH) problem is as follows:2

given (g, ga, gx) for unknown random integers a, x ∈ Zq, one must compute the
group element gax.

q-SDH (bilinear setting) [6,7]. Let G1, G2 and GT be three multiplicative
groups of prime order q and e : G1 × G2 → GT an admissible bilinear map [3,
10,35,44]. The q-strong Diffie-Hellman problem (q-SDH) consists in computing
a pair

(α, g2
1

x+α )

given a (q + 2)-tuple (g1, g1x, ..., g1
xi

, ..., g1
xq

, g2, g2
x), for a random integer x ∈

Zq, generators g1 and g2 of G1 and G2 respectively, and a security parameter q.
The q-SDH problem on bilinear groups was further studied in [7,17]. Note that
g2, g2

x may be omitted in the input tuple when G1 = G2.

In this work, we make use of the q-SDH in a general, non-bilinear context.

q-SDH (general setting) [6,7]. Solving q-SDH in the general setting consists
in computing a pair

(α, g
1

x+α )

given a q-tuple (g, gx, ..., gxi

, ..., gxq

), for a random integer x ∈ Zq and a security
parameter q. Note that deciding whether a solution for the bilinear q-SDH prob-
lem is valid is easy since the pairing provides a straightforward way to verify it.
This is however not the case in the general setting, meaning that q-SDH admits
a non-trivial decisional variant.

In particular, q-SDH in the general setting is non-falsifiable. However, as
shown in Sect. 4.4, with auxiliary information (the (si, ci)’s of the scheme
described in Sect. 4.2), one can efficiently decide if a pair is a valid q-SDH pair.

3 Prior Art

We now review signatures schemes that enjoy a tight EUF-CMA security under
the discrete-log-related complexity assumptions discussed above. In this section,
�p, �q, and �r denote security parameters. The schemes make use of cyclic groups
G (resp. G1 and G2) of prime order q generated by g (resp. g1 and g2) where
q is a �q-bit prime. We assume that elements of G (resp. G1 and G2) can be
represented as binary strings in {0, 1}�p . The set of messages to be signed is
denoted M.
2 Whether DL and CDH are equivalent is actually an open question.
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3.1 The EDL Family of Signatures

The EDL3 signature scheme, independently proposed in [16,48], is defined as
follows.

Set-up: Let two hash functions, H : M × {0, 1}�r → G and G : G6 → Zq.
Key generation: The private key is a random number x ∈ Zq. The correspond-

ing public key is y = gx.
Signature: To sign a message m ∈ M, one first randomly chooses r ∈ {0, 1}�r ,

and computes h = H(m, r) and z = hx. Follows a proof of logarithm equality
that DLh(z) = DLg(y): for a random number k ∈ Zq, one computes u = gk,
v = hk, c = G(g, h, y, z, u, v) and s = k + cx mod q. The signature on m is
σ = (z, r, s, c).

Verification: To verify a signature σ = (z, r, s, c) ∈ G × {0, 1}�r × Z
2
q on a

message m ∈ M, one computes h = H(m, r), u = gs y−c and v = hs z−c. The
signature σ is accepted iff c = G(g, h, y, z, u, v).

In the random oracle model, the chosen-message security of EDL reduces to
the security of the computational Diffie-Hellman problem [38], by showing that
the EDL scheme is a proof that DLh(z) = DLg(y) = x. The scheme yields signa-
tures of (�p +2�q + �r) bits (for typical setting, �r = 111). In its classical use, the
scheme cannot be used with precomputations (a.k.a. coupons) before knowing
the message, but, as noted by Goh and Jarecki, one can use the technique of
[66] based on chameleon hash functions [52] to transform this signature into a
signature with coupons, at the price of larger signatures.

The Katz-Wang Variants. In [51]4, Katz and Wang proposed two variants
of EDL, one based on DDH assumption, and the other which yields shorter
signatures still with tight relation to the CDH problem.

Being relatively generic to signature schemes with randomness,5 the idea of
Katz and Wang is to remove the randomness of r, and to replace it by unpre-
dictability. Namely, r is replaced by a bit b that can only be computed by the
signer (e.g., b is the result of a pseudo-random function, under a secret key
included in the signing key):6 the signatures are then (z, b, s, c), and so are
shorter than EDL signatures by 110 bits. This modification gives a signature
scheme with a signature length of (�p + 2�q + 1) bits. In this scheme, as in EDL,
only u can be computed off-line, and so the on-line part of the signature is two
modular exponentiations in G.

3 The name EDL was proposed in [38], based upon the fact that the scheme is a proof
of equality of discrete-logarithms.

4 A remarkable unification of [38,51] papers appeared in [39].
5 Notably, the very same idea can be applied on Probabilistic RSA-FDH to get a tight

signature scheme with a single extra bit.
6 In other words, in EDL, signing few times the same message would result in different

random numbers r, while doing the same with Katz-Wang scheme would give always
the same bit b.
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The Chevallier-Mames Variant. In [18], another EDL variant was proposed.
The main modification is how the value h is computed. Instead of being h =
H(m, r) as in EDL or h = H(m, b) as in Katz-Wang scheme, one sets h = H(u).

Set-up: Let two hash functions, H : G → G and G : M × G
6 → Zq.

Key generation: The private key is a random number x ∈ Zq, while the corre-
sponding public key is y = gx.

Signature: To sign a message m ∈ M, one first randomly chooses k ∈ Zq, and
computes u = gk, h = H(u), z = hx and v = hk. Next, one computes c =
G(m, g, h, y, z, u, v) and s = k + cx mod q. The signature on m is σ = (z, s, c).

Verification: To verify a signature σ = (z, s, c) ∈ G×Z
2
q on a message m ∈ M,

one computes u = gs y−c, h = H(u), and v = hs z−c. The signature σ is
accepted iff c = G(m, g, h, y, z, u, v).

The signatures are a little bit smaller than the EDL’s ones: they are only (�p+
2�q)-bit long. Interestingly, this scheme natively allows on-line/off-line signature
scheme, i.e., without affecting the efficiency of the signature or of the verification
nor the signature size. The scheme remains tightly related to the computational
Diffie-Hellman problem, still in the random oracle model.

Proving Equality of Discrete Logs. A common part of the respective proofs
of the previous schemes (see [18,39] for more details) consists in showing that
it is very unlikely that the forger can provide a valid signature with u = gk,
v = hk′

and z = hx′
with k �= k′ or x �= x′. More precisely, the forger would need

to find (m, k, k′, x′) such that7

c = G(m, g, h, y, z, u, v) = G(m, g, h, y, hx′
, gk, hk′

) =
k − k′

x′ − x
mod q

which is doable only with a probability qG
q if G is assumed to be a random oracle

and qG is the number of requests to G oracle.
Remark that previous equation can be rewritten as follows, if one defines

β = DLg(h):

c = G(m, g, gβ , gx, gβx′
, gk, gβk′

) =
k − k′

x′ − x
mod q

which can also be seen as

G(m, g, ga1 , ga2 , ga3 , ga4 , ga5) =
a4 − a5/a1

a3/a1 − a2
=

a1a4 − a5

a3 − a1a2
mod q

In our scheme, we formalize the notion of discrete-log collision resistant hash
function (in Sect. 4.3) and use it to prove the security of our scheme (in Sect. 4.4).

7 Strictly, the equality is for Chevallier-Mames variant; for EDL or Katz-Wang, m is
not an input of G, without changing anything to the analysis.
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3.2 Boneh-Boyen Signatures

In [6,7], a completely different way to prove that a tuple is a Diffie-Hellman
tuple was used: the pairing.

Set-up: Let G1, G2 and GT be three groups whose prime order is q, for which
it exists an efficient pairing e : G1 × G2 → GT .

Key generation: Let g1 and g2 be two random generators of G1 and G2. Let
x, y be two random integers of Zq. Let u = g2

x, v = g2
y, z = e(g1, g2). The

private key is (x, y, g1) and the corresponding public key is (g2, u, v, z).
Signature: To sign a message m ∈ Zq, one first randomly chooses r ∈ Zq

(r �= −x+m
y ), and computes s = g1

1
x+m+y·r . The signature on m is σ = (s, r).

Verification: To verify a signature σ = (s, r) ∈ G1 × Zq on a message m ∈ M,
one checks that e(s, u · g2

m · vr) = z. If true, the signature σ is accepted.

Boneh-Boyen signature scheme has the following notable differences with
EDL variants: its security is based on qs-SDH problem (where qs is the number
of signature queries), and does not require the random oracle model. A security
proof in the standard model rather than the RO model is arguably an important
improvement over pre-existing schemes. However, we stress that the result was
mainly achieved thanks to the use of pairings. Evaluating a pairing at verification
time may result in a slower and more complicated implementation as opposed
to when only common group operations are performed.

3.3 Existing Pairing-Free Discrete-Log Signature Schemes
in the Standard Model

In the set of signature schemes provably secure under a discrete-log-kind assump-
tion, it is remarkable that most schemes rely on pairing. We succinctly describe
here two schemes which are pairing-free but significantly less efficient than the
scheme we propose in Sect. 4.2.

First, it is a classical result that signature schemes can be generically built
from one-way functions [56,63]. This type of construction is however particularly
inefficient in term of signature size.

Cramer-Damg̊ard Scheme. In [22], Cramer and Damg̊ard have shown a
generic construction, which can be instantiated for the discrete-log case as
described in their Sect. 6. The principle relies on the following zero-knowledge
protocol.

Key generation: Let d be a security parameter. Let xi be random elements
of Zq, and yi = gxi , for i ∈ {0, ..., d − 1}. The private key is {xi} and the
corresponding public key is {yi}.

Commit: The prover generates a random k ∈ Zq and sends u = gk to the
verifier.
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Challenge: The verifier generates random ci ∈ Zq for i ∈ {0, ..., d − 1}, and
sends them to the prover.

Answer: The prover computes s = k +
∑d−1

i=0 ci · xi mod q and sends s to the
verifier.

Verification: Finally, the verifier checks whether gs = u · ∏d−1
i=0 yi

ci .

With the use of an authentication tree, Cramer and Damg̊ard get a signature
scheme whose signature size is O(�p · log(qs)). The number of exponentiations to
compute or verify the signature also depends on the depth of the tree.

Generic transformation from an identity-based encryption scheme
into a signature scheme. Another possibility to have a scheme based on a
discrete-log assumption without relying on pairings is to use the generic transfor-
mation from an identity-based encryption scheme into a signature scheme, that
was proposed by Boneh and Franklin in seminal [8] (see [69] as well). Regarding
the purpose of this paper, this generic transformation can be combined with
pairing-free scheme proposed in [28] to get a signature scheme. However, as
remarked by Döttling and Garg, the scheme is particularly inefficient.

3.4 OR-Based Signature Schemes

OR-proofs [24] are one of the fascinating techniques used to achieve security
proofs, which was notably recently used to achieve signatures schemes as in [1,
33]. In this section, we remind the reader of the first construction, which can
notably be instantiated to get a scheme based on the DDH assumption in the
non-programmable random oracle, in a scheme comparable to ours.

Fischlin, Harasser and Janson scheme. The principle is to have two Sides
0 and 1, with their respective DDH tuple (yi, hi, zi) = (gxi , gai , gai xi). One Side
b ∈ {0, 1} is the preferred side. Roughly, the non-preferred side will be completely
simulated (and so x1−b is not needed in the signature processing), while the Side
b will go in a process very close to Katz-Wang DDH scheme [51]. However, for
the security of the construction, the role of the two sides remains completely
symmetric, such that they are non distinguishable.

Set-up: Let a hash function H : {0, 1} × G
7 × G

2 × M → Zq.
Key generation: Let b be a random bit and b̃ = 1 − b. Let g and hb be two

generators of G and xb be a scalar of Zq. Let (yb, zb) = (gxb , hb
xb). Finally, let

(g, yb̃, hb̃, zb̃) be another random DDH tuple. The private key is (b, xb) while
the public key is pk = (g, y0, y1, h0, h1, z0, z1).

Signature: To sign a message m ∈ M, one first pick a random kb ∈ Zq, then
compute ub = gb

kb and vb = hb
kb , which is the commitment of the Side

b. Then, the Side b̃ is completely simulated by picking a random sb̃ ∈ Zq,
and computing cb̃ = H(b,pk, ub, vb,m), ub̃ = gb̃

sb̃ yb̃
−cb̃ and vb̃ = hb̃

sb̃ zb̃
−cb̃ .

Finally, the Side b is completed, by computing cb = H(b̃,pk, ub̃, vb̃,m) and
sb = kb + cbxb mod q. The signature is σ = (s0, s1, c0, c1).
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Verification: To verify a signature σ = (s0, s1, c0, c1) ∈ Z
4
q on a message m ∈

M, one computes u0 = g0
s0 y0

−c0 , u1 = g1
s1 y1

−c1 , v0 = h0
s0 z0

−c0 and
v1 = h1

s1 z1
−c1 . The signature is accepted iff c0 = H(1,pk, u1, v1,m) and

c1 = H(0,pk, u0, v0,m).

The fundamental principle in this construction is that the commitment (u, v)
used in the computation of c is the commitment from the other side, which allows
the author of [33] to prove that their scheme has a tight security on the DDH in
the non-programmable random oracle model.

Regarding efficiency, we can note that the signature size is 4�q and that some
parts of the computations (more precisely ub and vb) can be done before the
message is known. Let us remark however that it is also possible for the signer
to know the discrete logarithm xb̃ as well, not to have to simulate the Side b̃, in
order to be able to precompute ub̃ and vb̃ as well.

4 Our Signature Scheme

4.1 Intuition of the Design

In this section, we explain how we finally came to our design, to explain its
difference with previous state of the art, and why we had to do these changes.

From the beginning, we wanted to extend the EDL family described in
Sect. 3.1 to the standard model. However, this will is blocked in its early steps by
the fact that, in these schemes, h is the output of the hash function H—although
the exact form of h is different from one scheme to the other—and that there is
some hx to compute: without the random oracle model, it seems impossible to
compute such quantities during the signature queries, unless by having the secret
key x. In other words, it seems at first glance that H has to be a random oracle
to allow the security reduction to compute pairs of the form (h, hx) without
key x.

Inversing the problem. To be able to achieve security without the random
oracle model (and notably, the programmability property), we had to fundamen-
tally change the design, and notably, we somehow inversed the problem, by—let’s
say—“making h hard to compute” and “z simple to deduce”. For this, we borrow
ideas from [6] and notably make use of a qs-SDH instance to essentially replace
the random oracle.

To this end, we now pose h = g
1

x+α for some α (which requires the secret key
x to be computed) and see that z = hx is easy to compute since

z = g
x

x+α = g · h−α.

Therefore, being given h, if one can prove that z defined by z = g ·h−α is such
that z = hx then the well-formedness of h—i.e., , the fact that h = g

1
x+α —is

automatically proven. As should be already clear to the reader, we are using
technique a-la EDL to prove that z = hx.
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Checking equality of logarithms. However, our goal is still not achieved: the
second complicated part is to be able to prove that the two logarithms DLg(y)
and DLh(z) are equal (to answer signature queries), but at the same time, from
the signature forge, to learn something (to answer the qs-SDH challenge).

In the random-oracle proofs, achieving these two things at the same time is
easy, since one can simulate thanks to the random oracle model, and simulta-
neously, know a new z = hx from the forge, to solve the CDH problem. Very
informally,8 during signature queries, the random oracle allows to take random
s, c and deduce u, v, h, z from these quantities, and still “close the loop”, i.e.,
make that c = G(m, g, h, u, v, y, z). In the standard model, on the contrary, G
function cannot be bent to our will.

Consequently, a second major change of design in our scheme as compared
to the rest of the EDL family is to have a double-key mechanism. We have two
sides (see the full description in our next section), which are linked together by
a new degree of liberty e. In the security proof, the reduction knows one (and
only one) of the two keys, and can simulate the unknown side a bit like in the
random oracle model, and complete the signature with the known key. For this
aspect of the design and of the proof, we are very close to the OR-based schemes
described in Sect. 3.4. As we will show in the security proof, the known side is
indistinguishable for the adversary, and even with this new degree of liberty, the
security reduction can turn the forge into an answer to the qs-SDH challenge.

4.2 Description

Our scheme is made of two instances of the same flow, which we will call Side
0 and Side 1. Note that this almost entirely symmetric design presents some
similarities with the approach undertaken with twin signatures [55] or other
schemes as [1,25,33].

The signature scheme is depicted as follows.

Set-up: Let �p and �q denote security parameters. Select a cyclic group G of
prime order q. Let G

� be equal to G\{1}. Finally, select two hash functions,
H : G2 → Zq and G : M × G

11 → Zq.
Key generation: Let g, g0 and g1 be three random generators of G. The private

key is made of two random numbers (x0, x1) ∈ Z
2
q. The corresponding public

key is (g, g0, g1, y0, y1) with y0 = gx0 and y1 = gx1 .
Signature: To sign a message m ∈ M, randomly select (k0, k1, e) ∈ Z

3
q, and

then proceed as follows

8 The reader is referred to original papers [18,38,39,51] for more formal proofs.
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Side 0 Side 1

u0 = gk0 u1 = gk1

α = H(u0, u1)

h0 = g0
1

x0+α h1 = g1
1

x1+α

v0 = h0
k0 v1 = h1

k1

z0 = h0
x0 z1 = h1

x1

d = G(m, g, h0, y0, z0, u0, v0
h1, y1, z1, u1, v1)

c0 = d + e mod q c1 = −e mod q
s0 = k0 + c0 · x0 mod q s1 = k1 + c1 · x1 mod q

If α + x0 = 0 mod q or α + x1 = 0 mod q, other randoms are picked. The
signature on m is σ = (h0, s0, c0, h1, s1, c1).

Verification: To verify a signature σ = (h0, s0, c0, h1, s1, c1) ∈ G
�×Z

2
q ×G

�×Z
2
q

on a message m ∈ M, one computes

u0 = gs0 y0
−c0 u1 = gs1 y1

−c1

α = H(u0, u1)
z0 = g0 · h0

−α z1 = g1 · h1
−α

v0 = h0
s0 z0

−c0 v1 = h1
s1 z1

−c1

d = G(m, g, h0, y0, z0, u0, v0,
h1, y1, z1, u1, v1)

The signature is accepted iff c0 + c1 = d (mod q).

As shown later, signatures as per our scheme provide a proof that either
DLh0(z0) = DLg(y0) or DLh1(z1) = DLg(y1) or both. One can note that this
“one of the DL-equalities holds” is exactly what one needs to create a ring
signature, and notably, we can see our construction as a kind of ring signature
with only two virtual signers, one per side.

As explained later, we base our security proof on the property that one of
the two sides can be perfectly simulated but not both at the same time.

Correctness. The scheme is consistent since, if the signature is well formed,
for δ ∈ {0, 1},

hδ = gδ

1
xδ+α , for α = H(u0, u1).

It follows that zδ = hδ
xδ = gδ

xδ
xδ+α = gδ

xδ+α−α

xδ+α , and consequently zδ = gδ ·hδ
−α.

Discussion. The main features of our scheme is that it does not rely on pairings
and, at the same time, achieves chosen-message security (without the random-
oracle model) with a tight reduction. Our signatures are 2�p + 4�q bits. Our
construction also inherently supports on-line/off-line precomputations, i.e., one
can perform most of the computations before knowing the message m: only
remains the computation of (c0, c1, s0, s1) once the message is finally known.

A comparison with schemes of Sect. 3 could be the following:
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– as opposed to the EDL family of schemes of Sect. 3.1, our scheme does not
need the random oracle model

– as opposed to Boneh-Boyen scheme of Sect. 3.2, our scheme does not use
pairings

– our scheme is more efficient than generic constructions of Sect. 3.3.

A comparison with OR-based schemes of Sect. 3.4 shows that results are
pretty close. [33] scheme is based on the DDH assumption, which is more classical
than the SDH assumption we use in our scheme (which, in a pairing-free group,
is non-falsifiable). However, SDH is a computational problem while DDH is a
decisional problem. Also, even if SDH is non-falsifiable, we argue in Sect. 4.4
that, with the auxiliary (si, ci)’s information of our scheme, one can check that
whether a pair is a valid SDH pair or not. Regarding the security model, the non-
programmable random-oracle model used in [33] is slightly stronger than simply
assuming correlation intractability of the hash function as we do. Finally, [33]
signature size is smaller than our signature size.

4.3 Introducing Discrete-Log Collisions

Let us start with a definition.

Definition 1 (Discrete-log collisions). Let G be a hash function mapping
tuples of M × G

n+1 to Zq. Let F be a function mapping vectors of Zn
q to Zq.

An algorithm is said to (εdlG,F , τ)-break the intractability of finding discrete-
log collisions of G with respect to F if, being given a fresh random genera-
tor g ∈ G,9 it can find, with a probability εdlG,F and within a time τ , a tuple
(m, g, ga1 , ga2 , ..., gan) such that

G(m, g, ga1 , ga2 , ..., gan) = F(a1, a2, ..., an)

Such a tuple is called a discrete-log collision of G with respect to F and g.

Correlation-intractability. This security notion for hash function is actually
an instantiation of so-called correlation-intractability. As introduced in [14], a
hash function G is said correlation-intractable with respect to a relation R if it
is computationally infeasible to exhibit u such that (u,G(u)) ∈ R.

In the case of Definition 1, the relation RF can be defined as follows. Since
g is a generator, the function

Λ : M × G
n+1 → M × G × Z

n
q

(m, g, ga1 , ga2 , ..., gan) �→ (m, g, a1, a2, ..., an)

is bijective. So, to any u = (m, g, ga1 , ga2 , ..., gan) corresponds a unique v =
Λ(u) = (m, g, a1, a2, ..., an), and so a unique w = (a1, a2, ..., an) which we note
9 Notably, F and G definitions cannot suppose the generator g to be already defined.
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as w = Λa(u). We then say that (u, v) ∈ RF iff v = F(Λa(u)). Remark that
saying that (u,G(u)) ∈ RF is the same as saying that u is a discrete-log collision
of G with respect to F .

Building a hash function whose correlation-intractability is formally proved
is out of scope of this paper.10 Instead, in our scheme, we use a hash function
G, and show that a potential forge can be turned into showing that G is not
correlation-intractable (or some other hard problem is solved, see Sect. 4.4).

Checking discrete-log collisions. One could note that verifying that a given
tuple is a valid discrete-log collision may be achieved in two ways: one way is to
provide the tuple (m,a1, a2, ..., an), i.e., to disclose all the discrete logarithms
a1, a2, ..., an. However, if the analytic form of F is simple enough (e.g., our
function F0 below), a verification that the collision is valid can be performed
“in the exponents”, i.e., by providing proofs of equations followed by the inputs
(see Sect. 4.4, Case 2.1).

For any hash function, having resistance against discrete-logarithm collisions
is actually a desirable property, even if not a classical one. As Λ is bijective,
when computing G(m, g, i1, i2, ..., in) for any (m, g, i1, i2, ..., in) ∈ M × G

n+1,
there is only one target value v = F(Λa(m, g, i1, i2, ..., in)) which can lead to
a discrete-log collision. Furthermore, g is picked randomly after F and G are
defined.11 Thus, for cryptographic hash functions G—notably but not only non-
programmable random oracle hash functions [34]—, finding discrete-log collision
should be hard.

Setting a particular F for our scheme. In this paper, we are only interested
in n = 10 and function F = F0 defined as follows, which is a purely modular
rational function

F0(a1, a2, ..., a10) =
a1a4 − a5

a3 − a1a2
+

a6a9 − a10

a8 − a6a7
mod q,

resulting in that a discrete-log collision can be verified by providing equations
satisfied by ga1 , ga2 , ..., ga10 as shown in Case 2.1 of Sect. 4.4.

Relation to security proofs of EDL variants. Remarkably, the discrete-
logarithm collision notion was already present in EDL security proofs [18,38,51],
even if not explicitly defined (see as well the end of our Sect. 3.1). Notably, the
authors of these papers were using n = 5 and

F1(a1, a2, ..., a5) =
a1a4 − a5

a3 − a1a2
mod q.

10 One may read [13,21,50] for state of the art on this area of research.
11 If F and g were chosen by the solver, this latter could trivially pick any

(m, g, ga1 , ga2 , ..., gan), precompute f = G(m, g, ga1 , ga2 , ..., gan), and choose
F(a1, a2, ..., an) as the constant function f .
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4.4 Security Proof

In this section, we prove the security of our scheme under the q-SDH assumption
over the group G. Recall that G is an arbitrary prime-order group here, and is
not required to admit a bilinear map.

Before proving the security theorem, we refer to a useful lemma whose proof
can be found in [6,7].

Lemma 1 (Proof of Lemma 9, [7]). Let f be the polynomial

f(X) =
j=qs∏
j=1

(X + κj)

for some κj in Zq, and let θ be a random integer in Zq. Given {gxi}i=0,...,qs
,

let us define g0 as g0 = gθf(x). It is easy to compute g0 and g0
1

x+κi for any
i ∈ [1, qs]. Furthermore, if one is given h = g0

1
x+α with α �= κj, then one can

easily compute g
1

x+α .

We now state:

Theorem 1. Let A be an adversary against our scheme that returns an exis-
tential forgery under a chosen-message attack with success probability ε within
time τ , after qs queries to the signing oracle. Further assume that H and G are
respectively (εH, τ) and (εG , τ)-collision secure and that finding discrete-log colli-
sions of G with respect to F0 is (εdlG,F0

, τ)-intractable, then the qs-SDH problem
over G can be solved with success probability ε′ such that

3ε′ + 3εdlG,F0
+ εG + εH ≥ ε

in time τ ′ with

τ ′ � τ + O(qs) · τ0

where τ0 is the time required to perform a group exponentiation in G.

Our proof combines techniques from [6,38,39] with new ideas. Intuitively a
signature in our scheme is a proof that either DLh0(z0) = DLg(y0) (= x0) or
DLh1(z1) = DLg(y1) (= x1) (or both), or that a collision (including the discrete-
log collision case) is found on one of the hash functions.

Proof (of Theorem 1). Our reduction is given a group G and a qs-SDH challenge
{gxi}i=1,...,qs

. Let us call μi = gxi

, for i ∈ [1, qs].
The reduction algorithm uses an existential forger A against our signature

scheme to solve this challenge, i.e., to find g
1

x+α for some α or to find collisions of
one of the three above types. The reduction picks a random integer δ ∈ {0, 1, 2}
and runs the subroutine Simulation δ described below.
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Simulation 0
In this simulation, we simulate the Side 0 of the signature scheme while
knowing the private key associated with Side 1, i.e., the simulator knows x1

but not x0. The subroutine poses y0 = μ1, randomly picks x1 ∈ Zq and sets
y1 = gx1 . If y1 = y0, we know that x0 = x1 and so the qs-SDH challenge
can be solved easily. Therefore we assume that x0 �= x1. A random generator
g1 ∈ G is generated as well.

Initialization: The simulator prepares qs random tuples (s0,i, c0,i, k1,i) ∈ Z
3
q

and computes

u0,i = gs0,i y0
−c0,i

u1,i = gk1,i

αi = H(u0,i, u1,i).

The simulator checks whether one of the αi’s is actually equal to q − x0,
in which (unlikely) case, the simulator sets x = q − αi and directly solves
the qs-SDH problem. Similarly, it checks that αi �= q − x1, in which case
initialization is restarted. Thus we now assume that αi + x0 �= 0 mod q and
αi + x1 �= 0 mod q, and so are invertible modulo q.
Let f be the polynomial f(X) =

∏j=qs

j=1 (X + αj). Let g0 = gθf(x), for a
random θ ∈ Zq. By Lemma 1, g0 can be simply computed thanks to μi’s.
Now the simulator runs A on the public key (g, g0, g1, y0, y1) and the public
parameters (q,G,H,G).

Simulating signature queries: Let mi ∈ M be the i-th signature query. Simu-
lator 0 behaves as follows. Using Lemma 1, h0,i = g0

1
x0+αi is easily computed,

without unknown secret x0. The simulator then computes z0,i = g0 h0,i
−αi

and v0,i = h0,i
s0,i z0,i

−c0,i .
Now that all variables from Side 0 are simulated, the simulator uses x1 to
generate the variables from Side 1 as

h1,i = g1
1

x1+αi

v1,i = h1
k1,i

z1,i = h1
x1

Finally, the simulator computes di = G(mi, g, h0,i, y0, z0,i, u0,i, v0,i, h1,i, y1,
z1,i, u1,i, v1,i) and set c1,i = di −c0,i mod q. Finally, s1,i = k1,i +c1,i ·x1 mod q
is derived.
As one can see, signature (h0,i, s0,i, c0,i, h1,i, s1,i, c1,i) is valid and distributed
as a regular signature (notably, DLh0(z0) = DLg(y0) and DLh1(z1) =
DLg(y1)).

Simulation 1
In this simulation, we proceed exactly as in Simulation 0, except that variables
from the two sides are swapped: Side 1 is simulated using the μi’s and Side 0
is trivial since the key x0 is known by the simulation.

Simulation 2
The purpose of this simulation is not to solve the SDH instance, but to find a
discrete-log collision on G. Thus, in this simulation, the simulator knows the
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two keys x0 and x1, and responds to the adversary’s signature queries as per
the definition of the signing procedure.

Solving the qs-SDH problem or finding collisions
This completes the description of our three simulation subroutines. Note that
the three routines yield perfectly simulated distributions and are indistin-
guishable from one another from the adversary’s perspective. We now focus
on what our reduction does assuming that a forgery is returned by the forger
at the end of the game.
Let σ = (h0, s0, c0, h1, s1, c1) ∈ G

� × Z
2
q × G

� × Z
2
q be the valid forgery on a

new message12 m ∈ M. Our reduction algorithm easily computes the other
variables u0, v0, z0, u1, v1, z1, α, d by following the verification procedure. The
reduction then checks whether α = αi for some i = 1, ..., qs. Several cases and
sub-cases appear.
� Case 1: α = αi. This case can be subdivided into three sub-cases.
Case 1.1: (u0, u1) �= (u0,i, u1,i). Then, (u0, u1) and (u0,i, u1,i) is a pair which
forms a collision on H function. This probability is captured by εH.
Case 1.2: (u0, u1) = (u0,i, u1,i) and (c0, c1) �= (c0,i, c1,i). If δ ∈ {0, 1} and cδ �=
cδ,i, the reduction directly finds x and subsequently solves the qs-SDH chal-
lenge: indeed, we have equations uδ = uδ,i, uδ,i = gsδ,i yδ

−cδ,i (from the
signature queries) and uδ = gsδ yδ

−cδ (from the forge). Since δ is independent
from the adversary, δ ∈ {0, 1} happens with a probability 2

3 and cδ �= cδ,i

knowing that (c0, c1) �= (c0,i, c1,i) happens with a probability of 1
2 . This case

probability is thus upper-bounded by the 3 εSDH,1 term.
Case 1.3: (u0, u1) = (u0,i, u1,i) and (c0, c1) = (c0,i, c1,i). We know by the ver-
ification step that di = c0,i + c1,i mod q, and thus di = d. In other words,

(m, g, h0, y0, z0, u0, v0, h1, y1, z1, u1, v1)

and
(mi, g, h0,i, y0, z0,i, u0,i, v0,i, h1,i, y1, z1,i, u1,i, v1,i)

constitute a (classical) G collision.13 This probability is captured by εG .
Summing up, we get

εH + 3 εSDH,1 + εG ≥ ε · Pr[Case 1]

� Case 2: α �= αi. Since h0 and h1 are generators of G (this is notably the
reason why we must check that they are not equal to 1 in the verification step),
there exists a unique tuple (k0, k′

0, k
′′
0 , k1, k

′
1, k

′′
1 , x′

0, x
′
1) ∈ Z

2
q×Z

�
q×Z

2
q×Z

�
q×Z

2
q

such that

12 Hence, our scheme does not ensure strong existential unforgeability, but only exis-
tential unforgeability, which is sufficient in most usages.

13 Remind that m �= mi, since the forgery is assumed to be valid.
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u0 = gk0 , u1 = gk1

v0 = h0
k′
0 , v1 = h1

k′
1

z0 = h0
x′
0 , z1 = h1

x′
1

h0 = gk′′
0 , h1 = gk′′

1 .

Our goal is to prove that, with overwhelming probability, either (k0 = k′
0 and

x0 = x′
0) or (k1 = k′

1 and x1 = x′
1), or both. This is somehow similar to

EDL’s proofs. By the verification step, we know that (all computations being
modulo q)

k0 = s0 − x0 · c0, k1 = s1 − x1 · c1
k′
0 = s0 − x′

0 · c0, k′
1 = s1 − x′

1 · c1

and that c0 + c1 = G(m, g, h0, y0, z0, u0, v0, h1, y1, z1, u1, v1).
Case 2.1: x0 �= x′

0 and x1 �= x′
1 : if the Simulation 2 was not executed, the

reduction aborts. Else, the reduction knows the two parts of the signing key
x0 and x1, and can actually check that z0 �= h0

x0 and z1 �= h1
x1 , i.e., that

x0 �= x′
0 and x1 �= x′

1. Then, c0 = k0−k′
0

x′
0−x0

mod q and c1 = k1−k′
1

x′
1−x1

mod q. This
implies (modulo q)

k0 − k′
0

x′
0 − x0

+
k1 − k′

1

x′
1 − x1

= G(m, g, h0,g
x0 , h0

x′
0 , gk0 , h0

k′
0 , h1,

gx1 , h1
x′
1 , gk1 , h1

k′
1)

or written differently

k0 − k′
0

x′
0 − x0

+
k1 − k′

1

x′
1 − x1

= G(m, g, gk′′
0 ,gx0 , gx′

0 k′′
0 , gk0 , gk′

0 k′′
0 , gk′′

1 ,

gx1 , gx′
1 k′′

1 , gk1 , gk′
1 k′′

1 )

or, in a more evocative form, with k′′
0 = a1 and k′′

1 = a6 not zero

k′′
0 = a1 k′′

1 = a6

x0 = a2 x1 = a7

x′
0 = a3/a1 x′

1 = a8/a6

k0 = a4 k1 = a9

k′
0 = a5/a1 k′

1 = a10/a6

and finally

a1a4 − a5

a3 − a1a2
+

a6a9 − a10

a8 − a6a7
= G(m, g, ga1 , ga2 , ga3 , ga4 , ga5 , ga6 , ga7 , ga8 , ga9 , ga10)
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This provides a discrete-log collision on G function, for the function F0 defined
in Sect. 4.3, or, in other words, proves that G is not correlation-intractable.
The reduction cannot provide the ai discrete logarithms, but this is
not a problem, since the discrete-log collision can be checked with-
out them, by giving away (x0, x1) and the equations followed by
(m, g, h0, y0, z0, u0, v0, h1, y1, z1, u1, v1). The probability of this event is
counted by 3 εdlG,F0

.
Case 2.2: xδ = x′

δ. Then, zδ = hδ
xδ and hδ = gδ

1
x+α . As the simulation actu-

ally executed is unknown to the adversary, this happens with probability 1
3 .

Thanks to Lemma 1, the reduction can return (α, g
1

x+α ) as our answer to the
qs-SDH problem.
Summarizing, we have

3 εdlG,F0
+ 3 εq−SDH,2 ≥ ε · Pr[new]

which proves the theorem.

5 Conclusion

In this paper, we have introduced a new signature scheme which is efficient and
does not rely on pairings. Our scheme is provably secure under the strong Diffie-
Hellman assumption and the correlation-intractability of the hash function. This
scheme is our best attempt to extend the EDL family without the random oracle
model.

An open question remains in how to reduce the size of our signatures and
how to completely get rid of the assumption that finding discrete-log collisions
for G function is intractable. More generally, one may try to extend EDL family
in the standard model with other techniques, or to rely on weaker assumptions.
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Abstract. In the third round of the NIST PQC standardization process,
the only isogeny-based candidate, SIKE, suffers from slow performance
when compared to other contenders. The large-degree isogeny computa-
tion performs a series of isogenous mappings between curves, to account
for about 80% of SIKE’s latency. Here, we propose, implement, and eval-
uate a new method for computing large-degree isogenies of an odd power.
Our new strategy for this computation avoids expensive recomputation
of temporary isogeny results. We modified open-source libraries targeting
x86, ARM64, and ARM32 platforms. Across each of these implementa-
tions, our new method achieves 10% and 5% speedups in SIKE’s key
encapsulation and decapsulation operations, respectively. Additionally,
these implementations use 3% less stack space at only a 48 byte increase
in code size. Given the benefit and simplicity of our approach, we rec-
ommend this method for current and emerging SIKE implementations.

Keywords: Isogeny-based cryptography · Post-quantum
cryptography · SIKE · Isogeny computations

1 Introduction

Quantum computing technology is heralded as the next big leap in processing
powers. This new type of computer will allow humanity to solve a wealth of
difficult problems in applications such as medicine, finance, and data analytics.
However, the dark side of these new quantum computers is that they are capable
of breaking the foundational cryptography that secures the internet and our
digital infrastructure. Namely, today’s deployed public-key cryptosystems are
protected by the difficulty to compute discrete logarithms and factorization, both
of which are infeasible for classical computers once the numbers become large.
However, in 1994, Peter Shor proposed a polynomial-time algorithm that can
break these hard problems in conjunction with a large-scale quantum computer
[44]. It is unclear when a large enough quantum computer will emerge, so there
exist many estimates ranging from a few years to several decades.

With quantum computer fears in mind, the US National Institute for Stan-
dards and Technology (NIST) has initiated a post-quantum cryptography (PQC)
standardization process for public-key cryptosystems [46]. Started in 2017, the
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standardization effort is currently in its third round, cutting the original 69
submissions to just 15. Quantum-safe schemes fall into a number of categories
ranging from lattices, codes, hashes, multi-variate equations, and isogenies.
Unfortunately, there are no clear “drop-in replacements” for today’s currently
deployed technology. Each of the proposed quantum-resilient schemes feature
performance, size, communication, and security tradeoffs.

This work focuses on optimizations to the NIST PQC candidate SIKE, which
is based on the hardness of finding isogenies between supersingular elliptic curves.
SIKE is currently a third round alternative scheme for key encapsulation mecha-
nisms. SIKE is lauded for its small public keys, straightforward parameter selec-
tion, immunity to decryption errors, and understanding of its generic attacks.
However, SIKE is an order of magnitude slower than lattices and other schemes
and many are requiring further examination of its foundational security. Never-
theless, SIKE’s small key and ciphertext sizes enable some applications that can
take the hit to performance. NIST sees SIKE “as a strong candidate for future
standardization with continued improvements.” [2]

In this work, we present a faster method for computing the large-degree
isogeny in SIKE for isogenies of an odd power. As we have observed, current
open source implementations of SIKE such as that in the SIKE submission [5] or
Microsoft’s SIDH Library [15] utilize a slow strategy for computing large-degree
isogenies that require a mix of 2 and 4-isogenies. Our new strategy modifies this
strategy, achieving a nice speedup in SIKE’s key generation and decapsulation
operations. Currently, this applies to only the NIST Level 3 SIKE parameter
set. However, new security analyses have proposed additional SIKE parameter
sets for which we can and do apply this large-degree isogeny method.

Our contributions:

– We propose a new method for computing large-degree isogenies of an odd
power.

– We provide explicit algorithms and formulas to speed up these large-degree
isogenies.

– We implement, deploy, and evaluate our methodology on x86, ARM64, and
ARM32 platforms.

– We achieve 10% and 5% speedups in SIKEp610’s key encapsulation and
decapsulation, respectively, with approximately a 3% improvement in stack
usage in our experimental results.

2 Preliminaries: Isogenies on Elliptic Curves

In this section, we provide a brief overview of the large-degree isogeny and its
use in SIKE.



Faster Isogenies for Post-quantum Cryptography: SIKE 51

2.1 Isogeny-Based Cryptography

History. Primarily, isogeny-based cryptography has focused on the use of iso-
genies on elliptic curves in cryptosystems. An isogeny is a non-constant rational
map between elliptic curves that is also a group homomorphism. The use of iso-
genies for a cryptosystem was first proposed in independent works by Couveignes
[17] and Rostovtsev and Stolbunov [41] that were first published in 2006. These
works proposed an isogeny-based key-exchange based on the hardness to com-
pute isogenies between ordinary elliptic curves. Initially, these were believed to
be resistant to quantum attacks. However, in 2010, Childs, Jao, and Soukharev
[13] proposed a new quantum subexponential algorithm that computes isoge-
nies between ordinary curves, thus breaking these schemes. In 2009, Charles,
Lauter, and Goren [12] proposed an isogeny-based hash function that was based
on the hardness to compute isogenies between supersingular elliptic curves which
creates an expander graph. Then, in 2011, Jao and De Feo [27] modified the orig-
inal isogeny-based key-exchange to now also utilize supersingular elliptic curves,
creating the Supersingular Isogeny Diffie-Hellman (SIDH) key-exchange. Inter-
estingly, the quantum algorithm from Childs, Jao, and Soukharev [13] relies on a
commutative endomorphism ring. Ordinary elliptic curves have a commutative
endomorphism ring, making them vulnerable, while supersingular elliptic curves
have a non-commutative endomorphism ring. SIKE is an IND-CCA2 upgrade of
SIDH that was submitted to the NIST PQC standardization process in 2017 [6].
Since the inception of SIDH in 2011 to the 4 years of SIKE in the NIST PQC
process, these supersingular isogeny-based schemes remain unbroken.

Since the emergence of SIDH, many facets have isogeny-based cryptog-
raphy have been explored through research. Many researchers have investi-
gated security foundations from the isogeny hard problems [1,16,24,28] to side-
channel attacks [26,31,32,47]. On the application side, we have seen the use of
SIDH/SIKE public key compression [7,14,39,40], new isogeny-based digital sig-
natures schemes [25,49], isogeny-based hybrid key exchange [9,15], isogeny-based
password authenticated key exchange [8,45], and new isogeny-based key agree-
ment with CSIDH [11]. Among isogeny-based cryptosystem implementations, we
have seen a wealth of implementations including software [3,15,18,23,36,42,43],
hardware [19,20,22,30,33–35], and even software-hardware co-design [21,38].

Elliptic Curves. Isogeny-based cryptography can be thought of as an extension
of elliptic curve cryptography. Both operate on elliptic curves defined over finite
fields. However, rather than stick to a single elliptic curve, isogenies on elliptic
curves focus on the relationship between elliptic curves.

We define an elliptic curve E over a finite field Fq as the collection of all
points (x, y) as well as the point at infinity that satisfy the short Weierstrass
curve equation:

E/Fq : y2 = x3 + ax + b

where a, b, x, y ∈ Fq. By defining a method for adding points using geometry,
this collection forms an abelian group over addition. The scalar point multipli-
cation is a repeated use of point addition such that Q = kP , where k ∈ Z and
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P,Q ∈ E. Given P and k, it is simple to compute Q = kP via a sequence of
point additions and point doublings. However, as the order of the elliptic curve E
becomes very large (such as 2256), finding k when given Q and P becomes infea-
sible for classical computers. Unfortunately, a large-scale quantum computer can
efficiently solve this problem by using Shor’s algorithm [44].

Isogenies. An elliptic curve isogeny over Fq, φ : E → E′ is defined as a non-
constant rational map from E(Fq) to E′(Fq) that preserves the point at infinity.
Isogenies between elliptic curves can be computed over a kernel, φ : E →
E/〈ker〉, by using Vélu’s formulas [48]. The degree of an isogeny is its degree
as a rational map. Large-degree isogenies of the form �e can be computed by
chaining e isogenies of degree �. Lastly, an elliptic curve’s j-invariant acts as
an identifier of its isomorphism class. An isogeny moves from one elliptic curve
isomorphism class to another isomorphism class.

Isogeny-based cryptography relies on the difficulty to compute isogenies
between elliptic curves. For φ : E → E′, it is simple to compute an isogeny
from E to E′ given a finite kernel. However, when only given E and E′, it is
difficult to find the isogenous mapping between elliptic curves. SIDH and SIKE
compute φ as a sequence of small-degree isogenies. This problem can be visu-
alized as a walk on an isogeny graph of degree � where each node represents
an isomorphism class and the edges are isogenies of degree �. For supersingular
elliptic curves E(Fq), q = p2, there are approximately p/12 isomorphism classes.
For an isogeny graph over base degree �, this is a complete graph where each
node has � + 1 unique isogenies up to isomorphism of degree �. SIDH and SIKE
perform an isogeny walk by computing a large-degree isogeny of the form �e. In
this walk, there are e steps of �-degree isogenies.

Isogeny-Friendly Primes. SIDH and SIKE utilize a prime of the form p =
�eAA �eBB f ± 1, where �A and �B are small primes, eA and eB are positive inte-
gers, and f is a small cofactor to make the number prime. This prime is used to
find a supersingular elliptic curve E0(Fp2) and find torsion bases {PA, QA} and
{PB , QB} that generate E0[�eAA ] and E0[�eBB ], respectively. Curve E0 has order
#E0 = (p ∓ 1)2 which has a smooth order so that rational isogenies of exponen-
tially large degree can be computed efficiently as a chain of low-degree isogenies.
Alice performs her large-degree isogeny φA over the �A isogeny graph and Bob
performs his large-degree isogeny φB over the �B isogeny graph.

The core Diffie-Hellman principle of SIDH and SIKE is that Alice and Bob
each separately perform their large-degree isogenies over �A and �B graphs,
respectively, exchange the resulting curve and a few extra points, and then per-
form their large-degree isogeny over the other party’s public key. Both parties
will have new elliptic curves for which �A and �B isogeny walks were performed,
so Alice and Bob can use the elliptic curve’s j-invariant as a shared secret. Since
Alice and Bob perform separate walks, the SIDH and SIKE schemes are as strong
as the weaker isogeny graph to attack. For security, it is desirable that �eAA ≈ �eBB .
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Table 1. SIKE parameter sets for each NIST security level [5]. All sizes are in bytes.

SIKE Security As Strong
Prime Form

Secret Public Cipher Shared

Scheme Level as Key Key Text Secret

SIKEp434 NIST level 1 AES128 p434 = 22163137 − 1 374 330 346 16

SIKEp503 NIST level 2 SHA256 p503 = 22503159 − 1 434 378 402 24

SIKEp610 NIST level 3 AES192 p610 = 23053192 − 1 524 462 486 24

SIKEp751 NIST level 5 AES256 p751 = 23723239 − 1 644 564 596 32

Table 2. SIKE parameter sets for each round. “Level” indicates the NIST security
level of the prime for the NIST round. [5]

Parameter Set Prime Form
NIST Standardization Round

Round 1 Round 2 Round 3 Proposed in [37]

SIKEp434 22163137 − 1 Level 1 Level 1

SIKEp503 22503159 − 1 Level 1 Level 2 Level 2

SIKEp610 23053192 − 1 Level 3 Level 3

SIKEp751 23723239 − 1 Level 3 Level 5 Level 5

SIKEp964 24863301 − 1 Level 5

SIKEp377 [37] 21913117 − 1 Level 1

SIKEp546 [37] 22733172 − 1 Level 3

SIKEp697 [37] 23563215 − 1 Level 5

2.2 Supersingular Isogeny Key Encapsulation

The Supersingular Isogeny Key Encapsulation (SIKE) mechanism [5] allows for
an IND-CCA2 key establishment between two parties. In this scheme, Alice and
Bob want to agree on a shared secret. To accomplish this, Alice and Bob perform
their own isogeny walks over separate isogeny graphs. SIKE is protected by the
computational supersingular isogeny (CSSI) problem [1].

SIKE API. SIKE is a key encapsulation mechanism split into three operations:
key generation, key encapsulation, and key decapsulation. In the SIKE protocol,
Bob wants to agree on a shared secret with Alice. He begins the protocol by
performing key generation, where a secret key and public key are generated.
He sends this public key to Alice over a public channel. Alice, upon receiving
Bob’s public key, performs key encapsulation to generate a ciphertext and shared
secret. Alice then sends her ciphertext to Bob, again over a public channel. Bob
then finalizes this protocol by performing key decapsulation over his secret key
and Alice’s ciphertext, generating a shared secret. From there, Alice and Bob
can utilize this shared secret to exchange encrypted communications.

SIKE Parameters. The primary computations in SIKE include a double-point
multiplication, large-degree isogeny, and SHAKE256 hashing. For efficiency and
simplicity, SIKE fixes a prime of the form p = 2eA3eB − 1 where 2eB ≈ 3eB . The
sizes of these isogeny graphs are the primary metric for SIKE’s security strength.
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Based on known cryptanalysis and known attacks, the SIKE team has proposed
SIKE parameter sets of the form SIKEpXXX, where “XXX” is the size of the
prime in bits. Each SIKE parameter set targets a NIST Security Level from 1 to
5. NIST Security Level 1 is considered as hard to break as a brute-force attack
on AES128, Level 2 is as hard as finding a hash collision of SHA256, Level 3 is as
hard as a brute-force attack on AES192, and Level 5 is as hard as a brute-force
attack on AES256. Interestingly, SIKE’s prime sizes have decreased in size over
the course of the NIST PQC standardization process, showing that the CSSI
problem was harder than originally thought.

SIKE’s strongest advantage is its small public keys and ciphertexts. We sum-
marize SIKE’s round 3 parameter sets in Table 1. The communication over-
head is for the uncompressed SIKE scheme. The compressed SIKE scheme fur-
ther reduces the public key and ciphertext by almost half. Compared to other
schemes, SIKE has the smallest public keys and almost the smallest ciphertext.
Only Classic McEliece [10] has a smaller ciphertext. Kyber [4] is a lattice-based
scheme with fairly small public keys, but SIKE’s public keys and ciphertexts
are more than half of Kyber’s size for an equivalent security level. For instance,
Kyber Security Level 1 has an 800 byte public key and 768 byte ciphertext.

SIKE Primes. In Table 2, we summarize the SIKE parameter sets for the NIST
PQC standardization process. Based on cryptanalysis of [1,16] and the like, it
was deemed that SIKE’s Round 1 parameters were too conservative, so they
were reduced for Round 2 and beyond. We also added the proposed primes from
[37] as it is another work that considers the CSSI problem harder than expected,
resulting in even smaller primes.

For these results, we note that SIKE parameters are not permanent and
could continue to change based on security analysis. When searching for SIKE
primes, there are also limited options. When choosing a random form for p, it is
desirable that 2eA ≈ 3eB so that low-level modular arithmetic is more efficient
and there are fewer isogenies to perform. Based on the prime number theorem,
there is approximately a 1

lnx chance that a random integer x is prime. If we only
choose odd numbers by using the form 2eA3eB − 1, then there is a 2

lnx chance
that the number is prime. In practice, this means that a 400-bit candidate has
a 1 in 139 chance of being prime and a 700-bit candidate has a 1 in 243 chance
of being prime.

3 Proposed Method for Large-Degree Isogenies of Odd
Power Degree

In this section, we propose a new method to compute the large-degree isogeny
operation in SIKE. This method can be applied to any scheme that computes a
large-degree isogeny of an odd power of the form �2k+1, where k is an integer.
In terms of the parameter schemes presented in Table 2, this applies to each
prime, as every prime has at least one of the 2-isogeny or 3-isogeny graph sizes
of an odd power. However, this is only if it is more efficient to perform the large-
degree isogenies as a chain of �2 isogenies rather than � isogenies, which is the
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Fig. 1. Visualization of the large-degree isogeny computation.

case for the 2-isogeny graphs, where practitioners compute it as a sequence of 4-
isogenies. Thus, this method specifically applies to the SIKE schemes SIKEp610,
SIKEp377, and SIKEp546 where the 2-isogeny graph has an odd power.

3.1 Large-Degree Isogenies

First, we review how the large-degree isogeny is traditionally performed. This
computation accounts for 80% of the latency in SIDH and SIKE operations.
Given a large-degree isogeny of the form �e, we compute this by chaining together
e isogenies of degree �. For a base curve E0 and kernel point R0 = R of order �e

we compute e isogenies of degree � as follows:

Ei+1 = Ei/〈�e−i−1Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri) (1)

This computation can be visualized as traversing an acyclic graph in the
shape of a triangle starting from the kernel point (R0) to each of the leaves
(�e−i−1Ri) as is shown in Fig. 1. Here, we are computing an isogeny of degree
�5 by starting at the purple kernel node of order �5 and traversing to each of
the green leaf nodes that has order � with which we can compute an � isogeny.
When traversing this graph, there is an uneven cost to move left by computing
a point multiplication by � and to move right by evaluating an �-degree isogeny
over a point.

The simplest method to traverse this graph is the multiplication-based strat-
egy with complexity O(e2) [27], which is the same as Eq. 1. However, the only
requirement for the large-degree isogeny is that an isogeny is computed at each
of the leaf nodes. Thus, one can save specific points that act as a pivot to dra-
matically reduce the number of point multiplication and isogeny evaluations. As
was first proposed in [18], optimal strategies can be devised as one of the least
cost, with complexity O(e log e). The key insight when finding an optimal strat-
egy is that an optimal strategy is composed of two optimal sub-strategies. The
standard method to perform the large-degree isogeny is to utilize a precomputed
strategy, whereby we cycle through the following steps until all �-isogenies are
computed.
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1. Perform point multiplications by � to traverse left to reach a leaf node, while
storing pivot points according to a precomputed strategy

2. Compute an �-degree isogeny to move from Ei to Ei+1

3. Evaluate �-degree isogenies on all stored pivot points, translating them from
Ei to Ei+1

Table 3. Fastest known point arithmetic and isogeny formulas for 2 and 4
isogenies [5].

Operation #Fp2 Add #Fp2 Sub #Fp2 Mult #Fp2 Sqr

2-Isogenies

Point Doubling 2 2 4 2

Compute 2 Isogeny 0 1 0 2

Evaluate 2 Isogeny 3 3 4 0

4-Isogenies

Point Quadrupling 4 4 8 4

Compute 4 Isogeny 4 1 0 4

Evaluate 4 Isogeny 3 3 6 2

Why 4 Isogenies? The simple reason that 4 isogenies are used instead of 2
isogenies is that 4 isogenies are more efficient. The cost of the fastest known
isogeny formulas are shown in Table 3. In this table, each isogeny operation is
made up of point multiplication by �, computing an � isogeny that performs a
mapping between curves, and evaluating an � isogeny that maps a point to a new
isogenous curve. Also in this table, the most important computations are Fp2

multiplications and Fp2 squarings that require expensive field multiplications. In
the SIKE landscape, Fp2 multiplications require 3 modular multiplications and
Fp2 squarings require 2 modular multiplications. When comparing the cost of
formulas, evaluating two 2-isogenies requires 8 Fp2 multiplications while eval-
uating a single 4-isogeny requires 6 Fp2 multiplications and 2 Fp2 squarings.
Thus, 4-isogenies require 2 fewer field multiplications here. In the case of large-
degree isogenies, hundreds of isogeny evaluations are performed, meaning that
saving a few modular multiplications each step is valuable. Otherwise, 3 isogenies
are known to be faster than 9 isogenies and larger isogeny algorithms are less
explored as the costs of larger base degree isogenies do not scale well. The results
of this paper are specifically applied to 2 and 4 isogenies, but given advances in
isogeny formulas, could apply to other base degrees.

3.2 Large-Degree Isogenies of an Odd Power

Since large-degree isogenies of base degree 4 are faster than that of base degree 2,
computing large-degree isogenies of the form 22k is preferred. However, given the
limited availability of SIKE primes, such SIKE-friendly primes may not exist.
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Fig. 2. Visualization of the state-of-the-art [5] methodology to compute large-degree
isogenies of an odd power.

When computing large-degree isogenies of the form 22k+1, at least one 2-isogeny
must be computed.

There are a few options for performing large-degree isogenies of an odd power.
The simplest option may be to just skip the 2-isogeny. However, this weakens the
security of the 2-isogeny graph and should only be done if the 2-isogeny graph
is larger than the 3-isogeny graph, i.e. 2eA � 3eB .

Current Methodology. Currently, the SIKE submission [5] and other libraries
perform the 22k+1 isogeny by performing an initial 2-isogeny, and then proceed-
ing with an optimized large-degree isogeny of base degree 22k = 4k. Thus, this
approach starts with the point multiplication-based strategy and then proceeds
with the optimized strategy.

A visualization of this approach is shown in Fig. 2 with a toy example.
Although the Figure shows the computation of a 215 large-degree isogeny, it
is simple to adapt this figure for � and �2 isogenies for a different base degree.
We use similar colors and representation as Fig. 1. Here, a small-sized node repre-
sents a point of an odd power 22k+1 and a medium-sized node represents a point
of an even power 22k = 4k. Thus, we still traverse to the green leaf nodes, but
we have the option to compute 2 or 4 isogenies at the leaves. Since 4-isogenies
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Fig. 3. Visualization of the proposed methodology to compute large-degree isogenies
of an odd power.

are preferred, the example strategy utilizes seven 4-isogenies and one 2-isogeny
to compute the 215 large-degree isogeny.

As Fig. 2 shows, there is a large amount of recomputation needed to compute
the large-degree isogeny. Namely, this strategy performs two traversals from the
top node to the left-most node. Of the 33 point doublings in this Figure, 27 point
doublings are computed for the first 2-isogeny and subsequent 4-isogeny.

Proposed Methodology. To dramatically reduce this wasted traversal, our
proposed fix is to store pivot points on the first traversal to the left, as is shown
in Fig. 3. In order to make this work, we need to store pivot points of an odd
power order 22k+1 that correspond to the point multiples used in the optimized
4-isogeny strategy. After performing the first 2-isogeny, we push each of these
pivot points through the 2-isogeny, incrementing their order to 22k = 4k. Thus,
we can then continue with an optimized 4-isogeny as normal.

Improvement. Between Figs. 2 and 3, we showed two different methods for
computing the large-degree isogeny 215. The state-of-the-art method requires 33
point doublings, 1 2-isogeny, and 11 4-isogenies, whereas the new method requires
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22 point doublings, 3 2-isogenies, and 11 4-isogenies. Thus, for this toy example,
our proposed method exchanges 10 point doublings for 2 additional 2-isogeny
evaluations. Based on the cost of current isogeny formulas shown in Table 3, this
saves 16 Fp2 multiplication operations and 20 Fp2 squaring operations. When
applied to something like SIKEp610, one sample strategy comparison showed
that our new method exchanges 303 point doubling operations for 5 additional
2-isogeny point evaluations.

Discussion. With this proposed methodology, we chose the same policy of per-
forming the 2-isogeny first. This is primarily because once done, no more of
the (slower) 2-isogeny operations need to be performed in the middle of the
large-degree isogeny. One interesting consideration was the use of mixing 2 and
4-isogeny operations. For example, one could perform about half of the isogeny
computations and then the 2-isogeny. This makes the algorithm more complex
and did not provide any real benefit from our analysis as the more 2-isogeny
arithmetic you use, the more the large-degree isogeny slows down. Lastly, one
could use a mix of 2 and 4-isogenies to compute new representations of pivot
points. We did not find any benefit, but leave this open for further investigation.

4 Proposed Explicit Formulas for Large-Degree Isogenies

In this section, we propose a new algorithm and method to perform the large-
degree isogeny within SIKE or SIDH. Although we directly apply this algorithm
to the large-degree isogeny of odd power over base degree 2 for SIKE, we gener-
alize this algorithm for any large-degree isogeny of a single base degree.

4.1 Proposed Efficient Algorithm for Large-Degree Isogenies
with a Remainder

The large-degree isogeny computes an isogeny of degree �e by chaining together
e isogenies of degree �. Typically, � is a small prime such as 2 or 3. When isogeny
operations over degree �x, where x is a positive integer, are more efficient than
performing x �-isogenies, then �x isogenies should be used. However, when e is
not divisible by x, there will be a remainder r. Thus, we represent �e = �x·�e/x�+r,
where r = e mod x.

For this algorithm we assume that the computations for �x isogeny compu-
tations, �x isogeny evaluations, and scalar point multiplications by �x will speed
up the large-degree isogeny operation over other powers of �. An isogeny com-
putation computes an isogenous mapping between two elliptic curves given a
kernel and an isogeny evaluation uses an isogenous mapping to map a point on
one elliptic curve to its new representation on the isogenous curve. As is used
by efficient SIDH and SIKE implementations, we can precompute an optimized
strategy to traverse the large-degree isogeny computation as is shown in Figs. 2
and 3. This significantly improves the complexity of the large-degree isogeny. For
our large-degree isogeny with a remainder algorithm, we only need to precompute
the optimized strategy for a large-degree isogeny of the form �x·�e/x�. Although
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there are several methods to store a strategy, the strategy simply represents the
number of point multiplications to traverse left. In most implementations, this
is stored as a series of e positive integers. When using isogenies of base degree
�x, we only need to store e/x positive integers.

New Large-Degree Isogeny Algorithm. Our proposed algorithm for large-
degree isogenies with a remainder is shown in Algorithm 1. In general, the
method boils down to computing the remainder isogeny �r first by comput-
ing a series of point multiplications by �x up to �x·�e/x� where we store the pivot
points along the way. These point multiplications produce a point of order �r

for which an �r isogeny can be computed. After the �r isogeny, the remaining
�x·�e/x� isogenies can then be computed using an optimal strategy based on the
latency of �x isogeny evaluations and point multiplications by �x.

Algorithm 1 uses a very similar format as the large-degree isogeny formulas
found in the SIKE submission. [5]. We note that we use D to represent a deque,
or double-ended queue, where each data element contains an index representing
a point and the order of the point. h represents the remaining number of �x

scalar point multiplications that could be applied, so h = 1 indicates the point
is of order �x. Indeed, Lines 1 to 3 and Lines 18 to 35 are roughly equivalent
to the state-of-the-art [5]. Lines 4 to 17 compute the remainder isogeny �r in a
similar fashion as Lines 18 to 35, however only one isogeny needs to be computed.
Specifically, Lines 4 through 9 perform the point multiplications by �x according
to the large-degree isogeny strategy, Lines 10 to 11 compute the �r isogeny, and
Lines 13 to 17 apply the �r isogeny to all stored pivot points.

Although we do not describe how to compute the �r isogeny, it can be com-
puted in whatever the most efficient method is, whether that is a combination of
smaller isogenies or a single �r isogeny. For simplicity, Algorithm 1 assumes that
the �r isogeny is computed in one go. If multiple smaller isogenies are computed,
then the Lines 11 through 17 of the algorithm simply need to be revised such
that smaller point multiplications are performed to get a kernel point, whereby
each smaller isogeny computation over the kernel is followed by a smaller isogeny
evaluation over each stored pivot point.

Strategy Considerations. Interestingly, we found that only an optimal strat-
egy needs to be made for the �x·�e/x� large-degree isogeny. When applying the
�x·�e/x� strategy to a kernel point of order �x·�e/x�+r, the first series of scalar
point multiplications will find pivot points of the order �kx+r where k is some
positive integer whereas applying the strategy to a kernel point of order �x·�e/x�

will produce points of the order �kx. Thus, after applying the �r isogeny to the
pivot points generated with the kernel point of order �x·�e/x�+r, we will naturally
have pivot points of the order �kx as we need. The only caveat is that we need
to perform one additional �x scalar point multiplication before the �r isogeny so
that the point actually has order �r. Our Algorithm accounts for this by per-
forming point multiplications until h = 0 rather than h = 1, as is done in Line
4. Furthermore, after the �r isogeny evaluations, we do not update the h indices
in the deque as an �x isogeny has not been performed.
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Algorithm 1: Computing and evaluating an �e-isogeny with remainder
function � e iso

Static Parameters: Integer e from public parameters, Integer x for fastest
�x isogenies, Integer r = e mod x, a strategy
(s1, . . . , s�e/x�−1) ∈ (N+)�e/x�−1

Input: Curve E0 and point S on E0 with exact order �e = �x·�e/x�+r

Output: Curve E = E0/〈S〉 by computing e isogenies of degree �

1 Initialize empty deque D
2 push(D, (�e/x�, S))
3 E ← E0, i ← 1, h ← �e/x�
4 while h �= 0 do
5 (h, R) ←pop(D)

6 push(D, (h, R))
7 for j ← 0 to si do
8 R ← mult by �x(R, E)

9 push(D, (h − si, R)), i ← i + 1

10 (h, R) ← pull(D)

11 (E′, φ) ← compute �r iso(E,R)

12 Initialize empty deque D′

13 while D not empty do
14 (h, R) ← pull(D)

15 R ← evaluate �r iso(E′, φ, R)

16 push(D′, (h, R))

17 D ← D′, E ← E′

18 while D not empty do
19 (h, R) ←pop(D)

20 if h = 1
21 (E′, φ) ← compute �x iso(E,R)

22 Initialize empty deque D′

23 while D not empty do
24 (h, R) ← pull(D)

25 R ← evaluate �x iso(E′, φ, R)

26 push(D′, (h − 1, R))

27 D ← D′, E ← E′

28 elif 0 < si < h
29 push(D, (h, R))
30 for j ← 0 to si do
31 R ← mult by �x(R, E)

32 push(D, (h − si, R)), i ← i + 1

33 else
34 Error: Invalid strategy

35 return E = E0/〈S〉
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Complexity. For a large-degree isogeny of degree �e, this proposed Algorithm
features the same O(e log e)complexity as the original use of optimized strategies
proposed in [18]. However, when the fastest base degree isogeny �x has an x which
is not a divisor of e, this method efficiently performs the �r isogeny in complexity
O(e) and has already stored pivot points for the following �x·�e/x� large-degree
isogeny in complexity O(e log e). This Algorithm also does not change the size
of the precomputed strategy.

4.2 Proposed Faster 2-Isogeny Formulas for Large-Degree Isogenies

In the SIKE submission [5] and similar SIKE libraries, we noted that the 2-
isogeny formulas are not optimized for the scenario when multiple 2-isogeny
evaluations are performed. Thus, we propose new and faster 2-isogeny formu-
las for this case that can be used in conjunction with our large-degree isogeny
algorithm to accelerate the large-degree isogeny in SIKE parameters such as
SIKEp610. Specifically, SIKEp610 performs a large-degree isogeny of degree 2305

which can be rewritten as 22·152+1 = 41522. Our optimized formulas slightly alter
the 2-isogeny APIs, moving computations over a point of order 2 from the 2-
isogeny evaluation function to the 2-isogeny computation function, resulting in
fewer field addition and subtractions when multiple 2-isogeny evaluations are
performed.

For the following optimized formulas, we operate on Montgomery curves of
the form E/Fq : by2 = x3 + ax2 + x. Similar to short Weierstrass curves,
Montgomery curves are the set of all points (x, y) as well as the point at infin-
ity that satisfy this equation. This curve is defined over the finite field Fq, so,
b, y, x, a ∈ Fq.

There are additional representations of this curve for SIDH and SIKE to
reduce the complexity of isogeny and point arithmetic. Notably, the introduction
of a projective “C” term is used so that isogenies can be performed without
inversions until the very end of a large-degree isogeny. The following formulas
fix the b coefficient to 1 and simplify the Montgomery form to E/Fq : y2 =
x3 + ax2 + x. Next, we denote the projective representation (A : C) to denote
the equivalence (A : C) ∼ (a : 1). Rather than keep track of A and C, the
following equations represent the Montgomery curve with the values (A+

24 : C24)
∼ (A + 2C : 4C). Lastly, elliptic curve points are represented in the Kummer
projective representation (X : Z) where x = X/Z and the y-coordinates are
dropped.

2-Isogeny Computation. Our new 2-isogeny computation formula is shown
in Algorithm 2. The 2-isogeny computation uses an input curve E and point of
order 2 on the input curve P2 = (X2 : Z2) to compute a 2-isogenous elliptic
curve E′ such that φ : E → E/〈P2〉 = E′. Similar to the SIKE submission’s
formulas [5], the output curve is represented with coefficients (A+

24 : C24) ∼
(A′+2C ′ : 4C ′), where A′ and C ′ are the projective coefficients on curve E′. Our
new formula adds new computations for constants K1 and K2 which are used in
the 2-isogeny evaluation formula. The total cost of this computation is 2S +3A,
where S is the cost of Fp2 squaring and A is the cost of Fp2 addition/subtraction.
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Algorithm 2: Computing the 2-isogenous curve
function 2 iso curve

Input: P2 = (XP2 ZP2 ), where P2 has exact order 2 on Montgomery curve EA,C

Output: (A+
24 : C24) ∼ (A′ + 2C′ 4C′) corresponding to EA′,C′ = EA,C/〈P2〉, and

constants (K1, K2) ∈ (F2
p)

2

1 A+
24 ← X2

P2
,

2 C24 ← Z2
P2

,

3 A+
24 ← C24 − A+

24,

4 K1 ← XP2 − ZP2 ,

5 K2 ← XP2 + ZP2 ,

6 return A+
24, C24, (K1, K2)

Algorithm 3: Evaluating a 2-isogeny at a point
function 2 iso eval

Input: Constants (K1,K2) ∈ (F2
p)

2 from 2 iso curve, and Q = (XQ : ZQ) on
Montgomery curve EA,C

Output: (X′
Q : Z′

Q) corresponding to Q′ ∈ EA′/C′ , where EA′/C′ is the curve
2-isogenous to EA/C output from 2 iso eval

1 t0 ← XQ + ZQ,

2 t1 ← XQ − ZQ,

3 t0 ← t0 · K1,

4 t1 ← t1 · K2,

5 t2 ← t1 + t0,

6 t0 ← t1 − t0,

7 X′
Q ← t2 · XQ,

8 Z′
Q ← t0 · ZQ,

9 return Q′ = (X′
Q : Z′

Q)

2-Isogeny Evaluation. Our new 2-isogeny evaluation formula is shown in Algo-
rithm 3. The 2-isogeny evaluation pushes a point Q = (XQ : ZQ) on elliptic
curve E to its 2-isogenous representation Q′ = (XQ′ : ZQ′) on elliptic curve
E′ by using 2-isogeny constants outputted in the 2-isogeny computation. Our
new formula no longer needs the point of order 2 to evaluate the 2-isogeny. We
remark that this formula requires three temporary registers whereas the previous
formula required four. The total cost of this computation is 4M + 4A, where M
is the cost of Fp2 multiplication and A is the cost of Fp2 addition/subtraction.

Table 4. Complexity of newly proposed 2-isogeny formulas versus the state-of-the-art.

Operation #Fp2 Add #Fp2 Sub #Fp2 Mult #Fp2 Sqr #Temporary Values

SIKE Submission [5]

Compute 2 Isogeny 0 1 0 2 0

Evaluate 2 Isogeny 3 3 4 0 4

This Work

Compute 2 Isogeny 1 2 0 2 0

Evaluate 2 Isogeny 2 2 4 0 3

Efficiency of New Formulas. We summarize the cost of our 2-isogeny formulas
versus the SIKE submission’s [5] in Table 4. Our new formulas swap out an
Fp2 addition and Fp2 subtraction from the evaluate 2 isogeny formula to the
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compute 2 isogeny formula. Since 4 isogenies are more efficient than 2-isogenies,
it is expected that we will only ever compute a single 2-isogeny. However, with
our new method we will evaluate multiple 2-isogenies, resulting in saving several
Fp2 additions and subtractions. Interestingly, our proposed method uses fewer
temporary registers in the 2-isogeny evaluation formula. As we see in our stack
usage, this actually reduces the total stack usage of the SIKE operations that
perform a large-degree isogeny of base degree 2. Given that this revision of
formulas reduces stack size, we recommend its use even if our large-degree isogeny
algorithm is not employed.

5 Benchmarking and Evaluation

Benchmarking Platforms. With this new method for large-degree isogenies
of an odd power, we set out to benchmark it on various platforms. To tar-
get different computing capabilities, we chose SIKE implementations based on
x86-64, ARM64, and ARM32. Our x86-64 platform was on an X1 Carbon 7th
Generation laptop running an Intel Core i7-8565U processor at 1.8 GHz. Our
ARM64 platform was a Raspberry Pi 4B device with 8 GB of RAM running
an ARM Cortex-A72 processor at 1.5 GHz. Lastly, our ARM32 platform is the
STM32F407 Discovery Kit which runs an ARM Cortex-M4 processor at up to
168 MHz. Although we only benchmark on software platforms, our improvements
to the large-degree isogenies will most likely provide similar speedups to hard-
ware and software-hardware designs.

x86/ARM64 Benchmarking. For the x86 and ARM64 devices, we used
Microsoft’s SIDH library [15] v3.41 as a base. This provides both SIDH and
SIKE implementations for each of the SIKE parameter sets. Importantly, this
provides optimized low-level arithmetic for both x86 and ARM64 devices. For the
x86 implementation, we disabled TurboBoost. The X1 Carbon 7th Generation
device was running Ubuntu 20.04 and the Raspberry Pi 4 is running Raspberry
Pi OS (64 bit) release built on May 28, 2021. Although the 64-bit Raspberry Pi
OS is still in beta, the ability to employ optimized ARM64 assembly improves
performance. Both platforms utilized GNU GCC version 9.3.0 and were compiled
with -O3.

ARM32 Benchmarking. On the ARM32 side, we used PQCRYPTO’s open-
source pqm4 [29] library2. The pqm4 library provides a benchmarking and test-
ing framework for evaluating post-quantum schemes. It includes ARM Cortex-
M4 implementations of schemes such as SIKE with hand-optimized assem-
bly. In addition, there are simple benchmarking capabilities to analyze perfor-
mance, stack usage, and code-size. Our numbers are obtained with the toolchain
arm-none-eabi-gcc 9.2.1. We note that for speed benchmarking, the Cortex-
M4 is locked to 24 MHz to avoid wait cycles caused by the memory controller.

1 Commit @effa607 of https://github.com/microsoft/PQCrypto-SIDH.
2 Commit @844e7ca of https://github.com/mupq/pqm4.

https://github.com/microsoft/PQCrypto-SIDH
https://github.com/mupq/pqm4
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Library Modifications. Both of these above libraries utilize code that origi-
nated in Microsoft’s SIDH library and was extended for the SIKE submission [5].
The basic framework of the libraries, such as the directory structure or function
names are generally consistent. Of the four NIST implementations in SIKE’s
round 3 package, this new method applies only to SIKEp610, which is at NIST
Level 3. When upgrading these implementations for our new method of comput-
ing a large-degree isogeny, we only edited the ec isogeny.c for new 2-isogeny
formulas, P610.c for a new large-degree strategy, and sidh.c for Alice’s large-
degree isogeny algorithm. All other files were left untouched.

Table 5. Speedups achieved for SIKEp610 using newly proposed large-degree isogeny
method.

Work
Timings [ms] Timings [cc · 106]

KeyGen Encap Decap E + D KeyGen Encap Decap E + D

x86-64 i7-8565U @ 1.8 GHz

Prior 9.5 17.1 17.3 34.5 17.0 30.9 31.2 62.0

This Work 9.5 15.6 16.5 32.0 17.0 28.0 29.7 57.7

Improvement – 10.5% 4.8% 7.5% – 10.5% 4.8% 7.5%

ARM64 ARM Cortex-A72 @ 1.5 GHz

Prior 32.8 60.3 60.6 120.9 49.2 90.4 90.9 181.4

This Work 32.8 54.7 57.9 112.6 49.2 82.1 86.8 168.9

Improvement – 10.2% 4.8% 7.4% – 10.2% 4.8% 7.4%

ARM32 ARM Cortex-M4 @ 24 MHz

Prior 4,972 9,139 9,196 18,335 119.3 219.3 220.7 440.0

This Work 4,972 8,295 8,774 17,069 119.3 199.1 210.6 409.9

Improvement – 10.2% 4.8% 7.4% – 10.2% 4.8% 7.4%

Table 6. Stack and code size improvements on ARM Cortex-M4 for SIKEp610 using
newly proposed large-degree isogeny method.

Work
Stack [Bytes] Code size [Bytes]

KeyGen Encap Decap .text .data .bss

ARM32 ARM Cortex-M4 @ 24 MHz

Prior 10,528 10,952 11,416 29,936 0 0

This Work 10,528 10,624 11,088 29,984 0 0

Improvement [value] – 328 328 −48 – –

Improvement [%] – 3.1% 3.0% −0.16% – –

P610 Speedups. First, we summarize our performance improvements for
SIKEp610 in Table 5. These results target the three major SIKE operations,
including key generation, key encapsulation, and key decapsulation. The “E +
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D” column is the sum of the key encapsulation and key decapsulation timings.
Since key generation generally only needs to be performed once, the “E + D”
time has been used as an effective measure of SIKE’s performance when deployed.
Across the board, key encapsulation is improved by just over 10% and key decap-
sulation is improved by just less than 5%, resulting in “E + D” improvement of
about 7.5%.

P610 Stack and Code Size. In Table 6, we utilize pqm4 to analyze the stack
usage and code size of our implementation. Interestingly, our approach reduces
the stack usage by 3% for both key encapsulation and decapsulation. Our modifi-
cations do include 48 additional bytes for code size, but this is a neglible amount.
Based on the analysis of our new 2-isogeny formulas, we believe our revised 2-
isogeny computation and evaluation formulas are the primary reason for stack
usage improvement. Furthermore, our changes actually impacted the max stack
usage, which means that the large-degree isogeny over base degree 2 consumes
the most stack within both key encapsulation and decapsulation.

Table 7. Speedups achieved for SIKEp610 compressed using newly proposed large-
degree isogeny method.

Work
Timings [ms] Timings [cc · 106]

KeyGen Encap Decap E + D KeyGen Encap Decap E + D

x86-64 i7-8565U @ 1.8 GHz

Prior 17.2 24.1 18.5 42.6 30.9 43.4 33.3 76.7

This Work 16.3 24.1 17.6 41.7 29.3 43.4 31.7 75.1

Improvement 5.4% – 5.0% 2.1% 5.4% – 5.0% 2.1%

Table 8. Speedups achieved for SIKEp377 and SIKEp546 on x86-64 i7-8565U platform
@ 1.8 GHz using newly proposed large-degree isogeny method.

Work
Timings [ms] Timings [cc · 106]

KeyGen Encap Decap E + D KeyGen Encap Decap E + D

SIKEp377

Prior 2.7 5.0 5.0 9.9 4.81 8.92 8.93 17.8

This Work 2.7 4.5 4.7 9.2 4.81 8.07 8.52 16.6

Improvement – 10.5% 4.8% 7.5% – 10.5% 4.8% 7.5%

SIKEp546

Prior 7.2 13.1 13.2 26.3 12.9 23.6 23.7 47.3

This Work 7.2 11.8 12.5 24.3 12.9 21.3 22.5 43.8

Improvement – 10.9% 5.5% 8.1% – 10.9% 5.5% 8.1%

P610 Compressed Speedups. As a further testament to the robustness of our
method, we apply it to the SIKEp610 compressed scheme with results shown in



Faster Isogenies for Post-quantum Cryptography: SIKE 67

Table 7. SIKE with key compression actually swaps the order of 2 and 3 isogenies.
Now, key generation and key decapsulation perform the isogeny of base degree 2.
Compared to the uncompressed scheme, SIKEp610 compressed only computes
two large-degree isogenies of base degree 2, one in key generation and one in key
decapsulation, whereas SIKEp610( uncompressed) computes three large-degree
isogenies of base degree 2, two in key encapsulation and one in key decapsulation.
Our results agree with this fact and show a 5.4% improvement in key generation
and a 5.0% improvement in key decapsulation, leading to an “E + D” speedup of
about 2.1%.

New P377 and P546 Speedups. Next, we apply our work to the newly
proposed SIKE parameters featured in [37]. SIKEp377 and SIKEp546 are new
parameter sets targeted at NIST Security Level 1 and 3, respectively. Since this
work only provided implementations targeting x86 implementations, we only
benchmarked it for our x86 platform. SIKEp377 and SIKEp546 timing results are
summarized in Table 8. When comparing these results to the SIKEp610 results,
the same 10% improvement for key encapsulation and 5% improvement for key
decapsulation are achieved. These numbers are so close most likely because all
three implementations feature a similar point multiplication to point evaluation
ratio which is used for finding a large-degree isogeny strategy.

Table 9. Evaluation of SIKE performance scaling as prime size increases on x86-64
i7-8565U platform @ 1.8 GHz. Note that SIKEp377, SIKEp546, and SIKEp610 employ
our revised large-degree isogeny method.

SIKE Parameter Set
Timings [ms] Timings [cc · 106]

KeyGen Encap Decap E + D KeyGen Encap Decap E + D

SIKEp377 2.7 4.5 4.7 9.2 4.81 8.07 8.52 16.6

SIKEp434 3.8 6.2 6.7 12.9 6.90 11.2 12.1 23.2

SIKEp503 5.2 8.5 9.2 17.7 9.37 15.4 16.5 31.9

SIKEp546 7.2 11.8 12.5 24.3 12.9 21.3 22.5 43.8

SIKEp610 12.7 21.4 22.7 44.1 22.9 38.6 40.8 79.4

SIKEp751 15.8 25.4 27.3 52.8 28.4 45.8 49.2 95.0

SIKE Performance Scaling. As a final evaluation of our method, we examine
the scaling of SIKE performance as the prime size increases. We summarize
the results of all SIKE implementations on our x86 platform in Table 9. Our new
large-degree isogeny method applies to SIKEp377, SIKEp546, and SIKEp610. All
other schemes have been left unchanged and their performance is only to analyze
scaling. For instance, prior SIKE results in the SIKE submission [5] show that
key encapsulation is several percent faster than key decapsulation. This trend did
not fit for SIKEp610, where key encapsulation and decapsulation results were
almost the same. Since our new method accelerates SIKEp610 encapsulation
by 10% and decapsulation by 5%, our results now show a several percent gap
between encapsulation and decapsulation.
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Fig. 4. Performance of SIKE versus the size of its prime on x86 platforms.

We visualize the SIKE performance scaling results as a graph in Fig. 4. As a
trendline, we added a polynomial of order 2, which generally fits well. This is to
be expected as the size of the prime dictates the low-level modular arithmetic
as well as the size of the large-degree isogeny. Low-level modular arithmetic is
O(p2) for a prime p and the large-degree isogeny is O(e log e), where e = p/2.
Thus, a combined complexity of about O(p3 log p) is achieved. The only blip in
the performance graph is for SIKEp503, which may be because 512 bits fits very
well in modern processors when computing modular multiplication.

6 Conclusion

In this paper, we proposed, implemented, and evaluated a new method for com-
puting large-degree isogenies of an odd power. Our results accelerated uncom-
pressed SIKEp610 key encapsulation and decapsulation operations by about 10%
and 5%, respectively, also with a 3% improvement in stack usage. This proposed
method is both simple to implement and applicable to a variety of SIKE applica-
tions. Besides SIKE parameter sets, we applied this method to newly proposed
SIKE parameter sets and SIKE key compression. Given the benefit and simplic-
ity of our approach with very few drawbacks, we recommend this method for
current and emerging SIKE implementations.
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Abstract. At PQCrypto-2020, Castryck and Decru proposed CSURF
(CSIDH on the surface) as an improvement to the CSIDH protocol. Soon
after that, at Asiacrypt-2020, together with Vercauteren they introduced
radical isogenies as a further improvement. The main improvement in
these works is that both CSURF and radical isogenies require only one
torsion point to initiate a chain of isogenies, in comparison to Vélu iso-
genies which require a torsion point per isogeny. Both works were imple-
mented using non-constant-time techniques, however, in a realistic sce-
nario, a constant-time implementation is necessary to mitigate risks of
timing attacks. The analysis of constant-time CSURF and radical isoge-
nies was left as an open problem by Castryck, Decru, and Vercauteren.
In this work we analyze this problem. A straightforward constant-time
implementation of CSURF and radical isogenies encounters too many
issues to be cost effective, but we resolve some of these issues with new
optimization techniques. We introduce projective radical isogenies to save
costly inversions and present a hybrid strategy for integration of radical
isogenies in CSIDH implementations. These improvements make radical
isogenies almost twice as efficient in constant-time, in terms of finite field
multiplications. Using these improvements, we then measure the algorith-
mic performance in a benchmark of CSIDH, CSURF and CRADS (an
implementation using radical isogenies) for different prime sizes. Our
implementation provides a more accurate comparison between CSIDH,
CSURF and CRADS than the original benchmarks, by using state-of-
the-art techniques for all three implementations. Our experiments illus-
trate that the speed-up of constant-time CSURF-512 with radical isoge-
nies is reduced to about 3% in comparison to the fastest state-of-the-art
constant-time CSIDH-512 implementation. The performance is worse for
larger primes, as radical isogenies scale worse than Vélu isogenies.
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1 Introduction

The first proposal of an isogeny-based Diffie-Hellman key exchange was done by
Couveignes [13] and centered on the action of an ideal class group on a set of
ordinary elliptic curves. Later Rostovtsev and Stolbunov [23,24] independently
rediscovered it and recognized its potential as a possible post-quantum candi-
date. In the last decade, isogeny-based key exchange developed further, notably
with SIDH in [2,14,16]. In Asiacrypt 2018, Castryck, Lange, Martindale, Panny,
and Renes introduced CSIDH (a non-interactive key exchange) as a reformula-
tion of the Couveignes-Rostovtsev-Stolbunov system using supersingular curves
defined over a prime field [9]. With the hope to improve the performance of
CSIDH, Castryck and Decru proposed CSURF, which exploits 2-isogenies [7] on
the surface of the isogeny graph. Later on, Castryck, Decru, and Vercauteren
in Asiacrypt 2020 expanded on the ideas in CSURF to construct isogenies with
small odd degree based on radical computations (N -th roots) [8]. Using radi-
cal isogenies, they claimed a speed-up of about 19% over CSIDH-512, however
both of the implementations in [7,8] focus on non-constant-time instantiations.
In particular, Castryck, Decru, and Vercauteren left the analysis of a constant-
time implementation of CSURF and radical isogenies as an open problem. A
constant-time algorithm refers to an algorithm whose running time is indepen-
dent of (or uncorrelated with) the secret input. This implies the variability in
the running time depends on randomness and not on the leakage of information
on secret values.

Dealing with constant-time implementations of CSIDH (and CSURF) can
be tricky as there are multiple approaches, such as using dummy isogenies or a
dummy-free approach. The first constant-time CSIDH instantiation is the pro-
cedure using dummy isogenies proposed by Meyer, Campos, and Reith in [18],
later improved by Onuki et al. in [20]. Subsequently, Cervantes-Vázquez et al.
proposed a dummy-free variant of CSIDH [10], and more recently, Banegas et
al. presented CTIDH [3]. This covers the literature that we are aware of.

The general idea to make CSIDH implementations run in constant-time is to
perform a fixed number m of isogenies of a certain degree �i, independent of the
secret key ei. For example, take the CSIDH-512 prime p = 4·∏74

i=1 �i−1, where �1
up to �73 are the smallest 73 odd prime numbers and �74 = 587. Let E/Fp : y2 =
x3 +Ax2 +x be a supersingular Montgomery curve with (p+1) rational points.
Assuming we require exactly m = 5 isogenies per �i, then our key space cor-
responds with the integer exponent1 vectors (e1, . . . , e74) ∈ �−m . . m�

74. A
dummy-based variant of constant-time CSIDH performs |ei| secret �i-isogenies
and then proceeds by performing (m − |ei|) dummy-isogenies. The �i-isogeny
kernel belongs to either E[π − 1] or E[π + 1], which is determined by the sign
of ei. A dummy-free variant (which prevents e.g. fault injection attacks) does
not perform the (m − |ei|) dummy-isogeny constructions, but instead requires
ei to have the same parity as m. It then alternates between using kernels in

1 The word exponent comes from the associated group action, see Sect. 2.2.
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E[π−1] and E[π+1] in such a way that one effectively applies ei isogenies while
performing m isogenies.

The experiments presented in [8] suggest a speed-up of about 19% when
using radical isogenies instead of Vélu’s formulas (for a prime of 512 bits). As
mentioned above, these experiments focused on a non-constant-time Magma
implementation for both the group-action evaluation and the chain of radical
isogenies. More specifically, the Magma-code implementation of [8] performs field
inversions in variable time depending on the input. Furthermore, the implemen-
tation computes exactly |ei| �i-radical isogenies, where ei ∈ �−mi . . mi� is a
secret exponent of the private key (for instance when ei = 0 the group action is
trivial). Clearly, when measuring random non-constant time instances of CSURF
or radical isogenies the average number of �i-radical isogenies to be performed is
mi

2 , whereas in constant-time implementations the number of isogenies of degree
�i is the fixed bound mi.

A straightforward constant-time implementation of CSURF and radical iso-
genies would replace all non-constant-time techniques with constant-time tech-
niques. This would, however, drastically reduce the performance of CSURF and
radical isogenies, as inversions become costly and we need to perform more
(dummy) isogenies per degree. Furthermore, radical isogenies currently do not
use relatively ‘cheap’ Vélu isogenies of low degree because they are replaced by
relatively expensive radical isogenies. Such an implementation would be outper-
formed by any state-of-the-art CSIDH implementation in constant-time.

Contributions. In this paper, we are interested in constant-time implementa-
tions of CSURF and radical isogenies. We present two improvements to radical
isogenies which reduce their algorithmic cost. Then, we analyze the cost and
efficiency of constant-time CSURF and radical isogenies, and benchmark their
performance when implemented in CSIDH in number of finite field multiplica-
tions. More concretely, our contributions are

1. fully projective radical isogenies, a non-trivial reformulation of radical iso-
genies in projective coordinates, and of the required isomorphisms between
curve models. This allows us to perform radical isogenies without leaving the
projective coordinates used in CSIDH. This saves an inversion per isogeny
and additional inversions in the isomorphisms between curve models, which
in total reduces the cost of radical isogenies in constant-time by almost 50%.

2. a hybrid strategy to integrate radical isogenies in CSIDH, which allows us to
‘re-use’ torsion points that are used in the CSIDH group action evaluation
to initiate a ‘chain’ of radical isogenies, and to keep cheap low degree Vélu
isogenies. This generalizes the ‘traditional’ CSIDH evaluation, optimizes the
evaluation of radical isogenies, and does not require sampling an extra torsion
point to initiate a ‘chain’ of radical isogenies.

3. a cost analysis of the efficiency of radical isogenies in constant-time, which
describes the overall algorithmic cost to perform radical isogenies, assuming
the aforementioned improvements. We show that, although these improve-
ments greatly reduce the total cost in terms of finite field operations, radical
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isogenies of degree 5, 7, 11 and 13 are too costly in comparison to Vélu and√
élu isogenies. We conclude that only radical isogenies of degree 4 and 9

are an improvement to ‘traditional’ CSIDH. Furthermore, we show that rad-
ical isogenies scale worse than Vélu isogenies with regards to the size of the
base field, which reduces the effectiveness of CSURF and radical isogenies in
comparison to CSIDH for large primes.

4. the first constant-time implementation of CSURF and radical isogenies, opti-
mized with concern to the exponentiations used in radical isogenies, and opti-
mal bounds and approximately optimal strategies as in [12,14,15], which allow
for a more precise comparison in performance between CSIDH, CSURF and
implementations using radical isogenies (CRADS) than [7,8]. Our Python-
code implementation allows isogeny evaluation strategies using both tradi-
tional Vélu and

√
élu formulas, as well as radical isogenies and 2-isogenies

(on the surface), and can thus be used to compare CSURF and CRADS
against a state-of-the-art constant-time implementation of CSIDH.

5. a performance benchmark of CSURF and CRADS in comparison to ‘tradi-
tional’ CSIDH, in total finite field operations. Our benchmark is more accu-
rate than the original benchmarks from [7,8] and shows that the 5% and 19%
speed-up (respectively) diminishes to roughly 3% in a precise constant-time
comparison. These results gives a detailed view of the performance of radi-
cal isogenies in terms of finite field operations, and their performance when
increasing the size of the base field. We show that in low parameter sets, with
the additional cost of moving to constant-time, CSURF-512 and CRADS-
512 perform a bit better than CSIDH-512 implementations, with a 2.53%
and 2.15% speed-up respectively. Additionally, with the hybrid strategy this
speed-up is slightly larger for small primes. However, we get no speed-up for
larger base fields: For primes of 1792 bits and larger, CSIDH outperforms both
CSURF and CRADS due to the better scaling of Vélu isogenies in comparison
to radical isogenies.

The (Python) implementation used in this paper is freely available at

https://github.com/Krijn-math/Constant-time-CSURF-CRADS.

The results from the benchmark answer the open question from Castryck,
Decru, and Vercauteren in [8]: in constant-time, the CSIDH protocol gains only
a small speed-up by using CSURF or radical isogenies, and only for small primes.
Even stronger, our hybrid strategy shows that radical isogenies require signif-
icant improvements to make them cost effective, as computing a radical per
isogeny is in most cases too expensive. Our results illustrate that constant-time
CSURF and radical isogenies perform worse than large CSIDH instantiations
(i.e. log(p) ≥ 1792), at least at the level of finite field operations.2

2 We explicitly do not focus on performance in clock cycles; a measurement in clock
cycles (on our python-code implementation) could give the impression that the
underlying field arithmetic is optimized, instead of the algorithmic performance.

https://github.com/Krijn-math/Constant-time-CSURF-CRADS
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Outline. In Sect. 2, we recap the theoretical preliminaries on isogenies, CSIDH,
CSURF, and radical isogenies. In Sect. 3, we introduce our first improvement:
fully projective radical isogenies. This allows us to analyse the effectiveness and
cost of constant-time radical isogenies in Sect. 4. Then we improve the integra-
tion of radical isogenies in CSIDH in Sect. 5, using a hybrid strategy. In Sect. 6,
we benchmark constant-time CSIDH, CSURF and CRADS in terms of finite
field operations, using state-of-the-art techniques for all three. Finally, in Sect. 7
we present our conclusions concerning the efficiency of radical isogenies in com-
parison to CSIDH in constant-time.

2 Preliminaries

In this section we describe the basics of isogenies, CSIDH, CSURF and radical
isogenies.

Given two elliptic curves E and E′ over a prime field Fp, an isogeny is a
morphism ϕ : E → E′ such that OE �→ OE′ . A separable isogeny ϕ has a degree
deg(ϕ) equal to the size of its kernel, and for any isogeny ϕ : E → E′ there is
a unique isogeny ϕ̂ : E′ → E called the dual isogeny, with the property that
ϕ̂ ◦ ϕ = [deg(ϕ)] is the scalar point multiplication on E. A separable isogeny
is uniquely defined by its kernel and vice versa; a finite subgroup G ⊂ E(Fp)
defines a unique separable isogeny ϕG : E → E/G (up to isomorphism).

Vélu’s formulas [25] provide the construction and evaluation of separable
isogenies with cyclic kernel G = 〈P 〉 for some P ∈ E(Fp). Both the isogeny
construction of ϕG and the evaluation of ϕG(R) for a point R ∈ E(Fp) have
a running time of O(#G), which becomes infeasible for large subgroups G. A
new procedure presented by Bernstein, De Feo, Leroux, and Smith in ANTS-
2020 based on the baby-step giant-step algorithm decreases this cost to Õ(

√
#G)

finite field operations [4]. We write this procedure as
√

élu. This new approach
is based on multi-evaluations of a given polynomial, although at its core it is
based on traditional Vélu’s formulas.

Isogenies from E to itself are endomorphisms, and the set of all endomor-
phisms of E forms a ring, which is usually denoted as End(E). The scalar point
multiplication map (x, y) �→ [N ](x, y) and the Frobenius map π : (x, y) �→
(xp, xp) are examples of such endomorphisms over the finite field of character-
istic p. In particular, the order O ∼= Z[π] is a subring of End(E). An elliptic
curve E is ordinary if it has a (commutative) endomorphism ring isomorphic
to a suborder O of the ring of integers OK for some quadratic number field
K. A supersingular elliptic curve has a larger endomorphism ring: End(E) is
isomorphic to an order O in a quaternion algebra, and thus non-commutative.

2.1 CSIDH and Its Surface

CSIDH works with the smaller (commutative) subring Endp(E) of End(E),
which are rational endomorphisms of a supersingular elliptic curve E. This sub-
ring Endp(E) is isomorphic to an order O ⊂ OK . As both [N ] and π are defined
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over Fp, we get Z[π] ⊂ Endp(E). To be more precise, the CSIDH protocol is
based on the commutative action of the class group C�(O) on the set E��p(O) of
supersingular elliptic curves E such that Endp(E) is isomorphic to the specific
order O ⊂ OK . The group action for an ideal class [a] ∈ C�(O) maps a curve
E ∈ E��p(O) to another curve [a] � E ∈ E��p(O) (see Sect. 2.2). Furthermore, the
CSIDH group action is believed to be a hard homogeneous space [13] that allows
a Merkle-Diffie-Hellman-like key agreement protocol with commutative diagram.

E [a] � E

[b] � E [ab] � E

a

a

b b

The original CSIDH protocol uses the set E��p(O) with O ∼= Z[π] and p = 3
mod 4 (named the floor). To also benefit from 2-isogenies, the CSURF protocol
switches to elliptic curves on the surface of the isogeny graph, that is, E��p(O)
with O ∼= Z[1+π

2 ]. Making 2-isogenies useful requires p = 7 mod 8.

2.2 The Group Action of CSIDH and CSURF

The traditional way of evaluating the group action of an element [a] ∈ C�(O) is
by using ‘traditional’ Vélu’s [25] or

√
élu [4] formulas. The group action maps

E → [a] � E and can be described by the kernel E[a] of an isogeny ϕa of finite
degree. Specifically, [a] � E = E/E[a] where

E[a] =
⋂

ϕ∈a

Ker(ϕ).

In both CSIDH and CSURF, we apply specific elements [li] ∈ C�(O) such
that l±1

i = (�i, π ∓ 1) and �i is the i-th odd prime dividing (p + 1). For li, we
have

E[l±1
i ] = E[�i] ∩ E[π ∓ 1],

where P ∈ E[�i] means P is a point of order �i and P ∈ E[π ∓ 1] implies
π(P ) = ±P , so P is either an Fp-rational point or a zero-trace point over Fp2 .
Thus, the group action E → [l±1

i ] � E is usually calculated by sampling a point
P ∈ E[l±1

i ] and applying Vélu’s formulas with input point P . A secret key for
CSIDH is then a vector (ei), which is evaluated as E → ∏

i[li]
ei � E. CSURF

changes the order O used to Z[1+π
2 ] to also perform 2-isogenies on the surface

of the isogeny graph; these 2-isogenies do not require the sampling of a 2-order
point but can instead be calculated by a specific formula based on radical com-
putations.
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Key space. Originally, the secret key e = (ei) was sampled from �−m . . m�
n for

some bound m ∈ N. This was improved in [12,15,18] by varying the bound m
per degree �i (a weighted L∞-norm ball). Further developments with regards to
improving the key space are presented in [19], using an (L1+L∞)-norm ball, and
in CTIDH ([3]). These methods can give significant speed-ups. In their cores,
they rely on (variations of) Vélu isogenies to evaluate the group action. In [7,8],
the authors compare the performance of radical isogenies to CSIDH by using
an unweighted L∞-norm ball for CSIDH-512 versus a weighted L∞-norm ball
for the implementation using radical isogenies. This gives a skewed benchmark,
which favors the performance of CSURF and CRADS. In this paper, to make
a fair comparison to the previous work, we continue in the line of [12,15,18] by
using weighted L∞-norm balls for the implementations of CSIDH, CSURF and
CRADS. It remains interesting to analyse the impact of radical isogenies in key
spaces that are not based on weighted L∞-norm balls. As radical isogenies can
easily be made to have exactly the same cost per degree (with only slightly extra
cost), they are interesting to analyse with respect to CTIDH.

2.3 The Tate Normal Form

CSURF introduced the idea to evaluate a 2-isogeny by radical computations. [8]
extends this idea to higher degree isogenies, using a different curve model than
the Montgomery curve. To get to that curve model, fix an N -order point P on
E with N ≥ 4. Then, there is a unique isomorphic curve E(b, c) over Fp such
that P is mapped to (0, 0) on E(b, c). The curve E(b, c) is given by Eq. (1), and
is called the Tate normal form of (E,P ):

E(b, c)/Fp : y2 + (1 − c)x − by = x3 − bx2, b, c ∈ Fp. (1)

The curve E(b, c) has a non-zero discriminant Δ(b, c) and in fact, it can be
shown that the reverse is also true: for b, c ∈ Fp such that Δ(b, c) �= 0, the curve
E(b, c) is an elliptic curve over Fp with (0, 0) of order N ≥ 4. Thus the pair
(b, c) uniquely determines a pair (E,P ) with P having order N ≥ 4 on some
isomorphic curve E over Fp. In short, there is a bijection between the set of
isomorphism classes of pairs (E,P ) and the set of Fp-points of A2 − {Δ = 0}.
The connection with modular curves is explored in more detail in [21].

2.4 Radical Isogenies

Let E0 be a supersingular Montgomery curve over Fp and P0 a point of order N
with N ≥ 4. Additionally, let E1 = E0/〈P0〉, and P1 a point of order N on E1

such that ϕ̂(P1) = P0 where ϕ̂ is the dual of the N -isogeny ϕ : E0 → E1. The
pairs (E0, P0) and (E1, P1) uniquely determine Tate normal parameters (b0, c0)
and (b1, c1) with bi, ci ∈ Fp.

Castryck, Decru, and Vercauteren proved the existence of a function ϕN that
maps (b0, c0) to (b1, c1) in such a way that it can be applied iteratively. This
computes a chain of N -isogenies without the need to sample points of order N
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per iteration. As a consequence, by mapping a given supersingular Montgomery
curve E/Fp and some point P of order N to its Tate normal form, we can evaluate
E → [li] � E without any points (except for sampling P ). Thus, it allows us to
compute E → [li]k � E without having to sample k points of order N .

E [li] � E . . . [li]k � E

E(b0, c0) E(b1, c1) . . . E(bk, ck)

Vélu

ϕN

To Tate normal form To Montgomery

Notice that the top row and the bottom row of the diagram are isomorphic.
The map ϕN is an elementary function in terms of b, c and α = N

√
ρ for a

specific element ρ ∈ Fp(b, c): hence the name ‘radical’ isogeny. Over Fp, an N -
th root is unique whenever N and p − 1 are co-prime (as the map x �→ xN is
then a bijection). Notice that this in particular holds for all odd primes �i of a
CSIDH prime p = h · ∏

�i − 1 for a suitable cofactor h. Castryck, Decru, and
Vercauteren provided the explicit formulas of ϕN for N ∈ {2, 3, 4, 5, 7, 9, 11, 13}.
For larger degrees the formulas could not be derived yet. They also suggest the
use of radical isogenies of degree 4 and 9 instead of 2 and 3, respectively.

Later work by Onuki and Moriya [21] provides similar radical isogenies on
Montgomery curves instead of Tate normal curves. Although their results are
of theoretical interest, they only provide such radical isogenies for degree 3 and
4. For degree 3, the use of degree 9 radical isogenies on Tate normal curves is
more efficient, while for degree 4 the difference between their formulas and those
presented in [8] are negligible. We, therefore, focus only on radical isogenies on
Tate normal curves for this work.

3 Fully Projective Radical Isogenies

In this section we introduce our first improvement to radical isogenies: fully
projective radical isogenies. These allow to us bypass all inversions required for
radical isogenies. We perform (a) the radical isogenies on Tate normal curves
in projective coordinates, and (b) the switch between the Montgomery curve
and the Tate normal curve, and back, in projective coordinates. (a) requires
non-trivial work which we explain in Sect. 3.1, whereas (b) is only tediously
working out the correct formulas. The savings are worth it: (a) saves an inversion
per radical isogeny and (b) saves numerous inversions in overhead costs. All
in all, it is possible to remain in projective coordinates throughout the whole
implementation, which saves about 50% in terms of finite field operations in
comparison to affine radical isogenies in constant time.

3.1 Efficient Radicals for Projective Coordinates

The cost of an original (affine) radical isogenies of degree N in constant-time
is dominated by the cost of the N -th root and one inversion per iteration. We
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introduce projective radical isogenies so that we do not require this inversion. In
a constant-time implementation, projective radical isogenies save approximately
50% of finite field operations in comparison to affine radical isogenies. A straight-
forward translation to projective coordinates for radical isogenies would save an
inversion by writing the Tate normal parameter b (when necessary c) as (X : Z).
However, this comes at the cost of having to calculate both N

√
X and N

√
Z in the

next iteration. Using the following lemma, we save one of these exponentiations.

Lemma 1. Let N ∈ N such that gcd(N, p − 1) = 1. Write α ∈ Fp as (X : Z) in
projective coordinates with X,Z ∈ Fp. Then N

√
α = ( N

√
XZN−1 : Z).

Proof. As α = (X : Z) = (XZN−1 : ZN ), we only have to show that the N -th
root is unique. But N is co-prime with p − 1, so the map x �→ xN is a bijection.
Therefore, the N -th root N

√
ρ is unique for ρ ∈ Fp, so N

√
ZN = Z.

Crucially for radical isogenies, we want to compute N -th roots where N = �i

for some i, working over the base field Fp with p = h · ∏i �i − 1, and so for such
an N we get gcd(N, p − 1) = 1. This leads to the following corollary.

Corollary 1. The representation (XZN−1 : ZN ) saves an exponentiation in
the calculation of a radical isogeny of degree N = �i in projective coordinates.

This brings the cost of a projective radical isogeny of small degree �i down to
below 1.25 log(p). Compared with affine radical isogeny formulas in constant-
time, which cost roughly two exponentiations, such projective formulas cost
approximately half of the affine ones in terms of finite field operations. The
effect this has for degrees 2, 3, 4, 5, 7 and 9 can be seen in Table 1. A similar
approach as Lemma 1 works for radical isogenies of degree N = 4.

3.2 Explicit Projective Formulas for Low Degrees

We give the projective radical isogeny formulas for three cases: degree 4, 5 and 7.
For larger degrees, it becomes increasingly more tedious to work out the projec-
tive isogeny maps. In the repository, we provide formulas for N ∈ {2, 3, 4, 5, 7, 9}.

Projective isogeny of degree 4. The Tate normal form for degree 4 is
E : y2 + xy − by = x3 − bx2 for some b ∈ Fp. From [8], we get ρ = −b and
α = 4

√
ρ, and the affine radical isogeny formula is

α �→ b′ = −α(4α2 + 1)
(2α + 1)4

.

Projectively, write α as (X : Z) with X,Z ∈ Fp. Then the projective formula is

(X : Z) �→ (X ′Z ′4 : Z ′) with (2)

X ′ = (4X2 + Z2)XZ, and Z ′ = 2X + Z.

This isogeny is a bit more complex than it seems. First, notice that the denom-
inator of the affine map is a fourth power. One would assume that it is there-
fore enough to map to (X ′ : Z ′) and continue by taking only the fourth
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root of X ′ and re-use Z ′ = 4
√

Z ′4. However, as gcd(4, p − 1) = 2, the root
δ = 4

√
Z ′ is not unique. Following [8] we need to find the root δ that is a

quadratic residue in Fp. We can force δ to be a quadratic residue: notice that
(X ′ : Z ′4) is equivalent to (X ′Z ′4 : Z ′8), so that taking fourth roots gives
( 4
√

X ′Z ′4 : 4
√

Z ′8) = ( 4
√

X ′Z ′4 : Z ′2), where we have forced the second argument
to be a square, and so we get the correct fourth root.

Therefore, by mapping to (X ′Z ′4 : Z ′) we compute 4
√−b′ as ( 4

√
X ′Z ′4 :

Z ′2) using only one 4-th root. This allows us to repeat Eq. (2) using only one
exponentiation, without the cost of the inversion required in the affine version.

Projective isogeny of degree 5. The Tate normal form for degree 5 is
E : y2 + (1 − b)xy − by = x3 − bx2 for some b ∈ Fp. From [8] we get ρ = b and
α = 5

√
ρ, and the affine radical isogeny formula is

α �→ b′ = α · α4 + 3α3 + 4α2 + 2α + 1
α4 − 2α3 + 4α2 − 3α + 1

.

Projectively, write α as (X : Z) with X,Z ∈ Fp. Then the projective formula is

(X : Z) �→ (X ′Z ′4 : Z ′) with (3)

X ′ = X(X4 + 3X3Z + 4X2Z2 + 2XZ3 + Z4), and

Z ′ = Z(X4 − 2X3Z + 4X2Z2 − 3XZ3 + Z4).

Notice that the image is (X ′Z ′4 : Z ′) instead of (X ′ : Z ′) = (X ′Z ′4 : Z ′5),
following Lemma 1. This allows us in the next iteration to compute 5

√
b = ( 5

√
X :

5
√

Z) = ( 5
√

X ′Z ′4 : Z ′) using only one 5-th root. This allows us to repeat Eq. (3)
using only one exponentiation, without the cost of the inversion required in the
affine version.

Projective isogeny of degree 7. The Tate normal form for degree 7 is
E : y2 + (−b2 + b + 1)xy + (−b3 + b2)y = x3 + (−b3 + b2)x2 for some b ∈ Fp,
with ρ = b5 − b4 and α = 7

√
ρ. However, the affine radical isogeny is already too

large to display here, and the projective isogeny is even worse. However, we can
still apply Lemma 1. The projective isogeny maps to (X ′Z ′6 : Z ′) and in a next
iteration we can compute α = 7

√
ρ = 7

√
b5 − b4 as ( 7

√
X4Z2(X − Z) : Z).

3.3 Cost of Projective Radical Isogenies per Degree

In Table 1, we compare the cost of affine radical isogenies to projective radical
isogenies. In Table 2, we compare the cost in switching between the different
curve models for affine and projective coordinates.

In summary, fully projective radical isogenies are almost twice as fast as the
original affine radical isogenies for constant-time implementations. Nevertheless,
as we will see in the analysis of Sect. 4.1, the radical isogenies of degree 5, 7, 11
and 13 still perform worse than ‘traditional’ Vélu isogenies in realistic scenarios.
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Table 1. Comparison between affine radical isogenies from [8] and the projective radical
isogenies in this work. The letters E, M, S, A and I denote exponentiation, multiplica-
tion, squaring, addition and inversion respectively. The last column expresses the ratio
projective/affine in terms of finite field multiplications over Fp for a prime of 512 bits,
using close-to-optimal addition chains for exponentiation and inversion, assuming S =
M and ignoring A.

Affine Projective Ratio

Degree ([8]) (This work.) projective/affine

2-isogeny E + 4M + 6A + I E + 3M + 5S + 10A 50.4%

3-isogeny E + 6M + 3A E + 2M + 10A 99.3%

4-isogeny E + 4M + 3A + I E + 6M + 4S + 3A 50.5%

5-isogeny E + 7M + 6A + I E + 8M + 6S + 18A 50.7%

7-isogeny E + 24M + 20A + I E + 14M + 4S + 64A 50.5%

9-isogeny E + 69M + 58A + I E + 61M + 10S + 202A 52.1%

Table 2. Comparison between the cost of different functions to switch curve models,
necessary to perform radical isogenies. Affine results from [8] and projective results
from this work.

Affine Projective Ratio

Function ([8]) (This work.) projective/affine

Mont+ to Mont- E + M + S + 2A + I E + 2M + 2S + 4A 50.1%

Mont- to Mont+ E + M + S + 2A + I E + 2S + 4A 50.0%

Mont- to Tate4 7M + S + A + I 5M + 8S + 7A 2.1%

Tate4 to Mont- 2E + 3M + S + 7A + 2I 2E + 6M + S + 11A 50.1%

Full overhead CSURF 7E + 17M + 6S + 19A + 5I 7E + 18M + 16S + 35A 58.5%

Mont+ to TateN E + 9M + S + 11A + I E + 13M + 7S + 13A 51.1%

TateN to Mont+ 3E + 20M + 7S + 34A + I 3E + 33M + 11S + 65A 75.9%

Full overhead CRADS 4E + 34M + 14S + 54A + 4I 4E + 54M + 22S + 83A 50.9%

4 Cost Analysis of Constant-Time Radical Isogenies

In this section, we analyze the cost and effectiveness of radical isogenies on Tate
normal curves in constant-time. In a simplified model, the cost of performing n
radical �-isogenies can be divided into 4 steps.

1. Sample a point P on EA of order �;
2. Map (EA, P ) to the (isomorphic) Tate normal curve E0 with P �→ (0, 0);
3. Perform the radical isogeny formula n times: E0 → E1 → . . . → En;
4. Map En back to the correct Montgomery curve EA′ = [l]n � EA.

In each of these steps, the cost is dominated by the number of exponentiations
(E) and inversions (I). Using Tables 1 and 2, in an affine constant-time imple-
mentation, moving to the Tate normal curve (step 2) will cost close to 1 E+1 I,
an affine radical isogeny (step 3) costs approximately 1 E+ 1 I per isogeny, and
moving back to the Montgomery curve (step 4) will cost about 3 E + 1 I.
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Inversions. In contrast to ordinary CSIDH, radical isogenies would require these
inversions to be constant-time, as the value that is inverted can reveal valuable
information about the isogeny walk related to the secret key. Two methods to
compute the inverse of an element α ∈ Fp in constant-time are 1) by Fermat’s
little theorem3: α−1 = αp−2, or 2) by masking the value that we want to invert
with a random value r ∈ Fp, computing (rα)−1 and multiplying by r again.
Method 1 makes inversion as costly as exponentiation, while method 2 requires
a source of randomness, which is an impediment from a crypto-engineering point
of view. Using Fermat’s little theorem almost doubles the cost of CSURF and
of a radical isogeny in low degrees (2, 3, 4, 5, 7) and significantly increases the
cost of a radical isogeny of degree 9, 11 or 13. Furthermore, such constant-time
inversions increase the overhead of switching to Tate normal form and back
to Montgomery form, which in total makes performing n radical isogenies less
effective. Both methods of inversion are unfavorable from a crypto-engineering
view, and thus we implement the fully projective radical isogenies from Sect. 3
to by-pass all inversions completely for radical isogenies.

Approximate cost of radical isogenies. We can now approximate the cost of
evaluating fully projective radical isogenies in constant-time. We can avoid (most
of) the cost of step 1 with a hybrid strategy (see Sect. 5). Projective coordinates
avoid the inversion required in step 2 to move from the Montgomery curve to the
correct Tate normal curve, and the inversion required in step 4 to move from the
Tate normal curve back to the Montgomery curve. In step 3, projective radical
isogenies save an inversion per isogeny, and so step 3 costs approximately n E.
In total, performing n radical �-isogenies therefore costs approximately (n+4)E.

At first sight, this approximated cost does not seem to depend on �. However,
there is some additional cost besides the exponentiation per isogeny in step 3,
and this additional cost grows with �. But, the cost of an exponentiation is larger
than log2(p) M and so overshadows the additional cost. For more details, see
Table 1. For this analysis, the approximated cost fits for small degrees.

The cost of exponentiation is upperbounded by 1.5 log(p) by the (subop-
timal) square-and-multiply method, assuming squaring (S) costs as much as
multiplication (M). In total, we get the following approximate cost:

Lemma 2. The cost to perform n radical isogenies (using Tate normal curves)
of degree � ∈ {5, 7, 9, 11, 13} is at least

(n + 4) · α · log2(p),

finite field multiplications (M) where α ∈ [1, 1.5] depends on the method to
perform exponentiation (assuming S = M).

4.1 Analysis of Effectiveness of Radical Isogenies

In this subsection, we analyze the efficiency of radical isogenies in comparison to
Vélu isogenies, assuming the results from the previous sections. We argue that
3 Bernstein and Yang [5] give a constant-time inversion based on gcd-computations.

We have not implemented this, as avoiding inversions completely is cheaper.
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the cost of (n + 4) · α · log2(p) from Lemma 2 for radical isogenies is too high
and it is therefore not worthwhile to perform radical isogenies for degrees 5, 7, 11
and 13. Degrees 2 and 3, however, benefit from the existence of radical isogenies
of degree 4 and 9. Degree 4 and 9 isogenies cost only one exponentiation, but
evaluate as two. This implies that performing radical isogenies is most worthwhile
in degrees 2 and 3. We write 2/4 and 3/9 as shorthand for the combinations of
degree 2 and 4, resp. degree 3 and 9 isogenies.

The three crucial observations in our analysis are

1. Current faster
√

élu isogeny formulas require O(
√

�log2 3) field multiplications,
whereas the cost of a radical isogeny scales as a factor of log2(p) (for more
details, see [1,4]);

2. The group action evaluation first performs one block using
√

élu isogeny
formulas, and then isolates the radical isogeny computations. What is partic-
ularly important among these

√
élu isogeny computations, is that removing

one specific �′-isogeny does not directly decrease the number of points that
need to be sampled. Internally, the group action looks for a random point R

and performs all the possible �i-isogenies such that
[

p+1
�i

]
R �= O.

3. Replacing the smallest Vélu �-isogeny with a radical isogeny could reduce the
sampling of points in that specific Vélu isogeny block. This is because the
probability of reaching a random point R of order � is �−1

� , which is small for
small �. Additionally, the cost of verifying

[
p+1

�

]
R �= O is about 1.5 log2

(
p+1

�

)

point additions ≈ 9 log2
(

p+1
�

)
field multiplications (for more details see [10]).

In total, sampling n points of order � costs

sampling(n, p, �) = 9
⌊

n�

� − 1

⌉

log2

(
p + 1

�

)

M

≈ 9
⌊

n�

� − 1

⌉

(log2(p) − log2(�))M.

Nevertheless, using radical isogenies for these degrees does not save the sam-
pling of n points, just a fraction of them. To be more precise, let �′ > � be the
next smallest prime such that the group action requires n′ �′-isogenies and⌊

n�
�−1

⌉
≥

⌊
n′�′
�′−1

⌉
. Then the savings are given by their difference with respect

to the cost sampling such torsion-points (see Eq. (4)).

9
(⌊

n�

� − 1

⌉

−
⌊

n′�′

�′ − 1

⌉)

(log2(p) − log2(�))M. (4)

Whenever
⌊

n�
�−1

⌉
<

⌊
n′�′
�′−1

⌉
, using radical isogenies does not reduce the num-

ber of points that need to be sampled.

As an example for the cost in a realistic situation, we take the approximately
optimal bounds analyzed in [12,20]. In both works, log2(p) ≈ 512 and the first
five smallest primes �i’s in {3, 5, 7, 11, 13} have bounds mi that satisfy
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⌊
m0�0
�0 − 1

⌉

=
⌊

m1�1
�1 − 1

⌉

=
⌊

m2�2
�2 − 1

⌉

=
⌊

m3�3
�3 − 1

⌉

=
⌊

m4�4
�4 − 1

⌉

.

Thus, there are no savings concerning sampling of points when including
small degree radical isogenies. Clearly, performing n radical �-isogenies becomes
costlier than using

√
élu isogenies, and thus the above analysis suggests rad-

ical isogenies need their own optimal bounds to be competitive. The analysis
is different for degree 2 and 3, where we can perform 4-and 9-isogenies in

⌈
n
2

⌉

radical computations instead of n computations. In fact, 4-isogenies directly
reduces the sampling of points by decreasing the bounds of the other primes
�i’s. Nevertheless, performing n radical isogenies takes at least (n + 4) log2(p)
field multiplications (Lemma 2), which implies higher costs (and then lower sav-
ings) for large prime instantiations. For example, a single radical isogeny in a
1024-bit field costs twice as much as a single radical isogeny in a 512-bit field,
and in a 2048-bit field this becomes four times as much. These expected savings
omit the cost of sampling an initial point of order �i, as we show in Sect. 5 how
we can find such points with little extra cost with high probability.

4.2 Further Discussion

In this subsection, we describe the two further impacts on performance in
constant-time and higher parameter sets in more detail: Radical isogenies scale
badly to larger primes, as their cost scales with log(p), and dummy-free isoge-
nies are more expensive, as we need to switch direction often for a dummy-free
evaluation.

Radical isogenies do not scale well. Using the results in Tables 1 and 2, the cost
of a single radical isogeny is approximately 600 finite field operations, with an
overhead of about 2500 finite field operations for a prime of 512 bits. Thus, a
CSURF-512 implementation (which uses 2/4- radical isogenies) or a CRADS-512
implementation (which uses 2/4- and 3/9- radical isogenies) could be competitive
with a state-of-the-art CSIDH-512 implementation. However, implementations
using radical isogenies scale worse than CSIDH implementations, due to the
high cost of exponentiation in larger prime fields. For example, for a prime of
2048 bits, just the overhead of switching curve models is already over 8500 finite
field operations, which is close to 1% of total cost for a ‘traditional’ CSIDH
implementation. Therefore, CSIDH is expected to outperform radical isogenies
for larger primes. In Sect. 6, we demonstrate this using a benchmark we have
performed on CSIDH, CSURF, CRADS, and an implementation using the hybrid
strategy we introduce in Sect. 5, for six different prime sizes, from 512 bits up to
4096 bits. These prime sizes are realistic: several analyses, such as [6,11,22],
call the claimed quantum security of the originally suggested prime sizes for
CSIDH (512, 1024 and 1792 bits) into question. We do not take a stance on this
discussion, and therefore provide an analysis that fits both sides of the discussion.
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Dummy-free radical isogenies are costly. Recall that radical isogenies require an
initial point P of order N to switch to the right Tate normal form, depending
on the direction of the isogeny. So, two kinds of curves in Tate normal form
arise: P belongs either to E[π − 1] or to E[π + 1]. Now, a dummy-free chain
of radical isogenies requires (at some steps of the group action) to switch the
direction of the isogenies, and therefore to switch to a Tate normal form where P
belongs to either E[π−1] or E[π+1]. As we switch direction mi −|ei| times, this
requires mi−|ei| torsion points. That is, a dummy-free implementation of a chain
of radical isogenies will require at least (mi − |ei|) torsion points, which leaks
information on ei. We can make this procedure secure by sampling mi points
every time, but this costs too much. These costs could be decreased by pushing
points through radical isogenies, however, this is still not cost-effective. In any
case, we will only focus on dummy-based implementations of radical isogenies.

5 A Hybrid Strategy for Radical Isogenies

In this section we introduce our second improvement to radical isogenies: a hybrid
strategy for integrating radical isogenies into CSIDH. In [8], radical �-isogenies
replace Vélu �-isogenies, and they are performed before the CSIDH group action,
by sampling a point of order � to initiate a ‘chain’ of radical �-isogenies. Such
an approach replaces cheap Vélu �-isogenies with relatively expensive radical �-
isogenies and requires finding a point of order � to initiate this ‘chain’. The hybrid
strategy combines the ‘traditional’ CSIDH group action evaluation with radical
isogenies in an optimal way, so that we do not sacrifice cheap Vélu isogenies of
low degree and do not require another point of order � to initiate the ‘chain’.
This substantially improves the efficiency of radical isogenies.

Concretely, in ‘traditional’ CSIDH isogeny evaluation, one pushes a torsion
point T through a series of �-isogenies with Vélu’s formulas. This implies that at
the end of the series of Vélu isogenies, such a point T might still have suitable
torsion to initiate a chain of radical isogenies. Re-using this point saves us having
to specifically sample a torsion point to initiate radical isogenies. Furthermore,
with this approach we can do both radical and Vélu isogenies for such � where we
have radical isogenies. We show this hybrid strategy generalizes CSIDH, CSURF
and CRADS (an implementation with radical isogenies) and gives an improved
approach to integrate radical isogenies on Tate normal curves in CSIDH.

In this section, V refers to the set of primes for which we have Vélu isogenies
(i.e. all �i), and R ⊂ V refers to the set of degrees for which we have radical
isogenies. Currently, R = {3, 4, 5, 7, 9, 11, 13}.

5.1 A Hybrid Strategy for Integration of Radical Isogenies

Vélu isogenies for degree �i with i ∈ R are much cheaper than the radical
isogenies for those degrees, as a single radical isogeny always requires at least
one exponentiation which costs O(log(p)). The downside to Vélu isogenies is
that they require a torsion point per isogeny. However, torsion points can be
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re-used for Vélu isogenies of many degrees by pushing them through the isogeny,
and so the cost of point sampling is amortized over all the degrees where Vélu
isogenies are used. Thus, although for a single degree n radical isogenies are
much cheaper than n Vélu isogenies, this does not hold when the cost of point
sampling is distributed over many other degrees. The idea of our hybrid strategy
is to do both types of isogeny per degree: we need to perform a certain amount
of Vélu blocks in any CSIDH evaluation, so we expect a certain amount Ti of
points of order �i. So, for i ∈ R, we can use Ti − 1 of these points to perform
Vélu �i-isogenies, and use the last one to initiate the chain of radical �i-isogenies.
Concretely, we split up the bound mi for i ∈ R into mv

i and mr
i . Here, mv

i is
the number of Vélu isogenies, which require mv

i points of order �i, and mr
i is the

number of radical isogenies, which require just 1 point of order �i.
Thus, our hybrid strategy allows for evaluation of CSIDH with radical isoge-

nies, in such a way that we can the following parameters

– for i ∈ R, mr
i is the number of radical isogenies of degree �i,

– for i ∈ V , mv
i is the number of Vélu/

√
élu isogenies of degree �i.

For i ∈ R, we write mi = mv
i + mr

i for simplicity. What makes the difference
with the previous integration of radical isogenies, is that this hybrid strategy
allows R and V to overlap! That is, the hybrid strategy does not require you to
pick between Vélu or radical isogenies for {3, 5, 7, 9, 11, 13}. In this way, hybrid
strategies generalize both CSIDH/CSURF and CRADS:

Lemma 3. The CSIDH/CSURF group action evaluation as in [7,9], and the
radical isogenies evaluation from [8] are both possible in this hybrid strategy.

Proof. Take mr
i = 0 for all i ∈ R to get the CSIDH/CSURF group action

evaluation, and take mv
i = 0 for all i ∈ R to get the radical isogenies evaluation.

In the rest of this section, we look at non-trivial hybrid parameters (i.e. there
is some i such that both mv

i and mr
i are non-zero) to improve the performance of

CSIDH and CRADS. As we can predict Ti (the number of points of order �i) in a
full CSIDH group action evaluation, we can choose our parameter mv

i optimally
with respect to Ti: for i ∈ R, we take mv

i = Ti − 1 and use the remaining point
of order �i to initiate the ‘chain’ of radical �i isogenies of length mr

i .

5.2 Choosing Parameters for Hybrid Strategy

As we explained above, the parameter mv
i is clear given Ti, and we are left

with optimizing the value mr
i . Denote the cost of the overhead to switch curve

models by coverhead and the cost of a single isogeny by csingle(�), then the cost of
performing the mr

i radical isogenies is clearly c = coverhead + mr
i · csingle(�i) (see

also Lemma 2). Furthermore, given mv
i , the increase in key space is

b = log2

(
2 · (mr

i + mv
i ) + 1

2 · mv
i + 1

)

.
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So, we can minimize c/b for a given mv
i (independent of p). This minimizes

the number of field operations per bits of security. Notice that for degree 3, the
use of 9-isogenies means we get a factor 1

2 for the cost of single isogenies, as we
only need to perform half as many.

It is possible that the ‘optimal’ number mr
i is higher, when c/b is still lower

than in CSIDH. However, we heuristically argue that such an optimum can only
be slightly higher, as the increase in bits of security decreases quite rapidly.

5.3 Algorithm for Evaluation of Hybrid Strategy

Evaluating the hybrid strategy requires an improved evaluation algorithm, as we
need to re-use the ‘left-over’ torsion point at the right moment of a ‘traditional’
CSIDH evaluation. We achieve this by first performing the CSIDH evaluation
for all i ∈ V and decreasing mv

i by 1 if a Vélu �i-isogeny is performed. If mv
i

becomes zero, we remove i from V , so that the next point of order �i initiates
the ‘chain’ of radical isogenies of length mr

i . After this, we remove i from R too.

Algorithm 1. High-level evaluation of hybrid strategy for radical isogenies
Input: A ∈ Fp, a key (e1, . . . , en), a set V (Vélu isog.) and a set R (radical isog.).
Output: B ∈ Fp such that

∏
[li]

ei � EA = EB

1: while mi �= 0 for i ∈ V ∪ R do
2: Sample x ∈ Fp, set s ← 1 if x3 + Ax2 + x is a square in Fp, else s ← −1.
3: Let S = {i ∈ V ∪ R | mv

i �= 0, sign(ei) = s}. Restart if S is empty.
4: Let k ← ∏

i∈S �i and compute T ← [(p + 1)/k]P .
5: for i ∈ S ∩ V do
6: Compute Q ← [k/�i]T . If Q = ∞, skip this i and set S ← S − {i}.
7: Compute φ : EA → EB with kernel 〈Q〉 using Vélu.
8: When ei �= 0, set A ← B, T ← φ(T ), ei ← ei − s
9: Set mv

i ← mv
i − 1 and set S ← S − {i}

10: If mv
i = 0, set V ← V − {i}

11: for i ∈ S ∩ R do
12: Compute Q ← [k/�i]T . If Q = ∞, skip this i.
13: Compute EB = [li]

ei � EA using mr
i radical �i-isogenies

14: Set A ← B, R ← R − {i}, and start over at line 1
15: return A.

Effectively, for i ∈ V ∩ R, we first check if we can perform a Vélu �i-isogeny
in the loop in lines 5–9 (a Vélu block). If mv

i of these have been performed, we
check in lines 11–14 if the ‘left-over’ point Q has order �i for some i ∈ S ∩ R, so
that it can initiate the ‘chain’ of radical �i-isogenies in line 13. Algorithm 1 does
not go into the details of CSURF (i.e. using degree 2/4 isogenies), which can
easily be added and does not interfere with the hybrid strategy. Furthermore,
Algorithm 1 does not leak any timing information about the secret values ei,
only on mi, which is public information. For simplicity’s sake, we do not detail
many lower-level improvements.
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6 Implementation and Performance Benchmark

All the experiments presented in this section are centred on constant-time
CSIDH, CSURF and CRADS implementations, for a base field of 512-, 1024-,
1792-, 2048-, 3072-, and 4096-bits. To be more precise, in the first subsection
we restrict our experiments to i) the most competitive CSIDH-configurations
according to [12,15], ii) the CSURF-configuration presented in [7,8] and iii) the
radical isogenies-configuration presented in [8] (i.e. without the hybrid strategy).
As mentioned in Sect. 4, we only focus on dummy-based variants such as MCR-
style [18] and OAYT-style [20]. The experiments using only radical isogenies
of degree 2/4 are labelled CSURF, whereas the experiments using both radical
isogenies of degree 2/4 and 3/9 are labelled CRADS. In the second subsection,
we integrate the hybrid strategy to our experiments, and focus on dummy-based
OAYT-style implementations. This allows us to compare the improvement of the
hybrid strategy against the previous section. When comparing totals, we assume
one field squaring costs what a field multiplication costs (S = M). Primes used
are of the form p = h · ∏74

i=1 �i − 1, with h = 2k · 3. The key space is about 2256.
On the optimal exponent bounds (fixed number of �i-isogenies required),

the results from [15] give ≈ 0.4% of saving in comparison to [12] (see Table 5
from [12]). The results from [15] are mathematically rich: analysis on the per-
mutations of the primes and the (integer) convex programming technique for
determining an approximately optimal exponent bound. However, their cur-
rent Matlab-based code implementation from [15] only handles CSIDH-512 using
OAYT-style prioritizing multiplicative-based strategies. Both works essentially
give the approximate same expected running time, and by simplicity, we choose
to follow [12], which more easily extends to any prime size (for both OAYT
and MCR styles). Furthermore, all CSIDH-prime instantiations use the approx-
imately optimal exponent bounds presented in [12].

To reduce the cost of exponentiations in radical isogenies, we used short
addition chains (found with [17]), which reduces the cost from 1.5 log(p) (from
square-and-multiply) to something in the range [1.05 log(p), 1.18 log(p)]. These
close-to-optimal addition chains save at least 20% of the cost of an exponentia-
tion used per (affine or projective) radical isogeny in constant-time.

Our CSURF and CRADS constant-time implementations evaluate the group
action by first performing the evaluation as CSIDH does on the floor of the
isogeny graph, with the inclusion of radical isogenies as in Algorithm 1. After-
wards we move to the surface to perform the remaining 4-isogenies. So, the only
curve arithmetic required is on Montgomery curves of the form E/Fp : By2 =
x3 + Ax2 + x. Concluding, we compare three different implementations which
we name CSIDH, CSURF and CRADS. The CSIDH implementation uses tra-
ditional Vélu’s formulas to perform an �i-isogeny for �i ≤ 101 and switches to√

élu for �i > 101. The CSURF implementation adds the functionality of degree
2/4 radical isogenies, while the CRADS implementation uses radical isogenies of
degree 2/4 and 3/9.
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6.1 Performance Benchmark of Radical Isogenies

We compare the performance using a different keyspace (i.e., different bounds
(ei)) for CSIDH, CSURF, and CRADS than in [7,8], where they have used
weighted L∞-norm balls for CSURF and CRADS to compare against an
unweighted L∞-norm ball for CSIDH. Analysis from [12,15,18] shows that such
a comparison is unfair against CSIDH. We therefore use approximately optimal
keyspaces (using weighted L∞-norm) for CSIDH, CSURF and CRADS.

Suitable bounds. We use suitable exponent bounds for approximately optimal
keyspaces that minimize the cost of CSIDH, CSURF, and CRADS by using a
slight modification of the greedy algorithm presented in [12], which is included in
the provided repository. In short, the algorithm starts by increasing the exponent
bound m2 ≤ 256 of two used in CSURF, and then applies the exponent bounds
search procedure for minimizing the group action cost on the floor (the CSIDH
computation part). Once having the approximately optimal bounds for CSURF,
we proceed in a similar way for CRADS: this time m2 is fixed and the algorithm
increases the bound m3 ∈ �1 . . m2� until it is approximately optimal.

Comparisons. The full results are given in Table 3. From Fig. 1a we see that
CSURF and CRADS outperform CSIDH for primes of sizes 512 and 1024 bits,
and is competitive for primes of sizes 1792 and 2048 bits. For larger primes,
CSIDH outperforms both CSURF and CRADS. Using OAYT-style, CSURF-
512 provides a speed-up over CSIDH-512 of 2.53% and CRADS-512 provides
a speed-up over CSIDH-512 of 2.15%. The speed-up is reduced to 1.26% and
0.68% respectively for 1024 bits. For larger primes both CSURF and CRADS
do not provide speed-ups, because radical isogenies scale worse than Vélu’s (or√

élu’s) formulas (see Sect. 4.2). This is visible in Fig. 1a and Fig. 1b.
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Fig. 1. Relative difference between the number of finite field multiplications required
for CSURF and CRADS in comparison to CSIDH. The percentage is based on the
numbers in Table 3.
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Table 3. Results for different prime sizes. The numbers are given in millions of finite
field multiplications, and the results are the average over 1024 runs. The results count
multiplication (M) and squaring (S) operations, assuming S = M. Numbers in bold
are optimal results for that prime size.

Dummy-style 512-bits 1024-bits 1792-bits 2048-bits 3072-bits 4096-bits

CSIDH-OAYT 0.791 0.873 0.999 1.039 1.217 1.361

CSURF-OAYT 0.771 0.862 1.000 1.042 1.225 1.387

CRADS-OAYT 0.774 0.867 1.007 1.050 1.237 1.399

CSIDH-MCR 1.011 1.093 1.218 1.255 1.436 1.580

CSURF-MCR 0.980 1.074 1.211 1.253 1.443 1.594

CRADS-MCR 0.985 1.086 1.228 1.272 1.469 1.625

Furthermore, the approximately optimal bounds we computed show that the
exponents m2 and m3 decrease quickly: from m2 = 32 and m3 = 12 for 512-
bits, to e0 = e1 = 4 for 1792-bits, to e0 = e1 = 2 for 4096-bits. When using
MCR-style CSURF and CRADS are slightly more competitive, although the
overall cost is significantly higher than OAYT-style. Table 3 presents the results
obtained in this benchmark and highlights the best result per parameter set.
Notice that CSURF outperforms CRADS in every parameter set, which implies
that replacing Vélu 3-isogenies with radical 9-isogenies is not cost effective.

6.2 Performance of Radical Isogenies Using the Hybrid Strategy

In this subsection, we benchmark the performance of radical isogenies when
the hybrid strategy of Sect. 5 is used to integrate radical isogenies into CSIDH.
Concretely, in comparison to the previous benchmark, we allow a strategy using
both Vélu and radical isogenies for degree 3/9. We denote this by CRAD-H, and
used our code to estimate the expected running time. We compared this against
the results from Table 3. As a corollary of Lemma 3, CRAD-H may effectively
become a ‘traditional’ CSIDH implementation, when mr

i = 0 turns out to be
most optimal for all i ∈ R (i.e. we get the trivial ‘hybrid’ paramaters of ordinary
CSIDH). We see this happening for primes larger than 1024 bits due to the
scaling issues with radical isogenies. Table 4 shows the results4.

Interestingly, an implementation using non-trivial hybrid parameters out-
performs any of the other implementations for a prime of 512 bits. This shows
that radical isogenies can improve performance in constant-time when using
the hybrid strategy. We conclude that replacing Vélu 3-isogenies with radical
9-isogenies is too costly, but adding radical 9-isogenies after Vélu 3-isogenies can
be cost effective. However, due to the scaling issues of radical isogenies, the value
mr

i quickly drops to 0 and we get trivial parameters for primes larger than 1024
bits, implying that traditional CSIDH performs better for large primes than any
4 Only for OAYT-style. Using the code, we analysed the cost of mr

i projective radical
isogenies and mv

i Vélu isogenies. The results are realistic; there are no extra costs.
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Table 4. Results for different prime sizes. The first row is given in millions of finite field
multiplications, counting multiplication (M) and squaring (S) operations, assuming S
= M. The second row gives the speed-up in comparison to CSIDH. Trivial parameters
are denoted by a superscript t.

CRAD-H 512-bits 1024-bits 1792-bits 2048-bits 3072-bits 4096-bits

Performance 0.765 0.861 0.999t 1.039t 1.217t 1.361t

Speed-up 3.3% 2.2% - - - -

implementation using radical isogenies, even when such an implementation does
not have to sacrifice the cheap Vélu isogenies of small degree. We conclude that
‘horizontally’ expanding the degrees �i for large primes p is more efficient than
‘vertically’ increasing the bounds mi using radical isogenies. Nevertheless, for
small primes, our hybrid strategy for radical isogenies can speed-up CSIDH and
requires only slight changes to a ‘traditional’ CSIDH implementation.

Remark. The CTIDH proposal from [3] is about twice as fast as CSIDH by
changing the key space in a clever way: CTIDH reduces the number of isoge-
nies by half compared to CSIDH, using this new key space, which requires the
Matryoshka structure for Vélu isogenies. The radical part of CSIDH is isolated
from the Vélu part, and this will be the same case for CTIDH, when using
radical isogenies. The CTIDH construction decreases the cost of this Vélu part
by approximately a factor half, but the radical part remains at the same cost.
Hence, we heuristically expect that the speed-up of radical isogenies in CTIDH
decreases from 3.3%, and may even become a slow-down.

7 Concluding Remarks and Future Research

We have implemented, improved and analyzed radical isogeny formulas in
constant-time and have optimized their integration into CSIDH with our hybrid
strategy. We have evaluated their performance against state-of-the-art CSIDH
implementations in constant-time. We show that fully projective radical isoge-
nies are almost twice as fast as affine radical isogenies in constant-time. But,
when integrated into CSIDH, both CSURF and radical isogenies provide only
a minimal speed-up: about 2.53% and 2.15% respectively, compared to state-
of-the-art CSIDH-512. Furthermore, larger (dummy-based) implementations of
CSURF and CRADS become less competitive to CSIDH as radical isogenies scale
worse than Vélu or

√
élu isogenies. In such instances (log(p) ≥ 1792 bits) the use

of constant-time radical isogenies even has a negative impact on performance.
Our hybrid strategy improves this performance somewhat, giving better

results for primes of size 512 and 1024, increasing the speed-up to 3.3%, and
making radical 9-isogenies cost effective. For larger primes however, our hybrid
approach shows that

√
élu-isogenies quickly outperformed radical isogenies, as

we get ‘trivial’ parameters for our hybrid strategy. We therefore conclude that,
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for larger primes, expanding ‘horizontally’ (in the degrees �i) is more efficient
than expanding ‘vertically’ (in the bounds mi).

Due to the large cost of a single exponentiation in large prime fields, which
is required to compute radicals, it is unlikely that (affine or projective) radi-
cal isogenies can bring any (significant) speed-up. However, similar applications
of modular curves in isogeny-based cryptography could bring improvements to
current methods. Radical isogenies show that such applications do exist and are
interesting; they might be more effective in isogeny-based cryptography in other
situations than CSIDH. For example with differently shaped prime number p or
perhaps when used in Verifiable Delay Functions (VDFs).
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Abstract. Many central banks, as well as blockchain systems, are look-
ing into distributed versions of interbank payment systems, in particu-
lar the netting procedure. When executed in a distributed manner this
presents a number of privacy problems. This paper studies a privacy-
preserving netting protocol to solve the gridlock resolution problem in
such Real Time Gross Settlement systems. Our solution utilizes Multi-
party Computation and is implemented in the SCALE MAMBA system,
using Shamir secret sharing scheme over three parties in an actively
secure manner. Our experiments show that, even for large throughput
systems, such a privacy-preserving operation is often feasible.

1 Introduction

Real Time Gross Settlement systems (RTGS systems for short) consist of fund
transfer systems that permit banks to exchange transactions, where debiting
the funds from the account of the source to credit them to the account of the
destination (Settlement) is performed immediately (Real Time) if enough funds
are available from the account of the source. The settlement of transactions
happens individually (Gross), that is, the funds move (in electronical form as
opposed to physical form) every time a transaction is performed.

RTGS systems are nowadays widely adopted as they reduce the risks asso-
ciated with high-value payment settlements between participants. However, the
immediate settlement of transactions increases the liquidity requirements for the
participants, and as a consequence, banks will be exposed to the risk of not being
able to settle transactions due to the lack of liquidity, and therefore settling their
transactions will be postponed. This delay comes with a cost for both sources
and destinations, especially for time-critical payments if they are not settled in
due time. Moreover, such disturbances in the system may lead to gridlock situa-
tions, where a set of transactions cannot be settled as each transaction is waiting
for another one to be settled (see Sect. 2).

To address such a situation, the parties involved could inject more liquidity
into the system, but this comes with a cost if the additional liquidity was bor-
rowed. Alternatively, Liquidity Saving Mechanisms (LSM for short) [23] can be

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. D. Galbraith (Ed.): CT-RSA 2022, LNCS 13161, pp. 96–119, 2022.
https://doi.org/10.1007/978-3-030-95312-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95312-6_5&domain=pdf
http://orcid.org/0000-0002-6035-9520
http://orcid.org/0000-0003-3567-3304
http://orcid.org/0000-0002-7947-9450
https://doi.org/10.1007/978-3-030-95312-6_5


Private Liquidity Matching Using MPC 97

employed, such as multilateral netting, which consists of simultaneously offset-
ting multiple transactions, to result in a single net position for the participants
involved. This will eventually permit the unblocking some of the pending trans-
actions if the net positions of the respective sources are positive. This process
is generally carried out by a central entity, as RTGS systems are traditionally
managed by the central banks of countries. That is, each country has its own
RTGS system, but we may also have a shared RTGS system between more than
one country, as the Target 2 system [21] operated by the Eurosystem.

Running the RTGS requires the central entity in charge to have sight over the
balances of the participants as well as all payment instructions, which includes
the source, destination, and the amount being transferred. Thus, this entity is
trusted to preserve the confidentiality of this information. As a result, partici-
pants might be skeptical about submitting all their transactions to the RTGS.
In order to eliminate this need for having a trusted entity, one could decentral-
ize the RTGS system, by permitting the participants to exchange transactions,
without having to disclose them to a central entity.

However, designing such an RTGS gives rise to three main challenges, namely
how to guarantee (i) Correctness: while settling a transaction, the amount deb-
ited from the source is the same as the amount transferred to the destination;
(ii) Fairness: The LSM process implemented should not favor a participant over
the others. (iii) Privacy: Account balances and payment amounts, and possible
source and destination identities should be kept private to the respective banks.
These requirements are easy to achieve in a centralized system, as all the trans-
actions are visible to the trusted central entity in charge of the RTGS, but in a
decentralized payment system, one would expect that these tasks become a bur-
den. In fact, one could imagine a fully decentralized solution where in the case of
a gridlock, each participant notifies the banks it is planning to send transactions
to (with the respective amounts), and based on this, each participant would
determine the expected balance it would hold. Then each participant removes
transactions from its queue till the expected balance becomes positive, and noti-
fies the corresponding receivers about the deleted transactions. This will allow
the participants to resolve the gridlock situation without the interference of a
third party, but does not necessarily address the aforementioned challenges, par-
ticularly the privacy guarantee, as the participants cannot move forward from
the gridlock situation, until all participants confirm that they have a positive
balance, and this obviously depends on the transactions they are exchanging.
Thus, it may occur that correlations can be drawn over the sender and receiver
of a transaction, from the sequence of the parties that signal having a nega-
tive balance. It is thus not trivial how to construct a protocol that avoids such
leakages, without introducing heavy computation that would make the RTGS
impractical.

In this paper, we propose a Multi-Party Computation (MPC for short)
based solution to perform the liquidity optimization for decentralized RTGS
systems. In particular, we show that the task of managing the RTGS system
can be assigned to a set of p entities, that will obliviously settle the incoming
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transactions, and update the (private) balances of the parties involved. The pay-
ments instructions and balances will remain hidden as long as less than t + 1 of
these entities collude.

We show that these p entities will be capable of obliviously running the mul-
tilateral netting process. For this purpose, we distribute the gridlock resolution
algorithm of [6] (See Sect. 2), providing three main versions: (i) sodoGR where
the amount being transferred in transactions is held secret, while the source and
the destination are revealed to the p entities; (ii) sodsGR where the amount and
the source are secret whereas the destination is revealed to the p entities; (iii)
ssdsGR where the source, destination, and the amount are all held secret;

We implemented our algorithms using the SCALE MAMBA framework [3],
with p = 3 and t = 1, and we simulated an RTGS system running over time using
the three aforementioned versions of gridlock resolution. For our simulation, we
generated transactions drawn from a distribution similar to what is seen in real
life. For one variant of our clearing methodology we found that, in the sodoGR
and sodsGR cases, that transactions could be cleared in effectively real time, with
no delay due to the secure nature of the processing. Only in the case of ssdsGR
that we find a significant delay being introduced, which depends on the number
of banks, the number of transactions per hour, and the overall liquidity within
the system. In this case, we also allow a small amount of information leakage,
since removing this leakage would cause an even greater delay being introduced.

Prior usage of MPC in financial applications has mainly focused on auctions,
such as [5,8,9,29], for one shot auctions, and [4,13,14] for auctions running in
Dark Markets. MPC was also used for privacy-preserving financial data analysis,
such as [7] to conduct statistics over the performance of companies throughout
the year or to compute the systemic risk between financial institutions such as in
[2] and [25]. Also, [30] and [19] used MPC for detecting fraud between financial
institutions, and [11] used MPC for privacy- preserving federated learning for
financial applications.

Driven by the motivation of removing the central entity, various blockchain
projects have also investigated the feasibility of a decentralized RTGS using
blockchain combined with smart contracts, for example, the Jasper [17], Ubin
[28] and Stella [22] projects, In [35] the authors provide a blockchain based solu-
tion, however it still relied on a central entity that checks the correctness of
the multilateral netting process. In addition, while the source, destination, and
amount of every transaction are hidden, the net positions during the multilateral
netting process are revealed. Moreover, the multilateral process being an expen-
sive operation is only executed whenever a pending transaction approaches its
due time (if any).

More recently, another blockchain-based work was proposed in [12], which is
the work most closely related to ours. In [12] homomorphic Pedersen commit-
ments and Zero-knowledge proofs are used to remove the need of a central entity,
as well as the need to reveal the net positions during the multilateral netting
process. However, the basic protocol reveals the source and destination of every
transaction. Hiding them is possible, but it would induce a factor of n to the cost



Private Liquidity Matching Using MPC 99

Fig. 1. The banks do not have enough
liquidity to settle their transactions, as
each bank is planning to send more
than what it currently holds. However,
a multilateral netting will result in pos-
itive net positions for all banks.

Fig. 2. The banks do not have enough
liquidity to settle their transactions, as
each bank is planning to send more
than what it currently holds, and even
multilateral netting will not result in
positive net positions for all banks

of the protocol, where n is the number of participants in the RTGS. In addition,
the protocol would still suffer from the issue described earlier about participants
inferring correlations between senders and receivers, from the expected balances
of the participants during the multilateral netting process.

The paper [12] does not provide any concrete runtimes, but simply gives
execution times of the underlying cryptographic primitives. In comparison to
our algorithm, with 100 banks and 9000 transactions, and a liquidity measure
of β = 0.1 (see Sect. 4) one would need to execute approximately 1697 gridlock
computations per hour. Our solution could achieve this with a delay of zero
seconds, assuming we only secure the values and not the source and destination
addresses. The algorithm in [12] would require around 63 minutes to process
the transactions, and thus is not real time even with these relatively modest
transaction levels.

2 Preliminaries

2.1 The Gridlock Resolution Problem

For a pictorial description of the problem see Figs. 1 and 2. The problem is to
decide on a multilateral netting which will result in transactions being settled
when this is possible. Such a multilateral netting may not be locally determinable
by an individual entity, as it requires knowledge of the position of other entities
and the transactions being processed. This problem can be modeled as a discrete
optimization problem. In order to introduce it, we will base our definitions on
[6] with some simplifications for ease of exposition.

Let n denote the number of banks using the RTGS system, with each bank i
having an initial balance Bi ≥ 0. A transaction is of the form t = [s, a, r], where



100 S. Atapoor et al.

s ∈ {1, . . . n} is the source of t, r ∈ {1, . . . n} is the destination of t, and a > 0
is the amount of money that s is sending to r. For a transaction t = [s, a, r], if
Bs ≥ a, i.e. the sending bank has a large enough balance to cover the transaction,
the transaction is executed right away, otherwise, the transaction t is added to
a queue Q. The goal of gridlock resolution is to deal with the queue Q that is
formed in this way.

The transactions are assumed to come with an ordering t < t′ which implies,
for a given source bank, that the bank prefers t to be executed before t′. This
ordering can be First-In-First-Out, that is, among the transactions hanging
issued by bank i, no transaction can be addressed prior to the execution of
all transactions that arrived before it.

We define SenU ⊆ {1, . . . , n} to be the set of sources of transactions in a set
U ⊆ Q. We also denote by U i the set of the transactions in U coming from bank
i, i.e. U i = {t = (s, a, r) ∈ U s.t. s = i}, and let us denote by m the size of
Q. Let Si

U and Ri
U denote respectively the amounts sent and received by bank i

after running simultaneously a set of U transactions. Let Bi
U denote the balance

of this bank after running these transactions. i.e., Bi
U = Bi − Si

U + Ri
U .

The key two states for the queue are those of gridlock and deadlock. A
gridlock is where there is a subset of transactions which can be executed, the term
‘gridlock’ is used here to distinguish it from the situation where the transactions
clear without resorting to a queue.

Definition 2.1 (Gridlock). A gridlock is a situation where among the trans-
actions hanging in Q, there exists U ⊆ Q and U �= ∅, such that:

∀i ∈ SenU , Bi
U ≥ 0 (1)

∀i ∈ SenU , ∀t ∈ U i, �t′ ∈ Qi \ U i such that t < t′ (2)

A deadlock is where no transactions can be executed, with the current queue
state.

Definition 2.2 (Deadlock). A deadlock is a situation where �U ⊆ Q that
satisfies the conditions of Definition 2.1

The gridlock resolution problem is to find a subset of transactions in the queue
which can be executed.

Definition 2.3 (The gridlock resolution problem). The gridlock resolution
problem consists of finding maxU⊂Q |U |, such that (1) and (2) from Definition
2.1 hold

This problem is NP-complete if no strict global ordering is given, and thus
one needs to use approximate algorithms in order to solve it, such as the ones
introduced in [31] and [24]. However, the problem is not NP-complete if the
transactions are augmented with a strict ordering < of execution, and in such a
situation one can find an optimal solution in polynomial time.
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The Gridlock Resolution Algorithm. The algorithm for gridlock resolu-
tion GR [6] proceeds in the following steps, with the formal definition of the
algorithm being given in Fig. 3. We first empty the queue Q by moving all the
transactions from Q to U . We then call a subroutine which computes the bal-
ances resulting from the set U . Thus we compute the amounts sent by the
banks, i.e. [S1

U , . . . , Sn
U ], as well as the amounts received by the banks, i.e.

[R1
U , . . . , Rn

U ]. From this we can compute the balances as [B1
U , . . . , Bn

U ], from
Bi

U ← Bi + Si
U − Ri

U .
At this point, if all the balances of SenU are positive, the GR algorithm

terminates with the set U . Otherwise, the last transaction for all sources i such
that the balance Bi

U is negative is moved from U to the queue Q1. The balances
are recomputed for this new set U , and this process is repeated. If at some point
the algorithm terminates with a set U �= ∅, the transactions in U are executed,
and the actual balances Bi are updated. If however U = ∅ then we have reached
a deadlock and we need to wait for more transactions to come in before running
the GR algorithm again.

The GR algorithm

Algorithm: Balance(U, B):
On input of a list of transactions U and the current set of balances B this computes the
new balances Bi

U for all i ∈ [1, . . . , n].
(1) For i ∈ [1, . . . , n]

(I) Si ← ∑
t=[s,a,r]∈Ui a

(II) Ri ← ∑
t=[s,a,r]∈Us.t. r=i a

(III) Bi
U ← Bi − Si + Ri

(2) Output [B1
U , . . . , Bn

U ]

Algorithm : GR(Q):
On input Q this algorithm finds is a solution U ⊂ Q to the gridlock resolution problem, or
it returns Deadlock.
(1) U ← Q and Q ← ∅
(2) While U �= ∅ do

(I) BU ← Balance(U, B)
(II) If all the balances in BU are positive returns U .
(III) Remove from U the last transaction sent by all of the banks for which Bi

U < 0,
and place these transactions in Q

(3) Return Deadlock

Fig. 3. The GR algorithm

2.2 Multiparty Computation (MPC)

MPC is a family of cryptographic techniques that allow a set of parties, to
perform computation on their inputs, without having to reveal them. MPC was
1 The algorithm from [6] removes just one transaction of a source with a negative

balance at this point, but it is equivalent to removing one transaction from each
source which has a negative balance.
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introduced by Yao in [36], and was developed throughout the years. One family
of MPC protocols, and the ones we will consider in this paper, are those based on
secret sharing schemes. In these protocols, secrets are split among the p parties
participating in the protocol using a secret sharing scheme. The computation on
the shared secret is performed through communication between the parties. The
function to be evaluated is expressed (to a first-order approximation) through a
circuit consisting of addition and multiplication gates over a field Fq, for a large
prime q.

The specific underlying MPC protocol we will use is that of [32], this is a pro-
tocol which provides active security with abort. This means that an adversary
may arbitrarily deviate from the protocol, but if he does so then with overwhelm-
ing probability the honest parties should abort the protocol. Whilst based on
information-theoretic primitives, the protocol of [32] is computationally secure
since it relies on hash functions and PRFs, etc. for efficiency (as well as TLS in
the implementation we use in order to obtain secure channels).

MPC functionality FP [MPC]

The functionality runs with P = {P1, . . . ,Pp} and an ideal adversary A, that statically corrupts
a set A of parties. Given a set I of valid identifiers, all values are stored in the form (varid, x),
where varid ∈ I.

Initialize: On input (init, q) from all parties, the functionality stores (domain, q),
Input: On input (input,Pi, varid, x) from party Pi and (input,Pi, varid, ?) from all other par-

ties, with varid a fresh identifier, the functionality stores (varid, x) in memory.
Add: On command (add, varid1, varid2, varid3) from all parties, where varid1, varid2 are

present in memory and varid3 is not, the functionality retrieves (varid1, x), (varid2, y)
and stores (varid3, x + y) in memory.

Multiply: On input (multiply, varid1, varid2, varid3) from all parties, where varid1, varid2 are
present in memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y)
and stores (varid3, x · y) in memory.

Output: On input (output, varid, i) from all honest parties, where varid is present in memory,
the functionality retrieves (varid, y) and outputs it to the environment. The functionality
waits for input from the environment. If this input is Deliver then y is output to all parties
if i = 0, or y is output to party i if i �= 0. If the adversarial input is not equal to Deliver
then ∅ is output to all parties.

Fig. 4. MPC functionality FP [MPC]

The protocol of [32] essentially allows the implementation of the arithmetic
black box defined in Fig. 4. Note, as a shorthand in our protocols we will refer to
the addition and multiplication operations as 〈z〉 ← 〈x〉+〈y〉 and 〈z〉 ← 〈x〉 · 〈y〉,
and the output operations as z ← Open(〈z〉) for open-to-all. We also define an
operation OpenE(〈z〉, i) which opens the shared value 〈z〉 to the external bank i
(by sending the players’ shares of 〈z〉 to the external bank i.) This last operation
is used to send data to external parties which is the output of the computation;
this is identical as an opening to an internal player in terms of the ability for
the environment to decide if the correct value is actually delivered.

The protocol of [32] is defined for arbitrary Q2 access structures, but in this
paper, we will concentrate on the simpler subset of threshold access structures.
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In a threshold access structure on p players, with threshold t, up to t players
can collude. A Q2 access structure in this threshold context is one for which
t < p/2. Such honest majority protocols allow efficient multiplication of secret
shared data.

In such a situation (threshold access structures with t < p/2) we can (and
do in this paper) define the underlying secret sharing scheme via Shamir Secret
Sharing. In Shamir Secret Sharing, the secret x ∈ Fq is encoded in the constant
term of a polynomial fx(X) of degree t, i.e. x = fx(0), where t is the threshold
considered. The share of each party i of the secret x is xi ∈ Fq, such that
fx(i) = xi. From now on we will denote such a secret shared value x by 〈x〉.
If t + 1 parties combine their shares by interpolation of the polynomial, they
can recover the polynomial fx and thus the secret x. We will write 〈x〉 for the
sharing of x with this sharing.

Linear operations on the secret shared values can be performed via local
operations, whilst the multiplication operations in our arithmetic black box are
performed in an offline-online manner (since our protocol is based upon [32]). In
an “offline” phase is where data that does not depend on player inputs or the
function is pre-computed, and then in the “online” phase, the actual computation
takes place. The protocol of [32] provides an efficient online phase, although the
combined cost of the offline plus online phases can be less efficient than other
protocol choices.

Up until now, we have considered the arithmetic black box of Fig. 4. This can
be extended to cope with non-arithmetic operations in a standard manner. For
example, in this work, we will represent integer values x ∈ [−2K−1−1, . . . , 2K−1]
as elements of Fq, where k � log2 q. Comparison, and non-arithmetic operations,
on such encoded integers, can then be performed using special purpose statis-
tically secure sub-protocols such as those in [15,16,20]. The reader should note
that comparison is more expensive to execute than multiplication; which is the
opposite of what happens when computing in the clear.

At many points, we will need to read and write to an array of secret values,
with an index which is also secret. To do this we make use of the naive Oblivious
RAM (ORAM) implementation from [27]. We only require the naive methodol-
ogy as our arrays will be relatively small, meaning the naive methodology will
be faster for our example than the more elaborate variants given in [27]. The
naive ORAM has at its heart a Demux function, which takes as input a secret
x and a bound L, and outputs a list of bits b1, . . . bL, such that bi = 1 if i = x,
and bi = 0 otherwise.

Given this arithmetic black-box extended with the protocols for comparison
and ORAM-style array lookup, we can implement algorithms securely. If the
algorithm is correct and utilizes only the operations described above, then the
secure implementation will inherit the security properties of the underlying MPC
protocol. Particularly, if a server running the computation does not perform the
required computation, this will be detected by the honest servers. The only
issue which needs to be verified would be if the secure implementation opens
any intermediate result, at this point one simply needs to verify that the opened
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value is something which is inherent in the application; i.e. it is a public value
which we expect the algorithm to output to the parties. This is a topic which
we will return to in the next section.

3 The Gridlock Resolution Algorithm with MPC

Executing the GRP algorithm totally obliviously, i.e. where the MPC engines
know neither the amounts, the source addresses of each transaction, or the desti-
nations, turns out to be very expensive. Thus as well as examining this situation
we also examine two relaxed situations in which both the source and destina-
tion addresses are in the clear (i.e. open) (which we call sodoGR), and one in
which the source addresses are in the clear, but the destination addresses are
not (which we call sodsGR). We denote the fully oblivious version ssdsGR. In all
situations, we ensure the privacy of the amount in the transactions and privacy
of the banks’ balances. The basic ideal functionality we aim to emulate is given
in Fig. 5.

Gridlock Resolution Algorithm Functionality F type[GRP]

The functionality operates between n banks, p servers and an ideal adversary A that statically
corrupts a set A of parties among the servers. We assume that the banks are acting honestly
throughout the protocol.
The functionality is reactive in that it maintains a list of the unexecuted queue of transactions
Q, and then updates this with the new incoming transaction I. The internal queue is updated
with I and then the GRP algorithm described in figure Fig. 3 is executed. The set of executed
transactions U is returned (or Deadlock), and these executed transactions are deleted from the
internal queue Q for usage in the next call to F type[GRP]. We distinguish three versions of the
functionality: where type is in {sodoGR, sodsGR, ssdsGR}

Initialize: The system is initialized with
- An empty queue of transactions Q.
- The current balances bi for the banks.

InputTrans: On input t = (s, a, r) from bank s, the functionality takes a fresh identifier idt

and associates it to the transaction t. If type �= ssdsGR and this transaction can be instantly
executed, i.e. the balance of bank s is larger than a, then this transaction is executed (i.e.
the functionality informs banks s and r of the amount a), otherwise the functionality also
adds t to Q.
In addition to this, the functionality may reveal to the servers some of the components of
the transaction t depending on the type.

- If type = sodoGR, s and r are revealed to the servers.
- If type = sodsGR, s is revealed to the servers.
- Otherwise, i.e. type = ssdsGR, nothing is revealed to the servers.

Run: On input Run from the servers, the functionality processes Q, by executing the algorithm
of Fig. 3. If the algorithm returns Deadlock then this is returned to the servers and the
banks. If the algorithm returns a set of transactions U then the functionality informs the
servers as to which transactions these values in U correspond to; and they are deleted from
the current queue Q. For every transaction t = (s, a, r) in U the functionality informs s
and r about this transaction and the amount.

Fig. 5. Gridlock resolution algorithm functionality F type[GRP]

In Fig. 6 we present the algorithm to compute the balances, upon processing
a list of payments Q, in our three different scenarios. The algorithms, make use
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Algorithms for Balances

DemuxsodsGR(Q)
On input of a list of transactions Q this produces the demux flags C for the destination
addresses when the source addresses are in the clear
(1) C ← [ ].
(2) For t = [s, 〈a〉, 〈r〉] in Q :

(I) 〈ct〉 ← Demux(〈r〉, n).
(II) Append C by 〈ct〉.

(3) Output C.

DemuxssdsGR(Q)
On input of a list of transactions Q this produces the demux flags for the recipient addresses
C and the source addresses W
(1) C ← [ ], W ← [ ].
(2) For t = [〈s〉, 〈a〉, 〈r〉] in Q:

(I) 〈ct〉 ← Demux(〈r〉, n).
(II) 〈wt〉 ← Demux(〈s〉, n).
(III) Append C by 〈ct〉 and C by 〈wt〉.

(3) Output (C, W ).

Balance([〈Bi〉]ni=1, Q, X, C, W, type)
This algorithm updates the balances 〈Bi〉 for every bank i, given a set of transactions U ⊂ Q and
the operation type, type = sodoGR, sodsGR, ssdsGR. The set U is oblivious to the algorithm and
determined by an indicator set X = [〈xt〉]t∈Q, such that xt = 1 if and only if t ∈ U , otherwise
xt = 0. The sets C = [ct]t∈Q and W = [〈wt〉]t∈Q are derived from the Demux operations above,
when needed.

(1) 〈Bi
U 〉 ← 〈Bi〉 for all i ∈ [1, . . . , n].

(2) For i ∈ [1, . . . , n]:
(I) If type �= ssdsGR then 〈Si〉 ← ∑

t=(i,〈a〉,∗)∈Qi 〈a〉 · 〈xt〉.
(II) else 〈Si〉 ← ∑

t=(〈s〉,〈a〉,〈r〉)∈Q〈a〉 · 〈xt〉 · 〈wt
i〉.

(III) If type = sodoGR then 〈Ri〉 ← ∑
t=(s,〈a〉,r)∈Q,r=i〈a〉 · 〈xt〉.

(IV) else 〈Ri〉 ← ∑
t=(∗,〈a〉,〈r〉)∈Q〈a〉 · 〈xt〉 · 〈ct

i〉.
(V) 〈Bi

U 〉 ← 〈Bi〉 − 〈Si〉 + 〈Ri〉.
(3) Return [〈Bi

U 〉]ni=1.

Fig. 6. Algorithms for balances

of the Demux operation. Recall 〈v〉 ← Demux(〈r〉, n), where we are guaranteed
that 1 ≤ r ≤ n, produces a vector 〈v〉 of size n such that each entry is a sharing
of zero, apart from entry r where we have a sharing of one. The i-th element of
〈v〉 will be denoted by 〈vi〉.

In Fig. 8 we present the algorithm for executing the Gridlock Resolution algo-
rithm in our three cases. This utilizes the algorithm for computing balances from
Fig. 6, as well as the algorithm, in Fig. 7, which notifies the banks of their com-
pleted transactions. In the following paragraphs, we highlight aspects of these
algorithms in the three different situations.

Sources and Destinations are Open (sodoGR). For this version, computing
the receipts and payments is straightforward. That is, we know the source and
destination of every transaction, thus for every bank of SenQ, we know the
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Method to Notify Participants of Executed Transactions

Notify(X, Q, C, W, type)
This algorithm notifies the participants about the executed transactions they sent/received.
On input Q contains a set of transactions, X specifies (in the clear) the transactions in Q
that were executed (signaled by a one bit), the sets C and W are derived from the Demux
operation in Fig. 6.
(1) If type = sodoGR

(I) For t = [s, 〈a〉, r] ∈ Q such that xt = 1.
(A) Notify s and r about t and execute OpenE(〈a〉, r).

(2) If type = sodsGR
(I) For t = [s, 〈a〉, 〈r〉] ∈ Q such that xt = 1

(A) Notify s about t, who can then update bank r about (s, a, r).
(3) If type = ssdsGR

(I) For i ∈ [1, . . . , n] and t = [〈s〉, 〈a〉, 〈r〉] ∈ Q such that xt = 1
(A) Execute OpenE(〈wt

i〉 · 〈s〉, i), OpenE(〈wt
i〉 · 〈a〉, i), OpenE(〈wt

i〉 · 〈r〉, i),
OpenE(〈ct

i〉 · 〈s〉, i), OpenE(〈ct
i〉 · 〈a〉, i), and OpenE(〈ct

i〉 · 〈r〉, i).

Fig. 7. Method to notify participants of executed transactions

amount of each transaction we need to add or subtract to its balance. Therefore,
the algorithm for updating the balances (Fig. 6) is relatively cheap. However, we
face two main obstacles for this version: (1) How to determine whether we have a
solution for the problem without leaking which banks have negative balances? (2)
In the case where we still do not have a solution, how can we remove transactions
without leaking which ones, and without leaking their corresponding banks?

To address the first obstacle, in Fig. 8 we first compare the balances of the
banks in an oblivious manner, by performing in step 5.II.A a secure comparison
of all balances of SenQ, which will result in secret values 〈hi〉. Each of these
values is equal to one if the corresponding balance is negative, or equal to zero
otherwise. Then in step 5.IV, we open 〈z〉 which is the product of (1−〈hi〉). Thus
z will be one if all the balances are positive and therefore we found a solution
or z will be zero in which case we need to continue removing transactions.

For the second obstacle, basically we need to touch every transaction so as
to not leak which ones are being removed. We ensure this using the flags 〈hi〉,
which guarantee that we will be modifying the indicators of only the banks with
negative balances,

Then in order to not reveal which transaction was removed for these banks,
we use the indicators xtj to act as flags. Namely, step 5.VI.A.ii guarantees that
we are setting to zero only the last indicator in the queue that has the value
one, for the banks in question, i.e., the last transaction submitted to the RTGS
among the ones that are still considered for the gridlock resolution. Note that
within this step, we could have simply conducted secure comparisons in order to
determine which indicator to modify. However, we implemented it as such purely
for performance purposes, as multiplications are cheaper than comparisons. In
order to detect a deadlock, we compute the product of (1 − 〈xt〉) in 5.VI.B and
we open it, which will be equal to one if a deadlock occurs.

Finally, once a set of transactions are executed, we notify the corresponding
sources and destinations using the algorithm Notify. For every transaction exe-
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MPC variant of the Gridlock Resolution Algorithm

GR(〈Bi〉ni=1, Q, type)
Given a set of balances Bi and a queue of transactions this determines a subset of the
transactions U ⊂ Q which can be executed; where the set U is given by an indicator set X.
If no such U exists it returns Deadlock, otherwise it returns the set of remaining transactions
which have not been executed.
(1) X ← [〈xt〉]t∈Q with 〈xt〉 ← 1.
(2) C, W ← ∅.
(3) If type = sodsGR then C ← DemuxsodsGR(Q).
(4) If type = ssdsGR then (C, W ) ← DemuxssdsGR(Q) and CNTDeadlock ← 0.
(5) Repeat

(I) [〈Bi
U 〉]ni=1 ← Balance([〈Bi〉]ni=1, Q, X, C, W, type).

(II) If type �= ssdsGR

(A) For i ∈ SenQ do 〈hi〉 ← (〈Bi
U 〉 < 0).

(B) 〈z〉 ← ∏
{i∈SenQ}(1 − 〈hi〉).

(III) else
(A) 〈Sender〉 ← 0.
(B) For i ∈ {1, . . . , n} :

(i) 〈hi〉 ← (〈Bi〉 < 0)
(ii) 〈fi〉 ← 〈hi〉 − 〈hi〉 ∑k=i−1

k=1 〈fk〉
(iii) 〈Sender〉 ← 〈Sender〉 + i · 〈fi〉

(C) 〈z〉 ← ∑n
i=1〈fi〉

(IV) z ← Open(〈z〉).
(V) If z = 1 then

(A) xt ← Open(〈xt〉) for t ∈ Q, and let X′ = [xt]t∈Q.
(B) Execute Notify(X′, Q, C, W, type).
(C) For i ∈ [1, . . . , n] execute 〈Bi〉 ← 〈Bi

U 〉.
(D) Q ← Q \ {t}t∈Q,xt=1.
(E) Return Q.

(VI) If type �= ssdsGR
(A) For i ∈ SenQ

(i) Let t1, . . . , tv denote the transactions in Q with source i ordered in time
of receipt order.

(ii) For j = 1, . . . , v − 1 do
(a) 〈xtj

〉 ← (〈xtj
〉 · 〈xtj+1 〉) · 〈hi〉 + 〈xtj

〉 · (1 − 〈hi〉).
(iii) 〈xtv 〉 ← 〈xtv 〉 · (1 − 〈hi〉).

(B) 〈Deadlock〉 ← ∏
i∈SenQ,t∈Qi (1 − 〈xt〉).

(C) Deadlock ← Open(〈Deadlock〉).
(VII) else

(A) CNTDeadlock ← CNTDeadlock + 1
(B) If (CNTDeadlock = m − 1) :

(i) Deadlock ← 1.
(C) else

(i) 〈d〉 ← 1
(ii) For j in {m, . . . , 1}

(a) 〈y〉 ← (〈sj〉 = 〈Sender〉) · 〈xj〉 · 〈d〉.
(b) 〈xj〉 ← 〈xj〉 − 〈y〉.
(c) 〈d〉 ← 〈d〉 − 〈y〉.

(6) Until Deadlock = 1.
(7) Return Deadlock.

Fig. 8. MPC variant of the gridlock resolution algorithm

cuted t = [s, 〈a〉, r], this algorithm notifies s about the execution of transaction
t, and notifies r of receiving a transaction by sending him the tuple (s, a). The
amount a here was opened to r by having the p entities send their respective
shares of 〈a〉 to him, who will reconstruct a from these shares. This way only r
will learn a while the entities will not.
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Sources are Open and Destinations are Secret (sodsGR). For this version,
computing the payments needed by a party is straightforward as the sources of
transactions are open, but computing the corresponding receipts we need to
apply a Demux operation to compute the balances in Fig. 6. This is done only
once at the beginning of the algorithm, at the expense of having to store the
vectors C in memory all along with the computation. The rest of the computation
proceeds as in the case sodoGR described above.

To notify participants about the execution of their transactions, we again
use Notify. For every transaction executed t = [s, 〈a〉, 〈r〉], this algorithm, in this
case, notifies s of the execution of t, who can update r about the amount sent a.

Sources and Destinations are Secret (ssdsGR). This version is more chal-
lenging to address compared to the previous versions as we keep all the sources
and destinations secret, thus we have to deal with some challenges. The alter-
ation to compute the balances is similar to the case sodsGR. However, given that
the sources are hidden from the system, the Gridlock Resolution algorithm needs
to update all the n balances when looking for a solution, as opposed to only the
balances of the sources in sodoGR and sodsGR, which is quite expansive.

The fact that the sources and destinations are hidden obliged us to radi-
cally change our strategy to remove transactions with negative balances. In fact,
obliviously removing the last transaction of all sources which have a negative
balance is expensive, as it would require n · m equality checks; where n is the
number of banks and m is the number of transactions in Q. Therefore, for this
version we remove only one transaction at each iteration, as this requires only
m equality checks. To determine which transaction to remove, we compute the
flags 〈hi〉 in a similar way to sodoGR and sodsGR, then we compute the flags
〈fi〉 in step 5.III.B.ii, which are all equal to zero, except for the first source
who has a negative balance, in which case it is equal to one. These flags will be
used to determine the sender 〈Sender〉 for which we remove the last transaction.
Removing this last transaction is done in step 5.VII where we iterate over all
the transactions starting from the end and going backward, so as to switch the
first encountered indicator xj equal to one corresponding to a transaction issued
by source sj = Sender. Ensuring that the indicators of other sources will not be
modified while doing this operation is guaranteed by the term 〈sj〉 = 〈Sender〉
in 〈y〉, thus when this equality test is equal to zero, y will be zero, and thus xj

will not be modified in step 5.VII.C.ii.a, and ensuring that only one indicator
for Sender is switched from one to zero is guaranteed using the variable d, that
is, once we reach the first indicator xj for Sender that is equal to one, y will be
equal to one in step 5.VII.C.ii.b, and d will be equal to zero. Once d becomes
zero, y will always have the value zero, and thus no other indicator will change
in step 5.VII.C.ii.b.

In addition, we introduce a counter CNTDeadlock into the algorithm in order
to identify a deadlock. This counter is augmented by one each time we perform
an iteration, and therefore we will have a deadlock when this counter reaches m.
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Finally, we need to notify participants of the execution of their transactions.
For every transaction executed t = [〈s〉, 〈a〉, 〈r〉], this algorithm sends to every
bank i the opening of the values, {(〈wt

i〉 · 〈s〉, 〈wt
i〉 · 〈a〉, 〈wt

i〉 · 〈r〉), (〈cti〉 · 〈s〉, 〈cti〉 ·
〈a〉, 〈cti〉 · 〈r〉)} which are equal to {(0, 0, 0), (0, 0, 0)} if t was not sent to i or
received by i; equal to {(s, a, r), (0, 0, 0)} if i = s; and equal to {(0, 0, 0), (s, a, r)}
if i = r.

3.1 Leakage

We now discuss the leakage our algorithms have in comparison to the ideal func-
tionality given in Fig. 5. Given the underlying MPC system implements securely
any algorithm, the only leakage which can arise is when our algorithms reveal
information via an Open command. We assume that the ordering between trans-
actions is public knowledge, which will be the case if the ordering is done purely
in a first-in/first-out manner.

We first discuss each such operation in Fig. 8. The openings in the notify
algorithm in Fig. 7 are all identical to values revealed by the ideal functionality.

In step 5.V.A the identifiers of which transactions, which are executed, are
opened but this is also something which is leaked in our ideal functionality; thus
this line provides no additional leakage over what the ideal functionality will
leak.

In step 5.VI.C the algorithm reveals to all servers whether Deadlock has been
reached. Again this is something which happens in our ideal functionality.

This leaves us with the opening in step 5.IV, which reveals the value of 〈z〉.
This reveals whether on this iteration we should terminate with a solution or
not, thus revealing this value reveals the number of iterations needed to solve
the GRP problem or the number of iterations needed to reach Deadlock. In the
first situation, this value is equal to the maximum number of transactions not
executed by one of the banks when it is the source. Thus this information is
always revealed by the functionality in the case where we have type = sodoGR or
type = sodsGR. In the case of type = ssdsGR this value leaks to the p servers, but
not to the n banks. In the case where Deadlock is output then the number of iter-
ations reveals the maximum number of transactions with a given source. Thus
this value does reveal some information about the distribution of transactions
between banks at any given point in time, but we feel it is an acceptable leak-
age. Removing this leakage is possible, by essentially looping obliviously, in the
case where we have type = ssdsGR, for a maximum number of iterations. This
would make our implementation match the specifications of Fig. 5 for ssdsGR
without inducing the aforementioned leakage, however, this would cause a huge
performance penalty.

3.2 Experiments

We implemented the above three variants using the SCALE MPC system [3],
which provides a convenient interface to access different secret sharing-based
access structures, as well as the comparison and Demux operations discussed
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above. The experiments were performed using a setup using Shamir Secret Shar-
ing between three parties, over a finite field of size 128 bits. This models the
situation where the n banks outsource the computation to p = 3 entities, such
that each bank trusts that only one of the three entities will act in a malicious
manner. The reason for doing this is to avoid having to perform a secure compu-
tation with n servers, which will be prohibitively expensive for practical values
of n. Of course we can outsource the computation to more than p = 3 entities,
which will allow the n servers to tolerate more malicious entities, but this will
increase the cost of the computation. We used three machines to perform the
experiments, that is one machine for each entity. The machines used are 128GB
of RAM, with an Intel i-9900 CPU, with a ping time of 0.098 ms between them.

We begin by examining the online phase runtimes of single runs of the algo-
rithms of this section (without including the notification part of the participants
about the execution of their transactions). In all experiments, we varied the
number of banks n to have the values {8, 64, 128, 256, 512, 1024}, and the num-
ber of transactions m to have the values {10, 50, 100}. The m transactions were
chosen in such a way that a solution will be found after m/4 iterations.
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Fig. 9. Run times for sodoGR (left) and sodsGR (right).

sodoGR. The runtimes for this variant are shown in Fig. 9. As one can notice,
the runtimes keep increasing when n increases, and stabilize when n becomes
bigger than m; reaching a maximum of 5.7 s when considering m = 100 and
n ≥ m. This is because when m ≤ n we set the transactions in such a way that
we only process the m banks that will be sources of the transactions. Therefore,
when m ≤ n the algorithm will perform exactly the same amount of work as
when n = m.

sodsGR. The runtimes for this experiment are also presented in Fig. 9. One sees
that they grow as n increases, irrespective of m, when m = 100 growing to
around 39 s for n = 1024. When n ≥ m the runtime increases, but at a slower
pace than for n < m. This is due to the fact that once n reaches m, the only
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extra computation is the calculation of the Demux flags C over a bigger set for
n, as we can set in this case m banks to be the sources of the transactions when
m ≤ n.

Since this variant needs to calculate the Demux flags, as well as performing
more multiplications to compute the received values, for all values of n and m
it is slower than sodoGR. For example in step 2.IV of the Balance algorithm in
Fig. 6 we need to compute a multiplication by the Demux flag 〈cit〉, as opposed
to performing a conditional multiplication (conditioned on where r = i) in step
2.III of the same algorithm.
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Fig. 10. Run times for ssdsGR.

ssdsGR. The runtimes for this variant are shown in Fig. 10. As one can see the
runtimes keep increasing at the same rate even when m ≤ n. This is related to
the fact that sources are hidden from the algorithms. The runtimes are larger
for this variant due to the fact that as explained in Sect. 3, the algorithm cannot
exclude the banks that are not sources of the transactions hanging, therefore
whenever a transaction is removed, the balances of all banks are calculated.
Another thing that one can notice is that, the runtimes of ssdsGR are only twice
the ones of sodsGR. This is actually related to how we chose transactions as
explained earlier. That is, we chose transactions in such a way that we run m/4
iterations in step 5.VI/5.VII. We refer the reader to the next section for a more
accurate comparison between the two algorithms.

4 Simulating an RTGS

Having so far provided latency values for single executions of our algorithms,
we now turn to discussing are these latencies ‘fast enough’ in a real application.
The latency depends not only on the number of banks n, but also on the number
of unmet transfers in the queue Q, i.e. m. In a real system, the value of m can
both increase and decrease over time, depending on the frequency of incoming
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transactions and the amount of liquidity in the system. In this section, we aim
to simulate a realistic system and determine the cost of performing the liquidity
matching in a privacy-preserving manner.

Simulating Transactions. Our first task is to simulate the banks and the
transactions between them. The transactions exchanged between banks over a
period of time L can be modeled as a directed graph, where nodes represent
banks and edges among them represent the flow of the transactions, i.e. a link
from bank A to bank B is formed if bank A sent a transaction to bank B
over L. This graph can be either unweighted, that is, in the case that bank A
sends to bank B multiple transactions, these are counted with only one link or
weight. That is, the link from A to B has a weight which is determined by either
the number of transactions sent from A to B over L, or the volume of these
transactions, i.e., the total amount of money sent from A to B.

The structure and properties of such graphs have been extensively studied
in the literature, and it has been shown that scale-free graphs (graphs for which
the degree distribution follows the power-law) are the closest ones to model
transaction graphs (see [18] for more details about the structural properties of
scale-free graphs). In particular [33] shows that the Fedwire system in the United
States has a scale-free behavior, and similar observations have been made for the
Japanese inter-bank payment system [26] and the Austrian inter-bank market
[10]. Even the transaction graph formed by Bitcoin has been shown to be scale-
free [1].

Our simulation is controlled by a number of parameters: n the number of
banks in the network, n0 the number of ‘central nodes’ (see below), the total
number of transactions M to be simulated, the time interval L over which we sim-
ulate the transactions, a parameter o giving the average number of transactions
for each of the n − n0 non-central nodes, a value for modifying the preferential
attachment α (which we take to be 0.1), and a value β controlling the amount
of liquidity in the system.

For our work, we utilized the simulator of [34] to generate the transaction
graph. This simulator uses a tweaked version of the Barabasi-Albert model to
generate scale-free graphs. In this simulation the graph is built by setting first
n0 central nodes among the n nodes, these central nodes are intended to send
and receive transactions more than the remaining nodes; they correspond in the
real world to the important banks in a network. This preference is guaranteed
by at the beginning setting the preferential attachment vi for these banks to be
one, and for the remaining banks to be zero. The algorithm then proceeds to
find a total number of M = o · (n − n0) transactions t1, . . . , tM .

These transactions ti = (s, a, r) are generated as follows: The source bank
s ∈ {1, . . . , n} is selected with probability vs/

∑j=n
j=1 vj , the destination bank

r ∈ {1, . . . , n} is selected with probability vr/
∑j=n

j=1 vj . If we obtain s = r then a
new value of r is sampled in the same way, until s �= r. Whenever a transaction
is generated, we update the preferential attachment for both the source and
destination, by adding α = 0.1 to vs and vr, and whenever o transactions are
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generated, we set the preferential attachment to be 1 for one of the banks that
were not yet considered for sending or receiving transactions, i.e., a bank i that
still has vi = 0. The amount a is sampled by taking a value v from the normal
distribution with mean 1 and standard deviation 0.2, and then setting a =
d · exp(v), where d is the minimum of the in-out degrees of the source and
destination nodes s and r; this follows the methodology in [34]. It also means
that transactions are likely to be larger from banks which are more central to
the graph, a fact which is born out in practice.

To each transaction we assign a time of occurrence; for this, we assume that
the M transactions are uniformly distributed over the time interval L. The order
of the transactions is as in the simulation above, with transaction ti entering the
system at time τi, where we have τi+1 − τi ≈ L/M for all i.

For the initial balances of the banks, these are set according to a parameter
β ∈ [0, 1] that determines the amount of liquidity available in the system. That
is, we calculate the lower and upper bounds of liquidity for each bank, where the
lower bound Li for bank i refers to the minimal initial balance that will allow
the bank to settle all its transactions at the end of the time window, and the
upper bound Ui refers to an initial balance that will allow the bank to settle
immediately all its transactions without having to be placed in the queue U
for the gridlock execution. Then the initial balance of bank i we set equal to
Bi = β · (Ui − Li) + Li.

In [34] it is claimed that the above algorithm is a good model for transac-
tion graphs between banks. In particular, they discuss the Fedwire transaction
graph. To get some idea of the sizes of the graph we note that Fedwire in 2008 had
approximately n = 7300 participants2 and the average daily volume of transfers
in January 20213 was 803, 413 transactions. A smaller system is the Target2 sys-
tem run by the European Central Bank, according to the annual report of 20194,
the number of direct participant is n = 1050, with each participant originating
on average 344, 120 transactions per day.

The Simulation. In our simulation, we assume that for sodoGR and sodsGR,
two banks will settle an incoming transaction if it can be settled immediately,
with unsettled transactions being passed to the queue Q for application of the
Gridlock Resolution algorithm. For the case of ssdsGR, the only way a transaction
can be settled is through the Gridlock Resolution algorithm. For the remaining
transactions, we process them in one of two manners: In Version 1 each transac-
tion is processed one at a time, it is cleared immediately if it can be, otherwise,
it is added to the current queue Q. For the cases of sodsGR and ssdsGR, we run
the GR algorithm if Q has more than one entry. For the case of sodoGR, we run
the GR algorithm if the last incoming transaction (either settled or not) has
as the destination one of the sources of the transactions in Q. In Version 2 we

2 https://www.federalreserve.gov/paymentsystems/fedfunds about.htm.
3 https://www.frbservices.org/resources/financial-services/wires/volume-value-

stats/monthly-stats.html.
4 https://www.ecb.europa.eu/pub/targetar/html/ecb.targetar2019.en.html.

https://www.federalreserve.gov/paymentsystems/fedfunds_about.htm
https://www.frbservices.org/resources/financial-services/wires/volume-value-stats/monthly-stats.html
https://www.frbservices.org/resources/financial-services/wires/volume-value-stats/monthly-stats.html
https://www.ecb.europa.eu/pub/targetar/html/ecb.targetar2019.en.html
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simulate the current time (according to how long previous executions of the GR
algorithm take), we then add all transactions, which have arrived between the
start of the previous execution of the GR algorithm and the end of the previous
execution, to the queue Q, after clearing all which can be executed immediately.
For the cases of sodsGR and ssdsGR, we then execute the GR algorithm if Q
has more than one entry. For the case of sodoGR, we run the GR algorithm if
at least one of the last incoming transactions (either settled or not) has as the
destination one of the sources of the transactions in Q. These two variants are
described in Fig. 11.

Simulation of RTGS

RTGSSimulation: Given a set of transaction T = {(ti, τi)} where ti is the transaction and
τi is the time stamp of this transaction execute:
(1) Q ← ∅, T ← ∅, τ = 0. The variable τ will define the current time in the simulation.
(2) While T �= ∅ do

(I) If Version 1
(A) Let (ti, τi) denote element in T with the minimal value of τi.
(B) τ ← τi if τ < τi.
(C) T ← T \ {(ti, τi)}.
(D) U ← {(ti, τi)}.

(II) Else if Version 2
(A) Let U denote all transactions in T with time τi < τ .
(B) If U = ∅ execute the above four steps for Version 1.
(C) Else T ← T \ U .

(III) Start-timer; this is used to ensure we simulate time correctly.
(IV) For all (t, τi) ∈ U

(A) If type = sodoGR:
(i) Write t = [s, 〈a〉, r].
(ii) 〈z〉 ← 〈Bs〉 ≥ 〈a〉
(iii) z ← Open(〈z〉)
(iv) If z = 1 then

1. 〈Bs〉 ← 〈Bs〉 − 〈a〉.
2. 〈Br〉 ← 〈Br〉 + 〈a〉.
3. Execute Notify({1}, {t}, ∅, ∅, sodoGR).

(v) Else Q ← Q ∪ {t}.
(B) Else if type = sodsGR:

(i) Write t = [s, 〈a〉, 〈r〉].
(ii) 〈z〉 ← 〈Bs〉 ≥ 〈a〉
(iii) z ← Open(〈z〉)
(iv) If z = 1 then

(a) v ← Demux(〈r〉, n).
(b) 〈Bs〉 ← 〈Bs〉 − 〈a〉
(c) 〈Bi〉 ← 〈Bi〉 + 〈a〉 · vi for i ∈ [1, . . . , n]
(d) Execute Notify({1}, {t},v, ∅, sodsGR).

(v) Q ← Q ∪ {t}.
(C) Else if type = ssdsGR:

(i) Q ← Q ∪ {t}.
(V) If type = sodoGR and ∃tj = [sj , 〈aj〉, rj ] ∈ U and ∃tk = [sk, 〈ak〉, rk] ∈ Q\U such

that rj = sk then execute sodoGR(Q).
(VI) Else if type = sodsGR then execute sodsGR(Q), running DemuxsodsGR only on the

new transactions in U ⊂ Q, by keeping track of the prior executions.
(VII) Else if type = ssdsGR then execute ssdsGR(Q), running DemuxsodsGR and DemuxssdsGR

only on the new transactions in U ⊂ Q, by keeping track of the prior executions.
(VIII) Stop-timer; let the elapsed time be denoted by τ0.
(IX) τ ← τ + τ0.

(3) Output the elapsed time τ needed to execute all the transactions.

Fig. 11. Simulation of RTGS
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Leakage. Again we need to consider if there is any leakage of information from
the Open operations in Fig. 11. The two lines, in steps 2.IV.A.iii and 2.IV.B.iii,
open a value which indicates whether (in the cases of type = sodoGR and type =
sodsGR respectively) a transaction can be executed immediately, without needing
to be passed into a gridlock resolution process. This is something which our ideal
functionality also leaks.

Experimental Results. We executed the above simulation, again with an
MPC system of three players, over a simulation time window L of one hour,
considering only the online phase, with three different levels of liquidity β ∈
{0.1, 0.5, 0.9}, and with n0 = 10. We tested on different values of n and o, with
n either 100 or 1000; a value of 1000 is approximately the number of direct par-
ticipants in Target 2. Our values of o (which controls the number of transactions
M = o · (n − n0)) where also chosen to approximate the number of transactions
Target 2 deals with in an hour assuming transactions are uniformly distributed
through the day (in this case only with n = 100).

We considered two main metrics to evaluate the performance: (i) How much
time we exceed the time window L, i.e. was the value τ output by the simulation
larger than the time window L, i.e. E = τ − L. (ii) The average delay time
for transactions. Each transaction (t, τi) is supposed to enter to the system in
time τi, however, the system may not be able to address this transaction at time
τi, but only at a later time τ ′

i , after finishing an ongoing gridlock computation.
Thus the average delay time, in seconds, will be D =

∑i=M
i=1 (τ ′

i − τi)/M . In a
real system, one would desire that E is zero, or as close as possible (to ensure
real time settlement of all transactions in a day) and that D is also as small
as possible (to ensure individual transactions are not delayed too much). The
results of our simulation are given in Table 1.

We can notice from the runtimes that the more liquidity we have, the faster
the runtimes are. This is because liquidity affects how many times the grid-
lock computation takes place, as well as the size of the queues on which this
computation happens. We can also notice that the slowest runtimes correspond
(unsurprisingly) to the case where sources and destinations are hidden. Version
2 of the algorithm for clearing is much better and indeed seems to meet the
operational requirements of E and D being close to zero, for all cases bar that
of both sources and destinations being secret.
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Table 1. Experimental results

Version 1 Version 2

E D E D

sodoGR β = 0.1 n = 100, M = 900, o = 10 0 0 0 0

n = 100, M = 9000, o = 100 0 307 0 0

n = 100, M = 45000, o = 500 – – 0 0

n = 1000, M = 9900, o = 10 – – 0 1

β = 0.5 n = 100, M = 900, o = 10 0 0 0 0

n = 100, M = 9000, o = 100 0 0 0 0

n = 100, M = 45000, o = 500 – – 0 0

n = 1000, M = 9900, o = 10 – – 0 0

β = 0.9 n = 100, M = 900, o = 10 0 0 0 0

n = 100, M = 9000, o = 100 0 0 0 0

n = 100, M = 45000, o = 500 – – 0 0

n = 1000, M = 9900, o = 10 – – 0 0

sodsGR β = 0.1 n = 100, M = 900, o = 10 0 0 0 0

n = 100, M = 9000, o = 100 18707 12030 0 0

n = 100, M = 45000, o = 500 – – 0 2

n = 1000, M = 9900, o = 10 – – 0 7

β = 0.5 n = 100, M = 900, o = 10 0 0 0 0

n = 100, M = 9000, o = 100 0 163 0 0

n = 100, M = 45000, o = 500 – – 0 0

n = 1000, M = 9900, o = 10 – – 0 5

β = 0.9 n = 100, M = 900, o = 10 0 0 0 0

n = 100, M = 9000, o = 100 0 0 0 0

n = 100, M = 45000, o = 500 – – 0 0

n = 1000, M = 9900, o = 10 – – 0 0

ssdsGR β = 0.1 n = 100, M = 900, o = 10 0 63 0 0

n = 100, M = 9000, o = 100 164556 102046 0 13

n = 100, M = 45000, o = 500 – – 1175 835

n = 1000, M = 9900, o = 10 – – 7426 5427

β = 0.5 n = 100, M = 900, o = 10 0 0 0 0

n = 100, M = 9000, o = 100 28646 14442 0 2

n = 100, M = 45000, o = 500 – – 0 8

n = 1000, M = 9900, o = 10 – – 4482 1784

β = 0.9 n = 100, M = 900, o = 10 0 0 0 0

n = 100, M = 9000, o = 100 0 0 0 0

n = 100, M = 45000, o = 500 – – 0 0

n = 1000, M = 9900, o = 10 – – 0 105
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Abstract. The Cheon-Kim-Kim-Song (CKKS) homomorphic encryp-
tion scheme is currently the most efficient method to perform approx-
imate homomorphic computations over real and complex numbers.
Although the CKKS scheme can already be used to achieve practical
performance for many advanced applications, e.g., in machine learning,
its broader use in practice is hindered by several major usability issues,
most of which are brought about by relatively high approximation errors
and the complexity of dealing with them.

We present a reduced-error CKKS variant that removes the approx-
imation errors due to the Learning With Errors (LWE) noise in the
encryption and key switching operations. We propose and implement its
Residue Number System (RNS) instantiation that has a lower error than
the original CKKS scheme implementation based on multiprecision inte-
ger arithmetic. While formulating the RNS instantiation, we also develop
an intermediate RNS variant that has a smaller approximation error than
the prior RNS variant of CKKS. The high-level idea of our main RNS-
related improvements is to remove the approximate scaling error using a
novel procedure that computes level-specific scaling factors. The rescal-
ing operations and scaling factor adjustments in our implementation are
done automatically.

We implement both RNS variants in PALISADE and compare their
approximation error and efficiency to the prior RNS variant. Our results
for uniform ternary secret key distribution, which is the most efficient set-
ting included in the community homomorphic encryption security stan-
dard, show that the reduced-error CKKS RNS implementation typically
has an approximation error that is 6 to 9 bits smaller for computa-
tions with multiplications than the prior RNS variant. The results for
the sparse secret setting, which was used for the original CKKS scheme,
imply that our reduced-error CKKS RNS implementation has an approx-
imation error up to 12 bits smaller than the prior RNS variant.

1 Introduction

The Cheon-Kim-Kim-Song (CKKS) homomorphic encryption (HE) scheme is cur-
rently the most efficient method to perform approximate homomorphic computa-
tions over real and complex numbers [14]. The CKKS scheme can already be used
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to achieve practical performance for many advanced applications, e.g., in machine
learning for genomics [5,6,22,23]. Its broader use in practice is hindered by sev-
eral major usability issues. One of the main challenges is the approximation error
inherent to almost every operation in CKKS. A significant error is introduced dur-
ing encryption and keeps growing as computations are performed. To minimize the
growth of approximation error, the original CKKS scheme introduced a rescaling
operation [14]. But the rescaling operation brought about several other usability
issues, e.g., the need for a user to decide when rescaling should be called to achieve
desired precision and optimize the efficiency. Another major challenge is specific to
the rescaling approximation error in the Residue Number System (RNS) variants
of CKKS, which are preferred in practice for better efficiency [6,11].

Approximation Errors in CKKS. All approximation errors in both multipreci-
sion and RNS CKKS are summarized in Table 1. Here, we briefly describe each
approximation error.

Table 1. Approximation errors in the original CKKS and prior RNS CKKS vs our
variants of CKKS and RNS CKKS. The errors rencode, efresh, and eks in our variants get
scaled down by Δ (Δ�), and hence their contribution becomes negligible. In reduced-
error CKKS, the dominant source of approximation error is rrs. The addition of existing
error f in unary operations is omitted for brevity.

Errors in CKKS Errors in RNS CKKS

Algorithm Original CKKS [14] Ours Prior RNS CKKS [6,11] Ours

Encode r encode, rfloat rfloat r encode, rfloat rfloat

Encrypt e fresh – e fresh –

Add f+ = f1 + f2 f+ f+ f+

Mult.
f×
Δ

≈ m 2f1+m 1f2+e ks
Δ

f×
Δ

f×
Δ�

f×
Δ�

Automorphism eks – eks –

Rescale r rs r rs r rs, uΔ r rs

Decrypt – – – –

Decode rfloat rfloat rfloat rfloat

Scalar Add f + r encode, rfloat f , rfloat f + r encode, rfloat f , rfloat

Scalar Mult. f×c/Δ ≈ m cf +m r encode
Δ

f×c/Δ f×c/Δ� f×c/Δ�

Crosslevel Add f+ f+ f+, uΔ f1,×c/Δ� + f2

Crosslevel Mult. f×/Δ f×/Δ f×/Δ�, uΔ ≈ m 2f1,×c+m 1f2+e ks
Δ�

The security of the CKKS scheme is based on the Ring Learning With Errors
(RLWE) problem, where Gaussian noise is introduced to achieve the desired
hardness properties [14]. In the case of CKKS, this LWE noise modifies the least
significant bits of the plaintext during encryption, hence resulting in a lossy
encryption scheme. If the ciphertext ct encrypts a plaintext m, the decryption
of ct outputs a noisy result m̃ = m + f . The central problem in CKKS is to
keep the error f relatively small to meet the desired precision requirements.
We will refer to this type of approximation error caused by LWE noise as an
LWE approximation error. The LWE approximation errors are introduced during
encryption and key switching, and will be denoted as efresh and eks, respectively.

For leveled HE schemes, there is another source of noise related to the integer-
division rounding during the modulus switching operation. This noise depends
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on the norm of the secret key. In CKKS, modulus switching is called rescaling
as it effectively rescales the underlying encrypted plaintext and drops a certain
number of least significant bits from the message. Due to the lossy nature of
CKKS, this rescaling noise brings about an approximation error. We call this
error as a rescaling rounding error, and denote it by rrs. There is another related
procedure in CKKS called modular reduction, which does modulus switching
without scaling the encrypted message (or noise). This operation does not intro-
duce any noise/approximation error, and is not included in Table 1.

Besides LWE and rescaling rounding errors, there are other sources of errors
that contribute to the output approximation error in the CKKS scheme. In the
encoding and decoding procedures, these sources of error arise from precision
limitations, e.g., if using double to represent real numbers. We call these errors as
precision errors and will denote them as rfloat. Precision errors can be reduced by
increasing the floating-point precision in computations. The encoding procedure
also includes another rounding error caused by converting (rounding) encoded
real-number plaintexts to integer plaintexts. We will call this error rencode.

The RNS variants of CKKS introduce another approximation error caused
by approximate scaling in the rescale operation. The RNS variants use a chain of
small primes qi that are only approximately close to the scaling factor Δ = 2p,
and the differences between qi and 2p bring about this approximation error,
which will be denoted as uΔ. This error is typically few bits higher than the
LWE approximation error, and hence the RNS variants have a lower precision
than the multiprecision integer instantiation of CKKS.

Addition and multiplication essentially add up approximation errors of both
input ciphertexts, resulting in an increased approximation error in the output
ciphertext by at most 1 bit (in the worst case of two correlated ciphertexts).
There are also somewhat special types of addition/multiplication called scalar
and crosslevel addition/multiplication. Their approximation errors are shown in
Table 1 and explained in more detail further in the paper.

To better understand the contribution of our work, note that uΔ >
{efresh,eks} > rrs. We intend to remove uΔ, efresh, and eks, hence effectively
reducing the output approximation error to the rescaling rounding error rrs and
its accumulation from multiple ciphertexts.

Our Work. The main goal of our work is to modify the CKKS scheme and its
RNS variants to systematically remove many of the approximation errors listed
in Table 1, achieving a major reduction in the output approximation error and
significantly improving the overall usability of the scheme. Before our work, it
had been widely believed that CKKS is hard to use in practice because of many
sources of approximation errors and the complexity of dealing with them, as
illustrated in a recent talk by Yongsoo Song at the Simons Institute [28].

Our first idea is to redefine the multiplication operation in CKKS as

ctmult′ = Mult′(ct1, ct2) = Mult (Rescale(ct1,Δ),Rescale(ct2,Δ)) .

Reordering the rescaling and multiplication operations this way, i.e., revers-
ing the order of multiplication and rescaling in the original CKKS scheme, brings
about several benefits. First, if we rescale before the first multiplication, we can
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remove (scale down) the prior encoding approximation errors, the LWE encryp-
tion approximation error, and any addition and key switching approximation
errors if these operations are performed before the first multiplication. If we
decrypt the ciphertext before the first multiplication, i.e., in computations with-
out multiplications, we will only observe the effect of the floating-point precision
error rfloat, which for the case of double-precision floating-point numbers (52 bits
of precision) would typically be about 48–50 bits. Second, delaying the rescal-
ing operation until the following multiplication (in computations with multipli-
cations) enables us to eliminate key-switching approximation errors. The only
approximation errors that are left in the non-RNS CKKS are the rescaling round-
ing error rrs, accumulated error due to additions (after first multiplication) and
multiplications, and a relatively small floating-point precision error rfloat.

Our second idea is to redefine the rescaling operation in RNS by introducing
different scaling factors Δ� at each level to eliminate the approximate scaling
error uΔ. The main algorithmic challenges in the implementation of this idea are
related to handling various computation paths, such as adding two ciphertexts
that are several levels apart (referred to as crosslevel addition), and finding
the prime moduli qi that do not lead to the divergence of the level-specific
scaling factor towards zero or infinity for deeper computations. While addressing
these challenges, we also restrict (automate) rescaling to being done right before
multiplication (following our definition of Mult′). We also redefine the addition
operation to include a scalar multiplication and rescaling to bring two ciphertexts
to the same scaling factor. We fully automate these procedures in our software
implementation, achieving the same practical precision as in the non-RNS CKKS
instantiation, as seen in Table 1.

We also provide an efficient implementation of our reduced-error (RE) CKKS
variant in RNS along with an intermediate RNS variant that is faster, but at the
expense of increasing the output approximation error. Table 2 shows representa-
tive results for four different benchmarks: addition of multiple vectors, summation
over a vector, binary tree multiplication, and evaluation of a polynomial over a vec-
tor. These results suggest that the reduced-error CKKS RNS implementation has
an approximation error around 7 bits smaller (we observed values in the range from
6 to 9 bits) for computations with multiplications than the prior RNS variant. For
computations without a multiplication, the approximation error can be up to 20
bits lower than in the prior RNS variant. As compared to the original CKKS using
multiprecision integer arithmetic, our reduced-error CKKS RNS implementation
has an error that is smaller by about 4 and up to 20 bits for computations with
multiplications and without multiplications, respectively.

Performance results in Sect. 5 demonstrate that the runtime of our RE-CKKS
RNS implementation is 1.2x to 1.9x slower than the prior RNS variant (typically
less than 1.5x), which is a relatively small cost paid for the increased precision.
This cost can be offset by a decreased ciphertext modulus (lower ring dimension)
if the same precision is considered, effectively achieving same or better perfor-
mance in many practical cases. More concretely, in the case of power-of-two cyclo-
tomics, which all existing implementations work with, the same precision may be
achieved using a twice smaller ring dimension due to decreased ciphertext modulus
requirements, which improves the runtime by more than 2x. For comparison, the



124 A. Kim et al.

runtime improvement of RNS-HEEAN over the multiprecision HEAAN imple-
mentation was 8.3 times for multiplication [11], and the precision gain of the mul-
tiprecision HEAAN implementation over RNS-HEAAN is only half of what we
report in our work.

Table 2. Representative results showing the precision of our RE-CKKS RNS imple-
mentation vs original CKKS and prior CKKS RNS variant for the HE-standard-
compliant setting of uniform ternary secrets; Δi ≈ 240.

Computation Prior CKKS RNS [6,11] CKKS [14] RE-CKKS RNS (our work)
∑32

i=0 �xi 23.9 23.9 43.8
∑2048

i=0 xi 21.1 21.1 40.4
∏16

i=1 �xi 17.8 22.4 26.0
∑64

i=0 �xi 14.9 17.4 21.3

Table 3. Representative results showing the precision of our RE-CKKS RNS imple-
mentation vs original CKKS and prior CKKS RNS variant for sparse ternary secrets
(this setting was used in the original CKKS construction [14]); Δi ≈ 240.

Computation Prior CKKS RNS [6,11] CKKS [14] RE-CKKS RNS (our work)
∑32

i=0 �xi 24.6 24.6 44.6
∑2048

i=0 xi 22.1 22.1 42.0
∏16

i=1 �xi 17.8 23.2 29.7
∑64

i=0 �xi 14.9 18.2 25.0

Although the original CKKS scheme was instantiated for sparse ternary
secrets [14], we use uniform ternary secrets as the main setting in our work because
the sparse secrets are not currently included in the homomorphic encryption secu-
rity standard [2], and hybrid attacks specific to the sparse setting were recently
devised [16,27]. This choice has a direct effect on the precision gain one gets from
our RE-CKKS variant. Our theoretical estimates suggest that in the sparse setting
the precision gain for a computation with multiplications becomes about 6–8 bits
(higher than 4 bits that we observe for uniform ternary secrets). Some represen-
tative experimental results for the sparse setting, which align with our theoretical
estimates, are illustrated in Table 3. Note that the precision gain of our RE-CKKS
RNS implementation gets as high as 12 bits over the prior RNS variant.

We also implemented RE-CKKS in the HEAAN library [13], which uses
multiprecision arithmetic for rescaling, and ran precision experiments there for
selected computations. The observed precision improvement of RE-CKKS over
CKKS [14] was approximately the same (within 0.2 bits) as in our PALISADE
implementation.

Contributions. Our contributions can be summarized as follows.

– We propose a reduced-error variant of CKKS that reduces the approxima-
tion error compared to the original CKKS scheme by 4 bits and 6–8 bits for
uniform and sparse ternary secrets, respectively. The main idea of our modi-
fications is to redefine the multiplication operation by “reversing” the order
of multiplication and rescaling.
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– We adapt this variant to RNS, while keeping the precision roughly the same,
by developing a novel procedure that computes different scaling factors for
each level and performs rescaling automatically. This procedure required a
development of an original algorithm for finding the RNS primes that keep
the scaling factor as close to the starting value as possible, thus preventing
the divergence of the scaling factor towards zero or infinity for practical num-
bers of levels. The procedure also required several algorithms for handling
ciphertexts at different levels.

– While developing the RNS variant of reduced-error CKKS, we propose an
intermediate RNS variant that has a higher approximation error but runs
faster. Both of our RNS variants have errors that are lower than the prior
RNS variant [6,11].

– We implement both RNS variants in PALISADE and make them publicly
available.

RelatedWork. TheCKKS schemewas originally proposed in [14] and implemented
in the HEEAN library [13] using a mixture of multiprecision and RNS arithmetic.
The main drawback in the original implementation was the use of multiprecision
integer arithmetic for rescaling and some other operations, which is in practice
less efficient than the so-called RNS variants [3,19]. Then several homomorphic
encryption libraries independently developed and implemented RNS variants of
CKKS, including RNS-HEAAN [12], PALISADE [1], SEAL [26], and HELib [20].
The typical RNS variant [6,11], which is based on approximate rescaling, works
with small primes qi that are only approximately close to the actual scaling fac-
tor, which introduces an approximation error that is higher than the LWE error
present in the original CKKS and its HEAAN implementation. The main differ-
ences between various RNS variants are primarily in how key switching is done.
The documentation of the SEAL library also mentioned the idea of using differ-
ent scaling factors for each ciphertext but did not provide any (automated) pro-
cedure to work with different scaling factors in practice (our paper shows that
this can be very challenging and requires the development of new algorithms).
A somewhat different approach is implemented in HELib [4]: the noise estima-
tion capability originally written for the Brakersky-Gentry-Vaikuntanathan [9]
scheme is used to estimate the current approximation error, the scaling factors
are tracked for each ciphertext, and decisions regarding each rescaling are made
based on the current values of error estimate and scaling factor, and desired preci-
sion. The main drawback of this approach is that encrypted complex values need to
be close to one in magnitude for this logic to work properly, limiting the practical
use of this method. Bossuat et al. [7] recently proposed a scale-invariant polyno-
mial evaluation method for removing the RNS scaling error in polynomial evalua-
tion, but this method is not general enough to be applied to all CKKS operations,
in contrast to the approach proposed in this work. Lee et al. recently proposed
two procedures to significantly increase the precision of the CKKS bootstrapping
operation [24]: (1) a fast algorithm for deriving the optimal minimax approxima-
tion polynomial for modular reduction and (2) a composite-function procedure
involving the inverse sine function to reduce the difference between the regular
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CKKS and bootstrapping-specific scaling factors. In their implementation, they
integrated our CKKS approximation error reduction techniques to achieve high
precision for CKKS bootstrapping.

Li and Micciancio recently showed that IND-CPA security may not be suffi-
cient forCKKS in scenarioswhere decryption results are shared, and demonstrated
practical key recovery attacks for these scenarios [25]. To mitigate these attacks,
PALISADE has changed its CKKS implementation to add Gaussian noise during
decryption, which is proportional to the current approximation noise. All improve-
ments proposed in thiswork apply to thismodifiedCKKS instantiation to the same
extent as to the original CKKS, because they effectively reduce the magnitude of
the current approximation noise, which is used as the basis for choosing the stan-
dard deviation for the added Gaussian noise.

Cohen et al. explored the idea of reducing the LWE error in CKKS by using
fault-tolerant computations over the reals [15]. The high-level idea is to run mul-
tiple computations for the same encrypted values and then compute the average.
While this is theoretically possible, the practical performance costs would be high
enough to make this approach impractical. In contrast, our idea of rescaling before
multiplication has a very small performance cost compared to this approach.

2 Preliminaries

All logarithms are base 2 unless otherwise indicated. For complex z, we denote
by ‖z‖2 =

√
zz̄ its �2 norm. For an integer Q, we identify the ring ZQ with

(−Q/2, Q/2] as a representative interval. For a power-of-two N , we denote cyclo-
tomic rings R = Z[X]/(XN + 1), S = R[X]/(XN + 1), and RQ := R/QR. Ring
elements are in bold, e.g. a.

We use a ← χ to denote the sampling of a according to a distribution χ. The
distribution χ is called uniform ternary if all the coefficients of a ← χ are selected
uniformly from {−1, 0, 1}. This distribution is commonly used for secret key gener-
ation as it is the most efficient option conforming to the HE standard [2]. A sparse
ternary distribution corresponds to the case when h coefficients are randomly cho-
sen to be non-zero and all others are set to zero, where h is the Hamming weight.
The sparse ternary secret distribution was used in the original CKKS scheme [14].
We say that the distribution χ is discrete Gaussian with standard deviation σ if all
coefficients of a ← χ are selected from discrete Gaussian distribution with stan-
dard deviation σ. Discrete Gaussian distribution is commonly used to generate
error polynomials to meet the desired hardness requirement [2].

For radix base ω and �-level modulus Q�, let us define the decomposition of
a ∈ RQ�

by WD� (a) and powers of ω, PW� (a). Let dnum = �logω(Q�)�, then
for a ∈ RQ�

:

WD�(a) =
(
[a]ω,

[⌊a
ω

⌋]
ω

, . . . ,
[⌊ a

ωdnum−1

⌋]
ω

)
∈ Rdnum,

PW�(a) =
(
[a]Q�

, [a · ω]Q�
, . . . , [a · ωdnum−1]Q�

) ∈ Rdnum
Q�

.

For any (a, b) ∈ R2
� , WD� and PW� satisfy the following congruence relation:

〈WD� (a) ,PW� (b)〉 ≡ a · b (mod Q�).
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The preliminaries for the CKKS scheme and its RNS instantiation are pre-
sented in the full version of the paper.

3 Reducing the Approximation Error in the CKKS
Scheme

We first describe all approximation errors in the original CKKS scheme (for the
case of uniform ternary secrets and hybrid key switching) and then we discuss how
many of these errors can be removed. We choose the uniform ternary secret dis-
tribution (in contrast to sparse ternary secrets) because sparse ternary secrets are
not currently supported by the HE standard [2], and uniform ternary secrets are
the most efficient option that is supported by the HE standard. The hybrid key
switching [18,21] is selected because it is more efficient than the GHS approach
used in the original CKKS scheme and incurs a smaller approximation error than
the digit decomposition approach [10] for relatively large digits, which are required
for the efficient instantiation of the digit decomposition key switching method.

3.1 Approximation Errors in the CKKS Scheme

Encryption and Decryption. In the original CKKS [14] scheme, to encode the
message �x ∈ C

n, we apply the inverse embedding transformation μ = τ
′−1
n (�x) ∈

S and then scale μ by a factor Δ = 2p and round to obtain the plaintext
m := �Δ · μ� ∈ R. To encrypt m with the public key pk, we sample v ← χenc

and e0,e1 ← χerr, and output

ct = Enc(m) = pk · v + (e0 + m,e1) ∈ R2
Q.

The full process is �x
τ

′−1
n (·)−−−−→ μ

�·×Δ�−−−−→ m
Encpk(·)−−−−−→ ct.

To decrypt the ciphertext ct, we need to compute the inner product with sk
modulo Q:

m̃ = Decsk (ct (m)) = [〈ct, sk〉]Q = c0 + c1 · s ∈ RQ.

To decode m̃, we divide it by Δ, i.e., μ̃ = m̃/Δ, and apply the embedding

transformation �̃x = τ ′
n(μ̃): ct

Decsk(·)−−−−→ m̃
·÷Δ−−−→ μ̃

τ ′
n(·)−−−→ �̃x.

There are several sources of errors that contribute to the output error �̃x − �x.
The τ

′−1
n and τ ′

n maps are exact in theory, but in practice introduce precision
(rounding) errors that depend on the floating-point precision and the value of
n. We omit these errors for now, as we can always reduce them by increasing
the floating-point precision. The same applies to multiplication ×Δ and division
÷Δ in the encoding and decoding parts. However, in the encoding procedure, we
do not only scale, but also round the scaled value, and the rounding introduces
an approximation error rencode with ‖rencode‖∞ ≤ 1/2. Public key encryption
introduces a fresh encryption (LWE) error efresh. After encryption, the ciphertext
ct satisfies the following relation:

c0 + c1 · s = m + efresh = Δ · μ + rencode + efresh = Δ · μ + fenc ∈ RQ.
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Instead of analyzing f , e, r, it is more natural to analyze the scaled errors
φ = f/Δ, ε = e/Δ, ρ = r/Δ since the division by the scaling factor is part of
the decoding procedure, and the scaled error is the one that is related to the
error before applying the τ ′

n transformation in the decoding. In what follows, we
will mainly refer to ε instead of e.

One way to reduce the contribution of fenc is to increase the scaling factor Δ
of the scheme. To keep the encryption secure under the RLWE problem, we need
to increase the ring dimension in the underlying lattice problem, which may be
inefficient in many cases.

We also provide a heuristic bound for fresh encryption noise/approximation
error. It will be used for estimating the reduction of approximation error in our
CKKS variant.

Lemma 1. Given a uniform ternary secret key s, we have the following heuristic
bound for fresh encryption noise: ‖fenc‖can ≤ 32

3

√
6σN + 6σ

√
N.

Proof. See the full version of the paper. Note that for the sparse ternary secret
setting with Hamming weight h, the bound would be formulated as ‖fenc‖can ≤
8
√

2σN + 6σ
√

N + 16σ
√

hN [14].

Addition. The addition procedure ctadd = Add(ct1, ct2) for two ciphertexts at
the same level � is done as component-wise addition and leads to the following
relation:

cadd,0 + cadd,1 · s = Δ · (μ1 + μ2) + (f1 + f2) ∈ RQ�
.

The addition does not introduce any additional errors, but instead adds the
errors together, which is exactly what happens in the unencrypted case of adding
two approximate numbers together.

Scalar Addition. The scalar addition procedure ctcadd = CAdd(ct, const) leads to
the following relation:

ccadd,0 + ccadd,1 · s = Δ · (μ + μconst) + (f + rencode) ,

where Encode(const,Δ) = Δμconst + rencode. In addition to the encoding error,
the scalar addition also introduces a floating-point precision error. Both errors
in the scalar addition are relatively small compared to the ciphertext error.

Key Switching. There are several known key switching procedures

ctks = KeySwitchswk(ct),

which switch the ciphertext ct satisfying the relation:

c0 + c1 · s1 = Δ · μ + f ∈ RQ�
,

to the ciphertext ctks satisfying the relation:

cks,0 + cks,0 · s2 = Δ · μ + f + eks ∈ RQ�
.

The key switching step introduces an LWE-related error eks.
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Lemma 2. For the hybrid key switching method (see the full version of the
paper), we have the following heuristic bound for key switching noise: ‖eks‖can ≤
8
√
3·dnum·ωσN

3P +
√

3N + 8
√
2N
3 .

Proof. See the full version of the paper. Note that for the sparse ternary secret
setting with Hamming weight h, the bound would be formulated as ‖eks‖can ≤
8
√
3·dnum·ωσN

3P +
√

3N + 8
√

hN
3 .

Multiplication. The multiplication procedure ctmult = Mult(ct1, ct2) for two
ciphertexts at the same level � is done in two steps: tensoring and key switching.
The ciphertext after tensoring satisfies the following equation:

ctensor,0 + ctensor,1 · s + ctensor,2 · s2 ≡ (Δ · μ1 + f1) · (Δ · μ2 + f2) = Δ2 · μ1μ2 + f× ∈ RQ�
.

In the tensoring step the error term f× is approximate multiplication error of
(Δ · μi + fi) for the unencrypted case. Hence tensoring does not introduce new
approximation errors.

The key switching part switches ct′ = (0, ctensor,2) as a ciphertext under the
key s2 to the ciphertext ct′′ = KeySwitchevk(ct′) under the key s, and the result
is added to (ctensor,0, ctensor,1). The ciphertext after the key switching satisfies the
following equation:

cmult,0 + cmult,1 · s ≡ Δ2 · μ1μ2 + f× + eks = Δ2 · μ1μ2 + fmult ∈ RQ�
,

where fmult = Δ · (μ1f2 + μ2f1) + f1f2 + eks = f× + eks, and since the scaling
factor becomes Δ2 after multiplication, we have the following relation for the
scaled error:

φmult =
fmult

Δ2
= μ1φ2 + μ2φ1 + φ1φ2 +

εks
Δ

= φ× +
εks
Δ

. (1)

In Eq. (1), we see that the scaled switching error εks is divided by Δ. We can
perform the key switching procedure in such a way that the term eks is much
smaller than Δ, which makes the impact of φmult essentially the same as the
impact of φ× in an unencrypted case.

Scalar Multiplication. The scalar multiplication procedure ctcmult =
CMult(ct, const) is described using the following relation:

ccmult,0 + ccmult,1 · s = Δ2 · (μμconst) + Δ · (μconstf + μrencode) + frencode

= Δ2 · μμconst + fcmult ∈ RQ�
,

where Encode(x,Δ) = Δ · μconst + rencode, fcmult = Δ · (μconstf + μrencode) +
frencode = f×c, and φcmult = μρencode + μconstφ + φρencode = φ×c.

Rescaling. In the CKKS scheme the main reason for rescaling is not to manage
the noise, as in the case of the Brakerski-Gentry-Vaikuntantanathan (BGV)
scheme [9], but to scale down the encrypted message and truncate some least
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significant bits. The size of the encrypted message increases after multiplication
and decreases after rescaling. Other operations, like additions or rotations, do
not affect the magnitude of the message. So we should balance multiplications
and rescaling operations to control the magnitude of message and its precision.
Normally it is advised to perform a rescaling right after each multiplication.

The rescaling procedure ctrs = Rescale(ct,Δ) for a ciphertext at level � is done
by dividing by the scaling factor and rounding. The procedure is as follows:

ctrs = Rescale(ct,Δ) =
(⌈c0

Δ

⌋
,
⌈c1

Δ

⌋)
=

(c0
Δ

+ r0,
c1
Δ

+ r1

)
,

where r0 and r1 are error terms introduced by rounding, with coefficients in
[−1/2, 1/2].

The ciphertext after the multiplication and rescaling procedure ctmult+rs =
Rescale(Mult(ct1, ct2),Δ) satisfies the following relation:

cmult+rs,0 + cmult+rs,1 · s ≡ (Δ · μ1 + f1) · (Δ · μ2 + f2) + eks
Δ

+ r0 + r1s

= Δ · μ1μ2 + fmult+rs ∈ RQ�−1 ,

where

fmult+rs =
f×
Δ

+
eks
Δ

+ r0 + r1s =
f×
Δ

+
eks
Δ

+ rrs, φmult+rs = φ× +
εks
Δ

+ ρrs,

rrs = r0 + r1s is the rounding error, and ρrs = rrs/Δ is the scaled rounding
error. Thus after the rescaling procedure, the scaled approximation error εks/Δ
is negligible and gets completely absorbed by the rounding error ρrs.

Lemma 3. Given a uniform ternary secret key s, we have the following heuristic
bound for the rounding error that is introduced by rescaling: ‖rrs‖can ≤ √

3N +
16

√
2N

3 .

Proof. See the full version of the paper. Note that for the sparse ternary secret
setting with Hamming weight h, the bound would be formulated as ‖rrs‖can ≤√

3N + 8
√

hN
3 [14].

Modulus Reduction. The CKKS scheme also has a modulus reduction proce-
dure that does not change the message or approximation error. This modulus
reduction procedure is done simply by evaluating the ciphertext ct at modulus
Q� modulo smaller modulus Q�′ . As Q�′ |Q�, the method does not introduce any
additional errors.

Automorphism (Rotation and Conjugation). Similar to the multiplication pro-
cedure, the automorphism procedure ctaut = Autrk(κ)(ct, κ) is done in two steps:
automorphism κ and key switching. The ciphertext after automorphism satisfies
the following relation:

c
(κ)
0 + c

(κ)
1 · s(κ) ≡ Δ · μ(κ) + f (κ) ∈ RQ�

.
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The key switching part switches ct′ = (0, c(κ)1 ) as a ciphertext under the key
s(κ) to the ciphertext ct′′ = KeySwitchrk(κ)(ct′) under the key s, and the result is
added to (c(κ)0 , 0). The ciphertext after the key switching satisfies the following
equation:

caut,0 + caut,1 · s ≡ Δ · (μ(κ)) + f (κ) + eks = Δ · μ(κ) + faut ∈ RQ�
,

where faut = f (κ) + eks and φaut = faut

Δ = φ(κ) + εks.
In case of automorphism operations, the key switching error εks is not negligi-

ble anymore compared to φ(κ), as the scaling factor in the case of automorphism
is not squared but stays the same.

3.2 Eliminating LWE and Encoding Approximation Errors

One can see that the rescaling operation does not necessarily need to be done
right after the multiplication, and instead can be done right before the next
multiplication (or before decryption). In other words, we do not rescale after
the multiplication and keep the scaling factor as Δ2. For the first level, we can
encrypt the message μ with the scaling factor Δ2 to make the encryption noise
negligible. The ciphertext ct will satisfy the following relation:

c0 + c1 · s ≡ ⌈
Δ2 · μ

⌋
+ efresh = Δ2 · μ + f ′ ∈ RQ�

.

All other operations, like additions and automorphisms, are done the same
way. The approximation errors will be summed together and in practice will
be much smaller than the scaling factor Δ2. The rescaling operation is done
right before the next multiplication so that the scaled LWE and encoding errors
are dominated by the rounding error after the rescaling. So we can make all
LWE and encoding errors negligible compared to the rounding rescaling errors,
starting with the second level.

As the rescaling operation is performed right before the multiplication, we
can treat it as part of the multiplication. We can redefine the multiplication
Mult′ as a combination of rescaling operations and multiplication:

ctmult′ = Mult′(ct1, ct2) = Mult (Rescale(ct1,Δ),Rescale(ct2,Δ)) .

With this new definition of Mult′, we keep the same number of levels while
slightly increasing the modulus for the fresh ciphertext from q0 ·ΔL to q0 ·ΔL+1.
We also ensure that fresh encryption noise and key switching noise, which appear
after multiplication or automorphism operations, will be negligible and absorbed
by the rescaling rounding error. In other words, we can eliminate all LWE and
encoding approximation errors, by making them negligible compared to rescaling
rounding errors.

We also reduce the total rounding error when we add ciphertexts. If we perform
the rescaling right after multiplication, the rounding error is introduced for each
ciphertext and the rescaling errors will be added when we perform addition of the
ciphertexts. In the case of the new multiplication Mult′, we do rescaling after the
additions, and hence we end up only with a single rounding error.
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With the modified multiplication, the encryption of a message μ at level �
will satisfy the following condition:

c0 + c1s ≡ Δ2 · μ + f ′.

Let f ′/Δ2 = φ′. After Mult′ operation we have:

cmult′,0 + cmult′,1s ≡
(

Δ2 · μ1 + f ′
1

Δ
+ rrs,1

)
·
(

Δ2 · μ2 + f ′
2

Δ
+ rrs,2

)
+ eks

= (Δ · (μ1 + φ′
1) + rrs,1) · (Δ · (μ2 + φ′

2) + rrs,2) + eks

= Δ2 · μ1μ2 + fmult′ ,

where fmult′ = Δ2 ·(μ1φ
′
2 + μ2φ

′
1 + φ′

1φ
′
2

)
+ +Δ ·((μ1 + φ′

1

)
rrs,2 +

(
μ2 + φ′

2

)
rrs,1

)
+

rrs,1rrs,2 + eks, φmult′ = μ1

(
φ′
2 + ρrs,2

)
+ μ2

(
φ′
1 + ρrs,1

)
+

(
φ′
1 + ρrs,1

) (
φ′
2 + ρrs,2

)
+

εks
Δ .

Remark. We can also substitute Δ2 in fresh encryption with a tighter scaling
factor Δ ·Δ′, where Δ′ = 2p′

< 2p = Δ. We need to choose Δ′ in such a way that
the sum of all LWE errors during the computations on the level L, including fresh
encryption noise, is smaller than Δ′. In this case, in Mult′ on the first level we
need to do rescaling by Δ′ instead of Δ. The modulus QL for the fresh ciphertext
will be increased by a smaller factor Δ′ and become QL = q0 · ΔL · Δ′. We use
this tighter scaling factor Δ′ in our implementation.

3.3 Theoretical Estimates of Error Reduction

Computation without Multiplications. If only additions and automorphism oper-
ations are performed, no rescaling errors introduced and the LWE noise is
the main source of approximation error. With standard parameters σ = 3.2,
P = ω = Q

1/3
L , from Lemma 1 the fresh encryption error is bounded by ≈83.6N ,

and from Lemma 2 the key switching error is bounded by ≈44.3N . The total
number of error bits is log(83.6αN + 44.3βN), where α is the number of fresh
ciphertexts used, and β is the number of automorphism operations performed.
The extra modulus Δ′ in Reduced-Error (RE) CKKS is taken to fully absorb the
error: Δ′ > 83.6αN + 44.3βN . The total error before decryption is bounded by
rfloat, which is in practice only 2–5 bits less than the precision of floating-point
arithmetic. This is illustrated by the experimental results presented in Tables 4
and 5 for Δ ≈ 250.

Computation with Multiplications. The extra modulus Δ′ used during encryption
in RE-CKKS effectively reduces the encryption noise from fresh efresh to rescaling
rrs at the first multiplication step. From Lemmas 1 and 3, we have the following
ratio of the upper bounds for fresh encryption and rescaling rounding errors (for
the case of uniform ternary secrets):

log
(
efresh
rrs

)
≈ log

(
32
3

√
6σN + 6σ

√
N√

3N + 8
√
2N
3

)
≈ log

(
4
√

3σ
)

≈ 4.5.
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At the next multiplication, the input error for RE-CKKS can be estimated
as

f ′
mult+rs ≈ (μ1rrs,2 + μ2rrs,1) + rrs

as compared to
fmult+rs ≈ (μ1efresh,2 + μ2efresh,1) + rrs

for the original CKKS scheme. As rrs,i � efresh,i, the rescaling rounding error
typically has no effect on multiplications in the original CKKS, while in the case
of RE-CKKS, rrs still gives a significant contribution. In practice, this implies
there may be a small decline in the precision gain of RE-CKKS over CKKS for
subsequent multiplications (typically not more than 0.5 bits), but this decline
will become progressively smaller for further multiplications as the rounding
errors from prior multiplications accumulate, and the current error will become
much larger than the rounding error rrs.

Hence in theory the upper bound of RE-CKKS error is about 4.5 bits smaller
than the upper bound of CKKS error after the first multiplication, and it may
slighly decline for further multiplications. This is consistent with the implemen-
tation results presented in Sect. 5, where the RE-CKKS error is about 4 bits
smaller than the CKKS error across different circuits with multiplications, and
we also observe a decline of precision gain from 4 (for first multiplication) to
3.5 bits (for deeper multiplications) for a binary tree multiplication benchmark
(Table 6).

Note that in the sparse ternary secret key setting with Hamming weight
h = 64, the precision gain of RE-CKKS over CKKS is higher:

log

(
efresh

rrs

)

≈ log

⎛

⎜
⎝

8
√
2σN + 6σ

√
N + 16σ

√
hN

√
3N + 8

√
hN
3

⎞

⎟
⎠ ≈ log

(√
6σ

√
N

h

)

≈ 1

2
logN.

For example, for N = 214 the gain of RE-CKKS over CKKS is about 7 bits.
But since the sparse setting is not currently supported by the HE standard [2],
we implement and examine the uniform ternary secret setting instead.

4 Reducing the Approximation Error in the RNS
Instantiation of CKKS

In this section, we describe the procedures needed for eliminating the scaling
factor approximation error in RNS and apply the RE-CKKS improvements pre-
sented in Sect. 3 to the RNS setting.

4.1 Eliminating the Scaling Factor Approximation Error in RNS
CKKS

For the RNS setting, the noise control is more challenging as instead of a suitable
ciphertext modulus Q = 2p0+p·L = q0 · ΔL, we should use a ciphertext modulus
Q =

∏L
i=0 qi - product of primes qi. The rescaling operation is done by dividing

by qi, which are no longer powers of two.
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The works [6,11] that independently developed RNS variants of CKKS sug-
gested to keep the scaling factor Δ constant, and pick the RNS moduli qi close
to Δ.

Let qi be such that Δ/qi = 1 + αi, where |αi| is kept as small as possible.
Consider again the multiplication procedure with rescaling at some level �:

cmult+rs,0 + cmult+rs,1s ≡ (Δ · μ1 + f1) · (Δ · μ2 + f2) + eks
q�

+ rrs

= Δ · μ1μ2 + uΔ +
f×
q�

+
eks
q�

+ rrs = Δ · μ1μ2 + fmult+rs,

where uΔ = α� · Δ · μ1μ2,fmult+rs = uΔ + f×
q�

+ eks

q�
+ rrs.

The scaling factor error term uΔ appears here due to the difference between
the scaling factor Δ and prime q�, and typically is the largest among the sum-
mands in the RNS instantiation of CKKS. We can see that uΔ depends on the
distribution of specially chosen prime numbers, and is hence hard to control.
We can consider optimizing the prime moduli selection to minimize the scaling
factor error at each level. But if we consider operations over ciphertexts at dif-
ferent levels, we would have to deal with different scaling factor errors and the
optimal configuration of prime moduli would be different. This implies that we
would have to analyze the noise growth and find an optimal configuration of
prime moduli for each specific computation circuit separately. A more detailed
discussion of this issue is provided in the full version of the paper.

Using a Different Scaling Factor for Each Level. There is a way to eliminate
the scaling factor error completely. As moduli qi are public, we can integrate uΔ

into the scaling factor and adjust the scaling factor after each rescaling. Let the
ciphertext ct encrypt μ at some level � with the scaling factor Δ�. The ciphertext
ct satisfies the following relation:

c0 + c1 · s ≡ �Δ� · μ� + efresh = Δ� · μ + fenc (mod Q�).

With different scaling factors at different levels, we no longer have the approx-
imate scaling error. However, as the evaluation circuits are often quite complex,
we now face different problems. Depending on the order of rescaling operations
when evaluating the circuit, we can have different scaling factors for ciphertexts
at the same level or different final scaling factors.

A naive solution to resolve these problems is to adjust the scaling factors
at the same level by multiplying by corresponding constants. This seems to
be highly inefficient and could double the number of levels in the worst case,
as we would need to introduce an extra scalar multiplication for many normal
operations.

Instead, we enforce the rescaling to be done automatically right after each
multiplication of ciphertexts. With this automated rescaling, we ensure that all
ciphertexts at the same level have the same scaling factors. The ciphertext after
the multiplication procedure with rescaling

ctmult+rs = Rescale (Mult (ct1, ct2) , q�) ,
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will satisfy the following relation:

cmult+rs,0 + cmult+rs,1s ≡ (Δ� · μ1 + f1) · (Δ� · μ2 + f2) + eks
q�

+ rrs

= Δ�−1 · μ1 · μ2 + fmult+rs (mod Q�−1),

where fmult+rs = f×
q�

+ eks

q�
+ rrs and Δ�−1 := Δ2

�

q�
.

The following table shows how the scaling factors change during the compu-
tations depending on the level of the ciphertext:

Level Fresh Δ� OR after Mult+ Rescale

L ΔL = qL

L − 1 ΔL−1 = Δ2
L/qL = qL

L − 2 ΔL−2 = Δ2
L−1/qL−1 = q2L/qL−1

· · · · · ·
� Δ� = Δ2

�+1/q�+1

· · · · · ·
0 Δ0 = Δ2

1/q1

The choice of the initial scaling factor ΔL = qL will become clear from below.

Handling the Operations between Ciphertexts at Different Levels. With the app-
roach of automated rescaling, we always get the same scaling factors for the same
level. However, we still have to deal with ciphertexts at different levels, i.e., with
different scaling factors. Let us say we have two ciphertexts ct1, ct2 with levels
�1 > �2 and scaling factors Δ�1 and Δ�2 . We have to adjust them to be at level
�2 and to have the scaling factor Δ�2 .

– Adjust (ct1, �2) . For a ciphertext ct1 with level �1 and scaling factor Δ�1 ,
drop moduli {q�2+2, . . . , q�1}, multiply the result by a constant

⌈
Δ�2 ·q�2+1

Δ�1

⌋
=

Δ�2 ·q�2+1

Δ�1
+ δ, with δ ∈ [−1/2, 1/2] and finally rescale by q�2+1.

Let a ciphertext ct1 = (c0, c1) satisfy the following relation:

c0 + c1 · s = Δ�1 · μ + f (mod Q�1).

The adjustment procedure ctadj = Adjust (ct1, �2) for a ciphertext ct1 leads to
the following relation:

cadj,0 + cadj,1 · s =
1

q�2+1

(
Δ�1 · μ + f

) ·
(

Δ�2 · q�2+1

Δ�1

+ δ

)

+ rrs = Δ�2 · μ+ fadj (mod Q�2 ),

with fadj = Δ�2
Δ�1

· f + δΔ�1 ·μ+δf

q�2+1
+ rrs, where the second error term is introduced

by scalar multiplication and the error rrs is introduced by the rescaling. Consider
scaled errors f/Δ� = φ(�), r/Δ� = ρ(�), e/Δ� = ε(�), then we have

φ
(�2)
adj = φ(�1) +

δΔ�1 · μ

Δ2
�2+1

+
δφ(�2+1)

Δ�2+1
+ ρ(�2)rs . (2)

We now can redefine addition and multiplication operations for ciphertexts
at different levels.
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– CrossLevelAdd(ct1, ct2) If �1 = �2, output Add(ct1, ct2), else w.l.o.g. �1 > �2.
We first adjust ct1 to level �2, ct′1 = Adjust(ct1, �2), and then output
Add(ct′1, ct2).

– CrossLevelMult(ct1, ct2) If �1 = �2, output Mult(ct1, ct2), else w.l.o.g. �1 >
�2. We first adjust ct1 to level �2, ct′1 = Adjust(ct1, �2), and then output
Mult(ct′1, ct2).

In Eq. (2), we want Δ�1 and Δ�2+1 to be close to each other to keep the error
φ
(�2)
adj small.

Choosing the Primes to Avoid the Divergence of Scaling Factors. We initially
tried to reuse the alternating logic for selecting the prime moduli in the CKKS
RNS instantiations [6,11], which was introduced to minimize the approximate
scaling error. The algorithm showing this logic is listed in Algorithm 1 of the full
version of the paper. However, the scaling factors chosen using this logic diverge
after ≈ 20 or ≈ 30 levels (for double-precision floats used in our implementation),
as illustrated in Fig. 1. As soon as the scaling factor significantly deviates from
2p, the scaling factor quickly diverges from 2p either towards 0 or infinity due
to the exponential nature of scaling factor computation (the scaling factor is
squared at each level). As this situation is not acceptable, we had to devise
alternative algorithms.

To address this problem, we developed two other algorithms (Algorithms 2
and 3 in the full version of the paper) where instead of minimizing the difference
between Δ� and 2p, we minimize the difference between two subsequent scaling
factors. Algorithm 2 directly applies this logic. Algorithm 3 refines this logic
by also alternating the selection of moduli w.r.t to the previous scaling factor
(first a larger prime modulus is selected, then a smaller modulus, etc.), i.e., it
combines Algorithms 1 and 2 to further minimize the error introduced by the
deviation of the current scaling factor. Figure 1 shows that the deviation of the
scaling factors from 2p is very small for both Algorithms 2 and 3 up to 50 levels.
Eventually both algorithms diverge, but it happened after 200 levels for all ring
dimensions N we ran experiments for. As Algorithm 3 has smoother behaviour,
we chose it for our implementation.

Note that we chose ΔL = qL to reuse this scaling factor at level L− 1, hence
getting one level for “free” (without squaring and division).

In our implementation we also added a condition to check that the scaling
factor does not diverge much from 2p. PALISADE throws an exception if the
scaling factor is within a factor of 2 of 2p.

4.2 Applying the Reduced-Error CKKS Modifications

With different scaling factors at different levels, we no longer have the approxi-
mate scaling error. Hence now we can apply the RE-CKKS techniques to further
reduce the approximation error. For the original CKKS scheme, we considered
the idea of modified multiplication where rescaling is done right before the next
multiplication. The same idea can be adapted to the RNS instantiation of CKKS
to reduce the LWE related noise:

ctmult′ = Mult′ (ct1, ct2) = Mult (Rescale (ct1, q�) ,Rescale (ct2, q�)) .
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Fig. 1. Deviation of scaling factors from the base value 2p for p = 40 and p = 50 and
different values of ring dimension N ; threshold corresponds to a factor of 2x change.

With the modified multiplication, we also ensure that the ciphertexts at the
same level have the same scaling factor, as we do not shuffle Rescale and Mult
operations, but just delay the Rescale operation to be done right before next Mult,
instead of right after the multiplication. This delay of the Rescale operation has
the same effect as eliminating LWE errors in RE-CKKS.

For level L, we add an extra modulus q′ satisfying q′ = 1 (mod 2N), such that
the sum of all LWE errors during the computations at level L, including fresh
encryption noise, is smaller than q′. The following table shows how the scaling
factors change during a computation depending on the level of the ciphertext:

Level Fresh Δ� OR after Mult′

L ΔL · Δ′ = qL · q′

L − 1 Δ2
L = q2L

L − 2 Δ2
L−1 = q2L

· · · · · ·
� + 1 Δ2

�

· · · · · ·
0 Δ2

1

With the modified multiplication, the encryption of a message μ at level �
will satisfy the following condition (for an encryption with an extra level we need
to substitute Δ2

� with ΔL · Δ′):

c0 + c1s ≡ Δ2
� · μ + f ′.

Let f ′/Δ2
� = φ′(�). After Mult′ operation we have:

cmult′,0 + cmult′,1s ≡
(

Δ2
� · μ1 + f ′

1

q�
+ r1,rs

)

·
(

Δ2
� · μ2 + f ′

2

q�
+ r2,rs

)

+ eks

=
(
Δ�−1 ·

(
μ1 + φ

′(�)
1

)
+ r1,rs

)
·
(
Δ�−1 ·

(
μ2 + φ

′(�)
2

)
+ r2,rs

)
+ eks

= Δ2
�−1 · μ1μ2 + fmult′ ,
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where

fmult′ = Δ2
�−1 ·

(
μ1φ

′(�)
2 + μ2φ

′(�)
1 + φ

′(�)
1 φ

′(�)
2

)

+ Δ�−1 ·
((

μ1 + φ
′(�)
1

)
rrs,2 +

(
μ2 + φ

′(�)
2

)
rrs,1

)
+ rrs,1rrs,2 + eks,

φmult′ = μ1

(
φ

′(�)
2 + ρ

(�−1)
rs,2

)
+μ2

(
φ

′(�)
1 + ρ

(�−1)
rs,1

)
+

(
φ

′(�)
1 + ρ

(�−1)
rs,1

) (
φ

′(�)
2 + ρ

(�−1)
rs,2

)
+

ε
(�−1)
ks

Δ�−1
.

Handling the Operations Between Ciphertexts at Different Levels for Reduced-
Error CKKS. The same approach as in Sect. 4.1 can be applied to handle the
operations between ciphertexts at different levels.

– Adjust (ct1, �2). For a ciphertext ct1 at level �1 and scaling factor Δ2
�1

, drop
moduli {q�2+2, . . . , q�1}, multiply the result by a constant

⌈
Δ2

�2
· q�2+1/Δ2

�1

⌋
=

Δ2
�2

· q�2+1/Δ2
�1

+ δ, where δ ∈ [−1/2, 1/2], and finally rescale by q�2+1.

Let a ciphertext ct1 = (c0, c1) satisfy the following relation:

c0 + c1 · s = Δ2
�1 · μ + f ′ (mod Q�).

The adjustment procedure ctadj = Adjust (ct1, �2) for a ciphertext ct1 leads to
the following relation:

cadj,0 + cadj,1 · s =

(
Δ2

�1
· μ + f ′

)

q�2+1
·
(

Δ2
�2

· q�2+1

Δ2
�1

+ δ

)

+ rrs = Δ2
�2

· μ + f ′
adj (mod Q�2 ),

with f ′
adj =

Δ2
�2

Δ2
�1

·f ′ +
δΔ2

�1
·μ+δf ′

q�2+1
+rrs, where the second error term is introduced

by scalar multiplication and error rrs is introduced by the rescaling. Then we
have

φ
′(�2)
adj = φ

′(�1) +
δΔ2

�1
· μ

Δ2
�2+1Δ�2

+
δφ

′(�2+1)

Δ�2

+
ρ
(�2)
rs

Δ�2

.

We see that the rescaling part ρ
(�2)
rs

Δ�2
becomes negligible.

5 Implementation Details and Results

We implemented both proposed RNS variants of CKKS in PALISADE and eval-
uated their performance using four representative benchmarks: addition of multi-
ple vectors, summation over a vector, component-wise multiplication of multiple
vectors, evaluation of a polynomial over a vector.

We introduce the following notation to distinguish between different RNS
variants of CKKS: Reduced-Error CKKS with Delayed Exact (RE-CKKS-DE)
rescaling – includes all techniques for reducing the approximation error presented
in this work; CKKS with Delayed Exact (CKKS-DE) rescaling – includes only
the RNS-specific techniques described in Sect. 4.1 + delayed rescaling; and CKKS
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with Immediate Approximate (CKKS-IA) rescaling – classical RNS variant, as
implemented in RNS-HEAAN and prior versions of PALISADE.

Note that the approximation error of CKKS-DE is approximately the same
as the error of the multiprecision CKKS implementation in the HEAAN library.
In our comparison of experimentally observed precision for CKKS-DE in PAL-
ISADE vs CKKS in the HEAAN library for selected computations (where
delayed rescaling in CKKS-DE did not give any advantage to PALISADE over
HEAAN), we did not observe differences higher than 0.2 bits, and the differences
we saw were not statistically significant.

5.1 Setting the Parameters

The coefficients of error polynomials were sampled using the discrete Gaussian
distribution with parameter σ = 3.2. We used uniform ternary distribution for
secrets, which is the most efficient setting that is compliant with the HE stan-
dard [2]. We set Q′

L using the logic described in the full version of the paper.

5.2 Software Implementation and Experimental Setup

We implemented all proposed RNS variants of CKKS in PALISADE v1.10. The
evaluation environment was a commodity desktop computer system with an
Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz and 64 GB of RAM, running
Ubuntu 18.04 LTS. The compiler was g++ 9.3.0. All experiments were executed
in the single-threaded mode.

We ran the experiments in the full packing mode, i.e., we packed a vector �x ∈
C

N/2 of size N/2 per ciphertext. The entries xi were randomly generated from
the complex unit circle {z ∈ C : ‖z‖2 = 1}. To estimate the precision after the
decryption output �̃x, we evaluated the average of ‖xi − x̃i‖2 and then computed
the absolute value of logarithm of it.

5.3 Experimental Results

Addition of Multiple Vectors. Table 4 compares the precision and runtimes for
the use case of adding k vectors together for all four RNS variants. This use
case does not require any key switching and rescaling operations, and illustrates
the pure effect of eliminating fresh LWE encryption noise. The precision of RE-
CKKS-DE is about 20 bits higher than for CKKS at Δi ≈ 240 for all considered
values of k, which implies that Δ′ = 220 gives us a direct improvement in pre-
cision. For Δi ≈ 250, we get a smaller improvement in precision because of the
52-bit precision of the double-precision floating-point arithmetic used to rep-
resent real numbers. The precision is reduced from 52 to roughly 48–49 bits
because of the decoding error rfloat. The runtime slowdown of RE-CKKS-DE vs
CKKS-DE for both values of Δi is exactly 2x because RE-CKKS-DE works with
two RNS limbs (the regular one + the extra modulus Δ′). This slowdown for
Δi ≈ 240 can be removed by working with a composite modulus q0Δ

′ ≈ 260 as it
fits a single 64-bit word. But we did not implement this optimization as it only
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Table 4. Comparison of precision and runtime when computing
∑k

i=0 �xi for Reduced-
Error CKKS with Delayed Exact (RE-CKKS-DE) rescaling, CKKS with Delayed
Exact (CKKS-DE) rescaling, and CKKS with Immediate Approximate (CKKS-IA)
rescaling RNS variants; CKKS-DE has the same approximation error as the multi-
precision CKKS implementation in the HEAAN library and CKKS-IA is equivalent
to the RNS implementation in RNS-HEAAN and previous versions of PALISADE;
Δi ≈ 2p, q0 ≈ 260, Δ′ ≈ 220, K = �log QL� , λ > 128 bits.

RE-CKKS-DE CKKS-DE CKKS-IA

p k logN K Prec. Time logN K Prec. Time Prec. Time

40 2 12 60 45.8 0.04 ms 12 40 25.9 0.02 ms 25.9 0.02 ms

4 12 60 45.3 0.11 ms 12 40 25.4 0.06 ms 25.4 0.04 ms

8 12 60 44.9 0.24 ms 12 40 24.9 0.12 ms 24.9 0.08 ms

16 12 60 44.3 0.51 ms 12 40 24.4 0.25 ms 24.4 0.17 ms

32 12 60 43.8 1.06 ms 12 40 23.9 0.51 ms 23.9 0.34 ms

64 12 60 43.3 2.2 ms 12 40 23.4 1.07 ms 23.4 0.74 ms

50 2 13 70 48.1 0.08 ms 13 50 34.9 0.04 ms 34.9 0.03 ms

4 13 70 48.4 0.22 ms 13 50 34.4 0.11 ms 34.4 0.07 ms

8 13 70 48.0 0.48 ms 13 50 33.9 0.23 ms 33.9 0.16 ms

16 13 70 49.6 1.04 ms 13 50 33.4 0.53 ms 33.4 0.34 ms

32 13 70 48.9 2.16 ms 13 50 32.9 1.1 ms 32.9 0.76 ms

64 13 70 48.1 4.42 ms 13 50 32.4 2.17 ms 32.4 1.54 ms

works for special cases, and the runtime of about 1 ms is already very small for
practical purposes. There is also some performance improvement for CKKS-IA
as compared to CCKS-DE, but it is determined by how the code is written (extra
memory allocations in the case of CCKS-DE) and has no algorithmic cause.

Table 5. Comparison of precision and runtime when computing
∑N/2

i=0 xi for RE-
CKKS-DE, CKKS-DE, and CKKS-IA RNS variants (see Table 4 for the definition of
RNS variants); Δi ≈ 2p ≈ q0, Δ

′ ≈ 220, K = �log QL� , λ > 128 bits.

RE-CKKS-DE CKKS-DE CKKS-IA

p logN K Prec. Time logN K Prec. Time Prec. Time

40 12 60 40.4 17.33 ms 12 40 21.1 8.94 ms 21.1 8.89 ms

50 13 70 47.2 38.67 ms 13 50 28.3 19.79 ms 28.3 19.77 ms

Summation Over a Vector. Table 5 shows the precision and runtimes for the
computation adding up all components of a vector. This use case requires key
switching but does not need to rescale as there are no multiplications involved.
We can see that the precision improvement of RE-CKKS-DE over CKKS-DE
is still about 20 bits for Δi ≈ 240 and it is slightly smaller for Δi ≈ 250 due
to the floating-point approximation error. This implies that Δ′ removes both
encryption and key switching LWE approximation errors, and we only deal with
the floating-point precision error here. The runtime slowdown of RE-CKKS-DE
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compared to all other RNS variants is slightly under 2x. It can be attributed
to the extra modulus Δ′ and increased computational complexity of hybrid key
switching related to this.

Table 6. Comparison of precision and runtime when computing
∏2k

i=1 �xi for RE-CKKS-
DE, CKKS-DE, and CKKS-IA RNS variants (see Table 4 for the definition of RNS
variants); Δi ≈ 2p, q0 ≈ 260, Δ′ ≈ 220, K = �log QL� , λ > 128 bits.

RE-CKKS-DE CKKS-DE CKKS-IA

p k logN K Prec. Time logN K Prec. Time Prec. Time

40 1 13 120 28.9 5.61 ms 13 100 24.9 3.24 ms 21.8 4.01 ms

2 14 160 27.1 47.85 ms 14 140 23.4 32.93 ms 20.1 34.25 ms

3 14 200 26.5 0.14 s 14 180 22.9 99.47 ms 20.7 0.1 s

4 14 240 26.0 0.38 s 14 220 22.4 0.29 s 17.8 0.29 s

5 14 280 25.4 0.91 s 14 260 21.9 0.73 s 17.3 0.73 s

6 14 320 24.9 2.29 s 14 300 21.4 1.79 s 15.9 1.78 s

7 15 360 23.4 11.27 s 15 340 19.9 8.94 s 14.3 8.86 s

50 1 13 130 38.9 6.22 ms 13 110 34.9 3.17 ms 32.8 4 ms

2 14 180 37.1 47.83 ms 14 160 33.4 32.77 ms 32.3 34.23 ms

3 14 230 36.5 0.14 s 14 210 32.9 0.1 s 29.0 0.1 s

4 14 280 36.0 0.38 s 14 260 32.4 0.29 s 29.5 0.29 s

5 14 330 35.4 0.97 s 14 310 31.9 0.73 s 27.7 0.73 s

6 15 380 33.9 4.8 s 15 360 30.4 3.76 s 27.3 3.73 s

7 15 430 33.4 11.3 s 15 410 29.9 8.94 s 25.9 8.85 s

Binary Tree Multiplication. Table 6 illustrates the precision and runtimes for the
case of binary tree multiplication. This use case examines the effect of reduced
approximation error for the multiplication operation followed by key switching
and rescaling. First, we want to point out that the precision improvement of
RE-CKKS-DE over CKKS-DE is about 3.5 to 4 bits (with the highest precision
gain after the first multiplication), as theoretically predicted in Sect. 3.3. Second,
CKKS-DE gains additional 3 to 6 bits over CKKS-IA. This implies that the RE-
CKKS-DE RNS variant can be up to 9 bits more precise than the prior RNS
variants. The performance penalty of higher precision varies between 1.2x and
1.6x, which is a relatively small cost.

Evaluation of a Polynomial Over a Vector. Table 7 shows the precision and
runtimes for the case of evaluating a polynomial over a vector of real numbers,
which is a very common operation in CKKS as a polynomial approximation is
often used to approximate “hard”, nonlinear functions, such as logistic function,
multiplicative inverse, sine wave, etc. This use case examines the combined effect
of multiplications and cross-level additions. We can observe that the precision
gain of RE-CKKS-DE over CKKS-DE is still 3.5–4 bits. The precision gain
of CKKS-DE over CKKS-IA is less pronounced in this case (not higher than
3 bits). The performance penalty is the worst for smaller-degree polynomials
(up to 1.9x), but drops to 1.6x for larger-degree polynomials.



142 A. Kim et al.

Table 7. Comparison of precision and runtime when computing
∑k

i=0 �xi for RE-CKKS-
DE, CKKS-DE, and CKKS-IA RNS variants (see Table 4 for the definition of RNS
variants); Δi ≈ 2p, q0 ≈ 260, Δ′ ≈ 220, K = �log QL� , λ > 128 bits.

RE-CKKS-DE CKKS-DE CKKS-IA

p k logN K Prec. Time logN K Prec. Time Prec. Time

40 2 13 120 28.4 7 ms 13 100 24.3 3.37 ms 21.8 4.14 ms

4 14 160 26.1 50.88 ms 14 140 22.2 35.63 ms 19.4 29.39 ms

8 14 200 24.8 0.13 s 14 180 21.0 0.1 s 19.1 75.14 ms

16 14 240 23.6 0.29 s 14 220 19.8 0.26 s 16.9 0.17 s

32 14 280 22.4 0.64 s 14 260 18.6 0.58 s 16.3 0.38 s

48 14 320 21.8 1.12 s 14 300 17.9 1.05 s 15.1 0.67 s

64 14 320 21.3 1.33 s 14 300 17.4 1.26 s 14.9 0.82 s

50 2 13 130 38.4 7.69 ms 13 110 34.3 3.36 ms 32.8 4.14 ms

4 14 180 36.0 51.19 ms 14 160 32.1 35.8 ms 29.5 29.48 ms

8 14 230 34.8 0.13 s 14 210 31.0 0.1 s 28.0 75.42 ms

16 14 280 33.6 0.29 s 14 260 29.8 0.26 s 27.7 0.17 s

32 14 330 32.4 0.68 s 14 310 28.6 0.58 s 26.4 0.38 s

48 15 380 30.8 2.34 s 15 360 26.9 2.21 s 26.1 1.4 s

64 15 380 30.3 2.78 s 15 360 26.4 2.65 s 25.6 1.72 s

6 Concluding Remarks

Our results suggest that a relatively high precision can be achieved for RE-CKKS
in RNS for significantly smaller scaling factors than in the original CKKS scheme
and its prior RNS variants. This implies RE-CKKS requires smaller ciphertext
moduli (lower ring dimension) to achieve the same precision as the original CKKS
or its RNS instantiation, which may also yield certain performance improvements
over the prior approach if the same output precision is considered (the ring
dimension can be reduced by 2x).

Another benefit of RE-CKKS is that it can be used to increase the CKKS
bootstrapping precision in RNS variants of CKKS, which is currently a major
practical limitation for the RNS instantiations of CKKS [21]. For example, the
extra 6 to 9 bits and 10 to 12 bits for uniform and sparse secrets, respectively,
may provide enough room for more accurate polynomial approximations of the
modular reduction function. But the precision improvements in CKKS boot-
strapping require careful modifications at various stages of the bootstrapping
procedure, e.g., in the scaling operations. Hence this problem deserves a sepa-
rate study and is beyond the scope of our present work.

The main motivation of our study was to improve the usability of the CKKS
scheme by eliminating several approximation errors and automating the exe-
cution of rescaling. We believe we have achieved this goal, and consider our
work as a significant step towards making the CKKS scheme more practical. For
instance, all operations related to rescaling or the approximation error manage-
ment are completely hidden from the application developer in our PALISADE
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implementation, and the API for CKKS is the same as for integer-arithmetic
homomorphic encryption schemes, such as Brakersky-Gentry-Vaikuntanathan [9]
and Brakerski/Fan-Vercauteren [8,17] schemes.
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Abstract. We introduce lattice-based practical seed-recovery attacks
against two efficient number-theoretic pseudo-random number genera-
tors: the fast knapsack generator and a family of combined multiple recur-
sive generators. The fast knapsack generator was introduced in 2009 by
von zur Gathen and Shparlinski. It generates pseudo-random numbers
very efficiently with strong mathematical guarantees on their statistical
properties but its resistance to cryptanalysis was left open since 2009.
The given attacks are surprisingly efficient when the truncated bits do
not represent a too large proportion of the internal states. Their com-
plexities do not strongly increase with the size of parameters, only with
the proportion of discarded bits.

A multiple recursive generator is a pseudo-random number generator
based on a constant-recursive sequence. A combined multiple recursive
generator is a pseudo-random number generator based on combining two
or more multiple recursive generators. L’Écuyer presented the general
construction in 1996 and a popular instantiation deemed MRG32k3a in
1999. We use algebraic relations of both pseudo-random generators with
underlying algebraic generators to show that they are cryptographically
insecure. We provide a theoretical analysis as well as efficient implemen-
tations.

Keywords: Pseudo-random number generators · Knapsack problem ·
Coppersmith methods · Cryptanalysis

1 Introduction

A pseudo-random number generator (PRNG) is an efficient deterministic algo-
rithm that stretches a small random seed into a longer pseudo-random sequence
of numbers. These generators can be used to emulate randomness in games,
numerical simulations or cryptographic protocols. These different situations call
for PRNGs with different properties. A cryptographic application will need a
strong PRNG that produces a sequence of bits indistinguishable from “truly”
random bits by efficient adversaries while a numerical simulation or a game will
ask for a fast and light PRNG.

Analysing the quality of randomness for a PRNG suited for cryptographic
applications is natural as a failure in these PRNGs would lead to problematic
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security breaches. Rueppel and Massey introduced the knapsack generator [16]
in 1985 for cryptographic purposes. One chooses n secret bits u0, . . . un−1 and
n secret weights ω0, . . . , ωn to form the seed. A linear feedback shift register
(LFSR) generates the control bits (ui) from the n secret bits and a public feed-
back polynomial of order n. At step i, the generator computes vi ≡ ∑n−1

j=0 ui+jωj

mod 2n, discards the least significant bits and outputs the remaining. In 2011,
Knellwolf and Meier [11] presented the main attack against this generator. They
used a guess-and-determine strategy coupled with lattice-based techniques to
recover most of the key in relevant instances of the generator. In order to run
said attack, they needed to guess all the n initial control bits. Hence their attack
had a time complexity Ω(2n). This attack is not fast enough to definitively keep
the knapsack generator away from cryptographic applications. In 2009, von zur
Gathen and Shparlinski presented a faster and lighter version of the knapsack
generator called the fast knapsack generator [7]. The main modification was a
specialisation of the weights. In their paper, the authors mention that it was not
clear if that specialisation had an impact on the security of this generator. Thus
it was not known if it was suited for cryptographic purposes. In this article, we
notice similarities between the fast knapsack generator and a linear congruential
generator (LCG). Because of the specialisation of the weights, the fast knap-
sack generator tends to act like a LCG one iteration out of four. We present here
lattice-based attacks exploiting this new weakness. We first describe three differ-
ent algorithms to attack the underlying LCG, two using Coppersmith Methods
and one based on Stern’s attack against the LCG. Then we present how such
algorithms can be used to break the fast knapsack generator. These algorithms
allow us to completely recover the seed when less than a quarter of the bits are
discarded.

Attacking a non-cryptographic PRNG is not irrelevant. Non-cryptographic
PRNGs tend to be faster and lighter than their cryptographic counterparts.
As they do not pretend to achieve some kind of security, they are less studied
by cryptanalysts hence there might not exist any known attack against them.
Because of that, one might be tempted to replace a strong but slow cryptographic
PRNG with a faster non-cryptographic one. Breaking non-cryptographic PRNGs
could deter anyone to use them outside of what they are made for. This had
already been done with the PCG64 by Bouillaguet et al. in 2020 [2]. The PCG64
is the default pseudo-random number generator in the popular NumPy [18] sci-
entific computing package for Python.

A combined linear congruential generator (CLCG) is a pseudo-random num-
ber generator algorithm based on combining two or more linear-congruential
generators. The general construction was proposed in 1982 by Wichmann and
Hill in [19]. A multiple recursive generator (MRG) is a pseudo-random genera-
tor based on a constant-recursive sequence. Like the LCGs, the MRGs can be
combined to obtain CMRGs. In 1999, L’Écuyer presented a family of parameters
giving CMRGs with good properties. These PRNGs are fast and pass the “spec-
tral test” evaluating their closeness to the uniform distribution. The more famous
of these CMRGs is the MRG32k3a, largely used for producing multiple streams
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of pseudo random numbers, as seen in [13]. It is one of the PRNGs implanted in
Matlab and the native PRNG of the programming language Racket.

This PRNG had already been used once in place of a secure one for the
website Hacker news. In 2009, Franke [4] managed to hack this website and was
able to steal accounts. His attack was not based on breaking the MRG32k3a
but on guessing how the seed was generated. In fact the seed was the time (in
milliseconds) when the Hacker News software was last started. After crashing the
website he had access to the information he needed. In this case, breaking the
MRG32k3a could have lead us to an other real life attack against this website. In
our paper we will present an attack against CMRGs that output the difference
between two MRG of order three. The trick will be to see the two congruential
constant-recursive sequences as two projections of a single larger congruential
constant-recursive sequence. This attack will cover the particular case of the
MRG32k3a. Even if we reduce our study to those specific CMRGs, the same
techniques can be used on CMRGs combining more than two MRGs or MRGs
of larger orders.

Attacking a non-cryptographic PRNG is not only security-related. As men-
tioned earlier, PRNGs can be used in numerical simulations and a hidden struc-
ture in a PRNG could cause bias in said simulation. In [3], Ferrenberg et al. ran
classical Ferromagnetic Ising model Monte-Carlo simulations in specific cases
where exact results were known, with different PRNGs. They observed that the
choice of the PRNG had a significant impact on the outcome. For example, a
given LFSR tented to give energy levels that were too low and a critical tem-
perature that was to high.

In Sect. 2, we will present a simplified version of the Coppersmith method,
used in the attacks against both PRNGs. The different attacks on the fast knap-
sack generator will be discussed in Sects. 3 and 4 while the attack against the
CMRGs will be presented in Sect. 5.

2 Coppersmith Method

In this section, we give a short description of a Coppersmith method used to solve
a multivariate modular polynomial system of equations over a single modulus.
We refer the reader to [8] for proofs.

We consider P1(y0, . . . , yn), . . . , Ps(y0, . . . , yn) s irreducible multivariate poly-
nomials defined over Z, having a common small root (x0, . . . , xn) modulo a
known integer N . Said root is said small because it must be bounded by known
values, namely |x0| < X0, . . . , |xn| < Xn. In order to find this root, we may
want to increase the number of polynomials by adding polynomials of the
form yk1

1 . . . ykn
n P

kn+1
i . We suppose we have now r polynomials P1, . . . , Pr lin-

early independent but not necessarily irreducible. To each of these polynomi-
als Pi we associate a number ki that will be the multiplicity of (x0, . . . , xn)
as a root of Pi mod N (in other terms, ki is the largest integer such that
Pi(x0, . . . , xn) ≡ 0 mod Nki). We construct the real matrix M as follows:
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M =

P1 · · · Pr

↓ · · · ↓
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1

�
1

X−1
0 y0

. . .
...

X−a0
0 × · · · × X−an

n ya0
0 × · · · × yan

n

0
Nk1

. . .
Nkr

We denote M the set of monomials that appear at least in one Pi and |M| its
cardinality. Each one of the upper rows (between 1 and |M|) corresponds to one
of these monomials and each one of the latest columns (from |M|+1 to |M|+ r)
corresponds to one of the polynomials.

Let i be in {1, . . . , |M|}, we denote mi the i-th monomial of M, mi =
yb0
0 . . . ybn

n . The value of Mi,i will be the inverse of the bound on mi, hence
X−b0

0 . . . X−bn
n . For all j between 1 and r, the value of Mi,|M|+j will be the

coefficient of mi in Pj . Finally, the value of M|M|+j,|M|+j will be kj as described
in the previous paragraph.

We want to show that the smallest vector of the lattice spanned by the rows
of M contains the solution (x0, . . . , xn). We denote by ci the integer such that
Pi(x0, . . . , xn) = ciN

ki . We can construct v:

v = (1, x0, . . . , x
a0
0 . . . xan

m−1,−c1, . . . ,−cr) × M

=
(

1,
x0

X0
, . . . ,

xa0
0 . . . xan

n

Xa0
0 . . . Xan

n
, 0, . . . , 0

)

.

By construction, the vector v is in the lattice. Its first |M| coordinates are
smaller than one and the remaining ones are null, hence it is a small vector. In
general, retrieving the shortest vector of a lattice is a hard problem (called the
SVP for Shortest Vector Problem), but if this short vector is abnormally short,
it can be far easiest. A common method to find such a vector is applying the LLL
algorithm to the lattice. The LLL [12] is a polynomial-time reduction algorithm
presented by Lenstra, Lenstra and Lovász in 1982. It takes as input a basis of a
lattice and outputs a short and nearly orthogonal basis of the same lattice. The
smallest vector of this basis is, as a consequence, a small vector of the lattice.
We will thus apply LLL on the matrix M to obtain the small vector v.

The conditions on the bounds that make this method works are given by the
following (simplified) equation:

∏

y
a0
0 ...yan

n ∈M

Xa0
0 . . . Xan

n < N
∑r

i=1 ki . (1)

For further details see [15].
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3 Attacks on the Linear Congruential Generator

A Linear Congruential Generator (LCG) is a pseudo-random number generator
whose internal states are of the form vi+1 = zvi + C mod N . The parameter
z is called the multiplier, C is the increment and N is the modulus. Those
generators have been largely studied in various cases. In 1984, Frieze et al. [6]
showed that, provided both the modulus N and the multiplier z, the sequence
output by a LCG was completely predictable as long as more than 2/5 of the bits
were output. In 1987, Stern [17] presented two algorithms to predict a sequence
output by a LCG with O(

√
log(N)) outputs. The first algorithm treated the

case where only the modulus N was known and the second one treated the case
where all the parameters were secret. In 1988, Frieze and al. proposed in [5] a
polynomial-time algorithm to retrieve the seed when the multiplier z and the
modulus N were known. In 1997, Joux and Stern presented in [9] a polynomial-
time algorithm against the LCG to retrieve the parameters z, c and N when
they are kept secret.

3.1 Attacks via a Coppersmith Method

In the following, we will study the LCG underlying in the fast knapsack genera-
tor. This LCG is particular in the sense that z is unknown, c = 0 and N = 2n. We
have two options to retrieve the seed of this generator. We can create new attacks
specifically against this type of LCG or adapt existing attacks like Stern’s. In
this subsection we will explore the first option and use our own algorithm based
on a Coppersmith method to retrieve z. We also notice that our strategy is easy
to adapt to the case where the outputs we have are no longer consecutive.

Let v0 and z be two n-bits integers. The integer v0 is the seed and z the multi-
plier. We choose z odd (hence coprime to 2n), otherwise v1 would be divisible by
2, v2 by 22 and vk by 2k. At step i+1, our LCG computes vi+1 = z × vi mod 2n

and outputs the n − � most significant bits.
For an internal state vi, we introduce the following notations:

– Hi = (vi quo 2�)×2� +2�−1, where quo denotes the quotient of the Euclidean
division (Hi is constructed from the output, hence it is known)

– δi = vi − Hi (δi represents the � discarded bits, it is unknown)

Attack 1: Consecutive outputs. Let v0, v1, v2 be 3 consecutive internal states
of the LCG. We have v1 = zv0 mod 2n and v2 = zv1 mod 2n. As z and 2n are
coprime, we obtain:

v2
1 = v0v2 mod 2n.

We replace vi by Hi + δi:

H2
1 + 2H1δ1 + δ21 = H0H2 + H0δ2 + H2δ0 + δ0δ2 mod 2n,

and notice that (δ0, δ1, δ2) is a small root of the polynomial P mod 2n where

P (y0, y1, y2) = y2
1 − y0y2 + 2H1y1 − H0y2 − H2y0 + H2

1 − H0H2.
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We will apply the Coppersmith method on P with bounds X0 = X1 = X2 = 2�.
The set of monomials is M = {y0, y1, y2, y

2
1 , y0y2} hence, by Eq. 1, we should

heuristically recover the root if (2�)7 = X0 × X1 × X2 × X2
1 × X0X2 < 2n, that

is to say if �/n < 1/7.

Generalization. Let v0, . . . , vk be k + 1 consecutive internal states. We will
obtain

(
k
2

)
equations of the form vjvi+1 = vivj+1 mod 2n. Hence we will con-

struct
(
k
2

)
polynomials Pi of which (δ0, . . . , δk) is a simple root mod 2n. The set

of appearing monomials will be:

M = {yi|i ∈ {0, . . . , k}}
⋃

{yiyj+1|i, j ∈ {0, . . . , k − 1}, i �= j}.

We find that
∏

yi|i∈{0,...,k} Xi × ∏
yiyj+1|i,j∈{0,...,k−1},i �=j XiXj+1 = (2�)Γ (k)

where Γ (k) = (k + 1) + 2 × 2
(
k
2

)
. Thus, by Eq. 1, the attack should work as long

as �/n <
(
k
2

)
/Γ (k). This theoretical bound increases toward 1/4.

As usual with Coppersmith methods, the theoretical bound is smaller than
what we can really achieve.

k 2 3 4 5

�/n (theoretical) < 1/7 3/16 6/29 5/23

�/n (experimental) < 0.3 0.35 0.38 0.40

We also present the computing times for different n and k.

n\k 2 3 4 5

32 0.002s 0.005s 0.01s 0.04s

64 0.003s 0.009s 0.03s 0.1s

1024 0.02s 0.1s 0.7s 2s

These computing times are averages of a hundred instances of the algorithm
running on a standard laptop: a Dell Latitude 7400, running on Ubuntu 18.04
with Sagemath version 8.1. The same laptop with the same configuration will
be used for the rest of the experiments of this paper.

Remark 1. As mentioned in Sect. 2, we could try to optimise our Coppersmith
method by adding polynomials of the form yk1

1 . . . ykn
n P

kn+1
i , but we refrained for

two main reasons. The first one is that without any other polynomial, the size
of our lattice remains small and our attack practical. The second reason is that
we tried in Appendix B to find a suitable family of polynomials to improve our
attack and the results are not encouraging. This will remains true for the next
attack.
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Attack 2: Not consecutive outputs. Now we suppose we have two pairs of
two consecutive internal states (v0, v1) and (vi, vi+1). Then (δ0, δ1, δi, δi+1) is a
small root of P mod 2n where

P = y0yi+1 − y1yi + H0yi+1 + Hi+1y0 − H1yi − Hiy1 + H0Hi+1 − H1Hi.

We will apply the Coppersmith method on P with X0 = X1 = Xi = Xi+1 =
2�. The set of monomials is M = {y0, y1, yi, yi+1, y0yi+1, y1yi} hence, by Eq. 1, we
should heuristically recover the root if (2�)8 = X0 ×X1 ×Xi ×Xi+1 ×X0Xi+1 ×
X1Xi < 2n, that is to say if �/n < 1/8.

Generalisation. Let S be a set of k distinct integers (the larger being iS) and⋃
i∈S{vi, vi+1} be at most 2k internal states. We will obtain

(
k
2

)
equations of the

form vjvi+1 = vivj+1 mod 2n hence
(
k
2

)
polynomials Pi of which (δ0, . . . , δiS+1)

is a simple root mod 2n. The set of appearing monomials will be:

M = {yi, yi+1|i ∈ S}
⋃

{yiyj+1|i, j ∈ S, i �= j}.

We will have at most 2k monomials of degree 1 and 2
(
k
2

)
monomials of degree

2. Heuristically, our attack should work if (2�)2k+4(k
2) < (2n)(

k
2). In other words,

our attack should work if �/n < k−1
4k . This theoretical bound increases toward

1/4.
As usual with Coppersmith methods, the theoretical bound is smaller than

what we can really achieve.

k 2 3 4 5 6 7 8

�/n (theoretical) < 1/8 1/6 3/16 1/5 5/24 3/14 7/32

�/n (experimental) < 0.16 0.25 0.31 0.34 0.36 0.38 0.4

We also present the computing time for different n and k.

n\k 2 3 4 5 6 7 8

32 0.001s 0.003s 0.008s 0.02s 0.04s 0.09s 0.2s

64 0.002s 0.004s 0.02s 0.04s 0.08s 0.2s 0.5s

1024 0.003s 0.2s 0.2s 0.8s 1.6s 5s 13s

These computing times are averages of a hundred instances of the algorithm.
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3.2 Attack 3: With Stern’s Algorithm

As mentioned earlier, one strategy to attack our simple LCG was to adapt exis-
tent attacks to the case where C = 0 and N = 2n. Here we are going to describe
and adapt Stern’s attack against the LCG, presented in [17].

Let us consider a LCG with internal states given by vi+1 = zvi + C mod N
with v0, z, C and N secret. To obtain the output yi, we discard the last � bits of
the internal state vi.

First part of Stern’s algorithm. Let K, t and r be three integer parameters
to be discussed later, with r > t. We consider the vectors:

Yi =

⎛

⎜
⎜
⎜
⎝

yi+1 − yi

yi+2 − yi+1

...
yi+t − yi+t−1

⎞

⎟
⎟
⎟
⎠

and Vi =

⎛

⎜
⎜
⎜
⎝

vi+1 − vi

vi+2 − vi+1

...
vi+t − vi+t−1

⎞

⎟
⎟
⎟
⎠

.

Then we construct the following matrix:
⎛

⎜
⎜
⎜
⎝

KY0 1
KY1 1

...
. . .

KYr−1 1

⎞

⎟
⎟
⎟
⎠

,

apply LLL and obtain a small vector (K
∑r−1

i=0 λiYi, λ0, . . . , λr−1). We will have
to choose K big enough to force the λi’s to satisfy:

r−1∑

i=0

λiYi = 0.

The key point here is that, with t and r well chosen, we can expect:

r−1∑

i=0

λiVi = 0,

hence if we consider the polynomial f(X) = (v2 − v1)
∑r

i=1 λiX
i−1, it satisfies

f(z) ≡ 0 mod N . In the case where N is prime, the integer parameters K, t, r
must satisfy:

t > n/(n − �)
r ≈ √

2(n − �)t
and K = �√r2(r−1)/2B	

where B = 2t((n−�)+log r+1)/(r−t) (see [9,17]).
If we were to use directly this method on our particular LCG (with C = 0 and

N = 2n) we would face two major inconveniences. The first one is the number
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of outputs needed. Let suppose n = 1024 and � = 128, then �/n = 1/8 and
we know our algorithm using a Coppersmith method would need 3 outputs to
recover z. Here, Stern’s algorithm would need a bit more than 60 LCG outputs
and we cannot expect the fast knapsack generator to behave like a LCG sixty
times in a row. The second inconvenience is the proof of this algorithm. The fact
that N is prime (or almost prime) is crucial as it allows us to count the roots
of a certain polynomial modulo N . In our case N = 2n hence we cannot bound
the number of roots of a polynomial modulo 2n any more.

Modified algorithm. As the proof does not hold any more and there is no
precise heuristics in the modular case, we will search for good parameters exper-
imentally. But before, we are going to do some modifications. As we know that
C = 0, we can replace the vectors Yi and Vi by:

Y ′
i =

⎛

⎜
⎜
⎜
⎝

yi

yi+1

...
yi+t−1

⎞

⎟
⎟
⎟
⎠

and V ′
i =

⎛

⎜
⎜
⎜
⎝

vi

vi+1

...
vi+t−1

⎞

⎟
⎟
⎟
⎠

.

Then instead of searching a small vector (λ0, . . . , λr−1) such that:

r−1∑

i=0

λiY
′
i = 0,

we are going to search for an even smaller vector (μ0, . . . , μr−1) such that:

r−1∑

i=0

μiY
′
i = 0 mod N

(in fact we do not even need this sum to be zero, we just need it to be small).
To find such a vector we construct the following matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

KY ′
0 1

KY ′
1 1

...
. . .

KYr−1′ 1
K2n

. . . 0
K2n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and apply LLL.
Then if the vector satisfies

∑r−1
i=0 μiV

′
i = 0 mod N and v0 is odd, the poly-

nomial f(X) =
∑r−1

i=0 μiX
i will satisfiy f(z) ≡ 0 mod N . When we have this

polynomial, we compute its roots modulo 2n with a lift of Hensel and find a list
of hopefully not too many possible values for z.
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Experimental Parameters

The parameter K. As said earlier, we need to choose the parameter K big enough
such that the small vector (μ0, . . . , μr−1) satisfies

∑r−1
i=0 μiV

′
i = 0 mod N . We

notice experimentally that the value of K does not influence if our small vector
is satisfying the condition or not. At worst, a bigger K seems to reduce the
efficiency of our algorithm. For this reason and for simplicity sake, we choose
K = 1.

The parameters r and t. This attack against a LCG needs r + t − 1 consecutive
outputs. For a small �, this attack needs more outputs than the one based on
a Coppersmith method. But it allows us to recover the multiplier even when
� = n/2. We present in the following table the parameters and computing times
to find a polynomial f that satisfies f(z) ≡ 0 mod N . The experimental values
are averages on a hundred instances of the algorithm.

�/n 0.2 0.3 0.4 0.5 0.6

(r, t) (4,3) (5,4) (7,3) (9,4) (11,5)

r + t − 1 6 8 9 12 15

n = 32 0.0007s 0.0008s 0.0008s 0.001s 0.002s

n = 64 0.0007s 0.001s 0.001s 0.003s 0.002s

n = 1024 0.002s 0.004s 0.004s 0.005s 0.009s

The size of the entries. The parameters K, r and t are chosen and we have con-
structed a polynomial f satisfying f(z) ≡ 0 mod N . But finding the polynomial
f is only the first part of the algorithm and now we need to compute the roots of
f . As N = 2n is highly composed, the number of roots of f is only bounded by
2n. Experimentally, it happens quite regularly that f has too many roots and it
prevents us to do massive tests or averages as we are easily stuck in bad cases.
The following table will resume the different advantages and disadvantages of
each attack against the LCG. All the real computing times are averages on ten
instances of the algorithm with n = 1024.

�/n 0.2 0.3 0.4 0.5

m for attack 1 3 3 6 none

m for attack 2 2×3 2 × 4 2 × 8 none

m for attack 3 6 8 9 12

computing time for attack 1 0.02s 0.02s 2s none

computing time for attack 2 0.2s 0.2s 15s none

computing time for attack 3 1.5s 1.9s 1.4s 1.8s
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4 Attacks Against the Fast Knapsack Generator

Let ω0, . . . , ωn−1 be n n-bits integers and let u0, u1, . . . be a sequence of bits
generated by a linear feedback shift register (LFSR) over F2 with an irreducible
characteristic polynomial of order n. At step i, the knapsack generator computes

vi =
n−1∑

i=0

ui+jωj mod 2n

and outputs the leading n − � bits of vi.
This generator is defined by n2 + 2n bits: n bits for the public feedback

polynomial, n bits for the initial control bits and n2 bits for the weights.
The fast knapsack generator is a knapsack generator with special weights

introduced by von zur Gathen and Shparlinski in 2009 [7]. We replace the arbi-
trary weights by ωi = zn−iy, for y, z two integers of n bits. This new generator is
defined by 4n bits (as we only need 2n bits for the weights) and faster. Instead
of computing vi+1 =

∑n−1
i=0 ui+1+jωj mod 2n, with n additions, we directly

compute
vi+1 = uizy + zvi − un+iz

n+1y mod 2n (2)

with only three additions. The control bits (ui) come from a LFSR. Even if
the LFSR is not cryptographically secure, as its characteristic polynomial is
irreducible, we can assume the (ui) follow a uniform distribution, at least from
a statistical view point [14]. Hence the case where vi+1 = zvi mod 2n (i.e. ui =
un+i = 0) appears with probability 1

4 . Then again we will need some notations.

– Hi = (vi quo 2�)×2� +2�−1, where quo denotes the quotient of the Euclidean
division (Hi is constructed from the output, hence it is known)

– δi = vi − Hi (δi represents the � discarded bits, it is unknown)
– m is the number of outputs we have.

The trick in this attack is to notice our PRNG behaves like a LCG in one
iteration with probability 1/4. As we have two different algorithms to attack our
specific LCG, we will have two different algorithms to attack the fast knapsack
generator. These two attacks follow the same scheme: choosing when we are
going to assume the PRNG behaves like a LCG, using an attack against the
assumed LCG, obtain a z and some complete internal states, using the following
outputs to guess the y and finally check the consistency.

4.1 Attack via Coppersmith Method with Consecutive Outputs

Finding z: We choose k + 1 consecutive outputs out of m, hence we choose k
steps where we assume the PRNG acts as a LCG. On these k + 1 outputs Hi’s
we apply the first algorithm we have against our specific LCG and obtain the
δi’s completing the k + 1 chosen outputs (as vi = Hi + δi). If our assumptions is
false, the δi’s returned by our Coppersmith method might not be integers. If it
is the case, we start again with other sets of k + 1 consecutive outputs until the
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δi’s are integers. Then we can complete our outputs to obtain k + 1 complete
consecutive internal states. Due to the use of a highly composite modulus 2n,
computing the z is not completely straightforward. If we know vi and vi+1 such
that vi+1 = zvi mod 2n we might have to deal with a vi non-invertible mod 2n.
But usually the exponent of the factor 2 in vi does not exceed 5 so it is never a
problem to do an exhaustive search on the possible values for z.

Finding y: Based on our first assumption, we know z and k+1 complete internal
states of our PRNG. We call vi our last known complete internal state and
concentrate on vi+1 and vi+2. Based on the structure of the PRNG, there is only
16 possibilities for the relations between vi, vi+1 and vi+2. If these relations are
part of the 8 following possibilities, we can recover y again with a Coppersmith
method using a lattice of dimension 4.

{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 + zy mod 2n

{
vi+1 = zvi − zn+1y mod 2n

vi+2 = zvi+1 − zn+1y mod 2n

{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 − zn+1y mod 2n

{
vi+1 = zvi − zn+1y mod 2n

vi+2 = zvi+1 + zy mod 2n

{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 + zy − zn+1y mod 2n

{
vi+1 = zvi + zy − zn+1y mod 2n

vi+2 = zvi+1 + zy mod 2n

{
vi+1 = zvi − zn+1y mod 2n

vi+2 = zvi+1 + zy − zn+1y mod 2n

{
vi+1 = zvi + zy − zn+1y mod 2n

vi+2 = zvi+1 − zn+1y mod 2n

For example, we assume we are in the first case, hence
{

vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 + zy mod 2n.

Subtracting the first equation to the second and replacing vi+1 by Hi+1+δi+1

and vi+2 by Hi+2 + δi+2, we obtain:

Hi+2 + δi+2 − Hi+1 − δi+1 = zHi+1 + zδi+1 − zvi mod 2n

(we recall that, at this point, vi and z are assumed to be known). Hence
(δi+1, δi+2) is a root of a polynomial in two variables of degree 1 mod 2n. It
can be recovered thanks to a Coppersmith method. Once we have vi+1, comput-
ing y is straightforward (once again, if the δi are not integers it means either our
first assumption is false either the couple (vi+1, vi+2) is not of this form).

Remark 2. There are several little optimisations/improvements we can do in
this step. But it is mostly finding more particular cases so, for the sake of sim-
plicity, we decided to not describe them here.
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Checking consistency: We have made a first assumption: the k+1 chosen outputs
of our PRNG can be seen as truncated outputs of a LCG. We have made a second
assumption: (vi+1, vi+2) is of a chosen form between the eight listed possibilities.
If y and z are the correct ones, we should be able to check consistency from one
to the next (for example Hi+3 should be given by one of the four following
internal states: zvi+2, zy + zvi+2, zvi+2 − zn+1y or zy + zvi+2 − zn+1y). If the
consistency is not obtained, it means one of our assumption is false and we must
either change our assumption on (vi+1, vi+2) if we did not explore the eight
possibilities, either start again from the beginning with a new set of consecutive
outputs.

Analysis of the attack. For a given k, we want to know m the number of
outputs needed such that the probability of the PRNG acting as a LCG at least
k times in a row is greater than 1/2. We have done the computation and we do
not obtain a nice formula for m. The details are given in Appendix A and here
we will only give the numerical result for k = {2, 3, 4, 5}.

Once m is greater than the computed bound, we hope there will be a set of
k + 1 consecutive outputs acting like a LCG. The two outputs following the last
chosen one need to be in eight possibilities out of sixteen. Again it happens with
probability 1/2.

Hence, for a given k, the attack should work with probability greater than
1/4 if m is greater than what is given in the table and l/n <

(
k
2

)
/Γ (k) (as seen

in Sect. 3). In this case we will have to run in the worst case m − k instances of
LLL on a lattice of dimension k + 1 + 3

(
k
2

)
and 8(m − k) instances of LLL on a

lattice of dimension 4, each with entries of size n.

k 2 3 4 5

m 15 58 236 944

number of lattices � 13 55 232 939

dimension of lattices 6 13 23 36

�/n (theoretical) < 1/7 3/16 6/29 5/23

�/n (experimental) � 0.3 0.35 0.38 0.40

computing time for n = 32 0.02s 0.11s 0.9s 10s

computing time for n = 64 0.02s 0.15s 2s 28s

computing time for n = 1024 0.04s 1.1s 31s (950s)

The computing time is an average of ten instances of the algorithm. When
the algorithm becomes too slow to compute the average we give an estimation.
The estimation comes from the execution time for one lattice multiplied by half
the number of lattices. These specials cases are between parenthesis.
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4.2 Attack via Coppersmith Method Without Consecutive Outputs

Finding z. We choose k outputs Hi out of m − 1 outputs (we cannot choose
the last one) and consider k pairs of outputs (Hi,Hi+1). It does not mean we
work with 2k outputs as some pairs can overlap. On these k pairs of outputs we
apply the second algorithm we have against our specific LCG and obtain δi’s.
If our assumption is false, the δi’s might not be integers. If it is the case, we
start again with other sets of k pairs of outputs until the δi’s are integers. Then
we can complete our outputs (as vi = Hi + δi) to obtain at most 2k complete
consecutive internal states. Computing the z is not completely straightforward.
If we know vi and vi+1 such that vi+1 = zvi mod 2n we might have to deal with
a vi non-invertible mod 2n. But usually the exponent of the factor 2 in vi does
not exceed 5 so it is never a problem to do an exhaustive search on the possible
values for z.

The steps of Finding y and Checking consistency are the same as for the
previous attack.

Analysis of the attack. We want our PRNG to act at least k times like a
LCG with probability greater than 1/2. We suppose we clock our PRNG m − 1
times (so we obtain m outputs). The probability that the PRNG acts as a LCG
on one iteration is 1/4. Hence we want k to be the unique median of a Binomial
distribution of parameters (m−1, 1/4). We consider the following theorem from
[10].

Theorem 1. If X is a B(n, p), the median can be found by rounding off np to
k if the following condition holds:

|k − np| � min(p, 1 − p)

k is the unique median except when p = 1/2 and n is odd.

In our case where p = 1/4 we see that given a k the smaller number of trials
satisfying this inequality is 4k − 1. Hence we choose m = 4k.

Once m is greater than 4k, we hope our PRNG will act at least k times
like a LCG. The two outputs following the last chosen one need to be in eight
possibilities out of sixteen. Again it happens with probability 1/2.

Hence, for a given k, the attack should work with probability greater than
1/4 if m is greater than 4k and l/n < (k − 1)/4k (as seen in Sect. 3). In this
case we will have to run in the worst case

(
4k
k

)
instances of LLL on a lattice of

dimension at worst 2k+3
(
k
2

)
and 8

(
4k
k

)
instances of LLL on a lattice of dimension

4, each with entries of size n.
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k 2 3 4 5 6 7 8

m 8 12 16 20 24 28 32

number of lattices ≤ 21 165 1365 11628 100947 888030 7888725

dimension of lattices ≤ 7 15 26 40 57 77 100

�/n (theoretical) < 1/8 1/6 3/16 1/5 5/24 3/14 7/32

�/n (experimental) � 0.16 0.25 0.31 0.34 0.36 0.38 0.40

computing time for n = 32 0.04s 0.6s 11s (115s) (2000s) (11h) (219h)

computing time for n = 64 0.03s 0.7s 21s (230s) (4000s) (25h) (548h)

computing time for n = 1024 0.06s 4s (130s) (4500s) (22h) (617h) (1.6y)

Again, the computing time is an average of ten instances of the algorithm
running on the same laptop. When the algorithm becomes too slow to compute
the average, we give an estimation. The estimation comes from the execution
time for one lattice multiplied by half the number of lattices. These specials cases
are between parenthesis.

Remark 3. To compute these probabilities, we assumed we always had two out-
puts (vi+1, vi+2) following our output vi. This is not always the case but this
problem can be easily solved by choosing either another known vi or the two
preceding values of vi instead of the following ones.

Remark 4. As the number of instances of LLL needed is
(
4k
k

)
, the computing

time of the algorithm quickly explodes.

4.3 Attack via Stern’s Attack on the LCG

Finding z: We choose k + 1 consecutive outputs out of m, hence we choose k
steps where we assume the PRNG acts as a LCG. On these k + 1 outputs Hi’s
we apply the modified algorithm we have against our specific LCG and obtain
a list of possible values for z. For each of these values, we are going to compute
what we assume the internal states are. If we have the right value of z, then the
vector of internal states (vi, . . . , vi+k) is in the lattice spanned by the rows of
the following matrix: ⎛

⎜
⎜
⎜
⎝

1 z . . . zk

0 2n . . . 0
. . .

0 0 0 2n

⎞

⎟
⎟
⎟
⎠

.

Also, this vector is close to the target vector (Hi, . . . , Hi+k). Hence we use
a CVP solver on our matrix and the target vector to find our vector of internal
states.

Remark 5. CVP stands for Closest Vector Problem. Given a lattice Λ and an
arbitrary target vector T , a CVP solver outputs the closest vector to T which is
in the lattice Λ.
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The steps of Finding y and Checking consistency are the same as for the
previous attack.

4.4 Summary of Our Results

These computing times are averages on a hundred instances of the algorithm. As
usual between parenthesis are the estimations given by the time for one lattice
multiplied by half of the number of lattices.

– Attack via a Coppersmith method with consecutive outputs

�/n 0.2 0.3 0.4 0.5

m 15 15 944 none

computing time for n = 32 0.02s 0.02s 10s none

computing time for n = 64 0.02s 0.02s 28s none

computing time for n = 1024 0.04 0.04s (950s) none

– Attack via a Coppersmith method without consecutive outputs

�/n 0.2 0.3 0.4 0.5

m 12 16 32 none

computing time for n = 32 0.6s 11s (219h) none

computing time for n = 64 0.7s 21s (548h) none

computing time for n = 1024 4s (130s) (1.6y) none

– Attack via Stern’s algorithm

�/n 0.2 0.3 0.4 0.5

m 944 15138 60565 3876354

computing time for n = 32 3.6s (53s) (300s) (16h)

computing time for n = 64 11s (227s) (1200s) (38h)

computing time for n = 1024 (700s) (4h) (11h) (970h)

The next generator we are going to analyse is based on constant-recursive
sequences. These mathematical objects are completely linear. In the one hand
it means they are fairly easy to manipulate. In the other hand it makes them
very vulnerable to algebraic attacks. To hides the linear properties of its internal
states, the generator uses two different moduli (as the reduction by two different
moduli does not commute: (a + b mod m1) mod m2 tends to be different from
(a + b mod m2) mod m1).
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5 Combined Multiple Recursive Generators (CMRG)

These PRNGs output a linear operation between two or more congruential
constant-recursive sequences over different moduli, pairwise coprime, of the same
length. The coefficients of the sequences and the moduli are known, only the
initial conditions are secret. We are going to focus on CMRG outputting the
difference between two constant-recursive sequences of order three, (xi) and (yi)
over two different moduli m1 and m2 of the same length n.

At step i, the generator computes

xi = a11xi−1 + a12xi−2 + a13xi−3 mod m1

yi = a21yi−1 + a22yi−2 + a23yi−3 mod m2

zi = xi − yi mod m1

and outputs zi.
The values a11, a12, a13, , a21, a22, a23, m1 and m2 are known. The values

x0, x1, x2, y0, y1 and y2 form the seed of the generator.
As m1 and m2 are coprime, by the Chinese Reminder Theorem we know

that the sequences (xi) and (yi) are projections of a lifted constant-recursive
sequence modulo m1m2 that we will call (Xi). This new sequence will be defined
by Xi+3 = AXi+2 + BXi+1 + CXi mod m1m2 where A,B,C are given by:

A ≡ a11 mod m1 and A ≡ a21 mod m2

B ≡ a12 mod m1 and B ≡ a22 mod m2

C ≡ a13 mod m1 and C ≡ a23 mod m2

and the initial conditions X0,X1,X2 in {0, . . . , m1m2 − 1} satisfy:

X0 ≡ x0 mod m1 and X0 ≡ y0 mod m2

X1 ≡ x1 mod m1 and X1 ≡ y1 mod m2

X2 ≡ x2 mod m1 and X2 ≡ y2 mod m2.

The sequences (xi) and (yi) are given by xi = Xi mod m1 and yi = Xi mod
m2.

5.1 Attack on the MRG32

Notations: We denote by z′
i the integer value xi −yi which can be different from

zi = xi − yi mod m1. As xi is already in {0, . . . , m1 − 1} and yi is already in
{0, . . . , m2 − 1}, we have that z′

i = zi or z′
i = zi − m1. We also denote by u the

inverse of m1 modulo m2 (um1 ≡ 1 mod m2).

Proposition 1. For every i ≥ 0, (xi, xi+1, xi+2, xi+3) is a root modulo m1m2

of

Pi(vi, vi+1, vi+2, vi+3) = ki+3m1+vi+3−A(ki+2m1+vi+2)−B(ki+1m1+vi+1)−C(kim1+vi)

where ki is the only integer in {0, . . . , m2 − 1} such that ki ≡ −z′
iu mod m2.
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Proof. As Xi ≡ xi mod m1, there exists an integer ki such that Xi = kim1 +xi.
For the same reason, there exists an integer k̂i such that Xi = k̂im2 + yi. Hence

z′
i = xi − yi = k̂im2 − kim1.

Thus ki ≡ −z′
iu mod m2. As Xi is in {0, . . . ,m1m2−1}, then ki is in {0, . . . , m2−

1}. To obtain the polynomial Pi we need to remember that Xi+3 = AXi+2 +
BXi+1 + CXi mod m1m2.

We have established that (x0, x1, x2, x3) is a root modulo m1m2 of

P1(v0, v1, v2, v3) = k3m1 + v3 − A(k2m1 + v2) − B(k1m1 + v1) − C(k0m1 + v0)

and each of its coordinates is bounded by m1.
If this root is the only small one, we can expect to retrieve it thanks to a

Coppersmith method. But it tends not to be the case. We will consider Λ the
lattice containing all the differences between two roots of P1 modulo m1m2. If
the smallest vector v of Λ has its coordinates smaller than m1, then the vector
(x0, x1, x2, x3)−v could be a smaller root of P1 mod m1m2 and our attack might
not work.

The Gaussian heuristic “predicts” that if Λ is a full-rank lattice and C is
a measurable subset of R

d, then the number of points of Λ ∩ C is roughly
vol(C)/ vol(Λ). In particular, this asserts that the norm of the shortest (non-
zero) vector of Λ should be close to

√
d vol(Λ)1/d.

If we have two roots (x0, x1, x2) and (x′
0, x

′
1, x

′
2) then

(x3 − x′
3) − A(x2 − x′

2) − B(x1 − x′
1) − C(x0 − x′

0) ≡ 0 mod m1m2.

Hence the lattice Λ is spanned by the rows of the following matrix:
⎛

⎜
⎜
⎝

1 0 0 C
0 1 0 B
0 0 1 A
0 0 0 m1m2

⎞

⎟
⎟
⎠ .

Following the Gaussian heuristic, we can expect the shortest vector of this
lattice to be of norm

√
4(m1m2)1/4 ≈ √

4×2n/2 <
√

4×2n ≈ √
4m1. Hence it is

unlikely that (x0, x1, x2, x3) is the only root of P1 modulo m1m2 such that each
of its coordinates is bounded by m1. We try to add other polynomials, hoping
it will reduce the number of common roots.

If we consider the three polynomials P1, P2 and P3, the lattice containing
the difference between two commons roots will be spanned by the rows of the
following matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 C AC BC + A2C
0 1 0 B C B2 + AC
0 0 1 A (B + A2) C + 2AB + A3

0 0 0 m1m2 0 0
0 0 0 0 m1m2 0
0 0 0 0 0 m1m2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Following the Gaussian heuristic, we can expect the shortest vector of this lattice
to be of norm

√
6(m1m

3
2)

1/6 ≈ √
6×2n ≈ √

6m1. We are at the limit, we have no
clear indication that the smallest vector of Λ is big enough. We cannot say that
(x0, x1, x2, x3, x4, x5) is the only common root of P1, P2 and P3 modulo m1m2

such that each of its coordinates is bounded by m1. Adding two polynomials
was not enough. But the smallest difference between two common roots is far
greater than before. So we keep adding polynomials.

If we consider the four polynomials P1, P2, P3 and P4, the lattice containing
the difference between two commons roots will be spanned by the rows of the
following matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 C AC BC + A2C C2 + 2ABC + A3C
0 1 0 B C B2 + AC 2BC + AB2 + A2C
0 0 1 A (B + A2) C + 2AB + A3 2AC + B2 + 2A2B + A4

0 0 0 m1m2 0 0 0
0 0 0 0 m1m2 0 0
0 0 0 0 0 m1m2 0
0 0 0 0 0 0 m1m2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Following the Gaussian heuristic, we can expect the shortest vector of this lat-
tice to be of norm

√
7(m1m

4
2)

1/7 ≈ √
7 × 28n/7 >

√
7 × 2n ≈ √

7m1. Hence
(x0, x1, x2, x3, x4, x5, x6) is likely to be the only common root of P1, P2, P3 and
P4 modulo m1m2 such that each of its coordinates is bounded by m1. We could
wonder if it is relevant to use the Gaussian heuristic in such specific cases but
the parameters given by this reasoning are experimentally recovered.

We can now describe the attack. From a11, a12, a13, , a21, a22 and a23 we
construct A, B and C. Then we consider 7 outputs z0, . . . , z6, and from them
we guess z′

0, . . . , z
′
6 (we recall that z′

i = zi or z′
i = zi − m1). Now we have all the

values we need to construct P1, P2, P3 and P4 as described in Proposition 1.
We use a Coppersmith method to find the only common root of P1, P2, P3

and P4 mod m1m2 with all of its coordinates bound by m1. If we have correctly
guessed the z′

i’s, this root has to be (x0, x1, x2, x3, x4, x5, x6), hence the initial
conditions we were searching for. Finally we check the consistency thanks to an
eighth output.

Knowing the zi’s we have 27 set of possible values for the z′
is. For each set

we run one instance of LLL on a lattice of dimension 12 (8 monomials + 4
polynomials) and entries of size n. So the time complexity is O(n3).

5.2 The MRG32k3a by L’Écuyer

For this particular PRNG, the public values are m1 = 232 − 209, m2 = 232 −
22853, a11 = 0 a12 = 1403580, a13 = 810728, a21 = 527612, a22 = 0 and
a23 = 1370589.

If we consider the four polynomials P1, P2, P3, P4 we find that the smallest dif-
ference between two common roots modulo m1m2 is (−12600073455, 8717013482,
35458453228, 57149468535, 25239696855, −3505005772, 66309741613). We can
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see that each of its coordinates is greater than 2 × m1, this ensures that (x0, x1,
x2, x3, x4, x5, x6) will be the only small common root of P1, P2, P3 and P4 modulo
m1m2. Our algorithm retrieves the initial conditions in 0.01 s with 8 outputs.

A Bernoulli Trials

We suppose that we have n Bernoulli trials, each with a probability of success of
p. We want to compute the probability of having a run of at least k consecutive
successes. We denote this probability Pr(n, p, k).

As we cannot have more successes than trials, if k > n then Pr(n, p, k) = 0.
If k = n, it means all the trials must be successes, hence Pr(n, p, k) = pk.

If n > k we have two excluding possibilities to have k successes. First possi-
bility, a run of k successes happen in the last n − 1 trials. Second possibility, a
run of k successes happen in the k first trial an there is no run of k successes in
the last n − 1 trials. It means the first k trials are successes, then the k + 1-th
trial is a failure and there is no run of k successes in the n − k − 1 remaining
trials. Hence the probability of having a run of k successes in n trials when n > k
is Pr(n, p, k) = Pr(n − 1, p, k) + pk × (1 − p) × (1 − Pr(n − k − 1, p, k))

We fix k and p and consider S[n] = 1−Pr(n, p, k). We notice that (S[n])n∈N

is a constant-recursive sequence:

S[n + 1] = S[n] − pk(1 − p)S[n − k − 1]

of order k+1 with initial terms being S[0] = · · · = S[k−1] = 1 and S[k] = 1−pk.
The explicit values of the sequence are given by S[n] = C1(r1)n + · · · +

Ck+1(rk+1)n where the ri are the roots of the characteristic polynomial xk+1 −
xk + pk(1 − p) and the Ci are constants given by the initial terms.

In our case, we have m outputs and we want to know the probability of
having k + 1 consecutive internal states of the form vi+1 = zvi mod 2n. Given a
vi, the probability that vi+1 = zvi mod 2n is 1/4. So our problem is to compute
the probability of having a run of at least k successes in a sequence of m − 1
Bernoulli trials, the probability of success of each trial being 1/4.

In the following table we give the minimal values of m such that the proba-
bility of having a run of k successes in m − 1 trials is greater than 1/2.

k 2 3 4 5 6 7 8 11

m 15 58 236 944 3783 15138 60565 3876354

(Warning, these values are given by numerical approximations, they might
not be exact.)
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B Improvement of Coppersmith?

Let P be the polynomial constructed thanks to the outputs of our LCG. We
are searching for a root of P modulo N . In Sect. 2, we saw that we had two
possibilities. We could directly construct the matrix used in the Coppersmith
method M with only P or we could build a bigger set of polynomials Pi of
the form f = yk0

0 , . . . , ykn
n P kp . In Sect. 3, we presented attacks were the set of

polynomials was not extended. The goal of this appendix will be to try to find
a family of polynomials Pi’s such that we can retrieve the root even when more
bits are discarded.

For the reader familiar with [1] by Benhamouda et al., we will use the same
notations. We denote P the bigger set constructed from P . The polynomials in
P are of the form f = yk0

0 , . . . , ykn
n P kp and all linearly independent. We denote

by χP(f) the multiplicity of our small root as a root of f mod N : χP(f) = kp.
We denote M the set of all the monomials appearing in P. If m in M is of the
form yk0

0 . . . ykn
n , we denote χM(m) = k0 + · · · + kn. We know by Eq. (1) that

the attack is suppose to work as long as

�/n ≤
∑

f∈P χP(f)
∑

m∈M χM(m)

where � is the number of discarded bits and n the size of the internal states of
our generator.

B.1 Consecutive Outputs

Here our Polynomial is P = y2
1 + 2H1y1 + H2

1 − y0y2 − H0y2 − H2y0 − H0H2.
We fix a parameter T and choose PT as following:

PT = {yk0
0 yε

1y
k2
2 P kp |ε ∈ {0, 1}, k0 + ε + k2 + 2kp ≤ T}

All the polynomials in PT are linearly independent. Indeed, if we consider the
monomial order y1 > y0 > y2 then the leading monomial of yk0

0 yε
1y

k2
2 P kp is

y
2kp+ε
1 yk0

0 yk2
2 thus all leading monomials are different.

We are not going to precisely compute the set of monomial of PT instead we
are going to approach it with

MT = {yk0
0 yk1

1 yk2
2 |k0 + k1 + k2 ≤ T}.

Now we must compute
∑

f∈PT
χPT

(f) and
∑

m∈MT
χMT

(m):

∑

f∈PT

χPT
(f) =

T−2∑

k0=0

1∑

ε=0

T−2−k0−ε∑

k2=0

� T −k0−ε−k2
2 �∑

kp=1

kp

=  ((T + 1)2 − 1) × ((T + 1)2 − 3)
48

�
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∑

m∈MT

χMT
(m) =

T∑

k0=0

T−k0∑

k1=0

T−k0−k1∑

k2=0

k0 + k1 + k2

=
T (T + 1)(T + 2)(T + 3)

8
.

Thus this new construction should allow us to recover the small root as long
as

�/n ≤  ((T + 1)2 − 1) × ((T + 1)2 − 3)
48

� × 8
T (T + 1)(T + 2)(T + 3)

.

This value tends to 1/6.
To obtain a bound bigger than 1/7 (our already achieved result), we need

T ≥ 13. But T = 13 means our lattice would be of dimension 924, and running
the LLL algorithm on a lattice of dimension 900 is hardly doable.

B.2 Not Consecutive Outputs

Here our Polynomial is P = y0yi+1 − y1yi + Hi+1y0 + H0yi+1 − Hiy1 − H1yi +
H0Hi+1 − H1Hi. We fix a parameter T and choose PT as following:

PT = {yk0
0 yk1

1 y
ki
i Pkp |k0 + k1 + ki +2kp ≤ T}

⋃
{yk1

1 y
ki
i y

ki+1
i+1 Pkp |k1 + ki + ki+1 +2kp ≤ T}.

All the polynomials in PT are linearly independent.
We are not going to precisely compute the set of monomial of PT instead we

are going to approach it with

MT = {yk0
0 yk1

1 yki
i y

ki+1
i+1 |k0 + k1 + ki + ki+1 ≤ T}.

Now we must compute
∑

f∈PT
χPT

(f) and
∑

m∈MT
χMT

(m):

∑

f∈PT

χPT (f) = 2

⎛

⎜⎝
T−2∑

k0=0

T−2−k0∑

k1=0

T−2−k0−k1∑

ki=0

� T −k0−k1−k2
2 �∑

kp=1

kp

⎞

⎟⎠

=
(T + 2)(2T 4 + 16T 3 + 28T 2 − 16T + 15 × (−1)T − 15)

480

∑

m∈MT

χMT (m) =
T∑

k0=0

T−k0∑

k1=0

T−k0−k1∑

ki=0

T−k0−k1−ki∑

ki+1=0

k0 + k1 + ki + ki+1

=
T (T + 1)(T + 2)(T + 3)(T + 4)

30
.

Thus this new construction should allow us to recover the small root as long as

�/n ≤ (2T 4 + 16T 3 + 28T 2 − 16T + 15 × (−1)T − 15)
T (T + 1)(T + 3)(T + 4)

× 30
480

.

This value tends to 1/8. But our second attack with one polynomial already
recover the small root when �/n ≤ 1/8. Hence adding more polynomials in our
Coppersmith method does not seem relevant.
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Abstract. The deterministic ECDSA and EdDSA signature schemes
have found plenty of applications since their publication, e.g., block chain
and Internet of Thing, and have been stated in RFC 6979 and RFC 8032
by IETF respectively. Their theoretical security can be guaranteed within
certain well-defined models, and since no randomness is required by the
algorithms anymore their practical risks from the flaw of random number
generators are mitigated. However, the situation is not really optimistic,
since it has been gradually found that delicately designed fault attacks
can threaten the practical security of the schemes.

In this paper, based on the random fault models of intermediate val-
ues during signature generation, we propose a lattice-based fault analysis
method to the deterministic ECDSA and EdDSA algorithms. By virtue
of the algebraic structures of the deterministic algorithms, we show that,
when providing with some faulty signatures and an associated correct
signature of the same input message, some instances of SVP or CVP
problems in some lattice can be constructed to recover the signing key.
The allowed faulty bits in the method are close to the size of the signing
key, and obviously bigger than that allowed by the existing differen-
tial fault attacks. In addition, the lattice-based approach supports more
alternative targets of fault injection, which further improves its applica-
bility when comparing with the existing approaches.

We perform some experiments to demonstrate the effectiveness of the
key recovery method. In particular, for deterministic ECDSA/EdDSA
algorithm with 256-bit signing key, the key can be recovered efficiently
with significant probability even if the targets are affected by 250/247
faulty bits. However, this is impractical for the existing enumerating
approaches.
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1 Introduction

As a fundamental building block of modern cryptography, digital signature has
been widely used in practice. For its efficiency and standardization in FIPS 186
and ANSI X9.62, ECDSA has found various applications since its publication.
In spite of the fact that the theoretical security of ECDSA has not been proven
finally, it is still believed to be secure and connected with some hard problems
in mathematics. However, side channel attacks on various implementations of
ECDSA have been continuously discovered during the last decades. Some of the
attacks, for example, are induced by the deficiency of the ephemeral random
numbers (denoted nonce hereinafter) required by the scheme. If the nonce has
a few bits leaked or repeated, some lattice-based approaches [12,16,23] can be
employed to extract the private key by BDD [19]. This has been demonstrated
several times in real IT products with ECDSA implementations [2,6,7,14,21].
Hence, an intuition to improve the security of ECDSA is to remove the random-
ness requirement from the algorithm. This gave birth to a study of determin-
istic signature schemes. In particular, deterministic ECDSA and EdDSA have
received plenty of attention in the research of applied cryptography since recent
years. They were respectively standardized in RFC 6979 and RFC 8032 and
realized in cryptographic libraries of OpenSSH, Tor, TLS, etc. The determinis-
tic version of ECDSA derives the nonce just from the private key and the input
message by means of cryptographic hash or HMAC primitive. In this way, no
randomness is required on the implementation platform, and it seems the threat
from physical attacks is mitigated.

But the situation is not improved too much, since some new flaws in deter-
ministic signature algorithms have been gradually identified when considering
differential fault attacks (DFA) [5,27–29]. DFAs have been proven to be valid
for different types of cryptographic schemes [8,9] in the literature. Generally,
a DFA adversary manages to disturb the signature generation procedure (by
means of voltage glitches, laser or electro-magnetic injection and so on [17])
and make the platform output faulty results, and then exploits them to do key
recovery.

The first DFA introduced in [5] shows that if a fault is injected to produce
a faulty signature (r′, s′) during the calculation of the scalar multiplication of
deterministic ECDSA or EdDSA, then by the help of the correct signature (r, s)
from the same signing key d and input message m, the key d can be recovered by
solving some linear equations. Although the approach puts no limitation on the
number of allowed faulty bits, it is limited by the possible locations (or rather
targets) of fault injection (mainly targeting the scalar multiplication). As a relax-
ation, another approach was introduced in [5], which assumes only limited bits of
the target (e.g., the nonce k) would be randomly affected by each fault (hereafter
called storage fault). Denote the faulty value by k′ = k + ε2l, with limited ε and
known l to the adversary. Then by constructing a differential distinguisher, the
signing key d in deterministic ECDSA can be recovered efficiently by enumer-
ating ε. Both of the approaches have been improved later, especially by those
in [27–29], where different fault injection methods and targets are exploited and
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experimented on different hardware platforms. A recent extension was presented
in [1], where more targets of fault injection have been identified and analyzed.

From a common point of view, for the storage fault, the signing key of
deterministic schemes can be recovered theoretically by adjusting fault injec-
tion actions and enumerating the possible faults. The efficiency of the existing
attacks [1,5,27,28] is obviously constrained by the enumeration complexity, thus
they are feasible only if the fault injection is controlled and limited bits of the
targets are affected. Another limitation of the existing attacks lies in the optional
types of targets that can be used for fault injection. Generally, the more targets
the attack supports, the more possibility of attack paths it has, and thus the
more difficult the attack is to be resisted. In fact, the targets that were considered
in the existing attacks are constrained. For example, the first attack in [5] only
supports two targets (i.e., the scalar multiplication kG and the nonce k when
calculating s during the signature generation), and although some more targets
were considered later in [1], it is still far away from covering all the possible
attack paths.

A promising solution is to develop lattice-based approaches. It is noticed that
lattice-based fault attacks were used in analyzing plain (EC)DSA and qDSA.
Targets of fault injection in [10,21,26,30] are usually the nonce itself or the scalar
multiplication (with a nonce as the scalar). For those attacks to be effective, the
nonce in the plain signature is supposed to be a random number. Hence it is
generally thought that deterministic ECDSA is immune to them because of the
deterministic nonce generation approach. This conception was later disproved
by [15], where a lattice-based attack was devised to compromise deterministic
signatures. The attack is specific to lattice-based cryptography, and the lattice
constructed for the attack is also specific to the signature scheme. Although it
casts a new light on the study of lattice-based fault attacks on more determin-
istic signature schemes, it is still not known whether the method is effective to
deterministic ECDSA or EdDSA (since they have different algebraic structures).

In this paper, we show lattice-based fault attacks can also be applied to
deterministic ECDSA and EdDSA schemes. We consider the attacks in a ran-
dom fault model where a continuous bits block of fault targets is disturbed
randomly. Under this model, a corresponding lattice-based key recovery method
is proposed. Essentially, by virtue of the special algebraic structures of the sig-
nature generation algorithms, the method reduces the key recovery problem to
the shortest/closest problems in some lattice, with the instances of the prob-
lems being constructed from the collected faulty signatures. Since the problems
can be solved within some scale, the signing key can be recovered subsequently
(provided that the faulty signatures are valid as per some criteria).

In comparison, some advantages of our lattice-based method over the existing
approaches [1,5,27,28] makes it more practical. This is summarized as follows.

– The proposed method allows more choices of target for fault injection. A tar-
get of fault injection is denoted by the notation of the interested intermediate
and the timing of using it in computation. Since a general representation
method of fault is adopted to remove the discrepancies of various targets, a
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number of possible targets are allowed by our attacks, which relatively cov-
ers more possibilities than existing approaches. See Sect. 3.1 for detail. There
are 13 and 8 fault targets for deterministic ECDSA and EdDSA respectively,
even including the hash functions and the private key itself.

– The proposed method can tolerate more faulty bits. The proposed lattice
method is not to enumerate all the faulty patterns, but rather to solve the
instances of lattice problems. This makes the tolerable faulty bits can be
close to the size of the signing key. For instance, the case of faulty bits up to
250(for 256-bit deterministic ECDSA)/247(for ed25519) has been validated
in experiments efficiently. As discussed above, this is infeasible for existing
approaches. See Sect. 5 for detail.

The remainder of this paper is organized as follows: Sect. 2 describes the speci-
fication of deterministic ECDSA and EdDSA, and refers some results about lat-
tices. Section 3 introduces the fault model and lists all the fault targets. Section 4
illustrates three representative lattice-based attacks based on the described
model. Section 5 describes the experimental facets of the validity of the lattice-
based key recovery method. The discussion about the corresponding counter-
measures is given in Sect. 6. More attacks with other fault targets are presented
in Appendix A.

2 Preliminaries

2.1 Notations

We denote the finite field of prime order q by Fq, the field of real numbers by R,
and the additive group of integer modulo n by Zn. Bold lowercase letters such
as v denote vectors, while bold uppercase letters such as M denote matrix. The

norm of vector v = (v1, . . . , vN ) ∈ R
N is denoted by ‖v‖ =

√
N∑

i=1

v2
i , while the

multiplication of v and M is denoted by vM.

2.2 The Deterministic Signature Algorithms

We recap the deterministic signature generation algorithms below by abstracting
from some less important details in the specifications of RFC 6979 and RFC 8032
respectively. As shown in Algorithms 1 and 2, the analysis focuses on Step 6 of
Algorithm 1 and Step 4 of Algorithm 2 during the signature generations, where
the order n is a prime. Moreover, in EdDSA signature, the two b-bit subkeys
d0 and d1 are derived by the hash function H(d) = (h0, h1, ..., h2b−1), where

d is the private key, d0 = 2b−2 +
b−3∑
i=3

2ihi and d1 = (hb, ..., h2b−1). The public

key P satisfies P = d0G. The hash functions employed in deterministic ECDSA
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are generally SHA-1 and SHA-2(e.g., SHA-256 and SHA-512), which all belong
to the structure of message digest. For EdDSA, the default hash function(i.e.,
H(.)) is SHA-512. In addition, there still exist other hash functions belonging
to the sponge structure, such as SHAKE256(SHA-3) for Ed448. For the sake
of simplicity, we just consider the compression function of SHA-2. As shown in
Fig. 1, input IV and a group of message(which is extended into L Wis), execute
L-round compressions and output the final result of compression plus IV as the
hash value or the next group of IV .

Algorithm 1. Signature generation of deterministic ECDSA
Require: The definition of a specific elliptic curve E(Fq), a base point G of the curve

with order n, message m, private key d.
Ensure: Signature pair (r, s).
1: e = H (m), where H is a cryptographic hash function;
2: Generate k = F (d, e) mod n, where F (d, e) denotes the HMAC DRBG function

with d as its input;
3: Q(x1, y1) = kG;
4: r = x1 mod n;
5: if r = 0 then goto step 2;
6: s = k−1(e + dr) mod n;
7: if s = 0 then goto step 2;
8: return (r, s)

Algorithm 2. Signature generation of EdDSA
Require: The definition of a specific elliptic curve E(Fq), a base point G of the curve

with order n, message m, private key (d0, d1), and public key P (P = d0G).
Ensure: Signature pair (R, s).
1: k = H(d1,m) mod n, where H is SHA-512 by default;
2: R(x1, y1) = kG;
3: r = H(R,P,m) mod n;
4: s = k + rd0 mod n;
5: return (R, s)

2.3 Problems in Some Lattice

Since the proposed attacks on deterministic signature schemes are related to the
construction and computation of some problems in some lattice, we give a basic
introduction on the relevant conceptions and results.

In a nutshell, a lattice is a discrete subgroup of Rm, generally represented as
a spanned vector space of linearly independent row vectors b1, b2, . . . , bN ∈ R

m

of matrix M ∈ R
N×m, in the form of

L = L (b1, b2, ..., bN ) = {z =
N∑

i=1

xi · bi|xi ∈ Z}. (1)
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Fig. 1. Compression function of SHA2

The vectors bis are called a basis of L, and N is the dimension of L. If m = N ,
then L is full rank. Moreover, if bi belongs to Z

m for any i = 1, ..., N , L is called
an integer lattice. In this way, it is straightforward to find that for every z ∈ L,
there must exist x = {x1, ..., xN} ∈ Z

N such that z = xM.
In lattice, a few well-known problems have been studied, such as the shortest

vector problem(SVP) and closest vector problem(CVP), which are believed to be
hard in computation theoretically.

SVP: given a basis bis of L, find a nonzero vector v ∈ L such that

‖v‖ = λ1(L), (2)

where λ1(L) means the length of the shortest vector in L.
CVP: given a basis bis of L and a target vector u ∈ R

m, find a nonzero
vector v ∈ L such that

‖v − u‖ = λ (L,u) , (3)

where λ (L,u) is the closest distance from vector u to lattice L.
Generally, the best algorithms for solving SVP and CVP are LLL algo-

rithm [18] or BKZ algorithm [31–33] to find their approximate solutions, i.e.,
solve approximate SVP and CVP. For an N -dimensional approximate SVP, a
short lattice vector can be output when the approximate factor is large enough.
The approximate factor of the LLL algorithm is given from Lemma 1.
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Lemma 1. [18,20] Given an integer basis B of N -dimensional lattice L, there
exists a polynomial time algorithm to find a nonzero lattice vector x satisfying

‖x‖ ≤ (2/
√

3)Nλ1 (L) .

Hence, the exact SVP and CVP can be approximated within an exponetial factor
in polynomial time.

For random lattices with dimension N , Gaussian heuristic [22] expected the
shortest length could be defined to be

σ(L) =

√
N

2πe
vol(L)1/N ,

where vol denotes the volume or determinant of L.
Actually, the exact shortest vector of N -dimensional random lattices is much

easier to be found along with the increment of the gap between the shortest
length and σ(L). If it is much shorter than σ(L), it shall be founded in poly-
nomial time by using LLL and related algorithms. Heuristically, as introduced
in [26], assuming the lattice L behaves like a random lattice, if there exists a
lattice vector whose distance from the target is much shorter than σ(L), this
lattice vector is expected to be the closest vector from the target. Accordingly,
this special instance of CVP usually could be solved by Babai algorithm [4] or
embedding-based SVP [25].

3 Adversarial Model

In regard to fault attacks on signature schemes, the adversary is allowed to query
and at the same time disturb the signing procedure to collect the correct or faulty
signatures (in the fault injection phase), then employs the collected signatures
to recover the private key (in the key recovery phase). The difference between
various fault attacks lies in the approaches used for both fault injection and key
recovery. The following describes the adversarial model for these two phases.

3.1 Fault Injection Model

During the fault injection phase, we assume the adversary is capable of inducing
transient faults to some specific intermediates in computation. That is, during
the invocation of signature generation, faults can be injected to the data when it
is transmitted over the physical circuit (such as buses), or stored in the memory
cells or CPU registers. Then, after the invocation, the computation device will
restore to a normal state and the faults will not be passed on to the next invo-
cation. In this way, the computation may be temporarily tampered to produce
available faulty results for the adversary.

The fault model assumes that a random fault is induced to a specific inter-
mediate v ∈ Zn and thereby there are (at most) w bits of v disturbed randomly,
which is formalized as an addition with a (bounded) random value ε ∈ Z in the
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form of v + ε2l mod n, where −2w < ε < 2w, l is a random integer in interval
[0, lv − w] and lv is the maximum bit length of v (which is usually equal to the
bit length of n). That means, there are continuous w bits of v (starting from
l-th bit) disturbed randomly. It is noted that we do not use modulo-2 addition
as in [13] (e.g., v ⊕ β2l mod n and β is a w-bit random number) but rather the
equivalent group addition in Zn to represent the effect of a fault to an inter-
mediate. In addition, although it is hard to determine the concrete bit index l
of the faulty starting location and number w of the faulty bits for each faulty
signature generation, we can conservatively estimate the maximum number w
of faulty bits starting from highest or least significant bit to determine l for all
the faulty signature generations. For example, if we estimate there are at most
w continuous faulty bits starting from the highest (or least) significant bit of v,
then l = lv − w (or l = 0). Hence, in the following analysis, w is the pre-set
maximum number of faulty bits and l(= lv − w or 0) is known.

To facilitate the description, the specific intermediates which may suffer from
faults are called (potential) targets of fault injection in this paper. All the poten-
tial targets that can be exploited by the proposed attacks are listed in Table 1, in
which there are 13 and 8 targets for deterministic ECDSA and EdDSA respec-
tively. It is noted that a target is determined by two factors, i.e., the notation
of the variant (corresponding to the intermediate), and the timing for fault
injection. For example, the two items “k before the calculation of scalar multi-
plication kG” and “k during the calculation of s” are recognized as two different
targets in this paper. In comparison, although some of the identified targets in
Table 1 have also been considered in [1], not all of them can be exploited to do
key recovery in their method, especially when the target is affected by lots of
faulty bits.

On the other hand, different targets may be equivalent if considering the final
effect of fault injection. For example, the targets on hash function in deterministic
ECDSA: “registers before outputting the hash value F (d, e)”, “last modular
additions before outputting the hash value F (d, e)” and “hash value F (d, e)
during the reduction of k” are equivalent to the target “k before the calculation
of kG”, since the fault injection to the four targets will produce a same type
of faulty k to construct the same key recovery model. Therefore, we define ‘k
before the calculation of kG” as the representative target of the four targets,
and indicate it in bold type in the table. Similarly, other representative targets
are also indicated in Table 1 in the same way. In addition, it is noted that all the
hash functions in the targets refer to SHA-2 hash function (see Sect. 2.2).

In each of the proposed attack, the adversary is required to pre-determine at
most one target and then fix the choice throughout the signature queries. Note
that we don’t consider the possibility that more than one target is chosen in a
query, since the key recovery model doesn’t support this case. Hence, there is no
guarantee that the key can be recovered successfully. A set of faulty signatures
are called valid if they are computed with the same message as input and the
same equivalent target for fault injection.
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Table 1. The fault targets and solved problem in our attacks on deterministic ECDSA
and EdDSA.

Algorithm Target of fault injection Related problem

r during the calculation of s SVP

Deterministic k−1 during the calculation of s SVP

ECDSA k during the calculation of s SVP

d during the calculation of s SVP

e during the calculation of s

–Registers before outputting hash value H(m) SVP

–Last modular additions before outputting H(m)

rd during the calculation of s SVP

e + rd during the calculation of s SVP

k before the calculation of kG

–Registers before outputting hash value F (d, e) CVP

–Last modular additions before outputting F (d, e)

–Hash value F (d, e) during the reduction of k

EdDSA r during the calculation of s

–Registers before outputting hash value H(R, P, m) SVP

–Last modular additions before outputting H(R, P, m)

–Hash value H(R, P, m) during the reduction of r

k before the calculation of kG

–Registers before outputting hash value H(d1, m) CVP

–Last modular additions before outputting H(d1, m)

–Hash value H(d1, m) during the reduction of k

It is noted that, since the paper aims to examine the conception that some
deterministic signature schemes may be threatened by lattice-based fault attacks,
we don’t consider the so-called instruction skipping attacks (where the execution
flow is disturbed such that some instructions are skipped without being executed)
and persistent faults (i.e., permanently modifying data in the memory), although
the model may be somehow extended to cover these cases.

3.2 Key Recovery by Solving Problems in Some Lattice

When enough faulty results are collected, the adversary manages to recover the
signing key. This section is devoted to describe the fundamental idea behind the
attacks, the instantiation is left to be described in Sect. 4.

Intuitively, the proposed attacks in this paper exploit some special algebraic
structures of the signature generation algorithm of deterministic ECDSA and
EdDSA, which are discovered by the following observations.

We found the lattice-based attacks on plain (EC)DSA [12] have demonstrated
that when there are small partial bits fixed between the random nonces, for
instance, the nonces ki and kj for any i and j (i �= j) satisfy ki = c2l + bi and
kj = c2l + bj (where bi �= bj and c is the fixed bits of the nonces), an instance of
CVP in some lattice can be constructed to recover the private key. Heuristically,
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although our fault models (there are many partial bits disturbed randomly) are
different from that in [12], the same type of faulty nonces (consisting of fixed
partial bits and random partial bits) can be derived and thereby the similar
instance of CVP can be constructed to recover the private key. Moreover, our
fault models are more feasible than that in [12], since many of the bits can be
changed randomly except several fixed bits. Furthermore, due to the particularity
of deterministic signature, our attack not only targets the nonce to construct an
instance of CVP, but also targets the signature result r, the hash value e, the
private key and so on to construct some instances of SVP (see Table 1). The
following universal representation of faults and key recovery can be extracted
from all the fault models (i.e., v+ε2l mod n), targets in Table 1 and the algebraic
structures (i.e., step 6 in Algorithm 1 and step 4 in Algorithm 2).

a) Representation of faults. Firstly, due to the special structure of the
deterministic ECDSA and EdDSA, when gathering a correct signature and N −1
faulty results for a common message, the adversary can construct one of the
following two relations(corresponding to SVP and CVP) for the random faulty
values {εi}N−1

i=1 ∈ Z (corresponding to the faulty signatures):

εi = AiD + hin, (4)

εi = AiD + hin − Bi (5)

with −2w < εi < 2w < n, where Ai, Bi, w, n are known values (with prime n
being the order of base point G), and D, εi, hi are unknown values.

In detail, D ∈ Zn is a function of the private key, the input message and some
known variables. Then it is important to notice that when the input message is
known, D is reversible and subsequently the key can be recovered. This is true
when the input message is not affected by the injected faults, and by the fact
that the input message is chosen and known to the adversary before the attack.
Thus the goal of the proposed attacks is translated to recover D.

b) Key recovery using lattice. Based on the above observation, we can
construct a lattice L with a basis being the row vectors of a matrix M as

M =

⎛
⎜⎜⎜⎜⎝

n 0 · · · 0

0
. . .

...
... n 0

A1 · · · AN−1 2w/n

⎞
⎟⎟⎟⎟⎠ .

It is noted that, under the random models of faults injection, L behaves like
a random lattice. Then, a target vector v ∈ L can be constructed from the
coordinate vector x = (h1, . . . , hN−1,D) ∈ Z

N as

v = xM = (A1D + h1n, . . . , AN−1D + hN−1n,D2w/n).

The given volume of L meets vol(L) = det(M) = nN−22w, where det(M)
denotes the determinant of M. Under the condition of |εi| < 2w, supposing
f = �log n	, w < f − log

√
2πe and N 
 1 + f+log

√
2πe

f−w−log
√
2πe

, one of the following
relations will hold:
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(i) when the faulty value is represented by Eq. (4), we have

‖v‖ <
√

N2w �
√

N

2πe
vol(L)

1
N ; (6)

(ii) when the faulty value is represented by Eq. (5), then for vector u =
(B1, . . . , BN−1, 0) ∈ Z

N /∈ L, we have

‖v − u‖ <
√

N2w �
√

N

2πe
vol(L)

1
N . (7)

Then, heuristically we expect that the vector v in inequalities (6) is the
shortest vector in L and the v in inequalities (7) is the closest vector to u in L
as introduced in [26]. By the discussion in Sect. 2.3, when N is bounded, vector
v can be found efficiently by solving the SVP or CVP with LLL or other related
algorithm, and then the value of D can be recovered, which immediately leaks
the private key d in deterministic ECDSA or d0 in EdDSA. To have a complete
view about the proposed attacks, Table 1 relates the targets with the relevant
problems in some lattice.

4 Concrete Lattice-Based Fault Attacks on Deterministic
ECDSA and EdDSA Algorithms

In this section, we instantiate the idea of the attacks discussed in Sect. 3. The
key point is to show that Eqs. (4) and (5) can be constructed when concrete
targets are selected. Then, the lattice-based approach described in Sect. 3.2 can
be followed to do key recovery. Since most of the attacks presented in this paper
are of similar structure in description, to simplify presentation, only three repre-
sentative attacks are described in this section, while other attacks, with targets
shown in Table 1, are gathered in Appendix A.

4.1 Fault Attacks with Target r During the Calculation of s

Suppose the adversary decides to inject a fault against r before using it to
calculate s. Then after getting a correct signature for a message m (chosen by
the adversary in advance), the adversary manages to get N −1 faulty signatures
with the same message m as input, and r as the target of fault injection.

4.1.1 Attacks on Deterministic ECDSA
Step 1: inject fault to r during the calculation of s
During the calculation of s, if injected with a fault, r can be represented as
ri = r + εi2li for i = 1, ..., N − 1, where εi is a random number satisfying
−2w < εi < 2w < n (by the random fault model) and the known li ∈ N satisfies
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li = f − w or 0 (see Sect. 3.1, f = �log n	). The correct signature (r, s0) and
N − 1 faulty results (ri, si) for the same input message m can be represented as{

s0 = k−1 (e + rd) mod n
si = k−1

(
e + (r + εi2li)d

)
mod n (for i = 1, ..., N − 1). (8)

Step 2: recover the private key d by solving SVP
After reduction, Eq. (8) can be transformed as

εi = (si − s0) 2−lid−1k mod n. (9)

Let Ai = (si − s0)2−li mod n and D = d−1k mod n. There must exist hi ∈ Z

for i = 1, ..., N − 1 such that

εi = AiD + hin, (10)

where D is a fixed value due to the same input message m for all the signature
queries.

It is clear that Eq. (10) is exactly Eq. (4). Then following the strategy
described in Sect. 3.2, if w < f − log

√
2πe and N 
 1 + f+log

√
2πe

f−w−log
√
2πe

(N ≈
1 + f+log

√
2πe

f−w−log
√
2πe

in practice), D can be recovered by solving SVP and subse-
quently the private key d can be recovered by virtue of the equation

d = (Ds0 − r)−1e mod n.

4.1.2 Attacks on EdDSA
Before we proceed, it should be noted that the existing DFAs against EdDSA [1,
5,27–29] do not recover the private key d, but rather recover the sub-keys d0 or
d1. This is still a real risk to the security of EdDSA since knowing a partial key
d0 or d1 suffices to forge signatures [28].

Just like in the case of deterministic ECDSA, if the target r during the
calculation of s is chosen, the correct and faulty signatures can be expressed as{

s0 = k + rd0 mod n
si = k + (r + εi2li)d0 mod n(i = 1, ..., N − 1). (11)

After reduction, there must exist hi ∈ Z for i = 1, ..., N − 1 such that Eq. (11)
can be transformed as

εi = AiD + hin, (12)

where Ai = (si − s0)2−li mod n, and D = d−1
0 mod n.

Equation (12) is exactly Eq. (4). Analogously, by applying the general strat-
egy described in Sect. 3.2, D can be found by solving SVP and subsequently the
signing key d0 can be obtained.

4.2 Fault Attacks with Target k Before the Calculation of kG

Suppose the adversary decides to inject a fault to k before using it to calculate
kG. Then after getting a correct signature for a message m (chosen by the
adversary also), the adversary can manage to get N − 1 faulty signatures with
the same message m as input, and k as the target.
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4.2.1 Attacks on Deterministic ECDSA
Step 1: inject fault to k before the calculation of kG
When k is injected with a fault, we have ki = k + εi2li for i = 1, ..., N − 1,
where εi satisfying −2w < εi < 2w is a random number and li = f − w or 0 (see
Sect. 3.1). The correct signature (r0, s0) and N − 1 faulty ones (ri, si) for the
same message m can be represented as{

k = s0
−1 (e + r0d) mod n

k + εi2li = si
−1 (e + rid) mod n(i = 1, ..., N − 1). (13)

Step 2: recover the private key d by solving CVP
After reduction, Eq. (13) can be transformed as

εi =
(
si

−1ri − s0
−1r0

)
2−lid − (

s0
−1 − si

−1
)
2−lie mod n. (14)

Let Ai =
(
si

−1ri − s0
−1r0

)
2−li mod n, Bi = (s0−1 − si

−1)2−lie mod n and
D = d mod n. Then there must exist hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin − Bi. (15)

Equation (15) is exactly Eq. (5). Analogously, by applying the general strat-
egy described in Sect. 3.2, if w < f − log

√
2πe and N 
 1 + f+log

√
2πe

f−w−log
√
2πe

, D,
i.e., the private key d can be obtained in polynomial time in N .

4.2.2 Attacks on EdDSA
Just like in the case of deterministic ECDSA, if the target k before the calculation
of kG is chosen, the correct and faulty signatures can be expressed as{

s0 = k + r0d0 mod n
si = k + εi2li + rid0 mod n(i = 1, ..., N − 1). (16)

After reduction, there must exist hi ∈ Z for i = 1, ..., N − 1 such that Eq.
(16) can be transformed as

εi = AiD + hin − Bi, (17)

where Ai = (r0 − ri)2−li mod n, D = d0 mod n and Bi = (s0 − si)2−li mod n.
Equation (17) is exactly Eq. (5). Analogously, by applying the strategy

described in Sect. 3.2, d0 can be obtained in polynomial time in N .
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4.3 Fault Attacks with the Targets During the Calculation of k

As described in Sect. 4.2, if injecting a fault into the target “k before the cal-
culation of kG” to obtain some faulty kis satisfying ki = k + εi2li(−2w < εi <
2w, w < f − log

√
2πe and i = 1, ..., N − 1), then Eq. (5) can be constructed to

recover the private key in deterministic ECDSA or EdDSA. As in Table 1, besides
the target “k before the calculation of kG”, we found some other fault targets
during the calculation of k also can generate the same type of faulty kis, includ-
ing “registers before outputting hash value F (d, e) (or H(d1,m))”, “last modular
additions before outputting hash value F (d, e) (or H(d1,m))” and “hash value
F (d, e) (or H(d1,m)) during the reduction of k”.

The following will introduce the three targets and the fault models whose
final purpose is to generate some faulty signatures satisfying ki = k + εi2li(
−2w < εi < 2w and w < f − log

√
2πe). For simplicity, we just consider the case

when li = 0 for i = 1, ..., N − 1(i.e., the continuous w bits of k starting from the
least significant bit are disturbed randomly) and the hash function is SHA-2, to
which the other cases are similar.

4.3.1 Hash Function Generating k
Although different SHA2-based derived functions are employed for generating
k in deterministic ECDSA and EdDSA (for example, HMAC DRBG SHA256
F (d, e) is utilized in deterministic ECDSA and hash algorithm SHA512 H(d1,m)
is utilized in EdDSA by default), they all have the similar final computational
steps before outputting the hash value to generate k (as shown Fig. 1). As shown
in Figs. 2 and 3, after the L-round compression, the modular additions (mod
2t, t is bit length of register) of the registers (aL−1, . . . , gL−1) ∈ [0, 2t) and
(a0, . . . , h0) ∈ [0, 2t) are calculated and the results are assigned to the registers
(aL, . . . , hL) ∈ [0, 2t) as the hash value. Hence, once a fault is injected into these
registers, the calculation of the additions or the hash value during the following
reduction, k will be affected by the fault.

Fig. 2. Fault targets in the hash function
of deterministic ECDSA

Fig. 3. Fault targets in the hash function
of EdDSA
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Table 2. The targets of fault injection during the calculation of k.

target algorithm concrete location of fault injection

registers before deterministic ECDSA (partial bits of a0, aL), (b0, ..., h0),

(bL, ..., hL), (aL−1, ..., gL−1)

outputting hash values EdDSA (partial bits of e0, eL), (f0, g0, h0),

(fL, gL, hL), (eL−1, fL−1, gL−1)

modular additions before deterministic ECDSA all the modulo-2t additions

outputting hash values EdDSA modulo-2t additions in the right half

hash value during deterministic ECDSA the value of F (d, e)

the reduction of k EdDSA the value of H(d1, m)

Table 2 gives an overview of all the fault targets before outputting the hash
value and during the reduction of k for deterministic ECDSA and EdDSA respec-
tively. The following sections will describe the detailed attack process with the
targets in Table 2.

4.3.2 Fault Attacks with Target: Registers Before Outputting Hash
Value
Attacks on deterministic ECDSA
For the HMAC DRBG SHA256 during signature generation of deterministic
ECDSA, the final output registers (aL, . . . , hL) can be reduced into a big number
k = T28t + aL27t + . . . + gL2t + hL mod n, where T is the concatenation of the
previous u-times HMAC values, i.e., T = HMAC0||HMAC1|| . . . ||HMACu−1

(T = 0 in 256-bit deterministic ECDSA), and t is the bit length of register.
As shown in Fig. 2, assuming that all or arbitrary one of the registers

(a0, . . . , h0), (aL−1, . . . , gL−1) before the last additions and (aL, . . . , hL) before
outputting the hash value are affected with a fault, the consequent k can be
represented as ki = T28t + (aL27t + bL26t + . . . + gL2t + hL + εi) mod n for
i = 1, . . . , N − 1, with a random faulty value εi satisfying −2w < εi < 2w and
w < f − log

√
2πe ≤ 8t − log

√
2πe (8t = f for 256-bit deterministic ECDSA).

That is, ki, which is derived from the faulty hash value and is to participate in
the next calculation of kG, is equal to k + εi mod n.

Similar to the key recovery with target “k before the calculation of kG”,
Eq. (5) can be constructed. Then following the general strategy described in
Sect. 3.2, the private key d can be recovered by solving the instance of CVP in
lattice.

Note that in 256-bit deterministic ECDSA, to make sure w < f − log
√

2πe,
the register hL−1 can not be viewed as target, and as listed in Table 2, more than
�log

√
2πe	 most significant bits of the registers a0 and aL can not be disturbed

when a fault is injected into them. Except this, all the fault injections against
the other registers are arbitrary and uncontrolled.

Attacks on EdDSA
In the hash algorithm SHA512 H(d1,m) of EdDSA, the final output 512-bit
registers (aL, . . . , hL) as the hash value must be reduced into the nonce k =
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aL27t + . . . + gL2t + hL mod n, where t as the bit length of register equals to
64 in SHA512. For 256-bit EdDSA, e.g., Ed25519, the modular reduction will
reduce the 512-bit hash value into a 253-bit nonce k. Hence, in order to obtain
available faulty signatures, fault injection here will take the four registers in the
right half as the targets.

As shown in Fig. 3, when all or arbitrary one of the registers (e0, . . . , h0),
(eL−1, . . . , gL−1) before the last additions and (eL, . . . , hL) before outputting
hash value are injected with a fault, the consequent k can be represented as
ki = aL27t + . . .+dL24t +(eL23t + . . .+hL +εi) mod n for i = 1, . . . , N −1, with
a random faulty value εi satisfying −2w < εi < 2w and w < f − log

√
2πe ≤

4t − log
√

2πe (f ≈ 4t for 256-bit EdDSA). That is, ki = k + εi mod n. Similar
to the key recovery with target “k before the calculation of kG”, Eq. (5) can be
constructed. Then according to the general strategy described in Sect. 3.2, the
private key d0 can be recovered by solving the instance of CVP in lattice.

Note that in 256-bit EdDSA, to make sure w < f − log
√

2πe, only the
right half of the registers are viewed as targets, and as listed in Table 2, at least
4t − f + �log

√
2πe	 most significant bits of the registers e0 and eL can not be

disturbed when a fault is injected into them. Except this, the fault injection to
the remaining three registers is arbitrary and uncontrolled. In addition, if the
registers in the left half are disturbed, then ki = k + εi24t mod n. Similarly, we
also can construct an instance of CVP in lattice to recover the private key.

4.3.3 Fault Attacks with Target: Last Modular Additions Before
Outputting Hash Value
As described in Sect. 4.3.1 and 4.3.2, if the last modulo-2t additions are disturbed
by a fault to generate a group of faulty hash value {aL, ..., hL}, then the nonce
k derived by the hash value has w bits disturbed, by which Eq. (5) can be
constructed to recover the private key d.

For 256-bit deterministic ECDSA, as shown in Fig. 2, all or arbitrary one of
the last modulo-2t additions could be affected with a fault. Moreover, it is noted
that the fault injection towards the first addition on the left must ensure more
than �log

√
2πe	 most significant bits of aL undisturbed.

Similarly, for 256-bit EdDSA, as shown in Fig. 3, all or arbitrary one of the
last modulo-2t additions in the right half could be affected with a fault. Moreover,
the fault injection towards the first addition in the right half must ensure more
than 4t − f + �log

√
2πe	 most significant bits of eL undisturbed. In addition,

similarly, if the additions in the left half are disturbed, we also can construct an
instance of CVP in lattice to recover the key.

4.3.4 Fault Attacks with Target: Hash Value During the Reduction
of k
After calculating the last modular additions in the hash function, the final reg-
isters are combined into a big number E(E = F (d, e) in deterministic ECDSA
or E = H(d1,m) in EdDSA), and E must be reduced into nonce k, That is,
k = E mod n. Assuming that a fault is injected into E during the reduction, the
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reduction k = E mod n is changed into ki = E+εi2li mod n for i = 1, . . . , N −1.
Hence, as long as the random number εi satisfying −2w < εi < 2w and
w < f − log

√
2πe, Eq. (5) can be constructed. Thereby, the private key can

be recovered by solving an instance of CVP in lattice.
To sum up, the three fault targets above during the calculation of k are equiv-

alent to the representative target “k before the calculation of kG”, and thereby
Eq. (5) can be constructed to recover the private key d in deterministic ECDSA
and d0 in EdDSA. The other attacks targeting the hash functions generating e
and r have the similar procedures, which are specified in Appendix A.5 and A.6.

5 Experiment and Complexity Discussion

The validity of the proposed attacks lies in two aspects, namely, the validity
of fault injection and the validity of key recovery. Section 3 presents the con-
ditions and allowed adversarial actions for fault injection, and it is reasonable
to believe that suitable faults can be induced during the signature generation
process since our adversarial model is not completely new compared with the
models in [13,27–29]. Thus, we do not conduct concrete experiments to demon-
strate the applicability of these fault injections. On the other hand, experiments
are performed to check the validity of lattice-based key recovery algorithms.
This is helpful to understand the relations between the allowed faulty bits(w),
the required number of faulty signatures (N), and the success rate (γ) of the
presented key recovery.

The experiments are conducted in a computer with 2.4 GHz CPU, 8 GB mem-
ory and Windows7 OS. The BKZ algorithm with block size of 20 implemented
in NTL library [34] is employed to solve the instances of SVP/CVP. The exper-
imental results for 256-bit deterministic ECDSA(based on NIST P-256) and
EdDSA (based on curve25519, i.e., Ed25519) under some specific elliptic curve
parameterized, are listed in Table 3 and Table 4 respectively.

Table 3. Success rate when attacking 256-bit deterministic ECDSA (f = 256)

target of fault injection w = 250 w = 245 w = 192 w = 160 w = 128

N γ N γ N γ N γ N γ

r during the calculation of s 80 100% 29 100% 6 96% 4 85% 3 70%

k−1 during the calculation of s 80 100% 29 100% 6 96% 4 89% 3 65%

k during the calculation of s 80 100% 29 100% 6 97% 4 87% 3 82%

e, rd, e + rd during 80 100% 27 100% 6 97% 4 87% 3 67%

the calculation of s

d during the calculation of s 80 100% 26 100% 6 95% 4 85% 3 67%

k before the calculation of kG 80 74% 30 100% 6 100% 4 100% 3 55%
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Table 4. Success rate when attacking 256-bit EdDSA (f = 253)

target of fault injection w = 247 w = 245 w = 192 w = 160 w = 128

N γ N γ N γ N γ N γ

r during the calculation of s 80 100% 45 98% 6 97% 4 84% 3 23%

k before the calculation of kG 110 13% 29 100% 6 100% 4 100% 3 12%

Before proceeding to describe the experiment results some points should be
clarified. First, to simplify the experiments, we only conduct key recovery exper-
iments for representative targets (defined in Sect. 3.1). Similarly, due to the sim-
ilarity of key recovery for targets e, rd, e+ rd during the calculation of s, we just
conduct key recovery experiments with the target e.

Then, for each experiment of key recovery, we use a pseudo-random generator
to generate the input message m and N − 1 groups of w-bit random numbers
βis. For simplicity, the chosen target v is set to be v ⊕ βi for i = 1, . . . , N − 1,
which is equivalent to v + εi mod n (where li = 0 and εi is also random with
bound −2w < εi < 2w). Then the simulated faulty signatures are used to do key
recovery. If the signing key can be recovered finally, the experiment is marked
successful, otherwise failed. A such-designed experiment could fail because the
short (or close) vector derived by LLL algorithm could be not the shortest (or
closest) one if the selected N is not big enough, or the constructed lattice basis
is not nice due to the oversize w and so on. For simplicity, we record the success
rate of the experiments as γ = number of successful experiments

total number of experiments . In addition, when
li �= 0, e.g., li = f −w, the experiments are similar and will not be detailed here.

Third, for each selected fault target (corresponding to each row of Table 3
and Table 4), we illustrate the validity of attacks in five groups, each of them
corresponding to a specific value of parameter (w,N). Note that when n is fixed,
the range of w and N can be determined from the relations w < f−log

√
2πe and

N 
 1 + f+log
√
2πe

f−w−log
√
2πe

respectively. Hence, when f = �log n	 = 256(or f = 253
in Ed25519), the tolerant bound of w can be up to 253(or 250) in theory. Then,
for each pair (w,N), a number of experiments are conducted to validate the
effectiveness of key recovery.

Regarding the experiment number of each case, when w ≤ 245, we conduct
1000 experiments to derive each success rate γ; when w = 250 or 247, only 100
experiments is conducted since our experiment platform cannot afford the signif-
icant computational cost of BKZ algorithm. The maximal w in our experiments
is considered as 250(or 247), which is slightly less than the tolerable bound(i.e.,
253 or 250) in theory. It is hopeful that if some other improved lattice reduction
algorithms, such as BKZ 2.0 [11] with some optimum parameters, are utilized
in the experiments, the theoretical bounds (i.e., 253 and 250) could be achieved.
Moreover, as the previous lattice reduction, the needed N is approximate to
1 + f+log

√
2πe

f−w−log
√
2πe

in experiments, which is obviously better than the N needed
in theory. In addition, the success rate γ is tightly related to the parameters
w and N . When w is set to be closed to 245, 30 and 45 faulty signatures suf-
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fice to recover the key with absolute success rate for deterministic ECDSA and
Ed25519 respectively. However, when w is significantly less than the bound, a
few faulty signatures suffice to recover the key. For example, when w = 128, 1
correct signature and 2 faulty signatures suffice to recover the key with success
rate over 12% in experimental time 2 ∼ 3ms (with block size of 20). As a com-
parison (without considering the number of fault injections), it is impractical for
the existing DFAs [1,5,27,28] to break the deterministic signature when w ≥ 64,
since exponential complexity O(2w) is required to enumerate the faulty patterns.
In addition, as introduced in Sect. 3.1, since w is unknown and required to preset
in practice, a conservative way is to set w as the (practical) maximum tolerable
bound such that the key recovery can succeed.

Table 5. Comparison of attack complexity on 256-bit deterministic ECDSA or EdDSA

∗ N ≈ 1 + f+log
√
2πe

f−w−log
√
2πe

.

To have a more complete view about the computational complexity of
the proposed key recovery algorithms, we compare them with the existing
attacks in Table 5. In our experiments, the block size of BKZ algorithm
is set as 20, and thus the LLL-based reduction with asymptotic complexity
O(N5(N + log A) log A) [24] consumes the main time, where A is the maximum
length in the original lattice vectors. When N is chosen as a polynomial of (f, w)
(where f is a fixed value in a concrete algorithm), the computational complexity
is thus polynomial in w, which is obviously less than the exponential complexity
required by the existing approaches [1,5,27,28].

As a conclusion, our approach has obvious advantages over the mentioned
existing approaches in terms of the tolerance of faulty bits (characterized by
w) and time complexity, which also means the proposed attacks are of higher
applicability when comparing with those approaches.

6 Countermeasures

In this section, we discuss the effectiveness of some possible countermeasures.
-Randomization. As introduced above, the proposed attacks take advan-

tage of the fact that k is determined by the input message and the private key,
and remains unchanged during the process of signature queries. Intuitively the
condition can be removed by reintroducing randomness to the derivation of k.
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This is the exact idea of hedged signature schemes, where the input message,
secret key and a nonce are input to generate the per-signature random k. The
security of hedged signature schemes against fault attacks has recently been
proven under some limited models [3]. This strategy can theoretically defeat our
attacks but it remains unclear whether it can be used to resist all fault attacks.

-Data integrity protection. Integrity protection is a natural choice for
fault attacks resistance. It is a fact that the security of data transmission and
storage can be consolidated by adopting error detection (or correction) code in
the circuit level. However, limited by the computing power and cost factors, it
is usually impossible to adopt strong integrity protection in the smart card like
products. Thus the usually implemented Parity check and Cyclic Redundancy
Code will leave rooms for fault injection. Namely, though they can be used to
resist our attacks to some extent, more considerations are required to validate
the real effectiveness of the mechanism. In addition, though the strategy that
checking whether the input and output points are on the original elliptic curve
can be used to resist the attacks in [1], our attacks are still effective in this case.

-Signature verification before outputting. Note the signature result of
the two targeted deterministic algorithms is the form of (r, s). If k is tampered
before the calculation of kG, the result (r, s) is derived by the faulty k. Hence,
verifying the signature before outputting cannot detect the fault. This means
the attack selecting k before the calculation of kG as the representative target
can survive, but the other proposed attacks can be prevented.

-Consistency check of repeated computations. In this strategy, the
signature calculation on an input message is repeated for two or more times,
and the signature result will be output only when all the computation results
are consistent. This can be effective to resist all the proposed attacks since there
is no guarantee that the fault induced each time will be the same under the
random fault model. But this countermeasure may not be efficient, since in this
case two scalar multiplications have to be computed, which is unaffordable for
some devices (such as IoT devices) whose computing power is very limited.

-Infective computation. This strategy is graceful in that the adversary in
this case cannot distinguish whether the faulty signature is valid or not, thus
the key recovery can be defeated. We propose two infective countermeasures to
resist the proposed attacks to a considerable extent, where the hash function is
SHA-2 (Figure 1) by default.

(i) For EdDSA, the final 8-round compressions in the hash function H(d1,m)
generating k are calculated twice to obtain two identical nonces k1 and k2, and
the final 8-round compressions in the hash function H(R,P,m) generating r are
calculated twice to obtain two identical r1 and r2; moreover, a random infective
factor β is introduced, which has the same bit length with k, and is regenerated
per signature. Then compute s = (1 + β)(k1 + d0r1) − β(k2 + d0r2) mod n.

(ii) For deterministic ECDSA, the final 8-round compressions in the hash
function F (d, e) generating k are calculated twice to obtain two identical nonces
k1 and k2. The final 8-round compressions in the hash function H(m) generating
e are calculated twice to obtain two identical e1 and e2. The reduction(i.e., r = x1
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mod n) generating r is calculated twice to obtain two identical r1 and r2. The
private key d defined as d1 and d2 is invoked twice during the calculation of s,
respectively. Then compute s = (1+β)k1−1(e1+d1r1)−βk2

−1(e2+d2r2) mod n.

7 Conclusion

We present a new fault analysis method to deterministic ECDSA and EdDSA.
In the new model, the faulty intermediate can be characterized as an addition
of the original intermediate with a random value of left-shifted l bits. The range
of the random value is determined by and close to the size of the signing key.
This makes the method much more practical than the existing enumerating
approaches [1,5,27,28] in terms of tolerance of faulty bits.

The advantage is guaranteed by the lattice-based key recovery method. By
noticing the algebraic structures of the deterministic algorithms, we show that,
when providing with some faulty signatures and an associated correct signature
of the same input message, some instances of lattice problems can be constructed
to recover the signing key. Moreover, the lattice-based approach supports much
more alternative targets of fault injection than the existing approaches, which
further improves the applicability of the approach.

Experiments are performed to validate the effectiveness of the key recovery
method. It is demonstrated that, for 256-bit deterministic ECDSA and EdDSA,
the signing key can be recovered efficiently with high probability even if the inter-
mediates are affected by 250 and 247 faulty bits respectively. This is, however,
impractical for the existing faulty pattern enumerating approaches to achieve
the same objective.
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A Appendix

This appendix will introduce the attacks with the remaining targets listed in
Table 1 to deterministic ECDSA and EdDSA, including the attacks with targets
k, k−1, e, rd, e+ rd and d during the calculation of s and the attacks taking the
hash functions generating e and r as fault targets.

A.1 Fault Attacks with Target k During the Calculation of s
to Deterministic ECDSA

Suppose the adversary decides to inject a fault to k before using it during the
calculation of s. Then after getting a correct signature for a message m (chosen
by the adversary in advance), the adversary can try to get N−1 faulty signatures
with the same message m as input, and k as the target.
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Step 1: inject fault to k during the calculation of s
When k is injected with a fault, we have ki = k + εi2li for i = 1, ..., N − 1,

where εi satisfying −2w < εi < 2w < n is a random number and li = f − w or 0
(see Sect. 3.1). The correct signature (r, s0) and N − 1 faulty ones (r, si) for the
same input message m can be represented as{

k = s0
−1 (e + rd) mod n

k + εi2li = si
−1 (e + rd) mod n(i = 1, ..., N − 1) . (18)

Step 2: recover the private key d by solving SVP
After reduction, Eq. (18) can be transformed as

εi =
(
si

−1 − s0
−1

)
2−li (e + rd) mod n. (19)

Let Ai = (si
−1 − s0

−1)2−li mod n and D = e+ rd mod n. There must exist
hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin, (20)

where D is a fixed value due to the same input message m for all the signature
queries.

Equation (20) is exactly Eq. (4). Then following the general strategy
described in Sect. 3.2, if w < f − log

√
2πe and N 
 1+ f+log

√
2πe

f−w−log
√
2πe

, D can be
found by solving an instance of SVP and subsequently the private key d can be
recovered by virtue of the equation

d = r−1(D − e) mod n.

A.2 Fault Attacks with Target k−1 mod n During the Calculation
of s to Deterministic ECDSA

Suppose the adversary decides to inject a fault to k−1 mod n (after being gen-
erated by modular inversion of k) before using it during the calculation of s.
Then after getting a correct signature for a message m, the adversary can try to
get N − 1 faulty signatures with the same message m as input, and k−1 as the
target.

Step 1: inject fault to k−1 mod n during the calculation of s
When k−1 mod n derived by k is injected with a fault, we have k−1

i = k−1 +
εi2li mod n for i = 1, ..., N − 1, where εi satisfying −2w < εi < 2w is a random
number, w is a preset value and li = f − w or 0 (see Sect. 3.1). The correct
signature (r, s0) and N − 1 groups of faulty (r, si) for the same input message
m can be represented as{

s0 = k−1 (e + rd) mod n
si =

(
k−1 + εi2li

)
(e + rd) mod n(i = 1, ..., N − 1). (21)
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Step 2: recover the private key d by solving SVP
After reduction, Eq. (21) can be transformed as

εi = (e + rd)−1 (si − s0) 2−li mod n. (22)

Let Ai = (si − s0)2−li mod n and D = (e + rd)−1 mod n. There must exist
hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin, (23)

where D is a fixed value due to the same input message m for all the signature
queries.

Equation (23) is exactly Eq. (4). Then following the general strategy
described in Sect. 3.2, if w < f − log

√
2πe and N 
 1+ f+log

√
2πe

f−w−log
√
2πe

, D can be
found by solving an instance of SVP and subsequently the private key d can be
recovered by virtue of the equation

d = r−1(D−1 − e) mod n.

A.3 Fault Attacks with Target d During the Calculation of s
to Deterministic ECDSA

Suppose the adversary decides to inject a fault to d before using it during the
calculation of s. Then after getting a correct signature for a message m, the
adversary can try to get N − 1 faulty signatures with the same message m as
input, and d as the target.

Step 1: inject fault to d during the calculation of s
When d is injected with a fault, we have di = d + εi2li for i = 1, ..., N − 1,

where εi satisfying −2w < εi < 2w is a random number, w is a preset value and
li = f − w or 0 (see Sect. 3.1). The correct signature (r, s0) and N − 1 groups of
faulty (r, si) for the same input message m can be represented as{

s0 = k−1 (e + rd) mod n
si = k−1

(
e + r(d + εi2li)

)
mod n(i = 1, ..., N − 1). (24)

Step 2: recover the private key d by solving SVP
After reduction, Eq. (24) can be transformed as

εi = (si − s0) 2−lir−1k mod n. (25)

Let Ai = (si − s0) r−12−li mod n and D = k mod n. There must exist hi ∈ Z

for i = 1, ..., N − 1 such that

εi = AiD + hin, (26)

where D is a fixed value due to the same input message m for all the signature
queries.
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Equation (26) is exactly Eq. (4). Then following the general strategy
described in Sect. 3.2, if w < f − log

√
2πe and N 
 1+ f+log

√
2πe

f−w−log
√
2πe

, D can be
found by solving an instance of SVP and subsequently the private key d can be
recovered by virtue of the equation

d = r−1 (Ds0 − e) mod n.

A.4 Fault Attacks with Targets e, rd and e + rd During
the Calculation of s to Deterministic ECDSA

If the targets e, rd and e + rd targets are disturbed by fault injection, a same
model of key recovery can be constructed. Therefore, for simplicity, we define mv
as any one of the three targets, that is, mv could be e, rd or e+ rd. Suppose the
adversary decides to inject a fault to mv before using it during the calculation
of s. Then after getting a correct signature for a message m, the adversary can
try to get N − 1 faulty signatures with the same message m as input, and mv
as the target.

Step 1: inject fault to mv during the calculation of s
When mv is injected with a fault, we have mvi = mv+εi2li for i = 1, ..., N−1,

where εi satisfying −2w < εi < 2w is a random number, w is a preset value and
li = f − w or 0 (see Sect. 3.1). The correct signature (r, s0) and N − 1 faulty
ones (r, si) for the same input message m can be represented as{

s0 = k−1 (e + rd) mod n
si = k−1

(
e + rd + εi2li

)
mod n(i = 1, ..., N − 1). (27)

Step 2: recover the private key d by solving SVP
After reduction, Eq. (27) can be transformed as

εi = (si − s0) 2−lik mod n. (28)

Let Ai = (si − s0) 2−li mod n and D = k mod n. There must exist hi ∈ Z

for i = 1, ..., N − 1 such that

εi = AiD + hin, (29)

where D is a fixed value due to the same input message m for all the signature
queries.

Equation (29) is exactly Eq. (4). Then following the general strategy
described in Sect. 3.2, if w < f − log

√
2πe and N 
 1+ f+log

√
2πe

f−w−log
√
2πe

, D can be
found by solving an instance of SVP. Naturally, as mentioned above, the private
key d can be recovered by virtue of D.
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A.5 Fault Attacks with Targets During the Calculation of e
to Deterministic ECDSA

As introduced in Appendix A.4, if injecting a fault into e before using it during
the calculation of s to obtain some valid eis satisfying ei = e+εi2li (−2w < εi <
2w and li = f − w or 0), then Eq. (4) can be constructed to recover the private
key in deterministic ECDSA.

Similarly, besides directly injecting fault into the target “e during the calcu-
lation of s”, there still exist two other fault targets during the calculation of e
which can generate some valid faulty eis for key recovery, including “registers
before outputting the hash value H(m)” and “last modular additions before
outputting the hash value H(m)”. The models of fault injection with these two
targets are similar to the ones introduced in Sects. 4.3.2 and 4.3.3, and thereby
Eq. (4) which is similar to that with target “e during the calculation of s”, can
be constructed to recover the private key in deterministic ECDSA.

A.6 Fault Attacks with targets During the Calculation of r
to EdDSA

As introduced in Sect. 4.1.2, if injecting a fault into r before using it during the
calculation of s to obtain some valid ris satisfying ri = r+εi2li (−2w < εi < 2w,
w < f − log

√
2πe and li + w ≤ f), Eq. (4) can be constructed to recover the

private key in EdDSA.
Similarly, besides directly injecting fault into the target “r during the calcu-

lation of s”, there still exist another three fault targets during the calculation of
r which can generate some valid faulty ris for key recovery, including “registers
before outputting hash value H(R,P,m)”, “last modular additions before out-
putting hash value H(R,P,m)” and “hash value H(R,P,m) during the reduction
of r”. The models of fault injection with these three targets are similar to the
ones in Sects. 4.3.2, 4.3.3 and 4.3.4, and thereby Eq. (4) which is similar to that
with target “r during the calculation of s”, can be constructed to recover the
private key in EdDSA.
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Abstract. Majority of lattice-based encryption schemes allow the possi-
bility of decryption failures. It is now understood that this property makes
such encryption systems susceptible to the so-called decryption failure
attack. In such an attack, an adversary can use a large number of cipher-
texts that cause decryption failures to help to recover a private key. In
PQC2020, Bindel and Schanck observed that successful decryptions also
imply some information about the secret as the secret vector must be away
fromcertain spherical caps. In this paper,we revisit this problemby explor-
ing certain geometric properties in lattice based schemes. We are able to
produce more tools for crypt-analysis and operations of these schemes and
provide a more accurate interpretation of the information brought from
successful decryptions to enhance the failure boosting. By using (recent)
precise formulas, we develop some techniques to accurately characterize
relationships between a private key and successful queries to the decryp-
tion oracle. A finer estimation of the valid proportion of key candidates
that can be excluded from successful queries is given. The decryption fail-
ure probability is also more accurately analysed. Our discussion addresses
and corrects previous errors and our experimental data is usable in assess-
ing the IND-CCA security of (R/M)-LWE/LWR based systems.

Keywords: Lattice-based cryptography · Decryption oracle · Failure
boosting · Crypt-analysis

1 Introduction

Lattice-based cryptography has been an important field for research and appli-
cations. Over the past decades, many new ideas have been developed and new
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designs have been proposed. It is believed that several fundamental lattice prob-
lems are resistant to quantum attacks, public key systems using lattice construc-
tion have been a major option for new post-quantum cryptosystems.

The environment for setting up lattice-based encryption systems seems to
be much more complicated than that for the classical public key encryption
systems such as RSA and Elgamal (finite fields version and elliptic curve ver-
sion). Because of the involvements of adding errors and rounding operations,
the decryption is not a deterministic one. Given a valid pair of ciphertext and
private key, one can only assert that such a system recovers the correct plaintext
with overwhelming probability.

In 2018, the impact of decryption failures was studied for measuring the
chosen-ciphertext security of (Ring/Module)-Learning With Errors/Rounding
((R/M)-LWE/LWR)-based primitives by D’Anvers etc. in [10,11]. Their results
show that such an impact could be significant. Especially when the failure prob-
ability is relatively high, the security of (R/M)-LWE/LWR-based schemes could
be reduced. On the other hand, since NIST poses some limits on the number
of available oracle queries, the NIST post-quantum standardization candidates
could be immune to this kind of attack. The authors of [10,11] have developed
failure boosting technique to increase the failure rate in the above work. It is
noted that more ways of achieving failure boosting have been proposed more
recently [9,12–16].

In 2020, Bindel and Schanck [5] considered the problem from a new angle
by arguing that for an imperfectly correct lattice-based public-key encryption
scheme, information about their private key can be leaked even when the answers
for decryption queries are successful. In their refinement of the D’Anvers-Guo-
Johansson-Nilsson-Vercauteren-Verbauwhede failure boosting attack, through a
geometric formulation of the problem, partial information about the private
key can be obtained by calculating (a low order approximation of) a union of
spherical caps. It should be pointed out that the discussion in [5] contains an
error which also affects the correctness of bounds and corresponding experiments.

In this paper, we revisit the problem of using the information brought from
successful queries to enhance the failure boosting. Combining with some recent
mathematical tools, we develop some techniques to characterize the information
about private key more accurately, given that decryption queries all succeed.
Our discussion corrects previous errors and our experimental data is usable in
assessing the security of (R/M)-LWE/LWR-based systems. More specifically, our
contributions are

– We characterize the compression errors (rounding errors) that are used by
several important lattice-based schemes. For the cases of practical interest,
we are able to obtain their precise distributional behavior.

– The information inferred by a successful answer from querying the decryption
oracle is correctly characterized. More precise geometric formulas are used to
calculate the valid proportion of private key candidates that can be excluded
in the decryption failure attack.
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– By refining the (recently confirmed) orthogonality hypothesis, the effect of
more queries and their overlaps are investigated and better estimations are
obtained.

– Using the information of the success of previous queries, a more accurate
posterior decryption failure probability is given according to Bayes’ theorem.

The paper is organized into 6 sections. Necessary terminologies and notations
are introduced in Sect. 2. We discuss the distributional behaviors of compression
errors in Sect. 3. Section 4 reformulates the problem of extracting private key
information from successful queries with more concise formulas. The content of
dealing with general case by using the second-order approximation is included in
Sect. 5 where the overlaps among queries are treated in detail and a more accu-
rate way of estimating posterior decryption failure probability is given. Finally,
experiments of our framework for some NIST post-quantum candidates are con-
ducted in Sect. 6.

2 Preliminaries

We shall introduce necessary terminologies and notations for (R/M-)
LWE/LWR-based encryption schemes.

2.1 (R/M-)LWE/LWR-Based Public-Key Encryption Scheme

First let us fix some notations. Let q be a positive integer. In lattice-based
cryptography, one uses the minimum absolute residue system modulo q, with the
notation “x mods q” denoting the remainder in the range

[− q
2 , q

2

)
of x dividing

by q (remainder with sign). By choosing the representatives accordingly, we may
write

Zq = Z ∩
[
−q

2
,
q

2

)
.

Let n be another positive integer. We will mainly work on the rings R =
Z[x]/(xn + 1) and Rq = Zq[x]/(xn + 1). The �2-norm and �∞-norm are written
as ‖ · ‖ and ‖ · ‖∞ respectively. More precisely, for a = (a0 a1 · · · an−1)T ∈ Z

n
q

or a = a0 + a1x + · · · + an−1x
n−1 ∈ Rq,

‖a‖ =

√√
√
√

n−1∑

i=0

a2
i , ‖a‖∞ = max

0≤i≤n−1
|ai|.

As for α = (α1, · · · , αk)T ∈ Rk
q , its norms are respectively ‖α‖ =

√∑k
j=1 ‖αj‖2

and ‖α‖∞ = max
1≤j≤k

‖αj‖∞.

For integers p, q > 0, we write xq→p =
⌈

px
q

⌋
where �·� is the usual rounding

to the nearest integer. We use a ← χ(X) to denote the sampling a ∈ X according
to the distribution χ, and X can be omitted when there is no ambiguity.
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Table 1. A summary of some security parameters for NIST post-quantum schemes.

PKE.KeyGen() PKE.Enc(pk = (b, seedA)) PKE.Dec (sk = s, c = (v′, b′))

seedA ← U({0, 1}256) A = gen(seedA) ∈ Rk×k
q b′

r = �b′�p→q

A = gen(seedA) ∈ Rk×k
q s′ ← χs′(Rk

q ), e′ ← χe′(Rk
q ), e′′ ← χe′′(Rq) v′

r = �v′�t→q

s ← χs(Rk
q ), e ← χe(Rk

q ) br = �b�p→q v = b
′T
r s

b = �As + e�q→p b′ =
⌈
AT s′ + e′⌋

q→p
m′ = dec (v′

r − v)

v′ =
⌈
bT
r s′ + e′′ + enc(m)

⌋
q→t

return (pk := (b, seedA), sk := s) return c = (v′, b′) return m′

The general model we discuss in this paper is the one that unifies the essential
ideas of several (R/M-)LWE/LWR-based schemes. Here is the description:

The condition for a decryption failure of the (R/M-)LWE/LWR-based public-
key encryption scheme described in the above model was extensively considered
in [10,11]. To explain that, we first define u, u′, u′′ as the errors introduced by
the rounding and reconstruction operations:

⎧
⎨

⎩

u = As + e − br

u′ = AT s′ + e′ − b′
r

u′′ = bT
r s′ + e′′ + enc(m) − v′

r.

Then, we form S =
(−s

e − u

)
, C =

(
e′ + u′

s′

)
and G = e′′−u′′. The following

lemma gives the precise condition for a decryption failure of the scheme.

Lemma 1 [10]. For a fixed triple (S,C,G), the decryption failure occurs if and
only if ‖ST C + G‖∞ > q

4 .

A more convenient way of writing the failure condition just in terms of vectors
with components in Zq was described in [12]. Let α = (α1, · · · , αk)T ∈ Rk

q be a
vector of polynomials, we write α ∈ Z

kn
q to be the concatenation of coefficient

vectors of polynomials α1, · · · , αk, namely

α = (a10, a11, · · · , a1,n−1, · · · , ak0, ak1, · · · , ak,n−1)T

where αj = aj0 + aj1x + · · · + aj,n−1x
n−1.

Fix a positive integer r, an r-rotation of a polynomial vector α =
(α1, · · · , αk)T in Rk

q is

α(r) =
(
xr · α1(x−1) (mod xn + 1), · · · , xr · αk(x−1) (mod xn + 1)

)T ∈ Rk
q .

The following properties of rotations are evident.

1. For any polynomial vector α ∈ Rk
q and r ∈ Z, we have α(n+r) = −α(r) and

α(2n+r) = α(r).
2. For a =

∑n−1
i=0 aix

i ∈ Rq, the coefficients of a(r) satisfy

a
(r)
j =

{
ar−j 0 ≤ j ≤ r
−an+r−j r + 1 ≤ j ≤ n − 1 r, j = 0, 1, · · · , n − 1.
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3. For any polynomial vectors α, β ∈ Rk
q , we have αT β =

∑n−1
j=0 αT β(j)xj .

Thus, the failure condition of Lemma 1 can also be written as:

∃r ∈ [0, 2n − 1], such that
∣
∣
∣S

T
C(r) + Gr

∣
∣
∣ >

q

4
.

where Gi is the i−th degree coefficient of G, i = 0, 1, · · · , n − 1.

In our setting, the IND-CCA security for PKE schemes is considered. The
adversary has no control on the random variables such as s′, e′, e′′ as they are
the results of hash function calls. This means that s′, e′, e′′ can actually be seen
as being extracted from particular distributions. As shown in Table 1, one treats
s′ ← χs′(Rk

q ), e′ ← χe′(Rk
q ) and e′′ ← χe′′(Rq).

However, the adversary can pick a message and then get the values of s′, e′, e′′.
In a failure boosting attack, the adversary improves his odds of triggering a
decryption failure by searching for s′, e′, e′′ with large norms. The adversary
needs to balance the cost of searching randomness that meet the length condition
with the success rate of finding decryption failures. He only sends ciphertexts
generated by such randomness to the decryption oracle as these ciphertexts have
a failure probability greater than a certain value.

In this paper, we will focus on the case where the attacker only uses values
of s′, e′ with a greater-than-average length (see Sect. 4.1). It is noticed that our
discussion also applies to other cases.

The coefficients of s, s′, e, e′, e′′ are always small. Let η > 0 be a positive
integer. Recall that the centered binomial distribution βη is the probability dis-
tribution defined on the set X = {−η,−η + 1, · · · ,−1, 0, 1, · · · , η} with the
probability assignment at k ∈ X to be

βη(k) =
(

2η

k + η

)
1

22η
.

This distribution has variance η
2 . To sample according to βη, one sample

(a1, · · · , aη, b1, · · · , bη) ← {0, 1}2η and output
η∑

i=1

(ai − bi).

When we write that a polynomial f ∈ Rq or a vector of such polynomials
is sampled from βη, we mean that each coefficient of it is sampled from βη. In
practice, the number η is much smaller than q.

2.2 Spherical Cap

Let d be a positive integer. For vectors u, v ∈ R
d, the angle between u, v is

θ(u, v) = arccos
(

< u, v >

‖u‖ · ‖v‖
)

.

This is a useful notation to describe the difference between two vectors and
is known as “angular distance”. It is an important tool in our analysis through-
out this paper. We will focus more on the directions and the angles instead of
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the length of vectors. In [5], the spherical cap is introduced to characterize the
information available from each successful query.

Definition 1. Let Sd be the unit hypersphere in R
d. For any u ∈ Sd, the spher-

ical cap of angle θ about u is

C(d, u, θ) = {v ∈ Sd : θ(u, v) ≤ θ} .

It is proved in [5] that each successful decryption can rule out key candidates
in the corresponding spherical caps. Thus, the size of the surface area of caps is
closely related to the number of excluded key candidates. Let σd−1 denote the
usual surface measure on Sd, the following heuristic from [5] is useful in applying
surface area of spherical caps to measure points of interest and will be assumed
in our later discussion.

Heuristic 1. For a fixed u ∈ Sd, let v be a uniformly random point on Sd. The
probability of θ(u, v) ≤ θ is

σd−1 (C(d, u, θ)) .

We shall perform some explicit calculation for the surface area of a spherical
cap. In [19], a concise area formula for such a cap is derived in closed form. This
formula involves with the so called incomplete beta function defined by

B(x, ν, μ) =
∫ x

0

tν−1(1 − t)μ−1dt, 0 ≤ x ≤ 1.

Note that B(1, ν, μ) is the usual beta function B(ν, μ) =
∫ 1

0
tν−1(1 − t)μ−1dt =

Γ (ν)Γ (μ)
Γ (ν+μ) . We normalize the incomplete beta function and denote it by

Ix(ν, μ) =
B(x, ν, μ)
B(ν, μ)

.

The formula for the cap surface area of C(d, u, θ) given in [19] is

Acap
d (θ) =

1
2
AdIsin2(θ)

(
d − 1

2
,
1
2

)
,

where Ad = 2π
d
2

Γ( d
2 )

is the surface area of Sd.

As for the surface area of the intersection of two spherical caps, some con-
cise formulas are given in [18]. Let Ad (θ, θ(u1, u2))1 be the intersection area of
C(d, u1, θ) and C(d, u2, θ). The following two cases are of greatest concern to us:

1. When θ(u1, u2) ≥ 2θ,Ad (θ, θ(u1, u2)) = 0.

1 The surface area of the intersection does not depend on u1 or u2. It is only related
to the angle between them.
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2. When θ < θ(u1, u2) < 2θ < 2π − θ(u1, u2),

Ad (θ, θ(u1, u2)) = π
d−1
2

Γ( d−1
2 ) ·

(
Jd

(
θ̃, θ

)
+ Jd

(
θ(u1, u2) − θ̃, θ

))
, where

⎧
⎪⎨

⎪⎩

θ̃ = arctan
(

1
sin(θ(u1,u2))

− 1
tan(θ(u1,u2))

)

Jd(θ1, θ2) =
∫ θ2

θ1

sin(φ)d−2I
1−

(
tan(θ1)
tan(φ)

)2

(
d

2
− 1,

1
2

)
dφ

The formulas for Ad (θ, θ(u1, u2)) for other cases can be found in [18].

3 Compression Errors

As mentioned earlier, there are compression errors u, u′, u′′ in the (R/M-)LWE/
LWR-based schemes. In practice, many schemes based on (R/M-)LWE also have
a step for ciphertext compression, such as Kyber and Newhope, so there are also
compression errors in these schemes. According to our experiments in Sect. 6,
the compression error is sometimes as large as the LWE error when they both
are present. Therefore, it is desirable to consider both errors. However, many
previous works on schemes based on (R/M-)LWE only considered the LWE error
and ignored the compression error. The purpose of this section is to characterize
compression error more precisely by proving that it is essentially a uniform
distribution on certain set. This will be useful in analyzing the distributions of
S,C,G as well as decryption failure later.

Definition 2. Fix two positive integers p < q, the compression error function
CDp,q : Z → Z is defined as

CDp,q(y) = y −
⌈

q

p

⌈
p

q
y

⌋⌋
.

This function measures the difference caused by the rounding and reconstruc-
tion operations. It can be easily extended to the cases of vectors of integers and
polynomials with integer coefficients, by working in a component-wise manner.

Now let us consider the characterization of the distribution of CDp,q(y). In
practice, the only cases of interest are gcd(p, q) = 1 and p|q, so we shall simply
deal with these two cases. But we would like to remark that the discussion also
applies to the general case of gcd(p, q) > 1. The following theorem states the
results whose proof is given in Appendix A.

Theorem 1. For positive integers p < q, characterizations of CDp,q for the
following two cases are:

1. If (p, q) = 1, then CDp,q(y) =
⌈

b
p

⌋
where b = py mods q. Furthermore, if

y is uniformly random chosen from Z or Zq, b is uniformly random in Zq,

CDp,q(y) belongs to
{

−
⌈

q
2p

⌋
, · · · ,

⌈
q
2p

⌋}
and has the same probability at all

of the integer points except −
⌈

q
2p

⌋
and

⌈
q
2p

⌋
.
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2. If p|q, then with m = q
p , CDp,q(y) = d where d = y mods m. Furthermore, if

y is uniformly random chosen from Z or Zq, CDp,q(y) is uniformly random
in Zm.

With this theorem, we are able to analyze the distributions of u, u′ and u′′.
Under the difficulty hypothesis of LWE, As+ e,AT s′ + e′, bT

r s′ + e′ + enc(m)
are computationally indistinguishable from uniform distributions on Rk

q , Rk
q and

Rq respectively. Therefore, when gcd(p, q) = gcd(t, q) = 1, each coefficient of

u, u′ belongs to
{

−
⌈

q
2p

⌋
, · · · ,

⌈
q
2p

⌋}
and has the same probability at all integer

points inside except ±
⌈

q
2p

⌋
, each coefficient of u′′ belongs to

{− ⌈
q
2t

⌋
, · · · ,

⌈
q
2t

⌋}

and has the same probability at all integer points inside except ± ⌈
q
2t

⌋
.

While if t|p|q, each coefficient of u, u′ is computationally indistinguishable
from a uniform random point in Z q

p
, each coefficient of u′′ is computationally

indistinguishable from a uniform random point in Z q
t
.

We use ψk
p,q to denote the compression error distribution for sampling a

vector of k polynomials of degree n − 1 in the following steps

1. choose y ← U(Rk) where U denotes the uniform distribution;
2. return CDp,q(y) mods q.

This distribution will be used in our later discussion of the concrete schemes of
Kyber and Newhope.

4 The Information Inferred by Successful Decryptions

In [5], the authors show that a successful decryption implies that the secret S
(after normalization) stays away from one (or two) spherical caps.2 It is noted
that [5] contains some ideas for rotations of polynomials, but did not use it in a
full extent. In addition, some formulas and experiment settings in [5] do not seem
to be consistent. In this section, we will consider excluding caps corresponding
to each rotation of a polynomial vector. A more accurate and precise calculation
is given using the results in Sect. 3 and some formulas in [19].

4.1 The Relationship Between Successful Decryptions and Caps

We are considering CCA security for schemes where both C and G are obtained
by hash function calls. We can view a pair of (C,G) as a query to the decryption
oracle. Our setting will restrict to the reaction attack, namely, the adversary
only cares if the query succeeds, not what it returns if the decryption fails.

Let S, C be the normalization of S,C, namely, S =
S

‖S‖ , C =
C

‖C‖ . It has

been proven in [5] that the success of query C is related to the fact whether S

2 Two caps are considered at the end of page 8 of [5], but the definition of efficacy on
page 9 contains only one cap.
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belongs to some spherical caps about C. Combined with the analysis of the dis-
tributions of u, u′, u′′ given in Sect. 3, a finer description of the angle information
obtained by a successful decryption can be obtained.

To this end, we know that for each pair of (C,G), the success of the decryption
implies that ∣

∣
∣S

T
C(r) + Gr

∣
∣
∣ ≤ q

4
holds true for all r = 0, 1, · · · , n − 1. Recall that G = e′′ − u′′. The distribution
of the coefficients of u′′ has been discussed in Sect. 3, while the distribution of
the coefficients of e′′ depends on the specific algorithm (and e′′ is available to be
selected by the adversary). So one can find a constant γ such that γ ≥ |Gr|, r =
0, 1, · · · , n − 1. γ should be as small as possible. Therefore, for every successful
query, the information that the attacker can definitely obtain is3

∣
∣
∣S

T
C(r)

∣
∣
∣ ≤ q

4
+ γ, r = 0, 1, · · · , n − 1.

Let θr be the angle between S and C(r) (which is also the angle between S

and C(r)). We denote the distribution that the user uses to pick S by χS , and
the distribution that the attacker uses to pick C by χC . Let S,C be two random
variables with S ← χS ,C ← χC . Suppose that the attacker only selects those C
such that ‖C‖ ≥ E[‖C‖] to query. The attack model assumes that S satisfies

‖S‖ ≥ E[‖S‖].

This means that some private key candidates cannot be treated in the present
setting. However, as we will comment later that this condition can be weakened
to cover a bigger set of private keys with some efficiency trade-off. With the
assumption of ‖S‖ ≥ E[‖S‖], we see that

|cos(θr)| =

∣
∣
∣
∣
∣
∣

〈S,C(r)〉
∥
∥S
∥
∥ ·
∥
∥
∥C(r)

∥
∥
∥

∣
∣
∣
∣
∣
∣
=

∣
∣
∣S

T
C(r)

∣
∣
∣

∥
∥S
∥
∥ ·
∥
∥
∥C(r)

∥
∥
∥

≤
q
4 + γ

∥
∥S
∥
∥ ·
∥
∥
∥C(r)

∥
∥
∥

≤
q
4 + γ

E[‖S‖] · E[‖C‖]
.

Let us denote θ∗ ∈ [
0, π

2

)
to be the angle that satisfies cos θ∗ =

q
4+γ

E[‖S‖]·E[‖C‖] .

If cos(θr) ≥ 0, we have θr ≥ θ∗, this implies that S �∈ C
(
2kn,C(r), θ∗

)
. Similarly,

if cos(θr) < 0, we have S �∈ C
(
2kn,−C(r), θ∗

)
. In summary, for each successful

C, we can exclude key candidates in 2n spherical caps, in the sense that

S �∈ C
(
2kn,±C(r), θ∗

)
, r = 0, 1, · · · , n − 1.

3 q
4
−γ was used to bound the LHS in [5], the experiments were performed accordingly.

Corrections are necessary.



Private Key Information Brought from Successful Decryption Queries 205

In the above analysis, the attacker just deals with the set of S such that
‖S‖ ≥ E[‖S‖] since the exact value of ‖S‖ is unknown.4 This condition can
be relaxed. For any β > 0, he can suppose that ‖S‖ ≥ β · E[‖S‖] and the
information he can get is | cos(θr)| ≤

q
4+γ

β·E[‖S‖]·E[‖C‖] . (When β ≤
q
4+γ

E[‖S‖]·E[‖C‖] ,
nothing is available.) It is easy to see that, the larger β is, the larger θ∗ is, the
more information he can obtain, but the less likely S is to satisfy this condition.
Moreover, we assume that the attacker only uses C that satisfies ‖C‖ ≥ E[‖C‖].
That is, given a ciphertext C, if ‖C‖ < E[‖C‖], he will discard it and regenerate
another ciphertext for attack. Similarly, he can also choose to use only longer
queries, but the cost of finding such ciphertexts will increase significantly. In this
paper, we only consider the case where ‖S‖ ≥ E[‖S‖] and all queries used by
the attacker have a length at least E[‖C‖]. In this way, we can always use the
same θ∗ for different queries. It is noticed that our discussion also applies to
other cases.

4.2 The Range of the Proportion of Excluded Key Candidates

Recall that we use θr to denote the angle between S and C(r). The following
lemma from [5] is useful in numerical characterization of the proportion of key
candidates.

Lemma 2. For a fixed S and C ← χC , for any r ∈ [0, 2n − 1], the probability

that θr < θ∗ is σ2kn−1

(
C
(
2kn,C(r), θ∗

))
.

This lemma says that the proportion of key candidates in C
(
2kn,C(r), θ∗

)

is exactly σ2kn−1

(
C
(
2kn,C(r), θ∗

))
. In other words, candidates with a ratio of

σ2kn−1

(
C
(
2kn,C(r), θ∗

))
can be eliminated by each cap.

By the formula we mentioned in Sect. 2 (from [19]), we give an exact and effec-

tive5 way of calculating of σ2kn−1

(
C
(
2kn,C(r), θ∗

))
using the explicit expres-

sion of the surface area of a cap. That is

σ2kn−1

(
C
(
2kn,C(r), θ∗

))
=

Acap
2kn(θ∗)
A2kn

=
1
2
Isin2(θ∗)

(
kn − 1

2
,
1
2

)
.

As mentioned earlier, each successful decryption can help with excluding key
candidates in 2n spherical caps. However, the overlaps among them is not certain.
4 In fact, the adversary might know what ‖S‖ is. In some schemes, s, e are sampled

according to the centered binomial distribution with fixed Hamming weight, such as
LAC. In this case, ‖S‖ is fixed and the attacker can just use the value of ‖S‖. How-
ever, there are also some schemes that use a discrete Gaussian or centered binomial
distribution to sample s, e, such as Kyber and Saber. Some restrictions on ‖S‖ are
necessary.

5 The normal incomplete beta function can be effectively calculated using software
such as Matlab.
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It is easy to see that C
(
2kn,C(r), θ∗

)
∩ C

(
2kn,−C(r), θ∗

)
= ∅, r = 0, 1,

· · · , n−1, but different C
(
2kn,C(r), θ∗

)
may intersect with each other. So the pro-

portion of key candidates that can be excluded by a successful decryption belongs
to [

Isin2(θ∗)

(
kn − 1

2
,
1
2

)
, nIsin2(θ∗)

(
kn − 1

2
,
1
2

)]
.

Then the proportion of key candidates that can be excluded by m successful
decryptions belongs to

[
Isin2(θ∗)

(
kn − 1

2
,
1
2

)
,mnIsin2(θ∗)

(
kn − 1

2
,
1
2

)]
.

We summarize the above analysis as the following proportion.

Proposition 1. Suppose that an adversary has made some successful queries to
the decryption oracle, then the proportion of key candidates that can be excluded
is at least Isin2(θ∗)

(
kn − 1

2 , 1
2

)
.

In this section, we only give a rough range of the proportion of the excluded
key candidates after m successful queries. It is noticed that, if the attacker has
made m successful queries, this proportion could even be mnIsin2

θ∗

(
kn − 1

2 , 1
2

)

when certain conditions are met. In the next section, we shall specify such con-
ditions in terms of overlap reduction by quantifying the overlaps among queries.
Some exact formulas for the overlaps among queries are presented and a finer
range of the proportion is given.

5 The Overlaps Among Queries and the Effect
of Successful Decryptions on the Failure Probability

In Sect. 4, a more accurate calculation of the proportion of key candidates con-
tained in each spherical cap has been developed. However, when considering
several caps corresponding to one or more queries, the intersections of them will
directly affect the attack efficiency. In [5], the notion of efficacy of a query set is
defined to measure the information available from it, and the use of the principle
of inclusion-exclusion to calculate the efficacy is proposed. Due to the complex-
ity of the high-order inclusion-exclusion principle, a first-order approximation to
the efficacy is used in [5].

However, it is noticed that the first-order approximation leads to an over-
estimate of the information available to the attacker, so it can not be used to
calculate the number of queries needed for finding a decryption failure. In this
section, we use a second-order approximation to measure the information from
successful queries to get a lower bound. These two approximations result a fine
range of the proportion of excluded key candidates together.

Let WC denote the set of 2n spherical caps according to the query C, i.e.

WC =
{

C
(
2kn,±C(r), θ∗

)
: r = 0, 1, · · · , n − 1

}
.
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Suppose the attacker has made m successful queries C1, · · · , Cm. Not only
the overlaps among the caps in each WCi

, but also the overlaps among
WC1 , · · · ,WCm

should be considered. The former was considered in [5] as they
only calculated one of the 2n caps in each WCi

, but the latter was left untreated.6

In this section, we consider both of the overlapping situations. We give the
conditions and probability of the first-order approximation. The second-order
approximation is obtained with more precise formulas to quantify the overlaps.
Meanwhile, we come up with some suggestions on how to make the overlaps
smaller.

We shall start by dealing with the simplest case – the overlap between two
spherical caps.

5.1 The Overlap Between Two Spherical Caps

First of all, we need the one-to-one correspondences between angle and inner
product, distance respectively. Two useful relationships are given in the following
proposition and the proofs are given in Appendix B.

Proposition 2. For C1, C2 ∈ Sd, let θ1,2 = θ
(
C1, C2

)
, d1,2 =

∥
∥
∥C1 − C2

∥
∥
∥

and ip1,2 = 〈C1, C2〉, then

1. θ1,2 = arccos (ip1,2) , ip1,2 = cos(θ1,2).
2. θ1,2 = 2arcsin

(
1
2d1,2

)
, d1,2 = 2 sin

(
1
2θ1,2

)
.

Let us consider the overlap between two caps C
(
2kn, C1, θ

∗
)

and

C
(
2kn, C2, θ

∗
)
. We denote C1,2 = C

(
2kn,C1, θ

∗
)

∩C
(
2kn,C2, θ

∗
)
. We will show

that the disjointness of these two caps can be characterized by the inner product,
angle, and distance of C1, C2 respectively. The following theorem is given and
its proof is in Appendix C.

Theorem 2. Let C1, C2 be two points on Sd, then the following are equivalent:

1. C1,2 = ∅.
2. θ1,2 > 2θ∗.
3. ip1,2 < cos (2θ∗).
4. d1,2 > 2 sin θ∗.

The above theorem give strategies for selecting completely disjoint spherical
caps. The adversary can choose one of the angle condition, the distance condition
and the inner product condition to check the disjointness. However, sometimes it
may be impractical to choose completely non-overlapping queries for reasons such
as efficiency. Therefore, the situation where those caps intersect is of interest.
The following proposition is a direct consequence of formulas in [18]. It can be
used to calculate the proportion of key candidates in C1,2.

6 In other words, they assumed that the first order approximation is true.
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Proposition 3. Let C1, C2 be two points on S2kn. Let θ1,2 be as in Proposition
2 and Jd(θ1, θ2) be as in Sect. 2.2. Then, if θ1,2 ≥ 2θ∗, σ2kn−1 (C1,2) = 0. If
θ∗ < θ1,2 < 2θ∗, we have7

σ2kn−1 (C1,2) =
A2kn(θ∗, θ1,2)

A2kn

=
1

2
√

π

Γ (kn)

Γ
(
kn − 1

2

) ·
(

J2kn

(
θ̃1,2, θ

∗)
+ J2kn

(
θ1,2 − θ̃1,2, θ

∗))
,

where θ̃1,2 = arctan
(

1
sin(θ1,2)

− 1
tan(θ1,2)

)
. In particular, if kn is even, we have

σ2kn−1 (C1,2) =
1
2π

· (2kn − 2)!!
(2kn − 3)!!

·
(
J2kn

(
θ̃1,2, θ

∗
)

+ J2kn

(
θ1,2 − θ̃1,2, θ

∗
))

.

The above proposition gives an efficient8 way of calculating the total propor-
tion of the keys candidates inside two intersecting caps by the following relation:

σ
(

C
(
2kn, C1, θ

∗)
∪ C

(
2kn, C2, θ

∗))
= σ

(
C

(
2kn, C1, θ

∗))
+ σ

(
C

(
2kn, C2, θ

∗))
− σ (C1,2) .

From this, we can raise the lower bound in Proposition 1.
As we can see, θ1,2 is an important indicator for characterizing C1,2. However,

because of the tedium of calculating the angles between each pair of queries one
by one, an estimation of θ1,2 is needed. Since we are considering the CCA setting
where queries are the results of hash function calls, we can view each query C
(after normalization) as a uniform random point on S2kn. Then θ1,2 can be
regarded as an angle in random packing on the sphere. To proceed further, we
need some technical argument on this kind of random angles.

The dimension of (R/M-)LWE/LWR-based public-key encryption schemes is
usually very high. There is a folklore conjecture that random vectors in high
dimensional spaces are almost nearly orthogonal. This is also referred to as the
orthogonality hypothesis. Recently, Cai et al. [7] presented a precise formulation
and gave the proof of the orthogonality hypothesis.

Lemma 3 [7]. Let u, v be two random points on Sd, then

Pr
(∣∣
∣θ (u, v) − π

2

∣
∣
∣ ≥ ε

)
≤ K

√
d (cos ε)d−2

for any d ≥ 2 and ε ∈ (
0, π

2

)
, where K is a universal constant.

As indicated in [7], any number K satisfies K ≥ √
π
d

Γ( d
2 )

Γ( d−1
2 ) would be sufficient.

It is remarked that a tighter estimation of K is of great interest in practice.
To this end, we use some results for Wallis type inequalities. Let Pd = (2d−1)!!

(2d)!!

and Pd+ 1
2

= (2d)!!
(2d+1)!! , then it has been proven in [8,17] that

1√
π(d + 4/π − 1)

≤ Pd <
1√

π(d + 1/4)
,

√
π

2
√

d + 9π/16 − 1
≤ Pd+ 1

2
<

√
π

2
√

d + 3/4
.

7 The conditions chosen here are satisfied in all of the schemes in our experiments.
The result can be generalized to the case where θ1,2 < θ∗ by using formulas in [18].

8 The code for computing Jd(θ1, θ2) is given in [18]. Since we have made a slight change
in the definition of Jd(θ1, θ2), a small adjustment to the code is required.
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From these, we can derive a better bound for
√

π
d

Γ( d
2 )

Γ( d−1
2 ) , namely

√
π

d

Γ
(

d
2

)

Γ
(

d−1
2

) ≤
⎧
⎨

⎩

√
π
2 − 2π−4

d if d is even
√

π
2 − 5

2π− 9
16π2

d if d is odd.

Normally, one can simply set K =
√

π
2 . When considering specific schemes, the

dimension d = 2kn is even, so we get the following result about the distribution
of θ1,2 with a better bound:

Corollary 1. Let C1, C2 be two points on S2kn, let θ1,2 be as in Proposition 2.
For any ε ∈ (

0, π
2

)
, we have

Pr
(∣∣
∣θ1,2 − π

2

∣
∣
∣ ≥ ε

)
≤ √

πkn + 4 − 2π (cos ε)2kn−2
.

Let M > 0 be some security parameter and set ε(M) =

arccos
(

2M −1
2M √

πkn+4−2π

) 1
2kn−2 . Then it can be verified that

ε(M) = min
ε∈(0, π

2 )

{√
πkn + 4 − 2π (cos ε)2kn−2 ≥ 1 − 1

2M

}
.

From this, an estimate of the range of θ1,2 is given.

Theorem 3. Let C1, C2 be two points on S2kn. For any given security param-
eter M , we have

π

2
− ε(M) ≤ θ1,2 ≤ π

2
+ ε(M)

with a probability no less than 1 − 1
2M .

Together with Theorem 2, we know that if 2θ∗ < π
2 − ε(M), the probability

of C1,2 = ∅ is bigger than 1 − 1
2M . On the other hand, if 2θ∗ > π

2 + ε(M),
the probability of C1,2 = ∅ is less than 1

2M . It is worth noting that, from our
experiments in Sect. 6, θ∗ is greater than π

4 in most schemes. Hence, C1,2 = ∅ is
almost not true and Proposition 3 is useful in measuring the surface area of the
intersections.

5.2 The Overlaps Among Queries

Suppose that the attacker is making m queries. Just like [Equation (9), [5]], we

only consider one cap for each query Ci, for example, C
(

2kn,C
(0)
i , θ∗

)
. The

reason is that we want to consider the overlaps among the caps of different
queries. This will not make much difference to the result as m � n in practice.

For convenience, for each Ci, we write Ci = C
(

2kn,C
(ri)
i , θ∗

)
, 0 ≤ ri ≤ n − 1

to be the cap used by the attacker.
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It is noted that C
(ri)
i (i = 1, 2, · · · ,m) can be seen as m uniformly random

points on S2kn. Let θi,j (1 ≤ i < j ≤ m) be the angles between C
(ri)
i and C

(rj)
j .

We assume that these angles are independent and identically distributed and
are likely in the range described in Theorem 3 in the sense that

π

2
− ε(M) ≤ θi,j ≤ π

2
+ ε(M) with a probability no less than 1 − 1

2M
.

We use a second-order approximation to estimate the proportion of key can-
didates that can be excluded after m successful queries to get a lower bound,
that is

σ

(
m⋃

i=1

Ci

)

≥
m∑

i=1

σ (Ci) −
∑

1≤i<j≤m

σ (Ci,j) ,

where Ci,j is the intersection of Ci and Cj .
Consequently, we can get a range of the proportion of excluded key candi-

dates, that is

σ

(
m⋃

i=1

Ci

)

∈
⎡

⎣
m∑

i=1

σ (Ci) −
∑

1≤i<j≤m

σ (Ci,j) ,

m∑

i=1

σ (Ci)

⎤

⎦

Now we give a more specific description. It is noted that if 2θ∗ ≥ π
2 − ε(M),

the spherical caps may intersect. From Proposition 3, if θi,j ≥ 2θ∗, we have
σ (Ci,j) = 0. Otherwise, if θi,j < 2θ∗, we have (n is assumed to be even, which is
always true in practice)

σ (Ci,j) =
J2kn

(
θ̃i,j , θ

∗
)

+ J2kn

(
θi,j − θ̃i,j , θ

∗
)

2πPkn−1
,

where θ̃i,j = arctan
(

1
sin(θi,j)

− 1
tan(θi,j)

)
, 1 ≤ i < j ≤ m. Hence,

σ

(
m⋃

i=1

Ci

)
≥ m

2
Isin2 θ∗

(
kn − 1

2
,
1

2

)
−

∑
1≤i<j≤m

J2kn

(
θ̃i,j , θ

∗
)

+ J2kn

(
θi,j − θ̃i,j , θ

∗
)

2πPkn−1
.

We denote the right-hand side of the above inequality by Ω(m), which rep-
resents the second-order approximation of the proportion of key candidates that
can be excluded by m successful decryption. It can be calculated efficiently using
the codes in [18].

On the other hand, if 2θ∗ < π
2 − ε(M), the probability that σ (Ci,j) = 0 is at

least 1 − 1
2M for each pair of (i, j). Hence, one can take M to be a large integer,

then the following

σ

(
m⋃

i=1

Ci

)

=
m

2
Isin2 θ∗

(
kn − 1

2
,
1
2

)
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holds with a probability no less than
(
1 − 1

2M

)m(m−1)
2 .

There is a little trick for picking a suitable M . Since limx→∞
(
1 − 1

x

)x = 1
e ,

the attacker can take M =
⌈
log2

(
m(m−1)

2

)⌉
to make sure the probability is no

less than 1
e .

In fact, in the case where 2θ∗ < π
2 − ε(M), we can refine our results slightly.

Since θ

(
C

(ri)
i , C

(rj)
j

)
= π − θ

(
C

(ri)
i ,−C

(rj)
j

)
, θ

(
C

(ri)
i ,−C

(rj)
j

)
also belongs

to
[

π
2 − ε(M), π

2 + ε(M)
]

when θi,j ∈ [
π
2 − ε(M), π

2 + ε(M)
]
. So in this case, if

we consider two caps associated with each query, the result can be improved to:

σ

(
m⋃

i=1

C
(

2kn,±C
(ri)
i , θ∗

))

= mIsin2 θ∗

(
kn − 1

2
,
1
2

)
with a probability no

less than
(
1 − 1

2M

)m(m−1)
2 .

Then, Proposition 1 can be further extended to the following theorem.

Theorem 4. Suppose that an adversary has made m successful queries to the
decryption oracle. The proportion of excluded key candidates is greater than
Ω(m). Moreover, for a positive integer M , if 2θ∗ < π

2 − ε(M), this proportion is

at least mIsin2
θ∗

(
kn − 1

2 , 1
2

)
with a probability no less than

(
1 − 1

2M

)m(m−1)
2 .

The experimental data in Sect. 6 shows that, the results of the first-order and
the second-order approximations are usually very close. Therefore, we can always
get a finer range of the proportion of key candidates that can be excluded.

In the analysis above, we only consider one (or two) of the caps for each
query because of the strong correlation between two different rotations of the
same query. Theorem 3 does not apply in this case.9 Moreover, we also give some
results on the overlaps among different caps of the same query in Appendix D.

5.3 The Decryption Failure Probability

In this paper, we have been using the relationship between the fact that C fails
to be correctly decrypted and the event that S belongs to some spherical caps
about C. However, how much are the two different? In this subsection, we discuss
the relationship between their probabilities.

For each query Ci, we write Fi to denote the event that “Ci fails”, Si to
denote the event “Ci succeeds”. We denote P [Fi] to be the unconditional failure
probability of Ci (i.e., the probability is independent of the status of the previous
decryptions). P [Fi] is estimated in [10] for the first time, and is further improved
by [9]. The main idea for calculating P [Fi] is that, the longer Ci is, the more
likely it is to fail.

9 It is noted that, from our experiments, the coefficient vectors of different rotations
of the same query are always nearly orthogonal in practice, so the actual situation
of the attack may be better than that stated in Theorem 4.
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Recall that Ci = C
(

2kn,C
(ri)
i , θ∗

)
, i = 1, 2, · · · ,m. Now let us describe the

relationship between P [Fi] and σ (Ci). Because the failure of Ci is a necessary
condition for S ∈ Ci, the probability of S ∈ Ci should not be greater than that
of Fi, in the sense that

P [Fi] ≥ Pr
[
S ∈ Ci

]
= σ (Ci) .

It should be noted that, since we have scaled up some conditions in the
derivation in Sect. 4.1 and Sect. 5.2, P [Fi] is very unlikely to be σ (Ci).10

Moreover, besides excluding wrong key candidates, the information obtained
by successful decryptions can also give us a more accurate description of the
failure probability of each query. For simplicity, let us take the case of two
queries C1 and C2. We suppose that C1 has been successful, then the posterior
decryption failure probability of C2 will be influenced by C1. According to Bayes’
theorem,

P [F2|S1] =
P [S1|F2]

P [S1]
· P [F2] =

P [S1|F2]
1 − P [F1]

· P [F2] =
1 − P [F1|F2]

1 − P [F1]
· P [F2].

As previously mentioned, P [F1] and P [F2] can be estimated according to [9,
10]. Furthermore, how to estimate the failure probabilities of subsequent queries
after one or more failed queries is exactly what failure boosting studied. The
way of calculating P [F1|F2] is proposed in [12] and improved in [9]. Hence, a
more accurate characterization of the failure probability of C2 can be obtained.

In summary, the method used for calculating the failure probability in failure
boosting can be applied in a similar way to the case where the decryptions
are successful. By using the information obtained by successful decryptions, a
more accurate way of estimating the posterior decryption failure probability is
obtained.

6 (R/M-)LWE-Based Public-Key Encryption Schemes

In the previous sections, by using (recent) precise geometric formulas, we get
some finer numerical indication about the proportion of key candidates that
can be excluded when an adversary makes successful queries to the decryption
oracle. The decryption failure probability of (R/M-)LWE/LWR-based schemes
has been analyzed in terms of more accurate formulations.

In this section, we use our analysis to specific encryption schemes includ-
ing Kyber [3,6], Saber [4], Frodo [20], and Newhope [1]. We adopt m = 264

(the largest number of queries allowed by NIST) and M = log2
(

m(m−1)
2

)
in

10 An experiment in [Table 2, [5]] shows that P [Fi] and σ (Ci) are approximately equal.
This result is due to the incorrect use of q

4
−γ, resulting in an overestimate of σ (Ci).

In fact, from our experiments in Sect. 6, these two values will be very different in all
schemes.
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the following experiments. Given the failure probability δ (available from each
parameter set of each individual scheme), we calculate the following values and
display them in Table 2:

– ε(M), the maximum difference between the angles among queries and π
2 ,

in the sense that, each angle will belong to
[

π
2 − ε(M), π

2 + ε(M)
]

with a
probability at least 1 − 1

2M .
– θ∗, the angle that an attacker can obtain.
– 1

2Isin2 θ∗
(
kn − 1

2 , 1
2

)
, the proportion of key candidates in each spherical cap.

– J2kn

(
π
4 , θ∗), a quantity characterizing the overlaps. The larger J2kn

(
π
4 , θ∗)

is, the bigger the overlaps are.
– Ω̃(m), an estimate of Ω(m), to be exact, an estimate of the second-order

approximation of the proportion of key candidates that can be excluded by
m successful decryption.

The estimation Ω̃(m) of Ω(m) is derived by the following process. Since∣
∣θi,j − π

2

∣
∣ ≤ ε(M) with a probability no less than 1 − 1

2M , and ε(M) is always a
very small angle in practice, we have

θi,j ≈ π

2
and θ̃i,j ≈ arctan(1) =

π

4
.

From the fact that
√

πd +
π

4
<

1
Pd

≤ √
πd + 4 − π for any positive integer d, an

estimate of Ω(m) is obtained:

Ω̃(m) :=
m

2
Isin2 θ∗

(
kn − 1

2
,
1
2

)
− m2J2kn

(
π
4 , θ∗) ·√π(kn − 1)

2π
.

Table 2. A summary of some security parameters for NIST post-quantum schemes.

schemes δ ε(M) θ∗ 1
2
Isin2 θ∗

(
kn − 1

2
, 1
2

)
J2kn

(
π
4

)
Ω̃(m)

Kyber512 2−139 4.87◦ 55.15◦ 2−297 2−796 2−233

Kyber768 2−164 4.08◦ 59.68◦ 2−331 2−805 2−267

Kyber1024 2−174 3.60◦ 66.65◦ 2−258 2−572 2−194

LightSaber 2−120 4.87◦ 56.20◦ 2−278 2−727 2−215

Saber 2−136 4.08◦ 65.90◦ 2−207 2−464 2−143

FireSaber 2−165 3.60◦ 69.54◦ 2−198 2−429 2−134

Newhope512 2−213 4.87◦ 20.03◦ <2−1000 \ \
Newhope1024 2−216 3.60◦ 61.98◦ 2−374 2−876 2−310

Frodo640 2−139 4.42◦ 66.10◦ 2−171 2−382 2−107

As can be seen from Table 2, all schemes except Newhope512 satisfy 2θ∗ >
π
2 + ε(M), so there are overlaps in these cases. However, as the fact that
J2kn

(
π
4

) � Isin2 θ∗
(
kn − 1

2 , 1
2

)
in all schemes, the surface area of the overlap
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between two spherical caps is much smaller than that of these two caps. There-
fore, for these schemes, the effect of overlaps is far from significant and Ω̃(m)
is a sufficiently accurate estimation of the proportion of key candidates that
can be excluded by m successful decryption. As for Newhope512, since it satis-
fies 2θ∗ < π

2 − ε(M), the proportion of excluded key candidates is no less than
mIsin2 θ∗

(
kn − 1

2 , 1
2

)
with overwhelming probability. It is noted that because θ∗

is small in Newhope512, Isin2 θ∗
(
kn − 1

2 , 1
2

)
is too small to be calculated.

Recall that 1
2Isin2 θ∗

(
kn − 1

2 , 1
2

)
is the proportion of key candidates in a sin-

gle spherical cap. We can see that δ � 1
2Isin2 θ∗

(
kn − 1

2 , 1
2

)
in all schemes as

mentioned earlier in Sect. 5.3. Such proportion of key candidates was calculated
in [Table 1 (Adversary B), [5]] using the approximation Qα(χe(2), χe(2)). It is
pointed out that such an approximation is based on an erroneous interpretation
of θ∗ (i.e., incorrect use of q

2 − γ). From the comparisons in Table 3, we can see
that the values given in [5] are significantly bigger than the ones obtained after
correction and by using accurate formulas. It is remarked that experimental data
also shows that the security of those schemes in our discussion is not affected by
knowing the key candidates are excluded from those spherical caps.

Table 3. Comparison with [5]

schemes 2Qα(χe(2), χe(2)) in [5] Isin2 θ∗
(
kn − 1

2 , 1
2

)
in this paper

Kyber512 2−187 2−296

Kyber768 2−169 2−330

Kyber1024 2−178 2−257

LightSaber 2−123 2−278

Saber 2−139 2−206

FireSaber 2−170 2−197

Frodo640 2−146 2−170

In the next subsection, we give the detailed calculation of each parameter
of specific example of Saber. The calculations of other schemes can be seen in
Appendix E.

6.1 Saber

Saber is a MLWR-based lattice scheme, and a third round candidate in NIST’s
post-quantum standardization effort. Its key generation, encryption, decryption
algorithms as well as its common parameter set are given in [4]. The error term
of Saber is the following

ω = s′T u − u′T s + er,

where s, s′ ← βμ, u and u′ is the compression error of As and AT s′ respectively.
er ∈ Rq is a polynomial with uniformly distributed coefficients in the range[− p

2t ,
p
2t

]
. Using the previous notation, we write
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S =
(−s

u

)
, C =

(
u′

s′

)
and G = er.

In Saber, k = 3, n = 256, q = 213, p = 210, t = 24, μ = 4, δ = 2−136. Since
q
p = 8, then from Theorem 1, each coefficient of each polynomial of u, u′ is
uniformly random in Z8. Let Eu be the expected values of ‖u‖. Meanwhile,
Eu′ , Es, Es′ and so on are defined in the same way. Then it can be calculated that
Eu = Eu′ =

√
4224.

As for the norm of s and s′, since each coefficient of each polynomial of s, s′

follows β4, which is centered and has a variance of 2, we have Es = Es′ =
√

1536.
As mentioned in [5], due to the difference in size between the coefficients of

u′ and s′, we need to isotropize C. Let w =
√

Es′
Eu′ , we denote S̃ =

(− s
w

u · w

)

and C̃ =
(

u′ · w
s′
w

)
. It is noted that 〈S̃, C̃〉 = 〈S,C〉 and the expected values of

‖u′ · w‖ ,
∥
∥
∥ s′

w

∥
∥
∥ are both

√Eu′ · Es′ . According to the above, we have

ES̃ = EC̃ =
√

2 × Eu′ · Es′ ≈ 84.88.

It’s easy to see that γ = p
2t = 32, then

θ∗
Saber = arccos

( q
4 + γ

EC̃ · ES̃

)
≈ 65.90◦ and Isin2(θ∗

Saber)

(
kn − 1

2
,
1
2

)
≈ 2−206.

Finally, as J2kn

(
π
4 , θ∗

Saber

) ≈ 2−464 � 2−206 ≈ Isin2(θ∗
Saber)

(
kn − 1

2 , 1
2

)
, the

impact of the overlaps is negligible. Hence, the proportion of excluded key can-
didates after m successful queries is about

Ω̃(m) =
m

2
Isin2 θ∗

Saber

(
kn − 1

2
,
1
2

)
− m2J2kn

(
π
4 , θ∗

Saber

) ·√π(kn − 1)
2π

≈ 2−143.

A The Proof of Theorem 1

Let us consider the distribution of CDp,q(y). First of all, we start with a special
case where p = 1, then

CD1,q(y) = y −
⌈
q

⌈
1
q
y

⌋⌋
.

Let y = aq+b with b being the minimum absolute residue, i.e., b = y mods q,
then

CD1,q(y) = y −
⌈
q

⌈
1
q
y

⌋⌋
= y − q ·

⌈
aq + b

q

⌋
= y − aq = b.

In addition, when y is uniformly random in Z or Zq, CD1,q(y) is uniformly
random in Zq.
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Now we consider the general case. We decompose py into py = aq + b in a
similar manner, where b = py mods q, then

y −
⌈

q

p

⌈
p

q
y

⌋⌋
= y −

⌈
1

p
· q

⌈
1

q
(py)

⌋⌋
= y −

⌈
1

p
· (py − b)

⌋
= y −

⌈
y − b

p

⌋
=

⌈
b

p

⌋
.

In this case, the value of CDp,q(y) entirely depends on b. The following two
situations are of interest in practice.

1. gcd(p, q) = 1
In this case, when y is uniformly random in Z or Zq, b = py mods q is also

uniformly random in Zq, then CDp,q(y) is uniformly random in
⌈
Zq

p

⌋
. In

other words, CDp,q(y) belongs to
{

−
⌈

q
2p

⌋
, · · · ,

⌈
q
2p

⌋}
and has the same

probability at all integer points inside except −
⌈

q
2p

⌋
and

⌈
q
2p

⌋
.

In particular, when q
2 � p, we can roughly think that CDp,q(y) is uniformly

random in
{

−
⌈

q
2p

⌋
, · · · ,

⌈
q
2p

⌋}
.

2. p|q

We denote m = q
p , then

CDp,q(y) = y −
⌈

q

p

⌈
p

q
y

⌋⌋
= y −

⌈
m

⌈
1
m

y

⌋⌋
= CD1,m(y).

We decompose y into y = cm + d, where d = y mods m, then we have

CDp,q(y) = CD1,m(y) = d.

Thus, when y is uniformly random in Z or Zq, CDp,q(y) is uniformly random
in Zm.

B The Proof of Proposition 2

Fig. 1. The construction of C′.

As shown in Fig. 1, let O be the center of Sd. Since C1, C2 ∈ Sd, then
OC1 = OC2 = 1 and

ip1,2 = 〈C1, C2〉 =
∥
∥
∥C1

∥
∥
∥ ·
∥
∥
∥C2

∥
∥
∥ · cos (θ1,2) = cos (θ1,2)
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We denote M to be the midpoint of C1C2. According to the properties of
isosceles triangles, we know that

θ
(
OC1, OM

)
=

1
2
θ1,2 and C1M⊥OM

Hence,

1
2
d1,2 =

∣
∣
∣MC1

∣
∣
∣ =

∣
∣
∣MC1

∣
∣
∣

∣
∣
∣OC1

∣
∣
∣

= sin
(
θ
(
OC1, OM

))
= sin

(
1
2
θ1,2

)

C The Proof of Theorem 2

For C1, C2 ∈ S2kn, let θ1,2, d1,2, ip1,2 and C1,2 be as in Sect. 5, then

C1,2 �= ∅ ⇐⇒ ∃x ∈ S2kn, such that x ∈ C
(
2kn, C1, θ

∗
)

and x ∈ C
(
2kn, C2, θ

∗
)

⇐⇒ ∃x ∈ S2kn, such that θ
(
x, C1

)
< θ∗ and θ

(
x, C2

)
< θ∗.

From the analysis above, to make C1,2 = ∅ true, we need the event that at

most one of θ
(
x,C1

)
≤ θ∗, θ

(
x,C2

)
≤ θ∗ is true for any x ∈ S2kn. It is easy

to find that θ1,2 > 2θ∗ is a sufficient condition for C1,2 = ∅. Because when it is

true, for any x ∈ S2kn, θ
(
x,C1

)
+ θ

(
x,C2

)
≥ θ1,2 > 2θ∗.

Now let us prove that θ1,2 > 2θ∗ is a necessary condition C1,2 = ∅. Using
Proposition 2, we can easily give its equivalent representations, namely, the
disjoint condition about inner product (ip1,2 < cos (2θ∗)) and about distance
(d1,2 > 2 sin(θ∗)). In the following, we take d1,2 > 2 sin(θ∗) as an example to
prove that they are all necessary conditions for C1,2 = ∅. Because these three
conditions are equivalent, this will prove that each of them is a sufficient and
necessary condition for C1,2 = ∅ respectively.

Assume that d1,2 ≤ 2 sin(θ∗), we will show that in this case we can always

find a C ′ ∈ S2kn, such that θ
(
C ′, C1

)
≤ θ∗ and θ

(
C ′, C2

)
≤ θ∗.

Fig. 2. The construction of C′.
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Actually, as shown in Fig. 2, we denote the midpoint of C1 and C2 by M ,
and suppose that the line OM and S2kn intersect at point C ′, then C ′ is the
point we are looking for.

Since OC1 = OC2 = 1, the triangle OC1C2 is an isosceles triangle. Hence,
θ
(
C ′, C1

)
= θ

(
C ′, C2

)
= 1

2θ1,2. Then we have

sin
(
θ
(
C ′, C1

))
=

∣
∣
∣MC1

∣
∣
∣

∣
∣
∣OC1

∣
∣
∣

=
1
2
d1,2 < sin(θ∗).

Since θ∗ < π
2 and θ

(
C ′, C1

)
= 1

2θ1,2 ≤ π
2 , we have

θ
(
C ′, C1

)
< θ∗.

We can prove that θ
(
C ′, C2

)
< θ∗ in a similar way, then we know that C1,2 �= ∅,

since C ′ ∈ C1,2.

D Some Results about the Overlaps among Different
Caps of the Same Query

Let C be a query. Now let us consider the two rotations C(r1), C(r2)(0 ≤ r1 <

r2 ≤ n − 1) of C. Although the angle between C(r1) and C(r2) cannot be accu-
rately described, we can instead use their inner product to analyze the overlap,
achieving exactly the same effect. According to Theorem 2, the overlap between
C
(
2kn,C(r1), θ∗

)
and C

(
2kn,C(r2), θ∗

)
depends entirely on 〈C(r1), C(r2)〉.

It is mentioned in Sect. 2.1 that 〈C(r1), C(r2)〉 is the r2-th degree coeffi-
cient of 〈C(r1), C〉, so we can get 〈C(r1), C(r2)〉 by calculating 〈C(r1), C〉. Let
Ci,u(i = 1, 2, · · · , k;u = 0, 1, · · · n − 1) be the coefficient of the u-th degree coef-
ficient of the i-th polynomial of C. From the properties of rotations given in
Sect. 2.1, 〈C(r1), C(r2)〉 can be represented by

k∑
i=1

(
r1∑

u=0

Ci,r1−uCi,r2−u −
r2∑

u=r1+1

Ci,n+r1−uCi,r2−u +

n−1∑
u=r2+1

Ci,n+r1−uCi,n+r2−u

)
.

The following corollaries can be derived directly from Theorem 2.

Corollary 2. For a given C and its two rotations C(r1), C(r2)(0 ≤ r1 < r2 ≤
n − 1). The following are equivalent:

1. C
(
2kn,C(r1), θ∗

)
∩ C

(
2kn,C(r2), θ∗

)
= ∅.

2. θ
(
C(r1), C(r2)

)
> 2θ∗.

3.
k∑

i=1

(
r1∑

u=0

Ci,r1−uCi,r2−u −
r2∑

u=r1+1

Ci,n+r1−uCi,r2−u +

n−1∑
u=r2+1

Ci,n+r1−uCi,n+r2−u

)

< cos (2θ∗) ‖C‖2.
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Corollary 3. For a given C, the following are equivalent:

1. all the caps C
(
2kn,±C(r), θ∗

)
, r = 0, 1, · · · , n−1 do not intersect each other.

2. 2θ∗ < θ
(
C(r1), C(r2)

)
< π − 2θ∗, for any 0 ≤ r1 < r2 ≤ n − 1.

3.

∣
∣
∣
∣
∣
∣

k∑

i=1

⎛

⎝
r1∑

u=0

Ci,r1−uCi,r2−u −
r2∑

u=r1+1

Ci,n+r1−uCi,r2−u +

n−1∑

u=r2+1

Ci,n+r1−uCi,n+r2−u

⎞

⎠

∣
∣
∣
∣
∣
∣

< cos (2θ∗) ‖C‖2, for any 0 ≤ r1 < r2 ≤ n − 1.

The above corollary deals with the overlaps among 2n spherical caps in WC ,
and gives the conditions for a query C to achieve the best query effect. This may
provide advice to the attacker on how to choose queries.

E (R/M-)LWE-Based Public-Key Encryption Schemes

E.1 Kyber

Kyber is a MLWE-based lattice scheme, and a third round candidate in NIST’s
post-quantum standardization effort. [3] introduces the key generation, encryp-
tion, decryption algorithm of Kyber, and gives its common parameter set. [6]
proves that the error term of Kyber is

ω = eT r + e2 + cv − sT e1 − sT cu,

where e, s, r, e1 ← βη1 , e2 ← βη2 , cu ← ψk
2du ,q, cv ← ψk

2dv ,q. Using the previous
notation, we write

S =
(−s

e

)
, C =

(
e1 + cu

r

)
and G = e2 + cv.

Since all parameter sets of Kyber have q = 3329, then gcd(2du , q) = 1,
gcd(2dv , q) = 1. We denote the j-th degree coefficient of the i-th polynomial of
cu and cv by (cu)i,j and (cv)i,j respectively, then from Theorem 4.1, (cu)i,j =⌈
(bu)i,j

2du

⌋
, where (bu)i,j , i = 1, · · · , k, j = 0, 1, · · · , n − 1 are independent and

all uniformly random in Zq. (cv)i,j =
⌈
(bv)i,j

2dv

⌋
, where (bv)i,j , i = 1, · · · , k, j =

0, 1, · · · , n − 1 are independent and all uniformly random in Zq.
Let us take Kyber768 as an example, then du = 10, dv = 4, η1 = η2 = 2, δ =

2−164. It can be prove that the expected value of |(cu)i,j | is about
√

13
14 . As for

the value of (cv)i,j , since q >> 2dv and q/2
24 ≈ 104, we can approximately think

that (cv)i,j is uniformly random in [−104, 104].
As for the values of other parameters, since ‖G‖∞ ≤ ‖e2‖∞ + ‖cv‖∞ ≈

η2 + 104 = 106, we can take γ = 106. Taking M = log2
(

m(m−1)
2

)
, we have

ε(M) ≈ 4.08◦. As s, e, r, e1, e2 ∼ β2, and the variance of β2 is 1, we have Es =
Ee = Er = Ee1 =

√
768. Since e1, cu are independent, we have D [(cu + e1)i,j ] =

D [(cu)i,j ] + D [(e1)i,j ] = 27
14 , then Ee1+cu

≈ √
1481.
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Just like before, due to the difference in size between the coefficients of
e1 + cu and r, we need to isotropize C. Let w =

√
Er

Ee1+cu
, then we form

S̃ =
(− s

w
e · w

)
and C =

(
(e1 + cu) · w
r
w

)
. It is noted that 〈S̃, C̃〉 = 〈S,C〉 and

the expected values of ‖(e1 + cu) · w‖ ,
∥
∥ r

w

∥
∥ are both

√Ee1+cu
· Er. According to

the above, we have

ES̃ ≈ 40.24 and EC̃ ≈ 46.19.

Then the angle that the attacker can obtain is θ∗
Kyber768 = arccos

( q
4+γ

ES̃ ·EC̃

)
≈

59.68◦, the proportion is Isin2(θ∗
Kyber768)

(
kn − 1

2 , 1
2

) ≈ 2−330. Finally, it can be

calculated that J2kn

(
π
4 , θ∗

Kyber768

)
≈ 2−805 and Ω̃(m) ≈ 2−267.

E.2 Newhope

Newhope is a RLWE-based lattice scheme, which is proposed by Alkim et al.
[2] in 2016. [1] describes in detail the key generation, encryption and decryption
algorithm of Newhope. The error term of Newhope is

ω = es′ − e′s + e′′ + cv,

where e, s, s′, e′, e′′ ← βμ, cv ← ψ8,q. Using the previous notation, we write

S =
(−s

e

)
, C =

(
e′

s′

)
and G = e′′ + cv.

Let us take Newhope1024 as an example, then n = 1024, q = 12289, μ =
8, δ = 2−216. From Theorem 1, since q/2

8 ≈ 768, we can approximately think
that (cv)i,j is uniformly random in [−768, 768].

Now let us calculate the values of other parameters. Taking M =
log2

(
m(m−1)

2

)
, we have ε(M) ≈ 3.60◦. Since ‖G‖∞ ≤ ‖e′′‖∞ + ‖cv‖∞ ≤ 8 +

768 = 776, we can take γ = 776. As S,C ∼ β8, and the variance of β8 is 4, we have
ES = EC =

√
8192. Then the angle is θ∗

Newhope1024 = arccos
( q

4+γ

ES ·EC

)
≈ 61.98◦

and the proportion is Isin2(θ∗
Newhope1024)

(
n − 1

2 , 1
2

) ≈ 2−372.89. Finally, it can be

calculated that J2n

(
π
4 , θ∗

Newhope1024

)
≈ 2−876 and Ω̃(m) ≈ 2−310.

E.3 Frodo

Frodo is a LWE-based lattice scheme, and a second round candidate in NIST’s
post-quantum standardization effort. [20] introduces the basic information about
Frodo. The success condition is

‖E′′′‖∞ <
q

2B+1
,
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where E′′′ = S′E − E′S + E′′, S, E ∈ Z
n×n
q , S′, E′ ∈ Z

m×n
q , E′′ ∈ Z

m×n
q , and

each of their elements is sampled from the distribution χ (an approximation to
the discrete Gaussian distribution).

Let us take Frodo640 as an example, then q = 215, n = 640, γ = 12,m = n =
8, B = 2 and δ = 2−139. It can be calculated that ε(M) ≈ 4.42◦. [20] gives the
probability distribution function of χ. For any a ← χ, the expected value of a2

is 64895
213 ≈ 7.92.
As S, S′, E,E′, E′′ are all matrices, the angles are uncomputable. Some trans-

formation is needed. We write S = (s1 s2 · · · sn), E = (e1 e2 · · · en) where

si, ei, i = 1, 2, · · · , n are all column vectors. We write S′ =

⎛

⎜
⎝

s′
1

...
s′

m

⎞

⎟
⎠ , E′ =

⎛

⎜
⎝

e′
1

...
e′

m

⎞

⎟
⎠

where s′
j , e

′
j , j = 1, 2, · · · ,m are all row vectors. Then the success condition can

be further expressed as

∣
∣s′

jei − e′
jsi + e′′

ij

∣
∣ <

q

8
, i, j = 1, 2, · · · , 8.

Just like [5], we consider each entry of E′′′ respectively. For each
pair of (i, j), the angle that an attacker can obtain is θ∗

Frodo640 =

arccos
( q

8+γ√
2×n×7.92×√

2×n×7.92

)
≈ 66.10◦, and the proportion is Isin2(θ∗

F rodo640)

(n− 1
2 , 1

2 ) ≈ 2−169.6. Finally, it can be calculated that J2n

(
π
4 , θ∗

Frodo640

)≈ 2−381.6

and Ω̃(m) ≈ 2−106.6.
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Abstract. In order to provide benefits in the areas of fully homomor-
phic encryption (FHE), multi-party computation (MPC), post-quantum
signature schemes, or efficient masked implementations for side-channel
resistance, reducing the number of multiplications has become a quite
popular trend for the symmetric cryptographic primitive designs. With
an aggressive design strategy exploiting the extremely simple and low-
degree S-box and low number of rounds, Pyjamask, the fundamental
block cipher of the AEAD with the same name, has the smallest num-
ber of AND gates per bit among all the existing block ciphers (except
LowMC or Rasta which work on unconventional plaintext/key sizes).
Thus, although the AEAD Pyjamask stuck at the second round of the
NIST lightweight cryptography standardization process, the block cipher
Pyjamask itself still attracts a lot of attention. Not very unexpectedly,
the low degree and the low number of rounds are the biggest weakness of
Pyjamask. At FSE 2020, Dobraunig et al. successfully mounted an alge-
braic and higher-order differential attack on full Pyjamask-96, one mem-
ber of the Pyjamask block cipher family. However, the drawback of this
attack is that it has to use the full codebook, which makes the attack less
appealing. In this paper, we take integral attacks as our weapon, which
are also sensitive to the low degree. Based on a new 11-round integral dis-
tinguisher found by state-of-the-art detection techniques, and combined
with the relationship between round keys that reduces the involved keys,
we give the key recovery attack on the full Pyjamask-96 without the full
codebook for the first time. Further, the algebraic and higher-order dif-
ferential technique does not work for Pyjamask-128, the other member
of the Pyjamask block cipher family. To better understand the security
margin of Pyjamask-128, we present the first third-party cryptanalysis
on Pyjamask-128 up to 11 out of 14 rounds.
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1 Introduction

Recently, block ciphers implemented in resource-constrained environments have
received a lot of attention with the increasing deployments of small computing
devices. To meet such trend, NIST initiated a lightweight cryptography (LWC)
competition for developing a standard of lightweight cryptographic algorithms.

Pyjamask, as an authenticated encryption with associated data (AEAD)
scheme which targets at side-channel resistance [12], has been selected as one of
the second round candidates for NIST LWC competition. The mode of operation
chosen by the authors is OCB AEAD [17]. The underlying block ciphers contain
two versions: Pyjamask-96 and Pyjamask-128, named according to the block size.
To allow efficient masked implementations, especially for high-order masking, the
S-box layer aggressively minimizes costs in terms of AND gates, which also leads
to relatively slow growth in algebraic degree. At FSE 2020, Dobraunig et al. [10]
noticed this vulnerability and presented an 11.5-round1 higher-order differential
distinguisher. Combined with the solution of linearized systems for monomials
and the guess-and-determine strategy, they proposed a chosen-ciphertext attack
for the full-round Pyjamask-96 using the whole codebook. Later, Tian and Hu [22]
found a 10-round integral distinguisher based on the division property [23,26]
that leads to an 11-round attack of Pyjamask-96 with time complexity 293.8. So
far, there is no third-party analysis for Pyjamask-128.

The integral attack was firstly proposed by Daemen et al. [7] to evaluate
the security of the block cipher Square, and later formalized by Knudsen and
Wagner [16]. It mainly has two steps: the construction of an integral distinguisher
followed by a key recovery step. In order to construct an integral distinguisher,
a structure of plaintexts is chosen firstly and encrypted for a few rounds. If
the corresponding state has an integral property, an integral distinguisher is
obtained, which can be used to perform the key recovery attack with many
techniques.

Detecting integral distinguishers. Currently, the division property, proposed
as a generalized integral property by Todo at EUROCRYPT 2015 [24], is the
most efficient and accurate method of detecting the integral distinguishers. It
can better exploit the algebraic degree information and identify balanced out-
put bits. Its powerfulness was undoubtedly demonstrated by the break of full
MISTY1 [23]. However, the original division property is word-oriented, i.e., it
only exploits the algebraic degree of the non-linear exponents, and could not
utilize the internal structure of ciphers in a fine-grained way. So Todo and Morii
introduced the bit-based division property at FSE 2016 [26], including the con-
ventional bit-based division property and the three-subset bit-based division

1 This 11.5-round distinguisher works under the chosen-ciphertext scenario, so the
last MixRows can be removed naturally, i.e., without the MixRows operation, the
distinguisher is actually 11 full rounds. Our 11-round distinguisher (introduced later)
works under the chosen-plaintext setting, so we cannot remove the MixRows operation
for the distinguisher. However, equivalently, in the key-recovery phase, we can ignore
the last MixRows operation also.
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property. In [29], Wang et al. showed that the three-subset bit-based division
property could be used to recover the exact superpoly in the cube attack.
This observation was soon refined by Hao et al. in [13] as the three-subset
bit-based division property without unknown subsets (3SDPwoU). Recently,
Hebborn et al. pointed out that the idea behind the 3SDPwoU from the perspec-
tive of the parity set [5] is that the 3SDPwoU actually determined the existence
or absence of a certain monomial in the polynomial of the cipher output. At ASI-
ACRYPT 2020, Hu et al. [15] proposed the concept of the monomial prediction,
which is another language for the division properties from the viewpoint of the
polynomial directly. By counting the so-called monomial trails, they are able to
determine if a monomial of the plaintext or IV appears in the polynomial of the
cipher output. Indeed, the monomial prediction and the 3SDPwoU were proved
to be equivalent [15].

In practice, searching for the division properties or the monomial trails is
time and memory consuming where the complexity is usually the exponential
function of the block size. At ASIACRYPT 2016 [30], Xiang et al. introduced
the Mixed Integral Linear Programming (MILP) models for the conventional
division properties and thereafter the MILP models have been the dominant
tool in this area. Later, the integral attacks on dozens of symmetric primitives
are then improved [6,8,18,27,28].

Techniques used in the key recovery attacks. When mounting the key
recovery attack, we guess some involved round keys, partially decrypt the cor-
responding ciphertexts backwards to the tail of the integral distinguishers and
check whether the summation of the statements is zero. Since the presentation
of the integral attack, many refined key-recovery techniques are presented. The
partial sum technique was one of the most important tools, which was introduced
by Ferguson et al. in [11] to improve the time complexity of integral attacks. The
statement after the distinguisher, the ciphertexts and the involved round keys
can be separated into several parts and considered independently. Thus, we can
reuse some derived partial sum and optimize the time complexity. The original
attack target was AES. They dramatically reduced the complexity of the 6-round
attacks on AES by a factor of 228. Recently, this powerful method has lead to
a significant reduction in the time complexity of the integral attack on the full
MISTY1 [4,23].

Motivation. In order to provide benefits in the areas of fully homomorphic
encryption (FHE), multi-party computation (MPC), or post-quantum signature
schemes, reducing the number of multiplications has become a quite popular
trend for the symmetric cryptographic primitive designs. Unlike earlier designs
such as LowMC [3], or Rasta [9] and many others that follow an unconventional
design approach, e.g., incomplete non-linear layer, Pyjamask follows a classical
design approach to benefit from the mature cryptanalysis methods and secu-
rity arguments. Within this design space, it aggressively reduces the number
of rounds of the internal block ciphers and makes Pyjamask one of the existing
members with the smallest number of AND gates per bit processed. Moreover,
the low number of nonlinear building blocks of Pyjamask allows side-channel
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countermeasures. Although the AEAD Pyjamask was not selected as the final-
ists of the NIST LWC competition, the block cipher Pyjamask still attracts a
lot of attention because of its low multiplication complexity characteristic. The
most important side effect of the low number of multiplicative operations is the
slow growth of algebraic degree, which makes it vulnerable to the attacks such as
the higher-order differential attacks [10] and the integral attacks [22]. However,
the only attack on the full Pyjamask-96 has to take the whole codebook. We are
naturally interested in whether we can improve the attacks without using the
whole codebook. The algebraic degree of Pyjamask-128 grows much faster than
Pyjamask-96, which the technique in [10] heavily relies on. As a result, their tech-
nique fails when applied to Pyjamask-128. On the other hand, block ciphers with
128-bit block size are more popular since almost all protocols support 128-bit
block ciphers (for the compatibility with AES) rather than 96-bit ones. Thus, it
is of special significance to study the security margin of this 128-bit version of
Pyjamask. Thanks to the development of the division properties recently, we have
more powerful tools to detect the integral distinguishers for Pyjamask. Thus the
security of Pyjamask can be better evaluated by more refined integral attacks.

Our contributions. In this paper, we take state-of-the-art techniques for
detecting division properties to give a more fine-grained study of the secu-
rity strength of Pyjamask-96 and Pyjamask-128 against the integral attacks. To
find more integral properties, we construct the MILP models for the encryp-
tion algorithm considering the effect of the round keys for Pyjamask simultane-
ously. 11- and 9-round integral distinguishers are established for Pyjamask-96 and
Pyjamask-128, respectively. Based on the new 11-round integral distinguisher for
Pyjamask-96, capturing the relationship between the round keys that dramati-
cally reduces the number of involved subkey bits in the key recovery phase from
165 to 121 bits, we manage to attack the full Pyjamask-96 without the full code-
book for the first time. Equipped with the partial sum and equivalent key skills,
the complexities for some fewer rounds of Pyjamask-96 are also improved. We
also give the first third-party cryptanalysis on Pyjamask-128 up to 11 (out of 14)
rounds, which helps to better understand its security margin. All the results are
summarized in Table 1. The full version of the paper can be found in [1].

Outline. The rest of this paper is organized as follows. In Sect. 2, we introduce
some background knowledge needed in this paper. The technique of obtaining
the integral distinguishers is described in Sect. 3. In Sect. 4, we mainly describe
the key recovery attack on 13-round and 14-round Pyjamask-96. The attack on
Pyjamask-128 is present in Sect. 5. Finally, the paper is concluded in Sect. 6.

2 Preliminaries

2.1 Pyjamask Block Cipher Family

Pyjamask is a family of the block ciphers used by the AEAD Pyjamask, one of
the second-round candidates of the NIST LWC competition. In the remaining
sections, Pyjamask is always the name of the block ciphers without ambiguity.
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Table 1. Comparisons of attack results for Pyjamask-96 and Pyjamask-128

Instance Approach #Round Data Time Reference

Pyjamask-96 Higher-order 9/14 271 CC 267 [10]

Integral 9/14 266 CP 266 Sect. 4

Higher-order 10/14 287 CC 283 [10]

Integral 10/14 281 CP 281 Sect. 4

Higher-order 11/14 295 CC 291 [10]

Integral 11/14 293 CP 293.8 [22]

Integral 11/14 290 CP 290 Sect. 4

Higher-order 12/14 296 CC 296 [10]

Integral 12/14 293 CP 293 Sect. 4

Higher-order 13/14 296 CC 299 [10]

Higher-order 13/14 294 CC 2125 [10]

Integral 13/14 295 CP 295.2 Sect. 4.1

Higher-order 14/14 296 CC 2115 [10]

Integral 14/14 295 CP 2122.6 Sect. 4.2

Pyjamask-128 Integral 5/14 220 CP 223 Sect. 5

Integral 6/14 252 CP 254 Sect. 5

Integral 7/14 290 CP 291.5 Sect. 5

Integral 8/14 290 CP 2107.8 Sect. 5

Integral 9/14 2112 CP 2112 Sect. 5

Integral 10/14 2122 CP 2122 Sect. 5

Integral 11/14 2127 CP 2127 Sect. 5

CC – chosen ciphertext; CP – chosen plaintext

Pyjamask includes two members Pyjamask-96 and Pyjamask-128 named according
to the block sizes. Both versions take the same 128-bit length key and have the
same 14 rounds. The internal states are represented as rectangles with t rows
and 32 columns, where t = 3 for Pyjamask-96 and t = 4 for Pyjamask-128.

In the specification [12], the round function of Pyjamask consists of three
steps: AddRoundKey, SubBytes and MixRows. After 14 rounds of iterations, one
additional AddRoundKey is appended at last. In this paper, we equivalently regard
SubBytes, MixRows and AddRoundKey as one full round (see Fig. 1) and thus
there is a whitening AddRoundKey before the first round function. The operations
in one round are described as follows,

– SubBytes. The same t-bit S-box is applied to each of the 32 columns of the
internal state in parallel (t = 3 for Pyjamask-96 and t = 4 for Pyjamask-
128). For SubBytes−1, the inverse of the S-box is applied. S3 and S4 used in
Pyjamask-96 and Pyjamask-128 respectively are given by the following table.
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Fig. 1. The round function of Pyjamask-128

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S3(x) 1 3 6 5 2 4 7 0 – – – – – – – –

S4(x) 2 D 3 9 7 B A 6 E 0 F 4 8 5 1 C

– MixRows. For each row Ri of the internal state where 0 ≤ i < 4, the updated
state can be calculated by Mi · RT

i . The binary matrices Mi used in the
MixRows layer are 32 × 32 circulant matrices defined as follows:

M0 = cir([1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0]),

M1 = cir([0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1]),

M2 = cir([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1]),

M3 = cir([0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1]),

where M0, M1, M2 are used for both Pyjamask-96 and Pyjamask-128, and
M3 is only used in Pyjamask-128. The function cir generates a matrix where
the ith row equals the input vector rotated by i positions to the right. The
hamming weight of each row is 11 for M0, M1, M3 and 13 for M2. For
MixRows−1, the matrices are also circulant and the Hamming weight of each
row is 11, 13, 11, 15 for M−1

0 , M−1
1 , M−1

2 , M−1
3 , respectively.

– AddRoundKey. An n-bit round key k(i) for the ith round is extracted from
the key schedule and XORed to the internal state, where 0 ≤ i ≤ 13 and
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n = 96, 128. The pre-whitening key (which is also the master key as shown
later) is denoted by k(−1).

Key schedule. Pyjamask-96 and Pyjamask-128 share a similar key schedule,
where only the sizes of the subkeys differ due to the extra row in Pyjamask-128.
Let k(−1) be the master key. The same round function is operated on k(−1) for
14 times, and the round keys k(i) for 0 ≤ i ≤ 13 are generated. Note that the
key state in each round is loaded into the 128-bit key state in the same ordering
as the internal state of the encryption.

– MixColumns. Update each column of the key state by the same matrix M ,
where

M =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠

and M = M−1.
– MixAndRotateRows. Update the first row of the key state R0 by Mk · RT

0 .
The circular matrix Mk is defined as:

Mk = cir([1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0]).

The hamming weight of each row is 15 for Mk and 11 for M−1
k . R1, R2, R3 are

left-rotated by 8, 15 and 18 positions. Namely, they are replaced by R1 ≪ 8,
R2 ≪ 15 and R3 ≪ 18, respectively.

– AddConstant. Four-byte constants are added bitwisely to different bytes in
the key state. The first 28-bit constant is denoted in hexadecimal notation as
0x243f6a8 while the extra 4-bit constant is the binary representation of the
round index i.

2.2 Notations

In this paper, the state matrix of Pyjamask at the beginning of round i is denoted
by x(i) where 0 ≤ i ≤ 13. The state matrix after the SubBytes and the MixRows
operations of round i are denoted by y(i) and z(i), respectively. Bits of every state
are labeled by 0, 1, 2, . . . , 95 for Pyjamask-96 and 0, 1, . . . , 127 for Pyjamask-128,
illustrated in Fig. 1. The jth row vector of the binary matrix Mi is denoted
by Mi [j], 0 ≤ j < 32. We denote the subkey of round i by k(i), and the first
(pre-whitening) key by k(−1). In the key-recovery process, we are interested in
swapping the order of the MixRows operation and the AddRoundKey. As these
operations are linear or affine they can be interchanged, by first XORing the data
with an equivalent subkey and then applying the MixRows operation. We denote
the equivalent subkey for the altered version by u(i), i.e., u(i) = MixRows−1(k(i)).
When we interchange the order of the MixRows operation of round i and the
AddRoundKey, we denote the state right after the AddRoundKey (and just before
the MixRows operation) by z̄(i).
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2.3 Monomial Prediction

The monomial prediction is a new technique proposed by Hu et al. in [15] to
determine whether a monomial appears in any product of the coordinate func-
tions of a vectorial boolean function f . It provides a new perspective from the
polynomial for the division properties [13,26]. Let f : F

n0
2 → F

nr
2 ,y = f(x) be a

composite vectorial Boolean function of a sequence of smaller vectorial Boolean
functions f (i) : F

ni
2 → F

ni+1
2 ,x(i+1) = f (i)(x(i)), 0 ≤ i ≤ r − 1, i.e.,

f = f (r−1) ◦ f (r−2) ◦ . . . ◦ f (0).

We use the notation πu(i)(x(i)) to represent a monomial of x(i) related to u(i),
where πu (x) stands for

∏
xui
i and xi, ui is the ith coordinate of the vector

x,u, respectively. Note that πu(i)(x(i)) is also a Boolean function of the x(j) for
j < i. If the ANF of f (i) is available and relatively simple, we can tell whether
the polynomial of πu(i+1)(x(i+1)) contains the term πu(i)(x(i)) for any u(i) and
u(i+1). πu(i)(x(i)) → πu(i+1)(x(i+1)) denotes πu(i+1)(x(i+1)) contains πu(i)(x(i))
according to [15]. Then we introduce the definition of the monomial trail [15].

Definition 1 (Monomial Trail [15]). Let x(i+1) = f (i)(x(i)) for 0 ≤ i < r.
We call a sequence of monomials (πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r))) an r-
round monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)) with respect to the
composite function f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0) if

πu(0)(x(0)) → · · · → πu(i)(x(i)) → · · · → πu(r)(x(r)).

If there is at least one monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)), we
write πu(0)(x(0)) � πu(r)(x(r)). Otherwise, πu(0)(x(0)) �� πu(r)(x(r)).

The monomial prediction is another language for the division property from
the polynomial viewpoint. The paper [15] has shown the equivalence between
3SDPwoU and the monomial prediction. In theory, they are perfectly accurate
in detecting the integral distinguishers by counting the number of monomial
trails. However, counting trails are time and memory consuming in most cases
especially for the block ciphers, then some trade-off between the accuracy and the
efficiency is necessary. The previous division properties (except the 3SDPwoU)
can be regarded as the compromised algorithms of the monomial prediction.
In this paper, we mainly take the fact in Lemma 1 to search for the integral
distinguishers for Pyjamask.

Lemma 1 ([15]). πu(0)(x(0)) � πu(r)(x(r)) if πu(0)(x(0)) → πu(r)(x(r)), and
thus πu(0)(x(0)) �� πu(r)(x(r)) implies πu(0)(x(0)) � πu(r)(x(r)).

2.4 MILP Modeling for the Monomial Prediction

In this subsection, we denote by x ∈ F
n
2 ,k ∈ F

m
2 the vectors for the plaintext

and the master key, respectively. Let c be a certain output bit of the targeted
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cipher, then c is a function of x and k written as c = f(x,k). For a fix constant
u ∈ F

n
2 , we consider the encryption of the following structure of plaintexts

X = {x � u : x ∈ F
n
2}.

Then whether c has the integral property is decided by whether
⊕

x∈X
c =⊕

x∈X
f(x,k) is a constant (0 or 1), which is further decided by whether for all

possible v ∈ F
m
2 \ {0}, πv (k) ·πu (x) does not appear in the ANF of c = f(x,k).

According to Lemma 1, if for all possible v ∈ F
m
2 \ {0}, πv (k) · πu (x) does not

have the monomial trails connecting c = f(x,k), then
⊕

x∈X
c is a constant, and

c is key-independent.
In [26], Todo and Morri proposed the bit-based division properties, but the

time and memory complexities of the corresponding algorithm are O(2n) where
n is the block size. To search for the division properties efficiently, Xiang et al.
introduced the Mixed Integral Linear Programming (MILP) models in [30]. Since
then, the MILP model has been the most common tool in the area about the
division properties [6,8,18,27,28].

In the monomial prediction, we take a similar method to construct the MILP
model by modeling the propagation of the monomial trails. Considering a mono-
mial trail

(πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r))),

it is enough to only model the vectors of u(i) since the x(i) are only symbolic
variables. Then we only need to model the transitions of (u(0),u(1), . . . ,u(r)).
For any Boolean function y = f(x), every pair of (u,v) is a valid monomial trail
through f if and only if xu → yv . Then we add constraints on (u,v) to force
them be the valid transitions. Since every block cipher can be decomposed into
some smaller components such as XOR, COPY, S-box and the linear layer, we
introduce the MILP models for these functions.

Model 1 (COPY [13]). Let (a) COPY−−−−→ (b1, b2, ..., bm) denote the monomial
trail through the COPY function, where one bit is copied to m bits. Then, it can
be depicted using the following MILP constraints:

⎧⎨
⎩

b1 + b2 + . . . + bm ≥ a;
a ≥ bi, for all i ∈ {1, 2, . . . ,m};
a, b1, b2, ..., bm are binary variables.

Model 2 (XOR [13]). Let (a1, a2, ..., am) XOR−−−→ (b) denote monomial trail
through an XOR function, where m bits are compressed to one bit using an
XOR operation. Then, it can be depicted using the following MILP constraints:

{
a1 + a2 + ... + am − b = 0;
a1, a2, ..., am, b are binary variables.

Model for S-box [29,30]. Given an S-box sending an n-bit vector to an m-bit
vector, the monomial trails through the S-box can be represented as a set of
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(n + m)-dimensional binary vectors which has a convex hull. With the help of
inequality generator() function in Sagemath [2] set of linear inequalities can
be derived to describe the H-Representation of this convex hull. Then we use
the greedy algorithm [21] to simplify them.

Model for the linear layer [20]. In [20], Sun et al. explained how to deduce a
MILP model of the linear layers for the two-subset bit-based division properties.
Here we slightly modify it for the monomial trails. Let M be a n × n matrix
over F2, which can be represented at the bit level and denote

M =

⎛
⎜⎜⎜⎝

m0,0 m0,1 · · · m0,n−1

m1,0 m1,1 · · · m1,n−1

...
...

. . .
...

mn−1,0 mn−1,1 · · · mn−1,n−1

⎞
⎟⎟⎟⎠

where mi,j ∈ {0, 1}. To represent the monomial trails through the linear layer,
we introduce a set of auxiliary binary variables ti,j(0 ≤ i, j ≤ n−1) to decompose
the binary matrix into XOR and COPY operations. Denote (x0, x1, ..., xn−1) →
(y0, y1, ..., yn−1) as a monomial trail of M , then we can construct linear inequal-
ity system as xj

COPY−−−−→ (t0,j , t1,j , ..., tn−1,j) and (ti,0, ti,1, ..., ti,n−1)
XOR−−−→ yi,

where the inequalities for COPY and XOR are from Model 1 and Model 2.

3 Automatic Search Model for Pyjamask and Integral
Distinguishers

3.1 MILP Model for Pyjamask-96 and Pyjamask-128

The works in [13,15] have implied that the 3SDPwoU and the monomial pre-
diction can be used to detect the integral properties for ciphers considering
the key schedule. In this paper, we regard all the round keys are independent
input variables, and the whole model we consider is illustrated in Fig. 2. Inspired
by [14], we describe both encryption algorithm and the round keys into the MILP
model. Suppose the length of the block size and the round key is n (n = 96 for

Fig. 2. General structure of our MILP model
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Pyjamask-96 while n = 128 for Pyjamask-128). For 0 ≤ i < r, let πu(i)(x(i)) and
πũ(i)(x̃(i)) denote the monomials of the input and output statements of the ith
round function, respectively. πu(r)(x(r)) denotes a monomial of the ciphertext
we are interested in. Practically, u(r) is set as a unit vector to study a certain bit
of the ciphertext. πv (i)(k(i)) denotes the monomial of the ith round key. We use
inequalities to add constraints for variables u(i), ũ(i) and v(i) according to the
functions between them (recall x(i), x̃(i) and k(i) are only symbolic variables).
The whole process is very similar to [30] except,

1. Besides the encryption, the round keys are also considered. The monomials
πv (i)(k(i)) are treated equivalently as πu(i)(x(i)) when we add constraints.

2. The monomial trails through public functions are described in the models
introduced in Sect. 2.4 rather than the constraints for the two-subset bit-
based division properties.

Initial constraints on (u(0),v(0), . . . ,v(r−1)). Given a structure of plaintexts
that all the active bits are a subset I ⊂ {0, 1, . . . , n − 1}, then we use

{
u
(0)
i = 1, if i ∈ I;

u
(0)
i = 0, if i /∈ I.

to add the initial constraints on u(0). Note we do not add any constraints on
(v(0), . . . ,v(r−1)) to allow (v(0), . . . ,v(r−1)) to be free variables over F

m×r
2 .

Stopping constraints on u(r). If we consider the integral property of the i′th
ciphertext bit, then we use

{
u
(r)
i = 1, if i = i′;

u
(r)
i = 0, if i �= i′.

to add the stopping constraints on u(r).
Once we obtain the whole MILP model, we then call the MILP solver to

solve the model. If the model is not feasible, for any (v(0), . . . ,v(r−1)) ∈ F
m×r
2 ,

πv (0),...,v (r−1)(k(0), . . . ,k(r−1))·πu(0)(x(0)) has no trails connecting to πu(r)(x(r)),
i.e.,

πv (0),...,v (r−1)(k
(0), . . . ,k(r−1)) · πu (0)(x

(0)) �� πu (r)(x
(r)), ∀(v(0), . . . , v(r−1)) ∈ F

m×r
2 .

According to Lemma 1, πv (0),...,v (r−1)(k(0), . . . ,k(r−1)) · πu(0)(x(0)) does not
appear in πu(r)(x(r)) for any (v(0), . . . ,v(r−1)) ∈ F

m×r
2 . Consequently, πu(r)(x(r))

is zero-sum.

Optional Extra Constraint to Obtain More Integral Property. In the
integral attacks, not only the zero-sum ciphertext bits but also the one-sum
ciphertext bits are useful. So we add an extra constraint to exclude the case that
πu(0)(x(0)) � πu(r)(x(r)) as follows,

M ←
∑

0≤i<r, 0≤j<m

v
(i)
j ≥ 1. (1)
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In this case, if the model is not feasible, then

πv (0),...,v (r−1)(k
(0), . . . ,k(r−1)) ·πu (0)(x

(0)) �� πu (r) (x
(r)), ∀(v(0), . . . , v(r−1)) ∈ F

m×r
2 \{0}.

According to Lemma 1, πv (0),...,v (r−1)(k(0), . . . ,k(r−1)) · πu(0)(x(0)) does not
appear in πu(r)(x(r)) for any (v(0), . . . ,v(r−1)) ∈ F

m×r
2 \ {0}. Consequently,

the ith bit of x(r) is key-independent, i.e., zero-sum or one-sum (the concrete
property can be determined by an additional experiment). All the source codes
are avaliable at https://github.com/iljido/MILP pyjamask. We refer the readers
to our codes for more details of the MILP model.

3.2 Integral Distinguishers of Pyjamask-96 and Pyjamask-128

Since the goal for the first step is to obtain the longest distinguisher, e.g., for
Pyjamask-96, we set the 95 bit of the input to active and one bit to constant
to find r-round distinguisher. Then the 96 positions of the constant bits are
traversed. If there are some balanced bits, we increase the round to r + 1 and
repeat the search process until no balanced bits are available. Then we found
a 10.5-round distinguisher for Pyjamask-96 with 96 balanced bits, which can be
naturelly extended to 11 rounds since the MixRows is linear. Then, we try to
reduce the data complexity by minimizing the number of the active bits of the
input as described in [19]. The reduced-round distinguishers can be obtained in
the similar way.

For Pyjamask-96, we found distinguishers up to 11 rounds as follows, where
A, C represent ACTIVE, CONSTANT bits respectively. And B denotes the zero-
sum property while Bc represents the key-independent bits. Note that only for
finding the 11-round distinguisher, we use the extra constraint in Eq. (1). Com-
paring to the results without the constraint, we find 32 more key-independent
bits (the middle 32 bits denoted by B32

c ), which helps to reduce the complexity
of the key recovery attack on 14-round Pyjamask-96.

(C32, C32,A9C23) 5R−−→ (B32,B32,B32)

(C32, C32,A17C15) 6R−−→ (B32,B32,B32)

(C10A22, C10A22, C10A22) 7R−−→ (B32,B32,B32)

(C5A27, C5A27, C5A27) 8R−−→ (B32,B32,B32)

(C2A30, C2A30, C2A30) 9R−−→ (B32,B32,B32)

(C1A31, C1A31, C1A31) 10R−−−→ (B32,B32,B32)

(C1A31,A32,A32) 11R−−−→ (B32,B32
c ,B32)

For Pyjamask-128, distinguishers up to 9 rounds are available.

https://github.com/iljido/MILP_pyjamask
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(A5C27,A5C27,A5C27,A5C27) 4R−−→ (B32,B32,B32,B32)

(A13C19,A13C19,A13C19,A13C19) 5R−−→ (B32,B32,B32,B32)

(A23C9,A22C10,A23C9,A22C10) 6R−−→ (B32,U32,B32,U32)

(A28C4,A28C4,A28C4,A28C4) 7R−−→ (B32,U32,U32,U32)

(A31C1,A30C2,A31C1,A30C2) 8R−−→ (B32,U32,B32,U32)

(A32, C1A31,A32,A32) 9R−−→ (B32,U32,B32,U32)

4 Key Recovery Attack on Pyjamask-96

In this section, we present the key-recovery attacks for up to 14 rounds of
Pyjamask-96. Since the attacks on rounds less than 13 is simple, here we only give
the details of the attacks on 13- and 14-round Pyjamask-96 based on the same
11-round distinguisher available in Sect. 3. For a set of 295 plaintexts denoted
by P with the form of (C1A31,A32,A32), the intermediate state after 11 rounds
(say, x(11)) has the form of (B32,B32

c ,B32). Taking a pre-computation with 295

chosen plaintexts, the integral property (zero-sum or one-sum) of the middle
32-bit ciphertext can be determined. Since the complexities of our attack on
14-round Pyjamask-96 are significantly larger than 295 (see Table 1), so the pre-
computation is negligible. For the 13-round attack, we only use the 64 bits with
zero-sum property.

As is well known, once an integral characteristic is found, we can take it
to mount a key-recovery attack. If we denote by f the Boolean function that
represents the mapping from the ciphertext of Pyjamask-96 to one of the balanced
intermediate bit of x(11) (the output of the integral distinguisher), then we are
interested in the following equation

∑
p∈P

x(11)[i] =
∑
c∈C

f(c) = 0 (2)

where x(11)[i] is any one balanced bit and C is the corresponding ciphertext sets
encrypted from P. In the process of evaluating Eq. (2), we guess the involved
subkey bits used in f , and check whether Eq. (2) holds. Those subkey values
which violate Eq. (2) will be filtered out and discarded, and the remaining are
the candidates of the correct subkeys.

4.1 Attack on 13-Round Pyjamask-96

By appending two rounds after the distinguisher, we can get a 13-round key
recovery attack on Pyjamask-96. Note that we have changed the order of the
MixRows and AddRoundKey, so the last operation of the 13-round Pyjamask is the
MixRows that can be ignored and then the ciphertext is actually z̄(12). Firstly,
we try to write out explicitly the mapping f from z̄(12) to any one balanced bit
of x(11). Without loss of generality, here we take x(11)[0] as an example.
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Since the Boolean function of f is too complicated, we split it into two steps
and in each step, we make clear the subkey bits we need to guess.

Step 1: Express x(11)[0] by z̄(11). We first express x(11)[0] in a polynomial of
z̄(11), according to the ANF of the inverse of S3

x(11)[0] = y(11)[0] · y(11)[32] + y(11)[64] + 1

= (z̄(11)[0] + u(11)[0])(z̄(11)[32] + u(11)[32]) + (z̄(11)[64] + u(11)[64]) + 1.

If we have known z̄(11)[0], z̄(11)[32] and z̄(11)[64], through guessing
u(11)[0], u(11)[32] and u(11)[64] we can compute x(11)[0].

Step 2: Express respectively z̄(11)[0], z̄(11)[32], z̄(11)[64] by z̄(12). We first
express z̄(11)[64] in a polynomial of z̄(12) as an example, the processes for z̄(11)[0]
and z̄(11)[32] are similar.

z̄(11)[64] = M−1
2 [0] · (x(12)[64], x(12)[65], . . . , x(12)[95])T

=
∑
i∈I2

x(12)[i]

=
∑
i∈I2

(y(12)[i − 64] · y(12)[i] + y(12)[i − 32] + y(12)[i] + 1)

=
∑
i∈I2

((z̄(12)[i − 64] + u(12)[i − 64]) · (z̄(12)[i] + u(12)[i])

+ (z̄(12)[i − 32] + u(12)[i − 32]) + (z̄(12)[i] + u(12)[i]) + 1)

(3)

where I2 is a set of indices corresponding to the coefficient of M−1
2 [0] (recall

that Mi [j] is the jth row of Mi). For z̄(11)[0] and z̄(11)[32], the index sets are I0
and I1, which corresponds to M−1

0 [0] and M−1
1 [0] respectively. At first glance,

to calculate z̄(11)[64], we need to guess u(12)[i − 64], u(12)[i − 32] and u(12)[i] for
each i ∈ I2, totally 3 × |I2| subkey bits. However, Eq. (3) can be rewritten as

z̄(11)[64] =
∑
i∈I2

z̄(12)[i − 64]z̄(12)[i] +
∑
i∈I2

u(12)[i]z̄(12)[i − 64]

+
∑
i∈I2

z̄(12)[i]u(12)[i − 64] +
∑
i∈I2

u(12)[i − 64]u(12)[i]

+
∑
i∈I2

z̄(12)[i − 32]

�������������

+
∑
i∈I2

z̄(12)[i]

+
∑
i∈I2

u(12)[i − 32] +
∑
i∈I2

u(12)[i] + 1.

(4)

The subkey bits in the underlined term
∑

i∈I2
u(12)[i − 32] are independent of

other subkey or intermediate state bits, so we can regard the whole as one
equivalent subkey bit. Consequently, we now need to guess much less (equivalent)
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subkey bits, totally 2×|I2|+1 bits. For z̄(11)[0] and z̄(11)[32], we need 2×|I0|+1
and 2 × |I1| + 1 subkey bits respectively. By removing the 11 reusable subkey
bits u(12)[10], u(12)[20], u(12)[24], u(12)[32], u(12)[39], u(12)[44], u(12)[55], u(12)[65],
u(12)[73], u(12)[86] and u(12)[94], we need 55 subkey bits in u(12) and 3 equivalent
subkey bits

∑
i∈I0

u(12)[i+64],
∑

i∈I1
u(12)[i−32],

∑
i∈I2

u(12)[i−32] to compute
z̄(11)[0], z̄(11)[32] and z̄(11)[64].

The relevant data bits can be compressed similarly as above. To calculate
z̄(11)[64], 3 × |I2| bits in z̄(12) are required. For z̄(11)[0] and z̄(11)[32], we need
3×|I0| and 3×|I1| bits in z̄(12), respectively. By removing the reusable bits, totally
66 data bits in z̄(12) are required, which are highlighted gray in Fig. 3. However,
the underwaved term

∑
i∈I2

z̄(12)[i−32] are also independent from other subkey
or intermediate state bits. So we can pre-compute the whole as one equivalent
data bit for each ciphertext. Then, some of the u(12)[i] make no contribution to
the further calculation and can be removed. For z̄(11)[64], we need 2 × |I2| data
bits in z̄(12) and one equivalent data bit c2 =

∑
i∈I2

z̄(12)[i − 32]. It is the same
for z̄(11)[0] and z̄(11)[32]. The equivalent data bits are c0 =

∑
i∈I0

z̄(12)[i+64] and
c1 =

∑
i∈I1

z̄(12)[i − 32], respectively. Consequently, 11 bits in z̄(12) are reduced
in total (indicated by a cross in Fig. 3). We now need 58 data bits in z̄(12) for
the calculation of x(11)[0], including 3 equivalent data bits c0, c1 and c2.

Furthermore, the 3 bit equivalent subkey bit
∑

i∈I0
u(12)[i+64],

∑
i∈I1

u(12)[i−32],
∑

i∈I2
u(12)[i−32] can be merged into the corresponding subkey bits

u(11)[0], u(11)[32], u(11)[64] and consider together. Consequently, only 58 (equiv-
alent) key bits are required to calculate

∑
p∈P

x(11)[0], including 55 bits in u(12)

and 3 bits in u(11).

Partial Sum. An additional technique to reduce the complexity of the attack
is the partial sum technique described in [11]. It observes that the small S-boxes
are applied separately and the output of the MixRows is a linear combination
of several input bits. Then, the relevant subkey bits are divided into relatively
independent parts and guessed one after another. When a part of the subkey is
guessed, the corresponding ciphertext can be compressed with the information
and stored in a counter for further calculation. Meanwhile, the complexity can
also be influenced by the order of guessing. So the trade-off between the increase
of the guessed subkey bits and the decrease in the size of the counters deserves
consideration. We first consider columns in z̄(12) which correspond to only 2
equivalent subkey bits and then the columns related to 3-bit equivalent subkey.

Key Recovery Procedure. We give the process of the 13-round attack with
the observations described before in this section. The attack consists of three
phases.
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Fig. 3. Key-recovery of 13-round Pyjamask-96

1. Preparing for the counters:
1.1 Choose a set of 295 plaintexts P of the form (C1A31,A32,A32), 0 ≤ i < 295.
1.2 Allocate a counter T 0 of size 266 containing 1-bit values and initialized by

0. For each Pi ∈ P, call 13-round Pyjamask-96 (without the last MixRows)
to encrypt Pi and obtain the corresponding ciphertext z̄(12). Take the
cascaded value of the 66-bit value z̄(12)[0− 1], z̄(12)[6− 10], z̄(12)[12− 24],
z̄(12)[29 − 30], z̄(12)[32 − 33], z̄(12)[38 − 42], z̄(12)[44 − 56], z̄(12)[61 − 62],
z̄(12)[64 − 65], z̄(12)[70 − 74], z̄(12)[76 − 88], z̄(12)[93 − 94] as an index
(denoted by i0) and update T 0 by T 0[i0] = T 0[i0] + 1 (mod 2).
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1.3 Allocate another counter T 1 of size 258 containing 1-bit values and ini-
tialized by 0. For each T 0, calculate the 58-bit index i1 of T 1.
(a) The first 55-bit index of T 1 can be calculated by taking out the

11-bit value z̄(12)[10], z̄(12)[20], z̄(12)[24], z̄(12)[32], z̄(12)[39], z̄(12)[44],
z̄(12)[55], z̄(12)[65], z̄(12)[73], z̄(12)[86], z̄(12)[94] and cascading the rest
bits in order.

(b) The last 3 bits are derived according to
∑

i∈I0
z̄(12)[i + 64],

∑
i∈I1

z̄(12)[i − 32] and
∑

i∈I2
z̄(12)[i − 32].

(c) Update T 1 by T 1[i1] = T 1[i1] + 1 (mod 2).
2. Guessing subkeys in u(12): Based on the 58-bit counter T 1 derived, we now

guess the 55-bit equivalent subkey in u(12).
2.1 The relevant subkey bits of the column 0, 1, 7, 9, 10, 12, 20, 22, 23,

24, 30 in z̄(12) are guessed separately first. For each 2-bit guess, decrypt
through S3 and calculate the contribution to the corresponding z̄(11)[i],
i = 0, 32, 64. We treat the cost of the operation at once as 2 times 3-bit
S-box computations. In total, 22 subkey bits are guessed in this step and
the complexity is around 260 × 11 × 2 3-bit S-box computations.

2.2 The relevant subkey bits of the remaining 11 columns in z̄(12) are guessed
separately. For each 3-bit guess, decrypt through S3 and calculate the
contribution to the corresponding z̄(11)[i], i = 0, 32, 64. 33 subkey bits are
guessed in this step and the complexity of this step is around 261 ×11×2
3-bit S-box computations.

3. Guessing subkeys in u(11): The 3 bits equivalent key in u(11) are guessed in
this step. For each guess, decrypt z̄(11)[0], z̄(11)[32], z̄(11)[64] through the 3-bit
S-box. Keep the subkey where (x(11)[0], x(11)[64]) = (0, 0). The complexity of
this step is around 255+3+3 × 2 3-bit S-box computations.

4. Exhaustive search the rest of the key: The key space is reduced by a
factor of 2−2 for the 58-bit guess. By altering the position of the balanced
bit and repeating the above steps, the key space can be further reduced.
We choose 18 balanced columns and find the remaining subkey bits by an
exhaustive search of 292 possible combinations.

Complexity of the attack. In Phase 1.1 and 1.2, the complexity is calculated
as 295 13-round Pyjamask-96 calls and 295 times MixRows operations. The cost
of Phase 1.3, Phase 2 and Phase 3 is calculated as

(260 × 11 × 2 + 261 × 11 × 2 + 255+3+3 × 2)/32 ≈ 261

times SubBytes operations and 266 × 3/96 = 261 times MixRows operations.
For Phase 4, the same operations repeat for 18 times. The complexity is given
as 18 × 261 + 292 13-round Pyjamask-96 calls. If we regard both SubBytes and
MixRows as half a round of Pyjamask-96, the time complexity is calculated as

295 + 295/2/13 + 18 × 261/13 + 292 ≈ 295.2

times 13-round Pyjamask-96 calls. The data complexity is 295 plaintexts. As the
counters T 0 for the 18 positions can be prepared together in Phase 1, the memory
complexity is 266 × 18 ≈ 270 bits, which is around 267 bytes.
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4.2 Attack on Full-Round Pyjamask-96

In this section, we extend one more round to get the full-round attack on
Pyjamask-96. The order of MixRows and AddRoundKey has been changed, so the
ciphertext is actually z̄(13). Before going any further, we would like to briefly dis-
cuss the Fast Fourier Transform (FFT) key recovery technique. Following by the
approach in [25], the key recovery process of 13-round attack can be expressed as∑N

i=1 F2,K′(c′
i⊕K ′

r) = 0, where K ′
r and K ′ denotes the 66-bit u(12) and the 3-bit

u(11), respectively. The time complexity is O(23 ×66×266) for one balanced bit.
So we believe that the FFT technique can achieve similar performance to our
13-round attack on Pyjamask-96 and the description can be simplified. However,
for the full-round attack, this technique fails since we could not truncate K ′

r

from the 96-bit u(13).
As is seen in the attack on the 13-round case, the critical point of reducing

the complexity is to reduce the subkey bits we need to guess and the relevant
state bits. However, due to the strong diffusion from the additional round, we
need 165 subkey bits to express one balanced bit of x(11), which exceeds the
size of master key. To express one balanced bit of x(11), we need 3 bits in z̄(11).
Since for one bit in z̄(11) we still need 96 bits in u(13) and at least 33 bits in
u(12), we try to split one bit of z̄(11) into small expressions. Here we take x(11)[0]
as an example. To express x(11)[0], we need z̄(11)[0], z̄(11)[32], z̄(11)[64], which
can be rewritten as

∑
i∈I0

x(12)[i],
∑

i∈I1
x(12)[i],

∑
i∈I2

x(12)[i] respectively. We
then split each Ij , 0 ≤ j ≤ 2 into two disjoint sets Ij,0 and Ij,1 and make clear
the subkey we need to guess for each set. Without loss of generality, we take∑

i∈I1,0
x(12)[i] as an example, where I1,0 = {38, 40, 42, 45, 46, 47, 48}.

According to Eq. (3) and Eq. (4), we can express
∑

i∈I1,j
x(12)[i] by u(12) and

z̄(12), and reduce the relevant subkey bits and data bits. In total, we need 2×|I1,0|
data bits in z̄(12) and one equivalent data bit

∑
i∈I1,0

z̄(12)[i − 32]. The relevant
key bits are 2 × |I1,0| bits in u(12) (the equivalent key bit

∑
i∈I1,0

u(12)[i − 32]
can be merged into the relevant subkey bit in u(11) and guessed together).

Next, we show how to take the relationship between the round keys to
further reduce the 2 × |I1,0| bits in u(12) to |I1,0| bits. In the key schedule,
each 128 bit output of the ith round function is composed of the 96-bit round
key k(i) = (k(i)[0], k(i)[1], . . . , k(i)[95]) and an additional 32-bit value k̄(i) =
(k̄(i)[96], k̄(i)[97], . . . , k̄(i)[127]). In the key recovery phase, we are interested in
the relationship between the 128-bit output (k(12), k̄(12)) and (k(13), k̄(13)), So we
introduce a new 128-bit transform MixRows consisting of 4 matrices M0,M1,M2

and E , where M0,M1,M2 are the three matrices used in MixRows and E is a
32 × 32 identity matrix. Moreover, it is easy to check that MixRows

−1 consists
of M0

−1,M1
−1,M2

−1 and E.
According to the key schedule, let g : F

128
2 → F

128
2 be a linear transform and

k(12)[i] = g(k(13), k̄(13))[i], 0 ≤ i < 96. The relationship between u(12) and u(13)

is as follows,



Integral Attacks on Pyjamask-96 and Round-Reduced Pyjamask-128 241

u(12)[i] = MixRows−1(k(12))[i]

= MixRows
−1 ◦ g(k(13), k̄(13))[i]

= MixRows
−1 ◦ g ◦ MixRows(u(13), k̄(13))[i]

= g(u(13), k̄(13))[i]

Therefore, u(12) is a linear function of u(13) and k̄(13). Considering the expression
of u(12)[32] and suppose v(i) and w(i) are the output of Mixcolumns (recall a 4×4
matrix M is used in Mixcolumns) and MixAndRotateRows of the ith round,
respectively, we have

u(12)[32] = M−1[1] · (v(13)[0], v(13)[32], v(13)[64], v(13)[96])

= v(13)[0] + v(13)[64] + v(13)[96]

=
∑
i∈Ik

w(13)[i] + w(13)[81] + w(13)[110]

=
∑
i∈Ik

u(13)[i] + u(13)[81] + k̄(13)[110] + 1

(5)

where Ik is a set of indices corresponding to the coefficient of M−1
k [0]. So u(12)[32]

relates to only one bit in k̄(13). For other bits in u(12), things is similar. More-
over, bits in every column of u(12) correspond to the same bit in k̄(13) e.g.,
u(12)[0], u(12)[32], u(12)[96] all relate to k̄(13)[110]. Once we guess the full u(13),
we can compute u(12) by the above Eq. (5) with the additional knowledge of one
corresponding bit in k̄(13). Since the partial value of u(12) related to u(13) (e.g.,
the underlined part of Eq. (5)) can be computed beforehand, for one bit in k̄(13)

guessed, we derive the value of three bits in u(12) with only 3 XORs.
We then give the process of the calculation for

∑
i∈I1,0

x(12)[i], I1,0 = {38, 40,

42, 45, 46, 47, 48}.

1. Preparing for the counters:
1.1 Choose a set of 295 plaintexts P with the form of (C1A31,A32,A32), 0 ≤

i < 295.
1.2 Allocate a counter T 0 of size 296 containing 1-bit values and initialized by

0. For each Pi ∈ P, call 14-round Pyjamask-96 (without the last MixRows)
to encrypt Pi and obtain the corresponding ciphertext z̄(13) as an index
(denoted by i0). Update T 0 by T 0[i0] = T 0[i0] + 1 (mod 2).

2. Guessing then 96 bits in u(13):
2.1 Partially decrypt through the 15-bit subkey bits u(13)[0 − 4], u(13)[32 −

36], u(13)[64 − 68]. For each 3-bit guess, partially decrypt the ciphertext
through S3. We treat the cost of each above operation as 2 times 3-bit
S-box computations, then the complexity is around 2 × (23+96 + 26+96 +
29+96 + 212+96 + 215+96) ≈ 2112.2 times 3-bits S-box computation.
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2.2 After all 15-bit subkey bits have been guessed, calculate the contribution
of the 15 bits in x(13) to the 15 bits in z̄(12). Keep the new 96-bit as the
index of the counter. We treat the cost of each above operation as 7/32
times MixRows operations, then the complexity is 296+15 × 7/32 ≈ 2108.9

times MixRows operations.
2.3 The remaining 81 bits in u(13) are guessed separately. For each 3-bit guess,

partially decrypt the ciphertext through S3 and calculate the contribution
to the 15 bits in z̄(12). We treat the cost of each above operation as 2 times
3-bit S-box computations and 7/(32×11) times MixRows operations. The
complexity of this step is bounded by 215+96+3 × 27 × 2 ≈ 2119.8 times
3-bit S-box computations and 215+96+3 × 27 × 7/(32 × 11) ≈ 2113.2 times
MixRows operations.

3. Guessing the 7 bits in k̄(13): Up to now, we have guessed the 96 bit in
u(13). For each 96-bit guess:
3.1 Calculate the 14 expression of u(12)[i] according to the 96 bits in u(13),

i ∈ I1,0. The complexity of this step is 296 times one round inverse key
schedule.

3.2 Guess 7 bits in k̄(13). For each 1-bit guess, derive the relevant 3-bit
u(12) and calculate the contribution to

∑
i∈I1,0

x(12)[i]. The complexity
is around 2 × (296+1+15 + 296+2+13 + 296+3+11 + 296+4+9 + 296+5+7 +
296+6+5 + 296+7+3) ≈ 2114 times 3-bit S-box computations.

After that, we derive the corresponding value of
∑

i∈I1,0
x(12)[i] for each 103-

bit subkey guess and store them in a table. The complexity is dominated by
(2112.2+2119.8+2114)/32 ≈ 2114.9 times SubBytes operations and 2108.9+2113.2 ≈
2113.3 times MixRows operations. Then the total complexity is bounded by 2110.6

times 14-round Pyjamask-96.
Then we calculate the table for the other 5 sets. The total complexity is

bounded by 2110.6 + 2108.6 × 3 + 2106.6 × 2 ≈ 2111.4 times 14-round Pyjamask-96.
After all 6 tables have been established, we then go through the relevant

118-bit (u(13), k̄(13)). For each 118-bit key guess, we search for the corresponding
z̄11[0], z̄11[32], z̄11[64]. Then we guess the corresponding 3-bit subkey in u(11)

and keep the subkey where x(11)[0], x(11)[32], x(11)[64] satisfying the tail of 11-
round distinguisher (calculated by 295 11-round encryption). We treat the cost
for searching table as one time 14-round Pyjamask-96 encryption. The time com-
plexity for this step is 2118 × 6 + 2118+3 × 2/(32 × 2 × 14) ≈ 2120.6 Pyjamask-96
calls. So the total complexity is

295 + 295/(2 × 14) + 295 × 11/14 + 2110.6 + 2120.6 ≈ 2120.7

times 14-round Pyjamask-96. The key space is reduced by 1/23 each time. We
choose 3 balanced columns and find the remaining key by 2119 exhaustive search.
The time complexity is 2120.7 × 3 + 2120 ≈ 2122.6 times 14-round Pyjamask-96.
The memory complexity is around (2103 +3× 2102 +2× 2101)/23 = 2101.6 bytes.
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5 Integral Attacks on Round-Reduced Pyjamask-128

In this section we present the attack on Pyjamask-128 with the distinguishers
shown in Sect. 3. The attack results are summarized in Table 1.

The 11-round attack on Pyjamask-128 is by appending two rounds
after the 9-round distinguisher. For a set of 2127 plaintexts of the form
(A32, C1A31,A32,A32), the intermediate state after 9 rounds has the form of
(B32,U32,B32,U32). The order of MixRows and AddRoundKey has been exchanged
like 13-round attack of Pyjamask-96. So the ciphertext is actually z̄(10).

To express one bit in x(9), for example x(9)[0], we need 4 bits in z̄(9) and 4 bits
in u(9). Using the same method as Eq. (3), we can compress the relevant data
bits by the equivalent data bits c1 =

∑
i∈I1

z̄(10)[i− 32] and c2 =
∑

i∈I2
z̄(10)[i−

32]+ z̄(10)[i+32]. By removing the reusable bits and redundant bits, we need 99
bits in z̄(10) and 2 equivalent data bits. The equivalent key is utilized similarly,
and the involved key bits are 99 bits in u(10) and 4 equivalent bits in u(9). Then
we guess the subkey bits partially and compress the ciphertext.

For each 101-bit equivalent z̄(10), we guess the 99-bit u(10) partially. Each
time, we decrypt the ciphertext through the 4-bit S-box and calculate the con-
tribution to z̄(9)[0], z̄(9)[32], z̄(9)[64], z̄(9)[96]. If we treat the cost of each above
operation as 2 times 4-bit S-box computation, the complexity of this phase is
(2107 ×21+2106 ×3+2105 ×2+2103)×2/32 ≈ 2107.6 times SubBytes operation.

Then we guess the 4 bits in u(9) and compare them with the tail of the
distinguisher. The complexity for this phase is 299+4+4 × 2/32 = 2103 times
SubBytes. The key space is reduced by 1/22 each time. We choose 3 balanced
columns and find the remaining key bits by an exhaustive search of 2122 possible
combinations. The time complexity is dominated by the 2127 times encryption
and the memory complexity is dominated by 2108 × 3/23 ≈ 2106.5 bytes.

For Pyjamask-128 of round r (r = 7, 8, 9), we append 2 rounds after the (r−2)-
round distinguisher. The process is similar. The time complexity is dominated by
the encryption of plaintext for 10- and 9-round attacks, which are 2122 times 10-
round Pyjamask-128 and 2112 times 9-round Pyjamask-128. For 8-round attack,
each time when the key space is reduced by 1/22, we need around 2107.6/(2×8) =
2103.6 times 8-round Pyjamask-128. We repeat the process for 12 times and the
total complexity is 12 × 2103.6 + 2106 ≈ 2107.8 times 8-round Pyjamask-128.

For Pyjamask-128 of round r, r = 5, 6, 7, we append 1 round after the (r−1)-
round distinguisher. Then we partially guess 4-bit subkey, decrypt the cipher-
texts through S4 and compare with the tail of the distinguisher. For 7-round
Pyjamask-128, the time complexity is 290+4 × 2/(32 × 2 × 7) ≈ 286.2 times
7-round Pyjamask-128 for each 4-bit guess. We choose 20 balanced columns
and the total complexity is 290 + 290/(2 × 7) + 20 × 286.2 + 288 ≈ 291.5

times 7-round Pyjamask-128. For 6-round Pyjamask-128, the time complexity
is composed by 252 times 6-round Pyjamask-128, 252 times MixRows−1 and
20 × 252+4 × 2/(32 × 2 × 6) + 2128−4×20 ≈ 252.8 times 6-round Pyjamask-128,
which is bounded by 254 times 6-round Pyjamask-128. For 5-round Pyjamask-
128, the time complexity is composed by 220 times 5-round Pyjamask-128, 220
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times MixRows−1 and 32×220+4×2/(32×2×5) ≈ 221.7 times 5-round Pyjamask-
128, which is bounded by 223 times 5-round Pyjamask-128.

6 Conclusion

This paper studies the security strength of the block ciphers Pyjamask-96 and
Pyjamask-128 against the integral attacks. With a new MILP model for the
division property considering the encryption function and the round keys simul-
taneously, we detect efficient integral distinguishers for both Pyjamask-96 and
Pyjamask-128. For Pyjamask-96, we utilize the 11-round integral distinguisher,
combined with a novel property of the key schedule, to mount a key recovery
attack for full Pyjamask-96 without the full codebook for the first time. The
results for fewer rounds, e.g., 13-round Pyjamask-96 are also improved. What’s
more, we give the first third-party cryptanalysis on the Pyjamask-128, which
sheds more light on its security margin. The integral attacks on both versions of
Pyjamask are significant to understand the low degree property of block ciphers.
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Abstract. SKINNY-AEAD is one of the second-round candidates of
the Lightweight Cryptography Standardization project held by NIST.
SKINNY-AEAD M1 is the primary member of six SKINNY-AEAD schemes,
while SKINNY-AEAD M3 is another member with a small tag. In the
design document, only security analyses of their underlying primitive
SKINNY-128-384 are provided. Besides, there are no valid third-party
analyses on SKINNY-AEAD M1/M3 according to our knowledge. Therefore,
this paper focuses on constructing the first third-party security analyses
on them under a nonce-respecting scenario. By taking the encryption
mode of SKINNY-AEAD into consideration and exploiting several proper-
ties of SKINNY, we can deduce some necessary constraints on the input
and tweakey differences of related-tweakey impossible differential distin-
guishers. Under these constraints, we can find distinguishers suitable for
mounting powerful tweakey recovery attacks. With the help of the auto-
matic searching algorithms based on STP, we find some 14-round dis-
tinguishers. Based on one of these distinguishers, we mount a 20-round
and an 18-round tweakey recovery attack on SKINNY-AEAD M1/M3. To
the best of our knowledge, all these attacks are the best ones so far.

Keywords: Related-tweakey · Impossible differential cryptanalysis ·
SKINNY-AEAD M1/M3 · Tweakey recovery · SKINNY-128-384

1 Introduction

SKINNY-AEAD schemes are proposed by Beierle et al. [5] and accepted as one
of the second-round candidates of the NIST Lightweight Cryptography (LWC)
Standardization project1. There are six schemes for SKINNY-AEAD and SKINNY-
AEAD M1 is the primary member. SKINNY-AEAD M3 is the same as M1 except

1 https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates.
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that M3 has smaller length of tag than M1. These two authenticated encryption
schemes M1/M3 use a mode following the ΘCB3 framework [13] and adopts
SKINNY-128-384 [4] as their internal tweakable block cipher. For M1/M3, only
security analyses of their underlying primitive SKINNY-128-384 are introduced in
the design document [5]. As for M1/M3 themselves, no cryptanalytic results are
presented there.

SKINNY-128-384 belongs to the well-known SKINNY family designed by Beierle
et al. [4]. It adopts 128-bit plaintexts and 384-bit tweakeys. Since its proposal,
many cryptanalytic results have been proposed [9,15,20–22]. Among all of them,
the best attack so far was provided by [9], where a 30-round related-tweakey rect-
angle attack was mounted with time complexity 2361.38. As for impossible differ-
ential attacks, Liu et al. gave a 27-round attack in related-tweakey setting [15]
with time complexity 2378, while a 22-round attack in single-tweakey setting was
proposed by Tolba et al. in [21] with time complexity 2373.48. Besides, there is
a 22-round Demirci-Selçuk meet-in-the-middle attack provided in [20] with time
complexity 2382.46.

From above security analyses of SKINNY-128-384, we can see that there are
no constraints on the value or difference of the tweakey. However, when it comes
to SKINNY-AEAD, some constraints should be considered in the attack proce-
dure because of the encryption mode, the nonce-respecting scenario and com-
plex tweakey initialization. In [5], the designers depict that SKINNY-AEAD M1/M3
apply a 384-bit tweakey but a 128-bit key, and claim full 128-bit security for key
recovery in the nonce-respecting scenario. Thus, only attacks on SKINNY-128-
384 with time complexity less than 2128 is valid for SKINNY-AEAD M1/M3. Due
to this constraints on time complexity, above attacks [9,15,20–22] cannot be
directly applied to SKINNY-AEAD M1/M3. Zhao et al. [22] gave a related-tweakey
rectangle attack on SKINNY-AEAD M1. However, the second-round status update
document of SKINNY-AEAD [1] pointed that the attack of [22] on SKINNY-AEAD M1
is invalid. To the best of our knowledge, there is no valid third-party analysis
of SKINNY-AEAD M1/M3 up to now. This motivates us to evaluate their security
considering these restrictions.

In this paper, we mount tweakey recovery attacks by searching for the
related-tweakey impossible differential distinguishers. As one of the most pop-
ular cryptanalytic methods, the impossible differential attack was proposed
in [7]. Biham [6] firstly proposed the related-key attack, where only the rela-
tions between pairs of related keys are chosen by the attacker, who does not
know the keys themselves. Jakimoski et al. [10] proposed the related-key impos-
sible differential attack firstly combining the two aforementioned attacks. In
recent years, the related-key/tweakey impossible differential attacks [2,15,19]
gave some better cryptanalysis results in block ciphers.

Our Contributions. The main contribution of our work is providing the third-
party cryptanalytic results on SKINNY-AEAD M1/M3 by utilizing related-tweakey
impossible differentials. All these distinguishers are found with the automatic
solver STP after setting several constraints on the input and tweakey differences.
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1) Automatically Searching for Distinguishers of SKINNY-AEAD M1/M3.
Unlike finding distinguishers of SKINNY-128-384 itself, distinguishers exploited
here should fulfill several conditions due to the encryption mode of SKINNY-
AEAD M1/M3, as well as the complex tweakey initialization. By combining
these restrictions with several properties of SKINNY cipher, we can deduce
some constraints on the input and tweakey differences of the target related-
tweakey impossible differential distinguishers. Based on the method of search-
ing for related-tweakey impossible differentials [15,19], we find some 14-round
distinguishers with only one active input and output state differences with
the help of STP.

2) Tweakey Recovery Attacks for SKINNY-AEAD M1/M3. Based on one 14-
round distinguisher, we mount a 20-round and an 18-round tweakey recovery
attack under nonce-respecting scenario. All the attacks are applicable to M1
and M3. Our attack results along with [22] are illustrated in Table 1. To
our knowledge, they are the best tweakey recovery attacks on SKINNY-AEAD
M1/M3 so far.

Table 1. Summary of attack results on SKINNY-AEAD M1/M3

Attack Cipher Rounds Data Time Memory Ref.

RTID M1/M3 20 2121.6 CP 2127.1 2124.8 bits Sect. 4

18 2121.6 CP 2125.9 252.8 bits Sect. 5

RTR+ M1 24 2123.0 CP 2123.0 2121.0 [22]

Note: RTID: Related-Tweakey Impossible Differential. CP:
Chosen PlaintextS.
RTR: Related-Tweakey Rectangle. +: This attack is invalid, as
pointed out in [1].

Outline. In Sect. 2, we give the brief description of SKINNY-AEAD M1/M3,
SKINNY-128-384 and properties of SKINNY, and then introduce some notations
used in the paper. Section 3 gives the 14-round related-tweakey impossible dif-
ferential distinguishers that are found by an automatic search algorithm with
STP. Based on one of these 14-round distinguishers, Sect. 4 and 5 discuss a
20-round and an 18-round tweakey recovery attack, respectively. In Sect. 6, we
summarize and conclude our work.

2 Preliminaries

2.1 Description of SKINNY-AEAD M1/M3

In this section, we briefly give some specifications for SKINNY-AEAD M1/M3. The
input parameters of SKINNY-AEAD M1/M3 might contain an associated data A, a
message M and a nonce N . In our attack scenario, A is set to be empty, and then
the message block is handled directly, which can reduce the time complexity of
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the tweakey recovery attack. The output parameters of M1/M3 are a ciphertext
with the same length as the plaintext and a tag. The tag length of M1 and M3
are 128 and 64 bits, respectively. Figure 1 illustrates the message encryption part
of SKINNY-AEAD M1/M3 without padding.

M0

E
l0||d0
N,K

C0

M1

E
l1||d0
N,K

C1

M2

E
lm−1||d0
N,K

C2

· · ·

Fig. 1. The message encryption part of SKINNY-AEAD M1/M3 with SKINNY-128-384 with-
out padding. E refers to SKINNY-128-384. For simplicity, we denote the block counter
by l0, . . . , lm−1 but actually refer to the state of the LFSRs serving as a block counter.

Messages are encrypted with SKINNY-128-384 under the 384-bit tweakey i.e.,
rev64(LSFR)||056||d0||N ||K. The 384-bit tweakey states can be seen as a group
of three 128-bit data that are denoted as TK1, TK2, and TK3, where TK1 ←
rev64(LSFR)||056||d0, TK2 ← N , and TK3 ← K. In SKINNY-AEAD M1/M3, TK1,
TK2 and TK3 store information corresponding to block counter li, nonce N and
a 128-bit key, respectively. rev64(LSFR) stores 8-byte values from a 64-bit LFSR.
d0 is a domain separation value and denotes encryption of a full message block
without padding, where d0 = 0x00 for M1, d0 = 0x08 for M3. rev64(LSFR) can
be updated in a series of blocks in the following way.

The 64-bit state of the LFSR can be expressed as: x63||x62|| . . . ||x1||x0 and
initialized to LFSR0 = 063||1. The LFSR is updated by the function upd64 (i.e.,
LFSRt+1 = upd64(LFSRt)), where upd64 is defined as

upd64 : x63||x62|| . . . ||x1||x0 → y63||y62|| . . . ||y1||y0

with

yi ← xi−1 for i ∈ {63, 62, . . . , 1}\{4, 3, 1},

y4 ← x3 ⊕ x63, y3 ← x2 ⊕ x63,

y1 ← x0 ⊕ x63, y0 ← x63.

Before loaded into the tweakey state, the order of the bytes of the LFSR state
should be first reversed by rev64 function, where rev64 is defined as

rev64 : S7||S6||S5||S4||S3||S2||S1||S0 �→ S0||S1||S2||S3||S4||S5||S6||S7,

where Si is an 8-bit value, 0 ≤ i ≤ 7.
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2.2 Specification of the Underlying Primitive of SKINNY-AEAD M1/M3

In the SKINNY-AEAD M1/M3, 56-round SKINNY-128-384 is adopted as their under-
lying tweakable block cipher. The SKINNY family ciphers follow the TWEAKEY
framework from [11] and therefore take a tweakey input. Here, we provide a brief
specification of SKINNY-128-384 that is relevant to our related-tweakey impossible
differential attacks. For more details about SKINNY, please refer to [4].

Initialization. SKINNY-128-384 has 128-bit internal states and 384-bit tweakey.
128-bit internal states are represented as 4×4 array of cells with each cell being a
byte. The tweakey states can be seen as a group of three 4×4 arrays (i.e., TK1,
TK2 and TK3). Note that the internal states and tweakey states are loaded
row-wise as shown in Fig. 2.

Fig. 2. Cell number of the states in the 4 × 4 array

Round Function. One encryption round of SKINNY-128-384 contains five
operations in the following order: SubCells, AddConstants, AddRoundTweakey,
ShiftRows and MixColumns, as shown in Fig. 3 (a).

Fig. 3. Round function and tweakey schedule of SKINNY-128-384

1) SubCells (SC). An 8-bit S-box is applied to each cell of the internal states.
It is a non-linear operation in the round function.
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2) AddConstants (AC). Three round constants (i.e., c0, c1 and c2) are XORed
to the first three cells of the first column of an internal state. c0 and c1 are
generated by a 6-bit affine LFSR, and c2 = 0x02.

3) AddRoundTweakey (ART ). Only the first two rows of round tweakey are
XORed with the first two rows of the corresponding internal state. The round
tweakey (tki) in the i-th round is defined as tki = TK1i ⊕ TK2i ⊕ TK3i.
The tweakey arrays are updated by permutation and LFSR operations in the
tweakey schedule algorithm as shown in Fig. 3 (b). In the permutation phase,
a permutation PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] on cell posi-
tions is applied to TK1, TK2 and TK3, respectively. In the LFSR update
phase, each cell of the first two rows of TK2 and TK3 are individually
updated using an 8-bit LFSR, while there is no LFSR updating on TK1.
The LFSRs are given in Table 2.

Table 2. The LFSRs used in SKINNY-128-384 to generate round tweakeys

TK LFSR

TK2 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

TK3 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Note: x7 (resp. x0) is the MSB (resp. LSB) bit of the cell.

4) ShiftRow (SR). The second, third and fourth rows are rotated by 1, 2 and
3 cell positions to the right, respectively.

5) MixColumns (MC). Every column of the internal state is multiplied by a
binary matrix M below. The inverse MixColumns M−1 can be deduced and
given as follows.

M =

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠ M−1 =

⎛
⎜⎜⎝

0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

⎞
⎟⎟⎠

2.3 Properties of SKINNY

Liu et al. [15] proposed some properties of SKINNY block cipher. For the sake of
completeness, we give several properties related to our attacks below.

1) The order of ART , SR and MC operations in any round can be changed by
first using SR and MC, and then xoring the internal state with an equivalent
round tweakey. The equivalent tweakey denoted as tkeq can be computed by
tkeq = MC(SR(tk)) as given in Fig. 4.

2) Tweakey schedule of SKINNY is linear. Thus, if the differential value injected
in the master tweakey is known, we can determine the exact differences in all
the other subtweakeys.
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tkeq

0 1 2 3

0 1 2 3

7 4 5 6

0 1 2 3

SR MC

tk

0 1 2 3

4 5 6 7

Fig. 4. Obtain tkeq by changing the order of ART , SR and MC

3) Subtweakey difference cancellation. In our attack scenario, a single cell of TK1
and TK2 is active and the active cell position is in the first and second rows.
There is no difference for TK3. Hence, we take TK2 as an example. As noticed
in [4], for a given active tweakey cell, there is only one subtweakey difference
cancellation every 30 rounds for TK2. Let α1 and α2 be nonzero differences
of the active cells for TK1 and TK2, respectively. In the first round, the
subtweakey difference is α1 ⊕α2 for the active cell. For the (2i+1)-th round,
the subtweakey difference is α1 ⊕ LFSRi

2(α2) by ignoring the permutation
PT , where LFSR2 has a cycle of 15. Thus one subtweakey cancellation (i.e.,
α1 ⊕ LFSR2

i(α2) = 0) can occur every 30 rounds. In SKINNY-128-384, only
the first two rows of the round tweakey tki are XORed with the internal state
in i-th round. Moreover, according to the permutation PT , the subtweakey
cells involved in the i-th round will next appear in (i+2)-th round. Therefore,
we can deduce that there are three rounds of fully inactive internal states for
TK2.

2.4 Notations

We give the following notations (see Table 3) which are used in this paper. Some
of them follow [8,15].

3 Related-Tweakey Impossible Differential Distinguisher

Due to the encryption mode, nonce-respecting scenario and complex tweakey ini-
tialization, the attacks on SKINNY-AEAD M1/M3 should fulfill some constraints. In
this section, based on these constraints and several properties of SKINNY cipher,
we search for the related-tweakey impossible differential distinguishers. Here,
we first give the descriptions of constraints for distinguishers in SKINNY-AEAD
M1/M3.

3.1 Constraints of Searching for Distinguishers in SKINNY-AEAD
M1/M3

To facilitate the description, we use ΔT K1
1, ΔT K2

1 and ΔT K3
1 to denote tweakey

differences of the distinguisher corresponding to TK1, TK2 and TK3 in the



254 Y. Fan et al.

Table 3. Notations related to our attacks

ΔX (resp. ΔY ) Input (resp. output) differences of the impossible differential

Δin (resp. Δout ) Set of all impossible input (resp. output) differences

rΔ The number of rounds of the impossible differential

rin (resp. rout) The number of rounds of the differential ΔX → Δin (resp.
ΔY → Δout)

cin (resp. cout) The number of bit-conditions that have to be verified from
Δin to ΔX (resp. from Δout to ΔY)

Kin (resp. Kout) The subset of subtweakey bits involved in the first rin rounds
(resp. the last rout rounds)

Xi (resp. Yi) The state before SC (resp. AC, ART ) in the i-th round

Zi (resp. Wi) The state before SR (resp. MC) in the i-th round

tki The round tweakey of i-th round

col(k) The k-th column, where 1 ≤ k ≤ 4

ΔX/Y/Z/W , The difference of the state X/Y/Z/W

ΔXi[n] The n-th cell difference value of state X in i-th round, where
0 ≤ n ≤ 15

ΔXi[k, . . . , l] The k-th, . . ., l-th cell difference value of state X in i-th
round, where 0 ≤ k, l ≤ 15

first round, respectively. ΔSC1 represents the internal state difference after SC
in the first round of the distinguisher. Usually, to achieve powerful impossible
differential tweakey recovery attacks, the number of active cells of input/output
differences in the distinguisher is constrained to be as small as possible. Besides,
to obtain longer distinguishers for SKINNY-128-384, two strategies are often used,
as shown in [15,19]: (1) using the subtweakey difference (ΔT K1

1 ⊕ ΔT K2
1 ⊕

ΔT K3
1) to cancel ΔSC1; and (2) applying the subtweakey difference cancellation

property (i.e., LFSR(ΔT K2
1[p]) = ΔT K1

1[p]), which ensure that there is no active
tweakey cell for 3 consecutive rounds (i.e., second, third and fourth round of the
distinguisher).

Recall the composition of tweakey used in SKINNY-AEAD M1/M3 in Sect. 2.1.
The highest 64 bits of T K1

1 serve as a block counter li. To reduce the time
complexity of tweakey recovery attacks, we set |A| = 02 and ΔT K1

1[p] = 0x033,
where p (0 ≤ p ≤ 7) is the position of the active cell. T K3

1 stores the 128-bit
key. To make our attack more practical, we set ΔT K3

1 = 0, and then we can
mount our attacks after obtaining only one encryption oracle. T K2

1 stores nonce

2 |A| denotes the bit length of associated data A. When |A| = 0, there is no encryption
of associated data in the tweakey recovery attack.

3 Taking a 20-round tweakey recovery attack as an example, we explain why
ΔT K1

1[p] = 0x03. In the tweakey recovery attacks, if ΔT K1
1[p] = 0x03, we will

utilize plaintext-ciphertext pairs in the i-th and (i + 1)-th block of encryptions in
SKINNY-AEAD M1/M3, where i = 8 · ((P −1

T ) ◦ (P −1
T (p))) + 1, which needs less time

complexity than other values once p is fixed.
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N . Since we mount attacks under a nonce-respecting scenario and ΔT K3
1 = 0,

ΔT K2
1 �= 0.

Combining all the above constraints on the tweakey differences, we can get
ΔT K2

1[p] = 0x81, ΔSC1[p] = 0x82 under ΔT K1
1[p] = 0x03, where the p-th

cell is the only active one in the corresponding difference of the first round of
distinguishers.

3.2 Searching for Related-Tweakey Impossible Differential
Distinguisher with STP

In recent years, some works [12,14,16,18] use the Boolean Satisfiability Prob-
lem (SAT) [17]/Satisfiability Modulo Theories (SMT) problem [3] solver STP4

(Simple Theorem Prover) to search for distinguishers of some ciphers. The appli-
cation of STP for cryptanalysis is a decision problem to confirm whether there is
a solution to a set of equations. To search for related-tweakey impossible differ-
ential distinguishers, we should use some equations to describe the differential
propagation properties of basic operations in the round function and tweakey
schedule. To make it clear, we present all relevant equations for basic operations
as follows.

Equations for Basic Operations. In the round function and tweakey schedule
of SKINNY-128-384, basic operations consist of XOR, three-branch, Substitution
and confusion layer. We give the following properties describing the differential
propagation equations.

Property 1 (XOR [14]). Let Δin1 and Δin2 represent two input differences
and Δout denote the output difference for the XOR operation. Then the corre-
sponding equation can be expressed as Δout = Δin1 ⊕ Δin2.

Property 2 (Three-Branch [14]). Let Δin denote the input difference of this
operation, two output differences are represented as Δout1 and Δout2. Then the
relation between them is Δout1 = Δout2 = Δin.

Property 3 (Substitution). Let S be an S-box used in the round function of
SKINNY cipher. Define Xin as the input value of S. Let Δin and Δout represent
input and output differences, respectively. Denote v as a flag variable indicating
the validity of difference propagation. Then their relations are

v =
{

0 (invalid), if S(Xin) ⊕ S(Xin ⊕ Δin) �= Δout,
1 (valid), if S(Xin) ⊕ S(Xin ⊕ Δin) = Δout,

where v = 1 represents that there is a value Xin that makes the difference
propagation Δin → Δout valid.

4 https://github.com/stp/stp.

https://github.com/stp/stp
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Property 4 (Confusion Layer). Denote M as the confusion matrix.
−−−→
ΔCin

and
−−−−→
ΔCout represent the column-wise input and output difference, respectively.

Then the equation is
−−−−→
ΔCout = M · −−−→

ΔCin.

In this section, we utilize a similar method used in [15,19] to search for
related-tweakey impossible differential distinguishers with STP. Firstly, accord-
ing to the round function and tweakey schedule, we use Property 1∼4 to con-
struct some equations to express the bit-level differential propagation properties
between input and output differences. In addition, we should construct some
equations representing the constraints on tweakey and state differences. Finally,
we can confirm whether an expected impossible differential distinguisher exists
through the result returned by the solver STP. If the solver STP returns Invalid
for the specific input and output active cell positions, it shows that this differ-
ential distinguisher is impossible.

Note that, only the active input difference values are fixed as mentioned
earlier (i.e., ΔT K1

1[p] = 0x03, ΔT K2
1[p] = 0x81 and ΔSC1[p] = 0x82), but to

determine the value of p, we have to traverse all the values of cell position p and
active cell positions of output differences as shown in Algorithm 1.

Algorithm 1: Seaching Related-Tweakey Impossible Distinguishers
Input: R: The number of rounds covered by the expected distinguisher.
Output: R-round related-tweakey impossible differential distinguisher or

“No solution”.
1 � pi: Active cell position of input differences of the distinguisher.
2 � po: Active cell position of output differences of the distinguisher.
3 for pi ← 0 to 7 do
4 for po ← 0 to 15 do
5 � (1) Construct equations to describe differential propagation.
6 for r ← 1 to R + 1 do
7 Use the Property 1∼4 to construct equations for the round function

and tweakey schedule of r-th round.

8 � (2) Construct equations to represent the distinguisher’s restrictive
conditions.

9 Construct equations to describe the difference values for the active cells
of the internal state after SC and tweakey in the first round (i.e.,
ΔSC1[pi] = 0x82, ΔT K1

1[pi] = 0x03 and ΔT K2
1[pi] = 0x81) and the

differential value of the active cell in the output difference of the
distinguisher (i.e., ΔSCR+1[po] �= 0x00).

10 Input all the equations (1) and (2) into STP solver and solve them.
11 if STP return “Invalid” then
12 Return the active cell position (pi, po) of the R-round relate-tweakey

impossible differential distinguisher.

13 Return “No solution”
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3.3 14-Round Related-Tweakey Impossible Differential
Distinguishers

Utilizing Algorithm 1, we find some 14-round distinguishers. Under the related-
tweakey model, our impossible differential distinguishers start with one active
cell in internal state after SC of the first round and end with one active
cell after SC of the 15-th round. Thus, they can be seen as complete 14-
round distinguishers for the underlying primitive SKINNY-128-384 in SKINNY-AEAD
M1/M3. In the tweakey recovery phase, we select the related-tweakey impossi-
ble differential distinguisher with (pi, po) = (2, 10)5, which can obtain a lower
attack complexity for both 20-round and 18-round attacks. This distinguisher
is illustrated in Fig. 5. The 14-round related-tweakey impossible differential is:
(00α0|0000|0000|0000) 14r

� (0000|0000|00∗0|0000), where α = 0x82 and ∗ denotes
any non-zero difference. An 8.5-round related-tweakey differential in the forward
direction (having probability 1) starting at Y1 (after SC in the first round) is
concatenated to a 5.5-round related-tweakey differential (having probability 1)
starting from Y15 (before the AC and ART in the 15-th round) in the backward
direction. The contradiction takes place at X10 in the 10-th round.

Fig. 5. 14-round related-tweakey impossible differential distinguisher for the underlying
primitive SKINNY-128-384 in SKINNY-AEAD M1/M3

5 pi and po denote the active cell positions corresponding to the input and out differ-
ences of the distinguisher, respectively.
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4 Tweakey Recovery Attack on 20-Round SKINNY-AEAD
M1/M3

In this section, we propose a 20-round related-tweakey impossible differential
attack on SKINNY-AEAD M1/M3. The whole attack contains two phases (i.e.,
distinguisher construction phase in Sect. 3 and tweakey recovery phase in this
section). In the distinguisher construction phase, we find some 14-round impossi-
ble differential distinguishers under some constraints for the underlying primitive
SKINNY-128-384. As a result, we select one distinguisher with (pi, po) = (2, 10) to
mount our tweakey recovery attack to achieve a lower attack complexity. In the
tweakey recovery phase, we construct a 20-round related tweakey recovery attack
to derive the right tweakey by filtering out the wrong candidates suggested by
the impossible differential distinguisher.

Figure 6 presents a 20-round tweakey recovery attack on SKINNY-AEAD M1/M3
based on the 14-round related-tweakey impossible differential distinguisher. We
extend the distinguisher 4 rounds on the top and 2 rounds at the bottom to
cover 6 rounds in the tweakey recovery phase. As discussed in Sect. 2.3, we can
obtain the equivalent plaintext P eq (resp. equivalent tweakey tkeq

1 ) by applying
P eq = MC ◦ SR ◦ AC ◦ SC(P ) (resp. tkeq

1 = MC ◦ SR(tk1)) in the first round.
We start our tweakey recovery attack at W1 since there is no tweakey involved
before W1. In the rest of section, we call the inputs at the position W1 as the
plaintext inputs P eq. The original plaintext P can be recovered by applying
SC−1 ◦ AC−1 ◦ SR−1 ◦ MC−1(P eq).

The 14-round distinguisher is placed between the 5-th round and the 19-th
round as shown in Fig. 6. In the first round, the subtweakey difference Δtk1[1]
(i.e., Δtkeq

1 [1, 5, 13]) is a nonzero fixed difference, the other cell-position differ-
ences are all zero. The values of fixed differences tk1[1], tk3[0], tk5[2] and tk19[0]
affect 20-round attack. These differential values are dependent on each other. If
the input tweakey differences of distinguisher are fixed, other subtweakey differ-
ences can be derived using the tweakey schedule. The involved active subtweakey
differences in the whole attack procedure are shown in Table 4.

Table 4. Active subtweakey difference values related to 20-round tweakey recovery

r ΔTK1r[p] ΔTK2r[p] ΔTK3r[p] Δtkr[p]

1 0x03 0xE0 0x00 Δtk1[1] = 0xE3

3 0xC0 Δtk3[0] = 0xC3

5 0x81 Δtk5[2] = 0x82

19 0xC3 Δtk19[0] = 0xC0

Note: Δtkr[p] = ΔTK1r[p] ⊕ ΔTK2r[p] ⊕ ΔTK3r[p]. r
and p denote the number of round and active cell position,
respectively.
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Fig. 6. 20-round tweakey recovery attack for SKINNY-AEAD M1/M3

In the 20-round attack, rΔ = 14, rin = 4, rout = 2, cin = 48, |Δin| =
56, cout = 56, |Δout| = 64 and |Kin ∪ Kout| = 13 × 8 + 2 × 8 = 120. The
attack procedure is briefly described in Algorithm 2. Detailed steps of 20-round
cryptanalysis are given as follows.

Data Collection. The adversary should construct 2N pairs of structures
S1 and S2 at W1, where each structure contains 2|Δin| = 256 equivalent
plaintexts. For each equivalent plaintext pair P eq ∈ S1 and P eq ∈ S2,
its difference is P eq ⊕ P eq=(0, α, ∗, 0, ∗, ∗, 0, ∗, ∗, 0, ∗, 0, 0, ∗, 0, 0), where α =
Δtk1[1] = 0xE3 and ∗ denotes any nonzero byte value. Using 2N · (2 · 2|Δin|) =
2N+|Δin|+1 equivalent plaintexts, we can generate 2N+2|Δin| plaintext pairs
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Algorithm 2: Tweakey Recovery Attack on 20-Round SKINNY-AEAD
M1/M3
1 � Data collection;

2 for 2N pairs of structures do

3 for 2|Δin| equivalent plaintext P eq
i in S1 do

4 P eq
i = P eq

i ⊕ (0, α, ∗, 0, ∗, ∗, 0, ∗, ∗, 0, ∗, 0, 0, ∗, 0, 0), where α = 0xE3;
5 Choose a nonce Ni that has never been used;

6 Ni = Ni ⊕ (0, γ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where γ = 0xE0;
7 Pi = SC−1 ◦ AC−1 ◦ SR−1 ◦ MC−1(P eq

i );

8 Pi = SC−1 ◦ AC−1 ◦ SR−1 ◦ MC−1(P eq
i );

9 for m from 0 to 7 by 1 do
10 C ← encrypt Pi under (lm, Ni, Key);

11 Ci ← encrypt Pi under (l8, Ni, Key);
12 W20i ← MC−1(Ci);

13 for 2|Δin| plaintext Pi in S2 do
14 for n from 0 to 8 by 1 do

15 C ← encrypt Pi under (ln, Ni, Key);

16 Ci ← encrypt Pi under (l9, N i, Key);

17 W20i ← MC−1(Ci);

18 for 22|Δin| pairs do

19 ΔW20 ← W20i ⊕ W20i ;
20 if ΔW20 = (∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗) then

21 Remain the pair of (Pi, Ni, Ci) and (Pi, Ni, Ci);

22 �Seive 2N+16 remaining pairs finally;

23 � Subkey recovery;

24 Call Algorithm 3 under 2N+16 pairs to discard the candidates of tk1[0, 1, 2, 3, 4,
5, 6, 7], tk2[0, 3, 4, 5, 7] and tk20[0, 4], and obtain 2ρ |Kin ∪ Kout|-bit remaining
subtweakey candidates tkrem;

25 � Brute force;
26 for 2ρ tkrem do
27 for 28 remaining master key MK[12] do
28 Compute the master key MK from tkrem and MK[12] using the

tweakey schedule;
29 Get a random new pair of (P, C) with a nonce value N and a number

related to the first block counter l0;
30 C′ ← encrypt P under (l0, N, MK);
31 if C′ = C then
32 Return the MK as the right tweakey.

(P, P ). In the 20-round tweakey recovery attack, we define the two related-
tweakey inputs as (TK1||TK2 ||TK3) and (TK1||TK2||TK3). Encrypt the
plaintexts P (resp. P ) under TK1||TK2 ||TK3 (resp. TK1||TK2||TK3) to
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obtain the corresponding ciphertexts C (resp. C). In the 20-round attack of
SKINNY-AEAD M1/M3, (TK1,TK2,TK3) (resp. (TK1, TK2, TK3)) is expressed
as (l8, N,Key) (resp. (l9, N,Key)), where l8 (resp. l9) represents the first
128-bit tweakey value in the 9-th (resp. 10-th) block message encryption,
N and N denote different nonce values, and Key means the 128-bit key.
Note that l8 ⊕ l9 = (0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and N ⊕ N =
(0, γ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where β = 0x03 and γ = 0xE0 (see the
case of r = 1 in Table 4).

After obtaining ciphertexts C and C, we can get W20 and W20 directly
respectively, as shown in line[12] and line[17] of Algorithm 2. For each cipher-
text pair, check whether the condition in line[20] is satisfied and remain it
if true. In total, 2N+2|Δin|−(128−|Δout|)−32 = 2N+16 plaintext-ciphertext pairs
are remained in the phase of data collection. Time complexity of this phase is
(2N · (2|Δin| · (2 · 1

20 + 9 + 1
2 · 1

20 + 10 + 1
2 · 1

20 ))) ≈ 2N+60.3 times of 20-round
encryptions, and the memory complexity is

Mcol = 2|Δin| · (2 · 128) + 2 · 2|Δin| · (3 · 128) + 2 · 2N+16 · (3 · 128)

= (2|Δin|−0.59 + 2|Δin|+1 + 2N+17) · (3 · 128) bits.

Tweakey Recovery. The tweakey recovery procedure of the 20-round attack is
briefly described in Algorithm 3. We will show the detailed attack procedure as
follows. In the attack process of SKINNY-AEAD M1/M3, the value of (l8, l9, N,N)
is known, in the following section, we focus on guessing the value of subtweakey
tki (i ∈ {1, 2, 20}) to deduce the master tweakey corresponding to Key6.

1) Line[1, 2, 3] in Algorithm 3. Guess tk20[4] and compute ΔX20[4] under 2N+16

remaining pairs. According to Fig. 6, get ΔX20[4] = SC−1(Z20[4] ⊕ tk20[4] ⊕
c120) ⊕ SC−1(Z20[4] ⊕ tk20[4] ⊕ c120), where c120 = 0x02 is the 20-th round
constant corresponding to c1. Checking if ΔX20[4] = Δtk19[0] = 0xC0 will
lead to an 8-bit filter and generally sieve 2N+16−8 = 2N+8 plaintext-ciphertext
pairs. The time complexity of this step is 28 · 2 · 2N+16 · 1

16 · 1
20 ≈ 2N+16.7

20-round encryptions.
2) Line[4, 5, 6] in Algorithm 3. Guess tk20[0] and compute ΔX20[0, 4, 8, 12]

under 2N+8 remaining pairs from the previous step. According to Fig. 6, com-
pute ΔX20[0] = SC−1(Z20[0] ⊕ tk20[0] ⊕ c020) ⊕ SC−1(Z20[0] ⊕ tk20[0] ⊕ c020),
ΔX20[4] = SC−1(Z20[4] ⊕ tk20[4] ⊕ c120) ⊕ SC−1(Z20[4] ⊕ tk20[4] ⊕ c120),
ΔX20[8] = SC−1(Z20[8] ⊕ c220) ⊕ SC−1(Z20[8] ⊕ c220) and ΔX20[12] = SC−1

(Z20[12]) ⊕SC−1(Z20[12]), where c020 = 0x0B, c120 = 0x02, and c220 = 0x02
are the 20-th round constants corresponding to c0, c1 and c2, respectively.
Based on the properties of MC operations on col(1) of W19, we have the
conditions ΔX20[0] = ΔX20[12] and ΔX20[4] ⊕ ΔX20[8] = ΔX20[12]. Check
whether the conditions are satisfied or not, which can act as a 16-bit filter to
choose 2N+8−16 = 2N−8 remaining pairs. In this step, the time complexity is
216 · 2 · 2N+8 · 4

16 · 1
20 ≈ 2N+18.7 20-round encryptions.

6 We define the master tweakey corresponding to Key as master key MK.
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Algorithm 3: Subtweakey Recovery Procedure of the 20-Round Attack
1 for 28 tk20[4] do
2 for 2N+16 remaining pairs do
3 Compute ΔX20[4] and use the condition (i.e., ΔX20[4] is a fixed

difference) to get 2N+16−8 = 2N+8 remaining pairs;

4 for 28 tk20[0] do
5 for 2N+8 remaining pairs do
6 Compute ΔX20[0, 4, 8, 12] and use the conditions

ΔX20[0] = ΔX20[12] and ΔX20[4] ⊕ ΔX20[8] = ΔX20[12] to obtain
2N+8−16 = 2N−8 remaining pairs;

7 for 216 tk1[3, 5] do
8 for 2N−8 remaining pairs do
9 Compute ΔW2[4, 8] and use the condition ΔW2[4] = ΔW2[8] to

choose 2N−8−8 = 2N−16 remaining pairs;

10 for 224 tk1[1, 2, 7] do
11 for 2N−16 remaining pairs do
12 Compute ΔW2[2, 6, 10] and use the conditions

ΔW2[6] = ΔW2[10] and ΔW2[2] = ΔW2[10] to sieve
2N−16−16 = 2N−32 remaining pairs;

13 for 216 tk1[0] tk2[0] do
14 for 2N−32 remaining pairs do
15 Compute ΔY3[0] and use the condition (i.e., ΔY3[0] is a

fixed difference) to get 2N−32−8 = 2N−40 remaining
pairs;

16 for 216 tk1[6] tk2[4] do
17 for 2N−40 remaining pairs do
18 Compute ΔW3[7, 11, 15] and use the conditions

ΔW3[7] = ΔW3[11] and ΔW3[11] = ΔW3[15] to
obtain 2N−40−16 = 2N−56 remaining pairs;

19 for 232 tk1[4] tk2[3, 5, 7] do
20 for 2N−56 remaining pairs do
21 Compute ΔY5[2] and use the condition (i.e.,

ΔY5[2] is a fixed difference) to filter out the
wrong subkeys.

3) Line[7, 8, 9] in Algorithm 3. Guess tk1[3, 5] and compute ΔW2[4, 8] under
2N−8 remaining pairs from step 2). Base on tkeq[7] = tk1[3] and tkeq[10] =
tk1[5], we can compute ΔW2[4] = SC(P eq[7] ⊕ tk1[3]) ⊕ SC(P eq[7] ⊕ tk1[3])
and ΔW2[8] = SC(P eq[10] ⊕ tk1[5]) ⊕ SC(P eq[10] ⊕ tk1[5]). According to the
properties of MC−1 operations on col(1) of X3, we have ΔW2[4] = ΔW2[8].
Checking if ΔW2[4] = ΔW2[8] will lead to an 8-bit filter and select 2N−8−8 =
2N−16 remaining pairs. In this step, the time complexity is 232·2·2N−8· 2

16 · 1
20 ≈

2N+17.7 20-round encryptions.
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4) Line[10, 11, 12] in Algorithm 3. Guess tk1[1, 2, 7] and compute ΔW2[2, 6, 10]
under 2N−16 remaining pairs from the previous step. Base on tkeq[2] = tk1[2],
tkeq[5] = tk1[1] and tkeq[8] = tk1[7], we can compute ΔW2[2] = SC(P eq[2] ⊕
tk1[2]) ⊕ SC(P eq[2] ⊕ tk1[2]), ΔW2[6] = SC(P eq[5] ⊕ tk1[1]) ⊕ SC(P eq[5] ⊕
tk1[1]⊕Δtk1[1]) and ΔW2[10] = SC(P eq[8]⊕ tk1[7])⊕SC(P eq[8]⊕ tk1[7]). In
the light of the properties of MC−1 operations on col(3) of X3, we have the
conditions ΔW2[2] = ΔW2[10] and ΔW2[6] = ΔW2[10]. Checking whether the
conditions are satisfied or not will act as a 16-bit filter and sieve 2N−16−16 =
2N−32 remaining pairs. The time complexity of this step is 256 · 2 · 2N−16 · 3

16 ·
1
20 ≈ 2N+34.3 20-round encryptions.

5) Line[13, 14, 15] in Algorithm 3. Guess tk1[0], tk2[0] and compute ΔY3[0] under
2N−32 remaining pairs from step 4). Base on tkeq[0] = tk1[0], we can compute
ΔY3[1] = (SC((SC(P eq[0] ⊕ tk1[0]) ⊕ tk2[0] ⊕ c02) ⊕ SC(P eq[10] ⊕ tk1[5]) ⊕
SC(P eq[13]⊕tk1[1])))⊕(SC((SC(P eq[0]⊕tk1[0])⊕tk2[0]⊕c02)⊕SC(P eq[10]⊕
tk1[5])⊕SC(P eq[13]⊕tk1[1]⊕Δtk1[1]))), where c02 = 0x03 is the second round
constant corresponding to c0. As shown in Fig. 6, ΔY3[0] = Δtk3[0] is a fixed
difference that is 0xC3. Checking if ΔY3[0] = 0xC3 will act as an 8-bit filter
and sieve 2N−32−8 = 2N−40 remaining pairs. In this step, the time complexity
is 272 · (2 · 2N−32) · ( 3

16 + 1
16 · 1

2 ) · 1
20 ≈ 2N+34.5 20-round encryptions.

6) Line[16, 17, 18] in Algorithm 3. Guess tk1[6], tk2[4] and compute ΔW3[7,
11, 15] under 2N−40 remaining pairs from the step 5). Based on tk1[0, 2, 5],
tk2[0] determined by steps 3) to 5) and tk2[2] derived from tk20[4], we can com-
pute ΔW3[7] = (SC(SC(P eq[2]⊕tk1[2])⊕tk2[2]))⊕(SC(SC(P eq[2]⊕tk1[2])⊕
tk2[2])), ΔW3[11] = SC((SC(P eq[4]⊕tk1[0])⊕tk2[4])⊕SC(P eq[11]⊕tk1[6]))⊕
SC((SC(P eq[4] ⊕ tk1[0]) ⊕ tk2[4]) ⊕ SC(P eq[11] ⊕ tk1[6])) and ΔW3[15] =
SC((SC(P eq[0]⊕ tk1[0])⊕ tk2[0])⊕SC(P eq[10]⊕ tk1[5]))⊕SC((SC(P eq[0]⊕
tk1[0]) ⊕ tk2[0]) ⊕ SC(P eq[10] ⊕ tk1[5])). Based on the properties of MC−1

operations on col(4) of X4, we have the conditions ΔW3[7] = ΔW3[11] and
ΔW3[11] = ΔW3[15]. Checking whether the conditions are satisfied or not
will act as a 16-bit filter and sieve 2N−40−16 = 2N−56 remaining pairs. The
time complexity of this step is 288 · (2 · 2N−40) · ( 5

16 + 3
16 ) · 1

20 ≈ 2N+43.7

20-round encryptions.
7) Line[19, 20, 21] in Algorithm 3. Guess tk1[4], tk2[3, 5, 7] and compute ΔY5[2]

under 2N−56 remaining pairs from step 6). As shown in Fig. 6, ΔY5[2] is a
fixed difference that equals to Δtk5[2] = 0x82. Checking if ΔY5[2] = Δtk5[2] =
0x82 can act as an 8-bit filter and discard the wrong subtweakeys. The time
complexity of this step is 2120 · (2 · 2N−56) · ( 1116 + 7

16 + 3
16 + 1

16 ) · 1
20 ≈ 2N+61.1

20-round encryptions.

In step 7), the number of the wrong subtweakeys tk1[0, 1, 2, 3, 4, 5, 6, 7],
tk2[0, 3, 4, 5, 7] and tk20[0, 4] left is

2ρ = (2|Kin∪Kout| − 1) × (1 − 2−8)2
N−56

= (2120 − 1) × (1 − 2−8)2
N−56

,

where we set N = 64.6 and ρ = 117.8.
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Brute Force. The values of master key MK[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
13, 14, 15] can be derived from tkrem using the tweakey schedule. For the remain-
ing master key MK[12], we traverse 28 candidate values. For each guessed
value of MK[12], we verify the master key by one plaintext-ciphertext pair
under a number related to the first block counter l0, given nonce value N and
MK[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15]. In this step, the time complexity is
2ρ × 28 = 2ρ+8 20-round encryptions.

Complexity Computation. The 20-round attack above on SKINNY-AEAD
M1/M3 requires a data complexity of

D = 2N · (2|Δin| + 2|Δin|) = 2N+57 = 264.6+57 = 2121.6

chosen plaintexts. The total time complexity is the summation of the time con-
sumption in all the steps. When N = 64.6 and ρ = 117.8, the total time com-
plexity is

T = 2N+60.3 + 2N+16.7 + 2N+18.7 + 2N+17.7 + 2N+34.3 + 2N+34.5

+ 2N+43.7 + 2N+61.1 + 2ρ+8 ≈ 2127.1

20-round encryptions. In the attack procedure, we should store the wrong can-
didates of guessing tweakey and the pairs of equivalent plaintext, ciphertext and
nonce. The total memory complexity is

M = Mcol + 2 · (2N+8 + 2N−8 + 2N−16 + 2N−32 + 2N−40 + 2N−56) · (3 · 128)

+ 2ρ · 128 = 290.2 + 282.2 + 2124.8 ≈ 2124.8 bits.

5 Tweakey Recovery Attack on 18-Round SKINNY-AEAD
M1/M3

We propose an 18-round related-tweakey impossible differential attack on
SKINNY-AEAD M1/M3 in this section. The 14-round distinguisher with (pi, po) =
(2, 10) is placed between the third round and 17-th round. Based on the 14-
round related-tweakey impossible differential distinguisher, an 18-round attack
on SKINNY-AEAD M1/M3 is shown in Fig. 7 of Appendix A. We extend the dis-
tinguisher 2 rounds on the top and 2 rounds at the bottom to cover 4 rounds in
the tweakey recovery phase. In the first round, the subtweakey difference Δtk1[0]
(i.e., Δtkeq

1 [0, 4, 12]) is a nonzero fixed difference, the other cell-position differ-
ences are all zero. The involved active subtweakey differences (i.e., the values of
Δtk1[0], Δtk3[2] and Δtk17[0]) in the attack procedure are given in Table 5.
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Table 5. Active subtweakey difference values related to 18-round tweakey recovery

r ΔTK1r[p] ΔTK2r[p] ΔTK3r[p] Δtkr[p]

1 0x03 0xC0 0x00 Δtk1[0] = 0xC3

3 0x81 Δtk3[2] = 0x82

17 0xC3 Δtk17[0] = 0xC0

Note: Δtkr[p] = ΔTK1r[p] ⊕ ΔTK2r[p] ⊕ ΔTK3r[p]. r
and p denote the number of round and active cell position,
respectively.

In the 18-round attack, rΔ = 14, rin = 2, rout = 2, cin = 0, |Δin| = 8,
cout = 56, |Δout| = 64, and |Kin ∪Kout| = 4×8+2×8 = 48. Algorithm 4 briefly
describes the 18-round attack process. We will give the detailed attack steps as
follows.

Data Collection. 2N pairs of structures S1 and S2 at W1 should be con-
structed, where each structure contains 2|Δin| = 28 equivalent plaintexts. For
each equivalent plaintext pair P eq ∈ S1 and P eq ∈ S2, its difference is
P eq ⊕P eq=(α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, ∗), where α = Δtk1[0] = 0xC3 and
∗ denotes any nonzero difference. We use 2N ·(2 ·2|Δin|) = 2N+|Δin|+1 equivalent
plaintexts to construct 2N+2|Δin| plaintext pairs (P, P ). Under (l0, N,Key) and
(l1, N,Key), we use the line[10] and line[14] in Algorithm 4 to compute W18

and W18, respectively. Note that l0 ⊕ l1 = (β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
and N ⊕ N = (γ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where β = 0x03 and γ =
0xC0 (see the case of r = 1 in Table 5). For each ciphertext pair, check
whether the condition in line[17] is satisfied and remain it if true. In total,
2N+2|Δin|−(128−|Δout|)−32 = 2N−80 plaintext-ciphertext pairs are remained in
the step of data collection. The time complexity of this step is (2N · (2|Δin| · (2 ·
1
18 + 1 + 1

2 · 1
18 + 2 + 1

2 · 1
18 ))) ≈ 2N+9.7 times of 18-round encryptions, and the

memory complexity is

Mcol = 2|Δin| · (2 · 128) + 2 · 2|Δin| · (3 · 128) + 2 · 2N−80 · (3 · 128)

= (2|Δin|−0.59 + 2|Δin|+1 + 2N−79) · (3 · 128) bits.
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Algorithm 4: Tweakey Recovery Attack on 18-Round SKINNY-AEAD
M1/M3
1 � Data collection;

2 for 2N pairs of structures do

3 for 2|Δin| equivalent plaintext P eq
i in S1 do

4 P eq
i = P eq

i ⊕ (α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, ∗), where α = 0xC3;
5 Choose a nonce Ni that has never been used;

6 Ni = Ni ⊕ (γ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where γ = 0xC0;

7 Pi = SC−1 ◦ AC−1 ◦ SR−1 ◦ MC−1(P eq
i );

8 Pi = SC−1 ◦ AC−1 ◦ SR−1 ◦ MC−1(P eq
i );

9 Ci ← encrypt Pi under (l0, Ni, Key);

10 W18i ← MC−1(Ci);

11 for 2|Δin| plaintext Pi in S2 do

12 C ← encrypt Pi under (l0, Ni, Key);

13 Ci ← encrypt Pi under (l1, N i, Key);

14 W18i ← MC−1(Ci);

15 for 22|Δin| pairs do

16 ΔW18 ← W18i ⊕ W18i ;

17 if ΔW18 = (∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗) then

18 Remain the pair of (Pi, Ni, Ci) and (Pi, Ni, Ci);

19 �Seive 2N−80 remaining pairs finally;

20 � Subkey recovery;

21 for 28 tk18[4] do

22 for 2N−80 remaining pairs do
23 Compute ΔX18[4] and use the condition (i.e., ΔX18[4] is a fixed difference) to

get 2N−80−8 = 2N−88 remaining pairs;

24 for 28 tk18[0] do

25 for 2N−88 remaining pairs do
26 Compute ΔX18[0, 4, 8, 12] and use the conditions ΔX18[0] = ΔX18[12]

and ΔX18[4] ⊕ ΔX18[8] = ΔX18[12] to obtain 2N−88−16 = 2N−104

remaining pairs;

27 for 232 tk1[2, 3, 7] tk2[2] do
28 for 2N−104 remaining pairs do

29 Compute ΔY3[2] and use the condition (i.e., ΔY3[2] is a fixed
difference) to filter out the wrong subkeys. Finally, 2ρ

|Kin ∪ Kout|-bit subtweakey candidates tkrem have been left;

30 � Brute force;

31 for 2ρ tkrem do
32 for 280 remaining master key MK[0, 1, 4, 5, 6, 11, 12, 13, 14, 15] do
33 Compute the master key MK from tkrem and MK[0, 1, 4, 5, 6, 11, 12, 13,

14, 15] using the tweakey schedule algorithm;

34 Get a random new pair of (P, C) with a nonce value N and a number related
to the first block counter l0;

35 C′ ← encrypt P under (l0, N, MK) ;
36 if C′ = C then
37 Return the MK as the right key.



RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 267

Tweakey Recovery. In the attack process of SKINNY-AEAD M1/M3, we are
concerned about guessing the value of subtweakey tki (i ∈ {1, 2, 18}) to deduce
the master tweakey corresponding to Key.

1) Line[21, 22, 23] in Algorithm 4. Guess tk18[4] and compute ΔX18[4] under
2N−80 remaining pairs, where ΔX18[4] = SC−1(Z18[4] ⊕ tk18[4] ⊕ c1) ⊕
SC−1(Z18[4] ⊕tk18[4]⊕c118) as shown in Fig. 7 , where c118 = 0x03 is the 18-th
round constant corresponding to c1. Checking if ΔX18[4] = Δtk17[0] = 0xC0
will lead to an 8-bit filter and generally sieve 2N−80−8 = 2N−88 plaintext-
ciphertext pairs. The time complexity of this step is 28 · 2 · 2N−80 · 1

16 · 1
18 ≈

2N−79.2 times of 18-round encryptions.
2) Line[24, 25, 26] in Algorithm 4. Guess tk18[0] and compute ΔX18[0, 4, 8, 12]

under 2N−88 remaining pairs from the previous step. According to Fig. 7,
compute ΔX18[0] = SC−1(Z18[0] ⊕ tk18[0] ⊕ c018) ⊕ SC−1(Z18[0] ⊕ tk18[0] ⊕
c018), ΔX18[4] = SC−1(Z18[4] ⊕ tk18[4] ⊕ c118) ⊕ SC−1(Z18[4] ⊕ tk18[4] ⊕ c118),
ΔX18[8] = SC−1(Z18[8] ⊕ c218) ⊕ SC−1(Z18[8] ⊕ c218), and ΔX18[12] = SC−1

(Z18[12]) ⊕SC−1(Z18[12]), where c018 = 0x0A, c118 = 0x03, and c218 = 0x02
are the 18-th round constants corresponding to c0, c1, and c2, respectively.
Based on the properties of MC operations on col(1) of W17, we have the
conditions ΔX18[0] = ΔX18[12] and ΔX18[4] ⊕ ΔX18[8] = ΔX18[12]. Check
whether the conditions are satisfied or not, which can act as a 16-bit filter to
choose 2N−88−16 = 2N−104 remaining pairs. In this step, the time complexity
is 216 · 2 · 2N−88 · 4

16 · 1
18 ≈ 2N−77.2 18-round encryptions.

3) Line[27, 28, 29] in Algorithm 4. Guess tk1[2, 3, 7], tk2[2] and compute ΔY3[2]
under 2N−104 remaining pairs from step 2). As shown in Fig. 7, ΔY3[2] is a
fixed difference that equals to Δtk3[2] = 0x82. Checking if ΔY3[2] = 0x82 can
act as an 8-bit filter and discard the wrong subtweakeys. The time complexity
of this step is 248 · (2 ·2N−104) · ( 3

16 + 1
16 ) · 1

18 ≈ 2N−61.2 18-round encryptions.

In step 3), the number of the wrong subtweakeys tk1[2, 3, 7], tk2[2] and
tk20[0, 4]) left is

2ρ = (2|Kin∪Kout| − 1) × (1 − 2−8)2
N−104

= (248 − 1) × (1 − 2−8)2
N−104

,

where we set N = 112.6 and ρ = 45.8.

Brute Force. The values of master key MK[2, 3, 7, 8, 9, 10] can be derived from
tkrem using the tweakey schedule. For the remaining master key MK[0, 1, 4, 5, 6,
11, 12, 13, 14, 15], we exhaustively traverse 280 candidate values. We verify the
master key by one plaintext-ciphertext pair under (l0,N , MK). In this step, the
time complexity is 2ρ × 280 = 2ρ+80 18-round encryptions.
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Complexity Computation. For the 18-round attack on SKINNY-AEAD M1/M3,
the data complexity is:

D = 2N · (2|Δin| + 2|Δin|) = 2N · 2 · 2|Δin| = 2N+9 = 2112.6+9 = 2121.6

chosen plaintexts, the time complexity is:

Tcal = 2N+9.7 + 2N−79.2 + 2N−77.2 + 2N−61.2 + 2ρ+80 ≈ 2125.9

18-round encryptions, and the memory complexity is:

M = Mcol + 2 · (2N−88 + 2N−104) · (3 · 128) + 2ρ · 128

= 242.2 + 234.2 + 252.8 ≈ 252.8 bits.

6 Conclusion

In this paper, we analyze the security of SKINNY-AEAD M1/M3 using the related-
tweakey impossible differential attack. Firstly, based on the encryption mode,
nonce-respecting scenario and complex tweakey initialization of M1/M3, we pro-
pose some constraints to search for longer distinguishers and mount tweakey
recovery attacks with less time complexity. Then, according to the constraints
given in Sect. 3.1, we search for the related-tweakey impossible differential dis-
tinguishers with the help of automatic searching algorithm based on STP. As
a result, we find some 14-round distinguishers. Finally, based on one of these
distinguishers, 20-round and 18-round tweakey recovery attacks are conducted
under a nonce-respecting scenario. To our knowledge, all the attacks are the best
tweakey recovery attacks on these two ciphers so far.

The underlying primitive SKINNY-128-384 of SKINNY-AEAD M1/M3 have 128-
bit security, while the block cipher SKINNY-128-384 has 384-bit security. Previ-
ous attack results (related-tweakey impossible differential, meet-in-the-middle,
related-tweakey rectangle) cannot directly be used in SKINNY-AEAD M1/M3. This
paper only investigates the related-tweakey impossible differential attacks on
M1/M3. The security of SKINNY-AEAD M1/M3 against other attacks deserves
further analysis.
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A 18-Round Related-Tweakey Impossible Differential
Attack for SKINNY-AEAD M1/M3
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Fig. 7. 18-round related-tweakey impossible differential attack for SKINNY-AEAD M1/M3
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Abstract. In 2015, the block cipher Kalyna has been approved as the
new encryption standard of Ukraine. The cipher is a substitution-permu-
tation network, whose design is based on AES, but includes several dif-
ferent features. Most notably, the key expansion in Kalyna is designed to
resist recovering the master key from the round keys.

In this paper we present a cache attack on the Kalyna key expansion
algorithm. Our attack observes the cache access pattern during key expan-
sion, and uses the obtained information together with one round key to
completely recover the master key. We analyze all five parameter sets of
Kalyna. Our attack significantly reduces the attack cost and is practical
for the Kalyna-128/128 variant, where it is successful for over 97% of the
keys and has a complexity of only 243.58. To the best of our knowledge,
this is the first attack on the Kalyna key expansion algorithm.

To show that the attack is feasible, we run the cache attack on the
reference implementation of Kalyna-128/128, demonstrating that we can
obtain the required side-channel information. We further perform the key-
recovery step on our university’s high-performance compute cluster. We
find the correct key within 37 hours and note that the attack requires 50K
CPU hours for enumerating all key candidates.

As a secondary contribution we observe that the additive key whiten-
ing used in Kalyna facilitates first round cache attacks. Specifically, we
design an attack that can recover the full first round key with only seven
adaptively chosen plaintexts.

1 Introduction

Since the seminal work of Kocher [32], side-channel attacks have become a major
threat to the security of virtually any cryptographic primitive. While side chan-
nels come in many forms and exploitation techniques [33,40,67], a particular
recent concern is microarchitectural side channels [21], which extract secret infor-
mation by exploiting variations in instruction timing due to contention on CPU
resources. Since the introduction of cache attacks [47,48], it appears that nearly
every microarchitectural feature in modern CPUs can be used to attack crypto-
graphic primitives across hardware-backed security boundaries [1,2,12,14,47,66].
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With respect to targeted cryptographic protocols,most research attention have
been given to Western standards such as AES [8,29,30,42,47], RSA [7,13,37,64],
elliptic-curve cryptography [4,49], presumably due to their wide spread adoption,
readily-available standardization documents, and acceptability of reference imple-
mentations. Much less attention in comparison has been given to national cipher
standards of former Eastern Bloc countries, which often deploy their own cryp-
tography standards [6,34,45,54]. While modern symmetric Eastern Bloc designs
are often based on AES, these often include variations in features such as round
function and key expansion, due to different trade-offs between security and per-
formance made by local standardization agencies while adapting the cipher to local
use. As side-channel attacks are by their very nature implementation specific, it is
unclear how such local adaptations impact the cipher’s side-channel resistance.

1.1 Our Contribution

Tackling this issue, in this work we investigate the Ukrainian cipher Kalyna [45]
as a case study of an Eastern Bloc cipher. At a high level, Kalyna is modeled after
AES, but has some important differences. First, Kalyna’s key expansion algo-
rithm is considered to be non-reversible [3,20]. Thus, a side-channel adversary
that wishes to attack Kalyna needs to retrieve all of the round keys. Moreover,
Kalyna uses an arithmetic addition operation, which is non-linear in GF(2), for
pre- and post-whitening. This is known to hinder cryptanalysis [35,43].

Despite these changes, we present the first cache attack against the Kalyna
key expansion algorithm, which significantly reduces the attack complexity in all
five variants (see Table 1). We also show that an attacker can practically extract
the secret key fromKalyna-128/128’s reference implementation with a 97% success
probability and an expected complexity of 243.58. We demonstrate that Kalyna’s
computation of the round keys from the master key propagates differences between
internal values in a way that allows using them for recovering the master key. To
the best of our knowledge, this is the first attack that recovers the master key of
Kalyna.

We further demonstrate that the additive key whitening used in Kalyna is
more vulnerable to cache attacks than the more common Boolean whitening.
The main cause is that due to carry ripples during addition, an attacker can use
a simple binary search to find the key. The attack requires only seven (chosen)
plaintexts to completely recover the key.

Table 1. Attack cost

Variant Block size Key length Rounds Columns Attack cost

Kalyna-128/128 128 128 10 2 243.58

Kalyna-128/256 128 256 14 2 280.47

Kalyna-256/256 256 256 14 4 2168.60

Kalyna-256/512 256 512 18 4 2173.45

Kalyna-512/512 512 512 18 8 2363.27
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1.2 Paper Outline

The rest of this paper is organized as follows. Section 3 presents an overview
of the attack and describes the information obtained through the side channel.
The details of the attack on Kalyna-128/128 is described in Sect. 4, followed by
a description of the attacks on other variants of Kalyna in Sect. 5. In Sect. 6 we
describe our implementations of proof-of-concept attacks, showing that both the
cache side-channel attack and key recovery are feasible.

2 Background

In this section we present background on the Kalyna cipher and the notation we
use to describe it, cache attacks, and the related work.

2.1 Kalyna

Kalyna is a substitution-permutation network whose design is based on AES.
It was one of the proposals for the Ukrainian National Public Cryptographic
Competition which was held between 2007 and 2010. In 2015, the cipher was
approved as the national standard of Ukraine.

Kalyna has five variants offering different key and block sizes as summarized
in Table 1. We mainly focus on the Kalyna-128/128 variant. For further details
and for other variants, see [45].
Bytes. The basic unit of information that Kalyna uses is a byte, which, following
standard convention, is a sequence of eight bits each having the value zero or
one. We use subscripts to refer to specific bits of a byte. Thus, a byte b consists of
the bits b0, . . . , b7. Depending on context, a byte represents one of three entities:
a sequence of bits, a number in the range [0, . . . , 255] where the byte b represents∑

bi2i, or an element in the field of polynomials modulo x8 + x4 + x3 + x2 + 1
over GF(28).

We use the + and · operations for addition and multiplication of numbers.
Symbol ⊕ is used for polynomial addition and also doubles as bitwise XOR (exclu-
sive or). We denote the bitwise and operation with &.
Matrices. Kalyna represents most of its data as matrices of bytes. These matri-
ces have eight rows. The number of columns varies, but most matrices in Kalyna-
128/128 have two columns. For a matrix M we use M [i] to refer to the ith byte,
in column-first order, i.e. M [0] is the first byte of the first column, M [1] is the
second byte of the first column, and M [8] is the first byte of the second column.
We use M [i, . . . , j] to denote a subsequence of bytes in a matrix. Columns can
be interpreted both as sequences of bytes and as numbers modulo 264, where
M [8i, . . . , 8i + 7] represents the number

∑7
j=0 256jM [8i + j]. Given a set of

indices Q, the projection of a matrix M over Q, denoted by M |Q is the matrix
M where all indices not in Q are zeroed. That is:

M |Q[i] =
{

M [i] i ∈ Q
0 i �∈ Q
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We sometimes use a graphical notation to better highlight the indices selected by
the set of indices. Specifically, we draw a matrix, with filled rectangles represent-
ing the selected indices. Thus M selects the even indices of M , i.e. M |{2i|0≤i<8},
and M = M |{5,7,9,11}.

Kalyna supports two addition operations on matrices. Matrix (bitwise) addi-
tion, denoted with ⊕, designates the conventional operation over the polynomial
field. Matrix column addition modulo 264, denoted by �, produces an output
matrix by adding columns. Specifically, the operator treats each column of the
input matrices as a 64-bit number. To produce a column of the output matrix, the
operator adds the two corresponding input columns (modulo 264) and interprets
the result of the sum as a matrix column. Crucially, unlike regular addition, in
column addition modulo 264 carries propagate between the cells of same matrix
column.

More formally, let M [8i, . . . , 8i+7] =
∑7

j=0 256jM [8i+j] and N [8i, . . . ,

8i+7] =
∑7

j=0 256jN [8i+j], for matrices M and N we have:

(M � N)[8i, . . . , 8i + 7] = M [8i, . . . , 8i + 7] + N [8i, . . . , 8i + 7]

=

⎛

⎝
7∑

j=0

256jM [8i + j] +
7∑

j=0

256jN [8i + j]

⎞

⎠ mod 264.

Moreover, we use � to denote the matrix column subtraction modulo 264. Finally,
we use Σ(M) to denote the sum of the columns of the matrix M modulo 264.
That is, Σ(M) =

∑
i M [8i, . . . , 8i + 7] =

∑
i

∑7
j=0 256jM [8i + j] mod 264.

Cipher Structure. Kalyna follows the design of AES with multiple rounds.
Each round consists of four operations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. Like AES, Kalyna also includes an initial plaintext whitening
operation. Encryption starts by setting the initial state to the plaintext. The
cipher then applies the operations to the state. The resulting state is the cipher-
text. Decryption applies the operations in the reverse order.
SubBytes. Kalyna specifies four substitution boxes (S-Boxes), which provide the
non-linear substitution step of each round. Each S-Box consists of 256 entries.
Given a state S, the SubBytes step applies one of the S-Boxes to each of the
state’s byte. Specifically,

SB(S)[i] = SB i mod 4[S[i]]

ShiftRows. As in AES, the ShiftRows moves bytes across rows in the state matrix.
The transformation depends on the state size and thus varies with the different
variants of the cipher. For Kalyna-128/128, the transform (see Fig. 1) is defined
as:

SR(S)[i] =
{

S[i] i < 4
S[i + 8] i ≥ 4



276 C. Chuengsatiansup, D. Genkin, Y. Yarom, and Z. Zhang

SR

Fig. 1. The ShiftRows in Kalyna-128/128.

1 1 5 1 8 6 7 4
4 1 1 5 1 8 6 7
7 4 1 1 5 1 8 6
6 7 4 1 1 5 1 8
8 6 7 4 1 1 5 1
1 8 6 7 4 1 1 5
5 1 8 6 7 4 1 1
1 5 1 8 6 7 4 1

Fig. 2. The MixColumns matrix.

MixColumns. The MixColumns transformation computes a linear function that
mixes the values along the columns of the state. For Kalyna, MixColumns oper-
ates by multiplying the state matrix with the pre-defined 8-by-8 matrix (see
Fig. 2). An important property of the matrix is that it is maximum distance
separable [38]. Consequently, given a total of eight out of sixteen known bytes in
the inputs and outputs of the transformation, we can recover the missing eight
bytes.
AddRoundKey. The AddRoundKey operation mixes key material into the state.
Kalyna expands the master key K to multiple round keys, where round key RK i

is used in the ith round. In each of the first nine rounds in Kalyna-128/128,
AddRoundKey uses matrix addition, i.e. ARK (S,RK i) = S ⊕ RK i. The 10th

round (last round) uses column addition modulo 264, i.e. ARK (S,RK 10) =
S �RK 10. Furthermore, Kalyna has a key whitening step before the first round,
where it uses column addition modulo 264 to mix additional round key, RK 0,
with the plaintext.
Key Expansion. Unlike AES, Kalyna uses a complex, non-reversible procedure
for generating the round keys. The procedure first generates an intermediate
key Kσ. This Kσ is then combined with the master key K to generate the even
round keys. Figure 3 shows the process.
Generating Kσ. As the left side of Fig. 3 shows, to generate the intermediate
key Kσ, Kalyna performs three sets of SubBytes, ShiftRows and MixColumns
operations. The inputs of this process are the master key K and a constant C
that depends on the Kalyna variant. Kalyna-128/128 uses the constant 5, i.e. a
matrix having all bytes zero except for the least significant byte whose value is 5.
Generating RK i. Generating the round keys RK i follows a similar proce-
dure, but with two sets of SubBytes, ShiftRows and MixColumns operations, see
Fig. 3 (right). For Kalyna-128/128, one of the input is Ki which is either the
master key K, if i mod 4 is 0 or 1, or the master key with the two columns
swapped, if i mod 4 is 2 or 3. More formally, we have:

Ki[j] =
{

K[j] if �i/2� is even
K[j ⊕ 8] if �i/2� is odd

Another input is the intermediate key Kσ modified by column addition mod-
ulo 264 with a round constant Ci. The round constant for round i is a matrix
with the value 0 in odd indices, and 2�i/2� in even indices.
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Fig. 3. The Kalyna-128/128 key expansion. Notations such as A,A′,Ai,A
′
i are used

as explicit reference to internal values computed during the key expansion.

Notation. To facilitate referencing the intermediate states during the generation
of the round keys, Fig. 3 also contains explicit names of various intermediate
states. For instance, State A0 is the result of column addition modulo 264 of K0

and Kσ � C0, i.e. A0 = K0 � Kσ � C0, B0 is the result of applying SubBytes to
A0. Hence, B0 = SB(K0 � Kσ � C0).

2.2 Cache Attacks

Caches. Caches are small and fast banks of memory that bridge the speed gap
between the fast processor and the slower memory by exploiting the temporal and
spatial locality that software exhibits. More specifically, the entire memory space
is divided into fixed-size lines, typically of size 64 bytes. When the processor
needs to access memory, it first checks if the required line resides in the cache.
In case of cache hit, when the required line is in the cache, the memory access
request is served from the cache. Conversely, in a cache miss, when the required
line is not in the cache, the processor is forced to retrieve the line from the slower
main memory, storing a copy in the cache for potential future use. Typically, due
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to the limited size of the cache, the processor needs to evict another line from
the cache to make room for storing the retrieved cache line.
Set-associative caches. Modern caches are often set-associative. The cache is
divided into multiple sets, each containing a fixed number of ways. Each memory
block is mapped to a single cache set and can only be stored in the set it maps
to. Vendors do not always publish the details of the mapping function; however
past research has shown that the function can be reverse engineered, allowing a
user to determine the cache set that stores a given memory block [27,28,41,65].
Cache-based side-channels. Because caches are typically shared between mul-
tiple programs, a malicious program that monitors the cache can learn informa-
tion on the execution of other programs. This can be used to leak sensitive infor-
mation across security-domain boundaries. Over the years, many cache attacks
have been designed, demonstrating retrieval of encryption keys [13,15,17,22,23,
26,31,37,42,47,50,64] as well as other sensitive information [24,25,55,62].
Prime+Probe. Prime+Probe [37,47] is a cache attack technique that exploits
the set-associative structure of the cache. In the Prime phase, the attacker com-
pletely fills one or more cache sets with its data. The attacker then waits, letting
the victim execute for a certain duration. As the cache is already full, any mem-
ory access performed by the victim during its execution must cause eviction
of the attacker’s data back into the machine’s main memory. Finally, in the
Probe phase, the attacker measures the time to access the data previously used
in the prime phase to fill the machine’s cache. A short access time indicates
that the data is still cached, whereas long access time indicates that data has
been evicted. Thus, the attacker learns which cache sets the victim has accessed
between the prime and the probe phases, exploiting the mapping between cache
sets and address bits to recover which address the victim has accessed.
Temporal resolution. The time to execute one round of Prime+Probe depends
on the specific cache and the number of cache sets monitored, ranging from a few
thousands of cycles [37] and up to millions [55]. Past research has demonstrated
several techniques for improving the temporal resolution of observed events.
These include exploiting the OS scheduler to frequently interrupt the victim [14,
26,31], degrading the performance of the victim by contending on resources the
victim requires [4,7,11,50,51], and exploiting elevated privileges [9,10,17,42,56].

2.3 Related Work

A few side-channel attacks on Kalyna have been published. Fernbandes Medeiros
et al. [20] propose a correlation power analysis on Kalyna-128/128 where the
attack recovers all round keys with the success rate of 96% using 250 measured
values. Later on, Duman and Youssef [19] propose fault attacks on Kalyna. They
employ differential fault analysis and ineffective fault analysis to recover round
keys. Their attack works by reducing the number possible candidates then brute-
force to find the correct ones. To the best of our knowledge, no cache attacks on
Kalyna have been published.
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There also exist differential cryptanalysis on reduced-round Kalyna where
most of the focus is on the variants whose key length is double the block size.
Akshima et al. [3] use meet-in-the-middle attack to recover subkeys for 9-round
Kalyna-128/256 and Kalyna-256/512. In [5], the authors recover all round keys
using parameters matching. Later on, [59] improve the attack on Kalyna-128/256
by using more optimal differential paths. Similarly, [36] propose a chosen plain-
text, reduced-round Kalyna attack on Kalyna-128/256 and Kalyna-256/512 where
the attack recovers the round keys.

In addition to differential cryptanalysis attack, the recent work [35] employs
an impossible differential attack, i.e. analysing input difference which never
results in a particular output difference, on all variants of Kalyna. Neverthe-
less, with the reduced-round attacks, the complexity is still relatively high. For
example, the attack on 4-round Kalyna-128/128 requires 2103 time complexity.

Note that all those attacks, only recover the round keys. Kalyna’s key expan-
sion prevents using information from one or more round keys to derive the miss-
ing keys or the master key. Hence, those attacks are forced to recover all of
the (reduced) round keys to be able to encrypt/decrypt messages. No published
attacks have recovered the master key.

Twofish [52,53] is a block cipher that also uses a non-reversible key expansion
procedure. Ortiz and Compton [46] demonstrate a power analysis attack on the
key schedule of Twofish. Specifically, they target an 80-bit implementation of
Twofish for a smartcard and show that the key can be recovered from the power
traces even in the presence of errors. Attack on key schedules have also been
demonstrated on DES [57,58], AES [18,39,60], and Serpent [16]. We note that
the key schedule of these ciphers is not designed to deter recovery of the master
key from the round keys.

3 Cryptanalysis Overview

Due to the complex key expansion algorithm in Kalyna, knowing one or even all
of the round keys does not reveal the master key. Consequently, prior attacks
on Kalyna focus on recovering the round keys. Instead, in this work we focus on
recovering the master key in the presence of side-channel leakage from the key
expansion algorithm. Specifically, we assume a side-channel oracle that reveals
the two most significant bits (MSBs) of each S-Box access. More formally, given
a byte b, the oracle O(b) returns 64 · �b/64�. In Sect. 6 we show how we realize
such an oracle using the Prime+Probe [37,47] attack on the S-Box access.

Side-channel oracles tend to provide partial information on the observed
state. To find the missing information, prior cache attacks on block ciphers com-
bine the information observed over multiple inputs, which are typically assumed
to be randomly chosen. In our attack, we do not have this option since we tar-
get the key expansion which is executed once (as opposed to the encryption
which goes into multiple rounds) and the inputs used for key expansion are fixed
and are not under attacker’s control. Instead, our attack exploits the differences
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Procedure Techniques

1. Recover even bytes of A0=K�(Kσ�C0)

1.1 Guess A0[0, 2, 12, 14], i.e., A0

1.2 Guess A0[4, 6, 8, 10], i.e., A0

1.3 Guess A2[0, 2, 12, 14], i.e., A2

1.4 Guess A2[4, 6, 8, 10], i.e., A2

1.5 Filter wrong guesses

Side channel, bound, differential

Relationship across rounds

2. Recover odd bytes of A0=K�(Kσ�C0)

2.1 Guess A0[1, 3, 13, 15], i.e., A0

2.2 Filter wrong guesses

Side channel, bound, differential

Relationship across columns

3. Recover the intermediate key Kσ

3.1 Guess Kσ[0, 1, 2, 3], i.e., Kσ

3.2 Derive Kσ[4, 5, 6, 7], i.e., Kσ

3.3 Derive Kσ[8, 10, 12, 14], i.e., Kσ

3.4 Derive Kσ[9, 11, 13, 15], i.e., Kσ

Side channel, bound, differential

Meet-in-the-middle
Relationship among Ai,Kσ,Ki, Ci

Meet-in-the-middle

4. Recover the master key K

4.1 Derive K

4.2 Verify K

Reverse intermediate key expansion

Intermediate key expansion

K

Fig. 4. Steps of our attacks and techniques used.

between the inputs used for generating the different round keys and relationships
between key parts to allow a more efficient search in the potential key space.

Our attack consists of four main steps as illustrate in Fig. 4 for Kalyna-
128/128. We first use the structure of the key schedule algorithm to guess the
value of A0, we then use a meet-in-the-middle attack to find the value of Kσ,
which allows us to recover K.

4 Attacking Kalyna-128/128

In this section, we present the attack on the smallest variant of the cipher, Kalyna-
128/128. Section 5 presents an outline of the differences due to the increase in
the block size or the key in other variants of the cipher.
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4.1 Recover Even Bytes of A0

The first step in recovering the master key K is to recover the even byte of
A0 = K�(Kσ�C0). Naively, there are 264 possible candidates for the even bytes
of A0. This section explain how we reduce the search space and narrow down to
only 1.4 candidates on average. The main tool is the side-channel information
from the oracle revealing the two MSBs of each SubBytes access. This enables
us to set the bound of the search and verify the correctness of the guesses.

According to the description of the Kalyna cipher [45], we observe that K0 =
K4 = K8 and K2 = K6 = K10. Consequently, we have A4 = A0 � (C4 � C0)
where C4 �C0 is a known constant with the value 3 for even bytes and 0 for odd
bytes. Depending on the value of the LSBs of A0[0], adding 3 may or may not
cause a change in the two MSBs, i.e. the value returned from the side-channel
oracle O(·). For example, O(A0[0]) �= O(A4[0]) indicates that the value in the
six LSBs of A0[0] is between 61 and 63. Otherwise, it is below 61. By comparing
O(A0) to O(A4) we can tighten the bounds on possible values of the six LSBs
of A0. This also applies to A2 by considering O(A2), O(A6) and O(A10). Table 2
shows the bounds for the six LSBs of even bytes of A0 and A2 in Kalyna-128/128.
Note that the table ignores carries from odd to even bytes because they are rare.
They only make minor changes to the bounds and even make the attack easier
since they reveal a significant amount of information about the key.

Table 2. Bounds on LSBs of even bytes of A0 and A2 in Kalyna-128/128.

Condition Range for A0[j] Range for A2[j]

O(Ai[j]) = O(Ai+8[j]) 0–48 0–33

O(Ai+4[j]) �= O(Ai+8[j]) 49–60 34–57

O(Ai[j]) �= O(Ai+4[j]) 61–63 58–63

Recall that with a high probability, there is only a small difference in the
even bytes of A0, A4, and A8 (resp. A2, A6, and A10) while the odd bytes
are identical. We initially observe the propagated differences among round key
expansions at A′

0, A
′
4, and A′

8 under two simplifying assumptions.

Assumption 1. Overflows of even bytes when adding Ci to Ki � Kσ do not
depend on i. This implies that for odd j, Ai[j] = Ai+4[j], i.e. A0 = A4 = A8

and A2 = A6 = A10 .

Assumption 2. When adding Ci to Kσ, the carry from bit five to bit six of even
bytes does not depend on i. This implies that O((Kσ�Ci)[j])=O((Kσ�Ci+4)[j])
for all 0 ≤ j < 16. We omit the index j when we refer to all the 16 bytes.

We can guess some of the even bytes of A0, determining the corresponding
bytes in A4 and A8. We can then track how the differences between the bytes
propagate through the first round of the round-key generation step to see how
they affect A′

i and compare with the side-channel information we obtain on A′
i.
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We now look at the difference between oracle observations for A′
i and A′

i+4.

O (A′
i) ⊕ O

(
A′

i+4

)
= O

(
A′

i ⊕ A′
i+4

)

= O (Di ⊕ (Kσ � Ci) ⊕ Di+4 ⊕ (Kσ � Ci+4))
= O (Di ⊕ Di+4) ⊕ O ((Kσ � Ci) ⊕ (Kσ � Ci+4)) (1)

Let Δi be the oracle difference between Kσ � Ci and Kσ � Ci+4. That is,

Δi = O ((Kσ � Ci) ⊕ (Kσ � Ci+4)) = O (A′
i) ⊕ O

(
A′

i+4

) ⊕ O (Di ⊕ Di+4)

By Assumption 2, we have Δi = 0. Hence,

O (A′
i) ⊕ O

(
A′

i+4

)
= O (Di ⊕ Di+4) (2)

We now look at each column of A′
i separately. For the first column, we have:

Di ⊕ Di+4 = MC (Ci ) ⊕ MC (Ci+4 ) = MC (SR(Bi )) ⊕ MC (SR(Bi+4 ))

= MC (SR(Bi ⊕ Bi )) ⊕ MC (SR(Bi+4 ⊕ Bi+4 ))

= MC (SR(SB(Ai ) ⊕ SB(Ai+4 ))) ⊕ MC (SR(SB(Ai ) ⊕ SB(Ai+4 ))) (3)

By Assumption 1 we have SB(Ai ) = SB(Ai+4 ). Hence,

O(A′
i) ⊕ O(A′

i+4) = O(MC (SR(SB(Ai ) ⊕ SB(Ai+4 )))) (4)

The side-channel observation provides the oracle values for the left-hand side
of Eq. 4. We can now guess Ã0, the values of the four even bytes of A0 , and
calculate the corresponding Ã4 = Ã0 � (C4 � C0), D̃0 = (MC (SR(SB(Ã0)))),
and D̃4 = (MC (SR(SB(Ã4)))). If the guess is correct, i.e. when Ã0 = A0 , we
will get

O (A′
0) ⊕ O (A′

4) = O
(
D̃0 ⊕ D̃4

)
(5)

If the guess is incorrect, the probability of a match is 2−16. To see this, there
is only one correct pattern of the 16 bits (two MSBs per byte of eight bytes).

Similarly, for Ã8 = Ã0 � (C8 � C0), D̃8 = (MC (SR(SB(Ã8)))) we have

O (A′
0) ⊕ O (A′

8) = O
(
D̃0 ⊕ D̃8

)
(6)

with a probability 2−16 unless Ã0 = A0 .
With each byte having at most 49 possible values (c.f. Table 2), we need to

examine 494 ≈ 222.5 possible combinations of values. The probability that the
wrong guess matches both Eq. 5 and Eq. 6 is 2−32. Hence, we expect that only
the correct guess will match both.

Repeating the process for the right column of A′
0 and for both columns of

A′
2, we can recover the even bytes of A0 and A2, at a complexity of less than

222.5 · 4 = 224.5.
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Handling Overflows in Kσ � Ci. The discussion so far makes two simplifying
assumptions We now remove Assumption 2 and account for the possibility of
carries from bit five to bit six of even bytes of Kσ �Ci. The main consequence is
that Δi is not always zero and we need to accept some candidates when Eqs. 5
or 6 are not satisfied.

We now investigate the possible values in Δi. When an overflow occurs in an
even byte 2j′ for 0 ≤ j′ < 8, we have O(Kσ � Ci)[2j′] = O(Kσ � Ci+4)[2j′] + 64
(mod 256). Hence, Δi[2j′] ∈ {0x40, 0xc0}.

Under rare conditions, the overflow can percolate and affect the oracle of
the following odd byte. Specifically, this can happen when an overflow occurs
in byte 2j′, the top two bits of the byte (before the overflow) are both set, and
the six least significant bits of byte 2j′ + 1 are also set. The probability of an
overflow is less than 1/2, hence the probability of a change in the oracle of a
given odd byte is lower than 2−9, and the probability that this happens in any
of the eight odd bytes of Kσ is less than 2%.

Thus, every byte of Δi can have three potential values: 0x00, 0x40, and
0xc0. However, if we naively accept all possible guesses where the oracle matches
any of these values, we will accept incorrect guesses with a probability 2−3.32,
which would leave a rather long list of candidates.1 However, we observe that
an overflow to an odd byte 2j′ + 1 can only occur if Δi[2j′] = 0xc0 and that
at most one of Δi[2j′] and Δi+4[2j′] can be non-zero. Thus, there are only nine
possible value assignments for the tuple

τj′ = (Δi[2j′],Δi[2j′ + 1],Δi+4[2j′],Δi+4[2j′ + 1]). (7)

The probability that an incorrect guess results in a possible combination of val-
ues, therefore, is (9/256)4 ≈ 2−19.3. Hence, with an initial list of 222.5 candidates,
we expect that 23.2 ≈ 9 incorrect guesses will remain.

Another strategy an attacker can adopt is to assume that overflows to odd
bytes do not occur. This reduces the expected number of incorrect guesses to
about 1, but also means that the attack will fail on some percentage of the keys.
Handling Overflows to Odd Bytes. We now handle the case that Assump-
tion 1 does not hold. That is, when an odd byte 2j′ + 1 changes between Ai

and Ai+4. This happens when the addition of Ci to Ki � Kσ does not overflow
byte 2j′ whereas adding Ci+4 does overflow the byte. We can detect such over-
flows by observing the oracle of Ai and Ai+4. In the case of an overflow, we will
have O(Ai)[2j′] = 0xc0 and O(Ai+4)[2j′] = 0x00. This is in contrast with the
case of the overflows of Kσ � Ci discussed in the previous subsection, where we
cannot observe overflows and need to guess them.

The main implication of overflows is that we can no longer split the even and
odd bytes as in Sect. 4.1 and expect the part with the odd bytes to cancel out. To
overcome this issue, we also guess odd bytes that we know change between key
rounds, and adapt the split accordingly. For example, if we know that A0[3] �=
A4[3], we get

D0 ⊕ D4 = MC (SR(SB(A0 ) ⊕ SB(A4 ))) ⊕ MC (SR(SB(A0 ) ⊕ SB(A4 )))
1 For each byte, the probability of accepting is 3/4. For eight bytes, it is (3/4)8 ≈

2−3.32.
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Having to guess odd bytes increases the number of guesses, affecting both
the complexity of the step and the length of the list of potential guesses. In the
worst case, when all the odd bytes in A6 differ from the corresponding bytes
of A10 , we need to guess four odd bytes at a complexity of 634 as well as four
even bytes at a complexity of 244, giving a total complexity of 242.3 (see Table 2).
Note also that if the six LSBs of an odd byte 2j′ + 1 are all set, we will observe
that O(A6[2j′ + 1]) �= O(A10[2j′ + 1]).

We can reduce the complexity of this case by first filtering the guesses based
on O(A′

2) ⊕ O(A′
6) and only guess odd bytes for the surviving guesses. There is

a total of 244 ≈ 218.3 guesses of even bytes. By the argument above, there are
only five possible assignments for τj′ (see Eq. 7). Hence, the expected number
of surviving guesses is 244 · (5/16)4 ≈ 211.6. Only for these surviving guesses
we need to guess values of odd bytes, reducing the overall complexity to 634 ·
244 · (5/16)4 ≈ 235.5. While this approach reduces the search space, it does not
reduce the expected number of guesses that survives the process, which remains
at 634 · 244 · (9/256)4 ≈ 222.9.

Another issue is that the subsequent steps of the attack make no use of the
values of odd bytes of A2 and only limited use of odd bytes of A0. Consequently,
when we need to guess more than two odd bytes in a column, the attack becomes
significantly harder. In such a case, the maximum number of guesses for the two
odd bytes is 632, for the two corresponding even bytes the number of guesses is
no more than 242, and for the other two even bytes is up to 342. Thus, the total
number of guesses is less than 632 · 242 · 342 ≈ 231.3. After filtering, we expect
to remain with approximately 212 valid guesses for the even bytes in a column.

The probability that we need to guess more than two odd bytes in at least
one of the columns of the key is less than 2%. Thus, for over 98% of the keys,
we have an effective attack.
Relationship Across Rounds. So far, we have created independent lists of
even bytes for each of the halves of A0 and A2. As calculated above, for some
keys we can expect these list to consist of up to 212 candidates. Because these
lists are independent, combining the guesses of the two halves can yield several
millions of possible candidates. To further trim these lists, we exploit the known
relationship between A0 and A2.

Recall that Ai = Ki � (Kσ � Ci) and that K2 is just K0 with the columns
swapped, i.e. K0[0, . . . , 7] = K2[8, . . . 15] and K0[8, . . . 15] = K2[0, . . . , 7], hence
the sum of the columns of the two is the same, i.e. Σ(K0) = Σ(K2). Moreover,
C0[0, . . . , 7] = C0[8, . . . , 15] = 0x0001000100010001, and C2 = C0 � C0, hence
Σ(C0) = Σ(C2) − Σ(C0) = 0x0002000200020002. Thus,

Σ(A0) = Σ(K0 � Kσ � C0) = Σ(K0) + Σ(Kσ) + Σ(C0)
= Σ(K2) + Σ(Kσ) + Σ(C2) − Σ(C0) = Σ(A2) − Σ(C0) (8)

Recall that we have four lists of guesses, one for each of A0 , A0 , A2 ,
and A2 . Selecting one guess from each of the lists provides us with guesses of
the even bytes Ã0 and Ã2 . We can now calculate S̃0 = Ã0 + Ã0 + Σ(C0)
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and S̃2 = Ã2 + Ã2 where we abuse the notation to mean adding one column
of the matrix to the other. By Sect. 4.1, if our guesses are correct, we expect
the even bytes of S̃0 and S̃2 to have similar values. Specifically, we expect the
corresponding least significant bytes to be identical. Because we may miss carries
from odd bytes, we expect a difference of up to 1 between other corresponding
even bytes. For incorrect guesses, the probability of identical bytes is 1/256 and
for a difference of up to 1 between a pair of bytes is 3/256. Hence, the probability
of accepting a wrong guess is 2−27.2.

We verify experimentally that after this step, for 80% of the key only one
candidate survives and for 15% two candidates survive. Based on a sample of
1000 random keys, the expected number of candidates is 1.4.

4.2 Recovering Odd Bytes of A0

So far, we have focused on the even bytes of A0, showing that the expected
number of candidates for those is 1.4. We now discuss guessing the odd bytes we
require for the meet-in-the-middle attack.

In total, we need to guess bytes A0 , which together with the even bytes will
give us a guess of A0 . From the side-channel oracle, we learn the two MSBs of
each of those bytes, hence a naive approach would be to guess the remaining six
bits of each byte, arriving at a complexity of 224.

However, using side-channel information we can reduce the number of com-
binations to roughly 216. Specifically, we note that on the one hand, Kσ � C0 =
A0 � K0 = A0 � K, while on the other, Kσ � C0 = A′

0 ⊕ D0. We have side-
channel information on O(A) = O(K � 5) ≈ O(K) from the generation for Kσ,
and on O(A′

0) from the expansion of RK 0. Moreover, given a guess of A0 , we
can find D0 . We can therefore compute two approximations of O(Kσ � C0),
and eliminate guesses in case of a mismatch.

4.3 Recovering Kσ

To recover Kσ we first split it into four parts of four bytes each. We guess one
of these parts and exploit the structure of the cipher for a meet-in-the-middle
attack to derive the remaining parts.
Guess Kσ [0,1,2,3]. We first guess Kσ . Note that we only need to guess the
six LSBs since the two MSBs are derived from D0 ⊕ O(A′

0), where D0 is known
from the previous step and O(A′

0) is obtained from the side-channel oracle.
Derive Kσ [4,5,6,7]. Once we know Kσ , we use the meet-in-the-middle attack
to derive Kσ . As Fig. 5 shows, we assume that we have a guess of A0 , which
determines D0 . Together with a guess of Kσ , these determine the value of A′

0

which determines C′
0 . From the other end, the (assumed known) value of RK 0

together with the guess of Kσ allow us to determine D′
0 . Thus, with a guess

of four bytes of a column of Kσ, we can determine four bytes in the input of the
MixColumns transformation as well as four bytes in its output.
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Using the MDS property of MixColumns, we can now determine the missing
bytes, specifically, the value of D′

0 . Combining this with RK 0, allows us to
determine the missing bytes of Kσ . We note that the information we have on
the MSBs of Kσ �C0 allows us to eliminate wrong guesses with a probability of
1 − 2−8. (Two bits for each of four bytes.)

A0

SB

B0

SR

C0

MC

D0

⊕

Kσ � C0

A′
0

SB

B′
0

SR

C′
0

MitM

D′
0

�

RK 0

Fig. 5. Meet-in-the-middle attack recovering Kσ[0, . . . , 7].

Derive Kσ [8,10,12,14]. In contrast to previous step, this time we consider
the relationship among Ai, K, Kσ and Ci. The first relationship that we use is

A0 = K � (Kσ � C0) (9)

Recall that we know A0 and (Kσ � C0) . Through subtraction, we obtain K
as illustrated in Fig. 6a. The obtained value in byte K[6] may not be exact
due to a possible borrow from the unknown byte A0[5]. Hence, K[6] could be
(A0 � (Kσ � C0))[6] ± 1 due to carry or borrow.

To recover the four target bytes Kσ , we relate the obtained K to the known
constant C2 and the already known A0 through the following relationship

A2 = K � (Kσ � C2) (10)

where we abuse the notation to mean operations are performed as a single col-
umn on the colored columns. As illustrated in Fig. 6b, Kσ can be recovered by
subtracting (K � C2 ) from A2 . Note that similar remark as when recover-
ing K[6] also applies here, namely, carries and/or borrows can affect the value
of bytes Kσ[2, 4, 6].
Obtain Kσ [9,11,13,15]. Since we now know half a column of Kσ which also
allows us to compute the corresponding half a column of D′

0 , we wish to apply
a similar meet-in-the-middle technique as for recovering Kσ . To do so, another
piece of information that we need is half a corresponding column of C′

0.
Recall that we start the Kσ recovery process by guessing (Kσ � C0) . This

allows us to obtain A′
0 . Now, with the extra information of Kσ obtained
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A0

�

Kσ

�

C0

mask

K

(a) Recover K[0, 2, 4, 6]

A2

�

K

�

C2

mask

Kσ

(b) Recover Kσ[8, 10, 12, 14]

Fig. 6. Relationships among Ai,K,Kσ and Ci to derive Kσ. The gray shade highlights
bytes whose values are known but not used in this recovery. The blue shade highlights
bytes whose values are known and used in this recovery. The lighter blue shade denotes
bytes with uncertainly. Note that here we abuse the notation to mean performing
operations as a single column of the matrix.

in Sect. 4.3, we can compute (Kσ � C0) by adding the known constant C0

which allows us to compute A′
0 . Then, following the sequence of SubBytes and

ShiftRows provides us C′
0 . That is, we compute:

A′
0 ← D0 ⊕ (Kσ � C0)

B′
0 ← SB(A′

0 )

C′
0 ← SR(B′

0 )

At this stage, we know C′
0 , i.e. half-column input to MixColumns and D′

0 ,
i.e. its corresponding half-column output. We can proceed with splitting the
input of MixColumns and solving for the unknown input half C′

0 as illustrate
in Fig. 7. Even though the four MixColumns output bytes that we know are
not consecutive, this does not affect our technique since both MC (C′

0 ) and
MC (C′

0 ) contribute to D′
0 . Therefore, we can simply construct a system of

linear equations focusing on the four bytes C′
0 and D′

0 that we know and solve
for the four unknown bytes C′

0 .

MC

C′
0

� MC

C′
0

mask

D′
0

Fig. 7. Recover C′
0[8, 9, 10, 11]

Once we know the full-column C′
0 , performing MixColumns allows us to

recover the full-column D′
0 . Then, Kσ can be recovered by subtracting D′

0

from RK 0 . That is, we compute:
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D′
0 ← MC (C′

0 )

Kσ ← RK 0 � D′
0

4.4 Recovering K

After we recover the entire Kσ, we can recover K by simply reversing the RK 0

expansion. For the Kalyna-l/k variants where the block size l is the same as the
key length k, i.e. l = k, we compute the following steps:

A′
0 ← SB−1(SR−1(MC−1(RK 0 � (Kσ � C0))))

A0 ← SB−1(SR−1(MC−1(A′
0 ⊕ (Kσ � C0))))

K ← A0 � (Kσ � C0)

Once we obtain K, we can verify by computing the Kσ expansion and check
against our recovered Kσ. If both match, this guarantees that we successfully
recover the correct K. In other words, if our guess of either the odd bytes of
(K � (Kσ � C0)) or (Kσ � C0) was not correct, we would detect at this step.
If that is the case, we try different candidates until we recover the correct K.

5 Attacks on Other Kalyna Variants

Most of the techniques described in Sect. 4 also apply to other variants of Kalyna,
which have larger block size (l) and/or key length (k). This section discusses the
hurdles that increasing the sizes adds and explains how we tackle them to recover
the master key.

5.1 Relationship of Ki

Recall that Ki is one of the inputs to RK i expansion. With an increase in the
key length k (regardless whether the block size l also increases), the variations
of Ki key part also increase. As a consequence, there are fewer Ki’s that are
identical to K0.

As shown in Fig. 8, with three identical Ki’s, we can divide the bounds on
the six LSBs of A0 into three groups (as indicated by the number lines). In
contrast, when we have only two identical Ki’s, the bounds can be divided into
two groups. In a lucky case, such as in Kalyna-128/256, the size of those two
groups are nearly balanced. However, the splits in other variants may not be
well balanced, which results in less tight bound in a larger group. This implies
an increase in the cost of guessing Ai.

Another impact of having many variations of Ki is that it is more difficult to
apply the relationship across columns. Recall that in Kalyna-128/128 there are
only two variations of Ki whose difference in the column-wise sum is a known
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K0 K4 K8 K2 K6 K10

0

49 61

63 0

34 58

63

Kalyna-128/128
K

K0 K10 K2 K8 K4 K14 K6 K12

0

33

63

Kalyna-128/256
K

Fig. 8. The relationship between the full master key K and Ki key part used for RK i

expansion in Kalyna-128/k. The effect on the bounds of the 6 LSBs of Ai is presented
using number lines.

constant. Therefore, the cost of applying the column-wise sum is equivalence to
guessing Ai of those two Ki variations. For other variants of Kalyna, it requires
significantly more guesses to be able to apply the column-wise sum. Take Kalyna-
128/256 as an example (see Fig. 8). We need to guess all four Ki variations so
that the column-wise sum of, for example, K0 and K2 is equivalent (up to a
known constant) to that of K4 and K6. Therefore, we opt for guessing relevant
bytes of A0 instead of guessing A0,A2,A4 and A6.

Observe that not being able to use the relationship across column affects our
attacks in two ways. First, we lose an extra filter to eliminate wrong Ai guesses
(step 2.2 in Fig. 4) thus resulting in having more candidates for subsequent steps.
Second, we can no longer derive a different column of Kσ from a known column
(step 3.3 in Fig. 4). This forces us to guess more bits of Kσ to be able to derive
the full key K.

5.2 Large Constant Ci

Each RK i expansion uses a known constant Ci which is defined as a value
0x00010001...0001 shifted by the round key index i/2. The length of Ci is the
same as the block size l. Observe that if 0 ≤ i < 16, all even bytes of Ci are
non-zero while all odd bytes of Ci are zero, which is the case for Kalyna-l/128 and
Kalyna-l/256. However, in Kalyna-l/512, i can be as high as 18, which means that
in rounds 16 and 18 the even bytes are zero while the odd bytes are non-zero.
Therefore, we can no longer assume that the odd bytes from different round keys
(but with the same Ki) are identical (step 1 in Fig. 4). Thus, we need to guess
odd bytes in addition to even bytes, increasing the complexity of our attacks.
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5.3 Aligning Columns

One of the core techniques in our attacks is meet-in-the-middle operating
column-wise (steps 3.2 and 3.4 in Fig. 4). This requires us to have sufficient
information aligned in the corresponding columns. The main obstacle that we
face is that the round key expansion performs the ShiftRows twice, resulting in
diffusion across columns. This is not a problem with Kalyna-128/k because there
are only two columns where ShiftRows merely splits the columns in half. How-
ever, with Kalyna-256/k, ShiftRows spreads the information from one column
into four where only one quarter (thus less than half) remains in a column (see
Fig. 9a). This is worse in Kalyna-512/512 where information is spread into eight
columns.

To overcome the second ShiftRows, we increase the number of guessed bytes
and guess the bytes in locations that would maintain their alignment. That is,
instead of attempting to align a single column, we align multiple columns. We
guess bytes in an alternating pattern (see Fig. 9b). This pattern applies to both
guessing Ai and Kσ.

Ai

SB

Bi

SR

Ci

MC

Di

⊕

Kσ � Ci

A′
i

SB

B′
i

SR

C′
i

(a) Insufficient information

Ai

SB

Bi

SR

Ci

MC

Di

⊕

Kσ � Ci

A′
i

SB

B′
i

SR

C′
i

(b) Sufficient and well aligned bytes

Fig. 9. Propagation and alignment of known bytes from initial guessed bytes to perform
meet-in-the-middle attack in Kalyna-256/k.

6 The Practical Attack

We now proceed to empirically validate the assumptions made for the analysis.
We implement a cache-based side-channel attack against the key expansion algo-
rithm in the reference implementation of Kalyna [44] and demonstrate that we
can instantiate the required oracle. We also describe how we exploit the additive
key whitening used in Kalyna to efficiently recover the first round key RK 0.

6.1 Instantiating the Oracle

Experimental Setup. We implement the attack on a Dell Vostro 5581, fea-
turing Intel Core i5-8265U CPU, with four cores and a 6 MB last-level cache,
running Ubuntu-18.04.5. We use the Prime+Probe attack as implemented
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in the Mastik toolkit [63]. To achieve a high temporal resolution, we use
SGX-Step [56]. We note that other approaches for achieving high temporal res-
olution exist [4,11,14,26,31]. Thus the attack is feasible outside SGX.
Victim. The victim is an SGX enclave that runs the reference implementation
of Kalyna [44]. The implementation uses four S-Boxes, each 256-bytes long, occu-
pying four consecutive cache lines each, to a total of 16 consecutive cache lines.
The cache attack identifies the cache line accessed. Hence, with four cache lines
per S-Box, the attack recovers the two most significant bits of the index.
Attack. As in past works, before the attack we disable frequency scaling, auto-
matic power management, and Intel Turbo Boost. We further isolate the core
that runs the victim and disable the cache prefetcher. We use a controlled-
channel attack [61] to stop enclave execution at the start of key expansion. That
is, we mark the page containing the S-Boxes as not existing, forcing an interrupt
when the enclave executes the first SubBytes operation. We then use SGX-Step
to single-step the enclave. We use Mastik to prime the cache sets that hold the
S-Boxes and mark the page that contains the S-Boxes as not-accessed prior to
each single step. After stepping, if the page has been access, we probe the cache
sets of the S-Boxes and record the results. We stop after 240 S-Box accesses.
Results. Similar to prior works [26,31,42], we find that even though we only
execute a single instruction, we can observe multiple accesses to the S-Boxes.
After filtering the accesses, we can correctly identify 96.55% of the memory
accesses, with the only failures being on Byte 7 of the state. In cases of failures, we
have two or three options for the oracle of Byte 7, depending on the subsequent
accesses to S-Box 3.
Summary. The attack takes several seconds and retrieves S-Box accesses with a
high success rate. Thus, it can be used as the oracle for our key-recovery attack.

6.2 Recovering the First Round Key

In Sect. 4.3 we use RK 0 as part of recovering the master key. We now show how
we can exploit the additive key whitening of Kalyna to easily recover RK 0.

In AES and in many similar ciphers, the first operation during encryption
is to apply Boolean whitening to the plaintext, i.e. to XOR it with a key. In
contrast, Kalyna uses additive whitening. Specifically, it computes P � RK 0

where P denotes a plaintext, and uses the result as the input to the first round.
Because (arithmetic) addition is not a linear operation in GF (2), additive key
whitening hinders cryptanalysis [35,43].

We observe, however, the additive masking is inferior when it comes to pro-
tection against cache attacks. The reason is that cache attacks observe specific
bits of the data. For example, the oracle we use observes the two MSBs of the
input to an S-Box. When Boolean whitening is used, changes in the plaintext
remain local, i.e. a change in the plaintext only affects the changed bit but not
other bits and cannot, therefore, expose more information to the attacker.

In contrast, with additive whitening, a change of a bit can change the pattern
of ripples of the carries, resulting in changes in other bits, which can reveal more
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information. To exploit this property, we first encrypt an all-zero plaintext and
use our attack to recover the oracle for the SubBytes operation of the first round.
Because P = 0, we have P �RK 0 = RK 0, and the oracle reveals the two MSBs
of each byte of RK 0.

We now encrypt a plaintext where all the bytes have the value 32. We note
that if bit five of a key byte is zero, adding 32 will not change the values of bits
six or seven of the sum. Consequently, the oracle reading will be the same as for
the all-zero plaintext. If, however, bit five of the key byte is set, adding 32 will
cause a carry to bit six and the oracle reading will be different. Thus with the
value 32 we learn the value of bit five of each byte in RK 0.

In the next step we repeat the process, this time with a value of 16 for bytes
where bit five of the key is set and a value of 48 where it is clear. Using the
same argument, we now learn bit four of the key. We note that this is, basically,
a binary search that exploits carry ripples to recover the next bit. Hence, using
only seven adaptively chosen plaintexts, we can completely recover RK 0.

6.3 Recover the Master Key K of Kalyna-128/128

Experimental Setup. To validate our cryptanalysis, we performed a practical
attack on recovering the master key K of Kalyna-128/128 on a compute cluster.
We spawn a task for each 16 guesses of the odd bytes of A0. During the exper-
iment, we record the task execution time and the execution time of testing a
single candidate.
Practical Attack. To prove that the attack is practical, we picked a random
secret key ensuring no overflows in Kσ � Ci when recovering the Kσ. We note
that overflows facilitate the attack, hence this choice represent a conservative
estimate. For the selected key, there are 69,249 candidates for odd bytes of A0.
We spawn 4,329 tasks, each of which tests 16 candidates. (The last task only
tests one candidate.) We then let the cluster schedule the tasks according to its
scheduling policies.
Results. To determine the worst-case execution time we run all 4,329 tasks to
completion. The key was found after 37 hours, but full completion took 49 hours.
Testing a wrong guess takes on average about 44 minutes. The full attack takes
about 50 K CPU hours.
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1 Introduction

Profiling side-channel attacks (SCAs) are the class of attacks in which the adver-
sary is assumed to have access to the target device’s open copy. Then, the
attacker uses that copy of a device to build a strong profiling model. In the
second phase of the attack, the attacker infers the secret information, e.g., the
secret key from the target device based on the profiling model and measure-
ments of some physical activity of the target device while cryptographic imple-
mentation is running on it. Recently, deep learning-based attacks have been
extensively studied for improving the profiling SCA, see, e.g. [1–3]. The deep
learning model’s performance can suffer if enough data is not provided during
the training phase. What is more, using deep learning may not even make sense
if not enough data is available. This lack of availability could be a consequence
of implemented countermeasure prohibiting collecting a large number of traces
or due to the evaluation setup [4]. Additionally, it is common to use side-channel
leakage models like the Hamming weight or Hamming distance, which will result
in an imbalanced class scenario [5].

Deep learning is data-hungry. Not providing enough data can mean that
either we do not reach the full potential of a certain method or, in more extreme
cases, that the method shows very poor performance. One common reason for it
is overfitting, where the deep learning model learns how to model the noise, mak-
ing it difficult to generalize to the previously unseen examples. To fight against
it, researchers commonly use techniques like 1) hyperparameter tuning - to find
architectures that are better tuned for the task and thus have less tendency to
overfit, 2) regularization - to lower the complexity of a neural network model
during training, and thus prevent the overfitting, and 3) data augmentation - to
provide additional (synthetic) examples, utilizing the capacity of a model better,
but also regularize the model with noise inherent to the synthetic examples. Each
of those techniques has its advantages and drawbacks, and they are also success-
fully applied to the side-channel domain. Interestingly, while hyperparameter
tuning and regularization (e.g., dropout, L2 regularization) are commonly used
in SCA, data augmentation received less attention, despite very good prelimi-
nary results. One possible reason lies in the difficulty of clearly visualizing how
a successful synthetic side-channel measurement should look (something much
simpler in, e.g., image classification domain).

Cagli et al. proposed the first data augmentation setup for deep learning-
based SCA to counter the effects of clock jitter countermeasure [6]. Still, the
authors do not consider scenarios where the number of measurements is sig-
nificantly limited. Picek et al. presented the results with “traditional” machine
learning data augmentation techniques and concluded that Synthetic Minority
Over-sampling Technique (SMOTE) could aid in data generation, resulting in
improved attack performance [5]. Differing from us, the authors used the Ham-
ming weight leakage model, resulting in an imbalanced dataset. In our work, we
used intermediate values resulting in more classes and more challenging analy-
ses. Luo et al. used a mixup data augmentation technique where new synthetic
examples are based on randomly selected combinations of existing examples [7].
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The authors conducted experiments for several datasets and leakage models and
obtained mostly similar behavior for the original and mixup traces. Generative
Adversarial Networks (GAN) is another popular data augmentation technique
that is widely used in the image processing domain for generating fake images [8],
which significantly improves the machine learning model’s performance [9]. Only
one existing study presents the realization of using GAN-generated fake signals
as leakage signals for deep learning-based side-channel analysis [10]. However,
the authors use more profiling traces and the Hamming weight leakage model
(which will result in fewer classes), making their work significantly different from
ours. What is more, this work misses providing a detailed analysis of the GAN
network before using it for the fake data generation.

GAN’s performance for generating fake images/signals depends on the gen-
erator’s progressive learning based on the discriminator’s response. The design
and selection of a GAN play an important role in generating realistic leak-
age signals. A well-convergent GAN network will generate traces carrying rele-
vant/significant features similar to the original data samples. Designing a GAN-
based model with optimum convergence or equilibrium point is one of the great-
est challenges for generating fake signals [11] that contain the characteristics
of real leakage traces. Several techniques, presented for fake image generation,
can help achieve convergence, including feature matching [12], conditional GAN
(cGAN) [13], and semi-supervised learning [12].

In our work, we generated 50% traces for each class (256 × 150 × 2 real and
fake traces for AES and 16× 150 × 2 real traces for ECC), making the setting
very challenging.

Our approach is inspired by the fake image generation presented in [14]. Our
presented generic model can generate fake data for various leakage datasets,
including symmetric and public-key algorithm implementations. We provide a
comparative analysis with the existing simple dense layer-based GAN used for
leakage generation.

Specifically, we list our contributions as follows:

– We present a layered approach for generating the 1-dimensional fake signals
for deep learning-based side-channel analysis (DL-SCA). Our approach com-
bines Siamese network and conditional GAN (cGAN) characteristics with an
extra model loss monitoring layer introduced to detect the model convergence.
The visual representation of the loss function of the proposed data augmenta-
tion technique helps analyze the well-converged GAN model. A well-converged
network helps in generating indistinguishable fake traces that will give the
same insights to the data as that of the original signals. With this, we show-
case the relevance of “real vs. fake” data and exhibit successful attacks with
synthetic data that could impact various real-world use cases and security
applications.

– We provide a comparative analysis exhibiting the fake leakage trace datasets’
effect on the side-channel model training performance. These fake leakage
traces are generated from various converging points during the proposed
Siamese-cGAN model training, which helps to analyze the importance of the
well-converged models.
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– The proposed Siamese-cGAN model can be generalized to any leakage dataset
(from varying cryptographic algorithm implementations). To demonstrate
this, we trained our proposed model on datasets containing either symmetric
or public-key algorithm implementations, using two different neural networks
for generator and discriminator. Best performing neural networks are further
selected for analysis. While several results show the benefits of data augmen-
tation for symmetric-key implementations, data augmentation is significantly
less explored in the context of attacks on public-key implementations (we are
aware of only one work [15]).

– We provide a comparative analysis of our proposed Siamese-cGAN model
with the existing used cGAN model [10] (named as cGANModelA in this
study) for generating fake leakage traces.1

– The performance of the Siamese-cGAN data augmentation model is evaluated
by applying the actual deep learning-based side-channel attack on the gener-
ated leakage traces using four different neural network architectures (one mul-
tilayer perceptron (MLP) and two Convolutional Neural Networks (CNNs)
for symmetric algorithm implementation leakages and one CNN for public-
key implementation leakages). Our results show that the fake data samples
generated from the well-convergent model combined with 50% real data suc-
cessfully recovered the secret with similar efficiency as real data traces alone.
What is more, for the ASCAD dataset case (AES measurements), the key
rank suggests even improved results for the dataset consisting of real and fake
traces. We emphasize that the goal of our approach is not only to improve
the attack performance in scenarios where there are enough real measure-
ments for a successful attack. Rather, we envision it for constrained settings
where more measurements than available are needed to break the target. We
think here of implementations that randomize the secret (key) after a number
of algorithm’s execution such that the adversary can collect only a limited
number of traces for the analysis.

2 Preliminaries

2.1 Profiled Side-Channel Attacks

The profiled attack represents the most powerful side-channel attack where the
adversary has access to the target device’s open copy. There are two phases
of the attack: the profiling phase and the attack phase. In the profiling phase,
the adversary creates a profile of the device with all the possibilities for the data
leakages and then uses that profile (template in the case of template attack [16] or
machine learning model) in the attack phase to distinguish/predict the unknown
secret information [17].

Commonly, profiled attacks are divided into classical ones like template
attacks [16] and stochastic model [18], and machine learning-based attacks [1,19].

1 We note that the provided details were not sufficient to ensure the reproducibility
of the results, so we did our best to infer the used architecture from the description.
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Machine learning-based side-channel attacks (ML-SCA) follow the same steps
as the classical profiling attacks. More precisely, they have two phases: train-
ing phases (profiling phase) and test phase (attack phase). The adversary can
train the model with the leakage examples collected from the identical copy of a
target device and then evaluate the trained model using previously unseen exam-
ples. When using deep learning instead of other machine learning techniques, we
denote such attacks as deep learning-based side-channel attacks (DL-SCA).

2.2 Generative Adversarial Networks (GANs)

The Generative Adversarial Networks were first introduced by Goodfellow et al.
in 2014 [9]. Since then, many variations of GAN have been proposed, including
conditional GAN (cGAN), Deep Convolutional GAN (DC-GAN), Information
Maximizing (InfoGAN), and Stacked GAN (StackGAN) [13,20–23].

A Generative Adversarial Network (GAN) is a neural network architecture
for training a generative model, which can generate plausible data. It consists
of two neural networks adversarial models, discriminator D and generator G.
Real data is labeled as ‘1’ and artificially generated (fake) data is labeled ‘0’.
Generator G network generates the fake data with random noise input z, and
discriminator D network discriminates between real and fake data.

GANs are based on the concept of a zero-sum non-cooperative game where
one network (discriminator) is trying to minimize the loss, and the other network
(generator) is trying to maximize the loss (this min-max problem as given by
Eq. (1), where x and z represent the real and fake generated trace, respectively).

The discriminator’s task is to distinguish the real and generated data
instances, whereas the generator’s task is to improve the model based on the
feedback from the discriminator. However, the generator is trying to generate
data traces that are alike. This makes it hard to find a good convergence point.
GAN converges when both D and G reach a Nash equilibrium, meaning that one
(D/G) will not change its actions anymore, no matter what opponent (D/G)
does. This is the optimal point that adversarial loss in GANs aims to optimize.

Ex[log(D(x))] + Ez[log(1 − D(G(z)))]. (1)

2.3 Conditional Generative Adversarial Networks (cGANs)

GANs help generate plausible data, but there is no way to control what random
data they will generate. GAN can be conditioned with extra data to control
the generated information to handle that issue. GAN with an extra condition is
called conditional Generative Adversarial Network (cGAN). The extra data in
cGANs is the class label of the data samples. Using class labels for cGAN training
has two main advantages: firstly, it helps in improving the GAN performance,
and secondly, it helps in generating the specific target class samples.

In the training process of the cGAN model, the generator network gener-
ates data based on the label and the random input and tries to replicate the
actual distribution in the real data samples. The generated samples are of the
same structure as the input labeled data. In the next step, the real and the
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generated/fake data are given as input to the discriminator. The discriminator
is first trained with the original/real labeled data samples and is then trained
with the fake generated data samples. Similar to GANs, the discriminator’s task
is to separate the fake from real data samples, which helps the generator generate
better (realistic) samples [13].

2.4 Data Augmentation

Data augmentation is an umbrella term representing various techniques used
to increase the amount of data by adding (slightly) modified copies of already
existing examples or newly created synthetic examples from existing data. Data
augmentation can act as a regularization technique and will help reduce overfit-
ting. While data augmentation can be applied to any domain, most of the results
and techniques were developed for data augmentation in image classification [24].

2.5 Deep Learning Algorithms

Based on the deep learning-based side-channel attacks (DL-SCA) performance
on various cryptographic algorithms [6,25,26], we tested our newly generated
datasets using two state-of-the-art deep learning approaches: multilayer percep-
tron (MLP) and Convolutional Neural Network (CNN). MLP and two variations
of CNN [3,27] are used to evaluate the AES dataset, and one CNN architec-
ture [25] is used to evaluate the ECC dataset.

2.6 Siamese Neural Network

Siamese neural network (also called twin/identical neural network) is an artifi-
cial neural network architecture consisting of two similar neural networks (with
the same weights and network parameters). It is capable of processing two dif-
ferent input vectors to produce comparable output vectors [28]. The two neural
networks are feedforward multilayer perceptrons that work in tandem and are
trained in a backpropagation manner. The idea behind the Siamese neural net-
work is not to learn to classify the labels but to discriminate between the input
vectors. Hence a special loss function, contrastive loss, or Triplet Loss is used
for the training of the network [29]. For training the network, the input vec-
tor pairs (xi, xj) are prepared; a few pairs consist of similar vectors, and a few
pairs consist of dissimilar vectors. The similar vector pair is labeled as y = ‘1’,
whereas the dissimilar pair is labeled as y = ‘0’. Each pair is fed to the Siamese
network, and distance is computed to check the similarity. The output vectors
from each network are compared using cosine or Euclidean distance and can
be considered as a semantic similarity between projected representation of the
input vectors [30].

2.7 Cryptographic Algorithms Under Evaluation

For our analysis, we investigate the performance of our proposed model on two
publicly available datasets. One dataset corresponds to the implementation of
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Advanced Encryption Standard (AES) and the other to the Elliptic Curve Cryp-
tography (ECC) implementation.

– The ASCAD dataset [27] is the first dataset that acts as a basis for compar-
ative analysis of deep learning-based side-channel analysis (DL-SCA). The
traces are collected from the masked AES-128 bit implementation on an 8-
bit AVR microcontroller (ATmega8515). The leakage model is first-round
S-box (Sbox[P (i)3 ⊕k∗]) where the third byte is exploited (as that is the first
masked byte). There are 60 000 total traces along with the metadata (plain-
text/ciphertext/key). These traces are further split into two datasets, one for
training (profiling) consisting of 50 000 and the other for the test (attack),
consisting of 10 000 traces. Each trace consists of 700 features. The labels are
stored in a separate file.

– The publicly available ECC dataset [25,31] consists of power consumption
traces collected from a Pinata development board (developed by Riscure).
The board is equipped with a 32-bit STM32F4 microcontroller (with an ARM-
based architecture), running at the clock frequency of 168 MHz and having
Ed25519 implementation of WolfSSL 3.10.2. The target is profiling a single
EC scalar multiplication operation with the ephemeral key with the base point
of curve Ed25519. The 256-bit scalar/ephemeral key is interpreted as slices of
four nibbles. Hence, there are 16 classes/labels in the dataset. The dataset has
a similar format as ASCAD. The database consists of two groups of traces;
profiling traces and attack traces. Each group further consists of “TRACES”
and “LABELS”. Each raw trace consists of 1 000 features, representing the
nibble information used during the encryption. Profiling and attack traces
groups consist of np and na tuples, with a corresponding label for each trace.
In total, there are 6 400 traces, out of which 80/20 are used for profiling
(np = 5120) and attacking (na = 1280).

The profiling traces from both datasets are used to train the cGAN mod-
els. Half of the real traces per class are kept in the final dataset, along with
the generated data samples. The attacking traces are used for evaluating the
performance of the DL-SCA model trained with the new dataset.

It should be noted that the purpose of this research is to analyze the effect of
artificially generated features in data traces for environments where the adversary
has an additional constraint on collecting leakage traces to form a dataset. The
presented methodology can be extended to produce and test the fake leakage traces
for any other cryptographic algorithms.

3 Related Works

Data augmentation represents a set of techniques to reduce overfitting and
improve the supervised machine learning task (commonly, classification). Data
augmentation is a well-researched topic, mostly framed in the context of image
data augmentation [24]. While there are multiple ways to divide the data aug-
mentation techniques, a common one is on 1) techniques transforming the input,
2) deep learning techniques (where our work also belongs), and 3) meta-learning.
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Data augmentation in SCA is used to improve side-channel attack perfor-
mance and can be put in the same general direction as, e.g., works exploring how
to improve hyperparameter tuning. As data augmentation increases the amount
of data, it is commonly considered in the deep learning perspective as there,
very large datasets are beneficial. There are significantly more works consider-
ing symmetric-key cryptography and deep learning-based SCA than public-key
cryptography.

The first investigation that uses convolutional neural networks for side-
channel attacks on AES is conducted by Maghrebi et al. [1]. This work rep-
resents a significant milestone for the SCA community as it demonstrated how
deep learning could be used without feature engineering and efficiently break
various targets.2

Cagli et al. investigated how deep learning could break implementations
protected with jitter countermeasures [6]. This work is highly relevant as it
introduced data augmentation to the SCA domain. The authors used two data
augmentation techniques: shifting (simulating a random delay) and add-remove
(simulating a clock jitter). Picek et al. investigated how reliable are machine
learning metrics in the context of side-channel analysis. Their results showed
that machine learning metrics could not be used as sound indicators of side-
channel performance [5]. Additionally, as the authors used the Hamming weight
leakage model that results in class imbalance, they utilized a well-known data
balancing technique called SMOTE, showing that the attack performance can be
significantly improved. Kim et al. explored how to design deep learning architec-
tures capable of breaking different datasets [2]. Additionally, they used Gaussian
noise at the input to serve as a regularization factor to prevent overfitting. Luo
et al. investigated how mixup data augmentation can improve CPA and deep
learning-based side-channel attacks [7].

Next, several works aimed at improving neural network performance by pro-
viding a systematic approach for tuning neural network architectures. Zaid et
al. were the first to propose a methodology to tune the hyperparameters related
to the convolutional neural network size (number of learnable parameters, i.e.,
weights and biases) [3]. Wouters et al. [32] further improved upon the work from
Zaid et al. [3] by showing how to reach similar attack performance with even
smaller neural network architectures. Rijsdijk et al. used reinforcement learning
to provide an automated way to construct small convolutional neural networks
that perform well [33]. Following a different approach to improving the attack
performance, Wu and Picek showed how denoising autoencoder could be used to
reduce the effect of countermeasures [34]. The first work that considers the usage
of GANs (more specifically, cGANs) for the SCA domain is made by Wang et
al. [10]. While this work shows the potential of GANs in SCA, the results indicate
that a large profiling set is required to construct useful synthetic data.

2 We note earlier works are also using neural networks like multilayer perceptron,
but the results were in line with other machine learning techniques, and researchers
commonly used feature engineering to prepare the traces.
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There are several works using template attack (and its variants) to attack
public-key cryptography, see, e.g., [35–40]. Lerman et al. used a template attack
and several machine learning techniques to attack an unprotected RSA imple-
mentation [19]. Carbone et al. used deep learning to attack a secure implemen-
tation of RSA [41]. The authors showed that deep learning could reach strong
performance against secure implementations of RSA. Weissbart et al. showed a
deep learning attack on EdDSA using the curve Curve25519 as implemented in
WolfSSL, where their results indicate it is possible to break the implementation
with a single attack trace [25]. Weissbart et al. considered deep learning-based
attacks on elliptic curve Curve25519 implementation protected with counter-
measures and showed that even protected implementations could be efficiently
broken [42]. Perin et al. used a deep learning approach to remove noise stem-
ming from the wrong choice of labels after a horizontal attack [15]. The authors
showed that protected implementations having an accuracy of around 52% after
a horizontal attack could reach 100% after deep learning noise removal (note
that the authors also used data augmentation to reach 100% accuracy). Zaid et
al. introduced a new loss function called ensembling loss, generating an ensem-
ble model that increases the diversity [43]. The authors attacked RSA and ECC
secure implementations and showed improved attack performance.

4 Proposed Approach

4.1 Data Splitting

The leakage data traces L are collected from the device while AES or ECC algo-
rithms encryptions E are performed using the secret key K or scalar/ephemeral
key K, respectively. The labeled collected traces are then divided into two sets:
Training (DTraining) and Testing (DTesting). The training set is used to train the
Siamese-cGAN model, which produces fake traces. The newly generated dataset
(real+fake traces) is used to train the DL-SCA model, and the test set is used
to evaluate the SCA model’s performance. For a fair evaluation of the trained
Siamese-cGAN model, the test set is never shown to the network during the
Siamese-cGAN model training process.

For the rest of the paper, “cGAN models” or “Siamese-cGAN models” refer
to the model used for generating data. However, “DL-SCA models” refer to
the deep learning models, which are used to evaluate the performance of the
generated data by applying profiling side-channel attacks.

4.2 Siamese-cGAN Model for Data Augmentation

In contrast to the standard GANs, conditional GANs (cGANs) perform condi-
tional generation of the fake data based on the class label rather than generating
signals blindly. The labels c of the data traces/instances are used to train GANs
in a zero-sum or adversarial manner to improve the learning of the generator (G).
As mentioned before, the generator’s G task is to generate the leakage signals



306 N. Mukhtar et al.

that carry similar properties as the original traces using the random noise z and
the latent space input ls. The discriminator’s D task is to distinguish real and
fake signals. In the cGAN training process, first, the discriminator D is trained
with the labeled real data traces Treal, and then the discriminator D is trained
with the fake generated signals G(z) or TGen. The objective function for cGAN
is given by Eq. (2).

Ex∼TReal
[log(D(x|c))] + Ez[log(1 − D(G(z|c)))]. (2)

In our proposed design of the Siamese-conditional Generative Adversarial
Network (Siamese− cGAN), we combine cGAN with the Siamese network con-
cept. Siamese network is an architecture in which two identical/twin networks
carrying the same weights are trained with two different inputs. In the proposed
model, two generators G1 and G2 take two random input noise vectors z1 and
z2, generating fake signals G(z1) and G(z2), respectively, in a Siamese fashion.
Both the generators share the same network weights, and only the input is dif-
ferent. The discriminator D is first trained with the labeled real data TReal and
then with the fake data TGen, originating from the two twin generator networks
G1 and G2.

As mentioned before, convergence is a challenging issue in training GANs. In
some cases, the model converges and then starts diverging again; that is, it for-
gets its learned examples. Several techniques include memory-based learning, to
handle such scenarios [44]. Training the model simultaneously, in a Siamese set-
ting, with the random noise from two sources can help obtain a better-converged
model in fewer epochs by combining output from both. Moreover, to analyze the
impact of convergence, we introduced another layer in the two-step cGAN model.
This layer monitors the real traces loss LReal, generated traces loss LGen, and
GAN model Loss LGAN .

Let DGAN→R represent the loss difference between LGAN and LReal, and
DGAN → G represent the loss difference between LGAN and LGen, then the
average of loss differences over last t iterations will be given by:

1
t

t∑

i=1

(|DGAN→R(i)| + |DGAN→G(i)|). (3)

The Siamese-cGAN model stops training when the average model loss
LossAvg over the last t iteration is less than the average loss over the last t ∗ 2
iterations. The trained Siamese-cGAN model is then used to generate the ng

fake traces TGen, containing features similar to the original signals. TGen and
TReal, having ng and nr instances respectively, are combined together to form
a resultant dataset TGAN . This dataset is then used to train the deep learning
model to analyze the generated dataset’s performance with DL-SCA. A test set
is set aside for a fair evaluation before adding the generated traces into the train-
ing dataset. The test set is never shown to the neural network during training.
The proposed Siamese-cGAN specific for DL-SCA is shown in Fig. 1.
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Fig. 1. Proposed Siamese-cGAN architecture for ML-SCA.

4.3 cGAN Models for Discriminator and Generator

In the proposed Siamese-cGAN model, the selection of generator and discrimi-
nator plays a vital role. The authors in [10] recommended using a generator and
discriminator with fully connected dense layers only, without any complex layers.
However, in this study, we explore the possibility of using fully connected dense
layers and the convolutional layers in discriminator. The reason for evaluating
CNN layer-based network is that it has provided better fake images genera-
tion in image processing [20]. Hence, for evaluating the trained Siamese-cGAN
model performance, two different networks are used for the generator and dis-
criminator. These networks are denoted as Model A and Model B. Model A
is based on two fully connected layers for the generator and the discriminator.
However, Model B (CNN-based) has a more complex architecture with four
fully connected and one convolutional layer. Batch normalization, LeakyRelu,
and dropout are introduced, which help achieve a more stable model that avoids
overfitting. Additionally, we tested both Model A and Model B generators and
discriminators with and without Siamese settings to analyze the improvements
introduced by using the Siamese configuration.

Figures 8 and 9, given in Appendix A, show the structure of both the models.
We use the same generator and discriminator model architectures to generate
symmetric and public-key leakages data samples. The only parameter that needs
to be changed is the size of dense layers, which changes based on the number
of classes per target dataset. The size in each subsequent layer is doubled from
the previous layer. That is, layer 1, layer 2, and layer 3 have a size equal to the
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number of classes, the number of classes*2, and the number of classes*4, respec-
tively. The convolutional layer has the tanh activation function. The hyperpa-
rameter details for the generator network are given in Table 1, while for discrim-
inator, we use a dense layer (512), LeakyReLU , and dropout set at 0.4.

Table 1. Generator Architecture Details

Hyper-parameter Value

Input shape (700,1) for AES, (1 000,1) for ECC

Fully Connected layer 1 Number of classes

Fully Connected layer 2 Number of classes*2

Fully Connected layer 3 Number of classes*4

Dropout rate 0.4

5 Experiments and Results

5.1 DL-SCA Evaluation Model Architectures

As mentioned in Sect. 2.5, we use MLP and CNN architectures to evaluate the
performance of the newly generated datasets using the cGAN model. The state-
of-the-art DL-SCA model architectures for evaluating the original publicly avail-
able datasets [3,25,27] are used in the same setting except for the batch size and
epochs, which are varied between 50–200 to see the impact on the results.

For evaluating the ASCAD dataset, the first architecture is an MLP-based
network from [27]. The first CNN architecture is denoted as ASCAD-CNN1 [27],
while the second one is denoted as ASCAD-CNN2 [3]. For evaluating the ECC
dataset performance, we use the deep learning architecture presented in [25].
We use the existing state-of-the-art DL-SCA model architectures to allow fair
comparison. What is more, the goal of this work is not to find new deep learning
architectures but to enhance the performance of the existing architectures.

The performance of the DL-SCA trained models with the newly generated
datasets is evaluated using two commonly used evaluation metrics: key rank
and accuracy. Accuracy represents the number of correctly classified examples
divided by the number of examples. Key rank is the position of the correct key
guess in the key guessing vector. More precisely, this vector contains the key
candidates in decreasing order of probability, and finding the position of the
correct key indicates the effort required by the attacker to break the target.

5.2 Experimental Setup

The proposed GAN models have been developed and trained using Keras and
Tensorflow libraries for our experiments. The models are trained to generate the
fake data on a common computer equipped with 32 Gb RAM, i7-4770 CPU with
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3.40 GHz, and Nvidia GTX 1080 Ti. The time required for fake data generation
will vary depending on the number of classes and generated fake traces per class.
The Siamese−cGANModels training took less than 5 min to train and less than
5 min to generate 150 fake traces for 256 classes in total. For training a GAN
model, real data traces are given as an input in the batches of 30 data traces,
and the model is trained for 1 000 epochs.

We divide our experimental analysis into two sections.

– Analysis-1: first, in Sect. 5.3, we provide the visual representation of the
trained cGAN models over 1 000 epochs. Visual representation helps iden-
tify the convergent model, which is then further selected for analysis in the
second phase of analysis. We trained four cGAN models, out of which two
are existing and two are newly proposed, based on the generator and dis-
criminator as explained in Sect. 4.3. Details of the cGAN models are given
in Table 2. We also provide the model convergence-based comparison of our
proposed Siamese-cGAN-based model with the existing cGAN models [10].

– Analysis-2: second, in Sect. 5.4, we provide the deep learning-based side-
channel analysis of two datasets; dataset containing real leakage signals only
and the dataset consisting of both real and fake leakages, by training with
two neural networks (MLP and CNN). We also compare generating leakage
signals from the non-converging and converging networks for this analysis.
To achieve this, we generated fake signals from various points while training
the Siamese-cGAN network. More precisely, we generated the signals when
the model converged the best and generated the signals when the model was
the least convergent (initial epochs). Converging details of each model are
given in the respective sections. This comparison is performed to highlight
that not any cGAN can be selected blindly. Only a well-convergent network
will generate traces that are more alike in characteristics to that of original
real traces.

Table 2. cGAN Model Details

Model Name Description

cGAN Model A Model without CNN and Siamese network

cGAN Model B Model with CNN but without Siamese network

Siamese− cGAN Model A Model without CNN but with Siamese network

Siamese− cGAN Model B Model with CNN and with Siamese network

5.3 Analysis-1: Existing and Proposed GAN-based Approaches

This section presents a convergence-based comparative analysis of our approach
with the existing cGAN models. The existing cGAN networks (without lay-
ered Siamese-cGAN setting) are denoted as CGAN Model A/B, whereas our
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proposed models are denoted as Siamese − cGAN Model A/B. For this anal-
ysis, all four cGAN networks are trained with the DTraining dataset and the
GAN model loss for both AES and ECC, as shown in Figs. 2 and 3, respec-
tively. Figure 2 a and b presents the real, fake, and GAN loss for training with
cGAN Model A and cGAN Model B without Siamese settings, respectively.
Next, Fig. 2 c and d presents the real, fake, and GAN loss for training with
Siamese − cGAN Model A and Siamese − cGAN Model B with the Siamese
setting. Similarly, Fig. 3 presents all four cGAN training models’ loss for the
ECC dataset.

Siamese − cGAN and cGAN models, for the ASCAD and ECC dataset
analysis, are trained for 1 000 epochs, and history is recorded every ten epoch.
Hence x-axis is scaled by 10. It can be seen that the proposed Siamese −
cGAN Model B architecture (based on CNN) provides the best loss conver-
gence of real, fake, and GAN models as the models converge around 100–150
epochs and 700–1 000 epochs for AES and ECC datasets, respectively.

This shows that the generator started generating traces similar to the real
traces at this convergence point, making it harder for the discriminator to dis-
criminate between real and fake. Existing cGAN Model A and cGAN Model B
without Siamese configuration did not converge well in 1 000 epochs. More-
over, for Siamese − cGAN Model B, GAN loss is high and quickly decreases
in initial epochs. Hence, the proposed Siamese − cGAN Model B is the
robust solution for generating artificial/fake leakage signals for both algo-
rithms as it converges better and faster than other cGAN models. Interestingly,
Siamese− cGAN Model A performs relatively poorly, indicating that the more
powerful neural network architecture was required for this task. In conclusion,
from this analysis, Siamese − cGAN Model B is further selected to generate
fake data in analysis phase 2.

5.4 Analysis-2: Analysis of the Proposed Siamese-CGAN
for DL-SCA

Based on the results from the previous analysis, Siamese − cGAN Model B
is selected for further experiments in this section. Now, we perform DL-SCA
(using MLP, ASCAD-CNN1, and ASCAD-CNN2) on the newly generated TGAN

(real+fake traces) datasets, generated using Siamese − cGAN Model B. How-
ever, we also analyzed the real dataset (with reduced traces per class). Hence,
two datasets are formed: one with real traces only and the other (TGAN ) with
both real and fake traces. For TGAN datasets, two further datasets are formed,
one for the fake data generated from the well-converged model and the sec-
ond from the non-convergent model. Finally, we analyze how all these different
settings impact the key rank of a side-channel attack.

Analysis on Real Traces. In our experiments, we reduced the size of the
ASCAD and ECC leakage datasets intentionally to analyze the effect of the
artificially generated traces on the small-size datasets. We selected nr = 150 (for
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Fig. 2. CGAN Model Training Loss for the ASCAD dataset (a) cGAN Model A, (b)
cGAN Model B, (c) Siamese− cGAN Model A, (d) Siamese− cGAN Model B

each class) leakage traces from the ASCAD and ECC datasets. The reason for
selecting precisely 150 traces per class is because we wanted an equal number of
real traces for all the classes. In the ASCAD dataset, class 213 has a minimum
number of traces (154 traces); hence 150 is selected. No artificial/fake traces are
included in the training dataset, so ng = 0. Hence, total number of traces in AES
and ECC datasets are 38 400 (150 traces × 256 classes) and 24 00 (150 traces ×
16 classes), respectively. For deep learning-based attacks, we used the previously
successful DL-SCA models for AES and ECC in respective studies [3,25,27].

The purpose of using the same deep learning-based models is to show that
the artificially generated traces produce the same results as the real traces with
the same model architectures. When considering the ASCAD-CNN1 architec-
ture, everything stays the same as in previous studies’ analysis except that we
perform normalization on the training and test data. For normalization, each
input variable feature is scaled in the range [−1, 1] by using MinMaxScaler from
the Sklearn library. For MLP, 10-fold cross-validation is performed. For ASCAD-
CNN2 analysis, in addition to applying normalization, a standardization is added
as per the proposed architecture in [3], and data is standardized around mean
with a unit standard deviation (between 0 and 1) [45,46]. For ECC, the same
model is used for training and test as proposed in [25].
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Fig. 3. cGAN Model Training Loss for the ECC dataset (a) cGAN Model A, (b)
cGAN Model B, (c) Siamese− cGAN Model A, (d) Siamese− cGAN Model B

Figure 4 (a) shows the key rank for the real traces (38 400) dataset for the
ASCAD dataset analysis using MLP and 10-fold cross-validation. We compare
our results of reduced, original traces with the results of MLPbest reported
in [27], which is plotted for the trained model on 50 000 traces. We can see a slight
deviation though both figures are for the trained model on real traces. Figure 4
(b) shows the key rank on reduced ASCAD dataset trained using ASCAD-CNN2.
It shows key rank not approaching zero in the first 1 000 traces. This confirms
that the reduced dataset did not perform as expected with the existing models.

Figure 5 shows the accuracy for the real traces dataset for ECC dataset analy-
sis using CNN architecture [3]. Raw, real data traces analysis for ECC shows that
the private key can be recovered with 100% accuracy using CNN. It should be
noted that preprocessing and alignment have not been applied to these datasets.

Analysis on Real and Generated Traces Dataset with the Maximum
and Minimum Convergence. We introduce the terms maximum and min-
imum convergence for our analysis. Maximum convergence refers to the point
(epochs) when a stable GAN model is achieved. Minimum convergence simply
refers to the epochs when the GAN model is not stable, mostly in start epochs
and often towards the end epochs as well. In certain failure modes or mode
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Fig. 4. Results for (a) Key rank for the ASCAD dataset having 38 400 profiling traces
trained using MLP, and (b) Key rank for the ASCAD dataset having 38 400 profiling
traces trained using ASCAD-CNN2

Fig. 5. Results for training and validation accuracy for the ECC dataset having 2 400
profiling traces

collapse scenarios, the GAN model stabilizes initially and might become unsta-
ble after a few epochs when the generator trains itself that it is hard to distin-
guish between the traces of different classes (meaning traces for all the classes
look similar). The purpose of using these two types of analysis is to demonstrate
that, in contrast to the non-convergent GAN model, the traces generated with
the well convergent GAN model only produces traces similar in characteristics
to the traces of the same class but different from the traces of the other classes.

For the GAN analysis, the training dataset consists of an equal proportion
of the real traces and the artificially generated fake traces, that is, nr = 150
and ng = 150 per class, which means that in total, 300 × 256 =76 800 traces are
in the dataset. Fake leakage signals are generated for the epochs during which
the cGAN-Siamese model achieves maximum convergence. For the minimum
convergence analysis, we combined the real traces with the artificially generated
traces in equal proportion, the same as the maximum convergence case. However,
traces are collected for the epochs during which the GAN model showed the
minimum convergence.
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Fig. 6. Key rank for the ASCAD dataset for (a) Maximum convergence cGAN −
Siamese Model B using MLP, (b) Minimum convergence cGAN −Siamese Model B
using MLP, (c) Maximum convergence cGAN − Siamese Model B using ASCAD-
CNN1, (d) Minimum convergence cGAN−Siamese Model B using ASCAD-CNN1, (e)
Maximum convergence cGAN−Siamese Model B using ASCAD-CNN2, (f) Minimum
convergence cGAN − Siamese Model B using ASCAD-CNN2

Figure 6 shows the key rank for both maximum and minimum convergence
for all three DL-SCA models and the ASCAD dataset. We notice that generating
fake traces from the maximum convergence point significantly impacts key rank.
The maximum convergence is achieved around 100–150 epochs for Siamese −
cGAN Model B. Hence, data traces are generated around those epochs for
analysis. It is observed that with the generated traces, all models (MLP, ASCAD-
CNN1, and ASCAD-CNN2) gave the best performance, and the secret key can be



Fake It Till You Make It 315

obtained efficiently. Thus, we can conclude that the artificially generated traces
contain significant information that improved the ML-SCA performance.

Fig. 7. Training and validation accuracy on the ECC dataset collected from (a) Max-
imum convergence point, (b) Minimum convergence point

The minimum convergence is observed around initial epochs, so artificial 150
traces per class are generated around this point and are combined with the real
150 traces to train the DL-SCA model. Observe that with minimum convergence,
the DL-SCA attack model shows key rank is not stable, as it reaches zero in
certain cases and starts increasing again as can be seen from Figs. 6b and 6f .
However, for Fig. 6d (trained with ASCAD-CNN1), it appears to reach a key
rank of zero near 1 000 traces, so more investigation is required to assess this
case properly.

Figure 3 shows the GAN convergence curve for the ECC dataset. The model
trained with the proposed Siamese − cGAN Model B shows a better conver-
gence than the other three cGAN models’ losses. The traces with the maximum
convergence analysis are generated around epoch 700–1 000 (70–100 scaled in
Fig. 3), and traces for the minimum convergence are generated around 20–30
epochs. The performance accuracy is high after adding artificial traces. The
trained model with the artificial traces generated with the convergent model
(Fig. 7a) shows accuracy greater than 97% using CNN, which is nearly the same
accuracy as achieved on the real traces. However, the trained model with artifi-
cial traces, with the least convergent model, shows around 90% accuracy. While
this performance is still good, we note that it cannot be compared with the per-
formance on the real dataset. Hence, the maximum convergent model generates
the artificial traces that are more alike in characteristics to the real leakage traces
and helps in training an efficient model for profiling side-channel analysis.
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5.5 Discussion

Based on the conducted experiments, we draw some general observations:

– GANs (more precisely, conditional GANs) represent a viable option for con-
structing synthetic side-channel traces. To improve the performance of GANs,
it is beneficial to use deeper architectures and convolutional layers.

– A combination of a Siamese network and a cGAN can further improve the
quality of the obtained synthetic examples.

– The procedure of generating fake traces is efficient and can generate hundreds
of traces in a matter of minutes.

– It is important to monitor the GAN loss carefully and use the model that
minimizes it when crafting synthetic examples.

– The combination of fake and real traces performs well regardless of the applied
deep learning-based model. What is more, we see that fake traces can improve
attack performance.

– It is possible to construct synthetic examples for various cryptographic imple-
mentations with similar success, i.e., this technique is not limited to a specific
cryptographic implementation.

6 Conclusions and Future Work

A dataset of leakage traces with insufficient traces can pose a significant problem
for accurate attack modeling using deep learning-based side-channel analysis.
Data augmentation using a Generative Adversarial Network (GAN) can be useful
for such scenarios. This work proposed a layered architecture (Siamese-cGAN)
based on cGAN and Siamese network that presents a well-convergent model
to generate artificial traces similar to real traces. We performed two sets of
analyses. In the first set of analyses, we run the experiments and present a visual
comparative analysis between the performance of the proposed model and the
existing cGAN based models for leakage signal generation. For this analysis, two
neural network-based models (MLP and CNN) have been used for modeling the
generator and the discriminator networks. The best model is selected based on
the comparative analysis. The second set of analyses evaluated the generated
fake dataset by applying the DL-SCA on the leakage datasets from the exiting
AES and ECC algorithm implementations. Four state-of-the-art neural network
architectures (one MLP and three CNNs) are used for this evaluation. We also
provided a comparative analysis of the dataset’s performance consisting of data
generated from the well-convergent network and data generated from the non-
convergent network.

The proposed Siamese-cGAN model performed better than the existing sim-
ple cGAN models for both existing symmetric and public-key datasets. The
quantitative analysis results show that the well-converged Siamese-cGAN net-
work produces fake leakage traces similar to the collected traces. Hence, they
enable a better deep learning-based model for side-channel attacks. We also
observed that the CNN-trained models performed better than MLP for the key
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recovery. We conclude that leakage traces/instances with significant contribut-
ing features can be efficiently generated. However, selecting a fully converging
model might vary for each cryptographic algorithm.

As future work, we plan to explore the limits of our approach from the per-
spective of the number of synthetic traces. Indeed, while our results indicate
that 150 traces per class are more than sufficient to construct convincing syn-
thetic data, understanding the minimum required number of traces would allow
a proper evaluation of the method’s viability. Furthermore, we used only the
intermediate value leakage model, which results in more classes and balanced
measurements per class. We plan to evaluate different leakage models like the
Hamming weight model, resulting in imbalanced data and fewer classes. Finally,
it would be interesting to explore if the GAN-based approach could generate
measurements that would help reduce the effect of portability for deep learning-
based SCA [47].

A Appendix

A.1 Siamese-cGAN Model Architectures

Fig. 8. Siamese− cGANModel A
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Fig. 9. Siamese− cGANModel B
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Abstract. The SIDH key exchange is the main building block of SIKE,
the only isogeny based scheme involved in the NIST standardization
process. In 2016, Galbraith et al. presented an adaptive attack on SIDH.
In this attack, a malicious party manipulates the torsion points in his
public key in order to recover an honest party’s static secret key, when
having access to a key exchange oracle. In 2017, Petit designed a passive
attack (which was improved by de Quehen et al. in 2020) that exploits
the torsion point information available in SIDH public key to recover
the secret isogeny when the endomorphism ring of the starting curve is
known.

In this paper, firstly, we generalize the torsion point attacks by de
Quehen et al. Secondly, we introduce a new adaptive attack vector on
SIDH-type schemes. Our attack uses the access to a key exchange oracle
to recover the action of the secret isogeny on larger subgroups. This
leads to an unbalanced SIDH instance for which the secret isogeny can be
recovered in polynomial time using the generalized torsion point attacks.
Our attack is different from the GPST adaptive attack and constitutes a
new cryptanalytic tool for isogeny based cryptography. This result proves
that the torsion point attacks are relevant to SIDH (Disclaimer: this
result is applicable to SIDH-type schemes only, not to SIKE.) parameters
in an adaptive attack setting. We suggest attack parameters for some
SIDH primes and discuss some countermeasures.

Keywords: Post-quantum cryptography · Cryptanalysis · Adaptive
attacks · SIDH

1 Introduction

The first isogeny-based cryptographic schemes are the CGL (Charles-Goren-
Lauter) hash function [5] and the CRS (Couveignes-Rostovtsev-Stolbunov) key
exchange [10,30]. The CRS scheme is a Diffie-Hellman type key exchange scheme
using ordinary isogenies of elliptic curves. It is vulnerable to a sub-exponential
quantum hidden shift like attack [6] and is not practically efficient.

In 2011, Jao and De Feo proposed SIDH [15,23] that uses isogenies of super-
singular elliptic curves. SIDH is efficient and it is not vulnerable to the sub-
exponential quantum attack presented in [6]. Nevertheless, a recent paper by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Kutas et al. [25] proves that hidden shift like attacks apply to variants of SIDH
with considerably overstretched parameters. The problem of computing isogenies
between given supersingular elliptic curves is somehow new in cryptography. Its
relation with the supersingular endomorphism ring computation problem have
been studied in [12,29]. A rigorous proof of the equivalence between the two
problems was recently proposed by Wesolowski [37].

Contrarily to the ordinary case where isogenies commute, supersingular iso-
genies do not commute in general. In order to solve this issue in SIDH, the images
of some well-chosen torsion points trough the secret isogeny are computed and
included in the public keys. This implies that the hard problem underlying the
security of SIDH is different from the general supersingular isogeny problem.
Moreover, this torsion points have been used in designing adaptive and passive
attacks on SIDH and/or its (unbalanced) variants.

The most relevant adaptive attack (excluding side channel attacks) on SIDH
is due to Galbraith, Petit, Shani and Ti (GPST) [19]. They suppose that one
honest party Alice uses a static secret key, and the other malicious party Bob
performs multiple key exchanges with Alice. The main idea of the attack is that
Bob replaces the images of the torsion points in his public key by malicious ones
and obtains some information on Alice’s static secret isogeny when looking at the
obtained shared secret. Repeating this process a polynomial number of times,
Bob totally recovers Alice’s private key. The pairing-based key validation method
present in SIDH does not detect the GPST adaptive attack. In SIKE [22] (Super-
singular Isogeny Key Encapsulation), the GPST adaptive attack is avoided by
leveraging SIDH with a variant [21] of the Fujisaki-Okamoto transform [17].

The first passive torsion points attacks are due to Petit [28] and were recently
improved by de Quehen et al. [11]. These attacks combine the availability of the
endomorphism ring of the starting curve E0 in SIDH and the torsion point
information available in SIDH public keys, to compute a suitable endomorphism
of Alice’s public curve EA. The secret isogeny is then recovered using the later
endomorphism. For sufficiently unbalanced SIDH parameters (the degrees of the
secret isogenies of the parties are of different size), the latest version of the
attack [11] is more efficient compared to the generic meet in the middle and
the van-Oorschot - Wiener (vOW) attack [35]. For balanced parameters (the
degrees of the secret isogenies of both parties are approximately of the same
size), the quantum version of the attack is as efficient as the best known quantum
attacks [11, Figure 1]. Other passive attacks exploiting the availability of torsion
points in the public key are described in [16,25].

The improved torsion points attacks do not apply to SIKE and BSIDH [7]
parameters since these parameters are balanced. Therefore, one may argue that
they are not relevant to SIDH, BSIDH or any other SIDH like schemes using
balanced isogenies degrees.

Contributions. The contribution of this paper is twofold.
First, we revisit the torsion point attacks. The torsion point attacks are

used to recover a secret isogeny φ : E0 → E of degree NA when the images of
torsion points of order NB in E0 are provided. We prove that one can tweak the
algorithm in such a way that it recovers φ when only the images of three cyclic
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disjoint groups G1, G3, G3 ⊂ E0[NB ] of order NB are provided. This constitutes
a generalisation of the torsion point attacks and will be useful in the design of
our adaptive attack.

Secondly, we design a new adaptive attack on SIDH-types schemes, including
BSIDH. Our attack uses torsion point attacks as a subroutine.

Let φA : E0 → EA be Alice’s secret static isogeny in an SIDH instance.
Let NA and NB be the isogeny degrees of Alice and Bob respectively. Our
attack actively recovers the images through φA of three cyclic disjoint groups
G1, G3, G3 ⊂ E0[NNB ] of order NBN where N is a well chosen integer coprime
to NA. This leads to an unbalanced SIDH instance for which the torsion point
attacks can be used to recover the secret isogeny in polynomial time.

Our attack differs from the GPST adaptive attack as follows. In the GPST
adaptive attack, the malicious Bob computes isogenies of correct degrees NB and
manipulates torsion point images. Our attack consists of computing isogenies of
degrees larger than NB and scaling the torsion point images by a suitable scalar
to make the public key pass the pairing-based key validation method in SIDH.
One then utilises the torsion point attack to recover the secret.

We prove that our attack runs in polynomial time. We provide specific attack
parameters for SIDH primes $IDHp182, $IDHp217, SIDHp377, SIDHp434,
SIDHp503 and SIDHp546. For these SIDH primes, the attack fully recovers
Bob’s secret isogeny querying a few tens of thousand times the key exchange
key exchange oracle. Determining specific attack parameters for BSIDH primes
is computationally intensive. We only give an example of generic attack param-
eters for the smallest BSIDH prime. We suggest countermeasures among which
the Fujisaki-Okamoto transform (as used in SIKE), using SIDH proof of isogeny
knowledge as recently proposed in [14] or setting the starting curve in SIDH to
be a random supersingular curve with unknown endomorphism ring.

The torsion point attacks do not apply to SIDH parameters [11, §1.1 Fig. 1]
since they do not (yet) outperform generic passive attacks such as the meet
in the middle on SIDH parameters. This attack comes as an ice breaker. This
result, despite being less efficient when compared to the GPST adaptive attack,
it proves that the torsion point attacks become relevant to SIDH and BSIDH
parameters in an adaptive attack setting. Moreover, this attack vector is the
first of its kind. It exploits the fact that in an SIDH instance, the pairing check
does not suffices to convince Alice that Bob effectively computed an isogeny of
degree NB . We believe this attack fosters the understanding of SIDH and is a
new cryptanalytic tool for isogeny based cryptography.

Outline. The remaining of this paper is organized as follows: in Sect. 2, we recall
some generalities about elliptic curves and isogenies. We briefly present SIDH
and the GPST adaptive attack. In Sect. 3, we present the torsion point attacks
and describe our generalisation. In Sect. 4 we present an overview of our attack
and describe the active phase. We also discuss the computation of the attack
parameters and summarize the attack. In Sect. 5, we suggest attack parame-
ters for some SIDH primes and we briefly describe some countermeasures. We
conclude the paper in Sect. 6.
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2 Preliminaries

2.1 Elliptic Curves and Isogenies

An elliptic curve is a rational smooth curve of genus one with a distinguished
point at infinity. Elliptic curves can be seen as commutative groups with respect
to a group addition having the point at infinity as neutral element. When an
elliptic curve E is defined over a finite field Fq, the set of Fq-rational points
E(Fq) of E is a subgroup of E. For every integer N coprime with q, the N -
torsion subgroup E[N ] of E is isomorphic to ZN ⊕ ZN .

An isogeny from E to E′ is a rational map from E to E′ which is also a
group morphism. The kernel of an isogeny is always finite and entirely defines
the isogeny up to powers of the Frobenius. Given a finite subgroup G of E, there
exists a Frobenius free isogeny of domain E having kernel G, called a separable
isogeny. Its degree is equal to the size of its kernel. The co-domain of this isogeny
is denoted by E/G. The isogeny and the co-domain E/G can be computed from
the knowledge of the kernel using Vélu’s formulas [33] whose efficiency depends
on the smoothness of the isogeny degree.

An endomorphism of an elliptic curve E is an isogeny from E to E. The
structure of E is closely related to that of its endomorphism ring. When E is
defined over a finite field, the endomorphism ring of E is either an order in a
quadratic field, in which case we say E is ordinary, or a maximal order in a
quaternion algebra in which case we say E is supersingular. The generic isogeny
problem is harder to solve for supersingular curves (for which the best attacks
are exponential) than ordinary curves (for which there exists a sub-exponential
attack [3]). SIDH is based on supersingular isogenies.

We refer to the book of Washington [36] and the book of Silverman [32] for
more background on elliptic curves and isogenies. For a quick introduction to
isogeny-based cryptography, we recommend these notes [13] from De Feo.

2.2 SIDH: Supersingular Isogeny Diffie-Hellman

The SIDH scheme is defined as follows.

Setup. Let p = �eA

A �eB

B − 1 be a prime such that �eA

A ≈ �eB

B ≈ √
p. Let

E0 be a supersingular curve defined over Fp2 . Set E0[�eA

A ] = 〈PA, QA〉 and
E0[�eB

B ] = 〈PB , QB〉. The public parameters are E0, p, �A, �B , eA, eB , PA,
QA, PB , QB .

KeyGeneration. The secret key skA of Alice is a uniformly random integer α sam-
pled from Z�

eA
A

. Compute the cyclic isogeny φA : E0 → EA = E0/ 〈PA + [α]QA〉.
The public key of Alice is the tuple pkA = (EA, φA(PB), φA(QB)). Analo-
gously, Bob’s secret key skB is a uniformly random integer β sampled from Z�

eB
B

and his public key is pkB = (EB , φB(PA), φB(QA)) where φB : E0 → EB =
E0/ 〈PB + [β]QB〉.
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KeyExchange. Upon receiving Bob’s public key (EB , Ra, Sa), Alice checks1

that e(Ra, Sa) = e(PA, QA)�
eB
B , if not she aborts. She computes the isogeny

φ′
A : EB → EBA = EB/ 〈Ra + [α]Sa〉. Her shared key is j(EBA). Similarly,

upon receiving (EA, Rb, Sb), Bob checks that e(Rb, Sb) = e(PB , QB)�
eA
A , if not

he aborts. He computes the isogeny φ′
B : EA → EAB = EA/ 〈Rb + [β]Sb〉. His

shared key is j(EAB).

The correctness of the key exchange follows from the fact that

EA/ 〈φA(PB) + [β]φA(QB)〉 � E0/ 〈PA + [α]QA, PB + [β]QB〉 � EB/ 〈φB(PA) + [α]φB(QA)〉 .

The scheme is summarized in Fig. 1.

E0, PA, QA,

PB , QB

EA, φA(PB),
φA(QB)

EB, φB(PA),
φB(QA)

EAB

φA

φB

φB

φA

Fig. 1. SIDH key exchange

The security of the SIDH key exchange protocol against shared key recovery relies
on Problem 1. Furthermore, Problem 2 states that it is difficult to distinguish
the shared secret from a random supersingular elliptic curve.

Problem 1 (Supersingular Isogeny Computational Diffie-Hellman). Given E0,
PA, QA, PB , QB , EA, φA(PB), φA(QB), EB , φB(PA), φB(QA) (defined as in
SIDH), compute EAB .

Problem 2 (Supersingular Isogeny Decisional Diffie-Hellman). Given E0, PA,
QA, PB , QB , EA, φA(PB), φA(QB), EB , φB(PA), φB(QA) (defined as in SIDH)
and a random supersingular curve E, distinguish between E = EAB and E 	=
EAB .

In the rest of this paper, we denote by NA and NB the degree of Alice’s and
Bob’s isogeny respectively.

2.3 GPST Adaptive Attack

In SIDH [15] one does a pairing-based check on the torsion points φB(PA) and
φB(QA) returned by a potentially malicious Bob. Let E be a supersingular ellip-
tic curve, let N be an integer and let μN be the group of N -roots of unity.
1 Note that in the original SIDH [23], this pairing check is not part of the scheme.

But, as precised in [9] and [19], one includes the check to discard some malformed
public keys.



A New Adaptive Attack on SIDH 327

Let eN : E[N ] × E[N ] → μN be the Weil pairing [18]. Let φ : E → E′ be an
isogeny of degree M , then for P,Q ∈ E[N ],

eN (φ(P ), φ(Q)) = eN (P,Q)M

where the first pairing is computed on E′ and the second one on E.
In SIDH, given (EB , Ra, Sa) returned by Bob as public key, Alice checks if

e�
eA
A

(Ra, Sa) = e�
eA
A

(PA, QA)�
eB
B .

As we will see below, this verification does not assure that the points R,S were
honestly generated. More precisely, the pairing verification does not capture the
GPST adaptive attack.

The GPST Adaptive Attack. The main idea of the Galbraith et al. adaptive
attack [19] is that if Bob manipulates the torsion points φB(PA) and φB(QA)
conveniently, then he can get some information about Alice’s private key α given
that he knows if the secret curve computed by Alice is equal to EAB or not. Hence
in the attack scenario, Bob needs to have access to the later information. This
access is provided to Bob through a key exchange oracle:

O(E,R, S,E′) which returns 1 if j(E′) = j(E/ 〈R + [α]S〉) and 0 otherwise

If one supposes that �A = 2 and eA = n, then after each query, Bob recovers one
bit of

α = α0 + 21α1 + 22α2 + · · · + 2n−1αn−1.

Concretely, let us suppose that Bob has successfully recovered the first i bits of
α, say Ki = α0 + 21α1 + · · · + 2i−1αi−1 so that

α = Ki + 2iαi + 2i+1α′

He generates (EB , φB(PA), φB(QA)) and computes the resulting key EAB . To
recover αi, he chooses suitable integers a, b, c, d and queries the oracle O
on (EB , R, S,EAB) where R = [a]φB(PA) + [b]φB(QA) and S = [c]φB(PA) +
[d]φB(QA). The integers a, b, c and d are chosen to satisfy the following condi-
tions:

1. if αi = 1, 〈R + [α]S〉 = 〈φB(PA) + [α]φB(QA)〉;
2. if αi = 0, 〈R + [α]S〉 	= 〈φB(PA) + [α]φB(QA)〉;
3. the Weil paring e2n(R,S) must be equal to e2n(φB(PA), φB(QA))

The first two conditions help to distinguish the bit αi. The third one prevents
the attack from being detected by the pairing-based check presented in Sect. 2.3.
When attacking the ith bit of alpha where 1 ≤ i ≤ n − 2, the attack uses the
integers

a = θ, b = −θ2n−i−1Ki, c = 0, d = θ(1 + Ki2n−i−1)
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where θ =
√

(1 + 2n−i−1)−1. The attack recovers the first n − 2 bits of α using
n − 2 oracle queries, and it recovers the two remaining bits by brute force. We
refer to [19] for more details.

The GPST adaptive attack exploits the fact that the pairing check does not
convince Alice that the torsion points returned by Bob were honestly computed.
In the rest of this paper, we will design a new adaptive attack that exploits the
fact that the pairing check does not convince Alice that Bob effectively computed
an isogeny of degree NB .

3 Generalizing Torsion Points Attacks

In this section, we revisit the torsion point attacks. Firstly, we describe the
torsion point attacks. Next, we provide a generalisation of these attacks that can
be used to solve weaker version of the key recovery problem in SIDH (Problem 3,
described below).

3.1 Torsion Points Attacks on SIDH

The direct key recovery attack (attacking one party’s secret key) in SIDH trans-
lates into solving the following Computational Supersingular Isogeny Problem.

Problem 3. Let NA and NB be two smooth2 integers such that gcd(NA, NB) = 1.
Let E0 be a supersingular elliptic curve defined over Fp2 . Set E0[NB ] = 〈P,Q〉
and let φ : E0 → E be a random isogeny of degree NA. Given E0, E, P , Q, φ(P )
and φ(Q), compute φ.

The difference between Problem 3 and the general isogeny problem is the
fact that the action of φ on the group E0[NB ] is revealed. In 2017, Petit [28]
exploited these torsion point images and the knowledge of the endomorphism
ring of the starting curve E0 to design an algorithm that solves Problem 3 for a
certain choice of unbalanced (NA � NB) parameters. Petit’s attack has recently
been considerably improved by de Quehen et al. [11].

The idea of the torsion points attacks is to find a trace 0 endomorphism
θ ∈ End(E0) that can be efficiently evaluated on E0[NB ], an integer d and a
small smooth integer e such that

N2
A deg θ + d2 = N2

Be. (1)

Writing Eq. 1 in terms of isogenies we get

φ ◦ θ ◦ φ̂ + [d] = ψ2 ◦ ψe ◦ ψ1 (2)

where ψ1 and ψ2 are isogenies of degree NB , ψe is an isogeny of degree e. The
torsion point information φ(P ), φ(Q) is used to evaluate τ = φ ◦ θ ◦ φ̂ + [d] on
2 In all this paper, an integer is said to be smooth if it is b-smooth for some integer

b ≈ O(log p) where p is the characteristic of the base field considered.
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E[NB ]. Knowing τ on E0[NB ], the kernels of the isogenies ψ1 : E → E1 and
ψ̂2 : E → E2 can be recovered efficiently. The isogeny ψe : E1 → E2 is recovered
by brute force or meet in the middle. We refer to [11, § 4.1] for technical details.

Having computed ψ2 ◦ ψe ◦ ψ1, one recovers

ker φ̂ = ker (ψ2 ◦ ψe ◦ ψ1 − [d]) ∩ E[NA].

Figure 2 illustrates the attack.

E0 E

E1

E2

θ
φ

φ
ψe

ψ2

ψ1

Fig. 2. Improved torsion points attack.

The efficiency of torsion point attacks mostly depends on the imbalance
between the isogeny degree NA and the order NB of the torsion points images.

de Quehen et al. [11] show that under some heuristics, when j(E0) = 1728,
Problem 3 can be solved in:

1. Polynomial time when: NB > pNA and p > NA;
2. Superpolynomial time but asymptotically more efficient than meet-in-the-

middle on a classical computer when: NB >
√

pNA;
3. Superpolynomial time but asymptotically more efficient than quantum claw-

finding [24] when: NB > max{NA,
√

p}.

More concretely, if NA ≈ pα and NB ≈ NApη, then the improved torsion points

attack runs in time Õ

(
N

1+2(α−η)
4α

A

)
and Õ

(
N

1+2(α−η)
8α

A

)
on a classical computer

and a quantum computer respectively [11, §6.2 Proposition 27]. In the special
case where α = 1

2 , we get the following corollary.

Corollary 1. Suppose that NA ≈ p
1
2 and NB ≈ p

1
2+η where 1 ≤ η. Under

some heuristics, [11, Algorithm 7] solves Problem 3 in polynomial time when
j(E0) = 1728.

Remark 1. SIKE parameters (for which E0 is close to a curve having j-invariant
1728 and NA ≈ NB ≈ √

p) are not affected by these improved torsion points
attacks. Also, the attack does not affect any SIDH-type scheme in which the start-
ing curve E0 is a random supersingular curve with unknown endomorphism ring.

In our attack setting, we will not be provided with the images of torsion
points through isogenies, but with the images of cyclic torsion groups. In the
next section, we generalize the torsion point attacks such that they directly
apply to our setting.
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3.2 Generalized Torsion Points Attacks

We consider the following problem.

Problem 4. Let NA and NB be two integers such that gcd(NA, NB) = 1. Let E0

be a supersingular elliptic curve defined over Fp2 . Let G1, G2, G3 be three cyclic
groups of E0 of order NB such that G1 ∩ G2 = G1 ∩ G3 = G2 ∩ G3 = {0}. Let
φ : E0 → E be a random isogeny of degree NA.

Given E0, G1, G2, G3, E, φ(G1), φ(G2) and φ(G3), compute φ.

The difference between Problem 4 and Problem 3 is the way the torsion point
information is provided. In Problem 3, image points of a basis of the NB-torsion
group are given, while in Problem 4, only the images of three cyclic disjoint
groups of order NB are provided. This a priori represents less information, but
as we show below, this is sufficient to run the improved torsion point attacks.

Let θ, d and e be such that Eq. 1 is satisfied, set τ = φ ◦ θ ◦ φ̂ + [d]. Let
G1, G2 and G3 be as in Problem 4. In the improved torsion point attacks, the
torsion point information (φ(P ), φ(Q)) is solely used to recover the action of τ on
E[NB ] as explained in Sect. 3.1. Hence we only need to prove that the knowledge
of φ(G1), φ(G2) and φ(G3) is sufficient to evaluate τ on E[NB ].

First we prove that from the action of φ on 3 cyclic disjoint groups of order
NB , we can recover the image of a basis of E0[NB ] through [λ] ◦ φ for some
integer λ coprime to NB . Concretely, we have the following lemma.

Lemma 1. Let φ : E0 → E an isogeny of degree NA and let NB be a smooth
integer coprime to NA. Let G1 = 〈P1〉, G2 = 〈P2〉, G3 = 〈P3〉 be three cyclic
groups of E0 of order NB such that G1 ∩G2 = G1 ∩G3 = G2 ∩G3 = {0}. Given
H1 = 〈Q1〉, H2 = 〈Q2〉, H3 = 〈Q3〉 such that φ(Gi) = Hi for i = 1, 2, 3; there
exists an integer λ ∈ (Z/NBZ)× such that we can compute λ2 and [λ] ◦ φ(P ) for
any P ∈ E0[NB ].

The result in Lemma 1 partially available in [2, Lemma 1 §3.2] where Basso et
al. prove that from the action of φ on 3 well chosen cyclic groups of smooth order
NB , one can recover the action of φ on any group of order NB . Our Lemma goes
a bit further and proves that we can evaluate [λ] ◦ φ on the NB torsion for some
λ ∈ (Z/NBZ)× such that λ2 is known. Note that knowing λ2 does not always
enable us to compute λ, since when NB is not a prime power, the equation
x2 ≡ a2 mod NB may have more than two solutions.

Proof (of Lemma 1). For i = 1, 2, 3, set φ(Pi) = [λi]Qi where λi ∈ (Z/NBZ)×.
Since G1 ∩ G2 = {0}, then {P1, P2} is a basis of E0[NB ] and {Q1, Q2} is a basis
of E[NB ]. Write P3 = [v1]P1 + [v2]P2 and Q3 = [u1]Q1 + [u2]Q2. Then, we get

[λ3u1]Q1 + [λ3u2]Q2 = [λ3]Q3 = φ(P3) = [v1]φ(P1) + [v2]φ(P2) = [v1λ1]Q1 + [v2λ2]Q2.

Hence λ3u1 = v1λ1, λ3u2 = v2λ2 and λi/λ3 = ui/vi for i = 1, 2. Since G1∩G3 =
G2 ∩ G3 = {0} and NA is coprime to NB , then H1 ∩ H3 = H2 ∩ H3 = {0} and
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u1, u2, v1, v2 ∈ (Z/NBZ)×. Thus λ1v1/u1 = λ3 = λ2v2/u2, and φ(P1) = [λ3]Q′
1,

φ(P2) = [λ3]Q′
2 where Q′

1 = [v1/u1]Q1 and Q′
2 = [v2/u2]Q2.

We have

eNB
(P1, P2)deg φ = eNB

(φ(P1), φ(P2)) = eNB
([λ3]Q′

1, [λ3]Q′
2) = eN (Q′

1, Q
′
2)

λ2
3 .

We recover λ2
3 by solving the following discrete logarithm

λ2
3 = DLP

(
eNB

(P1, P2)deg φ, eNB
(Q′

1, Q
′
2)

)
.

For any S = [α]P1 + [β]P2 ∈ E0[NB ] we have [λ3] ◦ φ(S) = [α]Q′
1 + [β]Q′

2. ��

Now that we can evaluate [λ]◦φ point wise on E0[NB ] for some λ ∈ (Z/NBZ)×

such that λ2 is provided, we show how to evaluate τ on E[NB ].
Since we can evaluate φλ = [λ] ◦ φ on E0[NB ], then we can evaluate φ̂λ on

E[NB ] as well. Therefore we can evaluate φλ ◦ θ ◦ φ̂λ on E[NB ]. Meanwhile, we
have

φλ ◦ θ ◦ φ̂λ = ([λ] ◦ φ) ◦ θ ◦ ([λ] ◦ φ̂) = [λ2] ◦ φ ◦ θ ◦ φ̂.

Since λ2 ∈ (Z/NBZ)× is provided, then we get

φ ◦ θ ◦ φ̂ = [λ−2] ◦ φλ ◦ θ ◦ φ̂λ

on E[NB ]. Hence τ = φ ◦ θ ◦ φ̂ + [d] can be efficiently evaluated on E[NB ]. This
concludes our discussion.

From now on, we can translate the solutions in [11] computing θ, d, e, and
using the torsion point attacks to solve Problem 3 into solutions that compute
θ, d, e, and solve Problem 4 in the same time and memory complexity, ignoring
polylogarithmic factors.

Theorem 1 (Generalized Torsion Point Attacks). Suppose we are given
an instance of Problem 4 where NA has O(log log p) distinct prime factors.
Assume we are given the restriction of a trace-zero endomorphism θ ∈ End(E0)
to E0[NB ], an integer d coprime to NB, and a smooth integer e such that

deg
(
φ ◦ θ ◦ φ̂ + [d]

)
= N2

Be or deg
(
φ ◦ θ ◦ φ̂ + [d]

)
= N2

Bpe.

Then we can compute φ in time Õ(
√

e).

Proof. Follows from the previous discussion, [11, Theorem 3] and [11, Theo-
rem 5].

We have the following Corollary.

Corollary 2. Suppose that NA ≈ p
1
2 and NB ≈ p

1
2+η where 1 ≤ η. Under some

heuristics, Problem 4 can be solved in polynomial time when j(E0) = 1728.

In the following section, we use the generalized torsion point attacks to design
a new adaptive attack on SIDH.
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4 A New Adaptive Attack on SIDH

In this section, we present our attack. First we present an overview, next we
describe the active phase of our attack.

4.1 Overview

In our attack, we suppose that one party is using a static secret/public key pair,
and the other party runs multiple key exchanges with the honest party. He is
provided with a the same oracle O(E,R, S,E′) described in Sect. 2.3.

The main idea of the attack is to use a key exchange oracle to recover the
action of Alice’s secret isogeny on a larger torsion point group. Doing so leads
to an unbalanced SIDH. The malicious Bob then uses the revisited torsion point
attacks, which in this case run in polynomial time, to recover Alice’s secret key.
Hence our attack has two phases.

Let NA and NB be the isogeny degrees of Alice and Bob respectively. In
general, we have NANB |p + 1 in the case of SIDH schemes, NA|p + 1, NB |p − 1
or NB |p + 1, NA|p − 1 for BSIDH. Let E0 = E(1728) be the starting curve,
E0[NB ] = 〈PB , QB〉, and let (EA, φA(PB), φA(QB)) be Alice’s public key where
her static secret key is an isogeny φA : E0 → EA of degree NA. Moreover, suppose
that you are given some “suitable” smooth integer N coprime to NA such that
E0[NBN ] ⊂ E0(Fp2k) for some integer k (we will provide the requirements on N
as we describe the attack in the following sections).

The two phases of the attack can be summarized as follows.

– The active phase. Bob uses the access to a key exchange ora-
cle O(E,R, S,E′) to secretly transform Alice’s static public key
(EA, φA(PB), φA(QB)) into a tuple (EA, φA(G1), φA(G2), φA(G3)) where
G1 = 〈P 〉, G2 = 〈Q〉, G3 = 〈R〉 are cyclic subgroups of maximal order in
E0[NBN ], such that G1 ∩ G2 = G1 ∩ G3 = G2 ∩ G3 = {0}.

– The passive phase. Having (EA, φA(G1), φA(G2), φA(G3)), Bob applies the
revisited torsion point attacks to recover Alice’s secret.

The passive phase is nothing else than the revisited torsion point attacks
described in Sect. 3.2. In the rest of this section, we provide a full description of
the active phase.

4.2 Explicit Description of the Active Phase

Let p be the base prime. Let N = �v1
1 · · · �vn

n be a smooth integer coprime to NA

such that E0[�vi
i ] ⊂ E(Fp2ki ) and for each prime �i which is not a square modulo

NA, vi is even. Let G1, G2, G3 be cyclic subgroups of E0[NBN ] or order NBN
such that G1 ∩ G2 = G1 ∩ G3 = G2 ∩ G3 = {0}. The active phase of the attack
consists in recovering φA(Gj) for j = 1, 2, 3.

For j = 1, 2, 3, we can represent Gj as Gj =
∑r

i=1 Gji where Gji is a group of
order NB�vi

i . The action of φA on Gj is recovered by computing φA(Gji) for i =
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1, · · · , n. Storing φA(Gj) in this form enables us to perform all computations in
extension fields of degree k1, · · · , kn, instead of LCM(k1, · · · , kn) the full group
Gj is considered. This is because all supersingular isogenies are Fp2 -rational.
Hence we never go to extension fields with degree beyond max{ki, i = 1, · · · , r}.
Let us describe how we compute φA(Gji) for j = 1, 2, 3 and i = 1, · · · , n.

Let G be a cyclic subgroup of E0[NB�v] of order NB�v. Let us suppose that
� ≡ μ2 mod NA is a square modulo NA and that v = 1. Note that φA([�]G) is
readily provided in Alice’s public key since this group has order NB . To compute
the action of φA on G of order NB�, Bob computes the isogeny φG : E0 → EG

having kernel G together with R = [μ−1]φG(PA), S = [μ−1]φG(QA). Let H be
a random cyclic subgroup of EA[NB�] of order NB� containing φA([�]G). Let
φH : EA → EH be the isogeny of kernel H and φ′

A : EG → EG/φG(ker(φA))
be the isogeny of kernel φG(ker(φA)). Then if H is the image of the group G
through φA then the diagram in Fig. 3 commutes and O(EG, R, S,EH) = 1. In
the other case, when H 	= φA(G), Lemma 2 shows that the oracle returns 1 with
negligible probability.

E0

EA

EB

EAB

EG

EH = EφA(G)

···

φA

φB

φB

ψH

φA

φG

φH

Fig. 3. Computing the action of φA on G.

Lemma 2. Suppose that � ≈ O(log p) and NANB ≈ p (or NANB > p), and
let G, H, EH and EG/φG(ker(φA)) be defined as above. If H 	= φA(G) then
EH = EG/φG(ker(φA)) with negligible probability.

Proof. Suppose that EH = EG/φG(ker(phiA)) and let H ′ = φA(G). Let H ′ =
φA(G). By construction, we get [�]H = [�]φA(G) = [�]H ′, and we can decompose
φH and φ′

H as φH = ψH ◦φ′
B and φH′ = ψH′ ◦φ′

B where φH and φH′ are isogenies
of degree � from EAB to EG/φG(ker(φA)). Since H 	= H ′, then ψ̂H′ 	= ±ψH and
ψ̂H′ ◦ψH is a non scalar endomorphism of EAB of degree �2. Therefore, the curve
EAB is an �2-small curve as defined in [27].
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On the other hand, since NANB ≈ p, then EAB is statistically a random
supersingular curve [20]. Moreover, the number of �2-small curves is roughly
�3 [27]. Considering the fact that the number of supersingular curves defined
over Fp2 is p

12 , then the probability that EAB is an �2-small curve is at roughly
12�3

p , which is negligible since � ≈ O(log p). ��

Remark 2. We scale φG(PA) and φG(QA) by μ−1 in order to avoid the detection
by pairing computation. When scaled by μ−1, we have

eNA
(R,S) = eNA

([μ−1]φG(PA), [μ−1]φG(QA))

= eNA
(PA, QA)μ−2 deg φG

= eNA
(PA, QA)NB .

The above equation also justifies the requirement that � should be a quadratic
residue modulo NA. When � is not a quadratic residue modulo NA and �2 divides
N , we set the group G to have order NB�2 and we proceed the same way. In the
later case, we scale the points φG(PA) and φG(QA) by �−1 mod NA instead.

If 1 < v, then the process can be iterated to recover the action of φA on groups
of order NB�, NB�2, · · · , NB�v when � is a square modulo NA, respectively NB�2,
NB�4, · · · , NB�v when � is not a quadratic residue modulo NA. Note that in the
later case, v is even.

We deduce Algorithm 1 for computing the action of φA on a larger group G.

Lemma 3. Algorithm 1 runs in time Õ(kv) = O(kv ·poly(log p)) time whenever
� is of polynomial size and E0[NB�v] ⊂ E(Fp2kv ). The output of Algorithm 1 is
φA(G) with overwhelming probability.

Proof. Since �, NA and NB are smooth integers, the time complexity of Algo-
rithm 1 depends on the degree kv of the field extension only. Hence Algorithm 1
runs in time O(kv · poly(log p)). The second point of the Lemma follows from
Lemma 2. ��
Recall that E0[NB�vi

i ] ⊂ E(Fp2ki ). Set k∗ = max{ki}. Algorithm 2 fully describes
the active phase our attack.

Lemma 4. Algorithm 2 runs in time Õ(max{k∗}) whenever �i for i = 1, · · · , n,
NA, NB are smooth integers.

Proof. Follows from the Lemma 3. ��
This concludes our description of the active phase. In the next section, we

discuss the computation of the integer N .
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Algorithm 1 Evaluating the action of φA on a larger group G of order NB�v

using O(E,R, S,E′).
Require: E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), G.
Ensure: φA(G).
1: Set G0 = [�v]G;
2: if � is a square modulo NA then
3: Compute μ =

√
� mod NA;

4: for i = 1, · · · , v do
5: Gi = [�v−i]G
6: Compute φGi : E0 → EGi of degree NB�i and of kernel Gi, together

with R = [μ−i]φGi(PA) and S = [μ−i]φGi(QA);
7: for H cyclic group of EA of order NB�i containing φA(Gi−1) do
8: Compute φH : EA → EH of kernel H;
9: if O(EGi , R, S, EH) = 1 then

10: Set φA(Gi) = H;

11: G′ = φA(Gv);
12: else
13: for i = 1, · · · , v/2 do
14: Gi = [�v−2i]G
15: Compute φGi : E0 → EGi of degree NB�2i and of kernel Gi, together

with R = [�−i]φGi(PA) and S = [�−i]φGi(QA);
16: for H cyclic group of EA of order NB�2i containing φA(Gi−1) do
17: Compute φH : EA → EH of kernel H;
18: if O(EGi , R, S, EH) = 1 then
19: Set φA(Gi) = H;

20: G′ = φA(Gv/2);

21: return G′.

Algorithm 2 Recovering the action of φA on cyclic disjoint groups G1, G2, G3

of order NBN using the oracle O(E,R, S,E′)
Require: E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), NA, NB , N = �v11 · · · �vn

n , Gji

for j = 1, 2, 3 and i = 1, · · · , n.
Ensure: φA(Gji) for j = 1, 2, 3 and i = 1, · · · , r.
1: for i = 1, · · · , n do
2: for j = 1, 2, 3 do
3: Compute φA(Gji) using Algorithm 1;

4: return φA(Gji) for j = 1, 2, 3 and i = 1, · · · , n.

4.3 Computing the Integer N

We address the existence and the computation of the integer N . We would
like to compute a smooth integer N = �v1

1 · · · �vn
n coprime to NA such that

E0[NB�vi
i ] ⊂ E(Fp2ki ) and for each prime �i which is not a square modulo NA,

vi is even. Recall that by Corollary 2, the torsion point attacks run in polynomial
time when p < N .
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We start by the following Lemma which describes the group structure of
supersingular curves over extension fields.

Lemma 5. Let E/Fp2 be a supersingular elliptic curve such that E(Fp2) �
(Zp−ε)2 where ε = ±1 corresponds to the sign of the trace of Frobenius t = 2εp
of E over Fp2 .
Then for every natural number k, the group structure of E over Fp2k is given by

E(Fp2k) � (Zpk−εk)2 (3)

Proof. Let k be natural number and let tk be the trace of Frobenius of E over
Fp2k . Then by Hasse Theorem (theorem V.1.1 of [33]),

|E(Fp2k)| = p2k + 1 − tk.

Over Fp2 , the characteristic equation of Frobenius is given by

X2 − 2εpX + p2 = (X − εp)2

By Theorem 4.12 of [36]
tk = 2(εp)k = 2εkpk

where εk is the sign of tk. Hence t2k = 4p2k and by lemma 4.8 of [31]

E(Fp2k) � (Z√
p2k−εk)2 � (Zpk−εk)2.

��
From Eq. 3, we have that E0[NB�vi

i ] ⊂ E0(Fp2ki ) if and only if NB�vi
i |pki −εki

where ε is the sign of the trace of Frobenius of E0 as described in the proof of
Lemma 5.

Let � be a small prime. Then �v|p2k − 1 for some k ≤ �v. This means that
for each prime �i dividing N , ki ≤ �vi

i . This heals a easy way to compute N :
choose the smallest primes �i coprime to NANB , such that p < N =

∏
�2i . Then

the largest �i is in O(log p). Moreover we have ki at most �2i .
To moderate the fields extension degrees, we also include in N primes � that

are squares modulo NA. For this primes, we only require � to divide p2k − 1,
hence obtaining a smaller field extension.

We describe the full process in Algorithm 3. The algorithm returns the list
P of prime power factors of N with the list D of the corresponding extension
field degrees.

Lemma 6. Algorithm 3 runs in polynomial time and for each prime �i dividing
N , ki ≤ �2i ≈ O(log2 p).

Proof. Follows from the previous discussion. ��
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Algorithm 3 Computing N

Require: p, NA, NB .
Ensure: P , D.
1: Create the lists P and D, set N = 1, set � = 1;
2: while N < p do
3: choose the next prime � coprime to NANB ;
4: if � is a square modulo NA then
5: Compute the smallest integer k such that �|p2k − 1.
6: Append � to the list P and 2k to the list D;
7: N = N ∗ �;
8: else
9: Compute the smallest integer k such that �2|p2k − 1.

10: Append �2 to the list P and 2k to the list D;
11: N = N ∗ �2;

12: return P, D;

Remark 3. In all this section, we were attacking Alice’s secret isogeny. To attack
Bob’s secret isogeny instead, one interchanges the roles of NA and NB . Mostly,
the quadratic residuosity condition on N will depend on NB .

Remark 4. In practice, on may set a bound a bound on the extension degrees
and slightly increase the size of the primes �i. This will be the case in the attack
parameters we will present in Sect. 5.

4.4 Attack Summary

The full attack can is summarised in Algorithm 4.

Algorithm 4 New Adaptive attack on SIDH
Require: E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), NA, NB .
Ensure: ker(φA).
1: Compute a suitable smooth integer N using Algorithm 3.
2: Let G1, G2, G3 cyclic disjoint subgroups of E0[NBN ] of order NBN .
3: Compute φA(G1), φA(G2), φA(G3) using the oracle O(E, R, S, E′) and Algorithm 2.
4: Compute φA using the revisited torsion point attacks of Theorem 1.
5: return ker(φA).

Now we evaluate the number of oracle queries. Since N = �v1
1 · · · �vn

n where
for each prime �i which is not a square modulo NA, vi is even, then we can
write N = �2v1

1 · · · �2vn
n �u1

n+1 · · · �um
n+m where the primes �n+j for j = 1, · · · ,m are

squares modulo NA. From Algorithm 1, for each prime factor �i (1 ≤ i ≤ n) of
N , the maximum number of queries to the oracle (E,R, S,E′) is equal to the
number of cyclic subgroups of

(
Z/�2iZ

)2 order �2i , which is �i(�i +1). Note that if
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the first �i(�i +1)−1 queries fail, then there is no need to perform the last query
since it will succeed. Also, for each prime factor �n+j (1 ≤ j ≤ m) of N , the
maximum number of queries to the oracle (E,R, S,E′) is equal to the number
of cyclic subgroups of (Z/�iZ)2 order �i, which is �i + 1. Here also, there is no
need to perform the last query when the first �i queries failed. Therefore, the
maximum number of oracle queries in the attack is

Oq =
n∑

i=1

vi [�i(�i + 1) − 1] +
m∑

j=1

uj�n+j .

Now we can state the main result of this paper.

Theorem 2. Let p, E0, NA < p, NB < p, PA, QA, PB, QB, EA, φA(PB),
φA(QB) be the public parameters and the public key of an SIDH type scheme.

Provided a key exchange oracle O(E,R, S,E′), Algorithm 4 recovers φA in
polynomial time.

Furthermore, Algorithm 4 performs at most

Oq =
n∑

i=1

vi [�i(�i + 1) − 1] +
m∑

j=1

uj�n+j

queries to the key exchange oracle where N = �2v1
1 · · · �2vn

n �u1
n+1 · · · �um

n+m is the
integer computed in Step 1.

Proof. By Lemma 3, Step 1 outputs a smooth integer N such that max{ki} ≈
O(log2 p). Hence by Lemma 3, Step 3 runs in time Õ(log2 p) = Õ(1). Step 4 runs
in polynomial time since p < N . The number of oracle queries follows from the
discussion preceding Theorem 2. ��
Remark 5. In our attack, the malicious Bob computes isogenies of degree NB�2

or NB� depending on the quadratic residuosity of � modulo NA. In Appendix A,
we suggest a variant of the attack where isogenies Bob computes isogenies of
degree �2 or � instead. Nevertheless, this variant can be easily detected.

5 Relevance and Countermeasures

In this section, we suggest some attack parameters for $IDH and SIDH primes.
We discuss possible countermeasures to the attack.

5.1 Attack Parameters for Some SIDH Primes

We propose attack parameters for the two (non cryptographic size) primes
suggested for the $IKE challenge [8, §10], the SIDH primes SIDHp377 and
SIDHp546 suggested by Longa et al. [26], SIDHp434 and SIDHp503 as speci-
fied in SIKE [22].
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As attack parameters, we provide the prime factorisation of N , the maximum
field extension degree k∗ = max{ki}, η ≈ N/p and the number Oq of oracle
queries. We also precise which party is attacked: B stands for Bob and A stands
for Alice.

The outcome of our investigations on the above mentioned $IDH primes and
SIDH primes is summarised in Table 1 and Table 2 respectively.

Table 1. Attack parameters for the two $IDH primes.

Party k∗ η Oq N

$IDHp182 prime: p = 291357 − 1

B 96 185
182

7251 52 ∗7∗112 ∗13∗19∗31∗37∗43∗472 ∗61∗67∗73∗79∗97∗103∗
109 ∗ 127 ∗ 139 ∗ 157 ∗ 181 ∗ 241 ∗ 277 ∗ 421 ∗ 433 ∗ 541 ∗ 661 ∗ 919

$IDHp217 prime: p = 2110367 − 1

B 96 222
217

9349 52 ∗ 7 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 97 ∗ 109 ∗ 157 ∗
163 ∗ 181 ∗ 193 ∗ 199 ∗ 211 ∗ 223 ∗ 229 ∗ 271 ∗ 277 ∗ 307 ∗ 337 ∗
571 ∗ 631 ∗ 1009 ∗ 1093 ∗ 1249 ∗ 1381

When it comes to BSIDH instances, generating specific attack parameters
is less trivial. We believe this may be because BSIDH primes3 are twin primes.
Using the generic attack parameters computation described in Algorithm 3, the
degree of the field extensions are relatively larger compared to those used when
running the attack on SIDH. For example, let us consider the smallest BSIDH
prime (prime in example 6 of [7])

p = 2 · (23 · 34 · 17 · 19 · 31 · 37 · 532)6 − 1.

Set NA = p + 1 and NB = p − 1. Then we get

N = 52 · 112 · 232 · 292 · 412 · 472 · 592 · 612 · 672 · 712 · 792·
832 · 892 · 972 · 1012 · 1072 · 1092 · 1132 · 1272 · 1312 · 1372

and the �2i torsion points for �i dividing N are defined over extension fields of
Fp2 of degree

20, 55, 253, 406, 820, 23, 3422, 15, 402, 2485, 3081, 3403, 1958,
9312, 2020, 5671, 11772, 12656, 8001, 1310, 2329,

the order is the same as in the prime factorisation of N . The number of oracle
queries is Oq = 152523. Note that here, one will be working with extension
fields of degree up to 12656. One may prefer to compute a different integer N
for which the maximum extension field degree is relatively small, but as we
mentioned before, this requires intensive computations which we could not do
on a personal computer.
3 Primes p such that both p + 1 and p − 1 are smooth.
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Table 2. Attack parameters for some SIDH primes.

Party k η Oq N

SIDHp377 prime: p = 21913117 − 1

B 120 377
377

40728 52 ∗ 7 ∗ 112 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 97 ∗ 103 ∗ 109 ∗
157 ∗ 181 ∗ 193 ∗ 199 ∗ 229 ∗ 241 ∗ 271 ∗ 277 ∗ 307 ∗ 313 ∗ 331 ∗ 337 ∗
433 ∗ 487 ∗ 571 ∗ 631 ∗ 661 ∗ 739 ∗ 1009 ∗ 1021 ∗ 1051 ∗ 1093 ∗ 1249 ∗
1993 ∗ 2161 ∗ 2707 ∗ 3433 ∗ 3529 ∗ 4003 ∗ 4603 ∗ 5419

SIDHp434 prime: p = 22163137 − 1

B 152 438
434

66169 52 ∗7∗112 ∗13∗172 ∗19∗31∗37∗43∗61∗67∗712 ∗73∗79∗97∗103∗
109∗127∗139∗151∗181∗193∗211∗277∗373∗409∗421∗433∗457∗
547 ∗ 601 ∗ 613 ∗ 739 ∗ 751 ∗ 757 ∗ 1123 ∗ 1171 ∗ 1231 ∗ 1489 ∗ 1741 ∗
1873∗2311∗2593∗2887∗3037∗3061∗4357∗5227∗6091∗6661∗7621

SIDHp503 prime: p = 22503159 − 1

B 158 512
503

81049 52 ∗ 7 ∗ 112 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 97 ∗ 103 ∗ 109 ∗
127 ∗ 139 ∗ 151 ∗ 157 ∗ 163 ∗ 181 ∗ 193 ∗ 199 ∗ 211 ∗ 229 ∗ 241 ∗ 277 ∗
409 ∗ 421 ∗ 433 ∗ 439 ∗ 457 ∗ 463 ∗ 571 ∗ 577 ∗ 601 ∗ 859 ∗ 967 ∗ 1093 ∗
1153 ∗ 1171 ∗ 1201 ∗ 1303 ∗ 1327 ∗ 1741 ∗ 2131 ∗ 2179 ∗ 2269 ∗ 2371 ∗
2377 ∗ 2689 ∗ 3037 ∗ 3169 ∗ 4663 ∗ 6151 ∗ 6469 ∗ 6529 ∗ 8893 ∗ 9769

SIDHp546 prime: p = 22733172 − 1

B 152 551
546

112441 52 ∗ 7 ∗ 112 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 832 ∗ 97 ∗ 103 ∗
109∗127∗139∗151∗157∗163∗181∗193∗223∗277∗307∗379∗409∗
421∗433∗457∗613∗631∗661∗691∗751∗1117∗1153∗1249∗1321∗
1621 ∗ 1741 ∗ 1753 ∗ 1801 ∗ 1933 ∗ 1999 ∗ 2053 ∗ 2137 ∗ 2281 ∗ 3571 ∗
3823∗5059∗5281∗5563∗6373∗6397∗6481∗7549∗7639∗8161∗9151

Remark 6. Our attack applies to eSIDH [4] as well. It can be easily adapted
to k-SIDH [1] and it’s variant by Jao and Urbanik [34]. In the later case, the
number of oracle queries is exponential in k.

5.2 Countermeasures to the Attack

A straightforward countermeasure of the attack is to use a variant of the Fujisaki-
Okamoto transform [17,21] as in SIKE. This transform obliges Bob to disclose
his secret key to Alice who will recompute Bob’s public to verify its correctness.
Recomputing Bob’s public key will enable Alice to detect Bob’s maliciousness.

A second countermeasure is that Bob uses the SIDH proof of Knowledge
as recently suggested in [14]. In this proof of knowledge, Bob proves that there
exists an isogeny of degree NB between E0 and EB and that the provided torsion
points were not maliciously computed. Nevertheless, this countermeasure is very
costly, since the proof of isogeny knowledge is nothing else than the SIDH based
signature scheme, which is relatively slow and has large signatures.
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Another less costly countermeasure is to set the curves E0 to be a random
supersingular elliptic curve with unknown endomorphism ring. This counters the
improved torsion points attack. Hence Bob will not be able to recover Alice’s
secret isogeny after recovering its action on a larger torsion group. Nevertheless,
one should keep in mind that this later countermeasure does not counter the
GPST adaptive attack.

6 Conclusion

In this paper, we generalized the torsion point attacks in such a way that they
can be used to recover a secret isogeny provided its action on three disjoint
cyclic subgroup of relatively large order. We then used this generalized torsion
point attacks to design a new adaptive attack on SIDH type schemes. The attack
consists of maliciously computing isogenies of larger degrees than expected in
SIDH, then using an access to the key exchange oracle to recover the action of the
honest party’s secret isogeny on a larger torsion groups. Afterwards, one obtains
an unbalanced SIDH instance on which one applies the generalized torsion points
attack to recover the honest party’s secret isogeny. Our attack runs in polynomial
time.

We provide concrete attack parameters for SIDH instances instantiated with
the SIDH primes $IDHp182, $IDHp217, SIDHp377, SIDHp434, SIDHp546 and
SIDHp503. A search of attack parameters on BSIDH primes is ongoing. We
finally suggest countermeasures among which the Fujisaki-Okamoto transform
(as used in SIKE), using a proof of isogeny knowledge as recently proposed in
[14] or setting the starting curve in SIDH to be a random supersingular curve
with unknown endomorphism ring.

This result proves that torsion point attacks, which do not yet apply to SIDH,
become relevant to SIDH parameters in an adaptive attack setting. Moreover, it
introduces a new cryptanalytic tool for isogeny based cryptography.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments and feedback.

A A Simpler, But Detectable Variant of the Attack

We present a simpler variant of our attack, but which can be easily detected.
In Sect. 4.2, we use Algorithm 1 to recover the action of φA on groups of order
NB�v. In the case where � is coprime to NB , there is no need to consider groups
of order NB�v since we already know the action of φA on the NB-torsion points.
Therefore, we can directly recover the action of φA on groups of order �v.

Let d be the smallest divisor of NB such that NB = dN ′
B and N ′

B is a square
modulo NA, say N ′

B ≡ γ2 mod NA. To recover the action of φA on a cyclic group
G1 of order � where � ≡ μ2 mod NA, Bob chooses a cyclic group G0 of order d
and sets G = G0+G1, which is a group of order d�. He computes the isogeny φG :
E0 → EG = E0/G together with R = [γμ−1]φG(PA) S = [γμ−1]φG(QA). For
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each cyclic group H ⊂ EA[d�] containing φA(G0), Bob computes EH = EA/H
and queries the oracle (EG, R, S,EH). Note that

eNA
(R,S) = eNA

([γμ−1]φG(PA), [γμ−1]φG(QA))

= eNA
(PA, QA)γ2μ−2 deg φG

= eNA
(PA, QA)N ′

B�−1d�

= eNA
(PA, QA)NB ,

Hence the pairing check does not detect the attack. Nevertheless, when NB is a
very smooth integer (like in SIDH where NB = 3b and d ∈ {1, �}), d is small.
Hence Alice can easily check if the curves E0 and EG are d�-isogenous to discard
such malicious public keys.
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Abstract. It is well known that already the length of encrypted mes-
sages may reveal sensitive information about encrypted data. Finger-
printing attacks enable an adversary to determine web pages visited by
a user and even the language and phrases spoken in voice-over-IP con-
versations.

Prior research has established the general perspective that a length-
hiding padding which is long enough to improve security significantly
incurs an unfeasibly large bandwidth overhead. We argue that this per-
spective is a consequence of the choice of the security models considered
in prior works, which are based on classical indistinguishability of two
messages, and that this does not reflect the attacker model of typical
fingerprinting attacks well.

Therefore we propose a new perspective on length-hiding encryption,
which aims to capture security against fingerprinting attacks more accu-
rately. This makes it possible to concretely quantify the security pro-
vided by length-hiding padding against fingerprinting attacks, depend-
ing on the real message distribution of an application. We find that for
many real-world applications (such as webservers with static content,
DNS requests, Google search terms, or Wikipedia page visits) and their
specific message distributions, even length-hiding padding with relatively
small bandwidth overhead of only 2–5% can already significantly improve
security against fingerprinting attacks. This gives rise to a new perspec-
tive on length-hiding encryption, which helps understanding how and
under what conditions length-hiding encryption can be used to improve
security.
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1 Introduction

“Secure encryption” is today a very well-understood concept. However, stan-
dard cryptographic security definitions for encryption schemes (symmetric and
asymmetric alike) consider a security experiment where an adversary chooses
two plaintext messages m0 and m1, receives back an encryption of a randomly
chosen message m∗ ∈ {m0,m1}, and then has to determine which of the two
messages was encrypted. A common, crucial restriction of such security defini-
tions is that the two messages must have equal length. Otherwise it may be trivial
to determine the encrypted message based on the length of the given ciphertext,
such that security in this sense is impossible to achieve.

There are other standard security notions, such as “real-or-random” defini-
tions, where an adversary has to distinguish between an encryption of a chosen
message m and a random string of equal length or simulation-based semantic
security, which requires the existence of an efficient simulator that produces
the same output as the adversary given only the length of a ciphertext (e.g.,
[1,2,18,19]). All these definitions have in common that they do not provide
security against attacks that are based on the length of messages.

Due to their simplicity and generality, these definitions have been extremely
useful for building a general theory of secure encryption. However, assuming that
only messages of equal length are encrypted is a necessary theoretical idealization
and unrealistic from a practical perspective. In most real-world applications
already the length of messages may reveal sensitive information.

The real-world relevance of hiding message lengths. Well-known examples of
attacks leveraging message lengths consider a passive adversary that merely
observes the encrypted network traffic and can identify web pages visited by a
user [10,16,21,23,30], or the language and even phrases spoken in an encrypted
voice-over-IP conversation [32,33], all this without breaking the expected secu-
rity of the underlying encryption scheme. Even revealing the length of user pass-
words makes it possible to identify individual users in TLS-encrypted sessions
and provides an advantage in password guessing attacks [13], in particular when
passwords are re-used across different services. Hence, it is a desirable goal to
hide the length of transmitted messages in practice.

Impossibility of hiding message lengths in cryptographic theory. Tezcan and Vau-
denay [29] considered the asymptotic setting commonly used in theoretical cryp-
tography and showed essentially that efficiently hiding the length of messages
is impossible for arbitrary message distributions. Concretely, an exponential-
sized padding is necessary, if the adversary in a standard security experiment
is allowed to choose arbitrary messages of different lengths, and one aims at
achieving a negligible distinguishing advantage. This suggests that in theory it is
impossible to hide plaintext length efficiently, which supports the common belief
that a considerable bandwidth overhead incurred by length-hiding padding is
inevitable.
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Dependence of encrypted messages and length-hiding padding. In order to over-
come this impossibility, Paterson, Ristenpart, and Shrimpton introduce the
notion of length-hiding encryption (LHE) [24]. Essentially, LHE augments the
encryption algorithm with an additional length-hiding parameter �, which is
specified by an application calling the encryption algorithm. The length-hiding
parameter determines the amount of length-hiding padding used for a partic-
ular message. Secure LHE in the sense of [24] essentially guarantees security
for plaintexts of different lengths, provided that the length-hiding parameter
ensures that the corresponding ciphertexts have equal size. However, [24] does
not yet explain how � can be chosen in order to obtain any security guarantees
for realistic message distributions.

Furthermore, this work considers a classical “two-message indistinguishabil-
ity” security model, where an adversary outputs two challenge messages m0

and m1 whose length difference must be bounded by some Δ, i.e., it holds that
0 ≤ ∣

∣|m0| − |m1|
∣
∣ ≤ Δ. Here, Δ depends on �. Note that this requires the mes-

sages in the security experiment to be chosen depending on the length-hiding
parameter used by the underlying encryption scheme.

We argue that in order to determine suitable length-hiding padding to pro-
tect against fingerprinting attacks on a given application layer protocol, such
as HTTP, DNS, etc., we do not want to make the distribution of application-
layer messages dependent on the used padding scheme, but rather the other way
around. That is, we want to determine a suitable length-hiding parameter for the
given message distribution of the application. Therefore we propose a security
definition which does not mandate any a priori length difference Δ of messages,
but rather quantifies the security of a certain padding length for a given message
distribution (or an approximation thereof).

Quantifying the security of length-hiding encryption. There is currently no
methodology that makes it possible to concretely assess and quantify the secu-
rity of a given length-hiding padding scheme against fingerprinting attacks.
In order to understand under which circumstances length-hiding schemes can
reduce the effectivity of fingerprinting attacks without very large performance
penalty, we have to analyze which concrete security guarantees can be obtained
by length-hiding schemes with reasonable (i.e., non-exponential-sized) length-
hiding parameters.

We know that suitable choice of a padding length must depend on the mes-
sage distribution of an application (more precisely, on the distribution of the
lengths of encrypted messages), as otherwise security is known to be not achiev-
able [29]. In order to determine a suitable padding length for a given application
in practice, it is therefore necessary to determine the message distribution of the
given application. This can be achieved, for instance, by implementing a server-
side monitoring algorithm that records (an approximation of) the distribution.
This algorithm could run in set intervals and update the length-hiding param-
eter on the fly, if the distribution changes over time (e.g., due to changed web
site contents or access patterns).
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Our Contributions. We develop a methodology that makes it possible to con-
cretely quantify the effect of LHE on the security of a given application. To this
end, we introduce a new cryptographic security model, which aims to preserve
the simplicity and generality of classical models, while capturing security against
fingerprinting attacks in order to reflect such security requirements of applica-
tions. Based on this definition, we describe a methodology to concretely quantify
the effect of LHE for a given application.

In a next step, we demonstrate the feasibility of our approach by applying it
to different types of fingerprinting attacks. Each of these scenarios cover multiple
application-based aspects such as which block mode (e.g., CBC, CTR) is used
for encryption, or whether compression for transmitted data is enabled. Note
that due to attacks such as CRIME [6], compression in TLS is usually disabled
in practice; Qualys SSL Labs finds the percentage of websites using compres-
sion among the Alexa’s lists of most popular websites in the world to be 0.1%
in November 20211 We further remark that we intentionally compare length-
padding-after-compression to no-length-padding-no-compression. This allows us
to emphasize that in some cases enabling compression might increase security.
Since the security impact of such aspects are often very subtle, we provide a
more detailed explanation in the full version of this work [8]. We summarize our
results as follows:

Simple webpage fingerprinting. As a first example, we consider a website
consisting of many static HTML pages, a user that visits one page, and
an adversary that tries to determine the visited page based on the size of
encrypted data. Since we want to base our analysis on a publicly-available
web site with static contents, we used the IACR Cryptology ePrint archive
at https://eprint.iacr.org/2020/.2

We find that switching from counter mode to block mode encryption already
decreases the advantage of the adversary from 0.74 to 0.14 (where an advan-
tage of 1 means that the adversary can uniquely determine a web page, while
0 means that the size of the transmitted data reveals no information about the
visited page). This makes fingerprinting much less effective, without notice-
able bandwidth overhead.
Reducing the advantage to 0 costs about 95% bandwidth overhead without
compression, however, by additionally using compression and advantage to 0
can even be achieved without any overhead, by slightly reducing the amount
of data transmitted by 0.3%. Hence, from a website fingerprinting perspec-
tive, it seems to make sense to enable LHE, possibly in combination with
compression, on this server.

Web page fingerprinting with patterns. In order to analyze more complex
fingerprinting attacks, we again consider the IACR Cryptology ePrint Archive

1 https://www.ssllabs.com/ssl-pulse/.
2 We also considered basing this analysis on other web sites, such as Wikipedia and a

user that accesses a certain Wikipedia page. However, the IACR ePrint server also
enables us to easily consider a natural extension to more complex access pattern,
see below.

https://eprint.iacr.org/2020/
https://www.ssllabs.com/ssl-pulse/
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and an adversary that tries to determine the visited page based on the size of
encrypted data. This time, we consider a user that first visits the web page of
a random paper from the year 2020, and then downloads the corresponding
paper (a pdf file). Note that this yields a much more distinguishable pattern,
in particular due to the highly varying size of pdf documents, and the fact
that pdf files are not as easily compressible as text-based web pages.
We find that the advantage in counter mode is 1, that is, all papers are
uniquely identifiable, such that the encryption provides no security at all
against such attacks. This can be reduced to 0.12 by applying length-hiding
padding with a bandwidth overhead of only about 2.4%. Hence, LHE can
significantly improve security against fingerprinting at negligible overhead,
which refutes the common belief that a significant overhead is necessary in
order to achieve a considerable security improvement.

Google search term fingerprinting. Here we consider the scenario that one
user is searching some term in a search engine. A passive adversary observes
the encrypted traffic and tries to determine which search term the user is
searching for. We used 503 most popular search terms from the daily search
trends published by Google at https://trends.google.com/trends/ in a time
period of one month in Spring 2021.
We find that without LHE an adversary achieves very high advantage of
almost 1. LHE with only 2% bandwidth overhead can reduce this very signif-
icantly to only 0.07. In combination with compression, the advantage can be
reduced to 0.006, while reducing the amount of transmitted data by 50%.

Simple Wikipedia fingerprinting. All the three application examples above
consider a uniform message distribution, which does not necessarily cap-
ture the message distribution in the real-world applications. Obtaining real-
world message distributions, e.g. by capturing Internet traffic, is difficult (for
practical reasons, as well as due to privacy concerns). However, the Wiki-
media Foundation publishes statistics of the Wikipedia website since May
2015, which provides us with the real distribution of visited webpages of
the Wikipedia website. To better demonstrate the feasibility of our approach
with respect to real-world message distributions, we carry out a webpage fin-
gerprinting analysis for the Wikipedia webpages in simple English language,
based on the real webpage visit distribution of May 2021.
We find that without LHE an adversary achieves very high trivial advantage
(0.875). LHE with only 2% bandwidth overhead can reduce this to 0.13. In
combination with compression, the advantage can be reduced to 0.0058, while
reducing the amount of transmitted data by 50%.

DNS fingerprinting. Here we consider the Domain Name System (DNS) pro-
tocol and DNS request/response pairs. This setting is particularly interesting
because there is an increasing trend to encrypt DNS protocol messages to
hide the requested domain names. However, it turns out that the length of
DNS requests/response pairs exhibit a very distinctive pattern, which make
it easy to determine the requested domain name from the ciphertext length.
We consider two different settings:

https://trends.google.com/trends/
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1. A user that issues a DNS request for a randomly chosen host name from
1,000 most popular hosts according to the Majestic Million list.

2. In collaboration with the IT department of a medium-sized university
(with 23k students and 3.5k staff members), we collected the host names of
DNS requests performed by staff and students within a 24 h time interval
in July 2021. The data collection was carried out under supervision of
the university data privacy officer and in accordance with applicable data
protection laws. In particular, only the hostnames and their frequency
were collected, but not the requesting IP addresses or any other personal
data. This provides us with a real-world message distribution that makes
it possible to determine the security and appropriate padding sizes for
this particular DNS service.

In both cases, the adversary that tries to determine the requested host name
based on the size of request and response.
In the Majestic Million case, we find that the advantage of an adversary
can be reduced from 0.644 (in counter mode without compression) down to
0.01 with a bandwidth overhead of about 79% without compression, or 57%
with. For the university DNS case, the advantage of an adversary can be
reduced from 0.551 (in counter mode without compression) to below 0.01
with a bandwidth overhead of about 54% without compression.

In summary, we find that LHE can, contrary to the common belief, improve
security against fingerprinting attacks very significantly, often with minor band-
width overhead. This also confirms the recent tendency to switch from block-
mode to counter-mode encryption indeed makes fingerprinting attacks much
more effective.

We support our theoretical model and calculations with a proof-of-concept
implementation in form of an Apache module. Our implementation consists
of two parts. One part is a server-side monitoring algorithm that records (an
approximation of) the message distribution and computes a suitable length-
hiding parameter. The other part applies the length-hiding parameter as input
to the encryption procedure of server responses. We used this proof-of-concept
implementation to validate the results of our theoretical analysis.

Application of our results. Some standards and implementations of crypto-
graphic protocols already provide means to conceal the length of plaintexts,
in order to prevent fingerprinting attacks or reduce their effectivity. One such
example is the TLS 1.3 standard [25], which directly supports the use of length-
hiding padding and functions as basis of our implementation.

Another example of an Internet standard that supports length-hiding
padding is DNS. RFC 8467 [22] describes block-length padding, which recom-
mends to pad all DNS requests to a multiple of 128 bytes and all DNS responses
to a multiple of 468 bytes (as originally proposed in [9]). We remark that these
numbers are derived from an empirical analysis conducted specifically for DNS,
and that we do not yet have a clear methodology to quantify to which degree
they improve security concretely.
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Related Works. The work of Boldyreva et al. [3] focuses on hiding message
boundaries in a ciphertext stream with fragmented message transmission. This
work is similar in spirit to ours in the sense that it tries to find a balance between
the conflicting aims of keeping the generality and simplicity of traditional secu-
rity definitions on the one hand, and developing an approach that can be used to
provide meaningful provable security analyses of practical schemes on the other
hand.

A very recent work on length-hiding encryption is due to Degabriele [5],
which will appear at ACM CCS 2021. We compare our approach with the one
in [5] in the full version [8] of our work.

Fingerprinting attacks have been intensively studied in the context of web
page fingerprinting, deanonymization of Tor private channels, and other applica-
tions such as LTE/4G. Early approaches were based on the length of encrypted
messages, as well as their direction and the frequency of messages [15,16,21].
More recent approaches use additional features advanced analysis techniques
based on machine learning [14,20,28]. Also active attacks have been considered
[20,27]. Countermeasures to fingerprinting attacks were proposed [31,34], but
could be broken with refined analysis methods [7,28]. Cai et al. [4] give a sys-
tematic analysis of attacks and defenses to understand what features convey the
most information.

We note that many works on the feasibility of fingerprinting attacks make use
of side-channels beyond message lengths and we discuss this in the full version
of our work [8].

Outline of this Paper. In Sect. 2 we describe a new perspective on LHE, which is
more suitable for our approach, and conveniently yields schemes that follow the
standard syntax of symmetric encryption schemes. Furthermore, we establish
a definitional framework to analyze and quantify the concrete effect of LHE.
Section 3 contains the results of an empirical analysis of different real-world
message distributions. In Sect. 4 we present our implementation of LHE and
compare its performance with our empirical results.

2 A New Perspective on Length-Hiding Encryption

Now we can describe our new perspective on length-hiding encryption (LHE),
which makes it possible to concretely quantify the effect of length-hiding padding
on security. We first introduce a new syntactical notion of LHE in Sect. 2.1 and
a corresponding security experiment in Sect. 2.2. Based on these foundations,
we can then define the trivial success probability and the trivial advantage to
concretely quantify the security of an encryption scheme with respect to different
length-hiding parameters.

In the full version of our work [8], we also discuss k-anonymity as an alterna-
tive approach and explain why we consider it as not suitable for our purposes.
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2.1 A New Syntactical Definition

We first recap the formal definition of symmetric-key encryption.

Definition 1 (Symmetric-key encryption). A symmetric-key encryption
scheme SE consists of two algorithms E and D. The (possibly) randomized encryp-
tion algorithm E takes input a secret key sk and a plaintext m ∈ {0, 1}∗, and
outputs a ciphertext ct. The deterministic decryption algorithm D takes input
a secret key sk and a ciphertext ct then outputs a plaintext m or a symbol ⊥.
The correctness of SE requires that Dsk(Esk(m)) = m for all sk ∈ {0, 1}k and
m ∈ {0, 1}∗.

Note that, in the above definition, the ciphertext length is implicitly defined
by the encryption algorithm and cannot be altered or controlled outside the algo-
rithm. Paterson et al. introduced the concept of length-hiding encryption in [24],
which makes it possible to control the ciphertext length outside the encryption
algorithm. In this paper we will work with a slightly different perspective, which
we consider as more practical.

Recall that in [24] the length-hiding parameter � is the total ciphertext length
and it is an explicit input to the encryption algorithm. The parameter can be
controlled by the adversary in the security experiment, the only restriction is that
it must be at least as large as the largest of the two messages submitted by the
adversary in the indistinguishability security experiment. We believe this does
not capture real-world attacks based on ciphertext lengths very well, because it
considers only the indistinguishability of two messages that are encrypted with
respect to the same ciphertext length �.

To protect against such attacks, we find it more practical to view the length
hiding parameter as a fixed system parameter and to make the ciphertexts length
dependent on both � and the size of encrypted messages. More precisely, the
global parameter � (of a symmetric-key encryption scheme) defines a fixed func-
tion which maps plaintext length to certain ciphertext length.

Now, for any symmetric-key encryption scheme SE, we formalize a new
symmetric-key encryption scheme SE(�) as the scheme SE instantiated with
length hiding parameter � as follows.

Definition 2 (Symmetric-key encryption with length-hiding parame-
ter �). Let SE = (E,D) be a symmetric encryption scheme. Let pad(m, �) be a
function that pads a plaintext m such that

|pad(m, �)| =
⌈ |m|

�

⌉

· �.

That is, pad applies length-hiding padding to the plaintext m such that the length
of pad(m, �) is an integer multiple of �. Let pad−1 be the function that removes the
padding, that is, pad−1(pad(m, �)) = m for all m and pad−1(⊥) = ⊥. We call
� the length-hiding parameter and define the length-hiding encryption scheme
SE(�) = (E(�),D(�)) as

E
(�)
sk (m) := Esk(pad(m, �)) and D

(�)
sk (m) := pad−1(Dsk(m)).
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Note that in particular we have SE(1) = SE.

Padding a message to a multiple of some parameter � is a generalization of
the block-length padding scheme proposed in [9] and recommended for encrypted
DNS requests in RFC 8467 [22].

Note that this scheme allows to capture “perfect” length-hiding padding,
where the length-hiding parameter � is at least as large as the largest possible
message in an application, such that all ciphertexts have identical length and no
information is leaked through the length. However, if � is smaller, then we will
get weaker security guarantees. We will show that this is very useful to achieve
a trade-off between improved resilience to attacks based on message length and
bandwidth overhead of the length-hiding padding. Furthermore, we will analyze
the concrete impact of different length-hiding parameters on the security and
bandwidth requirements of an application.

Security notions for symmetric-key encryption schemes. Since SE(�) follows the
standard syntax of encryption schemes for all � ∈ N, standard security defini-
tions (without considering length leakage) for symmetric-key encryption apply
to it. There are many different ways to define security for symmetric-key encryp-
tion schemes. In this paper we will consider two flavors of standard IND-CCA
security, the IND-M-CCA security and the IND-C-CCA security. Both provide
protection for message privacy but none of them provides protection against
length leakage. However, they serve as an important tool in our approach to
capture the effectiveness of length-hiding encryption.

IND-M-CCA security. The first notion is the indistinguishability of encryptions
of chosen messages from encryptions of random strings. It is equivalent to the
classical “left-or-right” definition where an adversary outputs two messages m0

and m1, receives back an encryption of message mb for a random b $←− {0, 1},
and has to determine b.

Definition 3 (IND-M-CCA security). A symmetric-key encryption scheme
SE = (E,D) is IND-M-CCA secure if for any PPT adversary A, the advantage

AdvSE,A
IND-M-CCA(1k) :=

∣
∣
∣2 · Pr

[

IND-M-CCASE,A(1k) = 1
]

− 1
∣
∣
∣

is negligible, where game IND-M-CCASE is defined in Fig. 1.

IND-C-CCA security. The second notion we consider is indistinguishability of
ciphertexts from random strings (the “IND” notion in [18]), which is commonly
used in recent works, such as [11,12]. This security considers the “ciphertext
pseudorandomness” of the symmetric-key encryption scheme.

Definition 4 (IND-C-CCA security). A symmetric-key encryption scheme
SE = (E,D) is IND-C-CCA secure if for any PPT adversary A, the advantage

AdvSE,A
IND-C-CCA(1k) :=

∣
∣
∣2 · Pr

[

IND-C-CCASE,A(1k) = 1
]

− 1
∣
∣
∣
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Proc. Initialize 1k
)
:

b $←− {0, 1}
sk $←− {0, 1}k

C ← ∅
Return

Proc. Enc(m):
Return Esk(m)

Proc. Dec(ct):

Return
{
Dsk(ct)
⊥

If ct /∈ C
Otherwise

Proc. Challenge(m):
m0 ← m

m1
$←− {0, 1}|m|

ct $←− Esk(mb)
ct $←− Esk(m)

r $←− {0, 1}|ct|

ret ←
{
ct If b=0
r Otherwise

C ← C ∪ {ret}
Return ret

Proc. Finalize(b′):
Output (b′ = b)

Fig. 1. The security game IND-M-CCASE and the security game IND-C-CCASE . The

gray background codes only applies to game IND-C-CCASE.

is negligible, where game IND-C-CCASE is defined in Fig. 1.

Since the length-hiding parameter � is a global system parameter and known
to the adversary (the adversary does not have to break the scheme or make
any encryption or decryption queries to know this parameter), we point out
that the length-hiding property is orthogonal to the exact oracle query ability of
the adversary. Our choice to consider security against chosen-ciphertext attacks
should merely serve as a concrete example. For instance, CPA security is easily
obtained by removing the decryption oracle, passive eavesdropping by addition-
ally removing the encryption oracle. It is also possible to consider advanced
security notions, such as misuse-resistant encryption [26], where the adversary
is able to specify the nonce used by an encryption algorithm. Furthermore, it
can be considered in both the symmetric-key and the public-key setting. We
chose security against chosen-ciphertext attacks in order to demonstrate that
the approach works also with this rather strong standard security definition.

2.2 New Security Model

Our objective is to define a model that is independent of a particular application,
but capable of capturing complex application settings where multiple messages
of varying lengths are encrypted using multiple keys and the adversary wants
to deduce information about these messages from the ciphertexts. Therefore we
parametrize our security model as follows:

Message distribution. Note that the information an adversary can deduce
from the size of observed ciphertexts depends inherently on the message dis-
tribution of a given application, and possibly other application-specific prop-
erties, such as observable patterns of messages, for instance. Since we want to
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preserve as much of the simplicity and generality of classical security models
as possible, our new security definition is parametrized by a message distri-
bution M of a given application.
For instance, in the web page fingerprinting setting, the distribution M would
assign probabilities to different web pages on a server. If a client performs a
search with an Internet search engine, then m∗ $←− M would correspond to
the messages exchanged between a client and the search engine. Note that, in
this case, the message distribution M is defined by the client and the server
may not know this distribution M beforehand. However, we consider strong
adversaries that know M so that it obtains some a prior knowledge about this
search term.

Specification of data to-be-protected. We introduce a function P which
specifies the information that an adversary wants to learn about the encrypted
data. For instance, if a client performs a search with an Internet search engine
and the adversary wants to learn the search term, then the data exchanged
between client and search engine would be m∗ $←− M, and the goal of the
adversary would be to determine the search term P(m∗).

Multiple symmetric keys. We want to be able to consider complex finger-
printing attacks on applications transmitting encrypted data. For instance, in
the context of Internet search engines a client might first connect to a search
engine and to perform a search, then connect to a DNS server to make a DNS
request for the first search result, and then connect to the server hosting the
corresponding web site. We will consider a setting where all three connec-
tions are encrypted, such that this involves three different encrypted sessions
with three different, independent symmetric keys.3 In order to reflect this
accurately, we need to define a security model which involves d symmetric
keys.

Adversarial model. Finally, we need to specify the capabilities that we grant
the attacker. We will consider chosen-ciphertext attacks (CCA), as already
discussed in Sect. 2.1.

In Sect. 3, we will show how to define M, P, and d for a particular given applica-
tions to obtain concrete security statements for this application. In most practical
cases, P will be efficiently computable, but we do not have to demand this.

Security Experiment. Motivated by this discussion, we define the (SE,M,P, d)-
CCA security experiment based on the game described in Fig. 2. In this game, we
consider an encryption scheme SE with d ≥ 1 independent secret keys and a mes-
sage distribution M that outputs t ≥ 1 messages where t = t1 + . . . + td for some
t1, . . . , td ∈ N. We model M as a probabilistic algorithm defining a message dis-
tribution over ({0, 1}∗)t. In the sequel it will be convenient to view the output of
M as a tuple of tuples of messages m = ((m1j)j∈[t1], . . . , (mdj)j∈[td])

$←− M. Here

3 In practice the TLS protocol would be used for these three connections, where differ-
ent keys are used for sending and receiving data, but we view these keys as a single
symmetric key.
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(mij)j∈[ti] is the tuple of messages encrypted under the i-th symmetric key ski.
The function P maps P : ({0, 1}∗)t → {0, 1}∗.

Proc. Initialize 1k
)
:

sk1, · · · , skd $←− {0, 1}k

challenged ← False

C ← ∅
Return (M,P)

Proc. Enc(i,m):
Return Eski(m)

Proc. Dec(i, ct):
If (i, ct) ∈ C:

Return ⊥
Return Dski(ct)

Proc. Challenge():
If challenged = True return ⊥
challenged ← True

(m∗
1j)j∈[t1], · · · , (m∗

dj)j∈[td]

)︸ ︷︷ ︸
m∗

$←− M

For i ∈ [d], j ∈ [ti]:
ct∗ij $←− Eski(m

∗
ij)

C ← C ∪ {(i, ct∗ij)}
Return (ct∗ij)i∈[d],j∈[ti]

Proc. Finalize(p):
Output (P(m∗) = p)

Fig. 2. The (SE,M,P, d)-CCA security game with respect to encryption scheme SE,
message distribution M, property P and number of secret key d.

Definition 5. For any adversary A, define the success probability of A in game
(SE,M,P, d)-CCA as the probability that A is able to determine P(m∗). For-
mally:

RealSucc(SE,M,P, d,A) := Pr
[

(SE,M,P, d)-CCAA(1k) = 1
]

.

Our security model is restricted in the sense that 1) it only considers the
single-challenge setting and 2) the message distribution is fixed and not adap-
tively chosen by the adversary. Our security notion could be generalized to cap-
ture both aspects; however, this seems not to provide any non-trivial additional
insight to the impact of length-hiding encryption and therefore we chose not to
do this.

Non-triviality of M and P. In the sequel we will only consider M and P such that
there exist m and m′ such that Pr[m $←− M] > 0, Pr[m′ $←− M] > 0, and P(m) �=
P(m′). This is necessary for technical reasons, but also sufficient because we
would otherwise not get a meaningful notion of security (because otherwise it
would be trivial to predict P with respect to M with success probability 1, even
without seeing any ciphertexts).

Our security definition implies non-adaptive IND-M-CCA security where
messages are chosen non-adaptively. We discuss this in the full version of our
work [8].
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2.3 Trivial Success Probability and Advantage

Trivial success probability. We introduce the trivial success probability of an
adversary, which captures the success probability that an adversary trivially
obtains from the length of ciphertexts, without “breaking” the underlying
encryption scheme SE. Note that this depends on the degree to which SE hides
the size of plaintexts, the message distribution M, and the function P.

Definition 6. The trivial success probability with respect to (SE,M,P) is
defined as the largest possible probability of guessing P(m∗), given M, P, and
the size of the ciphertexts (|ct∗ij |)i∈[d],j∈[ti], but not the ciphertexts themselves.
More formally,

TrivSucc(SE,M,P) := max
S

Pr
[S(M,P, (|ct∗i |)i∈[t]) = P(m∗)

]

where m∗ =
(

(m∗
1j)j∈[t1], · · · , (m∗

dj)j∈[td]

)
$←− M, sk1, · · · , skd

$←− {0, 1}k and
ct∗ij

$←− Eski(m
∗
ij) for i ∈ [d], j ∈ [ti] and where the maximum is taken over all

algorithms S.

The following property is necessary to avoid contrived and unnatural exam-
ples of encryption schemes, where the length of ciphertexts depends not only
on the size of the message, but also on the secret key. To our best knowledge,
this property is met by any concrete symmetric encryption schemes, except for
contrived counterexamples.

Definition 7. We say an encryption scheme SE = (E,D) has secret key obliv-
ious ciphertext length distribution if for any m ∈ {0, 1}∗, any sk, sk′ ∈ {0, 1}k,
|Esk(m)| distributes identically to |Esk′(m)|.
If we would restrict to settings with deterministic padding length, then we could
instead require |Esk(m)| = |Esk′(m)|. However, we will also consider randomized
padding, so that it is necessary to require identical distribution of ciphertext
lengths.

Relation between trivial and real success probability. We will now prove that
A’s real success probability RealSucc(SE,M,P, d,A) cannot exceed the trivial
success probability TrivSucc(SE,M,P) significantly, provided that SE is IND-C-
CCA secure in the sense of Definition 4 and satisfies Definition 7. This estab-
lishes that in order to minimize RealSucc(SE,M,P, d,A) it suffices to minimize
TrivSucc(SE,M,P).

Theorem 8. For any encryption scheme SE that has secret key oblivious cipher-
text length distribution in the sense of Definition 7, any message distribution M,
any property P and any adversary A, we can construct an adversary B such that

RealSucc(SE,M,P, d,A) ≤ d · AdvSE,B
IND-C-CCA(1k) + TrivSucc(SE,M,P).
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The running time of B is T (B) ≈ T (A)+T (M)+T (P)+(t+qe) ·T (E)+qd ·T (D),
where T (M) is the time to sample messages from distribution M, T (P) is the time
to evaluate P, T (E) is the time to execute the encryption algorithm once, T (D)
is the time to execute the decryption algorithm once, qe is the number of Enc
queries made by A and qd is the number of Dec queries made by A.

Due to space limitations, we defer the proof to the full version of our work
[8].

Theorem 8 provides an upper bound of the adversary’s success probability in
our practical “real world” security model and this bound is a sum of the CCA
advantage with the trivial success probability. So if the encryption scheme itself
is secure in the standard sense (i.e., the IND-C-CCA advantage of any adversary
is negligible, which is provided by the IND-C-CCA security of the scheme) then
the sum is close to the trivial advantage. In this way, we can focus on reducing
the trivial success probability by choosing a proper length-hiding encryption
scheme to reduce the information that is leaked through ciphertext length.

In the following, we show a methodology of evaluating the “effectiveness” of
length-hiding encryption in reducing the trivial success probability. Intuitively
speaking, we first define the “most likely probability” to capture prior informa-
tion leaked by the distribution M known to the adversary. And this probabil-
ity provides a lower bound for the trivial success probability. For any concrete
encryption scheme, we compare its trivial success probability with this lower
bound to evaluate its “effectiveness” in hiding the length information. And we
further quantify it by providing a new definition of trivial advantage.

Trivial advantage. Based on the trivial success probability, we define the trivial
advantage with respect to encryption scheme SE, message distribution M, and
property P as follows.

Definition 9. For message distribution M and property P, let

PrMostLikely(M,P) := max
S

Pr [S(M,P) = P(m∗)]

denote the probability of the most likely output of P on input m∗, where
m∗ =

(

(m∗
1j)j∈[t1], · · · , (m∗

dj)j∈[td]

)
$←− M. The trivial advantage with respect

to (SE,M,P) is defined as difference between the trivial success probability and
PrMostLikely(M,P), scaled to an number that ranges from 0 to 1 for any M and
P:

TrivAdv(SE,M,P) :=
TrivSucc(SE,M,P) − PrMostLikely(M,P)

1 − PrMostLikely(M,P)
.

Recall that we consider M and P such that there exist m and m′ such that
Pr[m∗ = m] > 0, Pr[m∗ = m′] > 0, and P(m) �= P(m′), as otherwise it is
trivial to predict P with respect to M with success probability 1. Therefore we
have PrMostLikely(M,P) < 1.
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3 Analysis of Real-World Message Distributions

In this section, we will consider different types of attacks, where an adversary
observes encrypted communication and wants to determine the plaintext based
on the communication pattern. As a concrete example we consider counter mode
encryption (with AES-GCM, for instance) where the adversary is able to deter-
mine the size of the encrypted message precisely, as well as block mode encryption
(using AES-CBC as an example) where the adversary is able to determine the
size of the encrypted message up to the minimal message padding required for
this mode. We apply our methodology to concretely calculate the trivial advan-
tage for the considered message distribution M and function P that we define for
each application. Then we compare the results to the same schemes, but using
length-hiding encryption with different length-hiding parameters. This makes it
possible to quantify the security gained by length-hiding encryption and com-
pression precisely. Most interestingly, we will show that relatively small length-
hiding parameters are able to significantly reduce the effectivity of fingerprinting
attacks.

In all the subsequent parts of this work, we will use different units for the
length-hiding parameter for counter mode and block mode encryption. The rea-
son for this is that counter mode ciphers (like AES-GCM) usually encrypt mes-
sages byte-wise, therefore the size of ciphertexts and the length-hiding parameter
� are measured in bytes. Block ciphers (like AES-CBC) encrypts messages block-
wise, so we will measure the size of ciphertexts and � in blocks, where one block
corresponds to the block size of the underlying block cipher (16 bytes in case of
AES).

Due to space limitations, we only include two examples in the body, which
we deemed most simple (i.e., simple website fingerprinting and simple Wikipedia
fingerprinting). However, we also consider more complex examples (i.e., webpage
fingerprinting with patterns, Google search term fingerprinting, and DNS finger-
printing) in the full version of this work [8].

3.1 Simple Website Fingerprinting

Adversarial model. We consider an adversary performing a website fingerprinting
attack against the IACR ePrint archive4 at https://eprint.iacr.org/2020/, based
on the size of encrypted data. The ePrint page for the year 2020 links to 1620
different subpages, one for each archived research papers. We chose the year 2020
because it is the most recent year where the number of archived research papers
was fixed at the time this paper is written, which makes the analysis more easily
reproducible. Each subpage contains the title, list of authors, abstract, and some
other metadata for one archived research paper.

Let M := {m1, . . . ,m1620} be the set of the 1620 different web pages. We
assume that a user Alice picks one out of these 1620 subpages uniformly at

4 We use this server since URLs from the IACR ePrint archive are particularly easy
to parse and analyse.

https://eprint.iacr.org/2020/
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random and then visits the corresponding page. Hence, the message distribution
Me that we consider here is the uniform distribution over M. The adversary
tries to guess the subpage visited by Alice. Hence, the adversary outputs an
index i ∈ {1, . . . , 1620}, such that we define function P as P : M → [1, 1620] for
mi 
→ i.

Considered encryption schemes. The IACR ePrint server uses TLS 1.2 and allows
the client and the server to negotiate one out of two different symmetric ciphers
for the encryption of payload data:

Counter mode. The first option is AES-GCM, which is essentially a stream
cipher and we refer it as SE(�)

CTR. Note that in this case the attacker learns the
size of the underlying plaintext exactly (in case of TLS the attacker merely
has to subtract a known constant from the ciphertext size), provided that no
length-hiding padding is used (� = 1).

Block mode. The second option is AES-CBC and we refer it as SE
(�)
BLK. Due

to the padding required by CBC-mode encryption, the attacker learns only
that the plaintext lies within a certain (small) range even if no length-hiding
padding is used (� = 1). Since the block size of AES is 16 bytes, AES-CBC
uses a padding of length between 1 and 16 bytes, this holds also for AES-CBC
in TLS 1.2.

We decided to use these two algorithms as the basis of our analysis, since they
cover both a stream cipher and a block mode cipher, and are very widely used
in practice. We consider a length-hiding padding with length-hiding parameter
� ∈ N. Ciphertexts are padded to a multiple of � bytes for SE

(�)
CTR, and � blocks

for SE
(�)
BLK. Thus, if � = 1, then no additional length-hiding padding is used.

We also consider enabled compression where the full plaintext message is
compressed using the gzip algorithm, which implements DEFLATE compres-
sion (a combination of the LZ77 algorithm and Huffman coding). This is the
algorithm standardized for use in TLS versions up to 1.2 [17], and therefore
seems to be a reasonable choice for an analysis of real-world algorithms.

In order to indicate whether compression is used, we will refer to the encryp-
tion algorithm as SE

(�)
M,C where M ∈ {CTR,BLK} represents its mode and

C ∈ {True,False} represents whether compression is applied before encryption.

Empirical Data Generation. We implemented a simple script that downloaded
all subpages of https://eprint.iacr.org/2020/ and determined the size of the page
in both uncompressed and compressed form. These sizes are stored in a database
and enable us to compute the size5 of counter- and block-mode ciphertexts that
encrypt the pages in compressed or uncompressed form, with and without length-
hiding encryption, and with respect to different length-hiding parameters.
5 To make our calculation more realistic, we consider the ciphertext is split across

TLS fragments with a maximum payload of 214 bytes per fragment, whereby each
fragment needs an additional 22 bytes reserved for the fragment header. The length
for all the TLS headers is also considered and summed to the ciphertext length.

https://eprint.iacr.org/2020/
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Calculating the trivial advantage TrivAdv(SE(�)
M,C,Me). We determined the num-

ber |U | of uniquely identifiable web pages, the size |Smax| of the largest set of
pages of identical size, the number |S| of different possible ciphertext lengths,
and the trivial advantage TrivAdv(SE(�)

M,C,Me) for both counter mode and block
mode encryption, with and without compression, and with respect to different
length-hiding parameters, and with respect to the uniform distribution Me over
the ePrint 2020 webpages.

Recall that the trivial success probability is defined as

TrivSucc(SE(�)
M,C,Me,P) := max

S
Pr [S(Me,P, |ct∗|) = P(m∗)]

where the probability is over the random choice m∗ $←− Me and ct∗ is the encryp-
tion of m∗. Since Me is the uniform distribution, the trivial success probability
for a given ciphertext length λ is equal to the number of messages m∗ ∈ M
that encrypt to a ciphertext of the given length λ = |ct∗|. Hence, defining
Mλ := {m ∈ M : |Esk(m)| = λ} as the set of messages that encrypt to a
ciphertext of size λ, we have

TrivSucc(SE(�)
M,C,Me,P) =

∑

λ∈S

|Mλ|
|M| · 1

|Mλ| =
|S|
|M| =

|S|
1620

.

Hence, the trivial advantage is TrivAdv(SE(�)
M,C,Me,P)

=
TrivSucc(SE(�)

M,C,Me,P) − PrMostLikely(Me,P)
1 − PrMostLikely(Me,P)

=
( |S|

1620
− 1

1620

)

÷
(

1 − 1
1620

)

=
|S| − 1
1619

.

We consider length-hiding block mode ciphertexts with � ∈ {1, 5, 10, 25} and
counter mode ciphertexts with � ∈ {1, 80, 160, 400}. Table 1 summarizes the
results of this analysis.

Achieving a Trivial Advantage of 0. Note that according to Table 1 an increasing
length-hiding parameter � reduces the trivial advantage significantly, but not
to 0. This may be sufficient to make traffic analysis attacks significantly less
effective, but for some applications a trivial advantage of 0 may be desirable.

Rows 9, 10, 19 and 20 of Table 1 give the minimal length-hiding parameter �
that is necessary to reduce the trivial advantage to 0.

Conclusions. For the message distribution considered in this section, we come
to the following conclusions:

– A block mode of operation improves the indistinguishability of the considered
web pages, compared to a counter mode when � = 1. In combination with
length-hiding encryption and compression, the adversary’s trivial advantage
can be reduced from 0.7400 (in counter mode without compression) down to
0.0037 (in block mode with compression and length-hiding parameter � = 25),
together with a reduction in traffic by 45.278%.
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Table 1. Analysis of simple website fingerprinting attacks. “CTR” refers to AES-
GCM, “BLK” to AES-CBC. “Comp.” indicates whether compression is enabled, � is
the length-hiding parameter. Recall that plaintexts are padded to a multiple of � bytes
for counter mode and � blocks for block mode encryption, thus, if � = 1, then no
additional length-hiding padding is used. |U | is the number of uniquely identifiable
pages, |Smax| is the size of the largest set of pages of identical size, |S| is the number of
different ciphertext lengths that are possible for the considered message distribution.
“TrivAdv” is the trivial advantage TrivAdv(SE(�)

M,C,Me). The column “Total data” lists
the total amount of data transferred from the server to the client when each of the 1620
web pages is accessed exactly once, “Overhead” the traffic overhead incurred by LHE
when compared to the same encryption mode with � = 1 and without compression.

Mode � Comp. |U | |Smax| |S| TrivAdv Total data Overhead

1 CTR 1 False 868 4 1199 0.7400 5.39 MB —

2 CTR 1 True 400 8 822 0.5071 2.65 MB −50.888%

3 CTR 80 False 8 85 54 0.0327 5.45 MB 1.158%

4 CTR 80 True 3 205 24 0.0142 2.71 MB −49.745%

5 CTR 160 False 6 166 30 0.0179 5.52 MB 2.311%

6 CTR 160 True 3 404 14 0.0080 2.77 MB −48.610%

7 CTR 400 False 1 409 14 0.0080 5.70 MB 5.677%

8 CTR 400 True 2 826 7 0.0037 2.96 MB −45.159%

9 CTR 8995 False 0 1620 1 0.0000 13.93 MB 158.346%

10 CTR 3458 True 0 1620 1 0.0000 5.38 MB −0.294%

11 BLK 1 False 40 23 213 0.1309 5.40 MB —

12 BLK 1 True 17 46 100 0.0611 2.66 MB −50.777%

13 BLK 5 False 8 85 54 0.0327 5.45 MB 0.938%

14 BLK 5 True 3 205 24 0.0142 2.71 MB −49.854%

15 BLK 10 False 6 166 30 0.0179 5.52 MB 2.089%

16 BLK 10 True 3 404 14 0.0080 2.77 MB −48.722%

17 BLK 25 False 1 409 14 0.0080 5.70 MB 5.448%

18 BLK 25 True 2 826 7 0.0037 2.96 MB −45.278%

19 BLK 563 False 0 1620 1 0.0000 13.95 MB 158.157%

20 BLK 217 True 0 1620 1 0.0000 5.40 MB −0.111%

– In most cases compression reduces the trivial advantage of the adversary by
a factor of about 2 or better. The only exception is counter mode without
length-hiding padding, where the reduction is still by a significant factor of
about 1.5.

– Compression significantly reduces the number |U | of uniquely identifiable web
pages in all cases by a factor of 2 or better, and increases the size |Smax| of
the largest set of pages of identical size.
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– To analyze the impact of different length-hiding parameters and compression
on communication complexity, we also measured the total amount of data
transferred from the server to the client when each of the 1620 web pages
is accessed exactly once. Note that compression not only reduces the adver-
sary’s advantage by a factor around 2, but also reduces the communication
complexity by a factor around 2.

– Without compression, even for a relatively large LHE parameter �, such as
400 = 25 · 16 for counter mode or 25 for block mode encryption, the added
communication complexity is relatively small, in particular when compared
to the corresponding reduction in the adversary’s trivial advantage.

– Achieving a trivial advantage of 0 costs a traffic overhead 159% without
compression and even reduces traffic with compression.

We also consider a more powerful fingerprinting attack on the IACR ePrint
archive website based on user patterns and another fingerprinting attack on the
Google search engine. Due to space limitations, these two sections can be found
in the full version of our work [8].

3.2 Simple Wikipedia Fingerprinting

Adversarial model. We consider webpage fingerprinting attack on the Wikipedia
website. In this model, a user visits the Wikipedia website. A passive adversary
observes the encrypted traffic and tries to determine the visited page.

Considered algorithms. Same as in Sect. 3.1.

Empirical data generation. The Wikimedia Foundation publishes pageview
statistics of the Wikipedia website since May 2015. The pageview statistics con-
tain the number of requests for each webpage in Wikipedia, which provides us
with a real world message distribution of Wikipedia pages. We used the pageview
data of May 2021 from https://dumps.wikimedia.org/other/pageviews/readme.
html. We considered the data for 164270 webpages written in simple English and
used a script issuing an HTTP HEAD-request for every webpage to determine
the size, in uncompressed and in compressed form. These values are stored in a
database and used to compute the size of counter- and block-mode ciphertexts
for these schemes that encrypt the web page in either compressed or uncom-
pressed form, with or without length-hiding encryption, and with respect to
different length-hiding parameters. We note that the Simple Wikipedia project
has a total number of 260478 webpages, as of May 2021, but not all webpages
were accessed at least once during this period. Therefore we consider only the
subset of webpages that were accessed in the considered time period (thus, the
message distribution implicitly assigns a probability of zero to other pages).

Let M := {m1, . . . ,m164270} be the set of different Simple Wikipedia web-
pages accessed in May 2021. We assume that the user picks one out of the
164270 webpages according to the distribution (denoted by MWiki) based on the
pageview statistics and then gets the corresponding encrypted webpage. The

https://dumps.wikimedia.org/other/pageviews/readme.html
https://dumps.wikimedia.org/other/pageviews/readme.html
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Table 2. Analysis of Simple Wikipedia article fingerprinting. “CTR” refers to AES-
GCM, “BLK” to AES-CBC. “Comp.” indicates whether compression is enabled, �
is the length-hiding parameter. Ciphertexts are padded to a multiple of � bytes for
counter mode, and � blocks for block mode encryption, � = 1 means that no additional
length-hiding padding is used. |U | is the number of uniquely identifiable pages, |Smax|
is the size of the largest set of pages of identical size, |S| is the number of different
ciphertext lengths that are possible for the considered message distribution. “TrivAdv”
is the trivial advantage TrivAdv(SE(�)

M,C,MWiki). The column “Total data” contains the
total amount of data transferred from the sever to the client when each of the 164270
web pages exactly once, “Overhead” the overhead incurred by LHE when compared to
the same encryption mode with � = 1 and without compression.

Mode � Comp. |U | |Smax| |S| TrivAdv Total data Overhead

1 CTR 1 False 26597 232 62524 0.8750 400.24 GB 0.000%

2 CTR 1 True 12908 81757 25689 0.5635 72.93 GB −81.780%

3 CTR 400 False 293 2251 1081 0.2775 401.14 GB 0.226%

4 CTR 400 True 132 81757 507 0.1557 73.82 GB −81.556%

5 CTR 4000 False 27 21876 193 0.1354 409.24 GB 2.248%

6 CTR 4000 True 26 81757 100 0.0701 81.76 GB −79.573%

7 CTR 40000 False 4 75284 34 0.0499 493.69 GB 23.349%

8 CTR 40000 True 6 158278 20 0.0058 199.47 GB −50.162%

9 CTR 160000 False 2 160609 11 0.0091 828.22 GB 106.930%

10 CTR 160000 True 2 164063 7 0.0012 728.39 GB 81.987%

11 CTR 2290976 False 0 164270 1 0.0000 10.14 TB 2493.687%

12 CTR 1331408 True 0 164270 1 0.0000 5.89 TB 1407.331%

13 BLK 1 False 3283 238 10540 0.6023 401.35 GB 0.000%

14 BLK 1 True 1457 81757 4901 0.3763 74.40 GB −81.462%

15 BLK 25 False 293 2251 1081 0.2775 402.22 GB 0.217%

16 BLK 25 True 132 81757 507 0.1557 75.26 GB −81.250%

17 BLK 250 False 27 21876 193 0.1354 410.31 GB 2.232%

18 BLK 250 True 26 81757 100 0.0701 83.19 GB −79.272%

19 BLK 2500 False 4 75284 34 0.0499 494.67 GB 23.251%

20 BLK 2500 True 6 158278 20 0.0058 200.75 GB −49.983%

21 BLK 10000 False 2 160609 11 0.0091 828.85 GB 106.514%

22 BLK 10000 True 2 164063 7 0.0012 728.99 GB 81.632%

23 BLK 143186 False 0 164270 1 0.0000 10.14 TB 2486.567%

24 BLK 83213 True 0 164270 1 0.0000 5.89 TB 1403.497%

adversary tries to guess the webpage. Hence, the adversary outputs an index
i ∈ {1, . . . , 164270}, such that we define function P as P : M → [1, 164270], for
mi 
→ i.
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Calculating the trivial advantage. Table 2 summarizes the results of the analysis.
We calculate TrivAdv(SE(�)

M,C,MWiki) for M ∈ {CTR,BLK}, C ∈ {True,False}
and different length-hiding parameter �.

Conclusions. Table 2 allows us to make the following observations:

– The adversary achieves very high trivial advantage (0.875) when � = 1. This
indicates that the adversary could successfully identify the webpage with high
probability only from the ciphertext length.

– Compression reduces the overhead incurred by length-hiding encryption, and
also reduces the trivial advantage.

– A length-hiding parameter of 40K in the CTR mode (resp. 2.5K in the BLK
mode) reduces the trivial advantage to 0.01 and increases the total data
by about 23% without compression, but reduces about 50% total data with
compression.

We believe that the example of Wikipedia webpage fingerprinting illustrates
very well that length-hiding encryption with proper length-hiding parameter
together with compression provides us with both security and bandwidth reduc-
tion for real-world message distributions.

Beyond the above analyses, we have conducted two more analyses on DNS
fingerprinting (one using random host names from the Majestic Million list, the
other using real-world DNS data collected in cooperation with a medium-sized
university), which can be found in the full version of our work [8].

4 Implementation and Analysis

We have implemented our new approach as an Apache module, based on the most
recent versions of an Apache HTTP server (Apache/2.4.38) and the OpenSSL
library (version 1.1.1d) for Debian 10. The implementation is currently experi-
mental, we plan to make a more stable version publicly available.

The implementation consists of two components. The first component mon-
itors the server’s requests and responses. It stores the block-length and number
of occurrences of requests to static URLs and the corresponding responses in
a database. This database then provides an approximation of the server’s mes-
sage distribution, which will be used by the second component to determine
an appropriate length-hiding parameter �. Furthermore, this component applies
length-hiding padding to plaintext messages. Since OpenSSL currently does not
support length-hiding padding beyond the last fragment of a plaintext, even
though this is possible according to the TLS 1.3 standard, our experimental
implementation currently simulates padding beyond frame bounds by append-
ing NULL-bytes to the plaintext.6

6 As we will discuss below, we aim to extend OpenSSL to allow for length-hiding
padding beyond the TLS fragment boundary, by appending further TLS fragments,
if necessary.
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The second component of our implementation computes the length-hiding
parameter �, based on the request-response database and a given upper bound on
the desired trivial advantage. It computes the smallest � that satisfies this trivial
advantage for the message distribution defined by the database. Currently, the
computation proceeds iteratively, that is, at first it tests whether the parameter
� = 1 satisfies the trivial advantage bound. If it does not, � is incremented and
the process repeated until an optimal value � is found. Since the trivial advantage
does not necessarily decrease monotonously for a given message distributions7,
this approach yields the smallest possible value �. The resulting parameter � is
then used to define the size of length-hiding padding in the first component.
Note that the second component can run in the background at predefined times
(e.g., once per hour or once per day).

4.1 Validation of Pencil-and-Paper Analysis

To validate the theoretical pencil-and-paper analysis from Sect. 3 we configured
the webserver as a proxy for the IACR ePrint server (resp. Google search engine).
Then we requested each of the webpages (resp. search terms) once, to establish
the same message distribution that was considered in Sect. 3. We used our imple-
mentation to record the message distribution, determine the LHE parameter �,
and then again accessed every web page once. We considered both AES-GCM
and AES-CBC cipher suites. In all cases, we were able to accurately reproduce
our results.

So far we have considered only the case without compression, for the follow-
ing reason. The plaintext data is accessible from within an Apache module by
accessing an appropriate “data bucket” of the Apache processing filter chain.
This enabled us to circumvent the fact that OpenSSL currently does not sup-
port length-hiding padding beyond the last fragment of a plaintext, by padding
the plaintext directly with NULL bytes. However, in order to apply the same
approach to compressed plaintext data, we would need access to a bucket that
contains the plaintext after compression, but before encryption. This seems not
possible from an Apache module, and therefore we could not yet validate the
pencil-and-paper analysis of compress-then-encrypt.

In future work we aim to perform further experiments, on a public web
server with real-world message distributions and with compression. To this end,
we have to extend OpenSSL to allow for length-hiding padding beyond the TLS
fragment boundary, by appending further TLS fragments, if necessary. Such
low-level modifications to OpenSSL and experiments on a public web server in
production require significant additional care. Therefore we view this as out of
scope of the present paper and leave this for future work.

7 For example, if we have only two messages with length 12 and 17, a block length of
10 would perfectly hide everything, while a block length of 15 would not.
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5 Conclusions

Fingerprinting attacks are a very powerful technique to extract information from
an encrypted channel, which are known to be very difficult to defend against.
We have introduced a methodology that makes it possible to concretely quantify
the security gained by length-hiding encryption. Our goal is to go beyond the
assumption that the length of a ciphertext does reveal sensitive information,
which is typically made implicitly in theoretical security models. In this sense,
understanding security in presence of messages of different lengths contributes
to our understanding of “secure encryption” in general.

We find that a surprisingly small amount of padding that incurs only a minor
bandwidth overhead of a few percent can already reduce the advantage of an
adversary very significantly. Even only the use of block mode encryption schemes,
whose padding provides some very simple form of length-hiding encryption, may
already reduce the concrete advantage of fingerprinting attacks very significantly.
We also observe that the general recommendation to disable compression before
encryption in all applications seems overgeneralized. While useful and necessary
in some applications (when active attacks are feasible), in some other cases (e.g.,
“big brother” attacks) it may be harmful to security. It is therefore necessary
to consider the security requirements of the application at hand with a more
detailed analysis.
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Bourges, France

xavier.bultel@insa-cvl.fr

Abstract. A Posteriori Openable Public Key Encryptions (APOPKE)
allow any user to generate a constant-size key that decrypts the messages
they have sent over a chosen period of time. As an important feature,
the period can be dynamically chosen after the messages have been sent.
This primitive was introduced in 2016 by Bultel and Lafourcade. They
also defined the Chosen-Plaintext Attack (CPA) security for APOPKE,
and designed a scheme called GAPO, which is CPA secure in the random
oracle model. In this paper, we formalize the Chosen-Ciphertext Attack
(CCA) security for APOPKE, then we design a scheme called CHAPO
(for CHosen-ciphetext attack resistant A Posteriori Openable encryp-
tion), and we prove its CCA security in the standard model. CHAPO
is approximately twice as efficient as GAPO and is more generic. We
also give news applications, and discuss the practical impact of its CCA
security.

1 Introduction

Over the past decade, the development of smartphones has made instant mes-
saging increasingly accessible and popular with the general public. The security
of such applications has become a crucial issue since Edward Snowden’s reve-
lations in 2013, which made people aware of the importance of protecting their
personal data on the Internet. Today, there are many encrypted messaging pro-
tocols that allow anyone to protect their private conversations from hackers and
mass surveillance, such as Signal, Telegram, Whatsapp, Wire, Keybase, or Line.
However, because they are within everyone’s reach, these tools are also used
by criminals. The example of the terrorist group Daesh, which uses Telegram
to communicate, is a good illustration of this. For that reason, encrypting the
communications can be seen as a suspicious act, and can harm a user during a
legal case, especially if the judicial authority requests the assistance of the user’s
Internet service provider to use lawful interception: if a user encrypts his com-
munications, then lawful interception will only intercept unintelligible data. In
such a scenario, the authorities requisition the smartphone and the user has to
reveal his access codes and secret keys so that the investigators exculpate him.
However, the investigators get unlimited access to the user’s data, and can get
to know private data that does not concern the investigation.
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A Posteriori Openable Public Key Encryption (APOPKE), introduced by
Bultel and Lafourcade in [6], offers a practical solution to this problem. In addi-
tion to the standard features of public key encryptions, an APOPKE scheme
implements a mechanism that allows a user to generate a special key called
interval key from any pair of indexes i and j, which allows a user called the
opener to decrypt the messages sent by the user (potentially from several differ-
ent devices) from the ith to the jth. The interval can be chosen a posteriori, i.e.
after the user has sent the messages. In addition, since the resources of user’s
device(s) are potentially limited, the interval key must be generated in constant
time using a single secret key, and must be of constant size: this prevents the user
from storing too much data, from having to perform a large number of opera-
tions on data spread over several devices, or from having to send very large data
to the opener growing with the size of the interval. Moreover, the complexity of
the encryption algorithm and the size of the ciphertexts should not depend on
the size of the interval for similar efficiency reasons. Note that the interval key
allows to decrypt any message sent between the indexes i and j, regardless of
the public key of the recipient of the message. Let us consider that an instant
messaging uses an APOKPE scheme, and that each encrypted message is dated
and stored on the server of the application. If a user wants to reveal his con-
versations over a given time period to a judge during an investigation, then he
can generate an interval key with the indexes of the first and last messages sent
during this period. The judge can then decrypt and view the messages stored on
the server for the time period.

In [6], the authors define a security model for the Chosen-Plaintext Attack
(CPA) security and for the integrity of APOPKE. The integrity property ensures
that the messages decrypted by the opener with the interval keys are the same
as the one decrypted by the recipients of the messages. The authors also design a
scheme that is proven CPA secure and has the integrity property in the so-called
Random Oracle Model (ROM). They leave as an open problem the design of a
scheme secure against the Chosen-Ciphertext Attacks (CCA), and the design
of a scheme proven secure in the standard model. In this paper, we solve these
two problems. We also show that CPA security is insufficient in practice for the
application of this primitive in secure messaging, but also in the applications
proposed in [6].

Our Contribution. In this paper, we extend the security model proposed by Bul-
tel and Lafourcade in order to capture the CCA security of the APOPKE. We
instantiate our model with a new scheme called CHAPO, then we present some
applications for the (CCA secure) APOPKE on encrypted messaging and voice
calls. As in [6], we distinguish two CCA security notions: Indistinguishability
Against Chosen Ciphertext Attack security (IND-CCA), and Indistinguishability
Against Chosen Set of Ciphertext Attack (IND-CSCA) security.

IND-CCA: This property is an extension of the IND-CCA property for PKE.
The adversary is a malicious opener who tries to guess which message has been
encrypted by the challenger between two chosen messages. This adversary has
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access to oracles that encrypt, decrypt, and generate an interval key using the
secrets of some honest users. In order to avoid trivial attacks, the challenge
ciphertext cannot be decrypted by the oracles, and cannot be decrypted by the
queried interval key.

IND-CSCA: Since the opening mechanism of an APOPKE can be viewed as
an alternate decryption algorithm for the opener (where the ciphertext is the
association of the interval key with the set of the ciphertexts in the interval), our
CCA model must consider the attacks where the adversary has access to an oracle
that decrypts a set of ciphertexts using the opening algorithm. The IND-CSCA
property considers a collusion of dishonest users who receives the interval keys of
an honest opener. These users try to learn some information about the messages
encrypted for the honest users, and can query some oracles that encrypt, decrypt,
generate interval keys, and open intervals, using the secrets of the honest users
and the honest opener.

Note that the two properties IND-CCA and IND-CSCA are complementary.
They capture two different adversary models, i.e. a collusion between the opener
and some users trying to attack a ciphertext outside the interval, and a collu-
sion of users attacking the ciphertexts in the interval without the help of the
opener. Neither of the two involves the other. Our second contribution is a new
APOPKE scheme called CHAPO, that have the following features:

Security: We prove that CHAPO is IND-CCA and IND-CSCA secure in the
standard model. Moreover we prove its integrity according to the definition given
in [6].

Genericity: Our scheme is based on standard cryptographic tools: it requires a
Pseudorandom Function (PRF), a Message Authentication Code scheme (MAC),
a Symmetric Key Encryption scheme (SKE) and a Public Key Encryption
scheme (PKE). We stress that unlike GAPO, there is no restriction in the
choice of the PKE, making CHAPO more generic. For instance, CHAPO can
be instantiated with the CPA variant of the McEliece cryptosystem [21] (for a
CPA secure instantiation), which is not possible for GAPO since it is not ran-
dom coin decryptable (according to a definition given in [6]), i.e. the random
coin used by the encryption algorithm cannot be used as an alternative secret
key to decrypt the corresponding ciphertext.

Efficiency. The dominating operations in CHAPO are the encryptions and
decryptions of the PKE. The encryption/decryption of a message requires one
PKE encryption/decryption, and the opening algorithm on a set of n ciphertexts
requires n PKE encryptions. In comparison, the GAPO encryption/decryption
of a message requires 2 PKE encryptions/decryptions, and the opening algo-
rithm of GAPO on a set of n ciphertexts requires 2 · n PKE encryptions and
2 · n PKE decryptions by random-coin. Finally, instantiated with a CPA secure
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PKE, CHAPO is approximately twice as efficient as GAPO for any instantiation
that yields the same level of security (CPA).

As in [6], our model considers only a single dishonest opener (or several
openers who do not collude) who receives only one interval key. Actually, we
relax this constraint a bit compared to [6] since we allow the opener to receive
keys for several intervals as long as the index of the challenge is not between
the lowest and the greatest index of the queried intervals. We let the design of
a secure scheme that allows multiple disjoint (constant-size) interval keys as an
open problem.

Related Works. Some encryption primitives have time-dependent decryption
properties, and are therefore related to our work. Time-Release Encryption
(TRE) [7,20] allows to produce ciphertexts that cannot be decrypted before
a given date. Some schemes implement a pre-open mechanism that allows to
decrypt the ciphertexts before the date [15]. In this case, both decryption meth-
ods must return the same message; this property, called binding property, is sim-
ilar to the APOPKE integrity property. Time-Specific Encryption (TSE) [22]
extends the TRE concept: the encryption algorithm produces ciphertexts that
can be decrypted in a pre-defined time interval only. Even if this line of research
is close to ours, the goals of TSE differ significantly from APOPKE: in TSE,
the time is bounded by a max value T , and the time interval is chosen a pri-
ori in [0, T − 1], i.e. before than the message is encrypted. TSE constructions
are less generic than CHAPO [16,17], and there is no scheme that ensures that
both ciphertexts and keys are of constant size [16]. Key-Insulated Encryption
(KIE) [9] deals with the problem of storing secret keys on insecure device. The
keys are refreshed periodically by a secure server using a master secret key.
The encryption algorithm encrypts the messages from a time period tag and
a public key that remains unchanged over time. In [9] the authors show that
KIE can be used to delegate the decryption on a time interval by sending the
keys that match the interval. However, the periods are fixed, which avoids the
fine-grained management of the opener decryption capabilities if the interval
does not perfectly match the periods, and the opener decryption key grows lin-
early with the number of periods. Moreover, this solution allows the opener to
decrypt messages received by the user, whereas APOPKE allows the opener to
decrypt messages sent by the user (potentially with different public keys), which
constitutes an important conceptual break between these two primitives. Del-
egatable/constraint pseudorandom functions [4,18] allow to delegate the com-
putation of a pseudorandom function over an interval of inputs. By using such
a function to generate the encryption keys of successive ciphertexts, a user can
delegate the generation of decryption keys over a given interval, and thus obtain
features similar to APOPKE. However, using [4,18] the total number of cipher-
texts is bounded and the interval key is logarithmic in this bound, whereas an
APOPKE must allow the generation of an unlimited number of ciphertexts while
ensuring a constant size interval key.

On the application side, Key-Escrow (KE) and Key-Recovery (KR) [14,19,
24,25] schemes deal with the capability of an authority to decrypt the messages
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exchanged between two users by recovering their secret key. Some works deal
with KR mechanisms for lawful interception [1,14,25], where a set of authorities
has to collude to open an encrypted phone conversation between two users. As in
APOPKE, the security model ensures that the recovered conversation is the same
as the exchanged one. However, the motivations of such schemes differ from ours
since the authorities recover the keys one by one, contrary to APOPKE where
a single key makes it possible to open all the messages between two dates. In
this paper, we discuss the advantage of using our solution in the voice call lawful
interception context.

Finally, to the best of our knowledge, with the exception of [6], there are no
encryption schemes with features similar to CHAPO. Note that such a scheme
could be obtained with generic primitives such as functional encryption [11], by
considering the set of ciphertexts as the blocks of a single large ciphertext, and by
considering a function that returns the plaintexts of an interval on the blocks.
However, such a solution would be inefficient and would limit the number of
possible ciphertexts. We could also use attribute-based encryption [13], and give
the judge a key to decrypt on the attributes used during the time interval, but
to the best of our knowledge, no attribute-based encryption scheme offers both
constant-size ciphertexts and keys, and the limit on the number of attributes
would limit the number of possible messages.

2 Cryptographic Tools

Notation. In this paper, y ← Alg(x) denotes that the output of the determin-
istic algorithm Alg running on the input x is assigned to y. Moreover, Alg(x; r)
denotes that the probabilistic algorithm Alg uses the random coin r to gen-
erate its randomness. If the context is clear, we omit to mention the random
coin in the description of some algorithms, especially for adversaries (denoted
A) and key generators (denoted Gen). x ← y denotes the assignment of the
value of y to the variable x, and x

$← X denotes the random sample of x in
the uniform distribution on X. We assume that any variable has the value ⊥ by
default, which means that it is not defined, or not instantiated. For any security
property denoted Prop defined in this paper, any cryptographic scheme P , and
any Probabilistic Polynomial Time (PPT) algorithm A, we define an advantage
denoted AdvProp

P,A (λ), where λ is a security parameter. We say that P is Prop-
secure when the following function, called the Prop-advantage of P , is negligible:
AdvProp

P (λ) = max
A∈poly(λ)

{
AdvProp

P,A (λ)
}

.

Definition 1 (PRF [10]). Let λ be a security parameter, Kλ be a set, and
(α, β) be two integers. A Pseudorandom Function (PRF) is a function PRF :
Kλ × {0, 1}α → {0, 1}β.
For any PPT algorithm A, and for F = {f : {0, 1}α → {0, 1}β}, the advantage
of A on the pseudorandomness of PRF is defined by the function: AdvPR

PRF,A(λ) =∣∣∣∣Pr
[
f

$← F : 1 ← Af(·)(λ)
]

− Pr

[
rk

$← Kλ;
f(.) ← PRF(rk, ·); : 1 ← Af(·)(λ)

]∣∣∣∣ .
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Definition 2 (MAC [2]). Let λ be a security parameter. A Message Authen-
tication Code scheme (MAC) is defined by a tuple (Kλ,Mac,Ver) such that Kλ

is a set, and the (deterministic) algorithms Mac and Ver are defined by:

Mac(mk,m): On input a key mk ∈ Kλ, and a message m. return a tag t.
Ver(mk, t,m): On input a key mk ∈ Kλ, a tag t, and a message m ∈ {0, 1}∗.

Return a bit b.

Let P be a MAC scheme, and let A be a PPT algorithm. The Existential
UnForgeability against Chosen Message Attack (EUF-CMA) security experiment
for P is defined by:

ExpEUF-CMA
P,A (λ):

S ← ∅; mk∗
$← Kλ;

(t∗, m∗) ← AMac(mk∗,·),Ver(mk∗,·,·)(λ);
If 1 = Ver(mk∗, t∗, m∗) and (t∗, m∗) �∈ S,
then return 1, else 0;

where the oracle Mac(mk∗, ·) takes a message m as input, runs t ← Mac(mk∗,m),
updates S ← S ∪{(t,m)} and returns t, and the oracle Ver(mk∗, ·, ·) takes (t,m)
as input, runs b ← Ver(mk∗, t,m) and returns b. The EUF-CMA-advantage of A
is defined by AdvEUF-CMA

P,A (λ) = Pr[ExpEUF-CMA
P,A (λ) = 1].

Definition 3 (SKE [3]). Let λ be a security parameter. A Symmetric Key
Encryption scheme (SKE) is defined by a tuple (Kλ,Rλ,SEnc,SDec) such that
Kλ, and Rλ are two sets, and the algorithms SEnc and SDec are defined by:

PEnc(ek,m; r): On input a key ek ∈ Kλ, a message m ∈ {0, 1}∗, and a random
coin r ∈ Rλ, return a ciphertext c.

PDec(ek, c): On input a key ek ∈ Kλ, and a ciphertext c, return a message m.

Let P be a SKE, and let A = (A0,A1) be a pair of PPT algorithms. The Indis-
tinguishability against Chosen Ciphertexts Attacks security (IND-CCA) security
experiment for P is defined by:

ExpIND-CCA
b,P,A (λ):

ek∗
$← Kλ;

(m0, m1, st) ← ASEnc(ek∗,·),SDec(ek∗,·)
1 (λ);

If |m0| �= |m1|, then return a random bit;

r
$← Rλ; c∗ ← Enc(ek∗, mb; r);

b∗ ← ASEnc(ek∗,·),SDec(ek∗,·)
2 (λ, st, c∗);

If b = b∗, then return 1, else 0;
where the oracle SEnc(ek∗, ·) takes a message m as input, picks a random coin
r

$← Rλ, and returns PEnc(ek∗,m; r), and the oracle SDec(ek∗, ·) takes a cipher-
text c as input, and returns SDec(ek∗, c), except if c = c∗ during the second
phase. The IND-CCA-advantage of A is defined by AdvIND-CCA

P,A (λ) = |Pr[b $←
{0, 1} : 1 ← ExpIND-CCA

b,P,A (λ)] − 1/2|.
Definition 4 (PKE [12]). Let λ be a security parameter. A Public Key Encryp-
tion scheme (PKE) is defined by a tuple P = (Rλ,Mλ,PGen,PEnc,PDec) such
that Rλ is a set, and the algorithms PGen, PEnc, and PDec are defined by:
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PGen(1λ): Return a pair of public/secret keys (pk, sk).
PEnc(pk,m; r): On input a public key pk, a message m ∈ Mλ, and a random

coin r ∈ Rλ, return a ciphertext c.
PDec(sk, c): On input a secret key sk and a ciphertext c, return a message m.

P is said to be correct if for any (pk, sk) ← PGen(1λ), any m ∈ Mλ and any
r ∈ Rλ it holds that m = PDec(sk,PEnc(pk,m; r)).
Let A = (A0,A1) be a pair of PPT algorithms. The Indistinguishability against
Chosen-Ciphertext attack (IND-CCA) security experiment for P is defined by:

ExpIND-CCA
b,P,A (λ):

(pk∗, sk∗) ← PGen(1λ);

(m0, m1, st) ← APDec(sk∗,·)
1 (λ, pk∗);

r
$← Rλ; c∗ ← PEnc(pk∗, mb; r);

b∗ ← APDec(sk∗,·)
2 (λ, pk∗, st, c∗);

If b = b∗, then return 1, else 0;
where the oracle PDec(sk∗, ·) takes a ciphertext c as input, and returns
PDec(sk∗, c), except if c = c∗ during the second phase. The IND-CCA-advantage
of A is defined by AdvIND-CCA

P,A (λ) = |Pr[b $← {0, 1} :← ExpIND-CCA
b,P,A (λ)] − 1/2|.

Finally, we recall the notion of Verifiable Key defined in [6].

Definition 5 (Verifiable key generator). A public/private keys pair gen-
eration algorithm PGen is verifiable if there exists a deterministic polynomial-
time algorithm KVer such that, for any security parameter λ, it holds that:
KVer(pk∗, sk∗) = 1 ⇔ (pk∗, sk∗) ∈ {(pk, sk) : (pk, sk) ← PGen(1λ)}.

We show a simple trick to turn any key generator PGen into a verifiable key
generator PGen′. In what follows we explicit the use of the random coin (denoted
r) by the key generator: (pk, sk) ← PGen(1λ; r). We define a new key generator
PGen′ that runs (pk, sk) ← PGen(1λ; r) and returns (pk′, sk′) = (pk, (sk, r)).
The generator PGen′ can be used to replace PGen because it outputs the same
public key as the one returned by PGen, and it returns a secret key sk′ that
contains the secret key sk outputted by PGen. Moreover, PGen′ is verifiable
because KVer(pk∗, sk∗) can be instantiated by the following algorithm: parse sk∗
as (sk, r), run (pk′, sk′) ← PGen(1λ; r), if pk∗ = pk′ and sk∗ = (sk′, r), then
return 1, else return 0. Thus, in this paper, we will implicitly consider that any
key generator is verifiable.

3 Formal Definitions

An APOPKE is defined by a public/private key pair generator, an encryption
key generator that generates an encryption key for each user, an encryption
algorithm that encrypts a message from its index, the user encryption key, and
the recipient public key, a decryption algorithm that decrypts a ciphertext from
the secret key of the recipient, an extractor algorithm that generates an interval
key for an opener from two indexes (i, j), the user encryption key and the opener
public key, and an opening algorithm that allows the opener to decrypt each
message labelled by an index in �i, j� using his interval key and his secret key.
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Definition 6 (APOPKE). Let λ be a security parameter. An APOPKE
scheme is defined by a tuple (Rλ,Mλ,Gen,EGen,Enc,Dec,Ext,Open) such that
Rλ and Mλ are two sets, and are defined by:

Gen(1λ): Return a pair of public/secret keys (pk, sk). The same algorithm is used
to generate the keys of the users and the opener. In what follows, we will use
the notation (pko, sko) to designate the opener keys.

EGen(1λ): Return an encryption secret key k.
Enc(pkl, k,ml, l; rl): On input a receiver public key pkl, a sender secret encrytion

key k, a message ml ∈ Mλ, an index l ∈ N, and a random coin rl ∈ Rλ,
return a ciphertext cl.

Dec(skl, cl): On input a receiver secret key skl and a ciphertext cl, return a
message ml.

Ext(pko, k, i, j; r): On input an opener public key pko, a sender secret encrytion
key k, two indexes i and j, and a random coin r ∈ Rλ. Return an interval
key iki�j.

Open(sko, i, j, iki�j , (cl, pkl)i≤l≤j): On input an opener secret key sko, two
indexes i and j, an interval key iki�j, and a vector of ciphertexts couped
with their respective public keys (cl, pkl)i≤l≤j. Return messages (ml)i≤l≤j.

The IND-CCA experiment features an adversary who knows the public key
of an honest user, chooses two messages, receives the encryption of one of them
as challenge, and tries to guess which one has been encrypted with that pub-
lic key. The adversary has access to an encryption oracle that encrypts chosen
messages using an index n incremented by the experiment after each encryption
and the (secret) encryption key of the honest user, as well as a decryption oracle
that decrypts any chosen ciphertext except the challenge. At the beginning of
the experiment, n is initialized to 1. Note that the experiment simulates an hon-
est user encrypting several successive messages. Allowing forks in the ciphertext
sequence would introduce trivial and unrealistic attacks to deal with (in practice
the attacked user would have no interest in using non-successive indices) arti-
ficially complicating the model and the proofs. In addition, the adversary has
access to an extraction oracle that generates interval keys for chosen intervals.
However, the adversary cannot query the oracle for intervals (ik, jk) such that
the index of the challenge is between mink(ik) and maxk(jk).

Definition 7 (IND-CCA experiment). Let P = (Rλ,Mλ,Gen,EGen,Enc,
Dec,Ext,Open) be an APOPKE, let λ be a security parameter, and let A =
(A0,A1) be a pair of PPT algorithms. The Indistinguishability against Cho-
sen Ciphertext Attack (IND-CCA) security experiment for P is defined by:
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ExpIND-CCA
b,P,A (λ):

n ← 1; (i∗, j∗) ← (0, 0);
(pk∗, sk∗) ← Gen(1λ); k∗ ← EGen(1λ);

O ←
{
Enc(·, k∗, ·, n);Dec(sk∗, ·);
Ext(·, k∗, ·, ·);

}
;

(m(∗,0), m(∗,1), st) ← AO
1 (λ, pk∗);

l∗ ← n; r∗
$← Rλ; n ← n + 1;

cl∗ ← Enc(pk∗, k∗, m(∗,b), l∗; r∗);
b∗ ← AO

2 (λ, pk∗, st, cl∗);
If l∗ ∈ �i∗, j∗�, then return a random bit;
If b = b∗, then return 1, else 0;

where the oracles are defined by:

Enc(·, k∗, ·, n): On input (pkn,mn), pick rn
$← Rλ, run cn ← Enc(pkn, k∗,

mn, n; rn) and increment n ← (n + 1), then return cn.
Dec(sk∗, ·): On input c, during the second phase if cl∗ = c, then return ⊥. Finally,

run m ← Dec(sk∗, c) and return m.
Ext(·, k∗, ·, ·): On input (pko, i, j), if i ≤ 0 or j ≤ 0 or i ≥ j or j ≥ n, then

return ⊥. if i∗ = j∗ = 0, then set (i∗, j∗) ← (i, j). If i < i∗, then i∗ ← i. If
j > j∗, then j∗ ← j. Finally, pick r

$← Rλ, run iki�j ← Ext(pko, k∗, i, j; r)
and return iki�j.

The IND-CCA-advantage of A is defined by: AdvIND-CCA
P,A (λ) =∣∣∣Pr[b $← {0, 1} : 1 ← ExpIND-CCA

b,P,A (λ)] − 1/2
∣∣∣ .

The IND-CSCA experiment features an adversary who knows the public keys
of a set of honest users and the public key of an honest opener. The adversary
chooses two vectors of messages and a vector of public keys (of same size),
then the experiment picks one of the two vectors and generates a vector of
ciphertexts by encrypting each message using the corresponding public key and
the encryption key of a designated honest user. For each encryption, if the public
key belongs to an honest user, then the experiment encrypts the message of
the picked vector, else it encrypts the message of the first vector (this disables
the trivial attacks where the adversary receives messages of the picked vector
encrypted with his own keys). The experiment also generates an interval key for
the vector of ciphertexts using the opener public key and the designated user
encryption key. The adversary receives the vector of ciphertexts and the interval
key as challenge and tries to guess which vector has been encrypted.

The adversary has access to an encryption oracle that encrypts chosen mes-
sages using an index n incremented by the experiment after each encryption and
the encryption key of the designated user, as well as a decryption oracle that
decrypts any chosen ciphertext with the secret key of an honest user except the
ciphertexts in the challenge. At the beginning of the experiment, the index n is
initialized to 1, then n is incremented at each call to the encryption oracle, and
at each encryption performed by the experiment in order to build the challenge.
The adversary has access to an extraction oracle that generates interval keys
for chosen intervals using the designated user encryption key and the public key
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of the honest opener, except for the intervals that contain the index of one of
the ciphertexts of the challenge. Note that without the secret key of the honest
opener, the interval keys are supposed to be unusable by the adversary. Finally
the adversary has access to an opening oracle that decrypts the ciphertexts on
a chosen interval using a chosen vector of ciphertexts, a chosen interval key,
and the secret key of the honest opener as the opening algorithm, except if the
query exactly matches the challenge. The role of this oracle is more subtle than
that of the decryption oracle: it allows the IND-CSCA security to prevent not
only attacks where the adversary opens some modified ciphertexts from the chal-
lenge, but also attacks where the adversary adds or removes ciphertexts from
the challenge, or reorders them before sending it to the opening oracle.

Definition 8 (μ-IND-CSCA experiment). Let P = (Rλ,Mλ,Gen,EGen,
Enc,Dec,Ext,Open) be an APOPKE, let λ be a security parameter and μ be
an integer, and let A = (A0,A1) be a pair of PPT algorithms. The μ-
Indistinguishability Against Chosen Set of Ciphertexts security (IND-CSCA)
experiment for P is defined by:

Expμ-IND-CSCA
b,P,A (λ):

n ← 1;
(pko∗, sko∗) ← Gen(1λ);
∀l ∈ �1, μ�, (pk(∗,l), sk(∗,l)) ← Gen(1λ);

k∗ ← EGen(1λ);

O ←
{
Enc(·, k∗, ·, n);Dec(·, ·);
Ext(pko∗, k∗, ·, ·);Open(sko∗, ·, ·, ·, ·);

}
;

(j∗, (m(0,l), m(1,l), p̄kl)n≤l≤j∗ , st∗) ← AO
1 (λ, pko∗, (pk(∗,l))1≤l≤μ);

i∗ ← n;

∀ l ∈ �i∗, j∗�: r(∗,l)
$← Rλ;

If ∃ q, pk(∗,q) = p̄kl, then c(∗,l) ← Enc(p̄kl, k∗, m(b,l), l);

Else c(∗,l) ← Enc(p̄kl, k∗, m(0,l), l);
n ← j∗ + 1;

r∗
$← Rλ; iki∗�j∗ ← Ext(pko∗, k∗, i∗, j∗; r∗);

b∗ ← AO
2 (λ, pko∗, (pk(∗,l))1≤l≤μ, st, iki∗�j∗ , (c(∗,l))i∗≤l≤j∗);

If b = b∗, then return 1, else 0;
where the oracles are defined by:

Enc(·, k∗, ·, n): On input (pkn,mn), pick rn
$← Rλ, run cn ← Enc(pkn, k∗,

mn, n; rn) and increment n ← (n + 1), then return cn.
Dec(·, ·): On input (q, c), if q ≤ 0 or q > μ then return ⊥. During the second

phase if ∃ l such that pk(∗,q) = p̄kl and c(∗,l) = c, then return ⊥. Finally, run
m ← Dec(sk(∗,q), c) and return m.

Ext(pko∗, k∗, ·, ·): On input (i, j), if i ≤ 0 or i ≥ j or j ≥ n, then return ⊥.
During the second phase, if �i, j� ∩ �i∗, j∗� �= ∅, then return ⊥. Finally, pick
r

$← Rλ, run iki�j ← Ext(pko∗, k∗, i, j; r) and return iki�j.
Open(sko∗, ·, ·, ·, ·): On input (i, j, iki�j , (cl, pkl)i≤l≤j), if i ≤ 0 or i ≥ j or

j ≥ n, then return ⊥. During the second phase, if (iki�j , (cl, pkl)i≤l≤j) =
(iki∗�j∗ , (c(∗,l), p̄kl)i∗≤l≤j∗), then return ⊥. Finally, run (ml)i≤l≤j ←
Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j) and return (ml)i≤l≤j.
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The μ-IND-CSCA-advantage of A is defined by:
Advμ-IND-CSCA

P,A (λ) =
∣∣∣Pr[b $← {0, 1} : 1 ← Expμ-IND-CSCA

b,P,A (λ)] − 1/2
∣∣∣ .

Finally, we recall the integrity experiment of [6]. This property ensures that
for the same ciphertext produced by an adversary, an honest receiver and an
honest opener do not decrypt different plaintexts. This property should not be
confused with the correctness, which ensures that a ciphertext will be decrypted
correctly by the decryption algorithms only if it is generated by an honest user.

Definition 9 (Integrity experiment). Let P = (Rλ,Mλ,Gen,EGen,Enc,
Dec,Ext,Open) be an APOPKE, let λ be a security parameter, and let A be a
PPT algorithm. We define the integrity (Integrity) experiment for P as follows:

ExpIntegrity
P,A (λ):

(pko∗, sko∗) ← Gen(1λ);
(i, j, (cl, pkl)i≤l≤j , x, skx, iki�j) ← A(λ, pko∗);
(ml)i≤l≤j ← Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j);
m′

x ← Dec(skx, cx);
If mx �= ⊥ and m′

x �= ⊥ and mx �= m′
x and 1 = KVer(pkx, skx),

then return 1, else 0;

The Integrity-advantage is defined by AdvIntegrity
P,A (λ) = Pr[ExpIntegrity

P,A (λ) = 1].

4 Our Scheme: CHAPO

Designing APOPKE schemes. CHAPO is based on the opening technique
introduced in GAPO [6]: each message ml is split in two parts m̂l and m̃l such
that ml = m̂l ⊕ m̃l. The encryption algorithm uses four indexed keys denoted
êkl, êkl−1, ẽkl and ẽkl+1, and encrypts the message ml in two blocs Ĉl and C̃l

such that the part Ĉl encrypts m̂l and êkl−1, and can be decrypted by the key
êkl, and the part C̃l encrypts m̃l and ẽkl+1, and can be decrypted by the key
ẽkl. The interval key for the interval [i, j] is generated by encrypting the pair
of keys (ẽki, êkj) for the opener. Using êkj , the opener decrypts Ĉj and obtains
m̂j and êkj−1, then he uses êkj−1 to decrypt Ĉj−1 and repeats this operation
recursively until he gets (m̂l)i≤l≤j . On the other hand, using ẽki, the opener
decrypts C̃i and obtains m̃i and ẽki+1, then it uses ẽki+1 to decrypt C̃i+1 and
repeats this operation recursively until he gets (m̃l)i≤l≤j . Finally, he computes
(ml)i≤l≤j = (m̂l ⊕ m̃l)i≤l≤j .

We stress that the opener cannot decrypt the ciphertexts C̃l for l < i and Ĉl

for l > j, hence he is missing one share of each message ml such that l �∈ [i, j], so
he cannot rebuild these messages. The Fig. 1 illustrates this mechanism for the
interval [2, 4]. Note that this mechanism does not protect the messages between
two openable intervals. However, it is possible to enlarge the interval over which
the opener can decrypt the messages without altering the security of the scheme.
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CHAPO overview. CHAPO uses a PRF, a MAC, a SKE and a PKE. The pub-
lic/private keys (pk, sk) generation algorithm is defined as in the PKE scheme.
The encryption key generator returns a secret pair (rk,mk) where rk is a PRF
key and mk is a MAC key. For each index l, the keys êkl and ẽkl are the outputs
of the PRF on the (secret) key rk and the index l. Our scheme also requires a
MAC key mkl for each index l, that is also generated from the PRF on rk and l.

X. Bultel

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

m1⊕ ? m2 ⊕ m2 m3 ⊕ m3 m4 ⊕ m4 ? ⊕ m5 ? ⊕ m6

Fig. 1. Opening mechanism for the interval [2, 4]

The encryption algorithm takes as input the encryption key (rk,mk) of the
user, the message ml and the public key pk of the message recipient. The algo-
rithm first generates the ciphertext Dl by encrypting [ml‖mkl‖l] using the public
key pk and a random coin denoted by vl, then it splits ml, mkl, and vl in two parts
(m̂l, m̃l), (m̂kl, m̃kl), and (v̂l, ṽl), such that ml = m̂l ⊕ m̃l, mkl = m̂kl ⊕ m̃kl, and
vl = v̂l ⊕ ṽl. The algorithm generates C̃l by encrypting [ẽkl+1‖m̃l‖m̃kl‖ṽl‖pk‖l]
with the key ẽkl using the SKE, and Ĉl by encrypting [êkl−1‖m̂l‖m̂kl‖v̂l‖pk‖l]
with the key êkl using the SKE. Finally, the algorithm generates the MAC tag
Sl using the key mk on [C̃l‖Ĉl‖Dl‖pk‖l] and the MAC tag Tl using mkl on
[C̃l‖Ĉl‖Dl‖Sl‖pk‖l]. The ciphertext is the tuple (C̃l, Ĉl,Dl, Sl, Tl, l).

The recipient of (C̃l, Ĉl,Dl, Sl, Tl, l) decrypts Dl using sk in order to obtain
the message ml and the key mkl, then it checks the MAC tag Tl using mkl.
The interval key extraction algorithm on the interval [i, j] returns mk, ẽki, and
êkj encrypted with the public key of the opener. Using these keys, the opener
recovers the messages (ml)i≤l≤j by running the algorithm described above on
the parts C̃l and Ĉl of each ciphertext. The opener also verifies the tags Sl, and
verifies the correctness of Dl ans Tl by regenerating them.

Definition 10 (CHAPO). Let λ be a security parameter. CHAPO =
(Rλ,Mλ,Gen,EGen,Enc,Dec,Ext,Open) is an APOPKE scheme instantiated
by a set Mλ, an (unforgeable) message authentication code scheme MAC =
(Km

λ ,Mac,Ver), an (IND-CCA secure) symmetric encryption scheme SKE =
(Ks

λ,Rs
λ,SEnc,SDec), a pseudorandom function PRF : Kr

λ × {0, 1}λ+1 →
Ks

λ, and an (IND-CCA secure) public key encryption scheme PKE =
(Rp

λ,Mp
λ,PGen,PEnc,PDec). CHAPO is defined by:

Gen(1λ): Run (pk, sk) ← PGen(1λ) and return (pk, sk).
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EGen(1λ): Pick (rk,mk) $← Kr
λ × Km

λ , set k ← (rk,mk) and return k.
Enc(pkl, k,ml, l; rl): Parse k as (rk,mk). Using the random coin rl, pick at

random (ûl, ũl)
$← (Rs

λ)2, vl
$← Rp

λ, mkl
$← Km

λ , m̂kl
$← {0, 1}|mkl|,

v̂l
$← {0, 1}|vl|, and m̂l

$← {0, 1}|ml|.
Set m̃kl ← m̂kl ⊕ mkl, ṽl ← v̂l ⊕ vl, and m̃l ← m̂l ⊕ ml.
∀ h ∈ {l − 1, l, l + 1}, run êkh ← PRF(k, 0‖h) and ẽkh ← PRF(k, 1‖h). Set:
– C̃l ← SEnc(ẽkl, [ẽki+1‖m̃l‖m̃kl‖ṽl‖pkl‖l]; ũl) and Ĉl ← SEnc(êkl, [êki−1‖

m̂l‖m̂kl‖v̂l‖pkl‖l]; ûl)
– Dl ← PEnc(pkl, [ml‖mkl‖l]; vl)
– Sl ← Mac(mk, [C̃l‖Ĉl‖Dl‖pkl‖l]) and Tl ← Mac(mkl, [C̃l‖Ĉl‖Dl‖

Sl‖pkl‖l])
Set cl ← (C̃l, Ĉl,Dl, Sl, Tl, i) and return cl.
Dec(skl, cl): Parse cl as (C̃l, Ĉl,Dl, Sl, Tl, l) and run [ml‖mkl‖l′] ←
PDec(skl,Dl). If l = l′ and Ver(mkl, Tl, [C̃l‖Ĉl‖Dl‖Sl‖pkl‖l]) = 1, then return
ml, else return ⊥.
Ext(pko, k, i, j; r): Parse k as (rk,mk). Using the random coin r, pick at ran-

dom u
$← Rp

λ Run êkj ← PRF(rk, 0‖j) and ẽki ← PRF(rk, 1‖i), then run
Xi�j ← PEnc(pko, [ẽki‖êkj‖mk];u) and Yi�j ← Mac(mk, [i‖j‖Xi�j ]). Set
iki�j ← (Xi�j , Yi�j , i, j) and return iki�j.
Open(sko, i, j, iki�j , (cl, pkl)i≤l≤j): Parse iki�j as (Xi�j , Yi�j , i

′, j′), run

[ẽki‖êkj‖mk] ← PDec(sko,Xi�j). If 1 �= Ver(mk, Yi�j , [i‖j‖Xi�j ]) or (i, j) �=
(i′, j′), then abort and return ⊥.
∀ l ∈ �i, j�, from i to j, parse cl as (C̃l, Ĉl,Dl, Sl, Tl, l) and run
[ẽkl+1‖m̃l‖m̃kl‖ṽl‖p̃kl‖l̃] ← SDec(ẽkl, C̃l).
∀ l ∈ �i, j�, from j to i, run [êkl−1‖m̂l‖m̂kl‖v̂l‖p̂kl‖l̂] ← SDec(êkl, Ĉl). If:
– p̃kl �= pkl or l̃ �= l or p̂kl �= pkl or l̂ �= l, or
– Dl �= PEnc(pkl, [m̃l ⊕ m̂l‖m̃kl ⊕ m̂kl‖l]; (ṽl ⊕ v̂l)), or
– Tl �= Mac((m̃kl ⊕ m̂kl), [C̃l‖Ĉl‖Dl‖Sl‖pkl‖l]), or
– 1 �= Ver(mk, Sl, [C̃l‖Ĉl‖Dl‖pkl‖l]),

then return ⊥.
Finally, return (m̃l ⊕ m̂l)i≤l≤j.

Moreover, let le be a function such that for any set S, le(S) = maxx∈S(|x|),
the set Rλ is defined by Rλ = (Rs

λ)2 × Rp
λ × Km

λ × {0, 1}le(Km
λ ) × {0, 1}le(Rs

λ) ×
{0, 1}le(Rs

λ)×{0, 1}le(Mλ), and the set Mp
λ verifies {0, 1}(le(Mλ)+le(Km

λ )+λ) ⊆ Mp
λ.

Security of CHAPO. The CCA security is achieved when the decryption
oracles give no advantage to the adversary. The idea being that the decryption
oracles will reject the ciphertexts that have not been produced by the experiment,
or that have not been encrypted correctly by the adversary. In particular, the
decryption oracles should reject any alteration of the challenge.

In the IND-CCA scenario, if the adversary alters the challenge cl∗ , then the
tag Tl∗ is no longer valid, and should be refreshed by the adversary. Hence, the
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adversary should recover the corresponding MAC key mkl∗ . This key is encrypted
in C̃l∗ and Ĉl∗ , however the adversary can decrypt only one of these two cipher-
texts. Indeed, the challenge cannot be in the interval that the adversary can
decrypt using his interval keys, according to the winning conditions of the IND-
CCA experiment. In this case, one of the shares of mkl∗ remains encrypted by
the SKE. mkl∗ is also encrypted in Dl∗ , but since SKE and PKE are IND-CCA,
the adversary cannot recover mkl∗ from C̃l∗ and Ĉl∗ , or from Dl∗ . Moreover,
since the adversary does not know the key rk, he cannot generate mkl∗ from the
PRF. Finally, the adversary cannot alter the challenge cl∗ .

In the IND-CSCA scenario, if the adversary alters a ciphertext c in the chal-
lenge, then the tag T is no longer valid for the key mk, and should be refreshed
by the adversary. Otherwise, the opening oracle will fail on any vector of cipher-
texts that contains the alteration of c. However, the adversary has not the key
mk. To recover it, the adversary would have to decrypt one of the interval keys
without the secret key sko of the honest opener, which is not possible since the
PKE scheme is IND-CCA secure. Similarly, the opening oracle rejects any query
that contains new ciphertexts created by the adversary because he cannot gen-
erate the corresponding MAC tags. On the other hand, the adversary could try
to use the opening oracle on a vector that contains the ciphertexts of the chal-
lenge in a new order. However, since the MAC tags authenticate the indexes of
the ciphertexts, the opening oracle will always fail on such a query. Note that
since there is only one opener in our model, using a single MAC key mk for all
the ciphertexts produced by the same user does not lead to security problem:
the key mk can be seen as an authentication key shared between the user who
encrypts the messages and the opener.

Finally, when the opener decrypts the ciphertext cl = (C̃l, Ĉl,Dl, Sl, Tl, l)
encrypted with a key pkl in some interval, he recovers the message ml and
learns the values mkl and vl, then he checks that Dl = PEnc(pkl, [ml‖mkl‖l]; vl),
which ensures that [ml‖mkl‖l] = PDec(skl,Dl). This implies that the decryption
algorithm returns the same message ml as the opening algorithm, which shows
that CHAPO has the integrity property.

Comparaison with GAPO. CHAPO is based on the same approach as GAPO.
However, the design of GAPO does not achieve the functionality required by
CHAPO, and the two schemes differ in several points. First, the extraction algo-
rithm of GAPO takes as input the first and last ciphertexts of the interval instead
of using the corresponding indices, and the encryption algorithm uses a secret
state that is updated with each encryption. This implies that the user must have
access to all the ciphertexts they sent, and that their devices must synchronize
to share the secret state in a secure way, which limits the practicality of GAPO.

GAPO uses a PKE family called Random Coin Decryptable (RCD) PKE,
which means that the ciphertext can be decrypted with its random coin in addi-
tion to the standard decryption via the secret key. A GAPO ciphertext consists
of two RCD ciphertexts. The first one contains half of the message, and the
(symmetric) encryption of the seed of the random coin and the (symmetric) key
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used for the next encryption, and the second one contains the other half of the
message, and the (symmetric) encryption of the seed of the random coin and the
(symmetric) key used by the previous encryption. This method makes it very
easy to achieve integrity because the opener and the receiver decrypt the same
ciphertext. On the other hand, it is slightly less generic since it uses a specific
family of encryption, and it requires two public key encryptions, doubling the
encryption time of GAPO compared to CHAPO. Moreover, the random coins
are obtained by hashing the seeds, and the hash function must be modeled by
a random oracle so that the coins are truly random. This makes GAPO’s secu-
rity highly relying on the random oracle. Finally, GAPO is not CCA secure by
design. To achieve this security, CHAPO uses messages authentication codes, as
explained in the previous paragraph.

Security proofs. We prove each theorem by using a sequence of games between
a challenger and an adversary where the adversary plays an experiment run by
the challenger. Due to page limitation, we only give the sequences of games, but
we omit the reductions between the games. The full proofs are given in the full
version of this paper [5].

Theorem 1. If PRF is pseudorandom, MAC is EUF-CMA, SKE is IND-CCA,
and PKE is correct and IND-CCA, then CHAPO is IND-CSCA. Moreover, the
following holds, where qn (resp. qx) denotes the number of queries to the oracle
Enc (resp. Ext) during the experiment, and q∗ is an upper bound on j∗ − i∗:

AdvIND-CSCA
CHAPO (λ) ≤ 2 · (qx + q∗ · μ · (1 + (qn + q∗)2)

) · AdvIND-CCA
PKE (λ)

+ (2 + (qn + q∗)2 · q∗) · AdvEUF-CMA
MAC (λ) + 4 · (qn + q∗) · AdvIND-CCA

SKE (λ)

+ AdvPR
PRF(λ).

Proof (sketch). Let A be a PPT algorithm, we use the following sequence of
games:
Game G0: This game is the original IND-CSCA experiment.
Game G1: This game is similar to G0, but the challenger replaces each output
of the PRF by a random value picked at random in Ks

λ. We prove by reduction
that:

|Pr [A wins G0] − Pr [A wins G1]| ≤ AdvPR
PRF(λ).

Game G2: Let qx be the number of queries sent to the oracle Ext(pko∗, k∗, ·, ·).
This game is similar to G1, but the challenger replaces the elements encrypted
in the interval keys by random values:

– At the beginning of the experiment, the challenger initializes an empty list
LX [ ].

– Each time that the oracle Ext(pko∗, k∗, ·, ·) receives a query (i, j), the chal-
lenger parses k∗ as (rk∗,mk∗). If i ≤ 0, or i ≥ j, or j ≥ n, or �i, j�∩�i∗, j∗� �= ∅,
then it returns ⊥ according to the definition of the oracle Ext. It then picks
r

$← Rp
λ and rnd

$← {0, 1}| ˜eki‖ ̂ekj‖mk∗|, runs Xi�j ← PEnc(pko∗, rnd; r),
sets LExt[Xi�j ] ← [i‖j], runs Yi�j ← Mac(mk∗, [i‖j‖Xi�j ]), sets iki�j ←
(Xi�j , Yi�j , i, j) and returns iki�j .
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– Each time that the challenger runs Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j) such
that, parsing iki�j as (Xi�j , Yi�j , i, j), LX [Xi�j ] �= ⊥, it replaces the
instruction [ẽk

′
i‖êk

′
j‖mk′] ← PDec(sko∗,Xi�j) by the instructions [i′‖j′] ←

LX [Xi�j ]; ẽk
′
i ← ẽki′ ; êk

′
j ← êkj′ ; mk′ ← mk∗.

We prove by reduction that:

|Pr [A wins G1] − Pr [A wins G2]| ≤ 2 · qx · AdvIND-CCA
PKE (λ).

We stress that from this game, the key mk∗ is never used by the chal-
lenger except to generate/verify the message authentication codes.

Game G3: In this game, the challenger aborts and returns a random bit if the
adversary sends a valid query with a fresh interval key iki�j to the oracle Open,
i.e. an interval key that has not been generated by the experiment and that does
not abort the oracle. More precisely, this game is similar to G2, but:

– At the beginning, the challenger initializes an empty set Sik.
– Each time that the challenger generates an interval key iki�j , the challenger

sets Sik ← Sik ∪ {iki�j}.
– Each time that the oracle Open(sko∗, ·, ·, ·, ·) receives a query (i, j, iki�j ,

(cl, pkl)i≤l≤j) such that the oracle does not returns ⊥, if parsing iki�j as
(Xi�i, Yi�i, i, j) it holds that iki�j �∈ Sik and 1 = Ver(mk∗, Yi�j , [i‖j‖Xi�i]),
then the challenger sets Abort3 ← 1, aborts the experiment and returns a
random bit.

We claim that:

|Pr [A wins G2] − Pr [A wins G3]| ≤ AdvEUF-CMA
MAC (λ).

We have that |Pr [A wins G2] − Pr [A wins G3]| ≤ Pr[Abort3 = 1]. We prove this
claim by showing that Pr[Abort3 = 1] ≤ AdvEUF-CMA

MAC (λ).
Game G4: In this game, the challenger aborts and returns a random bit if the
adversary sends a valid query with a fresh ciphertext cl to the oracle Open, i.e.
a ciphertext that has not been generated by the experiment and that does not
abort the oracle. More precisely, this game is similar to G3, but:

– At the beginning of the experiment, the challenger initializes an empty set
SEnc.

– Each time that the challenger runs the encryption algorithm c ←
Enc(pk(∗,q), k∗,m, l; r) for any input m and l, and any key index q, the chal-
lenger sets SEnc ← SEnc ∪ {(pk(∗,q), c)}.

– Each time that the oracle Open(sko∗, ·, ·, ·, ·) receives a query (i, j, iki�j ,

(cl, pkl)i≤l≤j) such that ∃ l such that parsing cl as (C̃l, Ĉl,Dl, Sl, Tl, l), it
holds that (pkl, cl) �∈ SEnc and 1 = Ver(mk∗, Sl, [C̃l‖Ĉl‖Dl‖pkl‖l]), and such
that the oracle do not return ⊥, the challenger sets Abort4 ← 1, aborts the
experiment and returns a random bit.
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We claim that:

|Pr [A wins G3] − Pr [A wins G4]| ≤ AdvEUF-CMA
MAC (λ).

We have that |Pr [A wins G3] − Pr [A wins G4]| ≤ Pr[Abort4 = 1]. We prove this
claim by showing that Pr[Abort4 = 1] ≤ AdvEUF-CMA

MAC (λ).
Game G5: In what follows, cl denotes the encryption of the lth message ml by
the experiment, and p̄kl denotes the corresponding public key. Moreover, for any
pair of indexes (i, j), ikh

i�j denotes the hth interval key returned by the oracle
Ext(pko∗, k∗, ·, ·) on the input (i, j). This game is the same as G5 but the oracle
Open(sko∗, ·, ·, ·, ·) is re-defined by:

– On input (i, j, ik′
i�j , (c

′
l, pk

′
l)i≤l≤j), if i ≤ 0 or i ≥ j or j ≥ n,

then return ⊥. During the second phase, if (ik′
i�j , (c

′
l, pk

′
l)i≤l≤j) =

(iki∗�j∗ , (c(∗,l), p̄kl)i∗≤l≤j∗), then return ⊥.
– If (c′

l, pk
′
l)i≤l≤j = (cl, pkl)i≤l≤j and ∃ h such that ik′

i�j = ikh
i�j , then return

(ml)i≤l≤j , else return ⊥.

From the properties of G4 given above, we deduce that:

Pr [A wins G4] = Pr [A wins G5] .

We stress that from this game, the challenger no longer use the algorithm
SDec during the experiment.
Game G6: In this game, the challenger replaces the message encrypted
in each ciphertext C̃l by a random value. More precisely, this game
is similar to G5, but each time that the encryption algorithm cn ←
Enc(pkn, k∗,mn, n; rn) is run by the Enc oracle or by the experiment dur-
ing the generation of the challenge, the challenger replaces the instruc-
tion C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn) by the sequence of
instructions strn ← [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; rndn

$← {0, 1}|strn|; C̃n ←
SEnc(ẽkn, rndn; ũn);
Let q∗ be an upper bound on the number of ciphertexts sending by the adversary
A1, i.e. j∗ − i∗ ≤ q∗. We claim that:

|Pr [A wins G5] − Pr [A wins G6]| ≤ 2 · (qn + q∗) · AdvIND-CCA
SKE (λ).

We prove this claim by using an hybrid argument. We define an hybrid game
G6,h as follows:
Game G6,h: In this game, the challenger replaces the messages encrypted

in the h first ciphertexts C̃l by random values. More precisely, If h =
0, then G6,h = G5, else if 1 ≤ h ≤ (qn + q∗), then the game
G6,h is the same as G6,h−1, but when the encryption algorithm cn ←
Enc(pkn, k∗,mn, n; rn) is run for n = h by the Enc oracle or by the
experiment during the generation of the challenge, the challenger replaces
the instructions C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn) by strn ←
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[ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; rndn
$← {0, 1}|strn|; C̃n ← SEnc(ẽkn, rndn; ũn). We

prove by reduction that, for all h ∈ �1, qn + q∗�:

|Pr [A wins G6,h−1] − Pr [A wins G6,h]| ≤ 2 · AdvIND-CCA
SKE (λ).

Game G7: In this game, the challenger replaces the message encrypted in
each ciphertext Ĉl by a random value. More precisely, this game is simi-
lar to G6, but when the encryption algorithm cn ← Enc(pkn, k∗,mn, n; rn)
is run for n = h by the Enc oracle or by the experiment during
the generation of the challenge, the challenger replaces the instructions
Ĉn ← SEnc(êkn, [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; ûn) by the sequence strn ←
[êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; rndn

$← {0, 1}|strn|; Ĉn ← SEnc(êkn, rndn; ûn). Let
q∗ be an upper bound on the number of ciphertexts sending by the adversary
A1, i.e. j∗ − i∗ ≤ q∗. We claim that:

|Pr [A wins G6] − Pr [A wins G7]| ≤ 2 · (qn + q∗) · AdvIND-CCA
SKE (λ).

This claim can be proved using the following hybrid argument: We define an
hybrid game G7,h as follows:
Game G7,h: In this game, the challenger replaces the messages encrypted in

the (qn + q∗ + 1 − h) last ciphertexts C̃l by random values. More precisely,
if h = qn + q∗ + 1, then G7,h = G6, else if 1 ≤ h ≤ (qn + q∗), then
the game G7,h is the same as G7,h+1, but each time the challenger runs the
encryption algorithm cn ← Enc(pkn, k∗,mn, n; rn) during the Enc oracle or
during the challenge generation such that n = h, it replaces the instruc-
tion Ĉn ← SEnc(êkn, [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; ûn) by the sequence strn ←
[êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; rndn

$← {0, 1}|strn|; Ĉn ← SEnc(êkn, rndn; ûn). We
prove by reduction that, for all h ∈ �1, qn + q∗�:

|Pr [A wins G7,h+1] − Pr [A wins G7,h]| ≤ 2 · AdvIND-CCA
SKE (λ).

Game G8: In what follows, we parse the lth ciphertext c(∗,l) of the challenge by
(C̃(∗,l), Ĉ(∗,l),D(∗,l), S(∗,l), T(∗,l), l). In this game, the challenger replaces the keys
mkl for all l in �i∗, j∗� encrypted by a public key generated by the challenger (i.e.
in {pk(∗,q)}1≤q≤μ) in each ciphertext D(∗,l) by a random value. More precisely,
this game is similar to G7, except that when the challenger build the challenge
(iki∗�j∗ , (c(∗,l))i∗≤l≤j∗), ∀ l ∈ �i∗, j∗� such that ∃ q, pk(∗,q) = p̄kl:

the challenger picks mk′
l

$← Km
λ ,

when the challenger runs c(∗,l) ← Enc(p̄kl, k∗,m(b,l), l), it replaces
the instruction D(∗,l) ← PEnc(pk(∗,q), [m(b,l)‖mkl‖l]; vl) by D(∗,l) ←
PEnc(pk(∗,q), [m(b,l)‖mk′

l‖l]; vl).
For each query (p, c) (where we parse c as (C̃, Ĉ,D, S, T, l′)) sending to the
oracle Dec(·, ·) such that p = q, c �= c(∗,l) and D = D(∗,l), the challenger runs
Dec(sk(∗,q), c) as in the real experiment except that it replaces the instruction
[m‖mk‖l′′] ← PDec(sk(∗,q),D) by [m‖mk‖l′′] ← [m(b,l)‖mkl‖l].
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We prove by reduction that:

|Pr [A wins G7] − Pr [A wins G8]| ≤ 2 · q∗ · μ · AdvIND-CCA
PKE (λ).

We stress that from this game, for each index l in �i∗, j∗� such that p̄kl ∈
{pk(∗,q)}1≤q≤μ, the key mkl is only used to produced the MAC tag T(∗,l).
Especially, mkl is never encrypted in a ciphertext known by the adver-
sary.
Game G9: In this game, the challenger tries to guess the indexes i∗ and j∗,
and aborts in case of failure. More precisely, this game is similar to G8, but the
challenger picks (i′∗, j

′
∗) ← �1, qn + q∗�2 at the beginning of the experiment. At

the end of the experiment, if i′∗ �= j∗ or i′∗ �= j∗, then the challenger returns a
random bit. The adversary increases its winning advantage by a factor equalling
the probability of guessing correctly i∗ and j∗:

|Pr [A wins G8] − 1/2| = (qn + q∗)2 · |Pr [A wins G9] − 1/2|
We stress that n is incremented (qn + q∗) times during the experiment: qn times
by the oracle Enc(·, k∗, ·, n) and q∗ times after the generation of (c(∗,l))i∗≤l≤j∗ .
Game G10: We parse the challenge (c(∗,l))i∗≤l≤j∗ as (C̃(∗,l), Ĉ(∗,l),D(∗,l), S(∗,l),
T(∗,l), l)i∗≤l≤j∗ . In this game, the challenger aborts if the adversary tries to reuse
the element D(∗,l) in a ciphertext c �= c(∗,l) sending to the decryption oracle for
all l in �i∗, j∗� such that p̄kl ∈ {pk(∗,q)}1≤q≤μ. More concretely, this game is
similar to G9, but if the adversary sends a query (p, c) (where we parse c as
(C̃, Ĉ,D, S, T, l)) to the oracle Dec(·, ·) such that, pk(∗,q) = p̄kl and D = D(∗,l)

and c �= c(∗,l) and Ver(mkl, T, [C̃‖Ĉ‖D‖S‖pk(∗,q)‖l]) = 1, then the challenger set
Abort10 ← 1, aborts the game G10 and returns a random bit. We claim that:

|Pr [A wins G9] − Pr [A wins G10]| ≤ q∗ · AdvEUF-CMA
MAC (λ).

We prove this claim by using an hybrid argument. We define the game G10,h as
follows:
Game G10,h: We define G10,0 as G9, and for all 1 ≤ h ≤ q∗, we define
G10,h as G10,h−1 but the challenger aborts if (i) p̄k(∗,i′∗+h) ∈ {pk(∗,q)}1≤q≤μ,
and (ii) the adversary tries to reuse the element D(∗,i′∗+h) in a cipher-
text c �= c(∗,i′∗+h) sending to the decryption oracle. More concretely, we
define G10,h as the same game as G10,h−1 except that parsing the challenge
(c(∗,l))i∗≤l≤j∗ as (C̃(∗,l), Ĉ(∗,l),D(∗,l), S(∗,l), T(∗,l))i∗≤l≤j∗ , if the adversary sends
a query (p, c) to the oracle Dec(·, ·) such that, parsing c as (C̃, Ĉ,D, S, T, l),
it holds that pk(∗,q) = p̄ki′∗+h and D = D(∗,i′∗+h) and c �= c(∗,i′∗+h) and
Ver(mki′∗+h, T, [C̃‖Ĉ‖D‖S‖pk(∗,q)‖l]) = 1, then the challenger set Abort10,h ← 1,
aborts the game G10,h and returns a random bit. We note that G10,q∗ = G10.
We prove by reduction that:

|Pr [A wins G10,h−1] − Pr [A wins G10,h]| ≤ AdvEUF-CMA
MAC (λ).

Game G11: This game is similar to G10, but the challenger substitutes each
message that depends on b by a random message of same length. More formally,
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for each l ∈ �i′∗, j
′
∗� such that p̄kl ∈ {pk(∗,q)}1≤q≤μ it replaces the message m(b,l)

encrypted in c(∗,l) by the public key p̄kl by a message m(∗,l)
$← {0, 1}|m(b,l)|

chosen at random. We prove by reduction that:

|Pr [A wins G10] − Pr [A wins G11]| = 2 · q∗ · μ · AdvIND-CCA
PKE (λ).

By composing the winning probabilities of A in all games, we obtain the upper
bound on AdvIND-CSCA

CHAPO (λ) given in the theorem, which concludes the proof. ��
Theorem 2. If PRF is pseudorandom, MAC is EUF-CMA, SKE and PKE are
correct and IND-CCA, then CHAPO is IND-CCA. Moreover, the following holds,
where qn denotes the number of queries to the oracle Enc during the experiment:

AdvIND-CCA
CHAPO (λ) ≤2 · AdvPR

PRF(λ) + 4 · (qn + 1) · AdvIND-CCA
SKE (λ)

+ 8 · (qn + 1) · AdvIND-CCA
PKE (λ) + 2 · (qn + 1) · AdvEUF-CMA

MAC (λ).

Proof (sketch). We recall that in order to win the IND-CCA experiment with a
non negligible advantage, the following must hold: l∗ �∈ �i∗, j∗�. We separate our
proof in two distinct cases: l∗ < i∗ and l∗ > j∗. More concretely, we define two
variants of the IND-CCA experiment: the IND-CCA0 (resp. IND-CCA1) experi-
ment denotes the same experiment as IND-CCA except that if l∗ < i∗ (resp.
l∗ > j∗), then the challenger returns a random bit. We have that:

AdvIND-CCA
CHAPO,A(λ) ≤ AdvIND-CCA0

CHAPO,A(λ) + AdvIND-CCA1
CHAPO,A(λ).

Case IND-CCA0 (i.e. l∗ < i∗): We use the following sequence of games. Let A
be a PPT algorithm:
Game G0: This game is the original IND-CCA0 experiment.
Game G1: This game is similar to G0, but the challenger replaces each output
of the PRF by a random value picked in Ks

λ. We prove by reduction that:

|Pr [A wins G0] − Pr [A wins G1]| ≤ AdvPR
PRF(λ).

Game G2: In this game, the challenger tries to guess the index i∗ and aborts
in case of failure. Let qn be the number of calls to the oracle Enc(·, k∗, ·, n). This
game is similar to G1, but the challenger picks i′∗ ← �1, qn + 1� at the beginning
of the experiment. At the end of the experiment, if i′∗ �= i∗, then the challenger
returns a random bit. The adversary increases its winning advantage by a factor
equalling the probability of guessing correctly i∗:

|Pr [A wins G1] − 1/2| = (qn + 1) · |Pr [A wins G2] − 1/2|

Note that n is incremented (qn + 1) times during the experiment: qn times by
the oracle Enc(·, k∗, ·, n) and one time after the generation of cl∗ .
Game G3: In this game, for all n ≤ i∗, the challenger replaces the part
C̃n of the ciphertext cn by the encryption of a random message, which
includes the challenge cl∗ if l∗ ≤ i∗ (otherwise, the challenger returns
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a random bit by definition of the IND-CCA0 experiment). This game is
similar to G2, but while n < i′∗, each time the oracle Enc(·, k∗, ·, n) is
called on a query (pkn,mn) and runs cn ← Enc(pkn, k∗,mn, n; rn), it
replaces the instruction C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn) by
the sequence of instructions strn ← [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; rndn

$←
{0, 1}|strn|; C̃n ← SEnc(ẽkn, rndn; ũn). Moreover, when it computes the chal-
lenge cl∗ ← Enc(pk∗, k∗,m(∗,0), l∗; r∗), the challenger replaces the instruc-
tion C̃l∗ ← SEnc(ẽkl∗ , [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖l∗]; ũl∗); by the sequence
strl∗ ← [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖l∗]; rndl∗

$← {0, 1}|strl∗ |; C̃l∗ ←
SEnc(ẽkl∗ , rndl∗ ; ũl∗). We claim that:

|Pr [A wins G2] − Pr [A wins G3]| ≤ 2 · (qn + 1) · AdvIND-CCA
SKE (λ).

We prove this claim by using an hybrid argument. We define the hybrid game
G3,i as follows:
Game G3,i: If i = 0, then G3,0 = G2, else for all n ≤ i, if i ≤ i′∗, then

the challenger replaces the part C̃n of the ciphertext cn by the encryption
of a random message. More concretely, if 1 ≤ i ≤ (qn + 1), then the game
G3,i is the same as G3,i−1, but if i < i′∗ and l∗ �= i, then when the oracle
Enc(·, k∗, ·, i) is called on a query (pki,mi) and runs ci ← Enc(pki, k∗,mi, i; ri),
it replaces the instruction C̃i ← SEnc(ẽki, [ẽki+1‖m̃i‖m̃ki‖ṽi‖pki‖i]; ũi) by
the sequence of instructions stri[ẽki+1‖m̃i‖m̃ki‖ṽi‖pki‖i]; rndi

$← {0, 1}|stri|;
C̃i ← SEnc(ẽki, rndi; ũi). Moreover, if l∗ = i, then when it com-
putes the challenge cl∗ ← Enc(pk∗, k∗,m(∗,0), l∗; r∗), the challenger replaces
the instruction C̃l∗ ← SEnc(ẽkl∗ , [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖l∗]; ũl∗) by
strl∗ ← [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖l∗]; rndl∗

$← {0, 1}|strl∗ |; C̃l∗ ←
SEnc(ẽkl∗ , rndl∗ ; ũl∗). We prove by reduction that, for all i ∈ �1, qn + 1�:

|Pr [A wins G3,i−1] − Pr [A wins G3,i]| ≤ 2 · AdvIND-CCA
SKE (λ).

Game G4: This is the same game as G3, but m̂(∗,b), m̂kl∗ and v̂l∗ are substi-
tuted by random bit-strings of same length. At this step, since m̃(∗,b) is replaced
by a random bit string in C̃l∗ and m̂(∗,b) = m(∗,b) ⊕ m̃(∗,b), then m̂(∗,b) is indis-
tinguishable from a random bit string, so it no longer depends on b, and can
be substituted by a random bit-string without any influence on the adversary
advantage. Using a similar argument, we have that m̂kl∗ and v̂l∗ can also be
substituted by random bit-strings. We deduce that:

Pr [A wins G3] = Pr [A wins G4] .

Game G5: In this game, the challenger replaces the MAC key mkl∗ by a random
value in the part Dl∗ (encrypted by PKE) of the ciphertext challenge cl∗ . More
concretely, This game is similar to G5, except that:

– when it computes the challenge by running cl∗ ← Enc(pk∗, k∗,m(∗,b), l∗; r∗),
it replaces the instruction Dl∗ ← PEnc(pk∗, [m(∗,b)‖mkl∗‖l∗]; vl∗) by the
sequence of instructions mk′

l∗
$← Km

λ ;Dl∗ ← PEnc(pk∗, [m(∗,b)‖mk′
l∗‖l∗]; vl∗),
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– For each query c = (C̃, Ĉ,D, S, T, l) sending to the oracle Dec(sk∗, ·) such
that c �= cl∗ and D = Dl∗ , the challenger runs Dec(sk∗, c) as in the real
experiment except that it replaces the instruction [m‖mk‖l] ← PDec(sk∗,D)
by [m‖mk‖l] ← [m(∗,b)‖mkl∗‖l∗].

We prove by reduction that:

|Pr [A wins G4] − Pr [A wins G5]| ≤ 2 · AdvIND-CCA
PKE (λ).

Game G6: In what follows, we parse the challenge cl∗ as (C̃l∗ , Ĉl∗ ,Dl∗ , Sl∗ , Tl∗).
In this game, the challenger aborts if the adversary tries to reuse Dl∗ in a cipher-
text c �= cl∗ sending to the decryption oracle. More concretely, this game is sim-
ilar to G5, but if the adversary sends a query c = (C̃, Ĉ,D, S, T, l) to the oracle
Dec(sk∗, ·) such that D = Dl∗ , c �= cl∗ and Ver(mkl∗ , T, [C̃‖Ĉ‖D‖S‖pk∗‖l]) = 1,
then the challenger set Abort6 ← 1, aborts the game G6 and returns a random
bit. We prove by reduction that:

|Pr [A wins G5] − Pr [A wins G6]| ≤ AdvEUF-CMA
MAC (λ).

Game G7: This game is similar to G6, but the challenger substitutes the message
m(∗,b) by a random message m∗

$← {0, 1}|m(∗,b)|. We prove by reduction that:

|Pr [A wins G6] − Pr [A wins G7]| = 2 · AdvIND-CCA
PKE (λ).

At this step, the parts Ĉl∗ , C̃l∗ , and Dl∗ of the challenge cl∗ encrypts random val-
ues instead of the messages m̂(∗,b), m̃(∗,b), and m(∗,b), which implies that the game
G7 do not depend on the challenge bit b. We deduce that Pr [A wins G7] = 1/2.
Case IND-CCA1 (l∗ > j∗) is similar to case IND-CCA0. By composing the winning
probabilities of A in all games, we obtain the upper bound on AdvIND-CCA

CHAPO (λ)
given in the theorem, which concludes the proof. ��
Theorem 3. If PKE is correct and key verifiable, then CHAPO is Integrity-
secure. Moreover, it holds that AdvIntegrity

CHAPO (λ) = 0.

Proof. We prove this theorem by negation. Assume that the adversary returns
(i, j, (cl, pkl)i≤l≤j , x, skx, iki�j) to the challenger such that running (ml)i≤l≤j ←
Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j) and m′

x ← Dec(skx, cx), it holds that mx �= ⊥
and m′

x �= ⊥ and mx �= m′
x and 1 = KVer(pkx, skx). We show that this implies

the following contradiction: m′
x = mx.

We parse cx as (C̃x, Ĉx,Dx, Sx, Tx, x). According to the algorithm Open,
if mx �= ⊥, then during the run of Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j),
the challenger computes two values mkx and vx such that Dx =
PEnc(pkx, [mx‖mkx‖x]; vl). We have that 1 = KVer(pkx, skx), so (pkx, skx) ∈
{(pk, sk) : (pk, sk) ← KVer(1λ)}. Moreover, since PKE is correct, then we have
that for any (pk, sk) ← KVer(1λ), any message m and any random coin r,
it holds that m = PDec(sk,PEnc(pk,m; r)). We deduce that [mx‖mkx‖x] =
PDec(skx,Dx).

On the other hand, According to the algorithm Dec, m′
x ← Dec(skx, cx)

implies that there exists a values mk′
x such that [m′

x‖mk′
x‖x] = PDec(skx,Dx).

We deduce that m′
x = mx, which concludes the proof. ��
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5 Applications

Chosen ciphertext security in practice. Our CCA security model provides
several properties that are essential for practical applications: the IND-CCA
security ensures that the ciphertexts are not malleable, and the IND-CSCA
ensures that if an adversary modifies, drops, adds or rearranges the encrypted
messages in the open interval, the open algorithm fails. In what follows, we show
several applications of APOPKE, and we discuss the practical impact of the
CCA security.
Encrypted invoices during tax audit. Bultel and Lafourcade give the fol-
lowing application for their APOPKE scheme. A company sends invoices to its
customers by encrypted e-mail. One day, the company has to pass a tax audit,
and the court asks the company’s mail server to provide the invoices sent over
a given period of time. The company does not want to reveal the invoices of
its customers that were not sent over the period of the tax audit. It therefore
uses an APOPKE to reveal only the invoices sent over the time period. The CPA
security only takes into account the cases where the server is passive: a dishonest
server could discredit the company in court by adding or removing invoices, or
changing their amounts in an undetectable way. The dishonest server can also
modify the invoices before the clients receive them. Our CCA security fixes this
drawback by preventing this kind of attacks.
Interception of secure messaging and vocal chat. In the introduction, we
have already mentioned the use of APOPKE to reveal his textual conversations
during a given period of time in a court of law, in order to prove his honesty.
Again, a dishonest server might want to alter the user’s conversations, so the
CCA security is necessary. Often messaging applications also implement voice
calls. In this case, encrypting the conversation with a public key encryption
becomes infeasible for the sake of effectiveness. However, it is possible to use an
APOPKE to encapsulate a session key used throughout the call to encrypts the
packets with an authenticated encryption scheme [23]. To open the conversations
over the interval, the opener will decrypt each session key using his interval
key, then use each session key to decrypt the packets from the corresponding
conversation. From a security point of view, the CCA security prevents the
server from altering the session key, and the authenticated encryption ensures
the integrity of the conversations decrypted with the session key.
Bypass the limitations. The main limitation of CHAPO is that the user
cannot securely generate keys for two disjoint intervals. This limitation can be
bypassed in practice by refreshing the user’s encryption key from time to time.
In this case, the refresh rate must be chosen so as to obtain the best tradeoff
between the number of encryption keys and the number of ciphertexts in the
period covered by each key. To take the example of the instant messaging, we
can consider that the user must refresh his encryption key every year. On the
one hand, he is unlikely to accumulate several court cases for different periods
during a year, and on the other hand, even if he uses the instant messaging all
his life, he will only need to store less than one hundred keys. The user will have
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to send as many interval keys as there are years in the selected period to the
opener, which seems reasonable in practice.

6 Conclusion

In this paper, we revisited the a posteriori openable encryption schemes intro-
duced by Bultel and Lafourcade in [6]. We gave a security model for the chosen-
ciphertext attack security of this primitive, and we proposed a new scheme called
CHAPO which improves four points of the scheme given in [6]: it is more secure
(CCA security), more generic, more efficient, and it does not require the ran-
dom oracle model. We also presented new applications for this primitive. In the
future, we would like to put these applications into practice. Moreover, it would
be interesting to adapt the a posteriori openable encryptions to the secure mes-
saging based on the double ratchet algorithm [8], such as Signal or Whatsapp.

Acknowledgements. The author would like to thank Angèle Bossuat and David
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Abstract. We propose a Dynamic Universal Accumulator in the Accu-
mulator Manager setting for bilinear groups which extends Nguyen’s
positive accumulator and Au et al. [4] and Damg̊ard and Triandopoulos
non-membership proof mechanism [20]. The new features include support
for batch addition and deletion operations as well as a privacy-friendly
batch witness update protocol, where the witness update information is
the same for all users. Together with a non-interactive zero-knowledge
protocol, these make the proposed scheme suitable as an efficient and
scalable Anonymous Credential System, accessible even by low-resource
users. We show security of the proposed protocol in the Generic Group
Model under a (new) generalized version of the t-SDH assumption and
we demonstrate its practical relevance by providing and discussing an
implementation realized using state-of-the-art libraries.

Keywords: Acumulator · Universal · Dynamic · Batch update ·
Privacy-preserving KYC · Anonymous credentials

1 Introduction

A cryptographic accumulator allows to aggregate many different values from a
finite set into a fixed-length digest called accumulator value. Differently than
hash functions, accumulators permit to further verify if an element is either
accumulated or not in a given accumulator value by using the so-called member-
ship and non-membership witnesses, respectively. Accumulator schemes which
support membership witnesses are referred to as positive accumulators, the ones
that support non-membership witnesses are called negative, while the ones that
support both are called universal accumulators. A common requirement for the
accumulator schemes is the ability to change the set of accumulated elements,
hence permitting accumulator updates: when the accumulator allows to dynam-
ically add and delete elements, it is said to be a dynamic accumulator.

Whenever addition or deletion operations occur for one or several elements
(in the latter case these are called batch additions and deletions), already issued
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witnesses should be updated to be consistent with the new accumulator value.
Ideally this should be done using a short amount of witness update data (i.e.
whose cost/size is not dependent on the number of elements involved) and with
only publicly available information (i.e. without knowledge of any secret accu-
mulator parameters). While there are many constructions that satisfy the public
update condition, as regards to the update cost, Camacho and Hevia showed
in [15] an impossibility result to have batch witness updates whose update data
size is independent from the number of elements involved. More precisely, they
showed that for an accumulator state which accumulates n elements, the witness
update data size for a batch delete operation involving m elements cannot be
less than Ω(m log n

m ), thus requiring at least Ω(m) operations to update.

Our Contributions. In this paper we propose a Dynamic Universal Accumu-
lator in the Accumulator Manager setting which supports batch operations and
public batch witness updates as well as privacy preserving zero-knowledge proof
of knowledge for membership and non-membership witnesses. Its features are
manifold:

– Support for Batch Operations: Starting from Nguyen’s positive accu-
mulator and Au et al. [4] and Damg̊ard and Triandopoulos non-membership
proof mechanism [20], we state a Dynamic Universal Accumulator for bilinear
groups in the Accumulator Manager setting (i.e. it is managed by a central
authority who knows the accumulator trapdoor) and we extend it to fully
support batch addition and deletion operations, as well as membership and
non-membership batch witness updates.

– Optimal Batch Update: the number of operations needed to batch update
witnesses equals the lower bound given by Camacho and Hevia [15] in the
case of a batch deletion operation. The same complexity holds in the case of
either a batch addition operation and a batch addition & deletion operation,
where m new elements are added and other m elements are deleted, namely
O(m) update time for a batch witness update information size of m log pq
bits, where p is the size of the underlying bilinear group and q is the bit-size
of group elements representations.

– Batch Witness Update Protocol: we designed a batch witness update
protocol where the batch witness update information published by the Accu-
mulator Manager after a batch operation is the same for all users. This infor-
mation can be pre-processed by third-party servers in order to allow users
to update their witnesses in a constant number of elementary operations,
even in the case many batch operations occurred from their last update. This
allows the accumulator to be used even when only limited-resource devices
(ex. smartphones) are available to users.

– Security: we introduce a weaker definition for collision resistance and a new
more general definition of t−SDH assumption for which we provide in the
Generic Group Model a lower bound complexity of a generic algorithm that
solves the corresponding hardness problem. We show that our scheme along
with its public batch update protocol and published information is secure
under this more general security assumption and we address the relevant
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recent attacks found in [8] by showing that with a proper initialization of the
accumulator value, a generic algorithm has negligible probability to compute
elements belonging to a certain reference string RS, whose knowledge would
allow to issue arbitrary witnesses.

– Zero-Knowledge Friendly: zero-knowledge protocols are supported for
any operation involving witnesses: we detail an efficient non-interactive zero-
knowledge protocol to show ownership of a valid witness.

– Implementation: to show efficiency and its practical relevance, we imple-
mented and benchmarked the proposed accumulator using state-of-the-art
libraries for pairing-friendly elliptic curves. Following feedback received from
the community, we briefly report benchmarks of third-party implementations
of our scheme which are already employed in production applications.

It follows that our accumulator is well suited to be the building block of an
Anonymous Credential System, which originally motivated this work. In these
systems only the users which were previously authorized by a central author-
ity (the Accumulator Manager) can use the issued credentials to authenticate
to the third-party verifier (ex. some financial service provider, like bank or an
exchange). They do so by proving in zero-knowledge ownership of a valid mem-
bership or non-membership witnesses, depending if the accumulator is used as
a white- or black-list. Furthermore, doing so anonymously and unlinkably, even
if the verifier colludes with the accumulator manager. This could be crucial in
many applications given current societal challenges of protecting user privacy on
the one hand and government-imposed know-your-customer regulations on the
other hand.
Limitations. Our protocol assumes a trusted Accumulator Manager that, by
knowing the secret accumulator parameter α, can forge membership and non-
membership witnesses at will. In practice, the secret α can be secret-shared
among multiple managers, but the construction and security analysis of such
scheme is left as future work. In case of a batch addition and deletion opera-
tion where m elements are added and/or deleted, the batch update data has
O(m) size, as in the case for non-batch operations: this is indeed a theoretical
lower bound that cannot be improved, although our construction provides bet-
ter constants, detailed at the end of Sect. 5.1, than the non-batch approach. We
note, however, that our protocol support a delegation technique (not possible
for non-batch operations) which allows users to safely update witnesses in con-
stant time, if third-party servers process, on their behalf, the O(m)-sized public
witness batch update data published by the Accumulator Manager.

Related Works. The first accumulator scheme was formalized by Benaloh and
De Mare [7] in 1993 as a time-stamping protocol. Since then, many other accumu-
lator schemes have been proposed. Currently, three main families of accumulators
can be distinguished in literature: schemes designed in groups of unknown order
[5–7,11,18,26,27,31], others designed in groups of known order [4,17,20,30] and
hash-based constructions [12–14,16,28]. Relevant to this paper are the schemes
belonging to the second family, where the considered group is a prime order
bilinear group.
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Nguyen in [30] proposed a dynamic positive accumulator for symmetric bilin-
ear groups, where up to t elements can be accumulated assuming that the
t−Strong Diffie-Hellman assumption holds in the underlying group. Damg̊ard
and Triandopoulos [20] extended Nguyen’s scheme, under the same security
assumptions, to support non-membership proofs, thus defining a universal accu-
mulator based on bilinear pairings. Soon after this work, Au et al. [4] extended
Nguyen’s scheme to a universal accumulator by proposing two possible variants:
the more efficient α-based construction best suitable when a central authority
−the Accumulator Manager− keeps the accumulator updated, and the alterna-
tive more decentralized but less efficient reference string-based construction. We
note that non-membership witness definition provided in the latter construction
is equivalent to Damg̊ard and Triandopoulos’ one.

Recently, Biryukov, Udovenko and Vitto [8] cryptanalized both Au et al. vari-
ants and found different attacks able to either recover the accumulator secret
parameter or issue arbitrary witnesses. While they consider the α-based con-
struction insecure, they conclude that in presence of an Accumulator Manager,
it is possible to safely use the witness defining equations provided in the refer-
ence string-based construction (or equivalently, the Damg̊ard and Triandopoulos’
construction) by properly initializing the accumulator value.

The Dynamic Universal Accumulator obtained by combining Nguyen’s
positive accumulator and Au et al. and Damg̊ard and Triandopoulos’ non-
membership witness mechanism, will be the starting point of our dynamic uni-
versal accumulator scheme, which we will further extend to support batch oper-
ations and a public batch witness update protocol.

Another approach on how to build a dynamic positive accumulator based
on bilinear groups is given by Camenisch et al. in [17] where, alternatively to
Nguyen’s construction, a scheme relying on the t−DHE assumption is proposed.

2 Notation

Following the notation of [22], an efficiently computable non-degenerate bilinear
map e : G1 × G2 → GT is said to be a Type-I pairing if G1 = G2, while
it’s called Type-III pairing if G1 �= G2 and there are no efficiently computable
isomorphisms between G1 and G2. We will denote with uppercase Roman letters
(e.g. P, V ) elements belonging to G1 and with uppercase Roman letters with a
tilde above (e.g. P̃ , Q̃) elements in G2. The identity points of G1 and G2 are
denoted with O and Õ, respectively.

Sets are denoted with uppercase letters in calligraphic fonts (e.g. ACC,Y)
while accumulator elements are denoted with (eventually indexed) lowercase
Roman letters: y usually denotes the reference element, that is the one we take
as an example to perform operations, while yS denotes an element in the set S.
Exceptions are the membership and non-membership witness, denoted respec-
tively with w and w̄, and the partial non-membership witness d.

Vectors are denoted with capital Greek letters (e.g. Υ,Ω). The vector
operation 〈Φ, Ψ〉 is the dot product, that is the sum of the products of the
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corresponding entries of Φ and Ψ , while a ◦ Φ denotes the usual scalar-vector
multiplication where each entry of Φ is multiplied by a.

We also use a convention that sum and the product of a sequence of terms
with starting index greater than the ending one are assumed to be equal to∑j

i ai = 0 and
∏j

i bi = 1 when i > j.

3 Preliminaries: A Dynamic Universal Accumulator
for Bilinear Groups

We now summarize Nguyen’s positive accumulator scheme [30] (i.e. Membership
Witness, Update and Verification) extended with the non-membership proof sys-
tem of Au et al. [4] and Damg̊ard and Triandopoulos [20] (i.e. Non-membership
Witness, Update and Verification).

Due to recent progresses in discrete logarithm computations [1,25], which
weaken the security of efficient implementable elliptic curves provided with a
Type-I pairing, we restate their definitions into a Type-III setting, making it
best suitable for efficient and more secure pairing-friendly elliptic curves. In light
of this, we will often refer, with a bit abuse of notation, to elements belonging
in the defining groups of the working bilinear group as points, thus stressing the
fact that in concrete efficient implementations they will, in fact, correspond to
elliptic curve points.

In addition, we introduce new concepts (e.g. Accumulator States, Epochs) and
parameters (e.g. batchMax), to make the accumulator definition coherent with
the batch operations and the batch witness update protocol we will describe
starting from Sect. 4.

Bilinear Group Generation.1 Given a security parameter 1λ, generate a bilin-
ear group G = (p,G1, G2, GT , P, P̃ , e) where:

– e : G1 × G2 → GT is an efficiently computable non-degenerate bilinear map;
– (G1,+) is an additive group generated by P with identity element O;
– (G2,+) is an additive group generated by P̃ with identity element Õ;
– (GT , ·) is an multiplicative group generated by e(P, P̃ );
– |G1| = |G2| = |GT | = p is prime;

Accumulator Parameters. Uniformly sample an α ∈ (Z/pZ)∗ and consider
ACC = (Z/pZ)∗ \ {−α} as the domain of accumulatable elements. Moreover, set
a bound batchMax to the maximum number of batch additions and/or deletions
possible in each epoch (See Sect. 4).

The bilinear group G, the bound batchMax and the point Q̃ = αP̃ are the
accumulator public parameters and are available to all accumulator users, while
α is the accumulator secret parameter and is known only to the Accumulator
Manager.

1 We refer, for example, to [3] for more technical details on how these bilinear groups
can be efficiently generated and implemented.
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Accumulator Initialization. Select a set YV0 ⊂ ACC and let the initial accu-
mulator value to be equal to V0 =

(∏
y∈YV0

(y + α)
)

P . The set YV0 is kept secret

and its elements are never removed from the accumulator.2

Accumulator States and Epochs. An accumulator state is a pair (V,YV )
where V ∈ G1 is the corresponding accumulator value and YV ⊆ ACC denotes
the set of elements accumulated into V (initialization elements excluded). We call
epoch the period of time during which an accumulator state remains unchanged.

Given an accumulator state (V,YV ), the accumulator value V is equal to
V =

(∏
y∈YV

(y + α)
)

V0 =
(∏

y∈YV ∪YV0
(y + α)

)
P and can be computed from

YV and V0 if the secret parameter α is known.

Accumulator Update. The accumulator state (V,YV ) changes when one or
more elements are added or removed from the accumulator. This can be done
using the following single element Addition or Deletion operations.

– Addition: if y ∈ ACC \ YV , the element y is added into the accumulator
when the accumulator value is updated from V to V ′ as V ′ = (y + α)V It
follows that YV ′ = YV ∪ {y}.

– Deletion: if y ∈ YV , the element y is deleted from the accumulator when
the accumulator state is updated from V to V ′ as V ′ = 1

y+αV It follows that
YV ′ = YV \ {y}.

Membership Witness. Let (V,YV ) be an accumulator state and y an element
in ACC. Then wy,V is a membership witness for y with respect to the accumulator
value V if C = 1

y+αV and wy,V = C. The Accumulator Manager issues the
membership witness wy,V to a user associated to the element y, in order to
permit him to prove that y is accumulated into V .3

Non-Membership Witness. Let (V,YV ) be an accumulator state and y an
element in ACC. Then w̄y,V is a non-membership witness for y with respect to
the accumulator state V if, by letting fV (x) =

∏
yi∈YV ∪YV0

(yi + x) ∈ Z/pZ[x],

it holds d = fV (−y) mod p with d �= 0, C = fV (α)−d
y+α P and w̄y,V = (C, d).

The Accumulator Manager issues the non-membership witness w̄y,V to a user
associated to the element y, in order to permit him to prove that y is not
accumulated into the accumulator value V .

Witness Update. When accumulator state changes happen, users whose ele-
ments are not involved in the corresponding Addition or Deletion operations,

2 The security of the scheme strongly depends on how the elements in YV0 are chosen.
See Sect. 7 for a complete discussion.

3 When the accumulator is employed as an authentication mechanism, single additions
in place of batch operations lack users’ privacy and expose to impersonation attacks
since the membership witness C would be equal to the previous accumulator state
value, while y can be deduced from the public witness update information.
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have to update their witnesses with respect to the new accumulator state to
continue being able to prove statements about their associated elements.

After an accumulator state change, users’ membership and non-membership
witnesses are updated according to the following operations:

– On Addition: suppose the accumulator state changes from (V,YV ) to
(V ′,YV ′) as a result of an Addition operation. Hence, for a certain y′ ∈
ACC \ YV , V ′ = (y′ + α)V and YV ′ = YV ∪ {y′}.
Then, for any y ∈ YV the membership witness wy,V = C is updated with
respect to the accumulator state (V ′,YV ′) by computing C ′ = (y′ − y)C + V
and letting wy,V ′ = C ′, while for any y /∈ YV , the non-membership
w̄y,V = (C, d) is updated, if issued, with respect to (V ′,YV ′) by comput-
ing C ′ = (y′ − y)C + V , d′ = d · (y′ − y) and letting w̄y,V ′ = (C ′, d′).

– On Deletion: suppose the accumulator state changes from (V,YV ) to
(V ′,YV ′) as a result of a Deletion operation. Hence, for a certain y′ ∈ YV ,
V ′ = 1

y′+αV and YV ′ = YV \ {y′}.
Then, for any y ∈ YV ′ , the membership witness wy,V = C is updated with
respect to the accumulator state (V ′,YV ′) by computing C ′ = 1

y′−y C− 1
y′−y V ′

and letting wy,V ′ = C ′, while for any y /∈ YV ′ , the non-membership witness
w̄y,V = (C, d) is updated, if issued, with respect to (V ′,YV ′) by computing
C ′ = 1

y′−y C − 1
y′−y V ′, d′ = d · 1

y′−y and letting w̄y,V ′ = (C ′, d′).

Witness Verification. A membership witness wy = C for an element y ∈ ACC
is valid for the accumulator state (V,YV ) if and only if e(C, yP̃ + Q̃) = e(V, P̃ ).
When wy is a valid membership witness for the state (V,YV ) we assume that
y ∈ YV and hence wy = wy,V .

A non-membership witness w̄y = (C, d) for an element y ∈ ACC is valid for
the accumulator state (V,YV ) if d �= 0 and e(C, yP̃ + Q̃)e(P, P̃ )d = e(V, P̃ ).
When w̄y is a valid non-membership witness for the state (V,YV ) we assume
that y /∈ YV and hence w̄y = w̄y,V .

4 Adding Support for Batch Operations

We now describe how the Dynamic Universal Accumulator defined in previous
Section can be further extended to coherently support batch addition and dele-
tions operations both for accumulator and users’ witnesses update.

We start by defining a family of polynomials which will help us show in a
compact way correctness of our batch operations with respect to the underlying
accumulator scheme.

Batch Polynomials. Given the secret accumulator parameter α and two dis-
joint sets A,D ⊆ Z/pZ where A = {yA,1, . . . , yA,n} and D = {yD,1, . . . , yD,m},
we define the following polynomials in Z/pZ:

vA(x) .=
n∑

s=1

⎛

⎝
s−1∏

i=1

(yA,i + α)
n∏

j=s+1

(yA,j − x)

⎞

⎠
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vD(x) .=
m∑

s=1

⎛

⎝
s∏

i=1

(yD,i + α)−1
s−1∏

j=1

(yD,j − x)

⎞

⎠

vA,D(x) .= vA(x) − vD(x) ·
n∏

i=1

(yA,i + α)

dA(x) .=
n∏

t=1

(yA,t − x) , dD(x) .=
m∏

t=1

(yD,t − x)

Accumulator Batch Update. Several elements are added into or removed
from the accumulator using the following Batch Addition and Batch Deletion
operations.

– Batch Addition: if A = {yA,1, . . . , yA,n} ⊆ ACC \ YV , the elements in A
are batch added into the accumulator when the accumulator value is updated
from V to V ′ as V ′ = dA(−α) · V . It follows that YV ′ = YV ∪ A.

– Batch Deletion: if D = {yD,1, . . . , yD,m} ⊆ YV , the elements in D are batch
deleted from the accumulator when the accumulator state is updated from V
to V ′ as V ′ = 1

dD(−α) · V . It follows that YV ′ = YV \ D.

– Batch Addition & Deletion: if A = {yA,1, . . . , yA,n} ⊆ ACC \ YV ,
D = {yD,1, . . . , yD,m} ⊆ YV and A ∩ D = ∅, the elements in A are batch
added into the accumulator and the elements in D are batch deleted from
the accumulator when the accumulator state is updated from V to V ′′ as
V ′′ = dA(−α)

dD(−α) · V . It follows that YV ′′ = YV ∪ A \ D.

Batch Witness Update. When a batch addition or deletion changes the accu-
mulator state, users’ membership and non-membership witnesses are updated
according to the following operation.

– On Batch Addition: suppose the accumulator state changes from (V,YV )
to (V ′,YV ′) as a result of an Batch Addition operation. Hence, for certain
A = {yA,1, . . . , yA,n} ⊆ ACC\YV , we have V ′ = dA(−α)·V and YV ′ = YV ∪A.
Then, for any y ∈ YV , the membership witness wy,V = C is updated with
respect to the accumulator state (V ′,YV ′) computing C ′ = dA(y)·C+vA(y)·V
and letting wy,V ′ = C ′. While for any y /∈ YV , the non-membership witness
w̄y,V = (C, d) is updated with respect to (V ′,YV ′) by computing C ′ = dA(y) ·
C + vA(y) · V , d′ = d · dA(y) and letting w̄y,V ′ = (C ′, d′).

Proof. For the ease of notation, we will denote the elements yA,i with yi, the

accumulator value corresponding to
(∏j

i=1(yi + α)
)

V with Vj and, for any y ∈
YV , the intermediate membership witnesses wy,Vj

with Cj .
We prove the formula by induction on n, the number of batch added elements:
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�

�

�

�

n = 1 We get C1 = V +(y1−y)C, the same formula defined for the membership
witness update after a single addition operation.
�

�

�

�

n − 1 → n Let bs =
∏s−1

i=1 (yi +α)
∏n

j=s+1(yj − y). Using the inductive hypoth-
esis for Cn−1, we have

Cn = (yn − y)Cn−1 + Vn−1 =

(
n∏

t=1

(yt − y)

)

C +

(
n−1∑

s=1

bs +
n−1∏

t=1

(yt + α)

)

V

which is equal to (
∏n

t=1(yt − y)) C + (
∑n

s=1 bs) V as required. The induction on
d′ in the case of non-membership witnesses is straightforward. �

– On Batch Deletion: suppose the accumulator state changes from (V,YV )
to (V ′,YV ′) as a result of a Batch Deletion operation. Hence, for certain
D = {yD,1, . . . , yD,m} ⊆ YV , we have V ′ = 1

dD(−α)V .
Then, for any y ∈ YV ′ , the witness wy,V = C is updated with respect to the
accumulator state (V ′,YV ′) computing C ′ = 1

dD(y)C − vD(y)
dD(y)V and letting

wy,V ′ = C ′. While for any y /∈ YV ′ , the non-membership witness w̄y,V = C is
updated with respect to (V ′,YV ′) by computing C ′ = 1

dD(y) · C − vD(y)
dD(y) · V ,

d′ = d · 1
dD(y) and letting w̄y,V ′ = (C ′, d′).

Proof. Similarly as before, we will denote the elements yD,i with yi, the accumu-

lator value corresponding to
(∏j

i=1(yi + α)−1
)

V with Vj and, for any y ∈ YV ′ ,
the intermediate membership witnesses wy,Vj

with Cj . We prove the formula by
induction on m, the number of batch deleted elements:
�

�

�

�

m = 1 We get C1 = 1
y1−y C − 1

(y1−y)(y1+α)V = 1
y1−y (C −V1), the same formula

defined for the membership witness update after a single deletion operation.
�

�

�

�

m − 1 → m Let bs =
∏s

i=1(yi + α)−1
∏s−1

j=1(yj − y). Then

Cm =
1

ym − y
(Cm−1 − Vm)

=
1

dD(y)
C − 1

dD(y)
·
(

m−1∑

s=1

bs

)

V −
(

(ym − y)−1
m∏

i=1

(yi + α)−1

)

V

which is equal to 1
dD(y)C − 1

dD(y) · (∑m
s=1 bs) V as required. The induction on d′

in the case of non-membership witnesses is straightforward. �

– On Batch Addition & Deletion: suppose the accumulator state changes
from (V,YV ) to (V ′′,YV ′) as a result of a Batch Addition & Deletion oper-
ation. Hence for certain disjoint sets A = {yA,1, . . . , yA,n} ⊆ ACC \ YV and
D = {yD,1, . . . , yD,m} ⊆ YV we have V ′′ = dA(−α)

dD(−α) · V .
Then, for any y ∈ YV , the witness wy,V = C is updated with respect to the
accumulator state (V ′,YV ′) computing C ′ = dA(y)

dD(y) ·C + νA,D(y)
dD(y) ·V and letting
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wy,V ′ = C ′. While for any y /∈ YV , the non-membership witness w̄y,V = (C, d)
is updated with respect to the accumulator state (V ′,YV ′) by computing
C ′ = dA(y)

dD(y) · C + νA,D(y)
dD(y) · V , d′ = d · dA(y)

dD(y) and letting w̄y,V ′ = (C ′, d′).

Proof. Performing a batch addition and then a batch deletion, the membership
witness wy,V = C for y with respect to the accumulator value V is iteratively
updated to w̄y,V ′′ = (C ′′, d′′) with respect to the updated accumulator value

V ′′ =
(∏n

i=1(yA,i+α)
∏m

i=1(yD,i+α)

)
V as follows

C
Add−→ C ′ = dA(y)C + vA(y)V Delete−→

C ′′ =
1

dD(y)
C ′ − vD(y)

dD(y)
V ′ =

dA(y)
dD(y)

C +

(
vA(y)
dD(y)

− vD(y)
dD(y)

·
n∏

i=1

(yA,i + α)

)

V

where V ′ =
∏n

i=1(yA,i+α)·V . The induction on d′ in the case of non-membership
witnesses is straightforward. �

5 The Batch Witness Update Protocol

Users cannot batch update their witnesses directly using the formula defined in
previous section, since they would need the secret parameter α. However, starting
from their definition, the Accumulator Manager can efficiently compute and
publish some update information (more precisely, the polynomials dA(x), dD(x)
and a points vector) so that users are able to update their witnesses without
requiring or leaking (see Sect. 5.1) any information related to α. This will allow
us to define a batch membership and non-membership witness update protocol
for the proposed accumulator scheme.

5.1 The Batch Witness Update Information

From now on, we will focus on the Batch Witness Update Addition & Deletion
polynomial vA,D(x) only: indeed, the polynomials vA(x) and vD(x) are special
cases of this more general one.

We recall that our main goal is to allow users possessing a witness (C, d) for
an element y with respect to the accumulator value V to compute the quantities

C ′ =
dA(y)
dD(y)

· C +
νA,D(y)
dD(y)

· V , d′ = d · dA(y)
dD(y)

We note that the Accumulator Manager cannot publish all the polynomials
dA(x), dD(x) and vA,D(x), because their coefficients can leak some information
related to the secret accumulator parameter α. To give an example, suppose
that after a batch addition operation, the Accumulator Manager publishes the
polynomials vA(x) and dA(x), defined as above, with |A| > 1. Doing simple
algebra, we find that the coefficient of the (|A| − 2)−degree monomial of vA(x)
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is equal to α +
∑

yA∈A yA : extracting the roots of dA(x) in Z/pZ we obtain all
the elements in A and hence the secret parameter α.

Leakages about α can be prevented by requiring the Accumulator Manager
to publish in place of vA,D(x), the vector of points

Ω = ΩA,D,V = ( c0V, c1V, . . . , cbatchMaxV )

where vA,D(x) =
∑batchMax

i=0 cix
i and ci = 0 if i > max(|A|, |D|).

Users can then update their membership witness wy,V = C to wy,V ′ = C ′ by
first evaluating the two polynomials dA(x) and dD(x) in the element y and then
computing

C ′ =
dA(y)
dD(y)

· C +
1

dD(y)
· 〈Υy, Ω〉

where Υy = (1, y, y2, ..., ybatchMax) and 〈·, ·〉 denotes the dot product.
Similarly, a non-membership witness w̄y,V = (C, d) is updated to w̄y,V ′ =

(C ′, d′) by computing

C ′ =
dA(y)
dD(y)

· C +
1

dD(y)
· 〈Υy, Ω〉 , d′ = d · dA(y)

dD(y)

In this scenario, assuming the Discrete Logarithm Problem to be hard in
G1 (a weaker assumption with respect to the t−SDH assumption under which
accumulator collision resistance is shown), from the published Ω, dA(x) and
dD(x) it is only possible, performing roots extraction on the polynomials, to
compute the respective sets A and D of batch added and batch deleted elements.

It follows that witness update operations can be performed either
autonomously by users or by delegating to third-party servers the computation
of (some of) the values 〈Υy, Ω〉, dA(y), dD(y). Indeed, since the required updating
values are decoupled from users’ previous witnesses, third-party servers which
are asked to compute such values with respect to an element y, cannot imper-
sonate the corresponding user, since they don’t know any previous valid witness
for y.

When the computation of the elements 〈Υy, Ω〉, dA(y), dD(y) is delegated,
users are then able to update witnesses in a constant number of elementary
operations, i.e., 2 scalar-point multiplication and 1 point addition4. Delegation
thus allows even resource-constrained devices to be able to keep users’ witnesses
updated.

As a side note, if third-party servers are untrusted (e.g. we want to prevent
linkability attacks from subsequent evaluation requests for the same element y),
it is possible to use Oblivious Polynomial Evaluation techniques such as [29],
[24] and [19] to delegate the computation of the point 〈Υy, Ω〉 = vA,D(y) · V

4 We note that this is not against the impossibility result of Camacho and Hevia
to have batch witness update data size independent from the number of elements
added/deleted, since the provided values 〈Υy, Ω〉, dA(y), dD(y) are per user and not
for all users, similarly as any constant-sized (updated) witness is.
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and of the values dA(y) and dD(y), in a way that third-parties will not learn
anything about y. We note however that such protocols have time complexity
at least proportional to the degree of the polynomials involved and thus allow
users to just save data rather than time, i.e., users are not required to download
the public batch witness update data (available instead to third-party servers)
and can oblivious evaluate vA,D(y) · V , dA(y) and dD(y) with time complexities
comparable to standard polynomial evaluations.

Improvements with Respect to Non-Batch Operations. Due to the lower
bound showed by Camacho and Hevia in [15], in case of a batch addition and
deletion operation where m elements are added and/or deleted, the batch update
data cannot have size less than O(m) (and thus witnesses cannot be updated
in time less than O(m)), as in the case for non-batch operations. Our protocol,
that reaches this optimal lower bound, provides, however, better constants with
respect to the naive approach of iteratively adding and/or deleting each involved
element at a time.

In particular, for m added and deleted elements, the public batch witness
information in our protocol would have size |Ω| + |dA(x)| + |dD(x)|, i.e. m ·
(log q + 2 log p), while the naive approach consisting in executing m addition
operations followed by m deletion operations requires5 2m · (log q + log p) data.
Furthermore, as regards time complexities to update witnesses, our protocol
requires m + 2 scalar-point multiplications, 1 point addition and 2 degree-m
polynomials evaluations (possible in 2m multiplications and 2m additions), while
the naive approach requires 2m scalar-point multiplications, 2m point additions
and 2m multiplications.

To summarise, with respect to the naive approach our protocol provides,
approximately, the following improvements:

– 1/4 reduction in witness update data communication;
– 1/2 reduction in running time in order to update witnesses.

5.2 Batch Witness Update Among Epochs

We now show how the adoption of the points vector Ω = ΩA,D,V not only
permits the users to batch update their (non-)membership witnesses from the
previous accumulator state, but also enables them to directly update from the
accumulator state of any older epoch. This feature doesn’t force users to per-
manently keep their witnesses updated to the latest accumulator state, enabling
them to update their witnesses just right before they want to prove statements
about the associated element y.

Before showing how this is possible, we extend our notation to associate
accumulator and batch witness update data to a specific epoch. Given an epoch
i > 0, we denote with (Vi,YVi

) the corresponding accumulator state, where
YV1 = A1 \ D1 and YVi

= YVi−1 ∪ Ai \ Di for i > 1, with dAi
(x) and dDi

(x) the

5 Each of these operations send users the element added/deleted and the corresponding
updated accumulator value, i.e. log q + log p data.
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Table 1. Data published by the Accumulator Manager in each epoch.

Epoch Accumulator state Witness update information

0 (V0, ∅)

1 (V1, YV1) Ω1 dA1(x) dD1(x)

...
...

...

i (Vi, YVi) Ωi dAi(x) dDi(x)

addition and deletion batch witness update polynomials, respectively, and with
Ωi = ΩAi,Di,Vi

. An overview of the data published by the Accumulator Manager
is given in Table 1.

We further denote a membership witness wy,Vi
for an element y with respect

to the accumulator value Vi as wy,Vi
= Ci and, similarly, a non-membership

witness w̄y,Vi
as w̄y,Vi

= (Ci, di).

Epoch Witnesses Batch Update. A user who owns a valid non-membership
witness w̄y,Vi

= (Ci, di) (resp. a valid membership witness wy,Vi
= Ci) with

respect to the accumulator state (Vi,YVi
) can update it to w̄y,Vj

= (Cj , dj)
(resp. wy,Vj

= Cj ), for any j > i, as

Cj =
dAi→j

(y)
dDi→j

(y)
· Ci +

1
dDi→j

(y)
· 〈 Υy , Ωi→j(y) 〉 , dj = di · dAi→j

(y)
dDi→j

(y)

where

dAa→b
(x) =

b∏

s=a+1

dAs
(x) dDa→b

(x) =
b∏

s=a+1

dDs
(x)

Ωi→j(y) =
j∑

t=i+1

(
dDi→t−1(y) · dAt→j

(y)
) ◦ Ωt

Proof. We prove the result by induction on j > i.
�

�

�

	

j = i + 1 A witness w̄y,Vi
= (Ci, di) is updated to w̄y,Vi+1 = (Ci+1, di+1) as

Ci+1 =
dAi+1(y)
dDi+1(y)

· Ci +
1

dDi+1(y)
· 〈 Υy , Ωi+1 〉 , di+1 = di · dAi+1(y)

dDi+1(y)

obtaining the same result we get by using the formula for non-membership wit-
nesses batch update.
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�

�

�

	

j ⇒ j + 1 By inductive hypothesis, we assume the formula holds for Cj . Then

Cj+1 =
dAj+1(y)
dDj+1(y)

· Cj +
1

dDj+1(y)
· 〈 Υy , Ωj+1 〉

=
dAi→j+1(y)
dDi→j+1(y)

· Ci +
1

dDi→j+1(y)
· 〈

Υy , dAj+1(y) ◦ Ωi→j

〉

+
1

dDi→j+1(y)
· 〈 Υy , dDi→j

(y) ◦ Ωj+1 〉

=
dAi→j+1(y)
dDi→j+1(y)

· Ci +
1

dDi→j+1(y)
· 〈 Υy , Ωi→j+1 〉

as required, since

Ωi→j+1 =
j+1∑

t=i+1

(
t−1∏

h=i+1

dDh
(y)

j+1∏

k=t+1

dAk
(y)

)

◦ Ωt

=

(
j∑

t=i+1

(
t−1∏

h=i+1

dDh
(y)

j+1∏

k=t+1

dAk
(y)

)

◦ Ωt

)

+

(
j∏

h=i+1

dDh
(y)

)

◦ Ωj+1

= dAj+1(y) ◦ Ωi→j + dDi→j
(y) ◦ Ωj+1

The proof on dj is straightforward. �

6 Security Proofs for the Proposed Protocol

Security of accumulator schemes is usually intended as collision resistance: for
universal accumulators, this property requires that an adversary forges with
negligible probability in the security parameter λ a valid membership witness
for a not-accumulated element and, respectively, a non-membership witness for
an accumulated element.

Since the outlined Dynamic Universal Accumulator is built on top of
Nguyen’s positive dynamic accumulator [30] and Au et al. [4] and Damg̊ard
and Triandopoulos’ non-membership proof system [20], we might be tempted to
generalize the security proofs provided in [20,30] to show security of our scheme
under the standard t−Strong Diffie-Hellman assumption.

However, there are some technicalities which prevent us to do so straight-
forwardly: i) in the proposed protocol, the attacker doesn’t necessarily have
access to the RS = {P, αP, . . . , αtP} (needed in [4,20,30] security reductions,
see Theorem 4 in Appendix A), while he has access to the batch witness update
information and valid witnesses, as regular users do; ii) differently than [4,20,30],
we allow the accumulator Manager to initialize the accumulator value to V0 by
accumulating a certain number of secret values.

To show security of our proposed accumulator scheme we then need to provide
two slightly more general definitions, tailored to the data our attacker would be
able to access. We propose the followings.
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Definition 1. (Collision Resistance) Let A be a probabilistic polynomial time
adversary that has access to an oracle O which replies to:

– “Batch Addition and/or Deletion” queries that batch add non-accumulated
and/or delete accumulated elements into/from the accumulator (which is ini-
tialized to V0) and return the resulting updated accumulator value and the
corresponding public batch witness update data;

– “Issue Witness” queries that return, for any input element y, its membership
witness if y is accumulated, or, if not, its non-membership witness with respect
to the latest accumulator value.

Then, the proposed Dynamic Universal Accumulator is collision resistant if the
probability

P

⎛

⎜
⎜
⎜
⎝

(G, α,YV0 , Q̃) ← Gen(1λ) , f(x) =
∏

yi∈YV0
(yi + x),

V0 = f(α) · P , (y, wy, w̄y,Y) ← AO(V0, G, Q̃) :
Y ⊆ (Z/pZ)∗ ∧ V =

(∏
yi∈Y(yi + α)

)
· V0 ∧

Ω(y, wy, V, membership) = 1 ∧ Ω(y, w̄y, V, non-membership) = 1

⎞

⎟
⎟
⎟
⎠

is a negligible function in the security parameter λ, where wy, w̄y denote a mem-
bership and non-membership witness for y, respectively, and Ω(y, w, V, type) = 1
if and only if w is a valid type witness for y with respect to V .

Proposition 1. Collision Resistance of Definition 1 is weaker than Au et al.
Collision resistance (Definition 3 - Appendix A) when deg f > 0, while it is
equivalent if deg f = 0.

Proof. In Lemma 1 we proved that the oracle O of Definition 3 gives the attacker
access to the RSt for some t > 0. By using Extended Euclidean Algorithm, the
set RSt further allows the attacker to issue valid membership witnesses for accu-
mulated elements and valid non-membership witnesses for any non-accumulated
element, as originally reported in [4]. In other words, if an attacker successfully
breaks collision resistance of Definition 3, he can output in polynomial time
using the RSt a valid membership witness if forged a non-membership witness
for an accumulated element y, or, similarly, the valid non-membership witness
if he forged a membership witness for a non-accumulated element y. In fact, the
two probabilities of Definition 3 can be combined, by equivalently requiring that

P

⎛

⎜
⎝

(G, α, Q̃) ← Gen(1λ), (y, wy, w̄y,Y) ← AO(G, Q̃) :
Y ⊆ (Z/pZ)∗ ∧ V =

(∏
yi∈Y(yi + α)

)
· P ∧

Ω(y, wy, V, membership) = 1 ∧ Ω(y, w̄y, V, non-membership) = 1

⎞

⎟
⎠

is negligible in the security parameter λ.
Since the public batch update information can be computed in polynomial

time from the RSt (we can compute any element of the form h(α)P , where
h(x) ∈ Z/pZ has degree ≤ t), it immediately follows that Definition 1 is equiva-
lent to Definition 3 if deg f = 0, i.e. f = 1 and thus V0 = P .
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If instead deg f > 0, an attacker that breaks collision resistance of Definition
1 by outputting a tuple (y, wy, w̄y,Y), can, before terminating, query in poly-
nomial time the corresponding oracle O to get |YV0 | + 1 valid non-membership
witnesses for (random) non-accumulated elements and use Lagrange interpola-
tion to recover from the d-values the polynomial f(x) ∈ Z/pZ, similarly as done
at the beginning of the Witness Forgery Attack outlined in [8] and briefly dis-
cussed in Sect. 7. Once the attacker obtains the polynomial f(x), he recovers the
set YV0 by computing its roots and can then use the tuple (y, wy, w̄y,Y ∪ YV0)
to break collision resistance of Definition 3. �
Definition 2. (Generalized t−Strong Diffie-Hellman Assumption) Let G
be a probabilistic polynomial time algorithm that, given a security parameter 1λ,
outputs a bilinear group G = (p,G1, G2, GT , P, P̃ , e). We say that the generalized
t−Strong Diffie-Hellman Assumption holds for G with respect to a uniformly
sampled α ← (Z/pZ)∗ and a non-zero f(x) ∈ Z/pZ[x] if, for any probabilistic
polynomial time adversary A and for every polynomially bounded function t :
Z → Z, the probability

P

(

A(P, αf(α)P, α2f(α)P, ..., αt(λ)f(α)P, P̃ , αP̃ ) =
(

y,
1

y + α
P

))

is a negligible function in λ for any freely chosen value y ∈ Z/pZ \ {−α}.
To give confidence in this more general security assumption, we prove the

following Theorem which gives a lower bound on the complexity of a generic
algorithm that solves the Generalized t−SDH Assumption in the Generic Group
Model [33].

We briefly recall that in the Generic Group Model [33] elements in the three
groups G1, G2, GT are represented with strings given by (random) unique encod-
ing functions ξi : Gi → {0, 1}∗. Operations with groups elements (additions,
pairings, isomorphism computations ψ : G2 → G1) are performed by query-
ing different oracles which communicates with the external word only by using
ξi−encoding of group elements. In other words, an adversary who interacts with
these oracles can only test equality among received encodings to understand
relations between group elements.

Theorem 1. Let A be an algorithm that solves the corresponding generalized
t−SDH problem in the Generic Group Model, making a total of at most qG

queries to the oracles computing the group action in G1, G2, GT , the oracle com-
puting the isomorphism ψ : G2 → G1 and the oracle computing the bilinear
pairing e. If α ∈ Z/pZ

∗ and the encoding functions ξ1, ξ2, ξT are chosen at
random, then the probability ε that

A (
p, ξ1(1), ξ1(f(α)), ξ1(α · f(α)), . . . , ξ1(αt · f(α)), ξ2(1), ξ2(α)

)

outputs
(
y, ξ1

(
1

y+α

))
with y ∈ Z/pZ

∗ is bounded by

ε ≤ (deg f + t) · (qG + t + 4)2 + 1
p
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Proof. We will essentially go through the original proof of Boneh and Boyen [9]
of the generic security of the standard t−SDH assumption, by slightly readapting
it to the definition of the generalized t−SDH assumption. The following game
setting and query definitions are due to Boneh and Boyen [9] as well.

Let B be an algorithm that maintains three lists of pairs

Lj = {(Fj,i, ξj,i) : i = 0, . . . , τj − 1} with j = 1, 2, T

where F1,i, F2,i and FT,i are polynomials in Z/pZ[x] verifying deg F1,i ≤ deg f+t,
deg F2,i ≤ t and deg FT,i ≤ 2t and such that at step τ of the game τ1 +τ2 +τT =
τ +t+3. The lists are initialized at step τ = 0 by taking τ1 = t+1, τ2 = 2, τT = 0
and letting F1,0 = 1, F1,i = xi · f(x) for 0 ≤ i ≤ t and F2,i = xi with i = 0, 1.
The corresponding ξj,i encodings are set to arbitrary distinct strings in {0, 1}∗.
B then starts a game by providing A the q + 3 encodings ξ1,0, . . . , ξ1,q,ξ2,0, ξ2,1

and A’s queries go as follows:

– Group actions: given an add (resp. subtract) query and two operands ξ1,i, ξ1,j

with 0 ≤ i, j < τ1, B computes F1,τ1 ← F1,i + F1,j (resp. F1,i − F1,j). If
F1,τ1 = F1,l for some l < τ1 then B sets ξ1,τ1 = ξ1,l, otherwise sets ξ1,τ1 to
a new distinct string in {0, 1}∗. The pair (F1,τ1 , ξ1,τ1) is added in L1, τ1 is
incremented by 1 and ξ1,τ1 is returned to A. Operations in G2, GT are treated
similarly.

– Isomorphism: given an encoding ξ2,i with 0 ≤ i < τ2, B sets F1,τ1 ← F2,i. If
F1,τ1 = F1,l for some l < τ1, then B sets ξ1,τ1 ← ξ1,l, otherwise sets ξ1,τ1 to
a new distinct string in {0, 1}∗. The pair (F1,τ1 , ξ1,τ1) is added in L1, τ1 is
incremented by 1 and ξ1,τ1 is returned to A.

– Pairing: given two operands ξ1,i, ξ2,j with 0 ≤ i < τ1 and 0 ≤ j < τ2, B
computes the product FT,τT

→ F1,i · F2,j ∈ Z/pZ[x]. If FT,τT
= FT,l for some

l < τT , then B sets ξT,τT
← ξT,l, otherwise sets ξT,τT

to a new distinct string
in {0, 1}∗. The pair (FT,τT

, ξT,τT
) is added in LT , τT is incremented by 1 and

ξT,τT
is returned to A.

A terminates and returns to B a pair (y, ξ1,l) with 0 ≤ l < τ1. To show
correctness of A’s answer, B considers the corresponding polynomial F1,l in L1

and computes the polynomial

FT,∗(x) = F1,l · (F2,1 + yF2,0) = F1,l · (x + y) = f(x) · g(x) · (x + y)

for a certain polynomial g(x) ∈ Z/pZ[x] of degree ≤ t. If A’s answer is correct,
then FT,∗(x) = 1 (which corresponds to check in the current framework that it
results to be a correct DDH pair when representing ξ1,l with an element of G1).
Now, unless deg FT,∗ ≥ p − 2 (due to Fermat’s Little Theorem), the equation
FT,∗(x) − 1 = 0 admits at most deg f + t + 1 roots in Z/pZ.

At this point, B chooses a random x∗ ∈ Z/pZ and his simulation is perfect
unless x∗ ← x creates equality relations between simulated elements not revealed
to A. Thus the success probability of A is bounded by the probability that any
of the following conditions holds:
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1. F1,i(x∗) − F1,j(x∗) = 0 for some i, j so that F1,i �= F1,j

2. F2,i(x∗) − F2,j(x∗) = 0 for some i, j so that F2,i �= F2,j

3. FT,i(x∗) − FT,j(x∗) = 0 for some i, j so that FT,i �= FT,j

4. f(x∗)g(x∗)(x∗ + y) − 1 = 0

Now since, for some fixed i, j, the polynomial F1,i − F1,j has degree at most
deg f + t while F2,i − F2,j has degree at most t, they vanishes at x∗ with prob-
ability (deg f + t)/p and t/p, respectively. Similarly, FT,i − FT,j being a poly-
nomial of degree at most 2t, vanishes at x∗ with probability 2t/p. As regards
f(x∗)g(x∗)(x∗+y)−1, it vanishes at x∗ with probability (deg f +t+1)/p. Hence,
by summing these probabilities over all valid pairs (i, j) for the first three cases,
A wins the game with probability

ε ≤
(

τ1
2

)
deg f + t

p
+

(
τ2
2

)
t

p
+

(
τT

2

)
2t

p
+

deg f + t + 1
p

Given that τ1 + τ2 + τT ≤ qG + t + 3, we obtain ε ≤ (deg f+t)·(qG+t+4)2+1
p �

We’re now ready to prove that breaking collision resistance of our accumu-
lator scheme in the Generic Group Model cannot be easier than breaking the
generalized t-SDH assumption:

Theorem 2. Consider a Generic Group Model instance of the Dynamic Uni-
versal Accumulator outlined in Sect. 3 equipped with the public Batch Witness
Update protocol detailed in Sect. 5. If |YV0 | elements are accumulated to initialize
the accumulator value, then the probability ε that an attacker A breaks collision
resistance of Definition 1 in qG queries to the group oracles, is bounded by

ε ≤ (|YV0 | + t) · (qG + t + 4)2 + 1
p

where t is the maximum number of elements allowed to be accumulated simulta-
neously.

Proof. We refer to the proof of Theorem 1 for the definition of the game setting
between A and the Accumulator Manager and the corresponding notation.

Since YV0 contains distinct elements from Z/pZ, then at any epoch all ele-
ments in the batch witness update information Upd sent from the Accumulator
manager to A are of the form ξ1( g(x) · f(x) ) where f(x) =

∏
y∈YV0

(y + x) and
g(x) ∈ Z/pZ[x] has degree ≤ t.

Since any such polynomial g(x) · f(x) can be represented uniquely in the
base {f(x), xf(x), . . . , xtf(x)}, we can assume A to be slightly more powerful
by having initial access to all the following encodings:

ξ1(1), ξ1(f(α)), ξ1(α · f(α)), . . . , ξ1(αt · f(α)), ξ2(1), ξ2(α)

We note that accumulator values at different epochs can be obtained in poly-
nomial time with queries to the group action oracle from the remaining update
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information, i.e. the elements added and deleted. All in all, this corresponds
to the information the attacker would have access to under the hypothesis of
Theorem 1.

Now, suppose that after qG queries, A terminates and returns the tuple
(y, wy, w̄y,Y) with wy = (ξ1,i, 0) and w̄y = (ξ1,j , d). If the answer is correct
and breaks the collision resistance property of the accumulator scheme, then the
corresponding polynomials F1,i(x), F1,j(x) will satisfy

F1,i(x) · (x + y) = F1,j(x) · (x + y) + d

Note, that A can transform the tuple (y, ξ1,i, ξ1,j , d) to the pair (y, d−1(ξ1,i−ξ1,j))
by querying the oracles in polynomial time. This pair, if correct, would then solve
the generalized t−SDH problem since, by letting FT,∗ = d−1(F1,i−F1,j), it holds
FT,∗(x) · (x + y) − 1 = 0 for all x ∈ Z/pZ. Hence A would win in qG queries the
game instantiated in the proof of Theorem 2 and, as was shown, this cannot be
done with probability greater than (|YV0 |+t)·(qG+t+4)2+1

p . �
Relation with Previous Security Assumptions and Proofs. The proposed
Generalized t−Strong Diffie-Hellman assumption straightforwardly reduces to
the standard t-SDH assumption in the case when deg f = 0, similarly as happens
in Proposition 1 for our definition of Collision Resistance (Definition 1) and Au
et al. one (Definition 3).

Thus, when deg f = 0 (without loss of generality, f(x) = 1), collision resis-
tance of the scheme can be shown directly under the standard t-SDH assumption
of Definition 4 without requiring the Generic Group Model and similarly as done
in [4,20]: a summary of all relevant definitions and a proof showing standard col-
lision resistance under t−SDH assumption can be found in Appendix A.

Generalizing definitions and security proofs to allow for deg f > 0, will ulti-
mately permit us to address accumulator initialization, which (surprisingly) has
a direct connection to the attacker ability to have access to (any element in) the
RSt (which can be (ab)used to compute witnesses and update the accumulator
value), a circumstance that would be against our will to design an accumula-
tor scheme suited also for authentication purposes, where only the accumulator
manager can update and issue witnesses and whose construction will be finalized
in next Section.

7 Accumulator Initialization

Depending on which would be the final application of the proposed accumulator
scheme, it might be necessary to prevent the possibility to forge non-membership
witnesses for “never authorized” non-accumulated elements, i.e. elements for
which the Accumulator Manager did not issue witnesses.6 This is relevant, for
6 Membership witnesses for new elements would require an accumulator value update,

an operation that we could assume to be executed by the Accumulator Manager that
has exclusive access to the public register containing the current accumulator value.
When issuing non-membership witnesses, instead, the accumulator value remains
unchanged.
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example, in the cases when the accumulator is used as an authentication mech-
anism and accumulated elements represents either white-listed or black-listed
users which authenticate with respect to the accumulator value by showing pos-
session of a valid membership or non-membership witness.

Forging witnesseses in the case when the Accumulator Manager should be
the only authorized entity to do so is, in fact, what the Witness Forgery Attack
outlined by Biryukov, Udovenko and Vitto in [8] does: a set of colluding users who
share their non-membership witnesses can recover the (secret) reference-string
sets RSs = {P, αP, ..., αsP}s>0, which enable them to compute membership and
non-membership witnesses with respect to the latest accumulator value. Indeed,
the knowledge of the set RS = RSt results to be functionally equivalent to the
knowledge of α: it is possible to either update the accumulator value (see Lemma
1) or issue valid membership and non membership witnesses (see the reference
string RS-based construction in [4,8]).

The Witness Forgery Attack is possible as long as the number of colluding
users is equal or greater to the number of elements added to initialize the accu-
mulator value. In fact, the countermeasure proposed in [8] is to set an upper limit
NMWitnessesMax to the total number of issuable non-membership witnesses and
initialize the accumulator by adding at least NMWitnessesMax+1 secret elements.

This will clearly prevent the reconstruction of the sets RSs, but in our pro-
tocol the attackers have access in each epoch to the witness update information
(see Table 1), which in principle could help circumventing the fact that they will
not be able to collect and share enough non-membership witnesses or can be
used to directly compute some elements in RSs.

We will show that this is indeed possible, but we will prove that a generic
algorithm in the Generic Group Model would compute any element in RSt with
negligible probability just by carefully choosing few of the elements added to
initialize the accumulator value.

We start by introducing some theoretical result. The purpose of the following
Proposition is to show some properties on elements that have particular multi-
plicative orders in the group (Z/pZ)∗. These properties will be useful to prove the
subsequent Theorem 3, which will give us sufficient conditions on the elements
we need to add to prevent the reconstruction of the RS from the publicly avail-
able information. Thus, initializing the accumulator with NMWitnessesMax + 1
random elements where some of them satisfies the hypothesis of Theorem 3 will
ultimately prevent any, even partial, successful execution of the Witness Forgery
Attack [8].

Proposition 2. Let p ∈ N be a prime such that p − 1 = pe1
1 · ... · pen

n factorizes
as the product of n > 1 powers of distinct primes pi ∈ N. Let f(x) ∈ Z/pZ[x]
be a polynomial with n ≤ m < p − 1 distinct non-zero roots x1, . . . , xm ∈ Z/pZ

such that the multiplicative order in (Z/pZ)∗ of xi, for 1 ≤ i ≤ n, is pei
i . Then

i. The least k > 0 for which there exists z ∈ Z/pZ and g(x) ∈ Z/pZ[x] such that
g(x)f(x) ≡ xk − z mod p is k = p − 1.

ii. The degree of the minimal-degree non-constant monomial of f(x) is s with
0 < s < m.
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Proof. Suppose there exists z ∈ Z/pZ and g(x) ∈ Z/pZ[x] such that

g(x)f(x) ≡ xk − z mod p

Then, each root x1, . . . , xm of f(x) must be a root for xk − z in Z/pZ, that is

xk
1 ≡ · · · ≡ xk

t ≡ z mod p (1)

Since, by hypothesis (Z/pZ)∗ � Z/(p − 1)Z � 〈x1〉 × · · · × 〈xn〉 with n > 1
we have z ∈ ⋂m

i=1〈xi〉 ≤ ⋂n
i=1〈xi〉 = 〈1〉. Hence a solution to (1) exists only if

z ≡ 1 and the least k for which it holds is k = lcm(ord(x1), . . . , ord(xm)) ≥
lcm(ord(x1), . . . , ord(xn)) = p − 1. Since k ≤ p − 1, we have k = p − 1.

It follows that as long as m < p − 1, there are no z ∈ Z/pZ such that
f(x) ≡ xt − z mod p. Hence the degree of the minimal-degree non-constant
monomial of f(x) is s with 0 < s < m. �
Theorem 3. Let p ∈ N be a prime such that p − 1 = pe1

1 · ... · pen
n factorizes as

the product of n > 1 powers of distinct primes pi ∈ N. Let f(x) ∈ Z/pZ[x] be a
polynomial with n ≤ m < p − 1 distinct non-zero roots x1, . . . , xt ∈ Z/pZ such
that the multiplicative order in (Z/pZ)∗ of xi, for 1 ≤ i ≤ n, is pei

i .
Let (V,+) be the vector space of polynomials with degree lower equal p−2 and

B = {1, x, . . . , xp−2} its (p − 1)−dimensional canonical basis. Then, for every
1 ≤ k < p − 1

rank

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
f(x)
xf(x)

...
xp−m−2f(x)

xk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= p − m + 1

Proof. The rank is maximum when the row vectors are linearly independent in
V, that is for any a0, . . . , ap−m−2, b, c ∈ Z/pZ such that

⎛

⎝
p−m−2∑

j=0

ajx
jf(x)

⎞

⎠ + bxk + c = 0 (2)

we have a0 ≡ · · · ≡ ap−m−2 ≡ b ≡ c ≡ 0.

We will prove the statement by exhaustion on the values of k.
�

�

�

	

1 ≤ k < m The dependence relation (2) can be rewritten as g(x)f(x) = −bxk−c

where g(x) =
∑p−m−2

j=0 ajx
j . By hypothesis f(x) has m different roots, while

−bxk − c can have at most k < m distinct roots. The equation then holds only
if both sides are equal to the 0 polynomial, that is −bxi − c = 0 and g(x) = 0.
This implies a0 ≡ · · · ≡ ap−m−2 ≡ 0 and b ≡ c ≡ 0 because the elements
{1, x, . . . , xp−m−2} are linearly independent vectors of V.
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�

�

�

�

k = m In this case the dependence relation (2) can be rewritten as g(x)f(x) =
−bxm − c with g(x) defined as in the previous case. By hypothesis f(x) has
m distinct roots, while the right side can have at most m distinct roots. This
implies that g(x) = g(0) = a0 is a constant polynomial or, equivalently, that
a1 ≡ · · · ≡ ap−m−2 ≡ 0. Suppose by contradiction that a0 �= 0, then f(x) =
−a−1

0 bxm − a−1
0 c is a contradiction since, by Proposition 2, the degree of the

minimal-degree non-constant monomial of f(x) is s with s �= m and s > 0.
Hence a0 ≡ 0, and then −bxm − c = 0 which implies b ≡ c ≡ 0.
�

�

�

	

m < k < p − 1 Let k = m + k′ with 1 ≤ k′ ≤ p − m − 2. From g(x)f(x) =

−bxm+k′ − c it follows that deg(g) ≤ k′ and then, if k′ < p − m − 2, we have
ak′+1 ≡ · · · ≡ ap−m−2 ≡ 0.

Assume, by contradiction, b �= 0 and c ≡ 0. In this case the dependence
relation becomes g(x)f(x) = −bxm+k′

, but the right side has only 0 as root
while the left side has, by hypothesis, at least t non-zero distinct roots. This
implies, similarly as before, that g(x) = 0 and b ≡ 0, a contradiction.

Let us therefore assume b �= 0 and c �= 0. In this case the dependence relation
can be rewritten as g′(x)f(x) = xm+k′ − z where g′(x) = (−b)−1g(x) and z =
(−b)−1c �= 0.

If, by contradiction, g′(x) �= 0, then, by Proposition 2, the least value for
m + k′ such that the dependence relation holds is m + k′ = p − 1, that is
k′ = p − m − 1, a contradiction to 1 ≤ k′ ≤ p − m − 2. Hence g′(x) = 0, which
in turn implies b ≡ c ≡ 0, a contradiction to our assumption b �= 0.

It follows that b ≡ 0 and then g(x)f(x) = −c. Since by hypothesis f has m
distinct roots, this equation holds only if c = 0 and g(x) = 0, which, similarly
as before, implies a0 ≡ · · · ≡ ak′ ≡ b ≡ c ≡ 0. �
Corollary 1. Let f(x) ∈ Z/pZ[x] be a polynomial satisfying the hypothesis
of Theorem 3 and consider a Generic Group Model instance of the proposed
Dynamic Universal Accumulator equipped with the public Batch Witness Update
protocol. If the accumulator value is initialized by adding all the roots in Z/pZ

of f(x), then the probability ε that an attacker A outputs in qG queries to the
group oracles the value ξ1

(
αk

)
for any 1 ≤ k < p − 1 is bounded by

ε ≤ (deg f + t) · (qG + t + 3)2

p

where t is the maximum number of elements allowed to be accumulated simulta-
neously.

Proof. The proof proceeds similarly as done in the proof of Theorem 2. The
only difference is the condition checked by the Accumulator Manager to ensure
correctness of A’s output value (ξ1,l). This new check corresponds to verifying
the polynomial equation F1,l−xk = 0 where F1,l = g(x)·f(x) with deg g ≤ t. The
Accumulator Manager then chooses a random value x∗ ∈ Z/pZ: by Theorem 3
the equation F1,l−xk = 0 vanishes in x∗ with probability 0 for any 1 ≤ k < p−1,
thus A wins the game with non-zero probability only if some of the following
conditions holds:
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1. F1,i(x∗) − F1,j(x∗) = 0 for some i, j so that F1,i �= F1,j

2. F2,i(x∗) − F2,j(x∗) = 0 for some i, j so that F2,i �= F2,j

3. FT,i(x∗) − FT,j(x∗) = 0 for some i, j so that FT,i �= FT,j

From this we conclude, in a similar way as done at the end of the proof
of Theorem 2, that A wins the game with the Accumulator Manager with a
probability ε ≤ (deg f+t)·(qG+t+3)2

p . �
We are now ready to explicitly define the Accumulator Initialization proce-

dure for our protocol:

Accumulator Initialization. Set an upper limit NMWitnessesMax to the total
number of issuable non-membership witnesses. Assume p is such that p − 1 =
pe1
1 · ... · pen

n factorizes as the product of n > 1 powers of distinct primes pi

and consider n elements x1, . . . , xn ∈ Z/pZ such that the multiplicative order in
(Z/pZ)∗ of xi is pei

i , for 1 ≤ i ≤ n. Then, the Accumulator Manager sets

YV0 = {x1, . . . , xn} ∪ {NMWitnessesMax − n + 1 random elements in ACC}
so that |YV0 | = NMWitnessesMax+1 and defines the corresponding initialization
polynomial as f0(x) =

∏
xi∈YV0

(x − xi), where V0 = f0(α)P . He then publishes
(V0, ∅), the accumulator state at epoch 0, and keeps secret and never deletes the
elements in YV0 .

We note that as soon as an epoch changes, the Accumulator Manager pub-
lishes the corresponding Batch Witnesses Update information: at epoch 1, for
example, this corresponds to the new state (V1,YV1), the updating vector Ω1

and the polynomials dA1(x) and dD1(x). At this point, the polynomial

fV1(x) = f0(x) · f1(x) =
∏

yi∈YV0

(yi + x) ·
∏

yj∈YV1

(yj + x)

has |YV0 | + |YV1 | distinct non-zero roots, n of which are x1, . . . , xn, and is such
that V1 = fV1(α)P . Even if it is possible to obtain from Ω1, A1 and D1 all the
values αkV1 for 1 ≤ k < p − |YV0 | − 1 (we relax the condition k ≤ batchMax)
we still are under the hypothesis of Theorem 3 and Corollary 1, which assure us
the infeasibility to obtain any element of the RS. This reasoning can be easily
generalized to any subsequent epoch.

One last question arises with regard to all these considerations: is it possi-
ble to obtain some elements in the RS combining the vectors Ωi coming from
different epochs? When the accumulator is initialized as described in Theorem
3, the answer is no. To show this, consider, without loss of generality, the m
vectors Ω1, . . . , Ωm, where the j-entry of any Ωi is of the form cjVi. Hence a
linear combination with coefficients ai,j ∈ Z/pZ of entries of these vectors can
be written as

m∑

i=1

|batchMax|∑

j=0

ai,jcjVi =

⎛

⎝
m∑

i=1

|batchMax|∑

j=0

ai,jcjfi(α)

⎞

⎠ · f0(α)P = g(α) · V0
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where g(x) =
∑m

i=1

∑batchMax
j=0 ai,jcjfi(x). In other words, in the luckiest sit-

uation, what we can obtain combining all these vectors is a “basis” made of
elements of the form αkf0(α)P = αkV0 with 1 ≤ k ≤ batchMax which, as we
already discussed, does not permit to obtain any element in RS.

8 Zero-Knowledge Proof of Knowledge

We now explicitly show how an interactive zero-knowledge protocol can be
instantiated between a Prover and a Verifier to prove the ownership of a valid
non-membership witness w̄y,V for y with respect to the accumulator state (V,YV )
(the corresponding protocol to show ownership of a valid membership witness
wy,V is similar and will not be discussed). Although different NIZK protocols for
bilinear equations verification can be adopted for this purpose (e.g. Groth-Sahai
[23]), we chose to detail a construction which doesn’t need a trusted setup (to
avoid extra storage needs on users’ side) and that can be easily implemented in
order to provide a reference for our benchmarks.

To this end, we will then extend the zero-knowledge proof of knowledge
protocol defined by Boneh et al. in [9], which proves under the Decision Linear
Diffie-Hellman assumption the knowledge of a pair (y, C) such that (y+α)C = V ,
in order to support tuples (y, C, d) which verify (y + α)C + dP = V .

However, for non-membership witnesses we need to further ensure that d �= 0
or, equivalently in G1, that has a multiplicative inverse. In this regard we will
then consider, for a random generator K ∈ G1 and random a, b ∈ Z/pZ, the
Pedersen commitments Ed = dP + aK and Ed−1 = d−1P + bK for d and d−1,
respectively. Noticing that P = dEd−1 − dbK, we then extend the protocol
applying EQ-composition to the factor d among the values Ed and P , thus
showing that Ed−1 is a Pedersen commitment to the multiplicative inverse of
the committed value in Ed.

Under the Random Oracle Model, we can make such proof of knowledge
non-interactive and full zero-knowledge by applying Fiat-Shamir heuristic [21].
We will do so by using an heuristic variant adopted by Boneh et al. in [9] in
order to reduce Prover’s proof size. We assume that calls to the random oracle
can be concretely realized through evaluations to a cryptographic hash function
H : {0, 1}∗ → Z/pZ.

Security proofs. By reporting the relative security proofs, we will substantially
replicate the original results of the respective authors: we therefore refer to [9]
and [32, Ex. 5.3.4] for the completeness, soundness and (special) honest-verifier
zero-knowledgeness security proofs of Boneh et al. protocol and EQ-composition
for multiplicative-inverse relation, respectively.

The resulting protocol is the following.

Setup The Prover and Verifier agree on the public values P,X, Y, Z,K ∈ G1

and P̃ , Q̃ ∈ G2, where X,Y,Z,K are distinct random generators of G1.

Proof of Knowledge The Prover randomly selects σ, ρ, τ, π ∈ Z/pZ and com-
putes
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EC = C + (σ + ρ)Z, Ed = dP + τK, Ed−1 = d−1P + πK,

Tσ = σX, Tρ = ρY, δσ = yσ, δρ = yρ

A non-interactive zero knowledge Proof of Knowledge of values (y, d, σ, ρ, τ,
π, δσ, δρ) satisfying

P = dEd−1 − dπK, Ed = dP + τK,

σX = Tσ, ρY = Tρ, yTσ − δσX = O, yTρ − δρY = O,

e(EC , P̃ )ye(Z, P̃ )−δσ−δρe(Z, Q̃)−σ−ρe(K, P̃ )−τ =
e(V, P̃ )

e(EC , Q̃)e(Ed, P̃ )

is undertaken between Prover and Verifier as follows:

Blinding (P) The Prover randomly picks ry, ru, rv, rw, rσ, rρ, rδσ
, rδρ

∈ Z/pZ,
computes

RA = ruP + rvK, RB = ruEd−1 + rwK,

RE = e(EC , P̃ )rye(Z, P̃ )−rδσ −rδρ e(Z, Q̃)−rσ−rρe(K, P̃ )−rv ,

Rσ = rσX, Rρ = rρY, Rδσ
= ryTσ − rδσ

X, Rδρ
= ryTρ − rδρ

Y

Challenge (P) The Prover sets the challenge c ∈ Z/pZ to

c = H(V,EC , Ed, Ed−1 , Tσ, Tρ, RA, RB , RE , Rσ, Rρ, Rδσ
, Rδρ

)

Response (P) The Prover computes

sy = ry + cy, su = ru + cd, sv = rv + cτ, sw = rw − cdπ,

sσ = rσ + cσ, sρ = rρ + cρ, sδσ
= rδσ

+ cδσ, sδρ
= rδρ

+ cδρ

and sends (EC , Ed, Ed−1 , Tσ, Tρ, c, sy, su, sv, sw, sσ, sρ, sδσ
, sδρ

) to the Verifier.

Verify (V) The Verifier computes

RA = suP + svK − cEd, RB = swK + suEd−1 − cP,

Rσ = sσX − cTσ, Rρ = sρY − cTρ, Rδσ = syTσ − sδσX, Rδρ = syTρ − sδρY,

RE = e(EC , P̃ )sy · e(Z, P̃ )
−sδσ −sδρ · e(Z, Q̃)−sσ−sρ · e(K, P̃ )−sv ·

(
e(V, P̃ )

e(EC , Q̃)e(Ed, P̃ )

)−c

and accepts if c = H(V,EC , Ed, Ed−1 , Tσ, Tρ, RA, RB , RE , Rσ, Rρ, Rδσ
, Rδρ

).
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8.1 Complexity Analysis

Within this protocol, zero-knowledge proofs for valid non-membership witnesses
consists of 5 elements in G1 and 11 elements in Fp, while they consists of 3
elements in G1 and 6 elements in Fp in the case of membership witnesses. Thus,
if elliptic curves are used to concretely implement the underlying bilinear group
(in particular, we assume elements in G1 are elliptic curve points over Fq) and
elliptic curve points compression is used, zero-knowledge non-membership and
membership proofs can be represented with 5(log q+1)+9 log p bits and 3(log q+
1)+6 log p bits, respectively. In our concrete instance (see Sect. 9) this translates
to 4926 bits ≈ 616 bytes proofs for non-membership witnesses and 3135 bits
≈ 392 bytes proofs for membership witnesses.

As regards computational costs, if the quantities e(Z, P̃ ), e(Z, Q̃), e(K, P̃ )
and e(V, P̃ ) are pre-computed and stored by both Prover and Verifier, zero-
knowledge proofs of knowledge for non-membership witnesses are computed with
15 scalar-point multiplications in G1, 7 point additions in G1, 4 exponentiation
in GT and 1 pairing. We note that the Prover can reduce the cost of evaluating
e(EC , P̃ ) by computing and storing the value e(C, P̃ ). Thus, with just 1 pairing
per-epoch, the Prover can compute each e(EC , P̃ ) as e(Z, P̃ )σ+ρ · e(C, P̃ ) with 1
exponentiation and 1 multiplication in GT . Using this optimization, the cost to
compute a proof of knowledge of a membership witness boils down to a total of
9 scalar-point multiplications in G1, 3 point additions in G1, 5 exponentiation
in GT and 1 multiplication in GT .

Similarly, the Verifier needs 16 scalar-point multiplications in G1, 9 point
additions in G1, 4 exponentiation in GT and 2 pairings (if computes the product
e(EC , P̃ )sye(EC , cQ̃) as e(EC , syP̃ + cQ̃)) to verify a non-membership witness
zero-knowledge proof, while he needs 10 scalar-point multiplications in G1, 5
point additions in G1, 3 exponentiation in GT and 1 pairing to verify a zero-
knowledge proof of knowledge for a membership witness.

9 Implementation Results

To show efficiency and its practical relevance, we implemented the proposed
accumulator scheme by using the RELIC library [2]. In order to guarantee a secu-
rity level of 128-bits, we selected the available pairing-friendly Type-III prime
curve B12-P446. We then benchmarked the main features of the proposed accu-
mulator, obtaining the following average results:

– Accumulator Updates: 0.75 s to add 1, 000, 000 elements (random elements
generation requires 1.46 s); 0.48 s to delete 1, 000, 000 elements.

– Witness Issuing: 1.9 ms to issue a membership witness; 229.5 ms for a
non-membership witness (1, 000, 000 elements accumulated).

– Witness Verification: 2.2 ms to verify a membership witness; 3.2 ms to
verify a non-membership witness.

– Public Batch Witness Update: 37.9 s to generate batch update data
corresponding to a 10, 000 elements batch addition operation; 27.1 s for a
10, 000 elements batch deletion operation.
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– Batch Witness Update: 2.1 s to update a membership or non-membership
witness after a batch addition or deletion operation of 10, 000 elements.

– Non-Batch Witness Update: 4.4 s to update a membership or non-
membership witness after a batch addition or deletion operation of 10, 000
elements.

– Zero-Knowledge Proof Creation: 5.2 ms to create a zero knowledge proof
of knowledge of a membership witness; 7.4 ms to create a proof for a non-
membership witness.

– Zero-Knowledge Proof Verification: 6.5 ms to verify a zero knowledge
proof of knowledge of a membership witness; 11.2 ms to verify a proof for a
non-membership witness.

These benchmarks came from running our implementation on a standard
Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz desktop provided with 8.00 GB of
RAM and running Ubuntu 18.04 x64. No parallelization was used.

Our implementation can be found on GitHub at:

https://github.com/cryptolu/accumulator/

Feedback from the Community. We were contacted by a company that
implemented our accumulator (including the Public Batch Witness Update and
Zero-Knowledge protocols) as a revocation mechanism for verifiable credentials.
Their implementation, public on GitHub7, is used already in production appli-
cations where 10–20 millions entries remain accumulated at any given time and
1000/600 elements are added/deleted, respectively, per day. They reported to us
that in their implementation (i) witness update data generation takes 17 s and
99 KB/day; (ii) users’ witness update after 1 year offline requires 80 s and 36 MB
of update data; (iii) witness updates work on IoT; (iv) using the pairing-friendly
elliptic curve BLS12-381, RAM requirements are few megabytes. They added
that our scheme “solves their scaling problem” compared to Hyperledger-Indy8

implementation of [17], which would take hours/day and larger proof sizes.

10 Conclusions

We presented a Dynamic Universal Accumulator in the Accumulator Manager
setting over bilinear groups, which supports batch operations and batch mem-
bership and non-membership public witness updates.

The proposed accumulator extends a combination of previous schemes by
adding batch operations, enabling users to update witnesses in optimal time.
Furthermore, since batch update data is designed to be decoupled from users’
witnesses, our protocol permits (privacy-preserving) witness updates delegation,
thus enabling lightweight users to keep their witnesses updated with a constant
number of elementary operations.

7 https://github.com/mikelodder7/accumulator-rs.
8 https://www.hyperledger.org/use/hyperledger-indy.

https://github.com/cryptolu/accumulator/
https://github.com/mikelodder7/accumulator-rs
https://www.hyperledger.org/use/hyperledger-indy
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We showed in the Generic Group Model its security in terms of collision
resistance by introducing a more general version of the t−SDH assumption for
which we give an upper bound complexity for a generic algorithm that solves
the corresponding problem. We further showed how to initialize the accumulator
in order to be safe from an attack which would allow to forge witnesses for
non-authorized elements, an essential requirement in the case the accumulator
scheme is used as an authentication mechanism under the Accumulator Manager
authority.

We then described how to instantiate a zero-knowledge proof of ownership of
a valid witness for a given accumulator state and we implemented the accumu-
lator logic along with batch operations, the public witness update protocol and
the zero-knowledge proof mechanism in order to show its practical relevance as
an efficient and scalable privacy-preserving authentication mechanism.

A Collision Resistance of Au et al. Accumulator

We here report both Au et al. definition of collision resistance (slightly restated)
and Boneh and Boyen definition of t−SDH assumption.

Definition 3. (Collision Resistance [4]) The Dynamic Universal Accumula-
tor outlined in Sect. 3 is collision resistant if, for any probabilistic polynomial
time adversary A that has access to an oracle O which returns the accumulator
value resulting from the accumulation of the elements of any given input subset
of (Z/pZ)∗, the following probabilities

P

⎛

⎜
⎝

(G, α, Q̃) ← Gen(1λ) , (y, wy,Y) ← AO(G, Q̃) :
Y ⊂ (Z/pZ)∗ ∧ V =

(∏
yi∈Y(yi + α)

)
· P ∧

y ∈ (Z/pZ)∗ \ Y ∧ Ω(y, wy, V, membership) = 1

⎞

⎟
⎠

P

⎛

⎜
⎝

(G, α, Q̃) ← Gen(1λ) , (y, w̄y,Y) ← AO(G, Q̃) :
Y ⊂ (Z/pZ)∗ ∧ V =

(∏
yi∈Y(yi + α)

)
· P ∧

y ∈ Y ∧ Ω(y, w̄y, V, non-membership) = 1

⎞

⎟
⎠

are both negligible functions in the security parameter λ, where wy, w̄y

denote a membership and non-membership witness for y, respectively, and
Ω(y, w, V, type) is equal to 1 if and only if w is a valid type witness for y
with respect to V .

Definition 4. (t−Strong Diffie-Hellman Assumption [10]) Let G be
a probabilistic polynomial time algorithm that, given a security parame-
ter 1λ, outputs a bilinear group G = (p,G1, G2, GT , P, P̃ , e). We say
that the t−Strong Diffie-Hellman Assumption holds for G with respect to
an α ← (Z/pZ)∗ if, for any probabilistic polynomial time adversary A
and for every polynomially bounded function t : Z → Z, the probability
P

(
A(P, αP, α2P, ..., αt(λ)P, P̃ , αP̃ ) =

(
y, 1

y+αP
))

is a negligible function in λ

for any freely chosen value y ∈ Z/pZ \ {−α}.
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We can see that in Definition 3, the adversary has access to an oracle O that
outputs the accumulator value V =

(∏
y∈YV

(y + α)
)

P for any chosen input set
YV . Its purpose is to model the information the adversary can eventually get by
looking at the published accumulator states, although in practice the adversary
has no control over the values accumulated by the Accumulator Manager. This
oracle doesn’t make their attacker more powerful when compared to the require-
ments of the Boneh and Boyen t−SDH assumption (where the RS is directly
given to the attacker) due to the following:

Lemma 1. Having access to the oracle O of Definition 3 where sets of size
at most t can be queried is equivalent to the knowledge of the set RS =
{P, αP, ..., αtP}.
Proof.

�

�

�

�

⇒ Let y be a generator of (Z/pZ)∗. Then the polynomials {1, (y +
x), (y +x) · (y2 +x), . . . ,

∏t
i=1(y

i +x)} form a basis for the additive vector space
of polynomials in Z/pZ[x] with degree lower equal t and, hence, for any given
1 ≤ i ≤ t, there exists a linear combination of these polynomials that sums
up to xi. It follows that, iteratively calling O on the set Yi = {y, y2, . . . , yi}, it is
possible to write a linear combination of the VYi

values returned which is equal
to αiP .

�

�

�

�

⇐ Suppose the set RS is known. Then, for any given YV ⊂ (Z/pZ)∗ with

|YV | ≤ t, using the RS, it is possible to compute V =
(∏

yi∈YV
(yi + α)

)
P =

∑|Y|
i=0 ci · (αiP ). �

Theorem 4. Let G be a probabilistic polynomial time algorithm that, given a
security parameter 1λ, outputs a bilinear group G = (p,G1, G2, GT , P, P̃ , e) and
consider an instantiation of the Dynamic Universal Accumulator obtained using
G for the bilinear group generation and α ∈ (Z/pZ)∗ as the secret accumula-
tor parameter. Then, the accumulator is collision resistant (Definition 3) if the
t−Strong Diffie-Hellman Assumption (Definition 4) holds for G with respect to α.

Proof. We note that a solution (y, C, d) for the pairing equation e(C, yP̃ +
Q̃)e(P, P̃ )d = e(V, P̃ ) is also a solution for the elliptic curve points equation
(y + α)C + dP = V . We will then prove the Theorem considering this last equa-
tion only, distinguishing between membership and non-membership witnesses.

Membership Witnesses. By contradiction, suppose there exists a probabilistic
polynomial time adversary A that with respect to an (non-trivial) accumulator
state (V,YV ) outputs with a non-negligible probability a membership witness
C ∈ G1 for an element y ∈ (Z/pZ)∗\YV . It follows that (y+α)C = V = fV (α)P
where fV (x) =

∏
yi∈YV

(yi + x). Since y /∈ YV , we have that (y + α) � fV (x).
Using the polynomial extended Euclidean algorithm, A computes g(x) ∈ Z/pZ[x]
of degree |YV | − 1 and r ∈ (Z/pZ)∗ such that fV (x) = g(x) · (y + x) + r.
Therefore, C = g(α)P + r

y+αP and using the RS = {P, αP, α2P, ..., αq(λ)},
with |YV | ≤ q(λ), can compute g(x)P and hence 1

y+αP = r−1(C − g(α)P ),
contradicting the t−SDH assumption.
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Non-membership Witnesses. Suppose there exists a probabilistic polynomial time
adversary A that with respect to an (non-trivial) accumulator state (V,YV )
outputs with a non-negligible probability a non-membership witness (C, d) ∈
G1 × (Z/pZ)∗ for an element y ∈ YV . Then (y + α)C = fV (α)P − dP . Now,
since (y + x)|fV (x) we have that (y + x) � fV (x) − d for any d �= 0. Thus,
similarly as done before, A uses the polynomial extended Euclidean algorithm
to compute g(x) ∈ Z/pZ[x] of degree |YV | − 1 and r ∈ (Z/pZ)∗ such that
fV (x)−d = g(x) · (y +x)+ r. Therefore, C = g(α)P + r

y+αP and, using the RS,
A can compute 1

y+αP = r−1(C −g(α)P ), contradicting the t−SDH assumption.
�
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Abstract. Laconic Function Evaluation (LFE) protocols, introduced by
Quach et al. in FOCS’18, allow two parties to evaluate functions lacon-
ically , in the following manner: first, Alice sends a compressed “digest”
of some function – say C – to Bob. Second, Bob constructs a ciphertext
for his input M given the digest. Third, Alice, after getting the cipher-
text from Bob and in full knowledge of her circuit, can recover C (M )
and (ideally) nothing more about Bob’s message. The protocol is said to
be laconic if the sizes of the digest, common reference string (crs) and
ciphertext are much smaller than the circuit size |C |.

Quach et al. put forward a construction of laconic function evalua-
tion for general circuits under the learning with errors (LWE) assump-
tion (with sub-exponential approximation factors), where all parameters
grow polynomially with the depth but not the size of the circuit. Under
LWE, their construction achieves the restricted notion of selective secu-
rity where Bob’s input M must be chosen non-adaptively before even
the crs is known.

In this work, we provide the first construction of LFE for NC1, which
satisfies adaptive security from the ring learning with errors assumption
(with polynomial approximation factors). The construction is based on
the functional encryption scheme by Agrawal and Rosen (TCC 2017).

Keywords: Functional encryption · Laconic function evaluation ·
Laconic oblivious transfer

1 Introduction

Laconic Function Evaluation (LFE) is a novel primitive that was introduced in
a recent work by Quach et al. [14]. Intuitively, the notion proposes a setting
where two parties want to evaluate a function C in the following manner: Alice
computes a “digest” of the circuit representation of C and sends this digest to
Bob; Bob computes a ciphertext CT for his input M using the received digest
and sends this back to Alice; finally Alice is able to compute the value C (M ) in
the clear without learning anything else about Bob’s input. Put differently, an
LFE protocol is a type of secure multi-party computation[4,9,11] that is Bob-
optimized.
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The work of [14] provided an elegant construction of laconic function eval-
uation for all circuits from LWE. In their construction, the size of the digest,
the complexity of the encryption algorithm and the size of the ciphertext only
scale with the depth but not the size of the circuit. However, under LWE, their
construction only achieves the restricted notion of selective security where Bob’s
input M must be chosen non-adaptively before even the crs is known. More-
over they must rely on LWE with sub-exponential modulus to noise ratio, which
implies that the underlying lattice problem must be hard for sub-exponential
approximation factors. Achieving adaptive security from LWE was left as an
explicit open problem in their work.

In this work, we provide a new construction of LFE for NC1 circuits that
achieves adaptive security. Our construction relies on the ring learning with
errors (RLWE) assumption with polynomial modulus to noise ratio. We start
with the construction by Agrawal and Rosen for functional encryption for NC1

circuits [3] and simplify it to achieve LFE. To achieve a laconic digest, we make
use of the laconic oblivious transfer (LOT) primitive [8,15]. Our main result may
be summarized as follows.

Theorem 1 (LFE for NC1 – Informal). Assuming the hardness of RLWE with
polynomial approximation factors, there exists an adaptively-secure LFE protocol
for NC1.

The authors of [14] also studied the relations between LFE and other primi-
tives, and in particular showed that LFE implies succinct functional encryption
(FE) [6,13]. Functional encryption is a generalisation of public key encryption
in which the secret key corresponds to a function, say f , rather than a user. The
ciphertext corresponds to an input x from the domain of f . Decryption allows to
recover f(x) and nothing else. Succinctness means that the size of the ciphertext
in the scheme depends only on the depth of the supported circuit rather than
on its size [1,3,10]. One can apply, as well, the LFE to FE compiler of [14] to
our new, adaptively secure LFE for NC1, and obtain an alternative variant of
adaptively secure, succinct FE for NC1.

Technical Overview. The techniques that we use exploit the algebraic struc-
ture in the construction by Agrawal and Rosen [3]. Say that the plaintext M ∈
{0, 1}k. If the encryption algorithm obtains a ciphertext CT := {C1, . . . , Ck}
where each Ci encrypts a single bit Mi of plaintext, in isolation from all different
Mj , we say that the ciphertext is decomposable.

The construction supports circuits of depth d and uses a tower of moduli
p0 < p1 < . . . < pd. Building upon a particular levelled fully homomorphic
encryption scheme (FHE) [7], it encrypts each bit of the plaintext, independently,
as follows:

– first multiplication level – the ciphertext consists of a “Regev encoding”:

C1 ← a · s + p0 · e + Mi ∈ Rp1
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where Mi ∈ Rp0 and s←$ Rp1 is a fixed secret term; a←$ Rp1 is provided
through public parameters, while e←χ Rp1 is the noise;

– next multiplication level – two ciphertexts are provided under the same s:

a′ · s + p1 · e′ + C1 ∈ Rp2 and a′′ · s + p1 · e′′ + (C1 · s) ∈ Rp2 .

The computational pattern is repeated recursively up to d multiplication lev-
els, and then for every bit of the input.

– an addition layer is interleaved between any two multiplication layers Ci and
Ci+1: essentially it “replicates” ciphertexts in Ci and uses its modulus pi.

– the public key (the “�a ”s) corresponding to the last layer are also the master
public key mpk of a linear functional encryption scheme Lin-FE [2].

– the decryption algorithm computes C obliviously over the ciphertext, layer
by layer, finally obtaining:

CTC (M ) ← C (M ) + Noise + PKC · s (1)

where PKC is a “functional public key” that depends only on the public key
and the circuit C , and can be viewed as a succinct representation of C . The
term PKC · s occurring in (1) will be cancelled using the functional key skC ,
in order to recover C (M ) plus noise (which can be modded out).

Our Technique. The crux idea when building an LFE is to set the ciphertext to
be essentially the data-dependent part of the FE ciphertext, while the digest to
be PKC . Concretely, the mpk will form the crs. Whenever a circuit C is to be
compressed, a circuit-dependent public value – denoted PKC – is returned as
digest. The receiver of PKC samples its own secret s and computes recursively
the Regev encodings (seen above) as well as PKC · s+Noise’ (the skC -dependent
term). These terms suffice to recover C (M ) from (1) on the sender’s side.

Our construction departs significantly from the approach in [14]. In short,
the original work makes use of generic transforms for obtaining attribute-based
LFEs (AB-LFEs), obtaining AB-LFEs supporting multi-bit outputs, using ideas
behind the transform of [10] to hide the “attribute” in AB-LFE and compressing
the digests via laconic oblivious transfer [8]. On the other hand, we do not need
to go via AB-LFE, making our transformation conceptually simpler. Moreover,
by relying on the adaptive security of the underlying FE scheme that we use, we
obtain adaptive security.

Towards Short Digests. As per [14], we use the laconic oblivious transfer protocol
in the following way: after getting the digest in the form of PKC , we apply a
second compression round, which yields:

(digestLOT, D̂) ← LOT.Compress(crsLOT,PKC ) .

We stress that both compression methods used are deterministic. Put differently,
at any point in time, the sender, in full knowledge of her circuit representation,
can recreate the digest. On the receiver’s side, instead of following the technique
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proposed in [14] – garbling an entire FHE decryption circuit and encrypting
under an ABE the homomorphic ciphertext and the labels – we garble only the
circuit that provides

PKC · s + pd−1 · Noise ,

while leaving the actual ciphertext intact. The advantage of such an approach
resides into its conceptual simplicity, as the size of the core ciphertext Bob sends
back to Alice remains manageable for simple C , and is not suppressed by the
size of the garbling scheme.

Roadmap. Section 2 puts forth the algorithmic and mathematical conventions
to be adopted throughout this work, as well as the definitions of primitives we use
herein. In Sect. 3 we review the decomposable FE scheme proposed by Agrawal
and Rosen in [3]. In Sect. 4, we introduce a new LFE scheme for NC1 circuits,
and show in Sect. 5 how to combine it with laconic oblivious transfer in order to
achieve a scheme with laconic digests.

2 Background

Algorithmic and Mathematical Notation. We denote the security parame-
ter by λ ∈ N

∗ and we assume it is implicitly given to all algorithms in the unary
representation 1λ. An algorithm is equivalent to a Turing machine. Algorithms
are assumed to be randomized unless stated otherwise; PPT stands for “proba-
bilistic polynomial-time” in the security parameter (rather than the total length
of its inputs). Given a randomized algorithm A we write the action of running
A on input(s) (1λ, x1, . . . ) with uniform random coins r and assigning the out-
put(s) to (y1, . . . ) by (y1, . . . )←$ A(1λ, x1, . . . ; r). When A is given oracle access
to some procedure O, we write AO. For a finite set S, we denote its cardinality
by |S| and the action of sampling an element x uniformly at random from X
by x←$ X. We let bold variables such as w represent column vectors. Similarly,
bold capitals stand for matrices (e.g. A). A subscript Ai,j indicates an entry in
the matrix. We overload notation for the power function and write αu to denote
that variable α is associated to some level u in a levelled construction. For any
variable k ∈ N

∗, we define [k] := {1, . . . , k}. A real-valued function Negl(λ) is
negligible if Negl(λ) ∈ O(λ−ω(1)). We denote the set of all negligible functions
by Negl. Throughout the paper ⊥ stands for a special error symbol. We use ||
to denote concatenation. For completeness, we recall standard algorithmic and
cryptographic primitives to be used.

Circuit Representation. We consider circuits as the main model of compu-
tation for representing (abstract) functions. Unless stated otherwise, we use k
to denote the input length of the circuit and d for its depth. As we assume that
circuits have a tree like structure we denote as subcircuits the corresponding
subtrees.
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2.1 Computational Hardness Assumptions

The Learning With Errors (LWE) search problem [16] asks to find the secret
vector s over F

�
q given a polynomial-size set of tuples (A,A · s + e), where A

stands for a randomly sampled matrix over Fk×�
q , while e ∈ F

k represents a small
error vector sampled from an appropriate distribution χ. In rough terms, the
decisional version of the LWE problems, asks any PPT adversary to distinguish
between the uniform distribution and one induced by the LWE tuples.

Definition 1 (Learning With Errors). Let A stand for a PPT adversary.
The advantage of A in distinguishing between the following two distributions is
negligible:

AdvLWE
A (λ) :=

∣
∣Pr[1 ← A(

1λ,A,u
)

] − Pr[1 ← A(

1λ,A,A · s + e
)

]
∣
∣ ∈ Negl(λ)

where s←$Z
�
q, A←$Z

k×�
q , e←χZ

k
q and u←$Z

k
q .

Later, Lyubashevsky, Peikert and Regev [12] proposed a ring version. Let
R := Z[X]/(Xn + 1) for n a power of 2, while Rq := R/qR for a safe prime q
satisfying q ≡ 1 mod 2n.

Definition 2 (Ring LWE). For s←$ Rq, given a polynomial number of sam-
ples that are either: (1) all of the form (a, a ·s+e) for some a←$ Rq and e←χ Rq

or (2) all uniformly sampled over R2
q; the (decision) RLWEq,φ,χ states that a

PPT-bounded adversary can distinguish between the two settings only with neg-
ligible advantage.

2.2 Garbling Schemes

Garbling schemes were introduced by Yao in its pioneering work [18,19], to
solve the famous “Millionaires’ Problem”. Since then, garbled circuits became
a standard building-block for many cryptographic primitives. Their definition
follows.

Definition 3 (Garbling Scheme). Let {Ck}λ be a family of circuits taking as
input k bits. A garbling scheme is a tuple of PPT algorithms (Garble,Enc,Eval)
such that:

– (Γ, sk)←$Garble(1λ,C ): takes as input the unary representation of the security
parameter λ and a circuit C ∈ {Ck}λ; outputs a garbled circuit Γ and a secret
key sk.

– c←$Enc(sk, x): x ∈ {0, 1}k is given as input, as well as the secret key sk; the
encoding procedure returns an encoding c.

– C (x) ← Eval(Γ, c): the evaluation procedure receives as inputs a garbled circuit
and an encoding of x, returning C (x).

We say that a garbling scheme Γ is correct if for all C : {0, 1}k → {0, 1}l

and for all x ∈ {0, 1}k we have that:

Pr
[

C (x) = y
∣
∣
∣

(Γ, sk)←$GS.Garble(1λ,C )∧
y ← GS.Eval(Γ,GS.Enc(sk, x))

]

= 1 .
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Yao’s Garbled Circuit [18]. One of the most pre-eminent types of garbling
schemes is represented by the original proposal of Yao, which considers a family
of circuits of n input wires and outputting a single bit. In his proposal, a circuit’s
secret key can be viewed as two labels (L0

i , L
1
i ) for each input wire, where i ∈

[n]. The evaluation of the circuit at point x corresponds to an evaluation of
Eval(Γ, (Lx1

1 , . . . , Lxn
n )), where xi is the ith bit of x,—thus the encoding c :=

(Lx1
1 , . . . , Lxn

n ).

2.3 Functional Encryption Scheme - Public-Key Setting

We define the notion of functional encryption[6] in the public key-settings and
provide a simulation-based security definition. Roughly speaking, the semantic
security of the functional encryption scheme guarantees the adversary cannot
learn more on M as by knowing only C (M ).

Definition 4 (Functional Encryption - Public Key Setting). Let F =
{Fλ}λ∈N be an ensemble, where Fλ is a finite collections of functions C : Mλ →
Yλ. A functional encryption scheme FE in the public-key setting consists of a
tuple of PPT algorithms (Setup, KeyGen, Enc, Dec) such that:

– (msk,mpk)←$FE.Setup(1λ) : takes as input the unary representation of the
security parameter λ and outputs a pair of master secret/public keys.

– skC ←$FE.KeyGen(msk,C ): given the master secret key and a function C , the
(randomized) key-generation procedure outputs a corresponding skC .

– CT←$FE.Enc(mpk,M): the randomized encryption procedure encrypts the
plaintext M with respect to mpk.

– FE.Dec(CT, skC ): decrypts the ciphertext CT using the functional key skC
in order to learn a valid message C (M) or a special symbol ⊥, in case the
decryption procedure fails.

We say that FE satisfies correctness if for all C : Mλ → Yλ we have that:

Pr

⎡

⎢
⎢
⎣

y = C (M)

∣
∣
∣
∣
∣

(msk,mpk)←$FE.Setup(1λ)∧
skC ←$FE.KeyGen(msk,C )∧
CT←$FE.Enc(mpk,M)∧
y ← FE.Dec(CT, skC )

⎤

⎥
⎥
⎦

= 1 .

A public-key functional encryption scheme FE is semantically secure if there
exists a stateful PPT simulator S such that for any PPT adversary A,

AdvFULL-SIM-FE
A,FE (λ) :=

∣
∣
∣
∣
Pr[FULL-SIM-FEA

FE(λ) = 1] − 1
2

∣
∣
∣
∣

is negligible, where the FULL-SIM-FE experiment is described in Fig. 1 (left).



Adaptively Secure Laconic Function Evaluation for NC1 433

Fig. 1. Left: FULL-SIM-FE-security defined for a functional encryption scheme in the
public-key setting. Right: the simulation security experiment FULL-SIM-LFE defined
for a laconic function evaluation scheme LFE.

2.4 Laconic Oblivious Transfer

Definition 5 (LOT). A Laconic Oblivious Transfer (LOT) scheme consists of
a tuple of PPT algorithms (crsGen,Compress,Enc,Dec) with the following func-
tionality:

– crs←$ crsGen(1λ): takes as input the security parameter λ in unary and outputs
a common reference string crs.

– (digest, D̂)←$Compress(crs,D): given a database D and the crs, outputs a
digest of the circuit digest as well as a state of the database D̂.

– CT←$Enc(crs, digest, �,M0,M1): the randomized encryption algorithm takes
as input the common reference string crs, the digest digest, an index position
�, and two messages; it returns a ciphertext CT.

– M ← Dec(crs, digest, D̂,CT, �): the decryption algorithm takes as input D̂, an
index location � the digest digest and the common reference string crs and
outputs a message M .

We require an LOT to satisfy the following properties:

– Correctness: for all (M0,M1) ∈ M × M, for all D ∈ {0, 1}k and for any
index � ∈ [k] we have:

Pr

⎡

⎢
⎢
⎣
M = MD[�]

∣
∣
∣
∣
∣

crs←$ LOT.crsGen(1λ, 1k)∧
(digest, D̂)←$ LOT.Compress(crs,D)∧
CT←$ LOT.Enc(crs, digest, �,M0,M1)∧
M ← LOT.Dec(crs, digest, D̂,CT, �)

⎤

⎥
⎥
⎦

= 1 .

– Laconic Digest: the length of the digest is a fixed polynomial in the security
parameter λ, independent of the size of the database D.
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– Sender Privacy against Semi-Honest Adversaries: there exists a PPT
simulator S such that for a correctly generated crs the following two distribu-
tions are computationally indistinguishable:

∣
∣
∣Pr

[A(
crs,Enc(crs, digest, �,M0,M1)

)] − Pr
[A(

crs, S(crs,D, �,MD[�])
)]

∣
∣
∣ ∈ Negl(λ)

2.5 Laconic Function Evaluation

We described the motivation behind LFE in Sect. 1. We proceed with its definition
from [14].

Definition 6 (Laconic Function Evaluation [14]). A laconic function eval-
uation scheme LFE for a class of circuits Cλ consists of four algorithms (crsGen,
Compress, Enc, Dec):

– crs←$ LFE.crsGen(1λ, 1k, 1d): assuming the input size and the depth of the
circuit in the given class are k and d, a common reference string crs of appro-
priate length is generated. We assume that crs is implicitly given to all algo-
rithms.

– digestC ← LFE.Compress(crs,C ): the compression algorithm takes a descrip-
tion of the circuit C and produces a digest digestC .

– CT←$ LFE.Enc(crs, digestC ,M ): takes as input the message M as well as the
digest of C and produces a ciphertext CT.

– LFE.Dec(crs,CT,C ): if the parameters are correctly generated, the decryption
procedure recovers C (M ), given the ciphertext encrypting M and circuit C
or a special symbol ⊥, in case the decryption procedure fails.

We require the LFE scheme to achieve the following properties:

– Correctness - for all C : {0, 1}k → {0, 1}� of depth d and for all M ∈ {0, 1}k

we have:

Pr

⎡

⎢
⎢
⎣

y = C (M )

∣
∣
∣
∣
∣

crs←$ LFE.crsGen(1λ, 1k, 1d)∧
digestC ← LFE.Compress(crs,C )∧
CT←$ LFE.Enc(crs, digestC ,M )∧
y ← LFE.Dec(crs,C ,CT)

⎤

⎥
⎥
⎦

= 1 .

– Security: there exists a PPT simulator S such that for any stateful PPT
adversary A we have:

AdvFULL-SIM-LFE
A,LFE (λ) :=

∣
∣
∣
∣
Pr[FULL-SIM-LFEA

LFE(λ) = 1] − 1
2

∣
∣
∣
∣

is negligible, where FULL-SIM-LFE is defined in Fig. 1 (right side).

– Laconic outputs: As per [14, p 13–14], we require the size of digest to be
laconic (|digestC | ∈ O(poly(λ))) and we impose succinctness constraints for
the sizes of the ciphertext, encryption runtime and common reference string.
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3 Background on the AR17 FE Scheme

Overview. In this section, we recall a construction of functional encryption for
circuits with logarithmic depth d in input length [3].

3.1 The AR17 Construction for NC1

In [3], the authors provided a functional encryption scheme supporting general
circuits and a bounded number of functional keys. The first distinctive feature
is represented by the supported class of functions, which are now described
by arithmetic, rather than Boolean circuits. This is beneficial, as arithmetic
circuits natively support multiple output bits. Second, the (input-dependent)
ciphertext’s size in their construction is succinct [3, Appendix E], as it grows
with the depth of the circuit, rather than its size. Third, the ciphertext enjoys
decomposability: assuming a plaintext is represented as a vector, each of its k
elements gets encrypted independently. We describe the scheme for NC1 below.

Regev Encodings. We commence by recalling a simple symmetric encryption
scheme due to Brakerski and Vaikuntanathan [7]. Let “s” stand for an RLWE
secret acting as a secret key, while a and e are the random mask and noise:

c1 ← a ∈ Rp

c2 ← a · s + 2 · e + M ∈ Rp

(2)

Recovering the message M (a bit, in this case) is done by subtracting c1 ·s from c2
and then removing the noise through the “mod 2” operator. This plain scheme
comes up with powerful homomorphic properties, and is generalized in [3] to
recursively support levels of encodings. Henceforth, we use the name “Regev
encoding” for the following map between rings E i : Rpi−1 → Rpi

, where:

E i(M ) = ai · s + pi−1 · ei + M ∈ Rpi
. (3)

As a general notation and unless stated, we write as a superscript of a variable
the level to which it is associated.

The NC1 Construction. To be self-contained in the forthcoming parts, we give
an informal specification of AR17’s procedures.

Encryption. The encryption procedure samples a RLWE secret s, and computes
a Regev encoding for each input Mi ∈ Rp0 independently. This step produces the
following set

{E1(Mi)| Mi ∈ Rp0 ∧ i ∈ [k]
}

, where E1 is the encoding mapping
E1 : Rp0 → Rp1 defined in Eq. (3). This represents the Level 1 encoding of Mi.
Next, the construction proceeds recursively; the encoding of Mi corresponding
to Level 2 takes the parent node P (in this case P is E1(Mi)), and obtains on
the left branch:

E2(P ) = E2(E1(Mi)) = a2
1,i · s + p1 · e21,i +

(

(a1
1,i · s + p0 · e11,i + Mi) · s

)

,
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while for the right branch:

E2(P · s) = E2(E1(Mi) · s) = a2
2,i · s + p1 · e22,i +

(
(a1

1,i · s + p0 · e11,i + Mi) · s
)

,

where (a2
1,i, a

2
2,i)←$ R2

p2
and noise terms are sampled from a Gaussian distribu-

tion: (e21,i, e
2
2,i)←χ χ2

p2
. This procedure is executed recursively up to a number of

levels – denoted as d – as presented in Fig. 2.

Fig. 2. The tree encoding Mi in a recursive manner corresponds to ciphertext CTi.

Between any two successive multiplication layers, an addition layer is inter-
leaved. This layer replicates the ciphertext in the previous multiplication layer
(and uses its modulus). As it brings no new information, we ignore additive lay-
ers from our overview. The encoding procedure is applied for each M1, . . . ,Mk.
In addition, Level 1 also contains E1(s), while Level i (for 2 ≤ i ≤ d) also con-
tains E i(s · s). Hitherto, the technique used by the scheme resembles to the ones
used in levelled fully homomorphic encryption. We also remind that encodings
at Level i are denoted as CTi and are included in the ciphertext. The high level
idea is to compute the function C obliviously with the help of the encodings.

However, as we are in the FE setting, the ciphertext also contains additional
information on s. This is achieved by using a linear functional encryption scheme
Lin-FE. Namely, an extra component of the form:

d ← w · s + pd−1 · η (4)

is provided as an independent part of the ciphertext, also denoted as CTind,
where η←χ Rpd

stands for a noisy term and w is part of mpk. d is computed
once, at top level d.

The master secret key of the NC1 construction is set to be the msk for
Lin-FE. The master public key consists of the Lin-FE.mpk (the vector w
appended to ad) as well as of the set of vectors

{

a1,a2, . . . ,ad−1
}

that will be
used by each E i. Once again, we emphasize that the vector ad from Lin-FE.mpk
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coincides with the public labelling used by the mapping Ed. It can be easily
observed that the dimension of ai+1 follows from a first-order recurrence:

|ai+1| = 2 · |ai| + 1 (5)

where the initial term (the length of a1) is set to the length of the input. The
extra 1, which is added per each layer is generated by the supplemental encodings
of the key-dependent messages CTs :=

{E1(s), E2(s2), . . . , Ed(s2)
}

, where s2 :=
s · s, as opposed to a level superscript.

A functional-key skC is issued through the Lin-FE.KGen procedure in the
following way: (1) using the circuit representation C of the considered function
as well as the public set of

{

a1,a2, . . . ,ad
}

, a publicly computable value PKC ←
EvalPK(mpk,C ) is obtained by performing C -dependent arithmetic combinations
of the values in

{

a1,a2, . . . ,ad
}

. Then, a functional key skC is issued for PKC .
The EvalPK(mpk,C ) procedure uses mpk to compute PKC .

Similarly, EvalCT(mpk,CT,C ) computes the value of the function C obliv-
iously on the ciphertext. Both procedures are defined recursively; that is, to
compute PKi

C and CTi
C (x) at level i, PKi−1

C and CTi−1
C (x) are needed. For a better

understanding of the procedures, we will denote the encoding of C i(x)1 by ci, i.e.
ci = E i(C i(x)) and the public key or label of an encoding E i(·) by PK(E i(·)). Due
to space constraints, we defer the full description of the evaluation algorithms
and refer the reader to [3], but provide a summary after presenting decryption.

Decryption works by evaluating the circuit of C (known in plain by the
decryptor) over the Regev encodings forming the ciphertext. At level d, the
ciphertext obtained via EvalCT has the following structure:

CTC (x) ← PKC · s + pd−1 · ηd + pd−2 · ηd−1 + . . . + p0 · η1 + C (x) . (6)

Next, based on the independent ciphertext d ← w · s + pd−1 · η and on the
functional key, the decryptor recovers

PKC · s + pd−1 · η′ ∈ Rpd
. (7)

Finally, C (x) is obtained by subtracting (7) from (6) and repeatedly applying
the mod operator to eliminate the noise terms: (mod pd−1) . . . (mod p0). We
note that correctness should follow from the description of these algorithms.

Ciphertext and Public-Key Evaluation Algorithms Let C n be the circuit
C restricted to some level n. For a better understanding of the procedures, we
will denote the encoding of C n(x) at some gate � by cn

� , and the public key (or
label) of an encoding En(·) by PK(En(·)). Furthermore, Cn are a set of level n
encodings provided by the encryptor as part of the ciphertext, that enable the
decryptor to compute cn.

1 Here, by C i we denote the restriction of the circuit C computing f to level i.
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EvalnPK(∪t∈[n]PK(Ct), �) computes the label for the �th wire in the n level circuit,
from the ith and jth wires of n − 1 level:

1. Addition Level:
– If n = 1 (base case), define PK(c1�) := PK(a1

� · s + p0 · η1
� + M�) := a1

� .
– Otherwise, let un−1

i ← Evaln−1
PK (∪t∈[n−1]PK(Ct), i) and

un−1
j ← Evaln−1

PK (∪t∈[n−1]PK(Ct), j). Set PK(cn
� ) := un−1

i + un−1
j .

2. Multiplication Level:
– If n = 2 (base case), then compute

PK(c2�) := a1
i · a1

j · PK(E2(s2)) − a1
j · PK(E2(c1i · s)) − a1

i · PK(E2(c1j · s)).
– Otherwise, let un−1

i ← Evaln−1
PK (∪t∈[n−1]PK(Ct), i) and

un−1
j ← Evaln−1

PK (∪t∈[n−1]PK(Ct), j). Set

PK(cn
� ) := un−1

i · un−1
j · PK(En(s2))−un−1

j · PK(En(cn−1
i · s))

− un−1
i · PK(En(cn−1

j · s)) .

EvalnCT(∪t∈[n]C
t, �) computes the encoding of the �th wire in the n level circuit,

from the ith and jth wires of n − 1 level:

1. Addition Level:
– If n = 1 (base case), then, set c1� := E1(M�).
– Otherwise, let cn−1

i ← Evaln−1
CT (∪t∈[n−1]C

t, i) and
cn−1
j ← Evaln−1

CT (∪t∈[n−1]C
t, j). Set cn

� ← cn−1
i + cn−1

j .
2. Multiplication Level:

– If n = 2 (base case), then set
c2� := c1i · c1j · E2(s2) − u1

j · E2(c1i · s) − u1
i · E2(c1j · s) .

– Else: cn−1
i ← Evaln−1

CT (∪t∈[n−1]C
t, i), cn−1

j ← Evaln−1
CT (∪t∈[n−1]C

t, j),
un−1

i ← Evaln−1
PK (∪t∈[n−1]PK(Ct), i), un−1

j ← Evaln−1
PK (∪t∈[n−1]PK(Ct), j).

Set CTn
� := cn−1

i · cn−1
j +un−1

i ·un−1
j · En(s2)−un−1

j · En(cn−1
i · s)−un−1

i ·
PK(En(cn−1

j · s)).

4 Laconic Function Evaluation for NC1 Circuits

We show how to instantiate an LFE protocol starting from the AR17 scheme
described above. Furthermore, we show our construction achieves adaptive secu-
rity (Definition 6) under RLWE (Definition 2) with polynomial approximation
factors. Finally, we compare its efficiency to the scheme for general circuits pro-
posed in [14] in Sect. 4.2.

4.1 LFE for NC1 Circuits

The core idea behind our proposal is rooted in the design of the AR17 con-
struction. Specifically, the mpk in AR17 acts as the crs for the LFE scheme.
The compression procedure generates a new digest by running EvalPK on the
fly, given an algorithmic description of the circuit C (the circuit computing the
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desired function). As shown in [3], the public-key evaluation algorithm can be
successfully executed having knowledge of only mpk and the gate-representation
of the circuit. After performing the computation, the procedure sets:

digestC ← PKC .

The digest is then handed in to the other party (say Bob).
Bob, having acquired the digest of C in the form of PKC , encrypts his message

M using the FE encryption procedure in the following way: first, a secret s is
sampled from the “d-level” ring Rpd

; s is used to recursively encrypt each element
up to level d, thus generating a tree structure, as explained in Sect. 3.1. Note
that Bob does not need to access the ciphertext-independent part (the vector
w from Sect. 3.1) in any way. This is a noteworthy difference from the AR17
construction: an FE ciphertext is intended to be decrypted at a latter point, by
(possibly) multiple functional keys. However, this constitutes an overkill when it
comes to laconic function evaluation, as there is need to support a single function
(for which the ciphertext is specifically created).

As a second difference from the way the ciphertext is obtained in [3], we
emphasize that in our LFE protocol Bob computes directly:

PKC · s + pd−1 · ηd ,

where PKC is the digest Alice sent. Thus, there is no need to generate a gen-
uine functional key and to obtain the ciphertext component that depends on
w. Directly, the two former elements constitute the ciphertext, which is sent
back to Alice. Finally, the LFE decryption step follows immediately. Alice, after
computing the auxiliary ciphertext in (6) “on the fly” and having knowledge of
the term in (7), is able to recover C (M ).

Formally, the construction can be defined as follows:

Definition 7 (LFE for NC1 Circuits from [3]). Let FE denote the functional
encryption scheme for NC1 circuits proposed in [3].

– crs←$ crsGen(1λ, 1k, 1d): the crs is instantiated by first running2 FE.Setup

(mpk,msk)←$FE.Setup(1λ, 1k, 1d) .

As described, mpk has the following elements:

{a1, . . . ,ad−1, (ad,w)}
with (ad,w) coming from the mpkLin-FE and msk ← mskLin-FE.
Set crs ← {a1, . . . ,ad} and return it.

– digestC ← Compress(crs,C ): the compression function, given a circuit
description of some function C : {0, 1}k → {0, 1} and the crs, computes
PKC ← EvalPK(a1, . . . ,ad,C ) and then returns:

digestC ← PKC .

2 Note that we need only a part of the mpk generated by FE.Setup, but for simplicity
we call this procedure and drop the unneeded part.
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– CT←$Enc(crs, digestC ,M ): the encryption algorithm first samples s←$ Rpd
,

randomness R and computes recursively the Regev encodings3 of each bit:

(CT1, . . . ,CTk,CTs,CTind) ← FE.Enc((a1, . . . ,ad), (M1, . . . ,Mk); s,R)

Moreover, a noise ηd is also sampled from the appropriate distribution χ and

PKC · s + pd−1 · ηd (8)

is obtained. The ciphertext CT that is returned consists of the tuple:
⎛

⎝PKC · s + pd−1 · ηd

︸ ︷︷ ︸

CTa

, CT1, . . . ,CTk,CTs
︸ ︷︷ ︸

CTb

⎞

⎠ . (9)

– Dec(crs,C ,CT): first, the ciphertext evaluation is applied and CTC is
obtained:

CTC ← EvalCT(mpk,C ,CT) . (10)

Then C (M ) is obtained via the following step:

(CTC − CTa) mod pd−1 . . . mod p0 .

Proposition 1 (Correctness). The LFE scheme in Definition 7 enjoys cor-
rectness.

Proof. By the correctness of EvalCT, the structure of the resulting ciphertext at
level d is the following:

PKC · s + pd−1 · ηd + . . . + p0 · η1 + C (M ) . (11)

Given the structure of the evaluated ciphertext in (11) as well as the first
part of the ciphertext described by (9), the decryptor obtains C (M ) as per the
decryption procedure. 
�
Lemma 1 (Security). Let FE denote the FULL-SIM-FE-secure functional
encryption scheme for NC1 circuits described in [3]. The LFE scheme described
in Definition 7 enjoys FULL-SIM-LFE security against any PPT adversary A
such that:

AdvFULL-SIM-LFE
A,LFE (λ) ≤ d · AdvRLWE

A′ (λ) .

Proof (Lemma 1). First, we describe the internal working of our simulator. Then
we show how the ciphertext can be simulated via a hybrid argument, by describ-
ing the hybrid games and their code. Third, we prove the transition between
each consecutive pair of hybrids.

3 Note that we only need the Regev encodings, but for simplicity of notation, we call
the FE.Enc procedure and drop the unneeded part within the FE ciphertext.



Adaptively Secure Laconic Function Evaluation for NC1 441

The Simulator. Given the digest digestC , the circuit C , the value of C (M ∗)
and the crs, our simulator SLFE proceeds as follows:

– Samples all Regev encodings forming CTb in Eq. (9) uniformly at random.
– Replaces the functional-key surrogate value PKC · s + pd−1 · ηd with EvalCT −

η∗ − C (M ∗). Observe this is equivalent to running EvalCT with respect to
random Regev encodings, and subtracting a lower noise term and C (M ∗).

The Hybrids. The way the simulator is built follows from a hybrid argument.
Note that we only change the parts that represent the outputs of the intermediate
simulators.

Game0: Real game, corresponding to the setting b = 0 in the FULL-SIM-LFE
experiment.

Game1: We switch from PKC ·s+pd−1 ·ηd to EvalCT(CTb)−η∗ −C (M ∗), such that
during decryption one recovers η∗ + C (M ∗). The transition to the previous
game is possible as we can sample the noise η∗ such that:

SD
(

PKC · s + pd−1 · ηd,EvalCT(CTb) − η∗ − C (M ∗)
)

∈ Negl(λ) .

This game is identical to Game2,0.
Game2.i: We rely on the security of RLWE in order to switch all encodings on

level d − i with randomly sampled elements over the corresponding rings
Rpd+1−i

. Note that top levels are replaced before the bottom ones; the index
i ∈ {0, 1, . . . , d − 1}.

Game2.d: This setting corresponds to b = 1 in the FULL-SIM-LFE experiment.

We now prove the transitions between the hybrid games.

Claim (Distance between Game0 and Game1). There exists a PPT simulator S1

such that for any stateful PPT adversary A we have:

AdvGame0→Game1
A (λ) :=

∣
∣
∣
∣
Pr[GameA

0 (λ) ⇒ 1] − Pr[GameA
1 (λ) ⇒ 1]

∣
∣
∣
∣

is statistically close to 0.

Proof Let D0 (respectively D1) be the distribution out of which CTa is sampled
in Game0 (respectively Game1). The statistical distance between D0 and D1 is
negligible:
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SD(D0,D1) =
1
2

·
∑

v∈Rpd

∣
∣
∣
∣
Pr[v = PKC · s + pd−1 · ηd]

− Pr[v = EvalCT(CTb) − η∗ − C (M ∗)]
∣
∣
∣
∣

=
1
2

·
∑

v∈Rpd

∣
∣
∣
∣
Pr[v = PKC · s + pd−1 · ηd]

− Pr[v = PKC · s +
d−1∑

i=0

pi · μi+1 + C (M ∗) − η∗ − C (M ∗)]
∣
∣
∣
∣

=
1
2

·
∑

v∈Rpd

∣
∣
∣
∣
Pr[v = PKC · s + pd−1 · ηd]

− Pr[v = PKC · s +
d−1∑

i=0

pi · μi+1 − η∗
∣
∣
∣
∣

We can apply the result in [3, p. 27]: we sample the noise term η∗ such that

SD(η∗ ,

d−2∑

i=0

pi · μi+1) ≤ ε .

Thus, the advantage of any adversary in distinguishing between Game0 and
Game1 is statistically close to 0. 
�
Games 1 and 2.0 are identical.

Claim (Distance between Game2.i and Game2.i+1). There exists a PPT simulator
S1 such that for any stateful PPT adversary A we have:

Adv
Game2.i→Game2.i+1
A (λ) :=

∣
∣
∣
∣
Pr[GameA

2.i(λ) ⇒ 1] − Pr[GameA
2.i+1(λ) ⇒ 1]

∣
∣
∣
∣

≤ AdvRLWE
B (λ) .

Proof. The reduction B is given as input a sufficiently large set of elements
which are either: RLWE samples of the form a · s(d−i) + pd−1−i · η(d−i) or u
where u←$ Rpd−i

.
B constructs CTb as follows: for upper levels j > d − i, B samples elements

uniformly at random over Rpj
. For each lower levels j < d − i, R samples

independent secrets sj and builds the lower level encodings correctly, as stated
in Fig. 2.

For challenge level d−i, B takes the challenge values of the RLWE experiment
– say z – and produces the level d− i encodings from the level d−1− i encodings
as follows:

– for each encoding Ed−1−i in level d − i − 1, produce a left encoding in level
d − i:

zd−i
1 + Ed−1−i .
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– for each encoding Ed−1−i in level d − i − 1, produce a right encoding in level
d − i:

zd−i
2 + Ed−1−i · sd−1−i .

Note that sd−1−i is known in plain by B.

Considering level 1 as a special case, the (input) message bits themselves are
encrypted, as opposed to encodings from lower levels.

The first component of the ciphertext – CTa – is computed by getting v ←
EvalCT(C , {Ci}i∈[d]) over the encodings, and then subtracting the noise and the
value C (M ∗).

The adversary is provided with the simulated ciphertext. The analysis of the
reduction is immediate: the winning probability in the case of B is identical to
that of the adversary distinguishing. 
�
Finally, we apply the union bound and conclude with: AdvFULL-SIM-LFE

A,LFE (λ) ≤
d · AdvRLWE

A′ (λ) . 
�
In Sect. 5, we show how the digest can be further compressed.

4.2 Efficiency Analysis

A main benefit of the LFE scheme in Definition 7 is the simplicity of the common
reference string, digest and ciphertext structures. These are essentially elements
over known quotient rings of polynomial rings. The representation size of ele-
ments within rings Rpi

are decided by the prime factors p0, p1, . . . , pd. As stated
in [3, Appendix E] pd ∈ O(B2d

1 ) where B1 denotes the magnitude of the noise
used for Level-1 encodings and being bounded by p1/4 in order to ensure correct
decryption4. However, we observe that a tighter bound may have the following
form: pd ∈ O(B2Mul

1 ), where dMul denotes the number of multiplicative levels in
the circuit.

From the point of view of space complexity, we rely on the original analysis of
[3] that provides guidelines for the size of the primes p0, p1, . . . , pd. We are only
interested in the case stipulating that |pd| belongs to poly(λ). The aforementioned
constraint can be achieved by imposing further restrictions on the multiplicative
depth of the circuit, namely

dMul ∈ O(log(poly(λ))),

meaning that the digest is short enough whenever the circuit belongs to the
NC1 class. Once we obtained a succinctness constraint for the size of elements in
the fields Fpi

over which the coefficients of quotient ring elements are going to
be sampled, we can proceed with an asymptotic analysis of the sizes of digest,
common reference string and ciphertext.

digestC size: consists of n elements, each belonging to O(B2dMul

1 ), where n denotes
the degree of the quotient polynomial in the RLWE definition (Definition 2).
Henceforth, digestC ∈ poly(λ) given the analysis above on the size of pd.

4 Our scheme is intended to support Boolean circuits, thus p0 is set to 2.
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CT size: consists of k “tree-like” structures (Fig. 2), k standing for input length;
each tree is a perfect binary tree having of 2d−1 ring elements. Therefore, the
ciphertext’s size is upper bounded k · 2d · (n ·poly(λ)) and fulfils succinctness
requirements whenever dMul ∈ O(log(poly(λ))).

Enc runtime: the encryption runtime is essentially proportional to the size of
the ciphertext, up to a constant factor needed to perform inner operations
when each node of the tree is built.

crs size: the crs has the size identical to the size of the ciphertext, and inherits
similar succinctness properties.

Handling multiple bits of output. Regarding the ability to support multiple out-
put bits (say �), this is inherent by using an arithmetic circuit and setting
log2(p0)� = �. If binary circuits are needed, then � public evaluation can be
obtained through EvalPK, and the scheme modified by having the garbling cir-
cuit producing � outputs.

Remark 1. Another potentially beneficial point is the ability of the scheme in
Definition 7 (and also Definition 8) to support a bounded number of circuits
without changing the data-dependent ciphertext. This happens when the second
party involved is stateful: given two functions f, g represented through circuits
Cf ,Cg, and assuming the receiver stores s (it is stateful), the Enc algorithm may
simply recompute PKg ·s+pd−1 ·μd in the same manner it has already computed
PKC · s + pd−1 · ηd.

Comparison with [14]. Reflecting on the construction presented by Quach
et al., one can note that its core stems from the attribute-based encryption[17]
scheme in [5], and the post-processing steps of their attribute-based LFE rely
on techniques from [10]; Quach et al. provide a comparison between their AB-
LFE and the underlying ABE; the size of their crs consists of k LWE matrices,
where k is the input length, each entry belonging to Z/qZ. The size of q can
be tracked by inspecting EvalPK ([14, Claim 2.4] and [5, p. 6, 23]): as the noise
grows exponentially with the depth of the circuit, q has to grow accordingly:
q ≈ 2poly(λ,d); in [3] the size of pd grows exponentially with the multiplicative
depth of the circuit, which limits the circuit class our scheme can support.

5 Further Compression for Digest

In this part, we put forth an LFE scheme with a digest independent by the size of
the input, starting from the LFE construction in Sect. 4.1. The main idea consists
in using a laconic oblivious transfer (Definition 5) in order to generate a small
digest.

The bulk of the idea is to observe that the encryption algorithm in Sect. 4.1
outputs a ciphertext having two components: the first one consists of the AR17
ciphertext; the second component is literally PKC · s + pd−1 · ηd. We create an
auxiliary circuit Caux that takes as input PKC and outputs PKC ·s+pd−1 ·ηd. We



Adaptively Secure Laconic Function Evaluation for NC1 445

garble Caux using Yao’s garbling scheme [18] and use LOT to encrypt the garbling
labels. Thus, instead of garbling a circuit that produces the entire ciphertext (i.e.
following the template proposed by [14]) we garble Caux. Such an approach is
advantageous, as the complexity of the latter circuit, essentially performing a
multiplication of two elements over a ring, is in general low when compared to
a circuit that reconstructs the entire ciphertext. We present our construction
below:

Definition 8 (LFE for NC1 with Laconic Digest). Let LFE denote the
laconic function evaluation scheme for NC1 circuits presented in Sect. 4.1, LOT
stand for a laconic oblivious transfer protocol and GS denote Yao’s garbling
scheme. LFE stands for a laconic function evaluation scheme for NC1 with digest
of size O(λ):

– crs←$ LFE.crsGen(1λ, 1k, 1d): the crs is instantiated by running the LFE.Setup

crs←$ LFE.Setup(1λ, 1k, 1d) .

Let crsLOT stand for the common reference string of the LOT scheme.
Set crs ← (crs, crsLOT) and return it.

– digestC ← LFE.Compress(crs,C ): the compression function, given a circuit
description of some function C : {0, 1}k → {0, 1} and the crs ← (crs, crsLOT),
computes PKC ← LFE.Compress(crs,C ) and then returns:

digestC ← PKC .

Then, using crsLOT, a new digest/database pair is obtained as:

(digestC , D̂) ← LOT.Compress(crsLOT, digestC ) .

Finally, digestC is returned.
– CT←$ LFE.Enc(crs, digestC ,M ): after parsing the crs as (crsLOT, crs)5, the

encryption algorithm first samples s←$ Rpd
, randomness R and computes

recursively the Regev encodings of each bit:

CTLFE ← LFE.Enc(crs, (M1, . . . ,Mk); s,R)

Moreover, a noise ηd−1 is also sampled from the appropriate distribution χ
and an auxiliary circuit Caux that returns

PKC · s + pd−1 · ηd (12)

is obtained, where PKC constitutes the input and s, pd−1 · ηd are hardwired.

Then, Caux is garbled by Yao’s garbling scheme:

(Γ, {L0
i , L

1
i }t

i=1)←$GS.Garble(Caux)
5 Even if we omit that explicitly, note that crs includes the bulk of mpk in [3], consis-

tently with the execution of the subroutine LFE.Setup.
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and the labels are encrypted under LOT:

Li←$ LOT.Enc(crsLOT, digestC , i, L0
i , L

1
i ),∀ i ∈ [t] .

The ciphertext CT is set to be the tuple (CTLFE, Γ, L1, . . . , Lt).
– LFE.Dec(crs,C ,CT): First, the labels Li corresponding to the binary decom-

position of PKC are obtained:

L
PKC [i]
i ← LOT.Dec(crsLOT, digestC , i, Li)

When feeding Γ with Li, the decryptor recovers PKC · s + pd−1 · ηd−1.

Then, the ciphertext evaluation is applied and CTC is obtained:

CTC ← EvalCT(mpk,C ,CT) . (13)

Then C (M ) is obtained via the following step:
(

CTC − (PKC · s + pd−1 · ηd)
)

mod pd−1 . . . mod p0

Proposition 2 (Correctness). The laconic function evaluation scheme in
Definition 8 is correct.

Proof. By the correctness of the LOT scheme, the correct labels corresponding
to the value of PKC are recovered. By the correctness of the garbling scheme,
when fed with the correct labels, the value of PKC · s + pd−1 · ηd is obtained.
Finally, by the correctness of LFE, we recover C (M ).


�
In the remaining part, we prove the scheme above achieves simulation secu-

rity, assuming the same security level from the underlying primitive.

Theorem 2 (Security). Let Cλ stand for a class of circuits and let LFE denote
the laconic function evaluation scheme put forth in Definition 8. Let GS and
LOT denote the underlying garbling scheme, respectively laconic oblivious trans-
fer scheme. The advantage of any probabilistic polynomial time adversary A
against the adaptive simulation security of the LFE scheme is bounded by:

AdvFULL-SIM-LFE
LFE,A (λ) ≤ AdvFULL-SIM-GS

GS,B1 (λ) + AdvFULL-SIM-LOT
LOT,B2 (λ) + AdvFULL-SIM-LFE

LFE,B3 (λ) .

Proof. (Theorem 2). We prove the scheme enjoys adaptive security. Our proof
makes use of the LFE simulator, and of the simulation security of the garbling
protocol and of the LOT scheme.

Simulator. Our simulator SLFE is obtained in the following manner: first, we
run the simulator of the underlying LFE scheme that will provide the bulk of
the ciphertext. Independently, we run the simulator of the garbled circuit SGS.
In the end, we employ the simulator of the LOT scheme (SLOT) on the labels
obtained from the SGS.

The proof presented herein follows from a hybrid argument. The games are
described below, and the game hops are motivated afterwards:



Adaptively Secure Laconic Function Evaluation for NC1 447

Game0: corresponds to the FULL-SIM-LFE experiment, having the b is set to 0.
Game1: in this game, we use the simulator SLOT to simulate the corresponding

component of the ciphertext (i.e. Li) . The distance to the previous game is
bounded by the simulation security of the LOT protocol.

Game2: in this game, we proceed with the following change: we employ the gar-
bled scheme simulator GS for generating the labels corresponding to the sec-
ond component contained within the ciphertext. The game distance to the
previous one is bounded by the simulation security of the garbling scheme.

Game3: we switch the main part of ciphertext to one provided by the SLFE sim-
ulator, the distance to the previous hybrid being bounded by the advantage
in Lemma 1.

Claim (Transition between Game0 and Game1). The advantage of any PPT
adversary to distinguish between Game0 and Game1 is bounded as follows:

AdvGame0→Game1
A1

(λ) ≤ AdvFULL-SIM-LOT
LOT,B1

(λ) .

Proof (Game0 → Game1). We provide a reduction to the LOT security experi-
ment, which initially samples and publishes crsLOT. Let B1 denote the reduction.
B1 simulates the LFE game in front of the PPT bounded adversary A1: (1) First,
it samples crsLFE, and publishes (crsLFE, crsLOT); (2) Next, B1 receives from the
LFE adversary A1 the tuple (C ,C (M ∗)); (3) computes the digest digestC , the
underlying LFE ciphertext, and the garbled circuits with the associated labels.

Next, B1 impersonates an adversary against the LOT security game, by sub-
mitting the tuple

(

PKC · s + pd−1 · ηd, {Li,i0, Li,1}i∈|digestC |
)

.
The LOT game picks a random b ∈ {0, 1} and provides the adversary with

either a correctly generated LOT ciphertext encrypting the labels L0
i , L

1
i under

position i, or by a simulated ciphertext. The latter ciphertext is generated by
SLOT.

Thus B1 obtains the entire LFE ciphertext, which is passed to A1. A1 returns
a bit, indicating its current setting. It is clear that any PPT adversary able to
distinguish between the two settings breaks the LOT security of the underlying
LOT scheme. 
�
Claim (Transition between Game1 and Game2). The advantage of any PPT
adversary to distinguish between Game1 and Game2 is bounded by:

AdvGame1→Game2
A2

(λ) ≤ AdvFULL-SIM-GS
GS,B2

(λ) .

Proof (Game1 → Game2). By the input and circuit privacy of the garbling
scheme, there exists SGS that produces a tuple (Γ̃ , {L̃0

i , L̃
1
i }i∈[t]).

Let B2 denote the reduction, and let A2 denote the adversary against the LFE
game. As for the previous game, B2 samples and publishes crsLFE, A2 provides
(C ,C (M ∗)). B2 builds the LFE ciphertext.

Next, B2 impersonates an adversary against the GS security experiment.
B2 provides the GS game with (Caux,PKC · s + pd−1 · ηd), and receives either
correctly generated garbled circuit and labels or a simulated garbled circuit and
the simulated labels.
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Thus, if A2 distinguishes between the two games, B2 distinguishes between
the two distributions of labels in the GS experiment. 
�
Claim (Transition between Game2 and Game3). The advantage of any PPT
adversary to distinguish between Game2 and Game3 is bounded by:

AdvGame2→Game3
A3

(λ) ≤ AdvFULL-SIM-LFE
LFE,B3

(λ) .

Proof (Game2 → Game3). During the last hop, we rely on the security of the LFE
component for changing elements of the first component of the ciphertext to sim-
ulated ones. It is easy to see that the advantage any adversary has in distinguish-
ing the transition is bounded by the advantage of winning the FULL-SIM-LFE
security experiment against the underlying LFE.

The FULL-SIM-LFE experiment generates crsLFE. B3 samples crsLOT and pro-
vides the resulting crs to A3. The adversary returns (C ,C (M ∗)), which are
forwarded to FULL-SIM-LFE. The experiment generates the ciphertext either
correctly or using SLFE.

Then B3 employs SGS and SLOT to obtain the remaining LFE ciphertext com-
ponents and runs A3 on the full ciphertext. B3 returns the corresponding output
to the setting indicated by A3.

Finally, we remark that this setting simulates exactly the FULL-SIM-LFE
experiment with b = 1. 
�
This completes the proof of Theorem 2. 
�

6 Concluding Remarks

As for the concluding remarks, we note that our work introduces new construc-
tions of laconic function evaluation for the NC1 class. The schemes we propose
follow from the FE scheme in [3] and exploit standard cryptographic tools, such
as laconic oblivious transfer and garbled circuits in order to further reduce the
size of digest.

As open questions, apart from having adaptive security for general circuits,
we would like to see a candidate having a short common reference string, as
our parameters are impractical for high-depth circuits. Another fruitful research
direction would investigate if schemes fulfilling the syntax of special homomor-
phic encodings with succinct ciphertexts can be generically converted into LFEs.
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17. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

18. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, 3–5 November
1982, pp. 160–164. IEEE Computer Society Press (1982)

19. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Ontario,
Canada, 27–29 October 1986, pp. 162–167. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-642-19379-8_4


FASTA – A Stream Cipher for Fast FHE
Evaluation

Carlos Cid1,2 , John Petter Indrøy2, and H̊avard Raddum2(B)

1 Royal Holloway University of London, Egham, UK
carlos.cid@rhul.ac.uk

2 Simula UiB, Bergen, Norway
{johnpetter,haavardr}@simula.no

Abstract. In this paper we propose Fasta, a stream cipher design opti-
mised for implementation over popular fully homomorphic encryption
schemes. A number of symmetric encryption ciphers have been recently
proposed for FHE applications, e.g. the block cipher LowMC, and the
stream ciphers Rasta (and variants), FLIP and Kreyvium. The main
design criterion employed in these ciphers has typically been to minimise
the multiplicative complexity of the algorithm. However, other aspects
affecting their efficient evaluation over common FHE libraries are often
overlooked, compromising their real-world performance. Whilst Fasta
may also be considered as a variant of Rasta, it has its parameters and
linear layer especially chosen to allow efficient implementation over the
BGV scheme, particularly as implemented in the HElib library. This
results in a speedup by a factor of 25 compared to the most efficient pub-
licly available implementation of Rasta. Fasta’s target is BGV, as imple-
mented in HElib. However the design ideas introduced in the cipher could
also be potentially employed to achieve improvements in the homomor-
phic evaluation in other popular FHE schemes/libraries. We do consider
such alternatives in this paper (e.g. BFV and BGVrns, as implemented
in SEAL and PALISADE), but argue that, unlike BGV in HElib, it is
more challenging to make use of their parallelism in a Rasta-like stream
cipher design.

Keywords: Stream ciphers · Homomorphic encryption · Hybrid
encryption

1 Introduction

Fully homomorphic encryption (FHE) is a relatively new and active research
area in cryptography. FHE schemes allow arbitrary operations to be performed
on ciphertexts, to produce some encrypted result, which when decrypted results
in data that would be obtained if we had decrypted the ciphertexts first and
then performed the operations on the plaintexts.

FHE opens up for new and exciting secure applications, in particular in cloud
computing. The party doing the operations on the ciphertexts does not need to
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have the decryption key. One can therefore upload FHE-encrypted ciphertexts
to the cloud and have the cloud provider perform the necessary operations on
the ciphertexts. Since the cloud does not need the decryption key, there is no
need to place any trust in the cloud provider. This gives a higher level of security
as the cloud provider does not have the ability to read the plaintext information.

The main drawback of FHE is that it is very computationally demanding.
Since Gentry demonstrated the first FHE scheme [Gen09] in 2009 many improve-
ments in efficiency have been made [CIM16,DM15,CHK20], but the most useful
applications still struggle with being practical. This impracticality comes not
least because clients of a cloud need to perform FHE encryptions themselves.
One notices however that the computing power of a cloud is much higher than
that of a typical client, so research has gone into finding ways to transfer most
of the burden of doing FHE encryptions from the clients to the cloud.

A solution for achieving this goal is to let the client encrypt its data using
a symmetric cipher, which is computationally very cheap, and upload the sym-
metrically encrypted ciphertexts to the cloud. The cloud also receives the key
used for the symmetric encryption, but only as a ciphertext encrypted under the
FHE scheme. The cloud is then in a position to homomorphically remove the
symmetric encryption and end up with the FHE encryption of the client’s data.

A number of symmetric ciphers designed for use together with FHE have
been proposed, e.g. the block cipher LowMC [ARS+15], and the stream ciphers
Kreyvium [CCF+16], FLIP [MJSC16], and Rasta [DEG+18] (and variants
[HL20,HKC+20,DGH+21b]). Their main design criterion has been to minimise
the multiplicative complexity of the algorithms since homomorphic multiplica-
tions are the most expensive operations in FHE. However, as a rule they have
mostly overlooked an important aspect for their application target: how suit-
able they are for their homomorphic evaluation over existing FHE schemes,
as implemented in the main libraries. For example, the HElib and PALISADE
libraries [HS20,PAL] implement the BGV scheme [BGV12], which offers a good
degree of parallelism by utilising slots in BGV ciphertexts. The BFV scheme,
implemented in PALISADE and SEAL [SEA20], also offer the same kind of par-
allelism. Since these are some of the most popular FHE implementations, one
may argue that a symmetric encryption design should – in addition to min-
imising multiplicative complexity – also select its components and parameters
to take advantage of the libraries’ features to allow their efficient homomorphic
evaluation.

In this paper we propose Fasta, a stream cipher design optimised for imple-
mentation over HElib. Fasta may be considered as a variant of Rasta, but has its
parameters and linear layers especially chosen to allow efficient implementation
over the BGV scheme. The selected parameters utilise the parallelism offered
by BGV, where the slots in ciphertexts are packed to achieve full parallelisation
when evaluating the non-linear layer. However the packing is inefficient when
the linear layer consists of random matrices (as with Rasta). Thus Fasta also
features a new BGV-friendly linear layer. These changes result in Fasta running
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more than 6 times faster than a corresponding (modified) Rasta instance, and
25 times faster than the original Rasta, when evaluated homomorphically.

Whilst Fasta’s target is BGV, as implemented in the HElib library, we also
look into the BFV scheme implemented in PALISADE and SEAL, and the vari-
ant of BGV called BGVrns that is implemented in PALISADE. We consider the
implementation features in these libraries and explain why it is more challenging
to make good use of their parallelism in Rasta-like stream ciphers.

The paper is organised as follows. In Sect. 2 we give an overview of the main
concepts and schemes discussed in the paper. Section 3 focuses on the design of
symmetric key linear layers for efficient FHE evaluation. We specify the Fasta
stream cipher in Sect. 4, and provide a security analysis in Sect. 5. We describe
the homomorphic implementation of Fasta in Sect. 6, and close with our con-
clusions in Sect. 7.

2 Preliminaries

In this section we briefly recall a main use case for using symmetric ciphers with
homomorphic encryption schemes. We also review the Rasta stream cipher and
the BGV scheme, in particular how the latter is implemented in popular FHE
libraries.

2.1 FHE Hybrid Encryption: Combining Symmetric Ciphers
with Fully Homomorphic Encryption

The concept of Fully Homomorphic Encryption (FHE) was first described in
[RAD78]. However no actual FHE schemes were found before Gentry proposed
a construction in 2009 [Gen09]. Since then much work has been invested in this
field, not least because FHE gives strong solutions to privacy problems related
to cloud computing. The problem that FHE faces today concerns computational
efficiency. Significant improvements have been made in recent years, but effi-
ciency is still a bottleneck for deploying practical and useful FHE applications.

One approach to address the efficiency issue is to combine FHE schemes with
symmetric ciphers as shown in Fig. 1. This is often referred to as FHE hybrid
encryption. The idea is that clients in a cloud system, who typically have much
less computational power than the cloud provider, rather than homomorphi-
cally encrypting a (potentially large) plaintext P , will instead encrypt P using
a symmetric cipher E under a secret key K, and then only homomorphically
encrypt K under the FHE scheme HE using a public key pk. Both the cipher-
text C = EK(P ) and the FHE-encrypted key K∗ are uploaded to the cloud.1

The cloud will now encrypt the bits in C using HE under the public key pk, and
homomorphically run the decryption circuit of E on the inputs C∗ = HE(C, pk)

1 To avoid confusion between symmetric and FHE ciphertexts, we will normally use
an asterisk “*” as a superscript on any literal denoting a FHE ciphertext.
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Client Cloud

K = k1, . . . , kr HE

pk

K∗ = k∗
1 , . . . , k∗

r k∗
1 , . . . , k∗

r c∗
1, . . . , c

∗
n

P = p1, . . . , pn E

K

C = c1, . . . , cn c1, . . . , cn HE

pk

Homomorphic
evaluation of E−1

P ∗ = HE(P, pk)

Fig. 1. FHE hybrid encryption: the client only needs to encrypt the key K with an
FHE scheme HE; the plaintext P is encrypted with symmetric algorithm E . The cloud
gets the bits of K encrypted under HE, it encrypts the ciphertext bits ci with HE,
and homomorphically evaluates the decryption circuit of E to obtain HE(P, pk).

and K∗ = HE(K, pk). The homomorphic properties of HE ensure that the out-
put from doing this is HE(P, pk).2 In other words, the effect of the symmetric
cipher can be removed, and the cloud is now left with a pure FHE encryption of
P , which may then be used for further processing. The benefit of this construc-
tion is that the client side only needs to encrypt K using HE – in fact it needs
not be the same device that encrypts the plaintext P with E , and K with HE.
All other homomorphic encryptions and evaluations are done by the cloud.

The basic homomorphic operations performed in a circuit are additions and
multiplications, corresponding to the bit-wise XOR and AND operations when
the plaintext space is F2. Both of these operations have a cost in terms of the
growth of noise, and multiplication is by far the most expensive. Thus, to support
such FHE hybrid encryption construction, there has been much research effort
in designing symmetric ciphers that minimise the multiplicative complexity –
the number of bit-wise AND-gates, both in the total number and in a criti-
cal path (i.e. the AND-depth) – of their decryption circuit. Examples include
LowMC [ARS+15], FLIP [MJSC16], Kreyvium [CCF+16], and Rasta and its
variants Dasta, Masta and Pasta [DEG+18,HL20,HKC+20,DGH+21b].

2.2 The Rasta Stream Cipher

Rasta is a family of stream ciphers proposed by Dobraunig et al. [DEG+18]. The
target application for the ciphers is the use as a component in secure computa-
tion constructions based on MPC and FHE schemes, particularly the latter. In
2 Strictly speaking, the result will be in fact a ciphertext which will decrypt to P

under the FHE private key sk.



FASTA - A Stream Cipher for Fast FHE Evaluation 455

Fig. 2. The r-round Rasta keystream generator construction (from [DEG+18]).

these applications, symmetric key algorithm designs will seek to minimise mul-
tiplications as much as possible. In the Rasta construction, the designers aimed
to minimise two multiplicative metrics of interest: AND-depth and ANDs per
encrypted bit. Rasta uses a cryptographic permutation based on a public and
fixed substitution layer, and variable affine layers (which are derived from public
information), iterated for d rounds. The construction achieves AND-depth d,
while requiring only d ANDs per encrypted bit.

In more detail, the Rasta keystream generator is based on a n-bit permuta-
tion featuring the A(SA)d structure, where S is the χ-transformation (promi-
nently also used in Keccak [BDPA11]), and the jth-round affine layers Aj,N,i

are generated pseudorandomly based on a nonce N and a counter i. To pro-
duce the keystream, it applies the permutation in feed-forward mode, with the
n-bit secret key K as input. Figure 2 shows a diagrammatic representation of
the Rasta keystream generator.

The generation procedure for the affine layers Aj,N,i results in pseudoran-
domly generated n × n invertible binary matrices and n-bit round constants,
which since they are based on unique (N, i), are unlikely to be re-used during
encryption under the same key. To ensure S is invertible, we require n to be odd.
If the permutation has d rounds, it is straightforward to show that the Rasta
construction achieves AND-depth d and requires d ANDs per encrypted bit.

In [DEG+18], the authors suggest several parameter sets for 80-, 128- and
256-bit security. For example, Rasta with a 6-round permutation with block/key
size of 219 bits should provide 80 bits of security. Same for a 4-round permu-
tation with 327-bit block/key. On the other hand, Rasta based on a 6-round
permutation with block/key size 351 bits is expected to provide 128 bits of secu-
rity (see Table 1 of [DEG+18] for other proposed parameters). In general, the
authors suggest the number of rounds to be between 4 and 6, while the key size
will typically be at least three times larger than the security level. However they
also propose a more “aggressive” version of the cipher (Agrasta), for which the
block size coincides with the security level (plus one, to ensure n is odd). For
example, Agrasta based on an 81-bit, 4-round permutation, claims 80 bits of
security.
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In order to derive and justify Rasta’s parameter choices, the authors provide
a detailed security analysis of the construction in [DEG+18]. To our best knowl-
edge, the only other publicly available cryptanalysis of Rasta3 (and variants) is
the recent work [LSMI21], proposing algebraic attacks that contradict some of
the security claims in [DEG+18].

Rasta’s designers also discuss a few areas for future work, in particular how
to improve the cipher’s affine layer. They state in [DEG+18] that “[n]ew ideas
for linear-layer design are needed which impose structure in one way or another
which on one hand allows for significantly more efficient implementations while at
the same time still resist attacks and allows for arguments against such attacks.”
A variant of Rasta, called Dasta [HL20] was later proposed, considering a par-
ticular efficiency aspect: it features a more efficient generation procedure for the
linear layer, which does not make use of a XOF algorithm. In this paper we
consider another implementation efficiency aspect: the evaluation of Rasta-like
ciphers over popular FHE schemes and libraries.

We note that, in [DEG+18], the designers did describe a few experiments
for the main use case for Rasta – namely, the homomorphic evaluation of the
cipher in a hybrid symmetric/FHE construction. However these experiments,
using BGV as implemented in HElib, appeared to have been carried out mainly
to “validate” the Rasta design approach, as well as a means to compare it with
other prominent ciphers, e.g. FLIP, Kreyvium and LowMC. In particular, there
appeared to be no efforts to take advantage of features of BGV/HElib in a more
efficient implementation, which in turn might have fed into more efficient design
choices for the cipher (beyond simply minimising AND-depth and AND per
bit). More recent variants of Rasta [HKC+20,DGH+21b] do take into account
FHE schemes’ features in their design, and come accompanied by comprehensive
experiments. However they feature more distinctive structures, e.g. they are
defined over fields of prime characteristic p > 2. In contrast, in this paper we
propose Fasta as a closer variant of Rasta, also defined over the binary field,
in which however we carefully consider the features of BGV in the design of its
keystream generator.

2.3 The BGV Scheme

The BGV homomorphic encryption scheme [BGV12] was proposed by Braker-
ski, Gentry and Vaikuntanathan in 2012 and is implemented in the HElib and
PALISADE libraries. BGV is a levelled FHE scheme, which means that the mul-
tiplicative depth of the circuit one wants to evaluate must be known at the time
the parameters of the cipher are chosen.

The starting point for the BGV scheme is the m-th cyclotomic polynomial
over the integers Φm(X). Plaintexts in BGV can be seen as elements of the
quotient ring Zpr [X]/(Φm(X)), where p is a prime and Φm(X) is the image

3 The designers also mention in [DEG+18] the technical report “Algebraic cryptanal-
ysis of RASTA”, by Bile, Perret and Faugère. However we were unable to publicly
locate this work.
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of Φm(X) in Zpr [X]. In this paper we are only interested in encrypting bits
as plaintext, i.e. p = 2 and r = 1, and so in fact our plaintexts can be seen
as polynomials over F2 of degree less than φ(m), where φ(·) is Euler’s totient
function. A very useful feature of BGV is that one ciphertext may encrypt several
plaintext bits. The notion is that one ciphertext contains multiple slots. The
number of slots in a ciphertext is denoted by s, which is understood differently
in HElib and PALISADE. In HElib the number of slots is given as s = φ(m)/d,
where d is the multiplicative order of the size of the plaintext space (in our case,
2) modulo m. In PALISADE the number of slots is given as s = φ(m). In both
cases we use the notation

c∗ = {(b1, b2, . . . , bs)}
to indicate that the ciphertext c∗ encrypts the plaintext bits b1, . . . , bs.

The homomorphic properties of BGV apply slot-wise. If c∗
a = {(a1, . . . , as)}

and c∗
b = {(b1, . . . , bs)} are two ciphertexts, then

c∗
a + c∗

b = {(a1 ⊕ b1, . . . , as ⊕ bs)},
c∗
a × c∗

b = {(a1 · b1, . . . , as · bs)},

where ⊕ and · denote the bit-wise XOR and AND operations, respectively.

BGV in HElib. If we have φ(m) = s · d as above, it follows from the structure
of the ring F2[X]/(Φm(X)) that the plaintext space in HElib can be understood
to be instead in F2d , and multiplications and additions work homomorphically
in this field (see [HS20]). As F2 ⊂ F2d , we can use HElib for our purpose, and
ciphertexts will encrypt s plaintext bits.

HElib contains functions to manipulate the slots in a ciphertext, and two of
these will be important to us. The first is mul(c∗,M), where c∗ is a ciphertext
and M is a binary s×s matrix. The function4 returns a ciphertext that encrypts
the slots in c∗ multiplied with M , and so when c∗ = {(b1, . . . , bs)}, we have

mul(c∗,M) = {((b1, . . . , bs) · M)}.

The second function we would like to highlight is rotate(c∗, a). This function
returns a ciphertext that encrypts the slots of c∗ cyclically rotated by a positions
to the right. We also use the notation (c∗ >> a) for the rotate operation, so for
c∗ = {(b1, . . . , bs)} we have

rotate(c∗, a) = (c∗ >> a) = {(bs−a+1, . . . , bs, b1, . . . , bs−a)}.

We note that both rotate and additions of ciphertexts are computationally very
cheap to do, while mul is not.

4 The mul function was optimised in HElib in March 2018, the earlier name for the
same function was matMul [HS18].
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BGV in PALISADE. PALISADE implements the BGV scheme using residue
number systems, and works in a different fashion from HElib. This particular
scheme is denoted by BGVrns.5 As noted above, the number of slots in PAL-
ISADE is s = φ(m), and will therefore always be an even number. In PALISADE
v.1.11.4 (the latest version at the time of writing [PRRC21]), the plaintext space
of BGVrns can only be integers modulo a chosen plaintext modulus p. Addition
and multiplication in the slots will be performed as integer additions and mul-
tiplications modulo p. As we are only interested in doing operations in F2 and
not in any extension field, this is again sufficient for our purpose. In BGVrns the
plaintext modulus needs to be odd, but by selecting p to be high enough that
our computation never reaches it, the computations will simply be done over the
integers. After decryption we then only need to reduce the plaintext returned by
PALISADE modulo 2 to get the desired result.

PALISADE does not yet implement a function similar to HElib’s mul. It does
however have a function that cyclically rotates a ciphertext by a given number
of positions, called evalAtIndex. Like HElib, both evalAtIndex and additions are
computationally cheap to do in BGVrns, but the number of slots in PALISADE’s
BGVrns is much higher.

3 Linear Layers in Symmetric Ciphers for FHE Hybrid
Encryption

The purpose of the linear layer in a symmetric cipher is to provide “diffusion”.
The concept of diffusion is often not precisely formalised, but intuitively we
would like a linear layer to provide an avalanche effect, i.e. that any single bit
of the cipher state at a particular point of the encryption process quickly influ-
ences as many bits in the cipher state as possible after a few rounds. Deploying
linear layers with good diffusion – together with good non-linear layers – in iter-
ated constructions should ensure that, for the entire cipher, the output bits are
described via complex expressions in all input bits.

The notion of optimal diffusion for symmetric encryption linear layers was
introduced in [Dae95,RDP+96], together with a metric to quantify the diffusion
of a linear layer L. The branch number of L is defined as the minimum of the
sums of the weights of inputs and corresponding outputs of L. For matrices of
dimension n over F2r (r > 1), it was shown how maximum distance separable
(MDS) codes of length 2n and dimension n can be used to construct invertible
linear transformations providing optimal diffusion.

In this work we are interested in large, invertible linear transformations over
F2, which can offer good diffusion. Given our parameters, the use of the MDS
construction is not possible, and measuring the branch number of individual
matrices seems infeasible. Similar to the approach in [ARS+15,DEG+18], we will
instead define a family of linear transformations which we will argue offer good
diffusion properties. Fasta’s iterated construction will then use linear layers that

5 See [HPS18] for a discussion on the very similar BFVrns scheme.
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are pseudorandomly generated from this family. We claim that the construction
should then provide strong diffusion after just a few rounds.

Most existing work on quantifying diffusion have focused on features of one
particular linear transformation used multiple times in a cipher. Our case is dif-
ferent: we will make use of a family of linear transformations, from which we
will draw transformations to be used only once during encryption. We therefore
introduce the notion of “balanced diffusion” which we will use in our construc-
tion.

Definition 1. Let L be a family of invertible n × n matrices over F2, where |L|
is a large even number. Let e0, . . . , en−1 be the canonical basis of (F2)n. Then
we say that L offers balanced diffusion if, for all 0 ≤ i, j ≤ n − 1, we have

Pr
L∈L

[〈eiL, ej〉 = 1] = 1/2.

Intuitively it means that if L is a member of a family of matrices offering
balanced diffusion, then if w = v · L, we expect that every bit of v influences
each bit of w with probability 1/2. In cryptographic applications, we expect that
the iteration of randomly generated members of L should maximise the diffusion
of the entire construction.

Some designers of FHE-friendly symmetric ciphers, e.g. in [ARS+15,
DEG+18], have adopted a similar approach, using L = GL(n,F2) the family
of all invertible n × n binary matrices. The ciphers’ round linear transforma-
tions are then randomly generated from L. This seems in principle to make
sense: designers mainly focused on minimising the number of AND gates and the
AND-depth of the decryption circuit, under the argument that linear operations
on FHE ciphertexts are almost for free compared to multiplications. Moreover,
with no particular structure in the linear layer that a cryptanalyst can exploit in
an attack, this approach also simplifies the arguments in the security analysis.
However this approach seems also to indicate that little attention was paid to
how the structure of the linear layer may affect the performance of the ciphers’
homomorphic evaluation in practice.

While it is true that addition of homomorphic ciphertexts is cheap compared
to multiplication, a tacit assumption is that ciphertexts only encrypt a single bit
each. As discussed in Sect. 2.3, popular FHE libraries have the ability to pack
multiple plaintext bits into a single FHE ciphertext, and operate on all bits
encrypted into each ciphertext in parallel. Packing the full state of a symmetric
cipher into a few, or perhaps only one, FHE ciphertexts can give big speed-ups
when processing the non-linear layer of a symmetric cipher. For example, an
S-box layer of LowMC that covers 3/4 of the state can be processed with only
three FHE multiplications, while the χ transformation used in Rasta (Sect. 2.2)
can be performed with only one homomorphic multiplication.

However, when packing the state of a symmetric cipher into few FHE cipher-
texts, the additions carried out in a linear layer will now fall into two categories:

1. additions of elements in the same slot positions from two FHE ciphertexts;
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2. additions of elements from two FHE ciphertexts in different slots, or addition
of elements from different slots inside a single FHE ciphertext.

The first type is in fact the addition of two FHE ciphertexts, and is therefore
quick and easy to perform. The second type is however slower and more involved,
as it mixes elements inside a single FHE ciphertext, or moves elements inside
a ciphertext to make them line up in the same slot. Type 2 additions are thus
not homomorphic additions per se. For a randomly generated linear layer, most
additions will be of type 2; that in turn will outweigh much of the gains that
packed ciphertexts give in the non-linear layer. A natural question is then to
investigate whether we can find another family of linear transformations, which
only uses additions of type 1, but is still expected to offer balanced diffusion.

We now describe the design of a family of linear layers that only use rotations
and additions of type 1, which we employ in Fasta. Of course, linear transfor-
mations drawn from this family are no longer random, and some structure may
be found in them. Nevertheless, we aim to construct linear transformations that
are still expected to provide balanced diffusion, as per Definition 1, and which in
respect to the diffusion at least, behave as randomly generated binary matrices.

3.1 Rotation-Based Linear Layers

In Fasta, we follow the principle introduced in Rasta to (pseudorandomly) draw
linear transformations from a large family L, to be used only once in a particular
instantiation of the cipher. Below we describe a general method for construct-
ing a family of FHE-friendly linear transformations, with the aim of providing
balanced diffusion. In Sect. 4 we use this method to construct the specific class
of linear transformations used in Fasta. In the following explanation we use
the notation v[i] to indicate bit number i in a bit-string v, and v[i, j], i < j to
indicate the sequence of bits from position i up to and including position j in v.

The linear transformations we produce are based on column parity mixers
[SD18]. Let the cipher state consist of bs bits, split into b words w0, . . . , wb−1 of
s bits each. A column parity mixer works by first computing u = w0 ⊕ . . .⊕wb−1

and then applying a simple linear transformation Θ to the sum to compute
v = Θ(u). The word v is added back onto the input words to form the output
words w′

i of the column parity mixer, as w′
i = wi + v. See Fig. 3 for a schematic

description. In the following we also refer to one application of the column parity
mixer as an iteration.

We are concerned with constructing a class of linear transformations L of
dimension bs over F2 that provides close to balanced diffusion. Let x0, . . . , xb−1

be the input words to any L ∈ L, and y0, . . . , yb−1 be the output words. For any
0 ≤ i, k < b and 0 ≤ j, l < s, we want xi[j] to appear in the linear expression for
yk[l] for approximately half of the linear transformations in L. As we will only
use rotations of words and the column parity mixer construction, we can without
loss of generality focus on x0[0] and ensure this bit will appear in approximately
half of the linear combinations giving output bits yk[l]. We say that a bit in any
word wi during the computation of the linear transformation is affected if it has
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w0 w1 . . . . . . wb−1

⊕
⊕

...

...

... ⊕

⊕
. . .

Θ
. . .

w′
0 w′

1
. . . . . . w′

b−1

Fig. 3. One iteration of a column parity mixer used to construct rotation-based linear
layers (Step 1). Gray areas indicate affected bits.

a non-zero probability of depending on x0[0]. We propose the following general
strategy for constructing a family of rotation-based linear layers:

1. Define a column parity mixer based on a transformation Θ that uses rotations
of low amounts compared to s, in such a way that all bits in a small neigh-
bourhood of w0[0] will be affected in all words output from the column parity
mixer (see Fig. 6 in Sect. 4 for an example of such Θ, as used in Fasta).

2. Rotate the words wi between applications of the column parity mixer such
that the affected parts are spread to larger portions of the cipher state.

3. Iterate applications of column parity mixers interleaved with word rotations
as many times as required until the whole cipher state is affected.

We note that if b is even the column parity mixer (step 1 above) is an invo-
lution; if b is odd, the column parity mixer operation is invertible iff (Θ + I)
is invertible [SD18]. Moreover, let w′

0, . . . , w
′
b−1 be the cipher state after the

application of the column parity mixer. Then Θ should be designed such that
w′

i[0, a − 1] is affected for all 0 ≤ i < b and some value of a relatively small
compared to s. This is shown in Fig. 3.

After the first iteration the a least significant bits of each output word w′
i

will be affected. More generally, assume that in the output of any one iteration
of the column parity mixer, the A least significant bits of each output word are
affected, for some A ≥ a. Here we will denote these words as wi, as the input
to the word rotation operation (step 2). For these rotations, we choose to have
the word w0 left unchanged, while wi for 1 ≤ i < b are rotated as follows: every
word wi is rotated by i · A/2 + ri positions, where ri ∈ [0, A/2 − 1]. The output
of step 2 is denoted as w′

0, . . . , w
′
b−1. See Fig. 4 for an illustration of how each

word is rotated.
These rotation amounts ensure three properties. First, the affected parts of

wi−1 and wi will overlap in at least one bit when added together in the next
iteration, for i = 1, . . . , b − 1. So there cannot be any “gap” where some bit
in a word will not be affected. Second, after rotations the least significant bit
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(i)

(ii)

(iii)

A/2 A/2

wi 0 ≤ i ≤ 3

w′
0 = w0

w′
1 = w1 << (A/2 + r1)

w′
2 = w2 << (A + r2)

w′
3 = w3 << (3A/2 + r3)

⊕
w′

i 0 ≤ i ≤ 3

≥ 5A/2

Fig. 4. Word rotation operation (step 2), applied between two iterations of the column
parity mixer, acting on states with b = 4 words. The output words of the previous
the column parity mixer, each with A least significant bits affected, are represented
in region (i). The word rotation operation itself is shown in region (ii). Region (iii)
represents the initial sum operation in the next iteration of the column parity mixer,
with at least 5A/2 affected bits in the input to next iteration’s Θ. The block of affected
bits can be anywhere in the light grey areas, depending on the values of ri.

of the affected part of wi−1 cannot overlap with the affected part of wi, for
i = 1, . . . , b − 1. In other words, the affected parts of wi and wj may not overlap
exactly when i 	= j, for any choice of ri and rj . Two neighboring wi-words may
therefore not cancel out when added together in the input to the next iteration.
Third, the input to Θ in the next iteration will then be affected in (at least) all
bits in positions 0, . . . , (b + 1)A/2. Hence the size of the block of affected bits
will increase by a factor of at least (b + 1)/2 from one iteration to the next.

Using this strategy, the number of affected bits in w0, . . . , wb−1 will grow
exponentially with the number of iterations, and after 
log(b+1)/2(s)� iterations
we are guaranteed the whole cipher state will be affected.

3.2 The Structure in Rotation-Based Linear Layers

One can imagine many other ways of designing a linear transformation acting
on a state consisting of s-bit words, using only rotations within the words and
XOR additions of whole words. We show below that any linear transformation
within these constraints will have a particular structure.

Assume that the state consists of w0, . . . , wb−1, where each wi is a word of
s bits. We let the state block w be a binary vector of length bs, given as the
concatenation of the words: w = (w0|| . . . ||wb−1). Let M be the bs × bs matrix
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over F2 that realises a rotation-based linear transformation L, such that the
output of L is given as L(w) = wM .

Proposition 1. The matrix M can be decomposed into b2 sub-matrices Mi,j for
0 ≤ i, j ≤ b−1 of size s× s each. Let Mi,j [r] be row r in Mi,j, for 0 ≤ r ≤ s−1.
Then Mi,j [r] = Mi,j [0] << r.

Proof. Let the state ei be given as the state where bit number i in ei is 1, and
all others are 0, for 0 ≤ i ≤ bs − 1. Then the top row of M is given as L(e0).
Whatever bits are set in L(e0), they are all a result of the single 1-bit in e0 being
added multiple times onto the words, with rotations of the words in between.

The second row of M is given as L(e1). The exact same additions and rota-
tions that produced L(e0) from the single set input bit will also produce L(e1),
except everything happens shifted by one position to the left, modulo s. Hence
every word in L(e1) will be equal to the same word in L(e0), but shifted by one
position. This repeats for every row of M , so M0,j [r] = M0,j [r − 1] << 1.

Row s of M is produced as L(es). The single set bit in the input then jumps
from appearing in w0 of the state to w1. The word w1 is rotated independently
of w0, so the cancellations and additions from the single set bit in es that occurs
when producing L(es) are different from those that produced L(es−1). Hence
row s of M , and the top row of each M1,j , will be unrelated to row s − 1 of M .
However, each row M1,j [r] will be rotations of M1,j [0] by the same reason given
above. This argument repeats every time the single set bit in ei jumps from one
word to the next, and the result follows.

Proposition 1 essentially states that M can be decomposed into b2 circulant
matrices. This can also be observed by noticing that M may be considered as the
binary representation of a linear transformation over the module Rb, where R
is the ring F2[X]/(Xs + 1). We provide more details in Appendix A. Also in the
Appendix, Fig. 9 gives an example of a matrix realising a rotation-based linear
layer with b = 5 and s = 329 (as used in Fasta). For comparison, it also shows a
matrix realising five parallel applications of Rasta (with same parameters). The
block structure is clearly visible in the rotation-based linear transformation,
whilst the comparable matrix for Rasta is a block diagonal matrix with random
blocks.

4 Specification of FASTA

In this section we define Fasta, a stream cipher whose circuit for generating the
keystream has been designed to be efficiently evaluated homomorphically. As the
name suggests, Fasta is based on Rasta and is fast to execute when implemented
in HElib using the BGV levelled homomorphic encryption scheme (see Sect. 2.3).
We define a single instantiation of Fasta, with parameters selected to give 128
bits of security, both as a stand-alone symmetric cipher and when used in tandem
with a specific instantiation of the BGV scheme it is designed for. It is of course
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possible to make variants of Fasta with higher or lower security claims, but
one should then also find instances of FHE schemes with the same security level
and with a number of slots that matches the given variant of Fasta. Finding
matching combinations of FHE parameters and symmetric designs is a study
in itself, so we limit ourselves to focus on only one particular variant here. We
follow Rasta’s approach for setting the data limit, that at most 264/1645 calls
to Fasta with the same key can be made.6

⊕ ⊕ ⊕ ⊕ ⊕

K K << 1 K << 2 K << 3 K << 4

keystream keystream keystream keystream keystream

Aα0

Aα5

Aα6

χ

χ

χ

χ

χ

χ

χ

χ

χ

χ

K K K K K

Fig. 5. High-level description of Fasta.

4.1 High-Level Overview

Fasta takes a 329-bit secret key K and produces 1645 bits of keystream at each
call. The cipher state consists of five words w0, . . . , w4 of 329 bits each that are
initialised as wi = (K << i), for the secret key K. The choice of word length (329
bits) follows a search for values of m as an instantiation of BGV, that provided
128 bits of security (as FHE scheme) and gave a large, odd number of slots s.
The value selected was the prime m = 30269, so that φ(m) = 30268 = 329 × 92,
giving s = 329 slots (see Sect. 2.3). The number of state words (five) provided
a good trade-off between the size of the state and the number of iterations
required to generate invertible rotation-based linear layers which are expected
to offer balanced diffusion.

6 Since Fasta has a 1645-bit state, this sets the maximum length of the keystream
generated under the same key to 264 bits.
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Each application of Fasta takes in 7 · (63 + 1645) = 11956 pseudo-random
bits for specifying the particular permutation that produces a keystream block.
These bits are labelled α = (α0, . . . , α6), where each αj is a 1708-bit value. In
the same way as Rasta, the contents of α are pseudorandomly generated based
on a counter and a nonce N which are fed into a XOF (see Fig. 2).

The keystream generation applies a round function 6 times. The round func-
tion consists of an affine layer Aαj

, indexed by αj for 0 ≤ j ≤ 5, followed by
a non-linear transformation of the cipher state. The keystream generation ends
with a final affine layer Aα6 and a feed-forward of the secret key XORed onto
each of the words. The resulting output is taken as 1645 bits of keystream. The
cipher is shown in Fig. 5.

4.2 The Non-linear Layer

The non-linear layer uses the χ-function proposed in [Dae95], which is also used
in Rasta and Keccak. It is applied on each of the five words of the state in
parallel as shown in Fig. 5. If we label the input bits to χ as x0, . . . , x328, the
output bits yi are given by

yi = xi+1xi+2 + xi + xi+2,

where all indices are computed modulo 329.

4.3 The Affine Layer

Affine layers in Fasta consist of a rotation-based F2-linear transformation, fol-
lowed by the addition of a round constant. The linear transformation is con-
structed as described in Sect. 3.1, with b = 5 and s = 329, and will consist of
four iterations. A guiding principle in Rasta, which we also follow in Fasta,
is that every linear transformation is pseudorandomly generated from a large
family of transformations and is used only once in an instantiation of Fasta.
The affine transformation we use is parameterised by a 1708-bit value αj , which
will select instances from the class of linear mappings from Sect. 3.1, as well as
selecting the constant to be added after the linear transformation.

The Θ-function in each iteration is shown in Fig. 6. It ensures that the number
of affected bits in the output is increased by 9 from the number of affected bits in
the input. Moreover, as b is odd, the possible choices for rotation values ensure
that the resulting column parity mixer operation, and therefore the entire affine
layer, is invertible.

Recall that the affected part of each word at any point is defined as the
bits that may depend on the bit x0[0] at the input of the linear transformation.
After the first iteration, the number of affected bits in each word will be 10. The
rotations before the next iteration are therefore given as:

w1 = (w1 << 5 + i1), w3 = (w3 << 15 + i3)
w2 = (w2 << 10 + i2), w4 = (w4 << 20 + i4)

, where 0 ≤ i∗ ≤ 4.
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Fig. 6. The Θ-function used in Fasta’s linear layer. The values of r1 and r2 are gen-
erated randomly from the nonce N , and the value given for r3 ensures invertibility of
the resulting column parity mixer operation.

The number of affected bits in the block going into the second Θ will therefore
be at least 20 + 10 = 30, and the number of affected bits in each word after the
second iteration will be at least 39. The words w1, . . . , w4 are then rotated by

w1 = (w1 << 19 + j1), w3 = (w3 << 57 + j3)
w2 = (w2 << 38 + j2), w4 = (w4 << 76 + j4)

, where 0 ≤ j∗ ≤ 18.

The affected part of the word going into Θ in the third iteration will then cover at
least the 39+76 = 115 least significant bits, and the output will have at least 124
affected bits. The output is added onto every word, so the 124 least significant
bits of every wi will be affected. The words w1, . . . , w4 are then rotated by the
following amounts before going into the fourth and last iteration:

w1 = (w1 << 62 + l1), w3 = (w3 << 186 + l3)
w2 = (w2 << 124 + l2), w4 = (w4 << 248 + l4)

, where 0 ≤ l∗ ≤ 61.

Note that the most significant bits of the affected part of the word w4 (located
in positions 123, 122, . . .) wraps around when rotated by 248 positions, as the
words have length 329. This means that the entire input block to Θ in the last
iteration will be affected, and after adding the output of Θ onto each wi the
entire cipher state is affected. The complete linear transformation is depicted in
Fig. 7.

Pseudorandomly generating the rotation-based affine layers Aαj
. The

rotation values of the linear transformations and the constant part of the affine
layers Aαj

are defined based on 1708-bit values αj generated pseudorandomly
(using a XOF). We take 1645 bits from αj to define the constants value. The
remaining 63 bits are used to define 24 rotation values (three used in each of
the four instances of Θ and four in each of the three word rotations between
Θ-iterations). Details on how this is done are given in Appendix B.

4.4 Comparing FASTA with Other Ciphers for Hybrid Encryption

Rasta is a family of stream ciphers, with the benefit of having a low and constant
multiplicative depth regardless of how much keystream is produced (Sect. 2.2).
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w0 w1 w2 w3 w4

Θ-iteration

Θ-iteration

Θ-iteration

Θ-iteration

<< 5 + i1 << 10 + i2 << 15 + i3 << 20 + i40 ≤ i∗ ≤ 4

<< 19 + j1 << 38 + j2 << 57 + j3 << 76 + j40 ≤ j∗ ≤ 18

<< 62 + l1 << 124 + l2 << 186 + l3 << 248 + l40 ≤ k∗ ≤ 61

Fig. 7. The linear transformation of Fasta. The exact rotation amounts i∗, j∗, l∗ and
in the Θ-iterations are determined by αj .

As discussed, Fasta is a variant of Rasta with a dedicated design for the efficient
evaluation over FHE schemes. In fact, as shown in Fig. 5, Fasta could be seen as
five parallel calls of Rasta (with block size s = 329 and 6 rounds), but with one
main difference. In the 5-parallel Rasta calls, the combined affine transformations
Ai would be represented by a block diagonal matrix, with each 329 × 329 block
being generated pseudorandomly. On the other hand, in Fasta the Ai are 1645×
1645 rotation-based transformations, essentially tying the transformations of the
five blocks together. Motivation for the choices for the value of s and the structure
of Ai were given early in this section. As shown in Sect. 6, this structure and
parameter choices will allow Fasta to be homomorphically evaluated much more
efficiently in BGV/HElib, when compared to five parallel calls of Rasta.

Another drawback from Rasta is the inefficiency of requiring many random
linear transformations, which need to be generated and stored. Other variants
have also been proposed to address this feature. Dasta [HL20] simplifies the
generation of the linear layers, by using a single fixed matrix composed with a
permutation of the bits in the cipher block. These permutations are constructed
by cyclically rotating smaller bit sequences that are part of the cipher block.
This means much less randomness is needed from the XOF. However, rotating
only part of a cipher block is difficult to achieve in a packed FHE implementation
of Dasta. Thus Fasta presents the same advantages when evaluated homomor-
phically compared to Dasta.

Masta [HKC+20] abandons Fs
2 as the native plaintext space, and can be seen

as a Rasta variant with plaintext elements in Fp for a prime p > 2. The linear
transformations of Masta are then simply chosen as a multiplication with an
element chosen pseudo-randomly from Fps , where s is the number of slots in
the FHE ciphertext. The designers state that this speeds up the homomorphic
evaluation of the cipher by a factor of more than 3000 compared to Rasta.
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However, this comparison should be done with caution as Masta is tailored
to computations on integers and Rasta (and Fasta) was designed for binary
circuits.

The most recent Rasta variant proposal is called Pasta [DGH+21b]. In con-
trast to Fasta, Pasta has the plaintext elements taken from the field Fp, where
p is a large prime. The linear layers in Pasta are chosen in a structured way,
requiring only the sampling of s random elements from Fp to generate an s × s
matrix. All together, this leads to Pasta being up to 6 times faster than Masta
in certain scenarios.

Other symmetric key ciphers proposed for hybrid encryption include LowMC
[ARS+15], FLIP [MJSC16] and Kreyvium [CCF+16]. LowMC is a family of
block ciphers, with multiplicative depth at least 12, while Kreyvium is a stream
cipher based on Trivium. Kreyvium has the drawback that the multiplicative
depth for producing keystream increases with the output length. For compar-
ison with Fasta, producing 1645 bits of keystream with Kreyvium requires
multiplicative depth of at least 17 (compared to 6 for Fasta). FLIP is also
a stream cipher, with the benefit that the multiplicative depth for producing the
keystream is held constant at 4. However, FLIP requires a much larger number
of AND operations per bit; moreover, the successful cryptanalysis of its orig-
inal version [DLR16] called for the selection of more conservative parameters.
Finally, we also mention Ciminion [DGGK21], a recent proposal oriented around
a large field Fq, which aims to minimise the number of field multiplications in
its design. However, while the total number of field multiplications in Ciminion
might arguably be small (at least 56), they all appear sequentially. This leads to
a multiplicative depth of Ciminion of at least 56, making it very unsuitable for
hybrid encryption in the FHE setting.

Overall, among the ecosystem of FHE-friendly stream ciphers, Fasta has
been specifically designed to improve on the efficiency of both Rasta and Dasta,
while keeping the original plaintext elements as bits in F2.

5 Security Analysis

Fasta is a Rasta variant, which introduces a new idea for a FHE-friendly
linear-layer design. Like Rasta, it also uses the A(SA)d structure, with the non-
linear layer S based on the χ-transformation, and affine round transformations
drawn from a large family of affine mappings. Moreover, as discussed above,
Fasta can be seen as five parallel calls of a particular Rasta instance, however
under the operation of different enlarged linear layers – Fasta’s composed of a
rotation-based transformation and the 5-parallel Rasta a block diagonal matrix,
in both cases pseudo-randomly generated. As a result of these design choices, we
claim that we can leverage most of the analysis originally performed for Rasta
in [DEG+18] to assess the security of Fasta. For example, like Rasta we also dis-
allow related-key attacks, and thus differential-type attacks should likewise not
apply to Fasta. In this section we will therefore only discuss a subset of attacks
considered in [DEG+18], indicating when required how to adapt the original
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discussion to Fasta’s setting. We first consider the properties of the rotation-
based linear transformations introduced earlier, and used in Fasta. We also
discuss the feasibility of attacks based on the algebraic structure of the cipher,
and of linear approximation based attacks, again leveraging the corresponding
discussions from [DEG+18].

5.1 On the Structure of FASTA’s Linear Transformation

Balanced diffusion of FASTA’s family of linear transformations. The
Θ function used Fasta’s linear layer has the property that every input bit in
position i, for 0 ≤ i ≤ 328, will affect the output bits in positions i, . . . , i + 9
mod 329. As explained in Sect. 4.3, the influence of x0[0] will spread to the entire
cipher state after applying the linear transformation once. By rotational sym-
metry, this applies to every bit in the input words, so every bit in the output of
the linear transformation may have any of the input bits in its linear expression.

When adding words together at the start of every iteration, some of the
affected parts of the input words will overlap. As an input bit to Θ is spread to
approximately half of the bits in its neighbourhood of the output, this makes
approximately half of the affected part of the cipher state depend on approxi-
mately half of the input bits it depends on. In total, we therefore expect balanced
diffusion for the linear layers in our family.

To confirm this, we have generated 10000 matrices appearing as linear trans-
formations in Fasta, and considered their statistics compared to rotation-based
random matrices. Fig. 8a shows the distribution of the percentage of set bits in
these matrices. The distribution is well approximated by a normal distribution
with mean 50%, but have a slightly higher variance of set bits than random
invertible rotation-based matrices.

In Fig. 8b we have measured how well a sample of 10000 matrices satisfies
balanced diffusion according to Definition 1. More precisely, for a given pair
of numbers (i, j), 0 ≤ i, j ≤ 1644 we measured Pr[〈eiL, ej〉 = 1] across the
10000 matrices. We did this for all 1645 × 1645 = 2706025 different pairs (i, j),
and counted the frequencies of probabilities seen. The plot is shown in Fig. 8b,
and compared against the same experiment for random invertible rotation-based
matrices. As we can see, all probabilities are normally distributed around 0.5,
and there is no significant difference between the matrices used in Fasta and
those generated at random.

Pairwise dependence/independence of entries in the linear transfor-
mation. The Fasta state consists of 5 words with 329 bits each. Proposition 1
decomposes the linear transformation matrix M into 25 submatrices, each of size
329 × 329. Each of these 25 submatrices are defined in terms of their respective
top row. Looking at each submatrix in isolation, each of its rows is a cyclic rota-
tion by 1 of the row above. Let D be a submatrix of M , and Di,j be an entry
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(a) Distribution of the percentage of set
bits in the matrices.

(b) Distribution of measured values of
Pr[〈eiL, ej〉] across the matrices, for all
0 ≤ i, j ≤ 1644.

Fig. 8. Statistics for 10000 matrices used in Fasta and 10000 rotation-based invertible
matrices with 5 × 5 blocks and random top row in each block.

in D. It follows from the row rotation property that Di+1,j+1 = Di,j , which
generalizes to D0,j = Da,j+a, for 0 ≤ a, j ≤ 328 and where indices are computed
modulo 329.

As M displays random behaviour and is expected to provide balanced diffu-
sion, we will make the reasonable assumption that pairwise entries are indepen-
dent, for any of the 25 submatrices in M . Furthermore, two entries from different
submatrices are also treated as independent.

5.2 Algebraic Attacks

Given the keystream Z = (z0, . . . , z1644) produced on a call to Fasta’s keystream
generator for an unknown key K = (k0, . . . , k328), it is possible to express the
keystream bits as polynomials in k0, . . . , k328 to get a set of polynomial equations
over F2:

f0(k0, . . . , k328) + z0 = 0
f1(k0, . . . , k328) + z1 = 0

...
f1644(k0, . . . , k328) + z1644 = 0

(1)

The attacker may repeat calls to the keystream generator to gather more
such equations. The fact that new linear layers will be applied for each repetition
means that new functions fi will be used to define these fresh equations, up to
264 due to the cipher’s data limit. We therefore consider algebraic attacks to be
the most promising cryptanalytical technique against Fasta, and consider its
feasibility below.

Standard linearization-based attack. The equation system (1) forms the
foundation of the standard linearization attack. In such an attack, given a system
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of non-linear multivariate polynomial equations, all monomials are substituted
with a new “variable”, and the resulting set is considered as a system of linear
equations over these variables. To fully solve this system, an attacker needs to
collect as many equations as there are variables, which then allows for a unique
solution to be found through Gaussian elimination. Thus, the complexity of
solving such a system based on this method is directly dependent on the number
of monomials in the original system.

The maximum number of different monomials we can get is dependent on
the algebraic degree of each fi. For Fasta, the algebraic degree of fi is upper
bounded by 26 = 64, since the degree doubles with every application of χ and
Fasta has six rounds. Thus the size of the linearized system will be at most∑64

i=0

(
329
i

) ≈ 2535.
This value is computed by only considering χ in the forward direction. It is

well known that the inverse of χ has high degree, but through careful study of
the relationships between input and output bits to the χ operation, the authors
of [LSMI21] derived further equations arising in the last round of Rasta, Dasta,
and in fact Fasta. There are two important consequences of this result. Firstly,
5 × 1645 = 8225 equations can be derived per application of Fasta, instead
of only 1645. Secondly, the last round can effectively be peeled off since the
equations describing χ in the last round do not multiply inputs together, only
inputs and outputs. The outputs of χ in the last round can be described as linear
polynomials in k0, . . . , k328, and the inputs will be polynomials of degree 32. So
the number of monomials in the generated equations is reduced to at most

U =
33∑

i=0

(
329
i

)

≈ 32933 ≈ 2276. (2)

Under the assumption that all U monomials of degree up to 33 over the 329
variables are present in the system of equations, the complexity of such attack
(solving a system of linear equations of size ≈ 2276) is way higher than the
security level claimed for Fasta (128 bits of security). This is the behaviour we
may expect for large random systems. However, for Fasta (and Rasta) we are
not guaranteed that U is the number of monomials which will actually occur
in the system. We explore this question in Appendix C, and conclude that the
expected number of monomials appearing in the algebraic equations linking the
unknowns k0, . . . , k328 to the keystream bits is indeed approximated by U . Thus,
similar to Rasta, linearization-based attacks are not a threat to Fasta.

Other algebraic approaches. The maximum number U of monomials could
be reduced by guessing g key bits, at the cost of increasing the complexity of
the linearization attack by a factor of 2g. This implies a cut-off for guessing bits
at g = 128, where the complexity increase alone will equal the claimed security
level.

Even when guessing 128 of the bits in K, we are still left with U =∑33
i=0

(
201
i

) ≈ 2252 monomials to linearise. As the data complexity is limited to
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264/1645 ≈ 254 calls to Fasta for a given key K, the maximum number of equa-
tions we can generate, taking [LSMI21] into account, is 5 ·1645 ·264/1645 ≈ 266.3.
We can therefore conclude that an attacker will not be able to generate enough
equations for a linearization attack to succeed.

A more advanced form of algebraic attacks is based on Gröbner basis algo-
rithms. In this case, the cipher’s non-linear system is considered in its original
form, and attempted to be solved using, e.g. Faugère’s F5 algorithm [Fau02].
The complexity of Gröbner basis algorithms is not fully understood for systems
arising from cryptographic algorithms. Although they have been applied suc-
cessfully in cryptanalysis, given the sizes involved in the Fasta system, we do
not consider GB-based attacks a threat to Fasta.

5.3 Attacks Based on Linear Approximations

To assess the feasibility of attacks based on linear approximations against Fasta,
we refer to the discussion in [DEG+18, Section 3.2]. There, the authors of Rasta
derive upper bounds for the correlation of linear approximations after d = 2r
rounds based on the properties of the χ transformation. This is done by estimat-
ing the number of active bits in the input/output of applications of χ, under the
assumption the linear layers are randomly generated. For example, they conclude
that Rasta with block n = 351 and d = 6 rounds is not susceptible to attacks
based on linear approximations.

For Fasta, the transformations in the linear layer are not random, but
rather pseudo-randomly generated among the rotation-based matrices defined
in Sect. 3. More importantly however, the non-linear layer in Fasta consists of
five parallel applications of the χ transformation. Given the diffusion properties
that the linear layer is expected to feature, we expect that any linear trail over
two rounds of Fasta will have a correlation of much lower magnitude than for
Rasta (which would consist of six applications of χ, compared to 5 × 6 = 30 for
Fasta). Our conclusion is therefore that, as with Rasta, attacks based on linear
approximations are not feasible against the parameters chosen for Fasta.

5.4 Other Classical Attacks

Differential attacks, higher-order differential attacks, cube attacks, and integral
attacks all try to exploit the structure of a cipher in one way or another. A
differential attack looks for advantageous characteristics present in the structure,
before attempting to find pairs of plaintexts which satisfy these characteristics.
Higher-order attacks and cube attacks exploit the algebraic degree of the output
bits of a primitive, while integral attacks make use of curated sets of plaintexts.
They all have in common a need to evaluate the cryptographic primitive more
than once and with different inputs. With Fasta, the circuit generating a block
of keystream is only used once. Furthermore, the attacker does not have the
freedom to choose different inputs to Fasta’s keystream generation function, as
it is always the secret key. We therefore conclude that these attacks are infeasible
to execute against Fasta.
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6 Homomorphic Implementation of FASTA

Software libraries implementing FHE or levelled homomorphic encryption (LHE)
schemes have gone through extensive development over the last years. They
now appear as quite robust, well documented, and user friendly. The libraries
and schemes we have considered during the design of Fasta were: HElib and
PALISADE with their implementations of the BGV scheme; SEAL and PAL-
ISADE with the BFV scheme; TFHE with the torus-based FHE scheme; and
PALISADE’s FHEW scheme. HElib, PALISADE, and SEAL also implement the
CKKS scheme, but as CKKS is an approximate LHE scheme with real numbers
as the plaintext space, it is not suitable for implementing Boolean circuits.

We have designed Fasta to be fast when evaluated homomorphically, while
also being based on a dedicated symmetric cipher for FHE, namely Rasta. In
order to ensure fast evaluation, the parallelism offered by multiple slots in the
FHE scheme is used to pack many bits of the cipher state into one FHE cipher-
text. The TFHE library does not yet support such parallelism, and has therefore
not been a target for the design of Fasta.

Both the BFV and BGV schemes provide ciphertexts with multiple slots, but
BFV needs the number of slots to be a power of 2. Also, the BGVrns scheme
will always have an even number of slots. As we use the χ-transformation in
Fasta’s non-linear layer, this makes BFV and BGVrns less suitable since χ is
only invertible when the cipher state words going through χ have an odd number
of bits. Implementing Fasta (or Rasta for that matter) in BFV using packing
will then have to use dummy slots, i.e. slots in the FHE ciphertext that are not
used, but still need to be accounted for when doing rotations, as discussed below.
A symmetric cipher suitable for the BFV scheme should be designed differently,
and use a set of small S-boxes in a bit-sliced fashion instead of χ as the non-linear
transformation.

As the number of slots in BFV and BGVrns is much higher than 329, typically
in the range 213 to 216 for parameters giving 128-bit security, we will only use the
329 first slots of a ciphertext c∗ = {(c1, c2, . . . , c329, 0, 0, . . . , 0)}, and need to do
cyclic rotations over only these slots. A natural way to rotate c by a positions in
the 329 first slots is to first rotate c by a positions to the right, c∗

r = (c∗ >> a),
then by 329 − a positions to the left, c∗

l = (c∗ << (329 − a)), and add the two
ciphertexts:

c∗
r = {(

329 first slots
︷ ︸︸ ︷

0, . . . , 0, c1, c2, . . . , c329−a, c329−a+1, . . . , c329, 0, . . . , 0)}

c∗
l = {(

329 first slots
︷ ︸︸ ︷

c329−a+1, . . . , c329, 0, . . . , 0, 0, . . . , 0, c1, . . . , c329−a)}

c∗
l + c∗

r = {(
329 first slots

︷ ︸︸ ︷

c329−a+1, . . . , c329, c1, . . . , c329−a, c329−a+1, . . . , c329, 0, . . . , 0, c1, . . . , c329−a)}

This effectively does a cyclic rotation of the first 329 slots, but leaves non-
zero plaintext values in the dummy slots, which need to be zeroed out to prevent
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them from being shifted back in on subsequent rotations. This can be done by
masking, multiplying with a plaintext that is 1 in the 329 first slots and zero
elsewhere. Unfortunately, a plaintext-ciphertext multiplication is only somewhat
cheaper in terms of noise growth than a ciphertext-ciphertext multiplication, so
making a customized rotation in BFV or BGVrns to accommodate for dummy
slots is simply too costly in a practical implementation.

On the other hand, the BGV scheme as implemented in HElib have instances
with an odd number of slots in each ciphertext. We have therefore designed
Fasta to take advantage of these features, and thus enable particularly efficient
homomorphic evaluation with BGV in HElib. The basis for the BGV scheme is
the cyclotomic polynomial Φm, where m is chosen by the user. The parameter
m decides the number of slots, and together with the noise budget in fresh
ciphertexts, a parameter denoted by bits in HElib, also decides the estimated
security level for the instance of BGV. Searching for suitable values of m we
found that m = 30269 gives 329 slots in HElib and a security level of just over
128 bits when bits = 500 (if bits is lower, the security level increases). Hence
we designed Fasta to give 128-bit security in itself, and to be used with the
particular instance of BGV where m = 30269. Running Fasta in HElib with
m = 30269 consumes approximately 260 bits , leaving up to 240 bits more for
further computations in an actual use case.

Implementing Fasta in HElib starts by encrypting the 329-bit key K five
times into five different HElib ciphertexts w∗

0 , . . . , w
∗
4 with 329 slots each. Five

copies of w∗
i are then made for the feed-forward of the key at the end of Fasta.

The initial rotations are done by setting w∗
i = (w∗

i << i), before the first affine
layer is executed using only rotations and additions of the five ciphertexts. The
χ-transformation works on each w∗

i individually, and is done by making two
copies of w∗

i that are rotated by 1 and 2 positions respectively: u∗
1 = (w∗

i << 1)
and u∗

2 = (w∗
i << 2). The output of χ is then computed as u∗

1 × u∗
2 + w∗

i + u∗
2,

using only a single ciphertext-ciphertext multiplication. The rest of Fasta is
executed homomorphically in the same way, using only rotations, additions and
a single multiplication for each word in the non-linear layer of each round. Finally
the initial copies of w∗

i are added to the five ciphertexts in the end to produce a
block of 1645 bits of key stream encrypted under FHE.

6.1 Timings of Implementations

We have made both packed and bit-sliced implementations of Fasta and Rasta
in some of the libraries, and timed the execution times. The code is available at
https://github.com/Simula-UiB/Fasta. The packed version of Rasta used mul
when multiplying with random matrices in the linear layer, and the block size
was modified from 351 to 329 to make the block fit exactly in the BGV ciphertext
(we denote this version as Rasta∗ in Table 1). In addition we also ran 6-round
Rasta implementations published at [DGH+21a]. Parameters in the BFV and
BGV schemes used were chosen to give roughly 500 bits in noise budget, for
equal comparison. The timings were done on a MacBook Pro with a 2.3 GHz
Intel Core i5 processor and 16 GB RAM. The results are given in Table 1.

https://github.com/Simula-UiB/Fasta
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Table 1. Amortized time (in seconds) to produce one bit of key stream when executing
homomorphic implementations of Rasta and Fasta. (Rasta∗ denotes the cipher with
a 329-bit block.)

Library(Scheme) Cipher FHE time χ time time

encoding lin. trans total

Implementations
from

[DGH+21a]

TFHE Rasta (6 r.) bit-sliced 0.3640 13.902 14.266

HElib(BGV) Rasta (6 r.) bit-sliced 3.079 0.510 3.589

SEAL(BFV) Rasta (6 r.) bit-sliced 0.6122 0.1918 0.8040

HElib(BGV) Rasta (6 r.) packed 0.0956 1.0083 1.1039

Our own
implementations

PALISADE (FHEW) Rasta (6 r.) bit-sliced 15.73 1197.8 1213.6

TFHE Rasta (6 r.) bit-sliced 0.2296 11.331 11.56

HElib(BGV) Rasta∗ (6 r.) packed 0.0166 0.2670 0.2836

HElib(BGV) Fasta (6 r.) packed 0.0166 0.0260 0.0427

Unsurprisingly, the packed implementations are faster than the bit-sliced ones
encrypting only a single bit in each ciphertext. The bit-sliced implementations
were all optimized with “the method of the four russians” in the matrix multi-
plication. In the user manual of PALISADE [PRRC21, Sec. 9.3] it is noted that
both the XOR and AND gates take the same amount of time in that library’s
implementation of FHEW. Hence the very large number of XOR gates in the
matrix multiplication of Rasta explains the extremely high execution time. Note
that the packed implementation from [DGH+21a] uses the 351-bit block size
specified for Rasta, and therefore needs to use masking in its operations. This
explains the faster run times we have for Rasta with 329-bit block.

For the packed versions, we find that Fasta is 25 times faster than Rasta,
and more than 6 times faster than the “optimized” version of Rasta where the
block size fits the FHE ciphertext. The difference in runtimes for Rasta with
329-bit block and Fasta is entirely due to the linear layer of Fasta having been
designed for fast execution in HElib.

7 Conclusions

The design of symmetric ciphers for use with FHE has so far focused primarily
on minimising multiplicative complexity. However the libraries implementing
various FHE schemes have matured over the last years, with some attractive
implementation features, and are now more robust and user friendly than the
early versions. This motivated us to study the implementation and homomorphic
evaluation of a prominent family of FHE-friendly ciphers, Rasta, on the most
well-known FHE libraries.

We found that the parameters of Rasta make it difficult to efficiently use the
parallelism offered by some of the FHE schemes, namely BGV and BFV. The rea-
son for this is that these schemes are quite inflexible when it comes to the num-
ber of slots available in a single FHE ciphertext. In the case of BFV and BGVrns,
the number of slots becomes much larger than we need when these schemes are
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instantiated with parameters giving 128-bit security. On the other hand, for BGV
in HElib the number of slots in a single ciphertext is more in line with the block size
of a symmetric cipher, but it is still determined by the m-parameter and cannot
be chosen freely by the user. This led us to propose Fasta.

Our research showed that when packing the bits of the symmetric cipher state
into single FHE ciphertexts, only two operations are cheap to perform: additions
of full FHE ciphertexts, and cyclic rotations. Multiplications, both between two
ciphertexts and between plaintext and ciphertext, are expensive and should be
kept to a minimum. Moreover we also found that for efficient implementations,
it is important to fit the cipher block exactly into FHE ciphertexts. Otherwise,
excessive slots need to be zeroed out after rotations, which invokes multiplica-
tions with a plaintext mask.

Typical FHE-friendly symmetric designs, focusing primarily on low multi-
plicative complexity, appear to assume bit-sliced implementations of the cipher,
where we only encrypt a single bit into each FHE ciphertext and do not need
to worry about slots. They are indeed easy to implement, but these choices lead
to a high run-time when evaluated homomorphically. As computational com-
plexity is the major bottleneck for FHE it is crucial that implementations can
take advantage of packing features in the main FHE libraries. Our proposal
Fasta demonstrates that by taking into account the features of FHE libraries
and schemes in the design process we may achieve a secure and efficient FHE-
friendly symmetric cipher.

Acknowledgements. We wish to thank Joan Daemen for helpful advice and discus-
sions on column parity mixers in the early stage of this work.

A Matrix Structure of Rotation-Based Linear
Transformations

To observe and study the structure of rotation-based linear transformation
matrices introduced in Sect. 3.1, we recall the steps for constructing a rotation-
based linear transformation acting on b s-bit words w0, . . . , wb−1.

1. Define a column parity mixer based on a Θ operation using rotations of low
amounts (compared to the word length s; see Fig. 3).

2. Apply rotations to the words wi between applications of the column parity
mixer.

3. Iterate applications of column parity mixers with rotations in between, as
much as needed until the entire cipher state is affected.

To describe the structure of (binary) matrices defined as above, it is helpful to
consider rotation-based linear transformations as operations over the module Rb,
where R is the ring F2[X]/(Xs + 1). In this case, each wi can be considered as a
polynomial wi(X) = as−1X

s−1 + . . .+a2X
2 +a1X +1, where aj ∈ F2. Note that

the XOR operation of two words wi, wj corresponds to addition in R, while the
rotation operation wi << r corresponds to the multiplication of wi(X) by Xr.
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Then let w = (w0, . . . , wb−1) ∈ Rb be the input of a rotation-based linear
transformation L defined as above. The application of a column parity mixer
based on a Θ operation using rotations/XORs (step 1) corresponds to:

(i) (w0, . . . , wb−1) → (w0 + . . . + wb−1) = w ∈ R
(ii) w → w · pΘ, where pΘ ∈ R is a polynomial defined by the rotations and

XOR operations in Θ.
(iii) w · pΘ → (w0 + w · pΘ, . . . , wb−1 + w · pΘ) ∈ Rb.

Thus application of a column parity mixer operation on w = (w0, . . . , wb−1) ∈
Rb can be represented as a matrix over R given by

PΘ =

⎛

⎜
⎜
⎝

pΘ + 1 pΘ . . . pΘ

pΘ pΘ + 1 . . . pΘ

. . . . . . . . . . . .
pΘ pΘ . . . pΘ + 1

⎞

⎟
⎟
⎠

Likewise, the application of rotations << ri to the individual words wi of
the state (step 2) can be represented as a matrix

Rv =

⎛

⎜
⎜
⎝

Xr0 0 . . . 0
0 Xr1 . . . 0

. . . . . . . . . . . .
0 0 . . . Xrb−1

⎞

⎟
⎟
⎠ ,

where v = (r0, r1, . . . , rb−1). These two operations are then iterated n times,
using different Θi and word rotations vi = (r0, . . . rb−1) (step 3). It follows that
the matrix M representing a rotation-based linear transformation over Rb can
be defined as

M = PΘ1 · Rv1 · PΘ2 · Rv2 · . . . · Rvn−1 · PΘn

Every entry of M is a univariate polynomial of degree at most s − 1. Note that
the multiplication of wi ∈ R by a polynomial p ∈ R, when considered as a F2-
linear transformation, can be represented as a binary circulant matrix. It follows
that, when considered as a F2-linear transformation acting on the state block
w ∈ (F2)bs, the bs×bs matrix M realising a rotation-based linear transformation
L, with L(w) = wM , can be decomposed into b2 sub-matrices as described in
Proposition 1.

For example in Fasta, we have b = 5 and s = 329. Moreover, Θ can be
realised by multiplication by the polynomial pΘ = Xr3 + Xr2 + Xr1 + 1 (where
1 ≤ r1 ≤ 3, 4 ≤ r2 ≤ 6, and 7 ≤ r3 ≤ 9; refer to Fig. 6), and the word rotation
operations Rv are defined as given in Fig. 7. Four iterations are required to
generate the matrix M . As discussed in Sect. 4, these choices ensure that the
matrices PΘ, Rv, and as consequence M , are invertible. An example of such a
matrix M generated following this method can be seen in Fig. 9a. Each of the
25 blocks is a 329 × 329 circulant matrix over F2.

For the purpose of comparison, we also include the matrix for a linear trans-
formation realising five parallel calls to Rasta with same parameters (Fig. 9b).
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In this case, the resulting linear transformation can be represented as a block
diagonal matrix, with random 329 × 329 sub-matrices in the diagonal, and all
zero matrices elsewhere.

(a) Matrix realising a rotation-based lin-
ear transformation with 5 words of length
329.

(b) Matrix for linear layer tying five par-
allel applications of Rasta together.

Fig. 9. Structure of matrices for Fasta and five parallel calls to Rasta. Black pixels
indicate 1-bits and blue pixels are 0-bits.

B Mapping αj to Rotation Values and Round Constants

Let r
(t)
1 , r

(t)
2 and r

(t)
3 be the rotation amounts used in Θ in iteration t, for

1 ≤ t ≤ 4. There are then 24 rotation amounts that need to be decided from αj .
The r

(t)
1 and r

(t)
2 can take 3 values each, and r

(t)
3 is computed from these, for a

total of nine different instances of Θ. Each of the four i∗, j∗, l∗ can take 5, 19,
and 62 values each, respectively. There are therefore T = 38 ·54 ·194 ·624 ≈ 262.78

different instances in the class L of rotation-based linear transformations we have
defined.

We split αj into αj = (αr
j , α

c
j), where αr

j is 63 bits and αc
j is 1645 bits. The

24 rotation values are computed from αr
j , as in Algorithm 1. Apart from the r

(t)
3

values, what we are essentially doing is first computing B = αr
j mod T , and

then writing B in a mixed base: the eight least significant digits in base 3, the
next four digits in base 5, the next four in base 19, and the four most significant
digits in base 62. Keeping in mind that r

(t)
1 and r

(t)
2 will have 1 and 4 added to

them, the rotation amounts can then be read out as the digits of B, written in
this mixed base:

B = k3 · 623 · 194 · 54 · 38 + k2 · 622 · 194 · 54 · 38 + . . .

+ r
(2)
2 · 35 + r

(1)
2 · 34 + r

(4)
1 · 33 + r

(3)
1 · 32 + r

(2)
1 · 3 + r

(1)
1 .

After applying the linear transformation, the 1645-bit value αc
j is XORed onto

the state to produce the affine layer output.
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Algorithm 1: Determining rotation amounts from αr
j .

Result: Rotation amounts for linear transformation are fixed.
B ← αr

j mod T
for t = 1 to 4 do

r
(t)
1 ← 1 + (B mod 3)

B ← �B/3�
end for
for t = 1 to 4 do

r
(t)
2 ← 4 + (B mod 3)

r
(t)
3 ← 7 + (2r

(t)
1 + r

(t)
2 + 1 mod 3)

B ← �B/3�
end for
for t = 1 to 4 do

it ← B mod 5
B ← �B/5�

end for
for t = 1 to 4 do

jt ← B mod 19
B ← �B/19�

end for
for t = 1 to 4 do

lt ← B mod 62
B ← �B/62�

end for

C Standard Linearization-Based Attack Against FASTA

We examine the question of the number of monomials actually occurring in an
algebraic description of Fasta, following a similar discussion from [DEG+18].

Let M be the matrix over F2 that realises one of Fasta’s rotation-based linear
transformations, let x = (x0, . . . , x1644) be the input state and A(x) = M ·x+ c.
From the description of χ in the non-linear layer S, one round S ◦A(x) of Fasta
can be described by the following equations (from [DEG+18]):

S ◦ A(x)i =
k−1∑

j=0

k−1∑

l=j+1

ai
j,l · xj · xl +

k−1∑

j=0

bi
j · xj + gi, (3)

where i denotes the polynomial representing the i-th bit in the cipher block after
S ◦ A(x). As the word size is 329, i + 1 and i + 2 “wrap around”, i.e. they are
calculated as i−328 and i−327 when i mod 329 = 328 and 327. The coefficients
of S ◦ A(x)i are given by

ai
j,l = Mi+1,j · Mi+2,l + Mi+2,j · Mi+1,l,

bi
j = Mi,j + ci+2 · Mi+1,j + (1 + ci+1) · Mi+2,j ,

gi = ci + ci+2 + ci+1 · ci+2.
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We can see that the term containing the coefficient ai
j,l contains the only multi-

plication, meaning it is the only place where the algebraic degree may increase.
We only need ai

j,l = 1 for at least one i for the corresponding monomial to be
present in the output. We first find the probability that each coefficient ai

j,l is 0.
From the above equations we get

P [ai
j,l = 0] = P [Mi+1,jMi+2,l = Mi+2,jMi+1,l = 0]

+ P [Mi+1,jMi+2,l = Mi+2,jMi+1,l = 1]
(4)

In Sect. 5.1, we found when two entries in M are equal with certainty, due to the
rotational structure in M , and when they are considered independent. Put into
context of Eq. 4, we have that two entries Mi+1,j and Mi+2,l are equal when

l =
{

j + 1 for j 	= 328 mod 329
j − 328 for j = 328 mod 329

Otherwise, Mi+1,j and Mi+2,l are considered as independent in our analysis.
The equal entries are split into two cases, depending on whether j or l are

crossing from one sub matrix to another or not, i.e., to handle “wrap-around”
of sub-matrices.

We expect each entry in M to be present with probability one half, following
the discussion in Sect. 5.1. This allows us to calculate P [ai

j,l = 0]. We begin with
the case where the two entries from M are equal, i.e., in general when l = j + 1:

P [ai
j,j+1 = 0] = P [Mi+1,jMi+2,j+1 = Mi+2,jMi+1,j+1 = 0]

+ P [Mi+1,jMi+2,j+1 = Mi+2,jMi+1,j+1 = 1]

=
1
2

· 3
4

+
1
2

· 1
4

=
1
2
.

For all independent entries, we get instead:

P [ai
j,l = 0] =

(
3
4

)2

+
(

1
4

)2

=
5
8
.

This last result is the same as expected for any two entries in a random matrix.
It follows that the probability that all the coefficients for the product xj · xl are
equal to 0 can be estimated as

P [ai
j,l = 0, ∀i = 0, . . . , 328] ≤

(
5
8

)329

.

In other words, at least one of these coefficients are 1 with probability at least
1 − (

5
8

)329.
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If we consider the monomials of degree 2, it follows that we can expect an
average number of monomials in each word wi of degree 2 to be at least

(
329
2

)

·
(

1 −
(

5
8

)329
)

�
(

329
2

)

.

We can use the same reasoning we used for monomials of degree 1, resulting
in an expected number of these monomials to be 329 · (1 − 2−329) ≈ 329. This
argument can also be applied for monomials of higher degrees. We therefore
conclude that the expected number of monomials appearing in the algebraic
equations linking the unknowns k0, . . . , k328 to the keystream bits is approxi-
mated by U , the maximum possible number of monomials.
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1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
{marek.broll,federico.canale,gregor.leander}@rub.de

2 Inria, Paris, France
{nicolas.david,antonio.florez-gutierrez,maria.naya plasencia}@inria.fr

3 NTT Social Informatics Laboratories, Tokyo, Japan
yosuke.todo.xt@hco.ntt.co.jp

Abstract. Serpent was originally proposed in 1998 and is one of the
most studied block ciphers. In this paper we improve knowledge of its
security by providing the current best attack on this cipher, which is
a 12-round differential-linear attack with lower data, time and mem-
ory complexities than the best previous attacks. Our improvements are
based on an improved conditional key guessing technique that exploits
the properties of the Sboxes.

Keywords: Differential-linear cryptanalysis · Key-recovery · Serpent ·
Conditional differential · Conditional linear

1 Introduction

Symmetric primitives play a vital role in today’s secure communication. In a nut-
shell, their success is certainly based on their outstanding performance on the
one hand and the trust in their security on the other hand. The block cipher Ser-
pent [3] is an excellent example of the successful interplay between security and
performance considerations. Serpent was a finalist in the Advanced Encryption
Standard competition organized by NIST, and – unofficially – ranked second. Its
design greatly contributed to our understanding of performance block ciphers by
being consequently designed with a bit-sliced implementation in mind. It has also
been the target of an impressively large amount of cryptanalysis like [4,5,7,8,14–
17,19,21,23,24] over the years.

All of those attacks are based on variants or generalizations of differential
[10] and linear [22] cryptanalysis, which are two of the fundamental families of
attacks on symmetric primitives. Differential cryptanalysis is based on differ-
ences between pairs of plaintexts which propagate through the cipher with high
probability, while linear cryptanalysis is based on linear approximations which
exhibit high correlation. In both cases the aim is to distinguish the cipher from
a random permutation by collecting enough plaintext-ciphertext pairs. In [20] a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. D. Galbraith (Ed.): CT-RSA 2022, LNCS 13161, pp. 484–510, 2022.
https://doi.org/10.1007/978-3-030-95312-6_20
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Table 1. Summary of working 12-round attacks on Serpent. The adjustment of some
of the complexities and attacks with flaws is discussed in the text.

Complexity

Target Rounds Source Attack type Time Data Memory

12 [23,24] Multidimensional linear 2253.8 2125.8 2125.8

12 [23,24] Multidimensional linear 2242 2125.8 2236

Serpent 12 [21] a Differential-linear 2251 2127 2127

(256-bit) 12 Sect. 5.3 Differential-linear 2233.55 2127.92 2127.92

12 Sect. 5.3 Differential-linear 2236.91 2125.74 2125.74

12 Sect. 5.3 Differential-linear 2242.93 2118.40 2118.40

a This attack starts from round 4 instead of round 0.

combination of both types of distinguishers was introduced. It is shown that a
probability 1 differential and a linear approximation can be combined to obtain
a distinguisher that covers more rounds. The technique was extended in [6] to
allow for probabilities different from 1 in the differential part.

In this paper we make use of two main observations to construct the best
attack on Serpent. We start by extending some ideas presented in [2] for
differential-linear attacks on ARX constructions to SPN networks.

In addition, and this is the technically most important part, we use some ideas
for improving the key recovery part of these attacks. The idea is to minimize the
parts of the key that need to be guessed by closely investigating the involved
Sboxes. As we will see, in the case of the coordinate functions of the Serpent
Sboxes (and its derivatives) it is possible to deduce information on its output
given only partial information on its input. Here, and this allows a significantly
more fine-grained approach, we consider not only reductions that are possible for
the entire input space, but rather split the input space (repeatedly) into halves
by considering linear conditions on the input.

By using these techniques we are able to propose the best known attacks on
Serpent, as summarized in Table 1. While the first and third attack yield the
best time and data/memory complexity, respectively, the second attack shows
that we can get a much better time complexity than the best previously known
attacks and better data and memory complexity.

Related Work
Serpent has been the target of multiple reduced-round cryptanalysis efforts ever
since it was first introduced. These include linear [4,16], multiple and multi-
dimensional linear [14,15,24], nonlinear [23], boomerang [7,19], rectangle [4,6],
and differential-linear [8,17,21] attacks. We will next discuss the best known
attacks. All those claim to attack 12 rounds and consider the Serpent version
using a 256-bit key.

Flawed Complexity Estimates. Before doing so, we would like to point out that
unfortunately, quite some previous attacks turned out to be flawed. In some
cases flaws were not describe previously. In all those cases, the overly optimistic
complexity estimates were confirmed by the authors of the corresponding papers.
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First published 12-round attack. Some differential-linear attacks on 11 and 12-
round Serpent were proposed in [17]. However, we have found that the 12-round
attack is incorrect (also pointed out in [21] and acknowledged by the authors).
Indeed, the attack consists of a 112 keybit guess in the first round, which should
allow the attacker to perform the 11-round variant of the attack on the rest
of the rounds. This assumption is incorrect, as although the difference in the
state after the first round is determined, the input values of the active Sboxes
in the second round are unknown, which are required by the 11-round attack
as they are part of the plaintext. Any evident workaround would either increase
the data complexity beyond the whole codebook or the time complexity over the
exhaustive search. The attacks which are presented in this paper are amended
versions of this 12-round attack, as they are based on the same distinguisher.

Multidimensional-linear 12-round attacks. A family of multidimensional linear
attacks on up to 12 rounds are presented in [24]. The complexity estimates for
these attacks were found to be overly optimistic in [23], where new estimates
were provided. The original estimates in [24] rely on an overestimated capac-
ity, mistaken time complexity conversion to full encryptions, and very small
advantage and success probability. Of the two proposed variants of the 12-round
attack, the complexities of the first were corrected to 2125.8 data complexity, a
time complexity of 2242 memory accesses, and 2108 memory complexity, while
the second variant was found to be invalid and no valid corrected version was
presented given for it. We have found, however, that the memory complexity for
the first attack is also incorrect. The attack consists of 2128 repetitions of the
11-round attack, once for each guess of the last round subkey. We can choose
between a memory complexity of 2125.813 to store the data but with a larger
time complexity of 2253.813, or a large memory complexity of 2236 with the same
time complexity.1 The values given in Table 1 correspond to the corrected com-
plexities.

Differential-Linear. In a recent work which is independent from ours [21], a new
12-round differential-linear attack on Serpent is proposed that tries to improve
the distinguisher bias and the key recovery complexity simultaneously with an
algebraic approach. The complexities of their attack can be seen in Table 1,
where we have corrected the memory complexity for the sake of comparison:
while in the original paper the authors claimed a memory of 299, they have
confirmed to us that they did not take into account the cost of storing the data
(as each plaintext-ciphertext pair has to be accessed multiple times), and agree
with this comparison. In their paper the authors also indicate the problems with
the attack from [17], and state that they were not able to fix these problems
without increasing the complexity beyond that of exhaustive search.

This shows how powerful our new key-recovery techniques are, as they allow
to bring the time complexity of this attack below 2256. Even more, we are able
1 We contacted the authors with respect to this, but they were unable to provide

any further information. We also contacted the authors of [21] and they agreed in a
personal communication, which is why these results are not cited in [21].



New Attacks from Old Distinguishers Improved Attacks on Serpent 487

to provide the best known 12-round attack on Serpent, as can be seen in Table 1.
The time complexity of [21], as can be seen in Table 1 is quite higher than ours
even in the version where we have also better data and memory. As a side note
our attack is also the only known differential-linear attack on 12 rounds that
starts from the first round of Serpent.

Finally, our attack shares some basics with [12]. Indeed, as the authors
from [12] point out, our original ideas used specifically for Serpent have inspired
that paper’s generalized framework used for other ciphers and other attacks than
differential-linear ones.

Outline
The paper is structured as follows: Sect. 2 provides the specifications of Serpent
as well as a short introduction to differential-linear attacks. Section 3 provides a
first “fixed” version of the 12-round attack which was introduced in [17] whose
corrected time complexity is very close to exhaustive search. Section 4 focuses on
some useful properties of the Serpent Sboxes, as well as discussing how similar
properties should be exploitable in all small Sboxes. Finally, in Sect. 5 we use
these properties in an improved version of the attack which reduces the time
complexity by a factor of around 222.

2 Preliminaries

2.1 Description of the Serpent Cipher

Serpent is a block cipher which was introduced in [3] by Anderson, Biham and
Knudsen. Its design consists of a substitution-permutation network (SPN) with
an internal state of 128 bits. It admits 128, 192 or 256 bit keys. The encryption
map consists of a round function which is iterated 32 times. The round function
consists of three steps: first the state is XORed with key material, then a layer
of 4-bit Sboxes is applied, and the round ends with a linear transformation. The
cipher makes use of the following 8 Sboxes, which were constructed in a pseudo
random way to fulfil several cryptographic criteria:

xxx 0 1 2 3 4 5 6 7 8 9 A B C D E F

S0(x)S0(x)S0(x) 3 8 F 1 A 6 5 B E D 4 2 7 0 9 C

S1(x)S1(x)S1(x) F C 2 7 9 0 5 A 1 B E 8 6 D 3 4

S2(x)S2(x)S2(x) 8 6 7 9 3 C A F D 1 E 4 0 B 5 2

S3(x)S3(x)S3(x) 0 F B 8 C 9 6 3 D 1 2 4 A 7 5 E

S4(x)S4(x)S4(x) 1 F 8 3 C 0 B 6 2 5 4 A 9 E 7 D

S5(x)S5(x)S5(x) F 5 2 B 4 A 9 C 0 3 E 8 D 6 7 1

S6(x)S6(x)S6(x) 7 2 C 5 8 4 6 B E 9 1 F D 3 A 0

S7(x)S7(x)S7(x) 1 D F 0 E 8 2 B 7 4 C A 9 3 5 6
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We now provide a precise description of the round function, which will be
given using the bitsliced notation of [3]. The 128-bit internal state X is repre-
sented by four 32-bit words which are denoted X0,X1,X2 and X3, with Xj [i]
being the i-th leftmost bit of word j. The 32 rounds are numbered 0 to 31. Each
round consists of the following four steps:

– Key mixing. A 128 bit subkey is XORed to the internal state. The subkey
at round i will be denoted by ̂Ki.

– Sbox Layer. Different Sboxes are used depending on the round, in par-
ticular S(i mod 8) is used at round i. The Sbox Layer operation consists of
the application of 32 copies of the Sbox to the internal state. For each
i ∈ {0, . . . , 31} we perform the appropriate Sbox transformation to the 4-
bit string (X0[i],X1[i],X2[i],X3[i]). The parallel application of the Sbox in
round i will be denoted ̂Si.

– Linear transformation. The linear operation is denoted by LT and consists
of the following steps:

X0 ← X0 ≪ 13; X2 ← X2 ≪ 3
X1 ← X1 ⊕ X0 ⊕ X2; X3 ← X3 ⊕ X2 ⊕ (X0 � 3)
X1 ← X1 ≪ 1; X3 ← X3 ≪ 7
X0 ← X0 ⊕ X1 ⊕ X3; X2 ← X2 ⊕ X3 ⊕ (X1 � 7)
X0 ← X0 ≪ 5; X2 ← X2 ≪ 22

Here � j denotes a j-bit left shift and ≪ j denotes a j-bit left rotation. In
round 31 this linear transformation is omitted and an additional subkey ̂K32

is XORed to the state instead.

If we denote by ̂Bi the 128-bit value at round i, the cipher operates as follows:

̂B0 ← IP (P )
̂Bi+1 ← Ri( ̂Bi)

C ← IP−1( ̂B32)

where

IP is an initial permutation

Ri(X) = LT (̂Si(X ⊕ ̂Ki)) for i = 0, . . . , 30

Ri(X) = ̂Si(X ⊕ ̂Ki) ⊕ ̂K32 for i = 31
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Key schedule. The key schedule described in [3] turns the 256-bit user key K
into 33 128-bit round subkeys, that is, 132 32-bits words of key material. The
user key is first written as 8 32-bit words K = w−8w−7 · · · w−1. This prekey
sequence is extended using the recurrence relation

wi = (wi−8 ⊕ wi−5 ⊕ wi−1 ⊕ φ ⊕ i) ≪ 11,

where φ = 0x9e3779b9. We then build the sequence ki from wi using the Sboxes:

{k0, k33, k66, k99} = S3(w0, w33, w66, w99)
{k1, k34, k67, k100} = S2(w1, w34, w67, w100)

· · ·
{k31, k64, k97, k130} = S4(w31, w64, w97, w130)
{k32, k65, k98, k131} = S3(w32, w65, w98, w131)

We then distribute the 32-bit words kj to build the 128-bit subkeys Ki:

Ki = {k4i, k4i+1, k4i+2, k4i+3}
The round key ̂Ki is the result of the application of the fixed initial permu-

tation IP to Ki, hence ̂Ki = IP (Ki).

2.2 Differential-Linear Cryptanalysis

We consider a cipher EK decomposed in two parts FK and GK , thus EK =
GK ◦ FK . The ideas developed in [6,20] allow to combine differential properties
of FK and linear properties of GK to build a more global property on EK . Let
δ −→ Δ be a differential with probability p for FK . In other words,

Probx,K (FK(x + δ) = FK(x) + Δ) = p.

Let 〈α, y〉 ⊕ 〈β, z〉 be a linear approximation of GK with correlation q:

Probx,K (〈α, y〉 ⊕ 〈β,GK(y)〉 = 0) − Probx,K (〈α, y〉 ⊕ 〈β,GK(y)〉 = 1) = q.

In [6,20] it is shown that

Corrx,K (〈β,EK(x)〉 ⊕ 〈β,EK(x ⊕ δ)〉) = pq2

under certain independence assumptions. This means that EK can be distin-
guished from a random permutation with O

(

p2q4
)

chosen plaintext-ciphertext
pairs. It suffices to generate plaintext pairs (x, x ⊕ δ) and compute the cor-
relation of 〈β,EK(x)〉 ⊕ 〈β,EK(x ⊕ δ)〉. Note that the presence of truncated
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differentials and linear hulls will influence the correlation of a differential-linear
distinguisher. Furthermore, the independence assumption is not always satis-
fied, so the transition between the differential and the linear part may have an
unexpected correlation. To overcome this issue, several approaches, such as the
differential-linear connectivity table (DLCT) [1] have been introduced. One of
the most commonly-used techniques is to remove a small number of transition
rounds from the differential and the linear paths and estimate their correlation
r experimentally, and consider the correlation of the full distinguisher is prq2.
This approach is of course limited to sufficiently large correlations r.

Another improvement we use is the idea introduced in [2] of generating many
pairs which verify the differential part of the distinguisher from a single pair. In
the paper, it is noted that flipping certain bits in the input will not change the
fact that a pair fulfils the differential part of the differential-linear distingusher.
In the best case, this reduced the data complexity by a factor of 1/p.

A differential-linear distinguisher can be used to mount a key-recovery attack
by extending it at the top and/or at the bottom with key guesses. We can guess
some key material which determines the input difference of the distinguisher
from the plaintext and some key material which determines the output parity
bit from the ciphertext. By computing the correlation of the differential-linear
distinguisher for each guess of the key, we can separate the correct key guess from
all the wrong ones. In order to determine the advantage and success probability
of our attacks, we will use the models introduced for linear cryptanalysis in [11].

3 First Version of the Attack

In this section we present a corrected version of the flawed 12-round attack
from [17] by considering the correct diffusion on the key recovery rounds along
with the idea introduced in [2] of generating multiple good differential pairs.

3.1 Differential-Linear Distinguisher

Our attack is based on the same differential-linear distinguisher that was used in
the flawed 12-round attack in [17]. We start from a “central” distinguisher which
starts with a fixed difference at the beginning of round 2, progresses through
a three-round truncated differential with probability p = 2−6, and then ends
with a five-round linear approximation with correlation q = 2−21 (we remove
the last round of the original distinguisher). The expected correlation for the
differential-linear distinguisher is thus pq2 = 2−48. However, experiments with
the correlation of the transition rounds between the differential and the linear
trail suggest that the actual correlation should be at least 2−46.75. Our aim for
the twelve-round attack is to effectively extend this distinguisher by two rounds
at the top and two rounds at the bottom.
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Fig. 1. The basic differential-linear attack on 12-round Serpent obtained by simple
extension of the distinguisher, which requires more data than the whole codebook.
The hyphen - represents a zero difference/mask in the nibble to improve readability.
The nibble difference * is undetermined but is zero in the rightmost bit.

If we consider (one of) the best differential transition(s) for each active round
1 Sbox and the best linear approximation for each active Sbox in round 10 (in
other words, if we extend the distinguisher to these rounds without any key
recovery), the data needed for a reasonable probability of success would be more
than 22·(48.75+12+2·5) = 2141.5, which surpasses the size of the codebook. This
version of the attack is illustrated in Fig. 1.

3.2 Improving the First Rounds

Our first improvement is inspired by the ideas proposed in [2] in the context
of ARX, which we adapt to SPN constructions. The idea is to make sure that
some of the differential transitions in round 1 hold for all the data by guessing
all the keybits required to know the input values to these Sboxes, instead of only
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the input differences. For each plaintext, we can deduce a part of the associated
plaintexts which will guarantee that the pair always verifies these transitions.
This requires guessing more keybits than needed for computing the difference at
the beginning of round 1, but allows a reduction in data complexity.

There are five active Sboxes (11, 14, 17, 18 and 31) in round 1, which lead
to 20 active Sboxes in round 0. In other words, we have to guess 80 bits of ̂K0

in order to obtain the desired difference at the beginning of round 1. The aim
now is to choose some Sboxes in round 1 for which we will also determine the
input values, and to do so in a way which optimizes the number of additional
keybit guesses. We therefore look at each of the active Sboxes in round 1 and
see which additional Sboxes in round 0 would be activated if we decide to guess
the input values as well as the differences. We see that in the case of Sboxes 17,
18 and 31, not all Sboxes are active in round 0.

Round 1 Differential Inactive Sboxes

Sbox Probability in round 0

11 2−2 {3, 16, 19, 22, 23, 27}
14 2−2 {19, 20, 22}
17 2−3 {0, 14, 22, 23, 27}
18 2−2 {2, 10, 19, 23, 24}
31 2−3 {0, 10, 14, 23}

From this table we infer that our efforts should be directed towards Sboxes
11, 17, 18 and 31. Sboxes 31 and 17 are particularly interesting as their transition
probability is smaller. If we simply fixed the input value of the four Sboxes to one
which satisfies the transition with the input difference indicated in the figure,
the amount of available data for each key guess would be reduced by a factor of
210. Instead we consider that the input differences to these Sboxes are variable,
as we just need the correct output difference to be satisfied. This also means
that the target output difference for round 0 is variable.

Giving this treatment to the four Sboxes would make all Sboxes except for
23 active in round 1. In order to reduce the number of keybit guesses, we will
only choose 3 out of these 4 Sboxes, and we will impose some conditions in the
input differences in order to obtain the best data complexity: the best choice are
Sboxes 31, 18 and 17. Let us point out that at the end of Sect. 5.3 another variant
is proposed by considering the four Sboxes that provides the best data complex-
ity. We have chosen two conditions that provide the best trade-off between the
reduction of available data and the reduction of keybits to guess. We first impose
a 1-bit condition to the difference in state #2 by requiring the difference in bit
x3 in column 17 to be 0. This rejects half of the plaintext pairs, but reduces
the number of active bits in the previous round. This condition is compatible
with the original difference, which was 1. Additionally, in column 31 we only
consider differences in which the difference in x0 is zero. This condition is not
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compatible with the original difference of 5 and rejects 3/4 of the plaintexts, but
makes column 29 in the previous round inactive. In the end we keep 2−3 of the
plaintext pairs, which means we can generate up to 2124 differential pairs for
each key guess from the whole codebook. This new path is represented in Fig. 2.

In addition to the 76 keybits2 corresponding to the difference, computing the
input values to these three Sboxes requires guessing all the other keybits except
for Sboxes 23 and 29, which are inactive. This implies a 120 bit key guess in
round 0 plus 12 bits in the round 1 for the three active Sboxes in #2 whose
input values are required. In the end the amount of pairs required by the attack
is reduced by a factor of 22·(3+3+2)−3 = 213 with respect to the previous version.

We can summarise the differential pair generation as follows:

– Pick a random plaintext x.
– Guess 120 bits of ̂K0 and 12 bits of ̂K1. With these we can compute the

outputs of S1 in columns 17, 18 and 31, y[17], y[18] and y[31], respectively.
– With these we can compute Δ[17] = S−1

1 (y[17]) + S−1
1 (y[17] + A), Δ[18] =

S−1
1 (y[18]) + S−1

1 (y[18] + 1) and Δ[31] = S−1
1 (y[31]) + S−1

1 (y[31] + 2), which
are the input differences to these Sboxes. If Δ[17]3 = 1 or Δ[31]0 = 1, we
reject the plaintext for this key guess.

– Together with the fixed Δ[11] = 9,Δ[14] = 8, we have obtained the appro-
priate input difference for round 1, Δ.

– The associated plaintext is x′ = S−1
0 (S0(x+ ̂K0)+LT−1(Δ))+ ̂K0, and (x, x′)

is a candidate differential pair.

3.3 Last Rounds

As before, we want to reduce the data complexity by making some changes to
round 10. For each of the five active Sboxes (0, 5, 10, 15, 27), we determine
which bits are required to compute the full output values as opposed to a single
parity bit. In other words, for each of these Sboxes we compute which Sboxes
would remain inactive in round 11 if we determine the full output value:

Round 10
Correlation Inactive Sboxes in round 11

Sbox

0 2−1 {2, 4, 6, 9, 10, 12, 14, 15, 16, 17, 19, 20, 21, 24, 26, 27, 29, 30, 31}
5 2−1 {0, 3, 4, 9, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 29, 31}
10 2−1 {2, 4, 5, 9, 14, 16, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31}
15 2−1 {0, 2, 3, 4, 6, 7, 9, 10, 14, 19, 21, 24, 25, 26, 27, 29, 30, 31}
27 2−1 {3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 16, 19, 21, 22, 25, 26, 31}

We will use a linear output mask spread between the inputs and the outputs
of the S2 layer in round 10. If we determine the full output (instead of just the

2 There are 4 less bits to guess as column 29 is now inactive.
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Fig. 2. The slightly improved differential-linear attack on 12-round Serpent with stag-
gered key-recovery. The nibble difference $ is undetermined but is one in the leftmost
bit x3 because of the differential properties of S1. The nibble difference * is undeter-
mined but is zero in the rightmost bit x0. The nibble difference @ is undetermined but
is zero in the rightmost bit x0. The nibble difference # is undetermined but is zero in
the leftmost bit x3.

desired parity bit) of Sbox 0, there are 13 active Sboxes in the last round. The
other four active Sboxes in round 10 are part of the differential-linear distin-
guisher. We thus need to guess 4 · 13 = 52 keybits of ̂K12, and 4 bits of ̂K11.

The key recovery in the linear part can be performed efficiently by using the
FFT algorithm for multiple rounds which was introduced in [18], with a cost of
2 · 52 · 22·52 additions/subtractions and 22·52 products for each guess of the key
in the top and each of the 24 key guesses in round 10.
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3.4 Complexity Analysis

In order to properly evaluate the time complexity, we need to compare the cost
of the basic operations of the attack against 12-round Serpent encryptions. We
first focus on the distillation phase of the FFT algorithm For each generated
plaintext: we perform a two round encryption at the beginning and a one round
decryption at the end. However, the partial encryption can be performed for one
plaintext x and the result can be reused for all input values of the two inactive
Sboxes in round 0. The filtering requires us to process 23 plaintexts to find one
which satisfies the desired conditions. The cost of processing each plaintext is
thus (2−8 · 23 · 2/12 + 1/12) = 2−3.50 encryptions.

For the comparison of a 12-round encryption with one of the arithmetic
operations, we note that we can consider 128 · 3 · 12 = 4608 as a lower bound
for the number of bit operations in a 12-round Serpent encryption. On the other
hand, a 128 bit addition can be performed with 256 bit operations and a 128
bit product with 128 · log2(128) 
 961 bit operations. We thus get a worst-case
2−4.17 conversion factor for the additions and 2−2.26 for the products.

Given the distinguisher’s correlation of 2−48.75−4−2·4 = 2−60.75, and using the
model from [11], we obtain that with 2123.96 pairs, (2127.96 data before sieving),
an advantage of 15 bits is obtained with probability 0.1.

The time complexity of the attack is as follows:

2120 · 212
︸ ︷︷ ︸

Top key guess

·
(

2123.96 ·2−3.5+24 · (

104 · 2−4.17 + 2−2.26
) · 2104

︸ ︷︷ ︸

Bottom key guess

)

+2256−15 
 2252.46

encryptions. We need 2127.96 registers for the data, as well as 2104 for the distil-
lation tables of the FFT. The overall memory complexity is thus around 2127.96.

4 Sbox Conditions

The purpose of the present Section is to illustrate some conditional properties
of the Serpent Sboxes which can improve the differential part of the attack, as
well as studying the presence of similar properties in small (4-bit) Sboxes.

4.1 Conditions on the Serpent Sboxes

We consider the first Serpent Sbox, S0, which is used in round 0. If we denote
its input by x = (x3, x2, x1, x0) and the output by y = (y3, y2, y1, y0) then the
following set of conditional relations always holds:

x2 ⊕ x1 ⊕ x0 = 1 ⇒ y0 = x3 ⊕ x2 ⊕ x0 ⊕ 1

x3 ⊕ x2 ⊕ x1 = 0 ⇒ y1 = x3 ⊕ x2 ⊕ x0 ⊕ 1

x2 = 1 ⇒ y2 = x3 ⊕ x1 ⊕ x0

x3 = 0 ⇒ y3 = x2 ⊕ x1 ⊕ x0

x3 = 1 ⇒ y3 = x3 ⊕ x2 ⊕ x1
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Thanks to these relations, we can compute output bit y3 without querying the
full input. We first query x3. Depending on this bit, we query either x2 ⊕x1 ⊕x0

or x3 ⊕ x2 ⊕ x1 to obtain y3. This decreases the amount of key material that
needs to be guessed in an attack, as in the end we only have to consider four
different guesses of the key as opposed to the usual sixteen. More specifically, if
xi = mi ⊕ ki where (m0,m1,m2,m3) is the known state before adding the key
guess (k0, k1, k2, k3), then in order to compute the output bit y3 of S0, we first
guess k3 and determine the input bit x3 = m3 ⊕ k3. If x3 = 0, we guess the bit
k2 ⊕ k1 ⊕ k0 and, thanks to the above conditions, we have that

y3 = x2 ⊕ x1 ⊕ x0 = (m2 ⊕ m1 ⊕ m0) ⊕ (k2 ⊕ k1 ⊕ k0).

Otherwise, when x3 = 1 we guess k3 ⊕ k2 ⊕ k1 and determine

y3 = x3 ⊕ x2 ⊕ x1 = (m3 ⊕ m2 ⊕ m1) ⊕ (k3 ⊕ k2 ⊕ k1).

We can find some similar relations which determine y0, y1 and y2 in the cases
which were not covered by the previous set of relations:

x2 ⊕ x1 ⊕ x0 = 0 and x2 = 0 ⇒ y0 = x3 ⊕ 1

x2 ⊕ x1 ⊕ x0 = 0 and x2 = 1 ⇒ y0 = x0 ⊕ 1

x3 ⊕ x2 ⊕ x1 = 1 and x2 = 0 ⇒ y1 = x0 ⊕ 1

x3 ⊕ x2 ⊕ x1 = 1 and x2 = 1 ⇒ y1 = x3 ⊕ 1

x2 = 0 and x1 = 0 ⇒ y2 = x3

x2 = 0 and x1 = 1 ⇒ y2 = x0 ⊕ 1

With these relations we can determine any one bit of the output of the Sbox
with either four (output bit y3) or six different guesses of key-bits on average.
We can construct analogous conditional relations which determine more than
one output bit at the same time. A more convenient representation of these
conditions can be given with binary trees, as it is explained in the appendix.

The same technique can be applied to reduce the guesses necessary to deter-
mine whether a pair (x, x′) = (m⊕k,m′ ⊕k) satisfies a certain output difference
Δ, i.e., if S0(x) ⊕ S0(x′) = Δ. We consider the function

FΔ(x) = S−1
0 (S0(x) ⊕ Δ) ⊕ x,

and we search for conditional relationships which allow us to find a good pair
(x, x′) by guessing k only partially. The reason is that, if (x, x′) is a good pair,

FΔ(x) = x′ ⊕ x = m′ ⊕ m,

and knowing FΔ(x) and m is therefore enough to recover m′.
We give a partial example for Δ = 4. From the relations of F4 represented as

a tree in Fig. 6a, we derive the following (partial) conditions for the case x0 = 0:

x0 = 0 and x1 = 0 ⇒ F4(x) = C

x0 = 0 and x1 = 1 ⇒ F4(x) = 5 ⊕ x32
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Therefore, in order to guess F4(x), we have first to guess bit k0. If x0 = m0⊕k0 =
0, then we guess k1 and find that F4(x) = m′ ⊕ m = C if x1 = k1 ⊕ m1 = 1, i.e.
m′ = m ⊕ C. Otherwise, if x1 = k1 ⊕ m1 = 0, we guess k3 and find out that

m′ =

{

m ⊕ 5 if x3 = k3 ⊕ m3 = 0
m ⊕ 7 if x3 = k3 ⊕ m3 = 1.

The case for which x0 = 0 can be treated in a similar way. Thanks to this gradual
way of guessing k, we obtain the desired information by doing only an average
of six guesses instead of sixteen.

4.2 Conditions on General 4-Bit Sboxes

We will now show that the presence of linear conditions like the ones we have
shown for S0 is unavoidable if the number of bits of the Sbox is small compared
to the number of (linear) restrictions in the input.

Lemma 1. Let f : Fn
2 → F

n
2 be a permutation (Sbox). If 2k − k ≤ n, then there

exist a subspace U of dimension k of Fn
2 and a vector u ∈ F

n
2 such that f |U+u has

maximum linearity, that is, there exist nonzero linear masks α ∈ U + u, β ∈ F
n
2

for which α · x + β · f(x) is constant in U + u.

Proof. Pick any subspace V ⊆ F
n
2 of dimension n − k and set U = V ⊥. Let LV

be an n − k × n matrix whose row subspace is V and let MU be a 2k × n
matrix whose rows are all the elements of U . Note that x ∈ U if and only if
LV x = 0. We denote by f(MU ) the matrix which is generated by applying f to
every row of MU . We can also define MU + u in the same way for an arbitrary
vector u ∈ F

n
2 .

For an arbitrary vector u, [α, β] ∈ F
2n
2 is a correlation 1 mask in U + u if

[

LV 0
MU + u f(MU + u)

]

︸ ︷︷ ︸

W

[

α
β

]

=

⎡

⎢

⎢

⎢

⎣

LV α
c
...
c

⎤

⎥

⎥

⎥

⎦

(1)

for some c ∈ {0, 1}. We are only interested in solutions where α ∈ U +u. We set
u = 0 for convenience, in which case LV α must be equal to zero.

The matrix W has 2n columns and n − k + 2k rows, so if n − k + 2k < 2n,
the system is necessarily under-determined, the kernel of W is nonempty, and
all its elements are masks with correlation 1. If n − k + 2k = 2n and the kernel
contains only the trivial mask (that is, if W is a full rank square matrix), then
W−1[0, 1, . . . , 1]t is a non-trivial mask with correlation 1.

With this lemma we can justify the existence of linear relations in several
cases for small Sboxes:
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n 1 2 3 4

k 0 1 0 1 2 0 1 2 3 0 1 2 3 4

n − 2k + k 0 0 1 1 0 2 2 1 -2 3 3 2 -1 -8
Relation? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ? ✗

It is quite clear that in the cases n = k = 3 and n = k = 4 it is impossible to
find such a relation unless the map f is linear, however, in the case n = 4, k = 3
we can still prove the existence of these relations:

Lemma 2. For every permutation f : F
4
2 → F

4
2 there exist a subspace U of

dimension 3 and a vector u ∈ F
4
2 such that f |U+u has linearity 8.

Proof. Without loss of generality we assume that f(0) = 0, via affine equivalence.
We remove the corresponding row from W and we consider c = 0, as for c = 1
would get a contradiction. We again set u = 0. We pick V at random as above
but in such a way that U contains certain vectors a, b, c, d.

W is then a square matrix which either has rank(W ) < 8, in which case the
kernel of W contains at least one non-trivial solution and we are done, or has
rank 8. In the latter case the only solution to the equation is the trivial one. We
will now show that it is impossible for the matrix W to have rank 8 if we choose
a, b, c, d appropriately.

Since n = 4, f cannot be an APN permutation, and it must have a vanishing
2-flat (Theorem 5 in [13]). There exist distinct a, b, c, d for which

a + b + c + d = 0 = f(a) + f(b) + f(c) + f(d). (2)

This provides a nontrivial relationship between the rows of W which can be used
to obtain an equivalent matrix of rank 7 or lower.

4.3 A Conditional Linear Property of S2

Another improvement we will apply is based on the framework for conditional
linear cryptanalysis which was presented in [9]. We consider the Sbox S2 (which
is used in round 10 in the attack) and the linear approximation 〈B, x〉⊕〈1, S2(x)〉:

(y2, y0) = (1, 1) y2 = y0 = 1

xxx 0 1 3 4 5 6 9 A B C D F 2 7 8 E
S2(x)S2(x)S2(x) 8 6 9 3 C A 1 E 4 0 B 2 7 F D 5

〈B, x〉 ⊕ 〈1, S2(x)〉〈B, x〉 ⊕ 〈1, S2(x)〉〈B, x〉 ⊕ 〈1, S2(x)〉 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1

If we consider the whole domain, the correlation is 4−12
16 = − 1

2 . However,
under the condition (y2, y0) = (1, 1) the correlation increases to 2−10

12 = − 2
3 .

We will use this condition to improve the correlation of the linear part of the
distinguisher.
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Fig. 3. Reducing the required keybit guesses in the first round.

5 Improved 12-Round Attack Using Sbox Properties

In this section, we apply some of the Sbox properties we have discussed in Sect. 4
to the 12-round attack of Sect. 3, whose complexity was only barely lower than
that of an exhaustive key search. The reduction in time complexity is achieved
by a careful analysis of the key recovery in the first two rounds, as well as a
small improvement to the linear approximation of round 10 by using conditional
linear cryptanalysis [9].

5.1 Improving the Differential Key Recovery

We start by looking at the configuration of required differences and values at the
output of S0 in the first round, which is represented in detail in Fig. 3. The figure
contains both the differences (top half) and the values (bottom half) which are
required at the output of the S0 layer (state #1). On the top half, if a number is
written in a cell, then the bit difference on this cell will influence the difference
in the column indicated by the number written inside at the input of S1 in state
#2 (more differences might affect it but it is not important and for a better
readability of the drawing we just write one here). The color of the background
of such a cell indicates whether the difference is fixed (grey) or variable (white).
On the bottom half, if an indexed number ab is written inside a cell, then the
bit associated to this cell will influence the value of bit b of the input of Sbox
a in the S1 layer. For space reasons, symbols are used when more than one bit
is influenced. We only need the values associated to columns 31, 18 and 17 as
the other two Sboxes are part of the differential and thus only knowledge of the
input difference is required. The colors of the columns (also indexed with lower
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case letters from a to f) indicate where we can reduce the amount of keybits we
guess below four.

The main idea is to exploit the fact that we might not need to guess all the
keybits at the input of an Sbox: in some cases the knowledge of a few input bits
might be enough to determine all the required information about the output
if we guess the key in an orderly manner, as we showed earlier. Furthermore,
as the conditional relations introduced in Sect. 4 describe the desired output
bit as a linear combination of the inputs it’ll sometimes be possible to XOR
the associated keybit guess into a keybit guess for the next round. A more
comprehensive explanation and more details in the conditions are provided in A
from appendix.

As an example, if we need to determine the input bit of State #2

z = y ⊕ ̂k1

for some keybit ̂k1 of round 1 and we know that y = x ⊕ ̂k0 for some key-bit ̂k0

of round 0 and plaintext bit x (thanks to conditions), then we can combine the
two key guesses into one, as z = x ⊕ ̂k1 ⊕ ̂k0. This can only be done once for
each input bit of S1 (it is impossible to merge one bit of ̂K1 with several bits of
̂K0 at the same time).

We have considered all the active Sboxes of the state immediately after the
application of S0, as shown in Fig. 3. We consider six categories of columns “of
interest” depending on the outputs which are required for the attack. For each
of this, we are going to compute the multiplicative time factor that we gain with
respect to guessing naively, as was done in the previous attack.

Columns of type a (yellow). There are 2 Sboxes (23,29) which are inactive and
need no key guessing at all (the same as in the previous attack). These provide
gain factor of 2−8 with respect to a full subkey guess.

Columns of type b (orange). In columns 10, 14 and 26 we require no output
differences, but we need to determine a single output bit from each. Instead of
guessing sixteen keybits, we can make use of the properties of S0:

– Column 26: we only need y0, which we can determine as follows:
• If x2 ⊕ x1 ⊕ x0 = 0 then:

* If x1 ⊕ x0 = 0 then y0 = x3 ⊕ 1.
* If x1 ⊕ x0 = 1 then y0 = x0 ⊕ 1.

• If x2 ⊕ x1 ⊕ x0 = 1 then y0 = x3 ⊕ x2 ⊕ x0 ⊕ 1.

For a given plaintext, we consider six possible guesses of the key instead of
sixteen on each column, thus resulting in a 6/16 gain factor for each.

– Column 14: we only need y2, which can be determined as follows with a gain
factor of 6/16:

• If x2 = 0 then:
* If x1 = 0 then y2 = x3.
* If x1 = 1 then y2 = x0 ⊕ 1.

• If x2 = 1 then y2 = x3 ⊕ x1 ⊕ x0 ⊕ 1.
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– Column 10: we only need y3 which can be determined as follows with a gain
of 4/16:

• If x3 = 0 then y3 = x2 ⊕ x1 ⊕ x0.
• If x3 = 1 then y3 = x3 ⊕ x2 ⊕ x1.

We obtain a gain factor of 6
16 · 6

16 · 4
16 
 2−4.83. In addition, we can absorb the

last bit guess for some of the columns into the next round. As bit x3 of column
17 in S1 is associated to both Sboxes 10 and 26 in S0, we can only do this a total
of two times (round 1 input bits x3 in column 17 and x1 in column 18). The
overall gain factor with respect to a full subkey guess is 2−4.83 · 2−2 = 2−6.83.
The trees associated to these conditions can be seen in Fig. 4 from the appendix.

Columns of type c (red). In columns 2, 3 and 19, we require no output differ-
ence but two output bits are needed. We proceed as in the previous case, but
considering both bits at the same time.

– Column 19: We need y1 and y3. Using the trees from Fig. 5c in the appendix
we can see that determining both bits y3 and y1 requires three bits in total.
We are also able to absorb one keybit into the next round (x2 from column
17), but the other bit has to be guessed. The gain for this column is thus
2×23

26 = 2−2.
– Column 3: We need y0 and y2. We can obtain an average guessing cost of 10

as seen in the corresponding tree from Fig. 5b, which gives a gain factor of
2−0.68.

– Column 2: This column (Fig. 5a) has the same complexity as 19, as both their
trees have the same number of leaves, and also contains two new keybits that
might be absorbed: we need 3 input bits to determine the two desired output
bits. We can absorb also one keybit in the last linear relation, that can be the
keybit from x0 of column 17 or from x2 of column 31. We thus also obtain a
gain factor of 2−2.

Combining the gains from these Sboxes we obtain a total factor of 2−4.68.

Columns of type d (pink). Columns 15 and 28 only require no output difference,
but this difference is not fixed. There are four possible differences in column 28:
0, 4, A or E (as both Δx1 and Δx3 come from difference Δx2 in column 18 from
the next round), which appear with probability 1/4 (this can be deduced from
the DDT of S1 and the output differences for columns 18 and 31).

We first guess the parts of the first round subkey which determine the values
at the inputs of columns 18 and 31, so that we know which difference we want at
the output of column 28. This is only possible because we only need the output
differences from these two columns, and no actual bit values.

We will use the trees built with function FΔ mentioned in Sect. 4.1 that are
detailed in Fig. 6 in the appendix. As an example, if we compute the cost when
the desired output difference in column 28 is 4 on average there are 6 possible
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guesses. The costs for the other non-zero differences are obtained in a similar
way and are 23 for both. The overall cost becomes:

1
4
6 +

1
4
23 +

1
4
23 +

1
4

· 1 
 22.52

instead of 24, and implies a gain factor of 2−1.48.
For column 15 we have two possible output differences: 4 and C (as input

Δx3 in column 18 is always 1). For difference 4 the average cost is 6, and for C

the average cost is 10, which gives a total gain factor of 6/2+10/2
16 = 2−1.

Both gain factors multiply to 2−2.48.

Columns of type e (turquoise). In columns 1, 7, 8 and 11 we have a fixed dif-
ference and we also need to determine some output values. We will also use the
conditions given by functions FΔ mentioned in Sect. 4.1, but now we have also
to look at the values of the inputs and outputs to satisfy the conditions. Let us
illustrate the example for column 1.

In column 1 we have a fixed output difference of Δ = 1 and we want to
determine bit y1. If we consider function F1, we can see that there are 8 possible
input differences δ: 3, 6, 9, C, B, A, E or F. In order to determine whether a pair
(x, x⊕δ) leads indeed to the desired output difference 1, we always need to guess
three key bits: this is because for any fixed δ the set {x : S0(x) ⊕ S0(x ⊕ δ) = 1}
is an affine space (of dimension 1) and therefore can be described by three linear
conditions, i.e. three key bits are needed in order to verify them. In each of these
cases, the three bits needed to guess whether a pair is a good pair are enough
to determine y1. Column 1 has therefore a gain factor of 2−1.

We can do the same thing with columns 7, 8 and 11. In the case of columns 7,
some of the possible input differences define an affine space {x : S0(x) ⊕ S0(x ⊕
δ) = 8} of dimension 2, that means only 2 keybits are needed for guessing a good
pair with this particular input difference. Taking into account that a further
guess is sometimes needed for then determining the desired output values, the
number of needed known key bits can be reduced from the full guess and we
obtain a gain factor of 2−1.13. For column 8 we have the output difference that
affects one of the needed values, so we will need to guess the four input bits,
but we can always absorb the bit x3 of column 31, so the gain factor is still
2−1. For column 11 all four input bits need to be guessed for each considered
input difference, but for two input differences that represent half of the cases (B
and 2) two of the guesses independently determine the values of the two needed
values. That means that bit y3, that corresponds to bit x3, of column 18 can
always be absorbed, as it wasn’t done before; and that bit y1, corresponding to
bit x0 of column 17 that was absorbed half of the times in column 2, can now
be absorbed the other half of the time. For the other half of the cases only y3

can be absorbed. The overall gain factor for column 11 is 2−1.19.
In total these columns generate a gain factor of 2−4.32.
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Columns of type f (purple). We have three columns of this type: variable differ-
ence and some values needed. Depending on the value of the difference, we will
find some of the cases previously studied.

For half of the cases of column 22, when the difference is zero, we can just use
the same tree from Fig. 5b, which gives a factor of 10/16, while in the other half of
the cases, when the difference is 4, the case is similar as for the e column 8, and we
obtain a gain factor of 1/2 absorbing the bit 310, which gives 1/2· 10

16 +1/2·2−1 =
2−0.83. For column 20, the desired bits are y0, y1 and y3. When the difference is
0, an optimal tree for simultaneously determining these bits is given in Fig. 7.
From this we obtain a gain factor for this columns of 1/2 · 2−0.42 +1/2 = 2−0.19.

Column 0 is exactly the case of column 26 when the difference is zero. We
can even absorb bit x0 of column 18 as it hasn’t been absorbed before. When
the difference is 1, we recover a similar case as for columns of type e, having
in this case a gain factor of 1/2. The gain factor of this column is therefore
1/2 · 6

16 · 1/2 + 1/4 = 2−1.54.
This gives a total gain factor for these columns of:

2−0.83 · 2−0.19 · 2−1.54 = 2−2.56.

5.2 Conditional Linear Cryptanalysis

In the case of the linear key-recovery for the last rounds, even though similar
properties exist for S3 to the ones we have used for S0, exploiting them is much
more complicated than in the differential part, as we are performing the last
round key recovery with the FFT. Nevertheless, we can apply conditional prop-
erties in the Sbox S2 of the previous round, round 10, using the framework which
was established in [9].

If we look at the linear approximation of Sbox 10, if we impose the condition
that its outputs y0 and y2 are not both 1 at the same time, then the correlation
goes from −1/2 to −2/3. This would improve the overall correlation by a factor
(2/3×(1/2)−1)4 = 21.66. As we have to discard the ciphertext pairs which do not
verify the condition, we only keep a proportion of (3/4)2 = 2−0.83. With this we
can reduce the data complexity to 20.83−1.66, resulting in 2123.13 × 24 = 2127.13.
However, since the bottleneck of the previous attack was the exhaustive search,
we instead keep a similar data complexity of 2123.92 × 24 = 2127.92, so that the
advantage increases to 23.

We still have to see how this affects the the key recovery in the final round:
with respect to the previous attack, we require output bit y2 of Sbox 10 in round
10. This additional bit only activates column 6 in the next round. The number
of active keybits in the last round is thus 56.

5.3 Complexity and Trade-Offs

We now compute the time complexity of this improved version of the attack. The
data and memory complexities are 2127.92. If we consider all the gain factors we
have accumulated, the cost of the key recovery part is
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2140−8−6.83−4.68−2.48−4.32−2.56 · (

2123.92−3.5 + 24 · 112 · 2112 · 2−4.17
) 
 2231.91

equivalent encryptions, while the exhaustive search has cost 2256−23. The total
time complexity is thus around 2233.55 12-round encryptions.

Trade-offs between data and time. We can reduce the data and memory complex-
ities by relaxing one of the conditions in the first rounds, though this increases
the time complexity. We remove the condition on the difference in bit x0 in
column 31 of state #2. This reduces the data complexity by a factor 22. This
changes the differences in columns 29, 26 and 13 from Fig. 3: column 29 becomes
a column of type e, column 26 becomes a column of type f , and column 13 won’t
impact the complexity as it was not exploited in the attack.

Column 29. Its previous gain factor was 2−4. For the 3/4 of the cases where
the previous bit condition in column 31 no longer holds, we want an output
difference of 8 (Fig. 6e). The new cost for this column is

1/4 × 1 + 3/4 × 10 = 22.954,

which results in a more modest gain factor of 22.954−4 = 2−1.04.

Column 26. Its previous gain factor was 6/16 = 2−1.415. However, this will now
only apply to 1/4 of the data, which is when the bit condition in column 31
holds. For the other 3/4, the guessing cost is 12/16, results in the cost

1/4 × 6 + 3/4 × 12 = 23.39,

and a new gain factor of 2−0.6.

Time complexity for a data complexity of 2125.74. By considering the new gain
factors and choosing a different amount of data and advantage, we obtain:

2140−4−1.04−5.40−0.6−4.68−2.48−4.32−2.56 · (

2123.74−3.5 + 24 · 112 · 2112 · 2−4.17
)

equivalent encryptions for the key recovery and 2256−21 encryptions for the
exhaustive search, which result in an overall time complexity of 2236.31. This
time the data and memory complexities are 2123.74 × 22 = 2125.74.

Attack with the best data complexity. As we have discussed in Sect. 3.2, in order
to improve the correlation of the distinguisher, we chose to determine three of the
five Sboxes active in round 1. We now show how to also determine the fourth one
that was considered interesting, allowing to make the data complexity smaller.

In this case there will then be no conditions imposed in the differences of state
#2. We can proceed as in the previous attack, and we will obtain one column
of type a (23), three columns of type c (2,3 and 19), three columns of type e (0,
7 and 8), and four columns of type f (12, 22, 26 and 29). We compute the gain
factor the same way as before, and we obtain for column 29: 2−1.607, column 26:
2−1.192, column 23: 2−4, column 22: 2−1.35, column 19: 21.41, column 12: 2−1,
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column 8: 2−1.678, column 7: 21.41, column 3: 2−0.415, column 2: 2−0.415 and
column 0: 2−1.54.

This gives a total gain factor of 2−16.023.
We will not consider the conditional linear property in the output as other-

wise the term related to the FFT would be the bottleneck, and this implies that
for a data and memory complexity of 2118.40, which gives an advantage of 16
bits, we have a time complexity of:

2128+16−16.023 · (

2118.40−3.5 + 24 · 104 · 2104 · 2−4.17
)

+ 2256−16 = 2242.93

12-round encryptions.

6 Conclusion

In this paper we improved upon the best known attacks on Serpent. Our
improved differential-linear attack has simultaneously lower time, data, and
memory complexities than the best previous attacks. We would like to stress
that our improvements do not modify the underlying distinguisher at all, and
only focus on the data selection and, most importantly, the key-guessing proce-
dure. We find it remarkable that by focusing solely on this part, we are able to
significantly improve (and thereby actually fix) previous results.

While our approach in this paper is highly specific to Serpent and the
differential-linear distinguishers we used, its ideas can be applied more generally,
both to other attacks as well as to other ciphers. Indeed, as mentioned above,
our work here is the predecessor of the general framework of [12]. Our work
also serves as an application of these ideas to differential-linear cryptanalysis, an
example of which was not present in [12].

Acknowledgment. This work was partially funded by the DFG, (German Research
Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. This
project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
no. 714294 - acronym QUASYModo).

A Connection to the Tree-Based Key-Recovery of [12]
and Conditions used in Sect. 5

The conditions used in the attack of Sect. 5 and Sect. 4.1 can be expressed in
terms of a special type of binary decision trees (called affine decision trees in [12]
and parity decision trees elsewhere when the bit-length of the output is one).
The authors of [12] examine those trees formally.

An affine decision tree is a regular binary tree for which the inner nodes
represent the decision rule for evaluation and the leaves represent the function
values of all inputs arriving there.
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Given a tree for a (non-constant) function f and undetermined (resp. par-
tially determined, key-dependent) input x which has to be evaluated in the key
guessing phase, one needs to guess the bit b = 〈α, x〉 indicated by the root
and then follow the appropriate edge to the sub-tree representing the function
f |〈α,x〉=b (here: the left sub-tree represents f |〈α,x〉=0 and the right f |〈α,x〉=1).
Each leaf represents an affine subspace on which the function is constant and
whose codimension is the depth of the corresponding leaf.

Let the tree for f have k leaves with corresponding affine spaces A1, . . . , Ak

(which we identify with the leaves) and depths d1, . . . , dk. When we arrive in
a leaf Ai, we have made at most di additional guesses during the key guessing
phase. The size of each space is |Ai| = 2n−di . That means that the total cost
incurred is

k
∑

i=1

2di2−di = k

since 2di is the cost of guessing di bits and we will end up in Ai for a proportion
of 2−di inputs. Put differently, the multiplicative gain over guessing all n bits of
input is

k

2n
.

As noted in [12], the goal in most attack scenarios is therefore to minimize the
number of leaves (the size of the tree).

In the following, we write selection patterns α as hexadecimal numbers, whose
binary representation is regarded as an element of F4

2. The bold numbers refer to
leaves, and depending on the number of output bits m, is a hexadecimal number
between 0 and 2m − 1.

In the following, we give the trees used in the attack of Sect. 5.

Columns of type b. Let us first look at the set of relations for Sbox S0 given in
Sect. 4.1. Those relations make up size-minimal trees for coordinate functions of
S0:

yi(x) = 〈2i, S(x)〉.

7

4

8

1 0

1

1 0

D

1 0

(a) y0

E

D

1 0

4

1

1 0

8

1 0

(b) y1

4

2

8

0 1

1

1 0

B

1 0

(c) y2

8

7

0 1

E

0 1

(d) y3

Fig. 4. Trees for 〈2i, S0(x)〉
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In the attack for columns of type b we use the trees from Figs. 4a, 4c and 4d.

Columns of type c. For column 19 (type c) one can derive from the conditions
given in Sect. 4.1 that only three bits are necessary to determine both y1 and y3

using the tree from Fig. 5c. The resulting gain (8/16) is optimal. One additional
bit can be absorbed by adding the corresponding keybit from the next round to
the final linear relation. The same happens for column 2, giving each of these
two columns a gain factor of 2−2. Column 3 has a smaller gain of 2−0.68.

The trees for columns of type c can be found in Fig. 5.

Columns of type d (and e). For columns of type d we have to determine good
pairs (x, x′) whose output difference Δ = S0(x) + S0(x′) belongs to a fixed
subset, like for example Δ = 4: Given x, we look at the function FΔ mentioned
in Sect. 4.1. Its corresponding tree is given in Fig. 6a. It has size 6 and therefore
a gain factor of 6/16.

F
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3 1
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8

2 0
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3 2

(a) Column 2
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A

4

0 2

8

1 4

3 0

(b) Column 3

9

E

4

1 0

8

3 2

6

C

2 3

4

0 1

(c) Column 19

Fig. 5. Trees for columns of type c

When the expected output difference is 0, so must be the input difference.
Therefore instead of guessing 4 bits, we need not guess any. Hence we gain a
factor of 1/16 in this case. The corresponding tree has one leaf only.

The size-minimal trees for the other three possible differences C (for column
15) and A and E (for column 28) can be found in Fig. 6, as well as the tree for
the difference 8 of column 29 used for the better memory trade-off.
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Fig. 6. Trees for FΔ = S−1
0 (S0(x) + Δ) + x, columns of type d

A tree for column 20 of type f. For column 20, when the output difference is zero
the right input pairs are trivial, while the three output bits must be determined.
The tree shown in Fig. 7 shows how to do an optimal guess in order to do that.
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Fig. 7. Tree for column 20, to determine output bits y0, y1 and y3
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Abstract. This paper proposes Pholkos, a family of heavyweight tweak-
able block ciphers with state and key sizes of ≥256 and tweaks of either
128 or 256 bits. When encrypting large chunks of data under the same
key, modes with Pholkos do not require “beyond-birthday security” since
it provides “bigger birthday security”. This also makes it a good choice
for quantum-secure authenticated encryption modes like QCB. Pholkos
runs at 1–2 cycles per byte on Intel 6-th generation and more recent,
following design principles from Haraka, AESQ, and the TWEAKEY
framework. Building on the AES round function not only boosts soft-
ware performance but also improves security, employing knowledge from
two decades of cryptanalysis of the AES.

Keywords: AES · Tweakable block cipher · Bigger birthday security

1 Introduction

Large-State Block Ciphers. Many schemes and modes for n-bit block-cipher-
based authentication, encryption, or authenticated encryption are only secure
up to the birthday bound (O(2n/2) calls to the internal primitive). This is a practi-
cal issue when state sizes are as small as 64 bits (cf. [10]), yet even n = 128 bits can
be insufficient for future-proof high-end applications or post-quantum security.

While modes of operation secure beyond the birthday bound are one way
to address this issue, such modes are usually more complicated than modes
with birthday-only security (CTR, CBC, GCM [63], OCB [72], . . . ). Another
idea would be to instantiate modes with heavyweight block primitives (cf. [9])
for “bigger” birthday security. In the same spirit, 128-bit keys can be considered
sufficiently secure for most applications at the moment. Though, for u users with
respective secret keys, the security against adversaries that aim to recover any
of them decreases linearly in u. Thus, for high birthday-bound and multi-user
security, keys of at least 256 bits are recommended.

A similar argument can be formulated for post-quantum applications. While
Shor’s seminal algorithm [79] is less applicable to analyze symmetric-key algo-
rithms, Grover’s algorithm [46] can reduce the exhaustive key search to O(2n/2)
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operations, cf. [1].1 Thus, at least 256-bit keys are recommended for 128-bit
security [1,28]. Kaplan et al. [57] introduced two models to formalize quantum-
computing-aided adversaries: in the Q1 model, the adversary can use a quantum
computer only for offline computations; in the Q2 model, it can also ask super-
position queries – giving quantum algorithms a quadratic speedup not only for
exhaustive key search but also certain attacks. Moreover, quantum adversaries
may profit further if the key size exceeds the state size and some classical modes
break in the Q2 model, including OCB [56].

Modes of operation can benefit from a tweakable block cipher (TBC) by
increased security, simplified domain separation in proofs [30,51,68], or the abil-
ity to process additional inputs. Moreover, Bhaumik et al. [11] showed that the
use of a dedicated TBC yields a quantum-secure mode QCB.

Two design concepts have been shown promising for the construction of
TBCs: using the AES [65] as a base, and the TWEAKEY concept and the
STK schedule [54]. Building on the AES round function allows for apply-
ing decades of cryptanalysis of it, and higher performance due to widespread
performant hardware instruction sets. Intel even announced to integrate the
mm512 aesenc epi128 instruction with almost fourfold throughput compared
to the existing 128-bit instruction from 10th-generation Core-i models on [39].
The TWEAKEY design is a well-established principle for turning a block cipher
into a TBC while minimizing the risk of the additional input space.

Research Questions. The aspects above form the interesting research question
to design an efficient family of (tweakable) block ciphers that provides:

(1) Sufficiently long keys against quantum-computing cryptanalysis,
(2) Sufficiently long blocks for greater birthday bounds,
(3) Tweaks to support classical and Q2-secure modes with high security and

high performance, and
(4) An AES-round-based design to benefit from hardware instructions.

We aim at keys of 256, blocks of at least 256, and tweaks of at least 128 bits.

Design Strategies. Peyrin outlined three high-level strategies for TBC
designs [67]: (1) minimal area, (2) low energy consumption and lightweightness,
and (3) high authentication/encryption performance. Our focus will be on Use
Case (3). Peyrin suggested using larger tweaks since the tweak-update function
can be lighter than that of the plaintext input.

Few large-state block ciphers exist in literature, e.g. ThreeFish [42] with 256,
512, and 1024-bit state or the recent 256-bit Trax [8], both with 128-bit tweaks.
Both are ARX-based (additions, XORs, and rotations) constructions optimized
for 32-bit microcontrollers. Kalyna [66] is a recent Rijndael-like substitution-
permutation network (SPN) with state and key lengths of 128, 256, and 512 bits
and a dedicated S-box. Saturnin is a 256-bit SPN with a cubic structure and a
lightweight S-box whose purpose is a small footprint.

1 Though, Grover’s algorithm does not parallelize well: when running q quantum cores,
it still needs O(2n/2/

√
q) operations.
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Table 1. Comparison and versions.

(a) Parameters of Pholkos. Std. = standard
model, RT = related-tweak, RTK =
related-tweakey.

Version (bits) #Steps Security (bits)

n k t s Std. RT RTK

256 256 128 8 256 256 256

256 256 256 8 256 256 256

512 256 128 10 256 256 256

1024 256 128 12 256 256 256

(b) Large-state block ciphers and permutations based on the
AES-round function.

Construction Size variants (n/k/t)

Block ciphers

3D [55] 256/256/– 512/512/– –

LANE [48] 256/256/– 512/512/– –

Kalyna [66] 128/128/– 256/256/– 512/512/–

Tweakable block ciphers

Saturnin [26] 256/256/4

ThreeFish [42] 256/256/128 512/512/128 1024/1024/128

Trax [8] 256/256/128

AES-round-based Permutations

AESQ [17] 512/–/–

Haraka v2 [60] 256/–/– 512/–/–

Several constructions already transformed larger states based on the AES
round function. 3D [55] was an early attempt to design a larger block cipher based
on the AES round function, but was not tweakable and extended the complex
AES key schedule. Moreover, it needs additional instructions in optimized x86
implementations since it employed the involutive MDS matrix of Anubis [71].

The SHA-3 candidate LANE was a hash function that used two (LANE-224
and -256) or four (LANE-384 and -512) AES substates. In contrast to 3D, which
used byte-wise mixing in each round, LANE shuffled the 32-bit words between
the 128-bit states after the MixColumns operation. The authenticated encryption
scheme PAEQ [17,18] is built on the 512-bit permutation AESQ that transformed
four AES-states in parallel with a claimed security level of 256 bits. In contrast
to 3D or LANE, AESQ was the first such construction that mixed parts (32-bit
words) among individual substates only after two rounds for faster diffusion.

The hash function family Haraka (v1) [59] and v2 [60] adopted this approach
from AESQ. Due to invariant substates in the initial proposal, the designers
changed the round constants; we focus on v2 hereafter. Haraka also uses 256- and
512-bit variants and employs a permutation that consists of five steps, following
an AESQ-like design of mixing the 32-bit words after each step, i.e., after every
second round. Since the designers focused on 256-bit (second-)preimage security
for short-input hashing, they could reduce the number of steps to five. Bao et
al. [4] challenged this assumption with recent MITM preimage attacks, which
are less relevant for this work since we use considerably more steps.

Several works considered the construction of (authenticated) keystream gen-
erators from the AES round function with excellent performance, e.g. Tiaoxin [64],
AEGIS [87], or the proposals from [53], all aiming at 128 bits of security under
nonce-respecting adversaries. Rocca [76] is a recent nonce-based AE scheme with
256-bit security. In contrast, Pholkos’ security is independent of a mode or nonce.

Contribution. In this work, we propose Pholkos, a family of large-state tweakable
block ciphers based on the AES round function and the design strategy of two-
round steps from Haraka v2 and AESQ. Pholkos has two major variants with
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256- and 512-bit state, 256-bit key, and 128-bit tweak. Thus, they combine block
sizes for post-quantum applications, with 256-bit keys that provide a sufficient
level of security, and long tweaks for high-security modes.

We propose two further variants: For use cases where a larger tweak is ben-
eficial, e.g. in modes such as ZMAC, we add a variant with 256-bit state, key,
and tweak. While a similar step would appear beneficial for the variant with a
512-bit state, we refrained from it in this work only since the analysis would
have become infeasible. For use cases benefiting from large blocks, we include
a variant with 1024-bit state, 256-bit key, and 128-bit tweak. For all instances,
we claim 256-bit security in classical and 128-bit in the single-key post-quantum
model.

In contrast to AESQ, Haraka, 3D, and LANE, our proposal is tweakable, which
allows its usage in modes with high security guarantees. Our design differs from
3D and LANE by adopting the approach of mixing the words between substate for
higher performance from AESQ and Haraka. Compared to Trax, our proposal can
exploit the performance and security results from the AES. As a major difference
to AEGIS, Tiaoxin346 or [53], Pholkos targets higher security guarantees and is
not only a scheme but a versatile primitive.

We show the security in the standard, related-tweak, and related-tweakey
model against differential, linear, and integral distinguishers, and provide ini-
tial security arguments concerning zero-correlation, boomerang, yoyo, mixture,
and meet-in-the-middle attacks. On Intel Skylake, Pholkos can encrypt at about
1.5 cycles per byte, depending on the version. We propose the instantiation
of QCB with Pholkos for quantum-secure authenticated encryption. Due to the
larger tweaks, it provides higher security bounds than QCB-Saturnin.

While it is based on many existing works, Pholkos distinguishes itself by being
a highly performant block cipher with 256-bit security, offering larger bounds for
modes against birthday bound attacks, providing large tweaks that enable its use
in many modes including QCB, and processing larger chunks of data, reducing
the number of required key changes.

Overview. We provide notations in Sect. 2, before specifying Pholkos in Sect. 3.
Section 4 will give a design rationale. We report on the software performance of
Pholkos in Sect. 5, and provide an initial security analysis in Sect. 6. Section 7
concludes. We provide details of our analysis in the supplementary material that
we plan to publish in a full version alongside this work.

2 Preliminaries

We denote by F2 the finite field of characteristic two. We write functions and
variables by uppercase, indices by lowercase, and sets by calligraphic characters.
{0, 1}n is the set of all n-bit strings and {0, 1}∗ the set of bit strings of arbitrary
length. Let X,Y ∈ F

n
2 ; we index bits as X = (Xn−1 . . . X1X0) where Xn−1 is

the most significant and X0 the least significant bit of X. For t ≤ n, msbt(X)
returns the t most significant bits of X. For a set X , Perm(X ) denotes the set
of all permutations over X . For a bit string X, we write (X0, . . . , Xw−1)

n←− X
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Table 2. The word-wise permutations π used in Pholkos.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π256(i) 0 5 2 7 4 1 6 3

π512(i) 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

π1024,0(i) 0 9 18 27 4 13 22 31 8 17 26 3 12 21 30 7 16 25 2 11 20 29 6 15 24 1 10 19 28 5 14 23

π1024,1(i) 0 5 2 7 4 9 6 11 8 13 10 15 12 17 14 19 16 21 18 23 20 25 22 27 24 29 26 31 28 1 30 3

Table 3. The byte-wise permutation for the Tweakey schedule.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

πτ (i) 11 12 1 2 15 0 5 6 3 4 9 10 7 8 13 14

for the unique splitting of X into n-bit parts s. t. |Xi| = n for 0 ≤ i < w − 1,
|Xw−1| ≤ n, and (X0 ‖ . . . ‖Xw−1) = X.

The AES-128 [33] is an SPN that transforms 128-bit inputs through ten
rounds of SubBytes (SB), ShiftRows (SR), MixColumns (MC), and the addi-
tion (AK) with a round key Ki. Before the first round, a whitening key K0

is XORed to the state; the final round omits MixColumns. Si denotes the state
after Round i, and Si[j] for the j-th byte, for 0 ≤ i ≤ 10 and 0 ≤ j ≤ 15.
So, the byte order is columnwise from top to bottom and left to right. We
write R[Ki] def= AK[Ki] ◦ MC ◦ SR ◦ SB for one call to the round function and
̂R[Ki] def= AK[Ki] ◦ SR ◦ SB for a call to the round function without MC. Sr,SB,
Sr,SR, and Sr,MC denote the states in the r-th round directly after the applica-
tion of SB, SR, and MC, respectively. We use M for the MixColumns matrix.
MixColumns interprets each input byte as element in F28 with the irreducible
polynomial p(x) = x8 + x4 + x3 + x + 1.

3 Specification

This section specifies the family of Pholkos-n, or more precisely, Pholkos-n-k-t. It
takes an n-bit plaintext M , a k = 256-bit key K, and a t-bit tweak T . Algorithm 1
defines the en- and decryption procedures as well as the tweakey schedule. We
propose two major versions, Pholkos-256 and Pholkos-512, with 256-bit key and
128-bit tweak each. Moreover, we propose two minor versions, Pholkos-1024-256-
128 for use cases that can benefit from longer blocks, and Pholkos-256-256 as a
fourth version for applications that can benefit from a larger tweak.

3.1 Encryption

An n-bit plaintext is split into 128-bit substates of four 32-bit words each. Before
the first round, the round tweakey RTK0 is XORed to the plaintext (Fig. 2).
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Fig. 1. The permutations of Pholkos-256 (left) and Pholkos-512 (right).

The Step Function. In a step, each substate is encrypted individually by two
consecutive AES rounds. Each round, except for the final one, consists of the
operations SubBytes (SB), ShiftRows (SR), MixColumns (MC), and AddRound-
Tweakey (ATK), the addition of the round tweakey RTKi. Thereupon, a word
permutation πn permutes all 32-bit words of all substates to mix the substates.
This sequence of two rounds and the application of the word permutation is
called a step. The final step omits the final word permutation at the end; the
final AES round omits the MixColumns operation as in the AES. We write

– s for the number of steps, rs = 2 for the fixed number of rounds per step,
and r = s · rs rounds in total, counted from 1..r. Table 1a summarizes the
numbers of proposed steps for the instances.

– Xi for the n-bit state after Round i. X0 is initialized with the plaintext M .
– Y i, for even i > 0, for the state directly after the i-th round and before π is

applied. Xi is the state directly after the words of Y i were permuted by π.
– Xi

j , for j ∈ [0..w − 1] for 32-bit words of the state Xi. Thus, each state
Xi = (Xi

0, . . . , X
i
w−1) is a list of w 32-bit words.

– m = 32 for the length of each word in bits.
– Xi,j for j ∈ [0..v − 1] for the 128-bit substates, where v = w/4 = n/128.
– Xi[j] for a cell, i.e., a byte. We index cells as in the AES, but in sequence

throughout the state, i.e., Xi[16] is the first byte in the second substate.
– RTKi for the round tweakey used at the end of Round i. Its words and bytes

are indexed as those of states as RTKi = (RTKi
0, . . . , RTKi

w−1). We write
RTK0 for the initial tweakey.

The Permutation. The word permutation π ∈ Perm(Zw) shuffles the words
across the substates. Each instantiation of Pholkos employs a different permu-
tation. It also differs from those used in Haraka, AESQ, 3D, and LANE. For
Pholkos-256 and Pholkos-512, we denote the corresponding permutations as πn

according to the state size n. Pholkos-1024 applies two permutations π1024,0 and
π1024,1 alternatingly, starting with π1024,0 after the first step. Each permutation
πn maps the word at index π(j) to index j: Xi

j ← Y i
π(j), as given in Table 2.

3.2 The Tweakey Schedule

Key Expansion. If n > k, the 256-bit secret key SK is first expanded by a
function ϕ : Fk

2 → F
n
2 . The leftmost 256 bits of the generated key employ K. All
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Algorithm 1. Definition of Pholkos-n.

11: function Encrypt T
K(M)

12: RTK ← Schedule(K, T )
13: X0 ← M ⊕ RTK0

14: for i ← 1..s − 1 do
15: Y 2·i ← Step(X2·(i−1))
16: P ← getPerm(i)
17: X2·i ← PermWords(P, Y 2·i)

18: Y 2·s ← Step(X2·(s−1))
19: return Y 2·s

20: function Step(Xi)
21: (Xi

0, . . . , X
i
w−1) ← Xi

22: for � ← 1..2 do
23: for j ← 0..v − 1 do
24: if i + � < r then � Substates
25: Xi+�,j ← R[RTKi+�,j ](Xi+�,j)
26: else � Substates, final round
27: Xi+�,j ← ̂R[RTKi+�,j ](Xi+�,j)

28: return Xi+2

30: function R[RTK](X)
31: return RTK ⊕ MC(SR(SB(X)))

32: function ̂R[RTK](X)
33: return RTK ⊕ SR(SB(X))

34: function PermWords(P , Y i)
35: for j ← 0..w − 1 do Xi

j ← Y i
P (j) � Words

36: return Xi

37: function getPerm(i)
38: if n = 1024 then return π1024,(i−1) mod 2

39: else return πn

40: function Schedule(K, T )
41: K0 ← ϕ(K)
42: T 0 ← T
43: RTK0 ← γ(RC0, K0, T 0)
44: for i ← 1..r do
45: T i ← θ(π, T i−1)
46: Ki ← κ(2, π, Ki−1)
47: RTKi ← γ(RCi, Ki, T i)

48: return (RTK0, . . . , RTKr)

49: function ϕ(K)
50: if |K| ≥ n then return K

51: return msbn(K ‖MA · K ‖MB · K ‖MC · K)

52: function Decrypt T
K(C)

53: RTK ← Schedule(K, T )
54: Y 2·s ← C
55: X2·(s−1) ← Step−1(Y 2·s)
56: for i ← s − 1 down to 1 do
57: P ← getPerm(i)
58: Y 2·i ← PermWords(P−1, X2·i)
59: X2·(i−1) ← Step−1(Y 2·i)

60: return X0 ⊕ RTK0

61: function Step−1(Y i)
62: (Xi

0, . . . , X
i
w−1) ← Y i

63: for � ← 1..2 do
64: for j ← 0..w − 1 do
65: if i + � < r then � Substates
66: Xi−�,j ← R[RTKi+1−�,j ]−1(Xi+1−�,j)
67: else � Substates, final round
68: Xi−�,j ← ̂R[RTKi+1−�,j ]−1(Xi+1−�,j)

69: return Xi−2

71: function R[RTK]−1(X)
72: return SB−1(SR−1(MC−1(RTK ⊕ X)))

73: function ̂R[RTK]−1(X)
74: return SB−1(SR−1(RTK ⊕ X))

75: function κ(α, π, Ki−1)
76: for j ← 0..w − 1 do
77: Ki

j ← Ki−1
π(j) � Words

78: for j ← 0..v − 1 do
79: Ki,j ← τ(Ki,j) � Substates
80: for b ← 0..15 do
81: Ki

j [b] ← α · Ki
j [b] � Cells

82: return (Ki
0, . . . , K

i
w−1)

82: function θ(π, T i−1)
83: if |T i−1| > 128 then return κ(1, π, T i−1)

84: return τ(T i−1)

85: function τ(X)
86: for b ← 0..15 do Z[b] = X[πτ (b)] � Cells

87: return Z

88: function γ(RCi, Ki, T i)
89: for j ← 0..w − 1 do � Words
90: RTKi

j ← Ki
j ⊕ T i

j mod 4

91: if j ≤ 3 then RTKi
j ← RTKi

j ⊕ RCi
j

92: return (RTKi
0, . . . , RTKi

w−1)

subsequent 256-bit chunks are generated by multiplying K with binary circular
matrices ∈ (F232)8×8 with branch numbers of four:

MA
def= circ (11001000) , MB

def= circ (10101000) , and MC
def= circ (10011000) .

K = (K0, . . . ,K7) denotes the eight key words. The expanded key words are
computed as (K8, . . . ,K15) =def MA ·K�. For the 1024-bit variant, more words
are derived as (K16, . . . ,K23) =def MB · K� and (K24, . . . ,K31) =def MC · K�.

Generation of Round Tweakeys. The tweakey schedule generates round tweakeys
from the tweak T 0 and the (expanded) secret key K0. For Pholkos with s steps,
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Fig. 2. The first step of Pholkos-512-256-128 including the initial key whitening. It
shows also how the key is expanded, and how the 128-bit tweak is added to the 256-bit
key. RAES means the AES-round without the key addition.

2s + 1 round tweakeys are needed during en- or decryption, RTK0 to RTK2s.
In general, the tweakey schedule of Pholkos follows the route from the STK [54]
construction, our proposal keeps the words for the tweak and the key separated,
which are processed in parallel as depicted in Fig. 3a. The tweakey schedule initial-
izes a key state K0 from the expanded secret key and an initial tweak state from
the user-supplied tweak T 0 ← T . It applies

– a function κ : K → K to compute Ki ← κ(Ki−1).
– a function θ : T → T to compute T i ← θ(T i−1) and
– a function γ which combines T i and Ki to derive the round tweakey as

RTKi ← γ(Ki, T i, RCi), where RCi is the round constant of Round i.

κ transforms each 128-bit substate of the key by (1) the word-wise permutation
πn, (2) a layer τ that applies a byte-wise permutation πτ to each substate, and
(3) a cell-wise doubling in F28 (Fig. 2).

The function θ depends on the tweak length. For versions, where the tweak is
smaller than the original key, θ simply applies τ . For Pholkos-256-256-256, both
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Fig. 3. Components of the tweakey schedule of Pholkos.

key and tweak are processed almost equally, but the tweak cells are not doubled
in F28 to prevent iterative related-tweakey differentials. Thus

θ(T i−1) def=

{

τ(π(T i−1)) if |T | = |K| = 256
τ(T i−1) otherwise.

RTK0 is derived from K0 and T 0 with γ before any call to the update functions
κ and θ. If |T | = 128, γ XORs T i to every 128-bit substate of Ki. The round
tweakey word is computed as RTKi

j ← Ki
j ⊕ T i

j mod 4; if j = 0, the round con-
stant RCi is further XORed to it (see Fig. 3). The tweak-update function τ uses
the permutation πτ from Table 3 for mixing the tweakey cells. The key-update
function κ permutes the words of the round key RKi with πn from the step
permutation. In Pholkos-1024, the i-th invocation of κ applies π1024,(i−1) mod 2

and then τ to each substate; finally, each cell of the round key is doubled in F28 .

Round Constants. As Haraka v2 [60], we derived the round constants from the
initial digits of the number π as “nothing-up-my-sleeve” numbers. They are listed
explicitly in the full version of this work.

Security Claims. For all variants of Pholkos, we claim 256-bit security in the
standard, related-tweak, and related-tweakey model against known attacks. We
claim 128-bit security in the standard secret-key Q1 model. We do not claim
security in quantum related-tweak(ey) models.
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4 Design Rationale

In the following, we explain our design decisions for Pholkos. We consider (1)
versions, (2) the step function, (3) the mixing layer, and (4) the tweakey schedule.

4.1 Versions

We consider two major and two minor variants of Pholkos. The former to address
our research questions of long keys, long blocks, tweaks, and an AES-round-based
design are Pholkos-256-256-128 and Pholkos-512-256-128. They differ in the block
size to address individual use cases. 256-bit keys should suffice in all settings.

We consider two minor variants for particular use cases. For settings that
may benefit from very large blocks, e.g. large-block hashing, we provide a variant
with a 1024-bit state. Moreover, we added Pholkos-256-256-256 with a 256-bit
tweak for use cases that benefit from large tweaks, again e.g. for hashing or for
processing associated data.

4.2 Step Function

The AES round function allows us to derive security bounds efficiently and to
profit from hardware instructions that boost the performance of the AES round
function [49,50]. While the AES round function provides confusion and diffusion
inside the individual substates, the core question considers how to mix the words
across substate boundaries. In particular, the detail questions are (1) after how
many rounds and (2) how should the bytes or words be mixed.

How Many Rounds Per Step? 3D and LANE added a mixing operation after
every single round. In contrast, PAEQ [18] and Haraka [59] exploited the fact that,
1.5 AES rounds can be viewed as the application of four parallel 32-bit Super-
boxes [32], followed by ShiftRows and MixColumns, which mix the outputs of the
Super-Box. The branch number in terms of active columns (words) is maximal
for a Super-box, i.e., a single active column maps to four active columns after
two rounds. The permutation of AESQ transfers exactly one word from each
substate to each substate (as ShiftRows does for the AES). Thus, they employ
two rounds per step, before a mixing layer takes place. Hence, using more than
two rounds per step would slow down diffusion, which is why Pholkos too uses two
rounds per step. Shiba et al. [78] considered whether one or two rounds would be
optimal in detail and also showed that mixing after two rounds provided faster
diffusion than mixing after a single round. The question of how to mix will be
addressed separately. Since our focus lies on processors with at least AVX2 and
AES-NI instructions, where we consider Intel 6-th generation iCore processors
and above. We briefly compare the relevant AVX2 instructions before.

4.3 AVX2 Instructions for Efficient Implementations

Three useful up-to-date approaches exist for implementing a permutation layer
on platforms with support for AVX2 or higher: shuffles, packings, or blend
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Fig. 4. Relevant instructions and their characteristics. L = latency, T−1 means inverse
throughput, in cycles per instruction each.

instructions. Those are illustrated in Fig. 4b. All three instructions operate on
128-bit words; the AVX variants with v-prefix process 256-bit registers but oper-
ate on the 128-bit halves of the parameters in an isolated fashion.

pshufd shuffles 32-bit words, pshufb even 8-bit bytes in a register accord-
ing to a mask of indices. Despite its flexibility, the instruction induces a cycle
of latency. punpckhdq interleaves the 32-bit dwords from the most significant
(higher) half of two registers and stores them into the first register; punpckldq
performs a similar interleaving on the lower halves. vpblendd chooses the i-th
word from either input A or B and stores it into another register of the same
size, where the i-th bit of the provided mask indicates the input to choose from.

pblendd preserves the relative positions of 32-bit words in the register. To
break these indices without the addition of round constants, one would have to
use additional instructions such as pshufd, or use the punpck{l,h}dq instruc-
tions. Both strategies would need either more (e.g. additional shuffles) or slower
(i.e., punpck{l,h}dq) instructions. Table 4a compares the throughput and the
cycles per instruction (cpi) of the instructions (cf. [50]). Note that CISC instruc-
tions may consist of several micro-operations, each of which has specific ports
that can execute it. Latency is the number of cycles an instruction needs in total,
inverse throughput is the number of cycles until another instruction of the same
kind can be started. The latter may be lower than a cycle when multiple ports
can execute multiple of the considered micro-operations in parallel.

4.4 Mixing-Layer Approaches

We see three potential mixing-layer approaches.

– (M1) A SPARX-like mixing-layer [36], that adds the linearly transformed first
half of the state to the second half, and then swaps them;

– (M2) A byte-wise shuffle;
– (M3) A word-wise permutation of different word sizes. Here, we refined our

search to permutations over (2a) 16-, (2b) 32-, and (2c) 64-bit words.

Approach (M1) needed considerably more rounds to yield the same security as
the one we found optimal. The second approach (M2) means to shuffle not only
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Fig. 5. The word permutations for Pholkos-512 and similar constructions.

words across substates but also cells across word boundaries, which would need
at least eight pshufb instructions per round. This provides sufficient diffusion
and an equivalent number of operations but is slower than our third approach.

Concerning approach (M3), we found that implementations with 16-bit words
were painfully slower; 64-bit word permutations prolonged the diffusion. Thus,
the use of 32-bit word permutations had the highest performance of our studied
options. Therefore, our subsequent search focused on 32-bit word-wise permuta-
tions with higher security or performance than those of Haraka and AESQ which
ensured 150 active S-Boxes over six steps for 512-bit states. In the following, we
provide our rationale for the word permutation of Pholkos-512.

4.5 The Permutations π

Permutation of Pholkos-512. For Pholkos-512, the state consists of four sub-
states of four words each. For fast diffusion, each substate should receive one
word from every substate, which yields (4!)8 	 236.68 permutation candidates.
Our interest lied in the subset of permutations that preserve the relative indices
of words within substates (see the left side of Fig. 5) can be implemented with
only pblendd instructions. Permutations that change the relative index of a word
within the substate either need punpck{h,l}dq or additional pshufd instruc-
tions, which decreases the performance and led us to exclude such permutations.
Those permutations yield the same lower bound on active S-Boxes for differential
attacks if we disregard related-tweakey attacks, as we show in the full version
of this work. Thus, we chose a permutation from the 864 permutations of this
subset that was easy to analyze and implement. The difference to earlier similar
designs is easy to see from Fig. 5. The permutations of Haraka, AESQ, and LANE
try to cluster 32-bit words from the same positions of substates. This is visual-
ized by the single color in their substates after the permutation. Therefore, they
could not be implemented with pblendd instructions alone.
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Permutations of Pholkos-256 and -1024. The permutations of Pholkos-256 and
Pholkos-1024 were chosen with the same aspects in mind as the choice for π512:
to achieve full diffusion as fast as possible, to be efficiently implementable with
pblendd instructions, and to provide the maximal number of active S-boxes,
which was 43 over seven rounds of Pholkos-256. For Pholkos-1024, similar rules
applied. A single permutation could achieve full diffusion in the same number
of steps but would have needed to change the relative word-indices within a
substate. Thus, we chose to alternate two permutations π1024,0 and π1024,1.

Comparison of Implementations We evaluated the theoretical performance of
the mixing layers when they are implemented with pblendd or punpck{l,h}dq
instructions. They can be found in the extended version. Table 4a also lists results
of our experiments when the word-wise permutations πn are implemented with
punpck{l,h}dq instructions. For Pholkos-256, punpck{l,h}dq instructions can
be slightly faster. However, our permutations can be implemented with them as
well as pblendd, whereas the permutations of Haraka or AESQ cannot use the
latter. The advantage of permutations that can employ pblendd instructions
becomes clearer when considering larger states.

4.6 Tweakey Schedule

STK Schedule. A TWEAKEY schedule unifies the generation of round tweaks
and round keys in an STK-like manner [54]. STK processes multiple words of the
block length and iteratively generates the subtweakeys STKi for Round i. A
function h′ is applied to each cell to prevent subsequent cancellations of differ-
ences between words. STK provides three security properties: (1) all words have
equal sizes, (2) each tweak cell is XORed with the same key cell in each schedule
round, and (3) each word is multiplied with a different factor in each round
so that subsequent rounds cannot cancel differences between words. Pholkos
employs an STK-like schedule, but treats key and tweak words slightly differ-
ently.

128-bit Tweaks. We propose 128-bit tweaks for three variants of Pholkos since
this size suffices for many practical purposes like domain separation. It employs
the same permutation πn as in the mixing layer, which preserves the relative
cell positions within the substate. Since the cell substitution τ is applied to each
subkey and the tweak, each tweak cell gets XORed to the same key cell in every
round. The schedule multiplies each cell of the key bytes by 2 in F28 , but not the
tweak bytes to prevent iterative differentials from cancellations among key and
tweak cells. We multiply only the key cells since they are usually updated less
frequently than the tweak. Thus, Pholkos fulfills the security properties needed
by STK. As an instantiation of πτ , the permutation by [58] proved resistant
against differential and MitM distinguishers in our analysis, as shown in Sect. 6.
Moreover, since our tweakey schedule is efficiently invertible, it is incompatible
with backdoors studied in [69].
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Table 4. Benchmarks for Pholkos on x86 with AVX2 and AES-NI support on Intel
Skylake and permutation experiments with pblendd and punpck{l,h}dq instructions.
cpb = cycles/byte.

(a) Parallel encryption.

Permutations

Version (bit) CTR mode blend unpck

n k t #Blocks (cpb) (cpb) (cpb)

256 256 128 1 1.36 1.31 1.24

256 256 256 1 1.35 – –

256 256 128 2 1.27 1.32 1.25

256 256 128 4 1.05 1.06 1.05

512 256 128 1 1.91 1.83 2.07

512 256 128 2 1.43 1.49 1.91

1024 256 128 1 1.78 2.09 2.41

(b) En-/decryption for retweaking and rekeying.

Version (bit) Retweak Rekey

n k t Enc Dec Enc Dec

256 256 128 2.36 1.34 3.92 4.38

256 256 256 2.12 3.74 3.93 4.38

512 256 128 1.43 1.44 4.49 5.36

1024 256 128 1.94 1.93 6.17 6.90

256-bit Tweaks. Larger tweaks can increase the throughput in hashing modes,
e.g. in ZMAC [51] or associated-data processing in ZOCB/ZOTR [5]. Though,
they provide the adversary with more capabilities. We provided a 256-bit tweak
only for the version with a 256-bit state size since the analysis of the versions
with a larger state size and a 256-bit tweak were too costly for our hardware,
even for only a few rounds.

Key Expansion. We extend the 256-bit key to 512 or 1024 bits by using one
or three matrix multiplications with matrices MA, MB , and MC , chosen so
that each generated keyword is a different combination of the original key. Fur-
thermore, each state word influences the same number of output words. The
main goal for the matrices is that they can be implemented more efficiently than
MDS codes. Although they possess a branch number of only four, their diffusion
is sufficient to thwart related-key differential and linear attacks for our concerned
versions of Pholkos, similar to the codes by [27].

5 Software Implementation

All instances of Pholkos have been implemented in C with AVX2 instructions.2

Table 4a presents the performance of the variants of Pholkos. Table 4b lists that
of the retweaking and rekeying processes for en- and decryption. All benchmarks
were conducted on an Intel(R) Core(TM) i5-6200U CPU at 2.30 GHz (Skylake),
with TurboBoost, HyperThreading, and SpeedBoost disabled. The results are
medians of 1024 means over 1024 encryptions each. It also lists compares them
with implementations of the word-wise permutations πn via punpck{l,h}dq
instructions, which have been benchmarked in the same setting as Pholkos.

2 The code is freely available at https://gitlab.com/elist/pholkos.

https://gitlab.com/elist/pholkos
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Table 5. Existing distinguishers. r = #rounds, Mem. = memory, psucc = success prob-
ability, Ref. = reference, n/a = not available.

(a) On the AESQ Permutation.

Complexity

r Attack Type Time Mem. psucc Ref.

8 CICO 232 n/a n/a [17]

8 Yoyo 1 negl. n/a [75]

12 Impossible Yoyo 2126 negl. 0.84 [75]

12 Rebound 2256 2256 0.61 [75]

12 Rebound 2128 negl. 0.83 [2]

12 TMTO 2102.4 2102.4 0.83 [2]

12 TMTO 2128−x/4 2x n/a [2]

16 Rebound 2192 2128 0.83 [2]

16 Limited birthday 2188 2128 0.83 [2]

16 TMTO 2192+x 2128−x n/a [2]

16 Impossible Yoyo 2126 negl. 0.84 [75]

(b) On PAEQ and Haraka.

Complexity

Constr. r Attack type Time Mem. Ref.

PAEQ 8 Guess-and-determine 234 n/a [74]

PAEQ 8 Guess-and-determine 266 n/a [74]

PAEQ 8 Guess-and-determine 298 n/a [74]

Haraka v2

256-256 7 Preimage 2248 28 [60]

512-256 8 Preimage 2504 28 [60]

512-256 10 Preimage 2504 28 [3]

For comparison, the designers of Saturnin claimed up to 3.5 cpb in parallel
modes [26]. Saturnin targets lightweight platforms and provides only a minimal
tweak, while Pholkos is a dedicated heavyweight TBC. We do not expect large
block sizes to be used on lightweight devices but rather on servers and consumer
PCs. Another example would be Simpira [47], which achieves 1.19 cycles for 1024-
bit blocks on the same hardware and measurement setup used for benchmarking
Pholkos. Though, Simpira aims at “only” 128-bit security against classical adver-
saries that is a considerably lower security goal than that of Pholkos.

6 Security Analysis

First, we consider linear and differential cryptanalysis before we view boomerang,
integral, impossible-differential attacks, as well as adapted versions of recent
attacks on the AES. We end this chapter with an intuition regarding the quantum
security of Pholkos. Some attacks that do not break Pholkos consider probabilities

2−256 but are direct adaptions of attacks on similar primitives.

Existing Attacks. Several works have analyzed AESQ, its mode PAEQ/PPAE
[17], or Haraka v1 [60] and Haraka v2 [59]. From the structural similarity, all dis-
tinguishers on AESQ apply similarly to Pholkos-512 when used as a permutation.
Plus, attacks in the secret-key model on r-round AES-128 may apply in adapted
form also to r-step Pholkos-512. Those are summarized in Table 5.

Differential Cryptanalysis [16] studies the propagation of differences ΔX =
X ⊕ X ′ between inputs X,X ′ ∈ F

n
2 and the difference ΔY = Y ⊕ Y ′ of their

corresponding outputs Y, Y ′ ∈ F
n
2 through a map F . The resistance of AES-

like ciphers against differential and linear cryptanalysis is commonly analyzed
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Table 6. Minimum #active S-boxes for differential characteristics over 1–10 steps.
gray = derived, underlined = uses tweak differences.

n − t Standard Related tweak Related tweakey

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

256-128 5 25 35 60 80 100 110 135 140 160 2 20 35 40 55 70 75 90 105 110 0 8 22 22 30 44 44 52 66 66

256-256 5 25 35 60 80 100 110 135 140 160 1 10 22 32 45 54 55 67 77 90 0 4 17 26 26 34 43 52 52 60

512 5 25 45 80 130 150 170 205 210 230 4 25 45 80 84 104 125 160 164 185 0 24 45 48 69 90 93 114 135 138

1024 5 25 35 70 105 165 240 245 265 275 5 25 35 70 87 95 112 140 157 174 0 10 35 35 45 70 70 80 105 105

by lower bounding the minimal number of active S-boxes for any differential
characteristic – assuming that the transform is an iterated Markov cipher. For
the AES S-box, it is well-known that the maximal differential probability is 2−6.

Linear Cryptanalysis [62] exploits biases in linear relations between input and
output bits. Kranz et al. [61] studied the effect of linear key schedules and tweaks
on linear cryptanalysis. They found that (1) linear key schedules do not enhance
attacks considerably and (2) no new linear characteristics are introduced from
a linear tweak schedule. Our analysis benefits from the symmetries in the AES
substates among different columns. The lower bounds on the number of active
S-boxes apply to differential as well as to linear cryptanalysis. For the AES S-
box, the maximal correlation is 2−3 [33]. Thus, for an AES-like SPN even with
a linear tweak schedule, the success of linear distinguishers is closely related to
the maximum probability of differential characteristics in the secret-key model.

MILP Model. We used a MILP-aided approach with Gurobi to find lower bounds
on the numbers of active S-boxes for Pholkos in the standard, related-tweak,
and related-tweakey model. The source code is publicly available alongside the
reference implementation of Pholkos. Since the complexities of the MILP models
grow significantly in terms of variables and constraints, several models could
be solved only for a reduced number of steps. Table 6 summarizes the minimal
numbers of active S-boxes of our analysis. For 256-bit security against basic
differential and linear cryptanalysis under the Markov-cipher assumption, at
least 43 S-boxes must be active, which is the case after at most four steps for
all instances in the standard model. Under related tweaks, Pholkos-256 reaches
43 active S-boxes after five steps, Pholkos-512 after three steps, and the largest
instance after four steps. We could determine lower bounds for up to three steps
in the related-tweakey model. We derived the bounds for more steps from those
results, which leads to pessimistic lower bounds, with security only after six,
seven, four, and five steps, respectively, for the individual variants since the
diffusion is highly likely to increase over more steps. Table 6 shows the desired
maximal probabilities of differential characteristics of 2−256 is reached after six,
four and five steps for Pholkos-256, Pholkos-512, and Pholkos-1024, respectively.
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Table 7. Maximal #full steps covered
by boomerang distinguishers.

Model

Instance Standard RT RTK

Pholkos-256 2 3 4

Pholkos-256-256 2 4 5

Pholkos-512 2 2 3

Pholkos-1024 2 2 3

Table 8. Maximal #rounds (not steps)
covered by integral distinguishers.

#Iterated bits

Primitive 128 255 256 511 512 1 023

Pholkos-256 7 7 – – – –

Pholkos-512 7 – 7 7 – –

Pholkos-1024 7 – 9 – 11 11

Boomerangs and Rectangles [14,15,84] split the primitive E into parts E =
E2 ◦ E1 ◦ E0 to combine two differential trails over E0 and E2; E1 represents
the (potentially empty) middle phase. Let α → β be a differential trail with
probability p through E0, and γ → δ a trail with probability q through E2. A
boomerang encrypts pairs (P, P ′) with difference α to a ciphertext pair (C,C ′),
derives a second pair (D,D′) from adding δ to both ciphertexts, decrypts it back
to (Q,Q′), and checks if Q ⊕ Q′ = α. If the trails have probabilities p and q and
a probability r through E1, the boomerang probability is O(p2q2r).

In theory, resistance against boomerangs can be derived from the best dif-
ferential characteristics. Yet, determining the probability through the middle
is sophisticated [29,80]. Truncated differentials can lead to better results than
differential characteristics, e.g., see [20,77], which is not provided in our tables.
From the bounds on the number of active S-boxes in Table 6, we derived the
maximal number of steps, where the sum of active S-boxes in p and q surpasses
21.5. In the standard model, boomerang distinguishers can exist on up to two
steps for all instances, as every differential p or q that covers at least 2 steps
would have at least 25 active S-boxes already. With related tweaks, boomerang
distinguishers can exist on up to three-step Pholkos-256 and on two-step Pholkos-
512 and Pholkos-1024. In the related-tweakey model, there may exist boomerang
attacks on at most five full steps. Our analyses exclude distinguishers on half-
steps and assume an empty middle phase. Thanks to the considerable security
margins of Pholkos in all settings, we assume that a non-empty middle phase,
as well as truncated differentials, will not yield boomerang attacks. Though, we
leave it as a research topic for future work. The use of differentials that cover
half-steps could extend the boomerang distinguisher by at most one step (one
half-step per differential). Boomerang attacks with a non-empty middle phase
can be extended by at most 1.5 steps. Our results are given in Table 7.

Integral Cryptanalysis [21,31] is a structural attack that exploits a degree below
n of a component function. When interpreting the transform as a (vector)
Boolean function, its maximal algebraic degree d allows excluding distinguish-
ers that iterate over 2d+1 values and necessarily must sum to zero. Todo [83]
generalized integrals with the division property. They were refined e.g. by [25]
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and shown to evolve as the evolution of the algebraic degree [19]. Thus, distin-
guishers are bounded by the number of rounds whereafter the algebraic normal
form of each component function reaches degree n − 1. Table 8 lists our results
of the propagation of the degree through Pholkos. Since the division property
propagates equally as the degree, integral distinguishers exist over at most seven
rounds of Pholkos-256 and -512, and at most 11 rounds of Pholkos-1024. Note
that the distinguisher on Pholkos-512 is similar to the higher-order integral dis-
tinguisher on four-round AES.

Impossible-differential [13] and Zero-correlation Attacks [24] exploit differen-
tials with probability and approximations with correlation zero, respectively.
Since zero-correlation distinguishers imply integral distinguishers [82], our upper
bounds on the numbers of steps for integrals also yield upper bounds for zero-
correlation trails. The implication relation between integrals and impossible-
differential distinguishers is more complex. Though, longer impossible differen-
tials are unlikely in the standard model. The longest impossible differentials with
zero tweak differences we found cover seven rounds for Pholkos-256 when start-
ing from a full step, and eight rounds when starting from a round inside a step.
No longer distinguishers from a single active cell are possible. An example for
an eight-round distinguisher, covering e.g. Rounds 2–9, is given in Fig. 6. At the
input side, the structures can be combined from pairs over four active diagonals,
i.e., 2128 texts can yield 2255 pairs. At the output side, the probability is 2 ·2−128

since two patterns are possible. Thus, a structure of 264 texts can produce one
pair with the desired output difference.

We can use a similar argument for Pholkos-512. The longest impossible-
differential distinguishers with zero tweak differences cover seven rounds for
Pholkos-512 when starting from a full step, and eight when starting from inside
a step. Moreover, the structural similarity to the AES allows us to adopt the
security arguments from it for Pholkos-512. There exist no impossible differen-
tials over five rounds of the AES structure [81,85,86]. Thus, such distinguishers
cover less than five full steps of Pholkos-512 without tweak differences.

With tweak differences, we can argue similarly as in the analysis of Kiasu-
BC [37,38]: the tweak difference can cancel out the state difference on both
sides. Since Pholkos-512 adds tweaks after each round, the length of impossible
differentials of Pholkos-512 exceeds that without tweaks by at most two, yielding
at most ten rounds. With related tweakeys, a third free round can be added where
the differences in key and tweak words cancel to cover up to 11 rounds.

For Pholkos-1024, there exist impossible differentials for up to 12 rounds with
output probability 2−512. While we did not find longer distinguishers from tweak
differences, it might be possible to extend them to 14 rounds with related tweaks
and by three rounds to 15 rounds under related tweakeys.

Slide Attacks [22,23,40] exploit that round functions and the key schedule pro-
duce equal states after different rounds. The tweak addition will allow cancel-
ing the difference between states in at most one round. However, there are no
reported slide attacks on the AES. And while invariant-subspace attacks have
been a threat to Haraka v1 [52], the round constants of Haraka v2 - that Pholkos
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Fig. 6. Impossible-differential distinguisher for eight-round Pholkos-256.

Table 9. Distinguishers and key-recovery attacks (†) in the standard secret-key model;
r = #rounds, imp. = impossible, diff. = differential, mem. = memory, psucc = success
probability.

Complexity

r Type Time Mem. Data psucc

Pholkos-256

6 DS-MitM 2216 negl. 2216 CP �1

8 Imp.-diff. Yoyo 2127 negl. 2128 ACC 0.84

8 Imp.-diff. 264 negl. 264 CP 0.63

Pholkos-1024

10 DS-MitM 2904 232 2904 CP �1

12 Imp.-diff. 2256.5 negl. 2256.5 CP 0.63

15 Mixture-diff. 2625 negl. 2625 CP n/a

Complexity

r Type Time Mem. Data psucc

Pholkos-512

7 DS-MitM 2456 negl. 2456 CP �1

8 Imp.-diff. Yoyo 2127 negl. 2128 ACC 0.84

8 Imp.-diff. 2127 negl. 2128 ACC 0.84

10 Boomerang 2260 232 2260 ACC 0.63

10 Boomeyong† [70] 2188.8 2189.8 2122 ACC 0.78

12 Mixture-diff. 2394 negl. 2394 CP n/a

adopts - have been tweaked to thwart such attacks. We consider the round con-
stants to effectively prevent slide attacks and their extensions.

Yoyo Attacks are variants of boomerangs [12]. On AESQ, the distinguisher by
Saha et al. [75] started from an eight-round yoyo through rounds 2–9. From
that base, they added a second, mirrored yoyo, which started from the middle
after Round 9 back to Round 2, where they derived the mixed second pair, re-
encrypted it, mixed the ciphertexts, decrypted the results back to the middle, and
checked for the property. If one would try to construct a keyless permutation from
Pholkos, it should consider similar attacks. For Pholkos, the attacks by Rønjom
et al. [7,73] apply. Moreover, Rahman et al. [70] proposed boomeyongs, i.e.,
boomerangs that integrated a yoyo distinguisher. In particular, they combined
a yoyo at the top with a variant of the boomerang at the bottom, showing
key-recovery attacks on up to 10-round Pholkos-512.

Mixture-differential Cryptanalysis has been proposed by Grassi [44] in deter-
ministic form, and extended probabilistically by follow-up works [6,7,45]. We
applied a variant of Bardeh and Rønjom’s [7] AES distinguisher to Pholkos-512,
covering six steps. Details are given in the extended version of this work. For
Pholkos-1024, a similar distinguisher can cover up to 15 rounds (7.5 steps).
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Demirci-Selçuk Meet-in-the-Middle (DS-MitM) Attacks [34] are an extension
of the collision attack by Gilbert and Minier [43]: given a δ-set of 28 texts that
iterate over the values of a single active byte only, the sequence in each output
byte after three rounds of AES is determined by nine internal bytes only and
has at most (28)9 possible sequences instead of (28)256 for a random permuta-
tion. This distinguisher was wrapped by two key-recovery phases. While the data
complexity is low, those attacks required many precomputations. Demirci and
Selçuk extended the distinguisher to four rounds. Dunkelman et al. and Derbez
et al. [35,41] proposed new trade-offs, but could not extend the distinguisher
for AES-128 beyond four rounds. Since Pholkos-512 is structurally similar to the
AES, an r-step distinguisher on Pholkos-512 without tweak differences yields an
r-round distinguisher for the AES. Thus, distinguishers on more than four full
subsequent steps are unlikely, but distinguishers with tweak differences could
cover more rounds. For Pholkos-256, the best such distinguishers we found cov-
ered five rounds without and seven rounds with tweak differences.

Quantum Attacks are a long-term threat. The claimed 256-bit security in the
classical setting reduces to 128 bits in the presence of quantum adversaries. This
assumption is based on the speed-up of exhaustive key search with Grover’s
algorithm and the results of [57]. Though, there are still uncertainties. While
Kaplan et al. [57] did not investigate the influence of a tweak, they studied the
cases where the key size equaled or exceeded the state size. For Pholkos, the key
is smaller than the state in two instances. This should not benefit a quantum
adversary since it should not increase the number of key bits depending on a
single state-bit within a small number of rounds (as is typically the case when the
key size is larger). Yet, this setting is worth further investigation. We claim only
128-bit post-quantum security in the secret-key setting. While we can imagine
that the presence of the public tweak will not help a quantum-computing-aided
adversary further, post-quantum cryptanalysis of tweakable block ciphers is still
open research. Conservatively, we do not claim security in the post-quantum
related-tweak and related-tweakey model.

7 Conclusion

This work introduced the family of tweakable block ciphers Pholkos. With 256
to 1024 bits, its instances provide an efficient large-state keyed primitive with
high security guarantees also in post-quantum applications. Furthermore, its
tweak allows for using it in many modes, including the post-quantum secure
QCB, further distinguishing it from other large state block ciphers. Its analysis
benefits from existing results on AESQ and Haraka. Moreover, the analysis of
the 512-bit instance simplifies due to its structural similarity to that of the AES.
Thus, our analysis not only covers the most general attack vectors but can also
apply lessons learned from very recent results on the AES or AESQ as well as
constants chosen for the absence of subspace trails in Haraka. Yet, we would
like to motivate third-party cryptanalysis to shed more light on the security of
Pholkos, which would be particularly interesting since any novel result on the
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untweaked variant of Pholkos-512 might also yield insights to the AES. Moreover,
the security in the post-quantum related-tweak and the post-quantum related-
tweakey models pose interesting research questions, as these models are still
relatively new and not investigated thoroughly.
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Abstract. Multi-signatures are used to attest that a given collection
of n parties, indexed by their respective public keys, have all signed a
given message. A recent popular application of multi-signatures is to be
found in consensus protocols to attest that a qualified subset of a global
set of n validators have reached agreement. In this paper, we point out
that the traditional security model for multi-signatures is insufficient for
this new application, as it assumes that every party in the set partic-
ipates in every multi-signature computation and that is honest. None
of these assumptions hold in the typical adversarial scenarios in con-
sensus protocols (aka. byzantine agreement), where malicious players
can launch a denial-of-service attack by injecting malformed individual
signatures and cause liveness to halt. We address this by introducing
a new multi-signature variant called robust subgroup multi-signatures,
whereby any eligible subgroup of signers from the global set can produce
a multi-signature on behalf of the group, in the presence of a byzantine
adversary. We provide syntax and security definitions thereof and argue
that existing unforgeability security proofs for multi-signatures do not
carry over to the consensus setting; a consequence of this observation
is that many multi-signature based consensus protocols are left lacking
a rigorous security proof for correctness. To remediate this we propose
several constructions which we prove secure under widely held crypto-
graphic assumptions using our newly introduced formal definitions and
also improve upon multi-signature computation time. Finally, we report
on benchmarks from a proof-of-concept implementation.

1 Introduction

A multi-signature protocol1 enables n entities indexed by their respective public
keys {pki}n

i=1 to sign a message m and produce n individual signatures {si}n
i=1

which are later compressed into a multi-signature σ. Recently there has been a
renewed interest in multi-signatures for securing distributed ledgers, e.g., [14,16,
23]. Multi-signatures can be used to build secure ledgers more efficiently, namely

1 We also use the term scheme.
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they can help reduce block storage and/or block correctness verification time or
reduce the time to validate that consensus on a block has been reached [8,14].

A multi-signature can be trivially obtained from any unforgeable signature
scheme by concatenating every individuals’ signature on m, while verification
simply checks that each atomic signature passes the individual signature verifica-
tion test. Often designs that improve on that trivial construction in terms of the
final signature length or the performance of the verification process are preferred.
It is expected that multi-signature designs achieve compactness [8], that is, the
length of the final multi-signature is independent of the number of signers. The
verification of the short multi-signature σ should convince a verifier that all the n
entities signed the message m. Multi-signatures can be constructed, for example,
from Schnorr signatures e.g. [23], and from BLS signatures [6,8,9]. Schnorr-based
multi-signatures involve multiple rounds of communication, while pairing-based
multi-signature schemes can be non-interactive. The latter is highly desirable for
applications in distributed settings where the potential participants are unknown
upfront and the network nodes are sparsely connected. The focus on this paper
is therefore on non-interactive multi-signature protocols.

Despite the recent popularity gained by multi-signatures for the specific pur-
pose of recording blockchain consensus, both in the literature [8,14,16,23] and
in actual platforms [1,10,15,20,28], the existing multi-signatures formal mod-
els fail to address the particularities of consensus protocols. Indeed, existing
multi-signatures formal models apply in scenarios where the signing entities are
controlled by a single party or where they are highly coordinated, so that the
incoming individual signatures are assumed to be valid before being combined in
a single multi-signature. Such is the case for instance in a scenario where a user
owns multiple wallets that can transfer funds by generating a multi-signature
that if correct shows every wallet sign the corresponding transfer (this actually
constitutes their main usage so far in the cryptocurrency space).

Thus, existing (non-interactive) multi-signature schemes mechanics do not
explicitly address the verification and selection of valid individual signatures
before running the multi-signature creation process. However, in the context
of signaling block agreement amongst a group of validators in Proof-of-Stake
consensus protocols, it is not reasonable to assume that the individual signatures
coming from consensus nodes are valid by default. This applies likewise in the
case of aggregating transaction signatures. Therefore individual signatures need
to be verified before being aggregated into a multi-signature, as we simply cannot
assume they are valid when the combining party runs the combining process. To
reflect this, we introduce a notion of robustness for multi-signatures which is
a form of correctness but allowing the adversary to submit signatures to the
signature combination algorithm.

A variant of multi-signatures that can be particularly useful for consensus
applications is subgroup multi-signatures [6,24]. Subgroup multi-signatures allow
any eligible subgroup of signers from a global set to produce a multi-signature on
behalf of the global group, as the right solution to recording consensus. This con-
cept is most useful in scenarios where the group of entities that will participate
in the signing process of a given message belong to a fixed set but is not fully
determined. For example that is the case in t-out-of-n multi-signatures, where a
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combined multi-signature is valid if any t members out of a given n-member set
have signed.

The current practice of using BLS-based multi-signatures with bitmaps as
subgroup multi-signatures for blockchain consensus, for example [12,15,16,20]
is, however, not necessarily provably secure in a subgroup model. Elrond [15]
uses a modified version of the multi-signature scheme MSP proposed in [8] for
subgroup multi-signature. However, no security analysis is provided for their
modified scheme. The unforgeability of the original MSP scheme [8] is proven
based on a condition that each signer has a prior knowledge of all other entities
that will definitely sign, which makes MSP unsuitable to be used as a subgroup
multi-signatures. Technically this condition is crucial for defending against the
notorious rogue-key attacks [27] and is guaranteed by hashing all the signers
in the coefficients ai = H1(pki, {pk1, · · · , pkn}) during the signing process. In
the security reduction of unforgeability, these coefficients enable the generalised
forking lemma to output two different multi-signatures signed by the same set
of signers after rewinding to the point where ai is chosen in order to extract
the underlying secret key of the challenging signer. Elrond’s modified version
breaks this condition by using the coefficients ai = H1(pki) instead which can
no longer guarantee the signers are the same when using the generalised fork-
ing lemma, thus it cannot be proven secure using the techniques in [8]. Other
consensus projects like [12,16,20] implement proof-of-possession (PoP) based
multi-signatures MSP-pop originally proposed in [27], but MSP-pop has not yet
been formalised and proven secure in a subgroup model.

Our contributions. We introduce robust subgroup multi-signature protocols,
a multi-signature variant specially designed for consensus. We define robustness
for multi-signatures, and present a rigorous definition of existential unforgeability
for subgroup multi-signature protocols. The former evaluates the correctness of
the signature combination algorithm in the presence of an adversary that may
control a subset of the signers. As a side benefit of explicitly capturing the signa-
ture combination function, we are able to optimise the validation of individual
signatures by using zero-knowledge proofs instead of time-consuming pairing
operations, which improves upon the efficiency of signature combination algo-
rithms of several existing multi-signatures. Regarding existential unforgeability,
we point out that the previous syntax and security definitions for subgroup multi-
signatures in [6] are incomplete and somewhat informal. This is undesirable from
a scientific point of view, and in fact this lack of formality may explain why [6]
presents a security proof for their construction while it is known to be inse-
cure [8]. We believe that robust subgroup multi-signatures capture the variant
of multi-signatures that best suits consensus applications.

We shall present four constructions of robust subgroup multi-signatures, i.e.,
RSMSP,RSMSP-zk,RSMS-pop and RSMS-pop-zk respectively. While RSMS-pop
is a natural adaption of MSP-pop scheme [27] to our subgroup model, the other
three constructions RSMSP,RSMSP-zk and RSMS-pop-zk are new. Our RSMSP
scheme is a twist to the MSP scheme [8]: the determination of the actual co-
signers is deferred to the signature combination phase thanks to our explicit
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combine function, and we include the set of identities I of the co-signers in
the hash values ai = H2(pki, I, {pk1, pk2, · · · , pkn}). This trick enables us to
remove the restriction that the co-signers have to be fixed from the beginning.
It also enables us to use the Generalised Forking Lemma to rewind the adver-
sary to the point ai is generated and produce another multi-signature with the
same set of cosigners I in order to prove existential unforgeability. The variants
RSMSP-zk (resp. RSMS-pop-zk) optimise the combination of individual signa-
tures in RSMSP (resp. RSMS-pop) by introducing NIZKs to validate individual
signatures. Note that the combine function does not use any secret informa-
tion and can be run by any entity, making it still a non-interactive process.
Our experiments show that this optimisation makes the combination process 2x
faster. Last but not least, by proving secure the construction RSMS-pop using
our refined subgroup multi-signature model, we provide the missing evidence
that the multi-signatures protocols for consensus in [12,16,20] are indeed sound.

Related work. Sequential aggregate multi-signatures are studied in [7,21,22]
where each signer modifies the aggregate signature in turn. Such signatures are
suitable for applications like secure route attestation and ceritificate chains. Pixel
[14] is a complex multi-signature scheme based on hierarchical identity-based
encryption (HIBE), which involves a key update method in order to provide for-
ward security. Plumo [16] implements a SNARK based validation for checking
aggregated BLS signatures. Adhoc Threshold Multisignatures [17] extend pop-
based multi-signatures with a Merkle tree commitment to validate the member-
ship of the individual public keys.

Accountable-subgroup multi-signatures [8,24] allow any subgroups to pro-
duce a multi-signature for a message in a provably secure way but involve an
interactive key setup. This is mainly due to the requirement of not involving
individual public keys for multi-signature verification. While this setting can
be useful for some applications (e.g., multisig wallets with 2 or 3 addresses
[2]), it is neither optimal nor flexible in general consensus setting. Indeed that
would require validator nodes to run a joint setup phase which is expensive.
In the decentralised consensus application, validator groups are formed ad hoc
by the network nodes which are sparsely connected. An interactive key setup
requires synchronisation among n participating nodes which is the top chal-
lenge for implementation of decentralised applications, especially when n is big,
for example, Ethereum 2.0 requires a minimum of 128 validators for each com-
mittee. Moreover, the expensive interactive setup makes it difficult for nodes to
join or leave dynamically. Therefore, we focus on non-interactive multi-signature
schemes in this paper. The individual public keys are used in the verification of
our multi-signatures but they are only stored in the blockchain once when nodes
register themselves as validators.

2 Preliminaries

In this section we briefly recall some building blocks needed in the rest of the
paper, such as the computational assumptions under which our constructions
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are proven secure, the equality of discrete logarithms proof system and the gen-
eralised forking lemma.

2.1 Bilinear Groups

Definition 1 (Asymmetric Pairing Groups). Let G1 = 〈g1〉 ,G2 = 〈g2〉
and GT be (cyclic) groups of prime order q. A map e : G1×G2 → GT to a group
GT is called a bilinear map, if it satisfies the following three properties:

– Bilinearity: e(gx
1 , gy

2 ) = e(g1, g2)xy for all x, y ∈ Zp.
– Non-Degenerate: e(g1, g2) �= 1.
– Computable: e(g1, g2) can be efficiently computed.

We assume there exists an efficient bilinear pairing generator algorithm IG that
on input a security parameter 1λ outputs the description of 〈e(·, ·),G1,G2,GT , q〉.

Asymmetric pairing groups can be efficiently generated [18]. Pairing group
exponentiations and pairing operations can also be efficiently computed [13].

2.2 Computational Assumptions

Definition 2 (Computational co-CDH assumption [8]). Let X ← (G1,G2,

q, g1, g2, g
α
1 , gβ

1 , gα
2 ) where G1 = 〈g1〉 and G2 = 〈g2〉 are cyclic groups of prime

order q, and α, β
$← Z

∗
q . We define the advantage Advco-CDH

A of an adversary
A as

Advco-CDH
A := Pr

[
A(X) = gαβ

1

]

We say A (τ, ε)-breaks the co-CDH problem if it runs in time at most τ and
Advco-CDH

A ≥ ε. co-CDH is (τ, ε)-hard if no such adversary exists.

Definition 3 (Computational ψ-co-CDH assumption [8]). Let X ← (G1,

G2, q, g1, g2, g
α
1 , gβ

1 , gα
2 ) where G1 = 〈g1〉 and G2 = 〈g2〉 are cyclic groups of

prime order q, and α, β
$← Z

∗
q . Let Oψ(·) be an oracle that on input gα

2 ∈ G2

returns gα
1 ∈ G1. We define the advantage Advψ-co-CDH

A of an adversary A as

Advψ-co-CDH
A := Pr

[
AOψ(·)(X) = gαβ

1

]

We say A (τ, ε)-breaks the ψ-co-CDH problem if it runs in time at most τ and
Advψ-co-CDH

A ≥ ε. ψ-co-CDH is (τ, ε)-hard if no such adversary exists.

2.3 Equality of Discrete Logarithms

We need NIZK proof systems as an ingredient to our construction, namely the
Equality of Discrete Logarithms proof system. Formally, given a cyclic group G

of order q and g, h ∈ G, the NIZK proof (PrEqH ,VerEqH) to show k = logg x =
logh y for x, y ∈ G, k ∈ Zq is described as below [11]:
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– PrEqH(g, h, x, y, k): choose r
$← Zq, compute R1 = gr, R2 = hr and set

c ← H(g, h, x, y,R1, R2). Output is (c, s = r + k · c).
– VerEqH(g, h, x, y, (c, s)): compute R1 ← gs/xc and R2 ← hs/yc and output

c
?= H(g, h, x, y,R1, R2).

The security of the above NIZK is random oracle (RO) based, rather than
common reference string (CRS) based. CRS-based model assumes a trusted setup
which embeds a secret trapdoor. The trapdoor, if known by any party, can be
used to subvert the security of the system, which poses a challenge for decen-
tralised applications. In contrast, our construction does not involve the gener-
ation of any trusted parameters. Moreover, the security of multi-signatures is
based on RO-model, so it is natural to use RO-based model for NIZKs in our
case.

2.4 Generalized Forking Lemma

The forking lemma [26] for proving the security of schemes based on Schnorr
signatures was generalised to a wider class of schemes [3,4]. Below we describe
the version due to [3].

Consider an algorithm A that on input in interacts with a random oracle
H : {0, 1}∗ 	→ Zq. Let f = (ρ, h1, . . . , hqH

) be the randomness involved in an
execution of A, where ρ is A’s random tape, hi is the response to A’s i-th query
to H, and qH is its maximal number of random-oracle queries. Let Ω be the space
of all such vectors f and let f |i = (ρ, h1, . . . , hi−1). We consider an execution
of A on input in and randomness f , denoted by A(in, f), as successful if it
outputs a pair (J, {outj}j∈J), where J is a multi-set that is a non-empty subset
of {1, . . . , qH} and {outj}j∈J is multi-set of side outputs. We say that A failed
if it outputs J = ∅. Let p be the probability that A(in, f) is successful for fresh

randomness f
$← Ω and for an input in $← IG generated an input generator IG.

For a given input in, the generalised forking algorithm GF is defined as shown
in Fig. 1. We say that GFA succeeds if it doesn’t output fail.

Lemma 1 (Generalised Forking Lemma [3]). Let IG be a randomised algo-
rithm and A be a randomised algorithm running in time τ making at most qH

random-oracle queries that succeeds with probability ε. If q > 8nqH/ε, then
GFA(in) runs in time at most τ · 8n2qH/ε · ln(8n/ε) and succeeds with prob-

ability at least ε/8, where the probability is over the choice of in $← IG and over
the coins of GFA.

3 Definitions of Robust Subgroup Multi-signatures

We now introduce syntax and security definitions for our robust subgroup multi-
signatures. We describe a notion of robustness, a generalised notion of correct-
ness, by allowing adversaries to participate in the signature combination process.
Then we define unforgeability in a subgroup model where the adversary outputs
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GFA(in) :

f = (ρ, h1, . . . , hqH ) $← ω

(J, {outj}j∈J ) ← A(in, f)

If J = ∅ then output fail

Let J = {j1, . . . , jn} such that j1 ≤ · · · ≤ jn

For i = 1, . . . , n do

succi ← 0; ki ← 0; kmax ← 8nqH · ln (8 )

Repeat until succi = 1 or ki > kmax

f
$← Ω such that f |ji = f |ji

Let f = (ρ, h1, . . . , hji−1, hji
, . . . , hqH

)

(J , {out j }j∈J ) ← A(in, f )

If hji = hji and J = ∅ and ji ∈ J then

outji ← outji ; succi ← 1

If succi = 1 for all i = 1, . . . , n

Then output (J, {outj}j∈J , {out j}j∈J )

Else output fail

Fig. 1. Algorithm GF

a forgery (J, σ�) where J is a subset of indices of signers from a group PK chosen
by the adversary and σ� is a multi-signature.

Definition 4. A robust subgroup multi-signature scheme (RSMS) Π =
(KeyGen,KeyAgg,GroupSet,Sign,Combine,VerifyMul) consists of the following
algorithms:

KeyGen(1λ): this algorithm is used by each entity locally to output, on input a
security parameter λ, their own key pair (sk, pk).

GroupSet(PK): on input a set of public keys PK, the algorithm forms a group
and outputs a group public key gpk = (gtag,PK), where gtag is a group tag
that depends on the context where the subgroup multi-signature is used2. When
the algorithm fails to form the group, gpk = ⊥.

Sign(m, ski, pki, gtag): on input a message m, a secret key ski, a public key pki,
a group tag gtag, the algorithm outputs an individual signature si.

Combine(m, E , gpk): on input a message, a set of individual signatures E = {si}i

created by |E| different signers, a group public key gpk, the algorithm identifies
an index set J of valid individual signatures and combines them into a single
multi-signature σ and outputs (J, σ). When the algorithm fails to combine the
individual signatures, (J, σ) = (∅,⊥).

VerifyMul(m,J, σ, gpk): on input a message m, an index set J , a group public
key gpk, the algorithm outputs 1 if σ is a valid multi-signature and outputs 0
otherwise.

2 In order to simplify the notation we choose this contextual information to be implicit.
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Sometimes we make use of the following auxiliary algorithm when describing
particular instances:

KeyAgg(J,PK): on input an index set J and a set of public keys PK, this algo-
rithm aggregates PK into a single aggregate public key apk. Output apk.

Definition 5 (Robustness). The robustness of a RSMS scheme Π =
(KeyGen,GroupSet,Sign,Combine,VerifyMul) is defined by a three-stage game:

Setup. The challenger generates the system parameters pp and a challenge entity
with key tuple (sk�, pk�) ← KeyGen(1λ). It gives (pk�, pp) to the adversary.

Signature queries. A is allowed to make signature queries on any message m
for any gtag, meaning that it has access to oracle OSign(·,sk�,pk�,·) that simu-
lates the honest signer signing a message m.

Output. Finally, the challenger receives from the adversary a message m� and
a group public key gpk = (gtag,PK = {pki}i∈U ), and a set of individual sig-
natures E = {si}i∈I from |I| different entities such that I ⊆ U . The adversary
wins if
1. pk� = pkk for some k ∈ U and k /∈ I
2. gpk �= ⊥ and gpk = GroupSet(PK)
3. VerifyMul(m�, J, σ�, gpk) = 0, where s� ← Sign(m�, sk�, pk�, gtag) and

(J, σ�) ← Combine(m�, E ∪ {s�}, gpk).

We say A (τ, qS , qH , ε)-breaks the robustness of RSMS if A runs in time at most
τ , makes at most qS signing queries and at most qH random oracle queries, and
the above game outputs 1 with probability at least ε. RSMS is (τ, qS , qH , ε)-robust
if no such adversary exists.

In the above definition, the challenger controls an honest signer (sk�, pk�), while
the adversary controls all other signers and is given access to the signing oracle
for sk� to maximise its attacking capabilities. In the Output phase, the adversary
forms and submits a group PK which consists of the honest signer pk� generated
by the challenger and other signers generated by the adversary. The signatures
E created by the adversary are combined with the signature s� from the honest
signer. Robustness demands that the output of the Combine function is a valid
multi-signature in the presence of the adversary’s inputs.

Definition 6 (Unforgeability). The unforgeability of a RSMS scheme Π =
(KeyGen,GroupSet,Sign,Combine,VerifyMul) is defined by a three-stage game:

Setup. The challenger generates the system parameters pp and a challenge key
pair (sk�, pk�) ← KeyGen(1λ). It gives (pk�, pp) to the adversary.

Signature queries. A is allowed to make signature queries on any message m
for any group tag gtag, meaning that it has access to oracle OSign(·,sk�,pk�,·)

that simulates the honest signer signing a message m.
Output. Finally, the adversary outputs a multi-signature forgery (J, σ�), a mes-

sage m�, a group public key gpk = (gtag�,PK = {pki}i∈U ). The adversary
wins if
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1. gpk �= ⊥ and gpk = GroupSet(PK)
2. pk� = pkk for some k ∈ U ∩ J
3. A made no signing queries on (m�, gtag�) and VerifyMul(m�, J, σ�, gpk) =

1

We say A is a (τ, qS , qH , ε)-forger for RSMS if A runs in time at most τ , makes
at most qS signing queries and at most qH random oracle queries, and wins the
above game with probability at least ε. RSMS is (τ, qS , qH , ε)-unforgeable if no
such adversary exists.

Remark 1 (On including an explicit tag gtag when signing). Our unforgeability
definition lets the adversary query the signing oracle OSign(·,sk�,pk�,·) on the forged
message m� as long as it is queried on tags gtag �= gtag�. We think that given
the current trend of multi-chain frameworks, where the same signing key pair
(pk, sk) may be used to validate consensus simultaneously in different chains,
embedding contextual information in the form of a tag gtag when signing, is of
material importance given security issues with rogue key attacks and aggregation
in a multi-chain setting are potentially more likely.

4 Our Pairing-Based Robust-Subgroup Multi-signature
Scheme

Generally speaking, the major technical problem in constructing a secure multi-
signature scheme is to prevent the rogue-key attack [23,27] which enables an
adversary to use a specially crafted public key to deprive all other entities of
their signing right. We consider two ways to prevent rogue-key attacks for our
robust subgroup multi-signatures: one is using techniques proposed in [8,23] to
combine individual signatures with hash values derived from the related public
keys; the other way is called the proof-of-possession [8,27] which introduces an
additional public key H(pki)ski to show the knowledge of the secret key ski.
Moreover, we optimise the Combine process by introducing NIZKs to validate
individual signatures to replace the checking based on time-consuming pairing
equations. This optimisation can make the signature combination process x2
faster.

In this section, we present four constructions of robust-subgroup multi-
signatures: RSMSP and its optimised version RSMSP-zk, and RSMS-pop and
its optimised version RSMS-pop-zk.

4.1 Construction of RSMSP

Our RSMSP is constructed based on MSP scheme proposed in [8]. As mentioned
in the introduction, MSP in [8] cannot be used as a subgroup multi-signature
scheme in the provably secure sense. Here we propose a twist to MSP in order to
construct a secure robust-subgroup multi-signature: we defer the determination
of the actual co-signers to the combine phase thanks to the explicit introduction
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of the Combine function in our robust subgroup multi-signature scheme, and we
include the identities of the subset of co-signers in the hash values H2(pkj , J,PK)
generated for each co-signer j. In the security proof, this twist allows us to deter-
mine the co-signers at the moment when the hash value cjf

= H2(pk�, J,PK)
is generated so that we can use the generalised forking lemma to rewind the
adversary to this point and produce another multi-signature with the same set
of cosigners J in order to extract the underlying secret key sk� of pk�. Note that
the Combine function does not use any secret information and can be run by any
entity, making it still a non-interactive process.

Construction of RSMSP. Let (q,G1,G2,GT , e, g1, g2) be a bilinear group with
prime order q and g1 ∈ G1, g2 ∈ G2. Assume hash functions H1 : {0, 1}∗ 	→ Zq,
H2 : {0, 1}∗ 	→ G1 and H3 : {0, 1}∗ 	→ G1.

KeyGen(1λ): Choose sk
$← Zq, compute pk = gsk2 , and output (sk, pk). The public

key pk is made public.
GroupSet(PK): Compute gtag = H1(PK). Output gpk = (gtag,PK).
KeyAgg(J,PK): Parse PK = {pki}i∈I . Output ⊥ if J �⊆ I. Compute aj =

H2(pkj , J,PK) for each j ∈ J . Output apk =
∏

j∈J pk
aj

j .
Sign(m, ski, gtag): Output an individual signature si = H3(gtag,m)ski .
Combine(m, E , gpk): Parse E = {si}i∈I of individual signatures originating from

|I| different entities, and gpk = (gtag,PK). The combiner verifies each sig-
nature by checking e(si, g2) = e(H3(gtag,m), pki). Assume the index set of
valid signatures is J ⊆ I. The combiner computes the multi-signature as
σ =

∏
j∈J s

aj

j with aj = H2(pkj , J,PK) for j ∈ J . Output (J, σ).
VerifyMul(m,J, σ, gpk): Parse gpk = (gtag, {pki}i∈I). If J = ∅ or J �⊆ I, then

output 0. Otherwise, compute apk ← KeyAgg(J,PK). Output 1 if e(σ, g2) =
e(H3(gtag,m), apk); else output 0.

Remark 2. Note that when hashing the message m in the signing algorithm, it
is a good practice to include the unique group tag gtag in the hash function
H1(gtag,m) since the same node may be able to join different committee groups
at the same time using the same public key (e.g., [19]). In this way, in the security
definition of unforgeability, the adversary is allowed to issue signing query on
different combinations (m�, ·) and (·, gtag�) of the challenge message and the
challenge group tag as long as it does not query (m�, gtag�).

Batch verification. As usual, n multi-signatures on n-distinct pairs of
(gtag,m) can be verified as a batch faster than verifying them one by one:

– Compute an aggregate multi-signature Σ = σ1 · · · σn ∈ G1

– Accept all n multisignatures as valid iff

e(Σn, g2) =
∏

1≤i≤n

e(H3(gtagi,mi), apki)

Theorem 1. RSMSP is robust.
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Proof. Suppose there exists an adversary A that (τ, qS , qH , ε)-breaks robustness
of RSMSP. We will show that this leads to a contradiction. At the end of the
robustness game, the adversary outputs (m�, gpk = (gtag�,PK = {pki}i∈U ), E =
{si}i∈I) with pk� = pkk for some k ∈ U . When the challenger outputs 1,
we know that e(σ�, g2) �= e(H3(gtag�,m�), apk) where s ← Sign(m�, sk�, pk�,
gtag�), (J, σ�) ← Combine(m�, E ∪ {s}, gpk) and apk ← KeyAgg(J,PK). Thus
there exists j ∈ J such that e(sj , g2) �= e(H3(gtag�,m�), pkj). We consider two
cases. If j = k, then this is impossible because sj = H3(gtag�,m�)sk

�

and
pkj = gsk

�

2 . If j �= k, this directly contradicts to the verification e(sj , g2) =
e(H3(gtag�,m�), pkj) performed in the Combine process. This completes the
proof.

Theorem 2. RSMSP is unforgeable under the computational co-CDH assump-
tion in the random oracle model. Formally, RSMSP is (τ, qS , qH , ε)-unforgeable
if q > 8qH/ε and co-CDH is ((τ + (qH + qS) · τexp1

+  · τexp2
) · 8q2H/ε ·

ln(8qH/ε), ε/(8qH))-hard where  is the maximum number of signers involved
in a single multi-signature and τexp1

is the time required to compute one expo-
nentiation in G1.

Proof. Suppose A is a (τ, qS , qH , ε) forger against RSMSP. We shall first con-
struct an adversary B using A as a subroutine and then construct another
adversary F to run GFB to derive a solution to the co-CDH instance.

Given a co-CDH instance (e,G1,G2,GT , q, g1, g2, g
α
1 , gβ

1 , gβ
2 ) with g1 ∈

G1, g2 ∈ G2, α, β
$← Zq. The goal is to find the solution gαβ

1 to the instance. We
first construct B to run A as follows:

1. Give to A the public parameters (e,G1,G2,GT , q, g1, g2) and the challenge
public key pk� = gβ

2 as input. B runs A on randomness f = (ρ, c1, · · · , cqH
).

2. The random oracle H1 is answered as follows: initialise a list LH1 = ∅. For
a query on y, if there exists (y, c) ∈ LH1 then output c; otherwise choose a

random c
$← Zq, update LH1 = LH1 ∪ {(y, c)} and output c.

3. The random oracle H2 is programmed as follows: Define a list LH2 = ∅. For
a query on y, if there exists (y, c) ∈ LH2 , then output c; otherwise
(a) If y = (pk, J,PK) with pk ∈ PK and pk� ∈ PK, assume this is the

i-th query to H2. For each j ∈ J and pkj �= pk�, choose a random

value dj
$← Zq and set H2(pkj , J,PK) = dj . For (pk�, J,PK), it fixes

H2(pk�, J,PK) = ci. Output H2(y).

(b) Else choose a random d
$← Zq and set H2(y) = d. Output d.

4. The random oracle H3 is answered as follows: initialise LH3 = ∅. Let qH be
the total number of distinct random oracle queries asked in this game. Choose
an index η� $← [qH ] uniformly at random.

– If there exists a tuple (x, r, h) ∈ LH3 , output h.
– Otherwise,

• If this is the η�-th distinct call, set r = ⊥ and h = gα
1 where gα

1 is
from the co-CDH problem.
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• Else choose a random r
$← Zq and set h = gr

1.
• Update LH3 = LH3 ∪ (x, r, h) and output h.

5. To answer the sign query Sign(·, sk�, pk�, ·) on a message x, call the H3 oracle
to obtain (x, r, h) ∈ LH3 ,

– If r = ⊥, return ⊥
– Else output gβ·r

1

Finally A outputs a forgery (J, σ�), a message m�, a group public key gpk =
(gtag�,PK). If (gtag�,m�) is not the η�-th query to H3, then B aborts. Since
η� is randomly chosen, the probability that B does not abort is 1/qH . Let’s
assume B does not abort. Parse PK = {pk1, . . . , pkn}. Suppose pk� = pkk for
some 1 ≤ k ≤ n. Let jf be the index such that H1(pk�, J,PK) = cjf

. Let
apk ← KeyAgg(J,PK) and aj = H2(pkj , J,PK) for each j ∈ J . B outputs
({jf}, {(σ�,PK, J, apk, {aj}j∈J)}).

The running time of B is that of A plus the additional computations that B
makes. Let τexp1

(resp. τexp2
) be the time required to compute one exponentiation

in G1 (resp. G2). Let qH be the combined number of random oracle queries to
H1,H2,H3. To answer qH random oracle queries, B spends at most qH · τexp1

time. To answer the signing queries, B spends at most qS ·τexp1
time. To construct

apk, it takes  · τexp2
time where  is the maximum number of signers involved

in a single multi-signature. In total, B’s running time is therefore τ +(qH + qS) ·
τexp1

+  · τexp2
. B’s success rate εB is the probability that A succeeds and that

B correctly guesses the hash index of A’s forgery, thus εB = ε/qH .
Now we construct another adversary F that on input a co-CDH instance

and a forger A, outputs a solution to the co-CDH instance. F runs the gener-
alised forking lemma GFB with algorithm B constructed above. If GFB outputs
({jf}, {out}, {out′}), then B proceeds as follows. B parses out = (σ,PK, J, apk,
{aj}j∈J) and out′ = (σ′,PK′, J ′, apk′, {a′

j}j∈J ′). Let K be the index of pk�

in PK. Then we know ak = cjf
and a′

k = c′
jf

and ak �= a′
k. Since out, out′ are

obtained from two executions of B with randomness f, f ′ such that f |jf
= f ′ |jf

,
we can derive that PK = PK′, J = J ′ and aj = a′

j for j ∈ J \ {k}. Therefore

we have apk/apk′ = g
β(ak−a′

k)
2 . Since B’s output satisfies e(σ, g2) = e(gα

1 , apk)
and e(σ′, g2) = e(gα

1 , apk′), we can compute (σ/σ′)1/(ak−a′
k) as a solution to the

co-CDH instance.
Using the generalised forking lemma, if q > 8qH/ε, F runs in time at most

(τ +(qH + qS) · τexp1
+  · τexp2

) · 8q2H/ε · ln(8qH/ε) and succeeds with probability
at least ε/(8qH).

4.2 Optimising RSMSP with NIZKs

We can use NIZKs validate individual signatures in order to speed up the verifi-
cation of individual signatures in the Combine function in RSMSP. We call this
optimised scheme RSMSP-zk.

Construction of RSMSP-zk. The algorithms KeyGen,GroupSet,KeyAgg and
VerifyMul are implemented exactly the same as RSMSP, but the algorithms Sign
and Combine are optimised as below:
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Sign(m, ski, gtag): Output si = (vi, πi) where vi = H3(gtag,m)ski and πi ←
PrEqH4

(g2,H3(gtag,m), pki, vi; r) for randomness r
$← Zq.

Combine(m, E , gpk): Parse E = {(vi, πi)}i∈I of individual signatures originating
from |I| different entities, and gpk = (gtag,PK). The combiner verifies each
signature by checking VerEqH4

((g2,H3(gtag,m), pki, vi, πi) = 1. Assume the
index set of valid signatures is J ⊆ I. The combiner computes the multi-
signature as σ =

∏
j∈J v

aj

j with aj = H2(pkj , J,PK) for j ∈ J . Output (J, σ).

Theorem 3. RSMSP-zk is robust in the random oracle model.

Theorem 4. RSMSP-zk is unforgeable under the computational co-CDH
assumption in the random oracle model. Formally, RSMSP-zk is (τ, qS , qH , ε)-
unforgeable if q > 8qH/ε and co-CDH is (τ + (qH + 3qS) · τexp1

+ (2qS + ) ·
τexp2

) ·8q2H/ε · ln(8qH/ε), ε/(8qH))-hard where  is the maximum number of sign-
ers involved in a single multi-signature and τexp1

(resp. τexp2
) is the time required

to compute one exponentiation in G1 (resp. G2).

Proof. The analysis is similar to Theorem 2 except that the Sign queries are
answered with simulated NIZKs generated by an additional random oracle H4 :
{0, 1}∗ 	→ Zq:

– The random oracle H4 is programmed as follows: Define a list LH4 = ∅. For
a query on y, if (y, c) ∈ LH4 , then output c. Otherwise choose a random

c
$← Zq, update the list LH4 = LH4 ∪ (y, c) and output c.

– To answer the sign query Sign(·, sk�, pk�, ·) on a message x, call the H3 oracle
to obtain (x, r, h) ∈ LH3 ,

• If r = ⊥, return ⊥
• Else output gβ·r

1 and a simulated NIZK proof π using the random oracle
H4

To compute a simulated NIZK proof, it costs B 2(τexp1
+τexp2

) time. Adding the
time τexp1

for computing each signature, B spends at most qS · (3τexp1
+ 2τexp2

)
time to answer all the signing queries. In total B’s running time is at most
τ + (qH + 3qS) · τexp1

+ (2qS + ) · τexp2
and success rate is ε/qH . The running

time of the adversary F that runs GFB is (τ + (qH + 3qS) · τexp1
+ (2qS + ) ·

τexp2
) · 8q2H/ε · ln(8qH/ε) and succeeds with probability at least ε/(8qH).

4.3 Construction of RSMS-pop from Proof-of-possession

In proof-of-possession (PoP) based multi-signatures, an additional public key is
generated as a proof of knowledge of the secret key. Obviously the disadvan-
tage of using PoPs is the extra storage and computation overhead introduced
by the PoPs. However, PoPs offer a few competitive advantages as well. The
aggregation of signatures and public keys in PoPs are simply multiplications
without any exponentiation. The security argument of PoPs does not require
the generalised forking lemma which gives much tighter reductions. Construct-
ing secure robust-subgroup multi-signatures from PoPs [8,27] turns out to be
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quite straightforward, since security reductions of PoPs do not require to fix the
set of co-signers. For the completeness of this work, we describe the construction
of RSMS-pop and give security proofs below.

Construction of RSMS-pop. Let (q,G1,G2,GT , e, g1, g2) be a bilinear group
with prime order q and g1 ∈ G1, g2 ∈ G2. Assume hash functions H1 : G2 	→ G1,
H2 : {0, 1}∗ 	→ Zq, H3 : {0, 1}∗ 	→ G1.

KeyGen(1λ): Choose sk
$← Zq, compute pk = (pk, pop) with pk = gsk2 and pop =

H1(pk)sk, and output (sk, pk). The public key pk is made public and its validity
can be checked by e(pop, g2) = e(H1(pk), pk).

GroupSet(PK): Parse PK = {(pki, popi)}i∈I . For each i ∈ I, check if
e(popi, g2) = e(H1(pki), pki). If all successful, compute gtag = H2(PK) and
output gpk = (gtag,PK); else output ⊥.

KeyAgg(J,PK): Parse PK = {(pki, popi)}i∈I . If J �⊆ I, then output ⊥. Compute
and output apk =

∏
j∈J pkj .

Sign(m, ski, pki, gtag): Output signature si = H3(gtag,m)ski .
Combine(m, E , gpk): Parse gpk = (gtag, {pki}i∈U ) and the set E = {si}i∈I

of individual signatures originating from |I| different entities such that
I ⊆ U . The combiner verifies each signature in E by checking e(si, g2)
= e(H3(gtag,m), pki) where pki = (pki, pop). Assume the index set of
valid signatures is J ⊆ I. The combiner computes the multi-signature as
σ =

∏
j∈J σj and outputs (J, σ).

VerifyMul(m,J, σ, gpk): Parse gpk = (gtag,PK = {pki}i∈I). If J = ∅ or J �⊆
I, then output 0. Otherwise, compute apk ← KeyAgg(J,PK). Output 1 if
e(σ, g2) = e(H3(gtag,m), apk); else output 0.

Theorem 5. RSMS-pop is robust.

Proof. Suppose there exists an adversary A (τ, qS , qH , ε)-breaks robustness. We
will show that this leads to a contradiction. At the end of the robustness game,
the adversary outputs (m�, gpk = (gtag�,PK = {pki}i∈U ), E = {si}i∈I) with
pki = (pki, popi) for each i ∈ U and pk� = pkk for some k ∈ U . When
the challenger outputs 1, we know e(σ�, g2) �= e(H3(gtag�,m�),

∏
j∈J∪{k} pkj)

where s ← Sign(m�, sk�, pk�, gtag�), (J, σ�) ← Combine(m�, E ∪ {s}, gpk�). This
means there exists j ∈ J such that e(sj , g2) �= e(H3(gtag�,m�), pkj) and
pkj = (pkj , popj). This contradicts to the fact that all the individual signa-
tures with indices included in J� satisfy e(sj , g2) = e(H3(gtag�,m�), pkj) for
j ∈ J .

Theorem 6. RSMS-pop is unforgeable under the computational co-CDH
assumption in the random oracle model. Formally, RSMS-pop is (τ, qS , qH , ε)-
unforgeable if co-CDH is (τ + (qH + qS + ) · τexp1

, ε/qH)-hard where  is the
maximum number of signers involved in a single multi-signature and τexp1

is the
time required to compute one exponentiation in G1.

Proof. Given a co-CDH problem (e,G1,G2,GT , q, g1, g2, g
α
1 , gβ

1 , gβ
2 ) with g1 ∈

G1, g2 ∈ G2, α, β
$← Zq. B’s goal is to output gαβ

1 :
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1. Give to A the public parameters (e,G1,G2,GT , q, g1, g2), the challenge public

key pk� = (pk�, pop�) where pk� = gβ
2 and pop� = gβ·r�

1 with r� $← Zp.
2. The random oracle H1 is answered as follows: initialise a list LH1 = ∅.

– If there exists a tuple (x, r, h) ∈ LH1 , output h.
– Otherwise,

• If x = pk�, set h = gr�

1 and update LH1 = LH1 ∪ (x, r�, h) and output
h.

• Else choose a random r
$← Zq and set h = gα·r

1 where gα
1 is from the

co-CDH problem, update LH1 = LH1 ∪ (x, r, h) and output h.
3. The random oracle H2 is programmed as follows: Define a list LH2 = ∅. For

a query on y, if (y, c) ∈ LH2 , then output c. Otherwise choose a random

c
$← Zq, update the list LH2 = LH2 ∪ (y, c) and output c.

4. The random oracle H3 is answered as follows: initialise LH3 = ∅. Let qH3 be
the total number of distinct random oracle queries asked in this game. Choose
an index η� $← [qH3 ] uniformly at random.

– If there exists a tuple (x, r, h) ∈ LH3 , output h.
– Otherwise,

• If this is the η�-th distinct call, set r = ⊥ and h = gα
1 where gα

1 is
from the co-CDH problem.

• Else choose a random r
$← Zq and set h = gr

1.
• Update LH3 = LH3 ∪ (x, r, h) and output h.

5. To answer the sign query Sign(·, sk�, pk�, ·) on a message x, call the H3 oracle
to obtain (x, r, h) ∈ LH3 ,

– If r = ⊥, return ⊥
– Else output gβ·r

1

Finally A outputs a forgery (J, σ�), a message m�, a group public key gpk� =
(gtag�,PK). If (m�, gtag�) is not the η�-th query to H3, then B aborts. Since
η� is randomly chosen, the probability that B does not abort is 1/qH3 . Let’s
assume B does not abort. Parse PK = {pki}i∈U with each pki = (pki, popi).
Suppose pk� = pkk for some k ∈ U . Based on the construction of H1, we have
H1(pki) = gα·ri

1 for each i ∈ U \{k}. Combing with e(H1(pki), pki) = e(popi, g2)

obtained from Condition 1 in Definition 6, we have e(gα
1 , pki) = e(pop

r−1
i

i , g2)
for each i ∈ U \ {k}. Because e(σ�, g2) = e(H3(gtag�,m�),

∏
i∈J pki) by the

Condition 3 in Definition 6, we can derive e(σ�, g2) = e(gα
1 , gβ

2 ·∏i�=k
i∈J pki) = e(gα

1 ,

gβ
2 ) · e(gα

1 ,
∏i�=k

i∈J pki) = e(gα
1 , gβ

2 ) · e(∏i�=k
i∈J pop

r−1
i

i , g2). Let δ = σ� · ∏i�=k
i∈J pop

−r−1
i

i .

Then we have e(δ, g2) = e(σ� · ∏i�=k
i∈J pop

−r−1
i

i , g2) = e(σ�, g2)/e(
∏i�=k

i∈J pop
r−1

i
i , g2)

= e(gα
1 , gβ

2 ). Therefore, B can return δ as a solution to the co-CDH problem with
a success probability at least ε/qH .

The running time of B is that of A plus the additional computations that
B makes. Let τexp1

be the time required to compute one exponentiation in G1.
The setup of the challenge verification key costs τexp1

. Let qH be the combined
number of random oracle queries to H1,H2,H3,H4. To answer qH random oracle
queries, B spends at most (qH − 1) · τexp1

time. B spends at most qS · τexp1
to
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answer all the signing queries. To construct the solution δ, it takes at most
 · τexp1

time where  is the maximum number of signers involved in a single
multi-signature. In total, B’s running time is τ + (qH + qS + ) · τexp1

.

Remark 3. Theorems 5 and 6 validate the correctness of using the multi-
signatures protocols for achieving consensus in [12,16,20].

In the next subsection, we shall discuss how to optimise RSMS-pop with
NIZKs to obtain a more efficient scheme RSMS-pop-zk. The performance evalu-
ation given in Sect. 6 will show our construction RSMS-pop-zk is 2x faster than
RSMS-pop in terms of combination of individual signatures.

4.4 Optimising RSMS-pop with NIZKs

Construction of RSMS-pop-zk. The KeyGen,KeyAgg,GroupSet,VerifyMul algo-
rithms are instantiated in the same way as RSMS-pop, but the algorithms Sign
and Combine now use NIZKs to validate individual signatures:

Sign(m, ski, pki, gtag): Parse pki = (pki, popi). Compute vi = H3(gtag,m)ski

and πi ← PrEqH4
(H1(pki),H3(gtag,m), popi, vi; r) for randomness r

$← Zq.
Output si = (vi, πi).

Combine(m, E , gpk): Parse gpk = (gtag, {(pki, popi)}i∈U ) and E = {(vi, πi)}i∈I

the set of individual signatures originating from |I| different entities such that
I ⊆ U . The combiner verifies each signature in E by checking

VerEqH4
(H1(pki), popi,H3(gtag,m), vi, πi) = 1.

Assume the index set of valid signatures is J ⊆ I. The combiner computes
the multi-signature as σ =

∏
j∈J vj and outputs (J, σ).

Theorem 7. Our RSMS-pop-zk scheme is robust in the random oracle model.

Theorem 8. RSMS-pop-zk is unforgeable under the computational co-CDH
assumption in the random oracle model. Formally, RSMS-pop-zk is (τ, qS , qH , ε)-
unforgeable if co-CDH is (τ + (qH + 5qS + ) · τexp1

, ε/qH)-hard where  is the
maximum number of signers involved in a single multi-signature and τexp1

is the
time required to compute one exponentiation in G1.

Proof. The analysis is the same as Theorem 6 except that Sign queries are
answered with simulated NIZKs generated by an additional random oracle
H4 : {0, 1}∗ 	→ Zq:

– The random oracle H4 is programmed as follows: Define a list LH4 = ∅. For
a query on y, if (y, c) ∈ LH4 , then output c. Otherwise choose a random

c
$← Zq, update the list LH4 = LH4 ∪ (y, c) and output c.

– To answer the sign query Sign(·, sk�, pk�, ·) on a message x, call the H3 oracle
to obtain (x, r, h) ∈ LH3 ,

• If r = ⊥, return ⊥
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• Else output gβ·r
1 and a simulated NIZK proof π using the random oracle

H4

For each Sign query, B needs to generate a simulated NIZK proof which takes
4τexp1

time for each proof. Adding the time τexp1
for computing each signature,

B spends at most qS ·5τexp1
to answer all the signing queries. Therefore, B’s total

running time is at most τ + (qH + 5qS + ) · τexp1
and B’s success probability is

ε/qH .

5 Extensions

In this section, we extend our robust subgroup multi-signatures with two useful
functions: compression and aggregation. We give formal definitions and security
analysis for the extended multi-signatures.

5.1 Compressing Two Multi-signatures on the Same Message

It is possible to compress two multi-signatures on the same message if signed
by disjoint subgroups. In practice, this enables any entity to start the signature
combination process without the need of waiting until the entity gets all the
individual signatures. It is a type of incremental aggregation mentioned in [14]
but was never formalised. Below we shall extend our definition of robust subgroup
multi-signature scheme RSMS with an additional algorithm called Compress:

Compress(m,J1, σ1, J2, σ2, gpk): on input a message m, two multi-signatures (J1,
σ1), (J2, σ2), and a group public key gpk, the algorithm compress two multi-
signatures into a single multi-signature and outputs (J, σ) with J = J1 ∪ J2.
When the algorithm fails to compress the multi-signatures, output (J, σ) =
(∅,⊥).

Robustness. We extend the robustness in Definition 5 to include compress-
ibility: for any m,J1, J2, σ1, σ2, gpk such that J1 ∩ J2 = ∅ and J1, J2 �= ∅, if
VerifyMul(m,Jb, σb, gpk) = 1 for b = 1, 2, then VerifyMul(m,J, σ, gpk) = 1 where
(J, σ) ← Compress(m,J1, σ1, J2, σ2, gpk).

Unforgeability. The definition of unforgeability does not change since Compress
does not involve any secret information and the adversary can run this algorithm
by itself.

Instantiations. Unfortunately, RSMSP and RSMSP-zk are not compress-
ible, because two multi-signatures σb =

∏
i∈Jb

s
ai,b

i with coefficients ai,b =
H2(pki, Jb,PK) and b = 0, 1, cannot be compressed into σ =

∏
i∈J1∪J2

sai
i with

coefficients ai = H2(pki, J1 ∪ J2,PK). In comparison, the PoP-based schemes
RSMS-pop and RSMS-pop-zk can be extended with Compress as follows:

Compress(m,J1, σ1, J2, σ2, gpk): Check if J1 ∩J2 = ∅, VerifyMul(m,Jb, σb, gpk) =
1 for b = 0, 1. If successful, output (J1 ∪ J2, σ1 · σ2). Otherwise output (∅,⊥).
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Theorem 9. The extended RSMS-pop and RSMS-pop-zk are robust in the ran-
dom oracle model.

Proof. We only need to show the compressibility defined above. Since e(σi, g2) =
e(H2(gtag,m), apki) for i = 1, 2, we know that e(σ, g2) = e(H2(gtag,m), apk)
where σ = σ1 · σ2 and apk = apk1 · apk2.
Theorem 10. The extended RSMS-pop and RSMS-pop-zk are unforgeable under
the computational co-CDH problem in the random oracle model.

Proof. As mentioned above, adding Compress algorithm does not change the
definition of unforgeability since the adversary can run Compress himself. The
proofs of unforgeability of RSMS-pop (resp. RSMS-pop-zk) are therefore the same
as Theorem 6 (resp. 8) and are omitted.

5.2 Aggregating Multi-signatures on Different Messages

Multi-signatures on different messages can be further aggregated into a single
aggregate signature, e.g., [8]. In this section, we show that the multi-signatures
on different messages signed by different groups in our robust-subgroup multi-
signature schemes can also be aggregated, and we call this extension aggregate
robust-subgroup multi-signatures (ARSMS).

Definition 7 (Aggregate Robust-Subgroup Multi-signature). An aggre-
gate robust-subgroup multi-signature (ARSMS) scheme consists of the fol-
lowing algorithms Π = (KeyGen,GroupSet,Sign,Combine,VerifyMul,Aggregate,
VerifyAgg), where algorithms KeyGen,GroupSet,Sign,Combine and VerifyMul are
exactly the same as RSMS in Definition 4, and

Aggregate({(mi, Ji, σi, gpki)}i∈I): on input a set of tuples of message, multi-
signature and group public key, the algorithm identifies an index set K ⊆ I of
valid multi-signatures and aggregates them into a single aggregate signature Σ
and outputs ({Ji}i∈K , Σ). When the algorithm fails to aggregate signatures,
output ⊥.

VerifyAgg({(mi, Ji, gpki)}i∈K , Σ): on input tuples of messages, indices and group
public keys, and an aggregate signature Σ, the algorithm outputs 1 if Σ is a
valid aggregate signature and outputs 0 otherwise.

Robustness of ARSMS. We define robustness for an ARSMS scheme by extend-
ing Definition 5 with the robustness for aggregate signatures: if VerifyMul(mi, Ji,
σi, gpki) = 1 for each i ∈ I, and Σ ← Aggregate({(mi, Ji, σi, gpki)}i∈I), then
VerifyAgg({(mi, Ji, gpki)}i∈I , Σ) = 1.

Definition 8 (Unforgeability of ARSMS). The unforgeability of an ARSMS
scheme Π = (KeyGen,GroupSet,Sign,Combine,VerifyMul,Aggregate,VerifyAgg)
is defined by a three-stage game:
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Setup. The challenger generates the system parameters pp and a challenge key
pair (sk�, pk�) ← KeyGen(1λ). It gives (pk�, pp) to the adversary.

Signature queries. A is allowed to make signature queries on any message m
for any group tag gtag, meaning that it has access to oracle OSign(·,sk�,pk�,·)

that simulates the honest signer signing a message m.
Output. Finally, the adversary outputs an aggregate signature forgery ({mi, Ji,

gpki = (gtagi,PKi)}i∈K , Σ�). The adversary wins if
1. For each i ∈ K, gpki �= ⊥ and gpki = GroupSet(PKi)
2. For each i ∈ K, let PKi = {pki,j}j∈Ii

, then Ji ⊆ Ii. pk� = pkk�,j� for
some k� ∈ K and j� ∈ Jk� .

3. The pairs (gtagi,mi) with i ∈ K are pairwise-distinct. A made no signing
queries on (mk� , gtagk�).

4. VerifyAgg({(mi, Ji, gpki)}i∈K , Σ�) = 1.

We say A is a (τ, qS , qH , ε)-forger for ARSMS if A runs in time at most τ , makes
at most qS signing queries and at most qH random oracle queries, and wins the
above game with probability at least ε. ARSMS is (τ, qS , qH , ε)-unforgeable if no
such adversary exists.

Instantiations. Our robust-subgroup multi-signatures, i.e., RSMSP,RSMSP-zk,
RSMS-pop, and RSMS-pop-zk can be extended with the following algorithms:

Aggregate({(mi, Ji, σi, gpki)}i∈I): Output Σ ← ∏
i∈I σi.

VerifyAgg({(mi, Ji, gpki)}i∈I , Σ): For each i ∈ I, parse gpki = (gtagi,PKi) and
compute apki ← KeyAgg(Ji,PKi). If e(Σ, g2) =

∏
i∈I e(H3(gtagi,mi), apki)

output 1; else output 0.

We call the extended schemes ARSMSP,ARSMSP-zk,ARSMS-pop,ARSMS-pop-
zk, respectively.

Theorem 11. The schemes ARSMS-pop-zk,ARSMSP-zk,ARSMS-pop and
finally ARSMSP are robust in the random oracle model.

Proof. To show robustness, we only need to prove the robustness for aggre-
gate signatures. Let ({Ji}i∈K , Σ) ← Aggregate({(mi, Ji, σi, gpki)}i∈I). From the
instantiation of Aggregate and definition of robustness, we have Σ =

∏
i∈K σi,

and for each i ∈ K, VerifyMul(mi, Ji, σi, gpki) = 1. From the instantiation of
VerifyMul, we have e(σi, g2) = e(H3(gtagi,mi), apki) where gpki = (gtagi,PKi)
and apki ← KeyAgg(Ji,PKi) for i ∈ K. Therefore

e(Σ, g2) =
∏
i∈K

e(H3(gtagi,mi), apki),

which completes the proof.

Theorem 12. ARSMSP and ARSMSP-zk are unforgeable under the computa-
tional ψ-co-CDH assumption in the random oracle model. Formally,

1. ARSMSP is (τ, qS , qH , ε)-unforgeable if q > 8qH/ε and ψ-co-CDH is ((τ +
(qH + qS + n) · τexp1

+  · τexp2
) · 8q2H/ε · ln(8qH/ε), ε/(8qH))-hard;
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2. ARSMSP-zk is (τ, qS , qH , ε)-unforgeable if q > 8qH/ε and ψ-co-CDH is (τ +
(qH + 3qS + n) · τexp1

+ (2qS + ) · τexp2
) · 8q2H/ε · ln(8qH/ε), ε/(8qH))-hard.

where  is the maximum number of signers involved in an aggregate signature, n
is the maximum number of multi-signatures involved in an aggregate signature,
and τexp1

(resp. τexp2
) is the time required to compute one exponentiation in G1

(resp. G2).

Theorem 13. ARSMS-pop and ARSMS-pop-zk are unforgeable under the com-
putational co-CDH assumption in the random oracle model. Formally,

1. ARSMS-pop is (τ, qS , qH , ε)-unforgeable if ψ-co-CDH is (τ + (qH + qS +  +
n) · τexp1

, ε/qH)-hard.
2. ARSMS-pop-zk is (τ, qS , qH , ε)-unforgeable if ψ-co-CDH is (τ + (qH + 5qS +

 + n) · τexp1
, ε/qH)-hard

where  is the maximum number of signers involved in a single multi-signature,
n is the maximum number of multi-signatures involved in an aggregate signature,
and τexp1

is the time required to compute one exponentiation in G1.

Compressibility. Apparently, ARSMS-pop and ARSMS-pop-zk are compress-
ible and can be extended with the same Compress algorithm for RSMS-pop and
RSMS-pop-zk.

6 Performance Evaluation

We implement the four multi-signature schemes, namelyRSMSP, RSMSP-zk,
RSMS-pop and RSMS-pop-zk, using MCL library [25]. RSMSP and RSMSP-zk
are implemented by swapping G1 and G2, i.e., putting the public keys on G1

and the signatures on G2. This is because VerifyMul and VerifyAgg involve re-
construction of the aggregate public keys which contains time-consuming expo-
nentiation operations on the public keys. Putting public keys on G1 can mitigate
this issue since the exponentiations on G1 are typically faster than the ones on
G2. However, this will make Combine slower because the signature aggregations
are now performed on G2. We note that Combine only needs to be run by a
limited set of nodes like validators, but VerifyMul and VerifyAgg need to be run
by any node that first obtains the multi-signatures. In addition, our RSMSP-zk
scheme has optimised Combine using NIZKs which significantly improves the
efficiency of Combine and offsets the loss. Therefore, switching G1 and G2 can
provide better overall performance.

Performance evaluation of the Combine function. The algorithm Combine
can be executed by any node in the network since it does not require any secret
information. Combine only needs to be run once when computing the multi-
signature from a set of individual signatures. Table 1 gives timing for combin-
ing a majority number �/2� + 1 of individual signatures from a group of size
 with  = 64, 128, 256. RSMSP-zk (resp. RSMS-pop-zk) is the optimised ver-
sion of RSMSP (resp. RSMS-pop) by validating an individual signature using
NIZK proofs instead of pairing equations. This optimisation makes Combine in
RSMSP-zk (resp. RSMS-pop-zk) 2x faster than RSMSP (resp. RSMS-pop).
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Table 1. Performance evaluation and comparison of the Combine function. The
columns of Combine give the timings for combining a threshold number ��/2� + 1
of individual signatures from a group of size � with � = 64, 128, 256. That is, 33 (resp.
65, 129) individual signatures from a group of 64 (resp. 128, 256) members.

Protocol Curve Combine (ms)

64 128 256

RSMSP BN256 44.720 89.576 176.031

BLS12-381 51.803 96.384 190.928

BN384 50.561 95.561 188.863

RSMSP-zk BN256 26.228 51.951 101.077

BLS12-381 26.943 52.931 105.625

BN384 26.993 53.579 106.625

RSMS-pop BN256 37.278 73.962 146.960

BLS12-381 42.156 80.008 159.054

BN384 42.880 80.214 159.365

RSMS-pop-zk BN256 18.713 37.138 72.602

BLS12-381 19.828 38.554 76.972

BN384 19.212 37.994 76.048

Performance comparison with ECDSA. We shall compare the performance
of the four multi-signature schemes with ECDSA signatures, in order to show
that it is feasible to replace ECDSA with multi-signatures. The performance of
ECDSA depends on the optimisations implemented in different libraries. The
secp256k1 curve is used in Bitcoin for ECDSA signatures. The OpenSSL imple-
mentation of secp256k1 is not well optimised which leads to the low efficiency
of ECDSA signing and verification operations. The Sodium library [5] provides
a particularly efficient implementation of ECDSA over the curve Ed25519.

As shown in Table 2, the size of a multi-signature that combines/aggregates
n individual signatures are constant, regardless of n. In comparison, n ECDSA
signatures is of 64n bytes. We take consensus as an example. Suppose each
committee has 200 validators and a notarisation of a new block requires at
least 101 signatures. With ECDSA signatures, this accounts for 6.464 KB storage
overhead for each block, while it is 48 Byte for RSMS-pop/RSMS-pop-zk and 96
bytes for RSMSP/RSMSP-zk.

In terms of the size of the public key for each entity, the constructions
RSMS-pop and RSMS-pop-zk incurs the extra overhead introduced by the use of
proof-of-possession for preventing rogue-key attacks. The public keys and PoPs
only need to be verified once and stored in the blockchain for future reference.
In comparison, the public keys in RSMSP and RSMSP-zk are 66% smaller than
RSMS-pop and RSMS-pop-zk. For 200 validators, this means saving 19.2 KB for
storing public keys.
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Table 2. Signature size comparison between multi-signatures and ECDSA. The Multi-
signature column gives the size of the multi-signature that combines n signatures.

Protocol Library Curve Security Public key Multi-signature

Level (bits) (Byte) (Byte)

RSMSP/RSMSP-zk MCL BN256 100 32 64

BLS12-381 128 48 96

BN384 128 48 96

RSMS-pop/RSMS-pop-zk MCL BN256 100 96 32

BLS12-381 128 144 48

BN384 128 144 48

ECDSA Sodium Ed25519 128 32 64 · n

OpenSSL secp256k1 128 33

In Table 3, we compare the efficiency of the four multi-signature schemes
with ECDSA. The Sign column measures the timing for creating an individual
signature which are less than 1 ms for all four multi-signature schemes.

The VerifyMul columns in Table 3 present the timings for verifying a multi-
signature signed by a threshold (or majority) number of members from a group of
 members with  = 64, 128, 256. The threshold is set to be �/2�+1. When using
ECDSA for the same purpose as multi-signatures, this is equivalent to �/2�+1
ECDSA signatures. From the table we can see that RSMS-pop and RSMS-pop-zk
outperforms ECDSA and RSMSP and RSMSP-zk in terms of the verification time
for a multi-signature. This is because VerifyMul in RSMS-pop and RSMS-pop-zk
mainly involves computing two pairings which is almost constant. In compari-
son, VerifyMul in RSMS-pop and RSMS-pop-zk requires computing a sequence of
exponentiations on the public keys in order to reconstruct the aggregate public
keys for the subgroup.

The VerifyAgg columns in Table 3 give the timings for verifying an aggregate
signature signed by k groups (k = 64, 128, 256) where each group consists of
128 members and a majority number (i.e., 65) of members signed. When using
ECDSA for the same purpose, this corresponds to 65 · k ECDSA signatures. For
all four multi-signature schemes, the timing for verifying k multi-signatures using
VerifyAgg is less than k ·t where t is the time for verifying a multi-signature using
VerifyMul. This is because VerifyAgg functions as a batch verification which saves
k − 1 pairing computations. Similar to VerifyMul, RSMS-pop and RSMS-pop-zk
outperforms RSMSP and RSMSP-zk and ECDSA in terms of the verification of
aggregate signatures.
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Table 3. Performance comparison between multi-signatures and ECDSA. The Sign col-
umn gives the timings for generating an individual signature. The columns of VerifyMul
give the timings for verifying a multi-signature signed by a threshold number of mem-
bers from a group of size � with � = 64, 128, 256. The threshold number is set to be
��/2� + 1. That is, 33 (resp. 65, 129) members from a group of 64 (resp. 128, 256)
members. The columns of VerifyAgg give the timings for verifying an aggregate signa-
ture signed by 64 (or 128, 256) groups where each group consists of 128 members and
a threshold number (i.e., 65) of members signed.

Protocol Curve Sign (ms) VerifyMul (ms) VerifyAgg (ms)

64 128 256 64×128 128×128 256×128

RSMSP BN256 0.301 4.708 8.191 15.216 491.361 981.562 1963.130

BLS12-381 0.311 4.824 8.249 15.235 498.063 1048.156 1971.246

BN384 0.314 4.823 8.280 15.388 497.357 992.479 1972.311

RSMSP-zk BN256 0.553 Same as above

BLS12-381 0.570

BN384 0.577

RSMS-pop BN256 0.172 1.153 1.193 1.275 48.674 98.982 198.468

BLS12-381 0.178 1.229 1.267 1.352 51.117 103.633 207.195

BN384 0.177 1.225 1.263 1.344 50.987 101.798 204.420

RSMS-pop-zk BN256 0.463 Same as above

BLS12-381 0.474

BN384 0.474

ECDSA Ed25519 0.028 2.040 4.031 8.266 259.574 522.685 1053.570

secp256k1 1.418 40.484 78.195 155.240 5203.854 10355.712 20790.631
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Abstract. Anonymous attestation for secure hardware platforms lever-
ages tailored group signature schemes and assumes the hardware to be
trusted. Yet, there is an increasing concern on the trustworthiness of
hardware components and embedded systems. A subverted hardware
may, for example, use its signatures to exfiltrate identifying information
or even the signing key. We focus on Enhanced Privacy ID (EPID)—a
popular anonymous attestation scheme used in commodity secure hard-
ware platforms like Intel SGX. We define and instantiate a subversion
resilient EPID scheme (or SR-EPID). In a nutshell, SR-EPID provides
the same functionality and security guarantees of the original EPID,
despite potentially subverted hardware. In our design, a “sanitizer”
ensures no covert channel between the hardware and the outside world
both during enrollment and during attestation (i.e., when signatures are
produced). We design a practical SR-EPID scheme secure against adap-
tive corruptions and based on a novel combination of malleable NIZKs
and hash functions modeled as random oracles. Our approach has a num-
ber of advantages over alternative designs. Namely, the sanitizer bears
no secret information—hence, a memory leak does not erode security.
Also, we keep the signing protocol non-interactive, thereby minimizing
latency during signature generation.

1 Introduction

Anonymous attestation is a key feature of secure hardware platforms, such as
Intel SGX1 or the Trusted Computing Group’s Trusted Platform Module2. It
allows a verifier to authenticate a party as member of a trusted set, while keeping
the party itself anonymous (within that set). This functionality is realized by
1 https://www.intel.com/content/www/us/en/architecture-and-technology/

software-guard-extensions.html.
2 https://trustedcomputinggroup.org/resource/tpm-library-specification/.
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using a privacy-enhanced flavor of group signatures in which signatures cannot
be traced, not even by the group manager.

Given such realization paradigm, the security of anonymous attestation sche-
mes is grounded on the trustworthiness of the signer. In particular, anonymity
and unforgeability definitions assume that the signer is trusted and does not exfil-
trate any information via its signatures. Yet, in most applications, the signer is
a small piece of hardware with closed-source firmware (e.g., a smart card) to
which a user has only black-box access. In such a scenario, trusting the hard-
ware to behave honestly may be too strong of an assumption for at least two
reasons. First, having only black-box access to a piece of hardware makes it
virtually impossible to verify whether the hardware provides the claimed guar-
antees of security and privacy. Second, recent news on state-level adversaries
corrupting security services3 have shown that subverted hardware is a realistic
threat. In the context of anonymous attestation, if the hardware gets subverted
(e.g., via firmware bugs or backdoors), it may output valid, innocent-looking sig-
natures that, in reality, covertly encode identifying information (e.g., using spe-
cial nonces). Such signatures may allow a remote adversary to trace the signer,
thereby breaking anonymity. Using a similar channel, a subverted signer could
also exfiltrate its secret key, and this would enable an external adversary to
frame an honest signer, for example by signing bogus messages on its behalf.

1.1 Our Contribution

We continue the study of subversion-resilient anonymous attestation and we
focus on Enhanced Privacy ID (EPID) [9,10], an anonymous attestation scheme
that is currently deployed on commodity trusted execution environments like
Intel SGX. Our contribution is twofold: we first formalize the notion of
Subversion-Resilient EPID (SR-EPID), and we propose a realization in bilin-
ear groups.

The Model of Subversion-Resilient EPID. Enhanced Privacy ID is essentially
a privacy-enhanced group signature where the group manager cannot trace a
signature but signers can be revoked. In the context of remote attestation, a
group member is instantiated by its signing component (the “signer”), which is
typically a piece of hardware.

To counter subverted signers, our idea is to enhance the model by adding a
“sanitizer” party whose goal is to ensure that no covert channel is established
between a potentially subverted signer and external adversaries.4 In practical
application scenarios, the sanitizer could run on the same host of the signer
(e.g., on a phone to sanitize signatures issued by the SIM card), or on a separate
one (e.g., on a corporate firewall to sanitize signatures issued by local machines).

Compared to a subversion-resilient anonymous attestation scheme that uses
split-signatures [11], our approach comes with multiple benefits. First, signature
3 https://snowdenarchive.cjfe.org/.
4 Adding a party between the potentially subverted signer and the outside world is

necessary, as the signer could exfiltrate arbitrary information otherwise [11].

https://snowdenarchive.cjfe.org/
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generation is non-interactive and the communication flow is unidirectional from
the signer to the sanitizer, on to the verifier. Thus, our design decreases signing
latency and provides more flexibility as the sanitization of a signature does not
need to be done online. Another benefit of our design is the fact that the sanitizer
holds no secret. This means that if a memory leak occurs on the sanitizer, one
has nothing to recover but public information. Differently, in a split signature
approach, security properties no longer hold if the TPM is subverted and the
key share of its host is leaked.

The idea of adding a sanitizer to mitigate subversion attacks in anonymous
attestation is inspired by that of using a cryptographic reverse firewall of Mironov
and Stephens-Davidowitz [29]. Besides subversion-resilient unforgeability (as in
Ateniese, Magri and Venturi [3]), in an EPID scheme we have to guarantee
additional properties such as anonymity and non-frameability, as well as to deal
with the complications of supporting revocation. Formalizing all these properties
in rigorous definitions is a significant contribution of this paper.

We acknowledge that adding a sanitizer in this unidirectional communication
channel also comes with the drawback that, when the signer is honest (i.e., not
subverted), then for anonymity to hold we still need the sanitizer to be trusted.
This is an inherent limitation of our model since the sanitizer is the last to speak
in the protocol and can always establish a channel with the adversary5. Since our
sanitizer does not hold a secret, a potential way to reduce trust on it can be to
distribute its re-randomization procedure across multiple parties. Designing such
a protocol does not seem straightforward as one should consider, for example,
rushing adversaries and therefore it is left as future work.

As a byproduct of our new definitions of SR-EPID, we obtain a careful for-
malization of the notion of unforgeability for (non-subversion-resilient) EPID
schemes, or more broadly, for group signature schemes with both key-revocation
mechanisms and a blind join protocol. Compared to the previous definition
of [10], ours formalizes several technical aspects that in [10] were essentially
expressed only in words and left to the reader’s interpretation. See the full ver-
sion of this paper [20] for more details.

Our SR-EPID in Bilinear Groups. Our next contribution is an efficient construc-
tion of a SR-EPID based on bilinear pairings. Our starting point is the classical
blueprint of group signature schemes where: (I) the group manager holds the
secret key of a signature scheme; (II) during the join protocol the group man-
ager creates a blind signature σy on a value y private to the prospective group
member, and both σ and y are the group member’s secret key; (III) a signature
σM on message M is a signature of knowledge for M of a σy that verifies for
y and the group public key. (IV) Finally, to support revocation and linkability,
a signature σM is bound to an arbitrary basename B and contains a pseudo-
random token RB = fy(B). Without knowing y the token looks random (and
thus hides the signer’s identity) but, at the same time, can be efficiently checked

5 This is not the case for the unforgeability and non-frameability properties for which
we do consider the case of malicious sanitizers for honest signers.
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against a revoked key y∗. That is, the verifier checks if RB = fy∗(B) for all
the y∗ in the revocation list. Similarly, a signer that allows for linkability of its
signatures may accept to produce multiple signatures on the same basename;
such signatures could be easily linked as they carry the same token.

Our first idea to contrast subversion attacks is to let the sanitizer re-
randomize every signature σM produced by the signer, sanitizing in this way
the (possibly malicious) randomness chosen by the signer encodes a covert chan-
nel. We achieve this by employing re-randomizable NIZKs in step (III).

This is not the only possible attack vector between a subverted signer and an
external adversary. For example, the signer may come with an hardcoded value
y known to the external adversary so that all the (valid) signatures produced by
the signer can be easily traced. To counter this class of attacks we let the sanitizer
contribute with its randomness to the choice of y during the join protocol. Even
further, we require the sanitizer to re-randomize any message sent to the group
manager during the join protocol. Finally, another potential attack is that at
any moment after the join protocol, the signer may switch to creating signatures
by using a hardcoded secret y′, σy′ . As above, an external party equipped with
y′ could track those signatures. To contrast this class of attacks, we require the
signer to produce, along with every signature σM , a proof πσ that is verified
by the sanitizer using a dedicated verification token and that ensures that the
signer is using the same secret y used in the join protocol; if the check passes,
the sanitizer strips off πσ and returns a re-randomization of σM . Our model
diverges from the cryptographic reverse firewall framework of [29] because of
the verification token mechanism. Looking ahead, this is not simply a limitation
of our scheme but more generally we can show that EPID schemes that admit
secret-key based revocation cannot have a cryptographic reverse firewall, we give
more details in Sect. 2.2.

The description above gives an high-level overview of the main ideas that we
introduced in the protocol to counter subversion attacks. A significant techni-
cal contribution in the design of our construction is a set of techniques that we
introduced to reconcile our extensive use of malleable NIZKs (and in particular,
Groth-Sahai proofs [26]) with the goal of obtaining an efficient SR-EPID scheme.
The main problem to prove security of our scheme is that we need the NIZK to be
malleable and to have a flavor of simulation-extractable soundness.6 In the EPID
of [10], simulation-extractable soundness is also needed, but it is obtained for free
by using Fiat-Shamir (Faust et al. [21]). In our case, this approach is not viable
because the Fiat-Shamir compiler breaks any chance for re-randomizability.
One could use a re-randomizable and (controlled) simulation-extractable NIZK
(Chase et al. [16]), but in practice these tools are very expensive—they would
require hundreds of pairings for verification and hundreds of group elements for
the proofs. To overcome this problem, we propose a combination of (plain) GS
proofs with the random oracle model. Briefly speaking, we use the random oracle

6 In fact, on one hand we have to extract the witness from the adversary’s forgery,
while on the other hand we rely on zero-knowledge to disable any covert channel
from subverted signers.
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to generate the common reference string that will be used by the GS proof system
and use the property that, in perfectly-hiding mode, this CRS can be created
from a uniform random string7. In this way we can program the random oracle
to produce extractable common reference strings for the forged signature made
by the adversary and for the messages in the join protocol with corrupted mem-
bers, and program the random oracle to have perfectly-hiding common reference
strings for all the material that the reduction needs to simulate. Our technique is
a reminiscence of techniques based on programmable hash functions [14] and lin-
early homomorphic signatures [27]. However, our ROM-based technique enables
for more efficient schemes with unbounded simulation soundness. The resulting
scheme provides the same functionality of EPID, tolerates subverted signers, and
features signatures that are shorter than the ones in [10] for reasonable sizes of
the revocation list: ours have 28 + 2n group elements whereas EPID signatures
have 8+5n, where n is the size of the revocation list (i.e., ours are shorter already
for n ≥ 7).

1.2 Related Work

Subversion-resilient signatures and Cryptographic Reverse Firewalls. Ateniese
et al. [3] study subversion-resilient signature schemes and show that unique sig-
natures as well as the use of a cryptographic reverse firewall (RF) of [29] ensure
unforgeability despite a subverted signing algorithm. Chakraborty et al. [15]
show how to use RF in multi-party settings where the adversary can fully cor-
rupt all but one party, while the remaining parties are corrupt in a functionality-
preserving way. Ganesh, Magri and Venturi [24] study the security properties of
RF for the concrete case of interactive proof systems. Chen et al. [17] intro-
duce malleable smooth projective hash functions and show how to use them in
a modular way to construct RF for several cryptographic protocols.

Our scheme could be interpreted as a new EPID scheme equipped with a
cryptographic reverse firewall for the join protocol that allows a new party to join
the group, and a cryptograhic reverse firewall that protects the signatures sent
by the signer. However, as mentioned in Sect. 1.1, there are some technical details
that differentiate our model to the cryptographic reverse firewall framework.

Subversion-resilient anonymous attestation. Camenisch et al. [12] provide a Uni-
versally Composable (UC) definition for Direct Anonymous Attestation (DAA)
that guarantees privacy despite a subverted TPM. The DAA scheme presented
in [12] leverages dual-mode signatures of Camenisch and Lehmann [13] and builds
upon the ideas of Bellare and Sandhu [7] to provide a signature scheme where
the signing key is split between the host and the TPM. Later on, Camenisch
et al. [11] build on the same idea of [12] and show a UC-secure DAA scheme
that requires only minor changes to the TPM 2.0 interface and tolerates a sub-
verted TPM by splitting the signing key between the host and the TPM.

7 In particular, we need cryptographic hash functions that allow to hash directly on
G1 and on G2, see Galbraith et al. [23].
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We argue that splitting the signing key between the potentially subverted
hardware (e.g., the TPM) and the host to achieve resilience to subversions
is viable in scenarios where (i) the channel between the two parties has low
latency—because of the interactive nature of the signing protocol—and (ii) the
user can trust the host. Both conditions holds for TPM scenarios. In particular,
a TPM is soldered to the motherboard of the host and has a high-speed bus to
the main processor. Also, the TPM manufacturer is usually different from the
one of the main processor—hence, the user may trust the latter but not the for-
mer. In case of TEEs such as Intel SGX, we note that there is no real separation
between the TEE and the main processor. Thus, it would be hard to justify an
untrusted TEE and a trusted processor since, in reality, they lie on the same
die and are shipped by the same manufacturer. As such, the entity in charge of
preventing the TEE from exfiltrating information (i.e., the one holding a share
of the signing key) must be placed elsewhere along the channel between the TEE
and the verifier, thereby paying a latency penalty to generate signatures.

We think that our solution is more suitable for TEE platforms like Intel
SGX. In particular, the non-interactive nature of the signing protocol allows us
to place the sanitizer “away” from the signer, without impact on performance.
Thus, the sanitizer may be instantiated by a co-processor next to the TEE, or
it may run on a company gateway that sanitizes attestations produced by hosts
within the company network before they are sent out. As the sanitizer and the
potentially subverted hardware may run on different platforms, they may come
from different manufacturers. For example, one could pick an AMD or Risc-V
processor to sanitize an Intel-based TEE such as SGX. A sanitizer may even be
built by combining different COTS hardware as [28].

Other models for subversion resilience. Fischlin and Mazaheri introduce “self-
guarding” cryptographic protocols [22] based on the assumption of a secure ini-
tial phase where the algorithm was genuine. Kleptograpic attacks, introduced
by Young and Yung [32], assume subverted implementations of standard cryp-
tographic primitives. Later on, Bellare et al. [6] and Russell et al. [30] studied
subverted symmetric encryption schemes and subverted key-generation routines,
respectively. Russell et al. [31] propose for the first time an IND-CPA-secure
encryption scheme that remains secure even in case of a subversion-capable adver-
sary. Ateniese et al. [2] introduce an “immunizer” that takes as input a crypto-
graphic primitive and augments it with subversion resilience. They introduce an
immunizer in the plain model for a number of deterministic primitives (with a
randomized key generation routine). Chow et al. [18], construct secure digital sig-
nature schemes in the presence of kleptographic attacks, by leveraging an offline
phase to test the potentially subverted implementation in a black-box manner.

2 Subversion-Resilient Enhanced Privacy ID

Background on EPID. Enhanced Privacy ID is essentially a privacy-enhanced
group signature scheme. Compared to classic group signatures (see Bellare
et al. [5]), EPID drops the ability of the group manager to trace signatures, and
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adds novel revocation mechanisms. In particular, EPID allows to revoke a group
member by adding its private key to a revocation list named PrivRL; while verify-
ing a signature σ, the verification algorithm checks that none of the private keys in
PrivRL may have produced σ. In case the secret key of a misbehaving group mem-
ber did not leak, EPID can still revoke that member by using one of its signatures.
That is, EPID accounts for an additional revocation list, named SigRL, containing
signatures of revoked members.

Security notions for EPID include anonymity and unforgeability. Informally,
anonymity ensures that signatures are not traceable by any party, including
the group manager. Unforgeability ensures that only non-revoked group mem-
bers can generate valid signatures. We note that EPID does not account for
pseudonymous signatures. The latter allow for a sort of controlled linkability as
each signature is bound to a “basename”, and one can easily tell—via a Link
algorithm— whether two signatures on the same basename where produced by
the same group member. This signature mode is actually available in DAA and in
the version of EPID used by Intel SGX. Further, DAA defines a security property
tailored to pseudonymous signatures called non-frameability. Informally, non-
frameability ensures that an adversary that corrupts the group manager cannot
create a signature on a message M and basename bsn, that links to a signature
of an honest group member. Given the usefulness of pseudonymous signatures
in real-world deployments, we decide to include them—along with a definition
of non-frameability—in our definition of subversion-resilient EPID. The study
of subversion-resilient non-frameability can be found in the full version [20].

2.1 Subversion-Resilient EPID

For simplicity, we assume each signer to be paired with a sanitizer and we denote
a pair of signer-sanitizer as a “platform”.8 In the security experiments we denote
with I the issuer, with S the sanitizer, with M the signer, and with P the
platform. Very often we refer to the signer as the “hardware” or the “machine”
(thus the letter M for our notation). We assume group members to be platforms
and gear security definition towards them.9 Our notion of SR-EPID is designed
so that (i) the sanitizer participates to the join protocol obtaining a verification
token as output, and (ii) the sanitizer sanitizes signatures to avoid covert channel
based on maliciously-sampled randomness using such verification token. The
resulting syntax is a generalization of EPID that adds a Sanitize algorithm and
modifies the original Join and Sig algorithms.

Syntax of Subversion-Resilient EPID. We denote by 〈d, e, f〉 ← PA,B,C〈a, b, c〉 an
interactive protocol P between parties A, B and C where a, b, c (resp. d, e, f) are

8 In practical deployments a sanitizer may sanitize signatures of multiple signers and
a single signer may have multiple sanitizers.

9 For example, the anonymity definition focuses on an adversary that must tell which,
out of two platforms, outputs the challenge signature.
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the local inputs (resp. outputs) of A, B and C, respectively. An SR-EPID consists
of an interactive protocol Join and algorithms: Init, Setup, Sig, Ver, Sanitize.
All the algorithms (and the protocol) but Init take as input public parameters
(generated by Init); for readability reasons, we keep this input implicit.

Init(1λ) → pub. This algorithm takes as input the security parameter λ and
outputs public parameters pub.

Setup(pub) → (gpk, isk). This algorithm takes the public parameters pub and
outputs a group public key gpk and an issuing secret key isk for the issuer I.

JoinI,Si,Mi
〈(gpk, isk), gpk, gpk)〉 → 〈b, (b, svti), ski〉. This is a protocol between

the issuer I, a sanitizer Si and a signer Mi. The issuer inputs (gpk, isk),
while the other parties only input gpk. At the end of the protocol, I obtains
a bit b indicating if the protocol terminated successfully, Mi obtains private
key ski, and Si obtains a sanitizer verification token svti and the same bit b
of I.

Sig(gpk, ski, bsn,M,SigRL) → ⊥/(σ, πσ). The signing algorithm takes as input
gpk, ski, a basename bsn, a message M , and a signature based revocation list
SigRL. It outputs a signature σ and a proof πσ, or an error ⊥.

Ver(gpk, bsn,M, σ,SigRL,PrivRL) → 0/1. The verification algorithm takes as
input gpk, bsn, M , σ, a signature based revocation list SigRL, and a private
key based revocation list PrivRL. It outputs a bit.

Sanitize(gpk, bsn,M, (σ, πσ),SigRL, svti) → ⊥/σ′. The sanitization algorithm
takes as input gpk, a basename bsn, a message M , a signature σ with cor-
responding proof πσ, a signature based revocation list SigRL, and a sanitizer
verification token svti. It outputs either ⊥ or a sanitized signature σ′.

Link(gpk, bsn,M1, σ1,M2, σ2) → 0/1. The linking algorithm takes as input gpk,
a basename bsn, and two tuples M1, σ1 and M2, σ2 and output a bit.

The last algorithm outputs 1 if the two signatures were generated by the same
signer using the same basename (we call such property linking correctness).

In our syntax, we assume PrivRL to be a set of private keys {ski}i, and
SigRL to be a set of triples {(bsni,Mi, σi)}i, each consisting of a basename,
a message and a signature. We define two forms of correctness. To keep the
syntax more light we let Sig(gpk, sk, bsn,M) be equal to Sig(gpk, sk, bsn,M, ∅),
and Ver(gpk, bsn,M, σ) be equal to Ver(gpk, bsn,M, σ, ∅, ∅).

Definition 1 (Correctness, without revocation lists). We say that an
SR-EPID scheme satisfies standard correctness if for any pub ← Init(1λ), any
(gpk, gsk) ← Setup(pub), any 〈b, (b, svt), sk〉 ← Join〈(gpk, gsk), gpk, gpk)〉 such
that b = 1, and for any bsn, M , (σ, πσ) ← Sig(gpk, sk, bsn,M), and any
σ′ ← Sanitize(gpk, bsn,M, (σ, πσ), svt) we have that both Ver(gpk, bsn,M, σ) = 1
and Ver(gpk, bsn,M, σ′) = 1.

Let Σgpk,sk be the set of triples for any basename, message and signature where
the signature algorithm can produce the signature with input gpk and the secret
key sk (thus enumerating over all possible basenames and messages).
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Definition 2 (Correctness, with revocation lists). We say that an
SR-EPID scheme satisfies correctness if for any pub ← Init(1λ), any
(gpk, gsk) ← Setup(pub), any 〈b, (b, svt), sk〉 ← Join〈(gpk, gsk), gpk, gpk)〉
such that b = 1, and for any bsn,M , for any PrivRL and SigRL, any
(σ0, πσ) ← Sig(gpk, sk, bsn,M,SigRL) and any σ1 ← Sanitize(gpk, bsn,M,
(σ0, πσ),SigRL, svt) we have:

Σgpk,sk ∩ SigRL = ∅ ⇒ σ0 �= ⊥ (1)
sk /∈ PrivRL ⇒ ∀b′ ∈ {0, 1} : Ver(gpk, bsn,M, σb′ ,SigRL,PrivRL) = 1 (2)

2.2 Subversion-Resilient Security

The security of an SR-EPID scheme is defined by three main properties, namely
anonymity, unforgeability, and non-frameability. We consider subverted signers
that can arbitrarily behave during the join protocol and, in particular, abort
the execution of the protocol. However, once the join protocol is completed
we assume that signers, although subverted, maintain a correct “input-output
behavior”. That is, a subverted signer produces a valid signature to a message
and basename, namely a signature that verifies if the signer were not revoked,
but that could be arbitrarily (and maliciously) distributed over the set of all
valid signatures. We formalize this idea in the following assumption.

Assumption 1. Let Π be a SR-EPID. We assume that for any public param-
eter pub, any adversary A, any gpk and auxiliary information aux, and any
(possibly adaptively chosen) sequence of tuples (bsn1,M1), . . . , (bsnq,Mq), let
〈b, (b′, svt), state1〉 be a possible output of the join protocol JoinA,S,M〈(gpk, aux),
gpk, (gpk, aux)〉 conditioned on b′ = 1 or a possible output of the join protocol
JoinI,A,M〈(gpk, aux), gpk, (gpk, aux)〉 conditioned on b = 1 and let σi, statei ←
Mi(statei−1,Mi, bsni) for i = 1, . . . , q then ∀i ∈ [q] : Ver(gpk,M1, bsn1, σi) = 1.

The assumption models the fact that, if signers can be subverted, a signer should
be considered safe as long as it does not return errors when it comes to generating
signatures. The occurrence of such an error should alert a sanitizer anyway. First,
such an error can occur if one of the signatures produced by the signer was
included in the signature based revocation list: if the list was honestly created,
it means that the signer has been revoked; if the list was maliciously crafted,
then the signature request may constitute an attempt to deanonymize the signer.
Second, if the errors are arbitrary then they inevitably enable to signal any kind
of information from the signer.

Macros for the Join Protocol and Signature generation. As mentioned, the join
protocol is a three-party protocol with the sanitizer being in the middle. To
simplify the already heavy notation, we define the macro Join(M, stateS , stateM,
γI) which identifies one full round of the join protocol from the issuer point of
view with an honest sanitizer and a machine M. In more detail, the macro takes
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as input the description of the (possibly subverted) machine M, the state of the
sanitizer stateS , the state of the machine stateM and the message sent by the
issuer γI , and it identifies the following set of actions:

Join(M, stateS , stateM, γI):
1. (γ′

S , state′
S) ← S.Join(gpk, stateS , γI);

2. (γM, state′
M) ← M.Join(gpk, stateM, γ′

S);
3. (γS , state′′

S) ← S.Join(gpk, state′
M, γM);

4. Output (state′′
S , state′

M, γS).

Notice the procedures additionally take as input the group public key gpk, which
we keep implicit. Similarly, the signature procedure is a two-phase protocol
between the signer and the sanitizer for which we define the macro:

Sig(M, stateM, svt, bsn,M,SigRL):
1. (σ′, π′

σ, state′
M) ← M.Sig(stateM, bsn,M,SigRL);

2. if svt �=⊥ then σ ← Sanitize(gpk, bsn,M∗, (σ′, π′
σ),SigRL, svt);

3. else σ ← σ′;
4. Output (state′

M, σ).

The macro additionally checks in step 2 that svt is a valid string. We use this
check to discriminate the case when the sanitizer is corrupted.

Subversion-Resilient Anonymity. This notion formalizes the idea that an
adversarial issuer cannot identify a group member through the signatures it pro-
duces. Recall that we assume a signer Mi to be paired with a sanitizer Si; we
denote the platform constituted by Mi and Si with Pi. We assume Mi to be
subverted, i.e., it runs an adversarially specified program, while Si is honest. The
case when both Mi and Si are corrupted is meaningless for anonymity since the
adversary controls all the relevant parties. The remaining case in which Mi is
honest but Si is corrupted is also hopeless for anonymity since a corrupted san-
itizer could always maul the outputs of the signer in order to reveal its identity.

We formalize subversion-resilient anonymity for SR-EPID in a security exper-
iment that appears in Fig. 1, and we formally define anonymity as follows.

Definition 3. Consider the experiment described in Fig. 1. We say that an SR-
EPID Π is anonymous if and only if for any PPT adversary A:

Advanon
A,Π(λ) :=|Pr

[
Expanon

A,Π(λ, 0) = 1
]
− Pr

[
Expanon

A,Π(λ, 1) = 1
]
| ∈ negl(λ).

Here we provide an intuitive explanation of the anonymity experiment. The
idea is that the adversary plays the role of the issuer, i.e., it selects the group
public key, and it can do the following: (1) ask platforms with subverted signers
to join the system; (2) ask platforms with subverted signers to sign messages;
(3) corrupt platforms. For (1), it means that the adversary specifies the code
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of a signer Mi that, together with an honest sanitizer Si, run the Join protocol
with the adversary playing the role of the issuer. For (2), a subverted signer Mi

produced a signature that is sanitized by Si and then delivered to the adversary.
Finally, (3) models a full corruption of the platform in which the adversary learns
the secret key ski obtained by Mi at the end of its Join protocol.

The adversary can choose two platforms (Pi0 ,Pi1), a basename bsn∗, and a
message M∗ and it receives a sanitized signature on M∗, bsn∗ produced by one
of the two platforms. The goal of the adversary is to figure out which platform
produced the signature. In order to avoid trivial attacks the two “challenge”
platforms must be non-corrupted and none of their signatures can be included in
the SigRL used to produce the challenge signature. Further, if the adversary has
previously requested a signature with bsn∗ form either platform, the challenger
aborts. Similarly, after seeing the challenge signature, the adversary may not ask
for a signature by any of the challenge platforms on basename bsn∗.

Technical details. The structure is the one depicted earlier: the adversary chooses
the group public key on input the public parameters and then starts interacting
with the oracle C. The experiment maintains lists Ljoin, Lusr, Lcorr to book-
keep information on the state of the Join protocol sessions, and the list of non-
corrupted and corrupted platforms, respectively. Also, it maintains a flag Bad,
initialized to false, which is turned to true whenever the adversary violates the
rules of the experiments (see below). At some point the adversary outputs a
message M∗, a basename bsn∗, and two indices i0, i1, along with a signature
revocation list SigRL∗; it receives a sanitized signature generated using the sub-
verted signer Mib . In line 8 of Expanon

A,Π(λ, b) we ensure that the adversary did
not previously query for a signature with basename bsn∗ by one of the challenge
platforms; if that is the case, the adversary could trivially win by using the Link
algorithm. In line 11 of Expanon

A,Π(λ, b) we ensure that both challenge platforms
generate valid signatures, after sanitization. Indeed if a difference would occur
(e.g., one of them is ⊥), the adversary could trivially win the game. For exam-
ple, this would be the case if the SigRL chosen by A would contain a signature
from, e.g., Mi0 . Similar checks are done in lines 16–20 of the C oracle upon a
signing query that involves one of the challenge platforms, say i1−β . The code
of those lines essentially ensure that the queried basename is not the challenge
one, and that the other challenge platform iβ would generate a signature on the
same message M that is valid iff so is the one generated by i1−β . Again if such
a difference would occur the adversary could trivially distinguish and win the
experiment. Similarly to the other case, this could occur if the queried SigRL
contains a signature of (only) one of the challenge platforms.

We stress that the mechanism that uses the verification tokens is necessary10.
Indeed, consider the definition above where the svt and the proof πσ are missing:
An attacker can first performs two join protocols one with a subverted machine
M̃ with hardcoded a secret key s̃k that during joining time acts honestly, thus

10 Here is where our model diverges from the cryptographic reverse firewall framework
of [29].
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Fig. 1. Subversion-resilient anonymity experiment.
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obtaining a new fresh secret key, but that computes valid signature using the
hardcoded secret key. Suppose the scheme has a secret-key based revocation
mechanism, then the adversary that knows s̃k can easily distinguish the subverted
machine from an honest machine. In particular, it could verify the challenge
signature using the revocation list {s̃k}. The sanitizer, which only posses public
information, has no way to identify that a different secret key has been used
and avoid this attack. We formalize the above intuition in the full version of this
paper. Another aspect of the anonymity experiment that we would like to point
out is that the adversary receives the verification token immediately after the
Join protocol is over. This models the fact the adversary could have access to
the internal state of an honest sanitizer (except for its random tape), and this
does not break anonymity.

Subversion-Resilient Unforgeability. This notion formalizes the idea that
an adversary who does not control the issuer cannot generate signatures on new
messages on behalf of non-corrupted platforms. To model subversion attacks, we
let the platform signer Mi be an adversarially specified program. The sanitizer
Si is instead honest (unless the platform is fully corrupted).

Here we provide an intuition of the notion. The adversary receives the group
public key, and it can do the following: (1) ask platforms with subverted signers to
join the system; (2) ask corrupted platforms to join the system; (3) ask platforms
with subverted signer to sign messages; (4) corrupt platforms. For (1), it means
that the adversary specifies the code of a signer Mi and that signer together with
sanitizer Si, run the Join protocol where both the issuer and Si are controlled by
the challenger. For (2), the adversary runs the Join protocol with the challenger
playing the role of the issuer, whereas both the signer Mi and the sanitizer Si

are fully controlled by the adversary. For (3), the adversary asks a platform that
joined the system to create a signature using the subverted signing algorithm
(specified in Mi at Join time), this signature is sanitized by Si and given to the
adversary. Finally, (4) simply models a full corruption of the platform in which
the adversary learns the secret key ski obtained by Mi at the end of its Join
protocol11.

The adversary’s goal is to produce a valid signature on a basename-message
tuple bsn∗,M∗. On the one hand, we cannot require the tuple bsn∗,M∗ to be
fresh, since it is reasonable to assume that multiple platforms may sign the same
bsn∗,M∗. On the other hand, strong unforgeability is impossible, as we require
that the signatures must be valid before and after sanitization. To satisfy these
two apparently contrasting requirements simultaneously, we instead require that
the adversary’s forgery does not link to any of the other queried signatures on
the same basename-message tuple. This essentially guarantees that the forgery
is not a trivial rerandomization of signature obtained through a signing query.

11 Here the corruption is adaptive in the sense that the platform first joined honestly
and later can be corrupted by the adversary but we assume secure erasure of the
previous states of the sanitizer.
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Since an SR-EPID is a (kind of) group signature and in the above game the
adversary may have learnt the secret keys of some group members, we add some
additional checks to formalize what is a forgery, so to avoid trivial unavoidable
attacks. Intuitively, we want that the signature must verify with respect to a
private-key revocation list PrivRL∗ (resp. signature-based revocation list SigRL∗)
that includes the secret keys of (resp. a signature from) all corrupted group mem-
bers. These corrupted group members include both the ones that honestly joined
the system and were later corrupted, and those that were already corrupted (i.e.,
adversarially controlled) at join time. Modeling which keys should be revoked is
not straightforward though. The first issue is that in case of a corrupted platform
joining the group, the challenger does not know what is the key obtained by the
adversary. Essentially, unless we revoke exactly that key or a signature produced
with that key, the adversary is able to create valid signatures on any message of
its choice. The second issue is similar and involves cases when a platform with a
subverted signer joins the group: the challenger obtains a secret key ski from the
signer Mi at the end of the Join protocol, but Mi is subverted and thus we have
no guarantee that ski is the “real” secret key.12 To define forgeries, we solve these
issues by assuming the existence of an extractor that, by knowing a trapdoor and
seeing the transcript of the Join protocol between the issuer and the sanitizer,
can extract a token uniquely linkable (via an efficient procedure) to the secret
key that is supposed to correspond to such transcript. This definition is close to
the notion of uniquely identifiable transcripts used by [8] for DAA schemes. We
stress that the extractor does not exist in the real world and is only an artifact
of the security definition.13 A practical interpretation of our definition is that
unforgeability is guaranteed under the assumption that the revocation system
is “perfect”, namely that one revokes all the secret keys, or signatures produced
by those secret keys, that an adversary obtained by interacting with the issuer
in the Join protocol.

Definition 4. Consider the experiment described in Fig. 2. We say that an SR-
EPID Π is unforgeable if there exist PPT algorithms CheckTK, CheckSig, and a
PPT extractor E = (E0, E1) such that the following properties hold:

1. For any pair of keys (gpk, isk) in the support of Setup(pub) and for
any (even adversarial) tk, sk1, sk2 it holds (CheckTK(gpk, sk1, tk) = 1 ∧
CheckTK(gpk, sk2, tk) = 1) ⇒ sk1 = sk2. (Namely, any tk is associated to
one and only one sk.)

2. For any pair of keys (gpk, isk) in the support of Setup(pub) and for
any (even adversarial) tk, sk,M, bsn, σ,SigRL,PrivRL such that Ver(gpk, bsn,
M, σ,SigRL,PrivRL) = 1 and Ver(gpk, bsn,M, σ,SigRL,PrivRL ∪ {sk}) = 0, it
is always the case that CheckTK(gpk, sk, tk) = 0 ∨ CheckSig(gpk, tk, σ) = 1.
(Namely, the token tk and the algorithm CheckSig allow to verify if a signature
comes from a specific secret key.)

12 For instance, Mi may store locally only an obfuscated or encrypted version of the
secret key.

13 More precisely, an extractor does not exist if in the real world the Init algorithm is
realized in a trusted manner, akin to CRS generation in NIZK proof systems.
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3. For any PPT adversary A, Advunf
A,E,Π(λ) := Pr

[
Expunf

A,E,Π(λ) = 1
]

∈ negl(λ).
4. The distribution {pub $← Init(1λ)}λ∈N and {pub|pub, tp $← E0(1λ)}λ∈N are

computationally indistinguishable.

Technical details. Besides the use of the extractor, the security experiment is
rather technical in some of its parts. Here we explain the main technicalities. As
mentioned earlier, the structure of the experiment is that the adversary receives
the group public key and then starts interacting with the oracle. The exper-
iment maintains lists Ljoin, Lusr, Lcorr, Lmsg to bookkeep information on the
state of the Join protocol sessions, the list of uncorrupted and corrupted plat-
forms respectively, and the list of the messages on which the adversary obtained
signatures. After interacting with the oracle, the adversary outputs a message
M∗, a basename bsn∗, a signature σ∗ and revocation lists PrivRL∗,SigRL∗. The
adversary wins if either event (4), or the conjunction of events (1), (2) and (3)
occur. Intuitively, event (4) means that the adversary has “fooled” the extrac-
tor. Namely, the adversary produced a secret key sk (provided in the private-key
revocation list PrivRL∗) that the algorithm CheckTK recognizes as associated to
a token tk extracted by E1, but sk is not a valid signing key. In other words,
our definition requires that any secret key14 extracted by E1 should be valid. For
the other winning case, events (2) and (3) are a generalization of the classical
winning condition of digital signatures, i.e. where the adversary returns a valid
signature on a new message. The conjunction of event (2) and (3) are more gen-
eral than the classical unforgeability notion because instead of considering as
new just the message, we also include the basename, and, more importantly, the
fact that the forged signature apparently comes from a machine that either has
never been set up or that has never signed the basename-message tuple. Event
(1) instead is there to avoid trivial attacks due to the possibility of corrupting
group members. Basically, (1) ensures that for any corrupted platform we have
either its secret key in PrivRL∗ or a signature produced by that platform in
SigRL∗. For the latter statement to be efficiently checkable in the experiment we
require the existence of an algorithm CheckSig for this purpose and that works
with the token tk extracted by E1. With honest join queries the adversary spec-
ifies the code of a signer Mi, which then runs the Join protocol with an honest
issuer and an honest sanitizer controlled by the challenger. At the end, if the
issuer accepts, we extract a secret-key token tki from the transcript τ of the Join
protocol, and we store information about Mi, its state, the verification token
and the extracted secret-key token. The verification token svti is also returned
to the adversary. With dishonestP join queries the adversary can let a fully
corrupted platform (i.e., both Mi and Si are under its control) join the group.
In this case, the adversary runs the join protocol with the honest issuer con-
trolled by the challenger: the oracle allows the adversary to start a Join session
and then sends one message, γ, at a time; lines 9–11 formalize this step-by-step
execution of the honest issuer on each message sent by the adversary on behalf
14 Precisely, E extracts a token tk linked to sk.
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Fig. 2. Subversion-resilient unforgeability experiment. The algorithm CheckSK(gpk, sk)
is a shorthand for the following process: sample a random message, generate a signature
on it using sk and output 1 iff the signature verifies. The symbol ξ denotes the empty
string.
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of Si. At the end, if the issuer accepts, we extract a secret-key token tki from
the transcript τ of the Join protocol, and we store this token in the list Lcorr of
corrupted users. With dishonestS join queries we consider the case in which
the adversary fully controls the sanitizer but the signer is not subverted. In this
case, the oracle allows the adversary to run in the Join protocol with the honest
issuer and honest signer. This is done by letting the adversary send messages to
either M or I; lines 15–17 formalize this step-by-step execution of the honest
issuer and honest signer on each message γ sent by the corrupted sanitizer. At
the end, if the issuer accepts, we extract a secret-key token tki from the tran-
script τ of the Join protocol, and we store all the relevant information in the list
Lusr of honest platforms. Note that in this case we do not necessarily know the
verification token since this is received by the sanitizer, which is the adversary.
For sign queries, the oracle first checks that the platform has joined the system
and if so it lets the (possibly subverted) signer Mi generate a signature σ′ and
corresponding proof π′

σ. Next, if svti �= ⊥ the signature is sanitized and given
to the adversary, otherwise a non-sanitized signature is returned. Notice that
the case svti = ⊥ (when i is in Lusr) can occur only if the platform joined the
system using a dishonestS join query, in which case the sanitizer is controlled
by the adversary but – we recall – the signer is not subverted. Finally corrupt
queries allow the adversary to corrupt an existing platform, which may have
joined through either a honest join or dishonestS join query. As a result,
the adversary learns the internal state of the signer, which is supposed to con-
tain the secret key (note that the state of the sanitizer, that is the verification
token, was already returned after the Join).

Subversion-Resilient Unforgeability in the Random Oracle Model. To capture
also constructions in the random oracle model (ROM) we provide a suitable
adaptation of the unforgeability definition. A dedicated ROM-based definition
is needed in order to consider extractors that may simulate, and program, the
random oracle. The ROM definition is the same as Definition 4, except that
condition (3) accounts for the ROM-programmability granted to the extractor.

Comparison with Unforgeability of EPID. The notion of unforgeability defined
above closely follows the one defined for EPID in [9], with the following main
differences. First, in [9] there is no sanitizer. Second, in [9] the adversary cannot
specify a subverted signer, namely honest join and sign queries are executed
according to the protocol description. Third, valid forgeries in [9] include fresh
signatures on messages already signed by the oracle. Such a forgery is not valid
in our case since signatures are sanitizable (essentially re-randomizable).

Notice that the unforgeability definition of [9] requires the adversary to return
the secret key obtained via dishonest join queries (called Join of type (i) in [9]).
Nevertheless, the definition does not enforce at any point that the adversary is
returning the correct key. It is possible that the authors are implicitly making
the assumption that the adversary is honest at this stage, and this what seems to
be used in the security proof (where the reduction does not even look at the key
returned by the adversary but uses the key extracted from the PoK made by A



Subversion-Resilient Enhanced Privacy ID 579

during the Join protocol). This is a quite strong assumption. If this assumption
is not made we can show an attack. A first performs a dishonest join query
by playing honestly (the same works if this query is honest join followed by
corrupt), it obtains a key sk1. Next A performs another dishonest join query
where it plays honestly in the Join protocol, it obtains another key sk2 but
returns to the challenger sk1. When it comes to the forgery step, from the point
of view of the challenger the key that must be in PrivRL∗ is sk1 (maybe twice).
This means that technically sk2 is not revoked and thus the adversary can use it
to create a signature that would pass the forgery checks and win the game. Note
that this attack works even if the forgery checks ensure that all sk in PrivRL∗

must be “valid” (this check was proposed as part of the Revoke algorithm of the
EPID construction).

In our definition of unforgeability we avoid the above attack by requiring a
security property of the Join protocol. Specifically, the join protocol is such that,
if the execution of the protocol ends successfully, then the platform must have
learnt one (and only one) secret key. We formalize this by requiring the existence
on an extractor that can find this key by only looking at the transcript. In this
way, we avoid the unrealistic requirement that the adversary surrenders all the
corrupted secret keys. Notice that the existence of the extractor is only for defini-
tional purpose, namely, only to asses the security statement that “unforgeability
holds if all the corrupted secret keys are revoked”.

3 Building Blocks

An asymmetric bilinear group generator is an algorithm G that upon input a
security parameter 1λ produces a tuple bgp = (p,G1,G2,GT , e,P1,P2), where
G1,G2 and GT are groups of prime order p ≥ 2λ, the elements P1,P2 are gen-
erators of G1,G2 respectively, e : G1 × G2 → GT is an efficiently computable,
non-degenerate bilinear map. In our construction we use Type-3 groups in which
it is assumed that there is no efficiently computable isomorphism between G1 and
G2. We use the bracket notation introduced in [19]. Elements in Gi, are denoted
in implicit notation as [a]i := aPi, where i ∈ {1, 2, T} and PT := e(P1,P2).
Given a, b ∈ Zq we distinguish between [ab]i, namely the group element whose
discrete logarithm base Pi is ab, and [a]i · b, namely the execution of the multi-
plication of [a]i and b, and [a]1 · [b]2 = [a · b]T , namely the execution of a pairing
between [a]1 and [b]2. Vectors and matrices are denoted in boldface. We extend
the pairing operation to vectors and matrices as e([A]1, [B]2) = [A� · B]T . All
the algorithms take implicitly as input the public parameters bgp.

Structure-Preserving Signatures. A signature scheme over groups generated by G
is a triple of efficient algorithms (KGen,Sig,Ver). Algorithm KGen outputs a pub-
lic verification key vk and a secret signing key sk. Algorithm Sig takes as input
a signing key and a message m in the message space, and outputs a signature σ.
Algorithm Ver takes as input a verification key vk, a message m and a signature
σ, and returns either 1 or 0 (i.e., “accept” or “reject”, respectively). The scheme
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(KGen,Sig,Ver) is correct if for every correctly generated key-pair vk, sk, and for
every message m in the message space, we have Ver(vk,m,Sig(sk,m)) = 1. We
consider the standard notion of existential unforgeability under chosen-messages
attacks. For space reason, formal definition is omitted from the manuscript.
Finally, a signature scheme over groups generated by G is structure-preserving
[1] if (1) the verification key, the messages, and signatures consist of solely ele-
ments of G1,G2, and (2) the verification algorithm evaluates the signature by
deciding group membership of elements in the signature and by evaluating pair-
ing product equations.

Non-Interactive Zero-Knowledge Proof of Knowledge. A non-interactive zero-
knowledge (NIZK) proof system for a relation R is a tuple NIZK = (Init,P,V)
of PPT algorithms such that: Init on input the security parameter outputs a
(uniformly random) common reference string crs ∈ {0, 1}λ; P(crs, x, w), given
(x,w) ∈ R, outputs a proof π; V(crs, x, π), given instance x and proof π outputs
0 (reject) or 1 (accept). In this paper we consider the notion of NIZK with labels,
that are NIZKs where P and V additionally take as input a label L ∈ L (e.g.,
a binary string). A NIZK (with labels) is correct if for every crs

$← Init(1λ), any
label L ∈ L, and any (x,w) ∈ R, we have V(crs, L, x,P(crs, L, x, w)) = 1. As for
security we consider the standard notions of adaptive composable zero-knowledge
and adaptive perfect knowledge soundness [25].

Malleable and Re-Randomizable NIZKs. We use the definitional framework of
Chase et al. [16] for malleable proof systems. For space reason we introduce only
informally the framework here. A malleable NIZK comes with an NP relationship
R and a set of allowable transformations T . An allowable transformation T =
(Tx, Tw) ∈ T maps tuple (x,w) ∈ R to another tuple (Tx(x), Tw(w)) ∈ R,
namely, the transformations are closed under R. Additionally, a malleable NIZK
has an algorithm ZKEval that upon input x, π and transformation T returns a
new proof π′ which is a valid proof for the instance Tx(x). The work of [16]
defines the notion of strong derivation privacy which informally states that,
for any tuple x, π and transformation T adaptively chosen by the adversary, the
proof π′ is indistinguishable from a fresh simulated proof for the statement Tx(x).
In the special case of a malleable NIZK where the allowable transformation is
the identity function we simply say that it is a re-randomizable NIZK and we
omit the transformation from the inputs of ZKEval.

4 Our SR-EPID Construction

An Overview of Our Scheme. We elaborate further on the overview from
Sect. 1.1. Recall that our construction follows the classical template similar to
many group signature schemes to prove in zero-knowledge the knowledge of a
signature originated by the issuer. In particular: (I) The issuer I keeps a secret
key isk of a (structure-preserving) signature scheme. (II) The secret key of a plat-
form is a signature σsp on a Pedersen commitment [t]1 whose opening y is known
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to the signer only. Following the description given in Sect. 1.1, the conjunction of
σsp and [t]1 forms a blind signature on y. (III) The signer generates a signature
on a message M and basename bsn by creating a NIZK with label (bsn,M) of
the knowledge of a valid signature σsp made by I on message a commitment [t]1
and the knowledge of the opening of such commitment to a value y. To realize
the NIZK, our idea is to use a random oracle H to hash the string bsn,M and use
the output string as the common-reference string of a (malleable) NIZK for the
knowledge of the σsp, the commitment [t]1 and the opening y = (y0, y1). Further-
more, to be able to re-randomize the signature, we make use the re-randomizable
NIZK. (IV) To support revocation and linkability the final signature addition-
ally contains the pseudorandom value [c1]1 := K(bsn) · y0, where K is a random
oracle. More in details, linkability is trivially obtained, as two signatures by the
same signer and for the same basename share the same value for [c1]1, while
for (signature-based) revocation we additionally let the signer prove that all the
revoked signatures contain a [c1]1 of the form K(bsn) · y′

0 where y′
0 �= y0.

Specific Building Blocks. Our scheme makes use of the following building blocks:

– A structure-preserving signature scheme SS = (KGensp,Sigsp,Versp) where
messages are elements of G1 and signatures are in G

�1
1 × G

�2
2 .

– An re-randomizable NIZK NIZKsign for the relationship Rsign defined as:
⎧
⎪⎪⎨

⎪⎪⎩

(gpk, [b]1,SigRL),
([t]1, σsp, [y]2)

:

[b]1 ∈ span([1, y0]T1 )
[t]t = [hT · y]t
Versp(pksp, [t]1, σsp) = 1
∀i : [bi]1 �∈ span([1, y0]T1 )

⎫
⎪⎪⎬

⎪⎪⎭

where SigRL = {[bi]1}r
i=1, gpk = ([h]1, pksp), and y = (y0, y1)T. To simplify

the exposition, in the description of the protocol below we omit gpk (the
public key of the scheme) from the instance and we consider ([b]1,SigRL) as
an instance for the relation.

– A malleable and re-randomizable NIZK NIZKcom for the following relation-
ship Rcom and set of transformations Tcom defined below:

Rcom := {([h]1, [t]1), [y]2 : [t]t = e([h]1, [y]2)}

Tcom :=
{

T = (Tx, Tw) :
Tx([h]1, [t]1) = [h]1, [t + h2 · y′]1

Tw([y]2) = [y0, y1 + y′]T2

}

Namely, the relation proves the knowledge of the opening of a Pedersen’s com-
mitment (in G1) whose commitment key is [h]1. The transformation allows
to re-randomize the commitment by adding fresh randomness.

– A NIZKsvt for the relation Rsvt = {[x, xy, z, zy]1, y : x, y, z ∈ Zp}.
– Three cryptographic hash functions H, J and K modeled as random oracles,

where H : {0, 1}∗ → {0, 1}λ, J : {0, 1}∗ → {0, 1}λ and K : {0, 1}λ → G1.
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Our SR-EPID Scheme. We describe our scheme based on building block
described above. For an instantiation and its efficiency see the full version [20].

Init(1λ) → pub: Generate description of a type-3 bilinear group bgp
$← G(1λ), the

common reference string crssvt
$← NIZKsvt.Init(bgp), and sample h $← Z

2
p.

Output pub = (bgp, crssvt, [h]1)15

Setup(pub) → (gpk, isk): sample (sksp, pksp)
$←KGensp(bgp), and set isk := sksp,

gpk := pksp.
JoinI,S,M〈(gpk, isk), gpk, gpk〉 → 〈b, (b, svt), (sk, svt)〉: the platform P = (M,S)

and issuer I start an interactive protocol that proceeds as described below:
1. I samples id

$←{0, 1}λ, sends id to S and M. Parties compute crscom ←
J(id).

2. M samples y0,M, cM
$← Zp, set svt′ := [cM, cMy0,M]1 and sends svt′ to

S.
3. S parses svt′ = (svt′0, svt

′
1), checks that svt′0, svt

′
1 �= [0]1 and if so it sets

svt := cS · (svt′ + ([0]1, y0,S · svt′0))= [cScM, cScM(y0,S + y0,M)]1

and sends (y0,S , svt, [cS ]2) to M.
4. M does as described below:

– Parse svt′ = (svt′0, svt
′
1), svt = (svt0, svt1) and assert e(svt′0, [cS ]2) =

e(svt0, [1]2) and e(svt′1 + [cM · y0,S ], [cS ]2) = e(svt1, [1]2)
– Set y0 = y0,M + y0,S , sample y1,M

$← Zp and compute [tM]1 :=
(y0, y1,M) · [h]1;

– πM ← NIZKcom.P(crscom, ([h]1, [tM]1), [y0, y1,M]2);
– Send ([tM]1, πM) to S.

5. S checks NIZKcom.V(crscom, ([h]1, [tM]1), πM) = 1; if the check passes:
– Sample y1,S

$← Zp and set [t]1 := [tM + h2 · y1,S ]1;
– Compute πS ← NIZKcom.ZKEval(crscom, πM, [y1,S ]1);
– Send y1,S to M and ([t]1, πS) to I.

6. I checks NIZKcom.V(crscom, ([h]1, [t]1), πS) = 1, and if the check passes
then I computes σsp ← Sigsp(sksp, [t]1) and sends σsp to M (through S).

7. M does as described below:
– Compute y1 = y1,M + y1,S , y0 = y0,M + y0,S , and set y := (y0, y1)T;
– Verify (1) [h]T1 · y = [t]1 and (2) Versp(pksp, [t]1, σsp) = 1
– If so, send the special message completed to I (through S) and output

sk := ([t]1, σsp,y) and svt.
8. S outputs svt.
9. If I receives the special message completed then outputs it.

15 Notice that we could consider a stronger model of subversion where the adversary
could additionally subvert the public parameters. Our scheme, indeed, could be
proved secure under this stronger model if we generate [h]1 using the ROM and use
NIZKsvt with subversion-resistant soundness [4].
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Sig(gpk, sk, svt, bsn,M,SigRL) → (σ, πσ): On input gpk, sk = ([t]1, σsp,y), the
base name bsn ∈ {0, 1}λ, the message M ∈ {0, 1}m, and a signature revocation
list SigRL = {(bsni,Mi, σi)}i∈[n], generate a signature σ and a proof πσ as
follows:
1. Set [c]1 ← K(bsn) and set [c]1 := [c, c · y0]1;
2. Compute π ← Πsign.P(H(bsn,M), ([c]1,SigRL), ([t]1, [σsp]1, [y]2));
3. Compute πσ ← Πsvt.P(crssvt, (svt, [c]1), y0);
4. Output σ := ([c]1, π) and πσ.

Sanitize(gpk, bsn,M, (σ, πσ),SigRL, svt): Parse σ = ([c]1, π) and proceed as
follows:
1. If Πsign.V(crssign,H(bsn,M), ([c]1,SigRL), π) = 0 or Πsvt.V(crssvt, (svt,

[c]1), πσ) = 0 then output ⊥.
2. Re-randomize π by computing π′ ← Πsign.ZKEval(H(bsn,M), ([c]1,

SigRL), π)
3. Output σ′ := ([c]1, π′).

Ver(gpk, bsn,M, σ,PrivRL,SigRL): Parse σ = ([c]1, π) and PrivRL := {f1, . . . ,
fn1}. Return 1 if and only if:
1. K(bsn) = [c]1,
2. Πsign.V(H(bsn,M), ([c]1,SigRL), π) and
3. for ∀sk ∈ PrivRL : let sk = ([t]1, σsp, (y0, y1)) check (−y0, 1) · [c]1 �= [0]1.

Link(gpk, bsn,M1, σ1,M2, σ2): Parse σi = ([ci]1, πi) for i = 1, 2. Return 1 if and
only if [c1]1 = [c2]1 and both signatures are valid, i.e., Ver(gpk, bsn,M1, σ1) =
1 and Ver(gpk, bsn,M2, σ2) = 1.

Remark 1 (On correctness without verification list). Additionally, we assume
that for any crs, (gpk, [b]1,SigRL) and π if NIZKsign.V(crs, (gpk, [b]1,
SigRL), π) = 1 then NIZKsign.V(crs, (gpk, [b]1, ∅), π) = 1. We notice that, by
only minor modifications of the verification algorithm, this property holds for
GS-NIZK proof system for the relation Rsign. The reason is that GS-NIZK is
a commit-and-prove NIZK system where each group element of the witness is
committed separately, and where there are different pieces of proof for each of
the equation in the conjunction defined by the relation.

Assumption 2 (XDH Assumption). Given a bilinear group description
bgp

$← G(1λ), we say that the External Diffie-Hellman (XDH) assumption holds
in Gβ where β ∈ {1, 2} if the distribution [x, y, xy]β and the distribution [x, y, z]β
where (x, y, z) $← Z

3
p are computationally indistinguishable.

Theorem 1. If SS is EUF-CM secure, both NIZKsign and NIZKcom are adap-
tive extractable sound, perfect composable zero-knowledge and strong derivation
private, NIZKsvt is adaptive extractable sound, composable zero-knowledge, and
both the XDH assumption holds in G1 and the Assumption 1 holds, the SP-EPID
presented above is unforgeable in the ROM.
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To prove unforgeability we need to define an extractor: the main idea is to
program the random oracle J to output strings (used as common reference strings
in the protocol) that come with extraction trapdoors. Recall that by the proper-
ties of the NIZK, such strings are indistinguishable from random strings. Then,
whenever required, the extractor can run the NIZK extractor over the NIZK
proof provided by the platform during the join protocol to obtain a value [y]2.
Finally, looking at the transcript of the join protocol, the extractor can produce
the token tk = ([t]1, σsp, [y]2). Notice that the created token looks almost like
the secret key with the only difference that, in the secret key, the value y is given
in Z

2
q.

16 It is clear that the token is uniquely linked to the secret key.
With this extractor, we proceed with a sequence of hybrid experiments to

prove unforgeability. In the first part of the hybrid argument we exploit the pro-
grammability of the random oracle to puncture the tuple (bsn∗,M∗) selected by
the adversary for its forgery. In particular, we reach a stage where we can always
extract the witnesses from valid signatures for (bsn∗,M∗), while for all the other
basename-message tuples the challenger can always send to the adversary sim-
ulated signatures. To reach this point, we make use of the strong derivation
privacy property of the NIZK proof system (which states that re-randomization
of valid proofs are indistinguishable from brand-new simulated proofs for the
same statement). Specifically, we can switch from signatures produced by the
subverted hardware and re-randomized by the challenger of the experiment to
signatures directly simulated by the challenger. The latter cutoff any possible
channels that the subverted machines can setup with the adversary using biased
randomness. At this point we can define the set Qsp of all the messages [t]1 signed
by the challenger (impersonating the issuer) using the structure-preserving sig-
nature scheme. Notice that our definition allows the adversary to query the
challenger for a signature on the message (bsn∗,M∗) itself. As the signatures
for such basename-message tuple are always extractable, the challenger has no
chances to simulate such signatures. However, by the security definition, the
adversary is bound to output a forgery that does not link to any of the signa-
tures for (bsn∗,M∗) output by the challenger. We exploit this property together
with the fact that two not-linkable signatures must have different value for y0, to
show that the forged signature must be produced with a witness that contains
a fresh value [t∗]1 that is not in Qsp. More technically, we can reduce this to the
binding property of the Pedersen’s commitment scheme that we use.

Now, we can divide the set of the adversaries in two classes: the ones which
produce a forged signature where [t∗]1 is in Qsp and the ones where [t∗]1 is not
in Qsp. For the latter, we can easily reduce to the unforgeability of the structure
preserving signature scheme. For the former, instead, we need to proceed with
more caution. First of all, we are assured by the previous step that adversaries
from the first class of adversaries would never query the signature oracle on
(bsn∗,M∗). Secondly, we use the puncturing technique again, however, this time
we select the platform (let it be the platform number j∗) that is linked to the

16 In our concrete instantiation we use GS-NIZK proof system, for which extraction
in the source groups is more natural and efficient.
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forged signature. By the definition of the class of adversaries this platform always
exists. For this platform we switch the common-reference string used in the
join protocol to be zero-knowledge. Once we are in zero-knowledge mode, we
can use strong derivation privacy to make sure that the join protocol does not
leak any information about the secret key that the platform computes (even if
the machine is corrupted). At this point the secret key of the j∗-th platform
is apparently completely hidden from the view of the adversary, in fact: (1)
all the signatures are simulated and (2) the join protocol of the j-th platform
is simulated. However, the j∗-th platform is still using a subverted machine,
which, although cannot communicate anymore using biased randomness with the
outside adversary, still receives the secret key. We show that we can substitute
this subverted machine with a well-behaving machine that might abort during
the join protocol but that, if it does not so then it always sign every basename-
message tuple received (here we rely on Assumption 1). The last step is to show
that such forgery would break the hiding property of the Pedersen’s commitment
scheme that we make use of.

Theorem 2. If NIZKsign and NIZKcom are strongly derivation private, adap-
tively extractable sound and adaptively composable perfect zero-knowledge, both
the XDH assumption in G1 holds and the Assumption 1 holds, and NIZKsvt is
adaptively sound, then the SR-EPID described above is anonymous in the ROM.

First we notice that adaptive corruption and selective corruption for
anonymity are equivalent up to a polynomial degradation of the advantage of
the adversary. In particular, we can assume that the adversary corrupts all the
platforms but the i1-th and the i2-th platforms used for the challenge of secu-
rity game. The idea of the reduction is to switch to zero-knowledge the common
reference strings used in the join protocols for the platforms i1 and i2 by pro-
gramming the random oracle. Similarly, switch to zero-knowledge and simulate
all the signatures output by the two platforms (again by programming the ran-
dom oracle). Thus using the strong derivation privacy property of NIZKsign and
NIZKcom to make sure that no information about the platform keys is exfil-
trated. Notice that at this point the machines cannot communicate any informa-
tion using biased randomness, on the other hand, they could still communicate
using valid/invalid signatures. Although, the definition of anonymity disallows
telling apart i1 from i2 using this channel, for technical reasons, in the last step
of the proof (when we reduce to XDH) we need to completely disconnect the
subverted machines and, again, substitute them with well-behaving machines,
thus here we need to rely on Assumption 1. At this point the element y

(1)
0 (resp.

y
(2)
0 ) of the key y(1) of the platform i1 (resp. key y(2) of the platform i2) are

almost hidden to the view of the adversary. However, the challenge signature
σ = ([c∗]1, π) still contains the value [c∗

1]1 = K(bsn∗) · y
(b)
0 . The last step of the

proof of anonymity is to change the way the challenge signature is computed. In
particular, the value above is computed as K(bsn∗) · x for a uniformly sampled
x. This step is proved indistinguishable using the XDH assumption on G1.
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Abstract. Decentralized financial applications demand fast, cheap, and
privacy-preserving cryptocurrency systems to facilitate high transaction
volumes and provide privacy for users. Off-chain Layer-2 scaling solutions
such as Plasma, ZK-Rollup, NOCUST are appealing innovations devised
to enable the scalability and extensibility account-based blockchains that
support smart contracts. The essential idea is simple yet powerful: move
expensive computations off-chain and commit the abbreviated transac-
tion data on-chain. Nevertheless, these solutions do not provide privacy
for the users’ balances and off-chain transaction data. In this paper, we
propose PriBank, a novel privacy-preserving cryptocurrency system that
enables private balances and transaction values on top of these Layer-2
scaling solutions. To construct PriBank system, we propose a Commit-
and-Prove short NIZK argument for quadratic arithmetic programs. The
Commit-and-Prove short NIZK argument is built on top of the existing
zero-knowledge proof scheme: Bulletproof. It allows a prover to commit
to an arbitrary set of witnesses by Pedersen commitments before proving,
which may be of independent interest. We construct security models and
definitions for Layer-2 privacy-preserving scaling solutions and analyse the
security of our scheme under the security model. We also implement and
evaluate the system, and present a comparative analysis with the existing
solutions.

Keywords: Blockchain · Privacy · Scalability · Commitments ·
Zero-knowledge proofs · Smart contract

1 Introduction

Blockchain-based cryptocurrencies enable a peer-to-peer digital transfer of values
by keeping an immutable, distributed but globally synchronised public ledger,
the blockchain. However, the transactions in many of these blockchain-based
systems such as Bitcoin [26], Ethereum [33] are public. Current blockchains are
not suitable for daily financial transactions due to their privacy and scalability
issues. For instance, the average throughput of Bitcoin is 4.6 transactions per
second while Visa does around 1,700 transactions per second on average. Privacy
and scalability, however, are hard to achieve at the same time. Since adding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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privacy and confidentiality for a blockchain inevitably adds more computation
and data to the blockchain that results in reducing the transaction throughput
and increasing the transaction fees and hence downgrading the scalability of the
system.

There are many anonymous cryptocurrencies ranging from Zcash [30], Mon-
ero [32] based on Bitcoin-like blockchains, to works [7,8,20,23,31] built on top
of the smart contracts. The systems built on these models can have private
user balances, private and anonymous transactions. While most of the systems
focus on improving privacy, a few (none) of them discuss the scalability of their
designs. Monero employs anonymity sets in a ring structure to achieve privacy,
however, these privacy sets are fairly small. Zcash and Monero rely on record-
ing every transaction in the history to perform further transactions, this model
is called unspent transaction output (UTXO) model. Zcash and its follow-up
designs [7,20,23] inherit the same limitation of the UTXO model and also employ
a zk-SNARK proof algorithm that has a sophisticated structured common ref-
erence string (CRS) requisite more trust for the parties to set up the system.
Account-based systems [8,15] where transaction take place between accounts also
incorporate zero-knowledge proof for privacy. The transactions in these systems
are directly sent to the blockchain resulting in computation overload. All these
systems do not achieve scalability due to the expensive blockchain transactions.

Many constructions such as Plasma [29], NOCUST [21], ZK-Rollup [19] aim
to improve the scalability of blockchain by moving a large amount of data and
computation off-chain through an untrusted operator. The operator puts a short
summary of the transactions on-chain. The blockchain scaling designs following
this architecture are called Layer-2 scaling solutions. Plasma/NOCUST claim
to decrease the transaction cost nearly to zero. However, these systems send
less data to the blockchain but they suffer from the problem of mass exit and
long waiting time in case of withdraw (Detailed explanation in Sect. 1.2). More-
over, users need to keep online and monitor the behaviour of the operator and
other users in case of a dispute. Dziembowski et al. [16] proved that mass exit is
inevitable in these systems. ZK-Rollup is designed to avoid these issues by sub-
mitting a zero-knowledge proof with extra data to the blockchain, but it has less
throughput and needs a trusted setup. We follow the similar scalability approach
as ZK-Rollup but without trusted setup, and above all, provide privacy.

Based on the above observations, one possible approach to balance privacy
and scalability is to build privacy on the top of these scaling architectures. How-
ever, it is not simply adapting the cryptographic techniques used in anony-
mous cryptocurrencies to the blockchain scaling solutions. First, the fundamen-
tal architecture difference of having an operator or not gives different security
and threat models. Second, the goal of introducing an off-chain operator is to
outsource the computation, while if the transactions are private, the operator
needs to compute on private data. Third, the operator is supposed to send as
minimal data as possible to the blockchain as long as the data can represent a
unique and correct transaction history. While if the transactions are encrypted,
inevitably it is more complex to “compress” the data and still be able to prove its
correctness. Meanwhile, the overall cost ‘to build privacy on scaling solutions’
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method is unknown, and is still a worthwhile question to be asked and to be
investigated.

Motivated by the above, the contributions of this paper are as follows:

1. We construct an efficient Commit-and-Prove NIZK protocol for quadratic
arithmetic program by modifying the Bulletproof protocol [9]. Our Commit-
and-Prove NIZK protocol can be of independent interest (Sect. 3).

2. We formally define a privacy-preserving cryptocurrency system built on the
top of layer-2 scaling and further, we present a security model of the system
(Sect. 4).

3. We construct a privacy-preserving cryptocurrency system PriBank where
the large computation of the user transactions is delegated to an off-chain
operator while keeping the users’ balances and transaction values private.
Users trust the operator for confidentiality, but the system is trust-less for its
integrity (Sect. 5).

4. We provide a security analysis of the system (Sect. 6) and implement the
Commit-and-Prove NIZK protocol of PriBank in Go and further evaluate
the performance of the protocol (Sect. 7).

Furthermore, in our system, the computation load and data sent to the
blockchain is quadratic to the number of users in the worst case. The zero-
knowledge argument for inner-product in our system allows a prover to commit
to a subset of witness by Pedersen commitment, compared with Bulletproof
where all the witness are committed by vector Pedersen commitment.

1.1 Overview of PriBank

The PriBank system aims to enhance the privacy of blockchain-based cryptocur-
rency scaling approaches, and concurrently manages the computation and data
overload at a practical level. There are three types of entities in PriBank: Users,
Bank (Operator), and a Smart Contract running on the blockchain. The users
make the transactions with other users of the system through the bank operator.
From a privacy perspective, the operator serves as a bank on top of a blockchain
where users’ transactions and balances are hidden from other entities apart from
the bank. The bank operator maintains users’ balances and transactions, keeps
them private, and periodically submits commitments to the users’ data and
zero-knowledge proofs to the smart contract. The smart contract validates the
operator’s commitments and proofs and records them on the blockchain only
if they are valid. The difference between the traditional bank and PriBank is
that PriBank is not trusted to execute users’ requests honestly, yet the bank can
do no harm apart from leaking user’s information. As an additional benefit in
the current regulatory climate, the information that the operator holds enables
auditing of transactions, which is important to prevent financial crimes.

PriBank system operates in terms of epochs. An epoch is divided into three
phases: Transaction phase, Commit phase and Exit phase. The beginning of
an epoch is the Transaction phase which consists of three processes: Register,
Deposit and Transfer. These process can run parallel. The operator collects all
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the transaction data in the Transaction phase, and sends the commitments and
proofs to the smart contract in the Commit phase. At the end of epoch is the
Exit phase where users can withdraw or exit the system with the balances that
smart contract has confirmed during the Commit phase. Moreover, during the
Transaction phase, a user can make multiple transactions to another user, but
only the final balance is uploaded to the blockchain. Figure 1 depicts a general
overview of PriBank.

epoch r − 1 epoch r

Register/Transfer Commit Exit Register/Transfer Commit Exit

epoch r − 2 epoch r + 1

Fig. 1. An overview of PriBank system

PriBank Workflow: A general working flow of PriBank is as follows:

– Firstly, a smart contract is set up on the blockchain. It includes all the public
parameters in the system. Then user register and deposit funds in the system
through this smart contract.

– After registration, a user sends a plain text transaction to the operator using
a secure channel. The operator then commits to the transaction value and
generates its proof. Then, it returns the commitment and proof to the user
along with a collection of all the transactions commitments made for this user
within a specific period and asks for a signature on the collection. The user
checks that the collection is valid, and if so signs the transaction collection.

– Through above operation, the operator collects a list of transaction commit-
ments of a user and also gets the user’s signature on them. At the end of a
period, the operator updates each user’s balance, submits the balance com-
mitments and the lists of transaction commitments from the users along with
a zero-knowledge proof to the smart contract on blockchain. The balances of
users in the system are represented in the form of their commitments.

– Upon receiving the data from the operator, the smart contract verifies the
signatures and the zero-knowledge proof, and updates the new balance com-
mitment for each user if the data passes all the verification checks.

– The withdrawal or exit process are on the blockchain between the smart
contract and users. The users have the necessary proof that they received
from the operator beforehand for the withdrawal. They submit the requests
and the proof to the smart contract. The smart contract checks the proof and
processes the withdrawal or exit.

Functionality: PriBank processes the user transactions in an off-chain manner
through an operator and smart contract, hence amortizes the cost incurred in
the parent blockchain. As PriBank is deployed alongside the parent blockchain,
the parent blockchain has a global view of user accounts. The parent blockchain
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should be account-based, smart-contract enabled (e.g. Ethereum [33]), and oper-
ated by an honest majority. Furthermore, PriBank operations should take place
under the partially synchronous network where messages between two entities
should reach within an upper bound delay. Users of PriBank should also be
online at least once in each epoch to send or receive transactions in the system.

Verifiable Operation Through Commit-and-Prove Zero-Knowledge Proof. For the
correct execution of the PriBank workflow, we build a commit-and-prove zero-
knowledge proof system. The commit-and-prove approach in zero-knowledge
proofs dates back to the works of Kilian [22] and Canetti et al. [11], follow-
ing by the works [3,5,10]. The algorithms are zero-knowledge proof in which
the prover proves statements about values that are committed. In PriBank, this
proof system is built over an arithmetic circuit that represents the computation
of the bank operator. We commit to the circuit wires and then prove that they
satisfy the circuit. We use Pedersen commitment scheme to represent users’ bal-
ances and transactions privately, these values are part of the wires of the circuit.
For the other secret wires, we use the vector Pedersen commitment to shrink
the size of the overall commitment to being logarithmic in the circuit size. We
also use the signature and zero-knowledge proof verification in the smart con-
tract that guarantees the correctness and verifiability of the updates from the
bank operator. Details about the arithmetic circuit and mentioned commitment
schemes are given in Sect. 2.

1.2 Related Work

The problem of scalability in blockchain has become more urgent recently. A
large amount of work has been done to address this issue and many solutions have
been proposed [4,14,21,25,29]. The majority of these solutions support off-chain
interactions and computations. In these off-chain solutions, a large number of
transactions take place off-chain through an operator who puts a short summary
of these transactions on-chain. However, some of these systems are vulnerable
to mass exit. In a mass exit scenario, the operator goes rogue and users of the
systems need to send ownership proofs of their assets to the main chain, in order
to exit the system with their respective assets. This event causes congestion on
the main chain and the users might not be able to exit the system in time.

Apart from the problem of mass-exit, some of these solutions do not pro-
vide integrity of the transactions. Moreover, some solutions do incorporate zero-
knowledge proofs to achieve the integrity of blockchain and off-chain systems.
Nevertheless, transaction data in all these systems are public and therefore fail
to address the privacy implications of blockchain.

In the blockchain context there are different privacy notions, ranging from pri-
vacy of transaction amounts [8,23,30] and transacting parties [15,17] to the pri-
vacy of embedded functional calls in a smart contract [7]. Different solutions have
been proposed to achieve meaningful privacy notions. Several of these solutions
employ advanced cryptographic techniques such as zero-knowledge proofs [30],
ring signature [32], homomorphic encryption [34] and mixing techniques [6,24]
to achieve various forms of privacy. Financial systems zkLedger [27], Solidus [12],
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RSCoin [13] also achieve privacy of their transactions, but banks regulate the sup-
ply of funds and a blockchain is used to make transactions.

Hawk [23] is the first framework to construct privacy-preserving smart con-
tracts. Hawk combines the idea of Zcash and multi-party computation that
achieves on-chain privacy through the use of zero-knowledge proofs. The on-
chain privacy is guaranteed by a party that performs off-chain computation,
generates a cryptographic zk-SNARKs proof, and puts these results on-chain.

A zk-SNARK provides a succinct cryptographic proof attesting to the cor-
rectness of a computation. However, the use of zk-SNARK puts a bound on the
number of participants (in Hawk) due to its trusted setup and circuit-dependent
CRS. Ledger-based construction, Zexe [7], follows the similar idea of performing
off-chain computation using zk-SNARKs and subsequently produces privacy-
preserving transactions. In addition to Hawk, Zexe also hides which computa-
tions were performed off-chain, but both suffer from limitation of zk-SNARKs.

To build a privacy-preserving ledger system along with stateful computations
in the smart contract, several new constructions have been proposed such as
zKay [31], Zether [8], and Kachina [20]. All these constructions extend Ethereum
with privacy-preserving currency or data. zKay achieves privacy of data using
encryption and correctness using NIZK proof of encryption. zKay presents a
new language that extends Ethereum smart contracts with private data types.
Zether, on the other hand, proposes a privacy-preserving payment mechanism
using ElGamal encryption and zero-knowledge proofs (Bulletproof-based range
proofs). Kachina realizes a large class of privacy-preserving smart contracts.
Kachina uses NIZK proofs and state oracles to establish the desired privacy-
preserving smart contract. The security model of Kachina is based on Universal
Composition (UC) model, encompassing the other mentioned models. However,
many find UC hard to work with.

Quisquis [17] is a hybrid construction of UTXO and account-based model
that provides a provably secure notion of anonymity. It achieves this notion by
combining a DDH-based updatable public key system with NIZK proofs.

Although all the above-described privacy-preserving constructions achieve
various privacy notions, none of the constructions explicitly provide scalabil-
ity analysis. Furthermore, many of these constructions provide implementations
without integrity and do not have a proper security model. Moreover, even some
of these constructions involve off-chain transactions that might result in better
scalability, but fail to mention and analyse it. To the best of our knowledge,
PriBank is the only construction that enables a useful form of privacy along
with scalability in account-based blockchain with a proper security model.

Tables 1 and 2 compare PriBank with the existing popular schemes for scal-
ability and privacy, respectively. In these tables, ‘✓’ denotes that the respective
system has the corresponding feature, and ‘✗’ denotes that the scheme lacks
that feature. Table 1 compares PriBank with existing scalable off-chain systems.
Table 2 compares PriBank with the existing privacy-preserving systems. How-
ever, schemes such as Monero and Zcash do not have a concept of off-chain third
party, therefore they achieve stronger privacy notions. Irrespective of that, we
compare our PriBank scheme to all these systems. ‘✗*’ denotes that Zether itself
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Table 1. Comparison Matrix for different off-chain systems.

Scheme Plasma [29] ZK-Rollup [19] State Channel [25] Our Scheme

No Mass Exit Assumption ✗ ✓ ✓ ✓

Security No Watch Tower Assumption ✗ ✓ ✗ ✓

Cryptographic Primitives Standard New Standard Standard

Withdraw Time 1 week 10min 1 confirmation 1 epoch

Usability Transaction Finalization Time 1 confirmation 1 confirmation Instant 1 confirmation

User Verification ✗ ✗ ✓ ✓

Performance Cost of Transaction Very low Very low Low Low

No Collateral Required ✓ ✓ ✗ ✓

Table 2. Comparison Matrix for different privacy-preserving systems.

Scheme Monero [32] Zcash [30] Zexe [7] Zether [8] Quisquis [17] Our Scheme

Confidential Transaction ✓ ✓ ✓ ✓ ✓ ✓

Privacy Confidential User Address ✓ ✓ ✓ ✗* ✓ ✓

Anonymity Set Small Large Large Small Small Large

Security Security Model ✗ ✗ ✓* ✓* ✗ ✓

Cryptographic Primitives Standard Standard New New Standard Standard

Performance Transaction Size 2–∞ KB 2 KB 0.945–∞ KB 1.472 KB 13.4 KB 0.033–1.9 KB

No Trusted Setup Required ✗ ✗ ✗ ✓ ✓ ✓

does not provide anonymity, however, another construction Anonymous Zether
does provide anonymity, though with extra cost. ‘✓*’ denotes that the scheme
does not provide extensive security analysis.

2 Preliminaries

Notation: Throughout the paper, we use bold font to denote vectors, i.e. a ∈ Z
n
p

is a vector with elements a1, ..., an ∈ Zp. The inner product between two vectors
a, b is denoted by 〈a, b〉. The Hadamard product or entry wise multiplication of
two vectors a, b is denoted by a ◦ b = (a1 · b1, ..., an · bn) ∈ Z

n
p . We denote slices

of a vector as: a[:l] = (a1, ..., al) ∈ Z
l
p,a[l:] = (al+1, ..., an) ∈ Z

n−l
p .

2.1 Commitment Schemes

A commitment scheme allows one to commit to a chosen value (or chosen state-
ment) while keeping it secret, with the ability to only reveal the commitment
to the committed value later. A commitment schemes has Hiding and blinding
properties. In PriBank, commitment schemes are used to commit to user’s bal-
ance or transaction data. For the construction, we use Pedersen commitment [28]
and Vector Pedersen commitment scheme.

– Given a group G of order q and two generators g, h of group G, a Pedersen
commitment for a value a ∈ Zq is defined as Ca = gahr ∈ G, where r

$← Zq.
– Given a group G of order q, g := (g1, . . . , gn), h ← G and a vector a :=

(a1, ..., an), a vector Pedersen commitment is Ca =
∏n

i=1 gai
i hr ∈ G, r

$← Zq.
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In Sect. 3.2, we are using the commitment scheme in slightly different way.
We are constructing a collection of Pedersen commitments that are using the
same randomness over different generators of the group.

2.2 Quadratic Arithmetic Program

We represent the operations that the bank operator do to compute the new bal-
ances from the old balances and transaction history into an arithmetic circuit
satisfaction problem. The circuit gives the necessary range checks as well. The
work of Gennaro et al. [18] shows how to further translate an arithmetic cir-
cuit satisfaction problem to a Quadratic Arithmetic Program (QAP), where the
circuit is reduced to a polynomial equation.

Definition 1 (Quadratic Arithmetic Program [18]). A quadratic arith-
metic program (QAP) Q over a field Zp consists of three sets of polynomials
V = {vk(x) : k ∈ {0, ..., n}}, U = {uk(x) : k ∈ {0, ..., n}},W = {wk(x) : k ∈
{0, ..., n}} and a target polynomial z(X), all are defined over Zp.

Let a circuit C, where all the wires including inputs, outputs and inner circuit
wires variables are labelled a0, a1, ..., an (where a0 = 1). A QAP Q is said to
compute C if the following holds:
a1, ..., an ∈ Z

n
p is a valid assignment to the wires variables of C iff there exist

h(X) such that

n∑

i=1

aiui(X) ·
n∑

i=1

aivi(X) =
n∑

i=1

aiwi(X) + h(X)z(X)

The size of QAP is n, and degree is deg(z(X)), which is also the number
of gates in the circuit C. The polynomials uk(X), vk(X), wk(X) have degree at
most deg(z(X)) − 1.

2.3 Commit-and-Prove Zero-Knowledge Argument

A zero-knowledge argument is a protocol in which a prover wants to convince
a verifier that a statement is true without revealing any private information.
A commit-and-prove zero-knowledge argument is a zero-knowledge argument in
which a prover proves statements about values that are committed. It allows a
prover to commit to the secrets it holds before the prover knows what it is going
to prove. For instance, a prover makes a commitment to a user’s balance, later
it can convince the verifier that this balance is in or out of a certain range.

We follow the notation of [9]. A commit-and-prove argument consists of three
PPT algorithms (G,P,V). These are the common reference generator G, the
interactive prover P and verifier V. Take input as 1λ, G outputs the common
reference σ. The communication transcript between P and V when interacting
on inputs s and t is denoted by tr ← 〈P(s),V(t)〉. We write the output of the
protocol as 〈P(s),V(t)〉 = b. If verifier accepts, b = 0, otherwise b = 1.
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The language of commit-and-prove zero-knowledge argument proving is
defined over a polynomial time decidable relation R and a commitment scheme
Com = (Setup,Commit,VerCommit). R is defined over Dσ ×Dx ×Du ×Dw: given
a common reference σ, for a triple (x, u, w), we call x the statement, u the
committed witness and w the non-committed witness. Define RCom as a fam-
ily of relations that every relation R ∈ RCom

λ can be represented by a tuple
(σ, c, r, x, u, w). Let L be the language associated with R, i.e.,

Lσ = {σ, c, x | ∃w, u, r s.t. VerCommit(c, u, r) = 1 ∧ R(σ, x, u, w) = 1}

The commit-and-prove argument algorithm that we define has completeness,
special soundness and perfect zero-knowledge. The formal definitions are given
in Appendix F.

3 Commit-and-Prove Short NIZK Argument
for Quadratic Arithmetic Program

In this section, we introduce the construction of commit-prove short interactive
zero-knowledge proof for the quadratic arithmetic program. The protocol is lying
on three sub-protocols: a zero-knowledge argument for a product of Pedersen
commitments; a zero-knowledge argument for the inner product of a collection
of Pedersen commitments and a public vector; a zero-knowledge argument for
the inner product of a vector Pedersen Commitment and a public vector. We
describe the sub-protocols at the beginning and then describe how we combine
them and build the final protocol.

3.1 Zero-Knowledge Argument of Knowledge for Product
of Pedersen Commitments

Consider two Pedersen commitments ca = gahra and cb = gbhrb , the following
Protocol 3.1 is to prove a Pedersen commitment c is committed to the product
of a and b, i.e. c = gabht (Fig. 2).

Protocol Input: (g, h, c, ca, cb ∈ G; a, b, ra, rb, t ∈ Zp)
Protocol Output: (V accepts or V rejects)

P’s input:(g, h, a, b, ra, rb, t)
V’s input:(g, h, ca, cb, c)
1. P chooses randoms α, β, r1, r2, s0, s1

and computes
d1 = gαhr1 , d2 = gβhr2 , c0 =
gαb+βahs0 , c1 = gαβhs1 .
P sends (d1, d2, c0, c1) to V.

2. V: x
$←− Zp, sends x to P.

3. P computes θa = α − ax, θb =
β − bx, θ1 = r1 − rax, θ2 = r2 − rbx

θab = x2t − xs0 + s1 then sends
θa, θb, θ1, θ2 to V.

4. V checks cx
agθahθ1 = d1, cx

b gθbhθ2 =
d2, gθaθbhθabcx

0 = cx2
c1, output 1 if

all the equations hold otherwise out-
put 0.

Fig. 2. Protocol 3.1
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We prove the protocol has perfect completeness, computational soundness
and perfect zero-knowledge in Appendix B.

3.2 Zero-Knowledge Argument for Inner Product of Pedersen
Commitments and a Public Vector

Consider a vector a = (a1, ..., an) and a collection of Pedersen commitments
{ci}n

i=1 where ci = gaihγ
i . These Pedersen commitments are commitments to

the elements of a using the same randomness γ but over different generators
hi. We give a zero-knowledge argument Protocol 3.2 that claims c is a Pedersen
commitment that commits to the inner product between a and a public vector

b, i.e. c = g

n∑

i=1
aibi

ht (Fig. 3).

Statement: Vector b, Pedersen commitments {ci}n
i=1 and generators g, {hi}n

i=1

Prover’s Witness: Openings a, γ and t
Protocol Input: ({hi}n

i=1, {ci}n
i=1, g, c ∈ G;a, b ∈ Z

n
p ; γ, t ∈ Zp)

Protocol Output: (V accepts or V rejects)

P’s input:({hi}n
i=1, g,a, b, γ, t)

V’s input:({hi}n
i=1, g, c, {ci}n

i=1)

1. P chooses randoms α, β, t
$←− Zp,

computes

c0 = hγ , τ =
n∏

i=1

hbi
i , Ω = τγh−t,

d1 = hα, d2 = ταhβ and sends
(c0, Ω, d1, d2) to V.

2. V chooses a challenge x
$←− Zp and

sends it to P.
3. P computes θ1 = α−xγ, θ2 = β+xt.

4. V computes τ =
n∏

i=1

hbi
i , output ac-

cept if and only if

c =

n∏

i=1
c
bi
i

Ω
∧ d1 = cx

0hθ1 ∧ d2 =
Ωxτθ1hθ2

Fig. 3. Protocol 3.2

We prove the argument of knowledge presented in Protocol 3.2 has perfect
completeness, computational soundness and perfect special honest-verifier zero-
knowledge in Appendix C.

3.3 Zero-Knowledge Argument of Knowledge for Inner Product
of Vector Pedersen Commitment and Public Vector

Consider a vector Pedersen commitment ca =
n∏

i=1

gai
i hra that commits to a :=

(a1, ..., an). We give a zero-knowledge argument protocol that claims cab is a
Pedersen commitment that commits to the inner product between a and a public

vector b, i.e. cab = g

n∑

i=1
aibi

hrab .
This algorithm is a variant of the inner product argument construction in

Bulletproof [9]. We modify it to have the zero-knowledge property which we will



PriBank: Confidential Blockchain Scaling 599

use to build PriBank system. We prove the argument of knowledge presented in
Protocol 3.3 has perfect completeness, computational knowledge soundness and
perfect special honest-verifier zero-knowledge. The proofs for completeness and
honest-verifier zero-knowledge are in Appendix D. The soundness proof follows
the proof of Bulletproof and can be found in the full version of the paper (Fig. 4).

Statement: Generators vector g: = {g1, ..., gn}, generator h, vector b: = {b1, ..., bn},

vector Pedersen commitment ca =
n∏

i=1

gai
i hra and cab = g

n∑

i=1
aibi

hrab

Prover’s Witness: Openings for the commitments a, ra, rab

V randomly chooses a challenge x′ and sends it to P. Let c = cacx′
ab, r = ra +

rabx
′, u = gx′

and runs the following protocol Prove on input (g, u, h,a, b, c, r).
Protocol Prove:
Input: (g ∈ G

n, u, h, c ∈ G;a, b ∈ Z
n
p , r ∈ Zp) Output: (V accepts or V rejects)

P’s input:(g, u, h, c,a, b)
V’s input:(g, u, h, c, b)
if n = 1 (a := {a1}, g := {g1}):

1. P chooses randomness α1, α2
$←− Zp,

computes and sends d = gα1
1 uα1b1hα2

to V.
2. V chooses x

$←− Zp challenge x, sends
it to the P.

3. P computes θ1 = α1 − xa1, θ2 =
α2 − xr, sends θ1 and θ2 to V

4. V accepts if cxgθ1
1 ub1θ1hθ2 = d, oth-

erwise it rejects.

if n > 1:

1. Let n′ = n
2
, P chooses random r1

$←−
Zp and r2

$←− Zp, computes L, R as
follows and sends L, R to V.

L = g
a[:n′]
[n′:] · u〈a[:n′],b[n′:]〉 · hr1 ∈ G

R = g
a[n′:]
[:n′] · u〈a[n′:],b[:n′]〉 · hr2 ∈ G

2. V chooses challenge x and sends it to
the prover, i.e.
V → P : x

$←− Zp

3. Both P and V compute

g′ = gx−1

[:n′] ◦ gx
[n′:] ∈ G

n′

b′ = x−1b[:n′] + xb[n′:] ∈ Z
n′
p

c′ = c · Lx2
· Rx−2

∈ G

4. P computes:

a′ = xa[:n′] + x−1a[n′:]

r = r + x2r1 + x−2r2

5. Recursively run Prove on input
(g′, u, h, c′,a′, b′, r)

Fig. 4. Protocol 3.3

3.4 Commit-and-Prove Zero-Knowledge Argument for QAP

We give a commit-and-prove zero-knowledge argument Protocol 3.4 for the
satisfiability of a QAP for an arithmetic circuit C. For wires in the circuit
{ai}n

i=0, we denote the input witnesses are {ai}k
i=0, the inner circuit wit-

nesses are {ai}l
i=k+1 and the statements wires are {ai}n

i=l+1. The quadratic
arithmetic program, Pedersen commitment and vector Pedersen commitment
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give a relation of the form R = (G,Zp, k, l, {ui(X), vi(X), wi(X)}n
i=0, z(X),

{ai}n
i=0, cl, {ci}k

i=1, {ai}l
i=1, γ, r) such that with a0 = 1

n∑

i=1

aiui(X) ·
n∑

i=1

aivi(X) =

n∑

i=1

aiwi(X) + h(X)z(X) ∧ {ci = gaihγ
i }k

i=1

∧ cl = hr
l∏

i=k+1

gai
i ∧ ch = ht

n−2∏

i=0

gei
i

where e0, ..., en−2 are the coefficients of h(X) (Fig. 5).

Statements: A collection of Pedersen commitments c1, ..., ck that commit to a1, ..., ak,
two vector Pedersen commitments cl and ch that commit to ak+1, ..., al and the coef-
ficients of polynomial h(x) = e0 + e1x + ... + en−2x

n−2, the public values al+1, ..., an

Witnesses: a1, ..., al, γ, r, t, e0, ..., en−2

Input: (g, h, {hi}k
i=1, {ci}k

i=1, cl, ch ∈ G, g ∈ G
n−2; {ai}n

i=1, γ, r, t, {ei}n−2
i=1 ∈ Zp)

Output: (V accepts or V rejects)
P’s input:(g, h, {hi}k

i=1, {ci}k
i=1, cl, ch, g, {ai}l

i=1, γ, r, t, {ei}n−2
i=1 )

V’s input:(g, h, {hi}k
i=1, {ci}k

i=1, cl, ch, g)

1. V sends challenge x1
$←− Zp to the P,

computes {ui(x1), vi(x1), wi(x1)}m
i=0.

2. P chooses tu, tv, tw
$←− Zp and com-

putes

cu = g

k∑

i=1
aiui(x1)

htu , cv =

g

k∑

i=1
aivi(x1)

htv , cw = g

k∑

i=1
aiwi(x1)

htw

as the inner product between Ped-
ersen commitments {ci}k

i=1 and
{ui(x1)}k

i=1,{vi(x1)}k
i=1,{wi(x1)}k

i=1

respectively. Run protocol 3.2 to give
the proof of the correct constructions.

3. P chooses su, sv, sw
$←− Zp and com-

putes

cu = g

l∑

i=k+1
aiui(x1)

hsu ,

cv = g

l∑

i=k+1
aivi(x1)

hsv

cw = g

l∑

i=k+1
aiwi(x1)

hsw

as the inner product of vector
Pedersen commitment cl between
{ui(x1)}l

i=k+1, {vi(x1)}l
i=k+1 and

{wi(x1)}l
i=k+1 respectively. P also

chooses sh
$←− Zp and computes

chz = gh(x1)z(x1)hsh , which is
an inner product of vector Peder-
sen commitment and public vector
z(x1), x1z(x1), ..., xn−2

1 z(x1).
Run Protocol 3.3 to give a proof for
the above constructions.

4. P computes

ca = cu · cu · g

n∑

i=l+1
aiui(x1)

,

cb = cv · cv · g

n∑

i=l+1
aivi(x1)

,

cc = cw · cw · g

n∑

i=l+1
aiwi(x1)

· chz

Run Protocol 3.1 to prove cc commits
to the product of the committed val-
ues of ca and cb.

Fig. 5. Protocol 3.4

We prove the protocol has perfect completeness, computational soundness
and perfect special honest verifier zero-knowledge in Appendix E.



PriBank: Confidential Blockchain Scaling 601

4 Blockchain-Based Bank Protocol

In this algorithm we isolate the blockchain functionality. The transactions/data
that are sent to blockchains are denoted by trans, when a trans is accepted by
the blockchain, the public state, bank state and users’ states are all updated.

Definition 2 (BBank). A blockchain-based bank protocol BBank is a tuple
of algorithms (Setup,KeyGen,EstablishBank,NewUser,Deposit,Withdraw,Pay,
Commit) with the following syntax and semantics

– Setup. The algorithm Setup generates the public parameters pp, to be dis-
tributed off-chain.

– KeyGen. The algorithm KeyGen takes the public parameters pp and gen-
erates the key pair for users or for a bank.

– EstablishBank. The algorithm establishes a bank, it takes the public param-
eters and a key pair as inputs, generates the initial state of the bank
TempStb and a transaction trans. Once the transaction trans is accepted by
the blockchain, it launches the smart contract.
(trans,TempStb) ← EstablishBank(pkb, skb, pp)

– NewUser. This algorithm is performed by a user to register on the smart con-
tract, but without any deposit for her account yet. It takes the public param-
eters and the key pair of a user as inputs, outputs trans and the initial state
of this user.
(trans,Tempstu) ← NewUser(pkb, sku, pku, pp)

– Deposit. The protocol is run by the operator and a user to deposit money
on smart contract. It takes pp, the key pairs and states of a user and a bank,
epoch counter, deposit value as inputs, outputs a trans and temporary states of
user and bank. Once the transaction trans get accepted by the smart contract,
the user gets a commitment for her initial balance.
(trans,TempStb,TempStu) ← Deposit(pkb, skb, pku, sku,Stb,Stu, pp, v, epoch)

– Withdraw. The algorithm is performed by a registered user who wants to
exit the PriBank. It takes pp, the key pairs of a user, generates a trans and
updates the temporary states of this user and the bank.
(trans,TempStb,TempStu) ← Withdraw(pku, sku,Stb,Stu, pp, v, epoch)

– Pay. The protocol is run by the bank and a user (payer) to send transactions
to other users. It takes the public key of the receiver, the key pair of the
payer and the bank, the temporary states of the payer and the bank, the epoch
counter and the transferred value as inputs, and then it updates the temporary
states of both user and bank.
(TempSt′p,TempSt′b) ← Pay(pkb, skb, pkp, skp, pkr,TempStp,TempStbank, pp, v, epoch)

– Commit. The algorithm is performed by the bank. It takes the public state,
the key pair of the bank, the state and temporary state of the bank as inputs
and generates a trans and updates the temporary state of the bank.
(trans,TempSt′b) ← Commit(pkb, skb,Stb,TempStb, epoch)

– Contract. The algorithm takes the public parameters, a trans, the public
state, all users’ states and bank public states as inputs and then updates all
of them.
(St′b, {St′u},TempSt′b, {TempSt′u}) ← Contract({Stu}, {TempStu},Stb,TempStb, trans, pp)
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4.1 Security Definition

We define two security definitions for the blockchain-based bank proto-
col; transaction indistinguishability and overdraft safety. Informally speaking,
transaction indistinguishability is from typical left-or-right setting used for
indistinguishability-based definitions, it specifies an adversary cannot distinguish
two confidential transactions. Overdraft safety says the honest users are guar-
anteed to be able to withdraw all their funds from the system.

We firstly describe the experiment that defines the security of the above two
security definitions, and the formal definitions for security follow behind. Given a
(candidate) blockchain-based bank scheme Π, an adversary A, and the security
parameter λ, the (probabilistic) experiment consists of interactions between A
and the experiment. We assume the adversary A has full control of the network,
we also assume that the adversary forwards the transactions to the blockchain
on time (i.e. send query Q = Contract on time, we explain the query below).
The experiment accepts different types of queries from the adversary. Figure 6
describes each type of query Q.

4.2 Transaction Indistinguishability

Informally, transaction indistinguishability specifies an experiment where an
adversary sends two different transactions to the ledger. Only one will be
recorded, while the adversary is not able to distinguish which one of these two
is recorded. This security property could indicate the anonymity of the users as
well as the privacy of the transaction values, depending on leakage.

Transaction indistinguishability is defined by an experiment Tx-IND, which
involves a polynomial-time adversary A attempting to break a given (candi-
date) BBANK scheme. We now describe the Tx-IND experiment mentioned above.
Given a (candidate) BBANK scheme Π, an adversary A, and security parameter
λ, the (probabilistic) experiment Tx-IND(Π,A, λ) proceeds as the adversary is
capable of sending the listed queries in the experiment described in the previous
section, while the adversary is not allowed to send reveal query for the secret key
of the bank. In addition, the adversary sends the challenge queries we describe
next. In the challenge epoch, the experiment randomly chooses b ← {0, 1},
the adversary sends many challenge queries as Q = Challenge(Q0,Q1); for
each challenge query, these two queries leaks some information and the exper-
iment only performs Qb. After finishing the queries, the adversary sends query
Q = Commit and gets the output transb. At the end, the adversary outputs
b′ ∈ {0, 1}. The adversary wins the game if b′ = b. During the challenge epoch,
we require the queries sent by the adversary to be Public Consistent as defined.

Definition 3 (Leakage Function). A leakage function Leakage takes the out-
put from the experiment as input, and the function outputs the leaked information
about the related queries.

η ← Leakage(Q)
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Definition 4 (Public Consistent). To avoid an adversary winning the exper-
iment trivially, we require the query pairs for Commit and Pay.User must be
jointly consistent with respect to public information and A’s view, namely,

– For all the users that the adversary controls (adversary has asked Reveal
query for them), their states in the two banks should be consistent.

– If one of the queries Q0 and Q1 is not legitimate, the other query will not
proceed by the experiment as well.

– The leaked information of Q0 and Q1 should be the same, i.e., Leakage(Q0) =
Leakage(Q1)

Q = (KeyGen)
1. Compute (pk, sk) := KeyGen(pp)
2. Add (sk, pk) to the key list KeyList
3. Output the public key pk

Q = (EstablishBank, pk)
1. If (pk, sk) is not in KeyList, output ⊥.
2. Start a bank instance (trans,TempStb)
← EstablishBank(pkb, skb, pp)
3. Store key pair and the temporary
state of the bank, initiate the bank epoch
counter as n = 1
4. Output trans

Q = (NewUser, pk, sk)
1. If (pk, sk) is not in KeyList, outpt ⊥.
2. Compute (trans,Tempstu) ← NewUser
(pkb, sku, pku, pp)
3. Store the temporary state of the user
(pk, sk,TempStu)
4. Output trans

Q = (Deposit, pkuser, v, epoch)
1. If (pku, sku,TempStu) is not recorded,
output ⊥
2. Execute i-th instance of deposit proto-
col (trans,TempStb,TempStu) ← Deposit
(pkb, skb, pku, sku, Stb, Stu, pp, v, epoch),
when the bank/user sends m, sends (i, m)
to A.
3. Output trans

Q = (Pay, pkp, pkr, v)
1. If pkp or pkr is not in the KeyList,
output ⊥

2.Execute the ith pay protocol instance
(TempSt′p,TempSt′b) ← Pay(pkb, skb, pkp,
skp, pkr,TempStp,TempStbank, pp, v, epoch),
when the bank/ user send m, send (i, m)
to A.

Q = (Send, i, m)
1. If (i,TempStb,TempStu, trans) is
recorded, send ⊥ to adversary.
2. Send m to the ith instance. If the ith
instance outputs ⊥, record (i, ⊥) and
sends (i, ⊥) to the adversary. If the ith in-
stance outputs (TempStb,TempStu, trans),
then record (i,TempStb,TempStu, trans)
and output trans. If the instance sends a
message m′, send (i, m′) to the adversary.

Q = (Commit, epoch)
1. Compute (trans,TempSt′b) ← Commit
(pkb, skb, Stb,TempStb, epoch)
2. Output trans

Q = (Withdraw, pku, v)
1. Compute (trans,TempStb,TempStu) ←
Withdraw(pku, sku, Stb, Stu, pp, v, epoch)
2. Output trans

Q = (Contract, trans)
1. Compute (St′b, {St′u},TempSt′b, {TempSt′u})
← Contract({Stu}, {TempStu}, Stb,TempStb,
trans, pp)
2. Output {St′u}, St′b

Q = (Reveal, pk)
Output the secret key and the state of
the user/bank who owns pk, i.e., output
Sku, Stu

Fig. 6. Query description in blockchain-bank experiment
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Definition 5. Let Π = (Setup,KeyGen,EstablishBank,NewUser,Deposit,
Withdraw, Pay,Commit,Contract) be a candidate BBANK scheme and λ is the
security parameter. We define the advantage of an adversary A in the Tx − IND
experiment as follows,

AdvTx-IND
Π,A(λ) = |2Pr[b = b′] − 1|

4.3 Overdraft Safety

Informally, overdraft safety specifies that an honest user can withdraw all the
balance that she owns according to her state in the withdraw phase of any epoch.
This security requirement prohibits an adversary to withdraw more than what
it has, since otherwise there must be an honest user who cannot withdraw all of
his balance because of the lack of the funds in the smart contract.

Overdraft safety is defined by an experiment Overdraft, which involves a
polynomial-time adversary A attempting to break a given (candidate) BBANK
scheme. We now describe the Overdraft experiment mentioned above. Given a
BBANK scheme Π, an adversary A, and security parameter λ, the (probabilistic)
experiment Overdraft(Π,A, λ) proceeds as the adversary is capable of sending
all the queries in the experiment that we define in the beginning of this section.
In addition, adversary can send Q = Reveal for the secret key and state of the
bank. In the challenge epoch, the adversary wins if in a certain epoch, there is
an honest user who tries and fails to withdraw all his balance within one epoch.

Definition 6. Let Π = (Setup,KeyGen,EstablishBank,NewUser,Deposit,
Withdraw, Pay,Commit,Contract) be a candidate BBANK scheme and λ is the
security parameter. We define the advantage of an adversary A in the Overdraft
game as

AdvOverdraft
Π,A(λ) = Pr[∃u ∈ U such that ⊥ ← Withdraw(bmax, pku, v)]

5 PriBank: Privacy-Preserving Scaling Construction

We present the construction of algorithms of PriBank in Fig. 7 with a brief
descriptions as follows. A taxonomy of symbols is provided in Appendix G.

– Proof of commitment. Operator commits to a user’s balance, transaction
values, a randomness using Pedersen commitment, ComProve algorithm. A
user verifies these commitments using ComVerify algorithm.

– NIZK for updated balance. Operator collects all transactions of the users
in one epoch, computes the new commitments for users’ updated balances
and gives NIZK proof using ProBal. The verification algorithms is VeriBal.

– Signature. To provide the authenticity of data exchanged between users and
operator, standard digital signatures are used in PriBank.
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ProBal({c}, {c′}, {cv}, {cti}, {di}, {vij}, g,

h, γ, c0, {hi}, {h′
i}, {ti}, {bi}, {b′

i}, C)
Take ({di}, {ti}, {bi}, {b′

i}, {vij}) as
inputs of the circuit C, compute all the
inner wires of C as ak+1, ..., al

set {ck} = 〈{ci}, {c′
i}, {cv}, {cti}〉

Compute cl as described in protocol 3.4
Run protocol 3.4 as a prover, generate
proof πzk

return : πzk

VeriBal({c}, {c′}, {cv}, {cti}, g, h, γ, c0,

{hi}, {h′
i}, , C, πzk) → {0, 1}:

Run protocol 3.4 as a verifier, generate
b ∈ {0, 1}
return : b

ComProve(hγ , hγ
i , γ, hi):

α ← Zp

Compute d = hα, d′ = hα
i

x ← Hash(h, hi, h
γ , hγ

i , d, d′)
Compute θ ← θ − xγ.
return : π ← (d, d′, θ).

ComVerify(g, h, hi, c0, ci, bi, π):
Compute x ← H(h, hi, h

γ , c0, d, d′)
Let c′ = ci/gbi .
if cx

0hθ = d ∧ c′xhθ = d′ then
return 1

else
return 0

Sign(m, skE) → σE

VerifySig(m, σE , pkE) → {0, 1}

Fig. 7. PriBank Construction Algorithms, including syntax for digital signatures.

Following, we provide a brief description of the main processes of PriBank:

Register. To register an account, a user ui sends a request Reg consisting of
signature σbi on its balance bi to the operator during an epoch r. The opera-
tor returns a randomness ti with its commitment proofs and signature on these
values. Further, user verifies all the details and accordingly sends a registra-
tion request to the smart contract along with a deposit transaction. The smart
contract verifies the request and registers the user accordingly (Fig. 8). After a
send/receive transaction, the user’s balance becomes private in later epochs.

Operator O
{Reg : pki, bi, σbi} ←
If VerifySig(bi, σbi , pki)

1. ti
$←− Zp, cti ← gtihγ

ti

2. π1 ← ComProve(c0, hγ
ti

,
γ, hti)

3. m := {cti , r, pki}
4. σo ← Sign(m, sko)
5. Send {m, σo, ti, π1}

to U →

User U

d1 ← VerifySig(m, σo, pko)
d2 ← ComVerify(g, h, hti ,
c0, cti , ti, π1)
If d1 ∧ d2 :

1. σi ← Sign(〈m, σo〉, ski)
2. Send {Reg : m, σo, σi, bi}

to SC →

Smart Contract SC

d1 ← VerifySig(m, σo, pko)
d2 ← VerifySig(〈m, σo〉,
σi, pki)
If d1 ∧ d2 :

1. cbi ← gbic0
2. Record(cti , cbi , pki)
3. B ← B + bi

Fig. 8. User registration
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Transfer. In each epoch r, each user ui needs to get a fresh randomness ti
from the operator. The randomness is computed in similar way as in regis-
tration. To agree on the randomness computed by the operator, a user sends
σi ← Sign(〈m,σo〉, ski) to the operator and the operator verifies the signature
by VerifySig(〈m,σo〉, σi, pki) and records cti , ti. This randomness allows users to
compute their balances di = ti −bi during the end of the epoch, where di is pub-
lished by the operator. The user ui can compute the correctness of his balance
by the published di before the end of the epoch. The randomness ti is used as a
‘mask’ for the user’s balance. The necessity of this randomness is for the balance
to be sealed by the operator. Therefore, if a user receives some transactions that
it doesn’t know the transaction value, then, the user cannot compute its balance
directly from its own transaction history.

Operator O
Transaction lists: Tr, CT r

d ← ValidateTx(Tx′
ij , bi)

If ¬(Online(ui) ∧ Online(uj) ∧ d): abort
bi

′ ← bi − vij , c′
i ← gbi

′
hγ

i , cij ← gvijhγ
ij

Let Txij : (pki, pkj , vij , cij , r, n), CTx′
ij : (pkj , cij)

CT ′
r = {CTxik|CTxik ∈ CT r ∧ k 
= j} ∪ {CTx′

ij}
π ← ComProve(c0, hγ

ij , γ), m := {π, CT ′
r}

σo ← Sign(m, sko)
Send {m, σo} to U →

d1 ← VerifySig(CT ′, σi, pki)
If d1; Update transaction lists
Tr ← {Txik|Txik ∈ Tr ∧ k 
= j} ∪ {Txij}
CT r ← CT ′

r

User U
Transaction lists: Tr, CT r

Tx′
ij :(pki, pkj , vij ,Null, r, n, σij)

← Send Tx′
ij to O

Check if CT ′
r is the correct history

d1 ← VerifySig(m, pko, σo)
bi

′ ← bi − vij

d2 ← ComVerify(g, h, hij , c0, cij , vij , π)
If d1 ∧ d2 : σi ← Sign(CT ′, ski)
← Send σi to O

Fig. 9. Transfer

If a user wants to send transactions in an epoch, he/she needs to keep records
of two transaction lists Tr and CT r, the operator keeps records of these two
lists for each user. The list Tr contains the plain transactions that user sent
in epoch r, while CT only contains the confidential abbreviated transactions,
i.e. CT = {CTxij |CTxij : (pkj , Cij)} To send a transaction, a user sends the
plain transaction to the operator. The operator checks its validation, commits
to the transaction value, signs the transaction, and gives a proof of commitment.
Meanwhile, the operator aggregates all the transactions sent by the user in this
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epoch, signs the confidential transaction list, and sends it to the user. If the user
agrees to the confidential transaction list, he/she returns its signature on the
list. Henceforth, a user confirms all its sent transactions in this epoch. Before
the end of one epoch, the operator collects all the confidential lists of each user
and sends them to the smart contract. The smart contract checks these lists and
records the transactions accordingly. Figure 9 depicts the transfer process.

Commit. Before the end of an epoch, the operator collects all the confidential
transaction lists of the users, compute the new balance and its commitments
for each user i.e. ci = gbihγ

i . Further, it computes di = bi − ti,∀i ∈ {1, ..., N}
where ti is the randomness that the operator agrees on with each user during
the start of epoch. In case where a user has some receiving transactions during
an epoch but the user did not agree on a randomness with the operator, the
operator sets di = ⊥. Subsequently, it generates a zero-knowledge proof for the
correct computation by π ← ProvBal({CT r}, {ci}, {di}), where the inputs are the
confidential transaction lists, the balance commitments in the previous epoch,
the updated balance commitments, the randomness commitments and di of all
users. Finally, it submits the following data to the smart contract:

User Index CT and Sig ti and Sig Balance d

u1 CT r
1, σ1 ct1 , σt1 c1 d1

...
...

...
...

...

ui ⊥, ⊥ cti , ⊥ ci di

...
...

...
...

...

uN CT r
N , σN ctN , σtN cN dN

Operator signature on the above data: σo

zero-knowledge proof: π

Upon receiving the data submitted by the operator, the smart contract checks
the validation of each signature by VerifySig(m,σi, pki) and the validation of the
zero-knowledge proof VerifyBal({CT r}, {ci}, {di}). For every user ui who did not
agree on a randomness with the operator in this epoch, smart contract updates
this user’s balance commitment as his/her balance commitment in the previous
epoch and for the other users who have send transaction with value Cji to this
user, it updates their balance commitments as cj = ci · Cji.

Exit. At the end of every epoch, a user who wants to exit the system can send a
request to smart contract during the exit phase. The smart contract transfers the
funds back to the user if the request is valid. The user who wants to exit gets the
randomness and its proof of the latest randomness commitment that it agreed
on with the operator. Generate the request as {exit, pki, ti, π, σi} where σi is the
user’s signature on the request. Upon receiving the request, the smart contract
verifies the signatures and verifies the proof of the most recently committed
randomness by ComVerify(g, h, hti , c0, cti , ti, π). Transfer user’s balance bi = ti −
di if all the verification get accepted.
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6 Security Proof

6.1 Proof for Transaction Indistinguishability

We describe a simulation experiment Expsim in which the adversary A inter-
acts with an experiment as in the Tx-IND experiment. While the answer of the
experiment to the challenge queries is independent of b, therefor the A’s advan-
tage in the Expsim is 0. We further prove that the simulation experiment is
indistinguishable from the real experiment Expreal.

Expsim. In the challenge phase, how the simulated experiment answers the
queries from the adversary is different from the Expsim as follows,

– Q = (Commit, epoch)
1. The operator collects all the transaction lists in this epoch, calculates

the new balance for each user. Then the operator computes the balance
masks as d = t − b for users that the adversary has asked real key query
before and select random values as balance masks for honest users.

2. Simulate a zero-knowledge proof for the statement.
3. Output trans.

Experiment Exp1. The experiment Exp1 modifies the real experiment by sim-
ulating the zero-knowledge proof. Since the zk-SNARK system is perfect honest-
verifier zero knowledge, the distribution of the simulated proof is identical to the
proof computed in a real experiment. Hence, the advantage of distinguishability
of the adversary for experiments Expreal and Exp1 is 0.
Experiment Exp2. The experiment Exp2 modifies Exp1 by replacing all the
commitments for honest users’ balances, randomness ti and transactions values
by commitments to random values. Precisely, in the real experiment, every time a
user sends a transaction to the operator, the operator hides the transaction value
by making a commitment to it (Fig. 9) and publishes the commitment on the
blockchain later. In Exp2, the operator commits to a random value instead of the
transaction value, by Lemma 1 (see below), |AdvExp1 −AdvExp2 | ≤ q ·AdvDDH.
Experiment Expsim. Expsim modifies Exp2 by replacing all the balance masks
di for honest users to random values. Since the adversary does not know the
honest users’ ti and these values are also random, hence the distributions for di

in Expsim is indistinguishable.
As argued above, the responses of the adversary A to Expsim is independent

of b, so that AdvExpsim = 0. Then, by summing over A’s advantages in the
hybrid experiments, we can bound A’s advantage in Expreal by

AdvExpreal ≤ q · AdvDDH

Lemma 1. Let AdvDDH be the advantage of an adversary in DDH problem.
Then after q Pay.User queries, |AdvExp2 − AdvExp1 | ≤ q · AdvDDH



PriBank: Confidential Blockchain Scaling 609

Proof. In the challenge phase of the experiment, when the adversary sends the
query Commit, the experiment replies with a trans that includes all the commit-
ments for the transaction values and all the commitments for users’ balances in
the current epoch. While in Exp2, the commitments for the transactions and
balances of honest users are actually commitments to the random values. We
argue the two experiments are indistinguishable.

In Exp1, a commitment for a transaction from ui to uj is cij = gvhγ
ij where v

is the transaction value that known by the adversary, hij is a random generator
such that the commitment key is unknown, γ is a secret held by the operator,
while hγ is publicly known. In Exp2, a commitment for such a transaction is
computed as c = gvhs

ij where s is uniformly selected from Zp. If an adversary can
distinguish the tuple (hγ , hij , g

vhγ
ij) from (hγ , hij , g

vhs
ij), it can also solve the

DDH tuple (hγ , hij , h
z
ij). The similar argument applies to the commitments for

users’ balances and the commitments for agreed randomness ti. Hence, we have
q ·AdvDDH ≥ |AdvExp1 −AdvExp2 | where q is the total number of commitments.

�

6.2 Proof for Overdraft Safety

Assuming the challenge epoch is n, the output of the experiment for query
Q = Commit is transn. At the end of this epoch, an honest user ui fails to
withdraw her total balance bi. bi is the balance recorded in the state of ui. It
is computed by the user’s balance in the previous epoch being deduced by the
user’s spending and being added by the user’s receiving in the current epoch. The
experiment is performed under a setting that the signature forgery is impossible.

In the exit phase, an honest user ui submits an exit request
{exit, pk′

i, ti, π, σi}, the smart contract accepts the request only if 1 ←
ComVerify(g, h, hti , c0, cti , ti, π). Suppose ComVerify fails, it indicates the proof π
is incorrect. While we observe that the same algorithm with the same parameter
is run by the user before the operator commits to blockchain (due to randomness
agreement), since the user is honest, it should abort the execution in the transfer
phase and refuse to sign the randomness commitment at that point.

Apart from the failure of ComVerify, a user can also fail to withdraw in the
case that bi �= b′

i, i.e., the user withdraws less than what she believes to have.
This can be the result of bi �= ti − di or the lack of funds in the smart contract.
In the earlier case, it indicates the soundness of zero-knowledge proof is broken.
In the later case, it implies that there must be at least one adversary, say uj ,
who withdraws more than what it has, namely, bj ≥ tj −dj , which also indicates
the soundness of zero-knowledge is broken.

7 Implementation and Evaluation

We evaluate the usability of the commit-and-prove zero-knowledge proof of PriB-
ank and give its implementation in Go. We use elliptic curve secp256k1 with 128-
bit security, the balances and transactions are 8-bits length, we test the proof
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size per user, transaction size, the proof generation time, verification time, the
time for pre-processing. We do not deploy optimization on the implementation,
therefore the performance in terms of time is not desirable that results in “low”
cost of transaction instead of “Very low” cost similar to ZK-Rollup as depicted
in Table 1. Particularly, the pre-processing to generate a QAP takes too long to
perform further experiments on more users cases. We refer to the work [2,9] for
optimization and faster implementation. The experiments were performed on 2
× 24 Xeon 2.4 GHz cores. The code of the implementation can be found in [1].

The commitment sent by the operator to the smart contract includes balance
and transaction commitments, balance mask d, two signatures for each user, and
a proof. The computation circuit of the operator allows each user in the system
to send a transaction to every other user, Therefore, for an n user circuit the
maximum transaction number is n(n−1). Assuming a user can send a transaction
with a zero value, the total commitment size of the operator is computed based
on the maximum transaction number. While the number of transactions that
have positive value might be much less, we measure the transaction size in a
case where we assume a user send non-zero transactions to half of the other
users in one epoch. Following, we depict the proof size, transaction size, and
circuit gate numbers dependency of users in Fig. 10.
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Fig. 10. Experimental results

8 Conclusion

Our goal in this work was to implement privacy over an account-based blockchain
system. We formally defined a blockchain-based bank model along with security
definitions. Following that, we presented a novel privacy-preserving cryptocur-
rency system PriBank, for that, we constructed an efficient Commit-and-Prove
NIZK protocol. Our construction achieves privacy together with scalability in
the blockchain which has not been achieved by the previous schemes. As most
of the schemes are concerned with achieving privacy or scalability alone, hence,
we compared our scheme separately with the popular privacy and scalability
solutions. We provided a detailed security analysis and performance evaluation.



PriBank: Confidential Blockchain Scaling 611

Future Directions. There are various ways to adapt and extend this work. One
possibility is to reduce the complexity of the data which is sent to the smart
contract in each epoch, henceforth increasing the efficiency of the overall system.
Another direction of work is to build more efficient proof algorithm to reduce
the verification complexity.

A Commit-Prove Zero-Knowledge Proof Construction

Circuit: The arithmetic circuit C of the zero-knowledge proof is in Fig. 11

Inputs:

– Transaction values vij where i, j ∈
1, .., N, i = j

– Users’ randomness {ti}N
i=1

– Users’ balances of the previous epoch
br−1
i and the updated balance br

i

– User’s balance mask di, i ∈ {1, ..., N}
– Total balance of the contract B

The circuit check the following constraints for the inputs:

br
i = br−1

i −
N

j=1

vij +
N

j=1

vji ∧ br
i = ti − di ∧ B =

N

i=1

br
i ∧ vij ≥ 0 ∧ br−1

i −
N

j=0

vij ≥ 0

Fig. 11. Circuit

B Proof of Protocol 3.1

Proof. Soundness. By the rewinding, the prover, the extractor X gets two valid
transcripts that have the same commitments:

(d1, d2, c0, c1, x, θa, θb, θ1, θ2, θab), (d1, d2, c0, c1, x′, θ′
a, θ′

b, θ
′
1, θ

′
2, θ

′
ab) from the

verification, we get equations

cx
agθahθ1 = d1 cx′

a gθ′
ahθ′

1 = d1

By the binding property of Pedersen commitment, This implies a = θ′
a−θa

x−x′ , by

the same technique, X can compute b = θ′
b−θb

x−x′ and α, β.
Next, assume c is a commitment that committed to z, we will prove z = ab.

Assume c0 = guhrc0 , c1 = gvhrc1 , observe that gθaθbhθabcx
0 = cx2

c1, it implies

gabx2−(aβ+bα)x+αβ+uxhθab+xrc0 = gzx2+vhrcx2+rc1

Since a, b, α, β, u, v are all predefine value, either X can extract non-trivial
relation between g, h or u = αb + βa and the extractor can extract z = ab =
θaθb−θ′

aθ′
b+(αb+βa)(x−x′)
x2−x′2 .

Perfect special honest-verifier zero-knowledge. The simulator randomly
chooses θ1, θ2, θa, θb, θab, u, r ← Zp and randomly chooses a challenge x ← Zp, it
computes d1 = cx

agθahθ1 , d2 = cx
b gθbhθ2 , c0 = guhr, c1 = gθaθbhθabcx

0/cx2
. Thus

the simulator produces a valid transcript (d1, d2, c0, c1, x, θa, θb, θ1, θ2, θab) that
has the identical probability distributions with the real proof. �
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C Proof of Protocol 3.2

Proof. Soundness. For an accepting transcripts (c0, Ω, d1, d2, x, θ1, θ2), assume
that

c0 = hγ , Ω = τuh−v, d1 = hα, d2 = τ δhβ

since d1 = cx
0h

θ1 , d2 = Ωxτθ1hθ2 we have

hxγ+θ1 = hα, τux+θ1hθ2−vx = τ δhβ

If u �= γ then it means θ1 = δγ−uα
γ−u and x = α−δ

γ−u or the cheating prover is able
to compute the Pedersen commitment key logg h. Since α, δ, γ are pre-defined
values, Pr[x = α−δ

u−γ ] = 1
p .

Since in the verification, c =
n∏

i=1

cbi
i /Ω, assume c = gwht, this implies

gwht = g

n∑

i=1
aibi

hv

Hence, either w =
n∑

i=1

aibi or the prover is able to compute the discrete logarithm.

�

Perfect special honest-verifier zero-knowledge. The simulator randomly

chooses γ, θ1, θ2 ← Zp and computes c0 = hγ , Ω =
n∏

i=1

cbi
i /c. Then the simulator

chooses a challenge randomly x ← Zp and computes d1 = cx
0h

θ1 , d2 = Ωxτθ1hθ2 .
The transcript trs = (c0, d1, d2, x, θ1, θ2) is a valid transcript that has the iden-
tical probability distributions with the real proof.

D Proof of Protocol 3.3

Proof. We follow the proof of [9] for the soundness, and give our proof for the
zero-knowledge property.

Soundness. We firstly construct an extractor X1 of protocol Prove, then con-
struct an extractor X2 for protocol 3.3. For X1, we use an inductive argument
showing that in each step, we either extract a witness or a discrete log relation.
If n = |g| = 1, rewinding P to get 2 transcripts with the same randomness used
by P but different challenges from V, assume the witness of P are (a1, c, r),
d = gt1

1 ut2ht3 , the transcripts are

tr := (d, x, θ1, θ2)
tr′ := (d, x′, θ′

1, θ
′
2)

then we get ga1x+θ1
1 ucx+b1θ1hθ2+xr = g

a1x′+θ′
1

1 ucx′+b1θ′
1hθ′

2+x′r = d.
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Since a1, c, d are predefined value, either extractor can compute

logg1
u + logg1

h =
θ1 − θ′

1

b1θ′
1 + θ′

2 − b1θ1 − θ2

or a1 = θ1−θ′
1

x′−x and c = a1b1
Next, on the k-th recursive step that on input(g, u, h, c, b), assume that the

(k+1)th recursive step has input(g′, u, h, c′, b′) and the witness can be extracted
from this recursive are r′,a′, 〈a′, b′〉. We show that with the witness of the (k +
1)th recursive step, an extractor can effectively compute a witness of the k-th
recursive step or a non-trivial discrete logarithm relation between the generators.

On k-th recursive step, the extractor runs the prover to get L and R.
Then, by rewinding the prover four times and giving it four different challenges
x1, x2, x3, x4, the extractor obtains four a′

i ∈ Z
n′
p such that

c · Lx2
i · Rx−2

i =
(
g

x−1
i

[:n′] ◦ g
x2
i

[n′:]

)a′
i

hr′
iu〈a′

i,b
′
i〉 for i = 1, ..., 4 (1)

compute v1, v2, v3 ∈ Zp such that

3∑

i=1

vix
2
i = 1,

3∑

i=1

vi = 0,

3∑

i=1

vix
−2
i = 0 (2)

Then taking a linear combination of the first three equations with v1, v2, v3 as
the coefficients,

cvi · Lx2
i vi · Rx−2

i vi = (gx−1
i

[:n′]g
xi

[n′:])
a′

ivihvir
′
iu〈a′

i,b
′
i〉vi for i = 1, 2, 3

we can compute

L = gaLhrLusL , where

rL =
3∑

i=1

vir
′
i, aL[:n′] =

3∑

i=1

x−1
i a′

ivi, aL[n′:] =
3∑

i=1

xia
′
ivi, sL =

3∑

i=1

〈a′
i, b

′
i〉vi

Repeating this process with different combinations (compute v1, v2, v3 of Eq. 2
with different summations), we can also compute R, c such that

R = gaRhrRusR

c = gachrcusc

Now, we can rewrite Eq. 1, for each x ∈ {x1, x2, x3, x4} as

gaLx2+ac+aRx−2
hx2rL+rc+x−2rRux2sL+sc+x−2sR = ga′·x−1

[:n′] ga′·x
[n′:]h

r′
u〈a′,b′〉
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This implies that

a′ · x−1 = x2aL[:n′] + ac[:n′] + x−2aR[:n′]

a′ · x = x2aL[n′:] + ac[n′:] + x−2aR[n′:]

〈a′, b′〉 = x2sL + sc + x−2sR

Either the extractor can obtain a non-trivial discrete logarithm relation between
the generators (g, h, u) if these equations do not hold, or we can deduce that for
each challenge x ∈ {x1, x2, x3, x4}

x3aL[:n′] + x(ac[:n′] − aL[n′:]) + x−1(aR[:n′] − ac[n′:]) − x−3aR[n′:] = 0

The only way the above equation hold for all challenges is if

aL[:n′] = aR[n′:] = 0, ac[:n′] = aL[n′:], aR[:n′] = ac[n′:]

Thus a′ = xac[:n′] + x−1ac[n′:] Using these values we can see that:

x2sL + sc + x−2sR = 〈a′, b′〉
= 〈ac[:n′], b[n′:]〉 · x2 + 〈ac, b〉 + 〈ac[n′:], b[:n′]〉 · x−2

Since the relation holds for all x ∈ {x1, x2, x3, x4}, it must be that

〈ac, b〉 = sc

The extractor, thus, either extracts a discrete logarithm relation between the
generators, or the witness ac.

We now show that at the beginning of the protocol 3.3, on input (ca , cab , g, b),
the extractor X2 runs P with challenge x and uses X1 to obtain a witness a, r
such that cacx

ab = gagx〈a,b〉hr. Rewinding P with a different challenge x′ and
X1 extracts new witness a′, r′ such that cacx′

ab = ga′
gx〈a′,b〉hr′

. Then we get

gs(x−x′)hrab(x−x′) = ga−a′
gx〈a,b〉−x′〈a′,b〉hr−r′

Unless a = a′ we get a not trivial discrete log relation between g, hand g.
Otherwise we get s = 〈a, b〉, rab = r−r′

x−x′ , ra = r − x(r−r′)
x−x′ . �

Perfect Zero-Knowledge. The simulator chooses randomly a vector a ∈ Z
n
p

as witness and we show it can generate a valid transcripts for this vector.
For each recursive step when a prover asks for L,R, the simulator chooses

randomly r1, r2 ∈ Z
∗
p, and computes

L = g
a [:n′]
[n′:] · u〈a [:n′],b[n′:]〉 · hr1 ∈ G

R = g
a [n′:]
[:n′] · u〈a [n′:],b[:n′]〉 · hr2 ∈ G

Assume that at the last recursive step the input commitment is c′, the challenge
is x. The simulator randomly choose θ1, θ2 ∈ Z

∗
p, compute d = c′xgθ1

1 ub1θ1hθ2 .
The transcript trs = (c, L1, R1, x1, L2, R2, x2, ..., d, x, θ1, θ2) is a valid tran-

script that has the identical probability distributions with the real proof.
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E Proof of Protocol 3.4

Proof. Soundness. A valid transcript of protocol 3.4 consists of 8 sub-
transcripts: three transcripts of Protocol 3.1 on statements

({c1}k
i=1, {hi}k

i=1, g, h, cu, {ui(x1)}k
i=1);

({c1}k
i=1, {hi}k

i=1, g, h, cv, {vi(x1)}k
i=1);

({c1}k
i=1, {hi}k

i=1, g, h, cw, {wi(x1)}k
i=1)

respectively; four transcripts of Protocol 3.2 on statements (g, b :=
{uk+1(x1), ..., ul(x1)}, cl, cu ), (g, b := {vk+1(x1), ..., vl(x1)}, cl, cv ), (g, b :=
{wk+1(x1), ..., ul(x1)}, cl, cw ) and (g, b := {xz(x1), ..., xn−2z(x1)}, ch, chz)
respectively; one transcript of Protocol 3.3 on statement (ca, cb, cc).

The soundness of protocol 3.1 implies

cu = g

k∑

i=1
aiui(x1)

htu , cv = g

k∑

i=1
aivi(x1)

htv , cw = g

k∑

i=1
aiui(x1)

htw

The soundness of protocol 3.3 implies

cu = g

l∑

i=k+1
aiui(x1)

hsu , cv = g

l∑

i=k+1
aivi(x1)

hsv ,

cw = g

l∑

i=k+1
aiwi(x1)

hsw , chz = gh(x1)z(x1)hsh

The knowledge extractor described in the proof of Protocol 3.1 can extract
a, ra and b, rb such that

ca = cu · cu · g

n∑

i=l+1
aiui(x1)

= gahra

cb = cv · cv · g

n∑

i=l+1
aivi(x1)

= gbhrb

cc = cw · cw · g

n∑

i=l+1
aiwi(x1)

· chz = gabhrc

which means
n∑

i=1

aiui(x1) ·
n∑

i=1

aivi(x1) =
n∑

i=1

aiwi(x1) + h(x1)z(x1)

Apart from the challenge x1, all the variables in the above equation are prede-
fined, therefore either the prover can compute the non-trivial discrete logarithm

relation between the generators or
n∑

i=1

aiui(X) ·
n∑

i=1

aivi(X) =
n∑

i=1

aiwi(X) +

h(X)z(X).
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Perfect special honest-verifier zero-knowledge. The zero-knowledge prop-
erty follows by the zero-knowledge properties of the sub-protocols. The simula-
tor can utilize the sub-protocols’ simulator to produce a valid transcript without
knowing the witnesses. �

F Definitions for Commit-and-Prove Zero-Knowledge
Proof

Definition 7 (Perfect Completeness). The triple (G,V,P) has perfect com-
pleteness if for all non-uniform PPT adversary A such that

Pr
[

(σ, c, r, x, u, w) /∈ RCom
λ

or 〈P(σ, c, r, x, u, w),V(σ, c, x)〉 = 1

∣
∣
∣
σ ← G(1λ)
(c, r, x, u, w) ← A(σ)

]

= 1

Definition 8 (Computational Soundness). (G,V,P) has computational
soundness if it is not possible to prove a false statement where no witness exist,
i.e. for all non-uniform polynomial time interactive adversary A1,A2, the func-
tion negl(λ) is negligible.

Pr
[

A1(tr) = 1 (i.e. tr is accepting) ∧
(σ, c, r, x, u, w) /∈ RCom

λ )

∣
∣
∣
σ ← G(1λ)
(c, x, s) ← A2(σ)

]

≤ negl(λ)

Definition 9 (Computational Knowledge Soundness). (G,V,P) has com-
putational knowledge soundness if for all deterministic polynomial time P∗, there
exists an polynomial time knowledge extractor E such that for all non-uniform
polynomial time interactive adversary A1,A2, the function negl(λ) is negligible.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
[

A1(tr) = 1
∣
∣
∣
∣
σ ← G(1λ), (c, x, s) ← A2(σ)
tr ← 〈P∗(σ, c, x, s),V(σ, c, x)

]

−

Pr

⎡

⎣A1(tr) = 1∧
(tr is accepting i.e. (σ, c, r, x, u, w) ∈ RCom

λ )

∣
∣
∣
∣
∣
∣

σ ← G(1λ)
(c, x, s) ← A2(σ)
(tr, w) ← EO(σ, c, x)

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ)

where the oracle is given by O = 〈P∗(σ, c, x, s),V(σ, c, x)〉.

The oracle O permits rewinding to a specific point and resuming with fresh
randomness for the verifier from this point onwards. Informally, if there is an
adversary that can produce an argument that satisfies the verifier with some
probability, then there exists an emulator that can extract the witness. The value
s is the internal state of P∗, including randomness. The emulator is permitted
to rewind the interaction between the prover and verifier to any move, then
resuming with fresh randomness for the verifier.
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Definition 10 (Perfect Special Honest-Verifier Zero-Knowledge). A
triple (G,P,V) is a perfect special honest verifier zero knowledge argument of
knowledge for RCom

λ if there exists a probabilistic polynomial time simulator S
such that for all pairs of interactive adversaries A1,A2

Pr
[

(σ, c, r, x, u, w) ∈ RCom
λ and A1(tr) = 1

∣
∣
∣
∣
σ ← G(1λ), (c, x, r, u, w, ρ) ← A2(σ)
tr ← 〈P∗(σ, c, x, r, u, w),V(σ, c, x; ρ)〉

]

= Pr
[

(σ, c, r, x, u, w) ∈ RCom
λ and A1(tr) = 1

∣
∣
∣
∣
σ ← G(1λ), (c, x, r, u, w, ρ) ← A2(σ)
tr ← S(σ, c, x, ρ)

]

where ρ is the randomness used by the verifier.

Definition 11 (Commit-and-Prove Zero-knowledge Argument of
Knowledge). The triple (S,P,V) is a commit-and-prove zero-knowledge argu-
ment of knowledge for a family of relations RCom if it satisfies the perfect
completeness, perfect special honest-verifier zero-knowledge and computational
soundness or computational knowledge soundness.

G Notations

- Op : the operator
- SC : the smart contract
- r : the epoch number
- pki : the public key of user ui

- bi : the balance of user ui

- ci : the commitment for the balance of
user ui

- ti : the randomness of user ui

- cti : the commitment for the random-
ness ti

- vij : the value of transaction that is
sent from ui to uj

- σ : a signature
- B : the total balance in the smart con-

tract.
- Tx′

ij :(pki, pkj , vij ,Null, r, n, σij) : The
plain transaction sent by user to the
operator.

- Txij :(pki, pkj , vij , cij, r, n, σij) : The
plain transaction after that the oper-
ator commits to the value and replace
the Null with the commitment.

- CTxij : (pkj , cij) The abbreviated con-
fidential transaction that sends value
from ui to uj

- T r : the plain transaction list
- CT r : the abbreviated confidential

transaction list
- H : a collision resistant hash function
- {xi}N

i=1 : a set of values {x1, ..., xN},
we use curly brackets to indicates a set
of values.
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