
SimpAI: Evolutionary Heuristics
for the ColorShapeLinks Board

Game Competition

Pedro M. A. Fernandes1 , Pedro M. A. Inácio1 , Hugo Feliciano1 ,
and Nuno Fachada1,2(B)

1 School of Communication, Arts and Information Technologies, Lusófona University,
Lisbon, Portugal

{a21803791,a21802050,a21805809}@alunos.ulht.pt,
nuno.fachada@ulusofona.pt

2 COPELABS, Lusófona University, Lisbon, Portugal

Abstract. Wepresent SimpAI, anAI agent created for theColorShapeLinks com-
petition, based on an arbitrarily sized version of the Simplexity board game. The
agent uses a highly efficient parallelized Minimax-type search, with an heuristic
function composed of several partial heuristics, the balance of which was opti-
mized with an evolutionary algorithm. SimpAI was the runner-up in the competi-
tion’s most challenging session, which required an AI agent with good adaptation
capabilities.

Keywords: Board games · Artificial intelligence · Evolutionary heuristics ·
Simplexity · ColorShapeLinks

1 Introduction

In this paper, we present SimpAI, an artificial intelligence (AI) agent created for the
ColorShapeLinks board game competition [3]. This competition is based on an arbitrarily
sized version of the Simplexity board game [1]. In this game, the board is a vertically
placed grid and pieces fall with gravity. In a similar fashion to Connect-4, the first player
to place n pieces of the same type in a sequence, wins. Pieces are defined by color, white
or red, and shape, round or square. The first player wins with round or white pieces,
while the second player wins with square or red pieces. Shape has priority over color
as a winning condition, and while players only play with pieces of their color, they can
play with pieces of both shapes, making the game more interesting and complex.

In a standard Simplexity game, the board has six rows and seven columns, and
victory can be achieved with a sequence of four pieces of the same shape or color, either
vertically, horizontally or diagonally. Figure 1 shows the possible victory conditions for
both players in a standard Simplexity game, i.e., either by color or by shape, with the
latter having priority as shown in Fig. 1b and Fig. 1d.

P. M. A. Fernandes and P. M. A. Inácio—These authors contributed equally to this work.

© Springer Nature Switzerland AG 2022
I. Barbedo et al. (Eds.): VJ 2020, CCIS 1531, pp. 113–126, 2022.
https://doi.org/10.1007/978-3-030-95305-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95305-8_9&domain=pdf
http://orcid.org/0000-0001-6676-882X
http://orcid.org/0000-0002-4450-6009
http://orcid.org/0000-0003-3411-9352
http://orcid.org/0000-0002-8487-5837
https://doi.org/10.1007/978-3-030-95305-8_9


114 P. M. A. Fernandes et al.

Fig. 1. Victory conditions for the Simplexity board game.

The SimpAI agent was developed as a learning and exploration project in the context
of an AI course unit at Lusófona University’s Bachelor in Videogames degree [4]. It
searches for the best solutions in the game board using a classical Minimax-type search
approach, with a number of optimizations to search as deep and wide as possible. The
search is guided by a composition of five heuristics, the weights of whichwere optimized
using an evolutionary algorithm. The agent finished the competition in second place in
the Unknown Track, for which the board configuration and time to play were only
announced after the competition deadline.

This paper is organized as follows. In Sect. 2,we reviewboard gameAI techniques, as
well as two competing agents in the first edition of the ColorShapeLinks competition. In
Sect. 3, we discuss in detail the proposed agent, namely the optimized search algorithm,
the implemented heuristics and how we performed heuristic weight optimization using
evolutionary algorithms. In Sect. 4 we describe the results obtained using this approach
and how the agent fared in the two competition tracks. A discussion of these results
takes place in Sect. 5. Section 6 closes the paper, discussing potential improvements and
offering some conclusions.



SimpAI: Evolutionary Heuristics for ColorShapeLinks 115

2 Background

The classical search approach in board game AI is the Minimax algorithm [8, 11]. This
algorithm performs a depth-first search of the game tree down to a predefined search
depth, bubbling up board evaluations obtained at maximum depth with a given heuristic
function in a recursive fashion.Minimaxevaluates game states at eachdepth from theAI’s
perspective, while assuming the adversary will also choose the best move for himself. As
such, Minimax maximizes board evaluations when the AI is playing, minimizing them
in the opponent’s turn. Minimax has been optimized and improved through the years.
Some of these optimizations, discussed for example in reference [8], are summarized in
the following paragraphs.

Negamax is one of the most basic improvements to Minimax, evaluating boards
from the perspective of who is playing at a given depth. The code ends up being simpler
and slightly more efficient than a pure Minimax, since the algorithm only performs
maximizations. Conversely, Alpha-beta pruning is a crucial optimization for Minimax
(or Negamax), making use of the upper and lower bound evaluations returned by the
heuristic function – the search window – in order to determine if a branch from a specific
move is worth exploring further, pruning it in case its evaluation crosses these limits.

Aspiration search takes this idea further, attempting to narrow the search window
in order to prune more branches, speeding up the algorithm. It accomplishes this by
calling the algorithm with a range based on the previous search, the lower bound being
the subtraction of a window size to the previous result and the upper bound being the
addition of the window size to the previous result.

The Negascout optimization performs a scout test by fully examining the first move
of each board positionwith a wide searchwindow, using the resulting score to narrow the
search window for the following moves. If all these following moves fail, the algorithm
conducts the search again with a full width search window. From the initial move with
a wide search window, the algorithm derives an approximation for the window sizes for
successive moves, while also pruning large numbers of branches.

Move ordering works in tandem with Alpha-Beta pruning, ordering the possible
moves at each depth by their heuristic score, from highest to lowest, so the algorithm
evaluates the most likely best moves first, increasing the chances of pruning potentially
worse branches and therefore making the algorithm perform faster and explore further.

Iterative deepening is an optimization which works well with a time limit. It searches
with incremental depths, and keeps going while it still has time to keep searching. It
essentially performs depth-first search in a breadth-first fashion, allowing the AI to use
as much time as it can without going over a preestablished time limit.

Zobrist hashingmakes use of an hash table and a collective of various integer numbers
for each position of the board, all different, that are later used by the AI to convert a given
board state into a rapidly storable and retrievable numerical identifier. These values are
stored in a hash table along with the heuristic score for the respective board states, thus
avoiding heuristic reevaluation of the latter.

The state of the art in board game AI can be considered a combination of Monte
Carlo Tree Search (MCTS) and deep reinforcement learning [6, 8, 11]. MCTS works by
simulating as many random play outs as possible from a given board state while there is
available thinking time, selecting a move based on the amount of wins, ties and losses



116 P. M. A. Fernandes et al.

for each node. In turn, deep reinforcement learning combines artificial neural networks
with reinforcement learning (e.g., QLearning), enabling the AI to learn the best possible
moves in any given board state.

Concerning the first edition of theColorShapeLinks competition, the winners of each
track used a number of techniques discussed in the previous paragraphs. The ThunderAI
agent won the Base Track usingMCTSwith a custom board implementation. In turn, the
first place in the Unknown Track was claimed by SureAI, a very well tuned Negamax-
based agent.

3 Methods

The SimpAI agent was developed in C# (.NET Standard 2.0 [10]), a requirement for
the competition as the agents need to run both in the Unity game engine [9] and in the
console. The implementation is divided into two different parts, which work together to
form SimpAI:

1. The search algorithm, used to search for promising future moves in the time it has
available to think, discussed in Subsect. 3.1.

2. The heuristic, used to classify future board states according to their strategic value,
thus guiding the search algorithm towards finding the best move. The heuristic is
presented in Subsect. 3.2.

In practice, the heuristic is a combination of several partial heuristics. These are
weighted in order to give the final heuristic value for each board state. The optimized
weights were obtained using an evolutionary algorithm, as discussed in Subsect. 3.3.

3.1 Search

The search is conducted through a Negamax algorithm, with a number of optimizations,
namely alpha-beta pruning, move ordering, iterative deepening and zobrist hashing, all
of which were discussed in Sect. 2.

The search was also parallelized, allowing several branches to be evaluated at the
same time by distributing the workload by the available CPU cores. In practice, this was
achievedwith theParallel.Invoke()method inC#,which internally optimizes the
number of available worker threads according to the number of hardware threads. Since
the Minimax family of search algorithms works recursively, and recursive algorithms
are difficult to parallelize effectively [2], each possible move at the first depth level is
processed iteratively in the main thread. Then, each correspondingMinimax (Negamax)
subtree, from the second depth level and onwards, is recursively processed in one of
the available worker threads, as shown in Fig. 2. When all the threads finish their work,
results for each subtree are compared back in the main thread, and the branch with the
best heuristic score determines the move to perform.



SimpAI: Evolutionary Heuristics for ColorShapeLinks 117

Fig. 2. Parallelization strategy for SimpAI. The first level of depth is iteratively processed in a
single thread. From level 2 onwards, each subtree is recursively processed in one of m available
threads. For simplification, it is assumed that there are always n moves to be performed at each
depth level. Player A represents the player about to play and Player B the player that plays
afterwards.

3.2 Heuristics

The heuristic value for each board state is determined by the weighted sum of five partial
heuristics, discussed in the following paragraphs.

HorizCenterHeuristic considers the overlapping area between a winning sequence
starting from the left side of the board with another from the right side as a more valuable
location for a player’s piece. Pieces included in this overlapping area, shown in orange
in Fig. 3 for a board with Simplexity’s standard dimensions, are able to be a part of a
sequence expanding to their right and another expanding to their left. Positions outside
this interval are too close to the edge of the board to allow such sequences; therefore, as
their distance to the overlap interval increases, the less valuable these positions become
according to HorizCenterHeuristic.

VertCenterHeuristic is the vertical counterpart of HorizCenterHeuristic, as shown
in Fig. 4.

VertDiscHeuristic considers the area above the number of rows needed to form a
vertical winning sequence starting at the bottom of the board as a poor location to place
pieces. As shown in Fig. 5, positions above this threshold, displayed in grey, are largely
out of reach in an early game, with a winning sequence containing these top spaces
requiring a large amount of pieces below them. These are only likely to be part of the
winning sequence if the game reaches a very advanced stage where only this area is
available.

BuildFromAfarHeuristic considers that placing pieces far away from each other
while still at a distance that would allow for a winning sequence between them is a



118 P. M. A. Fernandes et al.

Fig. 3. HorizCenterHeuristic on a board with Simplexity’s standard dimensions. Blue columns
show positions where a horizontal sequence starting from the left side of the board can form. Red
columns likewise for sequences starting from the right side of the board. Orange positions indicate
where these sequences overlap.

valuable move. In the sequence portrayed in Fig. 6, an agent following this heuristic –
first to play – places a piece in the center of the board. Once the adversary places its
first piece, the agent answers with a piece in a position at a distance equal to a winning
sequence and with an open path to the piece in the middle. If the adversary blocks this
potential sequence, the agent places a piece in the opposite position at awinning sequence
distance from the center piece. Eventually, the adversary has his pieces nullified (with no
way of making an horizontal winning sequence) and the agent has two possible winning
sequences.

Fig. 4. VertCenterHeuristic on a board with Simplexity’s standard dimensions. Blue lines show
positions where a vertical sequence starting from the bottom of the board can form. Red lines
likewise for sequences starting from the top. Orange positions indicate where these sequences
overlap.



SimpAI: Evolutionary Heuristics for ColorShapeLinks 119

Fig. 5. VertDiscHeuristic on a board with Simplexity’s standard dimensions. Blue rows can be
used to form a vertical winning sequence starting from the bottom of the board. Grey positions
are outside this interval.

By placing pieces far from each other while at the same time putting them at a
distance that allows for a winning sequence, enables the agent to possibly – according
to the board’s length – start three different horizontal sequences: i) left to the leftmost
piece, ii) between both placed pieces, or, iii) to the right of the rightmost piece. This
pressures the adversary to decide which possible sequence to preemptively stop, with
this heuristic allowing for the agent to immediately continue another sequence that may,
once again, force a similar decision on the adversary, changing its focus from building
its sequences to trying to stop the agent’s ones.

DumpFromAfarHeuristic takes into account that placing the adversary’s shape
pieces in the corner of the map is the safest way of neutralizing them, as these are
the easiest positions to isolate, as shown in Fig. 7.

Any winning sequence will require at least one space from the areas calculated by
HorizCenterHeuristic and/or VertCenterHeuristic. Therefore, spaces lose value accord-
ing to how far they are from these intervals. Taking this into account, DumpFromA-
farHeuristic defines these lower value spaces as ideal locations to dispose of adversarial
pieces.

3.3 Heuristic Weight Optimization with Evolutionary Algorithms

The weights of each partial heuristic were obtained with an evolutionary algorithm
implemented with the DEAP library [5]. The algorithm population is composed of n
individuals representing SimpAI agent instances, with various partial heuristic weights.
Each individual is defined by five attributes corresponding to the heuristic weights, as
shown in Fig. 8.

Individuals in the first generation are initialized with random weights. The fitness of
individuals in each generation is given by their score in a ColorShapeLinks competition
between them. In this competition, all individuals play against all others, and all have
the opportunity to play first against any given opponent.



120 P. M. A. Fernandes et al.

Fig. 6. Three stages (progressing from top to bottom) of an agent using BuildFromAfarHeuristic
to make decisions on the bottom horizontal slice of a board with 13 columns and a winning
sequence of 4 pieces. The orange bars indicate the relevant winning sequences. The agent’s pieces
appear in blue, while the adversary’s appear in red. Both use their specific piece shapes in this
example.

Fig. 7. DumpFromAfarHeuristic on a board with Simplexity’s standard dimensions. Orange
spaces indicate the areas that are part of theHorizCenterHeuristic orVertCenterHeuristic valuable
areas. Grey positions are outside these intervals.



SimpAI: Evolutionary Heuristics for ColorShapeLinks 121

Individual

HorizCenterHeuristic
weight

VertCenterHeuristic
weight

VertDiscHeuristic
weight

BuiltFromAfarHeuristic
weight

DumpFromAfarHeuristic
weight

Fig. 8. An individual in the evolutionary algorithm population is defined by five attributes
corresponding to the weights of the partial heuristics.

Individuals are selected for the next generation using tournament selection [7], com-
pletely replacing the original population. In tournament selection, two individuals are
randomly drawn from the original population. A copy of the one with best fitness is
selected for the next generation, and then both individuals are returned to the original
population and can be selected again. This process is repeated n times, yielding the base
population for the new generation.

Each pair of individuals in this new base population then undergoes uniform
crossover with probability pc, being replaced in place by their offspring. Uniform
crossover means that each attribute between the mating individuals is swapped with
probability pca.

Mutation is the final step in defining the new generation of individuals. Individuals
undergo mutation with probability pm, and in these, mutation is applied to each attribute
with probability pma . Since attributes – i.e. the heuristicweights – are numeric, a gaussian
mutation operator, inwhich a value drawn from the normal distribution (meanμ, standard
deviation σ ) is added to an attribute, is the most natural choice.

At this point a new generation of n individuals is fully formed. Their fitness is then
obtained by performing a new ColorShapeLinks competition between them, similar to
what was done for the first generation. The algorithm stops when it reaches a predefined
number of iterations, l, returning the individuals ordered by fitness, from best to worst.
Otherwise the process starts over, with a new generation undergoing selection, crossover
and mutation, further improving the heuristic weights of the population.

4 Results

4.1 Heuristic Weight Optimization

After testing several parameter combinations for the evolutionary algorithms, we settled
for the values displayed in Table 1. These values provided a good balance between
optimization quality and the duration of the optimization process – whichwas performed
using standard Simplexity rules.

We performed five runs of the evolutionary algorithm with different initial popula-
tions, and the best individual at the end of each run was selected for a final competition.
The final standings for this competition, as well as the weights of each of these “best”
individuals, are presented in Table 2.

Naturally, the individual in the first position was selected as our final agent for the
ColorShapeLinks competition.



122 P. M. A. Fernandes et al.

Table 1. Parameters used for the evolutionary algorithm runs.

Param. Value Description

n 50 Population size

l 500 Number of generations

pc 0.4 Crossover probability for pairs of individuals

pca 0.5 Crossover probability for each attribute

pm 0.2 Mutation probability per individual

pma 0.5 Mutation probability for each attribute

μ 0.0 Mean of normal distribution used for mutation

σ 0.25 Standard deviation of normal distribution used for mutation

Table 2. Weights of the partial heuristics for the best individuals in five runs of the evolutionary
algorithm. Position (Pos.) refers to the position of the individual in a final competition between
these individuals.

Heuristic Pos.

1st 2nd 3rd 4th 5th

HorizCenter 0.5386 0.8322 1.0383 0.9882 0.7913

VertCenter 4.5551 8.0820 0.1755 6.9733 5.4766

VertDisc −0.9044 −0.5215 8.4260 0.2584 0.0797

BuildFromAfar 2.9906 2.2055 3.4491 2.3593 5.5618

DumpFromAfar 4.9090 6.7064 3.3461 6.7073 4.1143

4.2 The ColorShapeLinks Competition

The competition was held on two tracks, each having specific parameter values, and
naturally, separate final standings. The first session, the Base Track, was run on Sim-
plexity’s default board configuration, as shown in Table 3. Here, agents were limited to
one CPU core.

The second session, the Unknown Track, was held in a configuration to be defined
by the results of that week’s EuroMillions draw, after the final submission deadline.
This way, the AI agents were unable to specifically prepare for this configuration. The
final parameters for this session are also shown in Table 3. There were no limits in the
access to the CPU cores, with the AIs being able to take full advantage of the available
computing power, provided multithreading was implemented.

In the Base Track, the submitted AI was ranked 6th – the last position, thus a clearly
poor result. On the other hand, in the Unknown Track, SimpAI, working at its full
multithreaded capacity, was the runner-up, proving that it can be efficient and adapt to
boards of different dimensions.



SimpAI: Evolutionary Heuristics for ColorShapeLinks 123

5 Discussion

5.1 Optimization of Heuristic Weights

By analyzing the five individuals from Table 2, it is possible to notice some patterns,
with only the individual in the 3rd position clearly deviating from the rest. All individ-
uals, except the 3rd and 5th, had both VertCenter and DumpFromAfar heuristics with
relatively high values, suggesting the expected synergy between the two. Another simi-
larity between the individuals, except with the 3rd, was the fact they all considered the
HorizCenterHeuristic less effective than its vertical counterpart.

Table 3. Configurations for the two competition tracks.

Parameter Value

Base Track Unknown Track

Rows 6 8

Columns 7 13

Win Sequence 4 4

Round Pieces 10 26

Square Pieces 11 26

Time limit (ms) 200 325

Considering how the 3rd individual contrasts with the rest of the group, it is important
to try and find a difference between the agents classified above and below it, possibly giv-
ing further insight as to how the heuristics may have influenced the tournament results.
The most significant difference between the two groups has to do with the VertDis-
cHeuristic: the top 2 individuals have a negative value, while the 4th and 5th do not.
This means that the 3rd individual specifically defeated agents with positive VertDis-
cHeuristicweight and that, unlike it, consideredVertCenterHeuristicmore valuable than
HorizCenterHeuristic. This tells us that matches between them may have extended to
the higher spaces of the board and, due to a conflict between VertDiscHeuristic and
HorizCenterHeuristic, the 4th and 5th individuals did not try to get the spaces where
the areas of both heuristics overlapped, with the 3rd agent capturing them and gaining
control of that area of the board, significantly increasing its chances of victory.

As already stated, all individuals, except the 3rd, valued VertCenterHeuristic quite
more thanHorizCenterHeuristic. We argue several possible reasons, which individually
or in combination, may have led to this outcome:

1. Simplexity’s standard dimensions – used for the tournaments ran by the evolutionary
algorithm – have more columns than rows. This may have affected theHorizCenter-
Heuristic performance, as it would be triggered less often and more games would
have been won due to VertCenterHeuristic, since there would not be as many played
positions in its HorizCenter area.



124 P. M. A. Fernandes et al.

2. VertCenterHeuristic is more efficient than the horizontal version. Regardless of the
size of their central areas, VertCenterHeuristic’s central area is more accessible due
to being in a location very likely to be reached in most games: the middle rows of
the board. Contrary to this, HorizCenterHeuristic’s central area extends to the top
of the board, and consequently, an AI prioritizing this heuristic may be wasting its
pieces in positions not as commonly reached in an average game.

3. The HorizCenterHeuristic’s weight may have been affected by a conflict with
VertDiscHeuristic. This is further explored belowwhen analyzing the latter’s weight.

In any case, the optimization process clearly led to agents which “understood” the
importance of both CenterHeuristics, recognizing their overlaying areas as the most
valuable board positions.

The most unexpected weight was that of VertDiscHeuristic, with it having been
attributed a negative value for the top 2 contenders. We highlight two possibilities as to
why this may have happened:

1. The heuristic only has real influence in the agent’s decision if it is choosing a play
in a board where there are available positions in and out of its top area. In other
words, there may be several games where VertDiscHeuristic is never actually used,
for example when the area immediately below it is sufficient to finish games before
VertDiscHeuristic is actually employable. The top 2 individuals may have won most
of their games by mostly following the other heuristics.

2. The fact that VertDiscHeuristic weights are negative in the top 2 individuals may be
a coincidence related with the initial randomization of weights in the optimization
process. However, there may be an actual reason as to why these weights are nega-
tive, and we argue it may be related with a conflict between VertDiscHeuristic and
HorizCenterHeuristic. The latter’s center area consists of columns that extend to the
top of the board, meaning that part of them will come in conflict with the former’s
“exclusion” zone. It may be that, by affecting the value of the overlapping positions
of both heuristics’ area of influence, VertDiscHeuristic deters the agent from taking
top center spaces, leaving them open for the opponent to take, possibly costing games
that extended to the final stages. This would mean that VertDiscHeuristic ended up
doingmore harm than good, and by negatively weighting it, the optimization process
recognized those top center positions as important for the late-game.

Summing up, it is possible to identify the best combination as having VertCenter-
Heuristic andDumpFromAfarHeuristic as the most valuable, working together to get rid
of and isolate the opponent’s pieces, while at the same time maintaining overall control
of the board; and VertDiscHeuristic with a negative weight, so that it does not conflict
with HorizCenterHeurtistic.

5.2 Performance of SimpAI in the ColorShapeLinks Competition

In retrospective, the poor result of SimpAI in theBase Track canmost likely be attributed
to the track’s technical restrictions, which limited computing power to one CPU proces-
sor. SimpAI, designed from the ground up for using multiple processors, did not scale



SimpAI: Evolutionary Heuristics for ColorShapeLinks 125

well under these restrictions. Furthermore, even with the use of Zobrist hashing, having
five, completely separate partial heuristics – instead of a faster, single one – probably
took its toll when evaluating boards. As such, it is our belief that part of this result stems
from the fact that SimpAI was not able to search as deep as its opponents, in spite of the
implemented optimizations.

The Unknown Track took place on a workstation with 8 cores/16 threads1. This was
most likely the reason that, SimpAI, working at its full capacity, finished second – thus
offsetting the computational weight of using five separate heuristics.

6 Conclusions and Future Work

In this paper we presented SimpAI, an AI agent created for the ColorShapeLinks board
game competition. The agent was implemented with an efficient Minimax-type search,
and an heuristic function composed of five different partial heuristics, the weights of
which were optimized with an evolutionary algorithm. SimpAI reached the second posi-
tion in the Unknown Track, a promising result given the fact that the track’s parameters
were unknown beforehand, thus requiring an AI agent with good adaptation capabilities.

There are some elements that are likely to bring significant improvements to the
agent’s performance. For example, awider initial set of partial heuristics could help refine
what are indeed themost important features forwinningColorShapeLinksmatches. From
the results, it was clear that some heuristics, such as VertDiscHeuristic, did not work
out as we initially envisioned – and could probably be excluded altogether, speeding up
board evaluations. Additionally, a few partial heuristics use “magic” numbers to provide
their evaluation. These could also be considered as parameters to be optimized by the
evolutionary algorithm, further refining a winning strategy. Regarding the optimization
process, a more comprehensive experimentation with the evolutionary operators and
their parameterization could potentially yield better winning combinations. Finally, and
while this was not the intended learning goal for the authors of this project, the use of
MCTS, deep learning and/or reinforcement learning, could potentially produce stronger
and harder to beat agents.

Acknowledgements. This work was supported by Fundação para a Ciência e a Tecnologia under
Grant No.: UIDB/04111/2020 (COPELABS).

References

1. BrainBenderGames: Simplexity. DiscoveryBayGames (2009). https://boardgamegeek.com/
boardgame/55810/simplexity

2. Eliahu, D., Spillinger, O., Fox, A., Demmel, J.: FRPA: A Framework for Recursive Parallel
Algorithms. Master’s thesis, EECS Department, University of California, Berkeley, May
2015. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-28.html

3. Fachada, N.: ColorShapeLinks: A board game AI competition for educators and students.
Comput. Educ.: Artif. Intell. 2, 100014 (2021). https://doi.org/10.1016/j.caeai.2021.100014

1 Information provided by the organizers at our request.

https://boardgamegeek.com/boardgame/55810/simplexity
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-28.html
https://doi.org/10.1016/j.caeai.2021.100014


126 P. M. A. Fernandes et al.

4. Fachada, N., Códices, N.: Top-down design of a CS curriculum for a computer games BA.
In: Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2020, pp. 300–306. ACM, New York, June 2020. https://doi.org/
10.1145/3341525.3387378

5. Fortin, F.A., De Rainville, F.M., Gardner,M.A., Parizeau,M., Gagné, C.: DEAP: evolutionary
algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

6. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An introduction to
deep reinforcement learning. Found. Trends®Mach. Learn. 11(3–4), 219–354 (2018). https://
doi.org/10.1561/2200000071

7. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algo-
rithms. In: Rawlins, G.J. (ed.) Foundations of Genetic Algorithms, vol. 1, pp. 69–93. Elsevier,
Amsterdam (1991). https://doi.org/10.1016/B978-0-08-050684-5.50008-2

8. Millington, I.: AI for Games, 3rd edn. CRC Press, Boca Raton (2019). https://doi.org/10.
1201/9781351053303

9. Unity Technologies: Unity® (2020). https://unity.com/
10. Wenzel, M., et al.: .NET Standard. Microsoft Docs, March 2020. https://docs.microsoft.com/

dotnet/standard/net-standard
11. Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer, Cham (2018).

https://doi.org/10.1007/978-3-319-63519-4. http://gameaibook.org

https://doi.org/10.1145/3341525.3387378
https://doi.org/10.1561/2200000071
https://doi.org/10.1016/B978-0-08-050684-5.50008-2
https://doi.org/10.1201/9781351053303
https://unity.com/
https://docs.microsoft.com/dotnet/standard/net-standard
https://doi.org/10.1007/978-3-319-63519-4
http://gameaibook.org

	SimpAI: Evolutionary Heuristics for the ColorShapeLinks Board Game Competition
	1 Introduction
	2 Background
	3 Methods
	3.1 Search
	3.2 Heuristics
	3.3 Heuristic Weight Optimization with Evolutionary Algorithms

	4 Results
	4.1 Heuristic Weight Optimization
	4.2 The ColorShapeLinksCompetition

	5 Discussion
	5.1 Optimization of Heuristic Weights
	5.2 Performance of SimpAI in the ColorShapeLinksCompetition

	6 Conclusions and Future Work
	References




