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Abstract

In this study, some modelling and process
control approaches used in Wastewater Treat-
ment Plants (WWTP) are recalled. Two prin-
cipal kinds of WWTP are used as frameworks:
continuous anaerobic and aerobic. The highly
nonlinear nature of the system models repre-
senting such processes is highlighted. In addi-
tion, parametric uncertainties that characterize
them, and disturbances to which they are
subject and that affect their performance are
also underlined. Thus, mention is made of how
various modelling and process control tech-
niques have been used to face such issues in
different ways. Typical deterministic models
proposed by the International Water Associa-
tion (IWA) are recalled, but some useful
simpler models and even knowledge-based
ones, like neural networks and fuzzy
approaches, are also mentioned for specific
applications. Particular emphasis is placed on
the main parameters and variables to be mon-
itored and controlled in order to ensure the
optimal performance of WWTP: In the case of
anaerobic digestion, alkalinity, and in the case
of aerobic processes oxygen transfer efficiency.

Thus, unlike classical Proportional Integral
Derivative (PID) controllers, two kinds of
nonlinear control approaches, namely adaptive
and predictive, which are robust against uncer-
tainties, nonlinearities, and perturbations are
cited as the most used in this kind of process.
Finally, some implications are highlighted in
terms of energy consumption and cost opti-
mization, and howdifferent control strategies in
the frame of benchmarking are used to mini-
mize their impact.
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12.1 Introduction

Wastewater Treatment Plants (WWTP) com-
monly involve a series of biological transforma-
tion processes that are usually very complex in
terms of biochemical and biokinetics under-
standing [1], and therefore, also in terms of
everything related to its modelling, optimization,
and automatic control [2, 3]. The type of waste
treated is mostly organic, including urban sewage
and agricultural effluents with a multi-variety of
organic compounds like carbohydrates, lipids,
and proteins. These compounds are typically
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expressed as Chemical Oxygen Demand
(COD) and are the main substrate for a wide
variety of microorganisms working in a symbi-
otic relationship. WWTP may be classified into
two large groups: Aerobic (in the presence of
oxygen), and Anaerobic (in the absence of oxy-
gen), although Anoxic units [4] (anaerobic, but
oxygen is available from nitrates, nitrites, or NO)
are also included in industrial and municipal
WWTP. The most representative aerobic WWTP
include Activated Sludge (AS) [2] and Aerated
Lagoons [5], while Anaerobic Digestion (like
Upflow Anaerobic Sludge Blanket (UASB) [6])
and Dark Fermentation [7] are among the most
common anaerobic WWTP [8]. Other WWTP
configurations also combine anaerobic and aer-
obic units [9]. In these processes, organic matter
is degraded and converted into microbial bio-
mass, residual organic matter, and eventually in
biogas in the case of Anaerobic Digestion
(AD) processes [10, 11], being this last the only
biological WWT process capable of treating
directly wastewater with an organic load higher
than 15–20 gCOD/L [9]. In the following in this
contribution, in order not to disperse the infor-
mation too much, efforts will be concentrated
mainly on AS and AD continuous processes.

Whether in industry, in the countryside, or in
cities, WWTP technologies are undoubtedly
indispensable elements to ensure the conditions
of industrialization, urbanization, and sustain-
ability of modern society. Thus, their good
enough functioning is necessary to meet all kinds
of required standards. However, talking about
proper operation involves more than just periodic
monitoring and maintenance. In reality, WWTP
are subject to several disturbances and uncer-
tainties that make difficult to meet such objec-
tives. Effluents that reach the WWTP have a
varying and changing composition affecting their
physical, chemical, and physicochemical char-
acteristics. Variations in flow, temperature, pH,
organic compounds concentration and even the
presence of inhibitors affect the biological per-
formance of microbial communities, which are
very sensitive to all these parameters, and
therefore, also impact their efficiency. Changes in
these parameters represent serious disturbances

of different nature. The most typical example is
seasonal abrupt flow rate step changes (e.g., in
the rainy season), but important steps in all these
parameters can also occur weekly or even daily
simply by changes in environmental conditions
and even by the effect of human activity. Most of
these disturbances are difficult to foresee or are of
a relatively high monitoring cost.

Taking into account these issues, it is clear
that current WWTP operate under important
uncertainty conditions from a process control
point of view, which may cause serious problems
in their industrial, agro-industrial or urban
implementation. These features, together with the
ecological norms requirements, make evident
the importance to implement Instrumentation,
Control, and Automation (ICA) systems in
WWTP [3].

In order to show the benefits of the application
of modern control approaches to WWTP, this
paper is intended to present different approaches
that have proved their usefulness in the mod-
elling, parameter estimation, and regulation of
WWTP. These approaches certainly have
demonstrated to be robust against process input
disturbances, and uncertainties, and have a strong
potential for optimizing the performance of
WWTP. Actual application examples and suc-
cessful cases are also shown and demonstrate
that they are a useful and efficient alternative that
may be implemented at a relatively low cost.

12.2 Modelling

Modelling WWTP can become a difficult task
mainly because their growth kinetics exhibit a
highly nonlinear behavior [12], which in turn is
due to the involved microbial consortia being
among the most diverse ecosystems in nature
[13]. An additional disadvantage is that the high
complexity in the microbial populations leads
also to high uncertainty in the kinetic parameters
of current WWTP models.

Certainly, the attempt to adapt microbial
communities to different operating conditions,
and to the abovementioned disturbances makes
them very changeable. The constant distribution
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of the different species in the consortium causes
that their kinetic parameters are also uncertain
and change over time. For these reasons, the first
step to control and to optimize WWTP is to have
models as closely as possible to reality in such a
way that the sources of uncertainty are reduced,
but at the same time, a relative simplicity is
preserved to facilitate the application of control
techniques.

Nowadays, one of the most complete and
ambitious AD model is the ADM1 (Anaerobic
Digestion Model) [14], while concerning AS, the
most used models are the series ASM (Activated
Sludge Model) [2]. Both models have been
developed by the International Water Association
(IWA). Several updates and reviews have been
developed until now and still remain an active
research field. For instance, in [15, 16] seven
variants of the ASM series are exhaustively ana-
lyzed, verified and evaluated concerning aspects
like stoichiometric and kinetic rate expressions,
fermentation features, autotrophic and hetero-
trophic microbial growth, phosphorus removal,
nitrification and denitrification, alkalinity, and
others. Model parameter estimation and recali-
bration are also carried out frequently as in [17–
19], where stochastic parameter estimation
approaches togetherwithMonteCarlo simulations
and sensitivity analysis are used tofit ASMmodels
to industrial actual data. Theoretical advances
have been also further developed recently in [20].

Regarding AD, an additional issue in com-
parison to aerobic WWTP is its high sensibility to
pH variations, and more exactly to alkalinity.
Certainly, inlet concentration disturbances may
affect partially or even completely the so-called
System Operational Stability (SOS) [21, 22].
Such disturbances may compromise the physico-
chemical equilibrium that is directly related to the
SOS preservation [23]. Furthermore, it is known
that the presence of strong ions provokes a
physicochemical unbalancing that affects directly
microbial activity [24, 25]. Even when ADM1
consider anion-cation balancing, pH is not explicit
in their equations [14, 26]. In this concern, some
efforts have been developed for taking into
account a more physicochemical framework [27,

28]. However, even with these modifications, the
ADM1 model remains very large to be useful for
control purposes, but it is still used rather for state
variables estimation [29], experimental validation
[30], and monitoring. Thus, in order to obtain
greater applicability, reduced order AD models
have been also proposed [31, 32]. Particularly, the
so-called AM2 Model [33] has taken on great
importance not only for being easier to handle
from a mathematical point of view, but for taking
into account specifically the strong ions concen-
tration, which at pH 7 is very close to alkalinity
[34, 35]. Without demerit of any other model
described in the literature, and only for illustrating
one of them in this contribution, AM2 model is
depicted as follows [33]:

_x1 ¼ l1 � aDð Þx1
_x2 ¼ l2 � aDð Þx2
_S1 ¼ D Sin1 � S1

� �� k1l1x1
_S2 ¼ D Sin2 � S2

� �þ k2l1x1 � k3l2x2
_Z ¼ D Zin

1 � Z
� �

_C ¼ D Cin � C
� �� kL

Cþ S2 � Z � kHPCO2ð Þþ k4l1x1 � k5l2x2

ð12:1Þ

with

l1 ¼
lmax1S1
kS1 þ S1

; l2 ¼
lmax2S2

kS2 þ S2 þðS2kI Þ
2 ð12:2Þ

where x1 (g/L) and x2 (g/L) represent the
acidogenic and methanogenic biomass concen-
trations respectively, S1 (g/L) is the organic
matter concentration expressed as COD, and S2
(mmol/L) is the volatile fatty acids concentration.
C (mmol/L) is the total inorganic carbon and Z
(mEq/L) is the strong ions concentration. The
superscript in represents “input concentration”
for these variables. kL (1/d) is the liquid–gas
transfer coefficient, PCO2 is the CO2 partial
pressure, while kH is the Henry’s constant. l1
(1/d) (Monod type) and l2 (1/d) (Haldane type)
are the microbial specific growth rates for aci-
dogenic bacteria and methanogenic archea,
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respectively, where lmax1 and lmax2 (1/d) are the
maximum growth rates, kS1 (g/L), and kS2
(mmol/L) represent the half saturation constants,
while kI [(mmol/L)]1/2 represents the inhibition
constant. The parameters k1 to k5 are yield
coefficients in the corresponding units. D (1/d) is
the dilution rate, which usually is used as
manipulable control input in several control
approaches. The parameter a (dimensionless)
denotes the biomass fraction that is retained for
the reactor bed, i.e., a ¼ 0 stands for an ideal
fixed-bed reactor, while a ¼ 1 stands for an ideal
continuous stirred reactor tank [33].

This model has been also used for optimiza-
tion, state and parameter estimation, and process
control purposes (see for instance [36–39]), and
for modeling the alkalinity spatial distribution in
an up-flow fixed bed anaerobic digester [40].

12.3 Control and Optimisation

It is important to remark that the application of
modern control approaches (i.e., those developed
from the 60s) to WWTP is relatively recent.
Control algorithms used in the past in the field of
WWTP were basically on/off type, Proportional
Integral (PI) or Proportional Integral Derivative
(PID) [41]. However, this situation is changing
very quickly. Even when classical control
methods may offer satisfactory results in rela-
tively simple systems, more recent approaches
nowadays do take into account specifically the
nonlinear features of biological WWT systems.
For instance, adaptive control or predictive con-
trol, which are better adapted to face nonlinear
behavior, are finding more and more applications
in this field. Furthermore, as it has been men-
tioned before, the main “SOS” lack indicator in
AD is alkalinity, because it involves all the
physical–chemical equilibria, and therefore,
several studies have been developed for regulat-
ing it [42].

One of the most typical control variables in
WWTP is the COD, since its reduction is cer-
tainly the ultimate goal in these processes.
However, due to the uncertainties and distur-
bances, to which treatment plants are exposed in

terms of process inputs, it has become necessary
to include control approaches being robust
against such disturbances and lack of knowledge
[22]. In [43], for example, interval observers
have been included to estimate ranges of values
in biomass concentrations, as these cannot be
measured, and then they were combined with an
adaptive control approach for regulating COD,
also within a preset control interval. But, uncer-
tainties in the growth kinetics of microbial pop-
ulations in WWTP often lead researchers to
propose different nonlinear type control tech-
niques, see for instance [44, 45]. Moreover, some
types of nonlinear tracking controls have been
proposed. For instance in [46], an adaptive
nonlinear tracking control was proposed for
regulating the concentration of biomass in an
AS-type WWTP based on the input flow, and
thus, proportional to it, using a simplified model.

Furthermore, in particular in relation to aero-
bic processes such as AS-type WWTP, it is well
known that in order to maintain adequate oxygen
levels, the main parameter to be controlled is
oxygen transfer efficiency, and therefore, the
main unit operation is aeration. This demands
high levels of energy consumption and other
costs that need to be optimized [47–49]. Different
adaptive and predictive control strategies have
been proposed in the past for this purpose [50,
51]. In addition to COD reduction, and not less
important, the removal of nitrogen and phos-
phorus from wastewater is also one of the main
targets in WWTP [52]. Several classical and
advanced control techniques proposed in this
sense have been used and applied successfully
[53]. However, as the efficiency of the operation
is closely related to the aeration energy, which is
a costly process, control objectives are compro-
mised at the same time with concentration set-
points and minimal use of energy, and thus, with
cost reduction. For instance in [54], adaptive
control techniques were used to improve the
removal of these nutrients, while reduced the
aeration energy required in three WWTP in
Switzerland. Nevertheless, Model Predictive
Control and other optimization approaches seem
to be preferred [55, 56]. However, it is important
to note that a common feature in many of the
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strategies used today, both for AS and
AD WWTP is the use of benchmarking [57–59].
In such strategies, accumulated knowledge in
monitoring, modeling, and control is used to
provide a framework for assessing both well-
known techniques to be industrially implemented
and new approaches to evaluate its correct per-
formance. Certainly, it is in the systematic cur-
rent form more efficient to simulate WWTP and
to take profit from models representing them.

Many modern applications include artificial
networks as well lagged regression models,
among other methods, that have been used for
preventing indirectly the failure of the system
due to alkalinity mismatches [60, 61]. These
approaches has been also used in cases, when
bioreactors have been stopped and then launched
after a long time of starvation for bacterial
communities in order to recover their correct
functioning [62]. Fuzzy logic approaches have
also seen a growing interest in the last three
decades. For instance in [63], it is depicted how
fuzzy logic based modules are used to assess the
state of an up-flow fixed bed AD bioreactor,
while in [64] similar approaches together with
expert systems are proposed and experimentally
validated as a methodology for assessing and
improving the efficiency of agricultural biogas
plants. Neural network and fuzzy approaches
have been also used for optimizing energy con-
sumption [65] and regulating the dissolved oxy-
gen concentration [66] in AS processes. Finally,
it is important to mention an important current
trend in nonlinear control of WWTP, consisting
of Sliding Mode approaches that have been used
together with models both classical deterministic
type [30], and those described by neural net-
works and fuzzy logic as well [67–69]. Finally, it
is important to underline that modern control and
optimization approaches are currently possible
thanks to the existence of Supervisory Control
and Data Acquisition (SCADA) systems that
play a preponderant role in real-time ICA
approaches implementation.

12.4 Conclusions

The use of Instrumentation Control and Automa-
tion (ICA) approaches in WWTP has allowed a
greater development of these technologies for
wide-scale implementation. The modeling, which
is complemented and fed back with monitoring, as
well as parameter and state estimation techniques
have allowed for a greater understanding of the
chemical, physicochemical and biological pro-
cesses that are carried out in WWTP. The most
widely disseminated models, e.g., the ADM1
models and the ASM series of the International
Water Association (IWA), are of deterministic
type, butmodels developed from other approaches
such as neural networks and diffuse logic have also
had extensive development.

As these models are highly nonlinear, the
great majority of researchers have developed
robust and nonlinear predictive adaptive control
approaches. Such approaches allow capturing
this nonlinear nature and admitting variations in
kinetics and other parameters as well as in
operating conditions, which make them robust in
the face of these variations as well as in the face
of uncertainties and disturbances. This paper has
underlined the most important variables to con-
sider in anaerobic and aerobic processes, being
alkalinity and oxygen transfer efficiency,
respectively, and examples of the main approa-
ches developed for modeling and controlling
such variables have been cited.

Advances made in these approaches and
technologies over the last 3 decades have enabled
good practice reference frameworks in modeling,
monitoring, and control of WWTP, which have
been validated in different scenarios and have
given way to the development of benchmarking
strategies that are widely used nowadays. Thus,
the use of these techniques has allowed both
biological technologies to remove contaminants
increasingly efficiently as well as to achieve
continuous optimization and improvement of
WWTP.
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