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Chapter 7
Commentary on Part II

Leanne R. Ketterlin-Geller

Abstract The purpose of this commentary is to summarize the information pre-
sented by Hunt and Tzur in Chap. 5 and Zhang, Maher, and Wilkinson in Chap. 6, 
identify common themes that bring these chapters together, and offer my reflection 
on these themes. Both chapters discuss ways in which assessment results can sup-
port decision-making for students who are experiencing difficulties in mathematics. 
Emerging from these chapters is the notion that when intentionally designed, assess-
ment results can help teachers align instruction with students’ learning needs to 
improve and accelerate student learning. Three themes that I build on are (a) the 
impact of teachers’ attitudes toward students who are experiencing difficulty, (b) the 
need to carefully design assessments and tasks, and (c) the role of assessments in 
providing teachers with diagnostic information. Within each of these themes, I sum-
marize the commonalities across chapters and extend the discussion to highlight 
additional perspectives or approaches.
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7.1  Designing and Implementing Assessments to Support 
Learning for Students Who Are Experiencing Difficulties 
in Learning Mathematics

In this commentary, I reflect on the information presented by Hunt and Tzur in 
Chap. 5 and Zhang, Maher, and Wilkinson in Chap. 6. The overarching theme that 
ties these chapters together is the way in which assessment results can support 
decision- making for students who are experiencing difficulties in learning mathe-
matics. In the chapter by Hunt and Tzur, the authors emphasize the role tasks play 
in connecting teaching and learning: Tasks are used to engage students’ reflective 
thinking during the learning process, and teachers use prompting and gesturing to 
deepen students’ reflection. In the chapter by Zhang, Maher, and Wilkinson, the 
authors broaden the discussion of assessments and focus on three major topics: (1) 
participation of students who are experiencing mathematics difficulties in tradi-
tional assessments for accountability and formative purposes, (2) dimensions of 
students’ thinking that are assessed, and (3) diagnostic inferences to support instruc-
tional decisions. In this commentary, I provide a brief overview of the central points 
highlighted in these chapters. Then, I offer my observations about themes that cut 
across both chapters, calling attention to (a) the impact of teachers’ attitudes toward 
students who are experiencing difficulty, (b) the need to carefully design assess-
ments and tasks, and (c) the role of assessments in providing teachers with diagnos-
tic information. Within each of these themes, I summarize the commonalities across 
chapters and extend the discussion to highlight additional perspectives or approaches.

To help situate my commentary, it is important to clarify what I mean when I 
reference students who are experiencing difficulties in learning mathematics. It is 
difficult to put bounds on the group of students for whom I am referring. To begin, 
I am not talking about students who may have temporary challenges understanding 
a new mathematical concept, applying a newly learned procedure to solve a prob-
lem, or providing a mathematically sound rationale to justify their procedures. 
Mathematics is a complex discipline for which many people will experience tempo-
rary difficulties or challenges at one time or another. Instead, I am referring to stu-
dents who have persistent difficulties in learning or applying mathematical 
knowledge and skills, especially as concepts increase in complexity within and 
across grades. This population of students is heterogeneous; they have various 
strengths and learning needs. A small percentage of these students have been diag-
nosed with learning disabilities. Students with a diagnosed learning disability are 
receiving specialized instruction as outlined on their Individual Education Program 
(IEP), which may or may not include instructional goals related to mathematics.

For many students who experience difficulty, the underlying cause is not a diag-
nosed learning disability, but instead may emerge as a result of a misalignment 
between instruction and their learning needs (Tzur, 2013). The implications of this 
misalignment can be far-reaching for students. In a series of studies conducted by 
Jordan et al. (2007, 2009), they observed that over 50% of the children from low- 
income families had low or flat growth trajectories from kindergarten through grade 
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1. Many of the children entered kindergarten with less developed number sense than 
their middle- and high-income peers, and formal instruction did not accelerate their 
learning during this period. In their follow-up study, the authors noted that the low 
mathematics performance of the children from low-income families in grade 3 was 
mediated by their relatively weak number sense in kindergarten. In other words, 
formal mathematics instruction between kindergarten and grade 3 did not result in 
growth or meaningful learning. To explain these findings, the authors posit a mis-
match between the instruction the children received and the targeted support they 
actually needed to reach the learning goals and/or the curricular expectations. Had 
the children who had less developed number sense received appropriately intensive 
supplemental instruction, they may have developed more robust early mathematics 
knowledge and skills and experienced steeper growth trajectories that put them on 
course for future success.

The misalignment between instruction and students’ learning needs may be 
caused by multiple reasons. Common causes I have seen include instruction that 
does not activate or draw on students’ prior knowledge or conceptualizations, 
instruction that is not sequenced and paced in accordance with students’ current 
level of understanding, and instruction that does not address previous misconcep-
tions or errors, thereby allowing them to linger. When instruction is not aligned with 
students’ learning needs, their opportunities to learn mathematics are compromised. 
I explicitly raise these issues because they directly relate to the chapters by Hunt and 
Tzur and Zhang, Maher, and Wilkinson: When designed with intentionality, assess-
ment results can help teachers align instruction with students’ learning needs to 
improve and accelerate student learning. After describing the unique contributions 
made by each chapter, I highlight areas of convergence and extensions to consider.

7.2  Assessment Considerations Presented by the Authors

In the chapter by Hunt and Tzur (Chap. 5, this volume), the authors make an explicit 
connection between teaching and learning and the conditions that facilitate this con-
nection. They define learning as changes in a student’s conceptualization of the 
content via reflection on the effects of their activities and explain how teachers’ 
instructional moves can directly impact this process.

Hunt and Tzur define teaching in terms of instructional moves teachers make to 
elicit a student’s current ways of knowing or understanding and then facilitate 
reflection during tasks to optimize the student’s learning. When a student is in a 
participatory stage of understanding, the teacher may need to prompt reflection to 
support the student’s progress to the anticipatory stage of understanding. Once a 
student moves into the anticipatory stage, the teachers’ actions may shift to focus on 
deepening or extending reflection to subsequently deepen understanding.

Hunt and Tzur situate instructional tasks at the juncture of teaching and learning, 
while explicating the role tasks play in deepening understanding. Tasks connect 
teaching and learning through the teacher’s intentional placement in the learning 
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process and the teacher–student interactions that are facilitated during an instruc-
tional exchange. Hunt and Tzur dissect the various types of tasks and the level of 
interaction that encourages student reflection. In the procedures these authors 
describe, the teacher presents a student with tasks that are designed to bring forward 
the student’s prior knowledge and available conceptualizations (labeled as “bridg-
ing tasks”) from which they can build new conceptual understanding. Next, with 
student’s prior knowledge primed, they engage in solving gradually more challeng-
ing tasks that include meaningful “variations” in the task design, but still focus on 
the key learning goal. Finally, deeper understanding is reached as the student moves 
into the “reinstating” phase where student learning is reinforced through reflection. 
Throughout this process, the teacher is interacting with the student to support their 
learning. The authors note the importance of the teacher’s prompting and gesturing 
as a way of assessing student understanding and encouraging the student to clarify, 
justify, and critique their thinking and to deepen the student’s reflection. I illustrate 
the connection between these components in Fig. 7.1.

Shifting to Chap. 6 by Zhang, Maher, and Wilkinson (this volume), these authors 
take on three major topics related to assessment. First, the authors provide an over-
view of various assessment approaches with an emphasis on how students with 
disabilities or students experiencing difficulties in mathematics participate in these 
programs. The authors reference the uses of large-scale assessments and curriculum- 
based measures (CBM) within accountability and instructional contexts, respec-
tively. They provide examples of specific assessments and illustrate their strengths 
and limitations. In particular, they raise concerns about the content of many stan-
dardized mathematics assessments, noting that they may not be representative of the 
taught curriculum.

Fig. 7.1 Visual depiction of the components presented in Hunt and Tzur
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To ensure that results from these assessment systems are reliable and support 
valid decision-making for students with disabilities or students experiencing diffi-
culties in mathematics, Zhang, Maher, and Wilkinson discuss the provision of test 
accommodations and provide an important distinction from test modifications. The 
authors reference the lack of empirical evidence documenting the effectiveness of 
accommodations at supporting access and note that applying accommodations uni-
formly may not support greater access for students experiencing difficulty. Relatedly, 
when describing the role of language in communicating one’s mathematical knowl-
edge, the authors describe how language may cause an access barrier for some stu-
dents, which may lead to teachers’ underestimating their students’ level of 
mathematical proficiency.

Next, Zhang, Maher, and Wilkinson consider the mathematical construct being 
measured and the value different constructs bring to understanding student thinking. 
The authors associate specific mathematical constructs with the application of theo-
ries of learning to mathematics education. For example, the authors reference the 
role of behaviorism in promoting instruction in fact fluency and retrieval along with 
the corresponding assessments designed to measure students’ accuracy and compu-
tational fluency. The authors reference intentionally designing tasks to elicit stu-
dents’ reasoning and justification. They describe the importance of teachers 
attending to students’ responding behaviors (e.g., how students represent and com-
municate their understanding) to deepen their understanding of students’ mathemat-
ical thinking.

Lastly, Zhang, Maher, and Wilkinson describe the role of diagnostic assessments 
within the instructional design process. They provide an overview of some pub-
lished diagnostic assessments and review several methods for gathering diagnostic 
information including clinical interviews, error pattern, and strategy analysis and 
integrating a microgenetic approach to strategy analysis. Through each of these 
approaches, the authors describe how information about students’ thinking can be 
revealed to support future instruction and support student learning.

7.3  Convergence Across Chapters

Several themes emerged across the chapters by Hunt and Tzur and Zhang, Maher, 
and Wilkinson. First, both chapters emphasize the negative attribution teachers 
often place on students who are experiencing mathematics difficulty. Hunt and Tzur 
note how teachers’ perceptions of their students’ abilities may influence their 
instructional actions. Zhang, Maher, and Wilkinson similarly emphasize students’ 
learned helplessness that sometimes accompanies low expectations. Second, both 
chapters describe the intentionality of assessment (or task) design as an essential 
component of using assessment results. Hunt and Tzur provide a detailed descrip-
tion of the types of tasks and accompanying prompting and gesturing that can be 
integrated into different phases of learning. Zhang, Maher, and Wilkinson note the 
important role accommodations play in administering assessments to overcome task 
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design issues that may impact accessibility. Moreover, the authors of both chapters 
emphasize the importance of designing tasks to assess mathematical reasoning and 
justification. Third, and finally, both chapters emphasize the importance of imple-
menting assessments and tasks to facilitate teachers’ diagnostic inferences. In the 
remainder of this commentary, I will elaborate on each of these themes by offering 
some additional perspectives and extending the discussion in complementary ways.

7.3.1  Teachers’ Attitudes Towards Students Experiencing 
Difficulties in Learning Mathematics

Highlighted in the chapters by Hunt and Tzur and Zhang, Maher, and Wilkinson are 
the consequences to student learning when teachers perceive students experiencing 
difficulties in learning mathematics as less capable of learning (e.g., deficit view). 
Hunt and Tzur describe how teachers’ perceptions of their students’ abilities may 
influence their instructional actions. They make a compelling case that teachers who 
perceive their students as lacking mathematical abilities will likely design instruc-
tion that sustains a deficit view. Similarly, Zhang, Maher, and Wilkinson recognize 
the role that standardized tests play in shaping teachers’ perceptions of students’ 
knowledge, skills, and abilities. They note that students may be judged as incapable 
of learning or applying advanced mathematics content based on their low scores.

I would like to broaden this discussion to focus on the systems in which teachers 
and students engage and highlight the role a school’s culture plays in shaping teach-
ers’ attitudes and ultimately their actions and/or beliefs. A school’s culture can have 
a significant impact on how students who are experiencing difficulties in learning 
mathematics are perceived and supported. A school’s culture can be thought of as 
the shared values, norms, and beliefs that explicitly or implicitly guide the actions 
and decisions of teachers, school leaders, and the broader school community 
(Kilgore & Reynolds, 2011). A school’s culture impacts the ways in which students 
experiencing difficulties in mathematics are perceived and the perception of whose 
responsibility it is to support their learning. As evidenced by their actions and deci-
sions, some schools may espouse underlying beliefs about these students’ mathe-
matical abilities. For instance, these students may be thought of as “lacking” or 
“deficient” in their mathematical knowledge. In turn, those deficiencies may be per-
ceived to be associated with disadvantages that are rooted in cultural, social, eco-
nomic, or political differences from the normative group in the school (Healy & 
Powell, 2013).

Schools with a deficit view of students often hold the perception that low perfor-
mance on standardized tests is caused by problems inherent to the student. Such 
problems may include limited parental support or involvement, insufficient prepara-
tion from their home environment or previous schooling, underlying lack of motiva-
tion, and students’ insufficient background knowledge or even capacity to learn. In 
some instances, this deficit view permeates so deeply that it becomes a self-fulfilling 
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prophecy. Beliefs that students have deficits or deficiencies that limit their ability to 
learn mathematics may fuel underlying biases that impact teachers’ and/or school- 
level actions and decisions that harm student learning. An outcome of this perspec-
tive is where the blame for poor performance lies: In a deficit model, the blame lies 
with the student, their parents, or possible background or demographic characteris-
tics, but not with teaching that takes place within the school or educational system 
through which the poor performance originated.

Conversely, an asset-based approach to supporting students assumes that all stu-
dents have both knowledge and the capacity to learn—and deserve to learn. 
Accordingly, the school and related stakeholders are responsible for providing 
appropriately designed instruction (including assessment) that can address each stu-
dent’s needs. Schools in which the perception of students is grounded in an asset 
model believe that students’ backgrounds provide a strong basis from which they 
can connect new knowledge and view families and communities as mathematically 
rich resources that can be harnessed to engage students. Actions that characterize 
teachers with an asset orientation include designing instruction to build new knowl-
edge based on what students know, recognizing and honoring students’ reasoning 
and sense making, and extending what they recognize and value as mathematical 
practices (Healy & Powell, 2013). At the system level, schools can examine how 
they incorporate families and communities into their practices, ways in which cur-
rent operations may alienate people, and what additional resources are needed to 
engage the student, their families, and the community. Based on the actions and 
beliefs that are espoused and enacted, the school is establishing their culture. Each 
school has the authority and responsibility to establish a positive culture that values 
all students and views all students as capable of learning.

Intertwined with schools’ and teachers’ perceptions of students who are experi-
encing difficulties in learning mathematics is the notion of struggle. In mathematics 
education, this term is often used to denote how students wrestle with and persevere 
through problem-solving as they apply their mathematical knowledge. The field of 
mathematics education has coined the term “productive struggle” to indicate the 
experiences students face as they tackle challenging mathematical content, integrate 
and apply their knowledge, and persevere through finding a solution. This type of 
struggle is deemed productive because the content is accessible yet also challeng-
ing, and the problem-solving experience generally results in positive cognitive and/
or non-cognitive outcomes (e.g., persistence, grit). However, there is an opposite 
experience had by some students: unproductive struggle. When students are unpro-
ductively struggling, it is often because they do not yet have an entry point for 
approaching the content or problem, they have not yet gained sufficient knowledge 
to apply to the problem situation, or they have persistent errors or naive conceptions 
that impact their current thinking about the problem space. Instead of resulting in 
positive cognitive and/or non-cognitive outcomes, the result of unproductive strug-
gle is often negative (e.g., unwillingness to persevere, diminished feelings of self- 
worth). At this point, and with repeated experiences with unproductive struggle, 
students may lose interest in mathematics, perceive themselves as not successful in 
mathematics, and cement a negative identity. Students with a negative mathematical 
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identity who define themselves as “not a math person” may act in ways that perpetu-
ate this self-impression, such as deferring to others who are perceived of as more 
mathematically capable, engaging with mathematics in low-level ways, and talking 
and acting with peers in a way that propagates this identity (Bishop, 2012). As such, 
without intervention to change the underlying causes of unproductive struggle, the 
lasting consequences could be dire.

Recognizing that some students experience unproductive struggle sometimes 
and with some mathematics content does not mean that they will continuously and 
persistently struggle with mathematics. Moreover, saying that someone is strug-
gling is not akin to saying that they are failing or incapable of learning mathematics. 
Instead, it recognizes that all students learn differently, and some students may need 
additional instructional support to build and demonstrate understanding in specific 
mathematics concepts or procedures.

In summary, both chapters recognize the negative consequences to student learn-
ing when teachers perceive students experiencing difficulties in learning mathemat-
ics from a deficit view. I extend this discussion to recognize the role a school’s 
culture plays in shaping teachers’ attitudes, actions, and beliefs. I note that a deficit 
view of students may cause a misalignment between students’ learning needs and 
their instructional opportunities. By not providing access to proximally relevant 
instruction and tasks, students miss the opportunity to build on their prior knowl-
edge as a basis to deepen their understanding of mathematics concepts and may 
develop poor dispositions toward mathematics.

7.3.2  Intentionally Designed Assessments and Tasks

Another theme that emerged in the chapters by Hunt and Tzur and Zhang, Maher, 
and Wilkinson is the importance of intentionally designing assessments or tasks. 
Hunt and Tzur provide detailed guidance on the types of tasks and prompts that may 
facilitate learning across different stages of students’ understanding. Zhang, Maher, 
and Wilkinson approach the topic from two perspectives: (1) the importance of pro-
viding accommodations to improve accessibility and (2) the need to extend the 
range of constructs that are measured so as to cover the breadth of mathematical 
practices. In this section, I will expand upon the authors’ discussions by first empha-
sizing the importance of alignment and then underscoring the importance of fair-
ness and equity in assessment or task design.

Alignment of Curriculum, Instruction, and Assessment: Implications for 
Assessment and Task Design In 1999, the National Research Council (Bransford 
et al., 1999) recognized the alignment between curriculum, instruction, and assess-
ment as a key issue impacting students’ opportunities to learn. Within an aligned 
system, students have access to important curricular expectations during instruc-
tion, and their progress toward reaching these expectations can be monitored 
through an integrated and ongoing process of formative and summative assessment. 
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All students are provided with instructional opportunities that facilitate their learn-
ing of the curricular expectations. Assessment results are used to guide teachers’ 
decisions about how best to facilitate learning.

For assessment results to be relevant and informative for supporting learning, 
formative and summative assessment practices must be clearly and carefully aligned 
with curriculum and instruction along multiple dimensions. Such an alignment 
includes the content domains, levels of cognitive engagement, and strategies and 
thinking processes through which students interact with the content (Ketterlin- 
Geller, 2016). No single test can sample the full range of curricular expectations; 
data combined from multiple tests should provide a comprehensive picture of stu-
dent proficiency.

Within an aligned system, the curricular expectations should form a foundation 
of all instruction and assessment efforts. The curricular expectations to which I am 
referring are the state or national content standards in mathematics. In the United 
States, these content standards are often informed by research on how children learn 
mathematics (National Research Council [NRC], 2001) and may be aligned with 
the Common Core State Standards in Mathematics (CCSS-M; National Governors 
Association & Council of Chief State School Officers, 2010). A key shift in the 
CCSS-M that was informed by research in mathematics education (National 
Mathematics Advisory Panel [NMAP], 2008; NRC, 2001) was the focus on a bal-
anced approach to integrating ways of knowing mathematics. These ways of know-
ing, emphasized in the CCSS-M, include conceptual understanding, procedural 
fluency, and application through problem-solving. In Adding It Up, published by the 
NRC (2001), additional specification was provided to call out strategic competence, 
adaptive reasoning, and productive disposition as important dimensions of mathe-
matical proficiency (these dimensions of mathematical proficiency are defined else-
where in this volume). In addition to these dimensions of knowing, mathematical 
practices were embedded in the CCSS-M and in most states’ content standards. 
Mathematical practices represent ways in which students engage with the mathe-
matical content through solving meaningful real-world problems, reasoning 
abstractly and quantitatively, constructing viable arguments about mathematical 
conjectures, modeling, appropriately using mathematical tools, engaging with pre-
cision, discerning patterns and structures in mathematics, and searching for regular-
ity when solving like problems.

I intentionally define and call out these curricular expectations for several rea-
sons. First, the definition of mathematical proficiency just described represents an 
integrated understanding of what mathematical competency means and looks like, 
and by extension, how we can evaluate performance. Hunt and Tzur contend that 
mathematical proficiency and performance are separate constructs that lead to dif-
ferent interpretations of students’ knowing and thinking in mathematics. However, 
in an aligned system, formative and summative assessment practices lead to perfor-
mance that directly indicates and/or illustrates the depth and breadth of students’ 
proficiency across these dimensions of mathematics. When assessments are not 
aligned to the curricular expectations, performance may not be indicative of 
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mathematics proficiency. I recommend we focus on building aligned systems of 
instruction and assessment to facilitate teachers’ decision-making and, ultimately, 
students’ development of mathematical proficiency.

Second, as the guidepost for an aligned system, the curricular expectations 
should be at the forefront of all instructional opportunities and assessment practices. 
It is essential that all students—whether or not they are experiencing difficulties in 
learning mathematics—have opportunities to learn the depth and breadth of the cur-
ricular expectations and demonstrate their understanding. Zhang, Maher, and 
Wilkinson pointed out an over-emphasis on procedural fluency during instruction 
and on assessments for students experiencing difficulties in learning mathematics. I 
contend that if instruction does not emphasize the range of learning expectations 
specified in the content standards, then the curriculum is narrowed, and students are 
denied the opportunity to learn essential mathematics content that has been deemed 
important and necessary for them to learn in each grade. A growing number of inter-
ventions and intervention frameworks are available that effectively represent the 
depth and breadth of the curricular expectations (c.f., Fuchs et  al., 2017; Powell 
et al., 2020; Zhang et al., 2014). An exception to alignment with grade-level content 
standards may exist for students with disabilities whose IEPs specify that they 
receive a modified curriculum and are assessed based on alternate content and per-
formance standards. For these students, the IEP team determined that the most suit-
able instruction and assessment should focus on modified content standards.

Relatedly, for assessments and tasks that are intended to inform teachers’ 
decision- making about students’ development of mathematical proficiency across 
the range of curricular expectations, the content should be representative of the 
depth and breadth of the content standards. In other words, items or tasks should 
align with the content and the strand(s) of mathematical proficiency that is intended 
by the standard. For example, consider the Common Core State Standard in 
Mathematics (2010):

7.EE.4. Use variables to represent quantities in a real-world or mathematical problem, and 
construct simple equations and inequalities to solve problems by reasoning about the 
quantities.

This standard focuses on expressions and equations, in particular the use of vari-
ables. Students engage their conceptual understanding of variables to represent 
problem situations, procedural knowledge to solve problems, and strategic compe-
tence to construct equations and inequalities, and quantitative reasoning to consider 
the real-world outcomes. To adequately assess this standard, the range of profi-
ciency should be elicited and will require multiple items. If, instead, this standard 
was only assessed with items that elicited students’ procedural fluency, interpreta-
tions about students’ level of understanding and reasoning related to this standard 
may not be valid.

To support some decisions, teachers may need data about specific aspects of 
students’ mathematical proficiency that are inclusive but not exhaustive of the cur-
ricular expectations. For example, Zhang, Maher, and Wilkinson referenced the 
need to understand students’ reasoning to make decisions about their abilities to 
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develop arguments and justify their solution frameworks when solving problems. 
An assessment aligned with this purpose may not include items that assess other 
aspects of mathematical proficiency such as conceptual understanding, procedural 
fluency, or strategic competence. Similarly, as described by Zhang, Maher, and 
Wilkinson, CBMs in mathematics often focus on computations. Results from these 
assessments can provide teachers with valuable insights into students’ procedural 
fluency and can guide instructional decisions relevant to the accuracy and efficiency 
in which students execute procedures, but not their conceptual understanding, stra-
tegic competence, or reasoning. In both of these examples, the intended construct of 
the tests is narrower than the range of proficiencies specified in the curricular expec-
tations. Alone, results from these tests do not provide a comprehensive view of 
students’ mathematical proficiency. However, because the decisions resulting from 
these assessments are specific to the assessed content (and, therefore, not the depth 
and breadth of the curricular expectations), these assessments may continue to have 
value for teachers. As I hope this discussion illustrates, it is important to keep an 
assessment’s intended uses and interpretations in the forefront when examining 
alignment and evaluating validity.

Various item or task formats can adequately assess a range of students’ knowl-
edge, skills, and abilities. Although student interviews or individually administered 
tasks as described in the chapters by Hunt and Tzur and Zhang, Maher, and 
Wilkinson may provide direct evidence of student thinking, this item or task format 
may not be feasible within all situations due to the time needed for administration 
and interpretation. Selected response items (e.g., multiple choice, true–false, match-
ing) may aid in efficiency of administration and scoring, while still assessing mul-
tiple dimensions of student proficiency. For example, well-designed multiple-choice 
items can assess students’ conceptual understanding, reasoning, and other higher- 
order thinking skills (Downing, 2006; Haladyna, 2004; Schneider et al., 2013) and, 
when intentionally designed to do so, may provide insights into the students’ think-
ing based on their selection of distractors (Briggs et al., 2006; Luecht, 2007).

Third and lastly, it is important to remind ourselves that we—public school 
teachers, administrators, curriculum developers, assessment designers, and educa-
tion researchers—are facilitators of the learning process and should engage in activ-
ities that support student learning of the depth and breadth of the curricular 
expectations. We are responsible for providing each student with carefully con-
structed opportunities to meet these expectations. In most instances, a state board of 
education or a national ministry of education has decided what students are required 
to know and be able to do; we cannot and should not change these expectations. As 
such, our efforts to facilitate mathematical proficiency should be in service of the 
ratified content standards. A teacher may have concerns about the nature of their 
state or country’s content standards, particularly as they represent ways of knowing 
of the dominant culture and themselves are socially, politically, and historically 
bound. These concerns should be communicated with the school and district leader-
ship, and/or state or national legislators. However, while these content standards 
remain the legislated mandate, it is imperative that educators provide each and every 

7 Commentary on Part II



144

student with opportunities to learn the breadth and depth of these curricular 
expectations.

Designing Assessments and Tasks to Promote Fairness, Accessibility, and 
Validity Another consideration when intentionally designing assessments and 
tasks is fairness and accessibility, because they directly impact the validity of the 
intended uses and interpretations of assessment and task results. Zhang, Maher, and 
Wilkinson emphasize the role accommodations play in supporting access to the 
assessed construct for students with disabilities. They also note that standardized 
accommodations may not live up to this goal because the variety of students’ needs 
that may not be well matched with standardized accommodations. I would like to 
build on this discussion by recentering the purpose of accommodations within the 
perspectives of fairness and validity.

To support fair and valid decision-making, assessments must be free from bias, 
minimize the impact of sources of construct-irrelevant variance, and be based on 
statistical analyses (e.g., item calibrations, percentile and cutoff scores, validity evi-
dence) that were obtained from a representative sample of students. Items, and the 
assembled test, should yield results that can fairly inform decision-making regard-
less of the examinee’s race or ethnicity, gender, socioeconomic status, educational 
classification, or any other demographic variable. To verify comparability, sufficient 
evidence is needed that documents the absence of differential item functioning 
(DIF) and differential classification outcomes.

Regardless of the type of assessment, some students with disabilities will need 
testing accommodations to accurately demonstrate their knowledge, skills, and abil-
ities. Zhang, Maher, and Wilkinson introduced the purpose of testing accommoda-
tions and provided an important distinction from test modifications. To further 
elaborate, testing accommodations are designed to mitigate the impact of students’ 
personal characteristics that negatively interact with item design features and subse-
quently lead to construct-irrelevant variance (CIV) in students’ scores. As an exam-
ple of this interaction, consider a student who may have difficulty retaining 
information in short-term memory. This student may experience additional diffi-
culty when solving multi-step word problems that require the student to use infor-
mation temporarily stored in working memory to solve subsequent components of 
the problem. In these instances, the student may benefit from using a graphic orga-
nizer as an accommodation to record intermediary steps and solutions within the 
problem. However, when the same student is responding to items that elicit concep-
tual understanding or application of single-step procedures that do not require 
extensive use of working memory, the student may not encounter additional chal-
lenges that result in CIV. In those instances, the student may not benefit from the 
accommodation. Comparatively, a student who has difficulty decoding the text used 
in multi-step word problems may benefit from a reading-based accommodation 
(e.g., read aloud, simplified language) and may not benefit from using a graphic 
organizer.

L. R. Ketterlin-Geller



145

The primary purpose of administering tests is to capture variability in student 
performance that can be attributable to variability in construct-relevant knowledge, 
skills, and abilities. However, the examples above illustrate how students’ personal 
characteristics influence how they engage with test items in construct-irrelevant 
ways. Moreover, the examples also highlight how variations in item design features 
may support or hinder students’ engagement depending upon their personal charac-
teristics. It is because of this interaction that the evidence about the effectiveness of 
accommodations is inconclusive. I have long argued that accommodations should 
be assigned at the item level where these interactions impact students’ ability to 
accurately demonstrate their construct-relevant knowledge, skills, and abilities (c.f., 
Ketterlin-Geller, 2008; Ketterlin-Geller, 2016). Accommodations can be effective 
only when they are applied at the juncture where CIV occurs.

As this discussion illustrates and is noted by Zhang, Maher, and Wilkinson, 
assigning test accommodations should not be conceptualized as a one-size-fits-all 
approach. IEP teams need to consider the student’s personal characteristics and item 
and test design features to determine the probable sources of CIV. IEP teams can 
then assign allowable accommodations that may mitigate the negative interaction. 
Our previous research (c.f., Ketterlin-Geller et al., 2014) provides guidance on this 
process.

I want to explicitly note that accommodations are not intended to promote a defi-
cit view of students with disabilities. Differences in students’ cognitive processing, 
attention, language or linguistic processing, and physical characteristics are not 
deficiencies and may promote mathematical sense making in other ways (Healy & 
Powell, 2013). Insomuch as the test design features can support accurate elicitation 
of students’ mathematical knowledge and skills, there may be little or no CIV intro-
duced into students’ scores. However, in instances where the test design features 
may hinder students’ ability to demonstrate their mathematical understanding, 
accommodations will be needed to provide equitable opportunities for students with 
disabilities to demonstrate their mathematical sense making. Alternatively, tests can 
be designed to minimize the reliance on construct-irrelevant skills by applying the 
principles of universal design (Ketterlin-Geller, 2008; Ketterlin-Geller, 2016). For 
example, reading is often a leading cause of CIV on mathematics tests for many 
students with and without disabilities. Tests can support variability in students’ 
reading skills by providing options to have the test items read aloud to anyone. 
Although it is not possible to mitigate all sources of CIV through intentional test 
design, universally designed tests may reduce the need for externally applied 
accommodations.

In summary, building on the theme introduced by Hunt and Tzur and Zhang, 
Maher, and Wilkinson, it is important to carefully consider the design of assess-
ments and tasks when using data to guide instructional decisions for students who 
are experiencing difficulties in learning mathematics. Valid uses and interpretations 
of results are incumbent on teachers’ access to data that are aligned with curricular 
expectations and instructional opportunities and that accurately reflect students’ 
knowledge, skills, and abilities without bias or CIV.
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7.3.3  Assessments and Tasks to Support Diagnostic Inferences

Quite often, mathematics classrooms do not comprise a homogeneous grouping of 
students. Instead, many of today’s classrooms are characterized by considerable 
heterogeneity across a variety of factors, including students’ background knowl-
edge or experiences with formal and informal mathematics, prior conceptualiza-
tions of mathematical concepts, and facility with different mathematical 
representations. As a result, students within a typical mathematics class may benefit 
from different approaches to instruction, such as representing mathematical con-
cepts in multiple ways, altered amounts of practice opportunities, and different lev-
els of scaffolding. Students may also need varying levels of supplemental 
instructional support to reach their goals, with some benefiting from minimal addi-
tional support and others needing considerably more to meet the curricular expecta-
tions. Some schools use a system-level framework (e.g., multi-tiered system of 
support) to coordinate instructional delivery, while other schools use a more diffuse 
model. Within either approach, diagnostic data may be needed to efficiently and 
effectively design supplemental instructional support to address these students’ 
learning needs.

Diagnostic assessment practices form an important part of an integrated and 
aligned system of assessments. As described in Chaps. 5 and 6 of this volume, 
teachers often seek diagnostic information to generate hypotheses about the nature 
of the instructional support from which a student who is experiencing difficulties in 
mathematics may benefit. These hypotheses can be based on information such as 
the student’s understanding of specific mathematical concepts or skills, persistent 
errors, or naive conceptions the student makes while completing their work, the 
strategies the student uses to arrive at a solution and/or the efficiency with which the 
student executes the strategy, and/or the representations they use to demonstrate 
understanding. This information recognizes the student’s prior knowledge and their 
ways of knowing and representing mathematics—and helps identify areas in which 
additional instruction could support future learning. With this information, the 
teacher can design a supplemental instructional plan that builds on the student’s cur-
rent understanding and facilitates the next steps in the student’s learning.

There are various approaches to designing diagnostic assessments to inform 
these instructional hypotheses and, ultimately, guide the design of supplemental 
instructional opportunities. Zhang, Maher, and Wilkinson provide an overview of 
some published diagnostic assessments, as well as various approaches that can be 
applied without the use of standardized assessments, such as clinical interviews, 
error pattern and strategy analysis, and strategy analysis with a microgenetic 
approach. Hunt and Tzur describe an approach to gathering diagnostic information 
through interviews that scaffold tasks through the learning process. Each chapter 
documents the procedures of these approaches and offers examples in practice.

Another approach to gathering information that may be particularly useful for 
guiding the design of supplemental instructional opportunities for students who are 
experiencing difficulties in learning mathematics is the use of learning 
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progression-based diagnostic assessments. In the remainder of this section, I pro-
vide an overview of learning progressions in mathematics, discuss ongoing devel-
opment work to design diagnostic assessments based on learning progressions, and 
explain how these assessments may provide unique information that can accelerate 
the learning process.

Learning progressions (or learning trajectories) are theoretical models of learn-
ing that describe the development of sophistication in students’ thinking within a 
discipline. While different disciplines tend to use one term over the other (e.g., sci-
ence education tends toward learning progressions, while mathematics education 
often uses learning trajectories), in her exhaustive review, Confrey (2018) noted that 
there are minimal differences in the propositions underlying these terms. As such, I 
will use the term learning progressions with the intention of being inclusive of both 
learning progressions and learning trajectories.

Learning progressions illustrate a sequential progression of understanding within 
a discipline that leads from foundational knowledge to more advanced thinking 
(Bennett, 2015). Knowledge and skills are integrated together in a meaningful way 
to build deeper understanding. Inherently, learning progressions present an asset- 
based model of learning by framing students’ development of understanding as con-
tinuing from their available conceptualizations through to more sophisticated and 
comprehensive understandings (Alonzo, 2018). Confrey (2018) likened this devel-
opment to a climbing wall in which students deepen their understanding (move up 
the wall) by combining knowledge and skills (using each hand and foot hold) in a 
thoughtful, purposeful, and sometimes iterative way. As what happens with a climb-
ing wall, the specific starting point and the pathway each child takes may look dif-
ferent, but the outcome is comparable (reaching the top of the wall, or completing a 
course).

When most learning progressions are described, they begin with a set of founda-
tional skills that mark the entry point or lower boundary. Similarly, they have an 
upper boundary that identifies the targeted learning goals for that progression 
(Confrey, 2018; Corcoran et al., 2009). The lower and upper boundaries are con-
nected by a series of intermediary phases of learning that are akin to the hand and 
foot holdings on the climbing wall mentioned earlier. These phases of learning 
make up the network of knowledge, skills, and processes that build in sophistication 
and complexity as they progress from the lower toward the upper bounds. Each 
student’s pathway through this network may be different and will be guided by their 
prior experiences and exposure to the content, as well as their instructional 
opportunities.

The intermediary phases of learning can exist with varying levels of specificity 
from coarse-grained representations of concepts to fine-grained micro- 
conceptualizations of student thinking. The granularity in which the learning pro-
gression is specified depends on the learning outcomes. For example, the Common 
Core State Standards in Mathematics are based on the principles of learning pro-
gressions and are specified at a relatively coarse grain size. Conversely, the learning 
progression explicating the process by which students learn to divide fractions artic-
ulated in Ketterlin-Geller et al. (2013) is specified at a relatively fine-grained size. 
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The level of specificity has important implications for informing teaching and learn-
ing, notably the design of instruction and assessment. For the purposes of this com-
mentary, I discuss the design of diagnostic assessments to inform supplemental 
instruction for students who are experiencing difficulties in learning mathematics.

Diagnostic assessments based on learning progressions provide teachers with 
information about the nature of students’ learning, so as to directly inform instruc-
tion. Teachers are able to interpret student performance from a lens of students’ 
knowing and understanding and move away from dichotomizing interpretations of 
performance as “they got it” or “they didn’t get it” (Alonzo, 2018). For example, 
teachers can identify student understanding in relation to their foundational knowl-
edge and skills (e.g., where they started on the climbing wall). This information can 
inform where instruction may intersect with students’ prior conceptualizations. 
Relatedly, teachers can monitor students’ movement through the intermediary 
phases of learning to determine the knowledge, skills, and processes students have 
developed and what instructional actions should come next to support learning. 
Also, teachers can examine fine-grained information within the intermediary phases 
of learning to better understand the students’ conceptualizations, integration of 
prior learning, facility with mathematical representations, and other aspects of stu-
dents’ mathematical thinking. Understanding students’ partial, emerging, or naive 
conceptions may help teachers identify prior knowledge that can be integrated with 
future learning to create a more complete representation of knowing in the domain 
(Confrey, 2018). This information can directly inform the design of instruction.

To illustrate the decisions teachers can make using learning progression-based 
classroom assessments, I briefly describe a learning progression that illustrates the 
knowledge, skills, and reasoning that students in kindergarten through grade 2 
develop when reasoning about numeric relations. In the project Measuring Early 
Mathematics Reasoning Skills (NSF #1721100), we articulated a learning progres-
sion through an iterative and systematic process specified by Ketterlin-Geller et al. 
(2013). This process integrated evidence from (a) theoretical propositions underly-
ing learning in the domains, (b) detailed reviews by nationally recognized mathe-
maticians and mathematics educators, (c) in-depth analyses of students’ thinking as 
elicited by cognitive interviews conducted with children in kindergarten through 
grade 2, and (d) input from teachers about their understanding of child development 
cultivated through extensive observations. The resulting learning progression for 
numeric relational reasoning has three targeted learning goals (relations, composi-
tion and decomposition, and properties of operations), each with three- or four-core 
concepts (see Kuehnert et al., 2020 for more information). The overall structure is 
displayed in Fig. 7.2.

Each core concept is further explicated into finer-grained subcomponents that 
describe the intermediary phases of learning, including the conceptualizations, rea-
soning, and strategic processes underlying learning.

To illustrate the way in which learning progressions can inform instructional 
decision-making, I will elaborate on the first core concept in relations, labeled 
“Comparison of Unequal Numbers.” The intermediary phases of learning include 
the following:
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Relations

•Comparison of unequal 
numbers

•Foundations of operations
•Transitivity
•Representations of order in 

comparison situations

Composition 
and 

Decomposition

•Composition
•Decomposition
•Decomposition with part 

unknown

Properties of 
Operations 

•Equivalence of quantity
•Equal sign as a relational 

symbolic
•Maintaining equality when 

solving for unknown values

Numeric 
Relational 
Reasoning

Fig. 7.2 Visual display of the learning progression for numeric relational reasoning

• Compare two quantities to find which has more or fewer items using one-to-one 
matching and counting strategies without a specific arrangement.

• Compare two quantities to find which has more or fewer items when given a 
specific arrangement.

• Compare two quantities grouped in tens and ones to find which has more or 
fewer items using one-to-one matching and counting strategies.

• Compare two quantities to find which has more or fewer items when given a 
specific arrangement with place value (e.g., place value blocks).

• Compare two numbers using the understanding of the number sequence to deter-
mine which is larger or smaller.

• Compare two numbers using written number lines to determine which is larger 
or smaller.

• Compare two numbers using open number lines to determine which is larger or 
smaller.

• Compare two numbers using symbolic notation.

These intermediary phases of learning occur iteratively as students build fluency 
and flexibility working with increasingly larger number ranges (e.g., from 1–5 to 
1–19). Through each intermediary phase, students deepen their understanding and 
ability to apply number relations concepts. Moreover, they are introduced to the 
number line as an important tool for modeling mathematics. Ultimately, these inter-
mediary phases culminate in a strong conceptual understanding of the number 
sequence, magnitude, place value, and the usefulness of communicating 
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mathematical concepts through visual representations. These concepts lay the foun-
dation for future work with operations.

Classroom assessments aligned to this learning progression can provide teachers 
with diagnostically useful information about students’ conceptualizations, reason-
ing, and strategic processing at each intermediary phase as the student progresses to 
larger number ranges. For example, consider this sample item for the first subcom-
ponent, compare two quantities to find which has more or fewer items using one-to- 
one matching and counting strategies without a specific arrangement. This item 
would be presented to a student who is working within the number range of 0–10 in 
an interview format with manipulatives (e.g., counters).

Stimulus
Prompt to elicit 
conceptualizations

Prompt to elicit 
reasoning

Prompt to extend 
students’ thinking

Look at these 
white and 
black counters.

Without touching these 
counters, are there more black 
counters or white counters?

Show me how you 
got your answer. You 
may touch the 
counters.

Show me how you 
would make the 
groups so there are 
more white counters.

Because the purpose of administering diagnostic assessments is to gather data to 
generate hypotheses about student learning to inform the design of supplemental 
instruction, students’ responses to these types of questions do not need to be scored 
in the traditional sense (e.g., scored for correctness, evaluated against a rubric). 
Regardless of whether the assessment includes constructed or selected response 
items, students’ responses provide windows into their thinking. Teachers can inter-
pret students’ responses in relation to the learning progression to identify the stu-
dents’ prior conceptualizations. Moreover, teachers may get a glimpse into the 
strategies students use when solving problems and the varied ways of knowing and 
making sense of mathematics.

Using the item above as an example, a student may be able to count the number 
of counters by color and be able to state which group has more counters only when 
allowed to rearrange the counters so as to employ a one-to-one matching strategy. 
In this instance, the teacher gains insights into the student’s understanding of rela-
tionships between quantities and the strategies they use to understand these relation-
ships. The teacher may infer that the student is progressing in their understanding of 
the number sequence, has a grasp of cardinality, and has a strategy for comparing 
quantities using physical manipulatives. In turn, the teacher can use this information 
to understand

• what content to teach next and to what level of intensity;
• student’s conceptualizations underlying their responses, which may illuminate 

varying levels of sophistication and efficiency in the strategies; and
• student’s mental models of mathematics concepts.
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As these interpretations inform the teacher’s inferences about the student’s think-
ing, they serve to guide instructional decisions to support future learning.

In sum, within an integrated and aligned system of assessments, diagnostic 
assessments serve an important role in promoting equitable outcomes in mathemat-
ics classrooms by providing teachers with valuable information to support infer-
ences about student learning. These inferences may include an understanding of 
students’ current conceptualizations, persistent errors, or naive conceptions, strate-
gies the student uses and/or the efficiency with which the student executes the strat-
egy, and the representations the student uses to demonstrate understanding. From 
this information, teachers can formulate hypotheses about the nature of the instruc-
tional support from which students may benefit. In the example described above, the 
teacher may facilitate the student’s future learning by emphasizing the meaning of 
the number sequence, extending the range of strategic approaches to comparing 
quantities (including introducing visual and abstract representations of quantities), 
and expanding the number range in which the student is making comparisons—all 
of which align with the intermediary phases of the learning progression. As this 
example illustrates, because learning progressions are based on theoretical models 
of learning, they provide a unique lens through which students’ knowing and think-
ing can be interpreted to directly guide instructional design decisions.

7.4  Conclusions

Students who are experiencing difficulties in learning mathematics may be sup-
ported in a variety of classroom settings within a school. It is essential that the val-
ues, norms, and beliefs that define a school’s culture recognize the assets all students 
bring to the learning environment and take actions that signify these beliefs. 
Importantly, all students should view themselves as valued contributors to the learn-
ing environment who are capable of learning complex mathematical concepts and 
have unique and important perspectives that shape their learning.

When intentionally designed, assessments can help teachers align instruction 
with students’ learning needs to improve and accelerate student learning. Designing 
assessments to provide meaningful, trustworthy, and reliable data to inform class-
room decisions requires careful consideration of several factors, such as the depth 
of understanding elicited by the items, content representation at the item and test 
levels, and the procedures for administration, scoring, and interpretation. In particu-
lar, although there are various approaches to designing diagnostic assessments, 
aligning the content with learning progressions may help teachers make inferences 
about students’ knowing, which can be translated into actionable steps for designing 
learning opportunities.

On a final note, I want to acknowledge and thank the editors for inviting me to 
contribute this commentary. We often point to differences in the ways in which 
special education and mathematics education researchers approach supporting stu-
dents who are experiencing difficulties in learning mathematics (c.f., Woodward & 
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Tzur, 2017). In this commentary, I have tried to emphasize the commonalities both 
between the chapters and also among the broader community of educators who are 
committed to improving outcomes for students who are experiencing difficulties. I 
urge us—the community of educators, researchers, and other stakeholders—to 
build on our shared goals and vision of all students realizing positive outcomes in 
mathematics. The more we can work toward understanding and away from empha-
sizing difference, the better equipped our community will be to support all students, 
especially those who are experiencing difficulties in learning mathematics.
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