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Introduction

Yan Ping Xin, Ron Tzur, and Helen Thouless

It is not uncommon to hear these types of questions from teachers of students who 
are struggling in mathematics:

• How do I plan my instruction for students who come to me not ready?
• How do I build conceptual understanding of students with learning disabilities or 

difficulties?
• How do I help move my students from where they are to where they should be 

mathematically?
• What can teachers do (adapt) to foster students’ growth?

Such questions, and many more, reflect teachers’ concerns and caring for their 
students, not the least because of the dismal improvements in the learning and out-
comes over time for this population. For example, during the past decade in the 
USA, national score gains were seen for higher performing students at the 75th and 
90th percentiles at grades four and eight, while no significant gains were shown for 
lower-performing students. According to the Nation’s Report Card (National 
Assessment of Educational Progress [NAEP], 2019), a great majority (85%) of 
American fourth graders with learning disabilities in mathematics performed at the 
below-proficiency level. At this grade level, while students without disabilities have 
increased their performance by three points since 2009, students with disabilities 
have dropped by seven points. The gap between students with and without disabili-
ties seems wider over the past decade. Furthermore, the NAEP results showed that 
eighth grade students with learning disabilities in mathematics scored roughly at the 
level of typically achieving fourth graders. Many of these students are at significant 
risk of failing the secondary mathematics curriculum. These findings indicate a 
burning issue for all teachers and their educators, particularly because during the 
same period, expectations for all students have been elevated. For example, both the 
Common Core State Standards for Mathematics (Common Core State Standards 
Initiative, 2012) and the English National Curriculum (2013) emphasized concep-
tual understanding in problem solving as well as higher-order thinking and reason-
ing. Students with learning disabilities or difficulties in mathematics (LDM), for 
whom past instruction often focused primarily on computation and simple problem 
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solving while following specific procedures, are now expected to understand and 
solve complex problems and develop solid reasoning skills in mathematics.

To help address this burning issue, this research-based book presents the out-
growth of a unique, ongoing collaboration among researchers in special education, 
psychology, and mathematics education from around the world. In particular, it 
reflects the decade-long work by members of the International Group for the 
Psychology of Mathematics Education (PME) and the North American Chapter of 
the PME Working Groups. Our main purpose in this book is to provide prospective 
and practicing teachers with research insights into the mathematical difficulties of 
students with LDM and with classroom practices that address these difficulties. By 
linking research and practice, we celebrate teachers as learners of their own stu-
dents’ mathematical thinking, thus contributing an alternative view of mathematical 
progression in which students are taught conceptually. The authors of chapters in 
this book are from Australia, Canada, the UK, and the USA.  The commentary 
authors are renowned experts, including scholars from Belgium, the UK, and 
the USA.

One of the unique features of this book is the inclusion of a clear focus on under-
standing and using research insights, including theory about students’ conceptual 
development, to guide a paradigm shift in existing teaching practices for students 
with diverse needs. Because we think highly of teachers and students, the heart of 
this shift is the inclusion of theory-driven instructional (intervention) practices that 
integrate heuristic and explicit instruction for inquiry in mathematics classrooms. 
Using theory and research-based learning trajectories recognizes teachers as capa-
ble professionals while being consistent with current curriculum standards and rec-
ommended teaching practices in mathematics education. A second key feature of 
this book is that it arises out of a longitudinal, genuine collaboration between math-
ematics education and special education researchers who teach students and teach-
ers regularly. Accordingly, the book chapters have been written collaboratively by 
author teams composed of scholars from both fields. In addition, most chapters are 
driven by authentic questions gathered from teachers who work with students with 
diverse needs.

This book caters to teachers, as seen in the four central questions presented at the 
beginning of this Introduction. To address those questions, we share with you, the 
teacher, recent research findings and teaching methods that significantly promote 
mathematics learning and outcomes for students with LDM.  These promising 
results reflect the aforementioned paradigm shift in how a teacher thinks about (the-
ory) and carries out (practice) mathematics teaching – as compared to typical ways 
of explaining and studying students’ difficulties. Specifically, this shift revolves 
around moving away from a focus on behavioral and procedural steps to a focus on 
conceptual learning and teaching marked by a “marriage” of heuristic and explicit 
strategies inspired by research-based practices from both fields.

The book consists of four Parts. Part I addresses equitable opportunities for 
mathematics learning. R. Ruttenberg-Rozen and B. Jacobs (Canada) open this Part 
with their chapter titled “Considerations of Equity for Learners Experiencing 
Mathematics Difficulties: At the Nexus Between Mathematics and Special 

Introduction



vii

Education.” They discuss what and how traditional practices for students with LDM 
promote deficit narratives and offer strategies and suggestions through connecting 
research in mathematics education and special education. In Chap. 2, K. Owens and 
S. Yates (Australia) delineate the characteristics of the learners with LDM pertinent 
to their physical, cognitive, social, and emotional well-being, while highlighting 
their strengths and the use of their capabilities for learning mathematics. In Chap. 3, 
“Discerning Learning as Conceptual Change: A Vital Reasoning Tool for Teachers,” 
R. Tzur and J. Hunt (USA) embrace an asset instructional approach that centers on 
and starts from what students already know rather than what they do not know (i.e., 
from their deficit). Following these three chapters, A. Dowker (UK) provides a com-
mentary on each of these chapters and discusses the impact of cultural practices on 
mathematics cognition.

Part II focuses on assessment and planning. Building on the framework for 
knowing and learning presented in Chap. 3, in Chap. 5, “Connecting Theory to 
Concept Building: Designing Instruction for Learning,” J. Hunt and R. Tzur use an 
instructional case (the concept of ten as a unit) to illustrate how teachers can unpack 
“bridging, variation, and reinstating” to design their teaching. In Chap. 6, “What is 
Meaningful Assessment,” D. Zhang, C. Maher, and L. Wilkinson (USA) focus on 
informative assessment for all students. In particular, they review alternative assess-
ment methods that aim to identify what students know, monitor their learning trajec-
tories, and evaluate their paths to deeper conceptual understanding. Following these 
two chapters in Part II, L. Ketterlin-Geller (USA) situates her commentary in a 
systems- level perspective framed within multi-tiered systems of support (MTSS) 
and highlights common themes surrounding designing and implementing assess-
ments to support learning for students who are experiencing difficulties learning 
mathematics.

Part III focuses on teaching for equitable opportunities. This Part begins with 
Chap. 8, “Supporting Diverse Approaches to Meaningful Mathematics: From 
Obstacles to Opportunities,” by C. Finesilver, L. Healy, and A. Bauer (UK). In this 
chapter, they explore tools, including manipulatives, calculation and communica-
tion devices, memory aids, and representational strategies, that may be particularly 
helpful in providing students with LDM access to mathematics instruction similarly 
to their normal achieving peers. Next, in Chap. 9, E. Smith and R. A. Smith (USA) 
provide some guidelines to help teachers effectively engage students with LDM, 
who are also multilingual learners, in mathematical discourses with particular atten-
tion to creating a learning environment that promotes the participation of these stu-
dents. Then, in Chap. 10, “Equitable Co-teaching Practices in Mathematics,” 
M. Stephan and L. Dieker (USA) illustrate a new vision for co-teaching mathemat-
ics in K-12 classrooms. Following these chapters, L. Dieker and A. Lannan (USA) 
situates her commentary chapter in the discussion of equity and access, while 
exploring how universal design for learning could provide an anchor for equity 
and access.

Part IV moves the focus to teaching specific mathematics content, which we 
elaborate a little more. It begins with Chap. 12, “Counting,” in which H. Thouless, 
C.  Hilton, and T.  Webb (UK) focus on two of the early mathematical 
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conceptualizations, counting and subitizing. Positioning counting as a prerequisite 
to other aspects of arithmetic (particularly the concept of number), the authors dis-
cuss some challenges students might face, including the language of counting, one-
to-one correspondence, and formal symbolic notation(s) for counting. They also list 
some activities that would be useful for enhancing counting and subitizing skills of 
students with LDM.

Y. P. Xin and S. Kastberg (USA) open their Chap. 13, on additive reasoning and 
problem solving with two distinct paradigms in solving word problems: operational 
vs. relational. They emphasize the importance of students’ understanding of math-
ematical relations presented in mathematical word problems as a crucial start for 
any solution attempt. They then illustrate how a computer-assisted intervention pro-
gram, which integrates a constructivist view of learning and explicit teaching of 
mathematical model-based problem solving, can be used to enhance solving word 
problems by students with LDM.

In Chap. 14, R. Tzur and Y. P. Xin (USA) present a learning progression (trajec-
tory) comprising six concepts (schemes) that were found to be crucial for student’s 
construction of multiplicative reasoning and problem solving. They situate this pre-
sentation in the context of a computer tutor that shows promise in moving students 
onto solving multiplicative word problems using a unified mathematical model 
equation. In Chap. 15, R. Tzur and J. Hunt (USA) focus similarly on an 8-scheme 
learning trajectory in fractional reasoning for students with LDM. The early four 
schemes are based on the mental activity of iteration and the last four on recursive 
partitioning. Throughout the chapter, they illustrate these conceptual understand-
ings with instructional tasks that help foster students’ reflection on activities and 
abstraction of those concepts.

In Chap. 16, S. Kastberg, C. Hord, and H. Alyami (USA) use a series of cases 
with instructional tasks to illustrate ways in which teachers can support the develop-
ment of ratios, proportions, and proportional reasoning while promoting abstraction 
through making connections among these concepts. They present a trajectory con-
sisting of three benchmarks along with plenty of tasks to promote construction of 
those benchmarks by students with LDM. Their chapter is followed by a commen-
tary chapter for the entire Part by L. Verschaffel and W. Van Dooren (Belgium), who 
both reflect on each of the Part’s chapters and point out plausible alternative views.

Acknowledgments

In this introduction, we chose to use the term “learning disabilities/difficulties in 
mathematics (LDM)” rather than mathematics disabilities (MD), because typically 
schools do not have specific diagnosis for MD. More importantly, the term MD 
seems to indicate that the disability, or deficit, is fixed within the individual student. 
We intentionally chose the term LDM, rather than MD, to indicate that these stu-
dents, while struggling in learning mathematics and possibly attaining low achieve-
ments in mathematics – are highly capable of learning if teaching adapts to their 
competencies. With that said, we respect the choice of term that each of the contrib-
uting authors used to describe students with LDM in their individual chapters.
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Chapter 1
Considerations of Equity for Learners 
Experiencing Mathematics Difficulties: 
At the Nexus Between Mathematics 
and Special Education

Robyn Ruttenberg-Rozen and Brenda Jacobs

Abstract In this chapter, we explore equity for learners experiencing difficulties in 
mathematics (MD) at the nexus of special education and mathematics education, 
with a focus on Gutierrez’s four dimensions of equity. First, we explore narratives 
and positioning of learners experiencing difficulties: What and how are deficit nar-
ratives constructed around learners experiencing MDs? In the next section, we 
explore the consequences of those deficit narratives: How has the literature and 
school intervention typically responded with interventions for learners experiencing 
difficulties? And how are those interventions connected to deficit narratives about 
learners experiencing MDs? In the last sections, we offer a way forward: How can 
we provide mathematical opportunities to support learners experiencing MDs?

Keywords Mathematics difficulties · Special education · Equity · Anti-deficit 
narratives · Positioning · Inquiry · Mathematizing · Self-regulation

1.1  Introduction

The many visible and invisible roles of mathematics in society are far-reaching and 
entwined with much of our lived reality. When mathematics plays the role of savior, 
media, governments, and others tout mathematics as an integral and foundational 
component that will sustain countries (and people) in the digital economy. In the 
role of aesthetic for understanding, mathematics can also play a role of beauty. 

R. Ruttenberg-Rozen (*) · B. Jacobs 
Ontario Tech University, Oshawa, ON, Canada
e-mail: Robyn.Ruttenberg-Rozen@ontariotechu.ca
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There is an aesthetic experience of playing with mathematics and discovering and 
creating mathematical patterns in the world around us (Sinclair, 2006), and many 
cultures and peoples have used mathematics to create beautiful products (Assis & 
Donovan, 2020). In the role of categorizer of others people with power use mathe-
matics to describe and categorize other people (Swanson, 2017). People with power 
often do this in order to make claims and decisions about those inside and outside 
of the categories. Mathematics also plays a role as a tool of advancement or its 
opposite, impediment. Doing well in school mathematics creates pathways to soci-
etally deemed prestigious jobs, whereas lack of achievement in school mathematics 
can often prevent students from graduating high school, college, or university. Lack 
of achievement will prevent students from entering many professions (Ernest, 2002; 
Esmonde, 2009). Mathematics and especially school mathematics plays the role of 
gatekeeper. Mathematics, more than any other subject, “play(s) a special role in 
sorting out students and preparing them for and directing them to different social 
stations” (Ernest, 2007, p. 2). Success in mathematics becomes a mechanism for 
exclusion, funneling only the “intellectually worthy” toward certain opportunities. 
Certain learners, typically those with mathematics difficulties, are made to believe 
that mathematics is not for them (Allexsaht-Snider & Hart, 2001).

For all the reasons mentioned above, a belief that one cannot do mathematics can 
have far-reaching consequences for learners and society, because as a society we 
lose out on a diversity of ideas when we funnel only certain learners toward math-
ematics (Allen-Ramdial & Campbell, 2014).

Mathematics holds such power in society that those who possess the knowledge 
of mathematics acquire a cultural capital (Gutierrez, 2012). Thus, it is not surprising 
that the understanding of mathematics and achievement in mathematics would be 
considered a civil rights issue (Moses & Cobb, 2001) – it is important for all learn-
ers to have access to mathematics. Nevertheless, some learners, those experiencing 
difficulty, do not have access to mathematics which is likely to affect their future 
economic and academic prospects, and importantly, leaves them without access to 
the myriad societal and internal benefits, some already discussed above, of learning 
and interacting with mathematics. Children who experience mathematics difficulty 
(MD) include those with labeled learning disabilities, as well as those with sus-
tained low mathematics achievement despite interventions and teaching 
(Lewis, 2014).

In this chapter, we explore equity for learners experiencing difficulties in math-
ematics (MD) at the nexus of special education and mathematics education. In the 
introduction, we have explored the importance of mathematics and the idea that 
there are systemic barriers that purposefully funnel away some learners (includ-
ing those who experience MDs) from the learning and enjoyment of mathemat-
ics (Ernest, 2007). All learners should be given the opportunity to learn and enjoy 
mathematics. Consequently the systemic barriers and funneling is an issue of 
equity. At the root of the systemic barriers and funneling are deficit meta-narratives 
about who can and cannot learn mathematics, what type of mathematics people 
can learn, and in what ways people can learn mathematics. In the next section, 
we explore deficit narratives and positioning of learners experiencing difficulties. 

R. Ruttenberg-Rozen and B. Jacobs
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There are significant inequitable consequences to learners as a result of the deficit 
narratives. In the  section after, we explore the consequences of those narratives – 
how the literature and intervention practices limit learning for learners experienc-
ing difficulties. Finally, we want to offer hope that things can be changed and we 
can move toward a more equitable situation for learners experiencing MDs. In the 
last sections, we offer a way forward. First, we situate our way forward in equity 
research of mathematics education and weave it together with research from special 
education. Finally, addressing the research in equity we offer three strategies and 
suggestions.

1.2  Narratives and Positioning

So how does it come to be that access is limited for a child experiencing 
difficulties?

In this section we examine deficit narratives (Adiredja, 2019) constructed around 
learners experiencing difficulties in mathematics, and how deficit narratives result 
in deficit positioning (Harré & van Langenhove, 1999) of learners experiencing MDs.

1.2.1  Story 1

Nine-year-old David was a student in a self-contained grade 4/5 split special educa-
tion classroom and had a label of “slow learner.” The label of slow learner was 
meant to convey low intelligence, certainly below average, and falling somewhere 
between 75 and 90 on a normal curve of intelligence (Williamson & Paul, 2012). 
Before the start of the school year the principal told the teacher not to worry about 
David, as he would not be able to do mathematics. Nevertheless, the teacher worked 
with David and created a program for him, teaching him mathematics. One day, in 
about February that year, David displayed a moment of deep abstract reasoning in 
multiplicative structures  – he intuitively visually represented and explained the 
associative property of multiplication on an abacus. The teacher was excited at what 
she noticed and wanted to share her discovery with her principal. After school that 
same day, the teacher went to the principal’s office to share the exciting noticing. In 
an excited voice, the teacher re-told David’s story of displaying deep abstract rea-
soning of multiplicative structures. There was a pause after the story as the principal 
took in the events. The teacher waited in anticipation; surely the principal would 
“see” how amazing it was that David visually represented the associative property 
of multiplication. The principal finally answered: “what you saw was a fluke. David 
cannot really do math. David is unable to reason abstractly” (Ruttenberg-Rozen, 
2019, p.213).

1 Considerations of Equity for Learners Experiencing Mathematics Difficulties…
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1.2.2  Story 2

Megan began with all 17 cubes in one pile in front of her. She moved one cube to 
the right and then one to the left continuously until she was left with one cube in her 
hand. She shifted the right pile to the side and said, “one pile,” then Megan shifted 
the left pile to the side and said “two piles.” Finally, she placed the one leftover cube 
in the middle of the piles and said “number one.” I (Robyn) asked Megan how much 
was in each pile. Later, when I reviewed the video recording of our session, I could 
see that Megan counted all the cubes in one pile and began to count two of the cubes 
in the second pile. In my re-watching of the video Megan assuredly announced 
“seven and seven.” However, in person, I could not hear Megan’s answer and I asked 
her to repeat herself. In repetition, Megan’s answer became tentative:

Seven, (points to the right pile) and then I’m guessing seven here (points to the left pile), 
because seven... (pauses to count the left pile by twos). Yeah. (looks at me) I’m pretty 
sure. Yeah.

The fact that there were really eight cubes in each of Megan’s piles is inconsequen-
tial here. It is common for all people, at times, to make small numerical errors 
especially between close numbers (Dehaene, 2011), in this case 7 and 8. Of interest 
was Megan’s tentativeness to give an answer for the second pile only after I asked 
her to repeat herself. Megan’s usage of symmetry in this case was strategic. Once 
she knew the number in one pile, there was no need to count the cubes in the second 
pile. Because of her motions of symmetry, making one-to-one correspondence 
between the two piles, the two piles were the same amount. Through asking Megan 
to repeat her answer, I gave her a cue to question her strategy and thus, her under-
standing. Notably, Megan began to defend that there were seven in the second pile: 
“because seven…” However, this did not last long, as still questioning herself, 
Megan paused to count and then looked at me for verification.

Both David and Megan experienced learning difficulties in mathematics, and 
both David and Megan had deficit meta-narratives (Adiredja, 2019) and positioning 
(Herbel-Eisenmann et al., 2015) that shaped and interfered with their development 
in mathematics. In David’s case the meta-narrative was that he was labeled a slow- 
learner and slow-learners cannot understand or reason abstractly in mathematics. 
When the principal responded to David’s story of reasoning abstractly, she was 
responding to David’s deficit meta-narrative, and because of her acceptance of this 
narrative, the principal positioned David as “unable.” The act of positioning is 
always a limiting action  – it limits the variety of interpretations possible of any 
action (Harré & Slocum, 2003). Subsequently, once the principal positioned David 
as unable, the idea that David had some capabilities and could reason abstractly in 
mathematics was not even in her repertoire. The principal’s only choice was to deny 
the possibility of David’s ability. David’s principal was influenced by a deficit meta- 
narrative and sadly, her subsequent deficit positioning of David is not unique. We 
find other cases of disbelief of ability of learners experiencing MDs in other 
research. For example, Houssart (2004) discusses elementary teachers attributing 
moments of insight by learners experiencing math difficulties to the “maths fairy.” 

R. Ruttenberg-Rozen and B. Jacobs



7

The maths fairy was something outside the student granting momentary ability to 
the learner- as if the students were not capable of reasoning abstractly on their own.

In David’s case the principal was positioning another person, David, according 
to a negative meta-narrative. However, narratives around positioning also influence 
the individual of whom the narrative is about: “Positioned in some given way, a 
person may be more or less tightly constrained as to what story line it is possible, 
proper, or even necessary to be living out” (Harré & Slocum, 2003, p. 107). Megan’s 
actions were “tightly constrained” as a result of her own belief in her deficit meta- 
narrative and her positioning as someone who experiences difficulties in learning 
mathematics. Megan strategically used symmetry to help her keep track of the num-
ber of cubes in each pile, and when questioned about the number, she recounted her 
strategy. All this demonstrated important aspects of Megan’s ability to reason math-
ematically. But like David, Megan was positioned as unable. Megan’s positioning 
was not by an other – a teacher or principal like David’s positioner; Megan is posi-
tioned by her own acceptance of her deficit narrative. Subsequently, Megan’s 
assuredness was short-lived because her storyline is constrained by beliefs that she 
must be incorrect in mathematics, and that an authoritative other must be correct. 
Story 2 is an excerpt from a study where the first author (Robyn) worked with 
Megan for a month. This vignette is one small episode among many similar occur-
rences. Throughout the month, Megan often and repeatedly demonstrated mathe-
matical reasoning only to negate her own reasoning in one way or another.

Megan and David both highlight how deficit narratives are constructed around 
learners who experience mathematical difficulties, and how those narratives serve to 
negate our and their own awareness of their mathematical reasoning abilities. Both 
David and Megan displayed abstract mathematical reasoning. Yet, in both cases that 
abstract reasoning was mislabeled and misacknowledged because of the constraints 
of the narratives around “mathematics difficulties.” Importantly, those who are mis-
labeling and misacknowledging, whether done to an other or done to the self, may 
not even be aware that they are doing so. Significantly, these beliefs around deficit 
narratives are often implicit and may even contradict a person’s explicit beliefs 
(Ruttenberg-Rozen et al., in press). It therefore becomes imperative for the holder 
of these beliefs to become aware (Mason, 2002) of their beliefs in order to circum-
vent them.

The negation of ability, as discussed in the introduction, can have far-reaching 
consequences for the learner and society. Research (e.g., Jamar & Pitts, 2005; 
Lambert, 2015; Louie, 2017; Shah, 2017) is replete with the steep consequences to 
learners’ self-efficacy and achievement in mathematics when their abilities are dis-
missed. Significantly, teaching also changes as a result of educators holding onto 
these deficit narratives. In the next section, we explore the detrimental consequences 
to mathematics interventions in special education and “remediation”1 that result 
from educators’ belief in these deficit narratives.

1 The term remediation itself is associated with deficit narratives. To re-mediate conveys a need by 
an other to fix deficits in a learner by mediating again.
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1.3  Consequences of Deficit Narratives to Interventions

Because of the deficit (Gervasoni & Lindenskov, 2011) perspectives of learners 
experiencing MDs, interventions for them are often behaviorist at their root 
(Lambert, 2015). This means that there is a hyper-focus on procedural methods for 
computational procedures and rote fluency as interventions. Significantly, the com-
putation and fluency that is stressed for these learners is only a small part of the 
complexity and beauty of mathematics. Mathematics is much broader than the four 
operations of addition, subtraction, multiplication, and division promoted in fluency 
interventions – mathematics consists of: integrals, angles, spirals, spatial dimen-
sions, curves, proportionality, logic, conjectures, and generalizations, to name just a 
few. The hyper-focus on procedures and fluency of computation is often at the 
expense of conceptual understanding development. Ironically, for children experi-
encing MDs it may very well be conceptual understanding of mathematics that 
leads them to better fluency in procedures in mathematics (Landerl et al., 2004). The 
efficacy of typical interventions for children experiencing MDs, such as teaching 
rules to memorize steps, may receive mixed results (i.e., Zentall, 2007) because the 
child does not yet have a conceptual understanding of the underlying mathematics. 
It may also very well be that educators confuse teaching explicitly with teaching 
rules without understanding for rote procedural fluency. Explicit teaching, that is 
the modeling and explanation of steps in procedural fluency, has been an important 
teaching strategy in teaching those experiencing difficulties (i.e., Mills & Goos, 
2011). However, explicit teaching does not preclude understanding; in fact, the 
modeling done in explicit teaching should include the modeling of thinking for 
conceptual understanding.

Added to the ignoring of a significant component of mathematics in favor of 
procedural fluency, many of the other interventions for learning mathematics pro-
scribed for children experiencing MDs center around the peripheral supports (i.e., 
accommodations such as the way work is presented and discourse used by the 
teacher) to learning mathematics and not on the learning of mathematics itself (e.g., 
Houssart, 2004). Gervasoni and colleagues (2011), considering international input, 
summarized the state of affairs of mathematics interventions for students with spe-
cial learning needs from an international perspective:

…many mathematics programs and learning activities for students with ‘special needs’ 
attempt to teach mathematics using a conventional approach, but at a slower pace and with 
a more tunnelled view of a limited range of mathematics. In these cases, instructional inno-
vations were based on deficit models of learners and focused mainly on designing tools to 
aid communication between the teacher and student that enabled students to access class-
room mathematics programs and teaching (p. 308).

Indeed, through relying on deficit narratives and by placing a hyper-focus on flu-
ency and supports peripheral to mathematics, interventions for children with MDs 
have become fixated on the child as the object of study, not the mathematics.

Educators cannot look to policy to rectify the current hyper-focus on fluency and 
the discrepancy between procedural and conceptual interventions in mathematics 
for children with special learning needs. Neoliberal educational policy documents 
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and curricula, with their focus on skills, do not aid a move toward conceptual under-
standing either. These documents are usually focused on a narrow view of achieve-
ment as acquiring skills. Educators, in turn, interpret these policies by equating 
procedural fluency with mathematical understanding. As a result, interventions 
leading to robust understanding for children who are experiencing difficulty can be 
viewed as superfluous, especially when there are time constraints on teaching. 
However, in consideration of time constraints, practice of fluency does not have to 
be taught from a solely behaviorist method. Of note, there are other methods for 
developing fluency in computational procedures that extend beyond behaviorist 
methods (see Sect. 1.4 for discussions of some of  these methods). Building rela-
tional understandings (Fosnot & Dolk, 2001) in computation can also develop flu-
ency while at the same time strengthening conceptual understanding (Landerl et al., 
2004). Importantly, Fosnot (2010) has edited a book containing anecdotes of how 
building relational understandings has aided the growth of students experi-
encing MDs.

Some special educators (e.g., Cawley, 2002) have called for a shift from only 
“doing mathematics” (i.e., procedural fluency) to also “knowing mathematics” 
(p. 3) (i.e., conceptual understanding). While fluency and procedural competency 
are important for learning mathematics, conceptual understanding is essential, espe-
cially for access to higher order mathematical reasoning, and for appreciating aes-
thetic components of mathematics. Mathematics education research, with its 
specific theoretical perspectives around education and the thinking and understand-
ing of mathematics (Schoenfeld, 2000), including on the activity of doing mathe-
matics, offers the possibility to explore “the dynamic “knowing” that portrays the 
growth of understanding” (Pirie, 1996, p. xv) of children with MDs. Importantly, it 
is the exploration of mathematical activity that may create more equitable spaces 
and counters deficit beliefs (Moschkovich, 2010) about mathematics learners.

In the first sections of this chapter, we have constructed our argument that deficit 
narratives resulting in negation of ability result in: (i) learner’s constructing deficit 
beliefs about themselves and low achievement in school; (ii) behavioral interven-
tions that do not focus on learning of mathematics, only the peripheral of mathemat-
ics; and (iii) educators reifying the deficit narrative through preventing  learners 
experiencing MDs from actually getting access to mathematics. Access to mathe-
matics in all its diverse forms for learners experiencing MDs, then, is an imperative 
of equity. In the next section, we explore a theoretical framework for equity that is 
useful in framing these issues and a way forward.

1.4  Equity in Mathematics Education and Special 
Education Research

Although mathematics education research has addressed issues of equity for a quar-
ter century already, and equity is a concern for every aspect of schooling, many 
inequities that were discussed 25  years ago sadly still exist in mathematics 
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education today (Ellington & Prime, 2011). Wagner et al. (2012) assert that conver-
sations about equity in mathematics education became more robust in recent years 
because of research using sociocultural theoretical frameworks. Sociocultural 
frameworks are important to equity research because these frameworks shift the 
considerations from personal access, and the individual, to include social consider-
ations as well. As a consequence of these new considerations the view of the learner 
shifts from being an object to be studied, to being a part of situated, and complex 
interactions. In other words, equity, as viewed through a social constructivist lens is 
not a tangible possession, but relationships in and through people and their environ-
ment (Walshaw, 2011).

There have been a number of different explorations and definitions of equity in 
mathematics education research (e.g., Lubienski, 2002). Some of the scholars dis-
cussing equity take into account only a few of the aspects of equity (Bose & 
Remillard, 2011), or confuse equality with equity (Allexsaht-Snider & Hart, 2001). 
A more robust exploration, and one that is aligned with our current focus on the 
equity imperative for learners experiencing MDs can be found in the work of 
Rochelle Gutierrez. Gutierrez (2012, p. 18) gathered multiple aspects of equity and 
categorized them into four dimensions:

 (i) access,
 (ii) achievement,
 (iii) identity, and
 (iv) power.

Each of Gutierrez’s dimensions is complex, interrelated, and relates to inherent sys-
temic inequities within the school system and the teaching and learning of mathe-
matics. All of these dimensions are integral to equity but equity does not exist when 
only one is present, as each dimension has discrepancies that are filled by another.

Of Gutierrez’s (2012) four dimensions of equity, access is the first category. 
Access is related to “opportunity to learn,” a rhetoric popular thirty years ago that 
assumes everyone is equivalent. It addresses the learning supports that create oppor-
tunities for learning in the classroom. Access is an important aspect of equity, and 
as such all learners should have opportunities to access mathematical learning. Yet 
the responsibility to provide opportunities for learners experiencing MDs does not 
fall on the system itself. Instead, inequitably, the responsibility to receive opportuni-
ties falls on the individual learner. The individual learner must demonstrate how 
they can achieve similar to other “normal” peers in their age group or grade level 
before they can gain access (Dudley-Marling & Burns, 2014). Mathematics learn-
ing is then not a right (Moses & Cobb, 2001) where learners can only gain access 
through perceived and compared ability, but a reward for school achievement. 
Importantly, access implies something that will benefit the learner (Dudley-Marling 
& Baker, 2012). Subsequently, what is called “access to mathematics” for learners 
experiencing MDs is not actually access. Mathematics teaching that involves only 
memorizing small disconnected pieces of information without understanding or 
placing it into the grand structure cannot benefit the learner and therefore cannot be 
access, and cannot be a genuine opportunity for learning.
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Stemming from access, Gutierrez’s second dimension is achievement. 
Achievement describes the outcomes from access. These achievement outcomes 
include not only school-based, both K-12 and post-secondary success in mathemat-
ics, but also post-academic, including access to mathematics careers. Achievement 
as equity originated as a discourse twenty years ago as a way to view equity in rela-
tion to standardized assessment. Achievement in schooling is highly intertwined 
with the structural constraints of schooling on the learner experiencing MDs. 
Difficulties are often created and then constructed by a system that seeks to catego-
rize learners in terms of arbitrary referents of ability and normalcy (McDermott, 
1993). For example, in Ontario, our home province in Canada, some school boards 
have created a “scope and sequence” for their elementary schools. For each grade, 
the Ontario Elementary Mathematics Curriculum (Ontario Ministry of Education, 
2005) is broken down into a yearly schedule with prescribed days for coverage of 
topics. Because of the time constraints of the schedule, the result is that teachers feel 
a need to keep moving forward in the schedule even if their students are not ready 
to move forward mathematically or developmentally. The misalignment between 
students developing mathematically and the time constraints create gaps in under-
standing for learners. The system, having created difficulties, then rewards schools 
for creating these very difficulties through funding incentives that make it profitable 
for schools to diagnose difficulties (Stegemaan, 2016).

The third dimension of equity, identity, has arisen as an important aspect of 
achievement. School-based mathematics often implicitly vitiates the identities of 
those in the non-dominant culture by forcing them to conform to sometimes oppos-
ing perspectives of mathematics (Wagner & Borden, 2011). Thus, in order to achieve 
and participate in school-based and societal mathematics, students may begin to 
construct deficit views of themselves and their cultural backgrounds. These deficit 
views may then lead them to assume negative identities vis-a-vis mathematics. Like 
Megan, introduced above, learners experiencing MDs internalize the deficit meta- 
narratives that position them as unable. These meta-narratives are enacted through 
social interactions compelling learners to take on the identity of being “unable” 
(Heyd-Metzuyanim, 2013). Consequently, it is imperative that equity work also 
support learners experiencing MDs in their identity development as mathematics 
able learners and doers.

Finally, even if all the other dimensions of equity-access, achievement, and iden-
tity are in place, issues of power may still disrupt equity. Power may have an impact 
on equity concerning the personalized, social impact, and social justice components 
of mathematics – the spaces where students lose their agency: “voice in the class-
room,” “opportunities for students to use math as an analytical tool to critique soci-
ety,” “alternative notions of knowledge,” and “rethinking the field of mathematics as 
a more humanistic enterprise” (Gutierrez, 2012, p. 20). There is no mathematical 
equity without mathematical agency.

To sum up the dimensions: a learner has to have access to the mathematics that 
allows for school and life achievement, societal participation, and societal contribu-
tion (Gutierrez, 2012, p. 158), while simultaneously gaining the opportunity to cri-
tique the inequities of the dominant mathematics and their situation at the foundations 
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of their learning and achievement. In the final section, we use Gutierrez’s four 
dimensions (2012) of equity to support our way forward.

1.5  A Way Forward

An imperative of equity dictates that there must be change for learners experiencing 
MDs. However, change cannot happen in a vacuum; it must incorporate access, 
achievement, identity, and power. To do so we must endeavor to change the meta- 
narratives around learners experiencing MDs. This,

requires a focus on what these students can do, rather than lamentations of what they do not. 
That is, they argue that, instead of attempting to determine “normal” or “ideal” achievement 
and positioning those who deviate from supposed norms as problematic and in need of 
remediation, attention should be directed to how students’ mathematical ideas develop dif-
ferently and the pedagogical strategies appropriate to support these developmental trajecto-
ries (Healy & Ferreira Dos Santos, 2014, S125).

The meta-narrative of inability vs. ability around learners experiencing MDs is a 
false binary because it assumes that mathematics is one thing detached from all 
other knowings and abilities (Boylan & Povey, 2014). The first imperative of the 
way forward is to shift from a deficit discourse to an empowerment discourse. We 
can only accomplish this through identifying and becoming aware of our implicit 
biases (Ruttenberg-Rozen et al., in press) toward learners experiencing MDs and 
creating alternative narratives that supplant the deficit narratives.

The second imperative of a way forward is to provide many and rich opportuni-
ties for learners experiencing MDs to interact with real mathematics. The focus of 
mathematics interventions should be shifted toward “knowing mathematics.” It is 
important that mathematics be the medium, object or tool, through which interven-
tion takes place. Mathematics should not serve a secondary role in interventions. 
For access, achievement, identity, and power, the learner must interact and have 
access to real mathematics, not just computation. We cannot label someone as 
“unable” to do mathematics when they have not even had the opportunity to interact 
with mathematics. Mathematics on its own does not limit access. It is school math-
ematics through its testing, tracking, and rote teaching that limits access to the very 
few deemed worthy (Ernest, 2007).

The third and final imperative of a way forward is to provide inquiry activities 
that develop self-regulation in order to support rich opportunities to interact with 
real mathematics. We must change teaching practices to align with access, achieve-
ment, identity, and power. Many of the chapters in this book will introduce you to 
innovative and equitable practices that engage learners and are aligned with access, 
achievement, identity, and power considerations. We use this last section to expli-
cate two promising ideas we have been exploring in our research. Learners experi-
encing MDs can be empowered through inquiry-type practices (Ruttenberg- Rozen, 
2020) and activities that develop self-regulation (Jacobs, 2022).
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In recent years, mathematics education has increasingly shifted to inquiry and 
problem-based learning, which are closely related teaching practices that encourage 
active learning and critical thinking through student-led short and long-term inves-
tigations guided by interesting questions or problems. Inquiries can emerge from 
either the children’s or teachers’ interests, encounters with materials in the class-
room, or unexpected events (Jacobs, 2022). Problem-based learning is in effect a 
type of inquiry-based learning where the teacher presents a problem for the students 
to investigate. In open inquiries students formulate their own questions (Banchi & 
Bell, 2008). As inquiries unfold, students and teachers co-construct knowledge by 
sharing multiple perspectives.

During inquiries teachers observe and reflect on children’s interests, listen to 
children’s theories and ideas, watch how the children are engaging with the class-
room materials, interact and think about what concepts the children are exploring, 
document the children’s learning, and respond to the children in thoughtful ways 
through reciprocal actions (Fraser, 2012). Reciprocal actions occur when teachers 
ask children questions to provoke further thought, provide provocations that scaf-
fold the children’s learning, adapt the classroom environment to accommodate these 
interests, and take the children on outings to enhance their understanding (Stacey, 
2015). Inquiry and problem-based learning also enable students to build authentic 
personal relationships, develop their communication skills, share their own ideas 
and theories, and nurture their reasoning and problem-solving capabilities.

Inquiry is an especially valuable teaching practice because it enables students to 
learn how to self-regulate (Jacobs, 2022), which supports a positive mathematical 
identity and can empower learners. There is a broad consensus in the educational 
research that how well students do in school depends on how well they can self-
regulate (Blair & Diamond, 2008; Blair & Razza, 2007; Fitzpatrick & Pagani, 2013; 
Jacobs, 2022; McClelland et al., 2006; McClelland & Cameron, 2011; Ponitz et al., 
2009; Rimm-Kaufman et al., 2009; Shanker, 2013; Shanker & Barker, 2016; Welsh 
et al., 2010). Self-regulation is a reflective learning process where children become 
aware of what it feels like to be overstressed, recognize when they need to up-regu-
late or down-regulate, and develop strategies to reduce their stress and restore their 
energy. This process empowers children to see themselves as self- regulated learners 
(Shanker, 2013). Self-regulated learners have the ability to reflect critically on their 
strengths and weaknesses, set goals, monitor their progress, use strategies to assist 
in problem-solving, and seek assistance when needed (Zimmerman, 2002). Learning 
to self-regulate in the early years lays the foundation for these higher metacognitive 
functions as children grow older.

Self-regulation supports a growth mindset as it fosters the belief that intellectual 
and academic abilities are not fixed but can be developed, combatting deficit narra-
tives learners construct about themselves. Wang et al. (2019) found that when stu-
dents experiencing mathematics difficulties were encouraged to apply their 
self- regulation strategies on fraction word problems it improved their performance. 
Butler et al. (2017) argue that students bring motivationally charged beliefs to con-
texts. When students believe they can improve their ability by using learning 

1 Considerations of Equity for Learners Experiencing Mathematics Difficulties…



14

strategies effectively, they view errors as opportunities to learn and will persist 
when challenged. In contrast, students can feel anxious and disengaged from learn-
ing if they think they have little control over the outcomes.

1.6  Conclusion

Deficit narratives about learners experiencing mathematics difficulties are pervasive 
and destructive. But these deficit narratives can be replaced (Ruttenberg-Rozen 
et al., in press). It takes a lot of work to replace deficit narratives. Deficit narratives 
situate themselves deep into our psyche. The starting point to rooting out these lim-
iting biases is awareness (Mason, 2002).

In this chapter, we have sought to bring awareness to the myriad ways that deficit 
narratives impede learners experiencing mathematics difficulties. It is inequitable to 
limit opportunity and access to the myriad of benefits of mathematics. Yet, that is 
the situation for many learners experiencing MDs. It behooves us to make changes 
to increase opportunities for all learners. It is not that these learners cannot “do,” or 
“learn,” or “think about,” or whatever other action comes to mind, mathematics. It 
is that there are a variety of ways that learners learn. Societal meta-narratives have 
influenced us to discount learning, knowing, and ability that is not like the “norm,” 
whatever that may be. We have to make changes and these changes have to be based 
on Gutierrez’s conception of access, achievement, identity, and power, for the 
changes to be truly equitable. We have introduced 3 strategies as a way forward. Of 
course, there are other strategies that can be used – we have provided a starting point 
for equitable change.
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Chapter 2
Characteristics of the Learners

Kay Owens and Shirley Yates

Abstract The emphasis in this chapter is on individual students’ physical, cogni-
tive, social, and emotional characteristics and on the strengthening and use of their 
capabilities for learning mathematics. Strengths such as recognizing and using pat-
terns or having a good sense of structure or size, combine with alternative percep-
tual paths and long-term memory to assist with mathematical inquiry and learning. 
In particular, these strengths help in making and having imagery for developing 
mathematical concepts. Students then notice characteristics of the concept through 
visual and verbal processes leading to establishing relationships between physical 
and mental objects, attention and intention, conceptual development, heuristics and 
approaches to inquiry, generalizing, and reasoning. The learner’s attitudes, beliefs, 
emotions, confidence, willingness to try, and learned attitudes to themselves as 
mathematics learners impact on their mathematical identity.
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2.1  Introduction

The meso-aspects of schooling, such as education funding and curricula, teacher 
and school attitudes and beliefs about students’ capabilities as well as the immedi-
ate class, all impact on learning. Professional development, parent-school relation-
ships, the stipulated curriculum, and available resources (for a specific learner and 
in terms of human support) also impact on the inclusive classroom with its specific 
sociocultural approach to teaching. Inclusive teachers who notice student variability 
and support students concentrate on each individual’s mathematical thinking (Tan 
et al., 2019; Turner et al., 2012) and avoid a deficit approach that focuses on difficul-
ties or labels. The teacher takes account of what the student brings to the classroom 
although it may not be observable and measurable.

Early research by Reisman and Kauffman (1980) confirmed that students with math-
ematical learning difficulties (MLD) acquire content involving verbal comprehension, 
perceptual organization, and numerical reasoning at varying rates. Students’ searching 
strategies, retrieval of labels, or connecting of thoughts were found to impact the devel-
opment of mathematical thinking. In turn, working and/or long-term memory affected 
these learning processes. Many students were identified as having poor spatial relations, 
communication difficulties, or tiring easily (Reisman, 1978). However, there were also 
social and emotional issues such as the need for acceptance by others and uncertainty of 
their learning environment. Table 2.1 provides a summary of their findings upon which 
the rest of this chapter will expand and build with recent research.

Table 2.1 Aspects of learning relevant to students with special needs (Reisman & Kauffman, 1980)

Cognitive issues Physical abilities Social and emotional issues

Rate and amount of learning 
compared with peers
Speed of learning-specific 
content
Ability to retain information
Need for repetition
Verbal skills
Ability to learn symbol 
systems & arbitrary 
associations
Size of vocabulary
Ability to form concepts, 
relationships, generalizations
Ability to attend to salient 
situational aspects
Problem-solving strategies
Decision making and 
judgments
Ability to draw inferences, 
conclusions and hypotheses
General ability to abstract and 
cope with complexity

Movement resulting from 
mental processes
Visual perception disorders
Poor visual discrimination
Visual figure-ground 
distractibility
Form constancy problems
Visual-sequential memory 
deficits
Spatial relationship difficulties
Auditory perception disorders
Poor auditory discrimination
Auditory background 
distractibility
Poor auditory analysis
Sound-blending difficulty
Auditory sequential memory 
problems
Rules of general language and 
mathematics
Language rules related to 
phonology, morphology, 
syntactics, and semantics

Social
Rules of conduct, moral codes, 
values, customs
Modeling others’ behavior, 
awareness of environmental 
cues, interacting with others
Diplomacy, understanding 
another’s point of view, 
empathizing & enjoying others 
company including others’ 
intentions in decisions
Accepting help, balance 
between autonomy and 
dependency
Emotional
Feeling afraid, anxious, 
frustrated, joyous, angry, 
surprised
Becoming overly upset, 
moody, sad, happy
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Teachers can identify some learning difficulties but, to assist further, the strengths 
of the individual student need to be ascertained. Earlier identification methods for 
mathematics included Piagetian stage development theories related to conservation 
of number, length, area, or volume (Margetts & Woolfolk, 2019), but these are no 
longer considered necessary prerequisites for early arithmetic or measurement 
(Newton & Alexander, 2013). Conservation may develop during learning experi-
ences but is less significant than being able to compare lengths perceptually or by 
counting units (Jirout & Newcombe, 2018). Stage development has been largely 
replaced by trajectories, or learning progressions, that are tied to particular con-
cepts. Students with disabilities face the same issues as others on specific mathe-
matical topics (Marcone & Atweh, 2015; Booker, 2011).

2.1.1  The Importance of Variability

Students with MLD vary in the degree and mix of specific characteristics they mani-
fest, but also in how they learn (Reisman & Kauffman, 1980). Studying variance of 
learning assists teachers to recognize student capabilities and limitations (Vale 
et al., 2019). Variance also occurs with the particular topic together with possible 
developmental delays in strategy use (Geary et al., 1991). Further variance occurs 
with language and sociocultural factors (Hunter et al., 2018).

An example of this approach to noticing individual learning within inclusive 
classrooms is provided by Faragher and Clarke (2014), who conducted a year-long 
study of 15 classes that included a student with Down syndrome (DS). They found 
that with professional learning, teachers stopped focusing on individual student 
labels and began to realize the importance of including the student in class activi-
ties. Students with DS may learn well with visual approaches and/or blocks and 
symbols rather than oral word counting and number word reading. Their sense of 
number size is closely linked to these visuals and symbols. Teachers learned how to 
motivate and engage these students in specific mathematics by ensuring visuals or 
concrete materials were available and enabling them in the inquiry approach in 
ways that could be applicable to other students. Importantly, the curriculum was not 
modified and students were given challenging mathematical tasks (Faragher & 
Clarke, 2016; Faragher & Clarke, 2014).

Teachers can support students in the moment with specific questions and infor-
mation (Faragher & Clarke, 2016; Lambert & Sugita, 2016). To assist students with 
sharing, they might first ask students to share with a small group or they might 
check in with specific students to find out how the student is thinking in order to 
support his/her explanation. Teachers need to know the mathematical content well 
to do this. Furthermore, suitable materials such as linking blocks to represent a 
group may assist strategy development and explanation. Thus, students with MLD 
are better engaged in standards-based inclusive classrooms with multimodal 
problem- solving approaches (Faragher & Clarke, 2016; Lambert & Sugita, 2016).
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2.2  Overview of Learning

Three models of learning and problem solving are particularly relevant to students 
with MLD. The first model (Osborne & Wittrock, 1983)1 emphasizes the role of 
perception and memory in learning. It indicates students will test their immediate 
perceptions and conceptual development with long-term memory. Not only are per-
ceptions variable, e.g., visual, verbal, or kinesthetic, but also long-term memory 
varies since it may be retrieved more as a visual or a verbal memory. Difficulties 
might occur with any one of these aspects or their connections and so having this 
overview is particularly useful when thinking about a particular student (Fig. 2.1).

Osborne and Wittrock (1983) and Goldin (1987) emphasized visual and verbal 
processing for learning, but Goldin showed the importance of affective characteris-
tics in problem solving and indeed learning that is seen as active problem solving. 

1 This model is influenced by information processing theories.

Fig. 2.1 Model based on Osborne and Wittrock’s (1983) model of learning
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Fig. 2.2 Goldin’s (2000) model of affective pathways and representations in problem solving

“Problem solvers use affect to make planning and heuristic choices” (Goldin, 2000, 
p. 214). The interactions of columns 1 and 2 in Fig. 2.2 indicate that students prog-
ress from the initial curiosity and puzzlement by exploring the situation. Having 
clues prepared to help students through a problem or inquiry encourages them 
through a mental block, especially if they are unfamiliar with a particular part of the 
problem. Clues might be a diagram, definition, enabling question, or hint about try-
ing something. For an inclusive classroom working in groups, these clues might be 
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in a set place where any group can access them when needed. Commonly heard in 
mathematics classrooms in Australia is the encouragement “Are your brains 
sweaty?” indicating students have been sustaining effort to solve the problem. For 
students with MLD who are accustomed to putting in extra effort to overcome their 
difficulties, effort in mathematics problem solving or inquiry is a strength. Students 
may have imagery insights and gradually develop pleasure and establish both math-
ematics conceptual knowledge and a positive self-concept. Utilizing expected learn-
ing trajectories to plan inquiry tasks (Johnson et  al., 2017) and hints to avoid 
discouragement is important for positive attitudes and beliefs.

One approach for task design is to take account of Pirie and Kieren’s (1994) 
model (Fig. 2.3), which shows that for learning, a primitive knowing occurs before 
the making of an image that is held and used for noticing properties. Encouraging 
students with experiences for developing imagery, noticing and articulating what 
they notice, comes before generalizing or setting up the method. Attention to appro-
priate features and assessing for relevance may require the student to return to an 
earlier stage (called folding back) before moving forward, reminiscent of the check-
ing in Osborne and Wittrock’s (1983) model (Fig. 2.1).

A summary model of learning (Fig. 2.4), which emphasizes the ecocultural con-
text for mathematical learning, is based on the above models together with Owens 

Inventising
Structuring

Observing

Formalising
Property
Noticing

Image
Having

Image
MakingPrimitive

Knowing

Fig. 2.3 Pirie and Kieren’s (1994) model of learning
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Self-regulating learner identity

Ecocultural 
mathematical 
identity

Cognitive 
- goal setting
- reasoning, including 

visuospatial reason
- planning
- self-evaluating
- reviewing
- information seeking
- using a tool box of 

strategies
- structuring learning 

environment

Affective
- Engagement: 

attention & intention
- imagination & 

creativity
- resilience in problem 

solving
- confidence
- sense of ownership
- values & beliefs

Ecocultural
mathematical context
- mathematical problems
- ecocultural assistance 
- ecocultural tools
- ecocultural supports 
- valuing the identity

Ecocultural identity
- responsive social interaction
- clear access to social meaning and 

relations
- responsive self-regulation
- co-participation
- alignment

The 
Learner

Engaging in 
mathematical 
thinking

Engaging 
others

Responsiveness

Fig. 2.4 Owens (2015) model of self-regulation and mathematical identity

(2015) ecocultural (cultural and ecological) research and that of Jonassen et  al. 
(1999) on self-regulation. An ecocultural context that values all students developing 
a mathematical identity relevant to their circumstances will have a positive impact 
on their mathematical development and identity. The multifaceted description of 
self-regulation indicates that it is more than just controlling distractions that take the 
learner’s attention away from the focus of learning (Lonigan et al., 2015).

Student responsiveness results from ecocultural identity and the cognitive and 
affective aspects of their learning. They develop a wide range of emotional and 
affective characteristics that impact on their learning. In particular, two aspects of 
engagement, attention and intention, influence responsiveness. Further, perception 
by which a students’ surroundings (ecocultural environment) enter cognition is a 
significant aspect affecting the learning of students with MLD and often plays a part 
in their difficulties. However, perceptual modalities are malleable resulting in 
improved capabilities (Sinclair et al., 2016).

The aspects of self-regulation that are key to learning and establishing a mathe-
matical learning identity are the ability to use strategies, make decisions and have 
ownership of mathematical thinking and learning despite the complexities that arise 
from context and relationship building. Further, students’ responsiveness to the 
mathematical inquiry situation is to be valued. It is important to realize learning 
occurs through natural inquiry, as well as through guided learning in schools and 
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other settings. Through these opportunities students can develop self-regulation, be 
empowered, and develop an identity related to mathematics learning.

Self-regulation is complex and includes executive control such as organizing 
capabilities as well as impulse control, working memory, and attention shifting 
(Joswick et al., 2019; Lonigan et al., 2015). Adding to this complexity, there may be 
developmental delays in either language or mathematical capabilities as well as 
other language issues such as cultural and language differences or speech and hear-
ing issues.

These general understandings about learning are further explored by expanding 
on the following characteristics of learners, how these characteristics impact math-
ematics learning, how to manage the learning and to build on learners’ hidden 
strengths:

• Self-regulation: Executive function and organizing capabilities
• Perceptual modalities and memory
• Incidental learning and intuition
• Verbal reasoning
• Responsiveness: Attention and intention
• Emotional and other affective characteristics
• Inquiry, ownership, self-regulation, empowerment, and identity

2.3  Self-Regulation: Executive Function 
and Organizing Capabilities

Self-regulation, managed through the executive function, involves heuristics that 
work toward students’ goals. This function is a multi-faceted capability (Cirino & 
Willcutt, 2017). It includes controls on acting impulsively or shifting attention away 
from the learning space, working memory, and cognitive flexibility or deliberately 
shifting attention (Joswick et  al., 2019). If a student shows unhelpful repetitive 
behavior then encouraging a slight shift in attention may harness persistence and 
encourage cognitive flexibility. Joswick et al. (2019) provide an example of a game 
to increase attention and flexibility while also reducing impulsive behavior. In this 
game, the player has to remember the position of cards as if by x-ray vision but actu-
ally by focusing on the distance the numbers are from the end of the line of num-
bers. Attention shifting and cognitive flexibility benefit students classified as 
hyperactive or lacking attention, when shifts in attention are noticed by the student 
and reflected on to see if they assist with the problem at hand. Generally, thinking 
flexibly is regarded as a positive for mathematical problem solving and thinking (De 
Corte et al. 2011).

Self-regulation and executive function involve planning, attention, and simulta-
neous and sequential processing. Difficulties with simultaneous or sequential pro-
cessing are not necessarily associated with a particular kind of disability 
(Kroesbergen et al., 2003). However, it is important to be aware of these issues and 
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take account of them when planning and teaching individual students. Students who 
process visual inputs simultaneously may shift attention readily. However, those 
with visual impairments who process sequentially or use kinesthetic learning tools 
may scan or connect more slowly to existing schema in long-term memory. Further 
learning structures are needed to assist their attention and flexibility.

Executive function also relates to adaptive motivational patterns that promote the 
establishment, maintenance, and attainment of personally challenging and valued 
achievement goals (Dweck, 1986). Student learning is focused on seeking challenges 
and persisting in the face of obstacles. By contrast, a maladaptive motivational pattern 
is seen in those who fail to establish reasonable and valued goals, display resistance 
toward the achievement of such goals, or set goals that easily sit within their reach. 
This is also described as a “helplessness” pattern with low persistence and challenge 
avoidance, showing negative cognitions when faced with adversity or challenge 
(Dweck, 1986, p. 1040). During mathematics lessons, such students behave as if they 
believe they are powerless to influence the outcomes of their learning (Yates, 2009). 
However, teachers may encourage these students to set small achievable challenges 
and increase self-regulation. Interestingly, Joswick et al. (2019) concluded that par-
ticipating in mathematical inquiry will develop executive function.

2.4  Perceptual Modalities and Memory

Students vary in their capacities to perceive. While sight, hearing, touch, and move-
ment senses are important in learning mathematics, how this information is received 
in the brain varies. Perception and visuospatial capabilities2 are complex and include 
scanning, panning, zooming, rotating, reflecting and translating images, inspecting 
and classifying patterns, folding complex figures, combining figures, and seeing 
parts of figures (Kosslyn & Pomerantz, 1977; Pylyshyn, 1994; Tartre, 1990). In 
addition, perceptual speed, serial integration, closure speed, visual memory, and 
kinesthetic integration are involved (Owens, 2015). The term “visuospatial” recog-
nizes that mental imagery may develop from various perceptual sources (e.g., physi-
cal actions, touch, sight, and sound) and that visualizing has a spatial component 
(arrangement and meaning in 2D and 3D space). Visuospatial reasoning incorpo-
rates “the ability to represent, transform, generate, communicate, document, and 
reflect on visual information" (Hershkowitz, 1990, p. 75). It involves developing 
and relating concepts to physical embodiments and computer-generated imagery 
through which students develop certain conceptualizations (Bauersfeld, 1991). 
Teachers need to be aware that visuospatial capabilities may not be readily described 
by standard testing (Newcombe, 2017), but an awareness of these aspects will assist 
teachers to notice particular children’s difficulties and so assist them.

2 Research on spatial abilities has expanded so the term visuospatial capabilities represents the 
research better.
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2.4.1  Visuospatial Capabilities and Number Learning

Many training studies have shown visuospatial capabilities are malleable through 
experiences involving touch, movement, sight, and recognition of the position of the 
body (Sinclair, et al., 2016). Further, early intervention and recognition of a percep-
tual difficulty may lead to strengthening learning through alternative pathways. For 
example, a very able student with good sight but poor visual perceptual connectivity 
in the brain found it difficult to learn new material by reading. He participated in 
physical balancing activities and learned well from aural perceptual connectivity. 
With his family and later computer-aided facilities to read textbooks and notes, he 
completed his schooling, university, and doctorate and became a world-renowned 
professor in his business management field (name withheld for privacy reasons, 
personal communications, 1983, 1993, 2020).

When there was an emphasis on learning to count to understand number, studies 
showed students may rote learn basic counting and arithmetic but develop under-
standing later (Reisman & Kaufman, 1980). More recently, there have been alterna-
tives to counting to learn about number size and arithmetic. Sense of size seems to 
be a natural ability (Yen et al., 2017), which is often associated with visualizing and 
an approximate number system (Geary, 2013). Physically comparing sizes assists 
this sense. Young students may numerically order or position numbers on a visual 
line to understand number size (Sella et  al., 2017). They may then appreciate 
“greater than” and “smaller than” without counting and relying on counting order. 
Difficulties with remembering counting order may create anxiety in students. Thus 
alternative ways are needed for developing associations in early arithmetic such as 
learning doubles or chunking a group such as five within the group or making asso-
ciations with the end number of the group such as 8 being two number before 10.

One aspect some students use is the ability to subitize numbers, that is, recogniz-
ing the number of a group without counting, just by a quick look. Students can 
innately distinguish 2 from 1 and 3 but other small numbers are quickly recognized 
and indeed quite large numbers may be subitized if configured in familiar patterns 
(Miravete et al., 2017; Moscoso et al., 2020). Their visuospatial capability encour-
ages recognizing, say 5 and 1, and associating it with 6 (see Chap. 12 for more 
details) although spacing between objects or dots may be a difficulty 
(Macdonald, 2015).

Visual representations can provide a holistic view of a mathematical concept. 
When a particular model is consistently used with the length(s) varying then a holis-
tic approach cements the concept. For example, knowing multiplication deals with 
multiple equal groups permits equal concrete rods, tapes, virtual rectangles, or 
jumps along the number line to be repeated to represent the multiplication. Using 
the empty number line or the tape or rectangular model for arithmetic word prob-
lems (see Xin, 2012; also Chaps. 13 and 14 in this book for this conceptual model) 
provides a consistent visual representation by which the arithmetic operations may 
be established. Interestingly, Soltanlou et al. (2015) found multiplication task per-
formance was correlated with verbal working memory (WM) in third graders but 
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with visuospatial WM in grade four. Visuospatial processes develop from pictorial 
static images to ones that are dynamic and associated with patterns, playing an 
increasingly important role in enhancing mathematical proficiency (Owens, 2015).

Visuospatial WM processes are important for the representation and manipula-
tion of quantity information. Visuospatial WM is part of the executive function and 
helps scaffold the early stages of learning by providing support for building new 
semantic representations (Soltanlou et al., 2015). The central executive component 
is also required at subsequent stages for more complex problem-solving procedures, 
including the active maintenance of intermediate results and rule-based problem 
solving (Menon, 2016). The phonological loop may be essential in remembering 
word order when counting but the central executive and attention filters are more 
important in calculations that require some updating in the WM (e.g., in exchanging 
1 ten for 10 ones) (Iuculano et al., 2011). Visualizing also assists students to focus 
on key facts and avoid the expectation that rote learning will result in recall because 
memory can be a major issue if too many steps are involved (Bird, 2013). Students 
will fold back to their visual imagery (see Pirie & Kieren’s model in Fig. 2.3) to 
focus on the needed fact rather than fail in rote learned recall. Visual methods such 
as the empty number line mentioned above, and area models for fractions and mul-
tiplication presented in later chapters, are important holistic tools once manipula-
tives have been used to support meaning making.

Students with hearing impairments who use sign language and blind students 
who have heightened spatial awareness may have a strength in visualizing differ-
ences in shapes and size of spaces (van Dijk et al., 2013). In another study, deaf 
children were able to explain their mathematical reasoning in solving problems 
through drawings and diagrams (Nunes & Moreno, 2002). Faragher and Clarke 
(2014) found children with Down syndrome could achieve size differences visually 
but were unable to recall counting word order. Many students with MLD were able 
to visualize the mathematics involved and draw the mathematics or make a model 
(Lafay et al., 2016).

Some students have low visuospatial capability that is manifest when they are 
required to respond in a written form. Venneri et al. (2003) found students with poor 
visuospatial capability could carry out a number of calculations orally at the same 
level as those with average visuospatial capability but had difficulty with written 
subtraction involving the equal addend method in which 10 is added to the ones 
column at the top and to the tens column at the bottom (referred to as “borrowing 
and paying back”). As an alternative approach to this 3-digit vertical algorithm for 
number subtraction, the use of the empty number line or box method (see above and 
Chap. 13) could be more fruitful despite involving visuospatial capability because it 
promotes better connections to physical representations and meaning. Hence, the 
utilization of a multi-perceptual approach to teaching is important to ensure stu-
dents with differing capabilities can participate. Using only symbols and numbers 
was found in a longitudinal study on magnitude processing to be an issue rather than 
WM for children with persistent MLD (Vanbinst et al., 2014).

If there is very limited visual sensory receptiveness, then another input may be 
required, such as touch assisting people with limited vision (e.g., to read Braille). 
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An alternative perceptual route may be improved under careful training and moti-
vating circumstances. There may be mathematical occasions when this is particu-
larly relevant. Healy and Fernandes (2011) argued that there is a need to take 
account of immediate cultural circumstances that arise from limited vision:

gestures are illustrative of imagined re-enactions of previously experienced activities and 
that they emerge in instructional situations as embodied abstractions, serving a central role 
in the sense-making practices associated with the appropriation of mathematical meanings. 
(p. 157)

Providing physical experiences of mathematical concepts for students with limited 
vision enables concepts to be perceived and mentally reasoned with (visuo)spa-
tially. The activity can mediate mental change through the use of a manipulative tool.

The inclusion of the tool in activity hence alters the course both of the activity and of all the 
mental processes that enter into the instrumental act. In this way, tools do not only facilitate 
mental processes, they transform, they re-organise and they shape them. (p. 158)

One difference from the holistic perception possible through sight is that touch per-
ception is sequential with a gradual analysis from the parts to the whole. However, 
the tool empowers a different yet effective cognitive practice. Coordination within 
the embodiment using touch, tools, and gestures is one form of making mathemati-
cal meaning along with speech and symbols (Radford, 2009).

2.4.2  Visuospatial Reasoning, Fractions, 
and Proportional Reasoning

Visuospatial reasoning, attending, and overall sense of size are important for frac-
tion learning. Doing and making fractions by folding paper establishes the visuo-
spatial relationship of the part to the whole so the kinesthetic perception strengthens 
the visual perception. However, Fuchs et al. (2017) have shown it is important to 
concentrate on the magnitude of the fractions for students to learn effectively about 
them. A group of at-risk students were physically and visually noting the size of 
different fractions by comparing areas and positioning them on a number line. Over 
the 5 years of the study, this group surprisingly outperformed the regular class in 
improvements on number magnitude, addition and subtraction of fractions, and 
conceptual understanding of fractions in terms of size and part-whole meaning. Not 
only is it helpful for students moving on to ratio and rate problems to have a sense 
of the magnitude of a fraction represented on the number line but also for them to 
understand that equivalent fractions are multiple ways of expressing the same frac-
tion (see Chap. 15 for more details).

Another study of the value of visualizing for ratios or scaling was carried out by 
Möhring et al. (2015). In a map task, 4- and 5-year-olds (N = 50) were asked to 
point to the same position shown on a map in a larger referent space on a touch 
screen. The sizes of the maps were varied systematically, such that some trials 
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required scaling and others did not. In a proportional reasoning task, children were 
presented with different relative amounts of juice and water and asked to estimate 
each mixture on a rating scale. Again, some trials required scaling, but others could 
be solved by directly mapping the proportional components onto the rating scale. 
Children’s errors in locating targets in the map task requiring scaling were closely 
related to their performance in the proportional reasoning task even after controlling 
for age and verbal intelligence. These results shed light on the mechanisms involved 
in the close connection between spatial and mathematical thinking early in life 
(Möhring et al., 2015).

2.4.3  Visuospatial Reasoning and Holistic Learning

Schema and holistic learning are important for grounding conceptual development. 
For this reason schema-based instruction provides a teaching strategy that encour-
ages students to “recognize underlying problem structures, represent problems 
using visual-schematic diagrams, plan and solve problems, check the reasonable-
ness of answers”, think about what they are doing and thinking (often called meta-
cognition), and make connections with other knowledge (Im & Jitendra, 2020, p. 5). 
The researchers’ schema-based instruction helped students organize their thinking, 
decide if they were doing a part-part or part-whole proportional reasoning question, 
represent the problem visually and record initial numbers so there was an opportu-
nity to devise a plan to solve the problem.

Visual representations were less likely to benefit students with lower mathemati-
cal ability or younger students (Booth & Koedinger, 2012). For this reason, it is 
important to supplement with language and active inquiry so the initial steps of 
finding out about the concept can be initiated and the general abstraction or sorting 
out of commonalities and differences may then be grasped by students. At the same 
time, students will have some ownership and self-direction of the work involved. 
The bigger picture or schema is not lost and the problem for inquiry keeps them 
engaged (Owens, 2015, p. 257).

2.5  Incidental Learning and Intuition

One issue for students who have limited hearing or sight is that some incidental 
learning may not occur (Norris & Norwich, 2005), as the field of perception may be 
limited. Incidental learning was considered by van Hiele (1986) as the key to under-
standing children’s intuitive learning. Teacher awareness of this feature is important 
so students can begin the important primitive knowing mentioned in the Pirie and 
Kieren (1994) model (Fig. 2.3). Similarly, a learned difficulty may arise for students 
who have developed their own conceptual understanding based on limited 
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experiences. They may have missed some schooling or been physically unable to 
participate at the same rate as other students. Procedural teaching can reduce math-
ematics learning for students with these limitations. By contrast, conceptual teach-
ing and asking students the right question about what they understand about the 
problem situation and why they carry out a procedure will focus their attention on 
relationships and concepts rather than rote-learned actions (Booth, 2011). As 
Siemon et al. (2015) point out:

A useful approach is to ask two questions: What have you tried? What are you trying to find 
out? These questions allow students to summarise what they have done, often clarifying 
their approach to themselves, and also to look to what they need to find out. These questions 
also allow the teacher time to understand the approach the learner is taking. (p. 156)

When these questions are asked any missed incidental learning or mislearning 
may be noticed. Intuitive beginnings can be an advantage in getting started but 
they may also make some later mathematics more difficult. For example, a prob-
lematic intuition occurs for children who see an equals sign as related to some-
thing happening on the left side creating the right side so a statement like 10 = 7 
+ 3 fails to have meaning (Kieran, 1981). For this reason, students need to fold 
back to an earlier level of image making such as the balance for equality (Pirie & 
Kieran, 1994) to develop their understanding of the equality of this statement. 
Then the visual symbol for equality is not limited to getting an answer to an 
operation.

Intuitive understanding of repeated addition for multiplication does not apply 
easily to multiplying by a decimal fraction or a number greater than one with a 
decimal in which the unit digit face value is small compared with the decimal 
fraction (e.g., 1.25 is harder than 3.25) (Fischbein et al., 1985). For division, deci-
mals become more problematic in the construct of division as equal parts removed 
or equal sharing. When the decimal is the operator, the lack of intuitive under-
standing is worse. The teacher needs to bridge from multiplication and division 
with first concrete and then visuospatial representations with the rectangular area 
model and extend this for the fraction and decimal fraction to aid intuition or in 
Pirie and Kieren’s model (Fig. 2.3) making a visual image upon which to return if 
needed in order to move forward. Visuals such as shown in Fig.  2.5 for 1.25 
x 3 help.

Perceptual difficulties occur with numerical transcoding, that is reading written 
decimals, and with conceptual transcoding, that is connections between representa-
tions of percentages, decimal fractions, and vulgar fractions (Berch, 2016). 
Additional time is needed to make these connections. Thus, the intuitive propor-
tional reasoning sense that is said to exist is not sufficient to assist with these per-
ceptual and conceptual transcodings. Spatial awareness of proportions and 
proportional reasoning (see Fig. 2.5) builds on intuitive understanding of propor-
tions and seems to be a fruitful way forward for students for whom the symbolic 
does not contain much meaning (Matthews & Hubbard, 2017).
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1.25 =
1  +   .25

3

1.25 x 3 = (1 +.25) x 3
= 1 x 3 + .25 x 3
=    3    +   .75
=    3.75

3.75/3   = (3 + .75)/3
= 3/3 + .75/3
=    1  +   .25
=      1.25

Fig. 2.5 Visualizing 
multiplication and division 
of decimals

Butterworth (2018) continues to show that innate numerosity that acts like an 
accumulator (linked to active3 spatial memory) varies from person to person. Low 
numerosity levels may be hereditary or cultural and not linked to general cognitive 
capabilities. Culture provides the language to support numerosity for identifying 
numerical size and calculations. Early recognition and intervention is needed to 
support students with active spatial numeracy for establishing relative size. However, 
this point raises the issue of verbal reasoning and cultural and language 
differences.

2.6  Verbal Reasoning

2.6.1  Awareness of Cultural and Language Differences

Students with cultural and language differences may also require teachers to adjust 
their strategies. Most of these students, even if able, may feel undervalued unless the 
teacher and peers are aware of the importance of learning and adjusting to new cul-
tural and linguistic requirements of schooling and mathematical ways of learning 
(Atweh et al., 2011). Tiredness is common, as the student is often processing so 
much more than the rest of the class, having to establish meaning in two languages. 
Parental expectations and assistance vary, but may include extra tuition, additional 
learning similar to their own schooling, and different ways of working mathemati-
cally (Planas & Civil, 2013). The teacher needs to understand the student better and 
parents should be invited to assist in planning appropriate learning and sharing of 
cultural mathematics, realizing that this will benefit the whole class.

Murray (n.d.) provided a number of approaches for assisting students with lan-
guage differences. For example, she encouraged teachers and students to understand 
technical mathematical words by reading, saying, and writing them, to understand 
comparative words like “more than” or “less than”, and to play games in which pairs 
of students take turns with one reading words or definitions and the other choosing 
a picture or drawing, or one describing the picture and the other giving the word to 
go with the description.

3 Activities like jumping and moving objects a number of spaces, arranging objects into patterns, or 
estimating and walking a longer or shorter length assists this memory.
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2.6.2  Complexity and Variability in Verbal Reasoning

In a comprehensive study analyzing a range of measures in a large cohort of chil-
dren, Peterson et al. (2017) confirmed that although numerosity difficulties can be 
independent of verbal capabilities, verbal comprehension accounts for more diffi-
culties in language and mathematics than attentiveness. A large study, with data 
collected over 24 years (Barbaresi et al., 2005), showed that difficulties with math-
ematics (between 7% and 14% diagnosed each year) correlated with reading diffi-
culties (between 43% and 64% of this MLD cohort), usually with left-right visual 
issues. Other factors included slower than usual developmental cognitive growth, 
low sight, aural perceptual capabilities, or movement difficulties.

Students with Down syndrome (DS) present a similar range of reading difficul-
ties as other students (Næss et al., 2011). Næss et al.’s meta-analysis of 15 articles 
showed children with DS have low capabilities in all language domains except 
receptive vocabulary. This may be due to the generally low cognitive skill required 
for nonverbal responses, such as pointing to a picture, whereas measures of gram-
mar and expressive vocabulary require multiple levels of processing, such as defin-
ing and pronouncing words, and understanding situations and pictures. Grammatical 
skills are cognitively more complex including sentence memory and listening skills. 
Children with DS have lower verbal short-term memory compared with those of the 
same non-verbal mental age. Hearing loss occurs in about two-thirds of children 
with DS (Roizen, 2002). It is therefore important to recognize how these issues may 
impact on mathematics learning. For example, understanding word problems or 
remembering a string of multiplication facts if there are no associated relationships 
and patterns makes learning difficult. In addition, words in mathematics that may 
sound the same, like “side” and “size,” need to be carefully articulated and the 
meaning explained in a way that is supported by non-verbal physical or visual 
explanations.

Some students vary with their ways of understanding words. For example, some 
students with an autism spectrum disorder (ASD) are more likely to use words liter-
ally rather than metaphorically. For this reason, some of the metaphorical and tech-
nical language of mathematics such as slope, tangent, or area may be misunderstood. 
General receptive and expressive communication may also be difficult. However, a 
meta-analysis of 18 studies showed the average mathematical capabilities for high 
functioning students with ASD to be just below standardized expected results. This 
was considered clinically manageable4 (Chiang & Lin, 2007). The proportion of 
students with ASD who were below average in arithmetic (around 23%) was far less 
than for reading difficulties (around 60%) (Mayes & Calhoun, 2006).

Teachers have found specific language difficulties can be managed with strate-
gies such as using socially appropriate, pragmatic language for communication; 
clear, stepped tasks or responses; consistent expectations; and avoiding students 
being overwhelmed by words, noise, other stimuli, or change. Thus the processing 

4 There may be some students who are outstanding mathematically.
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of sensory information needs to be considered. Tiredness may necessitate further 
breaks, interests may need to be established and other speech difficulties may also 
need addressing (Stokes et al., 2017). Reading and understanding teacher and peer 
gestures is also relevant whether as social communication or in mathematical expla-
nations. Visuals (gestures, objects, and pictures) for activity and concepts may assist 
and need to be associated adequately with meaning. There may be gender differ-
ences in the occurrence of some characteristics, such as more boys than girls having 
to learn socially appropriate pragmatic communication.

Another language area is that of expressive communication, which may also 
vary. For some this is physical or it may be the lack of cortical executive control. For 
others, augmentative or assistive technology may provide the means for expressing 
thoughts and words but some education for associating the output of the technology 
with its purpose may be required. For explaining early mathematical thinking, con-
crete materials may be moved or arranged appropriately to provide expressive com-
munication, and software may replace handwritten mathematical symbols. Some of 
the outputs of technology are also learning tools. For example, having a calculator 
add the same number repeatedly5, the screen produces the numbers for group (or 
skip) counting, that is multiples of the number. This may be an effective learning 
tool. Similarly, work with a program like GeoGebra assists students to see tables 
and graphs develop together and to associate these with algebraic expressions to 
carry out inquiries with technological assistance.

2.7  Responsiveness: Attention and Intention

As students use various heuristics for inquiry, their responsiveness depends on their 
attention and intention (Owens & Clements, 1998). Intention is particularly influ-
enced by the ecocultural identity and affective characteristics of the learner. 
Attention results from past experiences and knowledge but also the immediate con-
text and perceptions (see Fig. 2.1 and Fig. 2.4). In Pirie and Kieren’s (1994) model 
(Fig. 2.3), and in common with many current mathematics discussions on inquiry, 
the importance of noticing certain aspects of a mathematical situation is highlighted 
(see, for example, Owens, 2020). Chief among these is noticing patterns, especially 
when establishing efficient arithmetic operations, a geometric shape category, alge-
braic relationships, and proportional reasoning.

Focus of attention is often considered an issue for students with MLD. Furthermore, 
attention may be influenced by the surroundings of the image, object, or language 
being learned. Complexity, colors, directionality, multiple, or limited sensory inputs 
can be distractors. However, the role of attention and how it can be influenced is 
worth considering. There are some in-the-moment approaches, such as carefully 
planned encouragers such as hints, useful in-the-moment information, and 

5 For example, +3 = = = provides the multiples of 3.
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mirroring the students’ words or actions, to improve immediate attention. Noticing 
is encouraged by attending to expectations. For example, if students know the num-
ber of sides often provides the clue for naming a shape, then they will attend to and 
notice the number of sides. If students know a good procedure for adding numbers 
is to count on from the bigger number then they will look for and notice the bigger 
number. These are executive controls or heuristics.

Attending to relevant features can be influenced by intentions, affective charac-
teristics, and the past and immediate contexts including teachers, peers, physical 
objects, routines, and expectations. Contexts can be culturally established, so it is 
important for teachers to ensure mathematics is made as culturally relevant as pos-
sible. The culture and climate of the classroom is also significant. Teachers’ model-
ing of positive affects and facilitative attitudes, beliefs, expectations, and attributions 
can encourage students to enjoy mathematics and be confident in the learning situ-
ation (Yates, 2009). A desire to take ownership of the mathematics and to try out 
something new in an inquiry will help students to attend. Hence, a student who is 
less attentive needs to have a strong intention to do the mathematics, which can hap-
pen if the mathematics is relevant.

Attention is also assisted if the immediate recall of memory related to the inputs 
can be readily drawn upon. These might be a word, object, or diagram, preferably 
chosen by the student or otherwise very familiar to them. For example, a student 
who readily remembered even numbers (2, 4, 6, etc.) and loved cars had difficulties 
with multiplication concepts. However, he could count the four wheels on cars 
rhythmically (2, 4, 6, 8, 10, 12) in order to count in fours. His prior counting interest 
and social interest were used for the multiplication concept and his mathematics 
bloomed. Some students are particularly good at remembering sequences or seeing 
patterns, for example, students with ASD, and these strengths should be utilized by 
the teacher.

Attentional control is important in keeping information relevant to the problem 
in mind, no matter how basic, while processing other information (Goldin, 1987; 
Owens, 2015). Attentional control impacts during early number learning on both 
“numeral magnitude mapping and early explicit number system knowledge” (Geary, 
2013, p. 24). The already existing approximate number system (Pirie and Kieren’s 
image making, Fig. 2.3) influences thinking about magnitude and involves the rec-
ognition of differences in the size of numbers. The larger the difference, the more 
likely students with MLD will recognize the different sized numbers. Symbols and 
words begin to have meaning when associated with numbers in an approximate 
number system. By comparison, the explicit number system incorporates knowing, 
for example, the number one more than or one less than a given number. Imagining 
patterns will draw attention to size differences for close numbers as illustrated in 
Fig. 2.6.

Mathematical processing can also be encouraged through triggers. These might 
be a word or acronym, such as letter mnemonic strategies like SOLVE “Study the 
problem, Organize the facts, Line up a plan, Verify your plan with action, Examine 
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Fig. 2.6 Patterns for 
comparing numbers with 
little difference in quantity

your results” (Freeman-Green, O’Brien, Wood & Hitt, 2015). Similar steps may be 
used regularly, like the inquiry approach of “tuning in, finding out, sorting out, 
going further, act and reflect” (Murdoch, 2019), or a flexible diagram like the con-
ceptual model method for word problems (see Chap. 13).

2.8  Emotional and Other Affective Characteristics

Emotional issues may arise for students with MLD. They may internalize and exter-
nalize problems (Prior et al., 1999). In a six-year longitudinal study, 29 students 
who continued to have severe issues with number and arithmetic were matched for 
gender and intelligence test scores (minus the arithmetic subtest) with students who 
had mild issues with arithmetic (Auerbach et al., 2008). All students showed some 
difficulties with attention and externalizing behaviors but these difficulties were less 
evident in those whose number and arithmetic knowledge improved slightly. This 
was a comparative study in which gender, language difficulties, and attention-deficit 
hyperactivity disorder symptoms were taken into account. Compared with the 
norms given in the testing manual, at the start of the study males had more internal-
izing, externalizing, and attention difficulties whereas females showed difficulties 
only with attention. In terms of the model of mathematical thinking identity, it is 
argued that a persistent severe difficulty with arithmetic is likely to indicate a low 
sense of identity that is portrayed in externalizing behaviors rather than in using 
mathematics productively.

MLD may be a result of emotional states such as anxiety, frustration, and disin-
terest that may have developed in association with another cognitive, physical, or 
social difficulty (Smith et al., 2012). Anxiety commonly occurs when students need 
to complete an activity under time constraints, lack procedural knowledge, or find 
problem-solving onerous. If teachers encourage students to go from a basic strategy 
like the conceptual model method (Chap. 13), it increases understanding and suc-
cess but it might take them longer to complete a question than students who associ-
ate a word problem immediately with the required mathematical operation and 
quickly recall the appropriate number fact. Students who take longer to process 
sensory information, recall conceptual or procedural knowledge, or compare them-
selves to others can become anxious and/or frustrated. Anxieties can then mask 
students’ capability and reduce the opportunity to learn (Chinn, 2009). The teacher 
needs to recognize the anxiety and its cause by knowing the mathematics, how stu-
dents might learn it, and providing what might be the best approach for the 
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particular student to learn the topic and overcome the anxiety. Timed activities and 
unnecessary repetitive activities like rote learning may both cause anxiety.

Negative affective responses to learning resulting from consistent failure to get a 
correct answer or feeling like a failure compared with others may result in avoid-
ance behaviors or intentions that are unrelated to working mathematically, such as 
expressions of helplessness (McLeod, 1992). The student may ask a question before 
the teacher finishes stating the problem or explanation, expect help at every step, or 
show frustration, refusal, sadness, disruption, or disinterest (Yates, 2009).

However, avoidance and anxiety behaviors may also be associated with the 
teacher dismissing students’ different approaches to doing the problem. The teacher 
needs to problem solve to decide if the strategy choice is mathematically valid 
(Hopkins & de Villiers, 2016) or can be linked before dismissing the approach 
(Allsopp, 2018). Students, too, can be given an opportunity to explain, for other 
children to see how it relates to their method or to self-evaluate the efficacy of their 
approach in the light of all students’ approaches (Hopkins & de Villiers, 2016). In 
fact, disaffection may be giving a voice to the student (Hartas, 2011). Until some of 
these affective triggers can be broken, it is difficult to assess other capabilities 
needed for learning. For example, by attributing the reason for limited achievement 
to effort rather than to lack of ability or luck (Yates, 2000), students may overcome 
their sense of helplessness that has been learned. Goldin (2000) suggests these neg-
ative affects can build up over time but one “aha” moment can move students from 
negative responses to positive responses (Fig. 2.2). Teachers can assist students to 
view failure less catastrophically and cope productively with frustration and dis-
couragement (Brophy, 1998).

Adults who are mathematically anxious are poorer than their non-anxious peers 
at counting objects, deciding which of two numbers represents a larger quantity, and 
mentally rotating 3D objects (Chang et al., 2017). People who lack knowledge in a 
particular domain are often easily swayed by negative self-assessment so children 
who start formal schooling with limited or different mathematical foundations may 
be especially predisposed to pick up on social cues (e.g., their parents’ or teacher’s 
behavior) that highlight their mathematical attempts in negative terms (Gentile & 
Monaco, 1988). Students with language and cultural differences may also develop 
less than positive attitudes toward their mathematical thinking just because they 
struggle with word meanings.

2.9  Inquiry, Ownership, Self-Regulation, Empowerment, 
and Identity

One characteristic of students with MLD that is often overlooked is their identity. 
A positive mathematical identity can develop through students’ responsiveness to 
the inquiry or problem-solving situation (see Fig. 2.4). As they self-regulate their 
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learning through their visuospatial reasoning and heuristics, together with verbal 
understanding and affective aspects such as a sense of self-efficacy (Pajares & 
Miller, 1994) and self-worth (Covington, 1992), they become responsive and 
develop a positive mathematical identity. The culture and climate of the mathe-
matics classroom to which a student belongs and is valued assists to establish this 
identity. Through their empowerment, students can do mathematics and share 
with others. Highly structured drill and practice programs with small incremental 
and seemingly disconnected procedures reduce the opportunities to develop own-
ership of the mathematics, self-regulation, and mathematical identity.

Empowerment to do mathematics by students with special needs was exempli-
fied by the students with Down syndrome who were expected to think mathemati-
cally with the rest of the class and the teachers noted that these students were indeed 
thinking mathematically. The teachers were focusing on developing each student’s 
mathematics. The classroom milieu and planning for diversity and inclusion were 
evident in resources such as the enabling questions (or hints) available for all stu-
dents in the classroom (see earlier comments). The teaching approach diminished 
labeling and maladaptive behavior (Faragher & Clarke, 2014, 2016).

Hanich (2011) explained repeated failure may result in maladaptive avoidance 
behavior or impulsive responding rather than controlling impulsive and unrelated 
responses. Teachers have a critical role in identifying learned helplessness as it is 
manifest in students’ responses to situations of actual or perceived failure in the 
classroom (Yates, 2009) and in overcoming conditioned helplessness in mathemat-
ics (Wieschenberg, 1994).

Student responsiveness may also be assisted if they have a voice in planning 
for their learning. This may be subtly expressed by affective responses of interest 
and “having a go” as students become engaged. The student and teacher might 
problem pose and problem solve together for meaningful and often practical pur-
poses (such as life after school). However, the teacher needs to be prepared to 
adjust the curriculum for the class (Leat & Reid, 2012). For example, in one 
school the curriculum was adjusted so that music and school musicals involved 
behavioral learning and mathematical actions providing a sense of belonging in 
the learning community and mathematical learning (Rusinek, 2008). In terms of 
diversity of cultural background, Civil and colleagues (e.g., Planas & Civil, 2013) 
have emphasized the funds of knowledge that students bring to the classroom 
from their home background, their ecocultural background. When teachers capi-
talized on these funds of knowledge, difference in terms of language was valued 
and positioning of the students in the class changed and there were improvements 
in mathematical learning. This applies equally to all students who are thinking 
differently. Looking at the affordances that difference brings to the classroom, 
rather than as deficits, is empowering when the different ways of learning are used 
as resources for learning (Planas & Civil, 2013). The studies referred to in this 
section indicate that autonomy, peer acceptance, and supports such as resources 
and group work in inclusive classrooms should not be underestimated in students’ 
learning mathematics (Moriña Diez, 2010).
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2.10  Conclusion

Learning begins with perceptions and testing newly constructed thoughts in work-
ing memory against long-term memory and perceptions (Osborne & Wittrock, 
1983, Figure 2.1). Students vary in all these aspects of learning mathematics. Areas 
involved in learning include senses, perception, accessing schema, working mem-
ory, language, and functions such as attending, planning, and self-regulation. 
Learning begins with a preliminary knowing, developing into an image with proper-
ties that need noticing for the mathematics to be formalized in students’ minds 
(Pirie & Kieren, 1994). The key to noticing is seeing patterns and relationships 
between examples and constructs of a topic, between representations and language 
or symbols. Teachers’ awareness of these facets of learning, while working with a 
diversity of individuals, encourages the planning and in-the-moment adaptation of 
the mathematical inquiry.

Students’ cultural and language backgrounds, together with the classroom cli-
mate, have important roles in mathematical learning for all, and especially for stu-
dents with MLD. An inquiry approach, together with other learned approaches to 
supporting oneself and the group, enhances the opportunity for students with spe-
cial needs to think mathematically and be integrated into inclusive classrooms. The 
affective aspects of self-regulation along with heuristics for problem solving, no 
matter how basic, are to be considered by teachers to ensure students’ sense of being 
mathematical thinkers and belonging to a community of mathematical thinkers 
(Atweh et al., 2011; Owens, 2015).

In the following chapters, specific supports for particular areas of mathematics 
are presented, drawing on a general understanding of the learning principles out-
lined in this chapter. In many cases, holistic and visuospatial approaches are recom-
mended. Connecting information and valuing mathematical inquiry for all students 
is important. A sense of being able to work mathematically and belonging to the 
mathematics classroom, strengthened by teachers’ planning and approach to the 
classroom learning environment, becomes critical.

Often, teachers need to work with other professionals, parents, and augmentative 
resources in order to notice strengths and ways of learning for individual students 
with MLD. Building on those strengths, the following chapters provide the mathe-
matical understandings and research to assist teachers to plan students’ learning of 
specific topics.
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Chapter 3
Discerning Learning as Conceptual 
Change: A Vital Reasoning Tool 
for Teachers

Ron Tzur and Jessica H. Hunt

Abstract Understanding what conceptual learning means and how it may take 
place can greatly improve teaching. We consider such understanding vital to teach-
ers’ pedagogical reasoning. In this chapter, we specify learning as a process of 
change in learners’ concepts, including two types of reflection and two correspond-
ing stages. This process entails an asset approach, as it guides instructional interven-
tions that center on and start from concepts students do have rather than what 
students do not know (deficit). We provide instructional tenants to drive teachers’ 
reasoning while planning and/or implementing tasks, activities, and questions to 
effectively advance their students’ conceptual learning. Illustrating the rather 
abstract theoretical lens with a research-based case, we organize this chapter by 
three essential questions: “What does it mean for a student to have a mathematical 
concept?”, “What mechanisms drive conceptual advancement (change)?”, and 
“What tenants for teaching support such conceptual advancement as part of mathe-
matical proficiency?”

Keywords Constructivist theory · Conceptual change · Activity · Reflection · 
Teaching conceptually · Tasks

We wrote this chapter in response to recurring questions of teachers with whom we 
work: What does conceptual learning mean and why is it important/relevant for me 
and for my students? To answer these questions while working with students with 
learning disabilities (LD) in mathematics, we have been using a constructivist (von 
Glasersfeld, 1995) theoretical lens. This lens, which discerns learning as a process 
of conceptual change, greatly empowered our own work while engendering 
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momentous student growth (Hunt & Silva, 2020; Hunt et al., 2016a, 2019b; Xin 
et al., 2019, 2020). We recognize that, initially, making sense of and learning to use 
this lens as a tool to guide a teacher’s pedagogical reasoning may prove challenging. 
Gradually, however, we believe it would empower your work, too. Our belief is 
rooted in what we understand to be a leading motivation for any teacher, namely, to 
become a professional who makes a difference in their students’ lives. At the center 
of our profession is the aspiration to promote students’ learning. Understanding 
what learning means and how it could be promoted is thus a necessary tool for being 
professional (think – a carpenter’s understanding of wood and design principles). 
Because the notions that constitute this theoretical lens are rather abstract, we begin 
with an example of conceptual change we promoted in the concept of unit fractions 
(1/n) by a student with LD (Hunt et al., 2016a, b).

Why using a theory of conceptual learning to guide mathematics teaching for 
students with learning disabilities (LD) and mathematics difficulties (MD)? A key 
reason would be that it helps to both explain, and diminish, the persistent gap 
between students with LD (or MD) and their grade-level counterparts. For example, 
in the United States, the National Assessment of Educational Progress (NAEP, 
2019) aptly includes many items to measure conceptual understanding and/or prob-
lem solving. Results in mathematics showed that students with LD and MD were 
strikingly outperformed by their grade-level peers: 214 vs. 245 average scale-scores 
at fourth grade; 247 vs. 287 at eighth grade (respectively). Similar results were 
found for the Number and Operations Category: 214 vs. 248 average scale-scores at 
fourth grade; 245 vs. 284 at eighth grade (respectively). That is, at eight grade stu-
dents with LD and MD scored like their typically achieving peers at fourth grade. In 
the past 10 years, this four-year performance gap persisted for fourth graders and 
increased for eighth graders.

We point out the issue not to perpetuate a focus on performance gaps but to chal-
lenge and redirect it. Specifically, we argue that the issue is not students’ inability to 
learn or develop mathematical concepts but their opportunity to do so. A growing 
body of empirical evidence across mathematics education and special education 
research suggests the disparities are caused by opportunity gaps stemming from 
policy that position instructional interventions that, by-and-large, work to remediate 
the learner (Gersten et al., 2009; Woodward & Tzur, 2017). Widely accepted prac-
tices for students with LD or MD consist of interventions in which a teacher explic-
itly models mathematical methods to students who are expected to follow those 
methods. While perhaps effective in increasing performance, such direct instruction 
has its primary focus on remediation measured in terms of student responses to 
instructional interventions (Fuchs et  al., 2010). To us, the key here is that such 
approaches do not characterize learning in conceptual terms. Rather, the focus is on 
improvement in students’ responses to interventions (RTI), that is, as improvements 
in problem-solving performance due to a teacher’s direct modeling of core contents.

We contend that students with LD and MD have the capacity for conceptual 
advances in mathematics and thus design teaching to accomplish this goal. Our 
chapter provides a lens on such an advance by focusing on students’ access to their 
own reasoning from which to build intended, new-to-them concepts (Hunt & Silva, 
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2020; National Mathematics Advisory Panel, 2008; Tzur, 2019c). Research studies 
in mathematics education have shown that children’s conceptions of mathematics 
are qualitatively distinct from those of adults (Steffe & Olive, 2010), often com-
mence in non-symbolic ways that are context-dependent (Pirie & Kieren, 1994; 
Tzur, 2000), and can progress in ways educators may not expect in advance of 
instruction (Hunt et al., 2019a; Hunt & Silva, 2020; Olive & Vomvoridi, 2006; Tzur, 
2004). As a result, the challenge facing us as teachers is not how to lead students to 
solve tasks in ways deemed appropriate from the adult’s frame of reference. Rather, 
the challenge is to articulate how, from a student’s conceptual frame of reference 
(different from the teacher’s), their solutions make sense and can serve as a basis for 
learning. Our contention about what constitutes worthy mathematics for students 
with LD or MD is consistent with Lockhart’s (2009) emphasis on reasoning:

By concentrating on what, and leaving out why, mathematics is reduced to an empty shell… 
If you deny students the opportunity to… pose their own problems, make their own conjec-
tures and discoveries, to be wrong, to be creatively frustrated, to have an inspiration, and to 
cobble together their own explanations and proofs— you deny them mathematics 
itself. (p. 5)

Next, using the example of Lia’s (pseudonym) conceptualization of unit fractions, 
we illustrate this conception-based, asset approach (Hunt, et  al., 2016a; Tzur & 
Hunt, 2015).

3.1  Illustrating Learning as Conceptual Change

We present a case of a student with LD with whom we worked while using the theo-
retical lens we put forward. Our purpose is twofold – to provide an image of what 
such students are capable of when taught conceptually and to serve as a springboard 
to the abstract constructs of the theory.

Lia’s Conceptualization of Unit Fractions To situate Lia’s conceptual growth, 
we note that unit fractions (1/n) are considered a foundational concept for all frac-
tion knowledge and beyond (Hackenberg et  al., 2016; Steffe & Olive, 2010). 
Research about all children’s difficulties to conceive of such units as a quantity, let 
alone understand the inverse relationship among them (e.g., 1/5  >  1/7 precisely 
because 7 > 5), repeatedly pointed out to teaching of fractions as parts-of-wholes as 
a key factor (Siegler et al., 2011). Indeed, NAEP items regularly pertained to this 
concept. For example, in 2013, one NAEP item asked: “Kim, Les, Mario, and Nina 
each had a string of 10 feet long. Kim cut hers into fifths, Les into fourths, Mario 
into sixths, and Nina into thirds. After the cuts were made, who had the longest 
pieces of string?” In 1996, another item asked simply: “How many fourths make a 
whole?” Results showed correct responses were given, respectively, by only 59% 
and 50%. Responses to those single NAEP items are not disaggregated by students’ 
demographics. Nevertheless, we can assume the overall gap between students with 
LD and their counterparts entails a significantly larger proportion of the former 
would incorrectly answer such items.
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We began working with Lia, a fifth grader, after she had received two and one- 
half years of direct instruction, including work on ordering unit fractions (see Hunt 
et al., 2016a, b). Initially, she appeared quite timid and reluctant to engage with us 
or in the mathematical tasks that we offered for her to think within. Lia exhibited 
what appeared to us as long-learned “coping” strategies of avoidance. She used a 
soft voice that could hardly be detected; she looked for hints in our language and/or 
actions about how to solve a task; and she initiated questions to elicit our “help” in 
the form of teacher demonstration and approval of her “question-like” responses.

Lia’s initial understandings of the mathematics, and particularly of unit fractions, 
were equally precarious. She often referenced visuals she remembered from her 
classroom to justify magnitudes of unit fractions. For example, when shown a slip 
of paper folded into two parts, Lia easily explained and justified each part was one- 
half (“I have two equal parts”). Yet, when one of those halves was folded into halves 
again (Fig. 3.1), Lia very softly inquired, “one-third?” When we asked why one- 
third, she explained that [in class] she was shown a visual of fraction bars that “… 
goes, one-half, then a third, then a fourth. . . . (Tzur & Hunt, 2015, p. 149).” Lia also 
had difficulties comparing unit fractions. For example, when asked which fraction 
is larger, one-fourth or one-ninth, Lia said one-ninth was larger because nine is a 
larger number than four (Hunt et al., 2016a, b). We conjecture such reasoning was 
underlying incorrect responses of the majority of those 50% of students who incor-
rectly solved the 1996 NAEP item, “How many fourths make a whole?”

We thus set out to foster Lia’s construction of unit fractions not just/mainly as “a 
part of a whole,” but as a multiplicative relation between two units (Tzur, 2007, 
2019a). For example, we would promote her reasoning that, in the strip-folding 
problem above, the right-most piece is 1/4 of the entire strip because the whole is 4 
times as much as that unit fraction, called one-fourth. Accordingly, Lia would need 
to conceptualize 1/9 as smaller than 1/4 because 1/9 fits nine times within the whole 
whereas 1/4 fits only four times.

To this end, adhering to our asset approach, we first assessed Lia’s available 
concepts. We found she had constructed a concept of number as a composite unit, 
which can serve as a basis for understanding unit fractions as multiplicative relation 
(Steffe & Olive, 2010; Tzur, 2019a). The rationale is that such a concept of number 
is rooted in her mental activity of iterating the unit of 1 to compose larger units (e.g., 
she anticipated that iterating 1 four times would produce the number 4). We conjec-
tured she could thus use iteration of a unit to produce a whole, all along knowing 
each of those units has the same size (Tzur, 2007, 2019b).

We thus engaged Lia in the “French fry” task, a playful context in which a child 
is asked to equally share a continuous, linear whole among a few people (Tzur & 
Hunt, 2015). The series of gradually more challenging tasks began with an easy 
one: Share one whole fry – a yellow paper strip – among two people and show the 

Fig. 3.1 Lia’s strip folded in half, then the right half folded in half again
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size of one person’s share. Many children initially fold the paper strip to show the 
size, while others mark the fry into two parts and want to cut the fry apart as an 
alternate means of direct comparison (Hunt et al., 2016b). The initial task, which we 
conjectured to be rather simple for Lia, thus served to first bring forward her current, 
linked concepts of “one-half” and two.

In the follow-up tasks, we raised the level of challenge. Moving on to sharing the 
whole French fry among three people (and then four), we challenged Lia to figure 
out the “size of one person’s share” without folding or cutting the paper. We intro-
duced these constraints to create Lia’s need to use her available activity of iterating 
a unit (Tzur, 2000, 2019a) as a means to accomplish her goal while advancing her 
concept of unit fractions. When using iteration within the equal sharing situation, 
we hypothesized that a student’s strategy would be to (a) estimate the size of one 
person’s share, (b) iterate that piece the number of times needed for people who 
share the entire French fry, (c) compare her iterated whole to the given one to be 
shared (yellow strips in Fig. 3.2), and (d) either terminate the work (if successfully 
equal) or adjust the length of the estimated, single piece and continue from the first 
step (Simon et al., 2004). For Lia, using her fingers to make the length of one per-
son’s share and moving her fingers across the length of the fry a number of times 
equal to the number of sharers confirmed that this was her goal-driven activity (see 
Steffe, 2001). We thus introduced to her a similar method in which an auxiliary 
piece of paper is used to mark the iterations of one person’s share.

To orient Lia’s reflection on the relationship she can notice between her goal- 
driven activity and its effects, we used two critical questions (see Hunt et al., 2016a, 
b). We asked the first, twofold question when she indicated noticing the iterated 
whole was either longer (dark blue) or shorter (light blue) than the original (yellow 
French fry) whole: “Would you make the next estimate shorter or longer than the 
previous attempt(s) and why?” This question focuses the child’s attention onto the 
direction of change needed. The second, twofold question, usually suitable after 
some work on the first question, asked her to consider, “By how much the next esti-
mate should be shorter  or  longer then the next estimate and why?” This second 
question focuses the child’s attention onto the amount of change needed. For exam-
ple, in the second attempt shown in Fig.  3.2, she correctly estimated her next 

Fig. 3.2 Building a 
concept of unit fractions 
through iterating 
(the yellow strip is 
the whole to be shared)
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estimate (light blue) should be shorter than the first estimate (dark blue), explaining 
she “was eyeballing it to be that much shorter.” In the third attempt in Fig. 3.2, we 
present a new, improved way of estimating the amount of change. (Note: It took Lia 
several more attempts to arrive at and explain this solution.) She realized that parti-
tioning the gap between the whole French fry and her iterated whole into three seg-
ments (i.e., the number of sharers) and adding just one of those small pieces to the 
previous estimate would lead to a correct solution. Such a realization is a major 
conceptual leap, shown to be a challenge not just for most children (with or without 
LD) but also for some teachers (Harrington et al., in press).

Using those two questions repeatedly for sharing the fry among a different num-
ber of people led Lia to reorganize her concept of unit fraction, from “part-of- 
whole” to a multiplicative relation (Tzur, 2019a). Specifically, her recurring 
adjustments to the length of one person’s share led her to a novel anticipation. She 
realized, and abstracted, that for any given whole there would be only one piece 
(size) that fits precisely n times in the whole (e.g., the green piece in Fig. 3.2). Said 
differently, when she concluded a whole has been successfully shared – it implied 
for her the production of unique-size segment that forms a 1-to-n relation to that 
whole. When we inferred she had established this anticipation for herself, with rea-
son, we introduced her to the fraction language used in the context of her iteration 
activity (Tzur, 2000; Tzur & Hunt, 2015). For example, the share of one person in 
five is called one-fifth, and symbolized 1/5, because it fits (iterated) five times within 
the whole.

An expansion of those two questions we then used challenged Lia to anticipate, 
ahead of taking any action, the direction (and later also the amount) of change 
needed when moving to a new task involving a different number of sharers. For 
example, once she would successfully complete sharing the French fry among 3 
people, we said the next task would be to share a new paper strip (same-size fry as 
in the previous task) among four people. Before letting her start, we asked if she 
would make her first estimate shorter or longer than what she used for three people 
and why. Lia, using a computer software called JavaBars (Biddlecomb et al., 2013), 
then successfully solved tasks for four, five, and six people. These tasks, and the two 
reflection-orienting questions that accompanied each of her attempts, led her to real-
ize the need to shorten one person’s share in each of those new tasks. We thus 
engaged her in estimating the size of larger numbers of sharers, while changing 
tasks not only upward (e.g., 6 people to 11 people) but also downward (e.g., 11 
people to 8 people). All in all, those tasks led Lia to arrive at the other intended 
anticipation (abstraction): A unit fraction, as a unique relation, must be smaller for 
a larger number of sharers, which she could then link with the denominator – and 
vice versa. The following transcript shows Lia’s work after less than 10 teaching 
sessions (~ 30–40 minutes each), in a context (pizza) different than the French fry 
in which we taught her. Based on conceptualizing unit fractions as multiplicative 
relations with inverse relation among their sizes, Lia successfully compared unit 
fractions both in and out of context (see Hunt et al., 2016a, b, p. 202).
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Teacher: I ate one-twelfth [of the pizza]. Here’s you. You ate one-fourteenth [of the same- 
size pizza]. Who ate more [of the pizza])?

Lia: (Immediately, confidently) You.
Teacher: Why did I eat more?
Lia: Because the twelfths are bigger than the fourteenths; because fourteenths have to 

[be] shared among more people than twelfths. It only takes 12 to [make] the whole, and 
[here] 14 to [make the whole], so 14 needs more [pieces]. It’s smaller.

(In a later task, no context, numerical only, larger denominators)
Teacher: OK. We've got one-thirty second [1/32] and one-thirty-eighth [1/38]. Which 

one would be larger and why?
Lia (correctly): The one-thirty second [1/32].
Teacher: How come?
Lia: Because if you have more people sharing, that means you’ve got to give smaller 

pieces to each. The size will get smaller because you have to bust [the whole] up among 
more people. The size [of one part] among 32 would be bigger. [Italics added by authors to 
emphasize the logical necessity expressed by Lia.]

To summarize Lia’s learning as conceptual change, in a few lessons involving work 
on tasks, always accompanied by questions to explain her work (before and/or after 
taking action), she abstracted the need to adjust her next estimate relative to the 
number of iterations she would use to produce a whole. In this way, Lia inverted 
(reorganized) her prior concept of whole-number magnitude to that of unit fraction 
magnitude (Tzur, 2019a). That is, in whole numbers more iterations of the unit of 1 
entailed for her the production of a larger number, whereas for unit fractions more 
iterations, which the larger number in the denominator then symbolized for her, 
must produce smaller parts/shares. This new concept served as the basis for her 
understanding why, for any two whole numbers (n and m), if n > m, 1/m must neces-
sarily be larger than 1/n (e.g., 1/32 > 1/38 precisely because 38 > 32). Lia also began 
to understand – conceptually – that the magnitude of any unit fraction such that a 
remake of the whole comprises n iterations of one share entails a unique, multiplica-
tive relation of size 1/n (i.e., the whole is n times as much as each share). We postu-
late that one or both of these conceptualizations were not available to those 50% and 
41% of students who, respectively, incorrectly responded to the 1996 and 2013 
NAEP items presented above. With this example of Lia’s learning as a conceptual 
change of available (whole number) into new (unit fraction) concepts, we turn to the 
theoretical lens that explains such a process.

3.2  Articulating Learning as Conceptual Change

In three sub-sections, we explain conceptual learning using a constructivist theoreti-
cal lens that elaborates on Piaget’s (1985) core notions of assimilation and reflective 
abstraction. First, we depict what “having a concept” means. We note that, like 
many constructivist researchers, in our articles we typically talk about “having a 
scheme.” In this book, to avoid jargon that may sidetrack clarity and understanding, 
we use the term concept as a synonym. Next, we articulate a cognitive process, 
consisting of two types of reflections, which Simon, Tzur, Heinz, and Kinzel (2004) 
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postulated as a mechanism by which the mental system transforms (reorganizes) 
available concepts into a new (to the learner) concept. Finally, we present Tzur and 
Simon’s (2004) distinction between two stages through which a new concept 
emerges from previously available concepts. We could not emphasize enough the 
critical role that a teacher’s appreciation of this stage distinction would serve in 
nurturing, or alas hindering, students’ construction of a new concept at the empow-
ering, transfer-enabling quality seen in Lia’s example (Tzur, 2019a).

It is important for a teacher who attempts to understand and use this theoretical 
lens to clearly distinguish it from widespread notions of learning as change in per-
formance (Fuchs & Deshler, 2007; Fuchs et  al., 2010), often measured through 
change in students’ responses to problems (e.g., answers, solution strategies). 
Rather, we focus on inferring and explaining what cognitive (invisible) processes 
could plausibly underly particular performance and/or changes in it. For example, 
how would one explain Lia’s correct solutions to any problem of ordering unit frac-
tions, in real-world contexts or calculations? We explain those solutions as enabled 
by her concept of unit fractions as a (multiplicative) relation – between the number 
of iterations it takes to fit a piece within a given whole and the size of that piece rela-
tive to pieces that were iterated more/less times.

Critically, a teacher adhering to this theoretical lens would have to let go of peda-
gogical notions such as “giving concepts to students” or “modeling to help students 
see” what the teacher sees. Simply put (sadly?), our theoretical lens implies con-
cepts cannot be given or shown. Rather, facilitated by competent, theoretically 
savvy teachers, learners must construct concepts that could become a mental appa-
ratus with which to “see” the mathematics like their teachers “see” it. That is, we 
advance a stance that all learners, including students with LD, must construct con-
cepts for themselves – though absolutely not by themselves.

Concept – An Abstracted, Goal-Activity-Effect Relationship We define a con-
cept, the basic mental unit attributed to a learner, as a single structure comprised of 
three interrelated parts (von Glassersfeld, 1995): (i) a recognition template (“situa-
tion”) that triggers a goal and intention to act, (ii) an activity the goal brings forth 
and regulates to determine stoppage, and (c) a result the mental system anticipates 
to ensue from that activity. As we shall explain, such an anticipation may precede 
the action or be retroactive in the sense of identifying why an effect one noticed 
should have followed the goal-directed activity (Piaget, 1985). Tzur and Simon 
(2004) picked the term result for the former, while introducing the term “effect” to 
explicitly distinguish an outcome of an activity if the mental system noticed and 
linked it with the activity only in retrospect.

In our example of Lia’s work on unit fractions, like with many other students 
(LD or non-LD), we have regularly seen a child making an incorrect adjustment of 
the direction of one person’s share while moving to a different number of sharers. 
If, for example, the child successfully completed equally sharing the fry among 
three people, the child would think the first (incorrect) estimate to share among four 
people needs to be longer. The child’s explanation would often indicate their antici-
pation of the result of an activity of iterating 1 in whole numbers (e.g., “4 > 3, so I 
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need to make the piece for one-in-four longer than what I got for one-in-three”). For 
a teacher, the crucial point in this explanation is to always remind oneself that an 
incorrect answer by a child reflects an underlying concept that, for the child, makes 
perfect sense. As our example indicates, a teacher striving to explain that sense for 
the child, erroneously as it may appear to the teacher, would not focus on remediat-
ing the error. Rather, the teacher would focus on understanding the child’s anticipa-
tion of why a particular effect is expected to ensue from the goal-directed activity.

Just as important, a teacher would also attempt to identify (assess) the child’s 
goal-activity-effect anticipation that underlies correct responses. In our example of 
Lia, she had eventually constructed a strong anticipation that the more a unit frac-
tion is iterated to fit within a given whole the smaller that unit must be. It was this 
realization that our French fry activity (Tzur & Hunt, 2015) was designed to nurture 
in Lia as a basis for her abstraction of the inverse relationship between the number 
of iterations and the relative (inverse) size of the unit fraction. Having helped her 
also connect the number of iterations to the denominator (Tzur, 2000) “cemented” 
the concept underlying Lia’s powerful transfer of reasoning shown in the protocol 
above (e.g., explaining why she anticipated 1/32 of a pizza would necessarily be 
larger than 1/38 of a pizza). Using the goal-activity-effect structure of a concept, we 
inferred her concept of unit fractions to be as follows: “A unit fraction (1/n) is the 
anticipated result of iterating a unit n times to fit within (hence, equally share) a 
given whole. The whole is n times as much as the unit fraction 1/n. More iterations 
imply units are smaller, and thus if n > m then necessarily 1/n < 1/m.” We now turn 
to address a question a teacher would naturally ask here: How could such learning – 
a change in anticipation of the effect that would follow a goal-directed activity – be 
explained?

Explaining Learning as Conceptual Change: Two types of reflection The three-
fold notion of concept (situation/goal-activity-effect) explained above entails a view 
of learning as a conceptual process by which the mental system reorganizes prior 
concepts (anticipations) into a new concept (Tzur, 2019a). Elaborating on Piaget’s 
theory, Simon et al. (2004) postulated such a reorganization comes about through a 
mental mechanism termed reflection on activity-effect relationships. This mecha-
nism consists of two related-yet-distinct processes, Reflection Type-I and Reflection 
Type-II.  Importantly, these authors emphasized the term reflection should not be 
taken to mean a conscious process (e.g., “metacognition”), as both types quite often 
occur outside the learner’s awareness. Understanding each reflection type, and how 
it may be promoted, can greatly help teachers design opportunities for conceptual 
learning in the sense of change in anticipation, which we further articulate in 
Chap. 5.

Reflection Type-I is an automatic process attributed to the functioning of any 
mental system, because it underlies the start and stoppage of brain activities (Tzur, 
2011). In essence, the mental system constantly monitors the extent to which an 
activity is progressing toward (or away from) the goal it was brought forth to accom-
plish and – crucially – the result it anticipates to ensue from the activity. The mental 
system terminates the activity when it detects (notices) an actual effect of the 
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activity. Reflection Type-I then may take place, defined as a comparison between 
the anticipated result and the actual effect, leading to judging them as either match-
ing or different. For example, Lia’s concept of whole numbers included the antici-
pation that 4  >  3 due to iterating the unit of 1 more times. Her goal of equally 
sharing a whole French fry among four people thus included an implied (incorrect) 
anticipation: one person’s share should be longer than sharing among three people. 
Already after she iterated that estimate for a second time, and clearly after iterating 
it for the third and fourth times, her goal of creating an iterated whole equal to the 
given French fry drove her noticing the actual effect (iterated whole) was much 
longer than the anticipated result (being equal to the French fry). In turn, detecting 
this lack of match led to concluding her goal was not yet accomplished. For some 
children, the next attempt might be to (incorrectly) make the next estimate even 
longer. As teachers, we will let them give it a try. Eventually, and in Lia’s case after 
just one incorrect attempt, she realized the correct adjustment for the next estimate 
would need to be shorter than the share of one-in-three people - a start of the con-
ceptual change.

In our explanation of Reflection Type-I, we constantly italicized the references to 
Lia (her, she) to stress a key point: ensuring that the learner’s available concepts 
provide the “ingredients” needed for comparing between the anticipated and the 
actual effect. A child’s available concept (here, number as composite unit) may not 
yet be established to include a result she would anticipate and thus use as a bench-
mark in her comparison to the actual effect (here, the anticipated iteration of one 
person’s share n times). Thus, in our example of the French fry task we would 
expect the child not to “see” the futility of her attempt to make the share of one-in- 
four people longer than for one-in-three, in spite of a teacher’s relentless attempts to 
explicitly model this “painfully obvious” fact. The notion of Reflection Type-I 
equips the teacher with a more effective alternative, namely, doubt and thus focus 
on figuring out if the child’s available concepts have available an anticipated result 
the teacher expects to be used in the comparison. In this example, when children 
with whom we work consistently use the wrong direction of adjusting one person’s 
share we (a) first go back to assess their concept of number and, if it is not yet estab-
lished, (b) focus on nurturing it as a conceptual prerequisite prior to teaching unit 
fractions.

Reflection Type-II is a process assumed to be a capacity of the mental system, 
that is, a comparison the brain can, but may not, carry out (Simon et al., 2004; Tzur, 
2011). In essence, Reflection Type-II involves the mental system’s comparison 
among some instances in which it linked an activity to its effect(s). For example, in 
each variation of the French fry task, say, from 3 people to 4 people, and then to 5 
people, Lia’s mental system could have recorded her choice to make one person’s 
share shorter than for the previous (smaller) number of people. As we explained 
above, a child’s correct choice of the direction of change might have happened after 
a few incorrect attempts to make that estimate longer and re-noticing the actual 
effect took them away from the anticipated result. Such a comparison involved Lia’s 
noticing, against the background of things that did change between instances (num-
ber of people, size of one person’s share), that some aspects of her activity and its 
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actual effects did not change. In our example, she could notice an invariant: to share 
the fry among a larger number of people entailed making one person’s share shorter 
than for a smaller number of people. Specifically, she could notice that one share for 
five people would be smaller not just than for four people but also for three people. 
Further work on variation of tasks in which she may go, say, from six people to 11 
people, and then back to 8 people, could yield her extension of this logical, invariant 
anticipation called “inverse relation”: more people entail smaller unit fractions and 
fewer people entail larger unit fractions.

We have again italicized the references to Lia as well as to the tentative nature 
(could, may) of Reflection Type-II to stress two key points. First, she needed to have 
those mental records of instances available in order to compare the anticipation 
involved in each instance (e.g., “to go from 3 to 4, I needed to make it shorter; to go 
from 4 to 5 I needed to make it shorter,” etc.). That is, mental records of past 
instances in which an anticipation has been invoked serve as the input of Reflection 
Type-II. Typically, a learner is better off creating those instances through Reflection 
Type-I on their own actions, although some learners may be able to coordinate such 
instances by following others’ actions and their ensued effects. Second, the tentative 
language we use conveys that Reflection Type-II is non-automatic for most brains 
(Tzur, 2011). For some learners it can develop as a propensity. Our experience 
working with LD and non-LD students, as well as with adults (e.g., teachers), indi-
cated most of them would not carry out Reflection Type-II on their own but would 
greatly benefit from being oriented to do so. For example, we repeatedly asked Lia 
questions such as, “In what way has your work while moving from 3 to 4 people, or 
from 4 to 5, or from 5 to 6, was similar? Different?” (see Hunt & Tzur, 2017).

We cannot emphasize enough that such interactions differ markedly from a 
teacher’s relentless attempts to “show” (model explicitly/directly) to the student a 
pattern that, for the teacher, is painfully obvious (e.g., “showing” that making the 
share of one-in-four larger than one-in-three did not work so we make it smaller). 
For us, to say “a person sees a pattern” means they have constructed the invariant 
anticipation of what they consider to necessarily be the effect in all instances of 
their activity – and why. This explanation of how an anticipation of activity-effect 
relationship is cemented as an invariant underlies transfer learning like the one dem-
onstrated in Lia’s case. Simply put, such an invariant, justified anticipation is the 
hallmark of “having a concept.” It leads to the distinction of a stage at which the 
anticipation is constructed provisionally.

Explaining Learning as Conceptual Change: A Two-Stage Process When 
teaching a new concept, most teachers recognize a rather puzzling phenomenon. At 
first, students appear to learn the concept and correctly solve/explain problems. At 
some later time – a few days, a few hours, even a few minutes (e.g., within a single 
lesson) – the students regress to performance as if not having learned, or forgotten, 
the concept. Then, once somehow the activity underlying the new concept is being 
prompted for, the students resume proper work indicative of having learned the 
concept. For example, one time, Lia learned and began ordering unit fractions cor-
rectly (e.g., explaining why 1/5 of a pizza is larger than 1/8 of a same-size pizza). In 
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our next session, she went back to explaining that 1/8 is larger than 1/5 because 8 is 
larger than 5. When asked, “What if you shared a fry among five people and then 
moved to sharing it among 8 people?” Lia soon corrected herself: “Oh, no; it’s the 
other way around; because I need to repeat it more times so each of the 8 pieces is 
smaller.” Tzur & Simon (2004) called this all-too-familiar sequence of correct rea-
soning ➔ incorrect (less advanced) reasoning ➔ prompt-dependent return to cor-
rect reasoning, “the next day phenomenon.” To explain it, they distinguished two 
stages in the learning of a new concept.

Here, before explaining those two stages, we appeal to our reader’s sharpest 
attention to its imperative implication. To this end, let us consider Lia at two differ-
ent points in her learning the concept of inverse relations among unit fractions (if 
m > n then 1/n > 1/m). An “earlier Lia” needed prompting not only to begin learning 
this new concept but also to resume reasoning after she already appeared to have 
learned it. A “later Lia” could independently and spontaneously not only use the 
concept to correctly solve problems in the context in which teaching took place 
(e.g., French fry) but also transfer it to novel situations/contexts and to context-free 
tasks. All teachers find the next-day phenomenon rather frustrating as they yearn to 
promote independence and concept transfer in their students. What we aim to pin-
point for teachers is a critical implication of the prompt-dependent, provisional 
stage in learning a new concept. Simply put, moving on to teach a concept for which 
a prompt-dependent concept is prerequisite is most likely to leave such students 
behind (Tzur, 2019a). For example, trying to teach an “earlier Lia” concepts of non- 
unit fractions (e.g., 2/5, 7/5) would most likely become not only unsuccessful but 
also an unbearable frustration for teacher and students alike.

Participatory stage is the term Tzur and Simon (2004) used in reference to the 
earlier, provisional stage of having a new concept, to emphasize the learner’s “par-
ticipation” in an activity that leads to anticipating its effects. As noted above, this 
stage is characterized by the sequence of reasoning, with a newly learned concept, 
that includes correct ➔ then “regressed” ➔ then returned to the new (by prompt-
ing). While people often think about “prompt” as something provided by another 
person, we emphasize that prompting, or being prompted, quite often occurs inter-
nally. A highly familiar manifestation of internal (mental) prompting is the “Oops” 
experience (Tzur, in press). In Lia’s example, after she completed sharing a French 
fry among four people, we gave her a new paper strip and asked to equally share it 
among five people. Before starting, we asked her if the estimate for one person’s 
share would be shorter or longer than for four people. Her initial, incorrect response 
(“longer”) was followed by actions of producing that estimate and starting to iterate 
it. After the third iteration, she stopped: “Oops; I should have made it shorter, 
because I need to ‘squeeze’ more pieces.” Two important aspects of an “oops” expe-
rience like the one Lia had can help distinguish it as indicating a participatory stage. 
First, the prompting leading to a change in her anticipation of the direction of 
change (e.g., from 4 to 5 people she needed to make it shorter) arose out of her own 
activity. Second, in spite of already having reasoned correctly about the shift from 
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three to four people, just a few minutes later she “regressed” to her previous antici-
pation (e.g., 5 is larger than 4, so one person’s share needs to be longer).

Research had shown that learners at the participatory stage may carry out the 
entire activity before realizing their error; others (like Lia) may notice it during their 
activity; and still others would notice it only if prompted by someone else (see 
Simon et al., 2016, 2018b). Tzur & Lambert (2011) provided further analysis of 
such gradations within the participatory stage, explaining why internal prompting 
indicates a higher-level toward the new concept than being prompted by others. 
They also explained that more general prompts indicate a higher-level of the partici-
patory stage than specific prompts (e.g., asking generally “Do you recall working on 
the French fry task?” vs. specifically, “How did you change your estimate when 
moving on from three to four people?”). Those subtle differences in levels can serve 
the teacher, say, in determining a proper time to introduce mathematical terms and 
symbols after a learner has constructed at least a higher-level of the participatory 
stage (Tzur, 2000). For example, Lia’s self-prompting (“oops”) experience, leading 
to a correct adjustment of an estimate for one person’s share in five people, led us to 
introduce the term “one-fifth” and the symbol “1/5” in the context of her activity of 
equal-sharing by unit iteration.

Anticipatory stage is the term Tzur and Simon (2004) used in reference to the 
later, advanced stage of having a new concept. This term emphasizes the establish-
ment of an invariant Goal ➔ Activity ➔ Effect(s). This stage is characterized by 
spontaneously, independently, and properly to the task/situation bringing forth and 
explaining the logical necessity of these anticipated links. The example of Lia’s 
solution to the pizza problem (comparing 1/32 vs. 1/38) illustrates the anticipatory 
stage in constructing a concept of unit fractions. As soon as she heard the task, she 
brought forth the reasoning, which arose for her in a different context (French fry). 
She knew why the fractional number with a larger denominator must necessarily be 
a smaller unit fraction. Studies of other students with LD had shown they eventually 
constructed similar reasoning at the anticipatory stage (Hunt et al., forthcoming). In 
fact, after moving on to learning concept of non-unit fractions, many of them could 
further transfer their concept of unit fractions to tasks requiring to re-invert the 
inverse relation among unit fractions. For example, to solve the task, “Which frac-
tion is larger, 12/13 or 13/14?” they would reason, “13/14; because it is just 1/14 
away from One and the other is 1/13 away from One.” Such reasoning differs mark-
edly from the prevalent, incorrect reasoning that compares numerators and denomi-
nators separately (e.g., 13 > 12 and 14 > 13, which incorrectly could lead to saying 
that, for example, 6/12  >  5/8). We note that, like with the participatory stage, 
researchers and teachers have noticed gradations in developing the anticipatory 
stage, but articles about those gradations are yet to be published.

To summarize this theoretical section, we answer a question that teachers often 
ask: How are the two types of reflection and two stages in constructing a new con-
cept linked? Based on the Goal ➔ Activity ➔ Effect structure of a concept, and the 
changes it undergoes through each type of reflection, Tzur (2011, 2019c) postulated 
that Reflection Type-I is necessary for constructing a new concept at the participa-
tory stage and Reflection Type-II for the anticipatory stage (a postulation still 
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awaiting empirical corroboration). In Chap. 5, we will further specify implications 
of this theoretical lens, including the link between stages and reflection types, for 
planning, implementing, and assessing mathematics teaching. To culminate this 
chapter, we now turn to three tenants of teaching students with LD for mathematical 
proficiency that draw on the theoretical lens presented here.

3.3  Teaching for Mathematical Proficiency: Three 
Core Tenants

The story of Lia’s learning the concept of unit fractions resembles many students 
with LD and MD with whom we have worked over the past two decades (Hord 
et al., 2016; Hunt & Empson, 2015; Xin et al., 2020). This story reflects how a theo-
retical lens can serve as a vital tool for teachers’ reasoning, and a solid foundation 
for what it means for these students to know mathematics proficiently. Kilpatrick 
et al. (2001) explained mathematical proficiency as encompassing five interrelated 
strands  – conceptual understanding, procedural fluency, strategic competence, 
adaptive reasoning, and productive disposition as shown in Fig. 3.3. Stressing the 
central (first) place of conceptual understanding, we briefly depict each strand in 
relation to Lia’s story.

Conceptual understanding is defined as “comprehension of mathematics con-
cepts, operations, and relations” (Kilpatrick et al., 2001, p. 5). As Lia’s story showed, 
her conceptual understanding when we started the work could be characterized as 
pre-fractional reasoning (e.g., thinking that one-of-three unequal parts is one-third). 
Yet, her conceptual understanding grew tremendously, through a participatory to an 
anticipatory stage that enabled transfer of her knowledge to novel situations (e.g., 
1/32 > 1/38 with clear rationale; see also Tzur, in press).

The changes evident in Lia’s reasoning clearly connect to procedural fluency. 
Kilpatrick et al. (2001) defined procedural fluency as “skill in carrying out proce-
dures flexibly, accurately, efficiently, and appropriately” (p.  5). When we began 
working with Lia, procedures were mostly what she drew upon, yet her use of and 
facility with procedures were limited and quite often mathematically incorrect. For 
example, Lia instantiated a classroom visual to compare unit fractions – a sort of 
routinization of a “rule” that she attempted to apply to the situation. The example of 
her ability to independently, spontaneously, correctly, and rather quickly order unit 
fractions support our contention that procedural fluency can be further understood 
as routine expertise and adaptive expertise.

Routine expertise is when students master procedures to become highly efficient 
and accurate. Adaptive expertise intertwines with conceptual understanding in that 
it allows the student to invent and connect new solutions to problems and even new 
procedures for solving problems. We view Lia’s progress as moving from a limited 
version of procedural, routine expertise to the beginning of adaptive expertise. For 
example, she could connect her actions in equal sharing contexts (French fry) to 
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Fig. 3.3 NRC (2001) five 
interconnected strands of 
mathematics proficiency

situations in other contexts (pizza) and/or without context. All along, she would 
base her explanations and justifications on anticipations constructed through her 
work in the commencing context. Her progression highlights the interconnected 
nature of the newly built concept(s) with the advances in procedural fluency.

Kilpatrick et al. (2001) defined productive disposition as “habitual inclination to 
see mathematics as sensible, useful, and worthwhile, coupled with a belief in dili-
gence and one’s own efficacy” (p. 5). The trust students might place in their own 
mathematical potential has lasting implications both in terms of mathematics profi-
ciency and in their propensity to choose math-related careers. We note that, at the 
start of our work with Lia, we did not measure her productive dispositions about 
mathematics directly. Yet, the timid and reluctant nature of her interactions, and the 
pensiveness regarding her own reasoning was telling – they were similar to many 
other students with whom we worked (see, for example, Tzur et al., 2009). Quite 
quickly, we have seen how those avoidance behaviors and uncertainty related to 
one’s own mathematical thinking gave way to excitement in working on the tasks, 
to pride and confidence in their own answers, to expressed eagerness to engage in 
solving challenging tasks on their own, and to audible explanations of their work. 
We believe the theory-based teaching activities that led to their conceptual growth 
is a key factor in also explaining the productive dispositions we have witnessed.

Finally, Kilpatrick et al. (2001) defined adaptive reasoning as the “capacity for 
logical thought, reflection, explanation, and justification” (p. 5). The mechanism of 
reflection on activity-effect relationship that we have presented is both consistent 
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with and contributes to further explicating this definition. We have seen how, when 
students with LD and MD have opportunities to build mathematics as reorganiza-
tion in ideas they already have, they develop an identity of “motivated mathematical 
thinkers and doers.” Being engaged in reflection and justification enables these stu-
dents to see their journey in mathematics as one navigated through reasoning and 
sense making. Our theoretical lens clarifies that construction of adaptive reasoning 
is not the same thing as students “discovering” the mathematics on their own; 
indeed, the role of the teacher in this process is critical (see Chap. 5). Yet, we con-
tend that students need to believe that the understanding they will gain starts within 
them, connects to what they already (intuitively/implicitly) know, and can grow 
over time through reflective and communicative processes guided by their teachers 
(Woodward & Tzur, 2017).

Short of articulating a pedagogical approach that draws on the theoretical lens 
we presented in this chapter as a vital tool for teachers’ reasoning, we culminate this 
chapter with three core tenants that underlie such an approach. That is, we lay a 
basis for answering the question, “What core tenants of student conceptual learning 
were in place when planning instruction so that students like Lia are supported to 
access and advance (reorganize) their available knowledge?”

Core tenant #1: Bring forward students’ prior knowledge The asset approach 
of learning as a change in concepts a student already has available entails a teacher 
much first bring forward those concepts. Furthermore, to promote learning that 
includes change in mental activity, students need opportunities to be active and 
interact within their environment (Piaget, 1985; von Glasersfeld, 1995). Within a 
school setting, the environment comprises their classroom, small groups, tasks, and 
tools/materials that a teacher uses to engage them in solving mathematical prob-
lems. Yet, too often, despite appropriate tools and tasks, teachers of students with 
LD and MD diminish “activity” to merely following the teacher modeling proce-
dures, demonstrating concepts with manipulatives, or thinking aloud through a 
desired solution process (Woodward & Tzur, 2017). While well meaning, such 
instructional moves often perpetuate or lead to mathematically incorrect concepts 
on the part of the student (e.g., Hunt et al., 2019a).

A highly effective instructional method for engaging students in actively solving 
tasks as a means to bring forward what they do know, termed bridging, was expli-
cated in research on mathematics teaching in China (Huang et al., 2015; Jin & Tzur, 
2011a). Markedly different from the common use of “warm-up problems,” bridging 
tasks are characterized by two features. First, they engage students in independently 
solving problems that their available concepts clearly enable. While warm-up prob-
lems often have that feature, it is the second feature that distinguishes bridging 
tasks. Teachers design bridging tasks in such a way that, as students engage in suc-
cessfully solving them on their own, the goals, activities, and/or effects the students 
bring forward would be conceptually relevant to and supportive of those reorga-
nized through the two types of reflection (first to participatory, then to anticipatory 
stage). That is, only tasks that students can both solve on their own (no help is 
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needed) and bring forward concepts to be reorganized are considered bridging tasks 
(see also Simon et al., 2018b; Steffe, 1990; Tzur, 2018).

As we noted in Lia’s example, the initial task we used as bridging engaged her in 
equally sharing a French fry between two people. She could easily solve it on her 
own by folding the paper strip in half, while bringing forward her notion of a whole 
and the possibility to create equal segments within it. In a follow-up bridging task, 
we added two constraints (no folding, no ruler) as a way to bring forward her avail-
able concept of number as a unit composed through iterating the unit of 1 so-many- 
times (Steffe & Olive, 2010). To start using iteration, her available concepts included 
the activity of “eyeballing” one person’s share, of iterating it, and of comparing the 
resulting (iterated whole) to the given whole (fry). In this activity, her available 
concepts also included taking for granted each and every piece produced through 
iteration is equal to all other pieces. What Lia’s available concepts at the start did 
not include, but we designed the bridging tasks to be relevant to and supportive of, 
is the direction and amount of adjustment to one person’s share – reasoning whether 
to make it shorter or longer than her previous estimate(s). Importantly, her available 
concepts included knowing order of whole numbers, which was used to bring forth 
a new realization. Key here is that her use of the mental activities of iterating one 
person’s share + comparing the iterated whole she produced to the given whole 
would require adjustment. This adjustment is needed not because anyone directed 
her to make it – but because her available concepts included a goal (sharing the 
given fry) that she could notice was yet to be accomplished. In this way, iteration + 
comparison (available activities) could lead to adjustments that could later engender 
the intended concept of inverse relation between the whole number of sharers and 
the size of each person’s share (Simon et al., 2004).

We note that all teachers with whom we work find the idea of bridging tasks 
invigorating. When attempting to create their own bridging tasks, they also quickly 
realize it is a serious challenge. The good news is that researchers who have been 
using the theoretical lens presented in this chapter developed bridging tasks that 
teachers have found to greatly serve their students (the French fry is but one exam-
ple of those). We encourage you, the teacher, to take advantage of such tried-out 
bridging tasks. Those tasks could help you learn to create your own bridging tasks, 
so they fit within what your students with LD or MD already know and the mathe-
matics you thus intend for them to learn.

As a transition to the second core tenant, we remind you that tasks, by them-
selves, neither think for students nor “show” them the concept (Simon & Tzur, 
2004). Likewise, materials used in tasks, such as manipulatives, drawings, or mod-
els, do not think for students. Tasks and materials are very important in that they 
support students’ thinking while they are being active within an environment. Yet, 
we explicitly distinguish between tasks and materials on one hand and the thinking 
that students generate while working to solve them on the other hand (Tzur et al., 
2013). We contend that using tasks to bring forward and then promote student think-
ing should be the backbone of mathematics instruction (Simon, 1995; Simon et al., 
2018a). In the example of Lia, we engaged her in a bridging task of equally sharing 
a fry among three people without folding the paper strip or using a ruler. This task 
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challenged her thinking while bringing forward the mental activities she (a) had 
available through her concepts of whole numbers and (b) were to undergo reorgani-
zation into a concept of unit fractions. We now turn to the second and third core 
tenants implied by the theoretical lens, which further elaborate on tasks that could 
help teachers engender in students intended conceptual changes (Sullivan et  al., 
2015; Zaslavsky, 2008).

Core tenant #2: Engage students in tasks that engender goal-directed 
activities relevant for the intended conceptual change
For Lia, a conception of one-half, of “three”, and other small whole numbers was 
her prior knowledge and she used this knowledge to access ideas about unit frac-
tions. Our job at that point was to promote the need for Lia to reorganize her avail-
able concepts, using as input for her activities what, at the outset, made sense to her. 
In other words, we needed situations within the learning environment in which Lia 
could both use her current knowledge yet find it problematic (Piaget, 1985). Within 
such situations, she would work to (a) interpret (assimilate) the task using her avail-
able knowledge and (b) adapt her knowledge to resolve the problematic aspects as 
she faces them (Steffe, 1990; von Glasersfeld, 1995).

Challenging a child to find ways to overcome problematic aspects of their work 
can promote goal-directed activity. For example, the French fry task integrated a 
challenge to equally share a given whole without using a ruler or folding the paper 
with questions to orient her attention onto the adjustment she was making – first 
before she would make them and then after she realized her goal was not yet accom-
plished. Similarly, we challenged her by asking if the share of one-person-in-four 
should be shorter or longer than the one she successfully produced for one-person- 
in-three. Simply put, to engender learning a teacher uses tasks that can make the 
child curious and interested in solving by using what they already know (Simon & 
Tzur, 2004; Sullivan et al., 2015). The student’s current concepts set her goal and 
the activity she will ultimately carry out on some object (e.g., one person’s share of 
a French fry as a manifestation of what would become a unit fraction) – leading to 
effects she would notice and reflect on (see Core Tenant #3).

As shown in Fig. 3.4, a teacher designs tasks – bridging and expanding – as an 
interface between a student’s available and evolving concepts and the teacher’s 
intentions for students’ conceptual advance (Simon et al., 2018b; Simon & Tzur, 
2004). Consider Lia’s initial ideas about unit fractions – specifically, her thinking 
about the meaning of one-third. For Lia, our folding task (into half, then one-half 
into halves) brought forward her concept of fractions as parts of wholes, which 
reflects common teaching practices of fractions for all children around the world 
(Ministry of Education of the People's Republic of China, 2011; National Governors 
Association Center for Best Practices, 2010) and for students with LD or MD in 
particular (Fuchs et al., 2016). Lia folded the paper in a peculiar way that shows 
three parts (albeit not equal parts). Lia knew of a visual model in her school that, 
after showing one-half, would display one-third as the next logical choice. Thus, the 
erroneous answer of one-third, prevalent among non-LD students as well, made 
sense from her frame of reference (Hunt, et al., 2016a; Tzur & Hunt, 2015). For us, 
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Student 
Thinking

Environment 
(teaching) 

Fig. 3.4 Tasks and their 
role as platforms to bring 
forward diverse ways of 
knowing

the student’s thinking within this and other tasks served as a basis to infer into what 
they understood at the time (Hunt, 2015; Tzur & Hunt, 2015).

An instructional method suitable for engaging students in actively working on 
mathematics as a means to expand their available concepts and engender new, 
intended ones, termed variation, was also explicated in research on mathematics 
teaching in China (Gu et al., 2006; Huang et al., 2015; Jin & Tzur, 2011b). Teaching 
with variation promotes conceptual change by sequencing tasks in ways that sup-
port the student’s engagement in goal-directed activities while promoting either or 
both types of reflection. Teaching with variation (of tasks) could involve solving 
different problems using the same method or solving the same problem using differ-
ent methods/strategies. An example of the former is the sequence of French fry tasks 
in which we engaged Lia after moving from two to three (no ruler, no folding) 
people, then to four, five, six, eleven, eight, etc. Initially, she resolved a challenge 
(no ruler, no folding) by developing the method of iterating just one person’s share 
for sharing a given whole (paper strip) among three people. Then, she continued 
using the same method while we essentially varied the number of people chosen for 
the task. In general, teachers learn to greatly appreciate, and use, mindfully choos-
ing numbers for tasks as an effective instructional tool. An example of the latter (one 
problem solved with different methods) could be seen in Lia’s use of guessing-and- 
checking a small piece to add (or reduce) from one person’s share vs. “eyeballing” 
the gap between her iterated whole and the given whole so she could partition it 
according to the number of people sharing the fry (shown by the third yellow strip 
from the top in Fig. 3.2).

We note that there are no “safe procedures” for how a sequence of variation tasks 
could nurture the intended conceptual change. Yet, the theoretical lens we presented 
in this chapter give some guidance. We further illustrate such guidance after consid-
ering the core tenant to foster the mechanism for conceptual change, namely, 
reflection.

Core tenant #3: Promote noticing and reflection As we have articulated, the 
heart of learning as conceptual change is the reflection on activity-effect relation-
ships, including two types of reflection and two stages (Simon et al., 2004; Tzur & 
Simon, 2004). This theoretical lens implies that direct teaching is not likely to pro-
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mote conceptual learning (Hunt & Silva, 2020). Direct teaching methods, such as 
telling and/or modeling for students how to solve problems (Geary, 2004), may 
yield changes in performance (e.g., mastery of some procedures to order unit frac-
tions by comparing the denominators as whole numbers; see Fuchs et al., 2013). 
Students with LD or MD may even retain some of what they have been taught for 
some time – as assessment of future performance may show (Fuchs et al., 2016). 
But, we argue, direct instruction hardly ever advances their conceptual understand-
ings (Woodward & Tzur, 2017).

Instead, teaching methods that draw on a constructivist theory of learning entail 
that a core tenant for fostering students’ conceptual learning is to promote noticing 
of and reflection on relationships between their goal-directed activities and effects 
of those activities (Tzur, 2008). Promoting noticing and reflection is indirect (or 
implicit), because a teacher cannot model, determine, or manage what a student’s 
mental system sets as its goal, triggers as an activity to accomplish that goal, takes 
notice of as effect(s) of that activity, compares these effects to one’s anticipated 
effects, or link across instances of similar experiences. Simply put, noticing and 
reflecting reside solely within the student. What a teacher can and should do is learn 
to occasion those mental processes in students (Pirie & Kieren, 1994).

Tzur (2008) and Hunt & Tzur (2017) have discussed specific ways by which 
teachers can orient (occasion) intended noticing and reflections in their students. We 
further explain those in Chap. 5. Here, we point out that for students to construct the 
participatory (prompt-dependent, provisional) stage of a new concept, a teacher can 
foster Reflection Type-I by orienting students to use their anticipated effect(s) as a 
gauge against which to compare actual effects of their activity. Questions we asked 
of Lia, such as, “Would you make the share of one-in-four people longer or shorter 
than for one-in-three?” were used to nurture her establishment of an anticipated 
effect. Questions that followed her completion of the activity, such as, “Did making 
the share for one-in-four longer than one-in-three got you closer to your goal?” then 
oriented her Reflection Type-I. Questions such as, “Would you need to make the 
next attempt for one-in-four longer/shorter than the one-in-three?” would further 
orient her reflection across instances, which include her initial, erroneous adjust-
ment and the next one.

For students to construct the anticipatory stage of a new concept, a teacher can 
foster Reflection Type-II by orienting students to compare several instances in 
which their goal-directed activity yielded and should be anticipated to continue 
yielding similar effects. For example, we asked Lia, “In what ways were your 
adjustment of one person’s share when moving from three to four, to five, and to six 
people, were similar?” or “Would you anticipate this direction of adjustment be the 
same when moving from eleven people to eight people and why?” Such questions 
promoted her abstraction of the invariant, logical necessity of inverse relation 
among unit fractions. We remind our reader that teachers’ questions to foster 
Reflection Type-II would be critical for any student, let alone those with LD, to 
construct the intended concept. The reason is twofold: (a) such reflection does not 
occur automatically and (b) it is postulated to engender the anticipatory stage  – 
without which a student is likely to be left behind.
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3.4  Concluding Remarks

In this chapter, we have presented a theoretical lens that can serve teachers of stu-
dents with LD (or MD) as a tool for reasoning about and promoting mathematics 
learning as a conceptual change. Using an example of a highly successful, teaching- 
learning process in which one such student (Lia) constructed a concept of unit frac-
tions, we articulated:

 (a) Two types of mental comparison  – between anticipated and actual effects 
(Type- I) or across instances of activity-effect dyads (Type-II), which constitute 
the mechanism of reflection that engenders this change;

 (b) Two stages in this process of change, from available concepts, through a partici-
patory (prompt-dependent, provisional) stage, to an anticipatory (independent) 
stage of a new concept;

 (c) Three core tenants for teaching implied by this theoretical lens, including (a) 
bringing forth students’ available concepts (e.g., bridging tasks), (b) engaging 
students in variation tasks, and (c) orienting students’ noticing and reflection on 
relationships between their goal-directed activities and effects of those activities.

Having seen how this theory fostered similar learning in hundreds of students 
with LD or MD, we argued that for mathematics teaching to effectively advance 
conceptual learning in those students it is imperative to steer away from teacher- 
directed instruction. Instead, we encouraged teachers to use individualization of 
instruction by assessing a student’s available concepts and use the theory to foster 
reorganization of those into new, intended concepts (Tzur, 2008; Tzur & Lambert, 
2011). Knowledge of research-based progressions can then augment the teacher’s 
reasoning by guiding a program of instruction and assessment for students with LD 
and MD (Empson, 1999; Mack, 2001; Olive & Vomvoridi, 2006). Chapters 4 and 5 
expound upon this idea of creating instructional trajectories that begin with stu-
dents’ available concepts (Simon, 1995) to improve access and opportunities for 
constructing mathematical ideas as they grapple with problematic situations in their 
experience (Clements & Sarama, 2009).
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Chapter 4
Commentary on Part I

Ann Dowker

Abstract The author first provides a summary of the first three chapters in this 
book, which are focused on theoretical issues relevant to mathematical difficulties. 
The chapter progresses to discuss the componential nature of arithmetic and the 
impact this has on assessment and interventions for children with mathematical dif-
ficulties. Then the chapter discusses the impact cultural practices have on mathe-
matics cognition.

Keywords Mathematics difficulties · Arithmetic · Assessment · Cultural practices

The first three chapters in this book deal with mathematical difficulties, and how 
they influence and are influenced by considerations of diversity and equity in educa-
tion. The first chapter is ‘Considerations of Equity for Learners Experiencing 
Mathematics Difficulties: At the Nexus Between Mathematics and Special 
Education’ by Robyn Ruttenberg-Rozen, Brenda Jacobs, and Brianne Brady. They 
discuss the narratives that are constructed around learners experiencing difficulties 
and the consequences of those narratives. They argue that many pupils’ abilities are 
discounted because learners learn about mathematics in a variety of ways, and those 
that are not regarded by society as the ‘norm’ may not be recognized at all.

The second chapter is ‘Characteristics of the Learners’ by Kay Owens and 
Shirley Yates. They discuss the diversity of learners, and summarize work by 
Reisman & Kauffman on characteristics that may affect learning. These include dif-
ferences and difficulties in cognitive characteristics such as general speed of learn-
ing; speed of learning of specific content; memory; verbal skills; symbolic learning; 
attention; and ability to form concepts, relationships and generalisations. They also 
include differences and difficulties in physical and psychomotor characteristics, 
such as visual perception, visual discrimination, figure-ground perception, visual 
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and auditory figure-ground distractibility, form constancy, visual-sequential mem-
ory, spatial relationships, auditory perception and auditory discrimination. They 
also include differences and difficulties in social and emotional development.

The third chapter is ‘Discerning Learning as Conceptual Change: A Vital 
Reasoning Tool for Teachers’ by Ron Tzur and Jessica Hunt. This article argues that 
learning can be seen as a process of change in learners’ concepts; and that this 
should be addressed by starting from the concepts that children do have (assets) 
rather than those which they lack (deficits). They postulate two types of comparison 
that are important in such conceptual change: comparing anticipated and actual 
effects, and comparing different instances of activity-effect dyads. They also pro-
pose two stages in conceptual change: ‘from available concepts, through a participa-
tory (prompt-dependent, provisional) stage, to an anticipatory (independent) stage 
of a new concept’. They conclude by proposing the tenets for teachers: (1) ‘Bring 
forward students’ prior knowledge’. This may involve bridging: the use of initial 
problems that the children are capable of solving independently (rather than those 
that need to be modelled or assisted by teachers), that bring forward concepts which 
are reorganized to form the basis for solving more advanced problems. (2) ‘Engage 
students in tasks that engender goal-directed activities relevant for the intended con-
ceptual change’. This may involve variation: encouraging flexible problem-solving 
either by solving different problems using the same method or solving the same 
problem using different methods. (3) ‘Encourage noticing and reflection’. This may 
be promoted by orienting students to compare anticipated effects of their activity 
with actual effects. They may first be asked to anticipate the likely effects and then 
asked whether their activities did result in these effects.

These recommendations, and the emphasis on diversity in learning, are consis-
tent with, and indeed have important and fascinating implications for, theories about 
the componential nature of arithmetic. There is by now overwhelming evidence 
(e.g. Dowker, 2015; Cowan et al., 2011; Gifford & Rockcliffe, 2012; Jordan et al., 
2009; Pieters et al., 2015) that arithmetical ability is not unitary, but includes a vari-
ety of components, ranging from counting to word problem solving to memory for 
arithmetical facts to understanding of arithmetical principles. Moreover, though the 
different components often correlate with one another, weaknesses in any one of 
them can occur relatively independently of weaknesses in the others. Weakness in 
even one component can ultimately take its toll on performance in other compo-
nents, partly because difficulty with one component may increase the risk of the 
individual relying exclusively on another component, and failing to perceive and 
use relationships between different arithmetical processes and problems; and partly 
because when children fail at certain tasks, they may come to perceive themselves 
as ‘no good at maths’ and develop a negative attitude to the subject.

Awareness of the componential nature of arithmetical performance has led to 
attempts to develop interventions that are targeted to individually assess strengths 
and weaknesses in arithmetic. Such individualized, component-based techniques of 
assessing and remediating mathematical difficulties have surprisingly early origins. 
They have been in existence at least since the 1920s (Buswell & John, 1926; 
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Brownell, 1929; Greene & Buswell, 1930; Williams & Whitaker, 1937; Tilton, 
1947). The educationist Weaver (1954) argued that:

Arithmetic competence is not a unitary thing but a composite of several types of 
quantitative ability: e.g. computational ability, problem-solving ability, etc. These 
abilities overlap to varying degrees, but most are sufficiently independent to warrant 
separate evaluations…Children exhibit considerable variation in their profiles or 
patterns of ability in the various patterns of arithmetic instruction. . .(E)xcept for 
extreme cases of disability, which demand the aid of clinicians and special services, 
remedial teaching is basically good teaching, differentiated to meet specific instruc-
tional needs (pp. 300–301).

On the other hand, component-based techniques of assessment and intervention 
have rarely been used extensively. This appears to be mainly due to practical prob-
lems: In under-resourced classrooms, it is difficult to provide individualized instruc-
tion. Also, especially before the internet, there was limited communication of 
findings between different locations and between researchers, educators, and 
policy-makers.

There are increasing numbers of intervention programmes involving individual-
ized assessment and targeted interventions (Chodura et al., 2015; Dowker, 2017). A 
recent and initially government-sponsored example in the UK is the Numbers Count 
programme (Dunn et al., 2010; Torgerson et al., 2011; Torgerson et al., 2012). It 
involves careful assessment of individual children’s strengths and weaknesses, fol-
lowed by intensive individualized intervention targeted to address specific weak-
nesses, and emphasise the development of number concepts through multisensory 
teaching. Other individualized interventions include Mathematics Recovery (Willey 
et al., 2007; Wright et al., 2006); Catch Up Numeracy (Dowker, 2016; Dowker & 
Sigley, 2010; Holmes & Dowker, 2013); Calcularis (Kaeser et al., 2013); Dynamo 
Maths (Esmail, 2020); and Pirate Math (Fuchs et al., 2010). In particular, recent 
development of mathematics intervention programs emerging from collaborative 
work of scholars from the fields of mathematics and special education are presented 
later in this book (e.g., Chaps. 12, 13, 14, 15, and 16). These all appear to be giving 
positive results; nevertheless much more research, in far more parts of the world, 
still needs to be done on interventions and their development and implementation. 
Far more systematic research is also needed in order to compare different pro-
grammes. But even when such research is done, it is likely that there will prove to 
be no single best intervention programme, and that different programmes would be 
suitable for different groups of children.

As well as evidence that arithmetical ability is in general made up of various 
components, there is much evidence that different components and different ways 
of expressing and demonstrating them may be emphasized in different cultures and 
that this will influence the educational practices, assessments, and interventions that 
may be carried out. Language, including the level of correspondence between the 
linguistic practices of home and school, is likely to influence responses to both 
assessment and school instruction; and mathematics assessments that do not depend 
strongly on language may prove useful (Greisen et al., 2018).
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More generally, cultural practices have a strong impact on mathematical cogni-
tion. For example, Posner (1982) found that the Dioula, a mercantile group of peo-
ple from the Ivory Coast, learned to use rather complex calculation strategies for 
trading and selling purposes. Even those merchants who had never been to school 
were adept at calculation. Baoule people in the same region, who were farmers 
rather than merchants, did not demonstrate such high-level calculation abilities.

Carraher et  al. (1985) studied Brazilian child street traders between 9 and 
15 years. All attended school, though many attended somewhat irregularly. They 
were given the same arithmetic problems in three different contexts: (1) a ‘street’ 
context, where the researchers approached them as customers and asked them about 
prices and change; (2) a ‘word problem’ context where they were given school-type 
word problems dealing with prices and change in hypothetical vending situations; 
and (3) a numerical context, where they were given the problems in the form of 
written sums. The children performed much better in the street context than on word 
problems and much better on word problems than on written sums. They solved 
almost all – 98% – of the problems correctly in the street context; 74% of the same 
problems were solved correctly when presented in the form of word problems; but 
only 37% were solved correctly when presented in the form of written sums. By 
contrast, middle-class children, who attended school regularly but had no street 
market experience, performed better in a numerical context than in a market-type 
context.

Other studies of the effects of schooling versus street trading experience were 
carried out by Saxe (1985, 2012; Saxe & Esmonde, 2005). Saxe studied the arith-
metical strategies of Oksapmin children in Papua New Guinea. Some were street 
vendors with little or no schooling; some attended school but had no vending expe-
rience; and some had both types of experience. They were all given word problems 
based on the prices and profits for selling sweets. Those with more schooling relied 
more on written numbers and place value notation. Those with little or no schooling 
relied more on the specific features of the currency.

Among children with equal amounts of schooling, children with vending experi-
ence used more derived fact strategies. Those without vending experience relied 
more on well-learned, school-taught algorithms. Those with more schooling relied 
more on written numbers and place value notation. Those with little or no schooling 
referred more to the specific features of the currency.

The majority of the research on the effects of specific cultural practices on learn-
ing was carried out in the late twentieth century, and there appears to have been 
comparatively little in the twenty-first century. Hodge & Cobb (2019) have sug-
gested that part of the reason for this may be that different cultures are less isolated 
and separable than in the past. There has, however, been extensive research on the 
effects of the language and counting system on number sense and counting, both in 
the late twentieth century (e.g. Miura et  al., 1993) and more recently (e.g. 
Bahnmueller et al., 2018; Butterworth et al., 2008; Dowker & Nuerk, 2016; Göbel 
et al., 2011; Pica et al., 2004). There have also been discussions, from various points 
of views, about adapting educational practice to cultural backgrounds: for example, 
Bal & Traimor (2014); Hodge & Cobb (2019); Hollins (2015); Howard & Terry 
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(2011); Strekalova-Hughes et al. (2021). But there is clearly room for much more 
research on how educational practices can be adapted to children’s experiences of 
cultural practices, as well as their individual strengths and weaknesses. The chapters 
discussed here will contribute significantly to such research.
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Chapter 5
Connecting Theory to Concept Building: 
Designing Instruction for Learning

Jessica H. Hunt and Ron Tzur

Abstract Supporting students to develop conceptual understanding can be chal-
lenging. In this chapter, we address how teachers can promote students’ conceptual 
growth. Our aim is to illustrate connections between the framework for knowing 
and learning presented in Chap. 3 and instructional design considerations. We 
address the essential question, “What tools do teachers utilize to promote students’ 
conceptual change?” First, we compare and contrast interventions designed for 
remediation versus interventions designed for learning, making connections 
between designing for learning and mathematical proficiency. Next, we review core 
features of student learning: students’ noticing of relationships between goals, 
actions, and their effects and unpack two key design considerations teachers can use 
to support growth in students’ concepts. Specifically, we unpack (1) bridging, varia-
tion, and reinstating types of tasks and (2) interactive prompting and gesturing. 
Finally, we use the fundamental concept of ten as a unit to illustrate how teachers 
might use such design moves to inform their teaching.

Keywords Conceptual teaching •  Bridging tasks •  Variation tasks •  Reinstating 
tasks •  Prompting and gesturing

In Chap. 3, we discussed what it means for a student to know mathematics well, core 
tenets of a strengths-based theory of student learning, and mechanisms that students 
use to build upon their strengths and advance their mathematics proficiency. In this 
chapter, we encourage teachers to consider how they can use the mechanisms that 
bring about conceptual change to promote students to grow their mathematical 
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conceptions. Specifically, our aim is to support the reader to make connections 
between the framework for knowing and learning presented in Chap. 3 and instruc-
tional design considerations, so that instruction can be designed for student learning.

We present this chapter with the full realization that systems are often put into 
place in schools to improve students’ mathematics performance as opposed to pro-
moting learning and more robust notions of mathematics proficiency. As we noted 
in Chap. 3, a common goal in such systems seems to rest in the desire to address 
students’ difficulties that emerge in the regular mathematics classroom and, through 
remediation, bring students’ mathematics performance to a desired level. By reme-
diation, we are referring to the instructional process by which teachers work to 
change students’ mathematics performance. By intervention, we are referring to the 
system or structures through which the process occurs.

Intervention systems in the USA are conceptualized by research and practice as 
a three-tiered structural approach, where intensity of supplemental instruction 
increases gradually in each tier (Bryant et al., 2008). The first tier is usually under-
stood as the mathematics classroom, where whole-class mathematics teaching is 
employed and procedures are put into place to monitor children’s learning. The 
second tier is conceptualized as supplemental to the first and involves small group 
sessions ranging in time from 20 to 35 minutes a day, for several days a week, for 
several weeks in settings inside or outside of the mathematics classroom (Bryant et 
al., 2008; Fuchs et al., 2008). The third tier is, by far, the most intensive. It often 
involves individualized interaction between children and teachers (Fuchs & Fuchs, 
2006). Instruction at the third tier can be in addition to instruction taking place in the 
second tier, or it can involve an enhanced version of tier 2 instruction (e.g., increased 
number of sessions or amount of time spent in each session; additional area of 
instructional emphasis). Overall, the additional supports in the second and third 
tiers are meant to work with instruction happening in the mathematics classroom, 
with a focus on improving children’s mathematical performance to meet a norm 
expected of their peers.

A wealth of research documents increased mathematical performance when 
remediation is used to support mathematics intervention (Brophy & Good, 1986; 
Ellis & Worthington, 1994). Indeed, if the goal of intervention is to increase chil-
dren’s mathematical performance, then remediation can be an effective instructional 
technique (Hiebert & Grouws, 2007). Yet, we challenge you to consider that reme-
diation is limited in terms of its ability to promote meaningful and lasting change in 
students’ conceptions and, ultimately, students’ sense of themselves as mathemati-
cally competent people.

5.1 Rethinking the “Issue” of Student Performance

Mathematically competent people do more than simply perform mathematics. 
Recall from Chap. 3 that Kilpatrick et al. (2001) explained mathematical proficiency 
as encompassing five interrelated strands – conceptual understanding, procedural 
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Fig. 5.1 NRC (2001) five interconnected strands of mathematics proficiency

fluency, strategic competence, adaptive reasoning, and productive disposition. As 
shown in Fig. 5.1, these strands are interconnected and inter-reliant. As a result, 
intervention should work to promote all five strands to build students who are math-
ematically competent as opposed to remediating students to perform at an expected 
mathematical level.

Accordingly, effective teaching builds on students’ own ways of sense making 
and promotes student learning by asking the fundamental question, “How is the 
student thinking about the mathematics?” This question is asked in reference to a 
clear goal for student learning that drives the planning of activities, preparation of 
materials, and planning of conversation and interaction with students, all of which 
become the drivers of student learning.

When mathematical understanding [and learning] begins with the student engag-
ing in mathematical situations that both use and challenge their ways of knowing, it 
allows a space to “grapple with key mathematical ideas that are comprehendible but 
not yet well formed” (Hiebert & Grouws, 2007, pp. 387). When teachers utilize a 
student’s conceptual strengths, the students are positioned as already possessing a 
way of knowing that they use to understand and to learn, building more productive 
dispositions and powerful conceptions in mathematics. In this way, we encourage 
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teachers to use systems of intervention not mostly or merely as spaces for mathe-
matics remediation but as spaces for mathematics conceptual learning. In the next 
sections, we connect pedagogy to the mechanisms that promote student conceptual 
learning outlined in Chap. 3.

5.2  Designing for Learning: Three Considerations  
to Promote Students’ Mathematics

Interactions, including conversations, between a student and a teacher in a well-
designed instructional space constitutes a powerful pedagogy because it builds on 
the mechanisms of learning. Said another way, instruction can become optimized 
when we pair it with the knowledge of how children already think and how they 
learn more advanced concepts. Below, we revisit learning, its core mechanisms, and 
connect the mechanisms to pedagogy.

Revisiting Learning and Its Core Mechanisms In Chap. 3, we framed learning 
as changes in a child’s concepts via reflection on the effects of their activities (Simon 
et al., 2004). Learning happens when children use their current ways of knowing to 
think about and solve a task. The learners’ own concepts set their goal and the activ-
ity they carry out on some object(s).

We also explained core mechanisms of learning, such as noticing and reflection. 
Reflection consists of two types (Tzur & Simon, 2004). In Type I, the child com-
pares between their anticipated effect (informed by their goal) and the noticed 
(actual) effects of their activity. In Type II, the child compares across instances in 
which the activity has been used and yielded similar effects, to abstract such an 
activity-effect linkage as a new concept. For example, when engaged in the French 
Fry activity described in Lia’s case in Chap. 3 (Tzur & Hunt, 2015), a student may 
reflect on attempts to create one person’s share that were shorter/longer than previ-
ous attempts for a different number of sharers. This typically leads to realizing the 
inverse relation between the number and the size of fractional units that fit in a given 
whole (e.g., 1/5 > 1/6 because 6 > 5). A concept grows out of those two types of 
reflection and refers to the abstract relationship a student forms between his or her 
activity and its effects.

Finally, we explained that Tzur and Simon (2004) equate the results of reflection 
with novel mathematical understandings constructed at two stages: participatory 
and anticipatory. Students who have participatory understanding of a concept need 
to engage in an activity to notice a result and reflect on it. That is, students’ under-
standings in the participatory stage are provisional in that they depend on some 
form of being prompted (whether internally or by another person). In contrast, stu-
dents who have an anticipatory understanding of a concept have abstracted the 
understanding of the mathematical necessity resulting from prior, goal-directed 
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activity. They can draw upon this understanding in situations that are similar to, yet 
distinct from, those in which the understanding was constructed in the first place 
(i.e., new “knowing,” von Glasersfeld, 1995).

When a new concept is constructed at the participatory stage, calling upon a 
concept depends on students being prompted for the actions that lead to the antici-
pated effect. If prompted, students perform like anyone who already established the 
concept; otherwise, they revert to using prior concepts. Later, the same new concept 
may be established at the spontaneous, anticipatory stage. Here, students can inde-
pendently bring forth and use the concept to find/explain solutions to tasks and 
begin to build new participatory ways of reasoning (Tzur & Simon, 2004).

The distinction between the stages is crucial for teaching. A participatory stage 
of a new concept, while important, is not likely to support learning the next, more 
advanced concept(s) on their own. Anticipatory concepts must be present (in tan-
dem with participatory concepts) for learning to occur (Hunt & Silva, 2020; Tzur & 
Simon, 2004; Siegler, 2007). As a result, these two stages of conceptual understand-
ing are extremely important for teaching in that they ground every move that we 
discuss in the subsequent sections. Within, we discuss two design moves teachers 
can use as they work with students: (a) using tasks to bridge, promote, and reinstate 
thinking and (b) using gesturing and prompting to support students’ noticing and 
reflection.

First Design Move: Use Tasks to Bridge, Promote, and Reinstate Thinking  
A strengths-based approach to intervention uses what the student already knows as 
a starting point for instructional decision making (Hunt, 2015). In Chap. 3, we high-
lighted the role of tasks and materials in supporting students to think and be active 
within an environment. Recall that tasks and materials in and of themselves are not 
the same as the thinking that students generate within them. We also said that tasks 
are designed to bring forward a student’s prior knowledge, or available conceptions 
(e.g., Hunt & Empson, 2015), so that they can be accessed and later supported to 
building new, more advanced concepts. We will illustrate the role of tasks in each 
stage of students’ reasoning and use the prior case of Lia (Chap. 3) to discuss 
each move.

Bridging Tasks that act as platforms for students to access what they already know 
can be said to be a bridge to their prior knowledge (Jin & Tzur, 2011; Huang et al., 
2015). In bridging, students solve tasks that activate their available concepts while 
also holds potential for linking to the intended concepts for learning. For example, 
in Chap. 3, we discussed Lia’s thinking in a series of tasks involving a “French fry” 
(Tzur, 2007). For Lia, the task of sharing a French fry among two people served as 
a bridge to her current ways of reasoning. That is, she had prior ideas about fair 
shares and a concept of two that she could use to easily share the French fry among 
two people. Because the task bridged to what she already knew, she could also bring 
forth her concept of number as a unit made of smaller units and thus reason about 
the resulting quantity and coordinate the length of that quantity with the length of 
the whole (e.g., quantify the result as “one-half” of the French fry).
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Importantly, different prior knowledge makes certain tasks a bridging task for some 
students but not for others. Here is an example. We once worked with a young stu-
dent in the fourth grade on a task very similar to the one we posed to Lia. In this 
task, we used breadsticks as the items being equally shared. The student was puz-
zled, looked down and away several times before saying that he did not know how 
to solve the problem. Waiting several minutes for the student to think, he suddenly 
asked, “Breadsticks…are those like, are those like in lunch?” After affirming the 
student’s thought and asking if he ate breadsticks at lunch in school or home, the 
student commented, “Yeah, I’ve had them… they’re OK. I don’t know. I don’t like 
them very much. They tasted like cardboard!” After agreeing it would not be good 
to share something that did not taste good, the child chose a new context and solved 
the problem thoughtfully.

We tell this story to emphasize the importance of considering prior knowledge in 
bridging tasks from a wide stance. Bridging tasks should bring forward much of a 
student’s prior knowledge – and this prior knowledge is not always mathematical in 
nature (Civil, 2007). The task about breadsticks presented to the student in the above 
example was not a bridge because it ignored the impact of the context in which the 
problem was presented on the child’s reasoning. That is, teachers should take into 
consideration that students’ life experiences shape their understanding of mathe-
matics (Civil, 2007). In this way, bridging tasks are idiosyncratic in nature. What 
acts as a bridge to one student’s ways of reasoning may not work for another’s (e.g., 
Hunt et al., 2019).

Variation After a student’s prior knowledge is brought forth, another tool that 
teachers have in terms of tasks is variation (Gu et al., 2006). In variation, we engage 
students in solving gradually more challenging tasks, either one task in different 
ways or different tasks in the same way. These kinds of tasks help students notice 
commonalities within and across tasks presented in learning situations. Doing so 
supports students to realize and abstract what, mathematically, must remain the 
same in related situations, hence building and solidifying a concept (Simon et al., 
2004). For example, in the case of Lia, variation tasks could be to share the same-
size paper strip among three, four, and five people. As described in Chap. 3, we 
surmised that Lia might make an estimate of the size of one person’s share and iter-
ate that piece the number of times needed for people who share the entire French 
fry. We designed this variation with an intention that comparing her iterated whole 
to the given one (to be shared) would bring about the need to adjust the length of the 
estimated, single piece if it proved to be too short. The action of partitioning via the 
iteration helps students coordinate the length of unit fractions with a given sized 
whole (Tzur & Hunt, 2015), eventually conceptualizing for themselves the inverse 
relation between the number and size of unit fractions.

We call these types of tasks “variation” because they support the same mathematical 
goal yet changes in terms of constraint(s) on solution method. For example, addi-
tional tasks can then engage the child in using the same strategy to equally share the 
same-size paper strip among 7, 10, or even 13 people. Along the way, we impose 
more constraints and challenges (e.g., find the correct share length in as few attempts 
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as possible). The goal of the tasks remains consistent: to find the correct size share 
for n people such that n iterations reproduce the length of the referent whole being 
considered as a unit of one (1). The role of the constraints is to promote the need for 
more sophisticated reasoning that connects to how the child is already operating in 
the task.

Variation tasks in the context of the French fry activities serve as a platform for 
the student to construct and abstract a twofold, invariant relationship: (a) there is 
only a single unit that uniquely fits n times within a given whole (symbolized as 1/n) 
and (b) a larger number of iterations to produce more shares necessarily yields 
smaller-size units – and vice versa (symbolized as 1/7 > 1/10). Lia can then use this 
newly formed concept in related situations that deepen the concept, such as a second 
type of variation that involves different tasks in which the same solution method can 
be applied across the tasks. For example, we might challenge Lia to use the known 
length of different unit fractions to recreate the length of the referent whole.

Reinstating Bridging and variation tasks work with a child’s participatory and 
anticipatory stages to support concept learning. Yet, these tasks do not work com-
pletely on their own within instruction designed to promote student learning. One 
obvious addition is the role of interaction between the student(s) and the teacher as 
students are immersed in tasks. Another, not so obvious addition is the use of a task 
that can reinstate noticing and reflection on the part of the student. This means that 
there are times in which, despite the best design and/or sequencing of tasks, con-
straints, and interactions, students may not notice the effects of their actions and 
reflect on them. This means that the core mechanisms needed to progress from 
participatory to anticipatory stages of a concept become “shut off.”

The most straightforward way to explain reinstating tasks is as a mechanism to 
reorient the child back to a point that they were noticing and reflecting upon actions, 
such that the core mechanisms that promote learning can be “turned back on.” We 
illustrate the use of a reinstating task in a case study at the conclusion of this chapter.

Second Design Move: Use Prompting and Gesturing to Support Students’ 
Noticing and Reflection Having discussed how to use tasks to support students to 
bring forth their prior knowledge and advance it, we next outline how teachers can 
use prompting and gesturing to assess student thinking and help support students to 
notice and reflect upon their reasoning (i.e., their goal-directed actions and effects). 
We begin with assessing. As we did with tasks, we ground our discussion of prompt-
ing and gesturing in the case of Lia and include a synopsis of how teachers can use 
gesturing and prompting shown in Table 5.1.

Before we begin to describe the tools teachers can use in interacting with students, 
we emphasize that interactions are always based in a response to something a stu-
dent does or explains about what they do within the confines of a task. Said differ-
ently, interactions within strengths-based interventions always take the form of a 
teacher’s response to a student’s way of reasoning. You might think of a basic unit 
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Prompt or gesture Example (using “Lia’s” case)
Prompt: Assess (anticipatory or participatory)

Clarify Say more
Remind me again …

Justification So, you are saying…. Convince me this is true
Critique/counterargument Wait- I thought….
Prompts/gestures: Promote noticing (participatory)

Prompt: Revoice You said…. Is that right?
Prompt: Activity -> Effect What happened? Is that what you thought would happen?
Gesture: Reshow Reshowing the student’s exact actions in a task
Prompt: Promote reflection type I (participatory)

Gesture: Reshow Any time a teacher reshows a student’s actions in a problem
Prompt: Activity -> Effect What happened? Is that what you thought would happen?
Prompt: Extend reasoning Convince me how we know that….(directly following a 

cause and effect situation)

Prompt: Promote reflection type II (participatory)

Prompt: Make prediction How much longer the next estimate should be to get it 
exactly? Tell me first, before you do it.

Table 5.1 Interactions to support participatory and anticipatory stages of a concept (Hunt & 
Tzur, 2017)

of interaction as a communication exchange that originated with the child’s utter-
ance or action, followed by the teacher’s response to the child’s utterance or action, 
and led to the child’s next utterance or action.

Prompting to Assess Evolving Understanding Assess interactions can generally be 
described as responding to a student’s (in this case, “Lia’s”) ways of acting and 
speaking, with the goal of digging (inferring) into the student’s reasoning. In our 
collective work (Hunt & Tzur, 2017), prompts that assess students’ understanding 
usually take one of three forms: (a) clarification, (b) press for justification, and (c) 
critique. Using prompting to assess student reasoning can happen at any point (real-
time) in intervention when teachers wish to explore how a student thinks. Seen 
through a student-adaptive pedagogy lens, the non-particular use of assess interac-
tions makes sense, because a teacher who works to respond to a student’s mathemat-
ical activity must constantly make inferences into the thinking underneath the 
student’s activity.

Returning to our case of Lia, we might assess how Lia is thinking as she works 
within a variations task involving sharing a French fry equally among four people 
after successfully sharing it among three people. Suppose that we asked Lia to state 
to us, before creating the share size for four people if it would be shorter or longer 
than the share size for three people. Lia confidently says, “Longer.” One way that 
we might assess her response is to use critique and counterarguments. We may say 
something like, “Wait; I thought shorter because four is a bigger number than three” 
and see how she responds. If Lia seems unsure or changes hers answer, then that 
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tells us something different about how Lia is reasoning than if she sticks with her 
response and elaborates on it (e.g., “Four is larger than three, so I need to make it 
longer”).

Prompting and Gesturing to Promote Noticing and Type I Reflection Prompting 
and gesturing interactions to promote Type I reflection sounds self-explanatory, yet 
its application can be quite complex. Interactions at this stage include (a) Revoice, 
(b) Cause and effect, (c) Reshow, and (d) Extend reasoning. Teachers can use these 
kinds of interactions at any point in an intervention when the goal is to support stu-
dent’s Type I reflection.

Prompts to promote Cause-and-effect (goal -> activity -> effect) on the part of the 
student occur when the teacher encourages the student to notice what happened in 
her activity, or the relationship between the student’s activity in a task and its actual 
effects. The interaction is related to Type I reflection as well, because it supports the 
student to reflect on what they thought might happen, what actually did occur, and 
the alignment (or misalignment) between the two. Gesturing in the form of re-
showing is also related to this prompt, because teachers can reshow a student’s exact 
actions in a problem before asking them to evaluate cause and effect. Doing so can 
help students with working memory or attention differences reflect on their actions 
successfully (Hunt & Silva, 2020). An example of these types of interactions would 
be when the teacher responds to Lia’s thinking and actions within a task by asking 
her to state what she noticed happened after her actions (e.g., “What happened when 
you repeated that [points to child’s estimated share size and then reshows his repeat-
ing actions]? Is that what you thought would happen?”).

Teachers can pair cause-and-effect prompts with a request to students to defend 
their reasoning. Asking students to defend their reasoning can help them extend and 
build upon reflection. A similar example to our work with Lia shows how prompts 
and gestures may come together in a cohesive way. Much like Lia, this student is 
considering how to adjust an estimate of one person’s share for three people. Her 
estimate was too short (we use “S” for student and “T” for teacher):

S: Make it longer [proceeds to construct another estimate that adds the entire length 
of the shortage to her estimate].

T: Before you start there, you used your last guess [points to part of whole] and you 
went one, two, three [reshows students’ repeating of part]. What happened [cause 
and effect]?

S: It didn’t make it.
T: It didn’t make it. So, if we do that much more onto each, will the three of those 

make it, do you think [justification]?
S: [pauses for four seconds] It would make it but probably more than that.
T: Where do you think it might stop [make a prediction]?
S: [taps the table beyond the fry] Over there maybe.
T: Beyond the end of the Fry. OK. (Hunt & Tzur, 2017, p. 71)
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This example shows how prompts can coincide and work together with gestures 
to support students as they build concepts.

Prompting and Gesturing to Promote Type II Reflection Prompting and gesturing 
interactions to promote Type II reflection have a core purpose of supporting and 
extending students’ reflection upon the logical necessity of the effects of their 
actions within a task or commonalities across their actions across tasks. Teachers 
can use these kinds of interactions in an intervention when the goal is to support 
student’s Type II reflection. This is typically done when the teacher has assessed 
that students already have a participatory stage of that concept (Tzur, 1996).

Comparison/prediction prompts support the child’s comparison of outcomes of past 
activity with anticipated results of current activity. Essentially, the role of the teacher 
when using these kinds of prompts is to challenge the student to use their past activ-
ity and apply it (i.e., could you predict before acting?). Often, we have found that 
these kinds of prompts are the most consistently and heavily used interaction at 
work in intervention programs, because Type II reflection is what seems necessary 
to support anticipated actions (i.e., new concepts at the anticipatory stage; see 
Tzur, 2011).

Examples of the teacher using comparison/prediction prompts include asking 
students to use their past activity to support activity in the current situation. For 
example, after a student created an estimate, the teacher may ask: “Last time, you 
used a little bit of the leftover amount to make your next guess a little longer 
[Revoice]. You said it was too short. Now, you said you will make your next guess a 
little longer again [Revoice]. How much more will you have to put onto each to 
cover it all? Convince me of the amount before you do it.” Such prompts also involve 
responding to the children by asking them to use a past activity as a way to defend 
a statement. For example, the teacher may say: “Can you tell what you might esti-
mate if we share between eight people if this was what we got when we shared 
between seven people?”

We conclude this section with another example similar to that of Lia. The exam-
ple again shows how prompts come together in a cohesive way. This student is 
considering how to use the length of one-eighth to produce an estimate length for 
one-ninth:

T: Can you predict what you might estimate if we share between nine people − if 
this was what we got when we shared between eight people?

S: There are more; and nine is bigger than eight; so, it would be shorter for the nine 
people [constructs an estimate and iterates it across the Fry. The estimate is too 
short]. Nine of these didn’t go to the end so I need a longer one.

T: Oh. So, you made an estimate and when you repeated it for the nine sharers, it 
didn’t go to the end? [restate]

S: [nods]
T: And you said you needed a longer one. [restate] How much longer to get it 

exactly? Tell me first, before you do it. [make a prediction]
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S: You have to take the leftover part and split it up among the nine people. So, that 
much longer for each of the nine parts [aligns her previous estimate to the ninth 
iteration. Partitions the shortage amount into nine parts. Makes next estimate the 
length of her previous estimate plus one of the nine parts she made in the short-
age amount]. (Hunt & Tzur, 2017, p. 71)

5.3  Supporting Reflection: Emma’s Numbers and the 
Intersection of Tasks and Prompts

Another student, “Emma,” was in fifth grade when we worked to advance her con-
ception of number (Hunt & Silva, 2020). Like Lia, Emma was not confident in her 
mathematical abilities and was initially very reluctant to engage with us and with 
mathematics. She often asked us to “show her the answer” or resorted to memorized 
procedures, often applied incorrectly or in the wrong context. For example, across 
several missing-addend problems (e.g., “I have 12 buttons in total. Four are showing 
and the rest are hidden. How many buttons are hidden?”), Emma would request a 
sheet of paper so that she could add the numbers together in a vertical fashion, 
apparently using a procedure she had learned in school. When asked about her rea-
soning, Emma’s explanation revealed that her understanding of the place value 
involved with 12 was not fully developed. That is, she explained that you could 
think of the “1” in “12” as one unit of one as opposed to one unit of ten. In other 
problems, (e.g., adding 13 cubes and nine cubes), Emma would represent 13 by 
using linking cubes (counting and arranging them one by one), then display nine 
additional cubes, and, finally, determine the total number of cubes by counting all 
the cubes again, starting from 1 (the first cube). Importantly, when asked if there 
were additional ways to determine the total, Emma did not yet conceive of any.

The procedural nature of Emma’s reasoning seemed to remove her from the 
mental actions of noticing and reflection. This removal proved to have serious reper-
cussions for her mathematics learning and conceptual growth. Much like Lia, we 
worked from what we knew of Emma’s prior knowledge to understand how to plan 
instruction that could build on it. We learned that Emma utilized procedures to add 
two-digit numbers yet believed that the numerals in the tens place represented sin-
gle digits. Emma also utilized a count-all strategy to find sums and was comfortable 
and confident doing so. Emma also attempted to use her fingers as tools with which 
to count, although it was evident this strategy had been discouraged somewhere in 
her school experience (Hunt & Silva, 2020). We were curious to see if Emma would 
utilize connected strategies to conceive of addition and subtraction in more sophis-
ticated ways using her current ways of making sense, including finger counting.

Specifically, we decided to utilize tasks that could support Emma to see a need to 
adapt her count-all strategy into count-on and, eventually, breaking apart larger 
numbers into their place values. One task involved rolling a dice and moving a 
marker across a linear number game board (Tzur & Lambert, 2011). The game was 
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called “How Far from the Start,” with the goal of the gameplay to figure out how far 
away the game marker was after two rolls of a dice and two moves of the game 
board markers. The game moves mimicked the actions of having to generate and 
add together two addends.

Many strategies to combine the two addends were possible. For example, Emma 
could use a count-all strategy by counting visible spaces on the gameboard. She 
might also begin noticing that she could count by more than one space at a time. 
Another strategy Emma could use was count-on. Here, Emma could use the result 
of one of her dice rolls and subsequent moves of the game board marker as a starting 
point for her count. In our tasks, the initial numbers for the two addends ranged 
from three to nine. Playing many rounds of this game supported Emma to solve 
several problems that involved using multiple addends to figure a total. Covering of 
addends, using larger numbers, and moving the location of the unknown (e.g., from 
an unknown finish value to an unknown start or change value) were our designed 
constraints in the learning situations (Tzur & Lambert, 2011; also see Hunt & Silva, 
2020). Specifically, our aim was to promote reflection on the double count involved 
with Emma seeing number not as the result of a counted sequence but as a compos-
ite unit, or a sequence contained inside of another sequence (Olive, 2000).

Emma brought forth a count-on relatively early in the intervention. That is, she 
used one of the addends in the problems as an input from which to begin her count 
(instead of from 1) to determine a solution to the question, “How Far from the Start 
Are You?” Her shift to count-on was especially supported by us covering one of the 
addends on the game board so that the spaces were no longer visible. Yet, we noticed 
that, across several turns of the board game, Emma began to procedurally figure the 
solution and utilize her fingers to reshow the steps of what she already used the 
procedure to determine. For example, with a problem involving adding three to 13, 
Emma figured the answer (16) by using her finger to count up to the solution. 
Specifically, she described beginning from three, counting four, five, and six, and 
then adding the “one” to arrive at the total of 16 that she already figured out 
procedurally.

Just as we had done when we first started working with Emma, we asked her 
about the meaning of the “one” in 16. To justify her reasoning, she wrote the algo-
rithm out on paper vertically and stated that she simply added back on the “one” 13 
to obtain her answer. We asked Emma about the value of the “one” in 13:

Emma: That’s the one in the 13.
Teacher: But is that like, ONE [shows one finger]?
Emma: Yeah - only one.
Teacher: So, if this is one, how come I can’t just count one more…seven?
Emma: Because…three doesn’t have a one. (Hunt & Silva, 2020, p. 21–22)

Emma began the task by using an algorithm to find the total. She names the one 
in 13 as “one” as opposed to “10.” We decided to next promote Emma’s use of her 
figurative counting (fingers) to think more about combining the addends. Through 
questioning, our aim was to reinstate Emma’s noticing and reflecting on the action 
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of counting on from a start value other than 1. To do this, we invited Emma to con-
sider counting on not from the larger addend of 13 but from the smaller addend of 3:

Teacher: Suppose you had started counting from this three [points to the three 
underneath 13 and references third space on the game board]? How would you 
do that? [removes paper and game board]

Emma: [puts up hand] 3…, 4 [raises one finger], 5 [raises 2nd finger], 6 [3rd finger], 
7 [4th finger], … 8 [5th finger], 9 [6th finger], 10 [7th finger], 11 [8th finger], 12 
[9th finger], 13 [10th finger; stares at ten fingers and pauses for 5 seconds].

Teacher: 13…. How many have you counted so far?
E: Ten.
Teacher: How many more do you need to count?
Emma: I think… [sticks out lower lip; pauses for 3 seconds]. I think…. [frowns, 

looks down].
Teacher: [grabs a paper and pen] So you started at three [writes three and an empty 

number line] …and you did 4 [makes hop on number line], 5 [makes hop on 
number line], 6 [makes hop on number line], 7 [makes hop on number line], 8 
[makes hop on number line], 9 [makes hop on number line], 10 [makes hop on 
number line], 11 [makes hop on number line], 12 [makes hop on number line], 
13 [makes hop on number line]. Then you stopped and did this [holds up all ten 
fingers and wiggles them, covers up the number line].

Emma: Oh! 13… 14 [raises a finger], 15 [raises a finger], 16 [raises a finger]. I need 
three more. I needed three more to get 16. (Hunt & Silva, 2020, p. 21–22).

In this excerpt, we can see that Emma finally noticed thirteen to be ten and some 
more. We asked Emma to begin counting from the three to promote her to see a con-
nection between counting ten fingers and the “1” in the number 13. In starting to 
count from three, Emma noticed “10” in her figurative counting (her use of 10 fin-
gers at that point).

Emma made a connection between “13,” “10,” and “three” in her figurative 
counting. Yet, she did not yet seem to connect her activity to the problem solution. 
As opposed to decomposing the second addend into 10 and three, reflecting upon 
and coordinating her figurative counting, and arriving at the solution of 16, here, she 
counted up to a known answer that she previously arrived at procedurally. Arguably, 
Emma used this reasoning to compensate for demands on working memory during 
the coordination of counting. Yet, we argue that her use of procedures took away 
from both Reflection Type-I and Reflection Type-II. As a result, her conceptions of 
10 remained as they were, despite our attempts to promote advances in her concept 
of number as sequences contained inside of other sequences.

In fact, over the next several teaching sessions, Emma continued to procedurally 
figure out a stop value to count-up-to, using her fingers to represent her counting. 
This activity continued despite our attempts to ask for alternate ways in which to 
consider the problem. This use of algorithms to first figure out the answer and then 
count-up-to eclipsed Emma’s propensity to notice and reflect upon her figurative 
activity to advance her reasoning (3... 4 [that is 1], 5 [2], 6 [3] ... 16 [13, or ten and 
three]). As opposed to an awareness of two number sequences at once, Emma kept 
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the two number sequences separate when considering addends larger than 10 whose 
result crosses decades, leaving her potential to construct a concept of ten as a unit 
and use of break apart strategies untapped.

We point out the focus on noticing and reflecting across goal-directed activity 
and its effects as critical conceptual change mechanisms. For example, past attempts 
to increase performance in number through activities such as building numbers with 
cubes and base ten materials did not seem to be effective for Emma. She was taught 
to circle the tens digit to aid in ordering and comparing numbers and was also pro-
vided with a number line at her desk, and a hundreds chart in her math journal, to 
help her see the order of numbers. She was also taught procedures for adding num-
bers and heavily relied on them to figure out sums.

Conversations with Emma’s teacher revealed that the extra instruction was not 
helpful. For instance, if Emma saw a written number (e.g., 17), she could point to 
the tens and ones yet could not state the value of these numbers. Together with the 
teacher, we talked about a way to support Emma to not only access but also advance 
her knowledge by supporting her to notice and reflect upon her activity to promote 
conceptual change.

Promoting Learning We used bridging, variation, and reinstating tasks alongside 
interactive prompting and gesturing to support the Emma’s growth. We planned 
prompts to help her notice what happened in her activity as she works in and across 
relevant situations (e.g., “Counting all of the objects helped me find ‘how many’”). 
For example, a task that served to both bridge to her current reasoning (count-all) 
and extend it (to count-on) through variation was the “How Far From Start” game 
(see Chap. 3). The task has the same mathematical goal throughout, yet it changes 
in terms of the constraint(s) on the child’s solution methods.

When we planned this task for Emma, we thought she might engage in noticing and 
the first type of reflection. For example, because she could use count-all on the 
boardgame spaces at first, we thought Emma might notice that “Counting all helped 
[her] find out how many.” We also thought Emma might notice an activity that took 
her away from her goal (e.g., “Counting an object twice does not help me find ‘how 
many’”). This noticing and reflection could help her become aware of and reorga-
nize her ways of knowing (e.g., “If I use the first addend as a starting point, I can 
also reach my goal and I don’t have to count all”), especially if we covered up the 
gameboard spaces that comprised the first addend in the problem.

Such constraints also could help Emma engage in a consistent activity in terms 
of her goal (e.g., “When I use the first addend to count on from, I use the second 
addend to know when to stop counting”). We planned additional constraints within 
the task to help Emma use reflection to expand upon her goal or make it more 
sophisticated. For example, we then covered the first and second addend, which 
may have helped Emma consider more sophisticated ways of counting on (e.g., “I 
need to find another way to keep track of the second addend”).

Reflection across consistent activity attempts seemed to support Emma to begin 
anticipate connected activity in future situations (“This addend is more than ten; 
another way to keep track is breaking the addend into ten and some more”). Here, 
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we describe the additional tasks and prompts that supported Emma to build upon 
her reasoning and move past using a procedural strategy that removed her from 
reasoning and making sense of her actions. Specifically, we created a new kind of 
task – Reinstating – in which Emma was taken back to a period in the intervention 
where she was still making sense, noticing, and reflecting upon her actions. We did 
so because she continually used a prior compensatory strategy (i.e., an algorithm) 
across many tasks, arguably because the new actions and reflections on those actions 
she was building did not trump her current compensations for “getting through” 
such problems.

As earlier stated, there are times that, despite the best design and/or sequencing 
of tasks, interactions, and representations, children become removed from noticing 
the effects of their actions and reflecting on the result. This means that the core 
mechanisms needed to progress from participatory to anticipatory stages of a con-
cept become “shut off.” Our reinstating tasks for Emma were the tool we used to 
restore her noticing and reflecting upon actions such that the core mechanisms that 
promote learning can be “turned back on.”

Given Emma’s activity, we made the instructional decision to return to problems 
where Emma was successful and reinstate her noticing and reflection. Specifically, 
for Emma, that meant returning to problems where the result crossed a decade yet 
used smaller numbers. Within these tasks, we began with our current constraints 
(both addends covered) and eventually utilized additional problem constraints (e.g., 
we removed the gameboard and asked Emma to imagine her activity as if the board 
spaces were still visible). Throughout, we paired the variation tasks with core 
prompting and gesturing to support Emma to engage in both types of reflection and 
advance her reasoning. Here are Emma and the teacher’s interactions as she solved 
the task 8 + 6:

T: [covers spaces Emma counted out earlier] How far from the start are you?
S: 6, 7-8-9-10-11; 12, …, 13, 14 [looks at her fingers].
T: Why? [Assess- Justification]
S: I had six and added eight more.
T: Ok; so did you know it would be 14 first or did you need to count it up?
S: I had to count it up.
T: And you knew when to stop because? [Cause and Effect; Extend Reasoning]
S: Umm [stares at five fingers raised, then looks over at three fingers raised]. Eight.
T: You saw eight fingers, so you knew you counted eight? [Assess: Clarify]
S: [Nods “Yes”]
T: I wonder if there is a way to do that with bigger numbers. [Make a Prediction]
S: [Smiles slightly]

And later in a task involving adding 13 and 14:

S: [Counting] 14-15-16-17-18 [has five fingers raised]; 19-20-21-22-23 [has 10 fingers 
raised; puts all fingers back down]; 24-25-26-27 [looks at teacher–researcher].

T: Did you know to stop at 27? [Assess- Clarify]
S: No [confidently].
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T: Then how did you know when to stop? [Assess- justification]
S: Because it says 14 [looks at her fingers].
T: But I only see four [points to fingers]. [Assess- counterargument]
S: It’s because I went 10. [Shows fingers again] 14, 15, 16, 17, 18, 19, 20, 21, 22, 

23… [has all 10 fingers up, then closes them into two fists which she shows to 
the researcher], then 24-25-26-27 [shakes her four fingers at the researcher].

T: You did 10… and four more. Is 14 like 10 and four?
S: [smiles broadly and nods] (Hunt & Silva, 2020, p. 21–22).

5.4 Conclusion

As we stated in Chap. 3, teachers who view “intervention” as a platform for students 
to gain access to the opportunity to use their own mathematics and reflect upon it as 
empowered learners, can promote their students’ conceptual learning. The second 
part of this work involves employing tools within interventions that help students 
bring about their conceptual change. We have argued that key design and pedagogi-
cal moves available to teachers include (a) bridging, variation, and reinstating tasks 
and (b) interactive prompting and gesturing that support students’ noticing and 
reflection upon their actions toward logical necessity and mathematical connec-
tions. By utilizing these moves, teachers can effectively support students’ develop-
ment of conceptual understanding, reasoning, sense making, productive disposition, 
and adaptive expertise.
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Chapter 6
Meaningful Assessments of Students  
Who Struggle to Learn Mathematics

Dake Zhang, Carolyn A. Maher, and Louise C. Wilkinson

Abstract This chapter presents the results of collaboration among special educa-
tion, mathematics education, and psycholinguistic researchers, with a focus on 
meaningful assessments for students who have difficulties with learning mathemat-
ics. Gaining knowledge of the mathematical abilities of students who struggle or 
who have particular learning disabilities is often limited in traditional assessments. 
Access to struggling students’ ability to reason and solve problems may be obscured 
because of inadequate approaches and limitations in assessing the knowledge of 
these students using traditional test items. Our goal is to address these concerns and 
other obstacles to assessment and suggest additional and alternate ways of measur-
ing students’ knowledge. It is noteworthy for researchers to attend to what are 
termed “learning disabilities” in mathematics and the characteristics of goal require-
ments in students’ individualized education programs (IEPs). IEP requirements are 
understood in relation to assessment approaches that are used to identify students 
who struggle to learn mathematics. In particular, it is essential to consider former, 
existing, and emerging theoretical views of mathematics and special education edu-
cators regarding what might be considered the “ability” of students to learn 
mathematics.

Keywords Mathematics · Assessment · Students with disabilities/difficulties

6.1  Introduction

Effective instruction for students with mathematics difficulties/disabilities (MD) 
requires accurate and meaningful assessment to understand students’ knowledge, 
skills, and abilities in order to identify where improvement is needed. Additionally, 
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assessment is important in evaluating the effectiveness of teaching or other inter-
ventions. Historic approaches to assessing mathematics are primarily score-based, 
with a focus on assessing students’ procedural mathematics knowledge. The condi-
tions of standardized testing, regardless of the specific format, are such that success 
depends on the accuracy in providing the standard answers to the questions. Testing 
procedures are standardized, and an individual student’s status can be compared 
with a population or a sub-population (based on responses) to determine the indi-
vidual’s position or rank in that population. Students who fall below a certain per-
centile rank are considered to have some learning problems or be at risk for not 
learning adequately. For example, often in psychological research, students with 
MD are identified as those whose achievement scores in mathematics fall below a 
specific cutoff, which may range from the 5th to the 30th percentile (Geary et al., 
2007; Swanson & Hoskyn, 1998). However, students with MD are often disadvan-
taged in these score-based approaches, as their special needs can distort and mask 
their abilities to respond quickly and accurately. More recently, a focus on assess-
ment has moved from measuring mathematics content knowledge to assessing stu-
dents’ reasoning abilities. Assessments that engage struggling students in 
problem-solving activities, along with interviews and error analysis with a microge-
netic approach, offer the potential to examine and evaluate how these students rep-
resent, communicate, discuss, and support solutions to problems in contexts that 
promote thoughtfulness. These assessments are addressed in this chapter.

In this chapter, we (a) review traditional assessment methods (i.e., norm- 
referenced and curriculum-based assessments) that are widely used in special edu-
cation and school psychology fields; (b) discuss the advantages and disadvantages 
of traditional score-based assessments and their limitations in revealing the mathe-
matical abilities of students; (c) address accommodations in standardized assess-
ment and alternative approaches; and (d) recommend multiple methods, including 
clinical interviews, error patterning analysis, strategy analysis, and a microgenetic 
approach, both in formative and summative ways, to help teachers and researchers 
provide meaningful assessments to understand and evaluate students’ abilities to 
reason and solve mathematical problems.

6.2  Part I: Traditional Mathematics Assessment Methods 
in Current Education Practices

In this section, we review current and widely used mathematics assessment 
approaches, including large-scale norm-referenced assessments and curriculum- 
based assessments and measurements. Both types of assessment, in which the test is 
administered and scored in a predetermined, standard manner, are considered stan-
dardized assessments. In this case, when a predetermined testing protocol is applied, 
all test takers are directed to follow the same administration procedures and answer 
questions in the same format. Additionally, a standardized test is scored in a 
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“standard” or consistent manner, which makes it possible to compare the relative 
performance of individual students or groups of students. While different types of 
tests and assessments may be standardized in this way, the term “standardized test” 
is primarily associated with large-scale tests administered to large populations of 
students. In special education, another type of commonly used standardized assess-
ment is the curriculum-based assessment or curriculum-based measurement. These 
standardized assessments are typically used as summative assessments conducted at 
the end of a learning unit or after a period of time and are used primarily by educa-
tors and school administrators to determine learning acquisition.

6.2.1  Large-Scale Norm-Referenced Assessment

Norm-referenced tests in mathematics include many high-stakes achievement 
assessments, such as state standard tests. Most states have their own state standard 
tests that reflect the state mathematics standards, for example, State of Texas 
Assessments of Academic Readiness (STAAR), Pennsylvania System of School 
Assessment (PSSA), Rhode Island Comprehensive Assessment System (RICAS), 
Nevada Proficiency Examination Program (NPEP), and so forth. There are also sev-
eral standardized assessments that are aligned with Common Core Standards and 
are adopted by multiple states, such as the Partnership for Assessment of Readiness 
for College and Careers (PARCC) used by District of Columbia, Louisiana, 
Massachusetts, and Maryland, and Smarter Balanced, used by California, 
Connecticut, Delaware, Washington, Oregon, Vermont, and South Dakota (Gewertz, 
n.d.). These assessments are designed to evaluate the extent to which the state stan-
dards for mathematics have been met at the level of individual students, schools, and 
school districts. Students’ scores can be standardized to determine a student’s posi-
tion in a population of the same age or grade level. Although these state standard 
assessments are rarely used by school psychologists as instruments to identify a 
student’s learning disabilities, each student is assigned a scaled score for their level 
of achievement. Students who are identified as not meeting the basic level in these 
state standard tests are typically identified for remediation so that intensive inter-
ventions can be created to address ways of improving achievement levels.

These high-stakes, state standard assessments have resulted in increased school 
accountability for developing plans to increase the academic achievement of stu-
dents with disabilities. Since the enactment of No Child Left Behind [NCLB] 
(2002), students with disabilities have been required to participate in assessments of 
reading/language arts and mathematics. Schools that do not demonstrate adequate 
yearly progress (AYP) for these students are held accountable and are subject to 
corrective action. After 2015, the Every Student Succeeds Act (ESSA), reauthorized 
by the Obama administration, maintained the expectation of school accountability 
for students’ progress. Both NCLB and ESSA mandate that schools report the per-
formance of subgroups of students.
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Standardized tests also include national or international academic assessments, 
such as the National Assessment of Educational Progress (NAEP, 2017), important 
international comparison studies such as Trends in International Mathematics and 
Science Study (TIMSS, 2011), and the Programme for International Student 
Assessment (PISA, 2015). NAEP, known as The Nation’s Report Card, provides 
important information about how well students are performing academically and is 
administered to a representative sample of students in the United States (National 
Center for Education Statistics [NCES], n.d.). Both TIMSS and PISA are large- 
scale assessments designed to inform educational policy and practice by providing 
an international perspective on teaching and learning. The TIMSS assessment eval-
uates performance of fourth and eighth graders in mathematics and science. The 
mathematics assessment involves three domains for fourth graders (i.e., number, 
measurement and geometry, and data) and four domains for eighth graders (i.e., 
number, algebra, geometry, and data and probability). PISA targets 15-year-old stu-
dents and includes two tests that are related to mathematics (i.e., mathematics lit-
eracy and problem solving) among six subjects. PISA has a greater focus on 
students’ mathematical reasoning as it includes content, cognitive, and application 
components, whereas TIMSS focuses mainly on mathematical content (NCES, 
n.d.). In contrast to the state high-stakes standard tests, NAEP, TIMSS, and PISA do 
not report scores to individual students or to schools. Rather, the results of NAEP 
are reported for groups of students with similar characteristics (e.g., gender, race 
and ethnicity, and school location; NCES, n.d.), and the results of TIMSS and PISA 
are reported for nations and states. While scores cannot be used to identify, diag-
nose, or evaluate students with learning disabilities, they provide average scores, the 
percentage of students below the low-performance benchmark, and the achievement 
gap between high and low achievers. For example, TIMSS 2019 data suggested that 
the percentage of US fourth graders below the low international benchmark (7%) 
was not significantly different from the international median (8%) and that the score 
gap between top and bottom performing was larger than the top and bottom gap in 
most countries (NCES, n.d.). Additionally, educators are able to investigate how 
certain non-cognitive factors, such as culture, instruction, curriculum, and family 
SES, affect students’ achievement in mathematics, a perspective that supports the 
social-cultural aspect of mathematics learning disabilities.

Some large-scale, norm-referenced standardized assessments can be used as diag-
nostic tests. These tests are used to obtain further information about a specific skill, 
area of academic achievement, or certain cognitive capacities. Some diagnostic 
assessments specifically focus on mathematics knowledge. These diagnostic tests are 
closely related to standard special education practices, as school psychologists or the 
Child Study Team usually administer diagnostic cognitive or achievement assess-
ments as part of the comprehensive evaluation to identify a student’s disability type 
and to determine the eligibility for special education services. For instance, the 
KeyMath-3 Diagnostic Assessment (Connolly, 2007) provides a comprehensive 
assessment of three domains of mathematics (basic concepts, operations, and applica-
tions) in 12 content subtests (i.e., numeration, algebra, geometry, data analysis and 
probability, measurement, mental computation and estimation, addition and 
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subtraction, multiplication and division, foundations of problem solving, and applied 
problem solving). Test items and goals are aligned with the NCTM Standards and 
may be used for benchmarking and for monitoring student progress. Another example 
of a diagnostic assessment that specifically measures mathematical abilities is the Test 
of Mathematical Abilities (TOMA-3; Brown et al., 2013). This test seeks to assess 
areas of mathematics functioning that are not typically addressed with other instru-
ments. For example, the TOMA-3 addresses topics such as a student’s expressed atti-
tude toward mathematics and general vocabulary level when used in a mathematical 
sense, and how knowledgeable the student is regarding the functional use of mathe-
matics facts and concepts in the general culture. Many other norm-referenced achieve-
ment tests include one or more subtests in mathematics. For example, the 
Woodcock-Johnson IV Tests of Achievement includes three subtests (i.e., Applied 
Problems, Calculation, and Math Facts Fluency); the Peabody Individual Achievement 
Test-4 includes a mathematics subtest; the Kaufman Test of Educational Achievement-
III includes subtests of Math Concepts & Applications and Math Computation; and 
the Wechsler Individual Achievement Test-Third Edition includes Numerical 
Operations, Math Problem Solving, and Math Fluency.

Large-scale, norm-referenced assessments serve a different purpose when com-
pared with other assessments. For example, these assessments can be used as a snap-
shot for international comparisons, as a portrait of an individual student’s cognitive 
profile to identify obstacles and strengths, or to position a student in comparison to a 
larger population. While large-scale, norm-referenced standardized assessments may 
fulfill the above purposes, they fail to reach many other purposes of assessments, 
such as to precisely capture a student’s individual growth in an area. Also, problems 
related to large-scale norm-referenced assessments have been documented by 
researchers (Deno, 1985), with three primary areas of concern: (a) The tests need 
personnel with specialized training to be administered and interpreted, (b) the con-
tent may not represent material taught in the actual curriculum, and (c) the results are 
not sufficiently sensitive to measure students’ short-term growth and small gains. 
Large-scale, norm-referenced assessments are widely used in the traditional 
IQ-achievement-discrepancy approach to identify students with learning disabilities. 
Specifically, students who are referred for a full evaluation are tested with norm-
referenced assessments such as the Woodcock-Johnson Test of Achievement, and 
along with their IQ scores, they are used to identify whether discrepancies exist 
between cognitive capacity and actual mathematics achievement. For example, if a 
student achieves a standard score of 100 on an IQ test and a score of 85 on a mathe-
matics achievement test, the student may be diagnosed as having a learning disability.

These large-scale assessments are usually used as summative assessments and 
differ from formative assessments that can be used to inform instructional decisions. 
The summative assessments are primarily used to assign students a grade for 
accountability purposes. However, with the wide implementation of the response to 
intervention (RtI) model, students’ learning disabilities are defined as non- 
responsiveness to interventions, especially non-responsiveness to small-group and 
intensive interventions. The large-scale interventions cannot meet the needs of the 
RtI model because of its lack of sensitivity to student gains in a short period of time. 
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Further, they lack consideration of the impact of the instructional materials used 
during the interventions. In contrast, curriculum-based assessment measures, which 
we will discuss in the next section, are a preferred choice to avoid the shortcomings 
of large-scale assessments.

6.2.2  Curriculum-Based Measurement

Curriculum-based measurement (CBM) is another type of standardized and system-
atic assessment method that has been used for assessing the progress of students 
with MD (Deno, 2003; Overton, 2011). CBM uses content from the curriculum to 
assess student progress within a given topic in the curriculum. A CBM includes 
multiple parallel probes. With carefully designed sampling, each probe selects items 
that represent aspects of the curriculum for an entire school year. While each probe 
is different, each assesses the same types of skills at the same level of difficulty. 
Teachers administer the CBM probes biweekly or weekly to monitor student prog-
ress by visual analysis of students’ growth trends and by comparing a student’s 
progress with an expected rate of progress.

CBM is considered both a standardized assessment and an informal assessment 
(Overton, 2011). Validated CBMs have standardized directions for administration and 
interpretation, and some of the tests are norm referenced in order to compare the per-
formance of an individual student with a group of the same age or grade. An example 
of a well-known CBM in mathematics is Early Math Fluency (Hosp et al., 2007), 
which includes three measures: Quantity Discrimination, Missing Number, and 
Number Identification. All Early Math Fluency assessments have an administration 
time of 1 min. Research-based norms are included in Hosp et al.’s document, with 
fluency benchmarks researched by Chard et al. (2005) that provide screening norms 
for each of the tests of the three areas. Another example of a well-validated mathemat-
ics CBM is the CBM-Computation Fluency (https://www.interventioncentral.org/
curriculum- based- measurement- reading- math- assesment- tests). This is a brief, timed 
assessment designed to inform teachers whether a student is developing computation 
fluency and remains on track to master grade-appropriate mathematics facts (basic 
computation problems). Each student is given a worksheet containing mathematics 
facts and is given 2 min to answer as many problems as possible. The worksheet is 
then collected and scored, with the student receiving credit for each correct digit in his 
or her answers. Teachers can then compare any student’s performance to research 
norms and evaluate whether the student is making adequate progress.

CBM may be considered a formative type of evaluation because teachers use the 
results to inform their instructional decisions. In particular, with the implementation 
of RtI models, CBMs are widely used to monitor student learning outcomes, to iden-
tify at-risk students, to evaluate intervention effectiveness, and to inform instructional 
decisions (Fuchs & Fuchs, 2004; Fuchs et al., 1990; Hosp & Hosp, 2003). This moni-
toring of progress allows the teacher to know if the child is making adequate progress 
under the current educational conditions and to make adjustments if necessary.
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In comparison to large-scale, norm-referenced tests, CBMs have some obvious 
advantages. First, probes are brief and easy to administer; they can be administered 
frequently such as weekly or bi-weekly; and teachers do not need special trainings 
to be qualified to administer the probes. Second, probes are aligned with topics in 
the school curriculum and can sensitively reflect a student’s small gains or growth 
during a shorter period of time. Third, the probes are inexpensive to implement in 
contrast with large-scale norm-referenced assessments. Further, the results yielded 
by the measures are easy to explain to others, such as to parents and other school 
personnel. In general, CBMs are useful and widely recommended for screening 
students at risk and to monitor progress in the RtI model for identifying students 
with MD and providing early interventions.

However, some challenges are posed by CBMs. While a review of the literature 
suggested the existing CBMs in mathematics have acceptable levels of reliability, 
the criterion validity of mathematics CBMs is not as good as that for reading CBMs 
(Foegen et al., 2007). A lack of evidence in validity is also suggested in another 
literature review (Christ et al., 2008). More importantly, similar to the large-scale 
standard test, CBMs also determine students’ grades based on students’ problem- 
solving accuracy and speed, whereas students’ problem-solving or reasoning pro-
cess is neglected.

6.2.3  Accommodations Provided in Standardized Assessment

Based on the Americans with Disabilities Act (ADA) and the Individuals with 
Disabilities Education Act (IDEA), individuals with disabilities are eligible to 
receive necessary testing accommodations while being assessed. Testing accom-
modations are “changes to the regular testing environment and auxiliary aids and 
services that allow individuals with disabilities to demonstrate their true aptitude or 
achievement level on standardized exams or other high-stakes test” (ADA.org). This 
act enables modifications to be made to standardized test conditions in order to level 
the playing field of students with and without disabilities. A purpose of identifying 
appropriate accommodations is to achieve valid testing results demonstrating stu-
dents’ true competence (Fuchs & Fuchs, n.d.). The most frequently used accom-
modations allowed in high-stakes assessment by most states include dictated 
response, Braille, large print, extended testing time, and use of interpreters (Bolt & 
Thurlow, 2004). There are also a variety of testing accommodations that are not 
mentioned in education laws in many states but are widely used in special education 
classroom practices. For example, representation accommodations address stu-
dents’ comprehension barriers and attention problems in mathematics testing (e.g., 
color coding, highlighting key information, simplified language interpretations). 
Equipment and materials accommodations include providing amplification equip-
ment, audio-videocassettes, calculators, and magnification equipment. Response 
accommodations include providing computers, scribes, spell checkers, and writing 
in the test booklet. Scheduling timing accommodations include providing extended 
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time, testing over multiple days, testing at a time beneficial to the student, and pro-
viding resting time between problems. Setting accommodations include individual 
administration, separate rooms, small-group administration, and administration of 
assessments in a student’s home.

Accommodation supports are meant to compensate for a student’s documented 
disability and are designed to eliminate obstacles to responding to test items. They 
are intended to provide equal opportunities to students by adequately measuring the 
target knowledge or skill (Thurlow, 2002). Different from modifications which 
denote changes in practices that lower expectations to compensate for a disability, 
accommodations are changes in practices that hold a student to the same standard as 
students without disabilities (i.e., grade-level academic content standard) but pro-
vide differential supports so that the student can access the general education cur-
riculum (Harrison et al., 2013).

In a classical education or psychology assessment, a standardized protocol to 
implement the assessment is commonly employed. That is, a pre-determined stan-
dardized testing procedure and scoring procedure is used to assess all participating 
students. Accommodation supports are usually also standardized. For example, they 
may be designed to provide simplified explanations to students who have comprehen-
sion difficulties when solving mathematics problems. In classic psychology research, 
such a standardized assessment is required and necessary to ensure that all partici-
pants receive the same treatment and to rule out any confounding variables that could 
cause threats to internal validity (i.e., the extent to which a study establishes a cause-
and-effect relationship between an independent variable and a dependent variable). 
However, a recent study by Zhang and Rivera (in press) raised questions about the 
assessment validity of a commonly used standardized test with a predetermined 
accommodation method for assessing students with MD. In that study, the researchers 
observed substantial variations, both interpersonally and intrapersonally, in the cogni-
tive barriers that hindered students with MD from accessing the mathematics prob-
lems. These variations made it difficult, or almost impossible, to use a standardized 
testing protocol with predetermined, “one-size- fits-all” accommodation support to 
meet the complex and specific needs of students with MD. For example, some stu-
dents with difficulties comprehending the content of the mathematics problems ben-
efited by being provided with simplified interpretations that enabled the removal of 
comprehension barriers. This could be explained, at least in part, because each student 
had different obstacles that led to comprehension difficulties.

6.3  Part II: Assessing Students’ Mathematical Reasoning

In this section, we will introduce several methods to assess students’ reasoning. 
These assessment methods are typically used as formative assessments. Formative 
assessments are usually brief and frequent check-ins throughout teaching the con-
tent and should be used to identify where students are successful and where they are 
struggling (Black & Wiliam, 2010; Dann, 2014). Formative assessments serve as an 
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ongoing evaluation of student learning as a means of providing continual feedback 
about performance to both learners and instructors. The value of offering both fre-
quent feedback and feedback embedded throughout the lessons is that teachers can 
learn from the information they are collecting and use formative assessment results 
to make ongoing judgments, thus making use of the data they collect to inform 
instruction and make adjustments to their lessons. This information serves as an aid 
in determining what material needs to be revisited, what interventions can be used, 
and what materials may provide greater insight into students’ cognitive obstacles. 
Formative assessments are dynamic, ongoing, and useful for revealing important 
details about where students are in their learning progressions. In this section, we 
will introduce and describe three commonly used, informal, formative assessment 
methods that provide in-depth analysis of student mathematical reasoning.

6.3.1  What Do We Want to Learn about Students’ Knowledge? 
Knowledge Outcome Versus Learning Process

What is the objective of a meaningful assessment? There is no agreed-upon conclu-
sion among researchers in special education, mathematics education, and psychol-
ogy fields regarding what we need to assess: students’ knowledge and skills, 
students’ reasoning, or some combination (Crooks & Alibali, 2014; Star, 2005). 
Reviewing the history of mathematics education as described in the following para-
graphs reveals an evolution from a focus on the outcome (i.e., the use of skill and 
accuracy in calculation) to a shift in the conceptual understanding of mathematical 
behaviors (Ellis & Berry, 2005).

These different perspectives can be traced back to debates in the 1920s between 
behaviorism and constructivism in mathematics education (Thorndike, 1923). 
Behavioral psychologists, such as Edward Thorndike and B. F. Skinner, proposed 
the association theory, which justified drill as a means of forming and strengthening 
the stimulus-response (S-R) bonds that are viewed as constituting the S-R bonds of 
arithmetic. Accordingly, changes in behavior (R) could be obtained through pro-
grammed instruction (S). These perspectives had a wide application in classroom 
mathematics instruction in the 1950s (Skinner, 1954). Consequently, students were 
taught mathematics by (a) identifying the stimuli, (b) identifying the response, and 
(c) making connections between the stimuli and the response by repetitive practice. 
Thus, the objective of an assessment was to evaluate how accurately and quickly a 
student demonstrated the R as the desired outcome of learning. And thus, the prob-
lems in students with MD could be interpreted as their difficulties with establishing 
an S-R bond between a problem prompt and an accurate answer.

However, one controversy evolved regarding whether accuracy and speed are valid 
indicators of a student’s knowledge and true mathematical ability, especially a stu-
dent’s ability to reason successfully in justifying a solution to a problem (Brownell, 
1944/2007). Cognitive psychologists, including W.  A. Brownell, argued that 
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mathematics suffered from the general application or misapplication of association 
theory. Brownell upheld that a meaningful learning theory focused on the process of 
learning rather than merely the outcome. For Brownell, the criterion for arithmetic 
skill was the ability to think quantitatively rather than to perform with accuracy and 
speed. Brownell found that children used a variety of procedures and strategies other 
than direct recall to complete their arithmetic tasks, which provided evidence that 
children’s learning in mathematics was not merely the result of drill and practice and 
that meaningful assessment should focus on students’ problem- solving processes and 
not only on outcomes. From this theoretical perspective, the difficulties LD students 
encounter are in building conceptual understanding and reasoning.

Subsequent to Brownell, other cognitive psychologists whose work was applied 
extensively to mathematics education included Piaget’s cognitive developmental 
stages and Vygotsky’s social constructivism that called for a mathematical commu-
nity in which children could learn mathematics with understanding. Based on a 
constructivist perspective, knowledge cannot simply be transferred directly from 
instructors to learners but has to be actively built by learners based on their personal 
experiences (Confrey, 1990; von Glasersfeld, 1990, 2000; Noddings, 1990). From 
an observer’s perspective, students’ mathematical behaviors are viewed as schemata 
of actions and operations (Steffe, 1992; von Glasersfeld, 1995/2013). By observing 
and analyzing students’ mathematical behaviors, including the physical models that 
students build, the pictures that they draw, and their written symbolic statements of 
the problem situation, we can gain insight into students’ mental representations and 
infer their mental actions and operations (Maher & Sigley, 2020; Maher & Davis, 
1990). From this perspective, students’ problem-solving behaviors, regardless of 
whether they lead to the “correct answer,” are meaningful explorations rooted in 
their experiences.

Much of the existing research on students with MD focuses on success in calcu-
lation or on procedural fluency (Lewis & Fisher, 2016). Traditionally, students who 
lack procedural fluency might be labeled as poor mathematics students. Assessment 
that only values procedural fluency is unlikely to attend to conceptual reasoning, 
and students’ potential for reasoning in problem solving may not be recognized. For 
students in special education, a meaningful assessment should consider the evalua-
tion of student engagement in contexts in which they are comfortable sharing their 
ideas and representing their knowledge.

6.3.2  Importance of Assessing Students’ Reasoning 
and Argumentation

Research has documented that in a natural way, children – even young children – are 
able to justify solutions to problems with arguments that are “proof like” (Maher & 
Davis, 1995; Maher & Martino, 2000). In presenting their solutions to problems, 
children provide convincing arguments that take proof-like forms: cases, induction, 
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contradiction, and upper/lower bounds. Their justifications are driven by an effort to 
make sense of the problem situation, notice patterns, and pose theories (Mueller 
et al., 2011). Their solutions are refined through discussions and arguments as they 
negotiate meaning with classmates and structure their investigations (Weber 
et al., 2008).

Inspired by the theory of “meaningful learning,” we propose that a “meaningful 
assessment” is based on the view that students should have many opportunities to 
display their conceptual understanding of mathematics through their explorations, 
explanations, and justifications as expressed with oral and written language, sym-
bols, models, and other constructions. Using a variety of tools to represent under-
standing, students are encouraged to share and support their ideas, question task 
requirements and solutions that are unclear to them, revisit earlier ideas, and work 
together in pairs or small groups to exchange and share ideas and to resolve differ-
ences in solutions to strands of well-defined, mathematical tasks. In 1986, 
Freudenthal (p. 47) wrote, “Learners should be allowed to find their own levels and 
explore the paths leading there with as much and as little guidance as each particular 
case requires.” Freudenthal expressed this view over three decades ago, and subse-
quent research (Maher, 2010) by careful observation and analyses of students work-
ing on strands of rich, open-ended, and engaging mathematical tasks provides 
strong support for this view. Maher’s long-term study focused on discovering what 
mathematical understandings students could build with minimal intervention. In 
these NSF-funded studies, classrooms were organized so that students could work 
collaboratively, using each other and available resources and tools to revisit tasks 
and discuss strategies and arguments for solutions, enabling researchers to follow a 
cohort of students from Grade 1 through high school and beyond. Two cross- 
sectional studies in other districts provided replication for the interventions. These 
studies have contributed to our understanding of how mathematical ideas develop in 
learners who are engaged in a range of mathematical practices. Some results from 
the earlier research are presented in two volumes (see Maher, 2010; Maher & 
Yankelewitz, 2017).

Prior research suggested that students naturally provide justifications for their 
problem solutions as they are encouraged by facilitators to persevere and make 
sense of the problem task (see, for example, Maher & Martino, 1998). Building on 
earlier work with students, some of whom were identified as struggling (Maher & 
Martino, 2000), we accepted the challenge of attending to the mathematical reason-
ing of struggling students (Zhang et al., 2018). Too often these students are dis-
missed as not having the knowledge or ability to make sense of problems and to 
reason, perhaps because they lack computational fluency, have low summative test 
results, have low expectations in their ability to think and reason, or are hesitant or 
have not had the opportunity to express their knowledge. Too often these students 
wait to be told what rule or algorithm to use, which is then applied without 
understanding.
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6.3.3  Language Communication and Mathematical Reasoning 
in Struggling Students

To fully understand students’ construction of mathematical knowledge requires 
examining their language use, both oral and written (Bailey et al., 2018), and how 
that usage changes over time. Mathematical knowledge can be represented in mul-
tiple semiotic ways. Thus, representations of mathematical knowledge do not 
depend uniquely on language representations. Representing one’s mathematical 
knowledge can include a blend of mathematical symbolism and disciplinary lan-
guage, everyday language, and gestural and visual displays. Consequently, mathe-
matics learning and teaching involves mediating complex relationships among 
language, symbolic, and visual forms (Wilkinson et al., 2020), so that students are 
offered multiple opportunities to make connections among semiotic systems, each 
having its own conventions and each involving specific challenges (O’Halloran, 
2015). However, we note that language representations are often privileged as forms 
of representation in standardized assessments of mathematical knowledge (Bailey 
et al., 2021).

The process of using multi-semiotic representations of a mathematical under-
standing is detailed in Sigley and Wilkinson’s (2015) study of a bilingual upper 
middle-grade student, Ariel. Their analysis revealed the interdependency between 
his developing mathematical understandings and his deploying of the specialized 
language unique to that discipline. Initially, Ariel displayed his mathematical under-
standing and conveyed it to others while attempting to solve an algebraic problem 
by identifying patterns. Sigley and Wilkinson’s analysis revealed Ariel’s mathemati-
cal and language learning from this initial conjecture to his reformulation and gen-
eralization of an algebraic rule. Over time, Ariel gradually adopted the formal, more 
conventional expression of mathematical representation, the mathematical register 
(Wilkinson, 2015, 2018, 2019; Wilkinson et al., 2020). Ariel represented his under-
standings by employing that specialized form of natural English language as well as 
by using non-verbal representations such as graphics, tables, and more informal 
language. Thus, one significant aspect of examining the interaction of students dur-
ing mathematical learning activities is attending to how they represent and commu-
nicate their understandings with language, both oral and written, during problem 
solving. As noted, Sigley and Wilkinson’s (2015) study illustrated how one student 
used language, both informal and formal to explain, justify, and argue his position 
when communicating with other students during a problem-solving process.

Sigley and Wilkinson (2015) concluded that, during instruction, it may not be 
necessary for all teachers in every situation to require their students to convey their 
understandings in “perfect English.” The focus for instruction should be on how 
best to support each student’s constructive process, including deploying language 
representations, while at the same time teachers should be modeling and encourag-
ing multi-semiotic representations of knowledge by all students (Wilkinson, 2018).

Thus, we propose that students should be provided with multiple opportunities to 
construct ideas by thinking through and testing ideas in interaction with other 
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students and teachers via language and non-language representations (Bailey et al., 
2021). These opportunities create the optimal circumstances for students to con-
struct their own mathematical understandings, and subsequently or even simultane-
ously, they may then build a more complete knowledge of the mathematics register 
and how to use it. The analysis of Ariel’s problem solving illustrates how mathemat-
ical knowledge and language knowledge are both interconnected and integrated in 
an interactive learning activity.

In many cases, the challenges of mathematical reasoning for students with MD 
are related to their language problems (Riccomini et  al., 2015; Rubenstein & 
Thompson, 2002). There is a medium to high rate (30–70%) of co-occurrence of 
reading disabilities and MD (Willcutt et al., 2013). This suggests that students with 
language difficulties fairly frequently encounter difficulties learning mathematics. 
Students with MD particularly struggle with not-everyday vocabulary (e.g., rhom-
bus, polygon, parallelogram, imaginary number), context-dependent vocabulary 
(e.g., foot as in 12 inches versus a body part), and phrases that are contradictory to 
daily language (e.g., A is divided into B).

There are several aspects of language that challenge struggling students’ mathe-
matical learning. First, some students with MD may be unable or reluctant to engage 
in mathematical learning activities because they do not understand the question 
being asked or the problem posed. In such circumstances, students are presented 
with word problems with assumed background knowledge (Jitendra et al., 2015). In 
these cases, some students from underrepresented minority groups and varied cul-
tural backgrounds, such as English language (EL) students, may have the capacity 
to understand the problems as stated in words but may not interpret the problems as 
majority native English-speaking middle-class students do. Second, students with 
language problems, such as EL students, may become frustrated in their efforts to 
“think aloud,” because they do not have the command of English to produce the 
requisite mathematical formulations. Think-aloud studies are often used by mathe-
matics education researchers to infer students’ thinking and reasoning (van der 
Walt, 2009; Zhang et al., 2014). Due to language difficulties, students may fail in 
responding to prompts, which is often perceived by teachers as inactivity and disen-
gagement. In classroom activities, these factors may render a student-centered dis-
cussion into a teacher-centered activity. Third, limited language skills might 
interfere with struggling students’ verbal reasoning that is required in explaining, 
contradicting, and justifying arguments (Kurkul & Corriveau, 2018).

In addition to the problems associated with children being able to effectively 
process language input and generate explanatory outputs, there is interest in how 
struggling students process information. Issues with working memory (Geary, 
2011), attention (Maynard et al., 1999), and executive function (Toll et al., 2011) 
may interfere with the reasoning process. Working memory refers to the capacity to 
store information for short periods of time when engaging in cognitively demanding 
activities (Baddeley, 1986). Working memory is a strong contributor to students’ 
mathematics achievement across various mathematics domains (Peng et al., 2016), 
and a poor working memory is found in many children with MD (Geary, 2004; 
McLean & Hitch, 1999). In psychology, attention refers to the process of selectively 
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focusing on specific information in the environment (APA, n.d.). Learning disability 
and attention-deficit disorder (ADD) frequently co-occur (Maynard et al., 1999), 
with estimates of co-morbidity of ADD and learning disabilities ranging from 
approximately 20% (Javorsky, 1996) to 50% (Riccio & Jemison, 1998). Executive 
functions refer to a set of cognitive skills required to maintain and hold relevant 
information in the face of interference or distraction in order to reach a goal (Engle 
et al., 1999; Jacob & Parkinson, 2015). Students with MD are found to differ from 
their normal-achieving peers in all executive function skills (Toll et al., 2011).

Research findings suggest that these cognitive problems should not be viewed as 
learning deficits but as learning differences (Lewis, 2014; Lewis & Fisher, 2016). A 
deficit label suggests that the learner lacks the ability to learn, whereas the perspec-
tive of a learning difference signifies that learners take alternative pathways to learn-
ing and require, in some cases, supports to do so. Although students with MD 
demonstrate poorer scores in testing, this does not mean that being unable to reason 
mathematically is a deficit. The unique ways of cognitive processing during learn-
ing make a standard protocol ineffective and inaccessible to students with MD by 
obscuring their potential mathematical reasoning. Therefore, providing modified 
protocols and other relevant accommodations for these students may be warranted 
to make visible the reasoning potential of students with MD.

6.4  Part III: Alternative Assessment Methods to Measuring 
Mathematical Reasoning of Students with MD

A dominant form of summative assessment is the standardized academic achieve-
ment test used for assigning students a grade for accountability purposes. In con-
trast, formative assessments are brief and frequent check-ins throughout teaching 
the content and should be used to identify where students are successful and where 
they are struggling (Black & Wiliam, 2010; Dann, 2014). Formative assessments 
serve as an ongoing evaluation of student learning as a means of providing continual 
feedback about performance to both learners and instructors. The value of being 
both frequent and embedded throughout the lessons is that teachers can learn from 
the information they are collecting and use formative assessments to make ongoing 
judgments, thus making use of the data they collect to inform instruction and make 
adjustments to their lessons. The information aids in determining what material 
needs to be revisited, what interventions can be used, and what materials may pro-
vide them with greater insight into cognitive obstacles that students may encounter. 
Formative assessments are dynamic, ongoing, and useful for revealing important 
details about where students are in their learning progressions. In this section, we 
introduce and describe three commonly used informal, formative, assessment meth-
ods that provide in-depth analyses of student mathematical reasoning. Bailey and 
colleagues (Bailey et  al., in press) offer an example of how to conduct such 
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formative assessments with students learning mathematical knowledge and how to 
represent that knowledge with language.

6.4.1  Clinical Interviews: Informal Assessment Focusing 
on Students’ Mathematical Reasoning

Interviewing students as an assessment method has been widely used in mathemat-
ics education research and practice (Hunting, 1997). This method echoes the recent 
orientations to psychological testing that encourage more qualitative approaches in 
which students are active participants and the examiner is not just an observer but 
also a participator; the purpose is not to identify deficits but to describe modifiabil-
ity and individualized assessment (Hunting & Doig, 1997). Piaget (1965/2006) is 
credited with pioneering the use of clinical interviews to gain a deeper understand-
ing of children’s cognitive development. Interviews can be used for research pur-
poses or for classroom teachers to assess and understand their students’ reasoning 
abilities. The clinical interview is a widely used approach in mathematics education 
research in which the researcher typically records the interview process. A construc-
tivist approach to conducting clinical interviews seeks to assess the knowledge the 
student brings to the task. To do so, interviewers need to provide a variety of tools/
opportunities/pathways/environments for students to represent their knowledge: 
physical tools for building models, paper/pencil/crayons for making drawings, 
tables, and charts; and opportunities to observe the notations and symbols used to 
represent student knowledge. Interviewers, then, can attend to student language, 
oral and written, and can capture obstacles that impede the process of learning. 
They can monitor students’ gains by revisiting the same or similar tasks and, as 
needed, provide accommodations. By creating an environment in which students 
work in pairs and/or small groups, opportunities for talking aloud and sharing 
knowledge with others evolve. Student’s language representations of their mathe-
matical knowledge as it is evolving provide evidence of a deeper understanding 
(Freudenthal, 1991; Sigley & Wilkinson, 2015).

Table 6.1 presents examples of tasks that were used in other studies to monitor 
and indicate students’ growth in mathematical reasoning. These tasks, with appro-
priate modifications, can be used to monitor the construction of knowledge of stu-
dents with MD (Bailey et al., 2021).

A significant characteristic of a constructivist student interview is that assess-
ment administrators (e.g., teachers, researchers) determine which tasks to give an 
individual student based on an ongoing formative assessment of the student’s spe-
cific progress and obstacles. This suggests that each student may receive a different 
task, an approach that differs from many standardized tests in which every student 
receives the same items or tasks from the same pool and follows the same proce-
dures. Another significant characteristic of the interview is the choice of tasks avail-
able. Interviewers rarely utilize tasks that focus on routine performance, such as 
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Table 6.1 Example tasks used to assess students’ mathematical reasoning (Maher et al., 2010)

Tasks Structure

Outfits Making outfits from shirts and pants. For example, Alice has 3 shirts (e.g., a white 
shirt, a blue shirt, and a yellow shirt), and 2 pairs of pants (e.g., blue pants, white 
pants). How many different outfits can Alice have? Modifications as needed: 2 
shirts × 2 pants; 2 shirts × 3 pants; 2 shirts × 2 pants × 2 hats.

Towers Building models of towers with Unifix cubes available. How many different towers 
of a certain height can be built selecting from cubes of 2 colors (starting with four 
cubes tall)?
Modifications as needed: Folding back to 3 and 2 cubes tall; moving forward to 5 
cubes tall).

Taxicab 
geometry

A student is given a specific section of a neighborhood represented by a grid. All 
trips originate at the home. Three locations of intersections are indicated on the map 
(school, library, store). Student is asked to show all possible routes that could have 
taken to each location. Student is asked if there is a shorter route, and if so, why? 
Also, is there more than one shortest route to each location? If not, why not? If so, 
how many? Justify your answers.

Pizzas A customer can then select from 4 different toppings (e.g., peppers, sausage, 
mushrooms, pepperoni). How many different choices for pizza does a customer 
have?
Modifications, as needed: Folding back to 3 and 2 topping choices.

calculation, facts, and fluency. A constructivist perspective suggests that students 
should be challenged at an appropriate level and engage in solving non-routine tasks 
so that they are challenged to demonstrate and extend their cognitive abilities by 
reflecting on the relationship between their goals and the actual effects of their cur-
rent activities or strategies (Davis, 1990; Simon & Tzur, 2004; Simon et al., 2004). 
The selection of high-level cognitively complex tasks provides opportunities to pro-
mote children’s capacity to think, reason, and solve problems (Smith & Stein, 1998; 
Steffe & Thompson, 2000a, 2000b).

Clinical interviews used in research and practice involve a high level of interac-
tion between the test administrator and the student who is interviewed. In a stan-
dardized assessment, the test administrator typically follows the standard directions, 
such as reading the instructions and then waiting for the student to complete the 
item. In contrast, during a student interview, both the interviewee and the inter-
viewer are interactive as they engage in the assessment activity. The interviewer, 
using questioning or probing, may seek to trigger justifications and explanations 
from the interviewee who is engaged in the solution or justification of a problem 
task. This format is particularly beneficial for students with MD because it grants 
test administrators opportunities to provide individualized accommodations to help 
students with MD to gain access to solving the problem tasks and to provide indi-
vidualized interpretations to make sure that a student understands the task 
requirements.

An advantage of the use of interviews is that a student’s ability to reason math-
ematically is not only measured as “right” or “wrong” but rather by an in-depth 
analysis of how the problem is solved (Confrey & Harel, 1994). Qualitative analysis 
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clearly suggests that a response that is different from a standard answer also shows 
students’ exploration and reasoning attempts based on their experiences. From a 
constructivist perspective, confusion might occur when students with MD fail to 
assimilate a way of thinking in response to some prompt, or alternatively, when they 
are unable to interpret the question. An error is a window into a cognitive obstacle 
that may be impeding performance. With a clinical interview, teachers or research-
ers capture the patterns expressed by students as they explore solutions to problems, 
thus providing an opportunity to reveal how students represent their knowledge with 
gestures, words, models, diagrams, drawings, and symbols. Interviewers have 
opportunities to document their explorations, strategies, and obstacles encountered 
as students work on strands of tasks. This method enables the interviewer to capture 
students’ individual voices in representing knowledge, often silenced by a lack of 
confidence or inadequate verbal skills.

Although clinical interviews can provide opportunities to explore a student’s 
thinking in great detail and depth, they are time intensive (Maher & Martino, 1998). 
Such interviews require the interviewers to have relatively high-level skills in scaf-
folding students to construct mathematical ideas, prompting students to explain 
their reasoning or showing their solutions, and making on-the-spot decisions about 
what task to assign to the student next based on the ongoing interpretation of stu-
dents’ mathematical behaviors. Unfortunately, these higher-level skills are not mas-
tered by less experienced teachers, which is one of the major reasons why the 
interview assessment is not used as frequently as traditional assessment methods 
(i.e., large-scale standardized assessment and CBM), in which the test administrator 
only needs to follow a standardized and specified protocol. Special challenges arise 
when interviewing students with MD.  Some students with MD have barriers to 
accessing problem tasks due to a lack of adequate mathematics vocabulary, difficul-
ties with comprehending the problem context, and lack of familiarity with the story 
context due to cultural differences. For some students, a history of lack of success 
can discourage further effort to persist in the task (Zhang & Rivera, 2021). Clinical 
interviews for research purposes are typically recorded using videos. Because pri-
vacy concerns have made it increasingly difficult to obtain parental consent for 
video recordings of student interviews, the camera can just focus on the actions and 
words of the student, thereby preserving anonymity.

The Case of Brandon We will use a case study as an example of a constructivist 
clinical interview to reveal how researchers or teachers can use this approach to 
assess the mathematical reasoning of a student identified with MD. Brandon was in 
a mathematics class identified as the group with lowest mathematical success in the 
school. In a classroom research session led by Visiting Researcher Martino, Brandon 
and his partner Justin were videotaped working separately on the 4-tall Tower 
Problem. In this task, the children were given Unifix cubes available in two colors 
and asked to build all possible 4-tall towers and convince themselves that they found 
them all with no duplicates. The boys began by generating new towers using trial 
and error. They recognized and eliminated duplicate towers and reorganized their 
towers by creating eight partner pairs, that is, a tower with a corresponding partner 
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with opposite colors in each height position. The students concluded that they had 
solved the problem with eight pairs of towers. Approximately 1  month later, 
Researcher Martino provided the students with paper and pencil and asked them to 
provide a written justification for finding all 3-tall towers, selecting from cubes 
available in two colors. Brandon produced a written justification using his earlier 
organizing strategy of pairs of towers, 4-tall, to justify his solution of eight, 3-tall 
towers. Four months after the administration of the first Tower Problems, the stu-
dents were given another problem, the 4-topping Pizza Problem, a task whose solu-
tion has the same structure as the 4-tall Tower Problem. In this session, Brandon was 
paired with a new partner, Colin. The boys were asked to find all possible pizzas that 
could be made, selecting from four different topping choices. The two boys worked 
separately, producing charts to record their pizza outcomes. Brandon’s chart made 
use of a notation for representing each topping choice. He inserted the numeral “0” 
to represent the absence of a topping and the numeral “1” to represent its presence. 
He used a “guess and check” strategy to account for all choices. Researcher Martino 
asked Brandon, “What are you doing?” and Brandon responded, “Making a graph, 
just like Colin. I put peppers, sausage, mushrooms, and pepperoni down and have 
them like 1, 0, 1, 0 and put…make a graph.” The researcher probed further, asking 
Brandon what 1, 0, 1, 0 meant, and invited him to explain certain organizations, 
giving Brandon an opportunity to explain his representation choice and justification. 
Brandon, using his system of coding the different topping choices, offered an inclu-
sive organization by cases, accounting for all possible pizza choices (see Maher & 
Martino, 1998, pp. 77–84, for a transcript of the videotaped interview). Three weeks 
later, in a one-on-one interview by Researcher Martino, Brandon was asked about 
his Pizza Problem solution. During the interview, he provided a valid justification 
for his solution, responding in detail to probing questions. He was then asked if the 
problem reminded him of any others he had worked on in the past, and Brandon 
spontaneously introduced the 4-tall Tower Problem (see Maher & Martino, 1998, 
pp.  84–101, for full transcript and images of student work; see https://doi.
org/10.7282/t3- bv69- dj55 for video narrative (VMCAnalytic, Abadir, 2021) for 
Brandon’s interview by Martino justifying his solution to the 4-Topping Pizza 
Problem and recognition of isomorphism with the 4-Tall Tower Problem, selecting 
from cubes of two colors).

What is particularly remarkable in Brandon’s reconstruction of a justification for 
the 4-tall Tower Problem is that rather than offering eight tower pairs for his solu-
tion as he did previously, he built a new model using Unifix cubes to provide a jus-
tification by cases, demonstrating the structural equivalence of the solutions to the 
two problems. In so doing, he reorganized the towers into a pattern that showed a 
case justification for his solution, similar to his solution of the 4-Topping Pizza 
Problem. Brandon was able to recognize the equivalent structure of solutions, that 
is, identifying an isomorphism between the solutions for the two tasks, to that of the 
great mathematician Poincare (Greer & Harel, 1998).

Without the use of interviews and the opportunities they provide to probe deeper 
into student reasoning, it is unlikely a more traditional assessment would have 
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captured Brandon’s mathematical thinking. Brandon had an opportunity to repre-
sent his problem solutions in a number of ways: a table, a chart, a physical model, 
and verbal explanations. Alongside a partner, he offered an explanation about what 
he was doing and explained his problem solving later to the interviewer. Brandon 
had sufficient time to reflect on his earlier work and revisit his earlier ideas by being 
afforded the opportunity to revisit the earlier tasks. For a video study of Brandon’s 
problem solving, see Private Universe Project Math Project Brandon interview 
[video]. Retrieved from https://doi.org/10.7282/T3VX0FRDj. The use of video-
recording of these learning activities enabled subsequent analysis, shared and co- 
constructed by the researcher (see, for example, Wilkinson et al., 2018.)

6.4.2  Error Pattern and Strategy Analysis

Another approach that teachers frequently use to examine students’ reasoning pro-
cess is a fine-grained analysis of student error patterns and strategy uses in their 
responses. We define strategies as students’ attempted methods to solve a mathe-
matics problem, including both strategies that lead to a correct answer and faulty 
strategies that represent students’ misconceptions and lead to an incorrect answer. 
An examination of students’ error patterns and faulty strategies can help teachers to 
understand students’ reasoning and misconceptions, which then can lead to 
improved instruction. Student errors provide a window through which glimpses of 
mental functioning can be obtained (Fisher & Lipson, 1986). Error analysis allows 
teachers to assess student understanding or misunderstanding and to identify and 
analyze errors that a student repeatedly makes when solving a mathematical prob-
lem. Specifically, with systematic coding and examination of students’ work, 
researchers and teachers have been able to identify different types of faulty strate-
gies and errors, which represent major types of common misconceptions and opera-
tional mistakes.

Zhang et al. (2016) examined strategies that students with MD used for solving 
fraction comparison problems. Three major strategies were identified. First, a com-
mon intuitive strategy among many students was the “whole-number strategy,” in 
which students overgeneralized their existing whole number strategies to solve frac-
tion problems, such as comparing denominators or numerators to decide the magni-
tude of a fraction (e.g., 1/4 > 1/3 because 4 is greater than 3, or 3/7 > 1/2 because 3 
and 7 are greater than 1 and 2, or 1/7 > 2/3 because the largest number 7 is in 1/7). 
A common misconception for solving fraction comparison problems is the notion 
that the larger the parts (i.e., denominators or numerators) the greater the fraction 
(National Mathematics Advisory Panel, 2008). This misconception is rooted in stu-
dents’ prior mathematical experiences with whole numbers (Schneider & Siegler, 
2010). Second, using concrete materials (e.g., a manipulative pie or fraction tiles) or 
visual representations (e.g., number lines, graphs) to present the fraction magnitude 
is another common strategy recommended for elementary students, and this is con-
sidered the first step for understanding fractions (Piaget et al., 1960). A third type of 
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Fig. 6.1 Students’ 
comparison of 3/9 and 3/5

strategy can be called numerical transformation, such as rounding a fraction to a 
decimal number or a whole number (1/3 is greater than 0 and less than half), con-
verting a fraction to a decimal number (1/4 = 0.25), and using the cross- multiplication 
algorithm to find the common denominator to compare two fractions (e.g., 
1/4 = 3/12; 1/3 = 4/12).

Zhang et al. (2016) also examined the error patterns when students solved the 
problems with their attempted strategies. Figure 6.1 includes two common error 
types that students made when they attempted to use the visual representation strat-
egy. First, when solving arithmetic problems or fraction comparison problems, stu-
dents with MD may draw two 0–1 number line segments of different lengths to 
represent the unit of 1 in the same problem context (e.g., to compare 3/9 and 3/5). 
The length of the whole or the unit 1 for identifying 3/9 is much longer than that for 
identifying 3/5, resulting in an invalid conclusion that 3/9 was greater than 3/5. This 
type of obstacle suggests that students tried to use a visual representation strategy, 
yet lacked understanding of the equal-division concept and failed to recognize that 
3/9 and 3/5 refer to the 3/9 and 3/5 of the same unit. Second, as we can see, these 
students were having difficulties with spatially dividing a number line equally into 
nine or three identical parts, even if they were attempting to do so.

An advantage of error pattern and strategy analysis, in comparison to the classic 
clinical interviews, is that it does not always require video recording to track every 
behavior or dialogue; it primarily relies on students’ permanent products such as 
worksheets, test sheets, and so on. Frequently, researchers require students to write 
down their explanations on the test sheet or they help students to write down their 
explanations. Behavior notes are typically taken to record students’ problem- solving 
behaviors. This advantage makes the method more acceptable for obtaining the con-
sent of parents and schools for children with learning problems; as such, it also 
makes feasible a larger sample than the clinical interview and thus increases the 
generalizability of the findings.

6.4.3  Strategy Analysis with the Microgenetic Approach

The microgenetic approach is a series of concentrated observations designed to cap-
ture changes in student thinking and to identify what gave rise to those changes. The 
microgenetic approach is defined by three characteristics: “Observations span the 
whole period of rapidly changing competence; the density of observations within 
this period is high, relative to the rate of change; observations of changing 
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performance are analyzed intensively to indicate the processes that gave rise to 
them” (Siegler & Svetina, 2002, p.  793). The microgenetic approach not only 
answers whether the changes happen after an intervention but also answers how 
changes happen during the intervention (Siegler, 2006).

Siegler and his group have conducted numerous research studies (Fazio et al., 
2016; Opfer & Siegler, 2004; Ramani et al., 2012; Siegler & Svetina, 2006) with the 
microgenetic approach to investigate children’s strategic development during learn-
ing, reasoning, and problem solving (Siegler, 2006), including research on students 
with MD. Siegler’s microgenetic approach is relatively standardized: The teacher or 
researcher first presents a pre-determined task to the student, asks the student to 
solve it on their own and explain how they obtained the answer, and then the 
researcher provides feedback by saying, “yes, you are correct,” or “no, the correct 
answer should be…,” and asks “could you tell me why the correct answer is …?” 
Students’ responses and explanations are coded as different types of strategies, and 
the frequency of each strategy use is counted to indicate students’ strategic develop-
ment or reasoning process. Such testing or data collection takes place with a very 
high frequency and density, for example, during every learning session. In this way, 
researchers reveal the nuanced changes of reasoning development throughout the 
whole learning process. The microgenetic approach creates a unique frame for 
assessing and analyzing how students’ reasoning happens from five perspectives 
(Siegler, 2006): source of change (what leads children to adopt new strategies), path 
of change (the sequence of strategies children use while gaining competence), rate 
of change (the amount of time or experience from initial use to consistent use of a 
strategy), breadth of change (how widely the new strategy is generalized to other 
problems), and variability of change (differences among children in the previous 
four dimensions). This fine-grained and multiple-angled assessment can provide 
rich information for understanding the underlying development of mathematical 
reasoning.

A particular advantage of the microgenetic approach is its revealing of the strate-
gies that children develop in response to instruction, and thus this approach helps 
understand how instruction exercises its effects. In other words, it can serve as a 
meaningful evaluation of program effectiveness in terms of facilitating students’ 
mathematical reasoning development. The microgenetic approach not only answers 
whether the changes happen after an intervention but also answers how changes 
happen during the intervention (Siegler, 2006). Echoing the clinical interview, 
microgenetic studies have successfully revealed how task assignment facilitates 
children’s reasoning and helps children adopt new strategies. Moreover, numerous 
studies have successfully employed this approach to investigate the mathematics 
learning of regular-achieving students, and there have been multiple studies (Zhang 
et al., 2013; Zhang et al., 2014; Zhang et al., 2016) using this method to assess stu-
dents’ progress during an intervention for students with MD. Zhang et al. (2013) 
utilized the microgenetic approach to evaluate how students with MD develop their 
multiplicative reasoning skills. The participants were two fifth graders with MD and 
one at risk. Investigators coded and analyzed four strategies the children used. 
Results showed that unitary counting (i.e., count by 1s to solve a multiplicative 
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problem) was dominant during baseline before the intervention. During the teaching 
sessions, a noticeable increase in the use of double counting and a decrease in the 
use of unitary counting were observed. This study suggests that the monitoring of 
students’ strategic changes can be used as a measure for assessing and progress 
monitoring students’ dynamic growth of mathematical thinking and problem- 
solving skills.

When applied to students with special education or students with MD, there are 
also a few disadvantages with this microgenetic approach. A characteristic of this 
approach is intensive observations throughout the learning process, typically in a 
one-on-one format; in other words, this approach is time consuming for teachers. As 
such, it is possible to use this approach for a small number of students, but it would 
be very difficult to implement for every student in a class. Second, similar to all 
assessment methods that attempt to understand students’ reasoning process, the 
development of a coding scheme is subjective, and some strategies are not exclusive 
from each other. In particular, because the assessment procedures in the microge-
netic approach are standardized, fewer individualized prompts and accommoda-
tions are available in microgenetic analysis than in clinical interviews and this may 
result in a lack of responsiveness.

6.5  Conclusions

In this chapter, we reviewed five types of assessment that are widely used in special 
education and mathematics education research and classroom practices for students 
who have learning disabilities or are struggling to learn mathematics. We described 
the features, advantages, and disadvantages of each assessment. We began with the 
two types of standardized assessments: the large-scale, norm-referenced assessment 
and the curriculum-based assessment and measurement; we also reviewed com-
monly used testing accommodations for these standardized tests. Then we reviewed 
alternative assessment methods to identify what students know; to monitor their 
learning trajectories; and to evaluate their paths to deeper understanding, including 
clinical interviews, error and strategy analysis, and a microgenetic approach.

While it is acknowledged that standardized, norm-referenced, large-scale assess-
ments have been criticized for not addressing students’ reasoning, it is not our inten-
tion in this chapter to rank whether one assessment is more or less meaningful than 
the other. Rather, our purpose is to provide a broad range of knowledge about these 
important assessment techniques for both special education and mathematics edu-
cation teachers who work with students with MD. Each method of assessment has 
unique advantages and disadvantages for gaining understanding of what students 
know and are capable of learning in mathematics. As we considered different kinds 
of performance by students, we selected a lens that enables tracking what students 
are capable of learning in contrast to viewing failures in performance from a deficit 
perspective. The selection of assessments in research and/or practice depends on the 
goals and purposes for assessment. It is noteworthy that a promising new trend in 
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building new items for standardized testing is inclusion of behavioral notes as sup-
plementary records in reporting scores; some newly developed psychometrics tech-
niques, such as cognitive diagnosis models (CDM; de la Torre & Chiu, 2016), are 
used to diagnose students’ missing strategies or flawed concepts based on students’ 
responses to tasks in standardized, large-scaled tests. It seems a promising direction 
to integrate different assessment techniques to maximize teachers’ understanding of 
students’ mathematics problem-solving performance.
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Chapter 7
Commentary on Part II

Leanne R. Ketterlin-Geller

Abstract The purpose of this commentary is to summarize the information pre-
sented by Hunt and Tzur in Chap. 5 and Zhang, Maher, and Wilkinson in Chap. 6, 
identify common themes that bring these chapters together, and offer my reflection 
on these themes. Both chapters discuss ways in which assessment results can sup-
port decision-making for students who are experiencing difficulties in mathematics. 
Emerging from these chapters is the notion that when intentionally designed, assess-
ment results can help teachers align instruction with students’ learning needs to 
improve and accelerate student learning. Three themes that I build on are (a) the 
impact of teachers’ attitudes toward students who are experiencing difficulty, (b) the 
need to carefully design assessments and tasks, and (c) the role of assessments in 
providing teachers with diagnostic information. Within each of these themes, I sum-
marize the commonalities across chapters and extend the discussion to highlight 
additional perspectives or approaches.
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7.1  Designing and Implementing Assessments to Support 
Learning for Students Who Are Experiencing Difficulties 
in Learning Mathematics

In this commentary, I reflect on the information presented by Hunt and Tzur in 
Chap. 5 and Zhang, Maher, and Wilkinson in Chap. 6. The overarching theme that 
ties these chapters together is the way in which assessment results can support 
decision- making for students who are experiencing difficulties in learning mathe-
matics. In the chapter by Hunt and Tzur, the authors emphasize the role tasks play 
in connecting teaching and learning: Tasks are used to engage students’ reflective 
thinking during the learning process, and teachers use prompting and gesturing to 
deepen students’ reflection. In the chapter by Zhang, Maher, and Wilkinson, the 
authors broaden the discussion of assessments and focus on three major topics: (1) 
participation of students who are experiencing mathematics difficulties in tradi-
tional assessments for accountability and formative purposes, (2) dimensions of 
students’ thinking that are assessed, and (3) diagnostic inferences to support instruc-
tional decisions. In this commentary, I provide a brief overview of the central points 
highlighted in these chapters. Then, I offer my observations about themes that cut 
across both chapters, calling attention to (a) the impact of teachers’ attitudes toward 
students who are experiencing difficulty, (b) the need to carefully design assess-
ments and tasks, and (c) the role of assessments in providing teachers with diagnos-
tic information. Within each of these themes, I summarize the commonalities across 
chapters and extend the discussion to highlight additional perspectives or approaches.

To help situate my commentary, it is important to clarify what I mean when I 
reference students who are experiencing difficulties in learning mathematics. It is 
difficult to put bounds on the group of students for whom I am referring. To begin, 
I am not talking about students who may have temporary challenges understanding 
a new mathematical concept, applying a newly learned procedure to solve a prob-
lem, or providing a mathematically sound rationale to justify their procedures. 
Mathematics is a complex discipline for which many people will experience tempo-
rary difficulties or challenges at one time or another. Instead, I am referring to stu-
dents who have persistent difficulties in learning or applying mathematical 
knowledge and skills, especially as concepts increase in complexity within and 
across grades. This population of students is heterogeneous; they have various 
strengths and learning needs. A small percentage of these students have been diag-
nosed with learning disabilities. Students with a diagnosed learning disability are 
receiving specialized instruction as outlined on their Individual Education Program 
(IEP), which may or may not include instructional goals related to mathematics.

For many students who experience difficulty, the underlying cause is not a diag-
nosed learning disability, but instead may emerge as a result of a misalignment 
between instruction and their learning needs (Tzur, 2013). The implications of this 
misalignment can be far-reaching for students. In a series of studies conducted by 
Jordan et al. (2007, 2009), they observed that over 50% of the children from low- 
income families had low or flat growth trajectories from kindergarten through grade 

L. R. Ketterlin-Geller



135

1. Many of the children entered kindergarten with less developed number sense than 
their middle- and high-income peers, and formal instruction did not accelerate their 
learning during this period. In their follow-up study, the authors noted that the low 
mathematics performance of the children from low-income families in grade 3 was 
mediated by their relatively weak number sense in kindergarten. In other words, 
formal mathematics instruction between kindergarten and grade 3 did not result in 
growth or meaningful learning. To explain these findings, the authors posit a mis-
match between the instruction the children received and the targeted support they 
actually needed to reach the learning goals and/or the curricular expectations. Had 
the children who had less developed number sense received appropriately intensive 
supplemental instruction, they may have developed more robust early mathematics 
knowledge and skills and experienced steeper growth trajectories that put them on 
course for future success.

The misalignment between instruction and students’ learning needs may be 
caused by multiple reasons. Common causes I have seen include instruction that 
does not activate or draw on students’ prior knowledge or conceptualizations, 
instruction that is not sequenced and paced in accordance with students’ current 
level of understanding, and instruction that does not address previous misconcep-
tions or errors, thereby allowing them to linger. When instruction is not aligned with 
students’ learning needs, their opportunities to learn mathematics are compromised. 
I explicitly raise these issues because they directly relate to the chapters by Hunt and 
Tzur and Zhang, Maher, and Wilkinson: When designed with intentionality, assess-
ment results can help teachers align instruction with students’ learning needs to 
improve and accelerate student learning. After describing the unique contributions 
made by each chapter, I highlight areas of convergence and extensions to consider.

7.2  Assessment Considerations Presented by the Authors

In the chapter by Hunt and Tzur (Chap. 5, this volume), the authors make an explicit 
connection between teaching and learning and the conditions that facilitate this con-
nection. They define learning as changes in a student’s conceptualization of the 
content via reflection on the effects of their activities and explain how teachers’ 
instructional moves can directly impact this process.

Hunt and Tzur define teaching in terms of instructional moves teachers make to 
elicit a student’s current ways of knowing or understanding and then facilitate 
reflection during tasks to optimize the student’s learning. When a student is in a 
participatory stage of understanding, the teacher may need to prompt reflection to 
support the student’s progress to the anticipatory stage of understanding. Once a 
student moves into the anticipatory stage, the teachers’ actions may shift to focus on 
deepening or extending reflection to subsequently deepen understanding.

Hunt and Tzur situate instructional tasks at the juncture of teaching and learning, 
while explicating the role tasks play in deepening understanding. Tasks connect 
teaching and learning through the teacher’s intentional placement in the learning 
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process and the teacher–student interactions that are facilitated during an instruc-
tional exchange. Hunt and Tzur dissect the various types of tasks and the level of 
interaction that encourages student reflection. In the procedures these authors 
describe, the teacher presents a student with tasks that are designed to bring forward 
the student’s prior knowledge and available conceptualizations (labeled as “bridg-
ing tasks”) from which they can build new conceptual understanding. Next, with 
student’s prior knowledge primed, they engage in solving gradually more challeng-
ing tasks that include meaningful “variations” in the task design, but still focus on 
the key learning goal. Finally, deeper understanding is reached as the student moves 
into the “reinstating” phase where student learning is reinforced through reflection. 
Throughout this process, the teacher is interacting with the student to support their 
learning. The authors note the importance of the teacher’s prompting and gesturing 
as a way of assessing student understanding and encouraging the student to clarify, 
justify, and critique their thinking and to deepen the student’s reflection. I illustrate 
the connection between these components in Fig. 7.1.

Shifting to Chap. 6 by Zhang, Maher, and Wilkinson (this volume), these authors 
take on three major topics related to assessment. First, the authors provide an over-
view of various assessment approaches with an emphasis on how students with 
disabilities or students experiencing difficulties in mathematics participate in these 
programs. The authors reference the uses of large-scale assessments and curriculum- 
based measures (CBM) within accountability and instructional contexts, respec-
tively. They provide examples of specific assessments and illustrate their strengths 
and limitations. In particular, they raise concerns about the content of many stan-
dardized mathematics assessments, noting that they may not be representative of the 
taught curriculum.

Fig. 7.1 Visual depiction of the components presented in Hunt and Tzur

L. R. Ketterlin-Geller



137

To ensure that results from these assessment systems are reliable and support 
valid decision-making for students with disabilities or students experiencing diffi-
culties in mathematics, Zhang, Maher, and Wilkinson discuss the provision of test 
accommodations and provide an important distinction from test modifications. The 
authors reference the lack of empirical evidence documenting the effectiveness of 
accommodations at supporting access and note that applying accommodations uni-
formly may not support greater access for students experiencing difficulty. Relatedly, 
when describing the role of language in communicating one’s mathematical knowl-
edge, the authors describe how language may cause an access barrier for some stu-
dents, which may lead to teachers’ underestimating their students’ level of 
mathematical proficiency.

Next, Zhang, Maher, and Wilkinson consider the mathematical construct being 
measured and the value different constructs bring to understanding student thinking. 
The authors associate specific mathematical constructs with the application of theo-
ries of learning to mathematics education. For example, the authors reference the 
role of behaviorism in promoting instruction in fact fluency and retrieval along with 
the corresponding assessments designed to measure students’ accuracy and compu-
tational fluency. The authors reference intentionally designing tasks to elicit stu-
dents’ reasoning and justification. They describe the importance of teachers 
attending to students’ responding behaviors (e.g., how students represent and com-
municate their understanding) to deepen their understanding of students’ mathemat-
ical thinking.

Lastly, Zhang, Maher, and Wilkinson describe the role of diagnostic assessments 
within the instructional design process. They provide an overview of some pub-
lished diagnostic assessments and review several methods for gathering diagnostic 
information including clinical interviews, error pattern, and strategy analysis and 
integrating a microgenetic approach to strategy analysis. Through each of these 
approaches, the authors describe how information about students’ thinking can be 
revealed to support future instruction and support student learning.

7.3  Convergence Across Chapters

Several themes emerged across the chapters by Hunt and Tzur and Zhang, Maher, 
and Wilkinson. First, both chapters emphasize the negative attribution teachers 
often place on students who are experiencing mathematics difficulty. Hunt and Tzur 
note how teachers’ perceptions of their students’ abilities may influence their 
instructional actions. Zhang, Maher, and Wilkinson similarly emphasize students’ 
learned helplessness that sometimes accompanies low expectations. Second, both 
chapters describe the intentionality of assessment (or task) design as an essential 
component of using assessment results. Hunt and Tzur provide a detailed descrip-
tion of the types of tasks and accompanying prompting and gesturing that can be 
integrated into different phases of learning. Zhang, Maher, and Wilkinson note the 
important role accommodations play in administering assessments to overcome task 
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design issues that may impact accessibility. Moreover, the authors of both chapters 
emphasize the importance of designing tasks to assess mathematical reasoning and 
justification. Third, and finally, both chapters emphasize the importance of imple-
menting assessments and tasks to facilitate teachers’ diagnostic inferences. In the 
remainder of this commentary, I will elaborate on each of these themes by offering 
some additional perspectives and extending the discussion in complementary ways.

7.3.1  Teachers’ Attitudes Towards Students Experiencing 
Difficulties in Learning Mathematics

Highlighted in the chapters by Hunt and Tzur and Zhang, Maher, and Wilkinson are 
the consequences to student learning when teachers perceive students experiencing 
difficulties in learning mathematics as less capable of learning (e.g., deficit view). 
Hunt and Tzur describe how teachers’ perceptions of their students’ abilities may 
influence their instructional actions. They make a compelling case that teachers who 
perceive their students as lacking mathematical abilities will likely design instruc-
tion that sustains a deficit view. Similarly, Zhang, Maher, and Wilkinson recognize 
the role that standardized tests play in shaping teachers’ perceptions of students’ 
knowledge, skills, and abilities. They note that students may be judged as incapable 
of learning or applying advanced mathematics content based on their low scores.

I would like to broaden this discussion to focus on the systems in which teachers 
and students engage and highlight the role a school’s culture plays in shaping teach-
ers’ attitudes and ultimately their actions and/or beliefs. A school’s culture can have 
a significant impact on how students who are experiencing difficulties in learning 
mathematics are perceived and supported. A school’s culture can be thought of as 
the shared values, norms, and beliefs that explicitly or implicitly guide the actions 
and decisions of teachers, school leaders, and the broader school community 
(Kilgore & Reynolds, 2011). A school’s culture impacts the ways in which students 
experiencing difficulties in mathematics are perceived and the perception of whose 
responsibility it is to support their learning. As evidenced by their actions and deci-
sions, some schools may espouse underlying beliefs about these students’ mathe-
matical abilities. For instance, these students may be thought of as “lacking” or 
“deficient” in their mathematical knowledge. In turn, those deficiencies may be per-
ceived to be associated with disadvantages that are rooted in cultural, social, eco-
nomic, or political differences from the normative group in the school (Healy & 
Powell, 2013).

Schools with a deficit view of students often hold the perception that low perfor-
mance on standardized tests is caused by problems inherent to the student. Such 
problems may include limited parental support or involvement, insufficient prepara-
tion from their home environment or previous schooling, underlying lack of motiva-
tion, and students’ insufficient background knowledge or even capacity to learn. In 
some instances, this deficit view permeates so deeply that it becomes a self-fulfilling 
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prophecy. Beliefs that students have deficits or deficiencies that limit their ability to 
learn mathematics may fuel underlying biases that impact teachers’ and/or school- 
level actions and decisions that harm student learning. An outcome of this perspec-
tive is where the blame for poor performance lies: In a deficit model, the blame lies 
with the student, their parents, or possible background or demographic characteris-
tics, but not with teaching that takes place within the school or educational system 
through which the poor performance originated.

Conversely, an asset-based approach to supporting students assumes that all stu-
dents have both knowledge and the capacity to learn—and deserve to learn. 
Accordingly, the school and related stakeholders are responsible for providing 
appropriately designed instruction (including assessment) that can address each stu-
dent’s needs. Schools in which the perception of students is grounded in an asset 
model believe that students’ backgrounds provide a strong basis from which they 
can connect new knowledge and view families and communities as mathematically 
rich resources that can be harnessed to engage students. Actions that characterize 
teachers with an asset orientation include designing instruction to build new knowl-
edge based on what students know, recognizing and honoring students’ reasoning 
and sense making, and extending what they recognize and value as mathematical 
practices (Healy & Powell, 2013). At the system level, schools can examine how 
they incorporate families and communities into their practices, ways in which cur-
rent operations may alienate people, and what additional resources are needed to 
engage the student, their families, and the community. Based on the actions and 
beliefs that are espoused and enacted, the school is establishing their culture. Each 
school has the authority and responsibility to establish a positive culture that values 
all students and views all students as capable of learning.

Intertwined with schools’ and teachers’ perceptions of students who are experi-
encing difficulties in learning mathematics is the notion of struggle. In mathematics 
education, this term is often used to denote how students wrestle with and persevere 
through problem-solving as they apply their mathematical knowledge. The field of 
mathematics education has coined the term “productive struggle” to indicate the 
experiences students face as they tackle challenging mathematical content, integrate 
and apply their knowledge, and persevere through finding a solution. This type of 
struggle is deemed productive because the content is accessible yet also challeng-
ing, and the problem-solving experience generally results in positive cognitive and/
or non-cognitive outcomes (e.g., persistence, grit). However, there is an opposite 
experience had by some students: unproductive struggle. When students are unpro-
ductively struggling, it is often because they do not yet have an entry point for 
approaching the content or problem, they have not yet gained sufficient knowledge 
to apply to the problem situation, or they have persistent errors or naive conceptions 
that impact their current thinking about the problem space. Instead of resulting in 
positive cognitive and/or non-cognitive outcomes, the result of unproductive strug-
gle is often negative (e.g., unwillingness to persevere, diminished feelings of self- 
worth). At this point, and with repeated experiences with unproductive struggle, 
students may lose interest in mathematics, perceive themselves as not successful in 
mathematics, and cement a negative identity. Students with a negative mathematical 
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identity who define themselves as “not a math person” may act in ways that perpetu-
ate this self-impression, such as deferring to others who are perceived of as more 
mathematically capable, engaging with mathematics in low-level ways, and talking 
and acting with peers in a way that propagates this identity (Bishop, 2012). As such, 
without intervention to change the underlying causes of unproductive struggle, the 
lasting consequences could be dire.

Recognizing that some students experience unproductive struggle sometimes 
and with some mathematics content does not mean that they will continuously and 
persistently struggle with mathematics. Moreover, saying that someone is strug-
gling is not akin to saying that they are failing or incapable of learning mathematics. 
Instead, it recognizes that all students learn differently, and some students may need 
additional instructional support to build and demonstrate understanding in specific 
mathematics concepts or procedures.

In summary, both chapters recognize the negative consequences to student learn-
ing when teachers perceive students experiencing difficulties in learning mathemat-
ics from a deficit view. I extend this discussion to recognize the role a school’s 
culture plays in shaping teachers’ attitudes, actions, and beliefs. I note that a deficit 
view of students may cause a misalignment between students’ learning needs and 
their instructional opportunities. By not providing access to proximally relevant 
instruction and tasks, students miss the opportunity to build on their prior knowl-
edge as a basis to deepen their understanding of mathematics concepts and may 
develop poor dispositions toward mathematics.

7.3.2  Intentionally Designed Assessments and Tasks

Another theme that emerged in the chapters by Hunt and Tzur and Zhang, Maher, 
and Wilkinson is the importance of intentionally designing assessments or tasks. 
Hunt and Tzur provide detailed guidance on the types of tasks and prompts that may 
facilitate learning across different stages of students’ understanding. Zhang, Maher, 
and Wilkinson approach the topic from two perspectives: (1) the importance of pro-
viding accommodations to improve accessibility and (2) the need to extend the 
range of constructs that are measured so as to cover the breadth of mathematical 
practices. In this section, I will expand upon the authors’ discussions by first empha-
sizing the importance of alignment and then underscoring the importance of fair-
ness and equity in assessment or task design.

Alignment of Curriculum, Instruction, and Assessment: Implications for 
Assessment and Task Design In 1999, the National Research Council (Bransford 
et al., 1999) recognized the alignment between curriculum, instruction, and assess-
ment as a key issue impacting students’ opportunities to learn. Within an aligned 
system, students have access to important curricular expectations during instruc-
tion, and their progress toward reaching these expectations can be monitored 
through an integrated and ongoing process of formative and summative assessment. 
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All students are provided with instructional opportunities that facilitate their learn-
ing of the curricular expectations. Assessment results are used to guide teachers’ 
decisions about how best to facilitate learning.

For assessment results to be relevant and informative for supporting learning, 
formative and summative assessment practices must be clearly and carefully aligned 
with curriculum and instruction along multiple dimensions. Such an alignment 
includes the content domains, levels of cognitive engagement, and strategies and 
thinking processes through which students interact with the content (Ketterlin- 
Geller, 2016). No single test can sample the full range of curricular expectations; 
data combined from multiple tests should provide a comprehensive picture of stu-
dent proficiency.

Within an aligned system, the curricular expectations should form a foundation 
of all instruction and assessment efforts. The curricular expectations to which I am 
referring are the state or national content standards in mathematics. In the United 
States, these content standards are often informed by research on how children learn 
mathematics (National Research Council [NRC], 2001) and may be aligned with 
the Common Core State Standards in Mathematics (CCSS-M; National Governors 
Association & Council of Chief State School Officers, 2010). A key shift in the 
CCSS-M that was informed by research in mathematics education (National 
Mathematics Advisory Panel [NMAP], 2008; NRC, 2001) was the focus on a bal-
anced approach to integrating ways of knowing mathematics. These ways of know-
ing, emphasized in the CCSS-M, include conceptual understanding, procedural 
fluency, and application through problem-solving. In Adding It Up, published by the 
NRC (2001), additional specification was provided to call out strategic competence, 
adaptive reasoning, and productive disposition as important dimensions of mathe-
matical proficiency (these dimensions of mathematical proficiency are defined else-
where in this volume). In addition to these dimensions of knowing, mathematical 
practices were embedded in the CCSS-M and in most states’ content standards. 
Mathematical practices represent ways in which students engage with the mathe-
matical content through solving meaningful real-world problems, reasoning 
abstractly and quantitatively, constructing viable arguments about mathematical 
conjectures, modeling, appropriately using mathematical tools, engaging with pre-
cision, discerning patterns and structures in mathematics, and searching for regular-
ity when solving like problems.

I intentionally define and call out these curricular expectations for several rea-
sons. First, the definition of mathematical proficiency just described represents an 
integrated understanding of what mathematical competency means and looks like, 
and by extension, how we can evaluate performance. Hunt and Tzur contend that 
mathematical proficiency and performance are separate constructs that lead to dif-
ferent interpretations of students’ knowing and thinking in mathematics. However, 
in an aligned system, formative and summative assessment practices lead to perfor-
mance that directly indicates and/or illustrates the depth and breadth of students’ 
proficiency across these dimensions of mathematics. When assessments are not 
aligned to the curricular expectations, performance may not be indicative of 
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mathematics proficiency. I recommend we focus on building aligned systems of 
instruction and assessment to facilitate teachers’ decision-making and, ultimately, 
students’ development of mathematical proficiency.

Second, as the guidepost for an aligned system, the curricular expectations 
should be at the forefront of all instructional opportunities and assessment practices. 
It is essential that all students—whether or not they are experiencing difficulties in 
learning mathematics—have opportunities to learn the depth and breadth of the cur-
ricular expectations and demonstrate their understanding. Zhang, Maher, and 
Wilkinson pointed out an over-emphasis on procedural fluency during instruction 
and on assessments for students experiencing difficulties in learning mathematics. I 
contend that if instruction does not emphasize the range of learning expectations 
specified in the content standards, then the curriculum is narrowed, and students are 
denied the opportunity to learn essential mathematics content that has been deemed 
important and necessary for them to learn in each grade. A growing number of inter-
ventions and intervention frameworks are available that effectively represent the 
depth and breadth of the curricular expectations (c.f., Fuchs et  al., 2017; Powell 
et al., 2020; Zhang et al., 2014). An exception to alignment with grade-level content 
standards may exist for students with disabilities whose IEPs specify that they 
receive a modified curriculum and are assessed based on alternate content and per-
formance standards. For these students, the IEP team determined that the most suit-
able instruction and assessment should focus on modified content standards.

Relatedly, for assessments and tasks that are intended to inform teachers’ 
decision- making about students’ development of mathematical proficiency across 
the range of curricular expectations, the content should be representative of the 
depth and breadth of the content standards. In other words, items or tasks should 
align with the content and the strand(s) of mathematical proficiency that is intended 
by the standard. For example, consider the Common Core State Standard in 
Mathematics (2010):

7.EE.4. Use variables to represent quantities in a real-world or mathematical problem, and 
construct simple equations and inequalities to solve problems by reasoning about the 
quantities.

This standard focuses on expressions and equations, in particular the use of vari-
ables. Students engage their conceptual understanding of variables to represent 
problem situations, procedural knowledge to solve problems, and strategic compe-
tence to construct equations and inequalities, and quantitative reasoning to consider 
the real-world outcomes. To adequately assess this standard, the range of profi-
ciency should be elicited and will require multiple items. If, instead, this standard 
was only assessed with items that elicited students’ procedural fluency, interpreta-
tions about students’ level of understanding and reasoning related to this standard 
may not be valid.

To support some decisions, teachers may need data about specific aspects of 
students’ mathematical proficiency that are inclusive but not exhaustive of the cur-
ricular expectations. For example, Zhang, Maher, and Wilkinson referenced the 
need to understand students’ reasoning to make decisions about their abilities to 
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develop arguments and justify their solution frameworks when solving problems. 
An assessment aligned with this purpose may not include items that assess other 
aspects of mathematical proficiency such as conceptual understanding, procedural 
fluency, or strategic competence. Similarly, as described by Zhang, Maher, and 
Wilkinson, CBMs in mathematics often focus on computations. Results from these 
assessments can provide teachers with valuable insights into students’ procedural 
fluency and can guide instructional decisions relevant to the accuracy and efficiency 
in which students execute procedures, but not their conceptual understanding, stra-
tegic competence, or reasoning. In both of these examples, the intended construct of 
the tests is narrower than the range of proficiencies specified in the curricular expec-
tations. Alone, results from these tests do not provide a comprehensive view of 
students’ mathematical proficiency. However, because the decisions resulting from 
these assessments are specific to the assessed content (and, therefore, not the depth 
and breadth of the curricular expectations), these assessments may continue to have 
value for teachers. As I hope this discussion illustrates, it is important to keep an 
assessment’s intended uses and interpretations in the forefront when examining 
alignment and evaluating validity.

Various item or task formats can adequately assess a range of students’ knowl-
edge, skills, and abilities. Although student interviews or individually administered 
tasks as described in the chapters by Hunt and Tzur and Zhang, Maher, and 
Wilkinson may provide direct evidence of student thinking, this item or task format 
may not be feasible within all situations due to the time needed for administration 
and interpretation. Selected response items (e.g., multiple choice, true–false, match-
ing) may aid in efficiency of administration and scoring, while still assessing mul-
tiple dimensions of student proficiency. For example, well-designed multiple-choice 
items can assess students’ conceptual understanding, reasoning, and other higher- 
order thinking skills (Downing, 2006; Haladyna, 2004; Schneider et al., 2013) and, 
when intentionally designed to do so, may provide insights into the students’ think-
ing based on their selection of distractors (Briggs et al., 2006; Luecht, 2007).

Third and lastly, it is important to remind ourselves that we—public school 
teachers, administrators, curriculum developers, assessment designers, and educa-
tion researchers—are facilitators of the learning process and should engage in activ-
ities that support student learning of the depth and breadth of the curricular 
expectations. We are responsible for providing each student with carefully con-
structed opportunities to meet these expectations. In most instances, a state board of 
education or a national ministry of education has decided what students are required 
to know and be able to do; we cannot and should not change these expectations. As 
such, our efforts to facilitate mathematical proficiency should be in service of the 
ratified content standards. A teacher may have concerns about the nature of their 
state or country’s content standards, particularly as they represent ways of knowing 
of the dominant culture and themselves are socially, politically, and historically 
bound. These concerns should be communicated with the school and district leader-
ship, and/or state or national legislators. However, while these content standards 
remain the legislated mandate, it is imperative that educators provide each and every 
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student with opportunities to learn the breadth and depth of these curricular 
expectations.

Designing Assessments and Tasks to Promote Fairness, Accessibility, and 
Validity Another consideration when intentionally designing assessments and 
tasks is fairness and accessibility, because they directly impact the validity of the 
intended uses and interpretations of assessment and task results. Zhang, Maher, and 
Wilkinson emphasize the role accommodations play in supporting access to the 
assessed construct for students with disabilities. They also note that standardized 
accommodations may not live up to this goal because the variety of students’ needs 
that may not be well matched with standardized accommodations. I would like to 
build on this discussion by recentering the purpose of accommodations within the 
perspectives of fairness and validity.

To support fair and valid decision-making, assessments must be free from bias, 
minimize the impact of sources of construct-irrelevant variance, and be based on 
statistical analyses (e.g., item calibrations, percentile and cutoff scores, validity evi-
dence) that were obtained from a representative sample of students. Items, and the 
assembled test, should yield results that can fairly inform decision-making regard-
less of the examinee’s race or ethnicity, gender, socioeconomic status, educational 
classification, or any other demographic variable. To verify comparability, sufficient 
evidence is needed that documents the absence of differential item functioning 
(DIF) and differential classification outcomes.

Regardless of the type of assessment, some students with disabilities will need 
testing accommodations to accurately demonstrate their knowledge, skills, and abil-
ities. Zhang, Maher, and Wilkinson introduced the purpose of testing accommoda-
tions and provided an important distinction from test modifications. To further 
elaborate, testing accommodations are designed to mitigate the impact of students’ 
personal characteristics that negatively interact with item design features and subse-
quently lead to construct-irrelevant variance (CIV) in students’ scores. As an exam-
ple of this interaction, consider a student who may have difficulty retaining 
information in short-term memory. This student may experience additional diffi-
culty when solving multi-step word problems that require the student to use infor-
mation temporarily stored in working memory to solve subsequent components of 
the problem. In these instances, the student may benefit from using a graphic orga-
nizer as an accommodation to record intermediary steps and solutions within the 
problem. However, when the same student is responding to items that elicit concep-
tual understanding or application of single-step procedures that do not require 
extensive use of working memory, the student may not encounter additional chal-
lenges that result in CIV. In those instances, the student may not benefit from the 
accommodation. Comparatively, a student who has difficulty decoding the text used 
in multi-step word problems may benefit from a reading-based accommodation 
(e.g., read aloud, simplified language) and may not benefit from using a graphic 
organizer.
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The primary purpose of administering tests is to capture variability in student 
performance that can be attributable to variability in construct-relevant knowledge, 
skills, and abilities. However, the examples above illustrate how students’ personal 
characteristics influence how they engage with test items in construct-irrelevant 
ways. Moreover, the examples also highlight how variations in item design features 
may support or hinder students’ engagement depending upon their personal charac-
teristics. It is because of this interaction that the evidence about the effectiveness of 
accommodations is inconclusive. I have long argued that accommodations should 
be assigned at the item level where these interactions impact students’ ability to 
accurately demonstrate their construct-relevant knowledge, skills, and abilities (c.f., 
Ketterlin-Geller, 2008; Ketterlin-Geller, 2016). Accommodations can be effective 
only when they are applied at the juncture where CIV occurs.

As this discussion illustrates and is noted by Zhang, Maher, and Wilkinson, 
assigning test accommodations should not be conceptualized as a one-size-fits-all 
approach. IEP teams need to consider the student’s personal characteristics and item 
and test design features to determine the probable sources of CIV. IEP teams can 
then assign allowable accommodations that may mitigate the negative interaction. 
Our previous research (c.f., Ketterlin-Geller et al., 2014) provides guidance on this 
process.

I want to explicitly note that accommodations are not intended to promote a defi-
cit view of students with disabilities. Differences in students’ cognitive processing, 
attention, language or linguistic processing, and physical characteristics are not 
deficiencies and may promote mathematical sense making in other ways (Healy & 
Powell, 2013). Insomuch as the test design features can support accurate elicitation 
of students’ mathematical knowledge and skills, there may be little or no CIV intro-
duced into students’ scores. However, in instances where the test design features 
may hinder students’ ability to demonstrate their mathematical understanding, 
accommodations will be needed to provide equitable opportunities for students with 
disabilities to demonstrate their mathematical sense making. Alternatively, tests can 
be designed to minimize the reliance on construct-irrelevant skills by applying the 
principles of universal design (Ketterlin-Geller, 2008; Ketterlin-Geller, 2016). For 
example, reading is often a leading cause of CIV on mathematics tests for many 
students with and without disabilities. Tests can support variability in students’ 
reading skills by providing options to have the test items read aloud to anyone. 
Although it is not possible to mitigate all sources of CIV through intentional test 
design, universally designed tests may reduce the need for externally applied 
accommodations.

In summary, building on the theme introduced by Hunt and Tzur and Zhang, 
Maher, and Wilkinson, it is important to carefully consider the design of assess-
ments and tasks when using data to guide instructional decisions for students who 
are experiencing difficulties in learning mathematics. Valid uses and interpretations 
of results are incumbent on teachers’ access to data that are aligned with curricular 
expectations and instructional opportunities and that accurately reflect students’ 
knowledge, skills, and abilities without bias or CIV.
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7.3.3  Assessments and Tasks to Support Diagnostic Inferences

Quite often, mathematics classrooms do not comprise a homogeneous grouping of 
students. Instead, many of today’s classrooms are characterized by considerable 
heterogeneity across a variety of factors, including students’ background knowl-
edge or experiences with formal and informal mathematics, prior conceptualiza-
tions of mathematical concepts, and facility with different mathematical 
representations. As a result, students within a typical mathematics class may benefit 
from different approaches to instruction, such as representing mathematical con-
cepts in multiple ways, altered amounts of practice opportunities, and different lev-
els of scaffolding. Students may also need varying levels of supplemental 
instructional support to reach their goals, with some benefiting from minimal addi-
tional support and others needing considerably more to meet the curricular expecta-
tions. Some schools use a system-level framework (e.g., multi-tiered system of 
support) to coordinate instructional delivery, while other schools use a more diffuse 
model. Within either approach, diagnostic data may be needed to efficiently and 
effectively design supplemental instructional support to address these students’ 
learning needs.

Diagnostic assessment practices form an important part of an integrated and 
aligned system of assessments. As described in Chaps. 5 and 6 of this volume, 
teachers often seek diagnostic information to generate hypotheses about the nature 
of the instructional support from which a student who is experiencing difficulties in 
mathematics may benefit. These hypotheses can be based on information such as 
the student’s understanding of specific mathematical concepts or skills, persistent 
errors, or naive conceptions the student makes while completing their work, the 
strategies the student uses to arrive at a solution and/or the efficiency with which the 
student executes the strategy, and/or the representations they use to demonstrate 
understanding. This information recognizes the student’s prior knowledge and their 
ways of knowing and representing mathematics—and helps identify areas in which 
additional instruction could support future learning. With this information, the 
teacher can design a supplemental instructional plan that builds on the student’s cur-
rent understanding and facilitates the next steps in the student’s learning.

There are various approaches to designing diagnostic assessments to inform 
these instructional hypotheses and, ultimately, guide the design of supplemental 
instructional opportunities. Zhang, Maher, and Wilkinson provide an overview of 
some published diagnostic assessments, as well as various approaches that can be 
applied without the use of standardized assessments, such as clinical interviews, 
error pattern and strategy analysis, and strategy analysis with a microgenetic 
approach. Hunt and Tzur describe an approach to gathering diagnostic information 
through interviews that scaffold tasks through the learning process. Each chapter 
documents the procedures of these approaches and offers examples in practice.

Another approach to gathering information that may be particularly useful for 
guiding the design of supplemental instructional opportunities for students who are 
experiencing difficulties in learning mathematics is the use of learning 
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progression-based diagnostic assessments. In the remainder of this section, I pro-
vide an overview of learning progressions in mathematics, discuss ongoing devel-
opment work to design diagnostic assessments based on learning progressions, and 
explain how these assessments may provide unique information that can accelerate 
the learning process.

Learning progressions (or learning trajectories) are theoretical models of learn-
ing that describe the development of sophistication in students’ thinking within a 
discipline. While different disciplines tend to use one term over the other (e.g., sci-
ence education tends toward learning progressions, while mathematics education 
often uses learning trajectories), in her exhaustive review, Confrey (2018) noted that 
there are minimal differences in the propositions underlying these terms. As such, I 
will use the term learning progressions with the intention of being inclusive of both 
learning progressions and learning trajectories.

Learning progressions illustrate a sequential progression of understanding within 
a discipline that leads from foundational knowledge to more advanced thinking 
(Bennett, 2015). Knowledge and skills are integrated together in a meaningful way 
to build deeper understanding. Inherently, learning progressions present an asset- 
based model of learning by framing students’ development of understanding as con-
tinuing from their available conceptualizations through to more sophisticated and 
comprehensive understandings (Alonzo, 2018). Confrey (2018) likened this devel-
opment to a climbing wall in which students deepen their understanding (move up 
the wall) by combining knowledge and skills (using each hand and foot hold) in a 
thoughtful, purposeful, and sometimes iterative way. As what happens with a climb-
ing wall, the specific starting point and the pathway each child takes may look dif-
ferent, but the outcome is comparable (reaching the top of the wall, or completing a 
course).

When most learning progressions are described, they begin with a set of founda-
tional skills that mark the entry point or lower boundary. Similarly, they have an 
upper boundary that identifies the targeted learning goals for that progression 
(Confrey, 2018; Corcoran et al., 2009). The lower and upper boundaries are con-
nected by a series of intermediary phases of learning that are akin to the hand and 
foot holdings on the climbing wall mentioned earlier. These phases of learning 
make up the network of knowledge, skills, and processes that build in sophistication 
and complexity as they progress from the lower toward the upper bounds. Each 
student’s pathway through this network may be different and will be guided by their 
prior experiences and exposure to the content, as well as their instructional 
opportunities.

The intermediary phases of learning can exist with varying levels of specificity 
from coarse-grained representations of concepts to fine-grained micro- 
conceptualizations of student thinking. The granularity in which the learning pro-
gression is specified depends on the learning outcomes. For example, the Common 
Core State Standards in Mathematics are based on the principles of learning pro-
gressions and are specified at a relatively coarse grain size. Conversely, the learning 
progression explicating the process by which students learn to divide fractions artic-
ulated in Ketterlin-Geller et al. (2013) is specified at a relatively fine-grained size. 
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The level of specificity has important implications for informing teaching and learn-
ing, notably the design of instruction and assessment. For the purposes of this com-
mentary, I discuss the design of diagnostic assessments to inform supplemental 
instruction for students who are experiencing difficulties in learning mathematics.

Diagnostic assessments based on learning progressions provide teachers with 
information about the nature of students’ learning, so as to directly inform instruc-
tion. Teachers are able to interpret student performance from a lens of students’ 
knowing and understanding and move away from dichotomizing interpretations of 
performance as “they got it” or “they didn’t get it” (Alonzo, 2018). For example, 
teachers can identify student understanding in relation to their foundational knowl-
edge and skills (e.g., where they started on the climbing wall). This information can 
inform where instruction may intersect with students’ prior conceptualizations. 
Relatedly, teachers can monitor students’ movement through the intermediary 
phases of learning to determine the knowledge, skills, and processes students have 
developed and what instructional actions should come next to support learning. 
Also, teachers can examine fine-grained information within the intermediary phases 
of learning to better understand the students’ conceptualizations, integration of 
prior learning, facility with mathematical representations, and other aspects of stu-
dents’ mathematical thinking. Understanding students’ partial, emerging, or naive 
conceptions may help teachers identify prior knowledge that can be integrated with 
future learning to create a more complete representation of knowing in the domain 
(Confrey, 2018). This information can directly inform the design of instruction.

To illustrate the decisions teachers can make using learning progression-based 
classroom assessments, I briefly describe a learning progression that illustrates the 
knowledge, skills, and reasoning that students in kindergarten through grade 2 
develop when reasoning about numeric relations. In the project Measuring Early 
Mathematics Reasoning Skills (NSF #1721100), we articulated a learning progres-
sion through an iterative and systematic process specified by Ketterlin-Geller et al. 
(2013). This process integrated evidence from (a) theoretical propositions underly-
ing learning in the domains, (b) detailed reviews by nationally recognized mathe-
maticians and mathematics educators, (c) in-depth analyses of students’ thinking as 
elicited by cognitive interviews conducted with children in kindergarten through 
grade 2, and (d) input from teachers about their understanding of child development 
cultivated through extensive observations. The resulting learning progression for 
numeric relational reasoning has three targeted learning goals (relations, composi-
tion and decomposition, and properties of operations), each with three- or four-core 
concepts (see Kuehnert et al., 2020 for more information). The overall structure is 
displayed in Fig. 7.2.

Each core concept is further explicated into finer-grained subcomponents that 
describe the intermediary phases of learning, including the conceptualizations, rea-
soning, and strategic processes underlying learning.

To illustrate the way in which learning progressions can inform instructional 
decision-making, I will elaborate on the first core concept in relations, labeled 
“Comparison of Unequal Numbers.” The intermediary phases of learning include 
the following:
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Relations

•Comparison of unequal 
numbers

•Foundations of operations
•Transitivity
•Representations of order in 

comparison situations

Composition 
and 

Decomposition

•Composition
•Decomposition
•Decomposition with part 

unknown

Properties of 
Operations 

•Equivalence of quantity
•Equal sign as a relational 

symbolic
•Maintaining equality when 

solving for unknown values

Numeric 
Relational 
Reasoning

Fig. 7.2 Visual display of the learning progression for numeric relational reasoning

• Compare two quantities to find which has more or fewer items using one-to-one 
matching and counting strategies without a specific arrangement.

• Compare two quantities to find which has more or fewer items when given a 
specific arrangement.

• Compare two quantities grouped in tens and ones to find which has more or 
fewer items using one-to-one matching and counting strategies.

• Compare two quantities to find which has more or fewer items when given a 
specific arrangement with place value (e.g., place value blocks).

• Compare two numbers using the understanding of the number sequence to deter-
mine which is larger or smaller.

• Compare two numbers using written number lines to determine which is larger 
or smaller.

• Compare two numbers using open number lines to determine which is larger or 
smaller.

• Compare two numbers using symbolic notation.

These intermediary phases of learning occur iteratively as students build fluency 
and flexibility working with increasingly larger number ranges (e.g., from 1–5 to 
1–19). Through each intermediary phase, students deepen their understanding and 
ability to apply number relations concepts. Moreover, they are introduced to the 
number line as an important tool for modeling mathematics. Ultimately, these inter-
mediary phases culminate in a strong conceptual understanding of the number 
sequence, magnitude, place value, and the usefulness of communicating 
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mathematical concepts through visual representations. These concepts lay the foun-
dation for future work with operations.

Classroom assessments aligned to this learning progression can provide teachers 
with diagnostically useful information about students’ conceptualizations, reason-
ing, and strategic processing at each intermediary phase as the student progresses to 
larger number ranges. For example, consider this sample item for the first subcom-
ponent, compare two quantities to find which has more or fewer items using one-to- 
one matching and counting strategies without a specific arrangement. This item 
would be presented to a student who is working within the number range of 0–10 in 
an interview format with manipulatives (e.g., counters).

Stimulus
Prompt to elicit 
conceptualizations

Prompt to elicit 
reasoning

Prompt to extend 
students’ thinking

Look at these 
white and 
black counters.

Without touching these 
counters, are there more black 
counters or white counters?

Show me how you 
got your answer. You 
may touch the 
counters.

Show me how you 
would make the 
groups so there are 
more white counters.

Because the purpose of administering diagnostic assessments is to gather data to 
generate hypotheses about student learning to inform the design of supplemental 
instruction, students’ responses to these types of questions do not need to be scored 
in the traditional sense (e.g., scored for correctness, evaluated against a rubric). 
Regardless of whether the assessment includes constructed or selected response 
items, students’ responses provide windows into their thinking. Teachers can inter-
pret students’ responses in relation to the learning progression to identify the stu-
dents’ prior conceptualizations. Moreover, teachers may get a glimpse into the 
strategies students use when solving problems and the varied ways of knowing and 
making sense of mathematics.

Using the item above as an example, a student may be able to count the number 
of counters by color and be able to state which group has more counters only when 
allowed to rearrange the counters so as to employ a one-to-one matching strategy. 
In this instance, the teacher gains insights into the student’s understanding of rela-
tionships between quantities and the strategies they use to understand these relation-
ships. The teacher may infer that the student is progressing in their understanding of 
the number sequence, has a grasp of cardinality, and has a strategy for comparing 
quantities using physical manipulatives. In turn, the teacher can use this information 
to understand

• what content to teach next and to what level of intensity;
• student’s conceptualizations underlying their responses, which may illuminate 

varying levels of sophistication and efficiency in the strategies; and
• student’s mental models of mathematics concepts.
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As these interpretations inform the teacher’s inferences about the student’s think-
ing, they serve to guide instructional decisions to support future learning.

In sum, within an integrated and aligned system of assessments, diagnostic 
assessments serve an important role in promoting equitable outcomes in mathemat-
ics classrooms by providing teachers with valuable information to support infer-
ences about student learning. These inferences may include an understanding of 
students’ current conceptualizations, persistent errors, or naive conceptions, strate-
gies the student uses and/or the efficiency with which the student executes the strat-
egy, and the representations the student uses to demonstrate understanding. From 
this information, teachers can formulate hypotheses about the nature of the instruc-
tional support from which students may benefit. In the example described above, the 
teacher may facilitate the student’s future learning by emphasizing the meaning of 
the number sequence, extending the range of strategic approaches to comparing 
quantities (including introducing visual and abstract representations of quantities), 
and expanding the number range in which the student is making comparisons—all 
of which align with the intermediary phases of the learning progression. As this 
example illustrates, because learning progressions are based on theoretical models 
of learning, they provide a unique lens through which students’ knowing and think-
ing can be interpreted to directly guide instructional design decisions.

7.4  Conclusions

Students who are experiencing difficulties in learning mathematics may be sup-
ported in a variety of classroom settings within a school. It is essential that the val-
ues, norms, and beliefs that define a school’s culture recognize the assets all students 
bring to the learning environment and take actions that signify these beliefs. 
Importantly, all students should view themselves as valued contributors to the learn-
ing environment who are capable of learning complex mathematical concepts and 
have unique and important perspectives that shape their learning.

When intentionally designed, assessments can help teachers align instruction 
with students’ learning needs to improve and accelerate student learning. Designing 
assessments to provide meaningful, trustworthy, and reliable data to inform class-
room decisions requires careful consideration of several factors, such as the depth 
of understanding elicited by the items, content representation at the item and test 
levels, and the procedures for administration, scoring, and interpretation. In particu-
lar, although there are various approaches to designing diagnostic assessments, 
aligning the content with learning progressions may help teachers make inferences 
about students’ knowing, which can be translated into actionable steps for designing 
learning opportunities.

On a final note, I want to acknowledge and thank the editors for inviting me to 
contribute this commentary. We often point to differences in the ways in which 
special education and mathematics education researchers approach supporting stu-
dents who are experiencing difficulties in learning mathematics (c.f., Woodward & 

7 Commentary on Part II



152

Tzur, 2017). In this commentary, I have tried to emphasize the commonalities both 
between the chapters and also among the broader community of educators who are 
committed to improving outcomes for students who are experiencing difficulties. I 
urge us—the community of educators, researchers, and other stakeholders—to 
build on our shared goals and vision of all students realizing positive outcomes in 
mathematics. The more we can work toward understanding and away from empha-
sizing difference, the better equipped our community will be to support all students, 
especially those who are experiencing difficulties in learning mathematics.
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Chapter 8
Supporting Diverse Approaches 
to Meaningful Mathematics: 
From Obstacles to Opportunities

Carla Finesilver, Lulu Healy, and Ann Bauer

Abstract In this chapter, we explore how classroom cultures might be established 
that are more congruent with the diverse needs of all the learners who compose 
them and identify features that support the development of conceptual understand-
ing of mathematics in learners currently marginalized by normative classroom 
expectations. We focus in particular on two interlinked issues, time and tools. First, 
we address how time-related pressures particularly affect students with learning dif-
ferences, difficulties, or disabilities and suggest ways of thinking about the con-
structs of efficiency and economy that respect student difference. We then address 
these constructs in relation to tool use, looking at some ways by which tools (in a 
broad sense, including manipulatives, calculation and communication devices, 
memory aids, and representational strategies) may be particularly helpful for stu-
dents who have not been able to access mathematics teaching in the same ways, or 
as successfully, as their more typically developing peers.

Keywords Inclusive education ·  Special educational needs ·  Disability ·  
Mathematics education ·  Representation

8.1  Introduction

There are many approaches to working mathematically, and expressing and explor-
ing mathematical ideas, but both students’ and teachers’ choices may be restricted 
by beliefs about the ways of working that are and are not valued or “legitimate” in 
school mathematics (Healy & Powell, 2013), or the purposes and statuses of differ-
ent modes (Coles & Sinclair, 2018). Legitimated approaches and their associated 
tools are not equally congruent with the needs of all student groups, meaning that 
when certain practices or tools are undervalued or disallowed, opportunities for 
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some students to fully participate in mathematical activities can become severely 
limited (Fernandes & Healy, 2020; Finesilver, 2017b). This affects not only their 
mathematical performances, but also their relationships with mathematics and per-
ceptions of themselves as learners (Bauer, 2020).

In arguing for diverse approaches to pedagogy in order to develop mathematics 
education that is both meaningful and inclusive, we address some underlying issues 
and assumptions relating to “special education” in general and then focus on two 
issues in particular around which incongruences between learners’ individual char-
acteristics and educational environments have been identified, illustrated with three 
vignettes, one from each of our research. The first issue relates to time, in particular 
to the consequences of pedagogies which associate the quantity and speed of “work 
done” with mathematical prowess and being “slow” as evidencing lack of ability in 
mathematics. The second issue relates to tools, in particular the consequences of 
seeing certain tools and representations as temporary scaffolds, rather than as part 
and parcel of mathematical thinking.

In the following sections, we address some theoretical underpinnings regarding 
diversity, difference, disability, and “special educational needs” (hereafter SEN) 
and then focus on time and tools first separately and then interactionally. To illus-
trate the points, we draw on data from our different past and ongoing projects 
involving the arithmetical-representational strategies of learners who were/are con-
sidered to have “SEN and/or disabilities.” These are as follows:

• Collaborative participatory action research projects conducted that collectively 
compose the ongoing research program, Towards an Inclusive Mathematics 
Education.1 (Healy)

• Problem-solving interviews focusing on co-creation of arithmetical-representational 
strategies, conducted for a microgenetic study focusing on emerging and devel-
oping multiplicative thinking. (Finesilver)

• Interviews focusing on learners’ and educators’ relationships with mathematics 
learning and professional practice as a specialist teacher of young people with 
SEN. (Bauer)

Through these, plus our respective professional experience, we explore how 
classroom cultures might be established that are more congruent with the diverse 
needs of all the learners who compose them and identify some features that support 
the development of conceptual understanding of mathematics in learners currently 
marginalized by normative classroom expectations.

8.2  Diversity, Difference, Disability, and SEN

We begin this section by considering the case of a young blind learner, who we will 
call Vitória.2 We have chosen this as an opening story, in part because the issues of 
time and tools permeate its telling in ways we will draw out in the sections and 

1 Publications associated with this program are available for download from http://www.matemat-
icainclusiva.net.
2 The data from which Vitória’s story has been synthesized are available in Freire (2017).
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Vignette 1: Number Activities in the Absence of Numerical Symbols

Vitória (10) lived in the Brazilian state of Sao Paulo and was invited to partici-
pate in a project intended to explore the understandings of multiplicative 
structures developed by learners who do not see with their eyes. By the fourth 
grade, it is expected that students will have encountered multiplicative struc-
tures of a variety of forms in their formal schooling, but this turned out not to 
be the case for Vitória. At the beginning of the project, she was still unfamiliar 
with the place value system, though she had memorized numbers up to thirty-
two and a limited number of “sums” (1 + 1; 2 + 2). She seemed to have devel-
oped a sense of one-to-one correspondence and was able to count unit cubes, 
correctly separating the number requested by the researcher, although she had 
a tendency to lose count if more than 12 were requested. She very quickly 
became anxious to the point of crying if she was asked to engage with a prob-
lem whose answer she had not yet memorized. She was also unfamiliar with 
Braille at the beginning of the project, and her attendance at school was 
sporadic.

In her second meeting with the researcher, she was encouraged to work 
with some small wooden pieces (Fig. 8.1), which, along with a set of Dienes 
cubes, rods, and block, completely changed her relationship with mathematics.

These wooden pieces were small enough to fit comfortably in Vitória’s 
hand and were easier for her to keep track of than the smaller unit cubes. The 
wood was smooth and comfortable to hold, with the corners filed so the edges 
were rounded. She very quickly developed ways of using them to engage with 
addition and subtraction, which she could apply not only to sums in which the 
number operations were made explicit but also to word problems, involving 
small quantities. Place value, and hence larger numbers (which she was very 
keen to make sense of), was introduced via the Dienes material. Vitória’s con-
fidence and self-esteem were almost palpable when she realized she could go 
on counting forever.

The wooden pieces also became fundamental in working on multiplication 
and division. She developed a strategy in which each piece could represent 
any number she chose. In the first instance, this seems to have been motivated 
by the researchers’ attempt to introduce the concept of one to many, by sug-
gesting she imagined the piece represented bags containing five sweets each. 
With two wooden pieces in front of her, following the researcher’s suggestion, 
she counted to five while tapping on one of them, then placed her hand on 
second, and, without counting, moved it toward her and said quietly to herself 
“five.” Later in the same session, to convince herself that four times five gave 
the same result as five times four she separated four pieces and counted in 

(continued)
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Fig. 8.1 Wooden pieces 
designed for Vitória

fives (rhythmically tapping on each piece in turn) to twenty. She then repeated 
the process with five pieces and counted in fours to twenty. She seemed to 
have no difficulty in treating the wooden piece as a kind of placeholder that 
could represent any number. It seems that for Vitória, a tangible object had 
become a way of representing a variable.

In her work on division problems, the pieces had a similarly important 
role. Given the problem shown in Fig. 8.2, she chose to count up in threes, 
selecting a wooden piece for each three, until she reached eighteen, and then 
counting the number of pieces selected before announcing “each child will 
receive six reais.”

Fast forward almost four months, Vitória had begun to learn Braille, but 
was still not confident in reading and especially writing numbers. Her encoun-
ters with multiplicative structures had widened, though rather than working 
with these in conventional symbolic/written ways, she continued to make use 
of the wooden pieces. For example, when asked to calculate 2/5 of 40, she 
proceeded by dividing 40 by 5, selecting a wooden piece to represent each 5 
as she counted and tapped “five, ten, fifteen, twenty, twenty-five, thirty, thirty-
five, forty,” and then counting how many pieces she used. She hence deter-
mined that 1/5 is 8, and therefore, 2/5 would be 16. Interestingly, as she came 
to this decision, she separated two wooden pieces, tapping again, as she says 
“eight” then “sixteen.”

Vignette 1 (continued)
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Fig. 8.2 A division problem

further vignettes that follow, but also because it provides a framing context for the 
theoretical constructs that ground our research.

8.2.1  Cultural Norms and Pathologization of Difference

Many, if not most, education systems have exclusive origins, where access to formal 
schooling may have been limited to certain subgroups of the population (e.g., selec-
tion by wealth, gender, or ethnicity), and while their history has been one of slowly 
increasing inclusion and widening participation, children with disabilities and/or 
SEN (or variants of this terminology) are still predominantly a marginalized group 
(Mitchell, 2005; Mittler, 2002), seen as separate and categorically different from 
“normal” children, whose “integration” is thrust upon unwilling or dubious teachers 
and classmates (Avramidis & Norwich, 2002). Inclusion is then positioned as some-
thing additional to “normal” teaching and learning. A fundamental step in creating 
inclusive classrooms is to proceed instead from a new norm—that education sys-
tems are meant for the whole population and should be designed accordingly.

With this kind of statement, people often think first of physical school environ-
ments being designed to suit only a typical bodily configuration, while creating 
barriers for others. For example, Vitória’s participation might be severely limited in 
an environment that assumes we all see with our eyes. Curricula too are frequently 
designed for an imagined typical student (e.g. “a normal 12-year-old”), who is 
expected to be in possession of a particular set of knowledge, capabilities, and skills, 
which they demonstrate in a particular way (with greater or lesser success). If an 
individual does not demonstrate this in the expected manner, they can become 
pathologized in ways that include being seen as lacking or having something wrong 
with them (McDermott, 1993; Finesilver, 2019); the lack or wrongness is not so 
commonly located in the education system. This misaligning of individuals and 
inflexible systems can be seen as creating misfits (Garland-Thomson, 2011) of those 
who do not perform successfully. Responses to this might be exclusion (excision of 
the “problem,” passing it on elsewhere), attempts to “cure” (trying to change the 
pathologized individual to become or appear “normal,” so they may perform within 
the expected range in a standardized system), or “accommodations” that allow those 
in certain medical or psychiatric categories to do certain things differently from 
their peers. In this way, even changes to any of the institutional education structures, 
and particularly the removal of obstacles within curriculum and assessment 
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systems, are directed at a target population of special education, rather than to the 
education system as a whole.

8.2.2  Individual Accommodation or Structural Reorganization

Here, we might point to a tension between the ideologies associated with the move-
ment for inclusive education and the policies and guidelines regarding “special edu-
cation” provided for use in different education systems.

Norwich (2013) refers to this tension as the dilemma of difference. Inclusive 
education implies the reorganization of the structures, policies, and practices of 
mainstream schools, in order that they might respond to diversity in ways that value 
all learners equally, rather than labeling some as fundamentally more needy than 
others. This might suggest that an SEN label can only function to create divisions 
between those seen as “normal” and “others” deemed deficient or disordered (Ferri, 
2012). Difference here is seen as stigmatizing, which might be used to imply that 
forms of specialization or differentiation that are congruent with particular body-
minds3 are viewed as problematic rather than potentially enabling (Norwich & 
Koutsouris, 2017). Focusing on the practices of particular student groups should not 
necessarily be associated with labeling them as problematic. It should instead be 
viewed as a way of enriching and expanding mathematics teaching possibilities.

In this vein, almost 100 years ago, Vygotsky (1924-31/1993) proposed that we 
look qualitatively at students’ potential for learning and the conditions that support 
this development, rather than comparing their achievement to some imposed norm 
measured in conditions that do not match with the ways they experience and interpret 
the world. Although his work did not focus on all those students who would currently 
be considered as part of the population targeted by “special education,” we believe it 
makes sense to extend his ideas this way. Using today’s terminology, we might para-
phrase Vygotsky’s view thus: If a child with SEN achieves the same level of develop-
ment as a child without SEN, then they achieve this in another way, by another 
course, by other means. And, for the teacher, it is particularly important to know the 
uniqueness of the course, along which to lead the child. The key to originality trans-
forms the barriers associated with the impediment into the potential for development.4

There are a number of points we might highlight in relation to this view. Firstly, 
it is very different from positioning the learner with SEN as lacking or deficient in 
relation to others. There is none of the talk of catching-up, remediating, or curing 

3 We use this term following (Price, 2015, p.270), as “the imbrication (not just the combination) of 
the entities usually called ‘body’ and ‘mind.’”
4 The paraphrased original (in English translation) reads “If a blind or deaf child achieves the same 
level of development as a normal child, then the child with a defect achieves this in another way, 
by another course, by other means. And, for the pedagogue, it is particularly important to know the 
uniqueness of the course, along which he must lead the child. The key to originality transforms the 
minus of the handicap into the plus of compensation” (Vygotsky, 1924–31/1993, p. 34).

C. Finesilver et al.
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that characterizes many intervention programs for those experiencing difficulties 
with mathematics (Fuchs & Fuchs, 2006; Holmes & Dowker, 2013). In second 
place, it is the learning environment that is seen as presenting certain obstacles to 
learning, rather than their location solely within the learners’ bodyminds. For exam-
ple, for Vygotsky the solution for the inclusion of disabled learners in educational 
(or, more generally, cultural) activities lies in seeking ways to substitute the conven-
tional means of participating (which they may lack or have limited access to), with 
alternate means that are more congruent with the bodyminds of the individuals in 
question. If we consider Vitória’s story for example, her participation in and rela-
tionships with mathematics changed fundamentally when she was provided with 
tools to substitute the function of her eyes in mathematical activity and offer her 
different ways of seeing.

This signals the importance Vygotsky placed on the role of tools in shaping 
activity. He treated tools as defining components of human cultures, created at par-
ticular moments in their trajectories in response to the demands of a particular prac-
tice. Tools are created to enable us to transcend our bodily constraints, although they 
are not independent of them. As products of cultures, tools do not appear and 
become useful by magic: They take time to invent, build, test, and become familiar 
with; they may also affect the amount of time spent on any task for which they are 
invented or appropriated. Tools are hence fundamental in any attempt to reorganize 
educational structures and cultures, a point we will return to as this chapter develops.

Vignette 2: Emerging Conceptions of Multiplicative Structure through 
Student-Led Visuospatial Representation

This pair of examples focuses on single meaningful moments created by two 
girls, Tasha (12) and Wendy (13), who were in different classes at the same 
inner London secondary school. The researcher was informed that Tasha was 
diagnosed with ADHD and Wendy dyslexia. They both had very low prior 
performance in school mathematics and were identified by their teachers as 
struggling significantly (compared to peers) with acquiring numeracy skills 
and concepts. They could count and carry out addition of natural numbers 
fairly reliably, but avowed a particular dislike—hatred, even—for multiplica-
tion and division. Despite having put a great deal of time and effort over the 
years into attempting to commit multiplication facts to memory, this had been 
an almost complete failure; Tasha now exhibited a mixture of anger and dis-
tress when faced with multiplication or division, while Wendy had resigned 
herself to quiet hopelessness. In this context, the researcher aimed to work 
sensitively with various visuospatial representations to “nudge” students to 
better understanding of and relationship with multiplicative reasoning.

(continued)
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Two overall methodological principles were key: encouragement of stu-
dents’ own representational ideas, needs, and preferences, and complete 
absence of time pressure on tasks. Here, the unrestricted time principle was 
taken a stage further: not stopping students when the expected end point had 
been reached, but allowing them to continue directing their own work with a 
given tool.

Tasha had been provided with a solid 3 × 4 × 5 block of multilink cubes 
(Fig. 8.3), and set the task of working out how many of the unit cubes were 
present without taking it apart (effectively a calculation of volume, or three-
dimensional multiplication, although not expressed in these terms, which 
would have been alienating to her). With minimal nudge prompts (see 
Finesilver, 2017a), she was able to perceive the spatial structure of the cuboid 
as four layers of 15 cubes and agreed to have a go at the addition (pictured) 
and, despite exclaiming this was “not easy!”, carried it out successfully. When 
the block of cubes was reoriented with the 4 × 5 face uppermost, she took up 
her pen again and spontaneously carried out the corresponding addition for 
this too. This may surprise the reader, as it would seem to be a simple case of 
object permanence. An alternative suggestion is that this indicates a student 
whose prior experiences of school mathematics had not led her to believe that 
it was congruent with common sense and logic. She added three lots of 20 
(corresponding to the three current layers) to get “60 again!” She then turned 
the block so that the 3 × 4 face was uppermost, commenting of the new layers 
“these are 12,” and contemplated whether to carry out a third calculation, 
before deciding it was unnecessary, as she now had confidence that orienta-
tion would not change the result. This student-led task extension is notable in 
that it stemmed from a student’s doubtfulness about something that would be 
unlikely to occur to a mainstream teacher of 12-year-olds as possibly conten-
tious and her drive to collect the empirical evidence to “prove” the identities 
to her own satisfaction.

Wendy had been set the task of working out how 30 biscuits might be 
packaged in equal-sized packets (effectively finding factors, but within an 
imaginable scenario, and again in non-alienating language). She had recently 
been working with hand-drawn rectangular dot arrays and drew a 3 × 10 array. 
She then set about rhythmically ringing sets of different sized groups to pro-
duce an array-container blend5 with all the different factorizations of 30 (see 
Fig.  8.4, which also includes a second task carried out in the same way). 
These were not attempts to work out the factors—she checked whether they 
would work before committing ink to paper—but an expressive external 
visualization of the results of her thinking about the arithmetical relationships 

Vignette 2 (continued)

(continued)

5 Further details on container- and array-based configurations may be found in 
Finesilver (2014)
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Fig. 8.3 A cuboid block of multilink cubes and Tasha’s two calculations

between the numbers. Not only was this clearly a satisfying and absorbing 
activity for her at the time, but appeared to be meaningful to her grasp of 
multiplicative structure, as on later occasions she referred back to these 
images. This was not in order to look up any particular multiplication fact, 
but, I suggest, an instantiation and instant visual reminder of the relationship 
between multiplication and division, the knowledge that a given total may be 
divided up in different ways, and the commutative property of multiplication. 
She would certainly have been taught these principles in some manner at 
some point, but benefited from being allowed the time to work through them 
with her chosen tool.

Vignette 2 (continued)

Fig. 8.4 Two array 
container blend 
configurations drawn by 
Wendy
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8.3  Time

The roles of time in mathematics education require critical consideration. Working 
“too slowly” is commonly considered a marker of low ability; i.e., a judgment of 
mathematical worth is made based on the quantity of “work” produced within an 
arbitrary time period independent of its quality (a judgment that, we note, is rarely 
applied to advanced mathematicians). However, a standard assessment accommo-
dation offered for students with SEN is extra time. In other words, it is considered 
important for them to have enough time to demonstrate their knowledge and under-
standing effectively. While this acknowledgment is certainly welcome, it raises fur-
ther questions. Is the restriction of working time important or not? In what contexts? 
Why? Does it indicate anything useful about their potential for more advanced 
mathematical development? What might be the consequences of removing some of 
the time constraints on mathematical activity?

Our second vignette is chosen to illustrate two outcomes of this last question. 
While the use of tools was central to the mathematical activity described, these 
instances of mathematical meaning-making were a direct result of having unre-
stricted time to engage in individual exploration of these tools’ potential.

In class, students are all too aware of the prizing of speed/quantity over depth/
quality. Struggling students see their peers call out answers to teachers’ questions 
on demand, or produce pages of organized mathematical symbols, as if by magic, 
without visible thought going into the calculations, and so in response develop the 
imitative maths-like behaviors (Finesilver, 2017b) of ritual participation (Ben- 
Yehuda et  al., 2005). In observing classrooms over the years, we have all seen 
instances of teachers, with the best of intentions, praising a performance of “quick 
answering” of questions—even when, for some struggling students, it involves the 
essentially unmathematical behavior of guessing at answers (or in written work, 
shuffling around partially remembered sequences of symbols). This unhelpful situ-
ation is compounded by, and further compounds, teacher beliefs that certain stu-
dents are incapable of reasoning and should be restricted to low-level recall—or 
worse, that ritual participation is the most that can be expected of them (e.g., Watson, 
2001). In contrast, here Tasha and Wendy were not pressured to produce quantities 
of symbolic busywork but engaged, by their own choice, in genuine arithmetical 
reasoning. As with Vitória, they gained satisfaction from working with their pre-
ferred tools to solidify their conceptual understanding of arithmetical content that 
had previously prompted negative emotions, refusal, and withdrawal. It can be seen 
that in environments where learners are not artificially pressured and consistently 
encouraged to use whichever forms and elements they find most congruent with the 
current state of their bodyminds, they can unlearn the bad habits of guessing, sym-
bol shuffling, and other maths-like behaviors and instead engage thoughtfully with 
mathematics (Finesilver, 2014).

When students are allowed to take their time in this way, there are benefits to 
their understanding. However, depending on the tools and representational forms 
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employed in “taking their time,” another consequence might be a reduction in quan-
tity of “expected classroom behavior and observable completion of clerical work” 
(Watson, 2006, p. 104). It might be argued that if students were seen to be doing 
fewer calculations than their peers, or in different ways, this could cause low self- 
esteem. However, we would argue that this effect is already happening in many 
classrooms and that the response to it should not be to fix the individual’s pace of 
visible work production (at the expense of meaning), but to create an environment 
where quantity is not prized over quality, and where slow, thoughtful, in-depth 
working is valued, and taking time out from completing calculations to visualize 
patterns and principles is encouraged.

Inclusive education demands care and consciousness of how one uses the limited 
time that is available, but there may be external factors at work: A teacher may want 
students to understand the material conceptually, may understand that slow work 
can provide opportunities for deep understanding, and furthermore that this may be 
best demonstrated through potentially more time-consuming representational forms 
and know that the fact that a given individual did not demonstrate an objective in a 
given arbitrary timeframe does not mean the individual lacks the necessary knowl-
edge or capability—yet be externally pressured to set timed tests, to perform econ-
omy at curriculum level (by “getting through” topics at pace) and efficiency at task 
level (by exercise books that evidence a high number of questions answered, while 
using only standardized tools and representation). This may well be false economy 
and false efficiency, in terms of long-term mathematical development, and so the 
challenges of creating more inclusive classroom practices will need support from 
the wider school community.

Vignette 3

Kevin was 11 and formally diagnosed with  developmental coordination dis-
order (DCD), developmental language disorder (DLD), and visual perceptual 
difficulties. He was anxious about mathematics and perceived failure at every 
turn. One of Kevin’s main difficulties was in keeping his place and negotiating 
visuospatial layouts when reading text, numbers, graphs, tables, and dia-
grams; this was exacerbated by untidy or crowded layouts, or distracting color 
choices on the whiteboard or in printed materials. Kevin had difficulties with 
concepts expressed through language and had been using Dienes blocks to 
gain a more secure understanding of place value up to thousands. He now 
expressed a desire to read and decode the meaning of larger numbers. Using 
blocks becomes unwieldy once tens of thousands have been reached, and the 
prepackaged place value cards that were available presented difficulties due to 
their color scheme, busy design, and the need to hold them in one’s hand. 
Instead, the teacher and Kevin created tables (with columns grouped in threes 
to coordinate with the linguistic structure of larger numbers).

(continued)
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Fig. 8.5 A place value table created by Kevin and his teacher

This may seem straightforward: The important point to note is that Kevin 
was fully involved and had control of the colors and sizes (including of the deci-
mal point) so they could be optimized for his perceptual processing (Fig. 8.5), 
thus removing as much of the additional cognitive effort that had been going 
into just keeping his place. The table pictured shows an extension into the deci-
mal range that was subsequently made possible, and there are others that go into 
the millions and onward. These color blocks gave Kevin a method of “seeing” 
the decimal structure of the numbers in order to read, write, and speak them, 
understanding the relationship of each digit with those around it.

Vignette 3 (continued)

8.4  Tools

Our third vignette is chosen for its focus on another classroom tool, which is famil-
iar and commonly used in support work, but, for this very reason, deserves a closer 
look. It derives from practitioner 1:1 tuition and illustrates the way that tools need 
to be used with nuance, in an individually tailored and co-creative way.

The previous section highlighted how discourses that position “quick” as good 
and “slow” as bad can come to be associated with exclusionary—and false—con-
cepts of efficiency and economy. In relation to tool use in mathematics education, 
we might point to another false binary construction: dependence/independence, 
which similarly disables certain groups of students. In discourses that position inde-
pendence as desirable and associate dependence with weakness, then doing one’s 
mathematics via certain tools is frequently judged as evidence of lack of mathemati-
cal ability. Making use of conventional mathematical tools, which are normalized 
for “typical” students, is not generally construed as “dependence” in this way, 
though the difference is cultural rather than theoretical.

Take, as an example, a stance recently promoted by the UK’s National Centre for 
Excellence in the Teaching of Mathematics, which states that “Representations used 
in lessons expose the mathematical structure being taught, the aim being that stu-
dents can do the maths without recourse to the representation” (NCETM, n.d.). The 
implication here is that the representation (or tool) is merely a scaffold that can be 
taken away once the mathematical structure is exposed. This negative positioning 
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dependence on representation/tool may initially appear uncontroversial when con-
sidering pedagogy. However, from our point of view, this is not only potentially 
disabling, but it is also a little extraordinary. If one removes all the representations, 
it is not clear what mathematics will be left at all! It seems, then, that the term “rep-
resentations” is being used in a particular way: In this context, it is not considered 
“dependence” to utilize symbolic representations of number, algebraic symbols, or 
geometrical figures, but only manipulable or nonstandard visual aids, because these 
are seen as “on the way” to formal representations rather than as valid alternatives. 
If this interpretation is correct, it adds another angle to the binary oppositions that 
construct SEN, positioning “concrete” alongside “slow” as an undesirable but hope-
fully temporary state, and “abstract” beside “fast” as the desired end state.

The positioning of the concrete as intellectually inferior to the abstract has roots 
in Piagetian descriptions of development. A view of mathematics learning as mov-
ing from the concrete to the abstract, for all learners, continues to dominate what 
happens in school mathematics today and is now embedded in many mathematics 
curricula and teaching approaches. Examples include the Bruner-inspired “Concrete, 
Pictorial, Abstract” (CPA) approach advocated by the Ministry of Education in 
Singapore since the 1980s (Leong et al., 2015) and the similarly named US-based 
intervention “Concrete, Representation, Abstract” (CRA), which “has been shown 
to be effective for remediating deficits in basic mathematics computation” (Flores, 
2010, p. 195). Our first concern with such approaches is that, while they may lead 
to success for some students some of the time, if the assumption that all learners 
follow the same hierarchies all of the time, then those whose learning deviates from 
this curriculum-embedded path may again be pathologized. Secondly, there is the 
danger that the “concrete”/enactive and the pictorial/iconic are not seen as valid 
mathematical representations in their own right, but are instead demoted to the sta-
tus of transitory aids eventually to be replaced by the conventional symbols, which 
are commonly equated with abstraction.

Vitória’s story is not well captured by a view that mathematics learning proceeds 
from the concrete to the abstract (and perhaps especially not via “pictorial” repre-
sentational modes). The wooden pieces she worked with certainly have a concrete, 
material quality, and yet, we would argue, served a role in shaping her conceptual 
understanding of numbers. That is, the pieces are neither simply concrete nor 
abstract but were used by Vitória to simultaneously enact processes of concretion 
(senses of particular numbers and operations) and abstraction (possibilities for gen-
eralizing, connecting, extending). Vitória’s relationships with the wooden blocks 
support the view that doing mathematics involves traversing between the concrete 
and the abstract (see also Wilensky, 1991; Healy & Fernandes, 2011; Coles & 
Sinclair, 2019), rather than replacing one with the other. Her case, like all those we 
have presented here, also suggests that different representational modes enable dif-
ferent expressions of mathematical objects, properties, and relationships—and that 
concretion and abstraction feature in all. The students’ interaction with the different 
tools also challenges any idea of a linear development between representation 
modes. We note that drawing (i.e., the middle “P(ictorial)” step of CPA) did not 
figure in the activities of Vitória; neither would “flat” inscription have been logical 
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in Tasha’s activity due to the three-dimensional nature of the multiplicative structure 
instantiated in the physical array of cubes. In contrast, Wendy chose drawing-based 
representations to communicate her perception of factors, using a model that could 
not seamlessly be expressed physically or symbolically. For Kevin, what might be 
described as a hybrid visual-symbolic concretization of the decimal system was 
helpful, perhaps not least because, as with all these students, he was an active par-
ticipant in the representational strategy development.

Classifying mathematical representations as either concrete or abstract (or even 
on a concrete-abstract spectrum) is actually a rather problematic affair. 
Epistemologically speaking, a mathematical object can be conceived as a virtual, 
potential (abstract) entity manifested and interacted within some material form, 
through the use of a perceivable (concrete) tool—a representation of the object in 
question. So, in some sense at least, all representation tools are concrete. Doing and 
learning mathematics involve participating in activity with such tools. Irrespective 
of the representational form of the tool—that is, whether it is a tangible 3D object, 
a visual 2D figure, or a symbol—it is the ways that it is used in mathematical activ-
ity, which defines whether abstraction, concretion, or some synthesis between the 
two is played out. Rather than restricting teaching to a fixed progression of (suppos-
edly increasingly sophisticated) representations, we suggest that more inclusive 
approaches to tool use involve employing and even inventing tools and representa-
tions that are congruent with the bodyminds of a wide diversity of learners.

8.5  Tensions/Discussion

Time and tools are deeply interconnected at multiple levels. We now look at these 
interconnections and some of the practical tensions with regard to testing and teach-
ing. It may seem odd to address testing before teaching; we have done so to empha-
size the bidirectional relationship, and in particular the phenomenon of “teaching to 
the test,” which is unfortunately widespread, and we consider particularly detrimen-
tal to learners with SEN and/or disabilities who are perceived as lacking in compari-
son with their peers.

8.5.1  Time, Tools, and Testing

The ways in which it is decided whether a learner is in possession of the desired 
knowledge or skills make a significant difference to outcome: Assessment is not 
neutral. Most formal mathematics assessments include time limits of different kinds 
(per question, or for the whole test) and regulate tool use. When engaging in assess-
ments that purport to test mathematical ability, it is worth questioning what, in fact, 
is being tested and what (if anything) it tells us about a learner’s mathematical 
capacities and potential. One way of doing this is by looking critically at the 
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allowances and restrictions (for both the “general” and “special” student popula-
tions), and their underlying assumptions and biases. The specific examples in this 
section are from the UK, but it is expected that the general issues raised will reso-
nate with readers from various other education systems.

In some assessment systems, certain individuals with formal SEN diagnoses may 
be granted additional time. But is it not important for all students to have as much 
time they need? In which assessments (if any) should speed be the primary arbiter 
of success? Who is being advantaged and disadvantaged by time-restricted tests, 
and is this intended or indeed acknowledged? When artificial time restrictions are 
placed on tasks, this indicates that speed of working is prioritized; that quantity of 
product is more valued than quality of thought process. It also has implicit or explicit 
implications. For example, England’s current “Multiplication Tables Check” assess-
ment has a 6-second time limit on questions; this has the stated purpose to “demon-
strate [students’] recall of multiplication tables, whilst limiting [their] ability to 
work out answers to the questions” (Standards and Testing Agency, 2018, p.8). That 
is, it aims to test learners’ ability to rote memorize a set of statements of number 
relationships, regardless of whether they are understood, and to prevent them from 
making creative use of derived fact strategies to work out multiplicative relation-
ships they do not immediately recall from ones they do (which one might argue is a 
more intrinsically mathematical skill to have). It is designed to reward students who 
are better at memorization of information and to punish those with memory difficul-
ties (including many neurodiverse groups).

In assessments that purport to test mathematical reasoning and problem-solving 
abilities rather than simply information storage, tools also become a contested issue. 
For example, in another test, no “number apparatus, counters or number squares” 
can be used (Standards and Testing Agency, 2020, p. 13). We assume that the rea-
soning behind this is that access to these would be considered as giving “the pupil 
an unfair advantage” (ibid. p.10)—although any such unfairness might be addressed 
simply by allowing anyone who wished to use these tools to do so. The question 
should instead be whether individuals with certain bodymind configurations are 
currently unfairly disadvantaged. While there have been moves in this direction 
(e.g., specific accommodations in the case of certain officially diagnosed and docu-
mented impairments), the principles could be applied more generally.

A variety of other tools (e.g., calculators, laptops, vocabulary or formulae book-
lets, multiplication or logarithm tables) have been variously allowed or disallowed 
in formal assessments across different times and places; in each case, they affect 
which cognitive capacities are in fact being tested for, alongside or instead of math-
ematical ones. Furthermore, these decisions regarding restriction of time and tools 
are inextricably linked. Consider some tools that support memory: If a tables square 
is allowed, students with weaker memories will not have to work out the individual 
calculations that are required for solving more complex problems. If the area of a 
trapezium is included in a formula booklet, students will not be forced to work it out 
from principles. If the quadratic formula is included, they may compute roots with-
out an understanding of factoring or differences of squares. All these tools support 
quicker answering—but in which cases is this desirable? We do not insist on any 
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particular decision, only that the decision-making is thoughtful about the exact time 
and tools allowed, and what this means for individuals who, because of this, may or 
may not achieve the requisite number of correct answers for a passing grade.

We realize that individual teachers generally do not have control over the formal 
assessments their students are subjected to (e.g., national examinations) and, fur-
ther, may be required to prepare students for these through practice under similar 
conditions, i.e., by restricting learners from taking time to reflect, or from making 
creative use of nonstandard tools and representations that help them make sense of 
mathematics. However, the nature of such testing and the resulting pedagogic prac-
tices should be assessed critically and challenged where possible.

8.5.2  Time, Tools, and Teaching

We have given examples of how allowing more thinking time and/or more diverse 
tools in the short term provides opportunities for engendering conceptual progres-
sion with long-term benefits to learning. These are not linear relationships: 
Depending on the tools and individuals involved, they may mean that the pace of 
visible “work done” needs to slow down (e.g., exploration in multiple representa-
tional forms), or they may mean it speeds up (e.g., using memory aids to allow a 
learner to focus on the mathematical reasoning/problem-solving aspects rather than 
basic arithmetical calculations—as is the case with their non-memory-impaired 
peers). However, the most commonly mentioned tension (in our experience) is that 
when a student uses nonstandard representational tools (e.g., involving physical 
objects, drawn or mixed-mode/media representations) on tasks, they may take lon-
ger to complete. This is essentially a false comparison, as it is usually comparing the 
time taken by a given individual to complete a calculation in a way that is meaning-
ful to them not with the alternatives available to that individual at that point but 
with the time taken by a different, imagined, individual with different capacities, for 
whom standardized memory-based methods are a good fit. We have several times 
mentioned “false” efficiencies and economies: How, then, should they be construed 
for inclusive mathematics education? Efficiency is better thought of not as a com-
parison of calculation methods such that some are deemed absolutely more efficient 
than others, but in terms of strategic choices that best fit the context of both indi-
vidual learner and task characteristics; similarly, economical use of time is better 
considered as a function of quality of mathematical activity achieved (e.g., engage-
ment in arithmetical reasoning) rather than quantity of answers provided 
(Finesilver, 2017b).

A second tension is regarding the time taken for both students and teachers (and 
anyone else involved in education) to learn about the different types of tools that are 
available, to become familiar with their potential uses, and to work out which ones 
are most suitable for both individual needs or preferences, and different kinds of 
task. Popular criticisms of various educational tools often rest on the fact that (a) 
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they do not work equally well for all students and (b) they cannot be put in front of 
students and immediately solve problems (Ball, 1992). We realize that the vignettes 
we have used are from 1:1 intervention situations, where this may be done in a more 
direct way. It is also reasonably straightforward in small groups, with the added 
benefit of collaborative work with peers, and the sharing of strategies. To achieve 
this with a full class of students, often a cultural change is necessary, including the 
deliberate reevaluation of the roles of time and tools (for all, and not just those stu-
dents classified as “different”). Even then, teaching staff may well need additional 
time outside the classroom for familiarizing themselves with different tools prior to 
incorporating them in their planning. A lack of such time, and of appropriate train-
ing, is widespread (Blatchford et al., 2009; Webster and Blatchford, 2015), even 
when staff state a clear desire for it (Bauer, 2020).

We see another time/tool interaction in the view, held by some, that students with 
disabilities and/or SEN develop along a delayed version of the typical pathway: that 
is, that all students learn in the same manner but some take longer; that some require 
additional steps or supports along the way, in order that the same end goal can and 
should be reached by all. While this might turn out to be a useful plan for some 
students, for others typical interventions may never be appropriate. Rigid adherence 
to a pathway incongruent with a learner’s sense of self is not only uneconomical, but 
it may also serve to repeatedly accentuate publicly and privately what the learner 
cannot do.

An alternative is to value and legitimize a wide range of different representa-
tional modes for mathematical activity, including tools to support functions such as 
memory and attention (as the representations in our vignettes may have done), as 
well as instantiating arithmetical relationships), selected with rather than for learn-
ers, so they feel empowered and have control and choice over the strategies they 
employ. Again, we find Vygotsky’s position thought-provoking. He distinguished 
between what he called physical or material tools and psychological or symbolic 
tools (Vygotsky, 1981). Physical tools restructure physical activity, while psycho-
logical tools function in the development and shaping of psychological processes. 
In both cases, tools make it possible to engage in activity that would not be possible 
in their absence. Perhaps, though, the material/psychological distinction is unfortu-
nate, as it could be interpreted as implying a hierarchy of tools rather than their 
different roles in interaction when participating in mathematical activity. Looking at 
the distinction from the point of view of participation highlights another problem-
atic dilemma. Let us imagine two students. The first is a student whose vision has 
diagnosed and identified limitations. The function of her eyes might be magnified/
transformed by the use of glasses, designed according to the specific nature of her 
visual limitations, a physical tool in that it restructures physical activity. With the 
exception of activities specifically aimed to emphasize tactile or auditory represen-
tations of mathematics, any suggestion that her glasses be removed would be absurd, 
and it would be extraordinary to forbid the use of glasses specifically for formal 
assessment. Our second student is one whose memory has been diagnosed and iden-
tified limitations. There are a range of tools that could be used to magnify/transform 
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the functions of the memory in mathematical activity, which could be designed 
according to the specific nature of her memory limitations. Is it because these could 
be classified as “psychological” rather than “physical” tools, that the removal of 
these tools from mathematical activity is not seen as absurd, but instead as some-
thing desirable? The mathematical achievement of the first student is not judged on 
the basis of what she can do without the relevant tool, but the mathematical achieve-
ment of the second student is.

8.6  Summary

We have argued in this paper that time and tools are two interconnected factors 
fundamental in shaping the cultures of mathematics classrooms and the experiences 
of students with SEN and/or disabilities within them. Both time and tools constrain 
and afford different mathematical practices and come to be associated with different 
images of what counts as successful mathematics learning. The conscious decisions 
and implicit assumptions regarding them can create obstacles or opportunities. 
Where educational systems are tightly regulated, limiting time and tools in line with 
assumptions about how the “typical student” learns, and are replete with discourses 
that privilege certain ways of being over others, the result is classrooms, assessment 
regimes, and curricula that serve the processes of classification, marginalization, 
and exclusion rather than inclusion. We have argued that current conceptualizations 
of efficiency and economy collaborate to maintain a deficit view of nonconforming 
learners labeled as “SEN,” and a pathologization of disability. Time and tools are 
being used in ways that are complicit in disabling learners. This does not need to be 
the case: They could instead be deployed to support and emancipate. For this to hap-
pen, we need to learn to see differently, to create classroom cultures that legitimize 
and validate “disabled embodiment and sensibility” (Overboe 1999, p. 22) as lived 
experiences that enrich pedagogic possibilities.

Difference is not deficiency; difference is diversity, inspiration, expansion, chal-
lenge, disruption, and renewal. Different ways of interacting with the physical 
world, and with others in it, impact differently on our mathematical experiences and 
understanding—and this is both valuable and desirable. We should seek to support 
such processes, not snuff them out by insisting that everyone does mathematics in 
the same ways, using the same tools, following the same paths. Vitória’s ways of 
seeing, for example, though unconventional, breathed a mathematical life into 
seemingly rather uninspiring pieces of wood; Wendy brought an expressive joyful-
ness to dot arrays. Price (2015) talks of crip politics and ways of getting things done 
“by infusing the disruptive potential of disability into normative spaces and interac-
tions” (p. 269). Dare we suggest that creating more inclusive mathematics involves 
this kind of disruption: A cripping of school mathematics?
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Chapter 9
Engaging Multilingual Learners 
with Disabilities in Mathematical 
Discourse

Erin Smith and R. Alex Smith

Abstract Multilingual learners (MLs) with mathematical difficulties (MD) are a 
diverse group of students who represent an increasing demographic within U.S. pub-
lic schools (National Center for Educational Statistics: English Language Learners 
in Public Schools. Author, 2016) with dual learning goals of mathematics and lan-
guage. To ensure MLs with MD can be academically successful, they must engage 
in mathematical discourse. However, for teachers to effectively engage MLs with 
MD in mathematical discourse, they should (1) employ general approaches to teach-
ing MLs as well as students with MD, (2) foster learning environments conducive 
to participation, (3) strategically use discourse, (4) advance English language acqui-
sition, and (5) enhance mathematics curriculum. In this chapter, we explore these 
five areas, drawing from research with MLs, students with mathematics difficulties/
disability, and MLs with MD.

Keywords Multilingual learners · Mathematical difficulties · Mathematics 
teaching · Teaching practice · Discourse · Discussion · Curriculum · Learning 
disability · At-risk students · Language learners · Curriculum

Multilingual learners (MLs) are a diverse group of students who represent an 
increasing demographic within U.S. public schools (National Center for Educational 
Statistics [NCES], 2016). Even though increased attention has been paid to MLs 
within mathematics education research in general (de Araujo et al., 2018), as well 
as for students with mathematical difficulties/disability (Gersten et al., 2009), very 
little research has focused specifically on MLs with mathematical difficulties/dis-
ability (Orosco, 2014; Sanford et al., 2020). Consequently, in this chapter, we draw 
primarily from research focused on MLs and research on students with disabilities 
in the context of mathematics classrooms.
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This chapter is guided by a situated sociocultural perspective (Lave & Wenger, 
1991; Moschkovich, 2002; Wenger, 1999), which posits that mathematical learning 
derives from discursive activity between teachers and students in a community of 
practice. Moreover, it asserts that students’ diverse backgrounds, experiences, and 
linguistic resources are valuable assets that should be drawn on in mathematics 
instruction (Moschkovich, 2002). In this chapter, we pay specific attention to the 
way teachers’ use of discourse creates opportunities for MLs with mathematical 
difficulties (MD) to engage in mathematical discourse. We begin with brief discus-
sions about students who have difficulties in mathematics and MLs. Next, we define 
discourse and mathematical discourse. Finally, we describe research-based peda-
gogical practices to engage MLs with MD in mathematical discourse.

9.1  Students with Mathematical Difficulties

We use the term mathematical difficulty (MD) in this chapter to refer to students 
who have a mathematics learning disability or who are described as ‘at-risk’. We 
combine these two student groups because they face significant challenges with 
mathematics achievement, experience limited access to standards-based mathemat-
ics instruction, and benefit from similar types of instruction and scaffolds (Lambert 
& Tan, 2017; Zhang & Xin, 2012). In combining these two student groups, students 
with MD represent approximately 12–15% of the U.S. student population 
(Geary, 2014).

Mathematics education emphasizes the importance of classroom discussion to 
foster students’ conceptual understanding (NCTM, 2000), yet students with MD 
have historically been provided limited exposure to such classroom experiences 
(Lambert & Sugita, 2016; Lambert & Tan, 2017). One reason for this may be a 
perception by practitioners that students with MD cannot learn from or engage in 
discussion-based learning because of their disability (Lambert, 2015; Lambert & 
Tan, 2017). Although students with MD may face specific challenges participating 
in student-centered, communication-based instructional practices (Bottge et  al., 
2002), effective planning and scaffolding (such as discussed in this chapter) can 
support students’ engagement and facilitate access to mathematical discussions 
(Hord et  al., 2016; Hunt & Tzur, 2017; Lambert & Sugita, 2016; Woodward & 
Tzur, 2017).

9.2  Multilingual Learners (MLs)

We use the term ML to refer to students who are in the process of acquiring English 
as an additional language. We also use this term to refer to the research of scholars 
who use the term English language learner (ELL) or English learner (EL). We use 
the term ML as a way to de-privilege English, call attention to the resources students 
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possess instead of what they lack, and challenge historic deficit positions of students 
via labeling. In the United States, MLs represent a linguistically and culturally 
diverse student population, whose language competencies can vary from limited to 
nearly proficient. In the United States, MLs also represent about 10% of the K-12 
student population and are the fastest growing sub-population of students (Kena 
et al., 2016). Since the population of MLs is growing, it is anticipated that the num-
ber of MLs with MD is increasing as well. This necessitates the need for teachers to 
implement practices that show promise for MLs with MD.

9.3  Discourse and Mathematical Discourse

Students learn mathematics by communicating their thinking and negotiating mean-
ing by participating in discourse-rich classrooms (Cobb et al., 1993; NCTM, 2000; 
Vygotsky, 1978). As students engage in discourse, they refine their ability to ques-
tion, critique, and explain mathematics—practices that can lead to “doing mathe-
matics” (Stein & Smith, 1998, p.  270)—and advance their language acquisition 
(Lightbrown & Spada, 2013; Moschkovich, 2002; NCTM, 2014). In this section, 
we briefly describe what we mean by discourse and mathematical discourse and 
why engaging in mathematical discourse is important for MLs with MD in particular.

9.3.1  Discourse

“Discourse” captures the ways that we communicate with each other, including oral 
and written interactions, as well as gestures and body language (Gee, 2011). The 
ways we communicate with each other through our discourse vary by context. For 
example, think about the ways your discourse varies across these situations:

• You ask your boss for a salary raise
• You describe what an array is to your students
• You coo to a baby
• You respond to a student’s question

In each situation, you may have thought about the words, phrases, or gestures 
you might use and the way you position yourself (e.g., content expert, caregiver, 
subordinate). These different ways we communicate and position ourselves and oth-
ers can be thought of as discourse (Fairclough, 2010; Gee, 2011).

When people use discourse, they relay messages to others about what is impor-
tant and culturally valued. For instance, what students are asked to communicate 
about, who students are asked to communicate with (e.g., teacher, peer, city coun-
cil), and the overall purpose of communicating relays messages to students about 
the value, importance, and nature of classroom discourse. For example, students in 
a mathematics class who are only tasked with providing numerical solutions or 
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explaining steps in a procedure may view mathematical discourse in a limited way 
(e.g., used to state answers and steps). This can be opposed to students in another 
classroom who are frequently asked to use discourse in a range of ways (e.g., justify, 
argue, define, etc.). Or, if students are only asked to communicate with the teacher, 
they may not understand how mathematics can be used to engage with multiple 
audiences, such as city council members or government, community organizations, 
parents/guardians, and the general public. Consequently, as teachers we are better 
when we consider the who, what, and why of our discourse and what messages we 
relay as a result.

9.3.2  Mathematical Discourse

Mathematical discourse (e.g., discourse characteristic of mathematics classrooms) 
has been defined in a range of ways, from narrow to expansive. In our work, we take 
an expansive view of mathematical discourse and use Moschkovich’s (2003) defini-
tion of “talking and acting in the ways that mathematically competent people talk 
and act when talking about mathematics” (p. 326). This broad definition not only 
captures specialized ways of communicating mathematically (e.g., use of special-
ized syntax or vocabularies), but also informal ways, such as using everyday or 
colloquial language, which is important for MLs since they may draw on other 
language resources to supplement or augment their mathematical discourse as they 
acquire English. This expansive definition also allows for variability in what 
“counts” as mathematical discourse, because through classroom interactions math-
ematical discourse can be (re)defined (Moschkovich, 2003).

9.3.3  The Importance of Mathematical Discourse 
for MLs with MD

Communicating mathematical ideas clearly, coherently, and effectively to teachers, 
peers, and others has been a clear goal of mathematics instruction for over 30 years 
(NCTM, 1989). Consequently, the acquisition of mathematical discourse is critical 
to any students’ academic success, particularly when the use of mathematical dis-
course is often equated with mathematical competence (Schleppegrell, 2007). Yet, 
for MLs with MD to engage in mathematical discourse, it is essential teachers make 
engagement in mathematical discourse a priority (Harper & De Jong, 2004; Kayi-
Aydar, 2014; Khisty, 1995; Lambert & Sugita, 2016). When this occurs, teachers 
create opportunities for every student to develop fluency and competency in math-
ematical discourse (Celedón-Pattichis & Turner, 2012; Khisty & Chval, 2002). 
Although research is limited specifically for MLs with MD, research does indicate 
that MLs (de Araujo et  al., 2018; Moschkovich, 2007; Pinnow & Chval, 2015; 
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Turner et  al., 2013) and students with MD (Lambert & Sugita, 2016; Xin et  al., 
2016; Xin et al., 2020) can be fully engaged in mathematical discourse with appro-
priate supports and scaffolds in place.

9.4  Pedagogical Practices for Engaging MLs with MD 
in Mathematical Discourse

Teachers that effectively engage MLs with MD in mathematical discourse (1) 
employ general approaches to teaching MLs as well as students with MD, (2) foster 
learning environments conducive to discourse participation, (3) strategically use 
discourse, (4) advance English language acquisition, and (5) enhance mathematics 
curriculum. In the remainder of this chapter, we explore each of these pedagogical 
practices situated in the context of general education mathematics classrooms.

9.4.1  General Approaches to Mathematics Instruction for MLs

To support teachers in addressing MLs dual-language goals of mathematics and 
English (in the case of the United States), World-Class Instructional Design and 
Assessment (WIDA) created descriptors by grade and language mode of what 
teachers can expect MLs to be able to do at different stages of their language acqui-
sition process (see https://wida.wisc.edu/teach/can- do/descriptors). In addition, 
WIDA developed the English Language Development (ELD) Standards (2012) that 
represent the “social, instructional, and academic language that students need to 
engage with peers, educators, and the curriculum in schools” (p. 4). These Standards 
span multiple content areas and include a Standard specific to mathematics (“ELD 
Standard 3”).

Within mathematics education, scholars have identified six broad recommenda-
tions for teachers of MLs (from Moschkovich, 2013, pp. 52–54):

• MLs should engage in the Standards for Mathematical Practice (National 
Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010).

• MLs should engage in mathematics tasks that are cognitively demanding, 
designed to foster students’ conceptual understanding of mathematics, and 
incorporate and connect across multiple mathematical representations.

• MLs should engage in different kinds of mathematical content and reasoning 
with different purposes (e.g., justifying, explaining, describing).

• MLs should participate in a range of mathematical activities with different struc-
tures (e.g., partner, small group, whole class, formal/informal, student-led 
discussions).
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• MLs’ first language should be used as a resource for engaging in mathematical 
reasoning, sense making, and communication (e.g., encouraging students to 
make connections between their first language and English). MLs should also 
communicate with a range of audiences (e.g., peers, teachers, community mem-
bers, parents) across different modes (e.g., writing, speaking).

• MLs should be prepared to engage with and understand typical kinds of text in 
mathematics, including a range of problem types (e.g., word, assessment, appli-
cation, modeling) and formats (e.g., peer strategies, assessment).

These general recommendations provide the foundation for the instructional 
strategies we share in the remainder of this chapter.

9.4.2  Fostering an Equitable Learning Environment

There are multiple aspects of a learning environment, both physical and metaphori-
cal. Although the physical environment may often be overlooked, it is a critical first 
step in promoting and supporting effective and accessible discourse-based instruc-
tion (Center for Applied Special Technology [CAST], 2016). For instance, consider 
if: students can quickly and easily find their materials, transition from whole class 
to small group to pair work quickly, and if the teacher can easily move between 
groups to listen to student discussion and/or redirect students when needed. As 
teachers plan their classroom spaces, it may be beneficial to consult the website for 
Universal Design for Learning by CAST.

Norms A critical component of developing a classroom community is the estab-
lishment of norms (i.e., social expectations) and their ongoing review and revision 
across the school year as students’ competencies in social interactions around math-
ematics develop. In an effort to give voice to students in the creation and ownership 
of classroom norms, we suggest teachers co-construct norms with students (Foote & 
Lambert, 2011). To do this, teachers can initiate discussions of what kinds of norms 
students want in their mathematics classroom and use these as the foundation for the 
class’s norms. For instance, teachers may prompt discussion of norms by asking 
students about their prior experiences with and/or interactions about mathematics. 
These conversations allow many students to participate (since they likely had past 
experiences in mathematics classrooms), can illuminate your students’ prior experi-
ences, and can create opportunities for students to identify what are productive ways 
to interact to mitigate unproductive emotions in mathematics (e.g., fear, anxiety). 
(See the section, Eliciting Student Thinking, for additional strategies to foster MLs 
with MDs’ participation in these discussions.) In these discussions, students may 
identify norms like listening while others speak, respectfully disagreeing with a 
peer’s idea, and encouraging peers to participate in the conversation or discussion—
each of which prepares every student to engage equitably and productively in class-
room discourse. In such conversations, teachers should point out how different 
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kinds of activities call upon different norms (e.g., whole class versus partner discus-
sion). As teachers engage in these conversations, they would:

• Ensure classroom norms are explicit and can easily be referenced throughout 
lessons (e.g., chart or poster; Lambert et al., 2020).

• Ask students to clarify what are examples and non-examples of the norms, so 
students develop a deep understanding of what behaviors do or do not constitute 
a given norm.

• Positively state norms to draw attention to productive behaviors.
• Post norms in age-appropriate language with accompanying images (Lambert 

et al., 2020).
• Try to limit the norms to five at any given time. However, norms may need to be 

re-evaluated and revised throughout the year.
• Ensure the norms reflect learning mathematics as a process and mistakes are 

learning opportunities.

Although students are more likely to adhere to co-constructed norms, teachers 
should still plan to spend substantial time modeling (i.e., teacher modeling and stu-
dent modeling), reinforcing, and reteaching norms, particularly at the start of the 
school year.

Students may occasionally act in ways that contradict the norms they co- 
constructed. Situations like these provide opportunities to revisit the norms and 
clarify any ambiguities that may be present. At this time, it may also be useful to 
role-play different scenarios of ways students engage with one another while calling 
explicit attention to what are productive (and unproductive) behaviors. Use of visu-
als and permanent reminders, like a poster, should be referred to often. For example, 
the teacher may refer to the poster and remind students of specific norms (e.g., 
always provide an explanation for your answer) prior to transitioning into pair work 
or when redirecting unproductive behavior during pair work. The teacher could also 
ask the class to evaluate how their behavior aligned with the norms after they have 
worked collaboratively in a pair or small group (e.g., draw attention to pairs that 
always provided explanations).

Another way to support students to productively engage with one another and act 
in ways that align with the classroom norms is to provide a resource students can 
consult while doing mathematics. For example, students could keep a notecard at 
their desk with questions and compliments they could ask of each other as they are 
doing mathematics. These statements should be general enough that they can be 
used across a range of mathematical activities over the course of the year (e.g., 
“What did you do first?” or “Your drawing really helped me understand your think-
ing.”). Some students may also benefit from tracking the frequency in which they 
ask questions or provide compliments stated on the card, which could be tied to 
individual goal-setting activities and reinforcement. It is important to note that when 
using such a resource, teachers spend instructional time explicitly teaching students 
how to use the resource (modeling and practice), encourage students to use it during 
activities, and use reinforcement when students do use it. By providing physical 
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resources that students can consult, students are better prepared to engage in respect-
ful mathematical discussions.

Routines In any learning environment, a goal should be to maximize time and 
learning opportunities. To do this, teachers should use consistent routines within 
which a variety of activities can be embedded (Lambert & Sugita, 2016). By rou-
tines we mean structures or activities that occur on a regular basis at consistent 
times, such as opening each lesson with a quick math fluency warm-up in pairs, 
ending each lesson with an independent “exit-ticket” activity, or using the launch/
explore/discuss format. Consistent routines in which expectations regarding move-
ment, grouping, getting materials, getting started, and responsibilities are made 
explicit increase the amount of time students can engage in mathematical activities 
because they limit instructional time spent on learning new routines or having to 
resume sporadically employed routines that may be forgotten. Ultimately, when 
teachers use consistent daily routines, students become efficient in transitioning 
between activities because they know what is expected of them during this time. 
Moreover, when routines provide students with opportunities to enact classroom 
norms (e.g., during pair or small group work), students can become more adept at 
working productively together while doing mathematics. As students develop com-
petencies with any classroom routine, new routines may be introduced systemati-
cally, and norms revised accordingly. We caution teachers from drastically changing 
classroom routines as this could pose academic, social, and emotional challenges 
for many students.

Grouping Students Heterogeneous groups can benefit students’ mathematical 
learning (Opitz et al., 2018), including working in pairs and small groups. In gen-
eral, research indicates that pair work fosters the greatest engagement for students 
with MD (Lambert et  al., 2020), allows teachers to formatively assess students’ 
thinking, and increases opportunities for every student to engage in mathematical 
discourse. Therefore, teachers should prioritize pair work while keeping in mind the 
structures needed to encourage productive engagement, such as holding students 
accountable for their peers’ thinking (e.g., asking students to report on their peers’ 
thinking) and providing clear roles and responsibilities for each student during pair 
work. In addition, teachers should ensure that students take on equitable roles as 
they work in dyads so that one student is not always positioned as in need of help. 
Similar routines can also be incorporated in small group activities (e.g., 3–5 stu-
dents) to maximize participation for each group member.

Although whole-class discussions are a critical component of a discourse-rich 
classroom, this format often poses two instructional challenges. First, whole-class 
discussion is frequently dominated by a small number of students (e.g., 2–3) who 
are often viewed as mathematically competent by the teacher, which can position 
peers (perhaps 30 others) as periphery participants and place increased demands on 
student attention, language comprehension, and metacognition (Baxter et al., 2002; 
Lambert et al., 2020). Second, research indicates, in general, teachers are less likely 
to purposefully engage MLs and students with MD in whole-class discussions and 
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when they do it is often to respond to questions of low cognitive demand (e.g., pro-
vide yes/no answers, complete simple arithmetic; Baxter et al., 2002; Lambert et al., 
2020). In response to these challenges, scholars have identified some instructional 
strategies to engage MLs with MD in mathematics discourse; however, successful 
implementation depends on teachers’ beliefs about students’ capabilities. One strat-
egy is to split the class into two heterogeneous groups that engage in whole-group 
discussions at different times (Lambert et  al., 2020). In using this approach, the 
number of students engaged in the whole-class discussions at any time is half the 
class, thus increasing the opportunities that each student can engage in the discus-
sion at any point. Alternatively, teachers can embed brief partner activities, such as 
Think-Pair-Show-Share (see Hunt et al., 2018), and call on one or two individuals 
to share their own and/or their peer’s thinking with the class. This type of activity, 
when interspersed with relative frequency, holds each student accountable to listen-
ing to their peers and increases every student’s engagement in mathematical dis-
course even during whole-class discussions. Teachers may also embed other 
interactive activities, such as sharing a compliment, critiquing a peer’s thinking, or 
offering an alternative strategy amidst the whole-class discussion. Lastly, another 
way to address these challenges is for teachers to continually track and reflect on 
which students they call on and what kinds of elicitations they use (Herbel- 
Eisenmann & Shah, 2019). Teachers may find the tracking chart provided in Herbel- 
Eisenmann and Shah’s (2019) article a valuable tool in this process.

9.4.3  Teachers’ Strategic Use of Discourse

The teacher’s position in the classroom is one of a more experienced other (Lave & 
Wenger, 1991; Vygotsky, 1978). In this position, teachers are responsible for the 
establishment and maintenance of a classroom community that provides each stu-
dent opportunities to participate and learn mathematics (Khisty & Chval, 2002; 
Moschkovich, 2002). However, if teachers are to effectively build and sustain a 
classroom community, it is essential they understand that the things they say and do 
in the classroom can influence opportunities to learn mathematics and English 
(Gibbons, 1992, 2003; Khisty & Chval, 2002; Lightbrown & Spada, 2013; Pinnow 
& Chval, 2014; Schleppegrell, 2007), reify (dis)ability (i.e., position the individual 
with MD as unable or incompetent; Heyd-Metzuyanim, 2013), and influence the 
development of students’ mathematical identities (Turner et al., 2013; Yamakawa 
et al., 2009). Consequently, teachers should use their discourse in strategic ways. In 
this section, we discuss ways teachers can use their discourse to elicit student think-
ing and revoice student contributions.

Eliciting Student Thinking Eliciting student thinking is a critical component of 
effective mathematics instruction (NCTM, 2014). When teachers elicit student 
thinking, opportunities arise to create connections to students’ prior knowledge and 
experiences, clarify student thinking, engage students in discussion, and advance 
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lessons, among others (de Araujo et al., 2018; Hufferd-Ackles et al., 2004; NCTM, 
2014; Wood et  al., 1991). Moreover, elicitations that encourage extensive use of 
language can also be used to foster second language acquisition (Gibbons, 1992, 
2008). Regardless of these benefits, prior research (e.g., Iddings, 2005; Planas & 
Gorgorió, 2004; Weiss et al., 2003) has found that elicitations requiring extensive 
use of language are often not employed in classrooms, particularly with MLs. We 
anticipate that this is also the case for MLs with MD. One reason for this may be 
teachers’ perceptions that MLs are unable to participate in conversations due to 
their language development, but research has found MLs can participate when 
developing language (Gibbons, 2015; Moschkovich, 2002; Setati, 2005; Yoon, 2008).

Like in any discourse, teacher elicitations relay messages to students while 
simultaneously positioning them as mathematical thinkers (Turner et  al., 2013; 
Yoon, 2008). To illustrate this, consider a teacher who, during a whole-class discus-
sion, asks a student: “What do you think about Mariella’s strategy?” With this ques-
tion, the student is positioned as someone who is capable of thinking mathematically, 
has a mathematical idea worth hearing and sharing, and can contribute to the discus-
sion at hand. Moreover, such a question can solidify community membership, foster 
students’ mathematical identities, and reinforce the conception that, in this class-
room, students are co-constructors of mathematics. Alternatively, consider a situa-
tion where a teacher identified some students to share their problem-solving 
strategies and accompanying representations during a whole-class discussion at the 
conclusion of a lesson. To introduce the first student who shares, the teacher states, 
“I asked Ahmad to present his work to us today because he represented his strategy 
in multiple ways and explained it well to his partner.” This statement alone calls 
attention to Ahmad’s mathematical ideas in front of his peers before he even begins 
to speak and reinforces the norms of this classroom to explain one’s thinking and 
reason mathematical (Yackel & Cobb, 1996). It also emphasizes which aspects of 
Ahmad’s mathematical thinking are notable, what peers should attend to in his pre-
sentation, and why he can explain his ideas and teach his peers. Moreover, by scan-
ning and projecting Ahmad’s work, he can use it as a visual referent to support his 
explanation—a useful instructional support for MLs (Chval et al., 2009). In both of 
these examples, the teacher’s elicitations productively position the student they are 
directed at, which is important because peers reinforce positions circulated by the 
teacher (Turner et al., 2013; Yoon, 2008). This means that how teachers position 
MLs with MD via elicitations will likely be appropriated by peers, while also foster-
ing their own self-worth as capable mathematical thinkers. Consequently, it becomes 
vital that teachers use elicitations with MLs with MD in ways that support their 
mathematical learning and position them as competent thinkers.

Although teachers can elicit student thinking in a range of ways, such as having 
students present their problem-solving strategies, explain their interpretation of a 
peer’s thinking or representation, or ask questions of peers, much research has 
focused on how teachers use questions to elicit student thinking. Teachers’ ques-
tions are important because they influence the learning opportunities that are pro-
vided to students (Hunt & Tzur, 2017). When teachers employ questions that merely 
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direct (or funnel) students toward a specific strategy or answer, student thinking 
seems constrained and the focus is often on relaying information to the student 
(Boaler, 2003; Wood, 1998). Alternatively, teachers can use questions that focus 
student thinking, like “Chintan, can you explain why you did ____?” and “Zaynia, 
why do you think _____?” (Herbal-Eisenmann & Breyfogle, 2005; Sherin, 2002). 
These questions are characteristically different from funneling questions in that 
they do not have a predetermined direction decided by the teacher and often result 
in information being elicited from the student rather than relayed to the student 
(Wood, 1998). Teachers can further shape the discussion by asking students to com-
pare and contrast mathematical ideas (e.g., “How are ____’s and ____’s the similar? 
How are they different?”; Sherin, 2002). Such techniques ensure student thinking 
remains the focus of the conversation while enabling students to retain agency over 
their learning (Sherin, 2002; Webel, 2010). Of course, this requires teachers to be 
highly attentive to student thinking.

Revoicing Revoicing is the practice of “re-uttering (oral or written) of a student’s 
contribution by another participant in the discussion” (O’Connor & Michaels, 1996, 
p. 90). Most commonly, when teachers revoice, they restate, recast, and expand on 
a student’s contribution. Revoicing can serve multiple functions, such as preserving 
a student’s idea as the focus of discussion, indicating student competencies, provid-
ing linguistic models, and amplifying speech (Enyedy et al., 2008; Forman et al., 
1998; Moschkovich, 1999). Revoicing can also be used to amplify and give oral 
language to students’ thinking, particularly when teachers revoice non-verbal forms 
of communication (e.g., gestures, drawings). However, not all revoicing is useful to 
every student. Sometimes revoicing can restrict MLs’ access to ideas if they are 
made only in the language of instruction (Enyedy et al., 2008). Moreover, teachers’ 
revoicing can be problematic if it positions students in unproductive ways, such as 
suggesting an initial utterance by a ML with MD is unclear and requires teacher 
clarification.

Prior research (Enyedy et al., 2008) has found that some types of teacher revoic-
ing—revoicing to position—can facilitate MLs participation in mathematical dis-
course. Revoicing to position “explicitly attributes authorship to the students, can be 
seen as an epistemic device that shares the intellectual authority with the students, 
and helps establish their role as one of contributing to the construction of knowl-
edge” (p. 137). Revoicing to position has been found to serve multiple purposes, 
such as positioning students as mathematically competent or in relation to an idea, 
to a task, or to others (Enyedy et  al., 2008; Turner et  al., 2013). For example, a 
teacher could use revoicing to position MLs with MD as possessing valid ideas or 
ideas related to the task, acting in ways that align with classroom norms (e.g., listen-
ing intently, acting respectfully), or as agentive problem solvers (e.g., such as pos-
sessing mathematical justifications or ideas worth investigating further; Turner 
et al., 2013). Revoicing to position is a useful discursive move for teachers of MLs 
with MD because it can ensure students’ ideas remain at the center of the conversa-
tion (Turner et al., 2013).
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9.4.4  Scaffolding English Language Acquisition 
for MLs with MD

Broadly speaking, in mathematics instruction teachers should focus on the mathe-
matical meaning and underlying reasoning of what students say and write; they 
should not get hung up on students’ language accuracy (Moschkovich, 2010, 2013). 
Although some teachers may see this recommendation as counterintuitive for MLs 
(i.e., language should be corrected/addressed when encountered), prior research 
(e.g., Moschkovich, 2010) has found that this attention does not benefit students 
since teachers focus attention on language instead of students’ mathematical ideas. 
That said, it is important that teachers of MLs with MD do plan for and implement 
language instruction if MLs with MD are to grow in their mathematics and language 
competencies.

Mathematical Language There is no doubt that mathematics has a specialized 
language, or register, that is unique to the discipline. This specialized language 
includes terms or phrases such as Pythagorean Theorem, hypotenuse, and algebra. 
In contrast to this specialized language, there are other terms or phrases used in 
mathematics that typically have other everyday uses, like table, leg, foot, and 
decompose. Recognizing the distinctions in everyday and specialized mathematical 
language as well as using precise mathematical language consistently is important 
for teachers and students, particularly MLs with MD. When teachers fail to recog-
nize the language resources and understandings that students bring into the class-
room, or use informal terms in lieu of specialized mathematical language (e.g., 
diamond instead of rhombus), MLs with MD can be faced with unnecessary obsta-
cles to their mathematics understanding and language acquisition.

Oftentimes, teachers may find themselves reducing the linguistic demands of 
mathematical tasks or their language as a way to increase access to mathematics. 
For example, a teacher may simplify language or select tasks devoid of language, so 
the language does not obscure the mathematics. Yet, this seemingly intuitive avoid-
ance ultimately restricts access to both mathematics and language, creates an over-
abundance of tasks devoid of context (by removing the language of the context) and/
or highly proceduralized, and does little to foster the acquisition of mathematical 
discourse (e.g., eliminating opportunities to explain and justify mathematical think-
ing; de Araujo, 2017; Gibbons, 1992). Consequently, teachers of MLs with MD 
should “avoid reductionist approaches” (National Academies of Sciences, 
Engineering, And Medicine, 2018, p. 126) and, instead, craft their instruction to 
facilitate students’ language acquisition by drawing from students’ existing linguis-
tic resources to build meaning for language through language (e.g., utilizing stu-
dents’ first language, everyday language, and/or cognates to promote conceptual 
understanding and bridge between informal and formal language; de Araujo et al., 
2018; Moschkovich, 2002; Razfar, 2012; Schleppegrell, 2007).
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Building Understanding for Terms and Phrases Teachers must explicitly teach 
mathematics language if students are to acquire it (de Jong & Harper, 2005). Yet, 
this does not mean language should be taught solely in isolation and devoid of con-
text, since learning single terms or phrases does not mean students can effectively 
engage in mathematical discourse (Gibbons, 1992; Gottlieb & Ernst-Slavit, 2013; 
Moschkovich, 2002, 2010, 2013). Rather, vocabulary words and phrases should be 
taught in a variety of ways and students should have multiple opportunities to use 
the words and phrases in their oral and written discourse (Lei et al., 2020).

Prior to engaging in a unit/series of lessons, teachers should identify key terms 
and phrases that are essential to the target standards and conceptual understanding 
(Sanford et al., 2020). As recommended by Sanford et al. (2020), teachers should 
employ an explicit instruction model for teaching vocabulary, including (a) intro-
ducing the word, (b) providing a student-friendly definition that connects to prior 
learning (Tzur, 2000), (c) providing both examples and non-examples across mul-
tiple modalities (e.g., manipulatives, images), and (d) encouraging students to use 
the word/phrase in oral and written language (e.g., have students discuss the word 
and connect it to prior knowledge in pairs after it is first introduced and defined, 
have students write the word and its definition as well as use it within a sentence and 
keep that in a word book).

Finally, MLs with MD should be provided extensive opportunities to use the 
word/phrase in both oral discussions and in writing, especially within the context of 
problem-solving (Baker et al., 2014; Sanford et al., 2020). One way to provide con-
text for vocabulary and problem-solving is through shared story reading (Whitney 
et al., 2017). Shared story reading is characterized by teacher modeling of thinking 
and question-asking while reading out loud and frequently eliciting students’ think-
ing (see Courtade et al., 2013). Stories can provide a context for mathematical learn-
ing and many present rich mathematical problems (Whitney et al., 2017).

Scaffolds and Resources to Encourage Mathematical Discourse Beyond class-
room norms and consistent routines/activities that encourage engagement in dis-
course, MLs with MD may benefit from additional language scaffolds and resources. 
Two such scaffolds and resources are the use of sentence frames and a “word-wall” 
or anchor chart.

Sentence frames are scaffolds that provide guidance or structure to students’ 
productive use of language (i.e., oral and written), so they can engage authentically 
in classroom interactions (Zwiers, 2020). In addition, sentence frames can be used 
to encourage MLs with MD to use specific vocabulary or phrases in context as they 
develop their language competencies (Sanford et al., 2020). Some examples of sen-
tence frames are as follows: “First I _____, then I _____.”, “I agree/disagree because 
______.”, “Next time, I will ____”, “____ and ____ are the same/different because 
____.”, or “_____’s idea is _____ because _____.” To make this resource accessible 
to students, teachers can post sentence frames for all to see or, as mentioned earlier, 
provide frames on an individual note card or graphic organizer. We recommend 
using sentence frames in conjunction with other instructional scaffolds designed to 
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foster students’ mathematical discourse because the provision of sentence frames 
alone (or any other single language scaffold) is not enough to ensure productive and 
authentic interactions (Turner et al., 2019; Zwiers, 2020).

A “word-wall” or anchor chart is a visual reminder of language (like the afore-
mentioned word book) that students can reference as they engage in a mathematical 
activity. Word walls/anchor charts have historically been used in literacy instruction 
in the elementary grades but can be used in any discipline and grade level. The word 
wall/anchor chart is a visual display of key terms or phrases and can include student- 
friendly definitions, examples, translations, and/or cognates. Word walls/anchor 
charts should be student-centered artifacts and contain what students identify they 
need. For instance, teachers may ask where a word wall/anchor chart should be 
located in the classroom and what words/phrases should be contained on it. In con-
trast to a word wall/anchor chart that is designed for the entire class, a word book is 
an individualized resource for students. A word book is very similar to a word wall/
anchor chart, yet students have more control over what is contained in it and where 
it is located. Students may add in words/phrases they think are interesting or are 
having difficulties with. Students can also include student-generated model sen-
tences that use the word/phrase, cognates, and/or definitions of vocabulary words in 
their native language.

Like any scaffold or resource, it is essential that teachers spend time modeling, 
providing feedback, and encouraging use of word wall, anchor chart, and word book 
across various activities. In addition, it is important to highlight these scaffolds and 
resources are dynamic, not static or permanent. As MLs with MD develop their 
competencies in mathematics and English, these scaffolds and resources may be 
revised or modified. This will ensure the scaffolds and resources are timely and 
appropriate for what students need at the time of instruction.

Facilitating Students’ Mathematical Writing Students benefit from writing 
across content areas (Graham et al., 2020), yet writing in mathematics classrooms 
is often overlooked (Powell et al., 2017). Students use writing in the mathematics 
classroom to “consolidate their thinking because it requires them to reflect on their 
work and clarify their thoughts” (NCTM, 2000, p. 61; Peregoy & Boyle, 1993). It is 
important to provide MLs with MD multiple opportunities to write, receive feed-
back, and revise their writing. Moreover, ask students to write to a range of audi-
ences and utilize a range of genres in mathematics—beyond just writing explanations 
of procedures to their teacher (Moschkovich, 2015; Powell et al., 2017).

Teachers may refer to Graham et al. (2012) for guidance on teaching writing to 
students in the elementary grades and Graham et al. (2016) for high school students. 
Across both guides, one of the most effective instructional strategies for student 
writing is Self-Regulated Strategy Development (SRSD). SRSD combines instruc-
tional strategies (e.g., a strategy for students to use to organize their writing) with 
self-regulation supports (e.g., self-monitoring) by employing six common steps (see 
Graham et al., 2012; Graham et al., 2016). Although we only found one study exam-
ining the effectiveness of SRSD specifically in mathematical writing (Hughes et al., 
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2019), results were promising and SRSD has been shown to be effective across 
genres, content areas, grades, and student populations in other studies.

The increasing availability of quality speech-to-text software may help some 
students overcome challenges associated with writing and spelling, though func-
tionality may be limited for some MLs, depending upon the individual’s accent. 
Prior research indicates the use of speech to text can increase the quantity of stu-
dents’ writing, but not necessarily quality of their writing (De La Paz & Graham, 
1997). However, employing planning strategies, such as SRSD, in conjunction with 
speech-to-text can improve both the quantity and quality of student writing (Graham 
& Harris, 2013). As with any new technology, teachers need to plan for time for 
students to learn and practice the technology. It is also important to keep in mind 
that mathematical writing has special characteristics (e.g., symbolic notation, repre-
sentations) that may stretch the functionality of many speech-to-text applications.

9.4.5  Enhancing Mathematics Curriculum for MLs with MD

Mathematics curriculum is not one-size-fits-all (Gutstein, 2003). It is important that 
teachers adapt their curriculum to meet the needs of and increase access for every 
student. Thus, it is not enough to rely on the curriculum itself to supply adequate 
modifications and adaptations to instruction, because oftentimes these recommen-
dations do not align with mathematics education research (de Araujo & Smith, 
2022). In this section, we outline some ways teachers can enhance curriculum spe-
cifically related to language, context, and visuals.

Adapting the Language of Mathematical Tasks Prior research (Abedi & Lord, 
2001) has identified ways teachers can adapt mathematical tasks to facilitate ML 
engagement and understanding as they develop their language competencies. These 
recommendations (adapted from Abedi & Lord, 2001, and Herbel-Eisenmann, 
2007) include the following:

• Use active voice, not passive voice (e.g., instead of “Four pizzas were shared 
among Mariam, Ahmad, and Horatio” say “Mariam, Ahmad, and Horatio shared 
four pizzas”),

• Refrain from using long nominal phrases (e.g., instead of “the graph of the class’s 
favorite fruits” use “the graph above”),

• Replace conditional clauses with two separate sentences (e.g., instead of “Margo 
has five boxes of oranges with each box having 15 oranges in it” say “Margo has 
five boxes of oranges. Each box has 15 oranges”),

• Use straightforward question phrases instead of complicated or obscure ones 
(e.g., replace “How much cake is leftover after Jonas ate?” with “What fraction 
of the cake is left?”),

• Use present tense instead of complex verb forms (e.g., change “Zaynab was 
watching TV for 3 h” to “Zaynab watches TV for 3 h.”), and
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• Instead of inanimate nouns or abstract objects, use pronouns or animate nouns 
(e.g., instead of “17 cars sold” say “Ms. Jones sold 17 cars”).

Selecting and Using Contexts to Build Understanding and Meaning The context 
of mathematical tasks can either promote or constrain student reasoning and under-
standing. For example, if a student is posed a problem in the context of cricket, yet 
they have never heard of the game cricket nor understand its key terminology, the 
context of the problem restricts access to mathematics. In contrast, if the student 
was an avid watcher and player of cricket, they may be highly engaged and moti-
vated. This example illustrates that some students may be familiar with a context 
while others may not be. Consequently, teachers need to recognize what contexts 
students may be familiar with and build meaning for those they are not (e.g., create 
a shared experience using books, images, or videos during a task launch; Jackson 
et al., 2012; Whitney et al., 2017).

Prior to selecting contexts, it is essential teachers first consider what mathemat-
ics students are learning through the task. All too often, contexts are used in math-
ematics that do not reflect actual experiences (e.g., counting animal legs to determine 
the total number of animals). One way to ensure mathematics is authentically 
embedded within contexts is to select contexts that reflect cultural practices (Wager, 
2012). However, to be able to do this, teachers will need to spend time learning 
about and getting to know their students—a task that takes time. As teachers select 
contexts, it is important to consider whose experiences are being reflected. 
Frequently, contexts embedded in curricula tend to reflect the dominant culture’s 
ideology and experiences. In mathematics education, scholars use the language of 
“mirrors” and “windows” to call attention to this (Gutiérrez, 2008, 2012; Rezvi 
et  al., 2020). In this case, “mirror” is used to signify contexts that a student has 
experience with (i.e., their experiences are reflected back at them) and “window” is 
used to signify contexts that provide an opening into others’ experiences. It is 
important for teachers to critically analyze which students are experiencing win-
dows and mirrors with which contexts. It should not be the case that some students 
always have mirrors and other students always have windows. There should be a 
balance of mirrors and windows for every student, including MLs with MD.

Contexts can also provide rich opportunities to examine social inequities at local, 
state, national, and international levels through mathematics. For instance, students 
could examine the amount, distribution, and impact of local or state tax dollars; 
access to grocery stores with fresh produce, banks (as opposed to predatory banks 
and lenders), and recycling centers; and crime rates and policing. They could also 
explore issues at a national (e.g., charter school funding) or international level (e.g., 
population distributions, gross national products, cost and impact of cheap labor). 
For more information on teaching mathematics for social justice, see Gutstein and 
Peterson (2013).

Incorporating Visuals Teachers can use visuals (e.g., pictures, images, videos, 
drawings) to build meaning for language, contexts, and mathematics. However, how 
visuals are used is a critical component of instruction. Oftentimes, we have been 
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struck by the inclusion of images on a mathematics handout or in lessons that seem 
irrelevant or are distracting. In such cases, the visuals distract from productive par-
ticipation in discourse instead of facilitating it. When selecting and incorporating 
visuals, it is important to consider how the use of visuals will add to and support 
students’ engagement, thinking, and communication. For instance, a teacher may 
want to use visuals to discuss the multiple meanings of a specific term to highlight 
which meaning is relevant. Alternatively, a teacher may want to use visuals to build 
meaning for a specific term that may be unfamiliar or typically poses challenges 
(e.g., row versus column). Visuals can also be used to build meaning for contexts 
with which students may be unfamiliar. For example, if teaching a lesson built 
around a factory context, it is likely some students may not know what a factory 
does or looks like inside. In this case, a video of a factory can be used to support 
students’ understanding of the context. It is important to remember that including 
visuals in mathematics instruction needs not to take much time or financial invest-
ment. A quick Internet search can result in a multitude of images and videos that can 
be used. Alternatively, teachers can use the camera on their smartphones to take 
pictures or videos or ask students to take/share photos, which can be reused the fol-
lowing year.

9.5  Conclusion

In this chapter, we presented instructional strategies teachers can embed in their 
practice to engage MLs with MD in mathematical discourse—a critical component 
in fostering students’ mathematical learning and language acquisition. We recom-
mend that teachers making transformations to their practice do so incrementally. By 
incorporating a few strategies at a time, teachers can refine their pedagogy strategi-
cally over time rather than implementing many strategies haphazardly. We hope 
teachers of MLs with MD will begin to implement the strategies discussed in this 
chapter as they strive for equity by increasing access for every student.
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Chapter 10
Equitable Co-teaching Practices 
in Mathematics

Michelle Stephan and Lisa Dieker

Abstract STEM jobs are growing at twice the rate of other professions. Due to 
sophisticated technological advances, current mathematics jobs in particular require 
less calculational skills and deeper conceptual understanding. Mathematics educa-
tion research has shown that traditional direct instruction has not prepared students 
to think critically and advocates more exploratory, inquiry teaching methods. Given 
that direct or explicit instruction has been the primary approach used with students 
with disabilities, we explore the feasibility of using an inquiry approach in inclusion 
settings. In this chapter, we present the results of 7 years of inquiry mathematics 
co-teaching research and present several co-instructing and co-planning practices 
that are associated with inquiry mathematics.

Keywords Co-teaching practices · Inquiry mathematics · Co-planning practices

Are students ready for the fourth Industrial Revolution? According to the 
U.S. Chamber of Commerce, the workforce is undergoing a fundamental change in 
the way humans work, live, and interact with one another, fueled in large part by 
technological innovations. Experts predict jobs of the future will require both STEM 
content and numerous soft skills such as communication and collaboration 
(U.S. Chamber of Commerce, 2017). In particular, the Partnership for twenty-first 
Century Skills and the US Chamber of Commerce argue K-12 education must pri-
oritize teaching that fosters students’ critical thinking, communication, collabora-
tion, and problem-solving skills (Partnership for twenty-first Century Skills, 2015). 
To compete globally in university and positions in science, technology, engineering, 
and mathematics (STEM), students need deep understanding in mathematics 
(Adams et al., 2014; Pasko et al., 2013; Rissanen, 2014).
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A review study of a series of twenty-first Century Skills projects by Voogt and 
Pareja (2010) suggests a broader list of competencies such as critical thinking and 
problem-solving, collaboration across networks, agility and adaptability, initiative 
and entrepreneurialism, effective communication, accessing and analyzing informa-
tion, and curiosity and imagination. In terms of mathematics specifically, 
Gravemeijer et al. (2017) ask “What mathematics education may prepare students 
for the society of the future?”. They argue current mathematics teaching does not 
prepare students for jobs in the digital age and challenge the education community 
to revise both the content and practices that are taught in mathematics classrooms 
around the world. We extend this question to ask “What mathematics education may 
prepare students with disabilities for the society of the future?”. If critical thinking, 
problem-solving, and communication are the key skills needed for jobs of the future, 
to what extent are we preparing students with special needs in these areas? Does 
explicit instruction provide the opportunities that students with disabilities need in 
order to develop these skills? We argue that despite a clear place and time for stu-
dents to receive explicit instruction, if this is the primary means of learning for 
students with disabilities, they will not develop the critical thinking about mathe-
matics required to compete and collaborate with their peers for future jobs.

10.1  Teaching for Intellectual Autonomy

Mathematics education researchers contend that one of the most important contri-
butions education can make in individuals’ lives is to their development of intel-
lectual autonomy (e.g., Kamii, 1982; Piaget, 1948/1973; Yackel & Cobb, 1996). 
Kamii (1982) explained that intellectual autonomy is the ability to think for oneself 
and make decisions independently of the promise of rewards or punishments. Rather 
than viewing mathematics as a set of rules and facts to be memorized, students who 
have autonomy believe they are responsible for creating meaningful mathematical 
solutions to problems. In contrast, intellectual heteronomy is the belief someone 
else is the authority of one’s mathematical thinking, and the goal is to understand 
and reproduce his work. Heteronomy can be seen when students say, “but the calcu-
lator told me I was wrong,” “can you [the teacher] just tell me how to do it,” and “is 
this the right way?” Each of these comments implies the student relies on someone 
or something else to determine the validity of their thinking, lacking autonomy.

Our central premise in this chapter is that fostering intellectual autonomy in all 
students is the most effective way to prepare them for the future workforce, as well 
as global and local citizenship. Students who follow and/or apply rules without 
meaning are at the mercy of others and are typically unable to solve problems with 
creativity and imagination. Additionally, with technological advances, developing 
critical thinking skills is more important for future employment and citizenry than 
performing calculations. We argue implicit (inquiry) instruction offers the best 
chance for developing intellectual autonomy since students are encouraged to create 
their own personally meaningful strategies during problem-solving (León et  al., 
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2015) rather than rely on an outside authority to tell them how to do it. We also argue 
that explicit instruction, as it is defined in special education, is set up to teach stu-
dents for heteronomy. This is an equity issue: Why should students with disabilities 
receive instruction that does not prepare them for current and future employment in 
a world where machines do the calculating and humans do the critical thinking?

We use the term explicit rather than direct instruction purposely. The term direct 
instruction denotes a traditional lecture-style format of teaching by telling. The term 
explicit instruction integrates more inquiry-type teaching structures such as manip-
ulatives, multiple representations, mathematical model construction, and partner 
work. The use of explicit instruction is an evidence-based practice from the What 
Works Clearing House (U.S. Department of Education, n.d.) in literacy and mathe-
matics. It is combined with Self-Regulated Strategy Development (SRSD) for 
instance, which begins with teacher direction, but ends with students applying their 
own strategy through planning and organizing their own ideas (also an evidence- 
based strategy per the What Works Clearing House). Explicit instruction is an 
attempt to build a bridge between the worlds of mathematics education and special 
education research by utilizing some of the structures of inquiry. We maintain, how-
ever, that despite using some inquiry features, explicit instruction still promotes 
heteronomy rather than the autonomy that is critical in inquiry.

To begin our argument, it may be useful to distinguish between explicit instruc-
tion as rooted in a certain epistemological tradition and explicit instruction as a set 
of teaching moves. From an epistemological perspective, explicit instruction is 
deeply rooted in behaviorism and teaches for heteronomy by having a teacher or 
computer serve as the mathematical authority. When teaching for heteronomy, the 
teacher shows the steps for problem-solving to the student so she can mimic them 
for success. If the student uses the teacher’s steps enough times, she is considered to 
have mastered the procedure. This is in direct contrast to teaching for autonomy in 
which the teacher gives the student a problem and allows the student to create her 
own solution. Inquiry instruction, on the other hand, has its origins in constructiv-
ism and positions the student as the doer of mathematics rather than the receiver of 
mathematical rules. This dissonance makes it impossible to “blend” the two 
approaches. Explicit approaches still teach for heteronomy despite using some of 
the features of an inquiry approach (e.g., Hudson et al., 2006; Scheuermann et al., 
2009). By the same argument, the inquiry approach teaches for autonomy even 
though utilizing some explicit moves. We will explore the latter case in this chapter 
by showing how co-teachers in inquiry settings use some explicit teaching moves 
while still teaching for autonomy. For now, a simple example may be useful. One 
inquiry teaching strategy that is used within an explicit SRSD program involves 
using manipulatives. In the explicit approach, a teacher introduces a manipulative 
and then direct models for all children the way to use the materials, which is a form 
of teaching by telling. Direct modeling would be described as explicit teaching 
because the mathematics is becoming more explicitly available to students with the 
manipulative (and the teacher’s help). Once the students can replicate the modeled 
strategy, they can then go on to solve problems on their own. However, the opportu-
nity for students to develop autonomy is low because she has relied on the modeling 

10 Equitable Co-teaching Practices in Mathematics



202

of the teacher and learned the steps that work for someone else rather than develop-
ing her own strategy. Direct modeling with concrete materials is an example of 
implementing an inquiry strategy but teaching for heteronomy, the opposite of the 
inquiry epistemology.

Articles that describe an inquiry approach in co-taught classrooms are rare 
(exception Akyuz & Stephan, 2020) and empirical results even scarcer. What does 
teaching for autonomy, the hallmark of the inquiry approach, look like in co-taught 
classrooms then? This question is one we have attempted to answer over the last 
20 years of co-teaching ourselves as well as in our working with several co-teaching 
pairs who use an inquiry approach in their inclusive mathematics classrooms. Our 
work with teachers who use the inquiry approach to foster intellectual autonomy in 
co-taught mathematics classrooms is presented below in the form of several co- 
teaching practices for inquiry mathematics. We use the term co-teaching to refer to 
the activities of co-planning, co-instructing, and co-assessing. In the section that 
follows, we zoom in on two general practices of co-teaching (planning and instruc-
tion) in order to examine the role the mathematics and special education teachers 
play in an inquiry mathematics classroom.

10.2  Co-planning Practices in Inquiry Classrooms

10.2.1  Planning in Inquiry Mathematics Classrooms

From the mathematics education sector, co-planning involves lesson imaging 
(Stephan et al., 2015), a process through which teachers work together to imagine 
how students will engage with the materials planned. The first part of lesson imag-
ing involves determining the content standards in the class and then choosing/
adapting a high cognitive demand task or tasks for students to solve. The task(s) 
must be accessible to all students (often referred to as Universal Design for Learning; 
Gordon et al., 2016), regardless of ability, but demanding enough that a solution 
strategy is not known immediately to students. The teachers then imagine how they 
will launch the task to students without compromising the demand. Next, the teach-
ers solve the task themselves in multiple ways to anticipate the numerous correct 
and incorrect solution paths students might create. In this way, teachers are better 
prepared to build on students’ mathematics during the whole-class discussion that 
follows students’ problem-solving and are less likely to be blind-sided by an “out of 
the box” strategy. Building on students’ strategies is similar to adaptive student 
pedagogy described in Tzur et al. (2013) and Xin et al. (2019). Then, teachers imag-
ine how the flow of the whole-class discussion might unfold, provided they get the 
solutions they anticipated. The teachers weigh the pros and cons of which strategies 
to share, in what order, and what questions to ask to provide the best opportunity for 
students to abstract the mathematics (Smith & Stein, 2011; Stephan et al., 2015).
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As the discussion on lesson imaging above indicates, planning for inquiry math-
ematics instruction requires a different set of skills and knowledge than does a lec-
ture format. Although deep knowledge of mathematics content is critical for both 
formats, inquiry instruction requires sophisticated knowledge of the mathematics of 
students. In order to anticipate the diverse ways students might solve a problem, the 
teacher must be familiar with the mathematical domain as well as how students 
construct knowledge of it in different ways. How does lesson imaging change, if at 
all, when considering students with Individualized Education Programs (IEPs) and 
504 plans in the classroom? What knowledge does each co-teacher bring to the 
partnership during co-planning?

10.2.2  Co-planning in Inclusive, Inquiry 
Mathematics Classrooms

The previous discussion illuminates some of the requisite knowledge, skills, and 
resources that are necessary for co-teachers to plan for inclusive, inquiry class-
rooms: Choice of mathematics instructional resources, Knowledge of students’ 
mathematics, and Selection of instructional format. Special education preparation 
programs generally do not require content specialization; hence, special educators 
with deep mathematics content knowledge may be rare. Conversely, an equal barrier 
to success of co-teaching can be the lack of preparation on the part of mathematics 
teacher to plan for and accommodate the mathematical, learning, and behavioral 
needs of students with disabilities (Leko & Brownell, 2009). Allowing time for 
general and special education teachers to co-plan with one another supports growth 
in both teachers (Dieker & Berg, 2002; Eisenman et  al., 2011; LaShorage & 
Thomas-Brown, 2015).

10.2.2.1  Co-planning Practice 1: Choosing Appropriate Mathematics 
Instructional Resources

Designing instructional materials for mathematics has emerged differently in the 
mathematics and special education fields. Special education designers suggest a 
concrete semi-concrete abstract (CSA) or concrete representational abstract (CRA) 
approach to task design/choice (Gersten et al., 2009; Hughes et al., 2018; Maccini 
& Hughes, 2000; Witzel et al., 2003). In this approach, the teacher should sequence 
tasks by beginning with concrete (C), manipulative-based activities. Students would 
manipulate the concrete materials to make sense of the mathematical quantities rep-
resented. Then, as students become more knowledgeable, teachers pose tasks that 
push them to represent (R) their concrete activity with semi-concrete (S) drawings 
or other inscriptions. As the students apply what they have learned in the concrete 
situations to drawings, their level of abstract reasoning grows. Finally, teachers 
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should pose activities that are more abstract (A) using more conventional, symbolic 
notation.

Mathematics education researchers similarly advocate designing instructional 
materials that sequence tasks, building from students’ informal to more formal strat-
egies (Cobb et  al., 1997; Gravemeijer, 1994). The instructional design approach 
written about the most in mathematics is the Dutch approach called realistic math-
ematics education (RME) (Freudenthal, 1973). RME consists of three main heuris-
tics: (1) Students’ initial work with a concept should be grounded in experientially 
real contexts; (2) problem-solving should be arranged such that students create 
models of their informal activity and move toward models for abstract reasoning; 
and (3) instructional materials should be designed to encourage students’ reinven-
tion of key mathematical concepts. Similar to CRA/CSA, problems are posed infor-
mally at first (in context), sometimes with manipulatives. Students invent 
mathematical strategies to solve dilemmas that characters in the story context 
encounter. Next, students solve problems by drawing pictures of their activity and 
then move toward abstract symbolic manipulations.

As an example of the type of mathematical materials inquiry co-teachers might 
use, consider the instructional sequence on ratios and rates (https://www.nc2ml.
org/6- 8- teachers/6- 2/). We have used this particular series of problems in co-taught 
classrooms ourselves as well as observed other co-teachers implement it in their 
own classrooms.

In choosing such materials, co-teachers consider characteristics such as the 
following:

• Does the unit include appropriate mathematical standards? In what ways will we 
need to supplement?

• Are the initial problems grounded in a context (experientially real) allowing for 
all students, but particularly those with disabilities, to enter into 
problem-solving?

• Is engagement possible for all students throughout the unit?
• Are the problems sequenced to help students build from concrete/informal to 

abstract/formal reasoning?
• Are the problems high in cognitive demand without showing students a method 

for solving? Do they build students’ intellectual autonomy?

When asking these questions of the ratio unit, co-teachers have routinely con-
cluded that it meets the criteria for inquiry mathematics co-teaching. The special 
educators typically notice the starting point of the aliens is relatable and experien-
tially real enough for students with disabilities to want to engage (see Fig. 10.1). 
They also spot the pictorial support at the beginning intended to help students create 
a strong multiplicative link between number of aliens and number of food bars that 
will feed them. Both special and general education teachers note subsequent pages 
of pictures support those who are not ready to inscribe their thinking in ratio tables. 
The problem-solving throughout the unit moves from reasoning with pictures of 
aliens/food bars to ratio tables and finally to conventional proportions. The general 
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Nightmare on Euclid Street
Teacher Note: Begin the unit by telling a story 
about a scary dream you had last night. The 
story can resemble the one below or be 
completely different.

In your dreams last night, a noise awoke you 
from your sleep, and you ventured into the 
kitchen to investigate the source of that noise. 
You saw a swarm of aliens eating your food. 
They saw you and started chanting, “more 
bread, more bread!” You only had one bread 
loaf which wasn’t enough to feed the aliens, so 
they attacked you. You woke up with a new math 
lesson in mind!

Is there enough food? Explain.

One food bar can satisfy 3 aliens.

Fig. 10.1 Experientially real context for the ratio unit and first problem

education teacher notes the particular mathematics content standards infused 
throughout and, depending on the background knowledge of the students, can 
decide which problems may not be needed. Finally, both teachers notice the pages 
are comprised of open-ended problems sequenced in a very particular order, with no 
solution strategies modeled on the pages, thus preserving student autonomy.

Although both co-teachers can contribute in ways that draw on their expertise, 
typically the role of the general education teacher is to ensure (1) the inclusion of 
mathematics standards in the materials, (2) the problems build from informal to 
formal and conventional reasoning, (3) the appropriate representations of the prob-
lem are included as scaffolds for student thinking, and (4) the materials begin at a 
place that is accessible to students (UDL). For her part, the special education co- 
teacher verifies (1) the use of appropriate instructional scaffolds for students with 
particular disabilities on the IEPs and 504  s, (2) supports of areas of difficulty 
(UDL) that may not be supported without additional tools (e.g., text to speech, 
braille, calculator, vocabulary instruction), (3) behavioral supports (e.g., Class Dojo 
points, behavioral coaching, positive redirection) for individual students to ensure 
positive peer interactions, and (4) accessibility of the context and problems to stu-
dents with disabilities.

10.2.2.2  Co-planning Practice 2: Using the Mathematics of Students 
to Plan for Instruction

A deep knowledge of mathematics at one time was the main and perhaps the only 
requirement to be a “teacher.” Hill et al. (2008) have shown that teachers who pro-
duce strong outcomes also have knowledge of students’ mathematical thinking. 
What work can co-teachers do to understand the mathematics of their students with-
out waiting until the students show them during instruction?
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Interview Students

During the second year of co-teaching mathematics together, Stephan and her co- 
teacher realized they knew very little about how middle school students reasoned 
about ratios naturally. How were they going to anticipate student thinking with 
ratios if they did not know what type of reasoning was possible? One way to gather 
this knowledge is to interview students in the classrooms (Stephan et  al., 2014). 
Stephan and her co-teacher gathered a list of open-ended ratio problems from some 
research articles (see two examples in Fig. 10.2) and conducted interviews with five 
students. The five students represented a wide range of abilities as indicated by their 
scores on annual assessments, goals on IEPs, and students’ work in class up to 
that point.

As examples of the type of reasoning students used prior to ratio instruction, we 
present the work of Bradley, Nuria, and Arthur. Bradley had an IEP for both dyscal-
culia (mathematics disability) and emotional behavioral disordered (often present-
ing disengagement or anger if unsuccessful in front of peers). Nuria had scored just 
at the proficient level on her previous years’ state test. Arthur had not been diag-
nosed formally with a disability but was scoring below average consistently on state 
tests, thus having, at minimum, a mathematics difficulty (Lewis, 2014). Bradley 
solved the balloon problem by attempting to keep an organized list of ratios (see 
Fig. 10.3a). He began with 3 balloons for $2, 6 for $4 and then began to lose track 
when he started to increment by twos (8 balloons) and then found himself with 15 
and $3. What Stephan and her co-teacher learned from Bradley is that he could 
establish the link between 3 balloons and $2 and maintain that for the next iteration 
(add 3 balloons or double the 3, so add $2 or double the 2). Arthur, for his part, did 
not establish a link between the 3 balloons and the $2 and began to operate with 
numbers he found in the word problem, without clear meaning for his actions 
(Fig. 10.3b). Finally, Nuria drew a picture of 3 balloons with $2 underneath it and 
continued with that picture until she had drawn 24 balloons (in sets of 3) for a total 
of $16 (Fig. 10.3c).

From these short interviews, we learned some students would have difficulty set-
ting up the link between both units in a ratio (e.g., Arthur) so our instruction would 
need to focus heavily on the relationship between 3 balloons and $2, for example, 
and how they change together. We knew that some students, like Bradley, would be 
able to link the two units together and begin to iterate them without breaking the 3–2 
link, but worried about Bradley’s frustration level when he was not instantly 

Lisa and Rachel drove equally fast along a 
country road. It took Lisa 6 minutes to drive 
4 miles. How long did it take Rachel to drive 
six miles?

Ellen, Jim, and Steve bought three helium-
filled balloons and paid $2.00 for all three. 
They decided to go back to the store and get 
enough balloons for everyone in their class. 
How much did they have to pay for 24 
balloons?

Fig. 10.2 Balloon problem (a) and driving problem (b)
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Fig. 10.3 (a–c) Mathematics of students before ratios were taught

successful. We knew we would need to support students like Bradley with some 
visual representations to help him keep track of his iterating. Finally, we learned 
from Nuria, some students would be able to link the 3 balloons and $2 together and 
iterate them multiple times, keeping track of both quantities simultaneously. Nuria’s 
picture inspired us to pick problems grounded in pictures as a starting point for 
students.

Much can be learned from conducting interviews with a handful of diverse stu-
dents prior to starting a unit. With the three students’ mathematical reasoning in 
mind, we were better able to predict some of their strategies during lesson imaging. 
In addition, these students gave us ideas about how we could best support them dur-
ing instruction (organizing tool, pictures, etc.). When interviews cannot be con-
ducted, sometimes samples of student solutions can be found in research articles 
(e.g., for ratio unit, Battista & Borrow, 1995).

Draw on Professional Knowledge

With some new ideas about the mathematics of students, co-teachers engage in les-
son imaging by discussing how they will launch the unit and first problem. Some 
co-teachers have launched the ratio unit with the Nightmare on Euclid Street sce-
nario while others have shown a 3- to 5-minute video clip of the Gremlins™ or Men 
in Black™ movies to help students understand that the “fate of the world” is at stake 
if they do not feed the aliens. Both the general and special education teacher can 
contribute equally in imaging the launch. In particular, the special educator proba-
bly has more knowledge of the ways in which students may struggle with reading 
the story or making sense of the situation and can offer literacy and behavioral 
supports.

Once the launch is imaged, the co-teachers solve the first page of alien problems 
from both their own points of view and imagining what their students might do. For 
example, when imaging students’ mathematics on problem 1 on the second page of 
the ratio instructional sequence (see Fig. 10.4), one special education teacher sug-
gested some students might draw pictures of 3 aliens and one food bar, like Nuria 
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Solve each of the problems below. Draw pictures if necessary or show your work.
1. Will 12 food bars be enough to feed 36 aliens? Explain.
2. Will 24 food bars be enough to feed 72 aliens? Explain.
3. Will 6 food bars be enough to feed 18 aliens? Explain
4. Will 8 food bars be enough to feed 20 aliens? Explain
5. How many food bars are needed to feed 39 aliens? Explain.

One food bar can satisfy 3 aliens.

Fig. 10.4 Second page of the ratios instructional sequence

with the balloons, until they had drawn 12 food bars, then count the number of 
aliens. The general education teacher suggested that students may start drawing 
aliens and food bars but then stop and make a list of numbers that resemble a table 
format: 1 for 3, 2 for 6, 3 for 9, etc. Another general education teacher noted the 
different types of division problems students might write such as 36 ÷ 12 or 36 ÷ 3.

Having anticipated the mathematics of students, the co-teachers then imagine the 
flow of the whole-class conversation that occurs after students solve the five prob-
lems. The special educator notes some of the IEPs require modifications to the 
quantity of problems a student will solve. With that in mind, the two teachers dis-
cuss which of the five problems is essential for all students to solve to have a pro-
ductive whole-class discussion. Agreeing that, say 1, 2, and 4 are the most critical 
for engagement in the discussion, the teachers now decide which strategies they 
would like to have presented in class and in which order. Drawing on her knowledge 
of supporting students with disabilities, the special educator typically argues the 
picture should be the first presented, if someone uses that technique. The general 
educator agrees and suggests that the table-esque list should be second because it is 
a more efficient, abstract model of the picture. If a student presents that strategy just 
after the picture, students are more likely to want to use the list instead because it is 
quicker than drawing a picture. The co-teachers also agree that the table/list would 
be good to have presented because the teacher can simply put lines through the list 
to introduce the semi-formal ratio table. Finally, the co-teachers agree that the num-
ber sentences may not be the easiest to explain in meaningful ways and are the most 
abstract, so those should be presented last.

Looking over IEPs and 504 s, the co-teachers make sure they have provided the 
appropriate accommodations to students and determine whether they think all stu-
dents will be able to do at least one of the strategies they imagined. Since some 
students may be assigned fewer problems than others, the teachers decide which of 
the five is essential for all students. Those problems are the ones assigned to stu-
dents who need the accommodation of less problems.
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10.2.2.3  Co-planning Practice 3: Selection of Instructional Format

Once the overall mathematical concept and students’ potential reasoning and pat-
terns are discussed, the next step in the co-teaching process is to determine how to 
ensure parity and co-presence in the lesson (Dieker et al., 2014). Friend et al. (1993) 
describe five approaches co-teachers can use to support students and each other in 
an inclusive environment: One teach-one assist, station co-teaching, parallel co- 
teaching, alternative co-teaching; and team-co-teaching. These five types of co- 
teaching structures are typically found in practice with a sixth type often mentioned, 
but we believe should only be used within a lesson for approximately five minutes 
no more than every two weeks. This sixth type is called one teach and one observe. 
This type can be very helpful in doing an environmental scan (student’s desk com-
pared to height, noise near a student, grouping, lighting, being able to hear through-
out the room, or any other variable one might want to observe), or to monitor and 
take data on specific IEP goals (e.g., monitoring on-task behavior, observing a stu-
dent’s test taking skills). We recommend the observation role be switched among 
the math and special education teacher with each taking 5 minutes during the week 
to observe and make notes of issues found during the observation to discuss in 
future planning sessions.

10.3  Co-instructing in Inquiry Mathematics Classrooms

Instructional materials that contain carefully sequenced problems are critical for 
inquiry co-teaching. However, having the materials in hand does not necessarily 
mean that they will be implemented in an inquiry manner. A teacher might take the 
first alien problems and “model” how to do the first one, with the genuine intent of 
helping students be successful. Yet, explicit modeling at the beginning of explora-
tion steals the cognitive demand from students because the mathematical reasoning 
is done by the teacher. Once high-demand tasks are chosen, a lesson is carefully 
imaged, and a type of co-teaching is selected, what are the instructional strategies 
that the co-teachers use to ensure students to develop intellectual autonomy? This 
section builds off the study conducted by Akyuz (2010) which documented the 
practices of an inquiry mathematics teacher.

10.3.1  Co-instructing Practice #1—Creating and Sustaining 
Social Norms

Social norms for inquiry classrooms are critical for supporting students’ intellectual 
autonomy and refer to the accepted ways students and teachers will communicate 
with each other during classroom discussions. Social norms for inquiry 
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mathematics classrooms include encouraging students to (a) explain and justify 
their reasoning, (b) indicate respectful agreement and disagreement, (c) ask ques-
tions when clarification is needed, and (d) attempt to understand the reasoning of 
others (Cobb et al., 1992).

Both co-teachers play a role in creating and sustaining these social norms for 
their co-instruction. Building social norms should begin on the first day of class and 
be renegotiated as the need arises later in the school year. As an example, consider 
an episode that occurred on the fifth day of class in one of our co-teaching partners’ 
classroom. One of the co-teachers placed a problem on the board (see Fig. 10.5), 
launched it and then allowed approximately 17 minutes for students to work inde-
pendently and then in groups.

As the small group exploration ended, the co-teachers met to decide which stu-
dents would put their strategies on the board. The general education teacher began 
the whole-class discussion as follows:

GT: We’re going to come back together and we’re going to start sharing some strategies. 
Now, here is where some of you are gonna get some clarity and you’re gonna get some 
ideas. This was hard for quite a few of you. And we have lots of different strategies and we 
have lots of different answers. And that doesn’t bother me, but we have to figure out what 
thinking is the most accurate and is gonna tell us whether or not the people at both tables 
get the same amount of pizza. Now for a lot of you, this is gonna be the first time coming 
up and talking about your math to your classmates. So, everybody at some point is gonna 
do this. SO, it’s important that we’re respectful and we listen and if we see something we 
like, we add that strategy to your notebook. So, Camden, I’m gonna let you go first. Can you 
go up there and kind of explain how you were thinking? We should all look at Camden’s 
work and try to make sense of it as he talks to us and be ready to ask any questions if we 
have some.

In the excerpt above, the general education teacher announces her expectations that 
students listen to Camden as he explains his thinking. Stating this explicitly lets 
students know they are responsible for making sense of each other’s thinking. The 

Fig. 10.5 Pizza problem given on the fifth day of class
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teacher also states that students are to ask questions if they do not understand. The 
co-teacher reiterates these expectations both during whole-class discussion as well 
as during small group interactions. It is important that the co-teachers discuss these 
expectations prior to classroom instruction, so they can support these norms during 
their interactions with students. In other words, if the expectation set by the general 
education teacher is that students will explain their method, and the co-teacher 
walks over to a small group and shows a student with special needs how to do the 
problem, there would be a conflict in expectations. Therefore, both co-teachers need 
to be in tune with the expectations, so there is no confusion among students and all 
are held to the same expectations.

Another important aspect of creating and sustaining social norms is teaching 
students that, not only are mistakes acceptable, they are important for everyone’s 
learning. Rather than trying to instruct students not to make mistakes, co-teachers 
actually ask students to present incorrect strategies in whole-class discussion and 
frame them as assets. Encouraging all students to take responsibility for their learn-
ing is also part of establishing norms. When students say, “I don’t know how to do 
this. Can you come show me how to do it?” teachers should be prepared to let them 
struggle. We have heard co-teachers say, “I have faith in you! I can’t wait to see 
what you come up with!” or “Talk with your partners. I bet you’ll figure something 
out together!” If those suggestions do not work, the teachers can provide more sup-
portive interaction.

10.3.2  Co-instructing Practice #2—Developing Small Groups 
as Communities of Learners

Both co-teachers play a role in helping students learn how to work in small group 
communities. Students with disabilities are likely accustomed to having a teacher 
provide explicit instruction (or, as we like to say, students with disabilities have 
been overdosed with help). In contrast, the inquiry approach encourages students 
to build on their own knowledge to develop a personally meaningful solution first, 
before explicit instruction is used. One of the first supports can and should be 
working with other peers in a well-constructed and supportive group. Collaboration 
with peers is a critical skill for the workplace and is essential for all students. To 
that end, all students need to learn how to contribute to the successful functioning 
of a group. The co-teachers should encourage students to explain their solutions 
to others in their group if the person does not have a way forward. Alternatively, 
if all students have a strategy, they should share it with their group mates with the 
expectation they will attempt to understand a strategy different than their own. We 
note this autonomy as a thinker is especially critical if a paraprofessional is in the 
room (they too need to be trained in the social norms) or even more important if a 
student has a one-on-one aide. Often times, these paraprofessionals have great 
intentions but may try to help too much due to a lack of background in 
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mathematics, inquiry-based instruction, or from a belief their job is to provide the 
student with errorless learning.

An example from one of our co-teaching partners occurred half way through the 
school year. The students were working in small groups to solve the following prob-
lem (see Fig. 10.6). A co-teacher walked up to a group of three girls and proceeded 
to ask each one to explain.

Ms. Clemson:  Did you guys get the 100th one yet?
Roberta:  Yeah.
Ms. Clemson:  You did? Tell me what you did [squats down beside the student].
Roberta:  Cause you multiply the path number by 2. And then you add one.
Ms. Clemson:  Why do you do that?
Roberta:   Because the number of the path, the number of the path, there’s 

always that right here [outlines one of the wings of the bird pat-
tern] and then there’s always one extra right here [points to the 
bottom of the V pattern].

Ms. Clemson:   Oh! [writing her strategy and name on her iPad]. Did you think 
about it the same way that she did?

Carly:   No, I did it a completely different way.
Ms. Clemson:  Ok, talk to me about what you did.
Carly:   Well, it depends on the path number. You would go up one. So, 

like if the path number was 5, you would go up to 6. Plus 5 cause 
it’d be like…you wouldn’t double count it [the bottom dot 
of the V].

Ms. Clemson:  Oh! [writing her strategy and name on her iPad]. Could you show 
me that on one of the pictures if I asked you to?
Ms. Clemson:   [to the third member of the group] Now what about you?
Donna:   I didn’t really get it.
Ms. Clemson:  Well, can you talk to your groupmates?
Donna:  Yeah.

The teacher, in this example, most notably asked students to explain their reason-
ing, asked higher order questions, and suggested students’ reason with the drawing 

Fig. 10.6 Pattern problem in small groups
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to aid in their explanation. When she asked the third member about her thinking, the 
student curtly replied, “She did not get it.” Rather than spend time giving her explicit 
instruction, the teacher asked her to discuss her difficulties with her groupmates 
who had two reasonable solution methods. Such a move reinforces the small group 
norms of members working together and asking questions when they are struggling. 
The special educator came back to that student later in the class to check on her 
progress and found she was successful in creating her own solution from dialog 
with her peers.

What do co-teachers do when they encounter a student who does not have a 
strategy, despite asking her group mates for help? First, the teacher might explore 
the student’s understanding of the context of the problem. If we revisit the camp-
ing/pizza problem in Fig. 10.5, she might ask the student to identify the characters 
in the camping story. She might ask what challenge the campers are facing and 
ask the student to pick out parts of the story she does not understand. It might 
become known, for example, that the three campers at each end of the table have 
to share one pizza while the two campers facing each other in the middle get to 
share a pizza and that is not fair. Thus, the student’s inability to engage with the 
problem may be due to a misinterpretation of the context, not a mathematical dif-
ficulty. The teacher can clarify the context and set the student on her way. If the 
issue is not contextual, but rather mathematical, the teacher can ask the student to 
draw a picture to represent pizzas being shared and encourage the student to parti-
tion them. Rather than explicitly instructing the student on a strategy the student 
should use, the teacher is suggesting that the student draw a picture and begin to 
solve the problem. Once a student’s difficulty is uncovered, then the special edu-
cator can decide how to proceed from there, which may involve consulting the 
math teacher about other ways to move the student forward without explicit 
instruction as the first option.

Finally, the goal of teachers during small group time is NOT to fix students mis-
takes. In fact, there are times in which it is completely appropriate to allow students 
to go down a path that does not end in a correct answer. Sharing those solutions can 
help students unpack why the strategy did not work, allowing for a deeper under-
standing of mathematics. If the teachers corrected all of the mistakes during small 
group time, those gems would no longer be there for students’ learning.

10.3.3  Co-instruction Practice #3—Facilitating Genuine 
Mathematical Discourse

A third instructional practice related to co-teaching in inquiry classrooms involves 
facilitating mathematical discussions. There is no simple recipe for engineering pro-
ductive mathematical talk in whole-class discussions, yet we have a few tips from 
observing multiple teachers and co-teaching pairs.
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10.3.3.1  Use Solutions Effectively to Engineer the Teacher’s Summary

With the launch of the mathematical problem(s) students then move into small 
groups or independent time, while both co-teachers collect data as they monitor 
student engagement. The main goal during monitoring is to write down the different 
strategies students created. Then, just prior to the whole-class discussion, co- 
teachers can have a quick sidebar to compare notes. During this sidebar, the co- 
teachers decide which students will present their thinking and in what order. For 
example, during the small group time for the bird V pattern task (i.e., find the num-
ber of birds in the tenth pattern), one pair of co-teachers collected the following four 
strategies (Fig. 10.7):

As the two teachers brought their notes together, they decided to have all four 
strategies presented because the solutions contributed to the mathematical goal of 
identifying linear structures from spatial patterns and writing linear equations. 
Roberta’s structuring involved seeing two “arms”/pattern #s and a leader bird at the 
bottom. Carly’s spatial arrangement blended the leader bird with one of the arms to 
get pattern number (left arm) and pattern number plus 1 (right arm). Tyshawn pre-
sented a completely different structure in Wi-Fi picture in which he saw P number 
of sets containing two dots plus a leader bird. Finally, Nikki’s strategy did not capi-
talize on the picture at all, and she reasoned if the fifth pattern yielded 11 dots, then 
the tenth pattern (double the five pattern) should contain twice as many dots. 
However, it is worth considering Nikki’s strategy because she has double-counted 
the leader bird which can lead to a conversation about the structure of a linear func-
tion (a rate of change plus a constant), with the leader bird being the constant that 
does not change (get doubled). Roberta, Carly, and Tyshawn each present a way of 
structuring the picture eventually leading to different equations:

 Roberta s’ : t p� �2 1  

Fig. 10.7 Students’ strategies for the number of birds in the tenth pattern
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Carly s’ : t p p� � �� �1  

 
Tyshawn s’ : t p� � � �2 1

 

Having had the discussion of the mathematical merit of these solutions, the co- 
teachers decided to have students present in this order: Roberta, Tyshawn, Nikki, 
and Carly. They felt that Roberta’s leader bird method was the most popular and 
easily could be seen by students who may not have found a way. Tyshawn would be 
next because he, too, saw a leader bird yet he organized the dots on the arms as pairs 
of two, resembling a Wi-Fi symbol. The difference is two sets of the pattern number 
(Roberta) versus P sets of two (Tyshawn). Nikki’s solution would be third because 
students who now understand the leader bird method may have a way to explain 
why her strategy provides one extra dot (extra leader bird that you do not repeat). 
Finally, Carly’s example would be last because, it is a bit different, in that one of the 
arms absorbs the leader bird. The co-teachers would leave all four strategies on the 
board at the same time, thus giving students a chance to use each picture to interpret 
the others. Importantly, there is not one right way to sequence the solution methods 
during a whole-class discussion; however, the order may be more or less supportive 
of students accomplishing the mathematical agenda for the day.

10.3.3.2  Make Critical Discourse Moves During the Whole-Class Session

The previous tip involved actions that occur outside of the whole-class, public dis-
cussion space. Once students start sharing their reasoning with peers in a whole- 
class setting, the co-teachers can take specific actions to support equitable access to 
the mathematics in the discourse: (a) introduce mathematical vocabulary after stu-
dents have invented an idea, (b) restate students’ explanations in clearer or more 
advanced language, (c) ask questions that promote higher mathematical thinking, 
and d) allow students to use technology such as Flipgrid or text to speech to present 
their thinking if there is anxiety about sharing ideas in front of the class. Throughout 
the session, the co-teachers should take into account any anxiety, behavior, aca-
demic needs, reading skills, or thinking skills that may need to be considered to 
ensure successful interaction in both the small group and presentations to the larger 
group. Allowing students to “opt out” cannot be a regular option if autonomy is the 
goal, but allowing all students “options” as to how they want to share their idea 
should be at the core of any co-teaching relationship.

A common strategy in special education is to pre-teach mathematical vocabulary. 
However, co-teachers in inquiry mathematics introduce the more conventional lan-
guage after students have already used the concept in their problem-solving. In this 
way, co-teachers build on students’ invented solution processes as well as informal 
language to introduce the more conventional terms. For example, the leader bird in 
the bird V pattern problem is actually the “y-intercept” in a linear equation. However, 
introducing that term here would be counterproductive because the technical term 
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does not make sense in this context. Students might use the informal term until they 
begin to graph the relationship between the number of birds and the pattern number 
on a Cartesian plane. Then, introducing the conventional term makes more sense 
because x and y variables appear on the graph.

A second way co-teachers can support mathematical discourse is in re-stating a 
students’ strategy in clearer or more advanced language. This technique is espe-
cially productive in an inclusion class if there are students who have a language 
disability. Rather than discourage students with language difficulties from speaking 
publicly, a different approach is to ask them to present and then restate their words 
more clearly, if they have difficulty explaining their thinking. We have seen co- 
teachers restate the student’s solution and then check with them to make sure they 
restated it correctly. In this way, the language disability is not seen as a deficit, and 
students have the ability to participate equitably in the mathematics discourse. Of 
course, students without a language disability also can have difficulty getting across 
complicated ideas, so the teachers must also restate when appropriate for any 
student.

A final strategy we have learned from co-teachers is to ask higher order questions 
that help bring the important mathematics to the fore. In the bird V pattern discus-
sion, for example, some of the higher order questions we have heard teachers ask 
during or after explanations are “What does the +1 stand for in your picture?” 
“When you say 2p, where is that in the picture?” “Whose strategy is represented by 
2p and whose is p(2) and why?” “Why do you get one extra in Nikki’s strategy?” 
“Will all patterns have a +1?”. These questions use students’ strategies yet ask 
them to think beyond just their pattern. The teachers use pictures as a way to help 
students connect the abstract symbols (2p) to something meaningful (two arms of p 
dots). They ask about how other unseen patterns might be similar to or different 
from the concrete one.

10.4  Conclusion

Although we cannot predict the future, we are confident the future will require not 
stronger procedural knowledge of mathematics (as a computer has that skill cov-
ered), but a deeper understanding of the processes, inputs, and outputs of computers 
as a twenty-first-century learner. We also are confident deeper understanding in 
STEM content aligns with future higher pay, but only for those workers who can 
engage in productive teamwork, discourse, and problem-solving. Our work sug-
gests that students with and without disabilities can gain deep understanding of 
mathematics to become autonomous learners. Yet, without access to highly skilled 
mathematics teachers working alongside highly skilled learning and behavioral spe-
cialists promoting intellectual autonomy, students with disabilities will continue to 
be unemployed or underemployed compared with their peers.

We believe access to high-quality jobs can best occur with two teachers standing 
side-by-side in planning, instructing, and assessing a heterogeneous group of 
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students who learn not through teacher talk, but through student talk. We see evi-
dence from the literature the power of parity between co-teachers while still 
acknowledging, embracing, empowering, and ensuring the unique skillset of each 
teacher. Co-teachers who work together to blend their expertise in inquiry settings 
can provide the best learning outcome for all students. We see this occurring through 
a planning structure of teachers imaging their students’ mathematical reasoning, 
while teaching with rich tasks and questioning of student thinking and while facili-
tating student-led discussions that are critiqued as a mathematical community. We 
see these teachers working in harmony to let students make mistakes, encourage 
them to persevere in problem-solving, and work as teams with peers—all twenty- 
first Century Skills.

For us, mathematics education should provide students access to high-paying 
jobs, support students to live, and communicate positively in a global economy and 
become productive citizens of the world. Developing students as intellectually 
autonomous beings who possess twenty-first-century competencies is crucial to this 
endeavor. We have presented a set of co-teaching practices that can be utilized by 
inquiry mathematics co-teachers that provide all, but most importantly students 
with disabilities, the opportunity to receive instruction preparing them for the future. 
Students with disabilities should have access to the same high-quality mathematics 
instruction as their peers; anything less is inequitable.
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Chapter 11
Commentary on Section III

Lisa A. Dieker and Amanda Lannan

Abstract The authors provide a summary of the three chapters focused on students 
with a range of neurodiversity. The authors provide their perspectives on each chap-
ter through the lens as a parent, sibling, and person with a disability. The chapter is 
grounded in the cross-cutting themes presented by the authors and anchored in dis-
cussion on equity and access. The theme of how Universal Design for Learning 
could provide an anchor for equity and access is explored.

Keywords Universal Design for Learning · Disability · Accessibility · Discourse · 
Co-teaching · Equity · Access

Unlike the standards for mathematics, the field of science in the United States has 
approached standards differently. The Next Generation Science Standards (NGSS) 
includes the cross-cutting standards (National Research Council, 2015), which are 
considered core to transcend all areas of science. In these three chapters, we see a 
similar theme to NGSS cross-cutting standards. The authors collectively provide the 
field with cross-cutting considerations for the field of mathematics related to pro-
viding equity and access for students with a range of neurodiversity, including those 
with disabilities. The authors present ideas not nested in simply the content of math-
ematics, but in the art of using various approaches and practices of teaching math-
ematical knowledge to students who in the past have been forgotten, denied, or 
challenged to learn this content. Therefore, our commentary provides a review of 
the interwoven concepts to support these learners.
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The title of this book, Enabling Mathematics Learning of Struggling Students: 
International Perspectives, makes a clear statement that parallels the current events 
in our world, from the fight for equity of treatment of all humans, to the lack of 
equity and access for students of poverty during this pandemic. A gap already 
existed for students who are at the margins – whether it be poverty, second lan-
guage, or disability – but what is made clear in these chapters is how this population 
can be renewed through effective practices, universal approaches to access, and by 
building bridges between teachers who serve students at the margins while main-
taining high expectations and measuring for high outcomes.

As the commentators for these three chapters, we feel it essential to provide a 
summary of our personal and professional backgrounds to show the lens through 
which we view this work. We follow our personal positionality with a reflective 
summary of each chapter and conclude with a synthesis of our thoughts across 
chapters.

11.1  Personal Positionality of the Commentary Authors

I, Lisa Dieker, am the parent of a young adult who, in third grade, was diagnosed 
with dysgraphia, dyslexia, and Tourette syndrome. His deficits could have made 
him poor in mathematics, but he has had the opposite journey. His positive out-
comes have been due to great teachers. My son, despite having a college degree, 
cannot fluidly name his multiplication facts; however, his conceptual underpinnings 
of mathematics are strong. As a result, he “truly” understands mathematical 
concepts.

My personal perspective on effective practices in the field of special education 
has been further shaped by the 40+ years of being both a sibling and sister-in-law of 
people with disabilities. I understand how equity and access changed their lives, 
especially during an era when people with disabilities had fewer civil rights than 
women or people of color in the United States. My personal experience also lies in 
the last 35  years of my career, as a teacher and professor. My knowledge has 
advanced, over the past 16 years, by leading the Ph.D. program in special education. 
I have had the privilege of chairing 29 dissertations and serving on 15 Ph.D. com-
mittees, with most aligned in the STEM area. My personal and professional knowl-
edge has been further enhanced by having the privilege to direct a doctoral program 
that has graduated 30 Ph.D. students with disclosed disabilities.

As the second author, I, Amanda Lannan, present my commentary from the posi-
tionality of an individual with a disability. At 2-years-old, I was diagnosed with 
Leber’s congenital amaurosis (LCA), a condition which affects the retina, causing 
severe vision loss in children. At the time I entered kindergarten, parental rights 
were limited and the common belief was children with disabilities could not learn. 
Luckily for me, and millions of other students with disabilities, in 1975, the 
Education for All Handicapped Children Act was passed, which guaranteed equal 
access to public education.
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Despite my vision loss, I had an insatiable curiosity and a fierce determination to 
be independent. By the end of kindergarten, I could no longer see the huge writing, 
copied by my teacher, in thick magic marker, which led to the most important edu-
cational decision made on my behalf; I would learn braille. When I began high 
school, I discovered just how hard my parents worked to shelter me from society’s 
doubts. Attending public school for my academic classes meant I had to advocate 
for the opportunity to do what was “expected” of general education students. During 
college and my early career, I began to see the varied societal perceptions of people 
with disabilities, not just blindness, but of anyone who did not fit neatly into the 
typical “box.” Each organization promised an “equal opportunity”, but the struggle 
to access that promise was real. Despite the struggles, I have completed my doctor-
ate during a pandemic after teaching in the public-school system for more than 
14 years. Both as a student with a disability, and as an educator, I have experienced, 
firsthand, and as so beautifully stated by these authors collectively, how teacher 
expectations play a critical role in student achievement.

The Education for All Handicapped Children Act was passed just 2 years prior to 
my start in school, and the Americans with Disabilities Act (ADA) was signed into 
law just before I graduated high school. Even though the U.S. Brown v. BOE passed 
in 1954 stating, “separate was not equal”, which began the process of desegregating 
schools; it was not until 1975 that people with disabilities were legally allowed to 
walk through the door of a school. Today, although students with disabilities are 
allowed in schools, they still continue to struggle in mathematics due to a lack of 
access to strong and effective mathematics teachers. Teachers who work with stu-
dents with disabilities often lack rich backgrounds in mathematical practices and 
content knowledge, as well as equitable approaches to give students with disabilities 
the chance to access advanced mathematics classrooms.

These three chapters align with our expertise in disability, and our commentary 
expands upon this work with the concept of Universal Design for Learning (UDL; 
Rose & Meyer, 2008). The concept behind UDL emerged from the field of architec-
ture in making buildings accessible. The proponents of UDL (Burgstahler, 2015; 
Rose & Meyer, 2008) encourage the same approach to curriculum, such as mathe-
matics. The UDL approach focused on “Equity and access” for all students is criti-
cal and is an underlying theme in these chapters.

The majority of students with disabilities are now in general education mathe-
matics classrooms, but simply placing students in inclusive settings does not ensure 
equitable opportunities to participate in high levels of mathematical discourse. 
These authors remind us that all too often, students with disabilities are viewed 
through a deficit perspective, such as having gaps in mathematics knowledge, send-
ing the message that they will not be successful in mathematics-related areas. 
However, these authors provide examples, hope, optimism, and evidence that, when 
given the right opportunities students in special education can be viewed as capable 
mathematics doers and thinkers. Unfortunately, the misconceptions surrounding 
disabilities and mathematics put students receiving special education services at a 
serious disadvantage due to a lack of access and potential teacher disposition. 
Students with disabilities have very limited power to make decisions regarding their 
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education, such as placement in advanced mathematics courses. The current state of 
discriminatory practices reduces not only students with disabilities opportunities to 
access equitable academic instruction, but also significantly limits their access to 
postsecondary choices and career paths.

The legal parameters giving students with disabilities the right to a free, appro-
priate public education have been established in many countries like the United 
States, while research findings have documented the positive impact co-teaching 
and inclusive practices have on students with disabilities. As decades of mathemat-
ics education reform has demonstrated, the value of critical thinking and problem 
solving is essential to a high level of performance in mathematics. These authors 
remind us that now is the time to follow through high expectations for all by provid-
ing students with equitable opportunities to engage, learn, and contribute to the 
mathematical discourse taking place in inclusive settings. We strongly believe that 
the most prudent action we can take, regarding the education of students with dis-
abilities, is to anticipate success. Just by raising the expectations, we will in turn 
improve confidence and increase achievement.

11.1.1  Current Status Within and Across Chapters

We begin with a summary of each chapter and then provide our synthesis through 
our own lens of the cross-cutting themes across chapters. Clearly, in all three chap-
ters, a theme of students having the “right to mathematics,” emerged. The impor-
tance of this right is summarized for each chapter.

11.2  Commentary on Each Chapter

11.2.1  Supporting Diverse Approaches 
to Meaningful Mathematics

In the chapter Supporting Diverse Approaches to Meaningful Mathematics 
Finesilver, Healy, and Bauer provide a rich thick description of the literature and 
practices needed for a positive classroom culture. These authors ground their dis-
cussion in two important considerations: time and tools. They provide readers with 
examples from the extensive work of each author to show how the intersection of 
time and tools creates a culture to support diverse learners in not just accessing 
mathematics, but as noted in their title “meaningful mathematics”.

The chapter uses a case study approach to ground the reader in their individual 
and collective work. The lens of how international policy on inclusion intersects 
with the need for time and tools to ensure students are successful in these settings 
across the globe. Evoking the work of Vygotsky, aligned with looking at the child’s 
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potential, these authors argue students should be seen for what they can contribute 
and not their labels.

We strongly agree with Finesilver, Healy, and Bauer with the critical point that 
scaffolds are meant to be removed. We agree. If a student is in a wheelchair, that is 
a permanent tool, but tools to help build concrete or representational understanding 
should be removed as soon as possible for all students. This need to remove support 
over time is especially true for a population we tend to try and make dependent upon 
adult learning instead of, what is emphasized so clearly across all three chapters, 
engaging students in discourse with their peers to ensure their understanding, inde-
pendent of adults!

These authors provide rich examples from their work with students with disabili-
ties in their country and how access and equity are at the core of success. We believe 
a great summary of their work lies in a quote from their chapter: “a new norm…the 
education systems are meant for the whole population and should be designed 
accordingly”. Once again, this quote aligns with what we see as the overarching 
theme of UDL across these chapters. Creating a culture norm of access for all cre-
ates a pathway of success for all. These authors provide a powerful argument that, 
when obstacles are removed for specific individuals, all benefit. We also agree with 
the author’s premise that labels divide. When we instruct our methods students, we 
often emphasize that labels have value but really only on “jelly jars,” where the jar 
tells you the difference between grape and blackberry but labels on humans really 
do not inform you of differences; typically they only permeate stereotypes. Yet, the 
juxtaposition is in our current model. Without labels, the proposal of co-teaching by 
Stephan and Dieker cannot occur. The time is right, aligned with Finesilver and 
 colleagues thinking, to create cultures with learning specialists working in collabo-
ration with teachers to help everyone learn.

We could not agree more with the authors’ call for a reorganization of the struc-
tures to redefine an inclusive educational system. The current policies and practices 
of mainstream schools reflect the medical model of disability, which views disabil-
ity as resulting from an individual person’s physical or mental limitations, further 
perpetuating the marginalization of students with disabilities, whereas the social 
model reminds us to think creatively about accessibility and ways of accommodat-
ing to account for learner variability. By adopting teaching and learning practices 
aligned with the principles of universal design for learning, a culture of diversity 
will emerge.

The grounding of these authors’ work in Vygotsky further amplifies the align-
ment to UDL. Vygotsky, as they noted, placed an emphasis on meeting students 
where they are at and providing tools to help them build their own knowledge and 
understanding. This theme permeates across all three chapters, with these authors 
providing clear examples of the danger of expectations of timed assessments that 
often result in failure instead of success. The power is in students’ understanding, 
which they emphasize so eloquently, whereas the process and the product of a timed 
assessment (especially paper pencil) may not be a true reflection of learning. As 
their multiple examples show, with a UDL approach, through access and equity, 
students can come to their own understanding of more complex ideas than when 
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taught isolated facts or rote memorization skills. The emphasis on how repeated 
failure in mathematics compounds motivation and anxiety, which we know impedes 
learning, further promotes the need for access and scaffolds for all.

The authors explain how time and tools are essential tools for special education 
students. Using vignettes, they address the common misconceptions surrounding 
certain accommodations, such as additional time or use of manipulatives, needed to 
fully participate in the same mathematical activities as other students in the class. 
These are allowable IEP accommodations, which have been chosen to level the 
playing field for students with disabilities. Frequently though, giving a student who 
has no means of writing the option to demonstrate their conceptual understanding 
of the lesson with blocks is somehow misinterpreted as unfair to students who are 
able to convey their thoughts through typical means. Should a student who is not yet 
proficient in braille and must rely on someone else to read the problems aloud be 
expected to complete as many problems? Consider a gifted third grade student, born 
without hands and feet; would the dictation tool be taken away, simply because she 
has an unfair advantage because the software can check her spelling? The resound-
ing answer given by the authors of this chapter, and by special education profession-
als everywhere across the country, is no. The experiences of students with disabilities 
are often disregarded by the professionals responsible for their education. Despite 
wanting the same understanding of mathematics, students should be empowered to 
advocate for their needs and to achieve the same conceptual outcome without hav-
ing to struggle with assignments that may take more time to produce the answer 
than to understand the concept.

Accessibility is not beneficial without ensuring usability. Students need to have 
the training and support to build competences. Even with a strong UDL approach to 
instruction, students need support from teachers who understand how to adapt 
instruction to meet their needs. Ultimately, UDL principles and practices do not 
exist if all learners are expected to engage, represent, and express themselves 
identically.

The concept of what counts as successful mathematics learning is evolving, the 
technology solutions are ever changing, and the pressure to prepare students with 
twenty-first century skills is increasing. Throughout this chapter, the authors show 
how problem solving was successfully used to provide scaffolding and support to 
foster positive, inclusive general mathematics experiences for all students.

The chapter concludes with a clear theme of focusing on care and concern in the 
culture of mathematical practices that provides tools and time for student success. 
The authors argue that access to more time may not be the answer. Instead teachers 
need to be better equipped to understand a student’s individual needs in the context 
of time combined with personalized and individualized tools aligned with UDL 
principles for success. Grounding classroom mathematical practices and approaches 
in the mindset that all students learning the concepts presented in mathematics 
classrooms must come from equal production of problems is missing the point of 
understanding mathematics concepts. If student A can finish 20 problems, yet fails 
to understand anything but procedural knowledge, and student B with a disability 
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completes two problems but can talk deeply about the mathematical concept –the 
outcome for student B is what is needed and should be expected for all learners.

11.2.1.1  Engaging Multilingual Learners’ with Disabilities 
in Mathematical Discourse

In their chapter, Smith and Smith provide a strong summary of ways for teachers 
and researchers to consider how to engage with what they call multilingual learners 
in mathematics. They discuss in-depth ideas from both the mathematics and the 
special education literature for students with mathematics difficulties (MD), be it a 
disability or a struggle in general. They combine students with learning disabilities 
and those at-risk in mathematics. Although we see their chapter filled with best 
practice from both areas, we want to remind readers that those with a true disability 
in the area of mathematics may need an alternative pathway to learn math, much 
like a student who cannot walk and who needs a wheelchair. As educators, we need 
to ensure students with neurological disabilities are not expected to overcome their 
disability through effort. Instead, these students may need additional tools to ensure 
their success. A student who is at-risk, even one with a labeled disability, may need 
more intervention; as time alone may not be enough. We often see those students 
pulled out of class, away from the rich discourse of their general education peers, 
for fluency practice or for other services they might need (e.g., speech, physical 
therapy) leaving gaps in their foundational knowledge. Therefore, we want to 
remind readers to consider what needs a modification (changing what is taught) 
versus an accommodation (support to learn the same concept but in a unique way). 
Many students need accommodation in mathematics using the concept of a “wheel-
chair for their brain” to ensure they do not need modifications in the future.

We also celebrate the authors’ approach to those who are learners from other 
language backgrounds, focusing on the strength of a second language instead of a 
deficit model. In our work with Title 1 schools, we see many of the great practices 
provided by English Language (EL) teachers as equally powerful and beneficial for 
students with MD and vice versa. Hence, the need to see the strengths in the stu-
dents and those professionals in schools. This need is even greater when, as Smith 
and Smith note, a student is dually ML and MD. These numbers are rising as we 
better use learning sciences to understand the differences between language devel-
opment and learning disabilities.

Throughout their chapter, Smith and Smith remind the field that discourse is 
essential for understanding what students do and do not know; yet, equally impor-
tant, is the preparation of their teachers so these students have a future in advanced 
mathematics and employment. As so well stated by Smith and Smith, teachers need 
to consider the “who, what, and why of our discourse” to ensure the message relayed 
to these learners is aimed at an asset and not a deficit model. Yet, they so adeptly 
remind us that without appropriate “supports and scaffolds” (e.g., UDL). discourse 
is a moot point for students with MD and EL.
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Smith and Smith then further remind readers of the critical importance of struc-
ture within discourse, which seems like an oxymoron. They skillfully share the 
importance of norms, which we often see in positive behavioral support schools, 
where the culture is set for positive discussion across the curriculum. Yet, in a cur-
riculum where math anxiety is prevalent and where problems might arise as part of 
discourse, setting norms is critical. It is especially critical for two populations of 
disability, not directly discussed across these three chapters, which are students with 
emotional and behavioral disorders and those students on the autism spectrum dis-
order. The need for clarity and norms around discourse, as well as UDL approaches 
to discourse, are especially important for this population (Thomas et al., 2015).

The authors conclude the chapter by providing numerous ideas to support stu-
dents with MD and ML in the environment including peer supports, revoicing, self- 
regulated writing strategies, scaffolding, building knowledge of terms, using visual 
cues, using context to build meaning, and aligning mathematical discourse with 
written language. These ideas all fall nicely under the UDL principles by providing 
multiple ways to represent ideas, and at the same time, provide support to the stu-
dents who are MD and ML, while supporting and improving instruction for all 
learners in the environment. The authors conclude with a key point of their work 
and of the work across the three chapters: the ideas provided are moot to consider if 
access is not the first step for students who are MD and ML. We could not agree more!

11.2.1.2  Diversity in Mathematics

The final chapter by Stephan and Dieker provides an approach that contributes to 
struggling learners’ success through the power of two teachers working together in 
the classroom. Their examples and approach are framed in the relationship between 
general and special education teachers, but could be between two content teachers 
or even a mathematics teacher and a multilingual teacher. These authors suggest that 
new approaches are needed to prepare students for future employment. They ground 
their work in Piaget and the need for students to develop “intellectual autonomy”, 
specifically in mathematical thinking for future life, college, and career success. 
They provide a rich discussion grounded in differences between approaches in 
mathematics education and special education, specifically discussing the differ-
ences in inquiry versus direct instruction.

The authors open with the current status of the field for STEM education, advo-
cating the need for high-quality instruction and access for students with disabilities. 
They advocate for the need for both STEM content and “soft skill” instruction to be 
a part of mathematics, especially for students with disabilities. They then frame the 
chapter in the powerful nature of discourse and co-teaching to create a twenty-first 
century classroom inclusive of all needs for all students.

The remaining sections of the chapter are grounded in the theory, practice, and 
examples of how to build inquiry-based instruction between co-teachers. The 
authors share examples of how two teachers can plan together. The authors expand 
each example by showing how the two teachers work together including how to 
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build social norms, ensuring a community of learners, and facilitating “genuine” 
mathematical discourse. Throughout the examples, the authors share how scaffold-
ing, universal design for learning, and some level of explicit instruction can be used 
to complement inquiry-based instruction. Overall, the focus on equity and engage-
ment in inquiry-based learning is at the core of the chapter.

Today’s classrooms are becoming more diverse. In response, many schools have 
implemented co-teaching as a means for promoting effective instruction in inclusive 
classrooms (Conderman & Johnston-Rodriguez, 2009; Gately & Gately, 2001; 
Malian & McRae, 2010; McKenzie, 2009). Although the delivery models of co- 
teaching can look different across settings, the benefits are significant. For example, 
when a co-teaching approach is used, more students with disabilities are included in 
general education classes, and this may reduce the stigma that students with dis-
abilities experience. For educators, co-teaching offers opportunities for collabora-
tion, while also providing professional support for one another.

The authors, Stephan and Dieker, present a close examination of the multiple 
steps in the co-teaching, co-planning, co-instructing, and co-assessing process, 
emphasizing that a cohesive partnership begins long before the teachers enter the 
classroom. Ideally, co-teachers share ownership in all aspects of the class and col-
laborate in all facets of the educational process. However, most teacher preparation 
programs are designed to prepare either general or special education teachers sepa-
rately, rather than advancing a combined approach. Therefore, much of what teach-
ers learn about co-teaching is acquired on the job. The authors offer clear examples 
of how teachers might use their specific training in mathematics or special educa-
tion to support all students. For example, when describing the distinct teacher roles 
in the co-planning phase, the authors explain, “one teacher typically focuses on 
ensuring access to concepts, 

peer dialogue, and conceptual understanding, while the other teacher ensures the 
trajectory of mastery of mathematical thinking is evolving at a pace needed while 
ensuring student autonomy in the process.”

Research has illuminated a few areas to be cautious of when co-teaching. A study 
by Pearl and Miller (2007) noted that the individualized supports and accommoda-
tions for students in special education often are not used in the general education 
setting; creating a culture of failure without specialized instruction. The lack of 
preparation, administrative support (Dieker, 2001; Rea, 2005), and parity in the 
classroom (Dieker & Murawski, 2003; Spencer, 2005) also impact the quality of 
co-teaching.

The authors provide a critical description needed for the field of special educa-
tion and general education to build a bridge focused on the concept of instructional 
autonomy. They provide a juxtaposition of the concept of implicit and explicit 
instruction, and the relationship to creating mathematical autonomy in students with 
disabilities through co-teaching. They argue that the two camps that “pit” implicit 
and explicit instruction against each other diminish the potential power of bringing 
together two teachers with different approaches (both found to be effective) to better 
meet the needs of all learners. They do emphasize the unfortunate land mine often 
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found in special education, where the support is only given when a student is already 
behind. Direct instruction tends to be the answer, due to the implied efficiency, 
rather than scaffolding through concepts like UDL and ensuring the expertise of the 
second teacher is embraced to provide supports in the targeted areas of a students’ 
disability.

Following their discussion of the philosophical differences across the fields, they 
provide a discussion on the current state of, need for, and positive outcomes found 
when the synergy of mathematics educator and special educator, who both are pre-
pared to work in the field of mathematics, can make a direct impact on student 
learning and outcomes while potentially providing “real” time professional devel-
opment for teachers across disciplines. They argue, from an equity perspective 
throughout the chapter, that students with disabilities deserve access to highly pre-
pared mathematics teachers. Yet, at the same time, students deserve to have support 
from those who are prepared in their academic, social, or emotional needs. The 
power of the two teachers together provides rich outcomes for all.

The authors then provide a description of the anchors of co-teaching in the areas 
of co-planning, co-instructing, and co-assessing. The authors provide a convincing 
argument that the normative classroom is not favorable to all learners and that math-
ematics practices are often told directly to students instead of allowing for their own 
discovery of learning, which can eliminate the opportunity for students with dis-
abilities to have a voice in discourse-based discussions. They provide an argument 
for lesson imaging, which allows both teachers to see the journey students will take 
over the course of the lesson. They discuss how teachers will provide supports, such 
as pictorial supports and use of mathematics of students, to give voice and discus-
sion around mathematical concepts. The mathematics of students allows for build-
ing, by both teachers, on students’ reasoning and individual and collective patterns 
of thinking to create roles for both teachers, focused on student-centered learning 
outcomes.

Much like the authors in the other chapters, a discussion is provided on the 
importance of social norms with buy-in, not only from the students, but also from 
both teachers. Stephan and Dieker focus on creating communities of learners, with 
the co-teachers serving more in the role of guiding student discussions, and only 
occasionally using more direct instruction, if deemed essential, by the specialists 
based on a clear understanding of the students’ abilities and disabilities.

These authors provide examples of the process co-teachers can go through in 
discourse and the natural progression from small communities to whole class ses-
sions, with the role of the co-teachers again being guides in the process. They 
emphasize a need for UDL approaches with a strong focus on the use of imagery as 
a way to have students build a deeper understanding of mathematical concepts. 
Throughout the discussion, Stephan and Dieker emphasize a key component of suc-
cessful co-teaching is time for teachers to both construct and deconstruct their les-
son imaging and outcomes. They conclude by reminding the field for students with 
disabilities, that procedural knowledge can often be practiced using software pro-
grams. However, the understanding of mathematical processes and procedures is 
harder to develop online and yet this type of understanding is essential to both build 
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the foundation for the future and create students ready for the twenty-first century 
classroom. They argue that this type of understanding is easier, better, and more 
enjoyable to develop when two teachers are given time to work together.

The authentic, guided examples presented throughout each section of this chap-
ter help put co-teaching into a usable framework. Because co-teaching is usually not 
taught explicitly, the engaging examples in the chapter, from the aliens eating our 
toast, to the analysis of how much pizza is needed for a party, helps teachers gain a 
better understanding of how this collaborative approach of teaching could work.

The research on co-teaching is still relatively limited and is primarily focused on 
teaching students with learning disabilities. There is minimal access to material 
involving students identified with other disabilities. There is still much to learn 
about preparing for co-teachers to work in inclusive settings. One challenge has 
been finding ways to deepen special educators’ mathematical knowledge while also 
helping general education teachers increase their understanding of accessibility and 
accommodations. Stephan and Dieker give us hope for the future of co-teaching in 
mathematics by showing how a balanced partnership in teaching promotes equita-
ble learning for all students

11.3  Collective Reflections Across Chapters

We need to engage all students in meaningful mathematics because over 2.4 million 
STEM-related jobs went unfilled in 2018 (SSEC, 2019). Currently, we see an aging 
STEM workforce (NASEM, 2018) while the supply and demand of those from cul-
turally and neurodiverse backgrounds are limited (NSTC, 2018). As noted by these 
chapter authors, all students can learn mathematical skills, if the field embraces a 
range of options for both supports and access. Promoting diversity in the workforce 
is paramount (Sutton, 2017), yet the 2019 PISA highlights stagnant and declining 
performance in mathematics for many students at the margin. Addressing this gap is 
critical for the future of these students, as well as the workforce of the future, and 
the recommendations provided by these authors provide hope to align new out-
comes to change this downward trajectory.

This section of the research-based book presents content focused on equity and 
access from researchers in special education, second language learners, and math-
ematics education. The content provided by the authors reflects both their own 
research and the collective nature of the status of the field. The high-level overview 
of these chapters provides case studies, research, practices, and discussions on how 
to ensure access for students from diverse cultural and neurodiverse backgrounds to 
advance their skills in mathematical practices, discourse, and thinking.

These authors provide a strong linkage between the current state of research and 
practice with an overall theme embodying the principles of UDL, which involves 
providing learners with multiple means of representation, multiple means of engage-
ment, and multiple means of action/representation. The individual and collective 
works across the chapters remind both teachers and researchers about the critical 
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nature of creating lessons using UDL, with access being a key concept in shaping 
mathematical thinking, much like the Americans with Disabilities Act (1990) 
shaped access to buildings. These authors do not necessarily frame their work in 
UDL principles, but collectively, their work is aligned with principles that ensure 
access at the onset of instruction to allow for maximum mastery, engagement, and 
learning for all students including those from economic, language, and neurodiverse 
backgrounds.

From our review of each individual chapter, we found collectively the chapters 
provide strong synergy for readers to consider how to impact diverse learners. The 
chapters collectively provide an extension of the future we hope to see for a wide 
range of learners in mathematics. What is so well said by these authors – that equity 
and access are essential for us to do better in the field of mathematics – frames our 
collective reflection of these chapters.

A current barrier to success for the field of special education is the lack of prepa-
ration on the part of special education teachers in understanding mathematical prac-
tices, and general education teachers in planning for and accommodating students 
with disabilities (Leko & Brownell, 2009). These same issues are prevalent for sec-
ond language teachers and teachers who are often hired without certification in 
many schools of poverty. As noted by Stephan and Dieker in their chapter, a need 
for an understanding of concrete-representational-abstract (CRA) and approaches 
such as Realistic Mathematics Education (RME) can embrace a richer dialogue 
amongst an array of diverse learners (Freudenthal, 1973; Ball & Forzani, 2010). As 
emphasized by the work of Ball (1993), the focus of mathematics needs to allow 
students to accept responsibility for their own solutions and mathematical thinking. 
A student-centered approach, focused on students coming to their own mathematics 
understanding (Hoover et al., 2016), combined with specialized CRA is needed.

The research to practice gap remains prevalent in special education (Fuchs & 
Fuchs, 2001; Mastropieri et  al., 2009; McLeskey & Billingsley, 2008), with few 
school and district leaders using evidence-based practices (EBP) to influence policy, 
perspective, and decision-making in areas such as mathematics. Narrowing this gap 
is critical to improving student outcomes (Bain et al., 2009; Sindelar & Brownell, 
2016). Newer teachers need models of research-based validated practices with high 
standards of research and strong backgrounds in impacting learning outcomes as 
models (Brownell & Leko, 2018; Gilbert & Coomes, 2010), such as those provided 
in the cases studies within these chapters.

An example of EBP could be open-ended (OE) questions. Danielson and Axtell 
(2009) suggests that teachers prompt more authentic and thoughtful answers from 
students when they asked OE questions. OE questions prompt higher cognitive 
processing and critical thinking (Martinez, 1999) giving a more accurate under-
standing of what students have learned and their process behind the mathematical 
concept.

In a middle school mathematics classroom where teachers used more OE, stu-
dents demonstrated greater retention of knowledge and understanding of a 
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concept throughout the unit (Attali et al., 2016). A study of high school students 
with intellectual disabilities incorporated the use of OE questions in mathematics 
education to increase student vocabulary and comprehension. The use of OE 
questions prompted greater understanding and recall of the vocabulary (Roberts 
et al., 2019).

We applaud the focus of these authors on access. Other researchers have found 
that, with the appropriate tool, young students (PreK-second grade) with intellectual 
disabilities can develop basic coding skills using the Dash™ robot (Taylor et al., 
2017). The authors found that participants could learn to code and build on their 
learning over a series of explicitly taught steps using UDL supports and guidance. 
Robotics and coding align with the essential components of highly effective math-
ematics outcomes of strengthening problem solving skills, collaboration, communi-
cation, and critical thinking; yet, if equity and access are not provided, the potential 
of robotics to influence higher achievements in mathematics will not occur. 
Simultaneously, if students with a range of learning differences are not given the 
opportunity to learn critical thinking through rich discourse and have access to 
manipulatives and classrooms where they can learn with their peers, then future 
careers with mathematical foundations will no longer be an option.

Collectively we applaud these authors by providing the field with clear exam-
ples of the state of access and equity in mathematics at this time. We challenge 
these authors and the field of mathematics, in general, to be early adopters of 
emerging technology tools in virtual reality and augmented reality (e.g., Pokémon 
Go) to start to consider how these tools might portray concepts. Yet, we must 
consider how we will ensure access for students with visual impairments or other 
sensory-related disorders. We also see a need for richer, more diverse, and dynamic 
opportunities for multisensory learning in mathematics. This type of Montessori 
approach often occurs at the elementary level, but often the ability to ask students 
to think about the smell, taste, or touch of more advanced mathematical concepts 
is needed to address those with limited pathways in the visual or auditory modal-
ity, which are often the default when teaching mathematics, even in rich discourse 
settings. We also encourage the field to consider co-teaching that moves beyond 
just general and special education teachers to be inclusive of physical therapists, 
occupational therapists, counselors (e.g., math anxiety), science coaches, reading 
coaches, physical education teachers, art teachers, music teachers, and anyone 
available in the building. Too often, others assume they do not have the back-
ground to contribute to mathematics, or mathematic teachers may assume these 
other professionals do not have a role in their content. However, those listed above 
add a clear dimension of UDL to the classroom and create pathways to learning 
based not only on auditory or visual input. The power of the future in mathemati-
cal outcomes is bringing synergy to both the content and access to the content in 
novel and UDL formats to ensure the development of richer and stronger neu-
ropathways for deeper understanding in content, process, and outcomes of math-
ematical content.
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11.4  Closing Summary

Magnitude and Severity of the Problem Osher et al. (2016) suggest a need for all 
students, but especially students with disabilities, to have targeted support to gain 
employability skills. Yet, teaching these discrete skills has proven challenging for 
practitioners working with students with disabilities (Rollins, 2016), especially if 
the student has language impairments, such as those with learning disabilities (LD), 
autism spectrum disorder, or intellectual disability (Charman et al., 2015).

Student needs can hinder employability and are aligned with increased risk of 
anxiety, depression, low self-esteem, and peer rejection (Lane et al., 2012), which 
has a direct impact on class participation, collaboration, and even access to general 
education settings. As Rose et al. (2013) note, the psychosocial implications of peer 
rejection can lead to bullying. Frequently, elementary teachers express concern in 
the areas of SEL and communication for students with disabilities, noting a direct 
negative impact for those who lack social, behavioral, and functional skills (Odluyurt 
& Batu, 2009).

UDL embraces learner variability through (1) multiple ways to engage stu-
dents in learning, (2) multiple ways to present content, and (3) multiple ways for 
students to express what they are learning (Meyer et al., 2014; Rose et al., 2005; 
Rose & Meyer, 2002). This set of principles are critical in all settings but essential 
for those learners identified in these chapters; equally important to the neurodiver-
sity of students with disabilities is use of the application of UDL in a variety of 
contexts and classrooms (e.g., Courey et al., 2013; Coyne et al., 2010; Kennedy 
et al., 2014; Marino et al., 2014). Most applications of UDL principles provide for 
considered variability in representation, engagement, and expression for students 
with a range of academic or motivational needs by removing barriers in the 
curriculum.

Universal Design for Learning is foundational to the P-20 educational infrastruc-
ture in all countries. The authors across these three chapters clearly addressed the 
principles of UDL (Rose & Meyers, 2008) of ensuring multiple means of represen-
tation, engagement, and action-expression in teaching to ensure the mathematical 
content was accessible to students from diverse backgrounds. Yet, what is important 
is these approaches support students with disabilities, but are helpful to all learners 
in mathematics classrooms. The evolution of education in mathematics, for students 
who are neurodiverse, could lie in the use of UDL. The introduction of UDL pro-
vides opportunities for students to engage in learning and demonstrate their knowl-
edge, according to their strengths and interests. Through a UDL lens, including 
socializing, active learning, using concrete and abstract materials, communicating, 
and demonstrating their knowledge, is the pathway provided by these authors and a 
road we both advocate for personally and professionally. We hope the readers of 
these chapters will travel down these paths to ensure the success of each and every 
students in today’s mathematics classrooms.
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Chapter 12
Counting

Helen Thouless, Caroline Hilton, and Tim Webb

Abstract In this chapter, we start by defining what it means to be a counter and 
then explain what children need to be able to do to be successful at counting. 
Additionally, we define subitizing, explain its importance, and how it differs from 
counting. We complete the first section by discussing the importance of counting as 
a prerequisite to other aspects of arithmetic. In the following section, we discuss 
several challenges that counting poses for children experiencing mathematical dif-
ficulties, illustrated by examples from our research. One of these challenges includes 
the language of counting. In English, aspects of the language and sequencing of 
counting can be difficult for children, especially the teen number words, decade 
boundaries, counting above 100, and sequencing of numbers. Many of these char-
acteristics are common to other languages too. Other aspects of counting that prove 
difficult for many children are maintaining one-to-one correspondence while count-
ing unfamiliar sequences, understanding cardinality, finger gnosis, and using the 
formal symbolic notation for counting. In the final section of this chapter, we dis-
cuss and outline the activities that we have found to be useful to enhance the count-
ing skills of children with mathematical difficulties.
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12.1  The Importance of Counting and Subitizing

12.1.1  Counting

It’s as easy as one, two, three
Despite its reputation as something that is easy, counting is a complicated pro-

cess that takes children years to master. In order to become a proficient counter, a 
child has to master and coordinate a number of different concepts. Each of these 
concepts is more complicated than they seem, as each is comprised of several skills. 
In this section, we discuss the foundational research on counting. There are newer 
studies that build on this research, but we consider the ones cited here as too impor-
tant to omit.

The most commonly used model for describing what successful counting looks 
like is the model proposed by Gelman and Gallistel (1978). Gelman and Gallistel 
proposed five principles that include three “how to count” principles and two “what 
to count” principles.

The “how to count” principles are:

• The one-to-one principle (each object is counted once and once only)
• The stable-order principle (the number words are said in a stable order, even if a 

child cannot remember all the words – e.g., one, two, three, five, six)
• The cardinal principle (the last word in the count indicates the numerosity of 

the set)

The “what to count” principles are:

• The abstraction principle (any group of objects can be counted)
• The order-irrelevance principle (objects can be counted in any order and the 

answer will always be the same)

Each of these principles is more complicated than it appears on the surface. For 
example, even when children understand the importance of the one-to-one princi-
ple, they have to develop reliable strategies to ensure that they do count each object 
exactly once. One useful strategy that many children use is tagging, which is touch-
ing the objects as they count. Alibali and DiRusso (1999) found that preschool chil-
dren counted more accurately when tagging than when they gestured toward the 
objects, but even gesturing resulted in a more accurate count than when they used 
no active means for coordinating the correspondence between the number words 
and the objects to be counted. When counting involves less familiar number 
sequences, children are likely to make mismatches between their gestures and 
speech, and thus lose track of the counting process (Graham, 1999).

As children develop the stable-order principle, they go through a series of devel-
opmental steps to develop the canonical order for numbers. At first, children appear 
to learn the number word sequence as one chunk, “onetwothreefourfive”. Then they 
have to recognize that the number sequence is composed of distinct words, each of 
which has a unique meaning and comes in a specific order in the list (Baroody & 
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Wilkins, 1999). In English, children have to learn by rote the words up to 20 
(Callahan & Clements, 1984), because the English language has no discernible pat-
tern to the counting words up to 20. Once a child can count beyond 20, they can 
begin to perceive patterns in the counting words: the single-digit sequence 1–9 is 
repeated in each decade; decade transitions are signaled by nine; the decade names 
are related to single digit names and so they can use their prior knowledge of the 
single-digit patterns to generate the rest of the sequence to one hundred (Baroody & 
Wilkins, 1999; Callahan & Clements, 1984). Once children can count to one hun-
dred, they have to learn how knowledge of the patterns in the numbers and place 
value can be utilized to count above one hundred. Another related number sequenc-
ing skill is being able to name the number that comes next in the count without 
starting at one or zero, which is a skill that most typically developing children mas-
ter at around 5 years of age (Baroody & Wilkins, 1999).

There is no specific sequence for when children develop each of the counting 
principles. They may show different aspects of their understanding of counting as 
their knowledge of the counting principles develops and as they learn to coordinate 
these different principles (Johnson et al., 2019). Even children as young as 3 can 
have implicit knowledge of the counting principles with set sizes greater than the 
range that they can count successfully (Gelman & Meck, 1983). Johnson et  al. 
(2019) found that more than half of the 3–5-year-old children in their sample under-
stood the cardinality principle (i.e., the last number they said in their count), and 
used this principle even if other aspects of the count were wrong and they therefore 
said the wrong answer.

Although Gelman and Gallistel’s (1978) counting principles is a commonly cited 
model, another helpful model to consider was proposed by Steffe et al. (1983). This 
model is based on three key abilities:

• The ability to say the number word sequence
• The ability to identify (isolate) the countables (the objects that are to be counted)
• The ability to match (one-to-one) the counting words to the countables

These two models differ in a number of ways. An important difference is that 
Gelman and Gallistel (1978) are interested in “principles”, while Steffe et al. (1983) 
focus on “abilities” in terms of the child’s experiences.

Accordingly, Steffe et al. (1983) defined five levels of counting:

 1. Perceptual counters – in order to count and calculate children need to have physi-
cal objects, whether they are the original objects or representations, such as 
fingers.

 2. Figural counters – children can count without the need for the actual physical 
objects. For example, if four counters are covered by a cloth, a child would be 
able to say how many counters there were altogether if one more was added.

 3. Counters of motor unit items – physical actions, such as moving fingers, become 
the objects that are counted, rather than the perceptual or figural items themselves.

 4. Counters of verbal unit items – children no longer need any form of physical 
action, but can use the number words as countable objects in their own right.
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 5. Counters of abstract unit items – children can perform calculations without relat-
ing their actions to any actual objects or physical actions.

According to Steffe et al. (1983), children often move between these different types 
of counting and may even fall into more than one category. One of the issues that 
Steffe et al. acknowledged with this categorization, is the fact that it is very difficult 
to observe the different stages with confidence. They later argued that “at best an 
observer can make educated guesses, taking into account – as does any experienced 
diagnostician – several indications collected over an extended period of observa-
tion” (Steffe & Cobb, 1988, p.19).

Children need time to learn that counting is used to enumerate a set of objects 
and that unequal counts provide information about relative numerosities (Fuson & 
Hall, 1983). Children also need time to become confident that counting is more reli-
able than estimating for providing exact numerosities of groups of objects (Cowan, 
1987). This may partially explain Wynn’s (1990) observation that some children 
were able to count sets of objects that were placed in front of them, but when the 
same children were engaged in a give a number task, for example “give me three 
counters”, they would often fail to count and would instead grab a handful of 
objects. Give a number tasks are more complicated than counting sets because the 
child needs to remember the requested number, label each object taken with the cor-
rect number word, monitor their counting, and stop when they have the right num-
ber of objects (Johnson et al., 2019).

As has been shown, learning to count requires complex coordination of multiple 
skills. As a result, assessing children’s counting skills is no easy task, especially as 
these skills change over time. Fuson (1988) attempted to resolve this problem by 
identifying a developmental path for children from 3½ to 6  years of age. She 
observed that:

Both action parts of counting immovable objects – pointing and saying number words – 
undergo progressive internalization with age. Pointing may move from touching to pointing 
from a distance to using eye fixation. Saying number words moves from saying audible 
words to making readable lip movements to making abbreviated and unreadable lip move-
ments to silent mental production of words. (Fuson, 1988, p. 85)

This model of skill development is useful, but should be used with caution, given 
that different children may develop along different trajectories and that counting is 
used in different situations for different purposes.

12.1.2  Subitizing

A related but separate skill to counting is subitizing. Subitizing is when we instantly 
recognize the number of objects in a small group without counting (Sayers, 2015). 
Subitizing is a capacity that we are born with, as even very young babies can dif-
ferentiate between sets of different sizes for small numbers of objects (Starkey & 
Cooper, 1980).

H. Thouless et al.



245

There are two types of subitizing: perceptual and conceptual subitizing. 
Perceptual subitizing is when a person automatically and instantly recognizes small 
numerosities without having to count (Sayers et al., 2016). At 2 ½ years old, chil-
dren can subitize two or three objects (Schaeffer et  al., 1974), while adults can 
subitize (perceptually) up to four or five objects arranged randomly.

Sometimes common structures of numbers such as dice and dominoes enable 
quick recognition of patterns of dots. This is known as conceptual subitizing, which 
extends the ability to recognize numerosities beyond our perceptual subitizing 
range. This may be done by partitioning these large groups into smaller groups that 
can be perceptually subitized (Sayers et al., 2016), but as time goes on, patterns such 
as those on dice and dominoes, become easily recognizable because of their arrange-
ments. Conceptual subitizing can be a mid-point between enactive and symbolic 
understanding, because children can use the joining of images of numbers in spe-
cific patterns (moving beyond counting by ones) to build confidence and compe-
tence with number bonds before they move on to purely symbolic knowledge 
(Sayers, 2015).

12.1.3  Counting as a Prerequisite to Other Aspects 
of Arithmetic

There is much discussion about “Number sense” in relation to numerical under-
standing. In everyday life, “number sense” is often used to refer to a set of skills that 
are believed to be important for people to manage tasks, such as budgeting, estimat-
ing, and using timetables. The term “number sense”, as it relates to education in 
early number and arithmetic, has received a lot of scrutiny and has been defined in 
many different ways. Berch (2005) identified 30 listed components of number sense 
taken from a wide range of definitions. For brevity, we will use the seven key themes 
identified by Back et al. (2013, p.1836):

• Awareness of the relationship between number and quantity
• Understanding of number symbols, vocabulary, and meaning
• Systematic counting, including notions of ordinality and cardinality
• Awareness of magnitude and comparisons between different magnitudes
• An understanding of different representations of number
• Competence with simple arithmetical operations
• An awareness of number patterns, including recognizing missing numbers

With these in mind, it can be seen that counting experiences are important for 
developing number sense. For example, rote counting helps children learn that num-
bers come in a specific sequence, and therefore that different numbers are smaller or 
larger than others (Franke, 2003). As children count, they see patterns in the num-
bers, for example the ones that repeat every decade and a similar pattern in the tens 
place (Callahan & Clements, 1984). For an example of a child who explicitly uses 
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her knowledge of single digit patterns to support her crossing decade boundaries 
you may watch the video of Anna counting (https://prek- math- te.stanford.edu/
counting/anna- counts  (Ginsburg, 2020)). As children count beyond one hundred, 
they get a stronger sense of the relationship between ones, tens, and hundreds, in 
that ten ones make ten, ten tens make one hundred, ten hundreds make one thou-
sand, etc. (Franke, 2003), which aids with the formation of place value concepts 
(see Chap. 14 for a more detailed discussion of this). Object counting and Give me 
a number tasks also help children develop a concrete understanding of numerical 
relationships, allowing them to understand what the abstract number names mean in 
reality and that these meanings can be used to count many different types of things 
and to understand cardinality (Gelman & Meck, 1983).

These counting skills also impact children’s ability to calculate and solve prob-
lems. Thouless (2014) found that two-thirds of her 9–10-year-old students with dys-
lexia made counting errors when solving word problems. They had understood the 
word problems and were utilizing strategies that should produce correct answers, 
but due to counting errors gave the wrong answer. Some of these errors were due to 
miscounts at the decade boundaries (e.g., from 29 to 30) and some were due to one- 
to- one correspondence errors. Importantly, in the simple counting tasks the children 
had not shown these one-to-one correspondence errors, but with the added difficulty 
of making sense of the word problem, these procedural errors appeared. In general, 
if counting is difficult the amount of attention that is required to count will preclude 
sufficient attention being allocated to following the procedure correctly or to solv-
ing the problem (Dowker, 2005).

Finally, we need to consider the role of counting in addition and subtraction. 
Carpenter and Moser (1984), in a longitudinal study of 88 children aged 6–9 years, 
observed the changes in strategy use when children engaged in activities involving 
addition and subtraction. For addition, they identified five distinct strategies:

• Count-all (e.g., for 4 + 5, counting out four objects, then counting out five objects, 
and finally counting all the objects: 1–2–3–4; 5–6–7–8–9)

• Count on from the first number (e.g., for 4 + 5, counting on from four while 
keeping track of the five items being added: 4; 5–6–7–8–9)

• Count on from the larger number (e.g., for 4 + 5, counting on from five while 
keeping track of the four items being added: 5; 6–7–8–9)

• Use known number facts retrieved from memory (e.g., I know that 4 + 5 = 9)
• Use derived facts (e.g., using the fact that 4 + 4 = 8 to work out that 4 + 5 must 

be equivalent to 8 + 1)

For children to move from the count-all strategy, they need to be able to count on 
from any number in the number sequence. For children to be able to count on from 
the larger number, they need to be able to quickly identify the greater of two num-
bers. These skills are all underpinned by knowledge and understanding of the count-
ing system. The same can be seen with subtraction.

For subtraction, Carpenter and Moser (1984) again observed a series of five dis-
tinct strategies:

H. Thouless et al.
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• Separating from (e.g., for 6–2, count out six objects and take two away to leave 
four objects)

• Adding on (e.g., for 6–2, count out two objects and then add on objects until six 
objects have been produced. Count out the four objects that have been added)

• Matching (e.g., for 6–2, line up the six objects and the two objects so that they 
are matched one-to-one. Count the remaining four objects in the unmatched group)

• Counting down from (e.g., for 6–2, count back two from six by keeping track 
both of the counting words five and four and the number of words counted, to get 
the answer four)

• Counting up from given (e.g., for 6–2, count up from two to six, keeping track of 
the number of counting words used, to get the answer four)

Unlike addition, the strategies for subtraction do not appear to have a develop-
mental hierarchy. For a detailed view on learning trajectories, it may be worth 
exploring the “Learning and Teaching with Learning Trajectories” website, created 
by Clements and Sarama (2017/2019) (https://learningtrajectories.org/index.php/
learning_trajectories). These learning trajectories are not proposed as developmen-
tal, but rather as a scaffold that supports learning.

12.2  The Challenges of Counting

12.2.1  The Language of Number

The skills of counting that we use are often taken for granted. In fact, there are 
remote communities all over the world where there is very little need for counting 
and so the language of counting is minimal, or may not exist at all (Gelman & 
Butterworth, 2005; Frank et al., 2008). Thus, counting is very much a cultural arti-
fact, as are the very words we use to count. The first challenge is to ensure that the 
counting opportunities we provide for children are purposeful and meaningful. The 
next is to support children’s understanding of foundational patterns in the number 
words themselves.

12.2.1.1  Does It Matter What Number Words We Use?

Children learn to use number words for counting real objects long before they are 
able to use number words as abstract entities to solve purely mathematical problems 
(Hughes, 1986). For example, Hughes (1986) found that 3–4-year-old children were 
able to solve numerical problems with cubes, but could not perform similar calcula-
tions when they were asked using the abstract language of mathematics (e.g., “If I 
have three cubes in my box and I take one out, how many will I have left?” as 
opposed to “What’s three take away one?”). Children need a lot of practice with 
counting real objects, before they can move onto the abstract world of mathematics. 
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When solving problems with real objects, children often model the problems using 
their fingers as concrete referents. Hughes (1986, p.51) argues that “Fingers can 
thus play a crucial role in linking the abstract and the concrete, because they can be 
both representations of objects and objects in their own right.” This is supported by 
recent evidence from neuroscience (Berteletti & Booth, 2015).

In order to count objects, children need to become familiar with our base-10 
number system. This system is the result of thousands of years of human develop-
ment. It is a very sophisticated system, so it is not surprising that it takes time for 
children to learn how to work with it. A particular challenge when learning to count, 
is to understand the links between our spoken and written number systems (trans-
coding) (Nunes & Bryant, 1996). In the English language, this is particularly evi-
dent with the teen numbers, which do not seem to follow the same rules as for 
numbers between 21 and 99 (and beyond). For example, look at the numbers “19” 
and “91”. When we say the numbers, they both start with “nine” and so it is easy to 
get them confused. In addition, it is easy to confuse numbers such as “forty” with 
“fourteen”, because the last syllables are very similar (this is a particular challenge 
for a child with a hearing impairment). To properly count in the base ten system, 
children have to learn about these inconsistencies in our language of numbers; they 
have to learn that the teen numbers do not follow the rules of the tens numbers. This 
is important because children learn to use numbers verbally before they start to read 
and write numbers. When children are in the early stages of learning to read and 
write numbers, problems are often observed due to transcoding errors caused by the 
confusion between the spoken and the written number words (Nunes & Bryant, 1996).

In addition to difficulties with transcoding, children who are schooled in lan-
guages, such as English, which have irregular counting systems, may struggle with 
remembering the number words and internalizing the meaning of numbers. A regu-
lar base-10 counting system requires knowledge of the words zero to nine, with the 
former being a challenging word for “nothing to count.” All numbers in this system 
are made from combinations of these. For example, in a regular counting system, 
such as Welsh, the number “47” is “pedwar deg saith” (which translates literally as 
“four-ten-seven”). This means that children learning this number system can make 
all the numbers up to 99 using only ten number words. In addition, the relationship 
between the number words and the actual numbers they represent expresses the 
multiplicative relationship that is implicit in our base-10 place value system (see 
Chap. 14 for further discussion of this). For example, in Welsh, the number 80 is 
identified by the words “wythdeg” (“eight-ten”). This is very different from the 
irregular number words in the English language where the number “47” is “forty- 
seven”. This places additional demands on the number of words (in a fixed sequence) 
that need to be learned and also the meaning of those words within the base-10 
number system. For example, a child learning number words in English has to learn 
all the words from zero to ten as well as the teen words and words for the “tens” 
numbers such as “twenty, thirty, forty” and so on. It has been shown that children 
who learn in a language (e.g., Chinese) that uses a regular number system do better 
in arithmetic tasks (Fuson & Kwon, 1992), due to their increased compatibility with 
the place value system, and find it easier to learn the correspondence between oral 

H. Thouless et al.



249

and written representations of numbers in that system (Dowker & Roberts, 2015). 
In addition, Dowker and Roberts (2015) have suggested that children who learn to 
use more regular counting systems, develop a better understanding of numerical 
relationships, especially for numbers beyond 20.

12.2.2  The Role of Working Memory

Children with poor working memory (see Chap. 2) are likely to have difficulty with 
arithmetic, particularly when solving problems that require counting on or counting 
back mentally (Gathercole & Alloway, 2008). This is because working memory 
overload often results in errors being made. The demands on children to learn num-
ber facts and perform mental calculations, without concrete or visual aids to support 
them, can place a significant demand on children with poor working memory. This 
can lead to a lack of confidence and lack of progress.

In general, children with poor working memory score poorly in all areas of math-
ematics (Gathercole & Alloway, 2008). In assessments of working memory, how-
ever, children with special educational needs and disabilities often have an uneven 
profile. For example, children with motor coordination difficulties tend to be more 
successful with tests of verbal working memory than visuo-spatial working mem-
ory, whereas children with language impairments tend to be more successful with 
tasks of visuo-spatial working memory than tasks involving verbal working mem-
ory (Gathercole & Alloway, 2008). Consequently, it is important to know the spe-
cific working memory issues that children have, in order to know how best to 
support them.

12.2.3  Mathematical Learning Disabilities and Dyscalculia

The terms Dyscalculia and Mathematical Learning Disabilities (MLD) are highly 
contentious and have different meanings in different countries (see Chap. 1 for fur-
ther discussion of this). The unifying consensus on the topic is that the children 
identified as having MLD or being dyscalculic have difficulties learning number 
facts both procedurally and conceptually (Scherer et al., 2016). Procedural difficul-
ties with number fact knowledge revolve around limited fact retrieval when problem 
solving, whereas conceptual difficulties revolve around place value issues such as 
grouping and segmenting, the relationship of numbers to the place value system, 
verbal counting, counting by groups, counting principles, and transferring word 
problems into mathematical expressions. Children identified as being dyscalculic 
also have difficulties with subitizing and will be slow to work out which of two 
numbers is larger (especially presented symbolically) (Reeve et al., 2012).

Of particular relevance to this chapter are the studies that suggest that young 
children with MLD have persistent difficulties in understanding counting concepts 
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(Geary et al., 2007). As a consequence, children may be less likely to move beyond 
laborious counting-based strategies when engaging in arithmetic problem solving. 
When compared with their typically developing peers, or with children who are 
performing at a lower level, children with MLD have been described as those that:

• Rely on developmentally immature strategies
• Frequently commit counting errors
• Use immature counting procedures [they often use counting-all rather than 

counting-on]
• Have difficulties retrieving basic facts from long-term memory

(Geary & Hoard, 2005, p.258)

It has been suggested that children with MLD have a specific difficulty with number 
representation or processing, rather than with more general mathematical problem- 
solving skills.

While the notion of MLD may be problematic, the recommended strategies to 
support children who are identified as having MLD are similar to those that are 
recommended for other low-achievers and will be discussed later in this chapter.

12.2.4  The Role of Fingers

Whenever a counting technique, worthy of the name, exists at all, finger counting has been 
found either to precede it or accompany it. (Dantzig, 2007, p.9)

It has been recognized across the disciplines of education, psychology, and neuro-
science that fingers play an important role in the development of children’s early 
number concepts. It can be no coincidence that we have ten fingers (including 
thumbs) and that we use a base-10 number system. It also seems likely that our tally 
system is linked to our hands, with the sticks being fingers and the tied group being 
a hand or fist. In fact, the word for “five” in many languages has its root in the word 
for “hand” or “fist”. Nevertheless, the use of fingers is a learned, not a spontaneous 
activity (Crollen et al., 2012). In most cases, children begin to use their fingers in 
response to those around them modeling their use (Hughes, 1986).

While English and many other cultures base their counting on base-10, there are 
other cultures that use other bases. For example, Pular, a West African language, 
essentially uses base-5 so that three is tati, five is jowi, and eight is jeetati (five- 
three). Although this counting system is in a different base than English, it is still 
related to how many fingers we have and children are still taught to count on 
their hands.

When learning to use their fingers, a child often uses them in three ways: to rep-
resent numerosities (e.g., by holding up three fingers to show that she has three 
strawberries); to keep track during a count (e.g., by counting on three to find out 
how many strawberries she has in total); and to point at objects in one-to-one cor-
respondence activities.
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To use one’s fingers as a tool to help with counting, requires the ability to identify 
each individual finger. For example, when we are asked to find the fourth character 
in our password, or to help with skip counting or group counting for multiplication, 
it is common practice to use fingers. What is amazing is that we know when we have 
got to the fourth finger – we do not need to count to check. The ability to do this so 
reliably is due to our finger gnosis. Finger gnosis (or finger awareness) is concerned 
with knowing one’s fingers and, for example, being able to identify one’s own fin-
gers in response to touch. In typically developing children, finger gnosis develops 
quickly up to the age of 6 years and then continues to develop at a slower rate up to 
the age of 12 years, at which point it should be fully developed (Strauss et al., 2006). 
When finger gnosis is disrupted in some way, young children often have difficulty 
with tasks involving numbers, because they try to work out calculations mentally, 
rather than using their fingers as a counting tool to help (Hilton, 2019).

Research suggests that if children have poor finger gnosis (Noël, 2005), or poor 
finger-counting skills (Jordan et  al., 1992), they are likely to be delayed in their 
acquisition of early arithmetic knowledge and understanding. In fact, the relation-
ship between finger gnosis and achievement in mathematics is stronger than the 
relationship between tests of general cognitive ability and achievement in mathe-
matics (Noël, 2005).

Use of fingers for calculation is an embodied activity, so it can quite quickly 
become a part of our practice. Fuson and Secada (1986) conducted an intervention 
study comparing the use of diagrams and fingers for solving arithmetic problems. 
They found that the children who were taught to use their fingers continued to use 
them after the intervention, whereas the other children did not independently choose 
to continue using the diagrams.

Given the significance of fingers for our number development, we need to con-
sider how to support children who do not easily use them. It has been found that 
interventions that support children in developing their finger gnosis are very effec-
tive (Gracia-Bafalluy & Noël, 2008; Hilton, 2019). A series of activities based on 
the research done by Gracia-Bafalluy and Noël (2008), entitled “Activities for 
Finger Training”, can be downloaded from the website “Youcubed”  (https://www.
youcubed.org/wp- content/uploads/2017/03/Finger- Activities- vF.pdf).

12.3  Assessing Counting Skills

In this section, we will be exploring three different research-based assessment 
approaches: the use of a more formal assessment tool (Jordan et al., 2008), the use 
of effective frameworks based on foundational number sense (FoNS) (Andrews & 
Sayers, 2015), and assessment through play based on the work of Wager and Parks 
(2016). As a teacher, you have to decide which approach will give you the best 
information about your children’s knowledge, understanding, and skills. The exam-
ples we have provided are just examples, and if these approaches are not suitable for 
you feel free to adapt them or find other approaches.
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It has been shown that children from backgrounds of lower socioeconomic status 
(SES) often start school with fewer skills in early number knowledge (Ramani & 
Siegler, 2008). Poor number sense puts children at risk for mathematical difficulties 
(Jordan et al., 2008). Therefore, we need to have useful assessment tools to identify 
children’s areas of strengths and weaknesses in order to provide effective 
interventions.

12.3.1  Number Sense Assessment Tool

Jordan et al. (2008) developed a number sense assessment tool that is specifically 
aimed at identifying the early number skills that underpin later arithmetic and 
numerical problem-solving. The components in the test include counting and 
number recognition, number knowledge, as well as aspects of numerical opera-
tions. We describe the questions asked and provide some supplementary questions 
to support a wider range of skills that may help to provide useful additional 
information.

For counting, children are asked to count as far as they can, with the intention of 
stopping them if they get to ten. Children can restart only once, but they can self- 
correct as often as they need. In the next activity, a puppet counts an arrangement of 
alternating blue and yellow counters (or dots). The puppet may count the yellow or 
the blue counters first. The puppet will sometimes make mistakes and will some-
times count correctly. The child needs to say whether the puppet has counted cor-
rectly. We think it would be useful to add to this an example of “give me……
counters”, with a small number of counters (say three or four). This is because while 
a child is counting, they may find it hard to hold in mind the number of items that 
were requested. This has been shown by Wynn (1990) to be a more challenging task 
and is distinguished from a demonstration of cardinality using Gelman and 
Gallistel’s (1978) counting principles.

The more abstract number knowledge aspect of the assessment focuses on 
knowledge of symbolically represented numbers, as can be seen below. The tasks 
have been described so that they can be adapted by teachers and support staff.

In the first part of the assessment, children are shown a numeral (e.g., 4) and 
asked what number comes next and then what number comes two numbers after. 
We suggest that it would also be useful to ask what numbers come before, in 
order to determine how well children know the number sequence backwards. 
This assessment will tell you how well children can count on and back from any 
given number, or whether when calculating the answers, they need to start 
from one.

Next, children are shown two numbers (e.g., 5 and 8) and are asked which 
number is bigger, or which number is smaller. This assessment is to see if chil-
dren recognize the symbols, can attach meaning to them, and can identify their 
position in relation to each other on a mental number line (Siegler & Booth, 
2004). For children who are at a lower developmental stage, this could be 
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adapted and piles of different colored counters could be placed in front of a 
child for them to say which pile is bigger or smaller. While this task relies more 
on visual perception, it will let you know whether the child understands the 
language of relative size.

Finally, children are presented with three numbers, each placed at one corner of 
an equilateral triangle (e.g., 7, 11, and 13). The triangle is shown with the base hori-
zontal and with the middle number at the apex of the triangle. The child is asked 
which number is closer to the one at the apex (in this case, “Which is closer to 11, 7 
or 13?”).

To assess number operations, you can start with questions involving counters and 
a box (or other appropriate resource) to hide the counters. Both the assessor and the 
child have a set of counters. A small number of counters are shown to the child. The 
counters are then hidden in the box and the child is asked how many counters have 
been hidden. The child can either say the number or put out the same number of 
counters from their collection. The task is then repeated, but this time a small num-
ber of counters are added or removed, one at a time. The child then has to say or 
demonstrate how many counters there are in the box. We suggest leaving the box 
open, so that the child can check. The final questions are focused on some “real life” 
problems, such as “If you have three crayons and I have four crayons, how many 
crayons do we have altogether?”

If this test is used, we recommend that a note is made of the strategies the child 
uses when solving the problems. If possible, it may be helpful to video record the 
child, to enable a more in-depth analysis of the strategies used and to help plan for 
next steps.

12.3.2  Fundamental Number Sense (FoNS)

Fundamental number sense is based on the idea that children need number sense in 
order to be able to access the mathematics curriculum (Gersten & Chard, 1999). In 
order to identify the characteristics of a child with FoNS, Andrews and Sayers 
(2015) have identified an eight-point observation schedule. While their schedule has 
been designed for use in classroom observations, we believe that it could equally 
well be used as an assessment (and planning) tool. The schedule is exemplified in 
Table 12.1 (from Andrews & Sayers, 2015, p.262).

The FoNS framework has been trialed in Hungary, Sweden, and England 
and initial findings suggest that the framework can be used across cultural 
boundaries (Andrews & Sayers, 2015). By identifying children’s counting 
characteristics, this framework can provide a useful tool for observation, 
assessment, and planning, making it very versatile and supportive to class-
room practitioners.
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Table 12.1 Exemplifying the FoNS framework

FoNS characteristic What children might be doing

Number recognition Identify a particular number symbol from a collection of number 
symbols and name a number when shown its symbol

Systematic counting Count systematically, both forwards and backwards, from arbitrary 
starting points

Relating number to 
quantity

Understand the one-to-one correspondence between a number’s name 
and the quantity it represents

Quantity 
discrimination

Compare magnitudes and deploy language like “bigger than” or 
“smaller than”

Different 
representations

Recognize, work with, and make connections between different 
representations of number

Estimation Estimate, whether it be the size of a set or the size of an object
Simple arithmetic Perform simple addition and subtraction operations
Number patterns Recognize and extend number patterns and, in particular, identify a 

missing number

12.3.3  Using Learning Stories

Learning stories involve four actions of assessment: describing, documenting, dis-
cussing, and deciding (Carr, 2001). Describing is the process of identifying learning 
opportunities for a child, which appeal to their interests and ways of learning. When 
describing, the observer creates a narrative of what the child is trying to do and how 
they are doing it. Documenting is the process of gaining evidence through, for 
example, photographs, work samples, or video recordings. Discussing involves the 
process of reflection, interpretation, and discussion with others, such as parents, 
care givers, or other staff, in order to better understand what has been observed. 
Deciding is the process of planning next steps, based on the findings.

By using learning stories to assess mathematical knowledge and understanding, 
Wager and Parks (2016) proposed a method that relies on in-the-moment decision 
making. The focus of this approach to assessing children’s mathematical under-
standing relies on school staff being able to notice the moments during play, when 
there is an opportunity to observe children and support them in exploring and com-
municating their mathematical experiences. During their study, Wager and Parks 
(2016) identified occasions where school staff found opportunities to explore chil-
dren’s mathematical knowledge and understanding through observations, question-
ing, and scaffolding. They also noted occasions where the staff member had tried to 
understand the children’s thinking by engaging with the activities and sustained 
shared thinking.

One potential disadvantage of this method is that it relies on a thorough under-
standing of the pedagogical aspects discussed in this chapter. However, it enables 
school staff to be much more responsive to the children and to capitalize on those 
opportunities that happen spontaneously and are motivating and interesting for the 
children. The vignette below, taken from Wager and Parks’ (2016) study illustrates 
how this assessment tool can work:
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Birdie first noticed when, unprompted, Tommy counted the four children at the art table and 
then counted out one marker for each child. After observing Tommy’s spontaneous count-
ing, Birdie prompted him to count several more times that morning, each time with a higher 
number. When another friend joined the art table (where the markers and colored pencils 
were now superheroes instead of drawing utensils), Birdie asked him “how many friends 
were at the art table?” and “can you count them?” She then followed him to the block area 
where he was playing with six cars and asked “how many?” and asked again at snack time 
when nine snacks were handed out. Birdie described what she learned about Tommy from 
these interactions, “When counting people he remembered to count himself. When he lost 
his place or got confused he started all over. He pointed to each thing when he counted, but 
he sometimes touched them. Sometimes he starts counting from the right side, but he usu-
ally counted from the left side. He also lined things up in a row to count them. (p. 996)

As can be seen from this episode, the teacher not only learned about the child’s 
knowledge and understanding of counting but was also able to articulate how the 
child understood their mathematics within a meaningful context (for further discus-
sion of this, see Chap. 9).

12.4  Activities to Enhance Counting Skills

12.4.1  Ten Nice Things (Skinner, 1997)

Ten Nice Things is an appropriate way for assessing children between 2 and 4 years 
of age. Each child selects ten nice things from a larger collection. The first child 
rolls a die with dots on it, counts the dots, and gives that number of objects to the 
child next to them. That child then rolls the die, counts the dots, and gives that num-
ber of objects to the next child, and so on.

As an example, we present Emmanuel, a 4-year-old, who was attending a nurs-
ery school class for children with special educational needs. It had been difficult to 
assess Emmanuel because of his speech, language, and communication needs. 
However, playing the Ten Nice Things game with him allowed me to assess his 
counting skills in a fun, nonthreatening environment.

At first, it was just Emmanuel and I playing the game, because I knew that he had dif-
ficulties with turn-taking. We each started with ten objects and a dotted die. Emmanuel 
started off subitizing up to three dots, but with practice he could subitize all six of the dice 
patterns. He could also count out a set of ten objects. When Emmanuel became confident 
with this version of the game, I increased the number of objects to fifteen and used two 
dotted dice. Counting out 15 objects and adding the sums of the two dice were both more 
difficult tasks for him, but with my support he was able to engage in these more difficult 
versions of the game. Simultaneously, I also started to get him to play the ten objects ver-
sion of the game with one of his classmates. Importantly, playing this higher-level version 
of the game provided me with ample opportunities to assess his counting skills beyond ten.

This rather simple but engrossing game supports children to develop their one- 
to- one correspondence, stable order principle, cardinality, counting sets, making 
sets, subitizing, sharing, and turn-taking skills. Simultaneously, it allows a teacher 
to assess those skills in a playful context.
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12.4.2  Making Sense of Counting

The use of a regular counting system can be very helpful for children who have dif-
ficulty remembering all the number words and for those who get confused with the 
meaning of number words. By adopting a regular number system (see below), that 
uses fewer words, children are able to access the mathematics without the language 
getting in the way, because the language demands are reduced and the base-10 
meanings of the words above ten, are explicit in the words used. Children who use 
a home language where place value is transparent (for example, Japanese, Mandarin, 
Welsh, and Swahili), could be encouraged to use their home language to count and 
maybe share this knowledge with others (Table 12.2).

A system such as this can be adapted to meet the needs of a class or individual 
child and as long as parents/care givers are notified of this alternative number sys-
tem, children should be able to access numbers and numerical activities more easily 
both at school and at home.

I used this system with a group of children who understood the principles of 
addition and subtraction, but frequently made errors because they had difficulty 
remembering the words for the “teen” numbers. Providing the children with this 
alternative counting system enabled them to access the mathematics and demon-
strate their understanding with confidence.

12.4.3  Counting Collections

Counting Collections is an instructional activity that focuses on object counting 
while encouraging children’s engagement in the activity (Franke et al., 2018). In 
Counting Collections, the teacher gives each child a bag containing a number of 
objects appropriate for the number range within which the child needs to practice 
counting. The child counts the objects in the bag. If the number of objects are small 

Table 12.2 In English, a possible set of number words could be

1 – one 11 – ten-one 21 – two-ten-one
2 – two 12 – ten-two 22 – two-ten-two
3 – three 13 – ten-three 23 – two-ten-three
4 – four 14 – ten-four 24 – two-ten-four
5 – five 15 – ten-five 25 – two-ten-five
6 – six 16 – ten-six 26 – two-ten-six
7 – seven 17 – ten-seven 27 – two-ten-seven
8 – eight 18 – ten-eight 28 – two-ten-eight
9 – nine 19 – ten-nine 29 – two-ten-nine
10 – ten 20 – two-ten 30 – three-ten
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the child can count by ones, but with larger numbers the child may group the objects 
to make the counting more efficient. Once the child finishes counting, they write the 
number of objects they counted and represent how they counted them. This activity 
supports beginning counters to develop all five of the counting principles (Gelman 
& Gallistel, 1978), but it also supports more advanced counters to develop unitizing, 
skip-counting, and experiences with place value.

Sekio was an 8-year-old boy who attended a self-contained special education 
class. At the beginning of the school year, he could count up to 12 objects accu-
rately, had inconsistent cardinality, and wrote “7” when asked to represent this 
count. By the end of the school year, he could reliably count up to 37 objects accu-
rately, consistently demonstrated cardinality, and knew that he should represent 
every block counted.

Sekio had already spent 4 years in the education system and yet was unable to 
count beyond 12 accurately. During the year, he was given regular experiences of 
counting beyond the troublesome teens. From the beginning, he was always given 
bags with at least 20–30 objects in them, and these numbers increased as his confi-
dence increased. The bags contained interesting objects, such as colorful erasers, 
cars, frogs, beads, pennies, etc. (see Chap. 9 for more discussion of this).

Sekio was given organizers to help his accurate counting, such as a number line, 
so that he could match one object with each number, giving him the visual cue of 
the number to help him count accurately. He was also given organizers to help him 
represent his count, such as a blank number grid to write his count in.

Sekio showed better counting skills and growth in his coordination of the count-
ing principles when he was working with larger sets of objects and with sets of 
objects that were motivating and interesting. These findings match those of Johnson 
et al. (2019), who found that children can show understanding of more complicated 
tasks that are not shown on simpler tasks. Therefore, we should not restrict children 
to counting small sets of objects because of our preconceived understanding of their 
capabilities.

12.4.4  Choral Counting

Choral Counting is an instructional activity that both incorporates appropriate 
mathematical content for young children and provides an opportunity to engage in 
mathematical discussions (Franke et al., 2018). There are two sections to Choral 
Counting: (1) the number sequence and (2) pattern identification and expansion. It 
is during the second section of the activity that children engage in mathematical 
discourse by expressing their own mathematical ideas.

In Choral Counting, the teacher has to first choose an appropriate counting 
sequence for the children. For younger children, appropriate counting sequences are 
by ones, twos, fives, tens, or backwards by ones. Once the counting sequence has 
been introduced to the children, the class counts together while the teacher strategi-
cally records the count on the board so that certain patterns emerge. After writing 
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three or more rows or columns, the teacher stops the count and asks the children to 
identify patterns in the numbers. Once a child has stated a pattern they can be asked 
to extend, compare, or justify their pattern, and other children can be asked to build 
on what the first child has said. This activity supports children to develop a stable 
number sequence, both by ones and when skip-counting, and to promote an under-
standing of place value.

Ali was a 6-year-old boy who had speech, language, and communication needs. 
At the beginning of the school year, Ali had difficulties counting by ones above 12, 
but could reliably count ten objects, and recognized the symbols: 1, 2, 3, 8, and 10. 
When Ali started participating in Choral Counting, he could recognize that a count 
by 2 s, arranged in a 5x6 grid, would always have a four in the ones place in the 
second column. Later in the year, he recognized that the last two digits in the first 
row of a count by ten would always be ten. He not only recognized the regularity in 
the number system in columns but could also see regularity across columns and 
could predict that the number to the right of 310 would be 410. Although these 
numbers were well above his counting range, he could use the regularity in the 
number system to predict what would come next. By the end of the year, Ali could 
rote count to 100 with the visual support of a hundreds-chart and recognize many of 
the numbers up to 100. Through Choral Counting, Ali had made significant progress 
and, importantly, he then understood that there is a system and pattern to numbers.

12.4.5  Quick Images—Subitizing

Quick Images is an instructional activity designed to promote conceptual subitizing 
and to help children develop flexibility with numbers (Parrish, 2010). The teacher 
shows an image that has dots or objects arranged with some sort of order, e.g., eight 
dots within a Tens Frame. The image is only seen by the children for 2–3 seconds. 
Then the teacher either asks the children how many dots they thought they saw or 
asks them to draw what they saw. Then the teacher tells the children that they will 
get a chance to revise their answer before showing the image for another 2–3 sec-
onds. Once the children are sure about how many dots they saw, the teacher shows 
the image again and asks the children to explain how they saw the image while the 
teacher records their thinking.

The teacher in a primary self-contained class laminated a number of fives and 
tens-frames with a variety of numbers of dots on them and carried them with her to 
the bus line. In this way, she could use every moment of the school day for learning. 
There were a number of questions she asked with these cards, including: “How 
many dots are there?”, “How do you see the dots?”, and “How many more dots do 
I need to make ten?” With these questions she was addressing conceptual subitizing 
and number bonds up to ten. With her most advanced children she could also show 
two cards at the same time to help them think about adding strategies above ten 
(Hollister, 2009).
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12.4.6  Children’s Literature

Books that require and develop counting skills are very helpful. For example, the 
book “One is a Snail, Ten is a Crab” (Pulley Sayre & Sayr, 2004), supports chil-
dren’s understanding of part-part-whole relationships. This is done by exploring the 
different numbers of legs that can be obtained by combining different animals. For 
example, you can make five legs by putting together a snail (one leg) and a dog (four 
legs). It then moves on to help children understand about counting in tens. Other 
books, such as, “Five Little Monkeys Jumping on the Bed” (Christelow, 1989) pro-
vide children with opportunities to count backwards as well as forwards.

Children’s literature can provide very powerful ways to engage children in count-
ing activities and in problem solving. When choosing number books to read, it is 
helpful to know that some researchers have found that children learn more about 
counting when numbers are embedded in a story (Carrazza & Levine, 2019).

When I have used children’s literature, it has helped to engage children by pro-
viding a meaningful context. The great thing about children’s literature is that it 
engages children’s imagination, so the activities can be directly related to the book 
and the book becomes a stimulus for further mathematical activities.

12.4.7  Music

Music can provide very powerful ways for children to “feel” a rhythm and so prac-
tice counting as they move to the music. For example, children can be engaged in 
moving round the room to a march such as the music from “The Great Escape” 
(Ear8002, 2012) for practicing counting in twos and exploring multiplicative rela-
tionships. This can be developed further by exploring music with different meters. 
Activities like these enable children to explore and count in a dynamic, multisen-
sory, and embodied context.

12.4.8  The Seven Principles of Working Memory Intervention

As many children who have difficulty with counting also have poor working mem-
ory, we thought it would be useful to include some tips on how to support children 
with poor working memory to access the curriculum. These “principles” are based 
on the work of Gathercole and Alloway (2008).

 1. Recognize working memory failures
 2. Monitor the child
 3. Evaluate working memory loads
 4. Reduce working memory loads when necessary
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 5. Repeat important information
 6. Encourage use of memory aids
 7. Develop the child’s own strategies to support working memory

12.5  Conclusion

While counting appears to be a simple mathematical activity, it is both more involved 
than it seems and fundamental to number sense and arithmetic. The complexity of 
counting means that it causes many pitfalls to the young learner of mathematics: 
depending on the child’s home language, the language of counting may make the 
sequence and structure of the number system more or less obscure; a more obscure 
counting system (such as the one in English) may put more of a burden on children’s 
working memory and make it harder for them to allocate sufficient resources to 
other aspects of arithmetic, such as accurate tagging (one-to-one correspondence) 
or stopping a count down at the appropriate spot. Also, children without finger gno-
sis or a good sense of the relative size of numbers, will have difficulties counting 
accurately or knowing that their count is reasonable.

Given the issues caused by poor counting that we discussed in this chapter, it is 
vital to know how skillful young children are at counting and which aspects of 
counting they find difficult. Fortunately, there are a wide variety of assessments that 
can give this type of information as well as many engaging, educational activities 
that will give children the practice they need to become more expert counters.
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Chapter 13
Additive Reasoning and Problem-Solving

Yan Ping Xin and Signe Kastberg

Abstract In this chapter we illustrate how a computer-assisted intervention pro-
gram, COMPS-A that integrates a constructivist view of learning and explicit 
teaching of mathematical model-based problem-solving, can help students with 
learning disabilities or difficulties in mathematics. Building on students’ develop-
ment of fundamental ideas such as “number as the composite unit” (which natu-
rally leads to the part-part-whole additive relationships), COMPS-A emphasizes 
students’ understanding and representation of mathematics relations in algebraic 
equations and, thus, supports growth in generalized problem-solving skills. 
Findings from empirical studies indicate that elementary students with learning 
difficulties in mathematics can be expected to move beyond concrete operations 
and toward thinking symbolically or algebraically. Algebraic conceptualizations 
of mathematical relations and model-based problem-solving can be taught through 
systematic strategy instruction. Introducing symbolic representation and alge-
braic thinking in earlier grades may facilitate a smoother transition from elemen-
tary to higher level mathematics and improve middle- and high school mathematics 
performance.
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During the past decade (2007–2017) the mathematical performance of students with 
disabilities or learning difficulties has not shown significant improvement. 
According to the most recent National Assessment of Educational Progress (NAEP, 
2019) in mathematics, while 14% of fourth-graders without disabilities in the 
U.S. scored below the basic level, 50% of fourth-graders with disabilities scored 
below the basic level. While 25% of eighth-graders without disabilities scored 
below the basic level, 68% of eighth-graders with disabilities scored below the basic 
level. The gap between students with disabilities and their same-age peers grew. 
Note that students who scored at the basic level exhibited only partial mastery of 
prerequisite skills (NAEP, 2019). That is, over 50% fourth-graders and 68% eighth- 
graders with disabilities have limited prerequisite skills for fourth- or eighth-grade 
mathematics. The teaching of mathematics to students with diverse needs chal-
lenges teachers. Additive word problem-solving and reasoning is a foundation for 
learning many mathematics concepts and a core part of elementary mathematics. 
Many primary school students with learning disabilities/difficulties in mathematics 
(LDM) have limited proficiency in additive problem-solving that results in lifelong 
challenges with mathematical problem-solving. Quotes from our interviews (Xin 
et al., 2018) with elementary mathematics teachers who worked with students with 
diverse needs suggest that these teachers face significant challenges in their work 
with children with LDM.

“The biggest challenge school teachers encountered when working with students with 
learning difficulties is concept building.” (RH, fifth-grade teacher)

“The challenge is to help students build the concept of one-to-one correspondence - This 
builds up the background knowledge for place value.” (HS, third-grade teacher)

“They [students] do not come to us retaining what they learn from second grade [the year 
before]. The amount retained from [second grade] can set them back and be a difficulty for 
us.” (AE, third-grade teacher)

“Using regular math programs, teachers do not know how to adapt them to students with 
special needs.” (JB, fourth-grade teacher/worked with students with LDM)

Teachers who worked with a range of students at different levels of academic and 
problem-solving performance asserted that “Children are not ready to learn some-
thing that I teach.” There is a need of intervention programs that focus on building 
conceptual understanding of fundamental mathematical ideas that will enable stu-
dents with LDM to make sense of grade-level mathematics and advance at the rate 
of their same-age peers.

This chapter first briefly describes common practices in the United States in 
teaching mathematics word problem-solving. We then introduce two paradigms in 
solving word problems: Operational versus Relational. Next, we review recent 
mathematics interventions in additive reasoning and problem-solving involving stu-
dents who are struggling in mathematics, followed by a description of a research- 
based intervention program, Conceptual Model-based Problem Solving (COMPS). 
Finally, we showcase a web-based mathematics problem-solving computer tutor 
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developed on the basis of research from mathematics education and special 
education.

13.1  Common Practice in Teaching Elementary 
Word-Solving

Experienced elementary teachers who teach additive or multiplicative word 
problem- solving to students in the inclusive classrooms or resources classrooms 
often focus on choice of operation in teaching word problem-solving. For example, 
Mrs. Smith described how she taught arithmetic word problem-solving to her 
fourth-grade students (Xin, 2016).

Excerpt 1 (May 29, 2012):

“Each problem that I went through with the children I began by having a student read aloud 
the problem. From that point on, we always had a conversation about whether or not we 
should be using multiplication or division.”

Choice of operation is a distinctive feature of traditional arithmetic word problem- 
solving in the U.S. elementary classrooms. To choose operations to use in problem- 
solving, it is common to see students rely on the “keyword” strategy. Table 13.1 
illustrates some of the keywords recommended by an online resource published by 
a commercial mathematics textbook series publisher.

As shown in Table  13.1, the resource recommends that words such as “alto-
gether,” indicate an operation, such as addition, be used; words such as “take away” 
indicate an operation of subtraction; and words such as “time(s)” signal an opera-
tion of multiplication; etc. The keyword strategy, which has been the practice in the 
United States for generations (Sowder, 1988), directs students’ attention toward iso-
lated “cue” words in the problem. The keyword strategy might be a “quick trick” 
that sometimes results in selecting correct operations; however, it has nothing to do 
with mathematics. In particular, the keyword strategy does not orient students’ 
attention to the underlying mathematical relations necessary for constructing math-
ematical models that support problem-solving. Mathematical relations are patterns 
or structures between quantities referred to in a problem situation.

Table 13.1 Key words and choice of operations (adapted from an online resource for 
enVisionMath)

Addition Subtraction Multiplication Division

plus dropped /take away product of per
more than lost/ fell times out of
combined change twice sharing
altogether/in all difference multiplied by each/every
total less/less than /fewer than
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Applying the keyword strategy might contribute to students being prone to 
“reversal operation” errors when encountering the so-called inconsistent language 
problems (Lewis & Mayer, 1987; Mayer, 1999). For instance, in the problem, “Pat 
has 7 books. She has 4 more books than Amy. How many books does Amy have?”, 
students might mistakenly add due to the presence of the key word “more,” when 
they need to subtract to find the solution (Xin, 2007; Xin et al., 2011). Yet the target 
of this problem is a relationship between the quantity of books Pat has and the 
quantity of books Amy has.

Even when teachers have the opportunity to consider teaching approaches other 
than the keyword strategy, they may continue to rely on teaching key words to 
improve performance with additive word problems. A teacher enrolled in an online 
special education methods course as part of a master’s program exhibited this per-
spective in a weekly reflection post after reading about research-based word 
problem- solving intervention strategies (e.g., cognitive heuristic strategies, model- 
based problem-solving [see later in the chapter for model-based problem-solving]): 
“after all, at the end of the day, it is still the keyword strategy!”

Unfortunately, reliance on key words as the most efficient instructional strategy 
for word problem-solving is common. Many pre-service and in-service teachers 
firmly believe that the “keyword strategy” is THE strategy to teach mathematics 
word problem-solving. It may take generations to undo or shatter this “robust” yet 
ill-rooted strategy (Cathcart et al., 2006). This chapter seeks to address this reliance 
by providing an alternative instructional strategy shown to support students’ addi-
tive word problem-solving performance and conceptions.

Another strategy commonly used in teaching word problem-solving includes 
“draw a picture.” Students are encouraged to draw objects or use cubes /blocks to 
represent the actual objects described in the word problem. Students then use count-
ing by ones of the drawn objects as the primary strategy for solving the problem. 
While, there are a range of “pictures” that students could draw, not all pictures help 
students correctly solve word problems. For instance, Walker and Poteet (1988–
1989) compared a “picture drawing” intervention condition with the traditional 
word problem-solving instructional condition (Polya’s four-step problem-solving 
process: Read/understand the problem, develop a plan, solve, and look back and 
check, Polya, 1957). The picture drawing condition asked students to draw a dia-
grammatic representation of the story, write a number sentence from the representa-
tion, and solve the number sentence. After seventeen 30-minute instructional 
sessions students’ mathematics word problem-solving performance decreased from 
pretest to posttest. Results further indicate that if the student-drawn pictures do not 
illustrate mathematical relations described in the word problem, the pictures may 
not help students generate solution plans or mathematics equations for accurate 
problem-solving (Gersten et al., 2009).

Yet another strategy commonly used by teachers and students is called “guess 
and check.” Greer (1992) described this strategy as: “look at the numbers; they will 
tell you which operations to use. Try all the operations and choose the most reason-
able answer” (p. 28). Excerpt 2, from a survey of elementary teachers’ approaches 
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to teaching of problem-solving strategies, illustrates teachers’ use of guess 
and check.

Excerpt 2 (May 29, 2012):

- Edwin received a total of $374 to buy basketballs for the basketball team. Each basketball 
costs $34. How many basketballs can he buy?

“Since this problem needed to use division that involved two-digits, it posed quite a 
challenge for my fourth-graders. We did a lot of guessing and checking as we worked 
through a division problem of this sort. ……” (Xin, 2016)

“Another thing I try to stress to them is whether or not our numbers for our answer are going 
to be increasing (multiplication) or decreasing (division).” (Xin, 2016)

According to existing literature in mathematics education, children’s use of “guess 
and check” strategies to solve problems can be a foundation for more efficient strat-
egies. Yet teachers like those cited in Xin (2016) seem to encourage students to use 
inefficient approaches and even “rules that expire” (Karp et  al., 2014). Students 
using guess and check, beyond as a means to build intuition about operations, will 
work more slowly than peers using more efficient methods.

Often, when the numbers in the problem are small, it might be manageable for 
students to correctly solve the problem using the “draw a picture” or “guess and 
check” strategy. However, when the numbers become large, such problem-solving 
process may become cumbersome or inefficient. More importantly, in isolation and 
without further classroom dialogue, none of these strategies focuses on an analysis 
of underlying mathematical relations in the word problem and representing such 
relations in mathematical models at a symbolic level for solution.

To summarize, the illustrations of the above-described strategies share a com-
mon feature: selection of operation was the focus of the problem-solving reasoning 
and process. According to Polotskaia and Savard (2018), there are two paradigms in 
mathematics problem-solving, the “Operational Paradigm” and the “Relational 
Paradigm” (p. 70). The strategies teachers used in excerpts 1 and 2 were aligned 
with the operational paradigm as they were choosing an operation to use with the 
numbers in the problem to produce a solution. Below we define and discuss the two 
distinctive paradigms based on the work by Polotskaia and Savard (2018).

13.2  Two Paradigms in Solving Word Problems: Operational 
Versus Relational

Operational Paradigm The operational paradigm focuses on semantic analysis 
of the word problem involving transforming the words of the problem into an arith-
metical operation (Polotskaia & Savard, 2018). “This approach sees a word problem 
as numerical data connected by a semantic link in a story to be transformed into 
numbers and connected by an operation.” (p. 72).
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Historically, it has been commonly believed that selecting and applying an appro-
priate arithmetic operation is crucial to success in problem-solving. Commonly used 
teaching practices including the “keyword” strategy focus on translating “cue” words 
into operation signs (see Table 13.1). Most intervention strategies developed for help-
ing students with LDM to solve word problems focus on translating word problem 
“storyline” into numbers connected with an operation sign. For instance, stories such 
as “making purchases” or “spending money” would be associated with or translated 
into a “minus” sign in a mathematics sentence or equation. The operational paradigm 
relies on learners’ development of understanding that is driven by arithmetical opera-
tions rather than mathematical relationships (Polotskaia & Savard, 2018). According 
to scholars in mathematics education (Thompson, 1993), focusing on the operation 
(whether to “add” or “subtract,” for instance) relevant to calculation is likely to dis-
tract learners from mathematical relations depicted in the word problem. In contrast, 
it is the mathematical relation, on which the mathematical model is conceptualized, 
that contributes to generalized problem-solving (Jonassen, 2003).

Relational Paradigm The relational paradigm is built on the law of composition 
in that any number can be written as a combination of any two smaller numbers, and 
“the relation between two elements determines a unique third element as a function” 
(Davydov, 1982, p. 229). This law of composition is the basis for addition and sub-
traction (Polotskaia & Savard, 2018). Davydov (1982) argues that the law of com-
position is the root of relationships between quantities.

With the relational paradigm, learners need to read the entire story to understand 
the underlying mathematical relation in the word problem. Given an additive word 
problem situation, for instance, “Rachel had some flowers in a big vase. Then, 9 of the 
flowers wilted, so she took those flowers out. There were 27 flowers left in the vase. 
How many flowers were in the vase in the beginning?” learners need to understand 
that the story is about the part-part-whole relation between the sets or units described 
in the word problem context (i.e., # of flowers wilted plus # flowers left in vase = total 
# of flowers in the vase). Under the relational paradigm, the mathematical reasoning 
process can be described as moving from understanding relationships between physi-
cal objects (without focusing solely on numbers) toward a holistic understanding of 
the additive structures present in word problems (Polotskaia & Savard, 2018).

To summarize, it is certainly important for students to understand the word prob-
lem story or task in the real-world context. It is also important for the learners to 
represent and describe the underlying mathematical relations (e.g., additive or mul-
tiplicative relations) before applying an operation to solve the problem.

13.3  Recent Intervention in Additive Reasoning 
and Problem-Solving

Literature syntheses and meta-analyses have explored instructional interventions 
for teaching students with LDM mathematics problem-solving strategies. For 
instance, Zheng et  al. (2012) reviewed reports of seven group and eight 
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single- subject design studies (1986–2009) in teaching word problem-solving to stu-
dents with mathematics disabilities. They identified key instructional elements com-
mon across effective intervention programs, including (a) clear instructional 
objectives, (b) advanced organizers, (c) providing needed instructional scaffolding 
and fading the prompts gradually, (c) explaining underlying concepts with elabora-
tions, (d) modeling the skills to be taught, (e) engaging students in discourse-ori-
ented mathematics instruction (encourage questioning, engaging students in 
dialogues), (f) sequencing instructional/learning activities, and (g) breaking the task 
into smaller components or steps. These instructional elements provide support 
(such as introducing and fading prompts) when used appropriately in concert with 
emphasis on student activity and reasoning.

Zhang and Xin (2012) conducted a meta-analysis of reports of word problem- 
solving intervention studies for children with LDM published from 1996 to 2009. 
This study analyzed 29 group comparison and 10 single-case design studies that 
investigated word problem-solving interventions for students with LDM. This study 
addressed the relative effects of three categories of word problem-solving instruc-
tional strategies: problem structure representation techniques, cognitive strategy 
training, and technology. Findings indicated that problem structure representation 
resulted in the highest effect size1 (ES = 2.64, calculated from group design studies), 
compared to cognitive strategy training (ES  =  1.86) and assistive technology 
(ES = 1.22). As indicated by the authors of this meta-analysis study, the key instruc-
tional techniques for representing problem structure were explicit instruction and 
conceptual modeling.

Hughes et al. (2014) conducted a meta-analysis of algebra interventions involv-
ing students with LDM. This study evaluated 12 mathematics intervention studies 
(1983–2013) involving elementary students and secondary students with LDM. It 
examined instructional-related theoretical frameworks in the context of learning 
theories, which include cognitive learning theory, model-based interventions, as 
well as other instructional elements such as co-teaching, concrete-representational- 
abstract (CRA) instructional sequences, graphic organizers, and technology-based 
interventions. The findings from this meta-analysis study indicate that the interven-
tions were effective overall at elementary and secondary levels. In particular, results 
indicate that applied cognitive or model-based interventions had the strongest effec-
tiveness (ES = 0.68) in improving students’ performance on solving algebra math-
ematics problems. The meta-analysis study also indicated that CRA, which included 
a gradual instructional sequence moving from concrete to semi-concrete and 
abstract level of representations, resulted in a moderate effectiveness (ES = 0.52). 
This finding is significant since Common Core State Standards for Mathematics 
(CCSSM, 2010) has emphasized the importance of algebraic thinking in the ele-
mentary grades.

1 Effect size (ES) is used to measure the effectiveness of a treatment. EF is defined as the standard-
ized mean difference between the experimental and the control group (Glass et al., 1981; Hedges 
& Olkin, 1985). An ES of 2.00 means 97.5% of students in the experimental group (e.g., received 
instruction in mathematical model-based representation and solving) performed better than the 
control group.
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More recently, Kim and Xin (2022) conducted a comprehensive review of reports 
of empirical research studies published between 1981 and February 2019 in which 
computer-assisted mathematics word problem-solving interventions were used to 
facilitate the learning of mathematical word problem-solving of elementary and 
secondary school students with LDM. This study examined 13 studies including ten 
group comparison design studies and three single subject design studies, guided by 
three theoretical frameworks: behavioral-oriented instructional strategies, cognitive 
learning theory-based strategies, and model-based learning approaches. Findings 
from this review indicate that computer-assisted intervention programs designed on 
the basis of model-based learning approaches demonstrated the largest effect size 
(ES = 1.25), when compared to cognitive strategy instructional programs (ES = 1.02) 
or behavioral-oriented interventions (ES = 0.32).

In summary, findings from these research syntheses and meta-analyses support 
the use of model-based intervention programs. The problem structure representa-
tion strategy, which was found most effective in Zhang and Xin’s (2012) meta- 
analysis, is similar to the model-based interventions classified in the Hughes et al. 
(2014) study. Both emphasize representing mathematical relations in model equa-
tions. To conclude, the findings from meta-analyses conducted by Kim et al. (2022), 
Hughes et al. (2014), and Zhang and Xin (2012) favor model-based interventions 
for word problem-solving instruction for students with LDM.

13.4  Model-Based Learning

According to Principles and Standards for School Mathematics (National Council 
of Teachers of Mathematics, 2000):

“Instructional programs from prekindergarten through grade 12 should enable 
each and every student to—

• Understand patterns, relations, and functions
• Represent and analyze  mathematical situations and structures using alge-

braic symbols
• Use mathematical models to represent and understand quantitative relationships
• Analyze change  in various contexts” (https://www.nctm.org/Standards- and- 

Positions/Principles- and- Standards/algebra/)

Central to this recommendation is the use of mathematical models to represent 
and understand quantitative relationships. In a more recent related effort to situate 
K-12 STEM education more centrally, model-based learning has been emphasized 
(Seel, 2017). According to Seel (2017), “helping students to develop powerful mod-
els should be among the most important goals of mathematics instruction” (p. 932). 
Indeed, mathematical modeling is emphasized as an essential practice in the 
U.S.  Common Core Mathematical Practice Standards (Common Core State 
Standards Initiative, 2012).
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13.4.1  Mathematical Modeling

Blum and Leiss (2005) provide a framework for modeling (see Fig. 13.1). In this 
modeling cycle, one must (a) read and understand the task, (b) structure the task and 
develop a real situational model, (c) connect it to and/or represent it with a relevant 
mathematical model, (d) solve and obtain the mathematical results, (e) interpret the 
mathematical results in a real problem context, and (f) validate the results (either 
end the task or re-modify the mathematical model if it does not fit the situation). In 
light of research in mathematics education, many students have difficulty making 
the transition from a real situational model to a mathematical model. This is often a 
weak area in students’ mathematical understanding (Blomhøj, 2004).

Modeling involves translation or representation of a real problem situation into a 
mathematical expression or model. Mathematical models are an essential part of all 
areas of mathematics, including arithmetic, and should be introduced to all age 
groups including elementary students (Dundar et al. 2012). It should be noted that 
engaging students in the modeling process does not necessarily mean they become 
engaged in the discovery or invention of mathematical models or complex nota-
tional systems. According to Lesh et al. (2003), however, it does mean that when 
such models or systems are provided by the teacher, “the central activities that stu-
dents need to engage in is the unpacking of the meaning of the system” (p. 216), 
representation of the real problem situation in a mathematical expression or model, 
and the flexible use of the model to solve real-world problems.

In this chapter, we briefly introduce the Conceptual Model-based Problem- 
Solving approach (Xin, 2012) which supports the relational paradigm. Then we 
showcase a computer-assisted intervention tutor to nurture additive reasoning and 
problem-solving through constructivist-oriented learning activities and conceptual 
model-based problem-solving.

Fig. 13.1 Modeling cycle 
(Blum & Leiss, 2005)
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13.4.2  Conceptual Model-Based Problem-Solving (COMPS)

COMPS (Xin, 2012) has emerged as an effective intervention approach that pro-
motes mathematical model-based problem-solving. With the COMPS approach, 
students develop a structural understanding of mathematical relationships in word 
problems and construct a cohesive mathematical model by creating and working 
with meaningful representation (Brenner et al., 1997).

Representations that model an underlying mathematical structure serve to facili-
tate solution planning and accurate problem-solving. For instance, Part + 
Part  =  Whole (PPW) is a cohesive mathematical model that generalizes various 
additive word problem situations. Table 13.2 illustrates sample representations of a 
range of additive word problems in the PPW mathematical model equation.

The COMPS program reflects a shift away from traditional problem-solving 
instruction that focuses on the choice of operation to compute solutions, toward a 
mathematical model-based problem-solving approach that emphasizes an under-
standing and representation of mathematical relations in algebraic equations. As 
seen in Table 13.2, the COMPS approach connects elementary arithmetic to algebra 
learning by promoting mathematical model-driven reasoning and problem-solving. 
That is, rather than “gambling” on what operation to use for the solution, the 
COMPS approach asks that students represent the word problem in the PPW math-
ematical model equation (e.g., P + P = W, the unknown quantity will be represented 
by a letter). Then the problem will be solved through finding the unknown quantity 
in the equation. Now, the challenge is, how to help students construct the PPW 
mathematical model. As we have shared in the beginning of this chapter, many stu-
dents do not come to class ready to construct this abstract PPW model. Before we 
get into the “how” part, we first dissect the additive word-problem structure.

13.5  Additive Word-Problem Structure and Its Variations

The additive problem structure includes a range of Part-Part-Whole and Additive 
Compare problem structures. A Part-Part-Whole (PPW) problem describes an addi-
tive relation between multiple parts and the whole, that is, “Part and Part make up 
the Whole.” It includes problems such as combine (e.g., Christine has 5 apples. 
John has 4 apples. How many apples do they have together?), change-join (e.g., 
Christine had 5 apples. John gave her 4 more apples. How many apples does 
Christine have now?), and change-separate (e.g., Christine had 9 apples. Then she 
gave away 4 apples. How many apples does she have now?) (Van de Walle, 2004). 
The unknown quantity can be either the part or the whole. An Additive Compare 
(AC) problem compares two quantities and involves a compare sentence that 
describes one quantity as “more” (AC-more) or “less” (AC-less) than the other 
quantity (e.g., “Christine has 9 apples. She has 5 more apples than John. How many 
apples does John have?” or “Christine has 9 apples. John has 4 less apples than 
Christine. How many apples does John have?”). The unknown can be the big, 
small, or difference quantity (see variations of additive word problems in Table 13.2).
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Table 13.2 Additive word problem situations and corresponding model representation (adapted 
from Xin, 2012)

Part-Part-Whole (PPW) Problem Situations
Sample Model 
Representation

1. Amy has 3 books. Pat has 4 books. How many books do they 
have all together? (Combine)
2. Amy had 3 books. Pat gave Amy 4 more books on her 
birthday. How many books does Amy have now? (Change-join)
3. Amy had some books. She gave Pat 4 books, and found that 
she only has 3 books left. How many books did Amy have in the 
beginning? (Change-separate)

4. Amy and Pat have found that together they have a total of 7 
books. Pat says that she has 4 books. How many books does 
Amy have? (Combine)
5. Amy had 7 books in her collection. She gave away some 
books. Now she has only 4 books left. How many book did she 
gave away? (Change-separate)
6. Amy had some books. Pat gave Amy 4 more books. Now Amy 
has 7 books. How many books did Amy have in the beginning? 
(Change-join)
7. Amy had 7 books. Then she lost 4 books. How many books 
does Amy have now? (Change-Separate)

8. Amy and Pat have found that together they have a total of 7 
books. Amy says that she has 3 books. How many books does 
Pat have? (Combine)
9. Amy had 3 books. Then Pat gave her some books. Now Amy 
has 7 books. How many books did Pat give Amy? (Change-join)

Additive Compare Problem Types Additive Compare

10. Amy has 3 books. Pat has 4 more books than Amy. How 
many books does Pat have? (Compare-more)
11. Amy has 3 books. She has 4 fewer books than Pat. How 
many books does Pat have? (Compare-less)

12. Pat has 7 books. She has 4 more books than Amy. How many 
books does Amy have? (Compare-more)
13. Pat has 7 books. Amy has 4 fewer books than Pat. How many 
books does Amy have? (Compare-less)

14. Pat has 7 books. Amy has 3 books. How many more books 
does Pat have than Amy? (Compare-more)
15. Pat has 7 books. Amy has 3 books. How many fewer books 
does Amy have than Pat? (Compare-less)

As seen in Table 13.2, part, part, and whole are the three basic quantities in the 
PPW model equation (e.g., P + P = W). It should be noted that the three basic ele-
ments in the PPW model equation will have unique denotations when a specific 
problem subtype applies. For example, in a combine problem type, “Amy has 3 
books. Pat has 4 books. How many books do they have all together?” (see 
Table 13.2, problem 1), the number of books Amy has and number of books Pat 
has are the two parts; these two parts make up the combined amount (i.e., “all 
together”) or the whole. In contrast, in a change problem type, “Amy had 7 books. 
Then she lost 4 books. How many books does Amy have now?” (see Table 13.2, 
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problem 7), the number of books Amy had in the beginning is the whole (7), 
whereas the number of books Amy lost (4) and the number of books she has now 
(a) are the two parts that make up the whole or the beginning amount (7).

Similarly, in an Additive Compare problem (AC-More), “Amy has 3 books. Pat 
has 4 more books than Amy. How many books does Pat have?” (see Table 13.2, 
problem 10), the number of books Amy has (the smaller quantity “3”) and the dif-
ference between Pat and Amy (difference quantity “4”) make up the total, that is, the 
number of books Pat has (the bigger quantity which is the unknown “a,” 3 + 4 = a). 
Or in other words, the number of books Pat has is the same as the number of books 
Amy has plus the difference quantity (a = 3 + 4). In contrast, in an AC-Less prob-
lem, for instance, “Amy has 3 books. She has 4 fewer books than Pat. How many 
books does Pat have?” (virtually the same problem but worded differently, see 
Table 13.2, problem 11), the number of books Pat has (the bigger quantity which is 
the unknown “a”) equals the number of books Amy has (the smaller quantity “3”) 
plus the difference quantity (i.e., 4).

13.6  Instructional Phases

After we understand the additive word problem structure, we are ready to talk about 
the instructional phases in promoting students’ construction of the mathematical 
model, that is, Part and Part makes up the Whole (P + P = W). Instruction in the 
COMPS program focuses on: mathematical model representation and word 
problem- solving. During the instruction of mathematical model representation, 
word stories with no unknowns are used to help students understand the mathemati-
cal structure and relations among the quantities. Specifically, students learn to 
decontextualize the word problem story and identify the three key elements i.e., 
part, part, and whole. Students then map the three elements from the word problem 
story to its corresponding COMPS diagram equation (see sample representations in 
Table 13.2, last column). During that stage, as all the quantities are given in the story 
(no unknowns) students can check the truth value of the equation to see if they have 
mapped the three elements correctly onto the mathematical model equation. This 
process also shapes and/or reinforces the concept of “equality” and the meaning of 
the equal sign.

13.6.1  Mathematical Model Representation

To facilitate students’ representation of a word problem story onto the PPW math-
ematical model equation, Xin (2012) has created a set of word problem story gram-
mar questions as linguistic scaffolding to support student’s construction of the PPW 
mathematical model.
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While the core of the COMPS program is its explicit teaching of mathematical 
model-based word problem-solving, it also provides linguistic scaffolding that draws 
students’ attention to “word problem (WP) story grammar” (Xin et al., 2008) that is 
directly linked to the mathematical model representation. According to literature in 
reading comprehension (Rand, 1984), story grammar addresses the elements of a 
story. It involves a set of expectations or knowledge about the internal structure of 
stories that makes both comprehension and recall more efficient. Consistent use of the 
same questions about stories (e.g., by asking a series of story grammar questions 
regarding who, what, where, when, and why) equips students with a framework they 
can apply on their own (Gurney et  al., 1990). Research demonstrates that explicit 
instruction in both story grammar and story mapping (organizing and representing the 
internal structures of stories) has positive effects on the reading comprehension of 
students with/without learning disabilities (e.g., Boulineau et al., 2004). Borrowing 
the concept of story grammar from reading comprehension literature, WP Story 
Grammar (Xin et  al., 2008), denotes mathematical structure and relations that are 
common across a range of word problem situations. As shown in Fig. 13.2b, WP story 
grammar prompting questions, “Which sentence describes one quantity as “more” or 
“less” than the other? Who has more, or which quantity is the bigger one? Who has 
less, or which quantity is the smaller one? Which sentence tells about the bigger quan-
tity? Which sentence tells about the smaller quantity?”, are used as a linguistic scaf-
fold to facilitate students’ comprehension of the word problem and the mathematical 
relations involved. These questions promote a correct representation of information 
from the word problem onto the mathematical model equation that is then used to 
solve the problem.

Part-Part-Whole (PPW)
A PPW problem describes multiple parts that make up the whole  

------------------------------------------------------------------------------------------

PPW Word Problem Story Grammar Questions

Which sentence (or question) tells about the “whole” or “combined” amount? Write that quantity in 

the box labeled “Whole” on one side of the equation by itself.  

Which sentence (or question) tells about one of the parts that makes up the whole? Write that 

quantity in the box labeled “Part” on the other side of the equation.

Which sentence (or question) tells about the other part that makes up the whole? Write that 

quantity in another box labeled “Part.”

Fig. 13.2 (a) Conceptual model of PPW word problems. (Adapted from Xin, 2012). (b) 
Conceptual model of AC word problems. (Adapted from Xin, 2012)
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13.6.2  Mathematical Problem-Solving Using COMPS

The problem representation instructional phase will be followed by the mathemat-
ics word problem-solving phase. During the problem-solving phase, students will 
be presented with real-world problems with an unknown quantity. When repre-
senting a problem with an unknown quantity in the mathematical model equation, 
students can choose to use a letter (any letter they prefer) to represent the unknown 
quantity. Xin (2012) created a DOTS checklist (see Fig. 13.3) to guide the prob-
lem-solving process for students with LDM.  The DOTS checklist serves as a 
meta-cognitive strategy to help students regulate or monitor the problem-solving 
process to curtail students jumping to circling keywords and/or using guess and 
check strategies with numbers in the problem and gambling on the operation to 
use. This DOTS checklist can be modified depending on the type of word prob-
lems students are learning to solve. As this chapter only deals with additive word 
problems, the DOTS checklist presented here focuses on additive mathematical 
structure and problem-solving.

For students with LDM, explicit strategy modeling and explanation may be 
important. Below we provide a sample teacher–student interaction when the 
teacher is guiding the student through the process of solving an additive compare 
problem with referent unit as the unknown (involving “inconsistent language”—
that is, the word “fewer” in the problem does not signify the operation of 
subtraction).

Additive Compare (AC)
An AC problem describes one quantity as “more” or “less” than  the other quantity

------------------------------------------------------------------------------------------

AC Word Problem Story Grammar Questions

Which sentence (or question) describes one quantity as “more” or “less” than the other?  Write the 

difference amount in the diagram. 

Who has more, or which quantity is the bigger one? 
Who has less, or which quantity is the smaller one? Name the box for “bigger” and the box for 

“smaller.”

Which sentence (or question) tells about the bigger quantity? Write that quantity in the box for 

“bigger” on one side of the equation by itself.

Which sentence (or question) tells about the smaller quantity? Write that quantity in the box for 

“smaller” next to the difference amount.

Fig. 13.2 continued
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DOTSChecklist
Detect the additive problem structure and mathematical relations.
Organize the information in PPW mathematical model equation.
Transform the equation, as needed, to isolate the unknown quantity.
Solve for the unknown quantity in the equation and check your answer.

Fig. 13.3 DOTS checklist. (Adapted from Xin, 2012)

Kaylin has 18 candies. She has 6 fewer candies than Melody.
How many candies does Melody have?
(Students read the problem together.)
Teacher: What is this problem about?
Students: This problem compares the number of candies Kaylin has to the number of candies 
that Melody has.
Teacher: Correct! It is a comparison problem that describes one quantity as more or less than 
the other quantity.
(Teacher presents the Additive Compare Word Problem Story Grammar Poster, see Fig. 13.2b)
Can you tell which sentence tells one quantity is more or less than the other?
Students: Kaylin has 6 fewer candies than Melody.
Teacher: That is correct. This comparison sentence tells us that the number of candies Kaylin 
has is less than the number of candies Melody has. Let’s underline this comparison sentence!
Students: Underlines the sentence in the problem.
Teacher: What is the difference between the number of candies Kaylin has and the number of 
candies Melody has?
Students: Kaylin has 6 candies less… The difference between the two is “6.”
Teacher: Let’s write the difference amount 6 in the PPW diagram, the box labeled as 
“difference.”
Students write 6 in the box labeled as difference.
Teacher: From the comparison sentence: “Kaylin has 6 fewer candies than Melody,” can you 
tell me who has more, and who has less?
Students: “Kaylin has 6 fewer ……,” so Kaylin has less, and Melody has more.
Teacher: Superb! Please help me name the box for “smaller” and name the box for “bigger” on 
the PPW diagram. (Note: The “name tags” are used as visual scaffolds/anchors to help student 
organize the information)
Students: Names the box for “smaller” as Kaylin and names the box for “bigger” as Melody 
(See below sample diagram equations. Based on student’s prior knowledge, teacher may 
consider different ways of representing the information in the PPW diagram equation to 
promote mental flexibility).

OR
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Teacher: What number we will write in the box for “Kaylin” in the PPW diagram equation?
Students: “Kaylin has 18 candies,” so we will write “18” in the box for Kaylin.
Teacher: Great! Now what number we will write in the box for “Melody”?
Students: …...
Teacher: Do we know the number of candies Melody has?
Students: No.
Teacher: Correct, that is the unknown quantity we are asked to find out.
Let’s write letter “a” to represent the unknown quantity in the box for Melody in the diagram 
equation.
Students: Write letter a in the box for Melody.
Teacher: Now we have completed the mapping of information onto the PPW diagram equation. 
(Teacher points to diagram equation. See below) “It tells that, the number of candies Kaylin has 
PLUS the difference amount (6) EQUALS the bigger quantity—that is, the number of candies 
Melody has.”

OR

Teacher: To solve for the unknown quantity a, we will simply rewrite the math equation as: 
a = 18 + 6
Can someone help solve for the unknown quantity a? 18 plus 6 equals?
Students: 24.
Teacher: 24 what?
Student: 24 candies.
Teacher: Correct! What is your complete answer to the problem? (Teacher may remind 
students to check back the word problem and provide prompt as needed, such as “what are we 
asked to solve for?”)
Students: Melody has 24 candies.
Teacher: Great! please write down your answer in your worksheet. I will write the answer “24” 
above letter “a” in the equation. Does our answer “24 candies” make sense?
Students: The underlined sentence (in the problem) says “Kaylin has 6 fewer candies than 
Melody,” so Melody has more candies than Kaylin. We know Kaylin has 18 candies, and our 
answer 24 is more than 18, so our answer “Melody has 24 candies” seems to make sense.
Teacher: Good thinking! That is correct, “Melody has 24 candies; 24 is 6 more than 18, the 
number of candies that Kaylin has. (Teacher should point to corresponding numbers in the 
diagram equation while confirming students’ thinking), or 24 equals 18 plus 6!

Depending on the needs of each individual student with LDM, the teacher can 
decide on proper instructional scaffoldings supported by explicit strategy explana-
tion, guided practice, performance monitoring with corrective feedback, and inde-
pendent practice. During the beginning of the instruction, concrete bar models 
(made of unifix cubes or unit blocks) and then semi-concrete bar models (on paper) 
can be used to demonstrate the part-part-whole relation and help students make the 
transition to the abstract PPW model equation. Figure 13.4 illustrates the bridging 
between the bar model and the part-part-whole model equation. Existing research 
has identified the importance of movement from physical models to mathematical 
ones in supporting algebraic thinking and learning (Witzel, 2005).

Finally, after students’ acquisition of solving word problems with a specific 
semantic structure, such as PPW problem structures, it is important to present stu-
dents with a mixture of problems providing them with opportunity to apply proper 
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Fig. 13.4 Use bar model (upper panel) as a scaffold to facilitate students’ understanding of the 
Part-Part-Whole model equation (lower panel)

strategies/diagram equations to solve a range of additive word problems (e.g., PPW 
as well as additive compare word problems). Please refer to the Appendix for sam-
ple problems with mixed problem structures.

13.7  Computer-Assisted Intelligent Tutor: COMPS-A

In this section, we will showcase a web-based mathematical problem-solving tutor, 
COMPS-A (Xin et  al., 2015) developed through the support from U.S. National 
Science Foundation. The goal of the COMPS-A program was to help elementary 
students construct mathematical model-based reasoning and problem-solving. The 
program includes two modules. Module A nurtures children to develop more sophis-
ticated ways of counting, as a spring board to the construction of part-part-whole 
relations. Module B systematically promotes student’s construction of the PPW 
model equation for generalized problem-solving.

13.7.1  Module A: Nurturing the Fundamental Mathematical 
Idea of Number as a Composite Unit

The goal of Module A is to nurture students’ construction of the composite unit and 
additive double counting, which serve as the foundation for the development of 
additive reasoning and problem-solving.

The primary cognitive structure that underlies a child’s conceptualization of 
additive part-part-whole problem situations is what Steffe et al. (1983) termed the 
composite unit. Additive reasoning requires students to operate with numbers as 
composite units (Tzur et al., 2013). Composite units (unit composed of unit items) 
are the result of mental operations developed through challenges to counting acts. A 
child develops a progressively more sophisticated system of counting behaviors 
(Olive, 2001) to address challenges to their counting acts. Through counting by 
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ones children iterate the unit of one to create larger units (e.g., 1  +  1  +  1  =  3). 
Gradually, the nested nature of the resulting, composed quantity becomes explicit 
(e.g., (1 + 1 + 1) +1 = 4; 4 + 1 = 5, etc.). When number is conceived of as a compos-
ite unit, a child can join a unit of 3 and a unit of 4, for instance, to compose a larger 
unit of 7; they can also break or decompose 7 into 3 and 4 (or 1 and 6, 2 and 5, 4 and 
3, 5 and 2, and 6 and 1). These actions create relationships between quantities and 
numbers. Eventually, a child can think of 7–3 = ? as 3 +? = 7 for instance. That is, a 
composite unit of 7 (whole) is comprised of a unit of (3) and another unit that the 
child can find. With composing and decomposing of quantities, a key aspect of addi-
tive reasoning, the child can understand the part-part-whole (PPW) conceptual 
model (Fuson & Wills, 1988).

In particular, for Module A, the curricular sequence was developed based on the 
work of Steffe et al. (1983), Wright et al. (2007), and Cobb and colleagues (Cobb & 
Wheatley, 1988; Cobb & Merkel, 1989). The focus of the curriculum in the module 
is the development of the composite unit for whole numbers to 100. The goal of the 
curriculum in module A is to challenge children’s counting acts and provoke changes 
to the children’s mental operations resulting in the development of the composite 
unit. Most children in grades 2 and 3 will have achieved some or all of the stages 
described by Olive (2001) through “internalization” (p.  5) of the results of their 
counting acts. To provoke development, the curriculum in Module A uses a series of 
uncovered and covered collections with and without structure (e. g. dots in ten 
frames versus random dots).

The child can work with collections where one quantity is covered and can gen-
erate a total when given more units demonstrating her development of numerical 
composites. Numerical composites allow children to take the numeral 7 as a repre-
sentative of a collection of seven objects. Finding a total using a numerical compos-
ite is not yet evidence of a composite unit in which three quantities are related. For 
example, students with numerical composites can find a total when three additional 
units are added to a covered collection of seven units, but may not yet have the flex-
ibility to know that the numerical composite of ten contains the composites of three 
and seven.

Module A is guided by a constructivist view of mathematics learning and includes 
a series of activities involving the use of virtual manipulatives, such as unifix cubes 
and coverings. Module A consists of seven lessons, the first lesson is used to deter-
mine where a student should start based on their needs. Lessons A2–A5 involve the 
development of composite units from 2 to 100 using ones, fives, and tens. Lesson 
A2 focuses on movement from perceptual to figurative counting to support the stu-
dent to create mental images of quantities less than 10. Lesson A3 focuses on build-
ing a visual structure for quantities up to 10 using five and ten frames. For example, 
students are shown 6 cookies and the quantity is covered. Students are then asked 
how many cookies are needed to make 10 cookies. Lesson A4 focuses on building 
counting using covered collections that promote counting on. Lesson A5 focuses on 
building tens and ones structure for numbers up to 20 using ones, fives, and tens. 
Ten is presented as two collections of five to support counting by fives toward build-
ing mental images of ten.
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Lesson A6 and A7 support students to use the tens and ones structure of a number 
as a quantity. Lesson A6 presents quantities as multiples of ten and asks students to 
determine the result of adding or subtracting a multiple of ten. For example, 50 is 
presented as five rods of ten. Students are then asked how many units are added to 
generate a quantity of 85. Numbers in problem situations are represented as either 
numerals or quantities to encourage learners to build connections between mental 
representations of quantities, number words, and numerals. Finally, in Lesson A7 
quantities presented are not multiples of ten, although still less than 100, and are 
presented as either rods and singles, numerals, or using number words. This lesson 
provides opportunities to work from a number not at a decade (such as 74) and 
determine the result when a given quantity is added or subtracted or an unknown 
quantity is added or subtracted and the resulting quantity is provided.

Lessons A1–A5 are situated in a bakery context (see sample screenshots in 
Fig. 13.4). Lessons A6 and A7 involve building connections between quantities and 
numerals as representations of tens and ones. To support student transition from the 
bakery context-based addition and subtraction and the PPW models used in module 
B, lessons A6 and A7 are presented in quantities of tiles and numerals rather than 
the bakery context.

To illustrate, in Fig. 13.5, the assessment items in lesson A1 demonstrate the 
computer environment that asks the student to create different quantities of biscuits 
using the quantities in the stock room. Once the stock room is stocked with boxes of 
biscuits, challenges are presented in which a number of biscuits is given and then 
covered. Students are asked to bring additional biscuits and asked how many bis-
cuits will be in the box.

For example, in lesson A2 in Fig. 13.5, three biscuits are given and the student is 
asked to bring two more. The process of bringing quantities to the display case to 
create new quantities provides opportunities for children to use counting strategi-
cally (see Fig. 13.5). Covers for the quantities can be removed by the students, but 
will only be shown for a few seconds to encourage the development of mental rep-
resentations of the quantities. Structured and unstructured collections are also pro-
vided to support students to build visual models of small collections with the same 
numerosity and assign numerals to them as in the example from lesson A3  in 
Fig. 13.5.

A series of uncovered and covered collections are used to develop numerical 
composites. Problems with a covered collection are given to students for them to 
figure out a total when given more units. The development of composite units 
includes further restricting countable items by covering both collections of units. 
The lessons A6 and A7 involve the development of composites units using the tens 
and ones structure. Lesson A6 and A7 involve building connections between quanti-
ties and numerals as representations of tens and ones. The tools in Lessons A6 and 
A7 are building blocks that are used to explore changes from a given quantity or 
number to another given quantity or number.
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Lesson A1: Assessment of composite unit 
development

Lesson A2: Perceptual and figurative counting using 5 
and 10

Lesson A3: Structuring numbers from 1 to 10 Lesson A4: Building counting by ones strategies

Lesson A5: Building tens and ones structures for 1 to 20
Lesson A6: Using tens and ones structures to add and 
subtract with multiples of 10

Lesson A7: Using tens and ones structures to add and subtract within 100

Fig. 13.5 Sample screenshots Lessons A1 to A7 of Module A in the COMPS-A computer tutor 
(©COMPS-RtI, Xin et al., 2015)

13.7.2  Module B: Additive Word Problem Representation 
and Solving

Module B, developed based on Xin (2012), links the two ideas: the concept of com-
posite unit, from Module A, to the additive mathematical model, “Part and Part 
makes up the Whole.” As students encounter real-world mathematical word prob-
lems, the tutor program also provides them with bar models to facilitate their 
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Lesson B1: Concrete representation of the story in 
the PPW model equation. 

Lesson B2: Represent PPW word problem story in bar 
model and mathematical model equation

Lesson B3: using PPW model equation to represent 
and solve PPW word problems.

Lesson B4: Represent AC-more word problem story in 
bar model and mathematical model equation

Lesson B5: Represent AC-less word problem story in 
bar model and mathematical model equation

Lesson B6: Solve mixed AC problems using the PPW 
model equation. 

Lesson B7: Solve mixed PPW and AC problems using the PPW model equation

Fig. 13.6 Sample screenshots Lessons B1 to B7 of Modul B in the COMPS-A computer tutor 
(©COMPS-RtI, Xin et al., 2015)

conceptual transition from the isolated unit of ones to the composite unit (CU) that 
involves multiple individual ones; the bar model also facilitates students’ concep-
tual transition from a semi-concrete to a symbolic level of operation when using 
mathematical model equations to represent and solve simple part-part-whole (PPW) 
word problems. Figure 13.5 lesson B2 illustrates the connection between the bar- 
model representation and the PPW mathematical model equation representation.

In Lesson B1, the computer tutor provides the learner with concrete picture rep-
resentations (see Fig. 13.6 for Lesson B1 screenshot) to help students understand 
the mathematical relations described in the word problem story. This relation is then 
expressed by the Part + Part  =  Whole (PPW) model equation. Emphasis is also 
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given to the meaning of the equal sign in the mathematics equation; a balancing 
scale is used to help students understand that the combined numerical value from 
the left side of the equation should be the same as that on the right side of the 
equation.

In Lesson B2, bar models are used to facilitate students’ transition from semi- 
concrete bar model representation to abstract PPW model equation representation. 
Students represent the word problem stories (with no unknown quantities) in the 
Part-Part-Whole diagram equation (i.e., P + P = W). After that, students also check 
the “balance” of the equation to verify the accuracy of their representation (see 
Fig. 13.6 for Lesson B2 sample screenshot).

In Lesson B3, students use the PPW diagram equation to represent and solve 
PPW word problems where one of the three quantities is missing (see Fig. 13.6 for 
Lesson B3 sample screenshot). The tasks involved in this lesson include “change- 
join,” “change- separate,” and “combine” problem structure (Van de Walle, 2004). 
Students represent the word problem in the Part-Part-Whole model equation, and 
then solve for the unknown quantity.

Before solving the problem, students learn to “label” each of the three boxes 
(i.e., “Part,” “Part,” and “Whole/Total) based on the specific context of the word 
problem story (see Fig. 13.6 for Lesson B3 sample screenshot). The “labeling” of 
the three boxes serves as a visual scaffold to help students organize the information 
and correctly represent the quantities in the PPW model equation based on their 
understanding of the relations in the word problem.

Lessons B4, B5, and B6 extend students’ knowledge base pertinent to PPW 
mathematical structure as they learn to represent (Lesson B4 and Lesson B5) and 
solve a range of additive compare problems (Lesson B6) including the “more than” 
and the “less than” situations. In Lesson B4 students will work with additive com-
pare problems that involve “more than” relations (see Lesson B4 for sample screen-
shot); whereas in Lesson B5 students will work with problems that involve “less 
than” relations (see Lesson B5 for sample screenshot). As shown in Fig.  13.6, 
Lessons B4 and B5 screenshots, students will engage in “labeling” the three boxes 
that are associated with the three quantities (i.e., “smaller,” or “bigger,” or “differ-
ence”) in the PPW model equation. The labeling activity helps anchor correct map-
ping of numbers from the word problem to the PPW model equation on the basis of 
comprehending the underlying mathematical relations.

After students engage in representing variously constructed additive compare 
problem situations onto the PPW model equation, in Lesson B6 (see Fig.  13.6 
Lesson B6 sample screenshot), they will be presented with real-world additive prob-
lems in which they need to solve for one unknown quantity (either the “smaller,” 
“bigger,” or the “difference” amount).

In Lesson B7, students will be provided with opportunities to represent and solve 
a range of additive word problems (see Table  13.1), with the unknown quantity 
(represented by letter a) being either one of the “parts,” or the “whole.” Guided by 
the DOTS checklist (see Fig. 13.3), students will engage in decoding various prob-
lem contexts and decontextualizing mathematical relations from a real-world story 
problem, and then representing it in the mathematical model equation, P + P = W, 
for solution.
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13.8  Bridging Arithmetic and Algebra

As we all know, many students, in the United Stated at least, experience tremendous 
difficulty in learning algebra. Many students have developed algebra “phobia.” 
Based on existing literature, at least two reasons are associated with students’ pho-
bia of algebra: (a) a lack of exposure to algebraic ideas and thinking, and (b) stu-
dents’ tendency to learn algebra as mere symbol manipulation (Chappell & 
Strutchens, 2001). The COMPS program serves to extend students’ arithmetic expe-
riences, connecting arithmetic learning with algebra learning.

As evidenced by empirical research studies (e.g., Xin et al., 2020, 2008, 2011), 
COMPS is particularly helpful for students with LDM, who are likely to experience 
disadvantages in working memory and information organization. Using the COMPS 
program, students do not need to gamble on the operations (e.g., whether to add or 
subtract). Because one mathematical model equation (e.g., Part + Part = Whole) 
represents and bridges a range of additive word problem situations; and the model 
equation drives the solution plan. With the advancing of technology, the web-based 
computer-assisted COMPS-A program provides students with animations to illus-
trate how three units of one, for instance, can be merged together to become one unit 
of three (a bar that is measured as three), which helps students construct and rein-
force the mathematical idea, “part and part makes up the whole.” This process is 
expected to help students make the mental leap toward mathematical model-based 
problem-solving at the symbolic level. The COMPS-A tutor program will prepare 
students for the CCSSM and promotes generalized problem-solving skills through 
bridging the arithmetic problem-solving and algebra learning.
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 Appendix

Mixed Additive Word Problem-Solving Worksheet (Adapted from Xin, 2012)
 1. Kelsie said she had 82 apples. If Lee had 32 fewer apples than Kelsie, how many 

apples did Lee have?
 2. Selina had some video games. Then, her brother Andy gave her 24 more video 

games. Now Selina has 67 video games. How many video games did Selina have 
in the beginning?

 3. Taylor and her friend Wendy collect marbles. As of today, Taylor has 93 marbles. 
Taylor has 53 more marbles than Wendy. How many marbles does Wendy have?

13 Additive Reasoning and Problem-Solving
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 4. Dana has 28 goldfish in her aquarium. She has 32 fewer goldfish than her friend 
Gesell. How many goldfish does Gisela have in her aquarium?

 5. Gilbert had 56 paperback books. Then his brother, Sean, gave him some more 
paperback books. Now Gilbert has 113 paperback books. How many paperback 
books did Sean give Gilbert?

 6. Adriana has 70 cows. Michelle has 35 fewer cows than Adriana. How many cows 
does Michelle have?
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Chapter 14
Nurturing Multiplicative Reasoning 
with Whole Numbers

Ron Tzur and Yan Ping Xin

Abstract While central to a person’s life and study of mathematics, learning to 
reason and operate multiplicatively with whole numbers presents challenges and 
difficulties for students and teachers. To support teachers’ design and implementa-
tion of instruction that nurtures multiplicative reasoning in students with learning 
disabilities or difficulties in mathematics (LDM), in this chapter we present a learn-
ing progression (trajectory) comprised of six schemes. The first four open the way 
to reasoning in a place value number system and to establishing the distributive 
property of multiplication over addition. The latter two open the way for reasoning 
about division as the inverse of multiplication. We describe how the understanding 
of these schemes paves the road to mathematical model-based problem representa-
tion and generalized problem-solving skills. We illustrate our intervention programs 
in the context of a computerized, web-based tutor program (abbreviated PGBM- 
COMPS) that we have used, and teachers can use, to nurture multiplicative reason-
ing and problem-solving by students with LDM. We also bridge children’s learning 
of elementary arithmetic with geometry through the big ideas of multiplicative rea-
soning. Finally, we culminate with a few studies that show the impact of our inter-
vention program on students’ learning and problem-solving performance (including 
transfer to novel situations).
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14.1  Introduction

To present our purpose in this chapter, we begin with a strong, imperative statement 
for anyone working to promote children’s multiplicative reasoning with whole num-
bers: repeated addition is not multiplication (Simon et al., 2018; Tzur et al., 2021). 
It is addition, being repeated—and is rooted in additive reasoning that involves unit 
preserving operations (Schwartz, 1988). Yes, children can and often are taught to 
use repeated addition to find answers to multiplicative situations (Baroody, 2006; 
Kling & Bay-Williams, 2015; Whitacre & Nickerson, 2016). However, such a focus 
seems to be at the heart of the challenges they then face in situations that require to 
reason multiplicatively. We started with this statement because we believe the teach-
ing of multiplication as repeated addition is a major source of many students’ strug-
gles when instruction advances, roughly around third grade, from additive to 
multiplicative operations on whole numbers.

To illustrate the difference between additive and multiplicative reasoning, we 
introduce a key construct about numerical thinking, namely, number as a composite 
unit (Steffe, 1992)—a single unit created from smaller units. For example, the num-
ber six can be thought of as made of six units of 1 (hereafter referred to as ones, or 
1s), of 4 + 2, of 2 + 2 + 2, or of three copies of the number 2. The latter two, when 
considered in a word problem situation, can help understand the difference between 
additive and multiplicative reasoning, respectively.

Consider a person asked how many cookies are in three bags, each containing 
two cookies. When adding 2 cookies + 2 cookies + 2 cookies that person’s cognitive 
operations are on the same unit throughout and the result is still the same unit (e.g., 
cookies). In contrast, reasoning multiplicatively in such a situation would involve 
considering two types of units that produce a third type:

• Three bags (first composite unit made of three single bags);
• Two cookies per bag (a second composite unit relating 1s with a composite unit);
• Total of 1s (a composite unit, made of six 1s, which differs from the two 

other units).

Cognitively, multiplicative operations are unit transforming (Davydov, 1992; 
Schwartz, 1988; Simon et al., 2018), because they involve distribution (coordina-
tion) of copies of an item of one composite unit (e.g., 2-per-bag) into items of 
another composite unit (3 bags), in service of a goal of figuring out items of a third 
unit (e.g., a composite unit of six cookies). A related way to distinguish multiplica-
tive reasoning is in focusing on the many-for-one coordination, as opposed to one- 
for- one in additive reasoning (Clark & Kamii, 1996). With this meaning of 
multiplicative reasoning, and a sharp distinction from repeated addition, our pur-
pose in this chapter is to portray a way of nurturing multiplicative reasoning with 
whole numbers in all children.

This purpose resides in a stance on multiplicative reasoning (MR) as founda-
tional for more advanced mathematical thinking (Harel & Confrey, 1994; Simon 
et  al., 2018) and for being able to solve multiplicative problem situations 
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meaningfully and efficiently. Specifically, this foundation would afford, or con-
strain, children’s progress to meaningful reasoning in fractional situations 
(Hackenberg, 2007; Hackenberg & Tillema, 2009; Thompson & Saldanha, 2003) 
and later in algebraic situations (Hackenberg & Lee, 2015). In this regard, Vergnaud 
(1983) sorted multiplicative problem structures into three types: isomorphism of 
measures, product of measures, and multiple proportions. The first involves operat-
ing with equal groups (EG), such as the three bags with two cookies each, and ask-
ing about a total of cookies. It could also involve givens of six cookies, placed two 
per bag, and asking about the number of bags. The second structure, multiplicative 
compare (MC) of products of measure, pertains to the coordination of a given quan-
tity and an operation on it, such as, Pat has two cookies and Sam has three times as 
many cookies, and asking about the amount of cookies Sam has. In addition to the 
EG and MC problems that are commonly seen in elementary mathematics curricu-
lum, the second structure (product of measures) pertains to Cartesian products and 
rectangular area problems. The third structure (multiple proportions) pertains to 
problems such as, a bag of two apples costs 80 cents, and asking about the cost of 
three bags.

The problem situations distinguished in the foregoing are by no means exhaus-
tive. As Greer (1992) asserted, “Extension of the concepts of multiplication and 
division can be continued indefinitely to encompass directed numbers, complex 
numbers, matrices, and so on” (p. 279). In this chapter, we focus on multiplicative 
reasoning underlying solutions to EG and MC problem types, because they are 
needed for promoting the conceptual foundations of multiplicative reasoning. To 
familiarize teachers with ways of nurturing such reasoning, we organize the chapter 
around the modules of a web-based tutoring program, PGBM-COMPS (see next 
section). That is, we share a tool developed and successfully used to nurture multi-
plicative reasoning in students designated as having learning disabilities and diffi-
culties in mathematics (Lei et al., 2020; Xin et al., 2016, 2017a, b, 2020). This tutor 
was designed to support conceptual, model-based learning that builds on what stu-
dents know by promoting the construction of fundamental mathematical ideas nec-
essary for the development of multiplicative reasoning and problem-solving.

14.2  Nurturing Multiplicative Reasoning through 
the PGBM-COMPS Computer Tutor

Supported by the National Science Foundation (Xin et  al., 2008a), the PGBM- 
COMPS computer tutor draws primarily on two research-based frameworks: a con-
structivist view of learning from mathematics education (Simon et al., 2004; Steffe 
& Cobb, 1988; Tzur, 2019; von Glasersfeld, 1995), and Conceptual Model-based 
Problem Solving (COMPS) (Xin, 2012) that generalizes the underlying structures 
of word problems. In particular, the PGBM-COMPS tutor  (Xin et  al., 2017b) 
includes five modules (A, B, C, D, and E) that integrate two components: (a) the 
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“Please Go Bring Me …” (PGBM; Tzur et  al., 2020) anchor tasks that promote 
students’ development of six schemes (Tzur et al., 2013) that are fundamental to 
multiplicative reasoning, and (b) the COMPS  (Xin et  al., 2008b, 2011), which 
emphasizes understanding and symbolic representation of word problems in math-
ematical model equations.

Next, we describe the six concepts (schemes) of multiplicative reasoning along 
with their relevant modules of the tutor. A succinct summary of all six schemes, 
including sample of assessment tasks for each, are found in Table 14.1. With the 
integration of PGBM and COMPS, the tutoring program always moves students 
from operations on concrete objects (e.g., cubes and towers), through operations on 
figural items (e.g., one’s fingers standing for a set of composite units and/or 1s is 
covered), to abstract items (numbers and symbols).

Table 14.1 Six MR schemes and sample tasks to assess student’s development of them

Problem type Sample problems situations

Multiplicative 
Double Counting

Pretend that you have made many towers, each made of 7 cubes.
How many cubes are in every tower? Your Answer: _____________
How many cubes are in the first 4 towers? Your Answer: _____________
So we can count those by seven, “7, 14, 21, 28 …”
Do you think you will say the number 70 if you continue counting cubes 
in the towers?
Your Answer: _____________
Why? _________________________________________________
Do you think you will say the number 84 if you continue counting cubes 
in the towers?
Your Answer: _____________
Why? _____________________________________________________

Same Unit 
Coordination

Rachael has built 13 towers with 2 cubes in each.
Mary has built 7 towers with 4 cubes in each.
Who has more towers, Rachael or Mary? Your Answer: _____________
How many more towers does she have?

Unit Differentiation 
and Selection

Tom’s father bought 6 pizzas.
Each pizza had 4 slices.
Tom’s mother bought a few more pizzas.
Then, there were 9 pizzas.
How many more slices did Toms’ mother bring?

Mixed Unit 
Coordination

Maria made birthday bags. She wants each bag to have 6 candies. After 
making 3 bags, she still had 12 candies left. How many bags will she have 
altogether after putting these 12 candies in bags?

Quotitive Division There are 28 students in Ms. Franklin’s class.
During reading, she puts all students in groups of 4.
She asked a student (Steve): “How many groups will I make?”
Steve said: “32. Because 28 + 4 is 32.”
Do you think that Steve is correct? Your Answer: _____________
Why? _________________________________________________

Partitive Division After an art class, there were 78 crayons out on the tables.
There are 6 boxes for the crayons.
Ms. Brown puts the same number of crayons in each box.
How many crayons would she put in each box?

R. Tzur and Y. P. Xin



295

Module A1: Multiplicative Double Counting (mDC) In this PGBM-COMPS tutor 
program, the first scheme students will learn is multiplicative double counting 
(mDC) (Steffe, 1992; Steffe & Cobb, 1998; Tzur et al., 2013). This scheme is con-
structed through the child’s reflection on activities of building and enumerating 
composite units and 1s that constitute these composite units. For example, a child 
may be asked (in class or by the tutor program) to go and bring seven towers, each 
containing two cubes (see Fig. 14.1, left panel, PGBM 7T2; note: At this point the 
tutor shows neither the fingers component nor the symbolic one as shown in the 
Figure on the right). In the tutor program, the child does this by clicking twice on 
the pile of cubes (see Fig. 14.1, left panel, yellow “pyramid” at the bottom-center of 
the screen). This will create a tower of two cubes placed within the pink line to the 
left of the ruler. The child then copies that tower seven times into the pink (lined) 
“mat” (e.g., here we see a step in the process consisting of five such towers, made 
of different color cubes). The left most frame in the figure shows the four key ques-
tions the tutor program (or a partner in the classroom) then asks of the child, which 
appear one-by-one:

 1. How many cubes are in each tower?
 2. How many towers did you bring?
 3. How many cubes are there in all?
 4. How did you figure out that answer?

These four key questions were designed to promote reflection (see Tzur & Hunt, 
this volume) on the activity sequence of first building each tower (i.e., producing a 
composite unit from one), then iterating that composite unit a given number of times 
(e.g., creating seven copies of the tower of 2), then accounting for the total of 1s in 
all towers the child produced. That is, a child’s activity includes separating the com-
posite unit (unit rate, 2-per-tower) from the composite unit of units (seven towers of 
two cubes each), leading to the distribution (coordination) of those two unit types to 
produce a third composite unit (e.g., fourteen 1s). The tutor program follows the 
child’s answers with responses about their correctness, hence also strengthening 

Fig. 14.1 Sample screenshot of Module A of PGBM-COMPS—multiplicative double counting
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short-term memory (e.g., between the activity of producing seven towers and the 
answer to that question).

Indeed, the most crucial question is the fourth, as it promotes the child’s reason-
ing of how they processed the given numbers to arrive at the answer—whether cor-
rect or incorrect. For example, one child may explain, “I counted all cubes in the 
picture: 1–2; 3–4; … 13–14.” Another child may explain, “I skip-counted by 2s: 
2–4–6–8–10–12–14 and stopped when there were no more towers to count.” Note 
that those two children are using premultiplicative reasoning. Another child, mov-
ing into multiplicative double reasoning (here, mDC), may explain: “The first tower 
is 2, two-is-4, … 7-is-14,” indicating simultaneous operation on both the pairs of 
cubes and the towers.

When the tutor program (or a teacher) determines that the child is properly oper-
ating on and solving problem situations with the concrete cubes, it moves to the next 
phase—solving problems with given numbers that are either (a) produced as towers 
and then being covered or (b) not being produced at all (“for pretend” task types). 
In Fig. 14.1, an example of such a problem is given in the red font (e.g., Pretend 
PGBM 9T5). At this point, the tutor presents the finger component, in which a child 
can select the number of cubes per each tower and then click on fingers that stand 
for towers (with accrual numbers of cubes appearing, too). Outside the tutor, a 
teacher would explicitly encourage children to use their fingers to count, simultane-
ously, the accrual of 1s (5–10– … 40–45) and the accrual of composite units (e.g., 
raising 1 finger at a time until reaching 9 fingers, 1–2– … 8–9). When established, 
the mDC scheme includes a child’s anticipation that a total number of items (say, 12 
cubes, or apples) is a composite unit made of another composite unit (4 baskets, or 
towers), each of which is a composite unit itself (3 apples, or cubes).

When the tutor program (or a teacher) determines that the child is properly using 
the simultaneous count of figural items, it moves to the next phase—solving prob-
lems while using equation models of the situation. That is, the last part of every 
module involves the COMPS component to move from operating on concrete or 
figural items to operating on abstract, symbolic items. This is shown in Fig. 14.1 
(right panel), using a problem situation of 3 towers, each made of 6 cubes. The child 
sees the picture of towers, and/or given the numbers in a word problem and learns 
(gradually in the tutor) to fill in the different types of units involved. Critically, the 
word “times” and the symbol for multiplication are introduced in direct, relevant 
linkage with the child’s activity (e.g., going 6 times to bring, each time, a tower of 3 
cubes). Once a child seems facile with using the COMPS equation for solving 
towers- and-cubes tasks, the tutor program proceeds to tasks in which the model 
equation is used to solve realistic word problems for the unknown product. At that 
point, the COMPS component presents the equation with general terms: # of items 
in each unit × # of units = total # of items in all units (OR, simply: unit rate × # of 
units = product; see Xin, 2012).

Module A2: Same Unit Coordination (SUC) In the PGBM-COMPS tutor pro-
gram, the second scheme is termed Same Unit Coordination (SUC). We did not 
include a separate figure of the tutor program for this scheme, but a situation for it 
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can be seen in Fig. 14.2 (left panel). It should be noted that “same unit” refers here 
only to composite units—not to 1s. For example, a child may be given a situation 
involving two compilations of composite units of eleven 1s, one comprised of 4 
towers with 11 cubes each and the other with 3 towers each made of 11 cubes. A 
same unit coordination task may ask either how many towers are there altogether or 
how many more towers are on the left side of the screen (or fewer towers on the 
right side). That is, the child’s goal is to figure out the sum or difference of compos-
ite units (not of 1s). Like in the mDC scheme, in the tutor program the child pro-
ceeds from working on SUC tasks with concrete compilations of towers and cubes, 
through figural items, to abstract and symbolic items.

Teachers often, and rightly, ask why is the SUC scheme considered within the 
progression of multiplicative reasoning, as it essentially involves additive opera-
tions on composite units. A response to this question can engage the teachers (and 
here, you—the reader) in thinking of typical errors many children were found to 
make while working on such tasks (see Ding et al., 2019). For example, if asked 
about the sum of towers in the above situation, many children respond with 77 tow-
ers. They mistakenly multiply to find the total of 1s in each compilation (4 × 11 = 44 
and 3 × 11 = 33) then add the totals (44 + 33 = 77). Teachers soon realize that SUC 
is crucial as it involves focusing on composite units while not losing sight of the 
composite nature of those units. That is, a child needs to conceptualize the compos-
ite units as units in their own right—made of a given number of 1s.

Cognitively, the SUC scheme entails applying the nested nature of units of 1 
(e.g., four 1s and seven 1s are nested in eleven 1s) also to composite units (e.g., 4 
towers of 11 and 3 towers of 11 are nested in a larger compilation of 7 towers of 11 
cubes each). This latter way of reasoning is crucial, for instance, when reasoning in 
a place value, base ten number system. For example, consider the task: “Pat had four 
coins of 10 cents each and received seven more coins of 10 cents each for her birth-
day; how many coins of 10 cents each did Pat have then?” A typical error would be 
110 (coins). An established SUC scheme will lead to correctly reasoning there must 

Fig. 14.2 Core tasks and sample screenshots of Module B of the PGBM-COMPS tutor: 
UDS and MUC
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be 11 coins of 10 cents each that, later on (see mixed-unit coordination below), 
would serve as a basis for also reasoning about the equivalent amount of 1 dollar 
and 10 cents. When established, the SUC scheme provides a basis for operating on 
specific composite units such as 10s, 100s, and 1000s, with contexts including dis-
tance, weight, and money (Fuson et al., 1997a, b).

Module B1: Unit Differentiation and Selection (UDS) In the PGBM-COMPS 
tutor program, the third scheme children learn is termed Unit Differentiation and 
Selection (UDS; see Tzur et al., 2013). It involves explicitly distinguishing opera-
tions on composite units from operations on 1s, and operating multiplicatively on 
the difference of 1s between two compilations of composite units. Typical tasks 
include, “You have 4 towers of 11 cubes each (4T11) and I have 3 towers of 11 cubes 
each (3T11). How are our collections similar? Different? How many more cubes do 
you have?” This task is presented in Fig. 14.2, left panel. Before those three ques-
tions are asked of the children, they build the situation by producing and placing the 
respective compilations of towers on the pink mats of each side of the screen. (Note: 
the gray rectangles are covers that could be placed over some or all of the towers/
cubes in each side to encourage operation on figural or abstract items.) Another situ-
ation could differ not in the number of towers but rather in the number of 1s in each 
composite unit (e.g., 4T11 and 4T5).

The child’s goal in the task is to specify the similarities and differences, and to 
figure out the difference in 1s between the two compilations. The child’s activity can 
include (a) operating multiplicatively on each compilation separately to find its total 
of 1s (e.g., 4 × 11 = 44; 3 × 11 = 33), and then find the difference (44 – 33 = 11 
cubes). This is termed a Total-First strategy. Its advantage is the routine procedure 
involved and available to children who have constructed mDC. However, this strat-
egy becomes cumbersome as soon as numbers are large. For example, consider the 
task: “Store A has 302 six-packs of juice and Store B has 298 six-packs of juice; 
How many more cans of juice does Store A have than Store B?” To solve this by 
multiplying 302 × 6 and 298 × 6, then subtracting the products seems futile.

Instead, the goal we would set for the children’s learning is to construct a scheme 
underlying a Difference-First Strategy. In that scheme, the child first set the goal of 
finding the difference in the number of composite units between the two compila-
tions (e.g., 302 − 298 = 4 six-packs). The follow-up subgoal would be to find the 
total of 1s only in that portion of the two quantities, that is, the difference in com-
posite units between the two compilations (e.g., 4 six-packs × 6 cans/pack = 24 
cans). Such a strategy (and scheme) underlies a meaningful understanding of the 
distributive property of multiplication over addition (e.g., 302 × 6 − 298 × 6 = (302 
− 298) × 6).

We promote children’s use and coordination of both strategies as a means to 
nurture their construction of the UDS scheme. This scheme’s name—unit differen-
tiation and selection—is complex. But the terms it consists of were set to remind the 
teacher of the mental operations involved. First, a child needs to differentiate (dis-
tinguish) between the unit rate (e.g., six cans per pack) and the number of composite 
units in each of the given compilations Then, the child needs to select the units on 
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which they operate in the first and second step of each strategy. In the Total First 
Strategy, the child selects to first operate on the totals of 1s in each compilation 
(using mDC), then on the difference in 1s (using additive reasoning). In the 
Difference First Strategy, the child selects to first operate additively on the compila-
tions of composite units (using SUC), then on the 1s in that difference (using mDC). 
This last explanation helps clarify why, conceptual, mDC and SUC are necessary to 
establish the UDS scheme with a Difference-First Strategy, and thus in nurturing a 
cognitive foundation for the distributive property. Most importantly, all three 
schemes serve a crucial role in constructing the fourth scheme, which constitutes a 
cognitive foundation for operating in place value number systems.

Module B2: Mixed-Unit Coordination (MUC) In the PGBM-COMPS tutor pro-
gram, the fourth scheme children learn is termed Mixed Unit Coordination (MUC; 
see Tzur et al., 2009, 2013). The term (mixed unit) connotes a child now construct 
operations involving both composite units and 1s (e.g., 10s and 1s). Figure 14.2 
right panel presents core tasks/activities and screenshots of a typical task requiring 
this scheme: “Under the gray cover the computer placed 4T3. And on the pink mat 
(on the right) it placed 27 more cubes. If we put all 27 cubes in towers of 3 cubes 
each and move under the gray cover—how many towers will we have in all?” For 
teachers, this situation is presented symbolically in the light-green frame as “4T3 + 
27 cubes = ? T3.”

After the UDS scheme has enabled distinguishing composite units from 1s, the 
MUC scheme involves operating on 1s to answer questions about composite units 
in two or more compilations. The child’s goal when solving such tasks is to figure 
out the number of composite units in a global compilation that would combine both 
given quantities—composite units and 1s (e.g., four towers of 3 cubes and 27 single 
cubes). To this end, the child’s activity includes selection and coordination of the 
unit rate (e.g., 3) that characterizes the given compilation of towers with a segment-
ing operation (Steffe, 1992) on the given number of 1s (i.e., a reversal of mDC, as 
in 3-is-1-tower, 6-is-2, … 27-is-9). This coordinated operation first yields the addi-
tional number of composite units (9 towers) in the collection of 1s and opens the 
way to adding it to the initially given number of composite units (e.g., 
4T3 + 9T3 = 13T3). An MUC task may also ask about the total of 1s (instead of com-
posite units), which a child would answer by applying mDC only to the compilation 
of composite units, then adding it with the given number of 1s (e.g., 4 × 3 = 12 
cubes; 27 cubes +12 cubes =39 cubes). The latter could be shown in a place value 
context: “A school prepares vans for a field trip; each van carries 10 people. They 
already have 4 full vans but 29 more people that need to go on the trip. How many 
vans in all does the school need for all people to be able to go?” Notice that such a 
task requires a more sophisticated way of reasoning, as the last van needed will not 
be full.

The example of a school’s field trip above helps accentuate why MUC is a cogni-
tive basis for meaningfully operating in a place value base ten system (or other 
bases). Later, the MUC scheme would also serve as a basis for meaningfully operat-
ing on algebraic equations, such as in cases of “collecting like-terms” (e.g., 
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3x2 + 5x – 40 + 3x – x2 + 10 = 2x2 + 8x – 30). Teachers need to be mindful that 
advancing from 10s and 1s to larger units (e.g., 100s, 10s, and 1s) is anything but 
trivial. The reason is that a child would then have to conceptualize the larger unit as 
a 3-level unit (ten units of ten units of 1s). Our research work with students (grades 
3, 4, and 5) in the US and China (forthcoming) has shown how challenging such 
situations can be. For example, ~75% of US and ~50% of Chinese students incor-
rectly solved the task: “A bag contains 10 apples and a box contains 10 bags. A 
school has 1 box, 16 bags, and 11single apples that are not packed. How many sin-
gle apples does it have in all?” Typical errors we found included adding 
1 + 16 + 11 = 28 or 100 + 16 + 11 = 127.

Besides the key role MUC serves in place value operations, we stress another, 
critical aspect of the progression of the three schemes past mDC (i.e., SUC, UDS, 
and MUC) in supporting children’s construction of divisional schemes. Many teach-
ers with whom we worked decided, initially, to skip those three schemes. Instead, 
they opted for proceeding from mDC directly into the first (of two) divisional 
schemes, namely, quotitive (measurement) division. After all, they said, division is 
but a reversal of mDC. At issue is that such a reversal may be known to the teacher, 
whereas for children it is yet to be established. Those teachers attested to students’ 
“hitting a wall” of conceptual understanding in division, which led the teachers to 
go back and nurture the entire progression from mDC to MUC.

Cognitively, the reason this progression supports division has to do with the seg-
menting operation involved in MUC tasks (e.g., segmenting 27 cubes into nine seg-
ments of three 1s each). Key here is that, having established UDS before MUC, a 
child would have easier, independent access (without being told or shown) to the 
operation of selecting the characteristic unit rate (e.g., 3 cubes per tower) from one 
of the givens and imposing it on the segmenting operation. That is, MUC supports 
“measuring” the given total of 1s by a segment of size of the unit rate (e.g., measur-
ing 27 cubes by segments of three 1s each to find 9 such segments constitute 27). It 
is in this sense that MUC—with mDC, SUC, and UDS established prior to it—can 
serve as a cognitive precursor for constructing the two divisional schemes—to 
which we turn next.

Module C: Quotitive Division (QD) In the PGBM-COMPS tutor program, the fifth 
scheme children will learn is termed Quotitive Division (QD; see Tzur et al., 2013). 
Figure 14.3 left panel presents a typical task and the screenshots of the tutor. The 
givens here include a total of 1s (“containing” composite unit, e.g., 40 cubes) and 
the number of 1s in each (unit rate, e.g., 8 cubes per tower). The question, and the 
child’s goal, is to figure out how many units of the given size would constitute the 
larger composite unit. Initially, a child brings forth the segmenting operating as 
explained above. Through reflection on such activities, the child constructs an antic-
ipation of the effect of iterating those segments, which leads to advancing from a 
segmenting to a partitioning operation.

The difference between the two operations is subtle, yet essential. In segmenting, 
the child cannot yet anticipate the possibility and effect of iterating a composite 
unit; they literally find such effect in action (Hackenberg & Tillema, 2009; Steffe, 
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1992; Steffe & Cobb, 1998; Steffe & Olive, 2010). In our example, they have to 
iterate the unit of 8 while keeping track of how many times it is being iterated (e.g., 
8-is-1, 16-is-2, … 40-is-5). In partitioning, they have interiorized this operation by 
constructing composite units (not just 1s anymore) as iterable—a unit that can be 
iterated without actually carrying out that operation. It is the advance from segment-
ing to partitioning, with interiorized, iterable composite units, which we use as a 
criterion for attributing to a child the construction of division (the quotitive, or mea-
surement type).

It is only when the child establishes the QD scheme at the anticipatory stage (see 
Tzur & Hunt, this volume) that we recommend introducing it as a reversal of 
mDC. The reason is straightforward: anticipating the reversal linkage entails coor-
dinating mDC with something the child first has to have in place. Once established, 
the QD scheme provides a basis for conceiving of division as an inverse operation 
of multiplication, and thus for using multiplication fact families to solve division 
problems in which the total (or product) and the size of each group (i.e., unit rate) is 
given. Accordingly, once all six schemes were learned using the PGBM game, the 
program also connects the PGBM game with mathematical model expressions (e.g., 
8 × (1 + 1 + 1 + 1 + 1) = 40), which leads to the COMPS component of the program 
(seen in Fig. 14.3 right panel).

The purpose of the COMPS part is to provide children with opportunities to 
represent and solve a range of real-world QD tasks in a mathematical model equa-
tion. That is, we use the COMPS-QD part of Module C to promote children’s mod-
eling of solving QD tasks at the symbolic level: Unit Rate (UR)  ×  # of Units 
[unknown quantity] = Given Total or Product (Xin, 2012). In our example, a child 
is given the total of 40 cubes, and asked to find the number of towers can be made 
if each tower is made of 8 cubes. We note that this part of the program consists of 
two phases. First, the child becomes familiar with problem representation in an 
equation. Only then, the child proceeds to using the equation for problem-solving. 
During the phase of problem representation, word stories with no unknowns are 
used to help children understand the problem structure and the mathematical 

Fig. 14.3 Core tasks and sample screenshots of Module C of the PGBM-COMPS tutor
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relations involved (e.g., equal groups problem situation are represented in the equa-
tion: Unit rate × # or units  =  Total # of items across all units, or the product). 
Specifically, the goal is for children to decontextualize the mathematical relations 
involved in the problem and represent it in the corresponding model equation (Xin, 
2015). Accordingly, during this phase of instruction, as all quantities are given in the 
story (no unknowns), children can successfully learn to “map” all the given infor-
mation onto the model equation. They then use the equation to check it is “bal-
anced,” that is, to reinforce an equation represents an equivalence (see Xin, 2015) 
between the left and right sides.

Once the child becomes facile with representing all three quantities involved 
does the tutor moves on to the problem-solving phase. In this phase, children are 
presented with word problems that involve an unknown quantity. When represent-
ing a problem with an unknown quantity in the mathematical model equation, the 
tutor enables children to choose and insert any letter they prefer for representing the 
unknown quantity. This activity can, later on, contribute to their construction of a 
concept of variable as being independent of the specific letter used to represent it.

Module D: Partitive Division (PD) In the PGBM-COMPS tutor program, the sixth 
scheme children will learn is termed Partitive Division (PD; see Tzur et al., 2013). 
Figure 14.4 left panel presents a typical task and the screenshots of the tutor. The 
givens here include a total of 1s (the global composite unit, e.g., 30 cubes) and the 
number of towers (# of units, e.g., 3 towers). The question, and the child’s goal, is 
to figure out how many 1s would constitute each of the given composite units (e.g., 
10 cubes). Initially, children bring forth an activity of distributing the given 1s into 
each group, one-by-one. This activity is predivisional as they are not focusing and 
operating on composite units, yet. Through reflection on this activity, which we 
consider as a precursor for division, they begin noticing and constructing an antici-
pation that each “round” of distribution can also be thought of as a composite unit 
(e.g., giving 1 to each of three towers creates a “layer” of the first three cubes, giving 
1 to the next layer is another group of three 1s, and the total of cubes distributed is 
six, etc.). Eventually, they interiorize the operation of distributing such composite 
units onto the given number of groups at once, and begin thinking about the effect 
of such distribution in terms of “how many such ‘layers’ could be produced before 
I run out of cubes.” They may show this by experimenting with smaller numbers 
(e.g., “Let me try 4 layers; that’s only 12 cubes; so let me try 7 layers; that’s only 21 
cubes; so what about 10 layers—that’s 30 cubes and I’ll be done”). A key transition 
would be for the child to then relate the number of layers of 1s distributed to each 
composite unit (e.g., three cubes distributed among three towers produce one layer 
of “height” equal to 1 cube), so the total number of layers is equal to the number of 
1s that constitute each group (e.g., 10 layers across three towers means that each 
tower is made of 10 cubes).

Introducing prompts and constraints to the child’s activity (e.g., “Do you think 
there would be more than one cube in each tower? Will 3 cubes work? Why?”), 
children will begin anticipate that each round of distribution of 1s would yield a 
composite unit (e.g., a ‘layer’). They then could reorganize their coordinated- 
counting act to figure out the end result (# of cubes in each tower or the unit rate) 
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Fig. 14.4 Tasks/activities and sample screenshots from Module D of the PGBM-COMPS tutor

without carrying out the distribution, that is, to establish the PD scheme. In this 
process of trial and error, children would likely also notice they could use the mul-
tiplication/division facts learned earlier for mDC and QD. This could allow a teacher 
to later nurture the children’s linkage between the two types of division into a single 
(twofold) construct we call division. It would also support their transition to using 
the same model equation—only this time the given and the unknown switch roles 
(e.g., instead of being given a total of 1s, say, 30, and a unit rate, say 3 cubes-per- 
tower—a task will continue giving the total but the other given will be the number 
of groups, say, 3 towers).

Similar to Module C, Module D proceeds from the PGBM context for nurturing 
PD to the COMPS context (Fig. 14.4 right panel). The purpose of the latter is to 
provide children with opportunities to represent and solve a range of real-world 
problems in a mathematical model equation (Xin, 2012). That is, to promote their 
modeling and solving of partitive division problems at the abstract, symbolic level 
(i.e., UR [unknown quantity] × # of Units = Given total”). Again, like in Module C, 
they will first become facile with representing the given information in the equation 
(no unknowns, yet) and only then the COMPS program engages them in represent-
ing and solving problems while inserting their letter of choice,  for the unknown 
quantity, into the equation.

Module E: Using COMPS to solve a range of multiplicative word problems When 
children complete the work through the first four modules of this tutor program, 
they arrive at the final module where they learn to use COMPS to solve a range of 
multiplicative word problems building on their previously constructed schemes. 
Table 14.2 presents the range of word problem the child would solve. Problems that 
students encounter include measurement division (or quotitive division), fair share 
(partitive division), Rate × Quantity (product unknown), as well as various multipli-
cative compare problem situations. The left and right columns are presented for 
teachers to see sample problem situations and how it would be represented in a 
model equation. We believe this table could help teachers create their own prob-
lems, using contexts they recognize as familiar and favorable to the children.

14 Nurturing Multiplicative Reasoning with Whole Numbers



304

Table 14.2 Multiplicative word problem situations and model equation representations (adapted 
from Xin, 2012) 

Problem 
variations Sample problem situations Sample model equations

Equal groups

Partitive 
division/
Fair share

A school arranged a visit to the 
museum in Lafayette. It spent a 
total of $667 buying 23 tickets. 
How much does each ticket cost?

Quotitive 
division/
Measurement 
division

There are a total of 575 students in 
Centennial Elementary School. If 
one classroom can hold 25 
students, how many classrooms 
does the school need?

Product 
unknown/
Rate × quantity

Emily has a stamp collection book 
with a total of 27 pages, and each 
page can hold 13 stamps. If Emily 
filled up this collection book, how 
many stamps would she have?

Multiplicative 
compare

Compared set 
unknown

Isaac has 11 marbles. Cameron has 
22 times as many marbles as Isaac. 
How many marbles does Cameron 
have?

Referent unit 
unknown

Gina has sent out 462 packages in 
the last week for the post office. 
Gina has sent out 21 times as many 
packages as her friend Dane. How 
many packages has Dane sent out?

Multiplier 
unknown

It rained 147 inches in New York 
one year. In Washington D.C., it 
only rained 21 inches during the 
same year. The amount of rain in 
New York is how many times the 
amount of rain in Washington D.C. 
that year?

Figure 14.5 presents the scaffolds provided by the tutor (described in the next 
paragraph) as students solve multiplicative compare problems (left panel) and an 
organizing mnemonic DOTS (similar to the DOTS checklist described in Chap. 13) 
to facilitate problem representation and solving: (a) Detect the problem structure, 
(b) Organize the information using the diagram, (c) Transform the diagram into a 
meaningful math equation, and (d) Solve for the unknown quantity in the question 
and check your answer.

R. Tzur and Y. P. Xin



305

Fig. 14.5 Tasks/activities and sample screenshots from Module E of the PGBM-COMPS com-
puter program

Specifically, in the left panel we see two multiplicative compare (MC) problems. 
The first tells the child that Ray has 8 crayons, Crystal has 6 times as many crayons 
as Ray, and asks: “How many crayons does Crystal have?” Prompted by a set of 
word problem [WP] story grammar questions (Xin, 2012; see Figure 14.6b), the 
child will first figure out “who” (i.e., the compared) is compared to “whom” (i.e., 
the referent “unit”) and name the referent Unit box in the model equation as well as 
the “compared” (product) box. Then the child will represent the corresponding 
information in the model equation and solve for the unknown quantity for solution.

Notice that at this point the COMPS model equation uses generic terms for the 
three units involved in a multiplicative situation, similar to how they are taught in 
schools (Unit, Multiplier, Product). The second problem tells the child that Kerry 
spent $42 for shopping, and she spent 7 times as much as Dan, then asking: “How 
much money did Dan spend for shopping?” We note that this problem reverses the 
order, but with proper scaffolds (e.g., the WP story grammar, highlighting, and 
labeling) as needed, children with whom we worked could at this point assimilate it 
into a scheme in which they anticipate the need to place each given where it belongs 
in the model equation and only then solve for the unknown. It is important to note 
that after problem representation, it is the mathematical model equation that deter-
mines what operation to use for solution (depending on the position of the unknown 
quantity). The “equation” box, as shown in Fig. 14.5, offers the child opportunities 
to “peel off” the boxes and write it as a true math equation. The “calculator” box 
allows the child to convert the math equation, as needed, so that the unknown quan-
tity is isolated on one side of the equation for solution. Similarly, with the support 
of self-regulated WP story grammar questions (Fig. 14.6a), students will use a simi-
lar model equation to represent and solve a range of equal-group problems (Fig. 14.5, 
right panel).

14 Nurturing Multiplicative Reasoning with Whole Numbers



306

Fig. 14.6 (a) Mathematical model of equal groups problems (Xin, 2012, p. 105). (b) Mathematical 
model of multiplicative compare problems (Xin, 2012, p. 123)

14.3  Bridging Elementary Arithmetic and Geometry

According to Ma (2020), there is often an absence of connection between mathe-
matical topics in the intended as well as implemented mathematics curriculum, par-
ticularly in the US. Connections, as one of the five Process Standards stipulated by 
the National Council of Teachers in Mathematics (NCTM, 2000), emphasize stu-
dents’ ability to understand the connections among mathematical ideas. 
Multiplicative reasoning (MR) is fundamental to all advanced mathematical think-
ing (Mulligan, 2002). Bridging the learning of elementary geometry and arithmetic 
promote deeper conceptual understanding of high-level mathematics through build-
ing on big mathematical ideas.

As MR encompasses both arithmetic and geometry, the multiplicative concep-
tual model (i.e., unit rate × number of units = product, Xin, 2012) can serve as an 
overarching big idea that bridges the learning of geometry and arithmetic. For 
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instance, Simon and Blume (1994) related the concept of dimensions to MR while 
explaining how area of a rectangle problems can be used as a tool for promoting 
MR. Specifically, Simon and Blume demonstrated how the area of a rectangular 
region can be evaluated “as a multiplicative relationship between the lengths of the 
sides” (p. 472). Geometry serves as an ideal context for the extension of students’ 
MR from how it is first introduced for learning the concepts of multiplication and 
division to more advanced mathematical concepts. Below we describe how teachers 
can enable and facilitate this connection.

During the beginning stage of learning about the area of a rectangular figure, 
concrete modeling can be used to facilitate conceptual understanding of the area of 
rectangles. For instance, to help students understand the area model (area = length 
× width), unit squares can be used for concrete modeling. First, students could be 
encouraged to use unit squares to cover the length of one side of the rectangle (for 
instance, 4 unit-squares). Students will count the number of unit squares (in one 
row) used to cover the length of a rectangular figure. Second, with the first row as 
the composite unit (i.e., a strip of 4 unit-squares), students could then move on to 
find out how many such “strips” or how many rows of 4-unit-squares will cover the 
entire area of the rectangle; that number (e.g., 3) would be the “number of [compos-
ite] units” or the width of the rectangle. Students will then count the total number of 
unit squares (12) and that “12” would be the area of the rectangle.

After using unitary counting (count unit squares one by one) or skip counting 
(count by 4: 4, 8 and 12) to find out the area of a rectangle, students were guided to 
think about a more efficient way to find the total of the unit squares to cover the area 
of a rectangle. That is, rather than using unitary counting, students were guided to 
use multiplicative reasoning (they learned from multiplication and division problem- 
solving) to figure out the total number of unit squares. That is, the total number of 
unit squares can be solved by multiplying the number of unit squares in each strip/
row (i.e., unit rate: 4) and the number of rows (i.e., number of [composite] units: 3) 
to cover the area (i.e., 4 × 3 = 12, or unit rate × # of composite units = total/product). 
Finally, students were guided to compare the answer they obtained from unitary 
counting with the answer they acquired from multiplying the unit rate and the # of 
composite unit, to realize that the answer they got from the two different approaches 
would be the same. As such, the idea of multiplicative reasoning they learned from 
arithmetic was reinforced and connected to their geometry learning.

Following the concrete modeling stage (as described above), a semi-concrete 
level of instruction with graph paper could be used for students to create the unit 
squares for covering the area based on the given scale on the two dimensions (i.e., 
length and width) (see Fig. 14.7 left panel for reference). Building on their under-
standing from the concrete/semi-concrete modeling, students transition to the math-
ematical model equation for area problem-solving (see Fig. 14.7, right panel). The 
teacher engages students in a discussion to elicit that the model equation tells the 
story about the multiplicative relationship between the length and the width. That is, 
the area is expressed as a multiple of the composite unit (the base strip), or as a 
mathematical expression A (length) × B (the width) = Area.
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Fig. 14.7 Semi-concrete [left panel] and abstract [right panel] models for the area of rectangle

At this point, students should be ready to advance to the use of an abstract model 
for area problem-solving. For instance, to solve “How much carpet do you need to 
cover the floor of a room that is 18 feet long and 9 feet wide,” students would first 
identify from the problem the number of units (of 1s) for the length (i.e., the unit 
rate = 18) and the number of composite units for the width (9). Next, students would 
map the information of the two dimensions onto the model equation (see Fig. 14.7 
right panel) and use the equation to solve for the area (18 × 9 =? [162]). To strengthen 
conceptual understanding, the teacher could guide the students to verify the answer 
they obtained from the abstract model (the formula) through building a mini-sized 
concrete model and counting out the actual unit squares that cover the area. Through 
this “two-way” connection (from concrete to abstract, and then from abstract back 
to concrete), the teacher help students realize that the symbolic model equation 
indeed represents the concrete model, and therefore can be used directly for solving 
area problems. Through these activities, the abstract model will no longer be 
“abstract” or “alien” to the students as it is attached to a concrete model, and there-
fore, students can make sense of the abstract model.

Following solving problems with the area as the unknown, the teacher will then 
provide students with opportunities to solve problems with a missing factor (e.g., 
“what is the length of a rectangle that has an area of 54 square feet and a width of 
18 feet?”). Students will engage in representing the problem in the area model equa-
tion with a letter x to represent the unknown quantity. Then, they will solve the 
problem through finding the unknown quantity in the equation (Length 
[?] × Width = Area; or Length [?] = Area / Width).

After students have learned to use the model equation (Length × Width = Area) 
for solving relevant area problems, students can be introduced to the model equation 
for solving for the volume of rectangular prisms (see Fig. 14.8). The same instruc-
tional sequence applies to the learning of solving problems involving the volume of 
rectangular prisms. Again, the teacher will start the instruction with concrete manip-
ulatives for modeling the concept. Students will engage in covering the base of the 
prism with the unit cubes, and they will then count the number of unit cubes that 
make up the base (that number should be the same as the answer they would obtain 
from the area model equation, Area = Length × Width). Next, students will count the 
number of layers of the base to fill the rectangular prism. The teacher will guide 
students to discover that the number of iterations of the base-unit would be the 
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Fig. 14.8 Semi-concrete [left] and abstract [right] models for the volume of rectangular prisms

height (or thickness) of the prism. Finally, students could find out the volume by 
counting all the unit cubes that make up the prism (unitary counting or skip count-
ing), or multiplying the base (the size of the composite unit or the “unit rate”) by the 
number of layers of the base (i.e., the height). Again, multiplicative reasoning was 
reinforced by solving for the volume through multiplying the area of the base 
(obtained by multiplying the length and width) by the number of layers (or the 
thickness or the height of the rectangular prism) rather than executing the unitary 
counting of the cubes. Comparing the results from both approaches (unitary count-
ing or skip counting and multiplication) will help students to understand the mean-
ing of the formula for solving for the volume of a rectangular prism (i.e., 
Volume = length × width × height). Similar to the learning of the area model, semi- 
concrete modeling serves to ease the transition from the concrete to the abstract model.

Once the connection is established, students can engage in representing the 
information from a word (or pictograph) problem directly to the model equation 
(i.e., Volume = Length × Width × Height) with a letter x to represent the unknown 
quantity. Then, they will complete the problem-solving through finding for the 
unknown quantity in the equation. Following solving problems with the volume as 
the unknown, it is important to provide students with opportunities to solve prob-
lems with a missing factor (i.e., the length, width, or height) using the model equa-
tion Volume = Length × Width × Height. Providing students opportunities to solve 
a range of problems, not only those with the product as the unknown but also prob-
lems with one of the factors as the unknown, facilitates students’ construction of the 
mathematical model through making connections among seemingly different 
problems.

14.4  Empirical Evidence That Support PGBM-COMPS 
Computer Tutor

We culminate this chapter with a few research studies that have investigated the 
effectiveness of the PGBM-COMPS computer tutor in enhancing problem-solving 
of students with LDM. For instance, Xin et  al. (2020) studied the impact of the 
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PGBM-COMPS tutoring program on multiplicative reasoning and problem-solving 
of students with learning disabilities (LDs). The study employed a mixed methods 
design involving three elementary students (8–11 years old) with LDs. We found 
that the PGBM-COMPS program significantly improved participating students’ 
problem-solving performance. This was seen not only on researcher developed cri-
terion tests (percentage of nonoverlapping data PND = 100%; Scruggs & Mastropieri, 
1998) but also on a norm-referenced standardized test (the Stanford Achievement 
Test, SAT-10, Pearson Inc., 2004). Qualitative and quantitative data analyses sup-
ported our claim that the integration of conceptual-focused instruction (the PGBM) 
and explicit model-based problem-solving (COMPS) allowed students with LDs to 
construct multiplicative reasoning, and contributed to their performance on solving 
multiplicative word problems. In particular, all participating children’s improve-
ment on the SAT-10 indicated that they were able to transfer learned skills to solve 
dissimilar problems in the standardized test.

We note that, data from the study indicated that two participating students had 
difficulty in solving Mixed Unit Coordination problems in Module B of the PGBM- 
COMPS program. The difficulties the students experienced may be due to their 
deficiency in working memory, which is one of the common characteristics of stu-
dents with LD (Swanson & Sachse-Lee, 2001). Specifically, in order to solve a 
Mixed Unit Coordination problem, the child would need to (a) figure out the num-
ber of composite units (e.g., bags of 6 candies each) that were needed for twelve 1s 
(e.g., organize candies into groups of 6; in this case, 2 bags are needed), then (b) 
take the sub-answer (2 bags) from the first step and add it to the given number of 
bags in the problem (e.g., 3 bags that a person had to start with). The challenge is 
for a student to hold the information (and partial answer) from the first step and then 
apply it in the second step to arrive at the solution. Hord et al. (2016) studied how 
more scaffolding could promote the success of these children when learning to 
solve such problems.

In a different study, Xin et  al. (2017a) explored the potential effects of the 
PGBM-COMPS tutor program on enhancing the multiplicative problem-solving 
skills of seventeen 3rd or 4th grade children with LDM. In that study, the experi-
mental group received instruction through the PGBM-COMPS computer tutor, 
whereas the control group received a “business as usual” (BAU) instruction pro-
vided by two licensed school teachers. Teachers in the BAU condition implemented 
the instruction consistently as they would do in their regularly scheduled mathemat-
ics classes, using the mathematics curriculum (textbook) adopted by the school dis-
trict. Overall, the findings (see Fig. 14.9 below) supported the potential for using the 
PGBM-COMPS intelligent tutor to address the knowledge gap of the students with 
LDM and enhance their problem-solving performance. Students in the PGBM- 
COMPS (experimental) group outperformed the BAU group on the criterion test. 
More importantly, following the intervention they showed statistically significant 
larger improvement on the Problem Solving subtest of a norm-referenced standard-
ized assessment, SAT-10. The authors concluded that the unique features of the 
PGBM-COMPS program, specifically basing mathematical model-equation 
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Fig. 14.9 Performance of the two comparison groups (PGBM-COMPS vs. BAU) on the criterion 
test before (Time = 1) and after the intervention (Time = 2, 3, & 4)

problem- solving on children’s understanding of fundamental mathematical ideas 
(i.e., the six schemes for multiplicative reasoning), have likely contributed to better 
acquisition and transfer.

14.5  Concluding Remarks

We have presented a progression of six schemes for multiplicative reasoning as well 
as how they were integrated with the COMPS program in promoting students mul-
tiplicative reasoning and problem-solving. We believe our work lends support for 
teachers who strive to nurture progress in students with LDM. The main point is that 
using the intervention programs described in this chapter allows engaging the stu-
dents in constructivist-oriented teaching-learning processes coordinated with 
abstract, symbolic model equations. Assuming your students have established the 
fundamental concept of number as composite unit, you can help them conceptual-
ize, and understand, underlying mathematical structures. As our rigorous research 
studies have shown, this understanding paves the road to mathematical model-based 
problem representation and generalized problem-solving skills.

14 Nurturing Multiplicative Reasoning with Whole Numbers



312

Acknowledgement ©All screenshots from the PGBM-COMPS Tutor presented in this chapter 
are copyrighted by the NMRSD project (1Xin et al., 2008). All rights reserved. Therefore, repro-
duction, modification, and storage, in any form or by any means, is strictly prohibited without prior 
written permission from the project director (yxin@purdue.edu) and the authors.

References

Baroody, A.  J. (2006). Why children have difficulties mastering the basic number combina-
tions and how to help them. Teaching Children Mathematics, 13(1), 22–31. www.jstor.org/
stable/41198838

Clark, F. B., & Kamii, C. (1996). Identification of multiplicative thinking in children in grades 1-5. 
Journal for Research in Mathematics Education, 27(1), 41–51.

Davydov, V. V. (1992). The psychological analysis of multiplication procedures. Focus on Learning 
Problems in Mathematics, 14(1), 3–67.

Ding, R., Tzur, R., Wei, B., Jin, X., Jin, X., & Davis, A. (2019). Conceptual analysis of an 
error pattern in Chinese elementary students. In M. Graven, H. Vekat, A. Essien, & P. Vale 
(Eds.), Proceedings of the 43rd conference of the International Group for the Psychology of 
Mathematics Education (Vol. 4, p. 93). PME.

Fuson, K.  C., Smith, S.  T., & Lo Cicero, A.  M. (1997a). Supporting Latino first graders’ ten- 
structured thinking in urban classrooms. Journal for Research in Mathematics Education, 
28(6), 738–766.

Fuson, K. C., Wearne, D., Hiebert, J. C., Murray, H. G., Human, P. G., Olivier, A. I., Carpenter, T. P., 
& Fennema, E. (1997b). Children’s conceptual structures for multidigit numbers and methods 
of multidigit addition and subtraction. Journal for Research in Mathematics Education, 28(2), 
130–162.

Greer, B. (1992). Multiplication and division as models of situations. In D.  Grouws (Ed.), 
Handbook of research on mathematics teaching and learning (pp. 276–295). Macmillan.

Hackenberg, A. J. (2007). Units coordination and the construction of improper fractions: A revi-
sion of the splitting hypothesis. Journal of Mathematical Behavior, 26, 27–47.

Hackenberg, A. J., & Lee, M. Y. (2015). Relationships between students’ fractional knowledge and 
equation writing. Journal for Research in Mathematics Education, 46(2), 196–243.

Hackenberg, A. J., & Tillema, E. S. (2009). Students’ whole number multiplicative concepts: A 
critical constructive resource for fraction composition schemes. The Journal of Mathematical 
Behavior, 28(1), 1–18.

Harel, G., & Confrey, J. (Eds.). (1994). The development of multiplicative reasoning in the learn-
ing of mathematics. State University of New York.

Hord, C., Tzur, R., Xin, Y. P., Si, L., Kenney, R. H., & Woodward, J. (2016). Overcoming a 4th 
grader’s challenges with working-memory via constructivist-based pedagogy and strate-
gic scaffolds: Tia’s solutions to challenging multiplicative tasks. Journal of Mathematical 
Behavior, 44, 13–33.

Kling, G., & Bay-Williams, J. M. (2015). Three steps to mastering multiplication facts. Teaching 
Children Mathematics, 21(9), 548–559. https://doi.org/10.5951/teacchilmath.21.9.0548

Lei, Q., Xin, Y. P., Morita-Mullaney, T., & Tzur, R. (2020). Instructional scaffolds in mathematics 
instruction for English learners with learning disabilities: An exploratory case study. Learning 
Disabilities: A Contemporary Journal, 18(1), 123–144.

Ma, L. (2020). Knowing and teaching elementary mathematics: Teachers’ understanding of funda-
mental mathematics in China and the United States. Routledge.

1 This research was supported by the National Science Foundation, under grant DRL 0822296. The 
opinions expressed do not necessarily reflect the views of the Foundation.

R. Tzur and Y. P. Xin

yxin@purdue.edu
http://www.jstor.org/stable/41198838
http://www.jstor.org/stable/41198838
https://doi.org/10.5951/teacchilmath.21.9.0548


313

Mulligan, J. (2002). The role of structure in children’s development of multiplicative reasoning. 
In B. Barton, K. C. Irwin, M. Pfannkuch, & M. O. Thomas (Eds.), Mathematics education in 
the South Pacific. Proceedings of the 25th annual conference of the Mathematics Education 
Research Group of Australasia, Auckland, NZ (Vol. 2, pp. 497–503). Sydney: MERGA.

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for 
school mathematics [Electronic version]. Author. Retrieved December 31, 2007, from http://
standards.nctm.org

Schwartz, J. (1988). Intensive quantity and referent transforming arithmetic operations. In 
J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 41–52). 
Lawrence Erlbaum.

Scruggs, T. E., & Mastropieri, M. A. (1998). Summarizing single-subject research: Issues and appli-
cations. Behavior Modification, 22(3), 221–242. https://doi.org/10.1177/01454455980223001

Simon, M. A., & Blume, G. A. (1994). Building and understanding multiplicative relationships: 
A study of prospective elementary teachers. Journal for Research in Mathematics Education, 
25(5), 472–494.

Simon, M. A., Tzur, R., Heinz, K., & Kinzel, M. (2004). Explicating a mechanism for concep-
tual learning: Elaborating the construct of reflective abstraction. Journal for Research in 
Mathematics Education, 35(3), 305–329.

Simon, M. A., Kara, M., Norton, A., & Placa, N. (2018). Fostering construction of a meaning 
for multiplication that subsumes whole-number and fraction multiplication: A study of the 
Learning Through Activity research program. The Journal of Mathematical Behavior, 52, 
151–173. https://doi.org/10.1016/j.jmathb.2018.03.002

Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning and 
Individual Differences, 4(3), 259–309. https://doi.org/10.1016/1041- 6080(92)90005- Y

Steffe, L. P., & Cobb, P. (1988). Construction of arithmetical meanings and strategies. Springer.
Steffe, L.  P., & Cobb, P. (1998). Multiplicative and divisional schemes. Focus on Learning 

Problems in Mathematics, 20(1), 45–62.
Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. Springer.
Swanson, H. L., & Sachse-Lee, C. (2001). Mathematical problem solving and working memory 

in children with learning disabilities: Both executive and phonological processes are impor-
tant. Journal of Experimental Child Psychology, 79(3), 294–321. https://doi.org/10.1006/
jecp.2000.2587

Thompson, P. W., & Saldanha, L. (2003). Fractions and multiplicative reasoning. In J. Kilpatrick & 
G. Martin (Eds.), Research companion to the NCTM Standards (pp. 95–113). National Council 
of Teachers of Mathematics.

Tzur, R. (2019). Hypothetical learning trajectory (HLT): A lens on conceptual transition between 
mathematical “markers”. In D.  Siemon, T.  Barkatsas, & R.  Seah (Eds.), Researching and 
using progressions (trajectories) in mathematics education (pp.  56–74). Sense. https://doi.
org/10.1163/9789004396449_003

Tzur, R., Xin, Y. P., Si, L., Woodward, J., & Jin, X. (2009). Promoting transition from participa-
tory to anticipatory stage: Chad's case of multiplicative mixed-unit coordination (MMUC). In 
M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd conference of 
the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 249–256). 
Thessaloniki, Greece: PME.

Tzur, R., Johnson, H. L., McClintock, E., Kenney, R. H., Xin, Y. P., Si, L., Woodward, J., Hord, C., 
& Jin, X. (2013). Distinguishing schemes and tasks in children's development of multiplicative 
reasoning. PNA, 7(3), 85–101.

Tzur, R., Johnson, H. L., Hodkowski, N. M., Nathenson-Mejía, S., Davis, A., & Gardner, A. (2020). 
Beyond getting answers: Promoting conceptual understanding of multiplication. Australian 
Primary Mathematics Classroom, 25(4), 35–40.

Tzur, R., Johnson, H.  L., Norton, A., Davis, A., Wang, X., Ferrara, M., Harrington, C., & 
Hodkowski, N. M. (2021). Children’s spontaneous additive strategy relates to multiplicative 
reasoning. Cognition and Instruction (online first), 1–26. https://doi.org/10.1080/0737000
8.2021.1896521

14 Nurturing Multiplicative Reasoning with Whole Numbers

http://standards.nctm.org
http://standards.nctm.org
https://doi.org/10.1177/01454455980223001
https://doi.org/10.1016/j.jmathb.2018.03.002
https://doi.org/10.1016/1041-6080(92)90005-Y
https://doi.org/10.1006/jecp.2000.2587
https://doi.org/10.1006/jecp.2000.2587
https://doi.org/10.1163/9789004396449_003
https://doi.org/10.1163/9789004396449_003
https://doi.org/10.1080/07370008.2021.1896521
https://doi.org/10.1080/07370008.2021.1896521


314

Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of 
mathematical concepts and processes (pp. 127–174). Academic Press.

von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. Falmer.
Whitacre, I., & Nickerson, S. D. (2016). Prospective elementary teachers making sense of mul-

tidigit multiplication: Leveraging resources. Journal for Research in Mathematics Education, 
47(3), 270–307. https://doi.org/10.5951/jresematheduc.47.3.0270

Xin, Y. P. (2012). Conceptual model-based problem solving: Teach students with learning difficul-
ties to solve math problems. Sense. https://doi.org/10.1007/978- 94- 6209- 104- 7_1

Xin, Y. P. (2015). Research related to modeling and problem solving: Conceptual model-based 
problem solving: Emphasizing pre algebraic conceptualization of mathematical relations. In 
E. A. Silver & P. A. Kenney (Eds.), More lessons learned from research: Useful and useable 
research related to core mathematical practices (pp. 235–246). National Council of Teachers 
of Mathematics (NCTM).

Xin Y. P., Tzur, R., & Si, L. (2008a). Nurturing multiplicative reasoning in students with learning 
disabilities in a computerized conceptual-modeling environment. National Science Foundation 
(NSF) Funded Project

Xin, Y. P., Wiles, B., & Lin, Y. (2008b). Teaching conceptual model-based word-problem story 
grammar to enhance mathematics problem solving. The Journal of Special Education, 42, 
163–178. https://doi.org/10.1177/0022466907312895

Xin, Y.  P., Liu, J., Jones, S., Tzur, R., & SI, L. (2016). A preliminary discourse analysis of 
constructivist- oriented math instruction for a student with learning disabilities. The Journal of 
Educational Research, 109(4), 436–447. https://doi.org/10.1080/00220671.2014.979910

Xin, Y. P., Tzur, R., Hord, C., Liu, J., Park, J. Y., & Si, L. (2017a). An intelligent tutor-assisted 
math problem-solving intervention program for students with learning difficulties. Learning 
Disability Quarterly, 40(1), 4–16.

Xin, Y.  P., Tzur, R., & Si, L. (2017b). PGBM-COMPS Intelligent Tutor©. Purdue Research 
Foundation, Purdue University. (Registration # 1-510-4735781).

Xin, Y. P., Park, J., Tzur, R., & Si, L. (2020). The impact of a conceptual model-based mathemat-
ics computer tutor on multiplicative reasoning and problem-solving of students with learning 
disabilities. The Journal of Mathematical Behavior, 58, 100762. Available online Feb 27, 2020. 
https://doi.org/10.1016/j.jmathb.2020.100762

Xin, Y. P., Zhang, D., Park, J. Y., Tom, K., Whipple, A., & Si, L. (2011). A Comparison of Two 
Mathematics Problem-Solving Strategies: Facilitate Algebra-Readiness. The Journal of 
Educational Research, 104, 381–395. https://doi.org/10.1080/00220671.2010.487080

R. Tzur and Y. P. Xin

https://doi.org/10.5951/jresematheduc.47.3.0270
https://doi.org/10.1007/978-94-6209-104-7_1
https://doi.org/10.1177/0022466907312895
https://doi.org/10.1080/00220671.2014.979910
https://doi.org/10.1016/j.jmathb.2020.100762
https://doi.org/10.1080/00220671.2010.487080


315

Chapter 15
Nurturing Fractional Reasoning

Ron Tzur and Jessica H. Hunt

Abstract While central to a person’s life and study of mathematics, learning to 
reason and operate with fractions is among the most relentless sources of difficulty 
for students and teachers. To support teachers’ design and implementation of 
instruction that nurtures fractional reasoning in students with learning disabilities 
(LD) or difficulties, in this chapter we present a learning progression (trajectory) 
comprised of eight concepts, the early four based on the mental activity of iteration 
and the last four on recursive partitioning. This progression, unlike practices that 
focus on fractions as part-of-a-whole, focuses on and nurtures conceptualizing frac-
tions as multiplicative relations. We organize the chapter to address two essential 
questions teachers frequently ask: “What does it mean for a student to know 
 fractions well?” and, “What are some pedagogical moves, and the rationale for 
those moves, that teachers can use to foster intended conceptual advancements?”  
To inspire and assist teachers for using this progression to guide their work on 
 fractions, we interweave descriptions of each concept and its importance with 
instructional tasks that help foster reflection on activities and abstraction of those 
concepts.
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15.1  Nurturing Fractional Reasoning

Conceptual foundations in fractions, which underlie rational number sense, are a 
prerequisite for students’ understanding of more advanced mathematical topics like 
ratio, rates, proportions, and algebraic reasoning (Hackenberg & Lee, 2015; 
Thompson & Saldanha, 2003). The importance of fractions is evident in the USA’s 
Common Core State Standards for Mathematics (CCSSM, 2010), which empha-
sized understanding fractions throughout elementary school and tie fractions to 
rational numbers and proportional reasoning in middle school. Yet, Hunting et al.’s 
(1996) decades-old assertion still holds: “The teaching and learning of fractions is 
not only very hard, it is, in the broader scheme of things, a dismal failure” (p. 63). 
In Chap. 3, we highlighted two issues with commonly used resources. First, they 
focus the teaching of fractions on the limiting part-of-whole concept. Second, they 
reinforce instructional practices that diminish opportunities for students to engage 
in actions and reflective processes that bring about fractional concepts, stunting 
access to and advancement of conceptual understanding (Hunt et  al., 2019; 
Woodward & Tzur, 2017).

Examples abound of conceptual and procedural issues that many students (LD 
and non-LD) manifest, which can help illustrate what knowing fractions well might 
mean. Two difficulties tend to stand out among nearly all students. First, when com-
paring fractions, students may say that 1/10 is greater than 1/4 because 10 is larger 
than 4. Similarly, students often misuse whole number reasoning and procedures for 
fractions (Mack, 1990; Van Hoof et al., 2015). For example, students may errone-
ously reason that 1/2 + 1/4 = 2/6 due to adding the numerators and denominators 
separately. Results of the USA’s National Assessment of Educational Progress 
(NAEP, 2012, 2017, 2019) have repeatedly shown erroneous solutions of this kind, 
signaling students are not reasoning about fractions as “numbers in their own right” 
(Hackenberg, 2007, p. 28). These issues demonstrate a need to nurture reasoning 
about fractions as multiplicative relations, that is, as measures (Simon et al., 2018a; 
Tzur, 2000, 2019a).

A chief source of these difficulties is instruction (Tzur, 2013; Woodward & Tzur, 
2017). Part-whole teaching approaches provide students with pre-partitioned shapes 
and ask them to respond by shading a requested number of parts. Modeled strategies 
and procedures for finding equivalent fractions are often presented next, followed 
by abstract procedures used to add, subtract, multiply, and divide these new kinds of 
numbers. The problem with this approach is the lack of link between students’ 
available concepts, knowledge of how they come to build up understandings of frac-
tions as quantities, and teachers’ plans for instruction.

Standards and textbooks are useful in that they provide teachers with desired 
endpoints of learning. Yet, they fall short of guiding teachers how students might 
come to understand fractions in these desired ways. To address this issue, we pres-
ent an 8-concept progression depicting how student reasoning about fractions may 
originate and develop. We interweave the conceptual discussion of each concept 
with a brief description of research-based activities/tasks that, by drawing on 
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students’ available concepts, proved effective in promoting students’ construction 
of the (next) intended concept. We share teaching methods that we have been using 
in our own work with LD and non-LD students alike, as well as with their teachers. 
By such interweaving of the conceptual progression with ways to nurture it we 
attempt to address two essential questions teachers frequently ask: (a) What does it 
mean for a student to know fractions well? And (b) What are some pedagogical 
moves and the rationale for them that teachers can use to foster intended conceptual 
advancements?

15.2  Nurturing Students’ Fractional Reasoning: 
An 8-Concept Progression

In Chap. 3 (this volume), we presented a theoretical explanation of how a student 
may come from not having to having a particular mathematical concept by bringing 
forth and transforming their available concepts. Using an example of the transfor-
mation of whole number concepts into the first fractional concept in our progression 
below, we pointed out three core tenets that underlie effectively designing, select-
ing, and implementing interactions with students that promote intended conceptual 
advances. In this chapter, we present an 8-concept progression, summarized by Tzur 
(2019a, b) based on the work of constructivist researchers (Hackenberg, 2013; 
Hackenberg et  al., 2016; Hackenberg & Tillema, 2009; Norton & Boyce, 2013; 
Norton & Wilkins, 2009; Norton et al., 2018; Steffe & Olive, 2010). This progres-
sion commences with unit fractions as the first of a 4-concept cluster rooted in the 
mental activity of unit iteration. It advances to a latter, 4-concept cluster rooted in 
activities of partitioning the results of previous partitions, aka, recursive partitioning 
(e.g., 1/5 of 1/7, 2/5 of 3/7, etc.). Unlike a “part-of-whole” focus, nurturing those 
eight concepts is geared for yielding thinking about fractions as multiplicative rela-
tions (Simon et al., 2018a).

In Table 15.1 we first provide the key terms of the eight concepts and correspond-
ing topics that each concept underlies (examples in parentheses). This concise list 
of eight concepts underlies numerous terms/procedures typically taught disjoint-
edly. Immediately following the table, we describe each concept. Due to space, we 
do not articulate the participatory (prompt-dependent) and anticipatory (spontane-
ous/independent) stages through which each of those concepts evolves (see Chap. 3).

The Equi-partitioning (EP) concept Student fractional reasoning begins with the 
Equi-partitioning (EP) concept, which supports understanding of and operations on 
unit fractions (1/n). As we explained in Chap. 3, students construct the EP concept 
as a transformation in their available concept of number as composite unit (Steffe & 
von Glasersfeld, 1985). The EP concept comprises two, interrelated sub-concepts. 
First, it involves conceiving of each unit fraction as a multiplicative relation 
between two units, one of which is designated as the unit of 1 (“whole”). Specifically, 
a unit fraction is quantified as a measure of the whole, that is, it fits n times within 
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Table 15.1 Eight concepts for fractional reasoning underlie various mathematical concepts

Concept Familiar math supported

1. Equi-partitioning 
(EP)
  Unit fractions (1/n)

Understand unit fractions (four 1/4s make a whole)
Order unit fractions (1/5 > 1/7)

2. Partitive Fractions 
(PF)
  Within whole (m/n, 

m ≤ n)

Understand proper fractions (2/3 is two times 1/3)
Add/subtract/order like-denominator fractions (2/7 + 3/7 = 5/7)
Multiply fractions by small whole numbers (3 * 2/7 = 6/7)
Compare/order like-denominator fractions (2/7 < 3/7 < 5/7)

3. Iterative Fractions 
(PF)
  Exceed whole (m/n)

Understand improper fractions (11/6 is 11 times 1/6)
Understand/link to mixed numbers (17/6 is also 2 + 5/6)
Multiply fractions by any whole number (10 * 2/7 = 20/7)
Divide fractions by small whole number (6/7÷3 = 2/7)

4. Reversible Fractions 
(RF)
  First within whole, 

then any m/n

“Undo” non-unit fractions (divide 3/5 by 3 to make 1/5, then multiply 
by 5 to recreate whole or by 6 for 6/5)
Solve price-change problems (if 70% sale price is $24– what was the 
original price)

5. Recursive 
Partitioning (RP)
  First unit fractions 

only

Multiply unit fractions (1/3 * 1/7 = 1/21)
Understand decimals/percentages (1/10 * 1/10 = 1/100; thus 0.1 * 
0.1 = 0.01 and 1/10 of 10% = 1%)

6. Unit Fraction 
Composition (UFC)

Multiply unit by non-unit fractions (5/7 * 1/3 = 5/21)
Then multiply the other way (1/3 * 5/7 = 5/21)
Understand equivalent fractions/decimals (1/3 * 7/7 = 7/21; 1/10 * 
10/10 = 10/100 thus 0.1 = 0.10 and = 10%)
Expand (or simplify to) unit fractions
Add/subtract unlike denominator fractions 
(1/3 + 5/7 = 7/21 + 15/21 = 22/21 = 1+ 1/21)

7. Distributive 
Partitioning (DP)

Understand the result of division as a fraction
Divide whole numbers (3 pizzas shared equally among 4 people = 3/4 
pizza per person)

8. Any Fraction 
Composition (aFC)

Multiply any fraction by any fraction (5/7 * 2/3 = 10/21)
Understand equivalency among any fraction type
Translate between all fractional types 
(130/100 = 13/10 = 1.3 = 130% = 39/30, etc.)
Add/subtract any type of fractions (2/3 + 8/7 = 14/21 + 
24/21 = 14/21 + 1 + 3/21 = 1 + 17/21)
Divide fractions and understand the algorithm (3/5÷2/7 = 3/5 * 
7/2 = 21/10 = 2.1)

the whole – or the whole is n times as much of 1/n. For example, the fraction 1/7 
assumes its meaning based on the whole being seven times as much of another 
piece. That is, neither the part alone nor the whole alone (even if equally parti-
tioned) form a unit fraction, but rather the relationship between them. Second, the 
EP concept involves conceiving of the inverse relationships between the number 
and size of unit fractions (e.g., 1/5 > 1/6 because 6 > 5). When generalized and fur-
ther symbolized (see Tzur, 2000), it provides a conceptual foundation for students’ 
understanding of the inverse relationship and thus for ordering any collection of unit 
fractions (1/n < 1/m if n > m). We presented instructional tasks to promote the EP 
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Fig. 15.1 Whole “A” with five unequal parts; pieces “B” (green) and “C” (blue) are equal

concept in Chap. 3, with a reference to a paper (Tzur & Hunt, 2015) that further 
details those.

Accordingly, when students who have constructed the EP concept are shown a 
“confusing” diagram (Fig.  15.1), they correctly solve two interrelated problems: 
What fraction of the whole (A) is the green piece (B) and what fraction of the whole 
is the blue piece (C)?

Using EP, their goal is to figure out how many times the embedded piece (B), or 
the disembedded piece (C), fit within whole A. Simply put, they intend to figure out 
how many times is whole A as much as piece B or Piece C. This goal triggers for 
them the activity of iterating either piece (or a copy of its length). The effect of their 
activity would be recognizing each piece as 1/6 of the whole, because it fits six 
times within the whole and thus the whole is six times as much of it. One could 
readily imagine erroneous solutions that people conceiving of fractions as part-of- 
whole might have, such as “B is 1/5 of A, because it is one-of-five parts,” or “C is 
not a fraction of A as it is not part of it,” or “I cannot tell what fraction is B of A 
because the parts are not equal” (see Tzur, 2019a).

Similarly, when shown another “confusing” diagram (Fig.  15.2), people who 
have established the EP concept would correctly solve the problem: “Pat ate 1/6 of 
a large chocolate bar and Sam ate 1/4 of a small chocolate bar. Which fraction is 
larger, 1/4 or 1/6?” Using EP, their goal would be to figure out, and compare, how 
many times each piece fits within its respective whole (bar). Their iteration-related 
activity implies 1/4 fits four times within the smaller bar and 1/6 fits six times within 
the larger bar (and the respective pieces of chocolate). The effect of their activity 
includes comparison of the fractions based on the number of times each unit frac-
tion fits within its respective whole. Thus, overcoming the “temptation” to incor-
rectly compare the amounts of chocolate each person ate, a person’s EP would yield 
a correct response that the fraction 1/4 is (always) larger than the fraction 1/6.

As Patrick Thompson (personal communication) suggested, such a “confusing” 
problem is a good litmus test for assessing a person’s understanding of unit fractions.

The partitive (proper) fractions (PF) concept Students who have established the 
EP concept and a multiplicative concept for whole numbers can advance to con-
structing the second, partitive fractions (PF) concept (Olive & Steffe, 2010; Tzur, 
2000). The PF concept gives rise to understanding composite fractions (m/n) as 
multiplicative relations and meaningfully operating on those numbers (e.g., 5/7 = 5 
* 1/7). The PF concept is also based on the mental operation of iterating a unit. In 
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Fig. 15.2 A large 
6-equal- parts chocolate bar 
(left) and a small 
4-equal-parts bar (right)

abstract symbols, the PF concept indicates an anticipation that iterating a given unit 
fraction (1/n) a few (m) times, not exceeding the n/n whole (i.e., m ≤ n), yields a 
composite fraction that is m times as much as 1/n. As Tzur (2000) asserted, only 
after a student establishes this anticipation do we present and help them link it to the 
symbol (m/n). The PF concept provides a conceptual foundation for adding and 
subtracting same-denominator fractions (2/7 + 3/7 = 5/7), as well as multiplying 
unit and non-unit fractions by a small whole number (e.g., 3 times 2/7 = 6/7).

Tasks that support construction of the PF concept might include a scenario where 
two friends each eat 1/5 of a pizza and think about the combined quantity as a frac-
tion of the whole pizza. These students may initially consider the result as 1/5 + 1/5, 
and the teacher will also emphasize that it is twice as much as 1/5, hence two-fifths, 
2 * 1/5, and simply 2/5. Critically, for students who have constructed the PF con-
cept, adding 3/6 + 2/6 preserves the underlying unit fraction (here, 1/6, as opposed 
to adding 6 + 6 and creating the unit fraction of 1/12) (Tzur, 2000, 2007). Likewise, 
ordering the magnitudes of same-denominator fractions is accessible and meaning-
ful to students with the FP concept. They anticipate that if the size of the unit  
fraction relative to the whole remains the same (e.g., 1/7), iterating it more  
times yields, necessarily, a larger composite fraction (hence, for example, 
2/11 < 3/11 < 4/11 … < 11/11).

Iterative/improper fractions (IF) Students who have established the PF concept 
can advance to constructing the third, iterative fractions (IF) concept. The same 
goal-directed activities of iterating a unit fraction (1/n) or a composite fraction (m/n) 
yields novel effects for students, namely, composite fractions larger than the n/n 
whole (Olive & Steffe, 2010; Tzur, 1999). A task to promote the IF concept could 
include the following activities in the JavaBars (Biddlecomb et al., 2013) software: 
“Create a long ‘stick’ (whole), then create 1/11 of it. Now, repeat the 1/11 twice and 
write what fraction is the new one of the whole (2/11). Next, repeat the last one three 
times and again write what fraction is it is of the whole (6/11). Finally, repeat the 
last fraction you made twice and tell what fraction is the resulting stick of the 
whole” (see Fig. 15.3). Reflecting on iteration and abstracting the meaning of novel 
composite fractions that exceed the “boundaries” of the given whole supports the 
iterative fraction (IF) concept. The IF concept supports not only the meaning for 
improper fractions but also their equivalence with mixed numbers (hence, meaning-
ful back-and-forth conversions). It also opens the way to multiplication of unit and 
composite fractions by any whole number (e.g., 10 * 2/7 = 20/7).

We cannot stress enough a crucial point. An adult who knows both the partitive 
(proper) fraction and the iterative (improper) fraction concepts might consider 
advancing to the IF concept as a clear-cut extension of the partitive fraction (PF) 
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Whole

1/11
2/11

6/11

? ? ?

Fig. 15.3 A multistep task using iteration of units to create an improper fraction

concept. After all, if one can iterate 1/7, say, six times to produce 6/7 it would be an 
“easy” extension to iterate it eight times and produce 8/7. As we have experienced 
with students, and teachers reported to us similarly, this is not the case. 
Conceptualizing the iteration of a unit fraction beyond the whole is quite a concep-
tual leap. It requires anticipating that a unit fraction, once conceived of through 
iteration within a given whole – can be “freed” from that whole (Hackenberg, 2007; 
Tzur, 1999). That is, with an IF concept, the student considers a unit fraction (1/n) 
in relation to (but apart from) the potentially n-part whole of which it is a fraction.

Students who have constructed the iterative fraction (IF) concept can correctly 
answer questions such as, “What if 4 friends ate 2/7 of a pizza each?” (here, 8/7). 
The reason is they anticipate the effect of such iteration to be a quantity that is four 
times as much as the composite fraction 2/7. For these students, 8/7 of a pizza is a 
sensible composite fraction of a 7/7-pizza. Understanding this entails there is more 
than one whole pizza. Accordingly, such students can also learn to anticipate the 
resulting quantity (8/7) as 1 whole (e.g., 7/7-pizza) and one more 1/7 of that whole 

(1
1

7
) – and recognize the equivalence of the two quantities. Thus, the IF concept 

also supports equivalence of and conversions between improper fractions and mixed 
numbers. Conversely, a student who is yet to abstract the IF concept is likely to view 
the result of four iterations of two-sevenths as impossible: “Not sure; maybe 7/8, 
because we have 8 and 7, but the numerator cannot be larger than the denominator.” 
The IF concept thus demarcates between people who conceive of fractions as part- 
of- whole and those who conceive of fractions as multiplicative relations. For the 
former, the literal meaning of something being a part of something else entails the 
part must be smaller than the whole. This meaning contradicts the possibility of 
“improper” fractions. For the latter, a fraction larger than the whole simply entails a 
multiplicative relation resulting from iterating a unit fraction (1/n) more times than 
needed to produce the given, n/n whole.

Reversible (de-composing) fractions Students who have established the IF con-
cept can advance to constructing the fourth, reversible fractions (RF), concept. 
Tasks to promote the RF concept involve a given composite fraction (e.g., 3/5) and 
a question – also the goal – to use it for reproducing the whole of which it is such a 
fraction (Boyce & Norton, 2017; Simon et al., 2018b; Steffe, 2003; Tzur, 2004). 
This concept is termed reversible because, essentially, a student who has abstracted 
the RF concept can reverse (“undo”) the sequence of activities leading from taking 
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Whole

2/10

5/10

3/10

1/10

Fig. 15.4 A problem 
situation showing 
fractional units of 1/10, 
2/10, 3/10, and 5/10

an unpartitioned whole and producing the given composite fraction. That is, the 
student can reverse the iteration supposedly used to create a composite fraction m/n 
by partitioning it into m parts to create 1/n and then “undo” the initial partitioning 
of the whole, which created 1/n, by iterating n times to make the n/n whole.

An effective start for teaching the RF concept is shown in Fig. 15.4. The task is 
to use any of the given fractions to reproduce the whole. Students often begin by 
iterating the 5/10 twice, then the 1/10 ten times, then the 2/10 five times. At this 
point, possibly getting stuck, the teacher would ask if they can find a way to also use 
the 3/10 to make the whole. They eventually realize the possibility of iterating it 
three or four times and decomposing one unit of 3/10 to produce a unit of 1/10 that 
allows them to accomplish their goal. It is this decomposition, using a marked com-
posite fraction, that opens the way to also decomposing unmarked composite frac-
tions (see Fig. 15.5).

An example of an established reversible fraction concept “at work” is to consider 
an unmarked bar, which is 7/10 of another bar (i.e., the whole). Figure 15.5 shows 
Sue’s chocolate bar, which we are told is 7/10 of Ana’s chocolate bar; the task is to 
produce (e.g., draw) Ana’s bar. In considering what the whole bar must be, a student 
reasoning with the RF concept would partition the 7/10 into 7 equal units, anticipat-
ing that one of the equal units is 1/10 of the candy bar. To reproduce the entire bar, 
the student would then iterate 1/10 ten times. As the studies cited in this paragraph 
repeatedly show, until constructing the RF concept students would likely incorrectly 
partition the given 7/10 into ten parts. To them, such a partition seems sensible (and 
we should expect it) because, to this point in their conceptual development, the 
denominator has entailed the partition of a given whole bar.

Why is the RF concept relevant? It underlies solutions to challenging problems 
from other contexts, like price change. For example, a shirt was purchased on sale 
for $24, which is 4/5 of the original cost. To find the original cost, a student with the 
RF concept would readily partition 24 into four parts to “undo” the iteration of 1/5, 
finding this unit fraction of the original price is $6. The student would then iterate 
1/5 ($6) five times to undo the partition of the whole that created it, arriving at $30 
for the original price of the shirt.

Progressing: From iterating to partitioning fractions As a transition from the 
first cluster of four iteration-based concepts for fractional reasoning to the next 
cluster of more advanced concepts, we point out two insights. First, iteration under-
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Fig. 15.5 A problem situation showing Sue’s bar, which is 7/10 of Ana’s unknown bar

lies and is afforded by a student’s concept of number as composite unit (Steffe & 
von Glasersfeld, 1985). An indicator of this concept can be gleaned from the strat-
egy a student uses spontaneously (non-prompted) to add two whole numbers (e.g., 
8 + 7). Counting-on (8; 9–10–…–15) indicates an initial, and likely insufficiently 
developed concept of number. A much stronger, “safer” indicator is the 
 break-apart- make-ten (BAMT) strategy (Tzur et al., 2021). To assess students’ con-
ceptual readiness for all four iteration-based fractional concepts, a teacher is 
encouraged to determine their spontaneous additive strategy.

Second, and leading to the second cluster of four concepts rooted in recursive 
partitioning, we stress a key aspect of iteration activities: treating unit fractions as 
intact entities. The leap to partitioning unit fractions, themselves the result of parti-
tioning, is thus not unlike children’s leap from operating on the unit of 1 as an intact 
entity. As Piaget et al. (1960) had shown, children initially cannot fathom decom-
posing the unit of 1 into smaller units. Decomposing unit fractions (1/n) is even 
more challenging, because a child needs not only to accept and make sense of such 
an activity but also to conceive of its effect as a fractional unit of the original whole. 
For example, two siblings might have equally shared a whole pizza. One of them 
now decides to create three equal slices, to share the half with two other friends 
(Fig. 15.6). A child with a part-of-whole concept would have difficulties in over-
coming the “confusing” appearance of four unequal parts and likely respond incor-
rectly (1/4). Instead, a child would need to understand both that one friend’s (single) 
slice is 1/3 of 1/2 – hence a half can itself be decomposed equally – and link that 
slice back to the whole pizza (1/6 of it). For the former, the child needs to conceive 
of a particular unit fraction as a “whole in its own right.” For the latter – the child 
would have to conceive of the slice as a unit fraction (1/3), embedded within another 
unit fraction (1/2), which is embedded within a third unit (the whole, 1). Indeed, 
such a concept entails coordinating three levels of units (e.g., 1, 1/2, and 1/3 of 1/2), 
a conceptual leap for students (Hackenberg, 2013; Hackenberg & Lee, 2015; Norton 
et al., 2015; Ulrich, 2016).

Recursive Partitioning of Unit Fractions Students assessed to have established at 
least the EP concept (unit fractions), and preferably also the other three, iteration- 
based concepts (PF, IF, and RF), can advance to constructing the fifth, recursive 
partitioning (RP) concept. Problem situations like the pizza sharing in the previous 
paragraph can be used to promote the RP concept. A student’s goal in such situa-
tions would be to figure out how many times a unit fraction of a unit fraction (e.g., 
1/3 of 1/2) fits within the given whole, that is, identify the effect of partitioning a 
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1/2

1/3 of
1/2

Fig. 15.6 A pizza shared 
equally between two, with 
one half equally sliced into 
three

unit fraction into a unit fraction. To this end, they can bring forth the activity of 
iteration of embedded units. For example, in the situation above they could initially 
partition the other (top) half into three equal parts and realize the situation now 
involves two units (halves), each comprised of three subunits, and thus conclude 
that one of those subunits fits exactly six times within the whole (hence, 1/6 of it).

Next, we can foster further reflection across instances of such recursive partition-
ing to promote students’ conceptualization of the invariant operation involved, 
namely, multiplication of the denominators. To this end, we may engage them in 
similar tasks in which we do not change the first partition while changing the second 
(e.g., 1/4 of 1/2, 1/5 of 1/2, 1/9 of 1/2). After each task, we would orient their reflec-
tion onto the relationship between the resulting number of parts (e.g., 8, 10, or 18, 
respectively) that fit within the entire whole and the two numbers used in the two- 
step partitioning process (e.g., “You said that 1/4 of 1/2 is 1/8, because there are 4 
parts in this half and 4 parts in the other half; Is this surprising? Can you explain 
why ‘8 parts’ using a different operation?”). Later on, we would promote their abil-
ity to anticipate the effect of partitioning both halves without/before actually com-
pleting such an activity. For example, we could ask, “You got half of a chocolate 
bar, and your half shows 6 cubes. Could you tell me, without changing the picture, 
what fraction is one cube of the entire chocolate bar?” (Fig. 15.7).

Eventually, we would use further variation of the tasks to include also different 
unit fractions as the first step (e.g., 1/3 of 1/4, 1/5 of 1/4, … 1/2 of 1/5, 1/3 of 1/5, 
etc.). Our goal would be to nurture students’ abstraction of the intended anticipa-
tion: the effect of partitioning a unit fraction (1/n) into k subunits is a unit fraction 
of particular size – a size determined by the multiplication of the two denominators 
(i.e., 1/n of 1/m = 1/(n * m)). Such an anticipation would serve as a conceptual safe-
guard against confusions found in the reasoning of students who conceptualize frac-
tions as parts-of-whole (e.g., thinking that one chocolate cube in Fig. 15.7 is 1/7 of 
the whole bar because they see a whole with seven parts). Here, we typically ask 
students to come up with their own rule of how one solves similar problems, asking 
the students to explain why it must always work. Their understanding of the rule 
would allow the teacher to present a symbolic form for it: 1/n * 1/m  =  (1 * 1)/
(n * m).
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Fig. 15.7 Two halves of a 
chocolate bar, one further 
partitioned into 6 cubes

Regarding the EP concept, we asserted above that, just like the unit of 1 is the 
foundation for all whole numbers, the unit fraction 1/n is the foundation for all frac-
tions. Here, similarly, we extend this assertion to unit fraction of a unit fraction (1/
(m * n)) being the foundation for all fractions that could be produced through recur-
sive partitioning (e.g., 1% = 1/10 of 1/10). As we shall demonstrate in the next three 
concepts, being able to determine the resulting unit fraction after recursive parti-
tioning would constantly serve as a starting point. Before turning to the next con-
cept, however, we point out two implications of the RP concept for fraction learning.

First, recursive partitioning is a necessary basis for understanding decimals and 
percentages, in the special case in which all numbers serving as its input are powers 
of 10. The right side of Fig. 15.8 shows this for 1/100 being 1/10 of 1/10 (also 0.01 
and 1%); the reader can imagine extension to show 1/1000 (0.001 = 0.1%), etc. This 
understanding leads to understanding why “moving to the right” in a decimal num-
ber is equivalent to dividing the previous magnitude by 10. To teach the relation-
ships among those magnitudes, teachers often use “base ten blocks” while reversing 
the order of the blocks, telling students to consider that what was “1000” is now “1.” 
At issue is that such an approach already requires a student to somehow fathom the 
process leading from 1 to 1/10 (a “flat”) and then to 1/100 (“long”), etc., that is, the 
very concept they need to construct. Instead, we recommend using a software appli-
cation that allows students to experience the recursive partitioning activity and 
reflect on its effects (we created Fig. 15.8 this way). Our own preference, and rec-
ommendation, is to turn the focus onto 1/10 of 1/10 as a special case of recursive 
partitioning (RP) only after students have established this concept for any 
denominator.

The second implication of recursive partitioning is pretty straightforward – pro-
viding a solid conceptual basis for equivalent fractions. To produce a unit fraction 
(1/m) of a unit fraction (1/n), the student partitions the first unit into so many (m/m) 
units, hence creating a composite fraction of m/(m * n). It is easy to illustrate this 
with our pizza example (1/3 of 1/2, Fig. 15.6). There, students who have constructed 
the PF and IF concepts would have readily also conceived of the three units that they 
introduced into 1/2 (to produce 1/6) as 3/6 of the whole pizza. We prefer, and rec-
ommend, to postpone orienting students’ attention onto such equivalencies until 
after they have established an anticipatory stage of determining the denominator of 
the resulting unit fraction (1/(n * m), e.g., 1/(2 * 3) = 1/6).

We contend that teaching equivalent fractions through recursive partitioning is 
more sensible than just “showing” that two fractions, such as 1/2 and 3/6, have the 
same size. Our reason is that in recursive partitioning there is self-identity between 
a unit fraction (e.g., 1/2) and a composite fraction resulting from a student’s 
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1/10 = 0.1 1/10 = 0.1 1/10 = 10/100

1/100 1/100 = 1/10 of 1/10

1/100 = 0.01 = 1%

1/10 = 0.1 = 10%

Fig. 15.8 Decimals and percentages understood through recursive partitioning, with units both 
embedded within and disembedded from their respective, upper-level units

partitioning of that very unit fraction (e.g., 3/6). This way, two equivalent fractions 
are different representations of, literally, the same quantity. Using task variation 
similar to the one we presented above would readily also lead students to formulate 
a rule, linked with a meaningful, abstract symbol to “capture” the process and prod-
uct: 1/n * m/m = (1 * m)/(n * m) = m/(n * m). In turn, a teacher could then foster 
reversing of the recursive partitioning process as a means to making sense of sim-
plifying fractions.

Unit Fraction Composition Students assessed to have established the RP concept 
can advance to constructing the sixth, Unit Fraction Composition (UFC), concept. 
They would start by working for quite some time on less demanding problems in 
which they learn to relate composite fractions of a unit fraction back to the whole 
(k/n of 1/n). For example, letting students show the two-step partitioning in the 
computer (Fig. 15.9), a task may ask: “I ate 4/5 of one slice (1/3) of a whole pizza. 
What fraction of the whole pizza did I eat?” Before pulling out just one piece, stu-
dents (like many teachers) have a hard time figuring out the answer. The teacher 
fosters progress by orienting students’ attention onto just one of the 1/5 pieces 
embedded within one-third: “What fraction of the whole pizza is just this pink 
piece?” Students may need additional support, for example: “Pretend you pulled- 
out the pink piece and measured it – what would the number be?” At this point, 
students bring forth their RP concept, and explain the pink piece is 1/15 of the 
whole pizza because it is 1/5 of 1/3 (e.g., “if you ate only 1/5 of 1/3 you’d eaten 1/15 
of the whole pizza”). To a teacher’s follow-up: “So what about all four pieces shown 
as 4/5 of 1/3?” students are likely to bring forth their PF concept and realize it is four 
times as much as 1/15 – hence 4/15 (e.g., “But I didn’t eat only 1/5 of 1/3 – I ate 
four-fifths so altogether it’s four times 1/15, or 4/15”).

Using a variation of such tasks with different numbers and contexts would help 
students realize two critical effects of their activity. First, they realize that, invari-
ably, the denominator of the answer is determined by multiplying the two denomi-
nators of the fractions for the very same reasons it was so determined in recursive 
partitioning of unit fractions. Second, they realize that, invariably, the effect of the 
entire composition of fractions yields a composite fraction that is k-times (e.g., 4) as 
much as the newly produced unit fraction (e.g., 4 * 1/15). The teacher can then 
engage them in formulating a rule for multiplication similarly to how they did for 
recursive partitioning of unit fractions. Initially, they can work the rule for particular 
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Fig. 15.9 A student’s production of two-step composition of 4/5 of 1/3 of a pizza

Fig. 15.10 A whole pizza 
partitioned into 4/5, then 
only that fraction 
partitioned into thirds

examples (e.g., to find 4/5 of 1/3, I could multiply 4/5 * 1/3 = (4 * 1)/(5 * 3) = 4/15). 
Eventually, they will suggest a rule for any such composition of fractions (e.g., 
“When taking a fraction of a unit fraction, we always multiply the numerators and 
the denominators because …”). At this point, the teacher may add the symbolic rule: 
k/m * 1/n = (k * 1)/(m * n) = k/mn.

The second, more challenging aspect of unit fraction composition is when the 
order of partitioning changes to first partitioning a whole into k/m and then take 1/n 
of that fraction (e.g., creating 4/5, then focusing on 1/3 of that 4/5; see Fig. 15.10). 
Before reading forward, we encourage the reader to look at Fig.  15.10 and, not 
using any procedure, algorithm, or property you know, solve what fraction is 1/3 
(black-outline at the bottom) of 4/5 of the whole – and why? Based on our work 
with students and teachers, we expect you would immediately recognize that, in 
spite of the “same answer,” this is a much more demanding task than 4/5 of 1/3 
because 1/3 unit is distributed over four units of 1/5 each. To solve such a task, a 
student would have to set the same subgoal, namely, focusing on 1/3 of just one 1/5 
and realize (using their RP concept) it is, again, 1/15 of the whole. With that in 
mind, the student could then again bring forth the PF concept, realizing that they 
have 1/15 distributed into each of the four units (of 1/5), hence 4 * 1/15 = 4/15.

To foster this line of reasoning, similarly to the sequence of tasks presented ear-
lier for this unit fraction composition concept, a teacher could ask the students to 
pull out just one of the pieces (e.g., the pink one, or a blue one, or a gray one). 
Before the students use the computer to measure it – the teacher would ask: “What 
fraction do you think the computer would show and why?” Then, the teachers let the 
students measure and find that one piece is 1/15, before reflecting on their antici-
pated answer prior to measuring. Similarly, the teacher would now follow with a 
task: “So you found 1/3 of just 1/5, right? What about 1/3 of all 4/5? Can you tell 
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before using the computer to measure it?” Whatever the response – students will 
then measure, find out itis 4/15, and again explain why 4/15 would be a reasonable 
answer – and why it should be expected. Figure 15.11 shows a screen shot after the 
students pulled out the pink piece and measured it, then also repeated it four times 
and measured again. The final sequence of tasks would emulate those in the initial 
part of the unit fraction composition concept – leading students to first formulate a 
rule and then generalize it into a symbolic form.

At this point, it would be helpful to further students’ application of unit fraction 
composition to decimals and percentages. Consider, for example, a task: “A tank 
holds 0.4 cubic-meter of water. It takes 10 hours to fill it with water. How much 
water does it hold after 1 hour (express your answer as a proper fraction, decimal, 
and percentage of cubic meter)? Figure 15.12 shows a JavaBars diagram students 
could create to first depict the situation. They would first determine, possibly with a 
prompt to focus on this issue, that 1 hour of water being filled is 1/10 (0.1, 10%) of 
the entire time and thus of the amount of water in a full tank. Using their newly 
constructed UFC concept, they would likely reason, “1/10 (0.1, 10%) of just 1/10 of 
a cubic-meter is 1/100 (0.01, 1%) of the entire tank; however, we have 4/10 of a 
cubic-meter, so we need four times as much water. So, in 1 hour 4 * 1/100 = 4/100 
(or 0.04, or 4%) of a cubic meter of water is being filled.

When students seem to have established an anticipation of the composition of 
unit and composite fractions, coupled with their recursive partitioning anticipation, 
creating common denominators for fractions as a first step in adding/subtracting 
them is supported conceptually. For example, consider a task: “Water tank A holds 
1/3 of cubic-meter and water Tank B holds 5/7 of a cubic-meter. How much water 
do both tanks hold when full?” Figure 15.13 below shows how a student might use 
JavaBars to solve such a problem. The left side consists of a gray rectangle repre-
senting 1 cubic meter (top), Tank A (1/3 of a cubic meter) below it, and Tank B (5/7 
of a cubic meter) below Tank A. The students then realized that adding thirds and 
sevenths would not work, but each of those could be recursively partitioned to cre-
ate a unit fraction common to (can measure) both – a commensurate unit (Steffe, 
2010). They purposely partitioned the 1/3 unit into 7 subparts, anticipating each 
would be 1/21 of the whole cubic meter and the entire tank being 7/21 of the whole. 
They then purposely partitioned, each of the five 1/7th, into three subparts – with the 
very same anticipation the 5/7 is equivalent to 15/21 cubic meters. Finally, they 
joined the images of both tanks and placed it under the whole to show the result is 

Fig. 15.11 A unit fraction (1/15) pulled out, measured, repeated four times, and measured again
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0.1 of 0.1 = 0.01

10% of 0.4 = 0.04

Fig. 15.12 A water tank (4/10 of a cubic meter) fills in 10 hours. How much is filled in 1 hour?

Whole: 1 cubic-meter Whole: 1 cubic-meter Whole: 1 cubic-meter

Tank A = 1/3

Tank B = 5/7

Tank A = 7/21

Tank B = 15/21

Tank A + Tank B = 22/21

Tank A + Tank B = 1 + 1/21

Fig. 15.13 Depicting addition of water in two tanks, holding 1/3 and 5/7 of a cubic meter

1/21 more than one cubic meter. We emphasize that, for teaching, it would make 
more sense to begin with small, “easy” numbers (e.g., 1/2 + 2/5).

Distributive partitioning Students assessed to have established the UFC concept 
can advance to constructing the seventh, Distributive Partitioning (DP), concept. 
This concept would underlie their goal-directed activities (and anticipation of 
effects) in situations involving the sharing of a given number of wholes. For exam-
ple, when sharing three pizzas equally among four people, a student who has 
abstracted the DP concept uses the number of sharers in an anticipatory manner and 
can quantify a share in terms of one whole as a quantifying unit and also in terms of 
all of the wholes as a quantifying unit. This student might construct three objects 
(“pizzas”) and partition each into fourths so they could distribute to each person 1/4 
from each of those wholes (Fig. 15.14 – upper/larger circles). Bringing forth their 

15 Nurturing Fractional Reasoning



330

�
1/4 of
a pizza

1/4 of
a pizza

1/4 of
a pizza

3 * 1/4 of
one pizza

3 * 1/4 of
one pizza

3 * 1/4 of
one pizza

3 * 1/4 of
one pizza

1/4 of
a pizza

1/4 of
a pizza

1/4 of
a pizza

Fig. 15.14 Sharing 3 pizzas among 4 people by distributing 1/4 of each pizza = 3/4 of one pizza 
to each person

UFC will enable understanding that 1/4 taken from each of the three wholes is 
equivalent to three times 1/4 (hence 3/4) of one pizza. Furthermore, it would be 
important to foster an equivalent way of distributing the three pizzas, namely, giving 
each person 3/4 of a pizza and realizing there are three, 1/4-pizza slices each, given 
to the fourth person (Fig. 15.14 – lower circles). To further link this way of reason-
ing to decimals and percentages, a teacher could use variation of the numbers and 
contexts (e.g., ten children equally share the $7 profit from a lemonade sale; how 
much money does each child receive?). A teacher can then present the abstract, 
symbolic linkage between the operation of sharing objects and dividing the corre-
sponding numbers, hence the particular meaning of division indicated by a 
“fraction-bar.”

Any fraction composition Students assessed to have established all (prior) seven 
concepts can advance to constructing the eighth concept, Any Fraction Composition 
(aFC). These students can conceive of a unit or non-unit fraction of another non-unit 
fraction as a three-level structure (units of units of units). For example, consider the 
task: “Each lap in a stadium is 1/4 of a mile. As a warm-up, a runner intends to 
complete three full laps (that is, 3/4 of a mile in all), while going slow during the 
first 2/5 of the entire warm-up. What distance (in miles) would the runner go during 
this first (slow) part?” In Fig. 15.15 we use JavaBars to illustrate the activities a 
student with the aFC concept would purposely take. A teacher could use similar, yet 
simpler and perhaps partial problems, to teach this concept. As shown, the top, gray 
bar represents 1 mile, which in this problem is also “the 4/4 whole.” Below it, the 
student would show 3/4 of a mile, that is, three laps of 1/4 mile each. Using the 
established unit fraction composition concept, the student then introduced 2/5 of a 
lap into each of the three (1/4-mile) laps by recursively partitioning each 1/4 into 
five equal parts. Accordingly, the student noted that one such segment (single, gray 
piece) is 1/5-lap * 1/4-mile = 1/20 mile. Finally, the student reorganized the three 
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Whole: 1 = 4/4 mile

3 * 2/5 of 1 lap = 3 * 2/5 of 1/4 mile = 3 * 2/20 = 6/20 mile

2/5 of 1 Lap
Lap: 1/4 = 5/20 mile

2/5 of 1 Lap2/5 of 1 Lap
1/5 Lap * 1/4 mile = 1/20 mile

Equivalent: 2/5 * 3/4 mile = (2*3)/5*4) = 6/20 mile Abstract: k/n * p/m = (k*p)/(m*n)

Fig. 15.15 The runner’s distance in the slow part – 2/5 of 3/4 of a mile

units of 2/5 (of 1/4-mile; pink) to show that, combined, they are equal to 6/20 of a 
mile. The teacher would engage them in discussions that lead to reasoning how 
these results link with symbolized actions (2/5 * 3/4 = (2 * 3)/(5 * 4) = 6/20.

As we noted in Table 15.1, the aFC concept “opens the door” to all operations on 
fractions, decimals, and percentages – including making sense of division of frac-
tions. Such a sense and how it may be promoted goes beyond the scope of this paper. 
It may be above what teachers would consider as sensible goal for some students. 
However, we believe that, at least for the teacher, it is important to make sense of 
how division of fractions actually operates on quantities. To provide a glimpse into 
it, we culminate the 8-concept progression with a diagram showing a possible solu-
tion with a clear explanation for the task: “A baker has 3/4-cup of flour left. It takes 
2/5-cup to bake one pie. How many pies (including parts of pies) can be baked 
before using all the flour?” We approach this task using a quotitive meaning of divi-
sion (i.e., how many times the 2/5-cup of flour “goes into” 3/4-cup of flour). Before 
moving forward to our explanation of the diagram, we encourage the reader to fig-
ure out what is going on here on your own.

Supposing the reader has taken the time to interpret the picture, we shall now add 
our own explanation. The upper section of Fig. 15.16 shows three equal-size wholes, 
indicating (a) the size of a full cup of flour (gray, middle), with (b) a 3/4-cup above 
it and (c) a 2/5-cup below it. The lower section shows that the 2/5-cup “goes into” 
the 3/4-cup more than once (orange copy of 2/5) but less than twice (the additional 
dark-gray copy of it). At issue is figuring out the precise number of times. To this 
end, the student faced a subgoal: creating a commensurate unit fraction, that is, a 
unit that allows measuring both 3/4 and 2/5 (aka ‘common denominator’). To 
accomplish this subgoal, the student brought forth and applied “cross recursive par-
titioning”: partitioning each 1/4-cup into five and each 1/5-cup into four equal parts, 
which their prior concepts and the aFC concept support. These recursive partition-
ing actions yielded 1/20 of a full cup as a commensurate unit. Symbolically, these 
actions entail we multiplied each of three 1/4th by 5 and each of two 1/5th by 4; 
numerically, to divide 3/4 by 2/5 we so far multiplied 3 * 5 and 2 * 4 (which under-
lies the invert-and-multiply algorithm).

The “tricky” part now is to realize that the question and the referent whole have 
changed. Instead of asking about one whole cup, the 3/4-cup became a new whole 
to be measured by 2/5-cup. Because the student created a commensurate unit, this 
goal is equivalent to measuring the 15/20-cup by the 8/20-cup. As the 1/20 unit is 
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Whole: 1 = 4/4 =5/5 cup

3/4-cup

2/5-cup

3/4-cup: Each 1/4-cup partitioned into five, 1/20-cup each

2/5-cup: Each 1/5-cup partitioned into four, 1/20-cup each

1 time 7/8 time

15/8 times

Fig. 15.16 Illustrating quotitive division of 3/4 by 2/5: How many times does 2/5 go into 3/4?

common to both composite fractions, figuring out how many times 2/5 “goes into” 
3/4 is equivalent to asking how many times 8 “goes into” 15 (for detailed analysis 
of teaching leading to such understanding see Simon et al., 2010). The answers to 
the given division problem (3/4-cup divided by 2/5-cup) are written below the dia-
grams, as 15/8, or 1 + 7/8, of the 3/4-cup.

15.3  Concluding Remarks on Nurturing Students’ 
Development of Fractional Reasoning

In this chapter, we have provided an 8-concept progression in fractional reasoning 
that, by and large, can be nurtured in students with learning disabilities (LD) and 
difficulties. Sharply distinguished from approaching fractions as “parts-of-wholes, 
this progression consists of two clusters, the first rooted in iteration activities and 
the second (more advanced) in recursive partitioning activities (see Table 15.1):

 

ClusterA EP PF IF RF

ClusterB RP UFC D

:

:

1 2 3 4

5 6 7

� � � � � � � � � � �
� � � � � � � � PP AFC� � �8

 

For each of these concepts, we have provided sample tasks that teachers can adopt/
adapt to fit with their students’ evolving (available) reasoning and pointed out links 
to curricular topics supported by those concepts.

The progression we presented seems consistent with the literature on fractional 
reasoning of students with LD, which is complex and diverse. In this wider body of 
work, two considerations seem to stand out. First, for students with LD, the equi- 
partitioning concept is a necessary and foundational access point to fractions. For 
instance, Grobecker (2000) researched partitioning activities that were presented 
within the context of dividing number line wholes into equal sized parts. Seven 
students with LD were given a line and eight were given blocks. When set adja-
cently, the measure of the eight blocks equaled the measure of the line. Students 
were given various problems about the blocks and the line relationship (e.g., 
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modeling and solving 1/4 + 1/8). Twelve-year-old students with LD did understand 
the relationship between the unit block and the line (e.g., 1/8 iterated eight times is 
1), but did not yet meaningfully associate the part and the whole to generate equiva-
lent relationships. This research is one example of both the importance and the 
accessibility of the equi-partitioning concept for students, especially students who 
may think differently. It also underscores the importance of multiplicative reasoning 
and its interconnected nature with fraction concepts (Hackenberg & Tillema, 2009; 
Tzur, 2019a). In fact, all seven concepts in the progression beyond the first (EP) 
depend on the child’s conceptualization of unit fractions as a multiplicative relation 
(measure), as well as on their construction of multiplicative concepts for whole 
numbers (Tzur et al., 2013; Tzur & Xin, this volume).

As we stated across three chapters in this volume, teachers can support their 
students by viewing “intervention” as a platform to nurture students’ access to 
mathematics by using and reflecting upon their available ways of reasoning. We 
have discussed how teachers can employ tools within intervention that help students 
bring about their conceptual change. We have argued that key design and pedagogi-
cal moves available to teachers include (a) bridging, varying, and reinstating plat-
form tasks and (b) interactive prompting and gesturing that support students’ 
noticing and reflection upon their actions toward logical necessity and mathematical 
connections (Hunt & Tzur, this volume). In this chapter, we further specified how 
those general ideas about teaching and learning can be applied for advancing stu-
dents’ fractional knowledge. Specifically, we paired a rather succinct conceptual 
progression (learning trajectory) with the intended endpoints of learning.

The tasks and prompting create a powerful instructional tool that teachers can 
use to promote their students’ fractional thinking. Our instructional suggestions are 
grounded in the mathematical ideas and development of thinking by students as 
they grapple with problematic situations in their experience (Clements & Sarama, 
2009). Knowing how students come to understand mathematical concepts makes 
task selection and planning of interactions with them based on learning theory more 
doable. By explicating the 8-concept progression, we intend to empower educators 
such that they empower students with LD to develop a conceptual foundation upon 
which to develop deeper understanding of fractions and beyond.
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Chapter 16
Proportional Reasoning to Move Toward 
Linearity

Signe E. Kastberg, Casey Hord, and Hanan Alyami

Abstract Proportional reasoning is central to the development of linear relation-
ships. Existing research suggests a series of interrelated benchmarks all students 
experience in conceptual development. Yet such development and related bench-
marks need support from teachers who understand the powerful cognition and 
learning needs of students with learning disabilities. In this chapter we outline three 
benchmarks in the development of proportional reasoning, illustrate problem situa-
tions that allow teachers to gain insight into student progress toward the bench-
marks, and share strategies to meet the learning needs of students with learning 
disabilities. These benchmarks set the foundation for students to move toward 
linearity.

Keywords Proportional reasoning · Ratio · Gestures · Conceptual benchmarks · 
Learning disabilities · Tasks · Visuals · Linear relationships · Problem situations

The utility of proportional reasoning in human exploration makes such reasoning 
central to mathematics learning. For example, humans have used proportional rea-
soning to estimate that the Moon is one-third the size of Earth (Hirshfeld, 2004) and 
to develop measuring tools that represent systematic proportional conventions 
(Dilke, 1987). In particular, proportional reasoning is a key mathematical concept 
students use in constructing understanding of linear relationships among quantities 
or linearity. In this chapter, we share ways teachers can build on the intuition of 
students with learning disabilities (LD) using problem situations that involve multi-
plicative comparisons to construct ratios and set a foundation for linearity.
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Meeting the mathematical needs of all students has been identified as a critical 
demand (Tan & Kastberg, 2017). Students with learning disabilities (34% ages 3–17 
NCES data 2016–2017) often go on to college and careers that require proportional 
reasoning for success. To meet the mathematical needs of students with LD, we 
draw on research that describes student reasoning and ways teachers can support 
such reasoning. Students’ construction of and shifts among additive, multiplicative, 
and proportional reasoning (Howe et al., 2011; Jones et al., 2009; Staples & Truxaw, 
2012) require adequate time for development (e.g., Hilton et al., 2016; Hunter et al., 
2014). One source of students’ constructions is their mathematical intuition. Student 
intuition regarding proportional situations has been underutilized (van den Heuvel- 
Panhuizen, 1996) in schools. Students’ intuition, coupled with appropriate problem 
situations and instructional approaches, such as using visuals and gesturing, can 
develop into more formal ways of representing one’s thinking (Hunt et al., 2016; 
Tzur et al., 2009; Woodward, 2015).

Building on research that suggests how teachers can support proportional rea-
soning (e.g., Lobato & Ellis, 2010), we emphasize three benchmarks in conceptual 
development students exhibit in identifying, understanding, and operating with pro-
portional situations. Benchmark one is the development of ratio as a composed unit. 
Such ratios involve developing multiplicative relationships between two quantities 
(Lobato & Ellis, 2010). Situations that provide opportunities to identify an attribute 
and a multiplicative relationship may support such development. One such situation 
illustrates two orange drinks made with different quantities of water and orange mix 
(2 cups water: 2 cups mix or 1:1). Students are to compare the taste of the drinks. 
Benchmark two is the development of ways of operating with ratios including the 
generation of ratio tables as students create new ratios from those given. Situations 
that provide opportunities for such development encourage students to create mul-
tiple equivalent ratios. One such example involves pancake batter (Hunt & Vasquez, 
2014). If two cups of batter are needed for three pancakes, find (1) how many pan-
cakes can be made from 4 cups of batter (2) how much batter is needed to make six 
pancakes. Benchmark three is the development of unit ratios (Maloney et al., 2014). 
One example of a problem situation that draws on unit ratios request the number of 
food bars needed to feed one alien if 2.5 food bars are needed to feed 3 aliens.

The benchmarks belong to a system; they do not develop discreetly or necessar-
ily in sequence. Thompson et al. (2014) described such a system as a “developmen-
tal cloud” (p. 14), where a learner’s way of thinking about proportional reasoning 
includes a multitude of concepts that can be characterized individually (e.g., ratio, 
fraction, multiplication, division, scaling, conversion). The three benchmarks are 
not unique for students with LD. Research indicates that all students develop such 
concepts (Hunt & Tzur, 2017; Sinicrope & Mick, 1983). The factors differentiating 
students with LD could be time needed to achieve the benchmarks and instructional 
techniques needed to properly support students while leaving room for critical 
thinking.

In this chapter we focus on proportional reasoning as the development of equiva-
lent ratios and comparing ratios in preparation for using such reasoning in 
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constructing linear relationships. Awareness of benchmarks involved in ratio equiv-
alence and ratio-comparison problems can be valuable for teachers as they support 
students’ conceptual development of proportional reasoning, while honoring the 
interconnectedness of these benchmarks. In the following sections we discuss strat-
egies for working with students with learning disabilities in general. In the remain-
ing sections we elaborate on each benchmark, suggest characteristics of problem 
situations that encourage conceptual development, and describe instructional sup-
ports teachers can provide.

16.1  Working with Students with Learning Disabilities

Teachers working with students with LD need to balance demands regarding the 
need to support students while still challenging them to meet high expectations 
(Hord et al., 2016b; Smith, 2000). In many cases, the dilemma is that teachers need 
to attend to learning differences students with LD experience, while leaving the 
time and space to encourage their critical thinking (Hord et al., 2016b). Such differ-
ences may include memory and processing capacities. Collectively, working mem-
ory refers to the processing, storing, and integration of information (Baddeley, 
2003; Swanson & Siegel, 2001). For example, students with LD may have trouble 
remembering all components of a multistep problem while trying to make connec-
tions between steps to find a solution (Swanson & Beebe-Frankenberger, 2004).

When students are presented with challenging problem situations involving mul-
tiple quantities, teachers may need to help students offload information (i.e., store 
on paper or with their hands) so they can devote more attentional resources to think-
ing critically about the problem situation (Hord et al., 2016a; Risko & Dunn, 2015; 
Xin, 2008). Said differently, if students have to devote too much attention to remem-
bering information in the problem, they may not have the cognitive capacity left to 
do the critical thinking needed to succeed with the problem (Hord et al., 2016b). For 
example, as a teacher reads a mathematics problem aloud to a student with reading 
difficulties, the student can benefit from writing down information as the problem is 
read to offload some of the information. Written information is then stored in draw-
ings of proportional relationships or even representations of mathematics relation-
ships (e.g., equations). Teachers can support students to offload information in 
visuals, such as ratio tables (Middleton & van den Heuvel-Panhuizen, 1995), to 
build insights into ratio equivalences and linearity. Students with LD can offload 
information in the problem into the tables (as the problem is being read aloud) and 
then concentrate on the information stored on paper (after the problem is read aloud) 
to think critically about the mathematics.

In other situations, it may be more useful for the teacher to gesture to key parts 
of the problem, on a projected image of the problem (Hord et al., 2016a). As text is 
read or discussed, teachers point to key information in the problem when it is 
 mentioned (for more on gestures and student learning, see Alibali & Nathan, 2007). 
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For example, when information is presented in visuals, such as in a drawing, a ratio 
table, or an equation, teachers may need to motion with a pointing finger from one 
quantity to another to highlight an existing relationship between those quantities. 
The teacher can then carefully reduce support to provide students time and space to 
think critically about the problem (Hord & Marita, 2014). Once teachers use offload-
ing and gesturing to help students with LD make sense of the expectations of the 
problem, students can often be provided with opportunities to work independently 
on the problem and have a high likelihood of success. However, without initial sup-
port to orient students with LD to key information in the problem and the expecta-
tions of the problem, students may struggle with working memory as they try to 
process, store, and integrate the multiple pieces of information in the problem (Hord 
et al., 2019).

In the following sections each of the benchmarks is discussed and descriptions of 
how teachers might use offloading and gestures to help students process, store, and 
integrate information is provided. While teachers’ approaches will be described in 
the context of particular problem situations and benchmarks, the instructional strat-
egies described can be used across mathematical concepts.

16.2  Conceptions and Supports: Benchmarks

The benchmarks described in the following sections were derived from research 
literature on students’ conceptions (e.g., Hunt, 2015; Hunt & Vasquez, 2014; Lobato 
& Ellis, 2010; Thompson, 1994) of ratios and proportional reasoning. We focus on 
ratios in the development of proportional reasoning because such development has 
been identified as an essential understanding for proportional reasoning (Lobato & 
Ellis, 2010). In particular, we provide examples of problem situations (drawn from 
research) and discuss characteristics of such situations that encourage students to 
represent their thinking so teachers can gather evidence of that thinking. These 
examples were selected to meet two goals. First, the problem situations support the 
students’ conceptual development. Second, the problem situations support the 
teacher in gathering evidence of student progress toward the benchmark. While the 
problem situations presented in each section can be modified or used to support 
thinking beyond the benchmark discussed, we also focus on ways the problem situ-
ations can be used by teachers to gain insight into student reasoning and to provoke 
new reasoning. We describe design principles for such problems so that teachers can 
create or select additional problem situations. Lastly, we describe and illustrate 
research informed pedagogy that teachers can use to support students with LD to 
engage and to build conceptions from their intuitive strategies.
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16.3  Benchmark One: From One Quantity to Two: Ratio 
as Composed Unit

Teachers use problem situations such as missing products to create insights about 
multiplicative relationships between quantities. For example, a mathematics student 
might be asked to find “the number of books five students have, when each had four 
books in his or her backpack” (Hord et al., 2021). In this situation, a mathematics 
student must coordinate (multiplicatively) the number of students and books for 
each student to solve the problem (Clark & Kamii, 1996). The idea of a ratio requires 
that students “account for two quantities at the same time” (Lobato & Ellis, 2010, 
p. 61) and use those quantities in concert to describe an attribute. For example, a 
learner might be asked to describe charges from a cell phone plan. “A cell phone 
service provider offers 200 minutes for $10. How much do they charge per minute?” 
(Hunter et al., 2014, p. 365). Students must use both numbers in the problem situa-
tion to create a solution in the form of a ratio, sometimes called a rate or unit ratio, 
(for more on the idea of rate and unit ratio see Thompson (1994) and Maloney et al. 
(2014)). Problem situations such as this one invite “students to attend to two quanti-
ties in the process of isolating an attribute” (Lobato & Ellis, 2010, p. 61)—in this 
case the attribute of cost per minute. It is the coordination of two quantities to create 
a new unit (that includes a multiplicative relationship between the two quantities) 
that generates a ratio.

Supporting students in shifting from one quantity to multiplicative relationships 
between two quantities involves creating opportunities for students to make sense of 
visual information presented and gain experience with the situation posed. For 
example, van den Heuvel-Panhuizen (1996) created realistic situations, including 
visual representations (Moreno et al., 2011), to provide opportunities for students 
with LD to construct meaning for ratio. Figure 16.1 presents a problem situation 
where a strand of beads is made using two black beads followed by two white beads. 
With only part of the strand visible (i.e., the ends), students are told that there were 
20 white beads and asked to find the number of black beads (Fig. 16.1). Students 
need to identify and use the relationship between the black and white beads to 

Fig. 16.1 Adapted from 
van den Heuvel-Panhuizen 
(1996, p. 249)
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answer the problem. The bead pattern within the strand is the attribute students can 
isolate by coordinating the quantity of white beads and the quantity of black beads.

van den Heuvel-Panhuizen (1996) explored the bead problem and other problem 
situations with fifth and sixth graders with mathematics learning difficulties. She 
reasoned that the informal roots of ratio are “grounded in visual perception” (van 
den Heuvel-Panhuizen, 1996, p. 239). Problem situations she designed thus used 
contexts familiar to students that could be “expressed in pictures” (p. 240). Such 
problem situations can provide students with opportunities to reason and communi-
cate about their reasoning instead of resorting to procedures. In her study, students 
modeled situations like those in Fig. 16.1 using their view of a pattern. For example, 
students drew images of 2 white beads alongside 2 black beads demonstrating their 
understanding that both quantities were needed to create the strand of beads. 
Students then used representations of the strand to identify the number of black 
beads given the number of white ones. Observing how students approach the prob-
lem using drawings or counting may provide insight regarding student thinking 
about the relationship between the black and white beads.

Teachers working with students with LD on the problem situation in Fig. 16.1 
may need to gesture to parts of the problem to support students to attend to relevant 
quantities so that they can be productive in thinking critically about the problem. 
For example, teachers may need to point with one or two fingers to a pair of white 
beads while describing how pairs of white beads are followed by pairs of black 
beads. Teachers can then point to a pair of black beads that follows a pair of white 
beads they just mentioned. As the teacher says that there are 20 white beads overall, 
they can point to the left of the picture and use a sweeping motion (for more on such 
gestures see Hord et al., 2019) across all visible and nonvisible beads from left-to- 
right. This gesture helps the student focus on consideration of the number of beads 
overall, including how many black beads there could be in the strand. Then, teachers 
can remove their hands and give the student time and space needed to think criti-
cally about the problem. Once the student understands the components of the prob-
lem situation and the expectations of the problem, the student is prepared to reason.

Research has shown that student reasoning about numbers can be derived from 
their reasoning about quantities (e.g., Thompson, 1994). In addition, including visu-
als without numbers encourages the use and development of powerful “visual intu-
ition” (Cox, 2013, p. 4) about relationships between space represented in the visual. 
These findings suggest the importance of presenting problem situations without 
numbers to support students’ development and to identify their reasoning. For 
example, creating lemonade with the same sweetness as a given glass of lemonade 
(see Fig.  16.2 derived from van den Heuvel-Panhuizen, 1996) provides students 
with opportunities to visually consider relationships between quantities of lemon 
(white) to sugar (black) to decide which mixture is sweeter, where the sweetness is 
the attribute. Additionally, students’ descriptions of their reasoning can allow teach-
ers to gain insight into ways students are using quantities involved in the problem 
situation. For example, a student may (incorrectly) reason that the lemonade on the 
right is sweeter as it shows more sugar—apparently showing to the teacher a need 
for further work on the coordination of both quantities.
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Fig. 16.2 Non-numerical 
ratio comparison adapted 
from van den Heuvel- 
Panhuizen (1996, p. 241)

Fig. 16.3 Orange mixture 
problem situations adapted 
from Noelting (1980, 
p. 219)

One problem situation commonly used to support student reasoning about quan-
tities in relation to an attribute is the Orange Juice Mixture (Fig. 16.3). Such a prob-
lem situation asks students to reason about the relationship between the quantity of 
orange juice and the quantity of water. Students compare concentrations of orange 
juice and water mixtures, as represented in the two rows of Fig. 16.3, and decide 
which mixture would be tastier (Noelting, 1980). Students then explain ways they 
make sense of the orange flavor (concentration) of the mixture as the attribute 
described by coordinating the two quantities (water and juice).

To support students to make comparisons in problems situations like the orange 
mixture, teachers could point to the black cups when mentioning the orange concen-
trate and slide their pointer finger sideways across the black and white cups to help 
students focus on the relevant quantities in the visual and the comparison they need 
to make (see Fig.  16.4). As students with LD gain more experience with such 
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Fig. 16.4 Gestures to help students focus on comparing relevant quantities in the visual

problem situations, they may not need these cues and can benefit from being able to 
think more independently about the problem. Teachers using a series of orange mix-
ture comparisons can thus gradually fade their use of gestures while checking for 
the development of independent thinking. Teachers judge the degree to which such 
fading could proceed by attending to student reasoning (Hord et al., 2016a; Hord 
et al., 2019).

Sinicrope and Mick (1983) administered the juice mixture problems to students 
with and without LD. They reported that students with LD were able to determine 
which concentration was orangier but had difficulty expressing the strategy they 
used. This is an additional challenge for students with LD and thus for their teach-
ers. Gestures support students to attend to appropriate visual space in the problem 
situation, but students also need encouragement to represent how they are thinking. 
Research illustrates that learners who are asked to represent their thinking may have 
difficulty, but if given consistent opportunities over time they develop structures of 
mathematical communication (Hackenberg et al., 2020; Xin et al., 2020).

While the lemonade (Fig. 16.2) and juice (Fig. 16.3) situations ask for ratio com-
parison, teachers might also ask students to construct equivalent ratios using visual 
intuition (Cox, 2013). Non-numerical continuous contexts such as the lemonade 
contexts (see Fig. 16.2), as opposed to discrete contexts such as the strand context 
(see Fig. 16.1), encourage students to use their visual intuition. Boyer and Levine 
(2012) reported that young children successfully constructed proportional models 
of a given mixture. For example, given a drink mixture as a non-numeric continuous 
bar (see Fig. 16.5), students successfully generated a proportional mixture by creat-
ing a line between the two ingredients. However, given a picture of unifix cubes 
representing the ratio of sugar to water (e.g. 1 unit of sugar to 2 units of water), 
students incorrectly reasoned using the difference between the units of sugar and 
water (e.g. 2 units of sugar: 3 units of water).

Findings from the work of Cox (2013) and Cox and Lo (2012) suggested that 
providing units (numbers) in the visual may elicit additive approaches by introduc-
ing additional complexity regarding distances between lines in the visual. These 
findings suggest students with LD may benefit from opportunities to construct 
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Fig. 16.5 Non-numeric 
task adapted from Boyer 
and Levine (2012)

equivalent ratios using visuals and reflect on these visuals (Hunt & Tzur, 2017) prior 
to an introduction to ratios with numbers.

Comparison of problem situations with visuals, such as the lemonade and orange 
juice problems, provides offloaded information for students with LD to consider 
and thus minimizing attentional resources devoted to maintaining information in 
short-term memory. Teachers can leverage these visuals as they discuss the problem 
with their students. By pointing to parts of the visual, such as pointing to black sec-
tions of the bars to show the sweeter portions of the mixtures and then to the whole 
mixture using a sweeping motion up the bars, teachers can help students attend to 
and compare the sweeter part of the mixture and the overall composition of the 
mixture. As students develop attention to the quantities in the visual, teachers may 
fade such gestures, to provide the students with more time and space to think criti-
cally. In other cases, when the student may be stuck, gestures like these overlaid on 
top of the visuals can be crucial for students with LD in making progress and main-
taining a productive disposition toward mathematics (Hord et al., 2019). Key in use 
of gestures is giving students opportunities to illustrate their own relationships and 
thinking using gestures and communication. Teacher’s observations of student ges-
turing provide information about student thinking foundational to instructional 
decisions.

When teachers have evidence that students are reasoning about an attribute with 
two quantities, such as attending to both the orange concentrate and the water in 
Fig. 16.3, numerical problem situations that build on students’ visual intuition can 
be given. One such problem is the “connected gear problem” (Ellis, 2009) shown in 
Fig. 16.6:

You have two gears on your table. Gear A has 8 teeth and gear B has 12 teeth. Answer the 
following questions.
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Fig. 16.6 An image adapted from the GeoGebra app, developed by O’Connor (2017)

 1. If you turn gear A a certain number of times, does gear B turn more revolutions, fewer revolu-
tions, or the same number? How can you tell?

 2. Devise a way to keep track of how many revolutions gear A makes. Devise a way to keep track 
of gear B’s revolutions. How can you keep track of both at the same time? (p. 485).

The connected gear problem presents a situation where two gears exist as parts 
of one mechanism. While the number of teeth can draw the students’ attention, the 
two teacher-posed questions above provide opportunities for students to coordinate 
the number of revolutions one gear would make in relation to a given number of 
turns of the other gear (see Ellis, 2007, 2009). The attribute involved is the gear ratio 
that represents the relationship between the number of turns of the two gears in rela-
tion to each other. This problem situation may be less familiar to some students and 
will require more support prior to exploring the attribute. Teachers and students can 
initially use interlocking fingers to explore ways the gears operate (e.g., Alibali, 
2005). Then, teachers and students can use moving gestures to track the movements 
of the teeth and the gears, if the gear mechanism is available as a manipulative. 
Students could put a finger from each hand on a tooth of each gear and turn the 
finger one step at a time as the gear turns to keep track of how far the gears moved. 
Eventually, gestures used by the teacher provide students with LD with a model of 
a coping skill that students can use when they are stuck on a problem. Students often 
benefit from their use of gestures and reflection on such gestures as well as those of 
their teachers (Goldin-Meadow & Alibali, 2013).

If models of gears are not available, teachers can introduce dynamic representa-
tions of the connected gear problem that help students become familiar with the 
problem situations and relationships between the rotations. For example, using an 
online application (https://www.geogebra.org/m/j6ajgbra) students can explore how 
the gears turn, rotating one of the gears and anticipating the effect of the rotation on 
the related gear.
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In these situations, gestures are useful for keeping track of movement in the 
problem as well as offloading information such as the position of teeth when the 
rotation of one gear stops (see Hunt & Tzur, Chap. 5, this volume). Gestures can 
also be overlaid on the visuals (e.g., pointing to the teeth of the gears in Fig. 16.6) 
where tracking the movement of a tooth in each gear would enable students to 
offload (rather than imagine in their mind) how far each tooth in the gears moved to 
make comparisons between the two. For example, students make motions over the 
visual in the app to track where rotations ended. Students can then focus on what 
they can see and decide based on the dynamic, then static, visuals they create (rather 
than trying to rotate the gears mentally and store the effects of such rotation in short- 
term memory). If students try to do this process mentally, without the gestures over-
laid on the visual, there is an increased chance they will struggle with working 
memory (Barrouillet et al., 2007; Hord et al., 2019). Teachers can also observe and 
use student actions to information instruction.

16.4  Benchmark Two: Operating with a Composed Unit

Students construct ratio by multiplicatively comparing two quantities. However, 
since students have much more experience comparing two quantities additively 
(Misailidou & Williams, 2003), middle school students with LD often use additive 
reasoning in problem situations that require proportional reasoning (Dougherty 
et al., 2016; Im & Jitendra, 2020). Thompson (1994) distinguished between reason-
ing about quantities and the mental process of operating. Reasoning about quanti-
ties is the basis for applying a mathematical operation (e.g., addition, multiplication) 
to numbers given in a problem situation. In the development of ratios this involves 
shifting between reasoning with quantities that are used to describe an attribute and 
operating with the numbers associated with the quantities.

In this section we emphasize that teachers use gestures as a tool when formulat-
ing and asking questions to provide balance between support and challenge needed 
for teaching mathematics to students with LD. In these situations, teachers can sup-
port with gestures, use questions to elicit thinking, and do so in ways that position 
students with LD to succeed, but still be challenged to think critically.

For example, in the gear problem above (Fig. 16.6), identifying that one gear 
rotates twice while the other rotates thrice can result in students’ reasoning that the 
rotations are always one apart (additive reasoning). However, continued use of the 
gears to find other rotation pairs can result in equivalent ratios students can reflect 
on. The following question could help elicit such reflective thinking:

You found out that when the small gear turns 3 times, the big gear turns 2 times. What are 
some other rotation pairs for the gears? (Lobato & Ellis, 2010, p. 63).

Such reflection allows for construction of relationships between ratios. Looking 
across rotation pairs can support the student to identify relationships between the 
pairs and develop a “composed unit” (Lobato & Ellis, 2010, p. 19). Students link 
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two units such as 3 rotations to 2 rotations and operate with the ratio as a single 
entity. Evidence of a composed unit emerges when students are asked to find an 
unknown quantity. For example, if the small gear turns 12 times, how many times 
would the large gear turn? To solve this problem students may add ratios by finding 
that 3:2; 6:4; 9:6; 12:8 all correspond to this situation. Sometimes called the build-
 up strategy (Hart, 1983; Hunt & Vasquez, 2014), the approach involves students 
using a ratio additively to build up to the given quantity, in this case 12 rotations for 
the small gear, to determine how many rotations are needed for the large gear. The 
explicit use of the composed unit is called iterating.

Iterating with a Composed Unit After students are aware that an attribute is 
described with two quantities such as beads on a strand, taste (e.g., oranginess) of a 
drink, or gear ratio, the ratio as a composed unit is used to generate additional 
equivalent ratios as in the gear problem. For example, in an adaptation of the strand 
problem situation (in Fig.  16.1), if the bead ratio is 2 white beads to 3 black 
(Fig. 16.7), then finding strands with different numbers of beads would allow stu-
dents to use the build-up strategy by iterating 2:3 and developing 4:6, 8:12, …. 
Here, the student iterates the initial ratio to create other strand ratios. Similarly, in 
the oranginess situation, if 3 cups of an orange drink mix are used with 4 cups of 
water, then asking students, say, how much drink mix is needed for 20 cups of water, 
could foster a building up way of reasoning.

Many problem situations can provide opportunities for students to build up and 
to reflect on results of iterating a composed unit. For example, Hunt and Vasquez 
(2014) implemented an instructional sequence of 15 lessons that began with the 
build-up strategy to assist students with LD in the coordination of two quantities. 
The sequence focused on ratios using whole number multiples of the composed 
unit. One such problem situation, with an associated visual (Fig. 16.8), involved 4 
cups of batter to make 6 pancakes.

Beginning with visuals like those in Fig. 16.8, students generate equivalent ratios 
by considering the number of pancakes that could be made with a given number of 
cups of batter (e.g., 8 cups of batter). Some students create drawings to achieve this 
goal. Teachers who observe students generating these drawings may introduce a 

Fig. 16.7 Strand problem 
situation with a ratio of 2 
white beads to 3 black 
beads
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Fig. 16.8 Visual of 4 cups 
of batter to make 6 
pancakes adapted from 
Hunt & Vasquez (2014, 
p. 181)

Fig. 16.9 Ratio table 
constructed from build-up 
strategy adapted from Hunt 
& Vasquez (2014, p. 182)

useful tool: the ratio table. Typically, students do not generate ratio tables on their 
own. Instead, once students have generated iterations of composed units presented 
as visuals, teachers know students are likely ready to consider the ratio table as a 
useful, organizing tool (Hunt & Vasquez, 2014; Middleton & van den Heuvel- 
Panhuizen, 1995; Sozen-Ozdogan et al., 2019). This order of introduction differs 
from the typical order of providing a ratio table as a structure and asking students to 
use it, in that the student’s approach to the problem situation has demonstrated read-
iness to move to the table. Figure 16.9 illustrates how students’ use of iterating the 
composed unit can be represented in a ratio table. The table can then be used to 
consider relationships and patterns in the table (Ellis, 2007).

The ratio table provides a high-quality visual that can be overlaid with gestures. 
By pointing and arching over the arrows to encourage attention to relationships 
between problem elements, teachers can help students relate increasing number of 
cups of batter and a corresponding, increasing number of pancakes. Hunt described 
using her middle finger arching over the cups of batter and her thumb curving under 
the number of pancakes “in a sweeping gesture to explain the quantity (numerals) 
changing together” (personal communication June 30, 2020). Teachers could also 
point to the number of cups of batter and ask for the corresponding number of pan-
cakes to encourage generalization across the equivalent ratios creating the possibil-
ity for students to attend to the multiplicative relationship between 4 and 8 cups of 
batter and 6 and 12 pancakes. In the pancake situation, the offloaded information in 
the visual can be leveraged by the teacher using overlaid gestures (Hord et  al., 
2019). As with other situations in this chapter, the teacher can decide and gradually 
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change the balance between support with gestures and challenging the student by 
avoiding those gestures. Providing less information may help the student mentally 
sort through multiple pieces of information and provide support for making connec-
tions between problem elements.

Partitioning with a Composed Unit Iterating a composed unit involves whole 
number multiples of each quantity of a composed unit, but equivalent ratios also 
involve preserving the ratio for non-integer multiples of each quantity. Im and 
Jitendra (2020), building on the substantial work of Jitendra and colleagues, identi-
fied students with mathematics learning difficulties as having more difficulty with 
problems involving non-integer multiples.

To promote reasoning that preserves ratio for non-integer multiples, problem 
situations such as Mr. Short and Mr. Tall (Riehl & Steinthorsdottir, 2014), referred 
to as Sam and Tal in this chapter, can be useful in exploring student partitioning of 
a composed unit. Students are told Sam can be thought of as 4 buttons tall or as 6 
paper-clips tall (Fig. 16.10) and asked to find Tal’s height in paper-clips if he is 6 
buttons tall.

This problem situation can be used to elicit student reasoning (see Riehl & 
Steinthorsdottir, 2014), particularly to distinguish those who reason additively from 
those who reason multiplicatively. One example of additive reasoning is that Tal is 
2 more buttons tall than Sam, and thus Tal is 2 more paper-clips tall than Sam (i.e., 
8 paper-clips tall). This approach is based on (incorrect) additive relationships 
between the quantities. Students may also demonstrate their attention to a com-
posed unit by circling 2 buttons and 3 paper-clips or 1 button and 1 ½ paper-clips. 
Students who use this approach illustrate their partitioning of the given ratio 4:6 
while (correctly) reasoning multiplicatively. The visual enables the use of visual 
intuition (Cox, 2013; Cox & Lo, 2012). Students use this intuition to create a model 
of 8 buttons, then iterate their new ratio of 2:3 or 1:1½ to draw 9 paper clips.

To support students in reasoning multiplicatively about this problem situation, 
we encourage teachers to read this situation aloud and consider pointing to elements 
in the visual as they are read. For example, we recommend pointing to the buttons 

Fig. 16.10 Sam’s height 
in buttons and paper-clips 
(Riehl & Steinthorsdottir, 
2014, p. 222)
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as they are mentioned and doing the same with the paper clips. After the students are 
familiar with the situation, they are asked to find the height of Tal in paper clips, 
given that Tal is 6 buttons tall. Once students are familiar with the situation, teachers 
may encourage students to offload some of the information in the problem by creat-
ing an associated drawing of 6 buttons. As with iterating, teachers may also want to 
introduce the ratio table and use the table to encourage reflection on the relation-
ships between ratios in the table. This table differs from the one in Fig. 16.9, because 
the pattern in numbers in the row of buttons does not involve repeatedly adding the 
same composed unit.

Buttons 1 2 4 6

Paper clips 1 ½ 3 6 ?

Using this table, students may reason that 6 buttons would require 6 groups of 1 
½ paper clips beginning to move from one composed unit to another using multipli-
cation by a unit. Other students may persist in iterating 2:3, while possibly compar-
ing that to a strategy such as multiplying 2 buttons by 3 and 3 paper clips by 3 (Riehl 
& Steinthorsdottir, 2014). If the teacher decides to offer the student support toward 
multiplying 6 by 1½, the teacher may gesture to the 1 on the top row and then the 
1½ in the bottom row while saying, “for the height of every 1 button we have, we 
have a height of 1½ paper clips.” Then, the teacher could gesture to the 6 on the top 
row while saying, “if we have 6 buttons, how many paper clips would we have?” 
This use of gestures to draw attention to key parts of the problem and describing the 
relationships between these parts may be appropriate to support a student who is 
stuck, without solving the problem for them. In this case, the student may simply 
multiply 6 by 1½ to find the answer or iterate the composed unit 1:1½. In either 
case, the student will hopefully be able to progress. And, once students succeed with 
this support, it may be appropriate to withdraw the overlaid gestures and see if the 
student can progress with the concept independently.

To encourage partitioning, teachers may return to earlier problem situations such 
as the orange mix problem. One such problem would involve making orange drink 
by putting 3 scoops of mix into 4 cups of water. Students could then be asked how 
much orange mix would be needed to create the same oranginess for a drink if 10 
cups of water are provided. The selection of 10 cups of water is strategic since iter-
ating the given composed unit will not produce the number 10. The students need a 
new equivalent ratio. Perhaps beginning with 3:4 the student might iterate the com-
posed unit creating 6:8. Noticing that 2 more cups of water are needed, the student 
might then partition 3 and 4 to arrive at 1½ scoops are needed for 2 cups of water. 
The student could then add the equivalent ratios to create a new ratio of 7½ cups of 
orange mix for 10 cups of water.

Partitioning composed units may develop more slowly than iterating. Even rec-
ognition of equivalence between, for example, 3:4 and 1½:2 can be challenging for 
students (Im & Jitendra, 2020). Creating problem situations where partitioning is an 
efficient way of creating solutions can support students’ use of this strategy (Lobato 
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& Ellis, 2010). Problem situations that involve partitioning are created from con-
tinuous quantities such as distances and times (Thompson & Thompson, 1996), or 
flavored drinks that involve ounces of water and syrup (Kastberg et al., 2014). An 
example of the latter could be a problem situation: “If 10 ounces of cherry syrup is 
added to 32 ounces of water to make a cherry drink, how many ounces of cherry 
syrup might be needed to make a drink of the same taste by using 16 ounces of 
water?” This problem situation sets up the opportunity to partition the original 
quantities in a way that can be repeated to find the syrup for 8 and then 4 ounces of 
water. Such a problem enables students to use the same operation multiple times. 
Other problem situations may encourage different partitions, such as thirds. For 
example, “If 9 ounces of chocolate are added to 24 ounces of milk to make a choco-
late drink of particular taste, how many ounces of chocolate are needed to create a 
chocolate drink with the same taste while using 8 ounces of milk?” Results from 
problem situations such as these generate equivalent ratios that can then be docu-
mented in ratio tables for further discussion as teachers build toward creating linear 
relationships (Ellis, 2007; Lobato & Ellis, 2010). Teachers should work to link 
visual representations and ratio tables using “generalization questions” as they 
move toward constructing graphs from ratio tables (Dougherty et al., 2016, p. 103). 
Such questions support students to identify patterns within a problem and across 
problems (see Tzur & Hunt Chap. 3, this volume). After completing problems where 
partitioning is used, teachers could ask students to compare the problems and share 
what they have noticed about processes they used to solve the problems. Key in such 
interactions is to have visuals and make gestures across artifacts from the problem- 
solving process, such as pointing and arching over and curving under entries in 
ratio tables.

Often, teachers can utilize gestures and well-crafted questions in tandem, using 
gestures to support students with LD to notice and connect key information and 
questions to push students to engage in challenging mathematics (DeJarnette & 
Hord, 2020). Such moves can be interconnected for teachers, sometimes quite intui-
tively, in that talking with students along with gestures can relieve the burden on 
cognition. During conversations, gestures encourage attention to information in 
accessible ways, making it easier for the person communicating to think clearly and 
more easily about (and eventually express) the information they are trying to convey 
(Cook et al., 2013; Goldin-Meadow et al., 2001).

16.5  Benchmark Three: Developing Unit Ratios

A significant development in proportional reasoning is moving from using com-
posed units, through iterating and partitioning such units, to creating and using a 
unit ratio. A unit ratio is a ratio that can be written “in the form 1/a or a/1” (Maloney 
et al., 2014, p. 152). Such ratios are important since they allow students to solve 
problems that move beyond situations where iterating and partitioning are straight 
forward. For example, unit ratios can help in finding equivalent ratios when the 
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quantities are not integers, such as in determining the value of 2.1 ounces of gold, if 
0.5 ounces of gold is valued at 867.5 dollars. If the value of 1 ounce of gold is 
known, computing the value of 2.1 ounces of gold can be done by iterating and 
partitioning, but it is less efficient than multiplying both the ounce of gold and the 
value of the gold by 2.1. This second approach to problem situations often seems 
easy to adults, but moving from iterating and partitioning composed units to this 
computational approach with sense making can take significant time for students.

Students, with or without LD, can solve many problems using a composed unit, 
so creating situations that build opportunities to related composed units and unit 
ratios is a significant challenge in problem situation design. One approach to achieve 
this is to continue from problem situations already used and ratio tables constructed 
from a composed unit as in the pancake problem in Fig. 16.8. Such situations can be 
carefully constructed by identifying ways in which iterating and partitioning pro-
duce a unit of one for a quantity involved in the ratio. For example, in the pancake 
situation, asking how many cups of batter would be needed to make 3 pancakes 
would make use of a partitioning strategy. After finding that two cups of batter make 
3 pancakes, the student could then be asked how many pancakes can be made if 
using only 1 cup of batter. The previously used halving strategy may result in one of 
the two possible unit ratios. Another question could focus on the other unit ratio: 
“How many cups of batter are needed to make one pancake?” Whereas unit ratios 
can be inferred using a ratio table, Confrey et al. (2012) contended that when given 
a ratio between a pair of numbers such as a and b, curricular treatment tends to focus 
on generating one unit ratio (i.e., a/b:1). Having the flexibility of reasoning with 
another unit ratio (1: b/a) to find a missing value and an equivalent ratio is important 
(Maloney et al., 2014).

Some useful problem situations are presented with a unit ratio given. For exam-
ple, a problem presented in Sozen-Ozdogan et al. (2019) indicates that 1 food bar 
feeds 3 aliens (Fig. 16.11). Students are then asked if 2 food bars would be enough 
to feed 6 aliens. Students are then asked to decide if 12 food bars would be enough 
to feed 36 aliens. To show their reasoning students created representations using 
drawings or lists (Fig. 16.12).

Teachers can capitalize on students’ representations of the food bar problem to 
build a ratio table (Fig. 16.13) (Stephan et al., n.d.). To generate the other, missing 
unit ratio, teachers can ask what would happen when one more alien is added. This 
question encourages students to develop the other unit ratio of 1/3 of a bar per alien. 
Including both unit ratios in the table interrupts the pattern in the table, providing an 
opportunity for students reflecting on the table to reason in new ways about the 
equivalent ratios.

Fig. 16.11 Adapted from 
Sozen-Ozdogan et al. 
(2019, p. 17)

16 Proportional Reasoning to Move Toward Linearity



354

Fig. 16.12 Student representations adapted from Sozen-Ozdogan et al. (2019, p. 17)

Fig. 16.13 Ratio table documenting student representations adapted from Stephan et  al. 
(2017, p. 92)

Depending on the given problem situation, the use of ratio tables in the process 
of iterating and partitioning a composed unit can involve the generation of a unit 
ratio. For example, given an onion soup recipe that requires 2 pints of water to make 
soup for 8 people, students are asked how much water is needed to make onion soup 
of the same taste to feed 6 people (Streefland, 1985). This problem situation involves 
partitioning. Students given a ratio table may approach the problem by partitioning 
to decide the amount of water to make the soup for one person (finding a unit ratio), 
then derive the amount of water needed for 6 persons (Fig. 16.14). Alternatively, 
students may also continue to use their composed unit with iterating and partition-
ing strategies that do not involve the use of a unit ratio to find the missing value 
(Fig. 16.15).

Teachers can draw students’ approaches together and use them as a basis for a 
discussion. It is important to note that the students’ work, building on the problem 
situation as in the case of Stephan et al. (2017), informs the focus of the discussion. 
Critical in this discussion is connecting different approaches to solving these prob-
lems. The unit ratio approach in Fig.  16.14 and the iterating and partitioning 
approach in Fig. 16.15 provide opportunities for students to reason about how the 
two processes result in the appropriate amount of water.
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Fig. 16.14 A student 
approach involving a unit 
ratio adapted from 
Streefland (1985, p. 90)

Fig. 16.15 Student approaches using partitioning adapted from Streefland (1985, p. 90)

As with other similar situations, these visuals can be leveraged by teachers as a 
tool for offloading information for students with LD as well as for overlaying ges-
tures to support students with LD as they think about the problem. As students 
become more advanced in their thinking about proportional reasoning, it is possible 
that they will gradually become more independent and need less support for their 
working memory. Struggle with processing, storing, and integrating information is 
reduced as we become more familiar with a concept (Barrouillet et  al., 2007). 
However, students with LD may still need this kind of support, even when they are 
demonstrating success with a concept due to the tendency of many of these students 
to struggle with working memory (Swanson & Siegel, 2001). Despite this need, 
however, we encourage teachers to progressively look for more opportunities for 
students with LD to demonstrate independence in their thinking especially as they 
become more successful and more confident with a concept.

16.6  Conclusions: Linearity at the Horizon

In this chapter we have focused on problem situations and teacher actions that sup-
port three developmental benchmarks: ratios as composed units, operating with 
ratios (including the generation of ratio tables), and linking such generation to unit 
ratios. When students develop these approaches to such problem situations, they are 
creating a foundation for linearity. Research has shown that developing the 

16 Proportional Reasoning to Move Toward Linearity



356

benchmarks discussed in this chapter sets the stage for reasoning about linear rela-
tionships (Dougherty et  al., 2016; Ellis, 2009; Lobato & Ellis, 2010). Students 
engaged in creating equivalent ratios are well positioned to use ratio tables in the 
construction of graphs and to reason about the constant of proportionality or slope, 
m, in y = mx relationships (Lobato & Ellis, 2010, p. 49). While the three bench-
marks discussed in this chapter are only a small part of the “developmental cloud” 
(Thompson et al., 2014, p. 14) for proportional reasoning, they are significant in 
linking students’ whole number reasoning (multiplicative and additive) to more 
advanced mathematics.

The use of student’s approaches to problems and the thinking behind those 
approaches stands in contrast to the often-taught procedure for solving proportions 
based on finding the missing value in a proportion. Teachers can incorporate stu-
dents’ creation of many equivalent ratios in proportional situations and encourage 
reflections on these situations to create notions of unit ratio and rate (Thompson, 
1994; Tzur & Hunt Chap. 3, this volume). The overused approach of cross- 
multiplication to find solutions to equivalent ratio problems (proportions) can result 
in some students temporarily improving performance. However instructional 
approaches that focus on cross-multiplication, limit students’ mathematical flexibil-
ity and do little to support student with LD to continue growth as mathematical 
thinkers (Hunt & Tzur, 2017; Tan & Kastberg, 2017).

As we have repeatedly emphasized in this chapter, teachers play a vital role in 
promoting students’ development of the benchmarks discussed in this chapter. 
Designing problem situations, creating visuals, using gestures, and encouraging 
reflection across problems support students with LD to create networks of connec-
tions between concepts (Hunt & Tzur, 2017). Such networks stored in long-term 
memory and recalled to working-memory allow students to work flexibly with con-
cepts that are foundational for understanding linearity.
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Chapter 17
Commentary on Part IV

Lieven Verschaffel and Wim Van Dooren

Abstract This commentary addresses the five contributions to Part IV, dealing with 
counting, additive reasoning, multiplicative reasoning, fractional reasoning, and 
proportional reasoning. The aim of the commentary is twofold. First, we point to 
elements and aspects of the authors’ work that we think are the most important 
contributions for pre-service and in-service teachers, as well as to elements of their 
ideas and materials that were somewhat less clear or deserve further research. 
Second, we raise some issues that the authors left out or could only address par-
tially, but that, based on our research expertise and background, also deserve atten-
tion from practitioners who want to build their instructional practice on a sound 
research base.

Keywords Counting · Executive functions · Spontaneous numerical focusing 
tendencies · Additive reasoning · Problem-solving · Multiplicative reasoning · 
Word problems · Part-whole relation · Fractional reasoning · Graphical 
representations · Proportional reasoning · Mathematical modeling

17.1  Introduction

The five contributions to Part IV of the book provide prospective and practicing 
teachers with valuable research-based insights into the mathematical difficulties of 
students with and without LD, as well as into classroom practices that aim to effec-
tively address these difficulties, in major curriculum domains ranging from count-
ing to proportional reasoning.
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Besides being research-based, this set of five chapters makes a very coherent and 
integrative impression, in the sense that these chapters share a number of basic 
assumptions. These assumptions include the commonly shared constructivist view 
on children’s mathematics thinking, learning and teaching, the great attention to the 
role of external representations and working memory, the common aversion for 
superficial or narrow learning outcomes, and a striving for a deep conceptual under-
standing of core mathematical ideas for all children, including the younger and 
mathematically weaker ones. This coherence should not come as surprise, given 
that the authors of these chapters have been collaborating extensively over the past 
years on various common research projects, working groups, and symposia at 
national and international scientific conferences. As a result, the reader will find 
many similarities and connections between the various chapters, for instance, 
between the chapters on additive and multiplicative reasoning, or between the chap-
ters dealing with fractions and proportions.

Without doubt, the ideas and recommendations presented in the various chapters 
are very ambitious and challenging, notably with respect to the authors’ common 
strive for deep and abstract learning, even for the younger and weaker learners. In 
general, we strongly support and share this ambitious attitude. In fact, our own 
ongoing research project on the analysis and stimulation of early core mathematical 
competencies (see https://ppw.kuleuven.be/o_en_o/CIPenT/WisCo/development- 
and- stimulation- of- childrens- core- mathematical- competencies) has the same ambi-
tion. Yet, at times when reading these chapters we had a feeling that the authors risk 
being somewhat overambitious in their educational approaches, in relation to chil-
dren’s level of cognitive development and prior knowledge.

Furthermore, the restricted available space forced the authors to focus on some 
topics and to leave out others within the broad and complex curricular subdomains 
to be covered in the different chapters. Our commentary is thus twofold. We will 
point to elements and aspects of the authors’ work that we think are the most impor-
tant contributions for pre-service and in-service teachers, as well as to elements of 
their ideas and materials that were somewhat less clear or deserve further research. 
We will also raise some issues that the authors left out or could only address par-
tially, but that, based on our research expertise and background, also deserve atten-
tion from practitioners who want to build their instructional practice on a sound 
research base.

17.2  Chapter 12: Counting

Chapter 12 starts by defining what it means to be a counter and then explains what 
children need to be able to know and do to be successful at counting, as well as the 
role of working memory for counting. Additionally, the authors define subitizing, 
explain its importance, and how it is different from, although related to, counting. 
They complete their chapter by discussing the importance of counting as a 

L. Verschaffel and W. Van Dooren

https://ppw.kuleuven.be/o_en_o/CIPenT/WisCo/development-and-stimulation-of-childrens-core-mathematical-competencies
https://ppw.kuleuven.be/o_en_o/CIPenT/WisCo/development-and-stimulation-of-childrens-core-mathematical-competencies


363

prerequisite to other aspects of arithmetic, as well as learning difficulties related to 
counting and ways to optimally assess and stimulate counting.

Especially from the perspective of practitioners, the chapter provides a very clear 
and comprehensive overview of the theme. It includes interesting observations and 
findings, and recommendations that may help to open (future) teachers’ eyes to this 
fascinating topic and how to address it in their diagnostic and instructional prac-
tices. Examples relate to the role of finger gnosis in counting, the facilitating or 
hindering impact of number words in different languages, and the relation between 
the development of counting and additive skills.

Evidently, the restricted available space forced the authors to focus on some 
counting-related topics and to leave out others. Hereafter, we raise two issues that 
the authors left out or could only discuss partially.

First, the authors point to the great importance of working memory in counting 
and early numerical competence more broadly and, therefore, recommend to sup-
port children’s working memory. Importantly, working memory is only a part of 
what cognitive psychologists call “executive functions,” which have been identified 
as an important domain-general factor affecting mathematical performance and 
development. The term, executive functions, refers to a group of closely related 
cognitive processes that are required when engaging in deliberate, goal-directed 
thought and action (Bellon et al., 2019; Miyake et al., 2000). Typically, three execu-
tive functions are distinguished: updating, inhibition, and shifting (Bellon et  al., 
2019; Miyake et al., 2000). The first, updating, refers to the central executive com-
ponent of working memory, allowing individuals to temporarily hold and manipu-
late pieces of information in memory. For example, when a child solves a simple 
addition such as 3 + 5 by means of a counting-on strategy (i.e., “3…, 4, 5, 6, 7, 8”), 
the child has to keep track of how many times (s)he added 1. The second, inhibition, 
refers to individuals’ ability to control their own attention, action, or thoughts, 
allowing them to override strong external cues or internal tendencies to focus atten-
tion on irrelevant information or to initiate inappropriate actions or thoughts. For 
example, when a child is asked which of two rows of blocks has the largest number 
of blocks—a row of seven blocks placed close to each other or a row of five blocks 
that are spread further apart—the child has to inhibit the misleading information 
about the greater length of the second row. The third, shifting, refers to the ability to 
flexibly switch between different mindsets, concepts, or strategies, rather than rig-
idly operating within one single mindset or continuously applying a given concept 
or following a given strategy. For example, children may achieve a better perfor-
mance on a series of one-digit additions if they are able to switch flexibly between 
counting on from the first given number and counting on from the largest given 
number, depending on the placement of the larger number. Developmental (neuro)
psychological research has shown that these three executive functions emerge dur-
ing the first few years of life and continue to develop in childhood and even adoles-
cence, at slightly different rates, as a result of brain maturation and educational 
experiences. Various empirical studies have started to document the theoretically 
claimed importance of all three executive functions for arithmetic (Bellon et  al., 
2019; Hecht, 2002; Lemaire & Lecacheur, 2011). Based on the above-mentioned 
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theoretical and empirical evidence, we would like to broaden the authors’ plea for 
paying more attention to the role of working memory in early numerical develop-
ment and education towards all three executive functions.

Second, as nicely reviewed by the authors, the past decades have witnessed the 
emergence of a remarkably productive and highly influential line of research on the 
development of young children’s early numerical knowledge and skills, including 
counting. This line of research extended to other themes such as: the association 
with school mathematics, the stimulation of early numerical knowledge and skills 
in the home, and to their enhancement in preschool and beginning elementary 
school environments (Andrews & Sayers, 2015; Torbeyns et al., 2015; Verschaffel 
et al., 2017). In this line of research, children are explicitly prompted to use their 
mathematical knowledge and skills, and assessed in terms of their ability to deal 
with the task at hand. In other words, all these studies take an “ability” perspective 
on children’s early mathematical development and stimulation. While this perspec-
tive is evidently a very important one, we want to draw (future) teachers’ attention 
to another relevant aspect of young children’s early numerical competence, namely, 
their inclination or tendency to attend to and focus on number. We emphasize that 
these “numerical focusing tendencies,” as we tend to call them (Verschaffel et al., 
2020a), are not about what children think and do when they are instructed or guided 
to nonsymbolic and symbolic numbers in the situation. Rather, they are about what 
children spontaneously think and do when there is no explicit instruction or guid-
ance to focus on numbers. For instance, when looking at a picture of a real-world 
situation (e.g., a family trip) some children will primarily notice that all the family 
members are dressed the same or that a thunderstorm is coming; whereas other 
children’s attention goes to the fact that the family has three children or that the boat 
they want to take has too few seats to accommodate all family members. The basic 
claim underlying this latter line of research is that, besides having different abilities 
with respect to the above-mentioned distinct elements or aspects of numerical and 
counting ability, young children also demonstrate different numerical focusing ten-
dencies when exploring, describing, and organizing their everyday world. 
Furthermore, we argue that this tendency to focus on the numerical aspects of a situ-
ation can trigger self-initiated practice of the corresponding numerical knowledge 
skills. Thus, if some children are more prone to focus on numerical aspects of situ-
ations, it will provide them further support to develop their number and counting 
skills compared to children who are not (Hannula-Sormunen, 2015). During the 
past 10–15 years, researchers have started to empirically investigate these various 
numerical focusing tendencies in young children, their development, their concur-
rent or predictive relation to children’s mathematical achievement, and their stimu-
lation by means of particular interventions (Hannula-Sormunen, 2015; Verschaffel 
et al., 2020a). So far, this research has largely attended to children’s spontaneous 
focusing on nonsymbolic numerosities (SFON, Hannula & Lehtinen, 2005). More 
recently, similar efforts have been made for their spontaneous focusing on Arabic 
number symbols (SFONS, Rathé et al., 2019).
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17.3  Chapter 13: Additive Reasoning and Problem-Solving

This chapter first describes current common practices in the United States in teach-
ing mathematics word problem-solving. We believe that this description essentially 
also applies to current practices in many other countries. Then the authors introduce 
two paradigms in solving word problems: an inappropriate and an appropriate one, 
which they call, respectively, operational and relational. Next, they review recent 
mathematics intervention research in additive reasoning and problem-solving 
involving students who are struggling in mathematics, followed by a detailed 
description of a research-based intervention program, called Conceptual Model- 
based Problem Solving (COMPS). Finally, a web-based mathematics problem- 
solving computer tutor is presented that has incorporated the curriculum design 
features of the COMPS program.

We consider this chapter as a nice successor of the previous one, as it takes the 
step from counting to additive reasoning and problem-solving. There is, again, 
much in the chapter that we appreciate and endorse: (1) the authors’ sharp attack on 
the “key-word strategy” as a way to approach one-step word problems around the 
four arithmetic operations; (2) their plea for a more meaningful conceptual approach 
wherein the choice of operation is rooted in a deep mathematical understanding of 
the problem situation rather than a superficial screening of the text of the word prob-
lem; (3) their suggestion to make instructional use of carefully chosen graphic rep-
resentations to help learners with the construction of a proper understanding of 
problem situation; (4) their use of the powerful facilities of information and com-
munication technology (ICT) to support this instructional process; and (5) the idea 
that programs that are aimed at teaching and practicing word problem-solving in the 
elementary school should attempt to bridge arithmetic with algebra learning. At the 
same time, we do have some questions and queries we would like to share with the 
authors and readers. But before doing so we summarize the quintessence of the 
authors’ perspective on this complex and challenging issue.

Essential to the authors’ program is the distinction between the operational and 
relational approaches. In a nutshell, the operational approach is driven by the search 
for arithmetical operations; whereas, according to the adherents of the relational 
approach, it is the underlying mathematical relation that should be in the focus of 
attention. According to the authors, the analysis of word problems at this deeper 
mathematical relational level will lead to the development of problem-solving con-
cepts and skills that will be generalizable across a range of structurally similar prob-
lems and will lay good foundations for learning algebra later on. More specifically, 
when confronted with an additive word problem situation (i.e., a word problem that 
can be solved with an addition or a subtraction with the two given numbers), learn-
ers are expected to identify this relation as additive (with or without the help of 
semi-concrete bar models), to interpret it in terms of the abstract part-part-whole 
relation and to represent it with a symbolic representation of the form a + b = x, 
x + a = b or a + x = b (with “x” being the unknown in the situation), but never in a 
symbolic representation containing a subtraction sign.
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Having done research in elementary arithmetic word problem-solving for a very 
long time, we fully support the authors’ need to distinguish between a superficial, 
meaningless “keyword” strategy versus a deep, thoughtful approach to elementary 
word problem-solving, and their plea for the latter one. We also fully agree that, at 
a certain moment in their mathematical development, children will have to be able 
to conceive all additive word problems (a) in terms of the abstract part-part-whole 
schema and (b) as symbolically representable by means of a number sentence of the 
type a + b = x or a + x = b. But we also would like to caution against this being done 
prematurely in the lower and middle grades of elementary school, without being 
preceded by an instructional stage wherein children are allowed, and even stimu-
lated, to think about these problems in terms of semantic structures that describe a 
change, a combination, or a comparison of sets. And, shouldn’t there be room, in 
that preceding instructional stage, for modeling such word problems either as addi-
tions or subtractions? Hereafter we will briefly elaborate these two instructional 
queries.

First, as stated before, we agree with Chapter 13 authors’ claim that “ultimately 
understanding mathematical relations (e.g., additive or multiplicative relations) in 
word problems is fundamental to accurate problem-solving.” Still, we would like to 
reemphasize that: (1) learners should always start solving a problem by building/
comprehending a situational model of the problem statement; (2) the basic semantic 
schemas underlying addition and subtraction word problems (i.e., change, combine, 
compare, see De Corte & Verschaffel, 1987; Riley et al., 1983), each having its own 
semantic peculiarities, will inevitably play a role in that initial comprehension stage 
of the solution process; and (3) attempts to prematurely jump to the identification of 
the abstract part-part-whole structure without priming students for this understand-
ing are doomed to failure.

Second, the authors seem to adopt one unified mathematical modeling of word 
problems, that is, P + P = W for solving elementary additive word problems. We 
would suggest there is value to flexibly allowing children from the early and middle 
grades of elementary school to think of a symbolic representation with either a plus 
or a minus sign, instead of an abstract and generic symbolic representation making 
exclusive use of the plus sign. Elementary school children have to learn to see the 
four basic mathematical operations—including subtraction—as “models of situa-
tions” (Greer et al., 2007). Therefore, we have some reservations about instructional 
approaches that would allow young learners to only make use of the plus sign in 
their mathematical modeling attempts.

A final query we have relates to their choice for a computer-based instructional 
approach. Surely, using ICT in the learning and teaching of word problem-solving 
and mathematical modeling may have various advantages, but there may also be a 
risk: It may lead to a learning environment exclusively built around a restricted set 
of standard word problems that may fit nicely into predesigned approach but is 
problematic from a genuine mathematical modeling perspective (e.g., Greer et al., 
2007; Savard & Polotskaia, 2017; Verschaffel et al., 2020b). Word problem-solving 
viewed from such a genuine mathematical modeling viewpoint is more than trans-
forming a textual problem statement into an algebraic equation and giving the 
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numerical outcome of the equation as the solution to the word problem. From such 
a viewpoint, the modeling process is considered as a cycle proceeding from the 
complex, fuzzy real-world to the mathematical world and back to the real-world by 
carrying out various cognitive activities. These activities do not only include the two 
above-mentioned solution steps, but also trying to understand the real-world situa-
tion and structure, simplifying the information in order to create a mental model of 
the real-world situation, interpreting the mathematical solution and, finally, validat-
ing the solution with regards to the original real-world problem situation. Such a 
genuine mathematical modeling process also involves competencies such as speci-
fying the modeling goal, distinguishing important from unimportant information, 
identifying missing values, and filling in information gaps by making assumptions 
based on real-world knowledge. Although it is, in principle, possible to include 
these genuine modeling competencies in a computerized learning environment, it 
may not be ideally suited for incorporating such complex and fuzzy mathematical 
modeling tasks and for teaching these competencies. So, besides the valuable strive 
for mathematical abstraction and generalization, which rightly gets great attention 
and is intelligently implemented in the authors’ computer-based instructional pro-
gram, instruction should also help making children aware of these real-world com-
plexities of the modeling process and make them competent in handling them. The 
latter might require complementary instructional settings, characterized by more 
interactive instructional approaches, such as small-group work and whole-class dis-
cussions around tasks that are constructed and presented from a more genuine math-
ematical modeling perspective.

17.4  Chapter 14: Multiplicative Relations 
and Problem-Solving

Multiplicative reasoning is, without any doubt, one of the most important concepts 
for children to develop throughout their elementary mathematics education years 
(NCTM, 1989). After a brief introduction to the conceptual field of multiplication, 
and the important task of differentiating it from additive thinking, the authors dem-
onstrate how the teacher can facilitate students’ construction of multiplicative rea-
soning and modeling of multiplicative problem-solving at the symbolic level. More 
concretely, they provide a detailed presentation and account of an intelligent com-
puter tutor, called PGBM-COMPS, that draws on a constructivist view of math 
learning and a conceptual model-based view on (word) problem-solving. They also 
nicely show how bridging the learning of the arithmetic operation of multiplication 
with elementary geometry can promote deeper conceptual understanding of high- 
level mathematics through building on the mathematical idea of “dimensions.” 
Finally, they briefly report some well-designed but small-scale intervention studies 
that demonstrate the effectiveness of the computer tutor, particularly with children 
with learning difficulties in mathematics.
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Again, this chapter offers many important research-based ideas, recommenda-
tions, and materials for teachers who want to advance their learners’ multiplicative 
reasoning and problem-solving, including: (a) the authors’ warning that true multi-
plicative reasoning requires a major conceptual shift (i.e., a coordination of opera-
tions on composite units); (b) the authors’ justified concerns about an overly 
simplified and narrow perception and treatment of multiplication as “repeated addi-
tion” and division as “repeated subtraction,” (c) the recommendation to include in 
the problem set used for instruction not only equal groups and multiplicative com-
pare problems, which are quite commonly seen in elementary mathematics curricu-
lum, but also rectangular area and Cartesian product problem types; (d) the authors’ 
plea for making more use, particularly in the initial phases of the teaching/learning 
process, of situations to be represented symbolically rather than of problems the 
answer has to be found through computation; (e) their conceptual attention to the 
similarities as well as the differences between additive and multiplicative reasoning; 
(f) their design of an elaborated and comprehensive web-based computer tutoring 
program wherein instruction in conceptual structures and heuristic instruction go 
hand in hand.

While reading this interesting chapter, we also had some questions and queries, 
which partially overlap with those raised with respect to the previous chapter.

First, the chapter pays substantial conceptual attention to the similarities as well 
as to the differences between additive and multiplicative reasoning. However, it 
does not pay a lot of instructional attention to the discovery of and reflection on 
these similarities and differences, given that their (computer-based) intervention 
programs for additive and multiplicative thinking seem to be completely separated. 
This may be addressed in other chapters, but the computer-based intervention pro-
grams presented in these chapters do not make this link. Consequently, with these 
programs children learn to reason and operate within both additive and multiplica-
tive (problem) situations, but it also seems important that they learn to compare and 
differentiate between the two conceptual fields. Surely, this problem of a dissocia-
tion between the two fields – both at the conceptual and instructional level – is a 
much broader issue, to which we have pointed repeatedly (e.g., Verschaffel et al., 
2007). In our own recent work, we have touched upon this issue by empirically 
investigating elementary school children’s preference for additive versus multipli-
cative thinking when confronted with problems that do not unquestionably belong 
to either of the two conceptual fields. We have found that such a preference for addi-
tive or multiplicative thinking is predictive of students’ errors in word problems, in 
the sense that they erroneously give additive answers to multiplicative problems and 
vice versa (Degrande et al., 2019). The authors might consider to add a module into 
their computer tutoring program addressing this issue.

Second, in the last modules of the authors’ computer tutoring program, children 
explore and learn to represent quotitive and partitive division (problem) situations. 
In contrast to common practice, they start with quotitive division. The authors’ rea-
son for this choice to deviate from common practice is that the operation of iterating 
a unit is available to the children. Given that, thinking about the question “How 
many times do I have to take the unit rate to arrive at the product” (a × . = c) is 
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indeed (psycho)logically a better next step to take, after having studied multiplica-
tion problems, than teaching children to represent and solve (problem) situations 
built around the question “What is the unit rate if we divide the product into a given 
number of units?” However, further research might look into how this design choice 
can be reconciled with research evidence about the development of children’s (intu-
itive) conceptions of division (Greer, 1992). Of course, Greer investigated children 
who received education (informal as well as formal) wherein partitive division had 
received priority, which might have significantly affected this result. And impor-
tantly, the authors have already obtained some empirical evidence of the efficacy of 
their own instructional approach starting with the quotitive division, although it 
should be added that this evidence is still somewhat tentative due to the very small 
number of children involved in these studies. So, the question how to sequence and 
integrate the teaching of partitive and quotitive division is still an open issue that 
deserves further research.

Third, the chapter spends extensive attention to “word problem story grammar”: 
Students need to be assisted in comprehending word problems and to identify and 
relate the key elements that make up the mathematical model for multiplicative 
problem structures. Indeed, linguistic scaffolding seems a viable approach to assist 
learners in making sense of the variety of multiplicative situations that are discussed 
in the chapter. The role of language abilities has been recognized for many years 
(e.g., Pimm, 1991; Staples & Truxaw, 2012). Recently, research on the role of lan-
guage has started to focus on the specific terminology that is involved in specific 
mathematical areas (Purpura & Reid, 2016; Purpura et  al., 2017). Such domain- 
specific mathematical terminology in the area of multiplicative reasoning has also 
been shown to predict performance on multiplicative reasoning 1  year later 
(Vanluydt et al., 2021).

Finally, given the strong overlap in the theoretical background and the instruc-
tional elaboration of the computer tutoring program for the additive and conceptual 
field, our queries about the suitability of the computer-based setting for the develop-
ment of genuine mathematical modeling, as stated at the end of our discussion of the 
previous chapter, may also apply to this chapter.

17.5  Chapter 15: Nurturing Fractional Reasoning

The chapter describes a progression in eight concepts across two clusters that shows 
how learners (with but also without learning difficulties) can develop fraction con-
cepts. The importance of a good fraction understanding cannot be underestimated 
(e.g., Booth et al., 2014). Fractions are an essential part in the mathematics curricu-
lum, forming the transition between basic mathematics involving mostly natural 
numbers and higher order mathematics. Fraction understanding has been found to 
be predictive of general mathematical competence, even after controlling for a wide 
range of other variables such as IQ, working memory, number knowledge, reading 
ability, and family income (Siegler et al., 2012).
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A thorough understanding of a possibly fruitful learning trajectory that leads to 
fraction understanding is therefore of utmost importance for educational practice. 
Ample research has shown that teachers do not always have the required pedagogi-
cal content knowledge that allows them to understand the difficulties learners 
encounter when learning fractions, and/or to choose the adequate actions and repre-
sentations in order to address or prevent such difficulties (e.g., Depaepe et al., 2015; 
Newton, 2008; Tirosh, 2000).

The authors explicitly choose to develop the fraction concept not commencing 
from the part/whole idea of a fraction. Rather, they commence from fractions as a 
multiplicative relation. This is a potentially powerful idea, allowing also the later 
linking of fractions to other multiplicative concepts, and thus to develop a thorough 
understanding of the multiplicative conceptual field (Vergnaud, 1994).

The 8-concept progression that is presented in the chapter is explicitly described 
as based on the work of constructivist researchers. Still, the specific constructivist 
stance and the empirical underpinning of the progression are not entirely clarified in 
the chapter. Basically, constructivism assumes that learners construct knowledge 
through their experiences and interactions with the world. Thereby, learners bring in 
their prior knowledge, and their interactions with the surrounding world can be 
facilitated and directed by others (a teacher, other learners, artifacts, …). An instruc-
tional sequence can then depart from the prior knowledge that learners already have. 
By its careful sequencing, pointing out the key insights that need to be built up 
before one can meaningfully think about the next concept, the 8-concept progres-
sion also follows this line. The chapter explains that the prior knowledge of number 
that learners bring is one of number as a composite unit and iteration as the founda-
tional operation. The chapter also explicitly avoids a focus on part-whole concepts, 
while this kind of idea of a fraction is probably also available as prior knowledge 
from a very young age: From playful contexts, children know what taking half of a 
quantity is, and some even understand taking a third or a quarter. Thus, while such 
knowledge is brought to the classroom, the 8-concept progression intentionally 
does not build on this knowledge. The part-whole teaching approaches whereby 
children are offered pre-partitioned shapes and need to shade a requested number is 
explicitly not given a place. The “measure” concept may indeed be more promising 
for enabling extensions of the fraction concept, and staying too close to the part- 
whole idea is indeed bound to elicit misconceptions (see below). The same holds for 
decimals and percentages: Children will have encountered them in their everyday 
life (contexts of money, packages, price reductions, …) before the start of this learn-
ing sequence. Still, they are only addressed quite late in the learning progression, as 
equivalent expressions of fractions. While these elements of prior knowledge may 
not be particularly productive in the initial stages of the proposed learning progres-
sion, it is a pronounced choice to ignore them in the beginning of the learning pro-
gression, as children bring them to the classroom.

The chapter briefly goes into the conceptual and procedural obstacles that many 
students encounter. Several of these can be traced back to the inadequate application 
of whole number knowledge. The chapter mentions examples such as thinking that 
1/10 is greater than 1/4 because 10 is greater than 4, or that 1/2 + 1/4 = 2/6. Another 
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case worth mentioning is students thinking that half of 1/8 is 1/4. Indeed, a large 
range of errors that learners make when reasoning about rational numbers are due to 
the fact that rational numbers do not necessarily behave in the same way as whole 
numbers, but learners are inclined to apply their prior knowledge which is (initially) 
heavily based on whole numbers (Van Dooren et al., 2015). Research suggests this 
is quite a persistent phenomenon, also occurring in adults (e.g., Vamvakoussi et al., 
2013). The chapter indicates that such findings demonstrate a need for nurturing 
reasoning about fractions as multiplicative relations, i.e. as measures. Indeed, the 
inadequate application of whole number knowledge may be rooted in the early 
teaching of fractions as parts-of-wholes, which this 8-concept learning progression 
approach explicitly doesn’t do. It is worthwhile investigating whether the 8-concept 
progression approach that is proposed in the chapter can really prevent and/or rem-
edy this tendency in learners to apply their previously acquired whole number 
knowledge. The learning progression starts with unit fractions, as the result of equi- 
partitioning. Reasoning about such unit fractions happens also in a contextualized 
way, for instance by dividing a chocolate bar into six equal pieces. Such contexts 
allow learners to think about the unit fractions as “pieces of chocolate”: Sixths 
become a synonym for “pieces.” This might enable learners to continue reasoning 
in terms of (labeled) whole numbers, i.e. a number of objects. This is quite produc-
tive along many steps in the 8-concept learning progression: understanding proper 
fractions (2 pieces is 2 sixths), adding proper fractions (2 and 3 pieces is 5 sixths), 
improper fractions (11 pieces is 11 sixths), multiplying and dividing fractions by a 
whole number (2 times 2 pieces is 4 sixths). If contextualized, none of these steps 
really necessitate the learner to consider the fractions truly as a multiplicative rela-
tion. Considering them as “labeled” whole numbers (2 sixths is 2 pieces of choco-
late) is sufficient. The chapter authors do a valuable attempt to offer an alternative 
approach of teaching fractions for struggling learners, and it is worth investigating 
whether the proposed learning progression would really be effective in avoiding the 
widely documented whole number-based errors.

The chapter brings into the picture several representations to illustrate the kind 
of thinking steps that learners need to take, and to show how a graphical representa-
tion of a certain situation can enhance the reasoning about fractions and operations 
with fractions, which in turn may lead to a more general rule or procedure. While 
this is undoubtfully very valuable, the question of which representation is most 
suited along the learning progression seems to remain a bit under the surface. It is a 
well-known idea in mathematics education that well-chosen external representa-
tions and combinations of external representations may facilitate the learning and 
the problem-solving process (e.g., Acevedo Nistal et  al., 2014). However, which 
representations would be most suited in the 8-concept learning progression for frac-
tion understanding, and at which moments are they crucial? The chapter uses circu-
lar diagrams (pizzas), bar diagrams, and rectangular diagrams, and it invites the 
reader several times to study a given diagram from a given perspective. However, it 
does not treat explicitly what might be strengths and weaknesses of one of these 
diagrams in a given context, for a given question, or to make a specific learning 
progression. This question certainly deserves some reflection: pizza diagrams may 
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remain close to a well-known context, but their circular shape makes it difficult to 
partition a given quantity in equal parts, especially when prime numbers beyond 3 
are involved: It is very difficult to divide a pizza into 7 or 11 equal pieces, for 
instance. More importantly, the further partitioning of a given unit fraction becomes 
difficult and imprecise. Bar and rectangle representations seem more suitable for 
such practices (which is also why these are also the starting point and circular rep-
resentations come later). The rectangular representation is two-dimensional, and 
therefore very suitable if two different ways of partitioning need to be combined, for 
instance, when multiplying fractions or adding two fractions with different denomi-
nators. But the cubic meter tank example in the chapter shows it can still be solved 
using the bar model (i.e. not exploiting the two-dimensional nature of the represen-
tation, but only using the width), even though this may not be the most efficient 
approach, and even though exploiting the two dimensions in the representation may 
make the underlying procedure more insightful. At the same time, the one- 
dimensional nature of the bar representation comes closer to the number line repre-
sentation. Students often have trouble understanding that fractions are numbers in 
their own right, with a magnitude that can be represented on a number line (on 
which also natural numbers and rational numbers in a decimal representation are 
situated) (Vamvakoussi et al., 2011). Taking that into consideration, the bar model 
may be particularly valuable too, and important learning activities can be built 
around the choice of representations and the combination of representations along 
the learning trajectory.

17.6  Chapter 16: Proportional Reasoning to Move 
Toward Linearity

The chapter on proportional reasoning rightfully indicates the importance of the 
concept. The National Council of Teachers of Mathematics (1989) argued that 
“whatever time and effort must be expended to assure its careful development.” It is 
a stepping-stone for various important mathematical ideas throughout elementary, 
secondary, and even higher education, including rational numbers probability, linear 
algebra, and linear models in calculus and statistics. Proportional reasoning is one 
of the central “big ideas” in the math curriculum. It can help students to see math-
ematics as an integrated body of interrelated concepts that revolve around a unifying 
idea (Van Dooren et al., 2018).

Still, a thorough understanding of proportionality is known to be a notoriously 
difficult achievement for many learners, and particularly those with learning diffi-
culties. The traditional Piagetian stance on proportional reasoning would consider it 
as a rather late achievement, typically not fully reached until the age of 11 (Inhelder 
& Piaget, 1958). However, many studies suggest that it starts its development in 
early childhood: Resnick and Singer (1993) saw 5- to 7-year-olds giving propor-
tionally larger amounts of food to larger fish; Boyer and Levine (2012) saw 6- to 
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9-year-old children matching equal mixtures, and Vanluydt et al. (2020) observed 
5- to 9-year-olds successfully solving fair sharing tasks.

How can one reconcile the observation that proportional reasoning seems feasi-
ble at a young age with the fact that at the same time learners often struggle with 
proportional reasoning tasks and commit additive errors (Im & Jitendra, 2020)? The 
authors of the chapter suggest that one of the reasons may be that tasks in which 
concrete numbers are given (and/or where a concrete number is asked for an 
answer), learners may be inclined to conduct additive rather than multiplicative cal-
culations. It is suggested that tasks that invoke intuitions lead to fewer additive 
answers. The example given is a lemonade task by van den Heuvel-Panhuizen 
(1996), as shown in Fig. 17.1. The task indeed invokes a visual approach, as no 
numbers are given. It is argued in the chapter that this encourages the use and devel-
opment of powerful “visual intuition” (Cox, 2013, p. 4). Indeed, where many cogni-
tive and educational psychologists in the past decades focused on an “approximate 
number system” (as measured by the ability to compare nonsymbolic numerosities, 
among others) predictive of later mathematical achievement (e.g., Schneider et al., 
2017), researchers now have a renewed interest in learners’ (equally innate) ratio 
processing system (as measured by the processing and comparing of nonsymboli-
cally presented ratios). This ratio processing system has been shown to be highly 
predictive for higher order mathematics, such as fractions and algebra (Lewis 
et al., 2015).

While such tasks indeed appeal to the “visual intuition” and may invoke correct 
answers in learners, one wonders whether the underlying reasoning is indeed multi-
plicative in nature, or whether it remains at a purely visual level, judging (geometri-
cal) similarity. Additive reasoning would be particularly difficult in the situation 
sketched in Fig. 17.1, unless concrete numbers are used (e.g., by measuring the bars 
and their parts). However, when turning the problem into one involving concrete 

Fig. 17.1 Nonnumeric 
task derived from (van den 
Heuvel-Panhuizen, 1996)
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numbers, learners may again be inclined to turn to additive operations. The chapter 
does not explicitly discuss how the step to concrete numbers in this kind of situa-
tions can be taken, how additive reasoning by learners can be avoided, and/or how 
additive errors can be discussed in the classroom.

Problems that appeal to the visual intuition of learners often involve continuous 
quantities. Discrete quantities (or using concrete numbers to quantify continuous 
ones) seem to elicit more additive errors. While much research points in this direc-
tion (e.g., Boyer et al., 2008), the opposite is found too (e.g., Resnick & Singer, 
1993). Whatever the impact of the discrete or continuous nature of the quantities in 
proportional problems is, it seems that this issue deserves explicit attention and 
discussion in classrooms as learners may turn to a correct or incorrect approach for 
mathematically very similar problems when other quantities are involved.

Mixture problems such as the one in Fig. 17.2 raise yet another important issue: 
the role of the problem context. Throughout the chapter, various real-life situations 
are used to introduce problems to learners, and to provoke new insights. However, 
not all contexts may be equally accessible to students. It is well known that situa-
tions in which a concrete one-to-many correspondence can be established between 
discrete quantities in a certain problem are well-suited stepping stones for multipli-
cative reasoning (e.g., Kouba, 1989). Still, many of the problems that are used 
throughout the chapter do not allow for a meaningful one-to-many correspondence. 
One of the problems in the chapter deals with two interconnected gears, one gear 
having 8 teeth while the other has 12 teeth. The underlying proportional relation is 
much more abstract for learners, and importantly, the “unit ratio” (an important step 
in the development) has no concrete referent: A gear with 1 tooth does not exist. The 
various mixture problems may be even more difficult for learners. “Taste,” “sweet-
ness,” or “oranginess” are very abstract notions, and the fact that they imply a mul-
tiplicative relation between the amount of water and the amount of sugar or juice 
may be not at all evident for learners. Learners have been documented to think that 
a mixture having more sugar is sweeter, disregarding the total amount of the mixture 
(thereby applying a so-called More A – More B intuitive rule, Van Dooren et al., 
2004). Thus, their struggle to give the correct proportional response may be simply 
due to not understanding the real-life situation and the multiplicative relation under-
lying it. This holds even more strongly for probabilistic situations: Two urns with 
black and white balls have the same chance of producing a winning white ball in a 
random draw if the black/white ratio is the same. However, a great variety of 

Fig. 17.2 Visual of four 
cups of batter to make six 
pancakes (Hunt & 
Vasquez, 2014, p. 181)
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strategies have been reported in children: focusing only on the number of (winning) 
balls, only on the number of (losing) black balls, on the total number of balls, on the 
difference, etc. (Falk et al., 2012). While it is of course important that learners are 
able to reason proportionally in a variety of contexts, and learn to recognize which 
of such contexts are proportional in nature, it seems that the choice of such contexts 
is not thoroughly considered in the chapter.

An important observation made in the chapter is that the tendency of learners to 
use additive reasoning can be grasped using Thompson’s (1994) distinction between 
reasoning about quantities and the process of operating. When given concrete num-
bers, learners may not always completely reason through the problem context and 
its involved quantities, but rather focus on conducting operations with the given 
numbers. This may partly explain the additive errors given to proportional prob-
lems. However, we want to stress that the opposite occurs too: Van Dooren et al. 
(2005) gave a test containing both proportional and various kinds of nonpropor-
tional word problems to primary school children. Among the nonproportional prob-
lems, there were additive problems including the following:

Ellen and Kim are running around a track. They run equally fast but Ellen started later. 
When Ellen has run 4 laps, Kim has run 8 laps. When Ellen has run 12 laps, how many has 
Kim run?

The percentage of wrong proportional responses (“24 laps”) increased from 10% in 
third grade to more than 50% in sixth grade, whereas correct additive answers (“16 
laps”) decreased from 60% in third grade to 30% in sixth grade. Along with learning 
to correctly solve proportional problems, the tendency to use that skill also beyond 
its applicability (and particularly in additive situations) seems to occur as well. As 
mentioned in our discussion on Chap. 14 on multiplicative reasoning, this phenom-
enon and the preference of some learners for additive relations and the preference of 
others for multiplicative relations deserve further attention in research, as well as in 
the development of learning environments that aim to develop proportional reason-
ing abilities.

As in previous chapters, the role of adequate representations in the development 
of mathematical insight is stressed. This seems of particular importance when learn-
ing difficulties are involved, as representations allow children to offload information 
from the working memory to the external representation. The chapter on propor-
tional reasoning clearly puts forward the ratio table as a valuable representation for 
that purpose. A lot of importance seems to be given to the steps that learners need to 
take to turn textual or verbally presented problems into written notes, in which ratio 
tables indeed may provide the necessary tool to grasp the key characteristics of the 
problem situation. However, also visual representations, such as in Fig. 17.2, seem 
useful, and can even serve as a stepping stone for creating a ratio table: Two cups of 
batter can be grouped together with three pancakes, clarifying the two-cups-for- 
three-pancakes relation. The cells in the ratio table could then visually depict a 
number of cups and a number of pancakes before turning to a table involving sym-
bolically represented numbers (Fig. 17.3).
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Fig. 17.3 Ratio table 
constructed from build-up 
strategy (Hunt & Vasquez, 
2014, p. 182)

In the chapter, the ratio table with the pancake recipe is then used to show how 
the relations in the proportional situation at hand can be studied further. The build-
ing- up example that is elaborated in the text (adding four cups of batter allows us to 
make six additional pancakes) is certainly worthwhile. We would, however, suggest 
to also explore the other properties: not only the constant batter: pancakes ratio of 
2:3, but also the fact that for instance by adding a batch of 8 cups and a batch of 12 
cups, one can make 12 plus 18 pancakes, or that by tripling the number of cups, the 
number of pancakes also triples. All these properties are inherent to the underlying 
linear relation. However, it would need to be stressed that such properties do not 
necessarily hold in nonlinear situations, as students have been reported to use them 
beyond their applicability range (e.g., Stacey, 1989). Understanding when the prop-
erties hold and when they do not seem an inextricable part of proportional reasoning.

17.7  Conclusion

In sum, the five contributions to Part IV of the book provide prospective and practic-
ing teachers with valuable research-based insights into the mathematical difficulties 
of students with and without LD, as well as into classroom practices that aim to 
effectively address these difficulties, in major curriculum domains ranging from 
counting to proportional reasoning. These insights, and related practical recommen-
dations, are presented by the authors as research-based, which is a very important 
quality, if not an absolute requirement, for books of this kind. Understandably, the 
authors have essentially drawn on their own conceptual frameworks and empirical 
research and, consequently, have paid less attention to alternative perspectives and 
findings about elementary mathematics education. Indeed, research in mathematics 
education is a relatively young and growing scientific discipline, characterized by a 
lot of remaining unresolved questions and conflicting views on major issues of 
mathematics learning and teaching. For some of these authors’ own conclusions and 
recommendations, the available research evidence is still somewhat scarce. Given 
that much of this research is only very recent, or even still “work in progress,” we 
would have preferred to see more empirical evidence. Nevertheless, we believe the 
authors should be applauded for their decision to share their current research-based 
insights and recommendations to (future) teachers, as a source of inspiration and 
reflection.
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