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Abstract We present a balanced truncation model reduction approach for a class of
nonlinear systems with time-varying and uncertain inputs. First, our approach brings
the nonlinear system into quadratic-bilinear (QB) form via a process called lifting,
which introduces transformations via auxiliary variables to achieve the specified
model form. Second, we extend a recently developedQBbalanced truncationmethod
to be applicable to such lifted QB systems that share the common feature of having
a system matrix with zero eigenvalues. We illustrate this framework and the multi-
stage lifting transformation on a tubular reactor model. In the numerical results we
show that our proposed approach can obtain reduced-order models that are more
accurate than proper orthogonal decomposition reduced-order models in situations
where the latter are sensitive to the choice of training data.

Keywords Balanced truncation · Nonlinear model reduction · Lifting
transformation · Quadratic-bilinear models

1 Introduction

We consider reduced-order modeling for large-scale nonlinear systems with time-
dependent and uncertain inputs, as suchmodels appear inmany practical engineering
applications. A reduced-order model (ROM) has to capture the rich dynamics result-
ing from time-dependent inputs [1]. Proper orthogonal decomposition (POD) [18] is
themost commonmodel reduction framework for nonlinear systems. As a trajectory-
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based method, POD relies on user-specified training data, leaving the method vul-
nerable to poor choices in training inputs.

Interpolatorymodel reduction approaches that focus on the transfer functionmap-
ping from inputs to outputs—and do not require training data—are mature for lin-
ear systems [1, 2]. Moreover, significant progress has been made for input-output
model reduction for nonlinear systems with known governing equations [4, 6, 8].
In the situation where the governing equations are unknown and only frequency-
domain input-output data is available, Antoulas and Gosea [13] proposed a data-
driven reduced-order modeling framework for quadratic-bilinear (QB) systems.

Balanced truncationmethods offer another promising avenue formodel reduction.
Initially proposed by Moore [24] for linear systems, many extensions are available,
such as snapshot-based approximations (in the stable [29] and unstable case [11]),
as well as weighted and time-limited balanced truncation methods, see e.g., the sur-
vey [16]. Extending balancing transformations to large-scale nonlinear systems is an
open problem, since the balancing transformations become state-dependent (see [12,
27]) and are hence impractical when the model dimension is large. To overcome this
computational bottleneck, approximate Gramians that are state-independent (as they
are in the linear case) can be used. Balanced truncation for nonlinear systems based
on algebraic Gramians [14] requires the solution of Lyapunov-type equations, and
is hence appealing from a computational perspective. A computationally efficient
framework via truncated Gramians for QB systems has been proposed in [5]. Empir-
ical Gramians for nonlinear systems [21] can also be used, yet their computation
requires as many simulations of the full systems as there are inputs and outputs:
each simulation uses an impulse disturbance per input channel while setting the
other inputs to zero. A method for approximating the nonlinear balanced truncation
reduction map via reproducing kernel Hilbert spaces has been proposed in [7].

In this work, we propose a balanced truncation model reduction method for a
class of nonlinear systems with time-varying inputs. As a first step, we use variable
transformations and lifting, which allows us to bring the nonlinear system inQB form
via the introduction of auxiliary variables. Lifting transformations that transform
general nonlinear systems into polynomial models have been explored over several
decades in different communities [4, 15, 19, 20, 22, 23, 26, 28]. We show that the
lifted QBmodels often have a special structure, namely that the linear system matrix
becomes has zero eigenvalues, making the balancing algorithm for QB systems [5]
not directly applicable due to the typical requirement that the systemmatrix be stable.
We thus propose a modified approach for balanced truncation of lifted QB systems,
which uses the definition of the lifted variable to artificially introduce a stabilization
to the system. As an example, we consider a nonlinear tubular reactor model for
which we present a lifting transformation that brings the model into QB form, and
subsequently perform balancing.

This paper is organized as follows. Section2 reviews truncated Gramians for QB
systems. Section3 illustrates that lifted QB models often have a common structure
and also introduces the tubular reactor model and its lifted QB model. Section4 pro-
poses our balancing approach for lifted QB systems with special structure. Section5
presents numerical results for the tubular reactor model.
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2 Quadratic-Bilinear Systems and Balancing

A QB system of ordinary differential equations can be written as

ẋ = Ax + H(x ⊗ x) +
m∑

k=1

(Nkx)uk + Bu, (1)

y = Cx, (2)

where x(t) ∈ R
n is the state, t ≥ 0 denotes time, the initial condition is x(0) = x0,

u(t) ∈ R
m is a time-dependent input and uk its kth component, B ∈ R

n×m is the
input matrix, A ∈ R

n×n is the system matrix, C ∈ R
p×n is the output matrix and the

Nk ∈ R
n×n, k = 1, . . . , m represent the bilinear coupling between input and state.

The matrix H is viewed as a mode-1 matricization of a tensor H ∈ R
n×n×n , so

H(1) = H. Moreover, H(2) denotes the mode-2 matricization of the tensor H. We
assume without loss of generality (see [4, Sect. 3.1]) that the matrix H is symmetric
in that H(x1 ⊗ x2) = H(x2 ⊗ x1).

For system (1)–(2) the controllability and observability energy functions are
defined as

Ec(x0) := min
u∈L2(−∞,0),x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2dt,

Eo(x0) := 1

2

∫ ∞

0
‖y(t)‖2dt,

where Ec quantifies the minimum amount of energy required to steer the system
from x(−∞) = 0 to x(0) = x0, and Eo quantifies the output energy generated by the
nonzero initial condition x0 and u(t) ≡ 0.

Balanced truncation achieves reduction in the dimension of the state space by
eliminating those states that are hard to control (large Ec) and hard to observe (small
Eo). Thus, an important component of balanced truncation model reduction is to find
the coordinate transformation that ranks the controllability and observability of the
states. The Gramian matrices (formally introduced below) are central to finding this
balanced coordinate transformation for system (1)–(2). In particular, if symmetric
positive definite Gramians P = LPLP

� andQ = LQLQ
� for the QB system (1)–(2)

are available, we can obtain transformation matrices V and W, with V = W−1 that
diagonalize the Gramians,V�PV = W�QW = S = diag(σ1, . . . , σn), where σi are
the singular values1 of LQ

�LP. The energy functions in the balanced state x̃ = Wx
can then be bounded as Ec(x̃) ≥ 1

2 x̃
�S−1x̃, and Eo(x̃) ≤ 1

2 x̃
�Sx̃ in a neighborhood

of the origin [5, Sect. 4]. From these inequalities, we see that states corresponding
to small singular values of LQ

�LP are hard to control and hard to observe. The
subspaces spanned by the singular vectors corresponding to small singular values
can thus be discarded in a ROM.

1 In the linear case those would be the Hankel singular values.
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We now turn to the computation of the Gramian matrices P andQ. For the special
case of QB systems, the next proposition states conditions under which approximate
algebraic Gramians exist, and suggests a computational framework to find those.

Proposition 1 ([5], Cor. 3.4)Consider the QB system (1)–(2). IfA is a stable matrix,
then the truncated Gramians PT ,QT are defined as solutions to

APT + PT A� + H(P1 ⊗ P1)H� +
m∑

k=1

NkP1N�
k + BB� = 0, (3)

A�QT + QT A + H(2)(P1 ⊗ Q1)(H(2))� +
m∑

k=1

N�
k Q1Nk + C�C = 0, (4)

where P1 and Q1 are solutions to the standard linear Lyapunov equations

AP1 + P1A� + BB� = 0, A�Q1 + Q1A + C�C = 0. (5)

The Gramians PT , QT are used to obtain a QB reduced-order model (QB-ROM)
as follows: Compute the singular value decomposition L�

QT
LPT = USV� and let

its rank r approximation be denoted as UrSrV�
r . The projection matrices are W =

LQT UrS−1/2
r and V = LPT VrS−1/2

r . The balanced QB-ROM has the form

˙̂x = Â̂x + Ĥ(̂x ⊗ x̂) +
m∑

k=1

N̂k x̂uk + B̂u, (6)

ŷ = Ĉ̂x. (7)

with the matrices Â = W�AV, B̂ = W�B, Ĉ = CV, N̂k = W�NkV, Ĥ =
W�H(V ⊗ V). The Gramians of the QB-ROM are balanced, i.e., the matrices
P̂T = Q̂T are equal and diagonal.

3 Lifting Systems to QB Form: Introducing Structure

In Sect. 3.1 we illustrate that lifting transformations for nonlinear systems often lead
to a specific structure of the lifted system. Section3.2 introduces a nonlinear tubular
reactor model, and its subsequent lifted QB model with this special structure.

3.1 Structure in Lifted QB Systems

As an example of a higher-order dynamical system that can be lifted to QB form,
consider the nonlinear ordinary differential equation
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ẋ =
d∑

k=1

ak xk + bu, (8)

where x(t) is the one-dimensional state variable, a1, . . . , ad are known coefficients,
xk is the kth power of x(t), u(t) is an input function, and b ∈ R is a parameter. We
consider here a one-dimensional ordinary differential equation (ODE) for illustra-
tion and note that the lifting framework directly applies to n-dimensional nonlinear
systems. Our goal is to rewrite this system in QB form by introducing auxiliary
variables. For this example, we define auxiliary variables w� := x�+1, so that the
governing equation can be written as a linear system

ẋ = a1x +
d−1∑

k=1

ak−1wk + bu. (9)

The auxiliary state dynamics are computed via the chain rule (or Lie derivative) as

ẇ� = d

dt
x�+1 = (� + 1)x� ẋ = (� + 1)w�−1

(
a1x +

d−1∑

k=1

ak−1wk + bu

)
,

and here w0 := x . Note that the right-hand-side contains quadratic products
w�−1(t)wk(t) as well as bilinear products b(� + 1)u(t)w�−1(t). Another choice to
write the auxiliary dynamics would be to replacew�−1x withw�. Next, we show two
examples of polynomial and non-polynomial models where lifting leads to a similar
structure.

Example 1 Consider the ODE

ẋ = ax3 + bu. (10)

Our goal is to lift this system to QB form by introducing auxiliary variables. Let

w1 = x2, w2 = x3,

be the auxiliary variables. Note that the original dynamics then become linear, i.e.,
ẋ = aw2 + bu. We compute the auxiliary state dynamics ẇ1 = 2x ẋ = 2axw2 +
2xbu and ẇ2 = 3x2 ẋ = 3w1(aw2 + bu). Taken together, the nonlinear equation (10)
with one state variable is equivalent to the QB-ODE with three state variables

ẋ = aw2 + bu, ẇ1 = 2axw2 + 2bxu, ẇ2 = 3aw1w2 + 3bw1u. (11)

The system (11) is equivalent to the original nonlinear equation (10), in the sense
that both systems yield the same solution x(t). We can write (11) in the QB form of
equation (1) with the lifted state x = [x, w1, w2]� and matrices
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A =
⎡

⎣
0 0 a
0 0 0
0 0 0

⎤

⎦ , H =
⎡

⎣
0 0 0 0 0 0 0 0 0
0 0 2a 0 0 0 0 0 0
0 0 0 0 0 3a 0 0 0

⎤

⎦ , N1 =
⎡

⎣
0 0 0
2b 0 0
0 3b 0

⎤

⎦ , B =
⎡

⎣
1
0
0

⎤

⎦ .

(12)
Example 2 Consider an ODE with non-polynomial term and linear term:

ẋ = ax + e−x + bu,

which we lift to QB form. We introduce w1 = e−x as the auxiliary variable, so that
ẇ1 = −w1(ax + w1 + bu) = −aw1x − w2

1 − w1bu, which can be written in QB
form as

[
ẋ

ẇ1

]
=

[
a 1
0 0

] [
x

w1

]
+

[
0 0 0 0
0 0 −a −1

] ([
x

w1

]
⊗

[
x

w1

])
+

[
0 0
0 −b

] [
x

w1

]
u +

[
b
0

]
u.

(13)

We observe that the lifted matrices in the previous two examples (Eqs. (12) and
(13)) have the following block-structure:

A =
[
A11 A12

0 0

]
, H =

[
0
H2

]
, N =

[
0 0
N21 N22

]
, B =

[
B1

0

]
, (14)

where 0 is a matrix of zeros of appropriate dimensions. Note, that the system matrix
of the lifted system (14) has zero eigenvalues. Moreover, the original input Bu(t)
only affects the original state, but appears as a bilinear term in the auxiliary states
after application of the chain rule. Thus, the N matrix is nonzero only in the rows
corresponding to the auxiliary states. The matrix structure in Eq. (14) commonly
occurs inQB systems thatwere obtained from lifting transformations, for instance the
systems given in Example 1 and Example 2. Nevertheless, due to the non-uniqueness
of lifting transformations, the block structure in (14) is both a result of the original
dynamical system form and the chosen lifting transformation.

3.2 Tubular Reactor Model

We consider a non-adiabatic tubular reactor model with single reaction as in [17] and
follow the discretization in [30]. The model describes the evolution of the species
concentration ψ(s, t) and temperature θ(s, t) with spatial variable s ∈ (0, 1) and
time t > 0. The PDE model is

∂ψ

∂t
= 1

Pe

∂2ψ

∂s2
− ∂ψ

∂s
− D f (ψ, θ; γ ), (15)

∂θ

∂t
= 1

Pe

∂2θ

∂s2
− ∂θ

∂s
− β(θ − θref) + BD f (ψ, θ; γ ) + bu, (16)
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with input function u = u(t) and a function b = b(s) encoding the influence of the
input to the computational domain. The parameters are the Damköhler number D,
Pèclet number Pe aswell as knownconstantsB, β, θref, γ . The polynomial nonlinear
term that drives the reaction is

f (ψ, θ; γ ) = ψ(c0 + c1θ + c2θ
2 + c3θ

3)

with given constants c0, . . . c3. Robin boundary conditions are imposed on the left
boundary of the domain and Neumann boundary conditions on the right

∂ψ

∂s
(0, t) = Pe(ψ(0, t) − 1),

∂θ

∂s
(0, t) = Pe(θ(0, t) − 1),

∂ψ

∂s
(1, t) = 0,

∂θ

∂s
(1, t) = 0.

The initial conditions are prescribed as ψ(s, 0) = ψ0(s), and θ(s, 0) = θ0(s). The
output of interest is the temperature oscillation at the reactor exit, i.e., the quan-
tity y(t) = θ(s = 1, t). The diffusive and convective terms are approximated with
second-order centered differences in the interior of the domain. Second-order for-
ward and backward difference schemes are used for the inflow and outflow boundary
conditions, respectively. The finite difference approximation of dimension 2n of the
tubular reactor PDE is then

ψ̇ = Aψψ + bψ − D ψ 
 (c0 + c1 
 θ + c2 
 θ2 + c3 
 θ3), (17)

θ̇ = Aθθ + bθ + bu + BD ψ 
 (c0 + c1 
 θ + c2 
 θ2 + c3 
 θ3). (18)

Here, the (Hadamard) componentwise product of two vectors is denoted as [ψ 

θ ]i = ψ iθ i , and the powers of vectors are also taken componentwise. The constant
vector bψ encodes the boundary condition, and bθ is the sum of contributions from
the boundary conditions and the β · θref term in Eq. (16). The term Aψψ is a dis-
cretized version of the advection-diffusion terms 1

Pe ψss − ψs andAθθ is a discretized
representation of the 1

Pe θss − θs − βθ terms.
We quadratic-bilinearize the finite dimensional system via a lifting transforma-

tion.23 To lift the system, we introduce the auxiliary variables

w1 = ψ 
 θ , w2 = ψ 
 θ2, w3 = ψ 
 θ3, w4 = θ2, w5 = θ3,

so that we have the equivalent QB system of dimension 7n:

2 Lifting is not unique, and there might be lower-order quadratic systems than the one suggested
here. However, how to obtain them is an open problem.
3 Lifting for a tubular reactor model with Arrhenius reaction term has been considered by the
authors in [20], however that lifting transformation resulted in QB-DAEs, for which balancing
model reduction is an open problem.
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ψ̇ = [Aψ − Ddiag(c0)]ψ + bψ − D(c1 
 w1 + c2 
 w2 + c3 
 w3), (19)

θ̇ = Aθθ + BDc0 
 ψ + bθ + bu + BD (c1 
 w1 + c2 
 w2 + c3 
 w3), (20)

ẇ1 = ψ̇ 
 θ + ψ 
 θ̇ , (21)

ẇ2 = ψ̇ 
 w4 + 2w1 
 θ̇, (22)

ẇ3 = ψ̇ 
 w5 + 3w2 
 θ̇ , (23)

ẇ4 = 2θ 
 θ̇ , (24)

ẇ5 = 3w4 
 θ̇ . (25)

Note, that the original state equations for species and temperature, (19)–(20),
are linear in the new state variables, whereas the differential equations for the
added state variables (21)–(25) are quadratic in the state variables (after insert-
ing ψ̇, θ̇ , which are linear). Hence, the system is of QB form (1)–(2), where
x(t) = [ψ� θ� w�

1 w�
2 w�

3 w�
4 w�

5 ]� ∈ R
7n is the new lifted state. The lifted state

Eqs. (19)–(25) again induce a specific structure of the system matrices:

A =
[

A11 A12

05n×2n 05n

]
∈ R

7n×7n, A11 =
[
Aψ − Ddiag(c0) 0

0 Aθ

]
, (26a)

H =
[
02n×4n2 02n×45n2

H21 H22

]
∈ R

7n×(7n)2 , N =
[
02n×2n 02n×5n

N21 N22

]
∈ R

7n×7n, (26b)

B =
⎡

⎣
bψ 0
bθ b
05n 05n

⎤

⎦ ∈ R
7n×2, C = [

C1 05n
] ∈ R

1×7n, C1 = [02n−1 1]. (26c)

Note that the original dynamics are linear after the lifting is applied, and the auxiliary
states have no linear parts, as the time derivative of the auxiliary variables consistently
results in purely quadratic dynamics. Thus, the matrix A has zero eigenvalues, and
H is such that there is no contribution in the rows corresponding to the original state.
Moreover, the bilinear state-input interactions only occur in the auxiliary states. This
structure is exactly the one presented in Eq. (14).

4 Balancing for Lifted Systems with Special Structure

Section4.1 introduces an artificial numerical parameter that guarantees existence
of truncated Gramians. Section4.2 derives the Gramians for the linear part of the
system, while Sect. 4.3 presents the truncated Gramians for the QB system.
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4.1 Artificial Stabilization

The special structure of the system matrix A that arises from lifting transformations
leads to zero eigenvalues. Hence, there are no unique solutions to the Lyapunov
equations (3)–(5) and the standardQBbalanced truncationmethod from [5] cannot be
applied. To circumvent this problem, we observe that if the original nonlinear system
is polynomial (cf. (8) and its lifted version (9)) then −αw� + αx�+1 = 0 for any
α ∈ R. We can use this equality to artificially stabilize the linear term. For example,
in Eq. (21) of the tubular reactor ODE, we can introduce a term −αw1 + α(ψ 
 θ).
Applying this to every auxiliary variable, the linear system matrix becomes

A(α) =
[
A11 A12

0 −αI

]
, (27)

and the quadratic tensor H(α) = H + H̃(α), where H̃(α) contains the artificially
added terms such that −α[0�,w�]� + H̃(α)(x ⊗ x) = 0. With this system matrix
A(α), the Lyapunov equations (3)–(5) have unique positive semi-definite solutions
if A11 is stable. Similar concepts have been used recently in [25]. For all results in
this section to hold, we require that A11 is stable.

4.2 Balancing with Gramians of Linearized System

The Lyapunov equations for the linear system part, Eq. (5) are needed to compute
the truncated Gramians for the QB system. The next two propositions detail the
computation of those linear Lyapunov equations.

Proposition 2 The solutions to the standard linear Lyapunov equations (5) with
A(α) from equation (27) are given by

P1 =
[
P11 0
0 0

]
, Q1 =

[
Q11 Q12(α)

Q�
12(α) 1

2α Q̃22(α)

]
, (28)

where

0 = A11P11 + P11A�
11 + B1B�

1 ,

0 = A�
11Q11 + Q11A11 + C�

1 C1,

Q12(α) = −(A�
11 − αI)−1Q11A12,

Q̃22(α) = A�
12Q12(α) + Q12(α)�A12.
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Proof For the controllability Gramian computation we have that

0 =
[
A11 A12

0 −αI

] [
P11 P12

P�
12 P22

]
+

[
P11 P12

P�
12 P22

] [
A�

11 0
A�

12 −αI

]
+

[
B1B�

1 0
0 0

]
,

which results in the four equations

A11P11 + A12P�
12 + P11A�

11 + P12A�
12 + B1B�

1 = 0,

(A11 − αI)P12 + A12P22 = 0,

P�
12(A

�
11 − αI) + P22A�

12 = 0,

−2αP22 = 0.

Since (A�
11 − αI) is invertible, the last three equations yield thatP22 = 0 andP12 = 0.

Next, we consider the observability Lyapunov equation

0 =
[
A�

11 0
A�

12 −αI

] [
Q11 Q12

Q�
12 Q22

]
+

[
Q11 Q12

Q�
12 Q22

] [
A11 A12

0 −αI

]
+

[
C�

1 C1 0
0 0

]
.

Blockwise multiplication results in the three distinct equations

A�
11Q11 + Q11A11 + C�

1 C1 = 0,

(A�
11 − αI)Q12 + Q11A12 = 0,

A�
12Q12 + Q�

12A12 − 2αQ22 = 0,

which we can solve successively to get Q11,Q12,Q22. We define Q̃22(α) =
A�

12Q12(α) + Q�
12(α)A12 so that the explicit dependence on 1/α appears asQ22(α) =

1
2α Q̃22(α). �

Proposition 3 Consider the Gramians from Proposition 2, and let P11 = LP11L
�
P11

and Q11 = LQ11L
�
Q11

be Cholesky factorizations. Let the singular value decomposi-
tion approximate the product L�

Q11
LP11 ≈ UrSrV�

r . Then the projection matrices for
the balancing transformation are given as

V =
[
LP11VrS−1/2

r

0

]
, W =

[
LQ11UrS−1/2

r

Q12(α)�L−�
Q11

UrS−1/2
r

]
. (29)

Proof To obtain the balancing transformation, we need to compute the product
L�
Q1
LP1 . We have that

P1 = LP1L
�
P1

=
[
LP11 0
0 0

] [
L�
P11

0
0 0

]
.
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For the Cholesky factorization of Q1 we introduce the Schur complement S(α) =
1
2α Q̃22(α) − Q12(α)�Q−1

11 Q12(α) = LS(α)L�
S(α), so that we have

Q1 = LQ1L
�
Q1

=
[

LQ11 0
Q12(α)�L−�

Q11
LS(α)

] [
L�
Q11

L−1
Q11

Q12(α)

0 L�
S(α)

]
,

as follows from the results for the block-diagonal form of the Cholesky factorization
(which can be verified by direct computation). To obtain the balancing transforma-
tion, we consider the approximation via singular value decomposition

L�
Q1
LP1 =

[
L�
Q11

L−1
Q11

Q12(α)

0 L�
S(α)

] [
LP11 0
0 0

]
=

[
L�
Q11

LP11 0
0 0

]
≈

[Ur

0

]
Sr [V�

r 0].

We then compute

V =
[
LP11 0
0 0

] [Vr

0

]
S−1/2

r =
[
LP11VrS−1/2

r

0

]
,

W =
[

LQ11 0
Q12(α)�L−�

Q11
LS(α)

] [Ur

0

]
S−1/2

r =
[

LQ11UrS−1/2
r

Q12(α)�L−�
Q11

UrS−1/2
r

]
,

which completes the proof. �

The two propositions show that only Lyapunov equations in the original model
dimensions are necessary (and not in the lifted dimensions), which is computationally
appealing. For example, for the tubular reactor model in Sect. 3.2, the original model
dimensions are 2n and the lifted dimensions are 7n andwe only solve 2n-dimensional
Lyapunov equations.

4.3 Balancing with Truncated (Quadratic) Gramians

The next two propositions consider the solution of the Lyapunov equations (3)–(4) for
the truncated Gramians, which take into consideration the QB nature of the problem
by incorporating H and N.

Proposition 4 Let P1 be the solution from Proposition 2. The truncated Gramian
from equation (3) for the QB system is given as

PT = P1 + 1

2α

[
P̃11(α) P̃12(α)

P̃12(α)� P̃22(α)

]
(30)

via the following equations:
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P̃22(α) = H21(α)(P11 ⊗ P11)H�
21(α) + N21P11N�

21,

P̃12(α) = −(A11 − αI)−1A12P̃22(α),

0 = A11P̃11(α) + P̃11(α)A�
11 + [A12P̃12(α)� + P̃12(α)A�

12].

Proof The generalized controllability Lyapunov equation (3) is a linear equation,
therefore we can decompose the truncated Gramian PT = P1 + P2(α), where P1 is
the solution from Proposition 2. Therefore, P2(α) is the solution to

A(α)P2 + P2A(α)� + H(α)(P1 ⊗ P1)H(α)� + NP1N� = 0.

With the matrices from above, we compute

NP1N� =
[

0 0
N21 N22

] [
P11 0
0 0

] [
0 N�

21
0 N�

22

]
=

[
0 0
0 N21P11N�

21

]
,

H(α)(P1 ⊗ P1)H(α)� =
[
0 0
0 H21(α)(P11 ⊗ P11)H21(α)�

]
.

The symmetric positive semi-definite solution P2(α) needs to satisfy

0 =
[
A11 A12

0 −αI

] [
P̂11 P̂12

P̂�
12 P̂22

]
+

[
P̂11 P̂12

P̂�
12 P̂22

] [
A�

11 0
A�

12 −αI

]

+
[
0 0
0 H21(α)(P11 ⊗ P11)H21(α)�

]
+

[
0 0
0 N21P11N�

21

]
,

which yields the equations

A11P̂11 + P̂11A�
11 + A12P̂�

12 + P̂12A�
12 = 0, (31)

(A11 − αI)P̂12 + A12P̂22 = 0, (32)

P̂�
12(A

�
11 − αI) + P̂22A�

12 = 0, (33)

−2αP̂22 + H21(α)(P11 ⊗ P11)H21(α)� + N21P11N�
21 = 0. (34)

We define P̃22(α) = [H21(α)(P11 ⊗ P11)H21(α)� + N21P11N�
21], so that P̂22(α) =

1
2α P̃22(α). Due to the symmetry of P̂22(α), equations (32) and (33) are the same, and
after substitution, we obtain P̂12(α) = − 1

2α (A11 − αI)−1A12P̃22(α) := 1
2α P̃12(α),

with P̃12(α) := −(A11 − αI)−1A12P̃22(α). Substitution of P̂12(α) into equation (31)
yields the result. �

Proposition 5 Let the matrix Q1 be as in Proposition 2. The truncated Gramian QT
that solves equation (4) is given by

QT = Q1 +
[
Q̂11(α) Q̂12(α)

Q̂12(α)� Q̂22(α)

]
, (35)
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where

0 = A�
11Q̂11(α) + Q̂11(α)A11 + H̃11(α) + 1

2α
N�

21Q̃22(α)N21,

Q̂12(α) = −(A�
11 − αI)−1

(
H̃12(α) + 1

2α
N�

21Q̃22(α)N22 + Q̂11(α)A12

)
,

Q̂22(α) = 1

2α

[
A�

12Q̂12(α) + Q̂�
12(α)A12 + H̃22(α) + 1

2α
N�

22Q̃22(α)N22

]
.

Proof We begin by computing

N�Q1N =
[
0 N�

21
0 N�

22

] [
Q11 Q12(α)

Q�
12(α) 1

2α Q̃22(α)

] [
0 0

N21 N22

]
= 1

2α

[
N�
21Q̃22N21 N�

21Q̃22N22
N�
22Q̃22N21 N�

22Q̃22N22

]
,

and for notational convenience partition the full matrix

H(2)(α)(P1 ⊗ Q1)(H(2)(α))� =:
[
H̃11(α) H̃12(α)

H̃12(α)� H̃22(α)

]
,

which is a symmetric matrix sinceP1 andQ1 are symmetric Gramians.We then solve
for the truncated Gramian via

0 =
[
A�

11 0
A�

12 −αI

] [
Q̂11 Q̂12

Q̂�
12 Q̂22

]
+

[
Q̂11 Q̂12

Q̂�
12 Q̂22

] [
A11 A12

0 −αI

]

+
[
H̃11(α) H̃12(α)

H̃12(α)� H̃22(α)

]
+ 1

2α

[
N�

21Q̃22N21 N�
21Q̃22N22

N�
22Q̃22N21 N�

22Q̃22N22

]
.

Thus, the Gramian solution has to satisfy the equations

0 = A�
11Q̂11 + Q̂11A11 + H̃11(α) + 1

2α
N�

21Q̃22N21,

0 = (A�
11 − αI)Q̂12 + Q̂11A12 + H̃12(α) + 1

2α
N�

21Q̃22N22,

0 = A�
12Q̂12 − 2αQ̂22 + Q̂�

12A12 + H̃22(α) + 1

2α
N�

22Q̃22N22,

from which we get the stated result. �

By decomposing the Lyapunov solution into block form, we can again compute
the truncated Gramians by only working in the original dimensions (not the lifted
dimensions). Due to the dependence on 1/α the Gramians QT ,PT are not defined
for α → 0 and taking the limit α → 0 can therefore result in numerical difficulties.
We summarize our proposed approach below.

Proposition 6 An approximate balancing transformation for the QB structure aris-
ing in lifting of nonlinear systems can be computed as follows:
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1. Choose α ∈ (0,∞) and compute PT ,QT from Propositions 4 and 5 with A(α).
2. Compute Cholesky factors PT = LPT L

�
PT

and QT = LQT L
�
QT

.
3. Compute SVD L�

QT
LPT = USV�; denote rank r approximation as UrSrV�

r .

4. Projection matrices W = LQT UrS−1/2
r and V = LPT VrS−1/2

r .
5. Matrices for QB-ROM (6)–(7) are

Â = W�AV, B̂ = W�B, Ĉ = CV, N̂k = W�NkV, Ĥ = W�H(V ⊗ V).

5 Numerical Results

For the tubular reactor model in Sect. 3.2, the parameters are D = 0.17, Pe = 25,
B = 0.5, β = 2.5, θref ≡ 1, γ = 5, and n = 199. We compare the approximate bal-
anced truncation ROM, denoted QB-BT, from Proposition 6 with a ROM computed
from POD with discrete empirical interpolation [9], denoted as POD-DEIM. For the
predictive comparison, the full-order model and ROMs are simulated until t f = 30s
with different inputs u(t) and initial conditions x(0) = x0 as given below.

The POD-DEIMmodels are obtained as follows:We simulate the full-ordermodel
until ttrain = 15s with training input utrain(t) and training initial condition x0,train. We
record a snapshot every 0.01s and store the snapshots in a matrix X, compute the
POD basis V ∈ R

n×r of dimension r , and project the system matrices in (17)–(18)
onto V. For every r -dimensional POD-DEIM ROM we use r DEIM interpolation
points using the QDEIM algorithm from [10].

For the QB-BT models, we discussed in Sect. 4.1 that the parameter α ∈ (0,∞).
Here, we found that α = 20 resulted in the most accurate balanced ROMs and that
for α  1 the Gramians’ subspaces would lead to unstable ROMs. This could be
related to the influence of the field of values of A(α) on the decay of the singular
values of the solution to the Lyapunov equation [3]. Here, for α > αc = 2.6, the field
of values of A(α) is in the open left-half plane, which we can choose as a selection
criterion for α.

Reduced-order models constructed via POD-DEIM depend on the snapshot data
that is obtained from training simulations. In contrast, balancing transformations
only depend on the matrices defining the full-order QB system A,H,N,B,C; the
basis generation does not require a choice of training data. To illustrate this point,
we consider four test cases with different testing conditions and for which the
POD-DEIM training choices vary. For each test case we compare the output error∑s

i=1 |y(ti ) − yr (ti )| with s = 3, 000 for the POD-DEIM and QB-BT ROMs. We
detail each case below.

Case 1: u(t) = cos(t), utrain(t) = u(t), x0,train = x0. For this test case, training
and testing conditions are the same, so we expect POD-DEIM ROMs to accurately
reproduce the full-order model (FOM) simulations. The output quantity of interest
of the FOM compared to two ROMs with r = 20 basis functions for this test case is
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Fig. 1 Model outputs for test Case 1 (left) and Case 2 (right): Comparison of FOMwith two ROMs
for r = 20 basis functions, respectively

Table 1 Case 1: Output error
∑s

i=1 |y(ti ) − yr (ti )| in ROMs

ROM r = 4 r = 6 r = 8 r = 10 r = 12 r = 14 r = 16 r = 18 r = 20

QB-BT 6.51 ×
E-04

7.00 ×
E-04

6.98 ×
E-04

7.09 ×
E-04

7.06 ×
E-04

6.84 ×
E-04

6.66 ×
E-04

7.05 ×
E-04

6.95 ×
E-04

POD-
DEIM

2.53 ×
E-05

1.17 ×
E-05

7.39 ×
E-06

6.93 ×
E-06

5.61 ×
E-06

5.62 ×
E-06

5.62 ×
E-06

5.63 ×
E-06

5.62 ×
E-06

Table 2 Case 2: Output error
∑s

i=1 |y(ti ) − yr (ti )| in ROMs

ROM r = 4 r = 6 r = 8 r = 10 r = 12 r = 14 r = 16 r = 18 r = 20

QB-BT 6.51 ×
E-04

7.00 ×
E-04

6.98 ×
E-04

7.09 ×
E-04

7.06 ×
E-04

6.84 ×
E-04

6.66 ×
E-04

7.05 ×
E-04

6.95 ×
E-04

POD-
DEIM

1.47 ×
E-03

1.41 ×
E-03

1.40 ×
E-03

1.41 ×
E-03

1.39 ×
E-03

1.40 ×
E-03

1.40 ×
E-03

1.40 ×
E-03

1.40 ×
E-03

shown in Fig. 1, left. Table1 shows the output error for various ROM model sizes.
We see that the POD-DEIM ROM outperforms the QB-BT ROM in this case.

Case 2: u(t) = cos(t), utrain(t) = u(t), x0,train = x0; noise = 10% Here we use
the same training input and training initial conditions as in Case 1. However, we add
noise to the training data, reflecting a situation that practitioners often face where
measurements are noise-corrupted. In particular, we use X̃ = X + 0.1X (−1 + 2
)

where
 = N (0, 1) is a normally distributed random variable. Figure1, right, shows
themodel output for the FOMand both ROMs for r = 20wherewe see that the POD-
DEIM model does not capture the output amplitude well. Table2 shows the output
errors for increasing ROM sizes. We observe that the QB-BT ROM outperforms the
POD-DEIM model in this case, as the POD-DEIM model suffers from a two orders
of magnitude loss in accuracy (compared to Table1) due to noisy snapshots.
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Fig. 2 Model outputs for Case 3 (left) and Case 4 (right): Comparison of FOM with two ROMs
for r = 20 basis functions, respectively

Table 3 Case 3: Output error
∑s

i=1 |y(ti ) − yr (ti )| in ROMs

ROM r = 4 r = 6 r = 8 r = 10 r = 12 r = 14 r = 16 r = 18 r = 20

QB-BT 5.30 ×
E-04

6.02 ×
E-04

5.41 ×
E-04

4.96 ×
E-04

5.03 ×
E-04

7.18 ×
E-04

6.48 ×
E-04

5.63 ×
E-04

5.37 ×
E-04

POD-
DEIM

2.42 ×
E-03

2.22 ×
E-03

2.15 ×
E-03

2.15 ×
E-03

1.96 ×
E-03

9.11 ×
E-04

6.55 ×
E-04

6.16 ×
E-04

2.37 ×
E-04

Case 3: u(t) = 0.5(1 + t2 exp(−t/4) sin(6t)), utrain(t) = 0.5, x0,train = x0 This
case illustrates a scenario where a practitioner trained a model assuming that input
conditions are operating at a constant equilibrium. However during operation of
the plant the inputs indeed vary but the oscillations are damped and revert to the
equilibrium position of 0.5. Figure2, left, shows the model output for the FOM and
both ROMs for r = 20; both ROMs are reproducing the output well. Table3 shows
the output errors for increasing ROMsizes. TheQB-BTROM is againmore accurate,
yet at one model order, r = 20, the POD-DEIM model is more accurate.

Case 4: u(t) = cos(t), utrain(t) = 0.5, x0,train(1 : n) = 0, x0,train(n + 1 : 2n) =
1. Here, the training initial condition is different from the initial condition used for
prediction, i.e., x0,train �= x0. Figure2, right, shows the model output for the FOM
and both ROMs for r = 20; the QB-BT model slightly outperforms the POD-DEIM
model, but both fall short of predicting the full amplitude. Table4 shows the output
errors for increasing ROM sizes, where the QB-BTmodel again seems to outperform
the POD-DEIM model for all basis sizes.
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Table 4 Case 4: Output error
∑s

i=1 |y(ti ) − yr (ti )| in ROMs

ROM r = 4 r = 6 r = 8 r = 10 r = 12 r = 14 r = 16 r = 18 r = 20

QB-BT 3.46 ×
E-04

3.47 ×
E-04

3.77 ×
E-04

3.76 ×
E-04

3.75 ×
E-04

3.71 ×
E-04

3.41 ×
E-04

3.76 ×
E-04

3.66 ×
E-04

POD-
DEIM

8.86 ×
E-04

9.23 ×
E-04

9.26 ×
E-04

9.25 ×
E-04

9.29 ×
E-04

7.05 ×
E-04

4.51 ×
E-04

4.51 ×
E-04

4.38 ×
E-04

6 Conclusions

We presented a balanced truncation model reduction approach that is applicable to
a large class of nonlinear systems with time-varying and uncertain inputs. As a first
step, our approach lifts the nonlinear system to quadratic-bilinear form via the intro-
duction of auxiliary variables. As lifted systems often have systemmatrices with zero
eigenvalues, we first introduced an artificial stabilization parameter and then derived
a balancing algorithm for those lifted quadratic-bilinear systems that only requires
expensive matrix computations in the original—and not in the lifted—dimension.
The method was illustrated by the model reduction problem for a tubular reactor
model, for which we derived the multi-stage lifting transformations and performed
balanced model reduction. The numerical results showed that through our proposed
method, we can obtain ROMs for nonlinear systems that are superior to POD-DEIM
models in situations where a good choice of training data is not feasible.
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