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Abstract In this paper we derive new sufficient conditions for a linear systemmatrix

S(λ) :=
[
T (λ) −U (λ)

V (λ) W (λ)

]
,where T (λ) is assumed regular, to be strongly irreducible.

In particular, we introduce the notion of strong minimality, and the corresponding
conditions are shown to be sufficient for a polynomial system matrix to be strongly
minimal. A strongly irreducible or minimal system matrix has the same structural
elements as the rational matrix R(λ) := W (λ) + V (λ)T (λ)−1U (λ), which is also
known as the transfer function connected to the system matrix S(λ). The pole struc-
ture, zero structure and null space structure of R(λ) can be then computed with
the staircase algorithm and the QZ algorithm applied to pencils derived from S(λ).
We also show how to derive a strongly minimal system matrix from an arbitrary
linear system matrix by applying to it a reduction procedure, that only uses unitary
equivalence transformations. This implies that numerical errors performed during the
reduction procedure remain bounded. Since we use unitary transformations in both
the reduction procedure and the computation of the eigenstructure, this guarantees
that we computed the exact eigenstructure of a perturbed linear system matrix, but
where the perturbation is of the order of the machine precision.
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1 Introduction

Already in the seventies, Rosenbrock [6] introduced the concept of a polynomial
system matrix

S(λ) :=
[
T (λ) −U (λ)

V (λ) W (λ)

]
, (1)

where T (λ) is assumed to be regular. He showed that the finite pole and zero structure
of its transfer function matrix R(λ) = W (λ) + V (λ)T (λ)−1U (λ) can be retrieved
from the polynomial matrices T (λ) and S(λ), respectively, provided it is irreducible
or minimal, meaning that the matrices

[
T (λ) −U (λ)

]
,

[
T (λ)

V (λ)

]
, (2)

have, respectively, full row and column rank for all finite λ. This was already well
known for state-space models of a proper transfer function Rp(λ), where the system
matrix takes the special form

Sp(λ) :=
[

λI − A −B
C D

]

where (A, B) is controllable and (A,C) is observable, meaning that Sp(λ) is min-

imal. That is,
[
λI − A −B

]
and

[
λI − A

C

]
both satisfy the conditions in (2),

respectively. The poles of such a proper transfer function are all finite and are the
eigenvalues of A, while the finite zeros are the finite generalized eigenvalues of the
pencil Sp(λ). The main advantage of using state-space models is that there are algo-
rithms to compute the eigenstructure using unitary transformations only. There are
also algorithms available to derive a minimal state-space model from a non-minimal
one, and these algorithms are also based on unitary transformations only [8].

When allowing generalized state space models, then all transfer functions can be
realized by a system matrix of the type

Sg(λ) :=
[

λE − A −B
C D

]
, (3)

since the matrix E is allowed to be singular. Moreover, when the pencils

[
λE − A −B

]
,

[
λE − A

C

]
, (4)

have, respectively, full row rank and column rank for all finite λ, then we retrieve the
irreducibility or minimality conditions of Rosenbrock in (2), which imply that the
finite poles of R(λ) := D + C(λE − A)−1B are the finite eigenvalues of λE − A
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and the finite zeros of R(λ) are the finite zeros of Sg(λ). It was shown in [10] thatwhen
imposing also the conditions that the pencil in (3) is strongly irreducible, meaning
that the matrices in (4) have full row rank for all finite and infinite λ, then also the
infinite pole and zero structure of R(λ) can be retrieved from the infinite structure of
λE − A and Sg(λ), respectively, and that the left and right minimal indices of R(λ)

and Sg(λ) are also the same. Moreover, a reduction procedure to derive a strongly
irreducible generalized state-space model from a reducible one was also given in [8],
and it is also based on unitary transformations only.

In [11] these results were then extended to arbitrary polynomial models, but the
procedure required irreducibility tests that were more involved. In this paper we will
show that these conditions can again be simplified (and also made more uniform)
when the system matrix is linear, i.e.,

S(λ) :=
[
A(λ) −B(λ)

C(λ) D(λ)

]
:=

[
λA1 − A0 B0 − λB1

λC1 − C0 λD1 − D0

]
. (5)

Wewill define the notion of strongly minimal polynomial systemmatrix, and wewill
prove that the strongminimality conditions imply the strong irreducibility conditions
in [11]. We remark that, although the notions of irreducible or minimal polynomial
system matrix refer to the same conditions in (2), the conditions for a polynomial
system matrix to be strongly irreducible or strongly minimal are different in general.
Wewill also show thatwhen the strongminimality conditions are not satisfied,we can
reduce the system matrix to one where they are satisfied, and this without modifying
the transfer function. Such a procedure was already derived in [9], but only for linear
system matrices that were already minimal at finite points. In this paper we thus
extend this to arbitrary linear system matrices.

In the next Section we briefly recall the background material for this paper and
introduce the basic notation. In Sect. 3 we also recall the definition of strongly irre-
ducible polynomial system matrix in [11], and we introduce the notion of strong
minimality. In addition, we establish the relation between them. We then give, in
Sect. 4, an algorithm to construct a strongly minimal linear system matrix from an
arbitrary one, and we discuss the computational aspects in Sect. 5. Finally, we end
with some numerical experiments in Sect. 6 and some concluding remarks in Sect. 7.

2 Background

We will restrict ourselves here to polynomial and rational matrices with coefficients
in the field of complex numbers C. The set of m × n polynomial matrices, denoted
by C[λ]m×n and the set of m × n rational matrices, denoted by C(λ)m×n , can both
be viewed as matrices over the field of rational functions with complex coefficients,
denoted by C(λ).

Every rational matrix can have poles and zeros and has a right and a left null space
(these can be trivial, i.e., equal to {0}). Via the local Smith-McMillan form, one can
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associate structural indices to the poles and zeros, and via the notion of minimal
polynomial bases for rational vector spaces, one can associate so called right and
left minimal indices to the right and left null spaces. We briefly recall here these
different types of indices. Since we assumed (for simplicity) that the coefficients of
the rational matrix are in C, the poles and zeros are in the same set.

Definition 1 A square rational matrix M(λ) ∈ C(λ)m×m is said to be regular at a
point λ0 ∈ C if the matrix M(λ0) is bounded (i.e., M(λ0) ∈ C

m×m) and is invertible.
This is equivalent to both rational matrices M(λ) and M(λ)−1 having a convergent
Taylor expansion around the point λ = λ0. Namely,

M(λ) := M0 + (λ − λ0)M1 + (λ − λ0)
2M2 + (λ − λ0)

3M3 + · · · ,

M(λ)−1 := M−1
0 + (λ − λ0)H1 + (λ − λ0)

2H2 + (λ − λ0)
3H3 + · · · .

If λ = ∞, M(λ) is said to be biproper or regular at infinity if the Taylor expansions
above are in terms of 1/λ instead of the factor (λ − λ0).

Definition 2 Let R(λ) be an arbitrarym × n rational matrix of normal rank r . Then
its local Smith-McMillan form at a point λ0 ∈ C is the diagonal matrix obtained
under rational left and right transformations M�(λ) and Mr (λ), that are regular at
λ0:

M�(λ)R(λ)Mr (λ) =
[
diag((λ − λ0)

d1 , . . . , (λ − λ0)
dr ) 0

0 0(m−r)×(n−r)

]
, (6)

where d1 ≤ d2 ≤ · · · ≤ dr . If λ0 = ∞, the basic factor (λ − λ0) is replaced by 1
λ
and

the transformation matrices are then biproper. The latter can be viewed as a change
of variable μ = 1

λ
which transform λ0 = ∞ to μ0 = 0.

Remark 1 The normal rank of a rational matrix is the size of its largest nonidenti-
cally zero minor. The indices di are unique and are called the structural indices of
R(λ) at λ0. In particular, the strictly positive indices correspond to a zero at λ0, and
the strictly negative indices correspond to a pole at λ0. The zero degree is defined as
the sum of all structural indices of all zeros (infinity included), and the polar degree
is the sum of all structural indices (in absolute value) of all poles (infinity included).

Example 1 Let us consider the 2 × 2 rational matrix

R(λ) =
[
e5(λ) 0
c/λ e1(λ)

]
(7)

where e5(λ) is a monic polynomial of degree 5 and e1(λ) is a monic polynomial of
degree 1, with e5(0) �= 0 and e1(0) �= 0. If c �= 0, the only poles are 0 and infinity,
and the corresponding local Smith-McMillan forms for these two points are

λ0 = 0 : diag(λ−1, λ1), λ0 = ∞ (μ0 = 0) : diag(μ−5, μ−1),
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indicating that λ0 = 0 is a zero as well as a pole. The other finite zeros are the six
finite roots of e5(λ) and e1(λ). The polar degree and the zero degree for this example
are thus both equal to 7. When c = 0, the pole and zero at λ = 0 disappear and the
matrix is polynomial instead of rational. The polar and zero degree are then both
equal to 6.

The above definitions of pole and zero structure of a rational matrix R(λ) are those
that are commonly used in linear systems theory (see [6]) and are due to McMillan.
They describe the spectral properties of a rational matrix. But when applying them to
matrix pencils S(λ) we may wonder if they coincide with definitions of eigenvalues
and generalized eigenvalues and their multiplicities, i.e. the Kronecker structure of
S(λ) (see [3]).

Definition 3 The Kronecker canonical form of an arbitrary m × n pencil λB − A
of normal rank r is a block diagonal form obtained via invertible transformations S
and T :

S(λB − A)T = diag(LTη1 (λ), . . . , LTηm−r
(λ), λIr f − AJ , λN − Ir∞ , Lε1(λ), . . . , Lεn−r (λ))

where AJ is in Jordan form, N is nilpotent and in Jordan form, and

Lk(λ) :=
⎡
⎢⎣

λ 1
. . .

. . .

λ 1

⎤
⎥⎦

is a k × (k + 1) singular pencil. The finite eigenvalues of (λB − A) are the r f

eigenvalues of AJ and its r∞ infinite eigenvalues are the generalized eigenvalues
of λN − Ir∞ .

For this comparison, we only need to look at zeros, since a pencil has only one
pole (namely, infinity) and its multiplicity is the rank of the coefficient of λ. In other
words, its polar structure is trivial. But what about the correspondence of the zero
structure of S(λ) (in the McMillan sense) and the eigenvalue structure of S(λ) (in
the sense of Kronecker)? It turns out that for finite eigenvalues of S(λ) there is a
complete isomorphism with the zero structure of S(λ): every Jordan block of size
k at an eigenvalue λ0 in the Kronecker canonical form of S(λ) corresponds to an
elementary divisor (λ − λ0)

k in the Smith-McMillan form of S(λ). But for λ = ∞,
there is a difference. It is well known (see [10]) that a Kronecker block of size k at
λ = ∞ corresponds to an elementary divisor ( 1

λ
)(k−1) in the Smith-McMillan form.

For the point at infinity there is thus a shift of 1 in the structural indices. For this
reason we want to make a clear distinction between both index sets. Whenever we
talk about zeros, we refer to the McMillan structure, and whenever we talk about
eigenvalues, we refer to the Kronecker structure.

It is well known that every rational vector subspaceV, i.e., every subspaceV ⊆
C(λ)n over thefieldC(λ), has bases consisting entirely of polynomial vectors.Among
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them some are minimal in the following sense introduced by Forney [2]: a minimal
basis ofV is a basis ofV consisting of polynomial vectors whose sum of degrees is
minimal among all bases of V consisting of polynomial vectors. The fundamental
property [2, 5] of such bases is that the ordered list of degrees of the polynomial
vectors in any minimal basis of V is always the same. Therefore, these degrees are
an intrinsic property of the subspace V and are called the minimal indices of V.
This leads to the definition of the minimal bases and indices of a rational matrix. An
m × n rational matrix R(λ) of normal rank r smaller than m and/or n has non-trivial
left and/or right rational null-spaces, respectively, over the field C(λ):

N�(R):={
y(λ)T ∈ C(λ)1×m : y(λ)T R(λ) ≡ 0T

}
,

Nr (R):={
x(λ) ∈ C(λ)n×1 : R(λ)x(λ) ≡ 0

}
.

Rational matrices with non-trivial left and/or right null-spaces are said to be singular.
If the rational subspace N�(R) is non-trivial, it has minimal bases and minimal
indices, which are called the left minimal bases and indices of R(λ). Analogously, the
right minimal bases and indices of R(λ) are those ofNr (R), whenever this subspace
is non-trivial. Notice that an m × n rational matrix of normal rank r has m − r left
minimal indices {η1, . . . , ηm−r }, and n − r right minimal indices {ε1, . . . , εn−r }.

TheMcMillan degree δ(R) of a rationalmatrix R(λ) is the polar degree introduced
in Remark 1. The following degree sum theorem was proven in [10], and relates the
McMillan degree to the other structural elements of R(λ): to the zero degree δz(R),
to the left nullspace degree δ�(R), that is the sum of all left minimal indices, and to
the right nullspace degree δr (R), that is the sum of all right minimal indices.

Theorem 1 Let R(λ) ∈ C(λ)m×n. Then

δ(R) := δp(R) = δz(R) + δ�(R) + δr (R).

3 Strong Irreducibility and Minimality

In this section we recall the strong irreducibility conditions in [11] for polynomial
system matrices, and we introduce the notion of strong minimality. Then, we study
the relation between them for the case of linear system matrices.

Definition 4 A polynomial system matrix S(λ) as in (1) is said to be strongly con-
trollable and strongly observable, respectively, if the polynomial matrices

[
T (λ) −U (λ) 0
V (λ) W (λ) −I

]
, and

⎡
⎣ T (λ) −U (λ)

V (λ) W (λ)

0 I

⎤
⎦ , (8)

have no finite or infinite zeros. If both conditions are satisfied, S(λ) is said to be
strongly irreducible.
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Let us now consider the transfer function matrix R(λ) = W (λ) +
V (λ)T (λ)−1U (λ) of the polynomial system matrix in (1). In such a case, we also
say that the system quadruple {T (λ),U (λ), V (λ),W (λ)} realizes R(λ). Moreover,
we say that the system quadruple is strongly irreducible if the polynomial system
matrix is strongly irreducible. It was shown in [11] that the pole/zero and null space
structure of R(λ) can be retrieved from a strongly irreducible system quadruple
{T (λ),U (λ), V (λ),W (λ)} as follows.
Theorem 2 If the polynomial system matrix S(λ) in (1) is strongly irreducible, then

1. the zero structure of R(λ) at finite and infinite λ is the same as the zero structure
of S(λ) at finite and infinite λ,

2. the pole structure of R(λ) at finite λ is the same as the zero structure at λ of T (λ),
3. the pole structure of R(λ) at infinity is the same as the zero structure at infinity of

⎡
⎣ T (λ) −U (λ) 0
V (λ) W (λ) −I
0 I 0

⎤
⎦ ,

4. the left and right minimal indices of R(λ) and S(λ) are the same.

If one specializes this to the generalized state spacemodel (3) one retrieves the results
of [10], which are simpler and only involve the pencils (λE − A), (3) and (4). We
now show that the above conditions can be simplified when the system matrices
are linear as in (5). First, we present the definition of strongly minimal polynomial
system matrix.

Definition 5 Let d be the degree of the polynomial system matrix S(λ) in (1). S(λ)

is said to be strongly E-controllable and strongly E-observable, respectively, if the
polynomial matrices

[
T (λ) −U (λ)

]
, and

[
T (λ)

V (λ)

]
, (9)

have no finite or infinite1 eigenvalues, considered as polynomial matrices of grade
d. If both conditions are satisfied, S(λ) is said to be strongly minimal.

The letter E in the definition of strong E-controllability and E-observability refers
to the condition of the matrices in (9) not having eigenvalues, finite or infinite. We
prove in Proposition 1 that the strong irreducibility conditions hold if the strong
minimality conditions are satisfied. For this, we need to recall Lemma 1 of [10],
which we give here in its transposed form. Then, we prove Theorems 3 and 4, and
Proposition 1 as a corollary of them.

1 The eigenvalues at infinity of a polynomial matrix P(λ) considered as a polynomial matrix of
grade g, with g ≥ degree P(λ), are the eigenvalues at zero of revg P(λ) := λg P(1/λ) (see [4]).
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Lemma 1 The zero structure at infinity of the pencil
[
λK1 − K0 −L0

]
where

K1 has full column rank, is isomorphic to the zero structure at zero of the pencil[
K1 − μK0 −L0

]
. Moreover, if the pencil has full row normal rank, then it has no

zeros at infinity, provided the constant matrix
[
K1 −L0

]
has full row rank.

Proof The first part is proven in [10]. The second part is a direct consequence of the
first part, when filling in μ = 0. �

Theorem 3 The pencil

[
λA1 − A0 B0 − λB1 0
λC1 − C0 λD1 − D0 −I

]
, (10)

where λA1 − A0 is regular, has no zeros at infinity if the pencil

[
λA1 − A0 B0 − λB1

]
(11)

has no eigenvalues at infinity.

Proof Clearly the pencils in (10) and (11) have full row normal rank since λA1 − A0

is regular. We can thus apply the result of Lemma 1 as follows. If we use an invertible
matrix V to “compress” the columns of the coefficient of λ in the following pencil

[
λA1 − A0 B0 − λB1 0
λC1 − C0 λD1 − D0 −I

] [
V 0
0 I

]
=

[
λK1 − K0 −L0 0
λK̂1 − K̂0 −L̂0 −I

]
,

such that the matrix

[
K1

K̂1

]
has full column rank, then this pencil has no zeros at

infinity provided the constant matrix

[
K1 −L0 0
K̂1 −L̂0 −I

]
has full row rank. But if[

λA1 − A0 B0 − λB1
]
has no infinite eigenvalues, it follows that

[
A1 −B1

]
has

full row rank. And since
[
A1 −B1

]
V = [

K1 0
]
, K1 must have full row rank as

well (in fact, it is invertible). It then follows from Lemma 1 that the pencil in (10)
has no zeros at infinity. �

In the next theorem, we state without proof the transposed version of Theorem 3.

Theorem 4 The pencil
⎡
⎣λA1 − A0 B0 − λB1

λC1 − C0 λD1 − D0

0 I

⎤
⎦ ,
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where λA1 − A0 is regular, has no zeros at infinity if the pencil

[
λA1 − A0

λC1 − C0

]
(12)

has no eigenvalues at infinity.

Let us now consider a linear system matrix

L(λ) := λL1 − L0 :=
[

λA1 − A0 B0 − λB1

λC1 − C0 λD1 − D0

]
, (13)

with λA1 − A0 regular. Notice that if L(λ) is minimal (i.e., satisfies (2)) and, in
addition, satisfies the conditions in (11) and (12), then it is strongly minimal. By
Theorems 3 and 4, we have that these conditions imply strong irreducibility on
linear system matrices. We state such result in Proposition 1.

Proposition 1 A linear systemmatrix as in (13) is strongly irreducible if it is strongly
minimal.

Remark 2 Notice that conditions (11) and (12) are only sufficient, not necessary.
But they are easy to test, and also to obtain after a reduction procedure, as we show
in Sect. 4.

Theorems 3 and 4 and Proposition 1 can be extended to polynomial systemmatri-
ces. However, we do not state these results here since, in this paper, we are focusing
on linear system matrices. If we recapitulate the results of this section, we obtain the
following theorem.

Theorem 5 A linear system pencil L(λ) as in (13), realizing the transfer func-
tion R(λ) := (λD1 − D0) + (λC1 − C0)(λA1 − A0)

−1(λB1 − B0), is strongly irre-
ducible if it is strongly minimal. Moreover, if L(λ) is strongly irreducible then

1. the zero structure of R(λ) at finite and infinite λ is the same as the zero structure
of L(λ) at finite and infinite λ,

2. the left and right minimal indices of R(λ) and L(λ) are the same,
3. the finite polar structure of R(λ) is the same as the finite zero structure of λA1 −

A0, and
4. the infinite polar structure of R(λ) is the same as the infinite zero structure of the

pencil ⎡
⎣λA1 − A0 −λB1 0

λC1 λD1 −I
0 I 0

⎤
⎦ . (14)

Remark 3 It follows from this theorem and the degree sum theorem in Theorem 1
that the rank of L1 equals the McMillan degree of R(λ), and that there can be no
linear system matrix for R(λ) with a smaller rank of L1 that satisfies Theorem 5.
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It may look strange that there is such a difference in the treatment of finite and
infinite poles of R(λ) in Theorem 5, but it should be pointed out that the matrices
(B1,C1, D1) contribute to the infinite polar structure of R(λ), and not to the finite
polar structure. Notice that in (14) we have eliminated the matrices B0,C0 and D0

with strict equivalence transformations using the identity matrices as pivots.

4 Reducing to a Strongly Minimal Linear System Matrix

In this section we give an algorithm to reduce an arbitrary linear system matrix to a
strongly minimal one. Given a linear system quadruple {A(λ), B(λ),C(λ), D(λ)},
where A(λ) ∈ C(λ)d×d , B(λ) ∈ C(λ)d×n , C(λ) ∈ C(λ)m×d , D(λ) ∈ C(λ)m×n and
A(λ) is assumed to be regular, we describe first how to obtain a strongly E-
controllable quadruple {Ac(λ), Bc(λ),Cc(λ), Dc(λ)} of smaller state dimension
(d − r). For that, our reduction procedure deflates finite and infinite “uncontrollable
eigenvalues” by proceeding in three different steps. Then the reduction to a strongly
E-observable one is dual and can be obtained by mere transposition of the system
matrix and application of the first method for obtaining a strongly E-controllable
system.

Step 1: We first show that there exist unitary transformations U and V that yield
a decomposition of the type

[
U 0
0 Im

] [
A(λ) −B(λ)

C(λ) D(λ)

] [
V 0
0 In

]
=

⎡
⎣ X (λ)Ŵ11 0 X (λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

⎤
⎦ , (15)

where Ŵ11 ∈ C
r×r and W13 ∈ C

r×n are constant, and Ŵ11 is invertible. This will
allow us in step 2 to deflate the block X (λ) and construct a lower order model that is
strongly E-controllable. In order to prove this, we start from the generalized Schur
decomposition for singular pencils (see [7])

U
[
A(λ) −B(λ)

]
W ∗ =

[
X (λ) 0 0
Y (λ) Â(λ) −B̂(λ)

]
, (16)

where X (λ) ∈ C[λ]r×r is the regular part of
[
A(λ) −B(λ)

]
, Â(λ) ∈ C[λ](d−r)×(d−r),

and
[
Â(λ) −B̂(λ)

]
has no finite or infinite eigenvalues anymore. The decomposition

in (16) can be obtained by using unitary transformationsU andW. If we partitionU

as

[
U1

U2

]
, with U1 ∈ C

r×d , then

U1
[
A(λ) −B(λ)

] = [
X (λ)W11 X (λ)W12 X (λ)W13

]
,
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where W11 ∈ C
r×r , W12 ∈ C

r×(d−r) and W13 ∈ C
r×n are the corresponding subma-

trices of W . Since A(λ) is regular, X (λ)
[
W11 W12

]
must be full normal rank, and

hence
[
W11 W12

]
must be full row rank as well. Therefore, there must exist a unitary

matrix V such that
[
W11 W12

]
V = [

Ŵ11 0
]
, where Ŵ11 is invertible. Hence, we

have

[
U 0
0 Im

] [
A(λ) −B(λ)

C(λ) D(λ)

] [
V 0
0 In

]
=

⎡
⎣ X (λ)Ŵ11 0 X (λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

⎤
⎦ ,

where

W

[
V 0
0 In

]
=

⎡
⎣ Ŵ11 0 W13

Ŵ21 Ŵ22 W23

Ŵ31 Ŵ32 W33

⎤
⎦ .

Step 2: We now define E := −Ŵ−1
11 W13 and perform the following non-unitary

transformation on the pencil:

⎡
⎣ X (λ)Ŵ11 0 X (λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

⎤
⎦

⎡
⎣ Ir 0 E

0 Id−r 0
0 0 In

⎤
⎦=

⎡
⎣ X (λ)Ŵ11 0 0

Ỹ (λ) Ã(λ) Ỹ (λ)E − B̃(λ)

Z̃(λ) C̃(λ) Z̃(λ)E + D(λ)

⎤
⎦ .

We have obtained an equivalent system representation in which the (1, 1)-block,
X (λ)Ŵ11, can be deflated since it does not contribute to the transfer function. We
then obtain a smaller linear system pencil:

[
Ã(λ) Ỹ (λ)E − B̃(λ)

C̃(λ) Z̃(λ)E + D(λ)

]
,

that has the same transfer function. One can also perform this elimination by another
unitary transformation W̃ constructed to eliminate W13:

[
Ŵ11 0 W13

]
⎡
⎣ W̃11 0 W̃13

0 Id−r 0
W̃31 0 W̃33

⎤
⎦ = [

Ir 0 0
]
, (17)

implying W̃11 = Ŵ ∗
11 , W̃31 = W ∗

13, and W̃13 = −Ŵ−1
11 W13W̃33. This then yields

⎡
⎣ X (λ)Ŵ11 0 X (λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

⎤
⎦

⎡
⎣ W̃11 0 W̃13

0 Id−r 0
W̃31 0 W̃33

⎤
⎦

=
⎡
⎣ X (λ) 0 0
Ỹ (λ)W̃11 − B̃(λ)W̃31 Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

Z̃(λ)W̃11 + D(λ)W̃31 C̃(λ) Z̃(λ)W̃13 + D(λ)W̃33

⎤
⎦ .
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Notice that the new transfer function has now changed, but only by postmultiplication
by the constant matrix W̃33, which moreover is invertible. This follows from

[
E
In

]
W̃33 =

[
W̃13

W̃33

]
,

expressing that both matrices span the null-space of the same matrix
[
Ŵ11 W13

]
and where the right hand side matrix has full rank since it has orthonormal columns.
This also implies that

[
Ã(λ) Ỹ (λ)E − B̃(λ)

C̃(λ) Z̃(λ)E + D(λ)

] [
Id−r 0
0 W̃33

]
=

[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

C̃(λ) Z̃(λ)W̃13 + D(λ)W̃33

]
,

which shows that their Schur complements are related by the constant matrix W̃33.

Step 3: Finally, we show that the submatrix

[
Ã(λ) Ỹ (λ)E − B̃(λ)

] [
Id−r 0
0 W̃33

]
= [

Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33
]
,

has no finite or infinite eigenvalues anymore. For this, we first point out that the
following product of unitary matrices has the form given below

W

[
V 0
0 In

] ⎡
⎣ W̃11 0 W̃13

0 Id−r 0
W̃31 0 W̃33

⎤
⎦ =:

⎡
⎣ Ir 0 0

0 Ṽ22 Ṽ23

0 Ṽ32 Ṽ33

⎤
⎦ =:

[
Ir 0
0 Ṽ

]

because the identity (17) implies that the first block column equals
[
Ir 0 0

]
. This

then implies the equality

[
X (λ) 0 0

Ỹ (λ)W̃11 − B̃(λ)W̃31 Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

]

=
[
X (λ) 0 0
Y (λ) Â(λ) −B̂(λ)

] [
Ir 0
0 Ṽ

]
,

which in turn implies that
[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

]
has no finite or infinite

eigenvalues. We thus have shown that the system matrix

Sc(λ) :=
[
Ac(λ) −Bc(λ)

Cc(λ) Dc(λ)

]
:=

[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

C̃(λ) Z̃(λ)W̃13 + D(λ)W̃33

]

is now strongly E-controllable and that its transfer function Rc(λ) equals R(λ)W̃33,

where R(λ) is the transfer function of the original quadruple and W̃33 is invertible.



Linear System Matrices of Rational Transfer Functions 107

We summarize the result obtained by the three-step procedure above in Theorem 6,
wherewe denote d − r by dc, to indicate that it is the size of Ac(λ) in the new strongly
E-controllable system, and r is replaced by dc, so that d = dc + dc.

Theorem 6 Let {A(λ), B(λ),C(λ), D(λ)} be a linear system quadruple, with
A(λ) ∈ C[λ]d×d regular, realizing the rational matrix R(λ) := C(λ)A(λ)−1B(λ) +
D(λ) ∈ C(λ)m×n. Then there exist unitary transformations U, V ∈ C

d×d and W̃ ∈
C

(d+n)×(d+n) such that the following identity holds

[
U 0
0 Im

][
A(λ) −B(λ)

C(λ) D(λ)

][
V 0
0 In

]
W̃ =

⎡
⎣ Xc(λ) 0 0
Yc(λ) Ac(λ) −Bc(λ)

Zc(λ) Cc(λ) Dc(λ)

⎤
⎦ ,

where W̃ is of the form W̃ :=
⎡
⎣ W̃11 0 W̃13

0 Idc 0
W̃31 0 W̃33

⎤
⎦ ∈ C

(dc+dc+n)×(dc+dc+n), dc is the

numberof (finite and infinite) eigenvalues of
[
A(λ) −B(λ)

]
,and Xc(λ) ∈ C[λ]dc×dc

is a regular pencil. Moreover,

(a) the eigenvalues of
[
A(λ) −B(λ)

]
are the eigenvalues of Xc(λ),

(b)
[
Ac(λ) −Bc(λ)

] ∈ C[λ]dc×(dc+n) has no (finite or infinite) eigenvalues,
(c) the quadruple {Ac(λ), Bc(λ),Cc(λ), Dc(λ)} is a realization of the transfer func-

tion Rc(λ) := R(λ)W̃33, with W̃33 ∈ C
n×n invertible, and

(d) if

[
A(λ)

C(λ)

]
has no finite or infinite eigenvalues, then

[
Ac(λ)

Cc(λ)

]
also has no finite

or infinite eigenvalues.

Remark 4 Notice that conditions (b) and (d) in Theorem 6 imply that the system
quadruple {Ac(λ), Bc(λ),Cc(λ), Dc(λ)} is strongly minimal.

Proof The decomposition and the three properties (a), (b) and (c) were shown in
the discussion above. The only part that remains to be proven is property (d). This
follows from the identity (15), which yields

[
U 0
0 Im

] [
A(λ)

C(λ)

]
V =

⎡
⎣ X (λ)Ŵ11 0

Ỹ (λ) Ac(λ)

Z̃(λ) Cc(λ)

⎤
⎦ .

This clearly implies that if

[
A(λ)

C(λ)

]
has full rank for all λ (including infinity), then

so does

[
Ac(λ)

Cc(λ)

]
. �

We state below a dual theorem that constructs, from an arbitrary linear system
quadruple {A(λ), B(λ),C(λ), D(λ)}, a subsystem {Ao(λ), Bo(λ),Co(λ), Do(λ)}
where

[
Ao(λ)

Co(λ)

]
has no finite or infinite eigenvalues. Its proof is obtained by applying
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the previous theorem on the transposed system {AT (λ),CT (λ), BT (λ), DT (λ)} and
then transposing back the result.

Theorem 7 Let {A(λ), B(λ),C(λ), D(λ)} be a linear system quadruple, with
A(λ) ∈ C[λ]d×d regular, realizing the rational matrix R(λ) := C(λ)A(λ)−1B(λ) +
D(λ) ∈ C(λ)m×n. Then there exist unitary transformations U, V ∈ C

d×d and W̃ ∈
C

(d+m)×(d+m) such that the following identity holds

W̃

[
U 0
0 Im

][
A(λ) −B(λ)

C(λ) D(λ)

][
V 0
0 In

]
=

⎡
⎣ Xo(λ) Yo(λ) Zo(λ)

0 Ao(λ) −Bo(λ)

0 Co(λ) Do(λ)

⎤
⎦ ,

where W̃ is of the form W̃ :=
⎡
⎣ W̃11 0 W̃13

0 Ido 0
W̃31 0 W̃33

⎤
⎦ ∈ C

(do+do+m)×(do+do+m), do is the

number of (finite and infinite) eigenvalues of

[
A(λ)

C(λ)

]
, and Xo(λ) ∈ C[λ]do×do is a

regular pencil. Moreover,

(a) the eigenvalues of

[
A(λ)

C(λ)

]
are the eigenvalues of Xo(λ),

(b)

[
Ao(λ)

Co(λ)

]
∈ C[λ](do+m)×do has no (finite or infinite) eigenvalues,

(c) the quadruple {Ao(λ), Bo(λ),Co(λ), Do(λ)} is a realization of the transfer func-
tion Ro(λ) := W̃33R(λ), with W̃33 ∈ C

m×m invertible, and
(d) if

[
A(λ) −B(λ)

]
has no finite or infinite eigenvalues then

[
Ao(λ) −Bo(λ)

]
also has no finite or infinite eigenvalues.

In order to extract from the system quadruple {A(λ), B(λ),C(λ), D(λ)} a sub-
system {Aco(λ), Bco(λ),Cco(λ), Dco(λ)} that is both strongly E-controllable and E-
observable (and hence also strongly minimal), we only need to apply the above two
theorems one after the other. The resulting subsystem would then be a realization
of the transfer function Rco = Cco(λ)Aco(λ)−1Bco(λ) + Dco(λ) = W�R(λ)Wr ∈
C(λ)m×n . Since the transfer function was changed only by left and right transforma-
tions that are constant and invertible, the left and right nullspace will be transformed
by these invertible transformations, but their minimal indices will be unchanged.

5 Computational Aspects

In this section we give a more “algorithmic” description of the procedure described
in Sect. 4 to reduce a given system quadruple {A(λ), B(λ),C(λ), D(λ)} to a strongly
E-controllable quadruple {Ac(λ), Bc(λ),Cc(λ), Dc(λ)} of smaller size. We describe
the essence of the three steps that were discussed in that section.
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Step 1 : Compute the staircase reduction of the submatrix
[
A(λ) −B(λ)

]

U
[
A(λ) −B(λ)

]
W ∗ =

[
X (λ) 0 0
Y (λ) Â(λ) −B̂(λ)

]
.

Step 2 : Compute the unitary matrices V and W̃ to compress the first block row ofW

[
W11 W12 W13

] [
V 0
0 In

] ⎡
⎣ W̃11 0 W̃13

0 Id−r 0
W̃31 0 W̃33

⎤
⎦ = [

Ir 0 0
]
,

where V does the compression
[
W11 W12

]
V = [

W̃ ∗
11 0

]
of the first two blocks and

W̃ does the further reduction of the first block row to
[
Ir 0 0

]
.

Step 3 : Display the uncontrollable part X (λ) using the transformationsU , V and W̃

[
U 0
0 Im

] [
A(λ) −B(λ)

C(λ) D(λ)

] [
V 0
0 In

]
W̃ =

⎡
⎣ Xc(λ) 0 0

× Ac(λ) −Bc(λ)

× Cc(λ) Dc(λ)

⎤
⎦ ,

where we have used the notations introduced in Sect. 4, and the resulting × entries
are of no interest because they do not contribute to the transfer function Rc(λ) :=
Cc(λ)Ac(λ)−1Bc(λ) + Dc(λ).

The computational complexity of these three steps is cubic in the dimensions of
the matrices that are involved, provided that the staircase algorithm is implemented
in an efficient manner [1]. But it is also important to point out that the reduction
procedure to extract a strongly minimal linear system matrix from an arbitrary one,
can be done with unitary transformations only, and that only one staircase reduction
is needed when one knows that the pencil

[
A(λ) −B(λ)

]
has normal rank equal

to its number of rows. Indeed, this pencil then does not have any left null space or
left minimal indices and only the regular part has to be separated from the right null
space structure. This can be obtained by performing one staircase reduction on the
rotated pencil

[
Ã(μ) −B̃(μ)

]
, where the coefficient matrices

[
Ã0

Ã1

]
=

[
cI s I

−s I cI

] [
A0

A1

]
,

[
B̃0

B̃1

]
=

[
cI s I

−s I cI

] [
B0

B1

]
, c2 + s2 = 1

correspond to a change of variable λ = (cμ − s)/(sμ + c). If one now chooses the
rotation such that the rotated pencil has no eigenvalues atμ = ∞, then only the finite
spectrum has to be separated from the right minimal indices, which can be done with
one staircase reduction [7].



110 F. Dopico et al.

6 Numerical Results

We illustrate the results of this paper with a polynomial example and a rational one.

Example 2 We consider the 2 × 2 polynomial matrix P(λ) = diag(e1(λ), e5(λ)),
where e5(λ) is a polynomial of degree 5 with coefficients [9.6367e −
01, −5.4026e − 07, 2.6333e − 01, −1.1101e − 04, −2.9955e −
04, 4.4650e − 02], ordered by descending powers of λ, and e1(λ) is a poly-
nomial of degree 1 with coefficients [−2.1886e − 03, −1.0000e + 00], that were
randomly chosen. Expanding this fifth order polynomial matrix as

P(λ) = P0 + P1λ + · · · + P5λ
5,

a linear system matrix SP(λ) of P(λ) is given by the following 10 × 10 pencil:

SP(λ) =

⎡
⎢⎢⎢⎢⎣

I2 −λI2 P1
I2 −λI2 P2

I2 −λI2 P3
I2 P4 + λP5

−λI2 P0

⎤
⎥⎥⎥⎥⎦ .

The six finite Smith zeros of P(λ) are clearly those of the scalar polynomials e1(λ)

and e5(λ). These are also the finite zeros of SP(λ), since SP(λ) is minimal. However,
SP(λ) is not strongly minimal if P5 is singular and, in fact, it has 4 eigenvalues at
infinity (in the sense of [4]).But in theMcMillan sense, P(λ)hasno infinite zeros. The
deflation procedure that we derived in this paper precisely gets rid of the extraneous
infinite eigenvalues of SP(λ). The numerical tests show that the sensitivity of the
true McMillan zeros also can benefit from this.

In this example we compare the roots computed by four different methods:

1. computing the roots of the scalar polynomials and appending four ∞ roots,
2. computing the generalized eigenvalues of SP(λ),
3. computing the roots of QSP(λ)Z for random orthogonal matrices Q and Z ,
4. computing the roots of the minimal pencil obtained by our method.

The first column are the so-called “correct” eigenvalues λi , corresponding to the
first method, the next three columns are the corresponding errors δ

(k)
i := |λi − λ̂

(k)
i |,

k = 2, 3, 4, of the above threemethods.2 The extraneous eigenvalues that are deflated
in our approach are put between brackets (Table 1).

We notice that for the largest finite eigenvalue of the order of 102 the QZ algorithm
applied to SP(λ) gets 14 digits of relative accuracy but, when deflating the four
uncontrollable eigenvalues at ∞, our method recovers a relative accuracy of 16
digits.

2 An error δ(k)
i is NaNwhen it is the indeterminate form Inf − Inf. However, some of the eigenvalues

at ∞ are computed as a large but finite number and, then, the corresponding error is Inf.
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Table 1 The correct generalized λi and the corresponding accuracies δki for the three different
calculations

λi δ
(2)
i δ

(3)
i δ

(4)
i

−4.5811e-01 2.7756e-16 4.4409e-16 1.1102e-16

3.5076e-01 + 3.5785e-01i 9.5020e-16 1.1102e-16 4.0030e-16

3.5076e-01 − 3.5785e-01i 9.5020e-16 1.1102e-16 4.0030e-16

−1.2170e-01 + 6.2287e − 01i 6.7589e-16 7.8945e-16 2.2248e-16

−1.2170e-01 − 6.2287e-01i 6.7589e-16 7.8945e-16 2.2248e-16

−4.5691e+02 2.9559e-12 2.7285e-12 5.6843e-14

Inf NaN NaN (Inf)

Inf NaN NaN (Inf)

Inf NaN NaN (Inf)

Inf NaN NaN (Inf)

Example 3 The second example is the rational matrix R(λ) in (7) with c = 1.

R(λ) =
[
e5(λ) 0
1/λ e1(λ)

]
= P0 + P1λ + · · · + P5λ

5 +
[

0 0
1/λ 0

]
,

by using the notation of the example above. In this case, e5(λ) has the
row vector [4.7865e − 02, 1.4279e − 04, 2.4361e − 03, −1.5336e −
02, −9.9155e − 01, 1.1948e − 01] as coefficients, and e1(λ) has the row
vector [6.5250e − 03, 9.9997e − 01]. We consider the 12 × 12 linear system
matrix

SR(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

λI2 − A −B
I2 −λI2 P1

I2 −λI2 P2
I2 −λI2 P3

I2 P4 + λP5
C −λI2 P0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

A =
[
0 0
1 0

]
, B =

[
0 0
1 0

]
C =

[
0 0
0 1

]

is a non-minimal realization of the strictly proper rational function 1/λ. In fact,
the matrix A in the realization triple (A, B,C) has two eigenvalues at λ = 0, of
which one is uncontrollable since 1/λ only has a pole at 0 of order 1. This is an
artificial example since we could have realized the strictly proper part by using
a minimal triple (A, B,C) by removing the uncontrollable eigenvalue, but this is
precisely what our reduction procedure does simultaneously for finite and infinite
uncontrollable eigenvalues. The quantities given in the following table are defined
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Table 2 The correct generalized λi and the corresponding accuracies δki for the three different
calculations

λi δ
(2)
i δ

(3)
i δ

(4)
i

0 0 8.1752e-09 (4.5874e-16)

0 3.6752e-18 8.1752e-09 5.3729e-16

1.2028e-01 1.8041e-16 9.7145e-17 9.7145e-17

2.1135e+00 1.7764e-15 2.6645e-15 1.3323e-15

−2.1404e+00 1.7764e-15 2.2204e-15 8.8818e-16

−4.8180e-02 + 2.1412e+00i 2.3216e-15 1.7990e-15 4.0614e-15

−4.8180e-02 − 2.1412e+00i 2.3216e-15 1.7990e-15 4.0614e-15

−1.5325e+02 2.5580e-13 1.5321e-07 5.6843e-14

Inf NaN Inf (Inf)

Inf NaN Inf (Inf)

Inf NaN NaN (NaN)

Inf NaN NaN (NaN)

as in the previous example, except that we added two roots at 0 corresponding to the
“exact” eigenvalues (Table 2).

In this example the QZ algorithm applied to SR(λ) recovers well all generalized
eigenvalues. When applying the QZ algorithm to an orthogonally equivalent pencil
QSR(λ)Z , the Jordan block at 0 gets perturbed to two roots of the order of the
square root of the machine precision, which can be expected. But when deflating the
uncontrollable eigenvalue at 0, this Jordan block is reduced to a single eigenvalue
and part of the accuracy gets restored.

These two examples show that deflating uncontrollable eigenvalues may improve
the sensitivity of the remaining eigenvalues which may improve the accuracy of their
computation.

7 Conclusion

In this paper we looked at quadruple realizations {A(λ), B(λ),C(λ), D(λ)} for a
given rational transfer function R(λ) = C(λ)A(λ)−1B(λ) + D(λ), where the matri-
ces A(λ), B(λ),C(λ) and D(λ) are pencils, and where A(λ) is assumed to be reg-
ular. We showed that under certain minimality assumptions on this quadruple, the
poles, zeros and left and right null space structure of the rational matrix R(λ) can
be recovered from the generalized eigenstructure of two block pencils constructed
from the quadruple. We also showed how to obtain such a minimal quadruple from
a non-minimal one, by applying a reduction procedure that is based on the staircase
algorithm. These results extend those previously obtained for generalized state space
systems and polynomial matrices.
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