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Abstract We show that if enough “sufficiently informative” input-output trajecto-
ries generated by a linear, time-varying, finite-dimensional system and its dual are
given, then state trajectories corresponding to them can be computed by factorizing
a time-varying matrix directly constructed from the data. From such input-state-
output trajectories an “unfalsified” linear time-varying model can be obtained solv-
ing a system of functional equations. Our approach is particularly relevant when the
data-producing system is self-dual (e.g. if it is conservative).
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1 Introduction

It is a pleasure for me to contribute to Prof. Antoulas’ 70th birthday Festschrift.
Thanos was a member of the Reading Committee of my Ph.D. dissertation, and I
vividly recall meeting him for the first time on the occasion of my Ph.D. defence.
His personal warmth and infectious enthusiasm for research have been a pleasant
ingredient of all our interactions, and the elegance and powerful simplicity of his
work have strongly influenced me in all stages of my career.

Thepresent contribution is anhommage to someofThanos’s ownpioneering ideas.
In hiswork on rational interpolation anddatamodeling (see [1–5]) andpart of hisopus
about model-order reduction (see e.g. [6]) he introduced the concept of mirroring of
vector-exponential trajectories, and the all-important Loewner matrix. Many years
later, Thanos and I showed in [7–9] that such concepts can also be expressed in the
language of bilinear- and quadratic differential forms, and pointed out the role played
by the concept of duality of trajectories and of systems in the Loewner approach.
Such intuition makes explicit the connection between the approach to data modeling
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andmodel order reduction that I have independently pursued with various co-authors
(see [10–15]) and Thanos’s own.

With Thanos I applied Loewner and duality concepts to the modelling of two-
dimensional vector-exponential trajectories and of parametric systems (see [16–18]).
In this paper I present a further application of ideas inspired by his Loewner approach.
Building on previous work by myself and collaborators (see [19, 20]), I consider the
modelling of input-output data produced by linear, time-varying systems. In doing
this I will emphasise the essential coherence of my recent and ongoing work with
Thanos’s original idea, thus paying a modest, but hopefully fitting tribute to his
far-sighted intellect and to the strength of his intuition.

2 Problem Statement

We are given N (a fixed, “large” number) of input-output trajectories

[
uk(·)
yk(·)

]
: R → R

m+p , k = 1, . . . , N , (1)

generated by an unknown linear, time-varying state-space system

d

dt
x(·) = A(·)x(·) + B(·)u(·)
y(·) = C(·)x(·) + D(·)u(·) . (2)

In (2) the matrix functions A(·), B(·), C(·), D(·) are respectively n × n, n × m,
p × n and p × m, with analytic entries. In the following we denote the space of
j × k matrices with real analytic entries byA j×k . In the rest of this paper we assume
that the representation (2) is controllable and observable, see [25].

We are also given N input-output trajectories

[
u′
k(·)
y′
k(·)
]

: R → R
p+m , k = 1, . . . , N , (3)

of the dual system of (2), a state-space system with state variable x ′ associated with
analyticmatrix functions (A′(·), B ′(·),C ′(·), D′(·)) defining similar equations as (1),
such that the following property holds.

Definition 1 (Duality) Two linear, time-varying state-space systems are dual if there
exists a n × n matrix-function Q(·) with det Q(t) �= 0 for all t ∈ R, such that for
every pair of trajectories (x, u, y) satisfying (2) and (x ′, u′, y′) satisfying the equa-
tions defined by (A′(·), B ′(·),C ′(·), D′(·)) it holds that

u�y′ + y�u′ = d

dt

(
x�Qx ′) . (4)
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In the following we call (4) the duality relation.

Remark 1 Definition1 is analogous to the characteristic property of adjoint non-
linear system stated in Lemma 2.1 of [21]; see also [22] for the definition of this
concept in the linear, time-invariant case, and Definition 1 and Proposition 1 p. 605
of [23] for the linear, time-varying case. It is a power-conservation relation such as
that occurring in lossless systems. Consider for example the relation between the
voltage and current pairs at the ports of LC electrical circuits (where the bilinear
product on the left-hand side of (4) is electrical power), and the capacitor voltages
and inductor currents (where the bilinear product on the right-hand side of (4) is
the stored energy). Power-conservation relations are also at the core of the notion
of port-Hamiltonian system (see [24]) and the approach presented here can also be
applied to linear, time-varying, dissipative systems, provided that the bilinear form
associated with the dissipation rate is known (see [20]). In Sect. 6 of this paper we
illustrate several current and future research directions related to this aspect of our
work.

We want to identify from the data (1) and (3) an unfalsified i-s-o model for the
primal system, i.e. matrices Â(·), B̂(·), Ĉ(·), D̂(·) such that input-state-output Eq. (2)
hold for some (to be computed) state trajectories xk(·), k = 1, . . . , N and the given
(uk(·), yk(·)).

In this problem formulation it is assumed that data from both the primal system
(2) and from its dual are known. While we recognize that it is unrealistic that mea-
surements from the dual system are available, in order to emphasize the connections
with the Loewner framework we shall find it convenient to work on the problem as
stated. It is worthwhile to remark that for many classes of systems, self-duality is
either implied by energy conservation or by other physical properties, for example
those implied by port-Hamiltonicity.

3 A Loewner Matrix for Time-Varying Systems

We begin with the following fundamental result.

Proposition 1 Let t ∈ R, and let (x, u, y) and (x ′, u′, y′) be trajectories of the pri-
mal, respectively of the dual system. Assume that x(−∞) := limt→−∞ x(t) = 0 and
x ′(−∞) := limt→−∞ x ′(t) = 0; then

∫ t

−∞
u(τ )�y′(τ ) + y(τ )�u′(τ ) dτ = x(t)�Q(t)x ′(t) = x(t)′�Q(t)x(t) . (5)

Proof Integrating both sides of (4), obtain

∫ t

−∞
u(τ )�y′(τ ) + y(τ )�u′(τ ) dτ = x(t)�Q(t)x ′(t) − x(−∞)�Q(0)x ′(−∞) .
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Now apply the assumption x(−∞) = 0 = x ′(−∞). �

Definition 2 Assume that for every t ∈ R all trajectories (xk, uk, yk) and (x ′
i , u

′
i , y

′
i )

of the data (1), (3) satisfy xk(−∞) = 0 = x ′
i (−∞). The time-varying Loewner

matrix associated with the data (1), (3) is the N × N symmetric matrix function
E(·) : (−∞, t] → R

N×N defined by

[E(t)]i,k=1,...N :=
∫ t

−∞
uk(τ )�y′

i (τ ) + yk(τ )�u′
i (τ ) dτ . (6)

3.1 Relation with the Classical Loewner Matrix

In order to justify the terminology introduced in Definition2, let us consider the case
in which the data-generating system (and its dual) are time-invariant, and the primal
and dual data consists of vector-exponential trajectories:

[
u′
i (t)
y′
i (t)

]
=:
[
u′
i
y′
i

]
eμi t and

[
uk(·)
yk(·)

]
=:
[
uk
yk

]
eλk t , (7)

with u′
i , yk are p-dimensional constant real vectors, y′

i , uk are m-dimensional con-
stant real vectors, and μi , λk are positive real numbers, i, k = 1, . . . , N . The case
of complex vectors and exponentials is easily dealt with, but the notation is slightly
more involved and we do not consider it here. Note that the input-output trajectories
(7) satisfy the condition xk(−∞) = 0 = x ′

i (−∞), i, k = 1, . . . , N . In the rest of this
chapter we assume that

λk + μi �= 0 , i, k = 1, . . . , N .

Proposition 2 Assume that the data-generating system and its dual are time-
invariant, and that the data is of the form (7), with u′

i , yk ∈ R
p, y′

i , uk ∈ R
m, and

μi , λk ∈ R+, i, k = 1, . . . , N. Then

[E(t)]i,k = e(λk+μi )t
u�
k y

′
i + y�

k u
′
i

λk + μi
(8)

Proof From the definition of the data, for every k, i = 1, . . . , N it holds that

Ek,i (t) =
∫ t

−∞
eλkτu�

k y
′
i e

μi τ + eλkτ y�
k u

′
i e

μi τdτ =
∫ t

−∞
e(λk+μi )τ

(
u�
k y

′
i + y�

k u
′
i

)
dτ

= e(λk+μi )t

λk + μi
|t−∞

(
u�
k y

′
i + y�

k u
′
i

) = e(λk+μi )t
u�
k y

′
i + y�

k u
′
i

λk + μi
.
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�

Denote the transfer function of the primal system by Y (s), and let Y (s) =
N (s)D(s)−1 = P(s)−1Q(s) be respectively a right-coprime and a left-coprime fac-
torization of Y (s). The following result holds.

Proposition 3 The transfer function of the dual is

Y ′(s) := −Y (−s)� = −D(−s)−�N (−s)� = −Q(−s)�P(−s)−� .

Proof The proof follows from the material in Sect. 10 of [26], in particular from
Proposition 10.1 p. 1730. �

Observe that for t = 0 the result of Proposition2 implies that

[E(0)]i,k = u�
k y

′
i + y�

k u
′
i

λk + μi
, i, k = 1, . . . , N . (9)

Assume now that m = p = 1, i.e. the single-input, single-output case (the general
case is considered in Sect. 2.3 of [7]); then one can assume without loss of gener-
ality that uk = 1 = u′

i , i, k = 1, . . . , N . It follows that the matrix E(0) in (9) is the
Loewner matrix L associated with the interpolation data

Z = {−μi }i=1,...,N ∪ {λk}k=1,...,N and Y = {y(−μi )}i=1,...,N ∪ {y(λk}k=1,...,N ,

see p. 639 of [4].
Moreover, note that in the time-invariant case, since for each pair (i, k), i, k =

1, . . . , N the associated frequencies −μi and λk are known, the Loewner matrix (9)
and its time-varying version (8) embody the same information. Observe also that
from the result of Proposition3 it follows that the trajectories of the dual system
associated with a frequency μi can be computed by mirroring: namely, if

[
ui
yi

]
∈ C

m+p

arises from the primal transfer function evaluated at −μi , then

[
u′
i
y′
i

]
:=
[
yi
ui

]
∈ C

p+m

arises from the dual transfer function evaluated at μi . It follows that in the linear,
time-invariant case there is no need to assume that the dual trajectories are available
from measurements of the dual system, since they can be generated by mirroring.
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4 Properties of the Time-Varying Loewner Matrix

In this section we follow the structure of Sect. 3: we first establish some properties
of the time-varying Loewner matrix (6), and subsequently we show that they are
generalisations of well-known properties of the time-invariant case established by
Thanos and his collaborators.

The first result is a straightforward consequence of the definition.

Proposition 4 Let (xk, uk, yk) and (x ′
i , u

′
i , y

′
i ), i, k = 1, . . . , N be i-s-o trajectories

of the primal, respectively dual system. Assume that all trajectories (xk, uk, yk) and
(x ′

i , u
′
i , y

′
i ) satisfy the condition xk(−∞) = 0 = x ′

i (−∞), i, k = 1, . . . , N. Then for
all t ∈ R it holds that

E(t) =
⎡
⎢⎣
x ′
1(t)

�
...

x ′
N (t)�

⎤
⎥⎦

︸ ︷︷ ︸
=:X ′(t)�

Q(t)
[
x1(t) . . . xN (t)

]
︸ ︷︷ ︸

=:X (t)

. (10)

Proof The result follows in a straightforwardway fromDefinition2 and from Propo-
sition1. �

An important consequence of Proposition4 is that for “almost all choices” of
the input-output trajectories (uk, yk) and (u′

i , y
′
i ), i, k = 1, . . . , N , and “almost all”

t ∈ R the time-varying Loewner matrix has rank n, the dimension of the state space
of the primal and dual system. Before proving this result, we need to formalize the
concept of “almost all choices”; in order to do this, we use the algebraic notion of
algebraic genericity.

LetL be some linear space of finite-dimension d; then given a basis {�i }i=1,...,d for
L, every � ∈ L can be written as � =∑d

i=1 xi�i for some coefficients xi in the field
on which L is defined. A map p : L → R is a polynomial if p(�) is a polynomial
in the variables xi , i = 1, . . . , d. An algebraic variety is a subsetV of L consisting
of all zeroes of some polynomial p. A subset S ⊂ L is called generic if there is a
proper algebraic variety V � L such that S ⊃ (L \ V).

With these definitions, we can now state the following important result.

Theorem 1 Assume that N > n; then for all t ∈ R it holds generically that
rank E(t) = rank E11(t) = n.

Proof We show that rank E(t) = n; the equality rank E(t) = rank E11(t) is a
straightforward consequence of the fact that det E11(t) is one of the n × n minors of
the N × N rank n matrix E(t). This minor is generically nonzero if rankE(t) = n.

Conclude from Eq. (10) and Definition1 that

rank E(t) ≤ min
{
rank

[
x1(t) . . . xN (t)

]
, rank

[
x ′
1(t) . . . x ′

N (t)
]}

.
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We now show that generically rank
[
x1(t) . . . xN (t)

] = n; an analogous argument
yields that generically also rank

[
x ′
1(t) . . . x ′

N (t)
] = n. Using the genericity assump-

tion we will then prove the claim.
In order to show that generically rank

[
x1(t) . . . xN (t)

] = n, we prove the fol-
lowing, stronger result, which will be useful later. �

Lemma 1 Let

[
xi (·)
ui (·)

]
, i = 1, . . . , N > n + m be trajectories satisfying the state

equation in (2). Then generically for all t ∈ R it holds that

rank

[
x1(t) . . . xN (t)
u1(t) . . . uN (t)

]
= n + m

Proof To simplify the argument, we use a nonsingular transformation of the state-
space basis as in [25] to transform the Eq. (2) to a more manageable version. Denote
by X (·) a fundamental matrix solution of the free response, i.e. a matrix having full
rank almost everywhere, such that solves the matrix differential equation d

dt X (t) =
A(t)X (t) for every t ∈ R. Now let τ be a fixed, but otherwise arbitrary real number,
and denote by φ(t, τ ) the transition matrix of (2) in the interval [τ, t], i.e. φ(t, τ ) =
X (t)X (τ )−1. Apply the transformation

x(·) → φ(·, τ )−1x(·) = φ(τ, ·)x(·) =: z(·) ,

to the state variable x , and verify with straightforward manipulations that in this new
basis of the state space, the state equation in (2) becomes

d

dt
z(·) = φ(τ, ·)B(·)u(·) . (11)

We now prove that generically

rank

[
z1(t) . . . zN (t)
u1(t) . . . uN (t)

]
=
[
φ(τ, t) 0n×m

0m×n Im

] [
x1(t) . . . xN (t)
u1(t) . . . uN (t)

]
= n + m ; (12)

note that such equality implies the claim of the Lemma, since det

[
φ(τ, t) 0n×m

0m×n Im

]
�=

0.
To prove (12), we use the concept of controllability matrix of the matrix pair

(A(·), B(·)) (see p. 66 of [25]). Define the sequence of n × m matrices

P0(·) := B(·)
Pk+1(·) := −A(·)Pk(·) + d

dt
(Pk(·)) ;

and from such sequence define the n × n · m controllabilitymatrix of the matrix pair
(A(·), B(·)) by
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C (A(·), B(·)) := [P0(·) P1(·) . . . Pn−1(·)
]

. (13)

It is straightforward to verify that from (11) it follows that

dkz

dtk
(·) = φ(τ, ·) [P0(·) . . . Pk−1(·)

]
⎡
⎢⎣

dk−1u
dtk−1 (·)

...

u(·)

⎤
⎥⎦ ,

k = 1, . . .. The Wronskian matrix of col(z(·), u(·)) (see p. 67 of [25]) is defined by

W(z(·), u(·)) :=
[
z(·) dz

dt (·) . . . dn+m−1z
dtn+m−1 (·)

u(·) d
dt u(·) . . . dn+m−1u

dtn+m−1 (·)

]
.

Note that

W(z(·), u(·)) (14)

=
[
z(·) φ(τ, ·)P0(·) φ(τ, ·)P1(·) . . . φ(τ, ·)Pn+m−1(·)
0 In 0 . . . 0

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

In 0 0 . . . 0

0 u(·) du
dt (·) . . . dn+m−1u

dtn+m−1

0 0 u(·) . . . dn+m−2u
dtn+m−2

0 0 0
. . .

.

.

.

0 0 0
. . . u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since u(·) is arbitrarily chosen in the space of m-dimensional time functions, gener-
ically the second matrix on the right-hand side of (14) has full column rank at t . The
first n rows of the first matrix on the right-hand side of (14) contain as submatrix a
nonsingular transformation (via φ(τ, ·)) of the controllability matrix (13), which has
full row rank n on a set of points everywhere dense on any finite interval of R (see
Theorem 4 p. 69 of [25]). Consequently, it has generically full row rank.

From this argument it follows that for every i = 1, . . . , n, at every t ∈ R generi-
cally theWronskianW(col(zi (t), ui (t))) has rank n + m. It follows that generically

the Wronskian of

[
z1(t) . . . zN (t)
u1(t) . . . uN (t)

]
also has rank n + m. �

We resume the proof of Theorem1. Lemma1 implies that the trajectories zi (·)
are linearly independent (see Lemma 3 p. 68 of [25]). Since they are obtained from
a nonsingular transformation of the state trajectories xi (·) of the primal system, it
follows that generically

rank
[
x1(t) . . . xN (t)

] = n .

A result analogous to that of Lemma1 can be established for the matrix constructed
from the state and input trajectories of the dual system, namely that generically
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rank

[
x ′
1(t) . . . x ′

N (t)
u′
1(t) . . . u′

N (t)

]
= n + m ,

from which it follows that generically

rank
[
x ′
1(t) . . . x ′

N (t)
] = n .

Now observe that rank E(t) < n if and only if

im
([
x ′
1(t) . . . x ′

N (t)
])⊥ ∩ im

([
x1(t) . . . xN (t)

]) �= {0} ,

which is generically satisfied. Consequently, generically also rank E(t) = n, as was
to be proved. �

The following result is a straightforward consequence of Propositions4 and 1.

Corollary 1 Define

U (t) := [u1(t) . . . uN (t)
]

, Y (t) := [y1(t) . . . yN (t)
]

U ′(t) := [u′
1(t) . . . u′

N (t)
]

, Y ′(t) := [y′
1(t) . . . y′

N (t)
]

.

Then E(·) satisfies the matrix differential equation
d

dt
E(·) = [U ′(·)� Y ′(·)�] Q(·)

[
U (·)�
Y (·)�

]
(15)

Proof The claim is a straightforward consequence of Propositions4 and 1. �

The result of Proposition4 and Theorem1 can be used to compute an unfalsified
first-order linear, time-varying model for the primal and dual data.

Proposition 5 The trajectories

⎡
⎣xkuk
yk

⎤
⎦, k = 1, . . . , N satisfy the first-order equa-

tions

K (t)
d

dt
X (t) + F(t)X (t) + G(t)

[
Y (t)
U (t)

]
= 0 , (16)

where

K (·) := X ′(·)�Q(·)
F(·) :=

(
d

dt
X ′(·)

)�
Q(·) + X ′(·)�

(
d

dt
Q(·)

)

G(·) := [−U ′(t)� −Y ′(t)�
]

.
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Moreover, generically for all t ∈ R the matrix K (t) = X ′(t)�Q(t) has a left inverse

K (t)†, and the trajectories

⎡
⎣xkuk
yk

⎤
⎦, k = 1, . . . , N also satisfy the equations

d

dt
X (t) = [−K (t)†F(t)

]
X (t) − K (t)†G(t)

[
Y (t)
U (t)

]
.

Proof Equation (16) follows by differentiating the left-hand side of the Eq. (15),
using the equality (10).

The claim on the generic existence of a left inverse for K (t) follows from the
nonsingularity of Q(t), and the fact that X ′(t) has generically full column rank
because of the dual version of Lemma1. The claim follows pre-multiplying both
sides of (16) with such left-inverse matrix. �

4.1 Relation with the Time-Invariant Case

We consider the linear, time-invariant case, with the same notation and under the
same assumptions as in Sect. 3.1, and we review the results illustrated in the linear,
time-varying case.

The result of Proposition4 follows in a straightforward way from an argument
similar to that used in Proposition 10.1 p. 1730; note that the assumption therein is
that the bases of the state-space of the primal and of the dual system are matched,
i.e. that Q(t) = In . In the time-invariant case for every k, i = 1, . . . , N there exist
constant vectors xk, x

′
i such that

xk(t) = xke
λk tand x ′

i (t) = x ′
i e

μi t ,

and consequently (10) can be written as

E(t) = diag
(
eμi t
)
i=1,...,N

⎡
⎢⎣
x ′�

1
...

x ′�
N

⎤
⎥⎦

︸ ︷︷ ︸
=:X ′(t)�

Q
[
x1 . . . xN

]
diag

(
eλk t
)
k=1,...,N︸ ︷︷ ︸

=:X (t)

. (17)

The result of Theorem1 implies, for t = 0, that generically E(0) = L has rank n; in
the classical Loewner framework this conclusion was proved in Lemma 2.1 p. 639
of [4].

The result of Proposition5 is equivalent to that of Proposition 3.1 p. 641 of [4].
Indeed, for the time-invariant case it holds that
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d

dt

(
X ′(t)�

)
= d

dt

⎛
⎜⎝ diag

(
eμi t
)
i=1,...,N

⎡
⎢⎣
x ′�

1
...

x ′�
N

⎤
⎥⎦
⎞
⎟⎠ = diag (μi )i=1,...,N︸ ︷︷ ︸

=:M

X ′(t)�

d

dt
(X (t)) = d

dt

([
x1 . . . x N

]
diag

(
eλk t
)
k=1,...,N

)
= X (t) diag (λk)k=1,...,N︸ ︷︷ ︸

=:�

,

and the “shifted Loewner matrix” equals d
dt E(t) |t=0.

5 From Loewner Matrix to State Equations

In the classical, time-invariant approach, the Loewner matrix is used to compute a
transfer-function model for the data (i.e. a rational interpolant). If L is of full rank
this can be performed directly (see e.g. Theorem 4.1 p. 642 of [4]); in the general
case, the factorization of a matrix computed from the Loewner one is necessary (see
assumption (20) p. 645 and Theorem 5.1 p. 646 of [4]). We illustrated analogous
procedures in [13–16, 18]. We now show that also in the time-varying case similar
results hold.

First, some terminology.Given E(·) : R → R
N×N ,we call E(·) = Z ′(·)�R(·)Z(·)

a rank-revealing factorisation if Z ′ : R → R
r×N , Z : R → R

r×N , R : R → R
r×r ,

with r := rank E(t) = rank Z ′(t) = rank Z(t) = rank R(t) on a set of points every-
where dense on any finite interval of R.

We now show that minimal state trajectories corresponding to given input-output
data can be computed from a rank-revealing factorisation of the Loewner matrix.

Theorem 2 Let (2) be a minimal representation of a LTV system and let (uk, yk, xk)
satisfy (2), k = 1, . . . , N. Assume that all trajectories (xk, uk, yk) and (x ′

i , u
′
i , y

′
i ) are

such that xk(−∞) = 0 = x ′
i (−∞), and define E(·) by (6). Assume that rank E(t) =

n for all t ∈ R. Define

B :=
{[

u
y

]
| ∃ x such that (2) holds

}
.

Let E(·) = Z ′(·)�R(·)Z(·) be a rank-revealing factorisation of E(·). Denote the kth
column of Z by zk; then there exists an i-s-o representation with state variable z such
that (uk, yk, zk) satisfies the equations, k = 1, . . . , N.

Proof The claim is evidently correct for the factorisation (10) of E(t) in Proposi-
tion4. Use a standard linear-algebraic argument to conclude that for every t ∈ R,
any rank-revealing factorisation E(t) = Z ′(t)�R(t)Z(t) is related to (10) by

Z(t) = T (t)X (t)and Z ′(t) = T ′(t)Z(t) ,
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where T, T ′(·) : R → R
n×n are nonsingular almost everywhere, and

T ′(t)�R(t)T (t) = R(t). This proves that the kth column zk of Z(·) is a state tra-
jectory corresponding to (uk, yk), k = 1, . . . , N . It can be verified that the i-s-o
representation (2) corresponding to such state variable is induced by the matrices

(
T (·)(A(·)T (·)−1 − d

dt

(
T (·)−1) , T (·)B(·),C(·)T (·)−1, D(·)

)
.

�

In the time-invariant case, matrix factorization can be performed with standard
numerical algorithms (e.g. the singular value decomposition); however, in the time-
varying case, the factorization of a matrix function of dimension N is necessary.
This is a non-trivial problem with considerable implications of a theoretical and
computational nature. We now show that in the generic case, the result of Theorem1
can be used to achieve a factorization of E(·) by inverting its (1, 1) n × n submatrix.
As in Theorem1, we partition the Loewner matrix as

E(t) =
[
E11(t) E12(t)
E21(t) E22(t)

]
, (18)

where E11(t) is n × n, with n = rank(E(t)), E12(t) is n × (N − n), E21(t) is (N −
n) × n, and E22(t) is (N − n) × (N − n). The following result holds.

Theorem 3 Let E(·) be partitioned as in (18); generically at t the following equation
holds:

E(t) =
[

In
E21(t)E11(t)−1

]
E11(t)

[
In E11(t)−1E12(t)

]
. (19)

Proof The fact that E11(t) is generically nonsingular is stated in Theorem1; conse-
quently, the claim follows if we prove that E22(t) = E21(t)E11(t)−1E12(t). Consider
the equality

[
In 0n×N

−E21(t)−1E11(t) IN−n

] [
E11(t) E12(t)
E21(t) E22(t)

] [
In −E11(t)−1E12(t)

0(N−n) × n IN−n

]

=
[

E11(t) 0n×n

0(N−n)×n E22(t) − E21(t)E11(t)−1E12(t)

]
.

Now apply Theorem1 to conclude that since the matrix on the right-hand side of the
equation has rank n = rank(E11(t)), the (2, 2)-block must be zero. �

From Theorems2 and 3 it follows that the kth column of any of the two right-
factors [

E11(·) E12(·)
]
or
[
In E11(·)−1E12(·)

]
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of E(·) can be used to associate a state trajectory to the input-output data

[
uk(·)
yk(·)

]
;

without loss of generality in the following we discuss on the basis of the first choice.
The derivatives of these state trajectories are the columns of the matrix

[
d
dt E11(·) d

dt E12(·)
] ;

define also the matrices

U (·) := [u1(·) . . . uN (·)] =: [U1(·) U2(·)
]

Y (·) := [y1(·) . . . yN (·)] =: [Y1(·) Y2(·)] ,

withU1 a m × n matrix function,U2 m × (N − n) , Y1 p × n, and Y2 p × (N − n).
Theorem2 implies that matrix functions Â(·), B̂(·), Ĉ(·), D̂(·) exist such that the
following equation holds true:

[
d
dt E11(·) d

dt E12(·)
Y1(·) Y2(·)

]
=
[
Â(·) B̂(·)
Ĉ(·) D̂(·)

] [
E11(·) E12(·)
U1(·) U2(·)

]
. (20)

The following result states how such an unfalsified model can be computed.

Theorem 4 Generically for every t ∈ R there exists a right-inverse of

[
E11(t) E12(t)
U1(t) U2(t)

]
, (21)

denoted in the following by [
E11(t) E12(t)
U1(t) U2(t)

]†
.

Consequently, for every t ∈ R the values Â(t), B̂(t), Ĉ(t), D̂(t) of an unfalsified
state-space model (20) for the data (1) can be computed via the equation

[
Â(t) B̂(t)
Ĉ(t) D̂(t)

]
=
[

d
dt E11(t)

d
dt E12(t)

Y1(t) Y2(t)

] [
E11(t) E12(t)
U1(t) U2(t)

]†
.

Proof The first part of the claim follows from Theorem2 and Lemma1. The second
part follows multiplying both sides of Eq. (20) on the right by the right-inverse of
(21). �
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6 Conclusions and Ongoing Research

We have generalised the rational interpolation approach based on the classical (con-
stant) Loewner matrix, originally developed by Thanos and his collaborators, to
the case of data generated by a time-varying system, by introducing a time-varying
Loewner matrix. Time and again (see Sects. 3.1 and 4.1) we have shown that the
results we obtain in our framework are mutatis mutandis generalisations of those
already known in the classical one. The festive occasion dictated that we concentrate
on illustrating such common features, but a couple of remarks are in order, if only to
emphasise that Thanos’s intuition is more far-reaching than perhaps even he realises.

Firstly,wenote that our identification approach is conceptually analogous to that of
subspace identification (see [27, 28]); from data we first compute state trajectories,
and on the basis of those and the measurements we compute state equations. In
the rational interpolation setting the intermediate step is neither conceptually nor
computationally necessary, since the problem formulation is different. However,
an explicit computation of state trajectories through the factorisation of Loewner
matrices opens up several interesting opportunities. Since different factorizations
generate different state trajectories and consequently different bases of the state
space, “special” factorizations can be performed to achieve special (e.g. balanced)
state representations.Moreover, besides an “exact” factorization, also an approximate
one (obtained for example selecting only a lower rank approximation of a matrix, as
happens in the case of singular value decompositions) can be performed. This opens
up the possibility of performingmodel-order reduction of time-varying systems from
data (see [13] for the linear, time-invariant case).

Secondly, we emphasize that duality plays an essential role in our approach,
whether explicitly (as in the present contribution and in [7, 16, 19]) or implicitly,
where we have investigated the identification of conservative (see [13–15]) or port-
Hamiltonian systems (see [20]). In the latter cases duality arises as a consequence of
either energy conservation or power relations and their effect on the system dynam-
ics. Such properties arise in a variety of systems, for example nonlinear ones, on
which our current research is focused. Many of the current techniques to compute
nonlinear models from data seem to fall in the class of parametric, rather than system
identification methods: the structure of the model is known, and system identifica-
tion is reduced to determining numerical values for the undetermined parameters, so
that the resulting model explains the given measurements. The potential of a dual-
ity (equivalently: energy-, or power relation-based) point of view lies in providing
procedures that can identify the structure of a system.

Finally, we point out the interesting problems arising from the application of
the abstract mathematical approach outlined here to the real world. Computing
continuous-time models from sampled data while maintaining fundamental system
properties and structures is an important current area of research in system identi-
fication (see [29]). In the framework presented here, analogous issues arise in the
use of suitable numerical procedures to compute integrals, and in the factorization
of matrices of functions, that are guaranteed to produce e.g. self-dual systems.
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