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Abstract Loewner matrix pencils play a central role in the system realization the-
ory of Mayo and Antoulas, an important development in data-driven modeling. The
eigenvalues of these pencils reveal system poles. How robust are the poles recovered
via Loewner realization? With several simple examples, we show how pseudospec-
tra of Loewner pencils can be used to investigate the influence of interpolation point
location and partitioning on pole stability, the transient behavior of the realized sys-
tem, and the effect of noisy measurement data. We include an algorithm to efficiently
compute such pseudospectra by exploiting Loewner structure.
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1 Introduction

The landmark systems realization theory of Mayo and Antoulas [19] shows how to
construct a dynamical system that interpolates tangential frequency domain mea-
surements of a multi-input, multi-output system. Central to this development is the
matrix pencil zL − Ls composed of Loewner and shifted Loewner matrices L and
Ls that encode the interpolation data. When this technique is used for exact system
recovery (as opposed to data-driven model reduction), the eigenvalues of this pencil
match the poles of the transfer function of the original system. However other spec-
tral properties, including the sensitivity of the eigenvalues to perturbation, can differ
greatly, depending on the location of the interpolation points in the complex plane

Dedicated to Thanos Antoulas.

M. Embree (B)
Department of Mathematics and Computational Modeling and Data Analytics Division,
Academy of Integrated Science, Virginia Tech, Blacksburg, VA 24061, USA
e-mail: embree@vt.edu

A. C. Ioniţă
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relative to the system poles, and how the interpolation points are partitioned. Since
one uses zL − Ls to learn about the original system, such subtle differences matter.

Pseudospectra are sets in the complex plane that contain the eigenvalues but
provide additional insight about the sensitivity of those eigenvalues to perturbation
and the transient behavior of the underlying dynamical system.Whilemost often used
to analyze single matrices, pseudospectral concepts have been extended to matrix
pencils (generalized eigenvalue problems).

This introductory note shows several ways to use pseudospectra to investigate
spectral questions involving Loewner pencils derived from system realization prob-
lems. Using simple examples, we explore the following questions.

• How do the locations of the interpolation points and their partition into “left” and
“right” points affect the sensitivity of the eigenvalues of zL − Ls?

• Do solutions to the dynamical system Lẋ(t) = Lsx(t)mimic solutions to the origi-
nal systemEẋ(t) = Ax(t), especially in the transient regime? Does this agreement
depend on the interpolation points?

• How do noisy measurements affect the eigenvalues of zL − Ls?

We include an algorithm for computing pseudospectra of an n-dimensional Loewner
pencil in O(n2) operations, improving the O(n3) cost for generic matrix pencils; the
appendix gives a MATLAB implementation.

Throughout this note, we use σ(·) to denote the spectrum (eigenvalues) of amatrix
or matrix pencil, and ‖ · ‖ to denote the vector 2-norm and thematrix norm it induces.
(All definitions here can readily be adapted to other norms, as needed. The algorithm,
however, is designed for use with the 2-norm.)

2 Loewner Realization Theory in a Nutshell

We briefly summarize Loewner realization theory, as developed by Mayo and
Antoulas [19]; see also [1]. Consider the linear, time-invariant dynamical system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t)

forA, E ∈ Cn×n ,B ∈ Cn×m , andC ∈ Cp×n , with whichwe associate, via the Laplace
transform, the transfer function H(z) = C(zE − A)−1B.

Given tangential measurements of H(z) we seek a realization of the system that
interpolates the given data. More precisely, consider the right interpolation data

• distinct interpolation points λ1, . . . , λ� ∈ C;
• interpolation directions r1, . . . , r� ∈ Cm ;
• function values w1, . . . , w� ∈ Cp;

and left interpolation data

• distinct interpolation points μ1, . . . , μν ∈ C;
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• interpolation directions �1, . . . , �ν ∈ Cp;
• function values v1, . . . , vν ∈ Cm .

Assume the left and right interpolation points are disjoint, {λi }�i=1 ∩ {μ j }νj=1 = ∅;
(in our examples, all � + ν points are distinct).

The interpolation problem seeks matrices ̂A,̂E,̂B,̂C for which the transfer func-
tion̂H(z) = ̂C(ẑE − ̂A)−1

̂B interpolates the data: for i = 1, . . . , � and j = 1, . . . , ν,

̂H(λi )ri = wi , �∗
j
̂H(μ j ) = v∗

j .

Two structured matrices play a crucial role in the development of Mayo and
Antoulas [19]. From the data, construct the Loewner and shifted Loewner matri-
ces

L =

⎡

⎢

⎢

⎣

v∗
1r1−�∗

1w1
μ1−λ1

· · · v∗
1r�−�∗

1w�

μ1−λ�

...
. . .

...
v∗

νr1−�∗
νw1

μν−λ1
· · · v∗

νr�−�∗
νw�

μν−λ�

⎤

⎥

⎥

⎦

, Ls =

⎡

⎢

⎢

⎣

μ1v∗
1r1−λ1�

∗
1w1

μ1−λ1
· · · μ1v∗

1r�−λ��∗
1w�

μ1−λ�

...
. . .

...
μνv∗

ν r1−λ1�
∗
νw1

μν−λ1
· · · μνv∗

ν r�−λ��∗
νw�

μν−λ�

⎤

⎥

⎥

⎦

, (1)

i.e., the (i, j) entries of these ν × � matrices have the form

(L)i, j = v∗
i r j − �∗

i w j

μi − λ j
, (Ls)i, j = μiv

∗
i r j − λ j�

∗
i w j

μi − λ j
.

Now collect the data into matrices. The right interpolation points, directions, and
data are stored in

� =
⎡

⎢

⎣

λ1
. . .

λ�

⎤

⎥

⎦∈C�×�, R =
⎡

⎣ r1 · · · r�

⎤

⎦∈Cm×�, W =
⎡

⎣ w1 · · · w�

⎤

⎦∈Cp×�,

while the left interpolation points, directions, and data are stored in

M =
⎡

⎢

⎣

μ1
. . .

μν

⎤

⎥

⎦∈Cν×ν, L =
⎡

⎣ �1 · · · �ν

⎤

⎦∈Cp×ν, V =
⎡

⎣ v1 · · · vν

⎤

⎦∈Cm×ν .
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2.1 Selecting and Arranging Interpolation Points

As Mayo and Antoulas observe, Sylvester equations connect these matrices:

L� − ML = L∗W − V∗R, Ls� − MLs = L∗W� − MV∗R. (2)

Just using the dimensions of the components, note that

rank(L∗W), rank(L∗W�), ≤ min{ν, �, p}
rank(V∗R), rank(V∗RM) ≤ min{ν, �,m}.

Thus for modestm and p, the Sylvester equations (2) must have low-rank right-hand
sides.1 This situation often implies the rapid decay of singular values of solutions
to the Sylvester equation [2, 3, 21, 22, 26]. While this phenomenon is convenient
for balanced truncation model reduction (enabling low-rank approximations to the
controllability and observability Gramians), it is less welcome in the Loewner real-
ization setting, where the rank of L should reveal the order of the original system:
fast decay of the singular values of L makes this rank ambiguous. Since � and M
are diagonal, they are normal matrices, and hence Theorem 2.1 of [3] gives

sqk+1(L)

s1(L)
≤ inf

φ∈Rk,k

max{|φ(λ)| : λ ∈ {λ1, . . . , λ�}}
min{|φ(μ)| : μ ∈ {μ1, . . . , μν}} , (3)

where s j (·) denotes the j th largest singular value, q = rank(L∗W − V∗R), andRk,k

denotes the set of irreducible rational functions whose numerators and denominators
are polynomials of degree k or less.2 The right hand side of (3) will be small when
there exists some φ ∈ Rk,k for which all |φ(λi )| are small, while all |φ(μ j )| are large:
a good separation of {λi } from {μ j } is thus sufficient to ensure the rapid decay of the
singular values of L and Ls . (Beckermann and Townsend give an explicit bound for
the singular values of Loewner matrices when the interpolation points fall in disjoint
real intervals [3, Corollary 4.2].)

Here, if we want the singular values of L and Ls to reveal the system’s order
(without decay of singular values as an accident of the arrangement of interpolation
points), it is necessary for one |φ(λi )| to be about the same size as the smallest value
of |φ(μ j )| for all φ ∈ Rk,k . Roughly speaking,wewant the left and right interpolation
points to be close together (even interleaved). While this arrangement is necessary
for slow decay of the singular values, it does not alone prevent such decay, as will
be seen in examples in Fig. 4 (since (3) is only an upper bound).

Another heuristic, based on the Cauchy-like structure of L and Ls , also suggests
the left and right interpolation points should be close together. Namely, L and Ls are

1 For single-input, single-output (SISO) systems, m = p = 1, so the rank of the right-hand sides
in (2) cannot exceed two. The same will apply for multi-input, multi-output systems with identical
left and right interpolation directions: �i ≡ � for all i = 1, . . . , ν and r j ≡ r for all j = 1, . . . , �.
2 The same bound holds for sqk+1(Ls)/s1(Ls) with q = rank(L∗W� − MV∗R).
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a more general form of the Cauchy matrix (C)i, j = 1/(μi − λ j ), whose determinant
has the elegant formula (e.g., [16, p. 38])

det(C) =
∏

1≤i< j≤n(μ j − μi )(λi − λ j )
∏

1≤i≤ j≤n(μi − λ j )
. (4)

It is an open question if det(L) and det(Ls) have similarly elegant formulas. Never-
theless, det(L) and det(Ls) do have the same denominator as det(C) (which can be
checked by recursively subtracting the first row from all other rows when computing
the determinant). This observation suggests that to avoid artificially small determi-
nants for L and Ls (which, up to sign, are the products of the singular values) it is
necessary for the denominator of (4) to be small, and, thus, for the left and right
interpolation points to be close together.

In practice, we often start with initial interpolation points x1, . . . , x2n that wewant
to partition into left and right interpolation points to form L and Ls . Our analysis of (4)
suggests a simple way to arrange the interpolation points such that the denominator
of det(L) and det(Ls) is small: relabel the points to satisfy

xk = argmin
k≤q≤2n

|xk−1 − xq |, for k = 2, . . . , 2n, (5)

{μi } = {x1, x3, . . . , x2n−1}, {λ j } = {x2, x4, . . . , x2n}.

The greedy reordering in (5) ensures that |xk − xk−1| is small and allows us to sim-
ply interleave the left and right interpolation points. Moreover, when x1, . . . , x2n
are located on a line, the reordering in (5) simplifies to directly interleaving μi and
λ j and, thus, it can be skipped. This ordering need not be optimal, as we do not
visit all possible combinations of μi − λ j ; it simply seeks a partition that yields a
large determinant (which must also depend on the interpolation data). We note its
simplicity, effectiveness, and efficiency (requiring onlyO(n2) operations). (For SISO
systems, the state-space representation is equivalent to a barycentric form [17, p. 77].
We thank the referee for observing that in barycentric rational Remez approxima-
tions [9], a similar interleaving of support points from the set of reference points
produces favorable numerical conditioning. Recent work by Gosea and Antoulas
gives further numerical evidence for interleaving Loewner points [13].)

2.2 Construction of Interpolants

Throughoutwemake the fundamental assumptions that for all ẑ ∈ {λi }�i=1 ∪ {μ j }νj=1,

rank(̂zL − Ls) = rank

([

L
Ls

])

= rank
([

L Ls
]) =: r,
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and we presume the underlying dynamical system is controllable and observable.
When r = ν = � is the order of the system, Mayo and Antoulas [19, Lemma 5.1]

show that the transfer function ̂H(z) := ̂C(ẑE − ̂A)−1
̂B defined by

̂E = −L, ̂A = −Ls, ̂B = V∗, ̂C = W (6)

interpolates the � + ν data values.
When r < max(ν, �), fix some ẑ ∈ {λi }�i=1 ∪ {μ j }νj=1 and compute the (economy-

sized) singular value decomposition

ẑL − Ls = Y�X∗,

with Y ∈ Cν×r , � ∈ Rr×r , and X ∈ C�×r . Then with

̂E = −Y∗LX, ̂A = −Y∗LsX, ̂B = Y∗V∗, ̂C = WX, (7)

̂H(z) := ̂C(ẑE − ̂A)−1
̂B gives an order-r system interpolating the data [19, Theo-

rem 5.1].

3 Pseudospectra for Matrix Pencils

Though introduced decades earlier, in the 1990s pseudospectra emerged as a popular
tool for analyzing the behavior of dynamical systems (see, e.g., [30]), eigenvalue
perturbations (see, e.g., [4]), and stability of uncertain linear time-invariant (LTI)
systems (see, e.g., [15]).

Definition 1 For a matrix A ∈ Cn×n and ε > 0, the ε-pseudospectrum of A is

σε(A) = {z ∈ C is an eigenvalue of A + � for some � ∈ Cn×n with ‖�‖ < ε}. (8)

For all ε > 0, σε(A) is a bounded, open subset of the complex plane that contains the
eigenvalues of A. (A popular variation uses the weak inequality ‖�‖ ≤ ε; the strict
inequality has favorable properties for operators on infinite-dimensional spaces [5].)
Definition1motivates pseudospectra via eigenvalues of perturbedmatrices.Anumer-
ical analyst studying accuracy of a backward stable eigenvalue algorithm might be
concernedwith ε on the order of n‖A‖εmach, where εmach denotes themachine epsilon
for the floating point system [20]. An engineer or scientist might consider σε(A) for
much larger ε values, corresponding to uncertainty in parameters or data that con-
tribute to the entries of A.

Via the singular value decomposition, one can show that (8) is equivalent to

σε(A) = {z ∈ C : ‖(zI − A)−1‖ > 1/ε}; (9)
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see, e.g., [29, Chap. 2]. The presence of the resolvent (zI − A)−1 in this definition
suggests a connection to the transfer function H(z) = C(zI − A)−1B for the system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t).

Indeed, definition (1) readily leads to bounds on ‖etA‖, and hence transient growth
of solutions to ẋ(t) = Ax(t); see [29, Part IV].

Various extensions of pseudospectra have been proposed to handle more gen-
eral eigenvalue problems and dynamical systems; see [7] for a concise survey. The
first elaborations addressed the generalized eigenvalue problem Ax = λEx (i.e., the
matrix pencil zE − A) [10, 23, 24]. Here we focus on the definition proposed by
Frayssé, Gueury, Nicoud, and Toumazou [10], which is ideally suited to analyzing
eigenvalues of nearby matrix pencils. To permit the perturbations to A and E to be
scaled independently, this definition includes two additional parameters, γ and δ.

Definition 2 Let γ, δ > 0. For a pair of matrices A, E ∈ Cn×n and any ε > 0, the
ε-(γ, δ)-pseudospectrum σ

(γ,δ)
ε (A, E) of the matrix pencil zE − A is the set

σ (γ,δ)
ε (A, E) = {z ∈ C is an eigenvalue of the pencil z(E + �) − (A + �)

for some �,� ∈ Cn×n with ‖�‖ < εγ , ‖�‖ < εδ}.

This definition has been extended to matrix polynomials in [14, 27].

Remark 1 Note that σ (γ,δ)
ε (A, E) is an open, nonempty subset of the complex plane,

but it need not be bounded.

(a) If zE − A is a singular pencil (rank(zE − A) < n for all z ∈ C), then σ(A, E) =
C.

(b) If zE − A is a regular pencil but E is not invertible, then σ(A, E) contains an
infinite eigenvalue, and hence σ

(γ,δ)
ε (A, E) is unbounded.

(c) If E is nonsingular but εδ exceeds the distance of E to singularity (the smallest
singular value of E), then σ

(γ,δ)
ε (A, E) contains the point at infinity.

Since these pseudospectra can be unbounded, Lavallée [18] and Higham and Tis-
seur [14] visualize σ

(γ,δ)
ε (A, E) as stereographic projections on the Riemann sphere.

Remark 2 Just as the conventional pseudospectrum σε(A) can be characterized
using the resolvent of A in (9), Frayseé et al. [10] show that Definition2 is equivalent
to

σ (γ,δ)
ε (A, E) =

{

z ∈ C : ‖(zE − A)−1‖ >
1

ε(γ + |z|δ)
}

. (10)

This formula suggests a way to compute σ
(γ,δ)
ε (A, E): evaluate ‖(zE − A)−1‖ on a

grid of points covering a relevant region of the complex plane (or theRiemann sphere)
anduse a contour plotting routine to drawboundaries ofσ (γ,δ)

ε (A, E). The accuracy of
the resulting pseudospectra depends on the density of the grid. Expedient algorithms
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for computing ‖(zE − A)−1‖ can be derived by computing a unitary simultaneous
triangularization (generalized Schur form) ofA andE inO(n3) operations, then using
inverse iteration or inverse Lanczos, as described by Trefethen [28] andWright [31],
to compute ‖(zE − A)−1‖ at each grid point in O(n2) operations. For the structured
Loewner pencils of interest here, one can compute ‖(zE − A)−1‖ inO(n2) operations
without recourse to the O(n3) preprocessing step, as proposed in Sect. 4.

Remark 3 Definition2 can be extended to δ = 0 by only perturbing A [23]:

σ (1,0)
ε (A, E) = {z ∈ C is an eigenvalue of the pencil zE − (A + �)

for some � ∈ Cn×n with ‖�‖ < ε}.
= {z ∈ C : ‖(zE − A)−1‖ > 1/ε}.

This definition may be more suitable for cases where E is fixed and uncertainty in
the system only emerges, e.g., through physical parameters that appear in A.

Remark 4 Since we ultimately intend to study the pseudospectra σ
(γ,δ)
ε (Ls, L) of

Loewner matrix pencils, one might question the use of generic perturbations �,� ∈
Cn×n in Definition2. Should we restrict � and � to maintain Loewner structure,
i.e., so that Ls + � and L + �maintain the coupled shifted Loewner–Loewner form
in (1)? Such sets are called structured pseudospectra.

Three considerations motivate the study of generic perturbations �,� ∈ Cn×n:
one practical, one speculative, and one philosophical. (a) Beyond repeatedly comput-
ing the eigenvalues of Loewner pencils with randomly perturbed data, no systematic
method is known to compute the coupled Loewner structured pseudospectra, i.e., no
analogue of the resolvent-like definition (10) is known. (b) Rump [25] showed that
in many cases, preserving structure has little effect on the standard matrix pseu-
dospectra. For example, the structured ε-pseudospectrum of a Hankel matrix H
allowing only complex Hankel perturbations exactly matches the unstructured ε-
pseudospectrum σε(H) based on generic complex perturbations [25, Theorem 4.3].
Whether a similar results holds for Loewner structured pencils is an interesting
open question. (c) If one seeks to analyze the behavior of dynamical systems (as
opposed to eigenvalues of nearby matrices), then generic perturbations give much
greater insight; see [29, p. 456] for an example where real-valued perturbations do
not move the eigenvalues much toward the imaginary axis (hence the real structured
pseudospectra are benign), yet the stable system still exhibits strong transient growth.

As we shall see in Sect. 6, Definition2 provides a helpful tool for investigating
the sensitivity of eigenvalues of matrix pencils. A different generalization of Defini-
tion1 gives insight into the transient behavior of solutions of Eẋ(t) = Ax(t). This
approach is discussed in [29, Chap. 45], following [23, 24], and has been extended
to handle singular E in [8] (for differential-algebraic equations and descriptor sys-
tems). Restricting our attention here to nonsingular E, we analyze the conventional
(single matrix) pseudospectra σε(E−1A). From these sets one can develop various
upper and lower bounds on ‖etE−1A‖ and ‖x(t)‖ [29, Chap. 15]. Here we shall just
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state one basic result. If sup{Re(z) : z ∈ σε(E−1A)} = K ε for some K ≥ 1 (where
Re(·) denotes the real part of a complex number), then

sup
t≥0

‖etE−1A‖ ≥ K . (11)

This statement implies that there exists some unit-length initial condition x(0) such
that ‖x(t)‖ ≥ K , even though σ(A, E)may be contained in the left half-plane. (Opti-
mizing this bound over ε > 0 yields the Kreiss Matrix Theorem [29, (15.9)].)

Pseudospectra of matrix pencils provide a natural vehicle to explore that stability
of the matrix pencil associated with the Loewner realization in (6). We shall thus
investigate eigenvalue perturbations via σ

(γ,δ)
ε (̂A,̂E) = σ

(γ,δ)
ε (Ls, L) and transient

behavior via σε(L−1Ls).

4 Efficient Computation of Loewner Pseudospectra

We first present a novel technique for efficiently computing pseudospectra of large
Loewner matrix pencils, σ (γ,δ)

ε (Ls, L), using the equivalent definition given in (10).
When the Loewner matrix L is nonsingular, we employ inverse iteration to exploit
the structure of the Loewner pencil to compute ‖(zL − Ls)

−1‖ (in the two-norm)
using onlyO(n2) operations. This avoids the need to compute an initial simultaneous
unitary triangularization of Ls and L using the QZ algorithm, an O(n3) operation.

Inverse iteration (and inverse Lanczos) for ‖(zL − Ls)
−1‖ requires computing

(zL − Ls)
−∗(zL − Ls)

−1u (12)

for a series of vectorsu ∈ Cn (e.g., see [29,Chap. 39]).We invoke a property observed
by Mayo and Antoulas [19], related to (2): by construction, the Loewner and shifted
Loewner matrices satisfy Ls − L� = V∗R. Thus the resolvent can be expressed
using only L and not Ls :

(zL − Ls)
−1 = (L(zI − �) − V∗R)−1.

We now use the Sherman–Morrison–Woodbury formula (see, e.g., [12]) to get

(zL − Ls)
−1 = (

I + ϒ(z)(I − Rϒ(z))−1R
)

(zI − �)−1L−1 = �(z)L−1,

where ϒ(z) := (zI − �)−1L−1V∗ and �(z) := (

I + ϒ(z)(I − Rϒ(z))−1R
)

(zI −
�)−1. As a result, we can compute the inverse iteration vectors in (12) as

(zL − Ls)
−∗(zL − Ls)

−1u = L−∗�(z)∗�(z)L−1u, (13)



68 M. Embree and A. C. Ioniţă

which requires solving several linear systems given by the same Loewner matrix L,
e.g., L−1u, L−1V∗.

Crucially, solving a linear system involving a Loewner matrix L ∈ Cn×n can
be done efficiently in only 2(m + p + 1)n2 operations, since L has displacement
rank m + p. More precisely, L is a Cauchy-like matrix that satisfies the Sylvester
equation (2) given by diagonal generator matrices � and M and a right-hand side
of rank at most m + p, i.e., rank(L∗W − V∗R) ≤ m + p. The displacement rank
structure of L can be exploited to compute its LU factorization in only 2(m + p)n2

flops (see [11] and [12, Sect. 12.1]). Given the LU factorization of L, solving L−1u in
(13) via standard forward and backward substitution requires another 2n2 operations.

Next, multiplying �(z) with the solution of L−1u requires a total of 2mn2 +
(4m2 + 6m + 2)n + 2

3m
3 − m2 operations, namely (to leading order on the factor-

izations):

• 2mn2 + 2mn operations to compute ϒ(z) ∈ Cn×m ;
• m2(2n − 1) + m operations to compute I − Rϒ(z) ∈ Cm×m ;
• 2

3m
3 + 2m2n operations to solve (I − Rϒ(z))−1R ∈ Cm×n via

an LU factorization followed by n forward and backward substitutions;
• n + m(2n − 1) + (2m − 1)n + 2n operations to multiply �(z) with L−1u.

Finally, multiplying with L−∗�(z)∗ in (13) requires an additional 2n2 + 2mn2 +
(4m2 + 6m + 2)n + 2

3m
3 − m2 operations, bringing the total cost of computing (13)

to 2(3m + p + 1)n2 + 4(2m2 + 3m + 1)n + 4
3m

3 − 2m2 operations.
In practice, the sizes of the right and left tangential directions are much smaller

than the size of the Loewner pencil, i.e., m, p � n. For example, for scalar data
(associated with SISO systems), m = p = 1. Therefore, in practice, computing (13)
can be done in only O(n2) operations.

Partial pivoting can be included in the LU factorization of the Loewner matrix
L to overcome numerical difficulties. Adding partial pivoting maintains the O(n2)
operation count for the LU factorization of L (see [12, Sect. 12.1]), and hence com-
puting (13) can still be done in O(n2) operations. The appendix gives a MATLAB
implementation of this efficient inverse iteration.

Wemeasure these performance gains for a Loewner pencil generated by sampling

f (x) = ∑8
k=1(−1)k+1

(

1 + 100(x − k)2
)−1/2 + (−1)k+1

(

1 + 100(x − k − 1/2)2
)−1/2

at 2n points uniformly spaced in the interval [1, 8]. We compare our new O(n2)
Loewner pencil inverse iteration against a standard implementation (see [29, p. 373])
applied to a simultaneous triangularization of Ls and L. (The simultaneous triangu-
larization costs O(n3) but is fast, as MATLAB’s qz routine invokes LAPACK code.
For a fair comparison, we test against a C++ implementation of the fast Loewner
code, compiled into a MATLAB .mex file.) Table1 shows timings for both imple-
mentations by computing ‖(zL − Ls)

−1‖ on a 200 × 200 grid of points. Exploiting
the Loewner structure gives a significant performance improvement for large n.

Wenext examine two simple examples involving full-rank realization of SISO sys-
tems, to illustrate the kinds of insights one can draw from pseudospectra of Loewner
pencils. (For these small examples we use the standard O(n3) algorithm.)
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Table 1 Comparison of speed of computing σ
(1,1)
ε (Ls , L) using the fast Loewner algorithm versus

a generic inverse iteration method applied to simultaneous triangularizations of Ls and L

n O(n2) algorithm (s) O(n3) algorithm (s)

100 1.85 1.65

200 6.75 6.75

300 17.24 33.30

400 49.15 65.05

5 Example 1: Eigenvalue Sensitivity and Transient
Behavior

We first consider a simple controllable and observable SISO system with n = 2:

E = I, A =
[−1.1 1

1 −1.1

]

, B =
[

0
1

]

, C = [

0 1
]

. (14)

ThisA is symmetric negative definite, with eigenvalues σ(A) = {−0.1,−2.1}. Since
the system is SISO, the transfer function H(s) = C(sI − A)−1B maps C to C, and
hence the choice of “interpolation directions” is trivial (though the division into “left”
and “right” points matters). We take � = ν = 2 left and right interpolation points,
with r1 = r2 = 1 and �1 = �2 = 1. We will study various choices of interpolation
points, all of which satisfy, for each ẑ ∈ {λ1, λ2, μ1, μ2},

rank(̂z L − Ls) = rank(L) = rank(Ls) = n = 2. (15)

This basic set-up makes it easy to focus on the influence of the interpolation points
λ1, λ2, μ1, μ2. We will use the pseudospectra σ (1,1)

ε (Ls, L) to examine how the
interpolation points affect the stability of the eigenvalues of the Loewner pencil.

Table2 records four different choices of {λ1, λ2, μ1, μ2}; Fig. 1 shows the cor-
responding pseudospectra σ (1,1)

ε (Ls, L). All four Loewner realizations match the
eigenvalues of A and satisfy the interpolation conditions. However, the pseudospec-
tra show how the stability of the eigenvalues −0.1 and −2.1 differs across these

Table 2 Right and left interpolation points for the two-dimensional SISO system (14).
The two right columns report the singular values of the Loewner matrix L

Example λ1 λ2 μ1 μ2 s1(L) s2(L)

(a) 0 1 1i −1i 6.9871212 0.0731542

(b) 0.25 0.75 2i −2i 1.0021659 0.0296996

(c) 0.40 0.60 4i −4i 0.3605151 0.0057490

(d) 8 9 10 11 0.0035344 0.0000019
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Fig. 1 Boundaries of pseudospectra σ
(1,1)
ε (Ls , L) for four Loewner realizations of the system (14)

using the interpolation points in Table2. All four realizations correctly give σ(Ls , L) = σ(A),
but σ

(1,1)
ε (Ls , L) show how the stability of the realized eigenvalues depends on the choice of

interpolation points. In this and all similar plots, the colors denote log10(ε). Thus, in plot (d), there
exist perturbations to Ls and L of norm 10−6.5 that move an eigenvalue into the right half-plane

four realizations. From example (a) to (d), these eigenvalues become increasingly
sensitive as the interpolation points move farther from σ(A). Table2 also shows the
singular values of the Loewner matrix L, demonstrating how the second singular
value s2(L) decreases as the eigenvalues become increasingly sensitive. (Taken to a
greater extreme, it would eventually be difficult to determine if L truly is rank 2.)

Remark 5 By Remark1, note that if ε < smin(L), then σ (1,1)
ε (Ls, L) will be

unbounded. Thus the decreasing values of smin(L) in Table2 suggest the enlarging
pseudospectra seen in Fig. 1. For example, in case (d) the ε = 10−5 pseudospectrum
σ (1,1)

ε (Ls, L) must contain the point at infinity.

Contrast these results with the standard pseudospectra of A itself, σε(A) =
σ (1,0)

ε (A, I) shown at the top of Fig. 2. Since A is real symmetric (hence normal),
σε(A) is the union of open ε-balls surrounding the eigenvalues. Figure2 compares
these pseudospectra to σε(L−1Ls), which give insight into the transient behavior of
solutions to Lẋ(t) = Lsx(t), e.g., via the bound (11). (Since Ls − L� = V∗R, and
m = 1, L−1Ls = � + L−1V∗R is a rank-1 update of the matrix � [19, p. 643].)
The top plot shows σε(A), whose rightmost extent in the complex plane is always
ε − 0.1: no transient growth is possible for this system. However, in all four Loewner
realizations, σε(L−1Ls) extends more than ε into the right-half plane for ε = 100
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Fig. 2 The pseudospectra σε(A) (top), compared to σε(L−1Ls) for four Loewner realizations of
the system (14) using the interpolation points in Table2. In all cases σ(L−1Ls) = σ(A), but the
pseudospectra of L−1Ls are all quite a bit larger than σε(A)

(orange level curve), indicating by (11) that transient growth must occur for some
initial condition. Figure3 shows this growth for all four realizations: the more remote
interpolation points lead to Loewner realizations with greater transient growth.

6 Example 2: Partitioning Interpolation Points and Noisy
Data

To further investigate how the interpolation points influence eigenvalue stability for
the Loewner pencil, consider the SISO system of order 10 given by

E = I, A = diag(−1,−2, . . . ,−10), B = [1, 1, . . . , 1]T , C = [1, 1, . . . , 1].
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Fig. 3 Evolution of the norm of the solution operator for the original system (black dashed line)
and the four interpolating Loewner models. The instability revealed by the pseudospectra in Fig. 2
corresponds to transient growth in the Loewner systems

Figure 4 shows σ (1,1)
ε (Ls, L) for six configurations of the interpolation points.

Plots (a) and (b) use the points {−10.25,−9.75,−9.25, . . . ,−1.25,−0.75}; in
plot (a) the left and right points interleave, suggesting slower decay of the singular
values of L, as discussed in Sect. 2.1; in plot (b) the left and right points are separated,
leading to faster decayof the singular values of L and considerably larger pseudospec-
tra. (The Beckermann–Townsend bound [3, Corollary 4.2] applies to this case.)
Plot (c) further separates the left and right points, giving even larger pseudospectra. In
plots (d) and (f), complex interpolation points {−5 ± 0.5i,−5 ± 1.0i, . . . ,−5 ± 5i}
are mostly interleaved (d) (keeping conjugate pairs together) and separated (f): the
latter significantly enlarges the pseudospectra. Plot (f) uses the same relative arrange-
ment that gave such nice results in plot (a) (the singular value bound (3) is the same
for (a) and (e)), but their locations relative to the poles of the original system differ.
The pseudospectra are now much larger, showing that a large upper bound in (3) is
not alone enough to guarantee small pseudospectra. (Indeed, the pseudospectra are
so large in (e) and (f) that the plots are dominated by numerical artifacts of comput-
ing ‖(zL − Ls)

−1‖.) Pseudospectra reveal the great influence interpolation point
location and partition can have on the stability of the realized pencils.

Pseudospectra also give insight into the consequences of inexact measurement
data. (For a recent study of how noisy data affects the recovered transfer function,
see [6].) Consider the following experiment. Take the scenario in Fig. 4a, the most
robust of these examples. Subject each right and left measurement {w1, . . . , w�} ⊂ C
and {v1, . . . , vν} ⊂ C to random complex noise of magnitude 10−1, then build the
Loewner pencil ẑL − ̂Ls from this noisy data. How do the badly polluted measure-
ments affect the computed eigenvalues? Figure5 shows the results of 1,000 random
trials, which can depart from the true matrices significantly:

3.06 ≤ ‖̂Ls − Ls‖ ≤ 5.88, 0.49 ≤ ‖̂L − L‖ ≤ 0.63.
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Fig. 4 Pseudospectra σ
(1,1)
ε (Ls , L) for six Loewner realizations of a SISO system of order n =

10 with poles σ(A) = {−1,−2, . . . ,−10}. Black dots show computed eigenvalues of the pencil
zL − Ls (which should agree with σ(A), but a few are off axis in plot (e)); blue squares show the
right interpolation points {λi }; red diamonds show the left points {μ j }

Despite these large perturbations, the recovered eigenvalues are remarkably accurate:
in 99.99% of cases, the eigenvalues have absolute accuracy of at least 10−2, indeed
more accurate than the measurements themselves. The pseudospectra in Fig.4a sug-
gest good robustness (though the pseudospectral level curves are pessimistic by one
or two orders of magnitude). Contrast this with the complex interleaved interpolation
points used in Fig. 4d. Now we only perturb the data by a small amount, 5 · 10−9, for
which the perturbed Loewner matrices (over 1,000 trials) satisfy

1.52 · 10−7 ≤ ‖̂Ls − Ls‖ ≤ 2.03 · 10−7, 2.57 · 10−8 ≤ ‖̂L − L‖ ≤ 3.14 · 10−8.
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Fig. 5 Eigenvalues of the perturbed Loewner pencil ̂Ls − ẑL (gray dots), constructed from mea-
surements that have been perturbed by random complex noise of magnitude 10−1 (left) and 5 · 10−9

(right) (1,000 trials). As the pseudospectra in Fig. 4a, d indicate, the interleaved interpolation points
on the left are remarkably stable, while the similarly interleaved complex interpolation points on
the right give a Loewner pencil that is highly sensitive to small changes in the data

With this mere hint of noise, the eigenvalues of the recovered system erupt: only
36.73% of the eigenvalues are correct to two digits. (Curiously, −4 and −5 are
always computed correctly, while −8, −9, and −10 are never computed correctly.)
The pseudospectra indicate that the leftmost eigenvalues aremore sensitive, and again
hint at the effect of the perturbation (though off by roughly an order of magnitude
in ε).3 Measurements of real systems (or even numerical simulations of nontrivial
systems) are unlikely to produce such high accuracy; pseudospectra can reveal the
virtue or folly of a given interpolation point configuration.

In these simple experiments, pseudospectra have been most helpful for indicating
the sensitivity of eigenvalueswhen the left and right interpolation points are favorably
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Fig. 6 Eigenvalues of the perturbed Loewner pencil ̂Ls − ẑL (gray dots), constructed from mea-
surements that have been perturbed by random complex noise of magnitude 10−10 (10,000 trials).
As suggested by the pseudospectra plots, the interleaved interpolation points (left) are more robust
to perturbations than the separated points (right), though the difference is not as acute as suggested
by Fig. 4d, f. For example, in these 10,000 trials, the least stable pole (−9) is computed accurately
(absolute error less than 0.01) in 10.97% of trials on the left, and 0.29% on the right

3 One might also consider the ε = 1 level curve of σ
(γ
,δ
)
ε (Ls , L) for γ
 = max{‖Ls − ̂Ls‖} and

δ
 = max{‖L − ̂L‖}.
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partitioned (e.g., interleaved). They seem tobe less precise at predicting the sensitivity
to noise of poor left/right partitions of the interpolation points. Figure6 gives an
example, based on the two partitions of the same interpolation points in Fig. 4d, f. The
pseudospectra suggest that the eigenvalues for plot (f) should bemuchmore sensitive
to noise than those for the interleaved points in plot (d). In fact, the configuration
in plot (f) appears to be only marginally less stable to noise of size 10−10, over
10,000 trials. This is a case where one could potentially glean additional insight
from structured Loewner pseudospectra.

7 Conclusion

Pseudospectra provide a tool for analyzing the stability of eigenvalues of Loewner
matrix pencils. Elementary examples show how pseudospectra can inform the selec-
tion and partition of interpolation points, and bound the eigenvalues of Loewner
pencils in the presence of noisy data. Using a different approach to pseudospectra,
we showed that while the realized Loewner pencil matches the poles of the original
system, it need not replicate transient dynamics of Eẋ(t) = Ax(t); pseudospectra
can reveal potential transient growth, which varies with the interpolation points.

In this initial study we have intentionally used simple examples involving small,
symmetric A and E = I. Realistic examples, e.g., with complex poles, nonnormal
A, singularE, multiple inputs and outputs, and rank-deficient Loewner matrices, will
add additional complexity. Moreover, we have only sought to realize a system whose
order is known; we have not addressed pseudospectra of the reduced pencils (7) in
the context of data-driven model reduction.

Structured Loewner pseudospectra provide another avenue for future study. Struc-
tured matrix pencil pseudospectra have not been much investigated, especially with
Loewner structure. Rump’s results for standard pseudospectra [25] suggest the fol-
lowing problem; its positive resolution would imply that the Loewner pseudospec-
trum σ

(γ,δ)
ε (Ls, L) matches the structured Loewner matrix pseudospectrum.

Given any ε, γ, δ > 0, Loewner matrix L and associated shifted Loewner matrix
Ls , suppose z ∈ σ

(γ,δ)
ε (Ls, L). Does there exist some Loewner matrix ̂L and associ-

ated shifted Loewner matrix ̂Ls such that z ∈ σ(̂Ls,̂L) and

‖̂Ls − Ls‖ < εγ, ‖̂L − L‖ < εδ ?

Acknowledgements This work was motivated by a question posed by Thanos Antoulas, who we
thank not only for suggesting this investigation, but also for his many profound contributions to
systems theory and his inspiring teaching and mentorship. We also thank Serkan Gugercin and an
anonymous referee for many helpful comments. (Mark Embree was supported by the U.S. National
Science Foundation under grant DMS-1720257.)
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Appendix

We provide a MATLAB implementation that computes the inverse iteration vectors
u in (12) in only O(n2) operations by exploiting the Cauchy-like rank displacement
structure of the Loewner pencil, as shown in (13). Namely, we start from the general
O(n3) MATLAB code from [29, p. 373] and modify it to account for the Loewner
structure, and hence achieve O(n2) efficiency. This code computes ‖(zL − Ls)

−1‖
for a fixed z. To compute pseudospectra, one applies this algorithm on a grid of z
values. In that case, the O((m + p)n2) structured LU factorization in the first line
need only be computed once for all z values (just as the standard algorithm computes
an O(n3) simultaneous triangularization using the QZ algorithm once for all z).

[L1,U1,piv1] = LUdispPiv(mu,lambda,[V’ L’],[R.’ -W.’]);

L1t = L1’; U1t = U1’;

z = 1./(z-lambda); Upz = z.*(U1\(L1\V(:,piv1)’));

[L2,U2,piv2] = lu(eye(m)-R*Upz,’vector’); R2 = R(piv2,:);

L2t = L2’; U2t = U2’; R2t = R2’; Upzt = Upz’;

applyTheta = @(x) x+Upz*(U2\(L2\(R2*x)));

applyThetaTranspose = @(x) x+R2t*(L2t\(U2t\(Upzt*x)));

sigold = 0;

for it = 1:maxit

u = U1\(L1\u(piv1));

u = conj(z).*applyThetaTranspose(applyTheta(z.*u));

u(piv1) = L1t\(U1t\u);

sig = 1/norm(u);

if abs(sigold/sig-1) < 1e-2, break, end

u = sig*u; sigold = sig;

end

sigmin = sqrt(sig);

The function LUdispPiv computes the LU factorization (with partial pivoting)
of the Loewner matrix L in O((m + p)n2) operations. The Loewner matrix is not
formed explicitly; instead, the function uses the raw interpolation data λi , ri , wi

and μ j , � j , v j . The implementation details for LUdispPiv can be found in [12,
Sect. 12.1]. TheLUfactorization of I − RV∗(z) ∈ Cm×m is givenbyL2 andU2,while
the first three lines of the loop represent the computation of L−∗�(z)∗�(z)L−1u,
as defined in (13). Note the careful grouping of terms and the use of elementwise
multiplication .* to keep the total operation count at O(n2).
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