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Abstract We study what a referee has asked us to call the “second Berrut rational
interpolant”, introduced thirty years ago, which is linear in the interpolated func-
tion values and converges exponentially when the nodes are conformal images of
Chebyshev points.We show that the Lebesgue constant for this interpolant grows just
logarithmically with the number of nodes under reasonable assumptions, extending
results of Bos et al. in 2013 for the corresponding first interpolant.
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1 Introduction

Polynomial interpolation has been a standard computational tool in applied mathe-
matics at least since the time of Newton, Waring and Lagrange [12]. In its simplest
version, it consists in associating to a vector x = [x0, . . . , xn]T of, say, n + 1 distinct
abscissae, and a vector f = [ f0, . . . , fn]T of corresponding ordinates, which may
be values of a function f or not, the unique polynomial pn[f] of degree at most
n that takes on the value f j at x j , j = 0, . . . , n. The corresponding mapping has
several nice properties. It is linear: the polynomial interpolating a linear combina-
tion of f-vectors is the linear combination of the corresponding polynomials, i.e.,
pn[αf + βg] = αpn[f] + β pn[g], ∀ α,β ∈ IR; moreover, the uniqueness makes it
a projection, a property that permits the study of the conditioning by means of the
Lebesgue constant.

But it has its drawbacks, the main one being the fact that it is useful for large n
only if the nodes are located in particular ways in the interpolation interval [a, b] ≡
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[min x j ,max x j ] [19, Chap. 5]. Long before the advent of electronic computing, for
instance, Runge showed that, for the most important case of equidistant nodes, the
interpolant of a meromorphic function converges only if the poles of the latter lie
outside a certain region containing [a, b] [12]. And even for functions, such as ex , for
which the interpolant converges for equidistant points, it is extremely ill-conditioned
for n large [13, Sect. 5.5].

It is therefore appropriate to look for alternative infinitely smooth interpolants
which work well for general sets of nodes. In [3], the author took advantage of
the observation by Werner [22] that, by modifying the so-called weights λ j in the
barycentric formula

pn[f](x) =
n∑

j=0

λ j

x − x j
f j

/
n∑

j=0

λ j

x − x j
, λ j := 1

/ ∏

k �= j

(x j − xk), (1)

for pn , one obtains a rational function, say rn[ f ], of degree ≤ n, i.e., with both
numerator and denominator degrees at most n; the new suggestion was to choose
weights β j different from the λ j to obtain a good denominator for the given set
of nodes, instead of the unique denominator 1 for all sets of nodes in polynomial
interpolation. That way the two properties of linearity and projection are preserved
[4].

A good choice of the β j requires the ordering of the nodes according to

a = x0 < x1 < · · · < xn = b ; (2)

indeed, the weights should alternate in sign, for otherwise the interpolant will not
reproduce all linear functions [14]. In view of this, the simplest possible choice of
the weights, as proposed in [3], is

β j = (−1) j , (3)

independently of the values of the nodes. We denote the corresponding interpolant
by R0; the referee has suggested that this should be called the “first Berrut rational
interpolant” (see [14]). It was shown in [3] that R0 has no real poles; moreover,
its O(h)-convergence (where h := maxi=0,...,n−1(xi+1 − xi )

)
and well-conditioning

were conjectured. The O(h)-convergence was proved in [11] under a local mesh
ratio condition.

For an approximation operator which is a projection, the conditioning is best
addressed through its Lebesgue constant Λn (see Sect. 2). For R0, the latter has been
shown to increase only logarithmically for the most frequently used sets of nodes
[9], a behaviour as nice as that of polynomial interpolation with the most favourable
nodes (see also [21]).

However, by considering the even rational trigonometric interpolant obtained by
transferring the polynomial onto the circle with the transform x = cosφ [3], one
comes to the conclusion that the first and last terms of the sums in both the numerator
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and the denominator of the interpolant should appear only once and the other terms
twice. After simplifying by a factor of two, one sees that the weights [3]

β j = (−1) jδ j , δ j :=
{
1/2, j = 0 or j = n,

1, otherwise,
(4)

should be better than (3). (To be precise, this formula for the weights holds in the
present case, where x0 = a and xn = b, i.e., where the interval [x0, xn] covers the
whole interval of interpolation: when the interpolant is to be used beyond one or both
extremities, slightly more complicated formulae involving trigonometric functions
should be used, see [3].)We denote the corresponding interpolant by R1, the “second
Berrut rational interpolant”. When the nodes are the Chebyshev points of the second
kind, the weights (4) coincide with the λ j [13, p. 252], R1 ≡ pn[f], and exponential
convergence is achieved if f is analytic in an ellipse containing [a, b] [20, p. 57].
It was shown in [3] that R1 does not have any poles in [a, b] for any set of nodes,
and conjectured in the same work that R1 is well-conditioned. Additionally, it was
proved in [2] that R1 retains the exponential convergencewhen the x j are conformally
shifted Chebyshev nodes, and conjectured that the convergence is O(h2) in general;
conditions guaranteeing the latter are given in [5].

In 2007, Floater andHormann [11] presented a family of interpolantswith a higher
order of convergence, which they denote by d + 1, d ∈ INN0. For every d and every
set of nodes x, these authors give a linear rational interpolant r (d)

n [f], depending on
d, such that ‖r (d)

n [f] − f ‖ = O(hd+1). After constructing the interpolant as a blend
of the n − d interpolating polynomials corresponding to the subvectors of d + 1
consecutive nodes, they provide the weights of its barycentric representation (which
always exists, as shown in [7]). For equidistant nodes, r (0)

n [f] and r (1)
n [f] correspond

to R0 and R1, respectively; however, this is not the case with other sets of nodes.
In the present paper, we study the Lebesgue constant of R1 for equidistant and

well-spaced nodes such as conformally shifted Chebyshev points of the second kind,
which are the most important in practice. Our results are extensions of results of Bos
et al. [9] for R0.

2 The Conditioning of the Interpolant R1

The conditioning of a problem is the sensitivity of its solution to perturbations of its
data. (In many contexts, this is called stability, but in numerical analysis the latter
term should be reserved for the stability of an algorithm [13, p. 33].) Here the data
are the function values f and the solution is the interpolant

R1(x) =
n∑

j=0

′′
(−1) j f j
x − x j

/ n∑

i=0

′′
(−1) j

x − x j
, (5)
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where the double prime attached to a sum indicates that its first and last terms are
halved.

The fact that R1 is a linear projection operator into a linear space of functions
with a Lagrange basis (i.e., a basis {b j (x)} with the Lagrange property b j (xi ) = δi j )
leads to the fact that the norm of that operator, called its Lebesgue constant, provides
a good characterization of the conditioning. Indeed, if one perturbs each f j by a
number e j , i.e., perturbing the vector f with the vector e := (e j ), then for a linear
interpolant rn[f]

rn[f + e](x) =
n∑

j=0

( f j + e j )b j (x).

The corresponding perturbation of the interpolant amounts to

rn[f + e](x) − rn[f](x) =
n∑

j=0

e jb j (x)

so that

∣∣rn[f + e](x) − rn[f](x)
∣∣ ≤

n∑

j=0

|e j | · |b j (x)|

≤ ‖e‖
n∑

j=0

|b j (x)| (6)

where ‖ · ‖ denotes the vector infinity norm.
Equation (6) gives a local bound for the perturbation induced by e. The function

λn(x) :=
n∑

j=0

|b j (x)|

is called the Lebesgue function of the interpolation operator, its infinity norm

Λn := ‖λn‖

the Lebesgue constant. (It turns out that Λn is the norm of the interpolation operator
on the space of continuous functions.) Equation (6) then yields

‖rn[f + e] − rn[f]‖ ≤ Λn · ‖e‖;

rn being linear, this means ‖rn[e]‖/‖e‖ ≤ Λn; the global relative perturbation of the
interpolant is bounded by Λn .
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Definition 1 We say that Λn grows at most logarithmically with n, if

Λn ≤ a + b ln n (7)

for some positive constants a and b and every n > n0, n0 ∈ INN.

The rational interpolant rn[f] obtained by replacing the weights λ j in (1) by some
β j independent of f can bewritten as

∑n
j=0 f j b j (x)with theLagrange basis functions

b j (x) := β j

x − x j

/ n∑

i=0

βi

x − xi
,

so that [7]

λn(x) =
n∑

j=0

∣∣∣∣
β j

x − x j

∣∣∣∣

/ ∣∣∣∣∣

n∑

i=0

βi

x − xi

∣∣∣∣∣ . (8)

For R1 this yields

λn(x) =
n∑

i=0

′′
1

|x − xi |
/

D(x),

where

D(x) :=
∣∣∣∣∣

n∑

i=0

′′
(−1)i

x − xi

∣∣∣∣∣ .

If x is one of the x j ’s, a limit calculation in (8) shows that λn(x) = 1. Otherwise,
let xk be the node at the immediate left of x , i.e., x ∈ (xk, xk+1). If k is odd and
≤ n − 5, then

D(x) = · · · − δk−1

x − xk−1
+ 1

x − xk
+ 1

xk+1 − x
− 1

xk+2 − x
+ · · · ,

where δ j is defined in (4). Therefore wemay write the numerator of λn(x) as D(x) +
2N (x), where

N (x) = · · · + δk−3

x − xk−3
+ δk−1

x − xk−1
+ 1

xk+2 − x
+ 1

xk+4 − x
+ · · ·

(setting δ j = 0 for j < 0) to obtain

λn(x) = 1 + 2N (x)/D(x).

Note that all terms of N are positive. If k is even, one may multiply all terms in D
and N by −1 to get the same expression for λn .
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At first sight, it seems that, in view of the factors 1/2 arising in the first and last
terms, one must study the two extremal intervals [x0, x1] and [xn−1, xn] separately
from the others. However, a shift by x0+xn

2 =: m of the interval [x0, xn] together with
the abscissae x j , i.e.,

x̃ j := x j − m, x̃ := x − m

(so that m becomes 0) without change of the weights just shifts λn(x). Moreover, a
reflection x̂ j := −x j and x̂ := −x reflects λn(x) as well. Also, λn(x) is unchanged
by a multiplication of all weights by−1. Thus, if there are at least two points on each
side ofm, we may bound λn(x) only on [x0,m]: bounds for x ∈ (m, xn] are obtained
after a reflection with respect to m and a multiplication of the weights by −1, if n
is odd. This shows that it suffices to treat just the case x ∈ [x0, x1] separately, and
explains why the δ j ’s appear to the left only in D and N above.

Lemma 1 For x ∈ (xk, xk+1), 1 ≤ k ≤ [
n
2

]
,

D(x) ≥ A1 + A2, (9)

where

A1 = xk − xk−1

(xk+1 − xk−1)(xk+1 − xk)
, A2 = xk+2 − xk+1

(xk+1 − xk)(xk+2 − xk)
,

and
N (x) ≤ B1 + B2 (10)

where

B1 =
∑

i≥0

′ 1

xk − xk−1−2i
, B2 =

∑

i≥0

′ 1

xk+2+2i − xk+1

and the prime means that, if present, the terms 1/(xk − x0), resp. 1/(xn − xk+1), are
to be multiplied by 1/2.

Proof For the denominator,

D(x) ≥ D1(x) + D2(x),

where

D1(x) := − δk−1

x − xk−1
+ 1

x − xk
≥ xk − xk−1

(x − xk−1)(x − xk)
,

and

D2(x) := 1

xk+1 − x
− 1

xk+2 − x
= xk+2 − xk+1

(xk+1 − x)(xk+2 − x)
.

(In D, all pairs of terms corresponding to nodes to the left of xk−1 are positive, and
so is the term corresponding to x0 if k is even; the same holds accordingly to the
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right of xk+1. When k = 1, the factor δ0 in front of 1/(x − x0)makes D even larger.)
Since D1 and D2 are decreasing, respectively increasing, for x ∈ (xk, xk+1),

D1(x) ≥ D1(xk+1) = A1, D2(x) ≥ D2(xk) = A2.

For the numerator,
N (x) = N1(x) + N2(x),

where

N1(x) = · · · + δk−3

x − xk−3
+ δk−1

x − xk−1
,

and

N2(x) = 1

xk+2 − x
+ 1

xk+4 − x
+ · · · .

Since N1 and N2 are decreasing and increasing, respectively, for x ∈ (xk, xk+1),

N1(x) ≤ N1(xk) = B1, N2(x) ≤ N2(xk+1) = B2.

�
One proves in a similar way the following corresponding results for k = 0.

Lemma 2 For x ∈ (x0, x1),
D(x) ≥ A1 + A2, (11)

where

A1 = 1/2

x1 − x0
, A2 = x2 − x1

(x1 − x0)(x2 − x0)
,

and
N (x) ≤ B2 (12)

where

B2 =
∑

i≥0

′ 1

x2i+2 − x1
.

2.1 Equidistant Nodes

For uniformly spaced points xk = a + kh, h = (b − a)/n, the lemmas imply that
D(x) ≥ 1/h for every x ∈ [a, b]. Moreover,

B1 ≤ 1

h

(
1 + 1

3
+ 1

5
+ · · · + 1

�

)
, � =

{
k − 1, k even,

k, k odd,
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and

B2 ≤ 1

h

(
1 + 1

3
+ 1

5
+ · · · + 1

�

)
, � =

{
n − k − 1, n − k even,

n − k − 2, n − k odd,

so that N (x) < 1
h L with

L :=
(
1 + 1

2
+ 1

3
+ · · · + 1

k − 1
+ 1

k

)
+

(
1 + 1

2
+ 1

3
+ · · · + 1

n − k − 1

)
.

(13)
As in similar proofs, we now use the fact that ln(2 j + 1) is an upper bound of the
j th sum of the harmonic series, so that

L ≤ ln(2k + 1) + ln(2(n − k − 1) + 1),

which is maximized over real k in [0, n − 1] by k = (n − 1)/2, implying that

L ≤ 2 ln(n), (14)

and therefore,
λn(x) ≤ 1 + 4 ln(n).

Theorem 1 For uniformly spaced nodes, the Lebesgue constant of the interpolant
R1 grows at most logarithmically with n.

This result is already known as the case d = 1 of [8]. However, the above proof of
the bound for D does not make use of the original formula for the Floater–Hormann
interpolant, merely of the barycentric formula.

We have confirmed this logarithmic growth numerically. The second column of
Table1 displays Λn for doubling numbers of interpolation nodes. To check the cons-
tant b in the logarithmic growth, we have also computed after every pair (n, 2n) an
approximation â and b̂ in the logarithmic growth formula by solving the system of
equations

â + b̂ ln(2n + 2) = Λ2n+2

â + b̂ ln(n + 1) = Λn+1.

The corresponding values of b̂ are given in the third column of the table. Compared
with the number 2/π = 0.6366197723675814, they are in line with the main term
of the asymptotic formula for the Lebesgue constant of R0 given in [15, 23]. (All
the computations described in this article were performed inMATLAB onMacBook
Pro computers.)
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Table 1 The Lebesgue constant Λn for equidistant and shifted equidistant nodes. For each of the
two we give the constant itself as well as the empirical value b̂ of the factor of ln(n)

n + 1 Equidistant Shifted equidistant

ΛE
n b̂E ΛSE

n b̂SE

10 2.2220 2.2989

20 2.6839 0.66644 2.7574 0.66136

40 3.1414 0.65992 3.2185 0.66531

80 3.5904 0.64781 3.6687 0.64944

160 4.0357 0.64244 4.1142 0.64272

320 4.4789 0.63947 4.5575 0.63960

640 4.9212 0.63809 4.9998 0.63808

1280 5.3630 0.63735 5.4416 0.63735

2560 5.8045 0.63698 5.8831 0.63698

5120 6.2459 0.63680 6.3245 0.63680

10240 6.6873 0.63671 6.7658 0.63671

2.2 Well-Spaced Nodes

The article [9] introduces the following property of interpolation points.

Definition 2 For each n ∈ INN, let Xn := {xk}nk=0 be a set of interpolation nodes sat-
isfying property (2) and let

hk := xk+1 − xk, k = 0, . . . , n − 1.

An array X = (Xn)n∈INN of such sets is calledwell-spaced if there exist two constants
K and R, R ≥ 1, both independent of n, such that the three conditions

xk − xk−1

xk − x j
≤ K

k − j
, k = 1, . . . , n, j = 0, . . . , k − 1, (15)

xk+1 − xk
x j − xk

≤ K

j − k
, k = 0, . . . , n − 1, j = k + 1, . . . , n, (16)

hk
hk−1

≤ R,
hk−1

hk
≤ R, k = 1, . . . , n − 1, (17)

hold for every set of nodes Xn .

We shall indifferently call the array and the nodes well-spaced. Note that the
property of well-spacing is invariant with respect to translation or spacing of the
nodes.

The authors of [9] established that every such array leads to a logarithmic growth
of the Lebesgue constant of R0:
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Theorem 2 If X = (Xn)n∈INN is an array of well-spaced nodes, then the Lebesgue
constant of the interpolant R0 grows at most logarithmically with n.

We shall now use the above lemmas to show the same for R1. Let first k ≥ 1.
Then, according to (17),

A1 = hk−1

(xk+1 − xk−1)hk
≥ 1

xk+1 − xk−1
· 1

R

and

A2 = hk+1

hk(xk+2 − xk)
≥ 1

R
· 1

xk+2 − xk

so that

A1 + A2 ≥ 1

R

(
1

xk+2 − xk
+ 1

xk+1 − xk−1

)
. (18)

Moreover, xk+2 − xk = hk + hk+1 ≤ R(hk−1 + hk) = R(xk+1 − xk−1) and xk+1 −
xk−1 = hk−1 + hk ≤ (R + 1)hk , so that

A1 + A2 ≥ 1

R

( 1

R
+ 1

) 1

xk+1 − xk−1
≥ R + 1

R2

1

(R + 1)hk
= 1

R2hk
. (19)

If k = 0, we have in Lemma2

A1 + A2 ≥ A1 = 1

2h0
.

On the whole, we therefore have for x ∈ (xk, xk+1)

D(x) ≥ 1

Shk

with

S :=
{
1, k = 0,

R2, k > 0.

In the upper bound for N , possible factors 1/2 may be ignored. We compute for
k �= 0

B1 = 1

xk − xk−1
+ 1

xk − xk−3
+ 1

xk − xk−5
+ 1

xk − xk−7
+ · · ·

= 1

xk − xk−1

(
1 + xk − xk−1

xk − xk−3
+ xk − xk−1

xk − xk−5
+ xk − xk−1

xk − xk−7
+ · · ·

)
.



The Conditioning of a Linear Barycentric Rational Interpolant 33

By (15), this may be bounded as

B1 ≤ 1

hk−1

(
1 + K

3
+ K

5
+ K

7
+ · · ·

)
.

Similarly for B2:

B2 = 1

2

1

xk+2 − xk+1
+ 1

xk+4 − xk+1
+ 1

xk+6 − xk+1
+ 1

xk+8 − xk+1
+ · · ·

= 1

xk+2 − xk+1

(
1

2
+ xk+2 − xk+1

xk+4 − xk+1
+ xk+2 − xk+1

xk+6 − xk+1
+ xk+2 − xk+1

xk+8 − xk+1
+ · · ·

)
,

which by (16) may be majorized as

B2 ≤ 1

hk+1

(
1 + K

3
+ K

5
+ K

7
+ · · ·

)

with the same number of terms as in Sect. 2.1, so that with (13)

N (x) ≤
(

1

hk−1
+ 1

hk+1

)
K L

and thus with (19)

λn(x) ≤ 1 + 2R2

(
hk
hk−1

+ hk
hk+1

)
2K ln(n)

≤ 1 + 8K R3 ln(n).

If k = 0, B1 = 0 and B2 ≤ 1
h1

(
1 + K

3 + K
5 + · · · ) so that

N (x) ≤ 2

h1
K ln(n)

and

λn(x) ≤ 1 + h0
h1

4K ln(n) ≤ 1 + 4K R ln(n).

This establishes our first main theorem.

Theorem 3 If X = (Xn)n∈INN is an array of well-spaced nodes, then the Lebesgue
constant of the interpolant R1 grows at most logarithmically with n.
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2.3 Conformally Shifted Nodes

The complexity of the pseudospectral solution of a boundary value problem can
often be drastically reduced by a move of the points, for instance to improve the
conditioning of the system of equations to be solved, or to have more points close to
a steep gradient (front).

In [16], Kosloff and Tal-Ezer suggested applying such point shifts to loosen the
step restriction in the solution of the systems of ordinary differential equations arising
from the pseudospectral method of lines applied to time evolution problems. The
idea is to introduce, besides the interval I on which the function is to be interpolated,
another interval J containing the standard points (such as equidistant or Chebyshev).
Then, to obtain a particular set of points in I , a (one-to-one) conformal map of a
domain containing J , say g, is used, which applies J onto I , thereby determining
the desired shifted points. Since g is infinitely differentiable, the composite function
f ◦ g inherits the differentiability properties of f .
Recall that R1 coincides with the interpolating polynomial, when the nodes are

Chebyshev points of the second kind, so that it converges exponentially to interpo-
lated functions which are analytic. Recall also that R1 retains the exponential conver-
gence for the same class of functions, when the Chebyshev points of the second kind
are shifted conformally [2]. This example of use of R1 is likely the most important,
as it greatly improves the accuracy of pseudospectral solutions of boundary value
ordinary and partial differential equations whose solution displays large gradients:
see the applications in explosion modeling [18], fluid infiltration [10] and finance
[17]. We shall now see how the results of Bos et al. [9] and the above theorems imply
the logarithmic growth of the Lebesgue constant for such nodes.

Bos et al. work on the interval [0, 1]. This is indeed general, as one immediately
sees that a shift and a contraction/dilation of the interval of interpolation do not
modify the Lebesgue function (8) and the Lebesgue constant is thus unaffected by
such operations. These authors give the following definition of a (regular) distribution
function of nodes.

Definition 3 A function F ∈ C[0, 1] is a distribution function, if it is a strictly
increasing bijection of the interval [0, 1]. F is regular, if F ∈ C1[0, 1] and F ′ has a
finite number of zeros in [0, 1] with finite multiplicities.

Given a distribution function F and some n ∈ INN, the authors define the associated
interpolation nodes Xn = Xn(F) as the set of xk with

xk := F(k/n), k = 0, 1, . . . , n. (20)

They then prove the following result.

Theorem 4 If F is a regular distribution function and Xn are the associated inter-
polation nodes from (20) for every n ∈ INN, then the array of nodes X = (Xn)n∈INN is
well-spaced.
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Since a conformal map g cannot have any zero derivative in its domain [1, p. 133],
Theorem2 automatically yields the following results.

Corollary 1 The Lebesgue constants of R0 as well as of R1 with conformally shifted
equidistant points grow at most logarithmically with n.

Proof For R0, the result follows immediately fromTheorem3.5 in [9] andTheorem2
above, for R1 from Theorem3. �

Among their examples of regular distributions, Bos and al. give the extrema of
the Chebyshev polynomials, which are the Chebyshev points of the second kind.

Lemma 3 A composition of regular distribution functions is itself a regular distri-
bution function.

Proof This follows directly from the chain rule. �
Corollary 2 The Lebesgue constant of R1 with conformally shifted Chebyshev
points of the second kind grows at most logarithmically with n.

Proof Let g(y) be the conformal map of the interval containing the Chebyshev
points to the interpolation interval. g being conformal, its derivative does not have
any zeros, so that g is a regular distribution function on J . Then g ◦ F is a compo-
sition of regular distribution functions, thus a regular distribution function as well,
according to Lemma3. The corresponding array of nodes is well-spaced according
to Theorem4 and the Lebesgue constant of R1 with a well-spaced array grows at
most logarithmically (Theorem3). �

We have numerically verified this logarithmic behavior of the Lebesgue constant
with conformally shifted points. To increase the efficiency of methods for solving
differential problems, it is natural to move more points toward the location of a front.
A simple map for the case where the front lies in the center of the interval [−1, 1] is
that suggested by Kosloff and Tal-Ezer for another purpose and mentioned above,

x = gα(y) = arcsin(αy)

arcsin(α)
, 0 < α < 1. (21)

See the improvement in accuracy in [6]. In the limit α → 0, the nodes remain the
equidistant ones. In the limit α → 1, the singularities at ±1/α of gα tend toward the
extremities of the interval.

First we have repeated the experiment documented in columns 2 and 3 of Table1
for equidistant points shifted with the map (21) and α = 0.9. The results are in
columns 4 and 5: they demonstrate that the constant b in (7) seems quite independent
of the shift.

Then we have repeated the experiment of Table1, but now with Chebyshev points
of the second kind and shifted Chebyshev points of the second kind. The results,
given in Table2, seem to show that the main term of the Lebesgue constant does not
change much with a conformal shift of Chebyshev nodes, and is very close to the
one corresponding to equidistant points.
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Table 2 The Lebesgue constantΛn for Chebyshev points of the second kind, and the same shifted.
The values of b̂ have the same meaning as in Table1

n + 1 Chebyshev 2nd kind Shifted Chebyshev

ΛC
n b̂C ΛSC

n b̂SC

10 2.3619 2.5474

20 2.8371 0.68568 3.0219 0.68452

40 3.2948 0.66034 3.4794 0.66008

80 3.7442 0.64829 3.9287 0.64823

160 4.1895 0.64241 4.3740 0.64239

320 4.6328 0.63950 4.8173 0.63950

640 5.0750 0.63806 5.2595 0.63806

1280 5.5168 0.63734 5.7013 0.63735

2560 5.9583 0.63698 6.1428 0.63698

5120 6.3997 0.63680 6.5842 0.63680

10240 6.8410 0.63671 7.0256 0.63671

3 Conclusion

This article has been devoted to the study of the behaviour, as the number of nodes
increases, of the second “Berrut” interpolant introduced some decades ago. We have
shown that, at least in the instances of practical interest, the interpolant enjoys the
same perfect condition of its special case of the usual Chebyshev interpolating poly-
nomial, and likewise of its first-order variant R0, with a Lebesgue constant growing
at most logarithmically. This is true in particular of the important case of the shifted
Chebyshev nodes used in practical applications, and justifies their use with arbitrary
large numbers of nodes.
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