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Abstract We consider linear magneto-quasistatic field equations which arise in
simulation of low-frequency electromagnetic devices coupled to electrical circuits.
A finite element discretization of such equations on 3D domains leads to a singular
system of differential-algebraic equations. First, we study the structural properties of
such a system and present a new regularization approach based on projecting out the
singular state components. Furthermore, we consider a Lyapunov-based balanced
truncation model reduction method which preserves stability and passivity. By ma-
king use of the underlying structure of the problem, we develop an efficient model
reduction algorithm. Numerical experiments demonstrate its performance on a test
example.

Keywords Magneto-quasistatic equations · Differential-algebraic equations ·
Matrix pencils · Model order reduction · Balanced truncation · Stability · Passivity

1 Introduction

Nowadays, integrated circuits play an increasingly important role. Modelling of
electromagnetic effects in high-frequency and high-speed electronic systems leads
to coupled field-circuit models of high complexity. The development of efficient, fast
and accurate simulation tools for suchmodels is of great importance in the computer-
aided design of electromagnetic structures offering significant savings in production
cost and time.

In this paper, we consider model order reduction of linear magneto-quasistatic
(MQS) systems obtained from Maxwell’s equations by assuming that the contri-
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bution of displacement current is negligible compared to the conductive currents.
Such systems are commonly used for modeling of low-frequency electromagnetic
devices like transformers, induction sensors and generators. Due to the presence of
non-conducting subdomains, MQSmodels take form of partial differential-algebraic
equations whose dynamics are restricted to a manifold described by algebraic con-
straints. A spatial discretization of MQS systems using the finite integration tech-
nique (FIT) [32] or the finite element method (FEM) [5, 19, 23] leads to differential-
algebraic equations (DAEs) which are singular in the 3D case. The structural analysis
and numerical treatment of singular DAEs is facing serious challenges due to the
fact that the inhomogeneity has to satisfy some restricted conditions to guarantee the
existence of solutions and/or that the solution space is infinite-dimensional. To over-
come these difficulties, different regularization techniques have been developed for
MQS systems [6, 8, 9, 15]. Here, we propose a new regularization approach which
is based on a special state space transformation and withdrawal of overdetermined
state components and redundant equations.

Furthermore,we exploit the special block structure of the regularizedMQS system
to determine the deflating subspaces of the underlyingmatrix pencil corresponding to
zero and infinite eigenvalues. Thismakes it possible to extend the balanced truncation
model reduction method to 3D MQS problems. Similarly to [17, 26], our approach
relies on projected Lyapunov equations and preserves passivity in a reduced-order
model. It should be noted that the balanced truncation method presented in [17] for
2D and 3D gauging-regularized MQS systems cannot be applied to the regularized
system obtained here, since it is stable, but not asymptotically stable. To get rid of this
problem, we proceed as in [26] and project out state components corresponding not
only to the eigenvalue at infinity, but also to zero eigenvalues. Ourmethod is based on
computing certain subspaces of incidence matrices related to the FEM discretization
which can be determined by using efficient graph-theoretic algorithms developed in
[16].

2 Model Problem

We consider a system of MQS equations in vector potential formulation given by

σ
∂A
∂t

+ ∇ × ν ∇ × A = χ ι in Ω × (0, T ),

A × no = 0 on ∂Ω × (0, T ),

A( · , 0) = A0 in Ω,∫
Ω

χT ∂A
∂t

dξ + R ι = u in (0, T ),

(1)

where A : Ω × (0, T ) → R
3 is the magnetic vector potential, χ : Ω → R

3×m is
a divergence-free winding function, ι : (0, T ) → R

m and u : (0, T ) → R
m are the

electrical current and voltage through the stranded conductors with m terminals.
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Here,Ω ⊂ R
3 is a bounded simply connected domainwith a Lipschitz boundary ∂Ω ,

and no is an outer unit normal vector to ∂Ω . The MQS system (1) is obtained from
Maxwell’s equations by neglecting the contribution of the displacement currents. It is
used to study the dynamical behavior ofmagnetic fields in low-frequency applications
[14, 27]. The integral equation in (1) with a symmetric, positive definite resistance
matrix R ∈ R

m×m results from Faraday’s induction law. This equation describes the
coupling the electromagnetic devices to an external circuit [28]. Thereby, the voltage
u is assumed to be given and the current ι has to be determined. In this case, the
MQS system (1) can be considered as a control system with the input u, the state
[AT , ιT ]T and the output y = ι.

We assume that the domainΩ is composed of the conducting and non-conducting
subdomains Ω1 and Ω2, respectively, such that Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅ and
Ω1 ⊂ Ω . Furthermore, we restrict ourselves to linear isotropic media implying that
the electrical conductivity σ and the magnetic reluctivity ν are scalar functions of
the spatial variable only. The electrical conductivity σ : Ω → R is given by

σ(ξ) =
{

σ1 in Ω1,

0 in Ω2

with some constant σ1 > 0, whereas themagnetic reluctivity ν : Ω → R is bounded,
measurable and uniformly positive such that ν(ξ) ≥ ν0 > 0 for a.e. in Ω . Note that
since σ vanishes on the non-conducting subdomain Ω2, the initial condition A0 can
only be prescribed in the conducting subdomainΩ1. Finally, for the winding function
χ = [χ1, . . . , χm], we assume that

supp(χ j ) ⊂ Ω2, j = 1, . . . ,m, (2)

supp(χi ) ∩ supp(χ j ) = ∅ for i 
= j. (3)

These conditions mean that the conductor terminals are located in Ω2 and they do
not intersect [28].

2.1 FEM Discretization

First, we present a weak formulation for the MQS system (1). For this purpose, we
multiply the first equation in (1) with a test function φ ∈ H0(curl,Ω) and integrate
it over the domain Ω . Using Green’s formula, we obtain the variational problem

d

dt

∫
Ω

σA · φ dξ +
∫

Ω

ν (∇ × A) · (∇ × φ) dξ =
∫

Ω

(χι) · φ dξ,

d

dt

∫
Ω

χTA dξ + R ι = u,

A(·, 0) = A0.

(4)
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The existence, uniqueness and regularity results for this problem can be found in [25].
For a spatial discretization of (4), we use Nédélec edge and face elements as

introduced in [23]. Let Th(Ω) be a regular simplicial triangulation of Ω , and let nn ,
ne and n f denote the number of nodes, edges and facets, respectively. Furthermore,
letΦe = [φe

1, . . . , φ
e
ne ] andΦ f = [φ f

1 , . . . , φ
f
n f ] be the edge and face basis functions,

respectively, which span the corresponding finite element spaces. They are related
via

∇ × Φe = Φ f C, (5)

where C ∈ R
n f ×ne is a discrete curl matrix with entries

Ci j =

⎧⎪⎨
⎪⎩

1, if edge j belongs to face i and their orientations match,

−1, if edge j belongs to face i and their orientations do not match,

0, if edge j does not belong to face i,

see [5, Sect. 5]. Substituting an approximation to the magnetic vector potential

A(ξ, t) ≈
ne∑
j=1

α j (t) φe
j (ξ)

into the variational Eq. (4) and testing it with φe
i , we obtain a linear DAE system

[
M 0
XT 0

]
d

dt

[
a
ι

]
=

[−K X
0 −R

] [
a
ι

]
+

[
0
I

]
u, (6)

where a = [
α1, . . . , αne

]T
and the conductivity matrix M ∈ R

ne× ne , the curl-curl
matrix K ∈ R

ne× ne and the coupling matrix X ∈ R
ne×m have entries

Mi j =
∫

Ω

σ φe
j · φe

i dξ, i, j = 1, . . . , ne,

Ki j =
∫

Ω

ν (∇ × φe
j ) · (∇ × φe

i ) dξ, i, j = 1, . . . , ne,

Xi j =
∫

Ω

χ j · φe
i dξ, i = 1, . . . , ne, j = 1, . . . ,m.

(7)

Note that the matrices M and K are symmetric, positive semidefinite. Using the
relation (5), we can rewrite the matrix K as

K =
∫

Ω

ν (∇ × Φe)T (∇ × Φe) dξ =
∫

Ω

ν CT (Φ f )TΦ f C dξ = CTMνC,

where the entries of the symmetric and positive definite matrix Mν are given by
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(Mν)i j =
∫

Ω

ν φ
f
j · φ

f
i dξ, i, j = 1, . . . , n f .

The coupling matrix X can also be represented in a factored form using the discrete
curl matrix C . This can be achieved by taking into account the divergence-free
property of the winding function χ , which implies χ = ∇ × γ for a certain matrix-
valued function

γ = [γ1, . . . , γm] : Ω → R
3×m .

Using the cross product rule, Gauss’s theorem as well as relations (5) and
φe
i × no = 0 on ∂Ω , we obtain

Xi j =
∫

Ω

(∇ × γ j ) · φe
i dξ =

∫
Ω

∇ · (γ j × φe
i ) dξ +

∫
Ω

γ j · (∇ × φe
i ) dξ

=
∫

∂Ω

(γ j × φe
i ) · no ds +

∫
Ω

γ j ·
n f∑
k=1

Ckiφ
f
k dξ

=
∫

∂Ω

γ j · (φe
i × no) ds +

n f∑
k=1

Cki

∫
Ω

γ j · φ
f
k dξ =

n f∑
k=1

Cki

∫
Ω

γ j · φ
f
k dξ.

Then the matrix X can be written as X = CTΥ , where the entries of Υ ∈ R
n f ×m are

given by

Υk j =
∫

Ω

γ j · φ
f
k dξ, k = 1, . . . , n f , j = 1, . . . ,m.

Note that due to (3), the matrix X has full column rank. This immediately implies
that Υ is also of full column rank.

3 Properties of the FEMModel

In this section, we study the structural and physical properties of the FEMmodel (6).
We start with reordering the state vector a = [aT

1 , aT
2 ]T with a1 ∈ R

n1 and a2 ∈ R
n2

accordingly to the conducting and non-conducting subdomainsΩ1 andΩ2. Then the
matrices M , K , X and C can be partitioned into blocks as

M =
[
M11 0
0 0

]
, K =

[
K11 K12

K21 K22

]
, X =

[
X1

X2

]
, C = [

C1, C2
]
,

where M11 ∈ R
n1× n1 is symmetric, positive definite, K11 ∈ R

n1× n1 , K21 = KT
12 ∈

R
n2× n1 , K22 ∈ R

n2× n2 , X1 ∈ R
n1×m , X2 ∈ R

n2×m , C1 ∈ R
n f × n1 , and C2 ∈ R

n f × n2 .
Note that conditions (2) and (3) imply that X1 = 0 and X2 has full column rank. In
what follows, however, we consider for completeness a general block X1. Solving
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the second equation in (6) for ι = −R−1XT d
dt a + R−1u and inserting this vector

into the first equation in (6) yields the DAE control system

E d
dt a = −Ka + Bu,

y = −BT d
dt a + R−1u,

(8)

with the matrices

E =
[
M11+X1R

−1XT
1 X1R

−1XT
2

X2R
−1XT

1 X2R
−1XT

2

]
=

[
I CT

1 Υ

0 CT
2 Υ

][
M11 0
0 R−1

][
I 0

Υ TC1 Υ TC2

]
,

K =
[
CT
1 MνC1 CT

1 MνC2
CT
2 MνC1 CT

2 MνC2

]
, B =

[
X1

X2

]
R−1 =

[
CT
1 Υ

CT
2 Υ

]
R−1.

(9)
Using the block structure of the matrices E and K , we can determine their common
kernel.

Theorem 1 Assume that M11, R and Mν are symmetric and positive definite. Let the
columns of YC2 ∈ R

n2× k2 form a basis of ker(C2). Then ker(E) ∩ ker(K ) is spanned

by columns of the matrix
[
0, Y T

C2

]T
.

Proof Assume that w = [
wT

1 , wT
2

]T ∈ ker(E) ∩ ker(K ). Then due to the positive
definiteness of M11 and R, it follows from wT Ew = 0 with E as in (9) that

[
I 0

Υ TC1 Υ TC2

] [
w1

w2

]
= 0.

Therefore, w1 = 0 and Υ TC2w2 = 0. Moreover, using the positive definiteness
of Mν , we get from wT Kw = 0 with w1 = 0 that C2w2 = 0. This means that
w2 ∈ ker(C2) = im(YC2), i.e., w2 = YC2 z for some vector z. Thus, w = [0, Y T

C2
]T z.

Conversely, assume that w = [0, Y T
C2

]Tz for some z ∈ R
k2 . Then using (9) and

C2YC2 = 0, we obtain Ew = 0 and Kw = 0. Thus, w ∈ ker(E) ∩ ker(K ). �

It follows from this theorem that if C2 has a nontrivial kernel, then

det(λE + K ) = 0

for all λ ∈ C implying that the pencil λE + K (and also the DAE system (8)) is
singular. Thismay cause difficulties with the existence and uniqueness of the solution
of (8). In the next section, we will see that the divergence-free condition of the
winding function χ guarantees that (8) is solvable, but the solution is not unique.
This is a consequence of nonuniqueness of the magnetic vector potential A which is
defined up to a gradient of an arbitrary scalar function.
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3.1 Regularization

Our goal is now to regularize the singular DAE system (8). In the literature, several
regularization approaches have been proposed for semidiscretized 3DMQS systems.
In the context of the FIT discretization, the grad-div regularization of MQS systems
has been considered in [8, 9]which is based on a spatial discretization of theCoulomb
gauge equation ∇ · A = 0. For other regularization techniques, we refer to [6, 7, 15,
22]. Here, we present a new regularization method relying on a special coordinate
transformation and elimination of the over- and underdetermined parts.

To this end, we consider a matrix ŶC2 ∈ R
n2× (n2−k2) whose columns form a basis

of im(CT
2 ). Then the matrix

T =
[
I 0 0
0 ŶC2 YC2

]

is nonsingular. Multiplying the state equation in (8) from the left with T T and intro-
ducing a new state vector ⎡

⎣ a1
a21
a22

⎤
⎦ = T−1a, (10)

the system matrices of the transformed system take the form

T TET =
⎡
⎣M11 + CT

1 Υ R−1Υ TC1 CT
1 Υ R−1Υ TC2ŶC2

0
Ŷ T
C2
CT
2 Υ R−1Υ TC1 Ŷ T

C2
CT
2 Υ R−1Υ TC2ŶC2

0
0 0 0

⎤
⎦ ,

T TKT =
⎡
⎣ CT

1 MνC1 CT
1 MνC2ŶC2 0

Ŷ T
C2
CT
2 MνC1 Ŷ T

C2
CT
2 MνC2ŶC2 0

0 0 0

⎤
⎦ , T TB =

⎡
⎣ CT

1 Υ

Ŷ T
C2
CT
2 Υ

0

⎤
⎦ R−1.

This implies that the components of a22 are actually not involved in the transformed
system and, therefore, they can be chosen freely. Moreover, the third equation 0 = 0
is trivially satisfied showing that system (8) is solvable. Removing this equation, we
obtain a regular DAE system

Er
d
dt xr = Ar xr + Br u, (11)

y = −BT
r

d
dt xr + R−1u, (12)

with xr = [aT
1 , aT

21]T ∈ R
nr , nr = n1 + n2 − k2, and

Er = Fσ Mσ F
T
σ , Ar = −FνMνF

T
ν , Br = FνΥ R−1, (13)

where
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Fσ =
[
I X1

0 Ŷ T
C2
X2

]
=

[
I CT

1 Υ

0 Ŷ T
C2
CT
2 Υ

]
, Mσ =

[
M11 0
0 R−1

]
, Fν =

[
CT
1

Ŷ T
C2
CT
2

]
.

The regularity of λEr − Ar follows from the symmetry of Er and Ar and the fact
that ker(Er ) ∩ ker(Ar ) = {0}.

3.2 Stability

Stability is an important physical property of dynamical systems characterizing the
sensitivity of the solution to perturbations in the data. A pencil λEr − Ar is called
stable if all its finite eigenvalues have non-positive real part, and eigenvalues on the
imaginary axis are semi-simple in the sense that they have the same algebraic and
geometric multiplicity. In this case, any solution of the DAE system (11) with u = 0
is bounded. Furthermore, λEr − Ar is called asymptotically stable if all its finite
eigenvalues lie in the open left complex half-plane. This implies that any solution of
(11) with u = 0 satisfies xr (t) → 0 as t → ∞.

The following theorem establishes a quasi-Weierstrass canonical form for the
pencil λEr − Ar which immediately provides information on the finite spectrum
and index of this pencil.

Theorem 2 Let the matrices Er , Ar ∈ R
nr×nr be as in (13). Then there exists a non-

singular matrix W ∈ R
nr×nr which transforms the pencil λEr − Ar into the quasi-

Weierstrass canonical form

WT ErW =
⎡
⎣E11

In0
0

⎤
⎦ , WT ArW =

⎡
⎣A11

0
In∞

⎤
⎦ , (14)

where E11,−A11 ∈ R
ns×ns are symmetric, positive definite, and ns + n0 + n∞ = nr .

Furthermore, the pencil λEr − Ar has index one and all its finite eigenvalues are
real and non-positive.

Proof First, note that the existenceof a nonsingularmatrixW transformingλEr − Ar

into (14) immediately follows from the general results for Hermitian pencils [30].
However, here, we present a constructive proof to better understand the structural
properties of the pencil λEr − Ar .

Let the columns of the matrices Yσ ∈ R
nr× n∞ and Yν ∈ R

nr× n0 form bases of
ker(FT

σ ) and ker(FT
ν ), respectively. Then we have

FT
σ Yσ = 0, FT

ν Yν = 0. (15)

Moreover, the matrices Y T
ν ErYν and Y

T
σ ArYσ are both nonsingular, and [Yν, Yσ ] has

full column rank. These properties follow from the fact that
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ker(FT
σ ) ∩ ker(FT

ν ) = ker(Er ) ∩ ker(Ar ) = {0}.

Consider a matrix

W = [
W1, Yν(Y

T
ν ErYν)

−1/2, Yσ (Y T
σ ArYσ )−1/2

]
, (16)

where the columns of W1 form a basis of ker
([ErYν, ArYσ ]T )

. First, we show that
this matrix is nonsingular. Assume that there exists a vector v such that WT v = 0.
Then WT

1 v = 0, Y T
ν v = 0 and Y T

σ v = 0. Thus,

v ∈ im
([ErYν, ArYσ ]) ∩ ker(Y T

ν ) ∩ ker(Y T
σ ) = {0},

and, hence, W is nonsingular.
Furthermore, using (15) and

WT
1 ErYν(Y

T
ν ErYν)

−1/2 = 0, WT
1 ArYσ (Y T

σ ArYσ )−1/2 = 0,

we obtain (14) with E11 = WT
1 ErW1 and A11 = WT

1 ArW1. Obviously, E11 and
−A11 are symmetric and positive semidefinite. For any v1 ∈ ker(E11), we have
FT

σ W1v1 = 0. This impliesW1v1 ∈ ker(FT
σ ) = im(Yσ ). Therefore, there exists a vec-

tor z such that W1v1 = Yσ z. Multiplying this equation from the left with Y T
σ Er , we

obtain Y T
σ ErYσ z = Y T

σ ErW1v1 = 0. Then z = 0 and, hence, v1 = 0. Thus, E11 is
positive definite. Analogously, we can show that −A11 is positive definite too. This
implies that all eigenvalues of the pencil λE11 − A11 are real and negative. Index one
property immediately follows from (14). �

As a consequence, we obtain that the DAE system (11) is stable but not asymp-
totically stable since the pencil λEr − Ar has zero eigenvalues.

We consider now the output Eq. (12). Our goal is to transform this equation into
the standard form y = Cr xr with an output matrix Cr ∈ R

m× nr . For this purpose, we
introduce first a reflexive inverse of Er given by

E−
r = W

⎡
⎣E−1

11
I

0

⎤
⎦WT . (17)

Simple calculations show that this matrix satisfies

Er E
−
r Er = Er , E−

r Er E
−
r = E−

r , (E−
r )T = E−

r . (18)

Next, we show that Ŷ T
C2
X2 has full column rank. Indeed, if there exists a vector v

such that Ŷ T
C2
X2v = 0, then X2v ∈ ker(Ŷ T

C2
). On the other hand,

X2v = CT
2 Υ v ∈ im(CT

2 ) = im(ŶC2)
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implying X2v = 0. Since X2 has full column rank, we get v = 0.
Using nonsingularity of XT

2 ŶC2
Ŷ T
C2
X2, the input matrix Br in (13) can be repre-

sented as

Br = Fσ Mσ

[
0
I

]
= Fσ Mσ

[
I 0
XT
1 XT

2 ŶC2

] [
0

Ŷ T
C2
X2(X

T
2 ŶC2

Ŷ T
C2
X2)

−1

]
= Er

[
0
Z

]

(19)

with Z = Ŷ T
C2
X2(X

T
2 ŶC2

Ŷ T
C2
X2)

−1. Then employing the first relation in (18) and the
state Eq. (11), the output (12) can be written as

y = − [
0, ZT

]
Er

d
dt xr + R−1u = − [

0, ZT
]
Er E

−
r Er

d
dt xr + R−1u

= −BT
r E−

r (Ar xr + Bru) + R−1u = −BT
r E−

r Ar xr + (R−1 − BT
r E−

r Br )u.

It follows from the first relation in (18) and (19) that

BT
r E−

r Br = [
0, ZT

]
Er E

−
r Er

[
0
Z

]
= [

0, ZT
]
Fσ Mσ F

T
σ

[
0
Z

]
= R−1.

Thus, the output takes the form
y = Cr xr (20)

with Cr = −BT
r E−

r Ar .

3.3 Passivity

Passivity is another crucial property of control systems especially in interconnected
network design [1, 33]. The DAE control system (11), (20) is called passive if for all
t f > 0 and all inputs u ∈ L2(0, t f ) admissiblewith the initial condition Er xr (0) = 0,
the output satisfies ∫ t f

0
yT (t) u(t) dt ≥ 0.

This inequality means that the system does not produce energy. In the frequency
domain, passivity of (11), (20) is equivalent to the positive definiteness of its transfer
function

Hr (s) = Cr (sEr − Ar )
−1Br

meaning that this function is analytic in C+ = {z ∈ C : Re(z) > 0} and
Hr (s) + H∗

r (s) ≥ 0 for all s ∈ C+, see [1]. Using the special structure of the system
matrices in (13), we can show that the DAE system (11), (20) is passive.

Theorem 3 The DAE system (11), (13), (20) is passive.
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Proof First, observe that the transfer function Hr (s) of (11), (13), (20) is analytic in
C+. This fact immediately follows from Theorem 2. Furthermore, using the relations

Er E
−
r Ar = Er E

−
r Ar E

−
r Er = Ar E

−
r Er ,

we obtain for F(s) = (sEr − Ar )
−1Br and all s ∈ C+ that

Hr (s) + H∗
r (s) = Cr (sEr − Ar )

−1Br + BT
r (sEr − Ar )

−1CT
r

= −BT
r E−

r Ar (sEr − Ar )
−1Br − BT

r (sEr − Ar )
−1Ar E

−
r Br

= F∗(s)
(−(sEr − Ar )E

−
r Ar − Ar E

−
r (sEr − Ar )

)
F(s)

= 2 F∗(s)
(
Ar E

−
r Ar + Re(s)Er E

−
r (−Ar )E

−
r Er

)
F(s) ≥ 0

holds. In the last inequality, we utilized the property that the matrices
Er E

−
r (−Ar )E

−
r Er and Ar E

−
r Ar are both symmetric and positive semidefinite. Thus,

Hr (s) is positive real, and, hence, system (11), (13), (20) is passive. �

4 Balanced Truncation Model Reduction

Our goal is now to approximate the DAE system (11), (13), (20) by a reduced-order
model

Ẽr
d
dt x̃r = Ãr x̃r + B̃r u,

ỹ = C̃r x̃r ,
(21)

where Ẽr , Ãr ∈ R
�×�, B̃r , C̃T

r ∈ R
�×m and � � nr . This model should capture the

dynamical behavior of (11). It is also important that it preserves the passivity and has
a small approximation error. In order to determine the reduced-order model (21), we
aim to employ a balanced truncation model reduction method [3, 20]. Unfortunately,
we cannot apply this method directly to (11), (13), (20) because, as established in
Sect. 3.2, this system is stable but not asymptotically stable due to the fact that the
pencil λEr − Ar has zero eigenvalues. Another difficulty is the presence of infinite
eigenvalues due to the singularity of Er . This may cause problems in defining the
controllability and observability Gramians which play an essential role in balanced
truncation.

To overcome these difficulties, we first observe that the states of the transformed
system (WT ErW,WT ArW,WT Br ,CrW ) corresponding to the zero and infinite
eigenvalues are uncontrollable and unobservable at the same time. This immediately
follows from the representations

WT Br = [BT
1 , 0, 0]T , CrW = [C1, 0, 0] (22)

with B1 = WT
1 Br and C1 = −BT

r E−
r ArW1 = −BT

1 E
−1
11 A11. Therefore, these states

can be removed from the system without changing its input-output behavior. Then
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the standard balanced truncation approach can be applied to the remaining system.
Since the systemmatrices of the regularized system (11), (20) have the same structure
as those of RC circuit equations studied in [26], we proceed with the balanced trun-
cation approach developed there which avoids the computation of the transformation
matrix W .

For the DAE system (11), (20), we define the controllability and observability
Gramians Gc and Go as unique symmetric, positive semidefinite solutions of the
projected continuous-time Lyapunov equations

ErGc Ar + ArGcEr = −Π T Br B
T
r Π, Gc = ΠGcΠ

T , (23)

ErGoAr + ArGoEr = −Π TCT
r CrΠ, Go = ΠGoΠ

T , (24)

where Π is the spectral projector onto the right deflating subspace of λEr − Ar

corresponding to the negative eigenvalues. Using the quasi-Weierstrass canonical
form (14) and (16), this projector can be represented as

Π = W

⎡
⎣I

0
0

⎤
⎦W−1 = W1Ŵ

T
1 , (25)

where Ŵ1 ∈ R
nr× ns satisfies

Ŵ T
1 W1 = I, Ŵ T

1 Yν = 0, Ŵ T
1 Yσ = 0. (26)

Similarly to [17, Theorem 3], a relation between the controllability and observa-
bility Gramians of system (11), (13), (20) can be established.

Theorem 4 Let Gc and Go be the controllability and observability Gramians of sys-
tem (11), (13), (20) which solve the projected Lyapunov Eqs. (23) and (24), respec-
tively. Then

ErGoEr = ArGc Ar .

Proof Consider the reflexive inverse E−
r of Er given in (17) and the reflexive inverse

of Ar given by

A−
r = W

⎡
⎣A−1

11
0

I

⎤
⎦WT .

Then multiplying the Lyapunov Eq. (23) (resp. (24)) from the left and right with E−
r

(resp. with A−
r ) and using the relations

ErΠ = Π T Er , ΠE−
r = E−

r Π T , Π T Er E
−
r = Π T Ar A

−
r ,

ArΠ = Π T Ar , Π A−
r = A−

r Π T , E−
r Ar A

−
r = E−

r Π T ,

we obtain
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A−
r (ArGc Ar )E

−
r + E−

r (ArGc Ar )A
−
r = −ΠE−

r Br B
T
r E−

r Π T , Gc = ΠGcΠ
T ,

(27)

A−
r (ErGoEr )E

−
r + E−

r (ErGoEr )A
−
r = −ΠE−

r Br B
T
r E−

r Π T , Go = ΠGoΠ
T .

(28)

Since E−
r and −A−

r are symmetric and positive semidefinite and ΠT is the spectral
projector onto the right deflating subspace of λE−

r − A−
r corresponding to the nega-

tive eigenvalues, the Lyapunov Eqs. (27) and (28) are uniquely solvable, and, hence,
ErGoEr = ArGc Ar . �

Theorem 4 implies that we need to solve only the projected Lyapunov Eq. (23)
for the Cholesky factor Zc of Gc = ZcZ

T
c . Then it follows from the relation

Go = E−
r ArGc Ar E

−
r = (−E−

r Ar Zc)(−ZT
c Ar E

−
r )

that the Cholesky factor of the observability Gramian Go = ZoZ
T
o can be calculated

as Zo = −E−
r Ar Zc. In this case, the Hankel singular values of (11), (20) can be

computed from the eigenvalue decomposition

ZT
o Er Zc = (−ZT

c Ar E
−
r )Er Zc = −ZT

c Ar Zc = [
U1, U2

] [
Λ1

Λ2

] [
U1, U2

]T
,

where
[
U1, U2

]
is orthogonal,Λ1 = diag(λ1, . . . , λ�) andΛ2 = diag(λ�+1, . . . , λnr )

with λ1 ≥ . . . ≥ λ� � λ�+1 ≥ . . . ≥ λnr . Then the reduced-order model (21) is com-
puted by projection

Ẽr = UT ErV, Ãr = UT ArV, B̃r = UT Br , C̃r = CrV

with the projection matrices V = ZcU1Λ
− 1

2
1 and U = ZoU1Λ

− 1
2

1 = −E−
r Ar V . The

reduced matrices have the form

Ẽr = − V T Ar E
−
r Er V = −Λ

− 1
2

1 UT
1 ZT

c Ar ZcU1Λ
− 1

2
1 = I,

Ãr = − V T Ar E
−
r Ar V, (29)

B̃r = − V T Ar E
−
r Br = V TCT

r = C̃T
r .

The balanced truncation method for the DAE system (11), (13), (20) is presented in
Algorithm 1, where for numerical efficiency reasons, the Cholesky factor Zc of the
Gramian Gc is replaced by a low-rank Cholesky factor Z̃c such that Gc ≈ Z̃c Z̃

T
c .

Note that thematrices Ẽr and− Ãr in (29) are both symmetric and positive definite.
This implies that the reduced-ordermodel (21), (29) is asymptotically stable. Then the
transfer function H̃r (s) = C̃r (s Ẽr − Ãr )

−1 B̃r is analytic in C+ and for all s ∈ C+,
it satisfies
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Algorithm 1 Balanced truncation for the 3D linear MQS system
Require: Er , Ar ∈ R

nr× nr and Br ∈ R
nr×m

Ensure: a reduced-order system (Ẽr , Ãr , B̃r , C̃r ).
1: Solve the projected Lyapunov Eq. (23) for a low-rank Cholesky factor Z̃c ∈ R

nr×nc of the
controllability Gramian Gc ≈ Z̃c Z̃

T
c .

2: Compute the eigenvalue decomposition

−Z̃ T
c Ar Z̃c = [

U1, U2
] [

Λ1 0
0 Λ2

] [
U1, U2

]T
,

where
[
U1, U2

]
is orthogonal, Λ1 = diag(λ1, . . . , λ�) and Λ2 = diag(λ�+1, . . . , λnc ).

3: Compute the reduced matrices

Ẽr = I, Ãr = −V T Ar E
−
r Ar V, B̃r = −V T Ar E

−
r Br , C̃r = B̃T

r

with the projection matrix V = Z̃cU1Λ
− 1

2
1 .

H̃r (s) + H̃∗
r (s) = B̃T

r (s Ẽr − Ãr )
−1 B̃r + B̃T

r (s Ẽr − Ãr )
−1 B̃r

= 2B̃T
r (s Ẽr − Ãr )

−1
(
Re(s)Ẽr − Ãr

)
(s Ẽr − Ãr )

−1 B̃r ≥ 0.

Thus, H̃r (s) is positive real and, hence, the reduced-order model (21) is passive.
Moreover, taking into account that the controllability and observability Gramians
G̃c and G̃o of (21) satisfy G̃c = G̃o = Λ1 > 0, we conclude that (21) is balanced
and minimal. Finally, we obtain the following bound on theH∞-norm of the approx-
imation error

‖Hr − H̃r‖H∞ := sup
ω∈R

‖Hr (iω) − H̃r (iω)‖ ≤ 2(λ�+1 + . . . + λnr ), (30)

which can be proved analogously to [11, 12]. Here, ‖ · ‖ denotes the spectral matrix
norm. Using (14) and (22), the error system can be written as

Hr (s) − H̃r (s) = Cr (sEr − Ar )
−1Br − C̃r (s Ẽr − Ãr )

−1 B̃r

= BT
1

(
sE11(−A−1

11 )E11 − (−E11)
)−1

B1 − B̃T
r (s Ẽr − Ãr )

−1 B̃r

= Ce(sEe − Ae)
−1Be

with

Ee =
[−E11A

−1
11 E11

Ẽr

]
, Ae =

[−E11

Ãr

]
, Be =

[
B1

B̃r

]
= CT

e .

Since Ee and −Ae are both symmetric, positive definite and Be = CT
e , it follows

from [26, Theorem 4.1(iv)] that

‖Hr − H̃r‖H∞ = ‖Hr (0) − H̃r (0)‖. (31)
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Using the output Eq. (12) instead of (20), the transfer function Hr (s) can also be
written as

Hr (s) = −sBT
r (sEr − Ar )

−1Br + R−1.

Then the computation of the H∞-error is simplified to

‖Hr − H̃r‖H∞ = ‖R−1 + B̃T
r Ã−1

r B̃r‖. (32)

Wewill use this relation in numerical experiments to verify the efficiency of the error
bound (30).

Note that the presented model reduction method for the DAE system (11), (13),
(20) is not balanced truncation applied to the frequency-inverted system with the
transfer function

Hr

(1
s

)
= −1

s
BT
r

(1
s
Er − Ar

)−1
Br + R−1

= BT
r

(
s Ar − Er

)−1
Br + R−1 = sBT

r E−
r

(
sE−

r − A−
r

)−1
E−
r Br ,

as it might be presumed at first glance. Our method can rather be interpreted
as balanced truncation applied to the transformed system obtained by multiplica-
tion the state Eq. (11) from the left with the nonsingular transformation matrix
Tr = (−Ar + ErΠ0)(Er + ArΠ∞)−1, where

Π0 = Yν(Y
T
ν ErYν)

−1Y T
ν Er = W

⎡
⎣ 0

I
0

⎤
⎦W−1,

Π∞ = Yσ (Y T
σ ArYσ )−1Y T

σ Ar =W

⎡
⎣ 0

0
I

⎤
⎦W−1 (33)

are the spectral projectors onto the right deflating subspaces ofλEr − Ar correspond-
ing to the zero and infinite eigenvalues, respectively. Observe that the transformed
system with the system matrices
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Ê = Tr Er = W−T

⎡
⎣−A11

I
0

⎤
⎦W−1,

Â = Tr Ar = W−T

⎡
⎣−A11E

−1
11 A11

0
−I

⎤
⎦W−1,

B̂ = Tr Br = W−T [−BT
1 E

−1
11 A11, 0, 0]T ,

Ĉ = Cr = [−BT
1 E

−1
11 A11, 0, 0]W−1

has the same transfer function as (11), (20) and is symmetric in the sense that
Ê and Â are both symmetric and B̂ = ĈT . Then projecting this system with the
projection matrix V = ΠV , we obtain

V T ÊV = −V T Ar E
−
r Er V = Ẽr ,

V T ÂV = −V T Ar E
−
r Ar V = Ãr ,

V T B̂ = −V T Ar E
−
r Br = B̃r = C̃T

r .

Consequently, the model reduction method in Algorithm 1 inherits the properties
of the balanced truncation method for symmetric systems [18, 26]. In particular, it
provides a symmetric reduced-order model which is exact at the frequency s = ∞
and, as follows from (31), achieves the maximal error at s = 0.

5 Computational Aspects

In this section, we discuss the computational aspects of Algorithm 1. This includes
solving the projected Lyapunov Eq. (23) and computing the basis matrices for certain
subspaces.

For the numerical solution of the projected Lyapunov Eq. (23) in Step 1 of Algo-
rithm 1, we apply the low-rank alternating directions implicit (LR-ADI) method as
presented in [29] with appropriate modifications proposed in [4] for cheap evalua-
tion of the Lyapunov residuals. First, note that due to (22) the input matrix satisfies
Π T Br = Br . Then setting

F1 = (τ1Er + Ar )
−1Br ,

R1 = Br − 2τ1Er F1,

Z1 = √−τ1F1,

the LR-ADI iteration is given by
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Fk = (τk Er + Ar )
−1Rk−1,

Rk = Rk−1 − 2τ1Er Fk,

Zk = [Zk−1,
√−τk Fk],

(34)

with negative shift parameters τk which strongly influence the convergence of this
iteration. Note that they can be chosen to be real, since the pencil λEr − Ar has
real finite eigenvalues. This also enables to determine the optimal ADI shift param-
eters by the Wachspress method [31] ones the spectral bounds a = −λmax(Er , Ar )

and b = −λmin(Er , Ar ) are available. Here, λmax(Er , Ar ) and λmin(Er , Ar ) denote
the largest and smallest nonzero eigenvalues of λEr − Ar . They can be computed
simultaneously by applying the Lanczos procedure to E−

r Ar and v = Πv, see [13,
Sect. 10.1]. As a starting vector v, we can take, for example, one of the columns of
the matrix E−

r Br . In the Lanczos procedure and also in Step 3 of Algorithm 1, it
is required to compute the products E−

r ArΠv. Of course, we never compute and
store the reflexive inverse E−

r explicitly. Instead, we can use the following lemma to
calculate such products in a numerically efficient way.

Lemma 1 Let Er and Ar be given as in (13), Z = Ŷ T
C2
X2(X

T
2 ŶC2

Ŷ T
C2
X2)

−1, and
v ∈ R

nr . Then the vector z = E−
r ArΠv can be determined as

z = (I − Π∞)Ŷσ (Ŷ T
σ Er Ŷσ )−1Ŷ T

σ ArΠv, (35)

where Π∞ is the spectral projector as in (38), and

Ŷσ =
[
I 0
0 Z

]
(36)

is a basis matrix for im(Fσ ).

Proof We show first that the full column matrix Ŷσ in (36) satisfies the equation
im(Ŷσ ) = im(Fσ ). This property immediately follows from the relation

Fσ =
[
I X1

0 Ŷ T
C2
X2

]
=

[
I 0
0 Z

] [
I X1

0 XT
2 ŶC2

Ŷ T
C2
X2

]
.

Since FT
σ Ŷσ has full column rank, the matrix Ŷ T

σ Er Ŷσ = Ŷ T
σ Fσ F

T
σ Ŷσ is nonsingular,

i.e., z in (35) is well-defined. Obviously, this vector fulfills Π∞z = 0. Furthermore,
we have

Er z = Er (I − Π∞)Ŷσ (Ŷ T
σ Er Ŷσ )−1Ŷ T

σ ArΠv = Er Ŷσ (Ŷ T
σ Er Ŷσ )−1Ŷ T

σ ArΠv.

Then

Ŷ T
σ Er z = Ŷ T

σ ArΠv,

Y T
σ Er z = 0 = Y T

σ (I − ΠT
∞)ArΠv = Y T

σ ArΠv.
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Since [Ŷσ , Yσ ] is nonsingular, these equations imply Er z = ArΠv. Multiplying this
equation from the left with E−

r , we get

z = (I − Π∞)z = E−
r Er z = E−

r ArΠv.

This completes the proof. �

Using (36), we find by simple calculations that

Ŷσ (Ŷ T
σ Er Ŷσ )−1Ŷ T

σ =
[

M−1
11 −M−1

11 X1Z
T

−Z XT
1 M

−1
11 Z(XT

1 M
−1
11 X1 + R)ZT

]
.

Next,wediscuss the computation ofYσ (Y T
σ ArYσ )−1Y T

σ v for a vectorv. By takingv =
Arw, this enables to calculate the product Π∞w = Yσ (Y T

σ ArYσ )−1Y T
σ Arw required

in (35).

Lemma 2 Let Ar be as in (13) and let Yσ be a basis of ker(FT
σ ). Then for the vector

v = [vT
1 , vT

2 ]T ∈ R
nr , the product

z = Yσ (Y T
σ ArYσ )−1Y T

σ v (37)

can be determined as z = [0, zT2 ]T , where z2 satisfies the linear system
[
−Ŷ T

C2
K22ŶC2 Ŷ

T
C2
X2

XT
2 ŶC2 0

][
z2
ẑ2

]
=

[
v2
0

]
. (38)

Proof We first show that z = Yσ (Y T
σ ArYσ )−1Y T

σ v if and only if

[
Ar Ŷσ

Ŷ T
σ 0

] [
z
ẑ

]
=

[
v

0

]
, (39)

where Ŷσ is as in (36). Let [zT , ẑT ]T solves Eq. (39). Then Ŷ T
σ z = 0 and, hence,

z ∈ ker(Ŷ T
σ ) = im(Yσ ). This means that there exists a vector ŵ such that z = Yσ ŵ.

Inserting this vector into the first equation in (39), we obtain ArYσ ŵ + Ŷσ ẑ = v.
Multiplying this equation from the left with Y T

σ and solving it for ŵ, we get
z = Yσ (Y T

σ ArYσ )−1Y T
σ v.

Conversely, for z as in (37) and ẑ = (Ŷ T
σ Ŷσ )−1Ŷ T

σ (v − Ar z), we have Ŷ T
σ z = 0

and

Ar z + Ŷσ ẑ = Ar z + Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ (v − Ar z)

= (I − Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ )Ar z + Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ v.

Using Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ + Yσ (Y T
σ Yσ )−1Y T

σ = I twice, we obtain
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Ar z + Ŷσ ẑ = Yσ (Y T
σ Yσ )−1Y T

σ Ar z + Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ v

= Yσ (Y T
σ Yσ )−1Y T

σ ArYσ (Y T
σ ArYσ )−1Y T

σ v + Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ v = v.

Thus, [zT , ẑT ]T satisfies Eq. (39).
Equation (39) can be written as

⎡
⎢⎢⎣

−K11 −K12ŶC2 I 0
−Ŷ T

C2
K21 −Ŷ T

C2
K22ŶC2 0 Z

I 0 0 0
0 ZT 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v1
v2
0
0

⎤
⎥⎥⎦ , (40)

with z = [zT1 , zT2 ]T , ẑ = [zT3 , zT4 ]T and v = [vT
1 , vT

2 ]T . The third equation in (40)
yields z1 = 0. Furthermore, multiplying the fourth equation in (40) from the left with
XT
2 ŶC2

Ŷ T
C2
X2 and introducing a new variable ẑ2 = (XT

2 ŶC2
Ŷ T
C2
X2)

−1z4, we obtain

Eq. (38) which is uniquely solvable since Ŷ T
C2
K22ŶC2 is symmetric, positive definite

and Ŷ T
C2
X2 has full column rank. Thus, z = [0, zT2 ]T with z2 satisfying (38). �

We summarize the computation of z = E−
r Arv with v = Πv in Algorithm 2.

Algorithm 2 Computation of E−
r Arv

Require: M11, K11, K12, K21, K22, X1, X2, R, ŶC2 , and v = Πv = [vT1 , vT2 ]T .
Ensure: z = E−

r Arv with Er and Ar as in (13).

1: Compute

[
v̂1
v̂2

]
=

[
−K11v1 − K12ŶC2v2

−Ŷ T
C2

K21v1 − Ŷ T
C2

K22ŶC2
v2

]
.

2: Compute Z = Ŷ T
C2

X2(X
T
2 ŶC2

Ŷ T
C2

X2)
−1.

3: Compute ŵ2 = ZT v̂2.
4: Solve M11w1 = v̂1 − X1ŵ2 for w1.
5: Compute w2 = −Z(XT

1 w1 − Rŵ2).

6: Solve

[
−Ŷ T

C2
K22ŶC2

Ŷ T
C2

X2

XT
2 ŶC2

0

][
z2
ẑ2

]
=

[−Ŷ T
C2

K21w1 − Ŷ T
C2

K22ŶC2
w2

0

]
for z2.

7: Compute z =
[

w1
w2 − z2

]
.

The major computational effort in the LR-ADI method (34) is the computation
of (τk Er + Ar )

−1w for some vector w. If τk Er + Ar remains sparse, we just solve
the linear system (τk Er + Ar )z = w of dimension nr . If τk Er + Ar gets fill-in due
to the multiplication with ŶC2 , then we can use the following lemma to compute
z = (τk Er + Ar )

−1w.

Lemma 3 Let Er and Ar be as in (13), w = [wT
1 , wT

2 ]T ∈ R
nr , and τ < 0. Then

the vector z = (τ Er + Ar )
−1w can be determined as
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z =
[

z1
(Ŷ T

C2
ŶC2

)−1Ŷ T
C2
z2

]
,

where z1 and z2 satisfy the linear system

⎡
⎢⎢⎣

τM11 − K11 −K12 X1 0
−K21 −K22 X2 YC2

τ XT
1 τ XT

2 −R 0
0 Y T

C2
0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

w1

ŶC2
(Ŷ T

C2
ŶC2

)−1w2

0
0

⎤
⎥⎥⎦ (41)

of dimension n + m + k2.

Proof First, note that due to the choice of YC2 the coefficient matrix in system (41)
is nonsingular. This system can be written as

(τM11 − K11)z1 −K12z2 +X1z3 = w1, (42a)

−K21z1 −K22z2 +X2z3 +YC2 z4 = Ŷ T
C2

(Ŷ T
C2
ŶC2)

−1w2, (42b)

τ XT
1 z1 +τ XT

2 z2 −Rz3 = 0, (42c)

Y T
C2
z2 = 0. (42d)

It follows from (42d) that z2 ∈ ker(Y T
C2

) = im(ŶC2). Then there exists ẑ2 such that

z2 = ŶC2 ẑ2. Since ŶC2 has full column rank, it holds

ẑ2 = (Ŷ T
C2
ŶC2

)−1Ŷ T
C2
z2. (43)

Further, from Eq. (42c) we obtain z3 = τ R−1XT
1 z1 + τ R−1XT

2 z2. Substituting z2
and z3 into (42a) and (42b) and multiplying Eq. (42b) from the left with Ŷ T

C2
yields

(τ Er + Ar )

[
z1
ẑ2

]
=

[
w1

w2

]
.

This equation together with (43) implies that

[
z1

(Ŷ T
C2
ŶC2

)−1Ŷ T
C2
z2

]
= (τ Er + Ar )

−1

[
w1

w2

]

that completes the proof. �

Finally, we discuss the computation of the basis matrices YC2 and ŶC2 required in
Algorithm 2 and the LR-ADI iteration. To this end, we introduce a discrete gradient
matrix G0 ∈ R

ne×nn whose entries are defined as
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(G0)i j =

⎧⎪⎨
⎪⎩

1, if edge i leaves node j,

−1, if edge i enters node j,

0, else.

Note that the discrete curl and gradient matrices C and G0 satisfy the relations
rank(C) = ne − nn + 1, rank(G0) = nn − 1 and CG0 = 0, see [5]. Then by remov-
ing one column of G0, we get the reduced discrete gradient matrixG whose columns
form a basis of ker(C). The matrices C and GT can be considered as the loop and
incidence matrices, respectively, of a directed graph whose nodes and branches cor-
respond to the nodes and edges of the triangulation Th(Ω), see [10]. Then the basis
matrices YC2 and ŶC2 can be determined by using the graph-theoretic algorithms as
presented in [16].

Let the reduced gradientmatrixG = [
GT

1 GT
2

]T
be partitioned into blocks accord-

ing to C = [
C1, C2

]
. It follows from [16, Theorem 9] that

ker(C2) = im(G2Z1),

where the columns of the matrix Z1 form a basis of ker(G1). Then ŶC2 can be
determined as ŶC2 = kernelAk(ZT

1 G
T
2 ) with the function kernelAk from [16,

Sect. 4.2], where the basis Z1 is computed by applying the function kernelAT from
[16, Sect. 3] to GT

1 .

6 Numerical Results

In this section, we present some results of numerical experiments demonstrating
the balanced truncation model reduction method for 3D linear MQS systems. For
the FEM discretization with Nédélec elements, the 3D tetrahedral mesh generator
NETGEN1 and the MATLAB toolbox2 from [2] were used as described in [21]. All
computations were done with MATLAB R2018a.

As a test model, we consider a coil wound round a conducting tube surrounded
by air. Such a model was studied in [24] in the context of optimal control. A bounded
domain

Ω = (−c1, c1) × (−c2, c2) × (−c3, c3) ⊂ R
3

consists of the conducting subdomain Ω1 = Ωiron of the iron tube and the non-
conducting subdomain Ω2 = Ωcoil ∪ Ωair, where

Ωiron = {ξ ∈ R
3 : 0 < r1 < ξ 2

1 + ξ 2
2 < r2, z1 < ξ3 < z2 },

Ωcoil = {ξ ∈ R
3 : 0 < r3 < ξ 2

1 + ξ 2
2 < r4, z3 < ξ3 < z4 }

1 https://sourceforge.net/projects/netgen-mesher/.
2 http://www.mathworks.com/matlabcentral/fileexchange/46635.

http://www.mathworks.com/matlabcentral/fileexchange/46635
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Fig. 1 Coil-tube model: a geometry; b dimensions and model parameters

with r1 < r2 < r3 < r4 and z1 < z3 < z4 < z2, see Fig. 1(a). The divergence-free
winding function χ : Ω → R

3 is defined by

χ(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

Nc

Sc
√

ξ 2
1 + ξ 2

2

⎡
⎣−ξ2

ξ1
0

⎤
⎦ , ξ ∈ Ωcoil,

0, ξ ∈ Ω \ Ωcoil,

where Nc is the number of coil turns and Sc is the cross section area of the coil. The
dimensions, geometry and material parameters are given in Fig. 1(b).

The DAE system (8) has n1 + m = 1267 differential variables, n2 − m − k2 =
2643 algebraic variables and k2 = 399 singular variables. The regularized pencil
λEr − Ar has ns = 1004 negative eigenvalues and n0 = 263 zero eigenvalues. It
seems that the interface conditions between the conducting and non-conducting sub-
domains are responsible for the zero eigenvalues. This follows from the fact that the
number of zero eigenvalues is equal to nn,iron/air − 1, where nn,iron/air is the number
of nodes on the interface boundary between the iron tube and the surrounding air.

The controllabilityGramianwas approximated by a low-rankmatrixGc ≈ Znc Z
T
nc

with Znc ∈ R
nr× nc with nc = 24. The normalized residual norm

‖Er Zk Z
T
k Ar + Ar Zk Z

T
k Er + Br B

T
r ‖F

‖Br B
T
r ‖F

= ‖Rk R
T
k ‖F

‖Br B
T
r ‖F

= ‖RT
k Rk‖F

‖BT
r Br‖F

for the LR-ADI iteration (34) is presented in Fig. 2a. Here, ‖ · ‖F denotes the Frobe-
nius matrix norm. Figure2b shows the Hankel singular values λ1, . . . , λnc . We
approximate the regularized MQS system (11), (12) of dimension nr = 3910 by
a reduced model of dimension � = 5. In Fig. 3a, we present the absolute values of
the frequency responses |Hr (iω)| and |H̃r (iω)| of the full and reduced-order models
for the frequency range ω ∈ [10−4, 106]. The absolute error |Hr (iω) − H̃r (iω)| and
the error bound computed as
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Fig. 2 a Convergence history for the LR-ADI method; b Hankel singular values
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Fig. 3 a Frequency responses of the full-order and reduced-order systems; b Absolute error and
error bound

2
(
λ�+1 + . . . + λnc−1 + (ns − � + 1)λnc

) = 7.6714 · 10−9

are given in Fig. 3b. Furthermore, using (32) we compute the error

‖Hr − H̃r‖H∞ = 7.5385 · 10−9

showing that the error bound is very tight.
In Fig. 4a, we present the outputs y(t) and ỹ(t) of the full and reduced-order sys-

tems on the time interval [0, 0.08]s computed for the input u(t) = 5 · 104 sin(300π t)
and zero initial condition using the implicit Euler method with 300 time steps. The
relative error |y(t) − ỹ(t)|

max
t∈[0,0.08] |y(t)|
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Fig. 4 a Outputs of the full-order and reduced-order systems; b Relative error in the output

is given in Fig. 4b. One can see that the reduced-order model approximates well the
original system in both time and frequency domain.
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