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Abstract In this paper, we present a data-driven approach to identify second-order
systems, having internal Rayleigh damping. This means that the damping matrix
is given as a linear combination of the mass and stiffness matrices. These systems
typically appear when performing various engineering studies, e.g., vibrational and
structural analysis. In an experimental set-up, the frequency response of a system
can be measured via various approaches, for instance, by measuring the vibrations
using an accelerometer. As a consequence, given frequency samples, the identifi-
cation of the underlying system relies on rational approximation. To that aim, we
propose an identification of the corresponding second-order system, extending the
Loewner framework for this class of systems. The efficiency of the proposed method
is demonstrated by means of various numerical benchmarks.
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1 Introduction

In this paper, we discuss a data-driven identification framework for a class of second-
order (SO) systems of the form:
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�SO :=
{
Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t),

y(t) = Cx(t),
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m are the inputs, y(t) ∈ R
p are the

outputs ormeasurements, andM,D,K ∈ R
n×n are, respectively, themassmatrix, the

damping matrix and the stiffness matrix, B ∈ R
n×m and C ∈ R

p×n . For simplicity,
we address the problem for single-input single-output (SISO) systems, i.e., m =
p = 1. Themultiple-inputmultiple-output (MIMO) generalization is straightforward
and can be done by following the lines of the MIMO extension of the classical
Loewner framework [20] based on tangential interpolation. Such systems arise in
manyengineering applications, includingvibration analysis [21], structural dynamics
[10] and electric circuits. We denote the SO systems (1) by �SO = (M,D,K,B,C).
Moreover,we assumea zero inhomogeneous condition, i.e.,x(0) = ẋ(0) = 0.Hence,
by means of the Laplace transform, the input-output behavior of the system �SO is
associated with the transfer function as follows:

HSO(s) = C
(
s2M + sD + K

)−1
B. (2)

Furthermore, throughout the paper, we assume the proportional Rayleigh damping
hypothesis, i.e., the damping matrix D is given by a linear combination of the mass
and stiffness matrices:

D = αM + βK, (3)

for α, β ≥ 0. This hypothesis is often considered in engineering application, where
the damper is numerically constructed in order to avoid non-dampened oscillations,
see [21, Chapter 7] for more details. Recent applications of the Rayleigh damping
hypothesis can be found in the fields of guided wave propagation in composite
materials [16, 28], earthquake analysis of buildings [11, 12], wind turbinemonopiles
[6], railway catenary wire systems [24]. Moreover, the Model-Order-Reduction-
Wiki (MOR Wiki) presents several large-scale benchmarks of Rayleigh damped
second order systems, such as the butterfly gyroscope [25] and the recently developed
artificial fishtail [33].

In the past twenty years, model order reduction of SO systems has been investi-
gated extensively; see for instance [8, 22, 29] for balancing-type methods, and [3, 4,
7, 36] formomentmatching andH2-optimality basedmethods. Recently, the authors
in [30] provided an extensive comparison among common methods for SO model
order reduction applied to a large-scale mechanical artificial fishtail model. In all of
the above-mentioned works, the authors suppose that they have access to the matri-
ces, defining the original systems and the reduced-order systems are constructed
via Petrov-Galerkin projections. Thus, the main goal is to find projection matrices
V,W ∈ R

n×r , leading to the SO reduced-order system

ĤSO(s) = Ĉ
(
s2M̂ + sD̂ + K̂

)−1
B̂, (4)
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with M̂ = WTMV, D̂ = WTDV, K̂ = WTKV, B̂ = WTB and Ĉ = CV.

However, it is not necessary that the realization is given or is feasible to obtain;
thus, we suppose that the original system realizationmay not be available. Instead,we
assume to have access only to frequency domain data, e.g., arising from experiments
or numerical simulations. More precisely, we are interested in solving the following
problem.

Problem 1 (SO data-driven identification) Given interpolation data

{(σi ,ωi )| σi ∈ C and ωi ∈ C, i = 1, . . . , ρ}, (5)

construct a SO realization �SO = (M,D,K,B,C) of appropriate dimensions,
satisfying the proportional Rayleigh damping hypothesis, i.e.,

D = αM + βK,

whose transfer function HSO(s) := C(s2M + sD + K)−1B satisfies the inter-
polation conditions, i.e.,

HSO(σi ) = ωi , i = 1, . . . ρ. (6)

Problem 1 corresponds to an identification problem which aims at determining
a SO realization that not only interpolates at given measurements, but also satisfies
the Rayleigh damping hypothesis. A similar problem for time-delay systems was
studied in [27] and [31]. Furthermore, we would like to mention that a data-driven
approach for structured non-parametric systems has been studied in [32]. However,
the construction of the structured reduced-order system is not a straightforward task.

The purpose of this paper is thus to extend the application domain of the Loewner
framework established in [19, 20] to SO systems. With this aim, a new SO Loewner
framework is developed, yielding a Rayleigh damped SO system of the form (2) that
interpolates at given frequency measurements.

The rest of the paper is organized as follows. Section2 recalls some preliminary
results on the rational interpolation Loewner framework from [20]. Section3 contain
the main contribution of this paper, i.e., the extension of these results to the class of
Rayleigh damped SO systems. Firstly, one assumes the knowledge of the Rayleigh
damping parameters, α and β, and derives the Loewner matrices for SO systems.
Then, a heuristic procedure is presented, originally proposed in [31] in the context
of time-delay systems, enabling us to estimate the parameters α and β. Also, we
discuss the case of more general damping strategies. Finally, Sect. 4 illustrates the
proposed framework by numerical examples and Sect. 5 concludes the paper.
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2 Classical Loewner Framework

In this section, we briefly recall the Loewner framework [20]. A first-order (FO)
system �FO = (E,A,B,C) is a dynamical system of the form:

�FO :=
{
Eẋ(t) = Ax(t) + Bu(t), x(0) = 0,
y(t) = Cx(t),

(7)

with E,A ∈ R
n×n , B ∈ R

n×m and C ∈ R
p×n , and the leading dimension n is the

order of the system. For clarity of exposition, we focus for now on the single-input
single-output (SISO) case, i.e., when m = p = 1. The system (7) is associated with
the transfer function given by

HFO(s) = C (sE − A)−1 B. (8)

There exist several MOR techniques for first-order systems such as explicit
moment matching [35, 37], implicit moment matching using Krylov subspaces [13,
17], Sylvester equations based method [15], extensions for MIMO systems [14]. We
refer the reader to the books [2, 5] formore details. However, our goal lies in the iden-
tification of linear systems using only the frequency data. Hence, the identification
problem, in its SISO form, is stated as follows.

Problem 2 (First-order data-driven model reduction) Given interpolation
data

{(σi ,ωi )| σi ∈ C and ωi ∈ C, i = 1, . . . , ρ} (9)

construct a minimal-order realization� = (E,A,B,C) of appropriate dimen-
sions, whose transfer function HFO(s) = C(sE − A)−1B satisfies the interpo-
lation conditions

HFO(σi ) = ωi , i = 1, . . . ρ. (10)

A wide range of methods has been developed to solve Problem 2, e.g., vector
fitting [18], the AAA algorithm [23] and the Loewner framework [20]. In this paper,
we focus on the latter approach and, in what follows, we recall some of the results
contained therein. Firstly, we assume that the number of interpolation data is even,
i.e., ρ = 2�, and as a result, the data can be partitioned in two disjoint sets as follows:

right interpolation setPr : {(λi ,wi )| λi ∈ C and wi , i = 1, . . . , �}, and (11a)

left interpolation setPl : {(μ j , v j )| μ j ∈ C and v j ∈ C, j = 1, . . . , �}. (11b)

Using this partition, we associate the following Loewner matrices.
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Definition 1 (Loewner matrices [20]) Given the right Pr and left Pl interpo-
lation sets, we associate them with the Loewner matrix L and shifted Loewner
matrix Lσ given by

L =
⎛
⎜⎝

v1−w1
μ1−λ1

· · · v1−w�

μ1−λ�

...
. . .

...
v�−w1
μ�−λ1

· · · v�−w�

μ�−λ�

⎞
⎟⎠ , Lσ =

⎛
⎜⎝

μ1v1−λ1w1

μ1−λ1
· · · μ1v1−λ�w�

μ1−λ�

...
. . .

...
μ�v�−λ1w1

μ�−λ1
· · · μ�v�−λ�w�

μ�−λ�

⎞
⎟⎠ . (12)

Remark 1 The Loewner matrix L was introduced in [1]. As shown therein, its
usefulness derives from the fact that its rank is equal to the order of the minimal
realization HFO satisfying the interpolation conditions in (10). Hence, it reveals the
complexity of the reduced-order model solving Problem 2.

Next, let us introduce the following matrices associated with the interpolation
problem as follows:

{
� = diag(λ1, . . . , λ�) ∈ C

�×�

Ĥ(�) = [
w1 . . . w�

]T ∈ C
�×1 and

{MMM = diag(μ1, . . . , μ�) ∈ C
�×�

Ĥ(MMM) = [
v1 . . . v�

]T ∈ C
�×1 (13)

Also, let 1 ∈ R
�×1 be the column vector with all entries equal to one. Hence, the

Loewner matrices satisfy the following Sylvester equations

MMML − L� = Ĥ(MMM)1T − 1Ĥ(�)T , and (14a)

MMMLσ − Lσ� = MMMĤ(MMM)1T − 1Ĥ(�)�. (14b)

An elegant solution for Problem 2 based on the Loewner pair (L,Lσ ) was proposed
in [20]. This is summarized in the following theorem.

Theorem 1 (Loewner framework [20])LetL andLσ be the Loewnermatrices
associated with the partition in (13). If (Lσ ,L) is a regular pencil with no μi

or λ j being an eigenvalue, then the matrices

Ê = −L, Â = −Lσ , B̂ = Ĥ(MMM), Ĉ = Ĥ(�)T ,

provides a realization �̂FO = (Ê, Â, B̂, Ĉ) for a minimal order interpolant of
Problem 2, i.e., the transfer function

ĤFO(s) = W(sLσ − L)−1V

satisfies the interpolation conditions in (10).
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Theorem1allows to obtain aFO system Ĥ = (Ê, Â, B̂, Ĉ)whose transfer function
interpolates right and left data as stated in Problem 2. However, when more data than
necessary are provided, then the hypothesis of Theorem1maynot be satisfied.Hence,
a singular-value decomposition (SVD) based procedure has been proposed in [20]
to find an FO system interpolating the frequency data.

Next, recall that a SO system �SO = (M,D,K,B,C) can be written as a first-
order realization, for instance, as follows:

HSO_FO(s) = C(sE − A)−1B,

where

E =
[
I 0
0 M

]
, A =

[
0 I

−K −D

]
, B =

[
0
B

]
and C = [

C 0
]
.

As a consequence, the classical Loewner framework presented in Sect. 2 can be
employed to find a first-order realization. However, the intrinsic SO structure will
not be preserved in the identified model. But the classical Loewner framework yields
an information about the order of a SO realization fitting the data, which is outlined
in the following remark.

Remark 2 (Order of SO model) Let us suppose that the frequency data in Problem
2 and let L be a Loewner matrix given in (12) constructed with this data. Then, the
order of the SO system fitting the data equals 1

2 rank(L).

In the following section, we discuss an extension of the Loewner framework for
the class of Rayleigh damped SO systems.

3 Second-Order Loewner Framework

This section contains our main contribution, which presents an extension of the
Loewner framework to the class of SO Rayleigh damped systems (1). Here, we also
assume that the number of interpolation data is even, i.e., ρ = 2�, and the data is
partitioned into two disjoint sets as in (11a) and (11b).Moreover, the data is organized
into the matrices �, Ĥ(�), MMM, Ĥ(MMM) as in (13). This section is divided into four
parts. The first one aims at finding the matrix equations which encode the general
SO systems satisfying the interpolation conditions. In the second one, we assume
to have a priori knowledge of the Rayleigh damping parameters α and β and we
derive the equivalents of the Loewner matrices (12) and Theorem 1 to the class of
SO Rayleigh damped systems. The third part is dedicated to proposing a heuristic
procedure to estimate the parameters α and β using the frequency data available.
Finally, in the fourth part, we briefly discuss the case of more general dampings.
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3.1 Second-Order Loewner Matrices

In what follows, we assume that Problem 1 has a minimal order r solutionH	
SO, given

by
H	
SO(s) = C	

(
s2M	 + sD	 + K	

)−1
B	, (15)

with D	 = αM	 + βK	. Here, we also assume that the coefficients α and β from
the Rayleigh damping hypothesis are known. Then, later in this section, we will
show how to construct a realization equivalent to H	

SO(s) that only depends on the
frequency data. To that aim, let us first recall a result from [4] enabling projection-
based structured preserving model reduction.

Theorem 2 (Structure preserving SO model reduction [4]) Consider the SO trans-
fer function HSO(s) as given in (2). For given interpolation points λi and μi ,
i ∈ {1, . . . , �}, let the projection matrices V and W be as follows:

V =
[(

λ2
1M + λ1D + K

)−1
B, . . . ,

(
λ2

�M + λ�D + K
)−1

B
]

(16a)

W =
[(

μ2
1M + μ1D + K

)−T
CT , . . . ,

(
μ2

�M + μ�D + K
)−T

CT
]

(16b)

Then, the reduced-order model ĤSO(s) constructed by Petrov-Galerkin projection as
in (4) satisfies the interpolation conditions

HSO(λi ) = ĤSO(λi ) and HSO(μi ) = ĤSO(μi ), for i = 1, . . . , �.

The above theorem allows us to construct a SO reduced-ordermodel by interpolation.
Let us apply this theorem to theSO systemH	

SO(s) (15). For this, wewill construct the
matrixV using the interpolation points in�, and thematrixW using the interpolation
points in MMM. As a consequence, V and W are, respectively, the solutions of the
following matrix equations

M	V�2 + D	V� + K	V = B	1T , and (17a)

MMM2WTM	 +MMMWTD	 + WTK	 = 1C	, (17b)

Multiplying Eq. (17a) on the left byWT and Eq. (17b) on the right byV, respectively,
one obtains

WTM	V�2 + WTD	V� + WTK	V = WTB	1T ,

MMM2WTM	V +MMMWTD	V + WTK	V = 1C	V.

If we set
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M̂ = WTM	V, D̂ = WTD	V, K̂ = WTK	V, (18a)

B̂ = WTB	 = Ĥ(MMM), and Ĉ = C	V = Ĥ(�)T , (18b)

then the SO system ĤSO = (M̂, D̂, K̂, B̂, Ĉ) is the reduced-order model obtained by
Theorem 2, satisfying the interpolation conditions from Problem 1. Hence, we can
rewrite the above equations as follows:

M̂�2 + D̂� + K̂ = Ĥ(MMM)1T , (19a)

MMM2M̂ +MMMD̂ + K̂ = 1Ĥ(�)T . (19b)

Equations in (19) give a relationship between the matrices M̂, D̂ and K̂, which are the
unknowns we are willing to identify, and the interpolation data encoded by�, Ĥ(�),
M̂ and Ĥ(MMM). However, as discussed in [32], it corresponds to an underdetermined
system on the unknowns.

3.2 Identification of Rayleigh-Damped Second-Order
Systems

Fromnowon,wewill assume theRayleigh damping hypothesis, i.e., D̂ = αM̂ + βK̂.

As a consequence, the system if equations in (19) becomes

M̂
(
�2 + α�

) + K̂ (β� + I) = Ĥ(MMM)1T , (20a)(MMM2 + αMMM)
M̂ + (

βMMM + I
)
K̂ = 1Ĥ(�)T . (20b)

Notice that the above equations can be solved for M̂ and K̂. However, in order to
have an analytic expression for the matrices of the reduced-order system in a similar
way as for the Loewner matrices (12), we need to introduce the following change of
variables:

L
SO := −(I + βMMM)M̂(I + β�), L

SO
σ := (I + βMMM)K̂(I + β�), (21a)

B̂SO := (I + βMMM)Ĥ(MMM), and ĈSO := Ĥ(�)T (I + β�). (21b)

Notice that the two realizations

�̂SO = (M̂, αM̂ + βK̂, K̂, B̂, Ĉ) and �̂
Loew
SO = (−L

SO,−αLSO + βLSOσ ,LSOσ , B̂SO, ĈSO)

are equivalent, i.e., they represent the same transfer function. Hence, the realization
ĤLoew
SO also satisfies the interpolation conditions from Problem 1. Additionally, by a

simple computation, we obtain that the matrices LSO and L
SO
σ satisfy the following

equations
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L
SOF (�) − L

SO
σ = −D(MMM)Ĥ(MMM)1T ,

F (MMM)LSO − L
SO
σ = −1Ĥ(�)TD(�),

where, for a given matrix �, F (�) := (I + β�)−1(�2 + α�) and D(�) := (I +
β�). As a consequence,

L
SOF (�) − F (MMM)LSO = 1Ĥ(�)TD(�) − D(MMM)Ĥ(MMM)1T , (22a)

L
SO
σ F (�) − F (MMM)LSO

σ = 1Ĥ(�)TN(�) − N(MMM)Ĥ(MMM)1T , (22b)

where, for a given matrix �, N(�) := (�2 + α�). Notice that the Sylvester equa-
tions (22) are equivalent to (14a) for the case of SO systems. Hence, using those
equations, one can derive analytic expressions of LSO and L

SO
σ .

Definition 2 (SO Loewner matrices) Let us suppose α and β are known and
let

d(s) := 1 + sβ, n(s) := s2 + αs, and f (s) := n(s)

d(s)
,

be scalar functions. Then the SO Loewner matrices, namely, the SO Loewner
matrix LSO and the shifted Loewner matrix L

SO
σ are given by

L
SO =

⎛
⎜⎜⎝

d(μ1)v1−d(λ1)w1

f (μ1)− f (λ1)
· · · d(μ1)v1−d(λ�)w�

f (μ1)− f (λ�)

...
. . .

...
d(μ�)v�−d(λ1)w1

f (μ�)− f (λ1)
· · · d(μ�)v�−d(λ�)w�

f (μ�)− f (λ�)

⎞
⎟⎟⎠ , (23)

L
SO
σ =

⎛
⎜⎜⎝

n(μ1)v1−n(λ1)w1

f (μ1)− f (λ1)
· · · n(μ1)v1−n(λ�)w�

f (μ1)− f (λ�)

...
. . .

...
n(μ�)v�−n(λ1)w1

f (μ�)− f (λ1)
· · · n(μ�)v�−n(λ�)w�

f (μ�)− f (λ�)

⎞
⎟⎟⎠ . (24)

Moreover, by construction

L
SO = −(I + βMMM)M̂(I + β�) = −(I + βMMM)WTM	V(I + β�).

Thus, the following remark holds.

Remark 3 If we have sufficient interpolation data, then rank(V) = rank(W) = r.
As a consequence, the rank of the SO Loewner matrix L

SO gives us the order of the
Rayleigh damped SO minimal realization interpolating the points, since
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rank(LSO) = rank(WTM	V) = rank(M	) = order of the minimalSO interpolant.

We are now able to state the analogue result to Theorem 1 for Rayleigh-damped
SO systems.

Theorem 3 (SO data-driven identification)Assume thatμi �= λ j for all i, j =
1, . . . , �. Additionally, suppose that (s2 + αs)LSO + (βs + 1)LSO

σ is invertible
for all s = {λ1, . . . , λ�} ∪ {μ1, . . . , μ�}. Then,

M̂ = −L
SO, K̂ = L

SO
σ , B̂SO = (I + βMMM)Ĥ(MMM) ĈSO = Ĥ(�)T (I + β�),

and D̂ = αM̂ + βK̂ satisfy the interpolation conditions from Problem 1.

Theorem 3 allow us to identify a Rayleigh-damped SO from a given interpolation
data set (5). As a consequence, it gives a solution for the Problem 1 whenever the
constants α and β are assumed to be known.

We now consider the case where more data than necessary are provided, which
is realistic for applications. In this case, the assumptions of the above theorem are
not satisfied; thus, one needs to project onto the column span and the row span of a
linear combination of the two Loewner matrices. More precisely, let the following
assumption be satisfied:

rank
([
L
SO

L
SO
σ

]) = rank

([
L
SO

L
SO
σ

])
= r (25)

Then, we consider the compact SVDs

[
L
SO

L
SO
σ

] = Yρ�lṼT and

[
L
SO

L
SO
σ

]
= W̃�rXT

ρ . (26)

Using the projection matrices Vρ andWρ , we are able to remove the redundancy in
the data by means of the following result.

Theorem 4 The SO realization �̂SO = (M̂, D̂, K̂, B̂, Ĉ) of a minimal interpolant of
Problem 1 is given as:

M̂ = −YT
ρ L

SOXρ, K̂ = YT
ρ L

SO
σ Xρ, D̂ = αM̂ + βK̂, (27a)

B̂ = YT
ρ B̂

SO, and Ĉ = ĈSOXρ. (27b)

Depending on whether r in (25) is the exact or approximate rank, we obtain either
an interpolant or an approximate interpolant of the data, respectively.
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3.3 Optimizing Parameters

In the previous section, we have shown how to construct a SO realization for given
transfer function measurements and a priori knowledge of the parameters α and β

from theRayleigh damping hypothesis. However, there are several cases, where exact
values of α and β are not known but we rather can have a hint of the range for the
parameters, i.e., α ∈ Rα and β ∈ Rβ . Therefore, as done for delay systems in [31],
we also propose a heuristic optimization approach to obtain the parameters α and β

for SO systems, satisfying the Rayleigh damping hypothesis. For this purpose, we
split the data training Dtraining and test set Dtest, e.g., in the ratio 80:20. Hence, we
ideally aim at solving the optimization as follows:

min
α∈Rα, β∈Rβ

J(α, β) (28)

where

J(α, β) :=
∑

(σk ,vk )∈Dtest

∥∥∥ĤSO(σkα, β) − vk

∥∥∥2 +
∑

(μk ,wk )∈Dtest

∥∥∥ĤSO(μkα, β) − wk

∥∥∥2
,

where ĤSO is constructed using only the training data. However, the optimization
problem (28) is non-convex, and solving it is a challenging task. Therefore, we
seek to solve a relaxed problem. For this purpose, in the paper, we make a 2-D
grid for the parameters α and β in given intervals. Then, we seek to determine
the parameters on the grid where the function J(α, β) is minimized. Nonetheless,
solving the optimization problem (28) needs future investigation and so we leave it
as a possible future research problem.

3.4 A Note on More General Damping Structures

As stated before, the general SO interpolating system has it matrices M̂, D̂ and K̂
satisfying an underdetermined system given by (19). Once we assume the Rayleigh
damping hypothesis, the system of equations becomes determined and an analytical
solution is given by the SO Loewner matrices LSO and L

SO
σ .

In a more general set-up, we may consider the damping to have a more general
structure depending on the matrices M̂ and K̂. One possible way is to assume the
damping matrix D̂ to be described as

D̂ = M̂
1
2 g

(
M̂− 1

2 K̂M̂− 1
2

)
M̂

1
2 , (29)

where g is an analytic function on the positive real axis. It is worth noticing that the
Rayleigh damping hypothesis is obtained if we consider g(s) = α + βs. Another
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usual choice of damping is the so-called critical damping given by

D̂Crit = 2αM̂
1
2

(
M̂− 1

2 K̂M̂− 1
2

) 1
2
M̂

1
2 ,

with α ∈ [0.02, 0.1], see [26, 34]. In this case, the damping is obtained with g(s) =
2α

√
s.

Hence, if we assume the damping to be given as in (29), then the system of
equations in (19) becomes

M̂�2 + M̂
1
2 g

(
M̂− 1

2 K̂M̂− 1
2

)
M̂

1
2 � + K̂ = Ĥ(MMM)1T , (30a)

MMM2M̂ +MMMM̂
1
2 g

(
M̂− 1

2 K̂M̂− 1
2

)
M̂

1
2 + K̂ = 1Ĥ(�)T . (30b)

Notice that in system (30), the number of unknownsmatches the number of equations.
However, depending on the nature of the function g, this will lead to a system of
nonlinear equations and further investigation is needed to find conditions for the
existence (and uniqueness) of a solution and numerical solvers for nonlinear matrix
equations. Additionally, in the general case, the Petrov-Galerkin approximation of
the damping model would no longer be the damping model of the Petrov-Galerkin
approximation,except for the very restricted case where

WT g (Q)V = g
(
WTQV

)

with V,W ∈ R
n×r being the projection matrices and Q ∈ R

n×n . Notice that this
happens for the Rayleigh damping, but it is non longer true for the critical damping.
Future work will be dedicated on further analysis and numerical methods for these
general dampings.

4 Numerical Results

In this section, we illustrate the efficiency of the proposedmethods via several numer-
ical examples, arising in various applications. All the simulations are done on a
CPU 2.6GHz intel� CoreTMi5, 8 GB 1600MHz DDR3, MATLAB� 9.1.0.441655
(R2016b).

4.1 Demo Example

At first, we discuss an artificial example to illustrate the proposed method. Let us
consider a SO system of order n = 2, �SO = (M,D,K,B,C) whose matrices are
given by:
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Fig. 1 Demo example: Decay of the singular values for the FO and SO Loewner matrices

Fig. 2 Demo example: The figure on the left shows the Bode plot of the original system and the
FO and SO reduced-order models. The figure on the right shows the Bode plot of the error between
the original and reduced-order systems

M =
[
1 0
0 1

]
, K =

[
1 0
0 2

]
, D = αM + βM, and BT = C = [

2 3
]
,

with α = 0.01 and β = 0.02. We collect 20 samples (σ j , ĤSO(σ j )), for σ j ∈ ι[10−1,

101] logarithmically spaced. Then, we construct the FO and SO Loewner matrices
in (12) and (23), receptively.

In Fig. 1, we plot the decay of the singular values of the L and L
SO matrices. It

can be observed that rank(L) = 4 and rank(LSO) = 2, as expected. Indeed, the demo
system has a minimal SO realization of order 2 and a minimal FO realization of order
4. By applying the SVD procedure, we construct two reduced-order models of order
2, one for FO and the other for SO. We compare the transfer functions of the original
and reduced-order systems, and the results are plotted in Fig. 2. The figure shows
that the error between the original and SO reduced-order system is of the level of
machine precision, which means that the SO approach has recovered an equivalent
realization of the original model. Additionally, the FO reduced system of order 2 was
not able to mimic the same behavior of the original system, showing that a larger
order is required in this case.
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Fig. 3 Build example:
Decay of the singular values
for the FO Loewner matrix
and for SO Loewner matrices

4.2 Building Example

Let us now consider the building model from the SLICOT library [9]. It describes
the displacement of a multi-storey building, for example, during an earthquake. It
is a FO system of order r = 48, whose dynamics comes from a mechanical system.
The Rayleigh damping coefficients here are α ≈ 0.4947 and β ≈ 0.0011.

For this example, we collect 200 samples H(iω), with ω ∈ [100, 102]. Then, we
build the FO and SO Loewner matrices in (12) and (23), receptively. Additionally,
using the heuristic procedure in Sect. 3.3,we constructed the reducedmodel assuming
we do not know a priori the parameters α and β. After this procedure, we obtain
α∗ = 0.495 and β∗ = 0.001, which are fairly close to the original parameters.

In Fig. 3, we plot the decay of the singular values of the FO Loewner matrix,
the SO Loewner matrix for the original parameters α and β, and the SO Loewner
matrix for the estimated parameters α and β. The decay of the singular values for
the SO Loewner matrix with original parameters is faster than for the FO Loewner
matrix. However, for the SO Loewner matrix with estimated parameters, the decay of
singular values starts fast and then becomes slower. This shows that if the parameters
α and β are not well identified, a higher reduced-order will be needed to interpolate
the data. By applying the SVD procedure, we construct three reduced-order models
of order 16. We compare the transfer functions of the original and reduced-order
systems, and the results are plotted inFig. 4. This figure shows that for theSOLoewner
approach (original parameters or with estimated parameters) outperform the classical
Loewner framework.

4.3 Artificial Fishtail

As the last example, we consider the artificial fishtail model presented in [30]. This
model comes from a finite-element discretization of the continuousmechanicsmodel
of an artificial fishtail. After discretization, the finite-dimensional system has a SO
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Fig. 4 Build example: The figure on the left shows the Bode plot of the original system and the FO
and SO reduced-order models. The figure on the right shows the Bode plot of the error between the
original and reduced-order systems

Fig. 5 Fishtail example:
Decay of the singular values
for the FO Loewner matrix
and for SO Loewner matrices

realization of order 779, 232. For this model, the Rayleigh damping is chosen with
parameters α = 1.0 · 10−4, β = 2 · 10−4. It is a MIMO system, but for the numerical
application, here we consider only the first transfer function, i.e., from u1 to y1.

For this example, we collect 200 samples H(iω), with ω ∈ [101, 104]. Then, we
build FO and SO Loewner matrices in (12) and (23), receptively. Additionally, we
also compute the reduced model using the heuristic procedure in Sect. 3.3, for which
we obtain the estimated parameters α∗ ≈ 1.19 · 10−4 and β∗ ≈ 2 · 10−4.

In Fig. 5, we plot the decay of the singular values of the FO Loewner matrix,
the SO Loewner matrix for the original parameters α and β, and the SO Loewner
matrix for the estimated parameters α∗ and β∗. By applying the SVD procedure, we
construct three reduced-order models of order 8. We compare the transfer functions
of the original and reduced-order systems, and the results are plotted in Fig. 6. This
figure shows that theSOLoewner approachwith original parameters and SOLoewner
with estimated parameters outperform the classical Loewner framework.
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Fig. 6 Fishtail example: The figure on the left shows the Bode plot of the original system and the
FO and SO reduced-order models. The figure on the right shows the Bode plot of the error between
the original and reduced-order systems

5 Conclusions

In this paper, we have studied the problem of the identification of Rayleigh-damped
second-order systems from frequency data. To that aim, we propose modified
SO Loewner matrices which are the key tools to construct a realization interpo-
lating the given data. Additionally, in the case of redundant data, an SVD-based
scheme is presented to construct reduced-order models. Moreover, a heuristic opti-
mization problem is sketched to estimate the damping parameters. Finally, we have
illustrated the efficiency of the proposed approach in some numerical examples, and
we compared the results with the classical Loewner framework.

It is important to emphasize that the current work does not intend to solve the
general second-order identification problem.As stated in Sect. 3, the problemof iden-
tifying a general second-order system leads to an underdetermined system. Hence,
in order to have a unique solution, some other constraints should be added to the
problem. As an example, other damping structures could be considered, as discussed
in Subsection 3.4. However, this case might lead to nonlinear matrix equations and
further analysis and dedicated numerical solvers need to be developed. We leave this
topic for future research.
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