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Abstract We examine interpolatory model reduction methods that are particularly
well-suited for treating large-scale port-Hamiltonian differential-algebraic systems.
We are able to take advantage of underlying structural features of the system in a
way that preserves them in the reduced model, using approaches that incorporate
regularization and a prudent selection of interpolation data. We focus on linear time-
invariant systems and present a systematic treatment of a variety ofmodel classes that
include combinations of index-1 and index-2 systems, describing in particular how
constraints may be represented in the transfer function so that the polynomial part
can be preserved with interpolatory methods. We propose an algorithm to generate
effective interpolatorymodels and illustrate its effectiveness on a numerical example.
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1 Introduction

Port-Hamiltonian (pH) systems are network-based models that arise within a mod-
eling framework in which a physical system model is decomposed into hierarchies
of submodels interconnected principally through the exchange of energy. The sub-
models typically reflect one of a variety of core modeling paradigms that describe
phenomenological aspects of the dynamics having different physical character, such
as e.g. electrical, thermodynamic, or mechanical. The pH framework is able to knit
together submodels featuring dramatically different physics through a disciplined
focus on energy flux as a principal mode of system interconnection. pH structure is
inherited via power conserving interconnection and a variety of physical properties
and functional constraints (e.g., passivity and energy and momentum conservation)
are encoded directly into the structure of themodel equations [5, 30]. Interconnection
of submodels may create further constraints on system behavior and evolution, orig-
inating as conservation laws (e.g., Kirchoff’s laws or mass balance), or as position
and velocity limitations in mechanical systems. As a result, system models are often
naturally posed as combinations of dynamical system equations and algebraic con-
straint equations, i.e., as port-Hamiltonian descriptor systems or port-Hamiltonian
differential-algebraic equations (pHDAE).

When a pHDAE system is linearized around a stationary solution, one obtains
a linear time-invariant pHDAE with specially structured coefficient matrices, see
[5]. Although the approach we develop here can be extended easily to more general
settings, we narrow our focus to a particular formulation offered as one of the simpler
among a variety of formulations presented in [5, 22].

Definition 1 A linear time-invariant DAE system of the form

Eẋ = (J − R) x + (B − P)u,

y = (B + P)T x + (S + N)u,
x(t0) = 0, (1)

with E, J, R ∈ IRn×n , B,P ∈ IRn×m , S = ST , N = −NT ∈ IRm×m , on a compact
interval I ⊂ IR, is a pHDAE system if the following properties are satisfied:

1. The differential-algebraic operator

E
d

dt
− J : C1(I, IRn

) → C0(I,Rn)

is skew-adjoint, i.e., JT = −J and E = ET ,
2. E is positive semidefinite, i.e., E ≥ 0, and
3. the passivity matrix

W =
[
R P
PT S

]
∈ R

(n+m)×(n+m)

is symmetric positive semi-definite, i.e.,W = WT ≥ 0.
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The Hamiltonian function H : Rn → R of the system is H(x) = 1
2x

TEx. H is a
quadratic function of state describing energy storage within the system. The matrix
E, which is the Hessian matrix of H(x), is the energy matrix; R is the dissipation
matrix; J is the structure matrix describing the energy flux among internal energy
storage elements; and B ± P are port matrices describing how energy enters and
leaves the system. S and N are matrices associated with a direct feed-through from
input u to output y. If the system has a solution x ∈ C1(I,Rn) in I for a given input
function u, then the dissipation inequality

d

dt
H(x) = uT y −

[
x
u

]T

W
[
x
u

]
≤ uT y

must hold. The system is both passive and Lyapunov stable, asH defines a Lyapunov
function when u = 0, see [5].

In practice, network-based automated modeling tools such as modelica,
Matlab/Simulink, or 20-sim1 may produce system models that are overdeter-
mined as a consequence of redundant modeling. Thus, automated generation of a
system model usually must be followed by reformulation and regularization. Evi-
dently, these subsequent steps should preserve the pH structure and retain compati-
bility with standard simulation, control, and optimization tools.

pHDAE models may be very large and complex, e.g., models that arise from
semi-discretized (in space) continuum models in hydrodynamics [11, 19, 29], or
mechanics [25]. In such cases, model reduction techniques are necessary to apply
control and optimization methods. Preservation of the pH structure, the constraint
structure, and the interconnection structure is necessary to maintain model integrity.
For linear time-invariant pH systems with positive-definite E, such methods are
well-developed, including tangential interpolation approaches [15, 16] and moment
matching [26, 28, 31], as well as effort and flow constraint reduction methods [27].
Interpolatory approaches have been extended to nonlinear pH systems as well, see
[3] and [9].

In the case of singularE, only recently in [11, 18] havemodel reduction techniques
been introduced that are able to preserve pH structure. Note that for unstructured
DAEs, constraint-preserving reduction methods were introduced in [17, 19, 25, 29].

In this work, we discuss particular structure-preserving model reduction methods
that incorporate both regularization and interpolation for linear pHDAE systems
having the form (1). For different model classes, we describe how constraints are
represented in the transfer function and how the polynomial part can be preserved
with interpolatory model reduction methods. The key step identifies, as in [5, 24],
all redundancies as well as both explicit and implicit system constraints, partitioning
the system equations into redundant, algebraic, and dynamic parts. Then, only the
dynamic part need be reduced in a way that preserves the structure.

In Sect. 3, we consider pHDAEs of the form (1) and note important simplifications
of the general regularization procedure. Structure preserving model reduction of

1 https://www.modelica.org/, http://www.mathworks.com, https://www.20sim.com.

https://www.modelica.org/
http://www.mathworks.com
https://www.20sim.com
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pHDAEs using interpolatory methods is discussed in Sect. 4 for several specific
model structures. We propose an algorithm to generate effective interpolation data
in Sect. 5 followed by a numerical example that demonstrates its effectiveness.

2 General Differential-Algebraic Systems

In this section, we review some basic properties of linear constant coefficient DAE
systems having the general form,

Eẋ = Ax + Bu,

y = Cx + Du,
x(t0) = 0, (2)

where E, A ∈ IRn×n , B ∈ IRn×m , C ∈ IRp×n , and D ∈ IRp×m ; for details, see, e.g.,
[7].

The matrix pencil λE − A is said to be regular, if det(λE − A) �= 0 for some
λ ∈ IC. For regular pencils, the finite eigenvalues are the values λ ∈ IC for which
det(λE − A) = 0. If the reversed pencil λA − E has the eigenvalue 0, then this is
the infinite eigenvalue of λE − A.

With zero initial conditions, x(t0) = 0 as in (2), and a regular pencil, λE − A, we
obtain in the frequency domain, the transfer function, H(s) = C(sE − A)−1B + D.
H(s) is a rational function mapping the Laplace transform of the input function u to
the Laplace transform of the output function y. If the transfer function is written as

H(s) = C(sE − A)−1B + D = G(s) + P(s),

where G(s) is a proper rational matrix function and P(s) is a polynomial matrix
function, then the finite eigenvalues are the poles of the proper rational part, G(s),
while the infinite eigenvalues are associated with the polynomial part, P(s).

Regular pencils can be analyzed via the Weierstraß Canonical Form; see, e.g.,
[13]. The index, ν, of the pencil λE − A is the size of the largest block associated
with the eigenvalue ∞ in the Weierstraß canonical form; if E is nonsingular, then
ν = 0.

To analyze generalDAEs and to understand the properties of the transfer function,
conditions on controllability and observability are needed, see, e.g., [7, 10]. Let
S∞(E) and T∞(E) be twomatriceswith orthonormal columns spanning, respectively,
the right and left nullspace ofE. A system is called strongly controllable if it satisfies

C1 : rank[λE − A, B] = n for all λ ∈ IC and C2 : rank[E, AS∞(M), B] = n.

Analogously, a system is called strongly observable if it satisfies

O1 : rank
[
λET − AT CT

] = n for all λ ∈ IC and O2 : rank [
ET AT T∞(E) CT

] =
n.

If a system is strongly controllable and strongly observable, then it is calledminimal.
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Conditions (C1) and (C2) are preserved under non-singular equivalence transfor-
mations as well as under state and output feedback. Note, however, that regularity
(or non-regularity) of the pencil, of the index, and of the polynomial part of the
transfer function are generally not preserved under state or output feedback. For sys-
tems that satisfy (C2), there exists a suitable linear state feedback matrix, F1, such
that λE − (A + BF1) is regular and of index at most one. Also if conditions (C2)
and (O2) hold, then there exists a linear output feedback matrix, F2, so that the pencil
λE − (A + BF2C) has this property, see [7].

3 Regularization of PHDAE Systems

In general, it cannot be guaranteed that a system, generated either from a realiza-
tion procedure or an automated modeling procedure, has a regular pencil λE − A.
Therefore, a regularization procedure typically must be applied, see [6, 8, 20]. For
pHDAEs, pH structure helps simplify these regularization procedures significantly,
since the pencil λE − (J − R) is associated with a free dissipative HamiltonianDAE
system (i.e., u = 0). Such systems have many nice properties [22]: The index ν is
at most two; all eigenvalues are in the closed left half plane; and all eigenvalues on
the imaginary axis are semi-simple (except for possibly the eigenvalue 0, which then
may have Jordan blocks of size at most two). A singular pencil can occur only when
E, J, and R have a common nullspace [23], so if one is able to compute efficiently
this common nullspace, it is possible to remove explicitly the singular part.

Lemma 1 For the pHDAE in (1), there exists an orthogonal basis transformation
matrix V ∈ IRn×n such that in the new variable x̃ = [

x̃ T
1 x̃ T

2 x̃ T
3

]T = VT x, the sys-
tem has the form

⎡
⎣E1 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣

˙̃x1˙̃x2˙̃x3

⎤
⎦ =

⎡
⎣J1 − R1 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣ x̃1
x̃2
x̃3

⎤
⎦ +

⎡
⎣B1 − P1

B2

0

⎤
⎦u, (3)

y = [
(B1 + P1)

T BT
2 0

]
⎡
⎣ x̃1
x̃2
x̃3

⎤
⎦ + (S + N)u,

where λE1 − (J1 − R1) is regular and B2 has full row rank. Also, the subsystem

[
E1 0
0 0

] [ ˙̃x1˙̃x2
]

=
[
J1 − R1 0

0 0

] [
x̃1
x̃2

]
+

[
B1 − P1

B2

]
u, (4)

y = [
(B1 + P1)

T BT
2

] [
x̃1
x̃2

]
+ (S + N)u,

obtained by removing the third equation and the variable x3, is still a pHDAE.
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Proof First determine an orthogonal matrix V1 such that

VT
1 (λE − (J − R))V1 = λ

[
E1 0
0 0

]
−

[
J1 − R1 0

0 0

]
, VT

1 (B − P) =
[
B1 − P1

B̃2 − P̃2

]
.

SuchV1 exists sinceE, J,R have a commonnullspacewhen the pencilλE − (J − R)

is singular [23]. Then a row compression of B̃2 − P̃2 via an orthogonal matrix Ṽ2

and a congruence transformation with V2 = diag(I, Ṽ2) is performed, so that with
V = diag(V1,V2), we obtain the zero pattern in (3). Updating the output equation
accordingly and using the fact that the transformed passivity matrix

W̃ =
[
VTRV VTP
PTV S

]
∈ R

(n+m)×(n+m)

is still semidefinite; it follows that P2 = 0 and P3 = 0, giving the desired form. �

The next result presents a condensed form, showing that conditions (C2) and (O2)
are equivalent and hold for the system in (4).

Lemma 2 For the pHDAE in (4) there exists an orthogonal basis transformation
V̂ in the state space and U in the control space such that in the new variables
x̂ = [

x̂ T
1 x̂ T

2 x̂ T
3 x̂

T
4 x̂ T

5 x̂ T
6

]T = V̂T
[
x̃ T
1 x̃ T

2

]T
, and

[
uT
1 uT

2 uT
3

]T = UTu the sys-
tem has the form

⎡
⎢⎢⎢⎢⎢⎢⎣

E11 E12 0 0 0 0
E21 E22 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

˙̂x1˙̂x2˙̂x3˙̂x4˙̂x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

J11 − R11 J12 − R12 J13 − R13 J14 J15 0
J21 − R21 J22 − R22 J23 − R23 J24 0 0
J31 − R21 J32 − R32 J33 − R33 0 0 0

J41 J42 0 0 0 0
J51 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂1
x̂2
x̂3
x̂4
x̂5
x̂6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 − P11 B12 − P12 B13 − P13

B21 − P21 B22 − P22 B23 − P23

B31 − P31 B32 − P32 B33 − P33

0 B42 B43

0 0 B53

0 0 B63

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣u1
u2
u3

⎤
⎦ , (5)

⎡
⎣ y1
y2
y3

⎤
⎦ =

⎡
⎣ (B11 + P11)

T (B21 + P21)
T B31 + P31)

T 0 0 0
(B12 + P12)

T (B22 + P22)
T B32 + P32)

T BT
42 0 0

(B13 + P13)
T (B23 + P23)

T B33 + P33)
T BT

43 B
T
53 B

T
63

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂1
x̂2
x̂3
x̂4
x̂5
x̂6

⎤
⎥⎥⎥⎥⎥⎥⎦

+
⎡
⎣D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎦

⎡
⎣u1
u2
u3

⎤
⎦ ,
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whereE22,J33 − R33,J15, andB42 andB63 are invertible. Furthermore, the subsystem
obtained by deleting the first, fifth, and sixth block row and column satisfies (C2) and
equivalently (O2).

Proof The proof follows again by a sequence of orthogonal transformations. Starting
from (4) in the first step one determines an orthogonal matrix V1 (via a spectral

decomposition of E1) such ṼT
1 E1Ṽ1 =

[
E11 0
0 0

]
with E11 > 0, and then forms a

congruence transformation with V̂1 = diag(Ṽ1, I) yielding

V̂T
1 (J − R)V̂1 =

[
J̃11 − R̃11 J̃12 − R̃12

J̃21 − R̃21 J̃22 − R̃22

]
, V̂T

1 (B − P) =
[
B̃1 − P̃1

B̃2 − P̃2

]
.

Next compute a full rank decomposition ṼT
2 (̃J22 − R̃22)Ṽ2 =

[
Ĵ22 − R̂22 0

0 0

]
, where

Ĵ22 − R̂22 is invertible and R̂22 ≥ 0. This exists, since J̃22 − R̃22 has a negative
semidefinite symmetric part. Then an appropriate congruence transformation with
V̂2 = diag(I, Ṽ2, I) yields

V̂T
2 V̂

T
1 EV̂1V̂2 =

⎡
⎢⎢⎣
E11 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

V̂T
2 V̂

T
1 (J − R)V̂1V̂2 =

⎡
⎢⎢⎣
Ĵ11 − R̂11 Ĵ12 − R̂12 Ĵ13 0
Ĵ21 − R̂21 Ĵ22 − R̂22 0 0

Ĵ31 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , V̂T

2 V̂
T
1 (B − P) =

⎡
⎢⎢⎣
B̂1 − P̂1

B̂2 − P̂2

B̂3

B̂4

⎤
⎥⎥⎦ ,

where Ĵ22 − R̂22 is invertible and B̂4 has full row rank.
Then one performs an orthogonal decomposition

ṼT
3

[
B̂3

B̂4

]
U =

⎡
⎣0 B42 B43

0 0 B53

0 0 B63

⎤
⎦

with B42 and B63 square nonsingular, where the number of rows in B63 is that of B̂4

and applies an appropriate congruence transformation with V̂3 = diag(I, I, V̂3, I)
so that one obtains block matrices

⎡
⎢⎢⎢⎢⎣

E1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

J̄11 − R̄11 J̄12 − R̄12 J̄13 − R̄13 J̄14 0
J̄21 − R̄21 J̄22 − R̄22 0 0 0

J̄31 0 0 0 0
J̄41 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,
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As a final step one computes a column compression of the full row rank matrix J̄41
and applies an appropriate congruence transformation. This yields the desired form.

The fact that the several P blocks do not occur follows again from the semidef-
initeness of the transformed passivity matrix. Since J51, B42 and B63 are invertible,
it follows immediately that u3 = 0 and x̂1 = 0 and that x̂5 is uniquely determined
by all the other variables. Considering the subsystem obtained by removing the first,
fifth, and sixth block row and column, it follows from the symmetry structure that
the condition (C2) holds if and only (O2) holds.

The procedure to compute the condensed form (3) immediately separates the
dynamical part (given by the first block row), the algebraic index-1 conditions (with
and without dissipation, given by the second and third block rows), and the index-2
conditions (given by the fourth block row). The last row is the singular part of the
free system. However, since the conditions (C2) and (O2) hold, the system can be
made regular by output feedback. Note that this is already displayed in the subsystem
(4), which, for ease of notation, we denote by

Er ẋr = (Jr − Rr ) xr + (Br − Pr )u,

yr = (Br + Pr )
T xr + (Sr + Nr )u,

xr (t0) = 0.

If we apply an output feedback u = −Kryr withKr = KT
r > 0 that makes the (2,2)

block in the closed loop system invertible, then this corresponds to a feedback for
the state-to-output map in (4) of the form yr = (I + (Sr + Nr )Kr )

−1(Br + Pr )
T xr ,

which we can insert into the first equation to obtain

Er ẋr = (Jr − Rr )xr + (Br − Pr )Kryr
= (

(Jr − Rr ) − (Br − Pr )(K−1
r + Sr + Nr )

−1(Br + Pr )
T
)
xr .

The system matrix is the Schur complement of
[

Jr Br

−BT
r −Nr

]
−

[
Rr Pr

PT
r K−1

r + Sr

]
,

which has a symmetric part given by−W̃r , with W̃r =
[

Rr Pr

PT
r K−1

r + Sr

]
≥ 0. Hence,

the closed loop system is regular and the closed loop system is still pH.
The procedures described above are computationally demanding, since they typ-

ically require large-scale singular value decompositions or spectral decompositions.
Fortunately, in many practical cases the condensed form is already available directly
from the modeling procedure, so that the transfer function can be formed and the
model reduction method can be directly applied.
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4 Interpolatory Model Reduction of pHDAEs

Given an order-n pHDAE as in (1), we want to construct an order-r reduced pHDAE,
with r 	 n, having the same structured form

Êẋr = (̂J − R̂) xr + (B̂ − P̂)u, xr (t0) = 0,

yr = (B̂ + P̂)T xr + (̂S + N̂)u,
(6)

such that Ê, Ĵ, R̂ ∈ IRr×r , B̂, P̂ ∈ IRr×m , Ŝ = ŜT , N̂ = −N̂T ∈ IRm×m satisfy the
same requirements as in Definition 1 and that the output yr (t) of (6) is an accurate
approximation to the original output y(t) over a wide range of admissible inputs u(t).
We will enforce accuracy by constructing the reduced model (6) via interpolation.

Let H(s) = C(sE − A)−1B + D and Ĥ(s) = ̂C(sÊ − Â)−1
̂B + D̂ denote the

transfer functions of (1) and (6), where C = (B + P)T , A = J − R, B = B − P,
D = S + N, and similarly for the reduced-order (“hat”) quantities. Given right-
interpolation points {σ1, σ2, . . . , σr } ∈ IC together with the corresponding right-
tangent directions {b1, b2, . . . , br } ∈ ICm and left-interpolation points {μ1, μ2, . . . ,

μr } ∈ IC together with the corresponding left-tangent directions {�1, �2, . . . , �r } ∈
ICm , we wish to construct a reduced model, Ĥ(s), that tangentially interpolatesH(s),
i.e.,

H(σi )bi = Ĥ(σi )bi and �Ti H(μi ) = �Ti Ĥ(μi ), for i = 1, 2, . . . , r.

These tangential interpolation conditions canbe enforced easily via aPetrov-Galerkin
projection [1, 4, 12]. In particular, construct V ∈ ICn×r and Z ∈ ICn×r using

V = [
(σ1E − A)−1Bb1, (σ2E − A)−1Bb2, · · · (σrE − A)−1Bbr

]
and

Z = [
(μ1E − A)−TCT �1, (μ2E − A)−TCT �2, · · · (μrE − A)−1CT �r

]
.

Then an interpolatory reduced model can be defined via the projection:

Ê = ZTEV, Â = ZTAV, ̂B = ZTB, ̂C = CV, and D̂ = D. (7)

In the setting of pHDAEs, two fundamental issues arise: First, the reduced quanti-
ties in (7) are no longer guaranteed to have pH structure. This is most easily seen
by examining the reduced quantity, ̂A = ZTAV = ZT JV − ZTRV. If ̂A is decom-
posed into its symmetric and skew-symmetric parts, it can no longer be guaranteed
that the symmetric part is positive semi-definite. This could be resolved by using
a Ritz-Galerkin projection, taking Z = V, but then only interpolation conditions
associated with right interpolation data are satisfied. Even then, there will still be a
second issue that persists. In the generic case when r < rank(E), the reduced quan-
tity Ê will generally be nonsingular; thus the reduced system will be an ODE and
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the polynomial parts of H(s) and Ĥ(s) will not match, leading then to unbounded
errors.

Structure-preserving interpolatory reduction of pH systems in the most general
setting of tangential interpolation has been studied in [15, 16]. However, this work
focused on the ODE case. On the other hand, [17] developed the tangential inter-
polation framework for reducing unstructured DAEs with guaranteed polynomial
matching. Only recently in [11, 18], the combined problem has been investigated.
We now develop a treatment of structure-preserving interpolatory model reduction
problem for index-1 and index-2 pHDAEs in the general setting of tangential inter-
polation.

4.1 Semi-explicit Index-1 pHDAE Systems

The simplest class of pHDAEs are semi-explicit index-1 pHDAEs of the form

[
E11 0
0 0

]
ẋ(t) =

[
J11 − R11 J12 − R12

−JT12 − RT
12 J22 − R22

]
x(t) +

[
B1 − P1

B2 − P2

]
u(t),

y(t) = [
BT
1 + PT

1 BT
2 + PT

2

]
x(t) + (S + N)u(t),

(8)

whereE11 and J22 − R22 are nonsingular. We have the following interpolation result.

Theorem 1 Consider the pHDAE system in (8). Let the interpolation points {σ1, σ2,

. . . , σr } ∈ IC and the corresponding tangent directions {b1, b2, . . . , br } ∈ ICm be
given. Construct the interpolatory model reduction basis V as

V =
[
V1

V2

]
= [

(σ1E − A)−1Bb1, · · · , (σrE − A)−1Bbr
] ∈ ICn×r

, (9)

where V is partitioned conformably with the system, and define the matrices

B = [
b1 b2 · · · br

] ∈ ICm×r andD = D − (BT
2 + PT

2 )(J22 − R22)
−1(B2 − P2) ∈ ICm×m .

Let A =
[
A11 A12

A21 A22

]
= J − R, partitioned accordingly to (8). Then, the transfer

function Ĥ(s) of the reduced model

Êẋr (t) = (̂J − R̂)xr (t) + ̂Bu(t), yr (t) = ̂Cxr (t) + D̂u(t), (10)

with
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Ê = VT
1 E11V1, ̂C = CV + (BT

2 + PT
2 )A−1

22 (B2 − P2)B,

Â = VTAV + B
T (D − D)B, D̂ = D = D − (BT

2 + PT
2 )A−1

22 (B2 − P2),

̂B = VTB + B
T (BT

2 + PT
2 )A−1

22 (B2 − P2),

matches the polynomial part of H(s) and tangentially interpolates it, i.e.,

H(σi )bi = Ĥ(σi )bi , for i = 1, 2, . . . , r.

Define P̂ = 1
2 (−̂G + ̂C), and decompose D̂ = Ŝ + N̂ and Â = Ĵ − R̂ into their sym-

metric and skew-symmetric parts. Then, the reduced model (10) is a pHDAE system

if the reduced passivity matrix Ŵ =
[
R̂ P̂
P̂T Ŝ

]
is positive seimdefinite.

Proof We employ a Galerkin projection using the interpolatory model reduction
basis V to obtain an intermediate reduced model

Ẽ = VT
1 E11V1, Ã = J̃ − R̃ = VT JV − VTRV, ˜B = VTB, ˜C = CV, and D̃ = D.

This reduced model is a pHDAE system due to the use of a one-sided Galerkin pro-
jection, and likewise it also satisfies the desired tangential interpolation conditions.
However, it will not generally match the transfer function, H(s), at s = ∞. Indeed,
H(s) has a polynomial part is given by

lim
s→∞H(s) = D = D − (BT

2 + PT
2 )A−1

22 (B2 − P2) �= D̃ = lim
s→∞ Ĥ(s)

A remedy to this problem, proposed in [2, 21] and employed in the general DAE
setting in [17], is to modify theD-term in the reduced model to match the polynomial
part while at the same time shifting other reduced quantities appropriately so as to
retain tangential interpolation. Using this approach, we obtain a modified reduced
model

Ê = Ẽ = VT
1 E11V1,

Â = Ã + B
T (D − D)B = VT JV − VTRV − B

T (BT
2 + PT

2 )A−1
22 (B2 − P2)B,

̂B = ˜B + B
T (BT

2 + PT
2 )A−1

22 (B2 − P2)

= VT
1 (B1 − P1) + VT

2 (B2 − P2) + B
T (BT

2 + PT
2 )A−1

22 (B2 − P2),

̂C = ˜C + (BT
2 + PT

2 )A−1
22 (B2 − P2)B

= (BT
1 + PT

1 )VT
1 + (BT

2 + PT
2 )VT

2 + (BT
2 + PT

2 )A−1
22 (B2 − P2)B, and

D̂ = D = D − (BT
2 + PT

2 )A−1
22 (B2 − P2),

which satisfies the original tangential interpolation conditions while also matching
the polynomial part with a modified D̂-term. For this system to be pH, we need to
check that the associated passivitymatrix is still positive semidefinite. After rewriting
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the input and output matrix in the usual way, this is exactly the condition on Ŵ in the
assertion. We then have that the reduced model not only satisfies the interpolation
conditions and matches the polynomial part at s = ∞, but also is pH. �

Remark 1 Note that if the input does not influence the algebraic equations, i.e., if
B2 = P2 = 0, then the shift of the constant term is not necessary and the formulas
simplify significantly, i.e., Â = VTAV, ̂B = ˜B = VTB, ̂C = CV, and D̂ = D =
D.

Another solution to preserving pH structure via interpolation can be obtained
through the following theorem.

Theorem 2 Consider a full-order pHDAE system of the form (8). Let interpolation
points {σ1, σ2, . . . , σr } ∈ ICand the corresponding tangent directions {b1, b2, . . . , br }
∈ ICm be given. Construct the interpolatory model reduction basis V as in (9). Then
the reduced model

[
VT
1 E11V1 0

0 0

]
ẋ(t) =

[
VT
1 (J11 − R11)V1 VT

1 (J12 − R12)

(−JT12 − RT
12)V1 J22 − R22

]
x(t) +

[
VT
1 (B1 − P1)

B2 − P2

]
u(t)

yr (t) = [
(BT

1 + P1)
TV1 B2 + PT

2

]
x(t) + Du(t),

(11)

retains the pH structure, tangentially interpolates the original model, and matches
the polynomial part.

Proof We first note that the subspace spanned by the columns of V = [
VT

1 VT
2

]T
is contained in the subspace spanned by the columns of V̂ := diag(V1, I). Then,
the system in (11) results from reducing the original system in (8) via V̂. Since
span(V) ⊆ span(V̂), this reduced DAE automatically satisfies the interpolation
conditions and since V̂ does not alter thematrix J22 − R22 and thematricesB2,P2, the
polynomial part of the transfer function is D − (BT

2 + PT
2 )(J22 − R22)

−1(B2 − P2),
matching that of the original model. The reduced system in (11) is pH as well since
the one-sided projection that is used retains the original pH structure. �

Remark 2 Theorem 2 appears to present an easier alternative to the more compli-
cated Theorem 1 for structure-preserving interpolatory model reduction of index-1
pHDAEs. However, the construction of Theorem 2 may not achieve the maximal
reduction possible because redundant algebraic conditions cannot be removed; see
[25]. Note also that further orthogonalization of V1 may be necessary, see [11].

4.2 Semi-explicit pHDAE Systems with Index-2 Constraints

The next class of interest will be semi-explicit index-2 systems. We first consider the
case that the input does not affect the algebraic equations.
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Theorem 3 Consider an index-2 pHDAE system of the form

[
E11 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
J11 − R11 J12

−JT12 0

] [
x1(t)
x2(t)

]
+

[
B1 − P1

0

]
u(t),

y(t) = [
BT
1 + PT

1 0
] [

x1(t)
x2(t)

]
+ Du(t),

(12)

with E11 > 0 and set A11 = J11 − R11. Given interpolation points {σ1, σ2, . . . , σr }
andassociated tangent directions {b1, b2, . . . , br }, let the vectorsvi , for i = 1, 2, . . . ,
r , be the first block of the solution of

[
A11 − σiE11 J12

−JT12 0

] [
vi
z

]
=

[
(B1 − P1)bi

0

]
. (13)

Define V = [v1, v2, . . . , vr ]. Then, the reduced model

Êẋr = (̂J − R̂)xr + ̂Bu(t), yr = ̂Cxr + D̂, (14)

with Ê = VTE11V, Ĵ = VT J11V, R̂ = VTR11V,

̂B = VTB1 − VTP1, ̂C = BT
1V

T + PTVT
1 , and D̂ = D,

(15)

is still pH, matches the polynomial part of the original transfer function, and satisfies
the tangential interpolation conditions,

H(σi )bi = Ĥ(σi )bi , for i = 1, 2, . . . , r.

Proof Note first that the regularity of λE − (J − R) and the index-2 condition imply
that −JT12E

−1
11 J12 is invertible, see [5, 20]. Following [17], we write (12) as

�E11�
T ẋ1(t) = �A11�

T x1(t) + �B1u(t),
y(t) = C1�

T x1(t) + Du(t),
(16)

and conjoin this with the algebraic equation,

x2(t) = −(JT12E
−1
11 J12)

−1JT12E
−1
11 A11x1(t) − (JT12E

−1
11 J12)

−1JT12E
−1
11 B1u(t).

The skew projector, �, in (16) is defined as � = I − E−1
11 J12(J

T
12E

−1
11 J12)

−1JT12, and
(16) is now an implicit ODE pH system that can be reduced with standard model
reduction techniques. As it stands, this would appear to require computing the pro-
jector � explicitly, see [25]. For general index-2 DAE systems one can avoid this
computational step through interpolatory model reduction, see [17].



248 C. Beattie et al.

To adapt this idea topHDAE systems, we constructV using (13) and then compute
the reduced-order quantities via one-sided projection as in (15). This construction
of V, as in [17], guarantees that the reduced model in (14) tangentially interpolates
the original pHDAE system in (16) and the polynomial part of the transfer function
in (12) is given by D = S + N, separated with respect to its symmetric and skew-
symmetric parts. Since (14) is an implicit ODE pH system with an exact D-term, it
matches the polynomial part of the original transfer function H(s).

It remains to show that (14) ispH. By construction in (15), Ĵ is skew-symmetric, R̂
is symmetric positive semidefinite, andE11 is symmetric positive definite. Moreover,

[
VTR11V VTP1

PT
1 V S

]
=

[
VT 0
0 I

] [
R11 P1

PT
1 S

] [
V 0
0 I

]
≥ 0,

since the original model is pH. Therefore, the pH-structure is retained. �

The situation becomes more complicated when the second block inB is nonzero,
that is, when the system has the form

[
E11 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
J11 − R11 J12

−JT12 0

] [
x1(t)
x2(t)

]
+

[
B1 − P1

B2 − P2

]
u(t),

y(t) = [
BT
1 + PT

1 B2 + PT
2

] [
x1(t)
x2(t)

]
+ Du(t).

(17)

Theorem 4 Consider a pHDAE system of the form (17) and define the matrices

Z = −(A21E−1
11 A12)

−1 = (
JT12E

−1
11 J12

)−1
,

B = (B1 − P1) + (J11 − R11)E−1
11 J12Z(B2 − P2),

C = (BT
1 − PT

1 ) − (BT
2 − PT

2 )Z JT12E
−1
11 (J11 − R11),

D0 = D − (BT
2 + PT

2 )Z JT12E
−1
11 (B1 − P1), and D1 = −(BT

2 + PT
2 )Z (B2 − P2).

Given interpolation points {σ1, σ2, . . . , σr }andassociated tangent directions {b1, b2,
. . . , br }, let the vectors vi be the first blocks of the solutions of

[
J11 − R11 − σiE11 J12

−JT12 0

] [
vi
z

]
= Bbi , for i = 1, 2, . . . , r, (18)

and setV := [v1, v2, . . . , vr ],u1 := u,u2 := u̇, and D̂ := [
D0 D1

] = Ŝ + N̂. Then,
the reduced model

Êẋr = (̂J − R̂)xr + [
B̂ − P̂ 0

] [
u1
u2

]
, yr = (B̂ + P̂)T xr + D̂

[
u1
u2

]
, (19)
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with Ê = VTE11V, Ĵ = VT J11V, R̂ = VTR11V,

B̂ = 1

2

(
VTB + VTCT )

, and P̂ = 1

2

(
VTCT − VTB

)
,

(20)

satisfies the interpolation conditions, matches the polynomial part of the transfer
function, and preserves the pH structure, provided that the reduced passivity matrix

Ŵ =
[
R̂ P̂
P̂T Ŝ

]
is positive semidefinite.

Proof The proof is similarly to that of Theorem 3. Following [17], the state x1 can
be decomposed as x1 = xc + xg , where xg = E−1

11 A12(JT12E
−1
11 J12)

−1(B2 − P2)u(t)
and xc(t) satisfies JT12xc = 0. Then, one can rewrite (17) as

�E11�
T ẋc(t) = �A11�

T xc(t) + �B1u(t),
y(t) = C�T xc(t) + D0u(t) + D1u̇(t).

(21)

As before, the ODE part can be reduced with usual model reduction techniques. Fol-
lowing [17], however, we achieve this without computing the projector � explicitly,
instead by constructing V using (18) and then applying one-sided model reduction
with V to obtain the reduced model

Êẋr = (̂J − R̂)xr + B̃u(t), yr = C̃T xr + D0u(t) + D1u̇(t), (22)

where Ê = VTE11V, Ĵ = VT J11V, R̂ = VTR11V, B̃ = VTB, and C̃ = CV. This
reducedmodel, by construction, satisfies the tangential interpolation conditions.Note
that the reduced model in (22) has exactly the same realization as the reduced model
in (19) except for the reduced B̃ and C̃ terms. The reduced terms Ê, Ĵ, and R̂ in (22)
already have the pH structure. To recover the port symmetry, we determine matrices
B̂ and P̂ such that B̃ = VTB = B̂ − P̂ and C̃ = CV = (B̂ + P̂)T via

B̂ = 1

2

(
B̃ + C̃T

) = 1

2
VT

(
B + CT )

and P̂ = 1

2

(
C̃T − B̃

) = 1

2
VT

(
CT − B

)
,

recovering (20). The final requirement to retain the pH structure is, then, again that[
R̂ P̂
P̂T 1

2

(
D + DT

)
]

≥ 0, which is the final condition in the statement of the theorem.

�

This approach has the disadvantage that u2 = u̇ is introduced as an extra input and
this, in turn, may lead to difficulties when applying standard control and optimization
methods. For this reason it is usually preferable to first perform index reduction via
an appropriate output feedback (see Sect. 3) and then apply the results from Sect. 4.1.
Note that this will change the polynomial part of the transfer function.
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4.3 Semi-explicit pHDAE Systems with Index-1 and Index-2
Constraints

Finally, we consider semi-explicit index-2 systems that also have an index-1 part,
see [11, 18, 25]. We will only consider the special case,

⎡
⎣E11 E22 0
E21 E22 0
0 0 0

⎤
⎦

⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ J11 − R11 J12 − R12 J13
J21 − R21 J22 − R22 0

J31 0 0

⎤
⎦

⎡
⎣ x1
x2
x3

⎤
⎦ +

⎡
⎣B1 − P1

B2 − P2

0

⎤
⎦u, (23)

y = [
(B1 + P1)

T (B2 + P2)
T 0

]
⎡
⎣ x1
x2
x3

⎤
⎦ + (S + N)u, where

[
E11 E22

E21 E22

]
> 0,

and both J22 − R22 and J31 are nonsingular.

Theorem 5 Consider an index-2 pHDAE system of the form (23) and construct an
interpolatory model reduction basis given by

V = [
VT

1 VT
2 VT

3

]T = [
(σ1E − A)−1Bb1, · · · (σrE − A)−1Bbr

] ∈ ICn×r
,

partitioned to conform with the system. Define V̂ := diag(I,V2, I).
Then, the reduced system

Êẋr = (̂J − R̂)xr + ̂Bu(t), yr = ̂Cxr + D̂, (24)

with Ê = V̂TEV̂, Ĵ = V̂T JV̂, R̂ = V̂TRV̂,

̂B = V̂TB = V̂TB − V̂TP, ̂C = CV̂ = BT V̂T + PT V̂T , and D̂ = D,

(25)

is still pH, matches the polynomial part of the transfer function, and satisfies the
tangential interpolation conditions, i.e., H(σi )bi = Ĥ(σi )bi , for i = 1, 2, . . . , r .

Proof It follows from the definitions of V and V̂ that span(V) ⊆ span(V̂). There-
fore, the resulting reduced system automatically satisfies the interpolation conditions.
Since V̂ does not alter the algebraic constraints, the polynomial part of its transfer
function is still D, matching that of the original model. The reduced system in (24)-
(25) is a pHDAE as this one-sided projection retains the original pH structure. �

5 Algorithmic Considerations

The preceding analysis presumed that interpolation points and tangent directions
were specified beforehand. We consider now how one might make choices that gen-
erally produce effective approximations with respect to theH2 system measure.
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5.1 H2-inspired Structure-Preserving Interpolation

The H2 distance between the full model H(s) and the reduced model Hr (s) is

∥∥H − Hr

∥∥
H2

=
(

1

2π

∫ ∞

−∞

∥∥H(ıω) − Hr (ıω)
∥∥2
Fdω

)1/2

,

where ı2 = −1 and ‖M‖F denote the Frobenius norm of a matrix M. To have a
finite H2 error norm the polynomial parts of Hr (s) and H(s) need to match. To
make this precise, write H(s) = G(s) + P(s) and Hr (s) = Gr (s) + Pr (s) where
G(s) and Gr (s) are strictly proper transfer functions, and P(s) and Pr (s) are the
polynomial parts. Therefore, ifHr (s) is theH2-optimal approximation toH(s), then
Pr (s) = P(s) and Gr (s) is the H2-optimal approximation to G(s). This suggests
that one decomposeH(s) into its rational and polynomial partsH(s) = G(s) + P(s)
and then apply H2 optimal reduction to G(s). However, this requires the explicit
construction of G(s). This problem was resolved in [17] for unstructured index-1
and index-2DAEs.On the other hand, for theODE case, [16] proposed a pH structure
preserving algorithm for minimizing the H2 norm. In this section, we aim to unify
these two approaches.

First, we briefly revisit the interpolatory H2 optimality conditions; for details
we refer the reader to [1, 4, 14] and the references therein. Since H2 optimal-
ity for the DAE case boils down to optimality for the ODE part, we focus on

the latter. Let Gr (s) = ∑r
i=1

cibT
i

s−λi
be the pole-residue decomposition of Gr (s). For

simplicity we assume simple poles. If Gr (s) is an H2 optimal approximation to
G(s), then G(−λi )bi = Gr (−λi )bi , cTi G(−λi ) = cTi Gr (−λi ), and cTi G

′(−λi )bi =
cTi G

′
r (−λi )bi , for i = 1, 2, . . . , r where ′ denotes the derivative with respect to s.

Therefore anH2 optimal reduced model is a bitangential Hermite interpolant where
the interpolation points are themirror images of its poles and the tangent directions are
the residue directions. Since the optimality conditions depend on the reduced model
to be computed, this requires an iterative algorithm, such as the Iterative Rational
Krylov Algorithm [14]. For other approaches toH2 optimal approximation, see, e.g.,
[1, 4].

Following [16], to preserve the structure, we will satisfy only a subset of these
conditions.Wewill enforce interpolation points to be themirror images of the reduced
order poles and enforce either left or right-tangential interpolation conditions (Z =
V) without the derivative conditions. However, intuitively, one might expect that in
the pH setting this may not cause too much deviation from true optimality, since the
input-to-state matrix B and the state-to-output matrix C are related.

For simplicity, consider the semi-explicit index-2 case. The other scenarios fol-
low similarly. Starting with the interpolation points {σ1, σ2, . . . , σr } and the tangent
directions {b1, b2, . . . , br }, construct the interpolatory reduced pHDAE Ĥ(s) as in

Theorem3.Let Ĥ(s) = ∑r
i=1

�̂i b̂
T
i

s−λi
+ Dbe the pole-residue decomposition. Since ini-

tially the optimality conditionσi = −λi (̂J − R̂, Ê) is not (generally) satisfied, choose
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−λi (̂J − R̂, Ê) as the next set of interpolation points and b̂i as the next set of tangent
directions. This is repeated until convergence upon which the reduced model Hr (s)
is not only a structure-preserving pHDAE, but also satisfies σi = −λi (̂J − R̂, Ê).

5.2 Numerical Example

We illustrate the discussed procedure with the incompressible fluid flow model of
the Oseen equations, from [18, §4.1]:

∂tv = −(a · ∇)v + μ�v − ∇ p + f in 	 × (0, T ], v = 0, on ∂	 × (0, T ],
0 = −div v, in 	 × (0, T ], v = v0, in 	 × 0,

where v and p are the velocity and pressure variables,μ = 1 is the dynamic viscosity,
a = [ 1 1 ]T is the convective velocity, and 	 = (0, 1)2 with boundary ∂	. f is
an externally imposed body force that, for simplicity, is assumed to be separable:
f (x, t) = b(x)u(t). A finite-difference discretization on a staggered rectangular grid
leads to a single-input/single-output index-2 pHDAE of the form (12), see [18].
In our model, we used a uniform grid with 50 grid points yielding a descriptor
system pHDAE of order n = 7399, of which n1 = 4900 degrees of freedom are
for velocity and n2 = 2499 for pressure. We initialize our H2-based approach with
logarithmically spaced interpolation points in the interval [10−2, 104] and construct
a reduced model of the form (14) with orders r = 1, 2, . . . , 10. For every r value, we
compute ‖H − Ĥ‖∞/‖H‖∞ where ‖H‖∞ = supω∈IR | H(ıω) |. Figure1 shows that
the reduced transfer function accurately approximates the original one; for r = 10,
the relative error is around 10−5.

Fig. 1 Evolution of the
model reduction error for
Oseen example as r varies
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6 Conclusions

Wehave presented interpolatorymodel reductionmethods for several classes of large
scale linear time-invariant port-Hamiltonian differential-algebraic systems. We have
shown how constraints can be represented in the transfer function in such a way that
the polynomial part can be preserved with interpolatory methods while still retaining
important system structure. The results were illustrated with a numerical example
from flow control.
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