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Abstract The goal of this chapter is to present an overview of some recent results
on model reduction of linear switched systems and their interplay with realization
theory of these systems. The emphasis will be on those results on model reduction
which are directly related to realization theory, we do not aim at being exhaustive.
In particular, we will review some recent results on balanced truncation and moment
matching, focusing on the theoretical aspects rather than on the computational ones.
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1 Introduction

In this chapter we will present an overview of some recent results onmodel reduction
of hybrid systemswhich rely heavily on realization theory. Bothmodel reduction and
realization theory have been central to Prof. Antoulas’s work, so we feel that showing
the interaction between these two topics for hybrid systems is a fitting tribute to his
scientific contribution.

Hybrid systems [13] are non-linear systems which combine continuous and dis-
crete behavior. More precisely, a hybrid system is a finite collection of continuous-
state dynamical systems, indexed by a set of so called discrete modes (or states).
The state of each dynamical system is governed by a set of differential or differ-
ence equations. The discrete mode in any time instant can be chosen arbitrarily or
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it may depend on the value of the continuous state and possibly other constraints,
which are referred to as guards. The transitions between the discrete states may result
in a jump in the state of the underlying continuous dynamical system. This jump is
defined by the application of the so called reset maps. Linear switched systems (LSSs)
[19, 37] are the simplest and most widely studied subclass of hybrid systems where
the continuous subsystems are linear systems, and the change of the discrete state is
externally generated.

While there is a large literature on control of hybrid systems in general, and of
LSSs in particular, the computational complexity of the existing algorithms for hybrid
systems is high, and hence they cannot be applied to large scale systems. In order to
address this problem, model reduction methods were proposed for hybrid systems.
Model reduction methods for LSSs can be grouped into the following categories.

LMI-based methods. These methods compute the matrices of the reduced order
model by solving a set of linear matrix inequalities (LMIs). The disadvantage is that
the proposed conditions are only sufficient, and the trade-off between the dimension
of the reduced model and the error bound is not clear. Moreover, the computational
complexity of solving thoseLMIsmight be too high.Without claiming completeness,
we mention [12, 38–40].

Methods based on local Gramians. These algorithms are based on finding
observability/controllability Gramians for each linear subsystem. For these methods
often there are no error bounds and the reduced order model need not be well-posed.
Examples of such papers include [7–9, 14, 16, 20, 21]. Note that to the best of our
knowledge, the only algorithm which always yields a well-posed LSS of the same
type as the original one and for which there exists an analytic error bound (which
holds only for slow switching) is the one of [14]. For the case of jump-linear systems
with a stochastic switching a similar approach was taken in [18] and an error bound
was derived.

Methods based on common Gramians. These methods rely on finding the same
observability/controllability Gramians for each linear subsystem. These Gramians
are derived as solutions of a suitable LMI. Such algorithms were described in [34,
35] and an analytic error bound was derived in [29]. These algorithms apply only
to LSSs which have a global quadratic Lyapunov function. Moreover, the compu-
tational complexity of solving the corresponding LMIs is high. In order to address
this problem [31] proposes to replace LMIs by Lyapunov equations. The downside
of the latter approach is that the error bounds of [29] do not always apply. Another
approach was proposed in [33], where for a specific subclass of LSSs, the origi-
nal LSS is replaced by a linear time-invariant (LTI) system and classical balanced
truncation is applied.

Moment matching. The idea behind these algorithms is to find a reduced order
linear switched system such that certain coefficients of the series expansions of the
input-output maps of the original and the reduced order system coincide. The series
expansion can be the Taylor series with respect to switching times, in which case
a number of the so-called Markov parameters coincide. Alternatively, the series
expansion can be a Laurent-series expansion of a multivariate Laplace transform of
the input-output map around a certain frequency. The former approach was pursued
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in [1, 4, 5], the latter in [15]. While those methods do not allow for analytical
error bounds, under suitable assumption it can be guaranteed that the reduced model
will have the same input-output behavior for certain switching signals [1, 4, 5].
A somewhat different approach is that of [32], which considers LSSs with state-
dependent switching and it proposes a model reduction procedure which guarantees
that the reduced model has the same steady-state output response to certain inputs
as the original model.

In this chapter we discuss some recent results on balanced truncation and moment
matching for LSSs. For the sake of simplicity, we consider LSSs only in continuous
time, and we will assume that all the linear subsystems are defined on the same
state-space and the reset maps are identity. Most of the presented results are true
for the discrete-time case too, and some can be extended to include LSSs with reset
maps which are not identity. We will cite the relevant literature on these extensions.

The model reduction methods to be discussed in this chapter rely heavily on
realization theory. The goal of realization theory is to understand the relationship
between input-output behaviors and internal (state-space) representations. A fairly
complete realization theory was developed for LSSs, see the discussion and refer-
ences in [22–25, 28]. The results on realization theory of LSSs rely on realization
theory of bilinear systems and recognizable formal power series [6, 17, 36].

Realization theory is relevant for model reduction in many ways. First, minimiza-
tion and realization algorithms can be viewed as simple model reduction algorithms.
Moreover, the relationship between span-reachability, observability and minimality
is closely related to the existence of Gramians which are used in balanced truncation.
Realization theory is even more critical for moment matching, as the latter can be
viewed as partial realization algorithm. We will elaborate on the precise relationship
later on.

The chapter is structured as follows. In Sect. 2 we present the formal definition
of the class of LSSs and the corresponding terminology. In Sect. 3 we present a
brief overview of the relevant results on realization theory of switched systems. In
Sect. 4 we discuss model reduction: In Sect. 4.1 we present balanced truncation and
in Sect. 4.2 we discuss moment matching for LSSs.

2 Linear Switched Systems: Basic Definitions

A linear switched system (LSS) is a control system of the form

�

{
ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t)

y(t) = Cσ(t)x(t),
(1)

where x(t) ∈ R
n is the continuous-valued state at time t , σ(t) ∈ Q is the discrete

mode at time t , y(t) ∈ R
p is the output at time t , and u(t) ∈ R

m is the continuous-
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valued input at time t . The set Q is a finite one, and it is referred to as the set of discrete
modes or states. Moreover, Aq ∈ R

n×n , Bq ∈ R
n×m , Cq ∈ R

p×n are the matrices of
the linear system in the discrete state q ∈ Q. The number n is called the dimension
(order) of � and will be denoted by dim(�). The short-hand notation

� = {Aq , Bq ,Cq}q∈Q

is used for LSSs of the form (1).
LetR+ be the real time-axis, i.e.R+ = [0,+∞). Denote by AC(R+,Rk) respec-

tively PC(R+,Rk) the set of all absolutely continuous respectively piecewise-
continuous functions of the form h : R+ → R

k .1 Let X = AC(R+,Rn),
U = PC(R+,Rm),Y = PC(R+,Rp), and letQ be the set of all piecewise-constants
functions g : R+ → Q. A tuple (x, u, σ, y) ∈ X × U × Q × Y is called a solution,
if (x, u, σ, y) satisfy (1). For any switching signalσ ∈ Q, input u ∈ U and initial state
x0 ∈ R

n , there exists a unique solution (x, u, σ, y) of � such that x(0) = x0. This
prompts us to define the input-to-state map X� : U × Q → X and the input-output
map Y� : U × Q → Y of an LSS � as follows: X�(u, σ ) = x , and Y�(u, σ ) = y if
and only if (x, u, σ, y) is the unique solution of � such that x(0) = 0 ∈ R

n .2

Intuitively, an LSS is just a control system which switches among finitely many
linear time-invariant systems. The switching signal is part of the input. Whenever a
switch occurs, the continuous state remains the same, only the differential equation
governing the state and output evolution changes. That is, whenever we switch to a
new linear system, we start the new linear system from the state which is the final
state of the previous linear system.

We model potential input-output behaviors of LSSs as functions

f : U × Q → Y, (2)

and call them input-output maps. They capture the behavior of a black-box, which
reacts to piecewise-continuous inputs and switching sequences by generating outputs
inRp. Next, we define what it means that this black-box can be modelled as an LSS,
i.e. that an LSS is a realization of f . The LSS � is a realization of an input-output
map f of the form (2) , if Y� = f , i.e. if the input-output map of � coincides with
f . If � is a realization of f , then � is a minimal realization of f , if for any LSS
realization �̂ of f , dim� ≤ dim �̂. Two LSSs �1, �2 are said to be input-output
equivalent, if their input-output maps are equal, i.e. Y�1 = Y�2 . An LSS � is said to
be minimal, if it is a minimal realization of its own input-output map f = Y� .

1 Piecewise-continuous functions have a finite number of discontinuities on each finite interval and
at each point of discontinuity, the left- and right-hand side limits exist and are finite.
2 The definition of the input-to-state and input-outputmap can be extended to include non-zero initial
states [23, 24]. We prefer to stick to zero initial state to avoid excessive notation and terminology.
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3 Realization Theory of Linear Switched Systems

Below we present the main results on minimality, existence of a realization, and
a Ho-Kalman-like realization algorithm for LSSs. These results are identical for
discrete-time LSSs [25], and can be extended to LSSs with linear reset maps [24,
27]. In order to present these results, and later throughout the chapter, we will use
the following notation from automata theory [11].

Notation (Q∗, Q+, ε, qk) Denote by Q+ the set of all finite sequences of elements of
Q, i.e. each elementw ∈ Q+ is of the formw = a1a2 · · · ak for some a1, a2, . . . , ak ∈
Q, k ∈ N, k > 0. The integer k is called the length of w and it is denoted by |w|.
Let ε /∈ Q+ be a symbol, which we will call the empty sequence or empty word. By
convention, the length of ε is defined to be zero. Denote by Q∗ the set Q+ ∪ {ε}.
For any two sequences w, v ∈ Q∗, we denote by wv the concatenation of w and v.
If w, v ∈ Q+ are of the form v = v1v2 · · · vk , k > 0 and w = w1w2 · · · wm , m > 0,
v1, v2, . . . , vk, w1, w2, . . . , wm ∈ Q, then define vw = v1v2 · · · vkw1w2 · · ·wm . If
v = ε and w ∈ Q∗, then define vw = w, and if w = ε and v ∈ Q∗, then define

vw = v. For q ∈ Q and k ∈ N, k > 0, we denote by qk the sequence
k−times︷ ︸︸ ︷
qq · · · q; by

convention q0 = ε.

3.1 Minimality of Linear Switched Systems

We start by presenting the main results on minimality of LSSs. To this end, we
introduce the notions of observability, span-reachability and isomorphism. Let �

be an LSS of the form (1). Then � is said to be observable, if for any two distinct
states x1,0 �= x2,0 ∈ R

n , there exists an input u and a switching signal σ , such that
if (xi , u, σ, yi ), i = 1, 2 are two solutions of � with xi (0) = xi,0, i = 1, 2, then
y1 �= y2, i.e., the outputs induced by the initial states {xi,0}i=1,2 under the input u and
switching signal σ are different. LetR0(�) ⊆ R

n denote the reachable set of the �

from the zero initial state, i.e., R0(�) is the set of all vectors x f such that for some
t ∈ R+, x f = X�(u, σ )(t) for some u ∈ U , σ ∈ Q.We say that� is span-reachable,
ifRn = SpanR0(�), i.e., ifRn is the smallest vector space containingR0(�). Note
that span-reachability and reachability are the same in continuous-time [37].

Two LSSs �1 = {Aq , Bq ,Cq}q∈Q , and �2 = {Aa
q , B

a
q ,Ca

q }q∈Q are said to be iso-
morphic, if there exists a non-singular square matrix S such that Aa

q = SAqS−1,
Ba
q = SBq , and Ca

q = CqS−1 for all q ∈ Q.

Theorem (Minimality, [22, 23]) AnLSS isminimal, if andonly if it is span-reachable
and observable. If�1 and�2 are two minimal LSSs and they are input-output equiv-
alent, then they are isomorphic. �
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Note that minimality of an LSS does not imply minimality of any of its linear
subsystems, see [23] for a counter-example. Hence, realization theory of LSSs cannot
be reduced to realization theory of linear subsystems.

We present an algorithm for converting anyLSS to aminimal onewhile preserving
its input-output map. To this end, we define the subspaces

V∗ = SpanR0(�), (3)

W∗ = Span{x0 ∈ R
n | ∀σ ∈ Q : ∃x ∈ X : (4)

(x, 0, σ, 0) is a solution of � with x(0) = x0 }.

It can be shown that� is span-reachable if and only if V∗ = R
n , and� is observable,

if and only ifW∗ = {0}, see [24, 37].
Procedure (Minimization) Consider the factor space V∗/W∗; recall that the ele-
ments of this linear space are equivalence classes generated by the following equiva-
lence relation≈ on V∗: x1 ≈ x2 if and only if x1 − x2 ∈ W∗. Let [x] = {y | | x ≈ y}
be the equivalence class represented by x . The linear vector space V∗/W∗ is
finite dimensional. Define the linear maps Aq : V∗/W∗ 
 [x] �→ [Aqx] ∈ V∗/W∗,
Cq : V∗/W∗ 
 [x] �→ Cqx ∈ R

p, Bq : Rm 
 u �→ [Bqu] ∈ V∗/W∗, q ∈ Q. It can
be shown [22, 23] that AqV∗ ⊆ V∗, AqW∗ ⊆ W∗, ImBq ⊆ V∗,W∗ ⊆ kerCq . From
this it follows that the linear mapsAq ,Bq , Cq are well defined. Choose a finite basis
in V∗/W∗, and let mAq , mBq , mCq be the matrix representations of the linear maps
Aq ,Bq , Cq , in that basis. Then �m = {mAq ,

mBq ,
mCq}q∈Q is a minimal LSS which

is input-output equivalent to �.

3.2 Existence of a Realization, Ho-Kalman Algorithm,
Markov Parameters

We first define the notion of a generalized kernel representation, existence of which
is a necessary condition for existence of a realization by an LSS. An input-output
map f has a generalized kernel representation, if there exists a family of functions
{G f

v : R|v|
+ → R

p×m}v∈Q+ , such that for all u ∈ U , σ ∈ Q,

f (u, σ )(t) =
k∑

i=1

∫ ti

0
G f

qi ···qk (ti − s, ti+1, . . . , tk)u(s + Ti−1)ds

where qi ∈ Q, 0 < ti ∈ R+, i = 1, . . . , k are such that σ(s) = qi for s ∈ [Ti−1, Ti )
for some Tj ∈ R+, Tj < Tj+1, j ∈ N, T0 = 0, and t ∈ [Tk−1, Tk) for some k > 0, and
ti = Ti − Ti−1, for i = 1, . . . , k − 1 and tk = t − Tk−1. Moreover, {G f

v }v∈Q+ have
to satisfy a number of technical conditions [22, 23]. From [22, 23] it follows that
� of the form (1) is a realization of f , if and only if f has a generalized kernel
representation and for all q1, . . . , qk ∈ Q, t1, . . . , tk ∈ R+, k > 0,
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G f
q1···qk (t1, . . . , tk) = Cqk e

Aqk tk · · · eAq2 t2eAq1 t1Bq1 . (5)

From the technical conditions in [22, 23] on generalized kernel representations it
follows that if f has a generalized kernel representation, then there exist functions
{S f

r,q : Q∗ → R
p×m}r,q∈Q such that

G f
q1···qk (t1, . . . , tk) =

∞∑
α1,...,αk=0

S f
qk ,q1(q

α1
1 · · · qαk

k )�k
i=1

tαi
i

αi ! .

That is, the functions {S f
r,q}r,q∈Q uniquely determine {G f

v }v∈Q+ and hence f , and con-
versely, the functions {S f

r,q}r,q∈Q can be recovered from f . The values of {S f
r,q}r,q∈Q

are called the Markov parameters of f .

Notation For every v ∈ Q∗ and a collection of n × n matrices {Aq}q∈Q define
the matrix Av as follows: if v = q1 · · · qk with q1, . . . , qk ∈ Q, k > 0, then Av =
Aqk Aqk−1 · · · Aq1 , and if v = ε, then Aε = In , where In is the n × n identity matrix.

Lemma ([22, 23]) An LSS of the form (1) is a realization of f , if and only if f
has a generalized kernel representation, and for all v ∈ Q∗, q, q0 ∈ Q, S f

q,q0(v) =
Cq AvBq0 .

In order to present a Ho-Kalman-like realization algorithm and a Hankel-rank
condition for existence of an LSS realization, we consider only the SISO case, i.e.,
p = m = 1, see [4, 26] for the general case, and we adapt the notion of selection
from [4, 26]. We call any subset α ⊂ Q∗ × Q a selection. Consider selections α and
β, such that α is of finite cardinality nα and β is of finite cardinality nβ respectively.
Fix an enumeration

α = {(ui , qi )}nα

i=1, β = {(v j , σ j )}nβ

j=1. (6)

Let us now define the matrixH f
α,β ∈ R

nα×nβ as follows:

[
H f

α,β

]
i, j

= S f
qi ,σ j

(v j ui ) i = 1, . . . , nα, j = 1, . . . , nβ. (7)

Intuitively, the rows of H f
α,β are indexed by the elements of α, and the columns by

the elements of β.

Theorem (Existence [23]) The input-output map f has a realization by an LSS, if
and only if f has a generalized kernel representation, and

sup
α,β⊆Q∗×Q,α,β are finite

rank H f
α,β = nm < +∞. (8)

If (8) holds, then nm is the dimension of a minimal LSS realization of f . �
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The proof of Theorem 3.2 leads to the following Ho-Kalman-like algorithm. For
the selections α, β from (6), define the matricesH f

q,α,β ∈ R
nα×nβ ,H f

α,q ∈ R
nα×1 and

H f
q,β ∈ R

1×nβ , q ∈ Q as follows:

[
H f

q,α,β

]
i, j

= S f
qi ,σ j

(v j qui ),
[H f

α,q

]
i,1

= S f
qi ,q(ui ),

[
H f

q,β

]
1, j

= S f
q,σ j

(v j ).

for all i = 1, . . . , nα , j = 1, . . . , nβ .

Procedure (Ho-Kalman algorithm) Assume that rank H f
α,β = nm. Consider the

factorization H f
α,β = Onm Rnm such that Onm ∈ R

nα×nm , Rnm ∈ R
nm×nβ , rank Onm =

rank Rnm = nm. Define

Âq = O+
nmH

f
q,α,βR

+
nm , B̂q = O+

nmH f
α,q , Ĉq = H f

q,βR
+
nm

and O+
nm , R+

nm is the Moore-Penrose inverse of Onm and Rnm respectively. Define the

LSS �̂ = { Âq , B̂q , Ĉq}q∈Q .

Lemma ([10, 22, 26]) If nm is the dimension of a minimal LSS realization of f ,
then the LSS �̂ defined in Procedure 3.2 is a minimal realization of f .

From [28] it follows that we can choose αN = βN = {(v, q) | v ∈ Q∗, |v| ≤ N , q ∈
Q}, where N is any integer not smaller than the dimension of a minimal LSS real-
ization of f . This choice of the nice selection is not very practical, as the size of the
Hankel-matrix H f

αN ,βN
grows exponentially with N . Note that the Ho-Kalman algo-

rithm described above can be used to define a smooth (analytic) manifold structure
for the space of equivalence classes of minimal LSSs related by isomorphism [26].

4 Model Reduction

In model reduction, we would like to find LSSs of smaller dimension, input-output
maps of which are close (but not necessarily equal) to that of the original LSS. This is
in contrast to realization theory, where we were interested in finding a minimal LSS
with exactly the same input-output map as the original one. The latter is a special
case of the former. Model reduction algorithms follow the following general pattern.

Algorithm 1 Model reduction/minimization algorithm
Inputs: � = {Aq , Bq ,Cq}q∈Q , matrices V ∈ R

n×r1 , W ∈ R
r2×n .

Output: �̄ = ( Āq , B̄q , C̄q}q∈Q .
1: Let r = rank WV and let S ∈ R

r×r2 , T ∈ R
r1×r , SWVT = Ir .

2: Āq = SW AqV T , C̄q = CqV T , B̄q = SW Bq , q ∈ Q.
3: return �̄ = { Āq , B̄q , C̄q }q∈Q .



Model Reduction and Realization Theory of Linear Switched Systems 205

Intuitively, Algorithm 1 restricts the system to the set ImV and then merges
those of its states x1, x2 for which x1 − x2 ∈ kerW . If kerW = W∗ and ImV = V∗,
with W∗, V∗ from (3), then the LSS �̄ returned by Algorithm 1 is a minimal LSS
which is input-output equivalent to �, i.e., Algorithm 1 is just an implementation of
Procedure 3.1. Algorithms for computing suchmatricesW, V such that kerW = W∗
and ImV = V∗ are described in [22, 24].

In case of model reduction, Algorithm 1 can again be used. However, instead of
applying it with matrices W and V such that kerW = W∗ and ImV = V∗, we use
matrices W, V such thatW∗ ⊆ kerW and ImV ⊆ V∗, i.e., we restrict the system to
a subset of the set of reachable states, or we merge states which do not produce the
same input-output behavior. The resulting LSS model will no longer be a realization
of f , but its input-output map will approximate f in a suitable sense. Depending
on the method we use, we will either be able to provide a global error bound on the
difference between the input-output maps of the original model and the reduced one,
or state that for certain switching sequences the two input-output maps coincide. We
will elaborate on various methods below.

4.1 Model Reduction by Balanced Truncation

Let � be an LSS of the form (1), and assume that � is quadratically stable, i.e.,
there exists a matrix P > 0 such that ∀q ∈ Q : AT

q P + PAq < 0. In this case �

is globally uniformly asymptotically (exponentially) stable [19] with the Lyapunov
function V (x) = xT Px . A matrixQ will be called an observability Gramian, if

∀q ∈ Q : AT
q Q + QAq + CT

q Cq ≤ 0, Q > 0. (9)

Likewise, a matrixP will be called a controllability Gramian, if

∀q ∈ Q : AqP + PAT
q + Bq B

T
q ≤ 0, P > 0. (10)

Note that in contrast to the linear case, controllability/observability Gramians for
LSSs are not unique, since they are solutions of LMIs and not of Lyapunov equations.

Theprocedure for balanced truncation is as follows.WeapplyAlgorithm1with the
following choice ofW and V . FindU such thatP = UUT and find an orthogonal L
such that UTQU = L�2LT , where � = diag(σ1, . . . , σn) and σ1 ≥ . . . ≥ σn ≥ 0.
Pick r ≤ n. Define

W = [
Ir 0

]
�1/2LTU−1, V = UL�−1/2

[
Ir
0

]
.

Then rank W = rank V = r , rank WV = r , S = T = Ir .
The intuition behind the procedure above is similar to that of balanced truncation

for linear systems: By applying the transformation S = �1/2LTU−1 to�, we obtain
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an LSS�bal = {SAqS−1,SBq ,CqS−1}q∈Q , such that� = S−TQS−1 = SPST is
both an observability and a controllability Gramian.We obtain �̄ from�bal by taking
the upper-left r × r , r × m, p × r , blocks of Aq , Bq ,Cq , q ∈ Q respectively. That is,
we discard those states which correspond to small values of the diagonals of �. The
intuition behind this approach is that the discarded states are either difficult to reach
(it requires high energy input to reach them) or difficult to observe (their contribution
to the energy of the output is small). More precisely, let us fix an integer r > 0 which
represents the desired state dimension of the reduced order model. Let (x̃, u, σ, ỹ)
be a solution of �bal such that x̃(0) = 0, assume that for all t > τ0, u(t) = 0. It then
can be shown [29] that

r∑
i=1

x̃2i (τ0)
1

σi
+

n∑
i=r+1

1

σi
x̃2i (τ0) ≤

∫ τ0

0
‖u(s)‖22ds,

r∑
i=1

x̃2i (τ0)σi +
n∑

i=r+1

σi x̃
2
i (τ0) ≥

∫ ∞

τ0

‖ỹ(s)‖22ds,
(11)

and x̃i (τ0)denotes the i th component of x̃(τ0). That is, ifσr+1, . . . σn are small, and the
energy of u is small, i.e.,

∫ τ0
0 ‖u(s)‖22ds is small, then the values x̃r+1(τ0), . . . , x̃n(τ0)

have to be small due to the first inequality, and they contribute little to the output
starting from the time instance τ0 due to the second inequality.

The numbers σ1, . . . , σn are called singular values of the pair (P,Q) and they
are the square roots of the eigenvalues of the product PQ.

Theorem ([29]) For any σ ∈ Q, u ∈ U such that
∫ ∞
0 ‖u(s)‖22ds < +∞,

∫ ∞

0
‖Y�(u, σ )(s) − Y�̄(u, σ )(s)‖22ds ≤ (2

n∑
k=r+1

σk)
2
∫ ∞

0
‖u(s)‖22ds.

�

Further extensions The results discussed above also hold for discrete-time LSSs
[29]. The assumption thatP,Q do not depend on q ∈ Q implies quadratic stability,
which is a quite restrictive assumption. In [14] this assumption was replaced by local
stability of the linear subsystems. Moreover, an error bound similar to Theorem 4.1
was derived in [14], but it holds only for switching signals with a sufficiently large
dwell time. Note that [14] allows for LSSs with non-trivial linear reset maps. In
[31] an alternative definition of Gramians was presented which has the advantage of
having a tighter relationship with minimality.

Relationship with realization theory First, the existence of positive definite
Gramians P,Q is a necessary (but not sufficient) condition for minimality of
quadratically stable LSSs [29]: the kernels of positive semi-definite observability
(resp. controllability) Gramians are contained in the set of unobservable states (resp.
states which are not in the span of reachable states). Intuitively, when the Gramians
are positive definite, we can bring them to a balanced form and then identify the
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states corresponding to small singular values with unobservable/unreachable states.
Then balanced truncation can be thought of as a numerical implementation of the
minimization Procedure 3.1. Theorem 4.1 provides means to evaluate the effect of
the discarded “small” singular values on the approximation error.

Realization theory is also necessary to show that balanced truncation is well
posed. More precisely, the application of balanced truncation relies on the availabil-
ity of a quadratically stable LSS and by Theorem 4.1, the quality of the reduced
model relies on the singular values of the observability/controllability Gramians. If
the original model is not quadratically stable, then one may wonder if there exist
input-output equivalent quadratically stable models. Using realization theory it is
shown in [29] that in order to decide if balanced truncation can be applied, it is
sufficient to transform the original model to a minimal one, and then to check if the
minimal model is quadratically stable. Moreover, any minimal model can be used
for balanced truncation without introducing more conservativity. Indeed, in [29] it is
shown that the singular values of any pair of controllability/observability Gramians
for any LSS are not smaller than the singular values of some pair of Gramians of a
minimal input-output equivalent LSS. Moreover, due to isomorphism, all controlla-
bility/observability Gramians of minimal input-output equivalent LSSs are related
by a similarity transform and have the same singular values.

Finally, realization theory and the notion of Hankel-matrix can be used to relate
singular values of Gramians to norms of a Hankel-operator [29].

4.2 Moment Matching

Consider an LSS � of the form (1), and let us denote its input-output map by f . For
the sake of simplicity, we assume that p = m = 1, i.e., we deal only with the SISO
case. Recall that since f is realizable by an LSS then f has to have a generalized
kernel representation {G f

v }v∈Q+ . The idea of moment matching is to find a reduced
order LSS �̄ such that for certain sequences v ∈ Q+, G f

v is close to GY�̄
v . Intuitively,

this means that the input-output map of �̄ will be close to that f .
In Sect. 4.2.1 we present the approach [1, 4, 5], where we look for a reduced order

model �̄ such that certain Taylor-series coefficients of GY�̄
v (Markov parameters of

Y�̄) and of G f
v (Markov parameters of f ) coincide. In Sect. 4.2.2 we present the

approach [15], where we consider multi-variate Laplace transforms H f
v of G f

v and
we look for reduced order models �̄ such that the Laplace transform HY�̄

v of the
function GY�̄

v coincides with H f
v for some complex values.

4.2.1 Matching Markov Parameters

Consider an LSS �̄. Let α and β be two selections. Then �̄ is called a (α, β)-partial
realization of f , if for every (v, q0) ∈ β, (u, q) ∈ α,



208 M. Petreczky and I. V. Gosea

SY�̄
q,q0(vu) = S f

q,q0(vu). (12)

That is, �̄ is a (α, β)-partial realization of f , if those Markov parameters of f and of
the input-output map Y�̄ of �̄ which are indexed by (α, β) coincide. This means that
certain high-order derivatives of f and of Y�̄ are the same. That is, a (α, β)-partial
realization of f can be viewed as an LSS, input-output map of which approximates
f . If α = Q∗ × Q or β = Q∗ × Q, then any (α, β)-partial realization of f is a
realization of f .

The idea behind moment matching is then to replace an LSS� by a reduced order
LSS �̄ such that �̄ is a (α, β)-partial realization of the input-output map f = Y�

of �. The various algorithms differ in the way the selections α, β are chosen. The
moment matching algorithms which produce (α, β)-partial realizations arise from
Algorithm 1 by a suitable choice of the matrices W and V . In order to explain these
choices in more detail, we introduce the following definitions. Define the subspaces

Oα(�) =
⋂

(v,q)∈α

kerCq Av, Rβ(�) = Span{AwBq0 | (w, q0) ∈ β}.

There are 3 choices of matrices W and V .

(A) kerW = Oα(�) and V = In . Then Algorithm 1 returns a (α, {ε} × Q)-partial
realization of f [4, Theorem 3].

(B) ImV = Rβ(�) and W = In . Then Algorithm 1 returns a ({ε} × Q, β)-partial
realization of f , [4, Theorem 2].

(C) kerW = Oα(�), ImV = Rβ(�), rank W = rank V = rank WV . Then Algo-
rithm 1 returns (α, β)-partial realization of f , [4, Theorem 4].

There are two strategies for choosing α, β.
The first one is to choose α (resp. β) to be of finite cardinality r such that

dimOα(�) = n − r (resp. dimRβ(�) = r ), and in this case the reduced ordermodel
will have dimension r . In this case, Oα(�) = ker Oα (resp.Rβ(�) = ImRβ), and

Oα = [
AT

v1
CT
s1 , . . . , AT

vr
CT
sr

]T
, Rβ = [

Aw1Bq1 , . . . , Awr Bqr

]
,

where α = {(vi , si )}ri=1, and β = {(wi , qi )}ri=1. Using these matrix representations
the matrices W and V described above can easily be computed.

The second option for choosing nice selections is to choose (α, β) to be consistent
with a certain set of switching signals. In this case, the dimension of the reduced order
model cannot be fixed in advance, but it is known that the reduced order model will
have the same input-output behavior along those switching sequences which belong
to this designated set. More precisely, assume that the switching signal σ ∈ Q has
the property that σ(s) = qi , s ∈ [Ti−1, Ti ), T0 = 0, Ti = ∑i

r=1 tr for some qi ∈ Q,
0 < ti ∈ R+, 0 < i ∈ N. We will say that a selection (α, β) is consistent with σ , if
for every i > 0, for every ωi , . . . , ωk ∈ N,

((qi )
ωi (qi+1)

ωi+1 · · · (qk)ωk , qi ) ∈ β, ((q1)
ω1(q2)

ω2 · · · (qi )ωi , qi ) ∈ α.
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Theorem ([4]) Assume that (α, β) is consistent with σ and �̄ is an (α, β)-partial
realization of f . Then Y�̄(u, σ ) = f (u, σ ), for all u ∈ U . �

Note that for a pair of selections to be consistent with a switching signal (or a set
of switching signals), the selections involved have to be infinite sets. If the prefixes
of the sequences of discrete modes of the desired switching signals form a regular
language, then there exist algorithms to compute matrix representations of Oα(�),
Rβ(�), see [4, 5].

Further extensions. The model reduction method described above was extended
to linear parameter-varying (LPV) models [3] and bilinear systems [30]. In addition,
the method above was applied to LSSs arising from asynchronous sampling of linear
time-invariant systems [2].

Relationship with realization theory. To begin with, the whole idea of matching
Markov parameters relies on the notion ofMarkov parameters and partial realization,
which are integral parts of realization theory. In fact, the result of the Ho-Kalman
realization algorithm from Procedure 3.2 is isomorphic to the LSS returned by Algo-
rithm 1 with the choice of the matrices W and V as described in option (C) above.
That is, moment matching is just a reformulation of Ho-Kalman algorithm when the
latter is applied to finite Hankel-matrices, rank of which is not maximal. The partial
realization algorithm of [28] is a particular instance of this model reduction method,
if α = β = {v ∈ Q∗ | |v| ≤ N } × Q is chosen. Furthermore, Theorem 4.2.1 and its
counterpart for the discrete-time case [5] can be viewed as extensions of realization
theory of LSSs with constrained switching [22, 23].

4.2.2 Moment Matching in Frequency Domain

By applyingmultivariate Laplace transform of the functions {G f
v }v∈Q+ we can define

a sequence of functions {H f
v }v∈Q+ of complex variables as follows:

H f
v (s1, . . . , sk) =

∫ ∞

0
· · ·

∫ ∞

0
Gv(t1, . . . , tk)e

s1t1+···+sk tk dt1 · · · dtk (13)

for all Re(si ) > s0 for a suitable s0 ∈ R, where k = |v|. If f has a realization by a
LSS � of the form (1) then G f

q1···qk (t1, . . . , tk) satisfies (5), and hence

H f
q1,q2,...,qk (s1, s2, . . . , sk) = Cqk�qk (sk)�qk−1(sk−1) · · · �q1(s1)Bq1 , (14)

where �q(s) = (s In − Aq)
−1, q j ∈ Q, 1 � j � k. We call the functions {H f

v }v∈Q+

the generalized transfer functions of the input-output map f [15].
Let� and
 be finite sets of tuples so that�,
 ⊆ {(v, μ) | v ∈ Q+, μ ∈ C

k, k =
|v|}. We will say that an LSS �̄ is a (�,
)-partial realization of f if for every
(w,μ) ∈ �, (v, λ) ∈ 
, H f

wv(μ, λ) = HY�̄
wv (μ, λ).
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Our goal is to find an LSS �̄ such that �̄ is a (�,
)-partial realization of f , and
the dimension of �̄ is smaller than that of�. To this end, for any v = q1 · · · qk ∈ Q+,
q1, . . . , qk ∈ Q, define

r((v, μ)) = �qk (μk) · · · �q1(μ1)Bq1 , o((v, μ)) = Cqk�qk (μk) · · · �q1(μ1),

for any μ = (μ1, . . . , μk) ∈ C
k . Assume that the cardinality of � and 
 are both

r and consider an enumeration � = {(wi , μi
)}ri=1 
 = {(vi , λi )}ri=1 of these sets.

Define the matrices

R = [
r((w1, μ1

)) . . . r((wr , μr
))

]
, O = [

o((v1, λ1))
T . . . o((vr , λr ))

T
]T

.

Assume that rank OR = r .We can applyAlgorithm1withW = O , V = R resulting
in an LSS �̄ which will have the following property.

Theorem ([15]) With the notation and assumptions above, the LSS �̄ is a (�,
)-
partial realization of f . �

Thismethod has an alternative formulation in terms of generalized Loewnermatri-
ces [15], thus extending the well-known Loewner matrix based model reduction
method for linear systems.

Relationship with realization theory The reformulation of this method in terms
of generalized Loewner matrices yields a partial realization algorithm, as it depends
on data which can directly be obtained from Laplace transforms of the input-output
map. In a way, this method is the first step towards a reformulation of realization
theory of LSSs in frequency domain.

5 Conclusions

In this chapter we presented a brief overview of some recent results on realization
theory andmodel reduction of linear switched systems. It is well known that for linear
systems there is a deep connection between these two disciplines. We hope that this
chapter convinces the reader that this remains true for hybrid systems and that it is
worthwhile to do further research on this topic. There are many possible directions
for future research. A particularly natural one is to extend the results of this chapter
to hybrid systems with state-dependent switching, for example to piecewise linear
systems. The latter can be viewed as a feedback interconnection of a linear switched
system with a discrete event generator, hence we are hopeful that the results of this
chapter will be useful for such an extension.
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