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Abstract Buck converters are DC-DC converters which provide a step-down of
the input voltage produced by the supply to the output voltage delivered to the
load. They contain two semiconductor devices (typically a transistor and a diode)
acting as switches which open and close periodically, together with an output filter
in the form of an RLC circuit. These considerations render the buck converter as
a periodically switched linear system. Thanks to the periodic nature, the Harmonic
Transfer Function (HTF) is a suitable tool for modeling the buck converter. This
chapter shows how to identify a frequency domainmodel for the buck converter from
measurements of the HTF through the Loewner framework. The measurements are
obtained by computing the Fast Fourier Transform (FFT) of the outputs in a small
signal analysis. Themodel corresponds to a single-input multiple-output systemwith
the the number of outputs given by the desired number of harmonics.

Keywords Periodically switched linear system · Harmonic transfer function ·
Loewner framework

1 Introduction

Power converters are electronic circuits that allow the electric power source (a battery,
the electrical network, a solar panel, etc.) to be adapted to the needs of the receiver (an
electric motor, an asynchronous machine, etc.). One way of classifying converters is
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Fig. 1 Circuit diagram for
the Buck converter
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Fig. 2 The Buck converter
as a switched system
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with respect to the type of current accepted by the supply and the load: alternating
current (AC) or direct current (DC). Hence, there are four possible combinations:
DC to DC, DC to AC, AC to DC and AC to AC converters. DC-DC converters can be
found in mobile phones, laptops, wind turbines, photovoltaic systems, electric cars,
etc.

This chapter focuses on a type of DC-DC converters that are the easiest to model,
namely buck converters. The circuit diagramof an open-loop buck converter is shown
inFig. 1. In continuous currentmode (CCM), the transistor S is open and closedwith a
certain switching frequency, while the diode S follows the opposite behavior (Fig. 2).
Figure3 shows the voltage drop over the transistor when assuming ideal switching (in
reality, switching is not an instantaneous process). The switching frequency is much
larger than the resonant frequency of the RLC filter to ensure correct functioning of
the converter. The presence of the two semiconductor devices render the converter
as a switched system. On the other hand, the periodic behavior of the two switches
dictates the periodicity of the overall system. The output filter is a linear RLC circuit,
hence, the buck converter can be regarded as a periodic switched linear (PSL) system.

The goal of this chapter is to model the buck converter in the frequency domain
from physically realizable measurements. Using the small signal paradigm, an AC
voltage of small amplitude and varying frequency is added to the DC input. An
FFT analysis of the output reveals that, besides the perturbation frequency, other
frequencies are also present (typically referred to as harmonic distortions [1]). These
frequencies are predicted by the Harmonic Transfer Function (HTF), which was
developed as a tool for analyzing periodic systems in the frequency domain. The
HTF is expressed in terms of doubly-infinite state-space matrices containing the
Fourier coefficients of the periodic state-space matrices. Based on the application,
one decides on the number of relevant harmonics and can, thus, truncate the infinite
matrices to only a few terms. From the spectral analysis of the response to a range
of sinusoidal perturbations, measurements at the expected peaks are gathered, which
represent, after post-processing, measurements of the HTFs. These can be employed,
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Fig. 3 Ideal switching on
two switching periods
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together with the Loewner framework [2], to identify the continuous-form of these
few HTFs.

Typically, the buck converter is characterized by the average model [3]. This is
a linear time-invariant model describing the dynamics of the system in terms of
the average values for the current and voltage variables, neglecting effects due to
switching. Hence, a plethora of works focus on the identification of these low order
LTI average models, an example being [4]. Periodic switching causes the appearance
of higher order harmonics and aliasing effects appear for perturbation frequencies
larger than half of the switching frequency. Hence, the average model is valid only
until one half of the switching frequency, before aliasing becomes an issue. High
frequency harmonics are, therefore, not captured by the average model. Figure4
shows the response to a DC input of the ideal buck converter detailed in Sect. 4.3.
This response resembles that of a second-order system and is precisely the response
predicted by the average model. However, when considering a time scale in the same
order of magnitude as the switching frequency (Figs. 5 and 6), oscillations with the

Fig. 4 Response of the
Buck converter
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Fig. 5 Response between
0.0298s and 0.03 s
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Fig. 6 Response between
0.1998s and 0.2 s
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same frequency as the switching frequency can be detected. These oscillations cannot
be captured by the average model.

To account for harmonics induced by the periodic behavior, the concept of Har-
monic Transfer Functions (HTFs) was developed in [5], with one transfer function
modeling each harmonic’s response. For an application consisting of a helicopter
rotor, [6] showed that the theoretical HTFs match the quantities obtained from pro-
cessing the Fourier transform of outputs and inputs. The work of [7] was the first
to apply the harmonic state-space (HSS) framework from [5] to model a number of
electrical systems from power electronics. In this framework, state-space matrices
are doubly-infinite with entries given by the Fourier coefficients of the periodic state-
space matrices. A common technique is to lift the system through the application of
a Floquet transformation. This is a periodic similarity transformation which yields
a constat system matrix A, thus facilitating the stability analysis of such systems.
An identification algorithm for linear time-periodic (LTP) systems using Floquet
transformations applied to the discretized LTP system is presented in [8]. The paper
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[9] provides a review of frequency-domain modeling of converters, including Flo-
quet theory, Harmonic Transfer Functions and Equivalent Signal theory. Last, but
not least, [10] assumes full state measurements and identifies the HSS matrices from
input-output data.

The Loewner framework is typically employed for identifying a descriptor-form
representation of linear time invariant (LTI) systems [2, 11] from frequency-domain
measurements of their transfer function. Authors in [12] extended it to the class of
linear switched systems. In particular, the data used in [12] consist of frequency
domain samples of input-output mappings in the form of a series of multivariate
rational functions obtained by taking the multivariate Laplace transform. However,
it is not clear how to measure these quantities in practice.

This paper is structured as follows. Section2 first recalls the problem of model-
ing LTI systems in the frequency domain in Sect. 2.1 and, afterwards, reviews the
concept of harmonic transfer function for modeling periodic systems in Sect. 2.2.
Section3 provides a short review of the classical Loewner framework. Section4
shows the application of the proposed methodology to an ideal buck converter, as
well as when integrating the ON resistance of the switches into the model, together
with the numerical experiments. Finally, Sect. 5 concludes the paper and presents
directions for future research.

2 Modeling Periodic Systems in the Frequency Domain

This section discusses modeling dynamical systems in the frequency domain. First,
the case of linear time-invariant systems is quickly reviewed. Afterwards, the theory
of harmonic transfer functions is presented for periodic switched systems.

2.1 Linear Time-Invariant Systems in the Frequency Domain

For simplicity, we review the case of single-input single-output (SISO) systems. We
seek to recover a descriptor realization consisting of matrices E ∈ R

n×n , A ∈ R
n×n ,

b ∈ R
n×1, c ∈ R

1×n for an underlying linear time invariant (LTI) system of the form

Eẋ(t) = Ax(t) + bu(t) (1)

y(t) = cx(t). (2)

The excitation is u(t), while the response is denoted by y(t). The column vector
x(t) ∈ R

n [t] is an internal variable referred to as the state if the matrix E is invert-
ible. Equations (1)–(2) provide the time-domain representation, while the frequency-
domain representation is given in terms of the transfer function obtained by taking the
Laplace transform of (1)–(2) and computing the ratio between the Laplace transform
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of the output to that of the input. The transfer function is

H (s) = Y(s)

U(s)
= c (sE − A)−1 b, (3)

where s is the Laplace variable, a complex number.

Remark 1 The descriptor-form representation (1)–(2) of an LTI system is more
general than the state-space form

ẋ(t) = Assx(t) + bssu(t) (4)

y(t) = cssx(t) + dssu(t), (5)

as it can describe systems with a constant dss , as well as higher-order polynomial
terms, by incorporating these into b or c and making E singular. If the matrix E in
(1) is invertible, then Ass = E−1A and bss = E−1b.

2.1.1 Review of Modeling LTI Systems from Frequency-Domain
Measurements

Frequency-domain measurements are obtained by considering the input u(t) as a
sinusoidal excitation u(t) = cos

(
2π f j t

)
for a range of perturbation frequencies f j ,

j = 1, . . . , P . At steady state, the output is also a sinusoidal signal with the same
frequency, but a different magnitude and phase: yss(t) = a cos

(
2π f j t + φ

)
. The

magnitude andphase-shift encode a complex numberH j = a expiφ ,where i is the unit
imaginary number. The quantity H j represents the measurement at frequency f j , so,
by collecting these pairs of points

(
f j ,H j

)
, j = 1, . . . , P , the goal is to recover the

unknown transfer function such that, when evaluating H(s) for s = i2π f j , the result
is close to the corresponding frequency response measurement Hj . In other words,
given the discrete points

(
f j ,H j

)
, j = 1, . . . , P , wewish to find the continuous-time

rational transfer function H(s) such that the points are interpolated: H j = H
(
i2π f j

)
,

or well approximated: H j ≈ H
(
i2π f j

)
(depending on the application).

2.2 Periodic Systems in the Frequency Domain

Due to the periodic opening and closing of the switches, the converter’s dynamics
can be expressed as a periodic system in state-space form:

ẋ(t) = A(t)x(t) + b(t)vin(t) (6)

vout (t) = c(t)x(t) + d(t)vin (t) (7)
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Fig. 7 Fourier analysis of the buck converter’s response to a DC input
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Fig. 8 Fourier analysis of the buck converter’s response to a sum of DC and 5kHz AC inputs (26)

where the state-space quantities A(t), b(t), c(t), d(t) are periodic, with a fixed and
known period Ts > 0, called the switching period, such that A(t) = A(t + mTs),
∀m ∈ Z, and the same for b(t), c(t), d(t).

For a linear periodically time-varying (LPTV) system, a sinusoidal input with
excitation frequency f j produces an infinite sum of sinusoidal signals with different
magnitudes and phase-shifts, at frequencies that are the sum of f j and multiples of
the switching frequency fs : fi + m fs , ∀m ∈ Z. This can be visualized in Fig. 7 from
the Fourier analysis of the converter’s response to a DC input and in Fig. 8 for an
AC input with perturbation frequency fi = 5kHz superimposed to a DC signal. The
converter is operating with switching frequency fs = 20kHz.

The periodic switched system changes between different discrete modes with
period Ts = 1

fs
, the switching period. For simplicity, and because it fits the case of

the buck converter operating in continuous conduction mode (as will be explained
in Sect. 4), we will discuss the simple case of two modes, but results are equally
applicable to systems with more than two discrete modes.
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1. When the switch is ON, the first mode is activated. This lasts for DTs , where
D < 1 is the duty cycle (the percentage of time that the switch is ON), in the time
interval t ∈ [mTs, (m + D)Ts), ∀m ∈ Z. The system dynamics can be expressed
in terms of the state-space matrices A(1), b(1), c(1), d(1).

2. The second mode is activated when the switch is OFF, lasting for the remaining
(1 − D)Ts , namely for t ∈ [(m + D)Ts, (m + 1)Ts), with state-space matrices
A(2), b(2), c(2), d(2).

This yields the following expression for A(t), and similarly for b(t), c(t) and d(t):

A(t) =
{
A(1), t ∈ [mTs, (m + D)Ts)
A(2), t ∈ [(m + D)Ts, (m + 1)Ts)

,∀m ∈ Z. (8)

As for any periodic signal, we can express A(t) in terms of its Fourier Series

A(t) =
∞∑

j=−∞
A j exp

i jωs t , ωs = 2π fs, (9)

and similarly for b(t), c(t) and d(t). The Fourier coefficients A j can be computed
with the classical formula

A j = 1

Ts

∫ Ts

0
A(t) exp−i jωs t dt (10)

which reduces to

A j = 1

Ts

∫ DTs

0
A(1) exp−i jωs t dt + 1

Ts

∫ Ts

DTs

A(2) exp−i jωs t dt (11)

= (
A(1) − A(2)

) 1 − exp−i2π j D

i2π j
, for j �= 0 (12)

and

A0 = 1

Ts

∫ Ts

0
A(t)dt = DA(1) + (1 − D)A(2), (13)

after taking into account the two switching phases in Eq. (8). Similar expressions are
available for the Fourier coefficients of the b, c and d quantities. Substituting into
(6)–(7), we obtain
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ẋ(t) =
∞∑

j=−∞
A j exp

i jωs t x(t) +
∞∑

j=−∞
b j exp

i jωs t vin(t) (14)

vout (t) =
∞∑

j=−∞
c j expi jωs t x(t) +

∞∑

j=−∞
d j exp

i jωs t vin (t) (15)

which, after applying the Fourier Transform, becomes

iωX(iω) =
∞∑

j=−∞
A jX(iω − i jωs) +

∞∑

j=−∞
b j Vin(iω − i jωs) (16)

Vout (iω) =
∞∑

j=−∞
c jX(iω − i jωs) +

∞∑

j=−∞
d j Vin (iω − i jωs) . (17)

Fourier Series can also be used for the time-domain signals x(t), vin(t) and vout (t)
in (14)–(15), yielding more complicated equations in (16)–(17) which are omitted
here. Eventually, they can be re-written compactly in matrix-form:

sX (s) = (A − N )X (s) + BVin(s) (18)

Vout (s) = CX (s) + DVin(s), (19)

by defining infinite vectors X , Vin and Vout :

X (s) =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

...

X−1(s + iωs)

X0(s)
X1(s − iωs)

...

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

,Vin(s) =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

...

Vin−1(s + iωs)

Vin0 (s)
Vin1(s − iωs)

...

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

,Vout (s) =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

...

Vout−1(s + iωs)

Vout0 (s)
Vout1(s − iωs)

...

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

,

(20)
where X j , Vin j , Vout j , j = −∞, . . . ,∞ are the Fourier coefficients of the corre-
sponding time-domain signals in the ωs-basis. Moreover, A, B, C, D are doubly-
infinite matrices:

A =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . A0 A−1 A−2 . . .

. . . A1 A0 A−1 . . .

. . . A2 A1 A0 . . .

...
...

...
...

. . .

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, B =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . b0 b−1 b−2 . . .

. . . b1 b0 b−1 . . .

. . . b2 b1 b0 . . .

...
...

...
...

. . .

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, (21)
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C =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . c0 c−1 c−2 . . .

. . . c1 c0 c−1 . . .

. . . c2 c1 c0 . . .

...
...

...
...

. . .

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, D =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . d0 d−1 d−2 . . .

. . . d1 d0 d−1 . . .

. . . d2 d1 d0 . . .

...
...

...
...

. . .

⎤

⎥⎥
⎥⎥⎥⎥
⎦

. (22)

These are block Toeplitz matrices generated by Ts-periodic functionsA(t), b(t), c(t)
and d(t), respectively, containing their Fourier coefficients. Last, but not least,N is
the block diagonal matrix

N =

⎡

⎢⎢⎢⎢⎢⎢
⎣

. . .

−iωsI
0
iωsI

. . .

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (23)

Finally, the Harmonic Transfer Function (HTF), relating harmonics of the output to
harmonics of the input signal: Vout (s) = H(s)Vin(s), is defined as

H(s) = C (sI − (A − N ))−1 B + D (24)

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . H0(s + iωs) H−1(s) H−2(s − iωs) . . .

. . . H1(s + iωs) H0(s) H−1(s − iωs) . . .

. . . H2(s + iωs) H1(s) H0(s − iωs) . . .

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (25)

The HTF involves infinite state-space matrices, which cannot be implemented on a
machine without truncation. Unfortunately, it may be possible that low frequency
behavior is affected by truncation because the matrix inverse (sI − (A − N ))−1 may
result in wrapping high frequency components back to low frequency. Truncation
effects are significant when the dynamics matrix A(t) contains an impulse. The
Fourier components of an impulse do not roll off (they are constant), causing sig-
nificant truncation errors and [5] noted that the number of harmonic components
needed to produce a good match is larger for systems with discontinuous dynamics
equations. However, when the converter is operating in continuous current mode, as
shown in [13], truncation does not cause large modeling errors. Hence, in our appli-
cation, only a limited number of harmonics are of interest (say N ), so the infinite
quantities are truncated to dimension 2N + 1, and HTFs in Eq. (25) range from −N
to N .
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2.2.1 Modeling the Buck Converter from Frequency-Domain
Measurements

For DC-DC converters, the load requires a constant supply voltage with minimal
disturbance, so a small signal analysis should be considered. In this setting, the input
is taken as a constant voltage together with an AC component with amplitude one or
several orders of magnitude smaller than the DC voltage:

vin (t) = vDCin + vACin cos(2π f j t) = vDCin + vACin

2

(
expiω j t + exp−iω j t

)
, (26)

with f j , the perturbation frequency of choice, and vDCin � vACin . In the Laplace
domain, this corresponds to the vector

Vin(s) =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

...

0
Vin0(s) = vDCin

s + vACin
s

s2+ω2
j

0
...

⎤

⎥⎥
⎥⎥⎥⎥
⎦

. (27)

The response is a superposition of the output due to the DC input and the output due
to the AC input: vout (t) = vDCout (t) + vACout (t). The DC output contains, besides
the 0-frequency, harmonics at integer multiples of the switching frequency (as shown
in Fig. 7):

vDCout (t) = vDC0 +
∞∑

m=−∞
m �=0

vDCm cos(2πm fst + φDCm). (28)

Similarly, the AC output, contains, besides − f j and f j , harmonics at − f j − m fs
and f j + m fs , m ∈ Z (recall Fig. 8):

vACout (t) = vAC0 cos(2π fk t + φAC0) +
∞∑

m=−∞
m �=0

vACm cos(2π( fk + m fs)t + φACm).

(29)
In the Laplace domain, this amounts to expressing Vout (s) = H(s)Vin(s), namely

Vout (s) =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

...

Vout−1(s + iωs)

Vout0(s)
Vout1(s − iωs)

...

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

...

H−1(s)
H0(s)
H1(s)

...

⎤

⎥⎥⎥⎥⎥
⎥
⎦

Vin0(s) (30)
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In practice, only the information contained in theACoutput will be used, for different
perturbation frequencies f j . Depending on the number of HTFs to be identified (e.g.,
N), the perturbation frequencies should contain enough points and span at least N
multiples of fs . However, values that are equal tomultiples of the switching frequency
should be avoided, as components add up. Through an FFT analysis of the output,
the amplitude and phase of the harmonics are determined and the measurement of
the HTF established:

Hm(iω j ) = vACm

vACin
expiφACm ,m = −N , . . . , 0, . . . , N . (31)

3 Review of the Loewner Framework

This section reviews the Loewner framework as a tool for solving the problem of
modeling LTI systems in the frequency domain introduced in Sect. 2.1 for SISO sys-
tems. Here, we consider the general case of multiple-input multiple output (MIMO)
systemswith p inputs and q outputs. Given pairs of the form ( f j ,H j ), j = 1, . . . , P ,
where H j ∈ C

q×p is the matrix measured at f j , we partition the set of points
{iω1, . . . , iωP} = {

λ1, . . . , λP/2
} ∪ {

μ1, . . . , μP/2
}
into right λk , k = 1, . . . , P

2 and
left points μh , h = 1, . . . , P

2 . We select right tangential directions as column vec-
tors rk and left directions as row vectors lh . They can be chosen, for simplicity,
as vectors of the identity matrix [11]. Matrix data H j are converted to right vec-
tor data Hkrk = wk and left vector data lhHh = vh . These quantities are collected

into matrices � = diag
[
λ1 . . . λ P

2

]
, M = diag

[
μ1 . . . μ P

2

]
, R =

[
r1 . . . r P

2

]
,

W =
[
w1 . . . w P

2

]
, L =

[
l1 . . . l P

2

]T
, V =

[
v1 . . . v P

2

]T
. Next, the Loewner and

shifted Loewner matrices are defined entry-wise as

Lhk = vhrk − �hwk

μh − λk
, σLhk = μhvhrk − λk�hwk

μh − λk
, h, k = 1, . . . ,

P

2
. (32)

We can write a (non-minimal) descriptor realization as in (1)–(2) of the transfer
function model

H(s) = W (σL − sL)−1 V (33)

satisfying the right and left interpolation conditionsH(λk)rk = wk and lhH(μh) = vh
[2]. To obtain a minimal realization, we perform a singular value decomposition
(SVD) of a linear combination of the Loewner and shifted Loewner matrices:

[Y, �,X] = svd(σL − xL), x ∈ { fi }. (34)

Choosing n as the singular value where the largest drop between two consecutive
singular values takes place (n is application-dependent), we truncate the SVD and
define (in Matlab notation) Xn = X(:, 1 :n) and Yn=Y(:, 1 :n)∗. The model of size
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n in descriptor form is

E = −YnLXn, A = −YnσLXn, B = YnV, C = WXn,D = 0. (35)

4 Analysis of the Buck Converter as a PSL System

The Buck converter is a hybrid dynamical system with the continuous behavior
dictated by the linear time-invariant elements (resistor, capacitor, inductor) and the
discrete behavior given by the two switches. Figure1 shows the topology of a Buck
converter which supplies a passive load resistor with voltage vout . The switch is
controlled by a binary input signal S: when S is ON, the switch is closed (conducting),
and for S OFF, the switch is non-conducting (open), as illustrated in Figs. 2 and 3.
We consider the converter to be operating in continuous conduction mode (CCM),
meaning that the current through the inductor never reaches zero, hence there are
two linear working modes: S ON, S OFF in the time interval t ∈ [mTs, (m + D)Ts]
and S OFF, S ON for t ∈ [(m + D)Ts, (m + 1)Ts], ∀m ∈ Z.

4.1 Ideal System

This section covers the case of ideal switches, which turnONorOFF instantaneously.
The circuit can bemodeled by differential equations involving the capacitor’s voltage
vC(t) and the inductor current iL(t). Equation (36) describes the dynamics of the
Buck converter in each working mode i = 1, 2 in state-space form:

ẋ(t)=Ax(t)+b(i)vin(t), x(t)=
[
VC (t)
IL (t)

]
, A=

[− 1
RC

1
C− 1

L 0

]
, b(1) =

[
0
1
L

]
, b(2) =

[
0
0

]
. (36)

The response is vout (t) = vC(t), yielding c = [
1 0

]
and d = 0 for the output equation

vout (t) = cx(t) + dvin(t). In terms of the analysis described in Sect. 2.2 for periodic
systems, we notice that A, c and d are the same for both modes. This allows to
simplify the matrices appearing in the HTF: A = blkdiag [. . . ,A,A,A, . . .], C =
blkdiag [. . . , c, c, c, . . .], D = 0, while B is full with Fourier coefficients given by
b0 = Db(1) and b j = b(1) 1−exp−i2π j D

i2π j , for j �= 0. This allows to decouple the different

HTFs we seek to identify: H j (s) = c (sI − (A − i jωsI))−1 b j . One could attempt to
identify each of the HTFs separately.

Remark 2 The average model is precisely the HTF H0(s) = c (sI − A)−1 Db(1) for
this ideal system.
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Fig. 9 Updated circuit
diagram of the Buck
converter
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4.2 Integrating the ON Resistance of the Semiconductor
Devices

Semiconductor devices are not perfect open circuits when OFF and, similarly, they
are not perfect short circuits when ON. In practice, their equivalent circuits would
contain resistors, inductors and capacitors. In this section, we account for the small
resistance Ron whendevices areON.Figure9 shows theupdated circuit diagramwhen
considering Rton , the ON resistance for the transistor, and Rdon , the ON resistance for
the diode. They are each in series with the corresponding ideal switch. The effect of
Rton can be seen in Fig. 10, from the voltage across the transistor, with the switching
no longer being instantaneous.

In terms of the model in state-space form, accounting for the resistances Ron

results in different A matrices for each discrete mode:

A(1) =
[− 1

RC
1
C− 1

L − rton
L

]
and A(2) =

[− 1
RC

1
C− 1

L − rdon
L

]
, (37)

while the rest of the matrices stay unchanged from Sect. 4.1. In this case, the doubly-
infinite matrix A in (21) appearing in the HTF is no longer block-diagonal, but full,
with Fourier coefficients equal to

A0 = DA(1) + (1 − D)A(2) and A j = (
A(1) − A(2)

) 1 − exp−i2π j D

i2π j
for j �= 0.

(38)
Hence, the HTFs can no longer be decoupled, as it was the case for ideal switches,
and the harmonic transfer functions should be modeled altogether.
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Fig. 11 Matlab simulink/simscape electrical model for the buck converter

4.3 Numerical Experiments

A Matlab 2019a [14] Simulink/Simscape Electrical model [15] (Fig. 11) of a
Buck converter with parameters: L = 1mH, C = 500µF, R = 12	, fs = 20kHz,
vDCin = 12V and duty cycle D = 1

2 was employed for the numerical experiments.
When integrating the Ron resistance of the semiconductor devices in the simulation,
the chosen values are Rton = 0.2 and Rdon = 0.01.

The output for several perturbation frequencies: 10Hz, 20Hz, . . ., 100Hz, 200Hz,
. . ., 1000Hz, 2000Hz, . . ., 19000Hz, 19100Hz, . . ., 19900Hz, 19910Hz, 19920Hz,
. . ., 19990Hz, yielding a total of 54 frequencies, was saved to files for subsequent
post-processing. A large number of frequencies were considered, from low up to just
below the switching frequency, despite the low order model we expect to identify,
to ensure that all dynamics are modeled accurately. From Fig. 8, which shows the
magnitude of the FFT of vout for vin (t) = 12 + cos(2π · 5000 · t), we notice that
components at frequencies 0, 20kHz, 40kHz, etc., are present, together with compo-
nents at frequencies 5kHz, 20 − 5 = 15kHz, 20 + 5 = 25kHz, 40 − 5 = 35kHz,
40 + 5 = 45kHz, etc. Using the insight from Fig. 8, the magnitude of AC compo-
nents superior to 35kHz are below −100dB, typically considered as engineering
precision. Hence, the infinite sum in the HTF is truncated to N = 1, leading to the
following HTFs to be identified: H−1(s), H0(s) and H1(s) from the FFT analysis of
Vout−1(iω j + iωs), Vout0(iω j ) and Vout1(iω j − iωs) in (30), respectively. Moreover,
recall that, for our application, the converter is operating in continuous current mode
and truncation of the infinite HSS matrices does not cause large errors. This fact is
verified in Tables1 and 2, where the N = 100 truncation offers no improvement or
only a slight improvement in the accuracy with respect to the N = 1 truncation.

Making use of the complex conjugate information from the negative frequencies

⎧
⎨

⎩

Vout−1(−iω j + iωs)=Vout1(iω j − iωs) together with (30) ⇒ H−1(−iω j )=H1(iω j )

Vout0 (−iω j ) = Vout0 (iω j ) together with (30) ⇒ H0(−iω j )=H0(iω j )

Vout1(−iω j − iωs)=Vout−1(iω j + iωs) together with (30) ⇒ H1(−iω j )=H−1(iω j ).

and applying the output transformation [10]
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Fig. 12 SVD drop of the
Loewner matrix pencil for
the ideal system
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Fig. 13 SVD drop of the
Loewner matrix pencil for
the system with parasitics
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Ty =
⎡

⎣
1 0 1
0 1 0

−i 0 i

⎤

⎦ ⇒ Ty

⎡

⎣
H−1(s)
H0(s)
H1(s)

⎤

⎦ =
⎡

⎣
H−1(s) + H1(s)

H0(s)
−iH1(s) + iH1(s)

⎤

⎦ � Ĥ(s) (39)

yields the usual complex conjugate relationship for Ĥ: Ĥ(−iω j ) = Ĥ(iω j ), allowing
one to obtain state-space matrices with real entries from the single input multiple
output measurements Ĥ j . In the Loewner framework (Sect. 3), frequencies with odd
indices together with their negatives are used as right data, while those with even
indices and their negatives as left data. We expect a system of order 6, due to the
matrix A − N having size 6, when truncating (21) such that the HTF contains only
H−1(s), H0(s) and H1(s). Figures12 and 13 show the singular value drop of the
matrices L, σL and a linear combination thereof, exhibiting a drop of several orders
of magnitude after the 6th singular value (more clear for the system with parasitics).
This allows to identify an order 6 system, as expected. The final realization is obtained
by applying the inverse of the output transformation and premultiplying the resulting
C matrix with T−1

y .
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Fig. 14 H−1(s) in the ideal
case
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Fig. 15 H0(s) in the ideal
case
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Fig. 16 H1(s) in the ideal
case
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Figures14, 15 and 16 show the magnitude of the three HTFs H−1(s), H0(s) and
H1(s) in the ideal case, plotted only for positive frequencies. The recovered models
match the data, as well as the theoretical HTFs.

The same good agreement is noticed in Figs. 17, 18 and 19 from the magnitude of
the three HTFs H−1(s), H0(s) and H1(s)when taking into account the ON resistance
of the switches. The effect of these resistances can be seen in the damping of the
low frequency resonance of H0(s) and in the appearance of dips at the same low
frequency resonance in the response of H−1(s) and H1(s). The increase in damping
can also be explained from the pole plots of the two systems in Figs. 20 and 21.While
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Fig. 17 H−1(s) with
parasitics
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Fig. 18 H0(s) with
parasitics
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Fig. 19 H1(s) with
parasitics
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the imaginary parts of the poles remain largely unaffected (on the default scale), the
real part has decreased from taking into account parasitics.

Remark 3 Since theHTFs can no longer be decoupled as in the ideal case, modeling
each HTF individually would not allow to recover the system of order 6.
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Fig. 20 Pole plot for the
ideal system
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Fig. 21 Pole plot for the
system with parasitics

-135.835 -135.8345 -135.834 -135.8335 -135.833
real part

-1.5

-1

-0.5

0

0.5

1

1.5

im
ag

 p
ar

t

105 Pole plot

Loewner
HTF

Remark 4 Even though the true model obtained by truncating the infinite harmonic
state-space matrices matches the data in Figs. 14, 15, 16, 17, 18 and 19, when com-
puting the errors

H∞ error =
max
j=1...P

(
H j − H(iω j )

)

max
j=1...P

(
H j

) (40)

and
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Table 1 Errors for the ideal system

H∞ error H2 error

Loewner 2.5112 · 10−4 1.6839 · 10−4

HTF (N = 1) 7.9216 · 10−3 6.7037 · 10−3

HTF (N = 100) 7.9216 · 10−3 6.7037 · 10−3

Table 2 Errors for the system with parasitics

H∞ error H2 error

Loewner 3.2559 · 10−7 2.8704 · 10−7

HTF (N = 1) 7.9498 · 10−3 6.7565 · 10−3

HTF (N = 100) 7.9201 · 10−3 6.7442 · 10−3

H2 error =

√√√√√
√√√

∑

j=1...P

‖H j − H(iω j )‖2F
∑

j=1...P

‖H j‖2F
, where ‖H(iω j )‖2F =

∑

m=−N ...N

|Hm(iω j )|2,

(41)
we obtain the values displayed in the last two rows of Table1 for the ideal system and
Table2 for the system with parasitics. Surprisingly, these errors are rather large. For
the ideal system, increasing the number of terms in the truncation to N = 100 yields
precisely the same errors as with N = 1. For the system with parasitics, increasing
the number of terms in the truncation to N = 100 improves the errors marginally
with respect to the truncation with N = 1 discussed in this paper. Last, but not least,
the accuracy of the models built with the Loewner framework from data is in the
order of the first neglected singular value (the 7th in our case), as seen from Figs. 12
and 13, namely 10−4 for the ideal system and 10−7 for the system with parasitics.

5 Conclusion and Future Work

This chapter presents a first step towards modeling periodic switched linear sys-
tems from frequency domain measurements which can be physically achievable.
The theory presented relies on the identification of harmonic transfer functions in
the Loewner framework.

While the descriptor-form of the model can be used in simulations, the realization
for the vector of HTFs is of the form (35) and can no longer be interpreted physi-
cally in terms of Fourier coefficients. Hence, future work involves applying suitable
similarity transformations to retrieve matrices from which the Fourier coefficients
of the periodic state-space matrices A(t), b(t), c(t) and d(t) can be easily identi-
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fied. Unfortunately, as shown by the errors in Tables1 and 2, data obtained from
the Fourier analysis of the output signals from Simulink do not perfectly match the
harmonic transfer function model and the need to obtain direct, instead of simulation
measurements, is evident.

This chapter focused on the open-loop Buck converter as an application case. In
practice, the system is typically operating in closed-loop, with the switching sig-
nal obtained through Pulse Width Modulation, by comparing state variables to the
clocking carrier waveform. The control signal can be taken into consideration as an
extra input [16] and a similar analysis through the HTF can be performed. In future
work, we will also account for the control-to-output transfer function in the model-
ing procedure. Moreover, more realistic models integrating high-frequency parasitic
elements of the semiconductor devices and of the output filter will be considered.
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