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Dedicated to Thanos Antoulas on the
occasion of his 70th birthday



Rational and Systematic—A Mathematical
Biography of Thanos Antoulas

Biographical Sketch

Athanasios (Thanos) Antoulas was born in Athens, Greece. Having excelled
at physics in high school, he considered moving to England for his undergraduate
studies. Counseled by his countryman John Argyris, he instead chose to study in
Switzerland. After a year at EPFL, he moved to ETH Zürich, where he completed
dual degrees: Diplomas in Electrical Engineering (May 1975) and Mathematics
(November 1975). After finishing this program of study, he began as a doctoral
student in solid-state physics at ETH, but by 1976 changed plans to work instead
with Rudolf Kalman, who had joined ETH as chair of Mathematical Systems Theory
in 1973. (Thanos offers several reminiscences from his time as a graduate student
in [18].) Thanos received his Ph.D. in Mathematics in 1980, with his dissertation
[2] focused on translating state-space-based concepts, such as F mod G-invariant
subspaces and reachability subspaces, into a transfer function-based input/output
formulation. He further pursued and extended these developments in his Habilitation,
which he completed at ETH just a few years later, in 1982 [3].

Shortly thereafter, Thanos moved to the Department of Electrical and Computer
Engineering at Rice University in Houston, Texas. There he joined a robust group of
faculty in control theory and digital signal processing, including Sidney Burrus, Tom
Parks, and Boyd Pearson, and quickly rose through the faculty ranks to full professor.
(Figure 1 shows Thanos in his early years at Rice.) He was elected an IEEE Fellow
in 1991, and 4 years later became a Fellow of the Japan Society for the Promotion of
Science. From 2002 to 2015, he also maintained an affiliation with Jacobs University
Bremen, where hemet several students whowould later complete Ph.D.’s with him at
Rice. In 2016, he was appointed a Fellow of the Max Planck Society in Magdeburg,
Germany and began serving as Adjunct Professor in the Department of Molecular
and Cellular Biology at Baylor College of Medicine in Houston. For more than 20
years, he was Editor-in-Chief of Systems & Control Letters, serving from October
1994 to December 2015.

vii
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Fig. 1 Thanos in his office in Abercrombie Lab at Rice University, 1980s. (Photograph courtesy
of the Woodson Research Center, Fondren Library, Rice University.)

Thanos’s research falls under the main umbrellas of approximation theory and
systems theory, areas in which he has been an international leader for the past 30
years. Notably, his work includes breakthrough contributions and the development of
fundamentalmethods focused on the rational approximation of large-scale dynamical
systems and data-drivenmodeling. His 2005 SIAMbook onApproximation of Large-
Scale Dynamical Systems is a basic resource for all who seek to learn about and
implement model reduction methodology.

It is challenging to give a deserving summary of an academic career as substantial
and influential as Thanos’s within a brief preface. We will try our best to do so,
highlighting only a subset of his fundamental contributions.Articles in thisFestschrift
illustrate clearly how Thanos has influenced many research areas and, to our delight,
how he has influenced many of us as well. We hope that he continues to do both long
into the future.
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Fig. 2 Thanos during a visit to Brian Anderson in Canberra, 1985. Also in the picture are (counter
clockwise, starting with Thanos in the red sweater): Brian D.O Anderson, William Andrew Coppel,
Ian Petersen, Michael Green, Iven Mareels, and Michel Gevers

The Antoulas–Anderson Collaboration

In 1985, Thanos visited BrianAnderson at the Australian National University (ANU)
in Canberra. This research visit had a lasting impact, leading to a breakthrough result
that laid the basis for what is now called the Antoulas–Anderson method for rational
interpolation of scalar functions [6]. Figure 2 shows young Thanos during this visit,
in a photograph taken on his birthday. (Indeed, one can see his cake on the table
behind him.)

The paper [6] contains several important results that brought the Loewner matrix
into central focus as the right tool to generalize realization theory to rational interpo-
lation. Loewner introduced his eponymous matrix in [46] as an adjunct to the study
of monotone matrix functions but also understood the connection this matrix had
with rational interpolation and other topics as well. Indeed, the Loewner matrix has
been rediscovered over the years; in other contexts is known as the divided-difference
matrix and the null-pole coupling matrix. The article [6] extended and deepened the
relationship with rational interpolation by noting a subtle dichotomy in the inter-
pretation of the rank of the Loewner matrix: namely, that the minimal degree of a
rational interpolant will either be equal to the rank of the Loewner matrix or to the
difference between the number of interpolating points and this rank, depending on
whether certain ancillary conditions are satisfied. The former case is generic and the
minimal interpolating function will be unique, while in the latter case, the minimal
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interpolating function will not be unique. This article also developed parameter-
izations of both minimal and non-minimal rational interpolants starting from the
Loewner matrix, and moreover, provided a parametrization of all minimal updatings
to any given (minimal) rational interpolant.

The sequel paper [1] introduced several other important results: Just as is true for
the Hankel matrix, the Loewner matrix can be expressed as the product of a general-
ized observabilitymatrix and a generalized reachabilitymatrix. Forminimal systems,
each of these generalized observability and reachability matrices has rank equal to
the McMillan degree. A systematic approach for producing state-space realizations
of rational functions based on an almost square Loewner matrix was proposed there
as well, with related development of a method leading to the construction of rational
interpolants from knowledge of the nullspace of a (tall skinny) Loewner matrix. This
last point became the basis ofwhat has nowbecome known as theAdaptive Antoulas–
Anderson (AAA) algorithm [49].1

Projection-Based Model Reduction

In the mid-1990s, Paul Van Dooren, who has long served as a bridge between the
systems theory and numerical linear algebra communities, introduced Thanos to his
RiceUniversity colleagueDannySorensen.Anexpert inKrylov subspace algorithms,
Sorensen had recently developed the Implicitly Restarted Arnoldi Method [54] for
large-scale eigenvalue computations. Soon Thanos and Danny were collaborating
on projection-based algorithms for model reduction, which have at their core the
same Krylov subspace technology used for solving linear systems and eigenvalue
problems. This fruitful collaboration yielded numerous important results, including
one of the first survey papers on model reduction [15] that covers both systems’
theoretic approaches and Krylov subspace methods. Thanos, Danny, and several of
their graduate students also investigated theoretical and algorithmic properties of
Lyapunov equations, which play a critical role in control theory and model reduction
[14, 16, 37, 56, 57]. Key results from thiswork include bounds on the decay ofHankel
singular values [16] and the approximate structured balanced truncation algorithm
[56].

Beyond their joint publications, their symbiotic research influenced other faculty
and many graduate students in the electrical engineering and applied math depart-
ments.During this period, Thanoswaswriting his landmark textbook,Approximation
of Large–ScaleDynamical Systems [4], and test-driving the contents in his ELEC501

1 This algorithm had a brief 6-month run as the Aggressive Antoulas–Anderson algorithm (see e.g.,
https://arxiv.org/abs/1612.00337v1) but possibly due to the ambiguity of where one may separate
compound modifiers in English, it was soon changed to the milder Adaptive Antoulas–Anderson
algorithm. Of course, to those of us who know Thanos well, “Aggressive Antoulas...” is unseemly
and implausible; “(Politely) Assertive Antoulas...” is fitting to the man but perhaps not to the
algorithm; and there seems to be general agreement that “Adaptive Antoulas...” is a comfortable
compromise.

https://arxiv.org/abs/1612.00337v1
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“Approximation of Systems” graduate course at Rice. Several of us authors fondly
remember these lively and dynamic days.

A longstanding and fundamental question in interpolatory model reduction (as
is the case also for any interpolation-based method) lies in how best to choose the
location of interpolation points. Methods for creating interpolatory reduced models
were formerly called moment-matching methods or rational Krylov methods; they
generally utilized ad hoc choices of interpolation points that were chosen to reduce
heuristic error estimates. Systematic approaches for selecting interpolation points
were later motivated by expressions for the H2(-error) norm proved in [4, 32, 33].
These expressions decomposed theH2 model reduction error into two components:
one due to a mismatch of the full and reduced transfer functions at the mirror images
of the full-order system poles; the other due to the mismatch at the mirror images
of the reduced-order system poles. The first attempts to make use of these expres-
sions in [32, 33] forced interpolation at the mirror images of dominant full-order
poles, thus eliminating some terms contributed by the first error component. But
just a few years later, it was discovered in [34, 35] that optimality with respect
to the H2 error could be achieved via bitangential Hermite interpolation at the
mirror images of the reduced-order poles along tangent directions determined by
the reduced-system residues; these are also known as the Meier–Luenberger condi-
tions [48] in the single-input/single-output case. This optimality condition led to the
Iterative Rational Krylov Algorithm (IRKA) [34, 35], which iteratively corrects the
interpolation locations until the optimality conditions are satisfied. The 2008 paper
[34] also showed the equivalence of the Sylvester-equation framework [40] to the
H2 approximation problem with the interpolatory framework [34, 48]. The IRKA
approach, via its connection to numerically efficient rational Krylov methods, has
made it possible to compute optimal H2 approximations to large-scale dynamical
systems and has emerged as amajormilestone inmodel reduction. The success of this
approach has motivated the extension of the optimal interpolatory model reduction
framework into diverse settings including, e.g., bilinear [21, 27] and quadratic [22]
nonlinear dynamical systems; parameterized dynamical systems [19, 39]; structured
dynamical systems [25, 36, 58]; data-driven optimal H2 approximation [20, 38];
and optimal approximation with respect to related error measures [23, 26]. We have
highlighted here Thanos’s contributions to interpolatory model reduction—indeed,
his contributions in this area have made the term nearly synonymous with optimal
H2 approximation (as described above) and the data-driven Loewner framework (as
described below). Many of these ideas have formed the foundation of his most recent
book, Interpolatory Methods for Model Reduction, with the co-authors Beattie and
Gugercin [9].

In the early 2000s, Thanos was also developing ideas that brought fundamental
advances into the treatment of “passive” systems. When the modeling context that
produced the original model contains features that reflect how the system handles
energy, it is reasonable to expect that surrogate (reduced) models should retain anal-
ogous structural features, in addition to producing a small system error. Indeed,
preservation of structural features like this may be necessary for the surrogate model
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to behave “physically”—ideally, like aminiature version of the original system. “Pas-
sive” systems cannot produce a net gain in energy within the larger systems to which
they are coupled, so certainly any prospective reduced-order surrogate system should
share that feature and hence also not produce a net gain in energy. For example, when
VLSI circuit designs are modeled as RLC circuits, passive reduced models can be
synthesized as equivalent RLC circuits, and so can be manifested quite literally as a
miniature version of the original RLC model.

Thanos’ firstmajor contribution in this areawas an interpolatory reductionmethod
that preserved passivity of the reduced-order model [5]. He showed that if interpo-
lation points were drawn from the set of so-called spectral zeros of the original
system, passivity (and hence stability) of the reduced system would be guaranteed.
It is interesting to note that this observation converts the model reduction problem
to a generalized eigenvalue problem involving the Hamiltonian of the associated
full-order system. The key results of [5] were followed by a flurry of subsequent
contributions by collaborators and students including Danny Sorensen [55], Roxana
Ionutiu, and Joost Rommes [43].

The Loewner Framework for Data-Driven Modeling

Loewner matrices played a fundamental role in Thanos’s earlier work on rational
interpolation and realization theory [1, 6–8]. However, it was the breakthrough paper
[47], written in collaboration with his Ph.D. student Andrew Mayo, that led to the
epoch-making Loewner framework for data-driven modeling. This paper introduced
the shifted Loewner matrix, enabling the construction of data-driven rational inter-
polants immediately in descriptor form, thus avoiding the numerically ill-conditioned
“inversion” of theE-matrix during construction (which in earlierworkswould implic-
itly enforce a regular state-space realization upon the interpolant). This paper also
showed how one could construct tangential interpolants directly from data, allowing
one to have significantly more flexibility in the construction of rational interpolants.
As a final touch and one that is becoming ever more relevant in this age of “big
data”, Thanos also demonstrated in [47] how onemay remove data redundancy using
the singular value decomposition (SVD) and thus how minimal rational tangential
interpolants may be formed when abundant data is available.

While [47] laid out the theoretical foundations of a data-driven approach for
frequency-domain modeling of systems with many inputs and outputs given a large
amount of data, the principal computational cost that was involved could become
formidable, since it required the SVD of a linear combination of Loewner and shifted
Loewner matrices of order equal to the number of measurements. To reduce this cost
for data sets comprising a large number of samples, Thanos and his Ph.D. student
Sanda Lefteriu proposed several approaches for adding measurements in batches,
while simultaneously monitoring the error [45]. Notably, one of these approaches is
based on an extension of the parameterization of rational interpolants proposed in
[6], as described in the previous section.
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The 2007 paper [47] has become the foundation for numerous advances in data-
driven modeling. For example, [20] employed the Loewner framework in the H2-
optimal approximation setting, replacing the projection-based construction of H2-
optimal reduced models, such as those in [34], with a data-driven formulation that
does not need access to the underlying realization. In [12, 42], Thanos and his
Ph.D. students Lefteriu and Ionita developed the Loewner framework for parametric
dynamical systems by extending the single-variable Loewner matrices (and single-
variable barycentric forms) to multivariable ones. Thus, parametric interpolatory
reducedmodels were directly constructed from parametric transfer function samples,
another major milestone in data-driven modeling of dynamical systems.

Another substantial development was the extension of the Loewner framework
to special classes of nonlinear dynamical systems by Thanos and his students and
collaborators: to bilinear dynamical systems [11] with his Ph.D. students Cosmin
Ionita and Ion-Victor Gosea; to quadratic-bilinear dynamical systems [10, 28, 29]
with his Ph.D. students Ion-Victor Gosea and Dimitrios S. Karachalios, and his Rice
colleague Matthias Heinkenschloss; and to switched dynamical systems [30] with
his Ph.D. student Ion-Victor Gosea and his colleague Mihaly Petreczky. The theory
from the linear case was elegantly extended to these important classes of nonlinear
dynamics by forming divided difference matrices from samples of the multivariate
subsystem transfer functions resulting from theVolterra series expansion of nonlinear
dynamical systems.

Numerous other works have been motivated by the Loewner framework or further
extended it to different settings. For example, [31, 51–53] developed a Loewner-
like approach for constructing data-driven structured realizations such as for delay
systems or second-order systems. For the case of time-domain data (as opposed to
frequency), [41, 44, 50] investigated the Loewner-based data-driven modeling using
the time-domain input/output data. In the recent work [24], the Loewner framework
was used in contour integral methods for solving nonlinear eigenvalue problems.
These are only a small subset of works that are inspired by the influential paper [47].

While the Loewner framework has found applications in diverse settings (see [9,
13] for a variety of examples), we highlight Thanos’s collaboration with colleagues
at Baylor College of Medicine [17, 59], in which the Loewner-based modeling was
utilized to reveal 12-hour cycles appearing in living organisms that are quite distinct
from the ubiquitous 24-hour (circadian) cycles. The results of [59] were highlighted
in the “Editors’ Choice” column of the 30 June 2017 issue of Science and constitute
one of the most significant scientific applications of the Loewner framework to date.
We find that the evolution of this work typifies Thanos’s refined taste in interesting
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problems and demonstrates his strength in developing wide collaborations engaging
diverse areas of application.
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Sparse Representation for Sampled-Data H∞ Filters . . . . . . . . . . . . . . . . . 427
Masaaki Nagahara and Yutaka Yamamoto

Analysis of a Reduced Model of Epithelial–Mesenchymal Fate
Determination in Cancer Metastasis as a Singularly-Perturbed
Monotone System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
M. Ali Al-Radhawi and Eduardo D. Sontag



Linear Dynamical Systems



The Rational Interpolation Problem:
Grassmannian and Loewner-Matrix
Approaches

Joseph A. Ball and Vladimir Bolotnikov

Dedicated to Thanos Antoulas on the occasion of his 70th
birthday with respect and admiration

Abstract We review theGrassmannian approach to rational interpolation theory and
indicate points of contact and divergencewith the Loewner-matrix approach.We also
provide an introduction to some recentwork on free noncommutative function theory,
in particular noncommutative rational functions, where some results paralleling the
classical single-variable case have been obtained but where many other basic issues
remain to be resolved.

Keywords Rational interpolation · Loewner framework · Grassmannian ·
Noncommutative rational functions

1 Introduction

Starting in the early 1980s there was a lot of interest in the engineering/systems
theory community in Nevanlinna-Pick interpolation due to its connection with the
Model Matching problem and with the evolving theory of H∞-control. Together
with Bill Helton the first author was part of the development of the Grassmannian
approach to Nevanlinna-Pick interpolation, the natural setting for which was Kreı̆n-
space operator theory. Later, work of the first author with Israel Gohberg and Leiba
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Rodman focused on the study of rational solutions and transfer-function realizations
for the solutions, with abstract Kreı̆n-space arguments replaced by more concrete
winding-number arguments. It was much later that we attempted to apply the same
ideas to interpolation problems without metric constraints. It was during this period
that the first author realized that he and his student (Jeongook Kang) were trying to
solve the same problem that Thanos Antoulas was working on, resulting in the joint
paper [6]. Thanos’s approach has come to be called the Loewner matrix approach
on which there are now several good overview expositions (see [5, Chap. 4.5] and
[8]). It is interesting that the Loewner-matrix approach was applied first to problems
without metric constraints and then practitioners saw how to adapt the approach
to Nevanlinna-Pick-type interpolation problems (with metric constraints), whereas
for the Grassmannian approach the sequence was in reverse. The second author has
complementary expertise in yet another school of interpolation theory, namely that
of Potapov using reproducing kernel Hilbert space methods and operator equations
(see the two articles [42, 43] in a 1997 Potapov-dedicatory volume). Here we review,
compare, and contrast these various approaches, and also provide an introduction to
the whole new world of freely noncommutative rational matrix functions, a topic of
current robust activity.

2 Review of the Grassmannian Approach to Rational
Interpolation

Let us consider the following simplest case of the bitangential rational matrix inter-
polation problem. We are given a data set

D = {μ, �, v;λ, r,w} (1)

consisting of

• left interpolation nodes μ := {μi }qi=1 ⊂ C

• left tangential directions � := {�i }qi=1 ⊂ C
p

• left tangential values v := {vi }qi=1 ⊂ C
m

• right interpolation nodes λ := {λ j }kj=1 ⊂ C

• right tangential directions r := {r j }kj=1 ⊂ C
m

• right tangential values w := {w j }kj=1 ⊂ C
p.

For simplicity and to avoid degeneracies, we assume that the combined set of inter-
polation nodes μ1, . . . ,μq ,λ1, . . . ,λk consists of distinct points and that the left and
right tangential directions �1, . . . , �q , r1, . . . , rk are all nonzero vectors. Given such
a data set, we seek to understand the set of p × m rational matrix functionsH which
are pole-free on the set of interpolation nodes μ ∪ λ and satisfy the set of tangential
interpolation conditions:
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��
i H(μi ) = v�

i for i = 1, . . . , q,

H(λ j )r j = w j for j = 1, . . . , k. (2)

The idea of the Grassmannian approach to problems of this sort (referred as the
generating systemapproach in [5, 8]), as developed starting in themid-1980s byBall-
Helton [20] and then worked out in state-space coordinates for rational solutions in
[14], is to reformulate the problem in terms of the graph space of a solution (viewed
as a multiplication operator on an appropriate subspace of rational vector functions)
rather than in terms of a solution itself. To get into details, a little more notation will
be helpful. Forω any subset ofC and n a positive integer, we use the notation Rn(ω)

for rational Cn-valued functions having no poles in ω. We simplify the notation for
two special cases: ifω = ∅, we write simplyRn rather thanRn(∅) for the space of all
C

n-valued rational functions, and if n = 1, we write simply R(ω) rather than R1(ω)

for the space of scalar-valued rational functions with no poles in ω.
Given the data set D as in (1), let us introduce a quintuple of matrices

�D = (C,A,Z,B,L)where

C =
[
w1 · · · wk

r1 · · · rk

]
∈ C

(p+m)×k, A =
⎡
⎢⎣

λ1

. . .

λk

⎤
⎥⎦ ∈ C

k×k,

Z =
⎡
⎢⎣

μ1

. . .

μq

⎤
⎥⎦ ∈ C

q×q , B =
⎡
⎢⎣

��
1 −v�

1
...

...

��
q −v�

q

⎤
⎥⎦ ∈ C

q×(p+m),

L =
[
v�
i r j − ��

i w j

μi − λ j

]
1≤i≤q,1≤ j≤k

∈ C
q×k . (3)

The assumptions that each r j is nonzero and that the λ j ’s are distinct imply that
(C,A) is an observable pair, i.e.,

⋂k−1
n=0 KerCA

n = {0}. Similarly the assumptions
that each �i is nonzero and that the μi ’s are distinct imply that (Z,B) is a controllable
pair, i.e., span j=0,...,k−1 RanZ

jB = C
k . Furthermore it is easily checked thatL solves

the Sylvester equation
LA − ZL = BC, (4)

and in fact, by our assumption that the eigenvalues of A (λ1, . . . ,λk) are disjoint
from the eigenvalues of Z (μ1, . . . ,μq ), is uniquely determined from A,Z,B,C
as the unique solution of (4). The reader familiar with the work of Antoulas and
collaborators will recognize the matrix L appearing in (3) as exactly the Loewner
matrix associated with the bitangential interpolation problem in the Loewner-matrix
approach to interpolation developed in themanypapers ofAntoulas and collaborators
(see in particular [5, Chap. 4] and [8] for good overview treatments).

In general, given any quintuple of matrices
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� = (C,A,Z,B,L)

of respective sizes N × k, k × k, q × q, q × N , q × k, we say that� is an admissible
Sylvester data set over ω if the following conditions hold:

(i) (C,A) is an observable pair with σ(A) ⊂ ω,
(ii) (Z,B) is a controllable pair with σ(Z) ⊂ ω, and
(iii) L is a solution of the Sylvester equation

LA − ZL = BC. (5)

Thus we see in particular that the collection �D formed from the bitangential inter-
polation data set D as in (3) is an admissible Sylvester data set over ω (with the
input-output space dimension N set equal to N = p + m). Given any admissible
Sylvester data set � over the subset ω ⊂ C, we may define a subspace S� ⊂ RN by

S� =
{
C(s I − A)−1x + h(s) : x ∈ C

k, h ∈ RN (ω)such that

∑
z∈ω

Ress=z(s I − Z)−1Bh(s) = Lx

}
. (6)

Note that the observable pair (C,A) determines the pole structure in ω of f ∈ RN

which are in S� while the controllable pair (Z,B) determines the null structure in
ω of such functions, and the matrix L, called the null-pole coupling matrix in the
work of [14], quantifies how the pole structure and null structure of functions f must
be coupled for admission to the subspace S�. The significance of the validity of the
Sylvester equation (5) is that this is exactly the condition on the data set � required
to guarantee that the associated subspaceS� is a module over the ringR(ω) of scalar
rational functions analytic on ω, i.e., so that

r ∈ R(ω), f ∈ S� ⇒ r f ∈ S�.

R(ω)-submodules S of RN of the form S = S� have two additional special proper-
ties:

(i) full-range: dimRN (ω)/[S ∩ RN (ω)] < ∞, and
(ii) simple-invariance: dim[S + RN (ω)]/RN (ω) < ∞.

The content of the next result is that these are exactly the free R(ω)-submodules of
RN of rank N (see [14, Theorem 14.1.3]).

Theorem 1 Let S be a R(ω) submodule of RN . Then the following statements are
equivalent.

1. S is full range and simply invariant.
2. S has the form S = S� for an admissible Sylvester data set � over ω.
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3. There exists a rationalmatrix function� ∈ RN×N with det� not identically equal
to zero so that S = � · RN (ω).

We note that the book [14] uses the terminology null-pole subspace for a sub-
space of the form � · RN (ω) where � is some N × N rational matrix function with
determinant not vanishing identically; inmodule-theoretic language, such a subspace
amounts to the R(ω)-submodule of RN generated by the columns of �.

Remark 1 We note that in principle a (possibly descriptor) realization formula for
the matrix function � in part (3) of Theorem 1 can be computed directly from the
admissible null-pole triple �; in case L is square and invertible, there is a simple
formula for such a �, namely:

�(s) = I + C(s I − A)−1
L

−1B. (7)

In case L is not invertible (e.g., if L is not even square), the idea is to add null-pole
data over a subset ω′ disjoint from ω (e.g. take ω′ to be the point at ∞) so that the
combined admissible Sylvester data set does have coupling operator Le = [

L L12
L21 L0

]
which is invertible. For details on this, we refer to Sects. 4.5 and 4.6 of [14] and the
references there.

Afiner result is to add pole/null data only at the point at infinity so that the resulting
global null/pole triple has invertible coupling matrix and hence there exists a rational
matrix function corresponding with global null/pole structure given by this expanded
data set (see [34]). As an additional refinement one can demand that the solution be
column-reduced at infinity (see [19]).

Let us now return to the more specific case where the admissible Sylvester data
set � has the form � = �D coming from the data set D (1) for a bitangential
interpolation problem (2). Then the formula (6) for the null-pole subspace applied
to the case where � = �D assumes the more detailed form

S�D
=

{ k∑
j=1

[
w j

r j

]
(s − λ j )

−1c j +
[
h+(s)
h−(s)

]
: c j ∈ Cfor1 ≤ j ≤ k,

h+ ∈ Rp(ω), h− ∈ Rm(ω)such that, for each1 ≤ i ≤ q,

��
i h+(μi ) − v�

i h−(μi ) =
k∑
j=1

v�
i r j − ��

i w j

μi − λ j
c j

}
. (8)

It is natural to define a second admissible Sylvester data set over ω, namely,

D− = (C−, A, 0, 0, 0) where C− = [
r1 · · · rk

]
, A =

⎡
⎢⎣

λ1

. . .

λk

⎤
⎥⎦

with associated null-pole subspace
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S�D− = {C−(s I − A)−1x : x ∈ C
k} + Rm(ω).

Given a rational matrix function H ∈ Rp×m , we let MH denote the multiplication
operator MH : h(s) �→ H(s) · h(s) acting from Rm into Rp. We shall be interested in
the graph of the operator MH|S�D−

: S�D− → Rp, i.e.,

GH =
[
H
I

]
· S�D− ⊂ Rp+m . (9)

Then the following result gives a reformulation of the interpolation problem (2) as a
geometric condition on GH.

Theorem 2 A rational matrix function H ∈ Rp×m is analytic on ω and satisfies the
interpolation conditions (2) if and only if its graph subspace (9) is contained in the
null-pole subspace S�D

(6) associated with the interpolation data set D (1):

GH ⊂ S�D
.

Proof (Sketch of proof:) We sketch only one direction: we suppose that H ∈
Rp×m(ω) and that H satisfies the interpolation conditions (2). We want to check
that then GH ⊂ S�D

. First note that a generic element of GH has the explicit form

[
H(s)
I

] ( k∑
j=1

r j (s − λ j )
−1c j + h(s)

)

for some scalars c1, . . . , ck ∈ C and some h ∈ Rm(ω). Making use of the left tan-
gential interpolation conditions in (2) we rewrite this as

k∑
j=1

[
w j

r j

]
(s − λ j )

−1c j +
[∑k

j=1
H(s)−H(λ j )

s−λ j
r j c j + H(s)h(s)

h(s)

]
.

To check that this quantity is in S�D
, from the criterion given in (8) we see that we

must check that, for each 1 ≤ i ≤ q,

k∑
j=1

��
i

H(μi ) − H(λ j )

μi − λ j
r j c j + ��

i H(μi )h(μi ) − v�
i h(μi ) =

k∑
j=1

v�
i r j − ��

i w j

μi − λ j
c j .

If we now make use of the interpolation conditions (2), we see that this identity falls
out. This computation illustrates the role of the Loewner matrix L in the Grassman-
nian approach to the bitangential rational interpolation problem.

The converse direction is not much more difficult but we omit the details here. �
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The next step is to apply Theorem 1: there is a nondegenerate (i.e., with deter-
minant not vanishing identically) (p + m) × (p + m) rational matrix function � so
that S�D

= � · Rp×m(ω). This enables us to arrive at the next result.

Theorem 3 Let� be a nondegenerate (p × m) × (p × m) rational matrix function
such thatS�D

= � · Rp+m(ω) as guaranteed by Theorem 1. ThenH is analytic onω
and satisfies the interpolation conditions (2) if andonly if there exists a parameter pair
of rational functions P ∈ Rp×m(ω) and Q ∈ Rm×m(ω) such that the scalar rational
function det(�21P + �22Q) is analytic with nonzero values on ω \ {λ1, . . . ,λd}
while having simple poles at the points {λ1, . . . ,λd}. We note that it can be shown
that this latter condition holds for a generic choice of the parameter-pair (P,Q).

Let us note that higher order bitangential interpolation conditions (where one spec-
ifies not only values of �i (s)�H(s) and of H(s)r j (s) at specified points μ1, . . . ,μq

and λ1, . . . ,λk but also an initial segment of the Taylor-series expansion at these
points (where �i (z) and r j (z) are specified vector-valued polynomials) can also be
handled by this analysis by allowing the matrices A and Z to have more general
Jordan structure; details can be found in [14] as well as in [13].

In practice the bitangential interpolation problem (2) is considered with additional
constraints, as we next discuss.

2.1 Parametrization of Interpolants with Prescribed
Macmillan Degree

The additional demand is to characterize the minimal possible Macmillan degree
which an interpolant can have andmore generally parametrize the interpolants giving
any of the possible Macmillan degrees. To solve this problem via the generating
system approach, it is important to construct the generating system matrix � to be
column- (or row,- depending on one’s conventions) reduced at infinity. This gives
an application of the very problem solved in great generality in [19]. All this is
discussed in [6] as well as in the survey [5, Chap. 4] with original results for the
simplest case going back to [3, 9]. In particular, one can identify when the minimal
Macmillan-degree solution is unique, and, when not, parametrize the set of minimal
Macmillan-degree solutions (see Theorem 2.1 in [6] for a concise statement for the
scalar case).

There has been much progress in the last couple of decades in the theory of
descriptor realizations, i.e., in representations of a rational matrix function H in the
form

H(s) = D + C(sE − A)−1B

with E not necessarily invertible (see [44] and the references there). In particular,
by making use not only of the Loewner matrix L (as in (3)) but also of the shifted
Loewner matrix Ls
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Lsh =
[
μiv�

i r j − ��
i w jλ j

μi − λ j

]
i=1,...,q; j=1,...,k

∈ C
q×k

the result of [44] is that there is a compact descriptor realization formula involving
the pencil Lsh − sL for the generating system matrix � giving the representation
S�D

= � · Rp+k(ω) generalizing the formula (7) to the case where the unshifted
Loewner matrix L is not invertible. It would be of interest to understand this formula
better for the case of a general admissible Sylvester data set� (not necessarily of the
form�D coming from the interpolation data set for the simplest bitangential interpo-
lation problem (2)). Two-variable descriptor realizations for general bivariate rational
matrix functions have been obtained in [7] based on the two-variable analogues of the
Loewner and shiftedLoewnermatriceswhich again leads tomore compact realization
formulas than those obtained for proper realizations in the sense ofGivone-Roesser or
Fornasini-Marchesini for multidimensional systems (multidimensional-system ana-
logues of proper (nondescriptor) realizations); by way of comparison we mention
the paper of Galkowski [33].

2.2 Nevanlinna-Pick Interpolation

The bitangential Nevanlinna-Pick interpolation is to assume that all the interpolation
nodes λ1, . . . ,λk,μ1, . . . ,μq are in a specified region� (let’s say either the unit disk
D or the right half-plane C+) and then to demand that a solution H, in addition to
satisfying the interpolation conditions (2), also satisfies the normconstraint‖H(s)‖ ≤
1 for all s ∈ �. This fits well with the Grassmannian approach in that the norm
constraint on the solution H translates to the graph GH being a maximal negative
subspace in an appropriately specified ambient Kreı̆n space. Then one imposes the
constraint on the generating matrix � that it be �-J -inner, i.e., J -unitary on the

boundary ∂� of � and J -contractive inside �, where J =
[
Ip 0
0 −Im

]
. Then it turns

out that all parameter pairs of the form (P,Q) = (S, Im) with S having contractive
values in � are all “good” parameter pairs in the sense of Theorem 3, and that
restricting to good parameter pairs of this special form parametrizes the set of all
solutions of the Nevanlinna-Pick interpolation problem. Another variation is to take
p = m and to ask that the solutionH have positive real part on� (H(s) + H(s)∗ � 0
for s ∈ �). The solution via the Grassmannian approach proceeds as above, but
with J = [ 0 −Im−Im 0

]
; the condition that H(s) have strictly positive-definite real part

for s ∈ � guarantees that parameter pairs of the form (P,Q) = (G, Im) with G a
free-parameter with strictly positive-definite real part on � are all good, and that
restriction to this class of good parameter pairs leads to a parametrization of the set
of all solutions of the problem. For details see the book [14] and the references there
as well as the expository account of the Kreı̆n-space Grassmannian approach [11].
For a behavioral interpretation of the Grassmannian approach to Nevanlinna-Pick
interpolation, see [10, 47]. Let us also note that there is also physical motivation
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for considering the Nevanlinna-Pick interpolation problem with the addition of a
constraint on the Macmillan degree of a solution; a small sample of work on this
problem is [30, 45].

There is a connection between the rational interpolation problem without norm
constraints and the Nevanlinna-Pick interpolation (with a norm constraint on the
values of the interpolant) which can be explained as follows. For specificity we
now take � = C+. The fact that the generating system matrix � is J -unitary on
∂� = iR tells us that�(−s)∗−1 = J�(s)J for s on the imaginary line, and then, by
meromorphic continuation, on all of C. Thus the fact that � has simple poles at the
right interpolation nodes λ1, . . . ,λk and simple zeros at the left interpolation nodes
μ1, . . . ,μk in C+ implies that the � has simple zeros at the reflections of the right
interpolation nodes −λ1, . . . ,−λk and has simple poles at the reflections of the left
interpolation nodes −μ1, . . . ,−μq . In fact this is the idea of how to construct a J -
inner � with prescribed zero/pole structure in C+: imposing the additional reflected
zero/pole structure inC− determines� up to a right constant factor; one can then use
the flexibility of this right constant factor to guarantee that � has J -unitary values
on the imaginary line. Furthermore there is a natural operation of reflection of left
tangential interpolation conditions to right tangential interpolation conditions and of
right tangential interpolation conditions to left tangential interpolation conditions.
Adding these reflected interpolation conditions to the original gives a new enlarged
interpolation problem which has its own generating matrix in the sense of rational
interpolation without norm constraint. Constructing the generating systemmatrix for
this enlarged problem without the norm constraint leads to a construction of the J -
unitary generating system for the original problem with the norm constraint imposed
(one can use the invertible constant of freedom to guarantee J -unitary values on
the imaginary line). In this way we arrive at the main thesis of Anderson-Antoulas
in [4]: one can view the Nevanlinna-Pick interpolation problem as equivalent to an
interpolation problem without norm constraint.

3 Other Several-Variable Generalizations: Free
Noncommutative Rational Functions

We have already mentioned the extension of the Loewner-matrix approach to min-
imal realization and interpolation problems for bivariate rational functions (at least
for the scalar-valued case) in [7] as well as some extensions of Nevanlinna-Pick
interpolation to multivariable situations in [1, 12, 24, 25]. Let us mention also the
work of [22, 23, 32] on multivariable Nevanlinna-Pick interpolation and connec-
tions with H∞-control for multidimensional linear systems. What we would like to
discuss in the space remaining here, however, is in a somewhat more exotic direc-
tion, namely the recently emerging theory of free noncommutative rational matrix
functions. This is a particular topic in the broader area of free noncommutative func-
tion theory, a type of quantized function theory whereby one studies functions of
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several matrix variables of consistent but arbitrary square sizes satisfying a natural
collection of compatibility conditions as one varies the matrix-tuple argument (see
conditions (11), (12), (13) below). A first systematization of such a theory appears
in the recent book of Kaliuzhnyi-Verbovetskyi and Vinnikov [41]. The theory has
origins in the much earlier work of Taylor on noncommutative spectral theory [48,
49] as well as in work of Voiculescu [50–52] done with an eye toward applications to
free probability (see e.g. [27, 28, 46] for applications of recent advances in the free
noncommutative function theory to free probability). In systems and control theory,
noncommutative rational functions and more generally formal power series come
up in the theory of automata and formal languages going back to work of Fliess,
Schützenberger, Kleene and others from the 1960s (see [29] for a comprehensive
treatment), and also as transfer functions of multidimensional linear systems with
evolution along a free monoid (see [15, 16, 26]) with applications to robust control
of linear systems with Linear-Fractional-Transformation-modeled structured uncer-
tainty (see [17, 18]). Noncommutative functions also come up in the program of
Helton and collaborators to formulate optimization problems appearing in systems
and control as dimension-independent, i.e., the natural variables are matrices rather
than the scalar entries in the matrices, and engineering problems have to do with
rational expressions in these matrix variables which have therefore the same form
independent of matrix sizes. This has led to the search for understanding which
optimization problems can be reduced to LMIs (Linear Matrix Inequalities) with
attractive tractable solution algorithms, especially in the context of some convex
structure in the statement of the problem (see e.g. [31, 35, 36] for surveys on various
aspects of this topic). In addition there are instances where the noncommutative the-
ory sheds light on the more standard function theory of several complex variables:
examples are the realization theory (see [15]) and the theory of Nevanlinna-Pick
interpolation (see [2, 21]).

3.1 Noncommutative Polynomials

It will be convenient to introduce some notation.We letFd+ denote the freemonoid (or
unital free semigroup) with d generators consisting of the first d integers 1, 2, . . . , d.
Thus elements of Fd+ are words in the generators

α = iN · · · i1 where i j ∈ {1, . . . , d} for 1 ≤ j ≤ N .

We let |α| denote the length of the word α; thus |α| = N if α = iN · · · i1. Multipli-
cation in F

d+ is via concatenation

α · β = iN · · · i1 jM · · · j1 if α = iN · · · i1 and β = jM · · · j1.

We let ∅ denote the word with length equal to 0, so ∅ is the vacuous word consisting
of no letters; the importance of ∅ is that it serves as the unit element in Fd+:
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α · ∅ = ∅ · α = α.

For z1, . . . , zd be a collection of freely noncommutative indeterminates and α ∈
F
d+, we let zα denote the free noncommutative monomial

zα = ziN · · · zi1 if α = iN · · · i1. (10)

A p × q-matrix noncommutative polynomial is a formal expression of the form

p(z) =
∑
α∈Fd+

pαz
α

where pα ∈ C
p×q and pα = 0 for all but finitely many α ∈ F

d+. Any p × q-matrix
noncommutative polynomial can be evaluated at a Z = (Z1, . . . , Zd) ∈ (Cn×n)d

(where n ∈ N is arbitrary) via a functional calculus based on tensor products:

p(Z) =
∑
α∈Fd+

pw ⊗ Zα ∈ C
p×q ⊗ C

n×n ∼= C
pn×qn,

where

Zα = ZiN · · · Zi1 ∈ C
n×n if Z = (Z1, . . . , Zd) and α = iN · · · i1 ∈ F

d
+

is the extension of the monomial functional calculus (10) to d-tuples of n × n
matrices, where the multiplication now is matrix multiplication in C

n×n rather than
concatenation of freely noncommutative indeterminates. The result is a functional
calculus Z �→ p(Z) for Z = (Z1, . . . , Zd) ∈ �∞

n=1(C
n×n)d defined on the domain

dom p = �∞
n=1(C

n×n)d which satisfies the following properties:

1. Gradedness: For p ∈ C
p×q〈z〉 and Z ∈ (Cn×n)d we have

p(Z) ∈ C
pn×qn . (11)

2. Respect for direct sums: For Z (1) = (Z (1)
1 , . . . , Z (1)

d ) ∈ (Cn×n)d and Z (2) =
(Z (2)

1 , . . . , Z (2)
d ) ∈ (Cm×m)d , set

[
Z (1) 0
0 Z (2)

]
=

( [
Z (1)
1 0
0 Z (2)

1

]
, . . . ,

[
Z (1)
d 0
0 Z (2)

d

] )
∈ (C(n+m)×(n+m))d .

Then

p

( [
Z (1) 0
0 Z (2)

] )
=

[
p(Z (1)) 0

0 p(Z (2))

]
. (12)

3. Respect for similarities: If Z ∈ (Cn×n)d and S ∈ C
n×n is invertible, set SZS−1 =

(SZ1S−1, . . . , SZd S−1). Then
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p(SZS−1) = (S ⊗ Ip)p(Z)(S−1 ⊗ Iq). (13)

It is these propertieswhich are taken as the axioms for a free noncommutative function
in the comprehensive treatment of a general free noncommutative function theory in
[41].

3.2 Noncommutative Rational Matrix Functions

There is a notion of noncommutative rational function which is obtained by com-
pleting the ring of freely noncommutative polynomials to the associated universal
skew-field of fractions (see [38, 39, 53] and the references there for details and back-
ground). A concrete way of constructing such a skew-field developed only recently
in [38, 39] is through rational expressions. By a rational expression we mean a syn-
tactically valid combination of noncommutative polynomials, arithmetic operators
+, ·,−1 and parentheses. For r a rational expression define its domain dom r to consist
of all Z = (Z1, . . . , Zd) ∈ �∞

n=1(C
n×n)d such that substitution of Z = (Z1, . . . , Zd)

for the formal indeterminates z = (z1, . . . , zd) in the formal expression r(z) is well-
defined (i.e., one is not asked to invert an n × n matrix which is not invertible).
Restrict to rational expressions with nonempty domains. Two rational expressions
are equivalent if they agree on the intersection of their domains. The equivalence
class of a rational expression r defines a rational function r with domain equal to the
union of the domains of all the rational expressions in its equivalence class. With an
additional adjustment of the domain introduced in [53] (called the stable extended
domain of r, denoted as edomstab r or edomstab r for any r ∈ r) there is a well-defined
matrix-evaluation r �→ r(Z) for Z ∈ edomstab(r) so that the associated functional
calculus Z �→ r(Z) satisfies (11), (12), (13). Furthermore, all these ideas extend to
the case where one starts with noncommutative polynomials with matrix coefficients
and considers syntactically valid combinations of matrix noncommutative polyno-
mials and their inverses, sums, products, and parentheses. In this way we arrive at a
well-defined notion ofmatrix noncommutative rational functionwhich is also a non-
commutative function (i.e., the stable extended domain of r is invariant under direct
sums and similarity transformations and r satisfies (11), (12), (13) when considered
as a function on its stable extended domain).

Just as in the classical case, an important tool for the study of noncommuta-
tive rational functions is realization theory. In the multivariable context, it is more
convenient to work with proper realizations centered at 0 rather than at an appropri-
ate multivariable version of ∞. In particular, we shall work with noncommutative
Fornasini-Marchesini realizations determined by a system matrix of the form
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U =
[
A B
C D

]
=

⎡
⎢⎢⎢⎣
A1 B1
...

...

Ad Bd

C D

⎤
⎥⎥⎥⎦ :

[X
U

]
→

[Xd

Y
]

where the input space U, the state space X and the output space Y are all finite-
dimensional. Given such a system matrix we may form the noncommutative rational
matrix expression of size p × q where p = dimY and q = dimU

r(z) = D + C(I − LFM(z)A)−1LFM(z)B (14)

where we set LFM(z) equal to the linear row expression

LFM(z) = [
z1 · · · zd

] ⊗ IX.

When r has a rational matrix function such that some rational matrix expression r in
its equivalence class has a realization as in (14), we say that r has a noncommutative
Fornasini-Marchesini realization. The formal power series associated with such a
realization can be understood as a noncommutative Z -transform of the input-output
map of an input/state/output linear system with evolution along a rooted tree (with
each node having d branches emanating out from it), thereby giving parallel time-
domain and frequency-domain universes in which one can work (see [15]), but we
shall not have any explicit need for this observation here. We say that the realization
(14) is observable if it is the case that

⋂
α∈Fd+

KerCAα = {0}. (15)

We say that the realization (14) is controllable if

span j : 1≤ j≤d, α∈Fd+ RanA
αB j = X. (16)

We say that the realization (14) is minimal if it is both controllable and observable.
Then the following properties are known:
Properties of noncommutative rational matrix functions and their realizations:
(P1) (See [15, 29].)Any rational matrix function r with 0 inD(r) has a noncommuta-
tive Fornasini-Marchesini realization (14); more precisely, r is given by the rational
expression r coming from a noncommutative Fornasini-Marchesini realization (14):

r(z) = D + C(I − LFM(z)A)−1LFM(z)B.

Furthermore one can arrange that the realization is minimal.
(P2) (See [15, 29].)Theminimal possible state-space dimension in a noncommutative
Fornasini-Marchesini realization of a given noncommutative rationalmatrix function
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r is equal to the state-space dimension dimX in any controllable and observable
(i.e., minimal) realization of r . Furthermore, any two minimal realizations

U =
[
A B
C D

]
=

⎡
⎢⎢⎢⎣
A1 B1
...

...

Ad Bd

C D

⎤
⎥⎥⎥⎦ , U′ =

[
A′ B′
C′ D

]
=

⎡
⎢⎢⎢⎣
A′

1 B′
1

...
...

A′
d B′

d
C′ D

⎤
⎥⎥⎥⎦

are similar in the following sense: there is an invertible linear transformation
S : X → X′ so that

⎡
⎢⎢⎢⎣
S

. . .

S
IY

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
A1 B1
...

...

Ad Bd

C D

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
A′

1 B′
1

...
...

A′
d B′

d
C′ D

⎤
⎥⎥⎥⎦

[
S 0
0 IU

]
.

(P3) (See [39, 53].) Suppose that (14) is a minimal Fornasini-Marchesini realization
for a noncommutative rational matrix functionr . Then the stable extended domain
ofr is given by

edomstab r = �∞
n=0{Z ∈ (Cn×n)d : det LA(Z) := det(IXn − Z1 ⊗ A1 − · · · − Zd ⊗ Ad ) �= 0}.

(P4) (See [37].) Ifr(z) is a noncommutative rational functionwithout any singularities
(so dom r = �∞

n=1(C
n×n)d ), then r is a polynomial.

To illustrate the ideas and techniques of this emerging field of study, we offer a
modest first step toward the development of a free noncommutative version of the
module theory for single-variable rational matrix functions in the spirit of Theorem 1
above. In the discussion to follow we identify a noncommutative rational function
with a convenient choice of rational expression in its equivalence class.

Theorem 4 Suppose that � ∈ C
N×N 〈z〉 is a noncommutative square-matrix poly-

nomial such that �(0) = �∅ is invertible. Then there is a controllable input pair
(Z,B) in the sense of (16) (where say Z has size dN ′ × N ′ and B has size dN ′ × N)
so that the right noncommutative-polynomial module

S� = � · CN 〈z〉 (17)

has the alternative characterization as

S� =
{
f ∈ C

N 〈z〉 : (I − LFM(z)Z)−1LFM(z)Bf(z) ∈ C
N ′ 〈z〉

}
. (18)

Proof Let
�(z) = D0 + C0(I − LFM(z)A0)

−1LFM(z)B0
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be a minimal noncommutative FM-realization for �(z) where by assumption D0 is
invertible. Then �(z)−1 is a noncommutative rational matrix function with minimal
FM-realization given by

�(z)−1 = D−1
0 − D−1

0 C0(I − LFM(z)A×
0 )−1LFM(z)B0D−1

0 (19)

whereA×
0 := A0 − B0D−1

0 C0 (see [15]).We shall show that the characterization (18)
holds with

(Z,B) = (A×
0 ,B0D−1

0 ). (20)

Suppose first that f ∈ C
N 〈z〉 is a noncommutative polynomial such that (I −

LFM(z)A×
0 )−1LFM(z)B0D−1

0 f(z) is a noncommutative polynomial (in C
N ′×N 〈z〉).

Asmultiplication on the left by a constantmatrix preserves polynomials, we conclude
that −D−1

0 C0(I − LFM(z)A×
0 )−1LFM(z)B0D−1

0 f(z) is also a polynomial. As f(z)
is a polynomial, it follows that D−1

0 f(z) is a polynomial. Adding these last two
expressions together and making use of (19) gives us that

g(z) = �(z)−1f(z) =
(
D−1

0 − D−1
0 C0(I − LFM(z)A×

0 )−1LFM(z)B0D−1
0

)
f(z)

is a polynomial. Howeverwe can recover f from g via f = � · g. As g is a polynomial,
we conclude that f has the requisite form for membership in S� (17).

Conversely, suppose that f = � · gwith g a polynomial inCN 〈z〉. Then from (19)
we see that

g = �−1(z)f(z) =
(
D−1

0 − D−1
0 C0(I − LFM(z)A×

0 )−1LFM(z)BD−1
0

)
f(z) (21)

is a polynomial. As � and g are polynomials, so also is f = �g and hence also
D−1

0 f(z). Thus the second term on the right-hand side of (21) is a polynomial:

D−1
0 C0(I − LFM(z)A×

0 )−1LFM(z)B0D−1
0 f(z) ∈ C

N 〈z〉. (22)

Making use of the identity

(I − LFM(z)A×
0 )−1 = I + LFM(z)A×

0 (I − LFM(z)A×
0 )−1

and the fact that D−1
0 C0LFM(z)B0D−1

0 f(z) is a polynomial (since f(z) is a polyno-
mial), we see that then

D−1
0 C0LFM(z)A×

0 (I − LFM(z)A×
0 )−1LFM(z)B0D−1

0 f(z)

is a polynomial. Rewrite this last expression as
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d∑
j=1

z jD−1
0 C0A×

0. j (I − LFM(z)A×
0 )−1LFM(z)B0D−1

0 f(z) ∈ C
N 〈z〉. (23)

It is well known that the algebra of matrix-valued noncommutative rational expres-
sions regular at zero can be embedded into the algebra of noncommutative formal
power series with matrix coefficients (see e.g. [40, Sect. 4.5]). But in the algebra
of formal power series in freely noncommutative indeterminates, monomials of the
form z j zβ are linearly independent of monomials of the form zkzβ′

whenever j �= k.
(Note that this step fails miserably if the variables (z1, . . . , zd) are commutative and
d > 1!). Hence the fact that the expression (23) is a polynomial implies that each
term in the summation is itself a polynomial:

z jD−1
0 C0A×

0, j (I − LFM(z)A×
0 )−1LFM(z)B0D−1

0 f(z) ∈ C
N 〈z〉 for j = 1, . . . , d.

We view this last expression as a formal power series. As it is also a polynomial,
when we cancel off the left factor z j the result is still a polynomial. In other words,
we have shown that

D−1
0 C0A×α

0 (I − LFM(z)A×−1
0 LFM(z)B0D−1

0 f(z) ∈ C
N 〈z〉 (24)

for α ∈ F
d+ with |α| = 1. Note that the statement (22) is the same statement as (24)

but with α ∈ F
d+ constrained to satisfy |α| = 0.

Inductively assume that (24) holds for all α ∈ F
d+ with |α| = M for some M ∈ N.

An argument exactly paralleling the one just completed then gives us that (24) also
holds for all α ∈ F

d+ with |α| = M + 1. We conclude that: for all M = 0, 1, 2, . . . ,

colα∈Fd+ : |α|≤M

[
D−1
0 C0A

×α
0 (I − LFM (z)A×

0 )−1LFM (z)B0D
−1
0 f(z)

]
∈ C

N ·∑M
j=0 d

j 〈z〉.

But (−D−1
0 C0,A×

0 ), as the output pair in the minimal realization (19) for �−1, is
observable in the sense of (15); thus once M is large enough, the block column

matrix colα∈Fd+ : |α|≤M

[
D−1

0 C0A×α
0

]
is left invertible. Multiplying on the left by this

left inverse then gives us that (I − LFM(z)A×
0 )−1LFM(z)B0D−1

0 f(z) is a polynomial,
i.e., that f satisfies the criterion (18) with (Z,B) given by (20). �

4 Conclusion

We have reviewed the geometric Grassmannian approach to rational matrix-valued
interpolation and its connectionswith themore algebraic approach based onLoewner
matrices. We have also indicated how some of these ideas extend to the relatively
new and still evolving area of free noncommutative function theory.
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37. Helton, J.W., Klep, I., Volčič, J.: Geometry of free loci and factorization of noncommutative
polynomials. Adv. Math. 331, 589–626 (2018)

38. Helton, J.W., McCullough, S.A., Vinnikov, V.: Noncommutative convexity arises from linear
matrix inequalities. J. Funct. Anal. 240(1), 105–191 (2006)

39. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Singularities of rational functions and minimal
factorizations: tthe noncommutative and the commutative setting. Linear Algebra Appl. 430,
869–889 (2009)

40. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Noncommutative rational functions, their
difference-differential calculus and realizations. Multidimens. Syst. Sign. Process. 23, 49–77
(2012)



The Rational Interpolation Problem: Grassmannian and Loewner-Matrix Approaches 21

41. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Foundations of Free Noncommutative Function
Theory, Mathematical Surveys and Monographs, vol. 199. American Mathematical Society,
Providence, RI (2014)

42. Katsnelson, V.E.: On transformations of Potapov’s fundamental matrix inequality. Topics in
Interpolation Theory. Operator Theory: Advances and Applications, vol. 95, pp. 253–281
(1997)

43. Katsnelson, V.E., Kheifets, A.Ya., Yuditskii, P.: An abstract interpolation problem and the
extension theory of isometric operators, Topics in Interpolation Theory. Operator Theory:
Advances and Applications, vol. 95, 283–298 (1997)

44. Mayo, A.J., Antoulas, A.C.: A framework for the solution of the generalized realization prob-
lem. Linear Algebra Appl. 425, 634–662 (2007)

45. Michaletzky, G., Gombani, A.: On the “redundant” null-pairs of functions connected by a
general Linear Fractional Transformation. Math. Control Signals Syst. 24, 443–475 (2012)

46. Popa, M., Vinnikov, V.: Non-commutative functions and non-commutative free Levy-Hincin
formula. Adv. Math. 236, 131–157 (2013)

47. Rapisarda, P., Willems, J.C.: The subspace Nevanlinna interpolation problem and the most
powerful unfalsified model. Syst. Control Lett. 32, 291–300 (1997)

48. Taylor, J.L.: A general framework for a multi-operator functional calculus. Adv. Math. 9,
183252 (1972)

49. Taylor, J.L.: Functions of several noncommuting variables. Bull. Amer. Mat. Soc. 79, 1–34
(1973)

50. Voiculescu, D.-V.: Free analysis questions I: duality transform for the Coalgebra of ∂X :B . Int.
Math. Res. Not. 16, 793–822 (2004)

51. Voiculescu, D.-V.: Free analysis questions II: the Grassmannian completion and the series
expansion at the origin. J. Reine Angew. Math. 645, 155–236 (2010)

52. Voiculescu, D.-V., Dykema, K.J., Nica, A.: Free random variables. A noncommutative prob-
ability approach to free products with applications to random matrices, operator algebras and
harmonic analysis on free groups. CRMMonograph Series I. American Mathematical Society,
Providence, RI (1992)

53. Volčič, J.: On domains of noncommutative rational functions. Linear Algebra Appl. 516, 69–81
(2017)



The Conditioning of a Linear
Barycentric Rational Interpolant

Jean-Paul Berrut

Abstract We study what a referee has asked us to call the “second Berrut rational
interpolant”, introduced thirty years ago, which is linear in the interpolated func-
tion values and converges exponentially when the nodes are conformal images of
Chebyshev points.We show that the Lebesgue constant for this interpolant grows just
logarithmically with the number of nodes under reasonable assumptions, extending
results of Bos et al. in 2013 for the corresponding first interpolant.

Keywords Linear rational interpolation · Conditioning · Logarithmic growth ·
Lebesgue constant · Conformally shifted nodes

1 Introduction

Polynomial interpolation has been a standard computational tool in applied mathe-
matics at least since the time of Newton, Waring and Lagrange [12]. In its simplest
version, it consists in associating to a vector x = [x0, . . . , xn]T of, say, n + 1 distinct
abscissae, and a vector f = [ f0, . . . , fn]T of corresponding ordinates, which may
be values of a function f or not, the unique polynomial pn[f] of degree at most
n that takes on the value f j at x j , j = 0, . . . , n. The corresponding mapping has
several nice properties. It is linear: the polynomial interpolating a linear combina-
tion of f-vectors is the linear combination of the corresponding polynomials, i.e.,
pn[αf + βg] = αpn[f] + β pn[g], ∀ α,β ∈ IR; moreover, the uniqueness makes it
a projection, a property that permits the study of the conditioning by means of the
Lebesgue constant.

But it has its drawbacks, the main one being the fact that it is useful for large n
only if the nodes are located in particular ways in the interpolation interval [a, b] ≡
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[min x j ,max x j ] [19, Chap. 5]. Long before the advent of electronic computing, for
instance, Runge showed that, for the most important case of equidistant nodes, the
interpolant of a meromorphic function converges only if the poles of the latter lie
outside a certain region containing [a, b] [12]. And even for functions, such as ex , for
which the interpolant converges for equidistant points, it is extremely ill-conditioned
for n large [13, Sect. 5.5].

It is therefore appropriate to look for alternative infinitely smooth interpolants
which work well for general sets of nodes. In [3], the author took advantage of
the observation by Werner [22] that, by modifying the so-called weights λ j in the
barycentric formula

pn[f](x) =
n∑

j=0

λ j

x − x j
f j

/
n∑

j=0

λ j

x − x j
, λ j := 1

/ ∏

k �= j

(x j − xk), (1)

for pn , one obtains a rational function, say rn[ f ], of degree ≤ n, i.e., with both
numerator and denominator degrees at most n; the new suggestion was to choose
weights β j different from the λ j to obtain a good denominator for the given set
of nodes, instead of the unique denominator 1 for all sets of nodes in polynomial
interpolation. That way the two properties of linearity and projection are preserved
[4].

A good choice of the β j requires the ordering of the nodes according to

a = x0 < x1 < · · · < xn = b ; (2)

indeed, the weights should alternate in sign, for otherwise the interpolant will not
reproduce all linear functions [14]. In view of this, the simplest possible choice of
the weights, as proposed in [3], is

β j = (−1) j , (3)

independently of the values of the nodes. We denote the corresponding interpolant
by R0; the referee has suggested that this should be called the “first Berrut rational
interpolant” (see [14]). It was shown in [3] that R0 has no real poles; moreover,
its O(h)-convergence (where h := maxi=0,...,n−1(xi+1 − xi )

)
and well-conditioning

were conjectured. The O(h)-convergence was proved in [11] under a local mesh
ratio condition.

For an approximation operator which is a projection, the conditioning is best
addressed through its Lebesgue constant Λn (see Sect. 2). For R0, the latter has been
shown to increase only logarithmically for the most frequently used sets of nodes
[9], a behaviour as nice as that of polynomial interpolation with the most favourable
nodes (see also [21]).

However, by considering the even rational trigonometric interpolant obtained by
transferring the polynomial onto the circle with the transform x = cosφ [3], one
comes to the conclusion that the first and last terms of the sums in both the numerator
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and the denominator of the interpolant should appear only once and the other terms
twice. After simplifying by a factor of two, one sees that the weights [3]

β j = (−1) jδ j , δ j :=
{
1/2, j = 0 or j = n,

1, otherwise,
(4)

should be better than (3). (To be precise, this formula for the weights holds in the
present case, where x0 = a and xn = b, i.e., where the interval [x0, xn] covers the
whole interval of interpolation: when the interpolant is to be used beyond one or both
extremities, slightly more complicated formulae involving trigonometric functions
should be used, see [3].)We denote the corresponding interpolant by R1, the “second
Berrut rational interpolant”. When the nodes are the Chebyshev points of the second
kind, the weights (4) coincide with the λ j [13, p. 252], R1 ≡ pn[f], and exponential
convergence is achieved if f is analytic in an ellipse containing [a, b] [20, p. 57].
It was shown in [3] that R1 does not have any poles in [a, b] for any set of nodes,
and conjectured in the same work that R1 is well-conditioned. Additionally, it was
proved in [2] that R1 retains the exponential convergencewhen the x j are conformally
shifted Chebyshev nodes, and conjectured that the convergence is O(h2) in general;
conditions guaranteeing the latter are given in [5].

In 2007, Floater andHormann [11] presented a family of interpolantswith a higher
order of convergence, which they denote by d + 1, d ∈ INN0. For every d and every
set of nodes x, these authors give a linear rational interpolant r (d)

n [f], depending on
d, such that ‖r (d)

n [f] − f ‖ = O(hd+1). After constructing the interpolant as a blend
of the n − d interpolating polynomials corresponding to the subvectors of d + 1
consecutive nodes, they provide the weights of its barycentric representation (which
always exists, as shown in [7]). For equidistant nodes, r (0)

n [f] and r (1)
n [f] correspond

to R0 and R1, respectively; however, this is not the case with other sets of nodes.
In the present paper, we study the Lebesgue constant of R1 for equidistant and

well-spaced nodes such as conformally shifted Chebyshev points of the second kind,
which are the most important in practice. Our results are extensions of results of Bos
et al. [9] for R0.

2 The Conditioning of the Interpolant R1

The conditioning of a problem is the sensitivity of its solution to perturbations of its
data. (In many contexts, this is called stability, but in numerical analysis the latter
term should be reserved for the stability of an algorithm [13, p. 33].) Here the data
are the function values f and the solution is the interpolant

R1(x) =
n∑

j=0

′′
(−1) j f j
x − x j

/ n∑

i=0

′′
(−1) j

x − x j
, (5)
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where the double prime attached to a sum indicates that its first and last terms are
halved.

The fact that R1 is a linear projection operator into a linear space of functions
with a Lagrange basis (i.e., a basis {b j (x)} with the Lagrange property b j (xi ) = δi j )
leads to the fact that the norm of that operator, called its Lebesgue constant, provides
a good characterization of the conditioning. Indeed, if one perturbs each f j by a
number e j , i.e., perturbing the vector f with the vector e := (e j ), then for a linear
interpolant rn[f]

rn[f + e](x) =
n∑

j=0

( f j + e j )b j (x).

The corresponding perturbation of the interpolant amounts to

rn[f + e](x) − rn[f](x) =
n∑

j=0

e jb j (x)

so that

∣∣rn[f + e](x) − rn[f](x)
∣∣ ≤

n∑

j=0

|e j | · |b j (x)|

≤ ‖e‖
n∑

j=0

|b j (x)| (6)

where ‖ · ‖ denotes the vector infinity norm.
Equation (6) gives a local bound for the perturbation induced by e. The function

λn(x) :=
n∑

j=0

|b j (x)|

is called the Lebesgue function of the interpolation operator, its infinity norm

Λn := ‖λn‖

the Lebesgue constant. (It turns out that Λn is the norm of the interpolation operator
on the space of continuous functions.) Equation (6) then yields

‖rn[f + e] − rn[f]‖ ≤ Λn · ‖e‖;

rn being linear, this means ‖rn[e]‖/‖e‖ ≤ Λn; the global relative perturbation of the
interpolant is bounded by Λn .
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Definition 1 We say that Λn grows at most logarithmically with n, if

Λn ≤ a + b ln n (7)

for some positive constants a and b and every n > n0, n0 ∈ INN.

The rational interpolant rn[f] obtained by replacing the weights λ j in (1) by some
β j independent of f can bewritten as

∑n
j=0 f j b j (x)with theLagrange basis functions

b j (x) := β j

x − x j

/ n∑

i=0

βi

x − xi
,

so that [7]

λn(x) =
n∑

j=0

∣∣∣∣
β j

x − x j

∣∣∣∣

/ ∣∣∣∣∣

n∑

i=0

βi

x − xi

∣∣∣∣∣ . (8)

For R1 this yields

λn(x) =
n∑

i=0

′′
1

|x − xi |
/

D(x),

where

D(x) :=
∣∣∣∣∣

n∑

i=0

′′
(−1)i

x − xi

∣∣∣∣∣ .

If x is one of the x j ’s, a limit calculation in (8) shows that λn(x) = 1. Otherwise,
let xk be the node at the immediate left of x , i.e., x ∈ (xk, xk+1). If k is odd and
≤ n − 5, then

D(x) = · · · − δk−1

x − xk−1
+ 1

x − xk
+ 1

xk+1 − x
− 1

xk+2 − x
+ · · · ,

where δ j is defined in (4). Therefore wemay write the numerator of λn(x) as D(x) +
2N (x), where

N (x) = · · · + δk−3

x − xk−3
+ δk−1

x − xk−1
+ 1

xk+2 − x
+ 1

xk+4 − x
+ · · ·

(setting δ j = 0 for j < 0) to obtain

λn(x) = 1 + 2N (x)/D(x).

Note that all terms of N are positive. If k is even, one may multiply all terms in D
and N by −1 to get the same expression for λn .
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At first sight, it seems that, in view of the factors 1/2 arising in the first and last
terms, one must study the two extremal intervals [x0, x1] and [xn−1, xn] separately
from the others. However, a shift by x0+xn

2 =: m of the interval [x0, xn] together with
the abscissae x j , i.e.,

x̃ j := x j − m, x̃ := x − m

(so that m becomes 0) without change of the weights just shifts λn(x). Moreover, a
reflection x̂ j := −x j and x̂ := −x reflects λn(x) as well. Also, λn(x) is unchanged
by a multiplication of all weights by−1. Thus, if there are at least two points on each
side ofm, we may bound λn(x) only on [x0,m]: bounds for x ∈ (m, xn] are obtained
after a reflection with respect to m and a multiplication of the weights by −1, if n
is odd. This shows that it suffices to treat just the case x ∈ [x0, x1] separately, and
explains why the δ j ’s appear to the left only in D and N above.

Lemma 1 For x ∈ (xk, xk+1), 1 ≤ k ≤ [
n
2

]
,

D(x) ≥ A1 + A2, (9)

where

A1 = xk − xk−1

(xk+1 − xk−1)(xk+1 − xk)
, A2 = xk+2 − xk+1

(xk+1 − xk)(xk+2 − xk)
,

and
N (x) ≤ B1 + B2 (10)

where

B1 =
∑

i≥0

′ 1

xk − xk−1−2i
, B2 =

∑

i≥0

′ 1

xk+2+2i − xk+1

and the prime means that, if present, the terms 1/(xk − x0), resp. 1/(xn − xk+1), are
to be multiplied by 1/2.

Proof For the denominator,

D(x) ≥ D1(x) + D2(x),

where

D1(x) := − δk−1

x − xk−1
+ 1

x − xk
≥ xk − xk−1

(x − xk−1)(x − xk)
,

and

D2(x) := 1

xk+1 − x
− 1

xk+2 − x
= xk+2 − xk+1

(xk+1 − x)(xk+2 − x)
.

(In D, all pairs of terms corresponding to nodes to the left of xk−1 are positive, and
so is the term corresponding to x0 if k is even; the same holds accordingly to the
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right of xk+1. When k = 1, the factor δ0 in front of 1/(x − x0)makes D even larger.)
Since D1 and D2 are decreasing, respectively increasing, for x ∈ (xk, xk+1),

D1(x) ≥ D1(xk+1) = A1, D2(x) ≥ D2(xk) = A2.

For the numerator,
N (x) = N1(x) + N2(x),

where

N1(x) = · · · + δk−3

x − xk−3
+ δk−1

x − xk−1
,

and

N2(x) = 1

xk+2 − x
+ 1

xk+4 − x
+ · · · .

Since N1 and N2 are decreasing and increasing, respectively, for x ∈ (xk, xk+1),

N1(x) ≤ N1(xk) = B1, N2(x) ≤ N2(xk+1) = B2.

�
One proves in a similar way the following corresponding results for k = 0.

Lemma 2 For x ∈ (x0, x1),
D(x) ≥ A1 + A2, (11)

where

A1 = 1/2

x1 − x0
, A2 = x2 − x1

(x1 − x0)(x2 − x0)
,

and
N (x) ≤ B2 (12)

where

B2 =
∑

i≥0

′ 1

x2i+2 − x1
.

2.1 Equidistant Nodes

For uniformly spaced points xk = a + kh, h = (b − a)/n, the lemmas imply that
D(x) ≥ 1/h for every x ∈ [a, b]. Moreover,

B1 ≤ 1

h

(
1 + 1

3
+ 1

5
+ · · · + 1

�

)
, � =

{
k − 1, k even,

k, k odd,
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and

B2 ≤ 1

h

(
1 + 1

3
+ 1

5
+ · · · + 1

�

)
, � =

{
n − k − 1, n − k even,

n − k − 2, n − k odd,

so that N (x) < 1
h L with

L :=
(
1 + 1

2
+ 1

3
+ · · · + 1

k − 1
+ 1

k

)
+

(
1 + 1

2
+ 1

3
+ · · · + 1

n − k − 1

)
.

(13)
As in similar proofs, we now use the fact that ln(2 j + 1) is an upper bound of the
j th sum of the harmonic series, so that

L ≤ ln(2k + 1) + ln(2(n − k − 1) + 1),

which is maximized over real k in [0, n − 1] by k = (n − 1)/2, implying that

L ≤ 2 ln(n), (14)

and therefore,
λn(x) ≤ 1 + 4 ln(n).

Theorem 1 For uniformly spaced nodes, the Lebesgue constant of the interpolant
R1 grows at most logarithmically with n.

This result is already known as the case d = 1 of [8]. However, the above proof of
the bound for D does not make use of the original formula for the Floater–Hormann
interpolant, merely of the barycentric formula.

We have confirmed this logarithmic growth numerically. The second column of
Table1 displays Λn for doubling numbers of interpolation nodes. To check the cons-
tant b in the logarithmic growth, we have also computed after every pair (n, 2n) an
approximation â and b̂ in the logarithmic growth formula by solving the system of
equations

â + b̂ ln(2n + 2) = Λ2n+2

â + b̂ ln(n + 1) = Λn+1.

The corresponding values of b̂ are given in the third column of the table. Compared
with the number 2/π = 0.6366197723675814, they are in line with the main term
of the asymptotic formula for the Lebesgue constant of R0 given in [15, 23]. (All
the computations described in this article were performed inMATLAB onMacBook
Pro computers.)



The Conditioning of a Linear Barycentric Rational Interpolant 31

Table 1 The Lebesgue constant Λn for equidistant and shifted equidistant nodes. For each of the
two we give the constant itself as well as the empirical value b̂ of the factor of ln(n)

n + 1 Equidistant Shifted equidistant

ΛE
n b̂E ΛSE

n b̂SE

10 2.2220 2.2989

20 2.6839 0.66644 2.7574 0.66136

40 3.1414 0.65992 3.2185 0.66531

80 3.5904 0.64781 3.6687 0.64944

160 4.0357 0.64244 4.1142 0.64272

320 4.4789 0.63947 4.5575 0.63960

640 4.9212 0.63809 4.9998 0.63808

1280 5.3630 0.63735 5.4416 0.63735

2560 5.8045 0.63698 5.8831 0.63698

5120 6.2459 0.63680 6.3245 0.63680

10240 6.6873 0.63671 6.7658 0.63671

2.2 Well-Spaced Nodes

The article [9] introduces the following property of interpolation points.

Definition 2 For each n ∈ INN, let Xn := {xk}nk=0 be a set of interpolation nodes sat-
isfying property (2) and let

hk := xk+1 − xk, k = 0, . . . , n − 1.

An array X = (Xn)n∈INN of such sets is calledwell-spaced if there exist two constants
K and R, R ≥ 1, both independent of n, such that the three conditions

xk − xk−1

xk − x j
≤ K

k − j
, k = 1, . . . , n, j = 0, . . . , k − 1, (15)

xk+1 − xk
x j − xk

≤ K

j − k
, k = 0, . . . , n − 1, j = k + 1, . . . , n, (16)

hk
hk−1

≤ R,
hk−1

hk
≤ R, k = 1, . . . , n − 1, (17)

hold for every set of nodes Xn .

We shall indifferently call the array and the nodes well-spaced. Note that the
property of well-spacing is invariant with respect to translation or spacing of the
nodes.

The authors of [9] established that every such array leads to a logarithmic growth
of the Lebesgue constant of R0:
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Theorem 2 If X = (Xn)n∈INN is an array of well-spaced nodes, then the Lebesgue
constant of the interpolant R0 grows at most logarithmically with n.

We shall now use the above lemmas to show the same for R1. Let first k ≥ 1.
Then, according to (17),

A1 = hk−1

(xk+1 − xk−1)hk
≥ 1

xk+1 − xk−1
· 1

R

and

A2 = hk+1

hk(xk+2 − xk)
≥ 1

R
· 1

xk+2 − xk

so that

A1 + A2 ≥ 1

R

(
1

xk+2 − xk
+ 1

xk+1 − xk−1

)
. (18)

Moreover, xk+2 − xk = hk + hk+1 ≤ R(hk−1 + hk) = R(xk+1 − xk−1) and xk+1 −
xk−1 = hk−1 + hk ≤ (R + 1)hk , so that

A1 + A2 ≥ 1

R

( 1

R
+ 1

) 1

xk+1 − xk−1
≥ R + 1

R2

1

(R + 1)hk
= 1

R2hk
. (19)

If k = 0, we have in Lemma2

A1 + A2 ≥ A1 = 1

2h0
.

On the whole, we therefore have for x ∈ (xk, xk+1)

D(x) ≥ 1

Shk

with

S :=
{
1, k = 0,

R2, k > 0.

In the upper bound for N , possible factors 1/2 may be ignored. We compute for
k �= 0

B1 = 1

xk − xk−1
+ 1

xk − xk−3
+ 1

xk − xk−5
+ 1

xk − xk−7
+ · · ·

= 1

xk − xk−1

(
1 + xk − xk−1

xk − xk−3
+ xk − xk−1

xk − xk−5
+ xk − xk−1

xk − xk−7
+ · · ·

)
.
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By (15), this may be bounded as

B1 ≤ 1

hk−1

(
1 + K

3
+ K

5
+ K

7
+ · · ·

)
.

Similarly for B2:

B2 = 1

2

1

xk+2 − xk+1
+ 1

xk+4 − xk+1
+ 1

xk+6 − xk+1
+ 1

xk+8 − xk+1
+ · · ·

= 1

xk+2 − xk+1

(
1

2
+ xk+2 − xk+1

xk+4 − xk+1
+ xk+2 − xk+1

xk+6 − xk+1
+ xk+2 − xk+1

xk+8 − xk+1
+ · · ·

)
,

which by (16) may be majorized as

B2 ≤ 1

hk+1

(
1 + K

3
+ K

5
+ K

7
+ · · ·

)

with the same number of terms as in Sect. 2.1, so that with (13)

N (x) ≤
(

1

hk−1
+ 1

hk+1

)
K L

and thus with (19)

λn(x) ≤ 1 + 2R2

(
hk
hk−1

+ hk
hk+1

)
2K ln(n)

≤ 1 + 8K R3 ln(n).

If k = 0, B1 = 0 and B2 ≤ 1
h1

(
1 + K

3 + K
5 + · · · ) so that

N (x) ≤ 2

h1
K ln(n)

and

λn(x) ≤ 1 + h0
h1

4K ln(n) ≤ 1 + 4K R ln(n).

This establishes our first main theorem.

Theorem 3 If X = (Xn)n∈INN is an array of well-spaced nodes, then the Lebesgue
constant of the interpolant R1 grows at most logarithmically with n.
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2.3 Conformally Shifted Nodes

The complexity of the pseudospectral solution of a boundary value problem can
often be drastically reduced by a move of the points, for instance to improve the
conditioning of the system of equations to be solved, or to have more points close to
a steep gradient (front).

In [16], Kosloff and Tal-Ezer suggested applying such point shifts to loosen the
step restriction in the solution of the systems of ordinary differential equations arising
from the pseudospectral method of lines applied to time evolution problems. The
idea is to introduce, besides the interval I on which the function is to be interpolated,
another interval J containing the standard points (such as equidistant or Chebyshev).
Then, to obtain a particular set of points in I , a (one-to-one) conformal map of a
domain containing J , say g, is used, which applies J onto I , thereby determining
the desired shifted points. Since g is infinitely differentiable, the composite function
f ◦ g inherits the differentiability properties of f .
Recall that R1 coincides with the interpolating polynomial, when the nodes are

Chebyshev points of the second kind, so that it converges exponentially to interpo-
lated functions which are analytic. Recall also that R1 retains the exponential conver-
gence for the same class of functions, when the Chebyshev points of the second kind
are shifted conformally [2]. This example of use of R1 is likely the most important,
as it greatly improves the accuracy of pseudospectral solutions of boundary value
ordinary and partial differential equations whose solution displays large gradients:
see the applications in explosion modeling [18], fluid infiltration [10] and finance
[17]. We shall now see how the results of Bos et al. [9] and the above theorems imply
the logarithmic growth of the Lebesgue constant for such nodes.

Bos et al. work on the interval [0, 1]. This is indeed general, as one immediately
sees that a shift and a contraction/dilation of the interval of interpolation do not
modify the Lebesgue function (8) and the Lebesgue constant is thus unaffected by
such operations. These authors give the following definition of a (regular) distribution
function of nodes.

Definition 3 A function F ∈ C[0, 1] is a distribution function, if it is a strictly
increasing bijection of the interval [0, 1]. F is regular, if F ∈ C1[0, 1] and F ′ has a
finite number of zeros in [0, 1] with finite multiplicities.

Given a distribution function F and some n ∈ INN, the authors define the associated
interpolation nodes Xn = Xn(F) as the set of xk with

xk := F(k/n), k = 0, 1, . . . , n. (20)

They then prove the following result.

Theorem 4 If F is a regular distribution function and Xn are the associated inter-
polation nodes from (20) for every n ∈ INN, then the array of nodes X = (Xn)n∈INN is
well-spaced.
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Since a conformal map g cannot have any zero derivative in its domain [1, p. 133],
Theorem2 automatically yields the following results.

Corollary 1 The Lebesgue constants of R0 as well as of R1 with conformally shifted
equidistant points grow at most logarithmically with n.

Proof For R0, the result follows immediately fromTheorem3.5 in [9] andTheorem2
above, for R1 from Theorem3. �

Among their examples of regular distributions, Bos and al. give the extrema of
the Chebyshev polynomials, which are the Chebyshev points of the second kind.

Lemma 3 A composition of regular distribution functions is itself a regular distri-
bution function.

Proof This follows directly from the chain rule. �
Corollary 2 The Lebesgue constant of R1 with conformally shifted Chebyshev
points of the second kind grows at most logarithmically with n.

Proof Let g(y) be the conformal map of the interval containing the Chebyshev
points to the interpolation interval. g being conformal, its derivative does not have
any zeros, so that g is a regular distribution function on J . Then g ◦ F is a compo-
sition of regular distribution functions, thus a regular distribution function as well,
according to Lemma3. The corresponding array of nodes is well-spaced according
to Theorem4 and the Lebesgue constant of R1 with a well-spaced array grows at
most logarithmically (Theorem3). �

We have numerically verified this logarithmic behavior of the Lebesgue constant
with conformally shifted points. To increase the efficiency of methods for solving
differential problems, it is natural to move more points toward the location of a front.
A simple map for the case where the front lies in the center of the interval [−1, 1] is
that suggested by Kosloff and Tal-Ezer for another purpose and mentioned above,

x = gα(y) = arcsin(αy)

arcsin(α)
, 0 < α < 1. (21)

See the improvement in accuracy in [6]. In the limit α → 0, the nodes remain the
equidistant ones. In the limit α → 1, the singularities at ±1/α of gα tend toward the
extremities of the interval.

First we have repeated the experiment documented in columns 2 and 3 of Table1
for equidistant points shifted with the map (21) and α = 0.9. The results are in
columns 4 and 5: they demonstrate that the constant b in (7) seems quite independent
of the shift.

Then we have repeated the experiment of Table1, but now with Chebyshev points
of the second kind and shifted Chebyshev points of the second kind. The results,
given in Table2, seem to show that the main term of the Lebesgue constant does not
change much with a conformal shift of Chebyshev nodes, and is very close to the
one corresponding to equidistant points.



36 J.-P. Berrut

Table 2 The Lebesgue constantΛn for Chebyshev points of the second kind, and the same shifted.
The values of b̂ have the same meaning as in Table1

n + 1 Chebyshev 2nd kind Shifted Chebyshev

ΛC
n b̂C ΛSC

n b̂SC

10 2.3619 2.5474

20 2.8371 0.68568 3.0219 0.68452

40 3.2948 0.66034 3.4794 0.66008

80 3.7442 0.64829 3.9287 0.64823

160 4.1895 0.64241 4.3740 0.64239

320 4.6328 0.63950 4.8173 0.63950

640 5.0750 0.63806 5.2595 0.63806

1280 5.5168 0.63734 5.7013 0.63735

2560 5.9583 0.63698 6.1428 0.63698

5120 6.3997 0.63680 6.5842 0.63680

10240 6.8410 0.63671 7.0256 0.63671

3 Conclusion

This article has been devoted to the study of the behaviour, as the number of nodes
increases, of the second “Berrut” interpolant introduced some decades ago. We have
shown that, at least in the instances of practical interest, the interpolant enjoys the
same perfect condition of its special case of the usual Chebyshev interpolating poly-
nomial, and likewise of its first-order variant R0, with a Lebesgue constant growing
at most logarithmically. This is true in particular of the important case of the shifted
Chebyshev nodes used in practical applications, and justifies their use with arbitrary
large numbers of nodes.

Acknowledgements The author wishes to thank Michael Floater for giving him his proof of the
logarithmic growth of the Lebesgue constant of R0, on which Theorem1 above is patterned. He is
also grateful to Nick Trefethen for his suggestions to the text.
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Learning Low-Dimensional
Dynamical-System Models from Noisy
Frequency-Response Data with Loewner
Rational Interpolation

Zlatko Drmač and Benjamin Peherstorfer

Dedicated to Athanasios C Antoulas on the occasion of his 70th
birthday.

Abstract Loewner rational interpolation provides a versatile tool to learn low-
dimensional dynamical-system models from frequency-response measurements.
This work investigates the robustness of the Loewner approach to noise. The key
finding is that if the measurements are polluted with Gaussian noise, then the error
due to noise grows at most linearly with the standard deviation with high probabil-
ity under certain conditions. The analysis gives insights into making the Loewner
approach robust against noise via linear transformations and judicious selections
of measurements. Numerical results demonstrate the linear growth of the error on
benchmark examples.

Keywords Model reduction · Dynamical systems · Concentration inequalities ·
System identification

1 Introduction

Learning dynamical-system models from measurements is a widely studied task in
science, engineering, and machine learning; see, e.g., system identification originat-
ing from the systems & control community [1, 10, 11, 15, 22, 27, 29, 38–40, 51],
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sparsity-promoting methods [8, 42–44], dynamic mode decomposition [9, 24, 41,
45, 46, 50], and operator inference [23, 30, 32–34, 37, 49]. Antoulas and collabora-
tors introduced the Loewner approach [2, 5, 25, 28] that constructs models directly
from frequency-response measurements, without requiring computationally expen-
sive training phases and without solving potentially non-convex optimization prob-
lems. This work investigates the robustness of the Loewner approach to noise in the
frequency-response measurements. The main finding of this work is that under cer-
tain conditions and with high probability the error introduced by noise into Loewner
models grows at most linearly with the standard deviation of the noise.

The Loewner approach [2, 5, 25, 28] derives dynamical-system models from
frequency-response data, i.e., from values of the transfer function of the high-
dimensional dynamical system of interest. A series of works have extended the
Loewner approach from linear time-invariant systems to bilinear systems [4],
quadratic-bilinear systems [13], parametrized systems [18], time-delay systems [47],
and structured systems [48]. Learning Loewner models from time-domain data,
instead of frequency-response measurements, is discussed in [20, 31]. Learning
Loewner models from noisy data has received relatively little attention. The work
[26] provides a numerical investigation of the effect of noise on the accuracy of
Loewner models. The work [17] discusses the rank of Hankel matrices if measure-
ments are polluted by additive Gaussian noise. Numerical experiments in the thesis
[19, Sect. 2.1] demonstrate that the selection of frequencies at which to obtain mea-
surements and how to partition the measurements has a significant influence on the
robustness against perturbations in the data such as noise. The work [21] applies the
Loewner approach to control tasks where only noisy measurements are available.
The authors of [6] discuss the robustness of interpolatory model reduction against
perturbations in evaluations of the transfer function of the high-dimensional system;
however, the perturbations are considered deterministic and stem from, e.g., numer-
ical approximations via iterative methods. During the writing of this manuscript, the
authors became aware of the work [12] that studies the sensitivity of Loewner inter-
polation to perturbations in a deterministic fashion via pseudospectra of the Loewner
matrix pencils.

In this work, the robustness of the Loewner approach to Gaussian noise is consid-
ered. Rather than a deterministic analysis, the contribution of this work is an analysis
that bounds the error introduced by noise in a probabilistic sense. In particular, the
analysis shows that the error grows at most linearly in the standard deviation of the
noise under certain conditions and with high probability. A relative noise model is
considered, which seems realistic because measurement errors typically are relative
to the value of the measured quantities. The conditions under which the proposed
error bounds hold give insights into selecting the frequencies at which to measure
and partitioning the data to reduce the effect of noise. The linear growth of the error
with respect to the standard deviation of the noise is observed in numerical examples.
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2 Learning Low-Dimensional Dynamical-System Models
with Loewner Rational Interpolation

This section recapitulates model reduction with the Loewner approach; see, e.g., [3,
7, 35] for general introductions to model reduction and related concepts.

2.1 Linear Time-Invariant Dynamical Systems

Consider the linear time-invariant system

Eẋ(t) = Ax(t) + Bu(t) , y(t) = Cx(t) (1)

of order N ∈ Nwith systemmatrices E, A ∈ R
N×N , B ∈ R

N×1, andC ∈ R
1×N . The

state at time t is x(t) ∈ R
N and the output at time t is y(t) ∈ R. The transfer function

is
H(s) = C(sE − A)−1B , s ∈ C .

In the following, we only consider systems with full-rank matrix E .

2.2 Loewner Rational Interpolation

To derive a reduced model of dimension n ∈ N of system (1), consider 2n interpo-
lation points s1, . . . , s2n ∈ C. The interpolation points are partitioned into two sets
{μ1, . . . , μn} and {γ1, . . . , γn} of equal size. Define the n × n Loewner matrix L and
the n × n shifted Loewner matrix L(s) as

Li j = H(μi ) − H(γ j )

μi − γ j
, L(s)

i j = μi H(μi ) − γ j H(γ j )

μi − γ j
, i, j = 1, . . . , n ,

together with the n × 1 input matrix ̂B and the 1 × n output matrix ̂C with compo-
nents

̂Bi = H(μi ) , ̂Ci = H(γi ) , i = 1, . . . , n . (2)

The Loewner model is

̂E ˙̂x(t) = ̂Ax̂(t) + ̂Bu(t) , ŷ(t) = ̂Cx̂(t)

with ̂E = −L and ̂A = −L(s). The n-dimensional state at time t is x̂(t) and the
output at time t is ŷ(t). The transfer function of the Loewner model is
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̂H(s) = ̂C(ŝE − ̂A)−1
̂B , s ∈ C .

The Loewner approach guarantees that the transfer function ̂H of the Loewner model
interpolates the transfer function H of the system (1) at the interpolation points
s1, . . . , s2n , which means

H(si ) = ̂H(si ) , i = 1, . . . , 2n .

3 Learning Loewner Models from Noisy
Frequency-Response Measurements

Wenowstudy the robustness of theLoewner approach to noise in the transfer-function
values of the system (1). The key contribution is Theorem 1 that bounds the error
that is introduced by noise under certain conditions.

3.1 Noisy Transfer-Function Values

Let μ ∈ C with the real part R(μ) and the imaginary part I(μ) and let 0 < σ ∈ R.
We denote with ε ∼ CN (μ, σ ) a complex random variable, where the realR(ε) and
the imaginary part I(ε) are independently normally distributed. The real part R(ε)

has meanR(μ), the imaginary part I(ε) has mean I(μ). The real and the imaginary
part of ε have standard deviation σ .

Let ε1, . . . , εn ∼ CN (0, 1) and η1, . . . , ηn ∼ CN (0, 1) be independent random
variables. Define the noisy transfer-function values as

Hσ (μi ) = H(μi )(1 + σεi ) , Hσ (γi ) = H(γi )(1 + σηi ) , i = 1, . . . , n,

so that

Hσ (μi ) ∼ CN (H(μi ), H(μi )σ ) , Hσ (γi ) ∼ CN (H(γi ), H(γi )σ ) , i = 1, . . . , n.

The noise pollutes the transfer-function values in a relative sense, i.e., the standard
deviation of Hσ (μi ) is scaled by H(μi ). We consider such a relative noise model to
be realistic in our situation because measurement errors typically are relative to the
value of the quantity that is measured. Note, however, that the techniques used in the
following analysis can be extended to an absolute noise model, where the standard
deviation of the noise is independent of the transfer-function value; see Sect. 3.5.
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3.2 Loewner and Noisy Transfer-Function Values

From the noisy transfer-function values, we derive the noisy Loewner matrices

˜Li j = Hσ (μi ) − Hσ (γ j )

μi − γ j
, ˜L(s)

i j = μi Hσ (μi ) − γ j Hσ (γ j )

μi − γ j
, i, j = 1, . . . , n ,

which have the same structure as in Sect. 2.2, except that the noisy transfer-function
values Hσ (μ1), . . . , Hσ (μn), Hσ (γ1), . . . , Hσ (γn) are used rather than the noiseless
values H(μ1), . . . , H(μn), H(γ1), . . . , H(γn). We decompose the noisy Loewner
and the noisy shifted Loewner matrix into deterministic and random parts as

˜L = L + σδL , ˜L(s) = L(s) + σδL(s) ,

with

δLi j = H(μi )εi − H(γ j )η j

μi − γ j
, δL(s)

i j = μi H(μi )εi − γ j H(γ j )η j

μi − γ j
, i, j = 1, . . . , n .

We obtain the system matrices

˜E = ̂E + σδE , ˜A = ̂A + σδA ,

where δE = −δLi j and δA = −δL(s)
i j . Similarly, we define ˜B = ̂B + σδB and ˜C =

̂C + σδC with

δBi = H(μi )εi , δCi = H(γi )ηi , i = 1, . . . , n. (3)

The Loewner model learned from the noisy transfer-function values is then given by

˜E ˙̃x(t) = ˜Ax̃(t) + ˜Bu(t) , ỹ(t) = ˜Cx̃(t), (4)

with the n-dimensional state x̃(t) at time t and the output ỹ(t) at time t . The transfer
function of the model (4) is

˜H(s) = ˜C(s˜E − ˜A)−1
˜B , s ∈ C .

We call (4) the noisy Loewner model.

3.3 Noise Structure

The Loewner and the shifted Loewner matrices introduce a structure in the noise
that is added to the system matrices of the Loewner model learned from the noisy
transfer-function values. Consider the matrix sδE − δA and obtain
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sδEi j − δAi j = − 1

μi − γ j

(

sH(μi )εi − sH(γ j )η j − μi H(μi )εi + γ j H(γ j )η j
)

= 1

γ j − μi

(

(s − μi )H(μi )εi + (−s + γ j )H(γ j )η j
)

to write in matrix form as

sδE − δA =

⎡

⎢

⎢

⎢

⎣

ε1
ε2

. . .

εn

⎤

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

ε

⎡

⎢

⎣

H(μ1)
s−μ1

γ1−μ1
. . . H(μ1)

s−μ1

γ1−μn

...
. . .

...

H(μn)
s−μn

γ1−μ1
. . . H(μn)

s−μn

γn−μn

⎤

⎥

⎦

︸ ︷︷ ︸

FE

+

⎡

⎢

⎣

H(γ1)
γ1−s
γ1−μ1

. . . H(γn)
γn−s
γ1−μn

...
. . .

...

H(γ1)
γ1−s
γ1−μ1

. . . H(γn)
γn−s

γn−μn

⎤

⎥

⎦

︸ ︷︷ ︸

FA

⎡

⎢

⎢

⎢

⎣

η1
η2

. . .

ηn

⎤

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

η

.

(5)

Equation (5) reveals that the random parts of sδE − δA can be singled out into the
two diagonal random matrices ε and η of dimension n × n. The diagonal entries of
ε and η are independent and have distribution CN (0, 1).

3.4 Bounding the Error Due to Noisy Transfer-Function
Values

The task is to bound

̂H(s) − ˜H(s) = ̂C(ŝE − ̂A)−1
̂B − ˜C(s˜E − ˜A)−1

˜B, (6)

where s typically takes the values in some specified � ⊂ C; for instance on the
imaginary axis, possibly within a specified frequency range. In any case, we assume
in the following that � is free of the poles of ̂H . The following main results hold
pointwise and therefore are agnostic to additional structure imposed by � besides
that it excludes poles of ̂H .

If̂λi , ̂φi (˜λi , ˜φi ) are the poles with the corresponding residues of ̂H (˜H ), then [14,
Proposition 3.3] gives

‖ ̂H − ˜H‖2H2
=

n
∑

i=1

̂φi ( ̂H(−̂λi ) − ˜H(−̂λi )) +
n

∑

j=1

˜φ j ( ˜H(−˜λ j ) − ̂H(−˜λ j )) , (7)
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which shows that the error (6) is of particular interest at the reflected poles of both
systems (for (7) to hold, both ̂H and ˜H are assumed stable, of the same order n,
and all poles of both systems are assumed simple). We do not tackle the issue of a
probabilistic error bound for the H2 norm; this topic is left for our future work.

For an estimate of the error (6), we need to understand the effect of the random
noise in thematrices ˜E = ̂E + σδE , ˜A = ̂A + σδA, ˜B = ̂B + σδB to the solutionof
the linear system (s˜E − ˜A)−1

˜B. To that end,wefirst briefly review the (deterministic)
error bound for a solution of the perturbed system. The key is the condition number
κ2(ŝE − ̂A) = ‖(ŝE − ̂A)−1‖2‖ŝE − ̂A‖2, see, e.g., [16, Theorem 7.2].

Proposition 1 Let s be different from the poles of ̂H, and consider the perturba-
tions (5) and (3) deterministic and bounded as ‖σ(sδE − δA)‖2 ≤ ζ‖ŝE − ̂A‖2,
‖σδB‖2 ≤ ζ‖̂B‖2, where ζ > 0 is such that ζκ2(ŝE − ̂A) < 1. Then s˜E − ˜A is
nonsingular and

‖(s˜E − ˜A)−1
˜B − (ŝE − ̂A)−1

̂B‖2
‖(ŝE − ̂A)−1̂B‖2

≤ 2ζ

1 − ζκ2(ŝE − ̂A)
κ2(ŝE − ̂A) . (8)

This is the standard perturbation bound for the linear system ̂Gx̂ = ̂B, ̂G = ŝE −
̂A, under the deterministic perturbations �̂G = σ(sδE − δA) and �̂B = σδB.

Recall that by (5), sδE − δA = εFE + FAη, where ε and η are diagonal matrices
whose diagonals are random vectors. These can be bounded in a probabilistic sense,
using concentration inequalities which we briefly review next.

Proposition 2 Let Z = [z1, . . . , zn]T be a randomvectorwith independent standard
normal real components zi ∼ N (0, 1), i = 1, . . . , n. Then with probability at least
1 − exp(−n/2)

‖Z‖2 ≤ 2
√
n. (9)

If Z = [z1, . . . , zn]T is a vector of independent complex random variables zi ∼
CN (0, 1), with CN defined in Sect.3.1, then

‖Z‖2 ≤ 4
√
n (10)

holds with probability at least 1 − 2 exp(−n/2).

The estimate (9) follows fromGaussian concentration and because theχ2 distribution
is sub-Gaussian; see, e.g., [52, Example 2.28]. The statement (10) follows from
(9), because ‖Z‖2 ≤ ‖R(Z)‖2 + ‖I(Z)‖2, where R(Z) is the vector that has as
components the real parts of the components of Z and I(Z) is the vector that has as
components the imaginary parts of Z .

Lemma 1 Let s ∈ �, i.e., s is different from the poles of ̂H, be such that

0 < σ <
1

κ2(ŝE − ̂A)
min

{ ‖ŝE − ̂A‖2
4
√
n (‖FE‖2 + ‖FA‖2) ,

‖̂B‖2
4
√
n‖̂B‖∞

}

. (11)
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Then, with probability at least 1 − 4 exp(−n/2), s is not a pole of ˜H and the error
bound (8) in Proposition 1 holds .

Proof Since, by (5), sδE − δA = εFE + FAη, we have

‖sδE − δA‖2 ≤ ‖ε‖2‖FE‖2 + ‖FA‖2‖η‖2. (12)

Because ε is diagonal1 with the elements ε1, . . . , εn on the diagonal, we obtain, using
Proposition 2, that

‖ε‖2 = max
i=1,...,n

|εi | = ‖[ε1, . . . , εn]T ‖∞ ≤ ‖[ε1, . . . , εn]T ‖2 ≤ 4
√
n , (13)

with probability at least 1 − 2 exp(−n/2). Let δBi denote the i th component of δB,
then δBi = H(μi )εi = ̂Biεi holds for i = 1, . . . , n and thus Eq. (13) means that

‖δB‖2 ≤ ‖̂B‖∞‖[ε1, . . . , εn]T ‖2 ≤ 4
√
n‖̂B‖∞ (14)

‖˜B‖2 ≤ (1 + σ4
√
n)‖̂B‖2 (15)

holds with probability at least 1 − 2 exp(−n/2). Similar arguments show that

‖η‖2 ≤ 4
√
n (16)

and
‖δC‖2 ≤ 4

√
n‖̂C‖∞ (17)

hold with probability at least 1 − 2 exp(−n/2), where we used δCi = H(γi )ηi =
̂Ciηi for i = 1, . . . , n. Set now

ζ = σ̂ζ , ̂ζ = max

{

4
√
n (‖FE‖2 + ‖FA‖2)

‖ŝE − ̂A‖2
,
4
√
n‖̂B‖∞
‖̂B‖2

}

(18)

and observe that (11) guarantees ζκ2(ŝE − ̂A) < 1. Thus, together with (12), it
follows that

‖σ(sδE − δA)‖2 ≤ σ4
√
n(‖FE‖2 + ‖FA‖2)

= σ
4
√
n(‖FE‖2 + ‖FA‖2)

‖ŝE − ̂A‖2
‖ŝE − ̂A‖2 ≤ ζ‖ŝE − ̂A‖2 (19)

with probability at least (1 − 2 exp(−n/2))2 ≥ 1 − 4 exp(−n/2), where we used
(18).

1 Note that ε is a diagonal matrix defined in (5).
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With (14) and the definition of ζ in (18), we also obtain that

‖σδB‖2 ≤ σ4
√
n‖̂B‖∞ = σ

4
√
n‖̂B‖∞
‖̂B‖2

‖̂B‖2 ≤ ζ‖̂B‖2 (20)

holds with probability at least 1 − 4 exp(−n/2). Thus, with (19), (20), and because
(11) implies ζκ2(ŝE − ̂A) < 1, the error bound (8) is applicable with probability at
least 1 − 4 exp(−n/2), which also means that s˜E − ˜A is nonsingular. �

The following theorem bounds the error due to noise in the transfer-function
values.

Theorem 1 Under the same assumptions as Lemma 1, for each s ∈ �, there exists
a constant Cs > 0 that may depend on s such that

| ˜H(s) − ̂H(s)| ≤ Csσ (21)

holds with probability at least 1 − 4 exp(−n/2).

Proof Consider now

̂H(s) − ˜H(s) = ̂C(ŝE − ̂A)−1
̂B − ˜C(s˜E − ˜A)−1

˜B

= ̂C
(

(ŝE − ̂A)−1
̂B − (s˜E − ˜A)−1

˜B
) − σδC(s˜E − ˜A)−1

˜B

and take the absolute value to obtain

| ̂H(s) − ˜H(s)| ≤ c1
ζ

1 − ζκ2(ŝE − ̂A)
+ |σδC(s˜E − ˜A)−1

˜B|, (22)

where we invoked (8) with

c1 = 2‖̂C‖2‖(ŝE − ̂A)−1
̂B‖2κ2(ŝE − ̂A) (23)

and ζ set as in (18). Note that (8) holds with probability at least 1 − 4 exp(−n/2),
and thus (22) holds with the same probability.

We now bound ‖(s˜E − ˜A)−1‖2 in probability. Consider the Neumann expansion

(s˜E − ˜A)−1 = (

ŝE − ̂A + σ (sδE − δA)
)−1

= (ŝE − ̂A)−1
∞

∑

i=0

(−1)iσ i
(

(sδE − δA)(ŝE − ̂A)−1
)i

,

(24)
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where the series converges to the inverse of I + σ(sδE − δA)(ŝE − ̂A)−1 pro-
vided that2 ‖σ(sδE − δA)(ŝE − ̂A)−1‖2 < 1. Because (19) holds with probabil-
ity at least 1 − 4 exp(−n/2), we obtain that with the same probability of at least
1 − 4 exp(−n/2)

‖σ(sδE − δA)(ŝE − ̂A)−1‖2 ≤ ζ‖ŝE − ̂A‖2‖(ŝE − ̂A)−1‖2 < 1,

holds, where we used assumption (11) in the second inequality. Note that the second
inequality is strict. Set

ν = 4
√
n(‖FE‖2 + ‖FA‖2)‖(ŝE − ̂A)−1‖2 ,

and obtain with (19), (24), and σν < 1 because of (11) that

‖(s˜E − ˜A)−1‖2 ≤ ‖(ŝE − ̂A)−1‖2
∞

∑

i=0

(νσ )i = ‖(ŝE − ̂A)−1‖2 1

1 − νσ
(25)

holds with probability at least 1 − 4 exp(−n/2).
Then, we obtain the bound

|σδC(s˜E − ˜A)−1
˜B| ≤σ‖δC‖2‖(s˜E − ˜A)−1‖2‖˜B‖2

≤4
√
n‖̂C‖∞‖̂B‖2‖(ŝE − ̂A)−1‖2 σ(1 + σ4

√
n)

1 − νσ

≤c2
σ + σ 24

√
n

1 − νσ
, (26)

where we used (15), (17) and (25), which together hold with probability at least
1 − 4 exp(−n/2), and we set c2 = 4

√
n‖̂C‖∞‖̂B‖2‖(ŝE − ̂A)−1‖2.

We obtain with (22), (26) the following bound

| ̂H(s) − ˜H(s)| ≤ σ

[

c1̂ζ

1 − σ̂ζκ2(ŝE − ̂A)
+ c2(1 + σ4

√
n)

1 − νσ

]

, (27)

which grows at most linearly in σ as long as condition (11) is satisfied, which shows
(21). �

Corollary 1 Under the same conditions as Theorem 1 and for s ∈ � that are not
zeros of ̂H,

| ˜H(s) − ̂H(s)|
| ̂H(s)| ≤ Csσ (28)

2 The necessary and sufficient condition for the convergence is that the spectral radius of σ(sδE −
δA)(ŝE − ̂A)−1 is strictly less than one.
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holdswith probability at least1 − 4 exp(−n/2)and constantCs > 0 thatmaydepend
on s.

Proof Note that ̂H(s) is independent of σ and thus dividing (21) by | ̂H(s)| is suf-
ficient to show (28) if s is not a zero of ̂H . To highlight a geometric interpreta-
tion of (28), we show (28) via a different approach. Since | ̂H(s)| = ‖̂C‖2‖(ŝE −
̂A)−1

̂B‖2| cos∠(̂C∗, (ŝE − ̂A)−1
̂B)|, the factor c1 defined in (23) can be interpreted

as

c1 = | ̂H(s)| 2κ2(ŝE − ̂A)

| cos∠(̂C∗, (ŝE − ̂A)−1̂B)|
so that the first term on the right-hand side in (27) contains the bound on the relative
error | ̂H(s) − ˜H(s)|/| ̂H(s)|with the two natural condition numbers κs(ŝE − ̂A) and
| cos∠(̂C∗, (ŝE − ̂A)−1

̂B)|. The interpretation is as follows: Evaluating ˜H essen-
tially means solving a perturbed linear system (s˜E − ˜A)−1

˜B and then computing
an inner product (˜C∗)∗((s˜E − ˜A)−1

˜B) with a perturbed vector ˜C∗. The sensitivity
of the solution of a system of equations to perturbations is quantified by the con-
dition number κ2(ŝE − ̂A) and the sensitivity of the inner product is quantified by
| cos∠(̂C∗, (ŝE − ̂A)−1

̂B)|. Similarly, the second term on the right-hand side in (27)
can be modified as follows: Instead of (26), estimate the second term in (22) as

|σδC(s˜E − ˜A)−1
˜B| ≤ σ4

√
n‖̂C‖∞‖(ŝE − ̂A)−1

̂B‖2
(

1 + 2ζκ2(ŝE − ̂A)

1 − ζκ2(ŝE − ̂A)

)

= σ | ̂H(s)| 4
√
n

| cos∠(̂C∗, (ŝE − ̂A)−1̂B)|
1 + ζκ2(ŝE − ̂A)

1 − ζκ2(ŝE − ̂A)

‖̂C‖∞
‖̂C‖2

.

Hence, because ̂H(s) �= 0 per assumption, we can write

| ̂H(s) − ˜H(s)|
| ̂H(s)| ≤ σ

(

1

| cosϑs |

(

2̂ζκ
(s)
2

1 − σ̂ζκ
(s)
2

+ 4
√
n
1 + ζκ

(s)
2

1 − ζκ
(s)
2

‖̂C‖∞
‖̂C‖2

))

(29)

where ϑs = ∠(̂C∗, (ŝE − ̂A)−1
̂B) and κ

(s)
2 = κ2(ŝE − ̂A). �

3.5 Remarks on Theorem 1

The following remarks are in order. First, note that condition (11) implies that
˜H(s) exists with probability at least 1 − 4 exp(−n/2). Second, a similar result as in
Theorem 1 can be shown for an absolute noise model, i.e., where the noisy transfer-
function values ˜H(s) have a standard deviation that is independent of the transfer-
function value H(s). The major change is that matrices FA and FE defined in (5) are
independent of the transfer-function values when an absolute noise model is used
and thus condition (11) holds for a different range of standard deviations σ than for
a relative noise model. Third, condition (11) in Theorem 1 depends on the scaling of
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the entries of the systemmatrices ̂E, ̂A, ̂B, and ̂C . Consider two nonsingularmatrices
D1 and D2 of size n × n. Then, the Loewner model given by ̂E, ̂A, ̂B, ̂C , derived
from noiseless transfer-function values, can be transformed as

Ĕ = D1̂ED2, Ă = D1̂AD2, B̆ = D1̂B, C̆ = ̂CD2 ,

with transfer function H̆(s) = C̆(s Ĕ − Ă)−1 B̆. It holds H̆(s) = ̂H(s) for s ∈ C;
however, the condition number κ2(ŝE − ̂A) is not invariant under the transformation
given by D1 and D2, which means that condition (11) in Theorem 1 is not invari-
ant if the system is transformed. A component-wise analysis [16, Sect. 7.2] could
be an option to derive a version of Theorem 1 that is invariant under diagonal lin-
ear transformations D1 and D2. Fourth, condition (11) in Theorem 1 depends on
the interpolation points s1, . . . , s2n and on the partition {μ1, . . . , μn}, {γ1, . . . , γn},
which shows that the interpolation points and their partition can influence the robust-
ness of the Loewner approach to noise; cf., e.g., [19, Sect. 2.1]. Our numerical results
demonstrate that different choices of interpolation points indeed influence condition
(11) and thus when the linear growth of the error (21) with the standard deviation
σ of the noise holds. The numerical results below suggest that taking interpolation
points that keep the condition number of ŝE − ̂A low seems reasonable. However,
additional analyses and numerical experiments are necessary before one can give a
definitive recommendation. The issue of selection and partition of the interpolation
points is an important challenging problem that will be addressed in our future work.

4 Numerical Results

In this section, we demonstrate the error bound of Theorem 1 on numerical experi-
ments with some well known benchmark examples.

4.1 CD Player

The system of a CD player is a common benchmark problem for model reduction
and can be downloaded from the SLICOT website.3

4.1.1 Problem Setup

We consider single-input-single-output (SISO) systems and therefore we use only
the first input and the second output of the CD-player system. The frequency range
is [2π, 200π ], which contains some of the major dynamics of the CD-player system.

3 http://slicot.org/20-site/126-benchmark-examples-for-model-reduction.

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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The order of the system is N = 120. To derive a Loewner model of order n, we
select 2n interpolation points as follows. First, n points w1, . . . ,wn are selected
logarithmically equidistant in the range [2π, 200π ] on the imaginary axis. Then,
si = (−1)iwi for i = 1, . . . , n and sn+i = (−1)i+1wi . The first n points s1, . . . , sn
are put into the set {μ1, . . . , μn} and the following n points sn+1, . . . , s2n are put into
{γ1, . . . , γn}. To test the Loewner models, we select 200 test points s test1 , . . . , s test200 on
the imaginary axis in the range [2π, 200π ].

From the noiseless transfer-function values H(μ1), . . . , H(μn) and
H(γ1), . . . , H(γn) a Loewner model is derived with transfer function ̂H . Then,
the transfer-function values are polluted with noise with standard deviation σ as
described in Sect. 3.1 and a noisy Loewner model is derived with transfer function
˜Hσ . Note that we now explicitly denote standard deviation as subscript in the transfer
functions of noisy Loewner models.

4.1.2 Results

We consider the error

e(σ ) = 1

200

200
∑

i=1

| ̂H(s testi ) − ˜Hσ (s testi )| , (30)

which is an average of the error (21) over all 200 test points. Figure1a shows themean
of e(σ ) over 10 replicates of independent noise samples. The standard deviation σ is
in the range [10−15, 105] and the dimension is n = 20. The error bars in Fig. 1a show
the minimum and maximum of e(σ ) over the 10 replicates. A linear growth of the
mean of error (30) with the standard deviation σ is observed for σ < 10−5. Figure1b
shows the number of test points that violate condition (11) of Theorem 1. The results
indicate that for σ ≥ 10−7 condition (11) is violated for all 200 test points, which
seems to align with Fig. 1a that shows a linear growth for σ < 10−5. Thus, the results
in Fig. 1a are in agreement with Theorem 1. Similar observations can be made for
n = 28 in Fig. 1c, d.

4.2 Penzl

The Penzl system is a benchmark problem that has been introduced in [36, Example
3] and is used in, e.g., [19, 31] to demonstrate the Loewner approach.
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Fig. 1 CD player: Plots a and c show the growth of the mean of error (30) over 10 replicates of
independent noise samples. Plots b and d show the number of test points for which condition (11)
of Theorem 1 is violated. The mean of the error (30) grows linearly with σ as long as condition (11)
is satisfied, which is in agreement with Theorem 1. The error bars in a and c show the minimum
and maximum of the error (30) over the 10 replicates of the noise samples

4.2.1 Problem Setup

The Penzl system is of order N = 1006 and we consider the frequency range
[10, 1000]. We consider two different sets of interpolation points in this example.
First, we select n logarithmically equidistant points on the imaginary axis in the
range [10, 1000] and include their complex conjugates as described in Sect. 4.1.1.
We denote the corresponding set of 2n interpolation points as En . Second, we select
points randomly in the complex plane in the range [10, 1000] × ι[10, 1000], where ι

is the complex unit ι = √−1. To select the points randomly, we first select 106 log-
arithmically equidistant points w1, . . . ,w106 in [10, 1000] and then draw uniformly
2n points from w1, . . . ,w106 for the real and imaginary parts of the n interpolation
points s1, . . . , sn . Then, their complex conjugates are sn+i = s̄i for i = 1, . . . , n. The
interpolation points are partitioned into the two sets {μ1, . . . , μn} and {γ1, . . . , γn}
with μi = s2i−1 and γi = s2i for i = 1, . . . , n such that conjugate pairs are in the
same set. The set of interpolation points is denoted as Rn . The test points are 200
points selected on the imaginary axis in the range [10, 1000].
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4.2.2 Results

Figure2a shows the error (30) corresponding to theLoewnermodelwith interpolation
points Rn (random) and of dimension n = 16. Figure2c shows that condition (11)
is violated for all test points and all standard deviations σ in the range [10−15, 105],
which means that Theorem 1 is not applicable. In contrast, Fig. 2b shows a linear
growth for the error (30) corresponding to the models learned from logarithmically
equidistant points En . Figure2d indicates that up to σ = 10−10 the condition (11)
for Theorem 1 is satisfied, which explains the linear growth for σ ≤ 10−10. For
σ > 10−10, Theorem 1 is not applicable, even though a linear growth is observed,
which demonstrates that Theorem 1 is rather pessimistic in this example. Figure3
shows themagnitude of the transfer functions for σ = 10−6 and demonstrates that the
logarithmically equidistant points En seem to provide more robustness against noise
than the random points Rn in this example. The numerical observations seem to be
in alignment with Theorem 1 because assumption (11) is violated for interpolation
points Rn for all σ considered in Fig. 2c, whereas assumption (11) is satisfied for

Fig. 2 Penzl: The choice of the interpolation points can have a significant effect on the robustness
of the Loewner approach to noise. Plots a and c show results for points selected randomly and
plots b and d for points selected logarithmically equidistantly. Learning Loewner models from the
logarithmically equidistant points seems to be more robust in this example than learning from the
randomly selected points
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Fig. 3 Penzl: Plots a and b show the magnitude of the transfer function of Loewner models
learned from noiseless transfer-function values and from transfer-function values polluted with
noise with standard deviation σ = 10−6. The interpolation points are randomly selected in a and
logarithmically equidistant in b; compare with Fig. 2

small σ for points En . Note that the condition number of ŝE − ̂A plays a critical role
in the assumption (11). Thus, it seems that taking interpolation points that keep the
condition number of ŝE − ̂A low is reasonable. However, additional analyses and
numerical experiments are necessary before one can give a definitive recommenda-
tion.
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Pseudospectra of Loewner Matrix Pencils

Mark Embree and A. Cosmin Ioniţă

Abstract Loewner matrix pencils play a central role in the system realization the-
ory of Mayo and Antoulas, an important development in data-driven modeling. The
eigenvalues of these pencils reveal system poles. How robust are the poles recovered
via Loewner realization? With several simple examples, we show how pseudospec-
tra of Loewner pencils can be used to investigate the influence of interpolation point
location and partitioning on pole stability, the transient behavior of the realized sys-
tem, and the effect of noisy measurement data. We include an algorithm to efficiently
compute such pseudospectra by exploiting Loewner structure.

Keywords Generalized eigenvalue problem · Pseudospectra · System realization

1 Introduction

The landmark systems realization theory of Mayo and Antoulas [19] shows how to
construct a dynamical system that interpolates tangential frequency domain mea-
surements of a multi-input, multi-output system. Central to this development is the
matrix pencil zL − Ls composed of Loewner and shifted Loewner matrices L and
Ls that encode the interpolation data. When this technique is used for exact system
recovery (as opposed to data-driven model reduction), the eigenvalues of this pencil
match the poles of the transfer function of the original system. However other spec-
tral properties, including the sensitivity of the eigenvalues to perturbation, can differ
greatly, depending on the location of the interpolation points in the complex plane
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The MathWorks Inc., Natick, MA 01760, USA
e-mail: cionita@mathworks.com

© Springer Nature Switzerland AG 2022
C. Beattie et al. (eds.), Realization and Model Reduction of Dynamical Systems,
https://doi.org/10.1007/978-3-030-95157-3_4

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95157-3_4&domain=pdf
mailto:embree@vt.edu
mailto:cionita@mathworks.com
https://doi.org/10.1007/978-3-030-95157-3_4


60 M. Embree and A. C. Ioniţă

relative to the system poles, and how the interpolation points are partitioned. Since
one uses zL − Ls to learn about the original system, such subtle differences matter.

Pseudospectra are sets in the complex plane that contain the eigenvalues but
provide additional insight about the sensitivity of those eigenvalues to perturbation
and the transient behavior of the underlying dynamical system.Whilemost often used
to analyze single matrices, pseudospectral concepts have been extended to matrix
pencils (generalized eigenvalue problems).

This introductory note shows several ways to use pseudospectra to investigate
spectral questions involving Loewner pencils derived from system realization prob-
lems. Using simple examples, we explore the following questions.

• How do the locations of the interpolation points and their partition into “left” and
“right” points affect the sensitivity of the eigenvalues of zL − Ls?

• Do solutions to the dynamical system Lẋ(t) = Lsx(t)mimic solutions to the origi-
nal systemEẋ(t) = Ax(t), especially in the transient regime? Does this agreement
depend on the interpolation points?

• How do noisy measurements affect the eigenvalues of zL − Ls?

We include an algorithm for computing pseudospectra of an n-dimensional Loewner
pencil in O(n2) operations, improving the O(n3) cost for generic matrix pencils; the
appendix gives a MATLAB implementation.

Throughout this note, we use σ(·) to denote the spectrum (eigenvalues) of amatrix
or matrix pencil, and ‖ · ‖ to denote the vector 2-norm and thematrix norm it induces.
(All definitions here can readily be adapted to other norms, as needed. The algorithm,
however, is designed for use with the 2-norm.)

2 Loewner Realization Theory in a Nutshell

We briefly summarize Loewner realization theory, as developed by Mayo and
Antoulas [19]; see also [1]. Consider the linear, time-invariant dynamical system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t)

forA, E ∈ Cn×n ,B ∈ Cn×m , andC ∈ Cp×n , with whichwe associate, via the Laplace
transform, the transfer function H(z) = C(zE − A)−1B.

Given tangential measurements of H(z) we seek a realization of the system that
interpolates the given data. More precisely, consider the right interpolation data

• distinct interpolation points λ1, . . . , λ� ∈ C;
• interpolation directions r1, . . . , r� ∈ Cm ;
• function values w1, . . . , w� ∈ Cp;

and left interpolation data

• distinct interpolation points μ1, . . . , μν ∈ C;
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• interpolation directions �1, . . . , �ν ∈ Cp;
• function values v1, . . . , vν ∈ Cm .

Assume the left and right interpolation points are disjoint, {λi }�i=1 ∩ {μ j }νj=1 = ∅;
(in our examples, all � + ν points are distinct).

The interpolation problem seeks matrices ̂A,̂E,̂B,̂C for which the transfer func-
tion̂H(z) = ̂C(ẑE − ̂A)−1

̂B interpolates the data: for i = 1, . . . , � and j = 1, . . . , ν,

̂H(λi )ri = wi , �∗
j
̂H(μ j ) = v∗

j .

Two structured matrices play a crucial role in the development of Mayo and
Antoulas [19]. From the data, construct the Loewner and shifted Loewner matri-
ces

L =

⎡

⎢

⎢

⎣

v∗
1r1−�∗

1w1
μ1−λ1

· · · v∗
1r�−�∗

1w�

μ1−λ�

...
. . .

...
v∗

νr1−�∗
νw1

μν−λ1
· · · v∗

νr�−�∗
νw�

μν−λ�

⎤

⎥

⎥

⎦

, Ls =

⎡

⎢

⎢

⎣

μ1v∗
1r1−λ1�

∗
1w1

μ1−λ1
· · · μ1v∗

1r�−λ��∗
1w�

μ1−λ�

...
. . .

...
μνv∗

ν r1−λ1�
∗
νw1

μν−λ1
· · · μνv∗

ν r�−λ��∗
νw�

μν−λ�

⎤

⎥

⎥

⎦

, (1)

i.e., the (i, j) entries of these ν × � matrices have the form

(L)i, j = v∗
i r j − �∗

i w j

μi − λ j
, (Ls)i, j = μiv

∗
i r j − λ j�

∗
i w j

μi − λ j
.

Now collect the data into matrices. The right interpolation points, directions, and
data are stored in

� =
⎡

⎢

⎣

λ1
. . .

λ�

⎤

⎥

⎦∈C�×�, R =
⎡

⎣ r1 · · · r�

⎤

⎦∈Cm×�, W =
⎡

⎣ w1 · · · w�

⎤

⎦∈Cp×�,

while the left interpolation points, directions, and data are stored in

M =
⎡

⎢

⎣

μ1
. . .

μν

⎤

⎥

⎦∈Cν×ν, L =
⎡

⎣ �1 · · · �ν

⎤

⎦∈Cp×ν, V =
⎡

⎣ v1 · · · vν

⎤

⎦∈Cm×ν .
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2.1 Selecting and Arranging Interpolation Points

As Mayo and Antoulas observe, Sylvester equations connect these matrices:

L� − ML = L∗W − V∗R, Ls� − MLs = L∗W� − MV∗R. (2)

Just using the dimensions of the components, note that

rank(L∗W), rank(L∗W�), ≤ min{ν, �, p}
rank(V∗R), rank(V∗RM) ≤ min{ν, �,m}.

Thus for modestm and p, the Sylvester equations (2) must have low-rank right-hand
sides.1 This situation often implies the rapid decay of singular values of solutions
to the Sylvester equation [2, 3, 21, 22, 26]. While this phenomenon is convenient
for balanced truncation model reduction (enabling low-rank approximations to the
controllability and observability Gramians), it is less welcome in the Loewner real-
ization setting, where the rank of L should reveal the order of the original system:
fast decay of the singular values of L makes this rank ambiguous. Since � and M
are diagonal, they are normal matrices, and hence Theorem 2.1 of [3] gives

sqk+1(L)

s1(L)
≤ inf

φ∈Rk,k

max{|φ(λ)| : λ ∈ {λ1, . . . , λ�}}
min{|φ(μ)| : μ ∈ {μ1, . . . , μν}} , (3)

where s j (·) denotes the j th largest singular value, q = rank(L∗W − V∗R), andRk,k

denotes the set of irreducible rational functions whose numerators and denominators
are polynomials of degree k or less.2 The right hand side of (3) will be small when
there exists some φ ∈ Rk,k for which all |φ(λi )| are small, while all |φ(μ j )| are large:
a good separation of {λi } from {μ j } is thus sufficient to ensure the rapid decay of the
singular values of L and Ls . (Beckermann and Townsend give an explicit bound for
the singular values of Loewner matrices when the interpolation points fall in disjoint
real intervals [3, Corollary 4.2].)

Here, if we want the singular values of L and Ls to reveal the system’s order
(without decay of singular values as an accident of the arrangement of interpolation
points), it is necessary for one |φ(λi )| to be about the same size as the smallest value
of |φ(μ j )| for all φ ∈ Rk,k . Roughly speaking,wewant the left and right interpolation
points to be close together (even interleaved). While this arrangement is necessary
for slow decay of the singular values, it does not alone prevent such decay, as will
be seen in examples in Fig. 4 (since (3) is only an upper bound).

Another heuristic, based on the Cauchy-like structure of L and Ls , also suggests
the left and right interpolation points should be close together. Namely, L and Ls are

1 For single-input, single-output (SISO) systems, m = p = 1, so the rank of the right-hand sides
in (2) cannot exceed two. The same will apply for multi-input, multi-output systems with identical
left and right interpolation directions: �i ≡ � for all i = 1, . . . , ν and r j ≡ r for all j = 1, . . . , �.
2 The same bound holds for sqk+1(Ls)/s1(Ls) with q = rank(L∗W� − MV∗R).
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a more general form of the Cauchy matrix (C)i, j = 1/(μi − λ j ), whose determinant
has the elegant formula (e.g., [16, p. 38])

det(C) =
∏

1≤i< j≤n(μ j − μi )(λi − λ j )
∏

1≤i≤ j≤n(μi − λ j )
. (4)

It is an open question if det(L) and det(Ls) have similarly elegant formulas. Never-
theless, det(L) and det(Ls) do have the same denominator as det(C) (which can be
checked by recursively subtracting the first row from all other rows when computing
the determinant). This observation suggests that to avoid artificially small determi-
nants for L and Ls (which, up to sign, are the products of the singular values) it is
necessary for the denominator of (4) to be small, and, thus, for the left and right
interpolation points to be close together.

In practice, we often start with initial interpolation points x1, . . . , x2n that wewant
to partition into left and right interpolation points to form L and Ls . Our analysis of (4)
suggests a simple way to arrange the interpolation points such that the denominator
of det(L) and det(Ls) is small: relabel the points to satisfy

xk = argmin
k≤q≤2n

|xk−1 − xq |, for k = 2, . . . , 2n, (5)

{μi } = {x1, x3, . . . , x2n−1}, {λ j } = {x2, x4, . . . , x2n}.

The greedy reordering in (5) ensures that |xk − xk−1| is small and allows us to sim-
ply interleave the left and right interpolation points. Moreover, when x1, . . . , x2n
are located on a line, the reordering in (5) simplifies to directly interleaving μi and
λ j and, thus, it can be skipped. This ordering need not be optimal, as we do not
visit all possible combinations of μi − λ j ; it simply seeks a partition that yields a
large determinant (which must also depend on the interpolation data). We note its
simplicity, effectiveness, and efficiency (requiring onlyO(n2) operations). (For SISO
systems, the state-space representation is equivalent to a barycentric form [17, p. 77].
We thank the referee for observing that in barycentric rational Remez approxima-
tions [9], a similar interleaving of support points from the set of reference points
produces favorable numerical conditioning. Recent work by Gosea and Antoulas
gives further numerical evidence for interleaving Loewner points [13].)

2.2 Construction of Interpolants

Throughoutwemake the fundamental assumptions that for all ẑ ∈ {λi }�i=1 ∪ {μ j }νj=1,

rank(̂zL − Ls) = rank

([

L
Ls

])

= rank
([

L Ls
]) =: r,
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and we presume the underlying dynamical system is controllable and observable.
When r = ν = � is the order of the system, Mayo and Antoulas [19, Lemma 5.1]

show that the transfer function ̂H(z) := ̂C(ẑE − ̂A)−1
̂B defined by

̂E = −L, ̂A = −Ls, ̂B = V∗, ̂C = W (6)

interpolates the � + ν data values.
When r < max(ν, �), fix some ẑ ∈ {λi }�i=1 ∪ {μ j }νj=1 and compute the (economy-

sized) singular value decomposition

ẑL − Ls = Y�X∗,

with Y ∈ Cν×r , � ∈ Rr×r , and X ∈ C�×r . Then with

̂E = −Y∗LX, ̂A = −Y∗LsX, ̂B = Y∗V∗, ̂C = WX, (7)

̂H(z) := ̂C(ẑE − ̂A)−1
̂B gives an order-r system interpolating the data [19, Theo-

rem 5.1].

3 Pseudospectra for Matrix Pencils

Though introduced decades earlier, in the 1990s pseudospectra emerged as a popular
tool for analyzing the behavior of dynamical systems (see, e.g., [30]), eigenvalue
perturbations (see, e.g., [4]), and stability of uncertain linear time-invariant (LTI)
systems (see, e.g., [15]).

Definition 1 For a matrix A ∈ Cn×n and ε > 0, the ε-pseudospectrum of A is

σε(A) = {z ∈ C is an eigenvalue of A + � for some � ∈ Cn×n with ‖�‖ < ε}. (8)

For all ε > 0, σε(A) is a bounded, open subset of the complex plane that contains the
eigenvalues of A. (A popular variation uses the weak inequality ‖�‖ ≤ ε; the strict
inequality has favorable properties for operators on infinite-dimensional spaces [5].)
Definition1motivates pseudospectra via eigenvalues of perturbedmatrices.Anumer-
ical analyst studying accuracy of a backward stable eigenvalue algorithm might be
concernedwith ε on the order of n‖A‖εmach, where εmach denotes themachine epsilon
for the floating point system [20]. An engineer or scientist might consider σε(A) for
much larger ε values, corresponding to uncertainty in parameters or data that con-
tribute to the entries of A.

Via the singular value decomposition, one can show that (8) is equivalent to

σε(A) = {z ∈ C : ‖(zI − A)−1‖ > 1/ε}; (9)
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see, e.g., [29, Chap. 2]. The presence of the resolvent (zI − A)−1 in this definition
suggests a connection to the transfer function H(z) = C(zI − A)−1B for the system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t).

Indeed, definition (1) readily leads to bounds on ‖etA‖, and hence transient growth
of solutions to ẋ(t) = Ax(t); see [29, Part IV].

Various extensions of pseudospectra have been proposed to handle more gen-
eral eigenvalue problems and dynamical systems; see [7] for a concise survey. The
first elaborations addressed the generalized eigenvalue problem Ax = λEx (i.e., the
matrix pencil zE − A) [10, 23, 24]. Here we focus on the definition proposed by
Frayssé, Gueury, Nicoud, and Toumazou [10], which is ideally suited to analyzing
eigenvalues of nearby matrix pencils. To permit the perturbations to A and E to be
scaled independently, this definition includes two additional parameters, γ and δ.

Definition 2 Let γ, δ > 0. For a pair of matrices A, E ∈ Cn×n and any ε > 0, the
ε-(γ, δ)-pseudospectrum σ

(γ,δ)
ε (A, E) of the matrix pencil zE − A is the set

σ (γ,δ)
ε (A, E) = {z ∈ C is an eigenvalue of the pencil z(E + �) − (A + �)

for some �,� ∈ Cn×n with ‖�‖ < εγ , ‖�‖ < εδ}.

This definition has been extended to matrix polynomials in [14, 27].

Remark 1 Note that σ (γ,δ)
ε (A, E) is an open, nonempty subset of the complex plane,

but it need not be bounded.

(a) If zE − A is a singular pencil (rank(zE − A) < n for all z ∈ C), then σ(A, E) =
C.

(b) If zE − A is a regular pencil but E is not invertible, then σ(A, E) contains an
infinite eigenvalue, and hence σ

(γ,δ)
ε (A, E) is unbounded.

(c) If E is nonsingular but εδ exceeds the distance of E to singularity (the smallest
singular value of E), then σ

(γ,δ)
ε (A, E) contains the point at infinity.

Since these pseudospectra can be unbounded, Lavallée [18] and Higham and Tis-
seur [14] visualize σ

(γ,δ)
ε (A, E) as stereographic projections on the Riemann sphere.

Remark 2 Just as the conventional pseudospectrum σε(A) can be characterized
using the resolvent of A in (9), Frayseé et al. [10] show that Definition2 is equivalent
to

σ (γ,δ)
ε (A, E) =

{

z ∈ C : ‖(zE − A)−1‖ >
1

ε(γ + |z|δ)
}

. (10)

This formula suggests a way to compute σ
(γ,δ)
ε (A, E): evaluate ‖(zE − A)−1‖ on a

grid of points covering a relevant region of the complex plane (or theRiemann sphere)
anduse a contour plotting routine to drawboundaries ofσ (γ,δ)

ε (A, E). The accuracy of
the resulting pseudospectra depends on the density of the grid. Expedient algorithms
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for computing ‖(zE − A)−1‖ can be derived by computing a unitary simultaneous
triangularization (generalized Schur form) ofA andE inO(n3) operations, then using
inverse iteration or inverse Lanczos, as described by Trefethen [28] andWright [31],
to compute ‖(zE − A)−1‖ at each grid point in O(n2) operations. For the structured
Loewner pencils of interest here, one can compute ‖(zE − A)−1‖ inO(n2) operations
without recourse to the O(n3) preprocessing step, as proposed in Sect. 4.

Remark 3 Definition2 can be extended to δ = 0 by only perturbing A [23]:

σ (1,0)
ε (A, E) = {z ∈ C is an eigenvalue of the pencil zE − (A + �)

for some � ∈ Cn×n with ‖�‖ < ε}.
= {z ∈ C : ‖(zE − A)−1‖ > 1/ε}.

This definition may be more suitable for cases where E is fixed and uncertainty in
the system only emerges, e.g., through physical parameters that appear in A.

Remark 4 Since we ultimately intend to study the pseudospectra σ
(γ,δ)
ε (Ls, L) of

Loewner matrix pencils, one might question the use of generic perturbations �,� ∈
Cn×n in Definition2. Should we restrict � and � to maintain Loewner structure,
i.e., so that Ls + � and L + �maintain the coupled shifted Loewner–Loewner form
in (1)? Such sets are called structured pseudospectra.

Three considerations motivate the study of generic perturbations �,� ∈ Cn×n:
one practical, one speculative, and one philosophical. (a) Beyond repeatedly comput-
ing the eigenvalues of Loewner pencils with randomly perturbed data, no systematic
method is known to compute the coupled Loewner structured pseudospectra, i.e., no
analogue of the resolvent-like definition (10) is known. (b) Rump [25] showed that
in many cases, preserving structure has little effect on the standard matrix pseu-
dospectra. For example, the structured ε-pseudospectrum of a Hankel matrix H
allowing only complex Hankel perturbations exactly matches the unstructured ε-
pseudospectrum σε(H) based on generic complex perturbations [25, Theorem 4.3].
Whether a similar results holds for Loewner structured pencils is an interesting
open question. (c) If one seeks to analyze the behavior of dynamical systems (as
opposed to eigenvalues of nearby matrices), then generic perturbations give much
greater insight; see [29, p. 456] for an example where real-valued perturbations do
not move the eigenvalues much toward the imaginary axis (hence the real structured
pseudospectra are benign), yet the stable system still exhibits strong transient growth.

As we shall see in Sect. 6, Definition2 provides a helpful tool for investigating
the sensitivity of eigenvalues of matrix pencils. A different generalization of Defini-
tion1 gives insight into the transient behavior of solutions of Eẋ(t) = Ax(t). This
approach is discussed in [29, Chap. 45], following [23, 24], and has been extended
to handle singular E in [8] (for differential-algebraic equations and descriptor sys-
tems). Restricting our attention here to nonsingular E, we analyze the conventional
(single matrix) pseudospectra σε(E−1A). From these sets one can develop various
upper and lower bounds on ‖etE−1A‖ and ‖x(t)‖ [29, Chap. 15]. Here we shall just
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state one basic result. If sup{Re(z) : z ∈ σε(E−1A)} = K ε for some K ≥ 1 (where
Re(·) denotes the real part of a complex number), then

sup
t≥0

‖etE−1A‖ ≥ K . (11)

This statement implies that there exists some unit-length initial condition x(0) such
that ‖x(t)‖ ≥ K , even though σ(A, E)may be contained in the left half-plane. (Opti-
mizing this bound over ε > 0 yields the Kreiss Matrix Theorem [29, (15.9)].)

Pseudospectra of matrix pencils provide a natural vehicle to explore that stability
of the matrix pencil associated with the Loewner realization in (6). We shall thus
investigate eigenvalue perturbations via σ

(γ,δ)
ε (̂A,̂E) = σ

(γ,δ)
ε (Ls, L) and transient

behavior via σε(L−1Ls).

4 Efficient Computation of Loewner Pseudospectra

We first present a novel technique for efficiently computing pseudospectra of large
Loewner matrix pencils, σ (γ,δ)

ε (Ls, L), using the equivalent definition given in (10).
When the Loewner matrix L is nonsingular, we employ inverse iteration to exploit
the structure of the Loewner pencil to compute ‖(zL − Ls)

−1‖ (in the two-norm)
using onlyO(n2) operations. This avoids the need to compute an initial simultaneous
unitary triangularization of Ls and L using the QZ algorithm, an O(n3) operation.

Inverse iteration (and inverse Lanczos) for ‖(zL − Ls)
−1‖ requires computing

(zL − Ls)
−∗(zL − Ls)

−1u (12)

for a series of vectorsu ∈ Cn (e.g., see [29,Chap. 39]).We invoke a property observed
by Mayo and Antoulas [19], related to (2): by construction, the Loewner and shifted
Loewner matrices satisfy Ls − L� = V∗R. Thus the resolvent can be expressed
using only L and not Ls :

(zL − Ls)
−1 = (L(zI − �) − V∗R)−1.

We now use the Sherman–Morrison–Woodbury formula (see, e.g., [12]) to get

(zL − Ls)
−1 = (

I + ϒ(z)(I − Rϒ(z))−1R
)

(zI − �)−1L−1 = �(z)L−1,

where ϒ(z) := (zI − �)−1L−1V∗ and �(z) := (

I + ϒ(z)(I − Rϒ(z))−1R
)

(zI −
�)−1. As a result, we can compute the inverse iteration vectors in (12) as

(zL − Ls)
−∗(zL − Ls)

−1u = L−∗�(z)∗�(z)L−1u, (13)
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which requires solving several linear systems given by the same Loewner matrix L,
e.g., L−1u, L−1V∗.

Crucially, solving a linear system involving a Loewner matrix L ∈ Cn×n can
be done efficiently in only 2(m + p + 1)n2 operations, since L has displacement
rank m + p. More precisely, L is a Cauchy-like matrix that satisfies the Sylvester
equation (2) given by diagonal generator matrices � and M and a right-hand side
of rank at most m + p, i.e., rank(L∗W − V∗R) ≤ m + p. The displacement rank
structure of L can be exploited to compute its LU factorization in only 2(m + p)n2

flops (see [11] and [12, Sect. 12.1]). Given the LU factorization of L, solving L−1u in
(13) via standard forward and backward substitution requires another 2n2 operations.

Next, multiplying �(z) with the solution of L−1u requires a total of 2mn2 +
(4m2 + 6m + 2)n + 2

3m
3 − m2 operations, namely (to leading order on the factor-

izations):

• 2mn2 + 2mn operations to compute ϒ(z) ∈ Cn×m ;
• m2(2n − 1) + m operations to compute I − Rϒ(z) ∈ Cm×m ;
• 2

3m
3 + 2m2n operations to solve (I − Rϒ(z))−1R ∈ Cm×n via

an LU factorization followed by n forward and backward substitutions;
• n + m(2n − 1) + (2m − 1)n + 2n operations to multiply �(z) with L−1u.

Finally, multiplying with L−∗�(z)∗ in (13) requires an additional 2n2 + 2mn2 +
(4m2 + 6m + 2)n + 2

3m
3 − m2 operations, bringing the total cost of computing (13)

to 2(3m + p + 1)n2 + 4(2m2 + 3m + 1)n + 4
3m

3 − 2m2 operations.
In practice, the sizes of the right and left tangential directions are much smaller

than the size of the Loewner pencil, i.e., m, p � n. For example, for scalar data
(associated with SISO systems), m = p = 1. Therefore, in practice, computing (13)
can be done in only O(n2) operations.

Partial pivoting can be included in the LU factorization of the Loewner matrix
L to overcome numerical difficulties. Adding partial pivoting maintains the O(n2)
operation count for the LU factorization of L (see [12, Sect. 12.1]), and hence com-
puting (13) can still be done in O(n2) operations. The appendix gives a MATLAB
implementation of this efficient inverse iteration.

Wemeasure these performance gains for a Loewner pencil generated by sampling

f (x) = ∑8
k=1(−1)k+1

(

1 + 100(x − k)2
)−1/2 + (−1)k+1

(

1 + 100(x − k − 1/2)2
)−1/2

at 2n points uniformly spaced in the interval [1, 8]. We compare our new O(n2)
Loewner pencil inverse iteration against a standard implementation (see [29, p. 373])
applied to a simultaneous triangularization of Ls and L. (The simultaneous triangu-
larization costs O(n3) but is fast, as MATLAB’s qz routine invokes LAPACK code.
For a fair comparison, we test against a C++ implementation of the fast Loewner
code, compiled into a MATLAB .mex file.) Table1 shows timings for both imple-
mentations by computing ‖(zL − Ls)

−1‖ on a 200 × 200 grid of points. Exploiting
the Loewner structure gives a significant performance improvement for large n.

Wenext examine two simple examples involving full-rank realization of SISO sys-
tems, to illustrate the kinds of insights one can draw from pseudospectra of Loewner
pencils. (For these small examples we use the standard O(n3) algorithm.)
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Table 1 Comparison of speed of computing σ
(1,1)
ε (Ls , L) using the fast Loewner algorithm versus

a generic inverse iteration method applied to simultaneous triangularizations of Ls and L

n O(n2) algorithm (s) O(n3) algorithm (s)

100 1.85 1.65

200 6.75 6.75

300 17.24 33.30

400 49.15 65.05

5 Example 1: Eigenvalue Sensitivity and Transient
Behavior

We first consider a simple controllable and observable SISO system with n = 2:

E = I, A =
[−1.1 1

1 −1.1

]

, B =
[

0
1

]

, C = [

0 1
]

. (14)

ThisA is symmetric negative definite, with eigenvalues σ(A) = {−0.1,−2.1}. Since
the system is SISO, the transfer function H(s) = C(sI − A)−1B maps C to C, and
hence the choice of “interpolation directions” is trivial (though the division into “left”
and “right” points matters). We take � = ν = 2 left and right interpolation points,
with r1 = r2 = 1 and �1 = �2 = 1. We will study various choices of interpolation
points, all of which satisfy, for each ẑ ∈ {λ1, λ2, μ1, μ2},

rank(̂z L − Ls) = rank(L) = rank(Ls) = n = 2. (15)

This basic set-up makes it easy to focus on the influence of the interpolation points
λ1, λ2, μ1, μ2. We will use the pseudospectra σ (1,1)

ε (Ls, L) to examine how the
interpolation points affect the stability of the eigenvalues of the Loewner pencil.

Table2 records four different choices of {λ1, λ2, μ1, μ2}; Fig. 1 shows the cor-
responding pseudospectra σ (1,1)

ε (Ls, L). All four Loewner realizations match the
eigenvalues of A and satisfy the interpolation conditions. However, the pseudospec-
tra show how the stability of the eigenvalues −0.1 and −2.1 differs across these

Table 2 Right and left interpolation points for the two-dimensional SISO system (14).
The two right columns report the singular values of the Loewner matrix L

Example λ1 λ2 μ1 μ2 s1(L) s2(L)

(a) 0 1 1i −1i 6.9871212 0.0731542

(b) 0.25 0.75 2i −2i 1.0021659 0.0296996

(c) 0.40 0.60 4i −4i 0.3605151 0.0057490

(d) 8 9 10 11 0.0035344 0.0000019
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-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

)b()a(

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

)d()c(

Fig. 1 Boundaries of pseudospectra σ
(1,1)
ε (Ls , L) for four Loewner realizations of the system (14)

using the interpolation points in Table2. All four realizations correctly give σ(Ls , L) = σ(A),
but σ

(1,1)
ε (Ls , L) show how the stability of the realized eigenvalues depends on the choice of

interpolation points. In this and all similar plots, the colors denote log10(ε). Thus, in plot (d), there
exist perturbations to Ls and L of norm 10−6.5 that move an eigenvalue into the right half-plane

four realizations. From example (a) to (d), these eigenvalues become increasingly
sensitive as the interpolation points move farther from σ(A). Table2 also shows the
singular values of the Loewner matrix L, demonstrating how the second singular
value s2(L) decreases as the eigenvalues become increasingly sensitive. (Taken to a
greater extreme, it would eventually be difficult to determine if L truly is rank 2.)

Remark 5 By Remark1, note that if ε < smin(L), then σ (1,1)
ε (Ls, L) will be

unbounded. Thus the decreasing values of smin(L) in Table2 suggest the enlarging
pseudospectra seen in Fig. 1. For example, in case (d) the ε = 10−5 pseudospectrum
σ (1,1)

ε (Ls, L) must contain the point at infinity.

Contrast these results with the standard pseudospectra of A itself, σε(A) =
σ (1,0)

ε (A, I) shown at the top of Fig. 2. Since A is real symmetric (hence normal),
σε(A) is the union of open ε-balls surrounding the eigenvalues. Figure2 compares
these pseudospectra to σε(L−1Ls), which give insight into the transient behavior of
solutions to Lẋ(t) = Lsx(t), e.g., via the bound (11). (Since Ls − L� = V∗R, and
m = 1, L−1Ls = � + L−1V∗R is a rank-1 update of the matrix � [19, p. 643].)
The top plot shows σε(A), whose rightmost extent in the complex plane is always
ε − 0.1: no transient growth is possible for this system. However, in all four Loewner
realizations, σε(L−1Ls) extends more than ε into the right-half plane for ε = 100
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Fig. 2 The pseudospectra σε(A) (top), compared to σε(L−1Ls) for four Loewner realizations of
the system (14) using the interpolation points in Table2. In all cases σ(L−1Ls) = σ(A), but the
pseudospectra of L−1Ls are all quite a bit larger than σε(A)

(orange level curve), indicating by (11) that transient growth must occur for some
initial condition. Figure3 shows this growth for all four realizations: the more remote
interpolation points lead to Loewner realizations with greater transient growth.

6 Example 2: Partitioning Interpolation Points and Noisy
Data

To further investigate how the interpolation points influence eigenvalue stability for
the Loewner pencil, consider the SISO system of order 10 given by

E = I, A = diag(−1,−2, . . . ,−10), B = [1, 1, . . . , 1]T , C = [1, 1, . . . , 1].
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Fig. 3 Evolution of the norm of the solution operator for the original system (black dashed line)
and the four interpolating Loewner models. The instability revealed by the pseudospectra in Fig. 2
corresponds to transient growth in the Loewner systems

Figure 4 shows σ (1,1)
ε (Ls, L) for six configurations of the interpolation points.

Plots (a) and (b) use the points {−10.25,−9.75,−9.25, . . . ,−1.25,−0.75}; in
plot (a) the left and right points interleave, suggesting slower decay of the singular
values of L, as discussed in Sect. 2.1; in plot (b) the left and right points are separated,
leading to faster decayof the singular values of L and considerably larger pseudospec-
tra. (The Beckermann–Townsend bound [3, Corollary 4.2] applies to this case.)
Plot (c) further separates the left and right points, giving even larger pseudospectra. In
plots (d) and (f), complex interpolation points {−5 ± 0.5i,−5 ± 1.0i, . . . ,−5 ± 5i}
are mostly interleaved (d) (keeping conjugate pairs together) and separated (f): the
latter significantly enlarges the pseudospectra. Plot (f) uses the same relative arrange-
ment that gave such nice results in plot (a) (the singular value bound (3) is the same
for (a) and (e)), but their locations relative to the poles of the original system differ.
The pseudospectra are now much larger, showing that a large upper bound in (3) is
not alone enough to guarantee small pseudospectra. (Indeed, the pseudospectra are
so large in (e) and (f) that the plots are dominated by numerical artifacts of comput-
ing ‖(zL − Ls)

−1‖.) Pseudospectra reveal the great influence interpolation point
location and partition can have on the stability of the realized pencils.

Pseudospectra also give insight into the consequences of inexact measurement
data. (For a recent study of how noisy data affects the recovered transfer function,
see [6].) Consider the following experiment. Take the scenario in Fig. 4a, the most
robust of these examples. Subject each right and left measurement {w1, . . . , w�} ⊂ C
and {v1, . . . , vν} ⊂ C to random complex noise of magnitude 10−1, then build the
Loewner pencil ẑL − ̂Ls from this noisy data. How do the badly polluted measure-
ments affect the computed eigenvalues? Figure5 shows the results of 1,000 random
trials, which can depart from the true matrices significantly:

3.06 ≤ ‖̂Ls − Ls‖ ≤ 5.88, 0.49 ≤ ‖̂L − L‖ ≤ 0.63.
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Fig. 4 Pseudospectra σ
(1,1)
ε (Ls , L) for six Loewner realizations of a SISO system of order n =

10 with poles σ(A) = {−1,−2, . . . ,−10}. Black dots show computed eigenvalues of the pencil
zL − Ls (which should agree with σ(A), but a few are off axis in plot (e)); blue squares show the
right interpolation points {λi }; red diamonds show the left points {μ j }

Despite these large perturbations, the recovered eigenvalues are remarkably accurate:
in 99.99% of cases, the eigenvalues have absolute accuracy of at least 10−2, indeed
more accurate than the measurements themselves. The pseudospectra in Fig.4a sug-
gest good robustness (though the pseudospectral level curves are pessimistic by one
or two orders of magnitude). Contrast this with the complex interleaved interpolation
points used in Fig. 4d. Now we only perturb the data by a small amount, 5 · 10−9, for
which the perturbed Loewner matrices (over 1,000 trials) satisfy

1.52 · 10−7 ≤ ‖̂Ls − Ls‖ ≤ 2.03 · 10−7, 2.57 · 10−8 ≤ ‖̂L − L‖ ≤ 3.14 · 10−8.
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Fig. 5 Eigenvalues of the perturbed Loewner pencil ̂Ls − ẑL (gray dots), constructed from mea-
surements that have been perturbed by random complex noise of magnitude 10−1 (left) and 5 · 10−9

(right) (1,000 trials). As the pseudospectra in Fig. 4a, d indicate, the interleaved interpolation points
on the left are remarkably stable, while the similarly interleaved complex interpolation points on
the right give a Loewner pencil that is highly sensitive to small changes in the data

With this mere hint of noise, the eigenvalues of the recovered system erupt: only
36.73% of the eigenvalues are correct to two digits. (Curiously, −4 and −5 are
always computed correctly, while −8, −9, and −10 are never computed correctly.)
The pseudospectra indicate that the leftmost eigenvalues aremore sensitive, and again
hint at the effect of the perturbation (though off by roughly an order of magnitude
in ε).3 Measurements of real systems (or even numerical simulations of nontrivial
systems) are unlikely to produce such high accuracy; pseudospectra can reveal the
virtue or folly of a given interpolation point configuration.

In these simple experiments, pseudospectra have been most helpful for indicating
the sensitivity of eigenvalueswhen the left and right interpolation points are favorably
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Fig. 6 Eigenvalues of the perturbed Loewner pencil ̂Ls − ẑL (gray dots), constructed from mea-
surements that have been perturbed by random complex noise of magnitude 10−10 (10,000 trials).
As suggested by the pseudospectra plots, the interleaved interpolation points (left) are more robust
to perturbations than the separated points (right), though the difference is not as acute as suggested
by Fig. 4d, f. For example, in these 10,000 trials, the least stable pole (−9) is computed accurately
(absolute error less than 0.01) in 10.97% of trials on the left, and 0.29% on the right

3 One might also consider the ε = 1 level curve of σ
(γ
,δ
)
ε (Ls , L) for γ
 = max{‖Ls − ̂Ls‖} and

δ
 = max{‖L − ̂L‖}.
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partitioned (e.g., interleaved). They seem tobe less precise at predicting the sensitivity
to noise of poor left/right partitions of the interpolation points. Figure6 gives an
example, based on the two partitions of the same interpolation points in Fig. 4d, f. The
pseudospectra suggest that the eigenvalues for plot (f) should bemuchmore sensitive
to noise than those for the interleaved points in plot (d). In fact, the configuration
in plot (f) appears to be only marginally less stable to noise of size 10−10, over
10,000 trials. This is a case where one could potentially glean additional insight
from structured Loewner pseudospectra.

7 Conclusion

Pseudospectra provide a tool for analyzing the stability of eigenvalues of Loewner
matrix pencils. Elementary examples show how pseudospectra can inform the selec-
tion and partition of interpolation points, and bound the eigenvalues of Loewner
pencils in the presence of noisy data. Using a different approach to pseudospectra,
we showed that while the realized Loewner pencil matches the poles of the original
system, it need not replicate transient dynamics of Eẋ(t) = Ax(t); pseudospectra
can reveal potential transient growth, which varies with the interpolation points.

In this initial study we have intentionally used simple examples involving small,
symmetric A and E = I. Realistic examples, e.g., with complex poles, nonnormal
A, singularE, multiple inputs and outputs, and rank-deficient Loewner matrices, will
add additional complexity. Moreover, we have only sought to realize a system whose
order is known; we have not addressed pseudospectra of the reduced pencils (7) in
the context of data-driven model reduction.

Structured Loewner pseudospectra provide another avenue for future study. Struc-
tured matrix pencil pseudospectra have not been much investigated, especially with
Loewner structure. Rump’s results for standard pseudospectra [25] suggest the fol-
lowing problem; its positive resolution would imply that the Loewner pseudospec-
trum σ

(γ,δ)
ε (Ls, L) matches the structured Loewner matrix pseudospectrum.

Given any ε, γ, δ > 0, Loewner matrix L and associated shifted Loewner matrix
Ls , suppose z ∈ σ

(γ,δ)
ε (Ls, L). Does there exist some Loewner matrix ̂L and associ-

ated shifted Loewner matrix ̂Ls such that z ∈ σ(̂Ls,̂L) and

‖̂Ls − Ls‖ < εγ, ‖̂L − L‖ < εδ ?

Acknowledgements This work was motivated by a question posed by Thanos Antoulas, who we
thank not only for suggesting this investigation, but also for his many profound contributions to
systems theory and his inspiring teaching and mentorship. We also thank Serkan Gugercin and an
anonymous referee for many helpful comments. (Mark Embree was supported by the U.S. National
Science Foundation under grant DMS-1720257.)
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Appendix

We provide a MATLAB implementation that computes the inverse iteration vectors
u in (12) in only O(n2) operations by exploiting the Cauchy-like rank displacement
structure of the Loewner pencil, as shown in (13). Namely, we start from the general
O(n3) MATLAB code from [29, p. 373] and modify it to account for the Loewner
structure, and hence achieve O(n2) efficiency. This code computes ‖(zL − Ls)

−1‖
for a fixed z. To compute pseudospectra, one applies this algorithm on a grid of z
values. In that case, the O((m + p)n2) structured LU factorization in the first line
need only be computed once for all z values (just as the standard algorithm computes
an O(n3) simultaneous triangularization using the QZ algorithm once for all z).

[L1,U1,piv1] = LUdispPiv(mu,lambda,[V’ L’],[R.’ -W.’]);

L1t = L1’; U1t = U1’;

z = 1./(z-lambda); Upz = z.*(U1\(L1\V(:,piv1)’));

[L2,U2,piv2] = lu(eye(m)-R*Upz,’vector’); R2 = R(piv2,:);

L2t = L2’; U2t = U2’; R2t = R2’; Upzt = Upz’;

applyTheta = @(x) x+Upz*(U2\(L2\(R2*x)));

applyThetaTranspose = @(x) x+R2t*(L2t\(U2t\(Upzt*x)));

sigold = 0;

for it = 1:maxit

u = U1\(L1\u(piv1));

u = conj(z).*applyThetaTranspose(applyTheta(z.*u));

u(piv1) = L1t\(U1t\u);

sig = 1/norm(u);

if abs(sigold/sig-1) < 1e-2, break, end

u = sig*u; sigold = sig;

end

sigmin = sqrt(sig);

The function LUdispPiv computes the LU factorization (with partial pivoting)
of the Loewner matrix L in O((m + p)n2) operations. The Loewner matrix is not
formed explicitly; instead, the function uses the raw interpolation data λi , ri , wi

and μ j , � j , v j . The implementation details for LUdispPiv can be found in [12,
Sect. 12.1]. TheLUfactorization of I − RV∗(z) ∈ Cm×m is givenbyL2 andU2,while
the first three lines of the loop represent the computation of L−∗�(z)∗�(z)L−1u,
as defined in (13). Note the careful grouping of terms and the use of elementwise
multiplication .* to keep the total operation count at O(n2).
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A Loewner Matrix Approach to the
Identification of Linear Time-Varying
Systems

Paolo Rapisarda

Abstract We show that if enough “sufficiently informative” input-output trajecto-
ries generated by a linear, time-varying, finite-dimensional system and its dual are
given, then state trajectories corresponding to them can be computed by factorizing
a time-varying matrix directly constructed from the data. From such input-state-
output trajectories an “unfalsified” linear time-varying model can be obtained solv-
ing a system of functional equations. Our approach is particularly relevant when the
data-producing system is self-dual (e.g. if it is conservative).

Keywords Interpolation · Loewner matrices · Duality · Time-varying linear
systems

1 Introduction

It is a pleasure for me to contribute to Prof. Antoulas’ 70th birthday Festschrift.
Thanos was a member of the Reading Committee of my Ph.D. dissertation, and I
vividly recall meeting him for the first time on the occasion of my Ph.D. defence.
His personal warmth and infectious enthusiasm for research have been a pleasant
ingredient of all our interactions, and the elegance and powerful simplicity of his
work have strongly influenced me in all stages of my career.

Thepresent contribution is anhommage to someofThanos’s ownpioneering ideas.
In hiswork on rational interpolation anddatamodeling (see [1–5]) andpart of hisopus
about model-order reduction (see e.g. [6]) he introduced the concept of mirroring of
vector-exponential trajectories, and the all-important Loewner matrix. Many years
later, Thanos and I showed in [7–9] that such concepts can also be expressed in the
language of bilinear- and quadratic differential forms, and pointed out the role played
by the concept of duality of trajectories and of systems in the Loewner approach.
Such intuition makes explicit the connection between the approach to data modeling
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andmodel order reduction that I have independently pursued with various co-authors
(see [10–15]) and Thanos’s own.

With Thanos I applied Loewner and duality concepts to the modelling of two-
dimensional vector-exponential trajectories and of parametric systems (see [16–18]).
In this paper I present a further application of ideas inspired by his Loewner approach.
Building on previous work by myself and collaborators (see [19, 20]), I consider the
modelling of input-output data produced by linear, time-varying systems. In doing
this I will emphasise the essential coherence of my recent and ongoing work with
Thanos’s original idea, thus paying a modest, but hopefully fitting tribute to his
far-sighted intellect and to the strength of his intuition.

2 Problem Statement

We are given N (a fixed, “large” number) of input-output trajectories

[
uk(·)
yk(·)

]
: R → R

m+p , k = 1, . . . , N , (1)

generated by an unknown linear, time-varying state-space system

d

dt
x(·) = A(·)x(·) + B(·)u(·)
y(·) = C(·)x(·) + D(·)u(·) . (2)

In (2) the matrix functions A(·), B(·), C(·), D(·) are respectively n × n, n × m,
p × n and p × m, with analytic entries. In the following we denote the space of
j × k matrices with real analytic entries byA j×k . In the rest of this paper we assume
that the representation (2) is controllable and observable, see [25].

We are also given N input-output trajectories

[
u′
k(·)
y′
k(·)
]

: R → R
p+m , k = 1, . . . , N , (3)

of the dual system of (2), a state-space system with state variable x ′ associated with
analyticmatrix functions (A′(·), B ′(·),C ′(·), D′(·)) defining similar equations as (1),
such that the following property holds.

Definition 1 (Duality) Two linear, time-varying state-space systems are dual if there
exists a n × n matrix-function Q(·) with det Q(t) �= 0 for all t ∈ R, such that for
every pair of trajectories (x, u, y) satisfying (2) and (x ′, u′, y′) satisfying the equa-
tions defined by (A′(·), B ′(·),C ′(·), D′(·)) it holds that

u�y′ + y�u′ = d

dt

(
x�Qx ′) . (4)
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In the following we call (4) the duality relation.

Remark 1 Definition1 is analogous to the characteristic property of adjoint non-
linear system stated in Lemma 2.1 of [21]; see also [22] for the definition of this
concept in the linear, time-invariant case, and Definition 1 and Proposition 1 p. 605
of [23] for the linear, time-varying case. It is a power-conservation relation such as
that occurring in lossless systems. Consider for example the relation between the
voltage and current pairs at the ports of LC electrical circuits (where the bilinear
product on the left-hand side of (4) is electrical power), and the capacitor voltages
and inductor currents (where the bilinear product on the right-hand side of (4) is
the stored energy). Power-conservation relations are also at the core of the notion
of port-Hamiltonian system (see [24]) and the approach presented here can also be
applied to linear, time-varying, dissipative systems, provided that the bilinear form
associated with the dissipation rate is known (see [20]). In Sect. 6 of this paper we
illustrate several current and future research directions related to this aspect of our
work.

We want to identify from the data (1) and (3) an unfalsified i-s-o model for the
primal system, i.e. matrices Â(·), B̂(·), Ĉ(·), D̂(·) such that input-state-output Eq. (2)
hold for some (to be computed) state trajectories xk(·), k = 1, . . . , N and the given
(uk(·), yk(·)).

In this problem formulation it is assumed that data from both the primal system
(2) and from its dual are known. While we recognize that it is unrealistic that mea-
surements from the dual system are available, in order to emphasize the connections
with the Loewner framework we shall find it convenient to work on the problem as
stated. It is worthwhile to remark that for many classes of systems, self-duality is
either implied by energy conservation or by other physical properties, for example
those implied by port-Hamiltonicity.

3 A Loewner Matrix for Time-Varying Systems

We begin with the following fundamental result.

Proposition 1 Let t ∈ R, and let (x, u, y) and (x ′, u′, y′) be trajectories of the pri-
mal, respectively of the dual system. Assume that x(−∞) := limt→−∞ x(t) = 0 and
x ′(−∞) := limt→−∞ x ′(t) = 0; then

∫ t

−∞
u(τ )�y′(τ ) + y(τ )�u′(τ ) dτ = x(t)�Q(t)x ′(t) = x(t)′�Q(t)x(t) . (5)

Proof Integrating both sides of (4), obtain

∫ t

−∞
u(τ )�y′(τ ) + y(τ )�u′(τ ) dτ = x(t)�Q(t)x ′(t) − x(−∞)�Q(0)x ′(−∞) .
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Now apply the assumption x(−∞) = 0 = x ′(−∞). �

Definition 2 Assume that for every t ∈ R all trajectories (xk, uk, yk) and (x ′
i , u

′
i , y

′
i )

of the data (1), (3) satisfy xk(−∞) = 0 = x ′
i (−∞). The time-varying Loewner

matrix associated with the data (1), (3) is the N × N symmetric matrix function
E(·) : (−∞, t] → R

N×N defined by

[E(t)]i,k=1,...N :=
∫ t

−∞
uk(τ )�y′

i (τ ) + yk(τ )�u′
i (τ ) dτ . (6)

3.1 Relation with the Classical Loewner Matrix

In order to justify the terminology introduced in Definition2, let us consider the case
in which the data-generating system (and its dual) are time-invariant, and the primal
and dual data consists of vector-exponential trajectories:

[
u′
i (t)
y′
i (t)

]
=:
[
u′
i
y′
i

]
eμi t and

[
uk(·)
yk(·)

]
=:
[
uk
yk

]
eλk t , (7)

with u′
i , yk are p-dimensional constant real vectors, y′

i , uk are m-dimensional con-
stant real vectors, and μi , λk are positive real numbers, i, k = 1, . . . , N . The case
of complex vectors and exponentials is easily dealt with, but the notation is slightly
more involved and we do not consider it here. Note that the input-output trajectories
(7) satisfy the condition xk(−∞) = 0 = x ′

i (−∞), i, k = 1, . . . , N . In the rest of this
chapter we assume that

λk + μi �= 0 , i, k = 1, . . . , N .

Proposition 2 Assume that the data-generating system and its dual are time-
invariant, and that the data is of the form (7), with u′

i , yk ∈ R
p, y′

i , uk ∈ R
m, and

μi , λk ∈ R+, i, k = 1, . . . , N. Then

[E(t)]i,k = e(λk+μi )t
u�
k y

′
i + y�

k u
′
i

λk + μi
(8)

Proof From the definition of the data, for every k, i = 1, . . . , N it holds that

Ek,i (t) =
∫ t

−∞
eλkτu�

k y
′
i e

μi τ + eλkτ y�
k u

′
i e

μi τdτ =
∫ t

−∞
e(λk+μi )τ

(
u�
k y

′
i + y�

k u
′
i

)
dτ

= e(λk+μi )t

λk + μi
|t−∞

(
u�
k y

′
i + y�

k u
′
i

) = e(λk+μi )t
u�
k y

′
i + y�

k u
′
i

λk + μi
.
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�

Denote the transfer function of the primal system by Y (s), and let Y (s) =
N (s)D(s)−1 = P(s)−1Q(s) be respectively a right-coprime and a left-coprime fac-
torization of Y (s). The following result holds.

Proposition 3 The transfer function of the dual is

Y ′(s) := −Y (−s)� = −D(−s)−�N (−s)� = −Q(−s)�P(−s)−� .

Proof The proof follows from the material in Sect. 10 of [26], in particular from
Proposition 10.1 p. 1730. �

Observe that for t = 0 the result of Proposition2 implies that

[E(0)]i,k = u�
k y

′
i + y�

k u
′
i

λk + μi
, i, k = 1, . . . , N . (9)

Assume now that m = p = 1, i.e. the single-input, single-output case (the general
case is considered in Sect. 2.3 of [7]); then one can assume without loss of gener-
ality that uk = 1 = u′

i , i, k = 1, . . . , N . It follows that the matrix E(0) in (9) is the
Loewner matrix L associated with the interpolation data

Z = {−μi }i=1,...,N ∪ {λk}k=1,...,N and Y = {y(−μi )}i=1,...,N ∪ {y(λk}k=1,...,N ,

see p. 639 of [4].
Moreover, note that in the time-invariant case, since for each pair (i, k), i, k =

1, . . . , N the associated frequencies −μi and λk are known, the Loewner matrix (9)
and its time-varying version (8) embody the same information. Observe also that
from the result of Proposition3 it follows that the trajectories of the dual system
associated with a frequency μi can be computed by mirroring: namely, if

[
ui
yi

]
∈ C

m+p

arises from the primal transfer function evaluated at −μi , then

[
u′
i
y′
i

]
:=
[
yi
ui

]
∈ C

p+m

arises from the dual transfer function evaluated at μi . It follows that in the linear,
time-invariant case there is no need to assume that the dual trajectories are available
from measurements of the dual system, since they can be generated by mirroring.
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4 Properties of the Time-Varying Loewner Matrix

In this section we follow the structure of Sect. 3: we first establish some properties
of the time-varying Loewner matrix (6), and subsequently we show that they are
generalisations of well-known properties of the time-invariant case established by
Thanos and his collaborators.

The first result is a straightforward consequence of the definition.

Proposition 4 Let (xk, uk, yk) and (x ′
i , u

′
i , y

′
i ), i, k = 1, . . . , N be i-s-o trajectories

of the primal, respectively dual system. Assume that all trajectories (xk, uk, yk) and
(x ′

i , u
′
i , y

′
i ) satisfy the condition xk(−∞) = 0 = x ′

i (−∞), i, k = 1, . . . , N. Then for
all t ∈ R it holds that

E(t) =
⎡
⎢⎣
x ′
1(t)

�
...

x ′
N (t)�

⎤
⎥⎦

︸ ︷︷ ︸
=:X ′(t)�

Q(t)
[
x1(t) . . . xN (t)

]
︸ ︷︷ ︸

=:X (t)

. (10)

Proof The result follows in a straightforwardway fromDefinition2 and from Propo-
sition1. �

An important consequence of Proposition4 is that for “almost all choices” of
the input-output trajectories (uk, yk) and (u′

i , y
′
i ), i, k = 1, . . . , N , and “almost all”

t ∈ R the time-varying Loewner matrix has rank n, the dimension of the state space
of the primal and dual system. Before proving this result, we need to formalize the
concept of “almost all choices”; in order to do this, we use the algebraic notion of
algebraic genericity.

LetL be some linear space of finite-dimension d; then given a basis {�i }i=1,...,d for
L, every � ∈ L can be written as � =∑d

i=1 xi�i for some coefficients xi in the field
on which L is defined. A map p : L → R is a polynomial if p(�) is a polynomial
in the variables xi , i = 1, . . . , d. An algebraic variety is a subsetV of L consisting
of all zeroes of some polynomial p. A subset S ⊂ L is called generic if there is a
proper algebraic variety V � L such that S ⊃ (L \ V).

With these definitions, we can now state the following important result.

Theorem 1 Assume that N > n; then for all t ∈ R it holds generically that
rank E(t) = rank E11(t) = n.

Proof We show that rank E(t) = n; the equality rank E(t) = rank E11(t) is a
straightforward consequence of the fact that det E11(t) is one of the n × n minors of
the N × N rank n matrix E(t). This minor is generically nonzero if rankE(t) = n.

Conclude from Eq. (10) and Definition1 that

rank E(t) ≤ min
{
rank

[
x1(t) . . . xN (t)

]
, rank

[
x ′
1(t) . . . x ′

N (t)
]}

.
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We now show that generically rank
[
x1(t) . . . xN (t)

] = n; an analogous argument
yields that generically also rank

[
x ′
1(t) . . . x ′

N (t)
] = n. Using the genericity assump-

tion we will then prove the claim.
In order to show that generically rank

[
x1(t) . . . xN (t)

] = n, we prove the fol-
lowing, stronger result, which will be useful later. �

Lemma 1 Let

[
xi (·)
ui (·)

]
, i = 1, . . . , N > n + m be trajectories satisfying the state

equation in (2). Then generically for all t ∈ R it holds that

rank

[
x1(t) . . . xN (t)
u1(t) . . . uN (t)

]
= n + m

Proof To simplify the argument, we use a nonsingular transformation of the state-
space basis as in [25] to transform the Eq. (2) to a more manageable version. Denote
by X (·) a fundamental matrix solution of the free response, i.e. a matrix having full
rank almost everywhere, such that solves the matrix differential equation d

dt X (t) =
A(t)X (t) for every t ∈ R. Now let τ be a fixed, but otherwise arbitrary real number,
and denote by φ(t, τ ) the transition matrix of (2) in the interval [τ, t], i.e. φ(t, τ ) =
X (t)X (τ )−1. Apply the transformation

x(·) → φ(·, τ )−1x(·) = φ(τ, ·)x(·) =: z(·) ,

to the state variable x , and verify with straightforward manipulations that in this new
basis of the state space, the state equation in (2) becomes

d

dt
z(·) = φ(τ, ·)B(·)u(·) . (11)

We now prove that generically

rank

[
z1(t) . . . zN (t)
u1(t) . . . uN (t)

]
=
[
φ(τ, t) 0n×m

0m×n Im

] [
x1(t) . . . xN (t)
u1(t) . . . uN (t)

]
= n + m ; (12)

note that such equality implies the claim of the Lemma, since det

[
φ(τ, t) 0n×m

0m×n Im

]
�=

0.
To prove (12), we use the concept of controllability matrix of the matrix pair

(A(·), B(·)) (see p. 66 of [25]). Define the sequence of n × m matrices

P0(·) := B(·)
Pk+1(·) := −A(·)Pk(·) + d

dt
(Pk(·)) ;

and from such sequence define the n × n · m controllabilitymatrix of the matrix pair
(A(·), B(·)) by
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C (A(·), B(·)) := [P0(·) P1(·) . . . Pn−1(·)
]

. (13)

It is straightforward to verify that from (11) it follows that

dkz

dtk
(·) = φ(τ, ·) [P0(·) . . . Pk−1(·)

]
⎡
⎢⎣

dk−1u
dtk−1 (·)

...

u(·)

⎤
⎥⎦ ,

k = 1, . . .. The Wronskian matrix of col(z(·), u(·)) (see p. 67 of [25]) is defined by

W(z(·), u(·)) :=
[
z(·) dz

dt (·) . . . dn+m−1z
dtn+m−1 (·)

u(·) d
dt u(·) . . . dn+m−1u

dtn+m−1 (·)

]
.

Note that

W(z(·), u(·)) (14)

=
[
z(·) φ(τ, ·)P0(·) φ(τ, ·)P1(·) . . . φ(τ, ·)Pn+m−1(·)
0 In 0 . . . 0

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

In 0 0 . . . 0

0 u(·) du
dt (·) . . . dn+m−1u

dtn+m−1

0 0 u(·) . . . dn+m−2u
dtn+m−2

0 0 0
. . .

.

.

.

0 0 0
. . . u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since u(·) is arbitrarily chosen in the space of m-dimensional time functions, gener-
ically the second matrix on the right-hand side of (14) has full column rank at t . The
first n rows of the first matrix on the right-hand side of (14) contain as submatrix a
nonsingular transformation (via φ(τ, ·)) of the controllability matrix (13), which has
full row rank n on a set of points everywhere dense on any finite interval of R (see
Theorem 4 p. 69 of [25]). Consequently, it has generically full row rank.

From this argument it follows that for every i = 1, . . . , n, at every t ∈ R generi-
cally theWronskianW(col(zi (t), ui (t))) has rank n + m. It follows that generically

the Wronskian of

[
z1(t) . . . zN (t)
u1(t) . . . uN (t)

]
also has rank n + m. �

We resume the proof of Theorem1. Lemma1 implies that the trajectories zi (·)
are linearly independent (see Lemma 3 p. 68 of [25]). Since they are obtained from
a nonsingular transformation of the state trajectories xi (·) of the primal system, it
follows that generically

rank
[
x1(t) . . . xN (t)

] = n .

A result analogous to that of Lemma1 can be established for the matrix constructed
from the state and input trajectories of the dual system, namely that generically
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rank

[
x ′
1(t) . . . x ′

N (t)
u′
1(t) . . . u′

N (t)

]
= n + m ,

from which it follows that generically

rank
[
x ′
1(t) . . . x ′

N (t)
] = n .

Now observe that rank E(t) < n if and only if

im
([
x ′
1(t) . . . x ′

N (t)
])⊥ ∩ im

([
x1(t) . . . xN (t)

]) �= {0} ,

which is generically satisfied. Consequently, generically also rank E(t) = n, as was
to be proved. �

The following result is a straightforward consequence of Propositions4 and 1.

Corollary 1 Define

U (t) := [u1(t) . . . uN (t)
]

, Y (t) := [y1(t) . . . yN (t)
]

U ′(t) := [u′
1(t) . . . u′

N (t)
]

, Y ′(t) := [y′
1(t) . . . y′

N (t)
]

.

Then E(·) satisfies the matrix differential equation
d

dt
E(·) = [U ′(·)� Y ′(·)�] Q(·)

[
U (·)�
Y (·)�

]
(15)

Proof The claim is a straightforward consequence of Propositions4 and 1. �

The result of Proposition4 and Theorem1 can be used to compute an unfalsified
first-order linear, time-varying model for the primal and dual data.

Proposition 5 The trajectories

⎡
⎣xkuk
yk

⎤
⎦, k = 1, . . . , N satisfy the first-order equa-

tions

K (t)
d

dt
X (t) + F(t)X (t) + G(t)

[
Y (t)
U (t)

]
= 0 , (16)

where

K (·) := X ′(·)�Q(·)
F(·) :=

(
d

dt
X ′(·)

)�
Q(·) + X ′(·)�

(
d

dt
Q(·)

)

G(·) := [−U ′(t)� −Y ′(t)�
]

.
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Moreover, generically for all t ∈ R the matrix K (t) = X ′(t)�Q(t) has a left inverse

K (t)†, and the trajectories

⎡
⎣xkuk
yk

⎤
⎦, k = 1, . . . , N also satisfy the equations

d

dt
X (t) = [−K (t)†F(t)

]
X (t) − K (t)†G(t)

[
Y (t)
U (t)

]
.

Proof Equation (16) follows by differentiating the left-hand side of the Eq. (15),
using the equality (10).

The claim on the generic existence of a left inverse for K (t) follows from the
nonsingularity of Q(t), and the fact that X ′(t) has generically full column rank
because of the dual version of Lemma1. The claim follows pre-multiplying both
sides of (16) with such left-inverse matrix. �

4.1 Relation with the Time-Invariant Case

We consider the linear, time-invariant case, with the same notation and under the
same assumptions as in Sect. 3.1, and we review the results illustrated in the linear,
time-varying case.

The result of Proposition4 follows in a straightforward way from an argument
similar to that used in Proposition 10.1 p. 1730; note that the assumption therein is
that the bases of the state-space of the primal and of the dual system are matched,
i.e. that Q(t) = In . In the time-invariant case for every k, i = 1, . . . , N there exist
constant vectors xk, x

′
i such that

xk(t) = xke
λk tand x ′

i (t) = x ′
i e

μi t ,

and consequently (10) can be written as

E(t) = diag
(
eμi t
)
i=1,...,N

⎡
⎢⎣
x ′�

1
...

x ′�
N

⎤
⎥⎦

︸ ︷︷ ︸
=:X ′(t)�

Q
[
x1 . . . xN

]
diag

(
eλk t
)
k=1,...,N︸ ︷︷ ︸

=:X (t)

. (17)

The result of Theorem1 implies, for t = 0, that generically E(0) = L has rank n; in
the classical Loewner framework this conclusion was proved in Lemma 2.1 p. 639
of [4].

The result of Proposition5 is equivalent to that of Proposition 3.1 p. 641 of [4].
Indeed, for the time-invariant case it holds that
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d

dt

(
X ′(t)�

)
= d

dt

⎛
⎜⎝ diag

(
eμi t
)
i=1,...,N

⎡
⎢⎣
x ′�

1
...

x ′�
N

⎤
⎥⎦
⎞
⎟⎠ = diag (μi )i=1,...,N︸ ︷︷ ︸

=:M

X ′(t)�

d

dt
(X (t)) = d

dt

([
x1 . . . x N

]
diag

(
eλk t
)
k=1,...,N

)
= X (t) diag (λk)k=1,...,N︸ ︷︷ ︸

=:�

,

and the “shifted Loewner matrix” equals d
dt E(t) |t=0.

5 From Loewner Matrix to State Equations

In the classical, time-invariant approach, the Loewner matrix is used to compute a
transfer-function model for the data (i.e. a rational interpolant). If L is of full rank
this can be performed directly (see e.g. Theorem 4.1 p. 642 of [4]); in the general
case, the factorization of a matrix computed from the Loewner one is necessary (see
assumption (20) p. 645 and Theorem 5.1 p. 646 of [4]). We illustrated analogous
procedures in [13–16, 18]. We now show that also in the time-varying case similar
results hold.

First, some terminology.Given E(·) : R → R
N×N ,we call E(·) = Z ′(·)�R(·)Z(·)

a rank-revealing factorisation if Z ′ : R → R
r×N , Z : R → R

r×N , R : R → R
r×r ,

with r := rank E(t) = rank Z ′(t) = rank Z(t) = rank R(t) on a set of points every-
where dense on any finite interval of R.

We now show that minimal state trajectories corresponding to given input-output
data can be computed from a rank-revealing factorisation of the Loewner matrix.

Theorem 2 Let (2) be a minimal representation of a LTV system and let (uk, yk, xk)
satisfy (2), k = 1, . . . , N. Assume that all trajectories (xk, uk, yk) and (x ′

i , u
′
i , y

′
i ) are

such that xk(−∞) = 0 = x ′
i (−∞), and define E(·) by (6). Assume that rank E(t) =

n for all t ∈ R. Define

B :=
{[

u
y

]
| ∃ x such that (2) holds

}
.

Let E(·) = Z ′(·)�R(·)Z(·) be a rank-revealing factorisation of E(·). Denote the kth
column of Z by zk; then there exists an i-s-o representation with state variable z such
that (uk, yk, zk) satisfies the equations, k = 1, . . . , N.

Proof The claim is evidently correct for the factorisation (10) of E(t) in Proposi-
tion4. Use a standard linear-algebraic argument to conclude that for every t ∈ R,
any rank-revealing factorisation E(t) = Z ′(t)�R(t)Z(t) is related to (10) by

Z(t) = T (t)X (t)and Z ′(t) = T ′(t)Z(t) ,
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where T, T ′(·) : R → R
n×n are nonsingular almost everywhere, and

T ′(t)�R(t)T (t) = R(t). This proves that the kth column zk of Z(·) is a state tra-
jectory corresponding to (uk, yk), k = 1, . . . , N . It can be verified that the i-s-o
representation (2) corresponding to such state variable is induced by the matrices

(
T (·)(A(·)T (·)−1 − d

dt

(
T (·)−1) , T (·)B(·),C(·)T (·)−1, D(·)

)
.

�

In the time-invariant case, matrix factorization can be performed with standard
numerical algorithms (e.g. the singular value decomposition); however, in the time-
varying case, the factorization of a matrix function of dimension N is necessary.
This is a non-trivial problem with considerable implications of a theoretical and
computational nature. We now show that in the generic case, the result of Theorem1
can be used to achieve a factorization of E(·) by inverting its (1, 1) n × n submatrix.
As in Theorem1, we partition the Loewner matrix as

E(t) =
[
E11(t) E12(t)
E21(t) E22(t)

]
, (18)

where E11(t) is n × n, with n = rank(E(t)), E12(t) is n × (N − n), E21(t) is (N −
n) × n, and E22(t) is (N − n) × (N − n). The following result holds.

Theorem 3 Let E(·) be partitioned as in (18); generically at t the following equation
holds:

E(t) =
[

In
E21(t)E11(t)−1

]
E11(t)

[
In E11(t)−1E12(t)

]
. (19)

Proof The fact that E11(t) is generically nonsingular is stated in Theorem1; conse-
quently, the claim follows if we prove that E22(t) = E21(t)E11(t)−1E12(t). Consider
the equality

[
In 0n×N

−E21(t)−1E11(t) IN−n

] [
E11(t) E12(t)
E21(t) E22(t)

] [
In −E11(t)−1E12(t)

0(N−n) × n IN−n

]

=
[

E11(t) 0n×n

0(N−n)×n E22(t) − E21(t)E11(t)−1E12(t)

]
.

Now apply Theorem1 to conclude that since the matrix on the right-hand side of the
equation has rank n = rank(E11(t)), the (2, 2)-block must be zero. �

From Theorems2 and 3 it follows that the kth column of any of the two right-
factors [

E11(·) E12(·)
]
or
[
In E11(·)−1E12(·)

]
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of E(·) can be used to associate a state trajectory to the input-output data

[
uk(·)
yk(·)

]
;

without loss of generality in the following we discuss on the basis of the first choice.
The derivatives of these state trajectories are the columns of the matrix

[
d
dt E11(·) d

dt E12(·)
] ;

define also the matrices

U (·) := [u1(·) . . . uN (·)] =: [U1(·) U2(·)
]

Y (·) := [y1(·) . . . yN (·)] =: [Y1(·) Y2(·)] ,

withU1 a m × n matrix function,U2 m × (N − n) , Y1 p × n, and Y2 p × (N − n).
Theorem2 implies that matrix functions Â(·), B̂(·), Ĉ(·), D̂(·) exist such that the
following equation holds true:

[
d
dt E11(·) d

dt E12(·)
Y1(·) Y2(·)

]
=
[
Â(·) B̂(·)
Ĉ(·) D̂(·)

] [
E11(·) E12(·)
U1(·) U2(·)

]
. (20)

The following result states how such an unfalsified model can be computed.

Theorem 4 Generically for every t ∈ R there exists a right-inverse of

[
E11(t) E12(t)
U1(t) U2(t)

]
, (21)

denoted in the following by [
E11(t) E12(t)
U1(t) U2(t)

]†
.

Consequently, for every t ∈ R the values Â(t), B̂(t), Ĉ(t), D̂(t) of an unfalsified
state-space model (20) for the data (1) can be computed via the equation

[
Â(t) B̂(t)
Ĉ(t) D̂(t)

]
=
[

d
dt E11(t)

d
dt E12(t)

Y1(t) Y2(t)

] [
E11(t) E12(t)
U1(t) U2(t)

]†
.

Proof The first part of the claim follows from Theorem2 and Lemma1. The second
part follows multiplying both sides of Eq. (20) on the right by the right-inverse of
(21). �
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6 Conclusions and Ongoing Research

We have generalised the rational interpolation approach based on the classical (con-
stant) Loewner matrix, originally developed by Thanos and his collaborators, to
the case of data generated by a time-varying system, by introducing a time-varying
Loewner matrix. Time and again (see Sects. 3.1 and 4.1) we have shown that the
results we obtain in our framework are mutatis mutandis generalisations of those
already known in the classical one. The festive occasion dictated that we concentrate
on illustrating such common features, but a couple of remarks are in order, if only to
emphasise that Thanos’s intuition is more far-reaching than perhaps even he realises.

Firstly,wenote that our identification approach is conceptually analogous to that of
subspace identification (see [27, 28]); from data we first compute state trajectories,
and on the basis of those and the measurements we compute state equations. In
the rational interpolation setting the intermediate step is neither conceptually nor
computationally necessary, since the problem formulation is different. However,
an explicit computation of state trajectories through the factorisation of Loewner
matrices opens up several interesting opportunities. Since different factorizations
generate different state trajectories and consequently different bases of the state
space, “special” factorizations can be performed to achieve special (e.g. balanced)
state representations.Moreover, besides an “exact” factorization, also an approximate
one (obtained for example selecting only a lower rank approximation of a matrix, as
happens in the case of singular value decompositions) can be performed. This opens
up the possibility of performingmodel-order reduction of time-varying systems from
data (see [13] for the linear, time-invariant case).

Secondly, we emphasize that duality plays an essential role in our approach,
whether explicitly (as in the present contribution and in [7, 16, 19]) or implicitly,
where we have investigated the identification of conservative (see [13–15]) or port-
Hamiltonian systems (see [20]). In the latter cases duality arises as a consequence of
either energy conservation or power relations and their effect on the system dynam-
ics. Such properties arise in a variety of systems, for example nonlinear ones, on
which our current research is focused. Many of the current techniques to compute
nonlinear models from data seem to fall in the class of parametric, rather than system
identification methods: the structure of the model is known, and system identifica-
tion is reduced to determining numerical values for the undetermined parameters, so
that the resulting model explains the given measurements. The potential of a dual-
ity (equivalently: energy-, or power relation-based) point of view lies in providing
procedures that can identify the structure of a system.

Finally, we point out the interesting problems arising from the application of
the abstract mathematical approach outlined here to the real world. Computing
continuous-time models from sampled data while maintaining fundamental system
properties and structures is an important current area of research in system identi-
fication (see [29]). In the framework presented here, analogous issues arise in the
use of suitable numerical procedures to compute integrals, and in the factorization
of matrices of functions, that are guaranteed to produce e.g. self-dual systems.
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Linear System Matrices of Rational
Transfer Functions

Froilán Dopico, María del Carmen Quintana, and Paul Van Dooren

Abstract In this paper we derive new sufficient conditions for a linear systemmatrix

S(λ) :=
[
T (λ) −U (λ)

V (λ) W (λ)

]
,where T (λ) is assumed regular, to be strongly irreducible.

In particular, we introduce the notion of strong minimality, and the corresponding
conditions are shown to be sufficient for a polynomial system matrix to be strongly
minimal. A strongly irreducible or minimal system matrix has the same structural
elements as the rational matrix R(λ) := W (λ) + V (λ)T (λ)−1U (λ), which is also
known as the transfer function connected to the system matrix S(λ). The pole struc-
ture, zero structure and null space structure of R(λ) can be then computed with
the staircase algorithm and the QZ algorithm applied to pencils derived from S(λ).
We also show how to derive a strongly minimal system matrix from an arbitrary
linear system matrix by applying to it a reduction procedure, that only uses unitary
equivalence transformations. This implies that numerical errors performed during the
reduction procedure remain bounded. Since we use unitary transformations in both
the reduction procedure and the computation of the eigenstructure, this guarantees
that we computed the exact eigenstructure of a perturbed linear system matrix, but
where the perturbation is of the order of the machine precision.

Keywords System matrix · Strong minimality · Strong irreducibility

F. Dopico · M. del Carmen Quintana
Universidad Carlos III de Madrid, Getafe, Spain
e-mail: dopico@math.uc3m.es

M. del Carmen Quintana
e-mail: maquinta@math.uc3m.es

P. Van Dooren (B)
Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
e-mail: paul.vandooren@uclouvain.be

© Springer Nature Switzerland AG 2022
C. Beattie et al. (eds.), Realization and Model Reduction of Dynamical Systems,
https://doi.org/10.1007/978-3-030-95157-3_6

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95157-3_6&domain=pdf
mailto:dopico@math.uc3m.es
mailto:maquinta@math.uc3m.es
mailto:paul.vandooren@uclouvain.be
https://doi.org/10.1007/978-3-030-95157-3_6


96 F. Dopico et al.

1 Introduction

Already in the seventies, Rosenbrock [6] introduced the concept of a polynomial
system matrix

S(λ) :=
[
T (λ) −U (λ)

V (λ) W (λ)

]
, (1)

where T (λ) is assumed to be regular. He showed that the finite pole and zero structure
of its transfer function matrix R(λ) = W (λ) + V (λ)T (λ)−1U (λ) can be retrieved
from the polynomial matrices T (λ) and S(λ), respectively, provided it is irreducible
or minimal, meaning that the matrices

[
T (λ) −U (λ)

]
,

[
T (λ)

V (λ)

]
, (2)

have, respectively, full row and column rank for all finite λ. This was already well
known for state-space models of a proper transfer function Rp(λ), where the system
matrix takes the special form

Sp(λ) :=
[

λI − A −B
C D

]

where (A, B) is controllable and (A,C) is observable, meaning that Sp(λ) is min-

imal. That is,
[
λI − A −B

]
and

[
λI − A

C

]
both satisfy the conditions in (2),

respectively. The poles of such a proper transfer function are all finite and are the
eigenvalues of A, while the finite zeros are the finite generalized eigenvalues of the
pencil Sp(λ). The main advantage of using state-space models is that there are algo-
rithms to compute the eigenstructure using unitary transformations only. There are
also algorithms available to derive a minimal state-space model from a non-minimal
one, and these algorithms are also based on unitary transformations only [8].

When allowing generalized state space models, then all transfer functions can be
realized by a system matrix of the type

Sg(λ) :=
[

λE − A −B
C D

]
, (3)

since the matrix E is allowed to be singular. Moreover, when the pencils

[
λE − A −B

]
,

[
λE − A

C

]
, (4)

have, respectively, full row rank and column rank for all finite λ, then we retrieve the
irreducibility or minimality conditions of Rosenbrock in (2), which imply that the
finite poles of R(λ) := D + C(λE − A)−1B are the finite eigenvalues of λE − A
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and the finite zeros of R(λ) are the finite zeros of Sg(λ). It was shown in [10] thatwhen
imposing also the conditions that the pencil in (3) is strongly irreducible, meaning
that the matrices in (4) have full row rank for all finite and infinite λ, then also the
infinite pole and zero structure of R(λ) can be retrieved from the infinite structure of
λE − A and Sg(λ), respectively, and that the left and right minimal indices of R(λ)

and Sg(λ) are also the same. Moreover, a reduction procedure to derive a strongly
irreducible generalized state-space model from a reducible one was also given in [8],
and it is also based on unitary transformations only.

In [11] these results were then extended to arbitrary polynomial models, but the
procedure required irreducibility tests that were more involved. In this paper we will
show that these conditions can again be simplified (and also made more uniform)
when the system matrix is linear, i.e.,

S(λ) :=
[
A(λ) −B(λ)

C(λ) D(λ)

]
:=

[
λA1 − A0 B0 − λB1

λC1 − C0 λD1 − D0

]
. (5)

Wewill define the notion of strongly minimal polynomial systemmatrix, and wewill
prove that the strongminimality conditions imply the strong irreducibility conditions
in [11]. We remark that, although the notions of irreducible or minimal polynomial
system matrix refer to the same conditions in (2), the conditions for a polynomial
system matrix to be strongly irreducible or strongly minimal are different in general.
Wewill also show thatwhen the strongminimality conditions are not satisfied,we can
reduce the system matrix to one where they are satisfied, and this without modifying
the transfer function. Such a procedure was already derived in [9], but only for linear
system matrices that were already minimal at finite points. In this paper we thus
extend this to arbitrary linear system matrices.

In the next Section we briefly recall the background material for this paper and
introduce the basic notation. In Sect. 3 we also recall the definition of strongly irre-
ducible polynomial system matrix in [11], and we introduce the notion of strong
minimality. In addition, we establish the relation between them. We then give, in
Sect. 4, an algorithm to construct a strongly minimal linear system matrix from an
arbitrary one, and we discuss the computational aspects in Sect. 5. Finally, we end
with some numerical experiments in Sect. 6 and some concluding remarks in Sect. 7.

2 Background

We will restrict ourselves here to polynomial and rational matrices with coefficients
in the field of complex numbers C. The set of m × n polynomial matrices, denoted
by C[λ]m×n and the set of m × n rational matrices, denoted by C(λ)m×n , can both
be viewed as matrices over the field of rational functions with complex coefficients,
denoted by C(λ).

Every rational matrix can have poles and zeros and has a right and a left null space
(these can be trivial, i.e., equal to {0}). Via the local Smith-McMillan form, one can
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associate structural indices to the poles and zeros, and via the notion of minimal
polynomial bases for rational vector spaces, one can associate so called right and
left minimal indices to the right and left null spaces. We briefly recall here these
different types of indices. Since we assumed (for simplicity) that the coefficients of
the rational matrix are in C, the poles and zeros are in the same set.

Definition 1 A square rational matrix M(λ) ∈ C(λ)m×m is said to be regular at a
point λ0 ∈ C if the matrix M(λ0) is bounded (i.e., M(λ0) ∈ C

m×m) and is invertible.
This is equivalent to both rational matrices M(λ) and M(λ)−1 having a convergent
Taylor expansion around the point λ = λ0. Namely,

M(λ) := M0 + (λ − λ0)M1 + (λ − λ0)
2M2 + (λ − λ0)

3M3 + · · · ,

M(λ)−1 := M−1
0 + (λ − λ0)H1 + (λ − λ0)

2H2 + (λ − λ0)
3H3 + · · · .

If λ = ∞, M(λ) is said to be biproper or regular at infinity if the Taylor expansions
above are in terms of 1/λ instead of the factor (λ − λ0).

Definition 2 Let R(λ) be an arbitrarym × n rational matrix of normal rank r . Then
its local Smith-McMillan form at a point λ0 ∈ C is the diagonal matrix obtained
under rational left and right transformations M�(λ) and Mr (λ), that are regular at
λ0:

M�(λ)R(λ)Mr (λ) =
[
diag((λ − λ0)

d1 , . . . , (λ − λ0)
dr ) 0

0 0(m−r)×(n−r)

]
, (6)

where d1 ≤ d2 ≤ · · · ≤ dr . If λ0 = ∞, the basic factor (λ − λ0) is replaced by 1
λ
and

the transformation matrices are then biproper. The latter can be viewed as a change
of variable μ = 1

λ
which transform λ0 = ∞ to μ0 = 0.

Remark 1 The normal rank of a rational matrix is the size of its largest nonidenti-
cally zero minor. The indices di are unique and are called the structural indices of
R(λ) at λ0. In particular, the strictly positive indices correspond to a zero at λ0, and
the strictly negative indices correspond to a pole at λ0. The zero degree is defined as
the sum of all structural indices of all zeros (infinity included), and the polar degree
is the sum of all structural indices (in absolute value) of all poles (infinity included).

Example 1 Let us consider the 2 × 2 rational matrix

R(λ) =
[
e5(λ) 0
c/λ e1(λ)

]
(7)

where e5(λ) is a monic polynomial of degree 5 and e1(λ) is a monic polynomial of
degree 1, with e5(0) �= 0 and e1(0) �= 0. If c �= 0, the only poles are 0 and infinity,
and the corresponding local Smith-McMillan forms for these two points are

λ0 = 0 : diag(λ−1, λ1), λ0 = ∞ (μ0 = 0) : diag(μ−5, μ−1),
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indicating that λ0 = 0 is a zero as well as a pole. The other finite zeros are the six
finite roots of e5(λ) and e1(λ). The polar degree and the zero degree for this example
are thus both equal to 7. When c = 0, the pole and zero at λ = 0 disappear and the
matrix is polynomial instead of rational. The polar and zero degree are then both
equal to 6.

The above definitions of pole and zero structure of a rational matrix R(λ) are those
that are commonly used in linear systems theory (see [6]) and are due to McMillan.
They describe the spectral properties of a rational matrix. But when applying them to
matrix pencils S(λ) we may wonder if they coincide with definitions of eigenvalues
and generalized eigenvalues and their multiplicities, i.e. the Kronecker structure of
S(λ) (see [3]).

Definition 3 The Kronecker canonical form of an arbitrary m × n pencil λB − A
of normal rank r is a block diagonal form obtained via invertible transformations S
and T :

S(λB − A)T = diag(LTη1 (λ), . . . , LTηm−r
(λ), λIr f − AJ , λN − Ir∞ , Lε1(λ), . . . , Lεn−r (λ))

where AJ is in Jordan form, N is nilpotent and in Jordan form, and

Lk(λ) :=
⎡
⎢⎣

λ 1
. . .

. . .

λ 1

⎤
⎥⎦

is a k × (k + 1) singular pencil. The finite eigenvalues of (λB − A) are the r f

eigenvalues of AJ and its r∞ infinite eigenvalues are the generalized eigenvalues
of λN − Ir∞ .

For this comparison, we only need to look at zeros, since a pencil has only one
pole (namely, infinity) and its multiplicity is the rank of the coefficient of λ. In other
words, its polar structure is trivial. But what about the correspondence of the zero
structure of S(λ) (in the McMillan sense) and the eigenvalue structure of S(λ) (in
the sense of Kronecker)? It turns out that for finite eigenvalues of S(λ) there is a
complete isomorphism with the zero structure of S(λ): every Jordan block of size
k at an eigenvalue λ0 in the Kronecker canonical form of S(λ) corresponds to an
elementary divisor (λ − λ0)

k in the Smith-McMillan form of S(λ). But for λ = ∞,
there is a difference. It is well known (see [10]) that a Kronecker block of size k at
λ = ∞ corresponds to an elementary divisor ( 1

λ
)(k−1) in the Smith-McMillan form.

For the point at infinity there is thus a shift of 1 in the structural indices. For this
reason we want to make a clear distinction between both index sets. Whenever we
talk about zeros, we refer to the McMillan structure, and whenever we talk about
eigenvalues, we refer to the Kronecker structure.

It is well known that every rational vector subspaceV, i.e., every subspaceV ⊆
C(λ)n over thefieldC(λ), has bases consisting entirely of polynomial vectors.Among
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them some are minimal in the following sense introduced by Forney [2]: a minimal
basis ofV is a basis ofV consisting of polynomial vectors whose sum of degrees is
minimal among all bases of V consisting of polynomial vectors. The fundamental
property [2, 5] of such bases is that the ordered list of degrees of the polynomial
vectors in any minimal basis of V is always the same. Therefore, these degrees are
an intrinsic property of the subspace V and are called the minimal indices of V.
This leads to the definition of the minimal bases and indices of a rational matrix. An
m × n rational matrix R(λ) of normal rank r smaller than m and/or n has non-trivial
left and/or right rational null-spaces, respectively, over the field C(λ):

N�(R):={
y(λ)T ∈ C(λ)1×m : y(λ)T R(λ) ≡ 0T

}
,

Nr (R):={
x(λ) ∈ C(λ)n×1 : R(λ)x(λ) ≡ 0

}
.

Rational matrices with non-trivial left and/or right null-spaces are said to be singular.
If the rational subspace N�(R) is non-trivial, it has minimal bases and minimal
indices, which are called the left minimal bases and indices of R(λ). Analogously, the
right minimal bases and indices of R(λ) are those ofNr (R), whenever this subspace
is non-trivial. Notice that an m × n rational matrix of normal rank r has m − r left
minimal indices {η1, . . . , ηm−r }, and n − r right minimal indices {ε1, . . . , εn−r }.

TheMcMillan degree δ(R) of a rationalmatrix R(λ) is the polar degree introduced
in Remark 1. The following degree sum theorem was proven in [10], and relates the
McMillan degree to the other structural elements of R(λ): to the zero degree δz(R),
to the left nullspace degree δ�(R), that is the sum of all left minimal indices, and to
the right nullspace degree δr (R), that is the sum of all right minimal indices.

Theorem 1 Let R(λ) ∈ C(λ)m×n. Then

δ(R) := δp(R) = δz(R) + δ�(R) + δr (R).

3 Strong Irreducibility and Minimality

In this section we recall the strong irreducibility conditions in [11] for polynomial
system matrices, and we introduce the notion of strong minimality. Then, we study
the relation between them for the case of linear system matrices.

Definition 4 A polynomial system matrix S(λ) as in (1) is said to be strongly con-
trollable and strongly observable, respectively, if the polynomial matrices

[
T (λ) −U (λ) 0
V (λ) W (λ) −I

]
, and

⎡
⎣ T (λ) −U (λ)

V (λ) W (λ)

0 I

⎤
⎦ , (8)

have no finite or infinite zeros. If both conditions are satisfied, S(λ) is said to be
strongly irreducible.
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Let us now consider the transfer function matrix R(λ) = W (λ) +
V (λ)T (λ)−1U (λ) of the polynomial system matrix in (1). In such a case, we also
say that the system quadruple {T (λ),U (λ), V (λ),W (λ)} realizes R(λ). Moreover,
we say that the system quadruple is strongly irreducible if the polynomial system
matrix is strongly irreducible. It was shown in [11] that the pole/zero and null space
structure of R(λ) can be retrieved from a strongly irreducible system quadruple
{T (λ),U (λ), V (λ),W (λ)} as follows.
Theorem 2 If the polynomial system matrix S(λ) in (1) is strongly irreducible, then

1. the zero structure of R(λ) at finite and infinite λ is the same as the zero structure
of S(λ) at finite and infinite λ,

2. the pole structure of R(λ) at finite λ is the same as the zero structure at λ of T (λ),
3. the pole structure of R(λ) at infinity is the same as the zero structure at infinity of

⎡
⎣ T (λ) −U (λ) 0
V (λ) W (λ) −I
0 I 0

⎤
⎦ ,

4. the left and right minimal indices of R(λ) and S(λ) are the same.

If one specializes this to the generalized state spacemodel (3) one retrieves the results
of [10], which are simpler and only involve the pencils (λE − A), (3) and (4). We
now show that the above conditions can be simplified when the system matrices
are linear as in (5). First, we present the definition of strongly minimal polynomial
system matrix.

Definition 5 Let d be the degree of the polynomial system matrix S(λ) in (1). S(λ)

is said to be strongly E-controllable and strongly E-observable, respectively, if the
polynomial matrices

[
T (λ) −U (λ)

]
, and

[
T (λ)

V (λ)

]
, (9)

have no finite or infinite1 eigenvalues, considered as polynomial matrices of grade
d. If both conditions are satisfied, S(λ) is said to be strongly minimal.

The letter E in the definition of strong E-controllability and E-observability refers
to the condition of the matrices in (9) not having eigenvalues, finite or infinite. We
prove in Proposition 1 that the strong irreducibility conditions hold if the strong
minimality conditions are satisfied. For this, we need to recall Lemma 1 of [10],
which we give here in its transposed form. Then, we prove Theorems 3 and 4, and
Proposition 1 as a corollary of them.

1 The eigenvalues at infinity of a polynomial matrix P(λ) considered as a polynomial matrix of
grade g, with g ≥ degree P(λ), are the eigenvalues at zero of revg P(λ) := λg P(1/λ) (see [4]).
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Lemma 1 The zero structure at infinity of the pencil
[
λK1 − K0 −L0

]
where

K1 has full column rank, is isomorphic to the zero structure at zero of the pencil[
K1 − μK0 −L0

]
. Moreover, if the pencil has full row normal rank, then it has no

zeros at infinity, provided the constant matrix
[
K1 −L0

]
has full row rank.

Proof The first part is proven in [10]. The second part is a direct consequence of the
first part, when filling in μ = 0. �

Theorem 3 The pencil

[
λA1 − A0 B0 − λB1 0
λC1 − C0 λD1 − D0 −I

]
, (10)

where λA1 − A0 is regular, has no zeros at infinity if the pencil

[
λA1 − A0 B0 − λB1

]
(11)

has no eigenvalues at infinity.

Proof Clearly the pencils in (10) and (11) have full row normal rank since λA1 − A0

is regular. We can thus apply the result of Lemma 1 as follows. If we use an invertible
matrix V to “compress” the columns of the coefficient of λ in the following pencil

[
λA1 − A0 B0 − λB1 0
λC1 − C0 λD1 − D0 −I

] [
V 0
0 I

]
=

[
λK1 − K0 −L0 0
λK̂1 − K̂0 −L̂0 −I

]
,

such that the matrix

[
K1

K̂1

]
has full column rank, then this pencil has no zeros at

infinity provided the constant matrix

[
K1 −L0 0
K̂1 −L̂0 −I

]
has full row rank. But if[

λA1 − A0 B0 − λB1
]
has no infinite eigenvalues, it follows that

[
A1 −B1

]
has

full row rank. And since
[
A1 −B1

]
V = [

K1 0
]
, K1 must have full row rank as

well (in fact, it is invertible). It then follows from Lemma 1 that the pencil in (10)
has no zeros at infinity. �

In the next theorem, we state without proof the transposed version of Theorem 3.

Theorem 4 The pencil
⎡
⎣λA1 − A0 B0 − λB1

λC1 − C0 λD1 − D0

0 I

⎤
⎦ ,
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where λA1 − A0 is regular, has no zeros at infinity if the pencil

[
λA1 − A0

λC1 − C0

]
(12)

has no eigenvalues at infinity.

Let us now consider a linear system matrix

L(λ) := λL1 − L0 :=
[

λA1 − A0 B0 − λB1

λC1 − C0 λD1 − D0

]
, (13)

with λA1 − A0 regular. Notice that if L(λ) is minimal (i.e., satisfies (2)) and, in
addition, satisfies the conditions in (11) and (12), then it is strongly minimal. By
Theorems 3 and 4, we have that these conditions imply strong irreducibility on
linear system matrices. We state such result in Proposition 1.

Proposition 1 A linear systemmatrix as in (13) is strongly irreducible if it is strongly
minimal.

Remark 2 Notice that conditions (11) and (12) are only sufficient, not necessary.
But they are easy to test, and also to obtain after a reduction procedure, as we show
in Sect. 4.

Theorems 3 and 4 and Proposition 1 can be extended to polynomial systemmatri-
ces. However, we do not state these results here since, in this paper, we are focusing
on linear system matrices. If we recapitulate the results of this section, we obtain the
following theorem.

Theorem 5 A linear system pencil L(λ) as in (13), realizing the transfer func-
tion R(λ) := (λD1 − D0) + (λC1 − C0)(λA1 − A0)

−1(λB1 − B0), is strongly irre-
ducible if it is strongly minimal. Moreover, if L(λ) is strongly irreducible then

1. the zero structure of R(λ) at finite and infinite λ is the same as the zero structure
of L(λ) at finite and infinite λ,

2. the left and right minimal indices of R(λ) and L(λ) are the same,
3. the finite polar structure of R(λ) is the same as the finite zero structure of λA1 −

A0, and
4. the infinite polar structure of R(λ) is the same as the infinite zero structure of the

pencil ⎡
⎣λA1 − A0 −λB1 0

λC1 λD1 −I
0 I 0

⎤
⎦ . (14)

Remark 3 It follows from this theorem and the degree sum theorem in Theorem 1
that the rank of L1 equals the McMillan degree of R(λ), and that there can be no
linear system matrix for R(λ) with a smaller rank of L1 that satisfies Theorem 5.
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It may look strange that there is such a difference in the treatment of finite and
infinite poles of R(λ) in Theorem 5, but it should be pointed out that the matrices
(B1,C1, D1) contribute to the infinite polar structure of R(λ), and not to the finite
polar structure. Notice that in (14) we have eliminated the matrices B0,C0 and D0

with strict equivalence transformations using the identity matrices as pivots.

4 Reducing to a Strongly Minimal Linear System Matrix

In this section we give an algorithm to reduce an arbitrary linear system matrix to a
strongly minimal one. Given a linear system quadruple {A(λ), B(λ),C(λ), D(λ)},
where A(λ) ∈ C(λ)d×d , B(λ) ∈ C(λ)d×n , C(λ) ∈ C(λ)m×d , D(λ) ∈ C(λ)m×n and
A(λ) is assumed to be regular, we describe first how to obtain a strongly E-
controllable quadruple {Ac(λ), Bc(λ),Cc(λ), Dc(λ)} of smaller state dimension
(d − r). For that, our reduction procedure deflates finite and infinite “uncontrollable
eigenvalues” by proceeding in three different steps. Then the reduction to a strongly
E-observable one is dual and can be obtained by mere transposition of the system
matrix and application of the first method for obtaining a strongly E-controllable
system.

Step 1: We first show that there exist unitary transformations U and V that yield
a decomposition of the type

[
U 0
0 Im

] [
A(λ) −B(λ)

C(λ) D(λ)

] [
V 0
0 In

]
=

⎡
⎣ X (λ)Ŵ11 0 X (λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

⎤
⎦ , (15)

where Ŵ11 ∈ C
r×r and W13 ∈ C

r×n are constant, and Ŵ11 is invertible. This will
allow us in step 2 to deflate the block X (λ) and construct a lower order model that is
strongly E-controllable. In order to prove this, we start from the generalized Schur
decomposition for singular pencils (see [7])

U
[
A(λ) −B(λ)

]
W ∗ =

[
X (λ) 0 0
Y (λ) Â(λ) −B̂(λ)

]
, (16)

where X (λ) ∈ C[λ]r×r is the regular part of
[
A(λ) −B(λ)

]
, Â(λ) ∈ C[λ](d−r)×(d−r),

and
[
Â(λ) −B̂(λ)

]
has no finite or infinite eigenvalues anymore. The decomposition

in (16) can be obtained by using unitary transformationsU andW. If we partitionU

as

[
U1

U2

]
, with U1 ∈ C

r×d , then

U1
[
A(λ) −B(λ)

] = [
X (λ)W11 X (λ)W12 X (λ)W13

]
,
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where W11 ∈ C
r×r , W12 ∈ C

r×(d−r) and W13 ∈ C
r×n are the corresponding subma-

trices of W . Since A(λ) is regular, X (λ)
[
W11 W12

]
must be full normal rank, and

hence
[
W11 W12

]
must be full row rank as well. Therefore, there must exist a unitary

matrix V such that
[
W11 W12

]
V = [

Ŵ11 0
]
, where Ŵ11 is invertible. Hence, we

have

[
U 0
0 Im

] [
A(λ) −B(λ)

C(λ) D(λ)

] [
V 0
0 In

]
=

⎡
⎣ X (λ)Ŵ11 0 X (λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

⎤
⎦ ,

where

W

[
V 0
0 In

]
=

⎡
⎣ Ŵ11 0 W13

Ŵ21 Ŵ22 W23

Ŵ31 Ŵ32 W33

⎤
⎦ .

Step 2: We now define E := −Ŵ−1
11 W13 and perform the following non-unitary

transformation on the pencil:

⎡
⎣ X (λ)Ŵ11 0 X (λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

⎤
⎦

⎡
⎣ Ir 0 E

0 Id−r 0
0 0 In

⎤
⎦=

⎡
⎣ X (λ)Ŵ11 0 0

Ỹ (λ) Ã(λ) Ỹ (λ)E − B̃(λ)

Z̃(λ) C̃(λ) Z̃(λ)E + D(λ)

⎤
⎦ .

We have obtained an equivalent system representation in which the (1, 1)-block,
X (λ)Ŵ11, can be deflated since it does not contribute to the transfer function. We
then obtain a smaller linear system pencil:

[
Ã(λ) Ỹ (λ)E − B̃(λ)

C̃(λ) Z̃(λ)E + D(λ)

]
,

that has the same transfer function. One can also perform this elimination by another
unitary transformation W̃ constructed to eliminate W13:

[
Ŵ11 0 W13

]
⎡
⎣ W̃11 0 W̃13

0 Id−r 0
W̃31 0 W̃33

⎤
⎦ = [

Ir 0 0
]
, (17)

implying W̃11 = Ŵ ∗
11 , W̃31 = W ∗

13, and W̃13 = −Ŵ−1
11 W13W̃33. This then yields

⎡
⎣ X (λ)Ŵ11 0 X (λ)W13

Ỹ (λ) Ã(λ) −B̃(λ)

Z̃(λ) C̃(λ) D(λ)

⎤
⎦

⎡
⎣ W̃11 0 W̃13

0 Id−r 0
W̃31 0 W̃33

⎤
⎦

=
⎡
⎣ X (λ) 0 0
Ỹ (λ)W̃11 − B̃(λ)W̃31 Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

Z̃(λ)W̃11 + D(λ)W̃31 C̃(λ) Z̃(λ)W̃13 + D(λ)W̃33

⎤
⎦ .
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Notice that the new transfer function has now changed, but only by postmultiplication
by the constant matrix W̃33, which moreover is invertible. This follows from

[
E
In

]
W̃33 =

[
W̃13

W̃33

]
,

expressing that both matrices span the null-space of the same matrix
[
Ŵ11 W13

]
and where the right hand side matrix has full rank since it has orthonormal columns.
This also implies that

[
Ã(λ) Ỹ (λ)E − B̃(λ)

C̃(λ) Z̃(λ)E + D(λ)

] [
Id−r 0
0 W̃33

]
=

[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

C̃(λ) Z̃(λ)W̃13 + D(λ)W̃33

]
,

which shows that their Schur complements are related by the constant matrix W̃33.

Step 3: Finally, we show that the submatrix

[
Ã(λ) Ỹ (λ)E − B̃(λ)

] [
Id−r 0
0 W̃33

]
= [

Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33
]
,

has no finite or infinite eigenvalues anymore. For this, we first point out that the
following product of unitary matrices has the form given below

W

[
V 0
0 In

] ⎡
⎣ W̃11 0 W̃13

0 Id−r 0
W̃31 0 W̃33

⎤
⎦ =:

⎡
⎣ Ir 0 0

0 Ṽ22 Ṽ23

0 Ṽ32 Ṽ33

⎤
⎦ =:

[
Ir 0
0 Ṽ

]

because the identity (17) implies that the first block column equals
[
Ir 0 0

]
. This

then implies the equality

[
X (λ) 0 0

Ỹ (λ)W̃11 − B̃(λ)W̃31 Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

]

=
[
X (λ) 0 0
Y (λ) Â(λ) −B̂(λ)

] [
Ir 0
0 Ṽ

]
,

which in turn implies that
[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

]
has no finite or infinite

eigenvalues. We thus have shown that the system matrix

Sc(λ) :=
[
Ac(λ) −Bc(λ)

Cc(λ) Dc(λ)

]
:=

[
Ã(λ) Ỹ (λ)W̃13 − B̃(λ)W̃33

C̃(λ) Z̃(λ)W̃13 + D(λ)W̃33

]

is now strongly E-controllable and that its transfer function Rc(λ) equals R(λ)W̃33,

where R(λ) is the transfer function of the original quadruple and W̃33 is invertible.
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We summarize the result obtained by the three-step procedure above in Theorem 6,
wherewe denote d − r by dc, to indicate that it is the size of Ac(λ) in the new strongly
E-controllable system, and r is replaced by dc, so that d = dc + dc.

Theorem 6 Let {A(λ), B(λ),C(λ), D(λ)} be a linear system quadruple, with
A(λ) ∈ C[λ]d×d regular, realizing the rational matrix R(λ) := C(λ)A(λ)−1B(λ) +
D(λ) ∈ C(λ)m×n. Then there exist unitary transformations U, V ∈ C

d×d and W̃ ∈
C

(d+n)×(d+n) such that the following identity holds

[
U 0
0 Im

][
A(λ) −B(λ)

C(λ) D(λ)

][
V 0
0 In

]
W̃ =

⎡
⎣ Xc(λ) 0 0
Yc(λ) Ac(λ) −Bc(λ)

Zc(λ) Cc(λ) Dc(λ)

⎤
⎦ ,

where W̃ is of the form W̃ :=
⎡
⎣ W̃11 0 W̃13

0 Idc 0
W̃31 0 W̃33

⎤
⎦ ∈ C

(dc+dc+n)×(dc+dc+n), dc is the

numberof (finite and infinite) eigenvalues of
[
A(λ) −B(λ)

]
,and Xc(λ) ∈ C[λ]dc×dc

is a regular pencil. Moreover,

(a) the eigenvalues of
[
A(λ) −B(λ)

]
are the eigenvalues of Xc(λ),

(b)
[
Ac(λ) −Bc(λ)

] ∈ C[λ]dc×(dc+n) has no (finite or infinite) eigenvalues,
(c) the quadruple {Ac(λ), Bc(λ),Cc(λ), Dc(λ)} is a realization of the transfer func-

tion Rc(λ) := R(λ)W̃33, with W̃33 ∈ C
n×n invertible, and

(d) if

[
A(λ)

C(λ)

]
has no finite or infinite eigenvalues, then

[
Ac(λ)

Cc(λ)

]
also has no finite

or infinite eigenvalues.

Remark 4 Notice that conditions (b) and (d) in Theorem 6 imply that the system
quadruple {Ac(λ), Bc(λ),Cc(λ), Dc(λ)} is strongly minimal.

Proof The decomposition and the three properties (a), (b) and (c) were shown in
the discussion above. The only part that remains to be proven is property (d). This
follows from the identity (15), which yields

[
U 0
0 Im

] [
A(λ)

C(λ)

]
V =

⎡
⎣ X (λ)Ŵ11 0

Ỹ (λ) Ac(λ)

Z̃(λ) Cc(λ)

⎤
⎦ .

This clearly implies that if

[
A(λ)

C(λ)

]
has full rank for all λ (including infinity), then

so does

[
Ac(λ)

Cc(λ)

]
. �

We state below a dual theorem that constructs, from an arbitrary linear system
quadruple {A(λ), B(λ),C(λ), D(λ)}, a subsystem {Ao(λ), Bo(λ),Co(λ), Do(λ)}
where

[
Ao(λ)

Co(λ)

]
has no finite or infinite eigenvalues. Its proof is obtained by applying
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the previous theorem on the transposed system {AT (λ),CT (λ), BT (λ), DT (λ)} and
then transposing back the result.

Theorem 7 Let {A(λ), B(λ),C(λ), D(λ)} be a linear system quadruple, with
A(λ) ∈ C[λ]d×d regular, realizing the rational matrix R(λ) := C(λ)A(λ)−1B(λ) +
D(λ) ∈ C(λ)m×n. Then there exist unitary transformations U, V ∈ C

d×d and W̃ ∈
C

(d+m)×(d+m) such that the following identity holds

W̃

[
U 0
0 Im

][
A(λ) −B(λ)

C(λ) D(λ)

][
V 0
0 In

]
=

⎡
⎣ Xo(λ) Yo(λ) Zo(λ)

0 Ao(λ) −Bo(λ)

0 Co(λ) Do(λ)

⎤
⎦ ,

where W̃ is of the form W̃ :=
⎡
⎣ W̃11 0 W̃13

0 Ido 0
W̃31 0 W̃33

⎤
⎦ ∈ C

(do+do+m)×(do+do+m), do is the

number of (finite and infinite) eigenvalues of

[
A(λ)

C(λ)

]
, and Xo(λ) ∈ C[λ]do×do is a

regular pencil. Moreover,

(a) the eigenvalues of

[
A(λ)

C(λ)

]
are the eigenvalues of Xo(λ),

(b)

[
Ao(λ)

Co(λ)

]
∈ C[λ](do+m)×do has no (finite or infinite) eigenvalues,

(c) the quadruple {Ao(λ), Bo(λ),Co(λ), Do(λ)} is a realization of the transfer func-
tion Ro(λ) := W̃33R(λ), with W̃33 ∈ C

m×m invertible, and
(d) if

[
A(λ) −B(λ)

]
has no finite or infinite eigenvalues then

[
Ao(λ) −Bo(λ)

]
also has no finite or infinite eigenvalues.

In order to extract from the system quadruple {A(λ), B(λ),C(λ), D(λ)} a sub-
system {Aco(λ), Bco(λ),Cco(λ), Dco(λ)} that is both strongly E-controllable and E-
observable (and hence also strongly minimal), we only need to apply the above two
theorems one after the other. The resulting subsystem would then be a realization
of the transfer function Rco = Cco(λ)Aco(λ)−1Bco(λ) + Dco(λ) = W�R(λ)Wr ∈
C(λ)m×n . Since the transfer function was changed only by left and right transforma-
tions that are constant and invertible, the left and right nullspace will be transformed
by these invertible transformations, but their minimal indices will be unchanged.

5 Computational Aspects

In this section we give a more “algorithmic” description of the procedure described
in Sect. 4 to reduce a given system quadruple {A(λ), B(λ),C(λ), D(λ)} to a strongly
E-controllable quadruple {Ac(λ), Bc(λ),Cc(λ), Dc(λ)} of smaller size. We describe
the essence of the three steps that were discussed in that section.
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Step 1 : Compute the staircase reduction of the submatrix
[
A(λ) −B(λ)

]

U
[
A(λ) −B(λ)

]
W ∗ =

[
X (λ) 0 0
Y (λ) Â(λ) −B̂(λ)

]
.

Step 2 : Compute the unitary matrices V and W̃ to compress the first block row ofW

[
W11 W12 W13

] [
V 0
0 In

] ⎡
⎣ W̃11 0 W̃13

0 Id−r 0
W̃31 0 W̃33

⎤
⎦ = [

Ir 0 0
]
,

where V does the compression
[
W11 W12

]
V = [

W̃ ∗
11 0

]
of the first two blocks and

W̃ does the further reduction of the first block row to
[
Ir 0 0

]
.

Step 3 : Display the uncontrollable part X (λ) using the transformationsU , V and W̃

[
U 0
0 Im

] [
A(λ) −B(λ)

C(λ) D(λ)

] [
V 0
0 In

]
W̃ =

⎡
⎣ Xc(λ) 0 0

× Ac(λ) −Bc(λ)

× Cc(λ) Dc(λ)

⎤
⎦ ,

where we have used the notations introduced in Sect. 4, and the resulting × entries
are of no interest because they do not contribute to the transfer function Rc(λ) :=
Cc(λ)Ac(λ)−1Bc(λ) + Dc(λ).

The computational complexity of these three steps is cubic in the dimensions of
the matrices that are involved, provided that the staircase algorithm is implemented
in an efficient manner [1]. But it is also important to point out that the reduction
procedure to extract a strongly minimal linear system matrix from an arbitrary one,
can be done with unitary transformations only, and that only one staircase reduction
is needed when one knows that the pencil

[
A(λ) −B(λ)

]
has normal rank equal

to its number of rows. Indeed, this pencil then does not have any left null space or
left minimal indices and only the regular part has to be separated from the right null
space structure. This can be obtained by performing one staircase reduction on the
rotated pencil

[
Ã(μ) −B̃(μ)

]
, where the coefficient matrices

[
Ã0

Ã1

]
=

[
cI s I

−s I cI

] [
A0

A1

]
,

[
B̃0

B̃1

]
=

[
cI s I

−s I cI

] [
B0

B1

]
, c2 + s2 = 1

correspond to a change of variable λ = (cμ − s)/(sμ + c). If one now chooses the
rotation such that the rotated pencil has no eigenvalues atμ = ∞, then only the finite
spectrum has to be separated from the right minimal indices, which can be done with
one staircase reduction [7].
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6 Numerical Results

We illustrate the results of this paper with a polynomial example and a rational one.

Example 2 We consider the 2 × 2 polynomial matrix P(λ) = diag(e1(λ), e5(λ)),
where e5(λ) is a polynomial of degree 5 with coefficients [9.6367e −
01, −5.4026e − 07, 2.6333e − 01, −1.1101e − 04, −2.9955e −
04, 4.4650e − 02], ordered by descending powers of λ, and e1(λ) is a poly-
nomial of degree 1 with coefficients [−2.1886e − 03, −1.0000e + 00], that were
randomly chosen. Expanding this fifth order polynomial matrix as

P(λ) = P0 + P1λ + · · · + P5λ
5,

a linear system matrix SP(λ) of P(λ) is given by the following 10 × 10 pencil:

SP(λ) =

⎡
⎢⎢⎢⎢⎣

I2 −λI2 P1
I2 −λI2 P2

I2 −λI2 P3
I2 P4 + λP5

−λI2 P0

⎤
⎥⎥⎥⎥⎦ .

The six finite Smith zeros of P(λ) are clearly those of the scalar polynomials e1(λ)

and e5(λ). These are also the finite zeros of SP(λ), since SP(λ) is minimal. However,
SP(λ) is not strongly minimal if P5 is singular and, in fact, it has 4 eigenvalues at
infinity (in the sense of [4]).But in theMcMillan sense, P(λ)hasno infinite zeros. The
deflation procedure that we derived in this paper precisely gets rid of the extraneous
infinite eigenvalues of SP(λ). The numerical tests show that the sensitivity of the
true McMillan zeros also can benefit from this.

In this example we compare the roots computed by four different methods:

1. computing the roots of the scalar polynomials and appending four ∞ roots,
2. computing the generalized eigenvalues of SP(λ),
3. computing the roots of QSP(λ)Z for random orthogonal matrices Q and Z ,
4. computing the roots of the minimal pencil obtained by our method.

The first column are the so-called “correct” eigenvalues λi , corresponding to the
first method, the next three columns are the corresponding errors δ

(k)
i := |λi − λ̂

(k)
i |,

k = 2, 3, 4, of the above threemethods.2 The extraneous eigenvalues that are deflated
in our approach are put between brackets (Table 1).

We notice that for the largest finite eigenvalue of the order of 102 the QZ algorithm
applied to SP(λ) gets 14 digits of relative accuracy but, when deflating the four
uncontrollable eigenvalues at ∞, our method recovers a relative accuracy of 16
digits.

2 An error δ(k)
i is NaNwhen it is the indeterminate form Inf − Inf. However, some of the eigenvalues

at ∞ are computed as a large but finite number and, then, the corresponding error is Inf.
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Table 1 The correct generalized λi and the corresponding accuracies δki for the three different
calculations

λi δ
(2)
i δ

(3)
i δ

(4)
i

−4.5811e-01 2.7756e-16 4.4409e-16 1.1102e-16

3.5076e-01 + 3.5785e-01i 9.5020e-16 1.1102e-16 4.0030e-16

3.5076e-01 − 3.5785e-01i 9.5020e-16 1.1102e-16 4.0030e-16

−1.2170e-01 + 6.2287e − 01i 6.7589e-16 7.8945e-16 2.2248e-16

−1.2170e-01 − 6.2287e-01i 6.7589e-16 7.8945e-16 2.2248e-16

−4.5691e+02 2.9559e-12 2.7285e-12 5.6843e-14

Inf NaN NaN (Inf)

Inf NaN NaN (Inf)

Inf NaN NaN (Inf)

Inf NaN NaN (Inf)

Example 3 The second example is the rational matrix R(λ) in (7) with c = 1.

R(λ) =
[
e5(λ) 0
1/λ e1(λ)

]
= P0 + P1λ + · · · + P5λ

5 +
[

0 0
1/λ 0

]
,

by using the notation of the example above. In this case, e5(λ) has the
row vector [4.7865e − 02, 1.4279e − 04, 2.4361e − 03, −1.5336e −
02, −9.9155e − 01, 1.1948e − 01] as coefficients, and e1(λ) has the row
vector [6.5250e − 03, 9.9997e − 01]. We consider the 12 × 12 linear system
matrix

SR(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

λI2 − A −B
I2 −λI2 P1

I2 −λI2 P2
I2 −λI2 P3

I2 P4 + λP5
C −λI2 P0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

A =
[
0 0
1 0

]
, B =

[
0 0
1 0

]
C =

[
0 0
0 1

]

is a non-minimal realization of the strictly proper rational function 1/λ. In fact,
the matrix A in the realization triple (A, B,C) has two eigenvalues at λ = 0, of
which one is uncontrollable since 1/λ only has a pole at 0 of order 1. This is an
artificial example since we could have realized the strictly proper part by using
a minimal triple (A, B,C) by removing the uncontrollable eigenvalue, but this is
precisely what our reduction procedure does simultaneously for finite and infinite
uncontrollable eigenvalues. The quantities given in the following table are defined
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Table 2 The correct generalized λi and the corresponding accuracies δki for the three different
calculations

λi δ
(2)
i δ

(3)
i δ

(4)
i

0 0 8.1752e-09 (4.5874e-16)

0 3.6752e-18 8.1752e-09 5.3729e-16

1.2028e-01 1.8041e-16 9.7145e-17 9.7145e-17

2.1135e+00 1.7764e-15 2.6645e-15 1.3323e-15

−2.1404e+00 1.7764e-15 2.2204e-15 8.8818e-16

−4.8180e-02 + 2.1412e+00i 2.3216e-15 1.7990e-15 4.0614e-15

−4.8180e-02 − 2.1412e+00i 2.3216e-15 1.7990e-15 4.0614e-15

−1.5325e+02 2.5580e-13 1.5321e-07 5.6843e-14

Inf NaN Inf (Inf)

Inf NaN Inf (Inf)

Inf NaN NaN (NaN)

Inf NaN NaN (NaN)

as in the previous example, except that we added two roots at 0 corresponding to the
“exact” eigenvalues (Table 2).

In this example the QZ algorithm applied to SR(λ) recovers well all generalized
eigenvalues. When applying the QZ algorithm to an orthogonally equivalent pencil
QSR(λ)Z , the Jordan block at 0 gets perturbed to two roots of the order of the
square root of the machine precision, which can be expected. But when deflating the
uncontrollable eigenvalue at 0, this Jordan block is reduced to a single eigenvalue
and part of the accuracy gets restored.

These two examples show that deflating uncontrollable eigenvalues may improve
the sensitivity of the remaining eigenvalues which may improve the accuracy of their
computation.

7 Conclusion

In this paper we looked at quadruple realizations {A(λ), B(λ),C(λ), D(λ)} for a
given rational transfer function R(λ) = C(λ)A(λ)−1B(λ) + D(λ), where the matri-
ces A(λ), B(λ),C(λ) and D(λ) are pencils, and where A(λ) is assumed to be reg-
ular. We showed that under certain minimality assumptions on this quadruple, the
poles, zeros and left and right null space structure of the rational matrix R(λ) can
be recovered from the generalized eigenstructure of two block pencils constructed
from the quadruple. We also showed how to obtain such a minimal quadruple from
a non-minimal one, by applying a reduction procedure that is based on the staircase
algorithm. These results extend those previously obtained for generalized state space
systems and polynomial matrices.
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systems with strong nonlinearities such as exponent and high-order polynomials.
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systems. To solve themodel order reduction problem, a notion of generalized transfer
functions and theH2 norm are first discussed. A Volterra series interpolation scheme
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1 Introduction

Inmany applications of systems and control including twin rotor system [27], contin-
uous stirred tank reactors [13], nonlinear dynamical systems are often approximated
by quasi-linear parameter varying (LPV) systems for controller synthesis. However,
the nature of these systems is nonlinear. From the modeling point of view, directly
considering the nonlinear dynamics is more reasonable and also enables us to reduce
the complexity of these systems. By making polynomial reformulations of the non-
linearities [23] and augmenting the state space, many nonlinear dynamical systems
such as the nonlinear transmission line circuit [23], the FitzHugh-Nagumo model
[11] and the spring-mass-damper system [25] with a duffing spring, can be brought
into the quadratic-bilinear (QB) dynamical system form

�:
{
ẋ(t) = Ax(t) + H(x(t) ⊗ x(t)) + ∑ni

q=1 Nquq(t)x(t) + Bu(t),
y(t) = Cx(t), x(t0) = x0.

(1)

where x(t) ∈ R
n is the state, u(t) = (

u1(t), . . . , uni (t)
)� ∈ R

ni is the input, y(t) ∈
R

no is the output and ⊗ denotes Kronecker product. The real-valued matrices
A, B, H, Nq and C are of compatible dimensions. The sparse matrix H ∈ R

n×n2

is called the Hessian matrix and usually, by construction, is symmetric, which, in
this context, means that for all vectors v, u ∈ R

n , we have

H(v ⊗ u) = H(u ⊗ v). (2)

If H is not symmetric, it can be symmetrized by the method proposed in [4]. The
model order reduction problem is to find another QB system

�̂ :
{ ˙̂x(t) = Âx̂(t) + Ĥ(x̂(t) ⊗ x̂(t)) + ∑ni

q=1 N̂quq(t)x̂(t) + B̂u(t),
ŷ(t) = Ĉ x̂(t), x̂(t0) = x̂0,

(3)

with state space dimension r � n meanwhile the system response ŷ(t) is close
enough to y(t) in (1).

In recent years, model order reduction attracts lots of attention [2], especially
for nonlinear systems, see, for example [3, 8, 21]. In [23], the author proposed a
method to reformulate nonlinear vector fields by quadratic nonlinearities. Then by
applying the variational equation approach in [28], the generalized transfer functions
based on Laplace transform of Volterra kernels can be obtained. A nonlinear Krylov
subspace method is then used to construct Galerkin projections to reduce the system.
The problem was again addressed in [1, 4]. Nonlinear Krylov subspace methods are
considered to construct Petrov-Galerkin projections for model order reduction. The
Petrov-Galerkin projection method is more accurate, but typically does not preserve
the stability properties of the system. See, for example, [17, 24]. In [10], it is shown
that if the first two transfer functions and the quadratic part of the third transfer
function are of interest, rational Krylov method, such as the rational interpolation
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[22] for single-input single-output (SISO) systems and the tangential interpolation
[20] for multiple-input multiple-output (MIMO) systems, are adequate to reduce the
system. This offers an interesting computationally attractive alternative to reduce
QB systems. From controllability and observability energy point of view [5, 18, 29],
balanced truncation and its truncated version were proposed in [6]. In [8], again the
first two transfer functions and the quadratic part of the third generalized transfer
function are considered and a quasi-optimal H2 norm approximation method was
proposed.

In this paper, we assume zero initial condition, i.e., x0 = 0 in (1) and then gen-
eralize the work of [15] for bilinear dynamical systems to reduce QB systems. An
interpolation scheme is proposed to interpolate the zeroth and first order moments.
With the help of the H2 norm defined for QB systems, the proposed interpolation
scheme can be modified to approximate the system so as to satisfy the necessary
conditions forH2-optimal approximants. Both the interpolation and theH2 optimal
approximation are achieved by solving the generalized QB Sylvester equations.

We concentrate the discussion with SISO QB systems. One can see that the pro-
posed method can be extended to MIMO systems by considering the tangential
interpolation approach [20]. For details and numerical examples, we refer to [9].
Organization of this paper is as follows. In Sect. 2, the generalized transfer functions
of the original QB system and its adjoint are presented. So is the definition of the
H2 norm of a QB system. This section is closed by discussing the pole-residue rep-
resentation of the generalized transfer functions and an alternative to express theH2

norm. Section3 beginswith the discussion on themoments definition and theVolterra
series interpolation of QB systems. Then it is shown thatH2 optimal approximation
of a QB system can be achieved by the proposed interpolation scheme. In Sect. 4, a
numerical case study illustrates the performance of the proposed methods. Section5
concludes the paper.

2 Generalized Transfer Functions and theH2 Norm

Consider a SISO QB system � given in (1), i.e., with ni = no = 1. By rewriting the
quadratic term H(x ⊗ x) as H(x ⊗ I )x , the state equation can be expressed as

ẋ(t) = (A + H(x(t) ⊗ I ))x(t) + (Nx(t) + B)u(t),

which is in the form of a linear analytic system as advocated in [28]. Therefore, by
applying the variational equation approach [28], the generalized transfer functions
can be derived. The input-to-state generalized transfer matrices are [8]
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F1(s1) = (s1 I − A)−1B,

F2(s1, s2) = (s2 I − A)−1N (s1 I − A)−1B,

Fk(s1, . . . , sk) =
(

(sk I − A)−1H
( ∑

i, j≥1
i+ j=k−1

Fi (sk−i−1, . . . , sk−1) ⊗ Fj (s1, . . . , s j )
)
,

(sk I − A)−1NFk−1(s1, . . . , sk−1)

)
, k ≥ 3. (4)

Correspondingly, the input-to-output generalized transfer functions are

Gk(s1, . . . , sk) = CFk(s1, . . . , sk), k ∈ Z+. (5)

To construct a Petrov-Galerkin projection scheme for model order reduction, we
also consider the adjoint system. Based on thework of [19], the authors of [6] showed
that the input-to-state generalized transfer functions of the adjoint system are

Fa,1(s1) = (s1 I − A�)−1C�,

Fa,2(s1, s2) = (s2 I − A�)−1N�(s1 I − A�)−1C�,

Fa,k(s1, . . . , sk) =
(

(sk I − A�)−1H (2)
( ∑

i, j≥1
i+ j=k−1

Fi (sk−i−1, . . . , sk−1) ⊗ Fa, j (s1, . . . , s j )
)
,

(sk I − A�)−1N�Fa,k−1(s1, . . . , sk−1)

)
, k ≥ 3, (6)

where H (2) is the mode-2 matricization of an order-3 tensor whose mode-1 matri-
cization is given by the Hessian matrix H . For detailed explanations, we refer to
[4, 6]. The input-to-output generalized transfer functions of the adjoint system are
simply

Ga,k(s1, . . . , sk) = B�Fa,k(s1, . . . , sk), k ∈ Z+.

To quantify the approximation accuracy of the reduced-order model, an appropri-
ate measure of the approximation error is required. In this paper, the focus is on the
H2 norm.

Definition 1 Consider the SISO QB system � given in (1), the H2 norm of � is
defined as

‖�‖H2 :=
⎛
⎝ ∞∑
k=1

1

(2π)k

∫ ∞
−∞

· · ·
∫ ∞
−∞

〈Gk(iω1, . . . , iωk),Gk(−iω1, . . . , −iωk)〉dω1 · · · dωk

⎞
⎠

1
2

,

(7)
where Gk(s1, . . . , sk) is the kth generalized transfer function defined in (4) and (5)
and < ·, · > denotes the Euclidean inner product of two complex-valued vectors.
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From Parseval’s Identity of several variables, the H2 norm of � is equal to the L2

norm of the Volterra kernels associated in (4) and (5) in the time domain. In [8], it is
shown that the H2 norm of QB systems defined above can be computed in terms of
the Gramians of the system as

‖�‖2H2
= ‖�a‖2H2

= ‖�‖2L2
= CRC� = B�QB, (8)

where �a is the adjoint of �, R and Q solve the generalized Lyapunov equations

AR + RA� + H(R ⊗ R)H� + N RN� + BB� = 0, (9)

A�Q + QA + H (2)(R ⊗ Q)
(
H (2)

)� + N�QN + C�C = 0. (10)

Note that the H2 norm is finite if and only if the Gramians R and Q exist and
are positive definite. Sufficient conditions on the existence of the Gramians are dis-
cussed in [9], which are equivalent to the conditions presented in [6]. This analysis
is out of scope for this paper. The interested reader is referred to the aforementioned
references.

2.1 Pole-Residue Representation of the Generalized Transfer
Functions

In the transfer functions of both the original system and its adjoint, the frequency
variables sk ∈ C, k ∈ Z+ are independent from each other. Hence, the generalized
transfer functions in (4) and (6) admit representations in the pole-residue form.

Definition 2 The residues of the kth-order generalized transfer function Gk(s1, . . . ,
sk) which only has simple poles are defined as

φlk ···l1 := lim
sk→λlk

(sk − λlk ) · · · lim
s1→λl1

(s1 − λl1)Gk(s1, s2, . . . , sk).

Theorem 1 (pole-residue representation) Re-express the generalized transfer func-
tions Gk(s1, . . . , sk) as adjugate over determinant. Then

Gk(s1, . . . , sk) =
n∑

lk=1

· · ·
n∑

l1=1

φlk ···l1∏k
i=1(si − λli )

. (11)

Proof Theproof is given in a constructivewaywith computation of residues.Assume
that the matrix A = diag(λ1, . . . , λn) is in diagonal form. For k = 1, 2, the compu-
tations are quite trivial. For k = 3, G3 = (GQD

3 ,GBL
3 ). The quadratic part has the

transfer function
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GQD
3 (s1, s2, s3) =

n∑
l3=1

n∑
l2=1

n∑
l1=1

cl3HT l3l2l1bl2bl1
(s3 − λl3)(s2 − λl2)(s1 − λl1)

,

where HT is the order-3 tensor which defines the quadratic coefficient matrix H
in system � and HT i jk is the i th row j th column kth layer of the tensor HT , bli
and cli , i = 1, 2, 3 are the li -th entry of B and C . The bilinear recursive part can be
represented as

GBL
3 (s1, s2, s3) =

n∑
l3=1

n∑
l2=1

n∑
l1=1

cl3Nl3l2Nl2l1bl1
(s3 − λl)(s2 − λl2)(s1 − λl1)

.

Correspondingly, the 3rd residues are

φl3l2l1 = (
cl3HT l3l2l1bl2bl1 cl3Nl3l2Nl2l1bl1

)
. (12)

Let ψk denote the kth residue of the input-to-state transfer functions Fk(s1,
s2, . . . , sk). Then for k ≥ 3, the sum of the residues φlk lk−1···l1 satisfies

n∑
lk=1

· · ·
n∑

l1=1

φlk ···l1 =
(
CHT

(∑
i, j≥1

i+ j=k−1
ψ i ⊗ ψ j

)
, CNψk−1

)
. (13)

Since Gk(s1, s2, . . . , sk) only has simple roots, we can define

C̆lk =
(

c1∏n
lk=1(slk −λlk )

. . . cn∏n
lk=1(slk −λlk )

)
.

Then from (13) one can show that

Gk(s1, s2, . . . , sk) =
(
C̆lk HT

(∑
i, j≥1

i+ j=k−1
ψ i ⊗ ψ j

)
, C̆lk Nψk−1

)
.

Hence, the pole-residue representations in (11) hold for k ∈ Z+. �

The pole-residue representation of the generalized transfer functions gives another
possibility to express the H2 norm.

Theorem 2 Let � be a SISO QB system given by (1) with a finiteH2 norm defined
by (7). The H2 norm satisfies

‖�‖2H2
=

∞∑
k=1

n∑
lk=1

· · ·
n∑

l1=1

〈
φlk lk−1···l1 ,Gk(−λlk ,−λlk−1 , . . . ,−λl1)

〉
. (14)

Proof The proof is similar to the proof of Theorem 2.10 in [16]. It is a generalization
of the linear system case by applying the multivariate Cauchy’s Theorem. �
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Based on the H2 norm expression given by (14), the H2 approximation error
between two QB systems can be expressed in a novel manner. Suppose that the
reduced-order approximation of � defined in (1) is given by �̂ defined in (3) with
r � n. Also, assume that the reduced-order system only has simple poles at {λ̃i }ri=1.
Then the following holds

∥∥� − �̂
∥∥2
H2

=
∞∑
k=1

n∑
lk=1

· · ·
n∑

l1=1

〈φlk ···l1 ,Gk(−λlk , . . . ,−λl1) − Ĝk(−λlk , . . . , −λl1)〉−

∞∑
k=1

r∑
lk=1

· · ·
r∑

l1=1

〈φ̃lk ···l1 ,Gk(−λ̃lk , . . . ,−λ̃l1) − Ĝk(−λ̃lk , . . . , −λ̃l1)〉,

where φ̃lk ···l1 is the kth residue of the reduced-order system �̂ and Ĝk(s1, . . . , sk)
is the kth reduced-order generalized transfer function. Hence, the approximation
error is fully characterized by the mismatches between the original and the reduced-
order generalized transfer functions at the mirror images of the poles of the original
system and the poles of the reduced-order system. In theH2 optimal approximation
framework, minimizing the mismatches at the poles of the reduced-order system is
of more interest according to the 1st-order optimality conditions [9]. The 1st-order
necessary optimality conditions of the H2 approximation require to interpolate the
zeroth and first-order derivative of the generalized transfer functions at the mirror
images of the poles of the reduced-order system. In the following, we propose to
solve such an interpolation problem by interpolating the Volterra series.

3 Volterra Series Interpolation andH2 Optimal
Approximation

The state-of-the-art interpolation methods in [4, 10] only consider to interpolate the
first a few transfer functions [1, 8]. In this work, we propose a method to interpolate
the weighted sum of all the generalized transfer functions, which is generalized from
the bilinear dynamical systems case developed in [15]. In the interpolation scheme
proposed in this section, we assume that the interpolation points are neither in the
spectrum of A nor in the spectrum of Ar .

3.1 Volterra Series Interpolation

The H2 error expression given in Sect. 2 shows that the optimal approximation
requires to interpolate the weighted sum of the generalized transfer functions and
their first-order derivatives, i.e., the zeroth and first-order moments [9]. Let us start
the discussion with the definition of the weighted zeroth-order moments of the
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generalized input-to-state transfer matrices (4). Given a set of interpolation points
{σi }ri=1 together with a matrixU ∈ R

r×r and a symmetric 3-tensor	T ∈ R
r×r×r , we

define
v1
l = (σl I − A)−1B, (15a)

v2
l = (σl I − A)−1N

r∑
l1=1

ull1(σl1 I − A)−1B, (15b)

where ull1 is the (l, l1)-entry of U and

vk
l = (σl I − A)−1

(
N

r∑
lk−1=1

ullk−1v
k−1
lk−1

+ H
∑
i, j≥1

i+ j=k−1

r∑
lk−1=1

r∑
lk−i−1=1

ξllk−1lk−i−1

(
vi
lk−1

⊗ v
j
lk−i−1

))
, (15c)

with k ≥ 3, l = 1, 2, . . . , r and ξllk−1lk−i−1 is the (l, lk−1, lk−i−1)-entry of	T . Assum-
ing convergence, a vector vl is then defined as vl := ∑∞

k=1 vk
l . Then from input to

output, the zeroth-order moments are defined as

γl =
∞∑
k=1

γ k
l , γ k

l = Cvk
l , k ∈ Z+, l = 1, 2, . . . , r. (16)

We also consider the generalized transfer functions of the adjoint system in (6).
Suppose that the interpolation points are {σ̂i }ri=1 and the weighting matrix and tensor
are given as Û and 	̂T , respectively. Similar to vk

l , another set of vectors is defined
as

w1
l = (σ̂l I − A)−�C�, (17a)

w2
l = (σ̂l I − A)−�N�

r∑
l1=1

ûll1(σ̂l1 I − A)−�C�, (17b)

wk
l =(σ̂l I − A)−�

(
N�

r∑
lk−1=1

ûllk−1w
k−1
lk−1

+ H (2)
∑
i, j≥1

i+ j=k−1

r∑
lk−1=1

r∑
lk−i−1=1

ξ̂llk−1lk−i−1

(
vi
lk−1

⊗ w
j
lk−i−1

))
,

(17c)
with k ≥ 3 and l = 1, 2, . . . , r . Assuming convergence, a vector wl is defined as
wl := ∑∞

k=1 wk
l .Hence, from the output-to-input direction, the zeroth-order moments

are defined as

ζl =
∞∑
k=1

ζ k
l , ζ k

l = B�wk
l , k ∈ Z+, l = 1, 2, . . . , r. (18)
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Note that here, ζl can be considered as the frequency response of the adjoint system
at frequency σ̂l . Later on, one can see that interpolating ζl means the generalized
transfer functions of the adjoint system are interpolated. We use the vectors vl and
wl to construct the Krylov subspaces that define the Petrov-Galerkin spaces for the
model order reduction. In addition, we will show that the recursive formula gives
a possibility to construct the vectors vl and wl by solving generalized Sylvester
equations.

Lemma 1 Let � be a stable SISO QB system given by (1) with dimension n.
Given the interpolation points {σi }ri=1 ∈ C and {σ̂i }ri=1 ∈ C with r � n together
with two matrices U, Û ∈ R

r×r and two symmetric tensors 	T , 	̂T ∈ R
r×r×r such

that the vectors vk
l are defined according to (15a)–(15c) and the vectors wk

l are
defined as in (17a)–(17c). For each σl and σ̂l , the expressions vl = ∑∞

k=1 vk
l and

wl = ∑∞
k=1 wk

l converge. Let the matrices diag(σ1, . . . , σr ) and diag(σ̂1, . . . , σ̂r )

be denoted as  and ̂, respectively. Then the matrices V = (
v1, . . . , vr

) ∈ R
n×r

and W = (
w1, . . . , wr

) ∈ R
n×r solve the generalized Sylvester equations

V − AV − NVU� − H(V ⊗ V )(	
(1)
T )� = B1�

r , (19)

W ̂ − A�W − N�WÛ� − H (2)(V ⊗ W )(	̂
(1)
T )� = C�1�

r , (20)

where 1r is a column vector of r ones.

Proof The proof follows the construction of vl = ∑∞
k=1 vk

l and wl = ∑∞
k=1 wk

l
directly. �
Theorem 3 Let � be a stable SISO QB system given by (1) with dimension n.
Given the interpolation conditions such that V , W solve the generalized Sylvester
equations (19) and (20), respectively. If V�W is invertible, the system matrices of
the reduced-order model �̂ in (3) are computed by

Â = (W�V )−1W�AV, N̂ = (W�V )−1W�NV, Ĥ = (W�V )−1W�H(V ⊗ V ),

B̂ = (W�V )−1W�B, Ĉ = CV .

(21)
Then the resulting reduced-order system (3) interpolates the zeroth-ordermoments of
both the original system and its adjoint, i.e., γ̂l = γl and ζ̂l = ζl for l = 1, 2, . . . , r .

Proof We follow themethod in the proof of Theorem3.1 in [15]. Define the projector
� = V (W�V )−1W�. Then left-multiplying (19) by � we have

�
(
V − AV − NVU� − H(V ⊗ V )(	

(1)
T )� − B1�

r

)

=V
(
 − Â − N̂U� − Ĥ(	

(1)
T )� − B̂1�

r

)
= 0.
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Since V has full column rank, it is immediate that V̂ = Ir solves

V̂ − ÂV̂ − N̂ V̂U� − Ĥ(V̂ ⊗ V̂ )(	
(1)
T )� − B̂1�

r = 0.

Hence, the construction of v̂l directly follows the construction method of vl . Then

γ̂l :=Ĉ v̂l = CV v̂l = Cvl :=γl .

For the matrix W , left-multiplying (20) by ��, it can be obtained that

�� (
W ̂ − A�W − N�WÛ� − H (2)(V ⊗ W )(	̂

(1)
T )� − C�1�

r

)

=W (V�W )−1·(
(V�W )̂ − Â�(V�W ) − N̂�(V�W )Û� − Ĥ (2)(Ir ⊗ (V�W ))(	̂

(1)
T )� − Ĉ�1�

r

)

= 0.

Note that for the tensor product term we used the fact that

V�H (2)(V ⊗ W ) = V�H (2)(V ⊗ W (V�W )−1(V�W ))

= V�H (2)(V ⊗ W (V�W )−1)(Ir ⊗ (V�W )) = Ĥ (2)(Ir ⊗ (V�W )).

Denote V�W as �. Since W (V�W )−1 has full column rank, � solves

�̂ − Â�� − N̂�Û� − Ĥ (2)(Ir ⊗ �)(	̂
(1)
T )� − Ĉ1�

r = 0.

Hence, the construction of θl directly follows the construction of wl . Then we have

ζ̂l :=B̂�θl = B�W (V�W )−1θl = B�wl :=ζl,

which completes the proof. �

As a result, by specifying suitable interpolation conditions, the interpolation-based
model reduction problem of QB systems can be solved by solving the generalized
Sylvester equations (19) and (20). Furthermore, by applying the Petrov-Galerkin
projection scheme, generalized transfer functions of both the original and the adjoint
systems are interpolated.

The following shows that the zeroth-ordermoments defined for the original system
and its adjoint coincide with each other for QB systems if they are defined in the
aforementioned way.

Corollary 1 For the interpolation conditions proposed in Lemma 1, if σ̂l = σl , l =
1, 2, . . . , r , Û = U� and 	̂

(1)
T = 	

(2)
T , then γl = ζl, l = 1, 2, . . . , r .

Proof The detailed proof can be found in [9, Chap. 5]. �
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3.2 H2 Optimal Approximation

Assume that the reduced-order system given by (3) only has simple poles {λ̃l}rl=1 and
the matrix Â is diagonalizable. Then we can assume that the reduced-order system
is already in the form with a diagonal matrix Â =  = diag(λ̃1, . . . , λ̃r ) as desired.
Correspondingly, the other system matrices are all transformed by the eigenvectors
of Â. The following analysis shows that for the proposed interpolation scheme in
Sect. 3.1, the first-order necessary optimality conditions for H2 approximation are
generalizations of those proposed for LTI systems by Meier and Luenberger in [26].

Lemma 2 Let � and �̂ be stable SISO QB systems with dimensions n and r with
r � n. And T−1 ÂT =  is a diagonal matrix. Correspondingly, Ñ = T−1 N̂ T ,
H̃ = T−1 Ĥ(T ⊗ T ), B̃ = T−1 B̂ and C̃ = ĈT . If V solves the generalized Sylvester
equation

V (−) − AV − NV Ñ� − H(V ⊗ V )H̃� = B B̃�, (22)

then

C̃(CV )� =
∞∑
k=1

r∑
l=1

· · ·
r∑

l1=1

〈φ̃k
llk−1...l1 ,Gk(−λ̃l ,−λ̃lk−1 , . . . ,−λ̃l1)〉, (23)

where φ̃k
lk ...l1

are the residues of �̂ and Gk are the generalized transfer functions of
�.

Proof Let vl denote the lth column of V , since vl = ∑∞
k=1 vk

l (we only show it for
k = 1, 2, 3 for demonstration purposes), we have

Cv1
l = b̃lC(−λ̃l I − A)−1B,

Cv2
l =

r∑
l1=1

Ñll1 b̃l1C(−λ̃l I − A)−1N (−λ̃l1 I − A)−1B,

Cv3
l =

r∑
l2=1

r∑
l1=1

Ñll2 Ñl2l1 b̃l1C(−λ̃l I − A)−1N (−λ̃l2 I − A)−1N (−λ̃l1 I − A)−1B+
r∑

l2=1

r∑
l1=1

H̃ll2l1 b̃l2 b̃l1C(−λ̃l I − A)−1H
(
(−λ̃l2 I − A)−1B ⊗ (−λ̃l1 I − A)−1B

)
,

Since the system under consideration is SISO, we have

C̃(CV )� =
∞∑
k=1

r∑
l=1

c̃lCvk
l =

∞∑
k=1

r∑
l=1

· · ·
r∑

l1=1

〈φ̃k
llk−1...l1 ,Gk(−λ̃l ,−λ̃lk−1 , . . . ,−λ̃l1)〉,

where C̃ = (
c̃1 . . . c̃r

)
is the reduced-order C matrix. Then, clearly (23) holds. �
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Notice that comparing to the original interpolation scheme, where the interpolation
is in the average direction 1r , the above lemma requires the interpolation direction to
become the reduced-order systemmatrices B̃ and C̃ . Another lemma is also essential
to prove the necessary H2 optimality conditions.

Lemma 3 For any 1 ≤ k1, k2 ≤ k ∈ Z+ satisfying k1 + k2 = k + 1 and the inter-
polation conditions satisfying those in Lemma 2, if W solves

W + A�W + N�W Ñ + 2H (2)(V ⊗ W )
(
H̃ (2)

)� + C�C̃ = 0, (24)

then

∑
k1+k2=k+1

(w
k1
l )�v

k2
l =

r∑
lk−1=1

· · ·
r∑

l1=1

〈
φ̃k
llk−1...l1 ,

∂

∂sk2
Gk(−λ̃lk , . . . ,−λ̃l1)

〉
. (25)

Proof We first consider a simple case where C̃� = B̃ = 1r in (22) and (24), respec-
tively. From Corollary 1 we know that if V and W solves (19) and (20) respectively,
there holds B�wl = Cvl . Since the system is SISO, there also holds (wl)

�B = Cvl .
Let Cvl = ∑∞

k=1 Cvk
l = (wl)

�B = ∑∞
k=1 ṽk

l B. The term ṽk
l is defined later in the

proof. Introducing this new term helps to simplify the proof and this new term can
be considered as a replacement of wk

l which has been used to construct W ear-
lier in the paper. Notice that ṽk

l is based on the generalized transfer function of
the original system rather than the adjoint system, so it does not satisfy the same
Sylvester equations as wk

l . However, by definition,
∑∞

k=1 ṽk
l B and

∑∞
k=1(w

k
l )

�B are
equivalent. Now reconsider the case where the quadratic term in (20) is scaled by a
factor of 2 (this scaling factor is related to the derivative of the quadratic term since
d( f1(x) ⊗ f2(x))/dx = d f1(x)/dx ⊗ f2(x) + f1(x) ⊗ d f2(x)/dx), we can define
ṽk
l as

ṽ1
l = C(σl I − A)−1,

ṽ2
l = C(σl I − A)−1N

r∑
l1=1

ull1(σl1 I − A)−1,

ṽk
l = C(σl I − A)−1

(
N

r∑
lk−1=1

ullk−1v
k−1
lk−1

B†+

H
∑
i, j≥1

i+ j=k−1

r∑
lk−1=1

r∑
lk−i−1=1

ξllk−1lk−i−1(v
i
lk−1

⊗ v
j
lk−i−1

B† + vi
lk−1

B† ⊗ v
j
lk−i−1

)

)
, k ≥ 3,

where B† stands for the right pseudo inverse of B, which may not be unique, but
any B† satisfying B†B = In can be used here. For k = 1, i.e., k1 + k2 = 2, it’s not
difficult to calculate that
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ṽ1
l v

1
l = C(σl I − A)−2B = ∂

∂s1

∣∣∣∣
s1=σl

G1(s1).

Similarly, for k = 2, i.e., k1 + k2 = 3, one can obtain that

ṽ1
l v

2
l = ∂

∂s1

∣∣∣∣s1=σl ,
s2=σl1

G2(s1, s2), ṽ2
l v

1
l = ∂

∂s2

∣∣∣∣s1=σl ,
s2=σl1

G2(s1, s2).

Notice that in the second equation of above calculation one has to re-arrange the
indices of σ in v2

l . For k1 + k2 = 4, i.e., k = 3, the pairs (k1, k2) can be taken as
(1, 3) or (2, 2) or (3, 1). By re-arranging the indices of σ in both ṽ

k1
l and v

k2
l , it can

be calculated that

ṽ1
l v

3
l =C(σl I − A)−2N

r∑
l2=1

ull2(σl2 I − A)−1N
r∑

l1=1

ul2l1(σl1 I − A)−1B+

C(σl I − A)−2H
r∑

l2=1

r∑
l1=1

ξll2l1
(
(σl2 I − A)−1B ⊗ (σl1 I − A)−1B

)
,

ṽ2
l v

2
l =C(σl I − A)−1N

r∑
l2=1

ull2(σl2 I − A)−2N
r∑

l1=1

ul2l1(σl1 I − A)−1B,

ṽ3
l v

1
l =C(σl I − A)−1N

r∑
l2=1

ull2(σl2 I − A)−1N
r∑

l1=1

ul2l1(σl1 I − A)−2B+

C(σl I − A)−1H
r∑

l2=1

r∑
l1=1

ξll2l1
(
(σl2 I − A)−2B ⊗ (σl1 I − A)−1B

)+

C(σl I − A)−1H
r∑

l2=1

r∑
l1=1

ξll2l1
(
(σl2 I − A)−1B ⊗ (σl1 I − A)−2B

)
.

Sum these three equations together, it can be calculated that

∑
1≤k1,k2≤3,
k1+k2=4

ṽ
k1
l v

k2
l =

3∑
k2=1

∂

∂sk2

∣∣∣∣∣
si=σli ,i=1,2,

s3=σl

G3(s1, s2, s3).

From ṽ3
l v

1
l one can see there are two terms with Kronecker product, which requires

the scaling factor 2 to be present in (24). Now let’s choose two arbitrary integers
1 ≤ k1, k2 ≤ K satisfying k1 + k2 = k + 1 for k ≤ K and K ∈ N≥3, then we have
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∑
1≤k1,k2≤k,
k1+k2=k+1

ṽ
k1
l v

k2
l = C(σl I − A)−1v

k2
l + C(σl I − A)−1N

r∑
l1=1

ull1 (σl I − A)−1v
k2
l + · · · +

C(σl I − A)−1N
r∑

lk1−1=1

ullk1−1v
k1−1
lk1−1

B†v
k2
l + C(σl I − A)−1H

∑
i, j≥1

i+ j=k1−1

r∑
lk1−1=1

r∑
lk1−i−1=1

ξllk1−1lk1−i−1 (v
i
lk1−1

⊗ v
j
lk1−i−1

B†v
k2
l + vilk1−1

B†v
k2
l ⊗ v

j
lk1−i−1

) + · · · .

Re-arranging the indices of σ in ṽ
k1
l and v

k2
l , the first two terms of the above

equation are equivalent to taking derivatives of the first two interpolation points in
Gk(s1, s2, . . . , sk). Then by using the recursive expression of vk

l in (15c), derivatives
of all interpolation points are taken in the other terms. Hence, there holds

∑
1≤k1,k2≤k,
k1+k2=k+1

ṽ
k1
l v

k2
l =

k∑
k2=1

∂

∂sk2

∣∣∣∣∣
si=σli ,i=1,2,...,k−1,

sl=σl

Gk(s1, s2, . . . , sk).

For simplicity, the above proof assumed that the interpolation directions are 1r from
both the input and the output side. Instead, if the interpolation directions are C̃ and
B̃, which are defined by the reduced-order system matrices, by following the same
method as in Lemma 2, (25) can be proved. �

The reason why the factor 2 appears in (24) but not in (20) is when matching the
first moments is required, derivatives of Gk(s1, . . . , sk) requires to take derivatives
of Kronecker product terms, which simply doubles the number of Kronecker product
terms in the equation. A typical example is ṽ3

l v
1
l . That’s why the scaling factor 2 in

(24) is required.
Applying Lemma 2 together with Lemma 3, the H2 necessary optimality condi-

tions are achieved by interpolation.

Theorem 4 Let � be a stable SISO QB system with dimension n and �r be its H2

optimal approximation of dimension r � n. The projection matrices V and W solve
(22) and (24), respectively. Then �r interpolates the zeroth and first-order moments
of �, i.e.,

∞∑
k=1

r∑
lk=1

· · ·
r∑

l1=1

〈φ̃k
lk ...l1 ,Gk(−λ̃lk , . . . ,−λ̃l1)〉

=
∞∑
k=1

r∑
lk=1

· · ·
r∑

l1=1

〈φ̃k
lk ...l1 ,Grk(−λ̃lk , . . . ,−λ̃l1)〉,

(26a)
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∞∑
k=1

r∑
lk=1

· · ·
r∑

l1=1

〈φ̃k
lk ...l1 ,

k∑
j=1

∂

∂s j
Gk(−λ̃lk , . . . ,−λ̃l1)〉

=
∞∑
k=1

r∑
lk=1

· · ·
r∑

l1=1

〈φ̃k
lk ...l1 ,

k∑
j=1

∂

∂s j
Grk(−λ̃lk , . . . ,−λ̃l1)〉,

(26b)

where Grk is the kth generalized transfer function of �r which has a diagonalizable
Ar matrix.

Proof The above theorem is proved by using Lemmas 2 and 3. For details, we refer
to [9]. �

3.3 Computational Aspects

As one has noticed, the interpolation scheme requires to solve QB Sylvester equa-
tions, which is not a computationally trivial task. In many cases, the existence of
the solutions is even unclear. In this work, we propose to solve the scaled version of
these nonlinear matrix equations [8, 12]:

V + AV + α2NV Ñ� + α2H(V ⊗ V )H̃� + B B̃� = 0, (27)

W + A�W + α2N�W Ñ + 2α2H (2)(V ⊗ W )
(
H̃ (2)

)� + C�C̃ = 0, (28)

by a fixed point method. The scaling factor α2 shrinks the nonlinear effect of the
original system such that the fixed point method converges. Define two operators as:

L(X) = AX + X, N(X) = −N X Ñ� − H(X ⊗ X)H̃�.

As long as the spectral radius ρ(L−1N) < 1/α2 with α2 the scaling factor, the fixed
point method is guaranteed to converge. However, in real cases, trials and errors may
be needed for selecting α. If α is too close to 1, the fixed point method does not
converge; if it is too close to 0, although the fixed point method converges rapidly
(1 or 2 iterations), the nonlinear part of the system may not be considered enough.
As a consequence, the resulted reduced-order model can not capture the nonlinear
behavior of the original system well.

Certainly, solving QB Sylvester equations by the fixed point method can be more
expensive than only solving the Sylvester equations corresponding to the first two
and the quadratic part of the generalized transfer functions. However, as long as
the fixed point method converges in a few iterations, the computational cost is still
acceptable.



132 X. Cao et al.

4 Numerical Examples

The proposed methods are demonstrated on the 1D Fisher-KPP equation, which
has an exact quadratic nonlinearity. For more case studies, such as the FitzHugh-
Nagumo system, we refer to [9]. The system under consideration is described by
partial differential equations, and it is semi-discretized by using the central difference
method.

In the tests, we compare the rational Krylov method in [10], the H2 optimal
approximation method proposed in this paper, which is referred to as αQB-IRKA
and the truncated-QB-IRKA algorithms in [8]. The truncated-QB-IRKA method
approximates the systemby interpolating the first three generalized transfer functions
G1,G2 and G3, so it is slightly different from the original method in [8]. And no
scaling factor is required for this method. To make the legend compact in figures,
we use the following abbreviations: Full-order model simulation is denoted as QB
FOM; Reduced-order model simulations are denoted as

• αQBIRKA if it is obtained by the method proposed in this work;
• truncQBIRKA if it is obtained by the method proposed in [8];
• LK if it is obtained by the rational Krylov method proposed in [10].

4.1 Fisher-KPP Equation

The Fisher-KPP equation is a reaction-diffusion system widely used in population
dynamics [14], plasma physics and combustion models. It is a spatially 1D equation
with its boundary conditions and initial condition described by

wt (s, t) = αwss(s, t) + βw(s, t)(1 − w(s, t)) + u(s, t), w(s, 0) = 0,

w(0, t) = 0 = w(L , t).

In the equation, the parameter values are taken as L = 1, α = 1 and β = 3. The input
is assumed to be put on the first node and the state of the last node scaled by 106

is the quantity of interest. By applying the central difference method on the spatial
domain, the system can be represented by an ODE model with n = 100 states as

ẋ(t) = Ax(t) + H(x(t) ⊗ x(t)) + Bu(t), y(t) = Cx(t).

The detailed systemmatrices can be found in [9]. Here we choose the norm ofC to be
106 to scale the output such that it is comparable with the input. In such a setting, the
largest real part of the eigenvalues of A is−6.8688 ∈ C

−. Thus the system is locally
stable near the origin. It can be shown that the fixed point method of solving Sylvester
equations is guaranteed to converge [9]. TheH2 norm of the original system is then
‖�‖H2

= 2.8462. To test the performance of the model order reduction, we reduced
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Fig. 1 Time domain simulations and the relative errors of the proposed model order reduction
methods for the Fisher-KPP equation

Table 1 Relative H2 errors of three different model order reduction methods for the Fisher-KPP
equation

Methods αQBIRKA truncQBIRKA LK

RelativeH2 error 8.2436 × 10−7 1.5830 × 10−6 5.4389 × 10−4

the system from order n = 100 to order r = 12. The full-order and reduced-order
systems are simulated with a sinusoidal input

u(t) = 50 sin(0.4π t + π/3) + 60,

over a given time interval t ∈ [0, 8]. The time domain responses and the relative
approximation errors are depicted in Fig. 1. To avoid division by zero, the relative
error (or the absolute error normalized by the L2 norm of the original output) is
defined as

e(t) = |y(t) − yr (t)|/‖y‖, ‖y‖:=‖y‖L 2 .

When applying the rational Krylov method, we generate r = 12 interpolation
points λ1, . . . , λ12 from −103 to −1 in the logarithmic scale. Hence, we only inter-
polate the values of the first two generalized transfer functions in [10] rather than
their derivatives. For the αQB-IRKA and the truncated-QB-IRKA methods, they
both converge in 50 iterations. It can be seen from Fig. 1 that the performance of the
three methods are quite close to each other. In the H2 norm sense, the relative H2

error defined as
error = ‖� − �r‖H2/‖�‖H2 ,

is calculated in Table1. Clearly, our method gives the smallest relative H2 error,
which is expected, since it is the only one among the three demonstrated methods
which satisfies the necessary H2 optimality condition.
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5 Conclusions

In this paper we first discussed the class of quadratic bilinear dynamical systems
together with a definition of theirH2 norm.We characterized theH2 norm by means
of a pole-residual representation of the generalized QB transfer functions and char-
acterized theH2 norm of the approximation error between two QB systems in terms
of pole-residual functions. On the basis of this characterization, we proposed anH2

optimal model order reduction scheme that employs an interpolation framework on
complex-valued functions. The interpolation problem can be tackled by solving two
generalized Sylvester equations. In such an interpolation framework, we showed that
by selecting the interpolation variables carefully, an H2 optimal approximation can
be achieved using a classical Petrov-Galerkin projection on the state space matrices
of the QB model. We pointed out that the computation of the Sylvester equations
involved in the reduction process may not be feasible. A numerical example is given
to demonstrate the quality of the proposedmethod. Results of the numerical examples
show accurate approximations. For higher-order polynomial systems, [7] provides a
general framework for interpolation-based model order reduction.
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An Adaptive Sampling Approach for the
Reduced Basis Method

Sridhar Chellappa, Lihong Feng, and Peter Benner

Abstract The offline time of the reduced basis method can be very long given a
large training set of parameter samples. This usually happens when the system has
more than two independent parameters. On the other hand, if the training set includes
fewer parameter samples, the greedy algorithmmight produce a reduced-ordermodel
with large errors at the samples outside of the training set. We introduce a method
based on a surrogate error model to efficiently sample the parameter domain such
that the training set is adaptively updated starting from a coarse set with a small
number of parameter samples. A sharp a posteriori error estimator is evaluated on a
coarse training set. Radial Basis Functions are used to interpolate the error estimator
over a separate fine training set. Points from the fine training set are added into the
coarse training set at every iteration based on a user defined criterion. In parallel,
parameter samples satisfying a defined tolerance are adaptively removed from the
coarse training set. The approach is shown to avoid high computational costs by using
a small training set and to provide a reduced-order model with guaranteed accuracy
over a fine training set. Further, we show numerical evidence that the reduced-order
model meets the defined tolerance over an independently sampled test set from the
parameter domain.

Keywords Reduced basis method · Training set sampling · Adaptivity · Error
estimation · Radial basis interpolation

S. Chellappa—Supported by the International Max Planck Research School for AdvancedMethods
in Process and Systems Engineering (IMPRS-ProEng)

S. Chellappa (B) · L. Feng · P. Benner
Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
e-mail: chellappa@mpi-magdeburg.mpg.de

L. Feng
e-mail: feng@mpi-magdeburg.mpg.de

P. Benner
e-mail: benner@mpi-magdeburg.mpg.de

P. Benner
Fakultät für Mathematik, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany

© Springer Nature Switzerland AG 2022
C. Beattie et al. (eds.), Realization and Model Reduction of Dynamical Systems,
https://doi.org/10.1007/978-3-030-95157-3_8

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95157-3_8&domain=pdf
mailto:chellappa@mpi-magdeburg.mpg.de
mailto:feng@mpi-magdeburg.mpg.de
mailto:benner@mpi-magdeburg.mpg.de
https://doi.org/10.1007/978-3-030-95157-3_8


138 S. Chellappa et al.

1 Introduction

The need of modeling physical processes accurately very often leads to mathemati-
cal models of large-scale. Simulating such large-scale systems poses challenges on
computer memory and computational power. Model Order Reduction (MOR) aims
to speedup simulation of the large-scale full order model (FOM) by constructing a
small-scale system, called the reduced-order model (ROM), which serves as a good
approximation of the FOM.

For FOMs arising from discretization of parametric partial differential equations
(PDEs), the Reduced Basis (RB) method is a popular choice [17]. It is suitable
especially when the FOM needs to be solved repeatedly for a range of parameters.
The RB method involves two stages. The first is an expensive offline stage in which
a subspace of the solution manifold is constructed by simulations of the FOM at
certain chosen parameters. Then, using Galerkin projection, the solution to the PDE
is projected onto this subspace to generate the ROM. In the second online stage,
instead of solving the FOM, one solves the ROM for any parameter of interest. The
RB method works well when the solution manifold is supposed to have a small
Kolmogorov n-width. In this work, we focus on the offline stage of the RB method.

The offline stage in the RB method requires the construction of a representative
set of parameters from the domain of interest. This is called the training set. The
subspace approximating the solution manifold is constructed by solving the FOM
at a set of selected points from this training set, picked using a greedy algorithm
[11]. The choice of a training set is nontrivial. On the one hand, if it includes too
few parameters, the original solution manifold may not be adequately represented,
leading to a poor ROMwith large error. On the other hand, if it is too fine, the offline
time can be prohibitively long. When the PDE involves several parameters, properly
defining the training set can be a severe computational issue.

Several authors have attempted to address this issue. The earliest work to consider
an adaptive sampling of the training set was [19], where the author proposes a multi-
stage method. The greedy algorithm is run several times over randomly sampled
small training sets to generate the RB basis. Then, the ROM is tested over a much
larger training set and the greedy algorithm is re-run only on those points failing the
tolerance criterion. The authors of [10] address the issue of large training sets by
two approaches. The first one is a procedure to monitor the error over an additional
validation parameter set. If a large error is detected, then the training set is further
refined, either uniformly or locally. The second approach, similar to the one presented
in [6], is based on partitioning the parameter domain adaptively, and generating a
local basis for each partition. Other approaches for adaptive sampling are proposed in
[12, 14]. More recently, an approach based on Kriging interpolation and clustering
is proposed in [16], to tackle the problem of high-dimensional parameter spaces.
An interpolant of the residual norm is calculated over a fine grid of parameters.
Then, k-means clustering is used to identify parameters that have high probability
of presenting larger errors.
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The approach we propose here is based on interpolating a sharp a posteriori output
error estimator originally proposed in [5]. The RBmethod is initialized with a coarse
training set. We update this set progressively by adding or removing points from it.
At each iteration of the greedy algorithm, we estimate the error of the ROM at every
parameter in the coarse training set. Note that the evaluation of the estimator does
not need to evaluate the FOM. In order to further reduce the computational costs, we
then interpolate the estimated error over a fine training set and use the interpolant as
the error surrogate, which will replace the error estimator for estimating the ROM
error over the fine training set. To achieve this, a surrogate model based on Radial
Basis Functions (RBFs) is used.

At each iteration of the greedy algorithm, the ROM errors at the parameters in the
fine training set are checked by the error surrogate. Those parameters corresponding
to large values of the error surrogate are selected and added into the coarse train-
ing set. The error surrogate is much cheaper to compute than the error estimator.
Therefore, using the former instead of the latter to check the ROM error over the
fine training set, will reduce the computational cost. Additionally, if any parameter
in the coarse training set achieves the required ROM accuracy, we remove it from the
coarse training set. Such an approach is able to construct a small, representative train-
ing set by fully exploring the parameter domain with reduced computational cost.
Forming the RBF interpolant is a relatively cheap operation with the most expensive
contribution coming from the need to solve an � × � linear system of equations at
each parameter sample, where � is the cardinality of the coarse training set, which
is expected to be small. The algorithm proposed in our work is based on the use of
the RBF interpolant and offers certain advantages over the most relevant methods in
[12, 16]. Our proposed approach differs in the following aspects, when compared to
[12]:

• We use a primal-dual a posteriori error estimator on a coarse training set and
a cheaply computable error surrogate on the fine training set. No cheap error
estimator is used on the fine training set in [12], potentially leading to a larger
computational effort.

• At each iteration of the greedy algorithm, a saturation assumption is introduced
in [12] in order to avoid calculation of the ROM at certain parameters. However,
this requires estimation of a saturation constant which needs to be defined a priori
by the user. In our method, no such constant needs to be estimated.

Furthermore, when compared to [16],

• We consider both addition and removal of parameter samples from the coarse
training set. The method in [16] is restricted to adding new samples only.

• The use of Kriging interpolation involves the estimation of several hyper-
parameters. This can be a computational bottleneck [20]. In the case of RBF,
there is only one free parameter at most. If using some special kernel functions,
e.g. polyharmonic spline kernels, there are no free parameters to tune.

• Finally, a nonlinear model was considered in [16] in order to demonstrate the
adaptive sampling approach. An offline hyper-reduction step was used to reduce
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the complexity of the online nonlinearity evaluations, where a second training set
for the nonlinear function is used in the hyper-reduction step, and is likely to be
separately given and fixed. In our approach,we employ theAdaptive POD-Greedy-
(D)EIM algorithm proposed in [5]. This avoids the need for a potentially separate
training set for the hyper-reduction phase. Instead, the (D)EIM basis generation is
carried out as a part of the greedy loop. In this way, we propose a fully adaptive
approach in Algorithm 4.

The rest of the paper is organized as follows. In Sect. 2, the basic idea behind the
RB method is reviewed. An adaptive parameter sampling approach using the RBF
interpolation is proposed and elaborated in Sect. 3. There, we begin with a brief intro-
duction to the theory of RBFs. Then an adaptive sampling approach for the standard
POD-Greedy algorithm is proposed to show a general framework for the proposed
technique. In Sect. 3.3, a fully adaptive algorithm is proposed, which integrates the
adaptive sampling technique with an adaptive basis construction method: the adap-
tive POD-Greedy-(D)EIM algorithm for general parametric nonlinear/nonaffine sys-
tems. A strategy of computing the shape parameter for RBF interpolation is detailed
in Sect. 3.4. In Sect. 4, we show numerical results for a series of benchmark exam-
ples, validating the proposed algorithms. We conclude in Sect. 5 by summarizing our
results and suggesting future research directions.

2 Reduced Basis Method

For the sakeof completeness,webrieflyhighlight the key ideaof theRBmethod.Con-
sider a nonlinear parametric dynamical system arising from space-time discretization
of a model of PDEs,

E(μ)xk+1(μ) = A(μ)xk(μ) + f (xk(μ);μ) + B(μ)uk,

yk+1(μ) = C(μ)xk+1(μ)
(1)

where xk(μ) ∈ R
n is the state vector at the k-th time step t k in the time interval

[0, T ] divided as t0 < t1 < · · · < t k < · · · < t K = T . E(μ), A(μ) ∈ R
n×n are the

parameter dependent system matrices. f (xk(μ);μ) ∈ R
n depicts the state, param-

eter dependent system nonlinearity. B(μ) ∈ R
n×q ,C(μ) ∈ R

m×n are the input and
output matrices, respectively, while uk denotes the input at the k-th time step and
yk+1(μ) denotes the quantities-of-interest. The vector of parametersμ ∈ R

d belongs
to a parameter domain P ⊂ R

d . The space discretization can be done through any
method of choice such as Finite Element Method (FEM), Finite Volume Method
(FVM) or the Finite Difference Method (FDM). For the time discretization, we
adopt a semi-implicit scheme for ease of using the a posteriori error estimator in [5].
The RB method attempts to generate a subspaceX with dimension r � n, that best
approximates the solution manifold. Let V ⊂ R

n×r be an orthogonal basis of X .
The ROM is then given via Galerkin projection,
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Er (μ)xk+1
r (μ) = Ar (μ)xkr (μ) + fr (x

k
r (μ);μ) + Br (μ)uk,

yk+1
r (μ) = Cr (μ)xk+1

r (μ),
(2)

where xkr ∈ R
r is the reduced state vector at the k-th time step.Er (μ) := VTE(μ)V ∈

R
r×r , Ar (μ) := VTA(μ)V ∈ R

r×r are the reduced system matrices. Br (μ) := VT

B(μ) ∈ R
r×q , Cr (μ) := C(μ)V ∈ R

m×r are the reduced input and output matrices,
respectively. The reduced nonlinear term is given by fr (Vxkr (μ);μ) :=
VT f (Vxkr (μ);μ) ∈ R

r . An important assumption is that the system matrices and
the input, output matrices have affine decomposition, i.e., any of them can be for-
mulated as a sum of products of parameter dependent and parameter independent
components:

E(μ) = ∑QE
i=1 θ E

i (μ)Ei ,

B(μ) = ∑QB
i=1 θ B

i (μ)Bi ,A(μ) =
QA∑

i=1

θ A
i (μ)Ai ,

C(μ) = ∑QC
i=1 θC

i (μ)Ci .

In the offline stage, the expensive parameter independent terms are evaluated once
and stored for repeated use in the online stage.

The standard process of the RBmethod for time-dependent parametric systems is
presented inAlgorithm 1which is known as the POD-Greedy algorithm. It constructs
the projection matrixV by selecting a set of samples {μi }ri=1 from a given parameter
training set, through a greedy algorithm. The FOM solutions xk(μ), k = 1, . . . , K , at
a newly selected sample μi are assembled into a matrixX := [x1(μi ), . . . , xK (μi )].
The matrix V is iteratively enriched by projecting the solution vectors in X onto the
current subspace range(V), see Steps 3–5 in Algorithm 1. Crucial to the success of
the RB method is the a posteriori error estimator,

�k+1(μ) ≥ ‖yk+1(μ) − yk+1
r (μ)‖.

It quantifies the error between the FOMandROM for each parameter, without having
to solve the FOM. The parameters at which the FOM is to be solved to enrich
V, is picked iteratively by maximizing the error estimator over the training set.
Although Eq. (2) is of reduced order, the complexity of evaluating the nonlinear
term fr (Vxkr (μ);μ) remains of order O(n). This is the so-called lifting bottleneck.
Techniques like Empirical Interpolation Method (EIM) or its discrete variation, the
Discrete Empirical Interpolation Method (DEIM), can be used to obtain a ROM
whose computational complexity is independent of the full order n. For more details
on this approach, we refer the reader to [2, 4]. In the following section we discuss
the idea of adaptive parameter sampling.
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3 Adaptive Parameter Sampling

The quality of the ROM depends on how well the training set represents the param-
eter domain. In the standard approach, if a finely sampled training set is used for
a parameter domain with high-dimension, it can be computationally expensive. If
otherwise, a coarse training set is used, it will not guarantee that a reliable ROM can
be derived. Consequently, one faces the situation of trial and error. The approach
we propose here is based on a surrogate error model generated through RBF inter-
polation. It aims to overcome the drawbacks of the standard approach using a fixed
training set.

3.1 Radial Basis Functions

RBF interpolation is an efficient way to approximate scattered data in high-
dimensional space. Consider the domain � ⊆ R

d and the function h := R
d −→ R.

Assume that h is difficult to evaluate, or known only at a few points in�. Let� be the
kernel function having the property that�(μ1, μ2) = �(‖μ1 − μ2‖),∀μ1, μ2 ∈ �.
Typically, the Euclidean norm is used. Such kernels have the name of radial basis
functions since they are radially symmetric. We seek an approximation s : Rd −→ R

to the function h given as

s(μ) :=
�∑

i=1

ci�(‖μ − μi‖), ∀μ ∈ �. (3)

The coefficients {ci }�i=1 are determined by enforcing the interpolation condition
h(μi ) = s(μi ), i = 1, 2, . . . , �. This amounts to solving the linear system of equa-
tions ⎡

⎢
⎢
⎢
⎣

�(μ1, μ1) �(μ1, μ2) · · · �(μ1, μ�)

�(μ2, μ1) �(μ2, μ2) · · · �(μ2, μ�)
...

...
. . .

...

�(μ�, μ1) �(μ�, μ2) · · · �(μ�, μ�)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
R

⎡

⎢
⎢
⎢
⎣

c1
c2
...

c�

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
c

=

⎡

⎢
⎢
⎢
⎣

h(μ1)

h(μ2)
...

h(μ�)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
d

(4)

The points {μi }�i=1 ∈ � are called the centers of the radial basis functions. Under
the assumption that the centers are pairwise distinct, it can be proven that the RBF
kernel matrix R is positive definite for some suitable choice of radial basis functions
� and thus Eq. (4) has a unique solution. We refer to [21, Chap. 6] for the proof and
detailed treatment. Table1 provides a list of commonly used radial basis functions.
All of the radial basis functions in Table1 have global support. There exist also radial
basis functions with local support. For more details we refer the reader to [3].

In practice, the class of radial basis functions that have the positive definite prop-
erty (R being positive definite) is limited to a few, such as Gaussian and Inverse
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Table 1 Common radial basis kernels

Kernel �(r) := �(‖μ − μi‖)
Gaussian e−σ 2r2

Thin-plate splines r2 ln(r)

Multiquadric
√
r2 + σ 2

Inverse multiquadric
1√

r2 + σ 2

multiquadric. The class of admissible basis functions (�(·)) can be expanded by
defining the so called conditionally positive definite functions, by which the positive
definiteness can be satisfied by imposing some additional constraints given as,

M∑

j=1

ci p j (μ) = 0, i = 1, 2, . . . , �.

The functions p1, p2, . . . , pM are a basis of the polynomial space with suitable
degree. In practice, we choose M to be equal to the number of scalar parameters d.
With the new conditions imposed, the radial basis interpolant now becomes,

s(μ) :=
�∑

i=1

ci�(‖μ − μi‖) +
M∑

j=1

λ j p j (μ). (5)

We then obtain a saddle-point system of dimension NRBF := (M + �) × (M + �):

[
R P
PT 0

] [
c
λ

]

=
[
d
0

]

(6)

With a proper choice of p1, p2, . . . , pM , the augmented coefficient matrix is posi-
tive definite for all choices of radial basis functions in Table1 and this ensures the
uniqueness of the interpolant. For a detailed discussion of the rationale behind the
idea of conditionally positive definite functions, we refer to [21, Chap. 6].

3.2 POD-Greedy Algorithm with Adaptive Sampling

Now we detail the proposed approach of adaptively constructing the training set
for the RB method. The proposed adaptive parameter sampling scheme is general
and can be combined with the standard greedy algorithm for steady parametric sys-
tems, or with the POD-greedy algorithm (Algorithm 1) for time-dependent systems,
to adaptively update the training set and reduce the offline costs. Since the frame-
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work is similar, we only present the adaptive parameter sampling approach with
POD-Greedy for time-dependent problems. The standard POD-Greedy algorithm is
presented in Algorithm 1. POD-greedy with adaptive sampling is presented as Algo-
rithm 2, where it can be seen that the training set (	c) is updated at each iteration.

Algorithm 2 is initialized using a coarse training set 	c, with cardinality Nc.
At the end of each iteration, we compute the error estimator only over the coarse
training set 	c, i.e., �(μ), ∀μ ∈ 	c (compare Step 6 in Algorithm 1 with Step 4
in Algorithm 2). We use this as the input data to form the radial basis interpolant
over the fine training set, i.e., s(μ) , ∀μ ∈ 	 f , where	 f is a finely sampled training
set of cardinality N f � Nc. The evaluation costs areO((Nc + M)3) for identifying
the interpolant coefficients, and O(N f Nc) for interpolating over the fine training
set. Here M is the number of polynomial functions added to make the augmented
coefficient matrix in Eq. (6) conditionally positive definite. Since Nc, M are both
small numbers, the cost of evaluating s(μ) ismuch smaller than the cost of computing
�(μ) which includes solving the ROM for each μ. We enrich the coarse training
set by adding new parameters from 	 f to 	c. We add those nadd new parameters
that have the largest magnitude of s(μ), where nadd can be fixed and user-defined.

One heuristic way of varying nadd adaptively is nadd = log10

(⌊ max
μ∈	c

�(μ)

tolerance

⌋)

.

Additionally, we also monitor the coarse training set to identify those points μ̆ ∈ 	c

with �(μ̆) < tol. Those points are then removed from 	c, meaning that their
corresponding full solutions need not be computed to enrich the RB basis. In this
way, the coarse training set gets updated iteratively and its size remains as small as
possible, avoiding many unnecessary full simulations of the FOM.

In this work, we make use of the estimator proposed in [5]. It is given by,

�k+1(μ) := 
̄‖rk+1
pr ‖,

where rk+1
pr is the residual obtained by substituting the approximate solutionVxk+1

r in
Eq. (1), at each time instance t k+1. The term 
̄ involves the norm of the approximate
solution to the dual system and its residual. Additionally, it involves two terms that
need to be estimated. The first is the inf-sup constant, given by the smallest singular
value of the matrix E(μ) (when considering the Euclidean norm). The second term
to be estimated involves the residual of an auxiliary system. For a more detailed
discussion, we refer the reader to [5]. In the implementation of Algorithms 3 and 4,
we have made use of the method proposed in [15] to estimate the inf-sup constant
efficiently.

Remark 1 (Interpolating small values) The magnitudes of the errors we interpolate
are often very small, especially at the latter iterations of the greedy algorithm. To
ensure good, stable interpolation, we consider the input data to the RBF as the base 10
logarithm of the estimated errors. After interpolation, we perform the anti-logarithm
and project the logarithm value back to the actual error value.
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Algorithm 1 Standard POD-Greedy
Input: Training set 	, Tolerance (tol).
Output: V
1: Initialize. V = [ ], μ∗ ∈ 	.
2: while �(μ∗) > tol do
3: Compute full order solution at μ∗. X = [x(t1, μ∗), x(t2, μ∗), . . . , x(t K , μ∗)].
4: Form X̄ := X − VVTX; Obtain X̄

svd−−→ U�WT .
5: Update V:= orth[V, U(: , 1)].
6: Solve the ROM and compute the error estimator �(μ), ∀μ ∈ 	.
7: Next μ∗ is chosen as, μ∗ := arg max

μ∈	
�(μ).

8: end while

Algorithm 2 POD-Greedy with adaptive parameter sampling
Input: Coarse training set 	c, Fine training set 	 f , Tolerance (tol).
Output: V.
1: Initialize. V = [ ], μ∗ ∈ 	c.
2: while �(μ∗) > tol do
3: Perform Steps 3-5 in Algorithm 1.
4: Solve the ROM and compute the error estimator �(μ), ∀μ ∈ 	c.
5: Form RBF interpolant s(μ) of �(μ) over 	 f .
6: Calculate nadd, pick {μ1, . . . , μadd} from 	 f with largest errors measured by s(μ).
7: Update the training set.	c := [	c ∪ {μ1, . . . , μadd}] (Add samples to the current training set

	c). Find all μ̆i ,∀i = 1, . . . , ndel with �(μ̆i ) < tol. Set 	c := 	c \ {μ̆i ,∀i = 1, . . . , ndel}
(Remove unnecessary samples from the current training set 	c).

8: Next μ∗ is chosen as, μ∗ := arg max
μ∈	c

�(μ).

9: end while

3.3 A Fully Adaptive POD-Greedy-(D)EIM Algorithm

An adaptive version of Algorithm 1, called the Adaptive POD-Greedy-(D)EIM algo-
rithm, is proposed in [5] for nonlinear systems, which aims to update the RB, (D)EIM
basiswith an adaptively chosen number of basis vectors at each iteration of the greedy
algorithm. In case of a nonlinear or nonaffine system, the standard POD-Greedy algo-
rithm usually precomputes the (D)EIM basis and the interpolation index matrix, U f

and P f . Unlike the standard POD-Greedy algorithm (Algorithm 1), the Adaptive
POD-Greedy algorithm (Algorithm 3) updates the (D)EIM matrix inside the greedy
algorithm. This avoids many additional FOM simulations caused by the separate
(D)EIM computation outside the POD-Greedy loop. To ensure a reliable ROM, an
efficient a posteriori error estimator (�(μ)) is used.

The algorithm updates the RB vectors and (D)EIM basis vectors at every iteration
(Steps 5–8 in Algorithm 3). The number of RB basis vectors, δRB, and that of (D)EIM
basis vectors, δDEIM, to be added to/removed from the current basis are computed
adaptively, see Step 8 in Algorithm 3. For details of computing δRB and δDEIM, we
refer the reader to [5]. We note that for this algorithm, the training set is fixed.
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Algorithm 3 Adaptive POD-Greedy-(D)EIM algorithm
Input: Training set 	, Tolerance (tol).
Output: V, DEIM matrices U f ,P f .
1: Initialize. V = [ ], μ∗ ∈ 	, δRB = 1, �DEIM = 1, δDEIM = 0, U f = [ ],P f = [ ], F = [ ].
2: while �(μ∗) > tol do
3: Compute full order solution at μ∗. Form the snapshot matrices:

X = [x(t1, μ∗), x(t2, μ∗), . . . , x(t K , μ∗)] and
Fnew = [ f (x(t1, μ∗)), f (x(t2, μ∗)), . . . , f (x(t K , μ∗))].

4: Form X̄ := X − VVTX; obtain X̄
svd−−→ U�WT .

5: Update V:= orth
([V, U(: , 1 : δRB)]) if δRB ≥ 0; remove δRB vectors from V if δRB < 0.

6: Compute �DEIM (D)EIM interpolation basis vectors from snapshots of the nonlinear function,
F := [F,Fnew].

7: Solve ROM and compute the error estimator �(μ), ∀μ ∈ 	.
8: Based on �(μ), decide the new number δRB and δDEIM using the adaptive scheme in [5].

�DEIM = �DEIM + δDEIM.
9: Next μ∗ is chosen as, μ∗ := arg max

μ∈	
�(μ).

10: end while

Algorithm 4 Adaptive POD-Greedy-(D)EIM with adaptive parameter sampling
Input: Coarse training set 	c, Fine training set 	 f , Tolerance (tol).
Output: V, DEIM basis U f ,P f .
1: Initialize. V = [ ], μ∗ ∈ 	c, �RB = 1, �DEIM = 1, δDEIM = 0, U f = [ ],P f = [ ].
2: while �(μ∗) > tol do
3: Perform Steps 3-6 in Algorithm 3.
4: Solve ROM and compute the error estimator �(μ), ∀μ ∈ 	c .
5: Based on �(μ), decide on the new number δRB and δDEIM using the adaptive scheme in [5].

�DEIM = �DEIM + δDEIM.
6: Perform Steps 5-8 in Algorithm 2
7: end while

With the proposed adaptive sampling technique, we present a fully adaptive POD-
Greedy-(D)EIM algorithm: Algorithm 4. It is a combination of Algorithm 3 with
the adaptive sampling approach as presented in Algorithm 2. Since the adaptive
sampling scheme is the same as in Algorithm 2, we omit the detailed explanation
for Algorithm 4. One only needs to keep in mind that the error estimator is computed
only over the coarse training set, see Step 4. To estimate the errors at samples in the
fine training set, the error surrogate s(μ) is computed and used, see Step 6.

3.4 A Strategy for Shape Parameter Selection

In [16], the authors propose a technique to adaptively sample parameters based on
Kriging interpolation, where several hyper-parameters need to be estimated. As an
alternative, we use RBF to interpolate an efficient output error estimator. Based on
the choice of the kernel used, RBF involves at most one free parameter the user has
to specify. This is the case for Gaussian or Multiquadric kernels, where the shape
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parameter σ needs to be determined. For the case of Thin-plate spline kernels, there
are no free parameters to choose. A good choice of the shape parameter is essential
to ensure that the RBF kernel matrix (R) remains well-conditioned [7]. In [18], a
heuristic approach is introduced to determine the optimal shape parameter based on
the idea of the Leave One Out Cross-Validation (LOOCV) strategy commonly used
in the field of statistics [13]. The main idea of LOOCV is to utilize the available
data and find a σ that best fits the data. Below, we briefly describe how we use it to
estimate the shape parameter. For more details on the method and its generalization
- the k-fold cross validation, we refer to [13].

(i) We start with the available � centers and data points
(
μi ,�(μi )

)
,∀i = 1, . . . , �

for the RBF interpolation.
(ii) For every μi ,∀i = 1, . . . , �, compute a ‘less accurate’ radial basis interpolant

sμi (μ) by removing the i th row and i th column of the RBF kernel matrix R
and the i th row of the input data vector d. Note that sμi (μi ) is actually an
approximation of h(μi ), whereas, s(μi ) = h(μi ) (recall Eq. (4)).

(iii) Following this, we have the error between h(μi ) and sμi (μi ): eμi := h(μi ) −
sμi (μi ). Since h(μi ) = s(μi ), we have

eμi = s(μi ) − sμi (μi ), i = 1, . . . , �.

(iv) Form the error vector e = [eμ1 , eμ2 , . . . , eμ� ].
(v) Choose the optimal σ as σ ∗ = arg min

σ∈[σmin ,σmax]
‖e(σ )‖2.

We solve the minimization problem using the MATLAB® function fminbnd, as
suggested in [7]. For the success of the adaptive sampling approach, the following
criteria are crucial:

1. Good data: The input data to the RBF should be ‘good’. This means that we are
interpolating something meaningful to the problem we are trying to approximate.

2. Good shape parameter: The RBF interpolation should be robust, ensuring that
the interpolated values can act as ‘good’ surrogates of the actual values.

We ensure the first criterion by using an efficient output error estimator for the RB
method from [5]. This is a residual based estimator suitable for nonlinear dynamical
systems and tailored for output error estimation. Meanwhile, the second criterion is
ensured by adopting the LOOCV strategy described above.

4 Numerical Results

In this section, we validate the proposed adaptive parameter sampling method using
three examples. The first is a nonlinear Burgers’ equation model with one parameter.
The second is a two-parameter linear convection-diffusion model. The last one is a
three-parameter model of a microthruster unit. All numerical tests were performed
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in MATLAB®2015a, on a laptop with Intel®Core™i5-7200U@ 2.5 GHZ, with 8 GB
of RAM. For all the examples,

• The Adaptive POD-Greedy-(D)EIM algorithm proposed in [5] is used for basis
construction. Therefore, we compare the results of Algorithm 3 with fixed training
set with those of Algorithm 4 with adaptive training set.

• The maximal output error over the test set 	test is defined as

εmax := max
μ∈	test

(
1

K

K∑

k=1

‖yk(μ) − ȳk(μ)‖
)

. (7)

• The mean (over time steps) output error over 	test is defined as

ε(μ) :=
(
1

K

K∑

k=1

‖yk(μi ) − ȳk(μi )‖
)

, ∀μ ∈ 	test. (8)

• The semi-implicit Euler scheme is used for time discretization.
• If not particularly pointed out, the initial coarse training set 	c for Algorithm 4 is
the same as the fixed training set 	 for Algorithm 3.

4.1 Burgers’ Equation

We consider the 1-D model of the viscous Burgers’ equation. The PDE is defined in
the spatial domain w ∈ � := [0 , 1] and for time T := [0 , 2] as

dv
dt + v ∂v

∂w
= q ∂2v

∂w2 + s(w, t), v(0, t) = 0, ∂v(1,t)
∂w

= 0.

where v(w, t) is the unknown variable and q ∈ P := [0.001 , 1] is the viscosity
parameter. The initial condition is set as zero and a constant input to the system is
s(w, t) ≡ 1. The output is monitored on the last spatial point in the domain y =
v(1, t). The model has N = 500 equations after discretization in space.

We show the results of Algorithms 3 and 4, respectively. The tolerance is set as
tol = 10−5. To implement the RB method without adaptive parameter sampling,
i.e. Algorithm 3, we choose an initial training set consisting of 10 random param-
eter samples, using the rng command in MATLAB®, with the seed value 112 for
the random number generator twister. The fine training set 	 f for Algorithm 4
consists of 300 random samples from the same parameter domain, sampled using
the seed value at 114 for the random number generator twister. Finally, 100 dif-
ferent random samples are considered for the test parameter set 	test, sampled using
simdTwister with the seed value 200. To construct the error surrogate model
s(μ) in Algorithm 4, the Inverse Multiquadric (IMQ) kernel function is used for the
RBF interpolation. Cross validation LOOCV has been applied to specify the shape
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Fig. 1 Results for the Burgers’ equation

Fig. 2 Burgers’ equation: training set evolution

parameter. Since the model is nonlinear, DEIM [4] is used in order to efficiently
compute the nonlinear term.

In Fig. 1a shows the decay of the maximal output error, i.e. εmax, over the test
set 	test. It is calculated at every iteration of either Algorithm 3 or 4. The former
results in a ROM of dimension 11, while the latter results in a ROM of dimension 28.
Evidently, using an adaptive training set leads to a better convergence. Algorithm 3
converges in 7 iterations, while Algorithm 4 requires 18 iterations to converge. How-
ever, as seen from the output error ε(μ) of the final ROM over the test set 	test

in Fig. 1b, Algorithm 4 produces a ROM with errors being uniformly below the tol-
erance, whereas, the ROM computed using Algorithm 3 has large errors above the
tolerance. In Fig. 2, we show the evolution of the coarse training set 	c for different
iterations of Algorithm 4. It is seen that the algorithm tends to pick parameters in
the low-viscosity regions (close to 0.001), as expected, since the solution of the PDE
tends to be ‘less smooth’, requiring more basis functions to approximate.
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Fig. 3 Results for the Convection-diffusion equation

4.2 Convection-Diffusion Equation

Next, we consider a 1-D model of brain transport, originally discussed in [1] and
also considered in [9, 22]. The transport is modelled as a linear convection-diffusion
PDE defined in the spatial domain w ∈ � := [0 , 1] and for time T := [0 , 1],

dv

dt
= q1

∂2v

∂w2
+ q2

∂v

∂w
− q2, (9)

where v(w, t) is the state vector and the two parameters (q1, q2) ∈ P := [0.001 , 1]
× [0.5 , 5] are the diffusion and convection constants, respectively. The boundary
conditions are given by,

v(w, 0) =
{
1, w ≤ 0.5

0, otherwise
, v(0, t) = v(1, t) = 0.

We discretize the equation using the FDM on a grid yielding n = 800. The output
is calculated as the average value of the state in a small interval �o centered around
the midpoint of the domain at w = 0.5.

y(t) := 1

|�o|
∫

�o

v(w, t)dw, �o := [0.495 , 0.505].

The tolerance is set astol = 10−5. ForAlgorithm3,we set	 as a set including 25
random samples from the parameter domainP , picked using the rng command and
making use of twister, with a seed of 112. The fine training set	 f forAlgorithm4
includes 1600 equidistant samples inP . We choose a test set 	test consisting of 625
random samples. The test parameters are generated using the same random number
generator as for the Burgers’ equation example, viz., simdTwister with a seed
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Fig. 4 Convection-diffusion equation: training set evolution

of 200. The error surrogate model s(μ) in Algorithm 4 is constructed using IMQ
kernel function, where cross validation LOOCVhas been applied to specify the shape
parameter.

Figure 3a shows the maximal error decay (εmax) over 	test, computed at each
iteration of Algorithms 3 and 4, respectively. It is clear that adaptively enriching the
training set leads to orders of magnitude faster convergence to the required accuracy.
For Algorithm 3, the ROM size is 38 and for Algorithm 4, it is 63. Figure3b plots
the error ε(μ) (Eq. (8)) of the final ROM at every parameter in the test set 	test, for
the case of an adaptive training set and a fixed training set. We see that for some test
parameters, the required tolerance is not met by the ROM computed using the fixed
training set. In Fig. 4, the evolution of the training set is shown at different stages
of Algorithm 4. It can be seen that samples from the left boundary of the parameter
domain are added or kept. This has physical sense as this corresponds to the lower
viscosity regions where the convective part of the solution dominates and the solution
is ‘less smooth’. Thus, more basis functions are required for a good approximation.

In order to achieve a better ROM by using the fixed training set, we tried a 	

with 225 random samples for Algorithm 3, leading to a ROM with error below the
tolerance. In Table2a, we provide the runtime results of both algorithms,whereAlgo-
rithm 3 uses the refined training set with 225 samples. On the other hand, the initial
coarse training set and the fine training set for Algorithm 4 remain the same. Algo-
rithm 4 with adaptive sampling outperforms Algorithm 3, though both approaches
produce accurate ROMs.

4.3 A Thermal Model

The final example is the Thermal model taken from the MORWiki benchmark col-
lection.1 It models the heat transfer in a microthruster unit. The system is governed
by the following semi-discretized ODE,

1 https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Thermal_
Model.
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Eẋ =
(

A −
3∑

i=1

hiAi

)

x + Bu.

Themodel has been discretized in space using the FEMand thematrices are available
from the Oberwolfach Benchmark Collection hosted at MORWiki. The dimension
of the system is n = 4257. The parameters {hi }3i=1 are the film coefficients at the top,
bottom and side of the microthruster unit, respectively. They have a range between
[1 , 108] in our simulations. The output is the temperature at the center of the polysil-
icon heater in the unit, which corresponds to the first row of the output matrix C .

Since this is a three-parameter problem with very large parameter domain,
we use a large fixed training set (	) with 63 logarithmically equidistant param-
eter samples for Algorithm 3 for a fair comparison. For Algorithm 4, the initial
coarse training set includes only Nc = 10 randomly chosen samples. To gener-
ate these random samples, we first generate a uniform sampling of each param-

eter h j , j = 1, 2, 3, given as, hi j = 10
i

Nc/8 , i = 1, 2, . . . , Nc, which leads to a
matrix (hi j ) ∈ R

Nc×3. Then, the rows of the matrix are permuted using the rng
and randperm commands. The seeds and random number generators used are
100 (twister), 120 (combRecursive) and 600 (combRecursive), respec-
tively. In this way, we get random samples which spread through the 3-D parameter
domain. The fine training set 	 f for Algorithm 4 is made up of 163 equidistant sam-
ples, while the test set 	test consists of 83 logarithmically equidistant samples. For
the RBF interpolation, Thin-plate spline kernel is used. No shape parameter needs
to be determined. The tolerance for this model is set as tol = 10−3. In Fig. 5a, we
show error decay εmax over 	test at each iteration of Algorithms 3 and Algorithm 4,
respectively. Algorithm 3 takes 23 iterations to converge with the fixed training set
	. The resulting order of the ROM is 44. However, the maximum error εmax (Eq.
(7)) over the test set 	test is still above the tolerance. Algorithm 4 converges in 24
iterations, to a ROM of order 74. The maximum error εmax over 	test is below the
tolerance upon convergence. We note that, in the first few iterations, Algorithm 3 has
a faster convergence in comparison to Algorithm 4. However, since the training set
is fixed, the convergence eventually saturates. In Fig. 5b, we plot the error ε(μ) of
the final ROM over 	test, computed by the two algorithms respectively. Algorithm 4
once again outperforms Algorithm 3.

In Table2b, we provide the runtime comparison between Algorithms 3 and 4
for the thermal model, where an obvious speed-up by Algorithm 4 is observed.
More importantly, with the reduced runtime, Algorithm 4 produces a ROM with
sufficient accuracy, whereas, the ROM computed by Algorithm 3 still does not meet
the accuracy requirement. This further justifies the motivation of using adaptive
sampling for models with two or more parameters, especially when the parameter
domain is very large.
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Table 2 Runtime comparison between Algorithms 3 and 4

(a) Convection-diffusion example

Algorithm Runtime (seconds)

Fixed training set (Algorithm 3) 74.09

Adaptive training set (Algorithm 4) 41.52

(b) Thermal example

Algorithm Runtime (seconds)

Fixed training set (Algorithm 3) 151.16

Adaptive training set (Algorithm 4) 38.76

Fig. 5 Results for the thermal model

5 Conclusion

Using a fixed training set in the POD-Greedy algorithmmay either entail high compu-
tational costs or lead to large errors if the parameter domain is not properly sampled.
In this work, we introduce a method to construct the training set for the RB method
in an adaptive manner. To achieve this, we make use of an error surrogate model
based on RBF interpolation.

The use of an error surrogatemodel enables sufficient exploration of the parameter
space, since it avoids the need to solve the ROM at every parameter in the training
set, as required by the error estimator. Furthermore, we implement a cross validation
strategy in order to choose good shape parameters for the RBF kernels. The proposed
algorithm is tested on several examples and it is shown to be effective in constructing a
ROMwith required accuracy. Furthermore, the adaptive parameter sampling method
is integrated with the adaptive POD-Greedy-(D)EIM algorithm in [5] to achieve a
fully adaptive scheme for the RB method.
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As future work, we propose to extend the adaptive sampling approach to the
frequency domain model reduction methods, such as multi-moment matching [8], in
order to adaptively sample the interpolation points.
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Balanced Truncation Model Reduction
for Lifted Nonlinear Systems

Boris Kramer and Karen Willcox

Abstract We present a balanced truncation model reduction approach for a class of
nonlinear systems with time-varying and uncertain inputs. First, our approach brings
the nonlinear system into quadratic-bilinear (QB) form via a process called lifting,
which introduces transformations via auxiliary variables to achieve the specified
model form. Second, we extend a recently developedQBbalanced truncationmethod
to be applicable to such lifted QB systems that share the common feature of having
a system matrix with zero eigenvalues. We illustrate this framework and the multi-
stage lifting transformation on a tubular reactor model. In the numerical results we
show that our proposed approach can obtain reduced-order models that are more
accurate than proper orthogonal decomposition reduced-order models in situations
where the latter are sensitive to the choice of training data.

Keywords Balanced truncation · Nonlinear model reduction · Lifting
transformation · Quadratic-bilinear models

1 Introduction

We consider reduced-order modeling for large-scale nonlinear systems with time-
dependent and uncertain inputs, as suchmodels appear inmany practical engineering
applications. A reduced-order model (ROM) has to capture the rich dynamics result-
ing from time-dependent inputs [1]. Proper orthogonal decomposition (POD) [18] is
themost commonmodel reduction framework for nonlinear systems. As a trajectory-
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based method, POD relies on user-specified training data, leaving the method vul-
nerable to poor choices in training inputs.

Interpolatorymodel reduction approaches that focus on the transfer functionmap-
ping from inputs to outputs—and do not require training data—are mature for lin-
ear systems [1, 2]. Moreover, significant progress has been made for input-output
model reduction for nonlinear systems with known governing equations [4, 6, 8].
In the situation where the governing equations are unknown and only frequency-
domain input-output data is available, Antoulas and Gosea [13] proposed a data-
driven reduced-order modeling framework for quadratic-bilinear (QB) systems.

Balanced truncationmethods offer another promising avenue formodel reduction.
Initially proposed by Moore [24] for linear systems, many extensions are available,
such as snapshot-based approximations (in the stable [29] and unstable case [11]),
as well as weighted and time-limited balanced truncation methods, see e.g., the sur-
vey [16]. Extending balancing transformations to large-scale nonlinear systems is an
open problem, since the balancing transformations become state-dependent (see [12,
27]) and are hence impractical when the model dimension is large. To overcome this
computational bottleneck, approximate Gramians that are state-independent (as they
are in the linear case) can be used. Balanced truncation for nonlinear systems based
on algebraic Gramians [14] requires the solution of Lyapunov-type equations, and
is hence appealing from a computational perspective. A computationally efficient
framework via truncated Gramians for QB systems has been proposed in [5]. Empir-
ical Gramians for nonlinear systems [21] can also be used, yet their computation
requires as many simulations of the full systems as there are inputs and outputs:
each simulation uses an impulse disturbance per input channel while setting the
other inputs to zero. A method for approximating the nonlinear balanced truncation
reduction map via reproducing kernel Hilbert spaces has been proposed in [7].

In this work, we propose a balanced truncation model reduction method for a
class of nonlinear systems with time-varying inputs. As a first step, we use variable
transformations and lifting, which allows us to bring the nonlinear system inQB form
via the introduction of auxiliary variables. Lifting transformations that transform
general nonlinear systems into polynomial models have been explored over several
decades in different communities [4, 15, 19, 20, 22, 23, 26, 28]. We show that the
lifted QBmodels often have a special structure, namely that the linear system matrix
becomes has zero eigenvalues, making the balancing algorithm for QB systems [5]
not directly applicable due to the typical requirement that the systemmatrix be stable.
We thus propose a modified approach for balanced truncation of lifted QB systems,
which uses the definition of the lifted variable to artificially introduce a stabilization
to the system. As an example, we consider a nonlinear tubular reactor model for
which we present a lifting transformation that brings the model into QB form, and
subsequently perform balancing.

This paper is organized as follows. Section2 reviews truncated Gramians for QB
systems. Section3 illustrates that lifted QB models often have a common structure
and also introduces the tubular reactor model and its lifted QB model. Section4 pro-
poses our balancing approach for lifted QB systems with special structure. Section5
presents numerical results for the tubular reactor model.
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2 Quadratic-Bilinear Systems and Balancing

A QB system of ordinary differential equations can be written as

ẋ = Ax + H(x ⊗ x) +
m∑

k=1

(Nkx)uk + Bu, (1)

y = Cx, (2)

where x(t) ∈ R
n is the state, t ≥ 0 denotes time, the initial condition is x(0) = x0,

u(t) ∈ R
m is a time-dependent input and uk its kth component, B ∈ R

n×m is the
input matrix, A ∈ R

n×n is the system matrix, C ∈ R
p×n is the output matrix and the

Nk ∈ R
n×n, k = 1, . . . , m represent the bilinear coupling between input and state.

The matrix H is viewed as a mode-1 matricization of a tensor H ∈ R
n×n×n , so

H(1) = H. Moreover, H(2) denotes the mode-2 matricization of the tensor H. We
assume without loss of generality (see [4, Sect. 3.1]) that the matrix H is symmetric
in that H(x1 ⊗ x2) = H(x2 ⊗ x1).

For system (1)–(2) the controllability and observability energy functions are
defined as

Ec(x0) := min
u∈L2(−∞,0),x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2dt,

Eo(x0) := 1

2

∫ ∞

0
‖y(t)‖2dt,

where Ec quantifies the minimum amount of energy required to steer the system
from x(−∞) = 0 to x(0) = x0, and Eo quantifies the output energy generated by the
nonzero initial condition x0 and u(t) ≡ 0.

Balanced truncation achieves reduction in the dimension of the state space by
eliminating those states that are hard to control (large Ec) and hard to observe (small
Eo). Thus, an important component of balanced truncation model reduction is to find
the coordinate transformation that ranks the controllability and observability of the
states. The Gramian matrices (formally introduced below) are central to finding this
balanced coordinate transformation for system (1)–(2). In particular, if symmetric
positive definite Gramians P = LPLP

� andQ = LQLQ
� for the QB system (1)–(2)

are available, we can obtain transformation matrices V and W, with V = W−1 that
diagonalize the Gramians,V�PV = W�QW = S = diag(σ1, . . . , σn), where σi are
the singular values1 of LQ

�LP. The energy functions in the balanced state x̃ = Wx
can then be bounded as Ec(x̃) ≥ 1

2 x̃
�S−1x̃, and Eo(x̃) ≤ 1

2 x̃
�Sx̃ in a neighborhood

of the origin [5, Sect. 4]. From these inequalities, we see that states corresponding
to small singular values of LQ

�LP are hard to control and hard to observe. The
subspaces spanned by the singular vectors corresponding to small singular values
can thus be discarded in a ROM.

1 In the linear case those would be the Hankel singular values.
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We now turn to the computation of the Gramian matrices P andQ. For the special
case of QB systems, the next proposition states conditions under which approximate
algebraic Gramians exist, and suggests a computational framework to find those.

Proposition 1 ([5], Cor. 3.4)Consider the QB system (1)–(2). IfA is a stable matrix,
then the truncated Gramians PT ,QT are defined as solutions to

APT + PT A� + H(P1 ⊗ P1)H� +
m∑

k=1

NkP1N�
k + BB� = 0, (3)

A�QT + QT A + H(2)(P1 ⊗ Q1)(H(2))� +
m∑

k=1

N�
k Q1Nk + C�C = 0, (4)

where P1 and Q1 are solutions to the standard linear Lyapunov equations

AP1 + P1A� + BB� = 0, A�Q1 + Q1A + C�C = 0. (5)

The Gramians PT , QT are used to obtain a QB reduced-order model (QB-ROM)
as follows: Compute the singular value decomposition L�

QT
LPT = USV� and let

its rank r approximation be denoted as UrSrV�
r . The projection matrices are W =

LQT UrS−1/2
r and V = LPT VrS−1/2

r . The balanced QB-ROM has the form

˙̂x = Â̂x + Ĥ(̂x ⊗ x̂) +
m∑

k=1

N̂k x̂uk + B̂u, (6)

ŷ = Ĉ̂x. (7)

with the matrices Â = W�AV, B̂ = W�B, Ĉ = CV, N̂k = W�NkV, Ĥ =
W�H(V ⊗ V). The Gramians of the QB-ROM are balanced, i.e., the matrices
P̂T = Q̂T are equal and diagonal.

3 Lifting Systems to QB Form: Introducing Structure

In Sect. 3.1 we illustrate that lifting transformations for nonlinear systems often lead
to a specific structure of the lifted system. Section3.2 introduces a nonlinear tubular
reactor model, and its subsequent lifted QB model with this special structure.

3.1 Structure in Lifted QB Systems

As an example of a higher-order dynamical system that can be lifted to QB form,
consider the nonlinear ordinary differential equation
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ẋ =
d∑

k=1

ak xk + bu, (8)

where x(t) is the one-dimensional state variable, a1, . . . , ad are known coefficients,
xk is the kth power of x(t), u(t) is an input function, and b ∈ R is a parameter. We
consider here a one-dimensional ordinary differential equation (ODE) for illustra-
tion and note that the lifting framework directly applies to n-dimensional nonlinear
systems. Our goal is to rewrite this system in QB form by introducing auxiliary
variables. For this example, we define auxiliary variables w� := x�+1, so that the
governing equation can be written as a linear system

ẋ = a1x +
d−1∑

k=1

ak−1wk + bu. (9)

The auxiliary state dynamics are computed via the chain rule (or Lie derivative) as

ẇ� = d

dt
x�+1 = (� + 1)x� ẋ = (� + 1)w�−1

(
a1x +

d−1∑

k=1

ak−1wk + bu

)
,

and here w0 := x . Note that the right-hand-side contains quadratic products
w�−1(t)wk(t) as well as bilinear products b(� + 1)u(t)w�−1(t). Another choice to
write the auxiliary dynamics would be to replacew�−1x withw�. Next, we show two
examples of polynomial and non-polynomial models where lifting leads to a similar
structure.

Example 1 Consider the ODE

ẋ = ax3 + bu. (10)

Our goal is to lift this system to QB form by introducing auxiliary variables. Let

w1 = x2, w2 = x3,

be the auxiliary variables. Note that the original dynamics then become linear, i.e.,
ẋ = aw2 + bu. We compute the auxiliary state dynamics ẇ1 = 2x ẋ = 2axw2 +
2xbu and ẇ2 = 3x2 ẋ = 3w1(aw2 + bu). Taken together, the nonlinear equation (10)
with one state variable is equivalent to the QB-ODE with three state variables

ẋ = aw2 + bu, ẇ1 = 2axw2 + 2bxu, ẇ2 = 3aw1w2 + 3bw1u. (11)

The system (11) is equivalent to the original nonlinear equation (10), in the sense
that both systems yield the same solution x(t). We can write (11) in the QB form of
equation (1) with the lifted state x = [x, w1, w2]� and matrices
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A =
⎡

⎣
0 0 a
0 0 0
0 0 0

⎤

⎦ , H =
⎡

⎣
0 0 0 0 0 0 0 0 0
0 0 2a 0 0 0 0 0 0
0 0 0 0 0 3a 0 0 0

⎤

⎦ , N1 =
⎡

⎣
0 0 0
2b 0 0
0 3b 0

⎤

⎦ , B =
⎡

⎣
1
0
0

⎤

⎦ .

(12)
Example 2 Consider an ODE with non-polynomial term and linear term:

ẋ = ax + e−x + bu,

which we lift to QB form. We introduce w1 = e−x as the auxiliary variable, so that
ẇ1 = −w1(ax + w1 + bu) = −aw1x − w2

1 − w1bu, which can be written in QB
form as

[
ẋ

ẇ1

]
=

[
a 1
0 0

] [
x

w1

]
+

[
0 0 0 0
0 0 −a −1

] ([
x

w1

]
⊗

[
x

w1

])
+

[
0 0
0 −b

] [
x

w1

]
u +

[
b
0

]
u.

(13)

We observe that the lifted matrices in the previous two examples (Eqs. (12) and
(13)) have the following block-structure:

A =
[
A11 A12

0 0

]
, H =

[
0
H2

]
, N =

[
0 0
N21 N22

]
, B =

[
B1

0

]
, (14)

where 0 is a matrix of zeros of appropriate dimensions. Note, that the system matrix
of the lifted system (14) has zero eigenvalues. Moreover, the original input Bu(t)
only affects the original state, but appears as a bilinear term in the auxiliary states
after application of the chain rule. Thus, the N matrix is nonzero only in the rows
corresponding to the auxiliary states. The matrix structure in Eq. (14) commonly
occurs inQB systems thatwere obtained from lifting transformations, for instance the
systems given in Example 1 and Example 2. Nevertheless, due to the non-uniqueness
of lifting transformations, the block structure in (14) is both a result of the original
dynamical system form and the chosen lifting transformation.

3.2 Tubular Reactor Model

We consider a non-adiabatic tubular reactor model with single reaction as in [17] and
follow the discretization in [30]. The model describes the evolution of the species
concentration ψ(s, t) and temperature θ(s, t) with spatial variable s ∈ (0, 1) and
time t > 0. The PDE model is

∂ψ

∂t
= 1

Pe

∂2ψ

∂s2
− ∂ψ

∂s
− D f (ψ, θ; γ ), (15)

∂θ

∂t
= 1

Pe

∂2θ

∂s2
− ∂θ

∂s
− β(θ − θref) + BD f (ψ, θ; γ ) + bu, (16)
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with input function u = u(t) and a function b = b(s) encoding the influence of the
input to the computational domain. The parameters are the Damköhler number D,
Pèclet number Pe aswell as knownconstantsB, β, θref, γ . The polynomial nonlinear
term that drives the reaction is

f (ψ, θ; γ ) = ψ(c0 + c1θ + c2θ
2 + c3θ

3)

with given constants c0, . . . c3. Robin boundary conditions are imposed on the left
boundary of the domain and Neumann boundary conditions on the right

∂ψ

∂s
(0, t) = Pe(ψ(0, t) − 1),

∂θ

∂s
(0, t) = Pe(θ(0, t) − 1),

∂ψ

∂s
(1, t) = 0,

∂θ

∂s
(1, t) = 0.

The initial conditions are prescribed as ψ(s, 0) = ψ0(s), and θ(s, 0) = θ0(s). The
output of interest is the temperature oscillation at the reactor exit, i.e., the quan-
tity y(t) = θ(s = 1, t). The diffusive and convective terms are approximated with
second-order centered differences in the interior of the domain. Second-order for-
ward and backward difference schemes are used for the inflow and outflow boundary
conditions, respectively. The finite difference approximation of dimension 2n of the
tubular reactor PDE is then

ψ̇ = Aψψ + bψ − D ψ 
 (c0 + c1 
 θ + c2 
 θ2 + c3 
 θ3), (17)

θ̇ = Aθθ + bθ + bu + BD ψ 
 (c0 + c1 
 θ + c2 
 θ2 + c3 
 θ3). (18)

Here, the (Hadamard) componentwise product of two vectors is denoted as [ψ 

θ ]i = ψ iθ i , and the powers of vectors are also taken componentwise. The constant
vector bψ encodes the boundary condition, and bθ is the sum of contributions from
the boundary conditions and the β · θref term in Eq. (16). The term Aψψ is a dis-
cretized version of the advection-diffusion terms 1

Pe ψss − ψs andAθθ is a discretized
representation of the 1

Pe θss − θs − βθ terms.
We quadratic-bilinearize the finite dimensional system via a lifting transforma-

tion.23 To lift the system, we introduce the auxiliary variables

w1 = ψ 
 θ , w2 = ψ 
 θ2, w3 = ψ 
 θ3, w4 = θ2, w5 = θ3,

so that we have the equivalent QB system of dimension 7n:

2 Lifting is not unique, and there might be lower-order quadratic systems than the one suggested
here. However, how to obtain them is an open problem.
3 Lifting for a tubular reactor model with Arrhenius reaction term has been considered by the
authors in [20], however that lifting transformation resulted in QB-DAEs, for which balancing
model reduction is an open problem.
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ψ̇ = [Aψ − Ddiag(c0)]ψ + bψ − D(c1 
 w1 + c2 
 w2 + c3 
 w3), (19)

θ̇ = Aθθ + BDc0 
 ψ + bθ + bu + BD (c1 
 w1 + c2 
 w2 + c3 
 w3), (20)

ẇ1 = ψ̇ 
 θ + ψ 
 θ̇ , (21)

ẇ2 = ψ̇ 
 w4 + 2w1 
 θ̇, (22)

ẇ3 = ψ̇ 
 w5 + 3w2 
 θ̇ , (23)

ẇ4 = 2θ 
 θ̇ , (24)

ẇ5 = 3w4 
 θ̇ . (25)

Note, that the original state equations for species and temperature, (19)–(20),
are linear in the new state variables, whereas the differential equations for the
added state variables (21)–(25) are quadratic in the state variables (after insert-
ing ψ̇, θ̇ , which are linear). Hence, the system is of QB form (1)–(2), where
x(t) = [ψ� θ� w�

1 w�
2 w�

3 w�
4 w�

5 ]� ∈ R
7n is the new lifted state. The lifted state

Eqs. (19)–(25) again induce a specific structure of the system matrices:

A =
[

A11 A12

05n×2n 05n

]
∈ R

7n×7n, A11 =
[
Aψ − Ddiag(c0) 0

0 Aθ

]
, (26a)

H =
[
02n×4n2 02n×45n2

H21 H22

]
∈ R

7n×(7n)2 , N =
[
02n×2n 02n×5n

N21 N22

]
∈ R

7n×7n, (26b)

B =
⎡

⎣
bψ 0
bθ b
05n 05n

⎤

⎦ ∈ R
7n×2, C = [

C1 05n
] ∈ R

1×7n, C1 = [02n−1 1]. (26c)

Note that the original dynamics are linear after the lifting is applied, and the auxiliary
states have no linear parts, as the time derivative of the auxiliary variables consistently
results in purely quadratic dynamics. Thus, the matrix A has zero eigenvalues, and
H is such that there is no contribution in the rows corresponding to the original state.
Moreover, the bilinear state-input interactions only occur in the auxiliary states. This
structure is exactly the one presented in Eq. (14).

4 Balancing for Lifted Systems with Special Structure

Section4.1 introduces an artificial numerical parameter that guarantees existence
of truncated Gramians. Section4.2 derives the Gramians for the linear part of the
system, while Sect. 4.3 presents the truncated Gramians for the QB system.
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4.1 Artificial Stabilization

The special structure of the system matrix A that arises from lifting transformations
leads to zero eigenvalues. Hence, there are no unique solutions to the Lyapunov
equations (3)–(5) and the standardQBbalanced truncationmethod from [5] cannot be
applied. To circumvent this problem, we observe that if the original nonlinear system
is polynomial (cf. (8) and its lifted version (9)) then −αw� + αx�+1 = 0 for any
α ∈ R. We can use this equality to artificially stabilize the linear term. For example,
in Eq. (21) of the tubular reactor ODE, we can introduce a term −αw1 + α(ψ 
 θ).
Applying this to every auxiliary variable, the linear system matrix becomes

A(α) =
[
A11 A12

0 −αI

]
, (27)

and the quadratic tensor H(α) = H + H̃(α), where H̃(α) contains the artificially
added terms such that −α[0�,w�]� + H̃(α)(x ⊗ x) = 0. With this system matrix
A(α), the Lyapunov equations (3)–(5) have unique positive semi-definite solutions
if A11 is stable. Similar concepts have been used recently in [25]. For all results in
this section to hold, we require that A11 is stable.

4.2 Balancing with Gramians of Linearized System

The Lyapunov equations for the linear system part, Eq. (5) are needed to compute
the truncated Gramians for the QB system. The next two propositions detail the
computation of those linear Lyapunov equations.

Proposition 2 The solutions to the standard linear Lyapunov equations (5) with
A(α) from equation (27) are given by

P1 =
[
P11 0
0 0

]
, Q1 =

[
Q11 Q12(α)

Q�
12(α) 1

2α Q̃22(α)

]
, (28)

where

0 = A11P11 + P11A�
11 + B1B�

1 ,

0 = A�
11Q11 + Q11A11 + C�

1 C1,

Q12(α) = −(A�
11 − αI)−1Q11A12,

Q̃22(α) = A�
12Q12(α) + Q12(α)�A12.
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Proof For the controllability Gramian computation we have that

0 =
[
A11 A12

0 −αI

] [
P11 P12

P�
12 P22

]
+

[
P11 P12

P�
12 P22

] [
A�

11 0
A�

12 −αI

]
+

[
B1B�

1 0
0 0

]
,

which results in the four equations

A11P11 + A12P�
12 + P11A�

11 + P12A�
12 + B1B�

1 = 0,

(A11 − αI)P12 + A12P22 = 0,

P�
12(A

�
11 − αI) + P22A�

12 = 0,

−2αP22 = 0.

Since (A�
11 − αI) is invertible, the last three equations yield thatP22 = 0 andP12 = 0.

Next, we consider the observability Lyapunov equation

0 =
[
A�

11 0
A�

12 −αI

] [
Q11 Q12

Q�
12 Q22

]
+

[
Q11 Q12

Q�
12 Q22

] [
A11 A12

0 −αI

]
+

[
C�

1 C1 0
0 0

]
.

Blockwise multiplication results in the three distinct equations

A�
11Q11 + Q11A11 + C�

1 C1 = 0,

(A�
11 − αI)Q12 + Q11A12 = 0,

A�
12Q12 + Q�

12A12 − 2αQ22 = 0,

which we can solve successively to get Q11,Q12,Q22. We define Q̃22(α) =
A�

12Q12(α) + Q�
12(α)A12 so that the explicit dependence on 1/α appears asQ22(α) =

1
2α Q̃22(α). �

Proposition 3 Consider the Gramians from Proposition 2, and let P11 = LP11L
�
P11

and Q11 = LQ11L
�
Q11

be Cholesky factorizations. Let the singular value decomposi-
tion approximate the product L�

Q11
LP11 ≈ UrSrV�

r . Then the projection matrices for
the balancing transformation are given as

V =
[
LP11VrS−1/2

r

0

]
, W =

[
LQ11UrS−1/2

r

Q12(α)�L−�
Q11

UrS−1/2
r

]
. (29)

Proof To obtain the balancing transformation, we need to compute the product
L�
Q1
LP1 . We have that

P1 = LP1L
�
P1

=
[
LP11 0
0 0

] [
L�
P11

0
0 0

]
.
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For the Cholesky factorization of Q1 we introduce the Schur complement S(α) =
1
2α Q̃22(α) − Q12(α)�Q−1

11 Q12(α) = LS(α)L�
S(α), so that we have

Q1 = LQ1L
�
Q1

=
[

LQ11 0
Q12(α)�L−�

Q11
LS(α)

] [
L�
Q11

L−1
Q11

Q12(α)

0 L�
S(α)

]
,

as follows from the results for the block-diagonal form of the Cholesky factorization
(which can be verified by direct computation). To obtain the balancing transforma-
tion, we consider the approximation via singular value decomposition

L�
Q1
LP1 =

[
L�
Q11

L−1
Q11

Q12(α)

0 L�
S(α)

] [
LP11 0
0 0

]
=

[
L�
Q11

LP11 0
0 0

]
≈

[Ur

0

]
Sr [V�

r 0].

We then compute

V =
[
LP11 0
0 0

] [Vr

0

]
S−1/2

r =
[
LP11VrS−1/2

r

0

]
,

W =
[

LQ11 0
Q12(α)�L−�

Q11
LS(α)

] [Ur

0

]
S−1/2

r =
[

LQ11UrS−1/2
r

Q12(α)�L−�
Q11

UrS−1/2
r

]
,

which completes the proof. �

The two propositions show that only Lyapunov equations in the original model
dimensions are necessary (and not in the lifted dimensions), which is computationally
appealing. For example, for the tubular reactor model in Sect. 3.2, the original model
dimensions are 2n and the lifted dimensions are 7n andwe only solve 2n-dimensional
Lyapunov equations.

4.3 Balancing with Truncated (Quadratic) Gramians

The next two propositions consider the solution of the Lyapunov equations (3)–(4) for
the truncated Gramians, which take into consideration the QB nature of the problem
by incorporating H and N.

Proposition 4 Let P1 be the solution from Proposition 2. The truncated Gramian
from equation (3) for the QB system is given as

PT = P1 + 1

2α

[
P̃11(α) P̃12(α)

P̃12(α)� P̃22(α)

]
(30)

via the following equations:
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P̃22(α) = H21(α)(P11 ⊗ P11)H�
21(α) + N21P11N�

21,

P̃12(α) = −(A11 − αI)−1A12P̃22(α),

0 = A11P̃11(α) + P̃11(α)A�
11 + [A12P̃12(α)� + P̃12(α)A�

12].

Proof The generalized controllability Lyapunov equation (3) is a linear equation,
therefore we can decompose the truncated Gramian PT = P1 + P2(α), where P1 is
the solution from Proposition 2. Therefore, P2(α) is the solution to

A(α)P2 + P2A(α)� + H(α)(P1 ⊗ P1)H(α)� + NP1N� = 0.

With the matrices from above, we compute

NP1N� =
[

0 0
N21 N22

] [
P11 0
0 0

] [
0 N�

21
0 N�

22

]
=

[
0 0
0 N21P11N�

21

]
,

H(α)(P1 ⊗ P1)H(α)� =
[
0 0
0 H21(α)(P11 ⊗ P11)H21(α)�

]
.

The symmetric positive semi-definite solution P2(α) needs to satisfy

0 =
[
A11 A12

0 −αI

] [
P̂11 P̂12

P̂�
12 P̂22

]
+

[
P̂11 P̂12

P̂�
12 P̂22

] [
A�

11 0
A�

12 −αI

]

+
[
0 0
0 H21(α)(P11 ⊗ P11)H21(α)�

]
+

[
0 0
0 N21P11N�

21

]
,

which yields the equations

A11P̂11 + P̂11A�
11 + A12P̂�

12 + P̂12A�
12 = 0, (31)

(A11 − αI)P̂12 + A12P̂22 = 0, (32)

P̂�
12(A

�
11 − αI) + P̂22A�

12 = 0, (33)

−2αP̂22 + H21(α)(P11 ⊗ P11)H21(α)� + N21P11N�
21 = 0. (34)

We define P̃22(α) = [H21(α)(P11 ⊗ P11)H21(α)� + N21P11N�
21], so that P̂22(α) =

1
2α P̃22(α). Due to the symmetry of P̂22(α), equations (32) and (33) are the same, and
after substitution, we obtain P̂12(α) = − 1

2α (A11 − αI)−1A12P̃22(α) := 1
2α P̃12(α),

with P̃12(α) := −(A11 − αI)−1A12P̃22(α). Substitution of P̂12(α) into equation (31)
yields the result. �

Proposition 5 Let the matrix Q1 be as in Proposition 2. The truncated Gramian QT
that solves equation (4) is given by

QT = Q1 +
[
Q̂11(α) Q̂12(α)

Q̂12(α)� Q̂22(α)

]
, (35)
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where

0 = A�
11Q̂11(α) + Q̂11(α)A11 + H̃11(α) + 1

2α
N�

21Q̃22(α)N21,

Q̂12(α) = −(A�
11 − αI)−1

(
H̃12(α) + 1

2α
N�

21Q̃22(α)N22 + Q̂11(α)A12

)
,

Q̂22(α) = 1

2α

[
A�

12Q̂12(α) + Q̂�
12(α)A12 + H̃22(α) + 1

2α
N�

22Q̃22(α)N22

]
.

Proof We begin by computing

N�Q1N =
[
0 N�

21
0 N�

22

] [
Q11 Q12(α)

Q�
12(α) 1

2α Q̃22(α)

] [
0 0

N21 N22

]
= 1

2α

[
N�
21Q̃22N21 N�

21Q̃22N22
N�
22Q̃22N21 N�

22Q̃22N22

]
,

and for notational convenience partition the full matrix

H(2)(α)(P1 ⊗ Q1)(H(2)(α))� =:
[
H̃11(α) H̃12(α)

H̃12(α)� H̃22(α)

]
,

which is a symmetric matrix sinceP1 andQ1 are symmetric Gramians.We then solve
for the truncated Gramian via

0 =
[
A�

11 0
A�

12 −αI

] [
Q̂11 Q̂12

Q̂�
12 Q̂22

]
+

[
Q̂11 Q̂12

Q̂�
12 Q̂22

] [
A11 A12

0 −αI

]

+
[
H̃11(α) H̃12(α)

H̃12(α)� H̃22(α)

]
+ 1

2α

[
N�

21Q̃22N21 N�
21Q̃22N22

N�
22Q̃22N21 N�

22Q̃22N22

]
.

Thus, the Gramian solution has to satisfy the equations

0 = A�
11Q̂11 + Q̂11A11 + H̃11(α) + 1

2α
N�

21Q̃22N21,

0 = (A�
11 − αI)Q̂12 + Q̂11A12 + H̃12(α) + 1

2α
N�

21Q̃22N22,

0 = A�
12Q̂12 − 2αQ̂22 + Q̂�

12A12 + H̃22(α) + 1

2α
N�

22Q̃22N22,

from which we get the stated result. �

By decomposing the Lyapunov solution into block form, we can again compute
the truncated Gramians by only working in the original dimensions (not the lifted
dimensions). Due to the dependence on 1/α the Gramians QT ,PT are not defined
for α → 0 and taking the limit α → 0 can therefore result in numerical difficulties.
We summarize our proposed approach below.

Proposition 6 An approximate balancing transformation for the QB structure aris-
ing in lifting of nonlinear systems can be computed as follows:
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1. Choose α ∈ (0,∞) and compute PT ,QT from Propositions 4 and 5 with A(α).
2. Compute Cholesky factors PT = LPT L

�
PT

and QT = LQT L
�
QT

.
3. Compute SVD L�

QT
LPT = USV�; denote rank r approximation as UrSrV�

r .

4. Projection matrices W = LQT UrS−1/2
r and V = LPT VrS−1/2

r .
5. Matrices for QB-ROM (6)–(7) are

Â = W�AV, B̂ = W�B, Ĉ = CV, N̂k = W�NkV, Ĥ = W�H(V ⊗ V).

5 Numerical Results

For the tubular reactor model in Sect. 3.2, the parameters are D = 0.17, Pe = 25,
B = 0.5, β = 2.5, θref ≡ 1, γ = 5, and n = 199. We compare the approximate bal-
anced truncation ROM, denoted QB-BT, from Proposition 6 with a ROM computed
from POD with discrete empirical interpolation [9], denoted as POD-DEIM. For the
predictive comparison, the full-order model and ROMs are simulated until t f = 30s
with different inputs u(t) and initial conditions x(0) = x0 as given below.

The POD-DEIMmodels are obtained as follows:We simulate the full-ordermodel
until ttrain = 15s with training input utrain(t) and training initial condition x0,train. We
record a snapshot every 0.01s and store the snapshots in a matrix X, compute the
POD basis V ∈ R

n×r of dimension r , and project the system matrices in (17)–(18)
onto V. For every r -dimensional POD-DEIM ROM we use r DEIM interpolation
points using the QDEIM algorithm from [10].

For the QB-BT models, we discussed in Sect. 4.1 that the parameter α ∈ (0,∞).
Here, we found that α = 20 resulted in the most accurate balanced ROMs and that
for α  1 the Gramians’ subspaces would lead to unstable ROMs. This could be
related to the influence of the field of values of A(α) on the decay of the singular
values of the solution to the Lyapunov equation [3]. Here, for α > αc = 2.6, the field
of values of A(α) is in the open left-half plane, which we can choose as a selection
criterion for α.

Reduced-order models constructed via POD-DEIM depend on the snapshot data
that is obtained from training simulations. In contrast, balancing transformations
only depend on the matrices defining the full-order QB system A,H,N,B,C; the
basis generation does not require a choice of training data. To illustrate this point,
we consider four test cases with different testing conditions and for which the
POD-DEIM training choices vary. For each test case we compare the output error∑s

i=1 |y(ti ) − yr (ti )| with s = 3, 000 for the POD-DEIM and QB-BT ROMs. We
detail each case below.

Case 1: u(t) = cos(t), utrain(t) = u(t), x0,train = x0. For this test case, training
and testing conditions are the same, so we expect POD-DEIM ROMs to accurately
reproduce the full-order model (FOM) simulations. The output quantity of interest
of the FOM compared to two ROMs with r = 20 basis functions for this test case is
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Fig. 1 Model outputs for test Case 1 (left) and Case 2 (right): Comparison of FOMwith two ROMs
for r = 20 basis functions, respectively

Table 1 Case 1: Output error
∑s

i=1 |y(ti ) − yr (ti )| in ROMs

ROM r = 4 r = 6 r = 8 r = 10 r = 12 r = 14 r = 16 r = 18 r = 20

QB-BT 6.51 ×
E-04

7.00 ×
E-04

6.98 ×
E-04

7.09 ×
E-04

7.06 ×
E-04

6.84 ×
E-04

6.66 ×
E-04

7.05 ×
E-04

6.95 ×
E-04

POD-
DEIM

2.53 ×
E-05

1.17 ×
E-05

7.39 ×
E-06

6.93 ×
E-06

5.61 ×
E-06

5.62 ×
E-06

5.62 ×
E-06

5.63 ×
E-06

5.62 ×
E-06

Table 2 Case 2: Output error
∑s

i=1 |y(ti ) − yr (ti )| in ROMs

ROM r = 4 r = 6 r = 8 r = 10 r = 12 r = 14 r = 16 r = 18 r = 20

QB-BT 6.51 ×
E-04

7.00 ×
E-04

6.98 ×
E-04

7.09 ×
E-04

7.06 ×
E-04

6.84 ×
E-04

6.66 ×
E-04

7.05 ×
E-04

6.95 ×
E-04

POD-
DEIM

1.47 ×
E-03

1.41 ×
E-03

1.40 ×
E-03

1.41 ×
E-03

1.39 ×
E-03

1.40 ×
E-03

1.40 ×
E-03

1.40 ×
E-03

1.40 ×
E-03

shown in Fig. 1, left. Table1 shows the output error for various ROM model sizes.
We see that the POD-DEIM ROM outperforms the QB-BT ROM in this case.

Case 2: u(t) = cos(t), utrain(t) = u(t), x0,train = x0; noise = 10% Here we use
the same training input and training initial conditions as in Case 1. However, we add
noise to the training data, reflecting a situation that practitioners often face where
measurements are noise-corrupted. In particular, we use X̃ = X + 0.1X (−1 + 2
)

where
 = N (0, 1) is a normally distributed random variable. Figure1, right, shows
themodel output for the FOMand both ROMs for r = 20wherewe see that the POD-
DEIM model does not capture the output amplitude well. Table2 shows the output
errors for increasing ROM sizes. We observe that the QB-BT ROM outperforms the
POD-DEIM model in this case, as the POD-DEIM model suffers from a two orders
of magnitude loss in accuracy (compared to Table1) due to noisy snapshots.
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Fig. 2 Model outputs for Case 3 (left) and Case 4 (right): Comparison of FOM with two ROMs
for r = 20 basis functions, respectively

Table 3 Case 3: Output error
∑s

i=1 |y(ti ) − yr (ti )| in ROMs

ROM r = 4 r = 6 r = 8 r = 10 r = 12 r = 14 r = 16 r = 18 r = 20

QB-BT 5.30 ×
E-04

6.02 ×
E-04

5.41 ×
E-04

4.96 ×
E-04

5.03 ×
E-04

7.18 ×
E-04

6.48 ×
E-04

5.63 ×
E-04

5.37 ×
E-04

POD-
DEIM

2.42 ×
E-03

2.22 ×
E-03

2.15 ×
E-03

2.15 ×
E-03

1.96 ×
E-03

9.11 ×
E-04

6.55 ×
E-04

6.16 ×
E-04

2.37 ×
E-04

Case 3: u(t) = 0.5(1 + t2 exp(−t/4) sin(6t)), utrain(t) = 0.5, x0,train = x0 This
case illustrates a scenario where a practitioner trained a model assuming that input
conditions are operating at a constant equilibrium. However during operation of
the plant the inputs indeed vary but the oscillations are damped and revert to the
equilibrium position of 0.5. Figure2, left, shows the model output for the FOM and
both ROMs for r = 20; both ROMs are reproducing the output well. Table3 shows
the output errors for increasing ROMsizes. TheQB-BTROM is againmore accurate,
yet at one model order, r = 20, the POD-DEIM model is more accurate.

Case 4: u(t) = cos(t), utrain(t) = 0.5, x0,train(1 : n) = 0, x0,train(n + 1 : 2n) =
1. Here, the training initial condition is different from the initial condition used for
prediction, i.e., x0,train �= x0. Figure2, right, shows the model output for the FOM
and both ROMs for r = 20; the QB-BT model slightly outperforms the POD-DEIM
model, but both fall short of predicting the full amplitude. Table4 shows the output
errors for increasing ROM sizes, where the QB-BTmodel again seems to outperform
the POD-DEIM model for all basis sizes.
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Table 4 Case 4: Output error
∑s

i=1 |y(ti ) − yr (ti )| in ROMs

ROM r = 4 r = 6 r = 8 r = 10 r = 12 r = 14 r = 16 r = 18 r = 20

QB-BT 3.46 ×
E-04

3.47 ×
E-04

3.77 ×
E-04

3.76 ×
E-04

3.75 ×
E-04

3.71 ×
E-04

3.41 ×
E-04

3.76 ×
E-04

3.66 ×
E-04

POD-
DEIM

8.86 ×
E-04

9.23 ×
E-04

9.26 ×
E-04

9.25 ×
E-04

9.29 ×
E-04

7.05 ×
E-04

4.51 ×
E-04

4.51 ×
E-04

4.38 ×
E-04

6 Conclusions

We presented a balanced truncation model reduction approach that is applicable to
a large class of nonlinear systems with time-varying and uncertain inputs. As a first
step, our approach lifts the nonlinear system to quadratic-bilinear form via the intro-
duction of auxiliary variables. As lifted systems often have systemmatrices with zero
eigenvalues, we first introduced an artificial stabilization parameter and then derived
a balancing algorithm for those lifted quadratic-bilinear systems that only requires
expensive matrix computations in the original—and not in the lifted—dimension.
The method was illustrated by the model reduction problem for a tubular reactor
model, for which we derived the multi-stage lifting transformations and performed
balanced model reduction. The numerical results showed that through our proposed
method, we can obtain ROMs for nonlinear systems that are superior to POD-DEIM
models in situations where a good choice of training data is not feasible.
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Modeling the Buck Converter from
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Abstract Buck converters are DC-DC converters which provide a step-down of
the input voltage produced by the supply to the output voltage delivered to the
load. They contain two semiconductor devices (typically a transistor and a diode)
acting as switches which open and close periodically, together with an output filter
in the form of an RLC circuit. These considerations render the buck converter as
a periodically switched linear system. Thanks to the periodic nature, the Harmonic
Transfer Function (HTF) is a suitable tool for modeling the buck converter. This
chapter shows how to identify a frequency domainmodel for the buck converter from
measurements of the HTF through the Loewner framework. The measurements are
obtained by computing the Fast Fourier Transform (FFT) of the outputs in a small
signal analysis. Themodel corresponds to a single-input multiple-output systemwith
the the number of outputs given by the desired number of harmonics.

Keywords Periodically switched linear system · Harmonic transfer function ·
Loewner framework

1 Introduction

Power converters are electronic circuits that allow the electric power source (a battery,
the electrical network, a solar panel, etc.) to be adapted to the needs of the receiver (an
electric motor, an asynchronous machine, etc.). One way of classifying converters is
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Fig. 1 Circuit diagram for
the Buck converter
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Fig. 2 The Buck converter
as a switched system
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with respect to the type of current accepted by the supply and the load: alternating
current (AC) or direct current (DC). Hence, there are four possible combinations:
DC to DC, DC to AC, AC to DC and AC to AC converters. DC-DC converters can be
found in mobile phones, laptops, wind turbines, photovoltaic systems, electric cars,
etc.

This chapter focuses on a type of DC-DC converters that are the easiest to model,
namely buck converters. The circuit diagramof an open-loop buck converter is shown
inFig. 1. In continuous currentmode (CCM), the transistor S is open and closedwith a
certain switching frequency, while the diode S follows the opposite behavior (Fig. 2).
Figure3 shows the voltage drop over the transistor when assuming ideal switching (in
reality, switching is not an instantaneous process). The switching frequency is much
larger than the resonant frequency of the RLC filter to ensure correct functioning of
the converter. The presence of the two semiconductor devices render the converter
as a switched system. On the other hand, the periodic behavior of the two switches
dictates the periodicity of the overall system. The output filter is a linear RLC circuit,
hence, the buck converter can be regarded as a periodic switched linear (PSL) system.

The goal of this chapter is to model the buck converter in the frequency domain
from physically realizable measurements. Using the small signal paradigm, an AC
voltage of small amplitude and varying frequency is added to the DC input. An
FFT analysis of the output reveals that, besides the perturbation frequency, other
frequencies are also present (typically referred to as harmonic distortions [1]). These
frequencies are predicted by the Harmonic Transfer Function (HTF), which was
developed as a tool for analyzing periodic systems in the frequency domain. The
HTF is expressed in terms of doubly-infinite state-space matrices containing the
Fourier coefficients of the periodic state-space matrices. Based on the application,
one decides on the number of relevant harmonics and can, thus, truncate the infinite
matrices to only a few terms. From the spectral analysis of the response to a range
of sinusoidal perturbations, measurements at the expected peaks are gathered, which
represent, after post-processing, measurements of the HTFs. These can be employed,
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Fig. 3 Ideal switching on
two switching periods
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together with the Loewner framework [2], to identify the continuous-form of these
few HTFs.

Typically, the buck converter is characterized by the average model [3]. This is
a linear time-invariant model describing the dynamics of the system in terms of
the average values for the current and voltage variables, neglecting effects due to
switching. Hence, a plethora of works focus on the identification of these low order
LTI average models, an example being [4]. Periodic switching causes the appearance
of higher order harmonics and aliasing effects appear for perturbation frequencies
larger than half of the switching frequency. Hence, the average model is valid only
until one half of the switching frequency, before aliasing becomes an issue. High
frequency harmonics are, therefore, not captured by the average model. Figure4
shows the response to a DC input of the ideal buck converter detailed in Sect. 4.3.
This response resembles that of a second-order system and is precisely the response
predicted by the average model. However, when considering a time scale in the same
order of magnitude as the switching frequency (Figs. 5 and 6), oscillations with the

Fig. 4 Response of the
Buck converter
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Fig. 5 Response between
0.0298s and 0.03 s
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Fig. 6 Response between
0.1998s and 0.2 s
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same frequency as the switching frequency can be detected. These oscillations cannot
be captured by the average model.

To account for harmonics induced by the periodic behavior, the concept of Har-
monic Transfer Functions (HTFs) was developed in [5], with one transfer function
modeling each harmonic’s response. For an application consisting of a helicopter
rotor, [6] showed that the theoretical HTFs match the quantities obtained from pro-
cessing the Fourier transform of outputs and inputs. The work of [7] was the first
to apply the harmonic state-space (HSS) framework from [5] to model a number of
electrical systems from power electronics. In this framework, state-space matrices
are doubly-infinite with entries given by the Fourier coefficients of the periodic state-
space matrices. A common technique is to lift the system through the application of
a Floquet transformation. This is a periodic similarity transformation which yields
a constat system matrix A, thus facilitating the stability analysis of such systems.
An identification algorithm for linear time-periodic (LTP) systems using Floquet
transformations applied to the discretized LTP system is presented in [8]. The paper
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[9] provides a review of frequency-domain modeling of converters, including Flo-
quet theory, Harmonic Transfer Functions and Equivalent Signal theory. Last, but
not least, [10] assumes full state measurements and identifies the HSS matrices from
input-output data.

The Loewner framework is typically employed for identifying a descriptor-form
representation of linear time invariant (LTI) systems [2, 11] from frequency-domain
measurements of their transfer function. Authors in [12] extended it to the class of
linear switched systems. In particular, the data used in [12] consist of frequency
domain samples of input-output mappings in the form of a series of multivariate
rational functions obtained by taking the multivariate Laplace transform. However,
it is not clear how to measure these quantities in practice.

This paper is structured as follows. Section2 first recalls the problem of model-
ing LTI systems in the frequency domain in Sect. 2.1 and, afterwards, reviews the
concept of harmonic transfer function for modeling periodic systems in Sect. 2.2.
Section3 provides a short review of the classical Loewner framework. Section4
shows the application of the proposed methodology to an ideal buck converter, as
well as when integrating the ON resistance of the switches into the model, together
with the numerical experiments. Finally, Sect. 5 concludes the paper and presents
directions for future research.

2 Modeling Periodic Systems in the Frequency Domain

This section discusses modeling dynamical systems in the frequency domain. First,
the case of linear time-invariant systems is quickly reviewed. Afterwards, the theory
of harmonic transfer functions is presented for periodic switched systems.

2.1 Linear Time-Invariant Systems in the Frequency Domain

For simplicity, we review the case of single-input single-output (SISO) systems. We
seek to recover a descriptor realization consisting of matrices E ∈ R

n×n , A ∈ R
n×n ,

b ∈ R
n×1, c ∈ R

1×n for an underlying linear time invariant (LTI) system of the form

Eẋ(t) = Ax(t) + bu(t) (1)

y(t) = cx(t). (2)

The excitation is u(t), while the response is denoted by y(t). The column vector
x(t) ∈ R

n [t] is an internal variable referred to as the state if the matrix E is invert-
ible. Equations (1)–(2) provide the time-domain representation, while the frequency-
domain representation is given in terms of the transfer function obtained by taking the
Laplace transform of (1)–(2) and computing the ratio between the Laplace transform
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of the output to that of the input. The transfer function is

H (s) = Y(s)

U(s)
= c (sE − A)−1 b, (3)

where s is the Laplace variable, a complex number.

Remark 1 The descriptor-form representation (1)–(2) of an LTI system is more
general than the state-space form

ẋ(t) = Assx(t) + bssu(t) (4)

y(t) = cssx(t) + dssu(t), (5)

as it can describe systems with a constant dss , as well as higher-order polynomial
terms, by incorporating these into b or c and making E singular. If the matrix E in
(1) is invertible, then Ass = E−1A and bss = E−1b.

2.1.1 Review of Modeling LTI Systems from Frequency-Domain
Measurements

Frequency-domain measurements are obtained by considering the input u(t) as a
sinusoidal excitation u(t) = cos

(
2π f j t

)
for a range of perturbation frequencies f j ,

j = 1, . . . , P . At steady state, the output is also a sinusoidal signal with the same
frequency, but a different magnitude and phase: yss(t) = a cos

(
2π f j t + φ

)
. The

magnitude andphase-shift encode a complex numberH j = a expiφ ,where i is the unit
imaginary number. The quantity H j represents the measurement at frequency f j , so,
by collecting these pairs of points

(
f j ,H j

)
, j = 1, . . . , P , the goal is to recover the

unknown transfer function such that, when evaluating H(s) for s = i2π f j , the result
is close to the corresponding frequency response measurement Hj . In other words,
given the discrete points

(
f j ,H j

)
, j = 1, . . . , P , wewish to find the continuous-time

rational transfer function H(s) such that the points are interpolated: H j = H
(
i2π f j

)
,

or well approximated: H j ≈ H
(
i2π f j

)
(depending on the application).

2.2 Periodic Systems in the Frequency Domain

Due to the periodic opening and closing of the switches, the converter’s dynamics
can be expressed as a periodic system in state-space form:

ẋ(t) = A(t)x(t) + b(t)vin(t) (6)

vout (t) = c(t)x(t) + d(t)vin (t) (7)
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Fig. 7 Fourier analysis of the buck converter’s response to a DC input
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Fig. 8 Fourier analysis of the buck converter’s response to a sum of DC and 5kHz AC inputs (26)

where the state-space quantities A(t), b(t), c(t), d(t) are periodic, with a fixed and
known period Ts > 0, called the switching period, such that A(t) = A(t + mTs),
∀m ∈ Z, and the same for b(t), c(t), d(t).

For a linear periodically time-varying (LPTV) system, a sinusoidal input with
excitation frequency f j produces an infinite sum of sinusoidal signals with different
magnitudes and phase-shifts, at frequencies that are the sum of f j and multiples of
the switching frequency fs : fi + m fs , ∀m ∈ Z. This can be visualized in Fig. 7 from
the Fourier analysis of the converter’s response to a DC input and in Fig. 8 for an
AC input with perturbation frequency fi = 5kHz superimposed to a DC signal. The
converter is operating with switching frequency fs = 20kHz.

The periodic switched system changes between different discrete modes with
period Ts = 1

fs
, the switching period. For simplicity, and because it fits the case of

the buck converter operating in continuous conduction mode (as will be explained
in Sect. 4), we will discuss the simple case of two modes, but results are equally
applicable to systems with more than two discrete modes.
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1. When the switch is ON, the first mode is activated. This lasts for DTs , where
D < 1 is the duty cycle (the percentage of time that the switch is ON), in the time
interval t ∈ [mTs, (m + D)Ts), ∀m ∈ Z. The system dynamics can be expressed
in terms of the state-space matrices A(1), b(1), c(1), d(1).

2. The second mode is activated when the switch is OFF, lasting for the remaining
(1 − D)Ts , namely for t ∈ [(m + D)Ts, (m + 1)Ts), with state-space matrices
A(2), b(2), c(2), d(2).

This yields the following expression for A(t), and similarly for b(t), c(t) and d(t):

A(t) =
{
A(1), t ∈ [mTs, (m + D)Ts)
A(2), t ∈ [(m + D)Ts, (m + 1)Ts)

,∀m ∈ Z. (8)

As for any periodic signal, we can express A(t) in terms of its Fourier Series

A(t) =
∞∑

j=−∞
A j exp

i jωs t , ωs = 2π fs, (9)

and similarly for b(t), c(t) and d(t). The Fourier coefficients A j can be computed
with the classical formula

A j = 1

Ts

∫ Ts

0
A(t) exp−i jωs t dt (10)

which reduces to

A j = 1

Ts

∫ DTs

0
A(1) exp−i jωs t dt + 1

Ts

∫ Ts

DTs

A(2) exp−i jωs t dt (11)

= (
A(1) − A(2)

) 1 − exp−i2π j D

i2π j
, for j �= 0 (12)

and

A0 = 1

Ts

∫ Ts

0
A(t)dt = DA(1) + (1 − D)A(2), (13)

after taking into account the two switching phases in Eq. (8). Similar expressions are
available for the Fourier coefficients of the b, c and d quantities. Substituting into
(6)–(7), we obtain
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ẋ(t) =
∞∑

j=−∞
A j exp

i jωs t x(t) +
∞∑

j=−∞
b j exp

i jωs t vin(t) (14)

vout (t) =
∞∑

j=−∞
c j expi jωs t x(t) +

∞∑

j=−∞
d j exp

i jωs t vin (t) (15)

which, after applying the Fourier Transform, becomes

iωX(iω) =
∞∑

j=−∞
A jX(iω − i jωs) +

∞∑

j=−∞
b j Vin(iω − i jωs) (16)

Vout (iω) =
∞∑

j=−∞
c jX(iω − i jωs) +

∞∑

j=−∞
d j Vin (iω − i jωs) . (17)

Fourier Series can also be used for the time-domain signals x(t), vin(t) and vout (t)
in (14)–(15), yielding more complicated equations in (16)–(17) which are omitted
here. Eventually, they can be re-written compactly in matrix-form:

sX (s) = (A − N )X (s) + BVin(s) (18)

Vout (s) = CX (s) + DVin(s), (19)

by defining infinite vectors X , Vin and Vout :

X (s) =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

...

X−1(s + iωs)

X0(s)
X1(s − iωs)

...

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

,Vin(s) =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

...

Vin−1(s + iωs)

Vin0 (s)
Vin1(s − iωs)

...

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

,Vout (s) =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

...

Vout−1(s + iωs)

Vout0 (s)
Vout1(s − iωs)

...

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

,

(20)
where X j , Vin j , Vout j , j = −∞, . . . ,∞ are the Fourier coefficients of the corre-
sponding time-domain signals in the ωs-basis. Moreover, A, B, C, D are doubly-
infinite matrices:

A =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . A0 A−1 A−2 . . .

. . . A1 A0 A−1 . . .

. . . A2 A1 A0 . . .

...
...

...
...

. . .

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, B =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . b0 b−1 b−2 . . .

. . . b1 b0 b−1 . . .

. . . b2 b1 b0 . . .

...
...

...
...

. . .

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, (21)
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C =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . c0 c−1 c−2 . . .

. . . c1 c0 c−1 . . .

. . . c2 c1 c0 . . .

...
...

...
...

. . .

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, D =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . d0 d−1 d−2 . . .

. . . d1 d0 d−1 . . .

. . . d2 d1 d0 . . .

...
...

...
...

. . .

⎤

⎥⎥
⎥⎥⎥⎥
⎦

. (22)

These are block Toeplitz matrices generated by Ts-periodic functionsA(t), b(t), c(t)
and d(t), respectively, containing their Fourier coefficients. Last, but not least,N is
the block diagonal matrix

N =

⎡

⎢⎢⎢⎢⎢⎢
⎣

. . .

−iωsI
0
iωsI

. . .

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (23)

Finally, the Harmonic Transfer Function (HTF), relating harmonics of the output to
harmonics of the input signal: Vout (s) = H(s)Vin(s), is defined as

H(s) = C (sI − (A − N ))−1 B + D (24)

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

. . .
...

...
...

...

. . . H0(s + iωs) H−1(s) H−2(s − iωs) . . .

. . . H1(s + iωs) H0(s) H−1(s − iωs) . . .

. . . H2(s + iωs) H1(s) H0(s − iωs) . . .

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (25)

The HTF involves infinite state-space matrices, which cannot be implemented on a
machine without truncation. Unfortunately, it may be possible that low frequency
behavior is affected by truncation because the matrix inverse (sI − (A − N ))−1 may
result in wrapping high frequency components back to low frequency. Truncation
effects are significant when the dynamics matrix A(t) contains an impulse. The
Fourier components of an impulse do not roll off (they are constant), causing sig-
nificant truncation errors and [5] noted that the number of harmonic components
needed to produce a good match is larger for systems with discontinuous dynamics
equations. However, when the converter is operating in continuous current mode, as
shown in [13], truncation does not cause large modeling errors. Hence, in our appli-
cation, only a limited number of harmonics are of interest (say N ), so the infinite
quantities are truncated to dimension 2N + 1, and HTFs in Eq. (25) range from −N
to N .
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2.2.1 Modeling the Buck Converter from Frequency-Domain
Measurements

For DC-DC converters, the load requires a constant supply voltage with minimal
disturbance, so a small signal analysis should be considered. In this setting, the input
is taken as a constant voltage together with an AC component with amplitude one or
several orders of magnitude smaller than the DC voltage:

vin (t) = vDCin + vACin cos(2π f j t) = vDCin + vACin

2

(
expiω j t + exp−iω j t

)
, (26)

with f j , the perturbation frequency of choice, and vDCin � vACin . In the Laplace
domain, this corresponds to the vector

Vin(s) =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

...

0
Vin0(s) = vDCin

s + vACin
s

s2+ω2
j

0
...

⎤

⎥⎥
⎥⎥⎥⎥
⎦

. (27)

The response is a superposition of the output due to the DC input and the output due
to the AC input: vout (t) = vDCout (t) + vACout (t). The DC output contains, besides
the 0-frequency, harmonics at integer multiples of the switching frequency (as shown
in Fig. 7):

vDCout (t) = vDC0 +
∞∑

m=−∞
m �=0

vDCm cos(2πm fst + φDCm). (28)

Similarly, the AC output, contains, besides − f j and f j , harmonics at − f j − m fs
and f j + m fs , m ∈ Z (recall Fig. 8):

vACout (t) = vAC0 cos(2π fk t + φAC0) +
∞∑

m=−∞
m �=0

vACm cos(2π( fk + m fs)t + φACm).

(29)
In the Laplace domain, this amounts to expressing Vout (s) = H(s)Vin(s), namely

Vout (s) =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

...

Vout−1(s + iωs)

Vout0(s)
Vout1(s − iωs)

...

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

...

H−1(s)
H0(s)
H1(s)

...

⎤

⎥⎥⎥⎥⎥
⎥
⎦

Vin0(s) (30)
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In practice, only the information contained in theACoutput will be used, for different
perturbation frequencies f j . Depending on the number of HTFs to be identified (e.g.,
N), the perturbation frequencies should contain enough points and span at least N
multiples of fs . However, values that are equal tomultiples of the switching frequency
should be avoided, as components add up. Through an FFT analysis of the output,
the amplitude and phase of the harmonics are determined and the measurement of
the HTF established:

Hm(iω j ) = vACm

vACin
expiφACm ,m = −N , . . . , 0, . . . , N . (31)

3 Review of the Loewner Framework

This section reviews the Loewner framework as a tool for solving the problem of
modeling LTI systems in the frequency domain introduced in Sect. 2.1 for SISO sys-
tems. Here, we consider the general case of multiple-input multiple output (MIMO)
systemswith p inputs and q outputs. Given pairs of the form ( f j ,H j ), j = 1, . . . , P ,
where H j ∈ C

q×p is the matrix measured at f j , we partition the set of points
{iω1, . . . , iωP} = {

λ1, . . . , λP/2
} ∪ {

μ1, . . . , μP/2
}
into right λk , k = 1, . . . , P

2 and
left points μh , h = 1, . . . , P

2 . We select right tangential directions as column vec-
tors rk and left directions as row vectors lh . They can be chosen, for simplicity,
as vectors of the identity matrix [11]. Matrix data H j are converted to right vec-
tor data Hkrk = wk and left vector data lhHh = vh . These quantities are collected

into matrices � = diag
[
λ1 . . . λ P

2

]
, M = diag

[
μ1 . . . μ P

2

]
, R =

[
r1 . . . r P

2

]
,

W =
[
w1 . . . w P

2

]
, L =

[
l1 . . . l P

2

]T
, V =

[
v1 . . . v P

2

]T
. Next, the Loewner and

shifted Loewner matrices are defined entry-wise as

Lhk = vhrk − �hwk

μh − λk
, σLhk = μhvhrk − λk�hwk

μh − λk
, h, k = 1, . . . ,

P

2
. (32)

We can write a (non-minimal) descriptor realization as in (1)–(2) of the transfer
function model

H(s) = W (σL − sL)−1 V (33)

satisfying the right and left interpolation conditionsH(λk)rk = wk and lhH(μh) = vh
[2]. To obtain a minimal realization, we perform a singular value decomposition
(SVD) of a linear combination of the Loewner and shifted Loewner matrices:

[Y, �,X] = svd(σL − xL), x ∈ { fi }. (34)

Choosing n as the singular value where the largest drop between two consecutive
singular values takes place (n is application-dependent), we truncate the SVD and
define (in Matlab notation) Xn = X(:, 1 :n) and Yn=Y(:, 1 :n)∗. The model of size



Modeling the Buck Converter from Measurements … 187

n in descriptor form is

E = −YnLXn, A = −YnσLXn, B = YnV, C = WXn,D = 0. (35)

4 Analysis of the Buck Converter as a PSL System

The Buck converter is a hybrid dynamical system with the continuous behavior
dictated by the linear time-invariant elements (resistor, capacitor, inductor) and the
discrete behavior given by the two switches. Figure1 shows the topology of a Buck
converter which supplies a passive load resistor with voltage vout . The switch is
controlled by a binary input signal S: when S is ON, the switch is closed (conducting),
and for S OFF, the switch is non-conducting (open), as illustrated in Figs. 2 and 3.
We consider the converter to be operating in continuous conduction mode (CCM),
meaning that the current through the inductor never reaches zero, hence there are
two linear working modes: S ON, S OFF in the time interval t ∈ [mTs, (m + D)Ts]
and S OFF, S ON for t ∈ [(m + D)Ts, (m + 1)Ts], ∀m ∈ Z.

4.1 Ideal System

This section covers the case of ideal switches, which turnONorOFF instantaneously.
The circuit can bemodeled by differential equations involving the capacitor’s voltage
vC(t) and the inductor current iL(t). Equation (36) describes the dynamics of the
Buck converter in each working mode i = 1, 2 in state-space form:

ẋ(t)=Ax(t)+b(i)vin(t), x(t)=
[
VC (t)
IL (t)

]
, A=

[− 1
RC

1
C− 1

L 0

]
, b(1) =

[
0
1
L

]
, b(2) =

[
0
0

]
. (36)

The response is vout (t) = vC(t), yielding c = [
1 0

]
and d = 0 for the output equation

vout (t) = cx(t) + dvin(t). In terms of the analysis described in Sect. 2.2 for periodic
systems, we notice that A, c and d are the same for both modes. This allows to
simplify the matrices appearing in the HTF: A = blkdiag [. . . ,A,A,A, . . .], C =
blkdiag [. . . , c, c, c, . . .], D = 0, while B is full with Fourier coefficients given by
b0 = Db(1) and b j = b(1) 1−exp−i2π j D

i2π j , for j �= 0. This allows to decouple the different

HTFs we seek to identify: H j (s) = c (sI − (A − i jωsI))−1 b j . One could attempt to
identify each of the HTFs separately.

Remark 2 The average model is precisely the HTF H0(s) = c (sI − A)−1 Db(1) for
this ideal system.
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Fig. 9 Updated circuit
diagram of the Buck
converter
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4.2 Integrating the ON Resistance of the Semiconductor
Devices

Semiconductor devices are not perfect open circuits when OFF and, similarly, they
are not perfect short circuits when ON. In practice, their equivalent circuits would
contain resistors, inductors and capacitors. In this section, we account for the small
resistance Ron whendevices areON.Figure9 shows theupdated circuit diagramwhen
considering Rton , the ON resistance for the transistor, and Rdon , the ON resistance for
the diode. They are each in series with the corresponding ideal switch. The effect of
Rton can be seen in Fig. 10, from the voltage across the transistor, with the switching
no longer being instantaneous.

In terms of the model in state-space form, accounting for the resistances Ron

results in different A matrices for each discrete mode:

A(1) =
[− 1

RC
1
C− 1

L − rton
L

]
and A(2) =

[− 1
RC

1
C− 1

L − rdon
L

]
, (37)

while the rest of the matrices stay unchanged from Sect. 4.1. In this case, the doubly-
infinite matrix A in (21) appearing in the HTF is no longer block-diagonal, but full,
with Fourier coefficients equal to

A0 = DA(1) + (1 − D)A(2) and A j = (
A(1) − A(2)

) 1 − exp−i2π j D

i2π j
for j �= 0.

(38)
Hence, the HTFs can no longer be decoupled, as it was the case for ideal switches,
and the harmonic transfer functions should be modeled altogether.
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Fig. 11 Matlab simulink/simscape electrical model for the buck converter

4.3 Numerical Experiments

A Matlab 2019a [14] Simulink/Simscape Electrical model [15] (Fig. 11) of a
Buck converter with parameters: L = 1mH, C = 500µF, R = 12	, fs = 20kHz,
vDCin = 12V and duty cycle D = 1

2 was employed for the numerical experiments.
When integrating the Ron resistance of the semiconductor devices in the simulation,
the chosen values are Rton = 0.2 and Rdon = 0.01.

The output for several perturbation frequencies: 10Hz, 20Hz, . . ., 100Hz, 200Hz,
. . ., 1000Hz, 2000Hz, . . ., 19000Hz, 19100Hz, . . ., 19900Hz, 19910Hz, 19920Hz,
. . ., 19990Hz, yielding a total of 54 frequencies, was saved to files for subsequent
post-processing. A large number of frequencies were considered, from low up to just
below the switching frequency, despite the low order model we expect to identify,
to ensure that all dynamics are modeled accurately. From Fig. 8, which shows the
magnitude of the FFT of vout for vin (t) = 12 + cos(2π · 5000 · t), we notice that
components at frequencies 0, 20kHz, 40kHz, etc., are present, together with compo-
nents at frequencies 5kHz, 20 − 5 = 15kHz, 20 + 5 = 25kHz, 40 − 5 = 35kHz,
40 + 5 = 45kHz, etc. Using the insight from Fig. 8, the magnitude of AC compo-
nents superior to 35kHz are below −100dB, typically considered as engineering
precision. Hence, the infinite sum in the HTF is truncated to N = 1, leading to the
following HTFs to be identified: H−1(s), H0(s) and H1(s) from the FFT analysis of
Vout−1(iω j + iωs), Vout0(iω j ) and Vout1(iω j − iωs) in (30), respectively. Moreover,
recall that, for our application, the converter is operating in continuous current mode
and truncation of the infinite HSS matrices does not cause large errors. This fact is
verified in Tables1 and 2, where the N = 100 truncation offers no improvement or
only a slight improvement in the accuracy with respect to the N = 1 truncation.

Making use of the complex conjugate information from the negative frequencies

⎧
⎨

⎩

Vout−1(−iω j + iωs)=Vout1(iω j − iωs) together with (30) ⇒ H−1(−iω j )=H1(iω j )

Vout0 (−iω j ) = Vout0 (iω j ) together with (30) ⇒ H0(−iω j )=H0(iω j )

Vout1(−iω j − iωs)=Vout−1(iω j + iωs) together with (30) ⇒ H1(−iω j )=H−1(iω j ).

and applying the output transformation [10]
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Fig. 12 SVD drop of the
Loewner matrix pencil for
the ideal system
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Fig. 13 SVD drop of the
Loewner matrix pencil for
the system with parasitics
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Ty =
⎡

⎣
1 0 1
0 1 0

−i 0 i

⎤

⎦ ⇒ Ty

⎡

⎣
H−1(s)
H0(s)
H1(s)

⎤

⎦ =
⎡

⎣
H−1(s) + H1(s)

H0(s)
−iH1(s) + iH1(s)

⎤

⎦ � Ĥ(s) (39)

yields the usual complex conjugate relationship for Ĥ: Ĥ(−iω j ) = Ĥ(iω j ), allowing
one to obtain state-space matrices with real entries from the single input multiple
output measurements Ĥ j . In the Loewner framework (Sect. 3), frequencies with odd
indices together with their negatives are used as right data, while those with even
indices and their negatives as left data. We expect a system of order 6, due to the
matrix A − N having size 6, when truncating (21) such that the HTF contains only
H−1(s), H0(s) and H1(s). Figures12 and 13 show the singular value drop of the
matrices L, σL and a linear combination thereof, exhibiting a drop of several orders
of magnitude after the 6th singular value (more clear for the system with parasitics).
This allows to identify an order 6 system, as expected. The final realization is obtained
by applying the inverse of the output transformation and premultiplying the resulting
C matrix with T−1

y .
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Fig. 14 H−1(s) in the ideal
case

101 102 103 104

Frequency (Hz)

10-4

10-2

100

M
ag

n
it

u
d

e(
d

B
)

H
-1

(s)

data
recovered model
true model

Fig. 15 H0(s) in the ideal
case
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Fig. 16 H1(s) in the ideal
case
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Figures14, 15 and 16 show the magnitude of the three HTFs H−1(s), H0(s) and
H1(s) in the ideal case, plotted only for positive frequencies. The recovered models
match the data, as well as the theoretical HTFs.

The same good agreement is noticed in Figs. 17, 18 and 19 from the magnitude of
the three HTFs H−1(s), H0(s) and H1(s)when taking into account the ON resistance
of the switches. The effect of these resistances can be seen in the damping of the
low frequency resonance of H0(s) and in the appearance of dips at the same low
frequency resonance in the response of H−1(s) and H1(s). The increase in damping
can also be explained from the pole plots of the two systems in Figs. 20 and 21.While
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Fig. 17 H−1(s) with
parasitics
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Fig. 18 H0(s) with
parasitics
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Fig. 19 H1(s) with
parasitics
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the imaginary parts of the poles remain largely unaffected (on the default scale), the
real part has decreased from taking into account parasitics.

Remark 3 Since theHTFs can no longer be decoupled as in the ideal case, modeling
each HTF individually would not allow to recover the system of order 6.
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Fig. 20 Pole plot for the
ideal system
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Fig. 21 Pole plot for the
system with parasitics
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Remark 4 Even though the true model obtained by truncating the infinite harmonic
state-space matrices matches the data in Figs. 14, 15, 16, 17, 18 and 19, when com-
puting the errors

H∞ error =
max
j=1...P

(
H j − H(iω j )

)

max
j=1...P

(
H j

) (40)

and
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Table 1 Errors for the ideal system

H∞ error H2 error

Loewner 2.5112 · 10−4 1.6839 · 10−4

HTF (N = 1) 7.9216 · 10−3 6.7037 · 10−3

HTF (N = 100) 7.9216 · 10−3 6.7037 · 10−3

Table 2 Errors for the system with parasitics

H∞ error H2 error

Loewner 3.2559 · 10−7 2.8704 · 10−7

HTF (N = 1) 7.9498 · 10−3 6.7565 · 10−3

HTF (N = 100) 7.9201 · 10−3 6.7442 · 10−3

H2 error =

√√√√√
√√√

∑

j=1...P

‖H j − H(iω j )‖2F
∑

j=1...P

‖H j‖2F
, where ‖H(iω j )‖2F =

∑

m=−N ...N

|Hm(iω j )|2,

(41)
we obtain the values displayed in the last two rows of Table1 for the ideal system and
Table2 for the system with parasitics. Surprisingly, these errors are rather large. For
the ideal system, increasing the number of terms in the truncation to N = 100 yields
precisely the same errors as with N = 1. For the system with parasitics, increasing
the number of terms in the truncation to N = 100 improves the errors marginally
with respect to the truncation with N = 1 discussed in this paper. Last, but not least,
the accuracy of the models built with the Loewner framework from data is in the
order of the first neglected singular value (the 7th in our case), as seen from Figs. 12
and 13, namely 10−4 for the ideal system and 10−7 for the system with parasitics.

5 Conclusion and Future Work

This chapter presents a first step towards modeling periodic switched linear sys-
tems from frequency domain measurements which can be physically achievable.
The theory presented relies on the identification of harmonic transfer functions in
the Loewner framework.

While the descriptor-form of the model can be used in simulations, the realization
for the vector of HTFs is of the form (35) and can no longer be interpreted physi-
cally in terms of Fourier coefficients. Hence, future work involves applying suitable
similarity transformations to retrieve matrices from which the Fourier coefficients
of the periodic state-space matrices A(t), b(t), c(t) and d(t) can be easily identi-
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fied. Unfortunately, as shown by the errors in Tables1 and 2, data obtained from
the Fourier analysis of the output signals from Simulink do not perfectly match the
harmonic transfer function model and the need to obtain direct, instead of simulation
measurements, is evident.

This chapter focused on the open-loop Buck converter as an application case. In
practice, the system is typically operating in closed-loop, with the switching sig-
nal obtained through Pulse Width Modulation, by comparing state variables to the
clocking carrier waveform. The control signal can be taken into consideration as an
extra input [16] and a similar analysis through the HTF can be performed. In future
work, we will also account for the control-to-output transfer function in the model-
ing procedure. Moreover, more realistic models integrating high-frequency parasitic
elements of the semiconductor devices and of the output filter will be considered.
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Model Reduction and Realization Theory
of Linear Switched Systems

Mihály Petreczky and Ion Victor Gosea

Abstract The goal of this chapter is to present an overview of some recent results
on model reduction of linear switched systems and their interplay with realization
theory of these systems. The emphasis will be on those results on model reduction
which are directly related to realization theory, we do not aim at being exhaustive.
In particular, we will review some recent results on balanced truncation and moment
matching, focusing on the theoretical aspects rather than on the computational ones.

Keywords Hybrid systems · Realization theory · Model reduction · Balanced
truncation · Moment matching

1 Introduction

In this chapter we will present an overview of some recent results onmodel reduction
of hybrid systemswhich rely heavily on realization theory. Bothmodel reduction and
realization theory have been central to Prof. Antoulas’s work, so we feel that showing
the interaction between these two topics for hybrid systems is a fitting tribute to his
scientific contribution.

Hybrid systems [13] are non-linear systems which combine continuous and dis-
crete behavior. More precisely, a hybrid system is a finite collection of continuous-
state dynamical systems, indexed by a set of so called discrete modes (or states).
The state of each dynamical system is governed by a set of differential or differ-
ence equations. The discrete mode in any time instant can be chosen arbitrarily or

M. Petreczky (B)
Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL), CNRS, Ecole
Centrale, CNRS (Centre national de la recherch scientifique), Avenue Carl Gauss, 59650
Villeneuve-d’Ascq, France
e-mail: mihaly.petreczky@centralelille.fr

I. V. Gosea
Data-Driven System Reduction and Identification (DRI) Group, Max Planck Institute for
Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
e-mail: gosea@mpi-magdeburg.mpg.de

© Springer Nature Switzerland AG 2022
C. Beattie et al. (eds.), Realization and Model Reduction of Dynamical Systems,
https://doi.org/10.1007/978-3-030-95157-3_11

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95157-3_11&domain=pdf
mailto:mihaly.petreczky@centralelille.fr
mailto:gosea@mpi-magdeburg.mpg.de
https://doi.org/10.1007/978-3-030-95157-3_11


198 M. Petreczky and I. V. Gosea

it may depend on the value of the continuous state and possibly other constraints,
which are referred to as guards. The transitions between the discrete states may result
in a jump in the state of the underlying continuous dynamical system. This jump is
defined by the application of the so called reset maps. Linear switched systems (LSSs)
[19, 37] are the simplest and most widely studied subclass of hybrid systems where
the continuous subsystems are linear systems, and the change of the discrete state is
externally generated.

While there is a large literature on control of hybrid systems in general, and of
LSSs in particular, the computational complexity of the existing algorithms for hybrid
systems is high, and hence they cannot be applied to large scale systems. In order to
address this problem, model reduction methods were proposed for hybrid systems.
Model reduction methods for LSSs can be grouped into the following categories.

LMI-based methods. These methods compute the matrices of the reduced order
model by solving a set of linear matrix inequalities (LMIs). The disadvantage is that
the proposed conditions are only sufficient, and the trade-off between the dimension
of the reduced model and the error bound is not clear. Moreover, the computational
complexity of solving thoseLMIsmight be too high.Without claiming completeness,
we mention [12, 38–40].

Methods based on local Gramians. These algorithms are based on finding
observability/controllability Gramians for each linear subsystem. For these methods
often there are no error bounds and the reduced order model need not be well-posed.
Examples of such papers include [7–9, 14, 16, 20, 21]. Note that to the best of our
knowledge, the only algorithm which always yields a well-posed LSS of the same
type as the original one and for which there exists an analytic error bound (which
holds only for slow switching) is the one of [14]. For the case of jump-linear systems
with a stochastic switching a similar approach was taken in [18] and an error bound
was derived.

Methods based on common Gramians. These methods rely on finding the same
observability/controllability Gramians for each linear subsystem. These Gramians
are derived as solutions of a suitable LMI. Such algorithms were described in [34,
35] and an analytic error bound was derived in [29]. These algorithms apply only
to LSSs which have a global quadratic Lyapunov function. Moreover, the compu-
tational complexity of solving the corresponding LMIs is high. In order to address
this problem [31] proposes to replace LMIs by Lyapunov equations. The downside
of the latter approach is that the error bounds of [29] do not always apply. Another
approach was proposed in [33], where for a specific subclass of LSSs, the origi-
nal LSS is replaced by a linear time-invariant (LTI) system and classical balanced
truncation is applied.

Moment matching. The idea behind these algorithms is to find a reduced order
linear switched system such that certain coefficients of the series expansions of the
input-output maps of the original and the reduced order system coincide. The series
expansion can be the Taylor series with respect to switching times, in which case
a number of the so-called Markov parameters coincide. Alternatively, the series
expansion can be a Laurent-series expansion of a multivariate Laplace transform of
the input-output map around a certain frequency. The former approach was pursued
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in [1, 4, 5], the latter in [15]. While those methods do not allow for analytical
error bounds, under suitable assumption it can be guaranteed that the reduced model
will have the same input-output behavior for certain switching signals [1, 4, 5].
A somewhat different approach is that of [32], which considers LSSs with state-
dependent switching and it proposes a model reduction procedure which guarantees
that the reduced model has the same steady-state output response to certain inputs
as the original model.

In this chapter we discuss some recent results on balanced truncation and moment
matching for LSSs. For the sake of simplicity, we consider LSSs only in continuous
time, and we will assume that all the linear subsystems are defined on the same
state-space and the reset maps are identity. Most of the presented results are true
for the discrete-time case too, and some can be extended to include LSSs with reset
maps which are not identity. We will cite the relevant literature on these extensions.

The model reduction methods to be discussed in this chapter rely heavily on
realization theory. The goal of realization theory is to understand the relationship
between input-output behaviors and internal (state-space) representations. A fairly
complete realization theory was developed for LSSs, see the discussion and refer-
ences in [22–25, 28]. The results on realization theory of LSSs rely on realization
theory of bilinear systems and recognizable formal power series [6, 17, 36].

Realization theory is relevant for model reduction in many ways. First, minimiza-
tion and realization algorithms can be viewed as simple model reduction algorithms.
Moreover, the relationship between span-reachability, observability and minimality
is closely related to the existence of Gramians which are used in balanced truncation.
Realization theory is even more critical for moment matching, as the latter can be
viewed as partial realization algorithm. We will elaborate on the precise relationship
later on.

The chapter is structured as follows. In Sect. 2 we present the formal definition
of the class of LSSs and the corresponding terminology. In Sect. 3 we present a
brief overview of the relevant results on realization theory of switched systems. In
Sect. 4 we discuss model reduction: In Sect. 4.1 we present balanced truncation and
in Sect. 4.2 we discuss moment matching for LSSs.

2 Linear Switched Systems: Basic Definitions

A linear switched system (LSS) is a control system of the form

�

{
ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t)

y(t) = Cσ(t)x(t),
(1)

where x(t) ∈ R
n is the continuous-valued state at time t , σ(t) ∈ Q is the discrete

mode at time t , y(t) ∈ R
p is the output at time t , and u(t) ∈ R

m is the continuous-
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valued input at time t . The set Q is a finite one, and it is referred to as the set of discrete
modes or states. Moreover, Aq ∈ R

n×n , Bq ∈ R
n×m , Cq ∈ R

p×n are the matrices of
the linear system in the discrete state q ∈ Q. The number n is called the dimension
(order) of � and will be denoted by dim(�). The short-hand notation

� = {Aq , Bq ,Cq}q∈Q

is used for LSSs of the form (1).
LetR+ be the real time-axis, i.e.R+ = [0,+∞). Denote by AC(R+,Rk) respec-

tively PC(R+,Rk) the set of all absolutely continuous respectively piecewise-
continuous functions of the form h : R+ → R

k .1 Let X = AC(R+,Rn),
U = PC(R+,Rm),Y = PC(R+,Rp), and letQ be the set of all piecewise-constants
functions g : R+ → Q. A tuple (x, u, σ, y) ∈ X × U × Q × Y is called a solution,
if (x, u, σ, y) satisfy (1). For any switching signalσ ∈ Q, input u ∈ U and initial state
x0 ∈ R

n , there exists a unique solution (x, u, σ, y) of � such that x(0) = x0. This
prompts us to define the input-to-state map X� : U × Q → X and the input-output
map Y� : U × Q → Y of an LSS � as follows: X�(u, σ ) = x , and Y�(u, σ ) = y if
and only if (x, u, σ, y) is the unique solution of � such that x(0) = 0 ∈ R

n .2

Intuitively, an LSS is just a control system which switches among finitely many
linear time-invariant systems. The switching signal is part of the input. Whenever a
switch occurs, the continuous state remains the same, only the differential equation
governing the state and output evolution changes. That is, whenever we switch to a
new linear system, we start the new linear system from the state which is the final
state of the previous linear system.

We model potential input-output behaviors of LSSs as functions

f : U × Q → Y, (2)

and call them input-output maps. They capture the behavior of a black-box, which
reacts to piecewise-continuous inputs and switching sequences by generating outputs
inRp. Next, we define what it means that this black-box can be modelled as an LSS,
i.e. that an LSS is a realization of f . The LSS � is a realization of an input-output
map f of the form (2) , if Y� = f , i.e. if the input-output map of � coincides with
f . If � is a realization of f , then � is a minimal realization of f , if for any LSS
realization �̂ of f , dim� ≤ dim �̂. Two LSSs �1, �2 are said to be input-output
equivalent, if their input-output maps are equal, i.e. Y�1 = Y�2 . An LSS � is said to
be minimal, if it is a minimal realization of its own input-output map f = Y� .

1 Piecewise-continuous functions have a finite number of discontinuities on each finite interval and
at each point of discontinuity, the left- and right-hand side limits exist and are finite.
2 The definition of the input-to-state and input-outputmap can be extended to include non-zero initial
states [23, 24]. We prefer to stick to zero initial state to avoid excessive notation and terminology.
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3 Realization Theory of Linear Switched Systems

Below we present the main results on minimality, existence of a realization, and
a Ho-Kalman-like realization algorithm for LSSs. These results are identical for
discrete-time LSSs [25], and can be extended to LSSs with linear reset maps [24,
27]. In order to present these results, and later throughout the chapter, we will use
the following notation from automata theory [11].

Notation (Q∗, Q+, ε, qk) Denote by Q+ the set of all finite sequences of elements of
Q, i.e. each elementw ∈ Q+ is of the formw = a1a2 · · · ak for some a1, a2, . . . , ak ∈
Q, k ∈ N, k > 0. The integer k is called the length of w and it is denoted by |w|.
Let ε /∈ Q+ be a symbol, which we will call the empty sequence or empty word. By
convention, the length of ε is defined to be zero. Denote by Q∗ the set Q+ ∪ {ε}.
For any two sequences w, v ∈ Q∗, we denote by wv the concatenation of w and v.
If w, v ∈ Q+ are of the form v = v1v2 · · · vk , k > 0 and w = w1w2 · · · wm , m > 0,
v1, v2, . . . , vk, w1, w2, . . . , wm ∈ Q, then define vw = v1v2 · · · vkw1w2 · · ·wm . If
v = ε and w ∈ Q∗, then define vw = w, and if w = ε and v ∈ Q∗, then define

vw = v. For q ∈ Q and k ∈ N, k > 0, we denote by qk the sequence
k−times︷ ︸︸ ︷
qq · · · q; by

convention q0 = ε.

3.1 Minimality of Linear Switched Systems

We start by presenting the main results on minimality of LSSs. To this end, we
introduce the notions of observability, span-reachability and isomorphism. Let �

be an LSS of the form (1). Then � is said to be observable, if for any two distinct
states x1,0 �= x2,0 ∈ R

n , there exists an input u and a switching signal σ , such that
if (xi , u, σ, yi ), i = 1, 2 are two solutions of � with xi (0) = xi,0, i = 1, 2, then
y1 �= y2, i.e., the outputs induced by the initial states {xi,0}i=1,2 under the input u and
switching signal σ are different. LetR0(�) ⊆ R

n denote the reachable set of the �

from the zero initial state, i.e., R0(�) is the set of all vectors x f such that for some
t ∈ R+, x f = X�(u, σ )(t) for some u ∈ U , σ ∈ Q.We say that� is span-reachable,
ifRn = SpanR0(�), i.e., ifRn is the smallest vector space containingR0(�). Note
that span-reachability and reachability are the same in continuous-time [37].

Two LSSs �1 = {Aq , Bq ,Cq}q∈Q , and �2 = {Aa
q , B

a
q ,Ca

q }q∈Q are said to be iso-
morphic, if there exists a non-singular square matrix S such that Aa

q = SAqS−1,
Ba
q = SBq , and Ca

q = CqS−1 for all q ∈ Q.

Theorem (Minimality, [22, 23]) AnLSS isminimal, if andonly if it is span-reachable
and observable. If�1 and�2 are two minimal LSSs and they are input-output equiv-
alent, then they are isomorphic. �
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Note that minimality of an LSS does not imply minimality of any of its linear
subsystems, see [23] for a counter-example. Hence, realization theory of LSSs cannot
be reduced to realization theory of linear subsystems.

We present an algorithm for converting anyLSS to aminimal onewhile preserving
its input-output map. To this end, we define the subspaces

V∗ = SpanR0(�), (3)

W∗ = Span{x0 ∈ R
n | ∀σ ∈ Q : ∃x ∈ X : (4)

(x, 0, σ, 0) is a solution of � with x(0) = x0 }.

It can be shown that� is span-reachable if and only if V∗ = R
n , and� is observable,

if and only ifW∗ = {0}, see [24, 37].
Procedure (Minimization) Consider the factor space V∗/W∗; recall that the ele-
ments of this linear space are equivalence classes generated by the following equiva-
lence relation≈ on V∗: x1 ≈ x2 if and only if x1 − x2 ∈ W∗. Let [x] = {y | | x ≈ y}
be the equivalence class represented by x . The linear vector space V∗/W∗ is
finite dimensional. Define the linear maps Aq : V∗/W∗  [x] �→ [Aqx] ∈ V∗/W∗,
Cq : V∗/W∗  [x] �→ Cqx ∈ R

p, Bq : Rm  u �→ [Bqu] ∈ V∗/W∗, q ∈ Q. It can
be shown [22, 23] that AqV∗ ⊆ V∗, AqW∗ ⊆ W∗, ImBq ⊆ V∗,W∗ ⊆ kerCq . From
this it follows that the linear mapsAq ,Bq , Cq are well defined. Choose a finite basis
in V∗/W∗, and let mAq , mBq , mCq be the matrix representations of the linear maps
Aq ,Bq , Cq , in that basis. Then �m = {mAq ,

mBq ,
mCq}q∈Q is a minimal LSS which

is input-output equivalent to �.

3.2 Existence of a Realization, Ho-Kalman Algorithm,
Markov Parameters

We first define the notion of a generalized kernel representation, existence of which
is a necessary condition for existence of a realization by an LSS. An input-output
map f has a generalized kernel representation, if there exists a family of functions
{G f

v : R|v|
+ → R

p×m}v∈Q+ , such that for all u ∈ U , σ ∈ Q,

f (u, σ )(t) =
k∑

i=1

∫ ti

0
G f

qi ···qk (ti − s, ti+1, . . . , tk)u(s + Ti−1)ds

where qi ∈ Q, 0 < ti ∈ R+, i = 1, . . . , k are such that σ(s) = qi for s ∈ [Ti−1, Ti )
for some Tj ∈ R+, Tj < Tj+1, j ∈ N, T0 = 0, and t ∈ [Tk−1, Tk) for some k > 0, and
ti = Ti − Ti−1, for i = 1, . . . , k − 1 and tk = t − Tk−1. Moreover, {G f

v }v∈Q+ have
to satisfy a number of technical conditions [22, 23]. From [22, 23] it follows that
� of the form (1) is a realization of f , if and only if f has a generalized kernel
representation and for all q1, . . . , qk ∈ Q, t1, . . . , tk ∈ R+, k > 0,
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G f
q1···qk (t1, . . . , tk) = Cqk e

Aqk tk · · · eAq2 t2eAq1 t1Bq1 . (5)

From the technical conditions in [22, 23] on generalized kernel representations it
follows that if f has a generalized kernel representation, then there exist functions
{S f

r,q : Q∗ → R
p×m}r,q∈Q such that

G f
q1···qk (t1, . . . , tk) =

∞∑
α1,...,αk=0

S f
qk ,q1(q

α1
1 · · · qαk

k )�k
i=1

tαi
i

αi ! .

That is, the functions {S f
r,q}r,q∈Q uniquely determine {G f

v }v∈Q+ and hence f , and con-
versely, the functions {S f

r,q}r,q∈Q can be recovered from f . The values of {S f
r,q}r,q∈Q

are called the Markov parameters of f .

Notation For every v ∈ Q∗ and a collection of n × n matrices {Aq}q∈Q define
the matrix Av as follows: if v = q1 · · · qk with q1, . . . , qk ∈ Q, k > 0, then Av =
Aqk Aqk−1 · · · Aq1 , and if v = ε, then Aε = In , where In is the n × n identity matrix.

Lemma ([22, 23]) An LSS of the form (1) is a realization of f , if and only if f
has a generalized kernel representation, and for all v ∈ Q∗, q, q0 ∈ Q, S f

q,q0(v) =
Cq AvBq0 .

In order to present a Ho-Kalman-like realization algorithm and a Hankel-rank
condition for existence of an LSS realization, we consider only the SISO case, i.e.,
p = m = 1, see [4, 26] for the general case, and we adapt the notion of selection
from [4, 26]. We call any subset α ⊂ Q∗ × Q a selection. Consider selections α and
β, such that α is of finite cardinality nα and β is of finite cardinality nβ respectively.
Fix an enumeration

α = {(ui , qi )}nα

i=1, β = {(v j , σ j )}nβ

j=1. (6)

Let us now define the matrixH f
α,β ∈ R

nα×nβ as follows:

[
H f

α,β

]
i, j

= S f
qi ,σ j

(v j ui ) i = 1, . . . , nα, j = 1, . . . , nβ. (7)

Intuitively, the rows of H f
α,β are indexed by the elements of α, and the columns by

the elements of β.

Theorem (Existence [23]) The input-output map f has a realization by an LSS, if
and only if f has a generalized kernel representation, and

sup
α,β⊆Q∗×Q,α,β are finite

rank H f
α,β = nm < +∞. (8)

If (8) holds, then nm is the dimension of a minimal LSS realization of f . �
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The proof of Theorem 3.2 leads to the following Ho-Kalman-like algorithm. For
the selections α, β from (6), define the matricesH f

q,α,β ∈ R
nα×nβ ,H f

α,q ∈ R
nα×1 and

H f
q,β ∈ R

1×nβ , q ∈ Q as follows:

[
H f

q,α,β

]
i, j

= S f
qi ,σ j

(v j qui ),
[H f

α,q

]
i,1

= S f
qi ,q(ui ),

[
H f

q,β

]
1, j

= S f
q,σ j

(v j ).

for all i = 1, . . . , nα , j = 1, . . . , nβ .

Procedure (Ho-Kalman algorithm) Assume that rank H f
α,β = nm. Consider the

factorization H f
α,β = Onm Rnm such that Onm ∈ R

nα×nm , Rnm ∈ R
nm×nβ , rank Onm =

rank Rnm = nm. Define

Âq = O+
nmH

f
q,α,βR

+
nm , B̂q = O+

nmH f
α,q , Ĉq = H f

q,βR
+
nm

and O+
nm , R+

nm is the Moore-Penrose inverse of Onm and Rnm respectively. Define the

LSS �̂ = { Âq , B̂q , Ĉq}q∈Q .

Lemma ([10, 22, 26]) If nm is the dimension of a minimal LSS realization of f ,
then the LSS �̂ defined in Procedure 3.2 is a minimal realization of f .

From [28] it follows that we can choose αN = βN = {(v, q) | v ∈ Q∗, |v| ≤ N , q ∈
Q}, where N is any integer not smaller than the dimension of a minimal LSS real-
ization of f . This choice of the nice selection is not very practical, as the size of the
Hankel-matrix H f

αN ,βN
grows exponentially with N . Note that the Ho-Kalman algo-

rithm described above can be used to define a smooth (analytic) manifold structure
for the space of equivalence classes of minimal LSSs related by isomorphism [26].

4 Model Reduction

In model reduction, we would like to find LSSs of smaller dimension, input-output
maps of which are close (but not necessarily equal) to that of the original LSS. This is
in contrast to realization theory, where we were interested in finding a minimal LSS
with exactly the same input-output map as the original one. The latter is a special
case of the former. Model reduction algorithms follow the following general pattern.

Algorithm 1 Model reduction/minimization algorithm
Inputs: � = {Aq , Bq ,Cq}q∈Q , matrices V ∈ R

n×r1 , W ∈ R
r2×n .

Output: �̄ = ( Āq , B̄q , C̄q}q∈Q .
1: Let r = rank WV and let S ∈ R

r×r2 , T ∈ R
r1×r , SWVT = Ir .

2: Āq = SW AqV T , C̄q = CqV T , B̄q = SW Bq , q ∈ Q.
3: return �̄ = { Āq , B̄q , C̄q }q∈Q .
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Intuitively, Algorithm 1 restricts the system to the set ImV and then merges
those of its states x1, x2 for which x1 − x2 ∈ kerW . If kerW = W∗ and ImV = V∗,
with W∗, V∗ from (3), then the LSS �̄ returned by Algorithm 1 is a minimal LSS
which is input-output equivalent to �, i.e., Algorithm 1 is just an implementation of
Procedure 3.1. Algorithms for computing suchmatricesW, V such that kerW = W∗
and ImV = V∗ are described in [22, 24].

In case of model reduction, Algorithm 1 can again be used. However, instead of
applying it with matrices W and V such that kerW = W∗ and ImV = V∗, we use
matrices W, V such thatW∗ ⊆ kerW and ImV ⊆ V∗, i.e., we restrict the system to
a subset of the set of reachable states, or we merge states which do not produce the
same input-output behavior. The resulting LSS model will no longer be a realization
of f , but its input-output map will approximate f in a suitable sense. Depending
on the method we use, we will either be able to provide a global error bound on the
difference between the input-output maps of the original model and the reduced one,
or state that for certain switching sequences the two input-output maps coincide. We
will elaborate on various methods below.

4.1 Model Reduction by Balanced Truncation

Let � be an LSS of the form (1), and assume that � is quadratically stable, i.e.,
there exists a matrix P > 0 such that ∀q ∈ Q : AT

q P + PAq < 0. In this case �

is globally uniformly asymptotically (exponentially) stable [19] with the Lyapunov
function V (x) = xT Px . A matrixQ will be called an observability Gramian, if

∀q ∈ Q : AT
q Q + QAq + CT

q Cq ≤ 0, Q > 0. (9)

Likewise, a matrixP will be called a controllability Gramian, if

∀q ∈ Q : AqP + PAT
q + Bq B

T
q ≤ 0, P > 0. (10)

Note that in contrast to the linear case, controllability/observability Gramians for
LSSs are not unique, since they are solutions of LMIs and not of Lyapunov equations.

Theprocedure for balanced truncation is as follows.WeapplyAlgorithm1with the
following choice ofW and V . FindU such thatP = UUT and find an orthogonal L
such that UTQU = L�2LT , where � = diag(σ1, . . . , σn) and σ1 ≥ . . . ≥ σn ≥ 0.
Pick r ≤ n. Define

W = [
Ir 0

]
�1/2LTU−1, V = UL�−1/2

[
Ir
0

]
.

Then rank W = rank V = r , rank WV = r , S = T = Ir .
The intuition behind the procedure above is similar to that of balanced truncation

for linear systems: By applying the transformation S = �1/2LTU−1 to�, we obtain
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an LSS�bal = {SAqS−1,SBq ,CqS−1}q∈Q , such that� = S−TQS−1 = SPST is
both an observability and a controllability Gramian.We obtain �̄ from�bal by taking
the upper-left r × r , r × m, p × r , blocks of Aq , Bq ,Cq , q ∈ Q respectively. That is,
we discard those states which correspond to small values of the diagonals of �. The
intuition behind this approach is that the discarded states are either difficult to reach
(it requires high energy input to reach them) or difficult to observe (their contribution
to the energy of the output is small). More precisely, let us fix an integer r > 0 which
represents the desired state dimension of the reduced order model. Let (x̃, u, σ, ỹ)
be a solution of �bal such that x̃(0) = 0, assume that for all t > τ0, u(t) = 0. It then
can be shown [29] that

r∑
i=1

x̃2i (τ0)
1

σi
+

n∑
i=r+1

1

σi
x̃2i (τ0) ≤

∫ τ0

0
‖u(s)‖22ds,

r∑
i=1

x̃2i (τ0)σi +
n∑

i=r+1

σi x̃
2
i (τ0) ≥

∫ ∞

τ0

‖ỹ(s)‖22ds,
(11)

and x̃i (τ0)denotes the i th component of x̃(τ0). That is, ifσr+1, . . . σn are small, and the
energy of u is small, i.e.,

∫ τ0
0 ‖u(s)‖22ds is small, then the values x̃r+1(τ0), . . . , x̃n(τ0)

have to be small due to the first inequality, and they contribute little to the output
starting from the time instance τ0 due to the second inequality.

The numbers σ1, . . . , σn are called singular values of the pair (P,Q) and they
are the square roots of the eigenvalues of the product PQ.

Theorem ([29]) For any σ ∈ Q, u ∈ U such that
∫ ∞
0 ‖u(s)‖22ds < +∞,

∫ ∞

0
‖Y�(u, σ )(s) − Y�̄(u, σ )(s)‖22ds ≤ (2

n∑
k=r+1

σk)
2
∫ ∞

0
‖u(s)‖22ds.

�

Further extensions The results discussed above also hold for discrete-time LSSs
[29]. The assumption thatP,Q do not depend on q ∈ Q implies quadratic stability,
which is a quite restrictive assumption. In [14] this assumption was replaced by local
stability of the linear subsystems. Moreover, an error bound similar to Theorem 4.1
was derived in [14], but it holds only for switching signals with a sufficiently large
dwell time. Note that [14] allows for LSSs with non-trivial linear reset maps. In
[31] an alternative definition of Gramians was presented which has the advantage of
having a tighter relationship with minimality.

Relationship with realization theory First, the existence of positive definite
Gramians P,Q is a necessary (but not sufficient) condition for minimality of
quadratically stable LSSs [29]: the kernels of positive semi-definite observability
(resp. controllability) Gramians are contained in the set of unobservable states (resp.
states which are not in the span of reachable states). Intuitively, when the Gramians
are positive definite, we can bring them to a balanced form and then identify the
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states corresponding to small singular values with unobservable/unreachable states.
Then balanced truncation can be thought of as a numerical implementation of the
minimization Procedure 3.1. Theorem 4.1 provides means to evaluate the effect of
the discarded “small” singular values on the approximation error.

Realization theory is also necessary to show that balanced truncation is well
posed. More precisely, the application of balanced truncation relies on the availabil-
ity of a quadratically stable LSS and by Theorem 4.1, the quality of the reduced
model relies on the singular values of the observability/controllability Gramians. If
the original model is not quadratically stable, then one may wonder if there exist
input-output equivalent quadratically stable models. Using realization theory it is
shown in [29] that in order to decide if balanced truncation can be applied, it is
sufficient to transform the original model to a minimal one, and then to check if the
minimal model is quadratically stable. Moreover, any minimal model can be used
for balanced truncation without introducing more conservativity. Indeed, in [29] it is
shown that the singular values of any pair of controllability/observability Gramians
for any LSS are not smaller than the singular values of some pair of Gramians of a
minimal input-output equivalent LSS. Moreover, due to isomorphism, all controlla-
bility/observability Gramians of minimal input-output equivalent LSSs are related
by a similarity transform and have the same singular values.

Finally, realization theory and the notion of Hankel-matrix can be used to relate
singular values of Gramians to norms of a Hankel-operator [29].

4.2 Moment Matching

Consider an LSS � of the form (1), and let us denote its input-output map by f . For
the sake of simplicity, we assume that p = m = 1, i.e., we deal only with the SISO
case. Recall that since f is realizable by an LSS then f has to have a generalized
kernel representation {G f

v }v∈Q+ . The idea of moment matching is to find a reduced
order LSS �̄ such that for certain sequences v ∈ Q+, G f

v is close to GY�̄
v . Intuitively,

this means that the input-output map of �̄ will be close to that f .
In Sect. 4.2.1 we present the approach [1, 4, 5], where we look for a reduced order

model �̄ such that certain Taylor-series coefficients of GY�̄
v (Markov parameters of

Y�̄) and of G f
v (Markov parameters of f ) coincide. In Sect. 4.2.2 we present the

approach [15], where we consider multi-variate Laplace transforms H f
v of G f

v and
we look for reduced order models �̄ such that the Laplace transform HY�̄

v of the
function GY�̄

v coincides with H f
v for some complex values.

4.2.1 Matching Markov Parameters

Consider an LSS �̄. Let α and β be two selections. Then �̄ is called a (α, β)-partial
realization of f , if for every (v, q0) ∈ β, (u, q) ∈ α,
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SY�̄
q,q0(vu) = S f

q,q0(vu). (12)

That is, �̄ is a (α, β)-partial realization of f , if those Markov parameters of f and of
the input-output map Y�̄ of �̄ which are indexed by (α, β) coincide. This means that
certain high-order derivatives of f and of Y�̄ are the same. That is, a (α, β)-partial
realization of f can be viewed as an LSS, input-output map of which approximates
f . If α = Q∗ × Q or β = Q∗ × Q, then any (α, β)-partial realization of f is a
realization of f .

The idea behind moment matching is then to replace an LSS� by a reduced order
LSS �̄ such that �̄ is a (α, β)-partial realization of the input-output map f = Y�

of �. The various algorithms differ in the way the selections α, β are chosen. The
moment matching algorithms which produce (α, β)-partial realizations arise from
Algorithm 1 by a suitable choice of the matrices W and V . In order to explain these
choices in more detail, we introduce the following definitions. Define the subspaces

Oα(�) =
⋂

(v,q)∈α

kerCq Av, Rβ(�) = Span{AwBq0 | (w, q0) ∈ β}.

There are 3 choices of matrices W and V .

(A) kerW = Oα(�) and V = In . Then Algorithm 1 returns a (α, {ε} × Q)-partial
realization of f [4, Theorem 3].

(B) ImV = Rβ(�) and W = In . Then Algorithm 1 returns a ({ε} × Q, β)-partial
realization of f , [4, Theorem 2].

(C) kerW = Oα(�), ImV = Rβ(�), rank W = rank V = rank WV . Then Algo-
rithm 1 returns (α, β)-partial realization of f , [4, Theorem 4].

There are two strategies for choosing α, β.
The first one is to choose α (resp. β) to be of finite cardinality r such that

dimOα(�) = n − r (resp. dimRβ(�) = r ), and in this case the reduced ordermodel
will have dimension r . In this case, Oα(�) = ker Oα (resp.Rβ(�) = ImRβ), and

Oα = [
AT

v1
CT
s1 , . . . , AT

vr
CT
sr

]T
, Rβ = [

Aw1Bq1 , . . . , Awr Bqr

]
,

where α = {(vi , si )}ri=1, and β = {(wi , qi )}ri=1. Using these matrix representations
the matrices W and V described above can easily be computed.

The second option for choosing nice selections is to choose (α, β) to be consistent
with a certain set of switching signals. In this case, the dimension of the reduced order
model cannot be fixed in advance, but it is known that the reduced order model will
have the same input-output behavior along those switching sequences which belong
to this designated set. More precisely, assume that the switching signal σ ∈ Q has
the property that σ(s) = qi , s ∈ [Ti−1, Ti ), T0 = 0, Ti = ∑i

r=1 tr for some qi ∈ Q,
0 < ti ∈ R+, 0 < i ∈ N. We will say that a selection (α, β) is consistent with σ , if
for every i > 0, for every ωi , . . . , ωk ∈ N,

((qi )
ωi (qi+1)

ωi+1 · · · (qk)ωk , qi ) ∈ β, ((q1)
ω1(q2)

ω2 · · · (qi )ωi , qi ) ∈ α.
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Theorem ([4]) Assume that (α, β) is consistent with σ and �̄ is an (α, β)-partial
realization of f . Then Y�̄(u, σ ) = f (u, σ ), for all u ∈ U . �

Note that for a pair of selections to be consistent with a switching signal (or a set
of switching signals), the selections involved have to be infinite sets. If the prefixes
of the sequences of discrete modes of the desired switching signals form a regular
language, then there exist algorithms to compute matrix representations of Oα(�),
Rβ(�), see [4, 5].

Further extensions. The model reduction method described above was extended
to linear parameter-varying (LPV) models [3] and bilinear systems [30]. In addition,
the method above was applied to LSSs arising from asynchronous sampling of linear
time-invariant systems [2].

Relationship with realization theory. To begin with, the whole idea of matching
Markov parameters relies on the notion ofMarkov parameters and partial realization,
which are integral parts of realization theory. In fact, the result of the Ho-Kalman
realization algorithm from Procedure 3.2 is isomorphic to the LSS returned by Algo-
rithm 1 with the choice of the matrices W and V as described in option (C) above.
That is, moment matching is just a reformulation of Ho-Kalman algorithm when the
latter is applied to finite Hankel-matrices, rank of which is not maximal. The partial
realization algorithm of [28] is a particular instance of this model reduction method,
if α = β = {v ∈ Q∗ | |v| ≤ N } × Q is chosen. Furthermore, Theorem 4.2.1 and its
counterpart for the discrete-time case [5] can be viewed as extensions of realization
theory of LSSs with constrained switching [22, 23].

4.2.2 Moment Matching in Frequency Domain

By applyingmultivariate Laplace transform of the functions {G f
v }v∈Q+ we can define

a sequence of functions {H f
v }v∈Q+ of complex variables as follows:

H f
v (s1, . . . , sk) =

∫ ∞

0
· · ·

∫ ∞

0
Gv(t1, . . . , tk)e

s1t1+···+sk tk dt1 · · · dtk (13)

for all Re(si ) > s0 for a suitable s0 ∈ R, where k = |v|. If f has a realization by a
LSS � of the form (1) then G f

q1···qk (t1, . . . , tk) satisfies (5), and hence

H f
q1,q2,...,qk (s1, s2, . . . , sk) = Cqk�qk (sk)�qk−1(sk−1) · · · �q1(s1)Bq1 , (14)

where �q(s) = (s In − Aq)
−1, q j ∈ Q, 1 � j � k. We call the functions {H f

v }v∈Q+

the generalized transfer functions of the input-output map f [15].
Let� and be finite sets of tuples so that�, ⊆ {(v, μ) | v ∈ Q+, μ ∈ C

k, k =
|v|}. We will say that an LSS �̄ is a (�,)-partial realization of f if for every
(w,μ) ∈ �, (v, λ) ∈ , H f

wv(μ, λ) = HY�̄
wv (μ, λ).
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Our goal is to find an LSS �̄ such that �̄ is a (�,)-partial realization of f , and
the dimension of �̄ is smaller than that of�. To this end, for any v = q1 · · · qk ∈ Q+,
q1, . . . , qk ∈ Q, define

r((v, μ)) = �qk (μk) · · · �q1(μ1)Bq1 , o((v, μ)) = Cqk�qk (μk) · · · �q1(μ1),

for any μ = (μ1, . . . , μk) ∈ C
k . Assume that the cardinality of � and  are both

r and consider an enumeration � = {(wi , μi
)}ri=1  = {(vi , λi )}ri=1 of these sets.

Define the matrices

R = [
r((w1, μ1

)) . . . r((wr , μr
))

]
, O = [

o((v1, λ1))
T . . . o((vr , λr ))

T
]T

.

Assume that rank OR = r .We can applyAlgorithm1withW = O , V = R resulting
in an LSS �̄ which will have the following property.

Theorem ([15]) With the notation and assumptions above, the LSS �̄ is a (�,)-
partial realization of f . �

Thismethod has an alternative formulation in terms of generalized Loewnermatri-
ces [15], thus extending the well-known Loewner matrix based model reduction
method for linear systems.

Relationship with realization theory The reformulation of this method in terms
of generalized Loewner matrices yields a partial realization algorithm, as it depends
on data which can directly be obtained from Laplace transforms of the input-output
map. In a way, this method is the first step towards a reformulation of realization
theory of LSSs in frequency domain.

5 Conclusions

In this chapter we presented a brief overview of some recent results on realization
theory andmodel reduction of linear switched systems. It is well known that for linear
systems there is a deep connection between these two disciplines. We hope that this
chapter convinces the reader that this remains true for hybrid systems and that it is
worthwhile to do further research on this topic. There are many possible directions
for future research. A particularly natural one is to extend the results of this chapter
to hybrid systems with state-dependent switching, for example to piecewise linear
systems. The latter can be viewed as a feedback interconnection of a linear switched
system with a discrete event generator, hence we are hopeful that the results of this
chapter will be useful for such an extension.
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Developments in the Computation of
Reduced Order Models with the Use of
Dominant Spectral Zeros

Francisco Damasceno Freitas, Joost Rommes, and Nelson Martins

Abstract In this report we present a study on the computation of dominant spectral-
zeros (DSZ) of a full order model (FOM) and its application to determining a
passivity-preserving reduced ordermodel (ROM). The study demonstrates that intro-
ducing a properly scaled transmission term into a Hamiltonian system allows one
to more effectively compute the DSZs by using as their initial estimates in the iter-
ative process, the poles of the original FOM. As the original dynamical system has
half the dimension of the Hamiltonian system used for computing the DSZs, this
strategy may speed up the overall computation by an iterative algorithm, such as
the subspace accelerated dominant pole algorithm (SADPA). Additionally, we intro-
duce alternative expressions for the input and output matrices in the Hamiltonian
system which do not depend on the matrix D (avoiding its inverse) associated with
the direct transmission term of the output signal and assess the DSZ computational
gains achieved. Numerical experiments are shown for three test-systems, including
a 4028-state model.

Keywords Spectral zeros · Reduced order model · Eigenvalue · SADPA ·
Hamiltonian · Power system model

1 Introduction

Preservation of passivity is a key requirement in model order reduction methods
[1–3]. In [4] a new passivity preserving model order reduction (MOR) method based
on spectral zero interpolation was introduced. Reference [5] then showed that the
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spectral zero (SZ) interpolation problem can be formulated as an associated Hamil-
tonian eigenvalue problem. Results involving dominant spectral zero interpolation
for large-scale systems were later obtained through the computation of the dominant
modes of theHamiltonian system [6, 7].Other SZ solution variantswere proposed for
dealing with large-scale systems [8, 9]. The preservation of dissipativity in reduced
order model (ROM) methods, for example, was further explored in [10].

Modal approximation methods [11, 12] are not necessarily passive and stable
since they only match dominant poles, but a MOR method based on dominant SZ
(DSZ) of the system ensures the preservation of passivity [4, 7].

This work investigates strategies to compute the DSZs as the dominant poles of
the Hamiltonian system associated with the FOM, which may then be computed
by SADPA [11]. We study three alternative Hamiltonian system formulations for
the Hamiltonian systems model, one of which has its expressions for the input and
output matrices independent of the direct transmission term D. Three strategies
for the efficient computation of DSZs (re)using the dominant pole results for H(s)
obtained through SADPA iterations were compared for the test systems. The stable
DSZs of the FOM are computed from the Hamiltonian system and their respective
right eigenvectors are used to determine the transformation matrices employed to
calculate the desired passive ROM. Experiments are described for three test-systems,
including a 4028-state model. The main contributions of this work are:

• the proposal of a newHamiltonian alternative formulation, whose input and output
matrices are independent of the direct transmission D term;

• the selection of dominant poles of the original FOM as initial estimates for com-
puting the DSZs based on one of the Hamiltonian system alternatives;

• experiments to determine the sensitivity of the SZs to the introduction of a properly
scaled transmission term D and the determination of the loci of these SZs. Using
this properly scaled parameter, stable DSZs are more cost-effectively computed
and a passive ROM is found.

The following notation is used: the complex plane is denoted by C, the open left
half-plane (LHP) by C

− and j = √−1. Symbols R
n×m and C

n×m denote n × m
real and complex matrices, respectively. The matrix AT stands for the transpose of
A ∈ R

n×m , A∗ denotes the complex conjugate and transpose of A ∈ C
n×m , A−∗ =

(A−1)∗, and A−T = (A−1)T = (AT )−1. The n × n identity matrix n is denoted by In
or simply I . The term Dα = D + α Im is defined and applied only in the formulation
of an Hamiltonian system, for a D term of the dynamical system and a scaling factor
α > 0. m is the number of inputs and outputs for a square system.

This manuscript is structured as follows. In Sect. 2 we describe how spectral zeros
can be used to build passive ROMs. In Sect. 3, three alternative Hamiltonian system
formulations are studied for the computation of DSZs. Numerical experiments are
shown in Sects. 4–6. Section7 concludes.
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2 Spectral Zeros and Model Order Reduction

A linear time invariant (LTI) dynamic system model can be represented by the
descriptor system:

E ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t), (2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m the input vector and y(t) ∈ R
q the

output vector; A ∈ R
n×n , E ∈ R

n×n , B ∈ R
n×m , C ∈ R

q×n and D ∈ R
q×m are sys-

tem matrices. The transfer function or frequency response of system (1) is defined
as H(s) = C(sE − A)−1B + D.

The spectral zeros of H(s) are defined in [4, 5] as the poles of the rational function

G(s) = [H(s) + H∗(−s)]−1 (3)

where H∗(−s) is defined as

H∗(−s) = B∗[sE∗ + A∗]−1(−C∗) + D∗ (4)

The desired spectral zeros of the original system H(s) can be calculated as the
dominant poles of G(s), using an interpretation for poles of an inverse system as
presented in [13].

The inverse system can be obtained by initially defining a fictitious dynamical
system Hz(s) which is derived from the original system model H(s) [7]

Hz(s) = H(s) + H∗(−s) = Cz[sEz − Az]−1Bz + Dz (5)

where

Az =
[
A 0
0 −A∗

]
, Bz =

[
B

−C∗
]

, Ez =
[
E 0
0 E∗

]
, Cz = [

C B∗ ]
, Dz = D + D∗ (6)

The inverse system G(s) = H−1
z (s) has the representation:

Es ẋs(t) = Asxs(t) + Bsus(t) (7)

ys(t) = Csxs(t) + Dsus(t) (8)

where As = Az − BzD−1
z Cz , Es = Ez , Bs = BzD−1

z , Cs = −D−1
z Cz , Ds = D−1

z .
Assuming Dz is nonsingular, (7)–(8) can be put as the Hamiltonian system �s :

Es ẋs(t) =
[
A − BD−1

z C −BD−1
z B∗

C∗D−1
z C −A∗ + C∗D−1

z B∗

]
xs(t) +

[
B

−C∗

]
D−1

z us(t) (9)
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ys(t) = −D−1
z

[
C B∗ ]

xs(t) + D−1
z us(t) (10)

A structured (augmented) Hamiltonian system �h can be defined [7] by using the
Schur complement of −Dz :

⎡
⎣ E 0 0

0 E∗ 0
0 0 0

⎤
⎦

[
ẋh(t)
v̇h(t)

]
=

⎡
⎣ A 0 B

0 −A∗ −C∗
C B∗ Dz

⎤
⎦

[
xh(t)
vh(t)

]
+

⎡
⎣ B

−C∗
0

⎤
⎦ D−1

z uh(t)

Thus

Eh

[
ẋh(t)
v̇h(t)

]
= Ah

[
xh(t)
vh(t)

]
+ Bhuh(t) (11)

yh(t) = −D−1
z

[
C B∗ 0

] [
xh(t)
vh(t)

]
+ D−1

z uh(t) = Ch

[
xh(t)
vh(t)

]
+ Dhuh(t) (12)

where Dh = D−1
z .

To compute a passive ROM for the dynamical system (1)–(2), the transformation
matrices V and W are determined based on the interpolation of SZ [7]:

Ê ˙̂x(t) = Âx̂(t) + B̂u(t) (13)

ŷ(t) = Ĉx(t) + D̂u(t) (14)

where Ê = W ∗EV , Â = W ∗AV , B̂ = W ∗B and Ĉ = CV .
In (14), the matrix D̂ = D is invariant to the application of the transformation

matrices V andW . In [7], the matrices V andW are built by using the right eigenvec-
tors associated with the stable dominant poles of the structured Hamiltonian system
(11)–(12). This involves solving the following Hamiltonian eigenvalue problem:

Ah R = Eh R� (15)

where � is a diagonal matrix with the poles of the pencil (Ah , Eh) (spectral zeros of
the dynamical system H(s)) and R the right eigenvector matrix associated with �.

The stable SZs in � and its associated right eigenvectors are next partitioned into
stable set �−, anti-stable (unstable) set, �+ and infinite set �∞. The eigenvectors R
are next partitioned as R = [R−, R+, R∞]. Considering only the eigenvalues �−,
their eigenvectors R−, can also be partitioned as

R− =
⎡
⎣ X−
Y−
Z−

⎤
⎦ (16)
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According to [7], if k stable DSZs and their respective right eigenvectors are
selected, the matrices V and W can be computed as

V = X−(:, 1 : k) and W = Y−(:, 1 : k) (17)

Alternatively, [7] also suggests to build V and W as a rational Krylov subspace:

V = [(s1E − A)−1B, . . . , (sk E − A)−1B] (18)

W = [(−s∗
1 E

∗ − A∗)−1C∗, . . . , (−s∗
k E

∗ − A∗)−1C∗] (19)

The ROM (Ê , Â,B̂,Ĉ ,D̂) interpolates the system (E ,A,B,C ,D) at the selected SZs
si and their mirror images −s∗

i , i = 1, 2, . . . , k. The projection matrices V and W
determined from (17) or by (18)–(19) ensure that the reduced system is passive [4,
5].

According to [7], the projection matrices V andW extracted from the information
of SZs are sufficient to compute a reduced model as defined by (1)–(2), in case of
D = 0 and H(s)|s→∞ = 0. However, when D = 0, but H(s)|s→∞ = D̃ �= 0, the
matrices Â,B̂ and Ĉ need corrections to include the component Z− of the right
eigenvector R calculated in (16) and also the D̃ term. For this condition, the DSZ
reduced model is represented by the following matrices [7]:

Ê = W ∗EV, Â = W ∗AV + Z∗ D̃Z , B̂ = W ∗B − Z∗ D̃, Ĉ = CV − D̃Z , D̂ = D̃
(20)

For simplicity, consider a SISO system and note that (20) applies for the case
when D = 0 but may be also extended for the case where D �= 0. This is achieved by
modifying the output signal in (2) as follows. First, define a new algebraic variable
z = Cx + Du and make y = z. Secondly, add the algebraic equation 0 = −z +
Cx + Du to the original descriptor system. Therefore, an augmented dynamical
system (E ,A,B,C ,0) is created having an additional generalized state z and another
additional algebraic equation. Note that the ROM for this augmented system is also
given by (20). A similar procedure is applied for aMIMO square systemwith D �= 0,
m inputs and m outputs.

3 Variant for Computing Dominant Spectral Zeros

We now describe an alternative formulation for the structured Hamiltonian system
whose component matrices are independent of the direct transmission term D, as
verified for the matrices Bh ,Ch and Dh , an advantage over the formulation presented
in (11)–(12). This development is inspired on the method for the computation of
transmission zeros as described in [13]. Instead of manipulating with the transfer
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matrix Hz(s), in (5), we use the matrix G(s) ∈ C
q×m directly. For simplicity, we will

only describe the square system case where q = m.
Consider a MIMO system defined by G(s) as in (3), such that the input/output

relationship is given by Yw(s) = G(s)Uw(s):

Yw(s) = [H(s) + H∗(−s)]−1Uw(s) (21)

Then, for G(s) nonsingular,

[H(s) + H∗(−s)]Yw(s) = Uw(s) (22)

and

[C(sE − A)−1B + D + B∗(−sE∗ − A∗)−1C∗ + D∗]Yw(s) = Uw(s) (23)

Consider in (23) that Xw1(s) = (sE − A)−1BYw(s) and Xw2(s) = (sE∗ + A∗)−1

(−C∗)Yw(s). Therefore, in the time domain, (23) can be written as

0 = Cxw1(t) + B∗xw2(t) + (D + D∗)yw(t) − uw(t) (24)

The expressions for Xw1(s) and Xw2(s) in the time domain are:

E ẋw1(t) = Axw1(t) + Byw(t) (25)

E∗ẋw2(t) = −A∗xw2(t) − C∗yw(t) (26)

The expressions (24)–(26) can be put into the Hamiltonian system matrix form,
�a:

⎡
⎣ E 0 0

0 E∗ 0
0 0 0

⎤
⎦

⎡
⎣ ẋw1(t)
ẋw2(t)
ẏw(t)

⎤
⎦ =

⎡
⎣ A 0 B

0 −A∗ −C∗
C B∗ Dz

⎤
⎦

⎡
⎣ xw1(t)
xw2(t)
yw(t)

⎤
⎦ + [

0 0 − Im
]∗
uw(t)

⇒ Ea ẋa(t) = Aaxa(t) + Bauw(t) (27)

yw(t) = [
0 0 Im

] [
xw(t)
yw(t)

]
⇒ yw(t) = Caxa(t) (28)

where xw(t) = [x∗
w1(t) x∗

w2(t)]∗, xa(t) = [x∗
w(t) y∗

w(t)]∗
In (27)–(28), the dependence of D is exclusively on the state matrix Aa . Further-

more, Aa = Ah and Ea = Eh , so both system models (�h and �a) have the same
poles. However, when using the Hamiltonian system to calculate its dominant poles
(dominant spectral zeros of H(s)) by a method such as SADPA, there is a depen-
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dence of Bh and Ch with the inverse of (D + D∗), which is not possible in the case
of D=0. This difficulty is obviated in the approach proposed in (27)–(28), since the
matrices Ba and Ca are insensitive to values of D. On the other hand, even when
the modeling is originally presented with a null D matrix, it is possible to obtain
an equivalent modeling with D nonsingular through appropriate modification on the
circuit equations and variables (refer to the example for an electrical circuit described
in Sect. 5, where H(s) has equivalent descriptions: depending on D or not).

The poles of the Hamiltonian system modeled by (7)–(8), (11)–(12) or (27)–(28)
change when varying the term Dz defined in (6), while the poles of H(s) remain
unchanged. This idea which was originally explored in [7] is used here to modify Dz

in order to shift the SZs towards the poles of H(s). This strategy has proven effective
since better initial estimates lead to fewer iterations in the SADPA computation of
DSZs. Therefore, we define Dz as a function of a scaling factor α > 0, such that
Dz = Dα + D∗

α , where Dα = D + α Im and m is the number of inputs, which is
assumed to be equal to the number of outputs (see Sects. 4 and 5 for computation of
the SZs as a function of α).

A procedure to determine a ROM based on DSZs is presented in the Alg. 1. The
procedure adopts the dominant poles of H(s) as the initial estimates in the iterative
computation of DSZs.

Algorithm 1 Procedure to compute the DSZ-ROM.
Require: Dynamical system representation (E ,A,B,C ,D).
Ensure: DSZ-ROM matrices (Ê , Â,B̂,Ĉ ,D̂)
1: Start computing the Nd dominant poles sk of the dynamical system H(s) by using SADPA [11]

and use them as initial estimates for computing the DSZs.
2: Establish a scaling factor α, define Dα = D + α Im , compute Dz = Dα + D∗

α and form the
Hamiltonian system, according to the alternative defined by (7)–(8), (11)–(12) or (27)–(28).

3: Z = []; R = [];
4: for k = 1, 2, . . . , Nd do
5: Set z0 = sk and compute by SADPA the dominant SZ zk in the neighborhood of sk and its

respective right eigenvector rk .
6: Store the DSZ zk in Z = [Z; zk ] and the right eigenvector rk in R = [R rk ].
7: end for
8: Compute the transformation matrices V and W from the right eigenvector matrix R, according

the procedure described in the Sect. 2.
9: Compute the DSZ-ROM matrices Ê , Â,B̂,Ĉ ,D̂ defined in (20).

The following sections details examples on the numerical computations of DSZs
and DSZ-ROM when considering the approaches presented in Sects. 2 and 3.
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4 The Impact of D Term Size on DSZ Numerical
Computations

The structured Hamiltonian system, described by (11)–(12) or (27)–(28), is very
suitable for calculating DSZs of H(s) via SADPA [11]. The impact of the D term
size on the SZs is investigated in this section.We point out the importance of choosing
an optimum size for this term for determining better initial estimates for the DSZ
computation.

This experiment illustrates the impact of α in the Dα term in driving the DSZs
of G(s) toward the poles of H(s). The tutorial system is defined by the following
matrices:

A =

⎡
⎢⎢⎣

−1 4 −1 1
−4 −1 0 −1
−1 −1 −2 8
1 2 −8 −2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
0 0
1 0
0 0
0 −1

⎤
⎥⎥⎦ , CT =

⎡
⎢⎢⎣
0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ , D =

[
0 0
0 0

]
,

with Dα = D + α I2, where α is a positive scaling factor for the I2 term.
Figures1 and 2 illustrate the poles and locus of the SZs as a function of the scaling

factor α. The black arrows were inserted in the SZ locus plot to indicate how the
spectral zeros shift as α is reduced. Figure1 shows the SZs loci when α is varied
from 1 to 0.1. The poles of the dynamical system H(s) are: −1.2426 ± j4.06 and
−1.7574 ± j7.95. The stable SZs computed for α = 1 are −1.4711 ± j4.02 and
−1.4778 ± j7.98, which are very much in the neighborhood of the poles of H(s).
On the other hand, when α = 3.5 × 10−8 the stables SZs are −3.9379, −6.2374,
(−6.76 ± j8.59) × 103, being therefore far away from the poles of H(s). The SZs
are seen to drastically shift as the scaling factor α is changed. Smaller values of α lead
the stable SZ previously located near the pole of H(s), −1.7574 ± j7.95, to move
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Fig. 1 Loci of poles of H(s) and its spectral zeros as a function of the scaling factor α for D = α I2.
The black arrows point in the direction of decreasing α
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Fig. 2 Poles of H(s) and spectral zeros locus as a function of the scaling factor α. The scaling
factor α has value 1 in the neighborhood of the poles of H(s). At this point in the plot, the SZs are
−1.4778 ± j7.98 and −1.4711 ± j4.02. The SZs λ1 and λ2 in the plot occur for α = 3.5 × 10−8

into the imaginary axis. The stable SZ near the other pole, −1.2426 ± j4.06, moves
further into the left hand side of the complex plane. The drastic shift experienced by
the SZs when decreasing α up to very smaller values are illustrated in Fig. 2. This
plot highlights stable SZs λ1 = −6.2374 and λ2 = −3.9379 for α = 3.5 × 10−8,
while other 4 SZs are on the imaginary axis.

Therefore, for the same dynamical system, higher values of the scaling factor α,
leads to stable SZs in the vicinity of the poles of H(s). On the other hand, very small
values of α push the SZs away from the poles of H(s).

5 Electrical Circuits

5.1 Dynamic Modeling

Figure3 depicts an electrical circuit having only passive elements (ideal resistor,
inductor and capacitor devices) and comprised of 2 RLC PI sections. Each PI section
has a resistance R, an inductance L and a capacitance C/2 at each terminal. In the
example, three nodal voltages v1, v2 and v3 are highlighted. These are the same
voltages across each capacitor vC1, vC2 and vC3, respectively.

The input signal is the voltage source connected to node 1, while the output signal
is the current i3 flowing through the RL load.

The equations for this circuit can be formulated using the physical laws for each
device andKirchhoff’s current and voltage laws, yielding a single-input single-output
descriptor system having 6 states and 3 algebraic variables.
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Fig. 3 3-node and 2-PI circuit with a voltage source u(t) and a RL load

We show that the output variable can be expressed either as a function of a single
state, without a term Du(t) or as a combination of state plus the forward term Du(t).
In some cases, therefore it is necessary to deal with dynamical system models which
have a nonzero D [3].

The vector of generalized states for this system can be defined as

x = [iC1 iC2 iC3 i1 i2 i3 v1 v2 v3]T (29)

The output variable, y = i3, is therefore given by

y = [0 0 0 0 0 1 0 0 0]x = C1x (30)

Alternatively, the same output y can be expressed as

y = [−1 − 1 − 1 0 0 0 − 1

Ri
0 0]x + 1

Ri
u = C2x + 1

Ri
u. (31)

In (30) the term D is zero, while in (31) D = 1/Ri . Both yield numerically the
same results for the transfer function H(s) = y(s)/u(s). In the sequel, we present
experiments for these two forms of output representations, demonstrating their equiv-
alence for the computation of DSZ-ROM.

5.2 Results of Experiments

Experiments were initially carried out for test systems generated by increasing the
number of PI sections in the circuit depicted in Fig. 3. The circuit parameters inde-
pendent of the number of PI sections are: C = 0.01 F, R = 0.05 �, L = 0.02 H,
Ro = 0.05 �, Lo = 0.06 H, Rx = 0 and Ri = 0.05 �.
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5.2.1 Experiments on the Circuit with 2 PI Sections

The purpose of the experiment is to evaluate the two alternative modelings for the
same output variable in the electrical circuit of the Fig. 3 considering the model
with the term D = 0 as Alternative I and the model with a nonzero D term as the
Alternative II.

The circuit with 2 PI sections (N = 2) has 9 generalized states, whose eigenvalues
were computed by using a QZ routine: −3.9975 × 103, −1.2870 ± j1.3759 × 102,
−1.8801 ± j6.6316 × 101, −2.0015, Inf, Inf, and Inf.

Alternative I has the output represented by (30) while in Alternative II, it is
represented by (31). Then considering the input vector B and the output vectors
C1 (Alternative I) and C2 (Alternative II), the spectral zeros were computed by
using the QZ routine applied to the structured Hamiltonian system �h , with pencil
(Ah, Eh), for both Alternatives I and II. The Hamiltonian system has dimension 19
and its finite poles, which are also the spectral zeros of the system (E ,A,B,C ,D), for
Alternative I are: 7.17 × 104 ± j5.26 × 104,−9.04 × 104,−2.85 × 104 ± j8.52 ×
104, ± j2.07 × 102, ± j1.10 × 102 and ± j3.54 × 101. For Alternative II the SZs
lying on the imaginary axis were similar to the SZs found for Alternative I. We can
therefore conclude that an alternative modeling of the output variable y = −iC1 −
iC2 − iC3 − v1

Ri
+ u

Ri
(see (31)), with a nonzero D term in H(s), does not cause

significant change on the SZs, when compared with the modeling by the one state
variable y = i3, i.e., with D = 0. Moreover, we can conclude for this example that
even for the smaller finite spectral zeros, they are far away from the poles of the
dynamical system (E ,A,B,C ,D).

The experiments on the tutorial system of Sect. 4, suggested that by increasing
the norm of the matrix Dα = D + α Im used in the Hamiltonian systems, the spectral
zeros move towards the system poles. Similar results were obtained for the electrical
circuit model of this section. In [7] it is proposed to raise the norm of Dα + D∗

α by
a factor δ in the range (104, 106), similarly to what has been presented in Sect. 4 so
as to locate the SZs to near the poles of H(s). An even more important criterion is
to judiciously raise the D norm in order to shift the DSZs only up to a point where
there is no SZ left on the imaginary axis. Both alternative system descriptions are
useful for determining the appropriate D norm and initial estimates for the iterative
computation of DSZs. The D norm choice is based on the control system’s intuition
that having MORs generated from DSZs that are close to the actual system poles
may better capture the actual system dynamics.

Therefore, we now use Dα in (11)–(12) and (27)–(28), defined accordingly for
the selected Alternatives I or II.

Figure4 highlights the shifting of the SZ when α is varied from 0 to 5, in steps
of 0.5 for Alternative I, i.e., D = 0. The SZ locus is depicted only for the left-side
of the complex plane. Similar mirrored movement (not shown) is observed for the
right-side of the complex plane. The plot also shows how the SZ shift towards the
poles of the system (E ,A,B,C ,D), as α is further increased. The finite poles of the
dynamical system are λ1, λ

∗
1, λ2, λ

∗
2, λ3, λ4. In the situation when α = 0, there are 6

finite spectral zeros at the imaginary axis (see red dots on the imaginary axis).Whenα
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Fig. 4 Fixed poles and spectral zeros loci for values of α changing from 0 to 5, Alternative I

is increased just to 0.5, the SZ are:±3997,±6.68,± j61.7,± j70.8,±2.36 ± j137.6
and 7 other SZ at infinity. So, the four SZs ± j61.7, ± j70.8 were the only ones that
have remained on the imaginary axis. When α = 5 the SZs are already close to the
poles of the system (E ,A,B,C ,D). And, higher values ofαwould shift the SZs to even
closer to these poles. This consistent behavior among dynamic systems of different
nature justifies using the poles of H(s) as initial estimates to compute iteratively the
dominant SZs, for example, by using SADPA [11].

The dominant poles of H(s) were determined by using SADPA for two alterna-
tive equations for the output variable discussed in Subsection 5.1. Both alternatives
relate to the same transfer function. Even though Alternative II has a nonzero term
1
Ri
u(t), this fact does not ensure fully stable SZs. Our strategy has been to chose an

adequate norm for the term Dα in the Hamiltonian system so that it only results in
stable SZs. An experiment for single-input single-output model with Dα = D + α,
α = 10, was carried out and selected stable DSZs were used to compute a ROM.
Both the Hamiltonian system defined by �h in (11)–(12) and �a in (27)–(28) were
used to compute the SZs. To evaluate modal dominance on the Hamiltonian sys-
tem, the SADPA selection strategy ’LR’ (largest ratio |res|/|re(λ)|) was chosen. A
first type of experiment uses 3 initial guess defined from the dominant poles of
H(s): s0 = {−2.0015, − 1.2870 + j1.3759 × 102, − 1.8801 + j6.6316 × 101

}
to determine 3 wanted DSZs. Here, no deflation is implemented by SADPA, since
each time a DSZ is found, another guess is used from the set formed by s0. The
dominant poles s0 of H(s), on the other hand, were calculated by SADPA from a
single initial guess s0 = j100. A second experiment was based on the computation
of the dominant SZs directly from the Hamiltonian systems, starting with a initial
guess s0 = j100 with the purpose of determining 3 wanted DSZs. In this strategy,
SADPA deflates the found pole and uses it as the guess for searching the next DSZ,
proceeding this way until nwanted poles are determined.
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Fig. 5 Magnitude of H( jω) of the full order model (FOM) (Alternative I), DSZ-ROMs of H(s)
obtained for the modeling Alternative I and calculated by using �h and �a . The transformation
matrices associated with DSZs were computed for a scaling factor α = 10

The reduced model computed by using the modal dominance of SZs for Alter-
native I is (Ê , Â,B̂,Ĉ ,D̂). The term D̃ = H(s)|s→∞ = 0, giving D̂ = D̃ + D = 0.
Figure5 shows the magnitude plot for the model transfer functions, for Alternative I
FOM and DSZ-ROMs obtained when the Hamiltonian systems �h and �a are used.
Also, the absolute deviations between the transfer functions of the FOM and DSZ-
ROMs for both Hamiltonian systems are shown. The transformation matrices V and
W were calculated from right eigenvectors associated with the DSZs obtained for
the case with an scaling factor α = 10.

Consider now the system output defined according to Alternative II, which has
D = 1/Ri and C2 as in (31) to define the output signal y. Defining Dα = 1/Ri + α

and assigning α = 0, six SZs are found at the imaginary axis. This pattern also was
detected in the Alternative I. i.e., the fact of using another representation of the
output y, with a nonzero D term does not change the characteristic of the SZs in
relation to the case when D = 0. Then, in order to adopt an uniform standard for
the calculation of the SZs, we propose that all output signals be represented as D
null. For purpose of the SZ computation, we use Dα = D + α I . For this aim, in
the situation when y is defined by an equation that has a nonzero D, as in the case
of Alternative II, it is suggested to redefine y by an additional generalized state, as
demonstrated in Sect. 3, adding 1 algebraic variable and 1 algebraic equation in the
original dynamical system. Then, assigning α = 10 in both the Hamiltonian systems
�h and �a , we found similar results for the DSZ-ROMs, as found when Alternative
I was selected for modeling.

SADPA was used to determine the dominant poles of the system H(s) for the
two alternative modelings I and II. Although the poles are only associated with the
pencil (E ,A), the SADPA uses the other matrices (B,C ,D) to guide the search for
the dominant poles of H(s). The following 5 dominant poles of H(s) were found:
−1.2870 ± j137.59, −1.8801 ± j66.316, −2.0015. Next, only the pole located far
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away from the imaginary axis was discarded, the other 4 poles being used as initial
estimates for computing the DSZs. SADPAwas applied sequentially to calculate one
dominant spectral zero at a time, by using as initial estimate the dominant pole of the
system (E ,A,B,C ,D) in a procedure that can be easily automated. The computation
of the DSZ were carried out for the structured Hamiltonian system �h , as defined in
(11)–(12) and �a , as defined in (27)–(28).

For Alternative I and α = 10 the following DSZs were calculated: −2.4521,
−1.5194 ± j66.313 and−1.3607 ± j137.59. Their right eigenvectors R− (see (16))
were also calculated, generating the matrices V andW according to (17). Then, with
these matrices the DSZ reduced model (DSZ-ROM) for Alternative I was calculated.
The DSZ-ROM obtained has the following poles −2.0015, −1.8801 ± j66.316 and
−1.2870 ± j137.59. This set of dominant poles to build the reducedmodel is approx-
imately equal to the dominant poles of the original system H(s).

5.3 Experiments on Circuits with Many PI Sections

The results in this section are related to an analogous electrical circuit model with
150 PI sections having 450 generalized states, and the structured Hamiltonian has
901 generalized states.

SADPA initially was used to determine the dominant poles of the H(s) dynamical
system, with s0 = j100 as the initial estimate and the number of wanted poles 130
(nwanted) specified to initialize SADPA, which automatically computed 239 domi-
nant (complex conjugate) poles for H(s). These dominant poles were then used as
estimates for computing the spectral zeros via SADPA again, but now applied to
the structured Hamiltonian system, both for (11)–(12) and (27)–(28). A total of 239
DSZs were found in both SADPA runs. These DSZs were used to compute the trans-
formation matrices V andW according to (18)–(19). Finally, a 239 order DSZ-ROM
was calculated. Figure6 illustrates the distribution of poles of H(s) as well as DSZs
and poles of theROMcomputed via theDSZ approach for theAlternative Imodeling.
Figure7 exhibits the frequency response for the FOM H(s) and its DSZ-ROM for
the alternative I, when the DSZs are computed for α = 20. The computation of DSZs
by applying both the Hamiltonian system approaches in (11)–(12) and (27)–(28) are
seen to present practically identical results. Other experiments were performed for
smaller nwanted parameter values such as 90 and 110. The deviation is highest for
the case when nwanted is 90, the best result among these three experiments being
for nwanted = 130. Evidently, higher values for nwanted improve the quality of the
calculated ROM. But, this should be done up to a minimum tolerance for accept-
ing the DSZ-ROM. These results demonstrate the efficacy of SADPA to accurately
compute ROMs directly from the Hamiltonian system description.
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Fig. 7 Frequency responses for the 150 PI sections FOM H(s) and DSZ-ROM for Alternative I,
α = 20. The Hamiltonian systems �h em �a were used for computing the DSZs

6 Experiments on an Actual Power System Model

This section presents results for an actual power system RLCmodel [14] suitable for
transient studies involving frequencies as high up as 15 kHz (about 105 rad/s). The
actual system model is stable and passive since all components are represented by
lumped RLC circuits. Each transmission line is represented by a cascade of 80 PI cir-
cuits while other devices such as transformers and loads are individually represented
by a RL series circuit. The complete data on this system is available at [15]. The
objective in [14] was to determine reduced models by using the balanced truncation
technique and employing low-rank approximations of the Gramians to compute the
transformation matrices.

The full model has 4028 states and the objective is to compute its ROM by using
the DSZ approaches presented in this work to preserve the properties of stability and
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passivity [7]. This section reports on three strategies for computing the DSZ all of
which use the basic algorithm or variants of SADPA.

The following considerations are appropriate:

• The input/output matrices of the structured Hamiltonian of a SISO H(s) are built
using (27)–(28) for generating a ROM1 and (11)–(12) for generating a ROM2.
In both cases, the D term of the original system is zero and a Dα = α term was
utilized;

• The computations for determining the DSZs were then performed for Dα =10
despite the fact that in the original system D = 0;

• Three strategies for the efficient computation of DSZs (re)using the dominant pole
results for H(s) obtained through SADPA iterations were compared:

1. Guess H(s): Dominant poles of H(s) are computed by SADPA and used as set
of initial guesses in the DSZ computation also by SADPA, with an artificially
large Dα norm used in the Hamiltonian system.

2. Hybrid: From a guess s0, just one pole of H(s) is computed by SADPA and
the result is used to compute the DSZ nearest to this pole by a two-sided RQI
algorithm, with an artificially large Dα norm used in the Hamiltonian system.
After convergence to theDSZ, the pole of H(s) is deflated and the next dominant
pole is determined for computing the next DSZ, again by a two-sided RQI
algorithm. The process continues until a wanted number of poles is computed.

3. DSZ-deflation:DSZ computed by SADPAas dominant poles of theHamiltonian
system modified with an artificially large D norm. Initial estimates chosen by
user. Basic SADPA routine deflates the already found DSZ (an Hamiltonian
pole) and proceed to find the next DSZ.

Experiments were carried out for the three strategies to compute the DSZs. The
following SADPA parameters (see [11] for details on parameters) were used: Kmin =
5, Kmax = 20, maxrestart = 20, tolerance of 10−10, and strategy (in this work ‘LR’,
largest|residues|/|real(pole)| was used to characterize mode dominance).

Table1 summarizes experiment results for the three strategies to compute DSZs
for both the ROM1 and ROM2 approaches. The ROM1 approach corresponds to the
structured Hamiltonian where the output/input matrices are insensitive to Dα (see
(27) and (28)), proposed in this work; the ROM2 approach characterizes the study
based on the method when the output/input matrices is dependent on Dα (see (11)
and (12)). The number of dominant spectral zeros (#DSZ) and the computational
cost in CPU time, in seconds, for obtaining a ROM are provided in Table1.

From Table1, we can see that all three variants produce ROMs of similar order
(#DSZ). However, the best strategy in terms of computational cost is the one based
on the first strategy, labeled ‘guess H(s)’ (see third column in the table), where the
dominant poles of H(s)were used as initial estimates for the DSZs computation. The
worst run-time performance was obtained for the second variant (see fourth column,
labeled ‘hybrid’).

The ROMs and FOMs were compared in the frequency domain for a frequency
range from10 to 105 rad/s. Figure8 illustrates themagnitudes and absolute deviations
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Table 1 Results for the MOR experiments for the 4028-state model

Approach Guess H(s) Hybrid DSZ-deflation

ROM1 #DSZ 197 197 193

Run-time (s) 20.7 79.4 33.0

ROM2 #DSZ 197 197 195

Run-time (s) 17.9 79.1 30.0
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Fig. 8 Frequency response for the TF and the respective deviations between FOM and ROM, when
the ‘guess H(s)’ strategy is implemented on SADPA

between the DSZ-ROM in relation to FOM for a transfer function (TF). The DSZ-
ROMwas calculated for α = 10. The scalar TF relates the bus voltage (output signal)
to the current injection (input signal) at the bus #21 in the industrial system model
described in [14]. The TF plots for the FOM,ROM1-DSZ andROM2-DSZ are shown
in the figure. The deviations of the ROM results from the FOM are compared in error
curves ‘Error ROM1’ and ‘Error ROM2’. The figure illustrates plots related to the
strategy characterized by ‘guess H(s)’ in Table1. Similar plots were obtained for
the strategies ‘hybrid’ and ‘DSZ-deflation’.

When comparing the error curves computed by the three strategies (strategies
‘hybrid’ and ‘DSZ-deflation’ not shown), the first and second strategies ‘guess H(s)’
and ‘hybrid’ are seen to perform better than the strategy ‘DSZ-deflation’, if the focus
is on higher frequencies. For lower frequencies and in the region of larger peaks
all strategies have similar performance. We verify that for strategies ‘guess H(s)’
and ‘hybrid’ the deflation is implemented for the poles of H(s), which are used as
estimates for computing a DSZ. In the case of ‘DSZ-deflation’ the deflation occurs
directly on the Hamiltonian system. In this case, the approaches ROM1 and ROM2
can converge for another set of DSZ or miss some DSZ. Note that from Table1, the
ROM1 and ROM2 were obtained from 193 DSZs and 195 DSZs, respectively. The
other strategies required information from 197 DSZs for either ROM1 or ROM2.
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These results confirm the better performance of the ‘guess H(s)’ strategy, which
uses the poles of H(s) as initial estimates in the computation of the DSZ set.

The strategy adopted in thiswork tomodify Dα and select dominant poles as initial
estimates for finding DSZs from the modified Hamiltonian system, is applicable for
systems having the direct transmission term D equal to zero or different from zero.

In this work, all experiments were performed in Matlab in a notebook AMD Intel
Core-TM i7 CPU with 2.5GHz and 16 GB RAM.

7 Conclusion

This work presented an alternative method for computing dominant spectral zeros
(DSZs) as eigenvalues of a Hamiltonian system. A ROM was built taking as foun-
dation the stable modal part of the set of DSZs. The proposed method does not
require the matrix D for computing the input and output matrices as needed in other
works. The new method was implemented using SADPA and its performance was
compared with other approaches whose input and output matrices do depend on D.
The ROM has the characteristics of preserving the stability and passivity of the full
order model. The study has demonstrated that the location of the DSZs depends
heavily on the norm of the matrix D. Three strategies for selecting initial estimates
when computing DSZs based on SADPAwere described in detail. The efficacy of the
computations was demonstrated by performing experiments for three test-systems,
including a 4028-state actual power system model. For the test systems considered
in this paper, the approach where a set of dominant poles of H(s) is used as initial
estimates for the dominant spectral zeros was found to be the most efficient.
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1 Introduction

Port-Hamiltonian (pH) systems are network-based models that arise within a mod-
eling framework in which a physical system model is decomposed into hierarchies
of submodels interconnected principally through the exchange of energy. The sub-
models typically reflect one of a variety of core modeling paradigms that describe
phenomenological aspects of the dynamics having different physical character, such
as e.g. electrical, thermodynamic, or mechanical. The pH framework is able to knit
together submodels featuring dramatically different physics through a disciplined
focus on energy flux as a principal mode of system interconnection. pH structure is
inherited via power conserving interconnection and a variety of physical properties
and functional constraints (e.g., passivity and energy and momentum conservation)
are encoded directly into the structure of themodel equations [5, 30]. Interconnection
of submodels may create further constraints on system behavior and evolution, orig-
inating as conservation laws (e.g., Kirchoff’s laws or mass balance), or as position
and velocity limitations in mechanical systems. As a result, system models are often
naturally posed as combinations of dynamical system equations and algebraic con-
straint equations, i.e., as port-Hamiltonian descriptor systems or port-Hamiltonian
differential-algebraic equations (pHDAE).

When a pHDAE system is linearized around a stationary solution, one obtains
a linear time-invariant pHDAE with specially structured coefficient matrices, see
[5]. Although the approach we develop here can be extended easily to more general
settings, we narrow our focus to a particular formulation offered as one of the simpler
among a variety of formulations presented in [5, 22].

Definition 1 A linear time-invariant DAE system of the form

Eẋ = (J − R) x + (B − P)u,

y = (B + P)T x + (S + N)u,
x(t0) = 0, (1)

with E, J, R ∈ IRn×n , B,P ∈ IRn×m , S = ST , N = −NT ∈ IRm×m , on a compact
interval I ⊂ IR, is a pHDAE system if the following properties are satisfied:

1. The differential-algebraic operator

E
d

dt
− J : C1(I, IRn

) → C0(I,Rn)

is skew-adjoint, i.e., JT = −J and E = ET ,
2. E is positive semidefinite, i.e., E ≥ 0, and
3. the passivity matrix

W =
[
R P
PT S

]
∈ R

(n+m)×(n+m)

is symmetric positive semi-definite, i.e.,W = WT ≥ 0.
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The Hamiltonian function H : Rn → R of the system is H(x) = 1
2x

TEx. H is a
quadratic function of state describing energy storage within the system. The matrix
E, which is the Hessian matrix of H(x), is the energy matrix; R is the dissipation
matrix; J is the structure matrix describing the energy flux among internal energy
storage elements; and B ± P are port matrices describing how energy enters and
leaves the system. S and N are matrices associated with a direct feed-through from
input u to output y. If the system has a solution x ∈ C1(I,Rn) in I for a given input
function u, then the dissipation inequality

d

dt
H(x) = uT y −

[
x
u

]T

W
[
x
u

]
≤ uT y

must hold. The system is both passive and Lyapunov stable, asH defines a Lyapunov
function when u = 0, see [5].

In practice, network-based automated modeling tools such as modelica,
Matlab/Simulink, or 20-sim1 may produce system models that are overdeter-
mined as a consequence of redundant modeling. Thus, automated generation of a
system model usually must be followed by reformulation and regularization. Evi-
dently, these subsequent steps should preserve the pH structure and retain compati-
bility with standard simulation, control, and optimization tools.

pHDAE models may be very large and complex, e.g., models that arise from
semi-discretized (in space) continuum models in hydrodynamics [11, 19, 29], or
mechanics [25]. In such cases, model reduction techniques are necessary to apply
control and optimization methods. Preservation of the pH structure, the constraint
structure, and the interconnection structure is necessary to maintain model integrity.
For linear time-invariant pH systems with positive-definite E, such methods are
well-developed, including tangential interpolation approaches [15, 16] and moment
matching [26, 28, 31], as well as effort and flow constraint reduction methods [27].
Interpolatory approaches have been extended to nonlinear pH systems as well, see
[3] and [9].

In the case of singularE, only recently in [11, 18] havemodel reduction techniques
been introduced that are able to preserve pH structure. Note that for unstructured
DAEs, constraint-preserving reduction methods were introduced in [17, 19, 25, 29].

In this work, we discuss particular structure-preserving model reduction methods
that incorporate both regularization and interpolation for linear pHDAE systems
having the form (1). For different model classes, we describe how constraints are
represented in the transfer function and how the polynomial part can be preserved
with interpolatory model reduction methods. The key step identifies, as in [5, 24],
all redundancies as well as both explicit and implicit system constraints, partitioning
the system equations into redundant, algebraic, and dynamic parts. Then, only the
dynamic part need be reduced in a way that preserves the structure.

In Sect. 3, we consider pHDAEs of the form (1) and note important simplifications
of the general regularization procedure. Structure preserving model reduction of

1 https://www.modelica.org/, http://www.mathworks.com, https://www.20sim.com.

https://www.modelica.org/
http://www.mathworks.com
https://www.20sim.com
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pHDAEs using interpolatory methods is discussed in Sect. 4 for several specific
model structures. We propose an algorithm to generate effective interpolation data
in Sect. 5 followed by a numerical example that demonstrates its effectiveness.

2 General Differential-Algebraic Systems

In this section, we review some basic properties of linear constant coefficient DAE
systems having the general form,

Eẋ = Ax + Bu,

y = Cx + Du,
x(t0) = 0, (2)

where E, A ∈ IRn×n , B ∈ IRn×m , C ∈ IRp×n , and D ∈ IRp×m ; for details, see, e.g.,
[7].

The matrix pencil λE − A is said to be regular, if det(λE − A) �= 0 for some
λ ∈ IC. For regular pencils, the finite eigenvalues are the values λ ∈ IC for which
det(λE − A) = 0. If the reversed pencil λA − E has the eigenvalue 0, then this is
the infinite eigenvalue of λE − A.

With zero initial conditions, x(t0) = 0 as in (2), and a regular pencil, λE − A, we
obtain in the frequency domain, the transfer function, H(s) = C(sE − A)−1B + D.
H(s) is a rational function mapping the Laplace transform of the input function u to
the Laplace transform of the output function y. If the transfer function is written as

H(s) = C(sE − A)−1B + D = G(s) + P(s),

where G(s) is a proper rational matrix function and P(s) is a polynomial matrix
function, then the finite eigenvalues are the poles of the proper rational part, G(s),
while the infinite eigenvalues are associated with the polynomial part, P(s).

Regular pencils can be analyzed via the Weierstraß Canonical Form; see, e.g.,
[13]. The index, ν, of the pencil λE − A is the size of the largest block associated
with the eigenvalue ∞ in the Weierstraß canonical form; if E is nonsingular, then
ν = 0.

To analyze generalDAEs and to understand the properties of the transfer function,
conditions on controllability and observability are needed, see, e.g., [7, 10]. Let
S∞(E) and T∞(E) be twomatriceswith orthonormal columns spanning, respectively,
the right and left nullspace ofE. A system is called strongly controllable if it satisfies

C1 : rank[λE − A, B] = n for all λ ∈ IC and C2 : rank[E, AS∞(M), B] = n.

Analogously, a system is called strongly observable if it satisfies

O1 : rank
[
λET − AT CT

] = n for all λ ∈ IC and O2 : rank [
ET AT T∞(E) CT

] =
n.

If a system is strongly controllable and strongly observable, then it is calledminimal.
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Conditions (C1) and (C2) are preserved under non-singular equivalence transfor-
mations as well as under state and output feedback. Note, however, that regularity
(or non-regularity) of the pencil, of the index, and of the polynomial part of the
transfer function are generally not preserved under state or output feedback. For sys-
tems that satisfy (C2), there exists a suitable linear state feedback matrix, F1, such
that λE − (A + BF1) is regular and of index at most one. Also if conditions (C2)
and (O2) hold, then there exists a linear output feedback matrix, F2, so that the pencil
λE − (A + BF2C) has this property, see [7].

3 Regularization of PHDAE Systems

In general, it cannot be guaranteed that a system, generated either from a realiza-
tion procedure or an automated modeling procedure, has a regular pencil λE − A.
Therefore, a regularization procedure typically must be applied, see [6, 8, 20]. For
pHDAEs, pH structure helps simplify these regularization procedures significantly,
since the pencil λE − (J − R) is associated with a free dissipative HamiltonianDAE
system (i.e., u = 0). Such systems have many nice properties [22]: The index ν is
at most two; all eigenvalues are in the closed left half plane; and all eigenvalues on
the imaginary axis are semi-simple (except for possibly the eigenvalue 0, which then
may have Jordan blocks of size at most two). A singular pencil can occur only when
E, J, and R have a common nullspace [23], so if one is able to compute efficiently
this common nullspace, it is possible to remove explicitly the singular part.

Lemma 1 For the pHDAE in (1), there exists an orthogonal basis transformation
matrix V ∈ IRn×n such that in the new variable x̃ = [

x̃ T
1 x̃ T

2 x̃ T
3

]T = VT x, the sys-
tem has the form

⎡
⎣E1 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣

˙̃x1˙̃x2˙̃x3

⎤
⎦ =

⎡
⎣J1 − R1 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣ x̃1
x̃2
x̃3

⎤
⎦ +

⎡
⎣B1 − P1

B2

0

⎤
⎦u, (3)

y = [
(B1 + P1)

T BT
2 0

]
⎡
⎣ x̃1
x̃2
x̃3

⎤
⎦ + (S + N)u,

where λE1 − (J1 − R1) is regular and B2 has full row rank. Also, the subsystem

[
E1 0
0 0

] [ ˙̃x1˙̃x2
]

=
[
J1 − R1 0

0 0

] [
x̃1
x̃2

]
+

[
B1 − P1

B2

]
u, (4)

y = [
(B1 + P1)

T BT
2

] [
x̃1
x̃2

]
+ (S + N)u,

obtained by removing the third equation and the variable x3, is still a pHDAE.
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Proof First determine an orthogonal matrix V1 such that

VT
1 (λE − (J − R))V1 = λ

[
E1 0
0 0

]
−

[
J1 − R1 0

0 0

]
, VT

1 (B − P) =
[
B1 − P1

B̃2 − P̃2

]
.

SuchV1 exists sinceE, J,R have a commonnullspacewhen the pencilλE − (J − R)

is singular [23]. Then a row compression of B̃2 − P̃2 via an orthogonal matrix Ṽ2

and a congruence transformation with V2 = diag(I, Ṽ2) is performed, so that with
V = diag(V1,V2), we obtain the zero pattern in (3). Updating the output equation
accordingly and using the fact that the transformed passivity matrix

W̃ =
[
VTRV VTP
PTV S

]
∈ R

(n+m)×(n+m)

is still semidefinite; it follows that P2 = 0 and P3 = 0, giving the desired form. �

The next result presents a condensed form, showing that conditions (C2) and (O2)
are equivalent and hold for the system in (4).

Lemma 2 For the pHDAE in (4) there exists an orthogonal basis transformation
V̂ in the state space and U in the control space such that in the new variables
x̂ = [

x̂ T
1 x̂ T

2 x̂ T
3 x̂

T
4 x̂ T

5 x̂ T
6

]T = V̂T
[
x̃ T
1 x̃ T

2

]T
, and

[
uT
1 uT

2 uT
3

]T = UTu the sys-
tem has the form

⎡
⎢⎢⎢⎢⎢⎢⎣

E11 E12 0 0 0 0
E21 E22 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

˙̂x1˙̂x2˙̂x3˙̂x4˙̂x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

J11 − R11 J12 − R12 J13 − R13 J14 J15 0
J21 − R21 J22 − R22 J23 − R23 J24 0 0
J31 − R21 J32 − R32 J33 − R33 0 0 0

J41 J42 0 0 0 0
J51 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂1
x̂2
x̂3
x̂4
x̂5
x̂6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 − P11 B12 − P12 B13 − P13

B21 − P21 B22 − P22 B23 − P23

B31 − P31 B32 − P32 B33 − P33

0 B42 B43

0 0 B53

0 0 B63

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣u1
u2
u3

⎤
⎦ , (5)

⎡
⎣ y1
y2
y3

⎤
⎦ =

⎡
⎣ (B11 + P11)

T (B21 + P21)
T B31 + P31)

T 0 0 0
(B12 + P12)

T (B22 + P22)
T B32 + P32)

T BT
42 0 0

(B13 + P13)
T (B23 + P23)

T B33 + P33)
T BT

43 B
T
53 B

T
63

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂1
x̂2
x̂3
x̂4
x̂5
x̂6

⎤
⎥⎥⎥⎥⎥⎥⎦

+
⎡
⎣D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎦

⎡
⎣u1
u2
u3

⎤
⎦ ,
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whereE22,J33 − R33,J15, andB42 andB63 are invertible. Furthermore, the subsystem
obtained by deleting the first, fifth, and sixth block row and column satisfies (C2) and
equivalently (O2).

Proof The proof follows again by a sequence of orthogonal transformations. Starting
from (4) in the first step one determines an orthogonal matrix V1 (via a spectral

decomposition of E1) such ṼT
1 E1Ṽ1 =

[
E11 0
0 0

]
with E11 > 0, and then forms a

congruence transformation with V̂1 = diag(Ṽ1, I) yielding

V̂T
1 (J − R)V̂1 =

[
J̃11 − R̃11 J̃12 − R̃12

J̃21 − R̃21 J̃22 − R̃22

]
, V̂T

1 (B − P) =
[
B̃1 − P̃1

B̃2 − P̃2

]
.

Next compute a full rank decomposition ṼT
2 (̃J22 − R̃22)Ṽ2 =

[
Ĵ22 − R̂22 0

0 0

]
, where

Ĵ22 − R̂22 is invertible and R̂22 ≥ 0. This exists, since J̃22 − R̃22 has a negative
semidefinite symmetric part. Then an appropriate congruence transformation with
V̂2 = diag(I, Ṽ2, I) yields

V̂T
2 V̂

T
1 EV̂1V̂2 =

⎡
⎢⎢⎣
E11 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

V̂T
2 V̂

T
1 (J − R)V̂1V̂2 =

⎡
⎢⎢⎣
Ĵ11 − R̂11 Ĵ12 − R̂12 Ĵ13 0
Ĵ21 − R̂21 Ĵ22 − R̂22 0 0

Ĵ31 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , V̂T

2 V̂
T
1 (B − P) =

⎡
⎢⎢⎣
B̂1 − P̂1

B̂2 − P̂2

B̂3

B̂4

⎤
⎥⎥⎦ ,

where Ĵ22 − R̂22 is invertible and B̂4 has full row rank.
Then one performs an orthogonal decomposition

ṼT
3

[
B̂3

B̂4

]
U =

⎡
⎣0 B42 B43

0 0 B53

0 0 B63

⎤
⎦

with B42 and B63 square nonsingular, where the number of rows in B63 is that of B̂4

and applies an appropriate congruence transformation with V̂3 = diag(I, I, V̂3, I)
so that one obtains block matrices

⎡
⎢⎢⎢⎢⎣

E1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

J̄11 − R̄11 J̄12 − R̄12 J̄13 − R̄13 J̄14 0
J̄21 − R̄21 J̄22 − R̄22 0 0 0

J̄31 0 0 0 0
J̄41 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,
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As a final step one computes a column compression of the full row rank matrix J̄41
and applies an appropriate congruence transformation. This yields the desired form.

The fact that the several P blocks do not occur follows again from the semidef-
initeness of the transformed passivity matrix. Since J51, B42 and B63 are invertible,
it follows immediately that u3 = 0 and x̂1 = 0 and that x̂5 is uniquely determined
by all the other variables. Considering the subsystem obtained by removing the first,
fifth, and sixth block row and column, it follows from the symmetry structure that
the condition (C2) holds if and only (O2) holds.

The procedure to compute the condensed form (3) immediately separates the
dynamical part (given by the first block row), the algebraic index-1 conditions (with
and without dissipation, given by the second and third block rows), and the index-2
conditions (given by the fourth block row). The last row is the singular part of the
free system. However, since the conditions (C2) and (O2) hold, the system can be
made regular by output feedback. Note that this is already displayed in the subsystem
(4), which, for ease of notation, we denote by

Er ẋr = (Jr − Rr ) xr + (Br − Pr )u,

yr = (Br + Pr )
T xr + (Sr + Nr )u,

xr (t0) = 0.

If we apply an output feedback u = −Kryr withKr = KT
r > 0 that makes the (2,2)

block in the closed loop system invertible, then this corresponds to a feedback for
the state-to-output map in (4) of the form yr = (I + (Sr + Nr )Kr )

−1(Br + Pr )
T xr ,

which we can insert into the first equation to obtain

Er ẋr = (Jr − Rr )xr + (Br − Pr )Kryr
= (

(Jr − Rr ) − (Br − Pr )(K−1
r + Sr + Nr )

−1(Br + Pr )
T
)
xr .

The system matrix is the Schur complement of
[

Jr Br

−BT
r −Nr

]
−

[
Rr Pr

PT
r K−1

r + Sr

]
,

which has a symmetric part given by−W̃r , with W̃r =
[

Rr Pr

PT
r K−1

r + Sr

]
≥ 0. Hence,

the closed loop system is regular and the closed loop system is still pH.
The procedures described above are computationally demanding, since they typ-

ically require large-scale singular value decompositions or spectral decompositions.
Fortunately, in many practical cases the condensed form is already available directly
from the modeling procedure, so that the transfer function can be formed and the
model reduction method can be directly applied.
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4 Interpolatory Model Reduction of pHDAEs

Given an order-n pHDAE as in (1), we want to construct an order-r reduced pHDAE,
with r 	 n, having the same structured form

Êẋr = (̂J − R̂) xr + (B̂ − P̂)u, xr (t0) = 0,

yr = (B̂ + P̂)T xr + (̂S + N̂)u,
(6)

such that Ê, Ĵ, R̂ ∈ IRr×r , B̂, P̂ ∈ IRr×m , Ŝ = ŜT , N̂ = −N̂T ∈ IRm×m satisfy the
same requirements as in Definition 1 and that the output yr (t) of (6) is an accurate
approximation to the original output y(t) over a wide range of admissible inputs u(t).
We will enforce accuracy by constructing the reduced model (6) via interpolation.

Let H(s) = C(sE − A)−1B + D and Ĥ(s) = ̂C(sÊ − Â)−1
̂B + D̂ denote the

transfer functions of (1) and (6), where C = (B + P)T , A = J − R, B = B − P,
D = S + N, and similarly for the reduced-order (“hat”) quantities. Given right-
interpolation points {σ1, σ2, . . . , σr } ∈ IC together with the corresponding right-
tangent directions {b1, b2, . . . , br } ∈ ICm and left-interpolation points {μ1, μ2, . . . ,

μr } ∈ IC together with the corresponding left-tangent directions {�1, �2, . . . , �r } ∈
ICm , we wish to construct a reduced model, Ĥ(s), that tangentially interpolatesH(s),
i.e.,

H(σi )bi = Ĥ(σi )bi and �Ti H(μi ) = �Ti Ĥ(μi ), for i = 1, 2, . . . , r.

These tangential interpolation conditions canbe enforced easily via aPetrov-Galerkin
projection [1, 4, 12]. In particular, construct V ∈ ICn×r and Z ∈ ICn×r using

V = [
(σ1E − A)−1Bb1, (σ2E − A)−1Bb2, · · · (σrE − A)−1Bbr

]
and

Z = [
(μ1E − A)−TCT �1, (μ2E − A)−TCT �2, · · · (μrE − A)−1CT �r

]
.

Then an interpolatory reduced model can be defined via the projection:

Ê = ZTEV, Â = ZTAV, ̂B = ZTB, ̂C = CV, and D̂ = D. (7)

In the setting of pHDAEs, two fundamental issues arise: First, the reduced quanti-
ties in (7) are no longer guaranteed to have pH structure. This is most easily seen
by examining the reduced quantity, ̂A = ZTAV = ZT JV − ZTRV. If ̂A is decom-
posed into its symmetric and skew-symmetric parts, it can no longer be guaranteed
that the symmetric part is positive semi-definite. This could be resolved by using
a Ritz-Galerkin projection, taking Z = V, but then only interpolation conditions
associated with right interpolation data are satisfied. Even then, there will still be a
second issue that persists. In the generic case when r < rank(E), the reduced quan-
tity Ê will generally be nonsingular; thus the reduced system will be an ODE and
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the polynomial parts of H(s) and Ĥ(s) will not match, leading then to unbounded
errors.

Structure-preserving interpolatory reduction of pH systems in the most general
setting of tangential interpolation has been studied in [15, 16]. However, this work
focused on the ODE case. On the other hand, [17] developed the tangential inter-
polation framework for reducing unstructured DAEs with guaranteed polynomial
matching. Only recently in [11, 18], the combined problem has been investigated.
We now develop a treatment of structure-preserving interpolatory model reduction
problem for index-1 and index-2 pHDAEs in the general setting of tangential inter-
polation.

4.1 Semi-explicit Index-1 pHDAE Systems

The simplest class of pHDAEs are semi-explicit index-1 pHDAEs of the form

[
E11 0
0 0

]
ẋ(t) =

[
J11 − R11 J12 − R12

−JT12 − RT
12 J22 − R22

]
x(t) +

[
B1 − P1

B2 − P2

]
u(t),

y(t) = [
BT
1 + PT

1 BT
2 + PT

2

]
x(t) + (S + N)u(t),

(8)

whereE11 and J22 − R22 are nonsingular. We have the following interpolation result.

Theorem 1 Consider the pHDAE system in (8). Let the interpolation points {σ1, σ2,

. . . , σr } ∈ IC and the corresponding tangent directions {b1, b2, . . . , br } ∈ ICm be
given. Construct the interpolatory model reduction basis V as

V =
[
V1

V2

]
= [

(σ1E − A)−1Bb1, · · · , (σrE − A)−1Bbr
] ∈ ICn×r

, (9)

where V is partitioned conformably with the system, and define the matrices

B = [
b1 b2 · · · br

] ∈ ICm×r andD = D − (BT
2 + PT

2 )(J22 − R22)
−1(B2 − P2) ∈ ICm×m .

Let A =
[
A11 A12

A21 A22

]
= J − R, partitioned accordingly to (8). Then, the transfer

function Ĥ(s) of the reduced model

Êẋr (t) = (̂J − R̂)xr (t) + ̂Bu(t), yr (t) = ̂Cxr (t) + D̂u(t), (10)

with
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Ê = VT
1 E11V1, ̂C = CV + (BT

2 + PT
2 )A−1

22 (B2 − P2)B,

Â = VTAV + B
T (D − D)B, D̂ = D = D − (BT

2 + PT
2 )A−1

22 (B2 − P2),

̂B = VTB + B
T (BT

2 + PT
2 )A−1

22 (B2 − P2),

matches the polynomial part of H(s) and tangentially interpolates it, i.e.,

H(σi )bi = Ĥ(σi )bi , for i = 1, 2, . . . , r.

Define P̂ = 1
2 (−̂G + ̂C), and decompose D̂ = Ŝ + N̂ and Â = Ĵ − R̂ into their sym-

metric and skew-symmetric parts. Then, the reduced model (10) is a pHDAE system

if the reduced passivity matrix Ŵ =
[
R̂ P̂
P̂T Ŝ

]
is positive seimdefinite.

Proof We employ a Galerkin projection using the interpolatory model reduction
basis V to obtain an intermediate reduced model

Ẽ = VT
1 E11V1, Ã = J̃ − R̃ = VT JV − VTRV, ˜B = VTB, ˜C = CV, and D̃ = D.

This reduced model is a pHDAE system due to the use of a one-sided Galerkin pro-
jection, and likewise it also satisfies the desired tangential interpolation conditions.
However, it will not generally match the transfer function, H(s), at s = ∞. Indeed,
H(s) has a polynomial part is given by

lim
s→∞H(s) = D = D − (BT

2 + PT
2 )A−1

22 (B2 − P2) �= D̃ = lim
s→∞ Ĥ(s)

A remedy to this problem, proposed in [2, 21] and employed in the general DAE
setting in [17], is to modify theD-term in the reduced model to match the polynomial
part while at the same time shifting other reduced quantities appropriately so as to
retain tangential interpolation. Using this approach, we obtain a modified reduced
model

Ê = Ẽ = VT
1 E11V1,

Â = Ã + B
T (D − D)B = VT JV − VTRV − B

T (BT
2 + PT

2 )A−1
22 (B2 − P2)B,

̂B = ˜B + B
T (BT

2 + PT
2 )A−1

22 (B2 − P2)

= VT
1 (B1 − P1) + VT

2 (B2 − P2) + B
T (BT

2 + PT
2 )A−1

22 (B2 − P2),

̂C = ˜C + (BT
2 + PT

2 )A−1
22 (B2 − P2)B

= (BT
1 + PT

1 )VT
1 + (BT

2 + PT
2 )VT

2 + (BT
2 + PT

2 )A−1
22 (B2 − P2)B, and

D̂ = D = D − (BT
2 + PT

2 )A−1
22 (B2 − P2),

which satisfies the original tangential interpolation conditions while also matching
the polynomial part with a modified D̂-term. For this system to be pH, we need to
check that the associated passivitymatrix is still positive semidefinite. After rewriting
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the input and output matrix in the usual way, this is exactly the condition on Ŵ in the
assertion. We then have that the reduced model not only satisfies the interpolation
conditions and matches the polynomial part at s = ∞, but also is pH. �

Remark 1 Note that if the input does not influence the algebraic equations, i.e., if
B2 = P2 = 0, then the shift of the constant term is not necessary and the formulas
simplify significantly, i.e., Â = VTAV, ̂B = ˜B = VTB, ̂C = CV, and D̂ = D =
D.

Another solution to preserving pH structure via interpolation can be obtained
through the following theorem.

Theorem 2 Consider a full-order pHDAE system of the form (8). Let interpolation
points {σ1, σ2, . . . , σr } ∈ ICand the corresponding tangent directions {b1, b2, . . . , br }
∈ ICm be given. Construct the interpolatory model reduction basis V as in (9). Then
the reduced model

[
VT
1 E11V1 0

0 0

]
ẋ(t) =

[
VT
1 (J11 − R11)V1 VT

1 (J12 − R12)

(−JT12 − RT
12)V1 J22 − R22

]
x(t) +

[
VT
1 (B1 − P1)

B2 − P2

]
u(t)

yr (t) = [
(BT

1 + P1)
TV1 B2 + PT

2

]
x(t) + Du(t),

(11)

retains the pH structure, tangentially interpolates the original model, and matches
the polynomial part.

Proof We first note that the subspace spanned by the columns of V = [
VT

1 VT
2

]T
is contained in the subspace spanned by the columns of V̂ := diag(V1, I). Then,
the system in (11) results from reducing the original system in (8) via V̂. Since
span(V) ⊆ span(V̂), this reduced DAE automatically satisfies the interpolation
conditions and since V̂ does not alter thematrix J22 − R22 and thematricesB2,P2, the
polynomial part of the transfer function is D − (BT

2 + PT
2 )(J22 − R22)

−1(B2 − P2),
matching that of the original model. The reduced system in (11) is pH as well since
the one-sided projection that is used retains the original pH structure. �

Remark 2 Theorem 2 appears to present an easier alternative to the more compli-
cated Theorem 1 for structure-preserving interpolatory model reduction of index-1
pHDAEs. However, the construction of Theorem 2 may not achieve the maximal
reduction possible because redundant algebraic conditions cannot be removed; see
[25]. Note also that further orthogonalization of V1 may be necessary, see [11].

4.2 Semi-explicit pHDAE Systems with Index-2 Constraints

The next class of interest will be semi-explicit index-2 systems. We first consider the
case that the input does not affect the algebraic equations.
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Theorem 3 Consider an index-2 pHDAE system of the form

[
E11 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
J11 − R11 J12

−JT12 0

] [
x1(t)
x2(t)

]
+

[
B1 − P1

0

]
u(t),

y(t) = [
BT
1 + PT

1 0
] [

x1(t)
x2(t)

]
+ Du(t),

(12)

with E11 > 0 and set A11 = J11 − R11. Given interpolation points {σ1, σ2, . . . , σr }
andassociated tangent directions {b1, b2, . . . , br }, let the vectorsvi , for i = 1, 2, . . . ,
r , be the first block of the solution of

[
A11 − σiE11 J12

−JT12 0

] [
vi
z

]
=

[
(B1 − P1)bi

0

]
. (13)

Define V = [v1, v2, . . . , vr ]. Then, the reduced model

Êẋr = (̂J − R̂)xr + ̂Bu(t), yr = ̂Cxr + D̂, (14)

with Ê = VTE11V, Ĵ = VT J11V, R̂ = VTR11V,

̂B = VTB1 − VTP1, ̂C = BT
1V

T + PTVT
1 , and D̂ = D,

(15)

is still pH, matches the polynomial part of the original transfer function, and satisfies
the tangential interpolation conditions,

H(σi )bi = Ĥ(σi )bi , for i = 1, 2, . . . , r.

Proof Note first that the regularity of λE − (J − R) and the index-2 condition imply
that −JT12E

−1
11 J12 is invertible, see [5, 20]. Following [17], we write (12) as

�E11�
T ẋ1(t) = �A11�

T x1(t) + �B1u(t),
y(t) = C1�

T x1(t) + Du(t),
(16)

and conjoin this with the algebraic equation,

x2(t) = −(JT12E
−1
11 J12)

−1JT12E
−1
11 A11x1(t) − (JT12E

−1
11 J12)

−1JT12E
−1
11 B1u(t).

The skew projector, �, in (16) is defined as � = I − E−1
11 J12(J

T
12E

−1
11 J12)

−1JT12, and
(16) is now an implicit ODE pH system that can be reduced with standard model
reduction techniques. As it stands, this would appear to require computing the pro-
jector � explicitly, see [25]. For general index-2 DAE systems one can avoid this
computational step through interpolatory model reduction, see [17].
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To adapt this idea topHDAE systems, we constructV using (13) and then compute
the reduced-order quantities via one-sided projection as in (15). This construction
of V, as in [17], guarantees that the reduced model in (14) tangentially interpolates
the original pHDAE system in (16) and the polynomial part of the transfer function
in (12) is given by D = S + N, separated with respect to its symmetric and skew-
symmetric parts. Since (14) is an implicit ODE pH system with an exact D-term, it
matches the polynomial part of the original transfer function H(s).

It remains to show that (14) ispH. By construction in (15), Ĵ is skew-symmetric, R̂
is symmetric positive semidefinite, andE11 is symmetric positive definite. Moreover,

[
VTR11V VTP1

PT
1 V S

]
=

[
VT 0
0 I

] [
R11 P1

PT
1 S

] [
V 0
0 I

]
≥ 0,

since the original model is pH. Therefore, the pH-structure is retained. �

The situation becomes more complicated when the second block inB is nonzero,
that is, when the system has the form

[
E11 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
J11 − R11 J12

−JT12 0

] [
x1(t)
x2(t)

]
+

[
B1 − P1

B2 − P2

]
u(t),

y(t) = [
BT
1 + PT

1 B2 + PT
2

] [
x1(t)
x2(t)

]
+ Du(t).

(17)

Theorem 4 Consider a pHDAE system of the form (17) and define the matrices

Z = −(A21E−1
11 A12)

−1 = (
JT12E

−1
11 J12

)−1
,

B = (B1 − P1) + (J11 − R11)E−1
11 J12Z(B2 − P2),

C = (BT
1 − PT

1 ) − (BT
2 − PT

2 )Z JT12E
−1
11 (J11 − R11),

D0 = D − (BT
2 + PT

2 )Z JT12E
−1
11 (B1 − P1), and D1 = −(BT

2 + PT
2 )Z (B2 − P2).

Given interpolation points {σ1, σ2, . . . , σr }andassociated tangent directions {b1, b2,
. . . , br }, let the vectors vi be the first blocks of the solutions of

[
J11 − R11 − σiE11 J12

−JT12 0

] [
vi
z

]
= Bbi , for i = 1, 2, . . . , r, (18)

and setV := [v1, v2, . . . , vr ],u1 := u,u2 := u̇, and D̂ := [
D0 D1

] = Ŝ + N̂. Then,
the reduced model

Êẋr = (̂J − R̂)xr + [
B̂ − P̂ 0

] [
u1
u2

]
, yr = (B̂ + P̂)T xr + D̂

[
u1
u2

]
, (19)
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with Ê = VTE11V, Ĵ = VT J11V, R̂ = VTR11V,

B̂ = 1

2

(
VTB + VTCT )

, and P̂ = 1

2

(
VTCT − VTB

)
,

(20)

satisfies the interpolation conditions, matches the polynomial part of the transfer
function, and preserves the pH structure, provided that the reduced passivity matrix

Ŵ =
[
R̂ P̂
P̂T Ŝ

]
is positive semidefinite.

Proof The proof is similarly to that of Theorem 3. Following [17], the state x1 can
be decomposed as x1 = xc + xg , where xg = E−1

11 A12(JT12E
−1
11 J12)

−1(B2 − P2)u(t)
and xc(t) satisfies JT12xc = 0. Then, one can rewrite (17) as

�E11�
T ẋc(t) = �A11�

T xc(t) + �B1u(t),
y(t) = C�T xc(t) + D0u(t) + D1u̇(t).

(21)

As before, the ODE part can be reduced with usual model reduction techniques. Fol-
lowing [17], however, we achieve this without computing the projector � explicitly,
instead by constructing V using (18) and then applying one-sided model reduction
with V to obtain the reduced model

Êẋr = (̂J − R̂)xr + B̃u(t), yr = C̃T xr + D0u(t) + D1u̇(t), (22)

where Ê = VTE11V, Ĵ = VT J11V, R̂ = VTR11V, B̃ = VTB, and C̃ = CV. This
reducedmodel, by construction, satisfies the tangential interpolation conditions.Note
that the reduced model in (22) has exactly the same realization as the reduced model
in (19) except for the reduced B̃ and C̃ terms. The reduced terms Ê, Ĵ, and R̂ in (22)
already have the pH structure. To recover the port symmetry, we determine matrices
B̂ and P̂ such that B̃ = VTB = B̂ − P̂ and C̃ = CV = (B̂ + P̂)T via

B̂ = 1

2

(
B̃ + C̃T

) = 1

2
VT

(
B + CT )

and P̂ = 1

2

(
C̃T − B̃

) = 1

2
VT

(
CT − B

)
,

recovering (20). The final requirement to retain the pH structure is, then, again that[
R̂ P̂
P̂T 1

2

(
D + DT

)
]

≥ 0, which is the final condition in the statement of the theorem.

�

This approach has the disadvantage that u2 = u̇ is introduced as an extra input and
this, in turn, may lead to difficulties when applying standard control and optimization
methods. For this reason it is usually preferable to first perform index reduction via
an appropriate output feedback (see Sect. 3) and then apply the results from Sect. 4.1.
Note that this will change the polynomial part of the transfer function.
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4.3 Semi-explicit pHDAE Systems with Index-1 and Index-2
Constraints

Finally, we consider semi-explicit index-2 systems that also have an index-1 part,
see [11, 18, 25]. We will only consider the special case,

⎡
⎣E11 E22 0
E21 E22 0
0 0 0

⎤
⎦

⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ J11 − R11 J12 − R12 J13
J21 − R21 J22 − R22 0

J31 0 0

⎤
⎦

⎡
⎣ x1
x2
x3

⎤
⎦ +

⎡
⎣B1 − P1

B2 − P2

0

⎤
⎦u, (23)

y = [
(B1 + P1)

T (B2 + P2)
T 0

]
⎡
⎣ x1
x2
x3

⎤
⎦ + (S + N)u, where

[
E11 E22

E21 E22

]
> 0,

and both J22 − R22 and J31 are nonsingular.

Theorem 5 Consider an index-2 pHDAE system of the form (23) and construct an
interpolatory model reduction basis given by

V = [
VT

1 VT
2 VT

3

]T = [
(σ1E − A)−1Bb1, · · · (σrE − A)−1Bbr

] ∈ ICn×r
,

partitioned to conform with the system. Define V̂ := diag(I,V2, I).
Then, the reduced system

Êẋr = (̂J − R̂)xr + ̂Bu(t), yr = ̂Cxr + D̂, (24)

with Ê = V̂TEV̂, Ĵ = V̂T JV̂, R̂ = V̂TRV̂,

̂B = V̂TB = V̂TB − V̂TP, ̂C = CV̂ = BT V̂T + PT V̂T , and D̂ = D,

(25)

is still pH, matches the polynomial part of the transfer function, and satisfies the
tangential interpolation conditions, i.e., H(σi )bi = Ĥ(σi )bi , for i = 1, 2, . . . , r .

Proof It follows from the definitions of V and V̂ that span(V) ⊆ span(V̂). There-
fore, the resulting reduced system automatically satisfies the interpolation conditions.
Since V̂ does not alter the algebraic constraints, the polynomial part of its transfer
function is still D, matching that of the original model. The reduced system in (24)-
(25) is a pHDAE as this one-sided projection retains the original pH structure. �

5 Algorithmic Considerations

The preceding analysis presumed that interpolation points and tangent directions
were specified beforehand. We consider now how one might make choices that gen-
erally produce effective approximations with respect to theH2 system measure.
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5.1 H2-inspired Structure-Preserving Interpolation

The H2 distance between the full model H(s) and the reduced model Hr (s) is

∥∥H − Hr

∥∥
H2

=
(

1

2π

∫ ∞

−∞

∥∥H(ıω) − Hr (ıω)
∥∥2
Fdω

)1/2

,

where ı2 = −1 and ‖M‖F denote the Frobenius norm of a matrix M. To have a
finite H2 error norm the polynomial parts of Hr (s) and H(s) need to match. To
make this precise, write H(s) = G(s) + P(s) and Hr (s) = Gr (s) + Pr (s) where
G(s) and Gr (s) are strictly proper transfer functions, and P(s) and Pr (s) are the
polynomial parts. Therefore, ifHr (s) is theH2-optimal approximation toH(s), then
Pr (s) = P(s) and Gr (s) is the H2-optimal approximation to G(s). This suggests
that one decomposeH(s) into its rational and polynomial partsH(s) = G(s) + P(s)
and then apply H2 optimal reduction to G(s). However, this requires the explicit
construction of G(s). This problem was resolved in [17] for unstructured index-1
and index-2DAEs.On the other hand, for theODE case, [16] proposed a pH structure
preserving algorithm for minimizing the H2 norm. In this section, we aim to unify
these two approaches.

First, we briefly revisit the interpolatory H2 optimality conditions; for details
we refer the reader to [1, 4, 14] and the references therein. Since H2 optimal-
ity for the DAE case boils down to optimality for the ODE part, we focus on

the latter. Let Gr (s) = ∑r
i=1

cibT
i

s−λi
be the pole-residue decomposition of Gr (s). For

simplicity we assume simple poles. If Gr (s) is an H2 optimal approximation to
G(s), then G(−λi )bi = Gr (−λi )bi , cTi G(−λi ) = cTi Gr (−λi ), and cTi G

′(−λi )bi =
cTi G

′
r (−λi )bi , for i = 1, 2, . . . , r where ′ denotes the derivative with respect to s.

Therefore anH2 optimal reduced model is a bitangential Hermite interpolant where
the interpolation points are themirror images of its poles and the tangent directions are
the residue directions. Since the optimality conditions depend on the reduced model
to be computed, this requires an iterative algorithm, such as the Iterative Rational
Krylov Algorithm [14]. For other approaches toH2 optimal approximation, see, e.g.,
[1, 4].

Following [16], to preserve the structure, we will satisfy only a subset of these
conditions.Wewill enforce interpolation points to be themirror images of the reduced
order poles and enforce either left or right-tangential interpolation conditions (Z =
V) without the derivative conditions. However, intuitively, one might expect that in
the pH setting this may not cause too much deviation from true optimality, since the
input-to-state matrix B and the state-to-output matrix C are related.

For simplicity, consider the semi-explicit index-2 case. The other scenarios fol-
low similarly. Starting with the interpolation points {σ1, σ2, . . . , σr } and the tangent
directions {b1, b2, . . . , br }, construct the interpolatory reduced pHDAE Ĥ(s) as in

Theorem3.Let Ĥ(s) = ∑r
i=1

�̂i b̂
T
i

s−λi
+ Dbe the pole-residue decomposition. Since ini-

tially the optimality conditionσi = −λi (̂J − R̂, Ê) is not (generally) satisfied, choose
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−λi (̂J − R̂, Ê) as the next set of interpolation points and b̂i as the next set of tangent
directions. This is repeated until convergence upon which the reduced model Hr (s)
is not only a structure-preserving pHDAE, but also satisfies σi = −λi (̂J − R̂, Ê).

5.2 Numerical Example

We illustrate the discussed procedure with the incompressible fluid flow model of
the Oseen equations, from [18, §4.1]:

∂tv = −(a · ∇)v + μ�v − ∇ p + f in 	 × (0, T ], v = 0, on ∂	 × (0, T ],
0 = −div v, in 	 × (0, T ], v = v0, in 	 × 0,

where v and p are the velocity and pressure variables,μ = 1 is the dynamic viscosity,
a = [ 1 1 ]T is the convective velocity, and 	 = (0, 1)2 with boundary ∂	. f is
an externally imposed body force that, for simplicity, is assumed to be separable:
f (x, t) = b(x)u(t). A finite-difference discretization on a staggered rectangular grid
leads to a single-input/single-output index-2 pHDAE of the form (12), see [18].
In our model, we used a uniform grid with 50 grid points yielding a descriptor
system pHDAE of order n = 7399, of which n1 = 4900 degrees of freedom are
for velocity and n2 = 2499 for pressure. We initialize our H2-based approach with
logarithmically spaced interpolation points in the interval [10−2, 104] and construct
a reduced model of the form (14) with orders r = 1, 2, . . . , 10. For every r value, we
compute ‖H − Ĥ‖∞/‖H‖∞ where ‖H‖∞ = supω∈IR | H(ıω) |. Figure1 shows that
the reduced transfer function accurately approximates the original one; for r = 10,
the relative error is around 10−5.

Fig. 1 Evolution of the
model reduction error for
Oseen example as r varies
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6 Conclusions

Wehave presented interpolatorymodel reductionmethods for several classes of large
scale linear time-invariant port-Hamiltonian differential-algebraic systems. We have
shown how constraints can be represented in the transfer function in such a way that
the polynomial part can be preserved with interpolatory methods while still retaining
important system structure. The results were illustrated with a numerical example
from flow control.
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Data-Driven Identification of
Rayleigh-Damped Second-Order Systems

Igor Pontes Duff, Pawan Goyal, and Peter Benner

Abstract In this paper, we present a data-driven approach to identify second-order
systems, having internal Rayleigh damping. This means that the damping matrix
is given as a linear combination of the mass and stiffness matrices. These systems
typically appear when performing various engineering studies, e.g., vibrational and
structural analysis. In an experimental set-up, the frequency response of a system
can be measured via various approaches, for instance, by measuring the vibrations
using an accelerometer. As a consequence, given frequency samples, the identifi-
cation of the underlying system relies on rational approximation. To that aim, we
propose an identification of the corresponding second-order system, extending the
Loewner framework for this class of systems. The efficiency of the proposed method
is demonstrated by means of various numerical benchmarks.

Keywords Data-driven modeling · Second-order systems · Model reduction ·
Loewner framework · Mechanical systems

1 Introduction

In this paper, we discuss a data-driven identification framework for a class of second-
order (SO) systems of the form:
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�SO :=
{
Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t),

y(t) = Cx(t),
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m are the inputs, y(t) ∈ R
p are the

outputs ormeasurements, andM,D,K ∈ R
n×n are, respectively, themassmatrix, the

damping matrix and the stiffness matrix, B ∈ R
n×m and C ∈ R

p×n . For simplicity,
we address the problem for single-input single-output (SISO) systems, i.e., m =
p = 1. Themultiple-inputmultiple-output (MIMO) generalization is straightforward
and can be done by following the lines of the MIMO extension of the classical
Loewner framework [20] based on tangential interpolation. Such systems arise in
manyengineering applications, includingvibration analysis [21], structural dynamics
[10] and electric circuits. We denote the SO systems (1) by �SO = (M,D,K,B,C).
Moreover,we assumea zero inhomogeneous condition, i.e.,x(0) = ẋ(0) = 0.Hence,
by means of the Laplace transform, the input-output behavior of the system �SO is
associated with the transfer function as follows:

HSO(s) = C
(
s2M + sD + K

)−1
B. (2)

Furthermore, throughout the paper, we assume the proportional Rayleigh damping
hypothesis, i.e., the damping matrix D is given by a linear combination of the mass
and stiffness matrices:

D = αM + βK, (3)

for α, β ≥ 0. This hypothesis is often considered in engineering application, where
the damper is numerically constructed in order to avoid non-dampened oscillations,
see [21, Chapter 7] for more details. Recent applications of the Rayleigh damping
hypothesis can be found in the fields of guided wave propagation in composite
materials [16, 28], earthquake analysis of buildings [11, 12], wind turbinemonopiles
[6], railway catenary wire systems [24]. Moreover, the Model-Order-Reduction-
Wiki (MOR Wiki) presents several large-scale benchmarks of Rayleigh damped
second order systems, such as the butterfly gyroscope [25] and the recently developed
artificial fishtail [33].

In the past twenty years, model order reduction of SO systems has been investi-
gated extensively; see for instance [8, 22, 29] for balancing-type methods, and [3, 4,
7, 36] formomentmatching andH2-optimality basedmethods. Recently, the authors
in [30] provided an extensive comparison among common methods for SO model
order reduction applied to a large-scale mechanical artificial fishtail model. In all of
the above-mentioned works, the authors suppose that they have access to the matri-
ces, defining the original systems and the reduced-order systems are constructed
via Petrov-Galerkin projections. Thus, the main goal is to find projection matrices
V,W ∈ R

n×r , leading to the SO reduced-order system

ĤSO(s) = Ĉ
(
s2M̂ + sD̂ + K̂

)−1
B̂, (4)
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with M̂ = WTMV, D̂ = WTDV, K̂ = WTKV, B̂ = WTB and Ĉ = CV.

However, it is not necessary that the realization is given or is feasible to obtain;
thus, we suppose that the original system realizationmay not be available. Instead,we
assume to have access only to frequency domain data, e.g., arising from experiments
or numerical simulations. More precisely, we are interested in solving the following
problem.

Problem 1 (SO data-driven identification) Given interpolation data

{(σi ,ωi )| σi ∈ C and ωi ∈ C, i = 1, . . . , ρ}, (5)

construct a SO realization �SO = (M,D,K,B,C) of appropriate dimensions,
satisfying the proportional Rayleigh damping hypothesis, i.e.,

D = αM + βK,

whose transfer function HSO(s) := C(s2M + sD + K)−1B satisfies the inter-
polation conditions, i.e.,

HSO(σi ) = ωi , i = 1, . . . ρ. (6)

Problem 1 corresponds to an identification problem which aims at determining
a SO realization that not only interpolates at given measurements, but also satisfies
the Rayleigh damping hypothesis. A similar problem for time-delay systems was
studied in [27] and [31]. Furthermore, we would like to mention that a data-driven
approach for structured non-parametric systems has been studied in [32]. However,
the construction of the structured reduced-order system is not a straightforward task.

The purpose of this paper is thus to extend the application domain of the Loewner
framework established in [19, 20] to SO systems. With this aim, a new SO Loewner
framework is developed, yielding a Rayleigh damped SO system of the form (2) that
interpolates at given frequency measurements.

The rest of the paper is organized as follows. Section2 recalls some preliminary
results on the rational interpolation Loewner framework from [20]. Section3 contain
the main contribution of this paper, i.e., the extension of these results to the class of
Rayleigh damped SO systems. Firstly, one assumes the knowledge of the Rayleigh
damping parameters, α and β, and derives the Loewner matrices for SO systems.
Then, a heuristic procedure is presented, originally proposed in [31] in the context
of time-delay systems, enabling us to estimate the parameters α and β. Also, we
discuss the case of more general damping strategies. Finally, Sect. 4 illustrates the
proposed framework by numerical examples and Sect. 5 concludes the paper.
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2 Classical Loewner Framework

In this section, we briefly recall the Loewner framework [20]. A first-order (FO)
system �FO = (E,A,B,C) is a dynamical system of the form:

�FO :=
{
Eẋ(t) = Ax(t) + Bu(t), x(0) = 0,
y(t) = Cx(t),

(7)

with E,A ∈ R
n×n , B ∈ R

n×m and C ∈ R
p×n , and the leading dimension n is the

order of the system. For clarity of exposition, we focus for now on the single-input
single-output (SISO) case, i.e., when m = p = 1. The system (7) is associated with
the transfer function given by

HFO(s) = C (sE − A)−1 B. (8)

There exist several MOR techniques for first-order systems such as explicit
moment matching [35, 37], implicit moment matching using Krylov subspaces [13,
17], Sylvester equations based method [15], extensions for MIMO systems [14]. We
refer the reader to the books [2, 5] formore details. However, our goal lies in the iden-
tification of linear systems using only the frequency data. Hence, the identification
problem, in its SISO form, is stated as follows.

Problem 2 (First-order data-driven model reduction) Given interpolation
data

{(σi ,ωi )| σi ∈ C and ωi ∈ C, i = 1, . . . , ρ} (9)

construct a minimal-order realization� = (E,A,B,C) of appropriate dimen-
sions, whose transfer function HFO(s) = C(sE − A)−1B satisfies the interpo-
lation conditions

HFO(σi ) = ωi , i = 1, . . . ρ. (10)

A wide range of methods has been developed to solve Problem 2, e.g., vector
fitting [18], the AAA algorithm [23] and the Loewner framework [20]. In this paper,
we focus on the latter approach and, in what follows, we recall some of the results
contained therein. Firstly, we assume that the number of interpolation data is even,
i.e., ρ = 2�, and as a result, the data can be partitioned in two disjoint sets as follows:

right interpolation setPr : {(λi ,wi )| λi ∈ C and wi , i = 1, . . . , �}, and (11a)

left interpolation setPl : {(μ j , v j )| μ j ∈ C and v j ∈ C, j = 1, . . . , �}. (11b)

Using this partition, we associate the following Loewner matrices.
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Definition 1 (Loewner matrices [20]) Given the right Pr and left Pl interpo-
lation sets, we associate them with the Loewner matrix L and shifted Loewner
matrix Lσ given by

L =
⎛
⎜⎝

v1−w1
μ1−λ1

· · · v1−w�

μ1−λ�

...
. . .

...
v�−w1
μ�−λ1

· · · v�−w�

μ�−λ�

⎞
⎟⎠ , Lσ =

⎛
⎜⎝

μ1v1−λ1w1

μ1−λ1
· · · μ1v1−λ�w�

μ1−λ�

...
. . .

...
μ�v�−λ1w1

μ�−λ1
· · · μ�v�−λ�w�

μ�−λ�

⎞
⎟⎠ . (12)

Remark 1 The Loewner matrix L was introduced in [1]. As shown therein, its
usefulness derives from the fact that its rank is equal to the order of the minimal
realization HFO satisfying the interpolation conditions in (10). Hence, it reveals the
complexity of the reduced-order model solving Problem 2.

Next, let us introduce the following matrices associated with the interpolation
problem as follows:

{
� = diag(λ1, . . . , λ�) ∈ C

�×�

Ĥ(�) = [
w1 . . . w�

]T ∈ C
�×1 and

{MMM = diag(μ1, . . . , μ�) ∈ C
�×�

Ĥ(MMM) = [
v1 . . . v�

]T ∈ C
�×1 (13)

Also, let 1 ∈ R
�×1 be the column vector with all entries equal to one. Hence, the

Loewner matrices satisfy the following Sylvester equations

MMML − L� = Ĥ(MMM)1T − 1Ĥ(�)T , and (14a)

MMMLσ − Lσ� = MMMĤ(MMM)1T − 1Ĥ(�)�. (14b)

An elegant solution for Problem 2 based on the Loewner pair (L,Lσ ) was proposed
in [20]. This is summarized in the following theorem.

Theorem 1 (Loewner framework [20])LetL andLσ be the Loewnermatrices
associated with the partition in (13). If (Lσ ,L) is a regular pencil with no μi

or λ j being an eigenvalue, then the matrices

Ê = −L, Â = −Lσ , B̂ = Ĥ(MMM), Ĉ = Ĥ(�)T ,

provides a realization �̂FO = (Ê, Â, B̂, Ĉ) for a minimal order interpolant of
Problem 2, i.e., the transfer function

ĤFO(s) = W(sLσ − L)−1V

satisfies the interpolation conditions in (10).
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Theorem1allows to obtain aFO system Ĥ = (Ê, Â, B̂, Ĉ)whose transfer function
interpolates right and left data as stated in Problem 2. However, when more data than
necessary are provided, then the hypothesis of Theorem1maynot be satisfied.Hence,
a singular-value decomposition (SVD) based procedure has been proposed in [20]
to find an FO system interpolating the frequency data.

Next, recall that a SO system �SO = (M,D,K,B,C) can be written as a first-
order realization, for instance, as follows:

HSO_FO(s) = C(sE − A)−1B,

where

E =
[
I 0
0 M

]
, A =

[
0 I

−K −D

]
, B =

[
0
B

]
and C = [

C 0
]
.

As a consequence, the classical Loewner framework presented in Sect. 2 can be
employed to find a first-order realization. However, the intrinsic SO structure will
not be preserved in the identified model. But the classical Loewner framework yields
an information about the order of a SO realization fitting the data, which is outlined
in the following remark.

Remark 2 (Order of SO model) Let us suppose that the frequency data in Problem
2 and let L be a Loewner matrix given in (12) constructed with this data. Then, the
order of the SO system fitting the data equals 1

2 rank(L).

In the following section, we discuss an extension of the Loewner framework for
the class of Rayleigh damped SO systems.

3 Second-Order Loewner Framework

This section contains our main contribution, which presents an extension of the
Loewner framework to the class of SO Rayleigh damped systems (1). Here, we also
assume that the number of interpolation data is even, i.e., ρ = 2�, and the data is
partitioned into two disjoint sets as in (11a) and (11b).Moreover, the data is organized
into the matrices �, Ĥ(�), MMM, Ĥ(MMM) as in (13). This section is divided into four
parts. The first one aims at finding the matrix equations which encode the general
SO systems satisfying the interpolation conditions. In the second one, we assume
to have a priori knowledge of the Rayleigh damping parameters α and β and we
derive the equivalents of the Loewner matrices (12) and Theorem 1 to the class of
SO Rayleigh damped systems. The third part is dedicated to proposing a heuristic
procedure to estimate the parameters α and β using the frequency data available.
Finally, in the fourth part, we briefly discuss the case of more general dampings.
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3.1 Second-Order Loewner Matrices

In what follows, we assume that Problem 1 has a minimal order r solutionH	
SO, given

by
H	
SO(s) = C	

(
s2M	 + sD	 + K	

)−1
B	, (15)

with D	 = αM	 + βK	. Here, we also assume that the coefficients α and β from
the Rayleigh damping hypothesis are known. Then, later in this section, we will
show how to construct a realization equivalent to H	

SO(s) that only depends on the
frequency data. To that aim, let us first recall a result from [4] enabling projection-
based structured preserving model reduction.

Theorem 2 (Structure preserving SO model reduction [4]) Consider the SO trans-
fer function HSO(s) as given in (2). For given interpolation points λi and μi ,
i ∈ {1, . . . , �}, let the projection matrices V and W be as follows:

V =
[(

λ2
1M + λ1D + K

)−1
B, . . . ,

(
λ2

�M + λ�D + K
)−1

B
]

(16a)

W =
[(

μ2
1M + μ1D + K

)−T
CT , . . . ,

(
μ2

�M + μ�D + K
)−T

CT
]

(16b)

Then, the reduced-order model ĤSO(s) constructed by Petrov-Galerkin projection as
in (4) satisfies the interpolation conditions

HSO(λi ) = ĤSO(λi ) and HSO(μi ) = ĤSO(μi ), for i = 1, . . . , �.

The above theorem allows us to construct a SO reduced-ordermodel by interpolation.
Let us apply this theorem to theSO systemH	

SO(s) (15). For this, wewill construct the
matrixV using the interpolation points in�, and thematrixW using the interpolation
points in MMM. As a consequence, V and W are, respectively, the solutions of the
following matrix equations

M	V�2 + D	V� + K	V = B	1T , and (17a)

MMM2WTM	 +MMMWTD	 + WTK	 = 1C	, (17b)

Multiplying Eq. (17a) on the left byWT and Eq. (17b) on the right byV, respectively,
one obtains

WTM	V�2 + WTD	V� + WTK	V = WTB	1T ,

MMM2WTM	V +MMMWTD	V + WTK	V = 1C	V.

If we set
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M̂ = WTM	V, D̂ = WTD	V, K̂ = WTK	V, (18a)

B̂ = WTB	 = Ĥ(MMM), and Ĉ = C	V = Ĥ(�)T , (18b)

then the SO system ĤSO = (M̂, D̂, K̂, B̂, Ĉ) is the reduced-order model obtained by
Theorem 2, satisfying the interpolation conditions from Problem 1. Hence, we can
rewrite the above equations as follows:

M̂�2 + D̂� + K̂ = Ĥ(MMM)1T , (19a)

MMM2M̂ +MMMD̂ + K̂ = 1Ĥ(�)T . (19b)

Equations in (19) give a relationship between the matrices M̂, D̂ and K̂, which are the
unknowns we are willing to identify, and the interpolation data encoded by�, Ĥ(�),
M̂ and Ĥ(MMM). However, as discussed in [32], it corresponds to an underdetermined
system on the unknowns.

3.2 Identification of Rayleigh-Damped Second-Order
Systems

Fromnowon,wewill assume theRayleigh damping hypothesis, i.e., D̂ = αM̂ + βK̂.

As a consequence, the system if equations in (19) becomes

M̂
(
�2 + α�

) + K̂ (β� + I) = Ĥ(MMM)1T , (20a)(MMM2 + αMMM)
M̂ + (

βMMM + I
)
K̂ = 1Ĥ(�)T . (20b)

Notice that the above equations can be solved for M̂ and K̂. However, in order to
have an analytic expression for the matrices of the reduced-order system in a similar
way as for the Loewner matrices (12), we need to introduce the following change of
variables:

L
SO := −(I + βMMM)M̂(I + β�), L

SO
σ := (I + βMMM)K̂(I + β�), (21a)

B̂SO := (I + βMMM)Ĥ(MMM), and ĈSO := Ĥ(�)T (I + β�). (21b)

Notice that the two realizations

�̂SO = (M̂, αM̂ + βK̂, K̂, B̂, Ĉ) and �̂
Loew
SO = (−L

SO,−αLSO + βLSOσ ,LSOσ , B̂SO, ĈSO)

are equivalent, i.e., they represent the same transfer function. Hence, the realization
ĤLoew
SO also satisfies the interpolation conditions from Problem 1. Additionally, by a

simple computation, we obtain that the matrices LSO and L
SO
σ satisfy the following

equations
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L
SOF (�) − L

SO
σ = −D(MMM)Ĥ(MMM)1T ,

F (MMM)LSO − L
SO
σ = −1Ĥ(�)TD(�),

where, for a given matrix �, F (�) := (I + β�)−1(�2 + α�) and D(�) := (I +
β�). As a consequence,

L
SOF (�) − F (MMM)LSO = 1Ĥ(�)TD(�) − D(MMM)Ĥ(MMM)1T , (22a)

L
SO
σ F (�) − F (MMM)LSO

σ = 1Ĥ(�)TN(�) − N(MMM)Ĥ(MMM)1T , (22b)

where, for a given matrix �, N(�) := (�2 + α�). Notice that the Sylvester equa-
tions (22) are equivalent to (14a) for the case of SO systems. Hence, using those
equations, one can derive analytic expressions of LSO and L

SO
σ .

Definition 2 (SO Loewner matrices) Let us suppose α and β are known and
let

d(s) := 1 + sβ, n(s) := s2 + αs, and f (s) := n(s)

d(s)
,

be scalar functions. Then the SO Loewner matrices, namely, the SO Loewner
matrix LSO and the shifted Loewner matrix L

SO
σ are given by

L
SO =

⎛
⎜⎜⎝

d(μ1)v1−d(λ1)w1

f (μ1)− f (λ1)
· · · d(μ1)v1−d(λ�)w�

f (μ1)− f (λ�)

...
. . .

...
d(μ�)v�−d(λ1)w1

f (μ�)− f (λ1)
· · · d(μ�)v�−d(λ�)w�

f (μ�)− f (λ�)

⎞
⎟⎟⎠ , (23)

L
SO
σ =

⎛
⎜⎜⎝

n(μ1)v1−n(λ1)w1

f (μ1)− f (λ1)
· · · n(μ1)v1−n(λ�)w�

f (μ1)− f (λ�)

...
. . .

...
n(μ�)v�−n(λ1)w1

f (μ�)− f (λ1)
· · · n(μ�)v�−n(λ�)w�

f (μ�)− f (λ�)

⎞
⎟⎟⎠ . (24)

Moreover, by construction

L
SO = −(I + βMMM)M̂(I + β�) = −(I + βMMM)WTM	V(I + β�).

Thus, the following remark holds.

Remark 3 If we have sufficient interpolation data, then rank(V) = rank(W) = r.
As a consequence, the rank of the SO Loewner matrix L

SO gives us the order of the
Rayleigh damped SO minimal realization interpolating the points, since
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rank(LSO) = rank(WTM	V) = rank(M	) = order of the minimalSO interpolant.

We are now able to state the analogue result to Theorem 1 for Rayleigh-damped
SO systems.

Theorem 3 (SO data-driven identification)Assume thatμi �= λ j for all i, j =
1, . . . , �. Additionally, suppose that (s2 + αs)LSO + (βs + 1)LSO

σ is invertible
for all s = {λ1, . . . , λ�} ∪ {μ1, . . . , μ�}. Then,

M̂ = −L
SO, K̂ = L

SO
σ , B̂SO = (I + βMMM)Ĥ(MMM) ĈSO = Ĥ(�)T (I + β�),

and D̂ = αM̂ + βK̂ satisfy the interpolation conditions from Problem 1.

Theorem 3 allow us to identify a Rayleigh-damped SO from a given interpolation
data set (5). As a consequence, it gives a solution for the Problem 1 whenever the
constants α and β are assumed to be known.

We now consider the case where more data than necessary are provided, which
is realistic for applications. In this case, the assumptions of the above theorem are
not satisfied; thus, one needs to project onto the column span and the row span of a
linear combination of the two Loewner matrices. More precisely, let the following
assumption be satisfied:

rank
([
L
SO

L
SO
σ

]) = rank

([
L
SO

L
SO
σ

])
= r (25)

Then, we consider the compact SVDs

[
L
SO

L
SO
σ

] = Yρ�lṼT and

[
L
SO

L
SO
σ

]
= W̃�rXT

ρ . (26)

Using the projection matrices Vρ andWρ , we are able to remove the redundancy in
the data by means of the following result.

Theorem 4 The SO realization �̂SO = (M̂, D̂, K̂, B̂, Ĉ) of a minimal interpolant of
Problem 1 is given as:

M̂ = −YT
ρ L

SOXρ, K̂ = YT
ρ L

SO
σ Xρ, D̂ = αM̂ + βK̂, (27a)

B̂ = YT
ρ B̂

SO, and Ĉ = ĈSOXρ. (27b)

Depending on whether r in (25) is the exact or approximate rank, we obtain either
an interpolant or an approximate interpolant of the data, respectively.
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3.3 Optimizing Parameters

In the previous section, we have shown how to construct a SO realization for given
transfer function measurements and a priori knowledge of the parameters α and β

from theRayleigh damping hypothesis. However, there are several cases, where exact
values of α and β are not known but we rather can have a hint of the range for the
parameters, i.e., α ∈ Rα and β ∈ Rβ . Therefore, as done for delay systems in [31],
we also propose a heuristic optimization approach to obtain the parameters α and β

for SO systems, satisfying the Rayleigh damping hypothesis. For this purpose, we
split the data training Dtraining and test set Dtest, e.g., in the ratio 80:20. Hence, we
ideally aim at solving the optimization as follows:

min
α∈Rα, β∈Rβ

J(α, β) (28)

where

J(α, β) :=
∑

(σk ,vk )∈Dtest

∥∥∥ĤSO(σkα, β) − vk

∥∥∥2 +
∑

(μk ,wk )∈Dtest

∥∥∥ĤSO(μkα, β) − wk

∥∥∥2
,

where ĤSO is constructed using only the training data. However, the optimization
problem (28) is non-convex, and solving it is a challenging task. Therefore, we
seek to solve a relaxed problem. For this purpose, in the paper, we make a 2-D
grid for the parameters α and β in given intervals. Then, we seek to determine
the parameters on the grid where the function J(α, β) is minimized. Nonetheless,
solving the optimization problem (28) needs future investigation and so we leave it
as a possible future research problem.

3.4 A Note on More General Damping Structures

As stated before, the general SO interpolating system has it matrices M̂, D̂ and K̂
satisfying an underdetermined system given by (19). Once we assume the Rayleigh
damping hypothesis, the system of equations becomes determined and an analytical
solution is given by the SO Loewner matrices LSO and L

SO
σ .

In a more general set-up, we may consider the damping to have a more general
structure depending on the matrices M̂ and K̂. One possible way is to assume the
damping matrix D̂ to be described as

D̂ = M̂
1
2 g

(
M̂− 1

2 K̂M̂− 1
2

)
M̂

1
2 , (29)

where g is an analytic function on the positive real axis. It is worth noticing that the
Rayleigh damping hypothesis is obtained if we consider g(s) = α + βs. Another
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usual choice of damping is the so-called critical damping given by

D̂Crit = 2αM̂
1
2

(
M̂− 1

2 K̂M̂− 1
2

) 1
2
M̂

1
2 ,

with α ∈ [0.02, 0.1], see [26, 34]. In this case, the damping is obtained with g(s) =
2α

√
s.

Hence, if we assume the damping to be given as in (29), then the system of
equations in (19) becomes

M̂�2 + M̂
1
2 g

(
M̂− 1

2 K̂M̂− 1
2

)
M̂

1
2 � + K̂ = Ĥ(MMM)1T , (30a)

MMM2M̂ +MMMM̂
1
2 g

(
M̂− 1

2 K̂M̂− 1
2

)
M̂

1
2 + K̂ = 1Ĥ(�)T . (30b)

Notice that in system (30), the number of unknownsmatches the number of equations.
However, depending on the nature of the function g, this will lead to a system of
nonlinear equations and further investigation is needed to find conditions for the
existence (and uniqueness) of a solution and numerical solvers for nonlinear matrix
equations. Additionally, in the general case, the Petrov-Galerkin approximation of
the damping model would no longer be the damping model of the Petrov-Galerkin
approximation,except for the very restricted case where

WT g (Q)V = g
(
WTQV

)

with V,W ∈ R
n×r being the projection matrices and Q ∈ R

n×n . Notice that this
happens for the Rayleigh damping, but it is non longer true for the critical damping.
Future work will be dedicated on further analysis and numerical methods for these
general dampings.

4 Numerical Results

In this section, we illustrate the efficiency of the proposedmethods via several numer-
ical examples, arising in various applications. All the simulations are done on a
CPU 2.6GHz intel� CoreTMi5, 8 GB 1600MHz DDR3, MATLAB� 9.1.0.441655
(R2016b).

4.1 Demo Example

At first, we discuss an artificial example to illustrate the proposed method. Let us
consider a SO system of order n = 2, �SO = (M,D,K,B,C) whose matrices are
given by:
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Fig. 1 Demo example: Decay of the singular values for the FO and SO Loewner matrices

Fig. 2 Demo example: The figure on the left shows the Bode plot of the original system and the
FO and SO reduced-order models. The figure on the right shows the Bode plot of the error between
the original and reduced-order systems

M =
[
1 0
0 1

]
, K =

[
1 0
0 2

]
, D = αM + βM, and BT = C = [

2 3
]
,

with α = 0.01 and β = 0.02. We collect 20 samples (σ j , ĤSO(σ j )), for σ j ∈ ι[10−1,

101] logarithmically spaced. Then, we construct the FO and SO Loewner matrices
in (12) and (23), receptively.

In Fig. 1, we plot the decay of the singular values of the L and L
SO matrices. It

can be observed that rank(L) = 4 and rank(LSO) = 2, as expected. Indeed, the demo
system has a minimal SO realization of order 2 and a minimal FO realization of order
4. By applying the SVD procedure, we construct two reduced-order models of order
2, one for FO and the other for SO. We compare the transfer functions of the original
and reduced-order systems, and the results are plotted in Fig. 2. The figure shows
that the error between the original and SO reduced-order system is of the level of
machine precision, which means that the SO approach has recovered an equivalent
realization of the original model. Additionally, the FO reduced system of order 2 was
not able to mimic the same behavior of the original system, showing that a larger
order is required in this case.
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Fig. 3 Build example:
Decay of the singular values
for the FO Loewner matrix
and for SO Loewner matrices

4.2 Building Example

Let us now consider the building model from the SLICOT library [9]. It describes
the displacement of a multi-storey building, for example, during an earthquake. It
is a FO system of order r = 48, whose dynamics comes from a mechanical system.
The Rayleigh damping coefficients here are α ≈ 0.4947 and β ≈ 0.0011.

For this example, we collect 200 samples H(iω), with ω ∈ [100, 102]. Then, we
build the FO and SO Loewner matrices in (12) and (23), receptively. Additionally,
using the heuristic procedure in Sect. 3.3,we constructed the reducedmodel assuming
we do not know a priori the parameters α and β. After this procedure, we obtain
α∗ = 0.495 and β∗ = 0.001, which are fairly close to the original parameters.

In Fig. 3, we plot the decay of the singular values of the FO Loewner matrix,
the SO Loewner matrix for the original parameters α and β, and the SO Loewner
matrix for the estimated parameters α and β. The decay of the singular values for
the SO Loewner matrix with original parameters is faster than for the FO Loewner
matrix. However, for the SO Loewner matrix with estimated parameters, the decay of
singular values starts fast and then becomes slower. This shows that if the parameters
α and β are not well identified, a higher reduced-order will be needed to interpolate
the data. By applying the SVD procedure, we construct three reduced-order models
of order 16. We compare the transfer functions of the original and reduced-order
systems, and the results are plotted inFig. 4. This figure shows that for theSOLoewner
approach (original parameters or with estimated parameters) outperform the classical
Loewner framework.

4.3 Artificial Fishtail

As the last example, we consider the artificial fishtail model presented in [30]. This
model comes from a finite-element discretization of the continuousmechanicsmodel
of an artificial fishtail. After discretization, the finite-dimensional system has a SO
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Fig. 4 Build example: The figure on the left shows the Bode plot of the original system and the FO
and SO reduced-order models. The figure on the right shows the Bode plot of the error between the
original and reduced-order systems

Fig. 5 Fishtail example:
Decay of the singular values
for the FO Loewner matrix
and for SO Loewner matrices

realization of order 779, 232. For this model, the Rayleigh damping is chosen with
parameters α = 1.0 · 10−4, β = 2 · 10−4. It is a MIMO system, but for the numerical
application, here we consider only the first transfer function, i.e., from u1 to y1.

For this example, we collect 200 samples H(iω), with ω ∈ [101, 104]. Then, we
build FO and SO Loewner matrices in (12) and (23), receptively. Additionally, we
also compute the reduced model using the heuristic procedure in Sect. 3.3, for which
we obtain the estimated parameters α∗ ≈ 1.19 · 10−4 and β∗ ≈ 2 · 10−4.

In Fig. 5, we plot the decay of the singular values of the FO Loewner matrix,
the SO Loewner matrix for the original parameters α and β, and the SO Loewner
matrix for the estimated parameters α∗ and β∗. By applying the SVD procedure, we
construct three reduced-order models of order 8. We compare the transfer functions
of the original and reduced-order systems, and the results are plotted in Fig. 6. This
figure shows that theSOLoewner approachwith original parameters and SOLoewner
with estimated parameters outperform the classical Loewner framework.
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Fig. 6 Fishtail example: The figure on the left shows the Bode plot of the original system and the
FO and SO reduced-order models. The figure on the right shows the Bode plot of the error between
the original and reduced-order systems

5 Conclusions

In this paper, we have studied the problem of the identification of Rayleigh-damped
second-order systems from frequency data. To that aim, we propose modified
SO Loewner matrices which are the key tools to construct a realization interpo-
lating the given data. Additionally, in the case of redundant data, an SVD-based
scheme is presented to construct reduced-order models. Moreover, a heuristic opti-
mization problem is sketched to estimate the damping parameters. Finally, we have
illustrated the efficiency of the proposed approach in some numerical examples, and
we compared the results with the classical Loewner framework.

It is important to emphasize that the current work does not intend to solve the
general second-order identification problem.As stated in Sect. 3, the problemof iden-
tifying a general second-order system leads to an underdetermined system. Hence,
in order to have a unique solution, some other constraints should be added to the
problem. As an example, other damping structures could be considered, as discussed
in Subsection 3.4. However, this case might lead to nonlinear matrix equations and
further analysis and dedicated numerical solvers need to be developed. We leave this
topic for future research.
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Balanced Truncation Model Reduction
for 3D Linear Magneto-Quasistatic Field
Problems

Johanna Kerler-Back and Tatjana Stykel

Abstract We consider linear magneto-quasistatic field equations which arise in
simulation of low-frequency electromagnetic devices coupled to electrical circuits.
A finite element discretization of such equations on 3D domains leads to a singular
system of differential-algebraic equations. First, we study the structural properties of
such a system and present a new regularization approach based on projecting out the
singular state components. Furthermore, we consider a Lyapunov-based balanced
truncation model reduction method which preserves stability and passivity. By ma-
king use of the underlying structure of the problem, we develop an efficient model
reduction algorithm. Numerical experiments demonstrate its performance on a test
example.

Keywords Magneto-quasistatic equations · Differential-algebraic equations ·
Matrix pencils · Model order reduction · Balanced truncation · Stability · Passivity

1 Introduction

Nowadays, integrated circuits play an increasingly important role. Modelling of
electromagnetic effects in high-frequency and high-speed electronic systems leads
to coupled field-circuit models of high complexity. The development of efficient, fast
and accurate simulation tools for suchmodels is of great importance in the computer-
aided design of electromagnetic structures offering significant savings in production
cost and time.

In this paper, we consider model order reduction of linear magneto-quasistatic
(MQS) systems obtained from Maxwell’s equations by assuming that the contri-
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bution of displacement current is negligible compared to the conductive currents.
Such systems are commonly used for modeling of low-frequency electromagnetic
devices like transformers, induction sensors and generators. Due to the presence of
non-conducting subdomains, MQSmodels take form of partial differential-algebraic
equations whose dynamics are restricted to a manifold described by algebraic con-
straints. A spatial discretization of MQS systems using the finite integration tech-
nique (FIT) [32] or the finite element method (FEM) [5, 19, 23] leads to differential-
algebraic equations (DAEs) which are singular in the 3D case. The structural analysis
and numerical treatment of singular DAEs is facing serious challenges due to the
fact that the inhomogeneity has to satisfy some restricted conditions to guarantee the
existence of solutions and/or that the solution space is infinite-dimensional. To over-
come these difficulties, different regularization techniques have been developed for
MQS systems [6, 8, 9, 15]. Here, we propose a new regularization approach which
is based on a special state space transformation and withdrawal of overdetermined
state components and redundant equations.

Furthermore,we exploit the special block structure of the regularizedMQS system
to determine the deflating subspaces of the underlyingmatrix pencil corresponding to
zero and infinite eigenvalues. Thismakes it possible to extend the balanced truncation
model reduction method to 3D MQS problems. Similarly to [17, 26], our approach
relies on projected Lyapunov equations and preserves passivity in a reduced-order
model. It should be noted that the balanced truncation method presented in [17] for
2D and 3D gauging-regularized MQS systems cannot be applied to the regularized
system obtained here, since it is stable, but not asymptotically stable. To get rid of this
problem, we proceed as in [26] and project out state components corresponding not
only to the eigenvalue at infinity, but also to zero eigenvalues. Ourmethod is based on
computing certain subspaces of incidence matrices related to the FEM discretization
which can be determined by using efficient graph-theoretic algorithms developed in
[16].

2 Model Problem

We consider a system of MQS equations in vector potential formulation given by

σ
∂A
∂t

+ ∇ × ν ∇ × A = χ ι in Ω × (0, T ),

A × no = 0 on ∂Ω × (0, T ),

A( · , 0) = A0 in Ω,∫
Ω

χT ∂A
∂t

dξ + R ι = u in (0, T ),

(1)

where A : Ω × (0, T ) → R
3 is the magnetic vector potential, χ : Ω → R

3×m is
a divergence-free winding function, ι : (0, T ) → R

m and u : (0, T ) → R
m are the

electrical current and voltage through the stranded conductors with m terminals.



Balanced Truncation Model Reduction … 275

Here,Ω ⊂ R
3 is a bounded simply connected domainwith a Lipschitz boundary ∂Ω ,

and no is an outer unit normal vector to ∂Ω . The MQS system (1) is obtained from
Maxwell’s equations by neglecting the contribution of the displacement currents. It is
used to study the dynamical behavior ofmagnetic fields in low-frequency applications
[14, 27]. The integral equation in (1) with a symmetric, positive definite resistance
matrix R ∈ R

m×m results from Faraday’s induction law. This equation describes the
coupling the electromagnetic devices to an external circuit [28]. Thereby, the voltage
u is assumed to be given and the current ι has to be determined. In this case, the
MQS system (1) can be considered as a control system with the input u, the state
[AT , ιT ]T and the output y = ι.

We assume that the domainΩ is composed of the conducting and non-conducting
subdomains Ω1 and Ω2, respectively, such that Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅ and
Ω1 ⊂ Ω . Furthermore, we restrict ourselves to linear isotropic media implying that
the electrical conductivity σ and the magnetic reluctivity ν are scalar functions of
the spatial variable only. The electrical conductivity σ : Ω → R is given by

σ(ξ) =
{

σ1 in Ω1,

0 in Ω2

with some constant σ1 > 0, whereas themagnetic reluctivity ν : Ω → R is bounded,
measurable and uniformly positive such that ν(ξ) ≥ ν0 > 0 for a.e. in Ω . Note that
since σ vanishes on the non-conducting subdomain Ω2, the initial condition A0 can
only be prescribed in the conducting subdomainΩ1. Finally, for the winding function
χ = [χ1, . . . , χm], we assume that

supp(χ j ) ⊂ Ω2, j = 1, . . . ,m, (2)

supp(χi ) ∩ supp(χ j ) = ∅ for i 
= j. (3)

These conditions mean that the conductor terminals are located in Ω2 and they do
not intersect [28].

2.1 FEM Discretization

First, we present a weak formulation for the MQS system (1). For this purpose, we
multiply the first equation in (1) with a test function φ ∈ H0(curl,Ω) and integrate
it over the domain Ω . Using Green’s formula, we obtain the variational problem

d

dt

∫
Ω

σA · φ dξ +
∫

Ω

ν (∇ × A) · (∇ × φ) dξ =
∫

Ω

(χι) · φ dξ,

d

dt

∫
Ω

χTA dξ + R ι = u,

A(·, 0) = A0.

(4)
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The existence, uniqueness and regularity results for this problem can be found in [25].
For a spatial discretization of (4), we use Nédélec edge and face elements as

introduced in [23]. Let Th(Ω) be a regular simplicial triangulation of Ω , and let nn ,
ne and n f denote the number of nodes, edges and facets, respectively. Furthermore,
letΦe = [φe

1, . . . , φ
e
ne ] andΦ f = [φ f

1 , . . . , φ
f
n f ] be the edge and face basis functions,

respectively, which span the corresponding finite element spaces. They are related
via

∇ × Φe = Φ f C, (5)

where C ∈ R
n f ×ne is a discrete curl matrix with entries

Ci j =

⎧⎪⎨
⎪⎩

1, if edge j belongs to face i and their orientations match,

−1, if edge j belongs to face i and their orientations do not match,

0, if edge j does not belong to face i,

see [5, Sect. 5]. Substituting an approximation to the magnetic vector potential

A(ξ, t) ≈
ne∑
j=1

α j (t) φe
j (ξ)

into the variational Eq. (4) and testing it with φe
i , we obtain a linear DAE system

[
M 0
XT 0

]
d

dt

[
a
ι

]
=

[−K X
0 −R

] [
a
ι

]
+

[
0
I

]
u, (6)

where a = [
α1, . . . , αne

]T
and the conductivity matrix M ∈ R

ne× ne , the curl-curl
matrix K ∈ R

ne× ne and the coupling matrix X ∈ R
ne×m have entries

Mi j =
∫

Ω

σ φe
j · φe

i dξ, i, j = 1, . . . , ne,

Ki j =
∫

Ω

ν (∇ × φe
j ) · (∇ × φe

i ) dξ, i, j = 1, . . . , ne,

Xi j =
∫

Ω

χ j · φe
i dξ, i = 1, . . . , ne, j = 1, . . . ,m.

(7)

Note that the matrices M and K are symmetric, positive semidefinite. Using the
relation (5), we can rewrite the matrix K as

K =
∫

Ω

ν (∇ × Φe)T (∇ × Φe) dξ =
∫

Ω

ν CT (Φ f )TΦ f C dξ = CTMνC,

where the entries of the symmetric and positive definite matrix Mν are given by
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(Mν)i j =
∫

Ω

ν φ
f
j · φ

f
i dξ, i, j = 1, . . . , n f .

The coupling matrix X can also be represented in a factored form using the discrete
curl matrix C . This can be achieved by taking into account the divergence-free
property of the winding function χ , which implies χ = ∇ × γ for a certain matrix-
valued function

γ = [γ1, . . . , γm] : Ω → R
3×m .

Using the cross product rule, Gauss’s theorem as well as relations (5) and
φe
i × no = 0 on ∂Ω , we obtain

Xi j =
∫

Ω

(∇ × γ j ) · φe
i dξ =

∫
Ω

∇ · (γ j × φe
i ) dξ +

∫
Ω

γ j · (∇ × φe
i ) dξ

=
∫

∂Ω

(γ j × φe
i ) · no ds +

∫
Ω

γ j ·
n f∑
k=1

Ckiφ
f
k dξ

=
∫

∂Ω

γ j · (φe
i × no) ds +

n f∑
k=1

Cki

∫
Ω

γ j · φ
f
k dξ =

n f∑
k=1

Cki

∫
Ω

γ j · φ
f
k dξ.

Then the matrix X can be written as X = CTΥ , where the entries of Υ ∈ R
n f ×m are

given by

Υk j =
∫

Ω

γ j · φ
f
k dξ, k = 1, . . . , n f , j = 1, . . . ,m.

Note that due to (3), the matrix X has full column rank. This immediately implies
that Υ is also of full column rank.

3 Properties of the FEMModel

In this section, we study the structural and physical properties of the FEMmodel (6).
We start with reordering the state vector a = [aT

1 , aT
2 ]T with a1 ∈ R

n1 and a2 ∈ R
n2

accordingly to the conducting and non-conducting subdomainsΩ1 andΩ2. Then the
matrices M , K , X and C can be partitioned into blocks as

M =
[
M11 0
0 0

]
, K =

[
K11 K12

K21 K22

]
, X =

[
X1

X2

]
, C = [

C1, C2
]
,

where M11 ∈ R
n1× n1 is symmetric, positive definite, K11 ∈ R

n1× n1 , K21 = KT
12 ∈

R
n2× n1 , K22 ∈ R

n2× n2 , X1 ∈ R
n1×m , X2 ∈ R

n2×m , C1 ∈ R
n f × n1 , and C2 ∈ R

n f × n2 .
Note that conditions (2) and (3) imply that X1 = 0 and X2 has full column rank. In
what follows, however, we consider for completeness a general block X1. Solving
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the second equation in (6) for ι = −R−1XT d
dt a + R−1u and inserting this vector

into the first equation in (6) yields the DAE control system

E d
dt a = −Ka + Bu,

y = −BT d
dt a + R−1u,

(8)

with the matrices

E =
[
M11+X1R

−1XT
1 X1R

−1XT
2

X2R
−1XT

1 X2R
−1XT

2

]
=

[
I CT

1 Υ

0 CT
2 Υ

][
M11 0
0 R−1

][
I 0

Υ TC1 Υ TC2

]
,

K =
[
CT
1 MνC1 CT

1 MνC2
CT
2 MνC1 CT

2 MνC2

]
, B =

[
X1

X2

]
R−1 =

[
CT
1 Υ

CT
2 Υ

]
R−1.

(9)
Using the block structure of the matrices E and K , we can determine their common
kernel.

Theorem 1 Assume that M11, R and Mν are symmetric and positive definite. Let the
columns of YC2 ∈ R

n2× k2 form a basis of ker(C2). Then ker(E) ∩ ker(K ) is spanned

by columns of the matrix
[
0, Y T

C2

]T
.

Proof Assume that w = [
wT

1 , wT
2

]T ∈ ker(E) ∩ ker(K ). Then due to the positive
definiteness of M11 and R, it follows from wT Ew = 0 with E as in (9) that

[
I 0

Υ TC1 Υ TC2

] [
w1

w2

]
= 0.

Therefore, w1 = 0 and Υ TC2w2 = 0. Moreover, using the positive definiteness
of Mν , we get from wT Kw = 0 with w1 = 0 that C2w2 = 0. This means that
w2 ∈ ker(C2) = im(YC2), i.e., w2 = YC2 z for some vector z. Thus, w = [0, Y T

C2
]T z.

Conversely, assume that w = [0, Y T
C2

]Tz for some z ∈ R
k2 . Then using (9) and

C2YC2 = 0, we obtain Ew = 0 and Kw = 0. Thus, w ∈ ker(E) ∩ ker(K ). �

It follows from this theorem that if C2 has a nontrivial kernel, then

det(λE + K ) = 0

for all λ ∈ C implying that the pencil λE + K (and also the DAE system (8)) is
singular. Thismay cause difficulties with the existence and uniqueness of the solution
of (8). In the next section, we will see that the divergence-free condition of the
winding function χ guarantees that (8) is solvable, but the solution is not unique.
This is a consequence of nonuniqueness of the magnetic vector potential A which is
defined up to a gradient of an arbitrary scalar function.



Balanced Truncation Model Reduction … 279

3.1 Regularization

Our goal is now to regularize the singular DAE system (8). In the literature, several
regularization approaches have been proposed for semidiscretized 3DMQS systems.
In the context of the FIT discretization, the grad-div regularization of MQS systems
has been considered in [8, 9]which is based on a spatial discretization of theCoulomb
gauge equation ∇ · A = 0. For other regularization techniques, we refer to [6, 7, 15,
22]. Here, we present a new regularization method relying on a special coordinate
transformation and elimination of the over- and underdetermined parts.

To this end, we consider a matrix ŶC2 ∈ R
n2× (n2−k2) whose columns form a basis

of im(CT
2 ). Then the matrix

T =
[
I 0 0
0 ŶC2 YC2

]

is nonsingular. Multiplying the state equation in (8) from the left with T T and intro-
ducing a new state vector ⎡

⎣ a1
a21
a22

⎤
⎦ = T−1a, (10)

the system matrices of the transformed system take the form

T TET =
⎡
⎣M11 + CT

1 Υ R−1Υ TC1 CT
1 Υ R−1Υ TC2ŶC2

0
Ŷ T
C2
CT
2 Υ R−1Υ TC1 Ŷ T

C2
CT
2 Υ R−1Υ TC2ŶC2

0
0 0 0

⎤
⎦ ,

T TKT =
⎡
⎣ CT

1 MνC1 CT
1 MνC2ŶC2 0

Ŷ T
C2
CT
2 MνC1 Ŷ T

C2
CT
2 MνC2ŶC2 0

0 0 0

⎤
⎦ , T TB =

⎡
⎣ CT

1 Υ

Ŷ T
C2
CT
2 Υ

0

⎤
⎦ R−1.

This implies that the components of a22 are actually not involved in the transformed
system and, therefore, they can be chosen freely. Moreover, the third equation 0 = 0
is trivially satisfied showing that system (8) is solvable. Removing this equation, we
obtain a regular DAE system

Er
d
dt xr = Ar xr + Br u, (11)

y = −BT
r

d
dt xr + R−1u, (12)

with xr = [aT
1 , aT

21]T ∈ R
nr , nr = n1 + n2 − k2, and

Er = Fσ Mσ F
T
σ , Ar = −FνMνF

T
ν , Br = FνΥ R−1, (13)

where



280 J. Kerler-Back and T. Stykel

Fσ =
[
I X1

0 Ŷ T
C2
X2

]
=

[
I CT

1 Υ

0 Ŷ T
C2
CT
2 Υ

]
, Mσ =

[
M11 0
0 R−1

]
, Fν =

[
CT
1

Ŷ T
C2
CT
2

]
.

The regularity of λEr − Ar follows from the symmetry of Er and Ar and the fact
that ker(Er ) ∩ ker(Ar ) = {0}.

3.2 Stability

Stability is an important physical property of dynamical systems characterizing the
sensitivity of the solution to perturbations in the data. A pencil λEr − Ar is called
stable if all its finite eigenvalues have non-positive real part, and eigenvalues on the
imaginary axis are semi-simple in the sense that they have the same algebraic and
geometric multiplicity. In this case, any solution of the DAE system (11) with u = 0
is bounded. Furthermore, λEr − Ar is called asymptotically stable if all its finite
eigenvalues lie in the open left complex half-plane. This implies that any solution of
(11) with u = 0 satisfies xr (t) → 0 as t → ∞.

The following theorem establishes a quasi-Weierstrass canonical form for the
pencil λEr − Ar which immediately provides information on the finite spectrum
and index of this pencil.

Theorem 2 Let the matrices Er , Ar ∈ R
nr×nr be as in (13). Then there exists a non-

singular matrix W ∈ R
nr×nr which transforms the pencil λEr − Ar into the quasi-

Weierstrass canonical form

WT ErW =
⎡
⎣E11

In0
0

⎤
⎦ , WT ArW =

⎡
⎣A11

0
In∞

⎤
⎦ , (14)

where E11,−A11 ∈ R
ns×ns are symmetric, positive definite, and ns + n0 + n∞ = nr .

Furthermore, the pencil λEr − Ar has index one and all its finite eigenvalues are
real and non-positive.

Proof First, note that the existenceof a nonsingularmatrixW transformingλEr − Ar

into (14) immediately follows from the general results for Hermitian pencils [30].
However, here, we present a constructive proof to better understand the structural
properties of the pencil λEr − Ar .

Let the columns of the matrices Yσ ∈ R
nr× n∞ and Yν ∈ R

nr× n0 form bases of
ker(FT

σ ) and ker(FT
ν ), respectively. Then we have

FT
σ Yσ = 0, FT

ν Yν = 0. (15)

Moreover, the matrices Y T
ν ErYν and Y

T
σ ArYσ are both nonsingular, and [Yν, Yσ ] has

full column rank. These properties follow from the fact that
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ker(FT
σ ) ∩ ker(FT

ν ) = ker(Er ) ∩ ker(Ar ) = {0}.

Consider a matrix

W = [
W1, Yν(Y

T
ν ErYν)

−1/2, Yσ (Y T
σ ArYσ )−1/2

]
, (16)

where the columns of W1 form a basis of ker
([ErYν, ArYσ ]T )

. First, we show that
this matrix is nonsingular. Assume that there exists a vector v such that WT v = 0.
Then WT

1 v = 0, Y T
ν v = 0 and Y T

σ v = 0. Thus,

v ∈ im
([ErYν, ArYσ ]) ∩ ker(Y T

ν ) ∩ ker(Y T
σ ) = {0},

and, hence, W is nonsingular.
Furthermore, using (15) and

WT
1 ErYν(Y

T
ν ErYν)

−1/2 = 0, WT
1 ArYσ (Y T

σ ArYσ )−1/2 = 0,

we obtain (14) with E11 = WT
1 ErW1 and A11 = WT

1 ArW1. Obviously, E11 and
−A11 are symmetric and positive semidefinite. For any v1 ∈ ker(E11), we have
FT

σ W1v1 = 0. This impliesW1v1 ∈ ker(FT
σ ) = im(Yσ ). Therefore, there exists a vec-

tor z such that W1v1 = Yσ z. Multiplying this equation from the left with Y T
σ Er , we

obtain Y T
σ ErYσ z = Y T

σ ErW1v1 = 0. Then z = 0 and, hence, v1 = 0. Thus, E11 is
positive definite. Analogously, we can show that −A11 is positive definite too. This
implies that all eigenvalues of the pencil λE11 − A11 are real and negative. Index one
property immediately follows from (14). �

As a consequence, we obtain that the DAE system (11) is stable but not asymp-
totically stable since the pencil λEr − Ar has zero eigenvalues.

We consider now the output Eq. (12). Our goal is to transform this equation into
the standard form y = Cr xr with an output matrix Cr ∈ R

m× nr . For this purpose, we
introduce first a reflexive inverse of Er given by

E−
r = W

⎡
⎣E−1

11
I

0

⎤
⎦WT . (17)

Simple calculations show that this matrix satisfies

Er E
−
r Er = Er , E−

r Er E
−
r = E−

r , (E−
r )T = E−

r . (18)

Next, we show that Ŷ T
C2
X2 has full column rank. Indeed, if there exists a vector v

such that Ŷ T
C2
X2v = 0, then X2v ∈ ker(Ŷ T

C2
). On the other hand,

X2v = CT
2 Υ v ∈ im(CT

2 ) = im(ŶC2)
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implying X2v = 0. Since X2 has full column rank, we get v = 0.
Using nonsingularity of XT

2 ŶC2
Ŷ T
C2
X2, the input matrix Br in (13) can be repre-

sented as

Br = Fσ Mσ

[
0
I

]
= Fσ Mσ

[
I 0
XT
1 XT

2 ŶC2

] [
0

Ŷ T
C2
X2(X

T
2 ŶC2

Ŷ T
C2
X2)

−1

]
= Er

[
0
Z

]

(19)

with Z = Ŷ T
C2
X2(X

T
2 ŶC2

Ŷ T
C2
X2)

−1. Then employing the first relation in (18) and the
state Eq. (11), the output (12) can be written as

y = − [
0, ZT

]
Er

d
dt xr + R−1u = − [

0, ZT
]
Er E

−
r Er

d
dt xr + R−1u

= −BT
r E−

r (Ar xr + Bru) + R−1u = −BT
r E−

r Ar xr + (R−1 − BT
r E−

r Br )u.

It follows from the first relation in (18) and (19) that

BT
r E−

r Br = [
0, ZT

]
Er E

−
r Er

[
0
Z

]
= [

0, ZT
]
Fσ Mσ F

T
σ

[
0
Z

]
= R−1.

Thus, the output takes the form
y = Cr xr (20)

with Cr = −BT
r E−

r Ar .

3.3 Passivity

Passivity is another crucial property of control systems especially in interconnected
network design [1, 33]. The DAE control system (11), (20) is called passive if for all
t f > 0 and all inputs u ∈ L2(0, t f ) admissiblewith the initial condition Er xr (0) = 0,
the output satisfies ∫ t f

0
yT (t) u(t) dt ≥ 0.

This inequality means that the system does not produce energy. In the frequency
domain, passivity of (11), (20) is equivalent to the positive definiteness of its transfer
function

Hr (s) = Cr (sEr − Ar )
−1Br

meaning that this function is analytic in C+ = {z ∈ C : Re(z) > 0} and
Hr (s) + H∗

r (s) ≥ 0 for all s ∈ C+, see [1]. Using the special structure of the system
matrices in (13), we can show that the DAE system (11), (20) is passive.

Theorem 3 The DAE system (11), (13), (20) is passive.
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Proof First, observe that the transfer function Hr (s) of (11), (13), (20) is analytic in
C+. This fact immediately follows from Theorem 2. Furthermore, using the relations

Er E
−
r Ar = Er E

−
r Ar E

−
r Er = Ar E

−
r Er ,

we obtain for F(s) = (sEr − Ar )
−1Br and all s ∈ C+ that

Hr (s) + H∗
r (s) = Cr (sEr − Ar )

−1Br + BT
r (sEr − Ar )

−1CT
r

= −BT
r E−

r Ar (sEr − Ar )
−1Br − BT

r (sEr − Ar )
−1Ar E

−
r Br

= F∗(s)
(−(sEr − Ar )E

−
r Ar − Ar E

−
r (sEr − Ar )

)
F(s)

= 2 F∗(s)
(
Ar E

−
r Ar + Re(s)Er E

−
r (−Ar )E

−
r Er

)
F(s) ≥ 0

holds. In the last inequality, we utilized the property that the matrices
Er E

−
r (−Ar )E

−
r Er and Ar E

−
r Ar are both symmetric and positive semidefinite. Thus,

Hr (s) is positive real, and, hence, system (11), (13), (20) is passive. �

4 Balanced Truncation Model Reduction

Our goal is now to approximate the DAE system (11), (13), (20) by a reduced-order
model

Ẽr
d
dt x̃r = Ãr x̃r + B̃r u,

ỹ = C̃r x̃r ,
(21)

where Ẽr , Ãr ∈ R
�×�, B̃r , C̃T

r ∈ R
�×m and � � nr . This model should capture the

dynamical behavior of (11). It is also important that it preserves the passivity and has
a small approximation error. In order to determine the reduced-order model (21), we
aim to employ a balanced truncation model reduction method [3, 20]. Unfortunately,
we cannot apply this method directly to (11), (13), (20) because, as established in
Sect. 3.2, this system is stable but not asymptotically stable due to the fact that the
pencil λEr − Ar has zero eigenvalues. Another difficulty is the presence of infinite
eigenvalues due to the singularity of Er . This may cause problems in defining the
controllability and observability Gramians which play an essential role in balanced
truncation.

To overcome these difficulties, we first observe that the states of the transformed
system (WT ErW,WT ArW,WT Br ,CrW ) corresponding to the zero and infinite
eigenvalues are uncontrollable and unobservable at the same time. This immediately
follows from the representations

WT Br = [BT
1 , 0, 0]T , CrW = [C1, 0, 0] (22)

with B1 = WT
1 Br and C1 = −BT

r E−
r ArW1 = −BT

1 E
−1
11 A11. Therefore, these states

can be removed from the system without changing its input-output behavior. Then
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the standard balanced truncation approach can be applied to the remaining system.
Since the systemmatrices of the regularized system (11), (20) have the same structure
as those of RC circuit equations studied in [26], we proceed with the balanced trun-
cation approach developed there which avoids the computation of the transformation
matrix W .

For the DAE system (11), (20), we define the controllability and observability
Gramians Gc and Go as unique symmetric, positive semidefinite solutions of the
projected continuous-time Lyapunov equations

ErGc Ar + ArGcEr = −Π T Br B
T
r Π, Gc = ΠGcΠ

T , (23)

ErGoAr + ArGoEr = −Π TCT
r CrΠ, Go = ΠGoΠ

T , (24)

where Π is the spectral projector onto the right deflating subspace of λEr − Ar

corresponding to the negative eigenvalues. Using the quasi-Weierstrass canonical
form (14) and (16), this projector can be represented as

Π = W

⎡
⎣I

0
0

⎤
⎦W−1 = W1Ŵ

T
1 , (25)

where Ŵ1 ∈ R
nr× ns satisfies

Ŵ T
1 W1 = I, Ŵ T

1 Yν = 0, Ŵ T
1 Yσ = 0. (26)

Similarly to [17, Theorem 3], a relation between the controllability and observa-
bility Gramians of system (11), (13), (20) can be established.

Theorem 4 Let Gc and Go be the controllability and observability Gramians of sys-
tem (11), (13), (20) which solve the projected Lyapunov Eqs. (23) and (24), respec-
tively. Then

ErGoEr = ArGc Ar .

Proof Consider the reflexive inverse E−
r of Er given in (17) and the reflexive inverse

of Ar given by

A−
r = W

⎡
⎣A−1

11
0

I

⎤
⎦WT .

Then multiplying the Lyapunov Eq. (23) (resp. (24)) from the left and right with E−
r

(resp. with A−
r ) and using the relations

ErΠ = Π T Er , ΠE−
r = E−

r Π T , Π T Er E
−
r = Π T Ar A

−
r ,

ArΠ = Π T Ar , Π A−
r = A−

r Π T , E−
r Ar A

−
r = E−

r Π T ,

we obtain
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A−
r (ArGc Ar )E

−
r + E−

r (ArGc Ar )A
−
r = −ΠE−

r Br B
T
r E−

r Π T , Gc = ΠGcΠ
T ,

(27)

A−
r (ErGoEr )E

−
r + E−

r (ErGoEr )A
−
r = −ΠE−

r Br B
T
r E−

r Π T , Go = ΠGoΠ
T .

(28)

Since E−
r and −A−

r are symmetric and positive semidefinite and ΠT is the spectral
projector onto the right deflating subspace of λE−

r − A−
r corresponding to the nega-

tive eigenvalues, the Lyapunov Eqs. (27) and (28) are uniquely solvable, and, hence,
ErGoEr = ArGc Ar . �

Theorem 4 implies that we need to solve only the projected Lyapunov Eq. (23)
for the Cholesky factor Zc of Gc = ZcZ

T
c . Then it follows from the relation

Go = E−
r ArGc Ar E

−
r = (−E−

r Ar Zc)(−ZT
c Ar E

−
r )

that the Cholesky factor of the observability Gramian Go = ZoZ
T
o can be calculated

as Zo = −E−
r Ar Zc. In this case, the Hankel singular values of (11), (20) can be

computed from the eigenvalue decomposition

ZT
o Er Zc = (−ZT

c Ar E
−
r )Er Zc = −ZT

c Ar Zc = [
U1, U2

] [
Λ1

Λ2

] [
U1, U2

]T
,

where
[
U1, U2

]
is orthogonal,Λ1 = diag(λ1, . . . , λ�) andΛ2 = diag(λ�+1, . . . , λnr )

with λ1 ≥ . . . ≥ λ� � λ�+1 ≥ . . . ≥ λnr . Then the reduced-order model (21) is com-
puted by projection

Ẽr = UT ErV, Ãr = UT ArV, B̃r = UT Br , C̃r = CrV

with the projection matrices V = ZcU1Λ
− 1

2
1 and U = ZoU1Λ

− 1
2

1 = −E−
r Ar V . The

reduced matrices have the form

Ẽr = − V T Ar E
−
r Er V = −Λ

− 1
2

1 UT
1 ZT

c Ar ZcU1Λ
− 1

2
1 = I,

Ãr = − V T Ar E
−
r Ar V, (29)

B̃r = − V T Ar E
−
r Br = V TCT

r = C̃T
r .

The balanced truncation method for the DAE system (11), (13), (20) is presented in
Algorithm 1, where for numerical efficiency reasons, the Cholesky factor Zc of the
Gramian Gc is replaced by a low-rank Cholesky factor Z̃c such that Gc ≈ Z̃c Z̃

T
c .

Note that thematrices Ẽr and− Ãr in (29) are both symmetric and positive definite.
This implies that the reduced-ordermodel (21), (29) is asymptotically stable. Then the
transfer function H̃r (s) = C̃r (s Ẽr − Ãr )

−1 B̃r is analytic in C+ and for all s ∈ C+,
it satisfies



286 J. Kerler-Back and T. Stykel

Algorithm 1 Balanced truncation for the 3D linear MQS system
Require: Er , Ar ∈ R

nr× nr and Br ∈ R
nr×m

Ensure: a reduced-order system (Ẽr , Ãr , B̃r , C̃r ).
1: Solve the projected Lyapunov Eq. (23) for a low-rank Cholesky factor Z̃c ∈ R

nr×nc of the
controllability Gramian Gc ≈ Z̃c Z̃

T
c .

2: Compute the eigenvalue decomposition

−Z̃ T
c Ar Z̃c = [

U1, U2
] [

Λ1 0
0 Λ2

] [
U1, U2

]T
,

where
[
U1, U2

]
is orthogonal, Λ1 = diag(λ1, . . . , λ�) and Λ2 = diag(λ�+1, . . . , λnc ).

3: Compute the reduced matrices

Ẽr = I, Ãr = −V T Ar E
−
r Ar V, B̃r = −V T Ar E

−
r Br , C̃r = B̃T

r

with the projection matrix V = Z̃cU1Λ
− 1

2
1 .

H̃r (s) + H̃∗
r (s) = B̃T

r (s Ẽr − Ãr )
−1 B̃r + B̃T

r (s Ẽr − Ãr )
−1 B̃r

= 2B̃T
r (s Ẽr − Ãr )

−1
(
Re(s)Ẽr − Ãr

)
(s Ẽr − Ãr )

−1 B̃r ≥ 0.

Thus, H̃r (s) is positive real and, hence, the reduced-order model (21) is passive.
Moreover, taking into account that the controllability and observability Gramians
G̃c and G̃o of (21) satisfy G̃c = G̃o = Λ1 > 0, we conclude that (21) is balanced
and minimal. Finally, we obtain the following bound on theH∞-norm of the approx-
imation error

‖Hr − H̃r‖H∞ := sup
ω∈R

‖Hr (iω) − H̃r (iω)‖ ≤ 2(λ�+1 + . . . + λnr ), (30)

which can be proved analogously to [11, 12]. Here, ‖ · ‖ denotes the spectral matrix
norm. Using (14) and (22), the error system can be written as

Hr (s) − H̃r (s) = Cr (sEr − Ar )
−1Br − C̃r (s Ẽr − Ãr )

−1 B̃r

= BT
1

(
sE11(−A−1

11 )E11 − (−E11)
)−1

B1 − B̃T
r (s Ẽr − Ãr )

−1 B̃r

= Ce(sEe − Ae)
−1Be

with

Ee =
[−E11A

−1
11 E11

Ẽr

]
, Ae =

[−E11

Ãr

]
, Be =

[
B1

B̃r

]
= CT

e .

Since Ee and −Ae are both symmetric, positive definite and Be = CT
e , it follows

from [26, Theorem 4.1(iv)] that

‖Hr − H̃r‖H∞ = ‖Hr (0) − H̃r (0)‖. (31)
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Using the output Eq. (12) instead of (20), the transfer function Hr (s) can also be
written as

Hr (s) = −sBT
r (sEr − Ar )

−1Br + R−1.

Then the computation of the H∞-error is simplified to

‖Hr − H̃r‖H∞ = ‖R−1 + B̃T
r Ã−1

r B̃r‖. (32)

Wewill use this relation in numerical experiments to verify the efficiency of the error
bound (30).

Note that the presented model reduction method for the DAE system (11), (13),
(20) is not balanced truncation applied to the frequency-inverted system with the
transfer function

Hr

(1
s

)
= −1

s
BT
r

(1
s
Er − Ar

)−1
Br + R−1

= BT
r

(
s Ar − Er

)−1
Br + R−1 = sBT

r E−
r

(
sE−

r − A−
r

)−1
E−
r Br ,

as it might be presumed at first glance. Our method can rather be interpreted
as balanced truncation applied to the transformed system obtained by multiplica-
tion the state Eq. (11) from the left with the nonsingular transformation matrix
Tr = (−Ar + ErΠ0)(Er + ArΠ∞)−1, where

Π0 = Yν(Y
T
ν ErYν)

−1Y T
ν Er = W

⎡
⎣ 0

I
0

⎤
⎦W−1,

Π∞ = Yσ (Y T
σ ArYσ )−1Y T

σ Ar =W

⎡
⎣ 0

0
I

⎤
⎦W−1 (33)

are the spectral projectors onto the right deflating subspaces ofλEr − Ar correspond-
ing to the zero and infinite eigenvalues, respectively. Observe that the transformed
system with the system matrices
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Ê = Tr Er = W−T

⎡
⎣−A11

I
0

⎤
⎦W−1,

Â = Tr Ar = W−T

⎡
⎣−A11E

−1
11 A11

0
−I

⎤
⎦W−1,

B̂ = Tr Br = W−T [−BT
1 E

−1
11 A11, 0, 0]T ,

Ĉ = Cr = [−BT
1 E

−1
11 A11, 0, 0]W−1

has the same transfer function as (11), (20) and is symmetric in the sense that
Ê and Â are both symmetric and B̂ = ĈT . Then projecting this system with the
projection matrix V = ΠV , we obtain

V T ÊV = −V T Ar E
−
r Er V = Ẽr ,

V T ÂV = −V T Ar E
−
r Ar V = Ãr ,

V T B̂ = −V T Ar E
−
r Br = B̃r = C̃T

r .

Consequently, the model reduction method in Algorithm 1 inherits the properties
of the balanced truncation method for symmetric systems [18, 26]. In particular, it
provides a symmetric reduced-order model which is exact at the frequency s = ∞
and, as follows from (31), achieves the maximal error at s = 0.

5 Computational Aspects

In this section, we discuss the computational aspects of Algorithm 1. This includes
solving the projected Lyapunov Eq. (23) and computing the basis matrices for certain
subspaces.

For the numerical solution of the projected Lyapunov Eq. (23) in Step 1 of Algo-
rithm 1, we apply the low-rank alternating directions implicit (LR-ADI) method as
presented in [29] with appropriate modifications proposed in [4] for cheap evalua-
tion of the Lyapunov residuals. First, note that due to (22) the input matrix satisfies
Π T Br = Br . Then setting

F1 = (τ1Er + Ar )
−1Br ,

R1 = Br − 2τ1Er F1,

Z1 = √−τ1F1,

the LR-ADI iteration is given by
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Fk = (τk Er + Ar )
−1Rk−1,

Rk = Rk−1 − 2τ1Er Fk,

Zk = [Zk−1,
√−τk Fk],

(34)

with negative shift parameters τk which strongly influence the convergence of this
iteration. Note that they can be chosen to be real, since the pencil λEr − Ar has
real finite eigenvalues. This also enables to determine the optimal ADI shift param-
eters by the Wachspress method [31] ones the spectral bounds a = −λmax(Er , Ar )

and b = −λmin(Er , Ar ) are available. Here, λmax(Er , Ar ) and λmin(Er , Ar ) denote
the largest and smallest nonzero eigenvalues of λEr − Ar . They can be computed
simultaneously by applying the Lanczos procedure to E−

r Ar and v = Πv, see [13,
Sect. 10.1]. As a starting vector v, we can take, for example, one of the columns of
the matrix E−

r Br . In the Lanczos procedure and also in Step 3 of Algorithm 1, it
is required to compute the products E−

r ArΠv. Of course, we never compute and
store the reflexive inverse E−

r explicitly. Instead, we can use the following lemma to
calculate such products in a numerically efficient way.

Lemma 1 Let Er and Ar be given as in (13), Z = Ŷ T
C2
X2(X

T
2 ŶC2

Ŷ T
C2
X2)

−1, and
v ∈ R

nr . Then the vector z = E−
r ArΠv can be determined as

z = (I − Π∞)Ŷσ (Ŷ T
σ Er Ŷσ )−1Ŷ T

σ ArΠv, (35)

where Π∞ is the spectral projector as in (38), and

Ŷσ =
[
I 0
0 Z

]
(36)

is a basis matrix for im(Fσ ).

Proof We show first that the full column matrix Ŷσ in (36) satisfies the equation
im(Ŷσ ) = im(Fσ ). This property immediately follows from the relation

Fσ =
[
I X1

0 Ŷ T
C2
X2

]
=

[
I 0
0 Z

] [
I X1

0 XT
2 ŶC2

Ŷ T
C2
X2

]
.

Since FT
σ Ŷσ has full column rank, the matrix Ŷ T

σ Er Ŷσ = Ŷ T
σ Fσ F

T
σ Ŷσ is nonsingular,

i.e., z in (35) is well-defined. Obviously, this vector fulfills Π∞z = 0. Furthermore,
we have

Er z = Er (I − Π∞)Ŷσ (Ŷ T
σ Er Ŷσ )−1Ŷ T

σ ArΠv = Er Ŷσ (Ŷ T
σ Er Ŷσ )−1Ŷ T

σ ArΠv.

Then

Ŷ T
σ Er z = Ŷ T

σ ArΠv,

Y T
σ Er z = 0 = Y T

σ (I − ΠT
∞)ArΠv = Y T

σ ArΠv.
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Since [Ŷσ , Yσ ] is nonsingular, these equations imply Er z = ArΠv. Multiplying this
equation from the left with E−

r , we get

z = (I − Π∞)z = E−
r Er z = E−

r ArΠv.

This completes the proof. �

Using (36), we find by simple calculations that

Ŷσ (Ŷ T
σ Er Ŷσ )−1Ŷ T

σ =
[

M−1
11 −M−1

11 X1Z
T

−Z XT
1 M

−1
11 Z(XT

1 M
−1
11 X1 + R)ZT

]
.

Next,wediscuss the computation ofYσ (Y T
σ ArYσ )−1Y T

σ v for a vectorv. By takingv =
Arw, this enables to calculate the product Π∞w = Yσ (Y T

σ ArYσ )−1Y T
σ Arw required

in (35).

Lemma 2 Let Ar be as in (13) and let Yσ be a basis of ker(FT
σ ). Then for the vector

v = [vT
1 , vT

2 ]T ∈ R
nr , the product

z = Yσ (Y T
σ ArYσ )−1Y T

σ v (37)

can be determined as z = [0, zT2 ]T , where z2 satisfies the linear system
[
−Ŷ T

C2
K22ŶC2 Ŷ

T
C2
X2

XT
2 ŶC2 0

][
z2
ẑ2

]
=

[
v2
0

]
. (38)

Proof We first show that z = Yσ (Y T
σ ArYσ )−1Y T

σ v if and only if

[
Ar Ŷσ

Ŷ T
σ 0

] [
z
ẑ

]
=

[
v

0

]
, (39)

where Ŷσ is as in (36). Let [zT , ẑT ]T solves Eq. (39). Then Ŷ T
σ z = 0 and, hence,

z ∈ ker(Ŷ T
σ ) = im(Yσ ). This means that there exists a vector ŵ such that z = Yσ ŵ.

Inserting this vector into the first equation in (39), we obtain ArYσ ŵ + Ŷσ ẑ = v.
Multiplying this equation from the left with Y T

σ and solving it for ŵ, we get
z = Yσ (Y T

σ ArYσ )−1Y T
σ v.

Conversely, for z as in (37) and ẑ = (Ŷ T
σ Ŷσ )−1Ŷ T

σ (v − Ar z), we have Ŷ T
σ z = 0

and

Ar z + Ŷσ ẑ = Ar z + Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ (v − Ar z)

= (I − Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ )Ar z + Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ v.

Using Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ + Yσ (Y T
σ Yσ )−1Y T

σ = I twice, we obtain
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Ar z + Ŷσ ẑ = Yσ (Y T
σ Yσ )−1Y T

σ Ar z + Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ v

= Yσ (Y T
σ Yσ )−1Y T

σ ArYσ (Y T
σ ArYσ )−1Y T

σ v + Ŷσ (Ŷ T
σ Ŷσ )−1Ŷ T

σ v = v.

Thus, [zT , ẑT ]T satisfies Eq. (39).
Equation (39) can be written as

⎡
⎢⎢⎣

−K11 −K12ŶC2 I 0
−Ŷ T

C2
K21 −Ŷ T

C2
K22ŶC2 0 Z

I 0 0 0
0 ZT 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v1
v2
0
0

⎤
⎥⎥⎦ , (40)

with z = [zT1 , zT2 ]T , ẑ = [zT3 , zT4 ]T and v = [vT
1 , vT

2 ]T . The third equation in (40)
yields z1 = 0. Furthermore, multiplying the fourth equation in (40) from the left with
XT
2 ŶC2

Ŷ T
C2
X2 and introducing a new variable ẑ2 = (XT

2 ŶC2
Ŷ T
C2
X2)

−1z4, we obtain

Eq. (38) which is uniquely solvable since Ŷ T
C2
K22ŶC2 is symmetric, positive definite

and Ŷ T
C2
X2 has full column rank. Thus, z = [0, zT2 ]T with z2 satisfying (38). �

We summarize the computation of z = E−
r Arv with v = Πv in Algorithm 2.

Algorithm 2 Computation of E−
r Arv

Require: M11, K11, K12, K21, K22, X1, X2, R, ŶC2 , and v = Πv = [vT1 , vT2 ]T .
Ensure: z = E−

r Arv with Er and Ar as in (13).

1: Compute

[
v̂1
v̂2

]
=

[
−K11v1 − K12ŶC2v2

−Ŷ T
C2

K21v1 − Ŷ T
C2

K22ŶC2
v2

]
.

2: Compute Z = Ŷ T
C2

X2(X
T
2 ŶC2

Ŷ T
C2

X2)
−1.

3: Compute ŵ2 = ZT v̂2.
4: Solve M11w1 = v̂1 − X1ŵ2 for w1.
5: Compute w2 = −Z(XT

1 w1 − Rŵ2).

6: Solve

[
−Ŷ T

C2
K22ŶC2

Ŷ T
C2

X2

XT
2 ŶC2

0

][
z2
ẑ2

]
=

[−Ŷ T
C2

K21w1 − Ŷ T
C2

K22ŶC2
w2

0

]
for z2.

7: Compute z =
[

w1
w2 − z2

]
.

The major computational effort in the LR-ADI method (34) is the computation
of (τk Er + Ar )

−1w for some vector w. If τk Er + Ar remains sparse, we just solve
the linear system (τk Er + Ar )z = w of dimension nr . If τk Er + Ar gets fill-in due
to the multiplication with ŶC2 , then we can use the following lemma to compute
z = (τk Er + Ar )

−1w.

Lemma 3 Let Er and Ar be as in (13), w = [wT
1 , wT

2 ]T ∈ R
nr , and τ < 0. Then

the vector z = (τ Er + Ar )
−1w can be determined as



292 J. Kerler-Back and T. Stykel

z =
[

z1
(Ŷ T

C2
ŶC2

)−1Ŷ T
C2
z2

]
,

where z1 and z2 satisfy the linear system

⎡
⎢⎢⎣

τM11 − K11 −K12 X1 0
−K21 −K22 X2 YC2

τ XT
1 τ XT

2 −R 0
0 Y T

C2
0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

w1

ŶC2
(Ŷ T

C2
ŶC2

)−1w2

0
0

⎤
⎥⎥⎦ (41)

of dimension n + m + k2.

Proof First, note that due to the choice of YC2 the coefficient matrix in system (41)
is nonsingular. This system can be written as

(τM11 − K11)z1 −K12z2 +X1z3 = w1, (42a)

−K21z1 −K22z2 +X2z3 +YC2 z4 = Ŷ T
C2

(Ŷ T
C2
ŶC2)

−1w2, (42b)

τ XT
1 z1 +τ XT

2 z2 −Rz3 = 0, (42c)

Y T
C2
z2 = 0. (42d)

It follows from (42d) that z2 ∈ ker(Y T
C2

) = im(ŶC2). Then there exists ẑ2 such that

z2 = ŶC2 ẑ2. Since ŶC2 has full column rank, it holds

ẑ2 = (Ŷ T
C2
ŶC2

)−1Ŷ T
C2
z2. (43)

Further, from Eq. (42c) we obtain z3 = τ R−1XT
1 z1 + τ R−1XT

2 z2. Substituting z2
and z3 into (42a) and (42b) and multiplying Eq. (42b) from the left with Ŷ T

C2
yields

(τ Er + Ar )

[
z1
ẑ2

]
=

[
w1

w2

]
.

This equation together with (43) implies that

[
z1

(Ŷ T
C2
ŶC2

)−1Ŷ T
C2
z2

]
= (τ Er + Ar )

−1

[
w1

w2

]

that completes the proof. �

Finally, we discuss the computation of the basis matrices YC2 and ŶC2 required in
Algorithm 2 and the LR-ADI iteration. To this end, we introduce a discrete gradient
matrix G0 ∈ R

ne×nn whose entries are defined as
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(G0)i j =

⎧⎪⎨
⎪⎩

1, if edge i leaves node j,

−1, if edge i enters node j,

0, else.

Note that the discrete curl and gradient matrices C and G0 satisfy the relations
rank(C) = ne − nn + 1, rank(G0) = nn − 1 and CG0 = 0, see [5]. Then by remov-
ing one column of G0, we get the reduced discrete gradient matrixG whose columns
form a basis of ker(C). The matrices C and GT can be considered as the loop and
incidence matrices, respectively, of a directed graph whose nodes and branches cor-
respond to the nodes and edges of the triangulation Th(Ω), see [10]. Then the basis
matrices YC2 and ŶC2 can be determined by using the graph-theoretic algorithms as
presented in [16].

Let the reduced gradientmatrixG = [
GT

1 GT
2

]T
be partitioned into blocks accord-

ing to C = [
C1, C2

]
. It follows from [16, Theorem 9] that

ker(C2) = im(G2Z1),

where the columns of the matrix Z1 form a basis of ker(G1). Then ŶC2 can be
determined as ŶC2 = kernelAk(ZT

1 G
T
2 ) with the function kernelAk from [16,

Sect. 4.2], where the basis Z1 is computed by applying the function kernelAT from
[16, Sect. 3] to GT

1 .

6 Numerical Results

In this section, we present some results of numerical experiments demonstrating
the balanced truncation model reduction method for 3D linear MQS systems. For
the FEM discretization with Nédélec elements, the 3D tetrahedral mesh generator
NETGEN1 and the MATLAB toolbox2 from [2] were used as described in [21]. All
computations were done with MATLAB R2018a.

As a test model, we consider a coil wound round a conducting tube surrounded
by air. Such a model was studied in [24] in the context of optimal control. A bounded
domain

Ω = (−c1, c1) × (−c2, c2) × (−c3, c3) ⊂ R
3

consists of the conducting subdomain Ω1 = Ωiron of the iron tube and the non-
conducting subdomain Ω2 = Ωcoil ∪ Ωair, where

Ωiron = {ξ ∈ R
3 : 0 < r1 < ξ 2

1 + ξ 2
2 < r2, z1 < ξ3 < z2 },

Ωcoil = {ξ ∈ R
3 : 0 < r3 < ξ 2

1 + ξ 2
2 < r4, z3 < ξ3 < z4 }

1 https://sourceforge.net/projects/netgen-mesher/.
2 http://www.mathworks.com/matlabcentral/fileexchange/46635.

http://www.mathworks.com/matlabcentral/fileexchange/46635
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Fig. 1 Coil-tube model: a geometry; b dimensions and model parameters

with r1 < r2 < r3 < r4 and z1 < z3 < z4 < z2, see Fig. 1(a). The divergence-free
winding function χ : Ω → R

3 is defined by

χ(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

Nc

Sc
√

ξ 2
1 + ξ 2

2

⎡
⎣−ξ2

ξ1
0

⎤
⎦ , ξ ∈ Ωcoil,

0, ξ ∈ Ω \ Ωcoil,

where Nc is the number of coil turns and Sc is the cross section area of the coil. The
dimensions, geometry and material parameters are given in Fig. 1(b).

The DAE system (8) has n1 + m = 1267 differential variables, n2 − m − k2 =
2643 algebraic variables and k2 = 399 singular variables. The regularized pencil
λEr − Ar has ns = 1004 negative eigenvalues and n0 = 263 zero eigenvalues. It
seems that the interface conditions between the conducting and non-conducting sub-
domains are responsible for the zero eigenvalues. This follows from the fact that the
number of zero eigenvalues is equal to nn,iron/air − 1, where nn,iron/air is the number
of nodes on the interface boundary between the iron tube and the surrounding air.

The controllabilityGramianwas approximated by a low-rankmatrixGc ≈ Znc Z
T
nc

with Znc ∈ R
nr× nc with nc = 24. The normalized residual norm

‖Er Zk Z
T
k Ar + Ar Zk Z

T
k Er + Br B

T
r ‖F

‖Br B
T
r ‖F

= ‖Rk R
T
k ‖F

‖Br B
T
r ‖F

= ‖RT
k Rk‖F

‖BT
r Br‖F

for the LR-ADI iteration (34) is presented in Fig. 2a. Here, ‖ · ‖F denotes the Frobe-
nius matrix norm. Figure2b shows the Hankel singular values λ1, . . . , λnc . We
approximate the regularized MQS system (11), (12) of dimension nr = 3910 by
a reduced model of dimension � = 5. In Fig. 3a, we present the absolute values of
the frequency responses |Hr (iω)| and |H̃r (iω)| of the full and reduced-order models
for the frequency range ω ∈ [10−4, 106]. The absolute error |Hr (iω) − H̃r (iω)| and
the error bound computed as
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Fig. 2 a Convergence history for the LR-ADI method; b Hankel singular values
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Fig. 3 a Frequency responses of the full-order and reduced-order systems; b Absolute error and
error bound

2
(
λ�+1 + . . . + λnc−1 + (ns − � + 1)λnc

) = 7.6714 · 10−9

are given in Fig. 3b. Furthermore, using (32) we compute the error

‖Hr − H̃r‖H∞ = 7.5385 · 10−9

showing that the error bound is very tight.
In Fig. 4a, we present the outputs y(t) and ỹ(t) of the full and reduced-order sys-

tems on the time interval [0, 0.08]s computed for the input u(t) = 5 · 104 sin(300π t)
and zero initial condition using the implicit Euler method with 300 time steps. The
relative error |y(t) − ỹ(t)|

max
t∈[0,0.08] |y(t)|
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Fig. 4 a Outputs of the full-order and reduced-order systems; b Relative error in the output

is given in Fig. 4b. One can see that the reduced-order model approximates well the
original system in both time and frequency domain.
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Structure-Preserving Model Reduction
of Physical Network Systems

Arjan van der Schaft

Abstract This paper considers physical network systems where the energy stor-
age is naturally associated to the nodes of the graph, while the edges of the graph
correspond to static couplings. The first sections deal with the linear case, cover-
ing examples such as mass-damper and hydraulic systems, which have a structure
that is similar to symmetric consensus dynamics. The last section is concerned with
a specific class of nonlinear physical network systems; namely detailed-balanced
chemical reaction networks governed by mass action kinetics. In both cases, linear
and nonlinear, the structure of the dynamics is similar, and is based on a weighted
Laplacianmatrix, togetherwith an energy function capturing the energy storage at the
nodes. We discuss two methods for structure-preserving model reduction. The first
one is clustering; aggregating the nodes of the underlying graph to obtain a reduced
graph. The second approach is based on neglecting the energy storage at some of the
nodes, and subsequently eliminating those nodes (called Kron reduction).

Keywords Model reduction · Structure preservation · Clustering · Kron
reduction · Chemical reaction networks

1 Introduction

Large-scale network dynamical systems arise in many areas of science and engineer-
ing: from power networks to metabolic reaction networks in living cells. From an
analysis, simulation, and control point of view there is a clear need to approximate
these systems by lower-dimensional ones of lesser complexity; i.e., model reduc-
tion. In this paper we study structure-preserving model reduction of such physical
network systems, where we want to approximate the original, complex, physical
network system by a physical network system of lesser complexity, but within the
same class of physical network systems. We focus on linear physical network sys-
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tems with quadratic energy storage at the nodes and linear static couplings at the
edges, as well as on detailed-balanced chemical reaction networks governed by mass
action kinetics. Although the latter class consists of nonlinear network systems, the
underlying graph structure is similar. As a result in both cases structure-preserving
reduction can be performed using the same two approaches; namely clustering and
Kron reduction.

2 A Class of Linear Physical Network Systems

Consider a directed graph, with n nodes and k edges. The graph is specified by its
incidence matrix D, which is an n × k matrix where every column corresponds to
an edge of the graph, and contains exactly one −1 at the row corresponding to the
tail node of the edge and one+1 at the row corresponding to its head node, while the
other elements are 0. Clearly 1T D = 0, where 1 denotes the vector of all ones. We
will throughout assume that the graph is connected, or equivalently ker DT = span1.
(Otherwise we may consider the connected components of the graph separately.) We
consider the following type of dynamics on the graph

ẋ = −DRDT M−1x + Eu, x ∈ R
n, u ∈ R

m

y = ET M−1x y ∈ R
m,

(1)

where R and M are positive diagonal matrices. Here, E is an n × m input matrix
whose columns are basis vectors, defining which of the nodes are directly controlled.
The matrix L := DRDT is a weighted Laplacian matrix, with weights given by the
diagonal elements r1, . . . , rk of R.

The energy 1
2 x

T M−1x of the system satisfies

d

dt

1

2
xT M−1x = −xT M−1DRDT M−1x + xT M−1Eu ≤ yT u, (2)

showing passivity of the system. For u = 0 the set of equilibria is given by the 1-
dimensional subspace ker DT M−1, i.e., as all states x for which the components of
v := M−1x are identical. Furthermore, 1T x is a conserved quantity for all u such
that 1T Eu = 0. It follows that for every initial condition x0 there exists exactly one
equilibrium x∞ with 1T x0 = 1T x∞, to which the system converges exponentially
for u = 0; see e.g. [1] for further details.

A variety of linear physical network systems is of this form, as illustrated by the
following examples; see [2, 3].

Example 1 (Mass-damper systems) Consider a mass-damper system on R with
n masses with masses m1, . . . ,mn and k linear dampers with damping coef-
ficients r1, . . . , rk . Define the diagonal matrices M = diag(m1, . . . ,mn), R =
diag(r1, . . . , rk) and the state x as the vector of momenta of the masses. Hence
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v = M−1x are the velocities of the masses, and 1T x is the total momentum of the
system. The system for u = 0 will converge to a situation where all the masses move
with equal velocity, while the total momentum remains the same. The non-zero rows
of E correspond to masses which are actuated by external forces u.

Example 2 (RC electrical networks) Consider an RC-circuit with n grounded
capacitors with capacitances C1, . . . ,Cn and k linear resistors, with conduc-
tances (reciprocal of resistance) g1, . . . , gk . Define the diagonal matrices M =
diag(C1, . . . ,Cn), R = diag(g1, . . . , gk), and the state x as the vector of charges
Q of the capacitors. The total charge 1T Q is a conserved quantity, and for u = 0 the
system will converge to an equilibrium where the voltage potentials Qi

Ci
at the nodes

are all equal. The non-zero rows of E correspond to capacitors with current sources
u.

Example 3 (Hydraulic networks) Consider a hydraulic network with n fluid reser-
voirs whose storage is described by the elements of a vector x . Mass balance corre-
sponds to ẋ = Df where f ∈ R

k is the flow through the k pipes linking the reservoirs.
Let each storage variable xi determine a pressure xi

mi
for a certain constantmi . Assum-

ing that the flow fk is proportional to the difference between the pressure of the head
reservoir and the pressure of the tail reservoir this leads to the model (1), where Eu
denotes the direct in-flow or out-flow at the reservoirs corresponding to non-zero
rows of E . Clearly, for u = 0 the system converges to a unique equilibrium where
the pressures at all nodes are equal.

Example 4 (Single-species chemical reaction networks) Consider a chemical reac-
tion network governed by mass action kinetics with single-species reactions (that
is, reactions that involve only one chemical species as substrate and one chemical
species as product). In case the network is detailed-balanced (there exists an equi-
librium for which all the forward reactions are balanced by the reverse reactions) the
dynamics of the vector x of concentrations can be brought into the form (see Sect. 6
and [4] for further details) ẋ = −DRDT x

x∗ , where D is the incidence matrix of the
network, x∗ is the assumed equilibrium, and x

x∗ denotes element-wise division. The
j-th element of the diagonal matrix R is specified by the forward and backward reac-
tion constants of the j-th reaction and x∗ (see [4] for details). Defining the diagonal
matrix M := diag(x∗

1 , . . . , x
∗
m) this takes the form (1), where Eu denote additional

in-flow or out-flow of the chemical species corresponding to non-zero rows of E .

A ’non-physical’ example of (1) is the standard symmetric consensus algorithm in
continuous time, whereM = In and Eu corresponds to the leaders of themulti-agent
system (see e.g. [5]).

3 Structure-Preserving Model Reduction by Clustering

The general problem of structure-preserving model reduction of physical network
systems is the following. Given a large-scale physical network system as in (1) (e.g.,



302 A. van der Schaft

a high-dimensional mass-damper system). How to find to a physical network system
of the same type (again a mass-damper system), but of lesser complexity, which is
offering a ’suitable’ approximation of the system?

The first approach, discussed in this section, is to consider reduction of the phys-
ical network system by clustering of the nodes, so as to obtain a graph with fewer
nodes [2]. This idea is quite natural, and appears e.g. in [6–9], and in the context of
symmetric consensus dynamics in [10].

Consider a partition of the node set of the directed graph into n̂ disjoint cells
C1,C2, . . . ,Cn̂ , together with a corresponding n × n̂ characteristic matrix P . The
columns of P equal the characteristic vectors of the cells; the characteristic vector of
a cellCi being defined as the vector with 1 at the place of every node contained in the
cell Ci , and 0 elsewhere. With some abuse of notation we will denote the partition
simply by its characteristic matrix P .

Based on a partition P we reduce the system (1) to

˙̂x = −(PT DRDT P)(PT MP)−1 x̂ + PT Eû

ŷ = ET P(PT MP)−1 x̂
(3)

where x̂ := PT x ∈ R
n̂ is the clustered state vector. This is aPetrov-Galerkin reduced

model with projection matrices P and MP(PT MP)−1, cf. [2, 11].
The reduced system (3) is again of the form (1). In fact, after permutation of the

edges we may write D = [
Dp Dc

]
, with Dc corresponding to the edges between

nodes of a same cell, and Dp corresponding to edges in between different cells. Then

PT D = [
PT Dp PT Dc

] = [
D̂ 0

]
, (4)

where the n̂ × k̂ matrix D̂ is the incidence matrix of the reduced graph, with nodes
being the cells of the original graph, and with edge set containing all the edges
between nodes in different cells. Correspondingly, define R̂ as the k̂ × k̂ diagonal
matrix obtained from R by leaving out the rows and columns corresponding to the
edges between nodes in a same cell, and define the n̂ × n̂ diagonal matrix M̂ :=
PT MP , and Ê := PT E . It follows that the reduced system (3) is given as

˙̂x = −D̂ R̂ D̂T M̂−1 x̂ + Ê û, x̂ ∈ R
n̂

ŷ = Ê T M̂−1 x̂
(5)

In the case of a mass-damper system, x is the vector of momenta p of the masses,
and the i-th component of x̂ denotes the total momentum p̂i = ∑

p j of the masses
contained in cellCi , with summation ranging over the indices of the nodes in cellCi .
Furthermore the i-th diagonal element of M̂ is the total mass m̂i = ∑

m j contained
in cell Ci . The velocity v̂i of cell Ci is defined as v̂i = ∑

p j/
∑

m j . Note that if the
cell Ci is connected then the masses within Ci when separated from the other cells
and the external forces will converge to this common velocity.
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The comparison between the full-order model (1) and the reduced-order clustered
model (3) should be based on subtracting from the dynamics of the full-order state
vector v := M−1x (vector of velocities in themass-damper case), the dynamics of the
vector P v̂ = PM̂−1 x̂ , representing the averaged full-order state vector. This leads
to the consideration of the error dynamics

v̇ − P ˙̂v = M−1DRDT v − PM̂−1 D̂ R̂ D̂T v̂ +
(
M−1E − PM̂−1 Ê

)
u (6)

Of course, a main question is which nodes should be clustered in order to obtain
a good approximation of the full-order system. The approach as advocated in [12]
(in a more general setting) is to cluster those nodes for which the ‘activity’ at the
edges in between these nodes is ‘low’. This can be formalized as follows. Consider
the full-order physical network system (1) as before, where we additionally assume
that E can be factorized as E = DF for some matrix F . This is equivalent to the
assumption1T E = 0, and can be also interpreted in the sense that the inputs u control
the flows along part of the edges.

Then define the vector of edge variables e = DT M−1x (= DT v) ∈ R
k . Their

dynamics is given as

ė = DT M−1 ẋ = −LeRe + LeFue, Le := DT M−1D

ye = FT e
(7)

where Le := DT M−1D is called the edge Laplacian. Note that Le is invertible iff
the graph has no cycles (ker D = 0); in which case the edge dynamics defines a
gradient system, with inner product given by L−1

e . By using generalized balancing
of the edge dynamics (7) one now can identify the edges which are least important;
thus determining the characteristic matrix P of an appropriate clustering [12]. We
refer to [12] for error bounds; cf. also [6, 7].

Another approach to clustering and error bounds can be found in [9]. For almost
equitable partitions error bounds were derived in [13].

4 Structure-Preserving Model Reduction by Kron
Reduction

A second method for structure-preserving model reduction of physical network sys-
tems (1) is Kron reduction. This amounts to splitting the n nodes into two distinct
subsets K and J , and to partitioning the state vectors x , v = M−1x , the Laplacian
matrix L = DRDT , and the input matrix E accordingly, i.e.

x =
[
xK
xJ

]
, v =

[
vK

vJ

]
, L =

[
LKK LK J

L JK L J J

]
, E =

[
EK

EJ

]
(8)
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Then setting ẋ J zero results in the reduced model1

ẋK = − (
LKK − LK J L

−1
J J L JK

)
vK + (

EK − LK J L
−1
J J EJ

)
ûK

ŷK = (
EK − LK J L

−1
J J EJ

)T
vK + ET

J L
−1
J J EJ u,

(9)

where, since M is diagonal, vK = M−1
KK xK .

Furthermore, as shown in [14], the Schur complement LKK − LK J L
−1
J J L JK of a

Laplacian matrix is again a Laplacian matrix; and thus of the form DK RK DT
K , for

some incidence matrix DK of a directed graph with set of nodes given by K , and a
positive diagonal matrix RK . Hence the reduced model is again of the form (1) with
Laplacian matrix L̂ := LKK − LK J L

−1
J J L JK and ‘mass’ matrix MKK ; although with

the addition of a feedthrough term ET
J L

−1
J J EJ u. We call (9) the Kron reducedmodel.

Note that ET
J L

−1
J J EJ ≥ 0, implying that the Kron reduced model satisfies

d
dt

1
2 x

T
K M

−1
KK xK ≤ xTK M

−1
KK

(
EK − LK J L

−1
J J EJ

)
ûK

= ŷTK ûK − ûT
K E

T
J L

−1
J J EJ ûK ≤ ŷTK ûK ,

(10)

thus showing passivity with respect to the reduced storage function 1
2 x

T
K M

−1
KK xK .

Kron reduction may lead to a drastic reduction of the state vector. On the other
hand, the number of edges in the reduced network system may easily increase. This
is due to the fact that the Schur complement of a sparse Laplacian matrix often gives
rise to a dense reduced Laplacian matrix.

The interpretation of the Kron reduced model is somewhat dual to the interpreta-
tion of the reduced model resulting from clustering. In case of a mass-damper system
Kron reduction amounts to setting the massesmi of the nodes in the subset J equal to
zero, thus leading to a zero total force at the nodes in J and ẋ J = 0. More generally,
in Kron reduction the energy storage at the nodes in the index subset J is neglected.

5 Steady State Equivalence of the Full and Reduced Order
Model

Consider the full-ordermodel (1). The steady state response to a constant input u = ū
is given by a state x̄ satisfying

DRDT M−1 x̄ = Eū, (11)

with resulting steady state output ȳ = ET M−1 x̄ . Notice that such a steady state
x̄ exists if and only if 1T Eū = 0, and that there exists a steady state for all ū if

1 Note that by the assumption of connectedness any non-trivial leading submatrix L J J of L is
invertible.
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and only if 1T E = 0. Furthermore given the existence of a steady state x̄ all other
states x such that v = M−1 x̄ + c1, c ∈ R also qualify as steady states, leading to
steady state outputs y = ET

(
M−1 x̄ + c1

)
, which are all equal to ȳ = ET M−1 x̄

if 1T E = 0. In the mass-damper case (or similar cases) these conditions have an
immediate interpretation; e.g., 1T Eū = 0 means that the sum of the applied external
forces is zero.

Now let us compare the steady state response of the full-order model with that of
the reduced-order model (3) resulting from clustering. Consider a constant input û =
ū for which there exists ¯̂x such that D̂ R̂ D̂T M̂−1 ¯̂x = Eū, with accompanying steady

state output ¯̂y = Ê T
(
M̂−1 ¯̂x + c1

)
. It can be seen that the steady state response of

the reduced order model (3) equals that of the full order model (1) if and only if the
constant ū and the steady state x̄ are such that

M−1 x̄ = P(PT MP)−1 ¯̂x, (12)

In turn, this is the case if and only v̄ = M−1 x̄ is contained in im P . We have thus
arrived at the following proposition.

Proposition 1 Consider a network system (1), a characteristic matrix P, and the
corresponding reduced order model (3). Let ū satisfy 1T Eū = 0, and the corre-
sponding steady state x̄ of (1) be such that v̄ = M−1 x̄ ∈ im P. Then the steady
state response ȳ of the full order system is the same as the steady state response¯̂y of the reduced order system for û = ū. The steady state response of the full- and
reduced-order system are equal for any û = ū if and only if im E ⊂ DRDT (im P).

In themass-damper case the condition v̄ = M−1 x̄ ∈ im P means that the steady state
x̄ and the correspondingvector of steady state velocitiesM−1 x̄ are such that the steady
state velocities in each cell are equal, while im E ⊂ DRDT (im P) means that all
external forces can be compensated by damping forces generated by the dampers
linking the different cells (without involving the damping forces due to dampers
within the cell).

Steady state equivalence between full-order and reduced-ordermodel is evenmore
simple in the Kron reduction case. Indeed, by definition of Kron reduction, the steady
state response of the Kron reduced order model (9) is always the same as that of the
full order model (1) (whenever defined, i.e., 1T Eū = 0).

Finally, let us look more closely at the properties of the steady state response of
the full- and reduced-order model. The steady state x̄ corresponding to a constant
input ū for the full order system satisfies

DRDT v̄ = Eū, v̄ = M−1 x̄ (13)

Now assume that all columns of E are basis vectors (i.e., in the mass-damper case,
part of themasses are individually actuated, and the rest is not). Then, by permutation

of the nodes, we may assume without loss of generality that E =
[
Im
0

]
. Partitioning
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accordingly v̄ =
[
v̄1
v̄2

]
this amounts to

DRDT

[
v̄1
v̄2

]
=

[
ū
0

]
(14)

By the maximum modulus principle for graphs [15] this implies

max v̄2 ≤ max v̄1, min v̄2 ≥ min v̄1, (15)

where max z means the maximum of the elements in the vector z, and min z the
minimum of the elements in the vector z. Hence, the elements of v̄2 are ‘squeezed’ in
between the minimum and the maximum of the elements of ȳ = v̄1; the generalized
velocities corresponding to the generalized external forces ū.

6 Structure-Preserving Model Reduction of Chemical
Reaction Networks

In this section we will focus on structure-preserving model reduction of a specific
class of physical network systems, namely chemical reaction networks. That is,
we want the approximating model to be again in the form of a chemical reaction
network. A key difference with the physical network systems as discussed in the
previous sections is the fact that most chemical reaction networks are intrinsically
nonlinear.

This will be done for chemical reaction networks that are described bymass action
kinetics, the most basic type of chemical kinetics giving rise to polynomial reaction
rates. Furthermore, we will concentrate on isothermal reaction networks. Finally,
we will make the assumption (natural from a thermodynamics perspective) that the
mass action kinetics chemical reaction network is detailed-balanced, in the sense of
having an equilibrium where all forward reaction rates are balanced by backward
reaction rates. Applications of this theory can be e.g. found in systems biology,
where metabolic reaction networks with e.g. 500 chemical species and reactions are
not uncommon. The resulting structure-preserving model reduction theory is very
much in line with the model reduction theory exposed in the previous sections (and
also based either on clustering or on Kron reduction), but is technically different
because the mass action kinetics dynamics of multiple species chemical reactions is
nonlinear.
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6.1 The Canonical Representation of Detailed-Balanced
Mass Action Kinetics Reaction Networks

First recall from [4] the representation of detailed-balanced mass action kinetics
reaction networks as nonlinear physical network systems, which share the same
underlying network structure with the linear physical network systems as treated
before. This representation will form the basis of the structure-preserving model
reduction approaches based on clustering and Kron reduction, to be treated in the
next two subsections.

Consider an isothermal chemical reaction network involving m chemical species
(metabolites), among which r chemical reactions take place. The basic structure
underlying the dynamics of the vector x ∈ R̄

m+ of concentrations xi , i = 1, . . . ,m,

of the chemical species is given by the balance laws

ẋ = Sv, (16)

where S is an m × r matrix, called the stoichiometric matrix, consisting of (positive
and negative) integer elements. The elements of the vector v ∈ R

r are called the
reaction rates. For example, the stoichiometric matrix of the two coupled reactions
involving the chemical species X1, X2, X3 given as

X1 + 2X2 � X3 � 2X1 + X2 (17)

is

S =
⎡

⎣
−1 2
−2 1
1 −1

⎤

⎦ (18)

Chemical reaction network theory, as originating from the fundamental papers [16–
18], identifies the nodes of the network with the complexes of the chemical reac-
tions, i.e., all the different left- and right-hand sides (substrates and products) of
the reactions in the network. For example, the complexes of the network (17) are
X1 + 2X2, X3, and 2X1 + X2. The complexes on the left-hand side of the reactions
are called the substrate complexes and those on the right-hand side of the reactions
the product complexes.

Denoting the number of complexes by c, the expression of the complexes in terms
of the chemical species is formalized by an m × c matrix Z , called the complex
composition matrix, whose ρ-th column captures the expression of the ρ-th complex
in the m chemical species. For the network (17)

Z =
⎡

⎣
1 0 2
2 0 1
0 1 0

⎤

⎦ (19)
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The complexes can be associated with the nodes of a directed graph, with edges
corresponding to the reactions. The resulting graph, called the graph of complexes,
is characterized by its incidencematrix D. The relation between S, Z and D is simply
given as S = ZD.

The most basic model for specifying the reaction rates is mass action kinetics,
defined as follows. Consider the first reaction in (17) X1 + 2X2 � X3, involving
the three chemical species X1, X2, X3 with concentrations x1, x2, x3. The reaction
is considered to be a combination of the forward reaction X1 + 2X2 ⇀ X3 with
v+(x1, x2) = k+x1x22 and the backward reaction X1 + 2X2 ↽ X3, with v−(x3) =
k−x3. The constants k+, k− are called respectively the forward and backward reaction
constants. The net reaction rate is thus

v(x1, x2, x3) = v+(x1, x2) − v−(x3) = k+x1x22 − k−x3 (20)

In general, the mass action reaction rate of the j-th reaction of a chemical reaction
network, from a substrate complex S j to a product complex P j , is given as

v j (x) = k+
j

m∏

i=1

x
ZiS j

i − k−
j

m∏

i=1

x
ZiP j

i , (21)

where Ziρ is the (i, ρ)-th element of the complex compositionmatrix Z , and k+
j , k−

j ≥
0, are the forward/backward reaction constants of the j-th reaction, respectively. Let
ZS j and ZP j denote the columns of the complex compositionmatrix Z corresponding
to the substrate complexS j and the product complexS j of the j-th reaction. Defining
themappingLn : Rc+ → R

c to be the elementwise logarithm, themass action reaction
Eq. (21) for the j-th reaction can be rewritten as

v j (x) = k+
j exp

(
ZT
S j
Ln(x)

) − k−
j exp

(
ZT
P j
Ln(x)

)
(22)

Definition 1 A vector of concentrations x∗ ∈ R
m+ is called a thermodynamic equi-

librium if v(x∗) = 0. A chemical reaction network ẋ = Sv(x) is called detailed-
balanced if there exists a thermodynamic equilibrium x∗ ∈ R

m+.
Let x∗ ∈ R

m+ be any thermodynamic equilibrium. Define the ’conductance’ of the
j-th reaction as

κ j (x
∗) := k+

j exp
(
ZT
S j
Ln(x∗)

)
= k−

j exp
(
ZT
P j
Ln(x∗)

)
(23)

Then the reaction rate (22) can be rewritten as

v j (x) = κ j (x
∗)

[
exp

(
ZT
S j
Ln

( x

x∗
))

− exp
(
ZT
P j
Ln

( x

x∗
))]

(24)

Defining the r × r diagonal matrix of conductances as
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K := diag
(
κ1(x

∗), . . . , κr (x∗)
)

(25)

it follows that the vector of mass action reaction rates of a detailed-balanced reaction
network can be written as

v(x) = −KDTExp
(
ZTLn

( x

x∗
))

, (26)

where Exp denotes the elementwise exponential mapping. Hence the dynamics of
the network takes the form, cf. [4],

ẋ = −ZDKDTExp
(
ZTLn

( x

x∗
))

, K > 0 (27)

The matrix L := DKDT defines a weighted Laplacianmatrix for the graph of com-
plexes.

Note the similarity, as well as the difference, with the dynamics (1) as studied
so far. The similarity is the underlying directed graph and the weighted Laplacian
matrix. The differences are the presence of the complex compositionmatrix Z , which
defines a representation [15] of the graph in the space Rm of chemical species, and
the nonlinearity of the expression Exp

(
ZTLn

(
x
x∗

))
, instead of the linear expression

M−1x as encountered before. Note that in case Z = I (single-species chemical reac-
tions) (27) reduces to (1), with M the diagonal matrix with diagonal elements given
by the components of x∗; cf. Example 4.

As shown in [4], the dynamics (27) can be further rewritten in the following form.
Define the vector of chemical potentialsμ and the reference chemical potential vector
μ0 as

μ(x) := RTLn
( x

x∗
)

, μo := −RTLn(x∗), (28)

with T the constant temperature and R the universal gas constant. Furthermore,
define the Gibbs’ energy as

G(x) = RT xTLn
( x

x∗
)

+ RT
(
x∗ − x

)T
1m (29)

It is immediately checked that ∂G
∂x (x) = RTLn

(
x
x∗

) = μ(x). Hence (27) can be
equivalently written as

ẋ = −ZLExp

(
1

RT
ZT ∂G

∂x
(x)

)
, (30)

Equation (30) forms the basis of the stability analysis performed in [4], re-deriving
classical results obtained in e.g. [16–18] in a very simple and insightful manner.
Indeed, the function G can be used as a Lyapunov function, using the fundamental
inequality
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γ T LExp γ ≥ 0 for all γ, γ T LExp γ = 0 iff DT γ = 0 (31)

Furthermore, the framework is immediately extended to chemical reaction networks
subject to external in/outflows of chemical species. This leads to the input-state-
output system

ẋ = −ZDKDTExp
(
ZT Ln

(
x
x∗

)) + Sbu

y = SbRT Ln
(
x
x∗

)
,

(32)

for a certain matrix Sb (typically composed of some basis vectors), with y the vec-
tor of boundary chemical potentials (the chemical potentials of the species whose
in/outflow is controlled by u). This leads to the passivity property

d

dt
G ≤ yT u (33)

Remark 1 We mention that the above theory can be further generalized to complex-
balancedmass action reaction networks, cf. [19], preserving themain stability results.
In this case, thematrix L = DKDT in (27) is replaced by a, possibly non-symmetric,
Laplacian matrix which is balanced, i.e., column and row sums are zero.

6.2 Structure-Preserving Model Reduction by Clustering

Consider a detailed-balanced chemical reaction network as described in the canonical
form (27). Structure-preserving model reduction by clustering amounts to clustering
the complexes of the reaction network, corresponding to a characteristic matrix P of
the graph of complexes. As before, this leads to a reduced Laplacian matrix

L̂ := D̂K̂D̂T , PT D = [
D̂ 0

]
(34)

Furthermore, the reduced complex composition matrix is defined as

Ẑ := Z P, (35)

which corresponds to a smaller set of new complexes, which are obtained by joining
the complexes in each cell. Taken together, this defines the reduced dynamics

ẋ = −Ẑ D̂K̂D̂TExp
(
Ẑ TLn

( x

x∗
))

+ Sbu, (36)

which is again in the form (27), with reduced stoichiometric matrix Ŝ := Ẑ D̂.
A key difference with the reduced linear dynamics (3) is the fact that the state

vector x remains the same; instead of being replaced by a lower-dimensional state
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vector x̂ as in (3). Thus the dimension of the dynamics has not been reduced, but
instead the dynamics has been simplified by reducing the number of complexes and
reactions.2

Application of this clusteringmethod to the special case of single-species chemical
reaction networks (Z = I ) results in the dynamics (take for simplicity u = 0)

ẋ = −P D̂K̂D̂TExp
(
PTLn

( x

x∗
))

(37)

Interestingly, this reduced model is different from the reduced model resulting from
applying the linear clustering reduction as proposed in the previous section (cf.
Example 4) to

ẋ = −I DKDTExp
(
I TLn

( x

x∗
))

= −DKDT x

x∗ (38)

Indeed, in this case the reduced model is (with [x∗] denoting the diagonal matrix
with diagonal x∗) ˙̂x = −D̂K̂D̂T (PT [x∗]P)−1 x̂ (39)

This reduced model is linear in the reduced vector of chemical species x̂ = PT x ,
while on the other hand the reduced model (36) is nonlinear in the full state vector
x . This is due to an intrinsic difference: the structure-preserving reduction method
as discussed in the present section is based on clustering the complexes, and then
applyingmass action kinetics to the clustered complexes; thus giving rise to nonlinear
dynamics. On a more fundamental level, the energy function of the linear system (1)
is taken to be the quadratic function 1

2 x
T M−1x , while the physical energy function

of chemical reaction networks, even for the single-species case, is instead the Gibbs’
energy G(x) = RT xTLn

(
x
x∗

) + RT (x∗ − x)T 1m .

6.3 Structure Preserving Model Reduction by Kron
Reduction

Kron reduction, as treated before, can be applied to detailed-balanced chemical reac-
tion networks described in the canonical form (27) as follows. Similarly as before,
the c nodes of the graph of complexes are split into two distinct subsets K and J , and
by deleting the complexes in the subset J we obtain a reduced graph of complexes,
with weighted Laplacian L̂ = D̂K̂D̂T . For simplicity we will assume that the rows
of Sb corresponding to the index subset J are zero, and the remaining matrix without
these zero rows will be denoted by Ŝb

Furthermore, by leaving out the columns of the complex stoichiometric matrix
Z corresponding to the index set J one obtains a reduced complex composition

2 In some sense, the reduced dynamics (36) is similar to the dynamics of P v̂ as in (6).
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matrix Ẑ (with as many columns as the number of complexes in the reduced graph
of complexes; i.e., the cardinality of K ), leading to the reduced chemical reaction
network

ẋ = −Ẑ D̂K̂D̂TExp
(
Ẑ TLn

( x

x∗
))

+ Ŝbu, K̂ > 0 (40)

This again defines a balanced chemical reaction network governed by mass action
kinetics in the canonical form (27),with a reduced number of complexes and stoichio-
metric matrix Ŝ := Ẑ D̂. Note that this reduced stoichiometric matrix is fundamen-
tally different from the reduced stoichiometric matrix Ŝ as obtained by clustering,
both in graph topology captured by D̂, and in the definition of the complexes encoded
in the complex stoichiometric matrix Ẑ .

The dynamical interpretation of this Kron reduction procedure for chemical reac-
tion networks is similar as before. Write out the full-order chemical reaction network
as

ẋ = − [
ZK Z J

]
[
LKK LK J

L JK L J J

] [
Exp

(
ZT
KLn

(
x
x∗

))

Exp
(
ZT
J Ln

(
x
x∗

))
]

(41)

Consider now the auxiliary dynamical system

[
ẏK
ẏJ

]
= −

[
LKK LK J

L JK L J J

] [
wK

wJ

]
, (42)

where we impose the constraint ẏJ = 0. It follows thatwJ = −L−1
J J L JKwK , leading

to the reduced dynamics ẏK = − (
LKK − LK J L

−1
J J L JK

)
wK = −L̂wK . Substituting

wK = Exp(Ẑ T
KLn

(
x
x∗

)
), making use of ẋ = ZK ẏK + ZJ ẏJ = ZK ẏK = Ẑ ẏK , we

then obtain the reduced network given by (40).
We conclude that Kron reduction of chemical reaction networks rests on the

assumption that the deleted complexes in the subset J are (approximately) constant
in time; or, equivalently, the total flows into the deleted complexes are (almost)
zero. Applications of the Kron reduction method to a number of detailed-balanced
chemical reaction networks can be found in [4, 20].

7 Conclusions and Outlook

In this paper, continuing upon our previous work [2, 4, 11, 13, 20], we have elabo-
rated on twoapproaches to structure-preservingmodel reduction for physical network
systems, namely clustering and Kron reduction. Although both methods give rise to
a natural network reduction, the important question of obtaining tight error bounds
is still largely open. Another problem concerns the extension of these two methods
to physical network systems that also contain energy storage associated to the edges
of the underlying graph; like mass-spring-damper systems (where spring energy is
associated to part of the edges [1]). A final open problem concerns the reduced-order
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network modeling of physical systems based on data; that is the determination of an
underlying graph, together with energy storage and static couplings, resulting in a
physical network system (1) that is explaining the data in an (approximate) way.
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H2-gap Model Reduction for Stabilizable
and Detectable Systems

Tobias Breiten, Christopher Beattie, and Serkan Gugercin

Abstract We formulate here an approach to model reduction that is well-suited for
linear time-invariant control systems that are stabilizable and detectable but may
otherwise be unstable. We introduce a modified H2-error metric, the H2-gap, that
provides an effective measure of model fidelity in this setting. While the direct eval-
uation of the H2-gap requires the solutions of a pair of algebraic Riccati equations
associated with related closed-loop systems, we are able to work entirely within an
interpolatory framework, developing algorithms and supporting analysis that do not
reference full-order closed-loop Gramians. This leads to a computationally effective
strategy yielding reduced models designed so that the corresponding reduced closed-
loop systems will interpolate the full-order closed-loop system at specially adapted
interpolation points, without requiring evaluation of the full-order closed-loop sys-
tem nor even computation of the feedback law that determines it. The analytical
framework and computational algorithm presented here provides an effective new
approach toward constructing reduced-ordermodels for unstable systems. Numerical
examples for an unstable convection diffusion equation and a linearized incompress-
ible Navier-Stokes equation illustrate the effectiveness of this approach.
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1 Introduction

Consider a linear time-invariant (LTI) control system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t),
(1)

where A ∈ R
n×n and B ∈ R

n×m and C ∈ R
p×n . The quantities x(t),u(t) and y(t)

denote respectively the state, control and output of the system, viewed as vector-
valued functions of time. In practical applications, for example when (1) is obtained
by a (method-of-lines) semidiscretization of a partial differential equation, the dimen-
sion n of the state space can remain very large; indeed, often large enough to impede
subsequent analysis. In this case, model reduction provides useful tools for con-
structing simpler surrogates or reduced-ordermodels (ROMs) that produce dynamics
analogous to (1):

˙̂x(t) = ̂Âx(t) + ̂Bu(t), x̂(0) = x̂0,

ŷ(t) = ̂Ĉx(t),
(2)

wherêA ∈ R
r×r and̂B ∈ R

r×m and̂C ∈ R
p×r are to be determined so that r � n and

ŷ(t) ≈ y(t) for all t ≥ 0 and all u ∈ U , where, e.g., U = L2(0,∞;Rm). Assuming
null initial conditions for (1) and (2), wemay transform (1) and (2) into the frequency
domain and introduce the corresponding transfer functions, G(s) = C(sI − A)−1B
and̂G(s) = ̂C(sI − ̂A)−1

̂B, defined for s ∈ CwithRe(s) > α for α ∈ R sufficiently
large. Observing that G and ˜G are each rational functions of s, the model reduction
problem may be restated as a rational approximation problem

˜G = argmin
dim(̂G)=r

‖G − ̂G‖ (3)

with respect to an appropriately chosen norm. For example, in case that A is asymp-
totically stable (i.e., eigenvalues of A lie in the open left half-plane, C−), the most
prominent choices are the H∞ and the H2-norms. The H∞ and the H2 spaces with
the associated norms are given by

H2 =
{

F : C+ → C
p×m | F is analytic , ‖F‖H2 :=

(

sup
σ>0

∫ ∞

−∞
‖F(σ + ıω)‖2F dω

) 1
2

< ∞
}

,

H∞ =
{

F : C+ → C
p×m | F is analytic , ‖F‖H∞ := sup

z∈C+
‖F(z)‖2 < ∞

}

.

We focus primarily on cases where A is unstable, i.e., having at least one eigen-
value inC+. The complementary case whereA is asymptotically stable is a standard
setting that assures whenever u ∈ L2(0,∞;Rm), then also x ∈ L2(0,∞;Rn) and
y ∈ L2(0,∞;Rp). WhenA is unstable, the potential for explosive growth of system
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state and output may reflect features that are fundamental to the modeled dynamics,
either naturally so (e.g., linearizations of energetic gyres in ocean circulation) or by
design (e.g., agile flight vehicles that depend on active control strategies to survive
high-speed maneuvers).

For such systems a variety of model reduction strategies have been proposed.
One possibility is to consider the model reduction problem on a finite time hori-
zon [0, Tmax]; see for example, [14, 16, 21, 28]. In cases that σ(A) ∩ ıR = ∅, an
alternative approach is to decouple the (unstable) system as G = Gs + Gu , into a
purely stable and a purely anti-stable part, then perform model reduction on each of
these two subsystems, as was done e.g., using H2-optimal interpolation techniques
in [23]. Yet another approach extends balanced truncation to unstable systems [5, 9,
31] using frequency domain definitions of the system Gramians.

In this work, we also focus on potentially unstable systems, but we do assume
that (A,B) is stabilizable and (A,C) is detectable, a circumstance that commonly
occurs. It is well known ([25]), that in this case it is possible to factorize the trans-
fer function as G = M−1N, with transfer functions M,N ∈ H∞. By introducing a
similar representation for the reduced transfer function, ̂G = ̂M−1

̂N, and a particu-
lar (unique) left-coprime factorization, we consider an H2-type best-approximation
problem having the form

[˜M,˜N] = argmin
dim(̂M)=r
dim(̂N)=r

∥

∥[M,N] − [̂M,̂N]∥∥H2
, (4)

which can be interpreted as seeking reduced order factors that are as close as possible
to the corresponding factors of the original system.We refer to the errormeasure in (4)
as theH2-gap. Our approach is motivated by themethod of linear quadratic Gaussian
(LQG) balancing ([12, 20, 24]) which introduces a similar approximation problem,
but using theH∞-norm instead of theH2-norm as we have posed it here. Besides the
evident applicability to unstable systems that is our focus, the H∞-induced metric
also carries particular significance for associated closed-loop behavior, see, e.g., [29].

Starting in Sect. 2, we will introduce our approximation problem in more detail
and review some known results on left-coprime factorizations for stabilizable and
detectable LTI systems. We will show that our approximation problem has a natural
connection to anL2(ıR)-model reduction problem. Section3 provides a pole-residue
expansion for theH2-gap and analyzes individual error terms. We suggest a modifi-
cation of the iterative rational Krylov algorithm (IRKA) in order to eliminate portions
of this error expression. In Sect. 4, we consider some numerical examples that sug-
gest the competitiveness of our approach relative to existing methods. Conclusions
with perspectives for future research are given in Sect. 5.
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2 Left-Coprime Factorizations and the Gap Metric

In this section, we provide additional details for the specific error measure described
in (4). Since we do not assume the system matrix A to be asymptotically stable,
the H2-norm of G(·), for G(s) = C(sI − A)−1B, may not be finite. However, for
a stabilizable and detectable LTI system, we can select any matrix F so that AF :=
A − FC is asymptotically stable (see e.g., [29, Lemma 6.1]), and then

M(s) = I − C(sI − AF)
−1F N(s) = C(sI − AF)

−1B (5)

defines a left-coprime factorization of G(s) = C(sI − A)−1B. In particular,

G(s) = [M(s)]−1N(s), where [M(s)]−1 = I + C(sI − A)−1F. (6)

In the context of LQG-balanced truncation, e.g., in [24], the stabilizing matrix F
is been chosen as F = PCT where P = PT � 0 denotes the solution of the algebraic
Riccati equation

AP + PAT − PCTCP + BBT = 0. (7)

Note that asymptotic stability of the system matrix AF is ensured by the stabiliz-
ability and detectability properties of (A,B) and (A,C), respectively. Throughout
the rest of this work, we assume that F = PCT and refer to AF = A − PCTC as the
closed-loop system matrix.

Similarly, for a stabilizable and detectable reduced system (̂A,̂B,̂C), we denote
bŷF, ̂M,̂N,̂P the equivalent reduced-order expressions; in particular,

̂G(s) = [̂M(s)]−1
̂N(s), ̂M(s) = I − ̂C(sI − ̂A

̂F)−1
̂F, and ̂N(s) = ̂C(sI − ̂AF)−1

̂B.

(8)

Moreover, it holds that M, ̂M ∈ H∞ and N,̂N ∈ H∞ ∩ H2. Define the two new
systems

GF(s) := [M(s),N(s)], ̂GF(s) := [̂M(s),̂N(s)]. (9)

Using (5) and (9), we can compute a state-space realization for GF:

GF(s) = [M(s),N(s)] = [I − C(sI − AF)
−1F, C(sI − AF)

−1B]
= [I, 0] + C(sI − AF)

−1[−F, B]. (10)

A state-space realization for ̂GF can be obtained similarly:

̂GF(s) = [I, 0] + ̂C(sI − ̂AF)
−1[−̂F, ̂B]. (11)
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Note that GF and ̂GF are dynamical systems with m + p inputs and p outputs.
LQG balanced truncation exploits that the Gramians ofGF and̂GF are closely related
to P,̂P and their dual counterparts Q, ̂Q, which satisfy

ATQ + QA − QBBTQ + CTC = 0 and

̂AT
̂Q + ̂Q̂A − ̂Q̂B̂BT

̂Q + ̂CT
̂C = 0.

In fact, as shown in [12], the controllability and observability Gramians Lc and
Lo of GF are given by Lc = P and Lo = Q(I + PQ)−1. Based on these relations,
balancing and truncation with respect to P andQ allows to construct a reduced-order
model that satisfies an error bound of the following type

∥

∥[M,N] − [̂M,̂N]∥∥H∞
≤ 2

n
∑

i=r+1

σi , (12)

where σi are the Hankel singular values of GF.

While balanced truncation is primarily related to theH∞-norm, we are interested
in the case when the deviation between GF and ̂GF is measured using the H2-
norm. For this purpose, assume that left-coprime factorizationsGF = [M,N], ̂GF =
[̂M,̂N] with F = PCT and̂F = ̂P̂CT are given. We then define

∥

∥G − ̂G
∥

∥

H2-gap
:= ∥

∥[M,N] − [̂M,̂N]∥∥H2
. (13)

Note that even thoughM, ̂M /∈ H2, the previous expression is well-defined since

M(·) − ̂M(·) = ̂C(·I − ̂AF)
−1

̂F − C(·I − AF)
−1F ∈ H2.

IfG and ̂G have no poles on the imaginary axis, we show below that theH2-gap,
(13), provides a bound to the L2(ıR)-error. For this purpose, as in [4, Sect. 5] we
define

L2(ıR) :=
{

H : C → C
p×m | H is meromorphic , ‖H‖L2 :=

(∫ ∞

−∞
‖H(ıω)‖2F dω

) 1
2

< ∞
}

,

L∞(ıR) :=
{

H : C → C
p×m | H is meromorphic , ‖H‖L∞ := sup

ω∈R
σmax(H(ıω)) < ∞

}

.

In particular,wehave theorthogonal decompositionL2(ıR)=H2(C
−) ⊕ H2(C

+).

Next, we prove a similar result as in [26, Lemma 2.2].

Proposition 1 Let (A,B,C) and (̂A,̂B,̂C) be two stabilizable and detectable LTI
systems with σ(A) ∩ ıR = ∅ = σ(̂A) ∩ ıR. Let furtherGF = [M,N], ̂GF = [̂M,̂N]
be left-coprime factorizations with F = PCT and̂F = ̂P̂CT . Then,

‖G − ̂G‖L2 ≤ ‖̂M−1‖L∞
(‖G‖L∞‖M − ̂M‖H2 + ‖N − ̂N‖H2

)

, (14)
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and, thus

‖G − ̂G‖L2 ≤ ‖̂M−1‖L∞
(

1 + ‖G‖L∞
) ∥

∥G − ̂G
∥

∥

H2-gap
. (15)

Proof By using the left-coprime factorizations of G and ̂G, we obtain

G − ̂G = G − ̂M−1
̂N = ̂M−1(̂MG − ̂N)

= ̂M−1(̂MG − MM−1N + N − ̂N) = ̂M−1 (

(̂M − M)G + (N − ̂N)
)

.

SinceA and̂A are assumed to have no purely imaginary eigenvalues, we know that
G ∈ L∞(ıR) and ̂M−1(·) = I + ̂C(·I − ̂A)−1

̂F ∈ L∞(ıR). The assertion (14) then
follows from the fact that ‖GH‖L2 ≤ ‖G‖L∞‖H‖L2 for allG ∈ L∞ andH ∈ L2. In
particular, note that M − ̂M ∈ H2 and N − ̂N ∈ H2, which implies ‖M − ̂M‖L2 =
‖M − ̂M‖H2 , ‖N − ̂N‖L2 = ‖N − ̂N‖H2 . Finally, the assertion (15) directly follows
from (14) and the definition of theH2-gap in (13).

Remark 1 Note that if we split G = Gs + Gu and ̂G = ̂Gs + ̂Gu into their stable
and anti-stable parts and use the orthogonal decomposition L2(ıR) = H2(C−) ⊕
H2(C+), we also obtain bounds for ‖Gs − ̂Gs‖H2(C+) and ‖Gu − ̂Gu‖H2(C−):

max
(‖Gs − ̂Gs‖H2(C+), ‖Gu − ̂Gu‖H2(C−)

)

≤ ‖̂M−1‖L∞
(

1 + ‖G‖L∞
) ∥

∥G − ̂G
∥

∥

H2-gap
.

Proposition 1 bounds theL2 distance between the full modelG(s) and the reduced
model ̂G(s) with the H2-gap distance between full closed-loop system GF(s) and
the reduced one ̂GF(s). This immediately motivates a model reduction approach in
which one tries to minimize the H2-gap. This is what we investigate next.

3 H2-gap Model Reduction

In this section,we analyze theH2-gap inmore detail.Webeginwith the derivation of a
pole-residue formula that extends the one discussed for the standard case in, e.g., [17].
Subsequently, we discuss the individual error terms from a rational interpolation-
basedperspectivewhich suggests the use of an iterative algorithmgeneralizing IRKA.

3.1 Pole-Residue Formulae for theH2-gap Measure

Recall the state-space representation of GF(s):

GF(s) = [I, 0] + C(sI − AF)
−1[−F, B] (10).
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Let wi denote the left eigenvector of AF associated with the eigenvalue λi ,
i.e., wT

i AF = λiwT
i .

1 For simplicity of presentation, assume the poles λi are semi-
simple and write WTAF = �WT where W = [w1, w2, . . . , wn] ∈ C

n×n and � =
diag(λ1, λ2, . . . , λn) ∈ C

n×n . DefineV = W−T . Then, a state-space transformation
byWT in (10) yields the pole-residue representation of GF(s):

GF(s) = [I, 0] +
n

∑

i=1

ci [fTi ,bT
i ]

s − λi
, (16)

where
bi = BTwi , fi = −FTwi = −CPwi , and ci = Cvi . (17)

The same line of arguments yield the pole-residue representation of ̂GF: Let ŵ j

be the left eigenvector of̂AF associated with the eigenvaluêλ j . Assume the poleŝλ j

are semi-simple, and define ̂W = [ŵ1, ŵ2, . . . , ŵr ] ∈ C
r×r and ̂V = ̂W−T . Then,

̂GF(s) = [I, 0] +
r

∑

j=1

ĉ j [̂fTj ,̂bT
j ]

s −̂λ j
, (18)

where ̂b j = ̂BT ŵ j , ̂f j = −̂FT ŵ j = −̂ĈPŵ j , and ĉ j = ̂Ĉv j .

(19)
Now, using the representations (16) and (18), we extend the pole-residue based

formula for theH2-norm to the H2-gap norm.

Proposition 2 Let G and ̂G be stabilizable detectable with coprime factorizations
in (6) and (8). Further, let GF and ̂GF have the pole-residue representations in (16)
and (18). Then,

‖G − ̂G‖2H2-gap =
n

∑

i=1

cTi (GF(−λi ) − ̂GF(−λi ))

[

fi
bi

]

+
r

∑

j=1

ĉTj (̂GF(−̂λ j ) − GF(−̂λ j ))

[

̂f j
̂b j

]

.

(20)

Proof First, we rewrite the error as

‖G − ̂G‖2H2-gap = ‖GF − ̂GF‖2H2
= ‖(GF − [I, 0]) + ([I, 0] − ̂GF)‖2H2

.

Note that (GF − [I, 0]) ∈ H2 and ([I, 0] − ̂GF) ∈ H2. For a transfer function

H ∈ H2 with pole-residue representation H(s) = ∑n
k=1

hkgTk
s−μi

, the H2 norm satisfies

1 We define the left eigenpair via the relationship wT
i AF = λiwT

i as opposed to the more usual
definition: w∗

i AF = λiw∗
i . Even though wi is potentially a complex vector, the version we adopt

eliminates the need to use wi in many definitions and equations that follow.
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‖H‖2H2
= ∑n

k=1 h
T
k H(−μk)gk; see, e.g., [17, Lemma 2.4] for the SISO version and

[2, Lemma 1.1] for the MIMO version. Then, the result (20) follows from applying
this H2 norm formula to the pole-residue representation of GF − ̂GF, which can be
obtained from (16) and (18) by eliminating the leading (constant) terms.

3.2 H2-gap Formula and Interpolation.

Proposition 2 reveals two components that contribute to theH2-gap in a way that is
similar to the standardH2-error measure. The first component is due to the mismatch
of the transfer functionsGF and̂GF at the mirror images of the full-order closed-loop
poles, λi , and the second component reflects the mismatch at the mirror images of
the reduced-order closed-loop poles,̂λi . In order to reduce theH2-gap, a reasonable
approach might be to eliminate terms from these two components. For example, if

one enforces (GF(−λi ) − ̂GF(−λi ))

[

fi
bi

]

= 0, then the i th term from the first term

will be eliminated. This condition is referred to as right-tangential interpolation;
more specifically, we state ̂GF(s) tangentially interpolatesGF(s) at the interpolation

point −λi along the right-tangential direction

[

fi
bi

]

; see [2, 3] for further details. We

can eliminate the i th term in the first sumby enforcing cTi (GF(−λi ) − ̂GF(−λi )) = 0
as well. This is referred to as left-tangential interpolation. The terms in the second
sum can be similarly eliminated. This interpretation of theH2-error norm and elimi-
nation of the error terms via interpolation have been proposed in the regularH2-error
measure [15]. Since the second-term depends on the reduced-model to-be-computed
and are not known a priori, [15] proposed eliminating the dominant terms from the
first term. Even though this is not an optimal reduction strategy, this approach has
worked well in various examples. The situation is rather different here.

In order to minimize the H2-gap, we construct a reduced model ̂G from G. Yet
Proposition 2 shows that the error depends on GF and ̂GF, which we do not have
direct access to. Consider theH2-gap once again: ‖G − ̂G‖H2-gap = ‖GF − ̂GF‖H2 .

In order to minimize the H2-gap, suppose we perform an optimal H2 reduction on
GF, and let V ∈ R

n×r andW ∈ R
n×r be the corresponding optimal model reduction

bases withWTV = I. The state-space representation for the reduced ̂G is given by

̂GF(s) = [I, 0] + ̂C(sI − ̂AF)
−1[−̂F, ̂B]

= [I, 0] + CV(sI − WTAV − WTFCV)−1[−WTF, WTB].

We need to extract the corresponding reduced model ̂G from this reduced closed-
loop model ̂GF(s). One might reasonably assume that ̂C = CV, ̂B = WTB, ̂F =
WTF, and ̂A = WTAV. However, these reduced quantities need also to satisfŷF =
WTF = WTPC = ̂P̂CT wherêP solveŝÂP +̂P̂AT −̂P̂CT

̂ĈP + ̂B̂BT = 0.Clearly,
this is not true in general and we cannot expect to extract a reduced system ̂G that
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would have created the reduced closed-loop model ̂GF(s). A similar issue arises
in the weighted H2 model reduction problem, where, given a weighting functions
Wo(s), one tries to minimize the weighted error ‖Wo(G − ̂G)‖H2 . As [1, 10] prove,
in the weighted-H2 problem, the error (and optimality) requires that a function ofG
interpolates a function of ̂G, leading to the same issue that we encounter here.

To address this issue at least partially, Lemmas 1–2 enable us to rewrite theH2-gap
formula in (20) as a function of G and ̂G. The result in Theorem 1 will, then, form
the foundation of the proposed method outlined in Algorithm 1.

Lemma 1 Let G be a stabilizable and detectable linear system with coprime fac-
torization in (6). Further, let GF = [M N] have the pole-residue representation

GF(s) = [I, 0] + ∑n
i=1

ci [fTi ,bT
i ]

s−λi
as in (16). Assume that σ(A) ∩ σ(−AF) = ∅. Then,

G(−λi )bi = −fi and GF(−λi )

[

fi
bi

]

= 0, for i = 1, . . . , n. (21)

Proof Let wi denote the left eigenvector of AF associated with the eigenvalue λi ,
i.e., wT

i AF = λiwT
i . Definition of bi in (17) yields

G(−λi )bi = C(−λi I − A)−1BBTwi . (22)

Using the fact that AF = A − PCTC, the Riccati equation (7) can be rewritten
as the Sylvester equation AP + PAT

F + BBT = 0. Postmultiplication with wi then
yields

Pwi = (−λi I − A)−1BBTwi .

Inserting this last expression into (22) leads to

G(−λi )bi = CPwi = −fi ,

which proves the first assertion in (21). To prove the second assertion, we compute

GF(−λi )

[

fi
bi

]

= [M(−λi ) N(−λi )]
[

fi
bi

]

= M(−λi )fi + N(−λi )bi

= M(−λi )(fi + [M(−λi )]−1N(−λi )bi )

= M(−λi )(fi + G(−λi )bi ) = 0,

where, in the last step we used the just-proven first assertion in (21).

Lemma 2 Let G be a stabilizable and detectable linear system with the closed-

loop transfer functionGF(s) = [MN] = [I, 0] + ∑n
i=1

ci [fTi ,bT
i ]

s−λi
as in (16). Let ̂GF =

[̂M̂N]denote the closed-loop transfer function of a stabilizable and detectable system
reduced model ̂G. If σ(A) ∩ σ(−AF) = ∅, then
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̂GF(−λi )

[

fi
bi

]

= −̂M(−λi )
(

G(−λi ) − ̂G(−λi )
)

bi , for i = 1, . . . , n. (23)

Proof Using ̂G(s) = [̂M(s)]−1
̂N(s), we evaluate

̂GF(−λi )

[

fi
bi

]

= ̂M(−λi )fi + ̂N(−λi )bi = ̂M(−λi )(fi + [̂M(−λi )]−1
̂N(−λi )bi )

= ̂M(−λi )(−G(−λi )bi + ̂G(−λi )bi ),

where in the last step we used the first assertion in (21).
As a direct consequence of Proposition 2, and Lemmas 1 and 2, we obtain an

alternative representation of the H2-gap error, one of our main results.

Theorem 1 LetG and ̂G be stabilizable and detectable with coprime factorizations
in (6) and (8). Further, let GF and ̂GF have the pole-residue representations in (16)
and (18). Then,

‖G − ̂G‖2H2-gap =
n

∑

i=1

cTi ̂M(−λi )
(

G(−λi ) − ̂G(−λi )
)

bi

+
r

∑

j=1

ĉTj M(−̂λ j )
(

̂G(−̂λ j ) − G(−̂λ j )
)

̂b j .

(24)

Proof Consider the first sum (20), i.e.,
∑n

i=1 c
T
i (GF(−λi ) − ̂GF(−λi ))

[

fi
bi

]

. First

using the second assertion of Lemma 1 and then using Lemma 2 yield

n
∑

i=1

cTi (GF(−λi ) − ̂GF(−λi ))

[

fi
bi

]

= −
n

∑

i=1

cTi ̂GF(−λi )

[

fi
bi

]

=
n

∑

i=1

cTi ̂M(−λi )
(

G(−λi ) − ̂G(−λi )
)

bi ,

which is the first sum, indexed by i , in (24). The second part of (24) follows similarly
by interchanging the roles of GF and ̂GF in Lemmas 1 and 2. Theorem 1 achieves
what we were seeking to accomplish: representation of the H2-gap in terms of the
model to be reduced, G, and the reduced model itself, ̂G. Now, we can reduce G,
e.g., via interpolatory projection-based methods, to construct the reduced model ̂G
that tangentially interpolates G and then we eliminate the selected terms from the
error formula in (24). We will make this interpolation aspect more concrete next.

The following result is a direct consequence of Lemmas 1 and 2.

Corollary 1 Assume the same set-up in Lemmas 1 and 2. Then, for i = 1, . . . , n,

If ̂G(−λi )bi = G(−λi )bi , then ̂GF(−λi )

[

fi
bi

]

= GF(−λi )

[

fi
bi

]

= 0. (25)

Moreover, for j = 1, . . . , n,
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If ̂G(−̂λ j )̂b j = G(−̂λ j )̂b j , then ̂GF(−̂λ j )

[

̂f j
̂b j

]

= GF(−̂λ j )

[

̂f j
̂b j

]

= 0. (26)

Corollary 1 first reveals that we can enforce the closed-loop systemsGF and̂GF to
tangentially interpolate each other by forcing interpolation ofG and ̂G. The resulting
interpolation is occurring at specially adapted points, namely at the mirror images of
the full- or reduced-order closed-loop poles.Moreover, the interpolated value is zero.
It is worth mentioning that reduced-order closed-loop poles have also been studied
in the context of rational Krylov subspace methods for solving the algebraic Riccati
equation in [22]. In that work, the authors showed that the rational Krylov subspace
method coincides with a subspace iteration if the shifts are chosen as the mirrored
reduced-order closed-loop poles.

Corollary 1 also reveals that we can enforce interpolation of the closed-loopmodel
GF without ever constructing GF, i.e., without needing to solve the (large-scale)
Riccati equation (7) to compute P. This will have substantial numerical advantages
in the large-scale settings, because unlike most methods used for model reduction
using the gap measure, one does not need to solve for the Gramian P. Next, we will
discuss the numerical framework to enforce these desired interpolation conditions.

3.3 Model Reduction with Respect to theH2-gap Measure

We review briefly the projection-based tangential interpolation framework. For
details, we refer the reader to, e.g., [2, 3, 13, 18]. Let G(s) = C(sI − A)−1B
denote the transfer function of the full-model with m-inputs and p-outputs. Sup-
pose the left-interpolation points {μ1, μ2, . . . , μr } ∈ C are chosen together with
non-trivial left-directions {�1, �2, . . . , �r } ∈ C

p. Also suppose the right-interpolation
points {σ1, σ2, . . . , σr } ∈ C are chosen together with non-trivial right-directions
{r1, r2, . . . , rr } ∈ C

m . Construct model reduction basesVr ∈ C
n×r andWr ∈ C

n×r :

Vr = [

(σ1I − A)−1Br1, (σ2I − A)−1Br2, . . . , (σr I − A)−1Brr
]

and

Wr = [

(μ1I − AT )−1CT �1, (μ2I − AT )−1CT �2, . . . , (μr I − AT )−1CT �r
]

.

Assume, without loss of generality, that a basis transformation is performed so
that WT

r Vr = Ir . Construct the reduced model ̂G(s) = ̂C(sI − ̂A)−1
̂B via Petrov-

Galerkin projection, i.e.,

̂A = WT
r AVr , ̂B = WT

r B, and ̂C = CVr .

Then, the reduced model ̂G tangentially interpolates G in the sense that

G(σ j )r j = ̂G(σ j )r j , �Tj G(μ j ) = �Tj
̂G(μ j ), �Tj G(σ j )r j = �Tj

̂G(σ j )r j ,
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for j = 1, 2, . . . , r . Moreover, if σk = μk , then one additionally satisfies a tangen-
tial Hermite interpolation, namely �Tk G

′(σk)rk = �Tk
̂G′(σk)rk where “′" denotes the

derivative with respect to s. Therefore, if the interpolation points and directions are
specified, then constructing a reduced interpolatory transfer function can be easily
constructed as described, with the main cost of solving the shifted linear systems
in computing V and W. Then, the natural question to ask is how to choose the
interpolation points and directions to minimize an error measure. This question has

been answered using the regular H2 error measure. Let ̂G(s) =
r

∑

j=1

� j rTj
s + σ j

be the

pole-residue decomposition. If ̂G(s) is the H2-optimal approximation to G(s) in
the H2 norm, then, G(σ j )r j = ̂G(σ j )r j , �Tj G(σ j ) = �Tj

̂G(σ j ), and �Tj G
′(σ j )r j =

�Tj
̂G′(σ j )r j , for j = 1, 2, . . . , r . Therefore, tangentialHermite interpolation is a nec-

essary condition for H2 optimality. Note that optimal interpolation points are {σ j },
the mirror images of the poles of the reduced model ̂G(s), and the optimal tangential
directions are based on the residues of ̂G(s); neither known a priori. The Iterative
Rational Krylov Algorithm (IRKA) of [17] and its variants [6, 7, 11, 30] resolve
this issue by iteratively correcting the interpolation points and directions until the
desired optimality conditions are met. For details, we refer the reader to [2, 3, 17,
18] and the references therein.

The situation is similar in the H2-gap problem we consider here. First, leave the
question of optimality aside and focus on reasonable/well-informed interpolation
points and directions selection. Recall the H2-gap error formula in (24). We can
eliminate the i th term in the first sum by choosing σi = −λi as an interpolation point
and r i = bi as an interpolation direction. Clearly, the first sum has n components
and one can only eliminate r conditions from there using r interpolation points. One
can choose the poles λi with dominant residue terms cibT

i , for example. However,
this requires that we compute the full-order closed-loop poles λi by solving for the
Gramian P. Also, as discussed above, the regularH2 minimization via interpolation
reveals that the optimal interpolation points are determined by the reduced-order
poles, not the full-order ones.

Toeliminate the j th term from the second sum in (24),we can enforcêG(−̂λ j )̂b j =
G(−̂λ j )̂b j . This puts us in the framework of the regular H2-optimality prob-
lem. The interpolation points σ j = −̂λ j and the tangential directions r j = ̂b j , for
j = 1, 2, . . . , r , depend on the reduced-model ̂G (or more precisely ̂GF) we want
to compute; note that the interpolation data is not known a priori. As in IRKA, this
requires an iterative algorithm that adaptively corrects the interpolation data. The
major advantage compared to eliminating terms from the first sum in (24) is that this
adaptive correction process does not require computing full-order closed-loop poles,
i.e., computing P. Yet, as Corollary 1 illustrates, we are still able to interpolate the
full-order closed-loop model.

Algorithm 1 gives a sketch of the proposed numerical scheme. Starting with
an initial selection of interpolation data, the algorithm computes an interpolatory
reduced model ̂G (Lines 2–4) and then computes the pole-residue representation
of the reduced-order closed-loop model ̂G (Lines 5–6). Note that these compu-
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tations are trivial since it is performed at the reduced-order dimension. Line 7
updates the interpolation data so that upon convergence of Algorithm 1, we have
σ j = −̂λ j and r j = ̂b j , for j = 1, 2, . . . , r , as we wanted to accomplish. Upon
convergence of Algorithm 1, we enforce ̂G(−̂λ j )̂b j = G(−̂λ j )̂b j and the second
sum in (24) is completely eliminated; thus leading to the eventual H2-gap error

‖G − ̂G‖2H2-gap =
n

∑

i=1

cTi ̂M(−λi )
(

G(−λi ) − ̂G(−λi )
)

bi .

Algorithm 1 gap-IRKA
Input: {σ1, . . . , σr }, {r1, . . . , rr } and {�1, . . . , �r }.
Output: ̂A, ̂B, ̂C
1: while relative change in {σ j } > tol do

2: Compute Vr and Wr from

Vr = [(σ1I − A)−1Br1, . . . , (σr I − A)−1Brr ],
Wr = [(σ1I − AT )−1CT �1, . . . , (σr I − AT )−1CT �r ].

3: Perform basis change Wr ← Wr (VT
r Wr )

−1 so thatWT
r Vr = Ir .

4: Update ROM: ̂A = WT
r AVr ,̂B = WT

r B,̂C = CVr .

5: Solve ̂ÂP +̂P̂AT −̂P̂CT
̂ĈP + ̂B̂BT = 0.

6: Compute ̂GF(s) = [I, 0] +
r

∑

j=1

ĉ j [̂fTj ,̂bTj ]
s −̂λ j

.

7: σ j ← −λ j , r j ← b j , and � j ← c j for j = 1, 2, . . . , r .
8: end while

3.4 Algorithm 1 andH2-gap Optimality.

So far we have motivated Algorithm 1 as a way to eliminate the contribution from the
second-sum in the error expression (24). However, the reduced model ̂G from Algo-
rithm 1 achieves more. First, recall that ‖G − ̂G‖H2-gap = ‖GF − ̂GF‖H2 . Therefore,
if we interpret the problem as the H2 optimal model reduction of the closed-loop
modelGF, theH2 optimal reduced closed-loop model (or equivalentlyH2-gap opti-

mal closed-loop model) ̂GF(s) = [I, 0] +
r

∑

j=1

ĉ j [̂fTj ,̂bT
j ]

s −̂λ j
satisfies

(

GF(−̂λ j ) − ̂GF(−̂λ j )
)

[

̂f j
̂b j

]

= 0, ĉTj
(

GF(−̂λ j ) − ̂GF(−̂λ j )
) = 0,

and ĉTj
(

G′
F(−̂λ j ) − ̂G′

F(−̂λ j )
)

[

̂f j
̂b j

]

= 0, for j = 1, 2, . . . , r. (27)
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Therefore, upon convergence, Algorithm 1 enforces the first set of necessary condi-
tions in (27), namely the right-tangential interpolation conditions.

One can also think about necessary and sufficient optimality conditions for the
restricted setting. Assume that the reduced closed-loop poles {̂λ j } and the reduced
closed-loop left residue-directions {̂c j } are fixed, so that the only free variables in ̂GF

are the right residue-directions, {[̂fTj ̂bT
j ]}. As [7] showed, for fixed reduced poles and

left residue-directions, ̂GF minimizes ‖GF − ̂GF‖H2 = ‖G − ̂G‖H2-gap if and only

if
(

GF(−̂λ j ) − ̂GF(−̂λ j )
)

[

̂f j
̂b j

]

= 0. That is, right tangential interpolation at the

mirror images of the reduced poles becomes a necessary and sufficient condition for
optimality. Therefore, for the converged reduced closed-loop poles and left residue-
directions, Algorithm 1 gives the global minimizer.

We end this discussion with a warning. The optimality conditions that we argue
Algorithm 1 satisfies view ̂GF as the variable with which to minimize the error.
Corollary 1 reveals that we can enforce these optimality conditions via choosing ̂G
appropriately. However, the H2-gap optimality conditions with respect to ̂G will be
different than those in (27). Those conditions, together with an algorithm to satisfy
them, will be the focus of future work.

4 Numerical Examples

We present two numerical examples resulting from spatial semidiscretizations of
partial differential equations. We compare Algorithm 1 with the method of LQG
balanced truncation, as well as the standard version of IRKA. For the implmentation
of LQG balanced truncation, we rely on the built-in matlab routine care for
solving the required Riccati equations. Note that both examples result in unstable
dynamical systems—so the application of IRKA needs further explanation. IRKA
is a method for optimal H2 model reduction of asymptotically stable dynamical
systems. From a computational perspective, its implementation does not prevent one
from using it to reduce unstable systems having no poles on the imaginary axis.
This has been studied extensively in [27] where it was shown that IRKA applied
to unstable systems having a modest number of unstable poles produces accurate
approximations.Wehave chosen this formulationof IRKAasopposed to themodified
version in [23] for unstable systems since the latter requires a full stable/anti-stable
decomposition of the full model. All simulations were generated on an AMD Ryzen
7 1800X@ 3.68GHz× 16, 64 GB RAM,matlab Version 9.2.0.538062 (R2017a).
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4.1 An Unstable Convection Diffusion Equation

The first example is a (scalable) finite-difference discretization of the following
controlled convection diffusion equation on the unit square

vt = �v − 20 · sin(x)vx + 50 · v + χω · u(t) in (0, 1)2 × (0, T ),

v(x, 0, t) = v(0, y, t) = v(x, 1, t) = v(1, y, t) = 0 in (0, 1) × (0, T ),

v(x, y, 0) = v0(x, y) = 0 in (0, 1)2.

Here, by χ we denote the characteristic function on the control domain ω =
[0.2, 0.3] × [0.2, 0.3].We augment the systemby anoutput variable y(t) correspond-

ing to the mean value in an observable domain y(t) =
∫ 0.7

0.5

∫ 0.9

0.7
v(x, y, t) dx dy.

We present the results for a system of dimension n = 400 corresponding to a uniform
20 × 20 grid. The discretized system matrix A has 12 eigenvalues in the right half
plane but the pairs (A,B) and (A,C) satisfy the required stabilizability assumptions.

Table1 shows the error of different reduced-order systems with respect to the gap
topology as well as the newly introducedH2-gap. Note that in all cases, the reduced-
order systems computed via the proposed method gap-IRKA yield smaller H2-gap
errors than LQG balanced truncation as well as IRKA. The results are missing for
r = 1 for IRKA since it did not converge. Even for the H∞-gap, in all but three
cases, gap-IRKA leads to better results the other methods. Improving upon results
from LQG balanced truncation with respect to theH∞-gap without ever computing
large-scale Riccati solutions is a remarkable demonstration of the effectiveness of
the proposed interpolatory framework in reducing unstable systems.

Table 1 Approximation error ‖GF − ̂GF‖H2 (left) and ‖GF − ̂GF‖H∞ (right)

‖GF − ̂GF‖H2

r IRKA LQG-BT gap-IRKA

1 - 5.34 · 10−1 5.34 · 10−1

2 3.09 · 10−1 1.03 · 10−1 1.03 · 10−1

3 1.02 · 10−1 1.51 · 10−2 1.47 · 10−2

4 1.09 · 10−2 7.00 · 10−3 5.89 · 10−3

5 1.38 · 10−3 9.16 · 10−4 9.04 · 10−4

6 2.23 · 10−4 6.91 · 10−5 6.83 · 10−5

7 6.01 · 10−5 5.88 · 10−5 5.78 · 10−5

8 6.24 · 10−6 5.23 · 10−6 5.18 · 10−6

9 7.78 · 10−7 4.08 · 10−7 3.98 · 10−7

10 3.11 · 10−7 3.06 · 10−7 3.02 · 10−7

‖GF − ̂GF‖H∞
IRKA LQG-BT gap-IRKA

- 2.29 · 10−1 2.28 · 10−1

5.66 · 10−2 1.87 · 10−2 1.86 · 10−2

4.80 · 10−2 4.75 · 10−3 4.28 · 10−3

1.12 · 10−3 7.87 · 10−4 2.38 · 10−3

1.57 · 10−4 9.21 · 10−5 7.54 · 10−5

3.70 · 10−5 7.59 · 10−6 8.35 · 10−6

3.56 · 10−6 3.58 · 10−6 3.45 · 10−6

4.31 · 10−7 3.48 · 10−7 3.34 · 10−7

1.01 · 10−7 3.99 · 10−8 4.49 · 10−8

1.23 · 10−8 1.34 · 10−8 1.21 · 10−8
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4.2 Linearized Navier-Stokes Equations

We consider a linearization of the incompressible Navier-Stokes equations around
an unsteady flow profile, giving rise to the Stokes-Oseen system

vt = ν�v − (v · ∇)z − (z · ∇)v − ∇ p + Bu in 
 × (0, T ),

div v = 0 in 
 × (0, T ),

v = 0 on � × (0, T ),

v(0) = 0, in 
,

(28)

where ν = 1
Re = 1

90 and the geometry 
 = (0, 2.2) × (0.41) describes the flow
around a cylindric obstacle. The precise setup together with a description of the con-
trol and observation operators B andC , respectively, is given in [8], to which we also
refer for further details. We used the semi-discretized model from [8] corresponding
to a Taylor-Hood finite element discretization of the Navier-Stokes equations with
n = nv + np = 9356 + 1289 degrees of freedom. The original system results in a
differential algebraic system; the pressure term is explicitly eliminated with an alge-
braic approach described in [19]. Note that the system matrices of the transformed

Table 2 Approximation error ‖GF − ̂GF‖H2 (left) and ‖GF − ̂GF‖H∞ (right)

‖GF − ̂GF‖H2

r IRKA LQG-BT gap-IRKA

2 - 5.69 · 10−1 5.67 · 10−1

4 2.42 · 10−1 1.99 · 10−1 1.93 · 10−1

6 1.08 · 10−1 1.84 · 10−1 1.01 · 10−1

8 8.56 · 10−2 9.33 · 10−2 8.28 · 10−2

10 5.78 · 10−2 7.02 · 10−2 5.63 · 10−2

12 3.25 · 10−2 3.38 · 10−2 2.98 · 10−2

14 1.79 · 10−2 1.96 · 10−2 1.71 · 10−2

16 1.12 · 10−2 1.34 · 10−2 1.13 · 10−2

18 7.84 · 10−3 9.62 · 10−3 7.19 · 10−3

20 4.79 · 10−3 5.25 · 10−3 4.66 · 10−3

22 3.52 · 10−3 4.29 · 10−3 3.44 · 10−3

24 2.49 · 10−3 2.69 · 10−3 2.38 · 10−3

26 1.89 · 10−3 2.51 · 10−3 1.87 · 10−3

28 1.39 · 10−3 1.89 · 10−3 1.38 · 10−3

30 1.22 · 10−3 1.41 · 10−3 1.21 · 10−3

32 8.94 · 10−4 1.01 · 10−3 8.78 · 10−4

34 7.01 · 10−4 8.52 · 10−4 6.89 · 10−4

36 5.31 · 10−4 6.08 · 10−4 5.17 · 10−4

38 3.60 · 10−4 4.02 · 10−4 3.53 · 10−4

40 2.51 · 10−4 2.85 · 10−4 2.45 · 10−4

‖GF − ̂GF‖H∞
IRKA LQG-BT gap-IRKA

- 3.76 · 10−1 3.70 · 10−1

9.84 · 10−2 8.26 · 10−2 7.52 · 10−2

5.11 · 10−2 9.02 · 10−2 5.11 · 10−2

5.10 · 10−2 4.01 · 10−2 4.86 · 10−2

3.01 · 10−2 2.47 · 10−2 3.01 · 10−2

9.68 · 10−3 1.15 · 10−2 9.63 · 10−3

7.16 · 10−3 7.45 · 10−3 6.62 · 10−3

5.15 · 10−3 3.73 · 10−3 4.70 · 10−3

4.78 · 10−3 3.14 · 10−3 4.44 · 10−3

2.44 · 10−3 1.28 · 10−3 2.38 · 10−3

1.12 · 10−3 9.55 · 10−4 1.06 · 10−3

5.81 · 10−4 7.38 · 10−4 5.67 · 10−4

5.52 · 10−4 8.33 · 10−4 5.58 · 10−4

4.41 · 10−4 4.39 · 10−4 4.44 · 10−4

4.39 · 10−4 2.91 · 10−4 4.32 · 10−4

2.63 · 10−4 2.02 · 10−4 2.60 · 10−4

2.47 · 10−4 1.62 · 10−4 2.47 · 10−4

1.22 · 10−4 1.35 · 10−4 1.21 · 10−4

7.54 · 10−5 6.71 · 10−5 7.53 · 10−5

5.30 · 10−5 6.20 · 10−5 5.12 · 10−5
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ODE are dense and an explicit computation generally should be avoided. In our case,
the dimension of the ODE is n = nv − np = 8067 and can still be handled by direct
solvers in MATLAB; we refrain from a more sophisticated approach here.

We repeat similar experiments as described in Sect. 4.1 and compare the proposed
method to IRKA and LQG balanced truncation. The results are depicted in Table2;
themissing data for r = 2 for IRKA is due to non-convergence. As Table2 illustrates,
the reduced systems generated byAlgorithm 1 in all cases save one, yield the smallest
H2-gap error. Moreover, in eight out of the twenty cases tested, the proposed method
outperforms the LQG balanced truncation in terms of the H∞-gap as well, without
computing a large-scale Riccati-based Gramians and despite not being developed for
this measure.

5 Conclusion

We have presented a new approach for model reduction of linear stabilizable and
detectable control systems. Based on the theory of left-coprime factorizations and
a newly introduced H2-gap, we have derived pole-residue formulae that suggest
tangentially interpolating the original transfer function at the mirrored closed-loop
reduced system poles. Since these are not known a priori, we modified the itera-
tive rational Krylov algorithm accordingly. Two numerical examples associated with
(unstable) partial differential equations illustrate the applicability and good perfor-
mance of the new approach.
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Abstract This paper introduces reduced ordermodel (ROM) basedHessian approx-
imations for use in inexactNewtonmethods for the solution of optimization problems
implicitly constrained by a large-scale system, typically a discretization of a partial
differential equation (PDE). The direct application of an inexact Newton method
to this problem requires the solution of many PDEs per optimization iteration. To
reduce the computational complexity, a ROM Hessian approximation is proposed.
Since only the Hessian is approximated, but the original objective function and its
gradient is used, the resulting inexact Newtonmethodmaintains the first-order global
convergence property, under suitable assumptions. Thus even computationally inex-
pensive lower fidelity ROMs can be used, which is different from ROM approaches
that replace the original optimization problem by a sequence of ROM optimization
problem and typically need to accurately approximate function and gradient informa-
tion of the original problem. In the proposed approach, the quality of the ROM Hes-
sian approximation determines the rate of convergence, but not whether the method
converges. The projection based ROM is constructed from state and adjoint snap-
shots, and is relatively inexpensive to compute. Numerical examples on semilinear
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1 Introduction

We introduce reduced order model (ROM) based Hessian approximations for use in
inexactNewtonmethods for the solutionof large-scale smoothoptimizationproblems

min
u∈Rm

̂J (u) = J (y(u),u), (1)

where for given u ∈ R
m the vector y(u) ∈ R

n is the solution of

c(y(u),u) = 0. (2)

The optimization problem (1, 2) often comes from a discretization of optimal
control problems and in this case u ∈ R

m is the discretized control, y ∈ R
n is the

discretized state, and (2) is the discretized state equation. Our approach can be easily
extended to a setting where the control space U and the state space Y are Hilbert
spaces, but because of space restrictions we limit ourselves to the finite dimensional
case. In our applications, the state Eq. (2) is a discretized parabolic partial differential
equation (PDE). In this case, each objective function (1) evaluation requires the solu-
tion of a discretized PDE, the evaluation of the objective function gradient requires
the solution of the (linear) adjoint PDE, and the evaluation of a Hessian-times-vector
multiplication requires the additional solution of two (linear) PDE. This is computa-
tionally expensive. In addition, the additional PDEs that have to be solved for gradient
and Hessian-times-vector computations depend on the solution of y(u) ∈ R

n of the
state equation, which for time dependent PDEs is also memory intensive. ROMs can
be used to reduce the computation time and memory requirements.

Previous approaches of using ROMs in optimization have approximated the map-
ping u �→ y(u) ∈ R

n using a ROM applied to the state Eq. (2). Typically, the state
Eq. (2) is approximated by a projection based ROM

VT c(V ŷ(u),u) = 0, (3)

where V ∈ R
n×r is a matrix with rank r � n. The ROM state solution is then used

to approximate (1) by
min
u∈Rm

J (V ŷ(u),u). (4)

For many problems, including example problems in Sect. 4 of this paper, the
ROM approximation (4, 3) of the states implies via the optimality conditions that the
controls u are also contained in a low dimensional subspace related to V.

In special cases, one can extend ROM approaches for dynamical systems [5] to
find one ROM such that the solution of (4, 3) is a good approximation of the solution
of (1, 2). See, e.g., [2, 3], and the survey [7]. For general problems, however, the
ROM is only valid in a potentially small neighborhood of the current control uc and
corresponding state yc = y(uc). In this case trust-region based model management
approaches have been proposed. See [1, 10, 13, 16, 19, 20], and the surveys [7, 17].
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While in principle, one can use trust-region based model management approaches
that generate a new ROM at each new iterate, in practice their use is limited by the
computational cost of ROM generation versus the computational savings resulting
from that ROM.

Therefore, instead of generating ROMs for the optimization problem, we generate
ROM approximations of the Hessians. These ROMs are computationally cheaper
than a ROM that also has to approximate the objective function (1) and its gradient
over a range of controls. Ideally the ROM Hessians still generate optimization steps
that are close to the Newton steps, and therefore lead to fast local convergence of
the optimization algorithm at a fraction of the cost of a corresponding Newton-type
methods applied to the full order model (FOM) problem (1, 2).

In Sect. 2 we will outline our new approach and in Sect. 3 we will specify it further
for a discretized parabolic optimal control problem. We demonstrate our approach
on semilinear parabolic optimal control problems in Sect. 4.

2 Inexact Newton Methods and ROM Hessian
Approximations

This section provides a general outline of our proposed approach. We begin with a
review of gradient and Hessian computation and the line-search Newton- Conjugate-
Gradient (Newton-CG) method. Then we will present the general structure of our
ROMHessian approximation, and a heuristic for choosing the ROM subspace within
this approximation.

Inexact NewtonMethod and ROMHessian Approximation. To make the def-
inition of the objective function ̂J and its gradient and Hessian calculation rigorous,
we make the following assumptions throughout.

(A1) There is an open set Du ⊂ R
m such that for allu ∈ Du the equation c(y,u) = 0

has a unique solution y ∈ R
n .

(A2) There exists an open set Dy ⊂ R
n such that {y(u) : u ∈ Du} ⊂ Dy and the

functions J and c are twice continuously differentiable on Du × Dy .
(A3) The inverse cy(y,u)−1 exists for all (y,u) ∈ {(y,u) ⊂ Du × Dy : c(y,u) =

0}.
Here we use∇y J (y,u) ∈ R

n ,∇u J (y,u) ∈ R
m to denote the partial gradients and

cy(y,u) ∈ R
n×n , cu(y,u) ∈ R

n×m to denote the partial Jacobians. Similar notation
is used for second derivatives.

The gradient of the objective ̂J in (1, 2) can be computed using the so-called
adjoint equation approach. See, e.g., [12, Sect. 1.6]. Define the Lagrangian

L(y,u,λ) := J (y,u) + λT c(y,u)

corresponding to (1, 2). Given a control u and corresponding state y(u) the gradient
of the objective ̂J is computed by first solving the adjoint equation
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cy(y(u),u)Tλ = −∇y J (y(u),u) (5a)

for λ = λ(u) and then setting

∇ ̂J (u) = ∇u J (y(u),u) + cu(y(u),u)Tλ(u). (5b)

Given a control u, the corresponding state y(u), and the corresponding adjoint
λ(u), the Hessian-times-vector product ∇2

̂J (u)d is computed by solving the lin-
earized state equation

cy(y(u),u)w = cu(y(u),u)d (6a)

for w, then the second order adjoint equation

cy(y(u),u)Tp = ∇yy L(y(u),u, λ(u))w − ∇yuL(y(u),u, λ(u))d (6b)

for p, and then computing

∇2
̂J (u)d =cu(y(u),u)Tp − ∇uyL(y(u),u,λ(u))w

+ ∇uuL(y(u),u,λ(u))d. (6c)

For optimal control problems, the computation of y(u) requires the solution of
a nonlinear discretized PDE. The gradient computation requires the solution of a
linear discretized adjoint PDE to computeλ(u). EachHessian-times-vector operation
∇2

̂J (u)d requires the solution of two linear discretized PDEs to compute w and p,
respectively.

The problem (1) is solved using a line-search Newton-CG Method. However, a
trust-region method could be used as well, and the proposed ROM Hessian approx-
imation provides the same computational benefits in a trust-region setting.

Given a current iterate uc the line-search Newton-CGMethod [15, Algorithm 7.1]
applies the truncated CG method to approximately solve the Newton subproblem

∇2
̂J (uc)d = −∇ ̂J (uc). (7)

Then it computes a suitable step-size αc ∈ (0, 1] such that the sufficient decrease
condition

̂J (uc + αcd) ≤ ̂J (uc) + 10−4αcdT∇ ̂J (uc) (8)

is satisfied. The new iterate is given by u+ = uc + αcd.
The ROM Hessian approximation is computed by applying a projection ROM to

the Eq. (6a, b). Let V ∈ R
n×r , r � n, with linearly independent columns such that

VT cy(y(u),u)V is invertible.
The ROMHessian-times-vector product is computed by first solving the projected

linearized state equation
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VT cy(y(u),u)V ŵ = VT cu(y(u),u)d (9a)

for ŵ, then solving the projected second order adjoint equation

VT cy(y(u),u)TV p̂ = VT∇yy L(y(u),u, λ(u))Vŵ − VT∇yuL(y(u),u, λ(u))d
(9b)

for p̂, and then computing

˜∇2̂J (u) d =cu(y(u),u)TVp̂ − ∇uyL(y(u),u,λ(u))Vŵ

+ ∇uuL(y(u),u,λ(u))d. (9c)

The ROM Hessian approximation (9) is used to compute the direction in the
inexact Newtonmethod. Instead of solving (7), given a current iterate uc the direction
˜d is computed by using the truncated CG method to approximately solve

˜∇2̂J (uc)˜d = −∇ ̂J (uc). (10)

The step size αc is computed as before using (8) with d replaced by˜d. The new
iterate is given by u+ = uc + αc˜d.

The global convergence of the original line-search Newton method and the line-
search Newton method with ROMHessian approximation can be proven using stan-
dard arguments. See, e.g., [15, Theorem 3.2]. While first order global convergence
can be ensured under standard conditions if the ROMHessian approximation is used,
the speed with which the inexact Newton method converges in this case depends on
the quality of the ROM Hessian approximation, and in particular on V. Next we
motivate our choice of V.

Basic Properties of the ROMHessian. Using (6) it can be seen that the Hessian
of ̂J is given by

∇2
̂J (u) =

(

cy(y,u)−1cu(y,u)

I

)T ( ∇yyL(y,u,λ) ∇yuL(y,u,λ)

∇uyL(y,u,λ) ∇uuL(y,u,λ)

) (

cy(y,u)−1cu(y,u)

I

)

,

(11)

where we have set y = y(u) and λ = λ(u) to simplify notation. We will use this
simplified notation frequently during the remainder of this section.

Applying the Implicit Function Theorem to the state Eq. (2) shows that the sen-
sitivity of u �→ y(u) is given by

yu(u) = cy(y,u)−1cu(y,u) ∈ R
n×m . (12)

Similarly, applying the Implicit Function Theorem to the adjoint Eq. (5a) shows
that the derivative of u �→ λ(u) is given by
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λu(u) = cy(y,u)−T
(∇yyL(y,u,λ), ∇yuL(y,u,λ)

)

(

cy(y,u)−1cu(y,u)

I

)

= cy(y,u)−T
(∇yyL(y,u,λ), ∇yuL(y,u,λ)

)

(

yu(u)

I

)

∈ R
n×m . (13)

Using these derivatives, the Hessian can be written as

∇2
̂J (u) = cu(y,u)Tλu(u) + (∇uyL(y,u,λ), ∇uuL(y,u,λ)

)

(

yu(u)

I

)

. (14)

Using (9) it can be seen that the ROM Hessian approximation is given by

˜∇2̂J (u) =
(

V
(

VT cy(y,u)V
)−1

VT cu(y,u)

I

)T
( ∇yyL(y,u,λ) ∇yuL(y,u,λ)

∇uyL(y,u,λ) ∇uuL(y,u,λ)

)

×
(

V
(

VT cy(y,u)V
)−1

VT cu(y,u)

I

)

. (15)

If we define

ỹu(u) = V
(

VT cy(y,u)V
)−1

VT cu(y,u) ∈ R
n×m (16)

and

λ̃u(u) = V
(

VT cy(y,u)V
)−T

VT ( ∇yyL(y, u, λ), ∇yuL(y, u,λ)
)

(

ỹu(u)

I

)

∈ R
n×m ,

(17)
then the ROM Hessian approximation can be written as

˜∇2̂J (u) = cu(y,u)T λ̃u(u) + (∇uyL(y,u,λ), ∇uuL(y,u,λ)
)

(

ỹu(u)

I

)

. (18)

The next result ensures the positive definiteness of the Hessian and its ROM
approximation in situations that are often encountered in classes of applications,
such as those in Sect. 4.

Proposition 1 Let V ∈ R
n×r have rank r < n and satisfy that VT cy(y(u),u)V is

invertible. If∇uuL(y,u,λ) is positive definite,∇yyL(y,u,λ) is positive semi-definite,

and ∇yuL(y,u,λ) = 0, then ∇2
̂J (u) and ˜∇2̂J (u) are positive definite with smallest

eigenvalue bounded from below by the smallest eigenvalue of ∇uuL(y,u,λ).

Proof The statement follows immediately from (11) and (15).
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Comparing (14) with (18) shows that ∇2
̂J (u) ≈ ˜∇2̂J (u) if yu(u) ≈ ỹu(u) and

λu(u) ≈ λ̃u(u). The latter two approximation conditions motivate our choice for the
ROM matrix V.

Proposition 2 Let V ∈ R
n×r have rank r < n and satisfy that VT cy(y(u),u)V is

invertible. If y(u + d) ∈ R(V) for all sufficiently small d, then

ỹu(u) = yu(u). (19)

If, in addition, λ(u + d) ∈ R(V) for all sufficiently small d, then

λ̃u(u) = λu(u) and ˜∇2̂J (u) = ∇2
̂J (u). (20)

Proof If y(u + d) ∈ R(V) for all sufficiently small d. Then yu(u)d ∈ R(V) for all
d. Furthermore, for every u + d with d sufficiently small there exists ỹ(u + d) such
that y(u + d) = Vỹ(u + d). Inserting this into the state Eq. (2) implies

VT c(Vỹ(u + d),u + d) = 0 for all sufficiently small d.

Applying the Implicit Function Theorem to this equation shows that

ỹu(u) =
(

VT cy(y(u),u)V
)−1

VT cu(y(u),u)

and (16) can be written as ỹu(u) = Vỹu(u). Since y(u + d) = Vỹ(u + d) for all
sufficiently small d,

ỹu(u) = Vỹu(u) = yu(u),

which is (19).
If, in addition, λ(u + d) ∈ R(V) for all sufficiently small d, then we can use

similar argument to show the first equality in (20).
The second identity in (20) follows immediately from (14), (18), (19), and first

identity (20).

In general there is no matrix V ∈ R
n×r with small rank r � n, such that the

conditions in Proposition 2 hold. However, if there exists V ∈ R
n×r , r � n, with

orthogonal columns such that the projections of y(u + d) and λ(u + d) onto R(V)

are close to y(u + d) and λ(u + d), respectively, or equivalently such that

‖(I − VVT ) y(u + d)‖ ≤ tol and ‖(I − VVT )λ(u + d)‖ ≤ tol (21)

for a smal tolerance tol � 1, then we expect yu(u) ≈ ỹu(u), λu(u) ≈ λ̃u(u), and

consequently that the ROMHessian ˜∇2̂J (u) is a good approximation of the original
FOM Hessian ∇2

̂J (u).
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However, findingV ∈ R
n×r such that (21) is guaranteed to hold for all sufficiently

smalldwould be computationally expensive. In practicewe computeV ∈ R
n×r using

proper orthogonal decomposition (POD) applied to the state y(u) and the adjointλ(u)

at the current control.
ROMHessians versus ROMOptimization Proposition 2 and even (21) describe

optimistic scenarios. If we were able to find a V such that (21) holds at the current
control u = uc, then it could be used to approximate the original problem (1, 2)
in a trust-region based model management framework and approximately solve (4,
3) over all u in a neighborhood (trust-region) around the current control uc. Rather
than using the ROM model u �→ J (V ŷ(u),u) in a neighborhood of the current
control uc, our approach uses the approximate quadratic Taylor expansion d �→
̂J (uc) + ∇ ̂J (uc)Td + dT ˜∇2̂J (uc) d as a model at controls u = uc + d. The true
function ̂J (u) and this Taylor model have the same function and gradient value at uc,

no matter how goodV is. If ˜∇2̂J (uc)well approximates∇2
̂J (uc), we will essentially

compute aNewton step. If the resultingV is less good, our approach can still generate
a descent direction that is much better than a simple gradient step. Computationally
inexpensive, but possibly less accurate ROMs can still be used to accelerate the
overall optimization.

3 ROM Hessian Approximations for Discrete Time
Optimal Control Problems

In this section we apply the ROM Hessian approach to a minimization problem that
arises, e.g., from a discretized parabolic optimal control problem.

Model Problem. Given functions � : R
ny → R, σ : R

nu → R, F : R
ny → R

ny ,
and G : R

nu → R
ny , and given y0 ∈ R

ny consider the following minimization prob-
lem in the variables u = (uT

1 , . . . ,uT
nt )

T ∈ R
nunt , y = (yT1 , . . . , yTnt )

T ∈ R
nynt .

Minimize
nt

∑

k=1

�(yk) + σ(uk), (22a)

where y and u satisfy an implicit constraint,

M
(

yk+1 − yk
�t

)

+ F(yk+1) = G(uk+1), k = 0, . . . , n1 − 1, y0 given.

(22b)

It is easily possible to extent our ROM Hessian approach to generalizations of (22),
e.g., replace �(yk) andG(uk) by �(yk,uk) andG(yk,uk).We consider (22) to simplify
notation.
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Throughout this section we make the following assumptions, which are adapta-
tions of the assumptions (A1)–(A3) to the problem (22).

(A1’) There exists anopen setDu ⊂ R
nunt such that for everyu = (uT

1 , . . . ,uT
nt )

T ∈ D
the state Eq. (22b) has a unique solution y(u) = (y1(u)T , . . . , ynt (u)T )T .

(A2’) There exists an open set Dy ⊂ R
nynt such that {y(u) : u ∈ Du} ⊂ Dy , and the

functions � : Dy → R, σ : Du → R, F : Dy → R
ny , and G : Du → R

ny are
twice continuously differentiable.

(A3’) For every y = (yT1 , . . . , yTnt )
T ∈ {y(u) : u ∈ Du} and every r1, . . . , rnt ∈ R

ny

there exists a unique solution w1, . . . ,wnt ∈ R
ny of the equations

w0 = 0, wk+1 − wk = �t Fy(yk+1)wk+1 + rk+1, k = 0, . . . , nt − 1.

Under the assumptions (A1’)-(A3’) we can define the function ̂J : Du → R,
̂J (u) = ∑K

k=1 �(yk(u)) + σ(uk), so that (22), is a special case of (1, 2).
Gradient and Hessian Computation. Under the assumptions (A1’)–(A3’) the

function ̂J : Du → R is twice continuously differentiable. Its gradient can be com-
puted using the adjoint equation approach in Algorithm 1. Hessian-times-vector
operations are computed using Algorithm 2.

Algorithm 1: Gradient Computation

1: Given u = (uT1 , . . . ,uTnt )
T let y = (yT1 , . . . , yTnt )

T solve the state Eq. (22b).
2: Solve the adjoint equations for λnt , . . . ,λ1:

[M + �t Fy(ynt )]T λnt = −∇y�(ynt ), (23a)

[M + �t Fy(yk)]T λk = Mλk+1 − ∇y�(yk), k = nt − 1, . . . , 1. (23b)

3: Compute the gradient

∇ J (u) =
⎛

⎜

⎝

∇uσ(u1) − �t Gu(u1)T λ1
.
.
.

∇uσ(unt ) − �t Gu(unt )
T λnt

⎞

⎟

⎠
.

Note that since the objective function and the implicit constraints in the model
problem (22) are separable, ∇uyL(y,u,λ) = 0.

Hessian Approximation by Model Order Reduction. As mentioned towards
the end of Sect. 2, we compute a ROM from state y and adjoint λ information. In this
example the state y and the adjoint λ are vectors of vectors yk ∈ R

ny and λk ∈ R
ny

respectively.We compute amatrixV ∈ R
ny×r such that the components yk and λk are

approximately contained in the range of V (this V is a component of the projection
matrix in Sect. 2) The projection matrix for y and λ is the ntny × ntr block diagonal
matrix with identical diagonal blocks given by V.
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Algorithm 2: Hessian-Times-Vector Computation – ∇2
̂J (u)v

1: Given u = (uT1 , . . . ,uTnt )
T let y = (yT1 , . . . , yTnt )

T solve the state Eq. (22b) and let λ =
(λT

1 , . . . ,λT
nt )

T solve the adjoint Eq. (23).
2: Set w0 = 0 and solve the linearized state equation w1, . . . ,wnt :

[M + �tFy(yk+1)]wk+1 = Mwk + �t Gu(uk+1)vk+1, k = 0, . . . , nt − 1.

3: Solve the second order adjoint equations for pnt , . . . ,p1.

[M + �t Fy(yn−t )]T pnt = − [�t (λT
ntF(ynt ))yy + �yy(ynt )]wnt ,

[M + �t Fy(yk)]T pk =Mpk+1 − [�t (λT
k F(yk))yy + �yy(yk)]wk , k = nt − 1, . . . , 1.

4: Compute the action of the Hessian

∇2
̂J (u)v =

⎛

⎜

⎝

−�t Gu(u1)T p1 + [σuu(u1) − �t (λT
1 G(u1))uu]v1

.

.

.

−�t Gu(unt )
T pnt + [σuu(unt ) − �t (λT

ntG(unt ))uu]vnt

⎞

⎟

⎠ .

We apply POD to the computed state and adjoint to compute V ∈ R
ny×r . Since

states and adjoint typically have very different scales, we do not apply POD to the
combined snapshots, but individually, as stated in Algorithm 3.

Algorithm 3: Construction of POD Subspace
1: Collate the solution y1, . . . , ynt to the state equation and he solution λ1, . . . ,λnt to the

adjoint equation into snapshot matrices,

Y = [y1, . . . , ynt ], � = [λ1 . . . ,λnt ].
2: Construct by truncated SVD matrices Vy ∈ R

ny×ry and Vλ ∈ R
ny×rλ so that

‖(I − VyVT
y )Y‖

‖Y‖ < tolPOD and
‖(I − VλVT

λ )�‖
‖�‖ < tolPOD.

3: Orthogonalize. orth([Vy Vλ]) �→ V.

The ROMHessian-time-vector computation is specified in Algorithm 4. The sub-
space matrix V ∈ R

ny×nr used in steps 2 and 3 is computed via Algorithm 3.

Computational Efficiency of ROMHessian. While matrices likeVTFy(yk)V in
the ROMHessian computation are smaller than Fy(yk), the dependence of Fy on yk ,
which changes with time step k makes the computation of VTFy(yk)V expensive.
This well-known issue [4, 6, 9, 11, 18] is addressed via hypereduction. Specifically,
we use a so-called unassembled form of the Discrete Empirical InterpolationMethod
(DEIM), which originates from the (D)EIM [6, 9] and is described in more detail
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Algorithm 4: ROM Hessian-Times-Vector Computation— ˜∇2̂J (u)v

1: Given u = (uT1 , . . . ,uTnt )
T let y = (yT1 , . . . , yTnt )

T be the solution of the state Eq. (22b)
and let λ = (λT

1 , . . . ,λT
nt )

T be the solution of the adjoint Eq. (23).
2: Set ŵ0 = 0 and solve the POD linearized state equation for ŵk ,

[I + �t VTFy(yk+1)V]ŵk+1 = ŵk + �tVTGu(uk+1)vk+1, k = 0, . . . , nt − 1.

3: Solve the POD second order adjoint equation for p̂k ,

[I + �t VTFy(ynt )V]T p̂nt = − VT [�t (λT
ntF(ynt ))yy + �yy(ynt )]Vŵnt ,

[I + �t VTFy(yk)V]T p̂k =p̂k+1 − VT [�t (λT
k F(yk))yy + �yy(yk)]Vŵk ,

k = nt − 1, . . . , 1.

4: Compute the approximation to the action of the Hessian,

˜∇2̂J (u)v =
⎛

⎜

⎝

−�t Gu(u1)TVp̂1 + [σuu(u1) − �t (λT
1 G(u1))uu]v1

.

.

.

−�t Gu(un−t )
TVp̂nt + [σuu(unt ) − �t (λT

1 G(u1))uu]vnt

⎞

⎟

⎠

in [4, 18]. This leads to a further approximation of the ROM Hessian computed by
Algorithm 4. The error in this additional approximation is controlled by the tolerance
tolDEIM) used inDEIM.We refer to [14, Sects. 5.4, 6.2] for further details.Wewill use
˜∇2̂J (u) to denote the final ROM Hessian approximation. We can replace yk ≈ Vŷk ,
where ŷk = VT yk ∈ R

r , and λk ≈ V̂λk , where ̂λk = VTλk ∈ R
r to reduce storage

requirements.

4 Numerical Results

We apply the ROM Hessian approximation to semi-linear parabolic optimal control
problems of the form

min
u∈L2(�×(0,1))

1

2

∫ 1

0

∫

�

(y(x, t; u) − yd(x, t))2dxdt + α

2

∫ 1

0

∫

�

u(x, t)2dxdt,

(25a)

where for given function u ∈ L2(� × (0, 1)) the function y(·, ·; u) is the solution of

yt (x, t) − �y(x, t) + f (y(x, t)) = u(x, t) (x, t) ∈ � × (0, T ), (25b)

y(x, t) = 0 (x, t) ∈ ∂� × (0, T ), (25c)

y(x, 0) = y0(x) x ∈ �, (25d)
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Table 1 Example 1. Optimization using FOM Hessian (left) and ROM Hessian tolPOD = 10−3,
tolDEIM = 10−3 (right). Stopping criteria in both approaches ‖∇ ̂J (u)‖ < 10−7. Both optimiza-
tion approaches show nearly identical convergence behavior. Iteration i , objective function value
(‖̂J (u)‖), gradient norm (‖∇ ̂J (u)‖), step-size (α), and number of CG iterations (CG) are shown

i ̂J (ui ) ‖∇ ̂J (ui )‖ αi CG

0 4.397932 2.7878e-04 1.00 18

1 1.665062 2.5098e-05 1.00 20

2 1.598802 4.7573e-06 1.00 25

3 1.595127 2.9272e-07 1.00 35

4 1.595110 1.4527e-09

i ̂J (ui ) ‖∇ ̂J (ui )‖ αi CG

0 4.397932 2.7878e-04 1.00 18

1 1.665253 2.5120e-05 1.00 20

2 1.598817 4.7625e-06 1.00 25

3 1.595127 2.9294e-07 1.00 39

4 1.595110 1.7659e-08

and � = (0, 1)2. The problem is discretized in space using piecewise linear finite
elements on a triangulation obtained by dividing � = (0, 1)2 into 40 × 40 squares
and then dividing each square into two triangles. This results in a semi-discretization
with nu = 1681 and ny = 1521 degrees of freedom in the control and state respec-
tively. The resulting semi-discretization is then discretized in time using the backward
Euler method using nt = 100 times steps. This results in a problem of the type (22)
withG(uk) = Muuk and σ(uk) = (α/2)uT

k Muuk , whereMu is the mass matrix, and
�(yk) = (yk − yk,d)TM(yk − yk,d), whereM is the mass matrix that also appears in
(22b) (Mu andM differ in size because of bounday conditions for y) and yk,d comes
from a discretization of the desired state yd in (25a).

All optimization runs are initialized at u = 0. The truncated CG is stopped when
negative curvature is detected or when the CG residual satisfies

‖Hi d + ∇ ̂J (ui )‖ ≤ min{‖∇ ̂J (ui )‖2, 0.01‖∇ J (ui )‖},

Hi = ∇2
̂J (ui ) or ˜∇2̂J (ui ) depending on whether a FOM or ROM Hessian is used.

Example 1: Cubic Reaction. In the first example the nonlinearity in (25b) is cubic,
f (y) = y3. The desired state is yd(x, t) = 2et + 2x1(x1 − 1) + 2x2(x2 − 1), the ini-
tial state is y0(x, t) = sin(2πx1), and the control penalty is α = 10−4.

Both optimization with FOM Hessians and with ROM Hessians converged to
virtually the same solution. The computed optimal control u at t = 0.1, 0.5, 1 is
shown in Fig. 2. Table1 shows that the optimization histories for the two approaches
are nearly the same.

While the optimization histories for the two approaches are nearly the same, the
ROM Hessian approach is much faster as shown in Table2. The timing reported
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Table 2 Example 1. The FOM Hessian approach requires 2*98 PDE solves, which are replaced
by 2*102 ROM PDE solves in the ROM Hessian approach, resulting in an overall speedup of 5.5

FOM ROM

State solves 5 5

Adjoint solves 5 5

Hess-Vec mult 98 102

Total time (s) 410.42 74.13

Fig. 1 Convergence history for Newton-CG with and without POD+DEIM approximations in the
Hessian-vector computation

in Table2 is for computations using MATLAB running on a MacBook Pro (13-
inch, Retina, Mid 2014). The difference in computing time is due to the cost of
Hessian-times-vector multiplications. In this example, using FOM Hessian requires
98 Hessian-times-vector multiplications and therefore 196 linear discretized PDE
solves. In contrast, using ROM Hessian requires 102 Hessian-times-vector multipli-
cations and therefore 204 linear ROM PDE solves.

Figure1 is another presentation of the convergence results in Tables1 and 2.
The left plot shows that both approaches have nearly the same iteration his-

tory. However, when convergence history is plotted against computational work per-
formed, measured in terms of PDE solves, the ROMHessian approach is much faster.
Note that here we do not differentiate between the nonlinear state PDE solve and
the linear PDE solves needed for gradient, adjoint and FOM Hessian-times-vector
computations. While the discretized state Eq. (22b) is nonlinear and computing yk+1

is performed via Newton’s method, only 1–2 Newton iterations per time step in the
state computation are needed in this example. Therefore the difference between a
nonlinear state PDE solve and linear PDE solve is small.
Example 2: Solid Fuel Ignition Model. This example is modeled after [8]. The
nonlinearity in (25b) is f (y) = −δey with δ = 5. The desired state is yd(x, t) = π−2

sin(πx1) sin(πx2), the initial state is y0 ≡ 0, and the penalty is α = 5 · 10−3.
The numerical results for this example mirror those of the previous example.

Optimization with FOM Hessians and with ROM Hessians converged to virtually
the same solution, and the optimization histories for the two approaches are nearly
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Fig. 2 Optimal control u at t = 0.1, 0.5, 1 for Example 1

Table 3 Example 2. Optimization using FOMHessian (left) and andROMHessian tolPOD = 10−3,
tolDEIM = 10−3 (right). Stopping criteria in both approaches ‖∇ ̂J (u)‖ < 10−8. Both optimiza-
tion approaches show nearly identical convergence behavior. Iteration i , objetive function value
(‖̂J (u)‖), gradient norm (‖∇ ̂J (u)‖), step-size (α), and number of CG iterations (CG) are shown

i ̂J (ui ) ‖∇ ̂J (ui )‖ αi CG

0 2.6981e-02 4.5436e-05 1.00 9

1 1.3028e-02 3.8587e-06 1.00 12

2 1.2917e-02 2.6076e-08 1.00 27

3 1.2917e-02 1.2552e-12

i ̂J (ui ) ‖∇ ̂J (ui )‖ αi CG

0 2.6981e-02 4.5436e-05 1.00 9

1 1.3028e-02 3.8601e-06 1.00 12

2 1.2917e-02 2.6116e-08 1.00 28

3 1.2917e-02 2.4637e-12

Table 4 Example 2. The FOM Hessian approach requires 2*48 PDE solves, which are replaced
by 2*49 ROM PDE solves in the ROM Hessian approach, resulting in an overall speedup of 4

FOM ROM

State solves 4 4

Adjoint solves 4 4

Hess-Vec mult 48 49

Total time (s) 234.78 56.73

the same, as shown in Table3. The computed optimal control u at t = 0.1, 0.5, 1 is
shown in Fig. 4.

The ROMHessian approach is much faster as shown in Table4. Again, the timing
reported in Table4 is for computations using MATLAB running on a MacBook Pro
(13-inch, Retina, Mid 2014) and the reason for the difference in computing time
is the cost of Hessian-times-vector multiplications. The ROM Hessian requires 96
ROM PDE solves for ROM Hessian-vector operations in contrast to the 96 FOM
PDE solves in the FOM Hessian approach.
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Fig. 3 Convergence history for Newton-CG with and without POD+DEIM approximations in the
Hessian-vector computation

Fig. 4 Optimal control u at t = 0.1, 0.5, 1 for Example 2

Figure3 shows thatwhen convergence history is plotted not against iteration count,
but against computational work performed, measured in terms of PDE solves, the
ROM Hessian approach is much faster.

5 Conclusions

We have introduced ROM Hessian approximations for use in inexact Newton meth-
ods for large-scale smooth optimization problems obtained from discretizations of
optimal control problems governed by parabolic PDEs. In contrast to other ROM
approaches, which approximate the optimization problem, our approach retains the
original FOM objective function and gradient. The Hessian ROM is computed by
applying POD to state and adjoint snapshots that have to be computed anyway, and
therefore ROM computation is relatively inexpensive. Since original objective func-
tions and gradients are used, the qualitative global convergence properties of the
original line-search Newton method and the line-search Newton method with ROM
Hessian approximation are the same. However, since Hessian approximations are
significantly cheaper, the ROM Hessian approach can lead to substantial savings.
This is confirmed by numerical experiments with two semilinear parabolic optimal
control problems. The two optimization approaches had essentially the same conver-
gence behavior, but the ROM Hessian approach had a factor 5–8 speedup because



350 M. Heinkenschloss and C. Magruder

of computational savings due to the Hessian approximations. However, it is possible
to construct examples, where the ROM Hessian approach does not lead to com-
putational savings. When the ROM Hessian too poorly approximates the true one,
the ROM Hessian approach can require substantially more optimization iterations,
which erase savings enjoyed within an optimization iteration. Additional analysis
and numerical tests are part of future work.
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Interpolation-Based Irrational Model
Control Design and Stability Analysis

Charles Poussot-Vassal, Pauline Kergus, and Pierre Vuillemin

Abstract The versatility of data-driven approximation by interpolatory methods,
originally settled for model approximation purpose, is illustrated in the context of
linear controller design and stability analysis of irrationalmodels. To this aim, follow-
ing an academic driving example described by a linear partial differential equation,
it is shown how the Loewner-based interpolation may be an essential ingredient for
control design and stability analysis. More specifically, the interpolatory framework
is first used to approximate the irrational model by a rational one that can be used for
model-based control, and secondly, it is used for direct data-driven control design,
showing equivalent results. Finally, this interpolation framework is employed for
estimating the stability of the interconnection of the irrational model with a rational
controller.

Keywords Interpolation · Loewner · Data-driven · Control · Stability

1 Introduction and Problem Statement

1.1 Motivations for Interpolation as a Pivotal Tool and
Driving Example

Modelling, simulation, control and analysis of irrational models such as those
described by linear Partial Differential Equations (PDE), are challenging tasks for
many practitioners. Indeed, standard numerical tools developed for the rational func-
tion case are not tailored in the irrational setting and require dedicated attention (e.g.
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eigenvalues, time-domain simulation ...). In practice, engineers are often requested to
discretise the irrational (infinite-dimensional) model before deploying all the numer-
ical tools they dispose of. Beside being time consuming, this step may introduce
numerical errors and lead to an iterative procedure between the control design and
the model construction teams. Indeed, in an industrial context, the modelling—finite
element approximation—and the control design tasks may be split in different teams
and iterations to choose the “good” level of modelling might become an issue.

In this chapter, the control synthesis for irrational (infinite-dimensional) linear
dynamical models is firstly considered. More specifically, the problem of synthe-
sising a rational control law achieving some performances is addressed through the
lens of model interpolatory features. Second, the stability estimation of the closed-
loop interconnection of the original linear dynamical irrational model with the syn-
thesised linear rational controller is also done using interpolatory-like methods and
approximation-oriented arguments. These arguments (tailored to linear systems only)
are illustrated through a single driving example involving a transport equation con-
trolled at a boundary. It is modelled by (1), a linear PDE with constant coefficients
(such equation set representing a first order linear transport equation, may be used to
represent a simplified one dimensional wave equation in telecommunication, traffic
jam, etc.),

∂ ỹ(x,t)
∂x + 2x ∂ ỹ(x,t)

∂t = 0 (transport equation)
ỹ(x, 0) = 0 (initial condition)
ỹ(0, t) = 1√

t
∗ ũ f (0, t) (control input)

ω2
0

s2+mω0s+ω2
0
u(0, s) = u f (0, s) (actuator model),

(1)

where x ∈ [0 L], L = 3 is the space variable and ω0 = 3 and m = 0.5 are the input
filter parameters. The scalar input of the model is ũ(0, t) (or u(0, s)), the vertical
force applied at the left boundary. Applying the Laplace transform, one obtains

∂y(x, s)
∂x

+ 2x (sy(x, s) − ỹ(x, 0)) = 0, (2)

which solution can be given as y(x, s) = a(s)e
∫ −2xsdx = a(s)e−x2s . Due to bound-

ary condition ỹ(0, t) = 1√
t
∗ ũ f (t), we have y(0, s) =

√
π√
s
u f (s), and consequently

a(s) =
√

π√
s
u f (s). The transfer function from the input u(0, s) to the output y(x, s)

reads

y(x, s) =
√

π√
s
e−x2s ω2

0

s2 + mω0s + ω2
0

u(s) = H(x, s)u(0, s). (3)

Relation (3) links the (left boundary) input to the output through an irrational
transfer functionH(x, s) for any x value.1 In addition, for the control design purpose,

1 The exact time-domain solution of (1) along x is given by ỹ(x, t) = ũt−x2
f /

√
t , where ũ f is the

output of the second order actuator transfer function, in response to u.
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Fig. 1 Frequency response gain (left) andphase (right) of (4) (blue+) and its rational approximation
of order r = 33 (solid red line)

let us now consider that one single sensor is available, and is located at xm = 1.9592
along the x-axis.2 The transfer from the same input u(0, s) to yxm (s) = y(xm, s) then
reads:

yxm (s) = Hxm (s)u(0, s) (4)

As an illustration of the above transfer function, Fig. 1 shows the frequency and
phase responses at point x = xm (blue +). In addition, the rational approximation
obtained by Loewner interpolation is also reported (solid red line).

1.2 Problem Statement, Contribution and Organisation

Given a meromorphic (rational or irrational) transfer function H, given as in (3),
the objective is to design a (low order) rational feedback controller K, such that the
{H,K} interconnection leads to a stable closed-loop and achieves some frequency-
oriented performances. The challenge is to suggest an approach that fits to transfer
function H being either rational or irrational.

In this chapter, we aim at illustrating how the Loewner framework may be a
pivotal tool for solving approximation problems, but also control and stability
issues.

The remainder of the chapter is organised as follows: Sect. 2 recalls some general-
ities on the Loewner framework as an interpolation tool. The two proposed Loewner-
driven control design methodologies are then gathered in Sect. 3. The latter presents

2 In the rest of the chapter, x will be discretised with 50 points from 0 to L = 3, and xm has been
chosen to be located at x(�50 × 2/3�) = x(33), the 33-th element of x .
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both the standard approximate and control approach and the data-driven control
approach rooted on the Loewner framework. Both are shown to be comparable and
even equivalent. Finally, in Sect. 4, the stability of irrational models is addressed
through the lens of the Loewner tool. It is applied on the interconnection of the
controllers obtained in Sect. 3 and the irrational model (3).

1.3 Notations and Preliminaries

Along the chapter, the following notations are employed: we denoteH2 (resp.H∞),
the open subspace of L2 (resp. L∞) with matrix-valued function H(s) with ny out-
puts, nu inputs, ∀s ∈ C, which are analytic in Re(s) > 0 (resp. Re(s) ≥ 0). Mathe-
matically, the L2 space is a vector-space of matrix valued functions defined on the
imaginary axis satisfying

∫

R

tr
(
H(ıω)H(ıω)T

)
dω < ∞.

The L∞ one considers functions defined over C+ satisfying

sup
ω

||H(ıω)||2 < ∞.

MoreoverH2 andH∞ spaces consider analytic functions over the right half plane.
The rational functions of theH∞ space are denotedRH∞. Amore detailed definition
is given in the books [2, 14].

ContinuousMIMO LTI dynamical model (or system) � is defined as an “input-
output” map associating an input signal u to an output one y by means of the convo-
lution operation, defined as y(t) = ∫ ∞

−∞ h(t − τ)u(τ )dτ = h(t) ∗ u(t), where h(t)
is the impulse response of the system �. It is (strictly) causal if and only if h(t) = 0
for (t ≤ 0) t < 0. Then, by taking the Laplace transform of the causal convolution
product above defined, one obtains

y(s) = H(s)u(s), (5)

whereu(s) andy(s) are theLaplace transformofu(t) andy(t). Theny × nu complex-
valuedmatrix functionH(s) is the transfer function of theLTImodel. AnLTI system
� is said to be stable if and only if its transfer functionH is bounded and analytic on
C+, i.e. it has no singularities on the closed right half-plane. Conversely, it is said to
be anti-stable if and only if its transfer function is bounded and analytic on C− (see
also [7] or Chap.2 of [15] for more details).

In the case where H is rational, it has a finite number of singularities and can be
represented by a first order descriptor realisationS : (E, A, B,C, D)with nu inputs,
ny outputs and n internal variables. The model is then given by:
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E ẋ(t) = Ax(t) + Bu(t) , y(t) = Cx(t) + Du(t) (6)

where, x(t) ∈ R
n denotes the internal variables (the state variables if E is invertible),

and u(t) ∈ R
nu and y(t) ∈ R

ny are the input, output functions, respectively, while
E, A ∈ R

n×n , B ∈ R
n×nu , C ∈ R

ny×n and D ∈ R
ny×nu , are constant matrices. If the

matrix pencil (E, A) is regular, H(s) = C(sE − A)−1B + D, is called the transfer
function associated to the realisation S of the system �.

2 Background on Data-Driven LTI Model Approximation

Let us recall the main tool involved in this chapter, namely, the Loewner matrices.
First, we define the connection between model-based and input-output data-driven
approximation, then, the Loewner framework, as detailed in [1, 13] is briefly recalled.

2.1 LTI Dynamical Models and Input-Output Data

Given the complex-valued (rational or irrational) transfer functionmatrixHmapping
the nu inputs u to the ny outputs y (as in (5)) or the input-output data collection
{zi ,�i }Ni=1 = {zi ,H(zi )}Ni=1 (where zi ∈ C and �i ∈ C

ny×nu ) defined as,

y(zi ) = H(zi ) = �iu(zi ), (7)

the approximation problem aims at constructing the (approximate) rational transfer
function matrix Ĥ mapping inputs u to the approximate outputs ŷ such that

ŷ(s) = Ĥ(s)u(s). (8)

Obviously, some objective are that (i) the reduced inputs to outputs map should
be “close” to the original, (ii) the critical system features and structure should be pre-
served, and, (iii) the strategies for computing the reduced system should be numeri-
cally robust and stable. Approximating (5) with (8) is amodel-based approximation,
while, approximating (7) with (8) belongs to the data-driven family (see [2, 17] for
examples). In this chapter, we follow the data-driven philosophy, and more specifi-
cally the interpolation-based approach using the Loewner framework.
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2.2 Data-Driven Approximation and Loewner Framework at
a Glance

The main elements of the Loewner framework are recalled here in the single-input
single-output (SISO) case and readers may refer to [13] for a complete description
and extension to the MIMO one. The Loewner approach is a data-driven method
building a (reduced) rational descriptor LTI dynamical modelHm (Ĥr ) of dimension
m (r < m) of the same formas (6),which interpolates frequency-domaindata given as
(7).More specifically, let us consider a set of distinct interpolation points {zi }2mi=1 ⊂ C

which is split in two subsets of equal length as {zi }2mi=1 = {μi }mi=1 ∪ {λi }mi=1. The
method consists in building the Loewner and shifted Loewner matrices as,

[L]i j = H(μi ) − H(λ j )

μi − λ j
and [Ls]i j = μiH(μi ) − λ jH(λ j )

μi − λ j
. (9)

The modelHm that interpolatesH is given by the following descriptor realisation,

Em ẋ(t) = Amx(t) + Bmu(t) , y(t) = Cmx(t) (10)

where Em = −L, Am = −Ls , [Bm]i = H(μi ) and [Cm]i = H(λi ) (i = 1, . . . ,m).
Assuming that the number 2m of available data is large enough, then it has been
shown in [13] that a minimal model Ĥr of dimension r < m that still interpolates the
data3 can be built with a projection of (10) provided that, for i = 1, . . . , 2m (note
that to avoid complex arithmetic, m points and their conjugate are selected),

rank(ziL − Ls) = rank([L Ls]) = rank([LT
L
T
s ]T ) = r. (11)

In that case, denoting Y ∈ C
m×r and (resp. X ∈ C

m×r ) the matrix containing
the first r left (resp. right) singular vectors of [L Ls] (resp. [LT

L
T
s ]T ). Then, Êr =

Y H EmX , Âr = Y H AmX , B̂r = Y H Bm , and Ĉr = CmX , is a realisation of thismodel
Ĥr with a McMillan degree equal to rank(L). Note that if r in (11) is superior to
rank(L) then Ĥr can either have a direct feed-through D̂ = 0 or a polynomial part. In
the rest of the paper, one assumes that no polynomial term is present in the state-space
realisation (10).

3 Model- and Data-Driven Control Synthesis Paradigm

Based on the above tools, let us now jump in the first contribution of the chapter,
namely, the design of a feedback controller for irrational models. This objective,
presented in Fig. 2, aims at seeking for a controllerK ∈ RH∞ such that the intercon-

3 Themodel Ĥr interpolates the original modelH at the zi points. This is the reasonwhy thismethod
is also known as an interpolation one.
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Fig. 2 Feedback loop scheme. The objective is to findK(s) stabilisingHxm (s) and achieving some
performances

nection closed-loop {H,K} is stable and achieves some performance e.g.minimises
someH∞-norm or track some closed-loop performances.

In the rest of this section, two control design approaches are developed. The first
one is a - standard - approximate and model-driven method, while the second is
a direct data-driven one. The model-driven control design is based on a rational
approximation of model (3) using the Loewner framework, followed with a struc-
tured H∞-norm oriented control design step (note that any other approach can be
used), while the data-driven relies on the Loewner framework to directly identify the
controller, on the basis of the data only.

3.1 Model-Driven Approximation and Control

OnFig. 1, the transfer from the boundary inputu to themeasurement point yxm of both
the original model Hxm and of the rational approximation one Ĥ33

xm , were illustrated.

Ĥ33
xm (of dimension r = 33) has been obtained by samplingHxm as {Hxm (zi )}2mi=1 where

zi = ıωi such that zi are closed under conjugation and for ωi logarithmically spaced
between 2π10−2 and 2π (m = 200). At this point, thanks to the Loewner approach,
it is both possible to simulate the equation using a standardODE solver and to design
a control law using rational model-based control design methods.

Using the rational approximation Ĥ33
xm of the irrational modelHxm , standard feed-

back synthesis methods can be applied (i.e. design a feedback loop as on Fig. 2, but
involving Ĥ33

xm instead ofHxm ). In this examples, the hinfstruct function embed-
ded theMatlabRobust Control Toolbox has been used [3]; it allows designing fixed
structure controllers while minimising someH∞-norm oriented performance trans-
fer. Starting from Ĥ33

xm , let us first define the following generalised plantT = Ĥ33
xmWo,

whereWo is the weighting filter defining the output signals on which theH∞-norm
optimisation will be done. Wo is constructed to define the desired closed-loop per-
formances attenuation and its bandwidth. The resulting state-space realisation of the
generalised plant T is then given by

⎧
⎨

⎩

ξ̇(t) = Aξ ξ(t) + B1r(t) + B2u(t)
z(t) = C1ξ(t) + D11r(t) + D12u(t)
e(t) = r(t) − y

(12)
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where ξ(t) ∈ R
N and z(t) ∈ R

nz are the states (model plus weight state variables)
and performance output signals, respectively. The performance transfer from r
to z, is defined as Trz = Ĥ33

xmWo. In the considered case, one aims at tracking
the reference signal r and limiting the control action u. One can then construct
Wo = blkdiag

(
We,Wu

) = blkdiag
(
10 s+1

s , s+10
s+1000

)
describing performance output

z = blkdiag
(
Woe,Wuspacerealisationof the

)
. The Wo weighting filter has been

chosen toweight the sensitivity function and guarantee no steady-state error (e.g. roll-
off in low frequency) and a bandwidth around 10−1rad/s. The Wu one is instead
used to weight actuator action in high frequencies (here the actuator will roll-off
above 10rad/s). It can be mentioned that it is also a fairly standard way of weight
selection. TheH∞ control design consists in finding the controller K, mapping e to
spacerealisationof the, such that,

K := arg min
K̃∈K

||Fl
(
Trz, K̃

)||H∞ (13)

whereFl(·, ·) is the lower fractional operator defined as (for appropriate partitions of
M and K ) by Fl(M, K ) = M11 + M12K (I − M22K )−1M21 [12]. With reference to
(13), it is possible to define the classK ofK to be restricted to theProportional Integral
one, meaning that one is seeking for K with the following form, K(s) = kp + ki

1
s ,

where kp, ki ∈ R. After optimisation, one obtains kp = 0.191 and ki = 0.0252 (note
also that in this case, the optimal attenuation reached is γ∞ = 66.954).4 Figure3
then shows the sensitivity function S (transfer from r to e) applied both on the
rational approximation Ĥ33

xm and the original modelHxm . It shows that good tracking
in low frequencies is ensured, as well as some margin properties. In addition, the
complementary sensitivity function,M = 1 − S, is reported on Fig. 4, illustrates the
closed-loop transfer from the reference r to the model output y or ŷ.

The resulting control law gives similar results for both approximated (rational)
and original (irrational) models thus validating the approach.

3.2 Data-Driven Control

So far, the control design has been done in a fairly standard way, involving the
approximated rational model. Instead of designing a controller on the basis of a
rational reduced-order model, as the true system’s behaviour is known through (5),
a data-driven control strategy, based on the approach presented in [10], is followed.
Authors stress that the main contribution of this section with respect to [10] stands
in the comparison of the data-driven approach with the model-based one, resulting,
as we will see later in the chapter, in exactly similar results.

4 The optimisation is done using the hinfstruct routine, allowing minimising the closed-loop
interconnection of Trz with K̃. In general, one seek for ||Fl

(
Trz,K

)||H∞ = γ∞ ≤ 1. Here we
simply aim at reaching stability and tracking performances.
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Fig. 3 Sensitivity function S (blue +) and Ŝ (solid red). Weighting functionWe used in the control
design (solid black)

Fig. 4 Complementary sensitivity function M and M̂, linking r to y (blue +) or ŷ (solid red)



362 C. Poussot-Vassal et al.

Fig. 5 Data-driven control
problem formulation: M is
the reference model
(objective) and K the
controller to be designed

3.2.1 Introducing the Ideal Controller

Data-driven control consists in recasting the control design problem as an identifica-
tion one. The main advantage of this strategy is that it provides a controller tailored
to the actual system. This change of paradigm shift the identification/simplification
process of model to the controller directly. Different techniques have been proposed,
see references in [10], considering a set of structured controllers. Recently, [10]
pushed the interpolatory framework, and especially the Loewner one, into the pro-
cess, enabling MIMO controllers design without a-priori structure selection.

The objective is to find a controller K minimising the difference between the
resulting closed-loop and a given reference model M (see Fig. 5). This is made
possible through the definition of the ideal controller K�, being the LTI controller
that would have given the desired referencemodel behaviour if inserted in the closed-
loop. It is then defined as follows:

K� = H−1
xm M(I − M)−1. (14)

Given a reference model M and provided frequency-domain data {ıωi ,�i }2mi=1
from the plant Hxm , it is possible to evaluate the frequency-response of the ideal
controller K� at these very same frequencies. The main idea of the Loewner Data-
Driven Control (LDDC) algorithm introduced in [10] is to interpolate the frequency-
response of the ideal controller K� and to reduce it to an acceptable order. For
the present example, m = 200 samples of the frequency-response, logarithmically
spaced between 2π10−2 and 2π rad.s−1 are considered (similar to the one used for
the computation of a rational reduced-order model in Sect. 2).

3.2.2 Data-Driven Control Design and Model-Free Stability Analysis

As explained in [9], the referencemodel choice is a key factor for theLDDC success,
as for any other model reference control techniques. Indeed, this latter should not
only represent a desirable closed-loop behaviour, but also an achievable dynamic of
the considered system (i.e. the ideal controller should not internally destabilise the
plant and imply terrible dynamics). A reference model is said to be achievable by
the plant if the corresponding ideal controller internally stabilises the plant.

The closed-loop performances are limited by the system’s right hand side poles
{p j }np

j=1 and zeros {zi }nzi=1 (and their respective output directions in theMIMO case)
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defined as Hxm (zi ) = 0 and Hxm (p j ) = ∞. Finally, the classM of achievable refer-
ence models is defined as follows:

M = {
M ∈ H∞ : M(zi ) = 0 and M(p j ) = 1

}
. (15)

In the general case, the right half plane poles and zeros of the system are estimated
in [9] in order to build an achievable reference model on the basis of the initial
specifications given by the user. This is made possible through a data-driven stability
analysis introduced in [6] and the associated estimation of instabilities presented in
[5].

Here, the PDE describing the system’s dynamic is known and allows to deter-
mine the performance limitations without applying the aforementioned data-driven
stability analysis. The instabilities are Hxm (+∞) = 0 and Hxm (0) = ∞, implying
that the reference model should satisfyM(+∞) = 0 and M(0) = 1.

As shown in [8], once the setM of achievable reference models is determined, the
one chosen in this set influences a lot the control design. To illustrate this point, the
LDDC algorithm is applied on the proposed example using two reference models
M1 andM2.M1 is chosen as a perfectly damped second-order model with a natural
frequency ω0 = 0.5 rad.s−1 and reads

M1(s) = 1

s2/ω2
0 + 2s/ω0 + 1

,

satisfying the performance limitations of the system. The second referencemodelM2

is the closed-loop obtained in the model-based control design obtained in Sect. 3.1
(M2 = M̂, see Fig. 4).5

Once the referencemodelsM1 andM2 are chosen, by following (14), it is possible
to compute the frequency-responses of the associated ideal controllers, denoted K�

1
and K�

2 respectively, at the frequencies where data from the plant are available. In
order to obtain a controller model K, the Loewner framework is then applied con-
sidering the following interpolatory conditions: ∀i = 1 . . . 2m, K(ıωi ) = K�(ıωi ).

In the present case, minimal realisations of K�
1 and K�

2 of order n1 = 34 and
n2 = 40 respectively are obtained. In order to compare the results of the model-
based approach with the data-driven strategy, the ideal controllers K�

1 and K�
2 are

reduced up to a first order (using the rank revealing factorisation embedded in the
Loewner framework), giving two controller models denotedK1 andK2, which trans-
fer functions are given in (16).

K1(s) = 0.02277

(s + 0.0382)
and K2(s) = 0.1914(s + 0.1315)

s
= 0.1914 + 0.0252

s
.

(16)

5 Since the procedure used to get M̂ preserves internal stability, the obtained closed-loop is neces-
sarily achievable by the plant Hxm .
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Fig. 6 Resulting closed-loop transfers involvingK1 andK2, obtained usingM1 andM2 reference
models

When using M2 as reference model, the first order controller K2 has exactly the
same expression than the one obtained in the model-based approach solving (13).
The frequency responses of the resulting closed-loops obtained with K1 and K2 are
visible on Fig. 6.

Interestingly, with reference to Fig. 6,K2 perfectly recovers the requested perfor-
mance ofM2 with a controller of rational order one (indeed, we expected to observe
this result since we knew from the model-based approach presented in Sect. 3.1 that a
rational control of order leading to this performance was achievable). Conversely,K1

(reduced to a rational form of dimension one) is not able to recover the performances
of M1, and a higher degree would be expected (as it is not the topic of the chapter,
this point is not detailed further).

One of the major challenges in this data-driven control strategy is to preserve
internal stability. While the ideal controller is known to be stabilising thanks to the
choice of an achievable reference model, see [9], there is no guarantee regarding the
reduced-order controllers. Therefore, it is necessary to analyse the internal stability
during the controller reduction step. To that extent, the resulting closed-loop iswritten
as on Fig. 7. This scheme makes the controller error appear as a perturbation.

It is then possible to apply the small-gain theorem: the interconnected system
shown on Fig. 7 is well-posed and internally stable for all stable � = K − K� with
‖�‖∞ < 1

γ
if and only if

∥
∥Hxm (1 − M)

∥
∥∞ ≤ γ . The bound γ on the controller

modelling error can then be estimated using the data only as:

γ̃ = max
i=1...m

∣
∣Hxm (ıωi )(1 − M(ıωi ))

∣
∣ . (17)
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Fig. 7 Stability analysis of the closed-loop obtained with a reduced-order controllerK: the closed-
loop is reformulated according to the controller modelling error K − K�

Fig. 8 Evolution of the controller modelling error as a function of the controller reduction step

The evolution of the controllermodelling error ‖K − K�‖∞ according to the order
of the reduced controllerK is represented on Fig. 8 for the two considered reference
models, M1 and M2. According to Fig. 8, to ensure that the resulting closed-loop is
internally stable, one may reduce K�

1 up to r = 13 and K�
2 up to r = 2.

However, this stability test is too conservative: it is not possible to conclude any-
thing regarding internal stability for controllersK for which ‖K − K�‖∞ > γ̃ . In the
present case, both order one controllers given in (16) stabilise internally the rational
model. Another solution would be to use the model-free stability analysis presented
in [6] but it may be complicated for the user to conclude regarding internal stability.
To that extent, another approach to analyse stability in a data-driven framework is
introduced in Sect. 4.
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3.3 Model- Vs. Data-Driven Control Design Remarks

Throughout this section, it has been demonstrated how central the Loewner tool
can be, either for model-driven and data-driven control. Interestingly, by choosing
the closed-loop performances M̂ = M2 obtained with the first approach, the second
controllerK2 is able to recover exactly the same controller properties, while avoiding
the complex model construction step. This property reduces the time consuming
model construction step and allows a quick design of the controller. However, this
main advantage is balanced by the fact that in the model-based approach, the stability
assessment is usually carried out using the approximated model, here Ĥ33

xm . This
latter being very accurate, the eigenvalues computation is traditionally enough for
concluding of the stability, robustness ... On the contrary, in the second data-driven
approach, the stability cannot be analysed as is and robustness (conservative) bounds
are used instead.

Both approaches can be viewed as equivalent since they lead to the same con-
troller. Moreover, in both cases, the interpolatory framework offered by the Loewner
matrices is the major ingredient for the success of the design. One may consider
these approaches as complementary: the model-based approach may be privileged
for critical systems where model understanding is of major importance and for which
engineering time can be spent, while the data-driven one should be the best solution
for fast computation, preliminary design, for which neither safety nor critical issues
are in the scope.

4 Stability Assessment of L2 Meromorphic Functions

Independently of the chosen control design approach, both methodology rely on
a rational model and the stability and performances obtained by the controller on
the irrational model cannot be guaranteed. This is why, in this section, the stability
involving the original irrational transferHxm , is addressed in an nonstandard manner
and involving once again the Loewner matrices.

4.1 The L∞ Procedure

Being given a rational controllerK and the irrational model defined by the meromor-
phic functionHxm , one important challenge is to assess the stability of the closed-loop
and e.g. to evaluate its stability when delay enters in the loop (delay margin of the
interconnection). These questions are gathered on Fig. 9, for which the corresponding
closed-loop naturally reads



Interpolation-Based Irrational Model Control Design and Stability Analysis 367

Fig. 9 Feedback loop scheme for stability and margin computation. The objective is to assess the
stability of the interconnection K(s) using Hxm (s) and a fixed delay τ in the loop

Mτ (s) = Hxm (s)K(s)

1 + Hxm (s)K(s)e−τ s
, (18)

where τ ∈ R+ is the delay value affecting the loop.On the basis of [16] and onChap.5
of [17], let us now propose a numerical procedure for the stability approximation
of infinite L∞ meromorphic functions. Note that the proposed version extends the
one presented first in [16] and second in [17] by providing a much more numerically
robust version, and now considers L∞ functions. The L∞-MFSA procedure given
in Algorithm 1 is first proposed.

Algorithm 1 L∞-MFSA - L∞ Meromorphic Function Stability Approximation

Require: H ∈ L∞, {ωi }Ni=1 ∈ R+, N ∈ N and ε ∈ R+ (typically twice machine precision)
1: Sample H and obtain {ıωi ,H(ıωi )}Ni=1

2: Construct an exact Loewner interpolant and obtain Ĥr , ensuring interpolatory conditions
3: Compute Ĥr+, the best stable approximation of Ĥr (e.g. using [11])

4: Compute the stability index as stabTag = ||Ĥ+ − Ĥ||L∞
5: If stabTag < ε, then H is stable, otherwise, H is unstable

Algorithm 1 embeds a relative simple procedure, which will be shown to be
actually quite effective, fast and reliable. The idea consists in exactly matching the
original input-output model by a rational model Ĥr , by guaranteeing interpolatory
conditions. Then, to seek for the best stable approximation Ĥr+ of the obtained model
Ĥr . The L∞ distance between the interpolated Ĥr and stable Ĥr+ models is then
computed. If this latter is smaller than a given threshold ε > 0, then we conclude
thatH is stable, and unstable otherwise. By applying the procedure to (18), including
the irrational model (4), for varying frozen values of delay τ j (20 linearly space
between 4.6 and 5.5 has been chosen, surrounding the delay instability margin),
leads to the following results of the stabTag:

[
0, 0.8412 × 10−11, 0.2496 × 10−11,

0.4084 × 10−11, 0, 0, 0, 0, 0, 0, 1.7719 × 107, 1.6346 × 106, 50.8770, 34.8265,
26.4887, 21.3817, 17.9326, 15.4471, 13.5709, 12.1046

]
. These values indicate that

the closed-loop is stable up to the destabilising delay value τ j ≈ 5.0737s.
To assess this approach on such a simple SISO case, the stability can also be

checked using the Nyquist graph of L = HxmK. Figure10 illustrates the Nyquist
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Fig. 10 Nyquist diagram of L(s) for varying values of τ . Solid blue curves are Nyquist for which
the stability tag stabTag is below 10−10 (stable configuration) and dashed red curves for which
tag is above 10−10. Bottom right: zoom around the Nyquist point (green +)

curve bundle as a function of the τ and shows that the proposed approach leads to a
good delay stability approximation.

4.2 Approximation-Driven Arguments for the L∞-MFSA

Algorithm 1 is rather simple and deserves some comments arguing of its viability.
Let us first refer to [16] where arguments and a similar procedure, involving the
TF-IRKA algorithm [4] have been suggested (this procedure ensures H2-optimal
bi-tangential interpolatory conditions). This later provides good results but lacks in
determining the approximation order r . Additionally, asTF-IRKA is anH2-oriented
procedure its validity in theL2(ıR) function space is limited.Here, the path presented
in Fig. 11 is used to construct the L∞-MFSA procedure.

With reference to Fig. 11 (top left three blocks), the TF-IRKA interpolatory con-
ditions are released and the Loewner framework is used instead. First, one major
benefit of such a trade stands in the automatic selection of the approximating order
r , done by a rank revealing factorisation where machine precision is expected. Sec-
ond, it interpolates the data without any stability constraint. One obtains Ĥr which
tangentially interpolates the data and which, by increasing the numbers of samples
zi in (7) hopefully converges to the same model Hr (e.g. the rational approximation
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Fig. 11 Graphical illustration of the L∞-MFSA procedure (starting point, at top left)

obtained by Loewner matrices is not affected by the number of interpolation points).
At this point, the resulting model Ĥr may be stable or unstable.

• If Ĥr is stable, then one concludes on the stability of H, up to some tolerance
ε > 0. Indeed, one could always add εHa ∈ H∞ to the data without being able to
see the effects on the interpolation conditions achieved by Ĥr , due to numerical
accuracy.

• If Ĥr is unstable, as it is always possible to find an unstable approximant to a stable
model in the L2 sense [16], one may use the projection onto a stable subspace,
here the H∞ one, denoted Ĥ+ = PH∞(Ĥr ), to emphasise the importance of the
unstable part of Ĥr on the interpolation conditions. If the unstable part plays a
negligible role (i.e. ||Ĥr − Ĥ+||L∞ < ε), then a stable interpolating model has
been found for H which is therefore likely to be stable. Otherwise, if the unstable
part cannot be removed, then it is likely that H is unstable.

TheLoewner framework allows tofind a rationalmodel Ĥ ∈ RL∞ that interpo-
latesH ∈ L∞ at an arbitrary number of frequencies. The suggestion we claim
is in twofold. One is always able to find a rational model Ĥr ∈ RL∞ that well
reproducesH ∈ L∞(at least interpolates a large number of points).We assume
that this implies a convergence in theL∞ sense,meaning that one is always able
to find a rational function matching an irrational one defined over L∞. Then,
if Ĥr ∈ RL∞ can in addition be projected onto Ĥ+ = PH∞(Ĥr ) ∈ H∞(C+)

with negligible loss in the L∞-norm, then the unstable part can be considered
as irrelevant for the behaviour description of H, which can thus be assumed
stable. Otherwise, if the unstable part leads to important L∞-norm mismatch,
H can be considered as unstable.
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5 Conclusion

In this chapter, the interpolatory framework proposed by the Loewner setup, as
introduced in the seminal paper [13], has been further used for the control design
and the stability estimation. The singularity of the proposed approach is to show
that the Loewner is not only a model approximation tool, but a complete dynamical-
oriented tool. The main contributions of this work is twofold. First, to compare
frequency-oriented data- and model-based control design approaches, showing that
both lead to similar performances. Second, to suggest a method for approximating
the stability of any L∞ functions (either rational or irrational). Both contributions
are based on Loewner matrices. Through an academic example described by a linear
PDE set, the Loewner framework has been used for different purpose, showing its
impressive versatility and applicability to solve complex problems. To the authors
perspective, this approach opens the fields for analysing and controlling irrational
(infinite-dimensional) models in a relatively simple manner. Even if the approach
does not stand as a completely closed solution, it can be viewed as an alternative for
engineers and practitioners to deal with irrational models in a simple manner.
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Oscillations in Biology

Jitendra K. Meena and Clifford C. Dacso

Abstract Experiments in molecular biology are generally performed in a static
state; analytes are frozen in time and displayed as if there had been no changes over
time. Yet, biology is dynamic, responding to internal regulatory demands, external
stimuli and evolutionary pressures. There are fundamental rhythms in biological
systems such as ovulation in humans and estrus in animals. At the cell level, day-night
synchronization, the 24 h circadian cycle created by a feedback loop of gene circuits,
affects vital functions. Disruption of the circadian cycle has been shown to have
protean health consequences. In contrast, little is studied about the rhythms inde-
pendent of 24 h clock. This article reviews the non-circadian rhythms in biological
systems existing at the transcriptional level; inherent problems and biases in detecting
these from biological data and the use of mathematical methods in overcoming these
biases.

Keywords Genetic network · Transcription factor · Transcillation · BMAL1

Analysis of the cyclic nature of gene transcription has disclosed cycles other than
circadian. Application of the eigenvalue decomposition of the matrix pencil to
temporal transcription data, for example, demonstrated rhythms that are indepen-
dent of the circadian cycle at 12 and 8 h. Experimental examination of the genes
involved in this novel 12 h clock discloses them to be intimately involved in aspects of
inflammation and energy. The eigenvalue pencil method adds to the analysis of gene
transcription by disclosing non-circadian oscillations and suggesting those likely to
be independent rather than harmonic of the dominant circadian rhythm. Addition-
ally, plotting the eigenvalues on the unit circle discloses aspects of the fate of the
transcribed RNA, whether the gene continues to oscillate, decays, or becomes disor-
ganized and chaotic. It is thus unveiling a deeper mechanistic aspect of non-circadian
rhythm to the functions of gene transcription.
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1 Cycles in Biology

1.1 Introduction

In 1953, the arcane world of genetics intersected with the world at large with un
grand éclat when Francis Crick and James D. Watson announced the discovery
of the three-dimensional structure of DNA. It was such a momentous event that
the New York Times recognized it with one column of type on page 17 (CLUE
TO CHEMISTRY OF HEREDITY FOUND; American and Briton Report Solving
Molecular Pattern of Vital Nucleic Acid TESTS BYX-RAY PLANNEDWork Done
in England, if It Is Confirmed, Should Make Biochemical History, 1953). Nonethe-
less, it did eventually shake the world and continues to as the mechanism by which
DNA controls inheritance has become more evident by the day. The elucidation of
the three-dimensional structure of DNA compelled understanding the mechanism by
which themolecule self-replicated, thus disclosing theway inwhich hereditary infor-
mation is passed on through the generations. That insight, when ramified through
the ensuing years, has increased in complexity.

It is now clear, for example, that the substituent components of genetic infor-
mation transfer are mutable and modifiable, even during the process of replication
itself. Further, in animals, genes need to be turned on and off for their action to
result in orderly biological function. The “Central Dogma” of genetics as described
by Francis Crick in lecture notes from 1956 (Fig. 1) describes the one-way path by
which DNA is decoded, recruits RNA, and results in the synthesis of proteins that
build and operate the cell machinery. This function repeats at an astounding rate
with the mammalian gene transcribed entirely within minutes. Gene transcription
is initiated by the recruitment of transcription factors at the level of DNA followed
by polymerization of ribonucleotides by the DNA-dependent RNA polymerase and
termination by the specialized proteins that cleave off the nascent transcripts. Subse-
quently, the RNA molecule is spliced where non-coding areas called introns are
removed, then exported from the nucleus, and translated by intricatemachinery called
ribosomes resulting in protein production. Throughout the life of a transcript, special-
ized molecular machineries regulate synthesis and turnover to maintain a dynamic
equilibrium. Each transcript that is necessary for producing an individual protein is
thus controlled by the genetic networks driven by the survival and the growing need
of an individual cell. Such a regulation leads to rhythmicity of the transcript, and
studying this rhythmic behavior allows us to unveil the underlying genetic network
and evolutionary pattern of a biological system. With this in mind, it is curious that
most analyses of cell functions look at the phenomena as if they were frozen in time
despite the intricate dynamism of the process.

Evolution forms the core of biology. Indeed, Dobzhansky’s famous dictum is
contained in the title of his seminal article, “Nothing In BiologyMakes Sense Except
In The Light of Evolution.” Reference [1] Evolution is not directional or teleologic;
thus, it is not fruitful to ask, “what is the purpose of evolution?” Instead, the inherent
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Fig. 1 The unidirectionality of transcription and translation with embedded cyclic activity. From
Wellcome Library, Francis crick papers

stochasticity of biological properties allows for natural selection, the colloquial “sur-
vival of the fittest”. At a more macro level than the gene, periodicity remains ubiqui-
tous in biology, generally characterized by a feedback loop. One such loop drives the
rhythmic oscillations of electrical generation in the sinoatrial node of themammalian
heart, thus generating sufficient electricity to depolarize the myocardium and drive
a regular heartbeat. Recent work has clarified that the generation and propagation
of the electricity depends on the mutual entrainment of subcellular and membrane
clocks [2].

This is not to say that there is no order in biological systems. From the constraints
of physics to the appearance of lethal mutations, there are many spaces that are not
permissible and there are “guard-rails” that exist to preserve the cell and thus the
organism from the emergence of detrimental events. Additionally, there are many
events in the biology of the cell that are cyclic, using the same process, and substrate
many times.

1.2 Krebs Cycle in Biological Systems for Energy Generation

Cycles are parsimonious of resources as cyclic activity reconstitutes the substrate
for use again the next time the cycle activates. An archetypical example of this is
the Krebs, or tricarboxylic acid cycle (Fig. 2). In this cycle, energy is produced from
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Fig. 2 The krebs cycle [3]

glucose in the mitochondrion of the cell animal. Glucose comes in at the top and
is stored by a process called oxidative phosphorylation as a high energy phosphate
bond of adenosine triphosphate, ATP. Through a beautiful series of chemical events,
most of the energy is stripped out of the glucose molecule, but the constituents of
the reaction are reconstituted to do the same thing over again. Moreover, this repeats
as long as there are oxygen and glucose. It does not serve the majesty of biology to
oversimplify this process as it is complex and full of variability. However, it is these
features that render the mathematical modeling of biological processes difficult. One
way to overcome the modeling challenge is to account for each of the substituents
of the cycle and model the output of the cycle itself.

1.3 Essential Biological Rhythms

From the effects of the lunar cycle to extremely rapid oscillation in cell metabolism,
cyclic activity forms the foundation of biological structure and function. Of great
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Biological Rhythm Period 
Cell-level oscillations 
Central Pattern generators 0.001-10 seconds
Cardiac pacemaker 1 second 
Aerobic glycolysis 1-20 minutes 
Insulin secretion in humans 4-6 minutes 
Murine somitogenesis 2 hours 
Trascription factors 90- minutes-3 hours 
Circatidal clock (marine animals) 11-12 hours 
Cell stress marker (animal) (XBP1) 12 hours 
Circadian cycle 24 hours 
Organism-level oscillators 
Estrus (cow) 21 days 
Ovarian cycle in humans 28 days 
Estrus (dogs) 6 months 
Seasonal affective disorder 1 year 
Periodic Cicadas 17 years 

Fig. 3 Some common oscillators in biology. Adapted from [4]

interest, there are a large number of known oscillators in biology that are of enormous
relevance to human health (Fig. 3).

1.4 Molecular Oscillators

A periodic function is critical to several fundamental biological processes. Best
known, of course, is the circadian oscillator that has approximately 24-h rhythmicity.
Its name translates from theLatin circa, around, and dies, day. It is instructive to spend
a few words on the circadian oscillator as it has been well worked out in the past
decade.

Because circadian rhythms are under the direct control of the gene, they appear in
every cell in the body. An elegant and intricate feedback loop controls the circadian
rhythm in cells under the control of an area of the brain called the suprachiasmatic
nucleus, which synchronizes the circadian cycle to the ebb and flow of daylight. In
humans, of course, the circadian rhythm turns things “on” in the daylight and “off”
at night. Rodents, the species best studied for mechanisms of circadian biology, are
nocturnal. Thus, the reverse is obtained with the same stimulus. Circadian disrup-
tion, the situation where there is dyssynchrony between the endogenous clocks and
external cues, affects human physiology and contributes to many disorders (Fig. 4).

Recent work has elucidated a new and essential cycle to the cell metabolism
machinery. Using tools developed by Ionita and Antoulas, investigators uncovered
and characterized a 12 h rhythm in cells that is independent of the circadian clock [6,
7]. Subsequent work defines the role of a single gene, XBP1s, as a master regulator
of the 12 h clock, much the same as Per, in Drosophila and CLOCK:BMAL1 in
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Circadian-Dependent
Function 

Consequence of dyssynchrony 

Sleep/wake,
feeding/fasting

Sleep duration, jet lag 

Blood vessel tone Atherosclerosis, hypertension 
Immune function Altered inflammatory response 
Fat storage Altered feeding behavior 
Metabolic functions Fatty liver disease 
Hormone secretion Hormone-specific dysfunction 

Fig. 4 Investigations in animals and humans confirm the consequences of circadian disruption [5]

eukaryotic cells, the former recognized by theNobel Prize in Physiology orMedicine
in 2017 [8–10].

Indeed, the periodicity of biology has been known since the time of the ancients.
The ebb and flow of the seasons, coupled with the repeating patterns of the stars and
other celestial bodies, were ample proof that periodic phenomena are a feature of
the natural life. Observations of the periodicity of biology were also evident to the
earliest observers. Mammals had specific versions of estrus defining fertility, reptiles
molted and grew, and all species were born, lived, and died. However, these rhythms,
regardless of their importance to the organism, are not periodic in the mathematical
sense. The adaptation of themathematical notion of periodicity to repetitive functions
in biology discloses aspects of biology that would not have been perceived without
the analysis (demonstrated in the following section).

2 Mathematical Tools for Biological Oscillation Discovery

2.1 Introduction

The previous section describes the nature of biological rhythms, the complexities
associated with their regulation, and the difficulty in segregating the independent
non-circadian rhythms when dominant circadian rhythms are present. This section
reviews the merit of the tools developed by Antoulas and collaborators in disclosing
such non-circadian rhythms in an unbiased manner [6].

Smets and Bartholomay develop the notion of periodicity in the mathematical
sense as a “function y such that y(t) = y(t + p) for all t in the domain of y and
p > 0 [11]. Biological precision does not mimic this, yet the notion of period-
icity is pervasive and a very useful construct to explain observed phenomena. Smets
and Bartholomay proceed to construct a series of expressions to describe what they
call “bioperiodicity”, a less strict example describing a phenomenon that oscillates
between upper and lower limits in a repetitive fashion. The expressions thus derived,
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however, are from a noiseless case and specifically eliminate stochasticity. More-
over, it is those two latter restrictions that limit the usefulness of their mathematical
expressions in the understanding of biological phenomena.

Stochasticity is a feature of many biological phenomena. Variations in the cellular
chemical milieu, temperature, physical proximity, as well as variations in molecular
interaction, create variability in a biochemical process that, under strict laboratory
conditions, could be non-probabilistic. Stochasticity, though, has been a confounder
for understanding the directionality of cell organization and function. Cell func-
tions must be coordinated temporally and spatially; the right components must come
together at the right time for the cell to thrive and reproduce. Mammalian cells do
this, in part, by use of checkpoints and breaks that assure that a process is at the
appropriate stage of repair before another one is started. Assessment of oscillations
in biological function is challenged by detecting the underlying rhythm in the face
of the underlying confounding stochasticity.

Noise is inherent in the measurement of biological phenomena. The errors and
mistranslations occurring in the process of protein synthesis play a significant role
in the genesis of disease [12]. Also, surprisingly, such errors may be propitious and
provide a mechanism for the organism to develop superiority in reproduction and
the game of life in general [1]. Noise, however, can be very confusing when trying
to tease out a biological phenomenon from the background.

Finally, as laboratory investigation becomes more complex with sophisticated
instrumentation and complex biologics, lab-to-lab variation appears more often [13].

2.2 Matrix Pencil Method for Studying Oscillations
in Transcription

The fundamental tools of biological rhythm detection in gene transcription assume
the presence of a rhythm. However, this is not always so. Indeed, there are many
genes whose transcription is DC, either on or off. Others can be induced to oscillate
in the presence of a transcription factor such as the oncogeneMYC (Meena JK,Wang
J, Dacso CC, unpublished). Therefore, it is useful to examine gene transcription as a
signal and apply a signal processing methodology to it. This strategy does not elide
the fundamental problems of biological variation, stochasticity, and noise. Thus, it
is useful to seek a mathematical strategy that would find a rhythm if one existed and
help to distinguish it from harmonics of underlying rhythms. Strategies for detecting
oscillatory rhythms have been extensively reviewed [14, 15]. The Fourier analysis
methods (e.g., the DFT) decompose a signal in terms of oscillatory components
exclusively. Therefore, it is hard to know whether the oscillations obtained by means
of DFT are actually present in the biological system or not. Furthermore, DFT-related
methods yield orthogonality of the various components, without regard to biological
significance. The methods have benefits and liabilities but when discovery is the
goal, the matrix pencil method serves well by both being agnostic to the presence
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or absence of a rhythm [6, 7] and having the capacity to distinguish the potential of
independence by demonstrating orthogonality This allows us to observe stochastic
behavior of a transcriptional rhythm due to perturbations caused by activation of a
master transcription program.

The matrix pencil allows the reliable computation of the dominant oscillations in
biological time-series data, circadian or non-circadian. Even more, the matrix pencil
method might not reveal oscillatory behavior, depending on the data. The eigenvalue
pencil method does not force orthogonality on the oscillatory components. Due to the
orthogonality, an oscillation is not affected by further computations. In other words,
discovered oscillations are independent in contrast to the other methods. Previous
methods of oscillation computation suggested that if a non-circadian oscillation is
found, itwill be considered a harmonic of the circadian rhythm.The eigenvalue pencil
paved the way to discover a 12 h autonomous rhythm in cells that is independent of
circadian cycle [7, 16, 17].

Figure 5 is an example of how the Eigenvalue pencil revealed aspects of oscillation
in gene function that are not apparentwhen the rawdata are observed. The experiment
involved the collection of mice liver samples every two hours for 48 h, isolating the
RNAat each timepoint and hybridizing theRNAon amicroarray to reveal the number
of individual RNA species. The top panels are microarray data obtained from livers
of entrained mice [18]. Model fitting smooths the curves and begins to disclose
aspects of the genes, but it is not until the eigenvalue pencil is applied to data that
the superimposition of oscillations is clear.

Fig. 5 Decomposition of gene oscillations by the eigenvalue/pencil method. Top row: raw
microarray data; second row: fitting two different models (fifth-order approximation in dashed
red and ninth-order approximation in solid green) to raw data (blue dots); third row: superimposed
oscillations revealed by the ninth-order approximation; fourth row: amplitudes, phases, and periods
of different oscillations with the color matching the different oscillations depicted in the third row
[7]
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This analysis allowed the detection of a suite of genes with 12 h cycles, but the
question remained as to their independence from the dominant 24 h circadian clock.
When examining the angles between the oscillations, several genes were discovered
that were orthogonal to the 24 h cycle, thus suggesting independence [7, 16]. Further
experiments that involved the deletion of a master regulator of circadian rhythm
established the independence of a 12-h rhythm.

In the laboratory, it is possible to eliminate a gene (“knockout”) and thus see the
effect on the whole animal from eliminating that regulatory function termed as “loss-
of-function experiments”. To establish the independence of the newly discovered
12 h rhythm, cells were engineered that were deficient for BMAL1 gene (BMAL
knockout), a core regulator of the circadian clock (24 h rhythm). When BMAL1 was
knocked out, the 24 h circadian cyclewas eliminated in the gene transcripts, but the 12
h rhythm remained. These experiments showed that perturbation of circadian rhythm
regulator BMAL1 did not impact the periodicity of the 12 h oscillation regulator
XBP1 (Fig. 6). This conclusively demonstrated a hitherto undescribed feature of
transcription, a feature whose discovery depended on the use of the eigenvalue pencil
in a field for which it was not originally designed.

Further use of eigenvalues is the depiction of a unit circle16, 17 whereby it becomes
visually obvious that a point is oscillatory or not. Further, the construction of the unit
circle describes an important feature of oscillating genes: what is their progress
over time. The unit circle of eigenvalues offers a rapid and accurate method of
distinguishing these features (Fig. 7).

Fig. 6 Data from Zhu et al.,
2017. Gene expression data
shows 12 h oscillation in the
regulator gene XBP1.
Control (red line) shows a
robust oscillation in the
expression of XBP1
transcript, which is not
altered by knockout of
circadian regulator Bmal1
(green line) [7]
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Fig. 7 Eigenvalues (blue dots) close to a unit circle (green line) where eigenvalue pencil method
provides oscillatory poles ( adapted from Antoulas et al. 2018) [16]

2.3 Difficulty in Data Assessment and Analysis of Oscillation
in Biological Data

Other problems confound the detection of infradian and ultradian rhythms in biology.
Amajor confounder is the synchronization of cellular clockswith the circadian clock,
thus making it appear that the ultradian rhythms are harmonically dependent on the
24 h rhythm. Another important problem is the technical difficulty in performing
experiments with sufficient granularity to overcome the Shannon-Nyquist limitations
that determine the interval of points required to generate unambiguous curves [19].
A third problem is to interconnect the oscillations in different biological subsystems
(e. g. links of transcriptional oscillation to the oscillation in the metabolic activity
of a cell). Elucidating these problems will require a mathematical framework laid
out by eigenvalue pencil and merging it with methodologies that analyze a dynamic
network process such as graph signal processing, while also simultaneously testing
the interpretation in a reasonable biological system.

3 Conclusion

In summary, we are just beginning to comprehend the complex biological systems
through the generation of novel methodologies that involve innovative techniques
and the application of mathematics. In this regard, the eigenvalue pencil method
serves as a mathematical pipeline that allows the reliable computation of the domi-
nant reduced-order models, thus informing a great deal about the oscillations present
in a time-series type of data.16 Furthermore, applications of the eigenvalue pencil
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method are broad. It is used to compute oscillation of non-circadian (12 h, XBP1-
driven oscillation in transcriptome of mice liver), oscillation in the body tempera-
ture (Antoulas, Dacso, unpublished), non-circadian oscillations in transcriptome of
cultured cells (Meena,Wang,Westbrook, &Dacso, in preparation), thus a significant
advancement to both the mathematical and biological research.

It is fashionable in cell biology to append “omics” to a feature, thus describing
its independence and utility. Genomics (sequencing of genomes), metabolomics
(profiling of cellular metabolome), proteomics (profiling of cellular proteins), and so
on now grace the scientific literature. These are also avenues where understanding
the oscillation dynamics is a must for us to have a system-wide understanding.
The addition of time to biological observations coupled with the eigenvalue pencil
method augments the usefulness in “omics” such as the possibility of “temporal
transcriptomics” or in the case of oscillatory functions in transcription the port-
manteau word, “transcillation” (Jitendra Meena, Ph.D., personal communication).
Jargon aside, temporal analysis is increasingly recognized as a critical feature of
understanding the cell, organs, and organisms in general. To this end, new tools
in mathematics, dynamic signal processing, and biological systems are required. A
platform that allows the integration of the mathematical solutions to biological ques-
tions will be the key to solve the problems of stochasticity in functions as well as
noise from biological variability. Application of the eigenvalue pencil to unpacking
a biological function disclosed a new area of investigation that has the promise of
significant explanatory power. Similar cross-disciplinary collaborations are likely to
be fruitful and should be pursued by interested investigators.
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Abstract This work focuses on the development of model reduction workflows for
coupled flow and geomechanics arising in Ultra-Low Permeability (ULP) reservoir
simulation. ULP challenges conventional simulators because they require multi-
physics couplings, e.g., flow, thermal, and geomechanics couplings, which poses a
severe burden regarding computational efforts.We tackle this problemby implement-
ing a workflow for a two-step Proper Orthogonal Decomposition/Discrete Empirical
Interpolation Method (POD-DEIM) model reduction approach for flow and geome-
chanics. More specifically, we perform the standard offline training stage on dis-
placements as primary variables to create a basis for each primary variable using
POD. During the online phase, we project the residual and Jacobian that arise from
both poroelasticity and rate-independent poroplasticity into the given basis to reduce
one-way coupled flow and geomechanics computations. We approximate the ten-
sors, for the energy equation, to minimize the serial-time. We consider the role of the
heterogeneity and material models such as Von Mises and investigate the benefits of
hyper-reduction via DEIM on the nonlinear functions. Our results, which focus on
linear and nonlinear thermo-poroelasticity, show that our Model-Order-Reduction
(MOR) algorithm provides substantial single and double digits speedups, up to 50X
if we combine with multi-threading assembling or DEIM and performMOR on both
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1 Introduction

Unconventional or ULP reservoirs concentrate the bulk of hydrocarbon production
activity in the US. Rapid assessment of the subsurface integrity and environmen-
tal impacts of hydraulic fracturing (fracking) campaigns used in these reservoirs
are paramount for sustainable production in unconventional reservoir developments.
Geomechanical effects are often encountered in subsurface flow problems, and they
can affect reservoir deformation, well integrity and flow response. The geomechan-
ical behavior of hydraulic-fracturing is of importance to environmental effects as it
can be used to model induced microseismicity and caprock integrity. Coupled flow
and geomechanics simulations can model such systems, but they are computation-
ally expensive. Coupled flow and geomechanics simulations are the basis for such
developments. However, these simulation models are highly elaborate and require
solving nonlinear algebraic systems of millions of equations and unknowns. Such
simulations allow assessing the induced stress changes that hydrocarbon production
or the injection of fluids in a reservoir (RS) induce in the surrounding rock mass.
These studies often involve compaction and subsidence that could produce harmful
and costly effects such as in wells casing, cap-rock stability, faults reactivation, and
environmental issues as well.

Computational demands are one of the main drivers in selecting the proper model
resolution and coupling mechanisms in such reservoirs. The multiscale nature of
the geological formation requires solving discretized models of millions of gridcells
for flow only—usually solved by finite volume techniques. In addition, coupled
flow with another set of higher number of unknowns for the geomechanics (usually
discretized by finite element techniques) may extend the domain beyond the flow-
reservoir model. This is especially daunting in uncertainty quantification (UQ) and
production optimization frameworks where multiple runs of the coupled problem are
required to explore the full spectrum of possible scenarios. Therefore, it becomes
necessary to obtain some form of reduced complexity models, e.g., using model-
order reduction (MOR), to mitigate the high computational cost of such simulations,
and eventually allow for real-time decision-making during the production cycle of
such reservoirs.

MOR has been successfully applied for reservoir simulation (flow only) to allevi-
ate the high computational cost [1–5] but, its application to coupled multiphysics, as
in the problem herein, has been minimal. MOR, in this setting, has been developed
based on the so-called snapshot-based MOR, whereby the reduction is attained by
the POD method [6]. Simulation of single- and two-phase flows in porous media, as
in the case of the work presented here, is a highly nonlinear process due to the nature
of the fluid-rock interaction. In order to handle such non-linearities, POD-DEIM
frameworks [7, 8] and the Trajectory-Piecewise-Linear (POD-TPWL) have been
implemented [2]. For the problem herein, we rely on a global-in-time POD imple-
mentation whose projection matrix remains constant in time, since ULP exhibits a
monotone behavior that does not require a local-in-time POD basis as in [9–11].
This is to say that reservoir pressure behavior is smooth and its dynamics can be
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expressed by snapshots taken directly for the entire time span as opposed to taking
localized-in-time snapshots to capture varying dynamics. However, it is well known
that POD heavily depends on the set of collected snapshots obtained in the offline
step of the algorithm, and judicious selection of such snapshots is an important step
in our framework.

There exists a vast literature of model reduction for structural mechanical prob-
lems [12, 13], and in particular, for the structure persevering MOR for second-order
systems whereby, the mass, stiffness and damping matrices are preserved as in the
original form [14]. It has been, however, not the path taken in the area of geome-
chanics. The reader can find a helpful summary of recent MOR developments in
geomechanics in [10, 11]. Particular applications of POD-based MOR techniques
for mechanics are considered in [15–18]. To the best of our knowledge, [10, 11, 19]
were about the first applications of MOR for coupled flow and geomechanics using
POD-like approaches. In [20] a MOR method for coupled flow and geomechanics
is developed within the POD-TPWL framework. These references include bridges
between POD and Newton/Krylov solvers, homogenization, and domain decompo-
sition. In order to tackle the non-linearities, we use the DEIM approach [7, 8]. DEIM
relies on projecting into an oblique subspace that is built based on snapshots of the
primary variables. However, the original papers consider the Galerkin projection; we
instead utilize the Petrov-Galerkin projection that is more robust [9, 10, 21]. It is
important to notice that DEIM approximates the tensors by using a subspace based
on snapshots of a representative nonlinear term, not the primary variables. For rate-
independent plasticity, we rely on the incremental finite element formulation whose
numerical algorithm usually defines an implicit function for integration of the rate
constitutive equations of themodel. Fully-linearized finite element models have been
used for path-dependent materials [22]. Here, the authors relied on linearization of
the incremental stress updating procedure, rather than the rate stress-strain tangen-
tial relation, to achieve quadratic rates of convergence in the gradual finite element
process. Detailed derivations can be found in [23, 24].

In this work, we continue our efforts [11] where a POD-based projection MOR
scheme for coupled single-phase flow and thermal-poroelasticity attained substantial
speedups, up to 50X. Here, we consider two-phase flow and add the DEIM based
hyper-reduction for the thermal and mechanic parts. We see that we can still attain
tremendous speedups. We presented an early version of this research in a conference
paper [25]. The present work revises this last one and introduces a two-step DEIM
process that, from our numerical experiments, improves the speedup compared with
earlier findings [26]. We organize the remainder of the paper as follows. Section2
presents the mathematical models of the governing partial differential equations.
In particular, Sect. 2.1 revises the discretization of the flow equations and briefly
comments on the MOR model for flow. In Sect. 3 we propose the MOR method and
also shortly discuss POD-DEIM properties. Then, we present a numerical example
of our MOR algorithms in Sect. 4. Finally, in the last sections we state concluding
remarks, future work, and acknowledgments respectively.
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2 Mathematical Model for Thermo-Poroelasticity

We discuss the governing equations for linear homogeneous isotropic thermo-
poroelasticity and their finite element (FE) formulation. For the sake of brevity,
we provide most relevant information and refer to [24, 27–29] for detailed and more
complete description. We consider a bounded domain � ⊂ R

3 and its boundary is
� = ∂�. The time interval of interest ]0,�[. We describe flow and transport models
in porous media by a set of partial differential equations describing the conservation
of mass as a function of pressure, saturation, and temperature. For simplicity, we
neglect the inertial and temperature effects and focus on the two-phase oil-water
system. Thus the mass balance equation for each phase is:

∇ · (
ργ vγ

) + ∂
(
ργ φSγ

)

∂t
− ργ qγ = 0 in � × ]0,�[ , γ = {w, o} (1)

where � is the simulation time, ργ is the fluid phase density, vγ is the fluid phase
superficial velocity,φ is the porosity of the rock, Sγ denotes the fluid phase saturation,
qγ is the volumetric source/sink term and the subscript γ ∈ {o, w} indicates the oil
and water phases, respectively. We apply Darcy’s law:

vγ = −krγ
μγ

K · (∇ pγ − ργ g∇h) in � × ]0,�[ , (2)

whereK denotes the permeability tensor, μγ is the fluid phase viscosity, krγ denotes
the relative permeability of each phase (which is a function of water saturation), pγ

is the phase pressure, g is the constant of gravity acceleration and h denotes depth.
Combining Eqs. (1) and (2) yields

∇ ·
[
−ργ krγ

μγ

K · (∇ pγ − ργ g∇h)

]
+ ∂(ργ φSγ )

∂t
− ργ qγ = 0. (3)

The general oil-water model is completed by enforcing the saturation constraint
So + Sw = 1 and by specifying a capillary pressure relationship pc(Sw) = po − pw.
Aswe can see, Eq. (3) is nonlinear.We take p = po and Sw to be the primary unknown
variables, fromwhich pw and So can be easily computed.We can solve Eq. (3) numer-
ically using a several time-discretization schemes, but here we implement the fully-
implicit (i.e., implicit pressure and saturation) finite volume procedure for the two-
phase flow solution. One should note that discretization of the geomechanics equa-
tions is based on the finite element method. The reader can find more details in [30,
31], where other time discretization methods, such as implicit pressure-explicit sat-
uration (IMPES) is described. Finally, the porosity φ is considered a function of the
following variables:

φ = φ0 + α · (∇ · u − ε0v
) + 1

M

(
p − p0

)
, (4)
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where the additional parameters are, accordingly, α which is the Biot’s constant, u
represents the displacement vector, while ε0v is the initial volumetric strain. Herein
M is the Biot’s modulus, see [32], while φ0 and p0 denote a reference or initial
state. The common boundary conditions (BCS) for Eq. (1) imply no-flow.We should
also consider an initial or reference pressure and saturation distribution in the whole
domain. We begin from the equilibrium equation for a quasi-steady process for the
mechanics part:

−∇ · σ = fu in �

u = 0 on �u
D

t = σ · n̂ on �u
N

(5)

where σ is the stress tensor, fu corresponds to the vector of body forces, such as
gravity, for instance. Herein n̂ is the outer unitary normal vector as usual. We can
decompose the BCS �, in Dirichlet type, i.e., �u

D , and Neumann type BCS, i.e.,
�u
N . and the external tractions are known or prescribed. Hooke’s law combined with

Biot’s poroelastic theory defines σ by the following expression:

σ = C : ε − [
α

(
p − p0

) + 3Kβ
(
T − T 0

)]
δ ; C = λδ ⊗ δ + 2GI , (6)

where ε is the strain vector, T = T (x, t) is the temperature, T 0 is a reference temper-
ature, C is the elastic moduli, β corresponds to the coefficient of thermal dilatation
while K is the bulk modulus. The Kronecker delta is denoted by δ while λ, and G,
are the Lamé constants, and I represents the fourth-order identity tensor.

Let Th be a non-degenerate, quasi-uniform conforming partition of � composed
of convex elements. We can derive a finite element formulation for Eq. (5) upon mul-
tiplying it by a virtual displacement and integrating it by parts.We omit details herein
for the sake of conciseness but refer the reader to [24, 28, 33] for a detailed treatment.
We take a finite-dimensional subspace of the continuous Sobolev spaces [24, 28, 34]
as FE space, thus:

Ck (Th) = {
v ∈ L2 (�) : ∀e ∈ Th, v|e ∈ Pk (e)

}
, (7)

where Pk (e) represents the space of polynomials of total degree less than or equal to
k,Ck (Th) are continuous along the given element’s edges.We introduce the next nota-
tion to improve readability of the derivations to follow, (·)+ ≡ (·) + 1,which operates
on superscripts, for instance, n+ ≡ n + 1, where n and n + 1 indicate consecutive
time levels. We also define the linear operator, �(·)ij ≡ (·)i − (·) j , that defines the
discrepancy between different instances of a vector, i.e., �xn+

i ≡ (xn+ − xi ); for
consecutive snapshots the operator reduces to �xn+ ≡ (xn+ − xn) [5].

We obtain the loose coupling approach between flow and mechanics in different
ways. More information can be retrieved from [35] and references therein. Equa-
tion (8) shows one possible choice, where one solves the displacements first by
taking the pressures from the previous time step. Next, one updates the pressures by
using the newest displacements:
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Ku · un+ = fu + Qu
(
�pn0

)
(8)

where p is the discretized pressures, Ku is the stiffness matrix. We provide the
expressions for Ku and Qu in [24, 28, 33]. One can define an iterative coupling
scheme in different ways, but they all derive from the loose coupling approach by
incorporating an internal iteration to update lagged quantities. For further details,
please refer to [4, 29, 36]. Also notice that for thermal stresses, one can derive
an equivalent pressure drop, after Eq. (6), that renders Eq. (8) unchanged as shown
by [33]. The next subsection present the discretization of the nonlinear flow equations
to solve for the pressure and saturation.A similar approach can be taken for the energy
equations and temperature fields, but for the sake of space, we leave them out. The
reader is referred to [11, 24].

2.1 Discretization of the Flow Equations

The flow equation as described in Eq.3 is discetized using a finite volume approach.
The reader can refer to [37] for more detailed exposition of the space and time
discretization methods used in reservoir simulation. Most commercial reservoir sim-
ulators rely on the following system of discrete equations which for the wetting phase
reads [30]:

�
(
φργSγ

)n+

�tn
+ div(ρv)n+

γ = qn+
γ (9)

where qn+
γ has been converted to appropriate volumetric units as compared to Eq.1

and Darcy’s law implies:

vn+
γ = Kkrγ

μ
n+
γ

[
grad

(
pn+

γ

) − gρn+
γ grad(z)

]
(10)

where Sγ ,pγ ∈ R
nb denote the vector with, one saturation, and one pressure value

per cell, respectively, while φ is a diagonal matrix with the cellwise porosity values,
and nb is the number of cells in the mesh and z is the discretized depth. We remark
that both porosity and density are functions of the pressure. We thus can rewrite
equation (9) as:

Rγ ≡ �η
n+
γ

�tn
+ div(ρv)n+

γ − qn+
γ = 0 , (11)

where η ≡ (
φργSγ

)
is an algorithmic variable. The Jacobian would be:

Jγ = ∂Rγ

∂x
= 1

�tn
∂�ηγ

n+

∂x
− ∂

(
div(ρv)n+

γ − qn+
γ

)

∂x
, (12)
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where the state vector x ≡ (p,Sw)T ∈ R
N and N ≡ 2 · nb. Thus for the oil-water

system ( 9), the global-in-space tensors become:

R(x) ≡
{
Ro

Rw

}
; J (x) ≡

{
Jo

Jw

}
(13)

where R(x) ∈ R
N and J (x) ∈ R

N×N . Section 3.1 (Algorithm 2) covers in detail
how we propose to reduce the computational cost to solve the nonlinear systems that
arise from the discretization in space and time of coupled flow and geomechanics
equations.

3 Proposed MOR Method

We introduce here a regularized Petrov-Galerkin Newton-Raphson (PGNR) algo-
rithm. We start with the global MOR method and then comment about obtaining an
oblique subspace via POD. Since we consider staggered one- or two-way coupled
systems here, i.e., we do not solve all variables simultaneously; we present a general
treatment that segregates the primary variables, namely, pressure, water-saturation,
temperature, and displacements. We create a separate POD basis for every variable
and refer to a generic variable; namely, ω ∈ {x,uh,Th}, where x is cell-centered
while (·)h indicates the FE approximation of those quantities.

3.1 Global MOR Algorithm

After discretizing the governing equations of the problemof interest, we end upwith a
parameterized nonlinear dynamic computational model described by the large-scale
system of algebraic equations denoted by R(ω):

R(ω)(ω(n+);ω(n); . . . ;ω(0);χ
ω
) = 0 , (14)

here ω(�), � = 0, . . . , (n+) are successive solutions (or snapshots) at timesteps � and
only ω(n+) is unknown, ω(�) ∈ R

N (ω)

are the solutions to equation (14). Herein N (ω)

is the number of unknown degrees-of-freedom (DOF) for every variable, i.e., the
nonlinear system rank, χ

ω
∈ R

dω is the vector of input parameters such as material
properties, initial condition and BCS, etc. For the problems of interest here, the
function R(ω): RN (ω) × R

dω → R
N (ω)

is nonlinear with respect to its first argument.
The Jacobian J (ω) of the nonlinear systemR(ω) is defined by a matrix of N (ω) ×

N (ω) partial derivatives
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J (ω)
i j ≡ ∂R(ω)

i

∂ω j
(n+)

; i, j = 1, . . . , N (ω) . (15)

Model reduction aims at projecting equations (14) and (15) to a smaller subspace
spanned by the truncated solution snapshots of Eq. (8). Many implementations have
been investigated for reservoir simulation, i.e., multi-phase flow as in Eq. (9) and in
recent years they have been extended to multiphase flow by [1–4]. In the particular
case of solving the nonlinear system of equations, as shown above, we employ
the Newton-Raphson approach, and we know that it is a local method. Thus, its
convergence relies on the choice of the initial point. Providing an appropriate initial
guess for a given problem may be cumbersome, so we develop a modified strategy
to the Newton iteration by adding a globalization strategy to improve robustness.
The line-search procedure below seeks convergence regardless of the initial point.
Towards this end, we introduced a suitable merit function in [38], which guarantees
that Newton’s direction guides to a solution:

M(ω̃) = ||R(ω)(�(ω̃))||2, �(ω̃) = ωo + �ωω̃, ω̃ ∈ R
ñ(ω)

. (16)

Here�ω ∈ R
N (ω)×ñ(ω)

is the subspace matrix and ñ(ω) is the reduced space dimension.
The PGNR Algorithm 1 proposed in [9, 38] yields: find ω ∈ R

N (ω)

, R(ω)(ω) = 0.
We rediscovered the Levenberg-Marquardt regularization (ι in Algorithm 1) and
proposed such as algorithm in [9, 38], also a readable summary can be found at [11].
For the sake of brevity,we only note that the term ιI and (1 + �||R(ω)||with� ∈ (0, 1)
are regularization parameters. We enumerate the steps below.

Algorithm 1: Petrov-Galerkin steps

1 Solve for Newton increment: (�ω
T�ω + ιI) · �ω̃ = −�ω

T R(ω)

1+�||R(ω)|| ;
2 Decompression step: �ω = �ω�ω̃;
3 Sufficient decrease (globalization): Find ς ∈ (0, 1];

||R(ω)(ω + ς�ω)|| < g(ς)||R(ω)(ω)||, g(ς) < 1;
4 Update: ω = ω + ς�ω;

It should be noted that this is a global algorithm that retains its q-quadratic
rate of convergence moving on the affine subspace ω0 + �ωω̃, ñ(ω) 
 N (ω) where
�ω = J (ω) · �ω. We present the algorithm’s pseudo-code below. Notice that for lin-
ear elasticity the residual and Jacobian reduce to (see Eq. (8)):

R(uh) = Ku · un+ − fu + Q
(
p(n) − p(0)

)

J (uh) = Ku .
(17)
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Algorithm 2: The pseudo-code depicts the PGNR algorithm

Data: ω = ω0, εT OL , δT OL and KMAX , bMOR and �ω, bRegldi , bLSearch
Result: Solution to R(ω)(ω) = 0 or error message

1 ε = 1.0, ς = 1.0, δ = 1.0, k = 0, bRegld = (bRegld1 || bRegld2);
2 while ((ε > εT OL ) ‖ (δ > δT OL ))&&(k < KMAX ) do
3 if (k==0) then
4 [R(ω),J (ω)] = Residual Jacobian(ω);
5 else
6 J (ω) = Jacobian(ω);

7 if bMOR then
8 �ω = J (ω) · �ω, �ω = (

�ω
T · �ω

)−1 · (
�ω

T · R(ω)
)
;

9 �ω = �ω · �ω;
10 else
11 if bRegld then
12 ι = �||R(ω)||;
13 if bRegld1 then
14 J (ω) = J (ω) + ιI;

15 if bRegld2 then

16 R(ω) = R(ω)

1+ι
;

17 �ω = (J (ω)
)−1 · R(ω);

18 if bLSearch then
19 [ς,R(ω)] = LineSearch(ω,�ω,R(ω));

20 ω = ω − ς�ω;
21 if bMOR then
22 δ = ||�ω

T · R(ω)||;
23 else
24 δ = ||R(ω)||;
25 ε = ς · ||�ω||, k = k + 1;

26 if (k < KMAX ) then
27 return ω;
28 else
29 print “Could not converge...”;

InAlgorithm2 for simplicity, we take ι = �||R(ω)(ω(k))||.We employ as stopping
criteria for the algorithm the norm of the residual, δk = ‖R(ω)(ω(k))‖, the maximum
number of iterations, and the difference between two successive iterations, εk =
‖ω(k) − ω(k−1)‖. The functions Residual Jacobian() and Jacobian() evaluate, for
the specific problem, the residual and the Jacobian of the nonlinear system. We
refer the reader to [9] for a full explanation of the above algorithm. Notice that
DEIM impacts the functions Residual Jacobian() and Jacobian() where we must
obtain those tensors only on the rows that the DEIM indices dictate. The subspace
matrix�ω is dense; thus the productJ (ω) · �ω should exploit the Jacobian’s sparsity
to achieve performance as well as the product �ω

T · �ω since �ω is also sparse.
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Taking advantage of the sparsity would prove critical to reduce the overhead on such
operations. The system of equations in line 8 is mostly full and tiny, its rank is ñ(ω),
which strongly suggest using a direct frontal solver for tackling it. Finally, notice
that DEIM also affects LineSearch since we require to evaluate the residual there.
It is also essential to check convergence upon projecting in the reduced space while
running MOR as indicated in line 22. Indeed, part of the speedup appears because
the reducedmodel performs fewer Newton-steps per timestep compared to the FOM.

3.2 Global-in-Time POD Algorithm (GPOD)

We can now propose our Global-in-Time (GPOD), POD-based algorithm for the flow
Eqs. (9). We build an oblique subspace by performing POD analysis of snapshots
of the combined primary variable xn; thus the Petrov-Galerkin Newton-Raphson
scheme implies [5, 9]:

{
(�x

T · �x ) · �x̃ = �T
x · R(x)

xn+ = xn − �x�x̃
(18)

where �x = J (x) · �x and �x is the subspace matrix (see Sect. 3.1). From here on,
the notation ˜(·) refers to variables in the reduced space. We now present the Global-
in-Time DEIM (GDEIM) approximation for the energy equation.

3.3 Two-Step Global-in-Time DEIM (GDEIM) Process

In the original DEIM paper [7], we notice that one can capture the snapshots of
both primary variables and relevant nonlinear terms during the very same Full-Order
Model (FOM) run. We refer to this approach as the one-step DEIM process. How-
ever, there are other possibilities. Indeed, it is possible to improve the affinity with the
projection space if we, instead, capture the snapshots of nonlinear terms in a second
step, after creating the oblique subspace. In other words, we capture the snapshots
of the nonlinear terms at the decompressed states, so, we are filtering away high-
frequency features that make such DEIM process expensive from the computational
standpoint, i.e., deterioration of condition number the DEIM basis [26]. The alterna-
tive process that we refer as two-step GDEIM approach implies a first step in which
we run the FOM to save snapshots of the primary variables. We then build an oblique
subspace upon performing POD analysis on the variable ω. Once that we obtain,�ω,
we can then execute GPOD and store the snapshots of the nonlinear terms, which
are more affine to �ω. The whole idea entails improving the condition number of
the resulting approximated DEIM Petrov-Galerkin system by removing unwelcome
high-frequency features that tend to appear in the alternative one-step process. We
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present the algorithm below. Preliminary numerical results suggest that the two-step
process certainly improves the performance as aimed, but certain numerical deteri-
oration while comparing to GPOD may remain.

Algorithm 3 depicts a modified DEIM approach (GDEIM). We changed our
implementation software paradigm, in particular, memory allocation, to implement
the above procedure. The function “RunFOM_wDEIM_Step1” runs the FOM and
allocates memory to only storing snapshots of ω. Upon completion, we dump the
snapshot matrix to disk in step 2 and perform POD analysis on line 3. We then run
a variant of GPOD in line 4, in which we also allocate memory to store snapshots
of the nonlinear terms, i.e., “RunGPOD_wDEIM_Step2”. The last two functions are
specialized versions for each task. We save information about the nonlinear terms to
disk in line 5 and perform POD analysis and build DEIM interpolants and selection
matrices in step 6. Notice that the object “nlterm” handles the nonlinear terms. The
implementation was mostly straightforward but required developing the specialized
functions to allocate memory properly. The algorithm below focuses on building the
POD and DEIM basis, running the test case FOM and GDEIM remain the same.

Algorithm 3: Two-step GDEIM process

/* 1st step: run FOM to capture ω(n) */
1 RunFOM_wDEIM_Step1(bWriteSol);
2 SaveSnpShts();
/* POD analysis on the primary variables... */

3 BuildPODBasis(dEnergy);
/* 2nd step: GPOD-only to capture nonlinear terms at

decompressed states */
4 RunGPOD_wDEIM_Step2(bWriteSol);
5 nlterm.SaveSnpShts();
/* Build DEIM interpolants and selection matrixes */

6 nlterm.BuildDEIMInterp([dEnergy dEnergy]);

4 Numerical Example

We implemented these deterministic models through the one-way coupling between
the Matlab Reservoir Simulator Toolbox (MRST) [30] and the Integrated Paral-
lel Finite Element Analysis (IPFA), whose main features we described in [24, 39,
40]. MRST solves the flow equations via a fully-implicit approach based on cell-
centered finite differences while IPFA employs continuous Galerkin finite elements
to compute the induced poroelastic displacements and thus stresses. We hook up
both codes by memory through a Matlab MEX interface which allows calling native
C code from dynamic link libraries. IPFA employs standard continuous Lagrange
polynomials as shape functions for the space discretization. All examples herein
were run on a MacBook Pro laptop equipped with an Intel(R) Quad-Core(TM) i7-
4870HQ CPU @ 2.5GHz and 16 GB of RAM. The authors chose this laptop for
the sake of convenience, in particular, the availability of debugging tools free of
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charge. Aside, one can achieve some level of parallelism due to the multi-core tech-
nology. All numerical simulations reported below utilized the Incomplete LU (ILU)
as preconditioner and conjugate gradient as the iterative solver. We visualized in a
postprocessor called “LogProc” which is a proprietary application, see [41].

Given the matrix �(ω) ∈ R
N (ω)×Ns

, we define the root-mean-square norm (rms)
as:

‖�‖(ω)
rms =

√√√√ 1

ñ(ω) · Ns

N (ω)∑

i=1

Ns∑

j=1

(
�

(ω)
i j

)2
; �(ω)

i j = |ω j
i (FOM)

− ω
j
i (ROM)

| , (19)

and we employ this definition to compute the error between FOM and ROM for
transient problems, where i refers to spatial discretization while j implies temporal

stations. We also define the following running times for profiling purposes: (δt)*,
where * = {ovl, asb, slv}, where the prefixes stand for overall, assembling, and

solving runtimes.Here, (δ̃t)
*
and (δt)* refer to the computational time of the reduced

and full-order systems, respectively. The ratio of assembling to overall running time
per Newton iteration is:

rasb = (δt)asb

(δt)asb + (δt)slv
. (20)

We also express the speedup S as the ratio between the FOM and ROM overall
running times:

S = (δt)ovl

(δ̃t)
ovl

. (21)

We present an example involving the simulation of an ULP reservoir, including
two-phaseflowandgeomechanics commonly encountered inWestTexas. In this case,
we reduce both physics to obtain substantial speedups and benefit from a two-way
coupled flow and mechanics approach. Here, we start by updating the porosity after
Eq. (4) and employ the fixed-stress approach in which we expect in every coupling
step to iterate in this fashion to update lagged quantities and achieve convergence.

4.1 Example: Two-Phase Flow in an Unconventional RS

We revisit theULP syntheticmodel thatwe presented in [10, 11] andwhose geometry
is shown in Figs. 1 and 2. The model consists of two fractured horizontal wells,
separated by a distance equal to 2 · sw. We apply a uniform pressure pbh along the
transverse fractures, which are divided by a distance of s f . We hold the bottom-hole
pressure constant throughout production. TheULPmodel is homogeneous, isotropic,
poroelastic, and is bounded by layers with similar mechanical properties. Flow only
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Fig. 1 Geometry and BCS in the horizontal and vertical planes, according to [42]

Fig. 2 Sample curvilinear mesh and permeability field

occurs within the reservoir and does not leak into the surrounding strata. We assume
no-flow and far-field boundary conditions for each physics respectively. We studied
perfectly transverse fractures in the offset well to simplify the analysis. We also
know that the stresses in the infill region are impacted only by poroelastic effects as
concluded by [42]. Table1 compiles all relevant parameters for this two-phase flow
simulation that mimics a representative case of liquid-rich shale development. We
also developed a preprocessor which generates the given graded mesh. We vary the
number of fractures to assess the performance of our ROM.

Figure2 depicts a cut-away (upper half) representation that highlights the well
trajectories in bold black and the fractures that are planar and perpendicular to the
well path. The preprocessor generates a graded mesh and also populates properties
by using the same blending rationale. The resulting permeability field is slightly
heterogeneous to represent the stimulated reservoir volume best. As an illustration,
Fig. 3 pictures the mesh and permeability field for a representative case that includes
16 fractures. We should emphasize that the data taken in Table1 and the examples
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Table 1 Unconventional RS model’s parameters

Parameter Value [Unit]

Pay-zone half-height h p 400 ft

Fracture half-height h f 50 ft

Fracture half-length L f 200 ft

Stage spacing s f ≈428, 200, 158 ft

Well length Lw ≈3000 ft

Well spacing sw ≈1000 ft

Number of fractures 8, 16, 20

Matrix permeability km 0.3 µd

Fracture permeability k f 10 µd

SRV’s permeability kSRV 1.5 µd

Young’s modulus E 2000 Ksi

Biot modulus M 850 Ksi

Reservoir pressure pR 10000 Psi

Bottomhole pressure pbh 7000 Psi

Condensate viscosity μ 0.25 cp

Porosity φ 0.05

Poisson’s ratio ν 0.2

Biot coefficient α 0.7

Fig. 3 Permeability field for the 16 fractures case
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described here are realistic representation of hydraulic fracturing models used for
unconventional reservoir simulation. We have not, however, compared our results
with commercial-of-the-shelve simulators.

Regarding the oil-water systemweassume that thefluid viscosity ratio isμw/μo =
0.1, and the relative permeability curves are [5]:

kro(Sw) = k0ro

(
1 − Sw − Sor
1 − Swr − Sor

)a

, (22)

krw(Sw) = k0rw

(
Sw − Swr

1 − Swr − Sor

)b

, (23)

where k0ro and k0rw are the endpoint relative permeabilities, Sor and Swr are the
irreducible oil and water saturations, respectively. Herein, we set Sor = Swr = 0.2,
k0ro = k0rw = 1 and a = b = 2. The system is assumed to be slightly compressible,
with compressibility co = 1.0 × 10−5Psia−1, cw = 5.0 × 10−7Psia−1. The viscosity
of the water phase is μw = 1 cp, and the viscosity of the oil phase depends on pres-
sure as μo = μ

re f
o · exp [−cμo · (

p − pre f
)]
, where μ

re f
o = 3 cp, cμo = 2.0 × 10−6

and pre f = 14.7 Psia. The initial water saturation is 0.2, and the initial pressure is in
hydrostatic equilibrium with the top layer at 10000 Psia.

For the sake of simplicity, we consider the same domain for flow and mechanics.
We ran a series of models with 8, 16 (see Fig. 3) and 24 fractures for four years with
a fully implicit scheme with a timestep size of 10 days. We utilize multi-threading
assembling and post-processing for the mechanics. We employ four threads that
in average provide a 4X speedup over the mentioned serial tasks. Notice that we
assemble the matrix Ku only once at the initialization. Postprocessing, the stresses
per iteration, can take up to 3 secs that add to the serial time which is around 15%
for the overall compuational time for the case of 8 fractures.

Let us provide a few comments on the numerical simulations associated with the
ULPmodel. Figure4 depicts pressure field snapshots after every year (4 years total) of
production from left-to-right and top-to-bottom, respectively. We observe a reason-
able symmetry and monotonic depletion scenario where the formation was primarily
stimulated in the vicinity of the fractures. Naturally, in the event of having a higher
density of fractures, we could increase the depletion and production rate. Figure5
depicts the oil and water well’s rates for this example. We observe the typical hyper-
bolic curves with a sudden depletion after 200 days where they become relatively
flat. The barrels produce are larger than expected because the fracture thicknesses
for this example are not realistic. However, it is still a meaningful example.

We coupled the mechanics with MRST for this model with 16 fractures, and run
the one-way scheme (8) every six months. We observe a reasonably symmetric and
monotone depletion scenario where we stimulated the formation only in the vicinity
of the fractures due to the very small permeability values. Figure6 depicts snapshots
of the mean-stress σm that behaves proportionally to the pressure drop in the RS. It
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Fig. 4 Pressure snapshots for the case with 16 fractures

Fig. 5 Well’s production curves for oil and water
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Fig. 6 Mean-stress snapshots for the case with 16 fractures

Table 2 Unconventional RS ROM’s performance: flow only

#
N (x) ñ(x) τ

(x)
POD [%] (δt)ovl,

FOM
(δt)ovl,
ROM

∥∥�
∥∥(p)
rms

∥∥�
∥∥(Sw)

rms S

8 49152 8 93.3 19.2 0.70 0.0032 0.0001 27.5

16 98304 8 93.3 49.4 1.36 0.0035 0.0001 36.2

24 147456 8 93.3 124.9 2.45 0.0040 0.0001 50.8

seems that a third of the latter gets transferred as induced poroelastic stresses but
only in the vicinity of the fractures. There are no significant stress shadows produced
in the infill regions (Table2).

For theMOR results aheadwe consider 120 snapshots for flow, i.e., every ten days,
while for mechanics, we couple every twomonths, i.e., Ns = 20 snapshots. Table (2)
shows preliminary numerical results for the flow-only reduced model in which we
attain substantial speedups as indicated. The results shown here are representative of
our testing (online computations) different for training (offline). We ran a sensitivity
study by varying the number of hydraulic fractures (#), and thus increasing the
number of degrees of freedoms (DOF) for the full order model, namely N (x). Here,
ñ(x) refers to the size of the reduced-order model. Indeed, the size of these problems
dictates that the average solving ratio per Newton step is about 97%, which means
that most of the time per iteration goes to solving the system of equations. Now,
the Petrov-Galerkin projection only requires about 8 significant modes to solve an
equivalent system, which provides tremendous speedups. We truncate the POD and
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Table 3 Unconventional RS ROM’s performance: coupled problem

#
N (uh ) ñ(uh ) τ

(uh )
POD [%] (δt)ovl,

FOM
(δt)ovl,
ROM

∥
∥�

∥
∥(uh )
rms S

8 78962 14 30.0 20.7 0.69 5.18e-8 30.0

16 157554 14 30.0 51.8 1.52 3.99e-8 38.2

24 236146 14 30.0 156.2 3.05 1.04e-7 51.2

DEIM modes based on a simple energy criterion as in [10, 11] that relies on the
decay of their respective singular values. We did not try different compression ratios
in the numerical experiments. Errors on the primary variables remain smaller than
0.001%, and the speedup improves with the problem size.

Table3 compares the performance of the different reduced models for coupled
flow and mechanics. In addition, we only varied the number of fractures to control
the problem size and thus explore the performance of our MOR approach regarding
the number of DOF. Notice that the Singular Value Decomposition (SVD) requires
a significant amount of RAM and depends on these two numbers, N , and Ns . CR
for mechanics is above 99.96% with three-quarters of significant snapshots for most
cases. We observe from the runtime data that MOR plus multi-threaded provide a
substantial speedup for all problems, and the latter improves with increasing problem
size. Most of the speedup arises for savings in solving the sparse systems for both
physics but mostly for two-phase flow. Errors are small, in particular, if we com-
pare them with the magnitudes of the pressure and DISP. All of these ROM could
adequately reproduce the FOM behavior, and they provide a substantial speedup,
i.e., double digits. The speedup for the mechanics is slightly disappointing, e.g.,
about five times, if we compared with the case in which we couple with single-phase
flow. There may be another issue as the performance of the communication between
Matlab and IPFA as well as the fact that we are taking the same mesh for flow and
mechanics, while we supposed to extend it beyond the pay-zone.

5 Conclusions

We presented herein a MOR algorithm that provides substantial single and double
digits speedups, up to 50X if we combine it with multi-threading processing or
DEIM and perform MOR on both physics, for one-way coupled problems involving
thermo-poroelasticity. We highlight the remarkable MOR compression ratio above
99.9% for elasticity. The approach is particularly useful to speed up solving the
sparse system for the inner iteration in convolution like problems which produces
significant time savings compared to the serial FOM. The latter is also true for
problems that exhibit long serial times, for instance, while assembling the Jacobian
and Residual for both physics and post-processing to compute stresses, as long as
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the serial time per iteration is shorter than solving the sparse system of equations. It
is our observation that POD-DEIM certainly speeds up assembling the tensors, but
there is another factor that emerges from the code profiling information. The time
spent to solve the Petrov-Galerkin system tends to increase. Indeed, it seems that the
DEIM approximation tends to deteriorate the condition number of the approximate
system and thus we should expect longer runtimes while solving which decreases
the speedup that otherwise we should attain with projection-only. Future work will
provide a seamless framework to introduce a hyper-reduction scheme that does not
increase the solving time considerably.Wewill also addmore physics by coupling the
two-phase flow code with rate-independent plasticity which we expect will behave
similarly to the coupled nonlinear energy equation.
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Challenges in Model Reduction for
Real-Time Simulation of Traction Chain
Systems

Roxana Ionuţiu

Abstract Real-time simulation for closed-loop controller testing represents one of
the most challenging playing fields in industrial mathematics. Compared to offline
simulation, where more sophisticated but time-consuming numerical methods can
accurately simulate complex non-linear dynamical systems, in real-time simulation
only a limited execution time is available—per time-step—to solve these systems.
This calls for dynamical system modeling and simulation approaches which must
simultaneously satisfy stringent accuracy and performance requirements. In this
paper we present solutions and open problems in modeling, simulating and control-
ling dynamical systems in real-time, focusing on electric transportation applications.
In particular, the applicability of model-order reduction is analyzed for speeding-up
the real-time simulation of traction chain systems.

Keywords Real-time simulation · Hardware-in-the-loop · Control · Traction
systems · Model reduction

1 Introduction

Digital simulation is today the de facto technology which allows systems of growing
complexity to be tested in virtual environments, with high accuracy, at increasingly
faster speeds, andwith low risk of damaging equipment. This is especially valuable in
industrial control development. There, in order to accurately test a controller running
at its nominal operation speed, the controller has to be connected in closed-loop to a
model of the plant which runs in real-time, i.e. at the same rate as the actual physical
system. This setup can be achieved nowadays using hardware-in-the-loop (HIL)
testing on a digital real-time simulator (RTS) [1].

An area which extensively uses the benefits of an RTS is the control of traction
chain systems for electric vehicles (e.g., railways, trolleybuses, electric buses, etc.). In
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Fig. 1 Multiple unit train with traction converter and controller

a locomotive for instance, the controller operates on the power electronic components
of the traction converter inside the train, as shown in Fig. 1. The traction converter,
togetherwith associated components such as transformers or on-board energy storage
systems, are responsible for converting the vehicle power supply (AC, DC, diesel
engines) into three phase variable-frequency power suitable for driving the motors,
and into auxiliary power needed for ventilation, lighting, battery charging, three-
phase on board grid, etc. The controller is the converter’s “brain” which, based on
its software and hardware, ensures that the energy conversion process delivers peak
power at wheel while minimizing energy losses.

In the Traction Product Group of ABB Switzerland in Turgi, RTS is the key
technology for testing the complexity of traction converter applications. The RTS
provides a testing environment where the controller operates on a mathematical
representation of the traction converter and the vehicle. On the RTS, the so called
physical model reproduces, with high fidelity, the electrical and mechanical domains
involved in the energy conversion process (Fig. 2). Thus, using the aforementioned
HIL setup, the converter control software, running on the actual hardware (i.e. DPSs,
FPGAs), can operate on the physical model as if it was controlling the real system
(Fig. 3).

Achieving real-time capable physical models is non-trivial especially in power
converter applications, because the plant models have fast dynamics and frequent
switching behavior. The ABB Traction RTS technology has developed methods
suitable for modeling and simulating such systems using constrained simulation
time-steps. This paper will show how, in addition, model order reduction could
be integrated into the existing RTS modeling and simulation framework to further
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Fig. 2 RTS modeling domains for traction chain systems: 1. Power supply, overhead line, panto-
graph and main circuit breaker, 2. Transformer, 3. Traction converter (line converter, DC-link with
tuned filter, motor converter), 4. Motor, gear, axle 5. Auxiliary converter, 6. Diesel engine generator,
7. Energy storage, 8. Wheel-rail contact

Fig. 3 Hardware-In-the-
Loop (HIL)
simulation

improve real-time performance. In particular we show how, by exploiting the time-
discretization inherent to real-time simulation, reduced-order models can be easily
obtained and re-inserted in a full physical model, thereby improving computational
performance. The paperwill focus on the reduction of linear parts of the traction chain
system, while the reduction of complete traction chain systems including switching
and non-linear components remains for further research.

The structure of this paper is as follows: Sect. 2 explains the fundamentals of real-
time simulation; Sect. 3 details on how physical models are solved numerically in
discrete-time; the application of model reduction in the real-time simulation context
is shown in Sect. 4; Sect. 5 shows real-time experiments using the proposed reduction
framework, based on examples from traction applications. Section6 concludes.

2 Fundamentals of Real-Time Simulation

Industrial RTS simulators can differ in scale, the hardware used, or specifics of plant
modeling, but are nevertheless challenged by the same fundamental issues: ensuring
fast and accurate physical models while satisfying critical timing constraints.
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Fig. 4 A maximum delay of twice the RTS step-size occurs between the time the controller sends
switching pulses to the RTS, until the corresponding current measurement is output to the controller.
The step-size of the RTS must be as small as possible to ensure minimal latency between RTS and
the controller. Latency is usually compensated for by the control software

The crux of the RTS is achieving the synchronization between real time and
simulated time. In other words, the simulated inputs, states, and outputs reached
on the RTS after a certain simulation time, should be the same as when this time
had passed on the real system. The rate at which the real-time clock achieves this
synchronization is the step-size of the RTS. Its length is fixed, but must be carefully
chosen as to ensure the optimal timing and the desired accuracy. Figure4 illustrates
this. On one hand, the RTS step-sizemust be as small as possible in order to guarantee
simulation accuracy, and to minimize the latency of the closed-loop system. On the
other hand, the RTS step-sizemust be long enough to permit the necessary operations
(reading inputs, updating states, writing outputs, and providing an idle time margin)
to be completed in one simulation step �t without causing overruns.1

In power electronic converters the semiconductor devices switch with frequencies
extending into the kHz range, making real-time simulation especially difficult com-
pared to other slower automation applications such as robotics. The high frequency
switching imposes controller cycle times in the order of 100 − 300μs, which in turn
impose yet smaller cycle times for the real-time simulation of the physical model
(between 1 − 50μs). Having hardware with exceptional computing performance is
necessary but not sufficient to ensure that the operations are fast and that the system

1 An overrun occurs when the RTS calculation time per time-step exceeds the defined fixed simu-
lation step-size �t , which in turn results in incorrect RTS-Controller closed-loop behavior.
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runs in real time. The physical models and the numerical routines to solve themmust
also be optimized for maximum efficiency.

A distinctive feature of traction converters is the presence of switches (circuit
breakers, IGBTs or diodes) changing state at unknown points in time. This challenges
the mathematical modeling task: different switch configurations generate different
circuit topologies, and hence different sets of differential equations which must be
recognized and solved for in real-time. While modeling and simulating switched
non-linear systems in real-time is a challenging topic in itself, this paper will only
focus on a linear part of the traction chain system for model order reduction. The
models are solved numerically in discrete time on the RTS, as explained next.

3 Discrete-Time Simulation

In industrial control applications, state space rather than differential algebraic equa-
tions are used to describe dynamical systems. Therefore this paper will focus on the
state-space modeling approach. Hence, by expressing the Kirchhoff’s current and
voltage laws (KCL and KVL) at each node and for each loop in an electrical circuit,
a set of ordinary differential equations (ODEs) results, which can be expressed in
state-space form as follows:

�

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

, (1)

where the states x are the currents through inductors and voltages across capacitors, u
are the inputs of the system and y are the outputs (the measured quantities of interest,
for instance certain voltages or currents). For a system with n states, p inputs and m
outputs the corresponding matrix dimensions are: A ∈ R

n×n, B ∈ R
n×p, C ∈ R

m×n ,
D ∈ R

m×p. The system’s transfer function is:

H(s) = C(sI − A)−1B + D ∈ C
m×p. (2)

The continuous equations (1) can be solved numerically in discrete time. For this
purpose, a discretized version �̂ of (1) is needed, where the states (and outputs) at
a new time-step can be computed from previous states and the present (and/or past)
inputs, for instance:

�̂

{
xt+�t = Âxt + B̂ut+�t

yt+�t = Ĉxt+�t + D̂ut+�t
, (3)

where the discretizedmatrices Â, B̂, Ĉ, D̂ are derived from the continuousA,B,C,D
depending on the chosen discretization method. Discretization methods are inti-
mately related to the numerical integration employed for finding the solution x(t)
of ODEs as in (1). Reference [2] provides a comprehensive overview of numer-
ical methods for solving dynamical systems on digital computers. The numerical
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integration/discretization approaches which are suitable for real-time simulation are
described next.

3.1 Numerical Integration

There are several ways to discretize the continuous state-space system (1), each
resulting in a different approximation of its exact solution. A popular choice for
fixed-step integration (as is required in real-time simulation) is the Backward Euler
(BE) method [2]. With a step-size t + �t , the BE discretized matrices of system (3)
are:

Â := (I − �tA)−1 (4)

B̂ := (I − �tA)−1 �tB (5)

Ĉ := C, D̂ := D. (6)

It is important to note that the necessary discretization steps (4)–(5) producematri-
ces Â and B̂ which no longer retain any of the structure or sparsity which could be
inherent to the continuous time matrices A and B. Furthermore, the discretization
step is typically done once and offline on a host computer, rather than online on the
real-time processor. Hence, the discretization step itself does not affect the online
real-time simulation performance (or the so called turnaround time). The repeat-
ing computations performed online which do influence the turnaround time are the
state and output updates (3), which are based on the non-sparse and non-structure
preserving discretized matrices (4)–(5) (whether original or reduced).

These observations enable one to perform any model reduction on the original,
continuous time system (1), without employing special structure or sparsity pre-
serving reduction methods. The reduced model will also be discretized before being
reinserted in the real-time simulation environment, as will be explained in Sect. 4.

3.1.1 Higher Order Methods

For improved integration accuracy higher order fixed-step numerical integration
methods are often needed. These can be derived from an approximation to the ana-
lytical solution [3] of the continuous differential equation (1):

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ )dτ . (7)
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It can be shown2 that the analytical solution (7) of the state x evaluated at a new time-
step t + �t can be expressed as a function of the state xt at the previous time-step t
as follows:

xt+�t = eA�txt +
∫ t+�t

t
eA(t+�t−τ)Bu(τ )dτ . (8)

Asmentioned in [4], two approximations are necessary to implement (8) numerically:

1. the approximation of the matrix exponential eA�t

2. the approximation of the input u during integration.

For instance, the Backward Euler discretized system matrices (4–5) can be shown to
be special cases of (8) with the following approximations for the matrix exponential
and input:

eA�t ≈ (I − �tA)−1, u(τ )|t+�t
t ≈ ut+�t. (9)

By approximating the matrix exponential eA�t for instance with more terms of a
Taylor expansion, higher-ordermethods are derived and used in real-time simulation.

4 Model Order Reduction in Switched-Linear Systems

Model order reduction (MOR) methods aim to approximate the behavior of a large
dynamical system in an efficient manner, so that the resulting approximation error
is small. Other requirements are: the preservation of important system properties, of
its physical interpretation, and an efficient implementation. In short, starting from
an n-dimensional continuous-time state space system�, a reduced, continuous-time
k-dimensional system �r is sought:

�r

{
ẋr (t)= Arxr(t) + Bru(t)
yr (t)= Crxr (t) + Du(t)

, (10)

where k � n, so that the output approximation error ‖y(t) − yr (t)‖ (in appropriate
norm) is small. Through reduction, the number of inputs and outputs is the same
as in the reduced model, however the internal variables and the system matrices are
reduced in dimension: xr ∈ R

k , Ar ∈ R
k×k, Br ∈ R

k×p, Cr ∈ R
m×k . The inputs of

the reduced system are the same as for the original. The transfer function of �r is:

Hr (s) = Cr (sIr − Ar )
−1Br + D ∈ C

m×p. (11)

2 Proof is omitted as it lies outside the scope of the paper.
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The unifying approach for obtaining a reduced model from an original system is via
a Petrov-Galerkin3 projection [5]:

�r (Ar,Br,Cr,Dr) = (W∗AV,W∗B,CV, D̃), (12)

where V,W ∈ R
n×k are matrices whose k � n columns form bases for the relevant

subspaces pertaining to the reduction method chosen. In this projection framework
it is common to set Dr = D, but other scenarios are possible, as described in [5].

The governing principle behind all reduction methods is that, after a suitable
decomposition is found, the non-dominant4 internal variables are eliminated from
the system. Reduction methods differ in the way the decomposition is performed.
This in turn dictates how the projection matrices V andW are constructed. Roughly
speaking, reduction methods are classified into (a) spectral-, and (b) Krylov-based.
Among the volumes which give a comprehensive coverage of the various methods
are [3, 6]. A comparison of spectral and Krylov-based methods is available in [7].
Without attempting to give an exhaustive review for the applicability of the various
reduction methods in the context of real-time simulation, in this paper we focus on
a selection of spectral and Krylov-based methods, as shown next.

4.1 Dominant Poles and Moment Matching at DC

From the spectral methods, the EVD (eigenvalue decomposition) approach called
modal approximation [8] constructs a reduced model by interpolating the dominant
poles of the original system, based on the eigenvalue decomposition of A.

Krylov-based reduction methods achieve system approximation by matching
moments (i.e. terms from the Taylor expansion) of the transfer function (2) of the
original system. One of the most popular reduction methods for electrical circuits
is PRIMA [9], which matches moments of the original system at frequency s0 = 0,
namely at DC.

Here, we construct a continuous-time reduced order model �r (12) by comput-
ing projection matrices W,V which interpolate a selection of the original system’s
dominant poles, together with an additional moment matching at DC.

4.2 Reinserting Reduced-Order Models in Simulations

Reinserting reduced-order models in simulation environments is a widely studied
problem. Formulti-inputmulti-output systems special reductionmethods existwhich
preserve the structure of the original input/output matricesB andC, so that a reduced

3 When W = V the projection is of Galerkin type.
4 Non-dominant here refers to internal variables which contribute the least to the system’s response.
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model can be re-synthesized via R, L ,C elements and reinserted as a netlist in the
simulation tool [10]. For a selection of such methods we refer to SPRIM [11], PACT
[12, 13], SparseRC [14], TurboMOR [15], PartMOR [16] and others.

In this paper we show that no synthesis of reduced order models, and hence no
structure preserving reduction methods, are needed to reinsert reduced models in
real-time simulation environments. Since all models used in real-time simulation
are time-discretized, not even the original discretized �̂ model (3) preserves any of
the input/output structure of the original continuous time � model (1). Similarly,
any continuous-time reduced model �r (12) is discretized as explained in Sect. 3
to obtain a reduced, discretized system �̂r , before being re-inserted in a real-time
compatible simulation environment such asMatlab-Simulink [17]. Therefore, in real-
time simulation, reduced order models can be easily reused for co-simulation with
other “non-reduced” parts of a plant model. In Sect. 5 we show the results obtained
by reinserting a reduced line-side model in the actual real-time simulation without
any structure preservation.

5 Experiments

We demonstrate the effect of model order reduction in real-time simulation based
on an industrial example. The model under test is shown in Fig. 5. We compare
the behavior of the original and reduced model both in frequency domain, as well
as in time domain. We analyze the reduction accuracy, as well as the performance
gained through the reduction procedure. Finally, we draw conclusions on the results
obtained and on open problems which ensue from applying model-reduction to real-
time models.

An important problem in the control of traction converters is the supervision of line
voltages, currents, and the DC-link voltage inside the converter. A circuit example
used in the simulation of a DC voltage supply, line components, and DC-link is
shown in Fig. 5. In the complete real-time simulation test, this model is coupled
to remaining models comprising the complete traction chain system (e.g. to parts
3 − 8 from the modeling domains previously shown in Fig. 2). This particular part
of the traction chain is chosen as an MOR example since it is linear, whereas the
other components include either switching devices (IGBTs, diodes), or non-linear
behavior such as motor saturation. Finding an appropriate MOR framework for the
entire switched and non-linear traction chain system remains nevertheless a relevant
problem for future research.

The rectangular marking from Fig. 5 shows the circuit part which is reduced.
The original system has 11 states, 2 inputs and 4 outputs. The partitioning from
Fig. 5 ensures that both the original �̂ and reduced �̂r state space systems are easily
coupled to the remaining DC-link capacitor in real-time simulation. This is done via
a voltage-current input-output relationship as shown in Fig. 5: i.e. the output current
y2_i LLF becomes an input current i LLF to the DC-link capacitor, and the DC-link
output voltage UD becomes the input voltage u2_UD. During the RTS simulation
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Fig. 5 Electrical circuit formodeling aDCsupply, catenary line, linefilters andDC-link.The system
to be reduced (in rectangle) is coupled to the main DC-link via a voltage-current relationship. The
inputs of the state space system are: u1_USS, the supply voltage, and u2_UD, the DC-link voltage
as measured across the main DC-link capacitor. The outputs are: y1_I SPL (the supply current),
y2_i LF (the line filter current), y3_UL (the line voltage) and y4_ULLF (the voltage across the
line filter inductor)

the measured line voltage y3_UL and DC-link voltage UD are recorded, while a
sequence is carried out which closes supply and line specific circuit breakers (not
shown).

5.1 Dominant Pole Matching

We reduce the original state space system by interpolating 7 of its poles: the 3 most
dominant imaginary pole pairs and 1 real pole, as shown in Fig. 6. The computation
of the 3 most dominant imaginary pole pairs was done using the MIMO samdp
algorithm of [18]. The dominance criterion used is that of poles which are well
observable and controllable in the transfer function, as is described in detail in [8,
Chapter 4.2]. We match the additional real pole as well, since we aim to preserve the
DC characteristics of the system.

The frequency response of the original and resulting reduced system is shown in
Fig. 7 (for simplicity only the maximum singular value of the frequency response
is shown). One can observe a perfect match at the dominant peaks in the frequency
response and an overall match across the entire frequency range.

In model order reduction it is common to judge the quality of a reduced order
model based on its frequency response characteristics,without simulating the original
and reduced models in the time domain. For real-time simulation, it is crucial that
the time-domain behavior is also preserved. This is because in the HIL setup, the
controller monitors relevant voltage and current measurements continuously over
time, as it also does on the real system.

In Figs. 8 and 9 we show the line and DC-link voltages of the circuit, as recorded
on the real-time simulator.
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Fig. 6 Dominant poles of original and reduced system. Reduction is by dominant pole matching

Fig. 7 Frequency response of original and reduced system.Reduction is by dominant polematching
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Fig. 8 Line voltage. Reduction is by dominant pole matching

Fig. 9 DC-link voltage. Reduction is by dominant pole matching
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One can see from Fig. 8 that the reduced order model has a lower DC voltage
(below 3000V) than the original model. This is undesirable, since the controller is
programmed to see a DC value of 3000V in the line voltage, and hence will throw
an undervoltage fault if it will operate on the reduced model. We note that in this
particular operation mode the controller only monitors the line and DC-link voltage,
without applying a closed loop control, hence it is important that the plant model
behavior is correct also in open loop.

In Fig. 9 on the other hand, we see that the capacitor is charged to the correct value
of 3000V, both in the original and the reduced model.

5.2 Dominant Pole and DC Moment Matching

The DC mismatch of UL in Fig. 8 suggests that one could improve the reduced
model by matching an additional moment at s = 0. In this section we show the
results obtained based on this approach.

Figure10 shows that, by matching one moment of the original transfer function at
s = 0 (along with 3 imaginary dominant pole pairs), additional poles are generated
in the reducedmodel which are not present in the original. The frequency response of
this reduced model is shown in Fig. 11, displaying again a very good match against
the original frequency response.

As before, we re-insert the discretized reducedmodel in the RTS andmeasureUL
and UD in time domain. The results are shown in Figs. 12 and 13. While this time
the desired DC value of 3000V is preserved due to the moment matching at s = 0,
the transient response of the reduced model no longer matches that of the original
due to the additional poles which were generated in Fig. 10.

These results calls for new reductionmethodswhich preserve the original system’s
DCbehavior anddominant poles,while not introducingother undesiredpoles through
reduction. For instance, the applicability of balanced truncation for linear switched
systems [19] presents a relevant next step for future work.

5.3 Reduction in Execution Time

As explained in Sect. 2, in real-time simulation the turnaround time (TaT) must be
as small as possible, and always shorter than the simulation step-size. A step-size
in the order of 50μs is typical for processor-based simulations of a locomotive and
converter as shown in Fig. 2.

In Fig. 14wemeasure the TaT of the full RTS simulation of the train, where its line
side is simulated both using the original and the reduced model. For the experiments
in this paper the RTS is using a dSPACE 1006 real-time system [20]. The TaT of the
reduced model is approximately 2μs smaller than of the original. Recall from Fig. 4
that the TaT includes both model calculation as well as IO processing time. From a
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TaT of 25μs, approximately 10μs are needed for the actual model calculation time,
while approximately 15μs are needed for input/output transfer between the simulator
and the controller. Since the number of IOs is the same in the reduced and original
models, the reduction in model execution time of 2μs (from 10μs) represents a 20%
improvement in computational performance.

6 Conclusion

In this paper we proposed and analyzed a framework for improving the real-time sim-
ulation performance of traction chain systems using model order reduction methods.
Our results have shown that:

• Models can be reduced in continuous time and reinserted for co-simulation in the
real-time simulation environment naturally, without requiring structure preserving
or re-synthesis methods.

• Off-the shelf model-reduction methods are applicable only to a limited extent
when simulating electrical circuits which are controlled via external devices in
real-time. We saw that preserving both the dominant poles of a model and the DC
behavior are necessary to guarantee simulation accuracy; nevertheless, finding an
appropriate combination of these two requirements remains an open problem.

Fig. 10 Poles of original and reduced system.Three dominant pole pairs arematched, and additional
poles are generated from one moment matched at DC
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Fig. 11 Frequency response of original and reduced system. Reduction is by dominant pole and
DC moment matching

Fig. 12 Line voltage. Reduction is by dominant pole and DC moment matching
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Fig. 13 DC-link voltage. Reduction is by dominant pole and DC moment matching

Fig. 14 Turnaround time improvement through model reduction
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• Model reduction can significantly improve the real-time simulation performance.

Whilemodel order reduction today iswidely used in offline simulation, its application
in industrial real-time simulation is less explored. As demands for wider real-time
test coverage increase, MOR could facilitate this requirement by improving the sim-
ulation performance. Finding reduced order models which are sufficiently accurate
both in frequency and time domain remains a challenging problem for real-time
simulation and control.
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Sparse Representation for Sampled-Data
H∞ Filters

Masaaki Nagahara and Yutaka Yamamoto

Abstract We consider the problem of discretization of analog filters and propose a
novel method based on sampled-data H∞ control theory with sparse representation.
For optimal discretization, we adopt minimization of the H∞ norm of the error
system between a (delayed) target analog filter and a digital system consisting of an
ideal sampler, the zero-order hold, and an FIR (finite impulse response) filter. Also,
for digital implementation, we propose a sparse representation of the FIR filter to
reduce the number of nonzero coefficients with the �1 norm regularization. We show
that this multi-objective optimization is reducible to a convex optimization problem,
which can be solved efficiently by numerical computation.We then extend the design
method to multi-rate filters, and show a design example. We also give an application
to the feedback filter design of delta-sigma modulators.

Keywords Sparse representation · Compressed sensing · Sampled-data control ·
Filter design · Delta-sigma modulation · Convex optimization

Preface
It is a pleasure for us to contribute an article to this Festschrift in honor of Athanasios
Antoulas (hereafter Thanos) on the occasion of his 70th birthday.

Both Thanos and the second author (hereafter “I”) studied for Ph.D. under the
late professor R. E. Kalman in the late 1970s. While Thanos did his Ph.D. at ETH
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Japan, and he visitedKyoto several times. It was a pleasure to introduce the traditional
Japanese culture to him, for example, Shugakuin imperial villa, gardens in various
temples, Daimonji farewell fire, etc. They are part of the highest representation of

M. Nagahara (B)
The University of Kitakyushu, Hibikino 1-1, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
e-mail: nagahara@ieee.org

Y. Yamamoto
Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
e-mail: yy@i.kyoto-u.ac.jp

© Springer Nature Switzerland AG 2022
C. Beattie et al. (eds.), Realization and Model Reduction of Dynamical Systems,
https://doi.org/10.1007/978-3-030-95157-3_23

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95157-3_23&domain=pdf
mailto:nagahara@ieee.org
mailto:yy@i.kyoto-u.ac.jp
https://doi.org/10.1007/978-3-030-95157-3_23


428 M. Nagahara and Y. Yamamoto

the Japanese culture, and he appreciated them very much. On the other hand, he also
enjoyed a Japanese “izakaya” restaurant (a Japanese style pub that serves a variety
of foods), and we both had a good time together.

Althoughwe did not havemuch intersection in our research interests, we had some
in-depth discussions during these visits, on modeling of linear systems—large-scale
systems on his side, and infinite-dimensional systems on my side.

Throughout the years, he has shown great leadership in the modeling of large-
scale systems. This volume is a tribute to his long-term contributions, and we feel it
appropriate to dedicate the present paper on sparse representation in sampled-data
filters.

1 Introduction

Sparse representation is a kind of model reduction, by which the number of param-
eters that represent the behavior of a system is minimized [6]. The number of active
parameters is measured by using the �0 (pseudo-) norm, which is defined by the
number of nonzero elements in a vector. The sparse representation is done by mini-
mizing the �0 norm of the parameter vector under constraints (e.g. linear equations).
This is however a combinatorial optimization and actually NP hard [20]. To avoid
this computational difficulty, the �1 norm is used instead of the �0 norm. The �1

normminimization under linear constraints becomes linear programming (or convex
optimization), and the solution is numerically tractable. A surprising fact is that the
�1 solution is identical to the original �0 solution under some conditions (see e.g. [2,
4, 29]). This idea has recently been applied to optimal control using the L0 norm,
called maximum hands-off control in [13, 14].

In this chapter, we adapt the idea of sparse representation to a problem of FIR
(finite impulse response) approximation (or discretization) of analog filters. In digital
signal processing, FIR filters are preferred to IIR (infinite impulse response) filters
because of the following merits:

Merits of FIR filters
• Stability: FIR filters are always stable (all poles are at z = 0).
• Implementability: they can be easily implemented in digital devices.
• Robustness: they are more robust against coefficient quantization than IIR
filters that may cause limit cycles.

On the other hand, a lot of design methods are known for IIR digital filters, e.g.,
Butterworth, Chebyshev and Elliptic filters [21]. To enjoy the merits of FIR filters
mentioned above, we need to approximate a given IIR digital filter by an FIR filter.
For this purpose, optimization-based approximation methods have been proposed in
[10, 30]. These methods can be used if we are given a target IIR digital filter.
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In practical applications, we often need to implement an analog filter on a digital
device as an FIR filter. An RLC analog filter (an electrical circuit consisting of
resistors, inductors, and capacitors) is one example and a PID controller is another.
To obtain an FIR digital filter that well approximates a given analog filter, we usually
take the following two conventional steps:

FIR approximation by truncation
1. Discretize an analog filter to an IIR digital filter via the step-invariant

transformation or the bilinear (or Tustin) transformation [3].
2. Truncate the impulse response of the IIR digital filter to obtain an FIR

one, or use more sophisticated approximation methods as in [10, 30].

However, it is more preferable if an FIR digital filter is obtained directly from the
original analog filter. For this purpose, a direct design method has been proposed in
[17], which is based on the theory of sampled-data H∞ control [16]. In this chapter,
we extend these design methods to sparse FIR digital filter design. Key ideas are
summarized below.

Key ideas of the proposed method
• Measure the approximation error by the sampled-data H∞ norm.
• Use the KYP (Kalman-Yakubovich-Popov) lemma that reduces the H∞
optimization problem to optimization described in an LMI (linear matrix
inequality).

• Adopt the �1 norm regularization to obtain sparse FIR coefficients.

We also extend the result to multi-rate systems that consists of an upsampler and
a fast hold. Design examples of filter discretization and delta-sigma modulation are
shown to illustrate the effectiveness of our methods.

The remainder of this article is organized as follows. In Sect. 2, we give the
mathematical formulation of our design problem. Section3 is the main section where
we give a procedure for the solution. Thenwe extend themethod tomulti-rate systems
in Sect. 4. We show a design example of analog filter discretization in Sect. 5, and
an application to delta-sigma modulator design in Sect. 6. In Sect. 7, we will make a
conclusion.

2 Problem Formulation

The problem we consider here is to discretize an analog filter for digital implemen-
tation. Let Kc(s) be the transfer function of an analog filter. We suppose that the
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transfer function Kc(s) is stable, real-rational,1 and proper. To discretize this filter,
let us consider the digital system shown in Fig. 1. In this block diagram, K (z) is an
FIR digital filter of length M , described by

K (z) =
M−1∑

k=0

akz
−k, (1)

Note that K (z) is always stable since it has poles only at z = 0. The system Sh

before K (z) is the ideal sampler with fixed sampling period h > 0 that converts a
continuous-time signal u(t) into a discrete-time signal {v[0], v[1], v[2], . . .} as

v[n] = (Shu)[n] = u(nh), n = 0, 1, 2, . . . .

The system Hh after K (z) is the zero-order hold that produces a continuous-time
signal ŷ(t) from a discrete-time signal {ψ[0], ψ[1], ψ[2], . . .} as

ŷ(t) =
∞∑

n=0

ψ[n]φ(t − nh), t ∈ [0,∞),

where φ(t) is a box function defined by

φ(t) =
{
1, if t ∈ [0, h),

0, otherwise.

Our problem is to obtain the FIR digital filter coefficients a0, a1, . . . , aM−1 in (1)
so that the sampled-data system

K := HhK (z)Sh = Hh

(
M−1∑

k=0

akz
−k

)
Sh

well approximates the input/output behavior of the analog filter Kc(s).
Let α(t) denote the impulse response (or the inverse Laplace transform) of Kc(s).

The digital filter K (z) (or the filter coefficients a0, a1, . . . , aM−1) is designed to

Fig. 1 Digital systemK consisting of ideal sampler Sh , digital filter K (z), and zero-order holdHh
with sampling period h

1 A real-rational transfer function is a rational function of s with real coefficients.
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Fig. 2 Error system E(K )

produce a continuous-time signal ŷ after the zero-order hold Hh that approximates
the delayed output

y(t − l) = (α ∗ u)(t − l) =
∫ t−l

0
α(τ)u(t − l − τ)dτ

of Kc(s) for an analog input u. This reconstruction delay plays an important role in
the approximation performance. That is, if we have a large enough delay l > 0, then
the approximation error may become small. See the discussion in [19, 32] for details.
For simplicity of numerical computation, we assume that l is an integer multiple of
h, that is, l = mh, where m is a nonnegative integer.

Figure 2 shows the block diagram of the error system

E(K ) := (
e−mhs Kc − HhKSh

)
F, (2)

where F(s) is a stable, real-rational, and strictly proper transfer function, which
defines the analog characteristic of the input signals in the frequency domain.

The strict properness of F(s) is essential in the reconstruction problem to avoid
a trivial solution K (z) = 0. If F(s) is bi-proper (i.e. the degree of the numerator
is equal to that of the denominator), then the ideal sampler becomes an unbounded
operator from L2 to �2 [3, Section9.3], and hence if K (z) �= 0 then the error system
also becomes unbounded. Therefore, K (z) should be zero if F(s) is bi-proper. The
use of F(s) means that we consider the input signals that belong to the following
signal subspace of L2[0,∞):

�F := {
Fw : w ∈ L2[0,∞)

}
.

Then, the problem of H∞-optimal discretization proposed in [17] is described as
follows.

Problem 1 (H∞ FIR Discretization) Given a target filter Kc(s), analog char-
acteristic F(s), sampling period h, and delay step m, find the filter coefficients
a0, a1, . . . , aM−1 of K (z) given by (1) that minimizes
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‖E(K )‖∞ = ∥∥(e−mhs Kc − HhKSh
)
F
∥∥∞ = sup

w∈L2

w �=0

∥∥(e−mhs Kc − HhKSh
)
Fw

∥∥
L2

‖w‖L2
.

Clearly, if the FIR filter length M is larger, the H∞ optimal filter may give a bet-
ter performance. However, for implementation, the filter length cannot be arbitrarily
large and the number of coefficients should be limited. To solve this implementa-
tion problem, we propose to adapt the idea of sparse representation, also known as
compressed sensing [13, 29], to our discretization problem. Sparse representation
attempts to reduce the number of nonzero elements of a vector by adopting the �0

norm as a regularization term. Then, borrowing the technique of convex relaxation
by using �1 norm instead of the non-convex �0 norm, we formulate the sparse FIR
filter design as follows.

Problem 2 (Sparse FIR Discretization) Given a target filter Kc(s), analog char-
acteristic F(s), sampling period h, and delay step m, find the filter coefficients
a0, a1, . . . , aM−1 of K (z) given by (1) that minimizes

J (a) = ‖E(K )‖∞ + λ‖a‖1, (3)

where λ is a fixed positive integer and a is the coefficient vector defined by

a =

⎡

⎢⎢⎢⎣

a0
a1
...

aM−1

⎤

⎥⎥⎥⎦ ∈ R
M . (4)

Note that if we take λ = 0, then Problem 2 is equivalent to Problem 1.

Remark 1 We have assumed that Kc(s) is stable. If Kc(s) has no poles on the
imaginary axis, the proposed method can be used for unstable Kc(s) as follows:
factorize it as Kc(s) = Ks(s)Kas(s), where Ks(s) is stable and Kas(s) is anti-stable,
and then discretize Ks(s) and Kas(−s) by the proposed method. Such an unstable
filter is often used in signal processing as a non-causal filter [21].

3 Sparse FIR Filter Design via Sampled-Data H∞
Optimization

In this section, we give convex optimization formulation to numerically compute the
sparse FIR filter coefficients of Problem 2. The key technique is fast sample/hold
approximation [16, 17].

First, we define the lifting operator for discrete-time signals. For a discrete-time
signal x = {x[0], x[1], x[2], . . .}, the discrete-time lifting (also known as blocking)
is defined by
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LN x :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

x[0]
x[1]

...

x[N − 1]

⎤

⎥⎥⎥⎦ ,

⎡

⎢⎢⎢⎣

x[N ]
x[N + 1]

...

x[2N − 1]

⎤

⎥⎥⎥⎦ , . . .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

Note that the lifting operator LN can be written as

LN = (↓N )

⎡

⎢⎢⎢⎣

1
z
...

zN−1

⎤

⎥⎥⎥⎦ ,

where ↓N is the downsampling operator [28] defined by

↓N : {x[k]}∞
k=0 �→ {

x[0], x[N ], x[2N ], . . . }.

For the lifting operator LN , its inverse L−1
N is defined as

L−1
N := [

1 z−1 · · · z−N+1
]
(↑N ),

where ↑N is the upsampling operator [28] defined by

↑N : {x[k]}∞
k=0 �→ {

x[0], 0, . . . , 0︸ ︷︷ ︸
N−1

, x[1], 0, . . . }.

With the lifting operator, we define the discrete-time lifting of a discrete-time
system by

lift
([

A B
C D

]
, N

)
:= LN

[
A B
C D

]
L−1

N =

⎡

⎢⎢⎢⎢⎢⎢⎣

AN AN−1B AN−2B . . . B
C D 0 . . . 0

CA CB D
. . .

...
...

...
...

. . . 0
CAN−1 CAN−2B CAN−3B . . . D

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where we use the packed notation

[
A B
C D

]
:= C(z I − A)−1B + D.

By the discrete-time lifting, we obtain the fast sample/hold approximation EN of
the sampled-data error system E(K ) in (2) as

EN (z) = (
z−mN KN (z) − HN K (z)SN

)
FN (z), (5)
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where

KN (z) = lift
(Sh/N KcHh/N , N ), FN (z) = lift

(Sh/N FHh/N , N
)
,

HN = [1, . . . , 1︸ ︷︷ ︸
N

]�, SN = [1, 0, . . . , 0︸ ︷︷ ︸
N−1

]. (6)

We note that KN (z) and FN (z) are discrete-time, finite-dimensional, linear, and time-
invariant systems as shown in [16]. Let {AK , BK ,CK , DK } be a minimal realization
of the FIR filter K (z) in (1), that is,

AK :=

⎡

⎢⎢⎢⎣

0 1 0
...

. . .
. . .

0 . . . 0 1
0 . . . 0 0

⎤

⎥⎥⎥⎦ , BK :=

⎡

⎢⎢⎢⎣

0
...

0
1

⎤

⎥⎥⎥⎦ ,

CK := [
aM−1 aM−2 . . . a1

]
, DK := a0.

(7)

From (5), we obtain

EN (z) =

⎡

⎢⎢⎣

A1 0 0 B1

0 A2 0 B2

0 BKC2 AK 0
C1 −HN DKC2 −HNCK 0

⎤

⎥⎥⎦ =:
[

A B
C(a) D(a)

]
, (8)

where {A1, B1,C1} and {A2, B2,C2} are state-space matrices of strictly proper trans-
fer functions z−mN KN (z)FN (z) and SN FN (z), respectively, and a is the coefficient
vector defined in (4). The important property of the state-space representation in (8)
is that the FIR coefficient vector a is independent of A and B. From this property
with the KYP lemma [17], Problem 2 is finally approximated to the following convex
optimization:

Sparse optimization

Give a parameter λ > 0. Find a ∈ R
M and γ > 0 that minimizes

J (a, γ ) := γ + λ‖a‖�1 (9)

subject to ⎡

⎣
A�X A − X A�XB C(a)�
B�X A B�XB − γ I D(a)�
C(a) D(a) −γ I

⎤

⎦ < 0,

X > 0.

(10)
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This problem can be efficiently solved via numerical optimization softwares such
as SDPT3 [26], SeDuMi [25], or cvx [7, 8] on MATLAB.

Note that the solution to the above optimization is an approximated solution to
the original problem (Problem 2). If N is sufficiently large, the approximation error
becomes tolerable and the error converges to zero as N → ∞ (see [31] for details).
Note also that if the approximation number N is very large, then the optimization
will take a lot of computational time. However, we can empirically say that in many
cases, N can be small, say N ≤ 10 (see also the design example in Sect. 5).

In summary, we have derived a computationally efficient method with convex
optimization for sparse FIR approximation of analog filters based on the fast sam-
ple/hold approximation in (5) and the KYP lemma.

4 Extension to Multi-rate Filters

The result in the previous section can be extended to multi-rate filters [16, 17].
Here a multi-rate filter utilizes the upsampling operator ↑ L with an integer L ≥ 2
to upsample the output of a slow sampler. The multi-rate signal processing system
with upsampling factor L is defined by

KL := Hh/L K (z)(↑ L)Sh = Hh/L

(
M−1∑

k=0

akz
−k

)
(↑ L)Sh .

The block diagram of this system is shown in Fig. 3.
The design objective is to find a sparse FIR filter K (z) given by (1) that reduces

the sampled-data H∞ norm of the multi-rate error system EL(K ) defined by

EL(K ) := (
e−mhs Kc − Hh/L K (↑ L)Sh

)
F. (11)

Figure 4 shows the block diagram of the error system EL(K ). Now, our problem
is described as follows:

Problem 3 (Sparse Multi-rate FIR Discretization) Given target filter Kc(s), analog
characteristic F(s), sampling period h, delay step m, and upsampling ratio L, find
the filter coefficients a0, a1, . . . , aM−1 of K (z) given by (1) that minimizes

Fig. 3 Multi-rate systemKL consisting of ideal sampler Sh , upsampler ↑ L , digital filter K (z), and
fast hold Hh/L
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Fig. 4 Multi-rate error system EL (K )

JL(a) = ‖EL(K )‖∞ + λ‖a‖1. (12)

We then use the fast sample/hold approximation in Sect. 3 for this system. Let us
assume N = Lp for some positive integer p. Then, we obtain the fast sample/hold
approximation of EL as

EL ,N (z) = (
KN (z)z−mN − H̃N K̃ (z)SN

)
FN (z), (13)

where KN (z), FN (z) and SN are given in (6), and

H̃N = blkdiag{1p, 1p, . . . , 1p︸ ︷︷ ︸
L

}, 1p = [1, . . . , 1︸ ︷︷ ︸
p

]�,

K̃ (z) = lift
(
K (z), L

)[1, 0, . . . , 0︸ ︷︷ ︸
L−1

]� =:
[
ÃK B̃K

C̃K D̃K

]
,

ÃK := AL
K , B̃K := AL−1

K BK ,

C̃K :=

⎡

⎢⎢⎢⎣

CK

CK AK
...

CK AL−1
K

⎤

⎥⎥⎥⎦ , D̃K :=

⎡

⎢⎢⎢⎣

DK

CK BK
...

CK A
L−2
K BK

⎤

⎥⎥⎥⎦ .

(14)

Note that matrices AK , BK , CK , and DK in (14) are defined in (7). From (13), we
obtain

EL ,N (z) =

⎡

⎢⎢⎣

A1 0 0 B1

0 A2 0 B2

0 B̃KC2 ÃK 0
C1 −H̃N D̃KC2 −H̃N C̃K 0

⎤

⎥⎥⎦ =:
[

Ã B̃
C̃(a) D̃(a)

]
, (15)

where {A1, B1,C1} and {A2, B2,C2} are state-space matrices of strictly proper trans-
fer functions z−mN KN (z)FN (z) and SN FN (z), respectively, and a is the FIR coeffi-
cient vector given by (4) which is to be designed.
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Finally, our problem (Problem3) is also reduced to finding a ∈ R
M thatminimizes

the cost function JL(a) given in (12),which can be described as a convex optimization
by using the KYP lemma.

Sparse optimization (multi-rate systems)

Given a parameter λ > 0, find a ∈ R
M and γ > 0 that minimize

J̃ (a, γ ) := γ + λ‖a‖�1 (16)

subject to ⎡

⎣
Ã�X Ã − X Ã�X B̃ C̃(a)�

B̃�X Ã B̃�X B̃ − γ I D̃(a)�

C̃(a) D̃(a) −γ I

⎤

⎦ < 0,

X > 0.

5 Example: Analog Filter Discretization

In this section, we show an example of FIR filter design to illustrate the effectiveness
of the proposed method. We assume that the target analog filter Kc(s) is given by

Kc(s) = 0.02567 s2 + 0.2636

s3 + 0.594 s2 + 0.9388 s + 0.2636
. (17)

This is a third-order elliptic filter with 3 dB passband peak-to-peak ripple, 50 dB
stopband attenuation, and 1 (rad/sec) cut-off frequency. The transfer function in (17)
is obtained by MATLAB command ellip(3,3,50,1,’s’). Figure5 shows the
frequency response of Kc(s).

We set the sampling period h = 1 (sec), the upsampling ratio L = 2 (i.e., we
consider a multi-rate system), and delay step m = 2. The analog characteristic F(s)
of the input signals is chosen as

F(s) = 1

s + 1
.

The fast sample/hold approximation factor N is chosen as N = 6. The FIR filter
length M is fixed to be 64. We set λ = 0.01 for the sparse optimization in (16). We
use cvx [7, 8] on MATLAB with the SDPT3 solver [26] to solve (16).

Under these parameters, we design the H∞-optimal FIR filter based on [17],
and the proposed sparse FIR filter discussed in Sect. 4. Figure6 shows the impulse
response (or the FIR coefficients) of the H∞-optimal FIR filter. We see that the



438 M. Nagahara and Y. Yamamoto

Fig. 5 Target analog filter Kc(s)

Fig. 6 Impulse response of the H∞-optimal FIR filter

response shows an oscillatory characteristic. On the other hand, Fig. 7 shows the
impulse response of the proposed sparse FIR filter. Many of the coefficients are zero
or very small (i.e. sparse), and only 17 coefficients have significant values, which is
a preferable characteristic of an FIR filter for digital implementation.
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Fig. 7 Impulse response of the sparse filter

Fig. 8 Gain frequency response of sampled-data error system EL : H∞-optimal FIR filter (dashed
line), sparse FIR filter (solid line), and truncation of H∞-optimal IIR filter (dash-dotted line)
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To see the difference of performance between the H∞-optimal FIR filter and the
truncated FIR filter, we show the gain of the frequency response of the sampled-data
error system EL defined in (11) in Fig. 8. In this figure, we also show the responsewith
the truncated H∞-optimal IIR filter proposed in [16] with the same length M = 64
as the proposed sparse filter. The truncated FIR filter shows a large approximation
error and results in a larger H∞ norm of the error system. Compared with that, the
proposed sparse FIR filter and the H∞-optimal FIR filter show similar responses,
although the proposed filter is much sparser than the H∞-optimal FIR filter. This is
a merit of the use of sparse optimization.

6 Application to Delta-Sigma Modulator Design

Here, we show an application of the sparse FIR filter design to delta-sigma (
�)
modulators [24]. A delta-sigma modulator is a dynamic quantizer with a static uni-
form quantizer and a feedback digital filter. The feedback filter is implemented in a
digital device as an FIR filter, which is chosen to minimize the quantization error.
In [15], the feedback filter is designed to minimize the frequency response gain of
the noise transfer function in a pre-specified low frequency range with an H∞ norm
constraint for stability. The optimization is described as an LMI optimization using
the generalized KYP lemma [9].

Let us assume the feedback filter is an FIR filter of order M − 1 as given in (1).
Then the noise transfer function is given by

H(z) = 1 + K (z) = 1 +
M−1∑

k=0

akz
−k . (18)

This is the transfer function from the quantization noise, which is assumed to be
an additive noise, to the quantizer output. Although the quantization is a non-linear
operation, the linearized system H(z) is very important for the design of delta-sigma
modulators [24].

We here consider the low-pass modulator, where the noise transfer function (or
the sensitivity function of the feedback system) is a high-pass filter that stops a low
frequency band. In other words, the signal transfer function (or the complementary
sensitivity function), which is the transfer function from the input to the output, is a
low-pass system. The gain of the noise transfer function in the low frequency band
should be sufficiently attenuated to obtain a good performance for low-pass signals.
However, due to the waterbed effect [5], we cannot arbitrarily attenuate the gain in
the low frequency band without increasing the gain at high frequencies. To obtain
an optimal solution, we propose to describe the design problem as an H∞ optimal
control problem. Let � ∈ (0, π) be the bandwidth of the low-pass modulator. Then
the optimization is described as a min-max optimization:
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minimize
H : stable max

ω∈[0,�] |H(e jω)| subject to max
ω∈[0,π] |H(e jω)| < β, (19)

where β > 0 is an upper bound of the H∞ norm of the noise transfer function. If we
consider an FIR filter for H(z) as in (18), we obtain the optimization for the filter
coefficients as

minimize
a0,...,aM−1∈R

maxω∈[0,�]
∣∣∣∣1 + ∑M−1

k=0 ake− jωk

∣∣∣∣

subject to maxω∈[0,π]
∣∣∣∣1 + ∑M−1

k=0 ake− jωk

∣∣∣∣ < β.

(20)

This is equivalently reduced to an LMI optimization by the generalized KYP
lemma [15].

Then, borrowing the idea of sparse representation mentioned in the previous sec-
tions, we seek a sparse coefficient vector for the feedback filter to add an �1 regular-
ization term to the cost function in (20). By using the generalized KYP lemma, we
obtain the following optimization problem.

Sparse feedback filter design in delta-sigma modulator

Given a parameter λ > 0, find a ∈ R
M and γ > 0 that minimize

J (a, γ ) := γ + λ‖a‖�1

subject to

⎡

⎣
A�Y A + Z A + A�Z − Y − 2Z cos� A�Y B + Z B a

B�Y A + B�Z B�Y B − γ 2 1
a� 1 −1

⎤

⎦ < 0,

⎡

⎣
A�X A − X A�XB a
B�X A B�XB − β2 1
a� 1 −1

⎤

⎦ < 0,

X > 0,

Z > 0.

This problem is also a convex optimization problem and can be efficiently solved
via numerical optimization softwares.

We show a design example with � = π/32 and β = 1.5. Figure9 shows the
obtained sparse filter coefficients with λ = 10. Also, we show the full coefficients
obtained by the optimization (20) with λ = 0. We see from the result that the sparse
filter has just 4 non-zero coefficients. We then compute the frequency response of
the noise transfer function H(z) in (18). For comparison, we also compute the 4-



442 M. Nagahara and Y. Yamamoto

Fig. 9 Filter coefficients: sparse filter (left) and full filter (right)

Fig. 10 Frequency response of the noise transfer function: sparse filter (solid), truncated filter
(dash-dotted), and ideal response (dotted)

tap truncated coefficients from the full coefficients. Figure10 shows the frequency
responses of the noise transfer functions by the sparse filter, the truncated filter, and
the ideal full filter. The truncated filter shows a poor response in the low frequency; it
does not have enough attenuation. On the other hand, the sparse filter shows a better
response. For more details, see [18].
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7 Conclusion

In this chapter, we have proposed a designmethod of a sparse FIR filter that optimally
approximates a given analog filter with minimization of a sampled-data H∞ perfor-
mance index and enhancement of the sparsity of the FIR coefficients simultaneously.
The design problem is described as a convex optimization problem, which can be
efficiently solved by numerical optimization softwares. We have also extended the
proposed method to multi-rate systems. A design example has shown to illustrate
the effectiveness of the proposed method. We also show an application to the design
of feedback filters in delta-sigma modulators. Future work includes multiplier-free
implementation of H∞-optimal FIR digital filters as discussed in [11, 23]. Also, it
is an important but open problem to give a practical sufficient conditions for guaran-
teeing the �1 solution of Problem 2 to be also �0 optimal. Here a practical condition
means that it is easier to check in view of computational complexity than directly
solving the original �0 problem that is known to be NP hard [20, 29].
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Abstract Tumor metastasis is one of the main factors responsible for the high fatal-
ity rate of cancer. Metastasis can occur after malignant cells transition from the
epithelial phenotype to themesenchymal phenotype. This transformation allows cells
to migrate via the circulatory system and subsequently settle in distant organs after
undergoing the reverse transition from themesenchymal to the epithelial phenotypes.
The core gene regulatory network controlling these transitions consists of a system
made up of coupled SNAIL/miRNA-34 and ZEB1/miRNA-200 subsystems. In this
work, we formulate a mathematical model of the core regulatory motif and analyze
its long-term behavior. We start by developing a detailed reaction network with 24
state variables. Assuming fast promoter and mRNA kinetics, we then show how to
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1 Introduction

Realistic dynamical models of physical systems are often very complex and high-
dimensional, and this is especially so in molecular cell biology. Effective analy-
sis often requires simplifications through model reduction techniques. A traditional
approach to model reduction in biology is to take advantage of time-scale separa-
tion. Indeed, most interesting processes in biology are made up of subsystems which
operate at different time scales, thus allowing fast subprocesses to be “averaged out”
at the observational time scale. The rigorous mathematical analysis of time scale
separation, and in particular the mathematical field of singular perturbations, owe
much to the pioneeringwork of Tikhonov [1]. Singular perturbation theory now plays
a key role in both science and engineering [2].

There aremany examples of the ubiquitousness of time-scale separation inmolec-
ular biology. An early example is the study of enzymatic reactions, where the deriva-
tion ofMichaelis-Menten kinetics in 1913 [3] is still widely used [4]. Another exam-
ple is provided by Gene Regulation Networks (GRNs) which naturally have multiple
levels of time scales: external stimuli change Transcription Factor (TF) activities in
milliseconds, promoter kinetics equilibrate in seconds, transcription and translation
take minutes, and protein kinetics are in the order of tens of minutes to hours [5].

In this paper we study a GRN that determines cell-fate in the metastasis of can-
cerous tumors. This network regulates a transition between two cell types: epithelial
cells, which line the external and internal surfaces of many organs, andmesenchymal
stem cells, which are multipotent connective tissue cells that can differentiate into
other type of cells such as muscles, bone, etc. Bidirectional transitions between these
two cell types can happen, and they are referred to as “Epithelial to Mesenchymal”
transitions (EMT) and “Mesenchymal to Epithelial” transitions (MET). During the
EMT process, a cell loses adhesion to neighbouring cells, and becomes more inva-
sive and migratory. It is worth noting that both EMTs and METs are part of normal
developmental processes such as embryogenesis and tissue healing. Nevertheless,
they are of one of main mechanisms of tumor metastasis. After undergoing EMTs,
cancerous cells travel through the blood as Circulating Tumor Cells (CTCs). These
CTCs settle in other organs by undergoing METs, and they subsequently multiply,
thus giving rise to metastatic tumors [6, 7]. Because of their key role in cancer,
the identification of the GRNs enabling EMTs/METs has been a focus of a large
research effort. Transcription factors (TFs) such as SNAIL, SLUG, TWIST, and
ZEB1 have been studied in great detail [8, 9]. Cellular signals such as p54, Notch,
EGF, Wnt, HIF-1α, and others can induce EMTs/METs [6]. These signals act on a
core four-component network that involves the upstream SNAIL/miR-34 circuit and
the downstream ZEB1/miR-200 circuit [10, 11]. The conceptual organization for
such a circuit is depicted in Fig. 1. Each pair reproduces the standard toggle switch
architecture, i.e., mutual inhibition. However, this design differs by having a mixed
inhibition mechanism: the TFs ZEB1 and SNAIL inhibit the miRNAs (μ34, μ200) at
the transcriptional level, while μ34, μ200 inhibit SNAIL and ZEB1, respectively, at
the translational level. Therefore, such circuits are known as chimeric circuits [10].



Analysis of a Reduced Model of Epithelial–Mesenchymal … 447

Fig. 1 The core EMT/MET
network [10], which involves
proteins, mRNAs,
microRNAs (miRNAs) and
the underlying genes which
are not explicitly depicted.
The mRNAs of SNAIL and
ZEB1 are denoted by
ms ,mz , respectively. An
arrow of the form “→”
denotes activation, while “�”
denotes inhibition. The
detailed reaction network
model is presented in Sect. 4

One of the contributions of thiswork is to translate the conceptual diagram inFig. 1
into a precise mathematical model. Our model, while not completely novel, clarifies
and provides explicit details of several features of models found in the literature.
More importantly, we analyze the long-term behavior of a reduced model obtained
under a natural and biologically realistic time scale separation assumption. We prove
a theorem guaranteeing “almost-sure” convergence of trajectories to steady states.
This paper also serves to motivate a powerful but relatively unknown theorem on
singularly perturbed monotone systems. A central and well-known result for mono-
tone systems is Hirsch’s Generic Convergence Theorem [12–16], which guarantees
that almost every bounded solution of a strongly monotone system converges to the
set of steady states. This theory has been widely applied to biochemical systems
[17–19]. However, many biological models are not monotone. For example, mono-
tonicity with respect to orthant cones rules out negative feedback loops, which are
key components of homeostasis and adaptive systems. Indeed, the core EMT/MET
network that is the focus of this paper has a negative feedback loop between S and
mS (see Fig. 1). Nevertheless, we can take advantage of the fact that transcription
happens at a faster time-scale than translation. Moreover, despite the fact that miR-
NAs and mRNAs belong to the same class of biochemical molecules, comparison of
their half-lives reveals that mRNAs have much shorter half-lives than miRNAs and
proteins [20, 21]. Hence, the negative loop in the core EMT/MET network is a “fast”
loop. Intuitively, negative loops that act at a comparatively fast time scale should
not affect the main characteristics of monotone behavior. This has been rigorously
studied in [22] (see the Ph.D. thesis [23] formore details), using tools from geometric
singular perturbation theory.

Thepaper is organized as follows. InSect. 2wemodel the coreEMT/METnetwork
in detail, and derive a reduced model. Section3 reviews several basic definitions and
theorems about monotone systems, and in Sect. 4 we analyze the reduced model
theoretically and we review results that are can be used to extend convergence from
reduced to full systems.
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2 Modeling of the EMT/MET System

A mathematical model for the EMT/MET system has been presented in [10, 24]
based on several assumptions that include detailed balance. Here, we drop such
assumptions, and develop a more “mechanistic” model via the framework of Chem-
ical Reaction Networks (CRN). We review the notation briefly [25, 26]. A CRN is a
set of species S = {Z1, .., Zn} and a set of reactions R = {R1, ...,Rν}. A reaction
Rj can be written as:

∑n
i=1 αi j Zi → ∑n

i=1 βi j Z j .
A stoichiometry matrix � ∈ R

n×ν is defined elementwise as [�]i j = βi j − αi j .
The reactions are associated with a rate function R : Rn

≥0 → R
ν
≥0. We assume that

R takes the form of Mass-Action kinetics: R j (z) = ∏n
i=1 k j z

αi j

j , where k j is the
kinetic constant. Let z(t) ∈ R

n
≥0 be the vector of species concentrations at time t .

The associated ODE can be written as: ż = �R(z).
We model GRNs as CRNs via the central dogma of molecular biology (see [27]

for a detailed framework). Each gene is associated with promoter states, an mRNA
state, and a protein state. As mentioned in the introduction, we can assume that the
promoter kinetics and the mRNA kinetics are fast. In this section, we will derive the
dynamics of the fast and slow systems. We will show that the model can be reduced
from 24 dimensions to four dimensions. The slow states are S, Z , μ200, μ34. We will
start with promoter kinetics.

2.1 Promoter Dynamics

For each gene j , we denote the promoter states by species of the form D j
i . The

superscript denotes the gene,while the subscript denotes the occupancy of the binding
sites. Let D34, D200, DS, DZ be the unbound promoters for μ34, μ200, SNAIL, and
ZEB1, respectively. For instance, D34

s denotes S binding to the promoter of μ34,
while D34

sz denotes both S, Z binding to the promoter of μ34.
Hence, the CRN describing promoter dynamics for the EMT/MET network

(Fig. 1) can be written as:

2S + DZ
αs
2−−⇀↽−−

α−s
DZ
s , 2Z + DZ

αz
2−−⇀↽−−

α−z
DZ
z , 2S + DZ

z

αs
2−−⇀↽−−

α−s
DZ
sz, 2Z + DZ

s

αz
2−−⇀↽−−

α−z
DZ
sz,

2S + D34
αs
2−−⇀↽−−

α−s
D34
s , 2Z + D34

αz
2−−⇀↽−−

α−z
D34
z , 2S + D34

z

αs
2−−⇀↽−−

α−s
D34
sz , 2Z + D34

s

αz
2−−⇀↽−−

α−z
D34
sz ,

2S + D200 αs/2−−−⇀↽−−−
α−s

D200
s , 2Z + D200 αz/2−−−⇀↽−−−

α−z
D200
z , 2S + D200

z
αs/2−−−⇀↽−−−
α−s

D200
sz ,

2Z + D200
s

αz/2−−−⇀↽−−−
α−z

D200
sz , 2S + DS αs/2−−−⇀↽−−−

α−s
DS
s ,
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The concentration of a species Y will be denoted, if no other notation is used, by [Y ].
The reaction structure implies that we have the conservation law

∑
i [D j

i ](t) = E j

for each gene, where E j , j ∈ {S, Z , 34, 200} is the total concentration available in
the medium. Hence, E j stays constant during the course of the reaction. Note that
each TF is assumed to bind to its promoter as a dimer. The same analysis can be
repeated if the TF binds as an n-mer for some integer n ≥ 1.

Since binding/unbinding kinetics are usually fast [5], we will approximate all
the promoter states with their quasi steady state (QSS) approximations. We are inter-
ested in deriving the expression for the active promoter states. Since both S, Z repress
μ34, μ200, then the active states are the unbound promoter states D34, D200, respec-
tively. The promoter DS is the active state for SNAIL since it is a self-repressing
gene. Finally, DZ

sz is the active state for ZEB1 because it is activated by both SNAIL
and self-binding.

We will consider ZEB1 as an example. Let dz(t) := [[DZ ], [DZ
s ], [DZ

z ],
[DZ

sz]]T (t). Using the reactions above, we can write the ODE for the promoters
of Z to get:

ḋz = Pz(s, z)dz :=

⎡

⎢
⎢
⎣

−αss2 − αz z2 α−s α−z 0
αss2 −α−s − z2αz 0 α−z

αz z2 0 −α−z − s2αs α−s

0 z2αz s2αs −α−s − α−z

⎤

⎥
⎥
⎦ dz .

(1)

Note that s, z are slow variables. Setting the derivatives to zero and substituting the
conservation law we get:

[DZ
sz]qss = EZs2z2

(s2 + As)(z2 + Az)
,

where As := α−s/αs, Az := α−z/αz . Similarly, we can define the matrices Ps(s, z),
P34(s, z), P200(s, z). Hence, we get:

[D200]qss = E200As Az

(s2 + As)(z2 + Az)
, [DS]qss = ES As

(s2 + As)
, [D34]qss = E34As Az

(s2 + As)(z2 + Az)
.

2.2 RNA Dynamics

Translational inhibition bymiRNAs is achieved by an RNA-induced Silencing Com-
plex (RISC). RISC binds to the target mRNA and degrades it via the Argonaute pro-
tein [28].Here,we assume a simplemodel inwhichmiRNAbinds to the targetmRNA
to inhibit translation and activate degradation. In general, multiple miRNAs can bind
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to a single mRNA. Here we assume that each mRNA can have up to two binding
sites. For each additional miRNA binding, translation is inhibited and degradation is
accelerated.

The CRN for the transcription of SNAIL and ZEB1 can be written as follows:

DS γs−→ DS + Ms, DZ
sz

γz−→ DZ + Mz, Ms
β−s−→ ∅, Mz

β−z−→ ∅,

whereMs, Mz are the species denoting themRNAsofSNAILandZEB1, respectively.
The CRN for the miRNA-mRNA reaction (with two binding sites) can be written as
follows:

μ34 + MS
cs−⇀↽−
c−s

MSμ

βs1−→ μ34, μ34 + MSμ

cs−⇀↽−
c−s

MSμ2

βs2−→ 2μ34,

μ200 + MZ
cz−⇀↽−
c−z

MZμ

βz1−→ μ200, μ200 + MZμ

cz−⇀↽−
c−z

MZμ2

βz2−→ 2μ200,

Since miRNAs actively degrade mRNAs, we assume that:

βs < βs1 < βs2, βz < βz1 < βz2. (2)

Remembering that μ200, and z are the slow variables, we can write the ODE for
ZEB1 translational dynamics as follows (withmz(t) := [[Mz], [Mzμ], [Mzμ2 ]]T (t)):

ṁz = Qz(μ200)mz + bzD
Z
sz (3)

:=
⎡

⎣
−czμ200 − βz c−z 0

czμ200 −βz1 − czμ200 − c−z c−z

0 czμ200 −c−z − βz2

⎤

⎦mz +
⎡

⎣
γz
0
0

⎤

⎦ DZ
sz

Since (3) is a linear system in μ200, the quasi-steady state can be solved easily by
matrix inversion. Substituting the QSS for [DZ ] we get:

mz,qss = γz EZ s2z2

(s2 + As)(z2 + Az)

⎡

⎣
βz2czμ200 + ez1

ez2μ200

c2zμ
2
200

⎤

⎦ 1

βz2c2zμ
2
200 + ez3czμ200 + ez1βz

,

(4)
where ez1 := βz1βz2 + (βz1 + βz2)c−z + c2−z, ez2 := cz(βz2 + c−z), ez3 := βzβz2 +
βz1βz2 + βz1c−z . The dynamics of ms can be derived similarly and we get:

ms,qss = γs ES As

(s2 + As)

⎡

⎣
βs2csμ34 + es1

es2μ34

c2sμ
2
34

⎤

⎦ 1

βs2c2sμ
2
34 + es3csμ34 + es1βs

, (5)

where es1 := βs1βs2 + (βs1 + βs2)c−s + c2−s, es2 := cs(βs2 + c−s), es3 := βsβs2 +
βs1βs2 + βs1c−s .
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2.3 Slow Dynamics

The complete reaction model requires modeling the production of the proteins and
the miRNAs. The CRN can be written as follows:

D34 εβ34−−→ D34 + μ34, μ34
εβ−34−−→ ∅,

D200 εβ200−−→ D200 + μ200, μ200
εβ−200−−−→ ∅,

Ms
εks−→ Ms + S, Msμ

εks1−−→ Msμ + S, Msμ2

εks2−−→ Msμ2 + S, S
εk−s−−→ ∅,

Mz
εkz−→ Mz + Z , Mzμ

εkz1−−→ Mzμ + Z , Mzμ2

εkz2−−→ Mzμ2 + Z , Z
εk−z−−→ ∅.

The kinetic constants are multiplied by ε to emphasize that the corresponding
reactions are slow. Note that since miRNA inhibits translation, the mRNA-miRNA
complexes have lower translation rates than raw mRNAs. Hence, we have:

ks > ks1 > ks2, kz > kz1 > kz2. (6)

The model above assumes that Z is produced only when both Z , and S are bound
to ZEB1’s promoter. But this is not realistic, since constitutive transcription is always

present at low levels. Hence, we model this by a reaction ∅ εδz−→ Z with δz small. This
will help us also show generic convergence for the reduced system in Sect. 4.

After substituting the QSSs for the fast variables in the slow system, all the terms
corresponding to promoter and mRNA reactions vanish. Hence, the corresponding
ODE can be written as follows:

μ̇34 = β34[D34] − β−34μ34 = E34Az Asβ34

(s2 + As)(z2 + Az)
− β−34μ34

ṡ = [ks ks1 ks2]ms − k−ss = [ks ks1 ks2]ms,qss − k−ss (7)

μ̇200 = β200[D200] − β−200μ200 = E200β200Az As

(s2 + As)(z2 + Az)
− β−200μ200

ż = δz + [kz kz1 kz2]mz − k−z z = δz + [kz kz1 kz2]mz,qss − k−z z.

where mz,qss,ms,qss are given by (4), (5), respectively.

3 Monotone Systems and Singular Perturbations

3.1 Monotone Systems

In this section, we review basic definitions and results regarding monotone systems.
We base our discussion on [13, 16, 23].
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A nonempty, closed set C ⊂ R
N is said to be a cone if C + C ⊂ C , αC ⊂ C

for all α > 0, and C ∩ (−C) = {0}. For each cone C , a partial order on R
N can be

associated. For any x, y ∈ R
N , we define:

x ≥ y ⇔ x − y ∈ C

x > y ⇔ x − y ∈ C, x 
= y.

When C◦ is not empty, we can define x � y ⇔ x − y ∈ C◦.
In this paper, we only consider coneswhich are orthants ofRN . In order to identify

the various orthants, let σ ∈ {±1}N and let

Cσ = {z ∈ R
n|σi zi ≥ 0, 1 ≤ i ≤ n}

be the corresponding orthant cone. Let �σ be the corresponding partial order.
A set W ⊆ R

N is said to be p-convex, if W contains the line joining x and y
whenever x � y, x, y ∈ W . Hence, equipped with a partial ordering on a p-convex
and open set W we study the ordinary differential equation:

dz

dt
= F(z), (8)

where F : W → R
N is a C1 vector field. We assume that the system is forward

invariant with respect to W . In our application in this paper we will use W = R
N+ ,

the open positive orthant.
We are interested in a special class of equations which preserve the partial order

along all trajectories.

Definition 1 The flow φt of (8) is said to have positive derivatives on a setW ⊆ R
N ,

if
[

∂
∂zφt (z)

]
x ∈ C◦ for all x ∈ C \ {0}, z ∈ W , and t > 0.

Definition 2 The system (8) is called monotone (resp. strongly monotone) on a set
W ⊆ R

N if for all t > 0 and all z1, z2 ∈ W ,

z1 ≥ z2 ⇒ φt (z1) ≥ φt (z2) (resp. φt (z1) � φt (z2) when z1 
= z2).

Establishing that a flow has positive derivatives can be performed by verifying
the irreducibility of the Jacobian as the following theorem states:

Proposition 1 Assume that (8) is monotone with respect to an orthant cone C. If
∂F
∂z (z) is irreducible for all z ∈ W then the flow φt of (8) has positive derivatives on
the set W ⊆ R

N .

The following result can be interpreted as saying that having positive derivatives
is an “infinitesimal” version of strong monotonicity.

Proposition 2 Let W ⊂ R
N be p-convex and open. If the flowφt has positive deriva-

tives in W, then the associated ODE is strongly monotone on W.
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Hence, we have the following corollary:

Corollary 1 Let (8) and W be given as above. Assume that (8) is monotone with
respect to an orthant cone C. If ∂F

∂z (z) is irreducible for all z ∈ W, then the system
(8) is strongly monotone with respect to C on W.

This is a rephrasing of the well-known Hirsch Generic Convergence Theorem:

Theorem 1 Assume that (8) is strongly monotone on a p-convex open set W ⊆ R
N .

Let Wc ⊆ W be defined as the subset of points whose forward orbit has compact clo-
sure in W. If the set of equilibria is totally disconnected, then the forward trajectory
starting from almost every point in Wc converges to an equilibrium.

ByCorollary 1, it is sufficient to checkmonotonicity and irreducibility to establish
generic convergence.

3.2 Graphical Characterization of Monotonicity

Monotonicity with respect to orthant cones can be characterized via Kamke’s condi-
tions. We review the relevant material from [16, 18]. Let σ ∈ {±1}N and let Cσ be
the corresponding orthant as defined above. Let � = diag(σ ), i.e., a diagonal matrix
with σ as the diagonal. Then, the following holds:

Theorem 2 (Kamke’s conditions) Let (8) be given and let φt be the associate flow.
Let J = ∂F

∂z be the corresponding Jacobian. Let W ⊆ R
N be a p-convex open set.

Assume that there exists σ ∈ {±1}N such that � J� is Metzler on W (i.e., all non-
diagonal entries are non-negative). Then the corresponding flow is monotone on W
with respect to the partial order �σ .

The last proposition gives a useful characterization for monotonicity with respect
to orthant cones; however, it requires checking 2N possible sign combinations. Alter-
natively, a simple graphical criteria can be stated for a graph derived from the Jaco-
bian. Informally, it states that the system is orthant monotone if every loop has a net
positive sign. We state it more formally next.

We say that a Jacobian J is sign-stable on a set W if for each i 
= j , sgn(Ji j ) is
constant onW . Define a signed directed graph G with vertices {1, ..., n}. There is an
edge connecting vertices i to j if the partial derivative Ji j does not vanish identically.
The sign of the edge is equal to sign of Ji j . A loop is any sequence of edges (without
regard to direction) that does not traverse a vertex twice and it starts and ends with
the same vertex. The sign of a loop is the product of the signs of the constituent
edges. It is worth noting that diagonal entries, i.e., “self-loops”, have no effect on
the validity of the results.

Theorem 3 (Positive Loop Property) Let (8) be given. Let J = ∂F
∂z be the cor-

responding Jacobian. Assume J is sign-stable. Let W ⊆ R
N be a p-convex open
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set. Let G be the graph defined above. If every loop has a positive sign, then there
exists σ ∈ {±1}N such that � J� is Metzler on W (i.e., all non-diagonal entries are
non-negative).

3.3 Singular Perturbation Model Reduction

The process of mathematical modeling of physical processes involves usually reduc-
tion of the dynamics of fast variables. For instance, self-loops, i.e., terms corre-
sponding to the diagonal entries of the Jacobian J , are often approximations of fast
dynamics. Hence, it is intuitive to expect that the theorems in the previous section
hold for sufficiently fast negative self-loops.

Hence, we consider a system in the singularly perturbed form:

dx

dt
= f0(x, y, ε) (9)

ε
dy

dt
= g0(x, y, ε),

where f0 : Rn+ × R
m+ × [0, ε̄] → R

n+, g0 : Rn+ × R
m+ × [0, ε̄] → R

m+ are smooth
bounded functions and ε̄ > 0 is fixed. Furthermore, we assume that the equilib-
rium set is totally disconnected for all ε < ε̄. These assumptions are automatically
satisfied in our case since Mass-Action kinetics give rise to polynomial systems.

For 0 < ε � 1, the dynamics of x are much slower than y. If ε 
= 0, we can
change the time scale to τ = t/ε, and study the equivalent form:

dx

dτ
= ε f0(x, y, ε) (10)

dy

dτ
= g0(x, y, ε).

Model reduction via singular perturbations requires solving the fast system at a
quasi-steady state, hence we assume that there exists a smooth bounded function

m0 : R+
m → R

+
n

such that g0(x,m0(x), 0) = 0 for all x ∈ R
n+. From the previous section it can be

seen thatm0 exists and is unique aswe have derived all theQSS expressions uniquely.
For simplicity, let z = y − m0(x). Hence, the fast system (10) can be written as:

dx

dτ
= ε f1(x, z, ε) (11)

dz

dτ
= g1(x, z, ε),
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where

f1(x, z, ε) = f0(x, z + m0(x), ε),

g1(x, z, ε) = g0(x, z + m0(x), ε) − ε[ ∂
∂x m0(x)] f1(x, z, ε).

When ε = 0, the system (11) becomes

dz

dτ
= g1(x, z, 0), x(τ ) ≡ x0 ∈ Wx . (12)

Verifying the stability of the fast system is a standard and an intuitive requirement
for singular perturbation methods as in the original Tikhonov theorem [1]. Hence we
need to check that:

1. the equilibrium z = 0 of (12) is globally asymptotically stable on {z | z +
m0(x0) ∈ R

m+} for all x0 ∈ R
+
n .

2. all eigenvalues of the Jacobian ∂
∂y g0(x,m0(x), 0) have negative real parts for

every x ∈ R
+
n .

We study this in the next section.

4 Analysis of the Core EMT/MET Network

In our analysis in the Sect. 2 we have considered fast and slow reactions separately.
We will use now the notation from Sect. 3. Let x(t) = [μ34, s, μ200, z]T (t) be the
state of the slow system, and let y(t) = [dT

s , dT
z , dT

34, d
T
200,m

T
s ,mT

z ](t) be the state
of the fast system. Hence, the full system can be written in the form (9). We denote
the reduced system (7) as ẋ = G(x).

4.1 Stability of the Fast Dynamics

In this subsection, we want to study global asymptotic stability of the fast system,
and to show that its Jacobian is Hurwitz.

For a fixed slow variable x , the fast dynamics of ZEB1, SNAIL, miRNA-34 ,
miRNA-200 are decoupled from each other as can be seen from the CRNs introduced
before. Furthermore, all the systems are linear. Let us analyze ZEB1 as an example.
From (1),(3) we get [

ḋz
ṁz

]

=
[
Pz(s, z) 0

Bz Qz(s, z)

] [
dz
mz

]

,

where Bz := [O3×3, bz] and O3×3 ∈ R
3×3 is a zero matrix. The dynamics of dz

are decoupled from mz . Since Pz is an irreducible Metzler matrix with principal
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eigenvalue of 0, Perron-Frobenius Theorem [29] implies that all other eigenval-
ues are strictly negative. In fact, they can be computed as {−αss2 − α−s,−αz z2 −
α−z,−αss2 − α−s − αz z2 − α−z}. Since the total number of promoters is conserved,
we can reduce the dimension of the ODE by one. It follows that the reduced pro-
moter dynamics are globally asymptotically stable. The same argument applies to
the promoters of Z , μ34, μ200.

We turn to the dynamics ofmz . Due to the block triangular structure we only need
to study the eigenvalues of Qz(s, z). This matrix is also Metzler and the principal
eigenvalue can be shown to be negative. Hence, it is Hurwitz. This can be proven
alternatively with a linear Lyapunov function V (mz) = 1Tmz . The time-derivative
is V̇ (mz) = −[βz βz1 βz2]mz < 0 for all mz 
= 0. The same argument applies to the
translational dynamic of SNAIL. Hence, the fast system is globally asymptotically
stable and its Jacobian is Hurwitz.

4.2 Monotonicity of the Reduced System

Westudy the reduced system (7).Wewill utilizeKamke’s conditions as inTheorem2.
Hence, we compute the Jacobian J for the slow system (7):

J =

⎡

⎢
⎢
⎣

−β−34 − 2E34As Azβ34s
(s2+As )2(z2+Az)

0 − 2E34As Azβ34z
(s2+As )2(z2+Az)

J21 J22 0 0
0 − 2E200As Azβ200s

(s2+As )2(z2+Az)
−β−200 − 2E200As Azβ200z

(s2+As )2(z2+Az)

0 J42 J43 J44

⎤

⎥
⎥
⎦ ,

where

J21 = − h1(μ34)Es Asγs

(s2 + As)(βs2c2sμ
2
34 + es3csμ34 + es1βs)2

,

where h(μ34) := cs(βs2 + c−s)
2(βs1 + c−s)(βs1ks − βsks1) + 2c2sμ34(ksβs2 −

βsks2)(c−s + βs1)(c−s + βs2) + c3sμ
2
34(βs2(βs2ks − βsks2) + (βs2 + c−s)(βs2ks1 −

βs1ks2)). Note that h(μ200) > 0 for all parameters if (2), (6) are satisfied. Hence
J21 < 0. Similarly, we can also calculate J43 to show that it is negative whenever (2),
(6) are satisfied.

Finally, using (4) we compute J42 as:

J42 = 2EZγz Assz2

(s2 + As)2(z2 + Az)

kz(βz2czμ200 + ez1) + kz1(ez2μ200) + kz2c2zμ
2
200

βz2c2zμ
2
200 + ez3czμ200 + ez1βz

> 0.

Remark 1 Conditions (2), (6) are stronger than we need. In fact, it can be seen from
the expression of h above that it is sufficient to have the protein production ratio of
the raw mRNA greater than the corresponding one for the miRNA-RNA complex.
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Fig. 2 Graph of the reduced
circuit. In the terminology of
Theorem 3, “→” has a +
sign, and “�” has a − sign

The signs of J22, J44 do not play a role since they correspond to self-loops. Therefore,
we have the following sign pattern for the Jacobian under the conditions (2),(6):

⎡

⎢
⎢
⎣

∗ − 0 −
− ∗ 0 0
0 − ∗ −
0 + − ∗

⎤

⎥
⎥
⎦ ,

which can be represented via the graph depicted in Fig. 2. It can be easily seen
that every loop is positive. Hence, by Theorem3 there exists σ ∈ {±1}N such that
� J� is Metzler. Therefore, by Theorem2 we get that the reduced system (7) is
monotone onW = R

4+. Monotonicity holds with respect to the orthant cone specified
by σ = [−1, 1,−1, 1]T (see Sect. 3.2).

It can be verified that the Jacobian is irreducible on the open positive orthant Rn+.
Hence, by Corollary1 the reduced system is strongly monotone on R

n+.
Fix an initial condition x0 ∈ R

n+, and let x(t) := ϕ(t; x0) be the corresponding
solution of the slow system. In order to infer generic convergence to the set of
equilibria, we need the strong order preserving property to hold on the ω-limit set of
the solution. Hence, we need to show that ω(ϕ(t; x0)) ∩ ∂Rn+ = ∅. In other words,
we need to show that the slow system is persistent. This can be shown as follows.
Recall that the slow system (7) is given as ẋ = G(x). It can be verified from (7)
that ∀i,Gi (z) > 0 whenever zi = 0. Hence, there exists η > 0 such that ẋi (t) > 0
whenever xi (t) ∈ [0, η). This implies that the boundary has no equilibria and is
repelling (i.e., the vector field is pointing away from the boundary). We proceed by
seeking contradiction. W.l.o.g, assume that ∃x∗ ∈ ω(ϕ(t; x0)) ∩ ∂Rn+ with x∗

i = 0
(the i-coordinate). Hence, there exists a sequence {tk}∞k=1 such that xi (tk) > 0 and
xi (tk) → x∗

i = 0. Therefore, for each right neighborhood N of 0 there exists t∗
for which xi (t∗) ∈ N and ẋi (t∗) < 0, which is a contradiction. Hence, the reduced
system is persistent.

Therefore, we state the following theorem.
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Theorem 4 Consider the reduced system (7). Let Wc ⊂ R
4+ be the subset of points

whose forward orbit has a compact closure in R
4+. Then, the forward trajectory

starting from almost every point in Wc converges to an equilibrium.

4.3 Remarks on Generic Convergence for Singularly
Perturbed Monotone Systems

An interesting general question for singularly perturbed systems is as follows.
Assuming that the slow system is strongly monotone, does the full system obey
generic convergence properties? In other words, suppose that the flow ψ0

t of the
slow system (set ε = 0 in (9)):

dx

dt
= f0(x,m0(x), 0) (13)

has strongmonotonicity properties that guarantee almost-global convergence, mean-
ing convergence to equilibria for all initial states except for those states in a set of
measure zero (or, in a topological formulation, a nowhere dense set), but that the
complete system is not monotone (so that no such theorem can be applied to it). Still,
one may expect that the almost-convergence result can be lifted to the full system,
at least for small ε > 0. An obstruction to this argument is that there is no a priori
reason for the exceptional set to have a pre-image which has zero measure (or is
nowhere dense). Notheless, a positive result along these lines was developed in [22]
via the use of geometric invariant manifold theory to examine the fibration structure
and utilize an asymptotic phase property [30–32]. Figure3 illustrates the idea. The
ODE restricted to the invariant manifold Mε can be seen as a regular perturbation of
the slow (ε=0)ODE. In [13], it has been noted that aC1 regular perturbation of a flow
with positive derivatives inherits the generic convergence properties. So, solutions
in the manifold will generally be well-behaved, and asymptotic phase means that
trajectories close to Mε can be approximated by solutions in Mε, and hence they also
approach the set of equilibria if trajectories on Mε do. We refer the reader to [22] for

Fig. 3 Illustration of the
manifolds M0 and Mε . The
figure shows two key
properties of Mε . First, Mε is
close to M0. Second, the
trajectories on Mε converge
to steady-states if those on
M0 do
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a technical discussion. In principle, this approach could be applied to systems such
as ours, to conclude almost global convergence, under mild technical conditions on
domains of validity for equation. We omit the details of the application here.

5 Conclusions

We have conducted a model reduction analysis for the EMT/MET system. Bounded
trajectories of the reduced EMT/MET system generically converge to steady states,
assuming sufficiently fast promoter and mRNA kinetics. Therefore, such a model
cannot admit oscillations nor chaotic behavior. There are many further directions for
research, which are being pursued by the authors, including the generalization to the
case of miRNA binding to more than two sites on the mRNA molecule.
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