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Abstract To predict insurance reserves at the micro-level without data aggregation,
a two-stage machine learning model based on enhanced LightGBM decision trees is
proposed. The first stage is a classification task: whether there are claims that have
arisen but have not been submitted under the contract (IBNR). In the second stage,
the insurance reserve is predicted using a regression model in the case of IBNR, or
it is assumed to be equal to the sum insured otherwise. It is shown that the proposed
method is more effective than traditional methods of insurance reserves forecasting.
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1 Introduction

Forecasting insurance reserves is a vital actuarial task since it is important to be sure
that reserves are sufficient to cover losses. Themost challenging problem is assessing
claims that are incurred but not reported (IBNR) [1].

Traditionally, for forecasting insurance reserves, the chain ladder method, the
Bornhuetter-Fergusonmethod, and various regressionmodels. In recent years copula
models have become popular.

However, machine learning methods, in particular, boosted gradient trees, are not
used at all to assess reserves.

This chapter proposes an approach to forecasting insurance reserves based on
LightGBM boosted decision trees [2].

The remainder of the chapter is structured as follows.
Section 2 reviews related works on forecasting insurance reserves.
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Section 3 describes the initial data and the research methodology, which is the use
of a two-step machine learning model, which in the first step, using the LightGBM
classification model, determines is there an IBNR claim under this contract, and in
the second step, using the LightGBM regression model, predicts the reserve value
for IBNR cases.

Section 4 discusses the outcome of the work. Using our technique for reserves
forecasting, results are compared with using AdaBoost trees and ridge regression.

2 Literature Review

The actuarial practice of insurance reserving is traditionally based on a body of
claims data structured in triangles.

There are several statistical methods for estimating insurance reserves. Classical
techniques of using the chain ladder method [3–7] and the Bornhutter–Ferguson
method [7, 8] have proven themselves in practice.

However, these techniques are effective only when the analyzed claims have a
high probability and a low impact on the reserve volume.

This approach was used in assessing the reserve volumes in conditions of limited
incoming information.

Currently, limited information is not a limitation. Therefore, more and more
researchers are inclined to conduct studies at the micro-level based on individual
pay-offs [9–11].

Recently, works have begun to appear related to applying new methods for
forecasting insurance payments and reserves, including machine learning methods.

One of the approaches to assessing insurance payments and reserves related to
health insurance is an approach based on forecasting the costs of citizens for health
care.

In [12], Takeshima, Keino, Aoki, Matsui, and Iwasaki used variations of lasso
regression to predict the costs of Japanese citizens for medical care. In [13], Frees,
Gao, and Rosenberg, a two-component model is used to estimate health care costs:
one part of the model estimated the frequency of certain events (visits to clinics,
the number of hospitals, etc.), and the other predicted the costs associated with a
particular of these events.

Variousmethods are used to assess insurance benefits directly. So, Taylor et al. [14]
used a combination of models (paid and incurred models), which made it possible
to reduce the prediction error compared to traditional approaches significantly.

Gschlößl and Czado [15] found a significant relationship between the number
of requirements and their size. To assess the frequency of requirements and their
size, they used the Bayesian approach, and the parameters were estimated using the
Monte-Carlo method based on Markov chains.

Erhardt and Czado [16] studied the distribution of annual amounts of claims with
zero requirements. To do this, they used bundles of discrete and continuous copulas,
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which allowed them to approximate continuous copulas that describe the annual
sums of requirements.

Pettere and Kollo [17] used a two-dimensional Clayton copula model for calcu-
lating IBNR requirements and investigating the relationship between the requirement
value and the time from when this requirement arose until the time the payment was
made.

To forecast reserves for IBNR requirements, Zhao et al. [18] developed a semi-
parametricmodel of aggregated requirements using themaximum likelihoodmethod.

To solve many problems, generalized linear regression models are successfully
used. So Frees and Wang [19] used them to estimate the limit of claims distribution,
and Garrido et al. [20] weakened the traditional insurance condition for the indepen-
dence of the number of claims and their size, including rating factors in the model,
which are determined using generalized linear regression models.

Krämer et al. [21] also used a regression approach to estimating the magnitude of
requirements and their quantity, provided that they are dependent. To account for this
dependence, two-dimensional copulas are used. The authors showed that the explicit
inclusion of this dependence in the model profoundly affects these estimates. They
offered an algorithm for finding the optimal family of copulas.

Shi et al. [22] offered two approaches for describing the dependence of the number
of requirements and their size. The first is based on the decomposition of conditional
probability and considers the number of requirements as covariates in the regression
model for the average size of requirements. The second uses the copula model to
describe the joint distribution of the number and size of requirements. To compare
these approaches, a simulation experiment was conducted that showed the advantage
of the second approach. In particular, the Gini index for the copula model turned out
to be 42.14 against 38.64 for the model based on the first approach and 38.23 for the
traditional Tweedie compound Poisson model.

Hua [23] proposed the use of a mixed copula regression based on the GGS copula
for modeling aggregate loss under conditions where there is a negative relationship
between the loss frequency and its value. This allowed to significantly reduce the
forecast error of the total losses. Thus, the total loss estimate based on theGGS copula
for the panel data for 2010 turned out to be 4 362 626 with the actual value of 4 159
322, while the total loss estimate, which was based on the Tweedy independence
model, turned out to be 6 147 354.

Lee and Shi [24] proposed an approach for periodic insurance claims modeling in
a longitudinal installation using copulas to determine the dependence of the claims
frequency on time, the dependence of the claims volume on time, and the relationship
between the claims frequency and volume.

Heberle and Thomas [25] used fuzzymethods to estimate the requirements values.
They built a fuzzy chain ladder (FCL) model, uses the TFN uncertainty to make
predictions, and proposes a new approach to forecast prediction error.

de Andrés Sánchez [26] proposes a reserve estimation method based on a combi-
nation of Tanaki Ishibuchi and Nii fuzzy regression, with Sherman’s reservation
scheme.
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Lally and Hartman [27] uses the Gaussian process regression with input warping
and several covariance functions to estimate future claims to predict reserves. The
authors showed that the Gaussian process regression models dominate the chain
ladder and growth curvemodels in terms of accurate predictive accuracy asmeasured
by RMSE. Several variants of Gaussian process models were also proposed, and it
was shown that a model with a quadratic exponential covariance function works
stably well for all data sets considered.

In contemporary literature, various variations of lasso and ridge regression, copula
models, and fuzzy regression are mainly used to model individual reserves.

Machine learning tools that use all the available non-aggregated information can
ultimately overcome the problems that arise with more traditional approaches.

But for various reasons, boosted decision tree models are not used to predict
insurance reserves.

It seems that the use of such algorithms can significantly improve the quality of
reserves estimation.

In this chapter, we consider the possibility of using LighntGBM boosted decision
trees algorithms for insurance reserves forecasting.

3 Research Methods

3.1 Data

The following features are used:

• AgreementNo—insurance contract number;
• AccidentDate—date of the insured event occurrence;
• ReportingDate—date of application of the client of the insurance company as a

result of the insured event;
• PaymentDate—date of insurance compensation paid to the client by the insurance

company;
• LoB—the line of business;
• Status—loss status (“Paid”–payout, “Reserve”–pending);
• SumInsured—the insurance amount equal to themaximumpossible compensation

amount specified in the insurance contract;
• ReserveAmount—the final amount of payment/reserve for an insured event

revalued as a result of an internal investigation by the insurance company;
• ReportTime—time elapsed from themoment of the insured event occurrence until

the moment the client contacted the insurance company, years;
• FinTime—time elapsed from the moment the client submitted an insured event

statement to the insurance company until the final settlement by the insurance
company, that is, the refusal of payment, years;
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• Label—synthetic feature equal to 1 if the maximum possible compensation
amount is not equal to the final calculated pay-off amount for an insured event,
and zero otherwise;

• Target—the difference between themaximum possible compensation amount and
the final calculated pay-off amount for an insured event. To estimate the insurance
reserves, we use data that includes the period from 2004 to 2019 provided to the
authors by a large insurance company from Central Europe.

3.2 Algorithm

To implement the solution of the reserves forecasting problem, two subtasks were
formulated:

• Determination of whether there is an IBNR situation under the contract;
• Forecasting the reserve volume for the case when the contract is in an IBNR

situation or determining a reserve equal to the insurance amount if the contract is
not an IBNR contract.

To do this, synthetic features are created:

• Label—is the maximum possible insurance amount equal to the actual estimated
pay-off amount;

• Target—the difference between the maximum possible insurance amount and the
actually estimated pay-off amount.

The model assumes the following assumptions:

1. Since the valuation date is the date of the report on the insured event, the model
assumes that all information about the claim is known at that date, and therefore
it can be used to predict future pay-offs;

2. The insurance company pays the policyholder the amount as soon as the final
pay-off is established, thus generating a series of cash flows. The model takes
into account one single aggregate payment for each claim payable at the closing
date;

3. Settlement time is considered a discrete value expressed in years. Analysis of
the available statistical data shows that the period for claim resolving does not
exceed 6 years;

4. Forecasting is carried out for 2019. The model values obtained from the classifi-
cation, indicating payment for already declared cases in the next 2020 and later,
will relate to the reserve of declared but unresolved losses, not to the reserve of
losses.

All amounts are calculated in Euros.
The training data set from 2004 to 2018 has 66,414 records, and the test dataset

(2019) was 20 507 records.
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4 Results and Discussion

As a result of the hyperparameters tuning for the LightGBM classification model,
whether there is an IBNR situation under the contract, the following parameters were
the best:

• Number of leaves: 256;
• Minimum leaf instances: 50;
• Learning rate: 0.025;
• Number of trees: 500.

As a result of the hyperparameters tuning for the LightGBM regression model for
reserve volume prediction in the case when the contract is in the IBNR situation, the
following parameters were the best:

• Number of leaves: 256;
• Minimum leaf instances: 50;
• Learning rate: 0.025;
• Number of trees: 500.

The final model produces, as the result, MAE = 30.37, MAPE = 0.16.
For comparison, the LightGBM model without preliminary IBNR/Non-IBMR

classification shows MAE = 31.32, MAPE = 0.18, regression on AdaBoost trees–
MAE = 39.59, MAPE = 0.26, ridge regression–MAE = 135.64, MAPE = 0.87.

We propose the use of LightGBM boosted decision trees in the algorithm, which
first determines whether the contract has an IBNR situation, and then for the case
when the contract is in the IBNR situation, another LightGBM regression model
predicts the reserve volume. For this case, if the contract is not an IBNR contract,
the reserve is determined to be equal to the insurance amount.

The technique proposed is more effective than traditional methods.
It also can be used as a method for assessing the size of individual insurance

reserves.
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