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Abstract In this chapter, we describe the algorithms for data processing applied
as part of an intellectual analysis subsystem of a software system for predicting
and researching the properties of antifungal antibiotics. These include models for
predicting toxicity based on assays as well as acute oral toxicity. The mathematical
models were trained, tested, and validated on different sets of antifungal antibiotic
data. Testing showed the models’ accuracy and viability for predicting antifungal
antibiotics’ properties.
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1 Introduction

Fungal infections are one of the most important issues in healthcare. The number of
fungal infections is growing as a result of, among other reasons, continuing environ-
mental pollution, an increase in background radioactivity, improper application of
broad-spectrum antibiotics, growing use of cytostatic and immunosuppressive drugs,
and the appearance of more and more frequent antifungal drug resistance [1–3].
Among these infections, invasive mycoses are becoming a more and more important
medical concern due to the growing number of immunocompromised patients [4–6].
The number of currently available and approved systemic antifungals is insufficient
[7–9], and the progress of developing novel antifungal drugs is not fully proportional
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to the rate of growth of antifungal diseases, which include invasive fungal infections
that are an existential and growing problem for modern healthcare [10–12]. Effective
use of antifungal drugs to treat various mycoses is an important factor in the fight
against antifungal infections.

One of the main issues affecting drug research is the cost of research and develop-
ment, which can reach as high as 2.5 billion dollars [13]. The time it takes to develop
a new drug is also a key issue, as a great deal of time is lost on drugs that ultimately
do not pass pre-clinical or clinical trials.

One of the modern approaches to developing novel highly-effective low-toxicity
antifungal drugs with improved medical, biological, and biopharmaceutical prop-
erties is the chemical modification of existing antifungal drugs, chief among those
polyene macrolide antibiotics [14–16]. In this chapter, we discuss a specific class of
antibiotics: polyene macrolide antibiotics (PMA), which make up approximately a
quarter of all existing antifungal antibiotics. The chemical structure of aPMAconsists
of a macrolide ring that contains conjugated double bonds on one side (forming the
lipophilic side of themolecule) and a number of hydroxyl and keto groups on the other
(forming the hydrophilic side of the molecule). Their biological target is ergosterol,
one of the components of a pathogenic fungi phospholipid membrane.

Amphotericin B is the drug of choice (gold standard) among all known PMA due
to its high antifungal activity against the vast majority of known clinical forms of
mycoses. PMA derivatives (PMAD) are chemically modified versions of existing
PMA drugs which retain the biological activity of the initial drug while having lower
toxicity. They can be an important topic of research in the fight against fungal drug
resistance [17–19].

Software engineers can support the process of PMAD research by creating a
software system that can predict antifungal activity and toxicity on the basis of the
chemical structure of a molecule.

The goal is the development of models and a software solution providing those
models that can reduce antifungal drug research time and cost by selecting such
PMAD that have lower toxicity while retaining their ability to bind to the biological
target. Using such a program, a researcher can check the toxicity and antifungal
activity of a potential PMAD, and select such PMAD to go to pre-clinical trials that
havemore favorable traits. The program helps to cut time and other resource expendi-
ture for pre-clinical and clinical trials of PMAD that lack the desired pharmaceutical
properties.

2 Description of the Software System

The software system contains interfaces for researchers, experts, and database admin-
istrators. It includes an intelligent data analysis subsystem, a subsystem of synthesis
step selection, and databases providing them with the data they require to function
(see Fig. 1).
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Fig. 1 Architecture of the software system for predicting and researching antifungal antibiotics’
properties

Where LD50—the lethal dose for half of the population (mg drug/kg, oral intake,
rats), T—a vector of predicted results of assays corresponding to toxicity signaling
reactions, BL—the likelihood of binding to the biological target (%), D—the graph
representation of the molecule, I—additional data to train the neural networks on,
R—the results of this training process (AUC,MSE), S—the SMILES notation repre-
sentation of the molecule’s structure, SV—a vectorized version of that notation,
MD—a vector of molecular descriptor values generated from the SMILES notation
representation, MF—Morgan’s molecular fingerprint bit vector for the molecule,
X—description of the initial PMA, Xe—the result of modifying the structure of that
PMA to create a PMAD, Y—the experimentally derived values acquired by testing
that PMAD, and Z—the PMAD synthesis steps.

The data analysis subsystemconsists of one acute toxicitymodel based on gradient
boosted decision trees, 12 recurrent neural networks modeling one property each
based on embedded vector representations of the elements of the SMILES notation
of themolecule, and a deterministic algorithm for predicting biological activity based
on pharmacophore filtering.
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3 Data Analysis Subsystem Components

The acute toxicity model utilizes the gradient boosted decision tree model catboost
in order to predict toxicity. It is trained on data retrieved fromChemIdPlus [20] in the
form of tsv data (approximately 6000 values). Of note is that, prior to predicting the
value, we multiply it by a normalized (0, 1] value of its logP in order to adjust some-
what for absorption differences due to lipophilicity. The data is input as a SMILES
string, then processed using RDKit [21], which also provides us with the descriptors
we use and the RDKit molecular fingerprint that also serves as input. The data is
then fed into a gradient-boosted decision tree (catboost) model. The model’s hyper-
parameters are as follows: iterations: 50,000, depth: 6, od_type: ‘Iter’, od_wait: 500,
learning_rate: 0.07, random_strength: 40, l2_leaf_reg: 100, rsm: 0.3.

The predicted values are divided by the normalized logP value. The normalizer
model is stored alongside the catboost model.

The assay-based toxicity prediction has a pre-processing step. First, we use the
Chembl database [22] to attain approximately 1.7million SMILES representations of
valid molecules. We then determine all of the unique elements the SMILES notation
consists of and one-hot encode them. We then utilize a skip-gram variant of word
embeddings on these elements. The window size is 11 (5 to each side of the predicted
element) and the embedded vector has 15 elements. The skip-gram variant of neural
network encoding for embedded vector attainment is presented in Fig. 2.

We limit predictions to SMILES notations of at most 300 elements. If a SMILES
notation is shorter than 300 elements, we append zero vectors to ensure all inputs are
of identical (300, 15) shape. The utilized neural network consists of a bi-directional
GRU layer, represented in Fig. 3. The network is trained on the tox21 dataset [23].

Fig. 2 Skip-gram encoding to attain an information-rich embedded vector (represented here as the
hidden layer)
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Fig. 3 Representation of a bi-directional GRU model for predicting one assay-based toxicity indi-
cator. The figure represents the SMILES notation in its character form, though in the actual input
each element is replaced by its embedded vector

The biological activity pharmacophore filtering model is a deterministic algo-
rithm. First, RDKit fingerprints of a subset of polyene macrolide antifungal antibi-
otics are generated. Then, these are combined into a single fingerprint in such a way
that only those features that exist in each of them are left in the resulting pharma-
cophore. This new fingerprint is treated as the minimum set of features required for
antifungal activity. The algorithm to predict the probability of antifungal activity is
as follows:

p = (�2048i = 1 Mi ∗ PHi)/(�2048i = 1 PHi),

where p—the predicted value, [0, 1], corresponding to the probability that the input
molecule will show antifungal activity;

Mi—the i-th value of the 2048-bit vector, corresponding to the presence or absence
of a structural element of the researched molecule;

PHi—the i-th value in the 2048-bit vector, corresponding to the presence or absence
of a structural element of the pharmacophore;

In order to use this algorithm to classify researchedmolecules as having or lacking
antifungal activity, a cutoff value is used. The selected cutoff value is 0.95, meaning
that 95% of all structural elements of the pharmacophore must be present in any
researched molecule for it to be marked as an antifungal antibiotic.

4 Interpretation and Discussion of Research Results

The acute toxicitymodel’s rootmeans squared errorwas 58mg/kg (LD50, oral intake,
rats). This was acceptable given that the molar weight of antifungal antibiotics tends
to be 600+ g/mol. The assay-based toxicity prediction utilizing the tox21 dataset
results is presented in Table 1.
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Table 1 Tox21 modeling
results

Assay AUC f-1

NR-AR 0.783569 0.969507

NR-AR-LBD 0.84447 0.981438

NR-AhR 0.88377 0.938144

NR-aromatase 0.799273 0.954627

NR-ER 0.715153 0.875431

NR-ER-LBD 0.826407 0.953131

NR-PPAR-gamma 0.767862 0.96973

SR-ARE 0.864636 0.888909

SR-ATAD5 0.859089 0.974173

SR-HSE 0.870134 0.969882

SR-MMP 0.912109 0.91518

SR-p53 0.854033 0.967989

The biological activity prediction pharmacophore filter was tested on a set of
antifungal antibiotics as well as a set of drugs that are not antifungal antibiotics.
With the selected cutoff point of 0.95, all of the antifungal antibiotics were correctly
classified as such, and none of the non-antifungal drugs were classified as antifungal
drugs.

5 Conclusion

We proposed an approach to designing a data analysis subsystem for a software
system for predicting and researching the properties of antifungal antibiotics. These
include gradient-boosted decision tree models, recurrent neural networks, and
non-statistical algorithms. The software solution is configurable to various types of
antifungal antibiotics, and its models can be trained on more antifungal antibiotic
derivatives data to improve their accuracy. Testing was performed using sets of
existing antifungal antibiotics as well as a number of recently synthesized novel
antibiotics [14–16, 18, 19]. Testing supports the applicability of the system for
predicting antifungal antibiotics’ properties.
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