
Chapter 5
Approximating Economic Capital

It has long been an axiom of mine that the little things are
infinitely the most important.

(Arthur Conan Doyle)

As the previous chapter makes abundantly clear, the computation of credit-risk
economic capital is, irrespective of the approach taken, computationally intensive
and slow. This is simply a fact of life. Clever use of parallel-processing and variance-
reduction techniques can improve this situation, but they cannot entirely alleviate it.
In some settings, however, speed matters. It would be extremely useful—and, at
times, even essential—for certain applications, to perform large numbers of quick
credit-risk economic-capital estimates. Two classic applications include:

• LOAN PRICING: computing the marginal economic-capital impact of adding a
new loan, or treasury position, to the current portfolio; and

• STRESS TESTING: assessing the impact of a (typically adverse) global shock
to the entire portfolio—or some important subset thereof—upon one’s overall
economic-capital assessment.

The needs of these applications are slightly different. Loan pricing examines a
single, potential addition to the lending book; not much change is involved, but
the portfolio perspective is essential.1 Time is also very much of the essence. One
simply cannot wait for 90 minutes (or so) every time one wishes to consider an
alternative pricing scenario.2 Stress-testing involves many, separate portfolio and
instrument-level calculations; significant portfolio change and dislocation generally
occurs.3 One might be ready to wait a few days for one’s stress-testing results,
but if one desires frequent, sufficiently nuanced, and regular stress analysis, such

1 Chapter 6 considers this application in much more detail.
2 Even waiting 10 minutes would (eventually) make loan originators crazy and stifle their ability
to consider a broad range of potential loan structures for their clients.
3 Chapter 12 is dedicated to the discussion of stress testing.
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slowness is untenable. To be performed effectively—albeit for different reasons—
both applications thus require swiftness.

Sadly, speed of execution is one element woefully lacking from our large-
scale industrial credit-risk economic capital model. What is to be done? Since it
is simply unworkable to use the simulation engine to inform these estimates, an
alternative is required. The proposed solution involves the construction of a fast,
first-order, instrument-level approximation of one’s economic-capital allocation.
Approximation suggests the presence of some error, but in both applications an
immediate, but slightly noisy, estimate is vastly superior to a more accurate, but
glacially slow value.

This might seem a bit confusing. The economic-capital model is, itself, a
simulation-based approximation. We would, in essence, be performing an approx-
imation of an approximation. While there is some truth to this criticism, there is
no other reasonable alternative. Failure to find a fast, semi-analytic, approximation
would undermine our ability to sensibly employ our credit-risk economic capital
model in a few important, and highly informative, applications.

Such an approach to this underling problem is not without precedent. Bolder
and Rubin [7], for example, investigate a range of flexible high-dimensional
approximating functions—in a rather different analytic context—with substantial
success. Ribarits et al. [25] present—based on Pykhtin [23]—precisely such an
economic-capital approximation for loan pricing. This work is a generalization of
the so-called granularity adjustment—initially proposed by Gordy [13]—for Pillar
II concentration-risk calculations.4 This regulatory capital motivated methodology,
while powerful, is not directly employed in our approach for one simple reason: we
wish to tailor our approximation to our specific modelling choice and parametriza-
tion. A second reason is that we will require separate, although certainly related,
approximations for both default and credit-migration risk. The consequence is that,
although motivated by the general literature, much of this chapter is specific to the
NIB setting. It will hopefully, however, stimulate ideas and provide a conceptual
framework for others facing similar challenges.

5.1 Framing the Problem

Before jumping into specific approximation techniques, let’s try to frame the
problem. To summarize, we require a fast assessment of the marginal economic-
capital consumption—at a given point in time—operating at the individual loan and
obligor level. We may ultimately apply it at the portfolio level, but it needs to operate
at the individual exposure level.5 The plan is to construct a closed-form—or, at

4 This area, an important part of the regulatory world, is covered extensively in Chap. 11.
5 A portfolio analysis would, consequently, involve summing the implications across a range of
individual positions.
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least, semi-analytical—mathematical approximation of the economic-capital model
allocations. There are, fortunately, many possible techniques in the mathematical
and statistical literature that might be useful in this regard. Broadly speaking, there
are two main approaches to such an approximation:

1. a structural description; or
2. a reduced-form—or, empirically motivated—approach.

The proposed economic-capital approximation methodology in this chapter is based,
more or less, on the former method. That said, this need not be so. The sole selection
criterion—ignoring, for the moment, speed—is predication accuracy. This suggests
that we might legitimately consider reduced-form techniques as well.

This brings us to the general approximation problem. Let us begin by defining
y ∈ R

I×1 as the vector-quantity that we are trying to approximate; this is
basically our collection of I economic-capital estimates at a given point in time.
We further denote X ∈ R

I×κ as a set of explanatory, or instrument, variables
that can act to describe the current economic-capital outcomes.6 Good examples of
instruments would include the size of the position, its default probability, assumed
recovery rate, industrial sector, and geographic region. Our available inputs thus
involve I economic-capital allocations along with κ explanatory variables for each
observation.

The (slow) simulated-based economic-capital model, f (X), is a complicated
function of these explanatory variables. Conceptually, it is a mapping of the
following form:

y ← Economic-Capital Model: f (X) + ε ← X (5.1)

where ε is observation or measurement error.7 In words, therefore, f (X) is basically
the economic-capital model. Regrettably, we do not have a simple description of f ;
if we did, of course, we would not find ourselves in this situation! Practically, our
approximation is attempting to bypass the unknown function, f , and replace it with
an approximator. Conceptually, this replaces Eq. 5.1 with

← ←

6 In a machine-learning context, these are typically referred to as features.
7 In our case, of course, this is more readily conceptualized as simulation error.
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where we denote our approximation as f̂ (X). The trick, and our principal task
in this chapter, is to find a sensible, rapidly computed, and satisfactorily accurate
choice of f̂ . There are no shortage of potential candidates. Function approximation
is a heavily studied area of mathematics. Much of the statistics literature relating
to parameter estimation touches on this notion and the burgeoning discipline
of machine learning is centrally concerned with prediction of (unknown and
complicated) functions.8

If y is the true model output, then our approximation can be characterized as:

ŷ = f̂ (X). (5.2)

We write this value without error, which is a bit misleading. There is, quite naturally,
error associated with our new approximation. We prefer, however, to describe this
directly in comparison to the observed y. Indeed, a useful choice f̂ involves a small
distance between y and ŷ; this includes the approximation error. There are a variety
of ways to measure this distance, but one common, and useful, metric is defined as:

E

[(
y − ŷ

)2
]

= E

[(
f (X) + ε − f̂ (X)

)2
]

. (5.3)

This is referred to as the mean-squared error. It is basically the average distance
between the sum of the squared approximation errors. Squaring the errors has
the desirable property of transforming both over- and underestimates into positive
figures; it also helpfully generates a continuous and differentiable error function.
The measurement error is also clearly inherited from the original (unknown)
function f . The bottom line is that we seek an approximator, ŷ, that keeps the error
definition in Eq. 5.3 at a relatively acceptable level.

With some patience, the mean-squared error can also tell us something useful
about our problem. Employing a few algebraic tricks, we may re-write the previous
expression as:

E

[(
y − ŷ

)2
]

=
Variance︷ ︸︸ ︷

var[f̂ (X)] +

Bias2︷ ︸︸ ︷(
E[f̂ (X)] − f (X)

)2

︸ ︷︷ ︸
Reducible

+ var(ε)︸ ︷︷ ︸
Irreducible

. (5.4)

Our measure of distance between the observed and approximated economic-capital
values can be generally categorized into two broad categories: reducible and

8 There are many good references for the area of machine, or statistical, learning. A natural starting
point, however, is Hastie et al. [16]. A more introductory version of this material is found in James
et al. [17].



5.1 Framing the Problem 285

irreducible error.9 Reducible error, which itself can be broken down into variance
and bias—can be managed with intelligent model selection. Irreducible error stems
from observation error; in our case, this relates to simulation noise.10 This is
something we need to either live with or, when feasible, actively seek to reduce. Bias
describes fundamental differences between our approximation and true model. We
might, for example, use a linear model to approximate something that is inherently
non-linear. Such a choice would introduce bias. Variance comes from the robustness
of our estimates across datasets. It seeks to understand how well, if we reshuffle the
cards and generate a new sample, our approximator might perform. A low-variance
estimator would be rather robust to changes in one’s observed data-set.

Statisticians and data scientists speak frequently of a variance-bias trade-off. This
implies that simultaneous reduction of both aspects is difficult (or even impossible).
Statisticians, with their focus on inference, tend to accept relatively high bias
for low variance. Machine-learning algorithms, due to their flexibility, tend to
have lower bias, but the potential for higher bias.11 The proposed approximation
model—leaning towards the classical statistical school of thought—employs a
multivariate linear regression with structurally motivated response variables. In
principle, therefore, this choice involves a reasonable amount of bias. Our credit-risk
economic-capital model is not, as we’ve seen, particularly linear in its construction.
The implicit logic behind this choice, of course, is that it provides a stable, low-
variance estimator.

Colour and Commentary 53 (APPROXIMATING ECONOMIC CAPITAL):
There is a certain irony in expending—in the previous chapters—such a
dramatic amount of mental and computational resources for the calculation of
economic capital, only to find it immediately necessary to approximate it. This
is the dark side associated with the centrality of credit-risk economic capital.
Determining the marginal economic-capital consumption associated with
adding (or changing) one, or many, loans has a broad range of useful appli-

(continued)

9 To arrive at the decomposition in Eq. 5.4, one needs to rewrite the right-hand-side of Eq. 5.3 as,

E

⎡
⎣(f (X) + ε − f̂ (X)+E[f̂ (X)] − E[f̂ (X)]︸ ︷︷ ︸

=0

)2
⎤
⎦ , (5.5)

and recall that, through independence and zero expectation, the product of ε with any term—save
itself—vanishes. The rest is expansion, simplification, and tedium. See again Hastie et al. [16] or
James et al. [17] for more detail, and useful colour, on this computation.
10 In our case, this can be controlled—albeit not without cost—by increasing the total number of
simulations. This is an important practical application of the convergence discussion in Chap. 4.
11 See Breiman [8] and Bolder [6] for more detailed background on the relative differences between
statistical and machine-learning approaches to this general problem.
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Colour and Commentary 53 (continued)
cations. Examples include risk-adjusted return computations, loan pricing,
stress testing, sensitivity analysis, and even loan impairments. The slowness of
the base simulation-based computationmakes—using the simulation engine—
such rapid and flexible marginal computations practically infeasible. Their
impossibility does not, of course, negate their usefulness. As such, the most
logical, and pragmatic, course of action is to construct a fast, accurate, semi-
analytic approximation to permit such analysis. Moreover, such effort is not
wasted. Not only does it facilitate a number of productive computations, but
it also provides welcome, incremental insight into our modelling framework.

5.2 Approximating Default Economic Capital

We’ve established that we need an approximation technique that, given the existing
portfolio, can operate at the instrument level. As established in previous chapters,
there are two distinct flavours of credit-risk economic capital: default and migration.
While we need both, different strategies are possible. We could group the two
together and construct a model to approximate the combined default and migration
economic capital. Alternatively, we could build separate approximators for each
element. Neither approach is right or wrong; it depends on the circumstances. Our
choice is for distinct treatment of default and migration risk.12 As a consequence,
we’ll develop our approximators separately beginning with the dominant source of
risk: default.

5.2.1 Exploiting Existing Knowledge

As a general tenet, if you seek to perform an approximation of some object, it
is wise to exploit whatever knowledge you have about it. Specific qualities and
attributes about the economic-capital model can thus help inform our approximation
decisions. We know that our production credit-risk model is a multivariate t-
threshold model. We also know that threshold models essentially randomize the
conditional probability of default—and thereby induce default correlation—through
the introduction of common systemic variables.13 Extreme realizations of these
systemic variables push up the (conditional) likelihood of default and dispropor-

12 We’ll defend this choice later in the discussion, once we’ve built a bit more understanding of the
general approximation approach.
13 See Bolder [5, Chapter 4] for more colour on the global properties of threshold models.



5.2 Approximating Default Economic Capital 287

tionately populate the tail of any portfolio’s loss distribution. This link between
systemic factors and tail outcomes seems like a sensible starting point.

This brings us directly to the latent creditworthiness state variable introduced in
Chap. 2. To repeat it once again for convenience, it has the following form:

�Xi =
√

ν

W

(
αiBi�z +

√
1 − α2

i �wi

)
, (5.6)

for i = 1, . . . , I . For our purposes, it will be useful to simplify somewhat
the notation and structure of the model. These simplifications will enable the
construction of a stylized approximator. In particular, the product of systemic
factors and their loadings is, by construction, standard normally distributed; that is,
Bi�z ∼ N(0, 1). To reduce the dimensionality, we simply replace this quantity with
a single standard normal random variable, z. Moreover, to underscore the distance
to the true model and make it clear we are operating in the realm of approximation,
let us set �wi = υi and �Xi = yi . This yields

yi =
√

ν

W

(
αiz +

√
1 − α2υi

)
, (5.7)

which amounts to a univariate approximation of our multivariate t-threshold model.
Some information is clearly lost with these actions, most particularly relating to
regional and sectoral aspects of each credit obligor. This will need to be addressed
in the full approximation.

A few additional components bear repeating from Chap. 2. The default event (i.e.,
Di ) occurs if yi falls below a pre-defined threshold, Ki = F−1

Tν
(pi) or,

IDi = I{
yi≤F−1

Tν
(pi)

}. (5.8)

which allows to get a step closer to our object of interest. The default loss for the
ith obligor, L(d)

i , can be written as

L
(d)
i = IDi

γi︷ ︸︸ ︷
(1 − Ri ) ci, (5.9)

= I{
yi≤F−1

Tν
(pi)

}
︸ ︷︷ ︸

Equation 5.8

γici,

where Ri , γi , and ci denote (as usual) the recovery rate, loss-given-default, and
exposure-at-default of the ith obligor, respectively. The d superscript in Eq. 5.9
explicitly denotes default to keep this estimator distinct from the forthcoming migra-
tion case; despite the additional notational clutter, it will prove useful throughout the
following development. The magnitude of the default loss thus ultimately depends
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upon the severity of the common systemic-state variable (i.e., z and W ) outcomes.
Equations 5.6 to 5.9 thus comprise a brief, somewhat stylized representation of our
current production model.

The kernel of previous knowledge that we wish to exploit relates to the
interaction between systemic variable outcomes and the conditional probability
of default. This relationship is captured via the so-called conditional default loss.
Conditionality, in this context, involves assuming that our common random variates,
z and W , are provided in advance; we will refer to these given outcomes as z∗
and w∗. Under this approach to the problem, we can derive a fairly manageable
expression for this quantity as

E

(
L

(d)
i

∣∣∣ z = z∗,W = w∗)︸ ︷︷ ︸
Conditional default loss

= E

⎛
⎜⎜⎜⎝I{yi≤F−1

Tν
(pi)

}γici︸ ︷︷ ︸
Equation5.9

∣∣∣∣∣∣∣∣∣
z = z∗,W = w∗

⎞
⎟⎟⎟⎠ , (5.10)

= P

⎛
⎜⎜⎜⎝
√

ν

W

(
αiz +

√
1 − α2

i υi

)
︸ ︷︷ ︸

yi

≤ F−1
Tν

(pi)

∣∣∣∣∣∣∣∣∣
z = z∗,W = w∗)

E(γi)ci,

= P

⎛
⎝υi ≤

√
W
ν

F−1
Tν

(pi) − αiz√
1 − α2

i

∣∣∣∣∣∣ z = z∗,W = w∗
⎞
⎠

E(γi)ci,

= 	

⎛
⎝
√

w∗
ν

F−1
Tν

(pi) − αiz
∗√

1 − α2
i

⎞
⎠

︸ ︷︷ ︸
pi(z

∗,w∗)

E(γi)ci,

given that υi follows, by construction, a standard normal distribution. This
expression—or, at least, a variation of it—forms the structural basis for much
of current regulatory guidance.14 Equation 5.10 also plays a central role in our
default economic-capital approximation.

To move further, we first need to be a bit more precise on the actual values
associated with our conditioning variables. Equation 5.10 applies to any loss
associated with arbitrary systemic-variable realizations. If we may select any choice
of z∗ and w∗—and we’re interested in worst-case default losses—why not pick

14 See BIS [2, 3, 4] for rather more detail. We will turn to regulatory questions in Chap. 11.
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really bad ones? Indeed, why not use the same level of confidence (i.e., 0.9997)
embedded in our economic-capital metrics, which we will generically denote as α∗.
If we seek an extreme downside observation for the common systemic risk factor, a
sensible choice is

z∗ = 	−1(1 − α∗
z ), (5.11)

where α∗
z denotes the confidence level associated with z. For the common mixing

variable, a natural choice would be

w∗ = Inv − χ2(1 − α∗
w, ν), (5.12)

where again α∗
w is separately defined. In principle, we would prefer that α∗

z = α∗
w .

As is often the case, the situation is a bit more nuanced. While the choice of
systemic-state variable outcome is quite reasonable, unfortunately, the value in
Eq. 5.12 does not perform particularly well for estimating worst-case default loss.
In some cases, it works satisfactorily, whereas in other settings it is far too extreme
and leads to dramatic overestimates of the conditional default loss.

This brings us to an interesting insight into the t-threshold model. The larger the
confidence interval used to evaluate Eq. 5.12, the smaller the value of the common

mixing variable, w∗. The smaller the w∗ outcome, the smaller the ratio
√

w∗
ν

, which
in turn modifies the default threshold. Reducing the size of the threshold, essentially
amounts to a reduction in the creditworthiness of the obligor; making default more
probable.15 The conditional default probability associated with extreme outcomes
of z∗ and w∗ is thus hit from both ends: on one side there is a nasty systemic state
variable outcome, while on the other the threshold goal-line has been moved closer.
Setting them both to extreme values can, in many cases, lead to really dramatic
default losses.

The best way, perhaps, to understand the nature of this calculation is to consider
a practical example. Table 5.1 summarizes all of the key inputs for an illustrative,
but arbitrary, credit obligor. Three levels of α∗

w confidence interval are provided
for the w∗ outcomes, but the z∗ outcomes are held constant. Key components of
the computation are displayed illustrating the impact of w∗ and the sensitivity of
overall results to this choice. Innocently moving α∗

w from 0.6667 to 0.9997—all
else equal—leads to fairly dramatic increases in the default loss estimate.

Figure 5.1 explores this question in more detail by widening our gaze. It displays,
for three different choices of α∗

w , the normalized estimated and observed default
loss values across the entire portfolio.16 The clear conclusion is that the estimated
value increases steadily—and ultimately rather significantly exceeds the observed

15 Low levels of confidence have the opposite effect; they increase the ratio
√

w∗
ν

, pushing out the
threshold, and effectively increasing the credit quality for all obligors.
16 Normalized, in this context, means that the the average observed values are subtracted and the
result is divided by the volatility of the observed default losses; this essentially means that the axes
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Table 5.1 A simple example: The underlying table summarizes, for an arbitrary and illustrative
exposure, the various quantities and calculations involved in the construction of a conditional
probability of default with the preceding conditioning variables, z∗ and w∗.

Severity of w∗

Quantity Definition α∗
w = 0.6667 α∗

w = 0.9000 α∗
w = 0.9997

Degrees of freedom ν 70

Confidence level α∗ ≡ α∗
z 0.9997

Exposure ci 65,000,000

Credit state Si 11

Loss-given-default E(γi) 0.52

Default probability pi 0.55%

Systemic weight αi 0.19

Systemic shock z∗ = 	−1(1 − α∗
z ) −3.43

Mixing-variable
shock

w∗ = Inv − χ2(1 − α∗
w, ν) 64.39 55.33 36.39

Threshold value F −1
Tν

(pi ) −2.61

Mixing ratio

√
w∗
ν

0.96 0.89 0.72

Key ratio

√
w∗
ν

F −1
Tν

(pi) − αiz
∗√

1 − α2
i

−1.11 −0.42 0.00

Conditional default
probability

pi(z
∗, w∗) 13.37% 33.85% 50.00%

Conditional default
loss

E

(
L

(d)
i

∣∣∣ z = z∗,W = w∗
)

4,519,809 11,442,358 16,900,000

Fig. 5.1 Choosing α∗
w : The preceding graphic displays, for three different choices of α∗

w used to
identity w∗, the normalized estimated and observed default loss values. The larger the choice of
α∗

w , the more extreme the default-loss estimates.
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outcomes—for larger values of α∗
w . The degree of sensitivity of the conditional

default probability to the choice of confidence level for the mixing variable is rather
surprising. It seems that this variable’s principle role is not to generate extreme
loss outcomes, but rather simply to induce a joint t distribution; and, as a result,
tail dependence.17 For the remainder of this analysis, therefore, we will use the
more neutral, but slightly conservative, value of α∗

w = 0.6667. Different values are
naturally possible, and this is by no means an optimized choice, but it performs quite
reasonably.

Colour and Commentary 54 (THE t-THRESHOLD MIXING VARIABLE): In
the Gaussian threshold model, the conditional probability of default depends
solely on the provided realization of the systemic risk factor (or factors). Intu-
ition about the randomization of the (conditional) default probability—and
the inducement of default correlation—is straightforward: extreme systemic
factor realizations lead to correspondingly high probabilities (and magni-
tudes) of default loss. Moving to the t-threshold setting complicates things.
A second conditioning variable—the χ2-distributed quantity—must also be
revealed. One’s first reaction is to simultaneously draw an extreme mixing-
variable outcome. Our analysis demonstrates that this yields unrealistically
large default loss probabilities.a This appears to suggest that the mixing
variable’s role is not to generate extreme outcomes, but rather to alter the
joint distribution and induce tail dependence. For this reason, when using the
conditional default probability of the t-threshold model for our approximation
analysis, we assume a relatively neutral draw from the χ2-distributed mixing
variable.

a Effectively, extreme mixing variable outcomes pull in the default threshold for all obligors.
Combined with a simultaneously bad draw from the systemic state variable, obligors are hit
from both sides and the impact is excessive.

5.2.2 Borrowing from Regulatory Guidance

Equation 5.10 actually turns out to be a critical ingredient of our initial closed-
form—although, admittedly simple—approximation of the marginal economic-
capital consumption associated with a given exposure. A few additional steps are

in Fig. 5.1 denote standard deviations from the observed mean. We’ll use this idea throughout the
chapter.
17 Moreover, given their independence, the joint extreme coincidence of systemic and mixing
variable outcomes should be exceedingly rare. Forcing them both to the extremes clearly scales
up the default-loss outcomes in an unrealistic manner.
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nonetheless required. Let us define A(d)
i (α∗) as the observed default economic-

capital allocation associated with the ith obligor computed at confidence level, α∗.
Recall that economic-capital is, conceptually, written as

A(d)
i (α∗) = Worst-Case Lossi (α

∗) − Expected Lossi︸ ︷︷ ︸
Unexpected Lossi (α∗)

. (5.13)

For the (Pillar I) computation of minimum regulatory capital requirements—see
Chap. 11 for much more on these ideas—the internal ratings-based approach offers
the following exposure-level formula for the direct computation of this quantity:

A(d)
i (α∗) ≈

Equation 5.10︷ ︸︸ ︷
E

(
L

(d)
i

∣∣∣∣ z = z∗,W = w∗
)

−E

(
L

(d)
i

)
︸ ︷︷ ︸

Unexpected Lossi (α∗
z )

, (5.14)

which basically amounts to the difference between conditional and unconditional
default loss. This quantity is, in the classical sense, a VaR-related measure of risk.18

Exploitation of Eq. 5.14 leads us to the kernel of the approximation method. The
mathematical structure of the approximation is

A(d)
i (α∗

z )︸ ︷︷ ︸
≡A(d)

i (α∗)

≈ E

(
L

(d)
i

∣∣∣∣ z = z∗,W = w∗
)

− E

(
L

(d)
i

)
, (5.15)

≈ E

(
L

(d)
i

∣∣∣∣α∗
z

)
︸ ︷︷ ︸

Equation 5.10

−pi · E(γi) · ci ,

≈ 	

⎛
⎝
√

w∗
ν

F−1
Tν

(pi) − αiz
∗√

1 − α2
i

⎞
⎠

︸ ︷︷ ︸
pi(α∗

z )

E(γi)ci − pi · E(γi) · ci ,

≈
(

pi(α
∗
z ) − pi

)
· E(γi) · ci,

for i = 1, . . . , I risk-owner risk contributions. To be fair, the previously described
unexpected loss expression does not precisely coincide with the regulatory defini-
tion in Eq. 5.14. The t-threshold model leads to a few conceptual changes. The most

18 Our interest is in an expected-shortfall metric, but we will address this issue in a moment.
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important is the presence of our common mixing variable, w∗. For this computation,
as already indicated, we will set w∗ at a fixed, reasonably neutral quantity—to
induce tail dependence—and treat the α∗

z and z∗ as the true variables of interest.19

Collecting our thoughts, Eq. 5.15 is an analytical representation of a regulatory
capital, VaR-based economic-capital allocation. The intuition is that a worst-case
outcome for the default loss is inferred from a catastrophically bad outcome of
the systemic variable, z∗. Subtracted from this is the expected loss computed by
averaging over all possible outcomes of the systemic state variable.20

There is a definitional issue associated with the approximation in Eq. 5.15: it is
based on the idea of a VaR unexpected-loss estimator. We use, as highlighted in
previous chapters, the expected-shortfall metric. Using the definition of expected-
shortfall, and applying it to Eq. 5.15, this can be rectified as

1

1 − α∗
z

∫ 1

α∗
z

A(d)
i (x)dx

︸ ︷︷ ︸
E(d)

i (α∗
z )

≈ 1

1 − α∗
z

∫ 1

α∗
z

(
pi(x) − pi

)
· E(γi) · ci︸ ︷︷ ︸

Equation 5.15

dx, (5.16)

E(d)
i (α∗

z ) ≈ E(γi) · ci · 1

1 − α∗
z

∫ 1

α∗
z

pi(x)dx

︸ ︷︷ ︸
p̃i (α∗

z )

−piE(γi) · ci

1 − α∗
z

∫ 1

α∗
z

dx,

≈ E(γi) · ci · p̃i(α
∗
z ) − piE(γi) · ci

1 − α∗
z

[
x

]1

α∗
z

,

≈ E(γi) · ci · p̃i(α
∗
z ) − piE(γi) · ci

���1 − α∗
z

����(1 − α∗
z ),

≈
(

p̃i (α
∗
z ) − pi

)
· E(γi) · ci.

There is both good and bad news. The good news is that, when moving to the
expected-shortfall setting, the basic form of our approximation is preserved. The
bad news is that the integral p̃i (α

∗
z ) is not, to the best of our knowledge, available

in closed form. Computation of this quantity requires solving a one-dimensional
numerical-integration problem. To solve 500+ individual problems, this takes a
bit less than 2 seconds. For large-scale approximations—such as stress-testing
calculations—this has the potential to slow things down somewhat, but no real
damage is involved. For an individual loan, thankfully, this numerical element

19 There is, therefore, a small mathematical sleight of hand with the confidence levels.
20 For this reason, each E

(
L

(d)
i

)
is independent of z.



294 5 Approximating Economic Capital

Table 5.2 Simple economic-capital estimates: This table illustrates some key results of using
Eq. 5.10 and 5.16 to estimate the default-related economic-capital consumption associated with
the simple example introduced in Table 5.1.

Quantity Definition Value

Model default economic capital E(d)
i (α∗) 4,314,601

Model default economic-capital ratio
1

ci

E(d)
i (α∗) 6.6%

VaR regulatory-capital approximation A(d)
i (α∗

z ) =
(

pi(α
∗
z ) − pi

)
· E(γi ) · ci 4,333,909

VaR regulatory-capital ratio
1

ci

A(d)
i (α∗

z ) 6.7%

Expected-shortfall regulatory-capital
approximation

E(d)
i (α∗

z ) =
(
p̃i (α

∗
z ) − pi

)
· E(γi) · ci 5,358,698

Expected-shortfall regulatory-capital ratio
1

ci

E(d)
i (α∗

z ) 8.2%

requires only a fraction of a second.21 As a consequence, this semi-analytic twist
to our approximation does not delay the associated applications in any appreciable
way.

Table 5.2 takes the simple example introduced in Table 5.1 and—with the help
of Eqs. 5.10 and 5.16—provides some insight into how well the approximations
actually work. The true model-based default economic-capital value is about EUR
4 million amounting to roughly 6 1

2 % of the position’s overall exposure. This figure
seems sensible for a position falling, albeit slightly, below investment grade. The
VaR-based approximation, from Eq. 5.15, also generates an estimate a bit north of
EUR 4 million or around 6.7%. The VaR estimator, in this case, thus generates a
marginal over-estimate. Incorporation of the expected-shortfall element—using, in
this case, the numerical-integration estimator introduced in Eq. 5.16—yields a rather
higher estimate of about EUR 5.4 million or in excess of 8%. This represents a rather
significant overstatement of the model-based economic capital.

Our simple example illustrates that, as a generic approximation, the presented
results appear to be in the vicinity. That said, the VaR estimator seems to outperform
the expected-shortfall calculation. To make a more general statement, of course, it
is necessary to look beyond a single instance. We need to systemically examine
the relationship between actual economic-capital estimates and our approximating
expressions. Figure 5.2 consequently compares our regulatory motivated economic-
capital approximations—computed with Eq. 5.16—to the true simulation-model
outcomes. Since the actual levels of economic capital are unimportant, the results

21 The implementation makes use of scipy’s quadrature function. See Ralston and Rabi-
nowitz [24] for more on Gaussian quadrature and numerical integration.
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Fig. 5.2 Degree of agreement: The preceding graphics, in raw and logarithmic terms, illustrate
the degree of agreement between our (normalized) approximation in Eq. 5.16 and the (normalized)
observed simulation-based economic-capital contributions. The overall level of linear correlation
is fairly respectable.

have again been normalized. The left-hand graphic outlines the comparative results
on a normalized basis similar to Fig. 5.1. Visually, the agreement appears sensible,
although there are numerous instances where individual estimates deviate from the
observed values by a sizable margin. Interestingly, at the overall portfolio level,
despite the approximation noise, there is a really quite respectable cross-correlation
coefficient of 0.98. This suggests that, although Eq. 5.16 may not always capture the
level of default risk, it does catch the basic pattern.

A related issue is the broad range of economic-capital values. For some obligors,
the allocation approaches zero, whereas for others it can be one (or more) orders
of magnitude larger. This stems from the exponential form of default probabilities
as well as concentration in the underlying portfolio. This fact, combined with
the the patchy performance of the approximation in Eq. 5.16, can lead to scaling
problems. As a consequence, the right-hand graphic illustrates the approximation fit
when applying natural logarithms to both (normalized) observed and approximated
default-risk values. This simple transformation smooths out the size dimension and
increases the correlation coefficient to 0.99. Although far from perfect, we may
nonetheless cautiously conclude that there is some merit to this basic approach.

Colour and Commentary 55 (THE APPROXIMATION KERNEL): The cen-
tral component of the default economic capital approximator is pinched
directly from the logic employed in the Basel Internal-Rating Based (or IRB)
approach. More specifically, worst-case default losses are approximated via
the conditional probability of default associated with a rather highly adverse

(continued)
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Colour and Commentary 55 (continued)
realization of the systemic risk factor.a While sensible and intuitive, this is
not an assumption-free choice. As covered in detail in Chap. 11, Gordy [13]
shows us that the IRB model is only consistent with the so-called single-factor
asymptotic risk-factor model. The principal implication is that this modelling
choice focuses entirely on systemic risk; it ignores the idiosyncratic effects
associated with portfolio concentrations. The strength of this assumption—as
well as the concentrations in our real-life portfolio—implies that this base
structure can only take us so far. It will be necessary, as we move forward, to
adjust our approximation to capture the ignored idiosyncratic elements.

a We also draw a more neutral-valued χ2 mixing variable to accommodate the t-threshold
structure of our production model.

5.2.3 A First Default Approximation Model

Raw use of Eq. 5.16 is likely to be sub-optimal. Its high correlation with observed
values, however, suggests that it makes for a useful starting point. What we need
is the ability to allow for somewhat more approximation flexibility in capturing
individual differences. In other words, we seek an approximation model. This is the
underlying motivation behind transforming Eq. 5.16 into an ordinary least-squares
(OLS), or regression, estimator. The presence of regression coefficients allows us to
exploit the promising correlation structure and also increases the overall fit to the
observed data.

The basic linear structure follows from Eq. 5.16 and we use the logarithmic
operator to induce an additive form as

E(d)
i (α∗

z ) ≈
(

p̃i (α
∗
z ) − pi

)
E(γi)ci︸ ︷︷ ︸

Equation 5.16

, (5.17)

E(d)
i (α∗

z ) ≈ p̃i (α
∗)E(γi)ci − piE(γi)ci︸ ︷︷ ︸

E

(
L

(d)
i

) ,

E(d)
i (α∗

z ) + E

(
L

(d)
i

)
≈ p̃i (α

∗
z )E(γi)ci,

ln

(
E(d)

i (α∗
z ) + E

(
L

(d)
i

))
≈ ln

(
p̃i(α

∗
z )E(γi)ci

)
,

ln

(
E(d)

i (α∗
z ) + E

(
L

(d)
i

))
≈ ln

(
p̃i(α

∗
z )

)
+ ln

(
E(γi)

)
+ ln(ci).
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Equation 5.17 is an approximation. If we re-imagine this linear relationship with an
intercept and error, we have

ln

(
E(d)

i (α∗
z ) + E

(
L

(d)
i

))
︸ ︷︷ ︸

y
(d)
i

= ξ0 + ξ1 ln

(
p̃i (α

∗
z )

)
︸ ︷︷ ︸

X
(d)
i,1

+ξ2 ln

(
E(γi)

)
︸ ︷︷ ︸

X
(d)
i,2

+ξ3 ln(ci)︸ ︷︷ ︸
X

(d)
i,3

+ε
(d)
i , (5.18)

for i = 1, . . . , I risk-owner risk contributions.22 The left-hand side of Eq. 5.18
is a transformation of the observed default economic-capital estimates, while the
elements of our approximation from Eq. 5.16 have become additive explanatory
variables.

Equation 5.18 directly translates, of course, into the classical ordinary least
squares setting and reduces to the familiar model,

y(d) = X(d)� + ε(d), (5.19)

where

y(d) =

⎡
⎢⎢⎢⎣

ln
(
E(d)

1 (α∗
z ) + E

(
L

(d)
1

))
...

ln
(
E(d)

I (α∗
z ) + E

(
L

(d)
I

))
⎤
⎥⎥⎥⎦ , (5.20)

and

X(d) =

⎡
⎢⎢⎢⎢⎢⎣

1 ln

(
p̃1(α

∗
z )

)
ln

(
E(γ1)

)
ln(c1)

...
...

...
...

1 ln

(
p̃I (α

∗
z )

)
ln

(
E(γI )

)
ln(cI )

⎤
⎥⎥⎥⎥⎥⎦ , (5.21)

and ε(d) ∼ N(0, σ 2I) for σ ∈ R+. The OLS estimator for � = [
ξ0 ξ1 ξ2 ξ3

]T
determined, as usual, through the minimization of (y(d) − X(d)�)T (y(d) − X(d)�)

22 It is customary to use the symbol β for regression coefficients. Since we already employ this
character to denote factor loadings, we will use an alternative esoteric Greek letter to avoid
confusion.
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Table 5.3 A first default-approximation model: This table summarizes the results of the base
default economic-capital approximation model. It has an intercept and three regulatory capital
requirement motivated explanatory variables. The amount of variance explained is fairly encour-
aging, but the proportional errors are depressingly (even frighteningly) large.

Quantity Description Estimate Standard error t-statistic p-value

ξ0 Intercept −0.91 0.13 −7.06 0.00

ξ1 (Extreme) conditional default
probability

0.92 0.02 53.18 0.00

ξ2 Loss-given-default 1.08 0.03 35.10 0.00

ξ3 Exposure 1.04 0.01 158.95 0.00

Root mean squared error 45%

Mean absolute error 18%

Median absolute error 10%

R2 0.923

is thus simply the well-known least-squares solution:

�̂ =
(

X(d)T X(d)

)−1

X(d)T y(d). (5.22)

Standard errors and test-statistic formulae also follow from similarly well-known
results.23 As discussed previously, this does not imply that our model is inherently
linear, but rather that we are knowingly accepting a certain degree of model bias for
low variance and the ability to use statistical-inference techniques.

Table 5.3 summarizes the results of fitting the previously described approx-
imation model to observed economic-capital allocation data associated with an
arbitrary date in 2020. All four of the parameter estimates are strongly statistically
significant. The actual parameter values are also positive for the conditional default
probability, loss-given-default, and exposures, which seems plausible. The R2

statistic of roughly 0.9 suggests that the amount of total variance explained by a
simple linear model is encouraging.

The actual calculation of approximated (i.e., predicted) default-risk values
actually involves a small bit of algebraic gymnastics. In particular,

ŷ(d) = X(d)�̂, (5.23)

eŷ(d) = eX(d)�̂,

e
ln
(

̂E(d)(α∗
z )+E

(
L(d)

))
= eX(d)�̂,

̂E(d)(α∗
z ) = eX(d)�̂ − E

(
L(d)

)
,

23 For much more detailed background on the rudiments of OLS, please see Judge et al. [19].
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Fig. 5.3 Initial error analysis: The preceding graphics display the model errors—estimated less
observed values—organized by both individual credit obligor and normalized default economic
capital. The handful of extreme outliers are presented separately.

where ̂E(d)(α∗
z ) and E

(
L(d)

)
denote the I -dimensional vectors of approximated

default economic-capital values and expected losses, respectively. Equation 5.23
permits computation of root-mean-squared, mean-absolute and median-absolute
error measures. The results are provided, in Table 5.3, in (proportional) per-
centage terms rather than logarithmic or currency space.24 These goodness-of-fit
measures—assessing the (in-sample) correspondence between observed and pred-
icated values—unfortunately paint a less rosy picture. The mean-absolute error
is roughly 20%; implying that, on average, the approximation misses its mark
by about one fifth. If we turn to the median-absolute error, it improves to one
tenth; this strongly suggests the presence of a few large outliers. Our suspicion
is confirmed with the—notoriously sensitive to outliers—root-mean-squared error
taking a dreadful value of 45%.25

Figure 5.3 looks into the outlier question more carefully by illustrating the
collection of proportional approximation errors.26 The left hand graphic indicates

24 The logarithmic-transformation is helpful to manage scale discrepancies between economic-
capital allocations, but it is essentially a statistical trick to improve the overall fit. Since we
ultimately require currency estimates, model diagnostics in logarithmic space are not terribly
helpful and thus excluded.
25 Outlier sensitivity is easily seen from the definition. Given ε(d) ∈ R

I×1, then

RMSE =
√

ε(d)T ε(d)

I
. (5.24)

The squared term in the numerator places rather heavy weight on any individual and extreme error
(i.e., outlier).
26 The errors are defined as estimated less observed default economic values divided by their true
observed outcome.
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a general trend towards over-estimation and a handful of extreme outliers.27 The
right-hand graphic provides some insight into the outliers; they appear to all relate
to small, below average economic-capital allocations. This is one of the dangers
of using proportional errors; a large proportional error can, when considered in
currency terms, be economically immaterial.

Despite an R2 figure exceeding 0.9, there is work to be done; the proportional
errors—even when excluding the outliers—are simply too large to be practically
useful. Thankfully, there are good reasons to suspect that the model is incomplete.
The approximation is founded on a one-dimensional model, which (by construction)
completely ignores concentration, provides no information on random recovery, and
fails to incorporate a broader default-correlation perspective. Our approximation
model can thus be further improved.

Colour and Commentary 56 (A FIRST DEFAULT APPROXIMATION

MODEL): Our regulatory capital motivated first-order approximation of
default economic capital is readily generalized into a linear regression
model. This permits calibration to daily data and provides diagnostics on the
strength of specific parts of the approximation. The initial results are mixed.
On the positive side, the percentage of variance explained exceeds 90% and
the individual regression variables are highly statistical significant. More
negatively, proportional goodness-of-fit measures suggest an unacceptable
level of inconsistency. Part of the problem is explained by a handful of
outliers, but the model also has difficulty with a sizable subset of individual
obligors. In many ways, this is not a surprise. The explanatory variables
in this initial model capture, literally by their definition, only the systemic
aspect of economic capital. This suggests identification and incorporation of
idiosyncratic and concentration related explanatory variables as a sensible
avenue towards improvement of our initial model.

5.2.4 Incorporating Concentration

Our first naive default approximation model is unfortunately, in its current form,
not quite up to the task. This is not just due to a deficiency of the underlying
regulatory capital computation, but it is rather a structural issue. Gordy [13]—in his
excellent first-principle analysis of the Basel-IRB methodology—demonstrates that
this regulatory formula is equivalent to using Vasicek [28]’s single-factor asymptotic
risk-factor model (ASRF). This has two immediate consequences. First, it requires

27 Outliers, in this context, were (somewhat arbitrarily) identified as a proportional error exceeding
200%.
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that one’s portfolio is—in practical terms—extremely well diversified across many
credit obligors. Second, as the name suggests, there is only a single source of risk.
As such, there is simply no mechanism to capture regional, sectoral, or firm-size
effects. To be blunt, this implies that our initial model in Eq. 5.18 is simply not
equipped to capture concentration effects.

Most real-world financial institutions—and NIB is no exception in this regard—
have regional and sectoral concentrations. Ignoring this dimension leads, as became
clear in the previous section, to structural bias in our economic-capital approxima-
tions. The most natural route, remaining in the regulatory area, would involve the
so-called granularity adjustment. This quantity, introduced by Gordy [13], is an add-
on to the base regulatory capital computation to account for concentration.28 After
significant experimentation, we rejected this path. The principal issue is that it does
not (easily, at least) have the requisite flexibility to handle either multiple risk factors
or readily incorporate regional and sectoral information.29

We opt to follow an alternative, and perhaps more intuitive, strategy. The idea is
to assign a concentration score to each individual set of lending exposures sharing
similar regional and structural characteristics. We can then include this score as
an explanatory variable in our regression model in Eq. 5.18. If done correctly, this
would help to incorporate important idiosyncratic features of one’s exposures into
our approximation.

There is a rich literature on concentration. Concentration and Lorenz curves,
Herfindahl-Hirschman indices and Gini coefficients are popular tools in this area.30

The challenges with these methods, for our purposes, are twofold. First, they
require full knowledge of the economic-capital weights, which will not always
be (logically) available to us. Second, and perhaps more importantly, we seek
a concentration measure that incorporates aspects of our current model with a
particular focus on sectoral and regional dimensions.

The proposed score, or index, is a function of three pieces of information about
the obligor. These include:

1. geographic region;
2. industrial sector; and
3. public-sector or corporate status.

The measure is specialized to the current credit-risk economic-capital model’s factor
structure. It does not stem from any current literature, but should rather be viewed
as something of a heuristic concentration metric.

28 This interesting and important area is addressed in Chap. 11. If you cannot wait to dig into
this fascinating area, you are immediately referred to Lütkebohmert [20, Chapter 11], Gordy and
Lütkebohmert [14, 15], Martin and Wilde [21], Emmer and Tasche [9], and Torell [27].
29 Pykhtin [23] does offer a multivariate approach, which is explored in Chap. 11.
30 For more background on this fascinating field of study, please see Yitzhaki and Olkin [29],
Figini and Uberti [10], Bellalah et al. [1], Milanovic [22], and particularly the extremely useful
Lütkebohmert [20].
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We take a slow, methodical, and constructive approach to development of our
concentration metric. The first step in the fabrication of our index begins by
assigning, at a given point in time, total portfolio exposure (i.e., exposure-at-default)
to our J systemic state variables. Since our I credit obligors may simultaneously
be members of both a region and an industrial sector, managing this seems a bit
challenging. How, for example, do we allocate our exposure to these risk factors?
The solution is to use the factor loadings—these quantities determine the relative
importance of the region and industry systemic factors. Recall, from Chap. 3, that
one half of an obligor’s weight is allocated to its geographic region, while the
remaining half is assigned to its industrial sector. At most, therefore, an individual
obligor’s exposure can be assigned to two distinct factors. A public-sector entity,
which has no obvious industrial classification, receives a full weight to its region.
An advantage of this approach is the incorporation of the obligor’s factor loadings
(indirectly) into our index.

Mathematically, this j th risk factor’s exposure assignment—which we will
denote as V̄j —is thus simply,

V̄j =
I∑

i=1

Bij ci , (5.25)

for j = 1, . . . , J and where, as usual, ci denotes the ith obligor’s exposure at
default. In other words, we basically weight the individual exposure estimates by
their factor loadings. In practice, this is a very straightforward matrix multiplication,

V̄ = BT c, (5.26)

where V̄ ∈ R
J×1, c ∈ R

I×1 are B ∈ R
I×J .31 One might be tempted to replace

exposure with economic capital (i.e., Ei (α
∗)) in Eq. 5.26; it is, in fact, economic-

capital concentration that we seek to describe. This turns out to be a bad idea.
Were we to use economic-capital in the construction—even indirectly—in the
establishment of our concentration metric, we would find ourselves awkwardly
having economic-capital embedded in both sides of our regression relationship.
Lesser indiscretions have been classified as a criminal act in statistical circles.

Figure 5.4 summarizes, for an arbitrary portfolio during 2020, the percentage
allocation of exposure—following from Eq. 5.26—to our J = 24 regional and
sectoral categorizations. Since the actual amounts and systemic-risk factor iden-
tities are relatively unimportant—but we wish to be able to compare to further
transformations—the values are illustrated in numbered percentage terms. The top
four categories consume almost half of the total exposure. While concentration is
typical in most real-life commercial lending and investment portfolios, we should

31 Many, or even most, of the B factor-loading values are zero. This is a consequence of the
overidentifying factor-loading constraints introduced in Chap. 3. Incidentally, it makes no practical
difference if one uses the raw factor loadings, β, or their normalized equivalents, B.
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Fig. 5.4 Exposure by risk factor: The preceding graphic displays, for an arbitrarily selected
portfolio from 2020, the percentage factor-loaded exposure allocations by systemic risk factor
computed using Eq. 5.26.

be cautious to read too much into Fig. 5.4. In this intermediate step, we use only the
relatively uninformative factor loadings.

Having used factor loadings to aggregate portfolio exposure, the next step
involves the incorporation of the systemic-factor dependence structure. Technically,
this takes the form of a projection. In particular, the next step is

Ṽ =

⎡
⎢⎢⎢⎣

1 ρ12 · · · ρ1J

ρ21 1 · · · ρ2J

...
...

. . .
...

ρJ 1 ρJ 2 · · · 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�

⎡
⎢⎣
V1
...

VJ

⎤
⎥⎦ , (5.27)

= �V̄.

where � ∈ R
J×J is the factor-correlation matrix estimated in Chap. 3 and

Ṽ ∈ R
J×1 is a projected vector of exposure amounts. Technically, Ṽ is a linear

projection of V̄ using the projection matrix, �—it is essentially a linear (dimension-
preserving) mapping from R

J×1 to R
J×1. If all of the systemic factors were to be

orthonormal, then � would be an identity matrix, and the original exposure figures
would be preserved. If there is strong positive correlation between the systemic
risk factors, conversely, we would expect to see a relative increase in the relative
allocation to each risk-factor category.

To see the implications of projecting correlation information onto our factor-
arranged exposure outcomes, let’s directly compare the allocations V̄ and Ṽ
in percentage terms. These results are summarized in Fig. 5.5. Projecting the
correlation matrix onto the exposure amounts clearly, and dramatically, changes
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Fig. 5.5 Incorporating systemic dependence: The preceding graphic reproduces the percentage
factor-loaded exposure allocations from Fig. 5.4, but also adds in the percentage correlation-matrix
projected outcomes from Eq. 5.27. The positively correlated risk-factor system flattens out the
concentration profile.

the concentration profile. Specifically, projecting V̄ flattens out the profile implying,
when taking into account factor correlations, that the deviations in concentration are
rather different than those suggested by the factor-loading-driven result in Fig. 5.4.

What exactly is going on? The answer, of course, begins with the structure of
the systemic risk-factor correlation matrix itself. The risk factors are, as indicated
and discussed in previous chapters, a positively correlated system. We can make
this a bit more precise. Using an eigenvalue decomposition, it is possible to
orthogonalize a correlation matrix into a set of so-called principal components.32 A
useful byproduct of this computation is that one can estimate the amount of variance,
in the overall system, explained by each individual orthogonal factor. This provides
useful insight into the degree of linear correlation between the raw variables in
one’s system. Table 5.4 reviews the results of this analysis—applied to our factor
correlation matrix, �—for the five most important orthogonal factors. The single,
most important, orthogonal factor explains in excess of 50% of the overall variance,
while the top five (of 24) principal components cover about three quarters of total
system variance.

The results in Table 5.4 strongly underscore the rather dependent nature of our
risk-factor system and help explain Fig. 5.5. A few systemic risk factors appear to
demonstrate a high degree of correlation when we simply sum over the exposures.
Controlling for the (generally high) level of linear dependence between these
individual systemic risk factors, however, is essential to capturing the model’s
picture of portfolio concentration.

The final step involves the transformation of the individual values in Eq. 5.27
into a readable and interpretable index. This basically amounts to normalization; it

32 A fantastic reference for this practical statistical technique is Jollliffe [18]. See Golub and Loan
[12] for more on the eigenvalue decomposition.
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Table 5.4 Systemic correlation: The underlying table illustrates, using the principal-components
technique, the amount of variance explained by the five most important orthogonalized factors
derived from our systemic correlation matrix, �. These results strongly underscore the rather
dependent nature of our risk-factor system.

Principal component % variance explained

1 55.6%

2 8.8%

3 4.6%

4 4.3%

5 3.3%

Total 76.7%

Fig. 5.6 The concentration index: The preceding graphic displays—conditional on our arbitrarily
selected portfolio from 2020—the set of J distinct concentration index values arranged in
descending order.

is consequently transformed into a value in the unit interval as,

V̂ = Ṽ
max(Ṽ)

. (5.28)

Other normalizations are certainly possible. The largest concentration index value
takes, of course, a value of unity. V̂j thus represents the final concentration-index
value for the j th risk factor.

Figure 5.6 illustrates, using Eq. 5.28, the set of J distinct concentration index
values displayed in descending order. These values are, once again, conditional on
our arbitrary 2020 portfolio, although the results do not appear to vary considerably
across time. This is certainly due to high levels of persistence in the portfolio and
infrequently updated through-the-cycle parameters.33 Actual concentration values

33 It takes time to change the composition of any buy-and-hold portfolio.
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for a given risk-owner, or exposure, fall in the range [0.36,1] with a mean of about
0.75. The ordering is broadly similar to that observed in Fig. 5.4, but there are a few
surprises.

A separate concentration index is required for each individual credit obligor, but
there are only J concentration-index values. The factor-loading matrix comes, once
again, to the rescue by offering a logical approach to allocation of the sectoral and
regional concentration values to the obligor level. Practically, this amounts to (yet)
another matrix multiplication,

V = BV̂, (5.29)

where V ∈ R
I×1 is the final concentration index. Each element of V thus provides

some assessment of the relative concentration of this individual position. The larger
the value, of course, the more a given position leans towards the portfolio’s inherent
concentrations.

Having constructed the concentration index outcomes, it may still not be
immediately obvious what is going on. To provide a bit more transparency, and
hopefully insight, we will begin from Eq. 5.29, and gradually work forward as
follows, while keeping all the individual ingredients

V = BV̂︸︷︷︸
Equation

5.29

, (5.30)

= B

(
Ṽ

max(Ṽ)

)
︸ ︷︷ ︸

Equation
5.28

,

= B

max(�V̄)
�V̄︸︷︷︸

Equation
5.27

,

= B�

max
(
�BT c

) BT c︸︷︷︸
Equation

5.26

,

=

⎛
⎜⎜⎜⎜⎜⎝

I×I︷ ︸︸ ︷
B�BT

max
(
�BT c

)
︸ ︷︷ ︸

Scalar: 1×1

⎞
⎟⎟⎟⎟⎟⎠ c.
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An element in the preceding decomposition of the V computation should look
familiar. B�BT ∈ R

I×I is the normalized, factor-loaded, systemic risk-factor
correlation matrix. A standardized factor-loaded correlation matrix is thus projected
onto the vector of exposure contributions, c, to yield our proposed concentration
index. While not perfect, it does appealingly capture a number of key elements
of concentration: current portfolio weights, systemic factor loadings, and the
correlation structure of these common factors.

Colour and Commentary 57 (INDEXING CONCENTRATION): A central
task of the credit-risk economic-capital simulation engine is to capture the
interplay between diversification and concentration in one’s portfolio. This
aspect needs to be properly reflected in any approximation method. It takes
on particular importance given our previous decision to lean heavily upon a
regulatory motivated approximation that entirely assumes away idiosyncratic
risk. A possible solution to this question involves the construction of a
concentration index, which can act as an additional explanatory variable in
our regression model. Our proposed choice involves a linear projection of
the individual credit obligor exposures at default. The projection matrix is
a function of the (normalized) factor loadings and the factor correlation. In
this way, the resulting index directly incorporates three important drivers of
concentration risk: the factor loadings, systemic correlations, and the current
portfolio composition.

5.2.5 The Full Default Model

We’ve clearly established the need to incorporate additional idiosyncratic explana-
tory variables into our base regression model. The previously defined concentration
index is a natural candidate; there are many others. Indeed, there is no shortage
of possibilities. This means that model selection is actually hard work. The
consequence is a very large set of possible extensions and variations to consider.34

This situation can only be resolved with a significant amount reflection, examination
of error graphics and model-selection criteria as well as trial-and-error. Ultimately,
we have opted for six new explanatory variables to add to our original Eq. 5.18.
Despite our best efforts, the revised and extended model should not be considered
as an optimal choice. It is better to view it as a sensible element of the set of possible

34 Even with a few dozen possible explanatory variables, the power set (i.e., set of all possible
subsets) is depressingly large.
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approximation models. With this in mind, it is described as

y
(d)
i︷ ︸︸ ︷

ln

(
E(d)

i (α∗) + E

(
L

(d)
i

))

=

κ∑
k=0

ξkX
(d)
i︷ ︸︸ ︷

ξ0 + ξ1 ln

(
p̃i(α

∗
z )

)
+ ξ2 ln

(
E(γi)

)
+ ξ3 ln(ci)︸ ︷︷ ︸

Base default model

+
κ∑

k=4

ξkX
(d)
k︸ ︷︷ ︸

Additional
explanatory

variables

+ε
(d)
i ,

(5.31)

for i = 1, . . . , I risk-owner risk contributions.
Table 5.5 summarizes the parameter and goodness-of-fit statistics associated

with the revised model. Comparing the results to the base approximation summary
found in Table 5.3 on page 298, we observe a number of differences. First of all,
there is significant improvement in the (in-sample) goodness-of-fit measures. The
proportional root-mean squared error is reduced by a factor of five, while our two
proportional absolute errors are cut by more than half. The median absolute error

Table 5.5 Full default-approximation model: This table summarizes the results of the full-blown
default economic-capital approximation model including a number of additional regressors as
described in Eq. 5.31. The overall fit is substantially improved relative to the base model displayed
in Table 5.3.

Quantity Description Estimate Standard error t-statistic p-value

ξ0 Intercept −4.02 0.09 −45.20 0.00

ξ1 (Extreme) conditional default
probability

0.80 0.01 81.18 0.00

ξ2 Loss-given-default 1.04 0.01 87.51 0.00

ξ3 Exposure 1.02 0.00 312.38 0.00

ξ4 Obligor credit rating 0.03 0.00 13.53 0.00

ξ5 Concentration index 3.03 0.06 52.87 0.00

ξ6 Public-sector indicator variable 0.15 0.04 4.31 0.00

ξ7 Large exposure indicator variable 0.16 0.02 9.25 0.00

ξ8 Small exposure indicator variable 0.05 0.02 2.69 0.01

Root mean squared error 9%

Mean absolute error 6%

Median absolute error 4%

R2 0.988
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Fig. 5.7 Default instrument correlation: This heat-map illustrates the cross-correlation between
the key explanatory variables included in the extended regression model summarized in Table 5.5.

is now only about 4% of the base estimate. The amount of variance explained
also increases sharply to 0.99. Finally, all of the new parameters are statistically
significant and there is no dramatic (economic) change in the ξ1 to ξ3 parameters.35

By almost any metric, the extended model represents a serious upgrade.
The new explanatory variables warrant some additional explanation beyond

the brief descriptions provided in Table 5.5. The concentration index was already
defined in the previous section and, as we had hoped, turns out to be extremely
statistically significant. It clearly provides additional information to the model not
encapsulated in the systemic-risk-focused extreme conditional default probability.
The obligor credit rating, entered as an integer from 1 to 20, somewhat surprisingly
improves the overall fit. We would expect—and, in fact, find in Fig. 5.7—positive
correlation between the credit rating and the extreme conditional default probability.

35 The intercept variable does, however, change significantly.
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Despite a slight danger of collinearity, the addition of this piece of information
appears to improve the overall model.36

We also found it extremely useful to add three additional indicator (i.e., dummy)
variables. The first identifies public-sector entities in the portfolio as

IPi =
{

1 : the ith credit obligor is a public-sector entity
0 : the ith credit obligor is a corporation

. (5.32)

The second isolates particularly large firms with the following logic:

IBi =
{

1 : ci ≥ percentile(c, 0.90)

0 : ci < percentile(c, 0.90)
, (5.33)

or, in words, the largest 10% of credit exposures are flagged. The small exposure
flag works in the same manner on the smallest 10% of exposures. For completeness,
it is defined as

ISi =
{

1 : ci ≤ percentile(c, 0.10)

0 : ci > percentile(c, 0.10)
. (5.34)

While these three choices are clearly important, statistically significant explana-
tory variables, it is difficult to directly understand their role. Examination of the
initial model results suggests that the regulatory capital computation has particular
difficulty with public-sector, unusually large, and quite small exposures. This
probably relates to underlying concentration and parameter-selection questions. We
can conceptualize these final three explanatory variables as allowing the model to
better handle exceptions. These indicator variables also do not, as seen in Fig. 5.7,
exhibit much correlation with the other explanatory variables. The only exception
is, unsurprisingly, the large-exposure indicator and the exposure-at-default variable.

One area of investigation is conspicuous by its absence: random recovery.
Nothing in our instrument-variable selection provides any insight into this important
dimension. A number of avenues was nonetheless investigated. Key parameters—
such as the shape parameters of the underlying beta distribution or the recovery
volatility—were added to the model without success. Modified, more severe, loss-
given-default values were also explored—again using the characteristics of the
underlying beta distributions—without any improvement in model results. On the
contrary, these efforts generally led to a deterioration of the overall fit.

Figure 5.8 revisits the error analysis performed in Fig. 5.3 using our extended
regression model summarized in Eq. 5.31. To aid in our interpretation, the original
outliers—from the base default model—are also displayed. Although the general
pattern is qualitatively similar, the range of estimation error is reduced by an order of
magnitude. While much of the impact relates to improved handling of the outliers,

36 This high level of cross correlation should nonetheless be flagged as a potential weak link in the
extended regression model.
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Fig. 5.8 Revised default-error analysis: The preceding graphics replicate the analysis displayed
in Figure 5.3 using the extended regression model summarized in Eq. 5.31. The original outliers—
from the initial model—are displayed to illustrate the overall improvement.

there is also a more general effect. The difficulty of approximating small, below-
average economic-capital allocations is not entirely resolved; part of the issue relates
to the proportional nature of the error measure, but it remains a weakness.

While imperfect, we conclude that this is a satisfactory approximation model.
It exploits some basic relationships involved in the computation of economic
capital, is relatively parsimonious, and generates a reasonable degree of fit and
statistical robustness. Some weaknesses remain; most particularly relatively high
cross correlation between a few explanatory variables as well as a tendency to
significantly overestimate a subset of below-average exposures.

Colour and Commentary 58 (A WORKABLE DEFAULT APPROXIMATION

MODEL): Given the complexity of the credit-risk economic-capital model, we
should not expect to be able to construct a perfect approximator.a Exploiting
our knowledge of the problem nonetheless allows us to build a regression
model with fairly informative systemic and idiosyncratic explanatory vari-
ables. The final result is a satisfactory description of the underlying model.
Satisfactory, in this context, implies a median proportional approximation
error in the neighbourhood of 4%. While a lower figure would naturally
be preferable, we can live with this result. Construction of such models, it
should be stressed, is not a one-off exercise. The approximation model is
re-estimated daily and the error structure is examined within our internal
diagnostic dashboards. On an annual basis, a more formal model-selection
(or rather verification) procedure is performed. Ultimately, we are always on
the lookout for ways to improve this approximation.

a If we could, then we might wish to dramatically rethink our model-estimation approach.
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5.3 Approximating Migration Economic Capital

The preceding approximation is focused entirely on the notion of credit-risk
economic-capital associated with default events. While it might be tempting to fold
in the migration element into the previous approximation model, there, at least, two
reasonably compelling reasons to separately approximate the default and migration
effects. First, although default is a special case of migration, the loss mechanics
differ importantly. This makes constructing a joint approximation more difficult.
Although presumably still possible, separate structurally motivated approximation
models are more natural to construct and easier to follow.

The second reason is more practical. Distinct default and migration models
permit autonomous prediction of these two effects. This may be interesting for
analytic purposes; understanding the breakdown between these two sources of risk
can provide, for example, incremental insight into the model outcomes. It may
also be necessary from a portfolio perspective. In certain stress testing or loan-
impairment calculations, for example, we may not be directly interested in the
migration allocation. In other cases, we may be interested only in migration effects.
A joint model would make it difficult to manage such situations.

5.3.1 Conditional Migration Loss

Having justified this choice, let us turn our attention to a possible migration-
approximation model. We begin, as in the default setting, by trying to exploit our
knowledge of the basic calculation and adding some structure to the migration
problem. Denoting L

(m)
i as the credit-migration loss associated with the ith credit

obligor at time t + 1, we recall that it has the following form,

L
(m)
i =

(
S
(
Si,t+1

)− S
(
Si,t

) )
︸ ︷︷ ︸

�Si

τici , (5.35)

where Si is the credit spread, Si,t is the credit state at time t , τi is the modified spread
duration, and ci is the exposure of the ith position. The time-homogeneous credit
spread, of course, is determined directly by the credit state.37 The spread change
(i.e., �Si) is thus determined by any movement in an obligor’s credit state from
one time step to the next. The spread movement is then multiplied by the modified
spread duration and position exposure to yield an approximation of the migration
loss.

Can we construct, using similar logic to the default case, a conditional migration
loss estimate? The short answer is yes, there is clearly some conditionality in the

37 The actual parametrization of these spreads is described in Chap. 3.
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migration loss. We will denote, to ease the notation, the current credit state, at time
t , as Si0. This is known. The actual loss outcome depends upon the credit-state value
at time t + 1; we’ll call this Si+. To formalize this idea, let us rewrite Eq. 5.35 in a
similar form and applying the expectation operator to both sides,

L
(m)
i =

(
S (Si+) − S (Si0)

)
τici︸ ︷︷ ︸

Equation 5.35

, (5.36)

E

(
L

(m)
i

∣∣∣ Si+ = s
)

= E

((
S (Si+) − S (Si0)

)
τici

∣∣∣∣ Si+ = s

)
,

=

⎛
⎜⎜⎜⎝E

(
S (Si+)

∣∣∣∣ Si+ = s

)
︸ ︷︷ ︸

This is a random variable

− S (Si0| Si+ = s)︸ ︷︷ ︸
This is a constant

⎞
⎟⎟⎟⎠ τici ,

≈
(
S(s) − S (Si0)

)
τici .

While perhaps not earth-shattering, this expression underscores the fact that the
only really uncertain element in the credit-migration calculation is the future credit-
state value, Si+.38 The million dollar question relates to our choice of conditioning
variable, s. One option would be to set s = E(Si+).

For most credit counterparties—save those already at the extremes of the credit
scale—credit migration can involve either an improvement or deterioration of
their credit quality. This, in turn, implies either profit or loss associated with the
associated credit-migration effects described in Eq. 5.36. Naturally, when looking to
the extreme tail of the loss distribution, we would expect the vast majority of credit-
migration outcomes to involve downgrade, credit-spread widening, and ultimately
loss. We will thus, for our purposes, focus our attention predominately on extreme
downside outcomes.

Let’s begin with the basics. Si+ is a random variable and its expectation
will depend upon an entity’s appropriate transition probabilities. Its unconditional
expectation is

E(Si+) =
q∑

k=1

P

(
Si,t+1 = k

∣∣∣∣ Si,t = Si0

)
︸ ︷︷ ︸

Transition probability

·k, (5.37)

=
q∑

k=1

pkSi,t · k,

38 The final step is something of an approximation. Although we developed an expression for the
credit spreads in Chap. 3, it does not turn out to be helpful in this case.
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recalling that q = 21 is the number of distinct credit states (including default) and
where the individual transition probabilities (i.e., the p’s) are simply elements from
the Si,t th row of the transition matrix, P . The expected one-step forward credit state
is simply the transition-probability-weighted sum of the possible future credit states.
Transition matrices nonetheless exhibit a significant amount of inertia.39 The actual
expected credit state, in one period’s time, is unlikely to stray very far away from
the current credit state. Consequently, Eq. 5.37—in its current form—will generally
not be terribly informative about credit-migration economic-capital outcomes.

How might we resolve this issue? The worst-case migration loss should logically
occur when the (unknown) future credit state, Si+, takes its worst possible level.
Under our t-threshold credit risk model, the actual credit-state outcome depends
on draws from the systemic-risk and mixing-variable distributions. We might,
therefore, employ the same trick as we used in the default setting; select an extreme
systemic risk-factor variable outcome, z∗. The conditional expectation of Si+ for
the ith credit obligor, given z∗ is a better candidate for the as-yet-undetermined s in
Eq. 5.36. It can be correspondingly written as

E(Si+|z∗) =
q∑

k=1

P

(
Si,t+1 = k

∣∣∣∣ Si,t = Si0, z
∗
)

· k, (5.38)

=
q−1∑
k=1

P

(
KSi,t (k) ≤ �Xi ≤ KSi,t (k + 1)

∣∣∣∣ z∗
)

· k

︸ ︷︷ ︸
Migration

+P

(
�Xi ≤ KSi,t (q)

∣∣∣∣ z∗
)

· q︸ ︷︷ ︸
Default

,

=
q−1∑
k=1

(
P

(
�Xi ≤ KSi,t (k + 1)

∣∣∣∣ z∗
)

− P

(
�Xi ≤ KSi,t (k)

∣∣∣∣ z∗
))

·k + P

(
�Xi ≤ KSi,t (q)

∣∣∣∣ z∗
)

· q,

=
q−1∑
k=1

⎛
⎝	

⎛
⎝
√

w∗
ν

KSi,t (k + 1) − αiz
∗√

1 − α2
i

⎞
⎠−	

⎛
⎝
√
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ν

KSi,t (k) − αiz
∗√

1 − α2
i

⎞
⎠
⎞
⎠

︸ ︷︷ ︸
pi(z

∗,k)

39 We saw this behaviour in Chap. 3 and will discuss it again in Chap. 7.
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·k + 	

⎛
⎝
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w∗
ν

F−1
Tν

(pi) − αiz
∗√

1 − α2
i

⎞
⎠
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pi(z
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·q,
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pi(z
∗, k) · k
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Migration
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∗, q) · q︸ ︷︷ ︸

Default

,

where

KSi,t (j ) = F−1
Tν

⎛
⎝ q∑

w=j

pw,Si,t

⎞
⎠ , (5.39)

is the ith obligor credit-migration threshold for movement into state j .40 As in
the default setting, we use a fixed, relatively neutral realization of the mixing
variable, w∗. Equation 5.38 is a rather unwieldy expression, but we already have
experience with these conditional-default probability expressions and, perhaps most
importantly, they are readily and quickly computed.

We are not quite ready for prime-time usage. The approximation in Eq. 5.38 is a
bit too conservative; the simple reason is that it includes the default probability. This
component, by construction, will be carved out of the credit-migration economic-
capital and allocated to the default category. If we exclude the final default term,
however, our expectation will lose a significant amount of probability mass. To solve
this, we simply rescale our conditional probabilities excluding the default element.
This amounts to an expected downside non-default transition. Practically, this is
easily accomplished by defining,

p̃i (z
∗, k) = pi(z

∗, k)

q−1∑
j=1

pi(z
∗, j)

, (5.40)

for k = 1, . . . , q − 1 and then writing our (revised) conditional non-default credit
state expectation as,

E

(
S

(m)
i+
∣∣∣ z∗) =

q−1∑
k=1

p̃i (z
∗, k) · k. (5.41)

40 These credit migration notions and thresholds are extensively discussed in Chap. 2.
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We have thus made a slight, but important change, from the base definition in
Eq. 5.38. Equation 5.41 describes the expected (non-default) credit state for the ith
obligor in the next period, conditional on an unpleasant realization of the systemic
risk factor.41 This shift in focus is captured by the use of S

(m)
i+ rather than the original

Si+ notation.
Equipped with this, model consistent, estimator for the worst-case (non-default)

credit deterioration, we may return to the business of approximating credit-risk
economic-capital allocation. Again, we motivate our approach through the Basel
IRB method. If we denote the capital allocation associated with migration risk as
A(m)

i (α∗
z ), we might approximate it as,

A(m)
i (α∗

z ) ≈

Unexpected loss︷ ︸︸ ︷
E

(
L

(m)
i

∣∣∣∣E (S(m)
i+
∣∣∣ z∗))

︸ ︷︷ ︸
Worst-case loss

−
��������
E

(
L

(m)
i

∣∣∣∣E(Si+)

)
︸ ︷︷ ︸

E

(
L

(m)
i

)
≈0

, (5.42)

≈
(
S

(
E

(
S

(m)
i+
∣∣∣ z∗))− S (Si0)

)
︸ ︷︷ ︸
�Si (z

∗): Worst-case spread movement

τici ,

≈ �Si (z
∗)τici .

Unlike the default case, we ignore the unconditional expected loss. Since it is
generally quite close to zero, we exclude it from our basic structure.42

While Eq. 5.42 appears to be a sensible construct—built in the image of the
default-risk approximation—it has an important potential structural disadvantage.
There are only 20 (non-default) credit states that can be forecast with a correspond-
ingly small number of spread outcomes. Equation 5.40 will, without some form of
intervention, thus produce only a small number of discrete credit-spread outcomes
for a given obligor’s modified spread duration and exposure. The credit-migration
economic-capital engine, however, operates under no such constraint. It can provide
a (quasi-)continuum of possible migration–risk allocations. This would suggest that
our approximation—even if it differs by one notch on the credit-state forecast—
can exhibit rather important approximation errors. Our solution is to simply permit
non-integer (i.e., fractional) credit-state forecasts and determine the appropriate
spread outcome through the use of linear interpolation. This is essentially a trick—
a fractional credit rating does not really exist—permitting us to transform our
estimator from discrete to continuous space. This small adjustment provides our
estimator with significantly more flexibility.

41 As in the default section, z∗ is the α∗
z quantile of the underlying systemic risk factor distribution.

42 This stems from the high degree of inertia in credit-rating transition and, for most obligors, the
relatively symmetric probability of upgrade and downgrade.
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We have also ignored the expected-shortfall dimension. Practically, Eq. 5.42 is a
quantile-based estimator. If we wish to consider the expected shortfall metric, then
we will need to solve the following integral:

E(m)
i (α∗

z ) = 1

1 − α∗
z

∫ 1

α∗
z

A(m)
i (x)dx, (5.43)

= τici · 1

1 − α∗
z

∫ 1

α∗
z

�Si

(
	−1(1 − x)

)
dx

︸ ︷︷ ︸
�S̃i (z∗)

.

Practically, only a small amount of incremental effort is required to numerically
integrate Eq. 5.43. We thus employ the integrated worst-case spread change,
�S̃i (z

∗), as the base migration loss estimator found in Eq. 5.43.
To better understand the kernel of our approximation, we return to our simple

example introduced in Table 5.1 on page 290. Naturally, we will now consider
the case of credit-migration economic capital. Some of the credit obligor’s details
are reproduced for convenience and its modified spread duration has also been
added. Unsurprisingly, the unconditional expected rating remains extremely close
to the original level. Conditional on extreme outcomes of our systemic and mixing
variables, however, the expected (or shocked) credit state belongs to PD class 13.
If we use the integrated, expected-shortfall form, from Eq. 5.43, this increases to a
13.2 rating. Of course, such a PD categorization does not actually exist. Through
appropriate interpolation along the spread curve, however, this leads to a 56 and 63
basis-point credit widening for the VaR-motivated and integrated worst-case spread
movements, respectively. These values translate into forecast credit losses of about
EUR 0.94 and 1.05 billion. Since the actual economic-capital value is roughly EUR
0.87 million, both of these forecasts appear to overshoot the target.43

Figure 5.9 provides a potentially helpful visualization of the difference between
unconditional and conditional (non-default) transition probabilities. Using our
sample obligor from Table 5.6, the three flavours of transition probability are
plotted side-by-side across the entire (non-default) credit spectrum. The uncon-
ditional transition probabilities, as one would expect, are roughly symmetric and
centred around the current credit state: PD11.44 The α∗ confidence-level (non-
default) migration probabilities—both VaR-motivated and integrated from Eqs. 5.42
and 5.43—behave in a decidedly different fashion. The likelihood of remaining
in the current credit state is dramatically reduced and the remaining probability

43 Interestingly, the model-based worst-case credit-spread widening, imputed from the true credit-

migration estimate, is readily calculated from Table 5.6 as
E(m)

i (α∗)

ci τi
= 868,247

65,000,000×2.6 ≈ 51 basis
points.
44 For this credit rating, upgrade and downgrade probabilities, on an unconditional basis, appear
to be roughly equivalent. This is usually true, but it starts to break down as one moves to the
boundaries of the credit spectrum.
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Fig. 5.9 Credit-migration conditionality: The preceding figure compares the unconditional tran-
sition probabilities to the α∗

z = 0.9997 confidence-level (non-default) conditional transition
probabilities for the sample obligor highlighted in Table 5.6. The unconditional, VaR-motivated,
and integrated versions of these migration probabilities are displayed. The conditional quantities
are, in stark contrast to their rather symmetric unconditional equivalents, skewed towards credit
deterioration.

Table 5.6 Extending our simple example: The underlying table summarizes, for the same specific
exposure illustrated in Tables 5.1 and 5.2, the various quantities and calculations involved in the
construction of a conditional forecast of the migration loss.

Quantity Definition Value

Degrees of freedom ν 70

Confidence level α∗
z 0.9997

Exposure ci 65,000,000

Modified spread duration τi 2.6 yrs.

Original credit state Si0 11.0

(Unconditional) expected (non-default)
rating

E

(
S

(m)
i+
)

11.0

(Conditional) expected (non-default)
rating

E

(
S

(m)
i+
∣∣∣ z∗
)

13.0

(Conditional) integrated expected
(non-default) rating

1

1 − α∗
z

∫ 1

α∗
z

E

(
S

(m)
i+
∣∣∣	−1(1 − x)

)
dx 13.2

Worst-case spread �Si (z
∗) 56 bps.

Integrated worst-case spread �S̃i (z
∗) 63 bps.

VaR-based forecast ̂A(m)
i (α∗

z ) 940,704

Expected-shortfall-based forecast
̂E(m)
i (α∗

z ) 1,059,842

Credit-migration economic-capital E(m)
i (α∗) 868,247
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Fig. 5.10 Degree of migration agreement: The preceding graphics, in raw and logarithmic
normalized units, illustrate the degree of agreement between our approximation in Eq. 5.43 and the
observed simulation-based economic-capital contributions. The overall level of linear correlation
is fairly respectable, although there is a decided tendency to overstate the level of risk.

mass is skewed strongly toward downgrade. The skew is slightly more pronounced
for the integrated conditional transition likelihoods. It is precisely this information
that we are attempting to harness for the approximation of credit migration.
These worst-case transition probabilities thus—in a manner similar to conditional
default probabilities in our earlier discussion—form the kernel of the migration-loss
approximation.

Figure 5.10 generalizes the single obligor example in Table 5.6 to the entire
portfolio. As before, the results are provided in raw and logarithmic normalized
units. The idea is to help understand the general degree of agreement between our
approximation in Eq. 5.43 and the observed simulation-based migration economic-
capital contributions. The overall level of linear correlation is fairly respectable at
0.92 and 0.99 on the raw and logarithmic scales, respectively.

Our base migration-risk approximator has, similar to the result from Table 5.6,
a decided tendency to somewhat misstate the precise level of risk. This is likely
a structural feature of the approach culminating in Eq. 5.43. As in the default
setting, conditioning solely on the systemic risk factor ignores idiosyncratic effects.
Given the more symmetric nature of migration risk—relative to the skewed nature
of default—restricting our approximation to downside systemic risk appears to
manifest itself as overly conservative initial estimates. Figure 5.10 nonetheless
suggests that, these shortcomings aside, it is a useful starting point.

Colour and Commentary 59 (THE MIGRATION KERNEL): The decision to
separately approximate migration and default, while sensible, presents a
dilemma. We need to identify a reasonable first-order migration-loss approxi-
mator. A natural starting point is to lean on the default-approximation kernel

(continued)
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Colour and Commentary 59 (continued)
and see how it might be generalized. Happily, the notion of a conditional
migration loss makes both logical and empirical sense. The only unknown
quantity in migration loss is the obligor’s future credit rating. Uncondition-
ally, this is rather uninteresting, but the situation improves if we condition
on an extreme outcome of the common systemic risk factor.a Extending this
idea leads to downward-skewed transition probabilities as well as worst-case
rating downgrade and credit-spread estimates. These quantities are readily
combined to produce an entirely reasonable, if somewhat conservative, initial
migration-risk economic-capital approximator.

a As in the default setting, the χ2-distributed mixing variable is fixed at a fairly neutral
value.

5.3.2 A First Migration Model

It will come as no surprise that we use the same linear regression structure—given
its reasonable degree of success—as employed in the default setting. Indeed, we
now have all of the necessary constituents to construct a base credit-migration
approximation model. Consider the following form:

E(m)
i (α∗) ≈ τici · 1
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z

∫ 1
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for i = 1, . . . , I . Again applying natural logarithms, we have a similar form to the
earlier default approximation in Eq. 5.18. This directly translates, of course, into the
familiar OLS setting and reduces to the usual linear model,

y(m) = X(m)� + ε(m), (5.45)
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where
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As before, we need only employ the standard OLS estimator for � =[
θ0 θ1 θ2 θ3

]T
. Although the inputs are rather different, the base migration model

is conceptually equivalent to the default case.
Table 5.7 provides the usual summary for our base, structurally motivated,

credit-migration model shown in Eq. 5.45. All four regression coefficients are
strongly statistically significant. The percentage of variance explained (i.e., R2)
attains a decent level. The other goodness-of-fit measures, however, show room
for improvement. The proportional root-mean-squared value of almost 40% is
somewhat better than in the base default model, but it suggests the presence of
important outliers. Having already been in this situation, let’s skip directly to the
extension of Eq. 5.45 to include a wider range of idiosyncratic explanatory variables.

Table 5.7 A first migration-approximation model: This table summarizes the results of the base
migration economic-capital approximation model. It has an intercept and three logically motivated
explanatory variables. The results, while not overwhelming, are reasonably encouraging.

Quantity Description Estimate Standard error t-statistic p-value

θ0 Intercept −2.04 0.17 −11.90 0.00

θ1 Worst-case spread 0.69 0.02 29.37 0.00

θ2 Spread duration 1.01 0.02 64.62 0.00

θ3 Exposure 1.01 0.01 143.70 0.00

Root mean squared error 40%

Mean absolute error 23%

Median absolute error 17%

R2 0.886



322 5 Approximating Economic Capital

5.3.3 The Full Migration Model

As in the default case, an extension of the base model is necessary. The full
migration-risk regression model—which is once again the result of a significant
amount of analysis—is described as:

y
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for i = 1, . . . , I risk-owner risk contributions. The interesting part of Eq. 5.48
relates to the identity of the additional explanatory variables.

Table 5.8 displays the results of the final credit-migration economic-capital
approximation model. All model parameters are statistically significant. Coinci-
dentally, five additional explanatory variables were also selected. As in the default
setting, the integer-valued credit rating and the concentration index turn out to be
surprisingly useful in explaining credit-migration risk outcomes. Two additional
indicator (i.e., dummy) variables also prove helpful. The first identifies public-sector

Table 5.8 Full migration-approximation model: This table provides the key summary statistics
for the full credit-migration economic-capital approximation model. It does not fit quite as well
as the default approach, but it appears to do reasonably well.

Quantity Description Estimate Standard error t-statistic p-value

θ0 Intercept −0.62 0.17 −3.70 0.00

θ1 Worst-case spread 0.93 0.02 51.40 0.00

θ2 Spread duration 0.98 0.01 123.43 0.00

θ3 Exposure 1.01 0.00 239.04 0.00

θ4 Obligor credit rating −0.08 0.00 −17.66 0.00

θ5 Concentration index 1.42 0.07 19.74 0.00

θ6 Public-sector indicator variable −0.33 0.03 −12.32 0.00

θ7 High-risk indicator variable −0.27 0.05 −4.98 0.00

θ8 Systemic weight −1.73 0.13 −13.03 0.00

Root mean squared error 15%

Mean absolute error 11%

Median absolute error 9%

R2 0.978
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entities in the portfolio exactly as in Eq. 5.32 in the default setting.45 The second
high-risk indicator is defined as

IHi =
{

1 : Si ≥ PD14
0 : Si < PD14

. (5.49)

Obligors at the very low end of the credit spectrum are, as one might expect,
dominated by default risk. As a consequence, identifying them for different
treatment improves the overall approximation. As before, these indicator variables
are based on a certain logic, but their success likely depends on rather complicated
non-linear aspects of the production t-threshold model.

The systematic weight parameter, the final addition to our approximating regres-
sion, also provides value in describing migration risk. Its role in determining the
relative importance of systemic and idiosyncratic factors makes it important in both
the migration and default settings. It is excluded in the full default model, because
it is ultimately captured by other explanatory variables.

Figure 5.11 provides a heat-map of the cross correlation associated with our
migration explanatory variables. The only potential danger point—in terms of
multicollinearity—arises between the credit rating and public-sector variables. With
this borderline exception, the remaining descriptive variables all appear to capture
different systemic and idiosyncratic elements of migration-risk economic capital.
This is underscored by the goodness-of-fit measures in Table 5.8. In addition to a
fairly healthy increase in the R2 measure, the proportional root-mean-square errors
are reduced by a factor of three; the mean and median absolute errors, perhaps the
most important dimensions, are cut in half. The results are broadly comparable—
although marginally worse—than the full-default model outcomes presented in
Table 5.5.

Figure 5.12 concludes our examination of the migration-approximation model
through a detailed examination of the error profiles. In particular, it highlights the
error plots (estimated less observed) for the base and full migration-risk approxi-
mation models. Each perspective considers the individual obligor and (normalized)
size dimensions. A small number of model outliers are identified in the base model
and inherited in the extended model graphics; in all cases, the additional explanatory
variables improve the situation. Overall, a threefold reduction in the scale of error
is provided with the extended model. Although it struggles in certain situations,
and there is stubborn tendency to overestimate risk, the general performance of the
approximation can be considered to be satisfactory.

45 There are, it should be stressed, the only four of eight (non-intercept) variables arising in both
default and migration models. This observation underscores the benefits of separate treatment of
migration and default risk.
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Fig. 5.11 Migration instrument correlation: This heat-map illustrates the cross-correlation
between the key migration risk explanatory variables included in the extended regression model
summarized in Table 5.8.

Colour and Commentary 60 (A WORKABLE MIGRATION APPROXIMA-
TION MODEL): Migration-risk economic capital is not easier to predict than
its default equivalent.a Analogous to the default case, one can nonetheless
construct a fairly defensible regression model involving meaningful systemic
and idiosyncratic explanatory variables. The results are satisfactory; in par-
ticular, the R2 approaches 0.98 and the median proportional approximation
error comes out—not quite on par with the full default model—at around
9%. Migration risk approximation nevertheless remains a constant struggle.
The model is re-estimated daily, parameters are stored in our database, and
the results are carefully monitored via our internal diagnostic dashboards. A
more formal model-selection procedure is performed on an annual basis.

a To repeat, if it was, then we could perhaps dispense with our complicated simulation
algorithms.



5.4 Approximation Model Due Diligence 325

Fig. 5.12 Migration-error analysis: The preceding graphics highlight the error plots (estimated
less observed) for the base and full migration-risk approximation models. Each perspective
consider the individual obligor and (normalized) size dimensions. A threefold reduction in the
scale of error is provided with the extended model.

5.4 Approximation Model Due Diligence

Lawyers talk about the idea of a standard of care and due diligence in a very
technical and specific way. These ideas can, if we’re careful with them, be
meaningfully applied to the modelling world. We have, as model developers, a
certain responsibility to exercise a reasonable amount of prudence and caution in
model selection and implementation. Despite having invested a significant amount
of time motivating and deriving our approximation models, we cannot yet be
considered to have entirely performed our due diligence. The reasons are fairly
simple: to this point, we have only examined their performance on an in-sample
basis for a single point in time. To appropriately discharge our responsibility for due
diligence, this section will address the two following questions:

1. How do our default and model approximations perform over a lengthier time
interval?
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Fig. 5.13 A historical perspective: Using the portfolio data over each date in a six-month period
straddling 2020 and 2021, the full default and migration models are estimated and the evolution of
our four main goodness-of-fit measures are displayed. The results indicate a relatively high degree
of stability over time.

2. What is the relative performance of our approximations—again over a reasonable
length of time—along both the in- and out-of-sample dimensions?

Let’s begin with the first, more easily addressed, issue. The default and migration
approximation models were fit—using the ideas from the previous sections—to
a sequence of portfolios. Figure 5.13 illustrates the results by focusing on the
daily evolution of the four resulting goodness-of-fit criteria over a roughly 130
business-day (i.e., six-month) period. The results are fairly boring; the root-mean,
mean-absolute, and median-absolute error estimates remain resolutely stable over
the entire period. The default R2 never deviates, in any meaningful way, from
0.99. The only slightly interesting result is a downward jump in the migration R2

stemming from a hard-to-approximate addition to the portfolio earlier during our
horizon of analysis.

Boring, in the context of Fig. 5.13, is a good thing. The results strongly suggest
that our two approximations are satisfactorily robust. Caution is, of course, required.
A few new observations could undermine these positive results and lead us to
question our conclusion. This is important to keep in mind and argues for constant
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oversight. This point notwithstanding, we may cautiously infer, from the analysis in
Fig. 5.13, that our approximations have value beyond the single datapoint presented
in the previous sections.

The second question is harder to answer and takes us further afield. The natural
starting point is to provide a bit more precision on the difference between in-
and out-of-sample estimates. As the name suggests, in-sample fit describes errors
stemming from observations used to fit (or train) one’s approximation algorithm.
Out-of-sample fit, by extension, applies to errors for observations falling outside, or
excluded from, the estimation dataset. Any information embedded in out-of-sample
observations is not, literally by construction, captured in one’s model parameters.
It is precisely this characteristic that makes out-of-sample prediction both difficult
and interesting.

Out-of-sample prediction is a powerful technique to guard against the over-fitting
of an estimation model. This is a concern shared by both statisticians and data
scientists. Over-fitting basically describes an excessive specialization of the model
parameters to one’s specific data sample; the consequence is the identification of
trends that do not generalize more broadly to other samples or the overall data
population.46 It is easy to see how out-of-sample error analysis is precisely the right
tool to assess the degree of model over-fitting in one’s approach.

Over-fitting is a particularly depressing and dangerous model shortcoming.
One’s in-sample goodness-of-fit measures look great, but the model actually fails
dreadfully out of sample. Given the high levels of R2 and low proportional
errors in the preceding approximation models, it is entirely natural to worry about
this problem. Have we, for example, over-specialized our model structure to the
provided sample data? Addressing this entirely rationale fear is an important part
of our due-diligence process. Moreover, given that the loan-pricing problem is, by
definition, an out-of-sample prediction problem, we cannot ignore this dimension.

How should we proceed? Stone [26] and Geisser [11], almost 50 years ago,
proposed a general technique to systemically manage in- and out-of-sample datasets
and thereby control the over-fitting problem. The idea is quite simple: one first
partitions the given dataset into k (roughly) equally sized subsets. Each of these
subsets is referred to as a fold. One then excludes one of these folds—let’s start
with k = 1—and uses the remaining data to estimate the model. In statistical or
machine learning, these are generally referred to as the training and testing datasets,
respectively. One proceeds to compute two sets of goodness-of-fit measures: one for
the estimation dataset and another for the set of excluded data. These are the in- and
out-of-sample measures, respectively. One then puts the excluded data back into the
sample, and excludes another fold (say, k = 2) and repeats the exercise. This is
performed k times until each of the partitions has been excluded once. The result is

46 A less charitable way to describe over-fitting is the characterization of trends that do not actually
exist.
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Table 5.9 Goodness-of-fit statistics: This table summarizes a range of goodness-of-fit summary
statistics for both in- and out-of-sample estimates. The values are based on a five-fold cross-
validation exercise performed for every business day over a six-month period.

Default Migration

Measure Perspective Mean σ Min Max Mean σ Min Max

R2 In-sample 0.990 0.002 0.982 0.996 0.982 0.004 0.969 0.994

Out-of-sample 0.990 0.007 0.965 0.999 0.979 0.013 0.927 0.999
Root-mean-squared
error

In-sample 0.081 0.004 0.066 0.091 0.137 0.008 0.114 0.150

Out-of-sample 0.086 0.015 0.050 0.158 0.149 0.039 0.092 0.309
Mean absolute error In-sample 0.056 0.002 0.047 0.062 0.097 0.003 0.085 0.106

Out-of-sample 0.059 0.006 0.041 0.090 0.102 0.011 0.073 0.145
Median absolute error In-sample 0.041 0.002 0.035 0.047 0.080 0.003 0.069 0.092

Out-of-sample 0.042 0.005 0.028 0.059 0.081 0.008 0.056 0.105

a broad range of both in- and out-of-sample estimates.47 This is referred to—again
following from Stone [26] and Geisser [11]—as k-fold cross validation.48

Table 5.9 illustrates the results of a k-fold cross validation exercise performed for
every day during the same six-month time interval employed for the construction
of Fig. 5.13. On each distinct date, the original dataset was randomly reshuffled to
ensure different fold compositions over time. With roughly 130 days and k = 5
folds per dataset, the consequence is about 5 × 130 = 650 separate sets of in- and
out-of-sample goodness-of-fit statistics. In Table 5.9 we find the mean, volatility
(i.e., σ ), minimum and maximum in- and out-of-sample good-of-fit measures for
both migration and default approximation models.

Although there are admittedly many numbers to peruse, a few conclusions are
possible. First of all, there is a universal degradation of fit when moving from the
in- to the out-of-sample perspective. Second, and more interestingly, the magnitude
of the deterioration of fit is (for the most part) relatively modest. Finally, the
default model appears to be more robust, along this dimension, than their migration
equivalents.

Figure 5.14 seeks to help us better digest all of the figures in Table 5.9
by illustrating the competing distributions of in- and out-of-sample good-of-fit
measures for the default approximation model. Visually, the in-sample fit measures
are clearly tighter than the out-of-sample values. The centre of the two distributions
do not appear to be dramatically different, although there is a decided right skew.49

In the default setting, the overall worsening of out-of-sample prediction accuracy
appears to be reasonably limited.

47 It is also possible to repeat this again by randomly reshuffling one’s original dataset and
repartitioning.
48 See Hastie et al. [16, Section 7.2] for a helpful introduction to cross validation.
49 Or, in the case of the R2, a left skew.
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Fig. 5.14 Default out-of-sample fit: Computed using a five-fold cross validation of the full default
approximation model for each day over a six-month period, the graphics display the distribution of
in- and out-of-sample goodness-of-fit measures. Each day, the order of the observations using the
cross validation were randomly shuffled.

Figure 5.15 repeats the analysis found in Fig. 5.14, but instead examines the
migration approximation model. Once again, the in-sample fit measures are fairly
closely clustered around a central point. The dispersion of the out-of-sample
metrics is qualitatively similar, but substantially broader than in the default case.
The root-mean-squared error, in particular, exhibits a bimodal distribution. This
stems from the inclusion or exclusion of certain outlier observations from the
training and testing samples. While the out-of-sample performance of the migration
approximation is significantly worse than the default model, the analysis does not
reveal any terrible surprises. We may, therefore, cautiously provide fairly positive
responses to the two due-diligence questions posed at the beginning of this section.

Colour and Commentary 61 (DUE-DILIGENCE RESULTS): The notion of
due-diligence basically sets a standard for the requisite degree of caution
and prudence for a reasonable person finding themselves in a position of

(continued)
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Fig. 5.15 Migration out-of-sample fit: Analogous to Fig. 5.14, the graphics apply to the migration
case. Computed using a five-fold cross validation of the full migration approximation model for
each day over a six-month period, the graphics display the empirical distribution of in- and out-of-
sample goodness-of-fit measures. Each day, the order of the observations using the cross validation
were randomly shuffled.

Colour and Commentary 61 (continued)
responsibility. Given its central importance for a range of important credit-
risk economic capital applications—including, most centrally, loan pricing
and stress testing—we identify a strong need for model due-diligence. This
is operationalized in two questions: model-prediction observations over
a broader time period and out-of-sample performance. Examining daily
portfolios over a six-month period reveals an admirable degree of robustness
in our in-sample goodness-of-fitmeasures. Analyzing the same six-month data
window within the context of a (daily) five-fold cross validation exercise fur-
ther demonstrates only moderate degradation associated with out-of-sample
goodness-of-fit in our approximation models.a This extensive due-diligence
analysis provides a degree of comfort in our approximation models.

a The default model nonetheless significantly outperforms the migration approximator.
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5.5 The Full Picture

The previous discussion hopefully underscores that, despite rather strenuous analyt-
ical efforts and a small amount of creativity, it is not particularly easy to construct
a fast, accurate, and defensible semi-analytic approximation of the default and
migration economic-capital estimates. If it was, of course, then we might ultimately
be able to avoid lengthy and computationally expensive simulation algorithms. The
challenges certainly stem from the many complex non-linear relationships between
the individual obligors and their characteristics. Despite these complications, we are
able to offer two fairly defensible approximation approaches.

It should be fairly obvious, by this point, how total credit-risk economic capital
is approximated. Nevertheless, for completeness, the full approximator is written as

Ei (α
∗) ≈ Êi (α∗

z ) =
κ∑

k=0

ξ̂kX
(d)
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, (5.50)
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i (α∗

z ),

for i = 1, . . . , I . This requires two main inputs: the regression coefficients and
the explanatory variables. For various downstream applications the parameters—
estimated and stored daily—are readily available. Separate functions, involving a
modicum of numerical integration, are available to collect the descriptive variable
matrices (i.e., X(d) and X(m)) as required.

Both approximations rely upon structurally motivated linear-regression estima-
tors. This offers an important advantage: it allows us to exploit our knowledge of
the underlying problem. Other choices are nonetheless possible. The presence of
complex non-linear relationships strongly suggests consideration of other, perhaps
more empirically motivated, techniques. The area of machine-learning, for example,
offers a number of potential methods to address these features of our model. Internal
assessment of popular machine-learning approaches has, in the current implemen-
tation, nevertheless been somewhat disheartening. While generally reasonable, they
fail to outperform the previously presented techniques. One reason appears to relate
to relatively small datasets; this is, to a certain extent, a constraint associated with the
need to condition on the current portfolio structure. Another explanation is that our
proposed approximators are actually rather sensible and correspondingly difficult to
beat.
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Colour and Commentary 62 (ECONOMIC-CAPITAL APPROXIMATION

CHOICES): Building a defensible and workable mathematical approximation
of a complicated object is part art and part science. Numerous choices are
required. The current economic-capital approximation model is no exception.
At least three explicit strategies have been followed. First of all, separate
approximation models are constructed for both default and migration effects.
This enhances analytical flexibility, but roughly doubles the total amount
of effort. Structurally motivated linear models, as a second point, have
been employed. These high-bias (hopefully low-variance) estimators permit
exploitation of model knowledge, but may ignore important non-linear
elements.a Finally, and perhaps most importantly, model selection was
verified over an extended time period with the consideration of both in- and
out-of-sample perspectives. The combination of these three elements does not
guarantee optimal approximation models—far from it—but it does represent
a comprehensive framework for their defence and ultimate improvement.

a There is, for example, no reason one might not be able to exploit model knowledge in the
context of more flexible estimators.

5.5.1 A Word on Implementation

The actual implementation of the migration and default approximation models
is, after all the detailed discussion of their construction and defensibility, rather
anticlimactic. Figure 5.16 summarizes the various algorithmic steps. Conceptually,
the code follows the same three steps for each model: compute and collect the
instrument (or explanatory) variables, calculate the dependent variables, and then
estimate the regression coefficients. All these activities are assigned to separate
functions since each requires a reasonable amount of effort. getXDefault
and getXMigration, which manage the computation of response variables,
perform a moderate number of numerical integrations. Moreover, the logarithmic
transformations require a bit of caution.

The primary output of the approximation algorithm takes the form of two
Python dictionaries: vd and vm. These two objects are populated with the default
and migration economic-capital estimates, respectively. Although they usefully
contain model forecasts, residuals, standard errors, test statistics and p values, the
most important data members are the parameters.50 These are used extensively in

50 In addition, all of these diagnostics are computed in both logarithmic and currency space.
Although our principal focus is the currency estimates, there is useful information in both
perspectives.
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Fig. 5.16 The EC approximation: Using instrument variables derived from the structural elements
of the default and migration computations, economic-capital is approximated using a standard OLS
framework. Since a logarithmic transformation is employed and it is useful to separately predict
their outcomes, the default and migration approximations are individually performed.

subsequent applications and, upon the completion of approximateEc, are saved
into their own database table.

Having computed the approximation models, we can immediately put them to
work. More complex approximation-related applications are considered in future
chapters, but a small question needs to be addressed. The first application of our
approximation methodologies, touches on the relationship between credit obligors
and individual loans (or treasury) positions.

5.5.2 An Immediate Application

Credit-risk economic-capital computations operate, as previously discussed, at the
risk owner level. A risk owner, to be clear, is an entity whose credit deterioration,
or failure to pay, would lead to financial loss. It may be a single corporation or
public institution or, in some cases, it can cover a parent company and its individual
subsidiaries. While these details are important, for the purposes of this discussion,
one simply needs to understand the relationship between risk-owner and individual
exposures. Finding the correct terminology for this latter quantity is a challenge; we
might refer to it as a trade, a transaction, an instrument, or a position. None of these
is entirely satisfactory. However you wish to refer to it, it is the most atomistic
element of one’s portfolio. In the lending book, these are essentially loans. On
the treasury side, however, this can involve a broad range of positions in various



334 5 Approximating Economic Capital

Fig. 5.17 Exposure counts: Each individual risk owner has, on average, four separate individual
exposures. The preceding graphic illustrates the significant dispersion around this central value.
Two thirds of the portfolio’s risk owners have only one or two exposures, whereas others have
dramatically more.

instruments such as swaps, bonds, forward contracts, repos, or deposits. At the NIB,
for lack of a better term, we use individual exposure (or just exposure) to refer to
these elements of our portfolio.51

To actually compute economic capital, these individual exposures are aggregated
to the risk-owner level. In recent years, our portfolio has had in the neighbourhood
of 600 individual risk owners, but more than 2000 exposures implying roughly
four exposures per risk owner.52 In its base implementation, however, economic-
capital is only assigned at the risk-owner level; it is, after all, at this level where
default (or credit transition) occurs. This creates a small challenge. For analytic
purposes, reporting, and loan-pricing activities, it is necessary to allocate the risk-
owner economic capital to each of its underlying exposures.

How are these exposures distributed by risk owner? Figure 5.17 answers this
question by displaying, for the usual arbitrary date in 2020, the range of exposure
numbers across individual risk owners. These results are presented as a percentage
of the total number of exposures. Although the mean outcome is roughly four, it
varies dramatically. About two thirds of the portfolio’s risk owner have only one or
two exposures, whereas some have dozens. The largest number of exposures per risk
owner approaches 100. These are certainly associated with treasury counterparties

51 The reader should, of course, feel free to use (or invent) a better descriptor.
52 Other financial institutions may have different distributions, but face the same conceptual issue.



5.5 The Full Picture 335

and include a range of instruments such as swaps, deposits, and repo exposures.53

Given the presence of netting and collateral arrangements, the sheer number of
exposures, in isolation, does not tell a very useful story.54

Since the model does not provide any explicit guidance as to how we should
allocate the overall risk-owner economic-capital to individual exposures, we need to
address this ourselves. After some deliberation, a few general allocation principles
were identified to guide us. More specifically, there are three key elements, in our
view, that are required:

1. Conservation of Mass: Economic-capital can be neither created, nor destroyed,
by the allocation procedure.

2. Risk Proportionality: Riskier exposures, all else equal, should receive a larger
proportion of the risk allocation than their safer equivalents.

3. Weak Positivity: A lower bound on the exposure-level risk allocation is zero;
we do not allocate negative economic capital to an exposure. This might
appear somewhat controversial. Negative economic capital, after all, is frequently
assigned in a market-risk setting. Such positions, or risk-factor exposures, can
broadly be interpreted as a form of hedge. Outside of default insurance, which
we have not traditionally employed, such dynamics do not appear to be sensible
in the credit-risk setting.

We will employ these basic axioms to direct our choice of allocation methodology.
Some notation is now required. Let us represent risk-owner economic capital,

once again, as Ei for i = 1, . . . , I . Here we refer to the total risk-owner economic-
capital allocation including both default and credit-migration effects. Our task is to
attribute Ei to each of its Ni ≥ 1 exposures. Clearly, if Ni = 1, this is a trivial
task. If Ni = 10, however, it will be rather less obvious how to apportion the total
economic capital.

Whatever approach one selects, it is basically a weighting problem. Practically,
therefore, any allocation algorithm can be described as

Eij = ωijEi , (5.51)

where Eij is the j th exposure’s allocation of the ith risk-owner’s economic capital.
ωij is the weight of the j th exposure to the ith risk owner. These weights need to be
identified. In other words, the entire exercise is about finding sensible ω’s.

The good news is that we may now employ our previously described principles
to identify reasonable ω choices. The conversation-of-mass axiom, for example, can
be translated into a requirement that the full risk-owner level economic capital (i.e.,

53 In some large institutions, there may be thousands of exposures with a single risk-owner.
54 This question is addressed in detail in Chap. 10.
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Ei) is assigned to the exposures. Mathematically, this amounts to

Ei =
Ni∑

j=1

Eij , (5.52)

=
Ni∑

j=1

ωijEi︸ ︷︷ ︸
Equation

5.51

,

= Ei

Ni∑
j=1

ωij

︸ ︷︷ ︸
Our

choice

,

which implies that we merely require that

Ni∑
j=1

ωij = 1, (5.53)

for i = 1, . . . , I . Quite simply, the condition in Eq. 5.53 ensures that the total
economic-capital amount is assigned.

If we define Rij as the riskiness of the j th exposure associated with the ith risk-
owner, then we also require that:

Rij ≥ Rik ⇒ ωij ≥ ωik. (5.54)

for all j, k = 1, .., Ni . A riskier exposure receives a greater economic-capital
allocation; this addresses the risk-proportionality principle. Our final axiom, which
deals with weak positivity, implies that the individual weights must respect:

ωij ∈ [0, 1], (5.55)

for all j = 1, . . . , Ni and i = 1, . . . , I .
The three conditions in Eqs. 5.53 to 5.55 provide us with all that we require to

write a concrete expression for our individual weights. The weights must be positive,
sum to unity, and respect our risk ordering. The following expression is consistent
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with all of these constraints:

ωij =
max

(
Rij , 0

)
Ni∑

k=1

max

(
Rik, 0

) (5.56)

The only element that is missing is a choice of risk assessment. There exist a number
of possibilities—such as the total exposure or market value—but there is already an
obvious candidate. In the previous sections, a detailed description of the default and
migration economic-capital approximations was provided. These would appear to
be a highly sensible choice for each individual Rij assessment. More specifically,
using Eq. 5.50, we require that

Rij =

Êij (α∗
z )︷ ︸︸ ︷

κ∑
k=0

ξ̂kX
(d)
ij,k︸ ︷︷ ︸

Default
risk

+
κ∑

k=0

θ̂kX
(m)
ij,k︸ ︷︷ ︸

Migration
risk

, (5.57)

= ̂E(d)
ij (α∗

z ) + ̂E(m)
ij (α∗

z ).

In short, we first compute the necessary instrument variables for each ith risk owner
and j = 1, . . . , Ni exposures. We then use our regression coefficients to produce
associated migration and default economic-capital estimates; this serves admirably
as a consistent measure of position risk for our allocation algorithm.55

Colour and Commentary 63 (EXPOSURE-LEVEL ALLOCATION): Since
default and migration occur at the risk-owner level, they must be computed
and allocated from a risk-owner perspective. Economic-capital allocations—
for a variety of practical applications—are nonetheless required at the

(continued)

55 Our estimation algorithms are indifferent as to whether they are performed at the risk-obligor or
instrument level. One need only be able to compute the necessary explanatory variables. We can
also, should we so desire, separately allocate default and migration economic capital.
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Colour and Commentary 63 (continued)
individual exposure level.a A downgrade or a default will impact all of a risk-
owner’s underlying exposures, albeit in potentially different ways.b In other
words, not all exposures possess the same risk profile and, as a consequence,
assignment of risk-owner economic-capital is not an uninteresting and routine
task. Identifying three commonsensical principles governing this operation
and, leaning heavily on our approximation models, an internally consistent
methodology is presented. We can see that our extensive effort to construct a
reasonable economic-capital estimator is already bearing fruit.

a Individual exposure is a potentially confusing term. As a trade, transaction, position, or
instrument, it refers to the most atomistic elements of our portfolio.
b Different loans, for example, may exhibit differences in guarantees or collateral thus
influencing loss-given-default values.

5.6 Wrapping Up

After having gone to such lengths to construct a functioning simulation-based
engine for our credit-risk economic-capital model in Chap. 4, it is somewhat peculiar
to immediately allocate an entire chapter towards finding semi-closed-form analytic
approximations of the same object. The driving reason is speed. Even with clever use
of parallel-processing and variance-reduction techniques, we cannot produce credit-
risk economic capital estimates in seconds.56 Certain applications, however, demand
rapidity. On one hand, it is necessary to perform timely and flexible loan-pricing
computations. Loan origination, as a fundamental activity, simply cannot operate
without the ability to quickly consider a multitude of lending options. On the other
hand, some endeavours (such as stress-testing) involve a huge scale of calculation
that cannot be handled at simulation-model speeds. Whatever the reason, there is
a clear demand for a reasonably accurate, instrument-level, fast, semi-analytical
approximation of both default and migration economic capital. Their construction
is tedious, time-consuming, and we are ultimately never entirely satisfied with their
performance. The effort is nonetheless worthwhile. Our investment in this chapter—
which has already found one small application—will pay generous dividends as
we turn to various economic-capital applications in the forthcoming discussion and
analysis.

56 Even doing so in a small number of minutes is, for a reasonable price, almost impossible.



References 339

References

1. M. Bellalah, M. Zouari, A. Sahli, and H. Miniaoui. Concentration measures in risk
management. International Journal of Business, 20(2):110–127, 2015.

2. BIS. The internal ratings-based approach. Technical report, Bank for International Settlements,
January 2001.

3. BIS. International convergence of capital measurement and capital standards: A revised
framework. Technical report, Bank for International Settlements, January 2004.

4. BIS. An explanatory note on the Basel II IRB risk weight functions. Technical report, Bank
for International Settlements, July 2005.

5. D. J. Bolder. Credit-Risk Modelling: Theoretical Foundations, Diagnostic Tools, Practical
Examples, and Numerical Recipes in Python. Springer-Nature, Heidelberg, Germany, 2018.

6. D. J. Bolder. Statistics and Machine-Learning: Variations on a Theme. In P. Nymand-Andersen,
editor, Data Science in Economics and Finance for Decision Makers. Risk Books, 2021.

7. D. J. Bolder and T. Rubin. Optimization in a Simulation Setting: Use of Function Approxima-
tion in Debt-Strategy Analysis. Bank of Canada: Working Paper 2007-13, February 2007.

8. L. Breiman. Statistical Modeling: The Two Cultures. Statistical Science, 16(3):199–231, 2001.
9. S. Emmer and D. Tasche. Calculating credit risk capital charges with the one-factor model.

Technical report, Deutsche Bundesbank, January 2005.
10. S. Figini and P. Uberti. Concentration measures in risk management. The Journal of the

Operational Research Society, 64(5):718–723, May 2013.
11. S. Geisser. The predictive sample reuse method with applications. Journal of the American

Statistical Association, 70(350):320–328, 1975.
12. G. H. Golub and C. F. V. Loan. Matrix Computations. The John Hopkins University Press,

Baltimore, Maryland, 2012.
13. M. B. Gordy. A risk-factor model foundation for ratings-based bank capital rules. Journal of

Financial Intermediation, 12:199–232, 2003.
14. M. B. Gordy and E. Lütkebohmert. Granularity Adjustment for Basel II. Deutsche

Bundesbank, Banking and Financial Studies, No 01-2007, January 2007.
15. M. B. Gordy and E. Lütkebohmert. Granularity adjustment for regulatory capital assessment.

University of Freiburg, January 2013.
16. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,

Inference and Prediction. Springer-Verlag, New York, first edition, 2001.
17. G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning.

Springer-Verlag, New York, first edition, 2013.
18. I. T. Jollliffe. Principal Component Analysis. Springer, New York, New York, 2002.
19. G. G. Judge, W. Griffiths, R. C. Hill, H. Lütkepohl, and T.-C. Lee. The Theory and Practice of

Econometrics. John Wiley and Sons, New York, New York, second edition, 1985.
20. E. Lütkebohmert. Concentration Risk in Credit Portfolios. Springer Verlag, Berlin, 2008.
21. R. J. Martin and T. Wilde. Unsystematic credit risk. Risk, pages 123–128, November 2002.
22. B. Milanovic. The Gini-type functions: An alternative derivation. Bulletin of Economic

Research, 46(1):81–89, 1994.
23. M. Pykhtin. Multi-factor adjustment. Risk, (3):85–90, March 2004.
24. A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis. Dover Publications,

Mineola, New York, second edition, 1978.
25. T. Ribarits, A. Clement, H. Seppälä, H. Bai, and S.-H. Poon. Economic Capital Modeling:

Closed form approximation for real-time applications. European Investment Bank and
Manchester University, June 2014.

26. M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society. Series B (Methodological), 36(2):111–147, 1974.



340 5 Approximating Economic Capital

27. B. Torell. Name concentration risk and pillar 2 compliance: The granularity adjustment.
Technical report, Royal Institute of Technology, Stockholm, Sweden, January 2013.

28. O. A. Vasicek. Limiting loan loss probability distribution. KMV Corporation, August 1991.
29. S. Yitzhaki and I. Olkin. Concentration indices and concentration cures. Stochastic Orders and

Decision under Risk, IMS Lecture Notes – Monograph Series 1991.


	5 Approximating Economic Capital
	5.1 Framing the Problem
	5.2 Approximating Default Economic Capital
	5.2.1 Exploiting Existing Knowledge
	5.2.2 Borrowing from Regulatory Guidance
	5.2.3 A First Default Approximation Model
	5.2.4 Incorporating Concentration
	5.2.5 The Full Default Model

	5.3 Approximating Migration Economic Capital
	5.3.1 Conditional Migration Loss
	5.3.2 A First Migration Model
	5.3.3 The Full Migration Model

	5.4 Approximation Model Due Diligence
	5.5 The Full Picture
	5.5.1 A Word on Implementation
	5.5.2 An Immediate Application

	5.6 Wrapping Up
	References


