
Chapter 3
Finding Model Parameters

If you have a procedure with ten parameters, you probably
missed some.

(Alan Perlis)

We can loosely think of a firm-wide credit-risk economic-capital model as a
complicated industrial system, such as a power plant, an air-traffic control system,
or an interconnected assembly line. The operators of such systems typically find
themselves—at least, conceptually—sitting in front of a large control panel with
multiple switches, levers, and buttons.1 Getting the system to run properly, for their
current objective, requires setting everything to its proper place and level. Failure
to align the controls correctly can lead to inefficiencies, defective results, or even
disaster. In a modelling setting, unfortunately, there is no exciting control room.
There are, however, invariably a number of important parameters to be determined.
It is useful to imagine the parameter selection process as being roughly equivalent
to adjusting the switches, levers, and buttons in an industrial process. There are
many possible combinations and their specific constellation depends on the task
at hand. Good choices require experience, reflection, and judgement. Transparency
and constructive challenge also contribute importantly to this process.

The previous chapter identified a rich array of parameters associated with our
large-scale industrial model. The principal objective of this chapter is to motivate
our actual parameter choices. It is neither particular easy nor terribly relaxing to
walk through a detailed explanation of such a complex system. The labyrinth of
questions that need to be answered can easily lead us astray or obscure the thread of
the discussion. Figure 3.1 attempts to mitigate this problem somewhat through the
introduction of a parameter tree. It highlights five main categories of parameters:
credit states, systemic factors, portfolio-level quantities, recovery rates, and credit

1 This old-fashioned control panel is fun to envision, but sadly, in today’s world, most of these
things are probably run via computer.
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Fig. 3.1 A parameter tree: This schematic highlights five main classes of parameters and further
illustrates the key questions associated with each grouping. This parameter tree forms a rough
outline of this chapter—providing the main sections—and acts as a logical guide through the
complexity of our credit-risk economic capital control panel.

migration. Each of the five divisions of Fig. 3.1 corresponds to one of the main
sections of this chapter. These categories are further broken down into a number of
sub-categories identifying the specific parameter questions to be answered. Overall,
there more than a dozen avenues of parameter investigation to be covered. Figure 3.1
thus forms not only a rough outline of this chapter, but also a logical guide for
navigating the complexity of our credit-risk economic capital control panel.

Before jumping in and answering the various parameter questions raised in
Fig. 3.1, it is useful to establish a few ground rules. The first rule, already highlighted
in previous chapters, is that economic capital is intended to be a long-term,
unconditional, or through-the-cycle estimate of asset riskiness. This indicates that
we need to ensure a long-term perspective in our parameter selection. A second
essential rule is that, wherever possible, we wish to select our parameters in an
objective, defensible fashion. In other words, we need to rely on data. Data, however,
brings its own set of challenges.We will not always be able to find the perfect dataset
to precisely measure what we wish; as a small institution with limited history, NIB
often finds itself faced with such challenges. This suggests the need to employ some
form of logical proxy. Moreover, consistency of data for different parameters types,
the choice of time horizons, and the relative weight on extreme observations are all
tricky questions to be managed. We will not pretend to have resolved all of these
questions perfectly, but will endeavour to be transparent about our choices.

A final rule, or perhaps guideline, is that a model owner or operator needs to be
keenly aware of the sensitivity of model outputs to various parameter choices. This
is exactly analogous to our industrial process. The proper setting for a lever is hard
to determine absent knowledge of how its setting impacts one’s production process.
Such analysis is a constant component of our internal computations and regular
review of parameter choices. It will not, however, figure much in this chapter.2

2 Section 3.3, highlighting the portfolio perspective, does take a few steps in this important
direction.
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The reason is twofold. First of all, such an analysis inevitably brings one into
the specific details of the portfolio: regional and industrial breakdowns and the
impact on specific clients. Such information is naturally sensitive and, as such,
cannot be shared in such a forum. The second, more practical, reason relates to the
volume of material. This chapter is already extremely long and detailed—perhaps
too much so—and adding analysis surrounding parameter sensitivity will only make
matters worse. Let the reader be nonetheless assured that parameter sensitivity is an
important internal theme and forms a central component of the parameter-selection
process.

The mathematical structure of any model is deeply important, but it is the specific
values of the individual parameters that really bring it to life. The remaining sections
of this chapter will lean upon the structure introduced in Fig. 3.1 to describe and
motivate our parametric choices. Necessarily very NIB-centric, the general themes
and key questions apply very widely to a broad range of financial institutions.

3.1 Credit States

As is abundantly clear in the previous chapter, the default and migration risk
estimates arising from the t-threshold model depend importantly on the obligor’s
credit state. One can make a legitimate argument that this is the most important
aspect of the credit-risk economic capital model. The corollary of this argument is
the treatment of credit states—and their related properties—is the natural starting
point for any discussion on parameterization.

3.1.1 Defining Credit Ratings

NIB has, for decades, made use of a 21-notch credit-rating scale.3 This is a
fairly common situation among lending institutions; control over one’s internal
rating scale is a very helpful tool in loan origination and management. For large
institutions, it is also the source of rich internal firm-specific data on default,
transition, and recovery outcomes. NIB—as are many other lending organizations—
is unfortunately too small to enjoy such a situation. The consequence is a lack of
sufficient internal credit-rating data and history to estimate firm-specific quantities.
It is thus necessary to identify and use longer and broader external credit-state
datasets for this purpose. A natural source for this data is the large credit-rating
agencies: S&P, Moodys, or Fitch. We have taken the decision to generally rely upon

3 This is often referred to as a 20-notch system, with the exclusion of default from the scale. As
default is a naturally legitimate credit-state outcome in the credit-risk economic-capital model, we
will use 21 distinct notches.
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Table 3.1 An internal credit scale: This table introduces the 21-notch NIB rating scale and
maps it to the 18-notch S&P and Moody’s credit categories. Both Moody’s and S&P and have
many additional speculative-grade groupings below the B3 and B- levels, respectively. These are,
however, outside of NIB’s investment range and thus not explicitly considered. PD20 is thus a
catch-all category for everything below the B3 and B-cut-offs.

NIB Code S&P Moody’s

PD01 AAA Aaa
PD02 AA+ Aa1
PD03 AA Aa2
PD04 AA- Aa3
PD05 A+ A1
PD06 A A2
PD07 A- A3
PD08 BBB+ Baa1
PD09 BBB Baa2
PD10 BBB- Baa3
PD11 BB+ Ba1
PD12 BB+/BB Ba1/Ba2
PD13 BB Ba2

PD14 BB- Ba3
PD15 BB-/B+ Ba3/B1
PD16 B+ B1

PD17 B B2
PD18 B/B- B2/B3
PD19 B- B3

PD20 CCC Caa

Default

PD11–PD13

PD14–PD16

PD17–PD19

S&P transition probabilities, but we also examine Moodys’ data for comparison
purposes. One can certainly question the representativeness of this data for our
specific application, but there are unfortunately not many legitimate alternatives.
We will attempt to make adjustments for data representation as appropriate.

Both Moody’s and S&P also allocate 19 and 20 non-default credit ratings,
respectively; each is described with a different alphanumeric identifier as shown in
Table 3.1. Typically, we refer to the top-ten ratings—in either scale—as investment
grade. The remaining lower groups are usually called speculative grade. The most
obvious solution—for small- to medium-sized firms—would be to create a one-to-
one mapping between one’s internal scale and the S&P and Moody’s categories;
this would ultimately preclude managing different numbers of groupings. This
is, however, a problem for NIB (and many other lending institutions), since the
very lower end of the S&P and Moody’s scales are simply too far outside of our
typical lending risk appetite.4 These categories are referred to as either “extremely
speculative” or in “imminent risk of default.” This is simply not representative of

4 Other lenders’ internal scales, of course, may deviate from the external-rating universes for rather
different reasons.
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our business mandate and practice. For this reason, everything below S&P’s B- and
Moody’s B3 categories are lumped together into the final PD20 NIB credit rating.
This makes the mapping rather more difficult. We need to link 20 (non-default) NIB
categories into 17 (non-default) S&P and Moody’s credit notches.

Finding a sensible mapping between these two mismatched scales requires some
thought. As an over-specified problem, a unique mapping solution naturally does
not exist. Some external logic or justification is required to move forward.5 The first
ten (investment-grade) categories are easy. They are simply matched on a one-to-
one basis among the S&P, Moody’s and NIB scales. The hard part relates to the
speculative grade. Our practical solution to this mapping problem involves sharing
of a pair of S&P and Moody’s rating categories between three triplets of NIB
groupings. This links six credit-rating agency groups into nine NIB categories; the
three-notch mismatch is thus managed. The overlap occurs for rating triplets PD11-
13, PD14-16, and PD17-19. The specific values are summarized in Table 3.1. As a
final step, PD20 maps directly to the CCC and Caa S&P and Moody’s categories,
respectively.

Colour and Commentary 25 (CREDIT RATING SCALE AND MAPPINGS):
NIB’s internal 21-notch credit scale is not a modelling choice. It was
designed, and has evolved over the years, to meet its institutional needs. This
includes the creation of a common language around credit quality, the need
to support the loan-origination process, and also to aid in risk-management
activities.a Our modelling activities need to reflect this internal reality. Our
position as a small lending institution nonetheless requires looking outwards
for data. To do this, explicit decisions about the relationships between the
internal scale and external ratings need to be established. This is a modelling
question. The solution is a rather practical mapping between NIB’s 20 non-
default notches and the first 17 non-default credit ratings for S&P and
Moody’s. Its ultimate form, summarized in Table 3.1, was designed to manage
the notch mismatch and the nature of our internal rating scale. We will return
to this decision frequently in the following parameter discussion as well as in
subsequent chapters.

a Internal rating scales are a common tool among lending institutions all over the world.

5 Mathematically, one could potentially seek to simplify the problem or provide additional
constraints to lead to a unique solution. This process is generally referred to as regularization.
While such formalization might be helpful, we have opted for a rather simpler approach.



134 3 Finding Model Parameters

3.1.2 Transition Matrices

The previous credit-rating categorization has some direct implications. In particular,
it implicitly assumes that the credit quality of its obligors can be roughly described
by a small, discrete and finite set of q-states. From a mathematical modelling
perspective, this strongly suggests the idea of a discrete-time, discrete-state Markov-
chain process.6 While there are limits to how far we can push this idea—Chap. 7
will explore this question in much more detail—treating the collection of credit
states as a Markov chain is a useful starting point. It immediately provides a number
of helpful mathematical results. In particular, the central parametric object used to
describe a Markov chain is the transition matrix. Denoted as P ∈ R

q×q , it provides
a full, parsimonious characterization of the one-period movements from any given
state to all other states (including default). Chapter 2 has already demonstrated the
central role that the transition matrix plays in determining default and migration
thresholds. The question we face now is how to defensibly determine the individual
entries of P .

One might, very reasonably, argue for the use of multiple transition matrices dif-
ferentiated by the type of credit obligor. There are legitimate reasons to expect that
transition dynamics are not constant across substantially different business lines. A
very large lending institution, for example, may employ a broad range of transition
matrices for different purposes. In our current implementation, however, only two
transition matrices are employed for all individual obligors; one for corporate
borrowers and another for sovereign obligors. This allows for a slight differentiation
in transition dynamics between these two classes of credit counterparty.7 With q ×q

individual entries, a transition matrix is already a fairly high-dimensional object.
This discussion will focus principally on the corporate transition matrix; the same
ideas, it should be stressed, apply equally in the sovereign setting.

Prior to the data analysis, we seek some clarity on what we expect to observe in
a generic credit-migration transition matrix. Kreinin and Sidelnikova [31], a helpful
source in this area, identify four properties of a regular credit-migration model.8

These include:

1. There exists a single absorbing, default state. In other words, once default occurs,
it is permanent. While in real life there may be the possibility of workouts or
negotiations, this is an extremely useful abstraction in a modelling setting.

2. There exists some t̃ such that pqi(t̃ ) > 0 for all i = 1, . . . , q − 1. In words, this
means that all states will, at some time horizon, possess a positive probability of

6 For a comprehensive discussion of the theory of Markov chains, please see Hamilton [19],
Brémaud [8], and Meyn and Tweedie [36].
7 In both cases, the calibration is structured so that they share the same set of common default
probabilities.
8 They actually identify only three. At the risk of diluting their definition, we have added a fourth,
potentially redundant, but still descriptive, property.
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default. Empirically, t̃ is somewhere between one to three or four years, even for
AAA rated credit counterparts.

3. The det(P ) > 0 and all of the eigenvalues of P are distinct. These are necessary
conditions for the computation of the matrix logarithm of P , which is important
if one wishes to compute a generator matrix to lengthen (or shorten) the time
perspective.9

4. The matrix, P , is diagonally dominant. Since each entry, pij ∈ (0, 1), for all
i, j = 1, .., q and each row sums to unity, this implies that the majority of the
probability mass is assigned to a given entity remaining in their current credit
state. Simply put, credit ratings are characterized by a relatively high degree of
inertia.

These specific properties, for credit-risk analysis, are useful to keep in mind. An
important consequence of the second point, and the existence of an absorbing default
state is that,

lim
t→∞ P t ≡

⎡
⎢⎢⎢⎣

0 0 · · · 1
0 0 · · · 1
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦ . (3.1)

That is, eventually everyone defaults.10 In practice, of course, this can take a very
long time and, as a consequence, this property does not undermine the usefulness of
the Markov chain for modelling credit-state transitions.

Discussing and analyzing actual transition matrices is a bit tricky given their
significant dimension. Our generic transition matrix, P ∈ R

21×21, has 441
individual elements. This does not translate into 441 model parameters, but it is
close. The absorbing default state makes the final row redundant reducing the total
parameter count to 420. The final column, which includes the default probabilities,
is specified separately. This is discussed in the next section. This still leaves a
dizzying 400 transition probability parameters to be determined.

How do we go about informing these 400 parameters? Despite seeming like
an insurmountable task, the answer is simple. These values are borrowed, and
appropriately transformed, from rating agency estimates.11 The principal twist is
that some logic is required, as previously discussed, to map the low-dimensional
rating agency data into NIB’s 21-notch scale. This important question, along with a

9 We’ll expand much more on these ideas in Chap. 7.
10 Recall that for t ∈ N, the t-period transition matrix is simply computed by raising the one-period
transition matrix to the power of t ; that is, P 5, is an example of the five-period transition matrix.
This is, of course, predicated on the assumption that the credit-state process does indeed follow
Markov-chain dynamics. Chapter 7 addresses this question in detail.
11 Given adequate data, transition matrices can be readily estimated via the method of maximum
likelihood; see Bolder [7, Chapter 9] for more details.
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Fig. 3.2 A low-dimensional view: This figure breaks out the long-term S&P and Moody’s
transition matrices into four categories: the probabilities of upgrade, downgrade, default, and
staying put. This dramatically simplifies the matrices and permits a meaningful visual comparison.

number of other key points relating to default and transition properties, is relegated
to Chap. 7.12 In this parametric discussion, we will examine the basic statistical
properties of these external transition matrices. In doing so, an effort will be made
to verify, where appropriate, Kreinin and Sidelnikova [31]’s properties. We will also
decide if there is any practical difference in employing S&P or Moody’s transition
probabilities.

Such a large collection of numbers does not really lend itself to conventional
analysis. In such situations, it consequently makes sense to make an attempt at
dimension reduction. For each rating category, over a given period of time, there
are only four logical things that can happen: an entity can downgrade, upgrade,
move into default, or stay the same. While there is only way to default or stay the
same, there are typically many ways to upgrade or downgrade. If we sum over all of
these potential outcomes, and stick with the four categories, the result is a simpler
viewpoint. Figure 3.2 illustrates these four possibilities for each of the pertinent 18
S&P and Moody’s credit ratings.

Figure 3.2 illustrates a number of interesting facts. First, far and away the
most probable outcome is staying put. This underscores our fourth property; each
transition matrix is diagonally dominant. As an additional point, the probability of
downgrade increases steadily as we move down the credit spectrum. Downgrade
remains nonetheless substantially more probable than default until all but the lowest
credit-quality categories. Indeed, the probability of default is not even visible until
we reach the lower five rungs on the credit scale. Interestingly, the probability of
upgrade tends down as credit quality decreases, but it appears to be generally more
flat than for downgrades. The final, and perhaps most important, conclusion is that
there does not appear to be any important qualitative differences between the S&P

12 This is such a big topic that it merits a separate discussion.
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Fig. 3.3 The heat map: This figure illustrates a colour-based visualization of our high-dimensional
transition matrices. It includes the long-term S&P and Moody’s estimates along our abbreviated
18-notch scale(s).

and Moody’s transition-probability estimates. This does not immediately imply that
there are no differences, but suggests broad similarity at this level of analysis.

Figure 3.3 employs the notion of a heat map to further illustrate the long-
term one-year, corporate S&P and Moody’s transition matrices. A heat map uses
colours to represent the magnitude of the 400+ individual elements in bothmatrices;
lighter colours indicate a high level of transition probability, whereas darker colours
represent lower probabilities. The predominance of light colors across the diagonal
of both heat maps underscores the strong degree of diagonal dominance in both
estimates already highlighted in Fig. 3.2; indeed, most of the action is in the
neighbourhood of the diagonal. Comparison of the right- and left-hand side graphics
in Fig. 3.3 reveals that, visually at least, the two matrices seem to be quite similar.
This is additional evidence suggesting that we need not be terribly concerned which
of these two data sources is employed.

One final technical property needs to be considered. Figure 3.4 illustrates the
q eigenvalues associated with our S&P and Moody’s transition matrices. All
eigenvalues are comfortably positive, distinct, and less than or equal to unity. The
eigenvalue structure of our two alternative transition-matrix estimates are quite
similar. Moreover, the determinant of both matrices is a small positive number
with condition numbers of less than 3.13 All of these attributes—consistent with
Kreinin and Sidelnikova [31]’s third property—can be interpreted in many ways
when combined with the theory of Markov chains. For our purposes, however,
we may conclude that P is non-singular and can be used with both the matrix
exponential and natural logarithm. These technical properties are not of immediate

13 See Golub and Loan [17] for much more background on these matrix concepts.
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Fig. 3.4 Transition-probability eigenvalues: This figure illustrates the q eigenvalues associated
with each of our S&P and Moody’s transition matrices. All eigenvalues are positive, distinct, and
less than one. Moreover, the eigenvalue structure of our two estimates is quite similar.

usefulness, but will prove very helpful in Chap. 7 when building forward-looking
stress scenarios.

Colour and Commentary 26 (THE TRANSITION MATRIX): Our t-thresh-
old credit-risk economic capital model, as the name clearly indicates, requires
the specification of a large number of default and migration thresholds. These
are inferred from estimated transition probabilities, which are traditionally
stored and organized in a transition matrix. A transition matrix is a won-
derfully useful object, which has a number of important properties. The
most central is the existence of a permanent absorbing default state that is
accessible from all states. Despite all of its benefits, the transition matrix
has one drawback: it includes a depressingly large number of parameters.
With 20 (non-default) credit states, about 400 transition probabilities need
to be determined. We, like (almost) all small lending institutions, simply
do not have sufficient internal data to defensibly estimate these values. The
solution is to look externally. Examination of comparable S&P and Moody’s
transition matrices happily reveals that both sources provide results that are
qualitatively very similar. This supports our decision to adopt—subject to an
appropriate transformation to our internal scale—the long-term, through-the-
cycle transition probabilities published by S&P.
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Fig. 3.5 Default probabilities: The raw values in the left-hand graphic illustrate the exponentially
increasing trend in default probabilities as we move down the credit spectrum. The right-hand
graphic performs a natural logarithmic transformation of these values; its linear form verifies
the exponential observation. Internal NIB values are compared to the implied S&P and Moody’s
estimates.

3.1.3 Default Probabilities

Default probabilities are quietly embedded in the final column of our transition
matrix. For credit-risk economic-capital they play a starring role; their determination
of the default threshold is tantamount to describing each obligor’s distance to
default. As a consequence, they merit special examination and attention. We have
thus constructed a separate logical approach to their determination. This is an
important distinction from the remaining transition probabilities, which are adopted
(fairly) directly from external rating agency estimates.

Default is—at least, for investment-grade loans—a rather rare event. To this
point, given their relatively small values, it is difficult for us to assess the default-
probability assumptions embedded in our transition matrix. Indeed, theywere hardly
visible in Fig. 3.2. Figure 3.5 rectifies this situation with a close up of the S&P
and Moody’s default probabilities. Unlike our previous analysis, these 18 credit
notches have been projected onto the 20-step NIB scale using the mapping logic
from Table 3.1.14 The right-hand graphic illustrates the raw values, which exhibit
an exponentially increasing trend in default probabilities as we move down the credit
spectrum. This is the classical form of default probabilities; each step out the credit-
rating scale leads to a multiplicative increase in the likelihood of default.15

14 The basic consequence is some overlapping of the speculative-grade default probabilities. We’ll
address this point in much more detail in Chap. 7.
15 The credit-rating scale is thus highly non-linear in default probabilities. If it helps, you can think
of it as being analogous to the famous Richter—or local magnitude—scale (classically) used by
seismologists to measure the strength of earthquakes.
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Exponential growth is tough to visualize. It is difficult, for example, to verify
the magnitude and strict positivity of the default probabilities of strong credit
ratings. The right-hand graphic thus performs a natural logarithmic transformation
of the default probabilities. Since the natural logarithm is undefined for non-positive
values, the highest two or three external rating default probabilities are assigned
to identically zero. Incorporating this directly into our model would imply that,
at a one-year horizon, default would be impossible for the stronger credits. This
is a difficult point. Simply because default, over one-year horizon, has never been
observed for such counterparties does not imply that it is impossible. Rare, certainly,
but not impossible. Setting these values to zero, as a model parameter, is simply not
a conservative choice. We resolve this issue by assigning small positive values to
the first three default-probability classes.

How does this assignment occur? The data provides a helpful clue. If we divide
each successive (non-zero) default probability by its adjacent value, we arrive at a
constant ratio of roughly 1.5; in other words, the exponential growth factor is about
1.5. Extrapolating forwards and backwards using this trend yields the blue line in
Fig. 3.5. This might seem a bit naive, but it actually yields values that are highly
consistent with—and even slightly more conservative than–those produced by S&P
and Moody’s. The only exception is the final category, which is termed PD20. This
corresponds to S&P’s CCC and Moody’s Caa, which is basically an amalgamation
of lowest rungs in their credit scale. It is simply not representative of our lending
business. For this reason, the PD20 default-probability value has been capped at 0.2.
This is an example of using modelling judgement and business knowledge to tailor
the results to one’s specific circumstances.

Colour and Commentary 27 (DEFAULT PROBABILITIES): Not all tran-
sition probabilities—from an economic-capital perspective, at least—are
created equally. Default probabilities, used to determine the distance to
default, play a disproportionately important role in our risk computations.
Their central importance motivates a deviation from broad-based adoption
of external credit-rating agency estimates. The set of default probabilities is
determined by exploiting the empirical exponential form. Each subsequent
rating is simply assumed to be a fixed multiplicative proportion of the previous
value. Some additional complexity occurs at the end points. External rating
agencies’ estimates—due to lack of actual observations—imply zero (one-
year) default probabilities for the highest credit-quality obligors. In the spirit
of conservatism, we allocate small positive values—consistent with the multi-
plicative definition—to these rating classes. At the other end of the spectrum,
the lowest rating category is simply not representative of the credit quality
in our portfolio. Consequently, the 20th NIB default-probability estimate is
capped at 0.2. The end product is a logically consistent, conservative, and
firm-specific set of default-probability estimates.



3.2 Systemic Factors 141

3.2 Systemic Factors

Although the assumption of default independence would dramatically simplify our
computations, it is inconsistent with economic reality. A modelling alternative is an
absolute necessity. The introduction of systemic factors is the mechanism used to
induce default (andmigration) correlation among the credit obligors in our portfolio.
While conceptually clear and rather elegant, it immediately raises a number of
practical questions. What should be the number and composition of these factors?
How do we inform their dependence structure? What is the relative importance of
the individual factors for a given credit obligor. All of these important queries need
to be answered before the model can be implemented. This section addresses each
in turn.

3.2.1 Factor Choice

The systemic factors driving default correlation are—unlike many popular model
implementations—assumed to be correlated. With orthogonal factors, it is possible
to maintain a latent (or unobservable) form. This choice is unavailable in this setting.
Since we ultimately need to estimate the cross correlations between these factors, it
will be necessary to give them concrete identities. Our credit-risk economic-capital
model thus includes a total of J = 24 systemic factors; these fall into industrial
and regional (or geographic) categories. There are 11 industrial sectors and 13
geographic regions. The dependence structure between these individual factors is,
as is often the case in practice, informed by analysis of equity index returns. This
means that we require historical equity indices for each of our systemic factors; this
constrains somewhat the choice.

Even within these constraints, there is a broad range of choice. Were you to
place five people into a room and ask them to give their opinion on the correct
set of systemic factors, you would likely get five, or more, opinions. The reason is
simple; there is no one correct answer. On one hand, completeness argues for the
largest possible factor set. Too many factors, however, will be difficult to manage.
Judiciously managing the age-old trade-off between granularity and parsimony is
not easy. It ultimately comes down to a consideration of the costs and benefits of
including each systemic factor.

These specific sector systemic-factor choices are summarized in Table 3.2. Such
an approach requires some kind of internal or external industrial taxonomy, which
may, or may not, be specialized for one’s purposes.16 With one exception, our
industrial classification is mapped to a rather high level. Paper and forest products,
which can probably be best viewed as a sub-category of the material or industrial

16 Many alternative industrial classifications are available.
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Table 3.2 Industrial
systemic factors: This table
summarizes the industrial
systemic factors employed in
our credit-risk
economic-capital model
implementation.

# Industry

1 Energy (oil and gas)

2 Materials

3 Paper and forest products

4 Industrials

5 Consumer discretionary

6 Consumer staples

7 Health care

8 Financials

9 Information technology

10 Telecommunication services

11 Utilities

Table 3.3 Geographic
systemic factors: This table
summarizes the various
systemic factors associated
with geographic regions
employed in our credit-risk
model implementation.
Shaded regions represent NIB
member countries.

# Region

1 Africa and Middle East

2 Baltics

3 Denmark

4 Developed Asia

5 Emerging Asia

6 Europe

7 Finland

8 Iceland

9 Latin America

10 New Europe

11 North America

12 Norway

13 Sweden

groupings, is further broken out due to its importance to the Nordic region. This
is another clear example of tuning the level of model granularity required for the
analysis of one’s specific problem.

Table 3.3 provides an visual overview of the set of 13 geographic systemic
factors. A very broad or detailed partition along this dimension is possible, but
the granularity is tailored to meet specific business needs. Roughly half of the
regional systemic factors, as one would expect with our mandate-driven focus, fall
into the Baltic and Nordic sectors. Europe is broken down into two main categories:
Europe and new Europe. The latter category relates primarily to Eurozone ascension
countries in central and eastern Europe. The remaining geographic factors split the
globe into a handful of large, but typical, zones.
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Colour and Commentary 28 (NUMBER OF SYSTEMIC FACTORS): Select-
ing the proper set of systemic risk factors is not unlike putting together a list
of invitees for a wedding. The longer the list, the greater the cost. Some people
simply have to be there, some would be nice to have but are unnecessary, while
others might actually cause problems. Finally, different people are likely to
have diverging opinions. We have opted for 24 industrial and regional factors.
This is a fairly large wedding, but it is hard to argue for a much smaller one.
With one exception, the lowest level of granularity is used for the industrial
classification. On the regional side, roughly one half of the factors relate
to NIB member countries. The remaining geographic factors are important
for liquidity investments on the treasury side of the business. While there is
always scope for discussion and disagreement, from a business perspective,
the majority of the selected systemic factors are necessary guests.

3.2.2 Systemic-Factor Correlations

Having determined the identity of our systemic factors, we move to the central
question of systemic-factor dependence. These so-called asset correlations are sadly
not observable quantities. Default data can be informative in this regard.17 We have
elected to follow the well-accepted approach of informing asset correlation through
a readily available proxy: equity prices. This is not a crazy idea. Equity prices,
and more particularly returns, communicate information about the value of a firm.
Cross correlations between movements in a given firm’s value and other firm-value
movements provide some insight into the question at hand. Moreover, a broad range
of firm level, geographic, and industry equity return data is available.

The logical reasonableness of the link between asset and equity data, as well
as its ready availability, should not lure us into believing that equity data does not
have its faults. Equities are bought and sold in markets; these markets may react
to general macroeconomic trends, supply and demand, and investor sentiment in
ways not entirely consistent with asset-value dynamics. The inherent market-based
interlinkages between individual equities will tend to overstate the true dependence
at the firm level. By precisely how much, of course, is rather difficult to state
with any degree of accuracy.18 The granularity and dimensionality of the model
construction, however, leaves us with no other obvious alternatives. It is nonetheless
important to be frank and transparent about the quality of equity data as a proxy. In
short, it is useful, available, and logically sensible, but far from perfect.

17 See, for example, Bolder [7, Chapter 10] for an introduction to this area.
18 This question has, however, been addressed in the academic literature. Frye [16], for example,
finds evidence of overstatement of correlation associated with the use of equity correlations.
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Fig. 3.6 (Linear) Systemic correlations: This figure attempts to graphically illustrate the roughly
300 distinct pairwise estimated product-moment (or Pearson) correlation-coefficient outcomes
associated with our system of J = 24 industrial and geographic systemic factors. The left-hand
side provides a heat map of the correlation matrix, while the right-hand side focuses on the cross
section.

Risk-factor correlations are thus proxied by equity returns; these returns are,
practically, computed as logarithmic differences of equity indices. Armed with a
matrix of equity returns, X ∈ R

τ×J , where τ represents the number of collected
equity return time periods, we may immediately write S = cov(X) ∈ R

J×J .
Technically, it is straightforward to decompose our covariance matrix, S, as follows:

S = V �V T , (3.2)

where V ∈ R
J×J is a diagonal matrix collecting the individual volatility terms

associated with each systemic factor and� ∈ R
J×J is a positive-definite, symmetric

correlation matrix. τ , for this analysis, is set to 240months or 20 years of index data.
Analogous to the transition-matrix setting, it is not particularly informative to

examine large-scale tables with literally hundreds of pairwise correlation estimates.
Figure 3.6 attempts to gain visual insight into this question through another
application—in the left-hand graphic—of a heat map. The lighter the shading of
the colour in Fig. 3.6, the closer the correlation is to unity. This explains the
light yellow—or almost white—stripe across the diagonal. The right-hand graphic
examines the distribution of all (roughly 300) distinct off-diagonal elements.19

Overall, the smallest pairwise correlation between two systemic factors is roughly
0.15, with the largest exceeding 0.90. The average lies between 0.5 and 0.6. This
supports the general conclusion that there is a strong degree of positive correlation
between the selected systemic factors.

19 The precise number is J ·(J−1)
2 = 24·23

2 = 276.
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This is hardly a surprising observation. All variables are equity indices, which
have structural similarities due to typical co-movements of equity markets. The
high concentration in the Nordic sector, with strong regional interdependencies,
further complicates matters. Many institutions would gather together all Nordic
and Baltic factors under the umbrella of a single European risk factor. NIB does
not have this luxury. The granularity in this region can hardly be avoided if we
desire to distinguish between member country contributions to economic capital—
its centrality to our mission makes it a modelling necessity. Nevertheless, this is
a highly positively correlated collection of random financial-market variables. It
will be important to recall this fact when we turn to the question of systemic-factor
loadings.

The next step involves examining the factor volatilities. Figure 3.7 illustrates the
elements of our diagonal volatility matrix; each can be allocated to an individual
equity return series. The average annualized return volatility is approximately 19%,
which appears reasonable for equities. Consumer staples, health care and utilities—
as one might expect—appear to have the most stable returns with volatility in the
10–15% range. On the upper end of the volatility scale, exceeding 20%, are paper-
and-forest products and IT. Generally, deviations of the regional indices from the
overall average level are relatively modest. The exception is Iceland with annualized
equity return volatility of approximately 45%, which is approaching three times
the average. This is certainly influenced by the relative small size of the Icelandic
economy, its large financial sector, and Iceland’s macroeconomic challenges in the
period following the 2008 financial crisis.

A legitimate question, which will be addressed in the following sections, is
whether or not we have any interest in the volatility of these systemic risk factors.

Fig. 3.7 Factor volatilities: This figure illustrates the annualized-percentage factor (i.e., equity
index return) volatility of each of the J = 24 industrial and geographic systemic factors. This
information is only pertinent if we employ the covariance matrix rather than the correlation matrix
for describing the systemic-risk factor dependence.
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Equity return data is a convenient and sensible proxy for our systemic risk factors. In
principle, however, this proxy seeks to inform the dependence between these factors,
not their overall level of uncertainty. Volatility is centrally important in market-risk
computations, but the threshold-model approach actually involves normalizing away
these volatilities.

Outfitted with 20 years of monthly equity index data for 24 logically sensible
geographical and industrial systemic-risk factors, a number of practical decisions
still need to be taken. Indeed, one could summarize these decisions in the form of
three, important, and interrelated questions:

1. Should we employ the covariance or correlation matrices to model the depen-
dence structure of our systemic risk-factor system?

2. If we opt to use correlation, should we use the classical, product-momentPearson
correlation coefficient or the rank-based, Spearman measure?

3. Should we employ our full 20-year dataset or some sub-period?

While these are all pertinent questions that need answering, let us begin with the
first question. This is more of a mathematical choice and, once answered, we may
turn our attention of the latter two more empirical decisions.

Which Matrix?

Should we employ a covariance or a correlation matrix? This might, to the reader,
appear to be a rather odd question.20 In principle, if managed properly, it should
not really matter. Equation 3.2 illustrates, rather clearly, that the same information
is found in both matrices. The only difference is scaling; covariances are adjusted,
in a quadratic manner, for the factor volatility. The correlation matrix summarizes
raw correlation values.

What would be the benefit of using covariances rather correlations? There
does not appear to be any concrete advantage. The factor volatilities play, in the
credit-risk economic-capital calculation, absolutely no role. Indeed, their presence
requires an additional adjustment. That is, when using the covariance matrix, we
must take extra pains to exclude these elements through their inclusion in the
normalization constant. It is the correlation between these common systemic factors
that bleeds through to our latent creditworthiness index,�X, and ultimately, induces
default and migration correlations among our individual risk owners. At best, the
factor volatilities are a distraction, while at worst, they might possibly have some
unforeseen scaling impact on our latent creditworthiness indices. As a consequence,
we may as well eliminate them at the outset.

20 In the spirit of full disclosure, the legacy implementation of the credit-risk economic capital
model used covariance information. This question thus became a source of (friendly) internal
debate.
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Use of the covariance matrix may also confuse the interpretation of the factor-
loading parameters. One would conceptually prefer that, in the final implementation,
the factor loadings are not quietly being modified by the factor volatilities. Overall,
the difference is not dramatic, but anything that simplifies our understanding of
the model and the interpretation of model parameters—without undermining the
basic requirements of the model—is difficult to argue against. For this reason, we
have definitively elected to use the correlation matrix as the fundamental measure
of systemic risk-factor dependence.

Which Correlation Measure?

The classical notion of correlation, often referred to as the product-moment
definition, is typically called Pearson correlation.21 It basically compares, for a
set of observations associated with two random variables, how each pair of joint
outcomes deviates from their respective means. The classic construction, for two
arbitrary random variables X and Y , is described by the following familiar (and
already employed) expression

ρ =
E

((
X − E(X)

)(
Y − E(Y )

))

√
var(X)var(Y )

. (3.3)

An alternative approach, termed rank correlation, approaches the computation in
an alternative manner. The so-called Spearman’s rank correlation is defined as

r =
E

((
r(X) − E(r(X))

)(
r(Y ) − E(r(Y ))

))

√
var(r(X))var(r(Y ))

, (3.4)

where r(·) denotes the rank outcome of random variable.22 Instead of comparing the
distance of each observation from its mean, it compares the rank of each observation

21 Named after Karl Pearson who—see, for example, Magnello [33]—has had a significant
influence upon modern statistics.
22 An unbiased estimator, for this rank-correlation quantity, is often written for a sample of size N

as,

r = 1 −
6

N∑
k=1

d2
k

N(N2 − 1)
, (3.5)

where dk is the difference in rank between the kth pair of observations. Chambers [10] provides a
proof of this result.
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Fig. 3.8 Comparing Pearson’s ρ to Spearman’s r: The preceding figure examines, across the
range of −1 to 1, the link between two notions of correlation for bivariate Gaussian data: Pearson’s
ρ and Spearman’s r . While they do not match perfectly, the differences are minute; consequently,
imposition of Spearman’s rank correlation—in a Gaussian setting—will imply a rather similar level
of correlation relative to the typical Pearson definition. In non-Gaussian settings, the differences
can be more important.

to the mean rank. It is thus basically an order-statistic version of the correlation
coefficient.23 Otherwise, Eqs. 3.3 and 3.4 are structurally identical.

Spearman’s coefficient is popular due to its lower degree of sensitivity to outliers;
broadly speaking, it has many parallels, in this regard, to the median. For relatively
well-behaved random variables, there is only a modest amount of difference
between the two measures. Indeed, for bivariate Gaussian random variates, the
relationship between Spearman’s r and Pearson’s ρ is given as,24

r = 6

π
arcsin

(ρ

2

)
, (3.6)

which directly implies that

ρ = 2 sin
( rπ

6

)
. (3.7)

This may appear to be a complicated relationship, but practically, over the domain
of the coefficients, [−1, 1], there is not much difference. Figure 3.8 provides a
graphical perspective on Eq. 3.7. While they do not match perfectly, the differences
are minute; consequently, imposition of Spearman’s rank correlation—in a Gaussian

23 Analogous to the difference between the mean and the median or the volatility and the inter-
quartile range.
24 See McNeil et al. [34, Theorem 7.42] for a proof of this result; these ideas are also explored in
Kendall and Stuart [29, Chapter 31].
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Fig. 3.9 Competing heat maps: The preceding heat maps compare the roughly 300 pairwise linear
and rank correlation coefficients across our 24 separate systemic risk variables. There is little in
the way of qualitative difference between the two measures, but due to their lower sensitivity to
outliers, the rank correlation coefficients are slightly lower than their linear compatriots.

setting—will imply an extremely similar level of correlation along the typical
Pearson definition. The point of this discussion is to indicate that the decision to use
rank or product-moment correlation, in a Gaussian setting, is more a logical than
an empirical choice. In a non-Gaussian setting, however, differences can be more
important. It becomes particularly pertinent—as is common in financial-market
data—in the presence of large, and potentially, distorting outlier observations.

Figure 3.9 provides two heat maps comparing the roughly 300 pairwise linear and
rank correlation coefficients across our 24 separate systemic risk variables. While
there is little in the way of qualitative difference between the two measures, due to
their lower sensitivity to outliers, the rank correlation coefficients are slightly lower
than their linear compatriots. The rank correlation coefficients have distinctly, albeit
not dramatically, more darker colour in their heat map. Both figures are computed
using 20 years of monthly equity return data; this leads to a total of 240 observations
for each pairwise correlation estimate. The first twenty years of the twenty-first
century have not been, from a financial perspective at least, particularly calm. Equity
markets have experienced a number of rather extreme events during this period. The
rank correlation will capture these extremes, but in a less dramatic way, given the
relative stability of the rank of return relative to its level. This stability property is
rather appealing.

We wish these crisis periods to have an impact on the final results, but not to
potentially dominate them. To judge this question, however, we need a bit more
information than is found in Fig. 3.9. Figure 3.10 accordingly attempts to help by
examining the cross section of off-diagonal elements of �. The centres of these
two cross-section correlation-coefficient distribution are rather close: in the linear
case it is 0.57 and 0.52 in the rank setting. The range of correlation values are
qualitatively quite similar, spanning the values of about 0.1 to 0.9. There is, however,
a slight difference. The cross section of rank correlation coefficients appears to be
somewhat more symmetric than with the linear estimates. Both sets of values lean
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Fig. 3.10 Competing cross sections: This figure illustrates, again for linear and rank dependence
measures, the cross section of pairwise correlation coefficients. On average, the rank correlation
is about 0.05 less than the linear metric. Visually, however, relatively little separates these two
estimators.

somewhat towards the upside of the unit interval, but the rank correlation graphic is
less extreme.25 This is, in fact, exactly how the rank correlation is advertised.

There does not appear to be an unequivocally correct choice. The product-
moment definition of correlation allows the extremes to exert more influence on the
final results; as a risk manager, this has some value, because crisis episodes receive a
larger weight. The rank correlation approach—like its sister measure, the median—
attempts to generate a more balanced view of dependence. The lower impact of data
outliers—typically, in this case, stemming from crisis outcomes—implies slightly
lower and more symmetric correlation estimates. We seek, in our economic-capital
estimates, to construct a long-term, unconditional estimate of risk consumption.26

With this in mind, given the preceding conclusions, we have a preference for the
rank correlation.

There are also more technical arguments. Both correlationmatrices, as previously
indicated, exhibit a significant number of individual correlation coefficient entries
exceeding 0.75. Such a highly correlated system is often referred to as multi-
collinear.27 If we were using this system to estimate a set of statistical parameters,
this could potentially pose serious problems. Although this is not our specific
application of �, even a slight dampening of the high level of correlations implies a
greater numerical distinction between our J = 24 individual systemic risk factors.
Many models, after all, impose orthogonality on their systemic state variables to
avoid such issues. On this dimension, therefore, we also have a slight preference for
the rank-correlation measure.

25 To be more precise, about one quarter of the linear correlation figures exceed 0.70, while this
percentage is closer to 13% in the rank case.
26 This is, as previously mentioned, often referred to as the through-the-cycle approach.
27 See Judge et al. [27, Chapter 22] for much more on this topic.
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Colour and Commentary 29 (FLAVOUR OF CORRELATION): Correlation
refers to the interdependence between a pair of random variables. There
are a variety of ways that it might be practically measured. Two well-
known alternatives are the product-moment and rank correlation coefficients.
Although they attempt to address the same question, they approach the
problem from different angles. Since we find ourselves in the business of
computing a large number of pairwise systemic-factor correlations, this
distinction is quite relevant for us. On the basis of lower sensitivity to extreme
events, greater cross-sectional symmetry, and a modest dampening of the
highly collinear nature of our systemic risk-factor system, we have opted to
employ the rank-correlationmeasure to estimate systemic-factor correlations.
In the current analysis, the difference is relatively small. Moreover, nothing
suggests that these two measures will deviate dramatically in the future. Our
choice is thus based upon the perceived conceptual superiority of the rank-
correlation measure.

What Time Period?

There are two time-related extremes to be considered in the measurement of risk:
long-term unconditional and short-term conditional. A virtual infinity of possible
alternatives exists for a spectrum between these two endpoints. Following basic
regulatory principles, an economic-capital model is a long-term, unconditional,
through-the-cycle risk estimator. This implies that a relatively lengthy time period
should be employed for the estimation of our systemic risk-factor correlations.
While helpful to understand this choice, it does not entirely answer our question.
We have managed to source 20 years of monthly equity time-series data for each of
our J = 24 systemic risk factors. Should we use it all, or should we employ some
subset of this data? A 10-, 15-, or 20-year period would still be consistent, at least
in principle, with through-the-cycle estimation.

Figure 3.11 illustrates, one final time, two rank correlation heat maps for our
J = 24 systemic risk factors. The only distinction between the two heat maps is that
they are estimated using varying time periods. The 10-year values are based on the
months from January 2010 to December 2019, while the 20-year period utilizes the
240 monthly observations from January 2000 to December 2019. On a superficial
level, the colour patterns in the two heat maps look highly similar. The 20-year
estimates, however, look to be, on average, a bit lighter. This implies higher levels of
correlation, which is not terribly surprising, given that the longer period incorporates
the most severe parts of the great financial crisis. There is general agreement that
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Fig. 3.11 Time-indexed heat maps: These heat maps compare the roughly 300 pairwise rank
correlation coefficients—over the last 10 and 20 years working backwards from December 2019—
across our 24 separate systemic risk variables. The most recent 10-year period appears structurally
similar, but exhibits significantly lower levels of correlation than the associated 20-year time
horizon.

Fig. 3.12 Time-indexed cross sections: This figure illustrates, again using the rank dependence
measure, the cross section of pairwise correlation coefficients over the 10- and 20-year periods
working backwards from December 2019, respectively. Both the location and dispersion the two
cross sections appear to differ; the last 10-year period exhibits generally lower levels of systemic-
risk factor dependence.

financial-variable correlations tend to trend higher—thereby reducing the value of
diversification—during periods of turmoil.28

Figure 3.12 illustrates, again using only the rank dependence measure, the cross
section of pairwise (rank) correlation coefficients over our 10- and 20-year periods,
respectively. Average correlation, as we’ve seen before, is roughly 0.52 over the full
20-year period. It falls to 0.46 when examining only the last 10 years. We further
observe that both the location and dispersion of the two cross sections appear to

28 See Chesnay and Jondeau [12] and Sandoval and Franca [37] for a detailed analysis of this
phenomenon.
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differ; the most recent 10-year period exhibits generally lower levels of systemic-
risk factor dependence.

Few logical arguments speak for the preference of the 20-year period, relative to
the shorter 10-year time span, other than conservatism. Either time interval fulfils the
basic requirements of a through-the-cycle risk estimator. A 20-year period could, of
course, be considered more appropriate for a long-term unconditional correlation
estimate. More importantly, the full 20-year period includes a broader range of
equity return outcomes—including the great financial crisis—and consequently
generates slightly more conservative estimates. For this reason, the decision is to
use the full 20-year period and, over time, simply continue to add to the existing
dataset. Each year, this decision on the overall span of data is revisited to ensure
both representativeness and consistency with our economic-capital objectives.

Colour and Commentary 30 (LENGTH OF PARAMETER-ESTIMATION

HORIZON): When estimating parameters for a long-term through-the-cycle
perspective, we would theoretically prefer the longest possible collection
of historical time series. Such a dataset is likely to permit an average of
the greatest possible number of observed business cycles. There are two
catches. First, pulling together such a dataset can be both difficult and
expensive. Second, even if you succeed, there are dangers in going far back
in time. Too far into the past and—due to structural changes in economic
relationships—the data may not be representative of current conditions. This
forces the analyst into an awkward dance: the through-the-cycle requires
lengthy data history, but not too long. Our approach is, where available,
to start with a roughly 20-year time horizon. We then work with this data
and carefully examine various sub-periods to understand the implications
of different choices. Endeavouring to find conservative and defensible
parameters, an appropriate horizon is ultimately selected.

3.2.3 Distinguishing Systemic Weights and Factor Loadings

Systemic-factor weights and loading parameters, while related, are asking two
slightly different questions. The systemic weight attempts to answer the following
query:

How important is the overall systemic component, in the determination of the creditworthi-
ness index, relative to the idiosyncratic dimension?

The systemic weight is, following from this point, simply a number between zero
and one. These are the parameter values, {α1, . . . , αI }, introduced in Chap. 2. A
value of zero, for a given credit obligor, suggests that only idiosyncratic risk matters
for determination of its migration and default risk outcomes. Were this to apply to
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all credit counterparties, we would, in essence, have an independent-default model.
On the other hand, a systemic weight of unity places all of the importance on the
systemic factor. Gordy [18]’s asymptotic single-risk factor model is an example of
an approach that implies the presence of only systemic risk.29 A defensible position,
of course, lies somewhere in between these two extremes.

Factor loadings focus on a different, but again related, dimension. They seek to
answer the following question:

How important is each of the J individual systemic risk factors—again, for the calculation
of the creditworthiness index—to a given credit obligor?

Factor loadings, for a given counterparty, are thus not, as in the systemic-weight
case, a single value, but rather a vector inRJ . Let’s continue to refer to each of these
vectors as βi ∈ R

1×J for the ith credit counterpart; this allows us to consistently
write the entire matrix of factor loadings as,

β =

⎡
⎢⎢⎢⎣

β1

β2
...

βI

⎤
⎥⎥⎥⎦ ∈ R

I×J . (3.8)

Such a constellation of parameters, for each i = 1, . . . , I , implies a potentially very
rich mathematical structure. With J = 24 and I ≈ 600, our β factor loading matrix
contains almost 15,000 individual entries. Such flexibility can offer benefits, but it
may also dramatically complicate matters.

The structure of each βi essentially creates a linear combination of our J risk
factors to act as the systemic contribution for that obligor. Let’s consider a few
extreme cases, since they might provide a bit of insight. Imagine that each βi was
constant—however, one might desire to define it—across all counterparties. The
consequence would be, in fact, a single-factor model. We could easily, in this case,
simply replace our J factors with a single linear combination of these variables.
Each pair of obligors in the model would thus have a common level of factor-,
asset-, and default correlation. Such an approach would, of course, undermine the
whole idea of introducing a collection of J systemic variables.

At the opposite end of the spectrum, one could assign distinctly different non-
zero values to each of the roughly 15,000 elements in β. The implication—setting
aside the practical difficulties of such an undertaking for the moment—is that each
obligor’s systemic contribution would be a unique linear combination of our J

systemic variables. Given two obligors, i and j , the vectors βi and βj would play a
central role in determining their level of default correlation. Indeed, this latter point
holds in a general sense.

29 This limiting case can only be attained with some mathematical caution. Naively setting all
systemic weights to one in the multivariate t-threshold model yields, as one might expect, fairly
nonsensical results.
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Once again, an appropriate response to this challenge certainly lies somewhere
between these two extreme ends of the spectrum. The actual estimation of the factor
loadings and systemic weights should also be informed, in principle, by empirical
data. A significant distinction between the factor loadings and systemic weights is
that the former possesses dramatically greater dimensionality. The specific data that
one employs and, perhaps equally importantly, how the structure of these parameters
are organized are important questions. The following sections outline our choices,
and the related thought processes, in both of these related areas.

3.2.4 Systemic-Factor Loadings

Let us begin with the factor loadings; these values are—algebraically speaking—
closer to the actual systemic factor. Determination of our factor loadings will, as
a consequence, turn out to be rather important in the specification of the systemic
weights. As indicated, each βi vector determines the relativeweight of the individual
systemic factors in the creditworthiness of the ith distinct credit obligor. Some
procedure is required to determine the magnitude of each βij parameter for i =
1, . . . , I and j = 1, . . . , J .

Some Key Principles

When beginning any modelling effort, it is almost invariably useful to give some
thought to one’s desired conceptual structure. In this case, there is a potentially enor-
mous number of parameters involved, which will create problems of dimensionality
and, more practically, statistical identification. Some direction would be helpful. A
bit of reflection reveals a few logical principles that we might wish to impose upon
this problem:

1. Obligors with the same sectoral and geographical profiles should share the same
loadings onto the systemic factors. If this did not hold, it would be very difficult,
or even impossible, to interpret and communicate the results.30

2. A given obligor should load only onto those sectoral and geographical factors to
which it is directly exposed. The correlation matrix, �, describes the dependence
structure of the underlying equity return factors. As a consequence, the interac-
tion between the factors is already captured. If an obligor then proceeds to load
onto all factors, untangling the dependence relationships would become rather
messy. This principle can thus inform sensible parameter restrictions.

30 These obligors, of course, will naturally differ along the idiosyncratic dimension.
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3. Factor loadings should be both positive and restricted to the unit interval. There
is no mathematical or statistical justification for this principle; it stems solely
from a desire to enhance our ability to interpret and communicate these choices.

4. A minimal number of systemic factors should be targeted; this is the principal
of model parsimony. Not only does this facilitate implementation—in terms of
dimensionality and computational complexity—but it also minimizes problems
associated with collinearity.

5. To the extent possible, the factor loadings should be informed by empirical
data. Since asset returns are not, strictly speaking, observable, it is necessary
to identify a sensible proxy. Moreover, the previous principles may restrict the
goodness of fit to this proxy data. Nonetheless, this would form an important
anchor for the estimates.

While each of these principles make logical sense, nothing suggests that all can
be simultaneously achieved. It may be the case, for example, that some of these
principles are mutually exclusive.

A Loading Estimation Approach

The structure of the threshold model provides clear insights into a possible
estimation procedure for the factor loadings. In particular, for a given obligor i,
we have that

βi�z =
J∑

j=1

βij�zj , (3.9)

where �z ∈ R
J×1. The right-hand side of Eq. 3.9 clearly illustrates the fact that

each column of the βi row vector is a linear weight upon the systemic factors.
Imagine that we could identify K individual equities with similar properties. That
is, stemming from the same geographic region, operating in the same region, and
possessing similar overall size. Given T return observations of the kth equity—
corresponding to the equivalent time periods for our systemic factors—we could
construct the following equation:

rkt =
J∑

j=1

βijk�zjt + εkt , (3.10)

for t = 1, . . . , τ and k = 1, . . . ,K and where rkt is the t-period return of the
kth equity in our collection. This is, of course, an ordinary least squares (OLS)
problem.31 In this setting, the β’s simply reduce to regression coefficients. Further

31 Note, however, that the typical intercept value has been excluded.
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inspection of Eq. 3.10 reveals a certain logic; the return of the kth equity is written as
a linear combination of the set of systemic factors plus an idiosyncratic component.
This is rather close to what we seek. Again, this amounts to using equity behaviour
to estimate asset returns.

Equation 3.10, while logically promising, is not without problems. First of all,
there are K equities in each category. The natural consequence is thus K × J

individual factor-loading estimates. One could presumably solve this problem by
taking an average—basically integrating out the K dimension—of the individual
β̂ijk parameters over each j in J .

The second problem, however, is dimensionality. Use of Eq. 3.10 implies a
separate weight on each of the J systemic risk factors. Such a complex structure
is not easy to interpret. The larger number of parameters also raises issues of
parameter robustness. Estimating J = 24 separate parameters with perhaps 10 or
20 years of monthly data is certainly possible, but the sheer number of regression
coefficients, the high degree of collinearity between the systemic-risk explanatory
variables, and the necessity of averaging estimates collectively represent significant
estimation challenges. Computing standard errors is not easy is such a setting and,
more importantly, they are unlikely to be entirely trustworthy.

A third problem, making matters even worse, is the fact that nothing in the
OLS framework hinders individual βij values from taking negative values further
complicating clarification. Some additional normalization is possible to force
positivity, of course, but this only adds to the overall complexity and adds an ad
hoc, and difficult-to-justify, element to the estimation procedure.

There are, therefore, at least three separate problems: averaging, dimensionality,
and non-positivity. Some of these problems can be mitigated with clever tricks,
but the point is that estimating factor-loading coefficients—even with strong sim-
plifying assumptions—is fraught with practical headaches. The results are neither
particularly robust nor satisfying. We will, in a few short sections, find ourselves in
a similar situation with regard to the systemic weights. In this case the complexity
and dimensionality is unavoidable, which argues for maximal simplicity.

A Simplifying Assumption

These sensible reasons to strongly restrict systemic-factor loadings lead to the
fairly reasonable question: should we even formally estimate these parameters?
One might simply load—for these non public-sector cases—equally onto each
obligor’s geographic and industrial systemic factors. The consequence of this
legitimate reflection is the following extremely straightforward set of factor-loading
coefficients:

• only a credit entity’s geographic and industrial factor loadings are non-zero;
• each non-zero factor loading is set to 0.5; and
• the only exception is a weight of unity on a public-sector counterpart’s geo-

graphic loading.
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The consequence is a sparse β-matrix entirely populated with non-estimated param-
eters.32 This approach allows us to fulfil four of our five previously highlighted
principles. It controls the number of parameters, creates consistency, ensures
positivity, and dramatically aids interpretability. The only shortcoming is that the
parameter values are not informed by empirical data. This would appear to be the
price to be paid for the attainment of the other points.

There is another constructive way to think about this important simplifying
assumption. The systemic risk-factor correlation matrix, �, possesses a certain
dependence structure. The choice of factor loadings further combines our systemic
factors to establish some additional variation of obligor-level correlations. There
are, however, many possible combinations of factor-loading parameters that achieve
basically the same set of results. In a statistical setting, such a situation is referred
to as overidentification.33 To simplify this fancy term, we can imagine a situation
of trying to solve two equations in three unknowns. The problem is not it cannot
be solved, but rather the existence of an infinity of possible solutions. Resolving
such a situation typically requires restricting it somewhat through the imposition of
some kind of constraint.34 The current set of non-estimated factor loadings can thus
be thought of as a collection of constraints, or over-identifying restrictions, used to
permit a sensible model specification.

Colour and Commentary 31 (FACTOR-LOADING CHOICES): Having est-
ablished a set of five key principles for the specification of factor-loading
parameters, a number of potential estimation options are found wanting. They
require averaging, lead to relatively high degrees of dimensionality, and pose
difficulties for statistical inference. Dimension reduction and normalization
solve some of these problems, but this leads to relatively small degrees of
(economic) variation between individual obligors. Ultimately, therefore, we
have decided to employ a simple set of rules for the specification of the factor-
loading parameters. This choice fulfils all of our principles, save one: the
desire to empirically estimating our factor-loading values. This choice was
not taken lightly and can, conceptually, be viewed as a set of overidentifying
restrictions upon the usage of our collection of systemic risk factors.

Normalization

Introduction of correlated systemic factors, without some adjustment, will distort
the variance structure of our collection of latent creditworthiness state variables.
Unit variance of these threshold state variables is necessary for the straightforward

32 With J = 24, only about 1
12 th of β’s elements is non-zero.

33 See Judge et al. [27, Chapter 7] for more information on the notion of identification.
34 Such a process can also be termed regularization.
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Fig. 3.13 Normalization constants: Since the introduction of factor loadings distorts the variance
of the systemic risk factors, it is necessary to perform a normalization to preserve unit variance.
This graphic provides an illustration of the resulting normalization constants.

determination of default and migration events. A small correction is consequently
necessary to preserve this important property of each systemic random observation.
Mathematically, the task is relatively simple. For the ith risk obligor, the contri-
bution of the systemic component—abstracting, for now, from the systemic-weight
parameter—is given as,

Bi = βi√
βi�βT

i

, (3.11)

where βi ∈ R
1×J is the ith row of the β ∈ R

I×J matrix.35

The definition in Eq. 3.11 was already introduced in Chap. 2. Equipped with our
factor correlations and loading choices, it is interesting to examine the magnitude
of these normalization constants (i.e., the denominator of Eq. 3.11). Figure 3.13
displays the range of these values—for an arbitrary date in 2020—used to ensure
that the systemic component has unit variance. The impact is rather a gentle. The
span of adjustment factors ranges from roughly 0.75 to one; the average value is

35 The effectiveness of this normalization is readily verified:

var (Bi�z) = var

⎛
⎝ βi√

βi�βT
i

�z

⎞
⎠ =

⎛
⎝ 1√

βi�βT
i

⎞
⎠

2

βivar (�z)βT
i = ������

βi

�︷ ︸︸ ︷
var (�z)βT

i

���βi�βT
i

= 1.

(3.12)
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approximately 0.95. Normalization thus represents a small, but essential, adjustment
to maintain the integrity of the model’s threshold structure.

3.2.5 Systemic Weights

We were able to avoid some complexity in the specification of the factor loadings;
we are not quite as lucky in the case of system weights. A methodology is required
to approximate the systemic-weight parameters associated with each group of credit
counterparties sharing common characteristics. Consider, similar to the previous
setting, a collection of N credit entities from the same region with roughly the same
total amount of assets (i.e., firm size) and the same industry classification. Let us
begin with a proposition. Imagine that the following identity holds:

α2
N ≡ 1

1
2N(N − 1)

N∑
n=1

N∑
m=1︸ ︷︷ ︸

n�=m,m<n

corr (�Xn,�Xm) . (3.13)

What does this mean? First, we are assuming that each the N individual obligors in
this sub-category have a common systemic weight, αN . The proposition holds that
a reasonable estimator for αN is the average correlation between these N assets.
There are, of course, N2 possible pairwise combinations of these N entities. If
we subtract the N diagonal elements, this yields N(N − 1) combinations. Only
half of these elements, of course, are unique. We need only examine the lower off-
diagonal elements, which explains the conditions on the double sum and the 1

2 in
the denominator of the constant.

Under what conditions is Eq. 3.13 true? This requires a bit of tedious algebra
and a few observations. First, the expected value of each �Xn and �Xm is, by
construction, equal to zero for all n,m = 1, . . . , N . Second, the idiosyncratic
factors, {�wn; n = 1, . . . , N} are independent of all of the systemic factors;
the expectation of the product of any idiosyncratic and systemic factor will thus
vanish. Finally, we recall that only two factor loadings, as highlighted in previous
discussion, are non-zero. These final happy facts eliminate many terms from our
development.

Let’s begin with the correlation term in the double sum of our identity from
Eq. 3.13 and see how it might be simplified. Working from first principles, we have

corr (�Xn,�Xm)

=
E

⎛
⎝
⎛
⎝�Xn −

=0︷ ︸︸ ︷
E(�Xn)

⎞
⎠
⎛
⎝�Xm −

=0︷ ︸︸ ︷
E(�Xm))

⎞
⎠
⎞
⎠

√
var(�Xn)︸ ︷︷ ︸

=1

√
var(�Xm)︸ ︷︷ ︸

=1

, (3.14)
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= E

(
�Xn · �Xm

)
,

= E

⎛
⎝
⎛
⎝αN

J∑
j=1

Bnj�zj +
√
1 − α2

N�wn

⎞
⎠
⎛
⎝αN

J∑
j=1

Bmj�zj +
√
1 − α2

N�wm

⎞
⎠
⎞
⎠

︸ ︷︷ ︸
Because of common characteristics, they share a common αN

,

= E

⎛
⎝
⎛
⎝αN

J∑
j=1

Bnj�zj

⎞
⎠
⎛
⎝αN

J∑
j=1

Bmj�zj

⎞
⎠
⎞
⎠ ,

= α2
N E

((
BIn

�zIn
+ BGn

�zGn

)(
BIm

�zIm
+ BGm

�zGm

))

︸ ︷︷ ︸
=1?

,

where Ik and Gk denote the industrial and geographic loading from the kth equity
series, respectively.We now have a clearer idea of the condition required to establish
our identity in Eq. 3.13. If the expectation equates to unity, then the identity
holds. In this case, the double sum yields the same value as the denominator in
the constant preceding the sum. These terms cancel one another out establishing
equality between the left- and right-hand sides indicating that our proposition holds.

Under what conditions does the expectation in Eq. 3.14 reduce to one? It turns
out that the collection of N equity series needs to share the same industrial and
geographic factors (and factor loadings). In other words, the factor correlations
among the N members of our dataset must be identical. Practically, this means that
BIm = BIn and BGm = BGn .

36 In this case, we have that

corr (�Xn,�Xm) = E

((
BIn�zIn + BGn�zGn

)2
)

, (3.15)

= var

(
BIn�zIn + BGn�zGn

)
,

= var

(
Bn�z

)
,

= 1,

by construction from Eq. 3.12. Naturally, this choice of estimation is applied under
the assumption that the model actually holds.

The consequence of this development is that if we organize our estimation
categories into a grid with each square sharing a common industrial and geographic
systemic factor, then Eq. 3.13 will provide a reasonable estimate of the equity-

36 We also naturally require that �zIm = �zIn , and �zGm
= �zGn

, but this happens naturally if
the region and industrial classifications coincide.
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Fig. 3.14 A cube of systemic
weights: To include the notion
of firm size and respect the
estimation method introduced
in Eq. 3.13, we have elected
to create a cube of
systemic-weight parameters.

Region

Industry

Firm size

based systemic weight. In a more general sense, it would appear that as long as the
granularity of the systemic-weight estimation matches that of the systemic factor
structure, this estimator will work. The analysis thus strongly suggests the use of a
regional-sectoral grid to inform the various systemic-weight parameters.

Geographical and industrial identities are sensible and desirable categorizations
for systemic weights. They are not, however, the only dimensions that we would
like to consider. There is, for example, a reasonable amount of empirical evidence
suggesting that systemic importance is also a function of firm size.37 Adding a size
dimension to the determination of systemic weights is possible, but it transforms a
region-industry grid into a cube including region, industry and firm size.

Figure 3.14 provides a schematic view of this systemic-weight cube. It clearly
nests the industrial sector and geographical region grid introduced in the derivation
of the systemic-weight estimator. With 11 sectors and 13 regions, this yields 143
individual systemic weights. For each firm-size dimension, therefore, it is necessary
to add an additional 143 parameters. Each additional firm-size category must thus
be selected judiciously. Not only would too many firm-size groups violate the
principle of model parsimony, but would also create a significant data burden. As a
consequence, we have opted to employ only three firm size groups:

Small: total assets size in the interval of EUR (0, 1] billion;
Medium: total firm assets from EUR (1, 10] billion; and
Large: total firm assets is excess of EUR 10 billion.

One can clearly dispute the size of the thresholds separating these three categories,
but it is hard to disagree that this represents a minimal characterization of the firm-
size dimension. Any smaller than three size categories and this dimension would
best be ignored; a larger set of groups, on the other hand, would only magnify
existing issues surrounding data parsimony and sufficiency.

Although this cube format provides a sensible decomposition of the main factors
required to inform systemic weights and offers a convenient representation—along

37 BIS [3, Section 4.5] addresses this very issue and, attempts, in an admittedly limited manner, to
incorporate this idea into regulatory computations.
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these three dimensions—it is not without a few challenges. The following sections
detail the measures taken to address them.

A Systemic-Weight Dataset

There is no way around it: estimation of systemic weights requires a significant
amount of data. With 11 industries, 13 regions, and 3 firm-size categories, a set
of K = 11 × 13 × 3 = 429 cube sub-categories sharing common characteristics
is required. If we hope to have 15–30 equity time series in each sub-category—to
ensure a reasonably robust estimate of its average equity return cross correlations—
this would necessitate roughly 6000 to 12,000 individual equity time series.

While the actual parameters are determined annually based on an extensive
internal analysis, we will use a sample dataset to illustrate the key elements of
the estimation procedure.38 Our starting point is a collection of 20,000 individual,
120-month, equity index time series across various industries, regions, and firm
sizes.39 At first glance, this would appear to fall approximately within our (overall)
desired dataset size. This is only true, of course, if the underlying equity time series
are uniformly distributed across our 429 cube entries. The first order of business,
therefore, is to closely examine our dataset to understand how it covers our three
cube dimensions.

Table 3.4 takes the first step in exploring our dataset.40 It examines, from a
marginal perspective, the total number of equity series within each region, industry,
and firm-size classification. Our hope of a uniform distribution along our key
dimensions does not appear to be fulfilled. Along the regional front, Developed
Asia and North America dominate the equity series; they account for roughly 40%
of the total. Some important regions for NIB—such as the Baltics and Iceland—are
only very lightly represented. With only two equity series, for example, we have
virtually no information for Iceland. Indeed, both the Nordic and Baltic regions—
as one might expect by virtue of their size—exhibit only a modest amount of data.
Given the central importance of these member countries to our mandate, and the
need to have granularity for these regions within the economic capital model, it will
be necessary to adapt to these data deficiencies.

The industrial and size dimensions look to have, in general, a rather broader
range of equity series. Financials and industrials are, by a sizable margin, the largest

38 The presented figures are thus not quite our internal systemic-weight parameters, but the actual
computations follow an almost identical logic.
39 The attentive reader might ask why we employ 20 years of data for the systemic correlations,
but only 10 years for systemic weights. In practice, we currently use a longer horizon. As we
move back in time, however, it becomes rather challenging to maintain a continuous price history
for such a large number of equities. Although interesting, such issues would detract from a clear
description of the methodology.
40 With a cross sectional size of 20,000 and a time-series dimension of 120 months, this yields a
total panel dataset of about 2.4 million individual return observations.
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Table 3.4 Equity series by dimension: The underlying tables illustrate—along the region,
industry, and size dimensions—the marginal distributions of equity series. Some geographic
regions, such as Iceland and the Baltics, are quite thin. The coverage of industrial sectors, with
the possible exception of paper, is rather better.

Region Count

Africa and Middle East 642

Baltics 21

Denmark 86

Developed Asia 4295

Emerging Asia 6452

Europe 2677

Finland 86

Iceland 2

Latin America 336

New Europe 635

North America 3925

Norway 101

Sweden 227

Total 19,485

Industry Count

Energy 707

Materials 1954

Paper 113

Industrials 4103

Discretionary 1648

Staples 2825

Health care 1244

Financials 3818

IT 1986

Telecom 614

Utilities 473

Total 19, 485

Size Count

Small 11,421

Medium 5515

Large 2549

Total 19,485

categories accounting for almost one half of all series. The paper industry looks
somewhat thin, but appears to be in better shape than the worst regional categories.
Finally, the size decomposition is not exactly split into equally sized groups, but
there are substantial numbers of series observations in each group.

While the marginal perspective is a useful starting point, it does not tell the full
story. Table 3.5 illustrates the first of three pairwise joint perspectives. It shows the
number of equities found within a two-dimensional grid of geographic and industry
categories. Again, we see our roughly 20,000 time series in a manner that helps us
understand how uniformly distributed they are along our dimensions of interest. 15
grid entries, or about 10% of the total, are empty. More than half of these, of course,
stem from the Icelandic region. Numerous individual grid points have hundreds of
observations. About one third of the grid entries, conversely, has five or less equity
series. It is possible to construct an estimate in this cases, but it will not necessarily
be the strongest signal of equity return correlations in this sub-sector.

Since we are considering a cube, there are two other possible two-dimensional
viewpoints to be examined: region versus size and sector versus size. Table 3.6
outlines the equity counts for these perspectives. Once again, the regional aspect
is the most problematic. Slicing each region into three size categories does not,
of course, help out the situation in Iceland and the Baltics. Denmark, Finland, and
Norway also exhibit a rather small number of individual series within the largest size
category. The sector-size breakdown is somewhat less problematic; again, the paper
industry has relatively few equity series. From each of our three two-dimensional
perspectives, the number of equity series is far from equally spread among our three
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Energy
Materials

Paper

Industrials

Discretionary
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Financials IT
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Fig. 3.15 A cube perspective: The preceding figure attempts to provide a useful visualization of
the number of equity series associated with each of the 429 individual cube elements. Colours are
used to organize entries into three categories: red for no series, yellow for 2 to 5 series, and green
for more than 5 equity series. The number of red dots clearly increases as we move from small to
large firm size.

dimensions. This is less a data quality issue and more a feature of the regional,
sectoral, and size distributions of listed equities.

With 20,000 total series and 429 entries, a uniform distribution would place about
45 equity series in each individual cube entry. Our preliminary analysis has made it
clear that this will not occur. Figure 3.15 thus attempts to examine how far we are
from this ideal. It provides a visualization of the number of equity series associated
with each of the 429 individual cube elements. Colours—using a familiar traffic-
light scheme—are used to organize entries into three categories. Red, the most
problematic, represents zero equity series associated with a given entry. Yellow,
which suggests that an estimate is possible although perhaps not terribly robust,
is applied for cases of 2 to 5 equity series. Finally, the colour green indicates the
presence of more than 5 equity series; this is a desired outcome. The results are as
expected. While we observe substantial amounts of green and yellow, the number
of problematic red dots clearly increases as we move from small to large firm size.
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It is consequently difficult to imagine that each of our cube points will be equally
well informed by our dataset.

This does not mean that our estimation procedure is doomed to failure. Five
equity series does not imply only five correlation coefficients, but rather yields
5·(5−1)

2 = 10 pairwise estimates. This is not an incredibly rich amount of data, but it
should provide a reasonable first-order estimate. It does, however, still suggest that
a clear and defensible strategy is required to identify those entries with missing
data. The overall dataset is not small and useful inferences can be drawn from
neighbouring cube entries with similar properties. In the coming discussion, we’ll
outline our approach towards addressing this problem.

Colour and Commentary 32 (SYSTEMIC-WEIGHT CHOICE AND DATA):
Our systemic weight parametrization takes the form of a three-dimensional
cube of systemic-weight coefficients. With 11 sectors, 13 regions, and 3 size
categories, however, this choice implies a daunting 429 values to be estimated.
A systemic-weight estimator can be constructed from the average cross
correlation coefficients of firms with the same industrial, geographic, and
firm-size classifications. The correlation between historical equity returns of
individual firms is employed for the approximation of these parameters. To do
this correctly, a non-trivial amount of data is required. A dataset with 20,000
monthly equity return series, over a ten-year period, has been sourced to
outline the various aspects of the estimation process. Although the data is far
from uniformly distributed across our three dimensions, it provides significant
cross-correlation information. A clear strategy is nonetheless required to
manage those cube entries with little or no data.

Estimating Correlations

Logistically, the job before us is rather simple. We need only compute a correlation
coefficient for each of the pairs of equity series allocated to each entry in our
cube definition. These collections of estimates for each grid point then need to
be aggregated somehow to a single estimate representing our associated systemic
weight. As is often the case in practice, there are a few complications. Four
methodological questions arise:

1. What measure of correlation is to be employed?
2. How should we aggregate the pairwise correlation estimates for each cube entry?
3. How are we to manage cube entries without any data?
4. Should any constraints or logical relationships be imposed on the cube structure?

As always, when taking these decisions, we endeavour to be consistent with
previous solutions. In the area of missing data, it makes sense to impose the smallest
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possible non-empirical footprint on the parameters. This implies leveraging the
existing dataset, to the extent possible, to inform our cube entries absent equity
series data. This is a fine line to successfully walk. The general approach is to
reflect carefully, take a judicious choice, and then provide full transparency about
the process.41

The first question—which correlation coefficient to use—can be conceptually
difficult. Having wrestled with this point in the determination of the systemic
correlation matrix, we have elected to use the rank (i.e., Spearman) correlation
across the K equity series in each cube point. The underlying argument of less
sensitivity to outliers applies equally well in this context. It is further strengthened
by a general desire to take consistent choices across the various elements of the
economic-capital model.

The second question would appear to be directly answered by Eq. 3.13. It clearly
suggests that we average our individual pairwise correlation estimates. Use of rank
correlation, which belongs to the family of order statistics, is justified on the basis
of the reduced impact of outliers. Use of the median, rather than the mean, would
further insulate our estimates of pairwise correlation coefficients for each cube entry
against outliers. This would appear to be particularly important given the relatively
sparse amount of data associated with many of our cube points. For this reason, we
use the median for cube-entry aggregation.

How do we handle missing data entries? The cube is essentially three slices of a
sector-region grid, each indexed to one of the size categories. A missing data point
is essentially an empty grid entry. The other median correlation entries occurring
within the missing data-point’s grid are the most natural source of information
to approximate the missing entry. Often in such problems, from a mathematical
perspective, one would approximate the missing point with a two dimensional
plane estimated using surrounding non-empty points. In this setting, this is not
a particularly sensible strategy. The adjacent cells could be from quite different
regions and industries. Only the parallel adjacent cells, relating to the same industry
or region, are logically informative. The likelihood of similarities, in terms of
cross correlation, would appear to be highest along the industrial rather than the
geographic dimension.42 We’ve also seen that our industrial equity series are more
equally distributed along the sector aspect. Missing data entries are, therefore,
replaced using the (non-empty) industry median systemic-weight grid estimates for
the same size category.

The fourth, and final, practical question is the most difficult, the most heuristic,
and has the greatest potential for criticism. Relying entirely on the previous
computational logic may still provide unreasonable results. Such unreasonableness
may manifest itself in different ways. Regulatory guidance, for example, suggests
that systemic weights should fall into the range of [0.12, 0.24]. It is entirely possible,

41 This permits others to decide for themselves as to whether we have succeeded in this regard.
42 This implicitly assumes that firms in the same industry, but different regions, have more
commonalities than those in the same region, but different industries. This is, of course, debatable.
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however, for a given estimate to fall below the lower bound of this interval.
Another example relates to the size dimension. Nothing in the current estimate
approach ensures, as one would expect, that the medium-size systemic weight—
for a given region and sector—exceeds the small-size estimate. Economically, we
expect systemic weights to be a monotonically increasing function of firm size.
Some, hopefully sensible, manipulation is required should we desire to ensure this
idea is incorporated into our final cube estimate.

To this end, we impose the following additional constraints onto our individual
systemic-cube entries:

• a minimum systemic weight of 0.12, which is the bottom of the regulatory
requirement;

• a maximum value of 0.40, which also represents the systemic weight applied to
all public-sector entities; and

• a monotonic relationship between systemic weight and firm size.

The final point suggests that the systemic weight cannot decrease—for a given
industrial sector and geographic region—as the firm size increases. The first two
elements are relatively easy to implement, while the final aspect will require a bit of
justification.

Before getting to these key points, let us first examine the first-order systemic-
weight approximations. These do not yet include an application of the minimum and
maximum values, but they do handle the missing data with industry medians. They
also impose a very simple, and logical, monotonicity constraint. As we move along
the size dimension—for fixed sector and region—the systemic weight estimate must
be greater than, or equal, to the value from the previous size grouping.

Table 3.7 illustrates, along our first two-dimensional sector-region grid, the raw
median rank correlation estimates. Despite the wall of numbers, it does provide a
useful perspective. The overall median value is 0.17 with a minimum value of 0.01
and a maximum of 0.76. The median values, across each region and sector slice,
are not terribly far from the regulatory interval of [0.12, 0.24]. The highest systemic
weights appear to occur in Finland, Sweden, Norway, and the Baltics. Africa and
Middle East and EmergingAsia are at the lower end of the regional spectrum. Along
the sector aspect, financials, paper, and energy exhibit higher systemic weights,
while telecommunications, health care, and utilities receive lower estimates.

Table 3.8 provides similar median rank correlation coefficients for the remaining
two-dimensional grids: region- and sector-size combinations. The first interesting
point is the relationship—be it by region or sector—between systemic weight and
firm size. There is a fairly convincing increasing trend in systemic weights as we
increase firm size. It holds in aggregate and, with one exception, at each regional
and sectoral level. One might argue that this is an artifact of our monotonicity
constraint. This was only imposed in a limited set of cases. Our analysis, while
hardly a solid academic finding, does provide some comfort that inclusion of the
firm-size dimension is a sensible choice.
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Table 3.7 Sector-region correlations: The underlying table outlines the median pairwise (rank)
cross correlations for each of the equity series along the sector and region dimensions.
Missing data points are replaced with industry medians and a weak monotonicity constraint is
imposed. Red, yellow, and green shading indicate below, within, and above regulatory guidance,
respectively.
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Energy 0.09 0.22 0.29 0.18 0.14 0.16 0.24 0.22 0.22 0.17 0.27 0.25 0.23 0.22
Materials 0.13 0.16 0.16 0.17 0.13 0.17 0.23 0.16 0.19 0.15 0.20 0.14 0.15 0.16
Paper 0.18 0.19 0.19 0.19 0.11 0.27 0.76 0.19 0.01 0.17 0.26 0.19 0.39 0.19
Industrials 0.08 0.32 0.19 0.22 0.12 0.20 0.27 0.20 0.16 0.15 0.23 0.11 0.27 0.20
Discretionary 0.08 0.32 0.20 0.17 0.09 0.14 0.26 0.17 0.17 0.17 0.18 0.26 0.14 0.17
Staples 0.07 0.17 0.17 0.17 0.10 0.16 0.21 0.16 0.14 0.15 0.16 0.21 0.20 0.16
Health Care 0.09 0.45 0.21 0.12 0.11 0.11 0.11 0.12 0.20 0.12 0.14 0.09 0.13 0.12
Financials 0.10 0.20 0.20 0.18 0.12 0.21 0.26 0.20 0.20 0.16 0.23 0.34 0.32 0.20
IT 0.08 0.16 0.15 0.21 0.16 0.14 0.22 0.16 0.19 0.12 0.19 0.13 0.19 0.16
Telecom 0.13 0.12 0.12 0.12 0.11 0.12 0.21 0.12 0.09 0.12 0.14 0.12 0.12 0.12
Utilities 0.08 0.04 0.14 0.11 0.11 0.18 0.14 0.14 0.17 0.20 0.21 0.14 0.14 0.14

Median 0.09 0.19 0.19 0.17 0.11 0.16 0.23 0.16 0.17 0.15 0.20 0.14 0.19 0.17

Table 3.8 Region and sector-size correlations: The underlying tables provides raw median rank-
correlation estimates—similar to Table 3.7—along the region-size and sector-size dimensions; the
colour scheme is also the same.
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Africa and Middle East 0.07 0.10 0.12 0.10
Baltics 0.21 0.32 0.27 0.27
Denmark 0.14 0.20 0.22 0.20
Developed Asia 0.17 0.17 0.18 0.17
Emerging Asia 0.11 0.13 0.13 0.13
Europe 0.13 0.19 0.22 0.19
Finland 0.22 0.29 0.27 0.27
Iceland 0.00 0.00 0.00 0.00
Latin America 0.15 0.16 0.17 0.16
New Europe 0.14 0.16 0.18 0.16
North America 0.11 0.22 0.25 0.22
Norway 0.13 0.17 0.15 0.15
Sweden 0.15 0.24 0.29 0.24

Median 0.14 0.17 0.18 0.17

Sector
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Energy 0.14 0.20 0.31 0.20
Materials 0.11 0.16 0.27 0.16
Paper 0.11 0.15 0.29 0.15
Industrials 0.11 0.15 0.23 0.15
Discretionary 0.09 0.12 0.19 0.12
Staples 0.09 0.10 0.13 0.10
Health Care 0.07 0.10 0.15 0.10
Financials 0.11 0.16 0.24 0.16
IT 0.12 0.14 0.22 0.14
Telecom 0.10 0.10 0.12 0.10
Utilities 0.08 0.10 0.17 0.10

Median 0.11 0.14 0.22 0.13

The range of values in Table 3.8 are qualitatively similar to those found in
Table 3.7. The vast majority of the systemic-weight estimates are also entirely
consistent with regulatory guidance. Finland, Sweden, and the Baltics also exhibit
higher levels of systemic weights, when we examine the size dimension. On the
industry side, the paper, energy and IT sectors continue to exhibit higher levels of
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Table 3.9 Raw-cube
summary statistics: The
adjacent table houses a broad
range of summary statistics
related to our raw
systemic-weight cube
estimates in aggregate and
along the size dimension.

Firm size

Measure Small Medium Large Total

Mean 0.15 0.20 0.27 0.21

Median 0.15 0.20 0.24 0.19

75th Percentile 0.17 0.23 0.30 0.24

Minimum 0.01 −0.06 −0.00 −0.06

Maximum 0.45 0.59 0.76 0.76

Volatility 0.06 0.09 0.12 0.10

IQR 0.06 0.08 0.11 0.10

Percentage <0.12 27% 12% 6% 15%

Percentage >0.40 1% 2% 13% 5%

systemic weight. Not everything completely matches up, since it is entirely possible
to view different dependence structures as we organize our data along varying
dimensions.43

Having examined all of the possible two-dimensional views of our systemic-
weight estimates, we may now turn our attention to the cube values. Using the
same basic approach outlined previously—without yet imposing upper or lower
bounds on the results—Table 3.9 provides a number of summary statistics. These
are computed across the region-sector grids, each holding the size dimension
constant, and also at the overall level. The mean and median figures appear to be
generally consistent with the two-dimensional analysis. In particular, the minimum
and maximum values remain quite extreme. Moreover, the percentage of values
outside of our predefined limits is significantly higher than in the two-dimensional
settings.

What is driving this small number of extreme results? Only a small fraction of
the 215 two-dimensional estimates fall outside of our limits, whereas about one fifth
does in the cube setting. The situation appears to be magnified when moving from
the grid to cube perspectives. This stems from the decrease in entry sample sizes
associated with moving to a cube. As we have fewer equity series to inform a given
cube entry, there is an increased possibility of a small number of fairly extreme
pairwise correlation estimates dominating the outcome.

Setting bounds, in this context, would thus appear to be a reasonable solution.
Presumably, the lower bound, by virtue of its increased conservatism, would not
expose us to undue amounts of criticism. The upper bound, however, is another
matter. It could, at worst, be seen as a non-conservative action. There are at
least three compelling reasons to envisage placing a cap on our systemic weight
estimates. The first is a structural question. Systemic weights ultimately play a
critical role in the correlation of the underlying model default events; indeed, this is
the entire point of the introduction of systemic risk factors. Many systemic-weight

43 Some of this effect certainly stems from a lack of uniformity in the underlying grid categories.
Large categories can dominate along some slices, but have a restricted influence among others.
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estimation procedures, therefore, use default incidence data among various rating
classes, to inform these parameters.44 The results associated with such default-
based estimation approaches, relative to the use of equity data, typically generate
significantly lower systemic-weight values. The reason is a global, persistent level
of cross correlation between general equity prices and returns.45 When using equity
data as a proxy, the consequence is an upward bias in our systemic-weight estimates.
Although the magnitude of this bias is difficult to determine, it does argue for
eliminating some of the more extreme upside estimates.

The second point relates to a category of credit counterparty that has not yet
been discussed: public-sector entities. Such credit obligors do not, unfortunately,
possess a public-listed stock and, as such, we may not use equity price returns as
a proxy. There are relatively few good alternatives. One could try to infer public-
sector correlations from bond or credit-default-swap (CDS) spreads. Both ideas,
while containing some information on inter-entity correlations, raise many technical
challenges. Moreover, many public-sector exposures have neither liquid bond issues
nor listed CDS contracts.46 This would then suggest using sovereign proxies;
thereby creating an awkward situation of layering multiple data sources. The
solution is a logical, and conservative, simplification. All public-sector entities—
irrespective of region, sector, or size—are allocated a systemic-weight equal to the
upper bound on our systemic cube.

Is this a good decision? There are sensible reasons to expect a high level of
systemic weight for public-sector entities. Their revenues are highly related to
tax receipts, whereas their expenditures are significantly linked to various social
programs. Both items are macroeconomically procyclical, presumably creating
important common systemic linkages. To avoid a potential error-prone and unin-
formative estimation approach, placing all public-sector obligors into the highest
systemic-weight group is a clean solution. It does, of course, strongly argue for the
establishment of a reasonable upper limit.

The third and final point has already been addressed. As we chop up our 20,000
equity series into 429 distinct sub-buckets, the average behaviour appears to be fairly
reasonable. There are, however, a minority of fairly extreme outcomes that appear
to be driven by issues associated with small sample sizes. Regulatory guidance caps
systemic weights at 0.24. The data, and economic logic, would appear to suggest
that a practical estimate could exceed this level. We have, not completely arbitrarily
but also not completely defensibly, placed our upper bound at slightly above 1 1

2
times the regulatory upper bound.

44 Bolder [7, Chapter 10] provides a fairly detailed overview of popular techniques in this area and
numerous references for further reading.
45 Our analysis underscores the empirical literature. With roughly 200 million possible pairwise
correlation coefficients from our collection of 20,000 equity series, only a very small proportion is
negative.
46 There are also important questions about the strength of the overall (pure) credit-risk signal in
CDS spreads. See, for example, Arakelyan and Serrano [2] for a detailed analysis of CDS-market
liquidity.
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Colour and Commentary 33 (AN UPPER BOUND ON SYSTEMIC WEIG-
HTS): Arbitrarily setting a key model parameter can be a controversial
undertaking. Done correctly, it can help one’s model implementation. Done
poorly, it can almost be considered a criminal act. In all cases, however, it
needs to be done in a transparent and defensible manner. The application of
an upper bound on systemic weights exhibits this element of arbitrariness.
Three main reasons argue for this choice. First, there is a general tendency of
equity based systemic-weight estimates—relative to default correlation-based
techniques—to be structurally higher. Conservatism is a fine objective, but
anything in excess can be a problem. Second, due to difficulties in finding
good proxy data and their strong systemic linkages, all public-sector entities
are assigned systemic weights at the upper bound. This practice argues for
a reasonable maximum level of systemic weight. Finally, we need to be
symmetrical in our logic. If we are comfortable with a lower bound for
reasons of conservatism, then a (reasonable) upper bound should not be
overly difficult to digest.

Imposing Strict Monotonicity

The final step in the specification of the systemic-weight cube relates to monotonic-
ity constraints. Thus far, only a weakly monotonic relationship has been imposed
along the size dimension. That is, as we move from small- to large-sized firms, the
systemic weight must be greater than or equal to the previous entry. This implies
that, practically, for some region-sectors pairs, the systemic weight may be flat along
the size dimension. In principle, we would prefer a strictly monotonous relationship.
This means that a large firm’s systemic weight, for each combination of region and
sector, would always be greater than for a smaller one.

For about one quarter of the 143 distinct region-sector pairs, upward steps along
the size dimension are not strictly monotonous. Our desired strict monotonicity is
imposed using a simple heuristic method. We first compute the slope among those
region-sector pairs with increasing systemic weights along the size dimension. This
mean slope is subsequently imposed along each of the flat aspects; caution, of
course, is taken to ensure that the upper bound remains respected.47 Although def-
initely ad hoc, the rationale behind this adjustment is related to logical consistency
and conservatism. Systemic weights do generally increase in a strictly monotonic
manner, ceteris paribus, as we increase firm size. When this does not occur naturally,
it appears defensible to (gently) force this condition.

47 Imposition of the upper bound does imply that, in a small number of cases, strict monotonicity
is not achieved.
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Table 3.10 Size-slope adjustment summary: The underlying table describes, for each fixed sector-
region pair, the average systemic weight parameter. Values are provided before and after the
adjustment along with the scaling factor employed. On average, the adjustment is small, but it
adds logical consistency and conservatism to the model.

Perspective Small Medium Large

Starting point 0.16 0.22 0.27

Scaling factor 1.00 1.43 1.82

Final result 0.16 0.22 0.28

Table 3.10 describes the results of this process. It begins by illustrating, for each
fixed sector-region pair, the mean systemic weight parameter. These outcomes are
utilized to construct a scaling factor. The systemic-weight of a medium-sized firm,
for a given pair of regions and sectors, should be 43% greater than the small-sized
equivalent; this rises to more than 80% from small to large firms. The final average
results are presented. On average, the adjustment is small, because it only impacts
a small subset of the entries. Although the change is modest in aggregate, this
adjustment nonetheless ensures an important logical consistency to the model. Its
limited size, upon consideration, is actually a feature. It implies that only modest
adjustment is required to the empirical estimates.

Figure 3.16 provides a visualization of this heuristic operation. The left-hand
graphic illustrates the initial, unadjusted, situation. A small number of flat size-
dimension slopes can be identified. The right-hand graphic repeats the analysis after
the adjustment; with a few exceptions around the upper limit, all firm-size slopes
along fixed sector-region pairs have a strict increasing monotonic form. At the same
time, we observe that the overall impact is relatively modest and the majority of
cube entries remains untouched.

Fig. 3.16 Size-slope adjustment: These graphics illustrate, for each fixed sector-region pair, the
systemic-weight slope along the size aspect. A before-and-after perspective is provided to help
understand the impact of the heuristic adjustment used to impose strict monotonicity over this
dimension.
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A Final Look

Specification of systemic weights is a critical aspect of a credit-risk economic-
capital model. The relative importance of the common systemic component is a key
driver of default correlations and, ultimately, the form of the credit-loss distribution.
With 11 regional and 13 sectoral systemic state variables, the process is a particular
challenge. Following regulatory guidance to further introduce the notion of firm
size does not make the task any easier. A desire for modelling accuracy nevertheless
makes us reluctant to forego this (size) aspect of the model.

A principal objective in the systemic-weight estimation process is to allow the
data to inform, to the extent possible, the final results. Any heuristic adjustments
should, in principle, minimally impact the outcomes. Although our degree of
success in this venture is an open question, four main interventions were imposed.
The first is that missing data points—identified for a fixed firm size along the sector-
region grid—are replaced with the median industry outcome. The second and third
are systemic-weight constraints. A minimum systemic weight of 0.12—the lower
bound of the regulatory interval—is imposed in conjunction with an upper bound of
0.4. The former, by virtue of its conservatism, is uncontroversial. The latter, which
is defended by a range of arguments, provides fuel for debate. The final adjustment
is the imposition of strict monotonicity—for each sector-region pair—along the size
dimension. This final choice also introduces additional prudence into the systemic-
weight parametrization.

Figure 3.17 provides a last view on the final set of cube systemic-weight
estimates. Similar to Fig. 3.15, it permits a full visualization of our 429 cube
elements. Once again, colours are used to organize the entries. Light blue indicates
values falling into the regulatory range, regular blue describes estimates from 0.24 to
0.34, while dark blue describes estimates exceeding 0.34. The general trend involves
dots getting darker as we move up the size dimension. Nevertheless, consistent
with our previous analysis, a significant number of the individual systemic-weight
estimates falls into the interval, [0.12, 0.34].

3.3 A Portfolio Perspective

The previous section highlights the statistical estimation of a range of parameters
relating to the systemic risk factors: correlations, loadings, and weights. The details
of this process are central to understanding the role of default and migration
dependence in any credit-risk economic capital model. Looking at parameters in
isolation, however, rarely provides deep insight into their overall impact. Two
notions, in particular, can help in this regard: systemic proportions and a deeper
examination of default correlation. Both require a portfolio perspective and, in the
following sections, will be investigated.
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Fig. 3.17 Cube values: This figure, similar to Fig. 3.15, permits visualization of our final 429
cube elements. Once again, colours are used to organize the entries. Light blue indicates values
falling into the regulatory range, regular blue describes estimates from 0.24 to 0.34, while dark
blue describes estimates exceeding 0.34. The general trend involves dots getting darker as we
move up the size dimension.

3.3.1 Systemic Proportions

The α coefficients, as already highlighted in detail, specify the relative weight on the
systemic and idiosyncratic weights. The systemic-weight coefficients themselves

are not true weights. αi and
√
1 − α2

i , while fairly close, cannot be interpreted
as the weight on the systemic and idiosyncratic components, respectively. They
have, instead, been constructed to ensure the unit variance of the creditworthiness
index. To provide a clean description of the true weights on our two principal risk
dimensions, we introduce the idea of systemic proportions. It involves a simple,
even trivial, adjustment. The systemic proportion is simply,

Systemic proportioni = αi

αi +
√
1 − α2

i

, (3.16)
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Fig. 3.18 Component proportions: This figure illustrates the distribution of idiosyncratic and
systemic proportions associated with our portfolio for an arbitrary date in 2020. Although these
proportions are a slight variation on the actual systemic weights—adjusted to be interpreted as
true weights—they provide interesting insight into the relative importance of these two key risk
dimensions.

while, it follows naturally, that the idiosyncratic proportion is

Idiosyncratic proportioni =
(
1 − Systemic proportioni

)
=

√
1 − α2

i

αi +
√
1 − α2

i

,

(3.17)

for i = 1, . . . , I . By construction, of course, these two proportions sum to unity.
Neither of these quantities has any direct model-specific application, but they
can help us understand the relative importance of the idiosyncratic and systemic
components in the threshold model.

Figure 3.18 provides histograms summarizing the observed distribution of these
systemic and idiosyncratic proportions for an arbitrary date in 2020; these values
naturally depend on the confluence of firm size, region, and industry within the
underlying portfolio. The average systemic proportion is roughly 0.4 with values
ranging from as low as 0.3 and up to 0.45. There is a significant amount of
probability at the upper end of this range. This clustering is related to the imposition
of an upper bound on the systemic weight and the assignment of all public-sector
entities—an important part of our portfolio, as is the case with most international
financial institutions—to this maximum value.

The idiosyncratic proportions are, by their very definition, the mirror image of the
systemic proportions. The average value is roughly 0.60, with a significant amount
of probability mass in the neighbourhood of 0.55, which naturally corresponds
to the clump of systemic proportions in the region of 0.45. Values range from
around 0.55 to slightly more than 0.7. We can approximately conclude that common
systemic factors drive roughly 40% of the risk, with the remainder described by
specific, idiosyncratic elements. This is, as a point of comparison, significantly more
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Fig. 3.19 Weighting perspectives: This figure breaks out the average idiosyncratic and systemic
weights by rating category and firm size; the weights were adjusted to sum to one to ease the
interpretation. Again, we see that on average about 40% the weight is allocated to the idiosyncratic
factor. This ratio is not, however, constant across the PD-class and firm-size dimensions.

conservative than the regulatory guidance. Use of the lower bound, α2
i = 0.12,

leads to a split of roughly 0.3 to 0.7 for the systemic and idiosyncratic components,
respectively. This rises to about 0.35 to 0.65 if we use the regulatory upper bound,
α2

i = 0.24.48

Figure 3.19 takes the analysis a step further by illustrating the systemic and
idiosyncratic proportions by default-probability class and firm size. To anchor our
perspective, the roughly 40% mean systemic proportion is provided. PD classes
one through five appear to be slightly above this average, while the classes 7 to 12
are somewhat below.49 A gradual increase in systemic proportion is evident when
moving from small to large firms; medium and large firms, however, do not manifest
any (material) visual difference.

Figure 3.20 extends the view from Fig. 3.19 to include the systemic and
idiosyncratic proportions by region and sector. The majority of regions does not
visually deviate from the overall average. New Europe and Africa and Middle
East are somewhat higher than the mean, whereas Iceland and Developed Asia
are somewhat below this level. IT, public-sector entities, and financials exhibit
higher than average systemic proportions; this is sensible, since these firms exhibit
strong macroeconomic linkages. Health care, utilities, and telecommunication
firms, conversely, exhibit a higher weight on the idiosyncratic dimension. Again,
this appears reasonable, since such firms often operate in controlled, regulated
environments reducing the role of systemic factors.

48 Interestingly, to flip the ratio to a 60%-to-40% mix for systemic and idiosyncratic risk, an eye-
watering α2

i parameter of roughly 0.67 is required.
49 This is consistent with the regulatory formula, where systemic weight is directly proportional to
rating quality. This is discussed in more detail in Chap. 11.
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Fig. 3.20 More weighting perspectives: This figure, building on Fig. 3.19, breaks out the average
idiosyncratic and systemic proportions by region and industrial sectors. Differences in systemic
proportions are visible, but individual values do not appear to vary dramatically from the mean
values.

Colour and Commentary 34 (SYSTEMIC-WEIGHT REASONABLENESS):
With even a modest number of systemic-risk factors, it is hard to definitively
opine on the magnitude of the systemic weights in one’s credit-risk model.
Regulatory guidance places the α2

i values in the interval, [0.12, 0.24] with
higher credit-quality firms tending towards the upper end. This argues for
systemic proportions in the range of 0.3 to 0.35. On average, in this case,
about two thirds of default and migration events are driven by systemic
factors. The remainder thus stems from idiosyncratic elements. Our systemic-
weight parametrization moves this average value up to approximately 0.4.
On the surface, therefore, one may conclude that a conservative approach
to internal modelling has been taken.a On the systemic-weight dimension, at
least, a compelling argument can be made for the prudence of the systemic
parameters.

a While this was the intention, the reasonableness of this choice also needs to be considered
with other modelling alternatives—such as inclusion or exclusion of migration effects and
the form of copula function. Conservatism is best assessed through joint examination of the
entire set of modelling decisions.

In the following section, we will turn our attention towards understanding how
these systemic-weight choices impact the central driver of credit-risk interdepen-
dence; the notion of default correlation. The mathematical chain from systemic
correlations to systemic weights to default correlations is not particularly direct,
but it merits careful examination. It is, after all, the nucleus of the threshold model.
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3.3.2 Factor-, Asset-, and Default-Correlation

Correlations, as we’ve seen in the context of a threshold model, come in a variety
of flavours. Factor correlation refers to the pairwise dependence between the
loaded systemic-risk factors associated with two credit obligors. Asset correla-
tion addresses—also for an arbitrarily selected pair of credit counterparts—the
interdependence between latent creditworthiness index variables. The final, and
perhaps most interesting quantity, is the pairwise correlation between underlying
default events; we call this default correlation. Each of these three elements
provides an alternative perspective into our model’s interactions between any two
obligors.

Our objective in this section is to examine, to the best of our ability, the various
definitions of correlation at the portfolio level. This will require re-organizing some
of our previous definitions. Let us begin by repeating the generic definition of the
ith obligor’s creditworthiness index,

�Xi =
√

ν

W

(
αiBi�z +

√
1 − α2

i εi

)
. (3.18)

This expression illustrates all of the characters within our threshold-model imple-
mentation: systemic and idiosyncratic elements, factors loadings, systemic weights,
systemic-factor correlations, and the mixing variable employed to induce a multi-

variate t distribution. In Chap. 2, we demonstrated that �Xi ∼ Tν

(
0, ν

ν−2

)
.

The systemic-risk factor correlation between any two obligors, n and m, is
a function of its systemic factor loadings and the common systemic-risk factor
outcomes. The covariance between these two quantities is,

cov(Bn�z,Bm�z) =
((

Bn�z − E(Bn�z)

)(
Bm�z − E(Bm�z)

)T
)

, (3.19)

=
⎛
⎜⎝
⎛
⎝Bn�z −

�����Bn E(�z)︸ ︷︷ ︸
=0

⎞
⎠
⎛
⎝Bm�z −

�����Bm E(�z)︸ ︷︷ ︸
=0

⎞
⎠

T
⎞
⎟⎠ ,

= E

(
Bn�z�zTBT

m

)
,

= Bn�BT
m,

= ρ(Bn�z,Bm�z)︸ ︷︷ ︸
ρnm
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where the last step follows from the previously established fact that var(Bi�z) = 1
for all i = 1, . . . , I . The factor correlation is thus a rather complicated cocktail of
systemic-factor loadings and correlations.50

The asset correlation, as derived in the previous chapter, has a fairly elegant
form. It is written as αnρnmαm. Given the dimensionality of our systemic factors,
most of the complexity is embedded in the factor correlation term, ρnm. The pair of
systemic weights works together to complete the picture. If there is a high degree
of factor correlation and both systemic weights are large, then the asset correlation
will be correspondingly high. A few simple examples can help build some intuition.
Imagine that the factor correlation is 0.75 and both credit obligors share systemic
weights at the upper bound of α2

i = 0.4. The asset correlation would then become,

Case 1Asset correlation = αnρnmαm, (3.21)

= √
0.4 · 0.75 · √0.4 = 0.30.

If only one of the obligors is at the lower bound of 0.12, then we observe,

Case 2Asset correlation = √
0.4 · 0.75 · √0.12 ≈ 0.16, (3.22)

which amounts to a twofold decrease in overall asset correlation between these
two credit counterparts. Following this to the lower limit, when both parties have
systemic weights at the lower bound, then

Case 3Asset correlation = √
0.12 · 0.75 · √

0.12 ≈ 0.09. (3.23)

Naturally, this is scaled upwards and downwards by the factor correlation, but
these simple examples illustrate the critical role of the systemic weights in the
determination of asset correlations.51

The final object of interest is the default correlation. This quantity, also derived
in the previous chapter, has the following model-independent form,

ρ
(
IDn , IDm

) = P (Dn ∩ Dm) − pnpm√
pnpm(1 − pn)(1 − pm)

. (3.24)

50 With the parametric factor loading restrictions introduced in the previous sections, this can
be considerably simplified. If we let Ik and Gk represent the industry and geographic location
associated with the kth credit obligor, then we may rewrite Eq. 3.19 as,

ρnm = cov

(
BIn�zIn + BGn

�zGn
,BImSIm + BGm

�zGm

)
. (3.20)

Although this reduces the sheer number of individual terms, it has not proven more useful, in our
experience at least, for analyzing the overall portfolio.
51 Incidentally, following this simple calculation with max(α2

n) = max(α2
m) = 0.4 and

max(ρnm) = 1, the maximal asset correlation coefficient is 0.4.
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Table 3.11
Cross-correlation cases: We
can identify 14 logical
distinct cross-correlation
cases—along the
public-sector, industry,
regional, and size
dimensions—to analyze the
degree of factor, asset, and
default correlation embedded
in the current model
parameters.

Case Public-sector Industry Region Size

1 Both n/a Different n/a

2 Both n/a Same n/a

3 One Different Different Different

4 One Different Same Different

5 One Different Different Same

6 One Different Same Same

7 Neither Different Different Different

8 Neither Same Different Different

9 Neither Different Same Different

10 Neither Same Same Different

11 Neither Different Different Same

12 Neither Same Different Same

13 Neither Different Same Same

14 Neither Same Same Same

Given the t-copula implementation, the joint distribution of �Xn and �Xm follows
a bivariate-t form. This helps us evaluate the tricky quantity P (Dn ∩ Dm).52

Specifically, from the previous chapter, it has the following generic form,

P (Dn ∩ Dm) = P

(
�Xn ≤ �−1(pn),�Xm ≤ �−1(pm)

)
, (3.25)

= FTν

(
F−1
Tν

(pn), F
−1
Tν

(pm); αnρnmαm

)
.

The final expression for default correlation, within the credit-risk model is thus

ρ
(
IDn , IDm

) =
FTν

(
F−1
Tν

(pn), F
−1
Tν

(pm); αnρnmαm

)
− pnpm

√
pn(1 − pn)

√
pm(1 − pm)

. (3.26)

This expression is readily computed with the use of numerical integration.53

The preceding ingredients are everything that is needed to compute factor, asset,
and default correlations for each pair of credit obligors. There is, however, a
problem. With 500+ obligors, this amounts to approximately 140,000 distinct pairs
of counterparties to examine. Even for the hardest-working and most committed
quantitative analyst, this is a tad too much to visually wade through and digest. What
is required is some conceptual organization. Table 3.11 lessens the burden somewhat

52 The specific mathematical form of this bivariate distributional function is outlined in the previous
chapter. The reader interested in dramatically more detail on the multivariate t distribution, in all
its forms, is referred to Kotz and Nadarajah [30].
53 See Bolder [7, Chapter 4] for practical details.
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by introducing a logical partition of our collection of credit counterparties using the
model structure; this amounts to public-sector status, industrial sector, geographical
region, and firm size. These divisions were, of course, not selected by random. They
relate to the differences in the key drivers of our correlation quantities: systemic
weights and loadings.54

Let’s work through the basic logic of our partition:

• In the first two cases, both entities are in the public sector. In this case, the
industry designation and firm size do not matter. There are two cases: the
counterparts share the same geographic region or they do not.

• In the second setting, only one of the obligors falls in the public sector. Since
only one member of the pair has an industry identity, they can only differ along
the regional and firm size dimensions. This amounts to four possible cases.

• The final part is perhaps the most interesting. Both counterparties are in the
corporate sector implying potential differentiation along the industrial, regional,
and firm-size categories. The consequence is eight distinct cases.

The result is a reduction of 140,000 correlation pairs into 14 logical cases.55 While
losing a significant amount of information, hopefully we gain a bit of perspective.

Each group is mutually exclusive and covers all possible outcomes; that is, no
obligor pair can fall into more than one group. Equally importantly, each sub-group
exhibits a link to the lending business. It is interesting and sensible, for example,
to consider the set of public-sector obligor pairs falling into the same geographic
region. Similarly, we care about the nature of default correlation between two non-
public-sector entities in the same industry, but stemming from different geographic
regions. Practically, we would expect to observe a greater degree of factor corre-
lation associated with obligors sharing a greater number of characteristics. Two
obligors in the same industry and region should, in principle, be more correlated than
two entities dissimilar along these dimensions. This analysis can, hopefully, shed
some light onto the economic reasonableness of these empirically driven parameter
estimates. We can thus think of this as a kind of parameter sanity check.

Despite our logical breakdown, there remains a substantial amount of hetero-
geneity within each of our sub-groups. Even if they fall into the same industry,
region, and asset-size category, they can potentially have very different default
probabilities, exposure, and loss-given default settings. This means that they may
exhibit significant correlation, but impact the overall portfolio risk in quite distinct
ways. This does not negate this analysis, but it is useful in understanding and
interpreting the results.

54 Individual systemic correlations and default probabilities also matter importantly, but are rather
more difficult to logically organize.
55 The overidentifying restrictions on the factor loadings also play a role in making this a
meaningful logical partition.
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Table 3.12 Correlation analysis: The underlying table describes the number and percent of
obligor pairs falling into each logical class along with their respective average factor-, asset-,
and default-correlation values.

Obligor pairs Type of correlation

Extreme Case Count % Factor Asset Default

Low agreement 1 24,954 17.8% 0.71 0.28 0.015

High agreement 2 7686 5.5% 1.00 0.40 0.029

Low agreement 3 27,562 19.7% 0.68 0.23 0.014

4 4694 3.3% 0.88 0.29 0.019

5 31,261 22.3% 0.72 0.26 0.016

High agreement 6 6627 4.7% 0.90 0.33 0.024

Low agreement 7 14,903 10.6% 0.72 0.21 0.017

8 4852 3.5% 0.89 0.29 0.024

9 2069 1.5% 0.86 0.24 0.023

10 784 0.6% 1.00 0.32 0.029

11 8443 6.0% 0.74 0.22 0.020

12 3711 2.6% 0.89 0.29 0.025

13 1822 1.3% 0.87 0.27 0.026

High agreement 14 817 0.6% 1.00 0.32 0.032

Total/Average 140,185 100.0% 0.76 0.26 0.018

Table 3.12 provides a daunting number of correlated-related figures organized by
our previously defined cases using our portfolio on an arbitrary date during 2020.
With so many numbers, it is useful to examine the extremes. In particular,

• Cases 1, 3, and 7 represent situations of correspondence along the public-sector
dimension, but literally no overlap among the other three categories. These cases,
logically at least, have the lowest amount of agreement in terms of correlation
outcomes. We will refer to these as low-agreement cases.

• Cases 2, 6, and 14, in contrast, after public-sector correspondence, involve the
greatest degree of overlap among our three categories. Conceptually, we would
expect them to exhibit the highest amount of agreement in terms of cross-
correlation coefficients. Let’s call these high-agreement cases.

With only 14 cases, were the portfolio to be uniformly distributed along our
key dimensions, we would expect about 7% of the pairs in each case. Interestingly,
our three low-agreement cases represent about half of the total number of obligor
pairs. This is significantly above what one would expect under uniformity. If we
add in case 5—where the only level of dimensional agreement is firm size—this
rises to about 70%. The high-agreement cases appear to be relatively less frequently
occurring; all together they amount to about 10% of the individual counterparty
pairs. This does suggest, at least along these dimensions, a reassuringly low level of
concentration.

Factor correlation is, across all 14 cases, quite high. The lowest average value
is about 0.7. Indeed, our low-agreement cases—as we had suspected—exhibit the
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lowest levels of factor correlation. On the other hand, Cases 2, 6, and 14 show the
highest levels of factor correlation with levels approaching unity. Cases 2 and 14,
by construction, load onto the same factors in the same way and, as such, have
perfect factor correlation. At the factor correlation level, therefore, the trend in factor
correlations is as expected. The overall factor-correlation levels remain quite high
due to significant positive correlation among our systemic risk factors stemming
from the use of equity returns in their parametrization.

The asset-correlation coefficients, which work from the factor correlation and
add the systemic weights, tell a similar story. Cases 1, 3, and 7—we could also add
case 5 to this group—possess lower asset-correlation values relative to the others.
The average asset-correlation coefficient for these cases appears to be between 0.2
and 0.25. The high agreement group displays values in excess of 0.32. Again,
we observe consistent, and expected, behaviour among our logical cases. Asset
correlation levels are also, if somewhat differentiated among cases, generally quite
high.

Moving to default correlation, the same trend persists, albeit at significantly
lower levels. Default correlation coefficients in a threshold setting, even in the
most aggressively parametrized situations, rarely exceed about 0.05. The average
level, across all obligor pairs, is roughly 0.02. The low-agreement cases all display
average default-correlation coefficients south of this figure. The high-agreement
cases, however, each exhibit values almost twice the overall average.

Colour and Commentary 35 (A PARAMETRIC SANITY CHECK): Parame-
ter selection is a tricky business and any tools that can help us assess the
consistency of our choices are very welcome. Sorting out factor, asset, and
default correlation, for example, is not trivial. Each quantity is a complicated
combination of factor correlation, factor-loading, and systemic-weight model
parameters. Moreover, with even a modest number of credit obligors, there are
many possible pairwise interactions. One can, in our specific case, organize
the (intimidatingly large) number of obligor pairs into 14 logical cases along
the type-of-entity, industry, geographic-region, and firm-size dimensions. This
helps to organize our thinking and formulate expectations regarding the
level of correlation within the model. Counterparties with stronger agreement
along these dimensions should reveal higher degrees of default dependence.
To test this proposition, we compute the average levels of factor, asset, and
default correlation across each of these logical cases. At all levels, the various
correlation coefficients appear to be consistent with our presuppositions;
greater agreement among our predefined key dimensions appears to lead
to a higher degree of model dependence. This analysis, which basically
amounts to something of a sanity check on the model calibration, helps us
to conceptualize and judge the reasonableness of the current parameters.
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3.3.3 Tail Dependence

Equation 3.18 describes the latent creditworthiness state variable associated with
each of the individual obligors in our portfolio. Quietly, in the background, sits
a difficult to manage parameter, ν. This is the degrees-of-freedom parameter of
the chi-squared (mixing) random variable used to generate marginal and joint
t distributions for our state-variable system. The strategic business rationale for
this specific implementation of threshold model is the inclusion of non-zero
tail dependence. In this respect, the t-copula model is a significant conceptual
improvement over the Gaussian version.

To actually use the model, of course, one needs to select a value for ν. This is
easier said than done. Bluhm et al. [6], in their excellent text on credit risk, state
that:

We do not know about an established standard calibration methodology for fitting t-copulas
to a credit portfolio.

Neither do we. This is, therefore, a challenge faced by any user of the t-threshold
model. Central to the problem is the fundamental notion of tail dependence. Since
it relates to the joint incidence of extreme outcomes, data is understandably very
scarce. As a consequence, this parameter is determined by a combination of expert
judgement and trial and error.

What we do know is that ν should not be a very large value—say 100 to 300—
because this practically amounts to a Gaussian copula model with its attendant
shortcomings. On the other hand, a very low value of ν—below, for example, about
30 or 40—is really quite aggressive. The current parameter value has been set to
70. It is certainly easy to throw rocks at this choice.56 Why not 65 or 75? Or 50 or
90? There is no good objective rationale that can be used to defend this decision.
It amounts to walking a fine line between being sufficiently or overly conservative.
Ultimately, it is about model judgement and risk-management needs. It is, in our
view, logically preferable to incorporate positive tail dependence into our model—
and live with a hard-to-calibrate parameter—than not to have it at all.

3.4 Recovery Rates

Recovery, as discussed in Chap. 2, is assumed to be a stochastic quantity. For each
default outcome, a simultaneous random variable is drawn from a distribution to
determine the amount recovered. Naturally, this raises two important questions: how
is the recovery aspect distributed and is it somehow related to the default element?
Both questions are, from an empirical perspective, a bit difficult to answer. Default

56 Internally, of course, a detailed analysis of the impact of different choices of ν upon credit-risk
economic capital is performed on a periodic basis.
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is a generally rare event making estimation of default probabilities a challenging
problem; recovery is an outcome conditional on default. Thus, we are trying to
estimate the distribution of an outcome conditional on another rather rare event.
Availability and richness of data is thus the principal problem in this area.

To handle these problems, three main assumptions are typically made:

1. the recovery rate, which varies among obligors, is assumed to be function of
numerous elements of counterparty’s current general creditworthiness;

2. the recovery process is assumed to be independent of the default mechanics; and
3. the stochastic element of recovery is described by the beta distribution.

All three of these assumptions can be relaxed and other choices are, of course,
possible. These common assumptions, however, represent reasonable choices in the
face of limited data.

A key follow-up question is how does one specify the stochastic dynamics
of the recovery elements. Moreover, once a specific choice is made, how is the
parametrization performed? This can, in principle, be as complex as one desires.
These objects, for example, could be treated as multivariate stochastic processes;
that is, they could possess randomness across both the cross-sectional and time
dimensions. This would, not to mention the challenges of parameter estimation,
likely be overkill. Instead, recovery values are typically drawn from a convenient
time-invariant distribution.

The Beta Distribution
To operationalize this general notion, it is necessary to specify the distribution of
each individual recovery variable, Ri ; in our case, the beta distribution. Let us first
consider this decision generically; afterwards, we can specialize it to our needs and
desires. Consider the following random variable,

X ∼ Beta(a, b), (3.27)

where a and b are parameters in R+.57 In words, X is beta distributed. The density
of X is summarized as,

fX(x) = 1

β(a, b)
xa−1(1 − x)b−1, (3.28)

for x ∈ (0, 1). That is, the support of X is the unit interval.58 β(a, b) denotes the
so-called beta function, which is described as,

β(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt, (3.29)

57 a and b are referred to as shape parameters; they are not, as is the case with many common
distributions, directly mapped to a distributional moment.
58 This is the standard density function, although it is readily generalized to any finite interval,
[v, u], where u > v.
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which bears a strong resemblance to the form of the beta density. The beta function
is also closely related to the gamma function. In particular,

β(a, b) = �(a)�(b)

�(a + b)
. (3.30)

The gamma function, which can be seen as a continuous analogue of the discrete
factorial function, is written as59

�(t) =
∫ ∞

∞
xt−1e−xdx. (3.31)

The beta distribution, given its finite support, is often used in statistics and
engineering to model proportions. Interestingly, if one sets a = b = 1, then the
beta distribution collapses to a continuous uniform distribution.60 Moreover, it can
easily be constructed from the generation of gamma random variates.61 Finally, the
mean of a beta-distributed random variable, X, with parameters a and b is,

E(X) = a

a + b
, (3.32)

while its variance is,

var(X) = ab

(a + b)2 (a + b + 1)
. (3.33)

So much for the mathematical background on the beta distribution. The key
question is: how precisely is this choice utilized in a default credit-risk model? It
basically comes down to parameter choice. In principle, one could expect to have
slightly different parameters for each region, industry, or business line. As one
would expect, however, a number of simplifying assumptions are imposed. Each
individual credit obligor is assigned to a loss-given-default value following from an
internal framework.We then transform this loss-given-default value into an recovery
amount.

To simulate recoveries, which is our ultimate goal, we need to establish a link
between the moments furnished by internal assignment and the model parameters.
This is basically a calibration exercise. We denote Mi and Vi as the mean and

59 The role of the gamma and beta functions in density functions is basically to appropriately assign
probability mass to events. See Abramovitz and Stegun [1, Chapter 6] for a detailed description of
the gamma function.
60 It is easy to see, from Eqs. 3.28 and 3.29, that when a = b = 1, then fX(x) ≡ 1 consistent with
the standard uniform density.
61 See Casella and Berger [9, Chapter 3], Johnson et al. [26, Chapter 25], and Fishman [15,
Chapter 3] for much more technical information and background on the beta distribution.
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variance conditions associated with the ith credit obligor.62 Mi is directly informed
by the policy; the choice of Vi , however, is less obvious. A common value might be
assigned to all individual credit obligors. We could also use this parameter to target
specific characteristics of the recovery distribution. In the forthcoming analysis, we
will explore the implications of both choices. For the time being, let’s just think of
it as a generic value.

We thus view Mi and Vi as economically motivated moment conditions for the
recovery variable. The idea is to determine how we might transform these values
into beta-distribution shape parameters, ai and bi , for employment in our model.
Using the definitions provided in Eqs. 3.32 and 3.33, we construct a system of (non-
linear) equations. The first expression equates the first moments

Mi = ai

ai + bi

, (3.34)

Mi(ai + bi) = ai,

ai = biMi

1 − Mi

.

The second piece, equating the variance terms, is a bit more complex

Vi = aibi

(ai + bi)2(ai + bi + 1)
. (3.35)

If we substitute Eq. 3.34 into 3.35, a tiresome calculation reveals

Vi =
bi

ai︷ ︸︸ ︷
biMi

1 − Mi⎛
⎜⎜⎝

biMi

1 − Mi︸ ︷︷ ︸
ai

+bi

⎞
⎟⎟⎠

2⎛
⎜⎜⎝

biMi

1 − Mi︸ ︷︷ ︸
ai

+bi + 1

⎞
⎟⎟⎠

, (3.36)

=
b2i Mi

1−Mi(
��biMi+bi−��biMi

1−Mi

)2 (��biMi+bi−��biMi+(1−Mi)
1−Mi

) ,

= ��b
2
i Mi

����1 − Mi

· (1 − Mi)�3

��b
2
i (bi + (1 − Mi)

,

62 Although it is more common to talk about volatility, we need only square it to arrive at the
desired variance condition.
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= Mi(1 − Mi)
2

bi + (1 − Mi)
,

bi = (1 − Mi)(Mi (1 − Mi) − Vi)

Vi
.

Now plugging this quantity back into Eq. 3.34, we recover the required value of ai

as,

ai =

bi︷ ︸︸ ︷(
(1 − Mi)(Mi (1 − Mi) − Vi)

Vi

)
Mi

1 − Mi
, (3.37)

= Mi����
(1 − Mi)(Mi (1 − Mi) − Vi)

Vi

· 1

����1 − Mi

,

= Mi(Mi (1 − Mi) − Vi)

Vi

.

We thus have a concrete link between the beta-distribution parameters and the
provided moment conditions. This is, in fact, a closed-form application of the
method-of-moments estimation technique.63

While technically correct, this result is not terribly intuitive. If, however, we
introduce the term,

ξi = Mi(1 − Mi) − Vi

Vi

, (3.38)

then we can rewrite our recovery model parameter choices as,

ai = Miξi, (3.39)

bi = (1 − Mi)ξi .

We can interpret ξi in Eq. 3.38 as the normalized distance between the provided
value and the variance of a Bernoulli trial with parameter, Mi . This is not a
coincidence since the beta distribution approaches the Bernoulli distribution as the
shape parameters, ai and bi , approach zero. This would be precisely the case, as is
clear from Eq. 3.38, should we set Mi(1 − Mi) = Vi . That is, this is the variance
of a Bernoulli trial, with parameter, Mi . In this situation, which is the point, both ai

and bi reduce to zero.

63 See Casella and Berger [9] for more background on this parameter-estimation technique.
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One way to see that these are equivalent conditions is to re-examine the definition
of the beta distribution’s variance from Eq. 3.35,

Vi = aibi

(ai + bi)2(ai + bi + 1)
, (3.40)

= Miξi(1 − Mi)ξi

(Miξi + (1 − Mi)ξi)2(ai + bi + 1)
,

= Miξ
2
i (1 − Mi)

(���Miξi + ξi −���Miξi)2(ai + bi + 1)
,

= Mi(1 − Mi)

(ai + bi + 1)
.

As long as the sum of the two parameters ai and bi remains greater than zero, then
the denominator of Eq. 3.40 exceeds unity. This, by extension, ensures that Vi <

Mi(1 − Mi).
The Bernoulli trial limiting case is, however, practically rather unsatisfactory. It

is conceptually equivalent to flipping a coin. The outcome is binary; heads with
probability Mi and tails with 1 − Mi . Instead of heads and tails, however, we
have values 0 and 1. That is, the probability of the full recovery of a claim is Mi ;
the corollary is that our recovery takes the value of zero (i.e., we lose the entire
exposure) with probability 1 − Mi . This is probably not a reasonable recovery
model, but it is interesting that it is embedded in the structure of the beta-distribution
approach.64 If we avoid this unrealistic extreme case, then the beta distribution will
permit the recovery of any claim to, in principle, take any value in the unit interval.

Fixed Recovery Volatility
The uncertainty surrounding the mean recovery rate—referred to previously as√

Vi—is not obviously determined. We have, in the past, experimented with the
assignment of a value of

√
Vi ≡ 0.25 to all counterparties. Why might one do

this? The simple, and perhaps not very satisfying, answer is that one lacks sufficient
information to empirically differentiate between individual obligors. Small to
medium institutions will generally have a correspondingly modest—and typically
uninformative, default and loss-given-default—data history.

Using the method-of-moments estimator derived in Eqs. 3.38 and 3.39, Fig. 3.21
summarizes the associated beta-distribution parameters utilized to generate beta-
distributed random variates arising from the blanket assumption of

√
Vi ≡ 0.25.

Since each ai and bi parameter is a function of both moment conditions, we cannot

64 The beta-distribution approach to recovery thus nests two additional, and fairly extreme, models:
a Bernoulli trial and a uniform distribution. The former occurs when the shape parameters take the
values of zero, whereas the latter arises when both are set to one.
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Fig. 3.21 Fixed Vi Beta-distribution parameters: Using a method-of-moments approach, this
figure illustrates the mapping of Mi choices and fixed Vi ≡ 0.25 into a collection of the beta
distribution’s two shape parameters, ai and bi .

speak of a mapping between the beta parameters and assumed moments.65 The ai

values take an average value of roughly 1.3; observed values range from close to
zero to about 1.75. The bi values, conversely, exhibit a mean value of about 0.7;
again, observations range from 0 to almost 2. The ai outcomes are clustered around
the mean, while the bi’s appear to have a multimodal form with probability mass
around 0.25, 1, and 1.75.

How does the beta distribution take these two shape parameters and determine the
relative probabilities of an outcome? Since the standard beta distribution is restricted
to the unit interval, we seek to understand how probability mass is spread over this
region. Figure 3.22 helps us answer this question by plotting a broad range of beta
densities. The first uses the mean shape parameters—in particular, a = 1.3 and
b = 0.7—to describe the average density associated with a fixed choice recovery
volatility. This outcome, summarized by the red line, places a significant amount of
probability mass around unity and gradually falls down towards zero; in this case,
the mean appears to lie between 0.65 and 0.7. The blue line repeats this analysis,
but uses financial exposures to find a weighted set of beta parameters.66 There is
very little difference, although the weight on higher recoveries falls slightly with a
modest impact on the mean outcome. The final high-level point of comparison is the
uniform density, where all values in [0, 1] are equally likely.

In addition to these three high-level comparative densities, every single observed
pair of a and b shape parameters are used to display the entire range of employed
densities. A broad range of shapes are evident. Some look flat, others have the
standard upward-sloping shape found in the average density, a few bell-shaped
densities can be identified, others exhibit a u-shaped form, while another group

65 Each ai and bi value is, to repeat, a shape parameter and cannot, as in some distributions, be
easily equated with a distributional moment.
66 The difference is not dramatic: ā ≈ 1.37 and b̄ ≈ 0.80.
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Fig. 3.22 Fixed Vi beta densities: The preceding figure plots the entire range of beta densities
associated with the (indirectly) assumed shape parameters. For reference, the beta densities
associated with the simple-mean and exposure-weighted mean shape parameters are also provided.
On average, a higher probability of large recovery is assumed.

looks to be downward sloping.67 There is a fairly rich range of assumed beta
densities. Empirically, there is some evidence that actual recovery rates are actually
bimodal; this implies that there is a disproportionately high probability of quite large
or quite small recoveries.68 This is a rather stark deviation between this empirical
finding and the constant recovery-variance assumptions illustrated in Fig. 3.22.

Colour and Commentary 36 (FIXED RECOVERY VOLATILITY): Determi-
nation of recovery volatility is hard. One might quite reasonably opt to
make a common assessment of recovery uncertainty for all one’s credit
obligors. Although not terribly defensible, it has the benefit of simplicity. The
resulting beta densities are helpful in assessing this choice. While a range
of beta densities is observed with varying forms, the average result places
a relatively high degree of probability mass on high-recovery outcomes.
Empirical evidence suggests that actual recovery rates are actually bimodal;
the consequence is a disproportionately high probability of quite large or
quite small recoveries. This would appear to be something of a shortcoming
of the constant recovery volatility assumption. To resolve this, we need to
identify an approach permitting the introduction of recovery bimodality. The

(continued)

67 As a general rule, if a = b, then the density will be symmetric, whereas if a �= b, then it will be
skewed in one direction or another.
68 See Schuermann [38] for a nice overview of the stylized empirical facts about loss-given-default
(and recovery).



3.4 Recovery Rates 195

Colour and Commentary 36 (continued)
consequence, of course, will be more extreme recovery and loss-given-default
outcomes with a commensurate increase in one’s associated economic-capital
estimates.

Bimodal Recovery
The method-of-moments technique provides a useful link between the desired
recovery moments and these shape parameters. The mean of this distribution (i.e.,
Mi) should be clearly provided by one’s loss-given-default framework, but its
variance (i.e., Vi) may not be known. While this feels problematic, it represents
something of an opportunity.Wemight treat the Vi value as a free parameter. It could
be selected to obtain desired distributional characteristics; such as, quite pertinent
in our situation, bimodality.

A bimodal beta distribution is consistent with a so-called U -shaped density
function. That is, there is a preponderance of probability mass at the lower and
upper—or extreme—ends of the distribution’s support. Practically, this means that,
irrespective of the mean, large or small recoveries are relatively more probable. It
turns out that there is a convenient condition ensuring that a beta density has a
U -shaped form: both the a and b parameters must be less than 1. The imposition
of a bi-model recovery distribution thus reduces to something like the following
optimization problem:

min
ai(Mi,Vi),bi(Mi,Vi)

Vi, (3.41)

subject to:

ai(Mi, Vi), bi(Mi, Vi) ∈ (0, 1),

ai(Mi, Vi)

ai(Mi, Vi) + bi(Mi, Vi)
= Mi,

Vi > 0.

In words, therefore, we seek the smallest variance value that would lead to a U -
shaped beta density. Inspection of Eq. 3.41 suggests that it is not much of an
optimization problem. Indeed, there exists a (hopefully, non-empty) set of possible
Vi values that respect our three constraints. This set is defined—in what basically
amounts to a simple manipulation of Eq. 3.41—as follows:

Vi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vi : ai (Mi, Vi), bi (Mi, Vi) ∈ (0, 1)︸ ︷︷ ︸
U -shaped condition

,
ai (Mi, Vi)

ai (Mi, Vi) + bi (Mi, Vi)
= Mi

︸ ︷︷ ︸
Preserve mean

, Vi > 0︸ ︷︷ ︸
Positive
variance

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(3.42)
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Fig. 3.23 Visualizing Vi : For the ith arbitrarily selected credit obligor, this figure provides a
visualization of the set Vi defined in Eq. 3.42. The red-shaded area represents the confluence
of ai , bi , and

√
Vi values that preserve the mean, provide positive variance, and permit a U -shaped

beta density function.

Any member of this set—that is, Vi ∈ Vi—will respect one’s internal loss-
given-default framework, provide a U -shaped or bimodal beta distribution, and
involve a mathematically legitimate choice for the second moment of the recovery
distribution.

Figure 3.23 provides a graphical visualization of this set for an arbitrarily selected
credit obligor; it is, however, quite representative of the general problem faced by
obligors. The red-shaded area in Fig. 3.23 represents the confluence of ai , bi , and√

Vi values that preserve the mean, provide positive variance, and permit a U -
shaped beta density function. Permissible values of

√
Vi , in this case, appear to

range from about 0.25 to roughly 0.4.
A bit of effort can help us identify the boundaries of the set defined in Eq. 3.42.

This means working with the U -shaped condition constraints to understand what
they imply for the possible values of Vi . Let’s start with the ai parameter. It has to
be strictly less than unity, which implies, from our previous definitions, that

a(Mi, Vi) < 1, (3.43)

Miξi < 1,

Mi

(
Mi(1 − Mi) − Vi

Vi

)
< 1,

Mi(1 − Mi)

Vi
<

1

Mi
+ 1,

Vi >
M2

i (1 − Mi)

1 + Mi

.
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This suggests a lower bound on Vi , based on the specification of a, which depends
entirely on the mean recovery value. A corresponding upper bound can be derived
from the second constraint condition as follows,

a(Mi, Vi) > 0, (3.44)

Mi

(
Mi(1 − Mi) − Vi

Vi

)
> 0,

Mi(1 − Mi)

Vi

> 1,

Vi < Mi(1 − Mi).

Combining these two values together, and applying the square-root operator to
return to volatility space, the ai-parameter bounds on the Vi parameter are defined
by the following open interval

√
Vi ∈

⎛
⎝
√

M2
i (1 − Mi)

1 + Mi

,
√

Mi(1 − Mi)

⎞
⎠ . (3.45)

Interestingly, the (unattainable) upper bound is the volatility of a Bernoulli trial with
parameter, Mi .

We also may similarly compute a similar set of b-parameter induced bounds. The
lower bound is given as,

b(Mi, Vi) < 1, (3.46)

(1 − Mi)ξi < 1,

(1 − Mi)

(
Mi(1 − Mi) − Vi

Vi

)
< 1,

Mi(1 − Mi)

Vi

<
1

1 − Mi

+ 1,

Vi >
Mi(1 − Mi)

2

2 − Mi

,

while the upper bound is,

b(Mi, Vi) > 0, (3.47)

(1 − Mi)

(
Mi(1 − Mi) − Vi

Vi

)
> 0,

Mi(1 − Mi)

Vi

> 1,

Vi < Mi(1 − Mi).
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Fig. 3.24 Identifying Vi : Respecting our constraints, explicit upper and lower bounds, for a given
level of Mi , can be traced out. We seek to avoid being too close to the upper bound, which
approaches the Bernoulli-trial case, so we select one quarter of the distance between the lower
and upper bounds. The final results are presented in the right-hand graphic.

Combining, these two values together yields a second interval

√
Vi ∈

⎛
⎝
√

Mi(1 − Mi)2

2 − Mi

,
√

Mi(1 − Mi)

⎞
⎠ . (3.48)

The Bernoulli-trial variance upper bound is common between both the ai and bi

calculations. Overall, since both ai and bi constraints need to be jointly respected,
the final set of parameter-induced bounds, in terms of Mi , are

√
Vi ∈

⎛
⎝max

⎛
⎝
√

Mi(1 − Mi)2

2 − Mi

,

√
M2

i (1 − Mi)

1 + Mi

⎞
⎠ ,
√

Mi(1 − Mi)

⎞
⎠ ≡ (Vi, Vi

)
.

(3.49)

The left-hand graphic in Fig. 3.24 examines the practical upper and lower bounds
on

√
Vi for the full range of mean recovery values, Mi , over the unit interval. The

broadest range of possible Vi values occurs when Mi = 0.5. As Mi moves to its
lower and upper extremes, the set of permissible values shrinks asymptotically to
zero.69

The previous bound derivations are tedious, but provide some useful insight into
the problem. As we move towards the upper bound, our beta-distribution structure
tends towards a Bernoulli trial with parameter, Mi . This coin-flip approach pushes

69 As a practical matter, this suggests that mean recovery values of one or zero are not really
workable. In the unlikely case such values might arise, they can be replaced with 0.01 and 0.99,
respectively. This makes no material economic change in the parameter values and happily avoids
mathematical headaches.
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Fig. 3.25 Revised beta-distribution parameters: Using the modified method-of-moments
approach from Eq. 3.50, this figure illustrates the mapping of Mi and Vi choices into a collection
of the beta distribution’s two shape parameters, ai and bi .

the ai and bi shape parameters, as previously seen, towards zero. This is the ultimate
bimodal distribution; full or zero recovery.70 While it makes logical sense that our
investigation would take us towards this approach, we prefer to avoid its extreme
nature. Instead, we opt for neither extreme, but exhibit a bias for the lower end. Our
selected recovery volatility for the ith credit obligor is thus defined as,

√
Vi =

√
Vi + 0.25 ·

(
Vi − Vi

)
. (3.50)

There is nothing particularly special about the choice of 0.25. It was intended to
represent a compromise between the extremes with a preference for slightly more
distance from the Bernoulli-trial case. One could, of course, argue for a value of
0.5. Ultimately, the impact on the final parameter values and, by extension, the
economic-capital results is rather modest.

The right-hand graphic in Fig. 3.24 illustrates the range of
√

Vi associated with
Eq. 3.50. There is not a dramatic difference in the average outcome—of about 0.3—
and the common legacy setting of 0.25. With the exception of an outlier or two, the
computed values lie comfortably from about 0.2 to 0.35 with peaks in probability
mass around 0.3 and 0.35, respectively.

The shape parameters associated with the approach highlighted in Eq. 3.50 are
presented in Fig. 3.25. No individual ai or bi value exceeds one or falls below zero.
The mean ai parameter is roughly 0.6, which compares to the fixed-Vi average
outcome of 1.3. The bi parameters exhibit an average of about 0.3, which is
less than half of what was observed in the constant-recovery-volatility approach.
The bottom line is that the imposition of U -shaped density constraints on our

70 This would be consistent with the (naive) minimization approach suggested in Eq. 3.41.
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Fig. 3.26 Revised beta densities: This figure plots the entire range of beta densities associated with
the (indirectly) assumed shape parameters. For reference, the beta densities associated with the
simple-mean and exposure-weighted mean shape parameters are also provided. On average, this
approach implies a relatively higher probability of extreme—large loss or recovery—outcomes,
which is consistent with empirical evidence surrounding recoveries.

method-of-moments estimator leads to fairly important changes in the associated
beta-distribution shape-parameter estimates.

Figure 3.26 completes the picture. It provides—analogous to Fig. 3.22 for the
constant-recovery-volatility case—an illustration of the entire population of beta
densities associated with our U -shaped constrained method-of-moments estimator.
The results are visually quite striking. Not only do the mean and exposure-
weighted mean densities demonstrate a U -shaped form, every single beta density
exhibits the desired bimodal structure. This was accomplished while preserving the
mean recovery rate and generating recovery volatility estimates that are generally
consistent with the constant

√
Vi approach. This clearly exemplifies the ability of

our constraint set to achieve our targeted beta-density outcomes.

Colour and Commentary 37 (BIMODAL RECOVERY): Empirical eviden-
ce—see, for example, Chen and Wang [11]—suggests that the recovery
rate distribution is bimodal. In plain English, this means there is a dis-
proportionately high probability of extreme (i.e., high or low) outcomes.
Practically, the bimodal property enhances model conservatism by increasing
the global probability of extremely low levels of default recovery. Bimodal
beta densities are mathematically attainable through restriction of the shape
(ai and bi) parameters to the unit interval. Incorporating these constraints
into the method-of-moments estimator, and using the recovery volatility as a
free parameter, permit imposition of a bimodal form. Under this approach,
the mean recovery rate is preserved, all beta densities are bimodal, and

(continued)
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Colour and Commentary 37 (continued)
reasonable recovery volatility estimates are generated. Beyond a desire to
meet an empirical stylized fact, however, this is not an economically motivated
parametrization; it is a mathematical trick to induce bimodality. The main
alternative, a constant and common recovery volatility parameter, provides
no logical competition. Absent another clear justification for the choice of
recovery volatility, this parameter-estimation technique would thus appear to
be a judicious choice.

3.5 Credit Migration

Incorporation of credit migration into the credit-risk economic capital model
necessitates a number of parametric ingredients. The central quantity, the transition
matrix, has already been identified and examined in detail. Two additional variables
are necessary. The first is a description of the spread implications of moving from
one credit state to another. The second requirement is some notion of the sensitivity
of individual loan prices to changes in their discount rate. This section will explore
how one might estimate both of these important modelling inputs.

3.5.1 Spread Duration

Let us begin with the easier quantity: the current sensitivity or modified spread-
duration assumption. Spread duration is readily available for instruments traded
in active secondary markets, but it rather less obviously computed for untraded
loans.We thus employ the cash-flowweighted averagematurity as a spread-duration
proxy for each of our loan obligors. This involves an embedded assumption, which
requires some explanation. To help understand our choice, let’s return to first
principles. The value of a fixed-income security at time t with yield y and N

remaining cash-flows is simply,

V (y) =
N∑

i=1

cti

(1 + y)ti−t
, (3.51)

where each cti represents an individual cash-flow. In other words, the value is
merely the sum of the discounted individual cash-flows. The yield, y, is the common
discount rate for all individual cash-flows that provides the observed valuation.

Equation 3.51 is silent on the credit spread, which complicates computation of
spread duration. It is thankfully possible to decompose—for a given underlying
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tenor—any fixed-income security’s yield into two logical parts: the risk-free yield
and its associated credit spread. More concretely, we write:

y = ŷ + s, (3.52)

where ŷ and s denote the risk-free yield and credit spread, respectively.71 This
permits us to rewrite the pricing, or valuation, function of an arbitrary loan as,

V ≡ V (ŷ, s) =
N∑

i=1

cti(
1 + ŷ + s

)ti−t

︸ ︷︷ ︸
Eq. 3.52

, (3.53)

The advantage of this formulation is that it directly includes the credit (or lending)
spread.72

The modified spread-duration is defined as the normalized first derivative of our
loan-price relation with respect to the credit spread, s. It is written as,

Dm =
∣∣∣∣

1

V (ŷ, s)

∂V (ŷ, s)

∂s

∣∣∣∣ , (3.54)

=

∣∣∣∣∣∣∣∣∣∣

1

V (ŷ, s)

∂

∂s

⎛
⎜⎜⎜⎜⎝

N∑
i=1

cti

(1 + ŷ + s)ti−t

︸ ︷︷ ︸
Eq. 3.53

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
,

= 1

V (ŷ, s) · (1 + ŷ + s)

N∑
i=1

(ti − t)cti

(1 + ŷ + s)ti−t
,

= 1

V (y) · (1 + y)

N∑
i=1

(ti − t)cti

(1 + y)ti−t
,

where the absolute-value operator is introduced because, in practice, we typically
treat this as a positive quantity and introduce the negative sign as required by
the context. The product of Eq. 3.54 and a given spread perturbation provides an
approximation of the percentage return change in one’s loan value. This explains its
usefulness for the credit-migration computation.73

71 This need not be an actual risk-free rate, but could also be some form of lower risk reference
rate. It may be more useful to characterize ŷ as the corresponding LIBOR-based swap rate.
72 See Bolder [7, Part I] for more information on fixed-income security sensitivities in general and
spread duration in particular.
73 As some of the spread movements can be quite large, this linear approximation may overestimate
some of the valuation losses. There is thus an argument to compute a convexity term to capture the
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While Eq. 3.54 provides a direct, practical description for the first-order, linear,
credit-spread sensitivity of a loan, it is not easy for us to employ. For a given loan,
it may be difficult to clearly identify the specific credit spread and risk-free rates,
which makes the determination of y a rather noisy and uncertain affair. A set of cash-
flow forecasts are, however, available for every individual loan based on forward
interest rates and actual loan margins. This permits a simple proxy representation of
Eq. 3.54. It is conceptually similar and has the following form:

Dm = 1

V (y)(1 + y)

N∑
i=1

(ti − t)cti

(1 + y)ti−t
, (3.55)

≈ 1

V (0)(1 + �y)

N∑
i=1

(ti − t)cti

(1 + �y)ti−t
,

≈ 1

V (0)

N∑
i=1

(ti − t)cti ,

≈
(

N∑
i=1

cti

)−1 N∑
i=1

(ti − t)cti .

This proxy is simply the cash-flow weighted average tenor. We can see, of course,
that our proxy stems from setting y = 0; in this case, Eqs. 3.54 and 3.55 coincide
exactly. For any non-negative yield, however, the modified spread duration will be
inferior to this weighted average cash-flow proxy. The magnitude of this difference
is, in the ongoing low-yield environment, likely to be rather small. One useful
characteristic of this proxy choice is that it forms a conservative spread-duration
estimator for any (non-negative) loan yield.

Some NIB loan contracts have an interesting, and important, feature that has
practical implications for the spread-duration calculations. In particular, various
individual loans possess what is contractually referred to as a negotiation date. This
future date, typically occurring a few years after disbursement, but a number of
years before final maturity, offers both parties an opportunity to revisit the details
of the loan. The consequence may involve re-pricing, repayment, or ultimately no
change. It basically offers a potential loan reset; as such, it makes sense to consider
this negotiation date as the effective maturity date of the loan for spread-duration
purposes.

Practically, the presence of a pre-maturity negotiation feature makes very little
difference to our sensitivity formula. If, for our generic loan, we define the number

non-linear relationship between yield and price movements to somewhat offset this overestimation
effect. We avoid this correction, which lends a conservative aspect to this calculation.



204 3 Finding Model Parameters

of cash-flows associated with the negotiation date as Ñ ≤ N , then

Dm = 1

V (y)(1 + y)

Ñ∑
i=1

(ti − t)cti

(1 + y)ti−t
, (3.56)

≈
⎛
⎝

Ñ∑
i=1

cti

⎞
⎠

−1
Ñ∑

i=1

(ti − t)cti .

The structure of the spread-duration approximation is unchanged, it is merely
truncated when the negotiation date is inferior to the true maturity date. For those
loans without such a feature in their contract—where N = Ñ—then no difference
in the spread-duration measure is observed.

Colour and Commentary 38 (SPREAD DURATION): The estimation of
credit migration requires, for each individual loan obligation, an estimate of
its sensitivity to credit-spread movements. In other words, we require spread-
duration estimates. A proxy for modified spread duration is employed that
assumes a zero overall yield level. The linear nature of this assumption and
the consequent overestimate of sensitivity for any non-negative yield imply
that this is a relatively conservative estimator. One additional, firm-specific,
adjustment is involved. Many loans involve a negotiation date—typically
occurring several years prior to final maturity—that provides both parties
the opportunity, in the event of material changes to their position, to revise
the contractual details. When such a feature is present, a revised cash-flow
stream to this intermediate date is employed.a Ultimately, the computation of
spread duration is a simple, but data-intensive affair.

a More generally, any lending entity engaged in such calculations will need to take into
account any important firm-specific contractual details.

3.5.2 Credit Spreads

Logically, one could imagine the specification of a separate loan-spread value for
each credit class and loan. This would quickly become practically unmanageable.
Instead, the typical approach is to specify a generic credit-spread level for each of
one’s credit categories. Were a loan to migrate from one credit class to another, it
would experience an associated change in its category specific credit-spread level
with a corresponding valuation effect.
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There is a broad range of sources one might use to inform credit spreads:
internal lending spreads, observed corporate bond prices, the credit-default swap
(CDS) market, and even model-based implied values. Each offers advantages and
disadvantages and, unfortunately, there is no one dominant data source. Bond-
market information is a useful benchmark for comparative purposes, but these
values are computed in an overly broad-based manner. That is, the range of entities
within a credit-rating class used to estimate generic bond spreads are surprisingly
heterogeneous and not necessarily representative of firm-specific business exposure.
For this reason, we argue that internal lending spreads are the most sensible source
for determination of credit spreads.

Data alone will not resolve the problem. We also require a theoretical, and
economically motivated, approach towards the description of credit spreads. This
turns out to a surprisingly deep question. To make progress, one must touch upon
a variety of areas: bond pricing, corporate finance, credit-risk models, probability
theory, and statistics. The following sections, accepting this challenge, offer a
simplified, workable implementation for use in our economic-capital framework.

The Theory

The hazard rate is a central character in the modelling of credit spreads. Loosely
speaking, it can be thought of as the default probability over a (very) short time
period. Bolstered with this concept, the credit spread of the ith entity—following
from Hull and White [23]—can be profitably described by the following identity,

hi ≈ Si (t, T )

1 − γi

, (3.57)

where hi denotes the hazard rate, Si (t, T ) is the credit spread for the time interval
(t, T ) and γi is the loss-given-default. This expression also plays a central role
in fitting hazard-rate functions for the valuation of loan and other credit-risky
portfolios.74 It also highlights an important, but intuitive, notion: the credit spread
depends on one’s assessment of the firm’s creditworthiness and, in the event of
default, recovery assumptions.

Equation 3.57 is the key character for an empirical estimation of credit spreads—
and indeed it will prove useful in latter discussion for verification purposes—but we
seek a theoretical approach.Merton [35] remains, to this day, the seminal theoretical
work in the area of credit-risk modelling. It forms the foundation of the entire
branch of structural credit-risk models. The key idea is that a default occurs when

74 The level of hi , more specifically, is often determined from credit-default swap contracts. See
Bolder [7, Chapter 9] for more details.



206 3 Finding Model Parameters

the value of the firm’s asset dip below their liabilities. Framed in a continuous-
time mathematical setting, this logical idea permits derivation of a host of useful
relationships for computation of credit-risk-related prices and risk measures. We
will lean on it heavily in the following development.

The Merton [35] approach begins by defining the intertemporal dynamics of an
arbitrary firm’s assets on the probability space (�,F ,P) as

dAt

At

= μdt + σdWt , (3.58)

where At denotes the asset value, while μ and σ represent the expected asset
return and volatility, respectively. {Wt,Ft } is a standard, scalar Wiener process on
(�,F ,P).75 Operationalizing this key idea leads to the second ingredient in our
recipe: the default condition. Practically, the default event over (t, T ] is written as,

{AT ≤ K} , (3.59)

whereK represents the firm’s liabilities. Practically, and this is Merton [35]’s central
insight, it occurs when the value of a firm’s assets fall below its liabilities. Succinctly
put, default is triggered when equity is exhausted.76

With a gratuitous amount of mathematics and some patience, one can describe
the probability of default in this structure, over the time interval (t, T ], as

P (AT ≤ K) ≡ p(t, T ) = �

⎛
⎜⎜⎜⎝

− ln
(

At

K

)
−
(
μ − σ 2

2

)
(T − t)

σ
√

T − t︸ ︷︷ ︸
δt (μ)

⎞
⎟⎟⎟⎠ , (3.60)

where � denotes the cumulative distribution function of the standard univariate
Gaussian probability law.77 The fairly unwieldy ratio in Eq. 3.60—which we have
called δt (μ)—is a quite famous output from the Merton [35] framework. δt is the
so-called distance to default. This quantity plays an important role in industrial
credit-analytic methodologies.78 As the name suggests, distance-to-default is a
standardized measure of how far away a firm is from default. It seems quite natural
that it would show up in a default-probability definition. Mechanically, the larger

75 See Karatzas and Shreve [28] for much more information on stochastic processes in general and
Brownian motions in particular.
76 We have, in fact, already a (multivariate) version of these ideas in our development of the
threshold model in Chap. 2. That is not an accident.
77 See Bolder [7, Chapter 5] for the details of this derivation.
78 See, for example, Crosbie and Bohn [13].
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the distance to default, the lower the probability of default. It depends, again quite
intuitively, on the current value of firm assets (i.e.,At ), the length of the time horizon
under consideration (i.e., T −t), the size of the liabilities (K), and the risk and return
characteristics of the firm’s assets (i.e., μ and σ ).

One of the challenges of using Eq. 3.60 is that determination of asset returns
and volatilities can be practically quite challenging. This is because firm assets are
not—outside infrequent balance-sheet disclosures—observed with any regularity.
Resolving this problem involves turning to firm equity values, which, in contrast to
their asset equivalents, are readily and frequently observable. This brings us into the
realm of asset pricing and necessitates moving to a new probability measure. More
specifically, we need to use the equivalent martingale measure,Q, induced with the
choice of money market account as the numeraire asset; this is often termed the
risk-neutral measure. This takes us off onto another mathematical foray, but with
some persistence we may actually write the risk-neutral default probability as,

Q (AT ≤ K) ≡ q(t, T ) = �

⎛
⎜⎜⎜⎝

− ln
(

At

K

)
−
(
r − σ 2

2

)
(T − t)

σ
√

T − t︸ ︷︷ ︸
δt (r)

⎞
⎟⎟⎟⎠ , (3.61)

where r represents the risk-free interest rate.79 Under the Q measure, by construc-
tion, all assets return the risk-free rate. This is a core idea behind risk-neutrality.

What has all this provided? In Eqs. 3.60 and 3.61, we have two alternative
default-probability definitions that apply under two different probability measures.
Their forms are essentially identical, up to the expected asset returns. Beyond
their obvious utility as default-probability estimates, Eqs. 3.60 and 3.61 provide
the first step towards a more general credit-spread definition. This begins with
understanding that the risk-neutral default probability is also closely related to the
credit spread. Both are involved in pricing activities and both depend on the firm’s
basic creditworthiness. With a bit of basic algebraic manipulation, we can simplify
the risk-neutral default probability in Eq. 3.61 to help us with our objective of
creating a sensible credit-spread estimator.

Reorganizing Eq. 3.60, we can identify the following relationship

− ln

(
At

K

)
= �−1

(
p(t, T )

)
σ
√

T − t +
(

μ − σ 2

2

)
(T − t). (3.62)

79 This turns out to be tightly linked to the Black and Scholes [5] option-pricing model. Once again,
the reader is referred to Bolder [7, Appendix B] for the graphic details and multiple additional
references.



208 3 Finding Model Parameters

If we insert this expression into Eq. 3.61, we may write the risk-neutral default
probability as a function of the physical probability of default. The result is,

q(t, T ) = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eq. 3.62︷ ︸︸ ︷
�−1

(
p(t, T )

)
σ
√

T − t +
(

μ − σ 2

2

)
(T − t) −

(
r − σ 2

2

)
(T − t)

σ
√

T − t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.63)

= �

(
�−1

(
p(t, T )

)
+
(

μ − r

σ

)√
T − t

)
.

This is quite elegant. If μ = r , then the two default probability definitions coincide.
Since in the face of risk aversion, μ > r , we find ourselves in a situation where
risk-neutral default probabilities are systemically greater than physical default
likelihoods. A crucial factor in Eq. 3.63 is the μ−r

σ
term, which is broadly known

as the Sharpe ratio.80 The difference between these two default quantities thus
basically boils down to a risk-adjusted return ratio.81

Although this result depends upon the underlying assumption of asset returns,
it does have a fairly general applicability. Bluhm et al. [6], who explore this idea
in detail, also offer a variety of options to expand and motivate Eq. 3.63. Most of
them are related, in one way or another, to the well-known Capital Asset Pricing
Model (or CAPM) introduced decades ago by Treynor [43], Sharpe [39, 40] and
Lintner [32]. For our purposes, we will examine this in a rather more blunt fashion.
In particular, we rewrite Eq. 3.63 as,

q(t, T ) = �

(
�−1

(
p(t, T )

)
+ λ

√
T − t

)
, (3.64)

where λ ∈ R+. This step involves basically rolling the μ, r , and σ values into a
single parameter. Capturing each individual quantity in an accurate manner is not a
trivial undertaking; a single-parameter approach, as we’ll see soon, turns out to be
practical for calibrating credit spreads.

The consequence of the previous development is an economically motivated
description of the relationship between physical and risk-neutral default probabili-
ties. Arriving at Eq. 3.64 has touched upon a variety of foundational contributions
to the finance literature: Merton [35]’s structural-default model, Black and Scholes

80 Refer to Sharpe [41, 42] for the history of this important quantity.
81 This formulation also arises in the interest-rate literature and, with a similar form, is referred to
as the market price of risk; this is, in fact, the motivation for use of the (forthcoming) λ notation.
See, for example, Björk [4, Chapter 16].
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[5]’s option-pricing formula, Sharpe [41]’s famous ratio, the market price of risk
formulation found the short-rate model literature launched by Vasicek [44], and the
omnipresent CAPM model. The next step is to link this definition more closely to
the credit spread.

Pricing Credit Risky Instruments

Asset-pricing, in its most formal sense, entails the evaluation of the discounted
expected cash-flows associated with a given financial instrument. In a no-arbitrage
pricing—see, for example, Harrison and Kreps [20] and Harrison and Pliska
[21]—this expectation must be evaluated with respect to the equivalent martingale
measure, Q. This may seem to be an excessive amount of financial-economic
machinery, but it is important to ensure that the foundations of our proposed method
are solid.

Our credit-spread proposal is best understood, in this specific context, using a
zero-coupon bond. In the absence of credit risk, one need only discount the one
unit of currency pay-off back to the present time. In the presence of a possible
firm default, an adjustment is necessary. Let’s denote the cash-flow profile of this
instrument as C(t, T ). Following from Duffie and Singleton [14, Chapter 5], this
can be succinctly described as,

C(t, T ) = e− ∫ T
t rudu︸ ︷︷ ︸

Risk-free
part

− γ · IAT ≤K · e− ∫ T
t rudu

︸ ︷︷ ︸
Adjust for
default risk

, (3.65)

where

IAT ≤K =
{
1 : Default (i.e., AT ≤ K)
0 : Survival (i.e., AT > K)

, (3.66)

and r is the instantaneous short-term interest rate. To simplify things somewhat, we
will assume that r is deterministic. As previously discussed, the price of the cash-
flows in Eq. 3.65 is simply the expectation under Q. The result is,

E
Q
t

(
C(t, T )

)
= P̂ (t, T ) = E

Q
t

(
e− ∫ T

t rdu − γ · IAT ≤K · e− ∫ T
t rdu

)
, (3.67)

= e−r(T −t ) − γ · Q(AT ≤ K) · e−r(T −t ),

= e−r(T −t )

(
1 − γ · q(t, T )

)
.

If we are willing to assume the reasonableness of the structural Merton [35] model,
then we could introduce the definition of q(t, T ) from Eqs. 3.61 or 3.64. Using the
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latter version, we can write the price of a zero-coupon bond as,

P̂ (t, T ) = e−r(T −t )

⎛
⎜⎜⎜⎝1 − γ ·

q(t,T )︷ ︸︸ ︷
�

(
�−1

(
p(t, T )

)
+ λ

√
T − t

)

︸ ︷︷ ︸
Eq. 3.64

⎞
⎟⎟⎟⎠ . (3.68)

This is progress. We have represented the price of an, admittedly simple, credit-
risky fixed-income security as a function of its tenor, physical default probability,
and loss-given-default values. This is not the typical pricing relationship, but it is
both consistent with first principles and well suited to our specific purposes. All that
is missing is an explicit connection to the credit spread.

The price of a zero-coupon bond can always be represented as,

P̂ (t, T ) = e−y(T −t ), (3.69)

where y is essentially an unknown that is used to solve for the price. y, of course,
is generally termed the bond yield. A common, and powerful, decomposition of the
bond yield is,

y ≈ r + S, (3.70)

where r and S denote the risk-free rate and credit spread, respectively.82 Quite
simply, the yield of any fixed-income security can be allocated into two portions:
the risk-free, time-value-of-money component and an adjustment for potential
default.83

With this decomposition, we are only a few steps from our destination. Combin-
ing Eqs. 3.68 to 3.70 and simplifying, we have

e−(�r+S)(T −t )︸ ︷︷ ︸
P̂ (t,T )

=����
e−r(T −t )

(
1 − γ · �

(
�−1

(
p(t, T )

)
+ λ

√
T − t

))

︸ ︷︷ ︸
Eq. 3.68

, (3.71)

e−S(T −t ) =
(
1 − γ · �

(
�−1

(
p(t, T )

)
+ λ

√
T − t

))
,

S(t, T , γ, p, λ) = − 1

T − t
ln

(
1 − γ · �

(
�−1

(
p(t, T )

)
+ λ

√
T − t

))
.

82 We just used this fact in the previous section to derive an expression for spread duration.
83 This is a bit of a simplification, since actual bond prices also incorporate risk adjustments for
maturity, liquidity, and other market-microstructure effects. For this reason, in the interest of full
transparency, Eq. 3.70 should be thought of a high-level approximation.
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The consequence is a defensible expression for the credit spread as a direct
function of bond tenor, loss-given-default, physical default probability, and a risk-
related tuning parameter, λ. The first three quantities—for a given instrument—can
be directly estimated. The tuning parameter, however, needs to be calibrated to
current—or average—market conditions.

Equation 3.71 may look somewhat messy; one might worry that it is not
completely intuitive. A quick sanity check can help. Let’s set γ = 1 and return
to the first line of Eq. 3.71. A bit of manipulation reveals,

e−(r+S)(T−t ) = e−r(T −t )

⎛
⎜⎜⎜⎝1 − 1︸︷︷︸

=γ

· �
(
�−1

(
p(t, T )

)
+ λ

√
T − t

)

︸ ︷︷ ︸
q(t,T )

⎞
⎟⎟⎟⎠ , (3.72)

e−(r+S)(T−t ) = e−r(T −t )

(
1 − q(t, T )

)
,

δ̂(t, T ) = δ(t, T )S(t, T ),

where S(t, T ) and δ̂(t, T ) are the survival and risky discount functions over (t, T ],
respectively. Here we see the classical construction of the credit-risky discount
curve. We can take comfort that this relationship—only a step or two from
our formulation—lies at the heart of modern loan and corporate-bond valuation
methodologies.

The Credit-Spread Model

Equation 3.71 offers a succinct, economically plausible analytic link between
the credit spread and our key economic-capital model variables: physical default
probabilities and loss-given-default values. This functional form offers a path to
enhancing the generality and robustness of a firm’s credit-spread estimates. It is
not, however, without a few drawbacks. As always, the principal drawbacks of
any mathematical model are found in the assumptions. Establishment of Eq. 3.71
involved the following key choices:

1. a log-normal distributional assumption (i.e., geometric Brownian-motion dynam-
ics) for the firm’s asset prices;

2. use of a simplified zero-coupon bond structure for its construction;
3. collapsing the entire market-price of risk, or Sharpe ratio, structure into a single

parameter; and
4. assumption of a constant risk-free interest rate.

All of these assumptions, with patience and hard work, could potentially be relaxed.
The cost, however, would be incremental complexity. We actually desire to move in
the opposite direction; that is, introduce more simplicity.
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The credit-spread estimates within our credit-risk economic capital model are,
by construction, independent of tenor. The principal reason is to manage conceptual
and computational complexity. It also helps to keep the results reasonable intuitive
and easier to communicate with various stakeholders. For this reason, we propose
effectively eliminating the time dimension by setting T − t = 1. We furthermore
select a common loss-given-default parameter for all issuers. Let’s call this γ̂ . This
permits us to immediately simplify Eq. 3.71 to

Si (γ̂ , pi , λ) = − ln

(
1 − γ̂ · �

(
�−1(pi) + λ

))
, (3.73)

for the ith credit-spread observations. As a practical matter, we set γ̂ = 0.45.
This value is close to the historical portfolio average, reasonably conservative, and
consistent with regulatory guidance.84

The next point is that a single market price of risk parameter, λ, is not sufficiently
flexible to fit either the observed internal margin or bond-market data. It can fit
either the investment grade or speculative grade credit spreads, but not both. As a
consequence, we have elected to make λ a function of the rating class to permit
sufficient flexibility to accurately fit the observed data. This can, of course, be
accomplished in a number of ways. The simplest would be to assign a separate
parameter to each of our 20 distinct notches. Such an approach raises two issues.
First, it gives rise to a large number of parameters. Second, it does not constrain the
interaction between the credit-rating-related λ values in any way. Economically, for
example, we would anticipate reasonably smooth risk-preferencemovements across
the credit scale.

Our solution is to construct the following non-linearmarket price of risk function:

λ(pi) = ς0 + ς1pi + ς2p
2
i . (3.74)

Other choices are certainly possible, but this form is parsimonious and provides a
reasonable degree of smoothness. The non-linearity does not play a central role, but
appears to add a bit of additional flexibility to the overall fit.

Equation 3.74 permits us to restate our credit-spread representation in its final
form as

Si (γ̂ , pi , ς0, ς1, ς2) = − ln

(
1 − γ̂ · �

(
�−1(pi) +

(
ς0 + ς1pi + ς2p

2
i

)

︸ ︷︷ ︸
Eq. 3.74

))
,

(3.75)

84 As discussed in Chap. 11, this is the setting for the foundational Basel IRB method.
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for i = 1, . . . ,K internal credit-margin observations in our dataset. If we use Si

to denote the ith observed credit-margin value, then our three ς parameters can be
estimated by solving the following optimization problem:

min
ς0,ς1,ς2

K∑
i=1

(
Si − Si

(
γ̂ , pi , ς0, ς1, ς2

))2

. (3.76)

The least-squares or L2 objective function was selected for its mathematical
advantages.

As a final practical (and technical) matter, the problem can be solved in the
raw form presented in Eq. 3.76 or the squared differences can be weighted by
the position sizes. The discrepancy between the two approaches is not particularly
large, but we adopt the weighted estimator to lend a bit more importance to the
larger disbursements. This necessitates a small change to the optimization problem
in Eq. 3.76. To accommodate this, we denote �S ∈ R

K×1 as the column vector of
observed and estimated spread deviations as

�S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1 − S1

(
γ̂ , p1, ς0, ς1, ς2

)

S2 − S2

(
γ̂ , p2, ς0, ς1, ς2

)

...

SK − SK

(
γ̂ , pK, ς0, ς1, ς2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.77)

and introduceW ∈ R
K×K as a diagonal matrix of loan exposures with the following

form:

W =

⎡
⎢⎢⎢⎣

c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...

0 0 · · · cK

⎤
⎥⎥⎥⎦ , (3.78)

where ci represents the exposure of the ith lending position. Using these two
components, our revised optimization problem becomes:

min
ς0,ς1,ς2

�ST W �S. (3.79)

The only difference with this latter representation—beyond the introduction of
matrix notation—is that smaller loans play a slightly less important role in the final
estimates than their larger equivalents.
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Credit-Spread Estimation

The credit spread incorporates four key elements: the nature of the default event, an
assessment of the entity’s default probability, the magnitude of loss given default,
and an approximation of general risk preferences. Our methodology incorporates all
four pieces. First, it leans on the structural default definition that colours much of
modern financial literature and practical applications. Non-coincidentally, it also sits
at the heart of our economic-capital framework. Second, it employs the same default
probabilities found in the final column of our transition matrix. Third, it makes a
generic assumption for the loss-given-default of all counterparties.85 Finally, the
actual credit-spread calibration occurs through the risk-preference parameters.

It is rather difficult, given the high sensitivity of internal credit spread data,
to provide any significant degree of transparency regarding the actual parameter-
selection process. As a consequence, we will focus principally on the final results. A
few global comments are, however, entirely possible. First of all, consistent with the
long-term through-the-cycle approach, the internal margin dataset spans the last two
decades. A second point is that, in accordance with lending mandate and policies, it
is rather skewed towards the investment and high-quality speculative grades. Since
credit-risk estimates are necessary for the entire range of credit-rating classes, this
precludes a simply curve-fitting approach to the problem.86 This underscores the
value of an economically motivated approach.

Figure 3.27 provides the resulting credit spreads associated our approach. The
credit spread increases in a monotonic fashion from roughly 40 basis points at the
highest level of credit quality to approximately 10% at the lower end of the scale.
Reassuringly, broad-based bond-spread averages—collected over the same period
as the internal spread data—are qualitatively similar to the final results.

Circling back to Eq. 3.57, an additional sanity check on our spread estimates is
also possible. Following our characterization of the hazard rate in Eq. 3.57—also
offered by Hull et al. [24]—a quick, but meaningful, approximation of the risk-
neutral probability is given as

Qi = Q(τ ≤ T ), (3.80)

≈ 1 − Q(τ > T ),

≈ 1 − e−hi ,

where, in this example, T − t = 1 and τ denotes the default event. Taking this a step
further, actual and risk-neutral default probabilities are linked—see, for example,

85 Relaxing this assumption does not significantly change the overall fit and merely leads to
additional complexity in the model implementation.
86 In particular, the high-quality credit ratings can be fit quite readily, but extrapolation would be
required to fill the entire scale. Extrapolation so far outside of one’s data range is typically a fairly
sketchy practice, which we would prefer to avoid.
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Fig. 3.27 Credit-spread estimates: This graphic illustrates the estimated credit spreads, organized
by credit-risk rating, stemming from the previously described methodology. Corporate bond
spreads, where available, are included for comparison purposes.

Jarrow [25] for more detail—by the following identity:

Qi = ϑiPi , (3.81)

where ϑi > 0 is yet another representation of the risk premium. Less accurate (and
formal) than the Sharpe ratio structure found in Eq. 3.63, it nonetheless captures the
distance between the physical and risk-neutral default probabilities. This (model-
independent) form is often used in empirical academic studies. Equation 3.81 further
suggests that if we compute the physical and risk-neutral probabilities, their ratio
will provide some insight into the level of the risk premium (i.e., ϑi = Qi

Pi
).

All we need are the risk-neutral default probabilities. Incorporating our estimated
spreads into Eq. 3.80 provides the solution. Embedded, quite naturally, in our
economically motivated credit-spread methodology are both flavours of default
probability. From Eq. 3.57, we have that

Qi ≈ 1 − exp

(
−Si

R

)

︸ ︷︷ ︸
Eq.
3.57

, (3.82)

for i = 1, . . . , q . This provides all of the necessary ingredients to calculate the
inferred risk premium.

Figure 3.28 summarizes the results. The left-hand graphic explicitly compares
the physical—extracted from the final column of our transition matrix—and the
implied risk-neutral default probabilities. In all cases, the risk-neutral values dom-
inate the physical default probabilities; the magnitude of the dominance, however,
decreases as we move out the credit spectrum. The right-hand figure displays the
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Fig. 3.28 A point of comparison: This figure examines the implied risk-neutral default probabil-
ities and inferred risk premia associated with the estimated internal-margin-based credit-spreads.
The results are broadly consistent with empirical evidence in this area.

ratio of these two default probabilities—in this manner, we may infer the risk
premium. The average value—across all credit classes—is approximately 17 units.
At the short end, however, it approaches 100 and it falls to less than 2 for credit
category 20.

A number of empirical studies examine this relationship. Heynerickx et al. [22]
is a good example. This work performs a rather involved study using a broad
range of credit classes and tenors over the period from 2004–2014. Referring to the
risk premium as the coverage ratio, they present a similar pattern to that found in
Fig. 3.28. Over the entire period, for example, risk premia range frommore than 200
for AAA issuers to roughly 2 for CCC entities.87 In the post-crisis period, however,
the general levels are somewhat lower, although the basic shape remains consistent.
In this framework, the general form of our results appears to be consistent with this
(and other) empirical work.

Colour and Commentary 39 (CREDIT-SPREAD ESTIMATION): Estimation
of long-term, through-the-cycle, unconditional credit spread levels is, under
any circumstances, a serious undertaking. Closely linked to macroeconomic
conditions and the vagaries of financial markets, credit spreads are observ-
ably volatile over time. Broad-based credit indices, observed bonds spreads,
and credit-default swap contracts can provide insight into credit spread levels.
The specificity of one’s lending activities and pricing policies nonetheless ren-
ders it difficult to make direct use of these values. We present an economically

(continued)

87 Aiming for a through-the-cycle estimate of credit spreads suggests that we focus on the longer,
approximately unconditional, perspective.
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Colour and Commentary 39 (continued)
motivated approach that uses one’s history of internal lending margins. While
the actual implementation is relatively straightforward, the underpinnings
of the model take us on a whirlwind tour of central theoretical finance
results over the last four or five decades. An interesting, and useful, sanity
check on the final results involves direct comparison of the physical default
probabilities from our transition matrix with the risk-neutral equivalents
implied by our credit-spread estimates. In this regard, the final results appear
to be broadly consistent with extant empirical evidence.

3.6 Wrapping Up

This long and detailed chapter focuses on the specific choices one needs to take in
determining the parametric structure of a large-scale credit-risk economic capital
model. There is no shortage of moving parts. Table 3.13 tries to help manage all of
this complexity by summarizing the key decisions; these are the main settings of our
control panel.

Table 3.13 Parametric fact sheet: The underlying table provides, at a glance, a summary of the
key methodological choices associated with our credit-risk economic-capital model.

Dimension Description

Transition matrix • Internal 21-state credit-state scale

• Corporate and sovereign matrices

• Common probabilities based on long-term S&P estimates

Systemic factors • Geographic region and industrial sector

• 13 regional, 11 industrial, 1 public-sector

Systemic correlations • Based on 20-year monthly equity-series data

• Use Spearman’s rank correlation

Factor loadings • Overidentified: 50% weight on region and sector

• Unit weight to region if public sector

• All other factor loadings set to zero

Systemic weights • Cube based on region, sector, and firm size

• Values must fall in [0.12, 0.4]
Tail dependence • Use of expert judgement to set ν = 70

Recovery • Mean value from internal loss-given-default framework

• Recovery uncertainty calibrated to ensure bimodal recovery density

Instrument tenor • Spread duration proxied with weighted average cash-flows

• Use (when appropriate) negotiation date instead of final maturity

Credit spreads • Based upon internal lending margin data

• Calibrated via an economically motivated (theoretical) approach
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When combined with Chap. 2, a fairly complete and practical credit-risk model
view should be emerging. The remaining missing point—before we can turn our
attention to a collection of interesting and helpful applications—relates to the actual
implementation. With some models, such questions are not terribly interesting;
many possible approaches are possible and can be considered broadly equivalent.
In this case, the combination of simulation methods with even a moderately sized
portfolio imply the need to think hard about questions of model implementation.
Industrial economic capital, along with many related applications, is required on
a daily basis to properly manage our portfolios; as a consequence, computational
speed matters. One also needs a plan to organize and build the factory performing
these ongoing calculations.
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