
Chapter 2
Constructing a Practical Model

Don’t always blindly follow guidance and step-by-step
instructions; you might run into something interesting.

(Georg Cantor)

As we saw in the introductory chapter, economic capital is a model-based approach
to assess a firm’s worst-case capital demand across a broad range of enterprise risks.
The three largest elements are generally credit, market, and operational risk.While it
is conceptually possible to try to describe some of these key risks in a joint manner,
it is more typical to handle them separately. It is simply too difficult to construct a
defensible simultaneous description of these three major risks. Moreover, estimating
each piece separately and then simply adding them together takes a conservative
stance on the interactions between these risks.1

For the vast majority of banking institutions, credit risk represents the single
most important element of economic capital. The principal concern of a lending
institution is (almost invariably) extending funds to another entity and ultimately
not being paid back.2 Depending on the size of the loan—and any amounts
recovered during bankruptcy proceedings—the loss to the firm can be substantial.
A second, related worry, is that the borrowing entity’s financial situation worsens,
making default (and attendant future losses) more likely. The deterioration in a
borrower’s creditworthiness also typically generates (unrealized) financial losses.
This is because loan (and market) pricing—determined based on the borrower’s
situation at the time of the loan—is usually inadequate to cover the heightened risk
of default. These two dimensions are referred to as default and credit-migration risk,
respectively.

Lending and investing activities are nonetheless a banking institution’s daily
bread, so they cannot be simply avoided. Instead, they need to be managed. A
critical aspect of lending, of course, is the initial assessment of a firm’s financial

1 In particular, it assumes no scope for diversification among these central risks.
2 This can occur in a few ways: a direct loan, the purchase of a firm’s bond, or even investment in a
firm’s equity. The mechanics of the extension of credit may differ, but the basic risks are the same.
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position. This involves capturing all current information and also taking a forward-
looking perspective. Such analysis allows the lender to determine if it makes sense
to extend the loan in the first place. A second component is credit mitigation; these
are features that safeguard the lender in the future. One important tool involves
structuring the loan contract to provide recourse to the lending firm in specific
situations. Broadly, such contractual features are referred to as loan covenants.
These might take the form of limits on the lending firm’s financial ratios or
optionality in the loan contract permitting early termination and repayment.3 An
additional form of credit mitigation relates to assignment of collateral—in the form
of other assets from the borrowing firm—to be collected in the event of default. A
final aspect involves guarantees, where another entity steps in to fulfil the obligation
in the event original borrower is not capable of meeting it.

Credit mitigation thus includes loan covenants, collateralization, and guarantees.
These are standard credit-risk management tools for every lending institution, but
some amount of risk always still remains. If the lending institution accepted no
risk in a lending transaction, they could hardly expect to earn any return for their
efforts.4 At the same time, there is also competition among lenders in the economy.
This mainly occurs along the pricing dimension, but it also naturally extends to the
extent and severity of credit-mitigation measures.5 In short, there are good reasons
why credit risk can be mitigated, but not avoided. Managing credit risk must thus
also extend beyond credit-risk mitigants. It also needs to be carefully measured;
managing and balancing risk in a prudent fashion is dreadfully uncomfortable if
you cannot measure it. Explaining how this might reasonably be performed is the
principal task of this chapter.

2.1 A Naive, but Informative, Start

Every serious credit-risk economic capital model is complex and multifaceted.
Jumping straight into the detail, without a bit of context, would be intimidating
and counterproductive. Let’s instead begin with a simpler, although admittedly
somewhat naive, alternative modelling approach: the independent-default model.6

As the name clearly indicates, it treats every default event as independent. The
corollary of this central assumption is that it also entirely ignores systemic risk.

3 These are only a few examples. Many other types of loan covenants are possible.
4 As clichéd as it might sound, there is truth to the old saying “no risk, no reward.” It also sounds
far more serious and erudite in its original latin form, periculum praemio.
5 Faced with two loans of the same price, a borrower will rationally accept the alternative offering
the least number of constraints on its activities.
6 In the spirit of full disclosure, this method represents one of our challenger models computed
every day in our economic-capital framework as a comparator to the more complex production
methodology.
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Table 2.1 Important credit-risk variables: This table introduces the three of the most important
elements associated with the measurement of credit risk within any modelling venture: the exposure
at default, (unconditional) default probability, and loss-given-default.

Variable Symbol Acronym Description

Exposure-at-default ci EAD Magnitude of the loan at default

(Unconditional) default probability pi PD Probability of default over a
(T − t)-year horizon

Loss-given-default γi LGD Severity of the loss in the event of
default

This lack of realism makes it a poor choice of production model, but its associated
simplicity makes it an excellent place to start.

To build this initial model, we require some ingredients. Imagine that one’s
portfolio consists of lending exposures to I distinct credit obligors.7 We require
three pieces of information about each of these counterparties: the total amount of
exposure at play, the likelihood (or probability) of default over a given time horizon,
and the amount of recovery in the event of default. These are referred to as the
exposure-at-default, (unconditional) probability of default, and loss-given-default;
we will denote them—for the ith credit obligor—as ci , pi , and γi , respectively.
Table 2.1 provides a detailed summary of these three central quantities. It is useful,
for the less experienced reader, to gain a good familiarity with these objects from
the start. They will be employed repeatedly, in a variety of different ways, during
each of the following chapters.

In principle, all three elements outlined within Table 2.1 are random variables.
This implies that their future values are unknown and their range of possible
outcomes is described by some statistical distribution. Understanding this fact is
critical, because it will colour important modelling efforts in later discussion. For
this introductory discussion, however, we will unrealistically treat them as known,
deterministic quantities.

The kernel of the independent-default model is dead simple. The default event
associated with the ith credit obligor—which we will denote as Di—occurs
with probability pi . Survival, or non-incidence of default, naturally arrives with
probability 1 − pi . Default, in this context, is essentially a Bernoulli trial. Default
either occurs or it does not; it is a binary state. We can succinctly (and conveniently)
summarize this fact in the form of an indicator variable for each individual obligor,

IDi =
{
1 : default occurs during (t, T ] with probability pi

0 : survival until time T with probability 1 − pi
. (2.1)

7 We might also refer to these as risk owners; the idea is that they should represent a collective
entity for the determination of a default event. This can become rather involved in practice, but is
conceptually easy to understand.
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To be clear, we represent the current time as t and the final time-point of our analysis
as T . T − t describes the length of risk horizon.8

This development directly leads to a description of the portfolio loss as,

L =
I∑

i=1

ciγiIDi . (2.2)

This short expression might not look like much, but it is actually the launch-site
for all portfolio credit-risk models. It includes the exposures of all credit obligors,
their loss-given-defaults, and a trigger describing when default occurs (or not). The
objective is to characterize the distribution of the overall portfolio loss (L as at time
T ) through a description of the statistical behaviour of each of the three elements on
the right-hand side of Eq. 2.2. Given this loss distribution, we can compute a range
of interesting metrics for use in the measurement (and ultimately) management of
credit risk.

In the independent-default model, the only source of uncertainty arises from
each IDi term defined in Eq. 2.1. Since each IDi is statistically independent, the
problem is rather tractable. If we are willing to assume that all credit obligors have
the same default probability—that is, pi = p for all i = 1, . . . , N—we can even
find a closed-form solution for the distribution of L.9 Practically, characterization
of the distribution of L is readily determined via simulation methods. We can
conceptualize this as a coin-tossing exercise. Imagine that we have an (unfair) coin
where the probability of tails is pi and 1 − pi is heads. Tails represents default
and heads is survival. Now extend this to I coins each with this property. If we
independently flip all I coins, we can evaluate one realization of the portfolio loss.
If we flip this collection of coins thousands (or even millions) of times, we can trace
out all the possible permutations and combinations of portfolio credit loss. Equipped
with this information, we can proceed to estimate virtually any risk metric we might
desire.

This brute-force solution clearly requires an intimidating amount of coin flip-
ping.10 The effort is completely justified. If our objective is to capture one of the
most important risks to a lending institution, we need to answer the following
question: how likely is the coincident default of multiple important credit obligors
over the next T − t periods of time? The independent-default model—which basi-
cally takes the simplest possible route—provides a first incomplete answer to this
question. Blessed with simplicity, the independent-default model will nevertheless
underestimate this risk. The reason is that we are ignoring any possible default

8 It is often set to one-year, but it is regularly altered for different situations and applications.
9 A collection of independent, identically distributed Bernoulli trials follows the binomial distribu-
tion. See Bolder [7, Chapter 2] for much more detail on this question. A semi-analytic solution is
available in the more general case if one is willing to delve into more complicated mathematics.
Bolder [7, Chapter 7] touches on this idea.
10 Thankfully, we can comfortably delegate this daunting task to a computer.
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dependence (or correlation) between our lending counterparties. The larger point
is that even in the simplest setting, there is a surprising amount of complexity in
tracing out the credit-loss distribution. This situation will only get worse as we add
more realism to our modelling framework.

Colour and Commentary 12 (THE INDEPENDENT-DEFAULT MODEL):
The simplest approach to the modelling of portfolio credit risk involves a very
strong assumption: that the default events of each of one’s credit obligors are
independent. This is tantamount to assuming that all credit portfolio risk is
idiosyncratic or, in other words, there is no systemic credit risk. The logical
consequence of such a choice is somewhat ridiculous; it implies that with
a sufficiently large and diversified portfolio one could completely eliminate
credit risk. As discussed in the previous chapter, this is neither consistent
with economic theory nor is it a particularly conservative stance. We can
thus conclude that the independent-default model is not a serious option.
This does not, however, imply that it is not useful. Its simplicity, its use of
the bare minimum of inputs, and its (fairly radical) base assumptions make
it easy to understand and compute. In other words, not much can go wrong
in its calculation. This makes it an excellent choice of challenger model to
assist in trouble-shooting, interpreting, and communicating one’s production
methodology.

2.2 Mixture and Threshold Models

All production models—in an attempt to capture a higher degree of realism—
involve a number of complicated twists and additions. Addressing and organizing
this complexity is the main task of this chapter. It is nonetheless useful to quickly
sketch out the details of a few competing approaches before we jump into a
description of our actual choice. Serious candidates for the modelling of portfolio
credit risk fall into two main categories: mixture and threshold models.11 This
section will touch on both of these modelling frameworks. To keep it brief and
permit us to focus on the core concepts, we’ll restrict our attention to the one-factor
setting.

11 An excellent overview of these two approaches is found in McNeil et al. [29, Chapter 11].
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2.2.1 The Mixture Model

The principal shortcoming of the independent-default model is its failure to capture
systemic risk. The question thus becomes: howmight we capture this dimension in a
portfolio credit-risk model? The mixture-model setting solves this problem through
the randomization of the default probability. Instead of using the given value pi to
describe the unconditional default probability, we cleverly replace it with something
else that induces default correlation.

The general approach employed by all mixture models is to write each pi as
pi(Z), where Z is a random variable that is common to all credit obligors in one’s
portfolio. Z, which affects all variables—albeit in perhaps different ways—is the
systemic risk factor. This trick leads to a revised definition of our default indicator
from Eq. 2.2 as

IDi =
{
1 : default occurs during (t, T ] with probability pi(Z)

0 : survival until time T with probability 1 − pi(Z)
. (2.3)

An entire family of models can be constructed involving various choices of Z

and alternative specifications of pi(Z). One simple, mathematically pleasant, and
educational entry point is to set pi(Z) ≡ Z and Z ∼ β(α, β). In plain English, the
unconditional default probability is assumed to follow a beta distribution. The unit-
interval support of the beta distribution makes it a natural candidate for a probability
and, quite conveniently, also yields closed-form solutions for the loss distribution.12

The loss function remains unchanged from Eq. 2.2. Estimation of each mixture
model loss distribution can always be performed numerically via stochastic sim-
ulation. It involves the same frenzy of coin-flipping as in the independent-default
model with one important difference. At each iteration of the simulation model, one
draws the common systemic random variable,Z, from a hat.13 This value then resets
the individual probabilities of various individual coin flips for that realization. It is
useful to think of Z as a global macroeconomic variable. Each draw of Z thus tells
us something about the state of the world. When Z is large and positive, this pushes
up the default probabilities for all credit obligors in the portfolio; this would be an
adverse economic outcome. A small realization of Z creates the reverse chains of
events. In both cases, however, Z is the object inducing default correlation within
the model.

Given the value of Z, however, each coin flip is independent. This important
property is referred to as conditional independence. It ensures that the model has
both a systemic element—via the outcome of Z—and an idiosyncratic component
that enters through the coin flip. A particularly interesting, and popular, choice
of mixture model illustrates this fact very well. Consider the following default

12 See Bolder [7, Chapter 3] for more details on this so-called beta-binomial mixture model.
13 Or, if you prefer, it can be drawn from an urn or a bucket or from your favourite scientific
computing software.
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probability definition for the ith credit obligor:

pi(Z) = pi

(
ωi0 + ωi1Z

)
, (2.4)

where Z ∼ �(a, b) and ωi0 + ωi1 = 1. This yields the gamma-Poisson
mixture implementation, which is referred to as the CreditRisk+ model in practical
applications.14 Expanding Eq. 2.4, we arrive at a very useful decomposition,

pi(Z) = piωi0︸ ︷︷ ︸
Idio-

syncratic
component

+ piωi1Z︸ ︷︷ ︸
Systemic
component

, (2.5)

The randomized default probability is broken into both idiosyncratic and sys-
temic pieces. The unconditional default probability as well as the ωi0 and ωi1
parameters—termed factor loadings—determine the relative importance of these
two key aspects of risk.15 Determining the appropriate values of the ω’s is a critical
aspect of the practical model implementation.

Mixture or, as they are sometimes called, actuarial models approach the problem
from a reduced-form perspective. That is, the default event as an exogenous occur-
rence. Although it certainly induces default dependence and thereby introduces a
systemic-risk element, it is silent on how default actually happens. For some, this is
a weakness, for others it is a strength. In reality, it is neither; it is simply a feature of
mixture models. In the subsequent section, we introduce a competing approach that
attacks this question from another (more structural) angle.

Colour and Commentary 13 (MIXTURE MODELS): The family of mixture
models represents a first possible step in extending the independent-default
model into the realm of systemic risk. The origins of the term mixture model
stem from the fact that the binomial structure of the model is mixed with
another random variable driving the default probability.a There are thus
two sources of uncertainty: the coin flips themselves and the probabilities
of each coin. Both elements are, in the context of each simulation, in flux.
Their combination yields a full-blown description of the permutations and
combinations of default events incorporating ideas of both idiosyncratic and

(continued)

14 The model was first suggested and popularized by Wilde [43]. An excellent, and exhaustive,
overview of this approach is found in Gundlach and Lehrbass [17].
15 We can also see how this approach nests the independent-default model. It is readily recovered
by setting ωi0 = 1. The consequence of the condition ωi0 + ωi1 = 1 is that the systemic part falls
out of the model.
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Colour and Commentary 13 (continued)
systemic risk. CreditRisk+, a popular industrial model introduced by Wilde
[43], falls into this class of portfolio credit-risk model.

a The binomial structure of the independent-default model can also, by virtue of the law of
small numbers, be written in terms of the Poisson distribution. See Bolder [7, Chapter 2]
for more details on this important equivalency.

2.2.2 The Threshold Model

Shortly after the introduction of the celebrated Black and Scholes [4] model, Merton
[30] made a central contribution to the study of risk management. In an attempt
to identify a general and consistent approach for the pricing of corporate debt, he
provided the key notion underlying much of the credit-risk literature. The idea is
that a firm practically enters into bankruptcy when its equity is exhausted. Or, in
other words, when the value of its assets dip below its liabilities. In the language of
the previous chapter, we can think of this as a situation when a firm’s capital demand
exceeds its supply.

The genius of this observation is that it provides a concrete path for the modelling
of portfolio credit risk: one needs to describe the joint distribution of the indi-
vidual credit-obligor assets in one’s credit portfolio. Merton [30] offers a detailed
approach—using continuous-time mathematics—to characterize, parametrize, and
model this situation. Some years later, Vasicek [40, 41, 42] offered a simplification
of the basic structure of Merton [30]’s proposal. Further contributions to the
literature have lead to the current family of portfolio credit-risk threshold models.

The additional modelling element stems from a description of the firm’s asset
values.16 We thus specify for the ith credit obligor in one’s portfolio, the following
variable:

yi = aiZ︸︷︷︸
Systemic
component

+ biεi︸︷︷︸
Idio-

syncratic
component

, (2.6)

where Z, εi ∼ i.i.d.N(0, 1) and ai, bi ∈ R are selected such that yi ∼ N(0, 1).
We are no longer flipping coins, but we are not completely in uncharted territory.

16 Practically, these can also be viewed as asset returns. Sometimes this notion is generalized to
the idea of creditworthiness index or latent state variable. The effect is the same and the details
are important; for this introductory discussion, it is probably preferable to keep the logical, asset-
related link to the original Merton [30] approach.
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Inspection of Eq. 2.6 reveals that our variable, yi , is the sum of two familiar
components: systemic and idiosyncratic risk. A single realization of Z, which
captures the systemic component, provides a common effect—experienced in
potentially different ways—for all credit counterparties. Again, this can be viewed
as a global macroeconomic variable. Each of the firm-specific εi terms describes
the idiosyncratic effect. This explains why there are I of them and they are all
independent. Although the mechanics are very different, the ε’s are conceptually
not so far removed from our coin-flipping exercise. Finally, the parameters ai and
bi (i.e., factor loadings) determine the relative importance of the systemic and
idiosyncratic parts.17

It still requires a bit more discussion to get to our default event. We wish to
describe default as the situation when a firm’s assets are less than its liabilities. We
view each yi as a (random) characterization of the firm’s assets. Let’s introduce the
value Ki to represent the liabilities. By extension, using the Merton [30] insight, we
can (cheerfully) define the default event as,

Di ≡ {yi ≤ Ki}. (2.7)

If, via the realizations of Z and εi , yi falls below the value Ki , then default will
have occurred. The firm will have exhausted its equity and find itself in bankruptcy.
This directly permits us to re-express our default indicator variable—from Eqs. 2.1
and 2.3—in the following form:

IDi ≡ I{yi≤Ki} =
{
1 : default occurs during (t, T ] when yi ≤ Ki

0 : survival until time T if yi > Ki
. (2.8)

Once again, the loss definition from Eq. 2.2 remains the same. We have simply
provided an alternative characterization of the default event.

How might we now estimate the associated credit-loss distribution? Again, we
use simulation. We begin by drawing the common Z from the standard-normal
distribution. This is the systemic piece, which determines the general state of the
world. We then draw I independent εi random variates; once again, from the
standard normal distribution. These are the specific, firm idiosyncratic elements.
Using Eq. 2.6, we combine these inputs to construct our collection of firm asset
values, or yi’s. Comparing these to their liability values permits us to evaluate our
indicator variables from Eq. 2.8 and construct a single loss outcome.18 This process
is then repeated—more or less, ad nauseum—by a computer program until we have
a sufficiently clear view of our loss distribution to estimate risk metrics.

17 These coefficients should be linked back to the CreditRisk+ ω parameters introduced in Eq. 2.5.
Do not forget that the ai and bi parameters are chosen to force yi ∼ N(0, 1); this, as we’ll see in
subsequent discussion, leads to some practical headaches.
18 This also, of course, requires a sensible value for each threshold value, Ki .
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The class of threshold models, in contrast to the mixture-model world, takes
a structural approach to the characterization of credit risk. This means that it
endogenizes the default event; or rather, default is determined within the model, not
outside of it. Again, this does not make it necessarily superior to the mixture-model
approach, just different. For multiplicity of perspective, different is good.

Colour and Commentary 14 (THRESHOLD MODELS): The family of
threshold models represents a second possible approach towards adding
the systemic element into the independent-default model. The structure is,
practically at least, rather different. It begins with the assignment of a latent
state variable—conceptually related to the idea of a firm’s assets—to each
individual credit obligor. This state variable linearly combines two elements:
a systemic and an idiosyncratic component. The term threshold model arises
from the operation required to determine each individual default event. If a
credit obligor’s state variable falls below a pre-defined threshold—which is
motivated by the firm’s level of liabilities—then default is triggered. As in the
mixture-model setting, there is a common element impacting all obligors; this
induces default correlation and creates systemic risk. The independent, firm-
specific elements represent idiosyncratic risk. CreditMetrics is a well-known
industrial model, introduced by Gupton et al. [18], that uses the threshold-
model methodology. A twist upon this approach will form the foundation of
the our production credit-risk model.

2.3 Asset-Return Dynamics

Equipped with this background, we can now proceed to examine—in rather greater
detail and mathematical rigour—our specific choice. As previously indicated, the
origin of capital modelling at the NIB dates back a few decades. As with most
institutions, the framework has moved forward in a gradual—and sometimes
uneven—manner. The bank’s economic-capital model was initially implemented
in, and around, 2004 using an external vendor tool. Some years later, an in-house
approach was developed and brought into production. Over the course of time,
improvements and adjustments to the basic methodology were introduced. We
will refer to this as the legacy model. This situation continued until it received,
during 2019 and 2020, a serious conceptual and practical overhaul. Following exten-
sive statutory revision, a new implementation involving numerous methodological
changes became a necessity. The remaining sections of this chapter seek to help the
reader gain a better understanding of these choices, which together can be described
as our current (or revised) production model.
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While our legacy approach can be classified as a multivariate, multi-period
Gaussian threshold model, it has a few features that differ from the general class of
suchmodels. As such, it is useful and important to review,motivate, and to the extent
reasonable and feasible, derive the main elements of the legacy approach. This will
provide some context and justification for the recently revised methodology.

NIB has, from the beginning, opted for a threshold model. Use of this approach
requires one to introduce, as lightly introduced in the previous section, what
is referred to as a latent creditworthiness index. In the parlance of the Merton
[30] approach, this would be related to the value of an obligor’s assets (or asset
return).19 The generalization to a creditworthiness index is thus sensible, but it
naturally requires a mathematical structure. Specification of the mechanics of one’s
creditworthiness process is thus a first step into the construction of a threshold
model. We are going to allocate quite a bit of effort into understanding this first
step, because it has important implications for the overall development of the legacy
(and revised) NIB credit-risk modelling framework.

The characterization of the asset or creditworthiness state variable has custom-
arily been done in an industrial strength manner. The legacy approach does not
deviate from this practice. A bit of formality is thus in order. On the probability
space, (�,F ,P), a slight generalization of Merton [30]’s approach leads to the
following stochastic differential equation (SDE) to describe the ith obligor’s latent
(i.e., unobserved) creditworthiness process,

dX̃i(t) =
J∑

j=1

β̃ij dZj (t) + σ̃idWi(t). (2.9)

These are the intertemporal dynamics of {X̃i(t) : i = 1, . . . , I, t ≥ 0}, which
is a multivariate system of creditworthiness indices; there is one for each obligor.
Equation 2.9 lies at the heart of the legacy modelling methodology; indeed, some
variation on it is, in fact, the cornerstone of a sizable proportion of extant industrial
and academic models.

Equation 2.9, despite being only a single expression, requires a fairly dramatic
amount of explanation. The actual unpacking process will provide useful insight
into the structure of the model. Let us, therefore, try to address each definitional and
implicational point in turn:

1. DRIFT: The SDE in Eq. 2.9 does not have a drift term; as such, each increment
of Xi(t) should be centred around zero for all i = 1, . . . , I .20 One could

19 This latter interpretation makes logical sense in the context of a corporate entity, but can be a bit
more complicated for a sovereign, municipality, or government agency.
20 The actual individual values of the underlying process, {Xi(t) : i = 1, . . . , I, t ≥ 0}, will
however depend on the set of starting values for X. If they are all set to zero at inception, then
the expected value of each Xi will remain zero across time, although the actual outcomes will
practically deviate from this point.
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potentially imagine a generic drift term related to the business cycle, but not
only would this be difficult to identify, its incorporation would create important
challenges for the model’s implementation.

2. SYSTEMIC FACTORS: The stochastic element in the first term in Eq. 2.9,
{Zj(t) : j = 1, . . . , J, t ≥ 0}, is a correlated system of Brownian motions
with instantaneous correlation matrix, S̃. Each individual Zj is intended to
represent a market-related systemic risk factor. In general, this could be related
to macroeconomic outcomes, commodity prices, or even volatility. Practically,
for the purposes of our model, these factors are considered to be regional- and
industrial-related variables.

3. IDIOSYNCRATIC FACTORS: The second stochastic term in Eq. 2.9 is a
standard scalar Wiener process, {Wi(t) : t ≥ 0} for i = 1, . . . ., I . Each Wi is,
by construction, independent of both one another and the correlated systemic
risk factors. These elements, therefore, describe the idiosyncratic (i.e., specific)
risks associated with each individual obligor.

4. FACTOR DIMENSIONALITY: As a practical matter, we have that I � J . The
individual obligors in our portfolio are counted in hundreds, whereas the max-
imal number of correlated systemic factors is unlikely to exceed a few dozen.
This is both conceptually important—that is, there are relatively few sources
of systemic risk, but many types of idiosyncratic risk—and also of practical
interest since it determines the dimensionality of one’s parametrization.

5. PROPERTIES OF BROWNIAN MOTION: The presence of the Brownian
motions implies time-independent increments and Gaussianity. There is some-
thing for everyone. To be more specific—for the probabilist or statistician—the
time-increment of a standard Wiener process associated with the ith credit
obligor, Wi(t) − Wi(s) with t > s, are independent and distributed as
N(0, t − s). Moreover, given a set of time increments, t > s > v, then
the increments Wi(t) − Wi(s) and Wi(s) − Wi(v) are independent. For an
econometrician, this implies that the idiosyncratic factors are independent
from both a cross-sectional and time-series perspective. The systemic factors,
however, are not cross-sectionally independent; their linear dependence is
captured by the instantaneous correlation matrix, S̃. Since the system {Zj(t) :
j = 1, . . . , J, t ≥ 0} is a collection of Brownian motions, non-overlapping
systemic increments remain independent over time. For the economist, this
implies that—whether from an idiosyncratic or systemic perspective—shocks
regarding the creditworthiness of our set of obligors in one period are inde-
pendent of similar shocks received in other periods. In the real world, for the
practitioner, this is quite unlikely to be true. There are probably temporal trends
in the evolution of creditworthiness, but this model assumes them away. Even
if you believed such trends exist, however, reliably identifying their magnitude
and dynamics is likely to be empirically very difficult (or even impossible).

6. TIME CONTINUITY: In this general setting, Eq. 2.9 implies that our cred-
itworthiness system has continuous sample paths. While this is an attractive
theoretical property, practically we cannot observe the creditworthiness of any
entity at each possible instant in time. Economic-capital is typically estimated
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in annual increments; in some cases, one might wish to consider monthly credit
migration, but this is probably the feasible lower limit of time granularity. The
consequence is that it will be necessary to discretize Eq. 2.9 to create a workable
implementation.

7. TIME HOMOGENEITY: The model parameters, β̃ij , σ̃i ∈ R for all i =
1, . . . , I and j = 1, . . . , J , determine the instantaneous relative weight (or
loading) of each systemic and idiosyncratic risk factor to an individual obligor’s
creditworthiness. They also, indirectly, determine the relative weights of the
systemic and idiosyncratic risk factors for each individual obligor. Since these
parameters are not indexed to time, we may safely surmise them to be time
homogeneous. In other words, the importance of a given risk factor to a credit
counterparty’s creditworthiness is assumed to be constant over time. This, as
a choice, is probably somewhat dubious; specification of meaningful time-
varying parameters is, however, a daunting undertaking.

8. SYSTEMIC FACTOR LOADINGS: The systemic β̃ parameters and the cor-
related system of Brownian motions, {Zj(t); j = 1, . . . , J ; t ≥ 0}, are
responsible for the portfolio effects. They do so, however, in different ways.
The systemic risk factors describe the current state of regional and sectoral
risk. The instantaneous correlation matrix, S̃, captures the dependence between
these outcomes.21 The β̃ parameters, as previously suggested, determine the
loading of each risk factor onto a given obligor. The actual interdependence
between the creditworthiness of each obligor thus depends on the β̃ values and
the relevant entries in S̃. Were S̃ to be an identity matrix, then all of the cross-
obligor correlations would be determined by the β̃ parameters. If, however, all
of the β̃ parameters were set to zero, then systemic risk is removed from the
model and creditworthiness can be considered to be entirely idiosyncratic. This
would bring us back to the previously discussed independent-default model.22

9. PARAMETER DIMENSIONALITY: The theoretical number of model param-
eters is quite unsettling. There are, in principle, J × I systemic and I

idiosyncratic parameter values. For a representative portfolio of 500 obligors
and 24 systemic risk factors—values roughly consistent with the current
implementation—this amounts to in excess of 10,000 possible model param-
eters. This is a clearly unmanageable (even laughable) situation. Some form of
defensible parametric restrictions will be required to manage the dimensionality
needed to simultaneously inform the actual dependence structure between
obligor creditworthiness and thus, indirectly, portfolio-level default and credit
migration.

21 One could—and many model implementations actually do—orthogonalize this collection of risk
factors to create a set of independent systemic risk drivers. In this case, the factor loadings would
solely determine the factor correlations.
22 It is difficult to conceive of placing all of the responsibility upon the correlation matrix, S̃. Setting
all β̃ parameters to unity (or some other fixed value) does not quite achieve this; instead such an
action essentially reduces the model to a single factor structure, which is an equally weighted linear
combination of all systemic factors.
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10. MAPPING Xi TO CREDIT MIGRATION: Each increment is a zero-mean, time-
scaled Gaussian outcome. This implies that, over time, the X̃ values will cover
the support of the Gaussian distribution. Each X̃i (t) can thus, in principle,
take values over the interval, (−∞,∞). In practice, assuming each X̃i (0) is
normalized to zero and divided by the instantaneous volatility, actual simulated
outcomes will cover the continuum from roughly (−5, 5). There are, however,
only q discrete credit-state outcomes. An important element of the model will,
therefore, involve creating a link between continuous creditworthiness and
discrete credit-state outcomes. By necessity, given their differing scales, this
will require a many-to-one mapping between the creditworthiness and credit-
state values.

There are clearly many details and insights that can be drawn from this choice
of creditworthiness process. Equation 2.9 is thus a critical foundational element of
the legacy model, but by itself, it raises more questions than it actually answers.
In the following sections, we will make numerous adjustments to Eq. 2.9 with a
view towards addressing some of the previous points and, to the extent possible,
simplifying and standardizing the development. This journey will bring us, rather
better prepared and informed, to our production model.

Colour and Commentary 15 (DISMANTLING THE CONTINUOUS-TIME

MACHINERY): The legacy approach attempted to make a clear link to the
original Merton [30] framework replete with its continuous-time mathemat-
ical structure. The first step is the specification of a multivariate stochastic
differential equation to describe the latent, creditworthiness state variable for
each credit obligor. Indeed, this is a very standard beginning. While theo-
retically appealing, it is practically rather difficult to use. Most importantly,
the incremental complexity does not provide significant, if any, additional
value in terms of flexibility and descriptive improvement. As a consequence,
it makes logical sense to move as quickly as possible to simplify a number of
key aspects of the legacy structure. This constructive approach may, to some
readers, seem a bit excessive and painful. There is certainly truth to that view,
but this form of exposition was selected because it permits us, from a first-
principles pedagogical perspective, to reveal, motivate, and resolve a range
of important issues and choices.

2.3.1 Time Discretization

The continuous-time construction is a bit cumbersome. Using it will require
potentially complex mathematics for little pay-off—a situation to be generally
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avoided—since the model will be implemented in discrete time.23 Indeed, it
is unlikely that more than one or two steps will be taken. As a consequence,
before proceeding further, it makes logical and practical sense to discretize the
creditworthiness SDE presented in Eq. 2.9. There are a few alternatives techniques
for such an operation, but we opt for the simplest approach: the simple and intuitive
Euler-Maruyamamethod.24 The first step is to create a partition of our time horizon,
[0, T ] into a collection of κ sub-intervals:

0 = t0 < t1 < t2 < · · · < tκ = T . (2.10)

Generally, the length of each subinterval is equal. That is, �t = tk − tk−1 is constant
for all k = 1, . . . , κ . Given this partition, we proceed to transform Eq. 2.9 over any
arbitrary discrete time interval, [tk−1, tk], into:

Xi(tk) − Xi(tk−1) =
J∑

j=1

β̃ij

(
Zj (tk) − Zj (tk−1)

)
︸ ︷︷ ︸

�Zj(k)

+σ̃i

(
Wi(tk) − Wi(tk−1)

)
︸ ︷︷ ︸

�Wi(k)

, (2.11)

�Xi(k) =
J∑

j=1

β̃ij �Zj (k) + σ̃i�Wi(k),

where the � operator is introduced to somewhat reduce the notational burden.
Recall, that the variance of each Brownian increment remains �t . We may, with
the following adjustment, slightly simplify our life and take one step closer to more
typical threshold models. In particular, we write

�Xi(k) =
√

�t√
�t︸ ︷︷ ︸

=1

⎛
⎝ J∑

j=1

β̃ij�Zj(k) + σ̃i�Wi(k)

⎞
⎠

︸ ︷︷ ︸
Eq. 2.11

, (2.12)

=
J∑

j=1

β̃ij

√
�t︸ ︷︷ ︸

βij

�Zj (k)√
�t︸ ︷︷ ︸

�zi(k)

+ σ̃i

√
�t︸ ︷︷ ︸

σi

�Wi(k)√
�t︸ ︷︷ ︸

�wi(k)

,

for k = 1, . . . , κ where �zj (k) ∼ N(0,�jj ) and �wi(k) ∼ N(0, 1) for all i =
1, . . . , I and j = 1, . . . , J . The beauty of this trick is that the parameters have
also been scaled by the square-root of the common time step so that we do not

23 Continuous-time models are essential in pricing applications where arbitrage relationships need
to hold constantly over time. In risk-management settings, such as this one, this property is rarely
required permitting us to work freely in discrete time.
24 See Oksendal [34] for more information on this technique.
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need to carry this aspect around with us in our development.25 For this reason,
βij = β̃ij

√
�t and σi = σ̃i

√
�t thus represent the parametrization—which must

be determined empirically—associated with our selected time step. We also replace
the instantaneous correlation matrix (i.e., S̃) for the correlated Brownian system, Z,
with a non-instantaneous correlation matrix, �.

Since we will be taking annual time steps, let’s simplify our life somewhat by
setting �t = 1; while this is not really in the spirit of discretization, this decision is
easily relaxed and it rather dramatically eases the notational burden. Finally, since
all time steps are assumed to be equal, we may drop the reference to the kth time
step leading to the following streamlined, discrete-time representation of Eq. 2.9:

�Xi =
J∑

j=1

βij�zj + σi�wi, (2.13)

for i = 1, . . . , I . Depending on the context, of course, it may be useful to
reintroduce specific reference to the time step in the notation. One, for example,
might wish to include some notion of time dependency in the economic-capital
computations.26

To summarize, not only is Eq. 2.13 easier to work with—from a mathematical
perspective—it finds itself in a more convenient, and realistic, form for the important
task of model parametrization. We have basically taken—for better or for worse—a
decisive step away from the world of continuous-time mathematics.

2.3.2 Normalization

Equation 2.13 is qualitatively similar to the Vasicek [40, 41, 42] formulation—
touched upon in the introductory section—but it is missing a few important
elements. More specifically, there is a lack of clarity about the relative importance
of the systemic and idiosyncratic elements and the creditworthiness increment,
for a given obligor, is not standard normal. These two elements are, of course,
determined by choices of the β and σ elements. Practically, it is extremely useful,
for the interpretation of the model structure and its results, to directly handle these
two aspects. It also indirectly solves issues surrounding the determination of the σ

parameters.27

25 Indeed, from a statistical perspective, the parameters will be consistent with the time steps used
in the underlying estimation data.
26 Consider a financial instrument, with a maturity less than T , that needs to be reinvested. Deposits
are one example, where the decision to reinvest would reasonably depend on the creditworthiness
index—and associated credit state—in the previous period.
27 As we’ll see in later discussion, there are sensible proxies for the common, systemic sources of
risk, but the idiosyncratic element is, by its very definition, much more difficult to manage.
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The first stepping stone in this development involves computation of the variance
of the systemic element in Eq. 2.13. Undeniably tedious—and frankly is much
more naturally expressed in matrix notation—its derivation is both informative and
essential. In particular, we have

var

⎛
⎝ J∑

j=1

βij�zj

⎞
⎠ = E

⎛
⎜⎝

⎛
⎝ J∑

j=1

βij�zj

⎞
⎠

2

−
⎛
⎝E

⎛
⎝ J∑

j=1

βij�zj

⎞
⎠

⎞
⎠

2
⎞
⎟⎠ , (2.14)

= E

⎛
⎜⎝

⎛
⎝ J∑

j=1

βij�zj

⎞
⎠

2

−
���������⎛
⎜⎝

J∑
j=1

βij E(�zj )︸ ︷︷ ︸
=0

⎞
⎟⎠

2⎞
⎟⎠ ,

= E

⎛
⎝

⎛
⎝ J∑

j=1

βij�zj

⎞
⎠

(
J∑

k=1

βik�zk

)⎞
⎠ ,

= E

⎛
⎝ J∑

j=1

J∑
k=1

βijβik�zj�zk

⎞
⎠ ,

=
J∑

j=1

J∑
k=1

βij βikcov
(
�zj ,�zk

)
,

=
J∑

j=1

J∑
k=1

βij βik�jk,

for i = 1, . . . , I . The takeaway from Eq. 2.14 is that the variability in the systemic
contribution to the creditworthiness of the ith obligor is a fairly complicated
function of the β choices and the covariance structure of the systemic risk factors.

The standard deviation of the systemic-risk contribution—which is essential for
normalization—is now simply defined as

σ

⎛
⎝ J∑

j=1

βij�zj

⎞
⎠ =

√√√√ J∑
�=1

J∑
k=1

βi�βik��k. (2.15)

Putting this quantity in our back pocket for the moment, we now rewrite (rather
boldly) Eq. 2.13 in the following form,

�Xi = αi

J∑
j=1

βij√√√√ J∑
�=1

J∑
k=1

βi�βik��k

︸ ︷︷ ︸
Eq. 2.15

�zj +
√
1 − α2

i �wi, (2.16)
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where αi ∈ (0, 1) ⊂ R and σi =
√
1 − α2

i for i = 1, . . . , I . This is the discretized
and normalized form of our creditworthiness indicator state variable. Although
technically correct, the form of the factor loadings in Eq. 2.16 is in dire need of
some simplification. Let’s, therefore, define

Bij = βij√√√√ J∑
�=1

J∑
k=1

βi�βik��k

≡ βij

σ

⎛
⎝ J∑

j=1

βij�zj

⎞
⎠

, (2.17)

for i = 1, . . . , I and j = 1, . . . , J . This allows us to restate Eq. 2.16 more
succinctly as

�Xi = αi

J∑
j=1

Bij �zj +
√
1 − α2

i �wi. (2.18)

At first glance, this may not seem to be much in the way of progress. Indeed, it
may appear to actually further complicate the creditworthiness process dynamics.
Practically, we have introduced two important elements:

1. there is an α parameter, for each obligor, that determines the relative importance
of the systemic and idiosyncratic contributions to the creditworthiness index—it
is broadly referred to as the systemic weight; and

2. the normalized factor loadings (i.e., the B’s) work along the specification of
the systemic weights (i.e., the α’s), ensure that each �Xi outcome has unit
variance.28

Both of these points naturally require demonstration. Indeed, the systemic weights
(i.e., the αi’s) have, more or less, fallen from the sky. The easiest place to start is to
verify the zero expectation. In particular, for the set of I credit counterparties,

E (�Xi) = E

⎛
⎜⎜⎜⎜⎜⎝

αi

J∑
j=1

Bij �zj +
√
1 − α2

i �wi

︸ ︷︷ ︸
Eq. 2.18

⎞
⎟⎟⎟⎟⎟⎠

(2.19)

= αi

J∑
j=1

Bij E
(
�zj

)
︸ ︷︷ ︸

=0

+
√
1 − α2

i E (�wi)︸ ︷︷ ︸
=0

,

= 0,

28 As we’ll see shortly, the cross correlation between any two increments—say �Xn and �Xm, for
example—will be more complicated.
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as expected. This is a relatively obvious consequence of the previous structure, but
is nonetheless usefully verified.

Let’s now move on to the variance of the collection of creditworthiness incre-
ments. It has the following form,

var (�Xi) = var

⎛
⎜⎜⎜⎜⎜⎝

αi

J∑
j=1

Bij�zj +
√
1 − α2

i �wi

︸ ︷︷ ︸
Eq. 2.18

⎞
⎟⎟⎟⎟⎟⎠

(2.20)

= var

⎛
⎝αi

J∑
j=1

Bij�zj

⎞
⎠ + var

(√
1 − α2

i �wi

)

︸ ︷︷ ︸
By independence

= α2
i var

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J∑
j=1

βij√√√√ J∑
�=1

J∑
k=1

βi�βik��k

︸ ︷︷ ︸
Eq. 2.17

�zj

⎞
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+ (1 − α2
i ) var (�wi)︸ ︷︷ ︸

=1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

αi√√√√ J∑
�=1

J∑
k=1

βi�βik��k
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2
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⎛
⎝ J∑
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βij�zj

⎞
⎠

︸ ︷︷ ︸
Eq. 2.14

+(1 − α2
i ) var (�wi)︸ ︷︷ ︸

=1

= ��α
2
i

��������J∑
�=1

J∑
k=1

βi�βik��k

���������
(

J∑
�=1

J∑
k=1

βi�βik��k

)

︸ ︷︷ ︸
Eq. 2.14

+1 −��α
2
i

= 1,

as desired. This is a rather more laborious computation, but it clearly illustrates the
effectiveness of the normalization in the previous section. Each individual �Xi ∼
N(0, 1); this simple property, as will be demonstrated in a moment, dramatically
streamlines the default and credit-migration computations.
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Another rather unexciting computation involves identifying the specific form of
the cross asset-correlation between the nth and mth arbitrary obligors in one’s credit
portfolio. Working from first principles, it is derived as29

cov (�Xn,�Xm) = E

⎛
⎝

⎛
⎝�Xn − E(�Xn)︸ ︷︷ ︸

=0

⎞
⎠

⎛
⎝�Xm − E(�Xm)︸ ︷︷ ︸

=0

⎞
⎠

⎞
⎠ ,(2.21)

= E (�Xn · �Xm) ,

= E

⎛
⎝

⎛
⎝αn

J∑
j=1

Bnj�zj +
√
1 − α2

n�wn

⎞
⎠

×
(

αm

J∑
k=1

Bmk�zk +
√
1 − α2

m�wm

))
,

= E

⎛
⎝

⎛
⎝αn

J∑
j=1

Bnj�zj

⎞
⎠

(
αm

J∑
k=1

Bmk�zk

)⎞
⎠
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Cross terms vanish by independence

,

= αnαmE

⎛
⎝

⎛
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Bnj�zj

⎞
⎠

(
J∑
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Bmk�zk

)⎞
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= αnαmE
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βnj

σ

⎛
⎝ J∑
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βnj�zj

⎞
⎠
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Eq. 2.17

�zj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

29 In the underlying derivation, it is useful to recall that, due to previous independence assumptions,
the terms E(�Zj · �Wi) and E(�Wi · �Wj) vanish for all (distinct) choices of i and j .
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×

⎛
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= αncorr

⎛
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βnj�zj ,

J∑
k=1

βmk�zk

⎞
⎠αm,

= αn · ρnm · αm,

where the final step follows from the definition of correlation. We use the succinct
expression, ρnm, to describe the observed linear dependence between the factor-
loaded systemic factors of the nth and mth credit obligors. This quantity can be
referred to as factor correlation. Moreover, since var(�Xi) = 1 for all choices of
i, the covariance and correlation of the creditworthiness increments are equivalent.
Practically, this means that

cov (�Xn,�Xm) = corr (�Xn,�Xm) , (2.22)

= αn · ρnm · αm.

As a quick sanity check, setting n = m, we have that ρnn = 1, by definition.
The consequence is that α2

n is the contribution to variance from the systemic factor.
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When adding the idiosyncratic component of variance, 1− α2
n, we replicate the unit

variance result from Eq. 2.20.30

The most important conclusion from Eq. 2.22 is the interpretation of the α

parameters. The individual αn terms, which we should get in the habit of referring
to as systemic weights, can be viewed as driving the correlation between the nth
creditworthiness increment and the systemic factor. An easy way to see this is to
consider a classic one-factor model,

�Xn = αn�G +
√
1 − α2

n�wn, (2.23)

where�G is a single global risk factor and we can assume that βn is equal to unity. If
we compute the correlation of the creditworthiness increment with the single global
factor, G, we have

cov(�Xn,�G) = cov

(
αn�G +

√
1 − α2

n�wn,�G

)
, (2.24)

= E

((
αn�G +

√
1 − α2

n�wn

)
�G

)
,

= αn E

(
�G2

)
︸ ︷︷ ︸

=1

,

= αn.

A similar computation to that found in Eq. 2.21—in the univariate setting—
reveals that cov(�Xm,�Xn) = αnαm. The idea is analogous in our multivariate
case. To handle the additional complexity of the systemic factors, however, the
αn and αm terms need to load onto the more involved cross-correlation term,
ρnm. We thus have a parsimonious and intuitive interpretation of the pairwise
correlation between obligors in our credit portfolio. Moreover, this addition brings
ourmodel much closer, from a practical perspective, to the standard threshold-model
implementation.

The preceding pages have been a flurry of changing notation and derivations.
It is not always easy to follow all of the various steps. Table 2.2 attempts to help
by chronicling the evolution of our state variables and coefficients throughout the
discretization and normalization processes. Although the final column is basically
our end point, there is value in following the steps from our stochastic differential
equation—analogous to the one found in the Merton [30] work and more common
a few decades ago—and the Vasicek [40, 41, 42] style formulation.

30 Recall that, by independence, the idiosyncratic element impacts the variance measure, but does
not contribute to covariance.
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Table 2.2 Keeping track of variables and coefficients: This table helps us keep track of the various
state variables, their sub-components, and coefficients as we work from the original stochastic
differential equation to the final discretized and normalized form in Eq. 2.18.

Variable Continuous time Discretized Normalized

State-variable increment dXi(t) �Xi �Xi

Systemic-factor increment dZj (t) �zj �zj

Idiosyncratic-factor increment dWi(t) �wi �wi

Systemic-factor loading β̃ij βij Bij

Idiosyncratic-factor loading σ̃i σi

√
1 − α2

i

Systemic weight 1 1 α2
i

Colour and Commentary 16 (GAUSSIAN-THRESHOLD MODEL): Despite
the heavy first step involving the introduction of Eq. 2.9, the situation has
improved. Time discretization, factor-level normalization, and the introduc-
tion of a proper form for the systemic weights have had a useful effect. We
can now clearly see that, at its heart, the legacy model essentially follows
a multivariate Gaussian-threshold methodology.a Examination of the latent-
variable correlation structure also reveals a rich interaction between systemic
weights and systemic-factor correlations. Specifying these coefficients will
actually bring the model to life. For the remainder of this chapter, we will keep
the discussion fairly abstract. Chapter 3 will address the important question
of model parametrization.

a It is not, however, expressed in its canonical form. For readers interested in more
background, Bolder [7, Chapter 4] examines the class of threshold models in significant
detail.

2.3.3 A Matrix Formulation

Another awkward aspect of the base formulation is its scalar representation. Given
the large potential numbers of correlated and independent risk drivers—along with
their loadings—it makes much more sense to place our discretized creditworthiness
system into matrix notation. This turns out, unfortunately, to be a bit complicated.
Let us begin with the most natural representation

⎡
⎢⎣

�X1
...

�XI

⎤
⎥⎦

︸ ︷︷ ︸
I×1

=
⎡
⎢⎣

α1 · · · 0
...

. . .
...

0 · · · αI

⎤
⎥⎦

︸ ︷︷ ︸
I×I

⎡
⎢⎣
B11 · · · B1J
...

. . .
...

BI1 · · · BIJ

⎤
⎥⎦

︸ ︷︷ ︸
I×J

⎡
⎢⎣

�z1
...

�zJ

⎤
⎥⎦

︸ ︷︷ ︸
J×1
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+

⎡
⎢⎢⎢⎣

√
1 − α2

1 · · · 0
...

. . .
...

0 · · ·
√
1 − α2

I

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
I×I

⎡
⎢⎣

�w1
...

�wI

⎤
⎥⎦

︸ ︷︷ ︸
I×1

. (2.25)

If we define the base systemic weights as the following diagonal matrix,

A =
⎡
⎢⎣

α1 · · · 0
...

. . .
...

0 · · · αI

⎤
⎥⎦ , (2.26)

then it naturally follows that (I − A2)
1
2 ∈ R

I×I is readily calculated.31 Assigning
reasonable symbols to the remaining matrices and vectors in Eq. 2.25, we can
concisely express Eq. 2.19 as

�X = AB�z + (I − A2)
1
2 �w, (2.27)

where B ∈ R
I×J is a matrix of normalized factor loadings,�z ∈ R

J×1 is a column
vector of systemic risk factors, and �w ∈ R

I×1 is a column vector of idiosyncratic
risk variables. Equation 2.27 is basically a simplified recipe for describing the entire
system, �X ∈ R

I×1, of latent creditworthiness state variables in a single step. This
quantity falls into the nice-to-have category, but it is not used very frequently.

While we have Eq. 2.27, let’s put it to good use. The asset-return (or creditwor-
thiness index) correlation matrix is of central importance in simulating economic-
capital outcomes, trouble-shooting simulation results, and interpreting and com-
municating the model values. The more we can learn about it, the better our
overall understanding. Examination in matrix notation has an important advantage
of allowing us to see the entire picture. Let’s see where Eq. 2.27 takes us. By
construction, we have that �z ∼ N(0,�) and �w ∼ N(0, I ). As a consequence,
it follows that

var (�X) = var

(
AB�z +

(
I − A2

) 1
2
�w

)
, (2.28)

= AB var (�z)︸ ︷︷ ︸
�

(AB)T +
(
I − A2

) 1
2
var (�w)︸ ︷︷ ︸

I

((
I − A2

) 1
2
)T

31 This follows from the fact that A is diagonal, but also that each αi falls in the unit interval. Any
negative αi would otherwise lead to complex values. It should also be clear, from context, that the
identity matrix has dimensions I × I , but we’ll underscore that point here to be certain.
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= AB�BT A +
((

I − A2
) 1

2
)
(
I − A2

) 1
2
)

,

= AB�BT A + I − AIA︸︷︷︸
A2

,

= I + A

(
B�BT − I

)
A,

which is an interesting, and somewhat unexpected, form.32 Although each �Xi

has unit variance, the full asset-correlation matrix is rather more complicated. In

particular, we have that �X ∼ N
(
0, I + A

(
B�BT − I

)
A

)
. All the main

characters—systemic weights, normalized factor loadings, and factor correlations—
make an appearance. The basic pattern is, upon examination, rather similar to the
results from Eq. 2.21.

Equation 2.28, while interesting and occasionally useful, is not the most typical
mathematical representation of our creditworthiness index. In most calculations, we
find ourselves working at the credit obligor level. We typical use the less elegant,
but surprisingly helpful, mixed-matrix representation. To get to this point, we first
define the following fairly trivial, but convenient, row-vector quantity:

βi = [
βi1 · · · βiJ .

]
. (2.29)

This immediately allows us to restate the awkward double-sum in the factor-loading
normalization from Eq. 2.17 as,

√
βi�βT

i =
√√√√ J∑

�=1

J∑
k=1

βi�βik��k. (2.30)

The normalized factor loadings thus become

Bi = [
Bi1 · · · BiJ

]
, (2.31)

= 1√
βi�βT

i

βi︷ ︸︸ ︷[
βi1 · · · βiJ

]
.

32 Indeed, it is hard to tell if it makes sense. The corner cases of A ≡ 0 and A ≡ I—representing
the domination of idiosyncratic and systemic risk, respectively—collapse to values of I and B�BT

for Eq. 2.28. This quick sanity check suggests that the formulation, at least for the extremes, is
mathematically reasonable.
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There is nothing new in this representation, but it is rather easier to read (and
manipulate). Using these constructs, for each i, we may now write our discretized
creditworthiness index as

�Xi = αi
βi√

βi�βT
i︸ ︷︷ ︸

Bi

�z +
√
1 − α2

i �wi, (2.32)

= αiBi�z +
√
1 − α2

i �wi.

In short, we have vectorized the interaction between the systemic variables and their
factor loadings, but otherwise maintained a scalar structure.33 Again, there is not
much exciting going on here; Eq. 2.32 simply turns out to be both a convenient and
parsimonious representation.

Colour and Commentary 17 (MIXED MATRIX NOTATION): It is entirely
possible—and indeed, even advisable—to write our collection of I discretized
and normalized creditworthiness indices in matrix notation. The final result
is a concise and interesting mathematical representation. There is, however,
a problem. Most common mathematical operations, in this setting, tend to
occur at the obligor level. This means that the full matrix form is seldom
employed. Instead, it is more common to work with the mixed-matrix notation
summarized in Eq. 2.32. The interaction between the systemic variables and
their factor loadings is vectorized, but otherwise the scalar structure has been
maintained. Slightly clumsy, it nevertheless turns out to be an efficient and
pragmatic way to represent the individual latent creditworthiness indices. In
particular, this layered approach to the problem turns out to be very helpful
in managing the parametrization questions addressed in Chap. 3.

2.3.4 Orthogonalization

Before jumping to the remainder of the proper model construction, we will take a
short detour. In the base formulation, the systemic factors are correlated. Abstracting
from the systemic weights, this implies that the actual factor structure depends on a
complicated combination of the factor loadings and the factor correlation matrix.
Many industrial applications are constructed such that the systemic factors are
actually orthogonal. This clearly offers some conceptual advantages. The good news

33 With Bi ∈ R
1×J and �z ∈ R

J×1, their dot product (i.e., Bi�z) happily reduces to a scalar.
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is that, with a bit of work, Eq. 2.32 can be readily orthogonalized. In this brief aside,
we will examine precisely how this might be done.

The discretrized systemic factor correlation matrix of �z is, by construction,
symmetric, real-valued, and positive definite. The consequence is that we can
decompose � as,

� = CDCT , (2.33)

whereD ∈ R
I×I is a diagonal matrix of positive real-valued eigenvalues.C ∈ R

I×I

is the collection of orthonormal eigenvectors.34 The properties of D allow us to
immediately rewrite Eq. 2.33 as

� =
Eq. 2.33︷ ︸︸ ︷

C D
1
2 D

1
2︸ ︷︷ ︸

D

CT , (2.34)

= CD
1
2 I

(
CD

1
2

)T

,

where, once again, I denotes the identity matrix.35

This might seem like a curiosity, but it is just what we need. Recall that �z ∼
N(0,�). We can actually reconstruct this quantity starting from �v ∼ N(0, I );
that is, a vector of I i.i.d. standard normal variates. Indeed, we might simply define

�z = CD
1
2 �v. (2.35)

The expectation of �v is clearly zero, but what about its variance? This is easily
verified:

var(�z) = var
(
CD

1
2 �v

)
, (2.36)

= CD
1
2 var (�v)︸ ︷︷ ︸

I

(
CD

1
2

)T

,

= CDCT ,

= �.

34 This is a special case of the eigenvalue problem, which is sometimes referred to as the
spectral decomposition. Much more background can be found—in increasing levels of theoretical
complexity—in Harris and Stocker [21, Section 9.9], Press et al. [35, Chapter 9], and Golub and
Loan [15, Chapter 8].
35 There are, it turns out, other ways to do this. We could define U = CD

1
2 implying that � =

UUT , which is often referred to as the Cholesky decomposition of �.
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The consequence is that �z = CD
1
2 �v ∼ N(0,�). The immediate corollary is

that by introducing a slight variation on our normalized factor loadings as

B̆i = BiCD
1
2 , (2.37)

we can restate Eq. 2.32 as,

�Xi = αiB̆i�v +
√
1 − α2

i �wi. (2.38)

To avoid more repetitive calculations, we leave it as an exercise for the reader
to verify that �Xi retains unit variance—that is, �Xi ∼ N(0, 1)—under this
transformation.36

Ultimately, it makes little practical difference if one defines the model using the
Bi or B̆i formulation of the factor loadings. The orthogonalized implementation
offers conceptual clarity in the interpretation of the coefficients, while parametriza-
tion is slightly easier to manage with the base approach. It is ultimately a question
of taste. The current implementation employs the Bi definition, but we are keenly
aware that both methods are entirely legitimate.37

2.4 The Legacy Model

Our legacy credit-risk economic capital model—used in production until late
2020—was a version of the multivariate Gaussian threshold model. Thus far, we
have principally focused on the asset-return, or creditworthiness, state variables. In
this section, we will incorporate the remaining elements required to flesh out the
full-blown model.

2.4.1 Introducing Default

Each individual default event is defined, in the spirit of the threshold model
introduced in the first section, as

I{�Xi≤Ki}, (2.39)

36 As a hint, it suffices to show that B̆i B̆T
i = 1.

37 In Chap. 11, we will actually exploit this orthogonalized form within some interesting Pillar II
regulatory calculations.
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where Ki represents an as-yet-undefined default threshold. In words, this implies
that if the realization of the creditworthiness index falls below Ki , then the obligor
is deemed to have entered the default state. Following the Merton [30] logic, we can
think of the Ki value as being somehow related to the firm’s liabilities.

The immediate challenge is to determine a sensible value for Ki . While there
is a range of possible choices, one option dramatically simplifies the problem and
provides an entirely logical answer. The basic idea is to calibrate the expected value
of the default event to the probability of default associated with the ith credit obligor.
Defining the one-period default probability of the ith credit counterpart as pi , we
have

E
(
I{�Xi≤Ki}

) = pi, (2.40)

P (�Xi ≤ Ki)︸ ︷︷ ︸
�Xi∼N(0,1)

= pi,

� (Ki) = pi,

�−1 (� (Ki)) = �−1 (pi) ,

Ki = �−1 (pi) ,

where �(·) and �−1(·) denote the cumulative and inverse cumulative standard
normal distribution functions, respectively.38 This allows us to directly restate the
default event more concretely as,

I{�Xi≤�−1(pi)}, (2.41)

for i = 1, . . . , I . In turn, this definition permits us to write down a straightforward
expression for the total default loss in one’s portfolio as,

LD =
I∑

i=1

ci (1 − Ri )︸ ︷︷ ︸
γi

I{�Xi≤�−1(pi )}, (2.42)

where—drawing from Table 2.1—ci , Ri , and γi denote the ith counterparty’s
exposure, recovery rate, and loss-given-default, respectively. In a one-period,
default-only setting, the distribution of LD is precisely our modelling object of
interest.

The default probability estimate, pi , is an unconditional estimate of the failure
of the ith obligor to meet its credit obligations—this value relates only to each
counterpart on an individual basis. The entire justification for the addition of �Xi ,
however, was to induce dependence between these default events. To understand

38 In principle, the periodicity of the default probability should be consistent with the length of the
discretized time step �Xi .
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better how this works, we can examine the probability of a default event conditional
upon a given realization of the set of systemic risk factors. This is defined as,

P

(
�Xi ≤ �−1(pi)

∣∣∣∣�Z

)
= P

⎛
⎜⎜⎝αiBi�z +

√
1 − α2

i �wi︸ ︷︷ ︸
Eq. 2.32

≤ �−1(pi)

∣∣∣∣∣∣∣∣
�z

⎞
⎟⎟⎠ , (2.43)

pi(�z) = P

⎛
⎝�wi ≤ �−1(pi) − αiBi�z√

1 − α2
i

∣∣∣∣∣∣�z

⎞
⎠ ,

= �

⎛
⎝�−1(pi) − αiBi�z√

1 − α2
i

⎞
⎠

≡ �

⎛
⎝�−1(pi) − αi B̆i�v√

1 − α2
i

⎞
⎠ ,

which follows directly from the fact that the idiosyncratic shock, �wi , is a standard
normal variate. Just for fun, Eq. 2.43 also includes the orthogonalized version of
the model. In either case, the consequence is that large negative outcomes of the
systemic risk factors will tend, for all obligors, to push the probability of default
upwards. This is the source of default dependence. Since different obligors load
onto the individual systemic risk factors in varying ways, the actual dependence
structure is actually quite complex. Nevertheless, this quantity provides significant
insight into the inner workings of our credit-risk model.

Colour and Commentary 18 (DEFAULT CONDITIONALITY): The thresh-
old model induces default correlation by conditioning each credit ogligor’s
latent creditworthiness state variable upon a common set of systemic risk
factors. A positive systemic risk-factor realization will improve all credit
counterparties’ default probabilities, whereas a negative draw works in the
opposite direction. Given the systemic risk-factor realization, however, all
default events are independent. Moreover, each credit obligor—through the
specification of the α and B parameters—are potentially impacted in a
different way by the systemic values. The conditional default probability, as
described in Eq. 2.43, is a rather useful object in understanding the impact
of systemic risk-factor outcomes on a given credit obligor’s risk profile. As a
final point, the form changes only very slightly when using the dependent or
orthogonalized formulations of systemic risk factors.
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2.4.2 Stochastic Recovery

The magnitude of the credit loss also depends, as suggested in Eq. 2.42, upon the
amount of the total credit exposure recovered through the default process. The larger
the amount recovered, of course, the lower the default loss. We can think of this
recovery amount as taking a value from zero to unity. A recovery value of zero
would imply that, in the event of default, one would be in the unfortunate situation
of losing one’s entire exposure. Conversely, a recovery value of one suggests that,
happily, no loss is incurred.39 The entire amount is recovered. Naturally, these are
extremes. Typical values, therefore, fall in the open interval, (0, 1).

For each exposure—similar to the default probability—one thus needs to esti-
mate, determine, or otherwise assign a recovery rate in the event of default. Rather
than recovery, which we might refer to as R, it is more common to work with the
loss-given-default. This latter quantity is simply γ ≡ 1 − R; in essence, therefore,
recovery and loss-given-default are opposite sides of the same coin.

The loss-given default associated with a credit obligation depends, again similar
to the default probability, upon a complex interaction between a range of factors.
The financial strength of the firm plays, of course, an important role. Perhaps equally
important, however, are the seniority of the claim and the presence of any external
guarantees or collateral attached to the loan or treasury asset. These latter points are
intimately connected to the inevitable legal aspects associated with the default of
any entity. Related to this point is the type of organization; a corporation, a financial
institution, a public-sector entity, or a government. Each of these organizational
types will, in principle, have different characteristics impacting the loss-given-
default in varying ways. Most organizations, and NIB is no exception, have
developed a fairly involved loss-given-default framework describing the underlying
process of how these values are determined for each of their individual asset
exposures.40

The simplest modelling treatment of this quantity would involve assignment of a
constant loss-given default—let’s assume, as is typically the case, that this value is
determined by the firm’s loss-given-default framework—to each of the individual
exposures within one’s portfolio. This is a sensible approach, but it ignores the
potential uncertainty in the actual size of the final loss. As previously discussed, a
multiplicity of factors exerts an influence on the final loss-given-default outcome.41

Even the most detailed loss-given-default framework will struggle to determine

39 Naturally, in reality, it is not quite so simple. There are often significant time lags, foregone
cash-flows, and additional transaction costs. This is, however, a model and thus its representation
is defensibly stylistic.
40 How precisely this is performed at NIB is beyond the scope of this discussion, which focuses on
the modelling dimension. This is not to say that no modelling is involved in LGD specifications,
far from it, but this area often touches on rather proprietary dimensions.
41 Altman et al. [2] provides a useful broad based analysis of the factors driving recovery with a
particular focus on the link to default probabilities.
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precisely the importance of each underlying driver to a specific credit obligor.
Assignment of a single, deterministic loss-given-default value is thus probably
overly simplistic. Amore complicated, and perhapsmore realistic, alternative would
be to treat the actual loss-given default as a random variable. Such an approach
would certainly complicate the model implementation, but it would directly address
this important source of uncertainty. For this reason, the employment of stochastic
loss-given-default values has become standard practice in credit-risk models.

How might this work? We can succinctly restate—from Eq. 2.42—the default-
loss of our portfolio as,

LD =
I∑

i=1

ciγiIDi , (2.44)

where Di ≡ �Xi ≤ �−1 (pi) and γi ∼ X(γ̄i , vγi , · · · ). In actuality, we have
done relatively little with this restatement. The ith loss-given-default quantity has
merely been specified as a yet-to-be-defined random variable given its first two
moments: the mean, γ̄i and the variance, vγi . Clearly a choice is required regarding
the distribution of each γi , but this is not the only choice required. One also needs to
decide on the dependence between the default event, IDi , and the loss-given-default.
Are they somehow related or are they independent? Moreover, it is necessary
to decide upon any relationship between the loss-given-default of any two credit
obligors, say γi and γj .

Before exploring possible marginal distributions for each individual loss-given-
default parameter, let us first consider questions of dependence. Common practice
involves the assumption of independence between the loss-given-default outcome
of any two arbitrary credit obligors, i and j . Economic intuition aside, it is difficult
to practically imagine how calibration of such dependence would work when
examining relatively high credit-quality obligors. The loss-given default outcome
comes into play only in the case of default. As default is rare, it only affects a
small number of credit obligors—very often none—in any given simulation draw.
Imposition of correlation at the individual credit obligor level is unlikely to have any
appreciable impact on risk outcomes, quite simply because joint defaults are so rare.
This is the same reasoning behind the use of global conditioning variables to induce
default correlation; default correlation at the obligor level is relatively ineffective.

It is very common to assume that the loss-given-default is an entirely idiosyn-
cratic affair. Although loss-given-default is a random variable, each outcome is
independent of the set of global systemic variables, a firm’s default probability,
and the loss-given-default events associated with other credit obligors. We will also
make this choice in our development. More complex and involved specifications
are, indeed, possible.42 The typical viewpoint leans on the fact that virtually any

42 Frye [11], for example, offers an alternative in the one-factor setting that, like the conditional
default probability, depends on the common global macroeconomic variable. Frye [12], conversely,
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economic-capital model is already rather complex and parameter selection, in this
setting, is extremely difficult. Moreover, it is important that the loss-given-default
outcome employed in our economic-capital model is conceptually consistent with
the assigned value from one’s loss-given-default framework. This is not a deviation
from general practice, it is principally a choice driven by a combination of analytic
convenience and a lack of informative data.

One useful advantage of the assumption of independence is a relatively straight-
forward computation of the mean of the portfolio default loss. In particular, working
from Eq. 2.44, the mean is given as,

E (LD) = E

(
I∑

i=1

ciγiIDi

)
, (2.45)

=
I∑

i=1

E
(
ciδiIDi

)
,

=
I∑

i=1

ci E (γi)E
(
IDi

)
︸ ︷︷ ︸
By independence

,

=
I∑

i=1

ci γ̄i P(Di )︸ ︷︷ ︸
pi

.

The expected loss is thus simply the sum of the product of the exposures, the average
loss-given-defaults, and the probabilities of default. This further underscores the
central importance of these three fundamental quantities, which we introduced in
Table 2.1.

The final decision involves a choice of distribution for each random loss-
given-default variable. There are many possible choices. One important restriction,
however, is that the support of this random variable is confined to the unit interval.
A trivial possibility would involve the use of a standard uniform distribution. Such
a choice implies that every point in the unit interval has an equal probability. This
seems unreasonable and can be rejected out of hand, not least because it implies a
common mean loss-given-default outcome of 0.5 for all credit obligors.

Ignoring the standard uniform distribution, there are two main approaches to
the selection of a suitable distribution. One can find a distribution with support
restricted to a fixed interval or transform a random variable with infinite support
into the interval between zero and one. One could, for example, draw a random
variable from the normal distribution and then map it to (0, 1) using a logistic or

offers another possibility where the loss-given-default is a stylized function of the conditional-
default probability.
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probit transformation.43 There are rather fewer distributions with bounded support.
The classic choice is the beta distribution.44 There are numerous other choices
that, upon closer inspection, are ultimately special cases of the beta distribution.
Another, perhaps less common choice, is the so-called Kumaraswamy distribution;
see Kumaraswamy [26] for more detail.

We have, once again, opted for simplicity. Each individual loss-given-default
random variable is assumed to follow an independent beta distribution. The
parameters of each beta distribution are informed, at least in part, from one’s internal
loss-given-default framework. The specific parametric choices are discussed, in
much more detail, in Chap. 3.45 The important takeaway, at this point, is that our
approach incorporates random recovery in a relatively straightforward—and to the
extent possible—conservative fashion.

Colour and Commentary 19 (PARAMETRIZING RECOVERY): The man-
agement of the recovery dimension in the measurement of credit risk is a
complicated task. The amount recovered subsequent to a default event—or,
closely related, the notion of loss-given-default—is not known in advance:
it is a stochastic quantity. Although ultimately random, it nevertheless
depends upon a range of factors: an obligor’s organizational structure, its
financial strength, its legal domicile, and any credit-mitigation measures to
name a few important elements. Taking this into account, our methodology
assigns a separate marginal distribution—describing the interaction between
recovery outcomes and likelihoods—to each credit obligor. These marginal
distributions, while important, do not tell the entire story. It is also necessary
to specify any dependence between the various recovery processes and the
default outcomes. Our production model, consistent with general practice,
assumes independence between recovery and default. This enhances model
tractability and avoids some rather thorny parametric questions. It is an
expedient choice, forced upon us by practical data constraints, but it is
important to be aware that it is probably not quite correct.

43 These, of course, are only two popular transformations of a continuous-valued variable into
(0, 1); there are many others.
44 See Johnson et al. [22, Chapter 25] for significantly more background on this distribution.
45 This discussion incorporates a unique angle that attempts to capture an important stylized fact
about loss-given-default.
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2.4.3 Risk Metrics

As highlighted in the previous chapter, the economic capital calculation is the
distance between a worst-case measure of risk and the accounting- or valuation-
based expected loss. Equation 2.45 provides clear direction for the computation
of expected loss. To determine the credit-risk economic capital estimate—and
complete the basic structure of our model—we still need a worst-case loss quantity.
Since there are multiple possible candidates to measure worst-case losses, a few
decisions need to be taken. In this brief section, we’ll consider two main alternatives
to motivate our choice.

Using the Gaussian threshold model outlined in the previous sections, we use
simulation to trace out the entire credit loss distribution. This provides all of the
ingredients required to actually compute virtually any desired measure of portfolio
riskiness. We do not, however, typically consider the entire loss distribution. As
rather pessimistic risk-management professionals, we invariably focus our attention
on the tail of the loss distribution. This is, after all, where all the bad things happen.
The classic measure is referred to as Value-at-Risk or VaR. Originally suggested by
Morgan/Reuters [32], within the market-risk setting, it is described mathematically
as

VaRα(L) = inf

(
x : P (L ≤ x) ≥ 1 − α

)
, (2.46)

where inf(·) denotes the infimum operator.46 Equation 2.46 depends on two
parameters: α a threshold for the probability on the right-hand side and the default
loss, L. The first is a parameter, whereas the second is a random variable: portfolio
default-loss. α is also referred to as the confidence level. Imagine it is 0.99. With this
parameter choice, VaRα(L) describes the largest default-loss outcome exceeding
99% of all possible losses, but is itself exceeded in 1% of all cases. When computed
for default or migration risk, it is often referred to as credit VaR.47

With a bit of additional effort, we may simplify our abstract specification of VaR.
From Eq. 2.46, the VaR measure, by definition, satisfies the following relation,

∫ ∞

VaRα(L)

fL(�)d� = α, (2.47)

1 − P

(
L ≥ VaRα(L)

)
= 1 − α,

46 The infimum is basically—avoiding lots of mathematical formalism—a set-theoretical general-
ization of the minimum operator. See Royden [37] for the important details.
47 An excellent reference for all things related to VaR is Jorion [23].
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P

(
L ≤ VaRα(L)

)
= 1 − α,

FL

(
VaRα(L)

)
= 1 − α,

where FL(·) denotes the cumulative default-loss distribution function. The natural
solution is thus,

VaRα(L) = F−1
L (1 − α) . (2.48)

In words, Eq. 2.48 verifies that VaRα(L) is nothing other than the (1 − α)-quantile
of our portfolio credit-loss distribution. Since we are already in the business of
running millions of simulations of our model, quantiles are readily estimated by
simply ordering the simulation results. Readily computed, easy-to-use, understand,
and communicate, it is no wonder that VaR has become such a popular risk measure.

A few decades prior to the writing of this book, Artzner et al. [3] produced a
very useful paper providing, in an axiomatic manner, the main desirable properties
of a risk metric. Risk measures that fulfil all properties are referred to as coherent.
VaR was, unfortunately, found wanting along one important dimension.48 This has
led to a search for alternatives. An increasingly common (and coherent) measure, is
defined as the following conditional expectation

Eα(L) = E

(
L

∣∣∣∣L ≥ VaRα(L)

)
, (2.49)

= 1

1 − α

∫ ∞

VaRα(L)

�fL(�)d�,

where fL(�), as before, represents the default-loss density function. Equation 2.49
describes the expected default-loss given that one finds oneself at, or beyond, the
(1 − α)-quantile (i.e., VaRα(L)) level. This quantity is, as a consequence, termed
the conditional VaR, the tail VaR, or the expected shortfall. We predominately use
the term expected shortfall and refer to it symbolically as Eα(L) to explicitly include
the desired quantile defining the tail of the return distribution.49 Figure 2.1 provides
a visualization of the difference between these two central measures of risk.

There are, of course, other possible choices of risk metric that onemight consider.
Boyle et al. [8] chronicle the disadvantages of VaR—in terms of coherence—
and offer a twist on the idea of expected shortfall. Gilli and Këllezi [13] propose

48 In particular, VaR is not sub-additive. See McNeil et al. [29, Chapter 2.3] for a nice exposition
of this point.
49 Given a closed-form expression for the default-loss density, Eqs. 2.48 and 2.49 can often be
manipulated to derive analytic formulae for the VaR and expected-shortfall measures. In practical
industrial applications, unfortunately, we rarely find ourselves in this happy situation.
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Fig. 2.1 Visualizing risk metrics: This graphic, via the illustration of a generic credit-loss density
fL(�), illustrates the VaR and expected shortfall measures. VaR is a quantile of the loss distribution,
while expected shortfall is the average at or beyond a specific quantile.

some ideas from extreme-value theory. Although quite interesting, and potentially
powerful, these notions have not yet found popularity in industrial applications. For
the moment, therefore, the principal alternatives used in practical circles are the
presented VaR and expected-shortfall measures.

Traditionally, like most organizations, NIB has used the VaR measure with
varying confidence levels for alternative applications. The production measure in
the revised credit-risk economic capital model has nonetheless broken with tradition
and moved to expected-shortfall measure. VaR’s non-coherence does give some
reason for pause, and was certainly a contributing factor in the final decision, but it is
not the key factor. Amore convincingmotive is the inherent conservatism associated
with expected shortfall. Instead of looking at losses associated with a fixed quantile,
it considers the average losses beyond this point. To put it bluntly, all of the really
bad outcomes are structurally incorporated into the calculation of expected shortfall.
This is, for a risk manager, an attractive perspective.

The final deciding factor in favour of expected shortfall, however, relates to
a practical point. A useful, well-functioning, credit-risk economic capital model
requires attribution of overall capital to individual loans and treasury instruments.
This process is referred to risk attribution; the actual approach will be addressed
in the final section of this chapter. VaR-measure risk attribution in the simulation
setting turns out to be a messy and noisy affair. Conversely, the same computation
applied to expected shortfall is significantly more robust and stable. The central
importance of risk attribution, along with the theoretical advantages of expected
shortfall, ultimately tipped the scales in favour of this coherent risk measure.
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Colour and Commentary 20 (CHOOSING A RISK METRIC): A simulation-
based, credit-risk model—such as that employed in this development—
furnishes the analyst with a full description of the portfolio credit-loss
distribution. To transform this object into an estimate of economic capital, a
specific choice regarding the description of worst-case losses must be made.
While there are many possible risk-metric options to be found in the literature,
there are really only two main contenders: Value-at-Risk (i.e., VaR) and
expected shortfall. Like most organizations, NIB has historically employed
the VaR metric in their economic-capital computations. In the most recent
revision of our framework, the situation changed. A decision was taken to
move to the expected-shortfall measure. Three main reasons motivated this
choice. The first is theoretical; in the jargon of Artzner et al. [3] expected
shortfall is—unlike VaR—a coherent risk measure. The second reason is
conceptual. By incorporating all extreme tail observations into its calculation,
expected shortfall is both a more complete and conservative description of
downside risks. The final reason is practical; simulation-based methods for
attribution of risks to individual loans and investments are dramatically more
robust for expected shortfall.a This combination of sensible reasons feels like
sufficient justification for the move.

a The precise details of this calculation follow in the final section of this chapter.

2.5 Extending the Legacy Model

Starting from a generic description of creditworthiness dynamics, we have estab-
lished that the legacy model is a (non-canonical) multivariate, Gaussian threshold
model with stochastic recovery. We have introduced a detailed notation, identified
the key aspects of the model and even motivated our choice of risk metric. With the
important question of parameter selection relegated to Chap. 3, this might conclude
our discussion. As indicated on numerous occasions in previous sections and
chapters, however, our 2020 statutory change (quite naturally) prompted reflection
on the structure of the credit-risk economic capital model. The reflection lead to
action. The two central consequences were associated with the choice of threshold-
model copula function and the incorporation of credit migration. This section walks
through the details, and implications, of these two central elements.
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2.5.1 Changing the Copula

The legacy credit-risk economic-capital model was founded on the assumption
that both the idiosyncratic and systemic risk factors are normally distributed. This
choice is, in a general sense, referred to as the Gaussian copula. The Gaussian
copula, following the recent financial crisis starting in 2008, has nonetheless come
under strong criticism. The source of this disapproval relates to some very strong
assumptions about default correlation. A well-cited article—see MacKenzie and
Spears [28]—has even made the Gaussian-copula specification rather infamous.
The main problem is that it ignores the idea of tail dependence. The basic idea
is that as we move far enough into the tail of the credit-loss distribution, default
becomes independent in the Gaussian copula. This is hardly confidence inspiring.
One practical solution, offered in the literature, is to use the so-called t-copula; this
means that idiosyncratic and systemic risk factors follow a t distribution.50

The notion of tail dependence is neither particularly well known nor is it
extremely straightforward to explain without resort to rather technical arguments.51

It is nonetheless worth deeper reflection. Tail dependence is conceptually analogous
to more commonly used notions of correlation such as linear or rank correlation
coefficients. Typically, one begins with two random variables. In our case, let’s
give these random variables specific names, IDi and IDj , naturally representing
the default events of two arbitrarily selected credit obligors. Default correlation
considers the simple linear dependence between these two random quantities. Tail
dependence, conversely, considers the relationship between these two events as we
move arbitrarily far into the tail of their joint credit-loss distribution.

Default is, for almost any credit obligor, a rare event. A joint default is worse: it
is the coincidence of two rare (i.e., tail) events. The incidence of joint default tells
us something about the notion of tail dependence. The Gaussian copula implies,
unfortunately, by its very mathematical structure, that as the two events become
sufficiently rare, they tend towards independence. In most portfolios, however, it is
precisely the multiplicity of default that generates sizable risk scenarios. Since the
probability of two independent events is their product, and default is by definition
a low-probability outcome, joint defaults are structurally underestimated in the
Gaussian setting. Although the notion is quite technical, the impact is easy to
understand.

An example provides a useful demonstration of the difference associated with
one’s choice of copula function. Figure 2.2 provides the results associated with a
simple experiment. We examine our credit portfolio for a given date in the spring
of 2020. Two credit counterparties were arbitrarily selected. We then investigate
the joint default outcomes associated with one million simulations. Using the same

50 Kuhn [25] and Kostadinov [24] both make compelling cases for the benefits of the t-distributed
threshold implementation.
51 For the reader interested in a more formal description, please see Bolder [7, Chapter 4] and the
multiple references it contains.
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Fig. 2.2 Joint default: Joint defaults lie at the heart of default correlation and the conservative
description of the worst-case credit-loss outcomes. This figure provides a visual perspective
on the differences between the distribution of joint defaults under the Gaussian- and t-copula
specifications of the threshold model. In each case, the proportional joint-default losses of two
arbitrarily selected obligors are displayed under our competing copula functions.

randomly simulated outcomes two copula functions are employed: the presented
Gaussian and the t copulas. To be clear, therefore, the only difference relates
to the choice of copula function.52 There are, of course, cases where one credit
counterparty defaults, whereas the other does not. Only those situations, to be
clear, where both of the obligors experience a default outcome are presented.
Generally, of course, there are far fewer incidences of two counterparties defaulting
concurrently. In the Gaussian case, there are precisely 10 joint defaults. The t-
copula case, conversely, exhibits a twofold increase in the incidence of joint default.
This is precisely the impact of (non-zero) tail dependence; a more realistic, and
conservative, description of joint default is created.

The results presented in Fig. 2.2 might not seem like a dramatic difference,
but expanding this notion across all pairs of credit counterparts across an entire
portfolio can, and does, have an important impact on the final risk figures. There
is, at the portfolio level given the parameter settings, only about a 20% increase
in joint default. At the individual obligor level, however, when joint default does
occur, on average it leads to a sizable increase in the number of joint defaults.
This, of course, varies from a small reduction in some cases to increases on the
order of many multiples of the base number of Gaussian-copula joint defaults. The
bottom line, therefore, is that tail dependence matters quite importantly in terms of
joint default and, ultimately, practical portfolio-level default correlation. The final
consequence is a more realistic and conservative estimate of economic capital.

52 There is also some noise associated with the random draws associated with the recovery
outcomes, but this only impacts the magnitude of the loss, not their incidence.
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2.5.2 Constructing the t Copula

To construct the t-copula model, the vast majority of the model infrastructure
remains unchanged. The creditworthiness process is slightly adjusted as follows,

�Xi =
√

ν

W

(
αiBi�z +

√
1 − α2

i �wi

)
︸ ︷︷ ︸

Eq. 2.32

. (2.50)

where W ∼ χ2(ν) is referred to as the mixing variable. In other words, W is
a common variable shared across all risk obligors within a given simulation that
follows a χ2 distribution with ν degrees of freedom. Equation 2.50 is a special case
of what is generally referred to as a normal-variance mixture model.53

While it is not obvious from Eq. 2.50, the
√

ν
W

terms transforms each yn into

a univariate standard t-distributed random variable.54 This implies that E(yn) = 0
and var(yn) = ν

ν−2 for all n = 1, . . . , N . In other words, the marginal distribution
of each �Xi follows a standard t distribution, while simultaneously moving the
joint distribution of the collection of {�Xi : i = 1, . . . , I } to a multivariate t

distribution. The final result is the so-called t-threshold model.
The new moments of �Xi merit demonstration. The expected value of Eq. 2.50

is,

E (�Xi) = E

(√
ν

W

(
αiBi�z +

√
1 − α2

i �wi

))
, (2.51)

= αi ·

By independence︷ ︸︸ ︷
E

(√
ν

W

)
Bi E (�z)︸ ︷︷ ︸

=0

+
√
1 − α2

i ·

By independence︷ ︸︸ ︷
E

(√
ν

W

)
E(�wi)︸ ︷︷ ︸

=0

,

= 0,

as expected.
Finding the variance of �Xi is a bit more work,

var (�Xi) = E

⎛
⎝�X2

i − E(�Xi)
2︸ ︷︷ ︸

=0

⎞
⎠ , (2.52)

53 Quite simply, different choices of W and ν induce alternative copula functions. See Bolder [7,
Chapter 4] for much more information on this notion (and many other helpful references).
54 See Bolder [7, Appendix A] for a detailed description of the construction of the t-distribution.
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= E

((√
ν

W

(
αiBi�z +

√
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i �wi

))2
)

,

= E

( ν

W
· α2

i · Bi�z�zTBT
i

)
+ E

( ν

W
· (1 − α2

i ) · �w2
i

)
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Cross terms vanish by independence and zero expectations

,

= α2
i · ν · E
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i · ν · E

(
1
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Bi�BT
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1
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i · ν · E
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1
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)
+ ν · E

(
1
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−�������

α2
i · ν · E

(
1

W

)
,

= ν · E
(

1

W

)
,

where we need to observe that Bi�BT
i = 1; this is the normalized, factor-loaded

variance.55 Resolving this expression now reduces to evaluating the reciprocal of a
chi-squared distribution with ν degrees of freedom. Although tedious, it is readily
determined from first principles by solving the following integral,

E

(
1

W

)
=

∫
R+

1

w
fW (w)dw, (2.53)

=
∫
R+

1

w

1

2
ν
2 �

(
ν
2

)w
ν
2−1e− w

2

︸ ︷︷ ︸
W∼χ2(ν)

dw,

= 1

2
ν
2 �

(
ν
2

)
∫
R+

w
ν−2
2 −1e− w

2 dw,

55 It was, in fact, constructed in such a way to be equal to one.
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=
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2

1(
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) ,

= 1

ν − 2
,

which directly implies from Eq. 2.52 that, indeed as we claimed, var(�Xi) = ν
ν−2 .

The final line of Eq. 2.53 follows from two useful facts: ν ∈ N+ and�(n) = (n−1)!.
The marginal systematic and idiosyncratic variable distributions of the t-

distributed model remain Gaussian. The joint and marginal distributions of the
latent default-state variables (i.e., {�Xi : i = 1, . . . , I }) follow a t-distribution.
At the joint distribution level, of course, the covariance—and correlation—between
any two arbitrary latent creditworthiness state variables, �Xn and �Xm, are also
slightly transformed.

Recycling our analysis from Eq. 2.21 on page 72 with our new definition in
Eq. 2.50, we have

cov(�Xn,�Xm) = E(�Xn�Xm), (2.54)

= E

⎛
⎜⎜⎜⎝

√
ν

W

(
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)
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BT
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= νE
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)
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where ρnm = Bn�BT
m is the normalized, factor-loaded correlation between the

nth and mth creditworthiness latent state variables.56 With the exception of the
coefficient involving ν, this looks very similar to the structure found in Eq. 2.21.
To get to the correlation coefficient, we need only normalize by the volatility of
�Xn and �Xm as follows:

ρ(�Xn,�Xm) = cov(�Xn,�Xm)√
var(�Xn)

√
var(�Xm)

, (2.55)

=
(

ν
ν−2

)
αnρnmαm√

ν
ν−2

√
ν

ν−2

,

= �
�
�(

ν
ν−2

)
αnρnmαm

�
�ν

ν−2

,

= αnρnmαm,

which happily corresponds exactly with the Gaussian model analogue derived in
Eq. 2.22. We may continue to interpret the correlation between two arbitrary latent
creditworthiness variables—often referred to as asset correlation—as the product
of their respective systemic weight parameters and systemic correlation coefficient.
This latter quantity is also sometimes called the factor correlation.

There are a few other small practical differences in the implementation. The
default indicator of the ith obligor, Di , has the same conceptual definition as in
the Gaussian case, but the default threshold is somewhat different. Specifically,
following the logic from Eq. 2.40, we have

pi = E(IDi ), (2.56)

= P(Di ),

= P(�Xn ≤ Ki),

= FTν (Ki),

implying directly that Ki = F−1
Tν

(pn). We will use, for lack of better notation, FTν

and F−1
Tν

to denote the cumulative and inverse cumulative distribution functions of
the standard t-distribution with ν degrees of freedom, respectively. This threshold
adjustment is necessary and makes logical sense given that we’ve actually changed
the underlying marginal and joint distributions.

56 Because of the normalization, ρnm is conveniently both the correlation coefficient and covari-
ance.
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2.5.3 Default Correlation

Default correlation is a critically important quantity; inducing some degree of
correlation between the default of individual credit obligors has been the motivating
factor in the construction of the threshold model. To this point, we have seen both
systemic factor and asset correlation, but have not examined the precise form of
default correlation. We can no longer postpone consideration of this point. Proper
treatment begins with the covariance between the nth and mth default events. From
first principles, we have

cov
(
IDn , IDm

) = E
(
IDnIDm

) − E
(
IDn

)
E

(
IDm

)
, (2.57)

= P (Dn ∩ Dm) − P (Dn)P (Dm) .

Normalizing the covariance to arrive at the default correlation,

ρ
(
IDn , IDm

) = cov
(
IDn , IDm

)
√
var(IDn )

√
var(IDm)

, (2.58)

= P (Dn ∩ Dm) − P (Dn)P (Dm)√
P(Dn)(1 − P(Dn))

√
P(Dm)(1 − P(Dm))

.

Recalling that the variance of an indicator variable coincides with a Bernoulli trial
permits a return to our simpler notation. We thus have

ρ
(
IDn , IDm

) = P (Dn ∩ Dm) − pnpm√
pnpm(1 − pn)(1 − pm)

. (2.59)

Default correlation thus depends on the unconditional default probabilities as well
as the joint probability of default between counterparties n and m. This definition is
model independent. The choice of model, however, will determine the form of the
joint default probability, P (Dn ∩ Dm).

In the Gaussian threshold model, it should be no surprise that the joint distribu-
tion of �Xn and �Xm is also Gaussian. In this case, P (Dn ∩ Dm) is described by
the bivariate normal distribution. It has the following mathematical form,

P (Dn ∩ Dm) = P

(
�Xn ≤ �−1(pn),�Xm ≤ �−1(pm)

)
, (2.60)

= 1

2π
√
1 − (αnρnmαm)2

∫ �−1(pn)

−∞

×
∫ �−1(pm)

−∞
e
− (u2−2αnρnmαmuv+v2)

2(1−(αnρnmαm)2) dudv,

= �
(
�−1(pn),�

−1(pm); αnρnmαm

)
.



98 2 Constructing a Practical Model

This expression easily permits us—with the help of a good numerical integration
library—to directly compute the default correlation between counterparties n and m

using Eq. 2.59.
It is helpful to put Eq. 2.60 into matrix form. Define the correlation matrix as,

�nm =
[

1 rnm

rnm 1

]
, (2.61)

where the asset-correlation coefficient is denoted as rnm = αnρnmαm to slightly
ease the notational burden. The determinant of �nm is given as,

det (�nm) = |�nm| = 1 − r2nm, (2.62)

and the inverse is simply,

�−1
nm = 1

|�nm|
[

1 −rnm

−rnm 1

]
, (2.63)

=
[ 1
1−r2nm

−rnm

1−r2nm−rnm

1−r2nm

1
1−r2nm

]
.

Defining x = [
u v

]T
, then

xT �−1
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u v
] [ 1
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1−r2nm

1
1−r2nm

][
u

v

]
, (2.64)

= u2 − 2rnmuv + v2

1 − r2nm

.

Our bivariate Gaussian joint-default probability, from Eq. 2.60, can be more
succinctly rewritten as,

�
(
�−1(pn),�

−1(pm); rnm

)
= 1

2π
√
1 − r2nm
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−∞

×
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= 1

2π
√|�nm|

∫ �−1(pn)

−∞

∫ �−1(pm)

−∞
e− xT �

−1
nmx

2 dx.

This is referred to as the Gaussian copula. Copula functions essentially describe
dependence between random variables. The job of a copula function is to map a
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collection of marginals into a joint distribution. This notion—which was originally
introduced by Sklar [38]—is the definitive way to describe dependence between
random variables.

It is naturally possible to generalize the joint dependence across all of our credit
counterparties. Equation 2.65, with I counterparties, whereR is the asset correlation
matrix between the I counterparties, is then

�
(
�−1(p1), · · · ,�−1(pI ); R

)
= 1

(2π)
I
2
√|R|

∫ �−1(p1)

−∞
· · ·

×
∫ �−1(pI )

−∞
e− xT R−1x

2 dx, (2.66)

where,

R =

⎡
⎢⎢⎢⎣

1 r12 · · · r1(I−1) r1I
r21 1 · · · r2(I−1) r2I
...

...
. . .

...
...

rI1 rI2 · · · rI (I−1) 1

⎤
⎥⎥⎥⎦ (2.67)

summarizes the asset-correlation coefficients for every pair of credit obligors in
one’s portfolio. Equation 2.66 is a function, defined on the unit cube [0, 1]I ,
transforming a set of marginal distributions into a single joint distribution.

Equation 2.59, as previously mentioned, applies to any choice of threshold
model. In the t-threshold setting, however, the joint distribution of �Xn and �Xm

is now assumed to follow a bivariate t-distribution with ν degrees of freedom.
Mathematically, such an object is written as

P (Dn ∩ Dm) = P(yn ≤ F−1
Tν

(pn), ym ≤ F−1
Tν

(pm)), (2.68)
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dx,

where � (·) represents the gamma function,

�(u) =
∫ ∞

0
xu−1e−xdu. (2.69)
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and �nm is unchanged from the definition in Eq. 2.61, x ∈ R
2 and d = 2. This is

the classic, direct form.57

An alternative description of the joint default probability, which we provide for
completeness and future usage, makes use of the conditional default probability in
the t-threshold setting. That is,
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∣∣�z,W
)
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To determine the conditional probability of yn, both the global systematic factor,
�z, and the mixing random variate, W , must be revealed. Our desired joint-default
probability, for arbitrarily selected counterparties n and m, is thus determined as,

P (Dn ∩ Dm) = E
(
IDn ∩ IDm

)
, (2.71)

= E

(
E

(
IDn ∩ IDm

)∣∣∣∣�z,W

)
︸ ︷︷ ︸

By iterated expectations

,

= E

⎛
⎜⎝E

(
IDn

∣∣�z,W
) · E (

IDm

∣∣�z,W
)

︸ ︷︷ ︸
By conditional independence

⎞
⎟⎠ ,

= E (pn(�z,W) · pm(�z,W)) ,

57 One can loosely think of the gamma function as a continuous-valued extension of the integer-
valued factorial function. See Abramovitz and Stegun [1, Chapter 6] for more information on this
mathematical object.
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=
∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ ∞

0
pn(z,w) · pm(z,w) · fW (w)

·φ�z(z1, · · · , zJ )dwdz1 · · · dzJ .

This approach exploits the conditional independence of the latent state variables to
find an alternative, but equivalent, representation of the joint default probability.
Since resolution of this expression requires numerical integration, the catching
point is the dimensionality of �z ∈ R

J . If J = 1, then Eq. 2.71 reduces to
a very manageable two-dimensional integral. If not, then it may very well be
computationally impractical to use this trick; in this case, Eq. 2.68 is the appropriate
choice for evaluating the joint default probability and, by extension, the pairwise
default correlation.

As a final point, the joint-default density under the t-threshold model has the
following form

FTν

(
F−1
Tν

(p1), · · · , F−1
Tν

(pI ); R
)

= �
(

ν+d
2

)
�

(
ν
2

)
(νπ)

d
2 |R| 12

∫ F−1
Tν

(p1)

−∞
· · ·

∫ F−1
Tν

(pI )

−∞

×
(
1 + xT R−1x

ν

)−
(

ν+d
2

)
dx, (2.72)

where R remains as in the definition in Eq. 2.67. This copula function, defined
on the unit cube [0, 1]I , is the t-distributed analogue of the Gaussian equivalent
in Eq. 2.66. The mathematical structure does not provide an enormous amount of
insight, but the key difference is that the t-copula has non-zero tail dependence,
whereas the Gaussian copula does not. Ultimately, this makes a rather important
distinction in the specification of credit-default risk.

Colour and Commentary 21 (t-THRESHOLD MODEL): The great financial
crisis, beginning in 2007–2008, exposed some important statistical flaws in
the Gaussian threshold model. Most importantly, it has a structural lack of
tail dependence. In a modelling framework where attention is consistently
focused on the extremes of the credit-loss distribution, zero tail dependence
moves from a theoretical peculiarity to a serious problem. A practical solution
is required to address this serious shortcoming. It turns out that relatively
few members of the elliptical family of distributions—those distributions
typically best suited for the threshold framework—actually have non-zero tail
dependence. The t distribution—induced in this case through a χ2 mixing
variable in the normal-variance mixture setting—fortunately represents one

(continued)



102 2 Constructing a Practical Model

Colour and Commentary 21 (continued)
tractable candidate exhibiting non-zero tail dependence. For this reason,
along with the fact that the necessary model adjustments are relatively
modest, we have opted to employ this version of the threshold model. The
driving rationale behind this choice is a desire to simultaneously enhance the
realism and conservatism of our credit-risk economic-capital estimates.

2.5.4 Modelling Credit Migration

If one assumes that credit losses are experienced only in the event of default, then the
previous framework would be sufficient to describe our methodological approach.
There is nevertheless, as hinted at previously, another dimension to credit risk.
Financial losses are also logically possible in the event that a credit counterparty
is downgraded. Credit deterioration implies that one needs to reassess the relative
likelihood of repayment and, in general, correspondingly write down the value of
one’s assets. This occurs even when the attendant obligor continues to properly
service its credit obligation. Improvement in a credit obligor’s credit status will,
of course, have a positive valuation impact. The possibility of one’s obligors to
move up or down the credit spectrum is referred to, in general, as credit migration.
Default is, in fact, simply a special case of this general behaviour—it considers only
the transition from the current credit state to the default state.

Dealing with this generalization does not dramatically change the model struc-
ture, but it does require some additional overhead. Given q discrete credit-quality
states, or rating categories, we assume that each obligor’s credit status follows a
discrete-timeMarkov chain. This basically means that the only information required
to determine an obligor’s credit status in the next period is its current credit status.
This so-called Markov property practically implies that, for a given obligor i,
currently in state m at time t , the probability it finds itself in state n at time t + 1 is
written as,

pmn = P (Going to n|Coming from m) , (2.73)

= P
(
Si,t+1 = n

∣∣ Si,t = m
)
,

for n,m = 1, . . . , q . Si,t denotes the credit state of the ith obligor at time t .
This generic form describes all obligors, time points, and constellations of starting
and ending points. The driving idea is that a Markov chain characterizes the
transitions between various states over time. These are also referred to as transition
probabilities, of which default probabilities are a special case (i.e., transition directly
into the default state).
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The collection of so-called transition probabilities, associated with a given
Markov chain, are collected into the transition matrix, P . For our q-state process, it
is summarized as

P =

⎡
⎢⎢⎢⎣

p11 p21 · · · pq1

p12 p22 · · · pq2
...

...
. . .

...

p1q p2q · · · pqq

⎤
⎥⎥⎥⎦ . (2.74)

This notation can, given it is essentially the opposite of what is used in matrix
algebra to refer to specific elements, be somewhat confusing. It does, however,
have its own useful internal logic. Each row relates to the state of an obligor as
of time t . If counterparty i is classified in the second credit state at time t , then
only the second row is relevant to determining the relative probabilities of transition
into the set of q credit states at time t + 1. When examining only the default
perspective, we ignore all the other elements in this second row and consider only
the pq2 = P

(
Si,t+1 = q

∣∣Si,t = 2
)
. This is, to be very explicit, the probability that a

credit-counterpart currently in state 2 will transition into default (i.e., state q) in the
next period. Naturally, if we sum across all the transition probabilities for the next
period, the row must sum to unity. That is,

q∑
n=1

pnm = 1, (2.75)

for m = 1, . . . , q .58 The point is that the rows of the transition matrix, P , must
sum to one.59 Figure 2.3 illustrates—in a schematic manner, again starting from
Si,t = 2—how the transition probabilities describe the movement from the current
credit state to the range of possible state values in the next period. If we wish to
capture the full range of possible movements to other credit states, then it will be
necessary to make intelligent use of the entire transition matrix.

The transition matrix will inform—as did the default probabilities in the default-
only setting—the specific thresholds. Before we examine precisely how, it is
preferable to first build the general framework. Clearly, by construction, we have
Si,t ∈ {1, . . . , q} for each i = 1, . . . , I . This portfolio-level credit-obligor knowl-
edge, along with P , is all that is required to simulate the portfolio counterparties’
credit states in the next period.60 The actual computation, however, is somewhat
more complicated.

58 In our simple example, m = 2.
59 There are many excellent references on the theory and practice of Markov chains; a few
recommended choices include Brémaud [9], Hamilton [20], and Meyn and Tweedie [31].
60 More information, as we’ll see in upcoming discussion, is required to determine the credit losses
(or gains) associated with these transitions.
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Si,t = 2

Si,t +1 = q

pq2 ...

Si,t +1 = 3
p32

Si,t +1 = 2

p22

Si,t +1 = 1

p12

Fig. 2.3 Transition probabilities: This schematic illustrates, given the current state of the ith
obligor is 2, the range of transition probabilities into the other q states. This is, quite simply,
the second row of the transition matrix, P .

In Eq. 2.40, we calibrated the ith default threshold as using an indicator variable.
We can generalize this approach somewhat. We need a more flexible definition of
the default threshold. Let us, therefore, define KSi,t (j ) as the threshold of an obligor
in state i as of time t , for moving to state j as of time t +1. In the default setting, we
only consider the situation of j = q; that is, movement from state i to default. The
introduction of the transition matrix, however, shows us that transition is possible to
any of the individual credit states j = 1, . . . , q . Using this idea, we may redefine
the notion of the default threshold as follows,

E

(
I{

�Xi∈
[
−∞,KSi,t

(q)
]}

)
= pq,Si,t , (2.76)

P
(
�Xi ∈ [−∞,KSi,t (q)

]) = pq,Si,t ,

P

(
− ∞ ≤ �Xi ≤ KSi,t (q)

)
= pq,Si,t ,

recalling that pq,Si,t is the probability of default, but also the (Si,t , q) element of the
transition represented in Eq. 2.74.61 This might not seem like much progress, but
if we recall that �Xi is a continuous, one-dimensional random variable and, rather

61 Don’t forget that the transition probability notation is the exact opposite of matrix notation; this
often leads to confusion (and occasionally mistakes).
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vacuously, −∞ < KSi,t (q), then

P
(
�Xi ≤ KSi,t (q)

) − P (�Xi ≤ −∞) = pq,Si,t , (2.77)

F�Xi

(
KSi,t (q)

) − F�Xi (−∞)︸ ︷︷ ︸
=0

= pq,Si,t ,

�
(
KSi,t (q)

) = pq,Si,t ,

KSi,t (q) = �−1(pq,Si,t ).

While we have not learned anything new relative to the development in Eq. 2.40,
we have transformed a threshold into an interval. We also generalized the notation.
In particular, we write the default probability using its true identity: a transition
probability. That is, pi is replaced with pq,Si,t . The threshold is also not simply
linked to the ith obligor, but also includes information on their current credit state,
Si,t , and the targeted credit-state threshold.

The development summarized in Eq. 2.77, as the reader has certainly noticed,
applies to the Gaussian threshold model. The same basic logic applies in the t-
threshold setting, but the distributions differ. In this case, the generalized default
threshold simply becomes,

KSi,t (q) = F−1
Tν

(pq,Si,t ). (2.78)

These generalizations permit us to consider credit-migration for non-default
states. Returning to the Gaussian case, a specific example will be helpful. Again,
conditioning on the ith credit counterpart currently finding itself in state Si,t ,
we would like to link the (possible) migration to state 3 with the probability of
transitioning from state Si,t to 3. This transition probability is simply denoted as
p3,Si,t . The starting point is inspired by Eq. 2.76,

E

(
I{

�Xi∈
[
KSi,t

(4),KSi,t
(3)

]}
)

= p3,Si,t , (2.79)

P

(
KSi,t (4) ≤ �Xi ≤ KSi,t (3)

)
= p3,Si,t ,

P

(
�Xi ≤ KSi,t (3)

)
− P

(
�Xi ≤ KSi,t (4)

)
= p3,Si,t ,

�
(
KSi,t (3)

) − �
(
KSi,t (4)

) = p3,Si,t ,

since, by construction, KSi,t (4) < KSi,t (3). There does not, however, appear to
be any obvious approach to isolate the K terms; this is a situation of a single
equation in two unknowns. The solution involves rewriting the right-hand side
transition probability, p3,Si,t , in an alternative, perhaps initially non-intuitive form.
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In particular, we redefine it as,

p3,Si,t =
q∑

w=3

pw,Si,t −
q∑

w=4

pw,Si,t . (2.80)

These are simply the differences in the sum of elements across a given row of the
transition matrix, P , with different index starting points. If we plug our definition
from Eq. 2.80 into Eq. 2.79, we have that

�
(
KSi,t (3)

) − �
(
KSi,t (4)

) =
q∑

w=3

pw,Si,t −
q∑

w=4

pw,Si,t

︸ ︷︷ ︸
Eq. 2.80

. (2.81)

If we equate the two corresponding terms on the right- and left-hand sides of
Eq. 2.81, then we can identify our thresholds as,

KSi,t (3) = �−1

(
q∑

w=3

pw,Si,t

)
, (2.82)

and

KSi,t (4) = �−1

(
q∑

w=4

pw,Si,t

)
. (2.83)

More generally, of course, we can conclude that the j th boundary for the ith credit
obligor is,

KSi,t (j ) = �−1

⎛
⎝ q∑

w=j

pw,Si,t

⎞
⎠ . (2.84)

In this manner, the set of finite, real-valued thresholds

− ∞ < KSi,t (q) < KSi,t (q − 1) < · · · < KSi,t (2) < KSi,t (1) ≡ ∞. (2.85)

A bit of reflection reveals that we have created I partitions of the support of
a standard normally distributed state variable—each conditioned on the current
credit state of the ith counterparty, Si,t—informed by the appropriate transition
probabilities. Although we have I individual partitions, there are only q unique
cases, each linked to a separate row in the transition matrix, P . This represents
a large, and messy, number of partitions of the real-number line, R. We can
simplify our life somewhat by cumulating, or summing, the transition-matrix entries
across each row from right to left. This operation significantly eases working with
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quantities like those found on the right-hand side of Eq. 2.80 and leads to the so-
called cumulative transition matrix, G, which we define as

G =

⎡
⎢⎢⎢⎣

(
p11 + p21 + · · · + pq1

) (
p21 + · · · + pq1

) · · · pq1(
p12 + p22 + · · · + pq2

) (
p22 + · · · + pq2

) · · · pq2
...

...
. . .

...(
p1q + p2q + · · · + pqq

) (
p2q + · · · + pqq

) · · · pqq

⎤
⎥⎥⎥⎦ , (2.86)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q∑
w=1

pw1

q∑
w=2

pw1 · · ·
q∑

w=q

pw1

q∑
w=1

pw2

q∑
w=2

pw2 · · ·
q∑

w=q

pw2

...
...

. . .
...

q∑
w=1

pwq

q∑
w=2

pwq · · ·
q∑

w=q

pwq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Each one of the values in this cumulative transition matrix, G, lies in the interval,
[0, 1]—they are, in the end, probabilities. As we saw from the previous devel-
opment, the cumulative transition matrix is an intermediate step. The next step
in determining the appropriate partition requires transforming these probability
quantities into the domain of �Xi . The entries in G are thus mapped back into
the values of the standard normal distribution using the inverse standard normal
cumulative distribution function following the basic logic found in Eqs. 2.76 to 2.80.
This leads to,

G�−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�−1

(
q∑

w=1

pw1

)
�−1

(
q∑

w=2

pw1

)
· · · �−1

(
q∑

w=q

pw1

)

�−1

(
q∑

w=1

pw2

)
�−1

(
q∑

w=2

pw2

)
· · · �−1

(
q∑

w=q

pw2

)

...
...

. . .
...

�−1

(
q∑

w=1

pwq

)
�−1

(
q∑

w=2

pwq

)
· · · �−1

(
q∑

w=q

pwq

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.87)

=

⎡
⎢⎢⎢⎣

�−1 (g11) �−1 (g21) · · · �−1
(
gq1

)
�−1 (g12) �−1 (g22) · · · �−1

(
gq2

)
...

...
. . .

...

�−1
(
g1q

)
�−1

(
q2q

) · · · �−1
(
gqq

)

⎤
⎥⎥⎥⎦ ,
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=

⎡
⎢⎢⎢⎣

K1(1) K1(2) · · · K1(q)

K2(1) K2(2) · · · K2(q)
...

...
. . .

...

Kq(1) Kq(2) · · · Kq(q)

⎤
⎥⎥⎥⎦ .

The individual entries of the matrix, G�−1 , thus represent the collection of
boundaries, or thresholds, for the determination of credit migration as described in
Eq. 2.85. Each row, which captures the current state of the ith counterpart, describes
the partition of the �Xi space.

The previous development applies to the Gaussian threshold implementation.
Virtually identical logic, in the t-threshold approach, brings us to,

GT−1
ν

=

⎡
⎢⎢⎢⎢⎣

F−1
Tν

(g11) F−1
Tν

(g21) · · · F−1
Tν

(
gq1

)
F−1
Tν

(g12) F−1
Tν

(g22) · · · F−1
Tν

(
gq2

)
...

...
. . .

...

F−1
Tν

(
g1q

)
F−1
Tν

(
q2q

) · · · F−1
Tν

(
gqq

)

⎤
⎥⎥⎥⎥⎦ . (2.88)

The only difference associated with a change in copula function is the choice of
inverse cumulative distribution function to employ. It needs to be consistent with
the underlying latent creditworthiness variable definition.

Irrespective of one’s choice of copula function, a modicum of computational
caution is required. Since the sum of each row of the transition matrix is unity, each
element in the first column of G takes the value of one. That the support of the
normal distribution is (−∞,∞) implies, however, that one would assign a value
of ∞ to the elements in the first column of G. This will, of course, inevitably lead
to numerical problems. Instead, we assign a value of 10, because the probability of
observing an outcome from a standard normal or t distribution behind these values
is vanishingly small.62

Figure 2.4 provides a visualization of how, for a counterparty currently in credit
state Si,t , the partition of the �Xi space is constructed. We observe the relation to
the cumulative transition probabilities and how, stylistically at least, the individual
thresholds are placed. The random draw of�Xi determines, for the ith counterparty,
the location in the interval, (−∞,∞). The specific sub-interval that this random
draw enters thus determines the ith credit obligor’s t + 1 credit state. This is a very
clever idea. It allows us to map a real-valued variable that might take an uncountable
range of values—the creditworthiness index—into a small, finite set of q credit
categories.

Figure 2.4 also illustrates how the default outcome, �Xi ≤ KSi,t (q), is
simply a special case of this more general framework. The size of each individual
interval—which is hard to illustrate in a schematic diagram like Fig. 2.4—is directly

62 Any sufficiently large positive number will, of course, work.
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∆Xi(t + 1)

gq,Si,t

KSi,t (q)

State q

gq −1,Si,t

KSi,t (q − 1)

State q − 1 · · ·

· · · g3,Si,t

KSi,t (3)

g2,Si,t

KSi,t (2)

State 2

g1,Si,t

KSi,t (1) ≡ ∞

A large positive
number

State 1

Fig. 2.4 Partitioning the �Xi space: This figure visually illustrates, for a counterparty currently
in credit state Si,t , the partition of the �Xi(t + 1) space, its relation to the cumulative transition
probabilities, and how the individual thresholds are placed. All the necessary information stems
directly, or indirectly, from the transition matrix, P .

proportional to the associated probability of transition. Improbable outcomes are
assigned sliver thin intervals, while very likely outcomes have significant distance
between the two end-points. The idea is to ensure that the final transition outcomes
are numerically consistent with a random draw from the distribution of each �Xi

and that simulated credit-state mappings are driven by the values in our transition
matrix, P .

Colour and Commentary 22 (DEFAULT AS SPECIAL CASE): A credit-risk
model is, quite naturally, centrally concerned with the idea of default. This is,
of course, the principal avenue through which loss is experienced by the firm.
It is nonetheless, from an analytic perspective, rather useful to think of default
as a special case of credit-migration. The default threshold is particularly
important, because it involves negotiating repayment and, in some cases,
losing one’s entire investment. At the same time, movement from one credit
state to another (including default) can be viewed a sequence of economically
meaningful intervals. Each sub-interval maps the creditworthiness index
into a credit state. Default is easy to understand, since it conceptually
involves the firm’s assets falling below its liabilities. Credit deterioration (or
improvement), however, can be seen to follow a similar pattern. The required
level of assets associated with these internals are, by contrast, a bit more
difficult to define. Ultimately, they are inferred, as the default case, from
transition-probability estimates. This generalization forms the central logic
of credit-migration modelling.

Naturally, we need to construct a mathematical formulation of Fig. 2.4. Given
the simulated outcome �Xi(t + 1) associated with the ith counterparty currently
in credit state Si,t , we may determine the credit state in the next period, Si,t+1 as
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follows,

Si,t+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 : �Xi(t + 1) ∈
[
KSi,t (2),KSi,t (1) ≡ ∞

]

2 : �Xi(t + 1) ∈
(

KSi,t (3),KSi,t (2)

]

...

q − 1 : �Xi(t + 1) ∈
(

KSi,t (q),KSi,t (q − 1)

]

q : �Xi(t + 1) ∈
(

− ∞,KSi,t (q)

]

, (2.89)

for i = 1, . . . , I . This intuitive expression can be further simplified—with a
significant computational advantage for practical implementation—by exploiting
the monotonicity of the threshold definitions introduced in Eq. 2.85 and assured
from the structure in Eqs. 2.87 and 2.88. A bit of reflection reveals that the credit
state in the next period is determined by the smallest threshold which exceeds, or is
equal to, �Xi(t + 1). This is defined as,

Si,t+1 =
q∑

�=1

I{
�Xi(t+1)≤KSi,t

(�)
}. (2.90)

While somewhat less intuitive, Eq. 2.90 permits a more parsimonious representation
of the credit-state transition process.63 Not great from a pedagogical perspective,
this form saves a significant amount of computational complexity and expense.

2.5.5 The Nuts and Bolts of Credit Migration

The previous section provides a detailed, and workable, description of the link
between firm creditworthiness and the underlying credit state associated with each
individual obligor in one’s portfolio. An important question remains: what happens
in the event that a credit counterpart changes credit state? We have already seen the
implications—in Eqs. 2.41 and 2.42—of a credit default. One loses some portion
of the total exposure; the exact amount depends upon one’s assumptions regarding
recovery. Considering (non-default) migration, of course, an alternative strategy is
required. Practically, we would expect that:

63 Other (probably more clever) computational tricks are possible; one alternative, for example, has
a specific structure involving the supremum operator. The important point is to define this condition
in an efficient manner consistent with one’s definitions.
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1. a credit loss (gain) to be recognized in the event of credit deterioration (improve-
ment);

2. the magnitude of the credit loss (or gain) should be consistent with market-
valuation effects associated with similarly rated entities;

3. the specific size and interest-rate sensitivity of the obligor’s exposures to be
incorporated into any credit loss (or gain); and

4. neither gain nor loss is to occur in the event an obligor remains in the same credit
state.

A critical aspect of this development is the creation of a link between the value
of an obligor’s exposures and changes in the market value of these exposures. Given
that loan exposures are not (typically) traded in liquid markets, this is something
of a challenge. For traded instruments, however, it is rather more straightforward.
Any credit-risky security trades at a premium over the lowest-risk borrower—almost
always the government—in that currency. The difference between actual bond yields
and the government, or Treasury, yield for a similar maturity is referred to as the
credit spread.64 Conceptually, the credit spread is decomposed into two separate
components: a general and an idiosyncratic element. The general aspect describes
the global risk associated with the entity’s credit state or rating. The idiosyncratic
element, conversely, is unique to the issue and may incorporate specific risks—and
also, more practically, liquidity—associated with its debt claims. For the purposes
of credit-migration modelling, a few assumptions are typical. First, only the global
or general credit-spread risk is considered.65 Second, we will assume that spread
movements can also be used to model valuation gains and losses for both marketable
bonds and non-marketable loans. We further assume—although this is principally
for the purposes of simplicity—that the credit spread is constant across the entire
maturity spectrum.66

A further, perhaps more difficult-to-defend, assumption is the time homogeneity
of these credit spreads. Credit spreads clearly vary across time due to investment
flows, changes in relative liquidity and variation in aggregate risk preferences.
There is also evidence that credit spreads are correlated with the general business
cycle. One could clearly attempt to model these dynamics, but the entire credit-risk
economic-capital approach seeks to generate long-term, through-the-cycle estimates
of the credit-loss distribution. In other words, transition probabilities, correlation
parameters, loss-given-default estimates, and assumed credit-spread values are,

64 It is also possible, of course, to define the spread relative to another reference curve. A popular
choice, given its liquidity, is the LIBOR-based swap curve. Given ongoing and forthcoming
LIBOR-market reform, the plumbing of the swap market is likely to change, but its central role
and usefulness for spread computations likely will not.
65 There is, as an empirical reality, a significant amount of heterogeneity with a given credit rating.
Modelling this aspect is complex, noisy, and unlikely to dramatically influence the results. As such,
it makes logical sense to exclude it.
66 Empirically, we do observe a term structure of credit spreads for each credit rating, which varies
across the credit spectrum.
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Fig. 2.5 Credit-spread cases: In the credit migration setting, there are three disjoint outcomes:
upgrade, downgrade, or staying put. These naturally translate into three associated credit-spread
cases: spread narrowing, spread widening, and no change at all. This figure visualizes, in a
schematic manner, this situation.

by construction, unconditional.67 Time homogeneity thus implies that the credit
spreads are estimated using long-term, low-frequency data, and are relatively
infrequently updated. Much more on this exercise is found in Chap. 3.

To make this more concrete, let us define the credit spread associated with the ith
credit counterpart in credit state, Si,t as SSi,t for i = 1, . . . , I . In fact, there are only
q − 1 actual credit values; we ignore the default state, q , because it does logically
require a spread and the loss implications are fundamentally different. For any time
step, therefore, the spread change for a given counterparty can be written as,

�Si (t + 1) = SSi,t+1 − SSi,t . (2.91)

Recall that Si,t = 1 describes the highest level of credit quality, Si,t = 20 is the
lowest, and Si,t = 21 denotes default.68 If SSi,t+1 < SSi,t (i.e., �Si (t + 1) > 0) then
we have a spread widening associated with credit deterioration (i.e., downgrade);
this further implies that Si,t+1 > Si,t . Conversely, SSi,t+1 > SSi,t ((i.e.,�Si (t +1) <

0) represents a spread tightening with credit improvement (i.e., upgrade), Si,t+1 <

Si,t . Naturally, SSi,t+1 = SSi,t (i.e., �Si (t + 1) = 0) can only occur when there is
no change in underlying credit state. There are thus three disjoint cases for each
credit obligor migration in every possible state of the world: downgrade, upgrade,
and staying put. Figure 2.5 provides a visualization of these three credit-migration
outcomes and the associated credit-spread implications.

67 A number of regulatory mandated buffers attempt to incorporate the, potentially important,
consequences of the business cycle for one’s economic-capital estimates. These were discussed,
in greater length and detail, in Chap. 1.
68 Other firms will naturally follow differing scales, but the idea is the same.
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The definition in Eq. 2.91 permits a straightforward expression for the migration
loss associated with the ith credit obligor’s migration,

− Dm,i ·
(
SSi,t+1 − SSi,t

)
︸ ︷︷ ︸

�Si (t+1)

·ci, (2.92)

whereDm,i and ci denote the modified spread duration and exposure of the ith credit
obligor, respectively. The modified spread duration measure is generally defined as,

Dm,i = 1

Vi,t

∂Vi,t

∂Si,t

, (2.93)

where Vi,t represents the value of the ith credit obligation. While relatively easy to
find or compute for market-traded instruments, this value is slightly more difficult
to source for non-marketable loan contracts. Our approach to this computation will
be discussed in the following chapter.69

Given the credit state associated with the ith counterpart in the start and end
of each period—which is provided using the ideas from the previous section—
determining the credit-spread movement involves looking up one of q −1 values. A
simple example may be useful. Imagine that the ith counterparty has a e 15 million
exposure with an average modified duration of 4.75 years. At time t , it was in credit
state 2 with a (fictitious) credit spread of 100 basis points. In period t + 1, obligor
ith moved to credit state 3, which has a (equally invented) 120 basis-point spread.
From Eq. 2.92, the credit loss amounts to

− Dm,i ·
(
SSi,t+1 − SSi,t

)
· ci = −4.75 · (1.20% − 1.00%) · (e 15, 000, 000), (2.94)

= −0.95% · (e 15, 000, 000),

= −e 142, 500.

We thus estimate the credit loss to be approximatelye 142,500. Use of the modified
duration implies a good first-order approximation of the credit loss and permits a
parsimonious, computationally efficient implementation.

The total credit-migration loss is thus,

LM =
I∑

i=1

Dm,i · �Si (t + 1) · ci, (2.95)

69 See Bolder [6, Chapter 3] for much more detail on fixed-income instrument sensitivities in
general and spread duration in particular.
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or, rather, the sum across all credit migrations. We have dispensed with the negative
sign in Eq. 2.95 because, as in the default setting, we treat loss as a positive quantity.
This is simply convention, but we need to be cautious to treat default and migration
losses in a consistent manner. As with the default case, many of the contributions
to the sum in Eq. 2.95 will be zero. Transition, however, is typically significantly
more probable than default, so relatively speaking, a higher proportion will be non-
zero. The overall migration effect—depending, of course, on the overall size of the
credit spreads—should involve a smaller magnitude; moreover, there is always the
possibility of credit gains to offset loss outcomes. Thus, while the exact size of the
migration effect will depend on the portfolio composition, it is generally expected
to be somewhat smaller than default losses.70

Combining the default and migration losses into a single expression, total credit
losses can be defined as,

L = LD + LM, (2.96)

=
I∑

i=1

ci

⎛
⎜⎜⎜⎝γiI

{
�Xi(t+1)≤KSi,t

(q)
}

︸ ︷︷ ︸
Default

− Dm,i�Si (t + 1)I{
�Xi(t+1)>KSi,t

(q)
}

︸ ︷︷ ︸
Migration

⎞
⎟⎟⎟⎠ .

This representation describes default and credit migration as disjoint, or mutually
exclusive, events.71 This is useful, because although default is a special case of
migration, the loss implications are substantially different and need to be modelled
separately. The incorporation of migration losses to one’s credit-risk modelling
framework adds a significant amount of richness to the results.

Both default and migration losses—as highlighted in Eq. 2.96—depend on
the systemic and idiosyncratic elements embedded in �Xi . This computation
continues to be performedwith stochastic simulation. We conceptualized the default
simulation as pulling systemic variables from hats and then flipping very large
numbers of unfair coins. The incorporation of credit migration slightly changes
the game. Default is a binary event, whereas migration is multifaceted. While the
general anatomy of the simulation approach remains the same, it might help to
imagine moving from coins to a dice. With both default and migration, we still draw
our (common) systemic factors from a hat. We then proceed to use this outcome

70 The level of confidence also plays a role. A very high-level of confidence will tend to bring out
the relatively rare incidence of multiple defaults. Lower levels of confidence may, by this logic,
lead to dominance of migration risk in the final economic-capital values.
71 More specifically, by construction, we have that

{
�Xi(t + 1) ≤ KSi,t

(q)

}
∩

{
�Xi(t + 1) > KSi,t

(q)

}
= ∅. (2.97)
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DEFAULT: COIN TOSS MIGRATION: MULTI-SIDED DIE

Fig. 2.6 Adding migration: Default, as a binary event, is well conceptualized as an (unfair) coin
toss. Migration does not quite work in this setting. It is easier to think about migration as the roll
of a large die with many uneven sides where the outcome determines the next period’s credit state.

to construct a die with q + 1 sides. If the die falls on side 1, the obligor moves
to the first credit state; landing on side 2 implies a transition to credit state 2 and
so on.72 Such multi-sided dice actually do exist, but we would need q of them;
one corresponding to each row of our transition matrix. Moreover, some of the
sides would be incredibly small.73 Figure 2.6 provides a brief visualization of this
important practical twist on the model implementation.

Colour and Commentary 23 (THE IMPORTANCE OF MIGRATION): Each
firm, when wrestling with the computation of credit-risk economic capital,
needs to reflect on the inclusion of migration risk. Historically, our economic-
capital computations did not consider the profit-and-loss consequences of
credit downgrade or upgrade; only default was considered. During the run-
up to statutory change, a decision was taken to incorporate this dimension
and capitalize for migration risk. The reasoning was twofold. First of all,
our portfolio is, by both construction and mandate, of relatively high credit
quality. The risk of default is, for most loan exposures, correspondingly low.
Risk of credit deterioration is not.a There is a consequent danger of missing
a (potentially) important risk dimension. A second rationale arises indirectly
through credit impairments or loan-loss provisioning. The loan-loss provision
will, in the event of a material deterioration of an obligor’s credit quality, lead
to an increase in associated impairments. Since this increase will flow through
to the profit-and-loss statement, credit-migration has an indirect financial-
statement impact.b Credit migration has thus been incorporated into our
economic capital model with a view towards ensuring greater consistency

(continued)

72 Default occurs by rolling q + 1 on our die.
73 So small, in fact, that physically our die idea would never actually work.
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Colour and Commentary 23 (continued)
of loan-pricing, creating better incentives for loan-origination, and helping
to recognize the potential profit-and-loss implications associated with loan-
obligor downgrades. In short, the general view was that incorporation of
credit migration provides a more complete credit-risk characterization. Other
firms, depending on their specific situation and objectives, may very well
arrive at a different decision.

a Although, it should be stressed, the financial consequences of downgrade are typically
rather smaller for downgrade than default.
b We return to the interesting question of computing loan impairments in Chap. 9.

2.6 Risk Attribution

This final discussion point in this chapter relates to the notion of risk attribution.
Management of economic capital requires us to understand how various sub-
components of our portfolio contribute to overall capital demand. This is necessary
for loan pricing and capital budgeting. To a certain extent, it also proves helpful in
loan-impairment calculations.74 More simply, it facilitates a better understanding
of how risks are distributed throughout one’s portfolio. The ability to perform
such central analysis requires an allocation, or attribution, of economic capital to
individual loans and financial investments. Easy to motivate and understand, it turns
out to be a surprisingly mathematically complicated venture. The complexity is, in
this case, unavoidable. The simple reason is that, in a practical setting, an economic-
capital frameworkwill not get very far without the ability to attribute risks to various
aspects of one’s portfolio.

In most cases, although not always, risk attribution reduces to an application of
Euler’s theorem for homogeneous functions. The popularity of this method stems
from the fact that it is not only mathematically plausible, but it also ensures both
existence and uniqueness. In other words, there are many possible ways one might
decompose an aggregate risk metric down to the instrument level, but the standard
approach is the most natural and defensible.

To employ the Euler method, we need our risk measure to be a homogeneous
function of the portfolio weights or exposures. Homogeneity is a natural feature
of a coherent risk measure—this is one of Artzner et al. [3]’s desirable axiomatic
properties—and essentially amounts to the idea that if one doubles one’s portfolio
exposure, all else equal, one doubles the risk.75 It is hard to argue against such logic.

74 To see precisely how, please take a look at Chap. 9.
75 Mathematically, f (x) is termed a homogeneous function of the first order if,

f (λx) = λf (x), (2.98)
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Assuming that one’s risk measure, call it �(c), is a first-order homogeneous
function of the obligor exposures, c ∈ R

I , the Euler’s result implies that

�(c) =
I∑

i=1

�(ci), (2.99)

=
I∑

i=1

ci

∂�(c)

∂ci

.

The partial derivative,
∂�(c)

∂ci

, is termed the marginal risk associated with �.

Conceptually, it is the change in risk associated with an infinitesimally small
movement in the underlying exposure of the ith credit counterpart. Both Value-
at-Risk (VaR) and expected shortfall, like volatility, are first-order homogeneous
risk measures ensuring that Euler decomposition can be employed.76 Equation 2.99
is an equality; given homogeneity, it must hold. Consequently, one need only
identify the marginal risk—that is, partial derivatives—and one has a sensible risk
decomposition. In some cases, finding the partial derivatives is straightforward,
while in others it can be quite challenging. There are two broad approaches to
obtaining these partial derivatives in the credit-risk setting: numerical approximation
or use of analytical tricks. We’d prefer to use the latter, but sadly we are stuck
managing the former.

Despite the usefulness of this general approach to the question of risk attribution,
it is not a panacea. Caution is required. The presence of partial derivatives should
be, if not a red flag, then a reason for increased attention. By its very construction, a
partial derivative is a marginal quantity. In other words, it represents the reasonable
approximation of a change in the overall risk for a small movement in the exposure
of a given contract, or region, or industry. When one considers large changes,
however, all bets are off. Zhang and Rachev [44, Page 8] offer a nice overview
of the key questions and some of the existing associated research. The proposed risk
attribution makes logical and mathematical sense for our purposes, but it important
to keep in mind that it is a subtle quantity.

2.6.1 The Simplest Case

The most straightforward setting arises where the partial derivatives can be written
in closed form. A good example, which sadly is unavailable to us, is the parametric

for any choice of λ ∈ R. See Loomis and Sternberg [27] for more discussion on homogeneous
functions.
76 Bolder [6, Chapter 11] provides, from a market-risk perspective, rather more background on the
origins and defensibility of this approach.
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market-risk measure. Let’s briefly examine the logic. Imagine a portfolio with a
vector of K risk-factor weights ζ ∈ R

K along with variance-covariance matrix, �.
Assuming zero return and abstracting from the (thorny) question of length of time
horizon, the parametric VaR, at confidence level α for our imaginary portfolio is
typically written as,

VaRα(L) = �−1(1 − α)

√
ζ T �ζ . (2.100)

The VaR, as we saw previously, is simply the appropriate quantile of the return
distribution; given the assumption of Gaussianity, it reduces to a multiple of the
portfolio-return variance,

√
ζ T �ζ . Similar expressions are available for expected

shortfall. We can, without loss of generality, assume this to be the economic-capital,
since subtracting the expected loss (a constant) changes nothing.

The hard work in the risk-factor decomposition of VaRα(L) is to compute the
marginal value-at-risk. As seen in Eq. 2.99, this is merely the gradient vector of
partial derivatives of the VaR measure to the risk-factor exposures summarized in ζ .
Mathematically, it has the following form,

∂VaRα(L)

∂ζ
= �−1(1 − α)

∂
√

ζ T �ζ

∂ζ
. (2.101)

Let’s see if we can quickly derive the result in Eq. 2.101 and demonstrate its

reasonableness as a risk-attribution method. Directly computing ∂
√

ζT �ζ

∂ζ
is not so

straightforward. Instead, define the portfolio volatility as,

σp(ζ ) =
√

ζ T �ζ . (2.102)

Working with the square-root sign is annoying, so let’s work with the square of the
portfolio volatility (or, rather, variance),

∂
(
σp(ζ )2

)
∂ζ

= 2σp(ζ )
∂σp(ζ )

∂ζ
, (2.103)

∂σp(ζ )

∂ζ
= 1

2σp(ζ )

∂
(
σp(ζ )2

)
∂ζ

,

∂
√

ζ T �ζ

∂ζ
= 1

2σp(ζ )

∂
(√

ζ T �ζ
2)

∂ζ
,

= 1

2σp(ζ )

∂
(
ζ T �ζ

)
∂ζ

,

= �ζ√
ζ T �ζ

,
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which is a vector in R
K . Plugging this result into Eq. 2.101, we have our desired

result,

∂VaRα(L)

∂ζ
= �−1(1 − α)

�ζ√
ζ T �ζ︸ ︷︷ ︸

Eq. 2.103

. (2.104)

An element-by-elementmultiplication of these marginal value-at-risk values and the
vector, ζ , provides the contribution of each risk-factor to the overall risk. That is,

Contribution of ith risk factor to VaRα(L) = ζi · ∂VaRα(L)

∂ζi

, (2.105)

where ζi refers to the ith element of the risk-weight vector, ζ . Does the sum of
these individual risk-factor contributions actually lead us to the overall risk-measure
value? Consider the dot product of the sensitivity vector, ζ , and the marginal value-
at-risk gradient,

ζ T ∂VaRα(L)

∂ζ
= ζ T

(
�−1(1 − α)

�ζ√
ζ T �ζ

)

︸ ︷︷ ︸
Eq. 2.104

, (2.106)

= �−1(1 − α)
ζ T �ζ√
ζ T �ζ

,

= �−1(1 − α)

√
ζ T �ζ︸ ︷︷ ︸

Eq. 2.100

,

= VaRα(L).

In a few short lines, we have found a sensible and practical approach for the
allocation of VaR to individual market-risk factors. Regrettably, while promising
and intuitive, this expedient path is not available to us in the credit-risk setting. The
threshold and mixture models used for credit-risk measurement do not generally
lend themselves to parametric forms, which in turn forces us to rely upon simulation
methods for risk-measure estimation.

2.6.2 An Important Relationship

If the partial derivatives cannot be computed analytically, then their numerical
computation would appear to be a reasonable solution. Estimating numerical
derivatives in a simulation setting, however, is a bit daunting. There is, happily,
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a surprising relationship which facilitates the computation of the marginal-risk
figures.77 Its statement requires a bit of background. Let us, as before, define the
total default credit loss as the following sum over the I counterparties in the credit
portfolio,

L =
I∑

i=1

ciγiIDi︸ ︷︷ ︸
Xi

, (2.107)

where IDi , γi , and ci represent our now familiar default-event, loss-given-default,
and exposure quantities, respectively. We can use our Gaussian or t-threshold
definition of the default event if you like, or imagine something else entirely.
Consider Eq. 2.107 to be a general statement.

We now introduce the key relationship. Under positive homogeneity conditions,
the VaR measure for the portfolio loss, L, can be written as the sum of the marginal
value-at-risk values. That is,

Contribution of ith counterparty to VaRα(L) = ∂VaRα(L + hXi)

∂h

∣∣∣∣
h=0

,(2.108)

= E

(
Xi

∣∣∣∣L = VaRα(L)

)
,

where h is a small positive constant. It is also possible to show that,

VaRα(L) =
I∑

i=1

E

(
Xi

∣∣∣∣L = VaRα(L)

)
. (2.109)

That is a lot to swallow and does not appear to be particularly believable at first
glance. In words, Eq. 2.109 implies that the loss contribution associated with each of
the I counterparties—where the total loss exactly coincides with the VaRmeasure—
is equivalent to their overall contribution. Computationally, therefore, one need only
use a Monte-Carlo engine to simulate the loss distribution and examine the set of
losses at the VaR outcome to determine their individual contributions.

An analogous result is also available for the expected shortfall. In particular,

Contribution of ith counterparty to Eα(L) = ∂Eα(L + hXi)

∂h

∣∣∣∣
h=0

, (2.110)

= E

(
Xi

∣∣∣∣L ≥ VaRα(L)

)
.

77 See Tasche [39], Gourieroux et al. [16], and Rau-Bredow [36] for much more detail.
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It can also be analogously shown that

Eα(L) =
I∑

i=1

E

(
Xi

∣∣∣∣L ≥ VaRα(L)

)
. (2.111)

The difference in the expected-shortfall case—which is not unimportant—is that
one needs to compute the average losses greater than or equal to the VaR for the
decomposition of this measure. It thus also readily lends itself to extraction from
one’s Monte-Carlo engine. Derivation of this result is far from trivial, but it is
outlined in detail in Bolder [7, Chapter 7]. The reader unfamiliar with these results—
and not entirely convinced by their statement without proof—is recommended to
invest a bit of time in reviewing their mathematical logic and justification.

2.6.3 The Computational Path

Despite the powerful relationship between conditional expectation and partial
derivatives introduced in the previous section, evaluation of the conditional expec-
tation in the case of VaR, from Eq. 2.109, is not terribly straightforward. Algorithms
do exist. In the most direct manner, one proceeds in two steps. First, given M

simulations, one orders the loss vectors for each iteration in ascending order.
Second, using the choice of α, one identifies VaRα(L) and then selects the single
loss vector,Lm, consistent with this VaR estimate. This is, by definition, a singleton
set. The losses associated with each instrument—or dimension of interest—are
extracted from the loss vector. That is, according to Eq. 2.109, each contribution
is equal to E (Li |L = VaRα(L)). It basically comes for free from one’s simulation
engine. Naturally, there is a catch. This is an incredibly noisy estimator of the true
risk attributions. As bluntly, but very accurately, stated by Glasserman [14],

each contribution depends on the probability of a rare event conditional on an even rarer
event.

An alternative is to repeat our M-iteration simulation a large number of times
and average the resulting portfolio-loss vectors. While this basically works, a
depressingly large number of repetitions is required to achieve convergence. In
short, the computational expense is exorbitant.

Hallerbach [19] offers an alternative.78 It is an approximation that begins from
the M simulations. Given a small positive number ε, the following set is defined

LVaRα
(ε) =

[
VaRα(L) − ε,VaRα(L) + ε

]
. (2.112)

78 This approach, described recently in Mossessian and Vieli [33], appears to still be in broad use
in industrial applications.
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Each element of LVaRα
(ε) is thus a portfolio-loss vector in the neighbourhood of

one’s VaR estimate. The average across all elements in the portfolio-loss vectors of
LVaRα

(ε) is a biased estimator for the overall VaR and the conditional expectations
found in Eq. 2.109. Defining M∗ as the number of elements in LVaRα

(ε), our
estimate of our desired conditional expectations—or equivalently marginal VaR
values—is

E

(
Li

∣∣∣∣L = VaRα(L)

)
≈ 1

M∗
∑

�∈LVaRα
(ε)

�i . (2.113)

for i = 1, . . . , I . The trick is to find the value of ε that increases the number of loss
vectors to sufficiently reduce the noise, but not introduce an unreasonable amount
of bias. These effects move, of course, in opposite directions. Reducing bias comes
at the cost of increased estimation variance and vice versa.79

A challenge of this approach is that the sum of approximated conditional
expectations will, in principle, no longer sum to the observed VaR. Hallerbach
[19] thus, quite practically, suggests rescaling the individual contributions in a
proportionate manner to force them back to the desired VaR estimate. If this sounds
slightly ad hoc, it is because it is. There are, to be honest, not many alternatives.80

One legitimate option is to change the risk measure to the expected shortfall.
Approximation of its conditional expectation is much more natural. Again, starting
from M simulations, the following set is defined

LEα
=

{
L ≥ VaRα(L)

}
. (2.114)

In this case, we collect all of the portfolio-loss vectors exceeding the designated VaR
level. This set, virtually by definition, containsmultiple elements.WithM = 10,000
and α = 0.99, it will include by construction, (1 − 0.99) · 10,000 = 100 portfolio-
loss vectors. If we reduce α to the 99.97th quantile, of course, this falls to just 3.81

The point nonetheless remains valid. With a judicious choice of M , we can ensure
a sufficient number of elements in LESα

. The necessity of introducing ε and its
attendant bias is thus precluded.

79 While practically feasible, the author’s personal experience reveals finding the appropriate
balance to be a frustratingly slow exercise.
80 Fan et al. [10] offer an approach exploiting the multivariate copula functions of one’s model
dependence structure. In a complex, multiple-step simulation, this is unlikely to be extremely
helpful.
81 Naturally, at the 99.99th quantile with M = 10,000 we have that LESα

is a singleton set. The
interplay between the number of iterations and one’s confidence level is, thus, critically important.
More on this point in Chap. 4.
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Defining M̃ as the number of elements in LESα
, our estimate of our desired

conditional expectations—or equivalently marginal expected-shortfall values—is

E

(
Li

∣∣∣∣L ≥ VaRα(L)

)
≈ 1

M̃

∑
�∈LESα

�i . (2.115)

for i = 1, . . . , I . This is thus both a sharper and unbiased estimate of the risk
contribution associated with our expected-shortfall measure. It is also consistent
with findings in the literature of greater robustness of expected-shortfall risk
measure and attribution estimates.

2.6.4 A Clever Trick

To summarize the previous discussion, the risk-attribution computation for expected
shortfall is significantly more stable than its VaR equivalent. The reason, of
course, is that our expected-shortfall estimates are an average over the values
beyond a certain quantile. The VaR figures, conversely, depend on the values at a
specific quantile. This latter quantile is harder to pinpoint and subject to substantial
simulation noise.

Bluhm et al. [5, Chapter 5], keenly aware of the inherent instability of Monte-
Carlo-based VaR risk attribution, offer a possible solution. The idea is to find the
quantile that equates one’s VaR-based economic-capital estimate to the shortfall.
They refer to this as VaR-matched expected shortfall. Conceptually, it is straight-
forward. One computes, using the predetermined level of confidence α, the usual
VaR-based economic capital.82 We seek, however, a new quantile, let’s call it α∗,
that equates expected shortfall with VaRα(L). Mathematically, we seek the α∗ root
of the following equation,

VaRα(L) − Eα∗(L) = 0. (2.116)

In some specialized situations, Eq. 2.116 may have an analytic solution. More
pragmatically, however, it is readily solved numerically. α∗ can be identified, in fact,
as the solution to the following one-dimensional non-linear optimization problem

min
α∗

∥∥∥∥VaRα(L) − Eα∗(L)

∥∥∥∥
p

, (2.117)

82 Ignoring again, without loss of generality, the constant expected-loss term.



124 2 Constructing a Practical Model

Fig. 2.7 Equating VaR and expected shortfall: This graphic highlights the least-squares motivated
objective function used to identify the expected-shortfall quantile, α∗ that equates the expected
shortfall with the 99th quantile VaR estimate.

where α∗ ∈ (0, 1) and ‖·‖p describes the p-norm used to characterize distance.
One could, given its low dimensionality, use a brute-force, grid-search algorithm to
resolve Eq. 2.117; the ultimate result is conceptually identical.

Figure 2.7 displays the objective function—using the L2 norm to describe the
distance between our two risk measures—for a sample threshold model imple-
mentation. The choice of L2 reduces α∗ to a least-squares estimator.83 Lp(α),
as evidenced in Fig. 2.6, demonstrates both a smooth shape and clear minimum
highlighted with a red star.

To summarize, an efficient alternative is to identify the α∗ equating one’s VaR-
based economic-capital estimate and the associated expected shortfall. Then one
employs this quantity to approximate the VaR-matched expected shortfall contri-
butions. One does not, therefore, directly compute a true VaR risk attribution, but
rather accepts Bluhm et al. [5, Chapter 5]’s advice. While numerically defensible,
this choice is not without empirical repercussions. Most importantly, a small sleight
of hand has been performed. We have quietly switched our risk metric—for risk
attribution purposes—from VaR to expected shortfall. While not a criminal act, it is
still hard to precisely understand the ultimate consequences.

Despite the cleverness of this trick, there is already a clean logical solution:
simply use expected shortfall as one’s economic-capital measure. This avoids the
need to use mathematical tricks and ensures a structural consistency between one’s
economic-capital metrics and the associated risk-attribution calculations.84 Since

83 Other choices of p are, of course, possible, but this option is numerically robust and easily
understood.
84 The remaining issue to keep in mind is the choice of M to ensure adequate numbers for the
robust estimation of the risk attributions. This important question is addressed in Chap. 4.
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this represents an important change to the economic-capital framework—which
is always daunting to revise—it is understandable that one might be reluctant to
make a change of this magnitude. Since NIB was already in the midst of a large-
scale review of their credit-risk economic capital methodology, it was less difficult.
Indeed, this practical risk-attribution advantage—combined with the coherence of
expected shortfall and its inherent conservatism—mademoving to a new risk metric
a relatively easy choice.

Colour and Commentary 24 (RISK ATTRIBUTION): The analytic advan-
tages of one’s economic-capital framework are severely limited without an
ability to attribute overall risk to individual financial instruments. Absent
this capability, there is simply no way to understand how capital demand
is distributed across one’s portfolio. Although essential, in the credit-risk
setting this is not a trivial task. Useful and tractable semi-analytic methods
exist, but are not available in the multivariate setting.a We need, therefore,
to take recourse to numerical methods. In practice, these methods are much
more stable for expected shortfall relative to the VaR metric. Numerous
clever tricks exist to improve the situation, but the simplest solution is to use
expected shortfall as one’s principal economic-capital metric. Accepting this
fact—while taking into consideration the other conceptual advantages of the
expected-shortfall measure—is precisely what we have done.

a Saddlepoint methods, for example, work exceptionally well in low-dimensional cases; see
Bolder [7, Chapter 7] for an introduction.

2.7 Wrapping Up

Thismathematics-heavy chapter focuses principally on the methodological structure
and choices associated with our credit-risk economic-capital model. The entry
point is a general, intimidating, and frankly fairly impractical stochastic differential
equation describing the creditworthiness (i.e., asset-return) dynamics for the I

credit obligors in one’s portfolio. Appropriate time discretization, normalization,
and notational adjustment reveal the skeleton of a Gaussian threshold model. Some
additional machinery—including stochastic recovery—brought us to our legacy
implementation. The current economic-capital framework involves two revisions
to this basic structure: a new copula function that permits tail dependence and credit
migration. This long, and at times winding, road leads us to the final production
model.

There are, unfortunately, a multiplicity of moving parts. It is easy to lose the
forest for the trees. Table 2.3 thus attempts to help us summarize the key decisions
by chronicling the key methodological facts about our model. In one phrase, the
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Table 2.3 Methodology fact sheet: The underlying table provides, at a glance, a summary of the
key methodological choices associated with our credit-risk economic-capital model.

Dimension Description

Model type Multivariate threshold model

Time perspective Discrete time

Horizon One-year, single step

Copula t

Credit migration Yes

Risk metric Expected shortfall

Confidence level 99.97th quantile

Parameter perspective Long-term, through-the-cycle approach

Loss-given-default Random following independent beta distributions.

Transition matrix 20-state NIB master scale

current credit-risk production model is a one-period, multivariate t-threshold model
with stochastic recovery and credit migration.

This chapter’s objective was to introduce the credit-risk economic capital model.
Although these details are absolutely necessary for an understanding of our pro-
posed model, they are not sufficient. As every mathematician knows, we need both
necessity and sufficiency to be really satisfied.85 Two additional pieces of the puzzle
are required. As a first point, the model does not really come alive until the specific
parameters are identified. We would be, in other words, hard-pressed to use the
model without clear and concrete coefficients. Model parametrization, which brings
many practical challenges and involves numerous decisions, is the focus of the next
chapter. The second requirement touches upon model implementation questions.
Even if you have all of the mathematics and parameters sorted out, the computations
still need to be performed. This task can be categorized as conceptually easy,
but practically hard. It is a bit like climbing a mountain. We know that we need
only put one foot, and hand, in front of the other. That knowledge, while perhaps
comforting in some sense, doesn’t necessary ease the difficulty of actually getting
up the mountain. Chapter 4 thus acts as our mountain-climbing guide.
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