
Chapter 12
Thoughts on Stress Testing

Reality is the leading cause of stress.

(Lily Tomlin)

There are a number of good reasons why stress-testing analysis finds itself as the
final topic considered in this book: it is difficult, somewhat awkward, and requires a
bird’s eye view of one’s portfolio and modelling techniques. This, perhaps slightly
controversial, opening statement requires some additional colour and justification.
Stress-testing’s difficulty is easily explained. There is always a range of choice in
any financial modelling exercise, but stress-testing is rather extreme. There are at
least two fundamental perspectives that one might follow and, within each of these
approaches, literally an infinity of possible stress scenarios that one might select,
employ, and analyze. There is, in fact, basically too much choice. Creating some
kind of logical order and structure, in face of this potential chaos, is one of the
fundamental tasks that we will face in the following discussion.

Onto the awkwardness. The words of Rebonato [26] express this sentiment rather
well, stating that stress testing

has always been the poor relation in the family of analytical techniques to control risk.

Rather harsh words, but the underlying reason stems from the fundamental struc-
ture of stress-testing. It proposes outcomes or events—which are typically extreme
and lead to rather adverse portfolio effects—without an associated assessment of
their probability. This stands in sharp contrast to classical risk metrics—such as VaR
or expected shortfall—that structurally involve the combination of events and their
associated likelihoods. Prowling in the background of both worlds, as we’ve seen
in previous chapters, is necessarily an underlying (and unknown) loss distribution.
We can envisage a stress scenario as a set (or event) in one’s probability space.
Unfortunately, we do not know how to assign a measure to it.1 The consequence is
an inherent degree of subjectivity in any stress-testing analysis.

1 At the same time, we (rather keenly) hope that it is not a set of measure zero.
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This situation creates an incongruity between standard risk measures on the one
hand and stress-testing results on the other; it feels like a situation of comparing
apples and pears. Aragonés et al. [2] summarize this sentiment very well with the
following question:

How can we combine a probabilistic risk estimate with an estimate that such-and-such a
loss will occur if such-and-such happens?

At the same time, however, there appears to be a real need for stress-testing.
Quantitative analysts should not start patting one another on the back because
of the logical consistency of event and probability treatment within their models.
Time and again, over recent decades, probabilistic risk estimates have failed to
predict a dismaying number of crises associated with realizations of extreme
financial outcomes. Why is this the case? It may stem from over-optimism in one’s
parametrization, leading to insufficient weight on severely adverse outcomes. Part
of the explanation is certainly, as argued by Taleb [31], that unknown unknowns
driving financial crises structurally elude our models until it is too late.2 It is
also entirely possible that asking our models to accurately predict inherently
unpredictable financial shocks, driven by complex human behaviour, is simply
too tall an order. Whatever the reason, it is useful to (once again) underscore the
fallibility of probabilistic models.

Stress-testing, when done well, is thus a complement and not a competitor to our
probabilistic models. The key objective of stress-testing analysis is not necessarily
the construction of extreme scenarios not fully captured in our base models—
although this is certainly part of it—but rather to identify vulnerabilities in our
portfolios. Where, for example, are the weak spots? What constellation of events
would be particularly troublesome for our portfolio? Such information, despite its
subjectivity and lack of probability assignment, is useful. When combined with our
standard modelling framework, it tells a more nuanced and complete story.

The final claim—the need for a bird’s eye view—is the strongest reason for
treating stress-testing analysis in our final chapter. “If such-and-such happens”, to
borrow again the expression from Aragonés et al. [2], we need to understand the
implications for our portfolio. For our purposes, this basically amounts to estimating
the impact on our firm’s capital position. Such an assessment requires understanding
the big picture. We need to incorporate dimensions—introduced in Chap. 1—
of both capital demand and supply. The capital-demand impact will necessarily
flow through our economic-capital model addressed in Chaps. 2 to 4; as a result,
we need to understand how precisely this will happen and how to estimate it.
Capital-supply effects arise via the profit-and-loss statement; our loan-impairment
computations from Chap. 9 will play a central role in this respect. We will also
recycle—and, in some ways, extend—many of the earlier ideas associated with
stress-scenario generation introduced in Chaps. 7 and 8. Faced with the need to

2 Such never-before-observed events cannot, by their very nature, be incorporated into our
parameter estimates.
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estimate large number of computationally intensive economic-capital values, we
will again rely upon our approximation model from Chap. 5. Thus, while it might
be an exaggeration to state that this final discussion relies on all of the previous
chapters, it does lean heavily on most of them.

To summarize, stress-testing is not easy and requires a broader perspective.
It is, however, useful and represents a welcome companion to the classical,
probabilistic models presented in previous chapters. In the following sections, we
will consider a range of alternative approaches—with our usual focus on the credit-
risk perspective—towards the incorporation of stress scenarios into our analysis.

Colour and Commentary 141 (THE ROLE OF STRESS-TESTING ANALY-
SIS): Among quantitative analysts, stress-testing has something of a bad
reputation. Its very structure—involving specification of an extreme event
without an associated probability—is somewhat awkward. Such analysis can
be hard to interpret and difficult to combine with traditional probabilistic
models. Since the great financial crisis, however, there has been a groundswell
of support for stress-testing. Failure of probabilistic models to predict numer-
ous past crises have undermined their credibility; some even argue that
such models should be entirely replaced with stress-testing analysis. These
arguments, for and against stress-testing, both have some merit. Stress-testing
certainly deserves more credit and attention, but it is not a replacement for
more holistic financial models.a In practice, there is ample room for both
approaches in the assessment of financial risk. Stress-testing, in short, is
an effective complement to probabilistic models and a powerful tool for the
identification of vulnerabilities in one’s portfolio.

a To entirely replace probabilistic models with stress-testing would essentially amount to
“throwing the baby out with the bath water.” One can certainly improve basic modelling
techniques (i.e., eliminate the dirty water) while maintaining their fundamental usefulness
(i.e., keeping the baby).

12.1 Organizing Stress-Testing

Before jumping into the technical details and considering practical examples, we
first need to organize our thinking. As is often the case, it is useful to highlight the
key issues as a catechism. We thus raise three important questions:

1. What pathways do stress-scenarios follow on their way to impact the firm’s
capital position?

2. What logical approach should we take in our construction of a stress-testing
framework?
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3. How do we manage, in a stress-testing setting, the passage of time and our
portfolio composition?

Reflecting upon these questions and providing detailed answers will help immensely
in clarifying a possible, and pragmatic, way of thinking about stress-testing. Let’s
address each in turn.

12.1.1 The Main Risk Pathway

Our first question can basically be translated as: what does stress-testing actually
even mean within our context? We are considering the firm’s economic-capital
position—and associated measures—from a predominately credit-risk perspective.
Economic-capital, as we’ve indicated and discussed numerous times, is fundamen-
tally based on a long-term, unconditional, through-the-cycle parametrization. This
assumption permeates our basic credit-risk model and, as we saw in Chap. 11,
underscores most of the regulatory guidance. This is logically rather problematic; to
be frank, it feels like a deal-breaker. The very structure of our economic-capital
computations would appear to preclude the role of stress scenarios. The long-
term, through-the-cycle view presumably incorporates numerous, extreme stress
outcomes, but when averaged over many, more normal events, their individual-
parameter influence is strongly diluted.

If our model parameters cannot change, then what is effected by stress scenarios?
A bit of reflection suggests that, although the through-the-cycle perspective needs
to be maintained, stress outcomes can indeed have an important impact on our
portfolio’s risk profile. Since the beginning of Chap. 2, we have focused on the
three key credit-risk variables: default probability (i.e., credit rating), loss-given-
default, and exposure. All three aspects can be altered from a specific stress scenario.
The most obvious, and important, relates to the credit ratings of one’s obligors. An
adverse event may not change the model parameters, but if it creates broad-based
rating downgrade of one’s credit counterparties, the impact can be quite severe.

Economic-capital is, in fact, influenced via two main avenues associated with
the downgrade of a given credit obligor. The first is quite direct. In most cases, a
downgrade will lead to an increase in the amount of economic-capital associated
with a given credit counterpart.3 Downgrades, all else equal, will lead to an increase
in capital demand. The result is thus a reduction of the firm’s capital headroom.

3 This is not always true. Since default and migration risk often move in opposite directions, the net
impact of a downgrade can sometimes lead to small decreases in economic capital. While possible,
however, such outcomes are not typical and, when they occur, are generally small in magnitude.
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The second avenue depends on the accounting treatment of the counterparty’s
exposure. If the underlying instruments are fair-valued, there will be a valuation
impact associated with the downgrade.4 Should the underlying instruments be
held at amortized cost—as is typical for a loan portfolio—then there will be
consequences for loan impairments. The expected-credit loss will move to a new
(higher) default-probability term structure and, depending on the magnitude of the
downgrade, may even involve stage-II lifetime treatment. Either way, the loan-
impairment balance will rise. Although the magnitude of the effects will differ
depending on fair-value or amortized-cost treatment, the logical consequences are
the same. The resulting losses will pass through the profit-and-loss statement and
lead to a reduction in capital supply and, as an unwelcome side-effect, a decrease in
capital headroom.

A credit downgrade basically creates a squeeze-play for firm’s capital position.
Capital demand is pushed upwards, capital supply is pushed downwards, and the
capital headroom is caught in the middle. A sufficient number of credit downgrades
of sizable magnitude can—depending on the firm’s capital position—lead to
complete erosion of the firm’s capital position. The result may involve a credit
downgrade of its own or, in the worst case, reduced confidence in the firm, triggering
a chain of events leading to default. All of this occurs within the through-the-cycle
perspective without any impact on the model parameters. The entire adjustment
occurs through the stress-induced deterioration of credit quality of one’s portfolio.

This is, of course, a very credit-risk-centric view of stress-testing. Large, adverse
shocks to market-risk factors will also—even in the through-the-cycle setting—
generate negative valuation effects impacting capital supply. One might wish
to revisit operational-risk capital estimates or even adjust capital buffers. These
effects matter and are important—although they tend to play a lesser role in most
lending institutions—but will not be addressed in our treatment. Our focus will—
in a manner consistent with previous development—lie firmly upon the credit-risk
dimension.

4 Given increased risk, we should expect a higher discount factor, a lower value, and thus a
valuation loss.
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Colour and Commentary 142 (CREDIT-RISK STRESS-TESTING PATH-
WAYS): Crime dramas, investigative journalists, and political actors are
fond of using the phrase “follow the money.”a As exciting as it sounds, it
sadly doesn’t typically come up too often in quantitative modelling. In this
case, however, we have identified a possible exception. The fundamental
through-the-cycle perspective of economic-capital computations—with its
stable, long-term, unconditional parameters—precludes any direct modelling
impact from adverse stress scenarios. At first glance, one might reasonably
conclude that stress analysis is misplaced in this context. An important
indirect pathway nonetheless exists. Should a stress scenario lead to broad-
based credit-obligor downgrade, two capital effects present themselves. The
first is a direct increase in capital demand associated with lower portfolio
credit quality. The second is—via either valuations or loan-impairments—a
decrease in capital supply. Following the money through our modelling
frameworks and financial statements, we can identify a consequent squeeze
in one’s capital headroom. A severe stress scenario can thus, without
impacting our model parameters, lead to dramatic weakening of a firm’s
capital-adequacy position. Portfolio downgrade, through economic-capital,
market valuation, and loan impairments, represents the (principal) risk
pathway of our stress-testing analysis.

a Apparently, this dangerous-sounding expression originated from the 1970’s movie “All the
President’s Men” surrounding the Watergate scandal starring Robert Redford and Dustin
Hoffman.

12.1.2 Competing Approaches

Most authors on stress-testing—see, for example, Rebonato [26], Bellini [4] or
Rösch and Scheule [28]—would agree that there are two broad-based approaches to
the topic: top-down or bottom-up. Within each class, there are many variations and
there are presumably arguments to be made for an alternative organization. For our
purposes—that is, examining how external stress can generate portfolio downgrades
and capital degradation—this structure is perfectly sufficient.

Figure 12.1 schematically illustrates these two ideas. As the name suggests, the
top-down approach takes a macro perspective. The stress scenarios are defined, in
a global sense, through adverse changes in economic output, inflation, monetary
policy, commodities prices, and so on. This comfortably links back to our discussion
of stress-scenario construction in Chap. 8.
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Fig. 12.1 Attacking the stress-testing problem: This schematic illustrates the two broad-based
approaches to the stress-testing problem. One may approach from either a top-down or bottom-
up perspective. The top-down viewpoint necessarily works through macro-financial outcomes,
whereas the bottom-up method is rather less obviously defined.

The top-down approach to the stress-testing problem is, in many ways, the most
natural viewpoint. It easily allows us to construct interesting, and topical, narratives.
What are the implications, one might ask, of prolonged lower output and higher
inflation following the resolution of the COVID-19 pandemic? What if inflationary
expectations get out of hand leading to a secular increase in commodity prices
and interest rates? Constructing a story for each stress-testing scenario helps to
practically narrow down the, literally infinite, number of potential options.

There are other ways to identify top-down stress scenarios. It is possible, and
indeed fairly common practice, to borrow extreme outcomes from the past to inform
one’s macro-financial shocks. We could go back as far as the bond-market sell-off
in 1994, the Asian crisis, the dot-com bubble, the events surrounding the Lehman
Brothers bankruptcy, or the most recent COVID-19 pandemic. There is no shortage
of choice.5 The significant advantage is that the analyst need not construct an
explicit macro-financial outcome, nor does she need to worry whether it could
potentially occur.6 The downside is that, because it already took place, the likelihood
of a repeat performance is vanishingly small.

There is also an entire industry dedicated to the collection, processing, and
forecasting of key financial variables. Such firms are quite competent at shuffling
through all of the complexity of economic conditions and financial markets. They
not only provide baseline point forecasts and uncertainty bounds, but also stress
scenarios of varying degrees of uncertainty. For those institutions with sufficient
resources, this is a sensible path to scenario identification.

5 Reinhart and Rogoff [27] is an excellent source of inspiration for past crises.
6 This is because it has, in fact, already happened.
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The top-down approach thus requires building, buying or borrowing one or
more macro-financial stress scenarios.7 Equipped with these events, one must
then determine how precisely they impact the general credit quality (i.e., credit
ratings) of one’s portfolio. These downgrades then translate into capital demand
and supply effects. Although the chain of logic is rather long and complex, it is a
very compelling approach. Once completed and all the intermediate steps arranged,
one can examine the impact of an output shock on the firm’s capital position. Or,
as another possible example, we could examine the sensitivity of one’s current
portfolio to a repeat of the 1998 Asian crisis.

The bottom-up approach attacks the stress-testing problem from the opposite
direction. One asks, in a micro fashion, what would be the impact of a direct
downgrade to a specific subset of counterparties. The location of downgrade could
be determined by individual identity, rating level, industrial sector, region, or it
might even be randomized. There is no logical link—at least, directly—to the state
of the macroeconomy or financial markets. Instead, it looks to the portfolio structure
and seeks to understand the vulnerabilities associated with key concentrations.

This bottom-up perspective appears rather less structured, and thereby less
conceptually compelling, than the top-down approach. While entirely true, it
also relies less upon the (at times) tenuous set of statistical relationships for its
computation. As we’ve seen in Chap. 8—and will see again in later discussion—
establishing a robust relationship between general credit conditions and a set of
macro-financial variables is not an easy or unequivocal task. Although we may
be rather interested in determining the impact of an output shock on our capital
position, our ability to accurately measure such an effect will be limited. Rather
less sexy, the bottom-up approach makes up in honesty what it lacks in conceptual
appeal.

While not precisely the same thing, there is, in our case at least, a link between
the bottom-up approach and the idea of reverse stress-testing. The basic idea of
reverse stress testing is to identify those scenarios that create headaches for the firm.
There is a relatively small, but growing quantitative literature on this topic—see,
for example, Albanese et al. [1] in the market-risk setting—and it appears to be
increasingly popular in regulatory circles.8

7 Given the difficulty of identifying sensible stress scenarios, it may even be preferable to source
them from multiple places.
8 It finds, for example, explicit mention in BIS [6].
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Fig. 12.2 Forward and reverse stress-testing: This schematic illustrates, in a highly stylized
fashion, the logical distinction between forward and reverse stress testing. The forward direction
follows the standard approach of translating a macro-financial shock into a portfolio result. Reverse
stress-testing tries to work backwards from a particularly unpleasant portfolio outcome to the
original macro-financial shock. This helps to identify vulnerabilities.

Figure 12.2 provides a visualization of the notion of reverse stress testing. The
forward direction follows the standard, top-down approach of translating a macro-
financial shock into a portfolio result. Reverse stress-testing works backwards from
a particularly unpleasant (i.e., nasty) portfolio outcome to the original macro-
financial shock. Thinking a bit more mathematically, the set of macro-financial
scenarios can be seen as the domain. Each stress scenario, or function argument,
is passed through some (usually unknown) stress-testing function to determine
the portfolio impact (i.e., the function target or image). Reverse stress-testing
essentially involves selecting some portfolio loss from the image of the stress-testing
function and trying to infer its pre-image.9 Notice that we explicitly avoid the term
inverse, but instead use pre-image; there is no reason to expect a unique one-to-
one correspondence between portfolio outcomes and macro-financial scenarios. A
bad portfolio outcome could occur through many different possible constellations
of adverse macro-financial variables (and vice versa).

By focusing on adverse portfolio outcomes, the reverse stress-testing process
can help to identify vulnerabilities. Once again, this is not quite equivalent to a
bottom-up approach. In the forthcoming practical discussion, however, it will come
tantalizingly close.

9 Since we don’t really know the true form of the stress-testing function, this can be a challenging
task.
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Colour and Commentary 143 (STRESS-TESTING STRATEGIES): Stress-
testing analysis seeks to identify portfolio vulnerabilities associated with
extreme, adverse states of the world.a There are two main ways to address
this problem. The first, and most popular, is the top-down approach. Motivated
from forward-looking analysis or historical crises, one identifies a collection
of unpleasant macro-financial outcomes and traces out their impact on one’s
capital position. The logic is basically summarized as: if this macro-financial
event happens, this is the implication for our portfolio. The alternative,
referred to as the bottom-up approach, looks at the impact of specific adverse
portfolio events. In our specific case, this would amount to the downgrade
of a given set of obligors or those within a geographic region or sector.
Related to the bottom-up approach, but nonetheless distinct, is the notion of
reverse stress-testing. This basically takes the bottom-up method a step further
by trying to identify the macro-financial shock (or shocks) that might have
created it. Although the context differs, the conceptual idea of stress-testing
is identical in engineering settings. When building a bridge, for example, the
engineer seeks to understand the vulnerability in her design and construction
to various wind sheers, weight loads, and a variety of other dimensions
beyond a financial analyst’s expertise. Instead of physical structures, our
objective is to explore and identify important vulnerabilities in our asset
portfolios that might jeopardize the firm’s capital adequacy position.

a The creditworthiness state variable in our credit-risk economic capital model incidentally
uses a similar idea, but maps out the entire credit loss distribution (including many extreme
outcomes).

12.1.3 Managing Time

In stress-testing analysis, time can be a bit tricky. When, for example, does a
scenario actually occur? We cannot simply (without some reflection, at least) snap
our fingers and impose a large-scale, negative shock to our asset portfolio. Granted,
some adverse situations can occur quickly, but often they unfold over multiple
quarters or even years. Even if the effect is instantaneous (or close to it), the
aftermath is also important for our analysis.

The consequence is that we should expect our macro-financial scenarios to
unfold over time. For argument’s sake, let’s fix our stress horizon to one year.10

This immediately raises a second question: how do we describe the portfolio? It is
exceedingly unlikely that the portfolio remains fixed over a one-year period. Even

10 This is at the lower end of the scale. It is not uncommon to see two- to five-year stress horizons.
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in the unlikely case that it did, multiple aspects of the portfolio will nonetheless
change. At a minimum, there will be principal repayments reducing exposures and
all instruments will have a shorter tenor.11 In short, the passage of time creates a
number of thorny issues.

There is no single correct way to solve this problem. It basically involves a trade-
off between granularity and accuracy on one hand and parsimony and manageability
on the other. Looking out numerous years into the future makes it logistically almost
impossible to maintain the full details of one’s current portfolio structure. There are
simply too many moving parts associated with the roll-down of the current portfolio
and assumptions regarding the details of new assets. The only workable approach
involves dimension reduction.One creates a stylized, low-dimensional view of one’s
portfolio and builds a model to describe its intertemporal evolution.12 The top-
down or bottom-up scenarios are then applied to this stylized portfolio. Corners
nonetheless need to be cut and overall accuracy suffers.

The alternative, which is only tenable for reasonable short time horizons, involves
assuming that the current portfolio remains fixed in its current state. As unrealistic
as this might appear, it does offer some important advantages. The full granularity
of the portfolio is preserved. The regional and industry identities along with
credit ratings, loss-given-defaults, tenors, and exposures are known with precision.
This permits continued use of our detailed economic-capital and loan-impairment
frameworks in the computation. If one looks too far into the future or expects
imminent portfolio changes, then this tactic will break down.

This issue basically brings us to the distinction between risk-management and
strategic analysis. The risk-management viewpoint takes the portfolio as it is,
operates at the highest level of detail, and restricts its attention to relatively short
time periods. Strategic analysis extends over longer horizons and provides the
analyst with flexibility over the portfolio structure. The ability to dial up or down
risk attributes to meet strategic objectives is, after all, the main point of the exercise.
To do this, one needs to stylize the portfolio construction. Generally speaking, since
one cannot legitimately do both, it is necessary to pick a lane.

With these ideas in mind, we will consciously take the risk-management pathway.
Preservation of full portfolio dimensionality is critical, because it allows us to
borrow from the various helpful ideas presented in previous chapters. Digging into
the minutiae of the portfolio, from both top-down and bottom-up perspectives, also
permits us to more definitely identify vulnerabilities. There is a price. We cannot
defensibly look too far into the future. A one-year time horizon is thus a fairly tight
constraint for our analysis.

11 All else equal, this roll-down effect will reduce migration risk.
12 This is common in strategic portfolio-choice problems. See, for example, Bolder [7, 8] or Bolder
and Deeley [9] for a practical example demonstrating just how involved such exercises can become.
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12.1.4 Remaining Gameplan

We asked three fundamental questions and have provided detailed answers for each
of them. Our first question enquires about the practical link between stress and
portfolio outcomes. The principal risk pathway for our stress scenarios towards
the firm’s capital position—within economic capital’s through-the-cycle goggles—
is via downgrade of individual credit obligors. This provides us with a fairly clear
idea of the capital demand and supply effects to be considered.

The second question is strategic: how does one actually go about stress testing?
There are two fairly broadly defined alternative avenues for the investigation of
stress-scenario impact on our portfolios: the top-down and bottom-up approaches.
Rather than choosing a specific track, we will, as we’ve done throughout this entire
book, consider both approaches to this problem. There is no compelling reason to
specialize our stress-testing framework when much can be learned from exploration
of both alternatives

The final question relates to management of the time dimension. We will make
use of the current portfolio—in all of its detail—for our analysis. This critically
assumes that the portfolio structure remains unchanged as we advance in time. To
avoid this assumption turning into conceptual abuse, we must constrain our time
horizon to a single year.13 In making this choice, we have explicitly adopted a high-
dimensional, risk-management perspective in our stress-testing analysis.14

The remaining discussion in this chapter is relatively easily described. In the
context of a small (fictitious) portfolio, we will proceed to examine both the theory
and implementation associated with both the top-down and bottom-up approaches
to stress-testing analysis. This exercise will not only underscore the key ideas, it
will also uncover the many links to the discussion from previous chapters. In this
manner, it pulls the (occasionally) disparate material in this book together for the
reader.

12.2 The Top-Down, or Macro, Approach

The top-down approach is the proper starting point. When most people think
about stress-testing analysis, it is the top-down perspective that they have in mind.
Figure 12.3 gets right to the point with a description of the various steps involved
in our specific capital-focused, credit-risk implementation of a top-down stress
analysis.

13 This, to be perfectly frank, is already pushing things somewhat. Its defensibility will turn on
whether or not one believes that the current portfolio is a reasonable estimator for the future
portfolio one year hence.
14 The longer-term, strategic perspective is also entirely sensible. It does, however, bring us closer
to the important (strategic) question of capital forecasting and planning.
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Infer Downgrade Outcomes
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Fig. 12.3 Top-down sequencing: This graphic walks through the sequence of steps—from selec-
tion of stress scenarios to computation of the total capital impact—involved in the performance of
a top-down stress-testing analysis. It is a relatively complex multi-step undertaking.

The sequence of steps in Fig. 12.3 is surprisingly long. Selection of one’s stress
scenario—which is of utmost importance—is only the beginning. One then needs
to establish a link between these adverse macro-financial outcomes and individual
credit-obligor downgrades. Fortunately, in Chap. 8 we constructed a methodology
for mapping stress outcomes into point-in-time default and transition probabilities.
The basic loan impairment calculation—from Chap. 9—relied heavily upon the
default-probability dimension. Our top-down stress-testing efforts, by contrast, will
exploit the full point-in-time transition matrices to infer portfolio downgrades.15

Given the resulting portfolio downgrades, the remaining effort is rather straight-
forward.We simply determine the valuation, loan-impairment and economic-capital
consequences, organize the results, and compute the capital impact. The lower boxes
in Fig. 12.3 are common in both the top-down and bottom-up approaches. This is the
good news. The bad news is that there is an infinity of possible stress scenarios that
one might potentially select. We require some way to make sense of this bewildering
array of choice.

Some useful guidance can be found in the field of macroeconomics.More than 40
years ago, in a path-breaking paper, Sims [29] introduced the vector auto-regression
(VAR) model to the economics profession.16 VAR models remain, to this day,
a critical element of the economist’s toolkit. The reason is that this approach is
surprisingly flexible in its ability to capture the complex interactions between a
system (i.e., vector) of correlated, time-indexed random variables. Not only does

15 The through-the-cycle matrix is still used to compute credit-migration economic capital given
each obligor’s (shocked or current) credit state.
16 Christiano [10] is a fascinating look into the history and repercussions of Sims [29] and related
work.
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it provide a useful statistical description, but VAR models also permit generally
effective forecasts of macro-financial systems. Quite simply, the VAR model is
basically custom-built for our purposes.

Vector auto-regressive models—of even moderate size—almost invariably pos-
sess a large number of estimated parameters.17 It is typically fairly hopeless to try
to interpret, or perform statistical inference upon, individual model coefficients. For
this reason, different strategies are used to interpret and employ VAR models. One
common, and powerful, technique is referred to as the impulse-response function.
The core idea is to shock a single variable in one’s VAR system at the current time,
while simultaneously leaving the others unaffected. This shock will typically exert
an instantaneous effect on the other variables in the system. The VAR model is then
forecasted forward—with no other sources of uncertainty—allowing it to return to
its long-term equilibrium values.18 Shocking a single variable is the impulse, while
the forecasting results represent the response.

While not a definitive solution, the VAR framework and its associated impulse-
response functions offer a helpful strategy for organizing the vast array of possible
stress scenarios. The first step is to transform our collection of macro-financial
variables—we will continue to use the specific variable choices introduced in
Chap. 8—into vector-auto-regressive form. We then build the appropriate impulse-
response functions. Using these quantities, we may then investigate, for each of
our macro-financial state variables, the joint impact of a multiple standard-deviation
shock over a one-year stress horizon. Following the sequence of steps outlined in
Fig. 12.3, we may then compute a separate capital impact for each macro-financial
shock. Instead of a single stress scenario, we produce an logically organized
collection of them. This provides some semblance of order to the confusing task
of stress-scenario selection. It need not be the end of the line. One can use this
information to construct more global stress scenarios, but this analysis will help
identify key vulnerabilities. In this way, it lends a bit of direction to any subsequent
investigation.

Colour and Commentary 144 (THE IMPULSE-RESPONSE FUNCTION): It
is simultaneously easy and difficult to select a macro-financial stress sce-
nario. It is practically easy, since one need only mix and match some
random set of movements in one’s collection of state variables. It is difficult,
because there are infinitely many possible choices and it’s not a priori

(continued)

17 This is not always true, since one can impose numerous clever constraints to control and guide
variable interactions. In these cases, individual parameters can become quite important. The sizable
parameter dimensionality, the previous point notwithstanding, typically holds.
18 Although the term through-the-cycle is not actively used in macroeconomics, the long-term
equilibrium of a VAR model is essentially the same idea.
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Colour and Commentary 144 (continued)
clear how to identify a meaningful one. The field of macroeconomics offers
a clue towards resolving this impasse. Introduced decades ago by Sims
[29], the vector auto-regressive model admirably captures the dynamics of
high-dimensional, correlated, macroeconomic and financial time series. The
vector-auto-regressive framework also offers a tool—termed the impulse-
response function—that describes the system-wide impact of a shock to a
single variable in one’s system. Capturing the correlation effects, the impulse-
response function traces out the system’s return to its long-term equilibrium.
Shocking each macro-financial variable and applying the associated impulse-
response function in a systematic fashion allows us to examine our portfolio’s
vulnerabilities one source of uncertainty at a time. The results might represent
one’s final analysis or a stepping stone to the construction of a more detailed
stress scenario. In either case, this strategy lends some welcome structure to
a difficult choice.

12.2.1 Introducing the Vector Auto-Regressive Model

Nothing in life is free. To effectively employ impulse-response functions in our
exploration of our macro-financial scenario space, we first need to fully understand
how they work. This requires an associated appreciation of the vector auto-
regressive model. Accomplishing this task, which will require a bit of work and
patience, is the objective of this section.

12.2.2 The Basic Idea

Given their general popularity in economic circles, there is no shortage of superb
sources on vector auto-regressive models. A central resource, for time-series
analysis in general and vector auto-regressions in particular, is Hamilton [16].19 We
will lean heavily on his treatment and, indeed, borrow his general notation to sketch
out the main elements required for our purposes.20 We begin with a time-indexed,
vector-valued collection of random variables, yt ∈ R

κ×1. For our purposes, this will
be our set of macro-financial variables introduced in Chap. 8. More generally, they
could be anything. As the name strongly suggests, we are basically regressing the

19 Judge et al. [18] and Lütkepohl [20] are two other excellent alternative choices.
20 The reader is, of course, recommended to return to the source. Hamilton [16] is a much more
complete, nuanced, and thoughtful exposition.
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current values of the system on their previous values. That is, we are regressing the
vector yt on previous versions of itself. More specifically, we postulate a description
of yt as a linear function of its previous values. In general, it can be written as

yt = c +
p∑

i=1

�iyt−i + εt , (12.1)

where c ∈ R
κ×1 is a vector of constants, each �i ∈ R

κ×κ is a parameter matrix,
and εt ∈ R

κ×1 is an error vector. p ∈ N is the number of lags, or time steps into the
past, used to describe the current yt outcome. This model arises very naturally. If we
perform, as we did in Chap. 2, a standard discretization of a Markov process (such
as a drifted geometric Brownian motion) we will recover something conceptually
similar to Eq. 12.1. There is, therefore, a clear link between these econometric ideas
and the study of stochastic processes.

To keep the notational clutter under control—and to specialize to our specific
application—we will set p = 1 leading to:21

yt = c + �yt−1 + εt . (12.2)

In this case, we have a single matrix, � ∈ R
κ×κ , of coefficients in addition to the

constant vector, c. The structure of the error term is crucially important. In particular,
we assume that E(εs) = 0 for all s and

E

(
εtε

T
s

)
=
{

� : t = s

0 : t �= s
, (12.3)

where � is a real-valued, positive-definite, symmetric covariance matrix. This
basically means that there is a fixed error structure at each point in time, but these
errors are not serially correlated throughout time.

21 All of the following results generalize readily the p-lag case. In fact, with a bit of cleverness,
any vector auto-regressive process can be written with a first-order structure. This is referred to as
the so-called companion form. Again, Hamilton [16] is a good starting place for this discussion.
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If we take expectations of both sides of Eq. 12.2, we can determine the long-term
unconditional average value of yt . The consequence is:

E(yt ) = E

(
c + �yt−1 + εt

)
, (12.4)

E(yt ) = c + �E(yt−1) + E(εt )︸ ︷︷ ︸
=0

,

E(yt )︸ ︷︷ ︸
μ

−�E(yt−1)︸ ︷︷ ︸
μ

= c,

μ = (I − �)−1c,

where μ represents the (unconditional) mean of our vector auto-regressive process.
This is the multivariate analogue of the one-dimensional average, c

1−�
. In the

univariate case, it is clear that � ∈ R has to be less than unity or the long-term
mean is undefined. The same intuition applies to Eq. 12.4, but the condition is a
bit more complicated. We rather obviously require that the κ × κ matrix, (I − �),
be non-singular. The constraint is that all of the κ eigenvalues of � must lie in the
unit circle.22. Vector auto-regressions satisfying this constraint are referred to as
covariance-stationary. In practice, this is essentially a non-negotiable condition.

Our principal interest lies with the forecasting of yt several periods into the
future. This is accomplished with the use of the natural recurrence in the vector
auto-regression. Let us begin, again from Eq. 12.2, with the conditional expectation
of yt+1,

yt+1 = c + �yt + εt , (12.5)

E

(
yt+1

∣∣∣∣ σ {yt }
)

= E

(
c + �yt + εt

∣∣∣∣ σ {yt }
)
,

= c + �E

(
yt

∣∣∣∣ σ {yt }
)

︸ ︷︷ ︸
yt

+E

(
εt

∣∣∣∣σ {yt }
)

︸ ︷︷ ︸
=0

,

= c + �yt,

where σ {yt} denotes the σ -algebra—or as econometricians refer to it, the infor-
mation set—generated by yt . This result is relatively unsurprising: the conditional
one-step forward expectation is a linear function of the lagged values, yt . Trying

22 Or, equivalently, that the eigenvalues of (I − �) are all outside the unit circle. We refer to
the unit circle because eigenvalues may occasionally take complex values. We thus consider the
complex norm or modulus of the eigenvalue. If λ denotes the eigenvalue, then the general condition
is |λ| = |r + zi| = √

r2 + z2 < 1 for any r, z ∈ R where i = √−1. For more on the complex
norm, see Harris and Stocker [17, Chapter 17]
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two steps forward—with the same information set—and using similar arguments,
yields

yt+2 = c + �yt+1 + εt+1, (12.6)

E

(
yt+2

∣∣∣∣ σ {yt }
)

= E

(
c + �yt+1 + εt+1

∣∣∣∣ σ {yt}
)

,

= c + �E

(
yt+1

∣∣∣∣ σ {yt }
)

︸ ︷︷ ︸
Eq. 12.5

+E

(
εt+1

∣∣∣∣ σ {yt }
)

︸ ︷︷ ︸
=0

,

= c + �

(
c + �yt

)
,

= c + �c + �2yt .

We can, of course, continue to play this game as long as we like. Ultimately, the
general term for k steps into the future is described as

yt+k = c + �c + · · · + �k−1c + �kyt , (12.7)

= (I + � + · · · + �k−1
)

c + �kyt ,

=
k−1∑

i=0

�ic + �kyt .

This yields a rather elegant result. If we continue to the limit and let k tends towards
infinity, then two things happen. First, given that all of the eigenvalues of � are in
the unit circle, for sufficiently large k, �k tends to zero. This means that the impact
of the conditioning information, yt , disappears over time. Using the same properties
of �, the first term in Eq. 12.7 converges to (I − �)−1c, which is none other than
the long-term unconditional mean from Eq. 12.4. To be very definitive, using the
fact that the limit of the sum is the sum of the limits, the result is:

lim
k→∞ yt+k = lim

k→∞

( k−1∑

i=0

�ic + �kyt

)
, (12.8)

= lim
k→∞

( k−1∑

i=0

�ic

)

︸ ︷︷ ︸
(I−�)−1c

+ lim
k→∞ �kyt

︸ ︷︷ ︸
=0

,

= μ.
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Table 12.1 Vector auto-regression details: The underlying table highlights a number of interest-
ing details associated with a VAR(1) implementation of our κ = 10 macro-financial variables. We
observe, by virtue of the eigenvalues of �, that it is covariance stationary. The volatility of the
error term and the long-term mean values are also displayed for each state variable.

� Eigen- � Error Long-term Series
Macro-financial variable values volatility mean (μ) mean

Credit spreads (ϕt ) 0.32 0.34 2.03 2.01

Inflation (πt ) 0.82 0.20 0.43 0.42

Fed Funds (rt ) 0.82 0.27 −0.03 −0.04

GDP (θt ) 0.62 4.17 2.45 2.57

Unemployment (kt ) 0.51 0.90 5.88 5.89

(Non-Fuel) Commodities (wt ) 0.51 5.29 0.79 0.79

S&P 500 (mt ) 0.33 5.38 1.82 1.97

Oil (ht ) 0.33 0.15 0.01 0.01

Curve slope (st ) 0.13 0.34 −0.02 −0.01

VIX (σt ) 0.07 5.07 0.10 0.05

In other words, as we move into the future, our forecasted values of yt+k ultimately
tend towards the unconditional mean of our vector auto-regressive process. As a
practical matter, this convergence can occur rather quickly, often with a few years.
This is precisely the same logic—indeed, borrowed from this fundamental aspect of
time-series analysis—used in Chap. 8 to motivate the notion of time decay.

At this point, let’s quickly return to our concrete situation. We introduced a
κ = 10 system of macro-financial variables in Chap. 8. While perhaps somewhat
USA-centric, they do represent a fairly broad view of the global macroeconomy and
financial markets. It is a good idea, at this early stage, to fit a VAR(1) specification
to this data-set.23 Table 12.1 provides some key values for each macro-financial
variable. The first point is that all of the eigenvalues of the slope coefficient matrix,
�, are comfortably below unity. We may thus, with some relief, conclude that
a VAR(1) model of our macro-financial system is covariance stationary. Using
Eq. 12.8, we also display the long-term equilibrium values for each variable. In the
column immediately beside it, we find the average value for each time series across
our three-decade data-set. While not precisely the same, the individual μ values
are generally quite close to their simple, long-term mean. This should underscore
the conceptual link between equilibrium VAR values and the through-the-cycle
perspective. The final element in Table 12.1, from the diagonal of �, is an estimate
of each macro-financial variable’s error volatility. This provides some insight into
the typical magnitude of a shock.

23 Recall that our quarterly data spans almost 30 years from the early 1990s until 2021; it thus
comprises about 120 observations for each macro-financial variable.
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Colour and Commentary 145 (A VECTOR AUTO-REGRESSIVE STARTING

POINT): In Chap. 8, when introducing our system of 10 macro-financial
variables, we took pains to ensure that none of the individual components was
non-stationary.a This was important for estimation of Yang [33]’s structural
model linking through-the-cycle and point-in-time probabilities, but it also
proves helpful in the stress-testing setting. Estimating a VAR(1) specification
for our macro-financial system reveals a covariance-stationary result.b This
basically ensures that our statistical model is stable. Moreover, when left to its
own devices, it will tend back towards its well-defined long-term equilibrium
values. These equilibrium outcomes, not coincidentally, are not far from the
long-term unconditional mean estimates for each individual time series. The
VAR model equilibrium is thus closely coupled with the idea of a through-the-
cycle perspective.

a We relied on the work of Dickey and Fuller [11] to test this condition.
b Or, in other words, all of the eigenvalues of the slope coefficient matrix, �, are
comfortably within the unit circle.

12.2.3 An Important Link

There is an equivalent representation of the vector auto-regression, which is
particularly important for our purposes. It is based on a recursive argument and,
to be honest, is a bit tedious to construct. It nevertheless relies on a number of the
basic ideas introduced in the preceding discussion. Let’s again begin with Eq. 12.2,

yt =

Eq. 12.2︷ ︸︸ ︷

c + �

(
c + �yt−2 + εt−1

)

︸ ︷︷ ︸
yt−1

+εt , (12.9)

= c + �c + �2yt−2 + �εt−1 + εt ,

= c + �c + �2
(

c + �yt−3 + εt−2

)

︸ ︷︷ ︸
yt−2

+�εt−1 + εt ,

= c + �c + �2c + �3yt−3 + �2εt−2 + �εt−1 + εt ,

=
2∑

i=0

�ic + �3yt−3 +
2∑

i=0

Biεt−i ,
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where Bi = �i denotes the ith moving-average coefficient matrix. After two
recursions, we begin to see the general pattern. If we push this out indefinitely,
we arrive at the following structure with two main components,

yt =
∞∑

i=0

�ic

︸ ︷︷ ︸
(I−�)−1c

+
∞∑

i=0

Biεt−i , (12.10)

= μ +
∞∑

i=0

Biεt−i ,

which, as we saw before, is only possible if yt is covariance stationary. This
is sometimes called the Wold representation of the vector auto-regression; it is
basically a vector moving-average process with an infinite number of lags. The idea
is that the current value of our random vector (i.e., yt ) can be described as its long-
term average plus the sum of all of the past Bi -weighted shocks going back as far as
one can imagine. Because all of the eigenvalues of � are restricted to the unit circle,
however, the importance of these past errors, shocks or innovations gradually decays
and, ultimately, disappears over time. Thus, the long-term unconditional average
plays a central role whether we are looking forward as in Eq. 12.8 or backwards as
in Eq. 12.10.

From a stress-testing perspective, our interest is in the consequences of a specific
(adverse) shock to one of the key elements of yt . Specifically, we might ask about
the impact of a three standard deviation downward movement in economic output.
It is very interesting to consider, on a standalone basis, what this might mean for our
portfolio? Equation 12.10 shows us, rather clearly, that the mechanism to construct
such a shock is through a perturbation of one or more elements in εt . Let’s consider
a concrete one-period forward version of Eq. 12.10

yt+1 = μ +
∞∑

i=0

Biεt+1−i . (12.11)

What if we compute the derivative of yt+1 with respect to εt? That is, the sensitivity
of our vector process to a change in the innovation term. The result is

∂yt+1

∂εt

= ∂

∂εt

(
μ +

∞∑

i=0

Biεt+1−i

)
, (12.12)

= B1.
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This immediately allows us to describe the impact of our perturbation on yt+1 as

yt+1 − yt︸ ︷︷ ︸
�yt+1

= ∂yt+1

∂εt

εt , (12.13)

= B1εt .

Repeating this same chain of logic leads to the following general version of
Eq. 12.11

yt+n = μ + Bnεt , (12.14)

for an arbitrary choice of n. This immediately suggests that we can categorize our
time t shock to εt as

yt+n − yt︸ ︷︷ ︸
�yt+n

≈ ∂yt+n

∂εt

εt , (12.15)

≈ Bnεt .

Given that each of the moving-average coefficients is intimately related to powers
of the � matrix, as discussed previously, the impact of the εt shock ultimately
dissipates to zero.

It is rather interesting to think about a shock at time t of magnitude εt , but zero
for all other future periods (i.e., εt+1, · · · , εt+n ≡ 0). To make it more specific,
we could give a special structure to εt ; in particular, we might define it as a one
standard-deviation shock to the j th element of εt and zero for all other factors.
Following Eq. 12.15, the system impact going forward in time is simply,

B1εt , B2εt , · · · , Bnεt , · · · . (12.16)

The specific shock could be to output, employment, or the oil price. Indeed, we
could perform a sequence of such shocks, in an organized sequential fashion, for
each of our macro-financial variables. This powerful idea is called the impulse-
response function. It helps us identify—within the context of a large number of
variables and parameters—the impact of a shock to inflation on, for example, the oil
price in three periods.

12.2.4 The Impulse-Response Function

There is, however, a catch. Since εt is a correlated system of errors, it becomes
very difficult to disentangle the effects of a given shock. The consequence is that
Eq. 12.15—since it is not really telling us what we would like to know—is not
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typically directly used for this task. Instead, econometricians use some clever tricks
to orthogonalize the covariance matrix of εt . The consequence of this adjustment is
that we can interpret a modified version of Eq. 12.15 as a true partial derivative.

The general approach is to revise somewhat the Wold representation from
Eq. 12.14—under the assumption of a single time-t shock—as

yt+n = μ + Bn

I︷ ︸︸ ︷
H−1H εt︸ ︷︷ ︸

Eq. 12.14

, (12.17)

= μ + BnH
−1ut ,

where ut = Hεt and H ∈ R
κ×κ is non-singular. This mathematical sleight of

hand—essentially multiplying by the matrix equivalent of one—permits us to treat
our revised error vector as a projection.

While this might not seem like progress, it all depends on the choice of H . The
objective is to find an H such that the covariance matrix of ut is diagonal. From
Eq. 12.3, the error-covariance matrix of εt is denoted as �, which represents a
fairly natural jumping-off point. In particular, given its real-valued, symmetric and
positive-definite form, we may write this error covariance matrix as,

� = PPT , (12.18)

where P ∈ R
κ×κ is a lower-triangular matrix.24 The direct corollary of Eq. 12.18 is

that

P−1�(P−1)T = I. (12.19)

With H = P−1, or equivalently ut = P−1εt , the variance of ut immediately
becomes

var(ut ) = var

(
P−1εt

)
, (12.20)

= P−1 var(εt )︸ ︷︷ ︸
�

(P−1)T ,

= P−1�(P−1)T︸ ︷︷ ︸
Eq. 12.19

,

= I.

24 This is referred to as the Cholesky factorization or decomposition, which has already made
multiple appearances in previous chapters. Loosely speaking—although, not technically quite
true—it feels a bit like the square-root of a matrix. See Golub and Loan [14, Chapter 4] and Press
et al. [25, Section 2.9] for much more detailed background.



782 12 Thoughts on Stress Testing

This is a pretty convenient choice of H , because the covariance matrix of ut is now
the identity matrix. This amounts to an orthogonalization of the macro-financial
shock dimension.

To introduce our (now independent) shocks, we let δj denote a κ-dimensional
vector with a value of 1 at element j and zero everywhere else. The value of δ1, for
example, is simply

δ1 =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ (12.21)

By iterating over δj for j = 1, . . . , 10, we can induce consecutive one-standard-
deviation shocks for each of our individual macro-financial variables. Should we
wish to generate larger shocks, we need only scale up the value of each δj by the
appropriate constant.

We now have all of the moving parts needed to construct our impulse-response
function. For the ith step into the future, it is usefully conceptualized as the
difference of two conditional expectations. The first involves a shock of δj at time
t , while the second is business as usual where we have no information on the shock.
In both cases, we condition on the information available at time t − 1. The distance
between these conditional expectations brings us to the following orthogonalized
form of the impulse-response function:

irf(i, j) = E

(
yt+i

∣∣∣∣ut = δj , σ {εt−1}
)

︸ ︷︷ ︸
Conditional expection given

shock to variable j

−E

(
yt+i

∣∣∣∣ σ {εt−1}
)

︸ ︷︷ ︸
Normal conditional

expectation

, (12.22)

= E

⎛

⎜⎝�μ + BiPut︸ ︷︷ ︸
Eq. 12.17

∣∣∣∣∣∣∣
ut = δj , σ {εt−1}

⎞

⎟⎠− E

⎛

⎜⎝�μ + BiPut︸ ︷︷ ︸
Eq. 12.17

∣∣∣∣∣∣∣
σ {εt−1}

⎞

⎟⎠ ,

= BiPδj −
�����������BiPP−1

E

(
εt

∣∣∣∣ σ {εt−1}
)

︸ ︷︷ ︸
=0

,

= BiPδj .

for i = 0, . . . , n and j = 1, . . . , κ where Bi is the ith moving-average coefficient
matrix and P is the lower-diagonal factorization of �. Given that Bi, P ∈ R

κ×κ

and δj ∈ R
κ×1 the result of Eq. 12.21 is a κ-dimensional vector for each time

step. Tracing out Eq. 12.22 for each i = 1, . . . , n describes the adjustment of our
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macro-financial system associated with a one-standard-deviation innovation to the
j th variable.

The orthogonalized impulse-response function is a huge step forward, but it
still has an important shortcoming. The order of the shocks still matters. Slightly
annoying, this requires us to reflect on issues of causality and essentially increases
our number of cases from κ to something rather larger. Koop et al. [19] and Pesaran
and Shin [24]—with a significant amount of additional effort—offer a solution to
this problem. Referred to as the generalized impulse-response function, they offer
the following twist on Eq. 12.22

girf(i, j) = E

(
yt+i

∣∣∣∣ εt = δj
√

ωjj , σ {εt−1}
)

︸ ︷︷ ︸
Conditional expection given

shock to variable j

−E

(
yt+i

∣∣∣∣ σ {εt−1}
)

︸ ︷︷ ︸
Normal conditional

expectation

, (12.23)

= E

⎛
⎜⎝�μ + Biεt︸ ︷︷ ︸

Eq. 12.14

∣∣∣∣∣∣∣
εt = δj

√
ωjj , σ {εt−1}

⎞
⎟⎠− E

⎛
⎜⎝�μ + Biεt︸ ︷︷ ︸

Eq. 12.14

∣∣∣∣∣∣∣
σ {εt−1}

⎞
⎟⎠ ,

= BiE

(
εt

∣∣∣∣ εt = δj
√

ωjj , σ {εt−1}
)

−

���������
Bi E

(
εt

∣∣∣∣ σ {εt−1}
)

︸ ︷︷ ︸
=0

,

= Bi�δj
√

ωjj

ωjj

,

= Bi�δj√
ωjj

=1︷ ︸︸ ︷

�
�
�

√
ωjj√
ωjj︸ ︷︷ ︸

ωjj

,

= 1√√√√δT
j �δj
︸ ︷︷ ︸

ωjj

Bi�δj ,

which is invariant to the ordering of the macro-financial shocks for i = 0, . . . , n
and j = 1, . . . , κ . This result relies on the fact that εt is multivariate normally
distributed and requires setting the shock to εjt to the volatility of the j th element
in our vector auto-regression.

We can immediately turn this, relatively abstract, discussion into practical, use-
able outputs. Figure 12.4, for each of our 10macro-financial variables, illustrates the
impact of a multiple standard-deviation downward shock to the Fed-funds rate over
a 16-quarter (i.e., 4-year time horizon). The entire three-decade history and fitted
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Fig. 12.4 Fed-funds impulse response functions: These graphics illustrate the impact of a multiple
standard-deviation downward shock to the Fed-funds rate variable. We observe the simultaneous
impact to the other macro-financial variables and the gradual return—over a four-year period—
back to their long-term values. Both the orthogonalized (O-IRF) and generalized (G-IRF) impulse-
response functions are provided for comparison.

VAR(1) values are also presented. The orthogonalized and generalized impulse-
response functions—from Eqs. 12.22 and 12.23, respectively—are naturally both
included. Although they provide relatively similar results, there are a few notable
points of deviation. In the following analysis, we will use the generalized method,
from Eq. 12.23, since it is independent of the ordering.

The utility of the impulse-response function is clearly visible in Fig. 12.4. A
large downward shock to the Fed-funds rate leads to instantaneous adjustment to
all factors. Particularly effected are the credit spreads, unemployment, output, oil
prices, and the slope of the yield curve. The magnitude, direction, and duration
of the effects are interesting to examine. Figure 12.4 starkly illustrates why Sims
[29]’s suggested use of VAR models found such success. It permits us to assess
the plausibility of the model dynamics within an intuitive framework. It seems
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Table 12.2 An imaginary portfolio: To examine the various flavours of stress-testing analysis that
one may perform, it is easier to conceptualize with a concrete portfolio. This entirely fictitious
example, summarized in the underlying table, is hopefully small enough to see what is going on,
but large enough to illustrate key trends.

Exposure Tenor Grace Bullet Coupon Fair- Systemic Concentr.
# PD

(EUR)
LGD

(yrs. ) (yrs. ) Loan ? Rate Valued ? Weight Index

1 3 3,500,000 0.40 6 0 True 1.50% True 0.24 0.75
2 4 1,500,000 0.35 4 0 True 1.75% True 0.19 0.72
3 7 2,000,000 0.45 3 1 False 1.00% False 0.22 0.80
4 9 1,750,000 0.55 2 0 True 2.25% False 0.30 0.85
5 13 1,500,000 0.60 5 2 False 3.50% False 0.15 0.70
6 14 3,000,000 0.15 18 6 False 3.00% False 0.40 0.95
7 15 1,000,000 0.35 3 1 False 4.00% False 0.28 0.90
8 17 4,500,000 0.30 15 5 True 5.00% False 0.22 0.75
9 18 750,000 0.40 5 2 False 6.50% False 0.20 0.80
10 20 500,000 0.20 4 1 False 6.00% False 0.40 0.90

Total/Mean 11.1 20,000,000 0.36 8.7 2.4 56% 3.12% 25% 0.26 0.80

rather plausible that a dramatic downward movement in interest rates would be
accompanied with falling output, commodity and equity prices, a widening of credit
spreads, lower inflation, higher unemployment, a steeper yield curve, and enhanced
financial-market volatility. The behaviour of each individual member of our macro-
financial system can be examined in this manner. For our purposes, therefore, it
makes for an excellent stress-testing tool. In the coming sections, we’ll investigate
the portfolio and capital consequences associated with 10 separate versions of
Fig. 12.4.

12.2.5 A Base Sample Portfolio

Equipped with all of the necessary technical elements to perform a top-down stress-
testing analysis, all we need is a portfolio. For obvious reasons, the examination
of the vulnerabilities of NIB’s actual portfolio is a bad idea. Even if we could,
the expositional and pedagogical value would be limited by the portfolio size. It
is simply too hard to see precisely what is going on in the face of hundreds, or even
thousands, of individual positions. Our solution, as in a few previous chapters, is to
consider a fabricated example.

Table 12.2 displays a fictitious portfolio comprised of ten distinct positions with
an equal number of credit obligors.25 The number of positions is intended to form
a happy compromise along the size dimension. Too many instruments and it is

25 This abstracts from many complicating real-world factors such as multiple loans and instruments
with a single credit counterparty, guarantees, and derivative contracts.
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difficult to follow, but too few limits the possible dynamics and interesting cases
to be examined. The total portfolio is EUR 20 million with an average PD—
along our internal scale—of roughly 11, a mean tenor of roughly 9 years, and a
weighted-average loss-given-default of about 0.35. The elements have an assortment
of coupon rates and about half of the total notional amounts have a bullet-repayment
profile. Two high-quality instruments—allocated to an internal trading portfolio—
are fair-valued, while the remainder are accounted for via amortized cost. This
creates some distinction between valuation and loan-impairment effects. Finally,
Table 12.2 also includes (randomly assigned) systemic weights and concentration-
index values to permit easy use of the economic-capital approximation model from
Chap. 5.

Using Tables 12.2, 12.3 demonstrates the base, un-shocked, risk position for our
imaginary portfolio. It includes both the stage-I and II through-the-cycle expected-
credit loss amounts as well as the default, migration, and total economic-capital
estimates. We assume that all obligors, at inception, find themselves in stage I.26

The consequence is that the total loan-impairment is less than one percent of the
overall portfolio.27 Credit-risk economic capital, by contrast, represents almost 9%
of the portfolio value. This ranges from a few percent, at the upper end of the credit
scale, to about 15% at the bottom end.

Table 12.3 is our baseline. These results will be our point of comparison for all
future stress-testing shocks, whether from the top-down or bottom-up approaches.
A couple of simplifications need to be mentioned. First, we use the economic-
capital approximation with the parameters described in Chap. 5. This is, of course,
a slight abuse because these parameters apply to a rather different underlying
portfolio. Hopefully the reader will excuse this discretion in the name of simplicity.
The second issue, relating to the expected-credit loss, is a bit harder to justify.
Chapter 9 indicated clearly that the overall expected-credit loss estimate is a
(subjectively) weighted average of three forward-lookingmacro-financial scenarios.
With plans to systematically shock each of our macro-financial variables, it is
difficult to imagine the consequence for our forward-looking scenarios. With some
patience and imagination, one could attempt to reconstruct a set of macro-financial
shock consistent with the forward-looking point-in-time default-probability term
structures. In this analysis, however, we have taken the easy way out. The expected-
loss calculation is proxiedwith the shock-invariant through-the-cycledefault curves.
Given its centrality to the forward-looking construction, it will do a sensible job

26 This implies that they have not experienced any significant decrease in credit quality since
inception. See Chap. 9 for more discussion on IFRS 9 stage-allocation logic.
27 The fair-valued instruments do not contribute to this overall ECL amount. These positions
are excluded from the loan impairments; any valuation effects associated with credit-spread
movements flow directly through the profit-and-loss statement.
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of capturing the downgrade and stage-allocation effects. It ignores, and this is
important to stress, any macro-financial-related shock consequences.28

Colour and Commentary 146 (A MINIMAL WORKING PORTFOLIO):
Internally, as do all financial institutions, we naturally perform our stress-
testing analysis using our current portfolio in all of its (gory) detail. This
nonetheless creates two problems for the present discussion. The specific
structure and vulnerabilities of our actual portfolio contain numerous
proprietary and confidential elements. As such, it cannot really be used.
Even if it was useable, its sheer size and complexity would certainly make
it sub-optimal for our pedagogical discussion. To resolve this problem, we
invented a small portfolio comprised of 10 positions each associated with a
different credit obligor. Although entirely fictitious, it does cover a reasonable
range of credit ratings, position sizes, tenors, notional repayment profiles,
accounting treatments, and recovery values. It is big enough to illustrate
reasonably complex effects, but small enough to actually see what is going on.
As such, it strikes a workable compromise between parsimony and realism.

12.2.6 From Macro Shock to Our Portfolio

Given a specific macro-financial shock, the link to an associated transition matrix
is described in Chap. 8. In brief, there are three steps in the construction of a
point-in-time transition matrix. The first is the impact upon the default probabilities
in the final column. The second involves the so-called upgrade and downgrade
ratios. These are factors, centred on unity, that scale up or down the (non-
default) off-diagonal, through-the-cycle, quarterly transition matrix elements. In this
way, a given macro-financial shock impacts the likelihood of default and relative
probability of upgrade and downgrade. The final step is the necessary adjustment of
the diagonal elements to ensure each row still sums to unity.29

Figure 12.5, to underscore the link to our transition matrices, shows these
upgrade and downgrade ratios for each of our 10 macro-financial-variable shocks
four quarters into the future. We observe rather important differences among the
various shocks as well as throughout time. As we would expect, the distance from
zero appears to be gradually decreasingwith each time step. Eventually, as the shock
dissipates, we recover our through-the-cycle transition matrix.

28 Such effects can, with some additional effort and assumptions, be incorporated into one’s
analysis.
29 This is a kind of conservation-of-(probability-)mass constraint.
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Some time-related book-keeping is required. With a quarterly model of macro-
financial movements, it is also necessary to work with a quarterly transition matrix.
To address this point, we need the generator matrix G, which is computed from the
(annual) through-the-cycle transition matrix, P .30 The quarterly through-the-cycle
transition matrix is obtained through the following transformation:

PQ = exp

(
1

4
· G

)
, (12.24)

where exp(·) denotes the matrix exponential. We then combine the quarterly
through-the-cycle transition matrix, our macro-financial shocks, and the previously
described point-in-time transition-matrix construction logic. The result is a sequence
of point-in-time transition matrices,

{
PQ(i, j) : i = 1, . . . , n

}
, (12.25)

for each j = 1, . . . , κ macro-financial shock. There is thus a logical correspondence
between the generalized impulse-response function from Eq. 12.23 and the point-in-
time transition matrices for the ith step into the future and the j th macro-financial
shock.

Our interest lies with the final transition matrix after n steps into the future along
our shocked macro-financial variable paths. We use the time-homogeneity feature
of the transition matrix to approximate this quantity as,

P(n, j) =
n∏

i=1

PQ(i, j) (12.26)

with an associated generator matrix, G(n, j). After having invested much time
maligning the lack of time homogeneity in credit-rating transition matrices, it may
appear somewhat suspicious to see it being used in Eq. 12.26. For relatively small
n, assuming that our transition-matrices are time-homogeneous does not represent
a serious crime. We can think of it as roughly equivalent to annualizing an interest
rate applied over some fraction of a year.

To respect our one-year stress-testing horizon, we set n = 4. The consequence
is a collection of κ one-year, point-in-time transition matrices: one for each macro-
financial shock. The next step, in our rather lengthy chain of logic, involves inferring
the associated credit rating for each instrument in Table 12.2 across each top-down
shock. The transition matrix provides us with all of the requisite information. Let’s
begin with our through-the-cycle matrix, P . If we are told that a credit obligor is in
state Sk(t) at time t , then its predicted value in one-year’s time is simply,

Sk(t + 1) =
21∑

m=1

Pk,m · m. (12.27)

30 These ideas were also introduced in Chap. 8.
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We exploited this trick in Chap. 5 when constructing our migration economic-capital
estimator. To determine the natural progression of the portfolio, over a one-year
horizon, we need only apply Eq. 12.27 for k = 1, . . . , 20. We then compare the set
of distances,

ϒk = Sk(t + 1) − Sk(t), (12.28)

for k = 1, . . . , 20. The sign and magnitude of ϒk determine the downgrade
outcome. If ϒk = 0.1, this suggests a tendency towards credit deterioration, but
it is not large enough to predict an actual downgrade. Although debatable, we set
the threshold at 0.5. That is, there is a one-notch downgrade if ϒk > 0.5, a two-
notch downgrade if ϒ > 1.5, and so on. Interestingly, using this criterion, the
one-year, through-the-cycle transition matrix does not predict a downgrade for any
credit rating.31

To concretely establish the link from macro-financial shocks to transition matrix
matrices to attendant rating outcomes, we arrive at

ϒk(n, j) =

Sk(t+1,j)︷ ︸︸ ︷
21∑

m=1

Pk,m(n, j) · m

︸ ︷︷ ︸
Shocked
rating

− Sk(t + 1)︸ ︷︷ ︸
TTC

forecast

, (12.29)

for n = 4 and j = 1, . . . , κ . To suit our purposes, we have slightly modified the
definition of Eq. 12.28. We are comparing the one-year shocked credit-rating out-
come to the one-year, through-the-cycle forecast. This ensures an apples-to-apples
comparison. If, for example, the shocked rating forecast is 9.6, but the through-
the-cycle downgrade expectation is 9.7, we can hardly attribute a downgrade to the
macro-financial shock.

12.2.7 The Portfolio Consequences

Having delineated the path from macro-financial system to impulse-response
function to point-in-time transition matrix to portfolio downgrades, we may now
reap the benefits. Table 12.4 provides a concrete point of comparison to the base
results in Table 12.3 associated with a multiple standard-deviation shock to the Fed
Funds rate—as described in Fig. 12.4—over our one-year stress-testing horizon.

31 Naturally, given its structure, it eventually pulls all credit counterparties to downgrade, and
ultimately default, as we move sufficiently far into the future.
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Table 12.4 A (first) macro-financial shock analysis: The underlying table illustrates the
impact—via portfolio downgrades—of a multiple standard-deviation shock to the Fed Funds
rate as summarized in Fig. 12.4. The default-probability, valuation losses, expected-credit loss
(including stage-allocations), and economic-capital implications are presented.

Trade Details Capital Supply Capital Demand

ECL MTM Economic Capital
# PD0 PD1 EAD LGD TTM

Stage I/II Δ-Spread Default Migration Total

1 3 4 3,500,000 0.40 6 0 10,139 27,281 57,606 84,886
2 4 5 1,500,000 0.35 4 0 3,512 8,742 13,358 22,100
3 7 7 2,000,000 0.45 3 920 0 41,510 13,434 54,944
4 9 9 1,750,000 0.55 2 2,371 0 123,618 11,630 135,248
5 13 15 1,500,000 0.60 5 104,016 0 118,496 12,373 130,868
6 14 16 3,000,000 0.15 18 103,158 0 308,689 94,721 403,410
7 15 17 1,000,000 0.35 3 47,882 0 183,635 5,040 188,676
8 17 19 4,500,000 0.30 15 470,857 0 541,849 250,467 792,315
9 18 19 750,000 0.40 5 79,747 0 104,040 16,456 120,496
10 20 20 500,000 0.20 4 19,996 0 71,339 2,676 74,016

Total/Mean 11.1 12.4 20,000,000 0.36 8.7 828,947 13,650 1,529,199 477,762 2,006,960
Percent of Portfolio 4.1% 0.1% 7.6% 2.4% 10.0%

Seven of our ten credit obligors experienced a downgrade; three of these were
downgraded by a single notch, while the other four experienced a two-grade move-
ment. The credit-risk economic capital allotment rose by about EUR 300,000 or 11

2
percentage points of the portfolio’s notional amount. Although both the migration
and default dimensions were impacted, around three quarters of the increase can
be attributed to default risk. One-notch downgrades to our two high-quality fair-
valued securities lead to a modest valuation loss. The largest impact, by a significant
margin, stems from the loan-impairment side. The expected-credit loss rise by
almost EUR 700,000—about twice the economic-capital movement—amounting to
more than 3% of the total portfolio. The lion’s share of the loan-impairment result
stems from the allocation of five positions—comprising more than one half of the
portfolio’s value—to IFRS 9’s stage II. The corresponding lifetime expected-credit
loss values represent a sizable, non-linear hit to the firm’s capital position.

Combining the figures in Table 12.4 gets us to the ultimate prize: the capital
impact of a given macro-financial shock. The total increase in capital demand
is, as mentioned, about EUR 300,000. The corresponding capital-supply result
approaches EUR 700,000. Together they squeeze the firm’s capital headroom by
a total of approximately EUR 1 million. This represents about 5% of the total assets
and—althoughwe have not specified the original capital position—would be a tough
blow for any financial institution.

Table 12.4 is a critical milestone, but Fig. 12.6 is the end game. It illustrates—
for a multiple standard-deviation shock of each macro-financial variable—the
combined impact of the five capital drivers associated with credit risk: default and
migration economic capital, stage I and II expected-credit losses, and valuation
adjustments. The red, downward-trending, bars in Fig. 12.6 cut to the chase. They
provide the overall impact to the firm’s capital associated when we combined the
one-two punch of capital demand and supply effects.
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Fig. 12.6 Impulse-response-function intuition: The preceding graphic provides—in a systematic
fashion—the expected-credit loss and economic-capital outcomes associated with a multiple
standard-deviation shock to each of our κ = 10 macro-financial variables. The net capital impact,
combining both capital supply and demand effects, is also presented.

Given the extreme nature of the shocks, none of our κ stress scenarios looks
particularly appealing. The advantage of this visualization—indeed, the entire
exercise—is that it allows us to classify our portfolio’s sensitivity to the various
macro-financial factors. Overall, credit spreads seem to exhibit the largest capital
impact, while the portfolio is least sensitive to inflation. Examining Fig. 12.6
we could, in fact, put our macro-financial factors into three groups. The highest
impact group—with a capital squeeze in the neighbourhood of EUR 1 million—
include credit spreads, the Fed Funds rate, commodity and equity prices, and finally
financial-market volatility. A medium impact group would include unemployment,
oil prices, and the yield-curve slope. The capital consequence for this group is in the
neighbourhood of EUR 600,000 to 700,000. Output and inflation appear to be the
final, lower-effect, macro-financial variables with capital reduction about half of the
magnitude of the high-impact group.

While there are clearly limits to the potential interpretation of an imaginary
portfolio, Table 12.4 and Fig. 12.6 illustrate the cornerstones of a larger, broader
top-down analysis. It is perfectly reasonable to augment this analysis with a few
forward- or backward-looking macro-financial stress scenarios. The technical steps
in moving from scenario to portfolio impact remain unchanged. Most importantly,
our systematic, variable-by-variable, shock-based assessment provides valuable
insight into portfolio vulnerabilities and dramatically eases interpretation and
communication of the results from more global stress scenarios.
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Colour and Commentary 147 (TOP-DOWN STRESS-TESTING ANALY-
SIS): Stress testing is, at its heart, trying to understand how one’s portfolio
would fare in a financial crisis. A top-down, macro-motivated approach
is consequently what most everyone has in mind. The idea of determining
one’s portfolio sensitivity to a specific, extreme, and adverse macro-financial
scenario is inherently conceptually appealing. This is, after all, how a
typical financial crisis manifests itself. Actually turning this conceptual idea
into a practical outcome is not particularly easy. It involves translating a
macro-financial shock into general credit conditions over some horizon,
inferring the associated impact on one’s portfolio composition and then
computing the capital demand and supply effects. To crown it all, there
are an infinity of possible stress scenarios from which to choose. Using a
workhorse model from macroeconomics, we propose a systemic approach
to examine macro-financial shocks—of various degrees of severity—one
macro-financial variable at a time. This helps to manage the complexity of
stress-scenario selection. The long and tenuous chain of logic from scenario
to capital impact, however, is simply a feature of top-down analysis. It is
also a weakness, which suggests a motive to intellectually diversify. For
this reason, the top-down approach to the stress-testing problem is sensibly
complemented with a bottom-up perspective.

12.3 The Bottom-Up, or Micro, Approach

As discussed, it is possible to come at the stress-testing question from another
angle. The bottom-up approach side-steps the macro-financial dimension and jumps
straight to the downgrade outcomes. Figure 12.7 provides a visualization of the
sequencing associated with this alternative strategy. Comparing it to the top-down
logic from Fig. 12.3, we see two main differences. First, the macro-financial
stress scenarios and point-in-time transition matrices disappear. Second, we identify
portfolio downgrades rather than infer them from macro-financial shocks. We are
basically imagining that, at the snap of our fingers, we can change the credit state of
any (and every) credit obligor in our current portfolio. This is not very realistic, of
course, but we can view this as the essence of the bottom-up thought experiment.

The bottom-up approach liberates us somewhat, but also creates its own chal-
lenges. The change of viewpoint does not, to be clear, resolve many of the
fundamental issues associated with stress-testing analysis. Direct identification of
portfolio downgrades remains absent any probability assignment and there are
many—indeed, far too many—possible combinations of downgrade that one might
select for consideration. The objective is nonetheless the same: to identify important
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Identify Downgrade Outcomes

Determine Capital-
DEMAND Effects

Determine Capital-
SUPPLY Effects

Compute TOTAL Capital Impact

Fig. 12.7 Bottom-up sequencing: This graphic describes the sequence of steps—as compared to
the schematic in Fig. 12.3—involved in the performance of a bottom-up stress-testing analysis.
Conceptually, at least, it is rather less involved than the top-down case.

vulnerabilities in one’s portfolio. Like the top-down setting, effective use of the
bottom-up approach will require some structure and organization. To the best of the
author’s knowledge, there is no correct way to perform this task. In the remainder of
this chapter, we will instead consider a number of practical variations of the bottom-
up approach and, in doing so, help to complement the preceding top-down results.
The first order of business is to motivate the need for a master plan.

12.3.1 The Limits of Brute Force

Although we’ve eliminated the thorny question of selecting macro-financial sce-
narios, we immediately face another problem.32 How precisely do we identify
downgrade cases? The simple, and naive, answer is all of them. This essentially
means looking at all possible combinations of downgrades one’s portfolio might
experience. While it has a certain appeal, for even a moderate number of credit
obligors, this implies an enormous number of possible future combinations and
permutations of different credit migrations. The number of combinations of credit
ratings—across our 20-notch non-default scale—associated with several hundred
different credit obligors is simply staggering.33

One might argue that the full power set of downgrade permutations is exces-
sive.34 Perhaps we might wish to consider the set of all possible one-notch

32 This situation brings to mind the old proverb, which is used in Tolkien [32], about moving “out
of the frying pan and into the fire.” It describes going from a bad situation to a worse one.
33 Even with n = 10 counterparties and k = 20 credit states, there are some

(
n + k − 1

k − 1

)
≈ 20, 000, 000, (12.30)

possible combinations of portfolio credit ratings. For any meaningful number of obligors, this is
an insurmountable hurdle.
34 We use the term power set to represent the set of all subsets of downgrades.
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Fig. 12.8 One-notch downgrade distribution: The preceding histogram maps out the capital
impact of the set of 1023 possible downgrade combinations for our 10-counterparty example
introduced in Table 12.2. While interesting, such analysis is not possible outside of unrealistically
small portfolio examples.

downgrades. With two counterparties, this is a very small set: each downgrade and
both downgrade. It contains only three cases. If we add another counterparty, the set
grows to seven elements, but it is still manageable. As a general rule, the number
outcomes is

n-notch downgrade outcomes = (n + 1)Number of counterparties − 1, (12.31)

using basic combinatorial logic and subtracting off the single case where no obligor
downgrades. Applying Eq. 12.31 to our 10-obligor portfolio from Table 12.2, where
n = 1 yields 1023 different possible combinations of one-notch downgrade. Again,
while not small, this seems like something we can handle. If we increase the number
of obligors to a modest 100, however, the number becomes simply too large to
reasonably write down.35

Figure 12.8 provides a histogram of the capital impact associated with the set of
1023 possible one-notch downgrades for our small example in Table 12.2. There
is no denying that this is an interesting object. It has two modes: one around
EUR 200,000 and another in the neighbourhood of EUR 550,000. Many possible
combinations of downgrades can generate such reductions in capital. There are only
very few constellations of one-notch downgrades, by contrast, that can generate

35 Some readers might recognize this idea from the story about a clever inventor, a King, a
chessboard, and many grains of rice. See Tahan [30] for more on this ancient take on Bellman
[5]’s curse of dimensionality.



12.3 The Bottom-Up, or Micro, Approach 797

capital decreases of EUR 700,000.Although a bit cumbersome—given the relatively
large number of cases—one could drill into Fig. 12.8 and try to identify trends and
patterns within the downgrades.

The bottom line is that, however interesting it may be, Fig. 12.8 is simply not
available. No matter how much we might wish to perform such an analysis, the
dimensionality of the power set of downgrades in a real-life portfolio—even for a
single notch—is just too big to tame. Another solution needs to be found.

12.3.2 The Extreme Cases

When faced with such a complex problem, one’s first thought is typically try to
reduce dimensionality. How might we start? While it might sound a bit silly at first,
one option is to look at the extremes. By extreme we mean placing all of our credit
obligor into the same rating category. The result is a portfolio entirely comprised of
PD01 ratings, another completely in PD02 and so on out until PD20; this assignment
occurs irrespective of an obligor’s starting point.36 We can organize this idea in
the form of a matrix, which we’ll call E. If we place the I instruments in one’s
portfolio along the horizontal axis and map the columns to the rating categories,
we have E ∈ R

I×20. Computing the capital-demand and supply effects for each
element in this matrix, (I−1)×N instrument-level computations are involved.37 For
a medium-sized portfolio with 500 credit obligors, this amounts to approximately
10,000 sets of calculations. The main takeaway is that only 20 (extreme) portfolios
are considered: one for each credit rating. There is much to criticize, but the huge
advantage of this perspective is its invariance to the size of the portfolio.

It is admittedly somewhat artificial and unnatural to assign all of the credit
obligors in one’s portfolio simultaneously to the same credit category. Information
is clearly being lost, but that is the price of dimension reduction. The litmus test is
the helpfulness of this approach and the associated insights it provides into one’s
portfolio.

For our sample portfolio where I = 10, this dimension-reduction idea involves
20 new portfolios with only 180 instrument-level calculations. As a consequence,
the figures are quickly computed. As in all of the previous analysis, we employ our
default and migration economic-capital approximation model. This is not without
some drawbacks. Our approximations are estimated using the current portfolio with
a broad mixture of rating outcomes. It is rather unfair to then ask the approximation
framework to provide entirely sensible results for such extreme portfolios. It will,
in particular, have difficulty with the corner cases; that is, where all obligors

36 Each counterparty will thus experience—depending on its starting point—an upgrade, a
downgrade, or no change at all.
37 This is specialized to our 20-notch (non-default) credit-rating scale. It naturally generalizes to
any finite number of credit ratings.
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Fig. 12.9 An extreme portfolio perspective: These graphics summarize the capital demand and
supply effects associated with a rather extreme what-if exercise. All positions are simultaneously
moved into the same, common credit rating.

are assigned either the highest or lowest credit quality. This situation is readily
resolved by simply re-running the simulation model either for all 20 portfolios or, if
computational resources are constrained, for the most extreme portfolios.

Figure 12.9 highlights the capital-demand and supply implications of—starting
from our baseline—moving all positions into our 20 extreme-rating configurations.
On the capital-demand side, default economic capital is a rather smooth increasing
function of the credit state. Migration, however, is a bit less well-behaved. This
is partly due to difficulty on the part of the approximation model and lumpiness
in our small portfolio. Positions #6 and #8 with their large exposures—together
representing close to 40% of the portfolio—have rather long tenors. At the corners,
this can lead to odd behaviour. This could be partly resolved with proper portfolio
simulations, but perhaps not completely eliminated.

The right-hand graphic of Fig. 12.9 illustrates the capital-supply consequences
for these extreme portfolios. The loan-impairment allocation ranges from effectively
zero to more than 8% of the overall portfolio value.38 The valuation impact,
which influences only two securities, are surprisingly large. These are nonetheless
relatively sizable, reasonably long-tenor positions currently situated at the upper
echelon of the credit spectrum. Dramatic downgrade—below PD12 or so—would

38 The reasonableness of this figure is easily verified by calculating:

Extreme PD20 ECL ≈ Total Exposure · PD20 Default Probability · Average LGD,

(12.32)

≈ EUR 20, 000, 000 · 20% · 0.36,
≈ 1, 440, 000,

which is slightly more than 7% of the portfolio.
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Fig. 12.10 Capital impact at the extremes: This graphic combines the capital demand and supply
effects—across our extreme views of the portfolio—and illustrates the associated capital impact
relative to our baseline setting.

involve significant spread widening with attendant valuation consequences. For
small shocks of one or two credit notches, this effect is not visible.

Combining the capital demand and supply graphics from Fig. 12.9 and incor-
porating the baseline perspective, Fig. 12.10 lays out the capital impact of these
extreme portfolios. It tells an interesting story. Moving south of the current
portfolio—with an average credit rating of about PD11—there is an increasing
reduction of capital headroom. At PD19 or PD20, this amounts to roughly EUR
4 million. At the other end of the spectrum, up to about EUR 1 million of capital is
actually released. There is thus a certain asymmetry around the baseline portfolio.

Figure 12.11 provides a final perspective on our extreme-portfolio construction.
At the position level—as a percentage of its notional value—the individual capital
demand and supply results are presented. A heat-map format is employed to
incorporate the three dimensions of position, credit rating, and capital percentage.
The current baseline portfolio is represented as the shaded line running roughly
through the diagonal of our heat maps. The objects in Fig. 12.11 are basically capital
demand and supply versions of the previously introduced matrix, E. For lack of a
better term, we refer to these as stress matrices.

In a real-world portfolio, such matrices can be quite large.39 If one orders the
positions from highest to lowest credit category, however, an interesting pattern
emerges. Everything to the right of the shaded baseline-portfolio line represents
various combinations of portfolio downgrade, whereas everything to the left of

39 To manage the sheer size of these stress matrices, it is also entirely possible to collect
the individual positions into meaningful sub-categories. Good examples would include regions,
industries, firm-size, or initial credit rating. Indeed, the organization is limited only by the analyst’s
creativity (and data availability).
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Fig. 12.11 Extreme stress matrices: These graphics display—as a percentage of their underlying
notional value—the capital demand and supply impact in grid format. These so-called stress
matrices permit identification of particularly sensitive instruments. The true portfolio is highlighted
in white.

the demarcation denotes upgrade. As pessimistic risk managers, we naturally focus
on the right-hand side, but both provide insights into one’s portfolio. The capital-
supply heat map suggests, for example, that there is little scope for capital relief
associated with upgrade along this dimension; everything left of the shaded line
has essentially the same colour. On the capital-demand side, the picture is a bit
more subtle. Some positions—such as #4 and #7—are relatively stable for a one-
or two-notch downgrade. As we move to multiple downward steps, however, their
capital-demand requirements increase substantially. Moreover, something funny
(and possibly incorrect) is occurring for extreme upgrades of position #6. The
visualization in Fig. 12.11, while certainly imperfect, does provide a slightly
different perspective on one’s portfolio.

Colour and Commentary 148 (BRUTE-FORCE AND EXTREMES): A brute-
force examination of the power set of one- or two-notch downgrades—despite
its intellectual and practical appeal—is unfortunately off the table. The
combinatorics tell the merciless story of a mind-bogglingly large set of
possibilities. When the dimensionality is too large, common practice is to
identify ways that it might be reduced. A simple approach, which involves a
computational burden that is roughly invariant to one’s portfolio size, involves
consideration of so-called extreme portfolios. This basically means placing
all of one’s position sequentially into each of the rating buckets. The result
is a collection of highly stylized extreme portfolios. The truth is that this is
probably an excess of dimension reduction. Much information is lost and
the associated portfolio outcomes are not realistic. There is, however, some
insight to be gained. Our extreme-portfolio construction, while it cannot be

(continued)
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Colour and Commentary 148 (continued)
the sole bottom-up strategy for our stress-testing analysis, allows for rather
informative visualization of our portfolio. Portfolios are complicated high-
dimensional objects. Anything we can do to visualize these sensitivities and
vulnerabilities is thus both helpful and entirely welcome.

12.3.3 Traditional Bottom-Up Cases

While a useful starting point, the extreme-portfolio perspective should rather be
viewed as exploratory analysis. We can learn a few high-level vulnerabilities of our
portfolio, which might be incorporated into more realistic cases. Analogous to the
top-down setting, when it comes down to it, stress-testing basically boils down to
subjective selection of shocks. In this section, we will investigate a few alternative
(and perhaps more typical) ways to proceed.

The term chestnut, beside its obvious meaning, is used by (typically fairly old)
English-speakers to describe an over-used joke, story, or example.40 Our first choice
of standalone bottom-up scenario definitely falls into this definition. It involves
a case of a global and simultaneous one- or two-notch downgrade to all of the
positions in one’s portfolio. Its conceptual shortcomings are (partially) offset by its
simplicity. No deep reflection or complex logic is required; each position is treated
in the same manner.

Table 12.5 summarizes the aggregate, instrument-level, capital-related results of
this type of global one- and two-notch portfolio downgrade. The reduction to the
firm’s capital headroom is displayed in both currency and percentage terms and
ordered, in descending fashion, by the two-notch downgrade percentage impact. A
global one-grade downgrade leads to a roughly EUR 700,000 headroom squeeze,
which corresponds to a medium-impact macro-financial impulse-response function
shock. At two notches, the EUR 1.1 million headroom exceeds any of our macro-
financial scenarios. This comparison of bottom-up shocks to our top-down macro-
financial outcomes is not precisely reverse stress-testing, but it is rather close.

Table 12.5 also provides useful information about our individual positions that, in
some cases, overlaps with the extreme-portfolio analysis from the previous section.
In the final column, for example, we observe that the average capital effect—
when moving from one to two notches of downgrade—is about +70%. This varies
wildly across individual positions. One instrument experiences, in fact, a negative

40 See Merriam-Webster [22, page 231].
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Table 12.5 An analytic chestnut: This table summarizes the (ordered) capital-headroom results
of the classic (and perhaps slightly overused) trick of applying a broad one- or two-notch
downgrade to one’s entire portfolio. While not particularly nuanced, it does help identify the
most capital-sensitive sensible instruments in both currency and percentage terms.

Trade Details One Notch Two Notches
#

PD EAD LGD Tenor EUR Per cent EUR Per cent

Notch
Increase

Percentage

8 17 4,500,000 0.30 15 354,571 7.9% 650,482 14.5% 83%
9 18 750,000 0.40 5 71,587 9.5% 74,701 10.0% 4%
5 13 1,500,000 0.60 5 86,020 5.7% 122,121 8.1% 42%
7 15 1,000,000 0.35 3 43,079 4.3% 73,599 7.4% 71%
4 9 1,750,000 0.55 2 32,885 1.9% 79,270 4.5% 141%
6 14 3,000,000 0.15 18 82,577 2.8% 81,946 2.7% -1%
3 7 2,000,000 0.45 3 14,018 0.7% 31,113 1.6% 122%
2 4 1,500,000 0.35 4 4,911 0.3% 10,587 0.7% 116%
1 3 3,500,000 0.40 6 -9,560 -0.3% 7,960 0.2% 183%
10 20 500,000 0.20 4 0 0.0% 0 0.0% 0%

Total/Mean 11.1 20,000,000 0.36 8.7 680,087 3.3% 1,131,779 5.0% 72%
Percent of Portfolio 3.4% – 5.7% – –

movement.41 Another exhibits no movement at all.42 A handful of instruments
encounter increases of around twice the portfolio average. These are, from a risk-
management perspective at least, quite interesting cases.

Credit analysts work with watch lists of firms that appear close to downgrade or
even default. Figure 12.12 runs with this idea and extends it—using the information
in Table 12.5—to a create a quantitativelymotivated danger list. These firms may be
in fine financial shape, in contrast to the watch list, but were they to be downgraded,
they would exert the greatest negative capital impact on the financial institution.
Figure 12.12 restricts this to the top-four most sensitive instruments in our small,
fictitious portfolio. In a real-life portfolio, this idea can be made much more precise
and refined. It nonetheless represents a pragmatic application of the chestnut one- or
two-notch downgrade scenarios, which can aid in the identification of real portfolio
vulnerabilities.

If a global one- or two-notch downgrade bottom-up strategy lacks finesse, then
how might we do better? Again, the challenge is the sheer number of possible
combinations. There is, however, an entire class of bottom-up scenarios that are
constructed using portfolio-level knowledge. There are many possible examples.
One might consider downgrades, of various magnitude, for a given industrial

41 This is related to the vagaries of migration risk for long-tenor, high-quality securities.
42 Since position #10 is already in PD20, it can no longer downgrade without moving into default.
We have precluded this possibility and held it fixed. Alternatively, of course, one could move it
into default and compute the loss. It is a question of preference.
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Fig. 12.12 Creating a quantitative danger list: This graphic uses 7th and 8th columns of
Table 12.5 to construct a quantitatively motivated danger list. These are securities with the highest
capital sensitivity to one- or two-notch downgrade.

sector, or firm size, or geographical region. These might be supported by portfolio
concentrations,macro-financial reasoning, or a gut feeling. Typically, there is a story
associated with such scenarios. The deteriorating prospects of a particular industry,
as an example, may have been treated extensively in the media or identified by one’s
credit analysts. A natural bottom-up stress scenario would involve a broad-based, or
more complex, set of downgrades to one’s obligors in this industry.43

To illustrate and motivate this idea, we will construct a fairly artificial example
for our sample portfolio. The idea is to use the concentration index from Table 12.2.
These, completely invented, values shouldn’t really be taken very seriously when
thinking about these ideas and interpreting the results. Instead, we should view
them as a proxy for something more complicated in the underlying structure of
the portfolio. In particular, we propose the following bottom-up stress scenario:

Downgradei =
⎧
⎨

⎩

Concentration Indexi ≥ 0.9 : +3
Concentration Indexi ∈ [0.8, 0.9) : +2

Concentration Indexi < 0.8 : 0
, (12.33)

43 This might feel a bit like a macro-financial scenario, and to a certain extent it is, but such
situations are typically too granular (or micro-focused) for treatment within a macro-financial
model.
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Table 12.6 A concentration-motivated case: The underlying table illustrates the capital supply
and demand implications of stress scenarios constructed with the portfolio’s concentrations in
mind. Using the concentration index from our simple example, this is representative of a class of
possible bottom-up approaches.

Trade Details Capital Supply Capital Demand

ECL MTM Economic Capital
# PD0 PD1 EAD LGD

Conc.
Index Stage I/II Δ-Spread Default Migration Total

1 3 3 3,500,000 0.40 0.75 0 0 20,895 83,690 104,585
2 4 4 1,500,000 0.35 0.72 0 0 6,638 14,064 20,702
3 7 9 2,000,000 0.45 0.80 5,942 0 69,383 11,652 81,035
4 9 11 1,750,000 0.55 0.85 16,398 0 185,515 14,976 200,491
5 13 13 1,500,000 0.60 0.70 11,187 0 82,369 19,207 101,576
6 14 17 3,000,000 0.15 0.95 123,291 0 334,819 67,071 401,890
7 15 18 1,000,000 0.35 0.90 62,826 0 200,007 2,993 203,000
8 17 17 4,500,000 0.30 0.75 84,324 0 467,692 60,674 528,366
9 18 20 750,000 0.40 0.80 95,166 0 103,871 4,320 108,191
10 20 20 500,000 0.20 0.90 19,996 0 71,339 2,676 74,016

Total/Mean 11.1 12.2 20,000,000 0.36 0.80 419,129 0 1,542,529 281,322 1,823,851
Percent of Portfolio 2.1% 0.0% 7.7% 1.4% 9.1%

for i = 1, . . . , I . Equation 12.33 consequently applies a three-notch downgrade to
the most concentrated aspects of the portfolio, two grades for moderate concentra-
tion, and no change for everything else. In this way, specific positions or obligors are
not targeted. Instead, some set of downgrade criteria are applied and investigated.
Equation 12.33 is simply one example of a very large, probably countably infinite,
class of stress scenarios. The trick is to identify a few that are meaningful and useful
for one’s purposes.

Following the usual format, Table 12.6 provides the capital implications of the
stress scenario from Eq. 12.33 for our example portfolio. There are three cases with
a three-step downgrade; position #10, already being at the very bottom of the scale,
is nonetheless left unaffected. Another three cases are downgraded by two notches,
while all other positions remain unchanged.Comparing to the baseline in Table 12.3,
the total capital headroom reduction is slightly less than EUR 400,000. Roughly 2

3
of the impact can be attributed to the capital-supply effects stemming from the loan-
impairment calculation. Since only about 40% of the portfolio is hit by this stress
scenario, the results are relatively less severe than we’ve seen in previous bottom-up
and top-down cases. In a real-life portfolio, the depth of analysis and insight are
potentially more significant than with our imaginary example. Equation 12.33 and
Table 12.6 nonetheless provide a concrete illustration of the more traditional class
of bottom-up scenarios.
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Colour and Commentary 149 (CLASSIC BOTTOM-UP STRESS SCENAR-
IOS): Top-down macro-financial related stress-testing scenarios, to be effec-
tive, usually involves an associated narrative. One envisions the outcome as
a consequence of some forward- or backward-looking sequence of events.
Bottom-up scenario construction, albeit in a different way, is similarly
constrained. We can ignore this point via global n-notch portfolio down-
grades.a This provides some useful insight in a more realistic manner than
in our extreme-portfolio experiment. It can even help to build danger lists of
instruments with particular capital sensitivity to downgrade. To really gain
traction in bottom-up analysis, however, a narrative is indispensable. Clas-
sical bottom-up scenarios involve identifying downgrade stories for different
aspects of one’s portfolio. Related to elements such as firm size, industry, or
region, they are typically inspired by intimate portfolio knowledge. A good
start is the well-known risk-management question: what keeps you up at
night? Practical examples are related to concentrations, known weaknesses,
or specific public information too granular for inclusion in one’s macro-
financial model.

a Usually, we set n = 1, 2, although there are no fast rules. For sufficiently large n, however,
the results converge to the lower end of our extreme-portfolio analysis.

12.3.4 Randomization

Our final flavour of bottom-up stress-testing scenario construction is less conven-
tional, but has a long and successful history in quantitative analysis: randomization.
It has been used to solve intractable high-dimensional problems via Monte Carlo
simulation,44 to identify useful search directions in complex non-linear optimization
problems,45 and to improve the efficiency of solutions to stochastic optimal-control
problems.46 All of these examples have something in common; they involve trying
to solve problems in the face of potentially crippling dimensionality. As we quickly
learned when attacking the selection of bottom-up scenarios via brute force, we face
a similar challenge in this setting. It thus stands to reason that we might also benefit
from this technique.

44 Indeed, we already investigated these ideas extensively in Chap. 4.
45 See, for example, McCall [21].
46 There are multiple possible references for this field, all widely outside the author’s area of
competence, with increasing levels of technical complexity. Ono et al. [23] is a deeply cool
example—to give the reader a sense of the broad applicability of randomized strategies—involving
planning trajectories of entry, descent, and landing for future Mars missions.
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While randomization of downgrade outcomes might be employed in any number
of ways, we will examine it in a rather specific manner. Our interest is in the
significant—let’s call it catastrophic—downgrade of a small number of important
credit obligors in one’s portfolio. It could also be restricted to some subset of the
portfolio such as the largest exposures, those obligors with the highest loss-given-
default uncertainty, or those with generally excellent credit credentials. Assigning
downgrade to a handful of members of such a portfolio subset—as a specific stress
scenario—is problematic. The analyst will inevitably be asked: why did you pick
this obligor and not another one? The question is entirely justified. Our response is to
abstract from any one (or several) obligors and select all of them. The differencewith
the brute-force setting is that we will randomly downgrade a few counterparties—
by numerous credit notches—and compute the capital-headroom implications. We
will then reset the portfolio and repeat the process. Performing this randomized
action many times and averaging across the results will—integrating across all
the possibilities—approximate the capital impact of catastrophic downgrade in a
subset of one’s portfolio. It will do so, however, in a global sense without explicitly
identifying any specific credit counterparties.

Let’s assume that we have I members in our portfolio and we wish to consider
all possible combinations of catastrophic downgrade by n credit counterparts. This
is a well known counting problem with the solution,

(
I

n

)
= I !

n!(I − n)! . (12.34)

For small I and n, this number of combinations is quite manageable. Imagine
that you have 100 large exposures and wanted to consider all combinations of
two multiple-step downgrades. Using Eq. 12.34 with these values generates 4950
possibilities. Randomization hardly seems necessary. We could compute the capital
impact for each case and take the average. Once again, however, dimensionality
becomes a problem. For I = 100, Eq. 12.34 grows very fast in n.47 Setting n = 3
yields more than 150,000 combinations, while n = 5 already puts the total to more
than 75 million. Examining all possible combinations is thus not a suitable general
strategy; randomization, in such cases, can get us to good answers with much less
computational effort.

We’ll use our small portfolio to make this idea a bit more tangible. Given that
I = 10, a value of n = 5 generates the largest number of possible combinations:
210 cases. As a consequence, a randomization strategy is not really necessary for
any choice of n. Setting n = 2, however, does allows us to investigate the interplay
between randomization and simply examining all possible instances of catastrophic
default.

47 Given that Pascal’s triangle is lurking in the background, Eq. 12.33 reaches a maximum when
n = I

2—if I is an even number—and then starts to decrease again.
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Fig. 12.13 Partitioning the unit square: To motivate the randomization strategy among our I =
10 exposures, this square allows us to visualize the set of all possible combinations of n = 2
catastrophic downgrades. By symmetry, the values above and below the diagonal have an identical
portfolio impact.

We will also use a rather simple method for random selection of our two
downgrade candidates. There are other, rather more clever ways to do this, but the
presented method helps us see clearly what is going on. Our plan is to choose, in a
uniformly random manner, two of I = 10 obligors.48 This can be accomplished by
partitioning the unit square into I × I sub-squares, where each square is described
by two integer coordinates.49 This object is presented in Fig. 12.13. There are
K × K = 100 sub-squares. Due to the inherent symmetry of our problem—the
order of the pair has no importance—and a need to avoid the diagonal, there are

only I 2−I
2 = 45 unique combinations.50

48 The technique we present is conceptually related to the more general stratified sampling method
termed Latin-hypercube sampling. See, for example, Glasserman [13, Section 4.3], Fishman [12,
Section 4.3], and Asmussen and Glynn [3, Section V.7]. The basic idea is to divide the one’s
sample space into a disjoint set of sub-regions—typically referred to as strata—and to ensure
that simulated random variates fall into each of these strata. This partitioning of the sample
space ultimately leads to reduction of variance in one’s simulation estimators without biasing its
convergence.
49 For n = 3, this becomes the unit cube, while for larger values it generalizes to the unit hypercube.
50 This happily coincides, as it must, with evaluation of

(10
2

) = 45 from Eq. 12.34.
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Fig. 12.14 Unit-square coverage: By uniform random selection of downgrade pairs, it takes a
rather large number of draws to cover the lower-diagonal of our partitioned unit square. 100 draws
is not enough, while 500 seems to do the job. Considering there are only 45 combinations, this is
not very efficient. As we add dimensions to our hypercube and increase I , however, this becomes
a viable strategy.

Randomly selecting a pair of obligor downgrades thus reduces to picking a
single sub-square. This is operationalized by selecting uniformly distributed random
variates, U1, U2 ∼ U[0, 1]. The corresponding square is given by

⎛

⎝�I · U1�︸ ︷︷ ︸
Row

, �I · U2�︸ ︷︷ ︸
Column

⎞

⎠ ≡
⎛

⎝�I · U2�︸ ︷︷ ︸
Row

, �I · U1�︸ ︷︷ ︸
Column

⎞

⎠ . (12.35)

where �·� denotes the ceiling operator to ensure that we obtain integer coordinates.51
The only constraint is that we need to ensure that no draw falls along the diagonal,
since this amounts to having a single counterpart downgrading twice.52

How well does repeated draws from Eq. 12.34 fill in the unit square? Not
particularly well. Figure 12.14 displays—for 100 and 500 randomly drawn pairs
of downgrades—the coverage of the lower-diagonal of our partitioned unit square
from Fig. 12.13. 100 draws is not enough, while 500 seems enough to do the
job. Considering there are only 45 combinations, this is fairly inefficient. For our
(very small) sample portfolio, this is clearly overkill. As we add dimensions to
our hypercube (i.e., n > 4 or so) and increase the number of counterparties (i.e.,
I > 50), however, this becomes an entirely (indeed, perhaps the only) viable
strategy.

51 This is readily generalized for arbitrary n by selecting n independent uniform variates and
adjusting Eq. 12.35 accordingly.
52 Practically, this means we toss out any randomized draws from the diagonal. This is admittedly
not very elegant and a bit computationally wasteful.
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Fig. 12.15 Randomized convergence: After a few hundred randomly drawn downgrade pairs, the
average capital impact converges rather closely to the grid-based solution involving the (known) 45
possible combinations. Once again, as we increase both I and n, randomization strategies represent
our only hope of solving this problem.

Figure 12.15 submits the (rather sad) results of comparing various numbers of
random pairs of downgrades to the average across all of the known combinations
for our simple 10-security portfolio. It takes a few hundred random samples to get
near to the final figure, which is just south of about EUR 800,000. This is rather
typical. In low dimensions, randomization is a poor, inefficient strategy. Numerical
approaches using grids or working with the power set routinely dominate in terms
of accuracy and speed. A randomized approach, for all its shortcomings, does have
an important advantage. It is roughly invariant to dimensionality; that is, its (slow)
convergence rate does not change (much) for very large problems.

At this point in our discussion, we should take a moment to underscore the
importance of Chap. 5. While the expected-credit-loss and credit-spread-valuation
computations are fast, estimating economic capital consequences are not. If we had
to turn to our simulation engine to estimate the implications of every downgrade,
the majority of the ideas we’ve considered in our bottom-up analysis would be
infeasible. Our economic-capital approximationmodels thus open up broad avenues
of investigation, which were previously inaccessible. This is a huge analytic advan-
tage. The approximation does, of course, have some shortcomings. In particular, for
extreme changes to our portfolio, we should be somewhat cautious in interpreting
the result.53 Indeed, in such cases, there is certainly value in turning back to the
simulation engine to verify the approximation-model results.

53 Handling the downgrade of a few positions within the overall portfolio, by contrast, is an entirely
natural application of the approximation model.
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Table 12.7 Randomized two-obligor catastrophic downgrade: The underlying table, in the usual
way, outlines the average capital demand and supply repercussions of a randomized pair of
catastrophic downgrades. To obtain these results, we employed 500 random downgrades of two
obligor’s current credit ratings down to PD20.

Trade Details Capital Supply Capital Demand

ECL MTM Economic Capital
# PD0 PD1 EAD LGD

Conc.
Index Stage I/II Δ-Spread Default Migration Total

1 3 6.4 3,500,000 0.40 0.75 0 144,538 103,273 72,440 175,713
2 4 7.3 1,500,000 0.35 0.72 0 43,217 29,968 12,809 42,777
3 7 9.1 2,000,000 0.45 0.80 42,765 0 90,146 12,586 102,733
4 9 11.8 1,750,000 0.55 0.85 67,623 0 220,890 10,296 231,185
5 13 14.4 1,500,000 0.60 0.70 66,505 0 98,620 16,927 115,547
6 14 15.1 3,000,000 0.15 0.95 40,289 0 269,501 147,059 416,560
7 15 16.1 1,000,000 0.35 0.90 28,698 0 158,317 8,981 167,298
8 17 17.6 4,500,000 0.30 0.75 178,757 0 483,600 61,142 544,742
9 18 18.4 750,000 0.40 0.80 40,384 0 99,587 2,728 102,315
10 20 20.0 500,000 0.20 0.90 19,996 0 71,339 2,676 74,016

Total/Mean 11.1 12.9 20,000,000 0.36 0.80 485,017 187,755 1,625,242 347,645 1,972,888
Pecent of Portfolio 2.4% 0.9% 8.1% 1.7% 9.9%

Table 12.7 outlines, in the now familiar format, the detail capital demand and
supply results associated with many randomized pairs of catastrophic downgrades.
As in Fig. 12.15, catastrophic implies an obligor being downgraded from its current
credit rating all the way down to PD20.54 The average increase in capital demand is
a bit over EUR 250,000, while the loan-impairment impact comes to around EUR
300,000. Interestingly, the valuation repercussions total almost EUR 200,000. This
stems from the current high quality of the fair-valued securities in our portfolio.
Overall, as we saw in Fig. 12.15, the total capital squeeze amounts to just shy of
EUR 800,000. As always in a stress-testing analysis, we cannot assign a probability
to this outcome. We can, however, state that it is twice our concentration-motivated,
bottom-up scenario from Table 12.6, it is roughly equivalent to an extreme portfolio
with all obligors assigned about PD13, and it lies at the upper end of our medium-
impact impulse-response function macro-financial shocks.

54 As before, for credit counterparties already at PD20, we do not force default.
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Colour and Commentary 150 (THE POWER OF RANDOMIZATION): Tradi-
tional bottom-up stress-testing, in contrast to the top-down approach, places
higher importance on the idiosyncratic dimension. These are risks specific to
the financial institution’s portfolio. They consider downgrades—in terms of
concentrations, industries, and regions—that may really do harm to one’s
capital position. Taking idiosyncratic risk to its logical limit, we should
also consider a small number of individual obligors experiencing severe
deterioration in their credit quality. Independent of macro-financial shocks
and portfolio structure, this basically captures bad luck. While tempting, it
is not a good idea to simply pick a handful of names from one’s portfolio,
downgrade them by multiple notches, and call it misfortune. You will naturally
be asked: how did you come to choose those particular names? It also
represents a single, extremely low probability, case. An alternative solution
is to use a randomization strategy. One thus computes the average capital
demand and supply outcomes over many randomly selected sets of hard-luck
(or catastrophic) downgrades.a The results shine a different light on (more
global) idiosyncratic vulnerabilities in one’s portfolio.

a One can make this even more meaningful by focusing on subsets of one’s portfolio.
Selecting a small number of obligors from the firm’s 100 largest exposures or a particularly
important industry or region.

12.3.5 Collecting Our Bottom-Up Alternatives

The various alternatives examined in the previous sections should not be viewed as
an exhaustive review of the entire universe of bottom-up stress scenarios. Instead,
they represent some practical ideas for getting a handle on the complexity associated
with scenario selection. Whatever strategy one follows to identify meaningful
bottom-up stress scenarios, however, it is important to impose some structure
and organization. Failure to do so does not immediately imply disaster, but does
substantially increase the chances of losing the forest for the trees.

To close out our bottom-up stress-testing analysis, Fig. 12.16 presents four of
the main scenarios examined in this section. Designed analogously to the macro-
financial results presented in Fig. 12.6, it allows comparison of capital demand and
supply effects in a single glance. Our simple portfolio example does not permit
incredibly complex dynamics, but there is nonetheless a surprising amount of intra-
scenario deviation among the individual components. The loan-impairment stage
allocation and valuation effects are rather more nuanced in the concentration-index
and randomized-downgrade scenarios.

Stress-testing, as the preceding discussion hopefully makes clear, is hard work.
There are no short cuts; it is inherently a bit messy, hard to manage, and high
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Fig. 12.16 Bottom-up intuition: This graphic illustrates, in a manner analogous to the macro-
financial results from Fig. 12.6, the individual capital demand and supply consequences for four of
the bottom-up scenarios considered in this section. It is enlightening to inspect the capital impact
and its various sources across the different stress-tests.

dimensional. It is precisely such multifaceted analysis of alternative bottom-up—
and, of course, also top-down—scenarios that contributes to a deeper understanding
of the vulnerabilities in one’s portfolio. No one scenario provides the full picture.
It is rather through the judicious selection and comparison of various scenarios,
constructed following different strategies, that stress-testing analysis adds value.

12.4 Wrapping Up

In the banking world over the last few decades, much (entirely warranted) emphasis
has been placed on the notion of know-your-customer to help minimize money
laundering activities and other financial crimes.55 The core idea is that more
knowledge about a phenomenon leads to improved understanding and management
of associated risks. This excellent and uncontroversial point is readily extended
to our stress-testing discussion in the form of the snappy, but entirely pertinent,
catchphrase: know your portfolio.

Our risk-management models, as we’ve seen in previous chapters, provide us
with a wealth of information. Much of it, however, is embedded in the through-the-
cycle perspective with the assumption of a constant portfolio. Stress-testing expands
our horizon by examining—from a rich array of perspectives—the repercussions
of downgrade-related portfolio changes. Although broadly defined and difficult
to organize, the principal contribution of stress-testing is portfolio knowledge.
Better comprehension and classification of portfolio weaknesses and vulnerabilities

55 There are many sources on this area, but Graham [15] provides an interesting introduction.
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Table 12.8 A stress-testing menu: The underlying table, like an à la carte menu, illustrates the
seven alternative top-down and bottom-up stress-testing techniques treated in this chapter. While
certainly non-exhaustive, hopefully it can help readers design and execute their own menus.

I. TOP-DOWN I.1 Forward-looking adverse scenarios

I.2 Historical backward-looking crisis outcomes

I.3 Structured impulse-response-function motivated analysis

II. BOTTOM-UP II.1 The power set of all downgrades

II.2 Extreme (all in one credit class) portfolios

II.3 The n-notch global downgrade chestnut

II.4 Classic portfolio-knowledge motivated scenarios

II.5 Randomized catastrophic defaults

complement traditional probabilistic models and help stakeholders take better
decisions.

Table 12.8 is given the last word. Organized like an à la carte menu from
a fancy restaurant, it summarizes the seven alternative top-down and bottom-up
stress-testing techniques examined in the previous sections. While certainly not an
exhaustive list, it does provide a reasonable amount of choice. Hopefully, when
combined with the ideas presented in preceding chapters, it can help the reader
design and execute her own stress-testing menu.
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