
Chapter 10
Measuring Derivative Exposure

If a man tells you he knows a thing exactly, then you can be safe
in inferring that you are speaking to an inexact man.

(Bertrand Russell)

One of the central inputs in the computation of credit-risk economic capital, which is
often somewhat taken for granted, is a position’s expected exposure at default. In full
generality, this is a random quantity following some (potentially complicated) prob-
ability law. For standard linear instruments—such as loans, deposits, or bonds—it
is common practice to ignore their stochastic nature and assume deterministic
exposures. This is (mostly) defensible, because the uncertainty surrounding future
exposure outcomes is usually sufficiently small that the extra effort (and incremental
complexity) is unwarranted. For some financial instruments, this argument is less
compelling. Derivative contracts are the classic counterexample.

There is a fundamentally large amount of variability in the exposure associated
with a future default event involving (interest-rate, cross-currency, or default) swaps,
options, or forward contracts. Swaps and forward contracts are linear, but at any
given point in time they may represent an asset or a liability to their holders;
more importantly, their status can change quickly with market movements. The
same cannot (typically) be said for option contracts, but their situation is often
complicated by non-linear pay-off structures.1 To be blunt, assuming deterministic
exposure-at-default values for derivative contracts is a singularly bad idea.

This important realization, it turns out, opens something of a Pandora’s box of
incremental questions for consideration. Indeed, it is so involved that it has spawned
a separate, albeit related, field of analysis: counterparty credit risk. The bilateral
counterparty aspect is the deciding factor. Very often, collateral is exchanged to
offset and mitigate risks associated with the swings in derivative contract values.
Collateral exchange, of course, is governed by legal agreements and operates across
multiple derivative contracts with a single counterparty. This fact, combined with the

1 One can, of course, have swap contracts with embedded optionality. In this way, one has to juggle
both sign change in exposures and non-linearities with respect to underlying risk factors.
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multiplicity of derivative contracts and their associated features, gives rise to many
special cases and detailed exceptions. To summarize, the world of counterparty
credit risk is not simple.

It is nonetheless necessary to wade into the realm of counterparty credit risk
to understand the techniques used to approximate (random) exposure-at-default
amounts associated with one’s derivative contracts. This chapter attempts to describe
the basic challenge, briefly sketch out the correct way to address it, review a widely
used (and surprisingly useful) regulatory derivative-exposure approximation, and
thereby motivate NIB’s approach.

10.1 The Big Picture

As the name strongly suggests, counterparty credit risk turns around the idea of a
counterparty. There are many other possible filters through which one can examine
this risk dimension, but this represents the highest level of aggregation. Exposure
at default is defined by each individual counterparty. One might, however, have
hundreds or even thousands of individual positions of various types, sizes, tenors,
and currencies. Moreover, it is entirely possible that multiple legal agreements
might be in place—for different sub-entities or instrument types—with a single
counterparty. This immediately raises a second critical point: how should these
various positions be aggregated? This falls under the category of questions that are
notoriously easy to ask, but rather more difficult to answer.

A useful way to think about aggregation is to introduce the notion of a netting
set. Duffie and Canabarro [11] refer to this helpful idea as a netting node, but the
idea is identical. Closely related, although not necessarily identical, is the so-called
margin set or node. Duffie and Canabarro [11] describe this as:

a collection of trades whose values should be added in order to determine the collateral to
be posted or received.

The central idea behind netting is to permit, within a collection of trades, market
values to offset one another when aggregating credit exposures. If, for example,
you have two trades—one negative and the other positive—netting permits the
negative exposure to (at least, partly) nullify the positive component.2 As clearly
highlighted in Gregory [13], such an arrangement has value under two main
conditions. First, some (or all) of the trades must potentially take negative values.
A bit of reflection reveals that no netting benefit is possible if all market values are
strictly positive (or negative). The second, perhaps less obvious, point touches upon
the dependence between market-value outcomes. In the event of perfect (positive)
correlation between current and future market values, there will be limited scope for

2 When you think about it, this is far from obvious, since these represent two separate contracts.
Salonen [20] provides an interesting and comprehensive discussion of how this notion developed,
which is far outside of the author’s area of expertise.
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any difference in sign between individual positions; the consequence would, once
again, be no netting benefit. Naturally, perfect correlation is somewhat exaggerated
and rarely observed in practice, but it represents a limiting case. In general, the
stronger the positive correlation between the underlying risk factors driving the
valuation of the derivative trades in one’s netting set, the lower the potential netting
benefit.

Although the most natural form of aggregation occurs along netting sets, the
margin set determines the collateral. Collateral levels, in turn, have important impli-
cations for one’s exposure computations. A central divide, therefore, is between
margined and unmargined netting sets. Unmargined netting sets are not, it should
be stressed, completely absent of any collateral. Typically, some initial margin or
independent amount is posted at the inception of these trades, which can often
be adjusted in the event of a credit-migration event by either counterparty.3 The
distinction between margined and unmargined netting sets comes from the role of
variation margin; these are amounts that are exchanged (usually on a daily basis) in
the event of changes in the netting set’s market value.

In straightforward cases—which happily coincides with NIB’s situation—a
counterparty can be mapped to a single, common netting and margin set. It is
possible to have a margin set comprise multiple netting sets; that is, there may
be a one-to-many mapping between margin and netting sets.4 For the purposes
of this discussion, we will assume a one-to-one mapping between netting sets and
counterparties as well as between netting and margin sets. To be very explicit, all
derivative trades (or positions) with a single counterparty are netted and follow
a common margin policy. Deviations from this rule are practically essential to
capture in one’s portfolio—and most definitely should not be assumed away—but
they do not add much to the overall narrative. They result in more dimensionality
and logistical complexity, but their management mostly just requires careful book-
keeping.

Figure 10.1 tries to conceptualize our simplified view of the interaction between
the counterparty, netting, margining, and our set of derivative trades. Practically, as
indicated, there might be multiple hedging sets within each margin set and many
margin sets for a given counterparty. The viewpoint in Fig. 10.1 will, however, be
sufficient to address the main concepts associated with the determination of credit
counterparty exposures.

3 Initial margin and independent amount are conceptually the same thing, but the specific choice of
term appears to depend on the situation and instrument type. See Gregory [13] for more background
on basic collateral concepts.
4 The reverse does not seem to be the case. That is, one does not (to the best of the author’s
knowledge) observe multiple margin sets within a single netting set.
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COUNTERPARTY

MARGIN SET

NETTING SET

Collection of
trades (or derivative

positions)

Fig. 10.1 A simplified hierarchy: This schematic illustrates, in a high-level conceptual manner,
the interactions between counterparty, margin and netting sets, and the collection of derivative
trades. This is a simplified representation; in practice, there are often many netting and margin sets
associated with a given counterparty.

Colour and Commentary 115 (A KEY TASK IN CREDIT COUNTERPARTY

RISK): Aggregation of exposures for plain-vanilla instruments—such as
loans, bonds, or deposits—is dead simple: you just need to add them up.
Moreover, their relative stability (typically) precludes the need to treat such
exposures as stochastic. The exposure picture for derivative contracts is rather
murkier due to their ability to quickly move from asset to liability, imperfect
correlation structures, and pay-off non-linearities. Derivative exposures, as
a consequence, cannot responsibly be treated in a deterministic fashion.
The quantitative risk analyst’s task is to determine a (defensible) derivative
exposure-at-default amount for each of her institution’s credit counterparties
at a given point in time. This necessitates the aggregation of individual trade
(or position) market values along netting relationships. It further involves
the incorporation of collateral over each margin set. The entire point of
collateral, of course, is to mitigate credit losses in the event of a counterparty
default. There will be different amounts of collateral depending on the
margining policy and this needs to be taken into consideration. The final, and
not least complicated, issue involves making some adjustment for the fact that
individual netting set market values can actually move against us. Despite the
presence of collateral, market forces can (and do) lead to increased exposure
and consequently larger potential default losses. Building a comprehensive
framework to capture all of these moving parts is, in terms of a big picture,
not particularly easy. We will have our hands full in the following discussion.
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10.2 Some Important Definitions

There are a number of fundamental definitions that need to be introduced to make
any useful headway in this area. Almost as important as the definitions themselves
is the establishment of a meaningful and descriptive notation. Given the numerous
possible levels of aggregation, keeping track of the details will prove essential to
success in this venture. There are many excellent sources on these basic definitions,
but this treatment draws principally from Gregory [13] and Duffie and Canabarro
[11]. Our notation has a few unique elements, but it is certainly inspired from these
and other helpful sources.

We begin at the trade or position level. Although we use the terms trade and
position interchangeably in this discussion, they are not precisely identical. One
might buy a futures contract in a number of separate transactions, where each one
would be a trade. The collection of these identical trades represents a position.
Systems operate at either level, and occasionally both, so exactly how this is
performed can vary. Whichever one uses, we can think of these as being (close
to) the most atomistic level of derivative exposure definition. We define Vkt (i) as
the market value of the kth derivative position with the ith counterparty at time t .5

The notation thus makes reference to the position, the counterparty, and the current
point in time. Assuming a single netting and margin set for the ith counterparty, we
can compute the netting-set market value as,

Vt (i) =
Ki∑

k=1

Vkt (i), (10.1)

where Ki represents the number of individual derivative trades in the ith counter-
party’s netting set.6

The notion of exposure comes in a variety of flavours in the field of counterparty
credit risk. Counterparty exposure is typically written as,

Et(i) = max

(
Vt(i), 0

)
, (10.2)

≡
(

Vt(i)

)+
.

In plain English, the exposure is the positive part of the netting set’s market value.
The sole focus on positive outcomes is natural since, in the event of default, no

5 Unless otherwise specified, as elsewhere in this book, we use t to denote the current point in time.
6 In the case of multiple netting sets, then one has multiple versions of Eq. 10.1.
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loss is incurred in the face of negative market values.7 Sometimes the term current
exposure is used to refer to Eq. 10.2, because it denotes the time t exposure.

The origin of most of the complexity in this area stems from precisely the fact that
derivative transactions—and by extension derivative books—can take both positive
and negative values. That one’s current exposure is zero, by virtue of a negative
netted market valuation, is no assurance that it will remain so tomorrow, the day
after, or next week. Not being able to peek into the future, we cannot know what
will happen. As prudent risk managers, however, we can try to prepare for the worst.
This leads to the idea of future exposure, which we could denote as Et+T (i). This
would be the (unknown) exposure to counterparty i at time T or T − t units of time
into the future.

The best we can do, absent a functioning crystal ball, is to treat Et+T (i) as a
random variable. It is thus interesting to consider the mathematical expectation of
this value as,

E

(
Et+T (i)

∣∣∣∣Ft

)
= E

⎛

⎜⎜⎜⎝max

(
Vt+T (i), 0

)

︸ ︷︷ ︸
Eq. 10.2

∣∣∣∣∣∣∣∣∣

Ft

⎞

⎟⎟⎟⎠ , (10.3)

Et

(
Et+T (i)

)
= Et

((
Vt+T (i)

)+)
,

where Ft is the information set (or σ -algebra) at time t . Probabilistic details aside,
the Ft explicitly captures the idea that such computations can only be performed
with the information available at time t; anything else would be essentially cheating.
To avoid the clutter of the conditioning set, however, we define the expected

exposure (or EE) as Et

(
Et+T (i)

)
. To actually evaluate Eq. 10.3, it is necessary

to make some sort of distributional assumption about the market value of our
counterparty’s netting set, Vt+T (i).

Equation 10.3 illustrates the expected exposure of counterparty i for a given point
of time in the future, T . Practically, for example, we might set T −t to be one-year in
the future. It is also interesting to consider the full time profile of expected exposures
for τ ∈ (t, T ]. To boil this down to a single number, it is common to compute the
average expected exposure over such a time interval. Mathematically, this would
reduce to integrating Eq. 10.3 over the time dimension and dividing the result by

7 It would be helpful to describe the quantity in Eq. 10.2 as positive exposure to avoid confusion.
Sadly, this is not the case.
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T − t . This yields

Et

(
E(i, t, T )

)
= 1

T − t

∫ T

t

Et

((
Vt+τ (i)

)+)
dτ. (10.4)

This quantity is generally referred to as the expected positive exposure or EPE.

We opted to write it as Et

(
E(i, t, T )

)
to illustrate the explicit dependence on the

counterparty, the information set, and the time interval.
Another twist on counterparty exposure is the so-called potential future exposure

or PFE measure. It may be defined as,

PFEα(i, t, T ) = inf
x∈R

(
x

∣∣∣∣P
(

Vt+T (i) ≥ x

)
≥ 1 − α

)
. (10.5)

where α is a predefined confidence level. Those familiar with the Value-at-Risk (or
VaR) metric—or have already reviewed Chaps. 2 or 5 or even Chap. 7—will see
a clear similarity. The key difference between PFE and VaR is which tail of the
value distribution they focus upon. VaR is concerned with downside losses, whereas
PFE attempts to describe upside derivative-valuation gains. The reason, of course,
is that the larger the positive value of one’s netted derivative exposure with a given
counterparty, the larger the scope for losses in the event of default. As we will see
in the next section, however, Eq. 10.5 might be the typical definition of PFE, but it
is not the only way this quantity might be computed.

Expected and potential-future exposure (i.e., EE and PFE) are thus looking at
the same underlying distribution; the former examines the expectation, while the
latter concerns itself with a given quantile. The choice of exposure measure along
with the specification of α and, not least, the determination of T all depend on
the specific application and one’s desired degree of conservatism. For the reporting
of one’s exposure, it might make sense to use the expected exposure measure.
Economic-capital—with its focus on worst-case events—might usefully employ
the PFE perspective. Whatever one’s selection, it requires some reflection and
justification.

Figure 10.2 helps to turn the previous equations into visualizations by illustrat-
ing the interaction between netting set valuations, (positive) exposure, expected
exposure, and potential future exposure. The left-hand side considers one-step into
the future over the interval, (t, T ]; here we clearly see the current, expected, and
potential-future exposures. The right-hand graphic, conversely, takes five steps to
span the time interval, (t, T ]; many more steps, of course, are possible. This allows
for the introduction of the expected positive exposure measure.

There are a few final concepts that are worth introducing to avoid confusion
down the road. These ideas stem principally from the regulatory setting.8 They

8 See BIS [3] for more detailed background.
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Fig. 10.2 Some useful visualizations: The graphics above illustrate the interaction between netting
set valuations, (positive) exposure, expected exposure, and potential future exposure. The two
graphics examine both one- and multiple-step perspectives, which allow for the introduction of
expected positive exposure.

all relate to the passage of time. Either the plain expected exposure (i.e., EE) or
expected positive exposure (i.e., EPE) can be computed for a range of possible future
points in time. As we move further out the horizon, there will be some maturities
in one’s derivative netting set. This will naturally lead to a gradual decrease in
both the EE and EPE measures. Although, in practice, these positions are likely to
be either rolled-over or otherwise replaced, such assumptions are complicated and
typically not included in one’s analysis. The regulatory solution was to introduce the
idea of effective EE and EPE measures. The effective means that the EE and EPE
profiles are computed, but then are adjusted so that they are (weakly) monotonically
increasing (i.e., non-decreasing).9 Imagine, for example, that you calculated the
effective exposure in monthly time steps out to a year. If the highest EE estimate
occurred during the seventh month, then the effective EE would fix all subsequent
(lower) values to the maximal amount.

Colour and Commentary 116 (DERIVATIVE EXPOSURE DEFINITIONS):
Counterparty credit risk can, and should, be viewed as a risk-management
sub-field. Like all areas of endeavour, it has its own central ideas and
vernacular. The preceding definitions represent essential groundwork for the
computation of exposure-at-default values for one’s derivative portfolios;
while not entirely comprehensive, they do touch upon the core of counter-
party credit-risk measurement. A few important commonalities arise. First,
attention is strongly on the positive part of the future netting-set valuations.

(continued)

9 This is a fairly unfortunate choice of word, since effective does not usually, in the author’s
understanding of general English-language parlance, imply weak positive monotonicity.
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Colour and Commentary 116 (continued)
This makes logical sense since this is where the risk lies. The second point
is that there are both cross-sectional and time dimensions at play. There is
a collection of derivative contracts for a given point in time (i.e., the cross
section), but we are also interested in how the value of these contracts behaves
over various periods (i.e., the time dimension). We will have to manage
randomness of the underlying risk drivers associated with our derivative
positions along both dimensions; this will necessarily involve implicitly or
explicitly introducing stochastic processes. Given that netting effectiveness
depends importantly on correlation assumptions, the joint distribution of the
various marginal risk-factor dynamics will also play an important role.

10.3 An Important Choice

Financial institutions with large derivative portfolios inevitably find themselves
in the valuation business. To permit proper exchange of collateral, a market-
consistent current value for all derivative contracts in one’s portfolio is required.
This necessitates implementation of pricing formulae (or numerical algorithms)
linking the individual cash-flows of each instrument to its associated underlying
risk factors: interest rates, exchange rates, commodity prices, and so on. Often
embedded within these pricing approaches—or determined for relatively modest
additional cost—are associated hedging ratios and risk-factor sensitivities. These
quantities can help predict changes in the value of individual instruments—and by
extension one’s portfolio—for given movements in key risk factors. Development,
construction, and maintenance of such valuation frameworks involve much work
and significant resources. It is, however, basically a cost of being a player in
derivative markets.

Linking this back to our previous definitions, we can see how this valuation
infrastructure feeds into counterparty credit risk. Without proper and timely val-
uations, we cannot hope to reasonably exchange collateral or compute current
exposure levels. Equations 10.1 and 10.2 are only knowable with the appropriate
valuation machinery. This is good news, since part of what we need is, literally
by construction, already available. As we move to Eq. 10.3, however, the situation
changes. No matter how sophisticated one’s valuation framework, it cannot tell you
the value of individual derivative instruments in the future. These outcomes are
unknown and depend, of course, on the stochastic evolution of multiple market-
related random variables.

The correct solution to this problem involves the creation of a second forward-
looking valuation framework, which lies on top of the base pricing infrastructure.
It is an analytically and computationally intensive undertaking. Generally, it relies
on simulation methods. This is partly due to the complexity of the underlying
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instruments, but principally due to the non-analytic nature of collateral exchange
and the management of netting and margin sets. It begins with the calibration and
simulation of a collection of correlated stochastic processes, over some pre-defined
analysis horizon, describing the set of risk drivers for one’s derivative portfolio.

Stepping forward into the future—for each sample path and along time grids
of varying granularity—one revalues each individual instrument, revises cash-flow
patterns as necessary, exchanges collateral (or not), and determines the time profile
of the netting set for each credit counterparty.10 This process helps to trace out the
(simulated) evolution of derivative exposure for each counterparty in one’s portfolio.
With such an engine, (positive) exposure, expected exposure, expected positive
exposure, potential future exposures, and many other possible variations are readily
numerically approximated.

The ability to describe the future evolution and distribution of one’s derivative
portfolio—by individual instrument and counterparty—offers value beyond expo-
sure computation. Following the great financial recession, there have been fairly
dramatic changes in how credit risk is incorporated into derivative pricing.11 This
leads to the idea of the credit valuation adjustment (CVA) and its many related
flavours, which is generally referred to as XVA.12 Such simulation engines also play
a central role in this derivative-pricing activity. As a consequence, it is common for
financial institutions heavily involved with derivative instruments to have not only a
valuation engine, but also a complex apparatus for PFE and XVA computations.

At first glance, the solution to our problem seems obvious. Given an army of
quantitative analysts already computing exposure profiles for individual instruments
and counterparties, we should simply borrow their results for our purposes. It is
always pleasant to find someone competent to perform a difficult task for you.
Ultimately, despite a few clear advantages, we have nonetheless opted not to
follow this route. Instead, we make use of a regulatory approximation. There
are three main reasons. First, and perhaps most importantly, our focus is on the
risk-management dimension. Most forward-looking simulation engines are firmed
focused on pricing; they work with different time horizons and probability measures.
A second point relates to conditionality. We seek a through-the-cycle perspective
in our economic-capital computations to avoid—as mentioned numerous times in
previous chapters—pro-cyclicality. Any sensible forward-looking simulation model
is calibrated to current market conditions—otherwise it cannot reproduce current
valuations—and is thus, by its very construction, working under the point-in-time
viewpoint. The final point relates back to our conceptual axioms introduced in
the preface. It is a difficult, full-time job to maintain and run a forward-looking

10 For some computations, particularly those over short periods, one may ignore the collateral
exchange to understand just how bad one’s exposure position could become with a given
counterparty.
11 The basic issue was that, prior to the 2008 crisis, most derivative pricing and hedging (more
or less) structurally ignored default risk. See Brigo [10] for a much more eloquent and detailed
description of this point.
12 See Ruiz [19] for an excellent jumping off point into this world.
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simulation platform; such an engine seeks to perform a complex array of tasks.
Were we to simply borrow these results, there is a very real danger of it becoming
a black box for risk-management staff. It seems more defensible to use a simpler,
more easily understandable approach for our purposes.

Colour and Commentary 117 (PICKING AN ANALYTIC LANE): Treatment
of derivative exposure as a random variable, for use in our economic-
capital model, complicates our life. It turns out, however, that we are not
the only group of quantitative analysts taking this perspective. Subsequent
to the 2008 global financial crisis, a major rethink occurred in the area of
derivative pricing. One of the (many) consequences has been the construction
of forward-looking derivative exposure simulation engines to support the
revised pricing algorithms. This infrastructure would, at first blush, seem to
be tailor-made for our purposes. Sadly, it is not. Forward-looking engines
have a pricing, and not risk-management, focus. They are also, by absolute
necessity, firmed rooted in the point-in-time perspective. Finally, they embed
a level of complexity rather far beyond what is required for our purposes.
Such exposure estimates could, rather easily, become a black-box input into
our economic-capital computations. From an economic-capital perspective,
we require short-term, P-measure, through-the-cycle, and relatively easily
interpretable derivative-exposure estimates. With some reluctance, therefore,
we have firmly elected to follow the simpler (pseudo-)analytic lane offered by
the regulatory authorities.a

a This choice, depending on one’s organization and resources, certainly need not apply to
all financial institutions.

10.4 A General, But Simplified Structure

To make any further progress, it is necessary to make some concrete assumptions
about the underlying distributional dynamics of the market value of one’s netting
sets. As just discussed, the most direct way would be to begin by describing the
joint behaviour of the underlying collection of (correlated) market risk factors—
such as interest rates, exchange rates, commodity prices, or volatilities—that drive
derivative valuations. While this approach is the most defensible, it also involves the
largest degree of complexity. We have opted for an alternative strategy.

Understanding our requirements, there is a strong incentive to simplify. A useful
approach involves working with the overall netting-set market value as a single,
aggregated random variable. In other words, we exploit the fact that a netting set is a
kind of sum of many other random variables. How might this work? Imagine that we
define the following stochastic process on (�,F ,P) describing the intertemporal
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dynamics of the ith counterparty’s netting set:

dVt (i) = μidt + σidWt , (10.6)

where μi ∈ R, σi ∈ R+ and {Wt,Ft } is a standard, scalar Wiener process on
(�,F ,P). This is a drifted Brownian motion. If we would like to solve Eq. 10.6 for
Vt(i), then we need to make use of the underlying, rather famous, theorem from the
stochastic calculus.13

Theorem 10.1 (Itô) Let Xt be a continuous semi-martingale taking values in an
open subset U ⊂ R. Then, for any twice continuously differentiable function f :
U → R, f (Xt ) is a semi-martingale and,

f (XT ) − f (Xt) =
∫ T

t

∂f

∂Xu

dXu + 1

2

∫ T

t

∂2f

∂X2
u

d〈Xu〉, (10.7)

where d〈Xt 〉 denotes the quadratic variation of the process Xt .

This is a fairly trivial application, where we need only select the identity function
f (Vt (i)) ≡ Vt(i) to apply Theorem 10.1. This leads to:

VT (i) − Vt(i) =
∫ T

t

∂f (Vu(i))

∂Vu(i)
dVu(i) + 1

2

∫ T

t

∂2f (Vu(i))

∂Vu(i)2 d〈Vu(i)〉u, (10.8)

=
∫ T

t

1 (μidu + σidWu) −
������������
1

2

∫ T

t

0 · d〈μidu + σidWu〉,

= μi

∫ T

t

du + σi

∫ T

t

dWu,

VT (i) = Vt(i) + μi(T − t) + σi (WT − Wt) ,

where WT − Wt ∼ N (0, T − t) is a Gaussian-distributed, independent increment
of the Wiener process. The consequence is that for any future time period, T ≥ t ,
the market value of our netting set is distributed as

Vt+T (i) ≡ VT (i) ∼ N

⎛

⎜⎝Vt(i) + μi(T − t)︸ ︷︷ ︸
μi(t,T )

, σ 2
i (T − t)︸ ︷︷ ︸
σi(t,T )2

⎞

⎟⎠ , (10.9)

for the ith credit counterparty where the functions μi(t, T ) and σi(t, T ) are
introduced to keep the notation moderately under control. In other words, starting

13 This is only a very quick (and non-rigorous) peek into this vast array of mathematical endeavour.
See Karatzas and Shreve [15], Oksendal [18], and Heunis [14] for much more information, rigour,
and intuition.
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from the current value of Vt(i), it will grow at the rate of μi in a manner proportional
to the passage of time. The volatility around this value is σi scaled by the square-root
of the time interval.

The consequence of this mathematical detour is a cohesive approach to the
intertemporal dynamics of the total market value of the individual derivative
positions with counterparty i.14 Equation 10.9 basically tells us how we can describe
the value of a given netting set for any time τ ∈ (t, T ]. All of the intricacy
of underlying risk factors is embedded in the value of μi and σi . Information is
certainly lost, but this foundational assumption allows us to put more structure—
and specificity—to the exposure definitions introduced in the previous section.

10.4.1 Expected Exposure

Using Eq. 10.3 and the final result from Eq. 10.9, we may now proceed to put a face
to the notion of expected exposure. At first glance, it might seem difficult to actually
determine the expectation of only the positive part of Vt+T (i). It turns out, however,
to be relatively straightforward. Since Vt+T (i) is a Gaussian random variable with
support on R, the positive expectation is determined by simply integrating over the
positive part of this domain, R+. Practically, this reduces to:

Et

(
Et+T (i)

)
= Et

((
Vt+T (i)

)+)

︸ ︷︷ ︸
Eq. 10.3

, (10.10)

=
∫ ∞

0
vfV (v)dv,

=
∫ ∞

0

v

σi(t, T )
√

2π
e

−(v−μi(t,T ))2

2σi (t,T )2 dv.

Although this involves a wearisome bit of calculus, it is instructive to actually solve
this integral.15 It does, however, necessitate a few substitutions. Let us first define
g = v−μi(t, T ). This immediately implies that v = g+μi(t, T ) and consequently

14 Basically this approach paves over all of the underlying market-risk factors—such as interest
rates, foreign-exchange, and key spreads—and operates immediately at the aggregate netting-set
level.
15 This is the type of exercise that is typically left for the reader, which always feels slightly unfair.
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dv = dg leading to:

Et

(
Et+T (i)

)
=
∫ ∞

0

g + μi(t, T )

σi (t, T )
√

2π
e

−g2

2σi (t,T )2 dg, (10.11)

=
∫ ∞

0

g

σi(t, T )
√

2π
e

−g2

2σi (t,T )2 dg + μi(t, T )

∫ ∞
0

1

σi(t, T )
√

2π
e

−g2

2σi (t,T )2 dg.

Resolution of the first integral in Eq. 10.11 requires a second substitution. Setting

u = −g2

2σi(t,T )2 gives us du = −gdg

σi (t,T )2 where gdg = −σi(t, T )2du. Plugging this
back into Eq. 10.11 and using some basic properties of the normal distribution, we
may simplify as:

Et

(
Et+T (i)

)
= −σi(t, T )�2

����σi(t, T )
√

2π

∫ ∞

0
eudu

+μi(t, T )

∫ ∞

0

1

σi(t, T )
√

2π
e

−(v−μi (t,T ))2

2σi (t,T )2 dv, (10.12)

= −σi(t, T )√
2π

[
eu

]∞

0
+ μi(t, T )

∫ −∞
μi (t,T )

σi (t,T )

1√
2π

e
−v2

2 dv

︸ ︷︷ ︸
To standard normal

,

= −σi(t, T )√
2π

[
e

−(v−μi(t,T ))2

2σi (t,T )2

]−∞

0
+ μi(t, T )

∫ μi (t,T )

σi (t,T )

−∞
1√
2π

e
−v2

2 dv

︸ ︷︷ ︸
By symmetry

,

= −σi(t, T )√
2π

⎛
⎜⎜⎝ lim

v→∞ e

−(v−μi(t,T ))2

2σi (t,T )2

︸ ︷︷ ︸
=0

−e

−μi(t,T )2

2σi (t,T )2

⎞
⎟⎟⎠

+μi(t, T ) �

(
μi(t, T )

σi(t, T )

)

︸ ︷︷ ︸
By definition

,

= σi(t, T )e

−μi (t,T )2

2σi (t,T )2

√
2π

+ μi(t, T )�

(
μi(t, T )

σi(t, T )

)
,

= σi(t, T )φ

(
μi(t, T )

σi(t, T )

)
+ μi(t, T )�

(
μi(t, T )

σi(t, T )

)
,

where φ(·) and �(·) denote the standard normal probability density and cumulative
distribution functions, respectively.
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If we recall our definitions of μi(t, T ) and σi(t, T ), the expected exposure (or
EE) becomes, in its full glory,

Et

(
Et+T (i)

)
= σi

√
T − tφ

(
Vt(i) + μi(T − t)

σi

√
T − t

)

+
(
Vt(i) + μi(T − t)

)
�

(
Vt (i) + μi(T − t)

σi

√
T − t

)
, (10.13)

for the ith counterparty and any arbitrary choice of T ∈ (t,∞). This may not be the
most pleasant looking or intuitive formula, but it is a concrete analytic consequence
of assuming one’s netting set’s market value follows a drifted Brownian motion
process and a firm focus on positive value outcomes. This expression also lies, as
we will see in following discussion, at the heart of the suggested regulatory approach
towards computation of derivative exposure-at-default estimates.16

10.4.2 Expected Positive Exposure

Given the form of Eq. 10.13, it would be convenient to derive another formula
for the expected positive exposure. Unfortunately, it is not so straightforward.
The cumulative distribution function, �(·), is not integrable. Adding another time-
related integral over (t, T ] does not help matters. In practical settings, it is common
practice to analytically compute the expected exposure using Eq. 10.13 over a
number of steps along a time partition of (t, T ]; we then approximate the EPE as
the average over this discrete partition of the time domain. This is not particularly
satisfying, but it is reasonably manageable. If one desires more precision, then it
is always entirely possible to numerically integrate Eq. 10.13 over any individual’s
time interval of interest.

Figure 10.3 attempts to provide a bit more colour by displaying the analytic
expected exposure over a given time period. This example was (arbitrarily) com-
puted using the formula in Eq. 10.13 with Vt(i) = 5, μi = 0.05, σi = 1.75, and T −
t = 10. The expected positive exposure is also computed in two ways: as a simple
average of the expected exposure observations and via numerical integration.17

There is little or no (practical) difference between these two approaches.

16 Equation 10.13 plays, roughly speaking, the same role for regulatory counterparty risk exposure
calculations as Gordy [12]’s ASRF model in the Basel IRB methodology. See Bolder [9, Chapter 6]
for an introduction to these concepts. We’ll also return to this point in Chap. 11 when we examine
the broader regulatory capital perspective.
17 For the average computation, four discrete steps are taken for each year over T − t for a total of
40 expected-exposure evaluations. As we increase the granularity of the time grid, of course, these
two approaches converge.
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Fig. 10.3 Analytic exposure: This graphic displays the analytic expected exposure over a given
time period. The EPE is also computed as a simple average of the EE observations and via
numerical integration; there is little or no economic difference. This example was (arbitrarily)
computed with Vt (i) = 5, μi = 0.05, σi = 1.75, and T − t = 10.

If one is willing to make an additional assumption, then it is possible to obtain
an analytic expression for the expected positive exposure. We need to assume that
μi(t, T ) = Vt (i) + μi(T − t) ≡ 0. Practically, this means that we must eliminate
the drift element from our Brownian motion in Eq. 10.6. This transforms Eq. 10.13
into

Et

(
Et+T (i)

)
= σi

√
T − tφ (0) +

���������
(0) · �

(
0

σi

√
T − t

)

︸ ︷︷ ︸
Eq. 10.13

, (10.14)

= σi

√
T − t√
2π

.

This eliminates the annoying �(·) term and easily allows us to determine an
expected positive exposure expression as,

1

T − t

∫ T

t

Et

(
Et+τ (i)

)
dτ = 1

T − t

∫ T

t

σi

√
τ − t√
2π

dτ, (10.15)

= σi√
2π(T − t)

∫ T

t

√
τ − tdτ,

= σi√
2π(T − t)

[
2

3
(τ − t)

3
2

]T

t

,
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= 2σi

3
√

2π����(T − t)
(τ − t) �

3
2 ,

= 2σi

√
τ − t

3
√

2π
.

The conclusion is that if the netting-set market value follows a Brownian motion
with a zero drift and time-homogeneous variance, then both the EE and EPE
measures are simply multiples of the volatility and the passage of time. Admittedly,
these are perhaps not the most reasonable possible assumptions one might take.
They do, however, permit (mostly) analytic formulae and a point of comparison.

10.4.3 Potential Future Exposure

Morgan/Reuters [17] originally suggested the VaR measure in the context of
portfolio loss. Equation 10.5 provides a twist on this idea. Let’s repeat it here—
in a slightly different form—to examine it in more detail, help consider alternatives,
and understand under what conditions it might be determined analytically. The α-
VaR of the ith counterparty’s netting-set exposure over the horizon T − t can be
written as,

qα(i, t, T ) = inf
x∈R

(
x

∣∣∣∣P
(

Vt+T (i) ≥ x

)
≥ 1 − α

)
. (10.16)

The function depends on two parameters: α, which a threshold for the probability on
the right-hand side of Eq. 10.16 and the time horizon, T −t . Imagine that we set α to
0.95 and T − t = 1

52 or one week. With these parameter choices, the VaR describes
the smallest exposure outcome that exceeds 95% of possible valuations, but is less
than 5% of them. In other words, qα(i, t, T ) is the upper (1 − α)-quantile of the
netting set’s exposure distribution.18 By common convention, the VaR is denoted as
qα(i, t, T ) to describe how far, for the ith counterparty, out into the future and the
distribution’s tail one wishes to go.

A second, increasingly common risk measure, is defined as the following
conditional expectation,

E

(
Vt+T (i)

∣∣∣∣Vt+T (i) ≥ qα(i, t, T )

)
= 1

1 − α

∫ ∞

qα(i,t,T )

vfVt+T (i)(v)dv. (10.17)

In words, Eq. 10.17 essentially describes the exposure given that one find’s oneself
at or beyond the (1 − α)-quantile, or qα(i, t, T ), level. This quantity is, for this

18 Quantiles are points in a distribution pertaining to the rank order of the distribution’s values. It
is a generalization of the notion of a percentile, which is defined on a scale of 0 to 100.
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reason, often termed the conditional Value-at-Risk, the tail VaR, or the expected
shortfall.19 We will use the latter term and denote it as Eα(i, t, T ) to explicitly
include the desired quantile defining the tail of the return distribution (as well as
the time horizon and credit counterparty). Either Eq. 10.16 or 10.17 is a reasonable
candidate for the potential future exposure.

Both of these quantities are fairly abstract. With a bit of additional effort and the
assumption of Gaussianity, we may derive analytic expressions for both measures.
From Eq. 10.16, the (1−α)-quantile satisfies the following (by-now-quite-familiar)
relation for a standard normal variate,

∫ ∞

qα(i,t,T )

fVt+T (i)(v)dv = 1 − α, (10.18)

1 −
∫ qα(i,t,T )

−∞
fVt+T (i)(v)dv = 1 − α,

∫ qα(i,t,T )

−∞
fVt+T (i)(v)dv = α,

P

(
Vt+T (i) ≤ qα(i, t, T )

)
= α,

�

(
qα(i, t, T )

)
= α,

qα(i, t, T ) = �−1(α).

The standard inverse normal cumulative distribution function, �−1(·), does not
have a closed-form solution, but through a variety of approximations, it is found
in virtually any software package.20

Equation 10.18 summarizes the results for a standard normal random variable.
All that remains is to scale the outcome to the moments of our portfolio-return
distribution. Recall that if Z ∼ N(0, 1), then X = a + √

bZ ∼ N(a, b). Using this
logic, it follows that

qp(α, T − t) = μi(t, T ) + qα(i, t, T )σi(t, T ), (10.19)

= Vt(i) + μi(T − t) + �−1(α)︸ ︷︷ ︸
Eq.

10.18

σi

√
T − t .

19 The expected shortfall measure—a central metric for our economic-capital model—also fulfills
all of the criteria for a co-called coherent risk measure. See Artzner et al. [1] for an introduction to
this theoretically important notion.
20 An α of 0.95, for example, leads to a constant value �−1(0.95) ≈ 1.65, whereas an α of 0.99
leads to �−1(0.99) ≈ 2.33.
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Given an α of 0.99, Vt(i) = 5, μi = 0.05, σi = 1.75, and T − t = 1
52 , a possible

VaR-based PFE estimate takes the value,

qα(i, t, T ) = 5 + 0.05 ·
(

1

52

)

︸ ︷︷ ︸
μi(t,T )

+�−1(0.99) · 1.75 ·
√

1

52︸ ︷︷ ︸
σi(t,T )

, (10.20)

= 5.10 + 2.33 · 0.24,

= 5.66.

In this setting, the 99% VaR would be 5.66 units of currency. Alternatively, we
estimate that the worst-case increase in exposure over the next week, with a
99% degree of confidence, is qα(i, t, T ) − Vt(i) = 0.66 units of currency. The
computation itself is trivial. All of the effort is found in the identification of robust
and sensible expected return and portfolio volatility estimates.

To find a workable expression for an expected-shortfall-based PFE, we again
begin with a standard normal random variate, Vt+T (i) ∼ N(0, 1). The average
value in the tail beyond the (1 − α)-quantile is defined as follows,

E

(
Vt+T (i)

∣∣∣∣Vt+T (i) ≥ qα(i, t, T )

)
= 1

1 − α

∫ ∞
qα(i,t,T )

vfVt+T (i)(v)dv, (10.21)

= 1

1 − α

∫ ∞
�−1(α)

vφ(v)dv,

= 1

1 − α

∫ ∞
�−1(α)

v√
2π

e− v2
2 dv.

This is not, at first glance, a terribly easy integral to solve. If one computes φ′(v),
the solution presents itself directly. In particular,

φ(v) = 1√
2π

e− v2
2 , (10.22)

φ′(v) =
(−2v

2

)
1√
2π

e− v2
2 ,

= −v√
2π

e− v2
2 ,

= −vφ(v),
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where φ(·) denotes the standard normal density function. Inserting Eq. 10.22
into 10.21, we have

E

(
Vt+T (i)

∣∣∣∣Vt+T (i) ≥ qα(i, t, T )

)
= 1

1 − α

∫ ∞

�−1(α)

v√
2π

e− v2
2

︸ ︷︷ ︸
Eq. 10.22

dv, (10.23)

= 1

1 − α

∫ ∞

�−1(α)

−φ′(v)dv,

= 1

1 − α

[
− φ(v)

]∞

�−1(α)

,

= 1

1 − α

[
− lim

v→∞ φ(v)

︸ ︷︷ ︸
=0

+φ(�−1(α))

]
,

= φ
(
�−1(α)

)

1 − α
.

Once again, this need only be scaled using our netting-set moments.

Eα(i, t, T ) ≡ E

(
Vt+T (i)

∣∣∣∣Vt+T (i) ≥ qα(i, t, T )

)
, (10.24)

= μi(t, T ) + φ
(
�−1(α)

)

1 − α︸ ︷︷ ︸
Eq. 10.23

σi(t, T ),

= Vt(i) + μi(T − t) + φ
(
�−1(α)

)

1 − α
σi

√
T − t .

Returning to our previous example with α = 0.99 and the same set of parameter
values used earlier in the VaR setting, we may compute

E0.99(i, t, T ) = 5 + 0.05 ·
(

1

52

)

︸ ︷︷ ︸
μi(t,T )

+φ(�−1(0.99))

1 − 0.99
· 1.75 ·

√
1

52︸ ︷︷ ︸
σi(t,T )

, (10.25)

= 5.10 + 2.67 · 0.24,

= 5.74.

It makes logical sense that the expected shortfall should exceed the VaR for the
same value of α. Indeed, since the expected shortfall is the average of all values
beyond the VaR values, it must logically be greater than (or, at the very least, equal
to) the VaR computation. Conceptually, since we are already quite far out in the tail
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Table 10.1 Simple example
details: This table
summarizes, at a glance, the
numerical details of various
exposure measures in the
context of a rather simple
example.

Characteristic Notation Value

Starting point Vt (i) 5.00

Drift (or trend) μi 0.05

Diffusion (or volatility) σi 1.75

Time horizon T − t 0.02

Confidence level α 0.99

VaR-based PFE qα(i, t, T ) 5.66

Expected-shortfall-based PFE Eα(i, t, T ) 5.74

and the Gaussian distribution has relatively small amounts of probability mass in its
extremes, it also makes sense that the expected shortfall is not dramatically larger
than the VaR values—in this case, it exceeds it by about Eα(i, t, T ) − qα(i, t, T ) =
0.08 units of currency.21

Table 10.1 summarizes the results of this simple numerical exercise. Either the
VaR measure from Eq. 10.19 or the expected shortfall metric in Eq. 10.24 is a
reasonable choice for the ith counterparty’s potential future exposure. The expected
shortfall is, by construction, somewhat more conservative since it explicitly delves
into the tail of the netting set’s value distribution.22

Colour and Commentary 118 (CREDIT COUNTERPARTY RISK ANA-
LYTIC FORMULAE): This section has illustrated how far we can go, in terms
of analytic expressions for important counterparty credit risk quantities,
on the back of the assumption of drifted Brownian motion for one’s netting
set dynamics. Expected exposure, expected positive exposure (in the special
case of μi(t, T ) ≡ 0), and potential future exposure all boil down to
relatively concise formulae. While useful and insightful, it is important to
keep our enthusiasm somewhat in check. The central assumption is, if we
are honest with ourselves, quite likely flawed. Extensive empirical evidence
indicates that few, if any, important financial risk factors follow a Gaussian
distribution. The basic form and symmetry are consistent, but actual risk-
factor and market-value distributions are significantly more heavy tailed than
the assumption of normality would suggest. Perhaps more problematic is the
underlying complexity of the true netting-set valuation process. Given the
broad range of potential pay-off patterns and underlying risk factors, treating

(continued)

21 In the this Gaussian case, the parametric expected shortfall estimator simply amounts to a change
in the magnitude of the multiplier constant. The VaR multiplier is, for the 99% confidence level,
equal to about 87% of the expected-shortfall value.
22 A similar expression can be derived for different assumptions regarding the stochastic dynamics
of the netting-set process. Chapter 10, for example, provides similar computations under the t

distribution.
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Colour and Commentary 118 (continued)
the overall netting-set as a single monolithic object is hard to defend. For
this reason, as we’ve already highlighted, these various derivative exposures
definitions are typically computed using rather complicated simulation
engines. The previous investigation, however, remains pertinent since these
formulae represent the foundation for our chosen path: simplified regulatory
approximations. It is also useful as an easy-to-understand diagnostic and
comparator for more complex derivative-exposure calculations performed in
other parts of one’s organization.

10.5 The Regulatory Approach

Virtually every piece of regulatory guidance has a history; it can often prove
surprisingly helpful in appreciating the general context and what the regulators seek
to accomplish. It is nevertheless often difficult, for any given regulatory standard,
to know how far in time one should go back. In the area of counterparty credit risk,
perhaps the first reference is BIS [2] where the idea of a netted exposure add-on, to
account for potential value increases, was first introduced. BIS [2] is a revision to the
original 1988 Basel Accord. While interesting, this is probably a bit too far back into
the past. A better starting point would be BIS [3, Part I], which was written about ten
years after the first revision. This document provides a thorough description of the
so-called current-exposure and standardized methods; referred to understandably
as CEM and SM, respectively. These models are very useful background into the
regulator’s mindset with regard to counterparty credit risk.

The directives found in BIS [3] were nonetheless superseded about another
decade later with BIS [5]. This paper contains an updated exposure-at-default
measurement methodology, which has been catchily dubbed the standard approach
for counterparty credit risk. This being rather a mouthful has led to the broad-
based use of the unfortunate acronym, SA-CCR. Jumping into BIS [5] without
any preparation can be a bit overwhelming; perhaps appreciating this fact, a
helpful companion paper—see BIS [6]—was produced a few months later. BIS
[7] provides further responses to frequently asked questions. This section seeks to
provide a workable description of the Basel Committee on Banking Supervision’s
(BCBS) SA-CCR methodology. It makes ample use of BIS [2, 3, 5, 6, 7]—along
with a number of other references mentioned along the way—to accomplish this
task. It is precisely this so-called SA-CCR approach that we will use to describe
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our (non-deterministic) derivative exposures for the purposes of economic-capital
computations.23

Like most regulatory guidance, the SA-CCR is highly prescriptive and stylized.
This is, given regulatory objectives, both natural and understandable. It nonetheless
consists of a sequence of formulae that require some unpacking and deciphering.
Let’s not lose sight of our principal objective: a reasonably realistic and parsimo-
nious description of the current exposure-at-default (i.e., EAD) associated with an
arbitrary counterparty i. The SA-CCR high-level, entry-point formula for this object
has the following form:

EADt (i) = α ·
(

RCt (i) + PFEt+T (i)

)
, (10.26)

where RCt (i) denotes the replacement cost of the ith credit counterparty at time
t and α ∈ R+. We use the Greek letter α in this context to be consistent with
the regulatory documentation. One should be careful to avoid confusion with the
confidence level, which uses the same symbol.

Replacement cost is intended to represent the loss incurred in the event of
immediate default. There is no lapse of time and, as a consequence, no possibility
of upward movement in the market value of one’s netting set. The PFE term, as you
might expect, looks T − t units of time into the future to capture possible value
increases. The sum of these current and forward-looking effects are modified by a
constant multiplier, α. As of the writing of this document, α was set to a value of
1.4.24 The rationale for α is, it would appear, to provide a cushion for increased
conservatism. The replacement-cost and PFE computations are distinct pieces with
different perspectives. Although obviously not unrelated, it is convenient to address
them separately. We’ll follow this strategy in the coming sections and then pull them
back together to complete the picture.

10.5.1 Replacement Cost

Of the two quantities in Eq. 10.26, the replacement cost is the least complicated to
compute. The reason is simple; it only depends on the current point in time. In its
basic form, the replacement cost is the sum of the market value of the individual
trades in the ith countparty’s netting set less the existing collateral. If the total
market value is EUR 10 million and one holds EUR 8 million of collateral, then
the replacement cost is EUR 2 million. Conversely, if you have a negative market

23 Derivative exposure—as we’ll soon see—also typically makes an appearance in leverage
calculations.
24 The constant α may take different values for different applications of the resulting exposure
estimate. When, for example, computing leverage—see BIS [4]—the value of α is fixed at unity.
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value of EUR −20 million and have posted EUR 15 million of collateral, then you
have a EUR −5 million replacement cost. This logic is approximately correct, but
also a bit faulty. We are not terribly interested in negative replacement costs and we
need to be a bit more conservative in our treatment of collateral.

To address these issues, BIS [5] defines the replacement cost as

RCt (i) =

⎧
⎪⎪⎨

⎪⎪⎩

max

(
Vt(i) − C̃t+T (i), 0

)
: No margin

max

(
Vt(i) − C̃t+T (i), 0, THi + MTAi − NICAt (i)

)
: Margin

.(10.27)

This is fairly detailed definition that requires a bit of digestion. Indeed, Eq. 10.27
contains a number of acronyms that are desperately in need of explanation. The
first point is that the replacement-cost definition differs by margin policy. For
unmargined netting sets, the replacement cost is simply the positive part of the
difference between the current market value and collateral holdings. Since there
is always the danger that non-cash collateral can lose value—due to adverse market
movements—C̃t(i) denotes the haircut value of any net collateral position.25 It is,
in a technical sense, described as,

C̃t+T (i) =

⎧
⎪⎪⎨

⎪⎪⎩

Ct (i) ·
(

1 − h(t, T )

)
: Holding collateral where Ct (i) > 0

Ct (i) ·
(

1 + h(t, T )

)
: Posting collateral where Ct (i) < 0

,

(10.28)

where h(t, T ) is the haircut value over the time interval T − t and Ct (i) represents
the market value of the ith counterparty’s net collateral position at time t .26 The
introduction of T , as an argument, is necessary to reflect the role of the time-horizon
in the collateral haircut computation and our broader analysis.

The notion of net collateral will help us make sense of the second part of
the replacement-cost definition for margined netting sets in Eq. 10.27. The initial
margin or independent amount, given their similarity and the potential for confusion,
are referred to as independent collateral amount (or ICA) in the regulatory setting.
Unlike variation margin, the ICA can be simultaneously posted and received. This
immediately leads to the idea of net ICA, or NICA, which represents the difference
between received and posted initial collateral. The NICA value might be either
positive or negative; it really depends on the magnitude of the ICA values associated
with both counterparties. In the non-margin setting, therefore, the C̃t+T (i) value

25 A haircut is a rather colourful, colloquial term used to describe any adjustment to the valuation
of a collateral position to account for possible unfavourable market movements.
26 This is a very simplified set of haircut rules; it can, in practice, be much more nuanced.
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basically refers to the NICA amount with the appropriate application of haircuts as
described in Eq. 10.28.

In the margined cases, the current collateral amount, C̃t+T (i), is related to
variation margin. The second line of Eq. 10.28, however, has three arguments
in the max operator. The third argument, THi + MTAi − NICAt (i), includes
the net independent collateral amount at the current time, t . This maintains a
separation between the variation and initial margins. The TH and MTA variables
are determined through the legal counterparty contracts governing the management
of margins. TH is an acronym for the collateral threshold; this is a lower bound,
below which collateral is not exchanged. For example, if there is a threshold of EUR
100,000 and the market value of the netting set is EUR 50,000, then no collateral
would be received. The point of the threshold is to reduce the operational costs
associated with calling and returning collateral. Naturally, this creates a trade-off
between risk mitigation and logistical costs.27

MTA represents the minimum transfer amount, which unsurprisingly is the
lowest amount of collateral that may be transferred between two entities. Much like
the threshold, the intention is to reduce operational overhead. It probably doesn’t
make logical sense to exchange EUR 10 of collateral for a minuscule change in
market value.28 The threshold and minimum transfer amount should not, however,
be considered separately. As clearly stated in Gregory [13]:

The minimum transfer amount and threshold are additive in the sense that the exposure must
exceed the sum of the two before any collateral can be called.

This succinctly explains why these two values enter jointly into the margined
netting-set replacement cost in Eq. 10.27. This extra condition covers the situation
where there is positive exposure, but it has not broken through the lower bound
required for receipt of collateral. The net ICA is subtracted from this amount to
account for the offsetting impact of the initial margin. In short, Eq. 10.27 is a rather
conservative view of the current losses associated with immediate counterparty
default.

10.5.2 The Add-On

Conservatism of its construction aside, the replacement cost does not tell the
whole story. It completely ignores the possibility of future value increases in the
counterparty’s netting set. This is precisely the role of the second term in the high-
level SA-CCR expression presented in Eq. 10.26. It has the following form,

PFEt (i) = Mi · A

i , (10.29)

27 One may, of course, set the threshold to zero to move completely towards the risk-mitigation
direction.
28 Such a value should be somehow related—logically, at least, if not practically—to the confidence
interval around our valuation estimates.
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where Mi ∈ (0.05, 1] is a multiplier with a reasonably complex form and A


i

is referred to as the aggregate add-on for the ith credit counterparty. Putting the
multiplier aside for the moment, a central point is that what SA-CCR refers to
as PFE is actually something else. In fact, BIS [6] indicates that it is intended to
represent a conservative estimate of the netting set’s effective expected positive
exposure. To repeat, it does not technically describe potential future exposure.

The aggregate add-on, as the name strongly suggests, is some kind of function
of the underlying trades within the netting set designed to capture the risk of future
derivative-value increases. This naturally involves a number of levels and, of course,
a logical hierarchy to determine the proper order of aggregation. It is, quite frankly,
a bit messy. Figure 10.4 provides, in an attempt to help matters, a visualization of
the five levels associated with the SA-CCR methodology. Individual trades are first
organized into five distinct asset classes. These are essentially flavours of derivative
contracts: interest rate, currency, credit, equity, and commodity. This immediately
raises an important question: what is done with derivatives that touch upon multiple
asset classes?29 BIS [5]’s answer reads:

The designation should be made according to the nature of the primary risk factor. [...] For
more complex trades, where it is difficult to determine a single primary risk factor, bank
supervisors may require that trades be allocated to more than one asset class.

For the purposes of this discussion, we will assume that each derivative trade can
be reasonably and defensibly assigned to a single asset class. The aggregate add-on
is thus,

A


i =

∑

a∈Ai

A
(a)
i , (10.30)

where Ai denotes the collection of asset classes associated with netting set i. One
thus simply sums over the asset classes to get to the aggregate level.30

Within an asset class, the trades are further allocated into so-called hedging sets.
Again BIS [5], who introduce the concept, offer the best definition:

a hedging set is the largest collection of trades of a given asset class within a netting set for
which netting benefits are recognized in the PFE add-on of the SA-CCR.

The corollary, of course, is that hedging sets within an asset class are not
permitted to offset one another. If we write the collection of hedging sets within
asset class a and netting set i as H (a)

i , then these hedging sets are aggregated as

A
(a)
i =

∑

h∈H (a)
i

∣∣∣∣A
(a,h)
i

∣∣∣∣, (10.31)

29 A cross-currency swap, for example, has both currency and interest rate exposure.
30 To be crystal clear with this invented notation, if a netting set includes N assets classes then

Ai =
{
A(1)

i ,A(2)
i , · · · ,A(N)

i

}
.
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Netting Sets: AΣ
i

Trades: A(a,h,s,k)
i

Single-Factor Sets: A(a,h,s)
i

Hedging Sets: A(a,h)
i

Asset Classes: A(a)
i

Fig. 10.4 The add-on hierarchy: The schematic above outlines the five levels of aggregation
embedded in the SA-CCR methodology. In addition to visualizing how the aggregate add-on is
computed, it also introduces the notation used to describe the various components.

where A
(a,h)
i represents the calculated add-on for the hth hedging set of asset class

a associated with netting set i. H (a)
i is the related collection of hedging sets.

The notation is admittedly dreadful, but given the complexity of the hierarchy in
Fig. 10.4, it will only get worse. The absolute value operator in Eq. 10.31 precludes
any possible netting between these hedging sets.

The hedging set, as the name indicates, permits some form of diversification. This
is captured through non-perfect positive correlation between the individual single
factor sets comprising the hedging set. We further define the collection of hedging
sets in asset class a and netting set i as S(a,h)

i . This allows us to write the aggregation
of each hedging set as,

A
(a,h)
i =

√√√√
∑

s∈S(a,h)
i

∑

r∈S(a,h)
i

ρ(s, r)A
(a,h,s)
i A

(a,h,r)
i , (10.32)

where A
(a,h,s)
i represents the sth single-factor set of hedging set h in asset class

a and ρ(r, s) is the (regulator determined) correlation between single factor sets r

and s. These latter values are explicitly provided by the regulatory authorities. Each
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A
(a,h,s)
i is referred to as a single-factor set. Equation 10.32 should be recognized

as the standard deviation of a group of correlated random variables.31 For it to
work, however, we must be able to interpret the individualA(a,h,s)

i terms as standard
deviations.

The single-factor set add-ons, in turn, are the direct sum of the trades falling into
that asset class, hedging set, and single-factor set. Calling this collection T (a,h,s)

i ,
the final level of aggregation is given as,

A
(a,h,s)
i =

∑

k∈T (a,h,s)
i

A
(a,h,s,k)
i . (10.34)

Practically, a single factor set is a sub-group of interest-rate tenors for a given
interest curve, a currency, or a credit single entity. The driving idea is that the
correlation within a single factor set is approximately perfectly positive, so they
can be directly summed.

Each individual derivative trade follows a clear hierarchy up to the netting set
level. The underlying logical chain illustrates how each trade, single-risk-factor,
hedging-set, and asset-class collection is nested,

T (a,h,s)
i ⊆ S(a,h)

i ⊆ H (a)
i ⊆ Ai , (10.35)

for the ith netting set.32

Just for fun, let’s now combine all of these elements together to create a single,
abstract representation of the aggregate add-on associated with the ith counterparty.

31 If X1, ..., XN are a collection of N correlated random variables, then the variance of their sum
can be represented as

var

(
X1 + · · · + XN

)
=

N∑

i=1

N∑

i=j

corr(Xi,Xj )
√

var(Xi)

√
var(Xj )

︸ ︷︷ ︸
∑N

i=1
∑N

i=j cov(Xi ,Xj )

, (10.33)

where we recover Eq. 10.32 by taking the square root of both sides.
32 Or, if you prefer a word equation, we might describe the idea in Eq. 10.35 as

Collection of Trades︸ ︷︷ ︸
k∈T (a,h,s)

i

⊆ Single-Factor Sets︸ ︷︷ ︸
s∈S(a,h)

i

⊆ Hedging Sets︸ ︷︷ ︸
h∈H (a)

i

⊆ Asset Class︸ ︷︷ ︸
a∈Ai

. (10.36)
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Starting from Eq. 10.30, we have

A


i =

∑

a∈Ai

A
(a)
i

︸ ︷︷ ︸
Eq.

10.30

, (10.37)

=
∑

a∈Ai

∑

h∈H (a)
i

∣∣∣∣A
(a,h)
i

∣∣∣∣

︸ ︷︷ ︸
Eq. 10.31

,

=
∑

a∈Ai

∑

h∈H (a)
i

∣∣∣∣∣∣∣∣∣∣∣∣∣

√√√√
∑

s∈S(a,h)
i

∑

r∈S(a,h)
i

ρ(s, r)A
(a,h,s)
i A

(a,h,r)
i

︸ ︷︷ ︸
Eq. 10.32

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

=
∑

a∈Ai

∑

h∈H (a)
i

∣∣∣∣∣∣∣∣∣∣∣∣∣

√√√√√√√

∑

s∈S(a,h)
i

∑

r∈S(a,h)
i

ρ(s, r)
∑

ks∈T (a,h,s)
i

A
(a,h,s,ks)
i

︸ ︷︷ ︸
Eq. 10.34

∑

kr∈T (a,h,s)
i

A
(a,h,r,kr)
i

︸ ︷︷ ︸
Eq. 10.34

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

With its almost frightening array of sums, Eq. 10.37, is not particularly easy to
look at. It does, however, clearly chart out the path from individual trade to single-
factor set to hedging set to asset class and, ultimately, to netting set as described in
Fig. 10.4. Although slightly masochistic and certainly not the typical treatment of
this material, this final expression does provide some useful intuition to a complex
aggregation.

Colour and Commentary 119 (SA-CCR AGGREGATION LOGIC): As any-
one with a sock drawer can tell you, getting all of the right socks paired
up correctly with their partner can be a lengthy and annoying undertaking.
The SA-CCR regulatory guidance add-on calculations involve a five-level
hierarchy with three alternative aggregation approaches. The aggregation
logic is, to be blunt, ugly and rather hard to follow. Like a particularly untidy
and convoluted sock drawer, a bit of organization can go a long way. The
preceding discussion consequently introduces some (imperfect) notation and
logic to help keep some order in this hierarchy. A netting set is comprised
of a number of distinct asset classes. Within each asset class, trades are

(continued)
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Colour and Commentary 119 (continued)
allocated into hedging sets. The various single factor sets, within a hedging
set, combine together in a manner similar to variance. Between hedging sets,
no offsetting is permitted; aggregation occurs with absolute values. Trades
within each single factor set, by virtue of their perfect positive correlation, can
be simply summed. Perhaps somewhat ironically, the need to create a rather
straightforward formulaic exposure calculation is the main driver of this
relatively messy structure. In a classic potential-future-exposure computation,
the complexity is embedded in the dependence structure underlying the risk
factors and their mapping to derivative valuations. Netting set aggregation is,
in this setting, comparatively trivial.a In the SA-CCR, the risk-factor structure
is simplified. The cost is somewhat unwieldy aggregation logic.

a The heavy-lifting has to be performed somewhere. In this case, it is performed by the
forward-looking exposure engine.

10.5.3 The Trade Level

The effective expected positive exposure form of the add-on needs to meet a
central objective. As we saw in the previous section, to use the variance-motivated
aggregation at the hedging-set level as in Eq. 10.32, it is necessary to view the
individual (hedging-set) add-ons as a standard deviation. To accomplish this, a
number of assumptions regarding the market value of each individual trade are
required. These include—and are also outlined in both BIS [5, 6]—a zero current
market value, an absence of collateral, no cash-flows over the next one-year time
horizon, and undrifted Brownian-motion dynamics.33

We now reap the benefits of having worked through the details of the Brownian-
motion case. Let us employ k to denote an arbitrary trade with the i credit
counterparty. The market value of the ith trade at time t + T , following from the
preceding assumptions, is given as

Vt+T (i, k) ∼ N

⎛

⎜⎝0, I{mk≥T }σk

√
T − t

︸ ︷︷ ︸
σik(t,T )

⎞

⎟⎠ , (10.38)

33 These are fairly strong assumptions and, to a certain extent, they are relaxed through the
multiplier. We will address this point in forthcoming discussion.
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where mk is the remaining maturity. This is entirely consistent with the undrifted
Brownian-motion case. The only real twist is that all trades maturing before time
t + T are excluded.

Equipped with the definition of an arbitrary trade’s market-value, we observe that
we are in the general, but simplified, structure described in the preceding sections.
From Eqs. 10.13 and 10.14, the expected exposure associated with the kth trade is
simply

Et

(
Vt+T (i, k)+

)
= I{mk≥T }σk

√
T − t√

2π
. (10.39)

The actual value of T will vary depending on whether or not the netting set is
margined or non-margined. In the non-margined case, T − t = 1 year. For margined
netting sets, one needs to define a margin period of risk, which we will refer to as
t + τMi to reflect its dependence on the netting set. As discussed earlier, we can
compute the expected exposure profile by evaluating (and averaging) Eq. 10.39 for
a number of choices of T ∈ (t, t + 1] or T ∈ (t, t + τMi ] for non-margined and
margined netting sets, respectively.

The authors of the SA-CCR (understandably) wanted to avoid—as highlighted
in BIS [6]—the need to partition the time interval and repeatedly compute (and
average) Eq. 10.39. This leads to a restatement of our maturity indicator variable as

I{mk≥t} ≡ 1. (10.40)

This is equivalent to forcing all trades in one’s portfolio to have a minimum maturity
of—depending on the margin policy—either one-year or the margin period of risk.

This assumption allows us, following directly from Eq. 10.15, to represent the
expected positive exposure as

1

T − t

∫ T

t

Et

(
Vt+τ (i, k)+

)
dτ = 2σk

√
T − t

3
√

2π
, (10.41)

where T = 1 or τMi . Two features of Eq. 10.39 also make it the effective expected
positive exposure: over (0, T ] there are neither cash-flows nor maturities and σk ∈
R. The presence of these conditions ensures that the expression in Eq. 10.41 is
(at least) weakly positively monotonic in T . Under this monotonicity condition the
expected positive exposure (EPE) and effective expected positive exposure (EEPE)
coincide.

Pulling this all together, the trade-level add-on has the following theoretical form,

A
(a,h,s,k)
i = 2σk

√
T − t

3
√

2π︸ ︷︷ ︸
Eq. 10.41

. (10.42)
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It is important to stress that this is not the final form of the trade-level add-on.
Ultimately, as we’ll see shortly, it has a rather different practical form. Nonetheless,
following from BIS [6], Eq. 10.42 describes its origins.

Colour and Commentary 120 (SA-CCR PFE COMPONENT): It should be
clear by this point that what the SA-CCR refers to as the PFE component is
not actually, in the typical definition of the term, potential future exposure. It
is, to be clear, not a tail-based measure of the worst-case upside movement in
a trade or netting set’s market value. Instead, it is defined with regard to the
expectation of the positive part of the trade or netting set’s future exposure; in
the non-margined case, this becomes effective positive exposure, whereas this
reduces to expected exposure in the margined setting. In both cases, numerous
assumptions are necessary to preserve analytic formulae for these quantities.
This choice is perfectly within the purview of the regulatory authorities
and, given their objectives, makes logical sense. Their characterization of
PFE does, after all, respect the fundamental idea of incorporating some
additional amount to accommodate the possibility of future value increases.
It nonetheless bears stressing that the add-on element should not be strictly
interpreted—relying on its name—as a quantile-based characterization of the
future counterparty level value distribution. Understanding this fact may very
well help to avoid unnecessary confusion.

The next step is to adjust Eq. 10.42 so that it naturally handles both margin
and non-margined netting sets. In principle, one could simply change the value
of T depending on the margin policy. As a practical matter, however, the EEPE
form from Eq. 10.42 only really applies to non-margined netting sets. For margined
netting sets, the margin period of risk is typically quite short: something between
10 to 20 working days. Averaging the expected positive exposure of this period
would, according to the formula, reduce the add-on by one third. Apparently, this
was judged to be insufficiently conservative. The SA-CCR consequently restates the
trade-level add-on as,

A
(a,h,s,k)
i =

⎧
⎪⎪⎨

⎪⎪⎩

2σk

3
√

2π
: No margin (EEPE)

σk
√

τMi − t√
2π

: Margin (EE)
. (10.43)

Again, this is not precisely how it is represented in the SA-CCR documentation.
Instead, they express the trade-level add-on as,

A
(a,h,s,k)
i = 2σk

√
1-year

3
√

2π
MFk, (10.44)

= 2σk

3
√

2π
MFk,
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where MFk is called the maturity factor and it is defined as,

MFk =
⎧
⎨

⎩
1 : No margin (EEPE)

3
√

τMi − t

2
: Margin (EE)

. (10.45)

Rather obviously, Eqs. 10.44 and 10.45 are entirely equivalent to the representation
in Eq. 10.43. To avoid confusion in the application and discussion of the SA-CCR
computation, it is probably best to make use of the maturity factor.

Colour and Commentary 121 (THE SA-CCR MATURITY FACTOR): The
maturity factor is intended to simplify the SA-CCR implementation by permit-
ting a common form irrespective of a netting set’s margin policy. It is a rather
small point, but role of the maturity factor in the trade-level add-on obscures
a fundamental modelling choice. Non-margined netting set add-on values are
based on the effective expected positive exposure measure. Margined netting
sets, conversely, use straight-up expected exposure. Given the dramatic
difference between the time interval involved, this is an understandable and
conservative regulatory choice. It is still useful to see through the maturity
factor form and to be aware of this choice. If one is comparing SA-CCR
results to a model-based implementation, this could potentially lead to some
confusion.

BIS [6] indicates clearly that “the SA-CCR does not directly operate with trade
volatilities.” The actual form of the trade-level add-on is given as,

A
(a,h,s,k)
i = δk · d

(a)
k · SF(a)

k · MFk, (10.46)

where δk is the directional delta, d
(a)
k is the adjusted notional, and SF(a)

k is the
supervisory factor. The a subscript arises, because as we’ll see shortly, some of
these quantities are handled differently depending on their asset-class membership.
δk essentially denotes the sign of the add-on, while δk describes its magnitude.34

The supervisory factor provides the link back to the volatility structure found in
Eq. 10.44. Indeed, if we equate Eqs. 10.44 and the absolute value of 10.46 and solve
for σk we arrive at

2σk

3
√

2π
���MFk

︸ ︷︷ ︸
Eq. 10.44

=

∣∣∣∣∣∣∣
δk · d

(a)
k · SF(a)

k ·���MFk︸ ︷︷ ︸
Eq. 10.46

∣∣∣∣∣∣∣
, (10.47)

34 For option contracts, the directional delta captures the sign, but also tells us something about
moneyness.
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σk =
(

3
√

πSF(a)
k√

2

) ∣∣∣∣δk

∣∣∣∣ · d(a)
k ,

σk ≈
(

2.66 · SF(a)
k

)∣∣∣∣δk

∣∣∣∣ · d
(a)
k .

The punchline is that the volatility of the trade is simply a scaled version of the

supervisory factor. What is particularly useful to know is that the term

(
2.66·SF(a)

k

)

should be interpreted, according to BIS [6], as

the standard deviation of the primary risk factor at the one-year horizon.

The individual analyst does not determine these values; they are provided by
one’s friendly neighbourhood regulator. These supervisory factors are presumably
determined by individual asset class and single risk-factor definitions as a combina-
tion of calibration to historical outcomes and regulatory judgement.

Once again, pulling together the high-level aggregate add-on viewpoint from
Eq. 10.37 and incorporating Eq. 10.46, we arrive at:

A


i =

∑

a∈Ai

∑

h∈H (a)
i

∣∣∣∣∣∣∣∣∣∣∣

√√√√√√√√√

∑

s∈S(a,h)
i

∑

r∈S(a,h)
i

ρ(s, r)
∑

ks∈T (a,h,s)
i

A
(a,h,s,ks )
i

×
∑

kr∈T (a,h,s)
i

A
(a,h,r,kr )
i

∣∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

Eq. 10.37

, (10.48)

=
∑

a∈Ai

∑

h∈H (a)
i

∣∣∣∣∣∣∣∣∣∣∣

√√√√√√√√√

∑

s∈S(a,h)
i

∑

r∈S(a,h)
i

ρ(s, r)
∑

ks∈T (a,h,s)
i

δks · d
(a,h,s)
ks

· SF(a,h,s)
ks

· MFks︸ ︷︷ ︸
Eq. 10.46

×
∑

kr∈T (a,h,r)
i

δkr · d(a,h,s)
kr

· SF(a,h,r)
kr

· MFkr︸ ︷︷ ︸
Eq. 10.46

∣∣∣∣∣∣∣∣∣∣∣

.

Admittedly somewhat overwhelming, this representation nevertheless indicates
how the various pieces fall into place. The rather puzzling application of the
absolute-value operator to the result of a square root suggests differential treatment
among certain asset classes. We will turn to this important point after completing
the overall add-on computation.

10.5.4 The Multiplier

The multiplier is an attempt to attenuate the rather strong assumptions involved in
the construction of the add-on. The most violent choices, from an add-on perspective
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at least, entail ignoring any future collateral and forcing the current market value to
zero. Unlike the individual add-ons, however, the multiplier is defined at the netting-
set level. A bit of reflection suggests that the starting point, of any given netting set,
could be significantly negative for one (or a combination) of two reasons: the overall
netting-set market value is large and negative and/or there is over-collateralization.
Both situations can, and do, happen in practice. In the event that the starting
point is significantly negative, it seems reasonable to adjust the aggregate add-on
downwards to reflect this fact. To not do so, would be to unfairly overestimate the
SA-CCR aggregate add-on component.

Quite simply, the multipler is a netting-set level value in the unit interval—that
is, Mi ∈ [0, 1]—that modifies the aggregate add-on for a negative starting position.
As with many regulatory quantities, it is a bit funky, but it also follows a certain
logic. The actual construction takes a few steps, but relies on elements already
introduced and discussed in previous sections. The first step involves a distributional
assumption regarding the value of the ith netting set. Similar in spirit, but different
in level of aggregation, to Eq. 10.38 we have

Vt+T (i) ∼ N

⎛

⎜⎝

μi(t,T )︷ ︸︸ ︷
Vt(i) − C̃t+T (i),

σi(t,T )︷ ︸︸ ︷
I{mk≥t}︸ ︷︷ ︸

=1

σi

√
T − t

⎞

⎟⎠ , (10.49)

Basically the mean starting-level has been added back. Immediately, again with
recourse to Eq. 10.13, we can write the expected exposure for the ith netting set
as,

Et

(
Et+T (i)

)
= σi

√
T − tφ

(
Vt(i) − C̃t+T (i)

σi

√
T − t

)

+
(

Vt(i) − C̃t+T (i)

)
�

(
Vt(i) − C̃t+T (i)

σi

√
T − t

)
. (10.50)

This form is not immediately helpful, since we do not actually work with the
volatilities, but rather with add-ons. Equation 10.43 illustrates the theoretical link
between the trade-level add-on and the volatility. Conceptually, for a margined
netting set, this reduces to:

A


i = σi

√
T − t√
2π

, (10.51)

σi = A


i

√
2π√

T − t
.
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We are, in this case, using the expected-exposure perspective add-on assumption
associated with a margined netting set. This is an important point, because the
expected positive exposure approach used for non-margined sets will not permit
an analytic solution. We saw this result in an earlier section.

If we plug Eq. 10.51 back into Eq. 10.50 and simplify things a little bit, we arrive
at
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=
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. (10.53)
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The consequence is a (fairly) concise analytic representation of the expected
exposure associated with the ith netting set written in terms of known quantities:
the aggregate add-on, the current netting-set valuation, and the collateral position.

The central part, or kernel, of the SA-CCR multiplier is now defined as the
quotient of the expected exposure representation in Eq. 10.52 and the aggregate
add-on. In particular, this gives

Et

(
Et+T (i)

)

A


i

=

Eq. 10.52︷ ︸︸ ︷
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i

, (10.54)

= √
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)
+ v · �

(
v√
2π

)
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We can think of this as a form of standardization. If the expected exposure—
computed with the starting point and collateral in mind—exceeds the add-on (which
is determined assuming a zero replacement cost), then the ratio in Eq. 10.54 will
exceed one. This means the expected evolution of the netting set value is even
more positive than the aggregate add-on would suggest. This is not the situation
the regulators are interested in. The multiplier is intended to cover the opposite case

where Et

(
Et+T (i)

)
< A



i (or equivalently, where Eq. 10.54 is less than one). In

this case, the aggregate add-on assumptions are too conservative and the multiplier’s
job is to mitigate this somewhat.

With this in mind, the theoretical form of the multiplier is expressed as,

f̃i(v)︸ ︷︷ ︸
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where we can think of the multiplier as a function of v, denoted f̃i . The role of the
min(·) operator is to ensure that the multiplier only considers those cases where the
ratio is in the unit interval. A bit of reflection reveals that this occurs only when
the numerator of v—the initial replacement cost Vt(i)− C̃t+T (i)—is less than zero.
This, in turn, only happens when the initial market value is out-of-the-money or
overcollaterized.
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At this point, the construction of the multiplier starts to get a bit weird. BIS [6]
claims that:

MTM values of real nettings sets are likely to exhibit heavier tail behaviour than the one of
the normal distribution.

This is likely to be empirically true, but no other justification or motivation is
provided. The proposed solution—which comes a bit out of thin air—is to select the
following alternative multiplier function:

f̆i(v)︸ ︷︷ ︸
M̆i

= min
(
1, eγ v

)
, (10.56)

where γ ∈ R+ is a parameter that requires specification. BIS [6] further indicates
that γ is determined by equating the derivatives of the theoretical and proposed
multiplier ratios evaluated at zero. This is readily verified
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This leads to updating the proposed multiplier function to

M̆i ≡ f̆i(v) = min
(

1, e
v
2

)
. (10.58)

This is not, confusingly, the end of the story. BIS [6], making reference to the fact
that Eq. 10.58 “would still approach zero with infinite collateralization”, impose a
floored version with the following final form:

fi(v)︸ ︷︷ ︸
Mi

= min
(

1, ϑ + (1 − ϑ) · e
v

2·(1−ϑ)

)
, (10.59)
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Fig. 10.5 The add-on multiplier: This graphic illustrates three alternative forms of the add-on
multiplier: the (theoretical) normal approximation from Eq. 10.55, the raw exponential form in
Eq. 10.58, and the official floored exponential version from Eq. 10.59. The only real difference
among these three choices is their speed of decrease in −v.

where, currently, ϑ = 0.05. The idea of Eq. 10.59 is that as v gets very large
and negative, the multiplier tends to ϑ rather than zero. This appears to be a
mathematical adjustment, rather than predicated on any theory.

Figure 10.5 illustrates three alternative forms of the add-on multiplier over the
interval [−5, 3]. It includes the theoretical normal approximation from Eq. 10.55,
the heuristic exponential form in Eq. 10.58, and the official floored exponential
version from Eq. 10.59. The only practical difference among these three choices
is their speed of decrease in −v. It is also quite clear, from Fig. 10.5, that none of
the multipliers plays an role for positive realizations of Eq. 10.53.

As a final point, the only distinction between the multiplier in margined and non-
margined netting sets relates to the treatment of the collateral in the definition of v.
That is,

v =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vt(i) − C̃t+1(i)

A


i

: No margin

Vt(i) − C̃t+τMi
(i)

A


i

: Margin

, (10.60)

where the haircut period applies to one-year and the margin period of risk for non-
margined, and margined netting sets, respectively. Although it is a bit difficult to
see after the multiple interventions, both computations also share the same expected
exposure foundation.
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Colour and Commentary 122 (THE SA-CCR ADD-ON MULTIPLIER): The
role of the multiplier is simple: it attempts to reduce the aggregate netting-set
add-on for excess collateral or large negative market values. Its construction
is, conversely, not at all simple. One could even claim that its derivation
follows a relatively weird, possibly over-engineered, or at least convoluted,
path. It starts out as the ratio of expected exposure to the aggregate add-on.
The expected-exposure numerator is computed by incorporating a non-zero
starting value and collateral under the typical assumption of Brownian-
motion dynamics. So far, so good. This yields a fairly intuitive expression.
Then the basic form is replaced with an exponential function, which is
vaguely calibrated to the original result. This can be accepted with a
slight “suspension of disbelief.” Finally, a floor is imposed for “infinite
overcollateralization.” The ultimate result is practical, workable, and appears
to meet the key regulatory objectives. The weirdness, therefore, has no
lasting consequences. One simply needs to invest some additional effort in
understanding the origins and justification of the add-on multiplier. Without
this background, examination of the final form might lead to a bit of head
scratching.

10.5.5 Bringing It All Together

The preceding sections have been, quite frankly, jumping around somewhat.
The idea has been to derive and motivate the various elements of the SA-CCR
exposure methodology, which forms the basis of our derivative-exposure model. It is
nonetheless admittedly hard to follow the thread connecting these diverse formulae.
Figure 10.6 attempts to (at least partially) rectify this situation by offering a high-
level overview of the main SA-CCR points. It begins from the derivative exposure
(i.e., EAD) equation and then splits into two streams: the replacement cost and the
add-on. Attempting to incorporate the margin and non-margin perspectives, it also
chronicles the various levels of the add-on hierarchy and a number of miscellaneous
definitions. It can be viewed as something of a cheat-sheet for anyone looking to
implement (or understand) this important calculation.

The description in Fig. 10.6 does, however, remain somewhat abstract. It does
not, for example, delve into the important instrument level details of the directional
delta, adjusted notional and supervisory factors. To actually use the SA-CCR
approach, it is necessary to grapple with these concepts. For this reason, these
components, determined at the individual asset-class level, are the next topic of
consideration.
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Fig. 10.6 SA-CCR cheat-sheet: This schematic outlines, at a single glance, the principal formulae
involved in the SA-CCR exposure calculation. It also attempts to highlight the most important
relationships between the key elements.

10.6 The Asset-Class Perspective

The SA-CCR methodology decomposes the universe of derivative contracts into five
distinct asset classes: interest rates, currency, credit, equity, and commodities. This
is a challenging task. Much like peeling an onion, one could easily construct many
other additional asset classes. There are also many sub-layers within a given asset
class. The notions of primary risk factors and hedging sets are, in fact, an attempt to
capture some of the complexity of these sub-layers.

To actually implement the SA-CCR methodology, Figs. 10.4 and 10.6, while
hopefully useful, are not enough. Additional colour is required—regarding
the directional deltas, adjusted notionals, and supervisory factors—to evaluate
Eq. 10.46. Detailed direction, and helpful examples, are found in BIS [5, 7]. The
following sections will walk through the key details in the area of interest-rate and
currency derivatives; these are the two areas of principal interest to the NIB. They
also coincide with the currently most popular and widely used OTC derivatives
found in financial markets: interest-rate and cross-currency swaps.



654 10 Measuring Derivative Exposure

10.6.1 Interest Rates

For most lending institutions using interest-rate swaps to match their assets and
liabilities—as discussed in detail in Chap. 6—this will likely be the most important
category of asset class. This makes it the most sensible entry point. There are
basically three additional aspects—in addition to the overall formulae—required
for each instrument within each asset class: its sign, initial magnitude, and risk
scaling. We’ll begin with the sign, which is captured by the general definition of
the directional delta and is given as

δk =
{

1 : Long
−1 : Short

, (10.61)

in the primary risk factor. This definition is sufficient for linear derivative instru-
ments, but more complexity is required for non-linear contracts.35

Equation 10.61 remains fairly abstract. Let’s consider the most popular case:
interest-rate swaps. The floating swap rate is, for the purposes of these instruments,
viewed as the primary risk factor. This implies that a receiver swap—where one
receives the fixed rate and pays floating—is a long position leading to δk = 1. By
the reverse logic, a payer swap is short in the primary risk factor leading to δk = −1.
Proper classification of one’s swaps can thus help tremendously in determination
of the directional delta. Basis swaps, where both legs represent alternative floating
rates, are less obvious. According to BIS [7], each floating pair needs to be treated
as a separate hedging set. In our implementation, we assume that the shortest reset
frequency is the primary-risk factor. In those (very rare) cases where the frequencies
of the floating components are equal, then the order of the indices determines the
sign.36

The adjusted notional amount of an interest-rate derivative with a lifetime over
the interval [Sk,Ek] is given as,

d
(IR)
k = Nk · SDk, (10.62)

where Nk denotes the average notional position over the instrument’s lifetime and
SDk represents the so-called supervisory duration. Sk and Ek are, as one might
expect, the start and end dates of the derivative contract. Using t , as usual, to
represent the current point in time, the remaining term to maturity (or tenor) is
simply Ek − t .

35 If the position possesses optionality, then the ±1 is replaced with the appropriately signed option
deltas. The model that one must use to determine these quantities—and the key input parameters,
such as implied volatility—is provided in the regulatory guidance. See BIS [5, 6] for more details.
36 In this case, the assignment of a sign is arbitrary. It just needs to be consistent across all ordered
pairs.
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As usual for the SA-CCR model parameters, the supervisory duration is deter-
mined via regulator-provided formulae. It also applies to both interest-rate and credit
derivatives. According to BIS [6] it stems from

SDk =
∫ Ek

max(Sk,t)

e−r(τ−t )dτ, (10.63)

=
[
−e−r(τ−t )

r

]Ek

max(Sk,t)

,

= e−r ·(max(Sk,t)−t ) − e−r(Ek−t )

r
,

where max(Sk, t) is intended to handle ongoing and forward-start derivative
contracts. In the current implementation of SA-CCR, the value of r has been
arbitrarily—and rather non-conservatively given current interest-rate levels—set to
5%.

Given that we typically think of the modified duration of a fixed-income
instrument as a normalized partial derivative of its value function with respect to
its yield, it is somewhat surprising to see the integral form in Eq. 10.63.37 It is not,
in fact, a classical estimate of duration, but rather the cumulative discount factor

over the interval,

[
max(Sk, t), Ek

]
.

Colour and Commentary 123 (SUPERVISORY DURATION): The term
supervisory duration, in the context of SA-CCR, is not easily interpreted.
As a (normalized) sensitivity to an interest-rate movement, duration is
typically defined as a derivative taken with respect to some dimension of
the yield curve. This could be a single rate, the instrument’s yield, or a
spread. Equation 10.63 illustrates the supervisory duration—rather uniquely
in the author’s experience—as the sum (or integral) of a continuously
compounded discount factor—at a fixed rate of 5%—over the trade’s lifetime.
The consequence is a rather high “duration” estimate; for Ek − Sk = 10,
for example, the result is approximately 7.9. Interestingly, as r → 0, the
supervisory duration estimate tends towards Ek − Sk . This leads to the
conclusion that supervisory duration is, loosely speaking, constructed under
the (rather conservative) treatment of a swap as something similar to the
cumulative discount factor of a bond with tenor Ek − Sk and a yield of 5%.
Once again, as we’ve already seen on numerous occasions, there is a certain
logic to this approach, but the rationale is not entirely clear from the outset.

37 See Bolder [8, Chapter 2] for rather more on the foundations of modified duration and related
concepts.
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An interest-rate hedging set encapsulates all trades in a given currency. As the
tenor of fixed-income securities is quite important—short-term instruments can act
rather differently, for example, than their long-term equivalents—this dimension is
used to construct primary risk factors. In particular, the notion of a maturity bucket
is introduced by BIS [5] and defined as,

Maturity Bucket ≡ MB =
⎧
⎨

⎩

Short (S) : Ek − t ∈ (0, 1]
Medium (M) : Ek − t ∈ (1, 5]

Long (L) : Ek − t ∈ (5,∞)

. (10.64)

This partition of yield-curve space is not particularly granular, but it dramatically
eases the implementation.

Although it is a bit tedious and repetitive, we will combine all of these elements
together and explicitly write out the aggregate relations from the trade to the
hedging-set level. This begins with the following trade description

A
(IR,CCY,MB,k)
i = ±

Eq. 10.62︷ ︸︸ ︷

Nk

(
e−r ·(max(Sk,t)−t ) − e−r(Ek−t )

r

)

︸ ︷︷ ︸
Eq. 10.63

·MFk, (10.65)

where the sign is determined by Eq. 10.61. The add-on by primary factor set, or
rather maturity bucket in this case, is now

A
(IR,CCY,MB)
i

=
∑

k∈MB
±Nk

(
e−r ·(max(Sk,t)−t ) − e−r(Ek−t )

r

)
· MFk

︸ ︷︷ ︸
Eq. 10.65

. (10.66)

Each interest-rate hedging set is aggregated following the logic in Eq. 10.32 as

A
(IR,CCY)
i = 0.05%︸ ︷︷ ︸

SFk

√√√√
∑

s∈{S,M,L}

∑

r∈{S,M,L}
ρ(s, r)A

(IR,CCY,s)
i A

(IR,CCY,r)
i︸ ︷︷ ︸

Eq. 10.66

, (10.67)

where CCY denotes a given currency defined hedging set and the supervisory factor,
SFk is given as 0.05% in BIS [5, Table 2].38 Practically, the correlation coefficients
are provided by the regulators and set to ρ(S,M) = ρ(M,L) = 0.7 and ρ(S,L) =
0.3. Although the absolute levels are not easily motivated across all currencies, the
choice makes sense given that adjacent maturity categories tend to be significantly

38 The previously discussed basis swaps, where each pair of floating indices are treated as separate
hedging sets, receive a supervisory factor of 0.025%. Cutting the base interest-rate swap amount
in half is explicitly indicated in BIS [7].
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more highly correlated than more distant nodes along the yield curve. Finally, the
sum over the currency hedging sets requires no application of the absolute-value
operator, because the hedging-set aggregation in Eq. 10.67 always yields positive
values.39

Computation of the interest-rate add-on, therefore, requires only a limited
amount of information for each instrument: the average notional amount, position
currency, start and end dates, and whether it is a short or long position. In line with
typical regulatory calculations, this imposes a limited operational and data burden
on the calculating agent.

10.6.2 Currencies

The currency asset class is a bit larger than one might initially imagine. This
is because cross currency swaps are allocated to this category. This might seem
somewhat odd, but given the significantly higher volatility of most currencies
relative to interest rates, this seems like a judicious choice.40 The ability of a proper
forward-looking simulation engine to simultaneously manage all underlying risk
factors associated with each position—by comparison—is definitely an advantage.
This is one of the costs of parsimony.

In contrast to interest rates, the currency asset class is relatively straightforward.
The adjusted notional amount is expressed as,

d
(CCY)
k = NLC

k , (10.68)

where LC denotes the local-currency value of the foreign-currency claim. If both
legs of the trade are in foreign currency, then BIS [5] recommends computing both
in local currency terms and using the larger of the two estimates.41 The directional
delta has the same basic form as found in Eq. 10.61, while the supervisory duration
is implicitly SDk ≡ 1. The corollary of this choice is that the trade-level add-on is
independent of the instrument’s maturity.

In the currency asset class, a hedging set is defined as a currency pair; we will
denote this by CP. The idea, it seems, is that each member of the hedging set’s
primary risk factor is the spot exchange rate associated with its currency pair. The
key practical task is to get the correct directionality of the currency pairs. A EUR-

39 If it did not, with the presence of the square-root operator, we might find ourselves with a
difficult-to-explain, complex-valued interest-rate add-on.
40 The regulators could, of course, have assigned them to both asset classes. This would, however,
lead to more complexity and immediately break the general rule of assigning each instrument to a
single asset class.
41 Our current implementation, incidentally, always conservatively uses the larger of the two legs
in local-currency terms.
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AUD pair is, of course, equivalent to an AUD-EUR position. What is important is
to identify the set of unique currency pairs and determine long and short positions
with respect to that combination.42

There is no primary risk factor sub-category in the aggregation, since it is already
defined at the trade level by the choice of currency pair. The trade-level formula is
given as,

A
(CCY,CP,k)
i = ±NLC

k · 4.0%︸ ︷︷ ︸
SFk

·MFk, (10.69)

where the supervisory factor is significantly (and understandably) much larger than
in the interest-rate setting. Summing over all of the trades within a given currency
pair yields,

A
(CCY,CP)
i =

∑

k∈CP

±NLC
k · 4.0%︸ ︷︷ ︸

SFk

·MFk

︸ ︷︷ ︸
Eq. 10.69

. (10.70)

The currency asset class add-on then reduces to the following final aggregation over
all of the individual currency pairs,

A
(CCY)
i =

∑

c∈CCY

∣∣∣∣A
(CCY,c)
i

∣∣∣∣
︸ ︷︷ ︸

Eq. 10.70

. (10.71)

The uniqueness of the currency asset class stems from the overlap between the
trade and primary-risk factor levels. Equation 10.71 also reveals the reason for
the presence of the absolute-value operator in Eqs. 10.37 and 10.48. If it were not
present, then positive and negative exposures from different currencies would (rather
indefensibly) be able to offset one another.

10.7 A Pair of Practical Applications

As usual, we would like to conclude with some concrete discussion to help solidify
these ideas. Unfortunately, there are fundamental reasons that make it challenging
in this case. As should be clear from the previous sections, the individual SA-CCR
calculations are rather data-heavy and multi-layered; there is a real danger of spend-

42 Ultimately, the actual sign assigned to long and short trades does not matter since absolute
values will be imposed in a latter step. The key is consistency of sign treatment among short and
long positions with each unique currency pair.
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Fig. 10.7 Normalized portfolio-level derivative exposure: This graphic traces our normalized
portfolio-level SA-CCR derivative exposure estimate over a roughly six-month period in 2021.
It should help to visualize the relative roles of replacement cost, the model-based PFE component,
and the additional regulatory conservatism.

ing more time introducing the data than actually discussing the results. It is also
impossible to directly use NIB-related inputs, because these derivative obligations
represent rather sensitive internal data. Even if we could, the dimensionality of the
data would be a bit overwhelming.

To counteract these shortcomings, we will look at a pair of, rather stylized,
examples. The first examines a normalized view of our overall portfolio-level deriva-
tive exposure. These results generically describe the key relationships between the
various elements of the SA-CCR computation. Our second example investigates a
practical application—important for all financial institutions—of derivative expo-
sure estimates: the so-called leverage ratio.

10.7.1 Normalized Derivative Exposures

Derivative exposures are computed at the counterparty level; this is an unavoidable
consequence of counterparty credit risk. When the exposures of all individual
derivative counterparts are summed up, however, we arrive at a surprisingly
interesting perspective on portfolio-level exposure.

Figure 10.7 provides, for an arbitrarily selected six-month time interval during
2021, the normalized view of our portfolio-level derivative exposure.43 This vantage
point allows us to establish a few basic facts about the SA-CCR computation.

43 The normalization involves imposing unit volatility and scaling by the maximum observation.
This allows us to abstract from the actual values and focus on trends and broad-based insights.
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Fig. 10.8 Normalized portfolio-level replacement cost: The graphic above traces the our normal-
ized portfolio-level replacement cost over a roughly six-month period in 2021. This should be
viewed as drilling deeper into the replacement-cost component presented in Fig. 10.7.

The portfolio-level values—which are a function of three main components—are
relatively stable across time. Moreover, the replacement cost represents a fairly
modest part of the overall picture. This is essentially the point of the SA-CCR;
the add-on-related PFE component is an adjustment for risk placed on top of the
collateralized current exposure. This PFE element, which is determined by the
structure of the underlying derivative instruments, is naturally quite persistent.44

The final component, stemming from the constant in Eq. 10.26, is a bit of additional
conservatism provided by our regulators.

Figure 10.8 drills deeper into the replacement-cost component. As we learned
in the previous discussion, the key replacement-cost drivers are market value and
collateral. Again using a normalized, portfolio-level perspective, we see clearly that
collateral and derivative valuations are essentially mirror images of one another.45

This is, in fact, the entire point of the collateral process. As market values move
in the financial institution’s favour, collateral is received to offset the increasing
counterparty credit risk.46 The component called Other factors in Fig. 10.8 relates
to the net initial collateral, collateral threshold, and minimum transfer amounts
introduced in Eq. 10.27. These elements—which are simply the difference between
the SA-CCR replacement cost and the residual market value after collateral—are
uniformly positive. They represent an additional element of caution in the SA-CCR
construction.

44 A big part of the reason is the fixed regulatory parameters, which are not recalibrated on a daily
basis as is the case with most forward-looking exposure engines.
45 The offset is not perfect, but the correlation coefficient between these two series over this period
is approximately −0.9.
46 Over this period, NIB was a net receiver of collateral at the portfolio level. An institution’s
collateral position tends to ebb and flow over time with market movements and portfolio
composition.
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Fig. 10.9 Normalized portfolio-level SA-CCR PFE: This graphic traces our normalized portfolio-
level SA-CCR PFE over a roughly six-month period in 2021. This should, once again, be visualized
as zooming in on the PFE component presented in Fig. 10.7.

Figure 10.9 concludes our high-level examination by zooming in on the PFE
component. This normalized, portfolio-level risk-adjustment is decomposed into
two sub-components: the aggregate add-on and the multiplier reduction. Recalling
from Eq. 10.59, the multiplier acts to reduce the overall PFE component in cases
of negative market values or overcollateralization. Over this period, the multiplier
plays a comparatively limited role in the determination of the PFE contribution to
overall portfolio derivative exposure. This is both typical and consistent with the
regulatory guidance; the multiplier is an adjustment to handle a special case.

Colour and Commentary 124 (INTERPRETING DERIVATIVE EXPO-
SURES): Much can be learned from a high-level analysis of one’s own
derivative portfolio. Using a normalized daily portfolio-level view, we
consider values over a six-month period during 2021. This bird’s eye
perspective yields a number of interesting points. The total portfolio-level
derivative exposure is generally quite stable over time; this is consistent
with our desired through-the-cycle exposure estimate.a Replacement cost is,
in general, only a relatively small fraction of the overall SA-CCR estimate;
the risk-related PFE component represents the dominant contribution.
Collateral and derivative market values, as one would expect, largely offset
one another. This drives the stability and (relatively small) magnitude
observed in the replacement cost. The add-on multiplier, while conceptually
important, appears to play a fairly limited role. Finally, the presence of other
(collateral-related) factors in the replacement cost and the scaling constant
in the overall computation lend additional conservatism to the final result.

a This is a direct consequence of fixed regulatory risk parameters.
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10.7.2 Defining and Measuring Leverage

Leverage, at its heart, seeks to measure the amount of debt employed to finance a
firm’s assets. All else equal, less leverage is preferred to more, because the greater
the debt burden, the more difficult it is for a firm to meet its claims. Excessive
amounts of debt can become particularly problematic in the event of financial stress.
Debt in a firm’s capital structure is, of course, not without its benefits. In particular,
tax treatment typically makes debt financing relatively cost effective.47 As is so
often the case, the firm must find a balance between the benefits and risk associated
with the use of leverage.

Given the accounting identity that firm assets are the sum of debt and equity,
there are a variety of (broadly equivalent) ways to estimate leverage. Sometimes
it is represented as a debt-to-equity ratio, while in other cases one examines the
ratio of debt to total assets. In the financial-institution setting, the leverage ratio is
computed as

Leverage Ratio = Available Financial Resources (Equity)

Total Asset Exposure
. (10.72)

This particular definition is consistent with European Union banking regulation.48

The benefit of the unit-less ratio format is that it is easy to interpret, enforce, and
compare with other financial institutions.

It is natural to compare Eq. 10.72 to the concept of capital headroom discussed on
numerous occasions in previous chapters. Both involve, after all, the firm’s capital
supply. When inspecting Eq. 10.72, we find that it is silent on the riskiness of the
underlying assets. It depends solely on their overall magnitude or, as it is commonly
referred to, volume. This is simultaneously a strength and a weakness. On the
positive side, it is relatively easily described and computed. There is little scope
for analytical freedom in determination of Eq. 10.72. More negatively, asset-risk
composition matters. Two financial institutions might have the save leverage ratio,
but vastly different asset-risk profiles. The leverage ratio provides no information
on this dimension. A solid compromise is to avoid arguing about the relative merits
of economic capital and leverage; instead, one can easily use both and thereby gain
a broader complementary perspective.

The leverage ratio, while vastly simpler to compute than economic capital, still
has a few tricky parts. While the numerator of the leverage-ratio definition in
Eq. 10.72 is fairly clearly related to some variation on internal capital supply, the
denominator remains somewhat vague. The regulation is, however, quite specific. In
particular, the guidance stipulates that it must include:

47 This fact has been appreciated for decades and is a key driver of capital-structure decisions; see,
for example, Modigliani and Miller [16].
48 Further background, from the regulatory side, is found in BIS [4].
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1. an accounting representation of firm assets excluding derivative contracts and
associated collateral;

2. an allocation for non-derivative-related off-balance sheet items; and
3. an allowance for derivative contracts incorporating an add-on for counterparty

credit risk.

It is this final point that, in the context of this chapter, catches our interest. Pulling
these directions together, we arrive at the following revised, and more precise,
description of the leverage ratio:

Leverage Ratio = Tier I Capital Position

Accounting Assets ex Derivatives
+Off-Balance Sheet Items + Derivatives

. (10.73)

Practically, most of the ingredients are relatively easily procured. Accounting asset
values are sourced from internal systems. Off balance-sheet items relate exclusively
to agreed, but not-yet-disbursed loans. Committed agreed, not disbursed loans are
transformed with a 50% credit-conversion factor into loan equivalents; only 10%
of uncommitted loans are included.49 The wild-card in this calculation, however,
relates to derivative exposure.

The regulatory term “allowance for derivative contracts” is a bit vague. Assuming
a financial institution can convince its regulator of the reasonableness of its
computation, then presumably it has a fairly broad range of alternatives. Common
practice, and in this respect NIB is no exception, is to simply employ the SA-CCR
methodology for this purpose. This completes Eq. 10.73 and readily permits its
computation.50

Colour and Commentary 125 (MEASURING LEVERAGE): Leverage seeks
to describe the amount of debt employed to finance one’s assets.a Unlike the
risk-based economic-capital measure, which sits at the heart of this book,
it focuses exclusively on volume. It can nonetheless provide a very useful
complement to risk-based metrics. While leverage can be measured in many
ways, it is common to construct ratios involving a firm’s assets and equity
(i.e., capital supply). The majority of the inputs into any leverage assessment
are not particularly controversial and easily obtained from a firm’s financial

(continued)

49 The credit-conversion factor is a regulatory invention, which we have already encountered in
previous chapters. It is a value between zero and one that, when multiplied by the instrument’s
notional value, transforms an off-balance-sheet item into a balance-sheet equivalent.
50 Somewhat ironically, given that it typically only represents a small fraction of a financial
institution’s total assets, much of the effort associated with the leverage-ratio computation relates
directly to the derivative component.
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Colour and Commentary 125 (continued)
statements. Derivatives, which may be either an asset or a liability depending
on their mood, are the exception. Regulatory guidance on the measurement
of leverage counsel excluding all derivative-related balance-sheet inputs—
both collateral and valuations—and replacing them with an allowance for
derivative contracts. Those wishing to measure leverage thus find themselves
in the business of estimating derivative exposure. The SA-CCR computation
jumps into this breach and offers a tailor-made solution to this problem.

a Assets, in this context, go somewhat beyond the accounting view to consider off-balance
sheet items.

10.8 Wrapping Up

There are many ways, of varying degrees of complexity, to compute forward-
looking measures of derivative exposure. The most conceptually correct methods
involve the construction of a high-dimensional instrument-level, simulation-based
valuation engine that also incorporates time-varying collateral behaviour. For
quantitative analysts involved in derivative pricing, complex simulation engines
are a non-optional prerequisite. For economic-capital purposes, however, such
complexity is neither necessary nor desired. The more stable, through-the-cycle, P-
measure-based regulatory capital calculations make for a more natural choice. They
provide defensible risk-based derivative exposure estimates and, as a side benefit,
represent a helpful input into the measurement of one’s leverage position.
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