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Foreword

Credit-risk management has always been a challenging task, but it remains as
crucial as ever in modern banking. The requirements and expectations for solid,
documented, and model-based credit-risk management have developed significantly
since the 2008 financial crisis. Nowadays, the concept of credit-risk economic
capital is deeply embedded in every bank’s daily management and decision making.
Chief risk officers are faced with the heavy responsibility of ensuring that their
risk modelling provides an appropriate and sound foundation for their institution’s
decisions.

This book, written by David Bolder, on the topic of economic-capital risk
modelling has been produced in parallel to, and in conjunction with, development
of the Nordic Investment Bank’s (NIB) own economic-capital model. This is where
this book stands out and goes well beyond other literature written about the subject.
David’s book is based on the actual work carried out at NIB, and the real choices
and situations we faced, during the process. While providing theoretical foundations
and principles, the book also addresses the many questions and real-life decisions
that needed to be made, all with the objective of “getting it right.”

NIB is a AAA-rated international financial institution (IFI), owned by the
eight Nordic and Baltic countries. In 2020, NIB concluded the modernization
of its statutes, which now incorporate risk-based capital requirements into its
legal foundation.1 This decision would not have been possible without a solid
foundation of risk-based capital-management practices, including a comprehensive
set of relevant models at hand. As part of the process, NIB executive management
wanted to ensure that our economic-capital model was mathematically sound, built
on defensible risk parameters, and was overall deemed fit-for-purpose. Accordingly,
we initiated the work to redesign as needed, to document, and to subsequently
externally validate our new economic capital model for credit risk.

1 NIB is, at the time of this book’s publication, the only bank among its peers (the other IFIs) that
has taken this route.
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NIB has been fortunate to have David to lead this important work. While having
both a strong academic background and solid financial-sector experience, David
is also gifted in explaining the concepts, mathematical and statistical choices, and
related impacts to decision makers and other stakeholders. This has been crucial for
us during the new model’s development and implementation phases.

The book provides an end-to-end view, diving into practical implementation
details and extending beyond economic capital to cover other (related) critical
banking applications such as risk-based loan pricing, expected credit loss (ECL)
modelling, stress testing, and measurement of financial-derivative exposure. This
makes David’s work highly relevant not only for risk-management practitioners but
also for a much broader group of readers. All those willing to put in the effort will be
well rewarded with useful contextual knowledge, a structured approach to tackling
complex issues, and applicable practical solutions.

Nordic Investment Bank Hilde Kjelsberg
Helsinki, Finland
2021



Preface

[T]he best prize that life offers is the chance to work hard at
work worth doing.

(Theodore Roosevelt)

It is customary when writing a preface to provide some sort of explanation to why
the book was written. Although this preface will not deviate from this pattern, we
will not go about it in the usual, direct way. Instead, we will begin with a rather
lengthy detour. It is more than just taking the scenic route; the truth is that it will
simply take some time to get where we need to go. The trip is worth it.

The jumping-off point is the details of a quantitative analyst’s job. This book is
focused on financial risk management, so we will principally take this perspective.2

Quantitative risk analysts frequently find themselves required to measure various
dimensions of a firm’s risk. This difficult, and often precarious, undertaking
inevitably involves use of mathematical and statistical models.

The reason for use of models is easy to understand. Describing an intricate
and multifaceted world is not feasible without some form of simplification and
dimension reduction. Otherwise, one would be steamrolled by complexity. Creating
logical parsimony is the central role of the model. In recent years, it has become
well understood that models are a double-edged sword. They provide structure
and insight, but embed their own risks.3 As a consequence, every experienced
quantitative risk analyst worries about one important issue: getting it wrong.

Claiming that an entire profession is profoundly concerned about making mis-
takes is a deeply depressing beginning. It would, however, be a bit surprising were
this not the case. A quantitative analyst, whether in the risk-management area or not,
performs technical analysis to support firm decision making. Poor analysis leads to
correspondingly poor decisions. Enough bad decisions and the firm’s future—not to
mention the analyst’s career—comes into question. Complicating matters, the task

2 The following discussion relates equally well—with perhaps a few minor adjustments—to
virtually any numerically minded industry: physics, engineering, statistics, genetics, computer
science, or economics.
3 Derman [1, 2] or Rebonato [3] are a great place to start for more background on these ideas.
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is inherently difficult. Most financial analyses require fairly intimidating amounts
of complex instruments, market data, and portfolio inputs. Modelling outputs are
also typically highly involved non-linear functions of these inputs. To make matters
worse, the principal modelling relationships in financial economics are not built
upon physical laws, but human behaviour. It’s often impossible to determine if one
is using the right model.4 There are thus a multitude of ways to get things wrong. A
rational and conscientious quantitative analyst has literally no choice but to worry
about this point.

An Analyst’s Objectives

Worrying is natural, but it won’t solve any problems. How then does the quantitative
analyst try to minimize their fears? It begins with a clear and practical description
of one’s objectives. It is admittedly presumptuous to describe an entire industry’s
ambitions, but we’ll nonetheless try to hit the broad strokes. A working description
of a quantitative analyst’s objectives is given as:

Perform defensible, replicable, robust, and conservative quantitative analysis to effectively
inform management decision making.

This is a fairly short, but dense, sentence. It is easily read, confidently pronounced
aloud in a meeting, or inserted into a team’s mission statement. In practice, however,
it is arduously achieved. This objective also merits some unpacking. Let’s do this by
considering the key underlined concepts in more detail:

• Defensibility: Our modelling choices and assumptions need to be based upon
well-founded and plausible logical arguments. Equally importantly, there needs
to be some understanding of the main choices and the principal alternatives. In
short, one’s analytic choices need to be reasonable and fit for purpose to the task
at hand.

• Replicability: We generally do not know the truth, so it is difficult to speak of
accuracy. Instead, we seek clear analysis that others can reproduce. The inability
to recreate someone’s analysis is an important red flag. Not incidentally, and for
the same reasons, replicability is also a key principle in scientific discourse.

• Robustness: If we change the measurement technique or slightly change the
inputs, a robust result does not vary dramatically. All else equal, this form of
stability is a rather desirable characteristic in one’s analysis.

• Conservatism: If we have to err, we prefer to systemically (but not excessively)
overestimate our risks, rather than underestimate them. This can, of course, be
taken too far. Taken in appropriate measure, it is a useful objective.

4 One may even legitimately question if such a notion actually even exists.
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A few ideas are conspicuous by their absence from our objectives. There is,
for example, no explicit mention of accuracy or precision. We also avoid any
language like “getting it right” or identification of the “correct model.” This might
be disappointing to some readers. In some ventures, such as the pricing of plain-
vanilla financial instruments, there is more space for such ideas. These limited
situations notwithstanding, we have explicitly steered clear of such words and
concepts. The reason is an attempt to avoid overconfidence, arrogance, or hubris
in our analysis. There is much that we do not know and perhaps more that is
unknowable. Risk is basically about the a priori specification of future marginal and
joint risk-factor and portfolio-value distributions. Founding one’s objectives upon
the assumption of precise knowledge of these distributions—with any significant
degree of precision—seems like a singularly bad idea. These are hard words, but
a failure to honestly describe what can be accomplished can lead to important
misapprehensions about the value of risk-management analysis. Even within this
relatively modest working definition, however, our objectives represent a pretty tall
order.

Analytic Axioms

We are still, the reader is certainly thinking, rather far from an explanation of
why this book was written. That is true, but we are getting closer. The next step
involves adding a more concrete dimension to this discussion. Objectives are great,
but are of limited value absent some idea of how they can actually be attained. To
help in this regard, we will now introduce five principles, or axioms, to guide our
actions towards achievement of this objective. This is not something that one would
typically find in a textbook. They are unwritten rules, or practices, that one will
routinely discover underlying solid analysis and well-constructed systems. Some
are gleaned from critical sources and practitioners such as Taleb [4], Knight [5],
Box [6], or Derman [7]. Others are the result of my own hard-earned decades-long
experience.5

Following these axioms is, unfortunately, no guarantee that a quantitative analyst
will meet their objectives. If seriously followed, however, they will provide a road
map towards our quantitative goals. The rest is hard work and sound judgement.
Moreover, embedded in these principles—and intertwined with a strong desire to
attain the preceding objectives—we will unearth the fundamental rationale for this
book.

5 This recalls Mark Twain’s sage words on the value of experience: “a man who carries a cat by
the tail learns something he can learn no other way.”
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#1: Multiplicity of Perspective

Redundancy, in the world prior to the COVID-19 global pandemic, was something
of a dirty word. Instead, the focus in past decades has been on concepts such as
outsourcing, process optimization, and just-in-time resourcing. These ideas have left
their mark on the overall business world and also influenced modelling practices.
There is much merit to seeking to make optimal use of scarce resources, but
these ideas do have an important weakness: they are typically not terribly robust.
Small perturbations to highly optimized systems often lead to dramatic setbacks in
performance. The COVID-19 pandemic—which was an admittedly large shock—
has driven home this point in a variety of sectors.

Since robustness forms a key element of our quantitative analyst’s objectives, the
notion of redundancy matters to us. This leads us to our first axiom:

Most production risk-management systems collect dizzying numbers of data
records every day. Using these instrument, market-data, and portfolio inputs, they
then proceed to perform millions of calculations yielding an array of key metrics.
If we fear getting something wrong and value robustness, then a natural solution is
the use of multiple models for the computation of pivotal quantities. One can, of
course, have only one production model. There is dramatic value in also having a
suite of challenger models; this involves the introduction of redundancy into one’s
risk-management system. Some alternative models can be very simple, while others
might involve only a slight, but conceptually important, variation on the production
model. There is particular value in models founded on fundamentally different
assumptions from one’s production choice. We can think of this as conceptually
similar to including an outsider in a firm’s board of directors. Multiple approaches
built on conflicting assumptions can help to avoid group-think among our models.

To make this more concrete, imagine that you have a portfolio of complicated
American-style options. Your production implementation likely needs to employ
some kind of finite-difference algorithm to value the individual options in your
portfolio. Use of analytic Black and Scholes’s [8] formula or a simpler numerical
Bermudan-option approach would represent interesting challenger models. They are
both incorrect, and somehow insufficient, but they are easy to compute with fewer
moving parts that can go wrong. More importantly, the final, complex result will
deviate in expected ways from these calculations. Extra work and computation are
involved, but the consequence is a powerful sanity (or robustness) check on one’s
results.

Our first axiom is essentially counselling analytic redundancy. This idea is not
new. Critical systems—nuclear power plants, air-traffic control, and space-shuttle
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launches as a few examples—routinely build in redundancies to minimize the risk of
failure.6 It might seem excessive to apply such notions to financial risk management,
but there are many conceptual parallels that suggest scope for similar solutions.

#2: Many Eyes

Our second axiom is:

Nobody likes criticism. It is hurtful to have someone pick apart—even with
the best of intentions—something you’ve worked hard to build. It is nonetheless
essential. Everyone makes mistakes. The idea that good analysts are impervious
to important errors is a dangerous misconception. It has been long understood in
psychological circles—see, for example, Reason [10]—that cognitive errors are an
essential part of the creative process. These can be errors in one’s mathematical
development, conceptual argumentation, or simply bugs in one’s implementation.
They happen to every analyst and every team. Errors, whether we wish to admit it
or not, are a natural (if unwelcome) by-product of quantitative analysis.

Accepting the (widespread) existence of cognitive error is the first step. The
next course of action is to seek solutions. The principal tool to minimize such
error is critical external oversight.7 Critical review can, and should, occur in many
layers. The starting point, of course, is a careful review of one’s own work. Then, it
naturally proceeds to one’s colleagues. At this point, things get a bit more difficult.
Much of what quantitative analysts do on a daily basis is simply too complicated
and technical for non-expert audiences. For complex and critical models, sufficient
in-house expertise often does not exist for examination beyond one’s immediate
colleagues. External review is thus necessary. This typically takes the form of
model-validation via a specialized external firm.

To summarize, many eyes can really help to identify and mitigate cognitive
error. That said, many eyes are not enough; it also has to be the right eyes. For
this reason, when possible, it is preferable to also put key ideas into the public

6 See Perrow [9] for a fascinating, and at times frightening, discussion of the ways that complex
systems can go wrong.
7 This notion goes by many names. Book editors call this manuscript proofing, computer software
engineers refer to this activity as debugging, while academics use the term peer review to manage
quality control for journal submissions.
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domain.8 Publication accomplishes both: it exposes one’s work to many eyes
while simultaneously getting it to the right ones. By making a contribution to the
practitioner literature, there is a greater chance people with the proper experience
and perspective will provide their invaluable input.9

#3: Pictures and Words

One common theme, across all areas of quantitative endeavour, is the need to
manage large amounts of input and output data. In the modern world of big data,
this trend is only going one way: upwards. This brings us to our third axiom:

Even a modest risk-management operation will write thousands of records to a
variety of database tables on a daily basis. A small number of (lucky) individuals
possess the ability to peruse large tables of data and identify issues; this is
nonetheless a rare skill. The human eye, conversely, is pretty good at catching
graphical patterns or anomalies. This argues for the liberal use of visualization tools
to (regularly) examine the range of one’s key inputs and outputs. It is also fruitfully
applied to important intermediate calculations. Indeed, a fantastic application is
visualization of one’s production model differences with respect to the challenger
models introduced in axiom #1.

Some aspects of visualization are intuitive. Even better, there are increasing
numbers of helpful scientific computing and business intelligence tools to assist
with this task. That said, there are numerous key principles and pitfalls associated
with visualization. Tufte [11] is an excellent source of inspiration in this often
underrated area. In Tufte’s [11] words, “[a]t their best, graphics are instruments for
reasoning about quantitative information.” Is improved reasoning not essentially the
end-game for the entire activity of quantitative analysis? Financial risk models are
complex and decision making is difficult; any tool that can assist in this process is
highly welcome. Visualization is, however, not just any tool. It is perhaps our most
important ally.

8 For a more thorough discussion on these ideas, please see Bolder [16].
9 Propriety algorithms and models can complicate this process. Often, however, the issue relates
principally to the sensitivity of the inputs and outputs. This challenge is readily managed by use of
fabricated (but generally representative) data inputs.
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#4: The Three Little Pigs

In the late nineteenth century, inspired by the Grimm brothers, Jacobs [12] published
the famous fairy tale: the three little pigs. Although this would appear to be almost as
far away from quantitative analysis as one can possibly get, the story taught us that
solid, well-built brick houses are best. The lesson applies, of course, more broadly.
This indirectly leads us to our fourth axiom:

It is simply astounding how often, in practical situations, temporary solutions
become permanent. In today’s business world, there are always ambitious work
agendas and tight deadlines. Prototypes that are judged good enough can become
production systems and remain so for years. This is not a jab against business pro-
cesses or practices; it appears to be a combination of human nature and constrained
resources. The consequence, however, is that quick and sloppy implementations can
become weak links in one’s analytic chain.

Understanding and accepting this fact is a stride in the right direction. What
is the remedy? When building any system, it is advisable to proceed as if it will
be permanent; it may very well be! In the best case, one will have a well-built,
carefully constructed prototype to aid in the development of the final production
system. In the worst case, the temporary but ultimately permanent model will have
been built with care. This brings us back to Jacobs’s [12] fundamental point about
the shortcomings of straw and wooden homes: it is generally safer to have high
construction standards.

#5: The Best for Last

Our final axiom ties together many of the previous elements, and finally brings us to
the point at hand: motivating the production of this book. It reads as a combination
of a command and an imploration:

The preceding axioms simply cannot be accomplished without putting pen to
paper. Multiplicity of perspective (axiom #1) requires understanding of key differ-
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ences in alternative modelling approaches. External review and criticism (axiom #2)
necessitate getting deeply into the details. Effective visualization and permanent,
solid solutions (axioms #3 and #4) require planning and detailed descriptions of
one’s underlying methodologies. To repeat, none of the preceding axioms can be
accomplished without detailed documentation.

In many organizations, models can be organized in generations. They are
developed by one or more people, who eventually move on to other responsibilities
within or outside the firm. They are then replaced by a second generation who, not
having been involved in the construction, have less complete model understanding.
Knowledge is lost with each successive generation. In many cases, by the time we
arrive at the third or fourth heir, the model is effectively a black box. One manages
the inputs and collects the outputs but lacks a clear idea of what is happening in
between. The basic notion of a black box is illustrated schematically in Fig. 1.

Black boxes are dangerous. As a modeller, it is almost invariably a bad idea
to use things you don’t understand. Absent a comprehensive understanding, how
can one properly interpret and communicate results? One might get away with it
for short periods of time, but ultimately it will catch up with you. Fortunately, it’s
basically impossible to (correctly) document a black box. You can’t sensibly write
down what you don’t comprehend. Documentation thus explicitly forces discipline
and clarity regarding one’s processes and assumptions. A detailed description of
one’s model—and associated visualizations with alternative challenger models—
also goes a long way to resolving the generational decline in internal model
knowledge. Documentation is, in many ways, the antidote to the black box.10 To

Fig. 1 The root of much evil:
A black box takes a set of
inputs and produces one or
many outputs. The
processing, or algorithmic,
aspect is partly or completely
unknown. This lack of clarity
is highly problematic.

10 This realization also lies at the heart of many detailed documentation initiatives surrounding
model-risk management—see, for example, OCC [13]—and the increasingly extensive Pillar III
requirements supported by the regulatory community.
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bring our fifth crucial axiom to its logical extension, a model is not implemented
until it is fully and conscientiously documented.11

Why This Book?

This realization finally brings us to the origins of this book and the central point of
this preface. Over the period from 2019 to 2021, the Nordic Investment Bank (NIB)
embarked upon an important journey to modernize its statutes. This involved, among
other things, the adoption of economic capital as a central tool in the management
of its business. To support this initiative, detailed internal efforts were performed
to simultaneously revise, refresh, and extend NIB’s credit-risk economic-capital
framework. This was a long and complicated journey that necessitated the use of
many mathematical and statistical modelling techniques.

Why was this book written? It seeks to meet the aforementioned objectives
by explicitly following the associated axioms. A commitment was made to do
things the right way. This was not easy. Each axiom involves extra work above and
beyond the already challenging day-to-day tasks faced by the quantitative analyst.
Nevertheless, the choice was not difficult.12 Within financial institutions, the days
of implementing and using complex mathematical models without careful oversight
have passed. One need not perhaps follow the letter of these five axioms, but there
are increasing pressures—and, more importantly, good logical reasons—to follow
their spirit. The preceding axioms thus form the guiding principles of our approach
to quantitative analysis and, by extension, this book.

The forthcoming chapters chronicle the key elements of NIB’s credit-risk
economic-capital methodology. This incorporates important modelling details and
assumptions as well as questions surrounding model parametrization and imple-
mentation, important applications, and a variety of related concepts. This book
also explicitly covers multiple possible model implementations and challenger
models and extensive visualization aids. It is not perfect, nor will any modelling
framework ever be. Its publication is, however, strongly motivated by a desire to
seek (and value) constructive external criticism and thereby help to gradually (and
continuously) improve NIB’s credit-risk economic-capital architecture. With luck,
it will also contribute to the general conversation and assist other individuals and

11 Proper model documentation includes many elements. A non-exhaustive list includes links to
the academic and industry literature; the mathematical details of one’s modelling choice(s); the
rationale behind assumptions and implementation decisions; and visualization of actual calculation
outcomes.
12 This is reminiscent of Victor Hugo’s thoughts on this subject: “initiative is doing the right thing
without being told.”
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entities working in this important area. Perhaps the most important justification
for writing this book, from NIB’s institutional perspective, is the desire to build
something that will last.

Helsinki, Finland David Jamieson Bolder
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Testimonials

This is a very valuable book providing a comprehensive treatment of credit risk
capital. The most fascinating and relatively unique aspect is the illustration of
the practical development and implementation of a capital framework in an actual
institution. It thus goes well beyond describing the concepts and derivations but also
delves deeply into the actual choices that have to be made from beginning to end on
all dimensions and how these decisions can be made. While rigorous and technical,
the book is also layered with judgement, common sense, and honesty. This is a very
welcome addition to the literature on this subject.

- Lakshmi Shyam-Sunder, Chief Risk Officer, World Bank

Dave Bolder’s excellent new book describes how to model and compute a
bank’s economic capital. He starts with a broad overview of the issues, introduces
the necessary technical tools, and provides practical advice garnered from his
extensive experience. The models are first introduced at a high level and then
they are carefully described and developed. The presentation is thorough and
accessible to someone with an undergraduate degree in mathematics or statistics.
Bolder’s ongoing commentary is especially insightful in pointing out limitations
and developing our intuition. The author’s approach is well summarized by his five
guiding principles outlined in the preface. With its solid theoretical foundation and
its sensible practical suggestions, this volume is an important contribution to the risk
management literature.

- Phelim Boyle, Professor Emeritus, Pioneer in Quantitative Finance

David J. Bolder’s two previous books Fixed-Income Portfolio Analytics and
Credit-Risk Modelling are valuable sources of information for academics and
practitioners working in quantitative finance. This book, Modelling Economic
Capital, will become an equally valuable resource as it is written with David’s
highly readable style that combines solid technical foundations, clear descriptions
of real-world problems, modelling and risk-management approaches, and practical
implementation, including key details often omitted in other sources. Modelling
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xxiv Testimonials

Economic Capital is a comprehensive treatment that will be very useful in the
research, education, and practice in modern quantitative finance.

- Cody Hyndman, Chair, Department of Mathematics and Statistics, Concordia
University

Accessible, insightful, practical – a must-read for financial practitioners. The
global financial and sovereign debt crisis has triggered the necessity of financial
authorities and financial firms to develop and conceptualize risk exposures for
safeguarding financial stability, reduce contingency risks, and for financial firms
to master their economic capital models. Having worked in central banking for over
25 years, this book by David Bolder successfully provides a holistic view of the
opportunities and challenges surrounding the modelling of economic capital in an
increasing complex, heterogeneous, and global financial market. David, with his
wealth of risk management knowledge, provides clear and pragmatic reflections of
the credit risk economic capital framework, while transparently offering practical
lessons from the Nordic Investment Bank. I highly recommend this book for risk
management practitioners in private and public firms and as lecture material for
graduate programmes as a forward guidance of managing economic capital.

- Per Nymand-Andersen, Adviser to senior management at the ECB, Lecturer at
Goethe University

David J. Bolder, a leading risk-management expert, masterfully gives a complete
guided tour of the Nordic Investment Bank’s modelling and computation of
economic capital. A unique look into the inner workings of a financial institution,
Bolder covers important topics and intricate details not found in other texts. This
book hits the modelling trifecta of what models are used, why those models
are used, and how they are implemented, including simplifying assumptions and
approximations, data requirements and availability, parameter specification and
estimation, and computational methods and computing systems. Bolder skilfully
guides us through the reasoning and justification for choices made at all stages in
the process. Modellers from any discipline can benefit from the many discussions
balancing rigour with practical considerations. Linking the models to business
practice applications such as loan pricing, origination, and the connection to the
lending firm’s capital structure is a distinctive feature. This work is a notable
contribution to the financial and regulatory community and should be on the shelf
of every risk manager.

- Professor R. Mark Reesor, Associate Professor and Chair, Department of
Mathematics, Wilfrid Laurier University
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Chapter 1
Introducing Economic Capital

Just as a cautious businessman avoids investing all his capital
in one concern, so wisdom would probably admonish us also not
to anticipate all our happiness from one quarter alone.

(Sigmund Freud)

This is a book with a central focus on the notion of economic capital and
its applications. It thus makes good sense to begin with a clear description of
this surprisingly complex concept. Our story begins with the banking business,
although the following ideas will apply equally well—with some perhaps slight
adjustments—to a broader range of financial institutions including insurance com-
panies, investment dealers, or brokerages. Banks, as we all know, lend money.
Such a mandate entails a number of ancillary financial activities. Loan origination
and counterparty evaluation is a central preoccupation, cost-effective funds must
be raised in local and international markets to finance these loans, short-term
liquidity needs to be earmarked and invested to manage daily flows and unexpected
outcomes, and key portfolio asset-and-liability mismatches need to be hedged.1 In
a few words, a modern bank needs to lend, fund, invest, and hedge. All of these
efforts, even hedging, give rise to various financial (and non-financial) risks that
need to be identified, measured, and managed. A bank’s success, as a venture,
depends importantly on its effectiveness in navigating these risks.

The first challenge facing a bank arises from the diverse nature of these risks.
A movement in an interest or exchange rate, for example, is somehow different
from the failure of a counterparty to meet their payment obligations. Measuring the
former risk is quite likely to involve conceptual and practical differences from the
latter one. This is only a simple example; the true range of risks is, in fact, much
broader. Although they might arise and behave in different ways, it is useful and
important to manage one’s risks in a global sense. This idea is loosely referred to
as enterprise risk management. A powerful tool for the joint management of these

1 Many banks, of course, also raise funds via customer deposits.
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2 1 Introducing Economic Capital

risks is referred to as economic capital. Economic capital, to be criminally brief, is
a firm-wide, model- and assumption-based measure of business risk.

Calculating economic capital requires not just one, but typically multiple finan-
cial models. The multiplicity of models arises precisely from the variety of risks
that we seek to incorporate into the final measure. In a perfect world, a single,
unified model would describe the totality of an institution’s risks. The diversity
of the underlying risks and, quite frankly, our shortcomings in measuring them
makes such an approach practically unfeasible. The following chapters will focus
principally on the credit-risk dimension, but we would be remiss if we did not touch
upon—at least, conceptually—the other important sources of risk faced by financial
institutions.

Although financial modelling is a crucial element in the computation of economic
capital, jumping straight into technical considerations is probably not a great idea.
Instead, to somewhat mangle a popular adage, we should think before we model.2

With a clear view of what we wish to accomplish—and some of the potential
stumbling blocks along the way—digestion of mathematical and statistical details
can occur much more smoothly and naturally. This chapter, therefore, seeks to
provide a gentle, but comprehensive, introduction to the key ideas, motivations, and
concepts associated with the notion of economic capital.

1.1 Presenting the Nordic Investment Bank

Although our intention is to attack economic capital from a broad perspective, the
ideas and methodologies presented in the following chapters are employed by a
specific institution: the Nordic Investment Bank (NIB). NIB is an international
financial institution focused—to put it very briefly—on environmental and produc-
tivity related lending activity in the Nordic and Baltic regions. Established in 1975
by the five Nordic countries, it makes loans to both private and public-sector entities,
but not individuals.3 It also finances its activities through market borrowing, not
customer deposits. NIB’s loans are offered on competitive market terms.

The NIB has been estimating, internally reporting, and using economic capital
since 2004. Although not a regulated entity, it has nonetheless followed the Internal
Capital Adequacy Assessment Process (ICAAP) since 2016.4 ICAAP, as a concept
and process, relates to the Basel Committee for Banking Supervision’s Pillar 2 (i.e.,

2 The typical advice is to think before you speak, but experience indicates that thinking is profitable
before engaging in a rather wider set of activities from bungee jumping to financial modelling.
3 The five Nordic countries include—moving from west to east—Iceland, Norway, Denmark,
Sweden, and Finland. The three Baltic countries—from south to north, Lithuania, Latvia, and
Estonia—joined the NIB in 2005.
4 See ECB [15] for a useful guide to the occasionally byzantine world of ICAAP.
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the supervisory review) aspect introduced in Basel II.5 In 2020, through a desire to
modernize its risk-governance framework, and precipitated by practical challenges
associated with antiquated statutory gearing limits, the NIB introduced a number
of changes to its statutes. A new set of economic-capital, leverage, and liquidity
management principles—along with some associated changes in the responsibilities
of its Control Committee—were introduced.

These statutory adjustments were, to put it mildly, a game changer. Prior to the
revised statutes, the principal constraint on NIB’s financial activity was a volume-
based gearing ratio. While broadly effective, such an approach did not differentiate
between the riskiness of each unit of lending or treasury activity to our overall
activities. Volume certainly matters, but so does the underlying risk profile of what
an institution adds to its balance sheet. Economic-capital offers an approach to
capture both dimensions. It does so, however, at a cost. Volume-based ratios are
typically easily defined and computed; economic-capital, by contrast, is a relatively
complex and nuanced object. Its complexity, of course, is necessary to adequately
reflect the intricacy of the risks facing a modern financial institution.

This book is, in many ways, a child of NIB’s recent statutory change. While
most of the elements described in the forthcoming chapters have been performed
for years—if not decades—prior to the recent revision of its statutes, it was a
natural moment to carefully rethink and revise the overall framework. Such an
effort naturally involved careful documentation of the attendant choices; the result
was this book. Putting these ideas into the public domain serves, at least, two
purposes. First, and perhaps most centrally, it provides clarity about our modelling
practices and permits qualified and interested external parties to provide useful
constructive feedback on our choices. Placing these ideas into circulation is thus
an important step towards mitigating the inherent model risk associated with
construction and implementation of an economic-capital framework. Transparency
is also a fundamental aspect in public discourse among NIB’s member countries.
Modelling practices, their mathematical complexity notwithstanding, are no excep-
tion.6 Secondly, many practical lessons have been learned during this process that,
in our view, will be of interest to a broader audience. Openness, sharing, and
solicitation of external feedback are thus the key objectives in the production of
this publication.

The following chapters, therefore, are not based upon theoretical examples of
how one might possibly use economic capital. Instead, we will address these issues
within the context of a real-life entity. Naturally, there are important limits to the
amount of proprietary information that can be shared in such a publication. No
customer information will be provided and most figures will be related to high-level
values already found in other publications such as financial reports. In many cases,

5 Basel II’s introduction and discussion ranged from roughly 2004 to 2006.
6 This relates to the idea—see, for example, Elmgren [16]—of open government. While open
government is challenging, and not always uncontroversial, transparency has a long history in
the Nordic region.
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we will use fictitious (although illustrative) data to demonstrate our choices. Specific
figures and details regarding credit obligors are, however, rather beside the point and
not pertinent to a meaningful discussion of the topics. This is a book about choosing,
parametrizing, implementing, and applying economic-capital methodologies. As in
any large-scale financial modelling venture, both objective and subjective decisions
must be taken. It will be useful for the reader to understand and experience how
these methodological choices have been taken within the NIB context across the
entirety of the credit-risk dimension. Great pains have nonetheless been taken to
ensure that, despite the usefulness of a specific perspective, the notions considered
in the coming chapters are of general interest and utility.

Colour and Commentary 1 (SOME READING INSTRUCTIONS): This work
has a lot of ground to cover. This makes it inevitably long and detailed. We
can loosely think of reading this book as visiting a large touristic destination
such as London, Paris, New York, or Beijing.a There is much to see, learn, and
experience, but it can be difficult to get started and decide where to allocate
one’s time. Conceptualizing this book as a city visit, its consumption requires
a plan. The preface and this first chapter set the stage: these are roughly
equivalent to a short tourist guide. To complement the technical discussion,
extensive mathematics, and examples found in each chapter, numerous distinct
grey text boxes (such as this one) are provided.b Each box seeks to highlight
various key points, takeaways, challenges, or observations. Their purpose is
to help the reader to navigate, digest, and organize the material. To extend our
tourist-attraction analogy, we can view these grey text boxes as the various
destinations found on popular jump-on and jump-off bus tours offered to
tourists in these major cities. Skipping through the boxes, in any given chapter,
can assist the reader in deciding when (and where) to jump into the details.

a No promise is made that exploring the coming pages will be anywhere near as exciting as
your next vacation.
b There are, in fact, roughly 150 of these text boxes scattered over the forthcoming 12
chapters.

1.2 Defining Capital

Before there was economic capital, there was capital. As the introductory quote
suggests—stemming from famed psychoanalyst, Sigmund Freud, whose contribu-
tions mostly occurred a century ago—the idea of capital is not new. A definition was
provided by Adam Smith in his Wealth of Nations published in the late eighteenth
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RIGHT-HAND SIDELEFT-HAND SIDE

Liabilities

(Borrowing)Assets

(Loans,
Investments,
Receivables) Equity

(Capital)

Fig. 1.1 A stylized balance sheet: This schematic represents a (very) stylized firm balance sheet.
It illustrates the conceptual interplay between assets, liabilities, and equity.

century.7 The idea of capital, albeit with a strong political-economy dimension, is
also treated extensively in the works of Karl Marx written during the 1880s.8 There
are many different definitions that one might consider, but they all basically boil
down to an owner’s investment or stake in an enterprise. Although it can be broken
down more finely, this (slightly simplified) working definition amply serves our
purposes.

It is, of course, useful to be slightly more concrete. Figure 1.1 provides a,
certainly quite familiar, stylized view of a firm’s balance sheet. The left-hand side
illustrates firm assets such as loans, investments, and receivables. These are, more or
less, the elements of the business that are used to generate revenues. The right-hand
side basically deals with sources of financing associated with the revenue-generating
left-hand side. It includes liabilities and the overall equity, or capital, position.

Capital (or equity) is, from double-entry book-keeping, a residual figure. It is
the excess of a firm’s assets over its liabilities. For an accounting scholar, using
the terms capital and equity interchangeably is likely considered to be a grave
act of negligence.9 This not being an accounting treatise, a bit of simplification
and cheating is permitted. Our objective is, in this regard, not precision, but rather
illumination.

Accounting niceties aside, the important point from Fig. 1.1 is that the difference
between a firm’s assets and liabilities provides invaluable insight into a business’
state of affairs. A large equity position indicates a comfortable distance between a
firm’s assets and its obligations. This is generally a good thing. If it is too large,
however, then the efficiency and profitability of a firm can suffer. When this equity

7 Although not the most famous event occurring in this year, this work—see Smith and Krueger
[43]—was originally published in 1776. It defines capital as “that part of a man’s stock, which
expects to afford him revenue.”
8 The curious, and perhaps masochistic, reader is referred to the original source: Marx et al. [29].
9 Specifically, the difference between assets and liabilities is referred to as shareholder’s equity.
Capital, in an accounting sense, is generally considered to be a technical subset of this equity
position. Capital is thus viewed as the owner’s ongoing investment in the firm, whereas equity is
the owner’s share of the business.
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or capital position becomes too small, conversely, then a small bump in the road
might put the firm’s continued existence into question. This rough logic falls under
the broader category of capital analysis; it is a critical pillar—along with solvency,
liquidity, and competitive position—in the determination of a firm’s overall credit
quality. It reduces to the following simple question: does a firm have sufficient
equity?

This balance-sheet view is not only very interesting to accountants and credit
analysts, but it is also the jumping-off point for much of corporate finance. The
appropriate mix of liabilities and equity, for example, is referred to as the capital-
structure decision and is a rich area of research.10 Dividend policy, the market for
corporate control, corporate governance, and topics related to shareholder activism
also all look at the firm through this lens.

Our viewpoint, with an eye on the notion of economic capital, is slightly
different. We are looking for inherent limitations with this view of the firm. The
missing ingredient, as one might expect, is risk. It turns out that—particularly
for financial institutions—the risk dimension manifests itself primarily in a firm’s
assets. This makes eminent sense, since a corporation’s revenues are typically
generated from its assets. For most firms, assets include receivables, physical stock,
cash, and inventory. Liabilities, conversely, include payables and bank and/or market
debt. The riskiness of the assets of a generic firm—other than perhaps receivables—
is typically not dramatic. These assets are, from an accounting perspective, usually
held variously at historical or amortized cost.

The story is somewhat different for financial institutions. Some investments—
including marketable securities—are held at fair value. This implies that, as market
conditions change, valuation changes flow through profit-and-loss. This is useful,
because it creates a link between asset riskiness and the firm’s equity (or capital)
position. Loan obligations, however, are not typically fair valued; the reasons are
various, but the lack of liquid secondary markets for their resale is one important
explanation. Changes in the (often difficult to assess) value of loan assets are
thus not directly incorporated into the balance sheet. These changes do, however,
make an indirect appearance. Loan impairments—often referred to as expected
credit losses or ECL—attempt to capture average credit losses and impending
credit deterioration. These impairment values also flow through the profit-and-loss
statement and ultimately impact the firm’s equity position.

1.2.1 The Risk Perspective

Fair value and impairment calculations represent valiant efforts, on the behalf of
the accounting community, to incorporate asset riskiness into a firm’s financial
statements. These are particularly helpful for financial institutions such as the

10 The most sensible starting point in this area is Myers [33, 34].
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NIB. There is, however, still something missing. Risk is, practically, a combi-
nation of outcomes and likelihood. Risk managers are typically worried about
very negative outcomes with low likelihoods (or probability). To really assess
the comfortableness—or, in more popular jargon, adequacy—of a firm’s capital
position, this extreme perspective needs to be incorporated.

What do we really mean by extreme? Let’s consider some concrete examples of
highly negative outcomes for a financial institution:

• one, or more, large, structurally important loan or bond obligors could simulta-
neously move into default and fail to pay the firm back;

• interest rates or exchange rates or credit spreads—or all of the above—could
dramatically move against the firm;

• one or more large swap counterparties could go out of business forcing the firm
to novate (i.e., liquidate and replace) an important part of their swap exposure; or

• key systems or controls could fail and/or large-scale fraudulent activity could
occur.

These are all (rather disheartening) examples of credit, market, counterparty, and
operational risk, respectively. Each depict adverse events that a firm might face,
but which do not make any appearance in our schematic definition of capital from
Fig. 1.1.

The balance-sheet equity or capital amount is thus, rather unfortunately, not
particularly informative about such extreme down-side asset risks. Is such a
pessimistic perspective simply a fiction of the minds of paranoid risk managers?
Risk managers may indeed by overly suspicious by nature and training, but the last
25 years have offered no shortage of dramatic financial events: an incomplete (but
still depressing) list includes the 1997 Asian crisis, the dot-com meltdown of 2000–
2001, the global financial crisis of 2007–2009 and its decade long aftermath, at least
two waves of European sovereign-debt crises, and the financial turmoil associated
with the COVID-19 pandemic in 2020.11 Really understanding and assessing the
adequacy of firm’s capital position thus requires us to systematically go beyond
average, or expected, losses.

We have established the need, for the appropriate assessment of a firm’s capital
adequacy, to incorporate worst-case risks associated with the asset-side of the
balance sheet. We have further established how this viewpoint is particularly
important for financial institutions given the composition of their assets. There
is, however, another important characteristic associated with financial institutions.
Deposit-taking banks, investment banks, and insurance companies play a central
role in any economy: credit intermediation. In other words, they facilitate the
financing of firms and individuals either directly by extension of credit or insurance

11 An excellent, if somewhat discouraging, broader view of the unnerving regularity of financial
turbulence throughout history is Reinhart and Rogoff [38].
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or indirectly through enabling financial transactions.12 If such financial institutions
fail or run into trouble, the effect on the economy is disproportionate. There
is a knock-on effect to other firms through a reduced ability to efficiently, or
cost-effectively, finance their continued operations. In really extreme situations,
otherwise well-functioning firms can face dire solvency problems simply due to
problems with financial institutions.

Financial firms thus have a high degree of systemic importance. This explains
their preferential access to liquidity arrangements through central banks, deposit
insurance, and, in extreme cases, direct government bailouts. While this is certainly
a contentious area involving use of taxpayer money, these measures all arise from
the unique centrality and importance of financial institutions in any given economy.
As Peter Parker learned the hard way, however, with great power, comes great
responsibility.13 Systemically important financial institutions may have access to
a broad range of (tax-payer funded) support functions, but there is a flip side to the
coin. They also face disproportionately high levels of oversight and regulation. The
regulatory community has thus been, virtually since its inception, at the forefront
of the movement to incorporate this extreme-risk perspective into the assessment of
a firm’s asset riskiness and, by extension, its capital position. Our simple question,
“does a firm have enough capital?”, takes on a new degree of importance in this
setting.

1.2.2 Capital Supply and Demand

This detour through the origins of capital, as a financial concept and its potential
shortcomings, has finally led us to the rationale for economic capital. Economic
capital is basically an economically motivated alternative representation—working
through the firm’s assets—of the balance-sheet capital position. Abstracting (for
the moment) from the details of its computation, imagine that we can actually
calculate such an adjusted capital amount. What would be the point? We could
directly compare this risk-adjusted capital figure to the actual balance-sheet capital
(or equity) position. If our approximation was bigger than the balance-sheet value,
it would be somewhat disappointing. It would mean that the firm would not have
enough capital to weather really extreme worst-case risk outcomes. We would
probably, by contrast, be encouraged if our asset-risk adjusted capital position
exceeded the balance-sheet value. This is the heart of the economic-capital concept.
It is a measure used by regulators—and indeed any interested internal or external

12 For a much more complete review of the banking sector, and its economic centrality, see Siklos
[42].
13 This is a humorous, but still entirely pertinent, reference to Spider-Man. If you really desire
some additional background on this, very tangential topic, it’s easy to find. Bendis [2] is not a bad
place to start.
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stakeholder—to assess a firm’s capital adequacy. Again, we return to our simple
question: does the firm have enough capital?

Regulators have, in particular, a somewhat unique perspective on the idea of
economic capital. Although they are certainly interested in understanding the suffi-
ciency of a financial institution’s capital position, they are also intimately concerned
with the minimum amount of capital each firm should hold. This prescriptive way of
looking at the problem makes sense; regulators are trying to create a level playing
field among financial institutions within their jurisdiction. While minimum capital
requirements and economic capital are intimately related, they are not precisely the
same thing. The former is a lower bound, while the latter is a general concept.

To use economic capital to assess a firm’s capital adequacy, it is helpful to
introduce the notions of capital supply and demand. Capital supply is the actual
amount of a firm’s available capital; rather simply, it is the difference between
balance-sheet assets and liabilities.14 The capital demand is one’s economic capital
computation; it is an estimate of how much capital is potentially required, or
demanded under adverse conditions, by the riskiness of the firm’s assets. Capital
adequacy analysis thus essentially reduces to the comparison of these two quantities.
Capital supply less capital demand is often referred to as (capital or equity)
headroom. In the unfortunate case of capital demand exceeding supply, we can
speak of negative headroom or capital shortfall. As a general rule—which paves over
much complexity and nuance—we would like a firm’s headroom to be reasonably
large and positive. Figure 1.2 provides a schematic illustration of the case when
capital supply exceeds capital demand (and vice versa).

While hopefully helpful from a conceptual perspective, to this point we have
only addressed why one might be interested in something like economic capital.
The actual quantity, and how it is produced, probably remains frustratingly vague.
Numerous questions arise. How do we, for example, actually adjust the specific
assets? More structure is definitely needed in this area. What do we actually mean
by worst-case extreme risk? This could clearly mean different things to different
firms. We might also ask: how do we accommodate disparate types of risk? There
is also the need to incorporate the interactions between individual assets in our
portfolios. We are, after all, modern financial professionals concerned with the
portfolio perspective. These are all important questions that we will seek to address
in the following discussion.

14 There are often slight technical adjustments to this figure, which are not to be ignored, but simple
balance-sheet arithmetic gets us to the right order of magnitude.
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Colour and Commentary 2 (DEFINING CAPITAL): Equity, in a balance-
sheet sense, refers to an owner’s share of the firm. Practically, it is the
residual asset value after subtracting the firm’s liabilities. Colloquially, this is
referred to as the enterprise’s capital position.a Accounting practices—such
as fair valuation and loan-impairment calculations—take into account the
average, or expected, riskiness in firm assets. They do not, however, address
extreme worst-case risk outcomes. This perspective, given the depressingly
regular incidence of financial crises, is important and cannot be ignored.
Assessing a firm’s capital adequacy—which is a fancy way of asking if it
has enough capital—requires this extreme-risk perspective. Here enters the
concept of economic capital. Economic capital is an economically motivated
alternative representation—focused on the riskiness of the firm’s assets—of
the balance-sheet capital position. This reduces questions of capital adequacy
to a comparison of actual balance-sheet equity values (i.e., capital supply) to
one’s economic-capital estimate (i.e., capital demand).

a There are, from an accounting perspective, subtle and important differences between
capital and equity. This fact notwithstanding, these two terms are treated as broadly
synonymous in everyday financial parlance.

Assets
less

Liabilities
(A− L)

Economic
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Headroom

CAPITAL SUPPLY CAPITAL DEMAND

Supply>Demand
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Fig. 1.2 Capital-adequacy mechanics: The preceding schematic illustrates the interaction
between the notions of capital supply, capital demand, and headroom. All else equal, we prefer
that a firm’s supply of capital exceeds the demands upon it.



1.3 An Enormous Simplification 11

1.3 An Enormous Simplification

Let us begin with a statement of full transparency: there does not exist a unique,
correct way to compute economic capital. Any individual who claims otherwise is
either being less than truthful, or trying to sell you something, or both. Economic
capital is a model- and assumption-based metric. There is instead a range of possible
choices with varying degrees of defensibility and potentially differing objectives.
Depending on your perspective, this might be either refreshing or discouraging.
The variability in economic-capital computations should nonetheless not be over-
stated. There do, of course, exist general principles and accepted practices for the
measurement of economic capital. The Basel Committee on Banking Supervision,
for example, has been a driving force, from the regulatory side, in finding a
common language for economic capital and standardizing comparison across firms
and jurisdictions.15 This offers a useful backdrop for making decisions on one’s
economic-capital calculation, but it still represents a few options among many
possible choices.

Despite its non-uniqueness and the potential complexity behind one’s economic-
capital risk model, computing economic capital is practically fairly easy to under-
stand. To see this we introduce a simplification; this is not how economic capital
is computed, but rather a conceptual tool. Imagine the following procedure. For
each asset on a firm’s balance sheet—be it a loan, a deposit, a corporate bond, or
an interest-swap contract—we assign it a number. Not just any number, of course,
but we follow some rather structured rules. In particular, each of our asset numbers
takes a value between 0 and 1. More specifically,

1. a value of zero implies that the asset has no risk; and
2. a value of one implies that it has no value.

The obvious corollary of this property is that the greater the asset’s risk, the
larger our assigned number. The extremes, while informative, are likely not terribly
interesting. A value of zero would probably only apply to local-currency cash
position with a reputed central bank (and even this is debatable). Assigning a value
of one, conversely, is basically equivalent to writing off the entire value of the
asset. This would presumably only occur in the event of default with absolutely
no prospect of any recovery through bankruptcy proceedings. In the vast majority
of cases, our number will be comfortably in the unit interval with, in high-quality
institutions, a fairly strong tendency to lie at the lower end of the scale.16

The reader is probably thinking that such a number assignment might be an
interesting exercise, but how is it related to the idea of economic capital? The
answer is surprisingly simple. If one multiplies this number by the asset value,

15 Much has been written on the Basel accords; BIS [3, 4, 5] are excellent starting points for some
of the practical elements of minimum regulatory capital requirement computations. Chapter 11
will delve much more deeply into the regulatory world.
16 Different lending institutions, of course, specialize in different parts of the credit spectrum.
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Fig. 1.3 Economic capital at a glance: This figure illustrates a stylized portfolio loss distribution.
Economic capital is defined, in a technical sense, as the difference between the worst-case outcome
and the expected, or average, loss. This difference is often referred to as unexpected loss.

one arrives at its economic-capital figure. The total economic capital figure for a
given firm is thus the sum of the product of these numbers—each between zero
and one—and their asset values.17 Consider a simple (aggregate) example: a firm’s
total assets are EUR 1 billion and each and every number is 8%. In this case, a
firm’s economic capital figure is EUR 80 million. If the firm’s actual equity position
is EUR 100 million, then it can be considered to have adequate (or even excess)
capital. An equity position of EUR 60 million, however, would likely be considered
problematic.

Our asset numbers are clearly related to the notion of risk. Bigger numbers, after
all, are assigned to riskier assets. While useful to understand and interpret economic
capital, these numbers are not used to compute it. Estimating economic capital
requires wrestling with asset risk. Risk, when you get down to it, depends on the
interplay between value outcomes and their associated probabilities and likelihoods.
The collection of all possible outcomes (or events) and likelihood is referred to as a
statistical distribution or probability law. We require such an object to assess the risk
of our asset portfolio. Figure 1.3 illustrates a stylized, firm-wide, asset-portfolio loss
distribution: for the moment, let’s not worry about where it might come from.18 This
distribution will help us identify the actual practical definition of economic capital.
It specifically outlines the various firm asset-loss outcomes along with an assessment
of their relative probability. Low levels of loss occur with a high likelihood, while
extreme (worst-case) losses are rare. The expected, or average, portfolio loss lies, as
it should, at the centre of the overall probability mass.

17 Those familiar with regulatory risk weights will recognize this idea.
18 This is a job for future chapters.
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As discussed previously, the main point of economic capital is to understand
what happens to a firm’s assets when things go really wrong. In the context of our
asset-loss distribution in Fig. 1.3, it means considering events out in its far right-
hand side. This is referred to as the tail of the distribution. It is in this unsavoury
neighbourhood that we will meet extreme, worst-case losses. Inspection of Fig. 1.3
reveals that the further we move into the distribution’s tail, the lower the probability
of the loss outcome. This makes logical sense, but it strongly suggests that we cannot
really talk about worst-case losses without also including some assessment of their
probability. We could, for example, talk about a 0.1% worst-case loss. This basically
suggests that portfolio losses of this magnitude would occur once out of every 1000
random draws from this firm-asset probability law. This worst-case probability is
referred to as a confidence level and it is typically denoted by the first letter in the
Greek alphabet, α. Moreover, by convention, we talk about it as 1−α.19 So, to return
to our example, a 0.1% of a worst-case loss translates into a 1 − 0.1% = 99.9%
confidence level.

It is tempting to characterize economic capital as this 1 − α worst-case loss.
This would not be quite correct. As we saw previously, the accounting community
has already done a good job—through adjustments such as fair valuation and
loan impairments—of incorporating expected loss. Economic capital, therefore, is
defined as the 1−α worst-case outcome minus the expected loss. This difference—
in an unfortunate choice of terminology—is often referred to as the unexpected
loss. Conceptually, it is useful to think of economic capital as the additional
reduction of asset value—over and above the expected loss already addressed by
one’s accountants—that might occur if things really get ugly.

Figure 1.3 and our recent definitions are practically quite helpful. The economic
capital is thus formally defined as the 1 − α confidence-level unexpected asset loss.
To compute our number between zero and one, at the overall portfolio level, we
simply evaluate the following ratio:

Firm’s Asset Number = Asset Portfolio Unexpected Loss

Asset Portfolio Value
. (1.1)

The larger this number, of course, the more capital a firm would require to insure,
or cushion, itself against large losses associated with the inherent riskiness of its
assets. This ratio also depends directly on the value of α. As α gets smaller—and
by extension, the larger our confidence level, 1 − α—the bigger the numerator in
Eq. 1.1, and the more economic capital required.

The role of our confidence level, 1 − α, warrants further investigation. How,
for example, does one choose α? If left to anxious and distrustful risk managers,
α might become infinitesimally small leading to astronomical levels of economic
capital. Delegating this task to the marketing team, conversely, might very well

19 Confidence level is admittedly not a great name, but the idea is to describe the degree of
confidence that a firm’s asset losses will not exceed 1 − α.
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create the opposite result. Happily, in practice, α is not set by either party. The
actual choice of α will typically depend on the current, or desired, credit quality
of the firm. A firm with a AAA rating—or one that seeks to be considered among
the ranks of AAA entities—will typically have a very low level of α. Such firms,
to warrant the strength of their rating, are expected to have a combination of asset
quality and capital adequacy to weather a very severe financial storm. At a one-year
horizon for AAA entities, for example, it is common to set α = 0.01% leading to an
intimidating 99.99% confidence interval. Indeed, the level of α can be considered to
roughly correspond to the firm’s probability of default over the time horizon under
examination. This intuitive approach thus suggests very different levels of α for
AAA or BBB or CCC firms.20

We have already discussed the importance of comparing economic capital to a
firm’s actual equity position, let’s now make it a bit more precise. We define a firm’s
capital headroom as,

Firm’s Capital Headroom = Asset Portfolio Unexpected Loss
︸ ︷︷ ︸

Economic Capital

−Firm’s Equity Position.

(1.2)

The economic capital is the unexpected loss associated with a 1−α confidence level;
it is an alternative, economically motivated representation of a firm’s equity position
informed by asset riskiness. The difference between a firm’s actual equity position
and its economic-capital estimate is highly informative. Headroom tells us a number
of things. Its sign describes whether a firm is adequately capitalized for its asset risks
or not. The magnitude of an institution’s headroom speaks to its capacity to take new
risks. Overly large or small levels of headroom will raise questions. In the former
case, one might worry about the efficiency—and also potentially profitability—of
the firm. In the latter, fears will arise about risk-taking capacity and a firm’s ability
to maintain their current credit rating.21

Our notion of economic capital as assigning a number, between zero and one,
to each individual asset is represented in Eq. 1.1. That said, it isn’t quite complete;
Eq. 1.1 computes this number at the portfolio level. The portfolio level is useful
and interesting for high-level oversight by regulators and credit analysts, but day-
to-day management of economic capital requires more granularity. What we seek is

20 Capital adequacy is a key—although certainly not the only—element in a credit agency’s
decision process. All else equal, for example, a downgrade is likely imminent (but not certain)
for a AAA-rated firm that finds itself with AA levels of equity.
21 If the headroom is large in either direction, one may be able adjust the confidence level, 1 − α,
to generate a manageable, positive headroom level. When possible, and abstracting from other
important determinants, one could impute the firm’s implied credit rating associated with their
equity position.
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something more like:

An Individual Asset’s Number ≈ Individual Asset’s Unexpected Loss

Individual Asset’s Value
. (1.3)

A closer look reveals, of course, that to get these numbers, we need some
assessment of the individual asset’s unexpected loss. Our economic-capital number
and unexpected loss are thus two ways of describing the same underlying concept;
the reader is invited to employ the perspective that feels most intuitive to them.

Equation 1.3 falls into the category of things that are relatively easy to write
down, but rather harder to accomplish. There are, at least, two complicating
factors:

1. identifying and measuring the unexpected losses associated with each individual
asset; and

2. taking into account this asset-level risk within the context of the overall portfolio.

Both of these aspects are absolutely central. Different assets are naturally subject to
varying types of risk. Our economic-capital measure would be incomplete if it did
not incorporate these main risks. The second point is a bit more subtle, but equally
important. Assets cannot generally be considered in isolation. A swap contract, for
example, may be used to offset the interest- or exchange-rate risk associated with a
bond. A loan in one sector or region may actually diversify a firm’s overall lending
portfolio.

The good news is that this chapter does not immediately attempt to provide
specific technical answers to these thorny practical challenges. Instead, we will
try to introduce a number of concepts that should help us motivate, evaluate, and
understand the nature of these technical choices investigated in later chapters.

Colour and Commentary 3 (ECONOMIC CAPITAL IS JUST A NUMBER):
Classic, and technically correct, definitions of economic capital will focus
on the unexpected element—defined at a specific level of confidence—of the
firm’s asset-loss distribution. This can be difficult to digest; an alternative
conceptual notion might help. Extracting all of the complexity associated with
models and assumptions from the discussion, it can be useful and illuminating
to think about economic capital as a number between zero and one. Zero
corresponds to an absence of risk, whereas one implies a complete lack of
asset value. As a general rule, the larger the number, the riskier the assets.
Whether this number is 0.1, 0.12, or 0.20, when it is multiplied by the firm’s
assets, the economic-capital value is revealed. Analytically, we can take this
a step further and imagine that each individual asset is assigned its own
economic-capital number. Practically, such a figure can be constructed by
dividing the asset’s worst-case (unexpected) loss—with a 1 − α confidence

(continued)
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Colour and Commentary 3 (continued)
level—by the current asset value. This collection of numbers provides not only
a recipe for computing overall economic capital, it also allows management
to slice-and-dice the economic capital by different dimensions. Moreover, one
can compare the relative riskiness of different assets within one’s portfolio
simply by using their assigned number. The individual asset-level description
of economic capital is referred to as risk attribution (or allocation) and it is
an invaluable tool in the management of economic capital.

1.4 Categorizing Risk

Computation of economic capital is thus, in its essence, a risk-measurement
problem. There are, sadly, many different types of risk. Indeed, classifying and
constructing lists of different types of risk is a popular activity among risk managers.
Borrowing the notion from the physical sciences—most particularly the study of
biology—such lists are often referred to as risk taxonomies. Figure 1.4 provides a
visualization of such a risk taxonomy for the individual risks embedded in a typical
financial institution’s assets.

The usual suspects make an appearance in our taxonomy: market, default and
migration, counterparty, and operational risks.22 We will have rather more to say
about the similarities and differences between these risks in the coming pages.
Capital buffers are, by contrast, rather specific to the calculation of economic capital.
These are, as the name suggests, extra allocations towards the economic-capital
calculation to account for uncertainty in its measurement. The core intention, which
originated with financial regulators, is to ensure an abundance of caution into one’s
assessment of a firm’s capital position.

There is, of course, more to the capital-buffer story than simply a regulatory
recommendation to wear both a belt and suspenders. The rationale and reason for
the presence of capital buffers is tightly linked to two extreme viewpoints to be
considered in the parametrization of one’s risk models. As highlighted in Fig. 1.3,
risk requires working with asset-loss distributions. In other words, it is necessary to
formulate forecasts of the range of possible asset values one’s portfolio might take.
The nature of our asset-loss distributions, or our range of estimates regarding the
future, are based on parameters. These parameter choices depend importantly on
the information available to us at the time of the calculation.23

22 McNeil et al. [30] provide a nice description of financial risks for the reader seeking more colour
and detail.
23 We have much more to say on the question of parameter selection in Chap. 3.
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Fig. 1.4 A simple risk taxonomy: The preceding figure describes, for a typical financial institution,
a set of major risks that typically make an appearance in economic-capital calculations. Attached
to each type of risk, where appropriate, are some key risk drivers.

Information and conditionality are two closely related topics. Imagine you were
told that you needed to estimate the height of a 16-year-old girl. Absent any addi-
tional information, you would likely provide the average height for young women,
of age 16, across the entire population. This is referred to as an unconditional
estimate; you have limited information. Imagine further, however, that you were told
this young woman played competitive basketball. You would likely condition upon
(or take into account) this new information, and might revise your estimate upwards.
This is called, unsurprisingly, a conditional estimate.24 The quality of one’s estimate
is a separate question. The distinction, in this case, is information.

24 If you also knew her position—an example of further conditioning information—you might
further adjust your guess.
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In a risk-management setting, we may use the same ideas to forecast our asset-
portfolio losses. It is a bit more artificial, but the basic viewpoint remains the
same. In the first case, we can construct an unconditional estimate by using model
parameters, estimated over long time periods, to determine our risk metrics. If we
have used a multi-decade period to determine our parameters, we are thus essentially
acting as if the risk measure could have occurred at any time over this period.
No specific time information, to belabour the point, is assumed in this case. In
practical circles, this is referred to as a through-the-cycle approach. The reason is
that the parameter estimates are assumed to incorporate information across multiple
economic cycles (i.e., a long stretch of time). Such a forecast is probably a sensible
average estimate, over a long time period, but could be quite poor at any specific
moment.25

A conditional estimate operates at the opposite end of the spectrum. We
would construct our forecast as of today, incorporating the most recent possible
information. In other words, we actively decide to incorporate timing information.
Our parameter estimates will thus use only a relatively short window of time—say,
for example, one year of daily data—and we are likely to place even higher weight
on the latest values. This represents a sensible, and generally quite accurate, forecast
under current circumstances. It might, however, be quite poor in two years time—
or, conversely, when looking three years into the past. Such a forecast is, for fairly
obvious reasons, termed a point-in-time estimate.

Time is thus the critical piece of conditioning information in the economic-
capital setting. It is a relatively well-accepted principle that economic-capital
computations should be performed using the through-the-cycle approach. The
reasoning is threefold. First of all, economic capital is intended to capture extreme
events. Longer datasets are, literally by construction, more likely to capture some
extreme observations. Second, point-in-time risk estimates tend to be procyclical.
This means that in quiet economic conditions they tend to be low, while they
increase rapidly under crisis conditions. The impact of risk-measure procyclicality
is rapid increases in economic capital—and consequent model-driven deterioration
of a firm’s capital adequacy—in crisis conditions. This does not seem to be a
particularly positive characteristic in an economic-capital estimator. Finally, there is
a general desire to be able to compare economic-capital estimates across time. With
the point-in-time approach, changes in economic capital might arise from either
changes in the portfolio composition or market conditions. It is difficult to isolate
these effects. Overall, therefore, a through-the-cycle estimator is better positioned
to capture extremes, avoid procyclicality, and permit intertemporal comparison of a
firm’s economic-capital position.

Against this backdrop, we may now revisit the idea of a capital buffer. Although
the through-the-cycle approach attempts to capture extreme outcomes, it does

25 Just like using the average population height could fail rather seriously when forecasting the
height of our 16-year old basketball player.
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have an important long-term average element.26 Capital buffers attempt to address
this potential shortcoming by adding something extra to the economic-capital
computation for the possibility of actual outcomes being somewhat worse than
what the unconditional, through-the-cycle perspective might suggest. Indeed, in
some regulatory environments, the level of these buffers is partially determined in
a countercyclical manner. Such a mechanism, in the hands of regulators driving
minimum regulatory capital requirements, is an example of a macroprudential
tool.27

Capital buffers have the benefit of being based on easy-to-compute formulaic
representations provided by the regulatory community. The other members of our
risk taxonomy highlighted in Fig. 1.4 are not so lucky. They must be computed
through the blood, sweat, and tears of mathematical and statistical assumption as
well as often complex computational implementation. This might sound discourag-
ing, but for some risk types, the situation is even worse. In the real world, risks can
be usefully decomposed into two disparate groups:

• those that we can measure with some degree of confidence; and
• those that we cannot.

Our usual suspects—market, migration, default, and counterparty risks—are, even
if it can be at times technical and difficult, bravely estimated with varying degrees
of accuracy. Capital buffers, given their macroprudential perspective, are rather hard
to handle. Since responsibility for this component has been co-opted by our friendly
neighbourhood regulator, this is happily not our problem. This leaves us with oper-
ational risk; it is the canonical example of a risk that we cannot reliably estimate.
Vast in scope, operational risk simultaneously encompasses loss-generating events
such as innocent data-entry errors, holes in one’s IT-security firewall, fraudulent
activity, and so-called acts of God such as hurricanes, earthquakes, or pandemics.
Each of these elements are difficult to understand and measure on a standalone
basis; their joint examination quickly becomes a quantitative analyst’s nightmare.
The consequence is that operational-risk economic capital is typically computed in
a highly simplified formulaic manner.28

The remainder of this chapter, and indeed the entire book, will focus on
those risks that we can actually measure. Credit risks—migration, default, and
counterparty—will take centre stage. Our discussion of the important market-risk
dimension will remain at the conceptual level.29 This is not to say that difficult-to-

26 The ability to capture extremes is affected by parameter selection, but certainly goes beyond
this choice. The mathematical and statistical structure of the model also impact this dimension in
important ways.
27 See ECB [14] for more background on this key aspect of financial-stability policy.
28 The typical approach is to use some notion of the firm’s size as a proxy for its exposure to
operational risks.
29 The reader is referred to Bolder [7] or Jorion [20] for much more discussion on the measurement
of market risk.
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measure risks—such of those of the operational flavour—are not important. On the
contrary, they are central.30 They nonetheless involve rather less internal modelling
and computation, placing them somewhat outside of the scope of this discussion.

Colour and Commentary 4 (RISK CONDITIONALITY): The nature of the
data used to parametrize one’s risk models has, rather unsurprisingly, an
important influence on the result. This notion can be made more precise.
Long-horizon, relatively low frequency datasets yield unconditional—or long-
term average—estimates. Risk measures based on such data are referred to as
through-the-cycle estimators. Short-horizon, higher frequency datasets lead
to conditional (or local) estimates; the resulting risk measures are termed
point-in-time metrics. The treatment of time is thus the critical difference
between these alternative approaches. Both perspectives—and the many
possible choices between these two extremes—are perfectly valid. Which
approach one chooses will naturally depend on one’s objectives. Economic
capital tends to use the through-the-cycle lens, because it better captures
extremes, avoids procyclicality, and permit intertemporal comparison of a
firm’s risk position. NIB, following this general practice, also adopts the
through-the-cycle perspective. The through-the-cycle viewpoint—also widely
employed by the regulatory community—is a key reason for the presence of the
capital buffers arising in economic-capital calculations. These buffers thus
attempt, to a certain extent, to carefully bring the point-of-time perspective
into the analysis.a

a The point-in-time angle will not be ignored. It plays a central role in loan-impairment and
stress-testing analysis.

1.5 Risk Fundamentals

With the conceptual frame hopefully moderately clear in the reader’s mind, it is time
to turn our attention to the risk-measurement dimension. As should be abundantly
clear, approximating the 1 − α unexpected loss for each individual asset—and
thereby the entire portfolio—will require some heavy machinery. Our immediate
objective is not to describe the machine in detail, but rather outline some of its main
design features.

Although certainly not exhaustive, three key risk questions will be addressed in
this section:

30 Chapelle [12] is an excellent starting point for the various strategies used by operational risk
managers to overcome these challenges.
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1. identifying a fundamental characterization of risk;
2. examining the inherent tension between portfolio diversification and concentra-

tion; and
3. reviewing two alternative approaches for the construction of financial models (or

indeed, any type of mathematical model).

The disparate risks in our taxonomy behave in different ways. The first order of busi-
ness is to gain an understanding of how precisely these risks might differ and what
this implies for their measurement. Equally important, we will try to understand
the commonalities—through a fundamental characterization of risk—between our
disparate risks. The portfolio perspective is another area of correspondence between
different risk types. The twin concepts of diversification and concentration provide
important insights into the measurement of economic capital.

The final topic in this section relates to some foundational concepts in mathe-
matical modelling. Financial modelling is not—to be brutally honest—everyone’s
favourite topic. Some view modelling with suspicion and distrust, others with open
hostility, while many consider it to be a necessary evil.31 The simple reality, how-
ever, is that mathematical models are tools. Their role is to illuminate and inform the
decision-taking process, but certainly not to take the decisions themselves. Against
this backdrop, discussion of possible modelling choices and their implications for
economic-capital estimation should hopefully be welcome.

1.5.1 Two Silly Games

The following exercise will require some patience from the reader. It has—at first
blush, at least—no obvious link to finance or economics and is quite certainly not
the classic approach towards introducing economic capital. There is, of course, some
method to this madness. Hopefully the reader’s patience will be rewarded and the
process might even prove (moderately) entertaining.

We’d like to try playing two rather silly, and entirely fictitious, games of chance.
Both games involve simultaneously rolling two (fair) dice as one might when
playing a board game or visiting a casino.32 The result of each roll of the dice has
a financial consequence for the participant. The actual outcome depends on the sum
of our dice values (or pips), which we will refer to as S.

The rules—and specific results—of each game are summarized in Table 1.1. In
the first game, one gains e0.05 if S is even and experiences a loss of equal and
opposite sign when S is odd. In brief, even you win, odds you lose. The second
game is only slightly more nuanced. If S = 2, you lose a whopping e1.75, whereas

31 A small minority, conversely, view mathematical models as the answer to all of our problems.
For the quantitative analyst, this is more disturbing than scepticism and wariness, because it
suggests a critical misunderstanding of the role of these tools.
32 Each die is of the six-sided traditional variety, where the dots on each side are referred to as pips.
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Table 1.1 The rules: This table highlights the simple rules associated with our two silly games.
The final outcome of each game is determined by the sum of the sides of two rolled dice, which is
denoted as S.

Game #1 Game #2

If S is even, you win e0.05 If S > 2, you win e0.05

If S is odd, you lose e0.05 If S = 2, you lose e1.75

Table 1.2 Game results: The
adjacent table provides a
complete description of the
full set of outcomes and
likelihoods associated with a
single realization of our two
silly games. It also provides
profit-and-loss results along
with the expected financial
receipt.

Dice outcomes Game P&L Expected P&L

S Count Prob. #1 #2 #1 #2

2 1 0.03 0.05 −1.75 0.001 −0.049
3 2 0.06 −0.05 0.05 −0.003 0.003

4 3 0.08 0.05 0.05 0.004 0.004

5 4 0.11 −0.05 0.05 −0.006 0.006

6 5 0.14 0.05 0.05 0.007 0.007

7 6 0.17 −0.05 0.05 −0.008 0.008

8 5 0.14 0.05 0.05 0.007 0.007

9 4 0.11 −0.05 0.05 −0.006 0.006

10 3 0.08 0.05 0.05 0.004 0.004

11 2 0.06 −0.05 0.05 −0.003 0.003

12 1 0.03 0.05 0.05 0.001 0.001

Total 36 1.00 – – 0.000 0.000

in all other dice outcomes, a small gain of e0.05 is achieved. In short, with snake
eyes you lose big, in all other cases you win small.33

Playing each game a single time is probably fairly uninteresting, but imagine
playing either game 25 times in a row. The final financial result will then simply
be the sum of these 25 repetitions. Which game would you prefer to play? The
profit-and-loss profiles of each game are quite different. One’s choice will certainly
depend on individual preferences and assessment of the relative odds of success.

There are, it turns out, no secrets about the throwing of two dice. Table 1.2
unpacks the full details of our two silly games. With two six-sided dice, there are
36 different possible combinations that might be obtained. There are only, however,
11 possible outcomes for the sum of both sides (i.e., S). Some values of S—such as
two or 12—can only occur in a single way. Others—such as six, seven, and eight—
arise through multiple variations of dice throws. Six possible values of S are even,
while only five are odd. Adding up the probability of the odd and even outcomes,
however, we find that they are equally likely.

Table 1.2 also helpfully displays the expected profit-and-loss associated with a
single repetition of our silly games. This is simply, following from basic probability

33 Rolling a pair of dice with a sum of two is colourfully referred to as snake eyes in the game of
craps. This rather odd gambling activity incidentally seems to appear in a surprising number of
Hollywood movies.



1.5 Risk Fundamentals 23

Fig. 1.5 Silly game pay-off profiles: The two preceding graphics outline—across tens of thousands
of simulated realizations—the distribution of the pay-off profiles associated with our two silly
games.

and the discreteness of our sample space, the sum of the probability weighted
outcomes.34 To be honest, the game pay-offs were specifically selected so that
expected profit-and-loss value of each game is equivalent; in short, these games
were cooked. On average, there is no differences between these games.

Perhaps the reader, in light of this new information, has revised her choice of
which game to play. After all, it seems that, on average, one should be indifferent
between playing these two silly games. There is, nevertheless, ample scope not to be
entirely detached. Even if the expected outcome agrees between these two games,
they do not have the same risk characteristics. A single roll of the dice can create
a loss of e1.75 in the second game. This admittedly occurs with a small (i.e., 3%)
probability. To obtain such a loss in the first game, however, one would need 35
consecutive odd rolls of the dice! While not physically impossible, the probability
of such an event is vanishingly small.35 There is thus a dramatic difference between
our two silly games.

Figure 1.5 helps us visualize the precise nature of these differences by displaying
the pay-off distribution for our silly games. These graphics were produced by
simulating, on a computer, hundreds of thousands of realizations of 25 consecutive
repetitions of each game. Both are centred around zero; this is where the similarities
end. The first game’s profit-and-loss profile is symmetric—that is, there is an equally
probability of gain and loss. Moreover, the most extreme gains or losses do not
appear to exceed about e1. Our second game’s loss distribution is, by contrast,

34 It suffices to show the expected outcome for a single game, because each repetition of our silly
games is independent. The pay-off for n identical repetitions of our silly games is, therefore, merely
the sum of their n expected pay-outs. See Casella and Berger [11] for more background on the
notion of statistical expectation.
35 Specifically, it is 0.535 = 1

34,359,738,368 , which is effectively zero. Many popular lotteries, to
provide some context, actually offer significantly higher probabilities of success. See Zabrocki
[49] for a Canadian example.
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highly asymmetric. The negative side of the distribution extends much further than
the profit side. Worst-case losses appear—albeit with very low probability—to
exceed e10. The best-case profit outcome is less than half of the worst-case loss.
Simply put, the second game offers more potential for reward and, of course, risk.
After examining Fig. 1.5, the reader might be forgiven for deciding to change her
choice of game.

Why might we care about these silly games? You certainly did not decide to
read this chapter for a lengthy diatribe about games of chance. The reason these
games matter is that their pay-offs correspond—at least, in a stylistic sense—
to two central characters in our risk taxonomy: market and credit risk. Market
risk is, at least approximately, symmetric. Interest and exchanges rates or market-
spread movements tend to have roughly equal probability of rising or falling. These
market-risk factors can, and do, change in large, sudden swings. Most of the time,
however, their movements are the sum of many, small cumulative up and down
steps. Mechanically, this is the pay-off profile of the first game.

Credit risk is a different animal. The bond investor or lender earns a typically
small credit spread or lending margin. Very occasionally, a credit obligor defaults
and fails to meet part, or all, of its contractual obligation. In these rare cases, the loss
outcome is very large. As a result, credit risk is occasionally described as picking
up nickels in the dirt in front of a steamroller. One earns, with apparently low risk, a
steady stream of small returns. In some rare cases, one slips and dismayingly meets
the business end of the steamroller. This is, again approximately, a description of our
second game’s pay-off distribution. It also, fairly graphically, illustrates the inherent
motivation for banks to have a firm handle on the credit risks embedded in their
lending portfolios.

Figure 1.6 displays—to permit comparison with Fig. 1.5—illustrative market-
and credit-loss distributions. Loss-centric risk managers have a tendency to write
losses—unlike in the analysis of our two games—as a positive number. This

Fig. 1.6 Market- and credit-loss distributions: These figures display illustrative market- and
credit-loss distributions. Loss, following common practice, is displayed as a positive number. These
distributions are, in a stylized way, roughly consistent with our silly game pay-off profiles from
Fig. 1.5.
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convention makes no practical difference; it simply leads to the classical right-
skewed credit-loss distribution.

While our two dice-rolling games are certainly silly, the results are surprisingly
consistent with the differences between credit and market risk. The relative out-
comes and magnitudes are naturally somewhat exaggerated in the context of our
silly games. The negative financial outcome in the second game has a probability
of 1

36 ≈ 0.03. In our current portfolio, on average, the default probability is about
60

10,000 = 0.006; for the highest quality credit countparties, it is only a fraction of
this average amount. At the same time, the probability of market-risk gains and
losses are not—at any given point in time—precisely equal. Furthermore, large
jumps in market-risk factors can, and do, occur with some regularity. These practical
differences notwithstanding, our two silly games can be considered as a useful
analogy for these two risk archetypes. Credit and market-risk arise from two rather
different investment strategies or, if you prefer, games.

As useful as the analogy posed by our simple games might be, the reality of
financial-market risk is dramatically more complicated and nuanced. The set of
possible financial outcomes, in our two silly games, is known and discrete.36 We
may count and assign a probability to every possible dice throw. Actual asset values,
sadly, do not work this way. A virtual infinity of outcomes are possible, and in most
cases, the assignment of probabilities is a subjective exercise. Even worse, we do
not even know what it is that we do not know. In other words, in the real world there
are possible, but perhaps very improbable, outcomes that we have not even thought
to consider. This is Taleb [44]’s infamous black swan.37 This unsettling situation
is increasingly referred to as Knightian uncertainty after the influential publication,
Knight [25]. This does not imply that our silly game analogies are without use, it
merely counsels caution and humbleness in the face of the task ahead of us.

Understanding this distinction highlighted by our silly games, nonetheless has
a number of benefits. The fundamental structure of market and credit risk is
different. Market risk is comprised of large number of small positive, and negative,
outcomes. Credit risk is dominated by a few large, but inherently rare, events.
It thus makes complete sense that we, as risk managers, need to model and
measure these divergent risks using distinct tools. With that important point in mind,
characterization of both risks starts from the same place. It is necessary to identify
the underlying economic factors that drive risk. This brings us to a fundamental
decomposition of risk that impacts, you will not be surprised to hear, market and
credit risk in alternative ways.

36 Our ability to perfectly understand the associated sample space is a principal reason why games
of chance are so beloved by statisticians and probabilists.
37 Or, if you prefer another colour of swan, see Bolton et al. [10].
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Colour and Commentary 5 (RISK ARCHETYPES): We introduced—to mo-
tivate how varying risks in our taxonomy might arise—two silly games
involving the throwing of a pair of dice. The financial results of playing either
game, in expectation at least, are equal. Their risk profiles differ dramatically.
The first game—an allegory for market risk—involves a symmetric loss
distribution constructed from the sum of many small positive and negative
underlying drivers. Credit risk is encapsulated in the second game. It involves
a modest positive return in most states of the world, but with the potential for
a large, low-probability loss lurking in the background. This is intended to
reflect the mechanics of default and the associated highly skewed credit-loss
distribution. The morale of these silly games is that key asset-value risks arise
in very different ways and, as a consequence, we require distinct strategies to
estimate their contribution to our economic capital figures.

1.5.2 A Fundamental Characterization

The value of asset portfolios, for a variety of reasons, rise and fall over time. The
underlying drivers of these changes in asset valuation are legion. One of the main
objectives of a risk taxonomy is to classify and organize these so-called risk drivers.
Our two silly games take this a step further by trying to stylistically describe the
characteristics of different kinds of risk. These efforts are still lacking something
concrete. They do not help us understand why certain asset values change differently
from others. To address this point, we may decompose these asset-value movements
into two (very) broad categories:

1. general, or systemic, market movements that impact the value of all (or most)
assets; and

2. idiosyncratic, or specific, movements relating to a single (or only a few) assets.

This amounts to a categorization of changes in asset valuations into common and
specific risk poles. This idea is far from new. It lies at the heart of the capital asset
pricing model (CAPM) and arbitrage pricing theory (APT).38

Some concrete examples are useful. When the general level of interest rates rises
in an economy, it affects many assets. Some might even argue that it impacts all
assets. This is a case of a systemic risk. Similar situations occur with exchange rates,

38 See, for more background on these classical although still very relevant financial theories,
Treynor [45], Sharpe [40, 41], Lintner [26], and Ross [39].
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commodity prices, or key macroeconomic variables such as inflation and output.39

These quantities are correspondingly referred to as systemic risk factors.
On the other hand, some asset-value effects are associated with a specific entity.

A given company—due to poor governance structures, failure of an important
project, or simply bad luck—might run into financial difficulty. The impact of such
financial distress, and associated asset-value movements, is typically restricted to
the company in question. We refer to these firm-specific elements as idiosyncratic
risk factors.

How might we make use this risk decomposition? It is very tempting to place
market risk into the systemic category and assign credit risk to the idiosyncratic
side. Market risk is, after all, largely about examining the effect of systemic factors
on one’s portfolio: interest rate, exchange rate, credit-spread, basis-swap, or market-
volatility movements. Moreover, finance theory tells us that idiosyncratic market
risk is, with a moderate amount of effort and organization, readily diversified away.
As such, it is not compensated, or priced, in financial markets. Credit risk—often
linked to a firm’s liquidity, solvency, capital, and competitive positions—matches
fairly closely to our firm-specific notion of idiosyncratic risk.

There is a significant amount of truth to this unequivocal, binary allocation of
market and credit risk into these systemic and idiosyncratic buckets. Unfortunately,
it is not quite true. Some element of what is typically classified as market risk can be
considered to be quite idiosyncratic. Credit spreads do move in concert with other
similar credits, but some (often variable and difficult-to-estimate) part of that spread
remains firm specific. Moreover, bond yields are importantly influenced by security
specific factors surrounding market-microstructure and liquidity.40

Credit risk is, of course, a bit more complicated. Much of what we think of
as credit risk is clearly idiosyncratic. Firms have a strong tendency to run into
trouble as a consequence of internal firm-specific choices. Nevertheless, firms do
not operate in a vacuum. They have competitors who exert an important influence
on their financial situation. They are also tied into a network of suppliers and
clients. Competitive actions or the financial health of key members in their operating
network can, and do, impact their fate. These important latter effects cannot be easily
categorized as firm specific or idiosyncratic. Defaults are thus logically correlated
through general economic conditions and industry interdependencies. Credit risk
has—like its cousin, market risk—elements of both dimensions.

This latter point is the key message of Fig. 1.7. Neither systemic nor idiosyn-
cratic are—despite their important conceptual differences—completely distinct.
The corollary is that market and credit risk cannot be allocated, in a wholesale

39 One can, and probably should, argue that it is actually the macroeconomic variables who are
driving the financial outcomes.
40 See Amihud et al. [1] for thoughts on liquidity and O’Hara [36] for an excellent entry point into
the theory of market microstructure.
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Fig. 1.7 Independent risks?:
This schematic is designed to
help the reader appreciate the
interplay between systemic
and idiosyncratic risks. While
a useful distinction, these two
notions of risk are not truly
independent. Market and
credit risk accordingly inherit
this overlap.

Market risk
(Systemic)
Impacts all
securities

Credit risk
(Idiosyncratic)
Specific to
an entity

manner, to these broad categories. As we will see in the following section, this
has important implications. The fundamental distinction relates back to a centrally
important concept in both finance and economic-capital estimation: concentration
and diversification.

Colour and Commentary 6 (A BROAD RISK CATEGORIZATION): It is in-
formative and useful to break the risk associated with asset-value movements
into two broad categories: systemic and idiosyncratic. Systemic risk stems
from underlying factors whose movements—naturally, in different ways—
affect all assets. Idiosyncratic risk is specific and relates only to the individual
firm. Conventional wisdom often seeks to categorize market risk as systemic
and credit risk as idiosyncratic. There is some truth in this arrangement, but it
is not quite correct. What is more, it is wrong in important ways. Idiosyncratic
risk, in financial theory, is not rewarded. This is because, with sufficient
effort, it can be diversified away. Following this logic, were credit risk to
be entirely idiosyncratic, it could be safely ignored. This latter statement is
patently false, implying the incorrectness of treating credit risk as an entirely
idiosyncratic phenomena.a Indeed, investigation of the systemic nature of
credit risk yields important insight into a key element of economic-capital
calculations: portfolio concentration.

a The implications of treating market risk as entirely systemic, however, are rather less
severe.
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1.5.3 Introducing Concentration

Almost everyone who has ever taken an introductory course in finance has per-
formed a diversification exercise. It can take a variety of forms, but it essentially
amounts to indicating how the variance of portfolio returns (i.e., risk) can be
reduced by adding non perfectly correlated assets. This concept, first introduced
by Markowitz [28], is the central idea behind diversification. There is, of course,
a limit to the benefits of diversification. Systemic risk, which impacts all assets,
simply cannot be fully diversified away.

Idiosyncratic risk is another matter. It can, and should, be eliminated through
diversification. Credit and market risk, however, vary importantly along this per-
spective. The lion’s share of diversification benefits in an equity portfolio appear to
be achievable with a few dozen stocks. Replicating a sovereign-bond benchmark—
that might include hundreds of individual instruments—can be achieved with only
a handful of bond holdings. In short, the market-risk component of a fixed-income
portfolio is readily diversified. Statements suggesting that idiosyncratic risk is not
compensated are made, almost invariably, in a market-risk context.

Default- or credit-risk diversification turns out to be a bit more slippery. Why
might this be the case? Our silly games can help provide us some insight. A market-
risk loss represents, in most cases, only a small proportion of the instrument’s value.
Remember, market-risk movements are typically the sum of numerous, relatively
small market movements. Multiple securities, being buffeted in different directions
by the vagaries of market-risk factors, have many more opportunities to offset each
others’ gains and losses. Credit-risk losses, while rare, are also more sizable; in the
worst case, you can lose the entire investment. Such rare events are not readily offset
by other asset-price movements.

The consequence of this difference is that credit risk is significantly more
sensitive—than its market-risk counterpart—to the composition of one’s asset
portfolio. In contrast to the market-risk setting, true diversification in credit-risk
portfolios can require hundreds or even thousands of individual securities. Even
then, it is necessary that no one single exposure dominates the portfolio.

This latter claim might be hard for some readers to accept. Even those who buy
this idea might benefit from a demonstration. Let us, therefore, consider a concrete,
motivational example. Imagine that we construct two portfolios where everything—
with one important exception—is identical. The total values of the portfolios are
equal and set to e1000.41 Every instrument further shares the same probability of
default at 50

10,000 ≈ 0.005. Moreover, in the event of default, we assume that only
60% of the exposure’s value will be recovered.

Despite these striking similarities, there is a key distinction. One portfolio has
only 100 individual risk exposures of varying size; some are quite large, while
others are relatively small. The other portfolio has 10,000 individual exposures.

41 You may multiply this value by whatever value you wish to make it a bit more realistic.
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Table 1.3 Competing portfolios: What are the differences, in terms of credit risk, associated
with diversified and concentrated portfolios? One way to find out is to construct two portfolios
that differ solely along the concentration dimension. The underlying table summarizes two such
example portfolios.

Measure Diversified Concentrated

Total portfolio size e1000

Number of positions 10,000 100

Mean position size e0.10 e10.00

Minimum position size e0.10 e0.08

Maximum position size e0.10 e47.80

Default probability 50 bps.

Loss-given default 40.00%

Confidence level 99.97%

Fig. 1.8 Sample exposure profiles: This graphic shows the distribution of exposure sizes associ-
ated with the diversified and concentrated portfolios introduced in Table 1.3. The distinction is
visually striking.

Each exposure takes a value of 1
10,000. To put it more directly, one set of exposures

is diversified, while the other is rather concentrated. The key summary statistics
associated with these two portfolios are summarized, for convenience, in Table 1.3.

Figure 1.8 helps out by illustrating the contrasting distributions of exposure sizes
associated with our two sample portfolios. The diversified portfolio exposures are
not terribly interesting; they all share the same value. The same is not true for our
concentrated portfolio. One very large exposure accounts for almost 5% of the total
portfolio. There is another handful of exposures in the 2 to 3% range. Others appear
to be very close to zero.

One might legitimately ask if this is another cooked example. The simple answer
is yes. At the same time, however, it is not so different from some real-world
portfolios. The concentrated example might represent a corporate-bond book or



1.5 Risk Fundamentals 31

Table 1.4 Concentration results: Here we observe the differences, in terms of idiosyncratic and
systemic risk written in percentage terms of our portfolio value, for our competing portfolios.
Systemic risks differ very little, whereas the idiosyncratic dimension diverges dramatically.

Diversified Concentrated

Idiosyncratic 0.1% 3.1%

+ Systemic 7.6% 9.0%

a commercial lending portfolio.42 Such portfolios typically include a relatively
modest number of heterogeneous exposures; note, however, that these 100 positions
are already substantially larger than what is typically required for a comfortable
degree of diversification in the market-risk environment. The diversified case,
conversely, might be a large credit-card or student-loan portfolio. It is comprised
of many relatively homogeneous positions. It is extremely unlikely, of course, that
either of these cases would involve identical default probabilities and loss-given-
default assumptions. This aspect was definitely, and unapologetically, manipulated
to focus our attention entirely on the concentration dimension.

The interesting question after having introduced these two portfolios, of course,
is what is the impact on each portfolio’s credit-risk economic capital calculation? To
answer this query, we naturally need to compute their economic capital. Abstracting
from the technical details, we use two alternative models. One, fairly unrealistic,
model assumes that all credit risk is idiosyncratic in nature. The other includes
both idiosyncratic and systemic elements in a sensible manner.43 The utility of
these two distinct models is to permit us to assess the impact of both systemic and
idiosyncratic risks on our economic-capital estimates.

Table 1.4 summarizes the results of our experiment. The individual values are
provided in percentage terms. As one would have expected, the idiosyncratic risk
for the diversified portfolio approaches zero. The 10,000 position portfolio has thus
succeeded in diversifying away idiosyncratic risk. The concentrated portfolio has
not. Roughly one third of the total risk, for this 100 exposure portfolio, remains
idiosyncratic. The full benefits of diversification thus remain at some distance. When
we move to consider the full credit-risk model in the second line of Table 1.4,
we see that the total risk of these two portfolios are surprisingly similar. The
diversified portfolio is naturally less risky, but not dramatically so. Figure 1.9
strikingly visualizes this point.

There are, at least, three takeaways from this exercise. First, systemic risk simply
cannot be diversified. This is hardly new—it is, in fact, a central lesson from
the CAPM model—but it is reassuring to see it resurface in this context. It is

42 In actuality, these would involve more positions, but stylistically they are similar.
43 For the interested reader, the idiosyncratic choice is the binomial independent-default model,
while the second (systemic and idiosyncratic) approach is a one-factor Gaussian threshold model.
See Bolder [8, Chapters 2 and 4] for more background on these models. We will also revisit these
general approaches, within the NIB setting, in Chap. 2.
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Fig. 1.9 Achieving diversification: This figure provides, in currency terms, the idiosyncratic and
systemic risk results for the two distinct portfolios introduced in Table 1.3. Total risk is not
dramatically dissimilar, but the idiosyncratic elements differ. Concentration clearly matters.

furthermore hard work, as a second point, to diversify away idiosyncratic risk in
the case of credit risk. 100 heterogeneous exposures does not even bring us close.
Finally, the systemic aspect is definitely not restricted to the world of market risk.
Indeed, our example and Table 1.4 clearly illustrate the fundamental importance of
systemic factors in the estimation of credit-risk economic capital.

In this fabricated example, we have only examined the simplest type of con-
centration: that related to exposure size. Credit obligations also differ along a
host of other dimensions such as their geographic region, industrial sector, credit
category, default-recovery assumptions, or even firm size. The more similarities,
within a portfolio, among these aspects, the greater the potential for concentration.44

Diversification in a credit-risk setting is thus even more difficult than what is
suggested in this example.

Concentration and diversification are opposite side of the same coin. Both
are intimately related to the fundamental notions of idiosyncratic and systemic
risks. Appreciating this fact is an important step towards understanding models of
economic capital. A key responsibility of such models is to appropriately combine
these two dimensions to describe our asset-loss distributions. For the measurement
of market risk, this involves leaning strongly (or even completely) in the systemic
direction. Credit risk, conversely, requires a careful hand to manage the interactions
between idiosyncrasy and diversification on the one hand and systemic issues and
concentration on the other.

44 Concentration is consequently a core theme in the measurement of credit risk. See Lütkebohmert
[27] for much more on strategies and techniques to manage it.
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Colour and Commentary 7 (ONE COIN, TWO SIDES): A cornerstone of
finance theory holds that idiosyncratic risk, which is readily diversified, is not
compensated. While true in a market risk sense, the narrative is somewhat
more complicated in the credit-risk situation. A simple, stylized example
of a concentrated and diversified portfolio illustrates that elimination of
idiosyncratic risk is not trivial task for credit-risk portfolios. Hundreds, if
not thousands, of positions are necessary. Moreover, an eye must be also
be trained on other possible sources of concentration such as geographical
location and industry. Asset riskiness, and thus estimation of economic
capital, depends importantly on portfolio composition. This analysis indicates
that the structure of one’s portfolio also has different implications depending
on the type of risk under examination.

1.5.4 Modelling 101

We now, in our quest to better understand economic-capital calculations, turn our
attention to financial modelling. Let us begin with a wise statement from Holland
[19]:

Model building is the art of selecting those aspects of a process that are relevant to the
question being asked.

To those less accustomed to working with mathematical models, it might be a bit
startling to read about selection in this context. A bit of reflection, however, reveals
that it is inevitable. Models are a simplified representation of a complex, indeed
unknowable, reality. In the physical sciences, our understanding may be superior to
that in the social realm, but it still remains far from perfect.45 We simply cannot
create models that encapsulate all of the complexity of the real world; choices must
be made. Holland [19]’s basic point is that it’s more important, in principle, to
appreciate the problem and the conceptual logic behind one’s modelling choice than
the fine print of the mathematical details.46

This reasoning will help to explain why so much attention has been placed
on the nature of the risks associated with a firm’s assets. It also suggests that
this (first) conversation about economic-capital models will focus, as intimated by
Holland [19], on the selection of those relevant aspects. The technical details will
be thoroughly covered in subsequent chapters.

45 Compare this to our two silly games, where all possibilities and probabilities can be character-
ized to perfection.
46 Naturally, the details are also important, but they quickly become irrelevant if high-level
decisions are poorly taken.
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There are many types and flavours of mathematical models, but one overriding
classification can be helpful. The key distinction surrounds why certain events,
which one is attempting to model, occur. One class of models—which we will refer
to as structural—attempts to capture some aspects of the underlying mechanism
driving key events. Imagine, for example, building a model of monetary policy.
A structural approach would describe the logical linkages between central-bank
rate decisions, the monetary transmission mechanism, and inflation outcomes.
Structural models describe, in mathematical terms, how key variables should
interact. This requires some theoretical foundations upon which the model can
build. The alternative approach is data driven. Placing less weight on theoretical
considerations, one uses statistical techniques to extract empirical relationships
from the data. These are termed reduced-form models. Image and voice recognition
software are excellent examples of reduced-form models; they use massive amounts
of data to train algorithms to recognize certain combinations of events. The why
aspect is not central.

Ultimately, all models have parameters. These parameters are, almost invariably,
estimated from real-world data. One might justifiably enquire, in this context, as to
the real difference between structural and reduced-form models. The key distinction
is causality. A structural model attempts to describe causal relationships between
variables within the real-world data-generating process. Reduced-form models are
more agnostic about causality, they attempt to identify empirical relationships
embedded in the data.

The difference may appear subtle and perhaps abstract, but it is a useful
magnifying glass through which to examine and evaluate models. Neither approach,
for example, is dominant. Both have their own strengths and weaknesses. Reduced-
form models lean heavily on the data; they are, as a consequence, fairly sensitive
to non-representative or erroneous inputs. They are also particularly vulnerable
when predicting outcomes outside of one’s data range. Structural models place a
greater importance on theory. Should the theoretical relationships be flawed, these
shortcomings will be inherited by the model. In most estimations of economic
capital, however, both modelling techniques make an appearance.

Estimation of market-risk, to be more concrete, is typically performed with a
reduced-form model. The value of financial instruments—be they loans, deposits,
bonds, or swaps—practically depends on a host of underlying market-risk factors.
Different financial instruments, however, have varying degrees of responsiveness
to change in these factors. Some instruments might be very sensitive to exchange
rates, whereas others are invariant to them. A common, and clever, approach to
characterizing market risk thus involves writing

Asset-value movements =
K
∑

k=1

Factor Sensitivityk · Factor changek, (1.4)

where we have K distinct market-risk factors. In words, the contribution of various
market-risk factors are assumed to be additive. Each individual market-risk factor
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Fig. 1.10 A market-risk model: The preceding schematic organizes the instrument- and risk-
factor-level inputs into the typical market-risk calculation. The market-risk factor system is
normally described using a data-driven reduced-form model.

contribution is simply the product of the instrument’s factor sensitivity and the
factor’s movement.47 A critical aspect of measuring market risk, therefore, involves
the construction and management of these sensitivities.

Equation 1.4 has a convenient form, but it says nothing about the sign, magnitude,
and interaction of these market-risk factor changes. Getting a handle on market
risk will inevitably involve tackling this aspect. The reduced-form assumption
enters at this point. Market-risk models rarely attempt to describe why interest
rates, exchange rates, and key market spreads interact. Instead, they collect large
amounts of market data including daily, weekly, or monthly observations of all
important market-risk factors. Risk estimates are then based on estimation of the
joint statistical properties of this data, or alternatively by extracting risk-factor
movements from a period of extreme market turmoil.48 In either case, the role of
this complex system of market-risk factors is informed by observed, empirical data
relationships.

Figure 1.10 provides a high-level schematic of the main ingredients involved in a
typical market-risk calculation. Key inputs are profitably separated into two groups:
those related to the financial instruments and those linked to the market-risk factors.
Collecting and organizing the instrument sensitivities is hard work, but most of these

47 See Bolder [7, Part I] for a more detailed discussion of these ideas.
48 This is an almost criminally brief description. See Bolder [7, Part IV], and subsequent chapters,
for more specifics.
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Fig. 1.11 A structural relationship: Merton [31]’s key insight was to identify default as occurring
when a firm’s asset values fall below some predefined—typically liability related—threshold. This
is a classical example of a theoretically motivated structural model.

values are readily available through internal systems. The art and science of market-
risk modelling relate to the risk-factor system. By and large, this aspect is captured
through a data-driven reduced-form model.

Market-risk measurement is thus predominately reduced-form and focused on
systemic market risk factors.49 What about credit risk? Measuring credit risk, the
reader may not be surprised to learn, usually involves a different strategy relative to
the market-risk case. NIB’s credit-risk economic-capital model—similar to many
other institutions—follows a structural approach.50 The key theoretical insight
dates back to Merton [31], who offered a clever, and intuitive, description of the
underlying cause of firm default. It begins, as one would hope, with the firm’s
balance sheet. The insight is that default occurs when the firm’s equity position
hits zero; in other words, the asset value is equal to, or larger, than the firm’s
commitments. Using the language of the previous sections, the firm’s supply of
capital is exhausted. This observation yields a road map for modelling credit risk.

Figure 1.11 provides a useful visualization of Merton [31]’s theoretical conclu-
sion. The firm’s assets move over time in a random fashion. If, at any point, they fall
below some predefined threshold, then default is assumed to have occurred. This
threshold value needs to be determined, but it basically reduces to some function
of the firm’s liabilities and the firm’s overall financial position. This idea, as is the
case in all structural models, effectively endogenizes a key aspect of the phenomena
one is trying to model. That is, default is determined inside the model through the
interaction of other key variables.

49 The canonical references in this area are Morgan/Reuters [32] and Jorion [21].
50 There is, however, an entire class of reduced-form credit risk models. See, for example, Bolder
[8, Chapter 3] for several concrete examples.
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Merton [31]’s insight, while incredibly useful, still requires some polishing to
make it a model. The classical structure continuous-time in Merton [31] is now
rarely used, but has been supplanted with a number of practical points introduced
by Vasicek [46, 47, 48] and Gupton et al. [17, 18]. Without getting to deeply into
the details—covered amply in subsequent chapters—one asset-related quantity is
particularly helpful in understanding the inner workings of this model. Each credit
obligor is assigned a latent state variable closely related to its asset value. It is
comprised of the following two familiar components:

Asset-value index = Systemic element + Idiosyncratic element. (1.5)

This requires some unpacking. Each firm’s asset-value index is the sum of a systemic
and idiosyncratic component. The systemic factor impacts all firm assets; this is
the mechanism driving default dependence in the model. The idiosyncratic piece is
specific to the individual firm. The genius of Eq. 1.5 is that it explicitly incorporates
our fundamental risk characterization.

The individual components of Eq. 1.5 are random and are assumed to be
independent.51 Equation 1.5 gives us what we need to build a proper model.
Mechanically, we can think of the credit event as being determined by a number
of random draws. We pick a common systemic value out of a hat; it is shared by all
credit obligors. We then pull a separate idiosyncratic factor for each credit obligor
out of a long line of hats and then proceed to construct our asset-value indices. There
is a credit event for each credit counterpart with the following generic form:

Credit Event =
⎧

⎨

⎩

Default : Asset-value index ≤ Threshold
Survival : Asset-value index > Threshold

︸ ︷︷ ︸

Otherwise

. (1.6)

Armed with a practical definition of each firm’s credit event, the rest is (copious)
mathematical and statistical detail. Unlike the market-risk setting, however, realistic
implementations of Eqs. 1.5 and 1.6 involve some fairly heavy computations.
Drawing random numbers from hats may be relatively easy on a computer, but
extremely large numbers must be drawn from an almost breathtaking array of hats
to obtain a reasonable degree of accuracy.52 We will touch on the implementation
challenges in Chap. 4.

Figure 1.12—constructed analogously to Fig. 1.11—organizes the instrument-
and portfolio-level inputs into a visualization of the credit-risk calculation. The
simulation engine, which is responsible for all of the random-number generation,
requires many inputs. The first group relates to the individual instruments while
the second involves instrument attributes central to systemic-risk considerations.
As previously discussed, these instrument features help the model characterize the

51 This basically means that the randomness of the systemic component is determined completely
separately from the idiosyncratic element.
52 There are probably enough hats involved to make even Britain’s Queen Elizabeth II blush.
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Fig. 1.12 A credit-risk model: This schematic organizes the instrument- and portfolio-level inputs
into a visualization of the credit-risk calculation. The instrument and portfolio data fields relate
principally to the idiosyncratic and systemic dimensions, respectively. The simulation engine
combines these inputs using a structural modelling approach.

degree of portfolio concentration. The simulation engine then collects and combines
these inputs using a structural modelling approach to generate economic-capital
estimates.

Colour and Commentary 8 (HANDLING CAUSALITY): In this motivati-
onal introductory chapter, detailed technical model explanations and deriva-
tions are misplaced. A serious discussion of economic-capital estimation
would be nonetheless incomplete without addressing the modelling dimen-
sion. At a high level, models are profitably characterized by how they handle
causality. Structural models rely on theory to endogenize key aspects of
the model; in this sense, they attempt to assign causality. Reduced-form
models, conversely, rely on empirical data to exogenously describe these
key relationships. No approach is, in a general sense, superior to the
other and many practical implementations make comfortable use of both
philosophies. Market-risk economic-capital model, in general, falls into the
reduced-form camp; complex interactions of systemic market-risk factors are
typically informed exogenously by empirical data. Credit-risk calculations,
by contrast, are often structurally motivated. The structural, or endogenous,
default element is theoretically determined through an (indirect) examination
of each firm’s balance sheet thereby linking back to the idea of capital supply
and demand. This approach also easily incorporates both the systemic and
idiosyncratic elements so important to credit risk.
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1.6 Managing Models

We have, in this discussion, only scratched the surface of the intricacies involved
in computing credit-risk economic capital. We have followed Holland [19]’s advice
and highlighted some of the relevant aspects. No responsible modelling discussion,
however, would be complete without a few words on model governance. Computa-
tion of economic capital, in many organizations, is based on internal models. In the
literature, these are typically referred to as decision-support models.53 Decision-
support models can be found in medical, agricultural, logistical, and business
applications. Interesting and relevant examples might include a medical diagnosis
tool, an early-warning tornado system, mergers-and-acquisition decision analysis,
or selecting the optimal product mix in a pulp-and-paper mill.

Such models are typically developed internally when, as in the case of economic
capital, their development and understanding has strategic importance. With the
explicit introduction of economic capital into NIB’s statutes, this hurdle would
seem to have been comfortably cleared. Simply because a model is strategically
important and merits internal development, however, does not imply a free pass. On
the contrary, its criticality warrants sustained and careful oversight. The possibility
that models are themselves a source of risk—as introduced by Derman [13] and
Rebonato [37]—should not be taken lightly. Such model risk (perhaps) need not be
directly incorporated into our economic-capital computations, but it definitely needs
to be managed.

Managing model risk requires a governance structure. Any internal model—
whether for decision support, regulatory oversight, or for policy making—is an
ongoing work in progress. It consequently involves a continuous cycle of validation,
analysis and improvement, verification, implementation, and usage. It never really
ends; Fig. 1.13 reflects this fact with a circular schematic.

Managing model risk essentially amounts to an exercise in quality control.54

As a consequence, much focus in model risk is assigned to the model-validation
process. While the importance of independent, external validation cannot be
denied, internal model developers and owners also have a number of additional
responsibilities. These include the use of benchmark models, careful computer-code
and system management, production of detailed diagnostics and sensitivity analysis,
and ongoing stress testing. These are not part-time activities, but central aspects of a
well-functioning internal modelling environment.55 As a consequence, these ideas
will show up repeatedly in the following chapters.

One additional model-owner responsibility towers over all others: documentation
and transparency. Quality control is virtually impossible without clarity surrounding
model choices and assumptions. Scientific discourse, which has proven rather effec-

53 See Keen [22, 23] and Keen and Morton [24] for the origins of this interesting academic
literature.
54 See Bolder [9] for a more detailed argumentation of this point and its implications.
55 This, in turn, ties back to the quantitative analysis axioms introduced in the preface.
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Fig. 1.13 Model-
improvement cycle: Any
model, to be of practical
usefulness, requires ongoing
review, validation, and
improvement. It also needs to
be used. This cycle implies
that no working model is a
static entity, but rather a
dynamic one.
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tive in recent centuries, slavishly follows this principle. Scientific ideas are, literally
by construction, forced to run the gauntlet of peer review and publication. Modelling
ideas are also strengthened and improved through their explicit documentation and
exposure to external consideration and critique. This reasoning is the driving force
behind the production of this book and argues for its dissemination to the widest
possible audience.56

Colour and Commentary 9 (MODEL RISK): Economic-capital computa-
tions depend critically on modelling assumptions and choices. Given their
strategic importance, these models are typically internally developed in the
form of decision-support systems. Perhaps somewhat ironically, these models
are themselves a source of risk. Classified as model risk in our taxonomy, there
are no current requirements to add it to economic capital. Common sense and
sound business practice, however, argue strongly for extensive governance
measures surrounding these models. This can take a range of forms. Model
validation receives the most attention—and is certainly very important—
but model owners also have numerous additional responsibilities. The most
important, and perhaps least well appreciated, element relates to documen-
tation and transparency. Carefully writing down one’s methodologies is a
valuable discipline. Model quality is moreover directly proportional to its
degree of exposure to external critique. These reflections were the catalyst for
the production of this book and the justification for its broad dissemination to
an external audience.

56 Again, our axioms “write it down” and “seek external criticism” are clearly reflected in these
actions.
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Table 1.5 Economic-capital results: This table illustrates NIB’s economic-capital figures—from
the 2020 annual report in NIB [35, pp. 21–23]—by their principal risk dimensions. All figures are
denominated in EUR millions.

Dimension Subtotal Total

Default risk 1534

Migration risk 487

Credit risk 2021

Market risk 567

Operational risk 101

Conservation buffer 306

Countercyclical buffer –

Stress-test buffer 120

Capital buffers 426

Economic capital (i.e., capital demand) 3115

Headroom 697

Adjusted common equity (i.e., capital supply) 3812

1.7 NIB’s Portfolio

Remaining at the conceptual level can only take us so far, because economic
capital is a concrete quantity. To complete this introductory chapter, therefore, it
is interesting and useful to examine various perspectives on actual NIB economic-
capital computations. Table 1.5 thus provides a bird’s eye view illustrating the entire
economic-capital computation of roughly EUR 3.1 billion as the end of 2020.57 It
also distinctly includes the various members of our risk taxonomy.58

The values from Table 1.5 are drawn from the 2020 NIB annual report. Other
institutions provide similar disclosures both in their financial statements and Pillar
3 regulatory reports.59 Although not a regulated entity, the spirit of the computations
from Table 1.5 is consistent with fundamental regulatory principles and best
practice.

A few useful conclusions can be drawn. Credit risk, through either default or
migration, is the dominant risk in NIB’s portfolio. This is the case for literally all
lending institutions. It accounts, through NIB’s lending and investment activities, for
almost two thirds of the total. Moreover, the credit-risk component is multifaceted
including both a default and a credit-migration dimension. As will be made much
more precise in Chap. 2, default risk relates to an obligor not repaying their
obligations whereas migration touches on the capital impact associated with a
deterioration of borrower credit quality. Both elements are important, although the

57 These values are found in NIB [35, pp. 21–23].
58 Counterparty risk is embedded in the default and credit-migration figures.
59 BIS [6] rather carefully outlines a publication template for the contents and format of key
economic-capital metrics.
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Fig. 1.14 The waterfall graphic: The preceding figure illustrates the main results from Table 1.5
in graphic format; it is often referred to as a waterfall graphic. It underscores the central importance
of the credit-risk dimension.

default aspect dominates NIB’s portfolio. The size and complexity of the credit-
risk aspect is the principal justification for the disproportionate amount of time and
energy invested, in the following chapters, into the credit-risk dimension. There is
simply much to discuss and analyze; this fact is further underscored visually by
Fig. 1.14.

A second point is that Fig. 1.14 provides an opportunity to perform a rapid
analysis of NIB’s capital adequacy position. In short, it looks to be fairly healthy.
The headroom is between 15 to 20% of the equity position providing scope to further
grow lending and treasury activities. From NIB [35, pp. 25], we may also read the
total NIB asset position as about EUR 35.4 billion. Using this fact and Table 1.5,
we may also proceed to compute our economic-capital numbers. For the entire
portfolio, it is about 3.1

35.4 ≈ 0.088 or 8.8% if we represent it as a percentage. This
suggests that, on average, about 9% of each asset’s value needs to be set aside for
their riskiness. A separate number can also usefully be computed, depending on how
far one wishes to go, for taxonomy type, sub-portfolio, or risk factor. The credit and
market-risk numbers, for example, amount to about 5.7% and 1.6%, respectively.

NIB’s credit-risk economic-capital model is, as is common practice, based
on a long-term, unconditional, through-the-cycle approach. To correct for this
aspect, among other things, the regulatory community has introduced the notion
of capital buffers. These represent an additional cushion to account for variations in
current economic conditions. NIB, although not a regulated entity, also follows this
regulatory practice. The buffers themselves come in three flavours: conservation,
countercyclical, and stress-test. The conservation buffer is the closest thing to a
pure through-the-cycle adjustment and is simply a linear multiple of the minimum
regulatory capital requirements.60 The countercyclical buffer, conversely, is an

60 Again, we will turn our attention to the regulatory perspective in Chap. 11.
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example of a macro-prudential tool. It is set by various jurisdictions—also as
a percentage of regulatory capital—against the flow of current macroeconomic
conditions. In other words, regulatory authorities build it up during good times,
only to release it during period of economic downturn or crisis. This explains why
it takes a value of zero in Table 1.5; the vast majority of authorities released the
countercyclical buffer during March and April of 2020 at the inception of the global
COVID-19 pandemic.

The final piece of the puzzle in Table 1.5 is the so-called stress-testing buffer.
This is an additional contribution to overall economic capital, which is intended
to capture the impact of severe adverse macro-financial conditions. It is basically
another layer of prudence. It can feel somewhat excessive to add yet another
safeguard to a collection of worst-case risk measures and regulator-specified buffers.
While there is truth to this reflection, this buffer stems from a separate stress-
testing exercise. There is value, and the potential for significant insight into the
strengths and weaknesses of one’s asset portfolio, in such an analysis. For regulated
entities, the level of the stress-testing buffer is determined via assessment by one’s
supervisor. At the NIB, the level is specified by Board decision supported by
quantitative analysis. A much more detailed discussion of this aspect is found in
Chap. 12.61

Colour and Commentary 10 (ASSESSING CAPITAL ADEQUACY): Finan-
cial institutions are constantly asked by key stakeholders—such as regulators,
credit agencies, investors, borrowers, and indeed, themselves—a very simple
question: do they have enough capital? The fancy term for attempts to answer
this question is capital-adequacy analysis. It is not a simple question to
answer, because it depends on the multidimensional risks faced by the firm’s
assets. Economic capital, as a concept, was developed to help by providing a
lens through which one can holistically examine the riskiness of these assets.
The preceding analysis of NIB’s capital adequacy as of December 2020 is a
good example of the various elements at play. Similar analyses are performed
across literally thousands of financial institutions across the world. In the
coming chapters, we will delve much more deeply into the mathematical
structures and assumptions necessary to generate these high-level figures.
Given that there is no shortage of details, a rather high amount of care needs
to be given towards the organization of this discussion.

61 Treatment of stress testing in the final chapter of this work should not be seen as a commentary
on its importance. It shows up last simply because, to adequately discuss it, one needs to have a
firm global understanding of all the various elements.
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1.8 Looking Forward

Having supplied some conceptual insight into the idea of economic capital and
looked more concretely at the NIB situation, the final task in this chapter is
to lay out the structure of the remaining discussion. Our stated objective is to
provide a reasonably complete description of a framework for the measurement
and practical application of credit-risk economic capital. A framework suggests
multiple interdependencies between various components; this needs to be reflected
in the organization of our exposition. Writing such a book is thus like building
a conceptual house. Each chapter represents an important element of the overall
construction; moreover, the chapters depend upon on another in a sequential
fashion. It is difficult, for example, to discuss loan-pricing issues or parameter
selection without a good understanding of the economic-capital model. Figure 1.15
correspondingly displays the forthcoming 11 chapters from the bottom upwards as
building blocks.

Part I is the foundation of our conceptual house. It lays out the methodological
details associated with our credit-risk economic-capital model. This covers three
separate chapters: the model itself, the determination of model parameters, and
details associated with the implementation. Following from the axioms introduced
in the preface, although NIB has a single production model, two additional chal-
lenger models are computed on a daily basis.62 This is to permit an ongoing point
of comparison (or sanity check) for interpretation, trouble-shooting, and communi-
cation. The order of these three chapters is quite important. The base methodology is
the natural starting point in Chap. 2. Since models are not particularly useful without
parameters, Chap. 3 immediately addresses this question following the specification
of the modelling details. Finally, model estimation involves stochastic simulation
and, as a consequence, it is computationally intensive. Strategies for managing this
complexity form a central part of Chap. 4.

Part II addresses the important economic-capital application of loan pricing.
Loan pricing needs to be performed in a quick and flexible manner to permit
loan originators to consider multiple financing alternatives with their clients. Any
sensible assessment of loan pricing requires economic-capital inputs, which are
the result of a reasonably slow and complex simulation procedure. This presents a
fundamental problem. The classic solution—adopted in many institutions—involves
use of an approximation for the economic-capital consumption associated with a
specific loan. Chapter 5 is, therefore, dedicated to the construction of a (semi-
)closed-form approximation of default and migration risk. This turns out to be both
a worthwhile investment and a helpful tool, since we will also make liberal use of
it in our loan-impairment and stress-testing calculations. Chapter 6 then turns our
attention to the conceptual and practical details of loan pricing. This touches not

62 This a direct application of our quantitative analysis axiom “if you can help it, never do anything
just one way.”
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Other Practical Topics

and Applications

12. Stress Testing

11. Seeking External Comparison

10. Managing Derivative Exposure

PART IV

Loan
Impairments

9. The Calculation

8. Building Stress Scenarios

7. Default-Probability Fundamentals

PART III

Loan
Pricing

6. The Methodology

5. A Key Approximation

PART II

Modelling Credit-Risk

Economic Capital

4. The Implementation

3. The Parameters

2. The Model

PART I

Fig. 1.15 Our chapter plan: This schematic describes the organization of the forthcoming 11
chapters in this book. The overall credit-risk economic-capital framework—including models
and applications—are organized into four logical sections. We have represented them from the
bottom upwards as building blocks; each chapter thus represents a key step towards the subsequent
discussion.

only on many key aspects of economic capital, but also extends into important ideas
in corporate finance.

Part III of this book focuses on another application of economic capital: loan
impairments. At first glance, the link to economic capital might seem tenuous.
Loan impairments are an accounting measure that typically ignore the tail of
the loss distribution, but instead focus on the expectation. Indeed, this is why
loan impairments are also widely referred to as expected credit losses. There
are, however, at least three conceptual linkages between economic capital and
loan impairments. The first relates to the structure of the International Financial
Reporting Standard #9 (IFRS 9). Launched in January 2018, IFRS 9 introduced
an important forward-looking dimension into the computation of expected credit
losses. Future default-probability outcomes need to be predicated on forecasts of
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key macro-financial variables. The machinery constructed to manage this difficult
task is also employed in economic-capital stress-testing analysis. The heavy-lifting
associated with the construction of these forward-looking scenarios is found in
Chaps. 7 and 8.

The second link between economic capital and loan impairments stems from
the role of loan impairments in capital supply. An increase in loan impairments
will flow through a firm’s profit-and-loss statement, which ultimately reduces its
equity position. All else equal, this will lead to a decrease in economic-capital
headroom. Often the reasons for an increase in loan impairments—greater risk in
the loan portfolio—will also generate an increase in credit-risk economic capital
further reducing the firm’s headroom. This squeezing of headroom between capital
supply and demand is a central feature of stress-testing analysis. Excluding loan
impairments from this discussion would thus mean missing out on an important
aspect of stress testing. The third, and final, link relates to an inherent risk of
commercial lending stemming from portfolio composition. Its forward-looking
aspect notwithstanding, the IFRS 9 expected-loss computation does not explicitly
capture one’s portfolio composition. For a reasonably concentrated and high-quality
credit portfolio—as found in many commercial-lending institutions (including
NIB)—the failure to capture the concentration element can lead to a systemic
underestimation (i.e., downward bias) of expected loss. This suggests the use
of a so-called concentration or portfolio-composition adjustment, which makes
use of the credit-risk economic-capital model. The combination of these three
conceptual linkages implies (in its most general form) that loan impairments and
economic capital are, in fact, intertwined activities. The details of the expected credit
loss calculation—including a proposed adjustment for portfolio composition—are
covered in Chap. 9.

Part IV, the final section of this book, deals with a collection of (loosely
related) practical topics and applications. Chapters 10 and 11, for example, both
have their feet firmly anchored in the regulatory world. Chapter 10 addresses the
fascinating and subtle realm of counterparty credit risk. Modern banks need to
make use of derivative contracts—swaps, forwards, and in some cases, options—
to manage their positions. Unlike loans, bonds, or deposits, the computation of
credit exposures—a key input into the economic-capital calculation—is a challenge.
The difficulty stems principally from the fact that, at any given point in time, a
derivative contract may be either an asset or a liability to the firm. This status,
of course, has rather important implications for credit risk. We thus dedicate
the totality of Chap. 10 to a discussion of the (flexible and helpful) regulatory
approach for the prudent, risk-based estimation of derivative exposures. Chapter 11
tackles a common challenge for an international institution. As a non-regulated
entity, its actions are not prescribed by a supervisor. At the same time, regulatory
guidance and rating agencies provide an essential external point of comparison
for internal risk-management activities. Chapter 11 examines, therefore, multiple
regulatory approaches and both Pillar I and II calculations as well as a well-known
rating-agency methodology. It describes NIB’s continuous effort to identify and
evaluate external benchmarks. This is not, however, an NIB-specific undertaking; all
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institutions benefit from constructive external comparison. Chapter 12 concludes,
building on much of the previous discussion, with a consideration of the stress-
testing dimension. With the nominal goal of motivating the stress-testing buffer from
Table 1.5, it also addresses the incorporation of severely adverse scenarios as well
as the idea of reverse stress testing.

Colour and Commentary 11 (A CONCEPTUAL HOUSE): This work seeks
to provide a reasonably complete description of a framework for the mea-
surement and practical application of credit-risk economic capital. The
very word, framework, suggests multiple pieces and interdependencies. The
various elements of a framework cannot, unfortunately, be considered in
just any order. Writing such a book is thus like building a conceptual
house. This means that we need to deal with the basement before working
on the roof. The organization of the remaining 11 chapters—organized in
four distinct parts—attempt to reflect this fact. Part I is the foundation of
our house; it deals with the credit-risk economic-capital model, its many
parameters, and the implementation challenges stemming for the use of a
simulation model. Parts II and III can be viewed as the walls and rooms of
our conceptual structure. They focus on two important applications: loan
pricing and impairments. In doing so, they also introduce some centrally
important technical ideas—approximation of economic capital and macro-
financial stress scenarios—for our practical toolbox. Part IV, let’s call it
the roof of our building, concludes with a collection of practical topics and
applications. These are not least in importance—after all, they are keeping the
rain off of our heads—but instead are best considered when equipped with a
global understanding of the key concepts earned in the previous chapters.

1.9 Wrapping Up

The principal objective of this chapter was to provide a comprehensive, although
gentle, introduction to the computation of economic capital. A few key takeaways
bear repeating. First of all, economic capital is basically a worst-case measure
of asset riskiness used to complement the average, or expected, risk perspective
provided in financial statements. The second key point is that economic capital
is ultimately—for each individual asset, credit obligor, or sub-portfolio—simply
a number between zero and one. An economic-capital number of zero implies a
riskless position. Outside of this extreme case, the number increases proportionally
with an asset’s overall risk. Since asset risks are complex and multifaceted, we need
to make use of fairly complex mathematical models to actually compute economic
capital. The principal job of these models is to sensibly capture idiosyncratic and
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systemic effects, the actual portfolio composition, and notions of concentration and
diversification. These models themselves, as a final point, also create their own risks.
Model governance and oversight are key tools in managing this aspect. Two partic-
ularly important model-risk mitigants, documentation and model transparency, are
key drivers behind the production of this book.

The forthcoming chapters consider two main perspectives: measurement and
management of credit-risk economic capital. The economic-capital measurement
chapters delve more deeply into methodological modelling questions as well prac-
tical parametrization and implementation issues. Other modelling chapters focus
on the fast (semi-)closed-form approximation of economic capital and building
stress scenarios consistent with macro-financial forecasts. This is the foundation
of our credit-risk economic-capital framework. The management-focused chapters
principally address key applications of economic capital: loan pricing, calculation
of loan impairments, and stress testing. These aspects build on our modelling
foundation and provide helpful tools to assist in guiding the lending organization.
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Part I
Modelling Credit-Risk Economic Capital



Chapter 2
Constructing a Practical Model

Don’t always blindly follow guidance and step-by-step
instructions; you might run into something interesting.

(Georg Cantor)

As we saw in the introductory chapter, economic capital is a model-based approach
to assess a firm’s worst-case capital demand across a broad range of enterprise risks.
The three largest elements are generally credit, market, and operational risk. While it
is conceptually possible to try to describe some of these key risks in a joint manner,
it is more typical to handle them separately. It is simply too difficult to construct a
defensible simultaneous description of these three major risks. Moreover, estimating
each piece separately and then simply adding them together takes a conservative
stance on the interactions between these risks.1

For the vast majority of banking institutions, credit risk represents the single
most important element of economic capital. The principal concern of a lending
institution is (almost invariably) extending funds to another entity and ultimately
not being paid back.2 Depending on the size of the loan—and any amounts
recovered during bankruptcy proceedings—the loss to the firm can be substantial.
A second, related worry, is that the borrowing entity’s financial situation worsens,
making default (and attendant future losses) more likely. The deterioration in a
borrower’s creditworthiness also typically generates (unrealized) financial losses.
This is because loan (and market) pricing—determined based on the borrower’s
situation at the time of the loan—is usually inadequate to cover the heightened risk
of default. These two dimensions are referred to as default and credit-migration risk,
respectively.

Lending and investing activities are nonetheless a banking institution’s daily
bread, so they cannot be simply avoided. Instead, they need to be managed. A
critical aspect of lending, of course, is the initial assessment of a firm’s financial

1 In particular, it assumes no scope for diversification among these central risks.
2 This can occur in a few ways: a direct loan, the purchase of a firm’s bond, or even investment in a
firm’s equity. The mechanics of the extension of credit may differ, but the basic risks are the same.
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position. This involves capturing all current information and also taking a forward-
looking perspective. Such analysis allows the lender to determine if it makes sense
to extend the loan in the first place. A second component is credit mitigation; these
are features that safeguard the lender in the future. One important tool involves
structuring the loan contract to provide recourse to the lending firm in specific
situations. Broadly, such contractual features are referred to as loan covenants.
These might take the form of limits on the lending firm’s financial ratios or
optionality in the loan contract permitting early termination and repayment.3 An
additional form of credit mitigation relates to assignment of collateral—in the form
of other assets from the borrowing firm—to be collected in the event of default. A
final aspect involves guarantees, where another entity steps in to fulfil the obligation
in the event original borrower is not capable of meeting it.

Credit mitigation thus includes loan covenants, collateralization, and guarantees.
These are standard credit-risk management tools for every lending institution, but
some amount of risk always still remains. If the lending institution accepted no
risk in a lending transaction, they could hardly expect to earn any return for their
efforts.4 At the same time, there is also competition among lenders in the economy.
This mainly occurs along the pricing dimension, but it also naturally extends to the
extent and severity of credit-mitigation measures.5 In short, there are good reasons
why credit risk can be mitigated, but not avoided. Managing credit risk must thus
also extend beyond credit-risk mitigants. It also needs to be carefully measured;
managing and balancing risk in a prudent fashion is dreadfully uncomfortable if
you cannot measure it. Explaining how this might reasonably be performed is the
principal task of this chapter.

2.1 A Naive, but Informative, Start

Every serious credit-risk economic capital model is complex and multifaceted.
Jumping straight into the detail, without a bit of context, would be intimidating
and counterproductive. Let’s instead begin with a simpler, although admittedly
somewhat naive, alternative modelling approach: the independent-default model.6

As the name clearly indicates, it treats every default event as independent. The
corollary of this central assumption is that it also entirely ignores systemic risk.

3 These are only a few examples. Many other types of loan covenants are possible.
4 As clichéd as it might sound, there is truth to the old saying “no risk, no reward.” It also sounds
far more serious and erudite in its original latin form, periculum praemio.
5 Faced with two loans of the same price, a borrower will rationally accept the alternative offering
the least number of constraints on its activities.
6 In the spirit of full disclosure, this method represents one of our challenger models computed
every day in our economic-capital framework as a comparator to the more complex production
methodology.
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Table 2.1 Important credit-risk variables: This table introduces the three of the most important
elements associated with the measurement of credit risk within any modelling venture: the exposure
at default, (unconditional) default probability, and loss-given-default.

Variable Symbol Acronym Description

Exposure-at-default ci EAD Magnitude of the loan at default

(Unconditional) default probability pi PD Probability of default over a
(T − t)-year horizon

Loss-given-default γi LGD Severity of the loss in the event of
default

This lack of realism makes it a poor choice of production model, but its associated
simplicity makes it an excellent place to start.

To build this initial model, we require some ingredients. Imagine that one’s
portfolio consists of lending exposures to I distinct credit obligors.7 We require
three pieces of information about each of these counterparties: the total amount of
exposure at play, the likelihood (or probability) of default over a given time horizon,
and the amount of recovery in the event of default. These are referred to as the
exposure-at-default, (unconditional) probability of default, and loss-given-default;
we will denote them—for the ith credit obligor—as ci , pi , and γi , respectively.
Table 2.1 provides a detailed summary of these three central quantities. It is useful,
for the less experienced reader, to gain a good familiarity with these objects from
the start. They will be employed repeatedly, in a variety of different ways, during
each of the following chapters.

In principle, all three elements outlined within Table 2.1 are random variables.
This implies that their future values are unknown and their range of possible
outcomes is described by some statistical distribution. Understanding this fact is
critical, because it will colour important modelling efforts in later discussion. For
this introductory discussion, however, we will unrealistically treat them as known,
deterministic quantities.

The kernel of the independent-default model is dead simple. The default event
associated with the ith credit obligor—which we will denote as Di—occurs
with probability pi . Survival, or non-incidence of default, naturally arrives with
probability 1 − pi . Default, in this context, is essentially a Bernoulli trial. Default
either occurs or it does not; it is a binary state. We can succinctly (and conveniently)
summarize this fact in the form of an indicator variable for each individual obligor,

IDi =
{

1 : default occurs during (t, T ] with probability pi
0 : survival until time T with probability 1 − pi

. (2.1)

7 We might also refer to these as risk owners; the idea is that they should represent a collective
entity for the determination of a default event. This can become rather involved in practice, but is
conceptually easy to understand.
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To be clear, we represent the current time as t and the final time-point of our analysis
as T . T − t describes the length of risk horizon.8

This development directly leads to a description of the portfolio loss as,

L =
I
∑

i=1

ciγiIDi . (2.2)

This short expression might not look like much, but it is actually the launch-site
for all portfolio credit-risk models. It includes the exposures of all credit obligors,
their loss-given-defaults, and a trigger describing when default occurs (or not). The
objective is to characterize the distribution of the overall portfolio loss (L as at time
T ) through a description of the statistical behaviour of each of the three elements on
the right-hand side of Eq. 2.2. Given this loss distribution, we can compute a range
of interesting metrics for use in the measurement (and ultimately) management of
credit risk.

In the independent-default model, the only source of uncertainty arises from
each IDi term defined in Eq. 2.1. Since each IDi is statistically independent, the
problem is rather tractable. If we are willing to assume that all credit obligors have
the same default probability—that is, pi = p for all i = 1, . . . , N—we can even
find a closed-form solution for the distribution of L.9 Practically, characterization
of the distribution of L is readily determined via simulation methods. We can
conceptualize this as a coin-tossing exercise. Imagine that we have an (unfair) coin
where the probability of tails is pi and 1 − pi is heads. Tails represents default
and heads is survival. Now extend this to I coins each with this property. If we
independently flip all I coins, we can evaluate one realization of the portfolio loss.
If we flip this collection of coins thousands (or even millions) of times, we can trace
out all the possible permutations and combinations of portfolio credit loss. Equipped
with this information, we can proceed to estimate virtually any risk metric we might
desire.

This brute-force solution clearly requires an intimidating amount of coin flip-
ping.10 The effort is completely justified. If our objective is to capture one of the
most important risks to a lending institution, we need to answer the following
question: how likely is the coincident default of multiple important credit obligors
over the next T − t periods of time? The independent-default model—which basi-
cally takes the simplest possible route—provides a first incomplete answer to this
question. Blessed with simplicity, the independent-default model will nevertheless
underestimate this risk. The reason is that we are ignoring any possible default

8 It is often set to one-year, but it is regularly altered for different situations and applications.
9 A collection of independent, identically distributed Bernoulli trials follows the binomial distribu-
tion. See Bolder [7, Chapter 2] for much more detail on this question. A semi-analytic solution is
available in the more general case if one is willing to delve into more complicated mathematics.
Bolder [7, Chapter 7] touches on this idea.
10 Thankfully, we can comfortably delegate this daunting task to a computer.
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dependence (or correlation) between our lending counterparties. The larger point
is that even in the simplest setting, there is a surprising amount of complexity in
tracing out the credit-loss distribution. This situation will only get worse as we add
more realism to our modelling framework.

Colour and Commentary 12 (THE INDEPENDENT-DEFAULT MODEL):
The simplest approach to the modelling of portfolio credit risk involves a very
strong assumption: that the default events of each of one’s credit obligors are
independent. This is tantamount to assuming that all credit portfolio risk is
idiosyncratic or, in other words, there is no systemic credit risk. The logical
consequence of such a choice is somewhat ridiculous; it implies that with
a sufficiently large and diversified portfolio one could completely eliminate
credit risk. As discussed in the previous chapter, this is neither consistent
with economic theory nor is it a particularly conservative stance. We can
thus conclude that the independent-default model is not a serious option.
This does not, however, imply that it is not useful. Its simplicity, its use of
the bare minimum of inputs, and its (fairly radical) base assumptions make
it easy to understand and compute. In other words, not much can go wrong
in its calculation. This makes it an excellent choice of challenger model to
assist in trouble-shooting, interpreting, and communicating one’s production
methodology.

2.2 Mixture and Threshold Models

All production models—in an attempt to capture a higher degree of realism—
involve a number of complicated twists and additions. Addressing and organizing
this complexity is the main task of this chapter. It is nonetheless useful to quickly
sketch out the details of a few competing approaches before we jump into a
description of our actual choice. Serious candidates for the modelling of portfolio
credit risk fall into two main categories: mixture and threshold models.11 This
section will touch on both of these modelling frameworks. To keep it brief and
permit us to focus on the core concepts, we’ll restrict our attention to the one-factor
setting.

11 An excellent overview of these two approaches is found in McNeil et al. [29, Chapter 11].
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2.2.1 The Mixture Model

The principal shortcoming of the independent-default model is its failure to capture
systemic risk. The question thus becomes: how might we capture this dimension in a
portfolio credit-risk model? The mixture-model setting solves this problem through
the randomization of the default probability. Instead of using the given value pi to
describe the unconditional default probability, we cleverly replace it with something
else that induces default correlation.

The general approach employed by all mixture models is to write each pi as
pi(Z), where Z is a random variable that is common to all credit obligors in one’s
portfolio. Z, which affects all variables—albeit in perhaps different ways—is the
systemic risk factor. This trick leads to a revised definition of our default indicator
from Eq. 2.2 as

IDi =
{

1 : default occurs during (t, T ] with probability pi(Z)
0 : survival until time T with probability 1 − pi(Z)

. (2.3)

An entire family of models can be constructed involving various choices of Z

and alternative specifications of pi(Z). One simple, mathematically pleasant, and
educational entry point is to set pi(Z) ≡ Z and Z ∼ β(α, β). In plain English, the
unconditional default probability is assumed to follow a beta distribution. The unit-
interval support of the beta distribution makes it a natural candidate for a probability
and, quite conveniently, also yields closed-form solutions for the loss distribution.12

The loss function remains unchanged from Eq. 2.2. Estimation of each mixture
model loss distribution can always be performed numerically via stochastic sim-
ulation. It involves the same frenzy of coin-flipping as in the independent-default
model with one important difference. At each iteration of the simulation model, one
draws the common systemic random variable,Z, from a hat.13 This value then resets
the individual probabilities of various individual coin flips for that realization. It is
useful to think of Z as a global macroeconomic variable. Each draw of Z thus tells
us something about the state of the world. When Z is large and positive, this pushes
up the default probabilities for all credit obligors in the portfolio; this would be an
adverse economic outcome. A small realization of Z creates the reverse chains of
events. In both cases, however, Z is the object inducing default correlation within
the model.

Given the value of Z, however, each coin flip is independent. This important
property is referred to as conditional independence. It ensures that the model has
both a systemic element—via the outcome of Z—and an idiosyncratic component
that enters through the coin flip. A particularly interesting, and popular, choice
of mixture model illustrates this fact very well. Consider the following default

12 See Bolder [7, Chapter 3] for more details on this so-called beta-binomial mixture model.
13 Or, if you prefer, it can be drawn from an urn or a bucket or from your favourite scientific
computing software.
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probability definition for the ith credit obligor:

pi(Z) = pi

(

ωi0 + ωi1Z

)

, (2.4)

where Z ∼ �(a, b) and ωi0 + ωi1 = 1. This yields the gamma-Poisson
mixture implementation, which is referred to as the CreditRisk+ model in practical
applications.14 Expanding Eq. 2.4, we arrive at a very useful decomposition,

pi(Z) = piωi0
︸ ︷︷ ︸

Idio-
syncratic

component

+ piωi1Z
︸ ︷︷ ︸

Systemic
component

, (2.5)

The randomized default probability is broken into both idiosyncratic and sys-
temic pieces. The unconditional default probability as well as the ωi0 and ωi1
parameters—termed factor loadings—determine the relative importance of these
two key aspects of risk.15 Determining the appropriate values of the ω’s is a critical
aspect of the practical model implementation.

Mixture or, as they are sometimes called, actuarial models approach the problem
from a reduced-form perspective. That is, the default event as an exogenous occur-
rence. Although it certainly induces default dependence and thereby introduces a
systemic-risk element, it is silent on how default actually happens. For some, this is
a weakness, for others it is a strength. In reality, it is neither; it is simply a feature of
mixture models. In the subsequent section, we introduce a competing approach that
attacks this question from another (more structural) angle.

Colour and Commentary 13 (MIXTURE MODELS): The family of mixture
models represents a first possible step in extending the independent-default
model into the realm of systemic risk. The origins of the term mixture model
stem from the fact that the binomial structure of the model is mixed with
another random variable driving the default probability.a There are thus
two sources of uncertainty: the coin flips themselves and the probabilities
of each coin. Both elements are, in the context of each simulation, in flux.
Their combination yields a full-blown description of the permutations and
combinations of default events incorporating ideas of both idiosyncratic and

(continued)

14 The model was first suggested and popularized by Wilde [43]. An excellent, and exhaustive,
overview of this approach is found in Gundlach and Lehrbass [17].
15 We can also see how this approach nests the independent-default model. It is readily recovered
by setting ωi0 = 1. The consequence of the condition ωi0 + ωi1 = 1 is that the systemic part falls
out of the model.
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Colour and Commentary 13 (continued)
systemic risk. CreditRisk+, a popular industrial model introduced by Wilde
[43], falls into this class of portfolio credit-risk model.

a The binomial structure of the independent-default model can also, by virtue of the law of
small numbers, be written in terms of the Poisson distribution. See Bolder [7, Chapter 2]
for more details on this important equivalency.

2.2.2 The Threshold Model

Shortly after the introduction of the celebrated Black and Scholes [4] model, Merton
[30] made a central contribution to the study of risk management. In an attempt
to identify a general and consistent approach for the pricing of corporate debt, he
provided the key notion underlying much of the credit-risk literature. The idea is
that a firm practically enters into bankruptcy when its equity is exhausted. Or, in
other words, when the value of its assets dip below its liabilities. In the language of
the previous chapter, we can think of this as a situation when a firm’s capital demand
exceeds its supply.

The genius of this observation is that it provides a concrete path for the modelling
of portfolio credit risk: one needs to describe the joint distribution of the indi-
vidual credit-obligor assets in one’s credit portfolio. Merton [30] offers a detailed
approach—using continuous-time mathematics—to characterize, parametrize, and
model this situation. Some years later, Vasicek [40, 41, 42] offered a simplification
of the basic structure of Merton [30]’s proposal. Further contributions to the
literature have lead to the current family of portfolio credit-risk threshold models.

The additional modelling element stems from a description of the firm’s asset
values.16 We thus specify for the ith credit obligor in one’s portfolio, the following
variable:

yi = aiZ
︸︷︷︸

Systemic
component

+ biεi
︸︷︷︸

Idio-
syncratic

component

, (2.6)

where Z, εi ∼ i.i.d.N(0, 1) and ai, bi ∈ R are selected such that yi ∼ N(0, 1).
We are no longer flipping coins, but we are not completely in uncharted territory.

16 Practically, these can also be viewed as asset returns. Sometimes this notion is generalized to
the idea of creditworthiness index or latent state variable. The effect is the same and the details
are important; for this introductory discussion, it is probably preferable to keep the logical, asset-
related link to the original Merton [30] approach.
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Inspection of Eq. 2.6 reveals that our variable, yi , is the sum of two familiar
components: systemic and idiosyncratic risk. A single realization of Z, which
captures the systemic component, provides a common effect—experienced in
potentially different ways—for all credit counterparties. Again, this can be viewed
as a global macroeconomic variable. Each of the firm-specific εi terms describes
the idiosyncratic effect. This explains why there are I of them and they are all
independent. Although the mechanics are very different, the ε’s are conceptually
not so far removed from our coin-flipping exercise. Finally, the parameters ai and
bi (i.e., factor loadings) determine the relative importance of the systemic and
idiosyncratic parts.17

It still requires a bit more discussion to get to our default event. We wish to
describe default as the situation when a firm’s assets are less than its liabilities. We
view each yi as a (random) characterization of the firm’s assets. Let’s introduce the
value Ki to represent the liabilities. By extension, using the Merton [30] insight, we
can (cheerfully) define the default event as,

Di ≡ {yi ≤ Ki}. (2.7)

If, via the realizations of Z and εi , yi falls below the value Ki , then default will
have occurred. The firm will have exhausted its equity and find itself in bankruptcy.
This directly permits us to re-express our default indicator variable—from Eqs. 2.1
and 2.3—in the following form:

IDi ≡ I{yi≤Ki} =
{

1 : default occurs during (t, T ] when yi ≤ Ki

0 : survival until time T if yi > Ki
. (2.8)

Once again, the loss definition from Eq. 2.2 remains the same. We have simply
provided an alternative characterization of the default event.

How might we now estimate the associated credit-loss distribution? Again, we
use simulation. We begin by drawing the common Z from the standard-normal
distribution. This is the systemic piece, which determines the general state of the
world. We then draw I independent εi random variates; once again, from the
standard normal distribution. These are the specific, firm idiosyncratic elements.
Using Eq. 2.6, we combine these inputs to construct our collection of firm asset
values, or yi’s. Comparing these to their liability values permits us to evaluate our
indicator variables from Eq. 2.8 and construct a single loss outcome.18 This process
is then repeated—more or less, ad nauseum—by a computer program until we have
a sufficiently clear view of our loss distribution to estimate risk metrics.

17 These coefficients should be linked back to the CreditRisk+ ω parameters introduced in Eq. 2.5.
Do not forget that the ai and bi parameters are chosen to force yi ∼ N(0, 1); this, as we’ll see in
subsequent discussion, leads to some practical headaches.
18 This also, of course, requires a sensible value for each threshold value, Ki .
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The class of threshold models, in contrast to the mixture-model world, takes
a structural approach to the characterization of credit risk. This means that it
endogenizes the default event; or rather, default is determined within the model, not
outside of it. Again, this does not make it necessarily superior to the mixture-model
approach, just different. For multiplicity of perspective, different is good.

Colour and Commentary 14 (THRESHOLD MODELS): The family of
threshold models represents a second possible approach towards adding
the systemic element into the independent-default model. The structure is,
practically at least, rather different. It begins with the assignment of a latent
state variable—conceptually related to the idea of a firm’s assets—to each
individual credit obligor. This state variable linearly combines two elements:
a systemic and an idiosyncratic component. The term threshold model arises
from the operation required to determine each individual default event. If a
credit obligor’s state variable falls below a pre-defined threshold—which is
motivated by the firm’s level of liabilities—then default is triggered. As in the
mixture-model setting, there is a common element impacting all obligors; this
induces default correlation and creates systemic risk. The independent, firm-
specific elements represent idiosyncratic risk. CreditMetrics is a well-known
industrial model, introduced by Gupton et al. [18], that uses the threshold-
model methodology. A twist upon this approach will form the foundation of
the our production credit-risk model.

2.3 Asset-Return Dynamics

Equipped with this background, we can now proceed to examine—in rather greater
detail and mathematical rigour—our specific choice. As previously indicated, the
origin of capital modelling at the NIB dates back a few decades. As with most
institutions, the framework has moved forward in a gradual—and sometimes
uneven—manner. The bank’s economic-capital model was initially implemented
in, and around, 2004 using an external vendor tool. Some years later, an in-house
approach was developed and brought into production. Over the course of time,
improvements and adjustments to the basic methodology were introduced. We
will refer to this as the legacy model. This situation continued until it received,
during 2019 and 2020, a serious conceptual and practical overhaul. Following exten-
sive statutory revision, a new implementation involving numerous methodological
changes became a necessity. The remaining sections of this chapter seek to help the
reader gain a better understanding of these choices, which together can be described
as our current (or revised) production model.
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While our legacy approach can be classified as a multivariate, multi-period
Gaussian threshold model, it has a few features that differ from the general class of
such models. As such, it is useful and important to review, motivate, and to the extent
reasonable and feasible, derive the main elements of the legacy approach. This will
provide some context and justification for the recently revised methodology.

NIB has, from the beginning, opted for a threshold model. Use of this approach
requires one to introduce, as lightly introduced in the previous section, what
is referred to as a latent creditworthiness index. In the parlance of the Merton
[30] approach, this would be related to the value of an obligor’s assets (or asset
return).19 The generalization to a creditworthiness index is thus sensible, but it
naturally requires a mathematical structure. Specification of the mechanics of one’s
creditworthiness process is thus a first step into the construction of a threshold
model. We are going to allocate quite a bit of effort into understanding this first
step, because it has important implications for the overall development of the legacy
(and revised) NIB credit-risk modelling framework.

The characterization of the asset or creditworthiness state variable has custom-
arily been done in an industrial strength manner. The legacy approach does not
deviate from this practice. A bit of formality is thus in order. On the probability
space, (�,F ,P), a slight generalization of Merton [30]’s approach leads to the
following stochastic differential equation (SDE) to describe the ith obligor’s latent
(i.e., unobserved) creditworthiness process,

dX̃i(t) =
J
∑

j=1

β̃ij dZj (t)+ σ̃idWi(t). (2.9)

These are the intertemporal dynamics of {X̃i(t) : i = 1, . . . , I, t ≥ 0}, which
is a multivariate system of creditworthiness indices; there is one for each obligor.
Equation 2.9 lies at the heart of the legacy modelling methodology; indeed, some
variation on it is, in fact, the cornerstone of a sizable proportion of extant industrial
and academic models.

Equation 2.9, despite being only a single expression, requires a fairly dramatic
amount of explanation. The actual unpacking process will provide useful insight
into the structure of the model. Let us, therefore, try to address each definitional and
implicational point in turn:

1. DRIFT: The SDE in Eq. 2.9 does not have a drift term; as such, each increment
of Xi(t) should be centred around zero for all i = 1, . . . , I .20 One could

19 This latter interpretation makes logical sense in the context of a corporate entity, but can be a bit
more complicated for a sovereign, municipality, or government agency.
20 The actual individual values of the underlying process, {Xi(t) : i = 1, . . . , I, t ≥ 0}, will
however depend on the set of starting values for X. If they are all set to zero at inception, then
the expected value of each Xi will remain zero across time, although the actual outcomes will
practically deviate from this point.
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potentially imagine a generic drift term related to the business cycle, but not
only would this be difficult to identify, its incorporation would create important
challenges for the model’s implementation.

2. SYSTEMIC FACTORS: The stochastic element in the first term in Eq. 2.9,
{Zj(t) : j = 1, . . . , J, t ≥ 0}, is a correlated system of Brownian motions
with instantaneous correlation matrix, S̃. Each individual Zj is intended to
represent a market-related systemic risk factor. In general, this could be related
to macroeconomic outcomes, commodity prices, or even volatility. Practically,
for the purposes of our model, these factors are considered to be regional- and
industrial-related variables.

3. IDIOSYNCRATIC FACTORS: The second stochastic term in Eq. 2.9 is a
standard scalar Wiener process, {Wi(t) : t ≥ 0} for i = 1, . . . ., I . Each Wi is,
by construction, independent of both one another and the correlated systemic
risk factors. These elements, therefore, describe the idiosyncratic (i.e., specific)
risks associated with each individual obligor.

4. FACTOR DIMENSIONALITY: As a practical matter, we have that I � J . The
individual obligors in our portfolio are counted in hundreds, whereas the max-
imal number of correlated systemic factors is unlikely to exceed a few dozen.
This is both conceptually important—that is, there are relatively few sources
of systemic risk, but many types of idiosyncratic risk—and also of practical
interest since it determines the dimensionality of one’s parametrization.

5. PROPERTIES OF BROWNIAN MOTION: The presence of the Brownian
motions implies time-independent increments and Gaussianity. There is some-
thing for everyone. To be more specific—for the probabilist or statistician—the
time-increment of a standard Wiener process associated with the ith credit
obligor, Wi(t) − Wi(s) with t > s, are independent and distributed as
N(0, t − s). Moreover, given a set of time increments, t > s > v, then
the increments Wi(t) − Wi(s) and Wi(s) − Wi(v) are independent. For an
econometrician, this implies that the idiosyncratic factors are independent
from both a cross-sectional and time-series perspective. The systemic factors,
however, are not cross-sectionally independent; their linear dependence is
captured by the instantaneous correlation matrix, S̃. Since the system {Zj(t) :
j = 1, . . . , J, t ≥ 0} is a collection of Brownian motions, non-overlapping
systemic increments remain independent over time. For the economist, this
implies that—whether from an idiosyncratic or systemic perspective—shocks
regarding the creditworthiness of our set of obligors in one period are inde-
pendent of similar shocks received in other periods. In the real world, for the
practitioner, this is quite unlikely to be true. There are probably temporal trends
in the evolution of creditworthiness, but this model assumes them away. Even
if you believed such trends exist, however, reliably identifying their magnitude
and dynamics is likely to be empirically very difficult (or even impossible).

6. TIME CONTINUITY: In this general setting, Eq. 2.9 implies that our cred-
itworthiness system has continuous sample paths. While this is an attractive
theoretical property, practically we cannot observe the creditworthiness of any
entity at each possible instant in time. Economic-capital is typically estimated
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in annual increments; in some cases, one might wish to consider monthly credit
migration, but this is probably the feasible lower limit of time granularity. The
consequence is that it will be necessary to discretize Eq. 2.9 to create a workable
implementation.

7. TIME HOMOGENEITY: The model parameters, β̃ij , σ̃i ∈ R for all i =
1, . . . , I and j = 1, . . . , J , determine the instantaneous relative weight (or
loading) of each systemic and idiosyncratic risk factor to an individual obligor’s
creditworthiness. They also, indirectly, determine the relative weights of the
systemic and idiosyncratic risk factors for each individual obligor. Since these
parameters are not indexed to time, we may safely surmise them to be time
homogeneous. In other words, the importance of a given risk factor to a credit
counterparty’s creditworthiness is assumed to be constant over time. This, as
a choice, is probably somewhat dubious; specification of meaningful time-
varying parameters is, however, a daunting undertaking.

8. SYSTEMIC FACTOR LOADINGS: The systemic β̃ parameters and the cor-
related system of Brownian motions, {Zj(t); j = 1, . . . , J ; t ≥ 0}, are
responsible for the portfolio effects. They do so, however, in different ways.
The systemic risk factors describe the current state of regional and sectoral
risk. The instantaneous correlation matrix, S̃, captures the dependence between
these outcomes.21 The β̃ parameters, as previously suggested, determine the
loading of each risk factor onto a given obligor. The actual interdependence
between the creditworthiness of each obligor thus depends on the β̃ values and
the relevant entries in S̃. Were S̃ to be an identity matrix, then all of the cross-
obligor correlations would be determined by the β̃ parameters. If, however, all
of the β̃ parameters were set to zero, then systemic risk is removed from the
model and creditworthiness can be considered to be entirely idiosyncratic. This
would bring us back to the previously discussed independent-default model.22

9. PARAMETER DIMENSIONALITY: The theoretical number of model param-
eters is quite unsettling. There are, in principle, J × I systemic and I

idiosyncratic parameter values. For a representative portfolio of 500 obligors
and 24 systemic risk factors—values roughly consistent with the current
implementation—this amounts to in excess of 10,000 possible model param-
eters. This is a clearly unmanageable (even laughable) situation. Some form of
defensible parametric restrictions will be required to manage the dimensionality
needed to simultaneously inform the actual dependence structure between
obligor creditworthiness and thus, indirectly, portfolio-level default and credit
migration.

21 One could—and many model implementations actually do—orthogonalize this collection of risk
factors to create a set of independent systemic risk drivers. In this case, the factor loadings would
solely determine the factor correlations.
22 It is difficult to conceive of placing all of the responsibility upon the correlation matrix, S̃. Setting
all β̃ parameters to unity (or some other fixed value) does not quite achieve this; instead such an
action essentially reduces the model to a single factor structure, which is an equally weighted linear
combination of all systemic factors.
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10. MAPPING Xi TO CREDIT MIGRATION: Each increment is a zero-mean, time-
scaled Gaussian outcome. This implies that, over time, the X̃ values will cover
the support of the Gaussian distribution. Each X̃i (t) can thus, in principle,
take values over the interval, (−∞,∞). In practice, assuming each X̃i (0) is
normalized to zero and divided by the instantaneous volatility, actual simulated
outcomes will cover the continuum from roughly (−5, 5). There are, however,
only q discrete credit-state outcomes. An important element of the model will,
therefore, involve creating a link between continuous creditworthiness and
discrete credit-state outcomes. By necessity, given their differing scales, this
will require a many-to-one mapping between the creditworthiness and credit-
state values.

There are clearly many details and insights that can be drawn from this choice
of creditworthiness process. Equation 2.9 is thus a critical foundational element of
the legacy model, but by itself, it raises more questions than it actually answers.
In the following sections, we will make numerous adjustments to Eq. 2.9 with a
view towards addressing some of the previous points and, to the extent possible,
simplifying and standardizing the development. This journey will bring us, rather
better prepared and informed, to our production model.

Colour and Commentary 15 (DISMANTLING THE CONTINUOUS-TIME

MACHINERY): The legacy approach attempted to make a clear link to the
original Merton [30] framework replete with its continuous-time mathemat-
ical structure. The first step is the specification of a multivariate stochastic
differential equation to describe the latent, creditworthiness state variable for
each credit obligor. Indeed, this is a very standard beginning. While theo-
retically appealing, it is practically rather difficult to use. Most importantly,
the incremental complexity does not provide significant, if any, additional
value in terms of flexibility and descriptive improvement. As a consequence,
it makes logical sense to move as quickly as possible to simplify a number of
key aspects of the legacy structure. This constructive approach may, to some
readers, seem a bit excessive and painful. There is certainly truth to that view,
but this form of exposition was selected because it permits us, from a first-
principles pedagogical perspective, to reveal, motivate, and resolve a range
of important issues and choices.

2.3.1 Time Discretization

The continuous-time construction is a bit cumbersome. Using it will require
potentially complex mathematics for little pay-off—a situation to be generally
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avoided—since the model will be implemented in discrete time.23 Indeed, it
is unlikely that more than one or two steps will be taken. As a consequence,
before proceeding further, it makes logical and practical sense to discretize the
creditworthiness SDE presented in Eq. 2.9. There are a few alternatives techniques
for such an operation, but we opt for the simplest approach: the simple and intuitive
Euler-Maruyama method.24 The first step is to create a partition of our time horizon,
[0, T ] into a collection of κ sub-intervals:

0 = t0 < t1 < t2 < · · · < tκ = T . (2.10)

Generally, the length of each subinterval is equal. That is, �t = tk− tk−1 is constant
for all k = 1, . . . , κ . Given this partition, we proceed to transform Eq. 2.9 over any
arbitrary discrete time interval, [tk−1, tk], into:

Xi(tk)−Xi(tk−1) =
J
∑

j=1

β̃ij

(

Zj (tk)− Zj (tk−1)

)

︸ ︷︷ ︸

�Zj(k)

+σ̃i
(

Wi(tk)−Wi(tk−1)

)

︸ ︷︷ ︸

�Wi(k)

, (2.11)

�Xi(k) =
J
∑

j=1

β̃ij�Zj (k)+ σ̃i�Wi(k),

where the � operator is introduced to somewhat reduce the notational burden.
Recall, that the variance of each Brownian increment remains �t . We may, with
the following adjustment, slightly simplify our life and take one step closer to more
typical threshold models. In particular, we write

�Xi(k) =
√
�t√
�t

︸ ︷︷ ︸

=1

⎛

⎝

J
∑

j=1

β̃ij�Zj(k)+ σ̃i�Wi(k)

⎞

⎠

︸ ︷︷ ︸

Eq. 2.11

, (2.12)

=
J
∑

j=1

β̃ij
√
�t

︸ ︷︷ ︸

βij

�Zj (k)√
�t

︸ ︷︷ ︸

�zi(k)

+ σ̃i
√
�t

︸ ︷︷ ︸

σi

�Wi(k)√
�t

︸ ︷︷ ︸

�wi(k)

,

for k = 1, . . . , κ where �zj (k) ∼ N(0,�jj ) and �wi(k) ∼ N(0, 1) for all i =
1, . . . , I and j = 1, . . . , J . The beauty of this trick is that the parameters have
also been scaled by the square-root of the common time step so that we do not

23 Continuous-time models are essential in pricing applications where arbitrage relationships need
to hold constantly over time. In risk-management settings, such as this one, this property is rarely
required permitting us to work freely in discrete time.
24 See Oksendal [34] for more information on this technique.
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need to carry this aspect around with us in our development.25 For this reason,
βij = β̃ij

√
�t and σi = σ̃i

√
�t thus represent the parametrization—which must

be determined empirically—associated with our selected time step. We also replace
the instantaneous correlation matrix (i.e., S̃) for the correlated Brownian system, Z,
with a non-instantaneous correlation matrix, �.

Since we will be taking annual time steps, let’s simplify our life somewhat by
setting �t = 1; while this is not really in the spirit of discretization, this decision is
easily relaxed and it rather dramatically eases the notational burden. Finally, since
all time steps are assumed to be equal, we may drop the reference to the kth time
step leading to the following streamlined, discrete-time representation of Eq. 2.9:

�Xi =
J
∑

j=1

βij�zj + σi�wi, (2.13)

for i = 1, . . . , I . Depending on the context, of course, it may be useful to
reintroduce specific reference to the time step in the notation. One, for example,
might wish to include some notion of time dependency in the economic-capital
computations.26

To summarize, not only is Eq. 2.13 easier to work with—from a mathematical
perspective—it finds itself in a more convenient, and realistic, form for the important
task of model parametrization. We have basically taken—for better or for worse—a
decisive step away from the world of continuous-time mathematics.

2.3.2 Normalization

Equation 2.13 is qualitatively similar to the Vasicek [40, 41, 42] formulation—
touched upon in the introductory section—but it is missing a few important
elements. More specifically, there is a lack of clarity about the relative importance
of the systemic and idiosyncratic elements and the creditworthiness increment,
for a given obligor, is not standard normal. These two elements are, of course,
determined by choices of the β and σ elements. Practically, it is extremely useful,
for the interpretation of the model structure and its results, to directly handle these
two aspects. It also indirectly solves issues surrounding the determination of the σ
parameters.27

25 Indeed, from a statistical perspective, the parameters will be consistent with the time steps used
in the underlying estimation data.
26 Consider a financial instrument, with a maturity less than T , that needs to be reinvested. Deposits
are one example, where the decision to reinvest would reasonably depend on the creditworthiness
index—and associated credit state—in the previous period.
27 As we’ll see in later discussion, there are sensible proxies for the common, systemic sources of
risk, but the idiosyncratic element is, by its very definition, much more difficult to manage.
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The first stepping stone in this development involves computation of the variance
of the systemic element in Eq. 2.13. Undeniably tedious—and frankly is much
more naturally expressed in matrix notation—its derivation is both informative and
essential. In particular, we have

var

⎛

⎝

J
∑

j=1

βij�zj

⎞

⎠ = E

⎛

⎜

⎝

⎛

⎝

J
∑
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βij�zj

⎞

⎠

2

−
⎛

⎝E

⎛

⎝

J
∑

j=1

βij�zj

⎞

⎠

⎞

⎠

2
⎞

⎟

⎠ , (2.14)

= E

⎛

⎜

⎝

⎛

⎝

J
∑

j=1

βij�zj

⎞

⎠

2

−
���������⎛

⎜

⎝

J
∑

j=1

βij E(�zj )
︸ ︷︷ ︸

=0

⎞

⎟

⎠

2⎞

⎟

⎠ ,

= E

⎛

⎝

⎛

⎝

J
∑

j=1

βij�zj

⎞

⎠

(

J
∑

k=1

βik�zk

)
⎞

⎠ ,

= E

⎛

⎝

J
∑

j=1

J
∑

k=1

βijβik�zj�zk

⎞

⎠ ,

=
J
∑

j=1

J
∑

k=1

βij βikcov
(

�zj ,�zk
)

,

=
J
∑

j=1

J
∑

k=1

βij βik�jk,

for i = 1, . . . , I . The takeaway from Eq. 2.14 is that the variability in the systemic
contribution to the creditworthiness of the ith obligor is a fairly complicated
function of the β choices and the covariance structure of the systemic risk factors.

The standard deviation of the systemic-risk contribution—which is essential for
normalization—is now simply defined as

σ

⎛

⎝

J
∑

j=1

βij�zj

⎞

⎠ =
√

√

√

√

J
∑

�=1

J
∑

k=1

βi�βik��k. (2.15)

Putting this quantity in our back pocket for the moment, we now rewrite (rather
boldly) Eq. 2.13 in the following form,

�Xi = αi

J
∑

j=1

βij
√

√

√

√

J
∑

�=1

J
∑

k=1

βi�βik��k

︸ ︷︷ ︸

Eq. 2.15

�zj +
√

1 − α2
i �wi, (2.16)
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where αi ∈ (0, 1) ⊂ R and σi =
√

1 − α2
i for i = 1, . . . , I . This is the discretized

and normalized form of our creditworthiness indicator state variable. Although
technically correct, the form of the factor loadings in Eq. 2.16 is in dire need of
some simplification. Let’s, therefore, define

Bij = βij
√

√

√

√

J
∑

�=1

J
∑

k=1

βi�βik��k

≡ βij

σ

⎛

⎝

J
∑

j=1

βij�zj

⎞

⎠

, (2.17)

for i = 1, . . . , I and j = 1, . . . , J . This allows us to restate Eq. 2.16 more
succinctly as

�Xi = αi

J
∑

j=1

Bij�zj +
√

1 − α2
i �wi. (2.18)

At first glance, this may not seem to be much in the way of progress. Indeed, it
may appear to actually further complicate the creditworthiness process dynamics.
Practically, we have introduced two important elements:

1. there is an α parameter, for each obligor, that determines the relative importance
of the systemic and idiosyncratic contributions to the creditworthiness index—it
is broadly referred to as the systemic weight; and

2. the normalized factor loadings (i.e., the B’s) work along the specification of
the systemic weights (i.e., the α’s), ensure that each �Xi outcome has unit
variance.28

Both of these points naturally require demonstration. Indeed, the systemic weights
(i.e., the αi’s) have, more or less, fallen from the sky. The easiest place to start is to
verify the zero expectation. In particular, for the set of I credit counterparties,

E (�Xi) = E

⎛

⎜

⎜

⎜

⎜

⎜

⎝

αi

J
∑

j=1

Bij�zj +
√

1 − α2
i �wi

︸ ︷︷ ︸

Eq. 2.18
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(2.19)

= αi

J
∑

j=1

Bij E
(

�zj
)

︸ ︷︷ ︸

=0

+
√

1 − α2
i E (�wi)
︸ ︷︷ ︸

=0

,

= 0,

28 As we’ll see shortly, the cross correlation between any two increments—say �Xn and �Xm, for
example—will be more complicated.
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as expected. This is a relatively obvious consequence of the previous structure, but
is nonetheless usefully verified.

Let’s now move on to the variance of the collection of creditworthiness incre-
ments. It has the following form,

var (�Xi) = var

⎛

⎜

⎜

⎜

⎜

⎜

⎝

αi

J
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︸ ︷︷ ︸

Eq. 2.18
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= var
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Eq. 2.17
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Eq. 2.14

+(1 − α2
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J
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Eq. 2.14

+1 −��α
2
i

= 1,

as desired. This is a rather more laborious computation, but it clearly illustrates the
effectiveness of the normalization in the previous section. Each individual �Xi ∼
N(0, 1); this simple property, as will be demonstrated in a moment, dramatically
streamlines the default and credit-migration computations.
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Another rather unexciting computation involves identifying the specific form of
the cross asset-correlation between the nth and mth arbitrary obligors in one’s credit
portfolio. Working from first principles, it is derived as29

cov (�Xn,�Xm) = E

⎛

⎝

⎛

⎝�Xn − E(�Xn)
︸ ︷︷ ︸
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⎞

⎠ ,(2.21)
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Eq. 2.17
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29 In the underlying derivation, it is useful to recall that, due to previous independence assumptions,
the terms E(�Zj ·�Wi) and E(�Wi ·�Wj) vanish for all (distinct) choices of i and j .
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J
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⎠αm,

= αn · ρnm · αm,

where the final step follows from the definition of correlation. We use the succinct
expression, ρnm, to describe the observed linear dependence between the factor-
loaded systemic factors of the nth and mth credit obligors. This quantity can be
referred to as factor correlation. Moreover, since var(�Xi) = 1 for all choices of
i, the covariance and correlation of the creditworthiness increments are equivalent.
Practically, this means that

cov (�Xn,�Xm) = corr (�Xn,�Xm) , (2.22)

= αn · ρnm · αm.

As a quick sanity check, setting n = m, we have that ρnn = 1, by definition.
The consequence is that α2

n is the contribution to variance from the systemic factor.
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When adding the idiosyncratic component of variance, 1− α2
n, we replicate the unit

variance result from Eq. 2.20.30

The most important conclusion from Eq. 2.22 is the interpretation of the α

parameters. The individual αn terms, which we should get in the habit of referring
to as systemic weights, can be viewed as driving the correlation between the nth
creditworthiness increment and the systemic factor. An easy way to see this is to
consider a classic one-factor model,

�Xn = αn�G+
√

1 − α2
n�wn, (2.23)

where�G is a single global risk factor and we can assume that βn is equal to unity. If
we compute the correlation of the creditworthiness increment with the single global
factor, G, we have

cov(�Xn,�G) = cov

(

αn�G+
√

1 − α2
n�wn,�G

)

, (2.24)

= E

((

αn�G+
√

1 − α2
n�wn

)

�G

)

,

= αn E
(

�G2
)

︸ ︷︷ ︸

=1

,

= αn.

A similar computation to that found in Eq. 2.21—in the univariate setting—
reveals that cov(�Xm,�Xn) = αnαm. The idea is analogous in our multivariate
case. To handle the additional complexity of the systemic factors, however, the
αn and αm terms need to load onto the more involved cross-correlation term,
ρnm. We thus have a parsimonious and intuitive interpretation of the pairwise
correlation between obligors in our credit portfolio. Moreover, this addition brings
our model much closer, from a practical perspective, to the standard threshold-model
implementation.

The preceding pages have been a flurry of changing notation and derivations.
It is not always easy to follow all of the various steps. Table 2.2 attempts to help
by chronicling the evolution of our state variables and coefficients throughout the
discretization and normalization processes. Although the final column is basically
our end point, there is value in following the steps from our stochastic differential
equation—analogous to the one found in the Merton [30] work and more common
a few decades ago—and the Vasicek [40, 41, 42] style formulation.

30 Recall that, by independence, the idiosyncratic element impacts the variance measure, but does
not contribute to covariance.
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Table 2.2 Keeping track of variables and coefficients: This table helps us keep track of the various
state variables, their sub-components, and coefficients as we work from the original stochastic
differential equation to the final discretized and normalized form in Eq. 2.18.

Variable Continuous time Discretized Normalized

State-variable increment dXi(t) �Xi �Xi

Systemic-factor increment dZj (t) �zj �zj

Idiosyncratic-factor increment dWi(t) �wi �wi

Systemic-factor loading β̃ij βij Bij

Idiosyncratic-factor loading σ̃i σi

√

1 − α2
i

Systemic weight 1 1 α2
i

Colour and Commentary 16 (GAUSSIAN-THRESHOLD MODEL): Despite
the heavy first step involving the introduction of Eq. 2.9, the situation has
improved. Time discretization, factor-level normalization, and the introduc-
tion of a proper form for the systemic weights have had a useful effect. We
can now clearly see that, at its heart, the legacy model essentially follows
a multivariate Gaussian-threshold methodology.a Examination of the latent-
variable correlation structure also reveals a rich interaction between systemic
weights and systemic-factor correlations. Specifying these coefficients will
actually bring the model to life. For the remainder of this chapter, we will keep
the discussion fairly abstract. Chapter 3 will address the important question
of model parametrization.

a It is not, however, expressed in its canonical form. For readers interested in more
background, Bolder [7, Chapter 4] examines the class of threshold models in significant
detail.

2.3.3 A Matrix Formulation

Another awkward aspect of the base formulation is its scalar representation. Given
the large potential numbers of correlated and independent risk drivers—along with
their loadings—it makes much more sense to place our discretized creditworthiness
system into matrix notation. This turns out, unfortunately, to be a bit complicated.
Let us begin with the most natural representation

⎡

⎢

⎣

�X1
...

�XI

⎤

⎥

⎦

︸ ︷︷ ︸

I×1

=
⎡

⎢

⎣

α1 · · · 0
...
. . .

...

0 · · · αI

⎤

⎥

⎦

︸ ︷︷ ︸

I×I

⎡

⎢

⎣

B11 · · · B1J
...

. . .
...

BI1 · · · BIJ

⎤

⎥

⎦

︸ ︷︷ ︸

I×J

⎡

⎢

⎣

�z1
...

�zJ

⎤

⎥

⎦

︸ ︷︷ ︸

J×1
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+

⎡

⎢

⎢

⎢

⎣

√

1 − α2
1 · · · 0

...
. . .

...

0 · · ·
√

1 − α2
I

⎤

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

I×I

⎡

⎢

⎣

�w1
...

�wI

⎤

⎥

⎦

︸ ︷︷ ︸

I×1

. (2.25)

If we define the base systemic weights as the following diagonal matrix,

A =
⎡

⎢

⎣

α1 · · · 0
...
. . .

...

0 · · · αI

⎤

⎥

⎦ , (2.26)

then it naturally follows that (I − A2)
1
2 ∈ R

I×I is readily calculated.31 Assigning
reasonable symbols to the remaining matrices and vectors in Eq. 2.25, we can
concisely express Eq. 2.19 as

�X = AB�z+ (I − A2)
1
2�w, (2.27)

where B ∈ R
I×J is a matrix of normalized factor loadings, �z ∈ R

J×1 is a column
vector of systemic risk factors, and �w ∈ R

I×1 is a column vector of idiosyncratic
risk variables. Equation 2.27 is basically a simplified recipe for describing the entire
system, �X ∈ R

I×1, of latent creditworthiness state variables in a single step. This
quantity falls into the nice-to-have category, but it is not used very frequently.

While we have Eq. 2.27, let’s put it to good use. The asset-return (or creditwor-
thiness index) correlation matrix is of central importance in simulating economic-
capital outcomes, trouble-shooting simulation results, and interpreting and com-
municating the model values. The more we can learn about it, the better our
overall understanding. Examination in matrix notation has an important advantage
of allowing us to see the entire picture. Let’s see where Eq. 2.27 takes us. By
construction, we have that �z ∼ N(0,�) and �w ∼ N(0, I ). As a consequence,
it follows that

var (�X) = var

(

AB�z+
(

I − A2
) 1

2
�w

)

, (2.28)

= AB var (�z)
︸ ︷︷ ︸

�

(AB)T +
(

I − A2
) 1

2
var (�w)
︸ ︷︷ ︸

I

(
(

I − A2
) 1

2
)T

31 This follows from the fact that A is diagonal, but also that each αi falls in the unit interval. Any
negative αi would otherwise lead to complex values. It should also be clear, from context, that the
identity matrix has dimensions I × I , but we’ll underscore that point here to be certain.
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= AB�BTA+
(
(

I − A2
) 1

2
)
(

I − A2
) 1

2
)

,

= AB�BTA+ I − AIA
︸︷︷︸

A2

,

= I + A

(

B�BT − I

)

A,

which is an interesting, and somewhat unexpected, form.32 Although each �Xi

has unit variance, the full asset-correlation matrix is rather more complicated. In

particular, we have that �X ∼ N
(

0, I + A

(

B�BT − I

)

A

)

. All the main

characters—systemic weights, normalized factor loadings, and factor correlations—
make an appearance. The basic pattern is, upon examination, rather similar to the
results from Eq. 2.21.

Equation 2.28, while interesting and occasionally useful, is not the most typical
mathematical representation of our creditworthiness index. In most calculations, we
find ourselves working at the credit obligor level. We typical use the less elegant,
but surprisingly helpful, mixed-matrix representation. To get to this point, we first
define the following fairly trivial, but convenient, row-vector quantity:

βi =
[

βi1 · · · βiJ .
]

. (2.29)

This immediately allows us to restate the awkward double-sum in the factor-loading
normalization from Eq. 2.17 as,

√

βi�β
T
i =

√

√

√

√

J
∑

�=1

J
∑

k=1

βi�βik��k. (2.30)

The normalized factor loadings thus become

Bi =
[

Bi1 · · · BiJ

]

, (2.31)

= 1
√

βi�β
T
i

βi
︷ ︸︸ ︷

[

βi1 · · · βiJ
]

.

32 Indeed, it is hard to tell if it makes sense. The corner cases of A ≡ 0 and A ≡ I—representing
the domination of idiosyncratic and systemic risk, respectively—collapse to values of I and B�BT

for Eq. 2.28. This quick sanity check suggests that the formulation, at least for the extremes, is
mathematically reasonable.
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There is nothing new in this representation, but it is rather easier to read (and
manipulate). Using these constructs, for each i, we may now write our discretized
creditworthiness index as

�Xi = αi
βi

√

βi�β
T
i

︸ ︷︷ ︸

Bi

�z+
√

1 − α2
i �wi, (2.32)

= αiBi�z+
√

1 − α2
i �wi.

In short, we have vectorized the interaction between the systemic variables and their
factor loadings, but otherwise maintained a scalar structure.33 Again, there is not
much exciting going on here; Eq. 2.32 simply turns out to be both a convenient and
parsimonious representation.

Colour and Commentary 17 (MIXED MATRIX NOTATION): It is entirely
possible—and indeed, even advisable—to write our collection of I discretized
and normalized creditworthiness indices in matrix notation. The final result
is a concise and interesting mathematical representation. There is, however,
a problem. Most common mathematical operations, in this setting, tend to
occur at the obligor level. This means that the full matrix form is seldom
employed. Instead, it is more common to work with the mixed-matrix notation
summarized in Eq. 2.32. The interaction between the systemic variables and
their factor loadings is vectorized, but otherwise the scalar structure has been
maintained. Slightly clumsy, it nevertheless turns out to be an efficient and
pragmatic way to represent the individual latent creditworthiness indices. In
particular, this layered approach to the problem turns out to be very helpful
in managing the parametrization questions addressed in Chap. 3.

2.3.4 Orthogonalization

Before jumping to the remainder of the proper model construction, we will take a
short detour. In the base formulation, the systemic factors are correlated. Abstracting
from the systemic weights, this implies that the actual factor structure depends on a
complicated combination of the factor loadings and the factor correlation matrix.
Many industrial applications are constructed such that the systemic factors are
actually orthogonal. This clearly offers some conceptual advantages. The good news

33 With Bi ∈ R
1×J and �z ∈ R

J×1, their dot product (i.e., Bi�z) happily reduces to a scalar.
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is that, with a bit of work, Eq. 2.32 can be readily orthogonalized. In this brief aside,
we will examine precisely how this might be done.

The discretrized systemic factor correlation matrix of �z is, by construction,
symmetric, real-valued, and positive definite. The consequence is that we can
decompose � as,

� = CDCT , (2.33)

whereD ∈ R
I×I is a diagonal matrix of positive real-valued eigenvalues.C ∈ R

I×I
is the collection of orthonormal eigenvectors.34 The properties of D allow us to
immediately rewrite Eq. 2.33 as

� =
Eq. 2.33

︷ ︸︸ ︷

C D
1
2D

1
2

︸ ︷︷ ︸

D

CT , (2.34)

= CD
1
2 I
(

CD
1
2

)T

,

where, once again, I denotes the identity matrix.35

This might seem like a curiosity, but it is just what we need. Recall that �z ∼
N(0,�). We can actually reconstruct this quantity starting from �v ∼ N(0, I );
that is, a vector of I i.i.d. standard normal variates. Indeed, we might simply define

�z = CD
1
2�v. (2.35)

The expectation of �v is clearly zero, but what about its variance? This is easily
verified:

var(�z) = var
(

CD
1
2�v

)

, (2.36)

= CD
1
2 var (�v)
︸ ︷︷ ︸

I

(

CD
1
2

)T

,

= CDCT ,

= �.

34 This is a special case of the eigenvalue problem, which is sometimes referred to as the
spectral decomposition. Much more background can be found—in increasing levels of theoretical
complexity—in Harris and Stocker [21, Section 9.9], Press et al. [35, Chapter 9], and Golub and
Loan [15, Chapter 8].
35 There are, it turns out, other ways to do this. We could define U = CD

1
2 implying that � =

UUT , which is often referred to as the Cholesky decomposition of �.
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The consequence is that �z = CD
1
2�v ∼ N(0,�). The immediate corollary is

that by introducing a slight variation on our normalized factor loadings as

B̆i = BiCD
1
2 , (2.37)

we can restate Eq. 2.32 as,

�Xi = αiB̆i�v +
√

1 − α2
i �wi. (2.38)

To avoid more repetitive calculations, we leave it as an exercise for the reader
to verify that �Xi retains unit variance—that is, �Xi ∼ N(0, 1)—under this
transformation.36

Ultimately, it makes little practical difference if one defines the model using the
Bi or B̆i formulation of the factor loadings. The orthogonalized implementation
offers conceptual clarity in the interpretation of the coefficients, while parametriza-
tion is slightly easier to manage with the base approach. It is ultimately a question
of taste. The current implementation employs the Bi definition, but we are keenly
aware that both methods are entirely legitimate.37

2.4 The Legacy Model

Our legacy credit-risk economic capital model—used in production until late
2020—was a version of the multivariate Gaussian threshold model. Thus far, we
have principally focused on the asset-return, or creditworthiness, state variables. In
this section, we will incorporate the remaining elements required to flesh out the
full-blown model.

2.4.1 Introducing Default

Each individual default event is defined, in the spirit of the threshold model
introduced in the first section, as

I{�Xi≤Ki}, (2.39)

36 As a hint, it suffices to show that B̆i B̆T
i = 1.

37 In Chap. 11, we will actually exploit this orthogonalized form within some interesting Pillar II
regulatory calculations.
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where Ki represents an as-yet-undefined default threshold. In words, this implies
that if the realization of the creditworthiness index falls below Ki , then the obligor
is deemed to have entered the default state. Following the Merton [30] logic, we can
think of the Ki value as being somehow related to the firm’s liabilities.

The immediate challenge is to determine a sensible value for Ki . While there
is a range of possible choices, one option dramatically simplifies the problem and
provides an entirely logical answer. The basic idea is to calibrate the expected value
of the default event to the probability of default associated with the ith credit obligor.
Defining the one-period default probability of the ith credit counterpart as pi , we
have

E
(

I{�Xi≤Ki}
) = pi, (2.40)

P (�Xi ≤ Ki)
︸ ︷︷ ︸

�Xi∼N(0,1)

= pi,

� (Ki) = pi,

�−1 (� (Ki)) = �−1 (pi) ,

Ki = �−1 (pi) ,

where �(·) and �−1(·) denote the cumulative and inverse cumulative standard
normal distribution functions, respectively.38 This allows us to directly restate the
default event more concretely as,

I{�Xi≤�−1(pi)}, (2.41)

for i = 1, . . . , I . In turn, this definition permits us to write down a straightforward
expression for the total default loss in one’s portfolio as,

LD =
I
∑

i=1

ci (1 − Ri )
︸ ︷︷ ︸

γi

I{�Xi≤�−1(pi )}, (2.42)

where—drawing from Table 2.1—ci , Ri , and γi denote the ith counterparty’s
exposure, recovery rate, and loss-given-default, respectively. In a one-period,
default-only setting, the distribution of LD is precisely our modelling object of
interest.

The default probability estimate, pi , is an unconditional estimate of the failure
of the ith obligor to meet its credit obligations—this value relates only to each
counterpart on an individual basis. The entire justification for the addition of �Xi ,
however, was to induce dependence between these default events. To understand

38 In principle, the periodicity of the default probability should be consistent with the length of the
discretized time step �Xi .
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better how this works, we can examine the probability of a default event conditional
upon a given realization of the set of systemic risk factors. This is defined as,

P

(

�Xi ≤ �−1(pi)

∣

∣

∣

∣
�Z

)

= P

⎛

⎜

⎜

⎝

αiBi�z +
√

1 − α2
i �wi

︸ ︷︷ ︸

Eq. 2.32

≤ �−1(pi)

∣

∣

∣

∣

∣

∣

∣

∣

�z

⎞

⎟

⎟

⎠

, (2.43)

pi(�z) = P

⎛

⎝�wi ≤ �−1(pi)− αiBi�z
√

1 − α2
i

∣

∣

∣

∣

∣

∣

�z

⎞

⎠ ,

= �

⎛

⎝

�−1(pi)− αiBi�z
√

1 − α2
i

⎞

⎠

≡ �

⎛

⎝

�−1(pi)− αi B̆i�v
√

1 − α2
i

⎞

⎠ ,

which follows directly from the fact that the idiosyncratic shock, �wi , is a standard
normal variate. Just for fun, Eq. 2.43 also includes the orthogonalized version of
the model. In either case, the consequence is that large negative outcomes of the
systemic risk factors will tend, for all obligors, to push the probability of default
upwards. This is the source of default dependence. Since different obligors load
onto the individual systemic risk factors in varying ways, the actual dependence
structure is actually quite complex. Nevertheless, this quantity provides significant
insight into the inner workings of our credit-risk model.

Colour and Commentary 18 (DEFAULT CONDITIONALITY): The thresh-
old model induces default correlation by conditioning each credit ogligor’s
latent creditworthiness state variable upon a common set of systemic risk
factors. A positive systemic risk-factor realization will improve all credit
counterparties’ default probabilities, whereas a negative draw works in the
opposite direction. Given the systemic risk-factor realization, however, all
default events are independent. Moreover, each credit obligor—through the
specification of the α and B parameters—are potentially impacted in a
different way by the systemic values. The conditional default probability, as
described in Eq. 2.43, is a rather useful object in understanding the impact
of systemic risk-factor outcomes on a given credit obligor’s risk profile. As a
final point, the form changes only very slightly when using the dependent or
orthogonalized formulations of systemic risk factors.
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2.4.2 Stochastic Recovery

The magnitude of the credit loss also depends, as suggested in Eq. 2.42, upon the
amount of the total credit exposure recovered through the default process. The larger
the amount recovered, of course, the lower the default loss. We can think of this
recovery amount as taking a value from zero to unity. A recovery value of zero
would imply that, in the event of default, one would be in the unfortunate situation
of losing one’s entire exposure. Conversely, a recovery value of one suggests that,
happily, no loss is incurred.39 The entire amount is recovered. Naturally, these are
extremes. Typical values, therefore, fall in the open interval, (0, 1).

For each exposure—similar to the default probability—one thus needs to esti-
mate, determine, or otherwise assign a recovery rate in the event of default. Rather
than recovery, which we might refer to as R, it is more common to work with the
loss-given-default. This latter quantity is simply γ ≡ 1 − R; in essence, therefore,
recovery and loss-given-default are opposite sides of the same coin.

The loss-given default associated with a credit obligation depends, again similar
to the default probability, upon a complex interaction between a range of factors.
The financial strength of the firm plays, of course, an important role. Perhaps equally
important, however, are the seniority of the claim and the presence of any external
guarantees or collateral attached to the loan or treasury asset. These latter points are
intimately connected to the inevitable legal aspects associated with the default of
any entity. Related to this point is the type of organization; a corporation, a financial
institution, a public-sector entity, or a government. Each of these organizational
types will, in principle, have different characteristics impacting the loss-given-
default in varying ways. Most organizations, and NIB is no exception, have
developed a fairly involved loss-given-default framework describing the underlying
process of how these values are determined for each of their individual asset
exposures.40

The simplest modelling treatment of this quantity would involve assignment of a
constant loss-given default—let’s assume, as is typically the case, that this value is
determined by the firm’s loss-given-default framework—to each of the individual
exposures within one’s portfolio. This is a sensible approach, but it ignores the
potential uncertainty in the actual size of the final loss. As previously discussed, a
multiplicity of factors exerts an influence on the final loss-given-default outcome.41

Even the most detailed loss-given-default framework will struggle to determine

39 Naturally, in reality, it is not quite so simple. There are often significant time lags, foregone
cash-flows, and additional transaction costs. This is, however, a model and thus its representation
is defensibly stylistic.
40 How precisely this is performed at NIB is beyond the scope of this discussion, which focuses on
the modelling dimension. This is not to say that no modelling is involved in LGD specifications,
far from it, but this area often touches on rather proprietary dimensions.
41 Altman et al. [2] provides a useful broad based analysis of the factors driving recovery with a
particular focus on the link to default probabilities.
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precisely the importance of each underlying driver to a specific credit obligor.
Assignment of a single, deterministic loss-given-default value is thus probably
overly simplistic. A more complicated, and perhaps more realistic, alternative would
be to treat the actual loss-given default as a random variable. Such an approach
would certainly complicate the model implementation, but it would directly address
this important source of uncertainty. For this reason, the employment of stochastic
loss-given-default values has become standard practice in credit-risk models.

How might this work? We can succinctly restate—from Eq. 2.42—the default-
loss of our portfolio as,

LD =
I
∑

i=1

ciγiIDi , (2.44)

where Di ≡ �Xi ≤ �−1 (pi) and γi ∼ X(γ̄i , vγi , · · · ). In actuality, we have
done relatively little with this restatement. The ith loss-given-default quantity has
merely been specified as a yet-to-be-defined random variable given its first two
moments: the mean, γ̄i and the variance, vγi . Clearly a choice is required regarding
the distribution of each γi , but this is not the only choice required. One also needs to
decide on the dependence between the default event, IDi , and the loss-given-default.
Are they somehow related or are they independent? Moreover, it is necessary
to decide upon any relationship between the loss-given-default of any two credit
obligors, say γi and γj .

Before exploring possible marginal distributions for each individual loss-given-
default parameter, let us first consider questions of dependence. Common practice
involves the assumption of independence between the loss-given-default outcome
of any two arbitrary credit obligors, i and j . Economic intuition aside, it is difficult
to practically imagine how calibration of such dependence would work when
examining relatively high credit-quality obligors. The loss-given default outcome
comes into play only in the case of default. As default is rare, it only affects a
small number of credit obligors—very often none—in any given simulation draw.
Imposition of correlation at the individual credit obligor level is unlikely to have any
appreciable impact on risk outcomes, quite simply because joint defaults are so rare.
This is the same reasoning behind the use of global conditioning variables to induce
default correlation; default correlation at the obligor level is relatively ineffective.

It is very common to assume that the loss-given-default is an entirely idiosyn-
cratic affair. Although loss-given-default is a random variable, each outcome is
independent of the set of global systemic variables, a firm’s default probability,
and the loss-given-default events associated with other credit obligors. We will also
make this choice in our development. More complex and involved specifications
are, indeed, possible.42 The typical viewpoint leans on the fact that virtually any

42 Frye [11], for example, offers an alternative in the one-factor setting that, like the conditional
default probability, depends on the common global macroeconomic variable. Frye [12], conversely,
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economic-capital model is already rather complex and parameter selection, in this
setting, is extremely difficult. Moreover, it is important that the loss-given-default
outcome employed in our economic-capital model is conceptually consistent with
the assigned value from one’s loss-given-default framework. This is not a deviation
from general practice, it is principally a choice driven by a combination of analytic
convenience and a lack of informative data.

One useful advantage of the assumption of independence is a relatively straight-
forward computation of the mean of the portfolio default loss. In particular, working
from Eq. 2.44, the mean is given as,

E (LD) = E

(

I
∑

i=1

ciγiIDi

)

, (2.45)

=
I
∑

i=1

E
(

ciδiIDi

)

,

=
I
∑

i=1

ci E (γi)E
(

IDi

)

︸ ︷︷ ︸

By independence

,

=
I
∑

i=1

ci γ̄i P(Di )
︸ ︷︷ ︸

pi

.

The expected loss is thus simply the sum of the product of the exposures, the average
loss-given-defaults, and the probabilities of default. This further underscores the
central importance of these three fundamental quantities, which we introduced in
Table 2.1.

The final decision involves a choice of distribution for each random loss-
given-default variable. There are many possible choices. One important restriction,
however, is that the support of this random variable is confined to the unit interval.
A trivial possibility would involve the use of a standard uniform distribution. Such
a choice implies that every point in the unit interval has an equal probability. This
seems unreasonable and can be rejected out of hand, not least because it implies a
common mean loss-given-default outcome of 0.5 for all credit obligors.

Ignoring the standard uniform distribution, there are two main approaches to
the selection of a suitable distribution. One can find a distribution with support
restricted to a fixed interval or transform a random variable with infinite support
into the interval between zero and one. One could, for example, draw a random
variable from the normal distribution and then map it to (0, 1) using a logistic or

offers another possibility where the loss-given-default is a stylized function of the conditional-
default probability.
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probit transformation.43 There are rather fewer distributions with bounded support.
The classic choice is the beta distribution.44 There are numerous other choices
that, upon closer inspection, are ultimately special cases of the beta distribution.
Another, perhaps less common choice, is the so-called Kumaraswamy distribution;
see Kumaraswamy [26] for more detail.

We have, once again, opted for simplicity. Each individual loss-given-default
random variable is assumed to follow an independent beta distribution. The
parameters of each beta distribution are informed, at least in part, from one’s internal
loss-given-default framework. The specific parametric choices are discussed, in
much more detail, in Chap. 3.45 The important takeaway, at this point, is that our
approach incorporates random recovery in a relatively straightforward—and to the
extent possible—conservative fashion.

Colour and Commentary 19 (PARAMETRIZING RECOVERY): The man-
agement of the recovery dimension in the measurement of credit risk is a
complicated task. The amount recovered subsequent to a default event—or,
closely related, the notion of loss-given-default—is not known in advance:
it is a stochastic quantity. Although ultimately random, it nevertheless
depends upon a range of factors: an obligor’s organizational structure, its
financial strength, its legal domicile, and any credit-mitigation measures to
name a few important elements. Taking this into account, our methodology
assigns a separate marginal distribution—describing the interaction between
recovery outcomes and likelihoods—to each credit obligor. These marginal
distributions, while important, do not tell the entire story. It is also necessary
to specify any dependence between the various recovery processes and the
default outcomes. Our production model, consistent with general practice,
assumes independence between recovery and default. This enhances model
tractability and avoids some rather thorny parametric questions. It is an
expedient choice, forced upon us by practical data constraints, but it is
important to be aware that it is probably not quite correct.

43 These, of course, are only two popular transformations of a continuous-valued variable into
(0, 1); there are many others.
44 See Johnson et al. [22, Chapter 25] for significantly more background on this distribution.
45 This discussion incorporates a unique angle that attempts to capture an important stylized fact
about loss-given-default.
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2.4.3 Risk Metrics

As highlighted in the previous chapter, the economic capital calculation is the
distance between a worst-case measure of risk and the accounting- or valuation-
based expected loss. Equation 2.45 provides clear direction for the computation
of expected loss. To determine the credit-risk economic capital estimate—and
complete the basic structure of our model—we still need a worst-case loss quantity.
Since there are multiple possible candidates to measure worst-case losses, a few
decisions need to be taken. In this brief section, we’ll consider two main alternatives
to motivate our choice.

Using the Gaussian threshold model outlined in the previous sections, we use
simulation to trace out the entire credit loss distribution. This provides all of the
ingredients required to actually compute virtually any desired measure of portfolio
riskiness. We do not, however, typically consider the entire loss distribution. As
rather pessimistic risk-management professionals, we invariably focus our attention
on the tail of the loss distribution. This is, after all, where all the bad things happen.
The classic measure is referred to as Value-at-Risk or VaR. Originally suggested by
Morgan/Reuters [32], within the market-risk setting, it is described mathematically
as

VaRα(L) = inf

(

x : P (L ≤ x) ≥ 1 − α

)

, (2.46)

where inf(·) denotes the infimum operator.46 Equation 2.46 depends on two
parameters: α a threshold for the probability on the right-hand side and the default
loss, L. The first is a parameter, whereas the second is a random variable: portfolio
default-loss. α is also referred to as the confidence level. Imagine it is 0.99. With this
parameter choice, VaRα(L) describes the largest default-loss outcome exceeding
99% of all possible losses, but is itself exceeded in 1% of all cases. When computed
for default or migration risk, it is often referred to as credit VaR.47

With a bit of additional effort, we may simplify our abstract specification of VaR.
From Eq. 2.46, the VaR measure, by definition, satisfies the following relation,

∫ ∞

VaRα(L)

fL(�)d� = α, (2.47)

1 − P

(

L ≥ VaRα(L)

)

= 1 − α,

46 The infimum is basically—avoiding lots of mathematical formalism—a set-theoretical general-
ization of the minimum operator. See Royden [37] for the important details.
47 An excellent reference for all things related to VaR is Jorion [23].
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P

(

L ≤ VaRα(L)

)

= 1 − α,

FL

(

VaRα(L)

)

= 1 − α,

where FL(·) denotes the cumulative default-loss distribution function. The natural
solution is thus,

VaRα(L) = F−1
L (1 − α) . (2.48)

In words, Eq. 2.48 verifies that VaRα(L) is nothing other than the (1 − α)-quantile
of our portfolio credit-loss distribution. Since we are already in the business of
running millions of simulations of our model, quantiles are readily estimated by
simply ordering the simulation results. Readily computed, easy-to-use, understand,
and communicate, it is no wonder that VaR has become such a popular risk measure.

A few decades prior to the writing of this book, Artzner et al. [3] produced a
very useful paper providing, in an axiomatic manner, the main desirable properties
of a risk metric. Risk measures that fulfil all properties are referred to as coherent.
VaR was, unfortunately, found wanting along one important dimension.48 This has
led to a search for alternatives. An increasingly common (and coherent) measure, is
defined as the following conditional expectation

Eα(L) = E

(

L

∣

∣

∣

∣
L ≥ VaRα(L)

)

, (2.49)

= 1

1 − α

∫ ∞

VaRα(L)

�fL(�)d�,

where fL(�), as before, represents the default-loss density function. Equation 2.49
describes the expected default-loss given that one finds oneself at, or beyond, the
(1 − α)-quantile (i.e., VaRα(L)) level. This quantity is, as a consequence, termed
the conditional VaR, the tail VaR, or the expected shortfall. We predominately use
the term expected shortfall and refer to it symbolically as Eα(L) to explicitly include
the desired quantile defining the tail of the return distribution.49 Figure 2.1 provides
a visualization of the difference between these two central measures of risk.

There are, of course, other possible choices of risk metric that one might consider.
Boyle et al. [8] chronicle the disadvantages of VaR—in terms of coherence—
and offer a twist on the idea of expected shortfall. Gilli and Këllezi [13] propose

48 In particular, VaR is not sub-additive. See McNeil et al. [29, Chapter 2.3] for a nice exposition
of this point.
49 Given a closed-form expression for the default-loss density, Eqs. 2.48 and 2.49 can often be
manipulated to derive analytic formulae for the VaR and expected-shortfall measures. In practical
industrial applications, unfortunately, we rarely find ourselves in this happy situation.
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Fig. 2.1 Visualizing risk metrics: This graphic, via the illustration of a generic credit-loss density
fL(�), illustrates the VaR and expected shortfall measures. VaR is a quantile of the loss distribution,
while expected shortfall is the average at or beyond a specific quantile.

some ideas from extreme-value theory. Although quite interesting, and potentially
powerful, these notions have not yet found popularity in industrial applications. For
the moment, therefore, the principal alternatives used in practical circles are the
presented VaR and expected-shortfall measures.

Traditionally, like most organizations, NIB has used the VaR measure with
varying confidence levels for alternative applications. The production measure in
the revised credit-risk economic capital model has nonetheless broken with tradition
and moved to expected-shortfall measure. VaR’s non-coherence does give some
reason for pause, and was certainly a contributing factor in the final decision, but it is
not the key factor. A more convincing motive is the inherent conservatism associated
with expected shortfall. Instead of looking at losses associated with a fixed quantile,
it considers the average losses beyond this point. To put it bluntly, all of the really
bad outcomes are structurally incorporated into the calculation of expected shortfall.
This is, for a risk manager, an attractive perspective.

The final deciding factor in favour of expected shortfall, however, relates to
a practical point. A useful, well-functioning, credit-risk economic capital model
requires attribution of overall capital to individual loans and treasury instruments.
This process is referred to risk attribution; the actual approach will be addressed
in the final section of this chapter. VaR-measure risk attribution in the simulation
setting turns out to be a messy and noisy affair. Conversely, the same computation
applied to expected shortfall is significantly more robust and stable. The central
importance of risk attribution, along with the theoretical advantages of expected
shortfall, ultimately tipped the scales in favour of this coherent risk measure.
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Colour and Commentary 20 (CHOOSING A RISK METRIC): A simulation-
based, credit-risk model—such as that employed in this development—
furnishes the analyst with a full description of the portfolio credit-loss
distribution. To transform this object into an estimate of economic capital, a
specific choice regarding the description of worst-case losses must be made.
While there are many possible risk-metric options to be found in the literature,
there are really only two main contenders: Value-at-Risk (i.e., VaR) and
expected shortfall. Like most organizations, NIB has historically employed
the VaR metric in their economic-capital computations. In the most recent
revision of our framework, the situation changed. A decision was taken to
move to the expected-shortfall measure. Three main reasons motivated this
choice. The first is theoretical; in the jargon of Artzner et al. [3] expected
shortfall is—unlike VaR—a coherent risk measure. The second reason is
conceptual. By incorporating all extreme tail observations into its calculation,
expected shortfall is both a more complete and conservative description of
downside risks. The final reason is practical; simulation-based methods for
attribution of risks to individual loans and investments are dramatically more
robust for expected shortfall.a This combination of sensible reasons feels like
sufficient justification for the move.

a The precise details of this calculation follow in the final section of this chapter.

2.5 Extending the Legacy Model

Starting from a generic description of creditworthiness dynamics, we have estab-
lished that the legacy model is a (non-canonical) multivariate, Gaussian threshold
model with stochastic recovery. We have introduced a detailed notation, identified
the key aspects of the model and even motivated our choice of risk metric. With the
important question of parameter selection relegated to Chap. 3, this might conclude
our discussion. As indicated on numerous occasions in previous sections and
chapters, however, our 2020 statutory change (quite naturally) prompted reflection
on the structure of the credit-risk economic capital model. The reflection lead to
action. The two central consequences were associated with the choice of threshold-
model copula function and the incorporation of credit migration. This section walks
through the details, and implications, of these two central elements.
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2.5.1 Changing the Copula

The legacy credit-risk economic-capital model was founded on the assumption
that both the idiosyncratic and systemic risk factors are normally distributed. This
choice is, in a general sense, referred to as the Gaussian copula. The Gaussian
copula, following the recent financial crisis starting in 2008, has nonetheless come
under strong criticism. The source of this disapproval relates to some very strong
assumptions about default correlation. A well-cited article—see MacKenzie and
Spears [28]—has even made the Gaussian-copula specification rather infamous.
The main problem is that it ignores the idea of tail dependence. The basic idea
is that as we move far enough into the tail of the credit-loss distribution, default
becomes independent in the Gaussian copula. This is hardly confidence inspiring.
One practical solution, offered in the literature, is to use the so-called t-copula; this
means that idiosyncratic and systemic risk factors follow a t distribution.50

The notion of tail dependence is neither particularly well known nor is it
extremely straightforward to explain without resort to rather technical arguments.51

It is nonetheless worth deeper reflection. Tail dependence is conceptually analogous
to more commonly used notions of correlation such as linear or rank correlation
coefficients. Typically, one begins with two random variables. In our case, let’s
give these random variables specific names, IDi and IDj , naturally representing
the default events of two arbitrarily selected credit obligors. Default correlation
considers the simple linear dependence between these two random quantities. Tail
dependence, conversely, considers the relationship between these two events as we
move arbitrarily far into the tail of their joint credit-loss distribution.

Default is, for almost any credit obligor, a rare event. A joint default is worse: it
is the coincidence of two rare (i.e., tail) events. The incidence of joint default tells
us something about the notion of tail dependence. The Gaussian copula implies,
unfortunately, by its very mathematical structure, that as the two events become
sufficiently rare, they tend towards independence. In most portfolios, however, it is
precisely the multiplicity of default that generates sizable risk scenarios. Since the
probability of two independent events is their product, and default is by definition
a low-probability outcome, joint defaults are structurally underestimated in the
Gaussian setting. Although the notion is quite technical, the impact is easy to
understand.

An example provides a useful demonstration of the difference associated with
one’s choice of copula function. Figure 2.2 provides the results associated with a
simple experiment. We examine our credit portfolio for a given date in the spring
of 2020. Two credit counterparties were arbitrarily selected. We then investigate
the joint default outcomes associated with one million simulations. Using the same

50 Kuhn [25] and Kostadinov [24] both make compelling cases for the benefits of the t-distributed
threshold implementation.
51 For the reader interested in a more formal description, please see Bolder [7, Chapter 4] and the
multiple references it contains.
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Fig. 2.2 Joint default: Joint defaults lie at the heart of default correlation and the conservative
description of the worst-case credit-loss outcomes. This figure provides a visual perspective
on the differences between the distribution of joint defaults under the Gaussian- and t-copula
specifications of the threshold model. In each case, the proportional joint-default losses of two
arbitrarily selected obligors are displayed under our competing copula functions.

randomly simulated outcomes two copula functions are employed: the presented
Gaussian and the t copulas. To be clear, therefore, the only difference relates
to the choice of copula function.52 There are, of course, cases where one credit
counterparty defaults, whereas the other does not. Only those situations, to be
clear, where both of the obligors experience a default outcome are presented.
Generally, of course, there are far fewer incidences of two counterparties defaulting
concurrently. In the Gaussian case, there are precisely 10 joint defaults. The t-
copula case, conversely, exhibits a twofold increase in the incidence of joint default.
This is precisely the impact of (non-zero) tail dependence; a more realistic, and
conservative, description of joint default is created.

The results presented in Fig. 2.2 might not seem like a dramatic difference,
but expanding this notion across all pairs of credit counterparts across an entire
portfolio can, and does, have an important impact on the final risk figures. There
is, at the portfolio level given the parameter settings, only about a 20% increase
in joint default. At the individual obligor level, however, when joint default does
occur, on average it leads to a sizable increase in the number of joint defaults.
This, of course, varies from a small reduction in some cases to increases on the
order of many multiples of the base number of Gaussian-copula joint defaults. The
bottom line, therefore, is that tail dependence matters quite importantly in terms of
joint default and, ultimately, practical portfolio-level default correlation. The final
consequence is a more realistic and conservative estimate of economic capital.

52 There is also some noise associated with the random draws associated with the recovery
outcomes, but this only impacts the magnitude of the loss, not their incidence.
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2.5.2 Constructing the t Copula

To construct the t-copula model, the vast majority of the model infrastructure
remains unchanged. The creditworthiness process is slightly adjusted as follows,

�Xi =
√

ν

W

(

αiBi�z+
√

1 − α2
i �wi

)

︸ ︷︷ ︸

Eq. 2.32

. (2.50)

where W ∼ χ2(ν) is referred to as the mixing variable. In other words, W is
a common variable shared across all risk obligors within a given simulation that
follows a χ2 distribution with ν degrees of freedom. Equation 2.50 is a special case
of what is generally referred to as a normal-variance mixture model.53

While it is not obvious from Eq. 2.50, the
√

ν
W

terms transforms each yn into

a univariate standard t-distributed random variable.54 This implies that E(yn) = 0
and var(yn) = ν

ν−2 for all n = 1, . . . , N . In other words, the marginal distribution
of each �Xi follows a standard t distribution, while simultaneously moving the
joint distribution of the collection of {�Xi : i = 1, . . . , I } to a multivariate t

distribution. The final result is the so-called t-threshold model.
The new moments of �Xi merit demonstration. The expected value of Eq. 2.50

is,

E (�Xi) = E

(√

ν

W

(

αiBi�z+
√

1 − α2
i �wi

))

, (2.51)

= αi ·

By independence
︷ ︸︸ ︷

E

(√

ν

W

)

Bi E (�z)
︸ ︷︷ ︸

=0

+
√

1 − α2
i ·

By independence
︷ ︸︸ ︷

E

(√

ν

W

)

E(�wi)
︸ ︷︷ ︸

=0

,

= 0,

as expected.
Finding the variance of �Xi is a bit more work,

var (�Xi) = E

⎛

⎝�X2
i − E(�Xi)

2
︸ ︷︷ ︸

=0

⎞

⎠ , (2.52)

53 Quite simply, different choices of W and ν induce alternative copula functions. See Bolder [7,
Chapter 4] for much more information on this notion (and many other helpful references).
54 See Bolder [7, Appendix A] for a detailed description of the construction of the t-distribution.
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= E

(
(√

ν

W

(

αiBi�z+
√

1 − α2
i �wi

))2
)

,

= E

( ν

W
· α2

i · Bi�z�z
T BT

i

)

+ E

( ν

W
· (1 − α2

i ) ·�w2
i

)

︸ ︷︷ ︸

Cross terms vanish by independence and zero expectations

,

= α2
i · ν · E

(

1

W

)

Bi E

(

�z�zT
)

︸ ︷︷ ︸

�
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+(1 − α2
i ) · ν · E

(

1

W

)

E

(

�w2
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)
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=1

,
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i · ν · E
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1

W

)

Bi�BT
i

︸ ︷︷ ︸

=1

+(1 − α2
i ) · ν · E

(

1

W

)

,

=�������
α2
i · ν · E

(

1

W

)

+ ν · E
(

1

W

)

−�������
α2
i · ν · E

(

1

W

)

,

= ν · E
(

1

W

)

,

where we need to observe that Bi�BT
i = 1; this is the normalized, factor-loaded

variance.55 Resolving this expression now reduces to evaluating the reciprocal of a
chi-squared distribution with ν degrees of freedom. Although tedious, it is readily
determined from first principles by solving the following integral,

E

(

1

W

)

=
∫

R+

1

w
fW(w)dw, (2.53)

=
∫

R+

1

w

1

2
ν
2 �
(

ν
2

)w
ν
2−1e−

w
2

︸ ︷︷ ︸

W∼χ2(ν)

dw,

= 1

2
ν
2 �
(

ν
2

)

∫

R+
w

ν−2
2 −1e−

w
2 dw,

55 It was, in fact, constructed in such a way to be equal to one.
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=
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ν−2

2 �
(
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2
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(
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(
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)

!
(
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2 − 1

)! ,

= 1

2

1
(

ν
2 − 1

) ,

= 1

ν − 2
,

which directly implies from Eq. 2.52 that, indeed as we claimed, var(�Xi) = ν
ν−2 .

The final line of Eq. 2.53 follows from two useful facts: ν ∈ N+ and�(n) = (n−1)!.
The marginal systematic and idiosyncratic variable distributions of the t-

distributed model remain Gaussian. The joint and marginal distributions of the
latent default-state variables (i.e., {�Xi : i = 1, . . . , I }) follow a t-distribution.
At the joint distribution level, of course, the covariance—and correlation—between
any two arbitrary latent creditworthiness state variables, �Xn and �Xm, are also
slightly transformed.

Recycling our analysis from Eq. 2.21 on page 72 with our new definition in
Eq. 2.50, we have

cov(�Xn,�Xm) = E(�Xn�Xm), (2.54)

= E

⎛

⎜

⎜

⎜

⎝
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√
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)
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,
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,
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)

αnBn E(�z�z
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= νE
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1

W

)
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m

︸ ︷︷ ︸
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αm,

=
(
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ν − 2

)

αnρnmαm,
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where ρnm = Bn�BT
m is the normalized, factor-loaded correlation between the

nth and mth creditworthiness latent state variables.56 With the exception of the
coefficient involving ν, this looks very similar to the structure found in Eq. 2.21.
To get to the correlation coefficient, we need only normalize by the volatility of
�Xn and �Xm as follows:

ρ(�Xn,�Xm) = cov(�Xn,�Xm)√
var(�Xn)

√
var(�Xm)

, (2.55)

=
(

ν
ν−2

)

αnρnmαm
√

ν
ν−2

√

ν
ν−2

,

= �
�
�(

ν
ν−2

)

αnρnmαm

�
�ν

ν−2

,

= αnρnmαm,

which happily corresponds exactly with the Gaussian model analogue derived in
Eq. 2.22. We may continue to interpret the correlation between two arbitrary latent
creditworthiness variables—often referred to as asset correlation—as the product
of their respective systemic weight parameters and systemic correlation coefficient.
This latter quantity is also sometimes called the factor correlation.

There are a few other small practical differences in the implementation. The
default indicator of the ith obligor, Di , has the same conceptual definition as in
the Gaussian case, but the default threshold is somewhat different. Specifically,
following the logic from Eq. 2.40, we have

pi = E(IDi ), (2.56)

= P(Di ),

= P(�Xn ≤ Ki),

= FTν (Ki),

implying directly that Ki = F−1
Tν

(pn). We will use, for lack of better notation, FTν

and F−1
Tν

to denote the cumulative and inverse cumulative distribution functions of
the standard t-distribution with ν degrees of freedom, respectively. This threshold
adjustment is necessary and makes logical sense given that we’ve actually changed
the underlying marginal and joint distributions.

56 Because of the normalization, ρnm is conveniently both the correlation coefficient and covari-
ance.
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2.5.3 Default Correlation

Default correlation is a critically important quantity; inducing some degree of
correlation between the default of individual credit obligors has been the motivating
factor in the construction of the threshold model. To this point, we have seen both
systemic factor and asset correlation, but have not examined the precise form of
default correlation. We can no longer postpone consideration of this point. Proper
treatment begins with the covariance between the nth and mth default events. From
first principles, we have

cov
(

IDn , IDm

) = E
(

IDnIDm

)− E
(

IDn

)

E
(

IDm

)

, (2.57)

= P (Dn ∩Dm)− P (Dn)P (Dm) .

Normalizing the covariance to arrive at the default correlation,

ρ
(

IDn , IDm

) = cov
(

IDn , IDm

)

√

var(IDn )
√

var(IDm)
, (2.58)

= P (Dn ∩Dm)− P (Dn)P (Dm)√
P(Dn)(1 − P(Dn))

√
P(Dm)(1 − P(Dm))

.

Recalling that the variance of an indicator variable coincides with a Bernoulli trial
permits a return to our simpler notation. We thus have

ρ
(

IDn , IDm

) = P (Dn ∩Dm)− pnpm√
pnpm(1 − pn)(1 − pm)

. (2.59)

Default correlation thus depends on the unconditional default probabilities as well
as the joint probability of default between counterparties n and m. This definition is
model independent. The choice of model, however, will determine the form of the
joint default probability, P (Dn ∩Dm).

In the Gaussian threshold model, it should be no surprise that the joint distribu-
tion of �Xn and �Xm is also Gaussian. In this case, P (Dn ∩Dm) is described by
the bivariate normal distribution. It has the following mathematical form,

P (Dn ∩Dm) = P

(

�Xn ≤ �−1(pn),�Xm ≤ �−1(pm)

)

, (2.60)

= 1

2π
√

1 − (αnρnmαm)2

∫ �−1(pn)

−∞

×
∫ �−1(pm)

−∞
e
− (u

2−2αnρnmαmuv+v2)
2(1−(αnρnmαm)2) dudv,

= �
(

�−1(pn),�
−1(pm); αnρnmαm

)

.
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This expression easily permits us—with the help of a good numerical integration
library—to directly compute the default correlation between counterparties n and m
using Eq. 2.59.

It is helpful to put Eq. 2.60 into matrix form. Define the correlation matrix as,

�nm =
[

1 rnm
rnm 1

]

, (2.61)

where the asset-correlation coefficient is denoted as rnm = αnρnmαm to slightly
ease the notational burden. The determinant of �nm is given as,

det (�nm) = |�nm| = 1 − r2
nm, (2.62)

and the inverse is simply,

�−1
nm = 1

|�nm|
[

1 −rnm
−rnm 1

]

, (2.63)

=
[ 1

1−r2
nm

−rnm
1−r2

nm−rnm
1−r2

nm

1
1−r2

nm

]

.

Defining x = [

u v
]T

, then

xT �−1
nmx = [

u v
]

[ 1
1−r2

nm

−rnm
1−r2

nm−rnm
1−r2

nm

1
1−r2

nm

]
[

u

v

]

, (2.64)

= u2 − 2rnmuv + v2

1 − r2
nm

.

Our bivariate Gaussian joint-default probability, from Eq. 2.60, can be more
succinctly rewritten as,

�
(

�−1(pn),�
−1(pm); rnm

)

= 1

2π
√

1 − r2
nm

∫ �−1(pn)

−∞

×
∫ �−1(pm)

−∞
e
− (u

2−2rnmuv+v2)
2(1−r2

nm) dudv, (2.65)

= 1

2π
√|�nm|

∫ �−1(pn)

−∞

∫ �−1(pm)

−∞
e−

xT �
−1
nmx

2 dx.

This is referred to as the Gaussian copula. Copula functions essentially describe
dependence between random variables. The job of a copula function is to map a
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collection of marginals into a joint distribution. This notion—which was originally
introduced by Sklar [38]—is the definitive way to describe dependence between
random variables.

It is naturally possible to generalize the joint dependence across all of our credit
counterparties. Equation 2.65, with I counterparties, whereR is the asset correlation
matrix between the I counterparties, is then

�
(

�−1(p1), · · · ,�−1(pI );R
)

= 1

(2π)
I
2
√|R|

∫ �−1(p1)

−∞
· · ·

×
∫ �−1(pI )

−∞
e−

xT R−1x
2 dx, (2.66)

where,

R =

⎡

⎢

⎢

⎢

⎣

1 r12 · · · r1(I−1) r1I

r21 1 · · · r2(I−1) r2I
...

...
. . .

...
...

rI1 rI2 · · · rI (I−1) 1

⎤

⎥

⎥

⎥

⎦

(2.67)

summarizes the asset-correlation coefficients for every pair of credit obligors in
one’s portfolio. Equation 2.66 is a function, defined on the unit cube [0, 1]I ,
transforming a set of marginal distributions into a single joint distribution.

Equation 2.59, as previously mentioned, applies to any choice of threshold
model. In the t-threshold setting, however, the joint distribution of �Xn and �Xm

is now assumed to follow a bivariate t-distribution with ν degrees of freedom.
Mathematically, such an object is written as

P (Dn ∩Dm) = P(yn ≤ F−1
Tν

(pn), ym ≤ F−1
Tν

(pm)), (2.68)

= �
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ν+d
2

)
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ν
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2
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−∞

×
∫ F−1

Tν (pm)

−∞

(

1 + xT �−1
nmx

ν

)−
(

ν+d
2

)

dx,

where � (·) represents the gamma function,

�(u) =
∫ ∞

0
xu−1e−xdu. (2.69)
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and �nm is unchanged from the definition in Eq. 2.61, x ∈ R
2 and d = 2. This is

the classic, direct form.57

An alternative description of the joint default probability, which we provide for
completeness and future usage, makes use of the conditional default probability in
the t-threshold setting. That is,

pi(�z,W) = E
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IDi

∣

∣�z,W
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, (2.70)
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Eq. 2.50
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⎠ .

To determine the conditional probability of yn, both the global systematic factor,
�z, and the mixing random variate, W , must be revealed. Our desired joint-default
probability, for arbitrarily selected counterparties n and m, is thus determined as,

P (Dn ∩Dm) = E
(

IDn ∩ IDm

)

, (2.71)

= E

(

E
(

IDn ∩ IDm

)

∣

∣

∣

∣
�z,W

)
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By iterated expectations

,

= E

⎛

⎜

⎝E
(

IDn

∣

∣�z,W
) · E (IDm

∣

∣�z,W
)
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By conditional independence

⎞

⎟

⎠ ,

= E (pn(�z,W) · pm(�z,W)) ,

57 One can loosely think of the gamma function as a continuous-valued extension of the integer-
valued factorial function. See Abramovitz and Stegun [1, Chapter 6] for more information on this
mathematical object.
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=
∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ ∞

0
pn(z,w) · pm(z,w) · fW (w)

·φ�z(z1, · · · , zJ )dwdz1 · · · dzJ .

This approach exploits the conditional independence of the latent state variables to
find an alternative, but equivalent, representation of the joint default probability.
Since resolution of this expression requires numerical integration, the catching
point is the dimensionality of �z ∈ R

J . If J = 1, then Eq. 2.71 reduces to
a very manageable two-dimensional integral. If not, then it may very well be
computationally impractical to use this trick; in this case, Eq. 2.68 is the appropriate
choice for evaluating the joint default probability and, by extension, the pairwise
default correlation.

As a final point, the joint-default density under the t-threshold model has the
following form

FTν

(

F−1
Tν

(p1), · · · , F−1
Tν

(pI );R
)

= �
(

ν+d
2

)

�
(

ν
2

)

(νπ)
d
2 |R| 1

2

∫ F−1
Tν (p1)

−∞
· · ·
∫ F−1

Tν (pI )

−∞

×
(

1 + xT R−1x

ν

)−
(

ν+d
2

)

dx, (2.72)

where R remains as in the definition in Eq. 2.67. This copula function, defined
on the unit cube [0, 1]I , is the t-distributed analogue of the Gaussian equivalent
in Eq. 2.66. The mathematical structure does not provide an enormous amount of
insight, but the key difference is that the t-copula has non-zero tail dependence,
whereas the Gaussian copula does not. Ultimately, this makes a rather important
distinction in the specification of credit-default risk.

Colour and Commentary 21 (t-THRESHOLD MODEL): The great financial
crisis, beginning in 2007–2008, exposed some important statistical flaws in
the Gaussian threshold model. Most importantly, it has a structural lack of
tail dependence. In a modelling framework where attention is consistently
focused on the extremes of the credit-loss distribution, zero tail dependence
moves from a theoretical peculiarity to a serious problem. A practical solution
is required to address this serious shortcoming. It turns out that relatively
few members of the elliptical family of distributions—those distributions
typically best suited for the threshold framework—actually have non-zero tail
dependence. The t distribution—induced in this case through a χ2 mixing
variable in the normal-variance mixture setting—fortunately represents one

(continued)
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Colour and Commentary 21 (continued)
tractable candidate exhibiting non-zero tail dependence. For this reason,
along with the fact that the necessary model adjustments are relatively
modest, we have opted to employ this version of the threshold model. The
driving rationale behind this choice is a desire to simultaneously enhance the
realism and conservatism of our credit-risk economic-capital estimates.

2.5.4 Modelling Credit Migration

If one assumes that credit losses are experienced only in the event of default, then the
previous framework would be sufficient to describe our methodological approach.
There is nevertheless, as hinted at previously, another dimension to credit risk.
Financial losses are also logically possible in the event that a credit counterparty
is downgraded. Credit deterioration implies that one needs to reassess the relative
likelihood of repayment and, in general, correspondingly write down the value of
one’s assets. This occurs even when the attendant obligor continues to properly
service its credit obligation. Improvement in a credit obligor’s credit status will,
of course, have a positive valuation impact. The possibility of one’s obligors to
move up or down the credit spectrum is referred to, in general, as credit migration.
Default is, in fact, simply a special case of this general behaviour—it considers only
the transition from the current credit state to the default state.

Dealing with this generalization does not dramatically change the model struc-
ture, but it does require some additional overhead. Given q discrete credit-quality
states, or rating categories, we assume that each obligor’s credit status follows a
discrete-time Markov chain. This basically means that the only information required
to determine an obligor’s credit status in the next period is its current credit status.
This so-called Markov property practically implies that, for a given obligor i,
currently in state m at time t , the probability it finds itself in state n at time t + 1 is
written as,

pmn = P (Going to n|Coming from m) , (2.73)

= P
(

Si,t+1 = n
∣

∣ Si,t = m
)

,

for n,m = 1, . . . , q . Si,t denotes the credit state of the ith obligor at time t .
This generic form describes all obligors, time points, and constellations of starting
and ending points. The driving idea is that a Markov chain characterizes the
transitions between various states over time. These are also referred to as transition
probabilities, of which default probabilities are a special case (i.e., transition directly
into the default state).
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The collection of so-called transition probabilities, associated with a given
Markov chain, are collected into the transition matrix, P . For our q-state process, it
is summarized as

P =

⎡

⎢

⎢

⎢

⎣

p11 p21 · · · pq1

p12 p22 · · · pq2
...

...
. . .

...

p1q p2q · · · pqq

⎤

⎥

⎥

⎥

⎦

. (2.74)

This notation can, given it is essentially the opposite of what is used in matrix
algebra to refer to specific elements, be somewhat confusing. It does, however,
have its own useful internal logic. Each row relates to the state of an obligor as
of time t . If counterparty i is classified in the second credit state at time t , then
only the second row is relevant to determining the relative probabilities of transition
into the set of q credit states at time t + 1. When examining only the default
perspective, we ignore all the other elements in this second row and consider only
the pq2 = P

(

Si,t+1 = q
∣

∣Si,t = 2
)

. This is, to be very explicit, the probability that a
credit-counterpart currently in state 2 will transition into default (i.e., state q) in the
next period. Naturally, if we sum across all the transition probabilities for the next
period, the row must sum to unity. That is,

q
∑

n=1

pnm = 1, (2.75)

for m = 1, . . . , q .58 The point is that the rows of the transition matrix, P , must
sum to one.59 Figure 2.3 illustrates—in a schematic manner, again starting from
Si,t = 2—how the transition probabilities describe the movement from the current
credit state to the range of possible state values in the next period. If we wish to
capture the full range of possible movements to other credit states, then it will be
necessary to make intelligent use of the entire transition matrix.

The transition matrix will inform—as did the default probabilities in the default-
only setting—the specific thresholds. Before we examine precisely how, it is
preferable to first build the general framework. Clearly, by construction, we have
Si,t ∈ {1, . . . , q} for each i = 1, . . . , I . This portfolio-level credit-obligor knowl-
edge, along with P , is all that is required to simulate the portfolio counterparties’
credit states in the next period.60 The actual computation, however, is somewhat
more complicated.

58 In our simple example, m = 2.
59 There are many excellent references on the theory and practice of Markov chains; a few
recommended choices include Brémaud [9], Hamilton [20], and Meyn and Tweedie [31].
60 More information, as we’ll see in upcoming discussion, is required to determine the credit losses
(or gains) associated with these transitions.
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Si,t = 2

Si,t +1 = q

pq2 ...

Si,t +1 = 3
p32

Si,t +1 = 2

p22

Si,t +1 = 1

p12

Fig. 2.3 Transition probabilities: This schematic illustrates, given the current state of the ith
obligor is 2, the range of transition probabilities into the other q states. This is, quite simply,
the second row of the transition matrix, P .

In Eq. 2.40, we calibrated the ith default threshold as using an indicator variable.
We can generalize this approach somewhat. We need a more flexible definition of
the default threshold. Let us, therefore, define KSi,t (j ) as the threshold of an obligor
in state i as of time t , for moving to state j as of time t+1. In the default setting, we
only consider the situation of j = q; that is, movement from state i to default. The
introduction of the transition matrix, however, shows us that transition is possible to
any of the individual credit states j = 1, . . . , q . Using this idea, we may redefine
the notion of the default threshold as follows,

E

(

I{
�Xi∈

[

−∞,KSi,t
(q)
]}

)

= pq,Si,t , (2.76)

P
(

�Xi ∈
[−∞,KSi,t (q)

]) = pq,Si,t ,

P

(

− ∞ ≤ �Xi ≤ KSi,t (q)

)

= pq,Si,t ,

recalling that pq,Si,t is the probability of default, but also the (Si,t , q) element of the
transition represented in Eq. 2.74.61 This might not seem like much progress, but
if we recall that �Xi is a continuous, one-dimensional random variable and, rather

61 Don’t forget that the transition probability notation is the exact opposite of matrix notation; this
often leads to confusion (and occasionally mistakes).
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vacuously, −∞ < KSi,t (q), then

P
(

�Xi ≤ KSi,t (q)
)− P (�Xi ≤ −∞) = pq,Si,t , (2.77)

F�Xi

(

KSi,t (q)
)− F�Xi (−∞)

︸ ︷︷ ︸

=0

= pq,Si,t ,

�
(

KSi,t (q)
) = pq,Si,t ,

KSi,t (q) = �−1(pq,Si,t ).

While we have not learned anything new relative to the development in Eq. 2.40,
we have transformed a threshold into an interval. We also generalized the notation.
In particular, we write the default probability using its true identity: a transition
probability. That is, pi is replaced with pq,Si,t . The threshold is also not simply
linked to the ith obligor, but also includes information on their current credit state,
Si,t , and the targeted credit-state threshold.

The development summarized in Eq. 2.77, as the reader has certainly noticed,
applies to the Gaussian threshold model. The same basic logic applies in the t-
threshold setting, but the distributions differ. In this case, the generalized default
threshold simply becomes,

KSi,t (q) = F−1
Tν

(pq,Si,t ). (2.78)

These generalizations permit us to consider credit-migration for non-default
states. Returning to the Gaussian case, a specific example will be helpful. Again,
conditioning on the ith credit counterpart currently finding itself in state Si,t ,
we would like to link the (possible) migration to state 3 with the probability of
transitioning from state Si,t to 3. This transition probability is simply denoted as
p3,Si,t . The starting point is inspired by Eq. 2.76,

E

(

I{
�Xi∈

[

KSi,t
(4),KSi,t

(3)
]}

)

= p3,Si,t , (2.79)

P

(

KSi,t (4) ≤ �Xi ≤ KSi,t (3)

)

= p3,Si,t ,

P

(

�Xi ≤ KSi,t (3)

)

− P

(

�Xi ≤ KSi,t (4)

)

= p3,Si,t ,

�
(

KSi,t (3)
)−�

(

KSi,t (4)
) = p3,Si,t ,

since, by construction, KSi,t (4) < KSi,t (3). There does not, however, appear to
be any obvious approach to isolate the K terms; this is a situation of a single
equation in two unknowns. The solution involves rewriting the right-hand side
transition probability, p3,Si,t , in an alternative, perhaps initially non-intuitive form.
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In particular, we redefine it as,

p3,Si,t =
q
∑

w=3

pw,Si,t −
q
∑

w=4

pw,Si,t . (2.80)

These are simply the differences in the sum of elements across a given row of the
transition matrix, P , with different index starting points. If we plug our definition
from Eq. 2.80 into Eq. 2.79, we have that

�
(

KSi,t (3)
)−�

(

KSi,t (4)
) =

q
∑

w=3

pw,Si,t −
q
∑

w=4

pw,Si,t

︸ ︷︷ ︸

Eq. 2.80

. (2.81)

If we equate the two corresponding terms on the right- and left-hand sides of
Eq. 2.81, then we can identify our thresholds as,

KSi,t (3) = �−1

(

q
∑

w=3

pw,Si,t

)

, (2.82)

and

KSi,t (4) = �−1

(

q
∑

w=4

pw,Si,t

)

. (2.83)

More generally, of course, we can conclude that the j th boundary for the ith credit
obligor is,

KSi,t (j ) = �−1

⎛

⎝

q
∑

w=j
pw,Si,t

⎞

⎠ . (2.84)

In this manner, the set of finite, real-valued thresholds

− ∞ < KSi,t (q) < KSi,t (q − 1) < · · · < KSi,t (2) < KSi,t (1) ≡ ∞. (2.85)

A bit of reflection reveals that we have created I partitions of the support of
a standard normally distributed state variable—each conditioned on the current
credit state of the ith counterparty, Si,t—informed by the appropriate transition
probabilities. Although we have I individual partitions, there are only q unique
cases, each linked to a separate row in the transition matrix, P . This represents
a large, and messy, number of partitions of the real-number line, R. We can
simplify our life somewhat by cumulating, or summing, the transition-matrix entries
across each row from right to left. This operation significantly eases working with
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quantities like those found on the right-hand side of Eq. 2.80 and leads to the so-
called cumulative transition matrix, G, which we define as

G =

⎡

⎢

⎢

⎢

⎣

(

p11 + p21 + · · · + pq1
) (

p21 + · · · + pq1
) · · · pq1

(

p12 + p22 + · · · + pq2
) (

p22 + · · · + pq2
) · · · pq2

...
...

. . .
...

(

p1q + p2q + · · · + pqq
) (

p2q + · · · + pqq
) · · · pqq

⎤

⎥

⎥

⎥

⎦

, (2.86)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q
∑

w=1

pw1

q
∑

w=2

pw1 · · ·
q
∑

w=q
pw1

q
∑

w=1

pw2

q
∑

w=2

pw2 · · ·
q
∑

w=q
pw2

...
...

. . .
...

q
∑

w=1

pwq

q
∑

w=2

pwq · · ·
q
∑

w=q
pwq

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Each one of the values in this cumulative transition matrix, G, lies in the interval,
[0, 1]—they are, in the end, probabilities. As we saw from the previous devel-
opment, the cumulative transition matrix is an intermediate step. The next step
in determining the appropriate partition requires transforming these probability
quantities into the domain of �Xi . The entries in G are thus mapped back into
the values of the standard normal distribution using the inverse standard normal
cumulative distribution function following the basic logic found in Eqs. 2.76 to 2.80.
This leads to,

G�−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�−1

(

q
∑

w=1

pw1

)

�−1

(

q
∑

w=2

pw1

)

· · · �−1

(

q
∑

w=q
pw1

)

�−1

(

q
∑

w=1

pw2

)

�−1

(

q
∑

w=2

pw2

)

· · · �−1

(

q
∑

w=q
pw2

)

...
...

. . .
...

�−1

(

q
∑

w=1

pwq

)

�−1

(

q
∑

w=2

pwq

)

· · · �−1

(

q
∑

w=q
pwq

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.87)

=

⎡

⎢

⎢

⎢

⎣

�−1 (g11) �
−1 (g21) · · · �−1

(

gq1
)

�−1 (g12) �
−1 (g22) · · · �−1

(

gq2
)

...
...

. . .
...

�−1
(

g1q
)

�−1
(

q2q
) · · · �−1

(

gqq
)

⎤

⎥

⎥

⎥

⎦

,
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=

⎡

⎢

⎢

⎢

⎣

K1(1) K1(2) · · · K1(q)

K2(1) K2(2) · · · K2(q)
...

...
. . .

...

Kq(1) Kq(2) · · · Kq(q)

⎤

⎥

⎥

⎥

⎦

.

The individual entries of the matrix, G�−1 , thus represent the collection of
boundaries, or thresholds, for the determination of credit migration as described in
Eq. 2.85. Each row, which captures the current state of the ith counterpart, describes
the partition of the �Xi space.

The previous development applies to the Gaussian threshold implementation.
Virtually identical logic, in the t-threshold approach, brings us to,

GT−1
ν

=

⎡

⎢

⎢

⎢

⎢

⎣

F−1
Tν

(g11) F
−1
Tν

(g21) · · · F−1
Tν

(

gq1
)

F−1
Tν

(g12) F
−1
Tν

(g22) · · · F−1
Tν

(

gq2
)

...
...

. . .
...

F−1
Tν

(

g1q
)

F−1
Tν

(

q2q
) · · · F−1

Tν

(

gqq
)

⎤

⎥

⎥

⎥

⎥

⎦

. (2.88)

The only difference associated with a change in copula function is the choice of
inverse cumulative distribution function to employ. It needs to be consistent with
the underlying latent creditworthiness variable definition.

Irrespective of one’s choice of copula function, a modicum of computational
caution is required. Since the sum of each row of the transition matrix is unity, each
element in the first column of G takes the value of one. That the support of the
normal distribution is (−∞,∞) implies, however, that one would assign a value
of ∞ to the elements in the first column of G. This will, of course, inevitably lead
to numerical problems. Instead, we assign a value of 10, because the probability of
observing an outcome from a standard normal or t distribution behind these values
is vanishingly small.62

Figure 2.4 provides a visualization of how, for a counterparty currently in credit
state Si,t , the partition of the �Xi space is constructed. We observe the relation to
the cumulative transition probabilities and how, stylistically at least, the individual
thresholds are placed. The random draw of�Xi determines, for the ith counterparty,
the location in the interval, (−∞,∞). The specific sub-interval that this random
draw enters thus determines the ith credit obligor’s t + 1 credit state. This is a very
clever idea. It allows us to map a real-valued variable that might take an uncountable
range of values—the creditworthiness index—into a small, finite set of q credit
categories.

Figure 2.4 also illustrates how the default outcome, �Xi ≤ KSi,t (q), is
simply a special case of this more general framework. The size of each individual
interval—which is hard to illustrate in a schematic diagram like Fig. 2.4—is directly

62 Any sufficiently large positive number will, of course, work.



2.5 Extending the Legacy Model 109

∆Xi(t + 1)

gq,Si,t

KSi,t (q)

State q

gq −1,Si,t

KSi,t (q − 1)

State q − 1 · · ·

· · · g3,Si,t

KSi,t (3)

g2,Si,t

KSi,t (2)

State 2

g1,Si,t

KSi,t (1) ≡ ∞

A large positive
number

State 1

Fig. 2.4 Partitioning the �Xi space: This figure visually illustrates, for a counterparty currently
in credit state Si,t , the partition of the �Xi(t + 1) space, its relation to the cumulative transition
probabilities, and how the individual thresholds are placed. All the necessary information stems
directly, or indirectly, from the transition matrix, P .

proportional to the associated probability of transition. Improbable outcomes are
assigned sliver thin intervals, while very likely outcomes have significant distance
between the two end-points. The idea is to ensure that the final transition outcomes
are numerically consistent with a random draw from the distribution of each �Xi

and that simulated credit-state mappings are driven by the values in our transition
matrix, P .

Colour and Commentary 22 (DEFAULT AS SPECIAL CASE): A credit-risk
model is, quite naturally, centrally concerned with the idea of default. This is,
of course, the principal avenue through which loss is experienced by the firm.
It is nonetheless, from an analytic perspective, rather useful to think of default
as a special case of credit-migration. The default threshold is particularly
important, because it involves negotiating repayment and, in some cases,
losing one’s entire investment. At the same time, movement from one credit
state to another (including default) can be viewed a sequence of economically
meaningful intervals. Each sub-interval maps the creditworthiness index
into a credit state. Default is easy to understand, since it conceptually
involves the firm’s assets falling below its liabilities. Credit deterioration (or
improvement), however, can be seen to follow a similar pattern. The required
level of assets associated with these internals are, by contrast, a bit more
difficult to define. Ultimately, they are inferred, as the default case, from
transition-probability estimates. This generalization forms the central logic
of credit-migration modelling.

Naturally, we need to construct a mathematical formulation of Fig. 2.4. Given
the simulated outcome �Xi(t + 1) associated with the ith counterparty currently
in credit state Si,t , we may determine the credit state in the next period, Si,t+1 as
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follows,

Si,t+1 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1 : �Xi(t + 1) ∈
[

KSi,t (2),KSi,t (1) ≡ ∞
]

2 : �Xi(t + 1) ∈
(

KSi,t (3),KSi,t (2)

]

...

q − 1 : �Xi(t + 1) ∈
(

KSi,t (q),KSi,t (q − 1)

]

q : �Xi(t + 1) ∈
(

−∞,KSi,t (q)

]

, (2.89)

for i = 1, . . . , I . This intuitive expression can be further simplified—with a
significant computational advantage for practical implementation—by exploiting
the monotonicity of the threshold definitions introduced in Eq. 2.85 and assured
from the structure in Eqs. 2.87 and 2.88. A bit of reflection reveals that the credit
state in the next period is determined by the smallest threshold which exceeds, or is
equal to, �Xi(t + 1). This is defined as,

Si,t+1 =
q
∑

�=1

I{
�Xi(t+1)≤KSi,t

(�)
}. (2.90)

While somewhat less intuitive, Eq. 2.90 permits a more parsimonious representation
of the credit-state transition process.63 Not great from a pedagogical perspective,
this form saves a significant amount of computational complexity and expense.

2.5.5 The Nuts and Bolts of Credit Migration

The previous section provides a detailed, and workable, description of the link
between firm creditworthiness and the underlying credit state associated with each
individual obligor in one’s portfolio. An important question remains: what happens
in the event that a credit counterpart changes credit state? We have already seen the
implications—in Eqs. 2.41 and 2.42—of a credit default. One loses some portion
of the total exposure; the exact amount depends upon one’s assumptions regarding
recovery. Considering (non-default) migration, of course, an alternative strategy is
required. Practically, we would expect that:

63 Other (probably more clever) computational tricks are possible; one alternative, for example, has
a specific structure involving the supremum operator. The important point is to define this condition
in an efficient manner consistent with one’s definitions.
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1. a credit loss (gain) to be recognized in the event of credit deterioration (improve-
ment);

2. the magnitude of the credit loss (or gain) should be consistent with market-
valuation effects associated with similarly rated entities;

3. the specific size and interest-rate sensitivity of the obligor’s exposures to be
incorporated into any credit loss (or gain); and

4. neither gain nor loss is to occur in the event an obligor remains in the same credit
state.

A critical aspect of this development is the creation of a link between the value
of an obligor’s exposures and changes in the market value of these exposures. Given
that loan exposures are not (typically) traded in liquid markets, this is something
of a challenge. For traded instruments, however, it is rather more straightforward.
Any credit-risky security trades at a premium over the lowest-risk borrower—almost
always the government—in that currency. The difference between actual bond yields
and the government, or Treasury, yield for a similar maturity is referred to as the
credit spread.64 Conceptually, the credit spread is decomposed into two separate
components: a general and an idiosyncratic element. The general aspect describes
the global risk associated with the entity’s credit state or rating. The idiosyncratic
element, conversely, is unique to the issue and may incorporate specific risks—and
also, more practically, liquidity—associated with its debt claims. For the purposes
of credit-migration modelling, a few assumptions are typical. First, only the global
or general credit-spread risk is considered.65 Second, we will assume that spread
movements can also be used to model valuation gains and losses for both marketable
bonds and non-marketable loans. We further assume—although this is principally
for the purposes of simplicity—that the credit spread is constant across the entire
maturity spectrum.66

A further, perhaps more difficult-to-defend, assumption is the time homogeneity
of these credit spreads. Credit spreads clearly vary across time due to investment
flows, changes in relative liquidity and variation in aggregate risk preferences.
There is also evidence that credit spreads are correlated with the general business
cycle. One could clearly attempt to model these dynamics, but the entire credit-risk
economic-capital approach seeks to generate long-term, through-the-cycle estimates
of the credit-loss distribution. In other words, transition probabilities, correlation
parameters, loss-given-default estimates, and assumed credit-spread values are,

64 It is also possible, of course, to define the spread relative to another reference curve. A popular
choice, given its liquidity, is the LIBOR-based swap curve. Given ongoing and forthcoming
LIBOR-market reform, the plumbing of the swap market is likely to change, but its central role
and usefulness for spread computations likely will not.
65 There is, as an empirical reality, a significant amount of heterogeneity with a given credit rating.
Modelling this aspect is complex, noisy, and unlikely to dramatically influence the results. As such,
it makes logical sense to exclude it.
66 Empirically, we do observe a term structure of credit spreads for each credit rating, which varies
across the credit spectrum.
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Fig. 2.5 Credit-spread cases: In the credit migration setting, there are three disjoint outcomes:
upgrade, downgrade, or staying put. These naturally translate into three associated credit-spread
cases: spread narrowing, spread widening, and no change at all. This figure visualizes, in a
schematic manner, this situation.

by construction, unconditional.67 Time homogeneity thus implies that the credit
spreads are estimated using long-term, low-frequency data, and are relatively
infrequently updated. Much more on this exercise is found in Chap. 3.

To make this more concrete, let us define the credit spread associated with the ith
credit counterpart in credit state, Si,t as SSi,t for i = 1, . . . , I . In fact, there are only
q − 1 actual credit values; we ignore the default state, q , because it does logically
require a spread and the loss implications are fundamentally different. For any time
step, therefore, the spread change for a given counterparty can be written as,

�Si (t + 1) = SSi,t+1 − SSi,t . (2.91)

Recall that Si,t = 1 describes the highest level of credit quality, Si,t = 20 is the
lowest, and Si,t = 21 denotes default.68 If SSi,t+1 < SSi,t (i.e., �Si (t + 1) > 0) then
we have a spread widening associated with credit deterioration (i.e., downgrade);
this further implies that Si,t+1 > Si,t . Conversely, SSi,t+1 > SSi,t ((i.e., �Si (t+1) <
0) represents a spread tightening with credit improvement (i.e., upgrade), Si,t+1 <

Si,t . Naturally, SSi,t+1 = SSi,t (i.e., �Si (t + 1) = 0) can only occur when there is
no change in underlying credit state. There are thus three disjoint cases for each
credit obligor migration in every possible state of the world: downgrade, upgrade,
and staying put. Figure 2.5 provides a visualization of these three credit-migration
outcomes and the associated credit-spread implications.

67 A number of regulatory mandated buffers attempt to incorporate the, potentially important,
consequences of the business cycle for one’s economic-capital estimates. These were discussed,
in greater length and detail, in Chap. 1.
68 Other firms will naturally follow differing scales, but the idea is the same.
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The definition in Eq. 2.91 permits a straightforward expression for the migration
loss associated with the ith credit obligor’s migration,

−Dm,i ·
(

SSi,t+1 − SSi,t

)

︸ ︷︷ ︸

�Si (t+1)

·ci, (2.92)

whereDm,i and ci denote the modified spread duration and exposure of the ith credit
obligor, respectively. The modified spread duration measure is generally defined as,

Dm,i = 1

Vi,t

∂Vi,t

∂Si,t
, (2.93)

where Vi,t represents the value of the ith credit obligation. While relatively easy to
find or compute for market-traded instruments, this value is slightly more difficult
to source for non-marketable loan contracts. Our approach to this computation will
be discussed in the following chapter.69

Given the credit state associated with the ith counterpart in the start and end
of each period—which is provided using the ideas from the previous section—
determining the credit-spread movement involves looking up one of q−1 values. A
simple example may be useful. Imagine that the ith counterparty has a e 15 million
exposure with an average modified duration of 4.75 years. At time t , it was in credit
state 2 with a (fictitious) credit spread of 100 basis points. In period t + 1, obligor
ith moved to credit state 3, which has a (equally invented) 120 basis-point spread.
From Eq. 2.92, the credit loss amounts to

−Dm,i ·
(

SSi,t+1 − SSi,t

)

· ci = −4.75 · (1.20% − 1.00%) · (e 15, 000, 000), (2.94)

= −0.95% · (e 15, 000, 000),

= −e 142, 500.

We thus estimate the credit loss to be approximately e 142,500. Use of the modified
duration implies a good first-order approximation of the credit loss and permits a
parsimonious, computationally efficient implementation.

The total credit-migration loss is thus,

LM =
I
∑

i=1

Dm,i ·�Si (t + 1) · ci, (2.95)

69 See Bolder [6, Chapter 3] for much more detail on fixed-income instrument sensitivities in
general and spread duration in particular.
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or, rather, the sum across all credit migrations. We have dispensed with the negative
sign in Eq. 2.95 because, as in the default setting, we treat loss as a positive quantity.
This is simply convention, but we need to be cautious to treat default and migration
losses in a consistent manner. As with the default case, many of the contributions
to the sum in Eq. 2.95 will be zero. Transition, however, is typically significantly
more probable than default, so relatively speaking, a higher proportion will be non-
zero. The overall migration effect—depending, of course, on the overall size of the
credit spreads—should involve a smaller magnitude; moreover, there is always the
possibility of credit gains to offset loss outcomes. Thus, while the exact size of the
migration effect will depend on the portfolio composition, it is generally expected
to be somewhat smaller than default losses.70

Combining the default and migration losses into a single expression, total credit
losses can be defined as,

L = LD + LM, (2.96)

=
I
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This representation describes default and credit migration as disjoint, or mutually
exclusive, events.71 This is useful, because although default is a special case of
migration, the loss implications are substantially different and need to be modelled
separately. The incorporation of migration losses to one’s credit-risk modelling
framework adds a significant amount of richness to the results.

Both default and migration losses—as highlighted in Eq. 2.96—depend on
the systemic and idiosyncratic elements embedded in �Xi . This computation
continues to be performed with stochastic simulation. We conceptualized the default
simulation as pulling systemic variables from hats and then flipping very large
numbers of unfair coins. The incorporation of credit migration slightly changes
the game. Default is a binary event, whereas migration is multifaceted. While the
general anatomy of the simulation approach remains the same, it might help to
imagine moving from coins to a dice. With both default and migration, we still draw
our (common) systemic factors from a hat. We then proceed to use this outcome

70 The level of confidence also plays a role. A very high-level of confidence will tend to bring out
the relatively rare incidence of multiple defaults. Lower levels of confidence may, by this logic,
lead to dominance of migration risk in the final economic-capital values.
71 More specifically, by construction, we have that

{

�Xi(t + 1) ≤ KSi,t (q)

}

∩
{

�Xi(t + 1) > KSi,t (q)

}

= ∅. (2.97)
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DEFAULT: COIN TOSS MIGRATION: MULTI-SIDED DIE

Fig. 2.6 Adding migration: Default, as a binary event, is well conceptualized as an (unfair) coin
toss. Migration does not quite work in this setting. It is easier to think about migration as the roll
of a large die with many uneven sides where the outcome determines the next period’s credit state.

to construct a die with q + 1 sides. If the die falls on side 1, the obligor moves
to the first credit state; landing on side 2 implies a transition to credit state 2 and
so on.72 Such multi-sided dice actually do exist, but we would need q of them;
one corresponding to each row of our transition matrix. Moreover, some of the
sides would be incredibly small.73 Figure 2.6 provides a brief visualization of this
important practical twist on the model implementation.

Colour and Commentary 23 (THE IMPORTANCE OF MIGRATION): Each
firm, when wrestling with the computation of credit-risk economic capital,
needs to reflect on the inclusion of migration risk. Historically, our economic-
capital computations did not consider the profit-and-loss consequences of
credit downgrade or upgrade; only default was considered. During the run-
up to statutory change, a decision was taken to incorporate this dimension
and capitalize for migration risk. The reasoning was twofold. First of all,
our portfolio is, by both construction and mandate, of relatively high credit
quality. The risk of default is, for most loan exposures, correspondingly low.
Risk of credit deterioration is not.a There is a consequent danger of missing
a (potentially) important risk dimension. A second rationale arises indirectly
through credit impairments or loan-loss provisioning. The loan-loss provision
will, in the event of a material deterioration of an obligor’s credit quality, lead
to an increase in associated impairments. Since this increase will flow through
to the profit-and-loss statement, credit-migration has an indirect financial-
statement impact.b Credit migration has thus been incorporated into our
economic capital model with a view towards ensuring greater consistency

(continued)

72 Default occurs by rolling q + 1 on our die.
73 So small, in fact, that physically our die idea would never actually work.
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Colour and Commentary 23 (continued)
of loan-pricing, creating better incentives for loan-origination, and helping
to recognize the potential profit-and-loss implications associated with loan-
obligor downgrades. In short, the general view was that incorporation of
credit migration provides a more complete credit-risk characterization. Other
firms, depending on their specific situation and objectives, may very well
arrive at a different decision.

a Although, it should be stressed, the financial consequences of downgrade are typically
rather smaller for downgrade than default.
b We return to the interesting question of computing loan impairments in Chap. 9.

2.6 Risk Attribution

This final discussion point in this chapter relates to the notion of risk attribution.
Management of economic capital requires us to understand how various sub-
components of our portfolio contribute to overall capital demand. This is necessary
for loan pricing and capital budgeting. To a certain extent, it also proves helpful in
loan-impairment calculations.74 More simply, it facilitates a better understanding
of how risks are distributed throughout one’s portfolio. The ability to perform
such central analysis requires an allocation, or attribution, of economic capital to
individual loans and financial investments. Easy to motivate and understand, it turns
out to be a surprisingly mathematically complicated venture. The complexity is, in
this case, unavoidable. The simple reason is that, in a practical setting, an economic-
capital framework will not get very far without the ability to attribute risks to various
aspects of one’s portfolio.

In most cases, although not always, risk attribution reduces to an application of
Euler’s theorem for homogeneous functions. The popularity of this method stems
from the fact that it is not only mathematically plausible, but it also ensures both
existence and uniqueness. In other words, there are many possible ways one might
decompose an aggregate risk metric down to the instrument level, but the standard
approach is the most natural and defensible.

To employ the Euler method, we need our risk measure to be a homogeneous
function of the portfolio weights or exposures. Homogeneity is a natural feature
of a coherent risk measure—this is one of Artzner et al. [3]’s desirable axiomatic
properties—and essentially amounts to the idea that if one doubles one’s portfolio
exposure, all else equal, one doubles the risk.75 It is hard to argue against such logic.

74 To see precisely how, please take a look at Chap. 9.
75 Mathematically, f (x) is termed a homogeneous function of the first order if,

f (λx) = λf (x), (2.98)
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Assuming that one’s risk measure, call it �(c), is a first-order homogeneous
function of the obligor exposures, c ∈ R

I , the Euler’s result implies that

�(c) =
I
∑

i=1

�(ci), (2.99)

=
I
∑

i=1

ci
∂�(c)

∂ci
.

The partial derivative,
∂�(c)

∂ci
, is termed the marginal risk associated with �.

Conceptually, it is the change in risk associated with an infinitesimally small
movement in the underlying exposure of the ith credit counterpart. Both Value-
at-Risk (VaR) and expected shortfall, like volatility, are first-order homogeneous
risk measures ensuring that Euler decomposition can be employed.76 Equation 2.99
is an equality; given homogeneity, it must hold. Consequently, one need only
identify the marginal risk—that is, partial derivatives—and one has a sensible risk
decomposition. In some cases, finding the partial derivatives is straightforward,
while in others it can be quite challenging. There are two broad approaches to
obtaining these partial derivatives in the credit-risk setting: numerical approximation
or use of analytical tricks. We’d prefer to use the latter, but sadly we are stuck
managing the former.

Despite the usefulness of this general approach to the question of risk attribution,
it is not a panacea. Caution is required. The presence of partial derivatives should
be, if not a red flag, then a reason for increased attention. By its very construction, a
partial derivative is a marginal quantity. In other words, it represents the reasonable
approximation of a change in the overall risk for a small movement in the exposure
of a given contract, or region, or industry. When one considers large changes,
however, all bets are off. Zhang and Rachev [44, Page 8] offer a nice overview
of the key questions and some of the existing associated research. The proposed risk
attribution makes logical and mathematical sense for our purposes, but it important
to keep in mind that it is a subtle quantity.

2.6.1 The Simplest Case

The most straightforward setting arises where the partial derivatives can be written
in closed form. A good example, which sadly is unavailable to us, is the parametric

for any choice of λ ∈ R. See Loomis and Sternberg [27] for more discussion on homogeneous
functions.
76 Bolder [6, Chapter 11] provides, from a market-risk perspective, rather more background on the
origins and defensibility of this approach.
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market-risk measure. Let’s briefly examine the logic. Imagine a portfolio with a
vector of K risk-factor weights ζ ∈ R

K along with variance-covariance matrix, �.
Assuming zero return and abstracting from the (thorny) question of length of time
horizon, the parametric VaR, at confidence level α for our imaginary portfolio is
typically written as,

VaRα(L) = �−1(1 − α)

√

ζ T �ζ . (2.100)

The VaR, as we saw previously, is simply the appropriate quantile of the return
distribution; given the assumption of Gaussianity, it reduces to a multiple of the
portfolio-return variance,

√

ζ T �ζ . Similar expressions are available for expected
shortfall. We can, without loss of generality, assume this to be the economic-capital,
since subtracting the expected loss (a constant) changes nothing.

The hard work in the risk-factor decomposition of VaRα(L) is to compute the
marginal value-at-risk. As seen in Eq. 2.99, this is merely the gradient vector of
partial derivatives of the VaR measure to the risk-factor exposures summarized in ζ .
Mathematically, it has the following form,

∂VaRα(L)

∂ζ
= �−1(1 − α)

∂
√

ζ T �ζ

∂ζ
. (2.101)

Let’s see if we can quickly derive the result in Eq. 2.101 and demonstrate its

reasonableness as a risk-attribution method. Directly computing ∂
√
ζT �ζ

∂ζ
is not so

straightforward. Instead, define the portfolio volatility as,

σp(ζ ) =
√

ζ T �ζ . (2.102)

Working with the square-root sign is annoying, so let’s work with the square of the
portfolio volatility (or, rather, variance),

∂
(

σp(ζ )
2
)

∂ζ
= 2σp(ζ )

∂σp(ζ )

∂ζ
, (2.103)
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,
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which is a vector in R
K . Plugging this result into Eq. 2.101, we have our desired

result,

∂VaRα(L)

∂ζ
= �−1(1 − α)

�ζ
√

ζ T �ζ
︸ ︷︷ ︸

Eq. 2.103

. (2.104)

An element-by-element multiplication of these marginal value-at-risk values and the
vector, ζ , provides the contribution of each risk-factor to the overall risk. That is,

Contribution of ith risk factor to VaRα(L) = ζi · ∂VaRα(L)

∂ζi
, (2.105)

where ζi refers to the ith element of the risk-weight vector, ζ . Does the sum of
these individual risk-factor contributions actually lead us to the overall risk-measure
value? Consider the dot product of the sensitivity vector, ζ , and the marginal value-
at-risk gradient,

ζ T
∂VaRα(L)

∂ζ
= ζ T

(

�−1(1 − α)
�ζ

√

ζ T �ζ

)

︸ ︷︷ ︸

Eq. 2.104

, (2.106)

= �−1(1 − α)
ζ T �ζ
√

ζ T �ζ
,

= �−1(1 − α)

√

ζ T �ζ
︸ ︷︷ ︸

Eq. 2.100

,

= VaRα(L).

In a few short lines, we have found a sensible and practical approach for the
allocation of VaR to individual market-risk factors. Regrettably, while promising
and intuitive, this expedient path is not available to us in the credit-risk setting. The
threshold and mixture models used for credit-risk measurement do not generally
lend themselves to parametric forms, which in turn forces us to rely upon simulation
methods for risk-measure estimation.

2.6.2 An Important Relationship

If the partial derivatives cannot be computed analytically, then their numerical
computation would appear to be a reasonable solution. Estimating numerical
derivatives in a simulation setting, however, is a bit daunting. There is, happily,
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a surprising relationship which facilitates the computation of the marginal-risk
figures.77 Its statement requires a bit of background. Let us, as before, define the
total default credit loss as the following sum over the I counterparties in the credit
portfolio,

L =
I
∑

i=1

ciγiIDi
︸ ︷︷ ︸

Xi

, (2.107)

where IDi , γi , and ci represent our now familiar default-event, loss-given-default,
and exposure quantities, respectively. We can use our Gaussian or t-threshold
definition of the default event if you like, or imagine something else entirely.
Consider Eq. 2.107 to be a general statement.

We now introduce the key relationship. Under positive homogeneity conditions,
the VaR measure for the portfolio loss, L, can be written as the sum of the marginal
value-at-risk values. That is,

Contribution of ith counterparty to VaRα(L) = ∂VaRα(L+ hXi)

∂h

∣

∣

∣

∣

h=0
,(2.108)

= E
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∣

∣

∣
L = VaRα(L)

)

,

where h is a small positive constant. It is also possible to show that,

VaRα(L) =
I
∑

i=1

E

(

Xi

∣

∣

∣

∣
L = VaRα(L)

)

. (2.109)

That is a lot to swallow and does not appear to be particularly believable at first
glance. In words, Eq. 2.109 implies that the loss contribution associated with each of
the I counterparties—where the total loss exactly coincides with the VaR measure—
is equivalent to their overall contribution. Computationally, therefore, one need only
use a Monte-Carlo engine to simulate the loss distribution and examine the set of
losses at the VaR outcome to determine their individual contributions.

An analogous result is also available for the expected shortfall. In particular,

Contribution of ith counterparty to Eα(L) = ∂Eα(L+ hXi)

∂h

∣

∣

∣

∣

h=0
, (2.110)

= E

(

Xi

∣
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∣

∣
L ≥ VaRα(L)

)

.

77 See Tasche [39], Gourieroux et al. [16], and Rau-Bredow [36] for much more detail.
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It can also be analogously shown that

Eα(L) =
I
∑

i=1

E

(

Xi

∣

∣

∣

∣
L ≥ VaRα(L)

)

. (2.111)

The difference in the expected-shortfall case—which is not unimportant—is that
one needs to compute the average losses greater than or equal to the VaR for the
decomposition of this measure. It thus also readily lends itself to extraction from
one’s Monte-Carlo engine. Derivation of this result is far from trivial, but it is
outlined in detail in Bolder [7, Chapter 7]. The reader unfamiliar with these results—
and not entirely convinced by their statement without proof—is recommended to
invest a bit of time in reviewing their mathematical logic and justification.

2.6.3 The Computational Path

Despite the powerful relationship between conditional expectation and partial
derivatives introduced in the previous section, evaluation of the conditional expec-
tation in the case of VaR, from Eq. 2.109, is not terribly straightforward. Algorithms
do exist. In the most direct manner, one proceeds in two steps. First, given M

simulations, one orders the loss vectors for each iteration in ascending order.
Second, using the choice of α, one identifies VaRα(L) and then selects the single
loss vector, Lm, consistent with this VaR estimate. This is, by definition, a singleton
set. The losses associated with each instrument—or dimension of interest—are
extracted from the loss vector. That is, according to Eq. 2.109, each contribution
is equal to E (Li |L = VaRα(L)). It basically comes for free from one’s simulation
engine. Naturally, there is a catch. This is an incredibly noisy estimator of the true
risk attributions. As bluntly, but very accurately, stated by Glasserman [14],

each contribution depends on the probability of a rare event conditional on an even rarer
event.

An alternative is to repeat our M-iteration simulation a large number of times
and average the resulting portfolio-loss vectors. While this basically works, a
depressingly large number of repetitions is required to achieve convergence. In
short, the computational expense is exorbitant.

Hallerbach [19] offers an alternative.78 It is an approximation that begins from
the M simulations. Given a small positive number ε, the following set is defined

LVaRα
(ε) =

[

VaRα(L)− ε,VaRα(L)+ ε

]

. (2.112)

78 This approach, described recently in Mossessian and Vieli [33], appears to still be in broad use
in industrial applications.
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Each element of LVaRα
(ε) is thus a portfolio-loss vector in the neighbourhood of

one’s VaR estimate. The average across all elements in the portfolio-loss vectors of
LVaRα

(ε) is a biased estimator for the overall VaR and the conditional expectations
found in Eq. 2.109. Defining M∗ as the number of elements in LVaRα

(ε), our
estimate of our desired conditional expectations—or equivalently marginal VaR
values—is

E

(

Li

∣

∣

∣

∣
L = VaRα(L)

)

≈ 1

M∗
∑

�∈LVaRα
(ε)

�i . (2.113)

for i = 1, . . . , I . The trick is to find the value of ε that increases the number of loss
vectors to sufficiently reduce the noise, but not introduce an unreasonable amount
of bias. These effects move, of course, in opposite directions. Reducing bias comes
at the cost of increased estimation variance and vice versa.79

A challenge of this approach is that the sum of approximated conditional
expectations will, in principle, no longer sum to the observed VaR. Hallerbach
[19] thus, quite practically, suggests rescaling the individual contributions in a
proportionate manner to force them back to the desired VaR estimate. If this sounds
slightly ad hoc, it is because it is. There are, to be honest, not many alternatives.80

One legitimate option is to change the risk measure to the expected shortfall.
Approximation of its conditional expectation is much more natural. Again, starting
from M simulations, the following set is defined

LEα
=
{

L ≥ VaRα(L)

}

. (2.114)

In this case, we collect all of the portfolio-loss vectors exceeding the designated VaR
level. This set, virtually by definition, contains multiple elements. WithM = 10,000
and α = 0.99, it will include by construction, (1 − 0.99) · 10,000 = 100 portfolio-
loss vectors. If we reduce α to the 99.97th quantile, of course, this falls to just 3.81

The point nonetheless remains valid. With a judicious choice of M , we can ensure
a sufficient number of elements in LESα

. The necessity of introducing ε and its
attendant bias is thus precluded.

79 While practically feasible, the author’s personal experience reveals finding the appropriate
balance to be a frustratingly slow exercise.
80 Fan et al. [10] offer an approach exploiting the multivariate copula functions of one’s model
dependence structure. In a complex, multiple-step simulation, this is unlikely to be extremely
helpful.
81 Naturally, at the 99.99th quantile with M = 10,000 we have that LESα

is a singleton set. The
interplay between the number of iterations and one’s confidence level is, thus, critically important.
More on this point in Chap. 4.
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Defining M̃ as the number of elements in LESα
, our estimate of our desired

conditional expectations—or equivalently marginal expected-shortfall values—is

E

(

Li

∣

∣

∣

∣
L ≥ VaRα(L)

)

≈ 1

M̃

∑

�∈LESα

�i . (2.115)

for i = 1, . . . , I . This is thus both a sharper and unbiased estimate of the risk
contribution associated with our expected-shortfall measure. It is also consistent
with findings in the literature of greater robustness of expected-shortfall risk
measure and attribution estimates.

2.6.4 A Clever Trick

To summarize the previous discussion, the risk-attribution computation for expected
shortfall is significantly more stable than its VaR equivalent. The reason, of
course, is that our expected-shortfall estimates are an average over the values
beyond a certain quantile. The VaR figures, conversely, depend on the values at a
specific quantile. This latter quantile is harder to pinpoint and subject to substantial
simulation noise.

Bluhm et al. [5, Chapter 5], keenly aware of the inherent instability of Monte-
Carlo-based VaR risk attribution, offer a possible solution. The idea is to find the
quantile that equates one’s VaR-based economic-capital estimate to the shortfall.
They refer to this as VaR-matched expected shortfall. Conceptually, it is straight-
forward. One computes, using the predetermined level of confidence α, the usual
VaR-based economic capital.82 We seek, however, a new quantile, let’s call it α∗,
that equates expected shortfall with VaRα(L). Mathematically, we seek the α∗ root
of the following equation,

VaRα(L)− Eα∗(L) = 0. (2.116)

In some specialized situations, Eq. 2.116 may have an analytic solution. More
pragmatically, however, it is readily solved numerically. α∗ can be identified, in fact,
as the solution to the following one-dimensional non-linear optimization problem

min
α∗

∥

∥

∥

∥
VaRα(L)− Eα∗(L)

∥

∥

∥

∥

p

, (2.117)

82 Ignoring again, without loss of generality, the constant expected-loss term.
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Fig. 2.7 Equating VaR and expected shortfall: This graphic highlights the least-squares motivated
objective function used to identify the expected-shortfall quantile, α∗ that equates the expected
shortfall with the 99th quantile VaR estimate.

where α∗ ∈ (0, 1) and ‖·‖p describes the p-norm used to characterize distance.
One could, given its low dimensionality, use a brute-force, grid-search algorithm to
resolve Eq. 2.117; the ultimate result is conceptually identical.

Figure 2.7 displays the objective function—using the L2 norm to describe the
distance between our two risk measures—for a sample threshold model imple-
mentation. The choice of L2 reduces α∗ to a least-squares estimator.83 Lp(α),
as evidenced in Fig. 2.6, demonstrates both a smooth shape and clear minimum
highlighted with a red star.

To summarize, an efficient alternative is to identify the α∗ equating one’s VaR-
based economic-capital estimate and the associated expected shortfall. Then one
employs this quantity to approximate the VaR-matched expected shortfall contri-
butions. One does not, therefore, directly compute a true VaR risk attribution, but
rather accepts Bluhm et al. [5, Chapter 5]’s advice. While numerically defensible,
this choice is not without empirical repercussions. Most importantly, a small sleight
of hand has been performed. We have quietly switched our risk metric—for risk
attribution purposes—from VaR to expected shortfall. While not a criminal act, it is
still hard to precisely understand the ultimate consequences.

Despite the cleverness of this trick, there is already a clean logical solution:
simply use expected shortfall as one’s economic-capital measure. This avoids the
need to use mathematical tricks and ensures a structural consistency between one’s
economic-capital metrics and the associated risk-attribution calculations.84 Since

83 Other choices of p are, of course, possible, but this option is numerically robust and easily
understood.
84 The remaining issue to keep in mind is the choice of M to ensure adequate numbers for the
robust estimation of the risk attributions. This important question is addressed in Chap. 4.
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this represents an important change to the economic-capital framework—which
is always daunting to revise—it is understandable that one might be reluctant to
make a change of this magnitude. Since NIB was already in the midst of a large-
scale review of their credit-risk economic capital methodology, it was less difficult.
Indeed, this practical risk-attribution advantage—combined with the coherence of
expected shortfall and its inherent conservatism—made moving to a new risk metric
a relatively easy choice.

Colour and Commentary 24 (RISK ATTRIBUTION): The analytic advan-
tages of one’s economic-capital framework are severely limited without an
ability to attribute overall risk to individual financial instruments. Absent
this capability, there is simply no way to understand how capital demand
is distributed across one’s portfolio. Although essential, in the credit-risk
setting this is not a trivial task. Useful and tractable semi-analytic methods
exist, but are not available in the multivariate setting.a We need, therefore,
to take recourse to numerical methods. In practice, these methods are much
more stable for expected shortfall relative to the VaR metric. Numerous
clever tricks exist to improve the situation, but the simplest solution is to use
expected shortfall as one’s principal economic-capital metric. Accepting this
fact—while taking into consideration the other conceptual advantages of the
expected-shortfall measure—is precisely what we have done.

a Saddlepoint methods, for example, work exceptionally well in low-dimensional cases; see
Bolder [7, Chapter 7] for an introduction.

2.7 Wrapping Up

This mathematics-heavy chapter focuses principally on the methodological structure
and choices associated with our credit-risk economic-capital model. The entry
point is a general, intimidating, and frankly fairly impractical stochastic differential
equation describing the creditworthiness (i.e., asset-return) dynamics for the I

credit obligors in one’s portfolio. Appropriate time discretization, normalization,
and notational adjustment reveal the skeleton of a Gaussian threshold model. Some
additional machinery—including stochastic recovery—brought us to our legacy
implementation. The current economic-capital framework involves two revisions
to this basic structure: a new copula function that permits tail dependence and credit
migration. This long, and at times winding, road leads us to the final production
model.

There are, unfortunately, a multiplicity of moving parts. It is easy to lose the
forest for the trees. Table 2.3 thus attempts to help us summarize the key decisions
by chronicling the key methodological facts about our model. In one phrase, the
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Table 2.3 Methodology fact sheet: The underlying table provides, at a glance, a summary of the
key methodological choices associated with our credit-risk economic-capital model.

Dimension Description

Model type Multivariate threshold model

Time perspective Discrete time

Horizon One-year, single step

Copula t

Credit migration Yes

Risk metric Expected shortfall

Confidence level 99.97th quantile

Parameter perspective Long-term, through-the-cycle approach

Loss-given-default Random following independent beta distributions.

Transition matrix 20-state NIB master scale

current credit-risk production model is a one-period, multivariate t-threshold model
with stochastic recovery and credit migration.

This chapter’s objective was to introduce the credit-risk economic capital model.
Although these details are absolutely necessary for an understanding of our pro-
posed model, they are not sufficient. As every mathematician knows, we need both
necessity and sufficiency to be really satisfied.85 Two additional pieces of the puzzle
are required. As a first point, the model does not really come alive until the specific
parameters are identified. We would be, in other words, hard-pressed to use the
model without clear and concrete coefficients. Model parametrization, which brings
many practical challenges and involves numerous decisions, is the focus of the next
chapter. The second requirement touches upon model implementation questions.
Even if you have all of the mathematics and parameters sorted out, the computations
still need to be performed. This task can be categorized as conceptually easy,
but practically hard. It is a bit like climbing a mountain. We know that we need
only put one foot, and hand, in front of the other. That knowledge, while perhaps
comforting in some sense, doesn’t necessary ease the difficulty of actually getting
up the mountain. Chapter 4 thus acts as our mountain-climbing guide.

References

1. M. Abramovitz and I. A. Stegun. Handbook of Mathematical Functions. Dover Publications,
New York, 1965.

2. E. I. Altman, B. Brady, A. Resti, and A. Sironi. The link between default and recovery rates:
Theory, empirical evidence, and implications. The Journal of Business, 78(6):2203–2228,
2005.

85 Even then, one can usually find something to complain about.



References 127

3. P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathematical
Finance, 9(3):203–228, July 2001.

4. F. Black and M. S. Scholes. The pricing of options and corporate liabilities. Journal of Political
Economy, 81:637–654, 1973.

5. C. Bluhm, L. Overbeck, and C. Wagner. An Introduction to Credit Risk Modelling. Chapman
& Hall, CRC Press, Boca Raton, first edition, 2003.

6. D. J. Bolder. Fixed Income Portfolio Analytics: A Practical Guide to Implementing, Monitoring
and Understanding Fixed-Income Portfolios. Springer, Heidelberg, Germany, 2015.

7. D. J. Bolder. Credit-Risk Modelling: Theoretical Foundations, Diagnostic Tools, Practical
Examples, and Numerical Recipes in Python. Springer-Nature, Heidelberg, Germany, 2018.

8. P. P. Boyle, M. Hardy, and T. C. Vorst. Life after var. The Journal of Derivatives, 13(1):48–55,
2005.

9. P. Brémaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues. Springer
Verlag, 175 Fifth Avenue, New York, NY, 1999. Texts in Applied Mathematics.

10. G. Fan, Y. Zeng, and W. K. Wong. Decomposition of portfolio VaR and expected shortfall
based on multivariate copula simulation. International Journal of Management Science, 7(2):
153–160, 2012.

11. J. Frye. Depressing recoveries. Federal Reserve Bank of Chicago, October 2000.
12. J. Frye. Loss given default as a function of the default rate. Federal Reserve Bank of Chicago,

September 2013.
13. M. Gilli and E. Këllezi. An application of extreme value theory for measuring financial risk.

Computational Economics, 27(1):207–228, 2006.
14. P. Glasserman. Measuring marginal risk contributions in credit portfolios. Risk Measurement

Research Program of the FDIC Center for Financial Research, January 2006.
15. G. H. Golub and C. F. V. Loan. Matrix Computations. The John Hopkins University Press,

Baltimore, Maryland, 2012.
16. C. Gourieroux, J. Laurent, and O. Scaillet. Sensitivity analysis of values at risk. Journal of

Empirical Finance, 7(3-4):225–245, November 2000.
17. M. Gundlach and F. Lehrbass. CreditRisk+ in the Banking Industry. Springer Verlag, Berlin,

first edition, 2004.
18. G. M. Gupton, G. Coughlan, and M. Wilson. CreditMetrics — Technical Document. Morgan

Guaranty Trust Company, New York, 1997.
19. W. G. Hallerbach. Decomposing portfolio value-at-risk: A general analysis. Erasmus

University Rotterdam, October 2002.
20. J. D. Hamilton. Time Series Analysis. Princeton University Press, Princeton, New Jersey, 1994.
21. J. W. Harris and H. Stocker. Handbook of Mathematics and Computational Science. Springer

Verlag, New York, New York, 1998.
22. N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions: Volume 2.

John Wiley and Sons, New York, NY, 1997. Wiley Series in Probability and Statistics.
23. P. Jorion. Risk Management Lessons from Long-Term Capital Management. European

Financial Management, 6:277–300, 2000.
24. K. Kostadinov. Tail approximation for credit-risk portfolios with heavy-tailed risk factors.

Zentrum Mathematik, Technische Universität München, December 2005.
25. G. Kuhn. Tails of credit default portfolios. Zentrum Mathematik, Technische Universität

München, December 2005.
26. P. Kumaraswamy. A generalized probability density function for double-bounded random

processes. Journal of Hydrology, 46(1):79–88, 1980.
27. L. H. Loomis and S. Sternberg. Advanced Calculus. World Scientific Publishing, Inc.,

Hackensack, New Jersey, 2014.
28. D. MacKenzie and T. Spears. “The Formula That Killed Wall Street?” The Gaussian Copula

and the Material Cultures of Modelling. University of Edinburgh, June 2012.
29. A. J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Tools and

Techniques. Princeton University Press, New Jersey, 2015.



128 2 Constructing a Practical Model

30. R. Merton. On the pricing of corporate debt: The risk structure of interest rates. Journal of
Finance, 29:449–470, 1974.

31. S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag, 175
Fifth Avenue, New York, NY, 1993.

32. J. Morgan/Reuters. RiskMetrics — Technical Document. Morgan Guaranty Trust Company,
New York, 1996.

33. D. Mossessian and V. Vieli. Decomposing portfolio risk using Monte Carlo estimators. FactSet
Research Systems Inc., 2017.

34. B. K. Oksendal. Stochastic Differential Equations. Springer Verlag, Berlin, fourth edition,
1995.

35. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University Press, Trumpington Street, Cambridge,
second edition, 1992.

36. H. Rau-Bredow. Value-at-risk, expected shortfall, and marginal risk contribution. In G. Szegö,
editor, Risk Measures for the 21st Century. John Wiley & Sons, 2004.

37. H. L. Royden. Real Analysis. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1988.
38. A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de

Statistique de L’Université de Paris, 8:229–231, 1959.
39. D. Tasche. Risk contributions and performance measurement. Zentrum Mathematik,

Technische Universität München, February 2000.
40. O. A. Vasicek. Probability of loss on loan distribution. KMV Corporation, February 1987.
41. O. A. Vasicek. Limiting loan loss probability distribution. KMV Corporation, August 1991.
42. O. A. Vasicek. The distribution of loan portfolio value. Risk, (12):160–162, December 2002.
43. T. Wilde. CreditRisk+: A credit risk management framework. Credit Suisse First Boston,

January 1997.
44. Y. Zhang and S. Rachev. Risk Attribution and Portfolio Performance Measurement: An

Overview. University of California, Santa Barbara, September 2004.



Chapter 3
Finding Model Parameters

If you have a procedure with ten parameters, you probably
missed some.

(Alan Perlis)

We can loosely think of a firm-wide credit-risk economic-capital model as a
complicated industrial system, such as a power plant, an air-traffic control system,
or an interconnected assembly line. The operators of such systems typically find
themselves—at least, conceptually—sitting in front of a large control panel with
multiple switches, levers, and buttons.1 Getting the system to run properly, for their
current objective, requires setting everything to its proper place and level. Failure
to align the controls correctly can lead to inefficiencies, defective results, or even
disaster. In a modelling setting, unfortunately, there is no exciting control room.
There are, however, invariably a number of important parameters to be determined.
It is useful to imagine the parameter selection process as being roughly equivalent
to adjusting the switches, levers, and buttons in an industrial process. There are
many possible combinations and their specific constellation depends on the task
at hand. Good choices require experience, reflection, and judgement. Transparency
and constructive challenge also contribute importantly to this process.

The previous chapter identified a rich array of parameters associated with our
large-scale industrial model. The principal objective of this chapter is to motivate
our actual parameter choices. It is neither particular easy nor terribly relaxing to
walk through a detailed explanation of such a complex system. The labyrinth of
questions that need to be answered can easily lead us astray or obscure the thread of
the discussion. Figure 3.1 attempts to mitigate this problem somewhat through the
introduction of a parameter tree. It highlights five main categories of parameters:
credit states, systemic factors, portfolio-level quantities, recovery rates, and credit

1 This old-fashioned control panel is fun to envision, but sadly, in today’s world, most of these
things are probably run via computer.
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Fig. 3.1 A parameter tree: This schematic highlights five main classes of parameters and further
illustrates the key questions associated with each grouping. This parameter tree forms a rough
outline of this chapter—providing the main sections—and acts as a logical guide through the
complexity of our credit-risk economic capital control panel.

migration. Each of the five divisions of Fig. 3.1 corresponds to one of the main
sections of this chapter. These categories are further broken down into a number of
sub-categories identifying the specific parameter questions to be answered. Overall,
there more than a dozen avenues of parameter investigation to be covered. Figure 3.1
thus forms not only a rough outline of this chapter, but also a logical guide for
navigating the complexity of our credit-risk economic capital control panel.

Before jumping in and answering the various parameter questions raised in
Fig. 3.1, it is useful to establish a few ground rules. The first rule, already highlighted
in previous chapters, is that economic capital is intended to be a long-term,
unconditional, or through-the-cycle estimate of asset riskiness. This indicates that
we need to ensure a long-term perspective in our parameter selection. A second
essential rule is that, wherever possible, we wish to select our parameters in an
objective, defensible fashion. In other words, we need to rely on data. Data, however,
brings its own set of challenges. We will not always be able to find the perfect dataset
to precisely measure what we wish; as a small institution with limited history, NIB
often finds itself faced with such challenges. This suggests the need to employ some
form of logical proxy. Moreover, consistency of data for different parameters types,
the choice of time horizons, and the relative weight on extreme observations are all
tricky questions to be managed. We will not pretend to have resolved all of these
questions perfectly, but will endeavour to be transparent about our choices.

A final rule, or perhaps guideline, is that a model owner or operator needs to be
keenly aware of the sensitivity of model outputs to various parameter choices. This
is exactly analogous to our industrial process. The proper setting for a lever is hard
to determine absent knowledge of how its setting impacts one’s production process.
Such analysis is a constant component of our internal computations and regular
review of parameter choices. It will not, however, figure much in this chapter.2

2 Section 3.3, highlighting the portfolio perspective, does take a few steps in this important
direction.
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The reason is twofold. First of all, such an analysis inevitably brings one into
the specific details of the portfolio: regional and industrial breakdowns and the
impact on specific clients. Such information is naturally sensitive and, as such,
cannot be shared in such a forum. The second, more practical, reason relates to the
volume of material. This chapter is already extremely long and detailed—perhaps
too much so—and adding analysis surrounding parameter sensitivity will only make
matters worse. Let the reader be nonetheless assured that parameter sensitivity is an
important internal theme and forms a central component of the parameter-selection
process.

The mathematical structure of any model is deeply important, but it is the specific
values of the individual parameters that really bring it to life. The remaining sections
of this chapter will lean upon the structure introduced in Fig. 3.1 to describe and
motivate our parametric choices. Necessarily very NIB-centric, the general themes
and key questions apply very widely to a broad range of financial institutions.

3.1 Credit States

As is abundantly clear in the previous chapter, the default and migration risk
estimates arising from the t-threshold model depend importantly on the obligor’s
credit state. One can make a legitimate argument that this is the most important
aspect of the credit-risk economic capital model. The corollary of this argument is
the treatment of credit states—and their related properties—is the natural starting
point for any discussion on parameterization.

3.1.1 Defining Credit Ratings

NIB has, for decades, made use of a 21-notch credit-rating scale.3 This is a
fairly common situation among lending institutions; control over one’s internal
rating scale is a very helpful tool in loan origination and management. For large
institutions, it is also the source of rich internal firm-specific data on default,
transition, and recovery outcomes. NIB—as are many other lending organizations—
is unfortunately too small to enjoy such a situation. The consequence is a lack of
sufficient internal credit-rating data and history to estimate firm-specific quantities.
It is thus necessary to identify and use longer and broader external credit-state
datasets for this purpose. A natural source for this data is the large credit-rating
agencies: S&P, Moodys, or Fitch. We have taken the decision to generally rely upon

3 This is often referred to as a 20-notch system, with the exclusion of default from the scale. As
default is a naturally legitimate credit-state outcome in the credit-risk economic-capital model, we
will use 21 distinct notches.
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Table 3.1 An internal credit scale: This table introduces the 21-notch NIB rating scale and
maps it to the 18-notch S&P and Moody’s credit categories. Both Moody’s and S&P and have
many additional speculative-grade groupings below the B3 and B- levels, respectively. These are,
however, outside of NIB’s investment range and thus not explicitly considered. PD20 is thus a
catch-all category for everything below the B3 and B-cut-offs.

NIB Code S&P Moody’s

PD01 AAA Aaa
PD02 AA+ Aa1
PD03 AA Aa2
PD04 AA- Aa3
PD05 A+ A1
PD06 A A2
PD07 A- A3
PD08 BBB+ Baa1
PD09 BBB Baa2
PD10 BBB- Baa3
PD11 BB+ Ba1
PD12 BB+/BB Ba1/Ba2

PD13 BB Ba2

PD14 BB- Ba3
PD15 BB-/B+ Ba3/B1

PD16 B+ B1

PD17 B B2
PD18 B/B- B2/B3

PD19 B- B3

PD20 CCC Caa

Default

PD11–PD13

PD14–PD16

PD17–PD19

S&P transition probabilities, but we also examine Moodys’ data for comparison
purposes. One can certainly question the representativeness of this data for our
specific application, but there are unfortunately not many legitimate alternatives.
We will attempt to make adjustments for data representation as appropriate.

Both Moody’s and S&P also allocate 19 and 20 non-default credit ratings,
respectively; each is described with a different alphanumeric identifier as shown in
Table 3.1. Typically, we refer to the top-ten ratings—in either scale—as investment
grade. The remaining lower groups are usually called speculative grade. The most
obvious solution—for small- to medium-sized firms—would be to create a one-to-
one mapping between one’s internal scale and the S&P and Moody’s categories;
this would ultimately preclude managing different numbers of groupings. This
is, however, a problem for NIB (and many other lending institutions), since the
very lower end of the S&P and Moody’s scales are simply too far outside of our
typical lending risk appetite.4 These categories are referred to as either “extremely
speculative” or in “imminent risk of default.” This is simply not representative of

4 Other lenders’ internal scales, of course, may deviate from the external-rating universes for rather
different reasons.
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our business mandate and practice. For this reason, everything below S&P’s B- and
Moody’s B3 categories are lumped together into the final PD20 NIB credit rating.
This makes the mapping rather more difficult. We need to link 20 (non-default) NIB
categories into 17 (non-default) S&P and Moody’s credit notches.

Finding a sensible mapping between these two mismatched scales requires some
thought. As an over-specified problem, a unique mapping solution naturally does
not exist. Some external logic or justification is required to move forward.5 The first
ten (investment-grade) categories are easy. They are simply matched on a one-to-
one basis among the S&P, Moody’s and NIB scales. The hard part relates to the
speculative grade. Our practical solution to this mapping problem involves sharing
of a pair of S&P and Moody’s rating categories between three triplets of NIB
groupings. This links six credit-rating agency groups into nine NIB categories; the
three-notch mismatch is thus managed. The overlap occurs for rating triplets PD11-
13, PD14-16, and PD17-19. The specific values are summarized in Table 3.1. As a
final step, PD20 maps directly to the CCC and Caa S&P and Moody’s categories,
respectively.

Colour and Commentary 25 (CREDIT RATING SCALE AND MAPPINGS):
NIB’s internal 21-notch credit scale is not a modelling choice. It was
designed, and has evolved over the years, to meet its institutional needs. This
includes the creation of a common language around credit quality, the need
to support the loan-origination process, and also to aid in risk-management
activities.a Our modelling activities need to reflect this internal reality. Our
position as a small lending institution nonetheless requires looking outwards
for data. To do this, explicit decisions about the relationships between the
internal scale and external ratings need to be established. This is a modelling
question. The solution is a rather practical mapping between NIB’s 20 non-
default notches and the first 17 non-default credit ratings for S&P and
Moody’s. Its ultimate form, summarized in Table 3.1, was designed to manage
the notch mismatch and the nature of our internal rating scale. We will return
to this decision frequently in the following parameter discussion as well as in
subsequent chapters.

a Internal rating scales are a common tool among lending institutions all over the world.

5 Mathematically, one could potentially seek to simplify the problem or provide additional
constraints to lead to a unique solution. This process is generally referred to as regularization.
While such formalization might be helpful, we have opted for a rather simpler approach.
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3.1.2 Transition Matrices

The previous credit-rating categorization has some direct implications. In particular,
it implicitly assumes that the credit quality of its obligors can be roughly described
by a small, discrete and finite set of q-states. From a mathematical modelling
perspective, this strongly suggests the idea of a discrete-time, discrete-state Markov-
chain process.6 While there are limits to how far we can push this idea—Chap. 7
will explore this question in much more detail—treating the collection of credit
states as a Markov chain is a useful starting point. It immediately provides a number
of helpful mathematical results. In particular, the central parametric object used to
describe a Markov chain is the transition matrix. Denoted as P ∈ R

q×q , it provides
a full, parsimonious characterization of the one-period movements from any given
state to all other states (including default). Chapter 2 has already demonstrated the
central role that the transition matrix plays in determining default and migration
thresholds. The question we face now is how to defensibly determine the individual
entries of P .

One might, very reasonably, argue for the use of multiple transition matrices dif-
ferentiated by the type of credit obligor. There are legitimate reasons to expect that
transition dynamics are not constant across substantially different business lines. A
very large lending institution, for example, may employ a broad range of transition
matrices for different purposes. In our current implementation, however, only two
transition matrices are employed for all individual obligors; one for corporate
borrowers and another for sovereign obligors. This allows for a slight differentiation
in transition dynamics between these two classes of credit counterparty.7 With q×q

individual entries, a transition matrix is already a fairly high-dimensional object.
This discussion will focus principally on the corporate transition matrix; the same
ideas, it should be stressed, apply equally in the sovereign setting.

Prior to the data analysis, we seek some clarity on what we expect to observe in
a generic credit-migration transition matrix. Kreinin and Sidelnikova [31], a helpful
source in this area, identify four properties of a regular credit-migration model.8

These include:

1. There exists a single absorbing, default state. In other words, once default occurs,
it is permanent. While in real life there may be the possibility of workouts or
negotiations, this is an extremely useful abstraction in a modelling setting.

2. There exists some t̃ such that pqi(t̃ ) > 0 for all i = 1, . . . , q − 1. In words, this
means that all states will, at some time horizon, possess a positive probability of

6 For a comprehensive discussion of the theory of Markov chains, please see Hamilton [19],
Brémaud [8], and Meyn and Tweedie [36].
7 In both cases, the calibration is structured so that they share the same set of common default
probabilities.
8 They actually identify only three. At the risk of diluting their definition, we have added a fourth,
potentially redundant, but still descriptive, property.
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default. Empirically, t̃ is somewhere between one to three or four years, even for
AAA rated credit counterparts.

3. The det(P ) > 0 and all of the eigenvalues of P are distinct. These are necessary
conditions for the computation of the matrix logarithm of P , which is important
if one wishes to compute a generator matrix to lengthen (or shorten) the time
perspective.9

4. The matrix, P , is diagonally dominant. Since each entry, pij ∈ (0, 1), for all
i, j = 1, .., q and each row sums to unity, this implies that the majority of the
probability mass is assigned to a given entity remaining in their current credit
state. Simply put, credit ratings are characterized by a relatively high degree of
inertia.

These specific properties, for credit-risk analysis, are useful to keep in mind. An
important consequence of the second point, and the existence of an absorbing default
state is that,

lim
t→∞P t ≡

⎡

⎢

⎢

⎢

⎣

0 0 · · · 1
0 0 · · · 1
...
...
. . .

...

0 0 · · · 1

⎤

⎥

⎥

⎥

⎦

. (3.1)

That is, eventually everyone defaults.10 In practice, of course, this can take a very
long time and, as a consequence, this property does not undermine the usefulness of
the Markov chain for modelling credit-state transitions.

Discussing and analyzing actual transition matrices is a bit tricky given their
significant dimension. Our generic transition matrix, P ∈ R

21×21, has 441
individual elements. This does not translate into 441 model parameters, but it is
close. The absorbing default state makes the final row redundant reducing the total
parameter count to 420. The final column, which includes the default probabilities,
is specified separately. This is discussed in the next section. This still leaves a
dizzying 400 transition probability parameters to be determined.

How do we go about informing these 400 parameters? Despite seeming like
an insurmountable task, the answer is simple. These values are borrowed, and
appropriately transformed, from rating agency estimates.11 The principal twist is
that some logic is required, as previously discussed, to map the low-dimensional
rating agency data into NIB’s 21-notch scale. This important question, along with a

9 We’ll expand much more on these ideas in Chap. 7.
10 Recall that for t ∈ N, the t-period transition matrix is simply computed by raising the one-period
transition matrix to the power of t ; that is, P 5, is an example of the five-period transition matrix.
This is, of course, predicated on the assumption that the credit-state process does indeed follow
Markov-chain dynamics. Chapter 7 addresses this question in detail.
11 Given adequate data, transition matrices can be readily estimated via the method of maximum
likelihood; see Bolder [7, Chapter 9] for more details.
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Fig. 3.2 A low-dimensional view: This figure breaks out the long-term S&P and Moody’s
transition matrices into four categories: the probabilities of upgrade, downgrade, default, and
staying put. This dramatically simplifies the matrices and permits a meaningful visual comparison.

number of other key points relating to default and transition properties, is relegated
to Chap. 7.12 In this parametric discussion, we will examine the basic statistical
properties of these external transition matrices. In doing so, an effort will be made
to verify, where appropriate, Kreinin and Sidelnikova [31]’s properties. We will also
decide if there is any practical difference in employing S&P or Moody’s transition
probabilities.

Such a large collection of numbers does not really lend itself to conventional
analysis. In such situations, it consequently makes sense to make an attempt at
dimension reduction. For each rating category, over a given period of time, there
are only four logical things that can happen: an entity can downgrade, upgrade,
move into default, or stay the same. While there is only way to default or stay the
same, there are typically many ways to upgrade or downgrade. If we sum over all of
these potential outcomes, and stick with the four categories, the result is a simpler
viewpoint. Figure 3.2 illustrates these four possibilities for each of the pertinent 18
S&P and Moody’s credit ratings.

Figure 3.2 illustrates a number of interesting facts. First, far and away the
most probable outcome is staying put. This underscores our fourth property; each
transition matrix is diagonally dominant. As an additional point, the probability of
downgrade increases steadily as we move down the credit spectrum. Downgrade
remains nonetheless substantially more probable than default until all but the lowest
credit-quality categories. Indeed, the probability of default is not even visible until
we reach the lower five rungs on the credit scale. Interestingly, the probability of
upgrade tends down as credit quality decreases, but it appears to be generally more
flat than for downgrades. The final, and perhaps most important, conclusion is that
there does not appear to be any important qualitative differences between the S&P

12 This is such a big topic that it merits a separate discussion.
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Fig. 3.3 The heat map: This figure illustrates a colour-based visualization of our high-dimensional
transition matrices. It includes the long-term S&P and Moody’s estimates along our abbreviated
18-notch scale(s).

and Moody’s transition-probability estimates. This does not immediately imply that
there are no differences, but suggests broad similarity at this level of analysis.

Figure 3.3 employs the notion of a heat map to further illustrate the long-
term one-year, corporate S&P and Moody’s transition matrices. A heat map uses
colours to represent the magnitude of the 400+ individual elements in both matrices;
lighter colours indicate a high level of transition probability, whereas darker colours
represent lower probabilities. The predominance of light colors across the diagonal
of both heat maps underscores the strong degree of diagonal dominance in both
estimates already highlighted in Fig. 3.2; indeed, most of the action is in the
neighbourhood of the diagonal. Comparison of the right- and left-hand side graphics
in Fig. 3.3 reveals that, visually at least, the two matrices seem to be quite similar.
This is additional evidence suggesting that we need not be terribly concerned which
of these two data sources is employed.

One final technical property needs to be considered. Figure 3.4 illustrates the
q eigenvalues associated with our S&P and Moody’s transition matrices. All
eigenvalues are comfortably positive, distinct, and less than or equal to unity. The
eigenvalue structure of our two alternative transition-matrix estimates are quite
similar. Moreover, the determinant of both matrices is a small positive number
with condition numbers of less than 3.13 All of these attributes—consistent with
Kreinin and Sidelnikova [31]’s third property—can be interpreted in many ways
when combined with the theory of Markov chains. For our purposes, however,
we may conclude that P is non-singular and can be used with both the matrix
exponential and natural logarithm. These technical properties are not of immediate

13 See Golub and Loan [17] for much more background on these matrix concepts.
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Fig. 3.4 Transition-probability eigenvalues: This figure illustrates the q eigenvalues associated
with each of our S&P and Moody’s transition matrices. All eigenvalues are positive, distinct, and
less than one. Moreover, the eigenvalue structure of our two estimates is quite similar.

usefulness, but will prove very helpful in Chap. 7 when building forward-looking
stress scenarios.

Colour and Commentary 26 (THE TRANSITION MATRIX): Our t-thresh-
old credit-risk economic capital model, as the name clearly indicates, requires
the specification of a large number of default and migration thresholds. These
are inferred from estimated transition probabilities, which are traditionally
stored and organized in a transition matrix. A transition matrix is a won-
derfully useful object, which has a number of important properties. The
most central is the existence of a permanent absorbing default state that is
accessible from all states. Despite all of its benefits, the transition matrix
has one drawback: it includes a depressingly large number of parameters.
With 20 (non-default) credit states, about 400 transition probabilities need
to be determined. We, like (almost) all small lending institutions, simply
do not have sufficient internal data to defensibly estimate these values. The
solution is to look externally. Examination of comparable S&P and Moody’s
transition matrices happily reveals that both sources provide results that are
qualitatively very similar. This supports our decision to adopt—subject to an
appropriate transformation to our internal scale—the long-term, through-the-
cycle transition probabilities published by S&P.
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Fig. 3.5 Default probabilities: The raw values in the left-hand graphic illustrate the exponentially
increasing trend in default probabilities as we move down the credit spectrum. The right-hand
graphic performs a natural logarithmic transformation of these values; its linear form verifies
the exponential observation. Internal NIB values are compared to the implied S&P and Moody’s
estimates.

3.1.3 Default Probabilities

Default probabilities are quietly embedded in the final column of our transition
matrix. For credit-risk economic-capital they play a starring role; their determination
of the default threshold is tantamount to describing each obligor’s distance to
default. As a consequence, they merit special examination and attention. We have
thus constructed a separate logical approach to their determination. This is an
important distinction from the remaining transition probabilities, which are adopted
(fairly) directly from external rating agency estimates.

Default is—at least, for investment-grade loans—a rather rare event. To this
point, given their relatively small values, it is difficult for us to assess the default-
probability assumptions embedded in our transition matrix. Indeed, they were hardly
visible in Fig. 3.2. Figure 3.5 rectifies this situation with a close up of the S&P
and Moody’s default probabilities. Unlike our previous analysis, these 18 credit
notches have been projected onto the 20-step NIB scale using the mapping logic
from Table 3.1.14 The right-hand graphic illustrates the raw values, which exhibit
an exponentially increasing trend in default probabilities as we move down the credit
spectrum. This is the classical form of default probabilities; each step out the credit-
rating scale leads to a multiplicative increase in the likelihood of default.15

14 The basic consequence is some overlapping of the speculative-grade default probabilities. We’ll
address this point in much more detail in Chap. 7.
15 The credit-rating scale is thus highly non-linear in default probabilities. If it helps, you can think
of it as being analogous to the famous Richter—or local magnitude—scale (classically) used by
seismologists to measure the strength of earthquakes.
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Exponential growth is tough to visualize. It is difficult, for example, to verify
the magnitude and strict positivity of the default probabilities of strong credit
ratings. The right-hand graphic thus performs a natural logarithmic transformation
of the default probabilities. Since the natural logarithm is undefined for non-positive
values, the highest two or three external rating default probabilities are assigned
to identically zero. Incorporating this directly into our model would imply that,
at a one-year horizon, default would be impossible for the stronger credits. This
is a difficult point. Simply because default, over one-year horizon, has never been
observed for such counterparties does not imply that it is impossible. Rare, certainly,
but not impossible. Setting these values to zero, as a model parameter, is simply not
a conservative choice. We resolve this issue by assigning small positive values to
the first three default-probability classes.

How does this assignment occur? The data provides a helpful clue. If we divide
each successive (non-zero) default probability by its adjacent value, we arrive at a
constant ratio of roughly 1.5; in other words, the exponential growth factor is about
1.5. Extrapolating forwards and backwards using this trend yields the blue line in
Fig. 3.5. This might seem a bit naive, but it actually yields values that are highly
consistent with—and even slightly more conservative than–those produced by S&P
and Moody’s. The only exception is the final category, which is termed PD20. This
corresponds to S&P’s CCC and Moody’s Caa, which is basically an amalgamation
of lowest rungs in their credit scale. It is simply not representative of our lending
business. For this reason, the PD20 default-probability value has been capped at 0.2.
This is an example of using modelling judgement and business knowledge to tailor
the results to one’s specific circumstances.

Colour and Commentary 27 (DEFAULT PROBABILITIES): Not all tran-
sition probabilities—from an economic-capital perspective, at least—are
created equally. Default probabilities, used to determine the distance to
default, play a disproportionately important role in our risk computations.
Their central importance motivates a deviation from broad-based adoption
of external credit-rating agency estimates. The set of default probabilities is
determined by exploiting the empirical exponential form. Each subsequent
rating is simply assumed to be a fixed multiplicative proportion of the previous
value. Some additional complexity occurs at the end points. External rating
agencies’ estimates—due to lack of actual observations—imply zero (one-
year) default probabilities for the highest credit-quality obligors. In the spirit
of conservatism, we allocate small positive values—consistent with the multi-
plicative definition—to these rating classes. At the other end of the spectrum,
the lowest rating category is simply not representative of the credit quality
in our portfolio. Consequently, the 20th NIB default-probability estimate is
capped at 0.2. The end product is a logically consistent, conservative, and
firm-specific set of default-probability estimates.
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3.2 Systemic Factors

Although the assumption of default independence would dramatically simplify our
computations, it is inconsistent with economic reality. A modelling alternative is an
absolute necessity. The introduction of systemic factors is the mechanism used to
induce default (and migration) correlation among the credit obligors in our portfolio.
While conceptually clear and rather elegant, it immediately raises a number of
practical questions. What should be the number and composition of these factors?
How do we inform their dependence structure? What is the relative importance of
the individual factors for a given credit obligor. All of these important queries need
to be answered before the model can be implemented. This section addresses each
in turn.

3.2.1 Factor Choice

The systemic factors driving default correlation are—unlike many popular model
implementations—assumed to be correlated. With orthogonal factors, it is possible
to maintain a latent (or unobservable) form. This choice is unavailable in this setting.
Since we ultimately need to estimate the cross correlations between these factors, it
will be necessary to give them concrete identities. Our credit-risk economic-capital
model thus includes a total of J = 24 systemic factors; these fall into industrial
and regional (or geographic) categories. There are 11 industrial sectors and 13
geographic regions. The dependence structure between these individual factors is,
as is often the case in practice, informed by analysis of equity index returns. This
means that we require historical equity indices for each of our systemic factors; this
constrains somewhat the choice.

Even within these constraints, there is a broad range of choice. Were you to
place five people into a room and ask them to give their opinion on the correct
set of systemic factors, you would likely get five, or more, opinions. The reason is
simple; there is no one correct answer. On one hand, completeness argues for the
largest possible factor set. Too many factors, however, will be difficult to manage.
Judiciously managing the age-old trade-off between granularity and parsimony is
not easy. It ultimately comes down to a consideration of the costs and benefits of
including each systemic factor.

These specific sector systemic-factor choices are summarized in Table 3.2. Such
an approach requires some kind of internal or external industrial taxonomy, which
may, or may not, be specialized for one’s purposes.16 With one exception, our
industrial classification is mapped to a rather high level. Paper and forest products,
which can probably be best viewed as a sub-category of the material or industrial

16 Many alternative industrial classifications are available.
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Table 3.2 Industrial
systemic factors: This table
summarizes the industrial
systemic factors employed in
our credit-risk
economic-capital model
implementation.

# Industry

1 Energy (oil and gas)

2 Materials

3 Paper and forest products

4 Industrials

5 Consumer discretionary

6 Consumer staples

7 Health care

8 Financials

9 Information technology

10 Telecommunication services

11 Utilities

Table 3.3 Geographic
systemic factors: This table
summarizes the various
systemic factors associated
with geographic regions
employed in our credit-risk
model implementation.
Shaded regions represent NIB
member countries.

# Region

1 Africa and Middle East

2 Baltics

3 Denmark

4 Developed Asia

5 Emerging Asia

6 Europe

7 Finland

8 Iceland

9 Latin America

10 New Europe

11 North America

12 Norway

13 Sweden

groupings, is further broken out due to its importance to the Nordic region. This
is another clear example of tuning the level of model granularity required for the
analysis of one’s specific problem.

Table 3.3 provides an visual overview of the set of 13 geographic systemic
factors. A very broad or detailed partition along this dimension is possible, but
the granularity is tailored to meet specific business needs. Roughly half of the
regional systemic factors, as one would expect with our mandate-driven focus, fall
into the Baltic and Nordic sectors. Europe is broken down into two main categories:
Europe and new Europe. The latter category relates primarily to Eurozone ascension
countries in central and eastern Europe. The remaining geographic factors split the
globe into a handful of large, but typical, zones.



3.2 Systemic Factors 143

Colour and Commentary 28 (NUMBER OF SYSTEMIC FACTORS): Select-
ing the proper set of systemic risk factors is not unlike putting together a list
of invitees for a wedding. The longer the list, the greater the cost. Some people
simply have to be there, some would be nice to have but are unnecessary, while
others might actually cause problems. Finally, different people are likely to
have diverging opinions. We have opted for 24 industrial and regional factors.
This is a fairly large wedding, but it is hard to argue for a much smaller one.
With one exception, the lowest level of granularity is used for the industrial
classification. On the regional side, roughly one half of the factors relate
to NIB member countries. The remaining geographic factors are important
for liquidity investments on the treasury side of the business. While there is
always scope for discussion and disagreement, from a business perspective,
the majority of the selected systemic factors are necessary guests.

3.2.2 Systemic-Factor Correlations

Having determined the identity of our systemic factors, we move to the central
question of systemic-factor dependence. These so-called asset correlations are sadly
not observable quantities. Default data can be informative in this regard.17 We have
elected to follow the well-accepted approach of informing asset correlation through
a readily available proxy: equity prices. This is not a crazy idea. Equity prices,
and more particularly returns, communicate information about the value of a firm.
Cross correlations between movements in a given firm’s value and other firm-value
movements provide some insight into the question at hand. Moreover, a broad range
of firm level, geographic, and industry equity return data is available.

The logical reasonableness of the link between asset and equity data, as well
as its ready availability, should not lure us into believing that equity data does not
have its faults. Equities are bought and sold in markets; these markets may react
to general macroeconomic trends, supply and demand, and investor sentiment in
ways not entirely consistent with asset-value dynamics. The inherent market-based
interlinkages between individual equities will tend to overstate the true dependence
at the firm level. By precisely how much, of course, is rather difficult to state
with any degree of accuracy.18 The granularity and dimensionality of the model
construction, however, leaves us with no other obvious alternatives. It is nonetheless
important to be frank and transparent about the quality of equity data as a proxy. In
short, it is useful, available, and logically sensible, but far from perfect.

17 See, for example, Bolder [7, Chapter 10] for an introduction to this area.
18 This question has, however, been addressed in the academic literature. Frye [16], for example,
finds evidence of overstatement of correlation associated with the use of equity correlations.



144 3 Finding Model Parameters

Fig. 3.6 (Linear) Systemic correlations: This figure attempts to graphically illustrate the roughly
300 distinct pairwise estimated product-moment (or Pearson) correlation-coefficient outcomes
associated with our system of J = 24 industrial and geographic systemic factors. The left-hand
side provides a heat map of the correlation matrix, while the right-hand side focuses on the cross
section.

Risk-factor correlations are thus proxied by equity returns; these returns are,
practically, computed as logarithmic differences of equity indices. Armed with a
matrix of equity returns, X ∈ R

τ×J , where τ represents the number of collected
equity return time periods, we may immediately write S = cov(X) ∈ R

J×J .
Technically, it is straightforward to decompose our covariance matrix, S, as follows:

S = V�V T , (3.2)

where V ∈ R
J×J is a diagonal matrix collecting the individual volatility terms

associated with each systemic factor and� ∈ R
J×J is a positive-definite, symmetric

correlation matrix. τ , for this analysis, is set to 240 months or 20 years of index data.
Analogous to the transition-matrix setting, it is not particularly informative to

examine large-scale tables with literally hundreds of pairwise correlation estimates.
Figure 3.6 attempts to gain visual insight into this question through another
application—in the left-hand graphic—of a heat map. The lighter the shading of
the colour in Fig. 3.6, the closer the correlation is to unity. This explains the
light yellow—or almost white—stripe across the diagonal. The right-hand graphic
examines the distribution of all (roughly 300) distinct off-diagonal elements.19

Overall, the smallest pairwise correlation between two systemic factors is roughly
0.15, with the largest exceeding 0.90. The average lies between 0.5 and 0.6. This
supports the general conclusion that there is a strong degree of positive correlation
between the selected systemic factors.

19 The precise number is J ·(J−1)
2 = 24·23

2 = 276.
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This is hardly a surprising observation. All variables are equity indices, which
have structural similarities due to typical co-movements of equity markets. The
high concentration in the Nordic sector, with strong regional interdependencies,
further complicates matters. Many institutions would gather together all Nordic
and Baltic factors under the umbrella of a single European risk factor. NIB does
not have this luxury. The granularity in this region can hardly be avoided if we
desire to distinguish between member country contributions to economic capital—
its centrality to our mission makes it a modelling necessity. Nevertheless, this is
a highly positively correlated collection of random financial-market variables. It
will be important to recall this fact when we turn to the question of systemic-factor
loadings.

The next step involves examining the factor volatilities. Figure 3.7 illustrates the
elements of our diagonal volatility matrix; each can be allocated to an individual
equity return series. The average annualized return volatility is approximately 19%,
which appears reasonable for equities. Consumer staples, health care and utilities—
as one might expect—appear to have the most stable returns with volatility in the
10–15% range. On the upper end of the volatility scale, exceeding 20%, are paper-
and-forest products and IT. Generally, deviations of the regional indices from the
overall average level are relatively modest. The exception is Iceland with annualized
equity return volatility of approximately 45%, which is approaching three times
the average. This is certainly influenced by the relative small size of the Icelandic
economy, its large financial sector, and Iceland’s macroeconomic challenges in the
period following the 2008 financial crisis.

A legitimate question, which will be addressed in the following sections, is
whether or not we have any interest in the volatility of these systemic risk factors.

Fig. 3.7 Factor volatilities: This figure illustrates the annualized-percentage factor (i.e., equity
index return) volatility of each of the J = 24 industrial and geographic systemic factors. This
information is only pertinent if we employ the covariance matrix rather than the correlation matrix
for describing the systemic-risk factor dependence.
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Equity return data is a convenient and sensible proxy for our systemic risk factors. In
principle, however, this proxy seeks to inform the dependence between these factors,
not their overall level of uncertainty. Volatility is centrally important in market-risk
computations, but the threshold-model approach actually involves normalizing away
these volatilities.

Outfitted with 20 years of monthly equity index data for 24 logically sensible
geographical and industrial systemic-risk factors, a number of practical decisions
still need to be taken. Indeed, one could summarize these decisions in the form of
three, important, and interrelated questions:

1. Should we employ the covariance or correlation matrices to model the depen-
dence structure of our systemic risk-factor system?

2. If we opt to use correlation, should we use the classical, product-moment Pearson
correlation coefficient or the rank-based, Spearman measure?

3. Should we employ our full 20-year dataset or some sub-period?

While these are all pertinent questions that need answering, let us begin with the
first question. This is more of a mathematical choice and, once answered, we may
turn our attention of the latter two more empirical decisions.

Which Matrix?

Should we employ a covariance or a correlation matrix? This might, to the reader,
appear to be a rather odd question.20 In principle, if managed properly, it should
not really matter. Equation 3.2 illustrates, rather clearly, that the same information
is found in both matrices. The only difference is scaling; covariances are adjusted,
in a quadratic manner, for the factor volatility. The correlation matrix summarizes
raw correlation values.

What would be the benefit of using covariances rather correlations? There
does not appear to be any concrete advantage. The factor volatilities play, in the
credit-risk economic-capital calculation, absolutely no role. Indeed, their presence
requires an additional adjustment. That is, when using the covariance matrix, we
must take extra pains to exclude these elements through their inclusion in the
normalization constant. It is the correlation between these common systemic factors
that bleeds through to our latent creditworthiness index,�X, and ultimately, induces
default and migration correlations among our individual risk owners. At best, the
factor volatilities are a distraction, while at worst, they might possibly have some
unforeseen scaling impact on our latent creditworthiness indices. As a consequence,
we may as well eliminate them at the outset.

20 In the spirit of full disclosure, the legacy implementation of the credit-risk economic capital
model used covariance information. This question thus became a source of (friendly) internal
debate.
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Use of the covariance matrix may also confuse the interpretation of the factor-
loading parameters. One would conceptually prefer that, in the final implementation,
the factor loadings are not quietly being modified by the factor volatilities. Overall,
the difference is not dramatic, but anything that simplifies our understanding of
the model and the interpretation of model parameters—without undermining the
basic requirements of the model—is difficult to argue against. For this reason, we
have definitively elected to use the correlation matrix as the fundamental measure
of systemic risk-factor dependence.

Which Correlation Measure?

The classical notion of correlation, often referred to as the product-moment
definition, is typically called Pearson correlation.21 It basically compares, for a
set of observations associated with two random variables, how each pair of joint
outcomes deviates from their respective means. The classic construction, for two
arbitrary random variables X and Y , is described by the following familiar (and
already employed) expression

ρ =
E

((

X − E(X)

)(

Y − E(Y )

))

√
var(X)var(Y )

. (3.3)

An alternative approach, termed rank correlation, approaches the computation in
an alternative manner. The so-called Spearman’s rank correlation is defined as

r =
E

((

r(X)− E(r(X))

)(

r(Y )− E(r(Y ))

))

√
var(r(X))var(r(Y ))

, (3.4)

where r(·) denotes the rank outcome of random variable.22 Instead of comparing the
distance of each observation from its mean, it compares the rank of each observation

21 Named after Karl Pearson who—see, for example, Magnello [33]—has had a significant
influence upon modern statistics.
22 An unbiased estimator, for this rank-correlation quantity, is often written for a sample of size N
as,

r = 1 −
6

N
∑

k=1

d2
k

N(N2 − 1)
, (3.5)

where dk is the difference in rank between the kth pair of observations. Chambers [10] provides a
proof of this result.
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Fig. 3.8 Comparing Pearson’s ρ to Spearman’s r: The preceding figure examines, across the
range of −1 to 1, the link between two notions of correlation for bivariate Gaussian data: Pearson’s
ρ and Spearman’s r . While they do not match perfectly, the differences are minute; consequently,
imposition of Spearman’s rank correlation—in a Gaussian setting—will imply a rather similar level
of correlation relative to the typical Pearson definition. In non-Gaussian settings, the differences
can be more important.

to the mean rank. It is thus basically an order-statistic version of the correlation
coefficient.23 Otherwise, Eqs. 3.3 and 3.4 are structurally identical.

Spearman’s coefficient is popular due to its lower degree of sensitivity to outliers;
broadly speaking, it has many parallels, in this regard, to the median. For relatively
well-behaved random variables, there is only a modest amount of difference
between the two measures. Indeed, for bivariate Gaussian random variates, the
relationship between Spearman’s r and Pearson’s ρ is given as,24

r = 6

π
arcsin

(ρ

2

)

, (3.6)

which directly implies that

ρ = 2 sin
( rπ

6

)

. (3.7)

This may appear to be a complicated relationship, but practically, over the domain
of the coefficients, [−1, 1], there is not much difference. Figure 3.8 provides a
graphical perspective on Eq. 3.7. While they do not match perfectly, the differences
are minute; consequently, imposition of Spearman’s rank correlation—in a Gaussian

23 Analogous to the difference between the mean and the median or the volatility and the inter-
quartile range.
24 See McNeil et al. [34, Theorem 7.42] for a proof of this result; these ideas are also explored in
Kendall and Stuart [29, Chapter 31].
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Fig. 3.9 Competing heat maps: The preceding heat maps compare the roughly 300 pairwise linear
and rank correlation coefficients across our 24 separate systemic risk variables. There is little in
the way of qualitative difference between the two measures, but due to their lower sensitivity to
outliers, the rank correlation coefficients are slightly lower than their linear compatriots.

setting—will imply an extremely similar level of correlation along the typical
Pearson definition. The point of this discussion is to indicate that the decision to use
rank or product-moment correlation, in a Gaussian setting, is more a logical than
an empirical choice. In a non-Gaussian setting, however, differences can be more
important. It becomes particularly pertinent—as is common in financial-market
data—in the presence of large, and potentially, distorting outlier observations.

Figure 3.9 provides two heat maps comparing the roughly 300 pairwise linear and
rank correlation coefficients across our 24 separate systemic risk variables. While
there is little in the way of qualitative difference between the two measures, due to
their lower sensitivity to outliers, the rank correlation coefficients are slightly lower
than their linear compatriots. The rank correlation coefficients have distinctly, albeit
not dramatically, more darker colour in their heat map. Both figures are computed
using 20 years of monthly equity return data; this leads to a total of 240 observations
for each pairwise correlation estimate. The first twenty years of the twenty-first
century have not been, from a financial perspective at least, particularly calm. Equity
markets have experienced a number of rather extreme events during this period. The
rank correlation will capture these extremes, but in a less dramatic way, given the
relative stability of the rank of return relative to its level. This stability property is
rather appealing.

We wish these crisis periods to have an impact on the final results, but not to
potentially dominate them. To judge this question, however, we need a bit more
information than is found in Fig. 3.9. Figure 3.10 accordingly attempts to help by
examining the cross section of off-diagonal elements of �. The centres of these
two cross-section correlation-coefficient distribution are rather close: in the linear
case it is 0.57 and 0.52 in the rank setting. The range of correlation values are
qualitatively quite similar, spanning the values of about 0.1 to 0.9. There is, however,
a slight difference. The cross section of rank correlation coefficients appears to be
somewhat more symmetric than with the linear estimates. Both sets of values lean
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Fig. 3.10 Competing cross sections: This figure illustrates, again for linear and rank dependence
measures, the cross section of pairwise correlation coefficients. On average, the rank correlation
is about 0.05 less than the linear metric. Visually, however, relatively little separates these two
estimators.

somewhat towards the upside of the unit interval, but the rank correlation graphic is
less extreme.25 This is, in fact, exactly how the rank correlation is advertised.

There does not appear to be an unequivocally correct choice. The product-
moment definition of correlation allows the extremes to exert more influence on the
final results; as a risk manager, this has some value, because crisis episodes receive a
larger weight. The rank correlation approach—like its sister measure, the median—
attempts to generate a more balanced view of dependence. The lower impact of data
outliers—typically, in this case, stemming from crisis outcomes—implies slightly
lower and more symmetric correlation estimates. We seek, in our economic-capital
estimates, to construct a long-term, unconditional estimate of risk consumption.26

With this in mind, given the preceding conclusions, we have a preference for the
rank correlation.

There are also more technical arguments. Both correlation matrices, as previously
indicated, exhibit a significant number of individual correlation coefficient entries
exceeding 0.75. Such a highly correlated system is often referred to as multi-
collinear.27 If we were using this system to estimate a set of statistical parameters,
this could potentially pose serious problems. Although this is not our specific
application of �, even a slight dampening of the high level of correlations implies a
greater numerical distinction between our J = 24 individual systemic risk factors.
Many models, after all, impose orthogonality on their systemic state variables to
avoid such issues. On this dimension, therefore, we also have a slight preference for
the rank-correlation measure.

25 To be more precise, about one quarter of the linear correlation figures exceed 0.70, while this
percentage is closer to 13% in the rank case.
26 This is, as previously mentioned, often referred to as the through-the-cycle approach.
27 See Judge et al. [27, Chapter 22] for much more on this topic.
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Colour and Commentary 29 (FLAVOUR OF CORRELATION): Correlation
refers to the interdependence between a pair of random variables. There
are a variety of ways that it might be practically measured. Two well-
known alternatives are the product-moment and rank correlation coefficients.
Although they attempt to address the same question, they approach the
problem from different angles. Since we find ourselves in the business of
computing a large number of pairwise systemic-factor correlations, this
distinction is quite relevant for us. On the basis of lower sensitivity to extreme
events, greater cross-sectional symmetry, and a modest dampening of the
highly collinear nature of our systemic risk-factor system, we have opted to
employ the rank-correlation measure to estimate systemic-factor correlations.
In the current analysis, the difference is relatively small. Moreover, nothing
suggests that these two measures will deviate dramatically in the future. Our
choice is thus based upon the perceived conceptual superiority of the rank-
correlation measure.

What Time Period?

There are two time-related extremes to be considered in the measurement of risk:
long-term unconditional and short-term conditional. A virtual infinity of possible
alternatives exists for a spectrum between these two endpoints. Following basic
regulatory principles, an economic-capital model is a long-term, unconditional,
through-the-cycle risk estimator. This implies that a relatively lengthy time period
should be employed for the estimation of our systemic risk-factor correlations.
While helpful to understand this choice, it does not entirely answer our question.
We have managed to source 20 years of monthly equity time-series data for each of
our J = 24 systemic risk factors. Should we use it all, or should we employ some
subset of this data? A 10-, 15-, or 20-year period would still be consistent, at least
in principle, with through-the-cycle estimation.

Figure 3.11 illustrates, one final time, two rank correlation heat maps for our
J = 24 systemic risk factors. The only distinction between the two heat maps is that
they are estimated using varying time periods. The 10-year values are based on the
months from January 2010 to December 2019, while the 20-year period utilizes the
240 monthly observations from January 2000 to December 2019. On a superficial
level, the colour patterns in the two heat maps look highly similar. The 20-year
estimates, however, look to be, on average, a bit lighter. This implies higher levels of
correlation, which is not terribly surprising, given that the longer period incorporates
the most severe parts of the great financial crisis. There is general agreement that
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Fig. 3.11 Time-indexed heat maps: These heat maps compare the roughly 300 pairwise rank
correlation coefficients—over the last 10 and 20 years working backwards from December 2019—
across our 24 separate systemic risk variables. The most recent 10-year period appears structurally
similar, but exhibits significantly lower levels of correlation than the associated 20-year time
horizon.

Fig. 3.12 Time-indexed cross sections: This figure illustrates, again using the rank dependence
measure, the cross section of pairwise correlation coefficients over the 10- and 20-year periods
working backwards from December 2019, respectively. Both the location and dispersion the two
cross sections appear to differ; the last 10-year period exhibits generally lower levels of systemic-
risk factor dependence.

financial-variable correlations tend to trend higher—thereby reducing the value of
diversification—during periods of turmoil.28

Figure 3.12 illustrates, again using only the rank dependence measure, the cross
section of pairwise (rank) correlation coefficients over our 10- and 20-year periods,
respectively. Average correlation, as we’ve seen before, is roughly 0.52 over the full
20-year period. It falls to 0.46 when examining only the last 10 years. We further
observe that both the location and dispersion of the two cross sections appear to

28 See Chesnay and Jondeau [12] and Sandoval and Franca [37] for a detailed analysis of this
phenomenon.
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differ; the most recent 10-year period exhibits generally lower levels of systemic-
risk factor dependence.

Few logical arguments speak for the preference of the 20-year period, relative to
the shorter 10-year time span, other than conservatism. Either time interval fulfils the
basic requirements of a through-the-cycle risk estimator. A 20-year period could, of
course, be considered more appropriate for a long-term unconditional correlation
estimate. More importantly, the full 20-year period includes a broader range of
equity return outcomes—including the great financial crisis—and consequently
generates slightly more conservative estimates. For this reason, the decision is to
use the full 20-year period and, over time, simply continue to add to the existing
dataset. Each year, this decision on the overall span of data is revisited to ensure
both representativeness and consistency with our economic-capital objectives.

Colour and Commentary 30 (LENGTH OF PARAMETER-ESTIMATION

HORIZON): When estimating parameters for a long-term through-the-cycle
perspective, we would theoretically prefer the longest possible collection
of historical time series. Such a dataset is likely to permit an average of
the greatest possible number of observed business cycles. There are two
catches. First, pulling together such a dataset can be both difficult and
expensive. Second, even if you succeed, there are dangers in going far back
in time. Too far into the past and—due to structural changes in economic
relationships—the data may not be representative of current conditions. This
forces the analyst into an awkward dance: the through-the-cycle requires
lengthy data history, but not too long. Our approach is, where available,
to start with a roughly 20-year time horizon. We then work with this data
and carefully examine various sub-periods to understand the implications
of different choices. Endeavouring to find conservative and defensible
parameters, an appropriate horizon is ultimately selected.

3.2.3 Distinguishing Systemic Weights and Factor Loadings

Systemic-factor weights and loading parameters, while related, are asking two
slightly different questions. The systemic weight attempts to answer the following
query:

How important is the overall systemic component, in the determination of the creditworthi-
ness index, relative to the idiosyncratic dimension?

The systemic weight is, following from this point, simply a number between zero
and one. These are the parameter values, {α1, . . . , αI }, introduced in Chap. 2. A
value of zero, for a given credit obligor, suggests that only idiosyncratic risk matters
for determination of its migration and default risk outcomes. Were this to apply to
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all credit counterparties, we would, in essence, have an independent-default model.
On the other hand, a systemic weight of unity places all of the importance on the
systemic factor. Gordy [18]’s asymptotic single-risk factor model is an example of
an approach that implies the presence of only systemic risk.29 A defensible position,
of course, lies somewhere in between these two extremes.

Factor loadings focus on a different, but again related, dimension. They seek to
answer the following question:

How important is each of the J individual systemic risk factors—again, for the calculation
of the creditworthiness index—to a given credit obligor?

Factor loadings, for a given counterparty, are thus not, as in the systemic-weight
case, a single value, but rather a vector in R

J . Let’s continue to refer to each of these
vectors as βi ∈ R

1×J for the ith credit counterpart; this allows us to consistently
write the entire matrix of factor loadings as,

β =

⎡

⎢

⎢

⎢

⎣

β1

β2
...

βI

⎤

⎥

⎥

⎥

⎦

∈ R
I×J . (3.8)

Such a constellation of parameters, for each i = 1, . . . , I , implies a potentially very
rich mathematical structure. With J = 24 and I ≈ 600, our β factor loading matrix
contains almost 15,000 individual entries. Such flexibility can offer benefits, but it
may also dramatically complicate matters.

The structure of each βi essentially creates a linear combination of our J risk
factors to act as the systemic contribution for that obligor. Let’s consider a few
extreme cases, since they might provide a bit of insight. Imagine that each βi was
constant—however, one might desire to define it—across all counterparties. The
consequence would be, in fact, a single-factor model. We could easily, in this case,
simply replace our J factors with a single linear combination of these variables.
Each pair of obligors in the model would thus have a common level of factor-,
asset-, and default correlation. Such an approach would, of course, undermine the
whole idea of introducing a collection of J systemic variables.

At the opposite end of the spectrum, one could assign distinctly different non-
zero values to each of the roughly 15,000 elements in β. The implication—setting
aside the practical difficulties of such an undertaking for the moment—is that each
obligor’s systemic contribution would be a unique linear combination of our J
systemic variables. Given two obligors, i and j , the vectors βi and βj would play a
central role in determining their level of default correlation. Indeed, this latter point
holds in a general sense.

29 This limiting case can only be attained with some mathematical caution. Naively setting all
systemic weights to one in the multivariate t-threshold model yields, as one might expect, fairly
nonsensical results.
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Once again, an appropriate response to this challenge certainly lies somewhere
between these two extreme ends of the spectrum. The actual estimation of the factor
loadings and systemic weights should also be informed, in principle, by empirical
data. A significant distinction between the factor loadings and systemic weights is
that the former possesses dramatically greater dimensionality. The specific data that
one employs and, perhaps equally importantly, how the structure of these parameters
are organized are important questions. The following sections outline our choices,
and the related thought processes, in both of these related areas.

3.2.4 Systemic-Factor Loadings

Let us begin with the factor loadings; these values are—algebraically speaking—
closer to the actual systemic factor. Determination of our factor loadings will, as
a consequence, turn out to be rather important in the specification of the systemic
weights. As indicated, each βi vector determines the relative weight of the individual
systemic factors in the creditworthiness of the ith distinct credit obligor. Some
procedure is required to determine the magnitude of each βij parameter for i =
1, . . . , I and j = 1, . . . , J .

Some Key Principles

When beginning any modelling effort, it is almost invariably useful to give some
thought to one’s desired conceptual structure. In this case, there is a potentially enor-
mous number of parameters involved, which will create problems of dimensionality
and, more practically, statistical identification. Some direction would be helpful. A
bit of reflection reveals a few logical principles that we might wish to impose upon
this problem:

1. Obligors with the same sectoral and geographical profiles should share the same
loadings onto the systemic factors. If this did not hold, it would be very difficult,
or even impossible, to interpret and communicate the results.30

2. A given obligor should load only onto those sectoral and geographical factors to
which it is directly exposed. The correlation matrix, �, describes the dependence
structure of the underlying equity return factors. As a consequence, the interac-
tion between the factors is already captured. If an obligor then proceeds to load
onto all factors, untangling the dependence relationships would become rather
messy. This principle can thus inform sensible parameter restrictions.

30 These obligors, of course, will naturally differ along the idiosyncratic dimension.
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3. Factor loadings should be both positive and restricted to the unit interval. There
is no mathematical or statistical justification for this principle; it stems solely
from a desire to enhance our ability to interpret and communicate these choices.

4. A minimal number of systemic factors should be targeted; this is the principal
of model parsimony. Not only does this facilitate implementation—in terms of
dimensionality and computational complexity—but it also minimizes problems
associated with collinearity.

5. To the extent possible, the factor loadings should be informed by empirical
data. Since asset returns are not, strictly speaking, observable, it is necessary
to identify a sensible proxy. Moreover, the previous principles may restrict the
goodness of fit to this proxy data. Nonetheless, this would form an important
anchor for the estimates.

While each of these principles make logical sense, nothing suggests that all can
be simultaneously achieved. It may be the case, for example, that some of these
principles are mutually exclusive.

A Loading Estimation Approach

The structure of the threshold model provides clear insights into a possible
estimation procedure for the factor loadings. In particular, for a given obligor i,
we have that

βi�z =
J
∑

j=1

βij�zj , (3.9)

where �z ∈ R
J×1. The right-hand side of Eq. 3.9 clearly illustrates the fact that

each column of the βi row vector is a linear weight upon the systemic factors.
Imagine that we could identify K individual equities with similar properties. That
is, stemming from the same geographic region, operating in the same region, and
possessing similar overall size. Given T return observations of the kth equity—
corresponding to the equivalent time periods for our systemic factors—we could
construct the following equation:

rkt =
J
∑

j=1

βijk�zjt + εkt , (3.10)

for t = 1, . . . , τ and k = 1, . . . ,K and where rkt is the t-period return of the
kth equity in our collection. This is, of course, an ordinary least squares (OLS)
problem.31 In this setting, the β’s simply reduce to regression coefficients. Further

31 Note, however, that the typical intercept value has been excluded.
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inspection of Eq. 3.10 reveals a certain logic; the return of the kth equity is written as
a linear combination of the set of systemic factors plus an idiosyncratic component.
This is rather close to what we seek. Again, this amounts to using equity behaviour
to estimate asset returns.

Equation 3.10, while logically promising, is not without problems. First of all,
there are K equities in each category. The natural consequence is thus K × J

individual factor-loading estimates. One could presumably solve this problem by
taking an average—basically integrating out the K dimension—of the individual
β̂ijk parameters over each j in J .

The second problem, however, is dimensionality. Use of Eq. 3.10 implies a
separate weight on each of the J systemic risk factors. Such a complex structure
is not easy to interpret. The larger number of parameters also raises issues of
parameter robustness. Estimating J = 24 separate parameters with perhaps 10 or
20 years of monthly data is certainly possible, but the sheer number of regression
coefficients, the high degree of collinearity between the systemic-risk explanatory
variables, and the necessity of averaging estimates collectively represent significant
estimation challenges. Computing standard errors is not easy is such a setting and,
more importantly, they are unlikely to be entirely trustworthy.

A third problem, making matters even worse, is the fact that nothing in the
OLS framework hinders individual βij values from taking negative values further
complicating clarification. Some additional normalization is possible to force
positivity, of course, but this only adds to the overall complexity and adds an ad
hoc, and difficult-to-justify, element to the estimation procedure.

There are, therefore, at least three separate problems: averaging, dimensionality,
and non-positivity. Some of these problems can be mitigated with clever tricks,
but the point is that estimating factor-loading coefficients—even with strong sim-
plifying assumptions—is fraught with practical headaches. The results are neither
particularly robust nor satisfying. We will, in a few short sections, find ourselves in
a similar situation with regard to the systemic weights. In this case the complexity
and dimensionality is unavoidable, which argues for maximal simplicity.

A Simplifying Assumption

These sensible reasons to strongly restrict systemic-factor loadings lead to the
fairly reasonable question: should we even formally estimate these parameters?
One might simply load—for these non public-sector cases—equally onto each
obligor’s geographic and industrial systemic factors. The consequence of this
legitimate reflection is the following extremely straightforward set of factor-loading
coefficients:

• only a credit entity’s geographic and industrial factor loadings are non-zero;
• each non-zero factor loading is set to 0.5; and
• the only exception is a weight of unity on a public-sector counterpart’s geo-

graphic loading.



158 3 Finding Model Parameters

The consequence is a sparse β-matrix entirely populated with non-estimated param-
eters.32 This approach allows us to fulfil four of our five previously highlighted
principles. It controls the number of parameters, creates consistency, ensures
positivity, and dramatically aids interpretability. The only shortcoming is that the
parameter values are not informed by empirical data. This would appear to be the
price to be paid for the attainment of the other points.

There is another constructive way to think about this important simplifying
assumption. The systemic risk-factor correlation matrix, �, possesses a certain
dependence structure. The choice of factor loadings further combines our systemic
factors to establish some additional variation of obligor-level correlations. There
are, however, many possible combinations of factor-loading parameters that achieve
basically the same set of results. In a statistical setting, such a situation is referred
to as overidentification.33 To simplify this fancy term, we can imagine a situation
of trying to solve two equations in three unknowns. The problem is not it cannot
be solved, but rather the existence of an infinity of possible solutions. Resolving
such a situation typically requires restricting it somewhat through the imposition of
some kind of constraint.34 The current set of non-estimated factor loadings can thus
be thought of as a collection of constraints, or over-identifying restrictions, used to
permit a sensible model specification.

Colour and Commentary 31 (FACTOR-LOADING CHOICES): Having est-
ablished a set of five key principles for the specification of factor-loading
parameters, a number of potential estimation options are found wanting. They
require averaging, lead to relatively high degrees of dimensionality, and pose
difficulties for statistical inference. Dimension reduction and normalization
solve some of these problems, but this leads to relatively small degrees of
(economic) variation between individual obligors. Ultimately, therefore, we
have decided to employ a simple set of rules for the specification of the factor-
loading parameters. This choice fulfils all of our principles, save one: the
desire to empirically estimating our factor-loading values. This choice was
not taken lightly and can, conceptually, be viewed as a set of overidentifying
restrictions upon the usage of our collection of systemic risk factors.

Normalization

Introduction of correlated systemic factors, without some adjustment, will distort
the variance structure of our collection of latent creditworthiness state variables.
Unit variance of these threshold state variables is necessary for the straightforward

32 With J = 24, only about 1
12 th of β’s elements is non-zero.

33 See Judge et al. [27, Chapter 7] for more information on the notion of identification.
34 Such a process can also be termed regularization.
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Fig. 3.13 Normalization constants: Since the introduction of factor loadings distorts the variance
of the systemic risk factors, it is necessary to perform a normalization to preserve unit variance.
This graphic provides an illustration of the resulting normalization constants.

determination of default and migration events. A small correction is consequently
necessary to preserve this important property of each systemic random observation.
Mathematically, the task is relatively simple. For the ith risk obligor, the contri-
bution of the systemic component—abstracting, for now, from the systemic-weight
parameter—is given as,

Bi = βi
√

βi�β
T
i

, (3.11)

where βi ∈ R
1×J is the ith row of the β ∈ R

I×J matrix.35

The definition in Eq. 3.11 was already introduced in Chap. 2. Equipped with our
factor correlations and loading choices, it is interesting to examine the magnitude
of these normalization constants (i.e., the denominator of Eq. 3.11). Figure 3.13
displays the range of these values—for an arbitrary date in 2020—used to ensure
that the systemic component has unit variance. The impact is rather a gentle. The
span of adjustment factors ranges from roughly 0.75 to one; the average value is

35 The effectiveness of this normalization is readily verified:

var (Bi�z) = var

⎛

⎝

βi
√

βi�β
T
i

�z

⎞

⎠ =
⎛

⎝

1
√

βi�β
T
i

⎞

⎠

2

βivar (�z)βTi = ������

βi

�
︷ ︸︸ ︷

var (�z)βTi

���βi�β
T
i

= 1.

(3.12)
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approximately 0.95. Normalization thus represents a small, but essential, adjustment
to maintain the integrity of the model’s threshold structure.

3.2.5 Systemic Weights

We were able to avoid some complexity in the specification of the factor loadings;
we are not quite as lucky in the case of system weights. A methodology is required
to approximate the systemic-weight parameters associated with each group of credit
counterparties sharing common characteristics. Consider, similar to the previous
setting, a collection of N credit entities from the same region with roughly the same
total amount of assets (i.e., firm size) and the same industry classification. Let us
begin with a proposition. Imagine that the following identity holds:

α2
N ≡ 1

1
2N(N − 1)

N
∑

n=1

N
∑

m=1
︸ ︷︷ ︸

n�=m,m<n

corr (�Xn,�Xm) . (3.13)

What does this mean? First, we are assuming that each the N individual obligors in
this sub-category have a common systemic weight, αN . The proposition holds that
a reasonable estimator for αN is the average correlation between these N assets.
There are, of course, N2 possible pairwise combinations of these N entities. If
we subtract the N diagonal elements, this yields N(N − 1) combinations. Only
half of these elements, of course, are unique. We need only examine the lower off-
diagonal elements, which explains the conditions on the double sum and the 1

2 in
the denominator of the constant.

Under what conditions is Eq. 3.13 true? This requires a bit of tedious algebra
and a few observations. First, the expected value of each �Xn and �Xm is, by
construction, equal to zero for all n,m = 1, . . . , N . Second, the idiosyncratic
factors, {�wn; n = 1, . . . , N} are independent of all of the systemic factors;
the expectation of the product of any idiosyncratic and systemic factor will thus
vanish. Finally, we recall that only two factor loadings, as highlighted in previous
discussion, are non-zero. These final happy facts eliminate many terms from our
development.

Let’s begin with the correlation term in the double sum of our identity from
Eq. 3.13 and see how it might be simplified. Working from first principles, we have

corr (�Xn,�Xm)

=
E

⎛

⎝

⎛

⎝�Xn −
=0

︷ ︸︸ ︷

E(�Xn)

⎞

⎠

⎛

⎝�Xm −
=0

︷ ︸︸ ︷

E(�Xm))

⎞

⎠

⎞

⎠

√

var(�Xn)
︸ ︷︷ ︸

=1

√

var(�Xm)
︸ ︷︷ ︸

=1

, (3.14)
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= E

(

�Xn ·�Xm

)

,

= E

⎛

⎝

⎛

⎝αN

J
∑

j=1

Bnj�zj +
√

1 − α2
N�wn

⎞

⎠

⎛

⎝αN

J
∑

j=1

Bmj�zj +
√

1 − α2
N�wm

⎞

⎠

⎞

⎠

︸ ︷︷ ︸

Because of common characteristics, they share a common αN

,

= E

⎛

⎝

⎛

⎝αN

J
∑

j=1

Bnj�zj

⎞

⎠

⎛

⎝αN

J
∑

j=1

Bmj�zj

⎞

⎠

⎞

⎠ ,

= α2
N E

((

BIn�zIn + BGn
�zGn

)(

BIm�zIm + BGm
�zGm

))

︸ ︷︷ ︸

=1?

,

where Ik and Gk denote the industrial and geographic loading from the kth equity
series, respectively. We now have a clearer idea of the condition required to establish
our identity in Eq. 3.13. If the expectation equates to unity, then the identity
holds. In this case, the double sum yields the same value as the denominator in
the constant preceding the sum. These terms cancel one another out establishing
equality between the left- and right-hand sides indicating that our proposition holds.

Under what conditions does the expectation in Eq. 3.14 reduce to one? It turns
out that the collection of N equity series needs to share the same industrial and
geographic factors (and factor loadings). In other words, the factor correlations
among the N members of our dataset must be identical. Practically, this means that
BIm = BIn and BGm = BGn .36 In this case, we have that

corr (�Xn,�Xm) = E

(
(

BIn�zIn + BGn�zGn

)2
)

, (3.15)

= var

(

BIn�zIn + BGn�zGn

)

,

= var

(

Bn�z

)

,

= 1,

by construction from Eq. 3.12. Naturally, this choice of estimation is applied under
the assumption that the model actually holds.

The consequence of this development is that if we organize our estimation
categories into a grid with each square sharing a common industrial and geographic
systemic factor, then Eq. 3.13 will provide a reasonable estimate of the equity-

36 We also naturally require that �zIm = �zIn , and �zGm
= �zGn

, but this happens naturally if
the region and industrial classifications coincide.
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Fig. 3.14 A cube of systemic
weights: To include the notion
of firm size and respect the
estimation method introduced
in Eq. 3.13, we have elected
to create a cube of
systemic-weight parameters.

Region

Industry

Firm size

based systemic weight. In a more general sense, it would appear that as long as the
granularity of the systemic-weight estimation matches that of the systemic factor
structure, this estimator will work. The analysis thus strongly suggests the use of a
regional-sectoral grid to inform the various systemic-weight parameters.

Geographical and industrial identities are sensible and desirable categorizations
for systemic weights. They are not, however, the only dimensions that we would
like to consider. There is, for example, a reasonable amount of empirical evidence
suggesting that systemic importance is also a function of firm size.37 Adding a size
dimension to the determination of systemic weights is possible, but it transforms a
region-industry grid into a cube including region, industry and firm size.

Figure 3.14 provides a schematic view of this systemic-weight cube. It clearly
nests the industrial sector and geographical region grid introduced in the derivation
of the systemic-weight estimator. With 11 sectors and 13 regions, this yields 143
individual systemic weights. For each firm-size dimension, therefore, it is necessary
to add an additional 143 parameters. Each additional firm-size category must thus
be selected judiciously. Not only would too many firm-size groups violate the
principle of model parsimony, but would also create a significant data burden. As a
consequence, we have opted to employ only three firm size groups:

Small: total assets size in the interval of EUR (0, 1] billion;
Medium: total firm assets from EUR (1, 10] billion; and
Large: total firm assets is excess of EUR 10 billion.

One can clearly dispute the size of the thresholds separating these three categories,
but it is hard to disagree that this represents a minimal characterization of the firm-
size dimension. Any smaller than three size categories and this dimension would
best be ignored; a larger set of groups, on the other hand, would only magnify
existing issues surrounding data parsimony and sufficiency.

Although this cube format provides a sensible decomposition of the main factors
required to inform systemic weights and offers a convenient representation—along

37 BIS [3, Section 4.5] addresses this very issue and, attempts, in an admittedly limited manner, to
incorporate this idea into regulatory computations.
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these three dimensions—it is not without a few challenges. The following sections
detail the measures taken to address them.

A Systemic-Weight Dataset

There is no way around it: estimation of systemic weights requires a significant
amount of data. With 11 industries, 13 regions, and 3 firm-size categories, a set
of K = 11 × 13 × 3 = 429 cube sub-categories sharing common characteristics
is required. If we hope to have 15–30 equity time series in each sub-category—to
ensure a reasonably robust estimate of its average equity return cross correlations—
this would necessitate roughly 6000 to 12,000 individual equity time series.

While the actual parameters are determined annually based on an extensive
internal analysis, we will use a sample dataset to illustrate the key elements of
the estimation procedure.38 Our starting point is a collection of 20,000 individual,
120-month, equity index time series across various industries, regions, and firm
sizes.39 At first glance, this would appear to fall approximately within our (overall)
desired dataset size. This is only true, of course, if the underlying equity time series
are uniformly distributed across our 429 cube entries. The first order of business,
therefore, is to closely examine our dataset to understand how it covers our three
cube dimensions.

Table 3.4 takes the first step in exploring our dataset.40 It examines, from a
marginal perspective, the total number of equity series within each region, industry,
and firm-size classification. Our hope of a uniform distribution along our key
dimensions does not appear to be fulfilled. Along the regional front, Developed
Asia and North America dominate the equity series; they account for roughly 40%
of the total. Some important regions for NIB—such as the Baltics and Iceland—are
only very lightly represented. With only two equity series, for example, we have
virtually no information for Iceland. Indeed, both the Nordic and Baltic regions—
as one might expect by virtue of their size—exhibit only a modest amount of data.
Given the central importance of these member countries to our mandate, and the
need to have granularity for these regions within the economic capital model, it will
be necessary to adapt to these data deficiencies.

The industrial and size dimensions look to have, in general, a rather broader
range of equity series. Financials and industrials are, by a sizable margin, the largest

38 The presented figures are thus not quite our internal systemic-weight parameters, but the actual
computations follow an almost identical logic.
39 The attentive reader might ask why we employ 20 years of data for the systemic correlations,
but only 10 years for systemic weights. In practice, we currently use a longer horizon. As we
move back in time, however, it becomes rather challenging to maintain a continuous price history
for such a large number of equities. Although interesting, such issues would detract from a clear
description of the methodology.
40 With a cross sectional size of 20,000 and a time-series dimension of 120 months, this yields a
total panel dataset of about 2.4 million individual return observations.
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Table 3.4 Equity series by dimension: The underlying tables illustrate—along the region,
industry, and size dimensions—the marginal distributions of equity series. Some geographic
regions, such as Iceland and the Baltics, are quite thin. The coverage of industrial sectors, with
the possible exception of paper, is rather better.

Region Count

Africa and Middle East 642

Baltics 21

Denmark 86

Developed Asia 4295

Emerging Asia 6452

Europe 2677

Finland 86

Iceland 2

Latin America 336

New Europe 635

North America 3925

Norway 101

Sweden 227

Total 19,485

Industry Count

Energy 707

Materials 1954

Paper 113

Industrials 4103

Discretionary 1648

Staples 2825

Health care 1244

Financials 3818

IT 1986

Telecom 614

Utilities 473

Total 19, 485

Size Count

Small 11,421

Medium 5515

Large 2549

Total 19,485

categories accounting for almost one half of all series. The paper industry looks
somewhat thin, but appears to be in better shape than the worst regional categories.
Finally, the size decomposition is not exactly split into equally sized groups, but
there are substantial numbers of series observations in each group.

While the marginal perspective is a useful starting point, it does not tell the full
story. Table 3.5 illustrates the first of three pairwise joint perspectives. It shows the
number of equities found within a two-dimensional grid of geographic and industry
categories. Again, we see our roughly 20,000 time series in a manner that helps us
understand how uniformly distributed they are along our dimensions of interest. 15
grid entries, or about 10% of the total, are empty. More than half of these, of course,
stem from the Icelandic region. Numerous individual grid points have hundreds of
observations. About one third of the grid entries, conversely, has five or less equity
series. It is possible to construct an estimate in this cases, but it will not necessarily
be the strongest signal of equity return correlations in this sub-sector.

Since we are considering a cube, there are two other possible two-dimensional
viewpoints to be examined: region versus size and sector versus size. Table 3.6
outlines the equity counts for these perspectives. Once again, the regional aspect
is the most problematic. Slicing each region into three size categories does not,
of course, help out the situation in Iceland and the Baltics. Denmark, Finland, and
Norway also exhibit a rather small number of individual series within the largest size
category. The sector-size breakdown is somewhat less problematic; again, the paper
industry has relatively few equity series. From each of our three two-dimensional
perspectives, the number of equity series is far from equally spread among our three
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Fig. 3.15 A cube perspective: The preceding figure attempts to provide a useful visualization of
the number of equity series associated with each of the 429 individual cube elements. Colours are
used to organize entries into three categories: red for no series, yellow for 2 to 5 series, and green
for more than 5 equity series. The number of red dots clearly increases as we move from small to
large firm size.

dimensions. This is less a data quality issue and more a feature of the regional,
sectoral, and size distributions of listed equities.

With 20,000 total series and 429 entries, a uniform distribution would place about
45 equity series in each individual cube entry. Our preliminary analysis has made it
clear that this will not occur. Figure 3.15 thus attempts to examine how far we are
from this ideal. It provides a visualization of the number of equity series associated
with each of the 429 individual cube elements. Colours—using a familiar traffic-
light scheme—are used to organize entries into three categories. Red, the most
problematic, represents zero equity series associated with a given entry. Yellow,
which suggests that an estimate is possible although perhaps not terribly robust,
is applied for cases of 2 to 5 equity series. Finally, the colour green indicates the
presence of more than 5 equity series; this is a desired outcome. The results are as
expected. While we observe substantial amounts of green and yellow, the number
of problematic red dots clearly increases as we move from small to large firm size.
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It is consequently difficult to imagine that each of our cube points will be equally
well informed by our dataset.

This does not mean that our estimation procedure is doomed to failure. Five
equity series does not imply only five correlation coefficients, but rather yields
5·(5−1)

2 = 10 pairwise estimates. This is not an incredibly rich amount of data, but it
should provide a reasonable first-order estimate. It does, however, still suggest that
a clear and defensible strategy is required to identify those entries with missing
data. The overall dataset is not small and useful inferences can be drawn from
neighbouring cube entries with similar properties. In the coming discussion, we’ll
outline our approach towards addressing this problem.

Colour and Commentary 32 (SYSTEMIC-WEIGHT CHOICE AND DATA):
Our systemic weight parametrization takes the form of a three-dimensional
cube of systemic-weight coefficients. With 11 sectors, 13 regions, and 3 size
categories, however, this choice implies a daunting 429 values to be estimated.
A systemic-weight estimator can be constructed from the average cross
correlation coefficients of firms with the same industrial, geographic, and
firm-size classifications. The correlation between historical equity returns of
individual firms is employed for the approximation of these parameters. To do
this correctly, a non-trivial amount of data is required. A dataset with 20,000
monthly equity return series, over a ten-year period, has been sourced to
outline the various aspects of the estimation process. Although the data is far
from uniformly distributed across our three dimensions, it provides significant
cross-correlation information. A clear strategy is nonetheless required to
manage those cube entries with little or no data.

Estimating Correlations

Logistically, the job before us is rather simple. We need only compute a correlation
coefficient for each of the pairs of equity series allocated to each entry in our
cube definition. These collections of estimates for each grid point then need to
be aggregated somehow to a single estimate representing our associated systemic
weight. As is often the case in practice, there are a few complications. Four
methodological questions arise:

1. What measure of correlation is to be employed?
2. How should we aggregate the pairwise correlation estimates for each cube entry?
3. How are we to manage cube entries without any data?
4. Should any constraints or logical relationships be imposed on the cube structure?

As always, when taking these decisions, we endeavour to be consistent with
previous solutions. In the area of missing data, it makes sense to impose the smallest
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possible non-empirical footprint on the parameters. This implies leveraging the
existing dataset, to the extent possible, to inform our cube entries absent equity
series data. This is a fine line to successfully walk. The general approach is to
reflect carefully, take a judicious choice, and then provide full transparency about
the process.41

The first question—which correlation coefficient to use—can be conceptually
difficult. Having wrestled with this point in the determination of the systemic
correlation matrix, we have elected to use the rank (i.e., Spearman) correlation
across the K equity series in each cube point. The underlying argument of less
sensitivity to outliers applies equally well in this context. It is further strengthened
by a general desire to take consistent choices across the various elements of the
economic-capital model.

The second question would appear to be directly answered by Eq. 3.13. It clearly
suggests that we average our individual pairwise correlation estimates. Use of rank
correlation, which belongs to the family of order statistics, is justified on the basis
of the reduced impact of outliers. Use of the median, rather than the mean, would
further insulate our estimates of pairwise correlation coefficients for each cube entry
against outliers. This would appear to be particularly important given the relatively
sparse amount of data associated with many of our cube points. For this reason, we
use the median for cube-entry aggregation.

How do we handle missing data entries? The cube is essentially three slices of a
sector-region grid, each indexed to one of the size categories. A missing data point
is essentially an empty grid entry. The other median correlation entries occurring
within the missing data-point’s grid are the most natural source of information
to approximate the missing entry. Often in such problems, from a mathematical
perspective, one would approximate the missing point with a two dimensional
plane estimated using surrounding non-empty points. In this setting, this is not
a particularly sensible strategy. The adjacent cells could be from quite different
regions and industries. Only the parallel adjacent cells, relating to the same industry
or region, are logically informative. The likelihood of similarities, in terms of
cross correlation, would appear to be highest along the industrial rather than the
geographic dimension.42 We’ve also seen that our industrial equity series are more
equally distributed along the sector aspect. Missing data entries are, therefore,
replaced using the (non-empty) industry median systemic-weight grid estimates for
the same size category.

The fourth, and final, practical question is the most difficult, the most heuristic,
and has the greatest potential for criticism. Relying entirely on the previous
computational logic may still provide unreasonable results. Such unreasonableness
may manifest itself in different ways. Regulatory guidance, for example, suggests
that systemic weights should fall into the range of [0.12, 0.24]. It is entirely possible,

41 This permits others to decide for themselves as to whether we have succeeded in this regard.
42 This implicitly assumes that firms in the same industry, but different regions, have more
commonalities than those in the same region, but different industries. This is, of course, debatable.
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however, for a given estimate to fall below the lower bound of this interval.
Another example relates to the size dimension. Nothing in the current estimate
approach ensures, as one would expect, that the medium-size systemic weight—
for a given region and sector—exceeds the small-size estimate. Economically, we
expect systemic weights to be a monotonically increasing function of firm size.
Some, hopefully sensible, manipulation is required should we desire to ensure this
idea is incorporated into our final cube estimate.

To this end, we impose the following additional constraints onto our individual
systemic-cube entries:

• a minimum systemic weight of 0.12, which is the bottom of the regulatory
requirement;

• a maximum value of 0.40, which also represents the systemic weight applied to
all public-sector entities; and

• a monotonic relationship between systemic weight and firm size.

The final point suggests that the systemic weight cannot decrease—for a given
industrial sector and geographic region—as the firm size increases. The first two
elements are relatively easy to implement, while the final aspect will require a bit of
justification.

Before getting to these key points, let us first examine the first-order systemic-
weight approximations. These do not yet include an application of the minimum and
maximum values, but they do handle the missing data with industry medians. They
also impose a very simple, and logical, monotonicity constraint. As we move along
the size dimension—for fixed sector and region—the systemic weight estimate must
be greater than, or equal, to the value from the previous size grouping.

Table 3.7 illustrates, along our first two-dimensional sector-region grid, the raw
median rank correlation estimates. Despite the wall of numbers, it does provide a
useful perspective. The overall median value is 0.17 with a minimum value of 0.01
and a maximum of 0.76. The median values, across each region and sector slice,
are not terribly far from the regulatory interval of [0.12, 0.24]. The highest systemic
weights appear to occur in Finland, Sweden, Norway, and the Baltics. Africa and
Middle East and Emerging Asia are at the lower end of the regional spectrum. Along
the sector aspect, financials, paper, and energy exhibit higher systemic weights,
while telecommunications, health care, and utilities receive lower estimates.

Table 3.8 provides similar median rank correlation coefficients for the remaining
two-dimensional grids: region- and sector-size combinations. The first interesting
point is the relationship—be it by region or sector—between systemic weight and
firm size. There is a fairly convincing increasing trend in systemic weights as we
increase firm size. It holds in aggregate and, with one exception, at each regional
and sectoral level. One might argue that this is an artifact of our monotonicity
constraint. This was only imposed in a limited set of cases. Our analysis, while
hardly a solid academic finding, does provide some comfort that inclusion of the
firm-size dimension is a sensible choice.
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Table 3.7 Sector-region correlations: The underlying table outlines the median pairwise (rank)
cross correlations for each of the equity series along the sector and region dimensions.
Missing data points are replaced with industry medians and a weak monotonicity constraint is
imposed. Red, yellow, and green shading indicate below, within, and above regulatory guidance,
respectively.
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Energy 0.09 0.22 0.29 0.18 0.14 0.16 0.24 0.22 0.22 0.17 0.27 0.25 0.23 0.22
Materials 0.13 0.16 0.16 0.17 0.13 0.17 0.23 0.16 0.19 0.15 0.20 0.14 0.15 0.16
Paper 0.18 0.19 0.19 0.19 0.11 0.27 0.76 0.19 0.01 0.17 0.26 0.19 0.39 0.19
Industrials 0.08 0.32 0.19 0.22 0.12 0.20 0.27 0.20 0.16 0.15 0.23 0.11 0.27 0.20
Discretionary 0.08 0.32 0.20 0.17 0.09 0.14 0.26 0.17 0.17 0.17 0.18 0.26 0.14 0.17
Staples 0.07 0.17 0.17 0.17 0.10 0.16 0.21 0.16 0.14 0.15 0.16 0.21 0.20 0.16
Health Care 0.09 0.45 0.21 0.12 0.11 0.11 0.11 0.12 0.20 0.12 0.14 0.09 0.13 0.12
Financials 0.10 0.20 0.20 0.18 0.12 0.21 0.26 0.20 0.20 0.16 0.23 0.34 0.32 0.20
IT 0.08 0.16 0.15 0.21 0.16 0.14 0.22 0.16 0.19 0.12 0.19 0.13 0.19 0.16
Telecom 0.13 0.12 0.12 0.12 0.11 0.12 0.21 0.12 0.09 0.12 0.14 0.12 0.12 0.12
Utilities 0.08 0.04 0.14 0.11 0.11 0.18 0.14 0.14 0.17 0.20 0.21 0.14 0.14 0.14

Median 0.09 0.19 0.19 0.17 0.11 0.16 0.23 0.16 0.17 0.15 0.20 0.14 0.19 0.17

Table 3.8 Region and sector-size correlations: The underlying tables provides raw median rank-
correlation estimates—similar to Table 3.7—along the region-size and sector-size dimensions; the
colour scheme is also the same.
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Africa and Middle East 0.07 0.10 0.12 0.10
Baltics 0.21 0.32 0.27 0.27
Denmark 0.14 0.20 0.22 0.20
Developed Asia 0.17 0.17 0.18 0.17
Emerging Asia 0.11 0.13 0.13 0.13
Europe 0.13 0.19 0.22 0.19
Finland 0.22 0.29 0.27 0.27
Iceland 0.00 0.00 0.00 0.00
Latin America 0.15 0.16 0.17 0.16
New Europe 0.14 0.16 0.18 0.16
North America 0.11 0.22 0.25 0.22
Norway 0.13 0.17 0.15 0.15
Sweden 0.15 0.24 0.29 0.24

Median 0.14 0.17 0.18 0.17

Sector
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ge Median

Energy 0.14 0.20 0.31 0.20
Materials 0.11 0.16 0.27 0.16
Paper 0.11 0.15 0.29 0.15
Industrials 0.11 0.15 0.23 0.15
Discretionary 0.09 0.12 0.19 0.12
Staples 0.09 0.10 0.13 0.10
Health Care 0.07 0.10 0.15 0.10
Financials 0.11 0.16 0.24 0.16
IT 0.12 0.14 0.22 0.14
Telecom 0.10 0.10 0.12 0.10
Utilities 0.08 0.10 0.17 0.10

Median 0.11 0.14 0.22 0.13

The range of values in Table 3.8 are qualitatively similar to those found in
Table 3.7. The vast majority of the systemic-weight estimates are also entirely
consistent with regulatory guidance. Finland, Sweden, and the Baltics also exhibit
higher levels of systemic weights, when we examine the size dimension. On the
industry side, the paper, energy and IT sectors continue to exhibit higher levels of
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Table 3.9 Raw-cube
summary statistics: The
adjacent table houses a broad
range of summary statistics
related to our raw
systemic-weight cube
estimates in aggregate and
along the size dimension.

Firm size

Measure Small Medium Large Total

Mean 0.15 0.20 0.27 0.21

Median 0.15 0.20 0.24 0.19

75th Percentile 0.17 0.23 0.30 0.24

Minimum 0.01 −0.06 −0.00 −0.06

Maximum 0.45 0.59 0.76 0.76

Volatility 0.06 0.09 0.12 0.10

IQR 0.06 0.08 0.11 0.10

Percentage <0.12 27% 12% 6% 15%

Percentage >0.40 1% 2% 13% 5%

systemic weight. Not everything completely matches up, since it is entirely possible
to view different dependence structures as we organize our data along varying
dimensions.43

Having examined all of the possible two-dimensional views of our systemic-
weight estimates, we may now turn our attention to the cube values. Using the
same basic approach outlined previously—without yet imposing upper or lower
bounds on the results—Table 3.9 provides a number of summary statistics. These
are computed across the region-sector grids, each holding the size dimension
constant, and also at the overall level. The mean and median figures appear to be
generally consistent with the two-dimensional analysis. In particular, the minimum
and maximum values remain quite extreme. Moreover, the percentage of values
outside of our predefined limits is significantly higher than in the two-dimensional
settings.

What is driving this small number of extreme results? Only a small fraction of
the 215 two-dimensional estimates fall outside of our limits, whereas about one fifth
does in the cube setting. The situation appears to be magnified when moving from
the grid to cube perspectives. This stems from the decrease in entry sample sizes
associated with moving to a cube. As we have fewer equity series to inform a given
cube entry, there is an increased possibility of a small number of fairly extreme
pairwise correlation estimates dominating the outcome.

Setting bounds, in this context, would thus appear to be a reasonable solution.
Presumably, the lower bound, by virtue of its increased conservatism, would not
expose us to undue amounts of criticism. The upper bound, however, is another
matter. It could, at worst, be seen as a non-conservative action. There are at
least three compelling reasons to envisage placing a cap on our systemic weight
estimates. The first is a structural question. Systemic weights ultimately play a
critical role in the correlation of the underlying model default events; indeed, this is
the entire point of the introduction of systemic risk factors. Many systemic-weight

43 Some of this effect certainly stems from a lack of uniformity in the underlying grid categories.
Large categories can dominate along some slices, but have a restricted influence among others.
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estimation procedures, therefore, use default incidence data among various rating
classes, to inform these parameters.44 The results associated with such default-
based estimation approaches, relative to the use of equity data, typically generate
significantly lower systemic-weight values. The reason is a global, persistent level
of cross correlation between general equity prices and returns.45 When using equity
data as a proxy, the consequence is an upward bias in our systemic-weight estimates.
Although the magnitude of this bias is difficult to determine, it does argue for
eliminating some of the more extreme upside estimates.

The second point relates to a category of credit counterparty that has not yet
been discussed: public-sector entities. Such credit obligors do not, unfortunately,
possess a public-listed stock and, as such, we may not use equity price returns as
a proxy. There are relatively few good alternatives. One could try to infer public-
sector correlations from bond or credit-default-swap (CDS) spreads. Both ideas,
while containing some information on inter-entity correlations, raise many technical
challenges. Moreover, many public-sector exposures have neither liquid bond issues
nor listed CDS contracts.46 This would then suggest using sovereign proxies;
thereby creating an awkward situation of layering multiple data sources. The
solution is a logical, and conservative, simplification. All public-sector entities—
irrespective of region, sector, or size—are allocated a systemic-weight equal to the
upper bound on our systemic cube.

Is this a good decision? There are sensible reasons to expect a high level of
systemic weight for public-sector entities. Their revenues are highly related to
tax receipts, whereas their expenditures are significantly linked to various social
programs. Both items are macroeconomically procyclical, presumably creating
important common systemic linkages. To avoid a potential error-prone and unin-
formative estimation approach, placing all public-sector obligors into the highest
systemic-weight group is a clean solution. It does, of course, strongly argue for the
establishment of a reasonable upper limit.

The third and final point has already been addressed. As we chop up our 20,000
equity series into 429 distinct sub-buckets, the average behaviour appears to be fairly
reasonable. There are, however, a minority of fairly extreme outcomes that appear
to be driven by issues associated with small sample sizes. Regulatory guidance caps
systemic weights at 0.24. The data, and economic logic, would appear to suggest
that a practical estimate could exceed this level. We have, not completely arbitrarily
but also not completely defensibly, placed our upper bound at slightly above 1 1

2
times the regulatory upper bound.

44 Bolder [7, Chapter 10] provides a fairly detailed overview of popular techniques in this area and
numerous references for further reading.
45 Our analysis underscores the empirical literature. With roughly 200 million possible pairwise
correlation coefficients from our collection of 20,000 equity series, only a very small proportion is
negative.
46 There are also important questions about the strength of the overall (pure) credit-risk signal in
CDS spreads. See, for example, Arakelyan and Serrano [2] for a detailed analysis of CDS-market
liquidity.
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Colour and Commentary 33 (AN UPPER BOUND ON SYSTEMIC WEIG-
HTS): Arbitrarily setting a key model parameter can be a controversial
undertaking. Done correctly, it can help one’s model implementation. Done
poorly, it can almost be considered a criminal act. In all cases, however, it
needs to be done in a transparent and defensible manner. The application of
an upper bound on systemic weights exhibits this element of arbitrariness.
Three main reasons argue for this choice. First, there is a general tendency of
equity based systemic-weight estimates—relative to default correlation-based
techniques—to be structurally higher. Conservatism is a fine objective, but
anything in excess can be a problem. Second, due to difficulties in finding
good proxy data and their strong systemic linkages, all public-sector entities
are assigned systemic weights at the upper bound. This practice argues for
a reasonable maximum level of systemic weight. Finally, we need to be
symmetrical in our logic. If we are comfortable with a lower bound for
reasons of conservatism, then a (reasonable) upper bound should not be
overly difficult to digest.

Imposing Strict Monotonicity

The final step in the specification of the systemic-weight cube relates to monotonic-
ity constraints. Thus far, only a weakly monotonic relationship has been imposed
along the size dimension. That is, as we move from small- to large-sized firms, the
systemic weight must be greater than or equal to the previous entry. This implies
that, practically, for some region-sectors pairs, the systemic weight may be flat along
the size dimension. In principle, we would prefer a strictly monotonous relationship.
This means that a large firm’s systemic weight, for each combination of region and
sector, would always be greater than for a smaller one.

For about one quarter of the 143 distinct region-sector pairs, upward steps along
the size dimension are not strictly monotonous. Our desired strict monotonicity is
imposed using a simple heuristic method. We first compute the slope among those
region-sector pairs with increasing systemic weights along the size dimension. This
mean slope is subsequently imposed along each of the flat aspects; caution, of
course, is taken to ensure that the upper bound remains respected.47 Although def-
initely ad hoc, the rationale behind this adjustment is related to logical consistency
and conservatism. Systemic weights do generally increase in a strictly monotonic
manner, ceteris paribus, as we increase firm size. When this does not occur naturally,
it appears defensible to (gently) force this condition.

47 Imposition of the upper bound does imply that, in a small number of cases, strict monotonicity
is not achieved.
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Table 3.10 Size-slope adjustment summary: The underlying table describes, for each fixed sector-
region pair, the average systemic weight parameter. Values are provided before and after the
adjustment along with the scaling factor employed. On average, the adjustment is small, but it
adds logical consistency and conservatism to the model.

Perspective Small Medium Large

Starting point 0.16 0.22 0.27

Scaling factor 1.00 1.43 1.82

Final result 0.16 0.22 0.28

Table 3.10 describes the results of this process. It begins by illustrating, for each
fixed sector-region pair, the mean systemic weight parameter. These outcomes are
utilized to construct a scaling factor. The systemic-weight of a medium-sized firm,
for a given pair of regions and sectors, should be 43% greater than the small-sized
equivalent; this rises to more than 80% from small to large firms. The final average
results are presented. On average, the adjustment is small, because it only impacts
a small subset of the entries. Although the change is modest in aggregate, this
adjustment nonetheless ensures an important logical consistency to the model. Its
limited size, upon consideration, is actually a feature. It implies that only modest
adjustment is required to the empirical estimates.

Figure 3.16 provides a visualization of this heuristic operation. The left-hand
graphic illustrates the initial, unadjusted, situation. A small number of flat size-
dimension slopes can be identified. The right-hand graphic repeats the analysis after
the adjustment; with a few exceptions around the upper limit, all firm-size slopes
along fixed sector-region pairs have a strict increasing monotonic form. At the same
time, we observe that the overall impact is relatively modest and the majority of
cube entries remains untouched.

Fig. 3.16 Size-slope adjustment: These graphics illustrate, for each fixed sector-region pair, the
systemic-weight slope along the size aspect. A before-and-after perspective is provided to help
understand the impact of the heuristic adjustment used to impose strict monotonicity over this
dimension.
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A Final Look

Specification of systemic weights is a critical aspect of a credit-risk economic-
capital model. The relative importance of the common systemic component is a key
driver of default correlations and, ultimately, the form of the credit-loss distribution.
With 11 regional and 13 sectoral systemic state variables, the process is a particular
challenge. Following regulatory guidance to further introduce the notion of firm
size does not make the task any easier. A desire for modelling accuracy nevertheless
makes us reluctant to forego this (size) aspect of the model.

A principal objective in the systemic-weight estimation process is to allow the
data to inform, to the extent possible, the final results. Any heuristic adjustments
should, in principle, minimally impact the outcomes. Although our degree of
success in this venture is an open question, four main interventions were imposed.
The first is that missing data points—identified for a fixed firm size along the sector-
region grid—are replaced with the median industry outcome. The second and third
are systemic-weight constraints. A minimum systemic weight of 0.12—the lower
bound of the regulatory interval—is imposed in conjunction with an upper bound of
0.4. The former, by virtue of its conservatism, is uncontroversial. The latter, which
is defended by a range of arguments, provides fuel for debate. The final adjustment
is the imposition of strict monotonicity—for each sector-region pair—along the size
dimension. This final choice also introduces additional prudence into the systemic-
weight parametrization.

Figure 3.17 provides a last view on the final set of cube systemic-weight
estimates. Similar to Fig. 3.15, it permits a full visualization of our 429 cube
elements. Once again, colours are used to organize the entries. Light blue indicates
values falling into the regulatory range, regular blue describes estimates from 0.24 to
0.34, while dark blue describes estimates exceeding 0.34. The general trend involves
dots getting darker as we move up the size dimension. Nevertheless, consistent
with our previous analysis, a significant number of the individual systemic-weight
estimates falls into the interval, [0.12, 0.34].

3.3 A Portfolio Perspective

The previous section highlights the statistical estimation of a range of parameters
relating to the systemic risk factors: correlations, loadings, and weights. The details
of this process are central to understanding the role of default and migration
dependence in any credit-risk economic capital model. Looking at parameters in
isolation, however, rarely provides deep insight into their overall impact. Two
notions, in particular, can help in this regard: systemic proportions and a deeper
examination of default correlation. Both require a portfolio perspective and, in the
following sections, will be investigated.
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Fig. 3.17 Cube values: This figure, similar to Fig. 3.15, permits visualization of our final 429
cube elements. Once again, colours are used to organize the entries. Light blue indicates values
falling into the regulatory range, regular blue describes estimates from 0.24 to 0.34, while dark
blue describes estimates exceeding 0.34. The general trend involves dots getting darker as we
move up the size dimension.

3.3.1 Systemic Proportions

The α coefficients, as already highlighted in detail, specify the relative weight on the
systemic and idiosyncratic weights. The systemic-weight coefficients themselves

are not true weights. αi and
√

1 − α2
i , while fairly close, cannot be interpreted

as the weight on the systemic and idiosyncratic components, respectively. They
have, instead, been constructed to ensure the unit variance of the creditworthiness
index. To provide a clean description of the true weights on our two principal risk
dimensions, we introduce the idea of systemic proportions. It involves a simple,
even trivial, adjustment. The systemic proportion is simply,

Systemic proportioni =
αi

αi +
√

1 − α2
i

, (3.16)
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Fig. 3.18 Component proportions: This figure illustrates the distribution of idiosyncratic and
systemic proportions associated with our portfolio for an arbitrary date in 2020. Although these
proportions are a slight variation on the actual systemic weights—adjusted to be interpreted as
true weights—they provide interesting insight into the relative importance of these two key risk
dimensions.

while, it follows naturally, that the idiosyncratic proportion is

Idiosyncratic proportioni =
(

1 − Systemic proportioni

)

=
√

1 − α2
i

αi +
√

1 − α2
i

,

(3.17)

for i = 1, . . . , I . By construction, of course, these two proportions sum to unity.
Neither of these quantities has any direct model-specific application, but they
can help us understand the relative importance of the idiosyncratic and systemic
components in the threshold model.

Figure 3.18 provides histograms summarizing the observed distribution of these
systemic and idiosyncratic proportions for an arbitrary date in 2020; these values
naturally depend on the confluence of firm size, region, and industry within the
underlying portfolio. The average systemic proportion is roughly 0.4 with values
ranging from as low as 0.3 and up to 0.45. There is a significant amount of
probability at the upper end of this range. This clustering is related to the imposition
of an upper bound on the systemic weight and the assignment of all public-sector
entities—an important part of our portfolio, as is the case with most international
financial institutions—to this maximum value.

The idiosyncratic proportions are, by their very definition, the mirror image of the
systemic proportions. The average value is roughly 0.60, with a significant amount
of probability mass in the neighbourhood of 0.55, which naturally corresponds
to the clump of systemic proportions in the region of 0.45. Values range from
around 0.55 to slightly more than 0.7. We can approximately conclude that common
systemic factors drive roughly 40% of the risk, with the remainder described by
specific, idiosyncratic elements. This is, as a point of comparison, significantly more
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Fig. 3.19 Weighting perspectives: This figure breaks out the average idiosyncratic and systemic
weights by rating category and firm size; the weights were adjusted to sum to one to ease the
interpretation. Again, we see that on average about 40% the weight is allocated to the idiosyncratic
factor. This ratio is not, however, constant across the PD-class and firm-size dimensions.

conservative than the regulatory guidance. Use of the lower bound, α2
i = 0.12,

leads to a split of roughly 0.3 to 0.7 for the systemic and idiosyncratic components,
respectively. This rises to about 0.35 to 0.65 if we use the regulatory upper bound,
α2
i = 0.24.48

Figure 3.19 takes the analysis a step further by illustrating the systemic and
idiosyncratic proportions by default-probability class and firm size. To anchor our
perspective, the roughly 40% mean systemic proportion is provided. PD classes
one through five appear to be slightly above this average, while the classes 7 to 12
are somewhat below.49 A gradual increase in systemic proportion is evident when
moving from small to large firms; medium and large firms, however, do not manifest
any (material) visual difference.

Figure 3.20 extends the view from Fig. 3.19 to include the systemic and
idiosyncratic proportions by region and sector. The majority of regions does not
visually deviate from the overall average. New Europe and Africa and Middle
East are somewhat higher than the mean, whereas Iceland and Developed Asia
are somewhat below this level. IT, public-sector entities, and financials exhibit
higher than average systemic proportions; this is sensible, since these firms exhibit
strong macroeconomic linkages. Health care, utilities, and telecommunication
firms, conversely, exhibit a higher weight on the idiosyncratic dimension. Again,
this appears reasonable, since such firms often operate in controlled, regulated
environments reducing the role of systemic factors.

48 Interestingly, to flip the ratio to a 60%-to-40% mix for systemic and idiosyncratic risk, an eye-
watering α2

i parameter of roughly 0.67 is required.
49 This is consistent with the regulatory formula, where systemic weight is directly proportional to
rating quality. This is discussed in more detail in Chap. 11.
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Fig. 3.20 More weighting perspectives: This figure, building on Fig. 3.19, breaks out the average
idiosyncratic and systemic proportions by region and industrial sectors. Differences in systemic
proportions are visible, but individual values do not appear to vary dramatically from the mean
values.

Colour and Commentary 34 (SYSTEMIC-WEIGHT REASONABLENESS):
With even a modest number of systemic-risk factors, it is hard to definitively
opine on the magnitude of the systemic weights in one’s credit-risk model.
Regulatory guidance places the α2

i values in the interval, [0.12, 0.24] with
higher credit-quality firms tending towards the upper end. This argues for
systemic proportions in the range of 0.3 to 0.35. On average, in this case,
about two thirds of default and migration events are driven by systemic
factors. The remainder thus stems from idiosyncratic elements. Our systemic-
weight parametrization moves this average value up to approximately 0.4.
On the surface, therefore, one may conclude that a conservative approach
to internal modelling has been taken.a On the systemic-weight dimension, at
least, a compelling argument can be made for the prudence of the systemic
parameters.

a While this was the intention, the reasonableness of this choice also needs to be considered
with other modelling alternatives—such as inclusion or exclusion of migration effects and
the form of copula function. Conservatism is best assessed through joint examination of the
entire set of modelling decisions.

In the following section, we will turn our attention towards understanding how
these systemic-weight choices impact the central driver of credit-risk interdepen-
dence; the notion of default correlation. The mathematical chain from systemic
correlations to systemic weights to default correlations is not particularly direct,
but it merits careful examination. It is, after all, the nucleus of the threshold model.
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3.3.2 Factor-, Asset-, and Default-Correlation

Correlations, as we’ve seen in the context of a threshold model, come in a variety
of flavours. Factor correlation refers to the pairwise dependence between the
loaded systemic-risk factors associated with two credit obligors. Asset correla-
tion addresses—also for an arbitrarily selected pair of credit counterparts—the
interdependence between latent creditworthiness index variables. The final, and
perhaps most interesting quantity, is the pairwise correlation between underlying
default events; we call this default correlation. Each of these three elements
provides an alternative perspective into our model’s interactions between any two
obligors.

Our objective in this section is to examine, to the best of our ability, the various
definitions of correlation at the portfolio level. This will require re-organizing some
of our previous definitions. Let us begin by repeating the generic definition of the
ith obligor’s creditworthiness index,

�Xi =
√

ν

W

(

αiBi�z+
√

1 − α2
i εi

)

. (3.18)

This expression illustrates all of the characters within our threshold-model imple-
mentation: systemic and idiosyncratic elements, factors loadings, systemic weights,
systemic-factor correlations, and the mixing variable employed to induce a multi-

variate t distribution. In Chap. 2, we demonstrated that �Xi ∼ Tν

(

0, ν
ν−2

)

.

The systemic-risk factor correlation between any two obligors, n and m, is
a function of its systemic factor loadings and the common systemic-risk factor
outcomes. The covariance between these two quantities is,

cov(Bn�z,Bm�z) =
(
(
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)

, (3.19)
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where the last step follows from the previously established fact that var(Bi�z) = 1
for all i = 1, . . . , I . The factor correlation is thus a rather complicated cocktail of
systemic-factor loadings and correlations.50

The asset correlation, as derived in the previous chapter, has a fairly elegant
form. It is written as αnρnmαm. Given the dimensionality of our systemic factors,
most of the complexity is embedded in the factor correlation term, ρnm. The pair of
systemic weights works together to complete the picture. If there is a high degree
of factor correlation and both systemic weights are large, then the asset correlation
will be correspondingly high. A few simple examples can help build some intuition.
Imagine that the factor correlation is 0.75 and both credit obligors share systemic
weights at the upper bound of α2

i = 0.4. The asset correlation would then become,

Case 1Asset correlation = αnρnmαm, (3.21)

= √
0.4 · 0.75 · √0.4 = 0.30.

If only one of the obligors is at the lower bound of 0.12, then we observe,

Case 2Asset correlation = √
0.4 · 0.75 · √0.12 ≈ 0.16, (3.22)

which amounts to a twofold decrease in overall asset correlation between these
two credit counterparts. Following this to the lower limit, when both parties have
systemic weights at the lower bound, then

Case 3Asset correlation = √
0.12 · 0.75 · √0.12 ≈ 0.09. (3.23)

Naturally, this is scaled upwards and downwards by the factor correlation, but
these simple examples illustrate the critical role of the systemic weights in the
determination of asset correlations.51

The final object of interest is the default correlation. This quantity, also derived
in the previous chapter, has the following model-independent form,

ρ
(

IDn , IDm

) = P (Dn ∩Dm)− pnpm√
pnpm(1 − pn)(1 − pm)

. (3.24)

50 With the parametric factor loading restrictions introduced in the previous sections, this can
be considerably simplified. If we let Ik and Gk represent the industry and geographic location
associated with the kth credit obligor, then we may rewrite Eq. 3.19 as,

ρnm = cov

(

BIn�zIn + BGn
�zGn

,BImSIm + BGm
�zGm

)

. (3.20)

Although this reduces the sheer number of individual terms, it has not proven more useful, in our
experience at least, for analyzing the overall portfolio.
51 Incidentally, following this simple calculation with max(α2

n) = max(α2
m) = 0.4 and

max(ρnm) = 1, the maximal asset correlation coefficient is 0.4.
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Table 3.11
Cross-correlation cases: We
can identify 14 logical
distinct cross-correlation
cases—along the
public-sector, industry,
regional, and size
dimensions—to analyze the
degree of factor, asset, and
default correlation embedded
in the current model
parameters.

Case Public-sector Industry Region Size

1 Both n/a Different n/a

2 Both n/a Same n/a

3 One Different Different Different

4 One Different Same Different

5 One Different Different Same

6 One Different Same Same

7 Neither Different Different Different

8 Neither Same Different Different

9 Neither Different Same Different

10 Neither Same Same Different

11 Neither Different Different Same

12 Neither Same Different Same

13 Neither Different Same Same

14 Neither Same Same Same

Given the t-copula implementation, the joint distribution of �Xn and �Xm follows
a bivariate-t form. This helps us evaluate the tricky quantity P (Dn ∩Dm).52

Specifically, from the previous chapter, it has the following generic form,

P (Dn ∩Dm) = P

(

�Xn ≤ �−1(pn),�Xm ≤ �−1(pm)

)

, (3.25)

= FTν

(

F−1
Tν

(pn), F
−1
Tν

(pm); αnρnmαm
)

.

The final expression for default correlation, within the credit-risk model is thus

ρ
(

IDn , IDm

) =
FTν

(

F−1
Tν

(pn), F
−1
Tν

(pm); αnρnmαm
)

− pnpm
√
pn(1 − pn)

√
pm(1 − pm)

. (3.26)

This expression is readily computed with the use of numerical integration.53

The preceding ingredients are everything that is needed to compute factor, asset,
and default correlations for each pair of credit obligors. There is, however, a
problem. With 500+ obligors, this amounts to approximately 140,000 distinct pairs
of counterparties to examine. Even for the hardest-working and most committed
quantitative analyst, this is a tad too much to visually wade through and digest. What
is required is some conceptual organization. Table 3.11 lessens the burden somewhat

52 The specific mathematical form of this bivariate distributional function is outlined in the previous
chapter. The reader interested in dramatically more detail on the multivariate t distribution, in all
its forms, is referred to Kotz and Nadarajah [30].
53 See Bolder [7, Chapter 4] for practical details.
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by introducing a logical partition of our collection of credit counterparties using the
model structure; this amounts to public-sector status, industrial sector, geographical
region, and firm size. These divisions were, of course, not selected by random. They
relate to the differences in the key drivers of our correlation quantities: systemic
weights and loadings.54

Let’s work through the basic logic of our partition:

• In the first two cases, both entities are in the public sector. In this case, the
industry designation and firm size do not matter. There are two cases: the
counterparts share the same geographic region or they do not.

• In the second setting, only one of the obligors falls in the public sector. Since
only one member of the pair has an industry identity, they can only differ along
the regional and firm size dimensions. This amounts to four possible cases.

• The final part is perhaps the most interesting. Both counterparties are in the
corporate sector implying potential differentiation along the industrial, regional,
and firm-size categories. The consequence is eight distinct cases.

The result is a reduction of 140,000 correlation pairs into 14 logical cases.55 While
losing a significant amount of information, hopefully we gain a bit of perspective.

Each group is mutually exclusive and covers all possible outcomes; that is, no
obligor pair can fall into more than one group. Equally importantly, each sub-group
exhibits a link to the lending business. It is interesting and sensible, for example,
to consider the set of public-sector obligor pairs falling into the same geographic
region. Similarly, we care about the nature of default correlation between two non-
public-sector entities in the same industry, but stemming from different geographic
regions. Practically, we would expect to observe a greater degree of factor corre-
lation associated with obligors sharing a greater number of characteristics. Two
obligors in the same industry and region should, in principle, be more correlated than
two entities dissimilar along these dimensions. This analysis can, hopefully, shed
some light onto the economic reasonableness of these empirically driven parameter
estimates. We can thus think of this as a kind of parameter sanity check.

Despite our logical breakdown, there remains a substantial amount of hetero-
geneity within each of our sub-groups. Even if they fall into the same industry,
region, and asset-size category, they can potentially have very different default
probabilities, exposure, and loss-given default settings. This means that they may
exhibit significant correlation, but impact the overall portfolio risk in quite distinct
ways. This does not negate this analysis, but it is useful in understanding and
interpreting the results.

54 Individual systemic correlations and default probabilities also matter importantly, but are rather
more difficult to logically organize.
55 The overidentifying restrictions on the factor loadings also play a role in making this a
meaningful logical partition.
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Table 3.12 Correlation analysis: The underlying table describes the number and percent of
obligor pairs falling into each logical class along with their respective average factor-, asset-,
and default-correlation values.

Obligor pairs Type of correlation

Extreme Case Count % Factor Asset Default

Low agreement 1 24,954 17.8% 0.71 0.28 0.015

High agreement 2 7686 5.5% 1.00 0.40 0.029

Low agreement 3 27,562 19.7% 0.68 0.23 0.014

4 4694 3.3% 0.88 0.29 0.019

5 31,261 22.3% 0.72 0.26 0.016

High agreement 6 6627 4.7% 0.90 0.33 0.024

Low agreement 7 14,903 10.6% 0.72 0.21 0.017

8 4852 3.5% 0.89 0.29 0.024

9 2069 1.5% 0.86 0.24 0.023

10 784 0.6% 1.00 0.32 0.029

11 8443 6.0% 0.74 0.22 0.020

12 3711 2.6% 0.89 0.29 0.025

13 1822 1.3% 0.87 0.27 0.026

High agreement 14 817 0.6% 1.00 0.32 0.032

Total/Average 140,185 100.0% 0.76 0.26 0.018

Table 3.12 provides a daunting number of correlated-related figures organized by
our previously defined cases using our portfolio on an arbitrary date during 2020.
With so many numbers, it is useful to examine the extremes. In particular,

• Cases 1, 3, and 7 represent situations of correspondence along the public-sector
dimension, but literally no overlap among the other three categories. These cases,
logically at least, have the lowest amount of agreement in terms of correlation
outcomes. We will refer to these as low-agreement cases.

• Cases 2, 6, and 14, in contrast, after public-sector correspondence, involve the
greatest degree of overlap among our three categories. Conceptually, we would
expect them to exhibit the highest amount of agreement in terms of cross-
correlation coefficients. Let’s call these high-agreement cases.

With only 14 cases, were the portfolio to be uniformly distributed along our
key dimensions, we would expect about 7% of the pairs in each case. Interestingly,
our three low-agreement cases represent about half of the total number of obligor
pairs. This is significantly above what one would expect under uniformity. If we
add in case 5—where the only level of dimensional agreement is firm size—this
rises to about 70%. The high-agreement cases appear to be relatively less frequently
occurring; all together they amount to about 10% of the individual counterparty
pairs. This does suggest, at least along these dimensions, a reassuringly low level of
concentration.

Factor correlation is, across all 14 cases, quite high. The lowest average value
is about 0.7. Indeed, our low-agreement cases—as we had suspected—exhibit the



186 3 Finding Model Parameters

lowest levels of factor correlation. On the other hand, Cases 2, 6, and 14 show the
highest levels of factor correlation with levels approaching unity. Cases 2 and 14,
by construction, load onto the same factors in the same way and, as such, have
perfect factor correlation. At the factor correlation level, therefore, the trend in factor
correlations is as expected. The overall factor-correlation levels remain quite high
due to significant positive correlation among our systemic risk factors stemming
from the use of equity returns in their parametrization.

The asset-correlation coefficients, which work from the factor correlation and
add the systemic weights, tell a similar story. Cases 1, 3, and 7—we could also add
case 5 to this group—possess lower asset-correlation values relative to the others.
The average asset-correlation coefficient for these cases appears to be between 0.2
and 0.25. The high agreement group displays values in excess of 0.32. Again,
we observe consistent, and expected, behaviour among our logical cases. Asset
correlation levels are also, if somewhat differentiated among cases, generally quite
high.

Moving to default correlation, the same trend persists, albeit at significantly
lower levels. Default correlation coefficients in a threshold setting, even in the
most aggressively parametrized situations, rarely exceed about 0.05. The average
level, across all obligor pairs, is roughly 0.02. The low-agreement cases all display
average default-correlation coefficients south of this figure. The high-agreement
cases, however, each exhibit values almost twice the overall average.

Colour and Commentary 35 (A PARAMETRIC SANITY CHECK): Parame-
ter selection is a tricky business and any tools that can help us assess the
consistency of our choices are very welcome. Sorting out factor, asset, and
default correlation, for example, is not trivial. Each quantity is a complicated
combination of factor correlation, factor-loading, and systemic-weight model
parameters. Moreover, with even a modest number of credit obligors, there are
many possible pairwise interactions. One can, in our specific case, organize
the (intimidatingly large) number of obligor pairs into 14 logical cases along
the type-of-entity, industry, geographic-region, and firm-size dimensions. This
helps to organize our thinking and formulate expectations regarding the
level of correlation within the model. Counterparties with stronger agreement
along these dimensions should reveal higher degrees of default dependence.
To test this proposition, we compute the average levels of factor, asset, and
default correlation across each of these logical cases. At all levels, the various
correlation coefficients appear to be consistent with our presuppositions;
greater agreement among our predefined key dimensions appears to lead
to a higher degree of model dependence. This analysis, which basically
amounts to something of a sanity check on the model calibration, helps us
to conceptualize and judge the reasonableness of the current parameters.
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3.3.3 Tail Dependence

Equation 3.18 describes the latent creditworthiness state variable associated with
each of the individual obligors in our portfolio. Quietly, in the background, sits
a difficult to manage parameter, ν. This is the degrees-of-freedom parameter of
the chi-squared (mixing) random variable used to generate marginal and joint
t distributions for our state-variable system. The strategic business rationale for
this specific implementation of threshold model is the inclusion of non-zero
tail dependence. In this respect, the t-copula model is a significant conceptual
improvement over the Gaussian version.

To actually use the model, of course, one needs to select a value for ν. This is
easier said than done. Bluhm et al. [6], in their excellent text on credit risk, state
that:

We do not know about an established standard calibration methodology for fitting t-copulas
to a credit portfolio.

Neither do we. This is, therefore, a challenge faced by any user of the t-threshold
model. Central to the problem is the fundamental notion of tail dependence. Since
it relates to the joint incidence of extreme outcomes, data is understandably very
scarce. As a consequence, this parameter is determined by a combination of expert
judgement and trial and error.

What we do know is that ν should not be a very large value—say 100 to 300—
because this practically amounts to a Gaussian copula model with its attendant
shortcomings. On the other hand, a very low value of ν—below, for example, about
30 or 40—is really quite aggressive. The current parameter value has been set to
70. It is certainly easy to throw rocks at this choice.56 Why not 65 or 75? Or 50 or
90? There is no good objective rationale that can be used to defend this decision.
It amounts to walking a fine line between being sufficiently or overly conservative.
Ultimately, it is about model judgement and risk-management needs. It is, in our
view, logically preferable to incorporate positive tail dependence into our model—
and live with a hard-to-calibrate parameter—than not to have it at all.

3.4 Recovery Rates

Recovery, as discussed in Chap. 2, is assumed to be a stochastic quantity. For each
default outcome, a simultaneous random variable is drawn from a distribution to
determine the amount recovered. Naturally, this raises two important questions: how
is the recovery aspect distributed and is it somehow related to the default element?
Both questions are, from an empirical perspective, a bit difficult to answer. Default

56 Internally, of course, a detailed analysis of the impact of different choices of ν upon credit-risk
economic capital is performed on a periodic basis.
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is a generally rare event making estimation of default probabilities a challenging
problem; recovery is an outcome conditional on default. Thus, we are trying to
estimate the distribution of an outcome conditional on another rather rare event.
Availability and richness of data is thus the principal problem in this area.

To handle these problems, three main assumptions are typically made:

1. the recovery rate, which varies among obligors, is assumed to be function of
numerous elements of counterparty’s current general creditworthiness;

2. the recovery process is assumed to be independent of the default mechanics; and
3. the stochastic element of recovery is described by the beta distribution.

All three of these assumptions can be relaxed and other choices are, of course,
possible. These common assumptions, however, represent reasonable choices in the
face of limited data.

A key follow-up question is how does one specify the stochastic dynamics
of the recovery elements. Moreover, once a specific choice is made, how is the
parametrization performed? This can, in principle, be as complex as one desires.
These objects, for example, could be treated as multivariate stochastic processes;
that is, they could possess randomness across both the cross-sectional and time
dimensions. This would, not to mention the challenges of parameter estimation,
likely be overkill. Instead, recovery values are typically drawn from a convenient
time-invariant distribution.

The Beta Distribution
To operationalize this general notion, it is necessary to specify the distribution of
each individual recovery variable, Ri ; in our case, the beta distribution. Let us first
consider this decision generically; afterwards, we can specialize it to our needs and
desires. Consider the following random variable,

X ∼ Beta(a, b), (3.27)

where a and b are parameters in R+.57 In words, X is beta distributed. The density
of X is summarized as,

fX(x) = 1

β(a, b)
xa−1(1 − x)b−1, (3.28)

for x ∈ (0, 1). That is, the support of X is the unit interval.58 β(a, b) denotes the
so-called beta function, which is described as,

β(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt, (3.29)

57 a and b are referred to as shape parameters; they are not, as is the case with many common
distributions, directly mapped to a distributional moment.
58 This is the standard density function, although it is readily generalized to any finite interval,
[v, u], where u > v.



3.4 Recovery Rates 189

which bears a strong resemblance to the form of the beta density. The beta function
is also closely related to the gamma function. In particular,

β(a, b) = �(a)�(b)

�(a + b)
. (3.30)

The gamma function, which can be seen as a continuous analogue of the discrete
factorial function, is written as59

�(t) =
∫ ∞

∞
xt−1e−xdx. (3.31)

The beta distribution, given its finite support, is often used in statistics and
engineering to model proportions. Interestingly, if one sets a = b = 1, then the
beta distribution collapses to a continuous uniform distribution.60 Moreover, it can
easily be constructed from the generation of gamma random variates.61 Finally, the
mean of a beta-distributed random variable, X, with parameters a and b is,

E(X) = a

a + b
, (3.32)

while its variance is,

var(X) = ab

(a + b)2 (a + b + 1)
. (3.33)

So much for the mathematical background on the beta distribution. The key
question is: how precisely is this choice utilized in a default credit-risk model? It
basically comes down to parameter choice. In principle, one could expect to have
slightly different parameters for each region, industry, or business line. As one
would expect, however, a number of simplifying assumptions are imposed. Each
individual credit obligor is assigned to a loss-given-default value following from an
internal framework. We then transform this loss-given-default value into an recovery
amount.

To simulate recoveries, which is our ultimate goal, we need to establish a link
between the moments furnished by internal assignment and the model parameters.
This is basically a calibration exercise. We denote Mi and Vi as the mean and

59 The role of the gamma and beta functions in density functions is basically to appropriately assign
probability mass to events. See Abramovitz and Stegun [1, Chapter 6] for a detailed description of
the gamma function.
60 It is easy to see, from Eqs. 3.28 and 3.29, that when a = b = 1, then fX(x) ≡ 1 consistent with
the standard uniform density.
61 See Casella and Berger [9, Chapter 3], Johnson et al. [26, Chapter 25], and Fishman [15,
Chapter 3] for much more technical information and background on the beta distribution.
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variance conditions associated with the ith credit obligor.62 Mi is directly informed
by the policy; the choice of Vi , however, is less obvious. A common value might be
assigned to all individual credit obligors. We could also use this parameter to target
specific characteristics of the recovery distribution. In the forthcoming analysis, we
will explore the implications of both choices. For the time being, let’s just think of
it as a generic value.

We thus view Mi and Vi as economically motivated moment conditions for the
recovery variable. The idea is to determine how we might transform these values
into beta-distribution shape parameters, ai and bi , for employment in our model.
Using the definitions provided in Eqs. 3.32 and 3.33, we construct a system of (non-
linear) equations. The first expression equates the first moments

Mi = ai

ai + bi
, (3.34)

Mi(ai + bi) = ai,

ai = biMi

1 −Mi

.

The second piece, equating the variance terms, is a bit more complex

Vi = aibi

(ai + bi)2(ai + bi + 1)
. (3.35)

If we substitute Eq. 3.34 into 3.35, a tiresome calculation reveals

Vi =
bi

ai
︷ ︸︸ ︷

biMi

1 −Mi
⎛

⎜

⎜

⎝

biMi

1 −Mi
︸ ︷︷ ︸

ai

+bi

⎞

⎟

⎟

⎠

2⎛

⎜

⎜

⎝

biMi

1 −Mi
︸ ︷︷ ︸

ai

+bi + 1

⎞

⎟

⎟

⎠

, (3.36)

=
b2
i Mi

1−Mi
(

��biMi+bi−��biMi

1−Mi

)2 (��biMi+bi−��biMi+(1−Mi)
1−Mi

)
,

= ��b
2
i Mi

����1 −Mi

· (1 −Mi)�3

��b
2
i (bi + (1 −Mi)

,

62 Although it is more common to talk about volatility, we need only square it to arrive at the
desired variance condition.
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= Mi(1 −Mi)
2

bi + (1 −Mi)
,

bi = (1 −Mi)(Mi (1 −Mi)− Vi)

Vi
.

Now plugging this quantity back into Eq. 3.34, we recover the required value of ai
as,

ai =

bi
︷ ︸︸ ︷

(

(1 −Mi)(Mi (1 −Mi)− Vi)

Vi

)

Mi

1 −Mi
, (3.37)

= Mi����
(1 −Mi)(Mi (1 −Mi)− Vi)

Vi
· 1

����1 −Mi

,

= Mi(Mi (1 −Mi)− Vi)

Vi
.

We thus have a concrete link between the beta-distribution parameters and the
provided moment conditions. This is, in fact, a closed-form application of the
method-of-moments estimation technique.63

While technically correct, this result is not terribly intuitive. If, however, we
introduce the term,

ξi = Mi(1 −Mi)− Vi

Vi
, (3.38)

then we can rewrite our recovery model parameter choices as,

ai = Miξi, (3.39)

bi = (1 −Mi)ξi .

We can interpret ξi in Eq. 3.38 as the normalized distance between the provided
value and the variance of a Bernoulli trial with parameter, Mi . This is not a
coincidence since the beta distribution approaches the Bernoulli distribution as the
shape parameters, ai and bi , approach zero. This would be precisely the case, as is
clear from Eq. 3.38, should we set Mi(1 − Mi) = Vi . That is, this is the variance
of a Bernoulli trial, with parameter, Mi . In this situation, which is the point, both ai
and bi reduce to zero.

63 See Casella and Berger [9] for more background on this parameter-estimation technique.
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One way to see that these are equivalent conditions is to re-examine the definition
of the beta distribution’s variance from Eq. 3.35,

Vi = aibi

(ai + bi)2(ai + bi + 1)
, (3.40)

= Miξi(1 −Mi)ξi

(Miξi + (1 −Mi)ξi)2(ai + bi + 1)
,

= Miξ
2
i (1 −Mi)

(���Miξi + ξi −���Miξi)2(ai + bi + 1)
,

= Mi(1 −Mi)

(ai + bi + 1)
.

As long as the sum of the two parameters ai and bi remains greater than zero, then
the denominator of Eq. 3.40 exceeds unity. This, by extension, ensures that Vi <
Mi(1 −Mi).

The Bernoulli trial limiting case is, however, practically rather unsatisfactory. It
is conceptually equivalent to flipping a coin. The outcome is binary; heads with
probability Mi and tails with 1 − Mi . Instead of heads and tails, however, we
have values 0 and 1. That is, the probability of the full recovery of a claim is Mi ;
the corollary is that our recovery takes the value of zero (i.e., we lose the entire
exposure) with probability 1 − Mi . This is probably not a reasonable recovery
model, but it is interesting that it is embedded in the structure of the beta-distribution
approach.64 If we avoid this unrealistic extreme case, then the beta distribution will
permit the recovery of any claim to, in principle, take any value in the unit interval.

Fixed Recovery Volatility
The uncertainty surrounding the mean recovery rate—referred to previously as√
Vi—is not obviously determined. We have, in the past, experimented with the

assignment of a value of
√
Vi ≡ 0.25 to all counterparties. Why might one do

this? The simple, and perhaps not very satisfying, answer is that one lacks sufficient
information to empirically differentiate between individual obligors. Small to
medium institutions will generally have a correspondingly modest—and typically
uninformative, default and loss-given-default—data history.

Using the method-of-moments estimator derived in Eqs. 3.38 and 3.39, Fig. 3.21
summarizes the associated beta-distribution parameters utilized to generate beta-
distributed random variates arising from the blanket assumption of

√
Vi ≡ 0.25.

Since each ai and bi parameter is a function of both moment conditions, we cannot

64 The beta-distribution approach to recovery thus nests two additional, and fairly extreme, models:
a Bernoulli trial and a uniform distribution. The former occurs when the shape parameters take the
values of zero, whereas the latter arises when both are set to one.
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Fig. 3.21 Fixed Vi Beta-distribution parameters: Using a method-of-moments approach, this
figure illustrates the mapping of Mi choices and fixed Vi ≡ 0.25 into a collection of the beta
distribution’s two shape parameters, ai and bi .

speak of a mapping between the beta parameters and assumed moments.65 The ai
values take an average value of roughly 1.3; observed values range from close to
zero to about 1.75. The bi values, conversely, exhibit a mean value of about 0.7;
again, observations range from 0 to almost 2. The ai outcomes are clustered around
the mean, while the bi’s appear to have a multimodal form with probability mass
around 0.25, 1, and 1.75.

How does the beta distribution take these two shape parameters and determine the
relative probabilities of an outcome? Since the standard beta distribution is restricted
to the unit interval, we seek to understand how probability mass is spread over this
region. Figure 3.22 helps us answer this question by plotting a broad range of beta
densities. The first uses the mean shape parameters—in particular, a = 1.3 and
b = 0.7—to describe the average density associated with a fixed choice recovery
volatility. This outcome, summarized by the red line, places a significant amount of
probability mass around unity and gradually falls down towards zero; in this case,
the mean appears to lie between 0.65 and 0.7. The blue line repeats this analysis,
but uses financial exposures to find a weighted set of beta parameters.66 There is
very little difference, although the weight on higher recoveries falls slightly with a
modest impact on the mean outcome. The final high-level point of comparison is the
uniform density, where all values in [0, 1] are equally likely.

In addition to these three high-level comparative densities, every single observed
pair of a and b shape parameters are used to display the entire range of employed
densities. A broad range of shapes are evident. Some look flat, others have the
standard upward-sloping shape found in the average density, a few bell-shaped
densities can be identified, others exhibit a u-shaped form, while another group

65 Each ai and bi value is, to repeat, a shape parameter and cannot, as in some distributions, be
easily equated with a distributional moment.
66 The difference is not dramatic: ā ≈ 1.37 and b̄ ≈ 0.80.
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Fig. 3.22 Fixed Vi beta densities: The preceding figure plots the entire range of beta densities
associated with the (indirectly) assumed shape parameters. For reference, the beta densities
associated with the simple-mean and exposure-weighted mean shape parameters are also provided.
On average, a higher probability of large recovery is assumed.

looks to be downward sloping.67 There is a fairly rich range of assumed beta
densities. Empirically, there is some evidence that actual recovery rates are actually
bimodal; this implies that there is a disproportionately high probability of quite large
or quite small recoveries.68 This is a rather stark deviation between this empirical
finding and the constant recovery-variance assumptions illustrated in Fig. 3.22.

Colour and Commentary 36 (FIXED RECOVERY VOLATILITY): Determi-
nation of recovery volatility is hard. One might quite reasonably opt to
make a common assessment of recovery uncertainty for all one’s credit
obligors. Although not terribly defensible, it has the benefit of simplicity. The
resulting beta densities are helpful in assessing this choice. While a range
of beta densities is observed with varying forms, the average result places
a relatively high degree of probability mass on high-recovery outcomes.
Empirical evidence suggests that actual recovery rates are actually bimodal;
the consequence is a disproportionately high probability of quite large or
quite small recoveries. This would appear to be something of a shortcoming
of the constant recovery volatility assumption. To resolve this, we need to
identify an approach permitting the introduction of recovery bimodality. The

(continued)

67 As a general rule, if a = b, then the density will be symmetric, whereas if a �= b, then it will be
skewed in one direction or another.
68 See Schuermann [38] for a nice overview of the stylized empirical facts about loss-given-default
(and recovery).
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Colour and Commentary 36 (continued)
consequence, of course, will be more extreme recovery and loss-given-default
outcomes with a commensurate increase in one’s associated economic-capital
estimates.

Bimodal Recovery
The method-of-moments technique provides a useful link between the desired
recovery moments and these shape parameters. The mean of this distribution (i.e.,
Mi) should be clearly provided by one’s loss-given-default framework, but its
variance (i.e., Vi) may not be known. While this feels problematic, it represents
something of an opportunity. We might treat the Vi value as a free parameter. It could
be selected to obtain desired distributional characteristics; such as, quite pertinent
in our situation, bimodality.

A bimodal beta distribution is consistent with a so-called U -shaped density
function. That is, there is a preponderance of probability mass at the lower and
upper—or extreme—ends of the distribution’s support. Practically, this means that,
irrespective of the mean, large or small recoveries are relatively more probable. It
turns out that there is a convenient condition ensuring that a beta density has a
U -shaped form: both the a and b parameters must be less than 1. The imposition
of a bi-model recovery distribution thus reduces to something like the following
optimization problem:

min
ai(Mi,Vi),bi(Mi,Vi)

Vi, (3.41)

subject to:

ai(Mi, Vi), bi(Mi, Vi) ∈ (0, 1),

ai(Mi, Vi)

ai(Mi, Vi)+ bi(Mi, Vi)
= Mi,

Vi > 0.

In words, therefore, we seek the smallest variance value that would lead to a U -
shaped beta density. Inspection of Eq. 3.41 suggests that it is not much of an
optimization problem. Indeed, there exists a (hopefully, non-empty) set of possible
Vi values that respect our three constraints. This set is defined—in what basically
amounts to a simple manipulation of Eq. 3.41—as follows:

Vi =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

Vi : ai (Mi, Vi), bi (Mi, Vi) ∈ (0, 1)
︸ ︷︷ ︸

U -shaped condition

,
ai (Mi, Vi)

ai (Mi, Vi)+ bi (Mi, Vi)
= Mi

︸ ︷︷ ︸

Preserve mean

, Vi > 0
︸ ︷︷ ︸

Positive
variance

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

.

(3.42)
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Fig. 3.23 Visualizing Vi : For the ith arbitrarily selected credit obligor, this figure provides a
visualization of the set Vi defined in Eq. 3.42. The red-shaded area represents the confluence
of ai , bi , and

√
Vi values that preserve the mean, provide positive variance, and permit a U -shaped

beta density function.

Any member of this set—that is, Vi ∈ Vi—will respect one’s internal loss-
given-default framework, provide a U -shaped or bimodal beta distribution, and
involve a mathematically legitimate choice for the second moment of the recovery
distribution.

Figure 3.23 provides a graphical visualization of this set for an arbitrarily selected
credit obligor; it is, however, quite representative of the general problem faced by
obligors. The red-shaded area in Fig. 3.23 represents the confluence of ai , bi , and√
Vi values that preserve the mean, provide positive variance, and permit a U -

shaped beta density function. Permissible values of
√
Vi , in this case, appear to

range from about 0.25 to roughly 0.4.
A bit of effort can help us identify the boundaries of the set defined in Eq. 3.42.

This means working with the U -shaped condition constraints to understand what
they imply for the possible values of Vi . Let’s start with the ai parameter. It has to
be strictly less than unity, which implies, from our previous definitions, that

a(Mi, Vi) < 1, (3.43)

Miξi < 1,

Mi

(

Mi(1 −Mi)− Vi

Vi

)

< 1,

Mi(1 −Mi)

Vi
<

1

Mi
+ 1,

Vi >
M2

i (1 −Mi)

1 +Mi

.
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This suggests a lower bound on Vi , based on the specification of a, which depends
entirely on the mean recovery value. A corresponding upper bound can be derived
from the second constraint condition as follows,

a(Mi, Vi) > 0, (3.44)

Mi

(

Mi(1 −Mi)− Vi

Vi

)

> 0,

Mi(1 −Mi)

Vi
> 1,

Vi < Mi(1 −Mi).

Combining these two values together, and applying the square-root operator to
return to volatility space, the ai-parameter bounds on the Vi parameter are defined
by the following open interval

√

Vi ∈
⎛

⎝

√

M2
i (1 −Mi)

1 +Mi

,
√

Mi(1 −Mi)

⎞

⎠ . (3.45)

Interestingly, the (unattainable) upper bound is the volatility of a Bernoulli trial with
parameter, Mi .

We also may similarly compute a similar set of b-parameter induced bounds. The
lower bound is given as,

b(Mi, Vi) < 1, (3.46)

(1 −Mi)ξi < 1,

(1 −Mi)

(

Mi(1 −Mi)− Vi

Vi

)

< 1,

Mi(1 −Mi)

Vi
<

1

1 −Mi

+ 1,

Vi >
Mi(1 −Mi)

2

2 −Mi

,

while the upper bound is,

b(Mi, Vi) > 0, (3.47)

(1 −Mi)

(

Mi(1 −Mi)− Vi

Vi

)

> 0,

Mi(1 −Mi)

Vi
> 1,

Vi < Mi(1 −Mi).
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Fig. 3.24 Identifying Vi : Respecting our constraints, explicit upper and lower bounds, for a given
level of Mi , can be traced out. We seek to avoid being too close to the upper bound, which
approaches the Bernoulli-trial case, so we select one quarter of the distance between the lower
and upper bounds. The final results are presented in the right-hand graphic.

Combining, these two values together yields a second interval

√

Vi ∈
⎛

⎝

√

Mi(1 −Mi)2

2 −Mi

,
√

Mi(1 −Mi)

⎞

⎠ . (3.48)

The Bernoulli-trial variance upper bound is common between both the ai and bi
calculations. Overall, since both ai and bi constraints need to be jointly respected,
the final set of parameter-induced bounds, in terms of Mi , are

√

Vi ∈
⎛

⎝max

⎛

⎝

√

Mi(1 −Mi)2

2 −Mi

,

√

M2
i (1 −Mi)

1 +Mi

⎞

⎠ ,
√

Mi(1 −Mi)

⎞

⎠ ≡ (

Vi, Vi
)

.

(3.49)

The left-hand graphic in Fig. 3.24 examines the practical upper and lower bounds
on

√
Vi for the full range of mean recovery values, Mi , over the unit interval. The

broadest range of possible Vi values occurs when Mi = 0.5. As Mi moves to its
lower and upper extremes, the set of permissible values shrinks asymptotically to
zero.69

The previous bound derivations are tedious, but provide some useful insight into
the problem. As we move towards the upper bound, our beta-distribution structure
tends towards a Bernoulli trial with parameter, Mi . This coin-flip approach pushes

69 As a practical matter, this suggests that mean recovery values of one or zero are not really
workable. In the unlikely case such values might arise, they can be replaced with 0.01 and 0.99,
respectively. This makes no material economic change in the parameter values and happily avoids
mathematical headaches.
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Fig. 3.25 Revised beta-distribution parameters: Using the modified method-of-moments
approach from Eq. 3.50, this figure illustrates the mapping of Mi and Vi choices into a collection
of the beta distribution’s two shape parameters, ai and bi .

the ai and bi shape parameters, as previously seen, towards zero. This is the ultimate
bimodal distribution; full or zero recovery.70 While it makes logical sense that our
investigation would take us towards this approach, we prefer to avoid its extreme
nature. Instead, we opt for neither extreme, but exhibit a bias for the lower end. Our
selected recovery volatility for the ith credit obligor is thus defined as,

√

Vi =
√

Vi + 0.25 ·
(

Vi − Vi

)

. (3.50)

There is nothing particularly special about the choice of 0.25. It was intended to
represent a compromise between the extremes with a preference for slightly more
distance from the Bernoulli-trial case. One could, of course, argue for a value of
0.5. Ultimately, the impact on the final parameter values and, by extension, the
economic-capital results is rather modest.

The right-hand graphic in Fig. 3.24 illustrates the range of
√
Vi associated with

Eq. 3.50. There is not a dramatic difference in the average outcome—of about 0.3—
and the common legacy setting of 0.25. With the exception of an outlier or two, the
computed values lie comfortably from about 0.2 to 0.35 with peaks in probability
mass around 0.3 and 0.35, respectively.

The shape parameters associated with the approach highlighted in Eq. 3.50 are
presented in Fig. 3.25. No individual ai or bi value exceeds one or falls below zero.
The mean ai parameter is roughly 0.6, which compares to the fixed-Vi average
outcome of 1.3. The bi parameters exhibit an average of about 0.3, which is
less than half of what was observed in the constant-recovery-volatility approach.
The bottom line is that the imposition of U -shaped density constraints on our

70 This would be consistent with the (naive) minimization approach suggested in Eq. 3.41.
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Fig. 3.26 Revised beta densities: This figure plots the entire range of beta densities associated with
the (indirectly) assumed shape parameters. For reference, the beta densities associated with the
simple-mean and exposure-weighted mean shape parameters are also provided. On average, this
approach implies a relatively higher probability of extreme—large loss or recovery—outcomes,
which is consistent with empirical evidence surrounding recoveries.

method-of-moments estimator leads to fairly important changes in the associated
beta-distribution shape-parameter estimates.

Figure 3.26 completes the picture. It provides—analogous to Fig. 3.22 for the
constant-recovery-volatility case—an illustration of the entire population of beta
densities associated with our U -shaped constrained method-of-moments estimator.
The results are visually quite striking. Not only do the mean and exposure-
weighted mean densities demonstrate a U -shaped form, every single beta density
exhibits the desired bimodal structure. This was accomplished while preserving the
mean recovery rate and generating recovery volatility estimates that are generally
consistent with the constant

√
Vi approach. This clearly exemplifies the ability of

our constraint set to achieve our targeted beta-density outcomes.

Colour and Commentary 37 (BIMODAL RECOVERY): Empirical eviden-
ce—see, for example, Chen and Wang [11]—suggests that the recovery
rate distribution is bimodal. In plain English, this means there is a dis-
proportionately high probability of extreme (i.e., high or low) outcomes.
Practically, the bimodal property enhances model conservatism by increasing
the global probability of extremely low levels of default recovery. Bimodal
beta densities are mathematically attainable through restriction of the shape
(ai and bi) parameters to the unit interval. Incorporating these constraints
into the method-of-moments estimator, and using the recovery volatility as a
free parameter, permit imposition of a bimodal form. Under this approach,
the mean recovery rate is preserved, all beta densities are bimodal, and

(continued)
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Colour and Commentary 37 (continued)
reasonable recovery volatility estimates are generated. Beyond a desire to
meet an empirical stylized fact, however, this is not an economically motivated
parametrization; it is a mathematical trick to induce bimodality. The main
alternative, a constant and common recovery volatility parameter, provides
no logical competition. Absent another clear justification for the choice of
recovery volatility, this parameter-estimation technique would thus appear to
be a judicious choice.

3.5 Credit Migration

Incorporation of credit migration into the credit-risk economic capital model
necessitates a number of parametric ingredients. The central quantity, the transition
matrix, has already been identified and examined in detail. Two additional variables
are necessary. The first is a description of the spread implications of moving from
one credit state to another. The second requirement is some notion of the sensitivity
of individual loan prices to changes in their discount rate. This section will explore
how one might estimate both of these important modelling inputs.

3.5.1 Spread Duration

Let us begin with the easier quantity: the current sensitivity or modified spread-
duration assumption. Spread duration is readily available for instruments traded
in active secondary markets, but it rather less obviously computed for untraded
loans. We thus employ the cash-flow weighted average maturity as a spread-duration
proxy for each of our loan obligors. This involves an embedded assumption, which
requires some explanation. To help understand our choice, let’s return to first
principles. The value of a fixed-income security at time t with yield y and N

remaining cash-flows is simply,

V (y) =
N
∑

i=1

cti

(1 + y)ti−t
, (3.51)

where each cti represents an individual cash-flow. In other words, the value is
merely the sum of the discounted individual cash-flows. The yield, y, is the common
discount rate for all individual cash-flows that provides the observed valuation.

Equation 3.51 is silent on the credit spread, which complicates computation of
spread duration. It is thankfully possible to decompose—for a given underlying
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tenor—any fixed-income security’s yield into two logical parts: the risk-free yield
and its associated credit spread. More concretely, we write:

y = ŷ + s, (3.52)

where ŷ and s denote the risk-free yield and credit spread, respectively.71 This
permits us to rewrite the pricing, or valuation, function of an arbitrary loan as,

V ≡ V (ŷ, s) =
N
∑

i=1

cti
(

1 + ŷ + s
)ti−t

︸ ︷︷ ︸

Eq. 3.52

, (3.53)

The advantage of this formulation is that it directly includes the credit (or lending)
spread.72

The modified spread-duration is defined as the normalized first derivative of our
loan-price relation with respect to the credit spread, s. It is written as,

Dm =
∣

∣

∣

∣

1

V (ŷ, s)

∂V (ŷ, s)

∂s

∣

∣

∣

∣
, (3.54)

=
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∣
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∂
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⎜

⎜

⎝

N
∑

i=1

cti

(1 + ŷ + s)ti−t
︸ ︷︷ ︸

Eq. 3.53
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∣
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,

= 1

V (ŷ, s) · (1 + ŷ + s)

N
∑

i=1

(ti − t)cti

(1 + ŷ + s)ti−t
,

= 1

V (y) · (1 + y)

N
∑

i=1

(ti − t)cti

(1 + y)ti−t
,

where the absolute-value operator is introduced because, in practice, we typically
treat this as a positive quantity and introduce the negative sign as required by
the context. The product of Eq. 3.54 and a given spread perturbation provides an
approximation of the percentage return change in one’s loan value. This explains its
usefulness for the credit-migration computation.73

71 This need not be an actual risk-free rate, but could also be some form of lower risk reference
rate. It may be more useful to characterize ŷ as the corresponding LIBOR-based swap rate.
72 See Bolder [7, Part I] for more information on fixed-income security sensitivities in general and
spread duration in particular.
73 As some of the spread movements can be quite large, this linear approximation may overestimate
some of the valuation losses. There is thus an argument to compute a convexity term to capture the
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While Eq. 3.54 provides a direct, practical description for the first-order, linear,
credit-spread sensitivity of a loan, it is not easy for us to employ. For a given loan,
it may be difficult to clearly identify the specific credit spread and risk-free rates,
which makes the determination of y a rather noisy and uncertain affair. A set of cash-
flow forecasts are, however, available for every individual loan based on forward
interest rates and actual loan margins. This permits a simple proxy representation of
Eq. 3.54. It is conceptually similar and has the following form:

Dm = 1

V (y)(1 + y)

N
∑

i=1

(ti − t)cti

(1 + y)ti−t
, (3.55)

≈ 1

V (0)(1 + �y)

N
∑

i=1

(ti − t)cti

(1 + �y)
ti−t ,

≈ 1

V (0)

N
∑

i=1

(ti − t)cti ,

≈
(

N
∑

i=1

cti

)−1 N
∑

i=1

(ti − t)cti .

This proxy is simply the cash-flow weighted average tenor. We can see, of course,
that our proxy stems from setting y = 0; in this case, Eqs. 3.54 and 3.55 coincide
exactly. For any non-negative yield, however, the modified spread duration will be
inferior to this weighted average cash-flow proxy. The magnitude of this difference
is, in the ongoing low-yield environment, likely to be rather small. One useful
characteristic of this proxy choice is that it forms a conservative spread-duration
estimator for any (non-negative) loan yield.

Some NIB loan contracts have an interesting, and important, feature that has
practical implications for the spread-duration calculations. In particular, various
individual loans possess what is contractually referred to as a negotiation date. This
future date, typically occurring a few years after disbursement, but a number of
years before final maturity, offers both parties an opportunity to revisit the details
of the loan. The consequence may involve re-pricing, repayment, or ultimately no
change. It basically offers a potential loan reset; as such, it makes sense to consider
this negotiation date as the effective maturity date of the loan for spread-duration
purposes.

Practically, the presence of a pre-maturity negotiation feature makes very little
difference to our sensitivity formula. If, for our generic loan, we define the number

non-linear relationship between yield and price movements to somewhat offset this overestimation
effect. We avoid this correction, which lends a conservative aspect to this calculation.
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of cash-flows associated with the negotiation date as Ñ ≤ N , then

Dm = 1

V (y)(1 + y)

Ñ
∑

i=1

(ti − t)cti

(1 + y)ti−t
, (3.56)

≈
⎛

⎝

Ñ
∑

i=1

cti

⎞

⎠

−1
Ñ
∑

i=1

(ti − t)cti .

The structure of the spread-duration approximation is unchanged, it is merely
truncated when the negotiation date is inferior to the true maturity date. For those
loans without such a feature in their contract—where N = Ñ—then no difference
in the spread-duration measure is observed.

Colour and Commentary 38 (SPREAD DURATION): The estimation of
credit migration requires, for each individual loan obligation, an estimate of
its sensitivity to credit-spread movements. In other words, we require spread-
duration estimates. A proxy for modified spread duration is employed that
assumes a zero overall yield level. The linear nature of this assumption and
the consequent overestimate of sensitivity for any non-negative yield imply
that this is a relatively conservative estimator. One additional, firm-specific,
adjustment is involved. Many loans involve a negotiation date—typically
occurring several years prior to final maturity—that provides both parties
the opportunity, in the event of material changes to their position, to revise
the contractual details. When such a feature is present, a revised cash-flow
stream to this intermediate date is employed.a Ultimately, the computation of
spread duration is a simple, but data-intensive affair.

a More generally, any lending entity engaged in such calculations will need to take into
account any important firm-specific contractual details.

3.5.2 Credit Spreads

Logically, one could imagine the specification of a separate loan-spread value for
each credit class and loan. This would quickly become practically unmanageable.
Instead, the typical approach is to specify a generic credit-spread level for each of
one’s credit categories. Were a loan to migrate from one credit class to another, it
would experience an associated change in its category specific credit-spread level
with a corresponding valuation effect.
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There is a broad range of sources one might use to inform credit spreads:
internal lending spreads, observed corporate bond prices, the credit-default swap
(CDS) market, and even model-based implied values. Each offers advantages and
disadvantages and, unfortunately, there is no one dominant data source. Bond-
market information is a useful benchmark for comparative purposes, but these
values are computed in an overly broad-based manner. That is, the range of entities
within a credit-rating class used to estimate generic bond spreads are surprisingly
heterogeneous and not necessarily representative of firm-specific business exposure.
For this reason, we argue that internal lending spreads are the most sensible source
for determination of credit spreads.

Data alone will not resolve the problem. We also require a theoretical, and
economically motivated, approach towards the description of credit spreads. This
turns out to a surprisingly deep question. To make progress, one must touch upon
a variety of areas: bond pricing, corporate finance, credit-risk models, probability
theory, and statistics. The following sections, accepting this challenge, offer a
simplified, workable implementation for use in our economic-capital framework.

The Theory

The hazard rate is a central character in the modelling of credit spreads. Loosely
speaking, it can be thought of as the default probability over a (very) short time
period. Bolstered with this concept, the credit spread of the ith entity—following
from Hull and White [23]—can be profitably described by the following identity,

hi ≈ Si (t, T )

1 − γi
, (3.57)

where hi denotes the hazard rate, Si (t, T ) is the credit spread for the time interval
(t, T ) and γi is the loss-given-default. This expression also plays a central role
in fitting hazard-rate functions for the valuation of loan and other credit-risky
portfolios.74 It also highlights an important, but intuitive, notion: the credit spread
depends on one’s assessment of the firm’s creditworthiness and, in the event of
default, recovery assumptions.

Equation 3.57 is the key character for an empirical estimation of credit spreads—
and indeed it will prove useful in latter discussion for verification purposes—but we
seek a theoretical approach. Merton [35] remains, to this day, the seminal theoretical
work in the area of credit-risk modelling. It forms the foundation of the entire
branch of structural credit-risk models. The key idea is that a default occurs when

74 The level of hi , more specifically, is often determined from credit-default swap contracts. See
Bolder [7, Chapter 9] for more details.
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the value of the firm’s asset dip below their liabilities. Framed in a continuous-
time mathematical setting, this logical idea permits derivation of a host of useful
relationships for computation of credit-risk-related prices and risk measures. We
will lean on it heavily in the following development.

The Merton [35] approach begins by defining the intertemporal dynamics of an
arbitrary firm’s assets on the probability space (�,F ,P) as

dAt

At

= μdt + σdWt , (3.58)

where At denotes the asset value, while μ and σ represent the expected asset
return and volatility, respectively. {Wt,Ft } is a standard, scalar Wiener process on
(�,F ,P).75 Operationalizing this key idea leads to the second ingredient in our
recipe: the default condition. Practically, the default event over (t, T ] is written as,

{AT ≤ K} , (3.59)

whereK represents the firm’s liabilities. Practically, and this is Merton [35]’s central
insight, it occurs when the value of a firm’s assets fall below its liabilities. Succinctly
put, default is triggered when equity is exhausted.76

With a gratuitous amount of mathematics and some patience, one can describe
the probability of default in this structure, over the time interval (t, T ], as

P (AT ≤ K) ≡ p(t, T ) = �

⎛

⎜

⎜

⎜

⎝

− ln
(

At

K

)

−
(

μ− σ 2

2

)

(T − t)

σ
√
T − t

︸ ︷︷ ︸

δt (μ)

⎞

⎟

⎟

⎟

⎠

, (3.60)

where � denotes the cumulative distribution function of the standard univariate
Gaussian probability law.77 The fairly unwieldy ratio in Eq. 3.60—which we have
called δt (μ)—is a quite famous output from the Merton [35] framework. δt is the
so-called distance to default. This quantity plays an important role in industrial
credit-analytic methodologies.78 As the name suggests, distance-to-default is a
standardized measure of how far away a firm is from default. It seems quite natural
that it would show up in a default-probability definition. Mechanically, the larger

75 See Karatzas and Shreve [28] for much more information on stochastic processes in general and
Brownian motions in particular.
76 We have, in fact, already a (multivariate) version of these ideas in our development of the
threshold model in Chap. 2. That is not an accident.
77 See Bolder [7, Chapter 5] for the details of this derivation.
78 See, for example, Crosbie and Bohn [13].
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the distance to default, the lower the probability of default. It depends, again quite
intuitively, on the current value of firm assets (i.e.,At ), the length of the time horizon
under consideration (i.e., T −t), the size of the liabilities (K), and the risk and return
characteristics of the firm’s assets (i.e., μ and σ ).

One of the challenges of using Eq. 3.60 is that determination of asset returns
and volatilities can be practically quite challenging. This is because firm assets are
not—outside infrequent balance-sheet disclosures—observed with any regularity.
Resolving this problem involves turning to firm equity values, which, in contrast to
their asset equivalents, are readily and frequently observable. This brings us into the
realm of asset pricing and necessitates moving to a new probability measure. More
specifically, we need to use the equivalent martingale measure, Q, induced with the
choice of money market account as the numeraire asset; this is often termed the
risk-neutral measure. This takes us off onto another mathematical foray, but with
some persistence we may actually write the risk-neutral default probability as,

Q (AT ≤ K) ≡ q(t, T ) = �

⎛

⎜

⎜

⎜

⎝

− ln
(

At

K

)

−
(

r − σ 2

2

)

(T − t)

σ
√
T − t

︸ ︷︷ ︸

δt (r)

⎞

⎟

⎟

⎟

⎠

, (3.61)

where r represents the risk-free interest rate.79 Under the Q measure, by construc-
tion, all assets return the risk-free rate. This is a core idea behind risk-neutrality.

What has all this provided? In Eqs. 3.60 and 3.61, we have two alternative
default-probability definitions that apply under two different probability measures.
Their forms are essentially identical, up to the expected asset returns. Beyond
their obvious utility as default-probability estimates, Eqs. 3.60 and 3.61 provide
the first step towards a more general credit-spread definition. This begins with
understanding that the risk-neutral default probability is also closely related to the
credit spread. Both are involved in pricing activities and both depend on the firm’s
basic creditworthiness. With a bit of basic algebraic manipulation, we can simplify
the risk-neutral default probability in Eq. 3.61 to help us with our objective of
creating a sensible credit-spread estimator.

Reorganizing Eq. 3.60, we can identify the following relationship

− ln

(

At

K

)

= �−1
(

p(t, T )

)

σ
√
T − t +

(

μ− σ 2

2

)

(T − t). (3.62)

79 This turns out to be tightly linked to the Black and Scholes [5] option-pricing model. Once again,
the reader is referred to Bolder [7, Appendix B] for the graphic details and multiple additional
references.



208 3 Finding Model Parameters

If we insert this expression into Eq. 3.61, we may write the risk-neutral default
probability as a function of the physical probability of default. The result is,

q(t, T ) = �

⎛
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⎜
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Eq. 3.62
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(3.63)

= �

(

�−1
(

p(t, T )

)

+
(

μ− r

σ

)√
T − t

)

.

This is quite elegant. If μ = r , then the two default probability definitions coincide.
Since in the face of risk aversion, μ > r , we find ourselves in a situation where
risk-neutral default probabilities are systemically greater than physical default
likelihoods. A crucial factor in Eq. 3.63 is the μ−r

σ
term, which is broadly known

as the Sharpe ratio.80 The difference between these two default quantities thus
basically boils down to a risk-adjusted return ratio.81

Although this result depends upon the underlying assumption of asset returns,
it does have a fairly general applicability. Bluhm et al. [6], who explore this idea
in detail, also offer a variety of options to expand and motivate Eq. 3.63. Most of
them are related, in one way or another, to the well-known Capital Asset Pricing
Model (or CAPM) introduced decades ago by Treynor [43], Sharpe [39, 40] and
Lintner [32]. For our purposes, we will examine this in a rather more blunt fashion.
In particular, we rewrite Eq. 3.63 as,

q(t, T ) = �

(

�−1
(

p(t, T )

)

+ λ
√
T − t

)

, (3.64)

where λ ∈ R+. This step involves basically rolling the μ, r , and σ values into a
single parameter. Capturing each individual quantity in an accurate manner is not a
trivial undertaking; a single-parameter approach, as we’ll see soon, turns out to be
practical for calibrating credit spreads.

The consequence of the previous development is an economically motivated
description of the relationship between physical and risk-neutral default probabili-
ties. Arriving at Eq. 3.64 has touched upon a variety of foundational contributions
to the finance literature: Merton [35]’s structural-default model, Black and Scholes

80 Refer to Sharpe [41, 42] for the history of this important quantity.
81 This formulation also arises in the interest-rate literature and, with a similar form, is referred to
as the market price of risk; this is, in fact, the motivation for use of the (forthcoming) λ notation.
See, for example, Björk [4, Chapter 16].
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[5]’s option-pricing formula, Sharpe [41]’s famous ratio, the market price of risk
formulation found the short-rate model literature launched by Vasicek [44], and the
omnipresent CAPM model. The next step is to link this definition more closely to
the credit spread.

Pricing Credit Risky Instruments

Asset-pricing, in its most formal sense, entails the evaluation of the discounted
expected cash-flows associated with a given financial instrument. In a no-arbitrage
pricing—see, for example, Harrison and Kreps [20] and Harrison and Pliska
[21]—this expectation must be evaluated with respect to the equivalent martingale
measure, Q. This may seem to be an excessive amount of financial-economic
machinery, but it is important to ensure that the foundations of our proposed method
are solid.

Our credit-spread proposal is best understood, in this specific context, using a
zero-coupon bond. In the absence of credit risk, one need only discount the one
unit of currency pay-off back to the present time. In the presence of a possible
firm default, an adjustment is necessary. Let’s denote the cash-flow profile of this
instrument as C(t, T ). Following from Duffie and Singleton [14, Chapter 5], this
can be succinctly described as,

C(t, T ) = e−
∫ T
t rudu

︸ ︷︷ ︸

Risk-free
part

− γ · IAT ≤K · e−
∫ T
t rudu

︸ ︷︷ ︸

Adjust for
default risk

, (3.65)

where

IAT ≤K =
{

1 : Default (i.e., AT ≤ K)
0 : Survival (i.e., AT > K)

, (3.66)

and r is the instantaneous short-term interest rate. To simplify things somewhat, we
will assume that r is deterministic. As previously discussed, the price of the cash-
flows in Eq. 3.65 is simply the expectation under Q. The result is,

E
Q

t

(

C(t, T )

)

= P̂ (t, T ) = E
Q

t

(

e−
∫ T
t rdu − γ · IAT ≤K · e−

∫ T
t rdu

)

, (3.67)

= e−r(T−t ) − γ ·Q(AT ≤ K) · e−r(T−t ),

= e−r(T−t )
(

1 − γ · q(t, T )
)

.

If we are willing to assume the reasonableness of the structural Merton [35] model,
then we could introduce the definition of q(t, T ) from Eqs. 3.61 or 3.64. Using the
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latter version, we can write the price of a zero-coupon bond as,

P̂ (t, T ) = e−r(T−t )

⎛
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⎝
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⎠

. (3.68)

This is progress. We have represented the price of an, admittedly simple, credit-
risky fixed-income security as a function of its tenor, physical default probability,
and loss-given-default values. This is not the typical pricing relationship, but it is
both consistent with first principles and well suited to our specific purposes. All that
is missing is an explicit connection to the credit spread.

The price of a zero-coupon bond can always be represented as,

P̂ (t, T ) = e−y(T−t ), (3.69)

where y is essentially an unknown that is used to solve for the price. y, of course,
is generally termed the bond yield. A common, and powerful, decomposition of the
bond yield is,

y ≈ r + S, (3.70)

where r and S denote the risk-free rate and credit spread, respectively.82 Quite
simply, the yield of any fixed-income security can be allocated into two portions:
the risk-free, time-value-of-money component and an adjustment for potential
default.83

With this decomposition, we are only a few steps from our destination. Combin-
ing Eqs. 3.68 to 3.70 and simplifying, we have

e−(�r+S)(T−t )
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=����
e−r(T−t )

(

1 − γ ·�
(

�−1
(

p(t, T )

)

+ λ
√
T − t

))

︸ ︷︷ ︸

Eq. 3.68

, (3.71)

e−S(T−t ) =
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,
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.

82 We just used this fact in the previous section to derive an expression for spread duration.
83 This is a bit of a simplification, since actual bond prices also incorporate risk adjustments for
maturity, liquidity, and other market-microstructure effects. For this reason, in the interest of full
transparency, Eq. 3.70 should be thought of a high-level approximation.
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The consequence is a defensible expression for the credit spread as a direct
function of bond tenor, loss-given-default, physical default probability, and a risk-
related tuning parameter, λ. The first three quantities—for a given instrument—can
be directly estimated. The tuning parameter, however, needs to be calibrated to
current—or average—market conditions.

Equation 3.71 may look somewhat messy; one might worry that it is not
completely intuitive. A quick sanity check can help. Let’s set γ = 1 and return
to the first line of Eq. 3.71. A bit of manipulation reveals,

e−(r+S)(T−t ) = e−r(T−t )
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, (3.72)

e−(r+S)(T−t ) = e−r(T−t )
(

1 − q(t, T )

)

,

δ̂(t, T ) = δ(t, T )S(t, T ),

where S(t, T ) and δ̂(t, T ) are the survival and risky discount functions over (t, T ],
respectively. Here we see the classical construction of the credit-risky discount
curve. We can take comfort that this relationship—only a step or two from
our formulation—lies at the heart of modern loan and corporate-bond valuation
methodologies.

The Credit-Spread Model

Equation 3.71 offers a succinct, economically plausible analytic link between
the credit spread and our key economic-capital model variables: physical default
probabilities and loss-given-default values. This functional form offers a path to
enhancing the generality and robustness of a firm’s credit-spread estimates. It is
not, however, without a few drawbacks. As always, the principal drawbacks of
any mathematical model are found in the assumptions. Establishment of Eq. 3.71
involved the following key choices:

1. a log-normal distributional assumption (i.e., geometric Brownian-motion dynam-
ics) for the firm’s asset prices;

2. use of a simplified zero-coupon bond structure for its construction;
3. collapsing the entire market-price of risk, or Sharpe ratio, structure into a single

parameter; and
4. assumption of a constant risk-free interest rate.

All of these assumptions, with patience and hard work, could potentially be relaxed.
The cost, however, would be incremental complexity. We actually desire to move in
the opposite direction; that is, introduce more simplicity.
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The credit-spread estimates within our credit-risk economic capital model are,
by construction, independent of tenor. The principal reason is to manage conceptual
and computational complexity. It also helps to keep the results reasonable intuitive
and easier to communicate with various stakeholders. For this reason, we propose
effectively eliminating the time dimension by setting T − t = 1. We furthermore
select a common loss-given-default parameter for all issuers. Let’s call this γ̂ . This
permits us to immediately simplify Eq. 3.71 to

Si (γ̂ , pi , λ) = − ln

(

1 − γ̂ ·�
(

�−1(pi)+ λ

))

, (3.73)

for the ith credit-spread observations. As a practical matter, we set γ̂ = 0.45.
This value is close to the historical portfolio average, reasonably conservative, and
consistent with regulatory guidance.84

The next point is that a single market price of risk parameter, λ, is not sufficiently
flexible to fit either the observed internal margin or bond-market data. It can fit
either the investment grade or speculative grade credit spreads, but not both. As a
consequence, we have elected to make λ a function of the rating class to permit
sufficient flexibility to accurately fit the observed data. This can, of course, be
accomplished in a number of ways. The simplest would be to assign a separate
parameter to each of our 20 distinct notches. Such an approach raises two issues.
First, it gives rise to a large number of parameters. Second, it does not constrain the
interaction between the credit-rating-related λ values in any way. Economically, for
example, we would anticipate reasonably smooth risk-preference movements across
the credit scale.

Our solution is to construct the following non-linear market price of risk function:

λ(pi) = ς0 + ς1pi + ς2p
2
i . (3.74)

Other choices are certainly possible, but this form is parsimonious and provides a
reasonable degree of smoothness. The non-linearity does not play a central role, but
appears to add a bit of additional flexibility to the overall fit.

Equation 3.74 permits us to restate our credit-spread representation in its final
form as

Si (γ̂ , pi , ς0, ς1, ς2) = − ln

(

1 − γ̂ ·�
(

�−1(pi)+
(

ς0 + ς1pi + ς2p
2
i

)
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Eq. 3.74

))

,

(3.75)

84 As discussed in Chap. 11, this is the setting for the foundational Basel IRB method.
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for i = 1, . . . ,K internal credit-margin observations in our dataset. If we use Si

to denote the ith observed credit-margin value, then our three ς parameters can be
estimated by solving the following optimization problem:

min
ς0,ς1,ς2

K
∑

i=1

(

Si − Si

(

γ̂ , pi , ς0, ς1, ς2

))2

. (3.76)

The least-squares or L2 objective function was selected for its mathematical
advantages.

As a final practical (and technical) matter, the problem can be solved in the
raw form presented in Eq. 3.76 or the squared differences can be weighted by
the position sizes. The discrepancy between the two approaches is not particularly
large, but we adopt the weighted estimator to lend a bit more importance to the
larger disbursements. This necessitates a small change to the optimization problem
in Eq. 3.76. To accommodate this, we denote �S ∈ R

K×1 as the column vector of
observed and estimated spread deviations as
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(3.77)

and introduceW ∈ R
K×K as a diagonal matrix of loan exposures with the following

form:

W =

⎡

⎢

⎢

⎢

⎣

c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...

0 0 · · · cK

⎤

⎥

⎥

⎥

⎦

, (3.78)

where ci represents the exposure of the ith lending position. Using these two
components, our revised optimization problem becomes:

min
ς0,ς1,ς2

�ST W �S. (3.79)

The only difference with this latter representation—beyond the introduction of
matrix notation—is that smaller loans play a slightly less important role in the final
estimates than their larger equivalents.
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Credit-Spread Estimation

The credit spread incorporates four key elements: the nature of the default event, an
assessment of the entity’s default probability, the magnitude of loss given default,
and an approximation of general risk preferences. Our methodology incorporates all
four pieces. First, it leans on the structural default definition that colours much of
modern financial literature and practical applications. Non-coincidentally, it also sits
at the heart of our economic-capital framework. Second, it employs the same default
probabilities found in the final column of our transition matrix. Third, it makes a
generic assumption for the loss-given-default of all counterparties.85 Finally, the
actual credit-spread calibration occurs through the risk-preference parameters.

It is rather difficult, given the high sensitivity of internal credit spread data,
to provide any significant degree of transparency regarding the actual parameter-
selection process. As a consequence, we will focus principally on the final results. A
few global comments are, however, entirely possible. First of all, consistent with the
long-term through-the-cycle approach, the internal margin dataset spans the last two
decades. A second point is that, in accordance with lending mandate and policies, it
is rather skewed towards the investment and high-quality speculative grades. Since
credit-risk estimates are necessary for the entire range of credit-rating classes, this
precludes a simply curve-fitting approach to the problem.86 This underscores the
value of an economically motivated approach.

Figure 3.27 provides the resulting credit spreads associated our approach. The
credit spread increases in a monotonic fashion from roughly 40 basis points at the
highest level of credit quality to approximately 10% at the lower end of the scale.
Reassuringly, broad-based bond-spread averages—collected over the same period
as the internal spread data—are qualitatively similar to the final results.

Circling back to Eq. 3.57, an additional sanity check on our spread estimates is
also possible. Following our characterization of the hazard rate in Eq. 3.57—also
offered by Hull et al. [24]—a quick, but meaningful, approximation of the risk-
neutral probability is given as

Qi = Q(τ ≤ T ), (3.80)

≈ 1 −Q(τ > T ),

≈ 1 − e−hi ,

where, in this example, T − t = 1 and τ denotes the default event. Taking this a step
further, actual and risk-neutral default probabilities are linked—see, for example,

85 Relaxing this assumption does not significantly change the overall fit and merely leads to
additional complexity in the model implementation.
86 In particular, the high-quality credit ratings can be fit quite readily, but extrapolation would be
required to fill the entire scale. Extrapolation so far outside of one’s data range is typically a fairly
sketchy practice, which we would prefer to avoid.
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Fig. 3.27 Credit-spread estimates: This graphic illustrates the estimated credit spreads, organized
by credit-risk rating, stemming from the previously described methodology. Corporate bond
spreads, where available, are included for comparison purposes.

Jarrow [25] for more detail—by the following identity:

Qi = ϑiPi , (3.81)

where ϑi > 0 is yet another representation of the risk premium. Less accurate (and
formal) than the Sharpe ratio structure found in Eq. 3.63, it nonetheless captures the
distance between the physical and risk-neutral default probabilities. This (model-
independent) form is often used in empirical academic studies. Equation 3.81 further
suggests that if we compute the physical and risk-neutral probabilities, their ratio
will provide some insight into the level of the risk premium (i.e., ϑi = Qi

Pi
).

All we need are the risk-neutral default probabilities. Incorporating our estimated
spreads into Eq. 3.80 provides the solution. Embedded, quite naturally, in our
economically motivated credit-spread methodology are both flavours of default
probability. From Eq. 3.57, we have that

Qi ≈ 1 − exp

(

−Si

R

)

︸ ︷︷ ︸

Eq.
3.57

, (3.82)

for i = 1, . . . , q . This provides all of the necessary ingredients to calculate the
inferred risk premium.

Figure 3.28 summarizes the results. The left-hand graphic explicitly compares
the physical—extracted from the final column of our transition matrix—and the
implied risk-neutral default probabilities. In all cases, the risk-neutral values dom-
inate the physical default probabilities; the magnitude of the dominance, however,
decreases as we move out the credit spectrum. The right-hand figure displays the
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Fig. 3.28 A point of comparison: This figure examines the implied risk-neutral default probabil-
ities and inferred risk premia associated with the estimated internal-margin-based credit-spreads.
The results are broadly consistent with empirical evidence in this area.

ratio of these two default probabilities—in this manner, we may infer the risk
premium. The average value—across all credit classes—is approximately 17 units.
At the short end, however, it approaches 100 and it falls to less than 2 for credit
category 20.

A number of empirical studies examine this relationship. Heynerickx et al. [22]
is a good example. This work performs a rather involved study using a broad
range of credit classes and tenors over the period from 2004–2014. Referring to the
risk premium as the coverage ratio, they present a similar pattern to that found in
Fig. 3.28. Over the entire period, for example, risk premia range from more than 200
for AAA issuers to roughly 2 for CCC entities.87 In the post-crisis period, however,
the general levels are somewhat lower, although the basic shape remains consistent.
In this framework, the general form of our results appears to be consistent with this
(and other) empirical work.

Colour and Commentary 39 (CREDIT-SPREAD ESTIMATION): Estimation
of long-term, through-the-cycle, unconditional credit spread levels is, under
any circumstances, a serious undertaking. Closely linked to macroeconomic
conditions and the vagaries of financial markets, credit spreads are observ-
ably volatile over time. Broad-based credit indices, observed bonds spreads,
and credit-default swap contracts can provide insight into credit spread levels.
The specificity of one’s lending activities and pricing policies nonetheless ren-
ders it difficult to make direct use of these values. We present an economically

(continued)

87 Aiming for a through-the-cycle estimate of credit spreads suggests that we focus on the longer,
approximately unconditional, perspective.
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Colour and Commentary 39 (continued)
motivated approach that uses one’s history of internal lending margins. While
the actual implementation is relatively straightforward, the underpinnings
of the model take us on a whirlwind tour of central theoretical finance
results over the last four or five decades. An interesting, and useful, sanity
check on the final results involves direct comparison of the physical default
probabilities from our transition matrix with the risk-neutral equivalents
implied by our credit-spread estimates. In this regard, the final results appear
to be broadly consistent with extant empirical evidence.

3.6 Wrapping Up

This long and detailed chapter focuses on the specific choices one needs to take in
determining the parametric structure of a large-scale credit-risk economic capital
model. There is no shortage of moving parts. Table 3.13 tries to help manage all of
this complexity by summarizing the key decisions; these are the main settings of our
control panel.

Table 3.13 Parametric fact sheet: The underlying table provides, at a glance, a summary of the
key methodological choices associated with our credit-risk economic-capital model.

Dimension Description

Transition matrix • Internal 21-state credit-state scale

• Corporate and sovereign matrices

• Common probabilities based on long-term S&P estimates

Systemic factors • Geographic region and industrial sector

• 13 regional, 11 industrial, 1 public-sector

Systemic correlations • Based on 20-year monthly equity-series data

• Use Spearman’s rank correlation

Factor loadings • Overidentified: 50% weight on region and sector

• Unit weight to region if public sector

• All other factor loadings set to zero

Systemic weights • Cube based on region, sector, and firm size

• Values must fall in [0.12, 0.4]
Tail dependence • Use of expert judgement to set ν = 70

Recovery • Mean value from internal loss-given-default framework

• Recovery uncertainty calibrated to ensure bimodal recovery density

Instrument tenor • Spread duration proxied with weighted average cash-flows

• Use (when appropriate) negotiation date instead of final maturity

Credit spreads • Based upon internal lending margin data

• Calibrated via an economically motivated (theoretical) approach
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When combined with Chap. 2, a fairly complete and practical credit-risk model
view should be emerging. The remaining missing point—before we can turn our
attention to a collection of interesting and helpful applications—relates to the actual
implementation. With some models, such questions are not terribly interesting;
many possible approaches are possible and can be considered broadly equivalent.
In this case, the combination of simulation methods with even a moderately sized
portfolio imply the need to think hard about questions of model implementation.
Industrial economic capital, along with many related applications, is required on
a daily basis to properly manage our portfolios; as a consequence, computational
speed matters. One also needs a plan to organize and build the factory performing
these ongoing calculations.
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Chapter 4
Implementing the Model

Ideas are useless unless used. The proof of their value is in their
implementation. Until then, they are in limbo.

(Theodore Levitt)

It is entirely natural, when asked to describe a modelling venture, to spend the vast
majority of time on the what and the why. What specific models were selected?
Why was one model preferred over another? What parameters were selected and
why? This has been the principal focus of the preceding three chapters. Rather
less time is spent on the how? There are good reasons for this. How precisely one
implements a given model is viewed, to be blunt, as the analyst’s own business.
Books on home auto repair, to make a perhaps strange analogy, rarely tell their
readers how to organize their garage. There is, in actual fact, probably no such thing
as an optimal workshop layout. There is simply too much variability in physical
layouts and individual preferences for such a thing. The same principle applies to
the organization of a financial modelling framework.

There are limits to this do-it-yourself auto-repair analogy: we are not chang-
ing spark plugs or cleaning a carburetor. Instead, we are computing daily risk-
management figures to support large-scale lending and investment operations. This
undertaking is more aligned with an automobile assembly line than leisurely tuning
one’s vehicle. Regular computation of credit-risk economic capital is thus conceptu-
ally similar to running a factory.1 With such an industrial process, there is a premium
on efficiency and robustness. In other words, our factory (or computation) needs to
do what it was designed to do (every single day) while consuming a minimum of
resources. The capacity to achieve these objectives depends importantly on how the
system is designed. Efficiency, as will soon become clear in our credit-risk setting,
is a central issue with resource-hungry simulation-based methods.

There is another important driving reason for explicit consideration of the how
dimension. A decade or two ago, such questions were rarely raised. Since the
great financial crisis, however, questions surrounding model risk have attracted

1 Or running a large, and very busy, commercial auto shop.
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increasing attention by regulators and financial-institution managers. In brief, there
has been increasing scrutiny on how the risk-management factory is being run.
Much attention is, quite defensibly, focused on questions of model design and
parametrization. Implementation has not escaped attention. OCC [32], a very
influential document on the topic of model risk, reads:

Model risk management should include disciplined and knowledgeable development and
implementation processes that are consistent with the situation and goals of the model user
and with bank policy.

The regulatory community thus has a close eye not just on the what and why, but
also on the how.

As a final argument, this book is not an academic treatise: it is intended to
be practical. Practicality starts with what we are modelling and why we have
made these choices. It also extends, of course, to encompass how these quantities
are computed. We would be remiss, and this book would be missing something
important, if we glossed over the main implementation issues. This chapter thus
seeks—with the why and what elements addressed in the previous chapters firmly in
mind—to provide an overview of the high-level system architecture, information on
the base algorithms, and a detailed analysis of model convergence. It thus represents
a broad-based description of some central implementation choices associated with
our central portfolio credit-risk computations.

4.1 Managing Expectations

A few prefatory comments are nevertheless warranted. Most specifically, we need
to temper expectations of what can be reasonably accomplished in this chapter.
Implementation can be messy. There is often a rather sizable distance between the
what and how of any given undertaking. It is neither possible, nor desirable, to walk
through all of the gory details. We will need to choose our spots carefully.

Risk-management computations invariably sit atop of a much larger collection
of systems managing key activities such as trade capture, valuation, payment
processing, and the general ledger.2 This arises from the necessity of capturing an
enterprise-wide perspective on risk. There is inevitably a firm-specific element to
any implementation. Firms naturally do things in different ways.3 This nonetheless
complicates comparison. The NIB approach, described in the following sections,
may thus legitimately vary in critical ways from other firms. While this discussion
will seek to maintain a generic perspective, there will inevitably be some degree

2 Most financial institutions have, in fact, a veritable jungle of important in-house and vendor-based
front-, middle-, and back-office systems to handle these tasks.
3 Some firms are centralized, for example, whereas others have operations in multiple hubs. This
has significant implications for the design of a risk-management system.
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of specificity that may not widely generalize. This is natural, but needs to be
understood.

Another element relates to resources. Large and small firms face rather different
challenges. The large firm, of course, has more resources. They have teams of people
working on tasks that might be a part-time responsibility for a staff member in a
smaller firm. This advantage is offset by vastly larger volumes and organizational
complexity.4 The small firm faces smaller volumes, but is challenged to perform the
same basic tasks with fewer resources. NIB, as a small to medium sized institution,
fits more into one end of this size-resource spectrum. Again, this merely needs to be
appreciated when reading the forthcoming discussion.

Our high-level description of modelling algorithms will include, where deemed
necessary, stylized extracts of computer-code. This last aspect is reserved for only
the most important and central computations. The motivation is to help the reader
gain an in-depth understanding of key implementation choices. However helpful,
it does raise a few issues. First, it explicitly suggests a particularly programming
language. Our selected programming language offers numerous practical benefits,
but it is far from the only sensible alternative.5 Every analyst, and institution, should
make their own programming language choice based on their preference set. The
second point refers to arm-chair programming experts.6 There are certainly other
(very clever) ways to organize the presented stylized code; our approach places a
strong premium on clarity and readability, but makes no claim regarding superiority.

Colour and Commentary 40 (DISCUSSING MODEL IMPLEMENTATION):
Broadly speaking, prior to the great financial crisis, model implementation
was viewed as an institution-specific affair. In recent years—as a greater
appreciation of model risk has developed—interest in these questions has
broadened. Regulators, in particular, have taken a keen interest in model
implementation. The factory analogy is quite powerful in this regard. Inputs
enter through the front door and exit as manufactured outputs. Attempts
to ensure the quality, efficiency, and robustness of the outputs necessitate
careful examination of inputs and the associated industrial processes. The
same applies to modelling practice. This chapter correspondingly turns our
attention to this dimension, but a few words of caution are required. Financial
institutions vary dramatically in their system architectures, organizational
structures, and resource availability. It is impossible to construct a one-size-

(continued)

4 Indeed, for very large institutions, some of the elements in this chapter might actually fall outside
of the risk-management area.
5 We’ll soon return to this interesting question.
6 This is basically like the back-seat driver or the arm-chair football manager (or, for Americans
and Canadians, arm-chair quarterback).
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Colour and Commentary 40 (continued)
fits-all implementation solution. This needs to be understood before getting
started. Nonetheless, a description of our implementation choices, with a
focus on the general issues, will hopefully prove broadly useful.

4.2 A System Architecture

Even a modestly sized credit-risk economic capital model will have multiple
modules and thousands of lines of code. Adding in a collection of associated
applications—such as pricing, loan impairments, or stress testing—and the situation
only gets worse. Starting work on the various components and hoping for the best
is generally a bad idea. You need a plan. This makes sense; building and running
a factory are complicated tasks. A well-designed system needs to be based on a
logical architecture. NIB has found that it is conceptually, and practically, useful to
consider three functional layers:

1. a first layer concerned with input data collection, transformation, and integrity;
2. a second layer focused on the calculation, or modelling, methodologies; and
3. a final layer dealing with the delivery of results (i.e., model outputs) to internal

and external stakeholders.

This structure—originally introduced by Ramirez [34]—is broadly referred to as a
three-tier approach or architecture. This is, of course, not the only avenue one can
take to system design. There are many other viable competing alternatives. The key
point is that, irrespective of your choice, one needs an explicit blueprint to follow.

The three-tier approach—displayed schematically in Fig. 4.1—offers a number
of conceptual and practical advantages. The first is rather obvious. The three layers
map directly into the key aspects of any model: inputs, processing, and outputs.
This commonsensical model decomposition dates back, at least, to OCC [31].
Each element requires rather different treatment and, more often than not, are the
responsibility of various teams within the financial institution. A system architecture
that maps one-to-one onto the modelling structure is both appealing and convenient.

The main idea (and advantage) of the three-tier architecture is that the func-
tionality from each of the layers is kept separate from one another. Although
naturally interdependent, the data layer is constructed and run separately from
the application and reporting layers. All the necessary data inputs for the core
applications are collected once daily.7 Each application could, of course, also collect
its own data from the source systems. While possible, this approach is inefficient.

7 In some risk-management applications, the frequency of data collection may be more frequent,
although rarely less so.
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Fig. 4.1 Three-tier
architecture: Originally
introduced by Ramirez [34],
this graphic provides a
schematic of the three-tier
architecture. This conceptual
structure represents a
compelling plan for the
design of our credit-risk
economic capital calculations
along with its various
applications.

Application
Layer

Reporting
Layer

Permits data
quality control

Shared data
for all downstream

processes

Data Layer

Should something change in the data representation, for example, then each of the
other code elements would need to be rewritten. System maintenance is difficult
enough. Moreover, a single global data layer permits better economies of scale for
data oversight and quality assurance.8

The reporting layer is also practically independent of the model applications.
A report should not, in principle, need to worry about how the key inputs are
computed.9 More often than not, in fact, the data structure required for one’s
reporting is actually at odds with efficient storage of the outputs. It is preferable
to store model outputs in an efficient logical format.10 The reporting layer can then
exploit this structure and collect what it needs for a given report. The reporting
element often also uses rather different technologies: such as a business-intelligence
tool for interactive reporting or a rendering software for permanent, periodic reports.
Keeping the reporting element separate generally reduces both complexity and
practical headaches.

There are also scheduling benefits. Should problems arise with the input data,
for example, one can easily halt the entire production run. The data issues can be
resolved without having to cancel any applications or reporting flows. Once the
problem is resolved, the entire system can be triggered from the start. While this
might not sound particularly exciting, the separation of these conceptual layers
simply makes the production system easier to manage when things inevitably go
wrong.

This architecture is not, however, without some inconveniences. During applica-
tion development, for example, it is often tempting to directly source a missing field
without passing through the data layer. Instead, one needs to contact a colleague—or
perhaps even a separate team—and negotiate inclusion of the desired input into the
data layer; this can be time-consuming and is admittedly somewhat bureaucratic.

8 Many financial institutions have data-quality teams, but a risk manager is always well counselled
to perform some sanity checks on her input data.
9 Or indeed, how the models inputs are sourced and prepared.
10 This touches on the important topic of data normalization. Carpenter [7] is a good source for
more background on this question.



226 4 Implementing the Model

Another example relates to a desire to perform certain computations within the
reporting layer. Simple manipulation of key outputs cannot be considered a criminal
breach of the three-layer architecture, but more complex calculations might be
problematic. There are consequently occasional incentives to deviate from the three-
tier approach. While sometimes painful, carefully following its discipline ultimately
bears fruit in a cleaner, maintainable, and more readily manageable implementation.

Colour and Commentary 41 (THREE-TIER ARCHITECTURE): Nobody
builds a house, or a factory, without first developing a plan.a This applies
equally to the construction of a credit-risk economic-capital management
framework. NIB makes use of a stylized version of Ramirez [34]’s three-
tier architecture, which was originally offered as an approach for software
development.b The guiding principle is that the three tiers—data, application,
and reporting—are treated as conceptually separate layers. Each tier, rather
conveniently, maps directly into OCC [31]’s three central parts of any
model: inputs, processing, and outputs. Although interdependent, each piece
is designed, organized, and executed separately. This discipline has some
costs, but ultimately leads to greater ease and clarity in system development,
maintenance, and execution.

a Or, at the very least, they never do it twice.
b It may be surprising to see a software-development technique in a modelling discussion,
but in the sage words of Derman [9], “financial models are software.”

4.3 The Data Layer

Before any credit-risk economic capital computations can be performed, the
input data needs to be collected and prepared. This involves detailed information
regarding the features of individual firm assets, the characteristics of credit obligors,
and cash-flow data.11 The consequence is a broad range of descriptive data fields
and records.12 Since NIB is a relatively small organization, the daily amount of data
required and consumed is fairly modest compared to a large financial institution.
Even small portfolio-level computations still involve material complexity along the

11 The latter quantities turn out to be rather important for associated applications such as loan
pricing and impairments.
12 Data can be conceptually organized as a table or matrix. A data field is a characteristic (i.e.,
a column), while a data record is a specific instance of a data field (i.e., a row). During 2021
at NIB, the credit-risk economic capital computation necessitated the capture of roughly 50,000
(non-cash-flow) data elements (columns times rows) each day.
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data dimension. Regulators are also very aware of this fact as is echoed by OCC
[32]:

The data and other information used to develop a model are of critical importance; there
should be rigorous assessment of data quality and relevance, and appropriate documenta-
tion.

Big-, medium- and small-sized firms thus need to take data seriously.
As with many other institutions, various required quantities are managed in

different source systems.13 This creates inevitable inconsistencies in data storage
and challenges in aggregating inherently diverse data into a common form. In
other words, getting our required data (at the right time) into the proper format
is not an easy task. This is an age-old problem for practical modellers. Generically
referred to as extract-transform-load or ETL, it is a common burden involved in
the construction of enterprise-wide risk systems. If the you are thinking that this
is rather an IT topic than a modelling question, then you are entirely correct.14 In
a perfect world, ensuring data quality and robustness would not be the concern of
the risk manager or quantitative analyst. The world, of course, is imperfect and it
is consequently dangerous to ignore this dimension. Even those organizations with
large teams of highly qualified data-quality experts are well advised to allocate some
time to this dimension.

Figure 4.2 describes, in a schematic way, a reasonably generic daily ETL process.
Each day, typically late in the evening or the early morning, an automated data-
capture module is launched to collect the full set of required data. This is linked to
the completion of the necessary computations found in one’s (presumably vendor-
based) source systems and generally involves pulling data from various database
locations. It is natural, and understandable, that different system vendors use varying
conceptual data representations, identifiers, and formats. Appreciating this fact does
not make it easier to manage. Aggregation of data and enforcement of consistency
is thus a central task. How specifically this is done, of course, is extremely system
and situation specific. The final step of the ETL is to populates one’s input database
tables—stored in an modelling-area sandbox or in a formal data warehouse—for
use by all downstream applications.

Figure 4.2 with its boxes and arrows makes the ETL process seem straightfor-
ward, even easy. It is not. It is unglamourous, painstaking work. Working with
real-world systems means that errors will arise. A good ETL process thus includes
a battery of (logged) technical, consistency and business-logic-related data-quality
checks. Outliers and inconsistencies are flagged and sent to team members for
follow up and correction. This adds value to the organization, despite not always
being terribly exciting, because the risk manager’s global perspective can highlight

13 The specific constellation of source systems is naturally slightly different in each institution, but
similar things are being done in different ways. Everyone, for example, needs to value marketable
securities, produce financial statements, and make payments.
14 See Kimball and Caserta [24] for a deep dive into this world.
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Fig. 4.2 Data-capture process: There are many ways to collect and organize one’s data; it very
much depends on the structure of one’s internal systems. The preceding schematic nonetheless
outlines—in a stylized manner—the basic steps involved in a daily data-capture, or ETL, process.

issues that are simply not visible at lower levels. A clear understanding of one’s
data, and its potential issues, also pays dividends for model design and reporting.

NIB, as have many other institutions, has invested a significant amount of time
and effort into its economic-capital ETL process. A central tool in this effort is a
collection of dashboards permitting the visual examination of tabular and graphical
input data along both cross-sectional and time-series dimensions. The construction
of such dashboards is rather resource-intensive, but it dramatically simplifies the
trouble-shooting process. In the author’s experience, the more you look for data
issues, the more you find them. And, happily, the more you find, the more you can
fix. The consequence is steady progress towards the (unattainable) ideal of perfect
data.
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Colour and Commentary 42 (THE DATA LAYER): An old adage in com-
puter science, familiar to most, is “garbage in, garbage out.” It colourfully
expresses the well-grounded idea that meaningful computations are impos-
sible without high-quality inputs.a This principle holds equally well for
risk-management computations. Indeed, this situation is often rather acute
for risk managers due to their need to take an enterprise-wide viewpoint.
Practically, enterprise risk-management means managing multiple source
systems—at times in different physical locations—with inconsistent data
formats, identifiers, and conventions. The first job in computation of economic
capital thus involves the collection and processing of one’s input data.
Referred to as extract-transform-load or ETL, this task is the bane of analysts
responsible for large-scale computations across the world. Although every
firm’s situation is slightly different, a single, and separate daily data ETL
process for economic-capital and related calculations provides numerous
benefits. It streamlines complex interaction with internal databases, allows
the heavy lifting to be undertaken by query languages, reduces the potential
for inter-model inconsistencies, permits imposition of extensive (one-time)
data-robustness checks, and allows application code to proceed indepen-
dently.

a Charles Babbage, arguably the father of modern computing, when asked “if you put into
the machine wrong figures, will the right answers come out?” famously responded “I am not
able rightly to apprehend the kind of confusion of ideas that could provoke such a question.”

4.3.1 Key Data Inputs

Within the first few pages of the second chapter, we had already established the
critical importance of three data quantities: default probability, loss-given-default,
and exposure. Figure 4.3 provides a schematic description of these key data inputs.

CREDIT RATING

Determined by analysts

Risk-owner specific

Updated occasionally

EXPOSURE AT DEFAULT

A modelling quantity

Loan or instrument specific

Straightforward to complex

Updated daily

LOSS-GIVEN-DEFAULT

Rule-based determination

Based on internal policy

Loan or instrument specific

Infrequently updated

Fig. 4.3 Key Data Inputs: This schematic highlights the situation for the three most important
credit-risk modelling inputs. Getting all of these quantities—for each individual instrument—is
hard work, but they are sourced in varying ways.
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The first element determines the likelihood of a default event—and the associated
threshold—while the latter two describe the magnitude of the loss. When internal
analysts assign a credit rating to a given risk owner, or defaultable entity, it
immediately inherits a default probability according to the logic in Chap. 3. Loss-
given-default works in a similar manner; a loan or financial instrument is given
an average loss-given-default value depending on its specific characteristics. The
associated uncertainty around this central estimate was also motivated and derived
in Chap. 3. Although extensive internal structures and policies (as well as some
modelling assumptions) sit behind these two important inputs, there is not a huge
amount of work involved for the quantitative risk analyst. The data need only be
collected, verified for accuracy, and properly organized.

The situation with exposure is sadly not as straightforward. Choices need to
be made and some challenges need to be addressed. The first point relates to
the formal name of this object: exposure at default. It refers to the size of the
exposure at the specific time of default. Since we do not know if and when
default might occur, this is a fundamentally unknown quantity.15 From this first-
principles perspective, therefore, exposure at default should always be treated as a
random variable. This viewpoint may be a bit excessive. Some instruments have
relatively stable exposures. A coupon-bearing bond, a loan, or a deposit are all quite
well approximated—for the purposes of credit-risk measurement—by their notional
value.16 The uncertainty around the loss-given-default value will, in any event, quite
likely dominate any possible market-value deviations. Finally, since we do not have
any good idea about when default might occur, the current notional (or market) value
is a fairly defensible simplifying assumption.17 This is a rather important deviation
from the market-risk setting.

For other instruments, such as derivative contracts, use of current notional (or
market) value can be woefully inadequate. Consider a simple interest-rate swap.
Its market value is, almost certainly, only a small proportion of its notional value.
Use of the notional value would thus dramatically overestimate potential default
losses. Even worse, from one day to the next, it is entirely possible for a swap
exposure to move from an asset to a liability. Thus, not only is the notional value
uninformative about the size of the exposure, it cannot even help to determine
its sign. Derivative contracts, therefore, must be modelled as a random variable.
Determining reasonable derivative exposure turns out, in fact, to be such a heavy
undertaking that the entirety of Chap. 10 is dedicated to this question.

15 Indeed, if we did know the timing of all future default events, then we would certainly not require
credit-risk models.
16 The market value is also a quite sensible quantity—and perhaps superior in some ways—but is
difficult to reliably obtain for non-traded loan assets.
17 This basically amounts to assuming that one’s instrument exposure follows the martingale
property.
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Peculiarities of Loan Exposures

Loan exposures are, for the most part, easily handled. One merely assigns the current
notional value—or a market-equivalent, if desired and available—as the exposure at
default. There are nonetheless a few exceptions. The first relates to a popular, and
effective, credit mitigation method: guarantees. The second relates to how one might
handle loans sitting in the twilight between contractual agreement and the actual
disbursement of funds. Both cases are interesting and require different solutions.

Guarantees, while definitely valued by bankers, do present a few issues for
the computation of loan exposures. Imagine a EUR 100 potential loan to a rather
poor credit counterparty. The lending institution, given this situation, may be
understandably reluctant to extend any credit. This might change if another third
party offers to guarantee, say, 40% of the loan.18 While this may very well facilitate
the loan contract, it poses a problem for the quantitative analyst. How should the
exposure be split, if at all, between these two entities? Ultimately, it depends on the
nature of the guarantee. If the guarantor is only liable for a fixed part of the loan
contract, it makes sense to split the exposure into two parts: one EUR 40 loan to
the guarantor with the remaining EUR 60 to the original obligor.19 Theoretical pro
rata exposures are thus constructed. This is motivated by the so-called substitution
approach outlined in regulatory capital calculations.20

Conversely, if both parties to this loan contract are considered joint and severally
liable, then another strategy is required.21 In this case, splitting up the exposures
will not be very helpful. The only way one does not receive any payment is if both
obligors simultaneously default. This joint event will always be less (or equally)
likely than either marginal event.22 The general practice is to assign the entire
exposure to the more creditworthy counterparty, which should invariably be the
guarantor.23

18 This is, of course, the same idea behind having a generous parent co-sign for a student loan or a
first mortgage.
19 They will also certainly have different credit ratings—or there is little economic justification—
and potentially different loss-given-default values.
20 See, for example, BIS [3, Section C].
21 With the important caveat that a really good definition requires speaking with a lawyer or
consulting a legal text, the basic idea is that both parties are on the hook for the whole thing.
22 To see this, we only require a bit of simple probability. Consider two (default) events A and B.
By Bayes famous rule, the joint probability is

P(A ∩ B) = P(A|B) · P(B) = P(B|A) · P(A). (4.1)

If the events perfectly coincide, then P(A|B) = P(B|A) = 1 and the joint probability, P(A∩B) =
P(A) = P(B). In all other (more normal) cases, P(A|B),P(B|A) < 1. From Eq. 4.1, and simple
arithmetic, it thus follows that P(A ∩ B) is less than either of the marginal probabilities, P(A) or
P(B).
23 Again, were this not the case, there would not be much point to the guarantee.
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Another credit-mitigation technique, the posting of collateral, can play a role. For
loans, this typically does not directly effect the credit rating or exposure at default,
but rather influences the loss-given-default estimate.24 For derivative contracts,
however, collateral becomes an intimate part of the exposure computation. While
this discussion is relegated to Chap. 10, the collateral issue also arises with a rather
special type of money market instrument: a repurchase agreement. A repurchase
agreement or repo contract is a simultaneous sale and repurchase of high-quality,
usually sovereign, securities.25 Since the time horizon is typically very short—
often only one day—the value of the cash and the securities generally only differ
by a small amount. Using the notional amount to describe the exposure at default
thus seems rather excessive. In the worst case, one is left holding the cash (or the
securities) if one’s counterparty fails to meet their obligations. If what you hold is
worth less than what you expected to receive, then you have experienced a credit
loss. We could—and large players in these markets certainly do—try to model
this difference as a random variable and use worst-case outcomes to inform one’s
exposure at default. NIB, as do many other institutions with modest exposure to
these instruments, takes a simpler approach. The exposure at default is fixed as a
relatively modest percentage of the notional amount. What this approach lacks in
elegance, it makes up for in practical expedience.

The final issue associated with credit exposures relates to timing. Loans have
a life cycle as they move from idea to active instrument to maturity. There are,
to begin, a variety of steps in the origination process: initial client discussions,
negotiation, and deliberation at one’s internal credit committee. From an economic-
capital perspective, however, a loan really comes alive when there is a formal
agreement between the client and the bank. At this point, we can begin to think of
an economic commitment. Some loans are disbursed shortly after agreement, while
others take more time; some, in fact, may never actually disburse. Loans, where
the funds have not yet been paid out to the client, but have also not been officially
cancelled, are referred to as agreed-not-disbursed instruments.

Agreed-not-disbursed loans are further broken down into two sub-categories:
committed and uncommitted. Committed instruments represent an economic obli-
gation to the lending institution. Failure to honour the agreement to disburse
could have financial and reputational implications. Uncommitted loans are typically
linked to a broader arrangement with an obligor whereby additional discussion and
agreement are required before disbursement. Such instruments do not represent a
financial commitment. As a result, uncommitted agreed-not-disbursed loans do not

24 The presence of collateral should not, in principle, impact the likelihood of default, but rather
the magnitude of the loss.
25 Depending upon whether you are the seller or buyer of the securities, this is referred to as a
repo or reverse-repo, respectively. In the first case, you are borrowing money, whereas in the latter
you are lending it. Readers seeking more background on repurchase are referred to Fabozzi [13,
Chapter 9].
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(typically) figure into economic-capital computations. Their committed equivalents
are a different story. Committed agreed-not-disbursed contracts are, from a life-
cycle perspective, nevertheless not yet actual loans. In other words, these are
off-balance sheet items. This raises an important question: how should they be
treated for the purposes of economic-capital?

Any healthy lending institution will have a stock of agreed-not-disbursed loans.
Such instruments can be viewed as an off-balance-sheet inventory of loans awaiting
disbursement to offset ongoing loan amortizations and prepayments. Since the
latter are definitively exiting the balance sheet, they need to be replaced with the
former. To the extent that these agreed-not-disbursed quantities represent a financial
commitment, however, they need to be considered as a firm asset. As a firm asset,
they contribute to overall risk and must be incorporated into one’s economic-capital
computations.26

The regulatory community firmly agrees with this point. The Basel Committee
on Banking Supervision (BCBS) has, in its regulatory guidance, a long-standing
approach to the treatment of off-balance-sheet exposures. It is well described by the
following quotation from BIS [4]:

In the risk-based capital framework, [off-balance-sheet] items are converted under the
standardised approach into credit exposure equivalents through the use of credit conversion
factors.

The credit-conversion factor is thus, to be very clear, simply a number between
zero and one that, when multiplied by the notional amount of the off-balance-sheet
item, yields the associated credit exposure.

The more difficult question is the appropriate choice of credit-conversion factor.
A clear upper bound is the value of one; this essentially amounts to treating
undisbursed and disbursed loans in an identical fashion. The lower bound, from
the regulator’s perspective, varies with the computation and the nature of the
off-balance-sheet item. Current guidance suggests a lower bound, for agreed-
not-disbursed loans with a maturity exceeding one year, of 0.5. This does not
imply that a financial institution may freely select the lower bound; the specific
choice must be justified by historical experience. As a practical matter, the credit
conversion factor for computation of economic-capital exposures of agreed, but not-
yet-disbursed, loan commitments lies in the interval, [0.5, 1]. Our current choice,
revised periodically based on analysis of actual disbursement patterns, lies at the
higher end of this interval.27

26 Here we use the term asset in the broader sense; it may not precisely agree with the accounting
perspective.
27 It is also entirely possible, and in many cases quite reasonable, to have an alternative credit-
conversion factor for different types of lending activity.
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Colour and Commentary 43 (MODELLING EXPOSURES): Although expo-
sure at default is, strictly speaking, a random variable, it is typically
treated as deterministic. The reason is simple. For normal bonds, loans,
and deposits there are few advantages, but clear costs, associated with this
more general treatment. Instead, the nominal (or market) value at the data-
capture time is employed. There are, of course, some important exceptions.
Agreed, but not yet disbursed, loans as well as loans with explicit third-party
guarantees require special treatment; both cases are fortunately addressed
by the regulatory community. Only a moderate proportion of notional value
is used to approximate the exposure at default for repurchase agreements,
whose risk is dramatically curtailed via collateral. These exceptions involve
some effort, but the basic logic is reasonably straightforward. Derivative
contracts represent an entirely different level of exception. The capacity of
such instruments to (quickly) move from asset to liability necessitates a
rather different approach. Chapter 10 deals with this question, which is often
referred to using the moniker of countparty credit risk.

4.4 The Application Layer

Having sorted, to the best of our ability, the data inputs, we turn our attention to
the second layer in Ramirez [34]’s architecture: the applications. At this point, it
is useful to reflect on the fundamental nature of our credit-risk economic capital
models. Is it a custom, firm-specific solution or is it a generic problem? This is
not a random, theoretical question and its answer has a number of implications for
one’s choices within the application layer. It is also an occasionally controversial
discussion; individuals and organizations can have quite distinct views.

The deviation of outlook makes sense; the stakes are quite high. Allocation of
scarce firm resources are involved. The nature of this question manifests itself in
two important, related issues:

1. Should one purchase or build one’s credit-risk economic capital system?
2. If a decision is taken to build a system, what programming environment makes

the most sense?

These are highly practical challenges without obvious, correct solutions.28 Before
proceeding to address our choices, it is useful to put some structure on these
important questions. This type of discussion might be something of a surprise in a
modelling treatise, but it is an important implementation issue. Failure to effectively
and seriously address these issues can create fairly big headaches.

28 These points also apply much more widely beyond credit-risk economic capital models.
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4.4.1 Purchase or Build Application Software?

Our first question is a classic corporate dilemma. Does the firm build a key input
internally or contract an external company to do it on their behalf? This make-or-
buy decision is, by no means, unique to our situation. Engineers, building complex
manufacturing goods, worry about this question all the time. An auto manufacturer,
for example, faces this question again and again. Sometimes, such as in the case
of car tires, the decision to outsource is easy. More central components—such as
the vehicle’s powertrain—probably need to be insourced. Numerous other parts
can potentially go either way. Given that this is a common problem, we need not
necessarily solve it ourselves. There is, in fact, a fairly extensive literature relating
to this question. Fine and Whitney [14] claim that a firm’s ability to effectively make
this decision is actually a core competence. While ultimately a financial decision,
outsourcing also creates some potential for external dependency. They introduce two
categories of dependency on external suppliers:

1. dependency for capacity; and
2. dependency for knowledge.

In the first case, a firm could do it itself, but judges outsourcing as a better use of
resources. In the second case, the firm cannot perform the task and relies on an
external expert. This is a useful distinction. Dependencies associated with using an
external product are not, therefore, uniformly bad.

To help assess the acceptability of an external dependence, Fine and Whitney [14]
raise another important dimension: centrality of the component to your business.
The logic is quite compelling. If something is complex, but well understood and
easily extracted from your business process, then it is not central. Such elements
are often referred to as commodities. Our auto manufacturer does not typically
make their own tires, because this product is not central to their business and there
are many excellent external vendors. These are good candidates for outsourcing.
In contrast, if something is integral to your business, you may want to avoid
dependency for knowledge. It is unlikely, to consider a slightly silly example, that
a fast-food firm would assign the production of their secret hamburger sauce to an
external vendor.

Figure 4.4 introduces Fine and Whitney [14]’s centrality and dependency trade-
off. If a product has low centrality and creates few dependencies, then its external
purchase makes logical sense. On the other hand, a central task whose outsourcing
creates important dependencies is advisedly built in-house. Low-dependency and
high-centrality—or high-dependency and low-centrality—cases are less obviously
determined.

While Fine and Whitney [14]’s structure is helpful, physical and software
engineering are not the same thing. There are, fortunately, no shortage of references
on building or buying software tools. Some examples include Hung [20], Perception
Software [33], Cohn [8], and Sefferman [37]. There is sadly relatively little from
the academic side; instead, much of the discussion is generated from the software
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Fig. 4.4 Dependency vs.
centrality: This schematic,
borrowed from Fine and
Whitney [14], introduces two
key dimensions for the
make-buy decision: centrality
and dependency. This logical
distinction can support one’s
thinking about in-house or
vendor-based development.
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industry. Most of what you read on this question correspondingly has implicit, or
explicit, bias.29 This does not mean such sources are useless. It just implies a bit of
caution.

Every situation is a bit different, but some general arguments merit consideration.
Many elements speak for the purchase of software. In particular, external solutions
are typically somewhat lower cost and generally faster to implement. They allow
one to cheerfully assign the tedious responsibility of upgrades and maintenance to
someone else. The strongest argument is that it allows you to focus on your main
business and not on software development. Most of these arguments are related, in
one way or another, to the benefits of specialization and economies of scale.

We also need to consider the other side of the question. Arguing for building
your own software are that it lends the firm complete control of development and
ensures that system knowledge stays in-house. It also avoids dependency on external
resources and allows one to transform a system into a core competency. Finally,
although this is a bit controversial, it may actually be less expensive.30 Arguments
to build your own system thus turn around control and independence. Both sides are
compelling. Ultimately, the choice depends upon the value of these points to your
situation and organization.

Resources are scarce, so cost-benefit analysis is essential. Keen [23] raises the
important distinction between value and cost. He argues that traditional cost-benefit
analysis is not terribly applicable for systems related to decision support. These
tools are used to assist in taking decisions under uncertainty in often semi-structured
settings. The difference between good and bad decisions can have enormous
financial consequences. It is hard, or even impossible, to incorporate this element

29 Software vendors naturally have inherent incentives to lean towards the buy decision. Tool
vendors, of course, naturally tilt in the other direction.
30 Predictably, both make and buy camps argue that their approach is less expensive. In reality, the
actual cost probably depends significantly on how the development project is structured. There is
an infamous project-development adage that provides some insight on this point: “Fast, good or
cheap. Pick two.”



4.4 The Application Layer 237

into one’s cost function. It cannot, however, be ignored. Keen [23]’s basic (and
compelling) thesis provides some useful practical advice: “value first, cost second.”

Equipped now with some background thinking for this decision, we can now turn
to our situation. Internal credit-risk economic capital computations are rather unique
to the institution. A deep understanding of modelling assumptions and techniques is
necessary. As we’ve seen in the previous chapters, there are countless small decision
points in both model construction and parametrization. Outsourcing this task would
potentially create dangerous knowledge dependencies (or gaps). Economic-capital
applications also do not generally lend themselves to economies of scale. One-size-
fits-all solutions are to be considered with some caution.31 NIB thus views this
application as falling firmly in the upper right-hand quadrant of Fig. 4.4: centrally
important and with strong potential for key external dependencies. This supports the
decision to internally develop these tools.

Colour and Commentary 44 (MAKE OR BUY?): To make or buy an inter-
nal component or system is an age-old corporate decision. Unsurprisingly,
there is an extensive academic literature addressing this question. Fine and
Whitney [14], for example, provide a helpful logical structure around the
trade-off of centrality of the element to one’s business and any dependencies
created by outsourcing. The information-system literature, while helpful,
also tends to be vendor-driven and, as a result, is often rather biased. It
nonetheless helps tease out the key advantages and disadvantages of this
decision. NIB has consciously opted for internal development of its credit-
risk economic capital framework. Economic-capital is centrally important
for internal steering, decision-making, and risk-management within our
operations. At the same time, model construction and parametrization are
highly nuanced. Effective use of the model would be hampered without full
understanding and control of these technical elements. The confluence of
these two elements ultimately drove our insourcing decision.

4.4.2 Which Programming Environment?

Having decided to build an internal system, we are immediately faced with a second
question: what programming language or environment should we use? This is
an admittedly highly technical and painfully practical business. One might argue
that it does not matter. Such a line of reasoning is disingenuous: how things are

31 The Pillar I regulatory solution, addressed in Chap. 11, is an example of a one-size-fits-all
solution. It does this for good reason, but it also needs to be complemented with (firm-specific)
Pillar II analysis to tell the whole story.
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implemented clearly makes a difference. One might further argue that this is the
development team’s choice. This is a fair point, because they are doing the job after
all. They should be able to select their tools. Unfortunately, it is not so simple.
The consequences of this decision are significant. In particular, there are three main
elements to consider:

1. development, testing, and implementation;
2. maintenance and extension; and
3. model-owner succession.

It is possible that the development team may actually only be involved in (or around
for) the first step. The decision, however, needs to be made with a firm eye on all
three of these dimensions. If not, there is a risk of an optimal decision for the model
developer, but a sub-optimal situation for the overall firm.

There are dozens of potential programming environments. Each has its own
strengths and weaknesses. These advantages and disadvantages will, depending on
the problem and application, come to play in different ways. Beyond the technical,
there are important staffing and resourcing implications. Maintenance and extension
is, quite likely, the lion’s share of one’s system effort. Building one’s credit-risk
economic capital model is not, after all, a one-off exercise. It requires consistent
review, validation, adjustment, and improvement. Its lifetime will necessarily span
multiple generations of analysts over many years. A really unhappy outcome
would involve a very specialized, or difficult-to-follow, modelling implementation.
Subsequent analysts would be consequently challenged to effectively use and
maintain it. This question is thus best considered, and addressed, before one actually
develops the system.

What is the conventional academic wisdom in this area? Regrettably, there is not
very much available direction. Meador and Mezger [30] and Elfring [12] date back
to the 1980s. Both works are, as one might expect, very focused on the specific tasks
involved in the software project. More recent publications—such as Imamgoglu
and Cetinkaya [21] and Gupta [17]—are more specialized. The former proposes
a software to select a language. Elfring [12] makes a valid point. They argue that “if
you were a carpenter building a new house, the first thing you would do is collect
your tools.” We’ll try to follow this advice and consider the range of possible choices
available to us.

Although there are many different possible candidates, programming solutions
can be usefully organized into three possible lanes.32 The first, and simplest,
alternative involves interactive GUI-based applications. The classic example is
spreadsheet applications and their associated scripting languages. Easy to use and
broadly available, these are often treated as a default choice. The second alternative
includes scientific computing languages. These come in a variety of forms and
include both third-party and open-source tools. These all have proper programming

32 This is not an official organization of the universe of programming languages, but rather a helpful
categorization for this particular task.
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syntax and are (almost) always interpreted languages. The final category are the
most serious: professional programming languages. The usual suspects in this area
would include the C, C++, C#, and Java languages, although there are many more
examples. As the name suggests, these compiled languages are employed for large-
scale software development.

It is relatively easy to exclude the first approach. Spreadsheets and their scripting
languages are certainly a useful computing tool, but they are not well suited for
large-scale numerical applications. This leaves us with a (broad) choice between
interpreted and compiled languages. What is the difference? All programming
languages need to provide direction to the computer in a way that it can under-
stand. Compiled languages transform the computer code—via an extra step called
compilation—into machine-readable object code. Interpreted languages follow an
alternative strategy: they use an interpreter to translate their commands to the
computer. This is a very fast, loose, and not-entirely true definition.33 This sepa-
ration of interpreted and compiled languages—despite being slightly artificial—is
nonetheless useful.

Compiled professional programming languages, by almost any criterion, are the
right choice. They are faster, more efficient, and offer much greater flexibility.
This is why they are the virtually universal solution for large-scale software devel-
opment. There is, however, one important catch: a careful and experienced hand
is required.34 Interpreted scientific programming languages offer an alternative.
They provide complex programming constructs, interpreted code, built-in numerical
and statistical functionality, and generally excellent visualization tools. There is
disappointingly a tragic flaw with interpreted languages: they are relatively slow. We
can loosely think of the programming-language choice as falling along a spectrum
with performance and ease-of-use located at opposite ends of the scale.35

This reduces the programming language question to a determination of where one
would like to be along this spectrum. This essentially makes it a staffing question.
What is the typical profile of a quantitative risk analyst? Figure 4.5 highlights
three broad required skillsets: finance and economics, mathematics and statistics,
and computer science. It is hard to be a quantitative analyst without knowledge
in all three of these areas. Unfortunately, accumulation of knowledge and skills
in these domains often pulls people in different directions.36 Since the technical
burden associated with scientific programming languages is not as high, it broadens
the universe of possible quantitative analysts. Use of a more accessible scientific

33 Some languages, for example, can actually do both. See Kwame et al. [25] for a useful, and
much more accurate, description of this distinction.
34 The reason is that compiled code typically runs more efficiently, but the compilation process
is technical and involved. Extra, hard-to-acquire skills are required to master the use of compiled
languages.
35 There are certainly other ways to frame this question, but these two dimensions are the most
centrally important for quantitative analysts.
36 This is why individuals with skills at the intersection of the three sets in Fig. 4.5 are both hard to
find and well compensated.
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Fig. 4.5 Quantitative analyst skills: This picture displays the three diverse skillsets required by a
quantitative risk analyst. Finding someone strong in all areas—in the yellow-shaded intersection
of all three sets—is extremely challenging (and often expensive).

computing language thus makes it easier to hire staff capable of maintaining
and extending existing systems. We wish to avoid developing a fantastic, high-
performance economic capital system that only a handful of people within (or
without) the organization can readily understand and use.

We have, when considering this question, elected to trade-off ease-of-use for
performance. The credit-risk economic-capital framework, described in this work,
is implemented with a scientific computing language. This does not imply that this
decision represents the right choice for every financial institution. Larger firms can
achieve economies of scale allowing them to achieve greater staff specialization.
This permits them to hire individuals outside of the intersection of the three
skillsets in Fig. 4.5. Practically, this might involve a development team—using
high-performance professional languages—that has relatively limited knowledge of
financial mathematics and theory. Development would be guided through prototypes
and specifications provided by the modelling team. Such solutions, however, require
a certain firm size and critical mass.

There is still one remaining question. Should one use a third-party or open-
source scientific computing language? Ultimately, this is more than just a resource
question.37 The open-source software movement has provided a broad range of
very useful tools—from the Linux operating system to the Apache web server to

37 This simple query can easily bring us into controversial territory. The uninitiated reader might be
surprised by the strength of the emotional response to this question. Stallman [38] is an excellent
entry point into this ongoing debate.
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GCC compilers—used by many professional programmers. Open-source scientific
computing software do offer some direct cost benefits, but they provide neither
customer service nor support. Third-party solutions involve direct licensing costs,
but they offer assistance, training, useful manuals, and an implicit promise of
continuity. It is not an easy decision and will depend on the firm’s specific situation.
We have, on the basis of reflection and experience, adopted the open-source Python
programming language. Its popularity, relatively straightforward syntax, large-user
community, and many useful libraries were the driving reasons behind this choice.38

Colour and Commentary 45 (THE PYTHON PROGRAMMING LANGU-
AGE): When selecting a programming language for the development of
a large-scale economic capital system, there are many dimensions to be
considered: performance, richness of existing function libraries, the size of the
user community, the critical role of staffing, and the open-source vs. vendor-
based debate. Every choice will invariably do well on some dimensions and
worse on others. Professional-programming languages—such as C++, C#,
or Java—typically offer superior performance and syntactical flexibility, but
at the cost of complexity. Finding staff with a combination of professional
programming and business skills is correspondingly challenging. Python—as
an open-source, interpreted, scientific-computing language—is relatively easy
to use, has a large and active user community, numerous helpful libraries, and
is inexpensive compared to other vendor-based solutions. NIB has, with this
selection, explicitly accepted the trade-off between these advantages and the
performance disadvantages relative to compiled professional programming
frameworks.

4.4.3 The Application Environment

Our credit-risk economic capital framework is, by conscious decision, implemented
as an internally developed system using the open-source (interpreted) Python
programming language. While important decisions, they nonetheless only represent
the jumping-off point for the construction of one’s application environment. It is
analogous to, when building a house, having made a decision on the neighbourhood
and style of one’s construction. There still remain a depressing number of large and
small choices.

Delving into the minute detail of our internal credit-risk economic-capital system
would not add tremendous value to our discussion. There are, however, some key

38 See McKinney [28], VanderPlas [39], and Hilpisch [18, 19] for some useful background on this
scientific computing language.
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elements that are worth discussing. Since our focus lies firmly with quantitative
modelling, we’ll touch on those system design aspects that have the most important
implications for model governance. Owners, designers, and implementers of inter-
nal analytics (i.e., models) have numerous responsibilities. One of the first elements
touches upon coding practice and maintenance. Returning again to OCC [32], it
turns out that regulators have quite a bit to say on this topic:

Computer code implementing the model should be subject to rigorous quality and change
control procedures to ensure that the code is correct, that it cannot be altered except by
approved parties, and that all changes are logged and can be audited.

In short, this basically means that computer code needs to be accessible and
readable. It also strongly suggests that it must be stored in repositories for security,
back-up, and auditability.

A model repository is a powerful tool. It is basically a carefully organized,
time-indexed library for one’s software development. One can check in and check
out various aspects of a project, make changes, branch out in different directions,
and merge these branches together. Various levels of permissioning and access
can be added to this structure. Model repositories are precisely what OCC [32],
and other regulators, have in mind when they speak about change management
and auditability. NIB makes use of the very popular open-source solution, Git, for
this purpose.39 Figure 4.6 schematically describes our application environment and
specifically highlights the role of the code repositories.

Writing software is a tricky business. Going into this endeavour, one thing
is clear: there will be errors (or bugs) in your programs. While this may sound
defeatist, it is a simple fact. Reason [35], coming at this question from a psycholog-
ical perspective, indicates that errors are unavoidable. Indeed, he takes this a step
further with the following statement:

Correct performance and systematic error are two sides of the same coin.

Beizer [1], the author of an excellent treatise on software testing, suggests that
roughly 2-4% of lines of raw computer programs have errors. In other words, it is
not if one has a bug in one’s code implementation, but rather when.

Forewarned, as they say, is forearmed. What, therefore, can we do about
the inevitability of coding errors? There are three main tools: validation (i.e.,
debugging), testing and diagnostics, and documentation. These elements work
together. Validation is the first step. After development of a code module, it is
best passed to another team member for review. The simple act of justifying one’s
implementation to a colleague can significantly reduce error. This can, as resources
permit, be formalized by a periodic code review by an external party.40

39 This tool was proposed almost 20 years ago by Linus Torvalds for use in development of the
Linux operating system. See Loeliger and McCullough [26] for much more detail on its use and
functionality.
40 These typically occur through regular model-validation exercises.



4.4 The Application Layer 243

Fig. 4.6 Application environment: The schematic above outlines the basic sub-components
associated with our credit-risk economic-capital application environment. These include the role
of code repositories, the software development lifecycle, and supporting documentation.

The second step is testing and diagnostics. Testing—see again, Beizer [1] for
much more on this dimension—is a field unto itself. The basic idea is that one
predefines a set of tasks that one’s code is intended to perform. This is constructed so
that one already knows what the proper outputs should look like. One then tests the
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code to ensure that it reproduces the desired output.41 In a modelling setting—while
useful and necessary—this has its limits. One may not know, for example, what the
precise result is supposed to be before implementing the model. Into this breach
comes diagnostics. In previous chapters, we’ve repeatedly mentioned the usefulness
of challenger (or comparator) models. Comparison of the results of a complicated
model is eased when also given the results of simpler (or alternatively constructed)
implementations. More concretely, much can be learned by placing the results of
the independent-default, CreditRisk+, Gaussian threshold, and t threshold models
beside one another. For this reason, NIB has constructed extensive dashboards not
only for the verification of data inputs, but also to review and investigate a broad
range of output diagnostics.

The deployment of software traditionally follows four distinct phases: develop-
ment, testing, acceptance and production (or DTAP).42 This can vary dramatically
among organizations and tasks, but designing this element is rather important.
NIB has adopted a very simple approach, reflecting the internal nature of the
development and the modelling applications. As can be seen in Fig. 4.6, there are
only two separate phases: development (and testing) and production. This can be
viewed as a minimal development and deployment lifecycle. These two elements are
distinguished by separate physical computational servers and databases; the code is
also clearly demarcated within the model repositories. This structure, while simple,
strongly supports our testing and validation efforts.

The third, and final, mitigant is documentation. Considerable attention is given
to the well-travelled, computer programming platitude that “good code is self-
documenting.” There is truth to this statement, but it does not imply that documen-
tation is unnecessary. Sensible program and functional design as well as meaningful
object, function, and variable names contribute dramatically to the readability
and usability of any code implementation.43 It dramatically reduces the burden
towards describing how the program works, but nevertheless provides no insight
into the why. Code reviewers—whether colleagues or professional validators—
need to have a clear idea of why you’ve made certain choices in order to properly
judge the correctness of your implementation. This cannot be achieved without
documentation. This is not quite the same thing as methodological documentation
and, in principle, should not be quite as heavy.44 At NIB, therefore, we make
extensive use of an internal web-browser-based Wiki to document our coding
structure. This ensures broad accessibility, while keeping the documentation burden

41 While this is the essence of the idea, there are many related variations and nuances to be
considered.
42 For professional software developers, this leads to important ideas such as the software
development lifecycle. It probably also brings one to the notion of agile development. This is
quickly moving beyond the author’s area of expertise. For more reliable information on this
important field, the reader is handed over to Ruparelia [36] and Lwakatare [27] and their associated
references.
43 For this reason, it is useful to establish (within reason) internal coding standards.
44 You can think of this book as, broadly speaking, representing the methodological documentation.
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within bounds. Figure 4.6, our schematic of the application architecture, thus also
has an explicit reference to documentation.

Colour and Commentary 46 (MODEL GOVERNANCE VIA APPLICATION

ENVIRONMENT): Regulators have dramatically increased their focus on the
correctness and robustness of modelling-code implementation. Numerous
strategies exist for mitigating potential issues in this area. As a first step,
we employ an industrial-strength model-repository tool to facilitate code
development and auditability. A second step relates to testing and diagnostics.
The use of challenger models, diagnostic dashboards as well as separate
testing and production computational servers and databases naturally sup-
port this dimension. The final component relates to documentation. Model
documentation facilitates validation, training of new staff, understanding of
the model owner’s thought process, and ongoing model maintenance. Only
when key decisions are clearly and carefully documented, can an organization
truly open themselves up to constructive criticism and OCC [32]’s notion
of effective challenge.a It also creates a corporate memory in the event
of the departure of key modelling staff. NIB makes a distinction between
methodological and implementation documentation; the burden associated
with the latter dimension is reduced through use of an internal web-browser-
based Wiki.

a The preface of this book and Bolder [6] also discuss these issues in significant detail.

4.4.4 A High-Level Code Overview

Having danced around it now for quite some time, we are finally ready to
descend into the actual code structure. We’ll try hard not to dive too deeply,
since the value of line-by-line description of computer code is limited.45 Some
understanding of the fundamental code structure is, however, useful insofar as it has
implications for questions of model governance and, ultimately, the convergence of
our simulation methods. It also helps, to a certain extent, to create concrete links to
the mathematical and parametric discussions found in Chaps. 2 and 3.

The workhorse of the credit-risk economic capital model is the Python function,
ecMain.py. Figure 4.7 provides an algorithmic description of this function. It
can logically be broken down into five separate steps of which, the first four, can
be considered to be the central part of the computation. The first two steps involve

45 The presented algorithms represent only a fraction of the total implementation and have been
stripped of important, but distracting, error-handling elements.
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begin algorithm (ecMain.py)

(1) Read configuration file
(2) Source necessary input data

(3) Execute numerous book-keeping operations

(3.1) Define key constants
(3.2) Determine systemic risk-factor identifiers
(3.3) Assign model parameters

(4) Perform the simulation

(5) Write final results to a set of database tables
end algorithm

Fig. 4.7 The main function: The daily economic-capital model implementation involves five
distinct steps each involving, of course, numerous sub-steps. This schematic highlights these key
steps; each aspect will be further explored in turn.

Table 4.1 Configuration settings: This table summarizes the most important configuration set-
tings found in a .json input file. These are semi-static variables of global importance that should
not be hard-coded into the model implementation. As such, they can be changed—after, of course,
proper reflection and analysis—without altering the base code structure.

Setting Value Description

V 1000 Number of repetitions

M 500,000 Simulations per repetition

systMaxVal 0.40 Maximum systemic-weight parameter

nu 70 t-distribution degrees-of-freedom parameter

modelList [“i”, “g”, “t”] Number of models to estimate

numProcesses 60 Processes to employ in multiprocessing implementation

lowMemory 1 Default- migration-loss calculation to employ

esQuantile 0.9997 Expected-shortfall quantile

getting the configuration settings and model inputs data. The third step involves
setting a variety of risk-owner parametric values. Step four handles the stochastic
simulation; this is the heart of ecMain and, indeed, the credit-risk economic-capital
model. The fifth, and final, step involves writing the risk-owner, exposure, and
parametric results to the necessary output database tables for use by the reporting
layer.

Each of these steps merits a bit of additional description and colour. We will thus
walk through each in turn, albeit with varying degrees of detail. The configuration
file is the most sensible starting point. It contains a collection of base variables that
may, for various reasons, change over time. Generally, however, we think of them
as being static model-level inputs. The most pertinent configuration settings, for this
discussion, are summarized in Table 4.1.

The two perhaps most critical configuration settings relate to the variables, V and
M. This provides a first peek into the inner workings of the simulation engine. If
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begin sub--algorithm (ecMain.py)

(2.1) getPartyData: assigns risk-owner data to pf data object

(2.2) getRegionMap: puts link between country codes and regions into regionMap

(2.3) getExposureData: populates tf dataframe with exposure-level data

(2.4) getCreditSpreadData: places credit-spread levels into sprd

(2.5) getSystemicCube: populates cube with the systemic-weight parameters

(2.6) getCorrMatrix: builds correlation matrix, cMat, and Cholesky decomposition, cholMat

(2.7) getRegionSectorMappings: Puts regional and sectoral information into rsMap

(2.8) getTransitionMatrices: allocates the NIB and S&P transition matrices to P

end sub--algorithm

Fig. 4.8 Source key data inputs: Each of the get functions source different inputs data elements.
Various degrees of processing are involved across the functions.

one needs to run one hundred million simulations—to achieve a desired degree of
convergence—there are a few ways this can be achieved. One might simply run the
whole thing in one go. This would probably, depending on how you do it, require a
fairly shocking amount of memory and processing power. Alternatively, one could
perform 10 repetitions of 10 million iterations; since each individual simulation
is independent, they are easily recombined. This second strategy might, again if
organized correctly, lead to more efficient use of one’s computing source. In the
NIB setting, V describes the number of repetitions, whereas M is the number of
iterations. The total number of independent simulations, therefore, is their product:
V · M. Determining the appropriate choices of V and M to achieve the best possible
use of our computing environment will be discussed in (significant) detail later in
this chapter. The configuration settings, numProcesses and lowMemory also
feed into this question.

The remaining settings in Table 4.1 should be changed only sparingly. They
all relate to fairly self-explanatory model parameters or constraints that will only
change infrequently after appropriate discussion and management approval.46 The
modelList setting illustrates list of challenger (and production) models to be run.
This list will also only change infrequently.

Figure 4.8 provides more colour on the second logical step: sourcing the
necessary input data. Each function is prefixed with the verb, get.47 This is because
they each involve the extraction of data from a corresponding database table and
assigning it to an appropriate data structure. These data structures, in turn, represent
critical inputs into downstream computations. All of these get functions take

46 They can also, be adjusted upon occasion for the purposes of sensitivity analysis.
47 This simple naming convention is, incidentally, a double example of self-documenting code and
imposition of coding standards.
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a database-connection and a date argument, and source their inputs exclusively,
following the three-tier architecture, from the data layer.48

The results of these queries are used to populate two fundamental data
structures—pandas dataframes—representing the risk-owner (i.e., counterparty
or obligor) and exposure (i.e., instrument or trade or transaction) level data.49 These
dataframes play a central role in the code implementation. To the extent possible, all
risk-owner and exposure information—both original inputs and computed fields—
are placed in these data objects. One can think of them, very loosely of course,
as an ice-hockey puck being passed from one function to another throughout the
entire programmatic implementation.50 This approach allows for brief function
input arguments and a clear idea of the final output variables. It also dramatically
simplifies the input and output management surrounding risk-owner and exposure
records.

In addition to these core inputs, there is a wide range of model-specific data
tables. Some of these, such as getRegionMap, are essential to organizing
region and sectoral identities. Others relate to economic-capital model parameters—
discussed in Chap. 3—including systemic weights, transition probabilities, systemic
risk-factor correlations, and credit spreads. These slow-moving parameters are
nonetheless expected to be adjusted, at least, on an annual basis. These parameter
records are, as a consequence, stored in the database environment with a start and
end date. In this manner, the necessary model parameters can be selected to be
consistent with the portfolio-computation date.51

4.4.5 Book-Keeping and Parameter Assignment

Having sourced the necessary data, a number of set-up operations must be per-
formed. We refer to this collection of functions as book-keeping. The intention
behind this term is to refer to putting various essential quantities and numerical
ingredients, such as parameter values and identifiers, in the correct places. All of

48 In other words, the responsibility for sourcing, cleaning and organizing this data is the
responsibility of the ETL process illustrated in Fig. 4.2.
49 Every programming language provides various objects to store one’s data. The pandas
dataframe is one of the most flexible and convenient of such data structures within the Python
programming language. VanderPlas [39] provides an excellent introduction for interested readers.
50 This example will probably mostly speak to Canadian or Nordic readers. Feel free to insert the
appropriate object—football, baseball, rugby ball, or whatever—from your favourite sport into this
analogy.
51 This also represents a clean repository for historical parameter choices serving as an important
modelling audit trail.



4.4 The Application Layer 249

begin sub--algorithm (ecMain.py)

(3.1) Define key constants

N, t: number of risk-owners and exposures, respectively

q: number of credit states or PD classes

J: the number of systemic risk factors

(3.2) Determine systemic risk-factor identities

setSectorCode: assigns industrial category to each risk owner

setRegionCode: gives each risk owner a regional category

setSizeCode: puts each risk owner into three categories: small, medium, and large

(3.3) Assign model parameters

buildBetaMatrix: constructs the N×J factor-loading matrix, B

setSystemicWeights: extracts risk-owner systemic-weight parameter from cube

setLGDParameters: performs method-of-moments estimation of LGD beta distribution

setCreditState: transforms string-valued PD class to integer value

buildTenor: allocates modified spread-duration estimates by lending and Treasury books

constructCumulativeTransitionMatrices: both Gaussian and t versions

end sub--algorithm

Fig. 4.9 Book-keeping operations: Each of the set functions allocate key identifier and parameter
values to the individual risk owners sent to the simulation engine. Ultimately, these values take the
form of additional fields in the party (or risk-owner) pandas dataframe. This is a central data
object in the credit-risk computation.

the functions in this step, therefore, are prefixed with verbs such as set, build, or
construct.52

Figure 4.9 provides a high-level overview of these book-keeping operations.
After setting a few useful constants, each risk owner needs to be assigned a sector,
a region, and a size code.53 As we saw in Chap. 3, the systemic weights and
correlations are determined based upon these identities. These fields also serve as
important fields for downstream analysis and reporting applications. Assigning the
wrong parameter to a given counterparty is a typical (and very avoidable) source of
model error. It is, therefore, critically important that a clear and consistent approach
is implemented to manage these parameters.

Step 3.3, as represented in Fig. 4.9, gets to the business of parameter assign-
ment. The non-normalized factor-loading matrix, B ∈ R

N×J, is manufactured in
buildBetaMatrix. Each row of B represents the relative weight imposed on the
J systemic factors. Recall from Chap. 3 that, for each risk-owner, only a maximum
of two elements of each row of B is non-zero: one relating to the sector and another

52 Again, the choice of verb in one’s function name might feel unimportant, but it represents a
(low-cost) opportunity for self-documentation and, thus, additional clarity.
53 In the (relatively rare) event of a missing total-asset record, a firm is conservatively assigned to
the medium-size category. This is an example of a fall-back value.
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to the region.54 The results from the setSectorCode and setRegionCode
functions are essential in the determination of the precise locations of these non-
zero factor-loading values.

The systemic weights are also assigned using the cube object employing
the same sector, region and firm-size classifications. Unlike the factor loadings,
however, each risk owner only receives a single systemic-weight value. This
information is stored in the alpha_squared field of the pf dataframe.

This brings us, for the first time in this chapter, back to the mathematical
and statistical part of the model. Let’s quickly recall that the asset-return, or
creditworthiness index, for each individual risk owner depends—in the full t-
threshold model—on three random variables: W ∼ χ2(ν) ∈ R, �z ∼ N(0,�) ∈
R
J×1, and �wi ∼ N(0, 1) ∈ R for i = 1, . . . ,N. These are the χ2 mixing variable

for the t distribution, the multivariate normal set of systemic risk factors, and the
independent idiosyncratic risk drivers, respectively. W and �z are common to all
credit obligors, whereas the �wi’s are risk-owner specific. The actual construction
of �Xi , an arbitrary risk-owner’s creditworthiness index, is simply

�Xi =
√
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W

⎛
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, (4.2)

where βi ∈ R
1×J denotes the ith row of β for i = 1, . . . ,N. Each �Xi requires unit

variance. Having each αi ∈ [0, 1] maintains this property, but the factor-loadings
embedded in β unfortunately do not. As a consequence, to restore unit variance of
�X, each ith systemic-risk contribution needs to be normalized by

√

diag(β�βT )ii .
This quantity is computed for each credit counterparty, or risk owner, and assigned
to the norm_constant field.

Translating into our computer implementation, the main parametric components
in Eq. 4.2 thus take the following practical form

dX[i] =
√

nu

W

⎛

⎜

⎜

⎝

√
alpha_squared[i]

ith row of B
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B[i, :]
norm_constant[i] dZ

+
√

1 − alpha_squared[i]dW[i]
)

, (4.3)

for i=1,. . .N. There is literally a one-to-one correspondence between the terms in
Eqs. 4.2 and 4.3.

54 Public-sector entities, who do not have a clear industrial classification, load entirely onto the
regional systemic factor.
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The next step involves setting the recovery-related parameters. The average risk-
owner recovery field is derived from the ETL process. Recovery is treated as a
random variable following a beta distribution with two shape parameters for each
risk owner. As we saw in Chap. 3, we treat the recovery volatility as a free parameter
and exploit (a variation upon) the method-of-moments estimation technique to
determine these shape parameters. The consequence of this computation is some
new fields for our pandas dataframe. Average recovery and volatility are assigned
the field name recovery_mu and recovery_vol, respectively. The two shape
parameters are described as recovery_alpha and recovery_beta.55

The buildTenor function essentially does a bit of organization for the spread-
duration fields constructed within the ETL process. A key secondary objective
of buildTenor is to assign a modified spread-duration proxy to loans absent
cash-flows. These off-balance-sheet items, due to their contribution to risk, are
formally included in our calculations. The complication is that because they have
not disbursed, they naturally do not have any cash-flows within our source systems.
Rather than ignore the migration element for these transactions, we simply assign
them the average spread duration for disbursed loans within the portfolio. Other
assumptions are, of course, possible, but this is both expedient and conservative.56

The final parametric effort relates to the constructCumulative
TransitionMatrices function. These values represent, for the current rating
of each owner, the default and migration thresholds used to compare against the
dX outcomes. A separate set of thresholds are, of course, required for the Gaussian
and t-threshold models. As a consequence, this function returns two arguments
each relating to the model implementations: GInv and GInv_t. The only tricky
element in this computation is setting the boundary values of unity, to which the
inverse cumulative distribution function values assign a value of ∞. We sidestep
this problem by arbitrarily setting these value to 10 and 15 for the Gaussian and
t-threshold implementations, respectively.57

4.4.6 The Simulation Engine

The fourth step from Fig. 4.7 represents the heart and soul of the economic-capital
model: it deals with the simulation engine. Everything up to this point is basically
preamble and, to be frank, everything succeeding it is basically processing or
expanding, in some way or another, upon the credit-risk economic-capital results.

55 These names where selected because the two shape parameters, in the one dimensional beta
distribution, are typically (but unimaginatively) referred to as α and β.
56 Once these loans disperse the full cash-flow information is available and the calculation proceeds
in the normal way.
57 Any sufficiently large positive number, of course, will do the job.
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Fig. 4.10 The simulation engine: This schematic outlines the main steps involved in the heart of
the credit-risk economic-capital computation: runSimEngine. It involves two main loops—one
for each model and another for the repetitions—and assigns the main results to the ecObj data
object.

The actual simulation calculation is governed by the function runSimEngine
conceptually summarized in Fig. 4.10.

Colour and Commentary 47 (CENTRALITY OF SIMULATION ENGINE):
NIB’s internal modelling framework includes a broad range of competing
and related calculations, but the undisputed championship belt belongs to
the credit-risk simulation engine. Risk-owner (i.e., credit-obligor) default and
migration-risk allocations stemming from this model permeate all down-
stream applications. Economic-capital approximations, expected credit-loss
calculations, risk-adjusted returns, and stress-testing results are all either
derivatives or extensions of this central computation. Even regulatory capital
computations, while important in their own right, are principally computed
for comparative benchmarking purposes. While reviewing the following
pages, therefore, the reader should endeavour to understand this point
and, whenever it becomes unclear, actively seek to identify the practical or
conceptual link back to the credit-risk simulation engine.

The simulation engine was constructed with the flexibility to manage three
individual models: the independent-default, Gaussian-threshold, and t-threshold
models.58 In principle, the computation of default and migration losses do not

58 It is also entirely possible that we might decide to add another challenger model in the future.
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differ among models. The random-variate generation and threshold computations,
however, are model specific. This implies that runSimEngine needs awareness of
which particular model is being run. Under normal circumstances, of course, each
model is computed in a sequential manner.

Why, might one legitimately ask, is the model constructed to compute three
distinct credit-risk models when a decision was already taken to employ the t-
threshold implementation as the production choice? The answer is simple: to bake
explicit trouble-shooting and model diagnostics into our framework.59 There is
always a risk of error and misunderstanding of results when performing large-
scale complex calculations. The inclusion of the independent-default model, with
its simple structure, provides a lower bound for both default and migration-risk
estimates. Moreover, the complete lack of systemic risk in this approach yields
rather different and predictable, albeit less realistic, risk estimates. The Gaussian
threshold model is computed as a more direct comparator; it also permits direct
assessment of the impact of non-zero tail dependence.

Colour and Commentary 48 (MODEL MULTIPLICITY): Model risk is miti-
gated by understanding of our quantitative limitations and careful oversight.a

Given their relative closeness to the proceedings, model owners are well
advised to take this responsibility seriously and incorporate a multiplicity
of perspective directly into their modelling frameworks. A relatively low
cost, but high impact, approach used by NIB involves the simultaneous
computation and analysis of comparator models. In addition to the minimum
regulatory capital requirements and rating agency perspectives—discussed
in Chap. 11—two additional benchmark models are computed and stored
on a daily basis: the independent-default and Gaussian threshold models.b

Although extra effort and computational expense is required, these supporting
calculations are central in assessing, trouble-shooting, and communicating
the magnitude of dependence, diversification, and distributional effects within
the official t-threshold setting.

a This relates to Derman [10]’s caution about the idolatry of models. What better way to
avoid this issue than to explicitly recognize their functional multiplicity?
b We can thus speak of a suite of credit-risk economic capital models of which the
production model is “first among equals.”

The first aspect of the actual calculation is generating the random variates: W,
dZ, and dW. A stylized Python code implementation is provided in Algorithm 4.1.
Taking a range of key inputs—relating to systemic weights, factor loadings, and

59 This links directly back to our first quantitative analysis axiom introduced in the preface: “if you
can help it, never do anything just one way.”
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correlations—it performs the dirty work of random-variable generation. This code,
as well as the remaining algorithms displayed in this chapter, are not intended to be
a full-blown, recommended implementation. The idea is rather to provide a bit of
practical insight into the key parts of the simulation engine.

There are different strategies, as touched upon earlier, for approaching the
problem of generating large numbers of random-variable outcomes. One might
compute them, for all risk owners and M iterations, in a single step. Conversely,
one might elect to loop over the M scenarios and compute random variates on-the-fly
over each iteration. The former is typically rather more computationally efficient,
but has dramatically higher memory requirements. Our implementation employs,
given access to rather significant amounts of memory in our server environment, the
former strategy. The function simulateX returns the numpy array, dX∈ R

N×M.
With M = 1,000,000 and assuming roughly 600 individual risk-owners, the result
is an array with in excess of 500 million elements. This is clearly memory intensive
and its proper use requires caution.60

The exceptional amount of memory required by this approach explains the
necessity of repeating the V repetitions of the M iterations. Since each simulation
is, by construction independent, these V repetitions can be collected together by
averaging the individual results. This is essentially a computational trick to permit
the requisite amount of total simulations—to obtain convergence—within system
constraints. The results of each repetition are stored in the Python ecObj dictionary
object at each step in the loop; the ecObj is then used to perform the averaging. V
repetitions of M iterations also provides the possibility of computing the variability
of one’s estimator. This notion of uncertainty is a key input into the, practically
essential, custom of computing error bounds on one’s simulation estimates. This
aspect will be discussed in the next section when we address model convergence.

Algorithm 4.1 (Building our state variables) N, J, and M are the number of credit obligors,
systemic variables, and simulations, respectively. myA and myB are the systemic weights, BMat
are the factor loadings, cholMat is the Cholesky decomposition of the correlation matrix (i.e.,
�), and myNu is the t-distribution degrees-of-freedom parameter. Finally, myModel is a flag to
determine the underlying model.

de f simulateDX (N, M, J , myA, myB, BMat , cholMat , myModel , myNu) :
i f myModel == ’ i ’ : # I n d e p e n d e n t d e f a u l t

dX = np . random . normal ( 0 , 1 , [N,M] )
e l i f myModel == ’ g ’ : # Gauss i an− t h r e s h o l d

dZ = np . do t ( np . random . normal ( 0 , 1 , [M, J ] ) , cholMat . T )
dW = np . random . normal ( 0 , 1 , [N, M] )
dX = np . t i l e (myA, [M, 1 ] ) . T∗np . do t ( BMat , dZ . T ) + \

np . t i l e (myB, [M, 1 ] ) . T∗dW
e l i f myModel == ’ t ’ : # t−t h r e s h o l d

dZ = np . do t ( np . random . normal ( 0 , 1 , [M, J ] ) , cholMat . T )
dW = np . random . normal ( 0 , 1 , [N, M] )

60 Depending on the computer implementation, this can requires 20 to 40 gigabytes of cache
memory. A memory flood is the typical punishment for a poor choice of N.
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W = np . s q r t (myNu/ np . t i l e ( np . random . c h i s q u a r e (myNu , M) , (N
, 1 ) ) )

dX = np . m u l t i p l y (W, np . t i l e (myA, [M, 1 ] ) . T∗np . do t ( BMat ,
dZ . T ) \

+ np . t i l e (myB, [M, 1 ] ) . T∗dW)
r e t u r n dX

No fixed simulation seed is employed in the generation of the random numbers.61

The intention of production implementation is not to generate reproducible results,
but rather to run a sufficient number of simulations to attain a reasonable degree
of convergence. Such an approach requires true randomness.62 Additionally, at
this point, no attempts have been made to introduce variance-reduction techniques.
This is not due to the inefficiency of such approaches, but it is instead motivated
by a desire to avoid complicating an already complex implementation. Variance-
reduction techniques are, at their essence, mathematical tricks. The cost of such
tricks is often complexity and difficult-to-follow code solutions. Optimally, one
would employ both approaches, but clarity of implementation takes precedence.63

Figure 4.10 indicates that the runSimEngine involves two separate embedded
loops: one for the specific model and the other for the repetition. The first two
function calls, simulateDX and getK, take the model iteration, j, as an input
argument. This is because, as mentioned, these aspects of the simulation algorithm
depend on the model. The remaining function calls are basically agnostic about
the underlying model. They operate, in the same manner, irrespective of the model
choice.

Algorithm 4.2 (Default and migration indicators) N, q, and M are the number of credit obligors,
credit-rating states, and simulations, respectively. dX is the matrix of threshold state variables while
K denotes the thresholds.

de f c o m p u t e C r e d i t E v e n t s (N, M, q , dX , K) :
d I = np . l e s s (dX . T , K[ : , −1]) . T # D e f a u l t i n d i c a t o r s
mI = np . empty ( [ N, M] , d t ype =np . f l o a t 6 4 ) # M i g r a t i o n

i n d i c a t o r s
f o r m i n range ( 0 , M) :

mI [ : , m] = np . sum ( np . t i l e (dX [ : , m] , ( q , 1 ) ) . T<K, 1 )
r e t u r n dI , mI

Algorithm 4.2 is called computeCreditEvents; it returns two N×M numpy
arrays of default and migration indicators. These are referred to dI and mI, respec-

61 See Fishman [15, Chapter 7] for more background on the notion of a simulation seed.
62 Or, at least, as close to pure randomness as can be achieved using computer-based simulation.
63 Importance sampling techniques such as those introduced by Glasserman and Li [16] work rather
naturally in the default-risk setting—see also Bolder [5, Chapter 8]—but it is rather difficult to
(easily) extend these ideas to joint consideration of random recovery and migration risk.
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tively. dI—readily computed in a single line—is essentially a matrix of zeroes
and ones. A one indicates a default event, whereas a zero denotes survival. Given
the relatively low incidence of default—as evidenced by the generally low one-
year probabilities of default—dI is mostly comprised of zeroes. Under the current
portfolio composition and parametrization—and assuming M = 1,000,000—only
slightly more than three million of 500 million (or so) elements in dI are assigned
a non-zero value. By any measure, this is a sparse matrix.

The migration indicator adds up, across the rows, the creditworthiness index
outcomes less than each obligor’s fixed threshold. This sum leads to an identification
of the new credit state. This computational trick avoids having to perform a more
tedious, and time-consuming, case-by-case identification of each new credit state.
Instead of zeros and ones, mI consists of the new credit-state outcomes after
migration. By their construction, the mI outcomes will also include the default
events. Default is, after all, simply a special case of migration.64 For this reason,
we need to use both dI and mI when computing migration losses to exclude the
default losses, which require separate handling.

Algorithm 4.2 indicates that the migration indicator is computed with a loop
over each of the M iterations. This would appear to be a rather slow and inefficient
approach to this problem. It is, indeed, possible to compute the migration indicator
in a single step as follows:

mI=np.sum(dX.reshape((n,M,1))<K.reshape((n,1,q)),axis=2)

(4.4)

While convenient and succinct, this approach can, for large values of M, lead
to run-time errors. The reason is its fairly extreme memory consumption. For
relatively small numbers of iterations—that is, for M < 200,000—it provides a
significant increase in computational speed. At M ≈ 1,000,000, given our hardware,
it can unfortunately generate memory errors. Understanding this fact, the base
implementation employs the less elegant loop over M employed in Algorithm 4.2.

Algorithm 4.3 provides the Python code associated with the compute
MigrationLoss function. The implementation is fairly transparent. An N × M
array, termed mLoss, is populated with the migration losses for each risk owner
across each individual stochastic scenario. c represents the risk-owner exposure,
while dSpread is the modified spread-duration proxy. deltaS is the spread
movement determined with the use of mI. The overall migration loss (or gain)
is thus simply the product of the spread duration, spread movement, and credit
exposure; a small condition ensures that this computation vanishes in the event of
default.

64 Instead of taking the value of one as in dI, however, default amounts to migration into the 21st
(i.e., default) credit state.
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Algorithm 4.3 (Computing migration losses) dI and mI are the matrices of default and migration
indicators. sprd includes the credit-spread levels for each rating class, S0 are the credit ratings,
dSpread are spread durations, and c are the credit exposures.

de f com pu t eM i g ra t i onLoss ( dI , mI , sprd , S0 , c , dSpread ) :
N, M = mI . shape
mLoss = np . z e r o s ( [ N, M] ) # M i g r a t i o n l o s s e s
f o r m i n range ( 0 ,M) :

d e l t a S = s p r d [ mI [ : ,m] . a s t y p e ( i n t ) −1,1]− s p r d [ S0−1 ,1] #
Spread movement

mLoss [ : ,m] = (1− dI [ : ,m] ) ∗dSpread ∗ d e l t a S ∗c
r e t u r n mLoss

The final key function in the simulation engine is computeDefaultLoss.
The Python code is found in Algorithm 4.4. If we had opted to generate an N × M
array of recovery outcomes, then this entire computation could be performed in a
single line. This is not the most reasonably approach since it requires sampling,
irrespective of the default outcome, a stochastic recovery value for all outcomes.
Generating a huge number of beta-distributed random variates—and making use of
only about a very small fraction of them—is conceptually wasteful and computa-
tionally expensive. Instead, therefore, the random recovery outcomes are computed
only when the default indicator takes the value of unity.

Algorithm 4.4 (Computing default losses) N and M are the number of credit obligors and
simulations, respectively. dI are the default indicators. myAlpha and myBeta represent the
recovery beta-distribution shape parameters and c are the credit exposures.

de f com pu t eD efau l t L oss (N, M, dI , myAlpha , myBeta , c ) :
dLoss = np . empty ( [ N, M] , d t ype =np . f l o a t 6 4 ) # D e f a u l t l o s s e s
f o r m i n range ( 0 , M) :

I = np . where ( d I [ : , m] > 0) # Subse t o f d e f a u l t e v e n t s
i f no t i s_em pt y ( I ) :

l o s s G i v e n D e f a u l t = 1−np . random . b e t a ( myAlpha [ I ] ,
myBeta [ I ] )

dLoss [ I , m] = c [ I ]∗ l o s s G i v e n D e f a u l t
r e t u r n dLoss

The two loops for computing migration and default losses, summarized in
Algorithm 4.2 to 4.4, are responsible for the vast majority of the computational
effort. Looping over millions of iterations is bound to be time-consuming.65 It is,
of course, possible within Python to avoid the necessity of looping. Algorithm 4.5
presents an alternative implementation—combining all of the previous algorithms—
via vectorization.66 This provides a significant speed (and readability) improvement

65 With a non-compiled, interpreted programming language such as Python, this is an extremely
sub-optimal implementation decision.
66 Vectorization is a generic term—which may mean slightly different things depending on the
context—that basically refers to the performance of a looped operation in a single step.
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for lower numbers of iterations, but it has a tendency to create memory problems as
we increase M into the neighbourhood of one million or more.67

Algorithm 4.5 (Computing migration and default losses) N, q, and M are the number of credit
obligors, credit-rating states, and simulations, respectively. dX and K are the state variables and
thresholds. sprd include the credit-spread levels for each rating class, S0 are the credit ratings,
dSpread are spread durations, and c are the credit exposures. myAlpha and myBeta represent
the recovery beta-distribution shape parameters.

de f c a l c u l a t e L o s s e s (N, M, q , dX , K, sprd , S0 , dSpread , c , myAlpha
, myBeta ) :
mLoss = np . z e r o s ( ( N, M) ) # M i g r a t i o n l o s s e s
dLoss = np . z e r o s ( ( N, M) ) # D e f a u l t l o s s e s
# C o n s t r u c t i n d i c a t o r s
mI = np . sum ( dX . r e s h a p e ( ( N, M, 1 ) ) < K. r e s h a p e ( ( n , 1 , q ) ) ,

a x i s =2)
d I = np . e q u a l ( mI , q )
# M i g r a t i o n l o s s e s
d e l t a S = s p r d [ mI−1, 1]− s p r d [ S0−1, 1 ] [ : , None ]
mLoss = (1− dI ) ∗dSpread [ : , None ]∗ d e l t a S ∗c [ : , None ]
# D e f a u l t l o s s e s
I = np . where ( d I > 0 )
i f no t i s_em pt y ( I ) :

I_n , I_M = I
l o s s G i v e n D e f a u l t = 1−np . random . b e t a ( myAlpha [ I_n ] , myBeta [

I_n ] )
dLoss [ I_n , I_M ] = c [ I_n ]∗ l o s s G i v e n D e f a u l t

r e t u r n mLoss , dLoss

The decision on the specific algorithm used in the computation of default and
migration losses—either by loop or in one step—is governed by the lowMemory
configuration flag identified in Table 4.1. Depending on the memory constraints of
the specific hardware set-up, it has proven rather useful to be able to toggle back
and forth between these two extremes. When using parallel-processing techniques,
for example, memory is a scarce resource and, consequently, the lowMemory flag
is typically set to one.

Once the migration and default losses are computed, the remainder of the
computation involves simply collection of results, ordering, and computation of the
risk metrics. The ecObj dictionary has three main fields: expected losses, risk-
owner-level economic-capital allocations, and risk-owner-level standard errors. The
first two elements are computed and assigned to every iteration over V. The standard
errors, centrally important to the computation of confidence intervals for our risk-
owner economic-capital allocations, can only be determined once all V looping
iterations are complete. It is simply the risk-owner-wise standard deviation of the

67 The actual location of the upper bound on M depends, of course, on the amount of cache
memory available on one’s computation server. It will vary by the server’s configuration—these
observations are predicated on a test server with 48 gigabytes of random-access memory.
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allocations.68 With a fully populated ecObj, the fourth step in Fig. 4.7 is readily
performed, thus completing the simulation algorithm.

Colour and Commentary 49 (MEMORY VS. PROCESSORS): In any compu-
tational setting, random access (or cache) memory and processing power are
scarce resources. In an ideal world, of course, one would have an extremely
generous amount of both. In the real world, this utopic ideal is unattainable.a

Practically, however, these two quantities may act in competing, or perhaps
less obvious, ways. This manifests itself, in our implementation, through the
choice of M and V. A large setting of M needs to be offset with a lower choice of
V. Such a strategy will generally involve significant consumption of memory,
but underuse of processors. A lower M permits a larger V, but inverts the
importance of memory and processor resources. Related to this point is also
the code implementation: should one, for example, vectorize the code or use
an iterative looping strategy or a bit of both? Finding the appropriate trade-
off along these dimensions requires trial-and-error investigation and varies by
one’s hardware choices. These questions are intimately related to the critical
question of model convergence addressed in the following section.

a At least, it is not attainable for a reasonable price.

4.5 Convergence

Stochastic simulation is a legitimate technique for the estimation of any industrial
credit-risk economic-capital model, but an open question remains. How many
individual simulations are required to ensure a satisfactory level of convergence?
Irrespective of the number of simulations, the credit-risk economic-capital esti-
mations will differ with each computation. The key is the magnitude of the
deviation. Adequate convergence, from a pragmatic perspective, basically means
that the difference between consecutive estimates is relatively small.69 The level of
acceptability of these differences is thus less a mathematical question and more of
an economic one.

68 Naturally, for the result to be meaningful—and this is probably somewhat debatable—-we
require that V be larger than about 20 or so.
69 McLeish [29] is an excellent source for the use of simulation methods in a financial setting.
Bolder [5, Chapter], and its associated references, provides some additional colour on the credit-
risk problem.
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Fig. 4.11 Theoretical simulation error function: This figure illustrates the theoretical relationship
between total simulations and convergence error. Although in specific problems, the rate of
convergence may slightly deviate, simulation error tends to zero at the speed of 1√

M
. We refer to

this as O
(

1√
M

)

convergence; it is a bit depressing to compare it to linear or quadratic convergence.

Optimization of a stochastic-simulation code implementation, in general,
involves one of two alternative approaches:

1. (SOFTWARE) the use of mathematical techniques to reduce the variance of the
simulation estimate; or

2. (HARDWARE) the clever application of more computational power—that is,
additional processing power and random-access memory—to the problem.

Naturally, it is entirely possible to appeal to both solutions. It is, nevertheless, sensi-
ble to keep these two aspects, from a conceptual perspective, separate. The following
discussion directly tackles the second issue using raw stochastic simulation.

Let us begin with the theoretical relationship between the total number of M
independent simulations and convergence. Simulation error tends to zero at the

speed of 1√
M

; we refer to this as O
(

1√
M

)

convergence. Figure 4.11 provides a

visualization of the rate of error convergence to zero. In a word, it is slow. To
reduce the error in half, for example, it is necessary to increase the total number
of simulations by a factor of four.70 A natural question is: why would one use a
technique with such a painfully slow level of convergence? The answer is that the
convergence rate of stochastic simulation, unlike other much faster techniques, is
independent of the problem dimension. Our multivariate t-threshold model simply
cannot be solved using faster grid-based numerical-integration techniques. Despite

70 Contrasting this with (appreciably faster) linear and quadratic convergence in Fig. 4.11 is not
terribly fun.
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faster convergence rates, such methods regrettably fail miserably for dimensionality
greater than about three or four.71

Despite our theoretical understanding of the convergence rate, each problem is
slightly different. Accordingly, an assessment of the relative uncertainty for one’s
simulation problem is required. Such an assessment can typically—for problems
such as ours without a readily manipulated analytic form—only be acquired by
actually running the simulation multiple times in different ways. If one runs a
simulation, say V times, then the standard deviation of these V simulation outcomes
is a useful uncertainty measure. Experimentation is thus the central point around
which one may measure the uncertainty of our simulation estimates—it will also
form the backbone of the remaining sections of this chapter.

4.5.1 Constructing Confidence Bands

To evaluate our experiments, we require a bit of statistical machinery. How, for
example, might one employ the standard error of our (portfolio and obligor-level)
simulation estimates to produce a sensible and reliable confidence interval? The
answer to this question is based on the theory of sums of independent random
variables; that is, the central limit theorem.72 This can be described in full generality,
but we will specialize it for our purposes.

Our first object of interest is the credit-risk economic capital at a given point
in time, which we will denote as P . This is a random variable whose value is
never truly known, but only observed with measurement (i.e., simulation) error. We
construct V independent (noisy) observations of P , which we’ll refer to as P̂v for
v = 1, . . . ,V.73 Using these, we may construct the following estimator

P̄ = 1

V

V
∑

v=1

P̂v. (4.6)

71 This depressing fact—an example of Bellman [2]’s curse of dimensionality—remains despite
enormous increases in computational efficiency in recent decades.
72 See Durrett [11] for a variety of flavours of this important probabilistic result.
73 Each P̂v is, for completeness, constructed as

P̂v = 1

M

M
∑

m=1

P̂m,v, (4.5)

for v = 1, . . . ,V. This is a key benefit of simulation techniques: we may construct our own
experiments through the choice of V and M.
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P̄ is our estimator for the unknown P . That is, for a given value of M, we compute a
simulation-based portfolio credit-risk economic capital estimate, P̂v . We then repeat
this V times and construct Eq. 4.6. The key question is: how good is P̄ ?

P̄ is, most importantly for this exercise, the (normalized) sum of a sequence of
independent random variables; which is, of course, itself also a random variable.
The central-limit theorem, very loosely, holds that the probability law of such sums
tends towards the normal distribution. To exploit this fact and to be able to say
something about our confidence of this estimate, however, we first need to compute
the standard error of the measurement. We define it as,

sP =
√

√

√

√

V
∑

v=1

(Pv − P̄ )2

V− 1
. (4.7)

This quantity is thus the simple standard deviation of our estimator in Eq. 4.6.
Clearly the larger the value of V, the sharper the estimate in Eq. 4.7.

The associated γ confidence interval for P is now simply

P̄ ± T−1
V−1(1 − γ )

sP√
V
, (4.8)

whereT−1
V−1(1−γ ) is the inverse Student-t distribution with V−1 degrees of freedom

evaluated at the given level of confidence, γ .74 If we set γ = 0.90, then we have
built a 90% confidence interval for P̄ .75

We are also interested in obligor-level economic capital allocations. Define the
(unknown) random vector of the N risk-owner-level credit-risk economic capital
values as,

C =
⎡

⎢

⎣

C1
...

CN

⎤

⎥

⎦ . (4.9)

It follows immediately that

P =
N
∑

n=1

Cn. (4.10)

74 The t distribution arises due to the need to offset the bias arising from our potentially small-
sample estimate of the volatility of P̄ . As V gets reasonably large, this converges to the Gaussian
distribution permitting replacement of T−1

V−1(·) with �−1(·).
75 In other words, the idea is that with a 90% level of confidence the true P will lie within the
interval described in Eq. 4.8.
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This necessary link between the risk-owner and portfolio levels is ensured by the
risk-attribution methodology introduced in Chap. 2.

Since vector C is unknown, we play the same game as before. For a given M,
we construct V estimates of C, which we will refer to as Ĉv for v = 1, . . . ,V. Our
estimator for C is thus

C̄ = 1

V

V
∑

v=1

Ĉv, (4.11)

= 1

V

V
∑

v=1

⎡

⎢

⎣

Ĉ1,v
...

ĈN,v

⎤

⎥

⎦ ,

=
⎡

⎢

⎣

C̄1,v
...

C̄N,v

⎤

⎥

⎦ .

Allowing us to define the following standard-error economic-capital allocation
vector as,

sC =
⎡

⎢

⎣

sC1
...

sCN

⎤

⎥

⎦ , (4.12)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

1

V− 1

V
∑

v=1

(

Ĉ1,v − C̄1

)2

...
√

√

√

√

1

V− 1

V
∑

v=1

(

ĈN,v − C̄N

)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

where clearly sC ∈ R
N×1. There is nothing particularly interesting, or new, in

the risk-owner allocation computations. It is simply the multivariate version of
the portfolio result. Accordingly, the allocation-level γ confidence interval is now
simply

C̄n ± T−1
V−1(1 − γ )

sCn√
V
, (4.13)

for n = 1, . . . ,N.
It is interesting, and rather useful, to understand the link between the uncertainty

associated with each simulated economic-capital (risk-owner) allocation and the
overall portfolio value. To accomplish this, we need to gather these quantities
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together in some fashion to get to a portfolio perspective. Since we are not
weighting, but rather summing, across the economic-capital allocations, we collect
the individual volatility contributions with the following vector of ones:

ω =
⎡

⎢

⎣

1
...

1

⎤

⎥

⎦ , (4.14)

where ω ∈ R
N×1. The standard-error of the portfolio economic-capital estimate,

extracted from the individual allocations standard errors, might be postulated as,

sP
?= ωT diag(sC)ω
︸ ︷︷ ︸

N
∑

n=1
sCn

, (4.15)

The claim is that the standard error of the portfolio is simply the sum of the standard
error of the individual risk-owner allocations. This would require a fairly strong
assumption; Eq. 4.15 is tantamount to assuming that the simulation error of the
ith and j th arbitrary risk-allocations are statistically independent. The correlation
structure, to the extent one exists, relates to simulation error. Since simulation error
should be independent of the model structure, independence is not a terrible a priori
assumption. To be on the safe side, however, one should probably rewrite Eq. 4.15
as,

sP =
√

ωT cov(ĈV)ω, (4.16)

where

ĈV =
⎡

⎢

⎣

Ĉ1,1 · · · Ĉ1,V
...

. . .
...

ĈN,1 · · · ĈN,V

⎤

⎥

⎦ , (4.17)

is the full N×V set of risk-owner economic-capital allocation simulation estimates.
The practical difference between Eqs. 4.15 and 4.16 is an empirical question.

Colour and Commentary 50 (CONFIDENCE BOUNDS): Computation of
confidence bounds—due to the inherent independence of distinct simulation
runs—is a relatively straightforward calculation. Their deceptively simple
form should not, however, lead us to underestimate their importance to the

(continued)
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Colour and Commentary 50 (continued)
simulation exercise. Unadorned simulation estimates, absent an associated
assessment of their uncertainty, are of questionable usefulness to the quantita-
tive analyst. Confidence bounds, built up from simulation-estimator standard
errors, are an extremely valuable model-implementation diagnostic. It is
certainly possible to verify convergence periodically via a separate exercise,
but it is more convenient—not to mention, reassuring—to organize one’s
approach to provide daily confidence bounds. Our basic simulation approach
involving V repetitions of M iterations—for a total of V·M simulations—readily
enables the inclusion of both portfolio and risk-owner level confidence into
our collection of daily model diagnostics. The computation of standard errors
is thus not a part-time occupation, but rather an integral part of the base
daily computation. This permits ongoing assessment and oversight of model
convergence.

4.5.2 Portfolio-Level Convergence

Our first experiment involves repeated computation and comparison of simulation
results across a range of V values. We fix M = 250,000, but slowly and steadily
increase the number of repetitions, V. We begin with V = 4, for a total number
of one million simulations. We then increase V, in discrete steps, all the way up to
4000 for a total of one billion simulations. Although this is a laborious process, it
provides priceless information about our problem.

The total economic-capital estimate is the average of the individual V repetitions.
Since the actual amount of economic capital is irrelevant in this exposition, the true
economic capital value is normalized to unity.76 All of our estimates, irrespective
of the value of V, turn around this central value. As we can see in Fig. 4.12, when
V = 4, the standard deviation of this estimate—which is also referred to as standard
error—is roughly 1.5% of the true value. For V = 2000, by contrast, the standard
error falls to about 6–7 basis points.

The principal conclusion from Fig. 4.12, computed using these ideas, is that when
V ·M > 100 million or so, then we have a rather tight estimate of the total economic-
capital consumption. The 90% confidence interval has a breadth of only a few basis
points. Thus, were we interested solely in the accuracy of the overall economic-
capital estimate, a total number of simulations in and around the neighbourhood
of 100 million would look to be roughly sufficient. Again, if this was our only
objective, then we would essentially be done with our convergence analysis. In
reality, however, the model’s key output is a separate economic-capital allocation

76 This value is estimated using an irresponsibly large number of simulations.
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Fig. 4.12 Convergence analysis: The graphics highlights, for an arbitrary date in 2020, the
convergence of a normalized economic-capital estimate as a function of the number of simulation
runs, V·M. The left-hand graphic is the standard deviation of our (normalized) estimates, while the
right-hand graphic summarizes a 90% confidence interval of the total estimates.

for each individual risk owner. A useful implementation, therefore, requires a
satisfactorily high degree of convergence for each of these N obligor-level estimates.

4.5.3 Obligor-Level Convergence

Given that N exceeds about 500, attaining overall convergence is a bit more complex
than in the total economic-capital case. At the aggregate level, lots of small
differences, in different directions, will act to offset one another. At the obligor
level, this effect is less present. Working in EUR space is difficult, because of
the broad range of differences in individual risk-owner allocations. Some obligors
have economic-capital consumption in the ten of millions of EUR, whereas others
have values in the thousands; this complicates comparison. A bit of structure—and
normalization—is thus required. Using our previous methodology, we may easily
compute γ confidence interval as,

⎛

⎜

⎜

⎜

⎝

C̄n − T−1
V−1(1 − γ )

sCn√
V

︸ ︷︷ ︸

Lower bound

, C̄n + T−1
V−1(1 − γ )

sCn√
V

︸ ︷︷ ︸

Upper bound

⎞

⎟

⎟

⎟

⎠

, (4.18)

for n = 1, . . . ,N. Examination of Eq. 4.18 reveals rather clearly that the breadth
of the confidence interval is easily calculated. Dividing this breadth by the original
point estimate provides a reasonable assessment of the range of worst-case percent-
age error associated with a given simulation. Specifically, we propose the following
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Fig. 4.13 Percentage risk-owner allocation errors: The preceding graphics display—for 250
and 1 billion simulations, respectively—the percentage risk-owner allocations for each of the N
estimates. In all cases, the confidence level is γ = 0.90.

measure of individual obligor-level convergence

εn = 1

C̄n

Width of confidence interval
︷ ︸︸ ︷
⎛

⎜

⎜

⎜

⎝

(

C̄n + T−1
V−1(1 − γ )

sCn√
V

)

︸ ︷︷ ︸

Upper bound

−
(

C̄n − T−1
V−1(1 − γ )

sCn√
V

)

︸ ︷︷ ︸

Lower bound

⎞

⎟

⎟

⎟

⎠

, (4.19)

=
2 · T−1

V−1(1 − γ )
sCn√
V

C̄n
.

The normalization of each confidence-interval breadth by the overall estimated
allocation permits us to compare small and large estimates on equal footing. Let’s
call it the percentage economic-capital allocation error.

Figure 4.13 employs our newly minted percentage economic-capital allocation
error measure, defined in Eq. 4.19, to illustrate the range of outcomes for 250
million and one billion total simulations. In both cases, the confidence level is
90%. The fourfold increase from the left- to right-hand graphics cuts, by O

(

1√
M

)

convergence, the breadth of the confidence interval in half. Even in the 250 million
simulation case, the error bound rarely deviates from the mid-point by more than a
few percentage points. This implies a relatively tight estimate for the majority of the
risk-owner allocations.

Table 4.2 provides a broad range of summary statistics for our error terms. The
average percentage confidence-interval width is greater than 50% with one million
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Table 4.2 Convergence statistics: This provides a broad range of summary statistics for the
εn measure—across all risk owners—introduced in Eq. 4.19 where γ = 0.90. In particular, it
demonstrates the rate of convergence for increasing total numbers of simulations. All values are
denoted in basis points.

Statistic 1M 10M 25M 50M 100M 250M 500M 1000M

Mean 55.4 17.3 10.9 7.7 5.5 3.4 2.4 1.7

Weighted-mean 37.0 11.7 7.4 5.2 3.7 2.3 1.7 1.2

Median 44.4 13.9 8.8 6.4 4.5 2.8 2.0 1.4

Maximum 260.0 58.7 42.8 28.8 20.4 12.9 8.9 6.4

Minimum 4.9 1.4 1.0 0.7 0.5 0.3 0.2 0.2

Volatility 40.2 10.1 6.4 4.5 3.1 2.0 1.4 1.0

IQR 37.2 10.7 7.3 4.8 3.5 2.2 1.5 1.1

simulations.77 This is dramatically far from convergence. Increasing the simulations
by a factor of 100 leads, as expected by theory, to a roughly tenfold decrease in the
error estimate.

The mean error estimate is useful, but it is rather sensitive to outliers and,
perhaps more importantly, it treats all economic-capital allocations equally. In
real-life portfolios, it is typical for a relatively modest proportion of exposures to
drive a significant part of the overall risk in one’s portfolio.78 Getting the large
allocations correct is thus, all else equal, more important than getting them all
right.79 Percentage error can be economically misleading when applied to small
allocations. A large percentage confidence interval to a vanishingly small allocation
does not create, from an economic perspective, the same level of concern as
even moderate uncertainty in a large individual contribution estimate. It is thus
encouraging to observe that the weighted-average percentage confidence-interval
width is systemically smaller than the simple average. This strongly suggests the
convergence uncertainty is lower in large allocations.

Examination of Table 4.2 in more detail also reveals that extreme errors—as
measured by the minimum and maximum—as well as error volatility are also a
predictably decreasing function of the number of simulations. This provides comfort
that the overall implementation and convergence behaviour are consistent with our
theoretical expectations.

Figure 4.14 provides a second perspective on Fig. 4.13 by ordering the errors
estimates by the magnitude—measured in terms of standard deviations from the
average allocation—of the underlying economic-capital estimate and the internal
PD class, respectively. Clear patterns are evident. The confidence bound appears to

77 On a median or weighted-average basis, it is somewhat lower, but still generally unacceptably
high.
78 This appears to be a practical example of the so-called Pareto principle, or 80-20 rule, which
holds that about 80% of the results come from 20% of the causes. This is perhaps a bit too precise,
but the general principle often holds, at least approximately.
79 If you really had to choose, you would presumably like to get them all about right.
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Fig. 4.14 Organizing risk-owner allocation errors: The preceding graphics provide a second
perspective on Fig. 4.13 by ordering the percentage confidence-interval breadths by the magnitude
of the economic-capital estimate and PD class, respectively. In general, the larger the allocation,
the lower the overall error. Conversely, high-quality credit-allocation estimates are noisier than
their lower-quality compatriots. These values were computed with 250 million simulations and
γ = 0.9.

be a decreasing function of the size of the economic-capital allocation. Logically,
this is presumably due to the fact that these larger exposures are more consistently
represented in the tails of the loss distribution. The corollary is that the least precise
estimates occur predominately among the smallest allocations. We may thus, fairly
confidently, conclude that at around 250 million simulations, the largest (and thus
most important) allocations receive a satisfactorily tight estimate.

In the right-hand-side of Fig. 4.14, there appears to be a trend towards improve-
ment in simulation accuracy as we move down the credit spectrum. A bit puzzling
at first, this is a feature of the credit-risk problem. Default probabilities increase
roughly exponentially as we move from PD classes one to 20. The incidence of
default in our simulation model is thus markedly higher for a PD13 than for a
PD04 credit obligor. Not only is the incidence of default higher, but this permits
more frequent draws from the random recovery distribution. The combination of
these elements should help to yield less noisy estimates at the lower end of the
credit scale. High-quality credit obligors get hit along both dimensions; there is
a low prevalence of default and correspondingly fewer draws from the recovery
distribution. Although it is structurally more difficult to generate tight economic-
capital estimates of high credit-quality risk owners, Fig. 4.14 suggests that this effect
is relatively constrained in our case.

4.5.4 Computational Expense

This brings us back to our original two solutions to this problem: brawn or
brains. To this point, we have relied on brawn, but have said relatively little about
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Table 4.3 Single-processor speed: This table summarizes six different combinations of M and V
values each leading to a total of 100 million overall simulations. Only a single processor is employed
in these calculations. The time involved in these computations range from 23 to about 30 hours.
Results range from 800–1000 ms per individual simulation run.

Quantity Simulation perspective

M 100,000 500,000 1,000,000 2,000,000 3,000,000 4,000,000

V 1000 200 100 50 33 25

M · V 100,000,000

Hours per V 0.03 0.12 0.24 0.50 0.81 1.09

Hours per M · V 29.7 23.2 24.1 24.9 27.0 27.3

Microseconds per m ∈ M · V 1068 836 866 895 971 981

computational cost. It is useful to understand precisely how much brawn we are
taking about. The reader, when examining Fig. 4.12, may have been a bit shocked
to observe a billion total simulations. This is, by almost any standard, a ridiculous
amount of computational effort. The natural question follows: is it reasonable, or
even feasible, to regularly incur such a dramatic amount of computational expense?
This query cannot, of course, be answered without some review of the computation
times.

It is difficult to discuss calculation speeds without reference to hardware choices
and one’s computational strategy. A server environment with 48 virtual processors
and 256 gigabytes of cache memory was configured for testing purposes.80 In brief,
this is a fairly powerful set-up that permits a performance of a significant number of
simulations in, hopefully, reasonably short time periods.

We follow two alternative computational strategies: single and multiprocessing.
Let us begin with the single-processor approach. Six different combinations of M
and V settings were selected, each leading to a total of M · V = 100 million
overall simulations. On one end of the spectrum, we consider 1000 V repetitions
of M = 100,000 iterations. On the other end, instead of many repetitions of a small
number of iterations, we consider V = 25 repetitions of four million iterations.
Naturally, as we increase M, there is an increased memory burden. It was not possible
to reliably use an M greater than about 4,000,000 without program failure due to
memory errors.81

The results are rather disappointing. Table 4.3 summarizes a variety of statistics
related to this single-processor experiment. The time required for each of these
computations ranges from 23 to about 30 hours. This translates into 800–1000 ms

80 Each individual CPU is relatively small with a clockspeed of roughly 2.1 gigahertz (GHz).
Although it is difficult to compare processors strictly by their clock speed, it is a rough
measurement of processor capacity. Most modern i7 chips, as a point of comparison, have clock
rates in excess of 3 GHz.
81 numpy arrays do not appear to have any explicit size limits, but, by trial and error, we found that
array operations are somewhat fragile when operating on the boundaries of memory consumption.
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Table 4.4 Multi-processor speed: This table fixes M at 250,000 and considers increasing levels
of V covering a range from one million to one billion total simulations. 35 separate processors are
employed in these calculations. The time involved spans six minutes to about 13 hours; this amounts
to 50–300 ms per individual simulation run.

Quantity Simulation perspective

M 250,000

V 4 40 100 200 400 1000 2000 4000

M · V (millions) 1 10 25 50 100 250 500 1000

Hours per V 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Hours per M · V 0.1 0.2 0.4 0.7 1.4 3.3 6.5 12.8

Microseconds per m ∈ M · V 288 68 53 51 49 48 47 46

per individual simulation run.82 In all cases, therefore, each simulation experiment
requires literally one full day. Given that 100 million simulations, from our previous
analysis, is at lower end of what is necessary to achieve a minimally acceptable level
of uncertainty, the single-processor strategy does not appear to be viable.

The multiprocessor approach, as the name suggests, involves making practical
use of the 48 cores available on our testing server. Employing the Pool functional-
ity from Python’s multiprocessing library, 35 of 48 processors were employed
for this experiment.83 There is certainly much more to the implementation of
parallel processing—and many alternative platforms and strategies—but a detailed
discussion would take us quite far afield.84 The practical consequence is a slight
reorganization of the code implementation, but it remains largely similar and
eminently readable.

The second multiprocessor, or parallel processing, experiment holds the value of
M fixed at 250,000. Larger, or smaller, values are possible, but this appears—within
current memory constraints—to a rather sensible setting.85 With fixed M, we then
gradually increase the value of V to raise the total number of simulations. V = 4, for
example, yields only one million simulations, whereas setting V to 4000 brings us
back to our one billion total simulations.

Table 4.4 summarizes the, much more encouraging, results of this second
exercise. The amount of simulation time has been considerably reduced. One
hundred million total simulations requires less than 90 minutes, whereas the fastest

82 A microsecond is one millionth of a second.
83 More processors can, of course, be employed, but practical testing revealed that, to avoid
memory errors, it is sensible to not use all available processors.
84 A good introduction—within the context of the Python programming language—into this field
of endeavour is Zaccone [40].
85 Setting M to a larger value, for example, requires more memory and, to respect the overall
constraint, can only be accommodated by using fewer cores. This, in turn, essentially defeats the
purpose of using multiple processors. On the other hand, if M is too small, we need more processors
to accommodate all of the resulting effort. We’ll return to the (pseudo-optimal) selection of M in
the next section.
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Fig. 4.15 Convergence-time trade-off : This graphic provides visual insight into the trade-off
between simulation accuracy, or degree of convergence, and the amount of required computational
time. As previously discussed, simulation errors go to zero at roughly the same speed of 1√

M
, while

the computational costs increase linearly.

single-processor implementation from Table 4.3 required close to 24 hours. This
represents a roughly 17-fold increase in computational speed. Why, we might
legitimately ask, if we use 35 processors instead of just one, do we not see
speed increases on the magnitude of 35? The reasons relates to the overhead
associated with multiprocessing. Upfront costs are involved in partitioning the work
to various processors, while back-end costs are required to redistribute the results
to our ecObj object. We can think of these as fixed costs associated with parallel
processing. This explains the steady decrease in microseconds for each individual
simulation in M ·V; as we increase V, we are spreading the fixed costs among a larger
number of repetitions. The inherent overhead, therefore, explains implementation
improvements on the order of 20 times rather than 30.

Although parallel processing permits pronounced reductions in computational
expense, it does not come entirely for free. Total simulations in the neighbourhood
of 250 to 500 million—which appear, based on the previous analysis, to be roughly
necessary for manageable levels of convergence—require between about 4–7 hours
of computational time.86

Figure 4.15 attempts to visually describe this practical trade-off between level
of convergence, or accuracy, and computational time. There is something of a
mismatch between computational time and noise reduction: as previously discussed,
simulation errors go to zero at roughly the same speed of 1√

M
, while the computa-

tional costs increase linearly. To cut the simulation noise in half, to view this from a
depressing standpoint, four times more computational expense is incurred.

86 This, of course, only applies on this relatively small test server. In our production setting, using a
reasonably high performance hardware set-up, the computational time associated with 500 million
simulations is roughly 90 minutes.
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Colour and Commentary 51 (CONVERGENCE REQUIREMENTS): Simula-
tion techniques admirably manage high dimensionality, but do so relatively
slowly. Simulation can definitely be cast in the role of the tortoise in Aesop’s
legendary fable.a Cutting simulation errors in half requires a quadrupling of
one’s computational efforts. At a reasonable tolerance for error, our credit-
risk economic-capital model requires somewhere between about 250 and 500
million simulations to obtain acceptable levels of convergence. While we
admire the tortoise’s perseverance, we are nonetheless interested in ways to
speed him up. Our strategy to manage this challenge is threefold. First, the
code implementation makes use of parallel-processing techniques to actively
employ available computing resources. Second, investment in memory and
processors has been made through a powerful computational server. Third,
and finally, standard error estimates are produced daily for all models and
individual allocations. The combination of these elements permits timely
and affordable computations along with continuous oversight of convergence
performance.

a For a serious discussion of the tortoise, the hare, and their much celebrated race, please
see Jacobs and Heighway [22].

4.5.5 Choosing M

So far, we have typically set M = 250,000 and used V to achieve the desired number
of total simulations. It turns out that the results are not invariant to the choice of M.
To understand why, we need to return to our underlying credit-risk economic capital
metric: expected shortfall. Discussed in detail in Chap. 2, it is the average loss at and
beyond a given quantile, α. Setting M = 100,000 and α = 0.99 means that we will
have

(1 − α) · M = (1 − 0.99) · 100, 000, (4.20)

= 1000,

available tail observations to inform our expected shortfall estimate. This is more
than sufficient to construct a robust estimator of one’s expected-shortfall measure.

At a confidence level of α = 0.9997, we are operating quite far out in the tail
of the loss distribution. Table 4.5, replicating the simple arithmetic in Eq. 4.20 for
various choices of M and α, displays the sample size available for the computation of
the expected-shortfall metric. For any combination of M and α, this will be repeated
over each iteration of v = 1, . . . ,V. Using the standard setting to this point—M =
250, 000 and α = 0.9997—reveals a working sample size of 75 loss observations
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Table 4.5 Expected-shortfall estimator sample size: This table, for various choices of M and α,
displays the sample size available for the computation of the expected-shortfall metric over each
iteration of v = 1, . . . ,V. Too big and it can create resource issues. Too small and it may bias the
final credit-risk economic-capital estimates.

M α: Level of confidence

0.9900 0.9990 0.9997 0.9999

1000 10 1 0 0

10,000 100 10 3 1

100,000 1000 100 30 10

250,000 2500 250 75 25

500,000 5000 500 150 50

750,000 7500 750 225 75

1,000,000 10,000 1000 300 100

for each iteration of our simulation algorithm. While not tremendously small, it
cannot be considered enormous.

The interesting, and pertinent, question is: how do our economic-capital estimate
change as we increase M. This brings us to a final, rather industrial strength,
experiment. The idea is to fix V at 250 and consider three alternative choices of
M: 250,000; 500,000; and one million. This yields a modest total of 62.5, 125, and
250 million simulations, respectively. The catch is that each of these experiments
is then repeated K = 50 times.87 While extremely computationally intensive, this
extra work permits us to examine the distribution of our combinations of V and M.

Figure 4.16 visually summarizes the high-level results. For each choice of M,
we can construct the empirical distribution of both default and migration-risk
economic-capital estimators.88 The left-hand side graphics in Fig. 4.16 chronicle
the evolution of default risk as one moves sequentially from M = 250,000 to one
million. At M = 250,000, the values vary from the central estimate by up to about 50
basis points. As we move to M = 500,000, the dispersion visibly tightens; indeed, it
looks to be cut almost in half. At M = 1,000,000, there appears to be less volatility
relative to M = 500,000. The improvement, however, is much smaller in magnitude.
A analogous pattern is visible in the migration-risk estimates, albeit with lower
overall dispersion from the outset.89

Figure 4.16 indicates that the choice of M makes a difference in the general
uncertainty around the central estimate. Does it have an impact on the level? The
answer is yes, albeit slightly. We will take the truth of the credit-risk economic-

87 This leads to a staggering total number of 3 1
8 , 6 1

4 , and 12 1
2 billion simulations for each

experiment.
88 One might argue that K = 50 is a fairly modest sample to specify a distribution. While we
always wish for more, these estimates are not easily acquired. It took several days of computation
for each choice of M.
89 This supports the notion that migration risk, by virtue of its basic characteristics, converges more
quickly than the default side.
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Fig. 4.16 The impact of M : The graphics above examine, for a fixed V = 250, the impact of
different choices of M on the distribution of our default and migration estimators. The combination
of V and M are repeated K = 50 times and the economic-capital results are normalized to unity.
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capital value, in this exercise, to be the average across V = 250, M = 1,000,000 and
K = 50 and normalize it to unity.90 For M = 250,000, the average estimate amounts
to 0.9990. This is, by all accounts, quite close but very slightly downwards biased.
At M = 500,000, however, the estimate is one up to four decimal places. We can, of
course, play this game ad infinitum and never quite achieve perfect convergence. Our
experiment, however, clearly indicates that there is an unequivocal improvement in
both dispersion and bias reduction associated with increasing M from 250,000 to
500,000. The reason certainly stems, as highlighted in Table 4.5, from the doubling
of the expected-shortfall sample size from 75 to 150 extreme-loss observations.91

This analysis forms the original choice of M highlighted in Table 4.1 on page 246.

Colour and Commentary 52 (CHOICE OF M): Credit-risk measurement, by
virtue of the intense rarity of default, operates at the extreme edges of one’s
portfolio-loss distribution. This has practical implications for the estimation
of one’s risk metrics via simulation methods. The choice of simulation
iterations, M, and confidence level, α, directly determine the sample size
available for the estimation of expected shortfall. Should one’s sample size
be too small, the consequence is a problematic combination of noisy and
potentially downward biased estimates. Unfortunately, prescriptive directions
cannot be provided. It is necessary to periodically investigate the interaction
between various reasonable values of M and one’s estimates. Equipped with
this information, one may find the appropriate trade-off between estimate
uncertainty, bias, and computational expense.

4.6 Wrapping Up

Model implementation is a slippery and difficult business. It is where one’s real-
world portfolio definitely collides with one’s modelling structure; this is the busy
workshop floor of our economic-capital factory. Thorny questions regarding imple-
mentation infrastructure, data collection and quality control, software choice, and
staffing policy become surprisingly important. The pressure to get this right has only
intensified in recent years with an increased emphasis on model governance and
oversight. This naturally spills over into coding and documentation practice. Credit-
risk measurement has an additional level of implementation complexity. Since one
invariably employs simulation methods, model convergence is a central concern.

90 This is still not the absolute truth of our unknown random variable P , but with 12.5 billion total
simulations, it’s a pretty tight estimate.
91 The marginal impact of increasing the expected-shortfall sample size from 150 to 300, by
contrast, appears to be limited.
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This leads to an awkward, but important, tension between the need for a high level of
certainty in one’s estimates and the efficient use of (expensive) computing resources.
There are many possible solutions depending on one’s portfolio, resources, and
personal taste. Our solution, presented in the previous discussion, centres around
a parallel-processing structure that explicitly permits daily computation of standard
errors and confidence bounds at both the portfolio and obligor levels. This direct
incorporation of the model-convergence dimension into our model implementation
is entirely consistent with emerging best practice in model oversight and has served
us well.
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Part II
Loan Pricing



Chapter 5
Approximating Economic Capital

It has long been an axiom of mine that the little things are
infinitely the most important.

(Arthur Conan Doyle)

As the previous chapter makes abundantly clear, the computation of credit-risk
economic capital is, irrespective of the approach taken, computationally intensive
and slow. This is simply a fact of life. Clever use of parallel-processing and variance-
reduction techniques can improve this situation, but they cannot entirely alleviate it.
In some settings, however, speed matters. It would be extremely useful—and, at
times, even essential—for certain applications, to perform large numbers of quick
credit-risk economic-capital estimates. Two classic applications include:

• LOAN PRICING: computing the marginal economic-capital impact of adding a
new loan, or treasury position, to the current portfolio; and

• STRESS TESTING: assessing the impact of a (typically adverse) global shock
to the entire portfolio—or some important subset thereof—upon one’s overall
economic-capital assessment.

The needs of these applications are slightly different. Loan pricing examines a
single, potential addition to the lending book; not much change is involved, but
the portfolio perspective is essential.1 Time is also very much of the essence. One
simply cannot wait for 90 minutes (or so) every time one wishes to consider an
alternative pricing scenario.2 Stress-testing involves many, separate portfolio and
instrument-level calculations; significant portfolio change and dislocation generally
occurs.3 One might be ready to wait a few days for one’s stress-testing results,
but if one desires frequent, sufficiently nuanced, and regular stress analysis, such

1 Chapter 6 considers this application in much more detail.
2 Even waiting 10 minutes would (eventually) make loan originators crazy and stifle their ability
to consider a broad range of potential loan structures for their clients.
3 Chapter 12 is dedicated to the discussion of stress testing.
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slowness is untenable. To be performed effectively—albeit for different reasons—
both applications thus require swiftness.

Sadly, speed of execution is one element woefully lacking from our large-
scale industrial credit-risk economic capital model. What is to be done? Since it
is simply unworkable to use the simulation engine to inform these estimates, an
alternative is required. The proposed solution involves the construction of a fast,
first-order, instrument-level approximation of one’s economic-capital allocation.
Approximation suggests the presence of some error, but in both applications an
immediate, but slightly noisy, estimate is vastly superior to a more accurate, but
glacially slow value.

This might seem a bit confusing. The economic-capital model is, itself, a
simulation-based approximation. We would, in essence, be performing an approx-
imation of an approximation. While there is some truth to this criticism, there is
no other reasonable alternative. Failure to find a fast, semi-analytic, approximation
would undermine our ability to sensibly employ our credit-risk economic capital
model in a few important, and highly informative, applications.

Such an approach to this underling problem is not without precedent. Bolder
and Rubin [7], for example, investigate a range of flexible high-dimensional
approximating functions—in a rather different analytic context—with substantial
success. Ribarits et al. [25] present—based on Pykhtin [23]—precisely such an
economic-capital approximation for loan pricing. This work is a generalization of
the so-called granularity adjustment—initially proposed by Gordy [13]—for Pillar
II concentration-risk calculations.4 This regulatory capital motivated methodology,
while powerful, is not directly employed in our approach for one simple reason: we
wish to tailor our approximation to our specific modelling choice and parametriza-
tion. A second reason is that we will require separate, although certainly related,
approximations for both default and credit-migration risk. The consequence is that,
although motivated by the general literature, much of this chapter is specific to the
NIB setting. It will hopefully, however, stimulate ideas and provide a conceptual
framework for others facing similar challenges.

5.1 Framing the Problem

Before jumping into specific approximation techniques, let’s try to frame the
problem. To summarize, we require a fast assessment of the marginal economic-
capital consumption—at a given point in time—operating at the individual loan and
obligor level. We may ultimately apply it at the portfolio level, but it needs to operate
at the individual exposure level.5 The plan is to construct a closed-form—or, at

4 This area, an important part of the regulatory world, is covered extensively in Chap. 11.
5 A portfolio analysis would, consequently, involve summing the implications across a range of
individual positions.
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least, semi-analytical—mathematical approximation of the economic-capital model
allocations. There are, fortunately, many possible techniques in the mathematical
and statistical literature that might be useful in this regard. Broadly speaking, there
are two main approaches to such an approximation:

1. a structural description; or
2. a reduced-form—or, empirically motivated—approach.

The proposed economic-capital approximation methodology in this chapter is based,
more or less, on the former method. That said, this need not be so. The sole selection
criterion—ignoring, for the moment, speed—is predication accuracy. This suggests
that we might legitimately consider reduced-form techniques as well.

This brings us to the general approximation problem. Let us begin by defining
y ∈ R

I×1 as the vector-quantity that we are trying to approximate; this is
basically our collection of I economic-capital estimates at a given point in time.
We further denote X ∈ R

I×κ as a set of explanatory, or instrument, variables
that can act to describe the current economic-capital outcomes.6 Good examples of
instruments would include the size of the position, its default probability, assumed
recovery rate, industrial sector, and geographic region. Our available inputs thus
involve I economic-capital allocations along with κ explanatory variables for each
observation.

The (slow) simulated-based economic-capital model, f (X), is a complicated
function of these explanatory variables. Conceptually, it is a mapping of the
following form:

y ← Economic-Capital Model: f (X)+ ε ← X (5.1)

where ε is observation or measurement error.7 In words, therefore, f (X) is basically
the economic-capital model. Regrettably, we do not have a simple description of f ;
if we did, of course, we would not find ourselves in this situation! Practically, our
approximation is attempting to bypass the unknown function, f , and replace it with
an approximator. Conceptually, this replaces Eq. 5.1 with

← ←

6 In a machine-learning context, these are typically referred to as features.
7 In our case, of course, this is more readily conceptualized as simulation error.
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where we denote our approximation as f̂ (X). The trick, and our principal task
in this chapter, is to find a sensible, rapidly computed, and satisfactorily accurate
choice of f̂ . There are no shortage of potential candidates. Function approximation
is a heavily studied area of mathematics. Much of the statistics literature relating
to parameter estimation touches on this notion and the burgeoning discipline
of machine learning is centrally concerned with prediction of (unknown and
complicated) functions.8

If y is the true model output, then our approximation can be characterized as:

ŷ = f̂ (X). (5.2)

We write this value without error, which is a bit misleading. There is, quite naturally,
error associated with our new approximation. We prefer, however, to describe this
directly in comparison to the observed y. Indeed, a useful choice f̂ involves a small
distance between y and ŷ; this includes the approximation error. There are a variety
of ways to measure this distance, but one common, and useful, metric is defined as:

E

[
(

y − ŷ

)2
]

= E

[
(

f (X)+ ε − f̂ (X)

)2
]

. (5.3)

This is referred to as the mean-squared error. It is basically the average distance
between the sum of the squared approximation errors. Squaring the errors has
the desirable property of transforming both over- and underestimates into positive
figures; it also helpfully generates a continuous and differentiable error function.
The measurement error is also clearly inherited from the original (unknown)
function f . The bottom line is that we seek an approximator, ŷ, that keeps the error
definition in Eq. 5.3 at a relatively acceptable level.

With some patience, the mean-squared error can also tell us something useful
about our problem. Employing a few algebraic tricks, we may re-write the previous
expression as:

E

[
(

y − ŷ

)2
]

=
Variance

︷ ︸︸ ︷

var[f̂ (X)] +

Bias2
︷ ︸︸ ︷

(

E[f̂ (X)] − f (X)

)2

︸ ︷︷ ︸

Reducible

+ var(ε)
︸ ︷︷ ︸

Irreducible

. (5.4)

Our measure of distance between the observed and approximated economic-capital
values can be generally categorized into two broad categories: reducible and

8 There are many good references for the area of machine, or statistical, learning. A natural starting
point, however, is Hastie et al. [16]. A more introductory version of this material is found in James
et al. [17].
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irreducible error.9 Reducible error, which itself can be broken down into variance
and bias—can be managed with intelligent model selection. Irreducible error stems
from observation error; in our case, this relates to simulation noise.10 This is
something we need to either live with or, when feasible, actively seek to reduce. Bias
describes fundamental differences between our approximation and true model. We
might, for example, use a linear model to approximate something that is inherently
non-linear. Such a choice would introduce bias. Variance comes from the robustness
of our estimates across datasets. It seeks to understand how well, if we reshuffle the
cards and generate a new sample, our approximator might perform. A low-variance
estimator would be rather robust to changes in one’s observed data-set.

Statisticians and data scientists speak frequently of a variance-bias trade-off. This
implies that simultaneous reduction of both aspects is difficult (or even impossible).
Statisticians, with their focus on inference, tend to accept relatively high bias
for low variance. Machine-learning algorithms, due to their flexibility, tend to
have lower bias, but the potential for higher bias.11 The proposed approximation
model—leaning towards the classical statistical school of thought—employs a
multivariate linear regression with structurally motivated response variables. In
principle, therefore, this choice involves a reasonable amount of bias. Our credit-risk
economic-capital model is not, as we’ve seen, particularly linear in its construction.
The implicit logic behind this choice, of course, is that it provides a stable, low-
variance estimator.

Colour and Commentary 53 (APPROXIMATING ECONOMIC CAPITAL):
There is a certain irony in expending—in the previous chapters—such a
dramatic amount of mental and computational resources for the calculation of
economic capital, only to find it immediately necessary to approximate it. This
is the dark side associated with the centrality of credit-risk economic capital.
Determining the marginal economic-capital consumption associated with
adding (or changing) one, or many, loans has a broad range of useful appli-

(continued)

9 To arrive at the decomposition in Eq. 5.4, one needs to rewrite the right-hand-side of Eq. 5.3 as,

E

⎡

⎣

(

f (X)+ ε − f̂ (X)+E[f̂ (X)] − E[f̂ (X)]
︸ ︷︷ ︸

=0

)2
⎤

⎦ , (5.5)

and recall that, through independence and zero expectation, the product of ε with any term—save
itself—vanishes. The rest is expansion, simplification, and tedium. See again Hastie et al. [16] or
James et al. [17] for more detail, and useful colour, on this computation.
10 In our case, this can be controlled—albeit not without cost—by increasing the total number of
simulations. This is an important practical application of the convergence discussion in Chap. 4.
11 See Breiman [8] and Bolder [6] for more detailed background on the relative differences between
statistical and machine-learning approaches to this general problem.
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Colour and Commentary 53 (continued)
cations. Examples include risk-adjusted return computations, loan pricing,
stress testing, sensitivity analysis, and even loan impairments. The slowness of
the base simulation-based computation makes—using the simulation engine—
such rapid and flexible marginal computations practically infeasible. Their
impossibility does not, of course, negate their usefulness. As such, the most
logical, and pragmatic, course of action is to construct a fast, accurate, semi-
analytic approximation to permit such analysis. Moreover, such effort is not
wasted. Not only does it facilitate a number of productive computations, but
it also provides welcome, incremental insight into our modelling framework.

5.2 Approximating Default Economic Capital

We’ve established that we need an approximation technique that, given the existing
portfolio, can operate at the instrument level. As established in previous chapters,
there are two distinct flavours of credit-risk economic capital: default and migration.
While we need both, different strategies are possible. We could group the two
together and construct a model to approximate the combined default and migration
economic capital. Alternatively, we could build separate approximators for each
element. Neither approach is right or wrong; it depends on the circumstances. Our
choice is for distinct treatment of default and migration risk.12 As a consequence,
we’ll develop our approximators separately beginning with the dominant source of
risk: default.

5.2.1 Exploiting Existing Knowledge

As a general tenet, if you seek to perform an approximation of some object, it
is wise to exploit whatever knowledge you have about it. Specific qualities and
attributes about the economic-capital model can thus help inform our approximation
decisions. We know that our production credit-risk model is a multivariate t-
threshold model. We also know that threshold models essentially randomize the
conditional probability of default—and thereby induce default correlation—through
the introduction of common systemic variables.13 Extreme realizations of these
systemic variables push up the (conditional) likelihood of default and dispropor-

12 We’ll defend this choice later in the discussion, once we’ve built a bit more understanding of the
general approximation approach.
13 See Bolder [5, Chapter 4] for more colour on the global properties of threshold models.
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tionately populate the tail of any portfolio’s loss distribution. This link between
systemic factors and tail outcomes seems like a sensible starting point.

This brings us directly to the latent creditworthiness state variable introduced in
Chap. 2. To repeat it once again for convenience, it has the following form:

�Xi =
√

ν

W

(

αiBi�z+
√

1 − α2
i �wi

)

, (5.6)

for i = 1, . . . , I . For our purposes, it will be useful to simplify somewhat
the notation and structure of the model. These simplifications will enable the
construction of a stylized approximator. In particular, the product of systemic
factors and their loadings is, by construction, standard normally distributed; that is,
Bi�z ∼ N(0, 1). To reduce the dimensionality, we simply replace this quantity with
a single standard normal random variable, z. Moreover, to underscore the distance
to the true model and make it clear we are operating in the realm of approximation,
let us set �wi = υi and �Xi = yi . This yields

yi =
√

ν

W

(

αiz+
√

1 − α2υi

)

, (5.7)

which amounts to a univariate approximation of our multivariate t-threshold model.
Some information is clearly lost with these actions, most particularly relating to
regional and sectoral aspects of each credit obligor. This will need to be addressed
in the full approximation.

A few additional components bear repeating from Chap. 2. The default event (i.e.,
Di ) occurs if yi falls below a pre-defined threshold, Ki = F−1

Tν
(pi) or,

IDi = I{
yi≤F−1

Tν (pi)
}. (5.8)

which allows to get a step closer to our object of interest. The default loss for the
ith obligor, L(d)

i , can be written as

L
(d)
i = IDi

γi
︷ ︸︸ ︷

(1 − Ri ) ci, (5.9)

= I{
yi≤F−1

Tν (pi)
}

︸ ︷︷ ︸

Equation 5.8

γici,

where Ri , γi , and ci denote (as usual) the recovery rate, loss-given-default, and
exposure-at-default of the ith obligor, respectively. The d superscript in Eq. 5.9
explicitly denotes default to keep this estimator distinct from the forthcoming migra-
tion case; despite the additional notational clutter, it will prove useful throughout the
following development. The magnitude of the default loss thus ultimately depends
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upon the severity of the common systemic-state variable (i.e., z and W ) outcomes.
Equations 5.6 to 5.9 thus comprise a brief, somewhat stylized representation of our
current production model.

The kernel of previous knowledge that we wish to exploit relates to the
interaction between systemic variable outcomes and the conditional probability
of default. This relationship is captured via the so-called conditional default loss.
Conditionality, in this context, involves assuming that our common random variates,
z and W , are provided in advance; we will refer to these given outcomes as z∗
and w∗. Under this approach to the problem, we can derive a fairly manageable
expression for this quantity as

E

(

L
(d)
i

∣

∣

∣ z = z∗,W = w∗)

︸ ︷︷ ︸

Conditional default loss

= E

⎛

⎜

⎜

⎜

⎝

I{
yi≤F−1

Tν (pi)
}γici

︸ ︷︷ ︸

Equation5.9

∣

∣

∣

∣

∣

∣

∣

∣

∣

z = z∗,W = w∗

⎞

⎟

⎟

⎟

⎠

, (5.10)

= P

⎛

⎜

⎜

⎜

⎝

√

ν

W

(

αiz +
√

1 − α2
i υi

)

︸ ︷︷ ︸

yi

≤ F−1
Tν

(pi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

z = z∗,W = w∗)
E(γi)ci,

= P

⎛

⎝υi ≤
√

W
ν
F−1
Tν

(pi)− αiz
√

1 − α2
i

∣

∣

∣

∣

∣

∣

z = z∗,W = w∗
⎞

⎠

E(γi)ci,

= �

⎛

⎝

√

w∗
ν
F−1
Tν

(pi)− αiz
∗

√

1 − α2
i

⎞

⎠

︸ ︷︷ ︸

pi(z
∗,w∗)

E(γi)ci,

given that υi follows, by construction, a standard normal distribution. This
expression—or, at least, a variation of it—forms the structural basis for much
of current regulatory guidance.14 Equation 5.10 also plays a central role in our
default economic-capital approximation.

To move further, we first need to be a bit more precise on the actual values
associated with our conditioning variables. Equation 5.10 applies to any loss
associated with arbitrary systemic-variable realizations. If we may select any choice
of z∗ and w∗—and we’re interested in worst-case default losses—why not pick

14 See BIS [2, 3, 4] for rather more detail. We will turn to regulatory questions in Chap. 11.
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really bad ones? Indeed, why not use the same level of confidence (i.e., 0.9997)
embedded in our economic-capital metrics, which we will generically denote as α∗.
If we seek an extreme downside observation for the common systemic risk factor, a
sensible choice is

z∗ = �−1(1 − α∗
z ), (5.11)

where α∗
z denotes the confidence level associated with z. For the common mixing

variable, a natural choice would be

w∗ = Inv − χ2(1 − α∗
w, ν), (5.12)

where again α∗
w is separately defined. In principle, we would prefer that α∗

z = α∗
w .

As is often the case, the situation is a bit more nuanced. While the choice of
systemic-state variable outcome is quite reasonable, unfortunately, the value in
Eq. 5.12 does not perform particularly well for estimating worst-case default loss.
In some cases, it works satisfactorily, whereas in other settings it is far too extreme
and leads to dramatic overestimates of the conditional default loss.

This brings us to an interesting insight into the t-threshold model. The larger the
confidence interval used to evaluate Eq. 5.12, the smaller the value of the common

mixing variable, w∗. The smaller the w∗ outcome, the smaller the ratio
√

w∗
ν

, which
in turn modifies the default threshold. Reducing the size of the threshold, essentially
amounts to a reduction in the creditworthiness of the obligor; making default more
probable.15 The conditional default probability associated with extreme outcomes
of z∗ and w∗ is thus hit from both ends: on one side there is a nasty systemic state
variable outcome, while on the other the threshold goal-line has been moved closer.
Setting them both to extreme values can, in many cases, lead to really dramatic
default losses.

The best way, perhaps, to understand the nature of this calculation is to consider
a practical example. Table 5.1 summarizes all of the key inputs for an illustrative,
but arbitrary, credit obligor. Three levels of α∗

w confidence interval are provided
for the w∗ outcomes, but the z∗ outcomes are held constant. Key components of
the computation are displayed illustrating the impact of w∗ and the sensitivity of
overall results to this choice. Innocently moving α∗

w from 0.6667 to 0.9997—all
else equal—leads to fairly dramatic increases in the default loss estimate.

Figure 5.1 explores this question in more detail by widening our gaze. It displays,
for three different choices of α∗

w , the normalized estimated and observed default
loss values across the entire portfolio.16 The clear conclusion is that the estimated
value increases steadily—and ultimately rather significantly exceeds the observed

15 Low levels of confidence have the opposite effect; they increase the ratio
√

w∗
ν

, pushing out the
threshold, and effectively increasing the credit quality for all obligors.
16 Normalized, in this context, means that the the average observed values are subtracted and the
result is divided by the volatility of the observed default losses; this essentially means that the axes
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Table 5.1 A simple example: The underlying table summarizes, for an arbitrary and illustrative
exposure, the various quantities and calculations involved in the construction of a conditional
probability of default with the preceding conditioning variables, z∗ and w∗.

Severity of w∗

Quantity Definition α∗
w = 0.6667 α∗

w = 0.9000 α∗
w = 0.9997

Degrees of freedom ν 70

Confidence level α∗ ≡ α∗
z 0.9997

Exposure ci 65,000,000

Credit state Si 11

Loss-given-default E(γi) 0.52

Default probability pi 0.55%

Systemic weight αi 0.19

Systemic shock z∗ = �−1(1 − α∗
z ) −3.43

Mixing-variable
shock

w∗ = Inv − χ2(1 − α∗
w, ν) 64.39 55.33 36.39

Threshold value F−1
Tν (pi ) −2.61

Mixing ratio

√

w∗
ν

0.96 0.89 0.72

Key ratio

√

w∗
ν
F−1
Tν (pi)− αiz

∗
√

1 − α2
i

−1.11 −0.42 0.00

Conditional default
probability

pi(z
∗, w∗) 13.37% 33.85% 50.00%

Conditional default
loss

E

(

L
(d)
i

∣

∣

∣ z = z∗,W = w∗
)

4,519,809 11,442,358 16,900,000

Fig. 5.1 Choosing α∗
w : The preceding graphic displays, for three different choices of α∗

w used to
identity w∗, the normalized estimated and observed default loss values. The larger the choice of
α∗
w , the more extreme the default-loss estimates.
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outcomes—for larger values of α∗
w . The degree of sensitivity of the conditional

default probability to the choice of confidence level for the mixing variable is rather
surprising. It seems that this variable’s principle role is not to generate extreme
loss outcomes, but rather simply to induce a joint t distribution; and, as a result,
tail dependence.17 For the remainder of this analysis, therefore, we will use the
more neutral, but slightly conservative, value of α∗

w = 0.6667. Different values are
naturally possible, and this is by no means an optimized choice, but it performs quite
reasonably.

Colour and Commentary 54 (THE t-THRESHOLD MIXING VARIABLE): In
the Gaussian threshold model, the conditional probability of default depends
solely on the provided realization of the systemic risk factor (or factors). Intu-
ition about the randomization of the (conditional) default probability—and
the inducement of default correlation—is straightforward: extreme systemic
factor realizations lead to correspondingly high probabilities (and magni-
tudes) of default loss. Moving to the t-threshold setting complicates things.
A second conditioning variable—the χ2-distributed quantity—must also be
revealed. One’s first reaction is to simultaneously draw an extreme mixing-
variable outcome. Our analysis demonstrates that this yields unrealistically
large default loss probabilities.a This appears to suggest that the mixing
variable’s role is not to generate extreme outcomes, but rather to alter the
joint distribution and induce tail dependence. For this reason, when using the
conditional default probability of the t-threshold model for our approximation
analysis, we assume a relatively neutral draw from the χ2-distributed mixing
variable.

a Effectively, extreme mixing variable outcomes pull in the default threshold for all obligors.
Combined with a simultaneously bad draw from the systemic state variable, obligors are hit
from both sides and the impact is excessive.

5.2.2 Borrowing from Regulatory Guidance

Equation 5.10 actually turns out to be a critical ingredient of our initial closed-
form—although, admittedly simple—approximation of the marginal economic-
capital consumption associated with a given exposure. A few additional steps are

in Fig. 5.1 denote standard deviations from the observed mean. We’ll use this idea throughout the
chapter.
17 Moreover, given their independence, the joint extreme coincidence of systemic and mixing
variable outcomes should be exceedingly rare. Forcing them both to the extremes clearly scales
up the default-loss outcomes in an unrealistic manner.
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nonetheless required. Let us define A(d)
i (α∗) as the observed default economic-

capital allocation associated with the ith obligor computed at confidence level, α∗.
Recall that economic-capital is, conceptually, written as

A(d)
i (α∗) = Worst-Case Lossi (α

∗)− Expected Lossi
︸ ︷︷ ︸

Unexpected Lossi (α∗)

. (5.13)

For the (Pillar I) computation of minimum regulatory capital requirements—see
Chap. 11 for much more on these ideas—the internal ratings-based approach offers
the following exposure-level formula for the direct computation of this quantity:

A(d)
i (α∗) ≈

Equation 5.10
︷ ︸︸ ︷

E

(

L
(d)
i

∣

∣

∣

∣
z = z∗,W = w∗

)

−E

(

L
(d)
i

)

︸ ︷︷ ︸

Unexpected Lossi (α∗
z )

, (5.14)

which basically amounts to the difference between conditional and unconditional
default loss. This quantity is, in the classical sense, a VaR-related measure of risk.18

Exploitation of Eq. 5.14 leads us to the kernel of the approximation method. The
mathematical structure of the approximation is

A(d)
i (α∗

z )
︸ ︷︷ ︸

≡A(d)
i (α∗)

≈ E

(

L
(d)
i

∣

∣

∣

∣
z = z∗,W = w∗

)

− E

(

L
(d)
i

)

, (5.15)

≈ E

(

L
(d)
i

∣

∣

∣

∣
α∗
z

)

︸ ︷︷ ︸

Equation 5.10

−pi · E(γi) · ci ,

≈ �

⎛

⎝

√

w∗
ν
F−1
Tν

(pi)− αiz
∗

√

1 − α2
i

⎞

⎠

︸ ︷︷ ︸

pi(α∗
z )

E(γi)ci − pi · E(γi) · ci ,

≈
(

pi(α
∗
z )− pi

)

· E(γi) · ci,

for i = 1, . . . , I risk-owner risk contributions. To be fair, the previously described
unexpected loss expression does not precisely coincide with the regulatory defini-
tion in Eq. 5.14. The t-threshold model leads to a few conceptual changes. The most

18 Our interest is in an expected-shortfall metric, but we will address this issue in a moment.
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important is the presence of our common mixing variable,w∗. For this computation,
as already indicated, we will set w∗ at a fixed, reasonably neutral quantity—to
induce tail dependence—and treat the α∗

z and z∗ as the true variables of interest.19

Collecting our thoughts, Eq. 5.15 is an analytical representation of a regulatory
capital, VaR-based economic-capital allocation. The intuition is that a worst-case
outcome for the default loss is inferred from a catastrophically bad outcome of
the systemic variable, z∗. Subtracted from this is the expected loss computed by
averaging over all possible outcomes of the systemic state variable.20

There is a definitional issue associated with the approximation in Eq. 5.15: it is
based on the idea of a VaR unexpected-loss estimator. We use, as highlighted in
previous chapters, the expected-shortfall metric. Using the definition of expected-
shortfall, and applying it to Eq. 5.15, this can be rectified as

1

1 − α∗
z

∫ 1

α∗
z

A(d)
i (x)dx

︸ ︷︷ ︸

E(d)i (α∗
z )

≈ 1

1 − α∗
z

∫ 1

α∗
z

(

pi(x)− pi

)

· E(γi) · ci
︸ ︷︷ ︸

Equation 5.15

dx, (5.16)

E(d)i (α∗
z ) ≈ E(γi) · ci · 1

1 − α∗
z

∫ 1

α∗
z

pi(x)dx

︸ ︷︷ ︸

p̃i (α∗
z )

−piE(γi) · ci
1 − α∗

z

∫ 1

α∗
z

dx,

≈ E(γi) · ci · p̃i(α∗
z )−

piE(γi) · ci
1 − α∗

z

[

x

]1

α∗
z

,

≈ E(γi) · ci · p̃i(α∗
z )−

piE(γi) · ci
���1 − α∗

z
����(1 − α∗

z ),

≈
(

p̃i (α
∗
z )− pi

)

· E(γi) · ci.

There is both good and bad news. The good news is that, when moving to the
expected-shortfall setting, the basic form of our approximation is preserved. The
bad news is that the integral p̃i (α∗

z ) is not, to the best of our knowledge, available
in closed form. Computation of this quantity requires solving a one-dimensional
numerical-integration problem. To solve 500+ individual problems, this takes a
bit less than 2 seconds. For large-scale approximations—such as stress-testing
calculations—this has the potential to slow things down somewhat, but no real
damage is involved. For an individual loan, thankfully, this numerical element

19 There is, therefore, a small mathematical sleight of hand with the confidence levels.
20 For this reason, each E

(

L
(d)
i

)

is independent of z.
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Table 5.2 Simple economic-capital estimates: This table illustrates some key results of using
Eq. 5.10 and 5.16 to estimate the default-related economic-capital consumption associated with
the simple example introduced in Table 5.1.

Quantity Definition Value

Model default economic capital E(d)i (α∗) 4,314,601

Model default economic-capital ratio
1

ci
E(d)i (α∗) 6.6%

VaR regulatory-capital approximation A(d)
i (α∗

z ) =
(

pi(α
∗
z )− pi

)

· E(γi ) · ci 4,333,909

VaR regulatory-capital ratio
1

ci
A(d)

i (α∗
z ) 6.7%

Expected-shortfall regulatory-capital
approximation

E(d)i (α∗
z ) =

(

p̃i (α
∗
z )− pi

)

· E(γi) · ci 5,358,698

Expected-shortfall regulatory-capital ratio
1

ci
E(d)i (α∗

z ) 8.2%

requires only a fraction of a second.21 As a consequence, this semi-analytic twist
to our approximation does not delay the associated applications in any appreciable
way.

Table 5.2 takes the simple example introduced in Table 5.1 and—with the help
of Eqs. 5.10 and 5.16—provides some insight into how well the approximations
actually work. The true model-based default economic-capital value is about EUR
4 million amounting to roughly 6 1

2 % of the position’s overall exposure. This figure
seems sensible for a position falling, albeit slightly, below investment grade. The
VaR-based approximation, from Eq. 5.15, also generates an estimate a bit north of
EUR 4 million or around 6.7%. The VaR estimator, in this case, thus generates a
marginal over-estimate. Incorporation of the expected-shortfall element—using, in
this case, the numerical-integration estimator introduced in Eq. 5.16—yields a rather
higher estimate of about EUR 5.4 million or in excess of 8%. This represents a rather
significant overstatement of the model-based economic capital.

Our simple example illustrates that, as a generic approximation, the presented
results appear to be in the vicinity. That said, the VaR estimator seems to outperform
the expected-shortfall calculation. To make a more general statement, of course, it
is necessary to look beyond a single instance. We need to systemically examine
the relationship between actual economic-capital estimates and our approximating
expressions. Figure 5.2 consequently compares our regulatory motivated economic-
capital approximations—computed with Eq. 5.16—to the true simulation-model
outcomes. Since the actual levels of economic capital are unimportant, the results

21 The implementation makes use of scipy’s quadrature function. See Ralston and Rabi-
nowitz [24] for more on Gaussian quadrature and numerical integration.



5.2 Approximating Default Economic Capital 295

Fig. 5.2 Degree of agreement: The preceding graphics, in raw and logarithmic terms, illustrate
the degree of agreement between our (normalized) approximation in Eq. 5.16 and the (normalized)
observed simulation-based economic-capital contributions. The overall level of linear correlation
is fairly respectable.

have again been normalized. The left-hand graphic outlines the comparative results
on a normalized basis similar to Fig. 5.1. Visually, the agreement appears sensible,
although there are numerous instances where individual estimates deviate from the
observed values by a sizable margin. Interestingly, at the overall portfolio level,
despite the approximation noise, there is a really quite respectable cross-correlation
coefficient of 0.98. This suggests that, although Eq. 5.16 may not always capture the
level of default risk, it does catch the basic pattern.

A related issue is the broad range of economic-capital values. For some obligors,
the allocation approaches zero, whereas for others it can be one (or more) orders
of magnitude larger. This stems from the exponential form of default probabilities
as well as concentration in the underlying portfolio. This fact, combined with
the the patchy performance of the approximation in Eq. 5.16, can lead to scaling
problems. As a consequence, the right-hand graphic illustrates the approximation fit
when applying natural logarithms to both (normalized) observed and approximated
default-risk values. This simple transformation smooths out the size dimension and
increases the correlation coefficient to 0.99. Although far from perfect, we may
nonetheless cautiously conclude that there is some merit to this basic approach.

Colour and Commentary 55 (THE APPROXIMATION KERNEL): The cen-
tral component of the default economic capital approximator is pinched
directly from the logic employed in the Basel Internal-Rating Based (or IRB)
approach. More specifically, worst-case default losses are approximated via
the conditional probability of default associated with a rather highly adverse

(continued)
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Colour and Commentary 55 (continued)
realization of the systemic risk factor.a While sensible and intuitive, this is
not an assumption-free choice. As covered in detail in Chap. 11, Gordy [13]
shows us that the IRB model is only consistent with the so-called single-factor
asymptotic risk-factor model. The principal implication is that this modelling
choice focuses entirely on systemic risk; it ignores the idiosyncratic effects
associated with portfolio concentrations. The strength of this assumption—as
well as the concentrations in our real-life portfolio—implies that this base
structure can only take us so far. It will be necessary, as we move forward, to
adjust our approximation to capture the ignored idiosyncratic elements.

a We also draw a more neutral-valued χ2 mixing variable to accommodate the t-threshold
structure of our production model.

5.2.3 A First Default Approximation Model

Raw use of Eq. 5.16 is likely to be sub-optimal. Its high correlation with observed
values, however, suggests that it makes for a useful starting point. What we need
is the ability to allow for somewhat more approximation flexibility in capturing
individual differences. In other words, we seek an approximation model. This is the
underlying motivation behind transforming Eq. 5.16 into an ordinary least-squares
(OLS), or regression, estimator. The presence of regression coefficients allows us to
exploit the promising correlation structure and also increases the overall fit to the
observed data.

The basic linear structure follows from Eq. 5.16 and we use the logarithmic
operator to induce an additive form as

E(d)i (α∗
z ) ≈

(

p̃i (α
∗
z )− pi

)

E(γi)ci

︸ ︷︷ ︸

Equation 5.16

, (5.17)
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(
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Equation 5.17 is an approximation. If we re-imagine this linear relationship with an
intercept and error, we have

ln

(

E(d)i (α∗
z )+ E

(

L
(d)
i

)
)

︸ ︷︷ ︸

y
(d)
i

= ξ0 + ξ1 ln

(

p̃i (α
∗
z )

)
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X
(d)
i,1

+ξ2 ln

(

E(γi)

)

︸ ︷︷ ︸

X
(d)
i,2

+ξ3 ln(ci)
︸ ︷︷ ︸

X
(d)
i,3

+ε(d)i , (5.18)

for i = 1, . . . , I risk-owner risk contributions.22 The left-hand side of Eq. 5.18
is a transformation of the observed default economic-capital estimates, while the
elements of our approximation from Eq. 5.16 have become additive explanatory
variables.

Equation 5.18 directly translates, of course, into the classical ordinary least
squares setting and reduces to the familiar model,

y(d) = X(d)�+ ε(d), (5.19)

where

y(d) =

⎡

⎢

⎢

⎢

⎣

ln
(

E(d)1 (α∗
z )+ E

(

L
(d)
1

))

...

ln
(

E(d)I (α∗
z )+ E

(

L
(d)
I

))

⎤

⎥

⎥

⎥

⎦

, (5.20)
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, (5.21)

and ε(d) ∼ N(0, σ 2I) for σ ∈ R+. The OLS estimator for � = [

ξ0 ξ1 ξ2 ξ3
]T

determined, as usual, through the minimization of (y(d) − X(d)�)T (y(d) − X(d)�)

22 It is customary to use the symbol β for regression coefficients. Since we already employ this
character to denote factor loadings, we will use an alternative esoteric Greek letter to avoid
confusion.
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Table 5.3 A first default-approximation model: This table summarizes the results of the base
default economic-capital approximation model. It has an intercept and three regulatory capital
requirement motivated explanatory variables. The amount of variance explained is fairly encour-
aging, but the proportional errors are depressingly (even frighteningly) large.

Quantity Description Estimate Standard error t-statistic p-value

ξ0 Intercept −0.91 0.13 −7.06 0.00

ξ1 (Extreme) conditional default
probability

0.92 0.02 53.18 0.00

ξ2 Loss-given-default 1.08 0.03 35.10 0.00

ξ3 Exposure 1.04 0.01 158.95 0.00

Root mean squared error 45%

Mean absolute error 18%

Median absolute error 10%

R2 0.923

is thus simply the well-known least-squares solution:

�̂ =
(

X(d)T X(d)

)−1

X(d)T y(d). (5.22)

Standard errors and test-statistic formulae also follow from similarly well-known
results.23 As discussed previously, this does not imply that our model is inherently
linear, but rather that we are knowingly accepting a certain degree of model bias for
low variance and the ability to use statistical-inference techniques.

Table 5.3 summarizes the results of fitting the previously described approx-
imation model to observed economic-capital allocation data associated with an
arbitrary date in 2020. All four of the parameter estimates are strongly statistically
significant. The actual parameter values are also positive for the conditional default
probability, loss-given-default, and exposures, which seems plausible. The R2

statistic of roughly 0.9 suggests that the amount of total variance explained by a
simple linear model is encouraging.

The actual calculation of approximated (i.e., predicted) default-risk values
actually involves a small bit of algebraic gymnastics. In particular,

ŷ(d) = X(d)�̂, (5.23)

eŷ
(d) = eX

(d)�̂,

e
ln
(

̂E(d)(α∗
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(

L(d)
)
)

= eX
(d)�̂,

̂E(d)(α∗
z ) = eX

(d)�̂ − E

(

L(d)
)

,

23 For much more detailed background on the rudiments of OLS, please see Judge et al. [19].
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Fig. 5.3 Initial error analysis: The preceding graphics display the model errors—estimated less
observed values—organized by both individual credit obligor and normalized default economic
capital. The handful of extreme outliers are presented separately.

where ̂E(d)(α∗
z ) and E

(

L(d)
)

denote the I -dimensional vectors of approximated
default economic-capital values and expected losses, respectively. Equation 5.23
permits computation of root-mean-squared, mean-absolute and median-absolute
error measures. The results are provided, in Table 5.3, in (proportional) per-
centage terms rather than logarithmic or currency space.24 These goodness-of-fit
measures—assessing the (in-sample) correspondence between observed and pred-
icated values—unfortunately paint a less rosy picture. The mean-absolute error
is roughly 20%; implying that, on average, the approximation misses its mark
by about one fifth. If we turn to the median-absolute error, it improves to one
tenth; this strongly suggests the presence of a few large outliers. Our suspicion
is confirmed with the—notoriously sensitive to outliers—root-mean-squared error
taking a dreadful value of 45%.25

Figure 5.3 looks into the outlier question more carefully by illustrating the
collection of proportional approximation errors.26 The left hand graphic indicates

24 The logarithmic-transformation is helpful to manage scale discrepancies between economic-
capital allocations, but it is essentially a statistical trick to improve the overall fit. Since we
ultimately require currency estimates, model diagnostics in logarithmic space are not terribly
helpful and thus excluded.
25 Outlier sensitivity is easily seen from the definition. Given ε(d) ∈ R

I×1, then

RMSE =
√

ε(d)
T
ε(d)

I
. (5.24)

The squared term in the numerator places rather heavy weight on any individual and extreme error
(i.e., outlier).
26 The errors are defined as estimated less observed default economic values divided by their true
observed outcome.
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a general trend towards over-estimation and a handful of extreme outliers.27 The
right-hand graphic provides some insight into the outliers; they appear to all relate
to small, below average economic-capital allocations. This is one of the dangers
of using proportional errors; a large proportional error can, when considered in
currency terms, be economically immaterial.

Despite an R2 figure exceeding 0.9, there is work to be done; the proportional
errors—even when excluding the outliers—are simply too large to be practically
useful. Thankfully, there are good reasons to suspect that the model is incomplete.
The approximation is founded on a one-dimensional model, which (by construction)
completely ignores concentration, provides no information on random recovery, and
fails to incorporate a broader default-correlation perspective. Our approximation
model can thus be further improved.

Colour and Commentary 56 (A FIRST DEFAULT APPROXIMATION

MODEL): Our regulatory capital motivated first-order approximation of
default economic capital is readily generalized into a linear regression
model. This permits calibration to daily data and provides diagnostics on the
strength of specific parts of the approximation. The initial results are mixed.
On the positive side, the percentage of variance explained exceeds 90% and
the individual regression variables are highly statistical significant. More
negatively, proportional goodness-of-fit measures suggest an unacceptable
level of inconsistency. Part of the problem is explained by a handful of
outliers, but the model also has difficulty with a sizable subset of individual
obligors. In many ways, this is not a surprise. The explanatory variables
in this initial model capture, literally by their definition, only the systemic
aspect of economic capital. This suggests identification and incorporation of
idiosyncratic and concentration related explanatory variables as a sensible
avenue towards improvement of our initial model.

5.2.4 Incorporating Concentration

Our first naive default approximation model is unfortunately, in its current form,
not quite up to the task. This is not just due to a deficiency of the underlying
regulatory capital computation, but it is rather a structural issue. Gordy [13]—in his
excellent first-principle analysis of the Basel-IRB methodology—demonstrates that
this regulatory formula is equivalent to using Vasicek [28]’s single-factor asymptotic
risk-factor model (ASRF). This has two immediate consequences. First, it requires

27 Outliers, in this context, were (somewhat arbitrarily) identified as a proportional error exceeding
200%.
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that one’s portfolio is—in practical terms—extremely well diversified across many
credit obligors. Second, as the name suggests, there is only a single source of risk.
As such, there is simply no mechanism to capture regional, sectoral, or firm-size
effects. To be blunt, this implies that our initial model in Eq. 5.18 is simply not
equipped to capture concentration effects.

Most real-world financial institutions—and NIB is no exception in this regard—
have regional and sectoral concentrations. Ignoring this dimension leads, as became
clear in the previous section, to structural bias in our economic-capital approxima-
tions. The most natural route, remaining in the regulatory area, would involve the
so-called granularity adjustment. This quantity, introduced by Gordy [13], is an add-
on to the base regulatory capital computation to account for concentration.28 After
significant experimentation, we rejected this path. The principal issue is that it does
not (easily, at least) have the requisite flexibility to handle either multiple risk factors
or readily incorporate regional and sectoral information.29

We opt to follow an alternative, and perhaps more intuitive, strategy. The idea is
to assign a concentration score to each individual set of lending exposures sharing
similar regional and structural characteristics. We can then include this score as
an explanatory variable in our regression model in Eq. 5.18. If done correctly, this
would help to incorporate important idiosyncratic features of one’s exposures into
our approximation.

There is a rich literature on concentration. Concentration and Lorenz curves,
Herfindahl-Hirschman indices and Gini coefficients are popular tools in this area.30

The challenges with these methods, for our purposes, are twofold. First, they
require full knowledge of the economic-capital weights, which will not always
be (logically) available to us. Second, and perhaps more importantly, we seek
a concentration measure that incorporates aspects of our current model with a
particular focus on sectoral and regional dimensions.

The proposed score, or index, is a function of three pieces of information about
the obligor. These include:

1. geographic region;
2. industrial sector; and
3. public-sector or corporate status.

The measure is specialized to the current credit-risk economic-capital model’s factor
structure. It does not stem from any current literature, but should rather be viewed
as something of a heuristic concentration metric.

28 This interesting and important area is addressed in Chap. 11. If you cannot wait to dig into
this fascinating area, you are immediately referred to Lütkebohmert [20, Chapter 11], Gordy and
Lütkebohmert [14, 15], Martin and Wilde [21], Emmer and Tasche [9], and Torell [27].
29 Pykhtin [23] does offer a multivariate approach, which is explored in Chap. 11.
30 For more background on this fascinating field of study, please see Yitzhaki and Olkin [29],
Figini and Uberti [10], Bellalah et al. [1], Milanovic [22], and particularly the extremely useful
Lütkebohmert [20].
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We take a slow, methodical, and constructive approach to development of our
concentration metric. The first step in the fabrication of our index begins by
assigning, at a given point in time, total portfolio exposure (i.e., exposure-at-default)
to our J systemic state variables. Since our I credit obligors may simultaneously
be members of both a region and an industrial sector, managing this seems a bit
challenging. How, for example, do we allocate our exposure to these risk factors?
The solution is to use the factor loadings—these quantities determine the relative
importance of the region and industry systemic factors. Recall, from Chap. 3, that
one half of an obligor’s weight is allocated to its geographic region, while the
remaining half is assigned to its industrial sector. At most, therefore, an individual
obligor’s exposure can be assigned to two distinct factors. A public-sector entity,
which has no obvious industrial classification, receives a full weight to its region.
An advantage of this approach is the incorporation of the obligor’s factor loadings
(indirectly) into our index.

Mathematically, this j th risk factor’s exposure assignment—which we will
denote as V̄j—is thus simply,

V̄j =
I
∑

i=1

Bij ci , (5.25)

for j = 1, . . . , J and where, as usual, ci denotes the ith obligor’s exposure at
default. In other words, we basically weight the individual exposure estimates by
their factor loadings. In practice, this is a very straightforward matrix multiplication,

V̄ = BT c, (5.26)

where V̄ ∈ R
J×1, c ∈ R

I×1 are B ∈ R
I×J .31 One might be tempted to replace

exposure with economic capital (i.e., Ei (α∗)) in Eq. 5.26; it is, in fact, economic-
capital concentration that we seek to describe. This turns out to be a bad idea.
Were we to use economic-capital in the construction—even indirectly—in the
establishment of our concentration metric, we would find ourselves awkwardly
having economic-capital embedded in both sides of our regression relationship.
Lesser indiscretions have been classified as a criminal act in statistical circles.

Figure 5.4 summarizes, for an arbitrary portfolio during 2020, the percentage
allocation of exposure—following from Eq. 5.26—to our J = 24 regional and
sectoral categorizations. Since the actual amounts and systemic-risk factor iden-
tities are relatively unimportant—but we wish to be able to compare to further
transformations—the values are illustrated in numbered percentage terms. The top
four categories consume almost half of the total exposure. While concentration is
typical in most real-life commercial lending and investment portfolios, we should

31 Many, or even most, of the B factor-loading values are zero. This is a consequence of the
overidentifying factor-loading constraints introduced in Chap. 3. Incidentally, it makes no practical
difference if one uses the raw factor loadings, β, or their normalized equivalents, B.
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Fig. 5.4 Exposure by risk factor: The preceding graphic displays, for an arbitrarily selected
portfolio from 2020, the percentage factor-loaded exposure allocations by systemic risk factor
computed using Eq. 5.26.

be cautious to read too much into Fig. 5.4. In this intermediate step, we use only the
relatively uninformative factor loadings.

Having used factor loadings to aggregate portfolio exposure, the next step
involves the incorporation of the systemic-factor dependence structure. Technically,
this takes the form of a projection. In particular, the next step is
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⎦ , (5.27)

= �V̄.

where � ∈ R
J×J is the factor-correlation matrix estimated in Chap. 3 and

Ṽ ∈ R
J×1 is a projected vector of exposure amounts. Technically, Ṽ is a linear

projection of V̄ using the projection matrix,�—it is essentially a linear (dimension-
preserving) mapping from R

J×1 to R
J×1. If all of the systemic factors were to be

orthonormal, then � would be an identity matrix, and the original exposure figures
would be preserved. If there is strong positive correlation between the systemic
risk factors, conversely, we would expect to see a relative increase in the relative
allocation to each risk-factor category.

To see the implications of projecting correlation information onto our factor-
arranged exposure outcomes, let’s directly compare the allocations V̄ and Ṽ
in percentage terms. These results are summarized in Fig. 5.5. Projecting the
correlation matrix onto the exposure amounts clearly, and dramatically, changes
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Fig. 5.5 Incorporating systemic dependence: The preceding graphic reproduces the percentage
factor-loaded exposure allocations from Fig. 5.4, but also adds in the percentage correlation-matrix
projected outcomes from Eq. 5.27. The positively correlated risk-factor system flattens out the
concentration profile.

the concentration profile. Specifically, projecting V̄ flattens out the profile implying,
when taking into account factor correlations, that the deviations in concentration are
rather different than those suggested by the factor-loading-driven result in Fig. 5.4.

What exactly is going on? The answer, of course, begins with the structure of
the systemic risk-factor correlation matrix itself. The risk factors are, as indicated
and discussed in previous chapters, a positively correlated system. We can make
this a bit more precise. Using an eigenvalue decomposition, it is possible to
orthogonalize a correlation matrix into a set of so-called principal components.32 A
useful byproduct of this computation is that one can estimate the amount of variance,
in the overall system, explained by each individual orthogonal factor. This provides
useful insight into the degree of linear correlation between the raw variables in
one’s system. Table 5.4 reviews the results of this analysis—applied to our factor
correlation matrix, �—for the five most important orthogonal factors. The single,
most important, orthogonal factor explains in excess of 50% of the overall variance,
while the top five (of 24) principal components cover about three quarters of total
system variance.

The results in Table 5.4 strongly underscore the rather dependent nature of our
risk-factor system and help explain Fig. 5.5. A few systemic risk factors appear to
demonstrate a high degree of correlation when we simply sum over the exposures.
Controlling for the (generally high) level of linear dependence between these
individual systemic risk factors, however, is essential to capturing the model’s
picture of portfolio concentration.

The final step involves the transformation of the individual values in Eq. 5.27
into a readable and interpretable index. This basically amounts to normalization; it

32 A fantastic reference for this practical statistical technique is Jollliffe [18]. See Golub and Loan
[12] for more on the eigenvalue decomposition.



5.2 Approximating Default Economic Capital 305

Table 5.4 Systemic correlation: The underlying table illustrates, using the principal-components
technique, the amount of variance explained by the five most important orthogonalized factors
derived from our systemic correlation matrix, �. These results strongly underscore the rather
dependent nature of our risk-factor system.

Principal component % variance explained

1 55.6%

2 8.8%

3 4.6%

4 4.3%

5 3.3%

Total 76.7%

Fig. 5.6 The concentration index: The preceding graphic displays—conditional on our arbitrarily
selected portfolio from 2020—the set of J distinct concentration index values arranged in
descending order.

is consequently transformed into a value in the unit interval as,

V̂ = Ṽ
max(Ṽ)

. (5.28)

Other normalizations are certainly possible. The largest concentration index value
takes, of course, a value of unity. V̂j thus represents the final concentration-index
value for the j th risk factor.

Figure 5.6 illustrates, using Eq. 5.28, the set of J distinct concentration index
values displayed in descending order. These values are, once again, conditional on
our arbitrary 2020 portfolio, although the results do not appear to vary considerably
across time. This is certainly due to high levels of persistence in the portfolio and
infrequently updated through-the-cycle parameters.33 Actual concentration values

33 It takes time to change the composition of any buy-and-hold portfolio.
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for a given risk-owner, or exposure, fall in the range [0.36,1] with a mean of about
0.75. The ordering is broadly similar to that observed in Fig. 5.4, but there are a few
surprises.

A separate concentration index is required for each individual credit obligor, but
there are only J concentration-index values. The factor-loading matrix comes, once
again, to the rescue by offering a logical approach to allocation of the sectoral and
regional concentration values to the obligor level. Practically, this amounts to (yet)
another matrix multiplication,

V = BV̂, (5.29)

where V ∈ R
I×1 is the final concentration index. Each element of V thus provides

some assessment of the relative concentration of this individual position. The larger
the value, of course, the more a given position leans towards the portfolio’s inherent
concentrations.

Having constructed the concentration index outcomes, it may still not be
immediately obvious what is going on. To provide a bit more transparency, and
hopefully insight, we will begin from Eq. 5.29, and gradually work forward as
follows, while keeping all the individual ingredients

V = BV̂
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An element in the preceding decomposition of the V computation should look
familiar. B�BT ∈ R

I×I is the normalized, factor-loaded, systemic risk-factor
correlation matrix. A standardized factor-loaded correlation matrix is thus projected
onto the vector of exposure contributions, c, to yield our proposed concentration
index. While not perfect, it does appealingly capture a number of key elements
of concentration: current portfolio weights, systemic factor loadings, and the
correlation structure of these common factors.

Colour and Commentary 57 (INDEXING CONCENTRATION): A central
task of the credit-risk economic-capital simulation engine is to capture the
interplay between diversification and concentration in one’s portfolio. This
aspect needs to be properly reflected in any approximation method. It takes
on particular importance given our previous decision to lean heavily upon a
regulatory motivated approximation that entirely assumes away idiosyncratic
risk. A possible solution to this question involves the construction of a
concentration index, which can act as an additional explanatory variable in
our regression model. Our proposed choice involves a linear projection of
the individual credit obligor exposures at default. The projection matrix is
a function of the (normalized) factor loadings and the factor correlation. In
this way, the resulting index directly incorporates three important drivers of
concentration risk: the factor loadings, systemic correlations, and the current
portfolio composition.

5.2.5 The Full Default Model

We’ve clearly established the need to incorporate additional idiosyncratic explana-
tory variables into our base regression model. The previously defined concentration
index is a natural candidate; there are many others. Indeed, there is no shortage
of possibilities. This means that model selection is actually hard work. The
consequence is a very large set of possible extensions and variations to consider.34

This situation can only be resolved with a significant amount reflection, examination
of error graphics and model-selection criteria as well as trial-and-error. Ultimately,
we have opted for six new explanatory variables to add to our original Eq. 5.18.
Despite our best efforts, the revised and extended model should not be considered
as an optimal choice. It is better to view it as a sensible element of the set of possible

34 Even with a few dozen possible explanatory variables, the power set (i.e., set of all possible
subsets) is depressingly large.
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approximation models. With this in mind, it is described as

y
(d)
i

︷ ︸︸ ︷
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E(d)i (α∗)+ E

(
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(d)
i

)
)
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+
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ξkX
(d)
k
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Additional
explanatory

variables

+ε(d)i ,

(5.31)

for i = 1, . . . , I risk-owner risk contributions.
Table 5.5 summarizes the parameter and goodness-of-fit statistics associated

with the revised model. Comparing the results to the base approximation summary
found in Table 5.3 on page 298, we observe a number of differences. First of all,
there is significant improvement in the (in-sample) goodness-of-fit measures. The
proportional root-mean squared error is reduced by a factor of five, while our two
proportional absolute errors are cut by more than half. The median absolute error

Table 5.5 Full default-approximation model: This table summarizes the results of the full-blown
default economic-capital approximation model including a number of additional regressors as
described in Eq. 5.31. The overall fit is substantially improved relative to the base model displayed
in Table 5.3.

Quantity Description Estimate Standard error t-statistic p-value

ξ0 Intercept −4.02 0.09 −45.20 0.00

ξ1 (Extreme) conditional default
probability

0.80 0.01 81.18 0.00

ξ2 Loss-given-default 1.04 0.01 87.51 0.00

ξ3 Exposure 1.02 0.00 312.38 0.00

ξ4 Obligor credit rating 0.03 0.00 13.53 0.00

ξ5 Concentration index 3.03 0.06 52.87 0.00

ξ6 Public-sector indicator variable 0.15 0.04 4.31 0.00

ξ7 Large exposure indicator variable 0.16 0.02 9.25 0.00

ξ8 Small exposure indicator variable 0.05 0.02 2.69 0.01

Root mean squared error 9%

Mean absolute error 6%

Median absolute error 4%

R2 0.988
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Fig. 5.7 Default instrument correlation: This heat-map illustrates the cross-correlation between
the key explanatory variables included in the extended regression model summarized in Table 5.5.

is now only about 4% of the base estimate. The amount of variance explained
also increases sharply to 0.99. Finally, all of the new parameters are statistically
significant and there is no dramatic (economic) change in the ξ1 to ξ3 parameters.35

By almost any metric, the extended model represents a serious upgrade.
The new explanatory variables warrant some additional explanation beyond

the brief descriptions provided in Table 5.5. The concentration index was already
defined in the previous section and, as we had hoped, turns out to be extremely
statistically significant. It clearly provides additional information to the model not
encapsulated in the systemic-risk-focused extreme conditional default probability.
The obligor credit rating, entered as an integer from 1 to 20, somewhat surprisingly
improves the overall fit. We would expect—and, in fact, find in Fig. 5.7—positive
correlation between the credit rating and the extreme conditional default probability.

35 The intercept variable does, however, change significantly.
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Despite a slight danger of collinearity, the addition of this piece of information
appears to improve the overall model.36

We also found it extremely useful to add three additional indicator (i.e., dummy)
variables. The first identifies public-sector entities in the portfolio as

IPi =
{

1 : the ith credit obligor is a public-sector entity
0 : the ith credit obligor is a corporation

. (5.32)

The second isolates particularly large firms with the following logic:

IBi =
{

1 : ci ≥ percentile(c, 0.90)
0 : ci < percentile(c, 0.90)

, (5.33)

or, in words, the largest 10% of credit exposures are flagged. The small exposure
flag works in the same manner on the smallest 10% of exposures. For completeness,
it is defined as

ISi =
{

1 : ci ≤ percentile(c, 0.10)
0 : ci > percentile(c, 0.10)

. (5.34)

While these three choices are clearly important, statistically significant explana-
tory variables, it is difficult to directly understand their role. Examination of the
initial model results suggests that the regulatory capital computation has particular
difficulty with public-sector, unusually large, and quite small exposures. This
probably relates to underlying concentration and parameter-selection questions. We
can conceptualize these final three explanatory variables as allowing the model to
better handle exceptions. These indicator variables also do not, as seen in Fig. 5.7,
exhibit much correlation with the other explanatory variables. The only exception
is, unsurprisingly, the large-exposure indicator and the exposure-at-default variable.

One area of investigation is conspicuous by its absence: random recovery.
Nothing in our instrument-variable selection provides any insight into this important
dimension. A number of avenues was nonetheless investigated. Key parameters—
such as the shape parameters of the underlying beta distribution or the recovery
volatility—were added to the model without success. Modified, more severe, loss-
given-default values were also explored—again using the characteristics of the
underlying beta distributions—without any improvement in model results. On the
contrary, these efforts generally led to a deterioration of the overall fit.

Figure 5.8 revisits the error analysis performed in Fig. 5.3 using our extended
regression model summarized in Eq. 5.31. To aid in our interpretation, the original
outliers—from the base default model—are also displayed. Although the general
pattern is qualitatively similar, the range of estimation error is reduced by an order of
magnitude. While much of the impact relates to improved handling of the outliers,

36 This high level of cross correlation should nonetheless be flagged as a potential weak link in the
extended regression model.
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Fig. 5.8 Revised default-error analysis: The preceding graphics replicate the analysis displayed
in Figure 5.3 using the extended regression model summarized in Eq. 5.31. The original outliers—
from the initial model—are displayed to illustrate the overall improvement.

there is also a more general effect. The difficulty of approximating small, below-
average economic-capital allocations is not entirely resolved; part of the issue relates
to the proportional nature of the error measure, but it remains a weakness.

While imperfect, we conclude that this is a satisfactory approximation model.
It exploits some basic relationships involved in the computation of economic
capital, is relatively parsimonious, and generates a reasonable degree of fit and
statistical robustness. Some weaknesses remain; most particularly relatively high
cross correlation between a few explanatory variables as well as a tendency to
significantly overestimate a subset of below-average exposures.

Colour and Commentary 58 (A WORKABLE DEFAULT APPROXIMATION

MODEL): Given the complexity of the credit-risk economic-capital model, we
should not expect to be able to construct a perfect approximator.a Exploiting
our knowledge of the problem nonetheless allows us to build a regression
model with fairly informative systemic and idiosyncratic explanatory vari-
ables. The final result is a satisfactory description of the underlying model.
Satisfactory, in this context, implies a median proportional approximation
error in the neighbourhood of 4%. While a lower figure would naturally
be preferable, we can live with this result. Construction of such models, it
should be stressed, is not a one-off exercise. The approximation model is
re-estimated daily and the error structure is examined within our internal
diagnostic dashboards. On an annual basis, a more formal model-selection
(or rather verification) procedure is performed. Ultimately, we are always on
the lookout for ways to improve this approximation.

a If we could, then we might wish to dramatically rethink our model-estimation approach.
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5.3 Approximating Migration Economic Capital

The preceding approximation is focused entirely on the notion of credit-risk
economic-capital associated with default events. While it might be tempting to fold
in the migration element into the previous approximation model, there, at least, two
reasonably compelling reasons to separately approximate the default and migration
effects. First, although default is a special case of migration, the loss mechanics
differ importantly. This makes constructing a joint approximation more difficult.
Although presumably still possible, separate structurally motivated approximation
models are more natural to construct and easier to follow.

The second reason is more practical. Distinct default and migration models
permit autonomous prediction of these two effects. This may be interesting for
analytic purposes; understanding the breakdown between these two sources of risk
can provide, for example, incremental insight into the model outcomes. It may
also be necessary from a portfolio perspective. In certain stress testing or loan-
impairment calculations, for example, we may not be directly interested in the
migration allocation. In other cases, we may be interested only in migration effects.
A joint model would make it difficult to manage such situations.

5.3.1 Conditional Migration Loss

Having justified this choice, let us turn our attention to a possible migration-
approximation model. We begin, as in the default setting, by trying to exploit our
knowledge of the basic calculation and adding some structure to the migration
problem. Denoting L

(m)
i as the credit-migration loss associated with the ith credit

obligor at time t + 1, we recall that it has the following form,

L
(m)
i =

(

S
(

Si,t+1
)− S

(

Si,t
)

)

︸ ︷︷ ︸

�Si

τici , (5.35)

where Si is the credit spread, Si,t is the credit state at time t , τi is the modified spread
duration, and ci is the exposure of the ith position. The time-homogeneous credit
spread, of course, is determined directly by the credit state.37 The spread change
(i.e., �Si) is thus determined by any movement in an obligor’s credit state from
one time step to the next. The spread movement is then multiplied by the modified
spread duration and position exposure to yield an approximation of the migration
loss.

Can we construct, using similar logic to the default case, a conditional migration
loss estimate? The short answer is yes, there is clearly some conditionality in the

37 The actual parametrization of these spreads is described in Chap. 3.
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migration loss. We will denote, to ease the notation, the current credit state, at time
t , as Si0. This is known. The actual loss outcome depends upon the credit-state value
at time t + 1; we’ll call this Si+. To formalize this idea, let us rewrite Eq. 5.35 in a
similar form and applying the expectation operator to both sides,

L
(m)
i =

(

S (Si+)− S (Si0)

)

τici

︸ ︷︷ ︸

Equation 5.35

, (5.36)
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i
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− S (Si0| Si+ = s)
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⎞

⎟

⎟

⎟

⎠

τici ,

≈
(

S(s)− S (Si0)

)

τici .

While perhaps not earth-shattering, this expression underscores the fact that the
only really uncertain element in the credit-migration calculation is the future credit-
state value, Si+.38 The million dollar question relates to our choice of conditioning
variable, s. One option would be to set s = E(Si+).

For most credit counterparties—save those already at the extremes of the credit
scale—credit migration can involve either an improvement or deterioration of
their credit quality. This, in turn, implies either profit or loss associated with the
associated credit-migration effects described in Eq. 5.36. Naturally, when looking to
the extreme tail of the loss distribution, we would expect the vast majority of credit-
migration outcomes to involve downgrade, credit-spread widening, and ultimately
loss. We will thus, for our purposes, focus our attention predominately on extreme
downside outcomes.

Let’s begin with the basics. Si+ is a random variable and its expectation
will depend upon an entity’s appropriate transition probabilities. Its unconditional
expectation is

E(Si+) =
q
∑

k=1

P

(

Si,t+1 = k

∣

∣

∣

∣
Si,t = Si0

)

︸ ︷︷ ︸

Transition probability

·k, (5.37)

=
q
∑

k=1

pkSi,t · k,

38 The final step is something of an approximation. Although we developed an expression for the
credit spreads in Chap. 3, it does not turn out to be helpful in this case.
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recalling that q = 21 is the number of distinct credit states (including default) and
where the individual transition probabilities (i.e., the p’s) are simply elements from
the Si,t th row of the transition matrix, P . The expected one-step forward credit state
is simply the transition-probability-weighted sum of the possible future credit states.
Transition matrices nonetheless exhibit a significant amount of inertia.39 The actual
expected credit state, in one period’s time, is unlikely to stray very far away from
the current credit state. Consequently, Eq. 5.37—in its current form—will generally
not be terribly informative about credit-migration economic-capital outcomes.

How might we resolve this issue? The worst-case migration loss should logically
occur when the (unknown) future credit state, Si+, takes its worst possible level.
Under our t-threshold credit risk model, the actual credit-state outcome depends
on draws from the systemic-risk and mixing-variable distributions. We might,
therefore, employ the same trick as we used in the default setting; select an extreme
systemic risk-factor variable outcome, z∗. The conditional expectation of Si+ for
the ith credit obligor, given z∗ is a better candidate for the as-yet-undetermined s in
Eq. 5.36. It can be correspondingly written as

E(Si+|z∗) =
q
∑

k=1

P

(

Si,t+1 = k

∣

∣

∣

∣
Si,t = Si0, z

∗
)

· k, (5.38)
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39 We saw this behaviour in Chap. 3 and will discuss it again in Chap. 7.
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⎠ , (5.39)

is the ith obligor credit-migration threshold for movement into state j .40 As in
the default setting, we use a fixed, relatively neutral realization of the mixing
variable, w∗. Equation 5.38 is a rather unwieldy expression, but we already have
experience with these conditional-default probability expressions and, perhaps most
importantly, they are readily and quickly computed.

We are not quite ready for prime-time usage. The approximation in Eq. 5.38 is a
bit too conservative; the simple reason is that it includes the default probability. This
component, by construction, will be carved out of the credit-migration economic-
capital and allocated to the default category. If we exclude the final default term,
however, our expectation will lose a significant amount of probability mass. To solve
this, we simply rescale our conditional probabilities excluding the default element.
This amounts to an expected downside non-default transition. Practically, this is
easily accomplished by defining,

p̃i (z
∗, k) = pi(z

∗, k)
q−1
∑

j=1

pi(z
∗, j)

, (5.40)

for k = 1, . . . , q − 1 and then writing our (revised) conditional non-default credit
state expectation as,

E

(

S
(m)
i+
∣

∣

∣ z
∗) =

q−1
∑

k=1

p̃i (z
∗, k) · k. (5.41)

40 These credit migration notions and thresholds are extensively discussed in Chap. 2.



316 5 Approximating Economic Capital

We have thus made a slight, but important change, from the base definition in
Eq. 5.38. Equation 5.41 describes the expected (non-default) credit state for the ith
obligor in the next period, conditional on an unpleasant realization of the systemic
risk factor.41 This shift in focus is captured by the use of S(m)i+ rather than the original
Si+ notation.

Equipped with this, model consistent, estimator for the worst-case (non-default)
credit deterioration, we may return to the business of approximating credit-risk
economic-capital allocation. Again, we motivate our approach through the Basel
IRB method. If we denote the capital allocation associated with migration risk as
A(m)

i (α∗
z ), we might approximate it as,

A(m)
i (α∗

z ) ≈

Unexpected loss
︷ ︸︸ ︷
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�Si (z
∗): Worst-case spread movement

τici ,

≈ �Si (z
∗)τici .

Unlike the default case, we ignore the unconditional expected loss. Since it is
generally quite close to zero, we exclude it from our basic structure.42

While Eq. 5.42 appears to be a sensible construct—built in the image of the
default-risk approximation—it has an important potential structural disadvantage.
There are only 20 (non-default) credit states that can be forecast with a correspond-
ingly small number of spread outcomes. Equation 5.40 will, without some form of
intervention, thus produce only a small number of discrete credit-spread outcomes
for a given obligor’s modified spread duration and exposure. The credit-migration
economic-capital engine, however, operates under no such constraint. It can provide
a (quasi-)continuum of possible migration–risk allocations. This would suggest that
our approximation—even if it differs by one notch on the credit-state forecast—
can exhibit rather important approximation errors. Our solution is to simply permit
non-integer (i.e., fractional) credit-state forecasts and determine the appropriate
spread outcome through the use of linear interpolation. This is essentially a trick—
a fractional credit rating does not really exist—permitting us to transform our
estimator from discrete to continuous space. This small adjustment provides our
estimator with significantly more flexibility.

41 As in the default section, z∗ is the α∗
z quantile of the underlying systemic risk factor distribution.

42 This stems from the high degree of inertia in credit-rating transition and, for most obligors, the
relatively symmetric probability of upgrade and downgrade.
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We have also ignored the expected-shortfall dimension. Practically, Eq. 5.42 is a
quantile-based estimator. If we wish to consider the expected shortfall metric, then
we will need to solve the following integral:

E(m)i (α∗
z ) =

1

1 − α∗
z

∫ 1

α∗
z

A(m)
i (x)dx, (5.43)

= τici · 1

1 − α∗
z

∫ 1

α∗
z

�Si

(

�−1(1 − x)

)

dx

︸ ︷︷ ︸

�S̃i (z∗)

.

Practically, only a small amount of incremental effort is required to numerically
integrate Eq. 5.43. We thus employ the integrated worst-case spread change,
�S̃i (z

∗), as the base migration loss estimator found in Eq. 5.43.
To better understand the kernel of our approximation, we return to our simple

example introduced in Table 5.1 on page 290. Naturally, we will now consider
the case of credit-migration economic capital. Some of the credit obligor’s details
are reproduced for convenience and its modified spread duration has also been
added. Unsurprisingly, the unconditional expected rating remains extremely close
to the original level. Conditional on extreme outcomes of our systemic and mixing
variables, however, the expected (or shocked) credit state belongs to PD class 13.
If we use the integrated, expected-shortfall form, from Eq. 5.43, this increases to a
13.2 rating. Of course, such a PD categorization does not actually exist. Through
appropriate interpolation along the spread curve, however, this leads to a 56 and 63
basis-point credit widening for the VaR-motivated and integrated worst-case spread
movements, respectively. These values translate into forecast credit losses of about
EUR 0.94 and 1.05 billion. Since the actual economic-capital value is roughly EUR
0.87 million, both of these forecasts appear to overshoot the target.43

Figure 5.9 provides a potentially helpful visualization of the difference between
unconditional and conditional (non-default) transition probabilities. Using our
sample obligor from Table 5.6, the three flavours of transition probability are
plotted side-by-side across the entire (non-default) credit spectrum. The uncon-
ditional transition probabilities, as one would expect, are roughly symmetric and
centred around the current credit state: PD11.44 The α∗ confidence-level (non-
default) migration probabilities—both VaR-motivated and integrated from Eqs. 5.42
and 5.43—behave in a decidedly different fashion. The likelihood of remaining
in the current credit state is dramatically reduced and the remaining probability

43 Interestingly, the model-based worst-case credit-spread widening, imputed from the true credit-

migration estimate, is readily calculated from Table 5.6 as
E(m)i (α∗)
ci τi

= 868,247
65,000,000×2.6 ≈ 51 basis

points.
44 For this credit rating, upgrade and downgrade probabilities, on an unconditional basis, appear
to be roughly equivalent. This is usually true, but it starts to break down as one moves to the
boundaries of the credit spectrum.
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Fig. 5.9 Credit-migration conditionality: The preceding figure compares the unconditional tran-
sition probabilities to the α∗

z = 0.9997 confidence-level (non-default) conditional transition
probabilities for the sample obligor highlighted in Table 5.6. The unconditional, VaR-motivated,
and integrated versions of these migration probabilities are displayed. The conditional quantities
are, in stark contrast to their rather symmetric unconditional equivalents, skewed towards credit
deterioration.

Table 5.6 Extending our simple example: The underlying table summarizes, for the same specific
exposure illustrated in Tables 5.1 and 5.2, the various quantities and calculations involved in the
construction of a conditional forecast of the migration loss.

Quantity Definition Value

Degrees of freedom ν 70

Confidence level α∗
z 0.9997

Exposure ci 65,000,000

Modified spread duration τi 2.6 yrs.

Original credit state Si0 11.0

(Unconditional) expected (non-default)
rating

E

(

S
(m)
i+
)

11.0

(Conditional) expected (non-default)
rating

E

(

S
(m)
i+
∣

∣

∣ z∗
)

13.0

(Conditional) integrated expected
(non-default) rating

1

1 − α∗
z

∫ 1

α∗
z

E

(

S
(m)
i+
∣

∣

∣�
−1(1 − x)

)

dx 13.2

Worst-case spread �Si (z
∗) 56 bps.

Integrated worst-case spread �S̃i (z
∗) 63 bps.

VaR-based forecast ̂A(m)
i (α∗

z ) 940,704

Expected-shortfall-based forecast
̂E(m)i (α∗

z ) 1,059,842

Credit-migration economic-capital E(m)i (α∗) 868,247
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Fig. 5.10 Degree of migration agreement: The preceding graphics, in raw and logarithmic
normalized units, illustrate the degree of agreement between our approximation in Eq. 5.43 and the
observed simulation-based economic-capital contributions. The overall level of linear correlation
is fairly respectable, although there is a decided tendency to overstate the level of risk.

mass is skewed strongly toward downgrade. The skew is slightly more pronounced
for the integrated conditional transition likelihoods. It is precisely this information
that we are attempting to harness for the approximation of credit migration.
These worst-case transition probabilities thus—in a manner similar to conditional
default probabilities in our earlier discussion—form the kernel of the migration-loss
approximation.

Figure 5.10 generalizes the single obligor example in Table 5.6 to the entire
portfolio. As before, the results are provided in raw and logarithmic normalized
units. The idea is to help understand the general degree of agreement between our
approximation in Eq. 5.43 and the observed simulation-based migration economic-
capital contributions. The overall level of linear correlation is fairly respectable at
0.92 and 0.99 on the raw and logarithmic scales, respectively.

Our base migration-risk approximator has, similar to the result from Table 5.6,
a decided tendency to somewhat misstate the precise level of risk. This is likely
a structural feature of the approach culminating in Eq. 5.43. As in the default
setting, conditioning solely on the systemic risk factor ignores idiosyncratic effects.
Given the more symmetric nature of migration risk—relative to the skewed nature
of default—restricting our approximation to downside systemic risk appears to
manifest itself as overly conservative initial estimates. Figure 5.10 nonetheless
suggests that, these shortcomings aside, it is a useful starting point.

Colour and Commentary 59 (THE MIGRATION KERNEL): The decision to
separately approximate migration and default, while sensible, presents a
dilemma. We need to identify a reasonable first-order migration-loss approxi-
mator. A natural starting point is to lean on the default-approximation kernel

(continued)
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Colour and Commentary 59 (continued)
and see how it might be generalized. Happily, the notion of a conditional
migration loss makes both logical and empirical sense. The only unknown
quantity in migration loss is the obligor’s future credit rating. Uncondition-
ally, this is rather uninteresting, but the situation improves if we condition
on an extreme outcome of the common systemic risk factor.a Extending this
idea leads to downward-skewed transition probabilities as well as worst-case
rating downgrade and credit-spread estimates. These quantities are readily
combined to produce an entirely reasonable, if somewhat conservative, initial
migration-risk economic-capital approximator.

a As in the default setting, the χ2-distributed mixing variable is fixed at a fairly neutral
value.

5.3.2 A First Migration Model

It will come as no surprise that we use the same linear regression structure—given
its reasonable degree of success—as employed in the default setting. Indeed, we
now have all of the necessary constituents to construct a base credit-migration
approximation model. Consider the following form:

E(m)i (α∗) ≈ τici · 1
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for i = 1, . . . , I . Again applying natural logarithms, we have a similar form to the
earlier default approximation in Eq. 5.18. This directly translates, of course, into the
familiar OLS setting and reduces to the usual linear model,

y(m) = X(m)�+ ε(m), (5.45)
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where
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As before, we need only employ the standard OLS estimator for � =
[

θ0 θ1 θ2 θ3
]T

. Although the inputs are rather different, the base migration model
is conceptually equivalent to the default case.

Table 5.7 provides the usual summary for our base, structurally motivated,
credit-migration model shown in Eq. 5.45. All four regression coefficients are
strongly statistically significant. The percentage of variance explained (i.e., R2)
attains a decent level. The other goodness-of-fit measures, however, show room
for improvement. The proportional root-mean-squared value of almost 40% is
somewhat better than in the base default model, but it suggests the presence of
important outliers. Having already been in this situation, let’s skip directly to the
extension of Eq. 5.45 to include a wider range of idiosyncratic explanatory variables.

Table 5.7 A first migration-approximation model: This table summarizes the results of the base
migration economic-capital approximation model. It has an intercept and three logically motivated
explanatory variables. The results, while not overwhelming, are reasonably encouraging.

Quantity Description Estimate Standard error t-statistic p-value

θ0 Intercept −2.04 0.17 −11.90 0.00

θ1 Worst-case spread 0.69 0.02 29.37 0.00

θ2 Spread duration 1.01 0.02 64.62 0.00

θ3 Exposure 1.01 0.01 143.70 0.00

Root mean squared error 40%

Mean absolute error 23%

Median absolute error 17%

R2 0.886
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5.3.3 The Full Migration Model

As in the default case, an extension of the base model is necessary. The full
migration-risk regression model—which is once again the result of a significant
amount of analysis—is described as:

y
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i

︷ ︸︸ ︷

ln
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+ε(m)i ,

(5.48)

for i = 1, . . . , I risk-owner risk contributions. The interesting part of Eq. 5.48
relates to the identity of the additional explanatory variables.

Table 5.8 displays the results of the final credit-migration economic-capital
approximation model. All model parameters are statistically significant. Coinci-
dentally, five additional explanatory variables were also selected. As in the default
setting, the integer-valued credit rating and the concentration index turn out to be
surprisingly useful in explaining credit-migration risk outcomes. Two additional
indicator (i.e., dummy) variables also prove helpful. The first identifies public-sector

Table 5.8 Full migration-approximation model: This table provides the key summary statistics
for the full credit-migration economic-capital approximation model. It does not fit quite as well
as the default approach, but it appears to do reasonably well.

Quantity Description Estimate Standard error t-statistic p-value

θ0 Intercept −0.62 0.17 −3.70 0.00

θ1 Worst-case spread 0.93 0.02 51.40 0.00

θ2 Spread duration 0.98 0.01 123.43 0.00

θ3 Exposure 1.01 0.00 239.04 0.00

θ4 Obligor credit rating −0.08 0.00 −17.66 0.00

θ5 Concentration index 1.42 0.07 19.74 0.00

θ6 Public-sector indicator variable −0.33 0.03 −12.32 0.00

θ7 High-risk indicator variable −0.27 0.05 −4.98 0.00

θ8 Systemic weight −1.73 0.13 −13.03 0.00

Root mean squared error 15%

Mean absolute error 11%

Median absolute error 9%

R2 0.978
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entities in the portfolio exactly as in Eq. 5.32 in the default setting.45 The second
high-risk indicator is defined as

IHi =
{

1 : Si ≥ PD14
0 : Si < PD14

. (5.49)

Obligors at the very low end of the credit spectrum are, as one might expect,
dominated by default risk. As a consequence, identifying them for different
treatment improves the overall approximation. As before, these indicator variables
are based on a certain logic, but their success likely depends on rather complicated
non-linear aspects of the production t-threshold model.

The systematic weight parameter, the final addition to our approximating regres-
sion, also provides value in describing migration risk. Its role in determining the
relative importance of systemic and idiosyncratic factors makes it important in both
the migration and default settings. It is excluded in the full default model, because
it is ultimately captured by other explanatory variables.

Figure 5.11 provides a heat-map of the cross correlation associated with our
migration explanatory variables. The only potential danger point—in terms of
multicollinearity—arises between the credit rating and public-sector variables. With
this borderline exception, the remaining descriptive variables all appear to capture
different systemic and idiosyncratic elements of migration-risk economic capital.
This is underscored by the goodness-of-fit measures in Table 5.8. In addition to a
fairly healthy increase in the R2 measure, the proportional root-mean-square errors
are reduced by a factor of three; the mean and median absolute errors, perhaps the
most important dimensions, are cut in half. The results are broadly comparable—
although marginally worse—than the full-default model outcomes presented in
Table 5.5.

Figure 5.12 concludes our examination of the migration-approximation model
through a detailed examination of the error profiles. In particular, it highlights the
error plots (estimated less observed) for the base and full migration-risk approxi-
mation models. Each perspective considers the individual obligor and (normalized)
size dimensions. A small number of model outliers are identified in the base model
and inherited in the extended model graphics; in all cases, the additional explanatory
variables improve the situation. Overall, a threefold reduction in the scale of error
is provided with the extended model. Although it struggles in certain situations,
and there is stubborn tendency to overestimate risk, the general performance of the
approximation can be considered to be satisfactory.

45 There are, it should be stressed, the only four of eight (non-intercept) variables arising in both
default and migration models. This observation underscores the benefits of separate treatment of
migration and default risk.
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Fig. 5.11 Migration instrument correlation: This heat-map illustrates the cross-correlation
between the key migration risk explanatory variables included in the extended regression model
summarized in Table 5.8.

Colour and Commentary 60 (A WORKABLE MIGRATION APPROXIMA-
TION MODEL): Migration-risk economic capital is not easier to predict than
its default equivalent.a Analogous to the default case, one can nonetheless
construct a fairly defensible regression model involving meaningful systemic
and idiosyncratic explanatory variables. The results are satisfactory; in par-
ticular, the R2 approaches 0.98 and the median proportional approximation
error comes out—not quite on par with the full default model—at around
9%. Migration risk approximation nevertheless remains a constant struggle.
The model is re-estimated daily, parameters are stored in our database, and
the results are carefully monitored via our internal diagnostic dashboards. A
more formal model-selection procedure is performed on an annual basis.

a To repeat, if it was, then we could perhaps dispense with our complicated simulation
algorithms.
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Fig. 5.12 Migration-error analysis: The preceding graphics highlight the error plots (estimated
less observed) for the base and full migration-risk approximation models. Each perspective
consider the individual obligor and (normalized) size dimensions. A threefold reduction in the
scale of error is provided with the extended model.

5.4 Approximation Model Due Diligence

Lawyers talk about the idea of a standard of care and due diligence in a very
technical and specific way. These ideas can, if we’re careful with them, be
meaningfully applied to the modelling world. We have, as model developers, a
certain responsibility to exercise a reasonable amount of prudence and caution in
model selection and implementation. Despite having invested a significant amount
of time motivating and deriving our approximation models, we cannot yet be
considered to have entirely performed our due diligence. The reasons are fairly
simple: to this point, we have only examined their performance on an in-sample
basis for a single point in time. To appropriately discharge our responsibility for due
diligence, this section will address the two following questions:

1. How do our default and model approximations perform over a lengthier time
interval?
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Fig. 5.13 A historical perspective: Using the portfolio data over each date in a six-month period
straddling 2020 and 2021, the full default and migration models are estimated and the evolution of
our four main goodness-of-fit measures are displayed. The results indicate a relatively high degree
of stability over time.

2. What is the relative performance of our approximations—again over a reasonable
length of time—along both the in- and out-of-sample dimensions?

Let’s begin with the first, more easily addressed, issue. The default and migration
approximation models were fit—using the ideas from the previous sections—to
a sequence of portfolios. Figure 5.13 illustrates the results by focusing on the
daily evolution of the four resulting goodness-of-fit criteria over a roughly 130
business-day (i.e., six-month) period. The results are fairly boring; the root-mean,
mean-absolute, and median-absolute error estimates remain resolutely stable over
the entire period. The default R2 never deviates, in any meaningful way, from
0.99. The only slightly interesting result is a downward jump in the migration R2

stemming from a hard-to-approximate addition to the portfolio earlier during our
horizon of analysis.

Boring, in the context of Fig. 5.13, is a good thing. The results strongly suggest
that our two approximations are satisfactorily robust. Caution is, of course, required.
A few new observations could undermine these positive results and lead us to
question our conclusion. This is important to keep in mind and argues for constant



5.4 Approximation Model Due Diligence 327

oversight. This point notwithstanding, we may cautiously infer, from the analysis in
Fig. 5.13, that our approximations have value beyond the single datapoint presented
in the previous sections.

The second question is harder to answer and takes us further afield. The natural
starting point is to provide a bit more precision on the difference between in-
and out-of-sample estimates. As the name suggests, in-sample fit describes errors
stemming from observations used to fit (or train) one’s approximation algorithm.
Out-of-sample fit, by extension, applies to errors for observations falling outside, or
excluded from, the estimation dataset. Any information embedded in out-of-sample
observations is not, literally by construction, captured in one’s model parameters.
It is precisely this characteristic that makes out-of-sample prediction both difficult
and interesting.

Out-of-sample prediction is a powerful technique to guard against the over-fitting
of an estimation model. This is a concern shared by both statisticians and data
scientists. Over-fitting basically describes an excessive specialization of the model
parameters to one’s specific data sample; the consequence is the identification of
trends that do not generalize more broadly to other samples or the overall data
population.46 It is easy to see how out-of-sample error analysis is precisely the right
tool to assess the degree of model over-fitting in one’s approach.

Over-fitting is a particularly depressing and dangerous model shortcoming.
One’s in-sample goodness-of-fit measures look great, but the model actually fails
dreadfully out of sample. Given the high levels of R2 and low proportional
errors in the preceding approximation models, it is entirely natural to worry about
this problem. Have we, for example, over-specialized our model structure to the
provided sample data? Addressing this entirely rationale fear is an important part
of our due-diligence process. Moreover, given that the loan-pricing problem is, by
definition, an out-of-sample prediction problem, we cannot ignore this dimension.

How should we proceed? Stone [26] and Geisser [11], almost 50 years ago,
proposed a general technique to systemically manage in- and out-of-sample datasets
and thereby control the over-fitting problem. The idea is quite simple: one first
partitions the given dataset into k (roughly) equally sized subsets. Each of these
subsets is referred to as a fold. One then excludes one of these folds—let’s start
with k = 1—and uses the remaining data to estimate the model. In statistical or
machine learning, these are generally referred to as the training and testing datasets,
respectively. One proceeds to compute two sets of goodness-of-fit measures: one for
the estimation dataset and another for the set of excluded data. These are the in- and
out-of-sample measures, respectively. One then puts the excluded data back into the
sample, and excludes another fold (say, k = 2) and repeats the exercise. This is
performed k times until each of the partitions has been excluded once. The result is

46 A less charitable way to describe over-fitting is the characterization of trends that do not actually
exist.
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Table 5.9 Goodness-of-fit statistics: This table summarizes a range of goodness-of-fit summary
statistics for both in- and out-of-sample estimates. The values are based on a five-fold cross-
validation exercise performed for every business day over a six-month period.

Default Migration

Measure Perspective Mean σ Min Max Mean σ Min Max

R2 In-sample 0.990 0.002 0.982 0.996 0.982 0.004 0.969 0.994

Out-of-sample 0.990 0.007 0.965 0.999 0.979 0.013 0.927 0.999
Root-mean-squared
error

In-sample 0.081 0.004 0.066 0.091 0.137 0.008 0.114 0.150

Out-of-sample 0.086 0.015 0.050 0.158 0.149 0.039 0.092 0.309
Mean absolute error In-sample 0.056 0.002 0.047 0.062 0.097 0.003 0.085 0.106

Out-of-sample 0.059 0.006 0.041 0.090 0.102 0.011 0.073 0.145
Median absolute error In-sample 0.041 0.002 0.035 0.047 0.080 0.003 0.069 0.092

Out-of-sample 0.042 0.005 0.028 0.059 0.081 0.008 0.056 0.105

a broad range of both in- and out-of-sample estimates.47 This is referred to—again
following from Stone [26] and Geisser [11]—as k-fold cross validation.48

Table 5.9 illustrates the results of a k-fold cross validation exercise performed for
every day during the same six-month time interval employed for the construction
of Fig. 5.13. On each distinct date, the original dataset was randomly reshuffled to
ensure different fold compositions over time. With roughly 130 days and k = 5
folds per dataset, the consequence is about 5 × 130 = 650 separate sets of in- and
out-of-sample goodness-of-fit statistics. In Table 5.9 we find the mean, volatility
(i.e., σ ), minimum and maximum in- and out-of-sample good-of-fit measures for
both migration and default approximation models.

Although there are admittedly many numbers to peruse, a few conclusions are
possible. First of all, there is a universal degradation of fit when moving from the
in- to the out-of-sample perspective. Second, and more interestingly, the magnitude
of the deterioration of fit is (for the most part) relatively modest. Finally, the
default model appears to be more robust, along this dimension, than their migration
equivalents.

Figure 5.14 seeks to help us better digest all of the figures in Table 5.9
by illustrating the competing distributions of in- and out-of-sample good-of-fit
measures for the default approximation model. Visually, the in-sample fit measures
are clearly tighter than the out-of-sample values. The centre of the two distributions
do not appear to be dramatically different, although there is a decided right skew.49

In the default setting, the overall worsening of out-of-sample prediction accuracy
appears to be reasonably limited.

47 It is also possible to repeat this again by randomly reshuffling one’s original dataset and
repartitioning.
48 See Hastie et al. [16, Section 7.2] for a helpful introduction to cross validation.
49 Or, in the case of the R2, a left skew.
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Fig. 5.14 Default out-of-sample fit: Computed using a five-fold cross validation of the full default
approximation model for each day over a six-month period, the graphics display the distribution of
in- and out-of-sample goodness-of-fit measures. Each day, the order of the observations using the
cross validation were randomly shuffled.

Figure 5.15 repeats the analysis found in Fig. 5.14, but instead examines the
migration approximation model. Once again, the in-sample fit measures are fairly
closely clustered around a central point. The dispersion of the out-of-sample
metrics is qualitatively similar, but substantially broader than in the default case.
The root-mean-squared error, in particular, exhibits a bimodal distribution. This
stems from the inclusion or exclusion of certain outlier observations from the
training and testing samples. While the out-of-sample performance of the migration
approximation is significantly worse than the default model, the analysis does not
reveal any terrible surprises. We may, therefore, cautiously provide fairly positive
responses to the two due-diligence questions posed at the beginning of this section.

Colour and Commentary 61 (DUE-DILIGENCE RESULTS): The notion of
due-diligence basically sets a standard for the requisite degree of caution
and prudence for a reasonable person finding themselves in a position of

(continued)
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Fig. 5.15 Migration out-of-sample fit: Analogous to Fig. 5.14, the graphics apply to the migration
case. Computed using a five-fold cross validation of the full migration approximation model for
each day over a six-month period, the graphics display the empirical distribution of in- and out-of-
sample goodness-of-fit measures. Each day, the order of the observations using the cross validation
were randomly shuffled.

Colour and Commentary 61 (continued)
responsibility. Given its central importance for a range of important credit-
risk economic capital applications—including, most centrally, loan pricing
and stress testing—we identify a strong need for model due-diligence. This
is operationalized in two questions: model-prediction observations over
a broader time period and out-of-sample performance. Examining daily
portfolios over a six-month period reveals an admirable degree of robustness
in our in-sample goodness-of-fit measures. Analyzing the same six-month data
window within the context of a (daily) five-fold cross validation exercise fur-
ther demonstrates only moderate degradation associated with out-of-sample
goodness-of-fit in our approximation models.a This extensive due-diligence
analysis provides a degree of comfort in our approximation models.

a The default model nonetheless significantly outperforms the migration approximator.
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5.5 The Full Picture

The previous discussion hopefully underscores that, despite rather strenuous analyt-
ical efforts and a small amount of creativity, it is not particularly easy to construct
a fast, accurate, and defensible semi-analytic approximation of the default and
migration economic-capital estimates. If it was, of course, then we might ultimately
be able to avoid lengthy and computationally expensive simulation algorithms. The
challenges certainly stem from the many complex non-linear relationships between
the individual obligors and their characteristics. Despite these complications, we are
able to offer two fairly defensible approximation approaches.

It should be fairly obvious, by this point, how total credit-risk economic capital
is approximated. Nevertheless, for completeness, the full approximator is written as

Ei (α∗) ≈ Êi (α∗
z ) =

κ
∑

k=0

ξ̂kX
(d)
i,k

︸ ︷︷ ︸

Default
risk

+
κ
∑

k=0

θ̂kX
(m)
i,k

︸ ︷︷ ︸

Migration
risk

, (5.50)

= ̂E(d)i (α∗
z )+ ̂E(m)i (α∗

z ),

for i = 1, . . . , I . This requires two main inputs: the regression coefficients and
the explanatory variables. For various downstream applications the parameters—
estimated and stored daily—are readily available. Separate functions, involving a
modicum of numerical integration, are available to collect the descriptive variable
matrices (i.e., X(d) and X(m)) as required.

Both approximations rely upon structurally motivated linear-regression estima-
tors. This offers an important advantage: it allows us to exploit our knowledge of
the underlying problem. Other choices are nonetheless possible. The presence of
complex non-linear relationships strongly suggests consideration of other, perhaps
more empirically motivated, techniques. The area of machine-learning, for example,
offers a number of potential methods to address these features of our model. Internal
assessment of popular machine-learning approaches has, in the current implemen-
tation, nevertheless been somewhat disheartening. While generally reasonable, they
fail to outperform the previously presented techniques. One reason appears to relate
to relatively small datasets; this is, to a certain extent, a constraint associated with the
need to condition on the current portfolio structure. Another explanation is that our
proposed approximators are actually rather sensible and correspondingly difficult to
beat.
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Colour and Commentary 62 (ECONOMIC-CAPITAL APPROXIMATION

CHOICES): Building a defensible and workable mathematical approximation
of a complicated object is part art and part science. Numerous choices are
required. The current economic-capital approximation model is no exception.
At least three explicit strategies have been followed. First of all, separate
approximation models are constructed for both default and migration effects.
This enhances analytical flexibility, but roughly doubles the total amount
of effort. Structurally motivated linear models, as a second point, have
been employed. These high-bias (hopefully low-variance) estimators permit
exploitation of model knowledge, but may ignore important non-linear
elements.a Finally, and perhaps most importantly, model selection was
verified over an extended time period with the consideration of both in- and
out-of-sample perspectives. The combination of these three elements does not
guarantee optimal approximation models—far from it—but it does represent
a comprehensive framework for their defence and ultimate improvement.

a There is, for example, no reason one might not be able to exploit model knowledge in the
context of more flexible estimators.

5.5.1 A Word on Implementation

The actual implementation of the migration and default approximation models
is, after all the detailed discussion of their construction and defensibility, rather
anticlimactic. Figure 5.16 summarizes the various algorithmic steps. Conceptually,
the code follows the same three steps for each model: compute and collect the
instrument (or explanatory) variables, calculate the dependent variables, and then
estimate the regression coefficients. All these activities are assigned to separate
functions since each requires a reasonable amount of effort. getXDefault
and getXMigration, which manage the computation of response variables,
perform a moderate number of numerical integrations. Moreover, the logarithmic
transformations require a bit of caution.

The primary output of the approximation algorithm takes the form of two
Python dictionaries: vd and vm. These two objects are populated with the default
and migration economic-capital estimates, respectively. Although they usefully
contain model forecasts, residuals, standard errors, test statistics and p values, the
most important data members are the parameters.50 These are used extensively in

50 In addition, all of these diagnostics are computed in both logarithmic and currency space.
Although our principal focus is the currency estimates, there is useful information in both
perspectives.
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Fig. 5.16 The EC approximation: Using instrument variables derived from the structural elements
of the default and migration computations, economic-capital is approximated using a standard OLS
framework. Since a logarithmic transformation is employed and it is useful to separately predict
their outcomes, the default and migration approximations are individually performed.

subsequent applications and, upon the completion of approximateEc, are saved
into their own database table.

Having computed the approximation models, we can immediately put them to
work. More complex approximation-related applications are considered in future
chapters, but a small question needs to be addressed. The first application of our
approximation methodologies, touches on the relationship between credit obligors
and individual loans (or treasury) positions.

5.5.2 An Immediate Application

Credit-risk economic-capital computations operate, as previously discussed, at the
risk owner level. A risk owner, to be clear, is an entity whose credit deterioration,
or failure to pay, would lead to financial loss. It may be a single corporation or
public institution or, in some cases, it can cover a parent company and its individual
subsidiaries. While these details are important, for the purposes of this discussion,
one simply needs to understand the relationship between risk-owner and individual
exposures. Finding the correct terminology for this latter quantity is a challenge; we
might refer to it as a trade, a transaction, an instrument, or a position. None of these
is entirely satisfactory. However you wish to refer to it, it is the most atomistic
element of one’s portfolio. In the lending book, these are essentially loans. On
the treasury side, however, this can involve a broad range of positions in various
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Fig. 5.17 Exposure counts: Each individual risk owner has, on average, four separate individual
exposures. The preceding graphic illustrates the significant dispersion around this central value.
Two thirds of the portfolio’s risk owners have only one or two exposures, whereas others have
dramatically more.

instruments such as swaps, bonds, forward contracts, repos, or deposits. At the NIB,
for lack of a better term, we use individual exposure (or just exposure) to refer to
these elements of our portfolio.51

To actually compute economic capital, these individual exposures are aggregated
to the risk-owner level. In recent years, our portfolio has had in the neighbourhood
of 600 individual risk owners, but more than 2000 exposures implying roughly
four exposures per risk owner.52 In its base implementation, however, economic-
capital is only assigned at the risk-owner level; it is, after all, at this level where
default (or credit transition) occurs. This creates a small challenge. For analytic
purposes, reporting, and loan-pricing activities, it is necessary to allocate the risk-
owner economic capital to each of its underlying exposures.

How are these exposures distributed by risk owner? Figure 5.17 answers this
question by displaying, for the usual arbitrary date in 2020, the range of exposure
numbers across individual risk owners. These results are presented as a percentage
of the total number of exposures. Although the mean outcome is roughly four, it
varies dramatically. About two thirds of the portfolio’s risk owner have only one or
two exposures, whereas some have dozens. The largest number of exposures per risk
owner approaches 100. These are certainly associated with treasury counterparties

51 The reader should, of course, feel free to use (or invent) a better descriptor.
52 Other financial institutions may have different distributions, but face the same conceptual issue.
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and include a range of instruments such as swaps, deposits, and repo exposures.53

Given the presence of netting and collateral arrangements, the sheer number of
exposures, in isolation, does not tell a very useful story.54

Since the model does not provide any explicit guidance as to how we should
allocate the overall risk-owner economic-capital to individual exposures, we need to
address this ourselves. After some deliberation, a few general allocation principles
were identified to guide us. More specifically, there are three key elements, in our
view, that are required:

1. Conservation of Mass: Economic-capital can be neither created, nor destroyed,
by the allocation procedure.

2. Risk Proportionality: Riskier exposures, all else equal, should receive a larger
proportion of the risk allocation than their safer equivalents.

3. Weak Positivity: A lower bound on the exposure-level risk allocation is zero;
we do not allocate negative economic capital to an exposure. This might
appear somewhat controversial. Negative economic capital, after all, is frequently
assigned in a market-risk setting. Such positions, or risk-factor exposures, can
broadly be interpreted as a form of hedge. Outside of default insurance, which
we have not traditionally employed, such dynamics do not appear to be sensible
in the credit-risk setting.

We will employ these basic axioms to direct our choice of allocation methodology.
Some notation is now required. Let us represent risk-owner economic capital,

once again, as Ei for i = 1, . . . , I . Here we refer to the total risk-owner economic-
capital allocation including both default and credit-migration effects. Our task is to
attribute Ei to each of its Ni ≥ 1 exposures. Clearly, if Ni = 1, this is a trivial
task. If Ni = 10, however, it will be rather less obvious how to apportion the total
economic capital.

Whatever approach one selects, it is basically a weighting problem. Practically,
therefore, any allocation algorithm can be described as

Eij = ωijEi , (5.51)

where Eij is the j th exposure’s allocation of the ith risk-owner’s economic capital.
ωij is the weight of the j th exposure to the ith risk owner. These weights need to be
identified. In other words, the entire exercise is about finding sensible ω’s.

The good news is that we may now employ our previously described principles
to identify reasonableω choices. The conversation-of-mass axiom, for example, can
be translated into a requirement that the full risk-owner level economic capital (i.e.,

53 In some large institutions, there may be thousands of exposures with a single risk-owner.
54 This question is addressed in detail in Chap. 10.
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Ei) is assigned to the exposures. Mathematically, this amounts to

Ei =
Ni
∑

j=1

Eij , (5.52)

=
Ni
∑

j=1

ωijEi
︸ ︷︷ ︸

Equation
5.51

,

= Ei
Ni
∑

j=1

ωij

︸ ︷︷ ︸

Our
choice

,

which implies that we merely require that

Ni
∑

j=1

ωij = 1, (5.53)

for i = 1, . . . , I . Quite simply, the condition in Eq. 5.53 ensures that the total
economic-capital amount is assigned.

If we define Rij as the riskiness of the j th exposure associated with the ith risk-
owner, then we also require that:

Rij ≥ Rik ⇒ ωij ≥ ωik. (5.54)

for all j, k = 1, ..,Ni . A riskier exposure receives a greater economic-capital
allocation; this addresses the risk-proportionality principle. Our final axiom, which
deals with weak positivity, implies that the individual weights must respect:

ωij ∈ [0, 1], (5.55)

for all j = 1, . . . ,Ni and i = 1, . . . , I .
The three conditions in Eqs. 5.53 to 5.55 provide us with all that we require to

write a concrete expression for our individual weights. The weights must be positive,
sum to unity, and respect our risk ordering. The following expression is consistent



5.5 The Full Picture 337

with all of these constraints:

ωij =
max

(

Rij , 0

)

Ni
∑

k=1

max

(

Rik, 0

)

(5.56)

The only element that is missing is a choice of risk assessment. There exist a number
of possibilities—such as the total exposure or market value—but there is already an
obvious candidate. In the previous sections, a detailed description of the default and
migration economic-capital approximations was provided. These would appear to
be a highly sensible choice for each individual Rij assessment. More specifically,
using Eq. 5.50, we require that

Rij =

Êij (α∗
z )

︷ ︸︸ ︷

κ
∑

k=0

ξ̂kX
(d)
ij,k

︸ ︷︷ ︸

Default
risk

+
κ
∑

k=0

θ̂kX
(m)
ij,k

︸ ︷︷ ︸

Migration
risk

, (5.57)

= ̂E(d)ij (α∗
z )+ ̂E(m)ij (α∗

z ).

In short, we first compute the necessary instrument variables for each ith risk owner
and j = 1, . . . ,Ni exposures. We then use our regression coefficients to produce
associated migration and default economic-capital estimates; this serves admirably
as a consistent measure of position risk for our allocation algorithm.55

Colour and Commentary 63 (EXPOSURE-LEVEL ALLOCATION): Since
default and migration occur at the risk-owner level, they must be computed
and allocated from a risk-owner perspective. Economic-capital allocations—
for a variety of practical applications—are nonetheless required at the

(continued)

55 Our estimation algorithms are indifferent as to whether they are performed at the risk-obligor or
instrument level. One need only be able to compute the necessary explanatory variables. We can
also, should we so desire, separately allocate default and migration economic capital.
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Colour and Commentary 63 (continued)
individual exposure level.a A downgrade or a default will impact all of a risk-
owner’s underlying exposures, albeit in potentially different ways.b In other
words, not all exposures possess the same risk profile and, as a consequence,
assignment of risk-owner economic-capital is not an uninteresting and routine
task. Identifying three commonsensical principles governing this operation
and, leaning heavily on our approximation models, an internally consistent
methodology is presented. We can see that our extensive effort to construct a
reasonable economic-capital estimator is already bearing fruit.

a Individual exposure is a potentially confusing term. As a trade, transaction, position, or
instrument, it refers to the most atomistic elements of our portfolio.
b Different loans, for example, may exhibit differences in guarantees or collateral thus
influencing loss-given-default values.

5.6 Wrapping Up

After having gone to such lengths to construct a functioning simulation-based
engine for our credit-risk economic-capital model in Chap. 4, it is somewhat peculiar
to immediately allocate an entire chapter towards finding semi-closed-form analytic
approximations of the same object. The driving reason is speed. Even with clever use
of parallel-processing and variance-reduction techniques, we cannot produce credit-
risk economic capital estimates in seconds.56 Certain applications, however, demand
rapidity. On one hand, it is necessary to perform timely and flexible loan-pricing
computations. Loan origination, as a fundamental activity, simply cannot operate
without the ability to quickly consider a multitude of lending options. On the other
hand, some endeavours (such as stress-testing) involve a huge scale of calculation
that cannot be handled at simulation-model speeds. Whatever the reason, there is
a clear demand for a reasonably accurate, instrument-level, fast, semi-analytical
approximation of both default and migration economic capital. Their construction
is tedious, time-consuming, and we are ultimately never entirely satisfied with their
performance. The effort is nonetheless worthwhile. Our investment in this chapter—
which has already found one small application—will pay generous dividends as
we turn to various economic-capital applications in the forthcoming discussion and
analysis.

56 Even doing so in a small number of minutes is, for a reasonable price, almost impossible.
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Chapter 6
Loan Pricing

Look beneath the surface; let not the several quality of a thing
nor its worth escape thee.

(Marcus Aurelius)

Loan origination is the lifeblood of any lending institution. This activity involves
an enormous range of complicated and difficult qualitative elements that go far
beyond any financial modelling discussion.1 It should be evident, by this point in
the proceedings, that the ideas discussed in this book are ill-equipped to tackle
the non-technical aspects of loan origination. Skipping over these important—and
not-to-be-ignored details—we will focus on the aspect where quantitative tools can
add value: the lending decision point. When faced with a potential loan proposal,
a lending institution ultimately has to determine to extend credit or not. From
a quantitative perspective, it is immensely useful to conceptualize the possible
addition of each individual loan to one’s portfolio as a distinct investment decision
or project. This allows us to frame this choice within a wider framework of very
useful ideas in corporate finance and risk management.

Informing investment decisions is a fundamental branch of the corporate-finance
literature.2 Sometimes more broadly referred to as capital budgeting, it addresses
the central question of how a firm should prioritize the allocation of its assets to
risky, but potentially profit-generating activities. Brealey et al. [11] describe it as
the answer to the following question:

[H]ow much should the firm invest, and what specific assets should the firm invest in?

This is necessarily very broad. Taking a medium to long-term perspective, typical
examples include whether or not to build a new manufacturing facility, trial a new
drug, or develop a new product brand. This idea applies equally well to potential

1 The reader is directed to EBA [16] for an interesting (and timely) dip into these conceptual waters.
2 There are literally too many references to effectively cite. There is a deep and extensive discussion
ranging from a 50-year chestnut in Mao [26] to the standard textbook treatment found in Peterson
and Fabozzi [31].
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mergers and acquisitions. While the possible variations are endless, it is not terribly
difficult to see how the loan decision fits into this broad mould. Each loan spans a
reasonable amount of time, consumes a firm’s scarce resources and any decision can,
quite possibly, crowd out other lending prospects. A clear and consistent approach
is thus required to rank various lending options and ultimately ensure that good
lending decisions are taken.

The lending institution, as is often the case in capital budgeting, has limited
power over the circumstances surrounding lending decisions.3 When granting a
loan, the Bank has no appreciable control over the firm’s current creditworthiness,
its competitors, its operating environment nor over the future development of
economic conditions. It does, however, control some aspects. A lending institution
can, within reason, exert some influence on the term, the pricing, and the convenants
of the loan. These are the basic parameters of a lending institution’s capital-
budgeting activity.

We will, in this chapter, operationalize the lender’s control, or choice, variable as
the magnitude of its lending margins.4 In short, every financial institution requires
a holistic approach towards setting sensible lending margins (i.e., prices)—for all
of its stakeholders—for each loan that it extends to a credit obligor. This is a
particularly challenging task for, at least, three reasons. A loan price:

1. has to cover the institution’s costs including a required return on capital;
2. must be broadly consistent with market prices; and
3. has to be consistent with the institution’s mandate or strategy.

Every financial institution thus needs to walk a fine line between cost recovery,
market consistency, and strategic direction. Figure 6.1 provides a schematic descrip-
tion of this challenge. Costs, to be clear, need to be defined in a larger sense.
They naturally need to include funding costs, administration expenses, and expected
credit losses. Loans also need to be priced to recover the cost of capital allocated to
them. If this is not the case, then eventually loan activity will need to be curtailed.
This links the pricing of a given loan closely to its consumption of capital as well
as the balance-sheet composition of the institution. Indeed, as will soon become
evident, the simple question of accepting or rejecting a loan proposal encompasses
almost every aspect of the lending institution’s structure.

The principal objective of this chapter is to describe the conceptual framework
underlying NIB’s loan-pricing methodology in significant detail; this development
will, nonetheless, apply more generally to a broad range of financial institutions.
We will begin with some fundamental notions associated with asset pricing; this
will provide us with the necessary machinery for the construction of loan-pricing

3 This may be hard to believe for a reader having struggled to get a mortgage loan, but this point is
quite true in commercial lending.
4 It is, as we’ll see, broader than just the lending margin. Tenor, for example, is also quite important.
Lending margin, however, is a useful one-dimensional description of the principal lever in the
lending decision.
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Fig. 6.1 Key lending
criteria: This picture displays,
in a simplified and schematic
manner, the three key criteria
involved in identifying a
desirable loan: cost recovery,
market consistency, and
strategic relevance. Finding
the intersection of all three
elements is often challenging.

Covers all institutional costs

Consistent
with market

prices

Meets
strategic

objectives
Desirable

loan

expressions. The next step involves a close look at the lender’s balance-sheet.
This provides insight into the interlinkages between assets, liabilities, and equity.
Ultimately, the lessons learned in this section will permit us to confidently estimate
the financing costs associated with an arbitrary loan transaction. The final sections
handle the fine print of marrying notions of risk and return within the context of the
firm’s capital structure.

The end product is a risk-adjusted return measure that seeks to (fairly) inform the
appropriate choice of lending margin (i.e., price). One can think of this as a common
yardstick, or benchmark, permitting impartial comparison between disparate loan
proposals, thereby supporting the capital-budgeting process. To do this sensibly
requires both the incorporation of various specialized pricing features and explicit
links back to the institution’s strategic objectives and economic-capital framework.
While helpful and centrally important, it bears repeating that this analysis captures
only the quantitative dimension of the lending decision. Numerous other qualitative
factors enter into these decisions that, although not addressed in this chapter, play a
central role in this process. Returning to Fig. 6.1, this chapter will have much to say
about the outer circle, but rather little to add regarding the important inner circles
touching on market conditions and strategic objectives.

6.1 Some Fundamentals

People have been valuing assets as long as assets have existed. Barter and trade
would hardly be possible absent such practice; our focus, however, is on financial
assets. Consider some arbitrary contingent claim; an asset whose value depends (i.e.,
is contingent) upon the realization of some future (unknown) financial-market event
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(or events). This could be a bond, an equity, a deposit or some form of derivative
product. Values need to be assigned to these assets. Said valuation might be required
for financial reporting or, more fundamentally, because we wish to sell or purchase
it. In some cases, there are active markets that can be used to determine this value.
Other times, we must take one or more logical steps to infer a valuation. This is
referred to as the asset-pricing problem; it is an important sub-field of mathematical
finance.

Our focus is financial assets in general and loan contracts in particular. The loan-
pricing problem falls into this long tradition and the finance literature is literally
teeming with useful tools to address this question.5 Treynor [39], Sharpe [33, 34]
and Lintner [25] introduced the capital-asset pricing model (CAPM) in the early
1960’s. Designed mainly for equity pricing, it clearly illustrates the fundamental
importance of systemic risk. Although, it has been twisted and revised over the
years, the central notions of CAPM still lie at the heart of many modern financial
tools. Black and Scholes [7], Merton [28], and Vasicek [40] ushered in the era
of modern derivative-contract asset-pricing in the early to mid 1970’s. Exploiting
the notions of arbitrage and market completeness, and using continuous time
mathematics, this work set the stage for most current valuation models. In the
economics literature, conversely, general equilibrium approaches are used (mostly
in theoretical settings) for price determination.6

Although our application is less complex than many pricing problems, it still
fits into the general asset-valuation framework. As a consequence, this framework
sets the stage for the subsequent discussion. Let us introduce these ideas in the
context of pricing a risk-free bond. Ultimately, once you peel away all the details,
pricing involves the discounting of cash-flows. This case is no exception. Managing
the book-keeping of these cash-flows, however, requires organization and clarity.
Pinching some common, but useful, notation from Brigo and Mercurio [12], we can
establish some important basic quantities.

Many commercial loans have amortized notional repayment schedules, which
implies a need to be quite cautious about the outstanding amounts on payment dates.
To sort this out, let β denote the total number of payment dates and define the
notional payment schedule as

{−N0, N1, N2, · · · , Nβ

}

, (6.1)

for payment dates
{

t ≡ T0, T1, T2, · · · , Tβ ≡ T
}

where −N0 is the initial disburse-
ment. We define

Xi =
β
∑

j=i
Nj , (6.2)

5 It’s hard to be entirely definitive, but modern asset pricing probably started with Williams [41].
6 See Mas-Colell et al. [27, Part IV] for more on this important, but complex question.
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as the notional between the (i − 1)th and ith payment dates.7 Xi thus denotes the
outstanding loan amount associated with the ith payment.

Let us further write ci as the coupon rate for the ith payment date.8 The (ex-
disbursement) loan cash-flow stream would look something like:

{

c1X1 +N1
︸ ︷︷ ︸

Coupon and
Principal

, c2X2 +N2, · · · , cβXβ +Nβ

}

, (6.3)

where

ci = �(Ti−1, Ti)
︸ ︷︷ ︸

�i

Ki . (6.4)

Ki is the ith coupon rate and �i ≡ �(Ti−1, Ti) is the day-count convention.9

Understanding the cash-flow stream, three challenges immediately arise. First, the
coupon element must be represented in a less vague manner to provide insight into
the lending margins. Second, we need to determine how to actually discount these
future values back to the current time. Finally, it will be necessary to incorporate the
potential for credit default. Let’s examine each in turn.

The first challenge is easy to handle. Our loans—as is the case with many
international financial institutions—typically pay a floating-rate coupon based on
a reference index.10 When Ki �= K—that is, the coupon is not a fixed rate—then
we have that

Ki = L(Ti−1, Ti)
︸ ︷︷ ︸

Li

+m, (6.5)

where Li is a—typically six-month—LIBOR tenor and m is a lending spread or
margin. With the advent of reference-rate reform—see, for example, Hou and Skeie
[20], Duffie and Stein [15], or Bailey [5]—the structure of the LIBOR is changing.11

Conceptually, however, the notion of some common underlying reference rate will
not. We can, therefore, think of Li as a generic floating reference rate; currently, it is

7 During the grace period, where the loan outstanding does not change, the associated N values
can naturally be zero.
8 Strictly speaking, the term coupon should be used exclusively with bonds, not loans. Old habits,
and expressions, nevertheless die hard. The reader should feel free to replace the term “coupon”
with interest-rate payment as desired.
9 This is the concrete representation of the number of days between payment dates used to
determine the magnitude of the cash-flow.
10 There is the possibility of providing fixed-rate loans to lending clients, but these would be
swapped back to floating anyway.
11 Moreover, by the publication of this book, it will certainly have been replaced.
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traditional LIBOR, in the future it will take an alternative (but conceptually similar)
form.

The second challenge involves, in principle, a huge amount of finance theory.
Pricing a loan-commitment might look like the simple discounted sum of cash-
flows, but a startling amount of complexity is lurking just under the surface. We
will not grapple with all of it, but some of it will be necessary for our purposes.
Formally, the price of any contingent claim can, on the probability space, (�,F ,P),
be written as its expectation taken with respect to the equivalent martingale measure,
Q.12 This is quite a mouthful, but it is the result of a significant amount of practical
and theoretical research.13. The consequence is that the price of our loan may be
written as,

E
Q (P |Ft

)

= E
Q

⎛

⎜

⎝

β
∑

i=1

(

�i(Li +m)Xi
︸ ︷︷ ︸

Coupon

+Ni

)

e−
∫ Ti
t rudu

∣

∣

∣

∣

∣

∣

∣

Ft

⎞

⎟

⎠ , (6.6)

=
β
∑

i=1

E
Q

((

�i(Li +m)Xi +Ni

)

e−
∫ Ti
t rudu

∣

∣

∣

∣
Ft

)

,

=
β
∑

i=1

E
Q
Ti

((

�i(Li +m)Xi +Ni

)∣

∣

∣

∣
Ft

)

P(t, Ti)

︸ ︷︷ ︸

Björk [6, Proposition 19.12]

,

=
β
∑

i=1

(

�i

(

F(t, Ti−1, Ti)+m

)

Xi + Ni

)

P(t, Ti)
︸ ︷︷ ︸

δi

,

Pt =
β
∑

i=1

�i

(

F(t, Ti−1, Ti)+m

)

Xiδi

︸ ︷︷ ︸

Coupons

+
β
∑

i=1

Niδi

︸ ︷︷ ︸

Principal

,

where rt denotes the instantaneous, risk-free, short-term interest rate at time t . This
requires some unpacking.14 Much of Eq. 6.6—such as notional amounts, spreads,

12 We further assume that this (transformed) measure is induced with the money-market account as
the choice of numeraire asset. This is typically generically referred to as the risk-neutral measure.
13 See Harrison and Kreps [18], Harrison and Pliska [19], and Duffie [13] for foundational
discussion on asset-pricing theory.
14 The measure Q

Ti is induced with the zero-coupon bond with maturity Ti as the choice of
numeraire asset. This is typically referred to as the forward measure; see, for example, Brigo and
Mercurio [12, Section 2.5] or Björk [6, Chapter 19]. Implicitly, there is a change-of-measure from

Q to Q
Ti ; this is accomplished with none other than the Radon-Nikodym derivative, dQTi

dQ
. This

clever choice of numeraire allows us to simplify dramatically our integrands by separating out the
dependent instantaneous short rate, r , and the LIBOR rate, Li .
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and day-count fractions—is deterministic. These values are constant under the
expectation operator. The only random variables are the future LIBOR rates and the
path of the instantaneous risk-free, short rate. The (forward-measure) expectation of
future LIBOR is written as,

E
Q
Ti
(Li |Ft

)

≡ E
Q
Ti

(

L(Ti−1, Ti)

∣

∣

∣

∣
Ft

)

= F(t, Ti−1, Ti), (6.7)

where F(t, τ, T ) denotes the forward interest rate prevailing at time t for a contract
starting at time τ ≥ t with a tenor T − τ .15 In plain English, therefore, this confirms
the common practice of using implied forward rates to represent (unknown) future
LIBOR rates when generating loan cash-flows. The following quantity is another
well-known character in asset-pricing circles,

δi ≡ P(t, Ti) ≡ δ(t, Ti) = E
Q

t

(

e−
∫ Ti
t rudu

)

. (6.8)

Depending on your perspective and preferences, this might be referred to as the
pure-discount bond price, an Arrow-Debreu security, or the pricing kernel. For the
purposes of loan pricing, we will unceremoniously refer to it as the discount factor.16

The important takeaway from this unprovoked application of financial theory is a
pricing relationship that is on firm ground. We may replace unknown future LIBOR
outcomes with the implied forward rates extracted from the swap curve and discount
future cash-flows using the risk-free overnight-index-swap (OIS) interest rate.17

Colour and Commentary 64 (RISK-FREE PRICING): Every student who
has taken a base course in finance is aware that the price of a risk-free, fixed-
income security is simply the discounted sum of its cash-flows. The theoretical
foundations of this general approach are often less well understood. There
is a random element to both the magnitude and form of future cash-flows
and their associated discount factors. More formally, the price of a fixed-
income security is characterized as its expected discounted cash-flows under
the appropriate pricing measure discounted at the risk-free interest rate. Both
quantities must be inferred from the financial market. In the loan-pricing
setting, this reduces to a replacement of (unknown) future LIBOR rates with

(continued)

15 Brigo and Mercurio [12] provide much more background and detail on this point.
16 An Arrow-Debreu security is, of course, rather more general; this would be a special case. See
Arrow and Debreu [3] for the gory details.
17 OIS discounting remains a relatively recent practice and is (probably) poised to change
somewhat with the advent of reference-rate reform. See Hull and White [21] for a discussion of its
origins.
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Colour and Commentary 64 (continued)
implied forward rates and discounting with risk-free rates.a This may feel
like financial semantics, but appreciating this aspect is central to placing our
upcoming risk-adjusted return calculation on a sound theoretical footing.

a Overnight-interest-rate swaps rates, while not entirely risk-free, are generally employed
as an acceptable proxy.

If there was no possibility of default from the loan obligor, we would be done.
Default is possible, of course, so it cannot be ignored. Following Jeanblanc [23],
we can explicitly introduce the default time τ as a positive-valued random-variable
defined on the probability space, (�,F ,Q). You can think of it as a random future
time. Defining t as the current time and T as the loan’s terminal date, then default
occurs if τ ∈ (t, T ]. Practically, therefore, this random default time shows up in
pricing formulae as the following indicator variable,

Iτ>T =
{

1 : τ > T (or survival to T )
0 : τ ≤ T (or default prior to T )

. (6.9)

This a useful object taking the value of one if default occurs over (t, T ] and zero
otherwise. It is the main tool for the incorporation of default into pricing logic.

Making generous use of Eq. 6.6—and leaning on the theoretical background
from Duffie and Singleton [14] and Bluhm et al. [8]—we can re-write our pricing
expression—without expectation—as,

P =
β
∑

i=1

Iτ>Ti

(

�i

(

Li +m

)

Xi +Ni

)

e−
∫ Ti
t r(u)du

︸ ︷︷ ︸

Conditional interest and
principal payments

+R(τ)X(τ)e−
∫ τ
t r(u)du

︸ ︷︷ ︸

Conditional default
recovery

,

(6.10)

where R ≡ R(τ) is the amount of the defaulted loan one expects to recover. Default
conditionality has now been introduced.

The remaining effort involves computation, as done in Eq. 6.6, of the Q-
expectation of Eq. 6.10. This requires a few assumptions. The first, common choice
is to assume that τ and r(t) are independent. That is, that the default event does
not depend upon risk-free interest rates.18 This means that we can readily evaluate

18 The link between short-term interest rates, the business cycle, and default probabilities probably
argues against this decision. For simplicity of pricing, however, it is probably best to avoid this
potential rabbit hole of complex economic relationships.
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Eq. 6.10 as

E
Q

t (P ) = E
Q

t

⎛

⎝

β
∑

i=1

Iτ>Ti

(

�i

(

Li +m

)

Xi + Ni

)

e−
∫ Ti
t r(u)du

+R(τ)X(τ)e−
∫ τ
t r(u)du

)

, (6.11)

=
β
∑

i=1

E
Q

t

(

Iτ>Ti

(

�i

(

Li +m

)

Xi +Ni

)

e−
∫ Ti
t r(u)du

)

+E
Q

t

(

R(τ)X(τ)e−
∫ τ
t r(u)du

)

,

=
β
∑

i=1

E
Q

t

(

Iτ>Ti

) · EQ

t

((

�i

(

Li +m

)

Xi + Ni

)

e−
∫ Ti
t r(u)du

)

︸ ︷︷ ︸

By independence

+E
Q

t

(

R(τ)X(τ)e−
∫ τ
t r(u)du

)

,

=
β
∑

i=1

Q(τ > Ti)

(

�i

(

F(t, Ti−1, Ti)+m

)

Xi +Ni

)

P(t, Ti)
︸ ︷︷ ︸

δi
︸ ︷︷ ︸

Equation 6.6

+E
Q

t

(

R(τ)X(τ)e−
∫ τ
t r(u)du

)

,

=
β
∑

i=1

(

�i

(

F(t, Ti−1, Ti)+m

)

Xi + Ni

)
δ̃i

︷ ︸︸ ︷

δiQ(τ > Ti)

︸ ︷︷ ︸

Regular cash-flows

+E
Q

t

(

R(τ)X(τ)e−
∫ τ
t r(u)du

)

︸ ︷︷ ︸

Recovery

,

where we use EQ

t (·) ≡ E
Q(·|Ft ) to (slightly) ease the notation. Equation 6.11 looks

qualitatively quite similar to the risk-free setting summarized in Eq. 6.6. There are
two main differences: the discount factors have an alternative form and there is an
ugly recovery expression hanging around at the end.
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The discount factors are the easiest to explain. From first principles, we have that

Q(Iτ>Ti ) = Q(τ > Ti)
︸ ︷︷ ︸

S(Ti)

, (6.12)

= 1 −Q(τ ≤ Ti)
︸ ︷︷ ︸

Fτ (Ti)

,

where risk-neutral S(Ti) and Q(τ ≤ Ti) represent the survival and default prob-
abilities, respectively.19 The survival probability is, of course, a number between
zero and 1. If S(T ) = 0.9, then we would conclude that there is a 90% probability
of survival between t and T . It works much like a discount factor. If we take the
product of a survival probability and risk-free discount factors yield, we get the
following, very useful, object

δ̃i ≡ δ̃(t, Ti) = δ(t, Ti)
︸ ︷︷ ︸

δi

S(Ti). (6.13)

This is referred to as the credit-risk-adjusted discount factor. It is quite intuitive. If
the survival probabilities are always and everywhere equal to one, then we recover
the risk-free discount rates. If they all take the value of zero, conversely, the security
has no value. Under normal circumstances, their values are not so extreme. Instead,
in the context of Eq. 6.13, they act as a modifier to the risk-free discount rate. They
push down the discount function in a manner directly proportionate to the credit risk
of the obligor.20

The final, less obvious term, in Eq. 6.11 requires a bit of algebraic wrestling.
Making a few assumptions and recalling the basic principles of statistical distribu-
tions, it is accurately approximated as

E
Q

t

(

R(τ)X(τ)e−
∫ τ
t r(u)du

)

=
∫ T

t

R(u)X(u)

δ(t,u)
︷ ︸︸ ︷

e−
∫ u
t r(v)dv fτ (u)du, (6.14)

=
β
∑

i=1

∫ Ti

Ti−1

R(u)X(u)δ(t, u)fτ (u)du

︸ ︷︷ ︸

Partition the integral range

,

19 Fτ (·) denotes the cumulative distribution function of τ . The default probability is, by its very
form, equivalent to this (as-yet-unspecified) function of τ .
20 Indeed, one can think of the difference between the risk-free and survival rates as a kind of
representation of the individual firm’s credit spread.
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≈
β
∑

i=1

R

∫ Ti

Ti−1

X(u)δ(t, u)fτ (u)du

︸ ︷︷ ︸

Assume constant recovery

,

≈
β
∑

i=1

RXiδi

∫ Ti

Ti−1

F ′
τ (u)du

︸ ︷︷ ︸

Constant exposure and discount
factor on each sub-interval

,

≈
β
∑

i=1

RXiδi

(

Fτ (Ti)− Fτ (Ti−1

)

,

≈
β
∑

i=1

RXiδi

(

Q(τ ≤ Ti)−Q(τ ≤ Ti−1)

)

︸ ︷︷ ︸

Equation 6.12

,

≈
β
∑

i=1

RXiδiQ

(

τ ∈ [Ti−1, Ti]
)

.

This approximation has a very practical form; it permits us to write the recovery
aspect as a simple product of recovery rates, exposures, risk-free discount factors,
and risk-neutral default probabilities.21

Gathering all of the details together, we arrive at the final product. The (risk-
neutral) expectation of a floating-rate loan obligation can be approximated as,

E
Q

t (P ) ≡ Pt ≈
β
∑

i=1

(

�i

(

F(t, Ti−1, Ti)+m

)

Xi + Ni

)

δ̃i

︸ ︷︷ ︸

Discounted (risky) expected cash-flows

+RXiQ

(

τ ∈ [Ti−1, Ti ]
)

δi

︸ ︷︷ ︸

Expected recovery

. (6.15)

The logic is that the individual cash-flows are discounted at a rate that reflects the
creditworthiness of the underlying obligor. It also includes a conditional amount for
the recovery of any funds in the event of default.

21 It is common, at this point in most default-risk pricing discussions, to place some additional
structure onto the survival probabilities. This involves the (very useful) notion of the hazard
function. For our purposes, however, this quantity will not be required. The interested reader
is referred to Taylor and Karlin [38, Chapter 1] or Stuart and Ord [37, Section 5.34] for more
background on hazard functions.
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This is not quite the end of the story. Equation 6.15 can also be (usefully) written
in an alternative, but equivalent form. We could discount the cash-flows, without any
notion of default, as in Eq. 6.6. If we did that, however, we would have to subtract
off the expected credit loss and then, as before, add back the expected recovery.
Let’s try this with Eq. 6.15,

Pt ≈
β
∑

i=1

(

�i

(

F(t, Ti−1, Ti)+m

)

Xi +Ni

)

δi

︸ ︷︷ ︸

Equation 6.6

−XiQ

(

τ ∈ [Ti−1, Ti ]
)

δi

︸ ︷︷ ︸

Expected loss

+RXiQ

(

τ ∈ [Ti−1, Ti ]
)

δi

︸ ︷︷ ︸

Expected recovery

, (6.16)

≈
β
∑

i=1

(

�i

(

F(t, Ti−1, Ti)+m

)

Xi +Ni

)

δi

︸ ︷︷ ︸

Discounted (riskless) expected cash-flows

−
LGD

︷ ︸︸ ︷

(1 − R)XiQ

(

τ ∈ [Ti−1, Ti ]
)

δi

︸ ︷︷ ︸

Net expected loss

,

where the well-known quantity, loss-given-default or LGD, makes a surprise
appearance. While Eqs. 6.15 and 6.16 are equivalent, the latter expression offers
the (not-to-be-underestimated) benefit of being able to adjust all cash-flows directly
using risk-free discount factors.

Colour and Commentary 65 (DEFAULT-RISK PRICING): A second finan-
cial pricing adage is that cash-flows should be discounted with a rate that
is commensurate to their riskiness. How such discount rates are constructed
requires theoretical structure. It turns out that these rates are based on the
interaction between risk-free rates and survival probabilities. The risk-free
dimension captures the time value of money, while the survival aspect explic-
itly addresses the payment-default dimension. This clever decomposition has
useful consequences. It permits us—when making the appropriate adjustments
for default and recovery—to continue to discount expected future cash-flows
at risk-free rates. In other words, as long as the key actors are present in
the correct form, there are a number of possible configurations for their
representation. We will make generous use of this flexibility in the construction
of risk-adjusted loan returns.
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Actually evaluating Eq. 6.16 requires some effort. One needs to identify cash-
flows dates, outstanding amounts, margins, and day-count fractions. These will need
to be sourced from internal systems. Risk-free discount, implied LIBOR forward-
rate, and (risk-neutral) default probability curves will also be required. This likely
involves additional systems and input data. Discount and projection curves need to
be extracted from market instruments such as overnight-index and interest-rate swap
securities.22 Risk-neutral default probabilities are, most typically, extracted from
credit-default-swap markets. This requires some additional theoretical machinery
and statistical assumptions.23

The bigger question relates the conceptual notion of so-called risk-neutral default
probabilities. The risk-neutral, or pricing, or equivalent martingale measure—which
we have denoted as Q—is a central object in asset pricing. It is a subtle object
arising from assumptions about arbitrage and market completeness. Risk-neutral
probabilities are the correct quantity for pricing, but they unfortunately do not
correspond to one’s typical idea of a default probability. We generally like to
think of a probability in relative frequency terms. That is, if a random event
was repeated 100 times, then a specific outcome might be sensibly assigned a
probability of 0.1 if it occurs on ten occasions. In a financial setting, this more
natural definition of probability is—in a loose sense—referred to as the natural or
physical probability measure. We write it as P to differentiate it from the equivalent
martingale measure, Q.

These probability measures, quite simply, serve different purposes. The risk-
neutral measure arises naturally in pricing applications, whereas the physical
probability measure stars in strategic and risk-management settings.24 Often both
make an appearance in a given analysis, but when this occurs, they stick to their
area of relevance. While this is a well-understood area of finance theory, it bears
repeating and underscoring in this analysis. The computation of risk-adjusted
rates of return—the objective of this chapter—involves both pricing and risk-
management dimensions. Particular care will need to be taken to use the correct
quantity in the correct place.

Colour and Commentary 66 (P’S AND Q’S): To mind your p’s and q’s is
an old-fashioned English expression counselling caution and attentiveness
in one’s behaviour. It presumably comes from the fact that these two letters

(continued)

22 This can get quite involved. See, for example, Ametrano and Bianchetti [2] for a discussion of
some of the finer points involved in this exercise.
23 More details can be found in Bolder [10, Chapter 9].
24 Meucci [29] provides an insightful description of these two different tracks in quantitative
financial analysis.
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Colour and Commentary 66 (continued)
look strikingly similar, but mean rather different things.a A similar degree
of vigilance is recommended when working with risk-neutral and physical
probabilities—denoted as P and Q, respectively—in financial problems.
Analogous to our English proverb, these measures serve rather different
purposes despite some structural parallels. The risk-neutral measure applies
when pricing securities; quantities computed under this measure cannot be
interpreted in the typical way. The physical measure applies to real-world
empirical problems such as risk measurement or strategic analysis. Using the
wrong measure in the wrong context can lead to potentially disastrous results.
Since computation of risk-adjusted returns touch on both these areas, we are
well advised to tread carefully.

a The actual origins of this saying, as one might expect, are a matter of some debate. See
Knight [24] for some (rather old) thoughts on the matter.

6.2 A Holistic Perspective

The determination of appropriate lending margins needs to capture both risk and
return dimensions. As a result, we do not face a pure loan-pricing problem.
Equation 6.16 is certainly useful and (if) applied correctly, were we so inclined,
would represent an excellent starting point for the fair-value liquidation of a lending
asset. Most financial institutions are not in the business, however, of liquidating
their lending assets.25 Loan-price valuations have many applications, but they are
not directly informative to lending decisions. Why, therefore, have we invested
several pages of effort in rather dense asset-pricing theory? The answer is that the
forthcoming analysis will incorporate an important pricing dimension. We will need
this knowledge. There is, nevertheless, an important dimension not directly present
in our pricing formulae: worst-case risk.

Asset pricing incorporates average, or expected, risk. It does not include any
explicit notion of extreme, downside (or worst-case) risks. This is the job of
economic capital. Risk-adjusted pricing might incorporate this aspect, conceptually
at least, as follows:

Risk-adjusted price = Risk-free price − Expected loss
︸ ︷︷ ︸

Equation 6.16

−Worst-case loss.

(6.17)

25 Nor are these loans typically fair-valued, beyond informational purposes, in financial reporting.
The clear exception is loan securitization, of course, but that is not the current topic of discussion.
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This might be a useful quantity, but it is denominated in currency terms making
comparison between individual loans somewhat difficult. A risk-adjusted return
might solve this issue with the following (very generic form):

Risk-adjusted return =
Equation 6.16

︷ ︸︸ ︷

Risk-free price − Expected loss−Other relevant costs

Worst-case loss
.

(6.18)

Risk-adjusted returns have a long history in finance. The Sharpe ratio, which is a
rather famous case of the more general information ratio, is still used extensively in
asset-management circles and dates back to the late 1960s.26 The usefulness of these
ratios is that they normalize some notion of return by some measure of risk. The
return is thus deflated, or discounted, by the amount of risk it generates. High-return,
but high risk investments are thus made comparable to their low-return, low-risk
equivalents in a consistent manner. Such a quantity is thus of significant usefulness
in informing investment, or lending, decisions. We thus find ourselves back to the
firm’s capital budgeting problem, thus explaining our interest.

The big question, of course, is what precisely to put into the numerator and
denominator of Eq. 6.18 to make the precise structure of risk-adjusted return the
most meaningful and representative of one’s business. The key to answering these
questions is found in the financial statements. We need to understand how lending
activities are financed. How much is financed, for example, by liabilities and how
much by equity? This is a capital structure question. We also need to investigate how
an individual loan contributes to the firm’s overall equity position. What, therefore,
are the relevant revenues and expenses associated with an individual loan? This is a
profit-and-loss question. Finally, we must identify the specific risks that need to be
compensated. This goes somewhat beyond the firm’s financial statements and enters
into the realm of economic capital.

6.2.1 The Balance-Sheet Perspective

The most natural starting place is the firm’s balance sheet. Among other things,
a balance sheet illustrates asset composition and capital structure. These two
dimensions provide useful insight into investment and financing decisions, which
will help us organize the actors appearing in the numerator of Eq. 6.18.

Figure 6.2 begins this process with the graphical representation of two stylized
balance sheets. The left-hand graphic includes the useful high-level view of assets,
liabilities, and shareholder’s equity. The right-hand side specializes to the type of

26 See Sharpe [35, 36] for the origins of the Sharpe ratio and Bacon [4] for a good discussion on the
information ratio. Bolder [9, Chapter 14] also touches on these ratios and some of their cousins.
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Fig. 6.2 Asset composition and capital structure: The preceding graphics illustrate—from a few
complementary perspectives—the typical (albeit somewhat stylized) balance sheet of a lending
institution.

balance sheet one would expect to see from a garden-variety lending institution.27

The asset side is broken into two main categories: lending and treasury assets.
Loans, appearing in amortized-cost form, are probably best treated as a monolithic
category. It is useful, conversely, to consider the various fair-valued elements of
treasury assets. Many of these instruments will serve short-term liquidity needs—
such as facilitating loan disbursements and financing repayments—but some portion
will also relate to medium-term investments. A fraction of the treasury assets will
also include derivative securities—such as interest-rate or cross-currency swaps—
employed to hedge various aspects of the lending operations. The market values of
such instruments are generally only a small proportion of their notional values and,
depending on market conditions, they may appear as either assets or liabilities.28

As we move to the specific balance-sheet view in Fig. 6.2, it is also helpful
to broadly characterize firm liabilities as funding. While some other liabilities
naturally occur, the vast majority relates to financial-market funding. NIB, like most
international financial institutions, funds itself in global capital markets at various
tenors across a range of currencies.29 The equity allocation is also further sub-
divided into two categories: economic-capital and headroom. The magnitude of the
economic-capital value is, of course, directly proportional to the riskiness of the
assets on the left-hand side of the balance sheet. Recall further that the headroom
is defined as the residual between a firm’s actual equity position and its economic-
capital consumption. A positive headroom indicates capacity for further risk taking,
while a small or negative figure often spells trouble.

27 This viewpoint would, with a few small label changes and brushing over some firm-specific
elements, equally apply to virtually any financial institution.
28 Typically, derivative valuations on both sides of the balance sheet roughly cancel one another
out. While centrally important for the operations of almost any financial institution, they do not
figure importantly in this discussion. Chapter 10 touches on how derivative contracts enter into the
economic-capital picture.
29 For many financial institutions, funding is typically augmented by (or even predominately
comprised of) client deposits.
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While it is obvious that the right-hand side of the balance sheet finances the left-
hand assets, it is less evident what specifically finances what. It is not uncommon
for financial institutions to, conceptually at least, imagine that lending activity is
financed by funding, whereas treasury investments are funded with equity. A firm
may, through their asset-and-liability management function, build explicit (albeit
partial) links between the two sides of the balance sheet. Conceptually, however,
this is something of a fiction. A firm should be viewed, and is typically managed,
from a holistic or macro perspective. Each asset held by a firm is being financed by
both funding and equity. This is, in many ways, the central message of any balance
sheet and the reason for the primacy of capital-structure questions in the corporate-
finance literature.

This seemingly innocuous conclusion—that assets are financed by the entire
right-hand side of the balance sheet—nonetheless has some important ramifications.
Most particularly, the revenues generated by the firm’s assets need to cover one’s
costs. Funding costs, while potentially multifaceted and complex, are readily
tabulated and determined. The cost of equity, however, is rather less clear cut. In
the simplest sense, assets need to generate sufficient revenues to pay an annual
dividend. This, however, is only part of the equation. If the firm wishes to grow
its balance sheet—as most do—the assets also need to permit corresponding growth
in the equity position.30 Increasing levels of assets will—even at unchanged levels
of riskiness—consume more economic capital. Absent a commensurate increase in
equity, the headroom will shrink and, ultimately, business activity will likely need
to be curtailed.

The actual required level of equity growth is something of an open question.
Some firms, and industries, have a broad range of growth prospects. Others do not.
These prospects are generally somehow linked to their products’ life cycles, the
competitive structure of the industry, and the state of technology. It is probably a
reasonable assumption that, over the medium to long-term, all firms should seek to
grow, at least, at the same pace as their general macroeconomy.31 Over shorter time
periods, of course, firms might target higher (or lower) levels of growth. Again, if
assets do not generate sufficient revenues to fund the necessary degree of equity
growth then—without an external injection of capital—challenges may arise. For a
financial institution, the shrinkage in headroom might ultimately lead to foregoing
future lending opportunities, issues with regulators, or even downgrade by credit
agencies.

What precisely is the mechanism for equity growth? It follows a rather well-
known channel through the firm’s profit-and-loss statement. The generation of

30 An old paper—which still nicely frames the key issues—about the interplay between growth,
dividends, and stocks prices is found in Gordon [17].
31 A randomly selected Swedish firm’s long to medium-term growth target, for example, should
probably not be determined independently of the expected evolution of Swedish output.
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asset revenues involves incurrence of costs. For a financial institution, the revenue
element will take the form of loan margins, associated lending fees, and financial
security coupon payments.32 The expense side will include financing costs, admin-
istrative expenses, fair-value adjustments, and loan impairments.33 On a periodic
basis, the asset revenues and expenses are summed and netted, the dividend payment
is subtracted and the remainder is added to the equity position. The consequence is
an adjustment—made on a quarterly or annual basis—to the equity position; this
is often referred to as retained earnings. More simply, these retained earnings are
an internal asset-driven source of financing. In principle, a firm can only grow in
two ways: via this internal, organically driven, route or from additional external
injections of capital.

Colour and Commentary 67 (GROWING A FIRM): There are, when you sift
through all of the details, only two possible ways to grow a firm. The first
involves organically increasing one’s equity position through retained earn-
ings. The second requires an external injection of capital. Both, as is usual,
offer advantages and disadvantages. External injections can lead to issues
surrounding information asymmetries between management and sharehold-
ers.a For international financial institutions, with government shareholders,
capital replenishment can also become a political question. These issues
notwithstanding, new external capital can be extremely effective in helping
an entity expand its activities. Internal growth has fewer implications for
the institution’s status quo, but it can limit growth opportunities and, in
certain situations, prove rather slow. In day-to-day loan pricing discussions—
given the infrequent and unpredictable nature of external equity inflows—it is
nonetheless customary to abstract from possible future capital injections and
focus on internal growth. Organic capital expansion places a burden on firm
assets to contribute sufficient return to make one’s desired growth possible;
one’s loan-pricing framework must reflect this central fact.

a This relates to Akerlof [1]’s famous lemons problem.

32 If a firm owns equity assets, this would also include dividend income. Marketable securities’
revenue is also a bit more complex than simply coupons, but here we seek to keep it conceptually
simple.
33 Because loans are typically held at amortized cost, changes in their fair value do not flow through
profit-and-loss. To account for expected lending losses, a separate loan-impairment computation
is performed. While structurally slightly different, it is conceptually analogous to the final net
expected loss term in Eq. 6.16. This element, in all its glory, will be considered more formally in
Chap. 9.
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6.2.2 Building the Foundation

The discussion in the preceding section will, almost certainly for most readers,
contain few (if any) new ideas. These details nevertheless bear explicit repetition,
because they provide part of the foundation for the computation of risk-adjusted
returns. The fundamental assumption, at this point, is that a firm’s assets need to
internally create sufficient return to finance current and future growth prospects. Let
us try to work out, from first principles, what precisely these assets need to return.
We begin with the definition of a firm’s return on equity:

Return on equity (ex dividend) =
Firm P&L

︷ ︸︸ ︷

Revenues−Expenses−Dividends

Equity
,

Return on equity (ex dividend) + Dividends

Equity
︸ ︷︷ ︸

Return on equity

=
Firm Net income

︷ ︸︸ ︷

Revenues − Expenses

Equity
. (6.19)

This is a familiar ratio; it is simply the quotient of net income and equity.
Equation 6.19 attempts to include dividend policy and raises the point that it may
be—according to one’s tastes and objectives—placed on either side of the identity.
Moreover, Eq. 6.19 also explicitly incorporates the central role of assets in the
generation of net income. This is important, because asset composition is our main
focus of attention and principal decision variable.

The return on equity identity, from Eq. 6.19, is a good jumping off point. One
can establish a sensible growth target for this quantity. That said, it has a few critical
shortcomings; these are the same issues that precipitated the construction of the
economic-capital measure. In particular, it is silent on worst-case risk. One (perhaps
slightly dodgy) strategy to meet a return-on-equity target would be to add very
risky assets to one’s balance sheet. In the short term, at least, this would—despite
increased loan impairments and fair-value volatility—typically enlarge net income.
It would, however, expose the firm to greater risk and potentially disastrous future
net-income outcomes. This argues against the use of the return-on-equity measure
for decisions on asset allocation.34

Wholesale addition of riskier assets to one’s balance sheet is not necessarily a
sub-optimal strategy. The important element, of course, is that the asset return is
commensurate to the risk taken; moreover, the portfolio-level implications of these
risks need to be understood.35 This argues, therefore, for an adjustment—or perhaps
restatement—of Eq. 6.19 introducing the risk dimension. Abstracting from dividend

34 It is naturally part of the analysis, but it should not be the sole decision criterion.
35 It also must be consistent with the firm’s overall risk appetite and capital position.
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policy, let us consider:

Return on economic capital=
Net asset income

︷ ︸︸ ︷

Asset revenues−Asset (and other) expenses

Economic capital
,

(6.20)

with a slight specialization relative to Eq. 6.19 towards the asset dimension. The
differences between Eqs. 6.19 and 6.20 are not dramatic, but they are nonetheless
definitive. The revised denominator captures the riskiness of the assets. The high
asset-risk strategy, mentioned above, can only work if those assets also generate
a correspondingly high degree of return. Conversely, low-risk assets—that in the
previous analysis might look uninteresting—can also usefully contribute to this
ratio. Equation 6.20 thus appears to be a sensible candidate for a risk-adjusted return
ratio.

While a portfolio level risk-adjusted return ratio is fantastic, actually decisions
occur by individual asset. Somehow, therefore, we need to break Eq. 6.20 out by
asset. With N individual assets, the following decomposition is always possible,

Return on economic capital
︸ ︷︷ ︸

RAROC

=
N
∑

n=1

Net asset incomen
︷ ︸︸ ︷

Asset revenuesn−Asset (and other) expensesn
Economic capital

.

(6.21)

The numerator in Eq. 6.21 represents the marginal contribution to net income (and
eventually equity) from each asset, whereas the denominator is unchanged. This
is progress. Equation 6.21 tells us how each asset contributes, on a risk-adjusted
basis, to the total return. This is referred to as the risk-adjusted return on capital
or RAROC. It has a long and storied history in the banking community; it was
initially developed roughly 50 years ago by Banker’s Trust.36 Depending on the
exact construction of the numerator and denominator of Eq. 6.21, this measure can
provide rather different guidance. Thus, while we will use the generic term RAROC
throughout the following discussion, be aware that there is no unique definition.37

Equation 6.21, while respecting the rules of algebra, does not quite go far enough.
Our ultimate interest would involve the marginal contribution to both return and risk

36 James [22] is an interesting look into the genesis and rationale behind this measure.
37 As usual, it is always a good idea to understand the specific recipe used to cook the dish.
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at the asset level. We thus propose something like the following:

Return on economic capitaln
︸ ︷︷ ︸

RAROCn

=
Net asset incomen

︷ ︸︸ ︷

Asset revenuesn−Asset (and other) expensesn
Economic capitaln

,

= Marginal asset-income contributionn
Marginal asset-risk consumptionn

, (6.22)

for n = 1, . . . , N individual assets. This is precisely what we seek. The numerator
of Eq. 6.22 captures an asset’s marginal contribution to income, while the denomi-
nator normalizes by its risk consumption.

Sadly, although Eq. 6.22 is conceptually ideal, it an arithmetic mess. It is clear
that

Return on economic capital
︸ ︷︷ ︸

Portfolio RAROC

�=
N
∑

n=1

Marginal asset-income contributionn
Marginal asset-risk consumptionn

. (6.23)

In plain English, our preferred asset-level, risk-adjusted return measure cannot be
summed, in an intuitive way, to yield the overall portfolio metric. Instead, a bit more
flexibility is required. Equation 6.22 is aggregated to the portfolio level by summing
over both the numerator and denominator simultaneously. More specifically, this
looks like

Return on Economic Capital
︸ ︷︷ ︸

Portfolio RAROC

=
∑N

n=1 Marginal asset-income contributionn
∑N

n=1 Marginal asset-risk consumptionn
,

=
∑N

n=1 Asset revenuesn − Asset expensesn
∑N

n=1 Economic capitaln
,

= Net income

Economic capital
︸ ︷︷ ︸

Equation 6.20

. (6.24)

This minor inconvenience would seem to be the price to pay for a meaningful
working definition of risk-adjusted return (or RAROC).38

38 In practice, Eq. 6.24 allows us to compute the RAROC of any possible sub-portfolio. It is only
necessary to keep track of the marginal contribution and consumption to economic capital for each
individual asset.
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Colour and Commentary 68 (A MARGINAL PERSPECTIVE): In our search
for a sensible risk-adjusted return ratio, a natural point of departure is the
return on equity. Sole examination of return on equity is nonetheless sub-
optimal, because it ignores important (worst-case) aspects of the underlying
asset risks. This argues for updating the return-on-equity ratio’s denominator
with economic capital. This small change permits explicit consideration of
asset riskiness. A further adjustment reduces this to the individual asset
level. Our proposed risk-adjusted return—or risk-adjusted return on capital
(RAROC)—measure is thus the ratio of an asset’s marginal contribution to
asset income divided by its marginal consumption of economic capital. This
RAROC measure provides a sensible, risk-adjusted metric for asset-selection
decisions. A bit of caution and extra arithmetical gymnastics are nonetheless
required when aggregating this measure over individual assets or subsets of
one’s portfolio.

6.3 Estimating Marginal Asset Income

Equipped with a workable and concrete risk-adjusted ratio, we may proceed beyond
word equations and build a specific prescription for its calculation. This process
will bring us back to the previously introduced fundamentals of loan pricing. A
few new bells and whistles will, however, be added. The typical loan-valuation
problem, for example, does not concern itself with how the loan is actually financed.
Equation 6.22 involves the explicit inclusion of relevant asset expenses. This will be
our starting point.

Figure 6.3 provides a high-level schematic of the typical inflows and outflows
of a lending transaction. As highlighted in the initial section of this chapter, loan
obligors pay (usually six-month) LIBOR plus a lending margin denoted m. These

Fig. 6.3 Loan mechanics: This graphic provides a simplified schematic of the principal elements
of loan profit-and-loss in a LIBOR-based—or, if you prefer, reference-rate-based—financial
institution.
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loans are funded with a (typically three-month) LIBOR-based funding transaction
plus a funding spread, which we’ll call f . A few points arise. First of all, there
may be some form of basis risk between the six-month LIBOR lending rate and
the three-month LIBOR funding values. While important, let us collect this aspect
and push it into the funding spread, f . The second point relates to an institution’s
attitude towards interest-rate risk. Many financial institutions immunize themselves
from interest rate movements by hedging all lending and funding activity back
into some fixed (typically LIBOR) reference rate. This also helps manage tenor
mismatches between assets and liabilities.39 Occasionally, however, some aspect is
not completely hedged. This amounts to a perfectly legitimate view on interest rates,
but it does complicate our analysis.

Let’s take the perspective, for the moment at least, of a fully LIBOR-based
bank.40 Any fixed-rate loans, funding, and (most) investment operations are dully
swapped—individually or on a macro basis—back into either three- or six-month
LIBOR.41 For the purposes of determining the numerator of our risk-adjusted ratio
in Eq. 6.22, even when this hedging does not occur, we may always conceptually
determine the equivalent m and f values associated with any position. This
relatively straightforward computation involves the instrument’s cash-flows flows
and the appropriate swap curve. On this basis, we may (cautiously) conclude that
Fig. 6.3 provides a reasonable characterization of lending inflows and outflows.42

To arrive at a sensible expression for the numerator of our risk-adjusted return
ratio, we will begin slowly. We attend first to the loan revenues less funding
expenses. This has the following form,

Loan
Revenues

− Funding
Expenses

=
β
∑

i=1

(

�i

(

Li +m

)

Xi

)

e
∫ Ti
t r(u)du

︸ ︷︷ ︸

Discounted (riskless) inflows

−
(

�i

(

Li + f

)

Xi

)

e
∫ Ti
t r(u)du

︸ ︷︷ ︸

Discounted (riskless) outflows

, (6.25)

39 Most retail commercial banks, for example, fund themselves with short-term deposits, but make
long-term mortgages loans. Swapping both sides back into a common reference rate enormously
helps manage net margins.
40 This is defensible, because the hedging decision can be thought of separately and independently
from the lending choice.
41 Exchange-rate risks are also hedged, but even if they were not, this element would show up in
the economic-capital calculation.
42 Following this reasoning, an m value is also readily calculable for fixed-rate treasury asset
investments. This would permit extension of these ideas across all firm assets.
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E
Q

t

(

Loan
Revenues

− Funding
Expenses

)

= E
Q

t

⎛

⎝

β
∑

i=1

(

�i

(

Li +m

)

Xi

)

e
∫ Ti
t r(u)du

−
(

�i

(

Li + f

)

Xi

)

e
∫ Ti
t r(u)du

)

,

Expected
Marginal

Loan Income
=

β
∑

i=1

�i

(

m− f

)

︸ ︷︷ ︸

Internal
margin

Xiδi.

This is a lovely result. Abstracting from other expenses and impairments, the
economic lending contribution to net income is simply the exposure-weighted,
discounted sum of net margins over the loan’s lifetime. This expression does,
however, require some additional explanation. The notional repayments—from both
loan and funding perspectives—are not considered because they do not have a
profit-and-loss impact. We apply the (risk-neutral) expectation operator, because we
are trying to compute market-consistent economic values for these cash-flows. The
structural relationships are, of course, motivated by financial-statement accounting
principles, but this remains (at least, partially) a pricing problem. The pleasant
aspect of Eq. 6.25 is the cancellation of the LIBOR component.43 This is a practical
and conceptual benefit of running a LIBOR-based financial institution.44 The other
important dimension is that, unlike the accounting problem, we are not focusing
on a single reporting period. We seek to consider the financial impact of the loan
instrument over its entire tenor; this further supports the application of (risk-neutral)
expectations.

Unfortunately, it is necessary to complicate the marvellously parsimonious
expression from Eq. 6.25. Embedded in its construction is an important, and
debatable, assumption. It assumes that the loan is entirely funded with market-
based liabilities. As explicitly highlighted in Fig. 6.3, however, loan financing stems
from both funding and equity. This would imply that both these elements need to
be incorporated. We can take another crack at the form of the expected marginal
loan income through a slight restatement of Eq. 6.25. This simply requires the

43 We need not even make use of the change-of-measure trick to evaluate our expectation taken
with respect to the equivalent martingale measure (induced by a collection of forward measures).
44 Recall that the (expected) basis risk associated with the different LIBOR tenors is embedded in
f . The worst-case aspect of this risk should also find its way into the market-risk component of
economic capital.
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re-weighting of a loan’s financing sources as,

Marginal
Loan Income

=
β
∑

i=1

⎡

⎢

⎢

⎢

⎣

�i

(

Li +m

)

Xi

︸ ︷︷ ︸

Inflows

−�i

(

Funding
︷ ︸︸ ︷

(1 − ξi)

(

Li + f

)

+
Equity
︷︸︸︷

ξiH
)

Xi

︸ ︷︷ ︸

Financing outflows

⎤

⎥

⎥

⎥

⎦

e
∫ Ti
t r(u)du,

(6.26)
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Marginal
Loan Income
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∑
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Li +m

)

Xi −�i

(

(1 − ξi)

(

Li + f

)

+ ξiH
)

Xi

]
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)

,

=
β
∑

i=1

E
Q
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t
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�i

(

Li +m

)

Xi −�i

(

(1 − ξi)

(

Li + f

)

+ ξiH
)

Xi

])

P(t, Ti)
︸ ︷︷ ︸

δi
︸ ︷︷ ︸

Using the logic in Eq. 6.6

,

Expected
Marginal

Loan Income

=
β
∑

i=1

�i

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m− (1 − ξi)f
︸ ︷︷ ︸

Funding
financed

− ξi

(

H − F(t, Ti−1, Ti)

)

︸ ︷︷ ︸

Equity
financed

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Xiδi,

where ξi denotes the proportion of equity financing associated with the ith loan
payment and H represents the target rate of return on equity. This restatement is not
as immediately intuitive as Eq. 6.25. As we can see, the LIBOR based element does
not completely cancel out.45 We are also left to interpret the new equity financing
term.

45 This consequently forces us to make use of the forward-measure numeraires introduced in our
initial loan-pricing development.
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If we set ξi = 0 then Eq. 6.26 collapses to Eq. 6.25. This is reassuring.
Conversely, setting ξi to unity (i.e., fully financing the loan with equity) yields,

Expected
(Equity-Financed)

Marginal
Loan Income

=
β
∑

i=1

�i

(

m−
(

H − F(t, Ti−1, Ti)

))

Xiδi, (6.27)

=
β
∑

i=1

�i

⎛

⎜

⎝m+ F(t, Ti−1, Ti)
︸ ︷︷ ︸

Expected LIBOR

−H

⎞

⎟

⎠Xiδi.

How should we interpret this result? If the loan was entirely financed with equity, it
would (as usual) earn the margin plus expected LIBOR. These inflows would need to
be compared to the expected return on equity,H . In the more general case, however,
the funding costs—with a weight of (1 − ξ)—need to be offset. The difference
between expected LIBOR and the required equity return also arises. The larger point
is that, in a LIBOR bank, the equity financed proportion of a loan—or an investment
for that matter—earns LIBOR.46

Colour and Commentary 69 (LIABILITY VS. EQUITY FINANCING): If we
assume that a loan obligation is solely financed with market funding, we may
derive a streamlined representation of expected marginal loan income. It is
essentially the sum of the discounted differences between lending and funding
margins over the instrument’s lifetime. In reality, however, a proportion of
every loan is also financed through equity. Inclusion of this dimension creates
two practical problems: determination of the required return for equity and
assignment of appropriate weights to the funding and equity components.
Leaving these practical details for future sections, a revised loan-income
expression may be derived. While less parsimonious, the result is nonetheless
quite interesting. While the reference rate (i.e., LIBOR) component cancels
out from the funding-only perspective, it remains for the equity. This implies
that, in addition to the margin, the equity financed aspect of any loan earns
the full amount of LIBOR. This naturally leads to a comparison of this LIBOR
amount to the expected return associated with equity. Both the funding and
equity sources of financing, of course, earn the lending margin.

46 Funding financed lending activity also, of course, earns LIBOR. Since it simultaneously costs
LIBOR, this effect cancels out.
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6.3.1 Weighting Financing Sources

Equation 6.26, despite its useful structure, cannot be implemented without a clearer
view on the value of each ξi . This quantity tells us the proportion of loan financing
stemming from equity. In any introductory corporate finance textbook—Brealey
et al. [11] is an excellent choice—one can find a treatment of the so-called weighted-
average cost of capital. As the name strongly suggests, this involves weighting the
relative costs of market funding and equity. If we denote Dt and Et as the time
t balance-sheet values of the firm’s debt and equity, respectively, then a possible
candidate for the equity weight is

ξt = Et

Dt + Et

. (6.28)

This particular choice offers a number of benefits. It is easy to compute and intuitive.
Moreover, it directly reflects the balance-sheet structure of the financial institution.
This makes it an excellent choice for computation of a firm’s cost of capital.

For our purposes, however, there are also a few shortcomings. Logistically,
we need to consider future cash-flows over potentially long-term horizons. The
precise capital structure, at these future points, will be difficult or impossible to
know. A possible solution would be to fix our weight, ξ , to the current time.
Perhaps more worrying, however, is the relatively homogeneous treatment of all
loans implied by Eq. 6.28. Irrespective of the loan’s riskiness, it will be financed
in the same proportions with funding and equity. This does not follow the spirit
of the calculation. Some loan transactions will consume—through their inherent
riskiness—more of the firm’s equity. As a consequence, they need not cover only
their funding costs, but also contribute more to equity than less risky substitute
loans.

An alternative weighting scheme that explicitly incorporates the (worst-case) risk
dimension might look like

ξt = Et
Xt

, (6.29)

where Et and Xt represent the loan’s economic capital and outstanding notional
values at time t , respectively. The intuition, and logic, behind this choice is that
a loan’s amount of equity financing is directly proportional to its consumption of
equity.47 Equity consumption is proxied with its economic-capital allocation. A low-
risk loan might only have an equity financing weight of a few percentage points,
whereas this could rise to 20 or even 30% for highly risky lending ventures. The
corollary—which will be addressed in later sections—is that the required return on

47 These asset-specific values are also, from a logistical perspective, more readily available over
time for inclusion in the calculation.
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equity for such loans may be higher than that necessitated by market-based funding.
It also means that riskier assets face a higher burden.

Using Eq. 6.29, we may return to our expression for expected marginal loan
income and make it a bit more concrete. In particular,

Expected
Marginal

Loan Income
=

β
∑

i=1

�i

⎛

⎜

⎜

⎜

⎝

m−

⎛

⎜

⎜

⎜

⎝

1− Ei
Xi
︸︷︷︸

ξi

⎞

⎟

⎟

⎟

⎠

f− Ei
Xi
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ξi

(

H − F(t, Ti−1, Ti)

)

⎞

⎟

⎟

⎟

⎠

Xiδi

︸ ︷︷ ︸

Equation 6.26

,

(6.30)

=
β
∑

i=1

�i

⎛

⎜

⎜

⎜

⎝
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m−
(

1− Ei
Xi

)

f

)

Xi

︸ ︷︷ ︸

Funding component

−
(

H−F(t, Ti−1, Ti)

)

Ei
︸ ︷︷ ︸

Equity component

⎞

⎟

⎟

⎟

⎠

δi .

The result is quite sensible. The funding component involves the lending and
(weighted) funding margins relative to the outstanding loan amount. The equity
piece, as before, describes the difference between the required equity return
and expected forward LIBOR rates. The magnitude of this component, however,
depends on the loan’s economic-capital consumption. If we set Ei to zero—the loan
is considered to be riskless—this is equivalent to a zero weight on equity financing.
In this case, the equity piece vanishes and Eq. 6.30 collapses to Eq. 6.25.

Colour and Commentary 70 (FINANCING WEIGHTS): The firm’s current
capital structure is a natural touchstone for the determination of the relative
weights on the cost of funding and equity. While simple and intuitive, this
approach fails to capture the specific risks associated with a given credit
obligor. In other words, the static, homogeneous nature of the capital structure
doesn’t allow us to differentiate loan riskiness. We resolve this issue by
specifying the weight on equity financing as the ratio of the loan’s economic
capital to its outstanding amount. The consequence of this choice is that the
cost of equity financing is directly proportional to a loan’s economic-capital
allocation. Alternative choices are naturally possible, but this appears to
provide an intuitive link to worst-case risk and questions of capital adequacy.
In other words, it establishes a logical correspondence between determination
of one’s lending margin and the riskiness of the firm’s balance sheet.
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6.3.2 Other Income and Expenses

Before moving to actually construct our risk-adjusted return ratio, some additional
elements must be incorporated into loan income. These have been ignored, up to this
point, to avoid notational clutter. At this point, however, it is necessary to ensure that
all possible cost and revenue criteria are included.

Let us begin with an important source of expense: administration. There are
various ways to describe this, but our approach is to denote administrative expenses
in percentage terms. We will denote it as a. This is multiplied—as with lending and
funding margins—by the current loan outstanding amount. The actual magnitude
of a specific loan’s administrative expenses can, and does, depend upon a number
of things: creditworthiness, tenor, or geographical location to name a few. These
would, of course, have some link to, or influence on, the composition of admin-
istrative expenses. Since we are focused on recurring (discounted) administrative
expenses over the loan’s lifetime, we can embed it into the existing machinery as,

Administrative
Expenses =

β
∑

i=1

�iaXiδi. (6.31)

The next element relates to a feature of certain loans, which certainly also applies
in other lending settings. This is referred to as an up-front fee; we will denote it as u.
Again, it is a percentage quantity that is conceptually similar to lending or funding
margins or administrative expenses. The twist in this case, as the name implies, is
that it is a one-time event.48 An upfront-free occurs only at inception. We can readily
handle this with an appropriately structured indicator function. Ii=1 dutifully takes
a value of unity at the first cash-flow date and zero everywhere else. This permits us
to write the lifetime loan income associated with up-front fees as,

Up-front
Fee Income

=
β
∑

i=1

�i

(

Ii=1u

)

Xiδi. (6.32)

This might seem like overkill, but the intention is to inject this aspect organically
into our risk-adjusted return ratio formula.

The notion of (expected) default risk—introduced in the first section—has not
yet been included into our net loan-income construction.49 If we let γ represent
our estimated loss-given-default value, then we could simply borrow the formally
derived expected credit loss expression from Eq. 6.16 on page 352. For convenience,

48 Indeed, in many cases, we may have u ≡ 0.
49 This idea is intimately related to loan impairments, covered in great detail in Chaps. 7 to 9. In
loan pricing, we use a stylized statistical measure of expected default loss and assume away the
complex accounting details.
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we restate its approximate form

Risk-Neutral
Expected

Loss
≈

β
∑

i=1

�iγQ

(

τ ∈ [Ti−1, Ti]
)

Xiδi. (6.33)

This structure, while technically correct for pricing, is not ideal for our purposes.
We will need to make some concessions for the financial-statement perspective
adopted in the construction of our ratio. In brief, we seek to maintain the spirit
of Eq. 6.33, but simultaneously bring it closer to the loan-impairment computation
flowing through the profit-and-loss statement.

Practically, this transformation is accomplished by simply replacing the risk-
neutral default probabilities with their real-world equivalents. The result is,

Loan
Impairment

≈
β
∑

i=1

�iγ P

(

τ ∈ [Ti−1, Ti ]
)

︸ ︷︷ ︸

pi

Xiδi . (6.34)

The loan-impairment calculation is not a price; it is a risk measure. As a conse-
quence, we need to change our underlying probability measure. Instead of extracting
our probabilities from financial markets, they now need to be estimated from
historical data. This implies a slightly lower degree of flexibility in their form.
These physical-measure default probabilities are typically estimated at an annual
frequency. To ease the notational burden somewhat, we will denote pi as the
appropriate annual default rate associated with the ith cash-flow date.50

Pulling all of these disparate pieces together, we finally arrive at a
comprehensive—if somewhat stylized—description of the marginal income
associated with a specific loan. It takes the following, admittedly noisy, form

Expected
Marginal

Loan
Income

= Upfront
Fees

+ Lending
Margin

−
(Weighted)

Funding
Margin

− Admin
Expenses

− Loan
Impairments

−
(Weighted)

Equity
Cost

, (6.35)

=
β
∑
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Ii=1u+m−
(

1 − Ei
Xi

)

f − a − γpi

)

Xi

−
(

H − F(t, Ti−1, Ti)

)

Ei
]

δi .

50 This necessitates the scaling by the appropriate day count.
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Equation 6.35 represents the numerator of our risk-adjusted return ratio. All that
remains is to identify the appropriate denominator.

6.4 Risk-Adjusted Returns

Equation 6.22 indicates that the RAROC computation requires the marginal asset-
risk contribution in the denominator; in short, it is the economic capital. That much
is obvious. The practical challenge, however, is to find the most reasonable possible
form for our purposes. The key questions surround timing and discounting.

Economic capital is computed at a given point in time, with a fixed portfolio
composition, and with a predefined set of model parameters. Equation 6.35, which
is the comparable term for the numerator of our risk adjusted ratio, involves
the discounted sums of cash-flows over a single loan’s lifetime. This puts us in
something of an apples-and-pears situation.

The most natural solution to this mismatch is to organize the denominator in a
similar manner. We seek the total marginal economic-capital consumption of a given
loan over its lifetime. A direct way to construct such a quantity would look like:

Discounted
Marginal

Economic-Capital
Consumption

=
β
∑

i=1

Eiδi . (6.36)

This is basically the sum of discounted future economic-capital consumptions
associated with each individual payment date. This would create a logical corre-
spondence between the numerator and denominator.

There is just one problem: we do not know the future economic-capital consump-
tions associated with a given loan at each of its future cash-flow dates. There are, at
least, two annoying reasons. First, we simply do not know the portfolio composition
at these future times. This implies that we cannot really accurately determine future
concentration effects. Second, even if we did have this information, we do not have
the computational capacity to perform so many complex stochastic simulations.
Economic capital, after all, is not a fast computation.

The first annoyance can be solved by assuming that future portfolio will have a
similar composition to the current portfolio. This is something of a heroic assump-
tion and is subject to criticism, but there are really no other practical alternatives.
The second issue requires some mathematical machinery. It is solved with the use of
a complex, non-linear approximation of the economic-capital consumption.51 This
approximation depends on a set of regression parameters and explanatory variables

51 The mathematical structure of this approximation—treated here in a very abstract manner—is
discussed in detail in Chap. 5.
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as well as the specific details of the loan.52 These parameters are updated every
day to reflect the current structure of the portfolio; forecasts of future economic
capital, to repeat, necessarily assume a similar portfolio composition. Denoting all
of this approximation-level information as θ , we may write the economic-capital
approximation at the ith payment date as Êi (θ).

Using our approximation, we can rewrite Eq. 6.36 as,

Estimated
Discounted
Marginal

Economic-Capital
Consumption

=
β
∑

i=1

Êi (θ)δi . (6.37)

This is an object that can be sensibly computed.53 Equation 6.37 will play the role of
denominator for our risk-adjusted return ratio. We will also use this approximation,
where appropriate, to replace the funding-and-equity cost weights introduced in
Eqs. 6.29 and 6.30.

We now have all the necessary components to actually explicitly write out a
possible RAROC computation for an arbitrary loan obligation. Combining our
previous development, we have

RAROC =
Marginal net asset income: Eq. 6.35

︷ ︸︸ ︷

Asset revenues − Asset expenses

Economic capital
︸ ︷︷ ︸

Equation 6.37

, (6.38)
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Êi (θ)δi

β
∑

i=1

Êi (θ)δi

,

52 A non-exhaustive list would include the regional and sector identity of the obligor, the amount
outstanding, the credit class, the loss-given-default, the and size of firm.
53 Albeit subject to the reasonableness of the variety of assumptions made in Chap. 5.
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≈

β
∑

i=1

�iηiXiδi

β
∑
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Êi (θ)δi
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−

⎛

⎜

⎜

⎜

⎜
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β
∑
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�iHÊi (θ)δi

β
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Êi (θ)δi

−

β
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�iF(t, Ti−1, Ti )Êi (θ)δi

β
∑
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Êi (θ)δi

⎞

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

Equity-return target

,

where we have tried to reduce the notational clutter with the following definition,

ηi
�= ηi

(

u,m, f, a, γ, pi,Xi, θ

)

︸ ︷︷ ︸

ith payment loan profit-and-loss

, (6.39)

= Ii=1u+m−
(

1 − Êi (θ)
Xi

)

f − a − γpi.

The result is a prescriptive—if not necessarily parsimonious—formula for the
construction of a risk-adjusted return on (economic) capital.

The lending RAROC piece of Eq. 6.38 is relatively intuitive. It is a risk-deflated
(marginal) net loan income. The equity return aspects on the right-hand-side,
however, are independent of the size of the position. They are also, approximately
at least, independent of the loan’s riskiness. This requires a bit of effort to see.
Inspection reveals that both elements of the equity-return target are essentially
weighted averages. Let’s begin with the required equity return piece, where

H�̄ ≈ H

⎛

⎜

⎜

⎜

⎜

⎜

⎝

β
∑

i=1

�iÊi (θ)δi

β
∑

i=1

Êi (θ)δi

⎞

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

≈�̄

, (6.40)
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which is a kind average payment-period return; �̄ is a kind of scaling for the
payment frequency.54

The second term is a bit more unpleasant since it relates to the economic-capital
weighted implied forward rate component. This relationship between the spot
rate and the future path of forward rates—and the assumption of their equality—
is referred to as the expectations hypothesis. A huge literature—starting with
Modigliani and Shiller [30]—deals with this issue. In a nutshell, it does not really
hold, but the difference is typically small and relates to term premia. For our
conceptual purposes, we can probably safely abstract from this element. LIBOR-
based forward rates could thus usefully be replaced with averaged expected interest
rates over the loan’s lifetime (i.e., T − t). We might denote this rate as L(t, T ) to
reflect its origins in the LIBOR market.55 We thus opt to approximate this LIBOR-
related element as,

L(t, T )�̄ ≈

β
∑

i=1

�iF(t, Ti−1, Ti)Êi (θ)δi

β
∑

i=1

Êi (θ)δi

. (6.41)

Using these simplifications, the implication for our RAROC computation is a
significantly simplified more compact form,

RAROC ≈

β
∑

i=1

�iηiXiδi

β
∑

i=1

Êi (θ)δi

−
(

H − L(t, T )

)

�̄. (6.42)

Once again, the main contribution stems from the funding-financed net-income
contribution; this is unchanged. Subtracted from this component is the difference
between the required rate of return on equity and the loan’s LIBOR-related earnings.
The second aspect represents, in a simplified and approximate way, the required
return on equity (approximately) decoupled from both the size and riskiness of the
loan. As we will see in the following section, it may be useful to think of these two
aspects as being conceptually distinct.

54 Equation 6.40 would hold with equality if �i ≡ 1 for all i = 1, . . . , β or the payments are
made annually. When the payment frequency is not annual, we will almost invariably annualize
the RAROC estimate anyway.
55 It is admittedly a kind of risk-weighted average, but this effect is relatively small and we’ll ignore
it for our purposes.
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Colour and Commentary 71 (THE ROLE OF LIBOR): Working from a
combination of asset-pricing and corporate-finance first principles, a risk-
adjusted return ratio for loan obligations can be constructed. Interestingly—
when explicitly allocating the financing costs into funding and equity
proportions—the ratio can be split into two distinct parts. The first piece
describes risk-adjusted net-income return; this is basically the ratio of
marginal loan contribution to the marginal consumption of capital. The
second aspect, however, is approximately equal to the difference between the
expected cost of equity and the reference rate (i.e., LIBOR).a This has a pair of
important implications. The expected rate of return on equity can be examined
either together or separately from the main RAROC computation. Indeed, it
can be considered as a kind of RAROC target. The second point has already
been touched upon. Each loan contributes, for its equity component, an
amount roughly equal to the full LIBOR rate. This quantity correspondingly
represents the relevant point of comparison for the determination of an
expected equity return.

a Subject to simplifying assumptions surrounding payment frequencies and intertemporal
risk weighting.

6.5 The Hurdle Rate

When firms are examining investment projects, a natural outcome is the associated
expected rate of return. Indeed, this is precisely what we have been doing in the
context of a specific loan project. Having computed such a return leads to the next
inevitable question: is it sufficient? There is certainly some floor on the return
below which the firm would simply not accept the project. Such a floor is often
colloquially referred to as a hurdle rate.56 Hence the use of the suggestive symbol,
H , to represent this quantity.

The most obvious choice for a hurdle rate is the firm’s cost of capital. In practice,
however, it is generally set to a level somewhat north of the cost-of-capital figure.
The reasons relate to a focus on profit generation and a desire to incorporate
the risk dimension. In our setting, these aspects have a different relevance. The
risk component, to begin with, is already explicitly incorporated into our RAROC
calculation; it need not be considered twice. The pure profit motive, as previously

56 Presumably, although it is not easily verified, the origin of the term stems from the need for a
project’s expected return to jump over this rate to be accepted.
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alluded to, does not entirely fit at the NIB. As an international financial institution,
the mandate is not—unlike most commercial organizations—to maximize profit.
Instead, it seeks to provide additionality in its area of operations—with a focus
on productivity and the environment—in a (financially) sustainable manner.57

Financial sustainability might also be interpreted as not needing to return to one’s
shareholders—outside of exceptional circumstances—for injections of capital. With
this in mind, each firm needs (on a risk-adjusted basis) to generate a sufficient equity
return to permit its targeted level of growth and relevance. Nevertheless, some lower-
return loans with very high degrees of additionality might be considered. These,
to meet the overall objectives and constraints, would need to be offset by other
activities generating higher levels of return. This balance is central for attaining
sustained organic growth.

There is a number of possible ways to derive such a hurdle rate. We will avoid
the weighed average cost of capital approach, because we seek an ex-funding
perspective.58 Instead, our focus is rather on a required equity return. A default
approach, as previously discussed, would be to focus on the (predicted or historical
average) rate of economic growth, above the risk-free time value of money, in the
firm’s area of operation. If we denote this as π , then we might write our hurdle rate
as

H(t, T ) = r(t, T )+ π(t, T ), (6.43)

where T − t is the horizon under consideration and r represents a risk-free interest
rate.59 Practically, therefore, if one expected the Nordic and Baltic regions to have
medium to long-term economic growth in the neighbourhood of 3% with 2% risk-
free interest rates, then the hurdle rate would take a value of about 5%.

The role of the risk-free rate is interesting. Equation 6.42 indicates that equity
financed lending or treasury activity contributes, at least, LIBOR. For analytic
purposes, we can consider this to be roughly equivalent to a risk-free rate. If we
assume that our hurdle rate is equal to this risk-free rate, then the lending-financed
RAROC calculation could be used on a standalone basis since—from Eq. 6.42—we
have that H − L(t, T ) ≈ H − r(t, T ) = 0. Since an entity’s shareholders can earn
the risk-free rate on their own, of course, this is a relatively poor choice of hurdle
rate. The consequence, therefore, is that it makes logical sense to judge a hurdle rate
relative to the risk-free rate.

57 Other entities can, and certainly do, have analogous strategic objectives to be attained.
58 This piece is, in fact, already incorporated into our net lending income.
59 Whatever the time horizon, we have an annualized rate in mind.
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To hammer down this point, let’s revisit our RAROC calculation using the
concrete definition of the hurdle rate from Eq. 6.43. Restating Eq. 6.42, we have

RAROC ≈

β
∑

i=1

�iηiXiδi

β
∑

i=1

Êi (θ)δi

−
⎛
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−
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β
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�iηiXiδi

β
∑
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Êi (θ)δi

− π(t, T )�̄.

Using this form, in this case, the decision point is a RAROC of zero. That is,
if the funding financed component covers π(t, T ), then the proposed lending
project should—at least, on purely financial-return grounds—be accepted. This is
because, once having covered all loan-related costs, its overall contribution meets
the corporate equity return target. This result naturally leans on a few mathematical
choices. One may naturally question the assumption that the risk-free and LIBOR
rates roughly coincide.60 Mechanically, however, this would lead to a slightly more
conservative form for Eq. 6.44. So, while the assumption is clearly incorrect, it
should not bias our decision-making in the wrong direction.

A challenge with the hurdle-rate definition in Eq. 6.43 relates to the level of risk-
free rates. We have established that equity funded assets, in a LIBOR-based lending
institution, are (at least) earning something roughly equivalent to the risk-free rate.
For this reason, the risk-free rate falls out of our direct comparison. The issue is that
this property makes LIBOR-based firms’ overall income levels rather sensitive to the
level of interest rates. If interest rates are zero—or, in some cases, negative as is the
case in the current environment—focusing on long-term economic growth for one’s
hurdle rate definition may be insufficient. A firm will also require a general level
of income to meet dividend obligations and basic absolute levels of balance-sheet
growth.

60 In reality, due to term premia and credit risk, the LIBOR rate should exceed the risk-free rate.



378 6 Loan Pricing

Another alternative, that might slightly assuage this aspect, would relate the
hurdle rate to the firm’s medium-term growth targets. Imagine, for example, that the
institution wishes to attain an annual growth rate of g(t, T ) over the risk-free rate
over the next T − t years. This figure could come from internal analysis, mandate-
driven objectives, or shareholder guidance. The logical process for selecting g(t, T )
could, and should, also incorporate assumptions and expectations regarding the path
of risk-free interest rates. In this case, we could write our hurdle rate in a manner
similar to Eq. 6.43 as,

H(t, T ) = r(t, T )+ g(t, T ). (6.45)

Over the short-term, it is certainly possible for g(t, T ) to differ from π(t, T ). Over
the medium to long-term, however, it will be difficult for any firm to attain growth
levels that deviate importantly from broad-based economic growth.

Colour and Commentary 72 (SPECIFYING A HURDLE RATE): The choice
of hurdle rate, defined as H in the previous discussion, is not specific to the
individual loan under investigation. It is more broadly related to the general
level of return required on a firm’s equity. It must, therefore, be determined
by reflection of firm-wide objectives. Two key elements enter into this choice.
First, the equity financed component of asset returns—in a LIBOR-matched
lending institution—will earn approximately the risk-free rate.a This argues
for the specification of the hurdle rate relative to the general level of (risk-
free) interest rates. The second point is that while it is difficult to target overall
returns in excess of economic growth in the long term, any functional hurdle
rate certainly needs to be calibrated to a firm’s current and targeted growth
objectives. Selection of one’s hurdle rate is thus a central part of a lending
institution’s annual planning process; the corollary is that, depending on
circumstances and future plans, it may vary over time.

a There is a credit premium embedded in the LIBOR setting. During the reference-
rate reform process as predominately overnight-funding, transaction-based replacements
assume the role of reference rates, we should expect this risk-free assumption to move
closer to the truth.

6.6 Allocating Economic Capital

Having covered the majority of the structural elements in the risk-adjusted capital
return calculation, a bit more practical specificity regarding the economic-capital
is required. Economic capital is, after all, a key component in the calculation. The
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question is: how precisely do we determine which elements of economic capital to
include? Do we include everything—including regulatory or internal management
buffers—for every type of asset investment? This would imply allocating all market,
credit, and operational risk as well as the full set of buffers to every individual loan
and treasury investment.

Some guidance would be welcome. If this was an accounting exercise, then full
allocation might be a sensible objective. There is, however, also a behavioural aspect
to a firm’s RAROC calculation. It is, in fact, trying to help support sensible decision
making. Aspects outside the decision-maker’s control might not be useful inclusions
into the calculation.61 To reflect this fact, the basic premise is thus proposed:

Economic capital should be allocated to those areas responsible for its management.

How this principle manifests itself depends, of course, on a firm’s organizational
structure. Asset-investment decisions are, after all, made in differing ways across
institutions. At most lending institutions, for example, a lending origination depart-
ment (or function) makes (most) loan proposals. They are not, however, responsible
for determining how the associated financing is sourced and hedged. Loans also give
rise to liquidity needs; again, the lending originator does not decide on the specific
investment profile of these liquidity securities. The counterparty, default-credit,
and market risk associated with borrowing, hedging, and liquidity investments are
correspondingly not sensibly allocated to lending decisions.

A similar argument, operating in the opposite direction, applies to treasury opera-
tions. Treasury staff have no influence on the idiosyncratic credit-risk characteristics
of a given loan investment. As a consequence, they should not be allocated lending
related credit-risk economic capital. This makes sense despite the fact that treasury
activity is largely driven, indeed caused, by lending business.

Operational risk and the capital buffers, conversely, are shared by both business
lines.62 It thus makes sense to allocate them accordingly. Moreover, both are readily
determined through either an estimate of net interest income or risk-weighted
assets. The (management) stress-testing buffer, however, is unallocated.63 Figure 6.4
summarizes how the various elements of economic capital might sensibly be
allocated to the lending and treasury business lines. This is merely one example that
fits relatively well into our setting; compelling arguments can be made for alternative
forms of risk allocation.

61 Such questions, often referred to as risk budgeting, can become quite involved. See Scherer [32]
for a useful entry point into this world.
62 Countercyclical buffers are (typically) excluded to avoid introduction of economic cyclicality
into the pricing decision. This point, depending on one’s perspective and objectives, is open to
debate.
63 Refer to Chap. 1 for a review of these economic-capital buffers.
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Fig. 6.4 Business-line allocation: The preceding schematic summarizes the allocation of eco-
nomic capital by the abovementioned business lines. The amounts allocated, by risk and buffer
type, are only those specific to assets within that business area.

6.7 Getting More Practical

To this point, our discussion has been heavy on the theoretical dimension, but rather
light on practicalities. To really get a feel for the RAROC computation, it is thus
useful to examine a detailed, practical example. Not only does an example make
things more concrete, it also allows us to examine a few twists and turns in the
computation presented by real-life situations. Due to privacy concerns, however, it
is impossible to examine a real loan. To that end, Fig. 6.5 outlines the details of an
entirely fictitious loan.

Our fabricated case takes the form of a Norwegian industrial corporate consider-
ing a five-year maturity loan with a total exposure of EUR 60 million. It furthermore
resides in internal credit-rating class PD06, and has a loss-given-default value of
0.45. The range of fees and costs are also summarized in Fig. 6.5. This collection of
data represents the information available to the loan originator. The key question is:
how can we think about the return associated with this constellation of loan details
on a risk-adjusted basis?



6.7 Getting More Practical 381

Key Loan Details: XYZ Company

Region: Norway

Sector: Industrials

Loan amount: EUR 60 mn.

Maturity: 5 years, linear amortization

Grace: 2 years

Currency: EUR

PD Class: PD06

(γ) LGD: 0.45

(u) Up-front fee: 10 bps.

(c) Commitment fee: 8 bps.

(m) Lending margin: 80 bps.

( f) Funding margin: 5 bps.

(a) Admin costs: 9 bps.

Cash-flow dates: [1, 2, 3, 4, 5] (in years)

Exposure amounts: [60, 60, 60, 40, 20] (EUR mn.)

Fig. 6.5 A concrete example: This schematic outlines the qualitative and quantitative details
associated with a fictitious, but illustrative and concrete, loan example.

6.7.1 Immediate Disbursement

The first step in addressing this question involves understanding the intertemporal
structure of implied loan cash-flows. Figure 6.6 illustrates the expected cash-
flows associated with our five-year loan, its two-year grace period, and a linear
amortization structure. A key underlying assumption is that the full amount of the
loan is immediately disbursed. Practically, this is a not only unlikely, but probably
even impossible. For loans that are expected to disburse in the iminent future,
however, this is a sensible simplification.64

Figure 6.6 clearly displays the equal capital repayment of EUR 20 million during
the final three years of the loan’s life. This creates a step-down effect on the loan
outstanding, which needs to be reflected in the cash-flow and economic-capital
values.

Table 6.1 jumps right to the details of the RAROC computation. In particular, it
focuses attention on the various elements of the ratio’s numerator. These aspects
of expected marginal loan income were introduced in Eq. 6.35. The first point
is that we assume each cash-flow occurs on an annual basis; this simplifies the

64 We will relax this assumption in a moment and explore the implications for the RAROC
calculation.
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Fig. 6.6 Outstanding profile: This figure displays the initial disbursement, outstanding amount,
and amortization payment schedule associated with the example loan introduced in Fig. 6.5. In this
case, we observe immediate loan disbursement; while this is not always the case, it simplifies the
computation.

illustration of results by keeping the total number of cash-flows low. It also implies
that �i = 1 and can thus be ignored. The second key point is that the loan
outstanding amounts—from Fig. 6.6—are summarized in the second column. These
{Xi; i = 1, . . . , 5} quantities play a central role in determining each subsequent
column.

The remaining values in Table 6.1 should be relatively self-explanatory. A 10
basis-point up-front fee, on a EUR 60 million loan, amounts to a single payment
of EUR 60,000 on the first cash-flow date. The funding margin is slightly more
complex since it involves weighting its values by the associated economic-capital
consumption at period i.65 Overall, on a discounted basis, the total (lifetime)
marginal contribution to capital is roughly EUR 1.8 million. This forms the
numerator of our RAROC ratio.

Table 6.2 turns our attention to the various components comprising the denomi-
nator of our RAROC calculation. The actual economic capital estimate at time i is
written as,

Economic Capital
︸ ︷︷ ︸

Ei (θ)

=
(

Default Risk

)

+
(

Migration Risk

)

+
(

Buffers & Operational Risk

)

, (6.46)

Ei (θ) ≈ Êi (θ) = D̂i (θ)+ M̂i (θ)+ B̂i ,

65 These values will be addressed in the subsequent table.
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Ê i
(θ
)

X
i

)

·f
·X

i
−a

·X
i

−γ
·p

i
·X

i
η
i
·X

i
η
i
·X

i
·δ i

1
60

,0
00

,0
00

60
,0

00
48

0,
00

0
26

,3
75

−5
4,

00
0

−1
8,

22
5

49
4,

15
0

49
5,

03
6

2
60

,0
00

,0
00

0
48

0,
00

0
26

,1
99

−5
4,

00
0

−2
1,

77
6

43
0,

42
2

43
1,

62
2

3
60

,0
00

,0
00

0
48

0,
00

0
26

,1
30

−5
4,

00
0

−2
3,

50
0

42
8,

63
0

42
8,

33
4

4
40

,0
00

,0
00

0
32

0,
00

0
17

,4
19

−3
6,

00
0

−1
6,

89
3

28
4,

52
6

28
2,

35
9

5
20

,0
00

,0
00

0
16

0,
00

0
87

27
−1

8,
00

0
−9

09
9

14
1,

62
8

13
9,

17
4

To
ta

l
24

0,
00

0,
00

0
60

,0
00

1,
92

0,
00

0
10

4,
84

9
−2

16
,0

00
−8

9,
49

3
1,

77
9,

35
6

1,
77

6,
52

5



384 6 Loan Pricing

Table 6.2 The RAROC denominator: This table outlines, following from the example in Fig. 6.5,
the different aspects of the RAROC denominator organized by individual cash-flow date.

i Xi D̂i (θ) M̂i (θ) B̂i Êi (θ) D̂i (θ) · δi
1 60,000,000 7,136,138 113,521 1,296,378 8,546,037 8,561,362

2 60,000,000 7,515,214 87,218 1,296,378 8,898,810 8,923,618

3 60,000,000 7,680,664 60,154 1,296,378 9,037,197 9,030,964

4 40,000,000 5,132,042 30,390 864,252 6,026,684 5,980,788

5 20,000,000 2,536,025 10,236 432,126 2,978,388 2,926,779

Total 240,000,000 30,000,083 301,519 5,185,513 35,487,115 35,423,511

for i = 1, . . . , β. In words, there are three main components to the approximated
lending economic-capital consumption for each time period.66 The first two relate
to the default and migration credit-risk allocations; these are both based on separate
approximation algorithms and depend on a parameter vector.67 The final component
combines the non-stress-test capital buffers and operational risk. It does not depend
on the parameter vector, θ , since it does not involve any complicated mathematical
approximations. The capital buffers, based on risk-weighted assets, are known
with precision.68 The overall quantity is still designated as a percentage, because
determination of the operational risk is not exactly computed. It depends on a firm’s
historical accounting-based net-interest income, which can be readily determined in
aggregate, but is less exact at the loan level.

Examination of Table 6.2 (unsurprisingly) reveals that the majority of economic
capital, for this loan, stems from credit-default risk. Credit-migration risk is
relatively modest for this loan; capital buffers and operational risk are also fairly
small. The total (discounted) lifetime economic-capital consumption amounts to
about EUR 35 million.

The RAROC estimate, quite mechanically, is simply the ratio of the total
discounted capital contribution and consumption. This amounts to about 1.78

35.4 ≈
5.0%. This result is displayed, more precisely, in Table 6.3, which further illustrates
a separate RAROC figure for each individual cash-flow period. These annual figures
do not have a direct application, but they are nonetheless interesting. They provide
some insight into the evolution of annual capital contribution and consumption over
the loan’s lifetime. The various components of the numerators and denominators
are also displayed. The elements of the numerator will change along with key
inputs such as lending margin, administrative expenses, funding margin, and other
fees. The denominator, which scales the income contribution by risk, varies by

66 If we wish to compute a RAROC for a treasury investment, the denominator would include
slightly different ingredients. See Fig. 6.4 for more detail.
67 To be really precise, we should write the set of approximation parameters as θ0 ≡ θ to reflect
their link to the starting time point—that is, i = 0—associated with the calculation.
68 This depends on the level of the loan’s associated risk-weighted assets; this quantity is
extensively discussed in Chap. 11.
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Table 6.3 The RAROC calculation: The underlying table combines the results from Tables 6.1
and 6.2 to illustrate the overall RAROC estimate along with associated values for each individual
year.

i Xi ηi ·Xi · δi Êi (θ) · δi RAROCi = ηi ·Xi ·δi
Êi (θ)·δi

1 60,000,000 495,036 8,561,362 5.78%

2 60,000,000 431,622 8,923,618 4.84%

3 60,000,000 428,334 9,030,964 4.74%

4 40,000,000 282,359 5,980,788 4.72%

5 20,000,000 139,174 2,926,779 4.76%

Total 240,000,000 1,776,525 35,423,511 5.02%

what specific risks are allocated, the riskiness of the loan, and the current portfolio
composition. The actual economic-capital computation also importantly takes into
account any existing exposure to the same credit obligor. Adding EUR 60 million of
new loan exposure is rather different—in terms of incremental economic capital—
from combining this exposure to existing loans of, let’s say, EUR 300 million. In
the former case, this is a relatively average new exposure. In the latter, it appends to
an already fairly important concentration. The consequence is a higher level of risk
and thus a larger economic-capital allocation.

6.7.2 Payment Frequency

Questions naturally arise regarding the frequency of payments. The preceding
illustrative calculations operate on the assumption that cash-flows occur only on
an annual basis. Most real-life loans, however, actually pay on a semi-annual basis.
In some institutions, payments might even occur at a quarterly, or even monthly,
frequency. How would this impact the actual RAROC computation? We would hope
that the impact would be minimal. The situation is analogous to the role of payment
frequency on bond-yield calculations; there is an effect, but the result is modest. In
the RAROC setting, the magnitude of this effect needs to be determined.

Figure 6.7 addresses this potential concern by illustrating the path of RAROC
from the displayed annual frequency incrementing towards a daily payment. While
daily payments are obviously somewhat extreme, we see a clear limiting behaviour
in the RAROC evolution. The biggest jump occurs from annual to semi-annual
payment frequency, although the total change is only a matter of a handful of basis
points. Beyond monthly, the change is almost imperceptible as it tends towards
continuous compounding. We can conclude, therefore, that there is no material
difference between the use of annual or semi-annual cash-flows in the RAROC
computation.
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Fig. 6.7 The role of payment frequency: This graphic repeats the computation from Table 6.3 for
an array of possible payment frequencies ranging from annual to daily. The impact on the final
RAROC outcome is modest amounting to only a handful of basis points.

6.7.3 The Lending Margin

The risk-adjusted return on capital calculation is, at its core, a tool to determine
an appropriate level of lending margin. Administrative expenses, discount factors,
funding margins, and loan impairments are beyond the loan originator’s control.
Economic capital, determined principally by the obligor-level attributes, is also a
given. The size and tenor of the loan are, of course, subject to some degree of
negotiation. These are, however, largely determined by the obligor’s preferences and
the requirements of the underlying project. The only remaining degree of freedom
for the loan originator relates to the income component: upfront and commitment
fees as well as lending-related margins. Among these quantities, the lending margin
has the greatest impact and, as a consequence, plays the most important role.
Indeed, loan pricing is principally about finding an appropriate lending margin. As
indicated in the introduction to this chapter, the lending margin is basically our
choice variable.

Mechanically, loan pricing could be quite easy. One need only find the lending
margin that equates the RAROC calculation with the firm’s internal hurdle rate.
Any level of lending margin above that point would meet the institution’s internal
growth target. The seemingly simple procedure masks an underlying problem: the
lending institution does not operate in a vacuum. For many loan transactions, more
specifically, there is an external market price. In some cases, this price relates to
a deep and liquid set of external sources of financing. In others, it might represent
a few indicative quotes from other potential lenders. Thus, although the depth of
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Fig. 6.8 Finding the lending margin: Finding the lending margin is a tricky affair. The lending
originator must negotiate between meeting the firm hurdle rate and setting a margin consistent
with market pricing. The lack, in many cases, of a single clear signal from the market confuses the
task. The example above attempts, in an illustrative manner, to describe this process.

the market is variable, there is almost invariably an external comparator for loan
pricing.69 Lending margins need to be determined within this context.

Figure 6.8 highlights—within our simple loan example—the relationship
between the lending margin and the RAROC value. Assuming an invented hurdle
rate of 5 1

4 %, the lending margin would need to be increased from 80 to about 84
basis points. This is the simple intersection of the RAROC curve—as a function of
lending margin—and the hurdle rate. For illustrative purposes, a range of possible
market quotes are presented in Fig. 6.8 in the neighbourhood of 82 to 85 basis
points. In a real-life situation, these could possibly deviate importantly from this
hurdle-rate break-even point. The loan originator needs to find a balance between
the internal-growth requirements of the lending institution and the competitive
forces summarized by external market prices.

Colour and Commentary 73 (THE KEY CHOICE VARIABLE): Many ele-
ments in the loan origination process are beyond the lender’s control.
Administrative costs and funding margins are, in principle, controllable, but
they involve larger processes outside the lending area. Loan impairments and
economic-capital consumption relate principally to the riskiness of the credit
obligor. The principal area of choice relates to the lending margin. Even
in this case, however, flexibility is limited. Selection of the lending margin
involves walking a fine line between the firm’s hurdle rate and market prices.

(continued)

69 For small to medium firms, the process of price discovery is complicated by a relatively small
number of potential lenders. Moreover, the flow of information regarding these lender’s pricing
intentions is not entirely transparent.
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Colour and Commentary 73 (continued)
An overly aggressive lending margin might undercut the market and gain the
business, but at the cost of internal profitability and future growth prospects.
Too large a lending margin, however, may make the offer uncompetitive and
undermine the firm’s ability to make the loan. Despite the inherent challenges,
determination of the lending margin is the central task of the loan-pricing
problem. In short, it is our principal choice variable.

6.7.4 Existing Loan Exposure

In our straightforward example, the EUR 60 million deal was assumed to represent
new lending for the institution. In other words, the loan portfolio does not include
any other exposure to the same credit obligor. This is not always the case. Indeed, it
is not uncommon for a firm to engage in multiple loans of various sizes and tenors
with a single counterpart. Leveraging existing client relationships is, after all, simply
good business. From a risk perspective, this is not immediately problematic, but it
does require some adjustments. In particular, a large concentration with a single
client involves more risk than numerous smaller exposures with a range of obligors.
The RAROC calculation, and more particularly the economic-capital computation,
needs to take this dimension into account.

Figure 6.9 illustrates the impact of varying levels of existing exposure—holding
all other variables constant—associated with our sample loan.70 The first point,
which involves no existing client exposure, corresponds to the roughly 5% RAROC
estimate from Table 6.3. As we increase existing obligor loans gradually to EUR 500
million, the RAROC falls non-linearly to approximately 4.3%. While this general
trend will apply for other loans, the specific shape of the curve will depend on the
obligor’s risk attributes and the general composition of the portfolio.

The initial economic-capital consumption—as a percentage of the loan
exposure—is also presented for the various existing loan values. We see that it
starts around 14% (i.e., EUR 8.5 million) and increases (also non-linearly) by about
2.5% points to 16.5% (i.e., almost EUR 10 million). The concentration effect is thus
sufficiently large that it cannot be ignored in the RAROC computation.71

70 In this example, the existing loans are assumed to have an average maturity of four years.
71 Practically, the calculation of this effect is conceptually straightforward. If N and O denote the
new and existing (i.e., old) loan exposures, respectively, then

Êθ (N) = Êθ (O + N)− Êθ (O), (6.47)

where, Êθ (·) denotes the economic-capital approximation. This computation thus requires three
separate evaluations of the approximation approach from Chap. 5.
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Fig. 6.9 Concentration effects: Economic-capital consumption is a (complicated) non-linear
function of the overall exposure to an obligor. New loans, therefore, must be handled differently
from loans adding to existing exposures. The preceding graphic outlines the RAROC impact, for
our example loan, associated with varying levels of existing exposure (all else equal).

Colour and Commentary 74 (CONCENTRATION EFFECTS): The preced-
ing chapters describe, in great detail, the technical aspects of the computation
of economic capital. Much of this discussion surrounded the role of single-
name and portfolio concentrations. The loan-pricing problem—and more
particularly, the impact of existing obligor exposure for new loans—is a
concrete, practical application of this modelling dimension. Incorporation
of existing and outstanding loans into the economic-capital estimates within
the RAROC computation is not optional. A simple example illustrates clearly
that the economic-capital consumption increases significantly (and non-
linearly), with a corresponding decrease in the associated RAROC value.
This information is critical in the determination of efficient lending margins
reflecting existing portfolio concentrations.a

a This simple fact also explains why multiple lenders, when asked to provide quotes on a
given deal, often provide such a surprisingly wide range of values. A given loan can, and
will, impact their own portfolios in different ways.

6.7.5 Forward-Starting Disbursements

Not all loans disburse quickly after performance of one’s RAROC analysis. Indeed,
not all loans disburse in their entirety at one point in time. In some cases, multiple
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disbursements might occur over a relatively lengthy period of time. This presents a
few new challenges. In particular,

1. committed, but-not-yet disbursed, loans are included in a firm’s economic-capital
calculation;

2. a fee is customarily charged for these committed loans; and
3. decisions need to be taken regarding the incurrence of administrative and

expected-loss costs associated with undisbursed, committed loans.

Each of these issues will, of course, impact the final RAROC computation. Let’s
examine them all in the context of our running example.

Figure 6.10 displays a potential twist on our loan example introduced in Fig. 6.5.
One half of the loan disburses in one year, with the remainder going out the door
in two years’ time. At the time of final disbursement, the five-year loan tenor clock
begins. The final maturity occurs after seven years, but the basic amortization profile
remains unchanged; it is simply shifted forward two years.

To accommodate this dimension, it is necessary to introduce two new concepts:
the disbursement and the commitment. These have, of course, always been lurking
around in the background. We now simply need to make them more visible. On the
same time grid—i = 0, 1, . . . , β—we can denote the loan disbursement at time i
as Di . If we let X represent the total loan notional amount, then the commitment
amount at time i—referred to as Ci—can be inferred as,

Commitmenti = Notional amount − Cumulative disbursements up until time i,

Ci = X −
i−1
∑

k=0

Di, (6.48)

Fig. 6.10 A forward starting loan: This graph illustrates the same basic loan example, introduced
in Figure 6.5, but changes the starting conditions. The disbursement occurs in two steps: one- and
two-years in the future, respectively.
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for i = 1, . . . , β. The loan commitments, as we would expect, decrease as the
amount of loan disbursements approach the agreed total loan level.72 In our previous
five-year, immediate-disbursement loan example, D0 = X. The consequence was
the rather uninteresting case of Ci being identically zero for all i. Naturally, in such
cases, there is little incremental value associated with including them in the RAROC
calculation. When disbursements are spread out over future periods, conversely, the
commitments play a rather more important role.

To properly accommodate the fee income associated with these commitments, it
is necessary to update Eq. 6.35 to include the associated fees. The expected marginal
loan income thus becomes

Expected
Marginal

Loan
Income

= Commit-
ment
Fees

+ Upfront
Fees

+ Lending
Margin

−
(Weighted)

Funding
Margin

− Admin
Expenses

− Loan
Impair-
ments

−
(Weighted)

Equity
Cost

, (6.49)

=
β
∑

i=1

�i

(

cCi +
(

Ii=1u+m−
(

1 − Ei
Xi

)

f − a − γpi

)

Xi

−
(

H − F(t, Ti−1, Ti)

)

Ei
)

δi,

where the RAROC computation itself has the following revised form:

RAROC ≈

β
∑

i=1

�i

(

cCi + ηiXi

)

δi

β
∑

i=1

Êi (θ)δi

−
(

H − L(t, T )

)

, (6.50)

where, to be clear, c represents the percentage commitment fee.
Table 6.4 provides a revised version of Table 6.1 for this two-year, gradual

forward-start version of our loan. Beyond two additional years of cash-flows, there
are new columns for commitments and commitment fees. After one year, the loan
commitment remains at EUR 60 million. Half of the loan was disbursed on this
date, but the commitment fee is earned on the undisbursed balance over the entire
first year. In the second year, by contrast, the commitment fees are only earned

72 A lag is necessary, since these values are used for cash-flows and economic-capital calculations.
At time i, we need to know the commitment as of time i − 1 to properly compute these quantities.
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Ê i
(θ
)

X
i

)

·f
·X

i
−a

·X
i

−γ
·p

i
·X

i
c
·C

i
+
η
i
·X

i
η
i
·X

i
·δ

i

1
60

,0
00

,0
00

0
60

,0
00

48
,0

00
0

0
-0

-0
10

8,
00

0
10

8,
19

4

2
30

,0
00

,0
00

30
,0

00
,0

00
0

24
,0

00
24

0,
00

0
11

,6
44

-2
7,

00
0

-1
0,

88
8

23
7,

75
5

23
8,

41
8

3
0

60
,0

00
,0

00
0

0
48

0,
00

0
26

,1
16

-5
4,

00
0

-2
3,

50
0

42
8,

61
6

42
8,

32
0

4
0

60
,0

00
,0

00
0

0
48

0,
00

0
26

,0
47

-5
4,

00
0

-2
5,

34
0

42
6,

70
7

42
3,

45
8

5
0

60
,0

00
,0

00
0

0
48

0,
00

0
25

,9
78

-5
4,

00
0

-2
7,

29
7

42
4,

68
1

41
7,

32
3

6
0

40
,0

00
,0

00
0

0
32

0,
00

0
17

,3
10

-3
6,

00
0

-1
9,

58
6

28
1,

72
5

27
3,

50
0

7
0

20
,0

00
,0

00
0

0
16

0,
00

0
86

75
-1

8,
00

0
-1

0,
52

8
14

0,
14

6
13

4,
13

6

To
ta

l
90

,0
00

,0
00

27
0,

00
0,

00
0

60
,0

00
72

,0
00

2,
16

0,
00

0
11

5,
77

0
-2

43
,0

00
-1

17
,1

39
2,

04
7,

63
1

2,
02

3,
34

9



6.7 Getting More Practical 393

Table 6.5 The forward RAROC denominator: This table outlines, following from the example in
Fig. 6.5, the different aspects of the RAROC denominator organized by individual cash-flow date.

i μ · Ci +Xi D̂i (θ) M̂i (θ) B̂i Êi (θ) D̂i (θ) · δi
1 46,200,000 5,427,769 106,294 998,211 6,532,274 6,543,987

2 53,100,000 6,612,889 100,051 1,147,295 7,860,234 7,882,147

3 60,000,000 7,680,664 87,218 1,296,378 9,064,260 9,058,009

4 60,000,000 7,846,209 60,154 1,296,378 9,202,742 9,132,658

5 60,000,000 8,011,438 31,875 1,296,378 9,339,692 9,177,858

6 40,000,000 5,348,804 30,390 864,252 6,243,446 6,061,186

7 20,000,000 2,640,509 10,236 432,126 3,082,871 2,950,648

Total 339,300,000 43,568,281 426,217 7,331,019 51,325,518 50,806,493

on the EUR 30 million committed balance. The total marginal economic-capital
contribution associated with the revised example increases to about EUR 2 million.

The remaining non-commitment column calculations in Table 6.4 operate in
the same manner as before, but with one important exception. The assumption
is that the administrative expenses and expected loss are only allocated to the
disbursed loan amounts. This choice can be disputed. One might legitimately argue
that administrative costs are also incurred for undisbursed loans. Moreover, there
is typically an allowance for committed loans in the loan-impairment calculation.
Arguments can be made in either direction and ultimately it comes down to
a trade-off between accuracy and desired organizational incentives. Overloading
forward-start loans with excessive costs might discourage such activity; this might
create structural disadvantages for certain types of loans and obligors. Excluding
these costs could, however, encourage them and lead to lower profitability and
reduced capacity for capital growth.

Table 6.5—which is directly comparable to Table 6.2—turns to the denominator
of our forward-start example. The same characters are present, albeit with two
additional years of calculations. The second column has a slightly different form. A
central input to the economic-capital calculation—often referred to as the exposure-
at-default—is redefined as,

Economic Capital Exposurei = μCi +Xi, (6.51)

where μ ∈ [0, 1]. The remaining approximation inputs are unchanged. Loan
commitments are an economic obligation on the part of the lending institution. To
the extent that they earn commitment fees and represent potential future earnings,
they are also a firm asset. As an (off-) balance sheet asset, it is logically important to
also capture their risks. Ignoring them completely would be incorrect. The question
is: to what extent should we incorporate these inherently uncertain commitments
into our risk calculations? The constant, μ, is a multiplier that attempts to address
this question. It modifies the commitments by a value in the unit interval. A value of
zero ignores them, while a value of unity implies certain disbursement. In regulatory
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0 t τ T

Commitment and
disbursement period Amortization period

Grace period

No amortization or
disbursement activityAgreement

date
Close
date First

amortization
date

Maturity
date

Repayment of principal

Fig. 6.11 Loan life-cycle schematic: This schematic illustrates, in a stylized manner, the life cycle
of a loan. It helps us to visualize the commitment, grace, and amortization periods.

circles, this constant is referred to as a credit-conversion factor or CCF.73 This
example sets this value to 0.75. The consequence of this setting, and Eq. 6.51, is that
despite the forward start, economic-capital is consumed from the agreement date of
this loan. The total, discounted, marginal lifetime economic-capital consumption
from the forward-start version of the loan is about EUR 50 million.

Figure 6.11 helps to visualize all of these moving parts by providing a schematic
of the loan life cycle. It begins with the agreement date, followed by the commitment
period. As we saw earlier, the loan is disbursed in one or more instalments during
this time interval. Once the loan closes—or, alternatively, is fully disbursed—the
grace period follows. During this time span, interest payments proceed as normal,
but no principal is repaid.74 After the expiry of the grace period, each payment is a
combination of principal and interest until final maturity. Often the agreement and
close dates are very close together—as in our original version of the loan example—
so the commitment period is not particularly exciting. When this is not the case,
however, this loan schematic needs to be kept in mind to correctly manage the
RAROC calculation.

Table 6.6 closes out our loan example—in a manner similar to Table 6.3—by
summarizing all of the numerator and denominator elements and combining them to
illustrate the annual, and overall, RAROC figures. The total RAROC is mechanically
computed as 2.0

50.8 ≈ 4.0%. This is significantly lower than in the immediate
disbursement case. Examining the annual RAROC values explains the difference:
the first few years—when we earn only the commitment fees—have a significantly
lower level of return. This should be no surprise. The commitment fee is a relatively
small value compared to the μ = 75% consumption of economic capital. If

73 As one would expect, regulators also put limits and provide guidance on the appropriate choice
of μ. Chapter 4 discusses this point in more detail.
74 For a bullet-style loan, the grace period extends to the final maturity, when the full notional
amount is repaid.
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administrative and impairment costs were included, this would act to further reduce
the risk-adjusted return associated with this forward-start loan example.

6.7.6 Selecting Commitment Fees

In their basic form, the RAROC estimates of the immediate-disbursement and
forward-start versions of our loan example differ by about 100 basis points. The
reason stems from the inability of the 8 basis-point fee to compensate for the loan-
commitment economic capital and the reduced lending-margin receipts during the
commitment period. This raises an interesting question: what level of commitment
fees would make the firm indifferent between the immediate and forward-start
versions of our sample loan?

Figure 6.12 attempts to answer this question by illustrating the RAROC—under
ceteris paribus conditions—of our forward-start loan for commitment fees ranging
from zero to 80 basis points. The initial RAROC of 4% relates to a commitment fee,
as seen previously, of eight basis points. The break-even commitment fee amounts to
roughly 65 basis points. This makes logical sense; it is roughly equal to the product
of the credit-conversion factor (μ = 0.75) and the original lending margin of 75
basis points.

This analysis suggests that a likely unreasonably high level of commitment
fee would be necessary to compensate for the forward-start nature of the loan. In
practice, however, the commitment fee is not the only tool available to the loan
originator. A combination of a small increase in lending margin and upfront fee—
in addition to an augmentation of the commitment fee—might also accomplish the

Fig. 6.12 The commitment fee: The difference between the commitment fee and the lending
margin tends to lead, for forward-start loans, to a drop-off in risk-adjusted returns on capital. The
preceding graphic illustrates the relationship between the RAROC and the commitment fee. All
else equal, a value of approximately 65 basis points is required to break-even with the immediate
disbursement loan.
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same result. Naturally, the institution (and the client) may not view these various
fee elements as equivalent, but the option still remains. The larger picture is that,
without some adjustment, a forward-start loan appears to structurally lead to lower
RAROC outcomes.

Colour and Commentary 75 (NON-IMMEDIATE LOAN DISBURSEMENT):
Not all loans are immediately, or rather quickly, disbursed. Some involve a
rolling forward start with multiple disbursement instalments ranging over a
relatively lengthy time period. These loans, once agreed, find themselves in
a kind of limbo. They are not fully loans, but they do represent an economic
obligation to the lending institution. We refer to the associated undisbursed
loan balances as commitments. Computation of risk-adjusted return on capi-
tal for such forward-starting loans requires making practical (and defensible
assumptions) regarding these loan commitments. In particular, one needs
to decide upon the amount of capital they consume, how much fee income
they earn, and the treatment of administrative and loan-impairment expenses
during the commitment period. These choices have an important influence on
the RAROC computations and, ultimately, the desirability of such forward-
starting loan activity.

6.8 Wrapping Up

This chapter addresses the thorny, but central, question of loan pricing. Determining
an appropriate pricing structure for a given loan includes both qualitative and
quantitative elements. Although extremely important, the preceding discussion does
not spend much time on the qualitative dimension. Exclusion of these strategic
elements from our focus—principally due to difficulties in their quantitative model-
based assessment—should not be interpreted as a statement on their importance.
On the contrary, we must not lose sight of their central role in the loan-origination
process.

This chapter is essentially about building a supporting quantitative infrastructure
for the complicated business of originating loans. Some heavy lifting was required.
The core idea is to treat each loan decision as an investment project or, as it is
referred in the literature, as a capital-budgeting decision. Asset-pricing theory and
key corporate-finance concepts were combined to construct a structural description
of the risk-adjusted return on capital. Further embedded in this calculation is the
full machinery of the economic-capital simulation engine and associated approxi-
mations developed in Chaps. 2 to 5. Such technical detail is inevitable for building
a coherent approach to loan pricing; the consequence of this effort is the useful and
flexible RAROC calculation.
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The embedded theoretical elements of the RAROC calculation provide insight
into a range of practical questions. Where should one set the lending margin to meet
internal growth targets? What is the impact associated with delayed disbursement, or
forward-start, loans? How might the magnitude of the commitment fee influence the
forward-start decision? Does the payment frequency make an important difference?
How should existing loans with a given obligor influence our decision to extend
additional credit? These, and many more, legitimate queries need to be addressed
in the loan-origination process. While they need to be married with a range of
important qualitative factors, these critical practical questions build the foundation
for supporting decisions on lending proposals.
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Part III
Modelling Expected Credit Loss



Chapter 7
Default-Probability Fundamentals

Get the fundamentals down and the level of everything you do
will rise.

(Michael Jordan)

Two critical credit-risk economic capital applications remain to be addressed: loan-
impairments and stress testing. Both involve a significant conceptual deviation
from the base economic-capital framework: conditionality. By a combination of
logical agreement and regulatory guidance—stemming from a global desire to avoid
procylicality in capital requirements—economic-capital is computed from a long-
term, unconditional or through-the-cycle perspective. Loan-impairment and stress-
testing computations, by stark contrast, depend importantly on (typically adverse)
macro-financial economic outcomes. By their very structure, to be interesting and
useful, they must deviate from the through-the-cycle perspective. These applications
must grapple with the point-in-time, or conditional, viewpoint. Their appropriate
consideration—in conjunction with our economic-capital framework—will require
some mathematical machinery permitting us to toggle back and forth between the
through-the-cycle and point-in-time frames of reference.

Before we can sensibly consider strategies for the construction of point-in-time
scenarios, we’ll need to take a step or two backward and solidify our understanding
of through-the-cycle default and transition probabilities. In particular, the forward-
looking aspect must be properly developed. This will lead to an extended trip into
the world of default probability term structures and surfaces. This under-appreciated
area will be examined in the context of a modelling horse-race. Finally, we will
touch upon a tedious, but essential, issue: managing the inherent mismatch between
the number of external-agency ratings and the notches on the internal NIB scale.
This problem—in two distinct forms—is rather NIB-specific, but will also apply
more generally to many small-to-medium firms unable to use their own internal
data to inform these default and transition probability quantities.

Default probabilities, from both an object and concept perspective, are the
cornerstone of this chapter. The idea is simple enough; a default probability denotes
the likelihood of a credit obligor’s failure to make good on their obligations
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over a specific time period. Unfortunately, despite their intuitive nature, such
default probabilities are not directly observable; they must be inferred from either
market prices or firm default history. Statistical estimation of individual default and
transition probabilities, while interesting, is not our focus.1 We will rely on external-
rating agencies to provide these important inputs. What then is our interest? It
relates to extensively-studied, but often misunderstood, fundamental quantities and
empirical stylized facts regarding the time-related properties of default probabilities.
Mastery of these concepts—and their practical extensions—will provide a solid
foundation for later development of stress-testing and loan-impairment tools.

Colour and Commentary 76 (LOOSE ENDS): Before departing on any seri-
ous voyage on a sailing vessel, an experienced crew has much work to do.
Many pieces of rope need to be tied or fastened to their correct place;
failure to do so can result in disaster. These elements of string, cord, or
rope are often referred to as loose ends. The expression tying up loose ends,
therefore, describes the necessity of managing many small, but important,
details prior to a big event.a This chapter can, in a global sense, be viewed
in the same manner. The basics of default probabilities, the identification and
management of original default-probability data sources, the derivation and
estimation of various surface-fitting techniques, and the construction of firm-
specific default surfaces and transition matrices are oft-overlooked details.
They nonetheless need to be as carefully and correctly tied off as the sailor’s
ropes. While not terribly exciting, failure to properly manage them can, and
will, lead to serious issues in our stress-testing and loan-impairment model
implementation.

a In the same spirit, it can relate to unfinished business. See Merriam-Webster [34, Page
705].

7.1 The Basics

It is always advisable to begin from the beginning.2 Common practice—see, for
example, Jeanblanc and Rutkowski [26], Jeanblanc [25], or Duffie and Singleton

1 Those interested in the statistical estimation dimension are referred to Bolder [6, Chapter 9] and
the many useful sources that it references.
2 Or, as the King of Hearts in Alice’s Adventures in Wonderland (Carroll [12]), so clearly states:

‘Begin at the beginning,’ the King said gravely, ‘and go on till you come to the end: then
stop.’
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[18]—involves the treatment of default as a random variable, τ , conceptualized as a
specific point in time; we already saw this idea in Chap. 6 within the asset-pricing
context. This formulation turns out to be both analytically tractable and conceptually
powerful. In particular, it allows us to compare the incidence of default relative to
the current point in time, which is typically denoted as t . If τ > t , for example,
default has not yet occurred. Conversely, when τ < t , then the firm has already
defaulted on their obligations.3

As a random variable, our default time τ , has all of the necessary statistical
machinery for its application in a wide range of situations. We may define its
cumulative distribution function as,

Fτ (t) = P(τ ≤ t), (7.1)

which immediately—under the assumption of absolute continuity and some other
important technical details—yields the probability density function,

fτ (t) = d

dt
Fτ (t). (7.2)

These two statistical objects provide a detailed description of the combination of
outcomes and likelihoods associated with our default event, τ .

Colour and Commentary 77 (THE DEFAULT EVENT): Treatment of the
default event, denoted τ , as a random variable opens up a number of
mathematical modelling opportunities. In a perfect world, we would work
with a set of correlated default events, {τi : i = 1, ..., I }, where I denotes
the number of obligors in one’s portfolio or analysis set. In practice, this
can be rather unwieldy. The rareness of default makes it challenging, from
a statistical point of view, to assign default and transition probabilities to
individual obligors.a Instead, it is common to assign each of one’s obligors
to a set of predefined common credit classes. Conceptually, this reduces the
computation of default probabilities to the set of {τr : r = 1, ...,R}, where
R denotes the number of (non-default) rating categories in one’s portfolio or
analysis set.b Each of our I obligors, it should be stressed, still has its own
default event. The probabilities that one attaches to it are simply common
among all entities within a shared credit class.

a It can, to be fair, be done using market and financial-statement data, but it is a fairly messy
(and noisy) business.
b Note that r = 1 relates to the high-quality credit and r = R denotes the worst-quality
category. This ordinality of our rating set, while arbitrary, is practically useful.

3 To extend this idea, a risk-free entity—although such a thing does not truly exist other than as a
theoretical ideal—is achieved by setting τ = +∞.
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A popular, and quite central, default-event-related quantity is defined as,

S(t, T ) = P(τ > T ), (7.3)

= 1 − P(τ ≤ T )
︸ ︷︷ ︸

Eq. 7.1

,

= 1 − Fτ (T ),

where t , as before, is the current point in time and t ≤ T . This quantity is referred to,
for obvious reasons, as the survival probability or function.4 Although it is simply a
variation upon existing definitions, it is highly useful.5 It basically turns the default
probability on its head and asks: what is the probability that the credit obligor does
not default? One can think of the second time argument (i.e., T ) in Eq. 7.3 as a dial
that can be turned gradually forward in time. Indeed, the first time argument t is not
typically included in the definition of the survival probability. We explicitly include
it for two reasons. First of all, it is always useful to keep track of the current point in
time.6 Secondly, it will later help us establish a conceptual link to another important
financial object.

The next definition brings us to a fundamental notion of default probability.
Specifically,

p(t, T ) = P

(

τ ∈ (t, T ]
)

, (7.5)

for any t ≤ T . p(t, T ) essentially describes the likelihood of a default at any point
during the interval (t, T ]. Again, we are careful to explicitly include the starting
point, t . This object has a variety of possible names. When t is the current point in
time, it is often referred to as the cumulative default probability.7 Given its lack of
conditionality, it is sometimes also called the unconditional default probability.

There are a number of important links between default and survival probabilities.
A nice way to see one aspect of this relationship is to somewhat generalize Eq. 7.5.
In particular, if we select two future points—u and v—such that t ≤ u ≤ v, then we

4 The cumulative distribution function of τ can thus also (rather obviously) be written in terms of
the survival probability as,

Fτ (T ) = 1 − S(t, T ). (7.4)

5 Equation 7.3 is, in fact, the jumping-off point for an entire sub-field of statistics: survival analysis.
See Kleinbaum and Klein [29] for a good introduction.
6 It should be clear, to provide a practical instance, that S(t, t) = 1 for any non-defaulted firm.
7 In this case, where t is the current point in time, we have that p(t, t) = 0 for the non-defaulted
credit obligor. Conversely, we would expect that lim

T→∞p(t, T ) = 1. Such attention to the boundary

conditions might appear pedantic, but their proper definition is essential.
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Fig. 7.1 Some helpful default-probability relationships: This schematic outlines—for a default
probability, p(u, v)—the linkages between cumulative-default and survival probabilities. The
current point in time, t , is explicitly provided. For this example to work, we require that t ≤ u ≤ v.

may be interested in the probability of default during the interval (u, v]. This might
be written as,

p(u, v) = P

(

τ ∈ (u, v]
)

. (7.6)

This is a kind of unconditional—since there is no conditioning information—
marginal, or forward, default probability. It turns out that there a few ways that
this value can be determined from our existing definitions.

Figure 7.1 provides a schematic for the determination of p(u, v). Working from
our previous quantities, however, it is determined simply as,

p(u, v) = P(u < τ ≤ v), (7.7)

= P(τ ≤ v)
︸ ︷︷ ︸

Fτ (v)

−P(τ ≤ u)
︸ ︷︷ ︸

Fτ (u)

,

= p(t, v) − p(t, u),

=
(

�1 − S(t, v)

)

−
(

�1 − S(t, u)

)

,

= S(t, u)− S(t, v).

These unconditional marginal, or forward, default probabilities can be represented
as the difference between cumulative default or survival probabilities anchored to
the current point in time, t .

Knowledge of cumulative default (or survival) probabilities for a broad range
of future values thus provides useful information regarding forward default likeli-
hoods. Thus we see for the first time in this chapter—but certainly not the last—a
link between default-probability calculations and the term structure of interest rates.
In fact, the result of fixing t to the current point of time, and computing the
cumulative default probabilities for various choices of T ≥ t , is generally referred
to as the term structure of default probabilities.
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All that is lacking in the previous default-probability related objects is some
notion of conditionality. Our previous marginal, or forward, default rate—which
we had called p(u, v)—is unconditional. That is, although we are computing the
probability of default during interval (u, v], we have not introduced any notion of
its defaulting prior to time u. Such information, however, would be quite useful. We
might, therefore, seek to compute the following quantity,

p(t, u, v) = P

(

τ ∈ (u, v]
∣

∣

∣

∣
τ > u

)

, (7.8)

for any t ≤ u ≤ v. This is not, of course, quite the same notion of probability
as introduced in Eqs. 7.5 to 7.7. It is a conditional marginal, or forward, default
probability. It specifies the probability of default over (u, v] assuming survival to
time u. Equation 7.8 is also, thankfully, readily computed through the use of Bayes’
theorem.8 The result, using a few of our previous definitions, is thus simply

p(t, u, v) = P

(

τ ∈ (u, v]
∣

∣

∣

∣
τ > u

)

, (7.10)

=
P

(

{τ ∈ (u, v]} ∩ {τ > u}
)

P(τ > u)
,

=

Eq. 7.7
︷ ︸︸ ︷

P

(

{τ ≤ v} ∩ {τ > u}
)

S(t, u)
,

= S(t, u)− S(t, v)

S(t, u)
,

= 1 − S(t, v)

S(t, u)
.

Our conditional forward default probability is thus simply a function of the
appropriate survival rates. Given the established link between survival rates

8 Recall that for random events, A and B, the conditional default probability is written as,

P(A|B) = P(A ∩ B)

P(B)
. (7.9)

This is referred to as Bayes’ rule or theorem in honour of Sir Thomas Bayes, although there is
apparently some uncertainty about his exact role in Eq. 7.9’s discovery. See, for example, Stigler
[46].
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and cumulative default probabilities, one may naturally also write Eq. 7.10
as,

p(t, u, v) = P

(

τ ∈ (u, v]
∣

∣

∣

∣
τ > u

)

, (7.11)

= p(t, v) − p(t, u)

1 − p(t, u)
.

The basic format is not as condensed as in Eq. 7.10, but the two definitions are
equivalent.9

Colour and Commentary 78 (DEFAULT-PROBABILITY VERNACULAR): A
word on terminology is in order. Different terms are used, in a baffling
array of ways, to describe the various default-probability related quantities.
The words cumulative and marginal, for example, appear to be applied
with little discrimination. Furthermore, the role of conditionality is also
not always entirely clear. The consequence is the potential for confusion
and misapplication of a particular variation of default probability. In our
treatment, therefore, we propose a simple solution. The notation will do the
talking. We are unlikely to resolve the broad range of terms employed in this
field, but the mathematical definitions can speak for themselves. p(t, u) will
refer to cumulative default probabilities anchored to the current point in time,
t , over the full time interval t − u. p(u, v) is essentially the same object, but
with the potential for a forward start to the extent that t ≤ u ≤ v. Finally,
the conditional forward or marginal default probability will be denoted as
p(t, u, v); the three arguments underscore the nature of the conditionality
(i.e., survival to, at least, time u).

7.1.1 The Limiting Case

The forward default probability, p(t, u, v), is a useful object. It tells us, as
previously described, the likelihood of a default within the interval (u, v] conditional
upon survival (i.e., non-default) up until time u. This computation depends, of
course, on the size of the interval. v − u could be a year, a month, or a day. It
might be interesting to generalize this idea. That is, we could write our conditional

9 In practical applications, it is not uncommon to see a combination of both cumulative default and
survival probabilities for the computation of conditional marginal default probabilities.
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forward default probability as,

p(t, u, u+�t) = P

(

τ ∈ (u, u+�t]
∣

∣

∣

∣
τ > u

)

, (7.12)

= S(t, u)− S(t, u+�t)

S(t, u)
︸ ︷︷ ︸

Eq. 7.10

,

=

Eq. 7.4
︷ ︸︸ ︷

Fτ (u+�t)− Fτ (u)

S(t, u)
,

assuming that Fτ is a continuous, strictly positive, and differentiable function.10

Although this is essentially just a manipulation of previously introduced objects, a
rather new idea can be introduced through the following limit:

h(t, u) = lim
�t→0

p(t, u, u+�t)

�t
, (7.13)

= 1

S(t, u)
lim
�t→0

Fτ (u+�t)− Fτ (u)

�t
︸ ︷︷ ︸

Formal definition
of a derivative

,

= F ′
τ (u)

S(t, u)
.

h(·) is referred to as the hazard rate (or function). In financial settings, it is
occasionally termed the forward default rate. It should be viewed as an instantaneous
default rate, which is essentially a mathematical trick to allow for the modelling of
default probabilities in continuous time.

With a bit of manipulation, we can exploit the continuous time aspect of Eq. 7.13.
It leads to a particularly elegant definition of the survival probabilities. More
specifically,

h(t, u) = 1

S(t, u)

d

du
Fτ (u), (7.14)

= 1

S(t, u)

∂

∂u

(

1 − S(t, u)

)

,

= − 1

S(t, u)

∂S(t, u)

∂u
,

10 These conditions certainly do not apply to all cumulative distribution functions, but they should
not restrict our choice too dramatically.
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∫ u

t

h(t, x)dx = −
∫ u

t

1

S(t, x)

∂S(t, x)

∂x
dx,

S(t, u) = e
−
∫ u

t

h(t, x)dx
,

where the (straightforward) steps in the solution to the ensuing (first-order, homo-
geneous) differential equation are found in Bolder [6, Chapter 9]. As before, we
can think of the current time, t , as a fixed parameter and not a variable. Its explicit
inclusion does clutter the notation, but the reason will soon become evident.

A few practical elements can be gathered from Eq. 7.14. First of all, as we would
expect, we have that S(t, t) = 1. Second, if the hazard rate is a constant—or rather,
h(t, u) ≡ h—then S(t, u) = e−h(t−u). If h = 0.01 and t − u = 3 years, for
example, then S(t, u) ≈ 0.97. Our previous quantities can also be reexamined in
this continuous-time setting. The cumulative default probability can now be written
as,

p(t, u) = 1 − S(t, u)
︸ ︷︷ ︸

Eq. 7.7

, (7.15)

= 1 − e
−
∫ u

t

h(t, x)dx
,

while the forward default probability is simply,

p(t, u, v) = 1 − S(t, v)

S(t, u)
︸ ︷︷ ︸

Eq. 7.10

, (7.16)

= 1 − e
−
∫ v

t

h(t, x)dx

e
−
∫ u

t

h(t, x)dx

,

= 1 − e
−
∫ v

u

h(t, x)dx
.

This discussion suggests that, silently in the background of one’s default and
survival probability definitions, there is always some hazard function lurking about.
Whether one chooses to circumvent it or handle it directly is, naturally, the choice
of the individual quantitative analyst.
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7.1.2 An Extended Aside

There is, as previously hinted at, a strong conceptual link between default and
survival probabilities and key ideas in the term structure of interest rates literature.11

It is helpful to walk through—albeit as an aside—the basics of interest-rate term-
structure modelling to clarify the connection between these two areas of study.

The two most fundamental interest-rate objects are the so-called risk-free zero-
coupon rates and bond prices. A zero-coupon (or pure-discount) bond has a single,
certain cash-flow at maturity; it is often normalized, for convenience, to be a single
unit of currency. If, as before, we denote the current point in time as t , then the
yield on this coupon-less bond with maturity u is written as z(t, u); we consequently
require that t ≤ u. This is the annualized rate of interest earned over the time interval
u− t . Its (continuously compounded) price is written as,

P(t, u) = e−z(t,u)(u−t ), (7.17)

implying immediately that

z(t, u) = − lnP(t, u)

u− t
. (7.18)

Outside of short-term treasury bills, these zero-coupon bond rates (or prices) are
not directly observable. They can, however, be inferred from the prices of sovereign
coupon bonds.12

In a world of non-negative interest rates, it is necessary for P(t, t) = 1. Interest-
rate negativity has, of course, become a 21st century commonality. In these cases,
then P(t, u) can exceed unity for a range of values of u. We also typically see that
the pure-discount bond function is (weakly) decreasingly monotonous in u. The
path of z(t, u) can nonetheless take various forms as we vary u; it might be flat,
upward-sloping, humped, or even downward shaped.

The next key notion is the forward interest rate. It represents the current interest
rate, which one might transact at, for a contract starting (and maturing) in the future.
Like the forward default probability, it takes three arguments: the current time,
the forward start date, and the final maturity. Let us denote these as t , u, and v,
respectively. The only condition on these time points is, as in the forward default
probability setting, t ≤ u ≤ v. The forward rate is thus written as f (t, u, v).13 In
a continuously compounded setting, the forward rate is determined by solving the

11 Duffie and Singleton [18] have exploited this link to build an entire practical structure for jointly
modelling interest-rate and credit-risk dynamics.
12 Sovereigns are naturally not risk-free, but they are close as we can get in real-life. If you doubt
the ability of sovereigns to default, please read Reinhart and Rogoff [41, 42].
13 To underscore the parallel to the default case, we also use similar notation.
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following break-even equation:

ez(t,v)(v−t ) = ez(t,u)(u−t )ef (t,u,v)(v−u), (7.19)

ef (t,u,v)(v−u) = ez(t,v)(v−t )

ez(t,u)(u−t )
,

f (t, u, v) = z(t, v)(v − t)− z(t, u)(u− t)

v − u
.

Analogous to the forward default probability, forward interest rates are derived as a
function of more fundamental building blocks. Zero-coupon rates are used to infer
forward interest rates. Interestingly, if we use the definition of Eq. 7.18, we may
directly redefine Eq. 7.19 directly as,

f (t, u, v) =

Eq. 7.18
︷ ︸︸ ︷
(

− lnP(u, v)

���v − t

)

����(v − t)−

Eq. 7.18
︷ ︸︸ ︷
(

− lnP(t, u)

���u− t

)

����(u− t)

v − u
, (7.20)

= −

(

lnP(t, v) − lnP(t, u)

)

v − u
.

This demonstrates that the forward rate can also be represented as a function of
pure-discount bond prices.

The distance between u and v—the length of the forward interest-rate contract—
can take various values; v − u might be a year, a month, or a day. As with forward
default probabilities, there is value in examination of the limiting case. Following
from Eq. 7.12 (and naturally our definition in Eq. 7.20), one might write the forward
interest rate as

f (t, u, u+�t) = −

(

lnP(t, u+�t)− lnP(t, u)

)

�t
. (7.21)

If we proceed, as previously in Eq. 7.13, to take the limit as �t tends to zero, then

f (t, u) = lim
�t→0

−

(

lnP(t, u+�t)− lnP(t, u)

)

�t
, (7.22)

= −

⎛

⎜

⎜

⎜

⎜

⎜

⎝

lim
�t→0

lnP(t, u+�t)− lnP(t, u)

�t
︸ ︷︷ ︸

Formal definition
of a derivative

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

= −∂ lnP(t, u)

∂u
.
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This quantity is referred to as the instantaneous forward interest rate.14 As in
the hazard-rate situation examined in the previous sections, this is a differential
equation. We may solve for the pure-discount bond price with a bit of calculus. In
particular,

∫ u

t

f (t, x)dx = −
∫ t

u

∂ ln(t, x)

∂x
dx, (7.24)

[

lnP(t, x)

]u

t

= −
∫ u

t

f (t, x)dx,

lnP(t, u)− lnP(t, t)
︸ ︷︷ ︸

=0

= −
∫ u

t

f (t, x)dx,

P (t, u) = e
−
∫ u

t

f (t, x)dx
.

This development underscores the correspondence between the default and interest-
rate fields. Although an instantaneous forward rate does not actually exist—and, as
such, Eq. 7.24 is basically a trick to permit use of continuous-time mathematics—it
is practically very useful.15

Colour and Commentary 79 (AN UNEXPECTED, BUT WELCOME, LINK):
As hinted at, and ultimately demonstrated in the preceding pages, there is
a concrete conceptual connection between default and interest rates. There
are, in fact, at least three points of commonality. First, the forward default
and interest rates exhibit many similarities. Both take three distinct time
arguments, refer to future occurrences as of the current point in time, and can
be made time continuous with essentially equivalent limiting arguments. Sec-
ond, the survival and pure-discount bond functions are conceptual analogues.
Both are—barring negative interest rates—restricted to the unit interval,
decrease monotonically over time, and can be written as an integrated
negative exponential function of their respective forward quantity. Finally, the

(continued)

14 Interestingly, if we set u = t , we arrive at

r(t) ≡ f (t, t) = − ∂ lnP (t, t)

∂t
, (7.23)

which is typically called the instantaneous short-term interest rate. This object is basically the
point of departure for the entire field of dynamic interest-rate modelling.
15 See Bolder [4, 5], Bolder and Gusba [7], or Bolder and Liu [8] for much more information on
interest-rate modelling.
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Colour and Commentary 79 (continued)
instantaneous forward interest and hazard rates play a comparably central
role. Survival analysis begins with specification of a statistical form for the
hazard function. Interest-rate modelling, unsurprisingly, leans heavily on
assumptions regarding the mathematical form of the instantaneous forward
rate.a Understanding these linkages is not only intellectually interesting, it
also widens the set of possible tools for use in default-probability modelling.
We can, and will, borrow methods from the field of interest rates in the
forthcoming analysis.

a Or, as introduced in Eq. 7.23, its related entity: the instantaneous short-term interest rate.

7.2 A Thorny Problem

It is common practice to use the theory of Markov chains to organize and describe
the credit categories of obligors in one’s portfolio. NIB is no exception. As high-
lighted in previous chapters, the transition matrix plays a central role in the compu-
tation of migration risk and embeds the one-year default probabilities. This structure
works quite well in the context of the one-period, through-the-cycle economic-
capital model. As we move to stress-testing and loan-impairment computations—
multiple periods into the future and along the point-in-time dimension—some
challenges arise. Pushing the point-in-time discussion to Chap. 8, let’s restrict
our focus to the forward-looking aspect. The base Markov-chain assumptions are
sadly inconsistent with empirical multiperiod default probabilities across the rating-
category spectrum. This depressing shortcoming—which we will demonstrate
shortly—makes the construction of a term-structure of default probabilities rather
more complex than one might have initially suspected. Understanding where and
how things go wrong with the time-homogeneous Markov-chain approach is the first
step in resolving this issue. It does, however, require some background development
and explanation.

7.2.1 Set-Up

Imagine that you have a large collection of individual credit obligors in your
portfolio. This is a potentially difficult, or intimidating, situation if you seek to
mathematically characterize the individual creditworthiness of each entity. Thank-
fully this is neither a new problem, nor is it necessary for you to find a solution.
Large credit-rating agencies solved, at least approximately, this problem in and
around WWI. They brilliantly opted to place individual credit obligors into a
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relatively small number of pre-defined groups or categories. This effectively reduces
the dimensionality of the problem from potentially 1000s to about 20. Not a bad
trade.

White [52] provides some interesting background on the rating agencies and
highlights their dubious role in the 2008–2009 financial crisis. While these criti-
cisms are certainly well-founded, it does not detract from the general cleverness
and usefulness of the credit rating as a concept. Its consequences in terms of
dimension reduction, for quantitative practitioners, are literally a godsend. The
notion of credit rating is, of course, imperfect. It ignores the natural heterogeneity of
creditworthiness within credit categories. It is also subject to timing problems and
misclassification. While it is important to be aware of these caveats, it remains a
powerful and important tool.

It is thus common to assume that each of one’s obligors (i.e., counterparties)
can be allocated to a finite set of κ credit categories.16 Each category represents a
distinct level of credit risk ranging from the highest credit quality to actual default.
Although each obligor has its own idiosyncratic credit characteristics—and this is
clearly a simplification—such an organization is convenient. It represents a gateway
to a number of formidable mathematical tools to describe the dynamic behaviour
of one’s set of obligors. In particular, a typical assumption is that the collection
of credit states follows a κ-dimensional, discrete-time Markov-chain process. An
enormous benefit of this choice is that the probability of default and migration
between credit states can be described with a κ × κ transition matrix, which is
denoted as P .

There are many useful references on the theory and practice of Markov chains:
Brémaud [10], Taylor and Karlin [48] or Meyn and Tweedie [35] are very helpful
in terms of the theoretical basics, whereas Jarrow et al. [24] and Gupton et al. [21]
provide an introduction to their use in a financial setting. Bolder [6, Chapter 9]
works through the maximum-likelihood approach commonly employed for the
determination of the elements of the empirical transition matrix. More details can
also be found in Jafry and Schuermann [23], Schuermann [43], and Lando and
Skødeberg [32].

7.2.2 Some Theory

We make full use of the κ-state, discrete-time Markov-chain assumption for
describing the credit-quality dynamics of our obligors. We also source, like
many other market participants, the required transition matrices from the credit-
risk agencies. Whether Moody’s, Standard and Poor’s or Fitch, the transition
matrices produced by these entities are available on an annual basis. In

16 This is not the only way to solve this problem. ECB [19] is a useful reference on the credit-risk
modelling practices of public institutions.
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other words, the transition probabilities—be they associated with migration,
default, or remaining in the current state—are all defined over a one-year
period.

This creates a challenge: transition matrix elements are available at an annual (or
perhaps quarterly) frequency, but we wish to employ a time step in our credit-risk
model that is longer.17 To get started, let us first introduce some basic concepts and
notation. The set of κ Markov-chain credit states is defined as,

S = {1, 2, ..., κ} . (7.25)

It is common to identify credit-quality states with alphanumeric characters—such
as AAA, Aa, or A1—but these may always be mapped into an appropriate set
of integers.18 We denote the initial probabilities of falling in a particular state
as,

p0 =
{

P

(

S0 = 1

)

,P

(

S0 = 2

)

, · · · ,P
(

S0 = κ

)}

, (7.26)

where

κ
∑

i=1

P

(

S0 = i

)

= 1. (7.27)

Each individual transition probability is described as,

P

(

St = j | St−1 = i

)

= pij , (7.28)

for i, j = 1, ..., κ . Using this idea, we may define the transition matrix for this
κ-dimensional Markov chain as,

{pij }i,j=1,2,...,κ
︸ ︷︷ ︸

Transition probabilities

≡

⎡

⎢

⎢

⎢

⎣

p11 p12 · · · p1κ

p21 p22 · · · p2κ
...

...
. . .

...

pκ1 pκ2 · · · pκκ

⎤

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

P

(7.29)

17 It turns out to be even more difficult to manage a shorter time period. Resolving this situation
involves scaling down the annual transition matrix to a shorter time horizon. Stated in this way, it
sounds easy, but it turns out to be a surprisingly thorny problem.
18 In our case, as seen in previous chapters, we simply employ the first 20 integers.
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where,

pi1 + pi2 + · · · + piκ =
κ
∑

j=1

pij = 1 (7.30)

for all i = 1, ..., κ . Or, more simply, each row of the transition matrix must sum
to unity—this is a kind of conservation of mass constraint. Starting in state i, the
probability of moving to any other state in the subsequent period must be equal to
one.

The transition matrix involves, by convention, one-year transition probabilities—
we will take this quantity as given, although typically some effort is required to
obtain it. Let us further use Pt to more generally denote the t-period transition
matrix.19 Given t ∈ N and t ≥ 1, determination of Pt is, with an additional common
assumption, relatively straightforward. Specifically, if we assume that the Markov
chain is also time-homogeneous, then

Pt = P t , (7.31)

and, by extension,

pt = p0P
t , (7.32)

where, as in Eq. 7.26,

pt =
{

P

(

St = 1

)

,P

(

St = 2

)

, · · · ,P
(

St = κ

)}

. (7.33)

Time homogeneity essentially implies that the transition probabilities are inde-
pendent of t . Iterating over powers of P , therefore, provides us with all of the
information necessary to describe the time evolution of any individual entry in our
transition matrix. Our interest, for the moment, is in the final column, which contains
the default probabilities. The key point, however, is that this result is conditional on
default-probability dynamics being consistent with a time-homogeneous Markov-
chain process.

Treating of each time step, t ∈ N, as a natural number amounts to a discrete-
time Markov-chain process. It is also quite possible to define a Markov chain in
continuous time; technical details aside, this essentially implies that time can take
any positive real value (i.e., t ∈ R+). Scaling up one-period transition matrices
works a bit different in this setting. This brings us to a final quantity, which will

19 Using this notation, it follows easily that P ≡ P1.



7.2 A Thorny Problem 419

prove helpful in resolving our problem: the so-called generator matrix. A generator
matrix, denotedG ∈ R

κ×κ , has two key properties. First, the rows sum to zero. That
is,

gi1 + gi2 + · · · + giκ =
κ
∑

j=1

gij = 0, (7.34)

for i = 1, ..., κ . The second point is that all non-diagonal elements must be greater
than or equal to zero; or, more specifically,

gij ≥ 0, (7.35)

for i, j = 1, ..., κ where i �= j . This implies, of course, that the diagonal elements
must be less than or equal to zero.

If P is a transition matrix, then P − Iκ is a generator matrix, where Iκ denotes
the κ×κ identity matrix. It should be noted, however, that P −Iκ is not an excellent
choice. Nonetheless, if G is a generator matrix, then

P = eG, (7.36)

is a transition matrix, where e denotes the matrix exponential.20 If we raise both
sides to some t ∈ N, then

P t = (eG)t , (7.38)

Pt = etG,

which offers an alternative (continuous-time) representation of Eq. 7.31. In fact, the
generator matrix is a key object in the definition of a continuous-time Markov chain.
Without getting too deeply into the theory of Markov chains, if G is a true generator

20 The matrix exponential, the multivariate analogue of the exponential function, is formally
defined as

eAt =
∞
∑

k=0

(At)k

k! . (7.37)

See Golub and Loan [20, Chapter 9] or Moler and Loan [36] for a discussion of various algorithms
for its computation. Incidentally, Moler and Loan [36] almost certainly win the prize for the
mathematics paper with the most honest (and amusing) title of all time.
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matrix, then Eq. 7.38 holds for all t ≥ 0.21 That is, one can freely scale up (or down)
one’s transition matrix over the full time spectrum.

The deal-breaker, however, is that given a transition matrix, P , it does not
necessarily follow that ln(P )—as strongly suggested by Eq. 7.36—is a generator
matrix.22 It is very possible, for example, to have negative off-diagonal elements.
This leads, rather annoyingly, to obstacles in the determination of the generator
matrix.

7.2.3 Regularization

As succinctly stated in Kreinin and Sidelnikova [30]

Computing the generator of an existing transition matrix by taking the logarithm still raises
the issues of existence and uniqueness.

To repeat, a generator matrix need not be unique nor is it necessary that ln(P )
actually be a generator matrix. Proving these results is not trivial; the reader is
referred to Kingman [28] for a taste of the complexity involved.

Kreinin and Sidelnikova [30] offer an alternative strategy, which they refer to
as their regularization approach. Regularization is a general term in mathematics
referring to making adjustments—in terms of structure or information—to help
solve ill-posed problems. It is particularly, although certainly not exclusively, found
in optimization problems. Regularization is particularly relevant in this case, given
the failure of the straightforward and conceptually reasonable method to yield
results; in other words, the basic problem is ill-posed.

21 If Pt is the transition matrix of the Markov-chain process, St , then G is the generator of St if

dPt

dt
= PtG. (7.39)

It is immediately clear that the solution to this differential equation is, as in Eq. 7.38,

Pt = etG, (7.40)

P ′
t = etG

︸︷︷︸

Pt

G,

= PtG.

22 In this case, as in Eq. 7.36, ln(·) refers to the matrix logarithm. This is not a particularly
straightforward object to compute and there are a number of possible approximations for its value.
See Golub and Loan [20, Section 9.4.4] for more information.
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The trick is to re-state or adjust the basic problem. Kreinin and Sidelnikova
[30] offer a quasi-optimization of the generator. It involves the following, slightly
heuristic, modification the original problem as,

G∗ = arg min
G∈G(κ) ‖G− ln(P )‖, (7.41)

where ‖·‖ is some notion of distance for the class of κ×κ matrices.23 G(κ) denotes
the set of κ-dimensional generators. The idea is quite intuitive. Since ln(P ) does not
necessarily offer a sensible result, we find a true generator matrix that is as close as
possible—in terms of distance—from ln(P ).

It turns out, Eq. 7.41 can be solved on a row-by-row basis. Kreinin and
Sidelnikova [30] and Torrent-Gironella [49] offer an iterative pseudo closed-form
solution to the problem in Eq. 7.41. We solve the problem numerically by the
constrained minimization of the Euclidean distance between each row of G∗ and the
matrix logarithm of our one-year transition matrix. This appears to be both efficient
and robust. Even better, the computation is extremely fast; it requires only a second
or two of computational expense.

Colour and Commentary 80 (A CENTRAL OBJECT): The study of Markov
chains is both deep and subtle, but fortunately its full complexity is not
necessary for our purposes. Some aspects, however, cannot be avoided.
Although it might appear to be a mathematical curiosity, for instance, the
generator matrix of a transition matrix is a critical part of any continuous-
time Markov chain. It serves as a lever to scale up and down the individual
transition (and default) probabilities over various time intervals. The term
structure of default probabilities—across all rating categories—is intimately
related to this notion of scaling. As will soon become clear, the time-
homogeneous version of the Markov chain is not up to the task. Relaxation of
time homogeneity, however, offers a potential solution to redeem the Markov-
chain model. The generator matrix will play a central role in this rescue
operation.

7.2.4 Going to the Data

The major rating agencies collect, and have been in the business of collecting,
rating and default data for large numbers of firms for many decades. They provide

23 An obvious choice to describe the distance between the two matrices is the Frobenius norm; see
Golub and Loan [20, Chapter 2] for more details.
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Fig. 7.2 Empirical default-probability term structures: The preceding graphics illustrate the
empirical multiperiod default and survival probability estimates stemming from S&P [45,
Table 26]. It is precisely these observed data patterns that our internal models strive to capture.

information—in a variety of raw and processed forms—to their clients and the
general public. Each rating agency, on an annual basis, publishes a high-level
overview of their analysis. These sources are of primordial importance for small
institutions, such as the NIB, with insufficient internal data to inform robust default-
probability estimates. The following analysis is based on S&P [45], although the
results do not differ dramatically if one were to rely upon Moody’s or Fitch
data.

S&P [45, Table 26] describes for each of S&P’s 17 pertinent, non-default
rating categories, the empirical probability of default for one to 15 years.24 Using
the terminology from the previous sections, these are long-term, (i.e., through-
the-cycle) cumulative default probabilities. Mathematically, we can denote them
as,

{pr(t, u) : u = 1, ..., T } , (7.42)

where T = 15 and r = 1, ...,R. We can think of these results as the
truth; or, at least, some first-order approximation of it. Our internal models
need to correspondingly strive to capture the basic features of these empirical
estimates.

Figure 7.2 illustrates, for each time step and credit-rating category, the cumu-
lative default and survival probabilities from S&P [45, Table 26]. A number of

24 As indicated in Chap. 3, we do not employ the entire S&P scale. Since the very low end of the
scale is outside of our area of operation, the five categories below B- (i.e., CCC+, CCC, CCC-, CC
and C in descending order) are aggregated into a single catch-all, CCC category. This explains the
use of only 17 non-default S&P rating categories; we might refer to this as a truncated S&P scale.
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Fig. 7.3 Default-probability exponentiality: This cumulative default probability surface is com-
puted by applying natural logarithms to the left-hand graphic in Fig. 7.2. It clearly indicates the
exponential nature of default probabilities over the entire empirical term structure.

points are worth addressing. These estimates are updated annually, but are very
slow-moving since they represent a long-term, or through-the-cycle, estimate of
these default-probability term structures. This may seem to be of limited interest,
but these values actually form the foundation for movement—in Chap. 8—to the
point-in-time perspective required for stress-testing and loan-impairment analyt-
ics.

As a second point, it is probably preferable to think of Fig. 7.2 as representing
a default-probability surface rather than term structures. For a given credit rating,
say AA+, we can speak of a term structure. When we consider all possible
rating categories and tenors, it becomes a surface. This is particularly important
given that we expect to have interactions—or rather restrictions—between these
credit states and tenors. The five-year cumulative BB default probability should
not exceed, for example, the A equivalent. In other words, we expect that for a
given tenor, the default probabilities increase monotonically as we move out the
credit spectrum.25 At the same time, for a given credit state, the cumulative-default
probability needs to increase (at least, weakly) monotonically as we increase the
tenor.26 This is, in fact, precisely what we observe in Fig. 7.2. The final point is that
default probabilities increase exponentially as we move out the credit scale. This
admittedly makes it somewhat difficult to visualize the entire surface. Figure 7.3

25 Of course, when speaking of survival probabilities, we require a monotonically decreasing
relationship.
26 Again, the direction of the monotonicity is opposite for survival probabilities.
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applies natural logarithms to the left-hand graphic in Fig. 7.2 clearly indicating
the exponential nature of default probabilities across the entire empirical term
structure.27 This is also a simple, but fairly effective, sanity check on S&P [45,
Table 26].

Colour and Commentary 81 (A NOTE ON S&P DATA): We rely heavily
on external transition and default probability data for a simple reason:
it is simply too small to produce sensible or robust internal estimates
of these quantities. Although NIB has been in business since the mid-
1970s, there are simply too few credit obligors, observed transitions, and
defaults for a satisfactory level of statistical accuracy.a This explains the
recourse to external-data sources. While a helpful solution, it is not without
its drawbacks. The first, conceptual issue, is that one worries about the
representativeness of large global datasets for our specific regional and
industrial activities. Little can be done to assuage this concern. The second
point is practical; at some point soon, the 18-notch S&P categorization will
need to be mapped into the 21-step internal master scale. This needs to be
resolved with some mathematical gymnastics and common sense. Neither
drawback is an insurmountable obstacle, but both need to be kept firmly in
mind.

a With 20 non-default categories, there are 420 (non-default) transition probabilities to
estimate; literally thousands of obligors across the entire credit spectrum over decades are
necessary to adequately inform these parameters.

The next step involves extracting a sensible long-term, (one-year) corporate
transition matrix from the data provided in S&P [45, Table 23]. Examination of the
specific figures isn’t terribly helpful, so we’ve used colour-coding to provide better
insight. Equation 7.43 provides this information, in its full glory, for those with
reading spectacles at the ready. The black values describe transition probabilities
exceeding 0.5, orange denotes values from [0.05, 0.5), the gray figures fall into
the interval [0.01, 0.05), while the remaining entries are roughly equal to zero (to

27 If the default surface was indeed exponential across each credit rating, we would expect the log-
transformation to generate a plane in R

3 (i.e., a sheet of paper in three-dimensional space). While
this is not quite true, as we can see in Fig. 7.3, it is qualitatively close.
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decimal places, at least).

P̂ =

> 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

> 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 > 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 > 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 > 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 > 0.5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(7.43)

In this form, the full one-year S&P transition matrix, offers little insight into the
problem. There are 18 × 18 = 324 individual elements and many of the entries
do not have sufficient digits to practically distinguish them from zero; there are
also, however, a significant number of entries assigned an identically zero value.28

Indeed, in the spirit of full transparency, the actual data is not actually found in quite
the (conceptual) form presented in Eq. 7.43. An additional category of not-rated
entities is provided by S&P. This extra column encapsulates firms that started in the
sample, but, for various reasons, did not receive a rating. While it is useful to receive
this data, it presents us with something of a conundrum. While there are numerous
possibilities to use this information, it is common practice to proportionally spread
this probability mass—on a row-by-row basis—across the remaining credit states.
As a final step, some additional normalization is performed to ensure that the result
is a true transition matrix.

Equation 7.43 does nonetheless permit some useful observations. The diagonals
are clearly dominant, implying that the probability of not transitioning—that is,
staying put in one’s current credit state—is quite high at a one-year horizon. To the
extent transition occurs, it appears to be principally restricted to one or two-notch

28 At a one-year frequency, for example, there are few or no cases of a AAA rating moving to
CCC or D. At the same time, movement from CCC to AAA, over a single year, is vanishingly rare.
These facts are reflected in S&P statistical estimates.
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upgrades and downgrades. It is thus interesting to compare—for a given row—the
immediate entries to the left and right of the diagonal. These describe the main
downgrade and upgrade probabilities, respectively.

The last element of interest in Eq. 7.43 relates to the final column; these are the
default probabilities. Up until the 11th row—corresponding to the rating category,
BB+—the one-year value is zero to two decimal points. This underscores the
rareness of default and the fundamental challenges of using internal firm data for
their estimation.

As previously discussed, it is generally not possible to compute the generator
matrix associated with P̂ through a simple application of the matrix logarithm.
Using the transition matrix from Eq. 7.43 and the regularized optimization approach
introduced in Eq. 7.41, however, we may construct a reasonable approximation of
the associated generator matrix. It has the following form:

Ĝ =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

-0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.1 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.3 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.4 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.4 0.1 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.4 0.2 0.1 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -0.5 0.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -0.7 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(7.44)

Equation 7.44 is certainly less visually useful—beyond serving as an eye test—
than Eq. 7.43. It does underscore the negativity of the diagonal elements and the
necessity of having a sensible algorithm for their construction.

Armed with P̂ and Ĝ, we can proceed to compare our time-homogeneous
Markov-chain assumption to the empirical default-probability surface values pro-
vided by S&P [45, Table 26]. We construct two potential estimators: discrete- and
continuous versions. The discrete-time case simply raises Eq. 7.43 to consecutive
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powers t = 1, ..., T and extracts the final column at each step.29 The continuous-
time estimates use the generator matrix, displayed in Eq. 7.44, and the relationship

from Eq. 7.38 (i.e., etĜ) to build an estimated default surface.30

Figure 7.4 displays a selection of the results. Seven distinct credit-rating cumula-
tive default probability term structures—across the entire spectrum—are presented
along with the average across all 17 non-default credit classes. At the upper end of
the scale, the fit between discrete- and continuous-time Markov-chain outputs does
not appear to deviate dramatically from the empirical estimates. With the exception
of the AAA category, there is virtually perfect agreement between the discrete- and
continuous-time Markov-chain estimates. This suggests that time continuity is a not
a terribly controversial assumption in this setting and that the generator matrix, G,
has been reasonably identified; these conclusions will be helpful in later analysis.

That is the end of the good news. As we move to the lower end of the investment-
grade credits and into speculative grade, the situation degrades. The Markov-chain
assumption implies a smooth upward growth—concave at the higher end of
the scale, but convex for weaker credits—in default probabilities that is simply
inconsistent with the empirical evidence. The basic curve shapes are not particularly
similar, but most damagingly, the implied Markov-chain term structures are simply
far too high. In other words, the Markov-chain results are overly conservative
relative to the estimates provided by S&P [45, Table 26]. To be more blunt, the
time-homogeneous Markov-chain model must be viewed as an abject failure when
applied to actual, real-world default probability term structures. The consequence is
that, when moving multiple periods forward in time, we unfortunately cannot lean
on the standard time-homogeneous Markov chain model.

Colour and Commentary 82 (AN ANALYTIC DISAPPOINTMENT): The
time-homogeneous Markov-chain model—as embodied by a fixed transition
matrix—has a major flaw. It does not permit the generation of a default-
probability surface—across multiple periods and rating classes—that is even
weakly consistent with empirical estimates. It thus cannot be used directly
in the determination of through-the-cycle default-probability surfaces, which
form the foundation for stress-testing and loan-impairment analysis. This
is a disappointing revelation given the centrality of the transition matrix in
our economic-capital framework. It is consequently necessary to investigate
alternative approaches for the construction of the requisite default-probability
surfaces. This basically means that we need to go back to the modelling
drawing board.

29 We can, however, ignore the final absorbing default state.
30 Naturally, the latter approach further assumes time-continuity of our Markov chain.
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7.3 Building Default-Probability Surfaces

The (rather spectacular) failure of the time-homogeneous Markov-chain assumption
leads us to a quandary: a sensible approach is required to fit the empirical default-
probability surfaces found in S&P [45, Table 26] and summarized in Fig. 7.2.
Without a mathematical specification of through-the-cycle default surfaces, we
cannot even begin to consider the construction of point-in-time scenarios for our
loan-impairment and stress-testing applications.

There is, thankfully, a bright side. At its heart, this is basically a curve-fitting
problem. Curve or surface-fitting is, perhaps surprisingly, an area of mathematical
endeavour offering many flexible and accurate techniques.31 We could, therefore,
certainly find a method to fit Fig. 7.2 to a very high degree of accuracy. The
important question, however, is: what precisely are we looking for in an estimator?
In other words, before jumping into possible techniques, it is always a good idea
to identify what a sensible approach might look like. This is particularly important
given that curve-fitting is a mathematical exercise that, in general, contains relatively
little economic intuition.

After some reflection, our shopping list for a default-surface estimator has three
items on it. In particular, we seek:

1. a relatively parsimonious, or low-dimensional, approach that permits us to
readily extend our default surfaces to other applications;

2. a reasonable—although not necessarily, perfect—degree of fit to the empirical
data found in S&P [45, Table 26]; and

3. if possible, an approach that nests the time-homogeneous Markov-chain transi-
tion matrix sitting at the foundation of our economic-capital framework.

To summarize, we are seeking a workable trade-off between goodness of fit,
parsimony, and theoretical consistency. The ability to fit a default-probability
surface under these three conditions would position us quite well for future stress-
testing and loan-impairment computations.

In the preface, we counselled that, “if you can help it, never do anything
just one way.” Here we find ourselves in precisely such a situation. In the
following sections, in an attempt to follow our starting axiom, we will consider
three alternative approaches to fitting our through-the-cycle default-probability
surface. Each has its own advantages and disadvantages; along the way, we
will examine both their mathematical structure and how they address our three
selection principles. Informally, we can think of this as a race with three different
horses.

31 Lancaster and Salkauskas [31] is an excellent starting point for this literature.
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7.3.1 A Low-Dimensional Markov Chain

The first approach has previously been used at NIB. This legacy implementation
attempts to simplify the problem, while at the same time maintaining some
semblance of a Markov-chain structure. It proposes, for each credit category, three
distinct credit states: an initial (or starting), an asymptotic, and a default state. We
will denote each as Ir , Ar and Dr , respectively, for r = 1, ...,R. As the name
suggests, all credit categories begin in the initial state. From here, there are three
possible destinations. It is possible to stay put, move to the asymptotic state, or
default. Default is, as usual, an absorbing state. Once a rating class enters default,
there is no exit. The asymptotic state offers only two possible outcomes: remaining
in the asymptotic state or default.

This simple model basically peels back all of the complexity of the various
rating classes and reduces it to three outcomes. The initial and default states
remain basically unchanged; it is the so-called asymptotic position that is new.
Conceptually, it appears to be a transition state on the way from the initial setting to
default. This is underscored by the inability to move backwards from the asymptotic
state to the initial point. Its name, however, would seem to suggest that it is
some kind of long-term average outcome for a given rating class. Although its
precise interpretation is somewhat unclear, its principal role is undoubtedly to
reduce dimensionality. From this perspective, this approach meets our parsimony
criterion. While it does not fully nest the our time-homogenous Markov-chain
implementation, it does have a link, however tenuous, to this world.

Figure 7.5 provides a classical schematic for this low-dimensional Markov-chain
process. Given the fairly significant restrictions, there are only three parameters
associated with each individual credit state. These include:

• pd(r): the probability of the rth rating class moving from the initial to the default
state;

Initial
State:
Ir

Asymptotic
State:
Ar

Default
State:
Dr

pn(r)

pd(r)

pa(r)

1− pd(r) − pn(r)

1− pa(r)

1

Fig. 7.5 A simple Markov chain: The preceding schematic illustrates the basic properties of a low-
dimensional Markov-chain process used—in our traditional implementation—to fit the default-
probability surface introduced in Fig. 7.2. There are three states: initial, asymptotic, and default.
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• pn(r): the probability of the rth rating class transitioning from the initial to the
asymptotic state; and

• pa(r): the probability of the rth rating class advancing from the asymptotic to
the default state,

for r = 1, ...,R.
To actually estimate these parameters, in manner consistent with the observed

default-probability surface, we need to infer the transition matrix associated with
this low-dimensional Markov-chain process. The actual state structure, in a more
mathematical format, is written as

S
(r)
t =

⎧

⎨

⎩

Ir : Initial state
Ar : Asymptotic state
Dr : Default state

, (7.45)

for r = 1, ...,R and t ≥ 0. Using Fig. 7.5, we may infer the transition matrix as,

P (r) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P

(

S
(r)
t = Ir

∣

∣

∣

∣
S
(r)
t−1 = Ir

)

P

(

S
(r)
t =Ar

∣

∣

∣

∣
S
(r)
t−1 = Ir

)

P

(

S
(r)
t =Dr

∣

∣

∣

∣
S
(r)
t−1 = Ir

)

P

(

S
(r)
t = Ir

∣

∣

∣

∣
S
(r)
t−1 =Ar

)

P

(

S
(r)
t =Ar

∣

∣

∣

∣
S
(r)
t−1 =Ar

)

P

(

S
(r)
t =Dr

∣

∣

∣

∣
S
(r)
t−1 =Ar

)

P

(

S
(r)
t = Ir

∣

∣

∣

∣
S
(r)
t−1 =Dr

)

P

(

S
(r)
t =Ar

∣

∣

∣

∣
S
(r)
t−1 =Dr

)

P

(

S
(r)
t =Dr

∣

∣

∣

∣
S
(r)
t−1 =Dr

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(7.46)

=
⎡

⎢

⎣

1 − pn(r)− pd(r) pn(r) pd(r)

0 1 − pa(r) pa(r)

0 0 1

⎤

⎥

⎦ ,

for r = 1, ...,R. While the notation is not particularly welcoming, the ultimate
structure of our transition matrix is actually quite simple. Due to the restrictions
between state movements, it has an upper-triangular form and, as promised, only
three parameters per credit category.

The actual parameter identification process uses a recursive technique. All
recursion relations depend on the specification of a clear set of starting conditions.
We begin by setting S(r)0 = Ir , which is a fairly defensible beginning point. Indeed,
it is hard to argue that all credit categories should not start in their initial state.
This directly implies that P(S(r)0 = Ir ) = 1 and, of course, that P(S(r)0 = Ar) =
P(S

(r)
0 = Dr) = 0. We have thus essentially also provided a clear picture of the

initial unconditional low-dimensional Markov-chain state probabilities.
To further improve our situation, we fix one of the three parameters by setting

pd(r) = P(τr ∈ (0, 1]). That is, the probability of default, from the initial state,
is linked to that state’s one-year default probability from our full-blown transition
matrix, P̂ , summarized in Eq. 7.43. Not only does this create a link to our base
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implementation, but it also further reduces the dimensionality of our estimation
problem. Now, we have to identify only two parameters per rating class.

The next element associated with a recursive method is a set of dynamic
equations—or recursion relations—with a clear link to the starting conditions. This
involves the description of our unconditional state probabilities incorporating the
necessary elements from our simplified transition matrix in Eq. 7.46. Specifically,
we have that

P

(

S
(r)
t = Ir

)

=
(

1 − pn(r)− pd(r)

)

P

(

S
(r)
t−1 = Ir

)

︸ ︷︷ ︸

Staying in Ir

, (7.47)

P

(

S
(r)
t = Ar

)

= pn(r)P

(

S
(r)
t−1 = Ir

)

︸ ︷︷ ︸

Coming from Ir

+
(

1 − pa(r)

)

P

(

S
(r)
t−1 = Ar

)

︸ ︷︷ ︸

Staying in Ar

,

P

(

S
(r)
t = Dr

)

= pd(r)P

(

S
(r)
t−1 = Ir

)

︸ ︷︷ ︸

Coming from Ir

+pa(r)P

(

S
(r)
t−1 = Ar

)

︸ ︷︷ ︸

Coming from Ar

+P

(

S
(r)
t−1 = Dr

)

︸ ︷︷ ︸

Staying in Dr

,

r = 1, ...,R and t = 1, ..., T . All of these values follow logically from Fig. 7.5 and
Eq. 7.46. The desired result for a given rating class, r , and for fixed choices of pn(r)
and pa(r) is,

p̂r (0, t) = P

(

S
(r)
t = Dr

)

, (7.48)

for t = 1, ..., T . More simply, recursing over Eq. 7.47 provides us with an
estimate—for each individual rating category—of the set of cumulative default
probabilities anchored to the current point in time. This is our default-probability
surface.

The most obvious approach to solving this problem involves solving the follow-
ing set of minimization problems,

min
pn(r),pa(r)

T
∑

t=1

(

p̂r (0, t)− pr(0, t)

)2

, (7.49)

subject to:

pn(r), pa(r) ∈ [0, 1],
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for r = 1, ....R.32 The approach presented in Eq. 7.49, while fairly sensible, treats
each individual credit class on a standalone basis. Economic logic—not to mention
the results in Figs. 7.2 and 7.3—suggests that the collection of default probability
term structures should be handled as a system; that is, as a default-probability
surface.

This argues for the construction of a single joint optimization problem. We can
thus think of identifying vectors of pn and pa parameters. To keep our variable
book-keeping clean and transparent, let us define,

�px = [

px(1) px(2) · · ·px(R)
]T

, (7.50)

for x ∈ {n, a}. This allows us to restate Eq. 7.49 as,

min
�pn, �pa

R
∑

r=1

T
∑

t=1

(

p̂r (0, t)− pr(0, t)

)2

, (7.51)

subject to:

pn(r), pa(r) ∈ [0, 1] for r = 1, ...R,

px(r + 1) ≥ px(r) for r = 1, ...R− 1 and x ∈ {n, a}.

The final constraints represent monotonicity conditions for the resulting default-
probability surface. These ensure the economic reasonableness of the final result.

Figure 7.6 graphically illustrates the results associated with this approach.
For selected credit-rating categories, it investigates the goodness of fit between
our empirical default-probability term structures and the low-dimensional legacy
Markov-chain model. To better understand the role of the monotonicity constraints,
it further displays the results of the separate and joint optimization problems
introduced in Eqs. 7.49 and 7.51. The first observation is that this model provides
a dramatically improved fit relative to the time-homogeneous model examined in
Fig. 7.4. The low-dimensional model nonetheless continues to generate concave
term structures among investment-grade ratings and convex estimates as we move
into speculative-grade territory. This contrasts with the empirical values, which
appear to be essentially convex across all rating classes.

As a second point, the low-dimensional Markov-chain approach appears to sys-
tematically overestimate longer-term cumulative default probabilities. This occurs
across virtually all individual credit-rating classes in Fig. 7.6. It is clearly evident
when considering the average across all categories. Thus, although there is a
significant improvement in overall performance, the low-dimensional fit still faces
a few challenges matching both the overall shape and level of the empirical default-
surface estimates.

32 Any notion of distance will do, but the sum of squared errors (or the L2 norm) has a number of
mathematical advantages.
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Table 7.1 Selected
low-dimensional parameters:
This table outlines the
individual parameters,
organized by the separate and
joint optimization
approaches, used to fit the
default-probability term
structures in Fig. 7.6.

Separate Joint

r Rating pn(r) pa(r) pn(r) pa(r)

0 AAA 0.011 0.011 0.002 0.056

2 AA 0.011 0.011 0.002 0.056

5 A 0.013 0.013 0.003 0.078

8 BBB 0.019 0.014 0.004 0.128

11 BB 1.000 0.005 0.012 0.279

14 B 0.000 0.076 0.019 0.279

16 CCC 0.017 0.451 0.019 0.468

A final observation relates to the differences between the separate and joint
optimization results described in Eqs. 7.49 and 7.51, respectively. Not surprisingly,
the separate and distinct optimization of each default-probability term structure has,
in general, a better fit. With fewer constraints, it has the flexibility to better specialize
the individual credit-category observations. Overall, however, the two approaches
do not differ in any important respect. On average, across all individual credit
classes, the results agree almost exactly. The fact that the monotonicity constraints
do not have a significant impact suggests that they are fairly natural in this setting.
That is, there appears to be a high degree of monotonicity already present in the
data.

Table 7.1 provides the actual parameter values—again for a selected number
of rating classes to avoid overwhelming the reader with numbers—for both the
separate and joint optimization problems. The monotonicity constraints are clearly
satisfied in the joint problem. Interestingly, the parameter values differ significantly
in the two settings despite their generally consistent overall default-probability
surface estimates. This leads us to conclude that many constellations of parameters
might be consistent with the fitted model. This is further justification for the
imposition of constraints; it provides some order and structure to the individual
parameter values.

To link back to the original structure of this low-dimensional Markov-chain
model, we may construct an (implied) separate transition matrix for each individual
rating class. Showing them all would be rather tedious, but a single example
can provide some useful insight. Setting r = 8, we have S&P’s BBB credit
class. The associated one-period (jointly optimized) transition matrix—introduced
in Eq. 7.46—is given as

P (BBB) =
⎡

⎣

1 − pn(BBB)− pd(BBB) pn(BBB) pd(BBB)

0 1 − pa(BBB) pa(BBB)

0 0 1

⎤

⎦

=
⎡

⎣

0.994 0.004 0.002
0.000 0.872 0.128
0.000 0.000 1.000

⎤

⎦ .

(7.52)
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The (1, 2)th and (2, 3)th elements can be recovered directly from Table 7.1. Raising
p(BBB) to consecutive powers t = 1, ..., T and extracting the (1, 3)th element (i.e.,
pd(BBB)) will provide a reasonable approximation of the default-probability term-
structure estimate found in Fig. 7.6. This approximation, however, deteriorates as
we move out the credit spectrum. The reason relates to the same time-homogeneous
concerns that arose in the context of the full transition matrix considered in Eq. 7.43.

Colour and Commentary 83 (A LOW-DIMENSIONAL MARKOV CHAIN):
Our legacy, through-the-cycle, default-surface estimates have been computed
with a simple three-dimensional Markov-chain model. The three states—
initial, asymptotic, and default—are highly restricted to provide a parsi-
monious description of each rating class. Through some sensible starting
conditions and a recursion relationship, it is possible to fit this approach to
the empirical default-probability surfaces provided in S&P [45, Table 26].
Even better, the entire system can be jointly estimated with a set of (non-
onerous) monotonicity constraints to maintain sensible intra-rating and tenor
relationships. The overall goodness of fit, while dramatically better than the
full time-homogeneous Markov model, does exhibit some difficulty matching
the shape and level of observed default-probability term structures. It thus
meets two our three selection criteria: it is parsimonious and provides a
(fairly) reasonable fit to the empirical data. This leads to the final criterion.
On the surface, its Markov-chain structure appears to provide a low-
dimensional link to our initial transition matrix. Ultimately, however, the
connection is only tenuous. There does not appear to exist—for each rating
class—a transition matrix that can replicate the default-probability surface.
We ultimately conclude that this method, despite its promise, is merely an
elaborate curve-fitting technique.

7.3.2 A Borrowed Model

Concluding that the previously discussed low-dimensional Markov-chain model is
essentially a disguised curve-fitting technique, we may very well wish to consider
a method that leans unapologetically in this direction. Given the strong conceptual
links between default and interest rates, it is sensible to look to the interest-rate
literature for inspiration. Building zero-coupon interest-rate term structures is a
classic curve-fitting exercise offering a broad range of flexible techniques. Nelson
and Siegel [37] springs immediately to mind given its history. It was designed
expressly to introduce a degree of parsimony into the common task of interest-
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rate term structure fitting.33 It begins with a four-parameter functional form for
the instantaneous forward interest-rate curve.34 Using a variation of Eq. 7.24, this
structure is integrated to build an associated zero-coupon function. This model was
such a success that it was extended in a number of ways. Svensson [47] offered
a more complex implementation with additional parameters, while Diebold and Li
[15] cleverly extended it for us into the dynamic term-structure setting.

Its flexibility, popularity, and parametric frugality thus makes the Nelson and
Siegel [37] an excellent candidate for fitting our individual empirical default-
probability term structures. If we adapt their model to the problem at hand, we
might write the cumulative default-probability term structures as,

pr (t, u| θ, λr) = θ
(r)
0 + θ

(r)
1

(

1 − e−λr(u−t)

λr (u− t)

)

+ θ
(r)
2

(

1 − e−λr(u−t)

λr (u− t)
− e−λr(u−t)

)

,

(7.53)

=
[

1 1−e−λr (u−t)
λr (u−t)

1−e−λr (u−t)
λr (u−t) − e−λr (u−t)

]

⎡

⎢

⎣

θ
(r)
0

θ
(r)
1

θ
(r)
2

⎤

⎥

⎦ ,

for u = 1, ..., T and r = 1, ...,R where θr =
[

θ
(r)
0 θ

(r)
1 θ

(r)
2

]T

. There is some

economic insight to be gleaned from interpretation of the exponentially motivated
expression in Eq. 7.53. In the term-structure literature, these terms are considered
to represent the level, slope, and curvature of the yield curve. This resonates in the
interest-rate world, but might be less applicable in this setting. It may thus be easier
to think of this approximation as a linear combination—in θr—of some complicated
set of basis functions.35

A troublesome aspect of this model stems from the fourth parameter: λr . This
is the only non-linear choice variable in the model and has been known—see,
for example, Cairns and Pritchard [11] and Bolder and Stréliski [9]—to cause
annoying optimization stability problems. A typical pragmatic solution—which we
will employ here—is to simply fix it to a constant value.36 For this curve-fitting
exercise, therefore, we simply set

λr ≡ λ = 0.12, (7.54)

33 The gold standard, at and around the time of this model’s introduction, was the so-called cubic-
spline model. See, for example, McCulloch [33] or Bliss [2]. While very useful, cubic-spline
models are not known for their parametric simplicity.
34 The approximation is, in fact, based on the use of the first three Laguerre polynomials. See Hurn
et al. [22] or Bolder and Liu [8, Appendix C] for the bloody details.
35 We will further investigate this interesting aspect in more detail in Chap. 8.
36 Diebold and Rudebusch [16, Section 2.4.1] offer some justification for precisely this advice.
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for all r = 1, ...,R. Relaxing this assumption might permit a slightly better fit, but
will involve significant computational headaches. From a cost-benefit perspective,
this seems a defensible choice.37

Fitting the default-probability surface thus simply reduces to solving the follow-
ing optimization problem

min
θ1,··· ,θR

R
∑

r=1

T
∑

t=1

(

pr (0, t| θ, λ)− pr(0, t)

)2

, (7.55)

subject to:

θ
(r+1)
0 ≥ θ

(r)
0 for r = 1, ...R− 1.

Again, we are simply tuning our choice of the individual θr vectors by minimizing
the Euclidean distance between our estimated model and the observed multi-
period default-probability term structure outcomes. The entire problem is, as before,
solved as a single system. The constraints ensure that the first Nelson and Siegel
[37] parameter—relating to the level of the overall cumulative default-probability
curve—rises (weakly) monotonically over the credit spectrum. These monotonicity
conditions are introduced in the same spirit as the previously examined low-
dimensional Markov-chain method.

Figure 7.7 illustrates the now-familiar visualization of the Nelson and Siegel
[37] fit to our selection of empirical default-probability term structures. The fit is
remarkably good. To get to this point required a bit of brute-force intervention.
Solving the raw optimization problem in Eq. 7.55 provided an excellent overall
match to the empirical data, but resulted in a systemic underestimate to the one-
year default probabilities at the higher end of the credit scale. This shortcoming was
resolved by placing an arbitrarily large weight to the first-period squared errors—as
described in Eq. 7.55 where t = 1—to encourage the optimizer to properly capture
the initial default probabilities.38 The consequence, however, is a slight deterioration
in the fit of other default-probability tenors.

Despite this initial challenge, the Nelson-Siegel model offers a substantial
improvement—along the goodness-of-fit dimension—relative to the low-
dimensional Markov-chain method. It captures the convexity across all credit
classes and appears to almost flawlessly describe the overall level of default
probabilities. On average, the Nelson and Siegel [37] and empirical values are
almost indistinguishable. One potential issue arises at S&P’s CCC rating. The
estimated cumulative default-probability curve clearly falls as we move from the
12- to 15-year tenors. Such behaviour is perfectly acceptable in the interest-rate

37 Fixing of λ can also, in a loose manner, be thought of as taking a choice of (perhaps imperfect)
basis for the infinite dimensional function space represented by the set of default-probability
curves. For a much better (and rigorous) treatment of these ideas, please see Björk [1].
38 Although this amounts to a heuristic intervention, this is a fairly common practical approach
towards solving such issues.
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Table 7.2 Selected
Nelson-Siegel parameters:
This table outlines the
individual parameters,
stemming from the Nelson
and Siegel [37] model
introduced in Eq. 7.53, used
to fit the default-probability
term structures in Fig. 7.7.

Parameters

r Rating θ
(r)
0 θ

(r)
1 θ

(r)
2

0 AAA 0.018 −0.019 −0.000

2 AA 0.032 −0.033 −0.016

5 A 0.065 −0.066 −0.049

8 BBB 0.138 −0.139 −0.099

11 BB 0.150 −0.164 0.177

14 B 0.150 −0.156 0.616

16 CCC 0.150 0.120 1.042

setting, but is not possible in the world of default rates. It basically implies that
forward default probabilities are negative, which would amount to an unpardonable
transgression against the basic tenets of probability.

Table 7.2 provides the individual parameter values associated with the results
in Fig. 7.7. The individual figures are not particularly easy to interpret, but we

do clearly observe the monotonicity of the level parameters,
{

θ
(r)
0 : r = 1, ...R

}

.

Unfortunately, as we saw in Fig. 7.7, this provides monotonic behaviour across the
credit-class dimension, but not over the tenors. This problem is resolved with an
extra constraint; we need only ensure that each θ

(r)
1 < 0. This is readily included

into our optimization problem in Eq. 7.55. There is a slight degradation of fit at the
lower end of the credit scale, but otherwise it is a relatively painless addition.

Colour and Commentary 84 (FULL-BLOWN CURVE FITTING): Given that
describing the empirical default-probability surface is a quintessential curve-
fitting exercise, it makes logical sense to consider extant techniques in this
area. Nelson and Siegel [37], with its extensive links to the interest-rate
modelling field and its emphasis on parsimony, is an ideal candidate for con-
sideration. Taking this technique almost directly off the shelf, it immediately
offers a conspicuous improvement over the legacy low-dimensional Markov-
chain approach. While there are a few issues relating to fitting first-year
default rates and monotonicity, these are readily resolved through heuristic
adjustments to the optimization weights and introduction of appropriate
parameter constraints. The Nelson and Siegel [37] methodology correspond-
ingly scores high marks on our parsimony and goodness-of-fit criteria.
The only knock against this model stems from its virtual lack of economic
justification. Its unapologetic curve-fitting focus implies that we cannot hope,
through use of this technique, to maintain any semblance of a connection to
the standard time-homogeneous Markov-chain transition matrix underlying
our economic-capital framework.
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7.3.3 Time Homogeneity

As a final alternative towards fitting our default-probability surface, we consider
going straight to the source of the problem with our original Markov-chain process:
time homogeneity. Bluhm and Overbeck [3] offer an interesting alternative to the
standard time-homogeneous Markov-chain model used in the literature. The idea
is to use a continuous-time version of the Markov chain and, with some clever
mathematical gymnastics, permit the entries of our transition matrix to adjust over
time in a non-homogenous manner. In short, the transition parameters—and thus
default probabilities—are no longer assumed to be fixed in time.

The basic implementation is deceptively simple. The necessary theory—relating
to the link between transition and generator matrices for continuous-time Markov
chains—has already been covered in previous sections. Ultimately, the main
contribution relates to the construction of a time varying generator matrix. This
requires restatement of Eq. 7.38 as

Pt = etGt , (7.56)

where

Gt = �(t)G. (7.57)

The good news is that our original generator matrix,G, is preserved. All of the time-
varying behaviour is collapsed into the matrix function, �(t) ∈ R

(R+1)×(R+1).39

The heavy lifting is embedded in the choice of �(t). Bluhm and Overbeck [3]
suggest the following diagonal specification

�ij (t, αi, βi) =
⎧

⎨

⎩

(1 − e−αi t )tβi−1

1 − e−αi
: i = j

0 : i �= j

, (7.58)

for i, j = 1, ...,R. This implies that, with 2 · R parameters, we may transform P

into a time-inhomogeneous Markov chain. Let us place, for convenience, all of these
coefficients into two vectors �α and �β.

What exactly is Eq. 7.58 doing? It is easy to see that when t = 1, �(t)
reduces to an identity matrix. This demonstrates that when t = 1, the original
(unadjusted) transition matrix is recovered. In other words, this approach nests the
time-homogeneous approach. Moreover, when t = 0, then � is a matrix of zeros. In
general, for all positive choices of αi and βi , � is an increasing function of t . It is not
mapped to the unit interval nor, despite Bluhm and Overbeck [3]’s arguments to the

39 It is not immediately obvious that Gt remains a generator matrix. Bluhm and Overbeck [3,
Appendix] sketch a proof of this result.
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contrary, is Eq. 7.58 motivated by probability theory.40 It is probably best to think
of the structure in Eq. 7.58 as being selected by Bluhm and Overbeck [3]—through
some combination of trial-and-error and hard-won mathematical experience—for its
flexibility. Here we see that this approach is, at its heart, also a curve-fitting method.

As usual, the model parameters need to be selected. This is accomplished by
solving the following optimization problem,

min
�α, �β

R
∑

r=1

T
∑

t=1

(

exp

(

t �

(

t, �α(r), �β(r)
)

G

︸ ︷︷ ︸

Gt

)

− pr(0, t)

)2

, (7.59)

subject to:

�α(r + 1) ≥ �α(r) for r = 1, ...R− 1,

which is profitably compared to Eqs. 7.51 and 7.55. The constraint on the α values
is not provided in Bluhm and Overbeck [3] and, in actual fact, is probably not even
necessary. It nonetheless adds some additional structure to the parameter values
without any obvious deterioration of overall fit.

Figure 7.8 provides the usual comparison of the non-homogeneous Markov-
chain model relative to the usual selection of observed default-probability term
structures. The other competitors—the low-dimensional Markov chain and Nelson
and Siegel [37]—are also provided for context. The results are quite encouraging.
The functional form in Eq. 7.58 is sufficiently pliable to capture the variety of
empirical shapes and levels. The overall goodness of fit is superior to the low-
dimensional Markov-chain approach, but not quite as tight as the Nelson and
Siegel [37] approach. Problems with the non-homogeneous Markov model’s fit,
however, seem to be restricted to the top few highest-quality credit categories. On
average, across all credit classes, there seems to be little to distinguish between the
empirical observations, the Nelson and Siegel [37] model, and Bluhm and Overbeck
[3]’s suggestion. As a final point, the non-homogeneous Markov-chain method
displays no challenges with monotonicity either at the credit category or tenor
level. This aspect appears to be handled directly by the model structure—which
happily manoeuvres the entire default-probability surface as a single system—and
the calibration to observed data.

Table 7.3 illustrates a set of selected parameters associated with Bluhm and
Overbeck [3]’s specification in Eq. 7.58. As usual, it is hard to directly interpret
these values. We do observe, however, the impact of the constraints on α. The β

parameters remain free to allow flexibility to fit the empirical term structures.

40 That said, as indicated by Bluhm and Overbeck [3], Eq. 7.58 does have terms reminiscent of the
exponential and gamma distributions; they are nevertheless not playing a probabilistic role. See
Johnson et al. [27, Chapters 17 and 19] for much more on these distributions.
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Table 7.3 Selected
non-homogeneous Markov
parameters: This table
outlines the individual
parameters, stemming from
Bluhm and Overbeck [3]’s
non-homogeneous
Markov-chain model, used to
fit the default-probability
term structures in Fig. 7.8.

Parameters

r Rating αr βr

0 AAA 0.283 0.956

2 AA 0.283 0.736

5 A 0.291 0.676

8 BBB 0.291 0.457

11 BB 0.292 0.532

14 B 0.309 0.198

16 CCC 2.288 0.226

Overall, therefore, Bluhm and Overbeck [3]’s non-homogeneous Markov-chain
model appears to have hit the trifecta.41 That is, it comfortably meets all three of
our desired default-surface estimator criteria: parsimony, goodness-of-fitness, and
consistency with our base one-year, discrete-time, time-homogeneous transition
matrix.

Colour and Commentary 85 (A NON-HOMOGENEOUS MARKOV CHAIN):
The failure of the time-homogeneous Markov-chain model provides a rather
obvious hint towards a possible solution: a time non-homogeneous imple-
mentation. The traditional drawback of this potential solution is complexity.
Bluhm and Overbeck [3] suggest, however, a clever parametrization for a
time-varying generator matrix in a discrete-state, continuous-time Markov-
chain setting. Implementation of this approach provides encouraging results.
In addition to a parsimonious parameter structure, the overall goodness-of-fit
appears to be only slightly less satisfactory than the highly flexible Nelson
and Siegel [37] approach. Even better, the non-homogeneous Markov imple-
mentation nests, by its very construction, the one-period time-homogeneous
transition matrix underlying our economic-capital framework.

7.3.4 A Final Decisive Factor

Although the previous analysis is leaning in the direction of Bluhm and Overbeck
[3]’s time non-homogeneous proposal, there is one more viewpoint to be considered.
Figure 7.9 provides a final view of a set of selected empirical default-probability
term structures along with our three competing models.

41 For non-gambling readers, a trifecta is a winning (typically horse-racing) bet that successful
identifies the correct first, second, and third place finishers. It is, as one would expect, rather hard
to do and pays quite well.



7.3 Building Default-Probability Surfaces 445

F
ig

.7
.9

A
n

al
te

rn
at

iv
e

pe
rs

pe
ct

iv
e:

T
he

gr
ap

hi
c

ab
ov

e
tr

an
sf

or
m

s
th

e
cu

m
ul

at
iv

e
de

fa
ul

t-
pr

ob
ab

il
it

y
te

rm
st

ru
ct

ur
es

in
Fi

g.
7.

8
in

to
th

e
co

nd
it

io
na

lm
ar

gi
na

l,
or

fo
rw

ar
d,

de
fa

ul
tp

ro
ba

bi
li

ti
es

in
tr

od
uc

ed
in

E
q.

7.
11

.



446 7 Default-Probability Fundamentals

Figure 7.9, in particular, transforms the cumulative default-probability term
structures from Fig. 7.8 into the conditional marginal, or forward, default prob-
abilities introduced in Eq. 7.11. This is essentially another (important) way of
visualizing on our default-probability surface.42 The first point of observation
is that the actual empirical estimates are not particularly well-behaved. This
is due to their lack of smoothness.43 All of the fitted models are, relatively
speaking, much smoother. This is a consequence of their parametric construc-
tion.

Not all models presented in Fig. 7.9, however, provide an equally sensible fit
to the observed values. The low-dimensional Markov-chain model, in particular,
appears to have the most difficulty across all credit-rating classes. While the
empirical estimates are an admittedly hard target, the Nelson and Siegel [37]
and Bluhm and Overbeck [3] methods appear to do reasonably well. On balance,
however, the Bluhm and Overbeck [3] model appears to do a slightly better job.
This is a final decisive factor in favour of the non-homogeneous Markov-chain
model.

Colour and Commentary 86 (HORSES FOR COURSES): Our key remaining
applications necessitate transformation of default and transition probabilities
from the through-the-cycle to the point-in-time perspective. To manage this
successfully, we need a firm grip on the through-the-cycle viewpoint. Since
the standard time-homogeneous Markov chain approach is categorically
rejected when compared to the empirical credit-surface data, an alterna-
tive approach is required. Seeking a multiplicity of perspective, we have
identified three possible models to quantitatively describe the through-the-
cycle credit surface. While all three perform reasonably well, Bluhm and
Overbeck [3]’s time non-homogeneous approach offers an appealing mix
of parsimony, goodness-of-fit, and theoretical consistency. Imagining this
exercise as a modelling horse race, Bluhm and Overbeck [3]’s model
appears to have the best collection of attributes to dominate our race-
course.

42 We could also have performed the parameter selection exercise using these marginal default
probabilities. Ultimately, the problem is a bit more stable and well-behaved when using cumulative
values.
43 As seen in the limiting forward default-probability case—in Eqs. 7.12 to 7.14—the forward
default probability can be interpreted as a function of the first derivative of the cumulative default
probabilities. Non-smoothness in an underlying function will, of course, be magnified in its
derivative.
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7.4 Mapping to One’s Master Scale

If we used, in a precise manner, the S&P (truncated) 18-notch scale for its internal
rating structure, this would be the end of the story associated with through-the-
cycle default-probability surfaces. In actuality, however, there are two important
differences with the NIB case. As previously discussed, we use

• a firm-specific 21-step master rating scale; and
• an internal set of one-year default-probability values.

Both of these issues imply that it is not possible to adopt, in a wholesale manner, the
through-the-cycle default surface model estimates developed in the previous section.
Adjustments will be required to be able to sensibly proceed towards the construction
of an NIB-based default-probability surface. This final section of the chapter is thus
dedicated to resolving these issues.

Two points are worth raising. First, the following discussion is unfortunately
rather NIB-centric. As many institutions operate under schemes that differ from the
large credit-rating firms, however, generalization of these ideas may be of wider
usefulness and applicability. The second point is that there is no general literature
on moving from a n- to an m-notch rating scale—for any arbitrary n �= m—
either on the basis of default or transition probabilities. Indeed, this is not a terribly
natural process. The following development, therefore, is a collection of ad hoc and
heuristic adjustments. While motivated by general logic and a desire to maintain
the basic features of the S&P transition matrix and default-probability surface, there
is nothing unique or theoretically guided about this approach. In the spirit of full
transparency, there are certainly other competing approaches that might reasonably
be employed (and, if we are honest, may even be superior to what is presented).

Our starting point is a need to create a link between 17 S&P and 20 non-
default internal rating categories. Given the mismatch between the number of
classes, it is clear that there does not exist a one-to-one mapping between these
two sets. Chapter 3 presents—including the S&P, Moody’s and internal scales—a
conceptual link. It is sadly imperfect, because it can be interpreted in a number of
alternative ways. Figure 7.10 illustrates two possible ways this proposed link might
be interpreted. The left-hand graphic highlights a one-to-many mapping from the
domain (i.e., S&P) to the codomain or target set (i.e., NIB). As the name suggests, a
single S&P rating can yield multiple internal ratings, but two different S&P ratings
cannot lead to the same internal classification.44 While certainly not perfect for our
purposes, the one-to-many mapping does offer a moderate degree of clarity.

An alternative linkage, in the right-hand graphic of Fig. 7.10, involves a more
literal translation of the original table in Chap. 3. It is a many-to-many mapping. In
this case, not only can a single S&P rating map to multiple internal values, but other

44 The S&P BB category, for example, is mapped to both PD12 and PD13. No other S&P rating
links to these internal classes. In Fig. 7.10, this is evident from the lack of horizontal lines.
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Fig. 7.10 Linking the external and internal scales: With 17 (non-default) S&P ratings and 20
(non-default) internal notches, there is no unique way to link these two scales. The preceding
graphics illustrate, using the language of function mappings, two distinct possibilities. Such
questions inevitably arise when combining internal and external rating scales.

S&P ratings can also map to those classes.45 It is, to put it colourfully, the functional
equivalent of a free-for-all.

While we will make use of both of these mappings in the sequel, we do have a
strong conceptual preference for the one-to-many form. We can think of it as a one-
to-one mapping with three notable exceptions. To be very specific, from Fig. 7.10,
these cases are: BB maps to PD12 and PD13, B+ is linked to PD15 and PD16, and
B- connects to PD18 and PD19. In the following discussion, when we make use of
the one-to-many mapping, we are referring to this object.

7.4.1 Building an Internal Default Probability Surface

As introduced in Chap. 3, internal one-year, default probability estimates—for each
point along the internal 21-notch master scale—follow a decades-old approach. To
keep this chapter reasonable self-contained, we’ll quickly trace out the basic idea.
The individual values are not determined through an estimation technique, but rather
follow from a combination of S&P rating data and economic logic. The two highest
quality credit categories—PD01 and PD02—are assigned value of 0.6 and 1.45 basis
points, respectively. This is necessary since usage of S&P statistics would involve
assigning a zero value to these—AAA and AA+ equivalent—categories.46 Internal

45 Once again, the S&P BB category is mapped to both PD12 and PD13, but BB+ also maps to
PD12. No other S&P rating links to these internal classes. Returning to Fig. 7.10, this is evidenced
by the presence of both horizontal and vertical lines.
46 For analytic purposes, a one-year, zero default probability, for any credit classification, is
practically and economically problematic.



7.4 Mapping to One’s Master Scale 449

rating classes PD03 to PD07 are approximately assigned—on a one-to-one basis
following from Fig. 7.10—the corresponding S&P AA to BBB+ through-the-cycle,
default probability estimates. PD08 to PD20 are then simply computed as a multiple
of the previous value. Practically, this amounts to PD(k) = (1 + ξ)PD(k − 1) for
k = 8, ..., 20. The traditional (and current) value of ξ is 1

2 ; this means that one-year
default probabilities double with each step along the internal master scale. A upper
bound of 20% is imposed, which has a modest impact on the PD20 credit category.
This approach has served us quite well over the years, is broadly consistent with
empirical data, and is straightforward to understand and communicate.

While our one-to-many mapping logical link between the S&P and internal rating
scales will prove central to the construction of an NIB-scale transition matrix, it
is not particularly helpful at the default-surface level. The reason stems from our
one-year default probabilities. Up until about PD10, there is a very high level of
agreement between the S&P and internal values. These are easily managed. Beyond
about PD10, the situation becomes less obvious. From PD11 to PD19, the internal
default probability estimates are slightly more conservative than the (mapped) S&P
equivalents. At PD20, which is directly linked to S&P’s CCC category, the internal
value is substantially smaller than the S&P value. In particular, the PD20 default
probability is about 15 percentage points lower than the 0.35 S&P value.47 Neither
a one-to-one nor a one-to-many link between the internal and S&P scales will be
able to reproduce these differences.

The proposed solution is relatively simple and entirely heuristic. The internal
default probability—for each tenor—is written as the linear combination of two
adjacent S&P categories; we can think of this as an application of (a slight variation
on) our many-to-many mapping from Fig. 7.10. This pair of weights—again for each
internal rating class—are required to be positive and sum to unity. These conditions
are not strictly mathematically necessary, but they certainly aid in interpreting and
communicating the results. The weights are determined by creating a direct match
between the internal default probability and the linear combination of the two
associated S&P categories.

Instead of introducing complicated—and non-standard—notation for the
description of this small optimization problem, it is easier to simply examine the
results. Table 7.4 illustrates the final (optimized) one-to-many mappings between
the internal and S&P scales. It should be fairly easy to read. The PD11 default
probability is, for example, comprised of about 6% and 94% of S&P’s BB+ and BB
classes, respectively. The PD20 category, conversely, is roughly equal parts of B-
and CCC. While the figures are fairly transparent and easy to interpret, we should
not lose sight of the fact that this is an ad hoc exercise. No theoretical arguments lie
underneath this approach to linking the two default scales.

47 To repeat, the CCC is something of a catch-all category including all of the five C-level ratings.
It is, therefore, not unreasonable to have differences of views as to what precisely this category
entails.
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Fig. 7.11 Default-surface matching: The preceding graphics illustrate the consequences of match-
ing the internal and S&P default scales. The left-hand graphic illustrates the connection between
the one-year default probabilities based on the weights described in Table 7.4. The right-hand
graphic displays the default probability surface arising from the application of these weights to the
S&P surface drawn from S&P [45, Table 26] and introduced in Fig. 7.2.

The logic is simple. From S&P [45, Table 26], we have a dataset of 15 years
of cumulative default probabilities over 18 S&P credit states; let’s call this D ∈
R

15×18. If we define the mapping matrix in Table 7.4 as M ∈ R
21×18, then

DMT ∈ R
15×21 represents the heuristic transformation (or projection) of the raw

S&P default surface data to the internal scale. M basically serves a dual purpose; it
links the two scales and preserves the basic structure of the one-year internal default
probabilities across the entire time horizon.

Figure 7.11 provides a visualization of the usage of Table 7.4’s results for
matching the internal and S&P default scales. The left-hand graphic illustrates
the connection between the one-year default probabilities. Here we see clearly the
differences between the internal one-year default probabilities and the equivalent
S&P [45, Table 26] results.48 The internal and optimized (using Table 7.4) values
agree almost perfectly.

The right-hand graphic of Fig. 7.11 displays the default probability surface
arising from the application of these weights to the S&P surface. This derived inter-
nal default-probability surface compares favourably to the empirical results drawn
from S&P [45, Table 26] and introduced in Fig. 7.2. The starting point is slightly
different—as required by the internal transition-probability estimates—and this has
a modest impact on the overall level. It is precisely this default-probability surface
that will be used—with the help of the previously described models—to construct
NIB-specific through-the-cycle default-probability term structure estimates.

48 Our one-to-many mapping from Fig. 7.10 is used to project the 18-notch S&P categorization
onto the 21-step internal scale. Close examination reveals that the PD12-13, PD15-16, and PD18-
19 default-probability pairs are equal.
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Colour and Commentary 87 (AN INTERNAL DEFAULT-PROBABILITY

SURFACE): There is a fundamental mismatch between the 18-notch S&P
rating categorization and the 21-step internal master scale. A one-to-many
mapping has been used, for decades, to provide a simple link between them.
This mapping, however, cannot directly help us in constructing an NIB-
specific default probability surface from S&P [45, Table 26]. The reason is
that our internal one-year default probabilities do not agree particularly well
with the S&P values. To solve this problem, a more complicated weighting
matrix—summarized in Table 7.4—was developed and implemented. This
approach thus permits recovery of one-year internal default probabilities and
a straightforward construction of an S&P-equivalent (or consistent) internal
default surface. Across all tenors, we observe three distinct trends driven by
this matching approach and the one-year internal default probabilities. The
PD01 to PD10 categories agree with the S&P estimates. PD11 to PD19 are
slightly more conservative than their S&P equivalents, while PD20 is rather
smaller than the CCC S&P credit class.a Although convenient, it should be
stressed that this is a heuristic computation absent any theoretical arguments
for linking the two default scales.

a This is ultimately due to the fact that we do not view S&P’s catch-all CCC category as
being entirely representative of the credit quality in our PD20 rating class.

7.4.2 Building an Internal Transition Matrix

The low-dimensional Markov-chain and Nelson and Siegel [37] models can now
be directly fit to the internal default-probability surface in Fig. 7.11 (i.e., DMT ).
Unfortunately, the same is not true for Bluhm and Overbeck [3]’s non-homogeneous
Markov-chain approach; it requires a transition matrix with the same 21 credit
classes as found in our internal default-probability surface. While somewhat
annoying, this direct relationship to the fundamental transition matrix used in
our economic-capital model is actually a strength of this technique. Moreover,
our economic-capital model also requires an empirically consistent, NIB-specific
transition matrix.

The consequence is that, before we can complete this chapter, we will present a
methodology for connecting the S&P transition matrix displayed in Eq. 7.43 and the
internal default-probability estimates. In short, we need to transform P̂ ∈ R

18×18

onto the 21-notch internal scale. Naively, we might seek a mapping f such as

f : [0, 1]18×18 → [0, 1]21×21. (7.60)
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This will not quite do the job. That our matrix entries must fall into the unit interval
to represent probabilities is a necessary, but not sufficient, condition. We also need
to ensure that we are dealing with transition matrices. If we let Pm×n denote the
collection of transition matrices with m rows and n columns. We can thus revise our
desired mapping to:

f : P18×18 → P21×21. (7.61)

This is not a particularly natural thing to do. Nor is there, to the best of our
knowledge, any literature suggesting how such a task should be accomplished. We
should thus not expect an elegant analytic specification of f . Instead, we propose a
second heuristic approach that attempts to meet the following criteria:

• preservation of the internal default probabilities;
• each row of the target matrix sums to unity;
• a (weakly) monotonically decreasing (non-default) diagonal;
• upgrade probabilities for each credit class increase in a monotonic manner

towards the diagonal, while default likelihood falls monotonically as we move
away from the diagonal;

• assignment of some minimal amount49 (possibly very small) of transition
probability mass to every (non-absorbing) element; and

• consistency, to the extent possible, with the S&P transition matrix.

These criteria are certainly not written in stone and, as such, could be subject to
(possibly heated) discussion. They do seem reasonable, however, and consequently
act as the foundation for the overall approach.

The details of the proposed mapping f are highly technical and, consequently,
not particularly exciting. Indeed, it looks rather more like an algorithm than a
mapping. Moreover, it is difficult to follow precisely what is going on without
jumping into the details. These points notwithstanding, the transition matrix is a
critical element of our economic-capital framework and its construction merits a
clear description. The actual mapping algorithm thus involves the following eight
steps:

1. INITIALIZATION: Create an empty PN ∈ P21×21 ⊂ [0, 1]21×21 matrix of zeros;
let’s call this the internal transition matrix.

2. DEFAULT PROBABILITIES: We may then directly place all of the internal
default-probability estimates—from PD01 to PD20—into the 21st column. Since
default is an absorbing state, we can simply set element (21, 21) to unity.

3. DIAGONALS: The next step is to directly place the diagonal elements from the
S&P matrix P̂ ∈ P18×18, using the previously introduced one-to-many mapping
from Fig. 7.10, into the first 20 rows of PN .

49 There are, with the exception of default, no logical economic restriction on moving from
any given rating class to another. Moreover, there is no defensible, economic argument—again
excluding defaulted entities—for a zero probability of any transition matrix event.
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4. DIAGONAL SMOOTHING: We then, to impose some structure onto the transition
matrix, use a smoothing B-spline model to ensure monotonically decreasing
diagonals. Another fitting technique could certainly be used, but spline models
are very good at this sort of task.50 The diagonals are then replaced—across the
first 20 rows and columns—with these smoothed values.

5. RESIDUAL PROBABILITY MASS: We now have default probabilities and a
diagonal. Since each row needs to sum to unity, we may now comfortably
compute the remaining probability mass that needs to be assigned to each
individual row for it to be a true transition matrix. These values are calculated
and stored for use in subsequent calculations.

6. UPGRADE AND DOWNGRADE PROPORTIONS: The next step, for each (non-
default) credit state, is to compute the probability of upgrade and downgrade
from our original S&P transition matrix.51 To preserve this feature of the S&P
matrix, we estimate the proportional probability—in percentage terms summing
to one—of upgrade and downgrade for each S&P rating class. Again using
our simple one-to-many mapping, these percentages are used to determine the
relative proportion of remaining probability mass—computed in the previous
step—to assign for each row in PN .

7. UPGRADE AND DOWNGRADE DISTRIBUTIONS: We now know how much
probability mass to assign to each side of the (non-default) off-diagonals. The
remaining question is: how should it be distributed across the various columns of
PN ? We use a monotone I -spline model to fit the transition-probability profile
of each row in the S&P transition matrix.52 These estimates—and, for a final
time, our simple one-to-many mapping—are used to spread out the upgrade
and downgrade probability mass across the (non-default) off-diagonal elements
of PN . The monotone characteristic of this fitting approach further ensures
defensible economic behaviour of the downgrade and upgrade probabilities
across each row of PN .

8. ZERO-VALUED TRANSITION PROBABILITIES: As a final step, we wish to
avoid any zero transition probabilities.53 The minimum transition probability is
set to the default probability of PD01, which is currently about 0.6 basis points.
For the sovereign transition matrix, which has some almost sparse segments, this
value is set to 0.1 basis points. All other zero entries in PN are set to this value; the
required probability mass for this adjustment is drawn from the row’s diagonal
element.

50 For much more information on splines in general—and the M- and B-spline bases, in
particular—see de Boor [13], Nürnberger [38], Lancaster and Salkauskas [31], Dierckx [17],
Schumaker [44], and Wegman and Wright [51].
51 AAA has, of course, a zero probability of upgrade, while CCC has a zero probability of (non-
default) downgrade.
52 Also called monotone splines, the reader is referred to Ramsay [40], Wright and Wegman [53],
Tutz and Leitenstorfer [50], Ramsay [39], and de Leeuw [14] for more background on this helpful
tool.
53 The only exception relates to the absorbing default state.
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Fig. 7.12 Key transition-matrix matching criteria: The preceding graphics provide a visual
comparison of six alternative comparison criteria between the S&P and proposed internal transition
matrices. Overall agreement is quite good; the biggest difference stems from the discrepancy
between CCC and PD20 default probability values.

Figure 7.12 displays the results of six key criteria in our transition-matrix
matching algorithm. Each criterion relates to a key, and familiar, aspect of a
transition matrix.54 The solid blue line is associated with the (derived) internal
transition matrix, while the orange dots represent the one-to-many mapped S&P
values from the matrix shown in Eq. 7.43.

We could present, in their full glory, each of the elements of PN to numerous
decimal places. While useful perhaps for posterity, such a table would be neither
useful nor terribly pleasant to examine. Figure 7.12, in contrast, provides an
instructive visual comparison by permitting inspection of the individual internal
default probabilities, the diagonal values, and (with the assistance of a calculator)
permits computation of implicit upgrade and downgrade probabilities for each rating
category.

There is a fairly high degree of overall agreement—along the selected six key
dimensions in Fig. 7.12—between S&P’s P̂ and our internal PN transition matrices.
The largest source of deviation stems from the discrepancy between the CCC
and PD20 default-probability values. The CCC category—standing directly before

54 The only exception might relate to the eigenvalues. These quantities, however, are a central
aspect of the description of any square matrix; see Golub and Loan [20] for much more background
on this important concept in linear algebra.
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default—has a zero probability of upgrade. The result is that the reduced default
probability has to manifest itself entirely in either the diagonal or an increased
upgrade probability. It may be a shortcoming of the algorithm, but the current
approach forces the entire adjustment to occur through upgrade probabilities. With
this important exception, therefore, we may conclude that the internal transition
matrix is generally consistent with the through-the-cycle S&P estimator inferred
from the raw data provided by S&P [45, Table 23].

The principal point of divergence between the S&P and internal perspectives
can be justified by two separate, but related, arguments. First, the CCC category is
a collection of a number of C-related credit ratings suggesting a certain degree of
heterogeneity within this bucket. Second, NIB lending activity is typically restricted
to upper end of the credit spectrum; very few credit obligors fall into PD18 to
PD20 territory and, when they do, it is almost inevitably through credit downgrade.
Consequently, within our specific context, the default probability of these entities is
not well represented by S&P’s CCC rating group.

Colour and Commentary 88 (AN INTERNAL TRANSITION MATRIX): A
second fundamental mismatch occurs between the P18×18 S&P and P21×21

internal transition matrices. Linking these two matrices is neither natural nor
particularly easy. One has to manage default probabilities, the magnitude of
diagonals, and the relative upgrade and downgrade likelihoods. The decades-
old one-to-many mapping can help with this problem, but some additional
structure is required. In particular, any algorithm should preserve the internal
default probabilities, but otherwise match P̂ characteristics derived from
the raw output from S&P [45, Table 23] as closely as possible. An eight-
step heuristic algorithm was constructed for this purpose. Overall—when
considering a set of six comparison criteria—the agreement between the
original S&P and derived-internal-scale transition matrices is quite high. The
largest point of disagreement stems from the previously discussed difference
between S&P’s CCC one-year default probability and our internal PD20
value. As in the previous section, the heuristic (or ad hoc) nature of this
computation needs to be highlighted. The existence of other, perhaps superior,
approaches is entirely possible.

Outfitted with the necessary default-probability surface and transition matrices
mapped to the internal scale, we may finally close out this chapter by proceeding
to compute a set of internal, through-the-cycle, default-probability term structure
estimates. The actual implementation is conceptually identical to the S&P setting.55

The results are summarized—again for a selected set of internal credit classes—in
Fig. 7.13. This result is directly comparable to the values displayed in Fig. 7.8.

55 We do need, before getting started, to compute the generator matrix for PN using our previously
discussed regularization algorithm.
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Qualitatively, the results of applying our surface-fitting models to internal-scale
mapped data are very similar to the S&P setting. The low-dimensional Markov chain
has difficulty with both the level and shape of the selected term structures. The
Nelson and Siegel [37] model—as a pure curve-fitter—performs admirably well
across all credit classes.56 Finally, Bluhm and Overbeck [3]’s non-homogeneous
Markov-chain also provides a generally close fit, but the goodness-of-fit has slightly
deteriorated at the higher end of the credit scale. The differences are not dramatic
and appear to be explained by the increase in overall dimensionality. In aggregate,
the Bluhm and Overbeck [3] approach remains our best bet to meet our three
distinct criteria for a default-probability surface model: parsimony, goodness-of-fit,
and consistency with our economic-capital transition matrix.

The separate default-probability curves, or term structures, in Fig. 7.13 represent
together a through-the-cycle default surface defined upon our internal scale. In
other words, this is the long-term, unconditional forward-looking view. The point-
in-time perspective must necessarily be conceptualized as deviations from this
long-term anchor. Moreover, and this idea will figure importantly in Chap. 8, as we
move arbitrarily far into the future, our forward-looking, (conditional) point-in-time
default-probability estimates must inescapably converge back to these unconditional
values.57

7.5 Wrapping Up

This chapter has invested a significant amount of effort into a potpourri of default-
probability related topics. Our objective was the justification and construction of
through-the-cycle multiperiod default surfaces that are compatible with our internal
21-notch rating scale and its pre-defined collection of one-year default probabilities.
Along the way, to obtain this goal, we address the important outstanding business of
determining an internal transition matrix that is logically and empirically consistent.
Although we have touched on a number of loose ends, this has not been wasted
effort. Much time is allocated—quite rightly—to the discussion of the transforma-
tion between through-the-cycle and point-in-time default and transition probability
estimates.58 This is, after all, a critical input into our remaining applications. Absent
a solid through-the-cycle foundation, however, one’s movement to the point-in-
time perspective—and, correspondingly, one’s stress-testing and loan-impairment
frameworks—would, at best, be difficult to follow and, at worst, doomed to failure.
These problems may seem rather NIB-centric—and, in fact, the proposed solutions

56 The θ
(r)
1 < 0 for r = 1, ...,R constraints were imposed in this case to guarantee tenor

monotonicity among associated cumulative default probabilities.
57 The simple reason is that the value of information deteriorates over time; we’ll have much more
to say on this fundamental idea in Chaps. 8 and 9.
58 This important topic is, in fact, the central focus of Chap. 8.
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necessarily are—but these are general problems faced by most small to medium-
sized financial institutions.
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Chapter 8
Building Stress Scenarios

Probable impossibilities are to be preferred to improbable
possibilities.

(Aristotle)

A symbiotic relationship refers—according to Merriam-Webster [32]—to an inti-
mate, long-term, mutually beneficial interaction between two distinct organisms. A
classic example is the association between the shark and the remora. A remora is
a small fish typically living on the back of a shark and feeding opportunistically
off surplus food from a shark’s prey and, more usefully, parasites on its skin. Both
organisms benefit from this interaction. It is perhaps not a common analogy, but
the relationship between financial markets and the real economy can also be viewed
as symbiotic.1 The real economy depends importantly upon financial markets to
provide funding sources for ongoing business and projects. Financial markets,
conversely, rely upon real businesses to generate activity and profitability. Unlike the
shark and the remora, however, their relationship is somewhat more complicated. It
is, at times, difficult to determine where one entity ends and the other begins.

Understanding this complex interaction between financial markets and the real
economy is, believe it or not, a critical element in the construction of stress
scenarios. Lending institutions, such as the NIB, are in the business of providing
loans and credit to firms (and other entities) operating in the real economy. The
success of this venture depends importantly on these firms’ ability to service
and repay their debt commitments. This is hardly breaking news. Indeed, we
have already invested significant time and effort—within our economic-capital
framework—in the computation of the expected and unexpected losses that might
occur in the event of firm credit deterioration or default. This task, however, has been
performed using long-term, unconditional estimates of general credit conditions and
firm creditworthiness; this latter aspect can, in fact, be viewed as a dimension of the
real economy. Our risk computations have thus, to this point, been performed using

1 The reader will be left to decide which party, in this example, is most closely aligned with the
shark.
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the previously defined through-the-cycle perspective. There is nothing wrong with
this approach. Regulators actually prefer, and suggest, the use of a through-the-
cycle approach for the computation of economic capital.2 The problem arises when
we wish to consider stress scenarios. A long-term, unconditional viewpoint—by its
very construction—averages across the ups and downs associated with business-
cycle movements, financial-market turmoil, and full-blown economic crises. Our
heretofore employed through-the-cycle approach is actually antithetical to stress-
testing analysis.

This leads us to a simple conclusion. If we wish to construct and employ stress
scenarios, then we need to understand and investigate the so-called point-in-time
perspective. Point-in-time is, as defined in previous chapters, a short-term, current,
conditional estimate. No long-term averaging is going on. It incorporates the
most recent information about financial-market, general-credit, and macroeconomic
conditions. Point-in-time analysis is thus, from an informational point of view, the
polar opposite of the through-the-cycle approach. The current level of economic
output, inflation, and interest rates will matter. Contemporaneous financial-market
volatility, monetary policy, and employment levels are important. Recent default
rates, for firms across the entire credit spectrum, also play a central role. There are,
in fact, myriad financial-market and real-economy variables that contribute to the
fabric of a point-in-time description.

The objective of this chapter is thus to construct a workable, empirically consis-
tent description of point-in-time credit conditions. As has become our habit, drawn
from our initial axioms, we will actually consider a few alternative approaches
to this task. Each characterization must be built upon information from the real
economy and financial markets. Only this way can we understand how a shock, or
stress, arising from these variables would impact credit conditions and, ultimately,
the risk of our lending portfolio.3 Stress-related analysis thus follows a clear
chain of logic: a scenario (often negative, but not always) outcome for one, or
more, important financial-economic variables triggers a change in credit conditions
leading to a commensurate change in one’s risk estimates. One predicts an economic
stress, infers credit conditions via a mapping model, and computes the implied risk.
A visualization of this idea is found in Fig. 8.1.

Stress-testing is thus a concrete manifestation of so-called what-if questions.
What if, for example, financial-market volatility increases dramatically? What if
interest rates double or global output falls by half? What if the consensus forecast
is realized? What would happen to our portfolio? Answering these valid, and
important, questions is the core of stress testing. It requires a solid understanding of
the relationships between these variables. In other words, it requires a model. This
brings us back to the shark and the remora: the relationship between financial mar-

2 While this appears to be the general consensus, the actual picture is admittedly a bit muddled.
See Aguais et al. [1] for a useful discussion of the point-in-time and through-the-cycle debate.
3 Stress, in this context, tends to refer to a generic deterioration or worsening of macro-financial
conditions. It can, of course, move in the opposite direction.
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Fig. 8.1 A stress-scenario schematic: This schematic provides a visualization of the logical
interactions between the key elements in stress-testing analysis. It begins with an economic stress
from the real economy or financial markets, infers (via a model) general credit conditions, and
computes the implied portfolio risk. The glue holding it all together is the mapping (or linking)
model.

kets and the real economy. There is invaluable point-in-time information regarding
general credit conditions embedded in both entities. Successfully modelling these
point-in-time dynamics—to support stress-testing analysis—requires capturing this
information in a statistically and economically convincing manner. This assignment
is the central focus of this chapter.

8.1 Our Response Variables

The first order of business in the development of any empirical model generally
relates to identification of what we wish to describe. In most problems, this is
sufficiently obvious that little, or no, time is allocated to it. This case, however,
is less evident. We know that we seek to describe general credit conditions, but this
is vaguely defined. It could refer to the general willingness of credit institutions to
lend or the ability of firms to meet their lending obligations. Our focus is on the
later, but, of course, these aspects are two sides of the same coin.

The ability of firms to meet and service their debt is clearly tied up with
the probability of default. The central object in this area, discussed in detail in
preceding chapters, is the transition matrix. It collects, in one single convenient
location, not only the default probabilities for each credit class, but also all of the
relevant probabilities associated with a firm’s credit categorization being upgraded,
downgraded, and staying put. These are referred to as transition probabilities. We
can thus probably agree that, for our purposes, general credit conditions would be
well described by a time-varying transition matrix. That is, the individual entries of
this dynamic transition matrix would depend on the state of the real economy and
financial markets.
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Let us introduce a bit of notation that we will use throughout the entire chapter.
We will write the set of informative real-economic and financial market variables
as,

{

Xt : t = 1, . . . , T

}

, (8.1)

where each Xt ∈ R
κ×1. We refer—in a very generic way—to these κ entities

as the set of macro-financial variables.4 We’ll have much more to say about
these characters shortly, but for the moment we’ll treat them as given. For risk-
management purposes, to be very concrete, our ideal response variable would be a
sequence of transition matrices,

{

Pt (Xt ) : t = 1, . . . , T

}

, (8.2)

where each Pt (Xt) ∈ R
(R+1)×(R+1) and R, as before, represents the number of

distinct (non-default) credit states. We can see, from Eq. 8.2, that each transition
matrix is a function of our macro-financial variable vector, Xt . This is practically
very useful. If we shock our macro-financial variables, say as X̂t+1, we could
immediately compute the associated predicted transition matrix, P̂t+1(X̂t+1). This
latter quantity could flow directly into our stress-testing and loan-impairment
analysis.

Equation 8.2 is the end game; this is what we seek to construct. It is, in fact, the
foundation of our stress-testing framework. It is not, sadly, particularly workable in
this form. A transition matrix is a complicated object. NIB’s internal scale has 20
non-default categories, while we use 17 from S&P and Moody’s.5 Including default
probabilities, this leads to 420 and 306 meaningful NIB and agency transition matrix
entries, respectively, for each point in time. This daunting amount of complexity
makes direct use of Eq. 8.2 virtually impossible.6 There are few, if any, sensible
statistical techniques that one can use to describe an (R + 1)× (R+ 1) matrix as a
function of a κ-dimensional vector when R and κ have a reasonable size. Even given
such a technique, the amount of data required to inform the associated parameters
would dramatically surpass what is currently available.

A simplified version of this problem involves consideration of a sub-component
of our transition matrix: the default probabilities. Some applications, most partic-
ularly loan-impairment computations, only require this dimension. This definitely

4 This construction joins the real-economic and financial-market variables together, but we need to
keep in mind that they are quite different, albeit interrelated, animals.
5 S&P and Moody’s have, in fact, rather more rating categories. As introduced in Chap. 7, we
collect the lower credit ratings into a single catch-all category to better describe NIB’s lending
universe.
6 This is a practical example of Bellman [2]’s curse of dimensionality.
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simplifies the problem somewhat: as the final column of Pt (Xt), we have only to
manage R elements.7 Much of the following discussion, in fact, will focus on this
important sub-problem. This is not only due to its importance for our applications,
but also because it helps us better understand and grapple with the base concepts.
Jumping straight into the transition matrix description is probably, in any event, a
bad idea.

Colour and Commentary 89 (A DYNAMIC MACRO-FINANCIAL TRANSI-
TION MATRIX): To permit sensible stress-testing analysis, from a credit-risk
perspective, our objective is to construct a dynamic corporate transition
matrix conditional on the state of the real economy and financial markets
(i.e., a point-in-time quantity). This would allow us to consider—for various
constellations of the driving macro-financial variables—the impact on firm
default and credit-migration. These values, in turn, could be transferred to
our economic-capital and loan-impairment calculation engines. If we could
reasonably characterize such dynamic, conditional transition matrices, stress
analysis would hold no secrets for us. After such a statement, there is
naturally a catch. The transition matrix is simply too complex an object—
as a consequence of its literally hundreds of entries—to be directly modelled
as a function of macro-financial outcomes. This does not mean that we
need to change our objective, but it does suggest that we need to be rather
more clever in our approach to it. Certain applications—such as loan-
impairments—depend, in fact, only on a subset of the transition matrix: the
default probabilities. This tends to be the typical (and perhaps somewhat more
gentle) entry point into the general problem.

8.1.1 Simplifying Matters

Only one alternative offers a reasonable possibility of preserving our desired
relationship in Eq. 8.2: dimension reduction. We need to simplify the problem into
fewer, and more manageable, moving parts. In other words, this approach essentially
requires breaking down a transition matrix into its minimally useful representation.
One might argue that this is the quintessential aspect of model construction.

A simple starting point begins with the reflection that a generic firm’s credit
quality—as summarized by its current categorization—can only do one of four
things: it can improve, deteriorate (but not default), stay the same, or move into
default. Since the probability of all four of these (disjoint) actions must sum to unity,
it is sufficient to know three out of four. The fourth can be inferred by subtracting

7 The probability of default in the absorbing state can be ignored, since it is always unity.
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the sum of the other three from one. We can profitably exploit this basic idea.
Instead of considering a single firm, however, we might examine the aggregate set
of all firms over a given time interval. We can count, for example, the total number
of firms that are upgraded, downgraded, and defaulted in a given quarter or year.
Dividing this by the number of firms—and simultaneously inferring the number of
unchanged credit classifications—yields an interesting low-dimensional description
of our transition matrix. We will use the symbols ut , dt , and ct to denote the time
t aggregate upgrade, downgrade, and default rates, respectively. The unchanged, or
stay-put, rate is corresponding defined as

st = 1 − ut − dt − ct . (8.3)

Repeating this for many time intervals should thus provide a degree of insight into
transition-matrix dynamics.

Huge amounts of data are nonetheless necessary to perform this computation.
Fortunately, the regular heavy lifting, necessary to derive these statistics, is already
periodically performed by the major rating agencies. We use quarterly data sourced
via Moody’s for the aggregate upgrade, downgrade, and default percentages from
1992 to present.8 The right-hand graphic in Fig. 8.2 displays the quarterly evolution
of these four aggregate transition metrics over the last 30 years. The period-to-period
changes are not enormous, but changes are certainly evident. There is a particular
spike in downgrades—and, to a lesser extent, default—over 2008 to 2010 during
the great financial crisis. Defaults and downgrades also appear to increase during
the aftermath of the Asian crisis and the most recent COVID pandemic. While
very preliminary, this simple graphic appears to suggest an empirical relationship
between general credit conditions and the business cycle.9

The left-hand-graphic of Fig. 8.2 takes an alternative perspective. It displays the
Moody’s quarterly, through-the-cycle transition matrix and computes the average
(annualized) upgrade, downgrade, and default probability; the average staying-put,
or diagonal, element is computed using the logic from Eq. 8.3.10 These are the
unconditional, or averaged, values for these quantities over the almost 30-year
period; this is the reason that they are constant over time. The left- and right-
hand graphics of Fig. 8.2, therefore, provide a stark visualization of the differences
between the through-the-cycle and point-in-time perspectives. The through-the-
cycle viewpoint is the focus of Chap. 7.

8 It also includes unchanged and withdrawn ratings. As in the construction of the through-the-cycle
transition matrix, the probability mass associated with withdrawn ratings is (following general
convention) proportionally allocated to the four main transition categories.
9 Although this question does not appear to have been answered definitively in the literature, there
is certainly a relationship between these quantities. See Koopman and Lucas [28] for a useful
analysis.
10 The displayed values can also be approximated by averaging over the 30 years of quarterly
transition quantities in the right-hand of Fig. 8.2.
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Fig. 8.2 A low-dimensional picture: The preceding graphics illustrate a low-dimensional
(quarterly, but annualized) time-varying view—under the through-the-cycle and point-in-time
perspectives—of a global, aggregate, corporate transition matrix. Only four dimensions are
included: upgrades, downgrades, default, and staying put.

Fig. 8.3 Adding credit classes: These graphics display the quarterly default-rate history of 17
(non-default) Moody’s credit classes. The raw format reveals the familiar exponential form of the
default curve. To aid in interpretation of the results, a log-transformed perspective is also provided.

8.1.2 Introducing the Default Curve

Figure 8.2, while a useful start, is probably too minimalistic. It provides a useful
time-varying view into aggregate credit conditions, but it tells us very little about
the individual credit classes. We simply do not have sufficient information to
determine—without making heroic assumptions—how changing credit conditions
impact various elements across the full credit spectrum. Let’s, therefore, specialize
to default probabilities. Again, our credit-rating agency colleagues have done the
hard work by publishing quarterly, global corporate default rates for each of
Moody’s 17 distinct (non-default) credit classes.

Historical rating-level default results, again from 1992, are summarized in
Fig. 8.3. The left-hand graphic displays the raw results. Given the exponential
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increase in default probabilities as we move from Aaa to Caa-rated entities, it is
not particularly easy to interpret the individual results.11 At the lower-quality end of
the credit scale, however, we observe significant volatility in aggregate default rates.
Quarterly Caa default rates, for example, at times approach 1

10 and, in other periods,
dip below 2%. Similar patterns, albeit at lower levels, are evident throughout the
entire speculative grade. To help manage the exponential structure, the right-hand
graphic of Fig. 8.3 transforms the raw data to a logarithmic scale. From about A2
to Caa, a familiar linear pattern can be observed. At the upper end of the scale,
however, the data is sporadic and difficult to read. This is due to its inherent
sparseness.

Figure 8.4 helps us better understand the high-dimensional results in the right-
hand graphic of Fig. 8.3. It chronicles the individual non-zero, default rates from
our Moody’s dataset since 1992. What is striking is the sheer number of zero entries
in this dataset; of almost 2000 possible observations, slightly less than one in five
takes a non-zero value.12 The entire Aaa, Aa1, and Aa2 categories are identically
zero. Up until about Baa2, a zero value is vastly more likely than an observed default
outcome. Beyond about Baa3, moving into the speculative grade, the incidence of
default rises dramatically along with the richness of the data outcomes.

The results in Fig. 8.4 should come as no surprise. They are, in fact, almost
definitional. Default is a rare event and it becomes exponentially rarer as we move
out the credit spectrum. The incidence of default for Aaa firms over a one-year
horizon, for example, is sufficiently infrequent that it has never been observed over
the 30-year history used in this analysis. While this should not be taken to imply
that the actually probability of Aaa default is zero, it does strongly underscore its
rarity. The insight from Fig. 8.4 should not be forgotten, however, because it will
pose numerous challenges in our later development.

Let us refer to the time-indexed collection of rating-level default rates as

{

cr,t : t = 1, . . . , T

}

, (8.4)

r = 1, . . . ,R. Let us refer to each time t collection of default rates as the point-
in-time default curve. They are logically linked to the aggregate default rates, ct ,
introduced in the previous section.13 In statistical settings, ct is termed a simple

11 Caa is not a real Moody’s rating grade; it is NIB’s amalgamation of the Caa1, Caa2, Caa3, Ca,
and C classes. We used the same trick in Chap. 7 with the S&P scale to reflect the needs of our
internal risk profile.
12 The poor behaviour of the log transformation at zero explains the choppy behaviour in Fig. 8.3.
13 While not precise, we can think the aggregate default rate as being a kind of average across the
individual rating-level values. That is,

ct ≈
R
∑

r=1

ωr
cr,t

R
, (8.5)
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Fig. 8.4 Sparse rating-level data: This graphic provides a visualization of the non-zero, quarterly,
Moody’s credit-rating level default rates displayed in Fig. 8.3. The point of this display is to help
the reader under the sheer number of zero observations.

time series, whereas the full dataset—described in Eq. 8.4—is referred to as panel
data. For each point in time, t , we have a cross section of default rates across the
credit spectrum.

The cross-sectional, or panel, data in Figs. 8.3 and 8.4 provide a critical step
towards establishing a time-varying transition matrix. In its raw form, this data is
rather difficult to work with and interpret. The reasons are, at least, twofold. First,
as highlighted in Fig. 8.4, there are many zero values. Second, we return to our
common theme of dimensionality. There is simply too much data—17 credit ratings
over 30 years—to easily manage. The raw data can, and will, be used. There are,
however, some analytical techniques that might be profitably employed to improve
this situation and simultaneously manage our dimensionality problem.

Colour and Commentary 90 (RATING-LEVEL DEFAULT RATES): Our
Moody’s dataset provides, quarterly over a 30-year period, a cross-sectional
view of rating-level default rates. We will refer to the slice of default rates,
for a given point in time, as a default curve. These values represent our
principal source of data for inference of time-varying (i.e., point-in-time)
default probabilities (and ultimately transition probabilities) across the credit
spectrum. There are alternatives. Using corporate-bond or credit-default-
swap spreads, it is also possible to gain insight—albeit under the pricing
measure, Q—into default-probability dynamics. We have, however, a strong

(continued)

for some set of weights, {ωr : r = 1, . . . ,R}, which might not be immediately obviously
determined.
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Colour and Commentary 90 (continued)
preference for rating-agency data for a number of reasons. As risk managers,
our focus is firmly on real-world, or physical, probability measure (i.e., P)
values. Moreover, our principal interest relates to the entire transition matrix.
Our Moody’s data set also has strong logical links to centrally important
upgrade and downgrade observations. Finally, this panel data is related to
actual observed defaults. It is absent investor expectations or risk preferences;
as such, it is a solid, objective foundation for the construction of our point-in-
time default- and transition-probability model.

8.1.3 Fitting Default Curves

The interest-rate literature, as already seen in Chap. 7, offers numerous analogues
to the analysis of default rates. Conditional forward-default and survival rates are
closely linked to forward-interest rates and pure-discount bonds prices, respectively.
Cross-sectional default rates appear to offer another point of agreement. The term
structure of interest rates is, in fact, a cross section; it is often described as the credit
curve.14 When we index these cross sections to time, it becomes panel data. The key
difference is that the cross-sectional variable for interest rates is the term to maturity,
while it is credit quality in the default setting.

Why does this matter? It is often the case, with dynamic systems, that there
are cross-sectional relationships that can be captured. In the yield-curve setting,
this relates to the interaction between short-term and long-term interest rates. With
default rates, this is likely to manifest itself in terms of monotonicity constraints.15

The Aa1 default rate, for example, should be less than the Aaa value, which in
turn should be inferior to the Ba1 observation and so on. The existence of such
relationships implies that neither interest nor default rates may—from an economic
perspective—jump around independently from adjacent values within the cross
section. In short, such restricted interaction creates order from a potential chaos.
Understanding this order, and describing it mathematically, is typically very helpful
in the reduction of dimensionality.

In the early 1990s, Litterman and Scheinkman [31] published an influential
analysis of the American sovereign yield curve. Using a (then rather obscure)
statistical technique—termed principal components analysis—they demonstrated

14 This should be a hint that our recently introduced nomenclature, default curve, was not selected
at random.
15 Jollliffe [25, Section 4.1] provides, moving away from finance and economics, an interesting
example of cross-sectional patterns in human anatomical measurements (i.e., hand, wrist, forearm,
head sizes, and so on).
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Table 8.1 Explained default-curve variance: This table illustrates the percentage of overall
system variance that is explained by the first four orthogonal factors in a principal-components
analysis of the default-curve data. This analysis was performed using the raw (although demeaned)
Moody’s default-curve data.

Quantity Eigenvalue var(C) explained Cumulative var(C) explained

Factor 1 0.000695 76% 76%

Factor 2 0.000169 18% 95%

Factor 3 0.000028 3% 98%

Factor 4 0.000010 1% 99%

Total 0.000913 100% 100%

that the majority of variance in observed yield-curve movements could be described
by three linear latent factors.16 The consequences of this study were significant.
The high-dimensional yield-curve object could be summarily reduced to a linear
combination of three variables with little reduction in overall accuracy. Although
these are purely statistical factors, they came to be referred to as level, slope, and
curvature for the manner in which they influenced the shape of the yield curve.

An interesting question thus arises: can something similar be performed with
the observed Moody’s default-curve data? Table 8.1 provides a quick answer. Most
of the overall default-curve variance can be explained by the first four orthogonal
factors drawn from principal components analysis.17 This is, on the surface, as
convincing as the results from Litterman and Scheinkman [31]—where the first
three factors typically explain in excess of 95% of total variance—suggesting the
potential for dimension reduction.

Almost as important as the amount of variance explained is the nature of
the loading vectors associated with each principal component. To understand this
requires quickly delving into the algorithm. We define, from Eq. 8.4, the default-
curve vector at time t as,

�ct =

⎡

⎢

⎢

⎢

⎣

c1,t

c2,t
...

cR,t

⎤

⎥

⎥

⎥

⎦

, (8.6)

16 The idea behind principal components analysis is to find a subset of orthogonal factors
that explain the maximum amount of variance in a system. See Jollliffe [25] for an excellent
introduction and many practical examples.
17 The analysis was performed on the demeaned default-curve data. We can, if we wish, set the
zero-valued entries to a small positive number or attempt to work in logarithmic space; these
slightly change the results, but get us to a similar terminal point.
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Fig. 8.5 Default-curve principal components: This figure illustrates the values and loadings
associated with the three most important orthogonal factors extracted from an application of
principal-components analysis to our default-curve data set.

for t = 1, . . . , T . In simple English, �ct , is the cross section as at time t . Collecting
the cross sections, we have

C = [�c1 �c2 · · · �cT
]

. (8.7)

The matrix, C ∈ R
R×T , is thus our panel data. Principal components analysis

seeks to find a projection vector, call it a ∈ R
R×1, that maximizes

var(aT C) = aT var(C)a, (8.8)

subject to aT a = 1 to normalize the projection vector to unit length. The first-order
conditions of this problem are,

(C − λI)a = 0, (8.9)

which turns out to be the eigenvalue problem.18 The factor loadings of the n most
important orthogonal factors, in the principal components analysis, are merely the
n eigenvectors associated with the n largest eigenvalues of var(C).

Figure 8.5 displays the loadings associated with the three most important
orthogonal factors extracted from our application of principal-components analysis.
The results are rather different from those presented in Litterman and Scheinkman
[31]. The narrative, however, is rather similar. The first factor—representing about
75% of total variance—only affects all credit categories south of about B2. This
looks to be a kind of high-risk credit effect. Incidentally, this factor correlates about
0.7 with the aggregate default rate (i.e., ct ), which is also dominated by the lower

18 λ is the constant in the method of Lagrange multipliers. See Golub and Loan [15] for more on
the eigenvalue problem.
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end of the credit spectrum. The second factor has an odd V -shaped impact over the
B2 to Caa categories. Finally, the third factor impacts the speculative-grade credit—
from about Baa2. None of these elements bear any resemblance to the level, slope,
and curvature factors seen in interest-rate settings. Importantly, the factor loadings
are essentially silent on the higher quality end of the credit curve; this is certainly
an artifact of extremely sparse default observations in this sector.

The right-hand graphic in Fig. 8.5 illustrates the evolution, over our 30-year
horizon, of the first three principal components. On their own, these are difficult
to interpret. The first factor, at least, tends to dip down sharply during periods of
economic distress and high levels of aggregate default.19

We should be cautious not to push this analogy too far nor to celebrate too
soon. There are also important differences between yield and default curves that
impact this analysis. Yield-curve values are based on bond prices; if fundamental
relationships get too far out of line, they tend to be rectified by market participants
buying and selling these securities. In other words, key yield-curve relationships are
shaped by market actors. Default curves are based on observed default outcomes
across the credit curve. The rarity of default makes these observations lumpy and
noisy. From this perspective, default and interest rate curves are apples and pears.
Interactions between points along the yield curve should thus, from a first-principles
perspective, be significantly stronger than in the default-curve setting.

A second issue stems from the sparseness of our credit-curve data. Equation 8.8
demonstrates that principal components analysis seeks to find projection vectors
that maximize the amount of variance explained. Many of our default curves, due
to the lack of data, exhibit very little or no variance. This means that the natural
dimensionality of our system is already quite low. We cannot really raise our
glasses to toast our ability to explain the majority of the variance in a system with
three factors, when in actuality, there are only six or seven elements exhibiting
any meaningful dispersion. This is a very real consequence of data sparseness
and a challenge that will need to be managed in constructing default-related stress
scenarios.

Colour and Commentary 91 (DEFAULT-CURVE DIMENSIONALITY): A
default curve is defined as the observed incidence of default—for each
credit category across the credit spectrum—over a specific period of
time. Economic logic strongly suggests that default outcomes should be
monotonically increasing as credit quality deteriorates. Inspired by the
interest-rate literature—most particularly, Litterman and Scheinkman [31]—
we use the principal-components technique to investigate how much structure

(continued)

19 This is supported by its, previously mentioned, strong positive correlation with ct as introduced
in Eq. 8.3.
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Colour and Commentary 91 (continued)
these logical restrictions impose on the observed data. With 17 possible
credit states, the four largest principal components explain almost all of
the total system variance. Moreover, the factor loadings of the three largest
components appear to operate almost solely in the realm of speculative-grade
credits. The results, while promising, are not as compelling as those found
in Litterman and Scheinkman [31]’s yield-curve setting. The reason is
evident: the empirical data does not always play along with economic logic.
Sparseness, lumpiness and noisiness in real-world default-curve implies that,
while monotonicity generally holds, it is occasionally violated. Moreover,
it is difficult to construct a signal for a given credit category absent any
meaningful default observations. This is a fundamental feature of default
data that cannot be avoided. The results are sufficiently interesting, however,
to cautiously move forward to consider functional forms for fitting individual
default curves.

Extending the analogy to the interest-rate environment, it is common to fit the
cross-section of the spot yield curve with easier-to-manage mathematical forms.
Examples include the previously discussed Nelson and Siegel [35], the exponential-
spline, and smoothing-spline models.20 Such fitting techniques serve a variety of
purposes. They provide a simplified view of the term structure, they assist in
interpolating (and, at times, extrapolating) interest-rate levels, they permit ready
computation of associated interest-rate quantities (such as discount factors for
forward rates), and they provide useful inputs into dynamic term-structure models.
All of these advantages would be equally welcome within the default-curve setting.

A spot yield curve may take a variety of shapes: upward or downward sloping,
steep or flat, normal or inverted, U -shaped, and may even exhibit humps. Interest
rates, however, are typically fairly strictly bounded. Outside economies with ram-
pant inflation, observed spot rates rarely exceed 20%. Furthermore, while nominal
interest rates can take negative values, there also appear to be limits to the magnitude
of their negativity. Finally, and rather importantly, the difference between short- and
long-term spot interest rates rarely exceed more than a few hundred basis points.
Extant yield-curve fitting models—and there are many of them—are specialized to
these characteristics.21

Default curves, despite their conceptual similarities, have a rather different form.
The most striking feature is the exponential growth in default incidence as one
moves down the credit scale. As discussed, quarterly and annual Aaa to Aa2

20 See Li et al. [30] and Shea [39] for more on exponential splines. Fisher et al. [14] is a helpful
source on smoothing splines. See also Bolder and Gusba [7] and Bolder [5, Chapter 5] for many
practical details on these approaches.
21 A useful compendium of a wide range of models is found in Hagan and West [16].
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default rates have been uniformly zero over the past 40 years. Theoretically they
are not zero, but practically should not exceed a handful of basis points. Quarterly
Caa default outcomes, by contrast, range from as low as about 1

50 to almost 1
10 .

The deviation between the two ends of the credit scale, therefore, is measured in
orders of magnitude. The credit scale—like seismological scales used to measure
earthquakes—is exponentially constructed. It is correspondingly unlikely that direct
application of yield-curve fitting models will prove effective with default curves.

Some practical efforts confirm this suspicion. The Nelson and Siegel [35] and
Li et al. [30] approaches are simply incapable of capturing the exponential form
without generating negative default-rate estimates. Slightly more success can be
achieved with smoothing-spline techniques, but the missing data points create
problems and the overall number of parameters is simply too large. Fitting default
curves will thus require a slightly different approach.

The basic fitting structure proposed in this chapter—which, with additional
reflection and experience, can presumably be improved upon—is based on the idea
of what is sometimes referred to as an exponential regression. More specifically, we
might approximate each time t default curve in Eq. 8.4 as

cr,t = eζt,0+ζt,1r , (8.10)

for r = 1, . . . ,R. The associated parameter vector,

ζt =
[

ζt,0

ζt,1

]

, (8.11)

needs to be estimated by fitting our data set for each t = 1, . . . , T . If we apply
natural logarithms to both sides, we can write this as the following generalized linear
model,
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, (8.12)

ln(�ct ) = XRζt + εt ,

where εt ∈ R
R×1 is our quantity to minimize through the selection of ζt . The classic

estimator for Eq. 8.10 is thus,

ζ̂t =
(

XT
RXR

)−1
XT
R ln(�ct ), (8.13)

where �̂ct = eXRζ̂t .
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This seems rather straightforward, but there are a few practical issues. While
Eq. 8.13 illustrates the log-linearity of our model, the multiple zero values render
its direct usage impossible. This can be solved by setting the zero values to a
sufficiently small positive value.22 A more important issue is that, without some
sort of constraints, the least-squares approach has difficulty with lumpy or noisy
data. Squaring errors places large portions of weight, in the selection process, on
outliers. Some sort of anchoring is thus required. As a final issue, the log-linear
format summarized in Eq. 8.12 lacks somewhat in flexibility. It is a completely linear
form. Some limited amount of curvature, as suggested by our principal-component
factor loadings in Fig. 8.5, would be helpful.

Taking these elements into account, the formal proposed default-curve fitting
model is extended to include an additional curvature term,

cr,t = eζt,0+ζt,1r+ζt,2 sin( rω ), (8.14)

where ω is a wave-length parameter.23 The term sin
(

r
ω

)

is admittedly somewhat ad
hoc in nature, but it is motivated by the idea of a Fourier-series expansion.24 Other
choices are certainly possible, but this selection appears to be fairly successful in
inducing additional flexibility into our estimates.

Practically, Eq. 8.14 implies the following matrix structure,
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, (8.15)

for t = 1, .., T . The log-transformed default curve can accordingly be considered
as a linear combination of the three pseudo-basis functions summarized in XR.

22 We use one half of a basis point or 0.00005. This seems, for practical purposes, to be close
enough to zero but also economically plausible.
23 With R = 17, a choice of ω ≈ 12 or 13 appears to be sensible given the form of the first factor
loadings in Fig. 8.5. This corresponds to a curvature point centred around Ba2 or Ba3.
24 See, for example, Davis [10] for more background on Fourier series.



8.1 Our Response Variables 479

Selection of our three-dimensional parameter vector arises, at time t , from the
solution to the following minimization problem:

min
ζt

(

ln(�ct )− eXRζt
)T (

ln(�ct )− eXRζt
)

︸ ︷︷ ︸

εTt εt

, (8.16)

subject to:

exp
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10
, 2
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basis points,

exp
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R
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ĉR,t

≥ cR,t ,

ζ1,t + ζ2,t

(

sin

(

r + 1

ω

)

− sin
( r

ω

)
)

≥ 0 for r = 1, . . . ,R.

The first two constraints act as anchors. The highest-rated (i.e., AAA) default rate
must fall in the interval of 0.1 to 2 basis points. The lowest-rate (i.e., Caa) default
value, by contrast, needs to be at least as large as the observed default incidence
during that period. The final set of constraints ensure monotonicity.25

Figure 8.6 illustrates—for a selected number of years over the almost 30-year
time span—the visual fit of the solution to Eq. 8.16. The bottom, right-hand graphic
provides the average fit across all time periods; this can be roughly considered
as the through-the-cycle default curve. A few observations can be made. First
of all, despite the lumpiness of the underlying data, the overall fit seems quite
reasonable; to be fair, however, no monotonic form can provide a perfect fit to the
data. The second observation—also evident in Fig. 8.3—is the significant variation
in observed default curves. Empirically, therefore, deviations between the through-
the-cycle default curve and periodically observed point-in-time equivalents are
significant.

Figure 8.6 is rather difficult to read as the credit category falls below about
Ba2 or so. To provide a bit more insight into the entire range of the default curve,
Fig. 8.7 also displays the results in logarithmic space. Actual observed zero-valued

25 To see where these inequalities come from, we begin with the idea that

ĉr+1,t ≥ ĉr,t , (8.17)

for each r = 1, . . . ,R. One then replaces the estimated values in Eq. 8.17 with our functional form
from Eq. 8.14 and simplifies.
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Fig. 8.8 Theoretical default curves: The preceding graphics highlight the full set of theoretical
raw and log-transformed default curves fitted to the observed outcomes found in S&P [41, Table 9].
These results are usefully compared to Fig. 8.3.

default incidences are not displayed to illustrate the fit to the true data.26 The fit,
in the presence of data, also appears to be quite sensible. As we move outside of
the available (non-zero) data, however, the model is essentially extrapolating from
the observed data. This, depending on one’s perspective, can be viewed as either
a feature or a bug of the estimation approach. On balance, the advantages appear
to outweigh the disadvantages. Albeit stylized, these theoretical default curves do
appear to broadly capture the true underlying data in a low-dimensional manner.

Figure 8.8—as a comparator to the raw results in Fig. 8.3—contains the full
fitted time series of default curves estimated with Eq. 8.16. The raw data looks
basically the same as the empirical observations. The real difference is only visible
on the logarithmic scale. A full generally linear—but also occasionally slightly
(concave) non-linear—theoretical log default curve is evident for each point in time.
In essence, all of these statistical gymnastics have been performed to construct a
reasonably low-dimensional, smoothed, and extrapolated version of our quarterly
credit-curve data.

Diebold and Li [12]—to return once again to the interest-rate literature—offer
a clever insight into the interpretation of the Nelson and Siegel [35] parameters.
Their conceptual link to the principal-component factors make them of significant
interest from a time-series perspective. In other words, the value of each of the three
non-linear Nelson and Siegel [35] parameters tell us something about the relative
importance of level, slope, and curvature at that point in time. Diebold and Li [12]
show us that these parameters can, and should, actually be regarded as yield-curve
state variables. This insight has become the foundation—see, for example, Diebold
and Rudebusch [13]—for an entire class of dynamic yield curves models.

26 Recall that, to aid estimation and avoid numerical problems, these zero values were (arbitrarily)
set to 0.00005.
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We might, pushing the default- and interest-curve analogy to its very limit,
attempt to consider our ζt parameters in a similar manner. Our rather limited success
with principal-components analysis should nonetheless temper our expectations;
that said, it is worth a try. Each element of ζt tells us something via Eq. 8.14 about
the relative form—in log terms, at least—of the default curve at that point in time.
As a consequence, they do have the potential to act as state variables for the default-
curve system.

Figure 8.9 plots, over our roughly 30-year history, the individual fitting parameter
(i.e, ζt ) values. The results are quite interesting. The ζ0,t parameter, a constant,
appears to provide some insight the level of the highest quality default outcomes.27

Its general stability is punctuated by occasional sharp increases for single quarter or
two. The ζ1,t coefficients, conversely, appear to be more strongly correlated with the
lower end of the credit spectrum.28 ζ0,t and ζ1,t , interestingly, exhibit virtually no
correlation over time. The final parameter, ζ2,t , describes the impact of the curvature
function. Although this factor is rather strongly negatively correlated with the first
and second factors, it does not vary importantly over time. Its role essentially relates
to imposing some curvature (i.e., concavity) in the log-linear credit curves. Most of
the work appears to be performed by ζ1,t , which is also strongly related to the first
principal component from Fig. 8.5.

The main objective in fitting stylized credit curves, which seems to have been
attained with a moderate degree of success, has been to build a low-dimensional
and manageable response, or independent variable, for the construction of a
point-in-time default and transition probabilities. These default-curve outcomes—
both in their raw and theoretical form—will, along with observed upgrades and
downgrades, form the foundation of our point-in-time model. These fitted values
will also help us propose an alternative mapping, if only as a sanity check, between
general (point-in-time) credit conditions and our description of the macro-financial
situation.

Colour and Commentary 92 (THEORETICAL DEFAULT CURVES): Inspir-
ed by the interest-rate literature—and with an eye towards increasing man-
ageability and reducing dimensionality—a functional form was constructed
and fit to our empirical default-curve data. A three-parameter model, in
particular, was expressly designed to describe the exponential form of default-
curve values over the credit scale. The overall fit of this approach appears
to be fairly reasonable. Most importantly, it addresses a number of key
shortcomings with the raw data. It provides—by moving from 17 credit
categories to three model coefficients—a parsimonious description of our

(continued)

27 There is a very high positive correlation between the fitted Aaa rate and the ζ0,t parameter.
28 The ζ1,t state variable correlates strongly and positively with the fitted Caa values.
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Fig. 8.9 Examining ζt : These plots describe the time evolution of our three ζt parameters—
introduced in Eq. 8.14—used to fit observed default curve data. In principle, these parameter values
could be used as state variables for the default-curve system.

Colour and Commentary 92 (continued)
data. Through imposition of constraints, it further allows us to anchor the
overall default curve and eliminate observed incidences of zero default. This
helps to attenuate the natural lumpiness or noisiness of the data in a manner
that is (broadly) consistent with the empirical data. In other words, it acts as
a consistent extrapolation method for missing data. Finally, the time-series
evolution of these parameters has the potential to—reminiscent of Diebold
and Li [12]—play the role of state variable in our point-in-time transition
matrix model. The sparsity of our credit-curve data nonetheless makes this
exercise somewhat difficult. It is, at this point, unclear if raw or theoretical
default curves are preferable for our final application. Having the luxury of
choice, however, is rather useful.
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8.2 Our Explanatory Variables

Having established that we will employ (either raw or theoretical) default curves
as well as observed upgrades and downgrades to describe our point-in-time tran-
sition matrices, we now need to determine the underlying driving macro-financial
variables. Choosing these variables is nonetheless not immediately straightforward.
There is an enormous range of possible real-economic and financial-market data that
might prove helpful for describing general credit conditions. There are also various
approaches that one might follow. One could, as has become fairly commonplace
in macroeconomic analysis, extract common factors from literally hundreds of
economic indicators.29 Alternatively, one might simply select (and, of course, test)
a subset of potential meaningful explanatory variables.

The big-data, common-factor approach, while quite powerful, is unlikely to be
particularly useful for this application. Ultimately, we wish to characterize key
state variables—across various potential future states of the world—and examine
the impact on our point-in-time estimates and portfolio risk. Common factors—
generally built using principal-components analysis—are complex combinations of
many other variables. As such, they are not readily predicted. This sadly precludes
the use of this technique. As a consequence, we will find ourselves in the position
of hand-selecting individual macro-financial variables for this analysis.

Let’s begin with the real economy. A minimal small macroeconomic model
typically includes, at least, three main variables: output, inflation, and monetary
policy. Monetary policy, in turn, is generally well captured by the level of short-
and long-term interest rates. Some measure of gross-domestic product is helpful for
describing output, while base or core consumer-price indices do a sensible job for
inflation. Productivity growth and employment figures are also useful additions to a
general description of economic conditions.

On the financial side, there is literally a ridiculous amount of choice. A useful
way to proceed is to think about the main sub-markets: fixed-income, equity,
commodity, and foreign exchange. Interest rates and credit spreads, index levels,
key commodities prices, and composite exchange rates, respectively, are sensible
candidates to describe the state of each sub-market.

Table 8.2 provides an illustrative summary of ten key macro-financial variables
used, broadly consistent with those used in the current NIB methodology, to
describe general credit conditions. It also includes the necessary adjustments, if
any, required to ensure their stationarity.30 These choices are admittedly rather
America-centric and might not include the reader’s favourite element. The list does,
however, a reasonable job of including those variables one would expect to make
an appearance; it captures overall economic growth, inflation, financial-market

29 These are referred to as dynamic factor models. See Stock and Watson [42] for a gentle
introduction by the researchers who have played such a central role in this literature.
30 We used the so-called augmented Dickey-Fuller (ADF) test—see, for example, Dickey and
Fuller [11]—to test for a unit root in each of these macro-financial time series.
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Table 8.2 Explanatory variable notation: This table provides a description—and the notation
employed—for the main macro-financial explanatory variables used in this analysis. The data is
admittedly rather America-centric, but it is expected to be a reasonable global proxy.

Description Symbol Stationarity adjustment

10-year industrial BBB bond spread over US treasuries ϕt None

US gross domestic product (GDP) implicit price deflator πt πt − πt−1

Effective federal funds rate rt rt − rt−1

US real gross domestic product (GDP) θt None

US civilian unemployment rate kt ln
(

kt
kt−1

)

Global (non-fuel) commodities price index wt None

S&P 500 composite mt ln
(

mt

mt−1

)

World oil-price index ht ht − ht−1

US 10-year constant maturity, three-month LIBOR yield
curve slope

st st − st−1

VIX index σt σt − σt−1

Fig. 8.10 Level cross correlation: This figure provides—in a haze of numbers and colours—the
(level) cross correlation between our key response and explanatory variables. The warmer the
colour, the higher the positive correlation.

volatility, commodity prices, equity valuations, interest-rate levels, monetary policy,
and credit spreads. The critical element is the existence of some concrete statistical
relationship between these potential explanatory quantities and our previously
discussed general-credit response variables.

Figure 8.10 attempts to address this question by highlighting the level-based
cross correlation between our key response and explanatory variables. The default-
curve model parameters, the observed aggregate default rate, and actual upgrade



8.2 Our Explanatory Variables 487

and downgrade percentages form our set of response variables. The ten variables in
Table 8.2 represent our explanatory factors. The density of numbers makes Fig. 8.10
non-trivial to interpret. A few interesting conclusions can nonetheless, with a bit of
patience, be drawn. In particular,

• no dramatic collinearity appears to be present in this collection of variables;
• the second ζt parameter appears to correlate quite highly (positively and nega-

tively) with a number of macro-financial variables as well as the aggregate default
rate;

• the aggregate default and downgrade rates—and to a lesser extent upgrades—
appear to depend upon most of our macro-financial variables;

• commodity and equity prices are positively correlated, but both correlate nega-
tively with market volatility; and

• credit spreads, inflation, and the Fed funds rates are related—with a few modest
exceptions—to virtually all response and explanatory variables.

There are certainly more insights in Fig. 8.12, but this should provide a reasonable
overview. One could also perform an identical correlation analysis with the first-
differences of these variables. The story does not change dramatically.

Colour and Commentary 93 (CREDIT-CONDITION EXPLANATORY VARI-
ABLES): Our principal task involves building a model of point-time credit
conditions. Practically, this amounts to the construction of a time-varying
transition matrix, P(Xt ), or the simpler problem of time-varying default
probabilities, ct (r,Xt ), for r = 1, . . . ,R. In both cases, however, the
vector Xt denotes a set of explanatory macro-financial variables. What
makes a sensible collection of explanatory variables? The most obvious
criterion is a statistical relationship—and perceived economic causality—
with our credit-condition response variables.a In addition to a statistical
link, we also seek high-profile variables that can inform what-if stress-testing
analysis. Finally, and not completely unrelated to the previous point, we are
hunting for a relatively small system of explanatory variables. Too many
individual drivers will not only complicate the analysis, it will confuse the
stress-scenario process. We have, using basic economic logic, constructed
a set of 10 macro-financial variables covering various elements of the real
economy and financial markets. Admittedly America-centric, these quantities
should nonetheless offer a reasonable global proxy. Moreover, no important
collinearities appear to be present in the proposed system of explanatory
variables.b

a While causality would be fantastic, it is almost impossible to demonstrate. We will thus
be satisfied with statistical dependence.
b Neither entirely exhaustive nor yet subjected to a proper selection process, this list of
macro-financial variables will nonetheless perform admirably in our illustration of the key
concepts.
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8.2.1 Data Issues

Working with real-world data always presents challenges. Financial-market data
is available at high frequency; it is up to the minute and noisy. Real economic
data comes out, at best, on a monthly basis, but is typically only available on a
quarterly frequency. It is also often subject to revision, making it somewhat less
reliable. There is, therefore, a fundamental data-frequency mismatch between these
two worlds. Working with macro-financial models invariably leads to compromises
in both directions.

Causality is a second difficult area. Do financial markets drive the real economy
or vice versa? This may feel like an unanswerable academic question, but it has
practical implications for modelling stress scenarios. Good arguments can be made
in either direction, but the reality is that it likely goes both ways and varies over
time. Ultimately, uncertainty with regard to this question argues for the use of
informative variables along both dimensions in our analysis. As a general principle,
therefore, it is a bad idea—in the selection of our final set of explanatory variables—
to specialize entirely to either real-economic or financial-market variables. The
previously mentioned differences in the nature of underlying data sources for
financial markets and the real economy nevertheless complicate this task.

Representativeness and stability are two final key challenges facing any empirical
analysis. Quantitative analysts should always be worried about how well their
selected data describes, or represents, the phenomena they are trying to model. This
problem is no exception. We are trying to construct a meaningful bridge (or map)
between general credit conditions on the one hand and financial and real-economy
variables on the other. Our response variables reach back to the early 1990s. One
could easily argue that key macro-financial relationships differ in important ways
for portions of this 30-year time interval. The post-crisis period from 2010—to be a
bit more precise—looks to be different than in preceding times. There is, therefore,
always the danger of structural breaks in our underlying data. These potential pitfalls
cannot be entirely avoided, but they can be managed. Cautious examination of our
data and construction of relatively simple, and robust, statistical models can help.

8.3 An Empirically Motivated Approach

Our task is to describe and predict our variables of interest with another set of
instruments or explanatory variables.31 We’ve already engaged in a similar process
within Chap. 5. Denote yt as what we’re trying to explain, understand, or predict and

31 See Breiman [8] for a powerful abstract description of this process in the context of statistical
models and machine-learning algorithms.
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Xt as the explanatory variables, or simply things that could potentially influence the
y’s. The (unknown) real-world time-series data-generating process looks something
like this:

yt ← The Real World ← Xt (8.18)

for all choices of t . We can make educated guesses about Eq. 8.18, but we truly don’t
really know what is going on. Rewriting Eq. 8.18, we may schematically describe
the statistician’s approach to this problem as

yt ← Data assumptions and a model ← Xt (8.19)

Faced with uncertainty about our black box, we replace it with a useful approxima-
tion of a complex reality (i.e., a model). This is essentially our mapping model. Not
a bad strategy, actually.32

There are, of course, different possible sets of data assumptions and models
that one might select to fill the box in Eq. 8.19. As this is a difficult question
with not terribly cooperative data, it is a good idea to somewhat hedge our bets.
For this reason—and also naturally to be consistent with the axioms introduced in
the preface—we will examine two broad modelling strategies for the construction
of time-varying (i.e., point-in-time) transition and default probabilities. The first,
considered in this section, is rather heuristic in nature and proceeds essentially via
dimension reduction and empirical methods. While there are numerous possible
variations, this first heuristic and empirically driven approach has traditionally
been the model of choice at NIB. The second modelling strategy, addressed in the
subsequent section, makes clever use of some theoretical ideas to build a link (or
map) between our response and explanatory variables. Given a range of advantages,
that will become evident in the following discussion, a version of this approach has
become our production model. It is nonetheless rather useful, and informative, to
understand and appreciate both modelling strategies.

32 Machine-learning algorithms, incidentally, use a different strategy. They circumvent the black
box with an algorithm and tune it (in a loose sense) through prediction accuracy. For more on these
ideas, see Bolder [6].
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8.3.1 A Linear Model

Within the context of the empirically motivated approach to building point-in-time
transition and default probabilities, our specific choice of yt is,

yt =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

c1,t
...

cR,t
ut

dt

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≡

⎡

⎢

⎢

⎢

⎢

⎢

⎣

y1,t
...

yR,t
yR+1,t

yR+2,t

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (8.20)

for t = 1, . . . , T . yt includes all of the default-curve values along with the upgrade
and downgrade percentages for a particular point in time. Here we have written
the raw default curve values, but we could also replace each cr,t with our fitted
ĉr,t values. Either way, these are the fundamental components of our time-varying
transition matrix.33 Importantly, to ensure that our dimensions are consistent in
subsequent calculations, we note that yt ∈ R

(R+2)×1.
Our specific choice of Xt , in its maximal sense, is written as,

Xt =

⎡

⎢

⎢

⎢

⎣

1
x1,t
...

xκ,t

⎤

⎥

⎥

⎥

⎦

. (8.21)

This indicates that Xt ∈ R
(κ+1)×1 where Xt has been augmented to include a

constant term. In full generality, the set of explanatory variables could be expanded
or reduced to include a larger or smaller number of choices. For this reason, we
denote the number of actual employed explanatory variables as κ . In practice, the
actual elements of Eq. 8.21 will be populated by some constellation—or function—
of the variables found in Table 8.2. Depending on one’s variable-selection process,
one might even opt to include a new explanatory variable or two.

33 We will explore in a later section precisely how the transition matrix is approximated from these
quantities.
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The most obvious possible model between yt and Xt would probably look
something like

⎡
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⎢

⎢

⎣

c1,t
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dt
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≡
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⎦
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...
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(8.22)

yt = �Xt + νt ,

for t = 1, . . . , T , where � ∈ R
(R+2)×(κ+1) is a matrix of model parameters

linking general credit conditions with our explanatory variables, and νt ∈ R
(R+2)×1

is an error vector. Equation 8.22 basically postulates a linear relationship; it is a
multivariate linear regression model.34 Moreover, Eq. 8.22 is also simply a conve-
nient way of writing R + 2 separate regressions in a single format. Beyond simple
convenience, this structure also permits imposition of constraints on parameters to
ensure monotonicity between our default-curve entries. To make this very clear,
Eq. 8.22 is also legitimately written as,

yk,t = γ0,k + γ1,kx1,t + · · · + γκ,kxκ,t + νk,t , (8.23)

= γkXt + νk,t ,

for t = 1, . . . , T , k = 1, . . . ,R + 2, and where γk ∈ R
1×(κ+1) is a vector

representation of the kth row of �.
Before we proceed to the estimation of the individual entries in �, there is an

annoying problem with the specification of Eq. 8.22. It has nothing to do with the
mathematics, but rather stems from the properties of our response variables. Each
default-curve observation as well as the upgrade and downgrade rates must take
values between zero and one. It is, of course, possible to impose additional param-
eter constraints to preserve this property. When combined with our monotonicity
constraints, however, determining the parameters can subsequently become quite
difficult.

It turns out to be significantly more effective to embed these (0, 1) constraints
into the model, in an indirect fashion, through a transformation of the explanatory
variables. Any mapping of γkXt into the unit interval will suffice. A common

34 It is also, as we will see in latter sections, the first step towards the development of a state-space
model.
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approach makes use of the so-called logistic function. Specifically, we rewrite
Eq. 8.23 as,

yk,t = eγkXt

1 + eγkXt
, (8.24)

= 1

1 + e−γkXt
,

= f (γkXt ),

for t = 1, . . . , T and k = 1, . . . ,R + 2. Both forms of the logistic function, f , are
equivalent. The second form is more common, and somewhat more parsimonious.
The first form, however, is arguably somewhat more stable numerically and makes
for a better choice when numerical optimization is involved.

The specification in Eq. 8.24 should not be confused with the related logistic
distribution.35 Nor can Eq. 8.24 be considered, however tempting, as a logistic
regression.36 In this case, the logistic function handily transforms any real-valued
argument into the unit interval. More technically, any function f where f : R →
(0, 1) would serve our purposes.37

The use of the logistic function does have some additional interesting
characteristics—not unrelated to the logistic distribution and regression—that are
worth briefly investigating. If we slightly re-arrange Eq. 8.24, we arrive at

yk,t

1 − yk,t
= eγkXt . (8.25)

The left-hand side of Eq. 8.25 is referred to as the odds. Very popular in gambling
circles, we can see that it is essentially the probability of event occurring divided
by the probability that it doesn’t occur. The higher the probability of an event, the
smaller the denominator, and thus the greater the odds. Taking natural logarithms of
both sides of Eq. 8.25 leads to

f−1(yk,t ) = ln

(

yk,t

1 − yk,t

)

= γkXt , (8.26)

where, unsurprisingly, the left-hand side quantity is termed the log odds.38 Use of
a logistic transformation in Eq. 8.24 thus amounts—in addition to constraining our
response variables to the unit interval—to writing the log odds as a linear function
of our macro-financial factors.

35 See Johnson et al. [24, Chapter 23] for much more detail on this continuous distribution.
36 In a true logistic regression, the response variable can take only discrete—the most common case
is binary, zero or one—values. See Judge et al. [26, Chapter 18] or Hastie et al. [19, Section 4.4]
for a detailed description of this popular and powerful statistical technique.
37 As a consequence, virtually any continuous cumulative distribution function with R-valued
support would do the trick.
38 See James et al. [22, Chapter 4] for a nice description of these ideas.
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Returning to our original model in Eq. 8.22, we may use these ideas to redefine
it slightly as,

f−1(yt ) = �Xt + νt , (8.27)

for t = 1, . . . , T with f−1 defined in Eq. 8.26 as the log odds.39 This formulation—
despite the consideration of a number of variations—is the foundation of our first
point-in-time description of our general credit conditions.40

Before proceeding to the actual estimation algorithm, it is first important to
determine our monotonicity constraints. Logically, we require—for each time
period—that the credit-rating level default rates increase in a (weakly) monotonic
manner as we move down the credit spectrum. Practically, this amounts to,

cr,t ≤ cr+1,t , (8.29)

for r = 1, . . . ,R − 1 and t = 1, . . . , T . These constraints are unnecessary for
the upgrade and downgrade variables. While technically correct, Eq. 8.29 is not
immediately helpful. It does not refer to the model parameters and it applies to
each individual time step. Using our model specification, we can simplify matters
as

cr,t ≤ cr+1,t , (8.30)

γrXt ≤ γr+1Xt,

(γr − γr+1)Xt ≤ 0,

for r = 1, . . . ,R − 1 and t = 1, . . . , T . This is modest progress, since we have
introduced the model parameters. We still have to manage these constraints for each
time step. Examination of Eq. 8.30 reveals, however, that if the values in Xt are
positive, we can exclude them. While it is not true that our macro-financial variables
are uniformly positive, they do generally take non-negative values. This suggests the
following proposed set of monotonicity constraints,

γk,r − γk,r+1 ≤ 0, (8.31)

39 Another popular choice of f is the cumulative distribution function for the normal distribution,
�. This would lead to the following model,

�−1(yt ) = �Xt + νt , (8.28)

which is called the probit transformation. Again, this specification is conceptually linked to probit
regression, but is not quite the same thing. A variant of this form will arise in the theoretically
motivated approach covered in the next section.
40 A bit of abuse of notation, in full transparency, has occurred since the structure of νt is not
quite the same in Eqs. 8.22 and 8.27; its basic interpretation as an error vector nonetheless does not
change.
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for k = 0, . . . , κ and r = 1, . . . ,R − 1. This leads to (κ + 1) × (R − 1) linear
parameter constraints. It is not a completely foolproof guarantee of monotonicity—
given the possibility of negative Xt outcomes—but it should typically provide
sensible results.

Pulling all of these elements together, the collection of model parameters linking
together our general credit conditions and explanatory macro-financial variables is
determined through the solution of the following optimization problem:

min
�

T
∑

t=1

(

f−1(yt )− �Xt

)T(

f−1(yt )− �Xt

)

︸ ︷︷ ︸

νTt νt

, (8.32)

subject to:

γk,r − γk,r+1 ≤ 0 for k = 0, . . . , κ and r = 1, . . . ,R − 1.

One is, of course, free to either apply f−1 to yt or f to each γkXt dot product.
Both are mathematically equivalent. The latter approach is practically preferable,
however, when using raw default-curve data. This is because applying logarithms to
zero-valued default incidences creates predictable numerical headaches.

Colour and Commentary 94 (A CENTRAL RELATIONSHIP): We have esta-
blished the set of key general credit condition variables and the macro-
financial factors intended to explain them. To institute a proper point-in-time
model, it is necessary to create a statistical link (or map) between these two
quantities. The obvious starting point is a linear model. More complex map-
pings are certainly possible. Linear models—despite their shortcomings—
offer a number of advantages: they are simple, robust (i.e., low variance),
and permit extensive statistical inference.a Given the interpretation of our
general credit condition variables as a probability—and their associated
restriction to the unit interval—direct application of the linear model eludes
us. This issue is, thankfully, resolved with a judicious transformation of
our explanatory variables. This final transformed linear expression also
readily permits the imposition of global monotonicity constraints to maintain
presumed economic relationships between our rating-level default values.
This general formulation will form the foundation of our first point-in-time
transition matrix model. Variations in possible implementation relate to the
choice of macro-financial factors and precisely how they enter into the model.

a Linear models do, however, exhibit higher levels of bias on the variance-bias trade-off.
See Hastie et al. [19] for more on this important concept.
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8.3.2 An Indirect Approach

In our legacy implementation, the macro-financial variables do not appear directly
in Eq. 8.27. Instead, they enter indirectly through a back-door route. They pass, in
fact, through the aggregate default rate, ct . It begins with the following transformed
linear model,

f−1(ct ) =
[

λ0 λ1 · · · λκ,
]

⎡

⎢

⎢

⎢

⎣

1
x1,t
...

xκ,t

⎤

⎥

⎥

⎥

⎦

+ εt , (8.33)

f−1(ct ) = λXt + εt ,

for t = 1, . . . , T where f−1 refers to the inverse of the logistic function.41 The
idea is that estimation algorithm works in two steps. First, the macro-financial
variables are linked to the aggregate default rate through Eq. 8.33 and λ. Then, for
a given realization of Xt , λXt is used to revise our original model from Eq. 8.27.
Re-arranging the dimensionality somewhat to make things fit together properly, we
can write this approach in a single expression as,
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⎦ , (8.34)

f−1(yt ) = �"Xt + νt .

In short, this is an alternative strategy to characterize the link between general
credit conditions and macro-financial outcomes. Instead of � ∈ R

(R+2)×(κ+1) as
our linear-projection matrix, we have instead �" ∈ R

(R+2)×(κ+1). It is nonetheless
important to note that" is estimated first—using Eq. 8.33—and then fixed when we
estimate �.

41 Although, as seen previously, other choices of f are entirely possible.
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While this might seem like an unnecessary complication, it does have some
advantages. It permits the direct introduction of aggregate credit conditions—which
is a useful response variable—into the process. It further introduces the idea of
a composite state variable. The quantity, λXt , is a linear combination—under
the logit transformation—of our macro-financial explanatory variables. Using the
aggregate credit rate, ct , is not so far (conceptually speaking) from the construction
of principal components or dynamic factors found in Stock and Watson [42]. Indeed,
the predicted result from Eq. 8.33 is referred to as a credit-cycle index.42

The credit-cycle approach also offers some potential reduction in the number of
actual model parameters to be estimated. Not true in the general implementation,
summarized in Eq. 8.34, it is possible in the specialized case of our legacy model.
In particular, Eq. 8.34 is represented in a slightly different fashion as,
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⎦ , (8.35)

f−1(yt) = �Xt (λ̂)+ νt .

In the general case, there are (κ + 1) non-zero " parameters and (R + 2) · (κ + 1)
parameters in �. In the restricted version from Eq. 8.35, the (κ + 1) parameters are
unchanged, but one only needs to estimate 2 · (R + 2) individual � coefficients.
The number of general model parameters increases multiplicatively in κ , whereas
in this specific model, it increases only linearly.43 The principal justification for
the restricted model version presented in Eq. 8.35—and, more broadly, the use of a
credit-cycle index—is to keep the numbers of model parameters under control.

Figure 8.11 displays the so-called credit-cycle index from Eq. 8.33. One—of
many—possible options are considered. We present the maximal model, which
involves setting κ = 10 and including all elements from our set of macro-financial
variables from Table 8.2. Figure 8.11 illustrates the in-sample fit associated with the
quarterly data from 1992 to 2021. The overall model seems to provide a generally
reasonable fit to the peaks and valleys observed in the aggregate default rates, but

42 The fact that the left-hand side default-curve variables—cr,t for r = 1, . . .R—are essentially a
kind of average of the aggregate default rate, ct , is something of a problem. It amounts, indirectly at
least, to including our independent variable into our set of explanatory factors. In statistical circles,
this might be considered—-if not a criminal act—a venial sin.
43 For R + 2 = 19 and κ = 10, which correspond to a fairly reasonable model size, the general
model requires 19 · 11 + 11 = 220 parameters. The restricted version, conversely, involves only
2 · 19 + 11 = 49 estimated coefficients.
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Fig. 8.11 Aggregate-level fit: This figure examines the visual consistency of the linear model of
aggregate default rates (i.e., ct ) introduced in Eq. 8.33. The maximal number of κ = 10 macro-
financial variables are included in the analysis.

Table 8.3 Aggregate model results: This table provides a range of detailed parametric- and
model-level summary statistics for the maximal implementation of Eq. 8.33. Although we
incorporate all variables from Table 8.2, not all of the variables are statistically significant in
this intermediate step. We are reluctant to exclude individual variables, at this stage, because they
may prove useful in the next step. This is nonetheless an important part of one’s variable-selection
process.

Maximal Model

Measure

Estimate –5.80 0.29 –0.79 –0.07 –0.01 –0.02 –0.02 0.01 0.68 0.26 0.01
Standard Error 0.34 0.11 0.35 0.23 0.02 0.04 0.01 0.02 0.60 0.21 0.02
t-Statistic –16.84 2.61 –2.23 –0.32 –0.89 –0.58 –1.11 0.43 1.14 1.25 0.48
p-Value 0.00 0.01 0.01 0.38 0.19 0.28 0.13 0.33 0.13 0.11 0.32

%71.0ESMR
%31.0EAM

R2 (Log-transformed space) 0.33
R2 56.0)ecapsdemrofsnart-noN(

it is far from perfect. In particular, it seems to understate some spikes and overstate
some of the lower default periods.

Table 8.3 provides a range of detailed parametric- and model-level summary
statistics for our implementation of Eq. 8.33. The parameter values themselves are
not terribly engaging, but the standard errors, t-statistics, and associated p-values
tell an interesting story. Only the constant, corporate-bond spread, and inflation-
rate parameters can be considered to be statistically significant at a 5% level. The
importance of the bond-spread could have been predicted from Fig. 8.10, where we
observe a linear correlation coefficient in excess of 0.8 between ct and ϕt .

It is thus disappointingly difficult to construct a robust statistical relationship
between the aggregate default rate and our full set of macro-financial variables. The
final four rows of Table 8.3 consider the overall model performance. Root-mean
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squared error (RMSE) and mean-absolute error (MAE), measures of goodness of fit,
show a reasonable degree of numerical agreement. TheR2 is reported under both the
logistic transformation and in raw default-curve space; along the latter dimension,
it attains a respectable value.

Equation 8.33—illustrated in Fig. 8.11 and Table 8.3—is unapologetically a
dimension-reduction technique. The idea is to project the κ = 10 macro-financial
variables into a single state variable: the credit-cycle index. As with any attempt
at dimension reduction, some information is lost. Most particularly, the influence
of various macro-financial variables on our full default credit curves is necessarily
diluted. One could potentially try to select only those statistically significant
contributors to the credit-cycle index, but this would lead to only a very small set
of explanatory variables. Moreover, it is unclear if these test statistics are really
entirely pertinent for our final application. This explains our reluctance to trim any
macro-financial explanatory variables at this step in the process.44

Understanding the limitations of our choice of dimension-reduction technique,
the next step involves the use of the credit-cycle index to estimate—under fixed
choices of λ—the individual � parameters. They are found as the solution to the
constrained optimization problem following from Eq. 8.35

min
�

T
∑

t=1

(

f−1(yt )− �Xt (λ̂)

)T(

f−1(yt)− �Xt (λ̂)

)

︸ ︷︷ ︸

νTt νt

, (8.36)

subject to:

γ0,r − γ0,r+1 ≤ 0 for r = 1, . . . ,R − 1,

γ1,r − γ1,r+1 ≤ 0 for r = 1, . . . ,R − 1.

There are 2 · (R + 2) (non-fixed) coefficients embedded in this problem, making
investigation of each individual parameter—and determination of significance—a
fairly tedious task. There are, however, some basic trends worth describing. The
results differ rather importantly depending on whether, or not, one uses raw or
fitted default-curve data. Using the raw default-curve data, the first three credit
classes have difficulty given the lack of data. The constant parameter is uniformly
significant, but the slope parameter on the credit-cycle index is only significant for
the two weakest credits. Moreover, the R2 values start from essentially zero and
increase inversely proportional to credit quality. The highest level is only about
0.2. If we use the fitted data, the results are moderately better. The overall fit is
vaguely superior and the four weakest credit-class slope coefficients are significant.
Moreover, it is possible to reasonably fit all credit categories within the default
curve.

44 Still, despite our failure to do so in this pedagogical discussion, some (at least, semi-formal)
process is required to identify the most useful subset of macro-financial variables.
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Fig. 8.12 Restricted � Parameters: These graphics illustrate the individual default-curve �

parameters from the solution of the restricted (and constrained) model presented in Eq. 8.36. Values
from use of raw and fitted default-curve data are provided.

Figure 8.12 illustrates the individual default-curve estimated � parameters
from Eq. 8.36. The left-hand graphic displays the intercept parameter (i.e., the
γ0,r ’s) results using both the raw and fitted default-curve data, whereas the right-
hand graphic illustrates the slope coefficients (i.e., the γ1,r ’s). Along with the
intercepts, to provide some perspective, are the average fitted and raw (logarithmic)
default curves. The similarities between these two quantities are striking; we can
correspondingly conclude that the intercept essentially plays the role of the through-
the-cycle default probability term structure. The slope coefficients, modified by the
credit-cycle index from Eq. 8.33, thus manage the point-in-time adjustments. Using
the fitted curves, the slope coefficients increase smoothly over the credit spectrum
suggesting that the credit-cycle index becomes more important with decreasing
credit quality. A similar pattern is evident for the estimates derived using the raw
credit-curve data, but it essentially follows a kind of step function.45

Although it is not a direct consequence of the model structure, the empirical
results shown in Fig. 8.12 suggest the following (rather appealing) logical decom-
position of our statistical model:

f−1(yt ) ≈
Equation 8.35

︷ ︸︸ ︷

�0
︸︷︷︸

Through-
the-

cycle

+�1Xt(λ̂)
︸ ︷︷ ︸

Point-
in-

time

, (8.37)

where �0 and �1 represent the first and second columns of our � parameter matrix,
respectively. Quite sensibly, the through-the-cycle aspect is fixed across all time

45 This is almost certainly a consequence of the monotonicity constraints in Eq. 8.36 and the
dominance of speculative-grade defaults highlighted in Figs. 8.4 and 8.5.
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Fig. 8.13 Class-level fit: The adjacent graphics provide—in logarithmic space, to permit
interpretation—the estimated quarterly default curves from 1992 to early 2021. Both constrained
and unconstrained values using the raw and fitted default curves are included.

periods, whereas the point-in-time contribution varies with our credit-cycle index.
A similar form, albeit through intentional construction, will arise in our second
theoretical-motivated approach addressed in the following section.

It is also useful to investigate the importance of the parameter monotonicity
constraints. Figure 8.12 clearly illustrates that all γ0 and γ1 are—as required
by Eq. 8.36—weakly increasing functions of r . What precisely does this mean,
however, for default-curve estimates? Figure 8.13 attempts to answer this question in
four separate graphics. The left-hand quadrants display the default-curve estimates
associated with an unconstrained implementation of Eq. 8.36 using raw and fitted
data, respectively. To permit visual examination, the usual logarithmic scale is
employed. For the most part, predicted category level default rates are distinct, non-
overlapping and monotone. At the upper end of the credit scale there are a few
cases—when employing the raw data—where monotonicity is violated. The two
right-hand quadrants of Fig. 8.13 are a copy of the left-hand side with one important
difference: the constraints are imposed. We clearly observe how the imposition of
constraints ensures distinct and non-overlapping time evolution of individual credit-
rating default rates. The constraints thus not only appear to be doing their job, they
can be deemed useful.

Equally interesting in Fig. 8.13 is the difference between the two upper and
lower quadrants. This reflects the impact of using raw or fitted default-curve data.
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Table 8.4 Upgrade and
downgrade results: This table
provides a list of parametric-
and model-level summary
statistics for upgrade and
downgrade proportion
estimates embedded in
Eq. 8.35. Neither appear to be
particularly well explained by
our credit-cycle index.

Measure Upgrade Downgrade

γ0 γ1 γ0 γ1

Estimate −1.44 −192.19 −2.35 139.82

Standard error 0.09 20.84 0.08 18.18

t-statistic −16.09 −9.22 −30.02 7.69

p-value 0.00 0.00 0.00 0.00

RMSE 5.97% 5.67%

MAE 3.19% 4.03%

R2 0.11 0.49

In the two northernmost quadrants, the highest quality credit classes—Aaa to
Aa2—exhibit no variability. The default curves associated with the fitted values,
conversely, produce time-varying estimates for all credit classes. Most strikingly,
during the great financial crisis, the two datasets produce contradictory results.
The raw data suggests that all credit classes move (mostly) in tandem. The fitted
data, in contrast, appears to predict a deviation between investment and speculative
grade credits. Speculative-grade default incidence increases, but the highest credit
categories rise only slightly; this would appear to be a consequence of the step-
function form of the slope coefficients displayed in Fig. 8.12. This point is worth
remarking and reflecting upon, since it has important implications for one’s ultimate
point-in-time probability model.

We may now turn our attention to the final two aspects of our categorization of
general credit conditions: upgrade and downgrade incidences. Table 8.4 chronicles
a number of parametric- and model-level summary statistics for the upgrade and
downgrade proportion estimates embedded in Eq. 8.35 and 8.36. Neither appear to
be particularly well explained by our credit-cycle index; in both cases, however, all
estimated parameters are statistically significant. The R2 value is not unreasonable
for downgrades, but is quite low on the upgrade side. The prediction errors are—in
both settings—also somewhat underwhelming.

To summarize, our first point-in-time model is a restricted version of the
general linear model in Eq. 8.22. Equation 8.33 is used to construct a composite
macro-financial variable entitled the credit-cycle index. Conditioning on this value,
Eq. 8.35 proceeds to link this composite index (in a dimension-reduced manner)
to our desired response variables. Two practical questions arise in this setting and
remain outstanding. First, what set of explanatory variables should be employed?
Second, is it preferable to use raw or fitted default-curve data in our response
variable set? Neither are particularly easy to address and are left somewhat open.
While important—due to their complexity, trial-and-error nature, and the role of
one’s specific objectives—they are not well-suited for discussion in a textbook
setting.
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Colour and Commentary 95 (A RESTRICTED MODEL): The general lin-
ear model—linking our general credit-condition response variables and our
macro-financial explanatory factors—is rather high-dimensional. Even with
three decades of quarterly data, the sheer number of associated model
parameters makes robust practical implementation a serious challenge. The
legacy NIB model thus employs a statistical twist to make the situation
more manageable. It operates in two steps. First, it uses the aggregate
default rate to construct a composite measure of general macro-financial
conditions. This linear combination of our explanatory variables—under
a logit transformation—is referred to as the credit-cycle index. This is
basically a dimension-reduction trick, which inevitably involves some loss
of information. In the second step, each response variable from our general
credit condition vector is then linked to this single composite macro-financial
variable. Practically, the intercept in this model (roughly) captures the
through-the-cycle component, while the slope coefficient (and the credit-
cycle index) incorporate the point-in-time aspect. The key advantage of
this—admittedly circuitous approach—is a dramatic reduction in the number
of model parameters. On the down side, however, the statistical power of
the credit-cycle index for explaining our response variables appears to be
somewhat limited.

8.3.3 An Alternative Formulation

The general model from Eq. 8.22 is unavailable for practical use by virtue of its
(excessive) parameter dimensionality. The restricted approach, discussed in the
previous section, makes a valiant effort towards resolving this challenge. There are,
however, alternative techniques that one might employ to address this problem.
One promising avenue, which we will explore and consider, follows from the
interest-rate literature. A combination of the work of Litterman and Scheinkman
[31], Nelson and Siegel [35], and Diebold and Li [12] has led to a rich array of
low-dimensional yield-curve models cleverly circumventing a very similar issue.46

Although there are good reasons to expect an analogous approach to be less effective
in the default curve environment, it nonetheless merits consideration.

The core idea is to construct a lower dimensional set of response variables. In
particular, we might replace our R default-curve variables with their three time-
indexed ζt fitting variables from Fig. 8.9. This was, in fact, the principal objective

46 One should also mention the important influence of Vasicek [43] towards the general develop-
ment of dynamic yield-curve models.
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of our efforts towards building a default-curve model. We denote this new response
vector as zt ∈ R

J×1. This permits us to rewrite Eq. 8.22 as follows,

⎡

⎢
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⎦ , (8.38)

zt = �zXt + νt ,

for t = 1, . . . , T , where �z ∈ R
J×(κ+1) is a matrix of model parameters linking

general credit conditions with our explanatory variables, and νt ∈ R
J×1 is an error

vector. The fundamental difference is between zt and yt . Given that J � R, the
number of parameters in �z become significantly more manageable. In our case,
for example, κ = 10—and given J = 5—Eq. 8.38 gives rise to 55 parameters for
estimation.47 The implementation of the restricted model in the previous section
actually, if we recall, requires 49 parameters. The parametric burden is thus roughly
equivalent in these two approaches.48

zt needs, however, to transformed into yt so that it can actually be employed in
our framework. This effort has already been resolved in our previous analysis. In
particular,

yt = g(zt ), (8.39)

where the specific form of g is simply,

yi,t =

⎧

⎪
⎨

⎪
⎩

e
z1,t+z2,t i+z3,t sin

(

i
ω

)

: i = 1, . . . ,R
z4,t : i = R + 1
z5,t : i = R + 2

, (8.40)

which follows directly from Eq. 8.14. In other words, our default-curve mapping
permits us to almost effortlessly move between the first three values of zt and the
predicted default curves.

While this is a pleasant idea, it remains to be seen if—at least, in principle—
it actually works. To permit a reasonable comparison to the restricted model

47 Since � has J · (κ + 1) individual entries, J = 5, and κ = 10, then the total parameters are
simply 5 · (10 + 1) = 55.
48 We have also dispensed with the logistic transformation in Eq. 8.38. Practically, it is no longer
possible (or necessary) since the ζ parameters—as illustrated in Fig. 8.9—may take both positive
and negative values.
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Table 8.5 Alternative-model results: This table provides the p-values and overall R2 statistics for
the J regression estimates stemming from our alternative, low-dimensional, model formulation
presented in Eq. 8.38. The entire set of macro-financial variables was employed. Parameter
estimates significant at more than the 5% level are highlighted in blue.

Quantity

introduced in the previous section, we keep κ = 10 and include the entire set of
macro-financial variables in our implementation of Eq. 8.38. The coefficients are
readily estimated by minimizing

∑t
t=1 v

T
t vt with no monotonicity constraints.49

Table 8.5 provides a selection of key results helping us assess parameter
significance and overall model fit. In all cases, save the downgrade proportion, the
constant term is strongly significant. Otherwise, just a handful of parameters exhibit
statistical significance across the range of macro-financial variables; this situation
does appear somewhat, although not dramatically, better than in Table 8.3. While
there is some value in linking our response vector directly to the macro-financial
explanatory variables, we should not overstate the benefits of this structure. The
overall model fit is also not terribly encouraging. The R2 of the first and second
default-curve state variables is quite weak, but the important second variable falls
in the neighbourhood of 0.4. The upgrade R2 result is not much better; only the
downgrade series exhibits a strong overall model fit.

When examining Table 8.5, we might conversely argue against overstating
the importance of any individual parameter. Various constellations of our macro-
financial variables are being combined to describe our low-dimension representation
of each individual default curve. Similar to typically rather parameter-heavy vector-
autoregressive models, statistical inference on model parameters might not prove
terribly helpful; we should alternatively allow it to operate as a general system.

49 This means that each row of Eq. 8.38 may be independently estimated with the classic analytic
least-squares estimator.
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Fig. 8.14 Revised class-level fit: This figure provides the predicted default curve outcomes,
presented on a logarithmic scale, associated with our alternative legacy model representation from
Table 8.5.

Analogous to our previous construction in Eq. 8.37, a similar logical decomposition
is possible:

zt ≈

Equation 8.38
︷ ︸︸ ︷
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time

, (8.41)

where, as before, �z,0 and �z,X represent the first and remaining columns of
our �z parameter matrix, respectively. The key question is: does our system of
macro-financial parameters provide a meaningful categorization of general credit
conditions?

To allow some insight into this question, Fig. 8.14 provides the usual predicted
default curve outcomes presented on a logarithmic scale. Each curve is distinct,
non-overlapping, and monotone along the credit spectrum. Interestingly, this was
achieved without the imposition of any parametric constraints. Figure 8.14 natu-
rally invites comparison to Fig. 8.13. Overall, the alternative model outcomes are
noisier and more cyclical than the restricted-model equivalents. In Fig. 8.13, to be
more concrete, the only significant event appears to occur during 2008 to 2010.
Figure 8.14 indicates the presence of more complex dynamics; from this viewpoint,
our parametric system from Table 8.5 seems more realistic. Most particularly, as
suggested by Fig. 8.8, high-quality credit default rates are much more volatile.50

50 This presumably comes from the implicit extrapolation of these values in the default-curve fitting
algorithm.
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Which is the most appropriate specification, of course, requires reflection and
comparison with one’s stress-testing objectives. We may nonetheless cautiously
conclude that the alternative model specification in Eq. 8.38 holds some promise.

Colour and Commentary 96 (AN ALTERNATIVE RESTRICTED MODEL):
There are other possible avenues to address the inherent parametric dimen-
sionality embedded in our general linear model mapping between credit
conditions and macro-financial factors. One, in particular, follows directly
from the work of Litterman and Scheinkman [31], Nelson and Siegel [35],
and Diebold and Li [12] in the interest-rate literature. Applying these ideas
to our setting involves using our ζt fitting parameters as a low-dimensional
representation of the default curve. This allows us—within the context of the
minimal implementation of the restricted model—to cut the total number of
parameters by a factor of three. Moreover, it allows direct use of macro-
financial variables and permits elimination of the monotonicity constraints.
In principle, this involves less loss of information relative to the restricted
linear model presented in the previous section. Implementation of this model
reveals (at times) encouraging levels of parameter significance and interesting
default-curve dynamics. On the down side, the overall model fit is not particu-
larly impressive. It also depends rather importantly—by construction—on the
defensibility of the default-curve fitting algorithm.

8.3.4 A Short Aside

Our various implementations of the general linear model—in Eq. 8.22—have
been skirting around a fundamental statistical structure: the state-space model.51

This idea, which originated in physics and engineering, specifies a structural
relationship—within a dynamic system—between a set of observed outcomes and
set of (often unobserved or latent) state variables. Typically, these two levels are
motivated by some set of underlying physical linkages.52 The key point, however,
is that a state-space formulation is a convenient, and powerful, description of a
set of response values—such as general credit conditions—as a function of some

51 There are many useful sources regarding state-space models. Two excellent starting points are
Kim and Nelson [27] and Hamilton [17, Chapter 13].
52 These often take the form of a set of differential (or difference) equations driven by theory or
observation.
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collection of underlying state (i.e., macro-financial) variables. In short, it closely
matches with our modelling objectives.53

The state-space representation begins with the so-called measurement equation.
This describes the observable quantities as a function of the underlying state
variables. Specializing it to our situation, we have
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zt = A+HXt + νt ,

where zt is defined as in Eq. 8.38, A ∈ R
J×1, H ∈ R

J×κ , and Xt ∈ R
κ×1. This

looks suspiciously like Eq. 8.38; indeed, the only real difference relates to pulling
out the constant term from the �z matrix.

The key difference in the state-space model, with our development so far, relates
to the second state, or transition, equation. In our case, it might be written as,
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Xt = C + FXt−1 + ηt ,

where C ∈ R
κ×1, F ∈ R

κ×κ , and ηt ∈ R
κ×1. Practically, Eq. 8.43 amounts to a

vector auto-regression specification of our system of macro-financial explanatory
variables.54 The benefits of this choice are, at least, threefold. First, one can extend
the definition of Xt to include both observable macro-financial variables and latent
unobservable factors. This lends greater flexibility to the model. The specification of
the structure of the H and F matrices also allows for imposition of key constraints
and interactions. The second benefit is the parameters embedded in Eqs. 8.42 and
8.43 can be estimated via a recursive technique referred to as the Kalman filter.55

Finally, and perhaps most importantly, the dynamic interactions of the macro-
financial state variables can help inform the measurement equation parameters.

The state-space representation may, or may not, prove helpful in this setting. It
has, however, been prowling beneath the surface of our general linear model and

53 This structure has also been profitably used in the interest-rate literature. See James and Webber
[23, Chapter 18] and Bolder [4]—as well as the many sources found in these works—for more
detail.
54 For more detail on this popular time-series model, see Hamilton [17, Chapter 11] or Judge et al.
[26, Section 12.3]. We will also work extensively with auto-regressive models—within the context
of stress-testing analysis—in Chap. 12.
55 Harvey [18] is the inevitable starting point for all matters related to this statistical technique.
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the two associated specialized cases analyzed in previous sections. In any event, a
serious investigation of the proposed alternative version of our legacy point-in-time
model probably merits further consideration of the state-space form.

Colour and Commentary 97 (THE STATE-SPACE REPRESENTATION):
Our general linear model linking credit conditions and macro-financial
factors is not as broadly defined as we have believed. With a modest effort,
it can be written in more general state-space formulation. This powerful
description of a dynamic system—founded in the physical sciences—
offers conceptual and practical analytic advantages in terms of model
communication, estimation, and implementation. The state-space form
consists of two dynamic equations. The first, measurement equation,
basically corresponds to our general linear model. The second, so-called
state equation, introduces a dynamic description of our set of macro-financial
explanatory variables. It also opens the door to extension of our explanatory
variables to include latent, or unobserved, factors. Irrespective of whether
or not this state-space form is exploited, it is nonetheless important to
understand that—like it or not—it underlies our general linear formulation.

8.3.5 Building a Point-in-Time Transition Matrix

The information in yt or zt—or simple transformations thereof—represents the
general credit conditions central to the construction our time-varying transition
matrices. As desired from the outset, these values are a function of some set of
underlying macro-financial variables. This linkage can be built in a number of
different ways: the composite credit-cycle index, a direct linear function of the
macro-financial state variables, or through a reduced-form state space model.56

These model choices matter since they have an impact as to how predicted macro-
financial-variable shocks manifest themselves into general credit conditions and,
subsequently, into our default and transition probabilities. The default probabilities
essentially fall directly from our previous development. Getting to a full-blown
transition matrix requires a bit more dirty work. The good news is that—given
perturbed general credit conditions—our proposed mechanics for building future
transition matrices are the same across all of our previously described restricted
linear models falling into the empirically motivated approach.

Our vector of credit-condition response variables has R + 2 entries: R default-
curve values in addition to the upgrade and downgrade percentages. A transition

56 There are simply the three possibilities identified in previous sections; many other choices are
possible.
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matrix, by contrast, has (R + 1) × (R + 1) individual elements. The final row—
relating to the absorbing default state—is completely determined. The consequence
is that, practically, only R × (R + 1) transition-matrix entries need to be actively
determined.57 To be very concrete about our task, therefore, we seek a mapping of
the form,

h : RR+2 → R
(R+1)×(R+1), (8.44)

h : yt → Pt ,

where we will use the abbreviated notation Pt ≡ Pt (yt ) ≡ Pt (f (Xt)) to describe
our target value. The important point is that—as desired from the beginning of this
chapter—Pt is time varying and a function of our macro-financial state variables.

Not any choice of h will do. There are a number of restrictions that we would
like (or need) to impose. Some are logical, but most are required to ensure that Pt is
a proper transition matrix. These include:

1. each individual element of Pt must fall in the unit interval;
2. each row of Pt must sum to unity;
3. the majority of probability mass should fall into the diagonal elements;
4. none of the entries in Pt may take a zero value, although individual values can

be vanishingly small;
5. the default probabilities in Pt must be consistent with the default-curve estimates

in yt ; and
6. the proportion of upgrade and downgrade probability mass in each row of Pt is

compelled to be compatible with the ut and dt values found in yt .

The challenge is thus to identify a reasonable mapping function, h, that respects
these six conceptual restrictions.

The Role of P

Central to this endeavour is the through-the-cycle transition matrix, P , introduced
and estimated in the previous chapter. Both objects are, after all, transition matrices.
The crucial difference between P and Pt relates to information. P has no specific
knowledge of current macro-financial activities—beyond their long-term average
values—whereas Pt does. Most importantly, the two matrices are related as follows:

lim
s→∞Pt+s → P. (8.45)

Despite the formalism of Eq. 8.45, this is not a mathematical result, but rather an
economic statement. Anchored at time t , moving forward our time horizon—as

57 This, admittedly, does not materially help our situation, but every little bit of structure helps.
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described by s—naturally involves a decay in the value of information. A one-year
macro-financial prediction is already somewhat challenging; at a five- or seven-
year horizon, the views of even the most seasoned economic forecaster become
highly speculative. After a sufficient passage of time, our scenarios must thus
logically converge to the unconditional, through-the-cycle estimator. This insight
has important implications for our construction of long-term loan-impairment
estimates. It also suggests—given the intertwined nature of P and Pt—that the
through-the-cycle estimator can prove helpful in the specification of our mapping
function, h. With this in mind, it would be more appropriate to write Eq. 8.44 as,

Pt = h

(

yt , P

)

≡ h

(

f (Xt), P

)

, (8.46)

to explicitly reflect the role of the through-the-cycle transition matrix in this process.
It is precisely for this reason that one speaks of a through-the-cycle to point-in-time
transformation.

Upgrades and Downgrades

Another critical part of this mapping relates to the management of upgrade and
downgrade probabilities. The actual probability of upgrade or downgrade is directly
difficult to use. Instead, it is useful to compare the time t upgrade or downgrade
proportion relative to the long-term average. We thus define the following two
quantities

Ut = ut
1
T

∑T
i=1 ui

≡ ut

ū
, (8.47)

and

Dt = dt
1
T

∑T
i=1 di

≡ dt

d̄
, (8.48)

for t = 1, . . . , T . The are referred to as the upgrade and downgrade multipliers,
respectively. On average, by construction, both Eqs. 8.47 and 8.48 are both equal
to one. Their actual level, therefore, describes—for a given point in time—the
multiplicative deviation from average conditions. A value of Dt = 1.5, for example,
indicates that downgrades are 50% more likely than one would expect over the
long term. These two simple transformations of elements of our response-variable
vector, yt , turn out to be quite useful. Figure 8.15 illustrates the evolution of these
multipliers over our analysis horizon. Literally by definition, these two variables
move in opposite directions.
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Fig. 8.15 Upgrade and downgrade ratios: The upgrade and downgrade multipliers—illustrated
over our data sample from 1992—were estimated using Eqs. 8.47 and 8.48. Given their contradic-
tory nature, it is not surprising to observe that they are strongly negatively correlated.

Building h

We now have all the necessary ingredients and background for the construction
of h. It, unfortunately, does not possess a convenient functional form, but instead
manifests itself as a four-step algorithm. In the first step, we initialize an empty
matrix of dimensions (R + 1)× (R + 1) with zeros. That is,

Pt (r, j) = 0, (8.49)

for r, j = 1, . . . ,R+ 1. This is the object that we seek to populate. The second step
concerns itself with the off-diagonal elements of the first R rows. These are defined
as,

Pt (r, j) =
⎧

⎨

⎩

yr,t : j = R+ 1 (Default case)
Ut · P(r, j) : j > r (Upgrade case)
Dt · P(r, j) : j < r (Downgrade case)

, (8.50)

for r = 1, . . . ,R and j = 1, . . . ,R + 1. This requires a bit of unpacking. Three
things are happening. The default probabilities of Pt are, first of all, inherited
directly from the default-curve entries in yt ; this underscores how these quantities
fall directly out of the base model. Second, the amount of through-the-cycle upgrade
and downgrade probability mass is scaled by our multipliers defined in Eqs. 8.47
and 8.48. This treatment impacts all credit classes in the same manner.58 How
specifically this scaled probability mass is distributed, as a final point, is determined
by the through-the-cycle transition probabilities.

58 A higher dimensional model—at the cost of more parameters and more complexity—might
attempt to model the upgrade and downgrade probabilities at the credit-rating level.
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The third step handles the diagonal elements of Pt . These entries capture the
probability of staying put in a given rating class and are simply determined as the
residual amount required for each row to sum to unity. More technically,

Pt (r, r) = 1 −
R+1
∑

j=1
︸︷︷︸

j �=r

Pt (r, j) (8.51)

for r = 1, . . . ,R. There is little economic intuition in this step; it is determined
entirely by balance constraints associated with the transition-matrix from. Finally,
in the fourth step, the default absorbing state is trivially imposed as,

Pt(R + 1,R+ 1) = 1. (8.52)

The final result is a legitimate point-in-time transition matrix whose structure is
determined by macro-financial conditions and the through-the-cycle estimator.

Figure 8.16 provides a schematic illustrating our four-step algorithm. In partic-
ular, it graphically demonstrates the through-the-cycle to point-in-time transforma-
tion for a stylized version of the Baa2 rating category during 2009. This specific
period, falling in the middle of the great financial crisis, was selected to demonstrate
an extreme point-in-time transformation. Upgrade probabilities are cut almost in
half, while there is a corresponding doubling of downgrade likelihood. Coupled
with a precipitous increase in default probabilities, the diagonal element falls by
about 5% points.

Colour and Commentary 98 (CONSTRUCTING POINT-IN-TIME TRANSI-
TION MATRICES): While the various empirically motivated approaches
essentially provide us with macro-financial-variable-informed (i.e., point-in-
time) default-probability estimates essentially for free, more work is required
to tease out a reasonably consistent associated point-in-time transition
matrix. There does not exist, regrettably, any unique approach towards
populating the entries of an (R+ 1)× (R× 1) transition matrix with a (low-
dimensional) vector of response variables. Instead, the link must rely upon
economic common sense and lean upon the through-the-cycle estimator. Our
proposed approach, for this collection of empirically motivated models, is
a four-step algorithm with an equal number of corresponding fundamental
assumptions. Default probabilities are inherited from the default-curve esti-
mates embedded in yt , upgrade and downgrade probability scaling factors
are shared across all rating categories, the distribution of upgrade and
downgrade probability mass are informed by the through-the-cycle matrix,
and the diagonal elements are computed as a residual ensuring each row
sums to one. Each of these basic assumptions can rightly be questioned, but

(continued)
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Colour and Commentary 98 (continued)
potential improvement necessitates increasing the complexity of our (already
somewhat unwieldy) general credit-condition factors.

8.4 A Theoretically Motivated Approach

The empirically motivated approach offers a concrete, workable—if, at times, rather
heuristic—recipe for constructing a logical link between the through-the-cycle
and point-in-time perspectives. The principal characters are a collection of macro-
financial parameters on the one hand and a panel data set of corporate credit curves
on the other. In this section, employing the same basic inputs, we will examine
a more theoretically motivated approach towards building a through-the-cycle and
point-in-time connection. In doing so, we will also borrow more heavily from the
extant literature in this area.

Yang [49], in particular, offers a pathway to another, quite clever and interesting,
approach to the problem of linking default (and migration) probabilities to macro-
financial variables.59 In the end, it turns out to be closely conceptually related to the
previously considered models; both approaches, after all, address the same question
with the same basic inputs. Its key advantage, however, is that it builds on the
fundamental ideas from Merton [33], which have motivated our economic-capital
framework (as well as many others) extensively discussed in previous chapters. Such
consistency is valuable. A second key strength is a clear distinction, within a united
framework, between the point-in-time and through-the-cycle perspectives.

Yang [49]’s approach is predicated on the idea of the forward default probability;
by this, he is referring to what we describe in Chap. 7 as the conditional marginal
(or forward) probability of default. In principle, there is nothing stopping him
from working with cumulative or unconditional marginal (or forward) default
probabilities; these are essentially different ways to express the same thing.60

More generally, the model intends to describe the full term structure of default
probabilities. While a laudable and sensible idea, it is practically very difficult
to directly estimate. It essentially requires a time-indexed history of these term
structures; such an object either does not exist or is so sparse as to be of little use.
We will, however, borrow the kernel of Yang [49]’s approach for our purposes. At
first we will put aside the forward perspective and consider the contemporaneous
relationship between default incidence and our macro-financial variables. Once

59 Related work by the same author also includes Yang [48] and Wu et al. [47]; Miu and Ozdemir
[34] also looks to be a motivating influence in their work. We will borrow a number of ideas from
each of these helpful publications.
60 In other words, once you specify one of these quantities, it is straightforward to derive the others.
These relationships are detailed in Chap. 7.
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we’ve built this structure, we will then reintroduce the term structure of default
probabilities from the (clearly distinguished) through-the-cycle and point-in-time
perspectives. This will then allow us to confidently look forward and describe future
(macro-financial-based) stress scenarios.

8.4.1 Familiar Terrain

Yang [49]’s model builds on the familiar Gaussian threshold model introduced by
Merton [33]. Let us begin with a re-definition of the classic Gaussian latent state
variable as

zi(t) = √
ρis(t)

︸ ︷︷ ︸

Systemic

+√1 − ρiεi(t)
︸ ︷︷ ︸

Idiosyncratic

∼ N(0, 1), (8.53)

for t > 0, i = 1, . . . ,R credit-rating categories, and ρi ∈ (0, 1).61 We interpret the
s(t) as the global or systemic state variable, whereas {εi(t)}i=1,...,R represents the
set of idiosyncratic components. We explicitly include the current point of time, t ,
to underscore the importance of the evolution of s(t).

Also consistent with the practical implementation of the Gaussian threshold
model—see, for example, Vasicek [44, 45, 46]—there exists a collection of thresh-
old values

{

bi(t) : i = 1, . . . ,R
}

, (8.54)

where default occurs if

zi(t) ≤ bi(t), (8.55)

for i = 1, . . . ,R credit-rating classes. Over a one-period time horizon, the value of
bi(t) is typically calibrated to the one-period unconditional default probability or
pi(t). In this case, we might set

P

⎛

⎜

⎝zi(t) ≤ bi(t)
︸ ︷︷ ︸

Equation 8.55

⎞

⎟

⎠ = pi(t), (8.56)

�(bi(t)) = pi(t),

bi(t) = �−1(pi(t)).

61 More generally, the i index should apply at the risk-owner or firm level. This analysis needs,
however, to operate for individual credit ratings. We can thus think of the ith latent variable as a
representative firm from the ith rating class.
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In the economic-capital setting, pi(t) ≡ pi is time-homogeneous. In later discus-
sion, we will explore a more general notion of bi(t) that nests this definition, but
also captures time non-homogeneity. For the moment, for reasons that will become
clear later in our investigation, we will simply use the general definition of bi(t).

This permits us to define the familiar conditional default probability as,

pi,s(t) = P

(

zi(t) ≤ bi(t)

∣

∣

∣

∣
s(t)

)

, (8.57)

= P

⎛

⎜

⎝

√
ρis(t)+

√

1 − ρiεi(t)
︸ ︷︷ ︸

Equation 8.53

≤ bi(t)

∣

∣

∣

∣

∣

∣

∣

s(t)

⎞

⎟

⎠ ,

= P

(

εi(t) ≤ bi(t)−√
ρis(t)√

1 − ρi

∣

∣

∣

∣
s(t)

)

,

= �

(

bi(t)−√
ρis(t)√

1 − ρi

)

.

This is another classical quantity in the threshold-model setting. It is, in fact, the
mechanism for the creation of default correlation.

To reduce the clutter, Yang [49]’s defines

ri =
√
ρi√

1 − ρi
. (8.58)

With a bit of algebra, we can show that ρi = r2
i

1+r2
i

and
√

1 + r2
i = 1√

1−ρi . Using

these results, we arrive at a new presentation of the conditional default probability
from Eq. 8.57 as

pi,s(t) = �

(
√

1 + r2
i bi(t)− ris(t)

)

. (8.59)

So far, other than slightly different notation, there is nothing particularly new. At this
point, furnished with this necessary background, the unique development begins.

8.4.2 Yang [49]’s Contribution

The essence of Yang [49]’s model is the role of conditionality.62 The idea is that
pi,s(t) denotes the point-in-time perspective. This makes sense, since it depends

62 This point is perhaps best expressed in an early work, Yang [48].
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upon the outcome of the systemic factor, s. To recover the through-the-cycle
perspective, one needs to average over all possible outcomes of the systemic
variable. That is, the through-the-cycle default probability is

pi(t) = E

(

pi,s(t)

)

=
∫

pi,s(t)fs (x)dx, (8.60)

where fs(·) denotes the density function of the systemic variable, s. This is the
unconditional default probability; we have no knowledge of the systemic variable’s
outcome. The idea is that one can use the expectation operator to toggle back
and forth between the point-in-time and through-the-cycle default probabilities.63

In an economic-capital setting, Eq. 8.59 is mostly a modelling mechanism that
focuses on the interaction between systemic and idiosyncratic sources of risk. For
stress-testing and loan-impairment computations, however, the accent is principally
on managing the interaction between the through-the-cycle and point-in-time
perspectives. Equation 8.60, while conceptually helpful, is not yet in a form that we
can sensibly use for our purposes. Yang [49]’s main contribution involves building
a structure to help in this regard.

This takes a few steps. First of all, the systemic variable is somewhat coarsely
defined for our needs. To solve this shortcoming, a credit-condition index is
introduced as

C(Xt) =
κ
∑

k=1

akXk,t , (8.61)

where X1,t , · · · ,Xκ,t is our collection of κ macro-financial scenarios.64 Yang
[49]’s credit-condition index is thus simply a (familiar) linear combination of a
set of explanatory variables. This is certainly not dissimilar to Eq. 8.33 used in the
previous approach.

Equation 8.61 is then used to provide a more nuanced definition of the systemic
variable,

s(t) = −

⎛

⎜

⎜

⎜

⎜

⎝

λ

κ
∑

k=1

akXk,t

︸ ︷︷ ︸

C(Xt )

+
√

1 − λ2ξ

⎞

⎟

⎟

⎟

⎟

⎠

, (8.62)

63 Although to practically do this, one needs quite a bit of information: a clear description of the
point-in-time default probability and the distributional characteristics of the systemic risk factor.
64 Yang [49]’s development incorporates the normalization of the macro-financial state variables.
While certainly practically important, and used in our implementation, such details add little to our
conceptual understanding of the model.
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where λ ∈ (0, 1) and ξ ∼ N(0, 1) is independent of the Xt variables. The
systemic factor is thus, itself, a combination of the macro-financial variables and
an idiosyncratic component (i.e., ξ ). The λ coefficient essentially determines the
relative importance of these two pieces. This is basically a trick to move from a
one-dimensional source of systemic risk to a multi-factor setting.

Plugging this definition back into our conditional default probability from
Eq. 8.59—and slightly adjusting the notion to reflect the dependence on our vector
of macro-financial variables rather than the scalar, s—we have

pi,X(t) =

Equation 8.59
︷ ︸︸ ︷

�

⎛

⎜

⎜

⎝

√

1 + r2
i bi(t)− ri

⎛

⎜

⎜

⎝

−
(

λC(Xt)+
√

1 − λ2ξ
)

︸ ︷︷ ︸

Equation 8.62

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

, (8.63)

= �

(
√

1 + r2
i bi(t)+ riλC(Xt )+ ri

√

1 − λ2ξ

)

.

The result is a fairly ugly link to a broad set of components: the default threshold,
the macro-financial variables, and a source of idiosyncratic systemic risk, ξ .

If we are to avoid Eq. 8.63 from becoming a dead-end, we need find a defensible
way to eliminate ξ , the idiosyncratic component of the systemic variable. This
can, fortunately, be achieved by exploiting an interesting property of the Gaussian
distribution. Yang [49] pinched this trick from Rosen and Saunders [38], who in
turn borrowed it from Kreinin and Nagi [29]. Let’s first examine it in a generic
setting. Define Z ∼ N(0, 1) and a, b ∈ R. The idea is to take the expectation of the
cumulative distribution function of a + bZ. With a bit of work—which is mostly
definitional—we can reveal a surprisingly elegant form. In particular,

E

(

�(a + bZ)

∣

∣

∣

∣
Z

)

= E

(

P(X ≤ a + bZ)

∣

∣

∣

∣
Z

)

, (8.64)

= E

(

E
(

I{X≤a+bZ}
)

∣

∣

∣

∣
Z

)

,

= E

(

E
(

I{X−bZ≤a}
∣

∣Z
)

)

︸ ︷︷ ︸

By the law of
iterated expectations

,

= E

(

I{X−bZ≤a}
)

.
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At this point, observing that X and Z are independent, we take note that X − bZ ∼
N(0, 1 + b2). Exploiting this fact, we can further simplify our previous expression
as,

E
(

�(a + bZ)

)

= E

(

I{
X−bZ√

1+b2
≤ a√

1+b2

}

)

, (8.65)

= P

(

X − bZ√
1 + b2

≤ a√
1 + b2

)

,

= �

(

a√
1 + b2

)

.

This result turns out to be quite handy.
This property of the Gaussian distribution is particularly useful in evaluating

the conditional expectation of pi,X(t) given the idiosyncratic component of the
systemic risk defined in Eq. 8.62, ξ . More specifically, ξ plays the role of Z,

a =
√

1 − r2
i bi(t) + riλC(Xt), and b = ri

√
1 − λ2. The consequence for Eq. 8.63

is

pi(Xt) = E

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Equation 8.63
︷ ︸︸ ︷

�

⎛

⎜

⎝

√

1 + r2
i bi(t)+ riλC(Xt )

︸ ︷︷ ︸

a

+ ri

√

1 − λ2
︸ ︷︷ ︸

b

ξ
︸︷︷︸

Z

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (8.66)

= �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a
︷ ︸︸ ︷

√

1 + r2
i bi(t)+ riλC(Xt )

√

1 + r2
i (1 − λ2)

︸ ︷︷ ︸√
1+b2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

= �

⎛

⎝

√

1 + r2
i

√

1 + r2
i (1 − λ2)

bi(t)+ riλ
√

1 + r2
i (1 − λ2)

C(Xt)

⎞

⎠ .

Once again, there is a slight shift in notation.pi(Xt) denotes the (one-period) default
probability of the ith credit class at time t given the Xt macro-financial vector
outcome—this is the only remaining source of uncertainty. pi,X(t) is the same
conceptual quantity, but it includes the awkward ξ variable. This distinction is a
subtle, but very important element of Yang [49]’s approach.
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Our conditional default probability outcome is still a bit unwieldy. It can be
streamlined by defining r̃i = riλ

√

1+r2
i (1−λ2)

and recognizing—after a bit of algebra—

that
√

1 + r̃2
i =

√

1+r2
i

√

1+r2
i (1−λ2)

. The consequence is

pi(Xt ) = �

(
√

1 + r̃2
i bi(t)+ r̃iC(Xt)

)

. (8.67)

After a fair bit of development, we have arrived at a flavour of default probability
that is a combination of our default threshold, bi(t), and the credit-quality index,
C(Xt). This is the central result.

Particularly interesting about Eq. 8.67 is that this default-probability definition is
neither entirely based on the through-the-cycle nor the point-in-time perspective. It
is, in fact, a bit of both. Precisely how much, it turns out, depends on the choice of
r̃i . This is best understood by considering extreme values of this mixing parameter,
r̃i . Let’s begin with r̃i = 0. This yields,

pi(Xt) = �

(√

1 +��02bi(t)+����0 · C(Xt)

)

, (8.68)

= �(bi(t)) ,

= �

⎛

⎜

⎝�
−1(pi(t))

︸ ︷︷ ︸

Equation 8.56

⎞

⎟

⎠ ,

= pi(t).

In this case, we recover the one-period through-the-cycle default probability. A
value of r̃i = 0 thus nests the intuitive notion of the through-the-cycle perspective
as the average over all of the systemic outcomes; the point-in-time perspective
disappears.

What happens, however, if we move to the other extreme and set r̃i = 1? The
consequence is,

pi(Xt ) = �

(

√

1 + 12bi(t)+ 1 · C(Xt)

)

, (8.69)

= �

⎛

⎜

⎝

√
2 · bi(t)

︸ ︷︷ ︸

ai,0

+C(Xt)

⎞

⎟

⎠ ,

= �

(

ai,0 +
κ
∑

k=1

akXk

)

,

�−1 (pi(Xt )) = ai,0 +
κ
∑

k=1

akXk.
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In this case, the Yang [49] model can be viewed as a probit model of the default
rate for each credit class r = 1, . . . ,R. It is, in fact, a probit variation of the logit
implementation of the first step in the empirically motivated approach in Eq. 8.33.
What is slightly different is that the coefficients on the macro-financial variables are
common across all credit categories; it is only the intercept term that varies over this
dimension. Embedded in the Yang [49] model is thus an econometric specification
of the point-in-time default probability. The through-the-cycle perspective does not
(fully) disappear—it is embedded in our ai,0—but it definitely slips firmly into the
background.

Yang [49]’s proposed approach is thus essentially a pragmatic structure that, by
the choice of r̃i , allows the user to dial (or specify) the relative importance of both
the through-the-cycle and point-in-time perspectives. This logic allows us to re-write
the conditional probability of default—from Eq. 8.67—for the ith credit class given
Xt as

pi(Xt ) = �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

1 + r̃2
i bi(t)

︸ ︷︷ ︸

Through-the-
cycle component

+ r̃iC(Xt)
︸ ︷︷ ︸

Point-
in-time

component

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (8.70)

This idea already made an appearance in our previous discussion. In contrast to its
implicit form identified in the empirically motivated setting, here it arises explicitly.

Equation 8.70 is, it bears repeating, Yang [49]’s principal contribution. It
is a parsimonious, conceptually elegant, theoretically motivated, and pragmatic
description of the default probability as a combination of both through-the-cycle and
point-in-time perspectives. We will exploit this idea to build a practical link between
macro-financial shocks and the future term structure of default probabilities.

Colour and Commentary 99 (A THEORETICAL STRUCTURE): Exploiting
the basic structure of Merton [33]’s threshold model along with a few clever
twists, Yang [49] offers a description of the contemporaneous (conditional)
default probability as an explicit combination of the through-the-cycle and
point-in-time perspectives. Unlike the use of the threshold-approach in our
economic capital model, which was principally interested in capturing the
distinction between systemic and idiosyncratic risk, Yang [49]’s proposal
thus decomposes the default probability by time conditionality. This distinct
separation is not only conceptually attractive, it also significantly aids in
model interpretation and implementation. The through-the-cycle component
is linked back to long-term unconditional default probabilities already
addressed in Chap. 7, whereas the point-in-time contribution depends upon

(continued)
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Colour and Commentary 99 (continued)
a set of macro-financial variables. Both pieces can be derived from different,
albeit related, sources.

8.4.3 Adding Time

This structure also allows one, as will become clear in a moment, to naturally
incorporate the time horizon into our analysis. So far, we have implicitly considered
a one-period (i.e., one month or quarter or year) time horizon. We need—to build a
usable stress-scenario model—to look one, two, 10, or even 40 years into the future.
Our proposed approach, which is a slight variation (indeed, simplification) of Yang
[49]’s proposal, has the following restatement of Eq. 8.67:

pi(Xt+τ ) = �

(
√

1 + r̃2
i,τ bi(t + τ )+ r̃i,τC(Xt+τ )

)

, (8.71)

for τ = 1, . . . , T periods into the future and i = 1, . . . ,R. This is a characterization,
at time t , of the full term structure of default probabilities over the coming T time
periods. We have added a time subscript to the r̃i ≡ r̃i,τ parameters; this will turn
out to be rather important.

Before proceeding to the practical details of making this expression actually
work, we need to again reflect a bit on the value of macro-financial information.65

The simple fact is that it degrades over time. At time t , given Xt , we are fully
in the point-of-time perspective. Setting τ = 1, we still lean strongly toward a
point-in-time probability, but our estimate will rely on a forecast of Xt+τ . Every
step into the future leads to a degradation in the accuracy of our macro-financial
forecasts. At some point, after some unknown number of periods, we need to admit
that any macro-financial forecast has no value. The best we can do, in this case, is to
use the long-term unconditional average macro-financial outcomes; such a forecast,
however, is no forecast at all. This, in turn, should conceptually bring us back to the
through-the-cycle perspective.

This natural deterioration in the value of information has important practical
implications. Making this more precise, it implies a mathematical restriction
something like:

lim
τ→τ̄

pi (Xt+τ ) = pi(t + τ̄ ), (8.72)

65 Or, indeed, information more generally.
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where pi(t + τ ) denotes the τ th period’s through-the-cycle default probability for
the ith credit class and τ̄ is some (unknown) number of steps into the future. In
other words, as τ gets large, and our ability to forecast future outcomes worsens, we
converge back to the through-the-cycle perspective. We can think of τ̄ as the finite
threshold beyond which current information has lost its value.

The simplest way to accomplish this involves the use of the r̃i,τ parameter. This
value, after all, determines the relative importance of the point-in-time and through
the cycle perspectives. Mechanically, we propose operationalizing the previous limit
as,

lim
τ→τ̄

r̃i,τ = 0. (8.73)

This is simply a more formal way to state that, as we move forward in time, we
converge to the through-the-cycle perspective. Taking a step further, if we generalize
Eq. 8.56 such that

bi(t + τ ) = �−1(pi(t + τ )), (8.74)

then Eq. 8.73 directly implies Eq. 8.72. This structure has the conceptual benefit of
nesting our through-the-cycle term structure of default probability model. Recall,
from Chap. 7, that we employ the time-nonhomogeneous Markov chain model
suggested by Bluhm and Overbeck [3] for this task. The set of through-the-cycle
values

{

bi(t + τ ) : τ = 1, . . . , T

}

, (8.75)

for i = 1, . . . ,R are thus readily available.
To actually implement this model, therefore, one basically needs a short list of

ingredients:

• an initial set of r̃i (t+1) parameters determining the starting weights on the point-
in-time and through-the-cycle perspectives;

• an estimate of the common a1, . . . , aκ macro-financial loadings;
• some (presumably expert-judgement-determined) estimate of τ̄ ; and
• a (again, probably heuristic) description for the nature of convergence of the r̃i

coefficients towards zero at time τ̄ .

The first two elements can be determined through statistical estimation, whereas the
latter two choices are based on a combination of assumption, expert judgement, and
common sense.
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8.4.4 Parameter Estimation

To employ our variation of Yang [49]’s method, we will need to use our macro-
financial and default data sets to determine the necessary parameters. Unlike the
empirically motivated approach, however, we will not make use of constrained
least-squares estimates. Instead, borrowing heavily from Yang [49], we employ
the method of maximum likelihood in two separate stages. While this estimation
strategy is a bit more involved, it also permits a slightly more fundamental treatment
of our data.

There are three main elements that require estimation: the through-the-cycle
and the point-in-time descriptions as well as the relative weight of the two
viewpoints. A description of each is essential for every rating class. The through-
the-cycle element is captured by the bi parameters; these are readily estimated and,
indeed, even ultimately replaced with our own through-the-cycle model in the final
implementation. The point-in-time dimension relates to the ak parameters, or macro-
financial loadings. Finally, the r̃i’s—which we will also refer to as the point-in-time
weights—determine the relative importance of these two central perspectives.66 It
turns out, however, that simultaneous estimation of the factor loadings and point-
in-time weights is not particularly effective. To resolve this, a two-step procedure
is employed. In the first step, we use a rough approximation of the point-in-time
weights and focus principally on the factor loadings (i.e., the ak’s). At the second
step, with already determined and fixed factor loadings, we then proceed to estimate
the point-in-time weights (i.e., r̃i’s). A few intermediate parameters show up along
the way to facilitate this process.

To understand precisely how this works, we need to introduce some notation
and establish a few basic facts. We will, as in the previous derivation of the Yang
[49] model, let i ∈ {1, . . . ,R} denote the credit state and t ∈ {1, . . . , T } represent
the various time steps over our data horizon. For each i and t , we observe—within
our Moody’s data—Ni,t firms and di,t defaults. This is a slightly new twist on our
data. To link back to our previous discussion—in Eqs. 8.6 and 8.7, for example—the
combination of these quantities leads us to the individual default-curve entries. In
particular,

ci,t = di,t

Ni,t

, (8.76)

for i = 1, . . . ,R and t = 1, . . . , T . The number of firms and default incidences in
each period are thus essentially the building blocks underlying our default curves.

66 We could also refer to these as the through-the-cycle weights, of course, since they describe
both aspects. Loosely speaking, we can think of these as being roughly equivalent to the systemic-
weight parameters in a threshold credit-risk economic-capital model.
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The core idea of maximum likelihood is to find the set of parameters that
maximize the probability of having observed one’s data.67 To get a handle on this
probability, however, one needs a clear idea of how one’s data is distributed. In our
case, this is fortunately rather well understood. The probability of observing di,t
defaults among Ni,t firms follows a binomial distribution with density function,

f
(k)
t

(

di,t , Ni,t

∣

∣

∣

∣
θ(k),Xt

)

=
(

Ni,t

di,t

)

p
(k)
i (θ (k), Xt )
︸ ︷︷ ︸

p

di,t

⎛

⎜

⎝1−p
(k)
i (θ (k), Xt )
︸ ︷︷ ︸

p

⎞

⎟

⎠

Ni,t−di,t

,

(8.77)

where p(k)i (θ (k), Xt ) and θ(k) denote the default probability (i.e., binomial parame-
ter, p) and parameter vector associated with the kth step of the estimation algorithm,
respectively. Under the assumption of conditional independence68 between each
rating class and time period, the complete joint density function—again, at the kth
step—is written as

T
∏

t=1

R
∏

i=1

f
(k)
t

(

di,t , Ni,t

∣

∣

∣

∣
θ(k),Xt

)

. (8.78)

The trick is simply to find the parameter set, θ(k), that maximizes this joint density
function.

Preparation

In the initial set-up, before we actually get to the first step, we fix values for the
through-the-cycle (i.e., the bi’s) and intermediate point-in-time weight (i.e., ri )
parameters. The intuitive through-the-cycle coefficients are quite sensibly defined
as,

b̂i = �−1

(

1

T

T
∑

t=1

di,t

Ni,t

)

, (8.79)

for i = 1, . . . ,R. This is nothing other than the long-term, unconditional average
default rate for each credit-rating class. The first-step point-in-time weight locks in
the initial importance of the systemic factors. It is defined in Eq. 8.58 as a function

67 For much more on this concept, the reader is referred to Pawitan [37].
68 Within the threshold model, default is not independent; this would ignore the critically important
notion of default dependence. Given, or conditional on, the realization of the systemic-risk factor,
however, they are independent. This is what we mean by conditional independence.
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of the threshold model asset-correlation parameters. We fix it as,

r̂i =

√

ρ̂
(

�(b̂i)
)

√

1 − ρ̂
(

�(b̂i)
)
, (8.80)

using the Basel IRB guidance where p̂i = �(b̂i), from Eq. 8.79, is a long-term
default probability estimate.69 Again, these are mostly a placeholder—or rather
rough first-order approximation—permitting us to focus our initial attention on the
factor loadings. In the second step, we will have the opportunity to sharpen these
values.

The First Step

In the first step, as already discussed, we seek to estimate the λ and a1, . . . , aκ
macro-financial factor loading parameters. This leads us to define the binomial
default probability with the following functional form:

p
(1)
i

(

θ(1), Xt

)

= �

⎛

⎝

√

1 + r̂2
i b̂i + λr̂i

κ
∑

j=1

ajXj,t

⎞

⎠ , (8.83)

implying that

θ(1) = [

λ a1 · · · aκ
]

. (8.84)

The first-step default probability is essentially a restriction of the full-blown
definition derived in Eq. 8.70. All the pieces are basically in place, but not all are yet
permitted to vary. Moreover, the intermediate λ—which will not appear in the final
result—is present to scale the point-in-time importance.

69 This is discussed in rather more detail in Chap. 11. For completeness, each ρ(pi) is approxi-
mated as,

ρ̂(p̂i ) ≈ ρ−q(p̂i ) + ρ+
(

1 − q(p̂i )

)

, (8.81)

where

q(p̂i ) = 1 − ehp̂i

1 − eh
, (8.82)

and h is a weighting parameter. The value q(pi) is confined to the unit interval, which ensures the
asset-correlation coefficient lies in the interval, ρ(pi ) ∈ [ρ−, ρ+] = [0.12, 0.24].
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Using Eq. 8.78 to build the log-likelihood function associated with the kth step,
we have
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= ln
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where, by convention, we eliminate any constant terms since they do not impact the
final optimization results.

The desired parameters for the first step in our procedure are estimated by solving
a numerical optimization problem of this form:

θ̂ (1) = arg max
θ(1)

L(1)
(

θ(1)
)

, (8.86)

subject to:

λ ∈ [0, 1].

To recap, therefore, given the through-the-cycle and point-in-time weights, the
macro-financial factors are identified in this first step. Since we can also think of
the λ parameter as simultaneously determining the relative importance of the point-
in-time component, we can see that the initial (fixed) choices of r̂i are not terribly
important. The λ coefficient does this, however, in a fairly crude manner by treating
all of the credit classes in an identical fashion. Indeed, all of the parameters in the
first stage operate only at the global level; they do not make any distinctions between
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the individual rating classes. The second stage takes the opposite tack; the global
parameters are fixed and it focuses on the distinctions between rating categories.

When working with maximum-likelihood estimators, a useful diagnostic is
the so-called partial-likelihood function. Given a particular starting value, one
first solves the non-linear optimization problem in Eq. 8.86.70 Working from this
optimal solution, we then select the first parameter (i.e., a1). Holding all other
parameters fixed, we then proceed to consider how the log-likelihood changes as
we systematically change the value of a1. Since we are already at the optimum, it
should naturally get worse. An encouraging result would involve a tent-like (i.e.,
quadratic) function centred around our final â1 estimate. The steeper the tent, the
happier we will be. We then reset a1 back to its original (optimized) value and move
to a2. This is repeated sequentially for all of our ak parameter values. Disarmingly
simple, this is essentially a trick for visualizing—something that would otherwise
be impossible—the properties of our high-dimension log-likelihood surface.

The results of this exercise are summarized in Fig. 8.17. Output, unemployment,
non-fuel commodities, equity and oil prices, and the VIX index all exhibit encour-
aging behaviour. These parameter estimates are rather sharp; indeed, the greater the
curvature around the maximum of our (partial) likelihood function, the higher the
implied level of parameter certainty.71 The desired parabolic form is also evident for
credit spreads and the US yield-curve slope, but the form is much flatter implying
rather less conviction about our parameter values. The Fed funds rate parameter is
convincingly negative, but rather flat from roughly -50 onwards. Finally, inflation
does not appear, in this setting at least, to exert a strong impact on general credit
conditions. To conclude, the overall first-step, factor-loading ak parameters look
fairly sensible, but before putting this model into actual production, an explanatory
variable selection process is required.

8.4.5 The Second Step

Having determined the factor loading parameters (i.e., the ak’s), the final step turns
its attention to the point-in-time weights. We already have the basic form of the log-
likelihood function, we need only describe the form of the default probability. It is

70 Our starting point is selected from the best objective function associated with several thousand
randomly generated θ(1) parameter vectors. Virtually all non-linear optimization algorithms
perform better when launched with a good first guess.
71 When the log-likelihood function is well-behaved with a quadratic form (i.e., regular), the
square-root of the (negative) inverse of the diagonal of the Hessian (i.e., second-derivative) matrix
of the likelihood function evaluated at its maximum, θ̂ , is a sensible estimate of the asymptotic,
estimation-error. The so-called Cramér-Rao bound holds that this quantity is actually a lower bound
for the (unknown) variance of our maximum-likelihood estimator. There is, of course, rather more
to the story and the interested reader is referred to DasGupta [9, Chapter 16], Held and Bové [20]
or Pawitan [37, Chapter 8] for additional generality, much more rigour, and technical details.
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Fig. 8.17 Factor-weight partial likelihoods: These graphics illustrate the partial likelihoods
associated with our κ distinct factor-weight parameters (i.e., ak for k = 1, . . . κ) in the Yang
[49] model. Most parameters appear to be well-identified (and regular), whereas question marks
arise for a few others.

given as,
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where

θ(2) = [

r̃1 · · · r̃R
]

. (8.88)

The λ parameter, having done its job, is eliminated. The factor loadings are also
fixed at their estimated values from the previous step. The only remaining moving
part stems from the credit-rating specific point-in-time weights. This leads to the
second-step optimization problem,

θ̂ (2) = arg max
θ(2)

L(2)
(

θ(2)
)

, (8.89)
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subject to:

r̃i ∈ [0, 1] for i = 1, . . . ,R.

Combining the {ak : k = 1, . . . κ} and {r̃i : i = 1, . . . ,R} parameters from the
solutions to Eqs. 8.86 and 8.89 provides us with all the ingredients necessary to
practically use our version of Yang [49]’s proposed model.

Colour and Commentary 100 (A TWO-STEP ESTIMATION PROCEDURE):
Our theoretically motivated model variant, based largely on Yang [49], has
a relatively modest number of total parameters. Abstracting from the point-
in-time probabilities—which are sourced from the techniques presented in
Chap. 7—there are κ + R coefficients to be estimated. In short, these are
the factor loadings (i.e., the ak’s) and the point-in-time weights (i.e., the
r̃i ’s). Their statistical estimation is, however, slightly more involved than
the restricted least-squares approach used for the previous class of models.
It turns out to be difficult to simultaneously determine both the ak and
r̃i coefficients. Using the method of maximum likelihood—which requires
slightly more detailed default data—the estimation procedure proceeds in two
distinct steps. In the first step, working at the global level, the point-in-time
weights are fixed and the macro-financial factor loadings are determined.
Fixing these newly estimated factor loadings, the second step determines the
credit-rating level point-in-time weights. A few intermediate parameters, that
do not survive to the end of the estimation method, facilitate this process.

8.4.6 To a Point-in-Time Transition Matrix

Unlike the empirically motivated set of models, the construction of a point-in-
time transition matrix is readily performed within Yang [49]’s framework. Under
the assumption that the macro-financial factor loading and point-in-time weight
parameters from the previous method can be used more broadly across the entire
transition matrix, the extension is rather straightforward. We could also, if we so
desire, update our two-step maximum-likelihood estimator by moving from the
binomial to the multinomial distribution. This would incorporate both the default
and transition outcomes into the overall estimation procedure. The actual logic,
involved in the construction of point-in-time transition matrices, would nonetheless
remain the same. It would only lead to a change in the parameter estimates.
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The actual model-related transition probability construction begins with a twist
on Eq. 8.70, by defining the ij th transition probability as

pij (Xt) = �
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. (8.90)

where Pij represents the ij th through-the-cycle transition probability. The con-
sequence is a very intuitive explicit link between our vector of macro-financial
variables and the transition matrix.

Since we will inevitably be looking several steps into the future, we also need
to incorporate the time dimension into our construction. Generalizing Eq. 8.71 and
combining it with Eq. 8.90, we arrive at

pij (Xt+τ ) = �

(
√

1 + r̃2
i,τ Pij + r̃i,τC(Xt+τ )

)

, (8.91)

for τ = 1, . . . , T where, as before, r̃i,τ → 0 and τ → τ̄ . This slight adjustment
ensures a certain degree of time consistency in our construction.

Given the commonality of the factor-loading parameters across all transition
probabilities and the inherent monotonicity in the through-the-cycle estimates, the
monotonic nature of the transition matrix is preserved. To ensure that the final
result remains a true transition matrix, however, some (slight) rescaling is typically
necessary. We use the following rather obvious approach:

p̂ij (Xt+τ ) = pij (Xt+τ )
R+1
∑

i=1

pij (Xt+τ )

, (8.92)

for τ = 1, . . . , T . In short, therefore, establishment of a point-in-time transition
matrix follows almost directly from the default case.

8.5 Constructing Default-Stress Scenarios

In this final section, we will attempt to pull the previous discussion together and
illustrate the practical construction of some default-probability stress scenarios.72

72 We’ll return to the transition matrix perspective in Chap. 12, when we consider stress testing.
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The main objective is to set the stage for the loan-impairment discussion in Chap. 9.
No new tools or objects require introduction. All of the necessary elements are
already in place. The principal aspect of discussion centres, once again, around
the role of time and information. As with the various mappings between macro-
financial variables and credit conditions, there are no hard and fast rules. Our
approach is consequently logic- and assumption-based with an important element
of pragmatism.

Colour and Commentary 101 (FORECAST OR SCENARIO?): A word on
terminology might be helpful. To this point, we’ve been fairly loose on the
distinction between a forecast and a scenario. While there is some logical
overlap, they are not entirely synonymous.a A bit of structure is required.
Imagine you are working with some random process—it could be an exchange
rate or the temperature in your hometown or something else entirely—and
have some (hopefully reasonable) description of how it moves through time.b

Given its inherent uncertainty, there is a broad (possibly infinite) range of
future sample paths that it might take over the coming days, weeks, or months.
Each possible sample path can be viewed as a scenario. A scenario is thus
a single possible sequence of time-indexed outcomes, which may (or may
not) be viewed as probable. Conversely, a forecast is typically considered
to be one’s best guess regarding the future values of this process. It could
be determined as the most likely outcome—in an expected value sense—or
it might be a guess.c Forecasting, in normal English language speech, also
implies looking into the future. From this perspective, both a scenario and a
forecast can easily get confounded. To minimize confusion, we’ll try to use
the (more formal) term scenario for a specific (typically extreme) sample path
and employ forecast to describe the act of looking into the future.

a There is not, in the spirit of full disclosure, complete agreement on their precise difference.
Huss [21], for the curious reader, appears to be one of the first academic works addressing
the idea of scenario analysis.
b This could be in the form of a stochastic differential equation, a transition density, or
reduced-form statistical model.
c A (potentially quite poor) forecast can be constructed with little or no information;
although, when done well, forecasting can be very complex. Identifying a scenario
(typically) requires a more extensive understanding of the full range of possible outcomes
and their probabilities. Scenario construction is thus (almost) always a more formal activity.

Stress-testing analysis is typically performed at the current point of time, which
also coincides with the end of our data set. We will denote this as T . The decay of
information value over time is hard to assess, but this question also depends on the
nature of analysis we are performing. For a classical stress-testing exercise, the time
horizon is probably only two or three years. In this case, our forecasting and analysis
horizons probably coincide; forecasting, in this sense, refers to the time period over
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which forward-looking scenarios are produced. That is, we likely produce (more or
less) sensible macro-financial scenarios for this period and use them—through our
previously discussed channels—to construct associated point-in-time (default and
transition) probabilities.

In loan-impairment analysis, however, the story is a bit different. In this setting,
we typically require forward-looking estimates (i.e., scenario-conditional forecasts)
of cumulative and conditional forward-default probabilities for 20+ years into the
future. No self-respecting macroeconomist or financial-market practitioner would
construct forecasts for such a horizon.73 As we’ve seen, common sense argues that,
after a certain amount of time, our best-guess future scenarios would converge to
our long-term, unconditional, through-the-cycle estimates.74

We thus have a difference between the forecasting horizon for our macro-
financial scenarios and the analysis period required for our loan-impairment applica-
tion. Conceptually, to manage this situation, we will break out analysis period into
three sections: a forecasting, a convergence, and a final through-the-cycle period.
The first forecasting period directly maps our macro-financial scenarios into our
desired default probabilities. In the convergence period, as the name suggests, our
required values slowly converge back to the through-the-cycle estimates. In the final
period, our future default probability estimates correspond to our through-the-cycle
values.

Let’s begin with the forecasting period, which we will denote as τp units of
time.75 In this analysis, given our data, the unit of time is one quarter (i.e., 3 months).
Moreover, the specific setting using in our loan-impairment analysis is τp = 12
quarters or three years. Again to link up better with the loan-impairment calculation,
three different scenario viewpoints are employed: baseline, upside, and downside.76

The idea with such an approach is to cover a broad range of outcomes and avoid
over-weighting a particular (either positive or negative) perspective. Figure 8.18
displays the time-series history and a set of (home-made) mid-2021 scenarios for
the main macro-financial variables used in our implementation.77 We can think of

73 For an enlightening discussion of techniques from a real-world, forecasting practitioner, see
Silver [40].
74 This should not be taken to mean that we should expect this to actually occur. It simply implies
that, sufficiently far into the future, there is no grounds for an alternative supposition due to lack
of information.
75 The p is intended to represent prediction. It could be denominated in years, quarters, or months
depending on the specific situation.
76 Using the previously introduced ideas, the baseline is conceptually close to a forecast. The
upside and downside sample paths should be viewed as scenarios.
77 The upside and downside scenarios are simply ± one standard deviation movements around a
fairly benign (vector-autoregressive model constructed) baseline. The actual sign of the shocks is
determined from the individual λ̂ parameters. These invented (and non-professional) scenarios are
generally sensible, but should not be taken very seriously. For actual applications, these scenarios
are produced by serious financial forecasters.
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Fig. 8.18 Macro-financial scenarios: These graphics provide the history of our macro-financial
variables along with 12 quarters (i.e., three years) of (essentially fabricated) predicted values. A
baseline, upside, and downside scenario is provided for each explanatory variable.

the results in Fig. 8.18, in a general sense, as being

{

X̂t : t = T + 1, . . . , T + τp

}

. (8.93)

These scenarios could be purchased, produced in-house, drawn from thin air, or
downloaded from some disreputable internet site.78 However procured, these form
the backbone of one’s stress scenarios.

The macro-financial scenarios then—through one of the various empirically and
theoretically motivated mappings illustrated in previous sections—directly permit
the determination of our general credit-condition response variables. Figure 8.19
displays a selection of associated credit-condition scenarios derived from the
values presented in Fig. 8.18. Here we see the credit-cycle index and the ζ1

78 One might even draw them from the state-space transition equation presented in Eq. 8.43.
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Fig. 8.19 Response-variable scenarios: Conditioning on the macro-financial scenarios presented
in Fig. 8.18, the preceding graphics illustrate a selection of the corresponding general credit-
condition scenarios. These quantities, as discussed in the previous sections, directly contribute
to the construction of time-varying default probabilities.

dimension-reducing variable from the empirically motivated setting. The point-in-
time contribution from our variation of Yang [49]’s model is also presented.

Interestingly, the various driving state variables from Fig. 8.19 digest the macro-
financial scenarios in different ways. Although we need to be somewhat cautious,
given different scales, the credit-cycle index appears to treat the downside and
upside in an asymmetric manner, while the other approaches are rather more
symmetric. The overall dispersion in outcomes also varies. This is not necessarily
bad—multiplicity of perspective is valuable—but it needs to be clearly understood.

If the term of one’s analysis exceeds τp, then additional complications arise.
Let us define the convergence period as τc units of time. After τp + τc periods,
therefore, we expect a full convergence of scenarios back to the through-the-cycle
case. The idea of convergence—as conceptually defensible as it might seem—raises
three difficult, if not almost unanswerable, questions:

1. How long is the convergence period?
2. At what speed does convergence occur?
3. What specific quantity should be used to impose the convergence?
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Fig. 8.20 Unconditional forward default-probability scenarios: The graphics above provide a
visualization of the average unconditional forward default-probability curve scenarios across all
rating classes for each set of macro-financial scenarios. The through-the-cycle (TTC) perspective
is also provided for context and to demonstrate convergence.

Unfortunately, we do not have definitive answers to any of these queries. For the
purposes of this analysis, we set τc = 7 years, implying that full convergence occurs
after 10 years.79 Convergence speed might be linear or non-linear; it depends very
much on one’s view regarding the speed of informational decay. Again, this analysis
assumes a relatively fast non-linear speed of convergence.

Depending on the specific choice of model, we have slightly different answers
to the third question. In the empirically motivated setting, convergence is imposed
directly upon the marginal default probabilities estimated within the model. Our
theoretically motivated approach encapsulates the time convergence element, as
already discussed, through changes in the point-in-time weight coefficients (i.e.,
the r̃i’s). In both cases, however, convergence is based on the idea that the value of
information decays exponentially.80 While we have no concrete justification for this
choice in our setting, Olariu et al. [36] and Yu and Placide [50] are interesting (and
generally supportive) examples of assessing the time value of information in rather
different settings.

Figure 8.20—which illustrates the average default outcomes across all rating
categories for each of our three scenarios—is computed in two steps. First, the
point-in-time default probabilities are used to construct the unconditional forward

79 Other than it being a nice round figure, this choice is difficult to defend.
80 A simple exponential decay model is used. In particular, the convergence weight is defined as

ω(t) = 1 − a · (1 − b)t , (8.94)

for t ≥ 0 where a = 1 is the starting point, and b = 0.25 is the rate of decay. The choice of b
parameter is not estimated, but simply chosen as a reasonably pragmatic value.
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Fig. 8.21 Cumulative default-probability scenarios: The graphics above display the average
cumulative default-probability curve scenarios across all rating classes for each set of macro-
financial scenarios—these outcomes are directly derived from the results in Fig. 8.20. Once again,
the through-the-cycle (TTC) perspective is included to ease interpretation.

default probabilities for each credit class out to period τp.81 In the second step,
a gradual convergence is imposed assuming the exponential decay of information
value of time. After τp + τc periods, the through-the-cycle term structures dominate
the remainder of the time horizon.

The selected empirically motivated approach is based upon the reduced-form
Diebold and Li [12] motivated model introduced in Eq. 8.38. While the three models
introduced in this class provide broadly similar results, the fitted-curve dimension
reduction technique generates the most reasonable results. It is nevertheless rather
striking to examine the differences in average default probability implications across
the empirically and theoretically motivated approaches. Yang [49]’s proposal, in
particular, implies a rather wider dispersion of outcomes relative to the alternative
specification.

Figure 8.21 provides, for comparison purposes, associated cumulative default
probabilities. In many ways, the cumulative perspective is easier to visually
interpret. Again, the differences in the two approaches are quite apparent. The
empirical downside probabilities are somewhat less conservative than the theoretical
equivalents. Moreover, in the empirical setting, the baseline scenario is slightly
higher than the through-the-cycle case; the opposite occurs in Yang [49]’s model.
Finally, asymmetry in treatment of the upside and downside scenarios is quite
apparent in the empirically motivated estimates.

It is not terribly helpful to attempt to determine which of these two perspectives
is closest to the absolute truth. Using the same basic inputs, but rather different
fundamental assumptions, these two lanes of analysis provide qualitatively similar

81 We could also easily compute, and display, the conditional forward default probabilities. As
we’ll see in Chap. 9, however, the unconditional version is the quantity of interest for loan-
impairment computations.
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results. When one scratches a bit, however, they do have slightly different implica-
tions. Ultimately, the theoretically motivated methodology appears somewhat more
appropriate for a production model. It is built on a sound conceptual foundation
consistent with our overall economic capital framework, it has fewer overall
parameters, it permits easier generalization to the transition-matrix setting, and
it preserves the symmetry of the macro-financial shocks. That said, given the
complexity of this task, the empirically motivated approach represents an excellent
choice of challenger model to help interpret, communicate, and trouble-shoot the
production choice.

Colour and Commentary 102 (STRESS-SCENARIO CONSTRUCTION): The
mechanics of forecasting—after the complexity of building the framework—
are blissfully straightforward. One buys, builds, invents, begs, or steals
a set of macro-financial scenarios. Conditional on these scenarios—and
one’s choice of mapping to the model’s response variables—an associated
prediction of general credit conditions is produced. These general credit
conditions—with aid of one’s mapping—lead to a sequence of point-in-time
default probabilities. If one’s horizon of analysis exceeds the forecasting
horizon for the macro-financial variables, then some additional—and gen-
erally indefensible—convergence assumptions are required. Sooner or later,
of course, informational value decays and convergence between the point-
in-time and through-the-cycle perspectives is inevitable.a Having examined
multiple models in the preceding development, it is also time to make some
decisions. Given its theoretical footing, parsimony, and more sensible outputs,
the nod goes to our variation on Yang [49]’s model as a production choice.
The empirically motivated approach, borrowing from the fundamental ideas
introduced by Diebold and Li [12], offers a rather sensible challenger
model. Significant practical legwork nevertheless remains—in the form of
explanatory variable selection, detailed sensitivity analysis, and out-of-
sample back-testing—before one can actually put either proposed model into
daily production.

a The timing and speed of this convergence is, however, entirely debatable.

8.6 Wrapping Up

The mission of this chapter was to provide a framework for incorporating macro-
financial information into our description of general credit conditions and, by
extension, default and transition probabilities. The utility of such a link arises
from a consequent ability to investigate the impact of shocks or perturbations to
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our macro-financial variables upon various dimensions of portfolio risk. Such a
capability is the very nucleus of stress testing. It is not, unfortunately, a trivial
undertaking. Construction of this framework is plagued with issues of data sparsity,
representativeness, and dimensionality. The proposed solution is a collection of
transformations, approximations, and possible statistical descriptions to permit a
manageable degree of model robustness and pragmatism. The resulting structure is
both reasonable and defensible, but, to be continuously useful, requires ongoing
oversight and challenge from key stakeholders. The next chapter immediately
employs these ideas within the context of the loan-impairment calculation. Stress
scenarios will also make another appearance in Chap. 12 as we turn to consider a
range of stress-testing techniques.
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Chapter 9
Computing Loan Impairments

The general who wins a battle makes many calculations in his
temple before the battle is fought. The general who loses a battle
makes but few calculations beforehand.

(Tzu [26], The Art of War)

When a financial institution issues a loan or purchases a fixed-income security,
they are accepting a certain degree of credit and market risk. This uncertainty is
necessarily incorporated into the pricing associated with these instruments. The
general rule is the greater the risk, the lower the price and, thus, the higher the
associated yield (or margin). In financial theory, as discussed in previous chapters,
this pricing notion has been extensively formalized.1 The price, or value, of any
security is its expected value taken with respect to the equivalent martingale, or
pricing, measure. Evaluating such an expectation—which can, at times, be quite
analytically or computationally heavy—involves consideration of the interaction
between individual cash-flows and the joint distribution of underlying (credit and
market) risk factors. In short, although it can be a complicated business, we know
quite a bit about pricing financial assets.

The larger point is that compensated, or priced, risk—associated with loans,
bonds, swaps, or deposits—is intimately related to expected future outcomes. These
expectations, in tandem with market prices, naturally move over time in response
to general economic and firm-specific conditions. This explains the mechanics
associated with daily changes in asset-portfolio valuations. There is nothing new
in these ideas; these are very high-level financial concepts. Such general principles
do motivate, however, much of the accounting treatment associated with financial
instruments. Exactly how, and to what precise end, is useful to understand.

The accounting practice faces a few unique challenges in the treatment of
financial instruments. Most importantly, it needs to ensure that the financial-
instrument asset values found in financial statements provide a fair representation

1 See, for example, Harrison and Kreps [19], Harrison and Pliska [20], or Duffie [9] for the key
entry points into this theory.
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of their true worth. Moreover, changes in these asset values need to be appropriately
reflected in profit-and-loss outcomes. For instruments traded regularly in liquid
financial markets, this is a reasonably straightforward task. The strong, third-party
arm’s length market signal of associated asset values can be used to inform the
appropriate balance-sheet values.2 Even this case can be confused by complexities
in pricing or the specific role of the security. Some financial instruments, to be more
specific, are naturally linked. A swap, for example, might be used to hedge a bond or
loan exposure. The area of hedge accounting attempts to capture these interactions.

Another serious complication—and the main focus of this chapter—relates to
instruments not traded in financial secondary markets. Absent the ability to directly
apply market prices or risk-factor changes, informing financial valuations becomes
a much less obvious undertaking. A loan asset—which is a critical object for
any lending institution—is a posterchild for such instruments. Loans are typically
represented on the balance sheet at amortized cost. In other words, the balance-sheet
value is a deterministic function of time and initial conditions. It does not react
to stochastic market outcomes. Since one expects to hold these loans to maturity,
changes in market risk factors—such as interest rates—can generally be safely
ignored. The same is not true for credit quality. Some accounting mechanism is
required to capture both the initial and time-varying aspect of financial instruments
held at amortized cost. It is simply unfair to ignore this dimension when reporting
asset values in one’s balance sheet.

Into this breach enters the loan-impairment calculation. A loan impairment, in
its simplest form, is an estimate of the instrument’s expected credit loss or, to
use the popular acronym, ECL. Deducting the impairment amount from a loan’s
amortized cost provides an approximation of its credit-risk-adjusted value or net
carrying value; the sum across all positions provides a view of the overall loan
book. The loan-impairment computation is performed periodically and any changes
flow through the income statement. Loan impairments, in a nutshell, represent
the accountant’s solution to the unresponsiveness of amortized-cost balance-sheet
values to changes in creditworthiness. The net-asset-value perspective is also a very
useful metric for managing one’s lending portfolio.

While the conceptual and practical utility of loan impairments are clear, the
specifics of how this quantity should be computed are rather less so. The impairment
of financial instruments is handled in various ways by different standard setters. The
International Accounting Standards Board (IASB) employs International Financial
Reporting Standard (IFRS) 9 for this purpose.3 The American Financial Accounting
Standards Board (FASB) guidance regarding loan impairments, conversely, is found
in the Current Expected Credit Loss (CECL) standard. Both standards are relatively
new and incorporate significant changes to the traditional approach to loan impair-

2 Market prices happily incorporate both market- and credit-risk effects. An interest-rate move-
ment, a credit-spread change, or a rating transition—each stemming from rather diverse sources of
risk—will immediately (in their own way) impact the instrument’s market price.
3 See, for example, EY [14, 15].
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ments; the implications for the banking community have been significant. Many of
the adjustments stem from shortcomings in previous practice that became evident—
like so many aspects in current financial markets—during and after the great
financial crisis of 2008 to 2010. Shocking amounts of ink have correspondingly
been dedicated to the discussion of both standards and their respective development
paths.4 NIB, as a European-based international financial institution, follows IASB’s
IFRS 9 standard.

This chapter focuses on the specifics associated with the loan-impairment
computation. While accounting practice colours much of the discussion, this is
not an accounting document. It is, instead, written from the perspective of a
quantitative risk manager. It is reasonable to ask: why risk management? Despite
their differences, IFRS 9 and CECL both require the incorporation of forward-
looking information into the loan-impairment computation. This is new. This
seemingly innocuous change in perspective (generally) necessitates the use of
advanced statistical techniques and dramatically increases the complexity of this
area.5 Risk-management staff in many institutions, already traditionally accustomed
to use of such tools, have naturally found themselves recruited to assist with this
task.6

Colour and Commentary 103 (ANALYTIC PERSPECTIVE): It is a very
good idea, when discussing loan-impairment calculations, to clearly and
loudly announce one’s analytic perspective. In recent years—due to (gen-
erally welcome and sensible) revisions in loan-impairment accounting
standards—there has been a significant increase in complexity. It has thus
become common for both accountants and risk-management professionals to
be involved in this area. Very often, however, neither one has the full picture.
Quantitative risk professionals are typically well positioned to opine on
the underlying statistical and mathematical techniques, but often experience
difficulties with the underlying accounting principles. Accountants face the
opposite challenge. By declaring one’s perspective, it helpfully forewarns
one’s interlocutor of one’s potential strengths and weaknesses. Following this
advice, therefore, we formally proclaim our (quantitative) risk-management
perspective in this chapter. The reader is now free to appropriately adjust her
expectations regarding the ensuing development and discussion.

4 Gornjak [17] provides a concise overview of the standard and a useful description of the existing
literature.
5 Chapters 7 and 8 have already illustrated the depth and complexity associated with one of the key
inputs to this computation: forward-looking, point-in-time, scenario-based default probabilities.
6 ECL is also part of the supervisory remit given its importance for the management of credit risk,
which further explains the inclusion of both accounting and risk-management perspectives. The
difference with IFRS 9, in the author’s view at least, is the complexity of the base computation.
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9.1 The Calculation

It is educational to take a constructive approach to the expected-loss calculation.
We could simply write out the final formula, but it would not provide much insight.
Without a bit of context, it is actually a somewhat confusing computation. A sensible
starting point involves deriving a reasonably general definition of expected credit
loss. This is, after all, the quantity that any self-respecting loan-impairment calcu-
lation is attempting to approximate. The actual application required by a specific
accounting standard will invariably be a special case or variation of this general
structure. A first-principle definition will nevertheless help us understand where we
are coming from and—in most cases—can assist in judging the reasonableness of
specific guidance.

Equipped with a general definition, we can proceed to pose a range of practical
questions. These include:

1. PROBABILITY MEASURE: What probability measure should we employ for the
evaluations of future expected outcomes?

2. MANAGING EXPOSURE: Do we work with cash-flows or exposures and does it
make any difference?

3. TIME INCREMENTS: If we manage financial instruments by their exposures, how
do we consistently manage the time dimension?

4. DEFAULT-PROBABILITY CHOICE: Which flavour of default probability is
required in our computations?

5. DISCOUNTING: How do we determine the discount rate used to manage the time
value of money?

6. INCORPORATING SCENARIOS: How does the forward-looking element—
constructed in Chap. 8—enter into the overall calculation?

The reader may be left scratching her head at some of the preceding queries, but
answering them in an organized (if not necessarily sequential) fashion will lead us to
the final expected-credit loss definition. To the best of the author’s knowledge, such
a formalistic approach to the derivation of the expected-credit loss methodology has
never been performed. While its technical nature may dismay some stakeholders,
hopefully it will also appeal to (and stimulate discussion among) quantitative
practitioners working in this area. To make things as concrete as possible, we will
also introduce a fictitious, but realistic, practical example.

9.1.1 Defining Credit Loss

The good news is that vast majority of mathematical machinery needed to attack
the idea of expected credit loss has already been introduced in previous chapters.
The most obvious starting point is to extend the ideas from our credit-risk economic
capital model. Let’s restate the default event as Di and represent it in the following
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generic manner:

IDi =
{

1 : Default
0 : Survival

, (9.1)

for the ith exposure in one’s asset portfolio. Default is a binary outcome; you either
find yourself in default or you don’t. This makes it ideally represented in indicator-
variable form as in Eq. 9.1. The actual default loss has the familiar form,

Li = IDi ciγi, (9.2)

where, as before, ci and γi denote the ith exposure-at-default and loss-given default
of the ith asset, respectively.

Equation 9.2 permits, in principle, the direct evaluation of expected credit losses.
While convenient, it is missing an important element: it is absent any direct
description of time. All three quantities in Eq. 9.2 can, at least in principle, be
expected to vary over time. This dimension is consequently also quite interesting
for practical computations.

In the economic-capital setting—and, more particularly, in our threshold-based
model—the time dimension enters into the default indicator introduced in Eq. 9.1
as

IDi (t,T ) ≡ I{yi(t,T )≤X−1(pi(t,T ))} =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1 : yi(t, T ) ≤ X−1
(

pi(t, T )

)

0 : yi(t, T ) > X−1
(

pi(t, T )

) , (9.3)

where yi(t, T ) is an X-distributed random variable describing ith firm’s credit-
worthiness and pi(t, T ) is the associated probability of default.7 Both quantities
are defined over the time interval (t, T ]. In other words, if the realization of a
creditworthiness state variable falls below a certain pre-defined threshold—which is
a function of the firm’s probability of default—over the interval (t, T ], then default
occurs.

The economic-capital-motivated development, while useful and consistent with
our overall framework, is likely to confuse things. The accounting guidance is rather
more general in nature and makes no reference to specific model implementations.
An alternative, more empirically motivated, approach is warranted. In the context
of loan pricing, we defined the default event as a random time, τ . This seems a bit

7 In our production model, as described in Chap. 2, the generally defined X is a univariate t

distribution with ν degrees of freedom.
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more appropriate for this setting. Using this idea, we may redefine Eq. 9.3 as

IDi (t,T ) ≡ I{t<τi≤T } =
{

1 : τi ∈ (t, T ]
0 : τi > T

. (9.4)

In this case, the ith default time (i.e., τi) depends directly on the characteristics of
the ith obligor; unlike Eq. 9.3, it does not pass through a structurally defined cred-
itworthiness factor. This latter definition, given its broader generality, is probably
more useful for the loan-impairment problem.8

Using Eq. 9.4, we may rewrite the credit loss associated with the ith credit obligor
as,

Li(t, T ) = I{t<τi≤T }ci(t, T )γi(t, T ). (9.5)

To permit full generality, we have also written the exposure and loss-given-default
values as functions of time. It remains to be seen if these quantities will be stochastic
or deterministic. For the moment, in the interests of a general treatment, let us
imagine that they are random. To permit a more convenient evaluation of the
expectation of Eq. 9.5, we will nonetheless assume that the default event, exposure-
at-default, and loss-given-default are all statistically independent quantities.9

Before we can proceed to actually evaluate the expectation of Eq. 9.5, there is one
final element to consider. Do we wish to examine the credit loss in present or future
value terms? This question is actually quite important. Since t denotes the current
point in time, then virtually by construction, any default event will occur after t .
If we wish to measure the magnitude of these future events, it will be necessary to
discount them back to time t . Adding a stochastic discount rate into Eq. 9.5 leads to

Lt,i(t, T ) = I{t<τi≤T }ci(t, T )γi(t, T )
︸ ︷︷ ︸

Eq. 9.5

e−
∫ T
t rudu, (9.6)

where rt denotes the stochastic instantaneous interest rate. A few points are worth
addressing. We’ve added a t subscript to the credit-loss quantity to underscore its
anchoring to the current point in time. A second issue relates to how this quantity is
connected to the discount rate. Will it yield a risk-free rate or will risk preferences
be embedded into the outcome? This will ultimately depend on our choice of
probability measure. The interaction between these two quantities—the default

8 This is not to say, however, that Eqs. 9.3 and 9.4 are somehow inconsistent with one another. It is
better to think of them as structural and reduced-form representations of the same phenomena.
9 This is unfortunately not, strictly speaking, true. Altman et al. [1] address the relationship between
default and recovery. In counterparty risk, there are a variety of potential interactions between
default and exposure; see Gregory [18] for an excellent introduction to these questions. We’ll come
back to this question in Chap. 10.
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event and the discount factor—also, as we will soon see, reveals some interesting
relationships.

9.1.2 Selecting a Probability Measure

We have all the necessary ingredients for the evaluation of the expectation of Eq. 9.6.
The expectation, however, needs to be taken with respect to a particular choice of
probability measure. This brings us to our first question: what is the correct choice?
Should we use the pricing measure, Q, or the physical probability measure, P?
An argument could be made in either direction. The use of Q would generate a
valuation, or pricing, loss. This result would be comparable to the impact associated
with a fair-value adjustment inferred from financial-market prices. Employment of
P, however, would be more consistent with a risk-management perspective. To the
best of our knowledge, the accounting standards do not provide any direct guidance
on this question.

When in doubt, it makes sense to try both. Let us begin with taking conditional
expectations of Eq. 9.6 with respect to the equivalent martingale measure induced
with the money-market account as choice of numeraire,

E
Q

t

(

Lt,i(t, T )

)

= E
Q

t

(

I{t<τi≤T }ci(t, T )γi(t, T )e−
∫ T
t rudu

)

, (9.7)

= Q (t < τi ≤ T ) · c̄i (t, T ) · γ̄i(t, T ) · δ(t, T ),

where c̄ and γ̄ are the average exposure and loss-given-default values on the interval,
(t, T ].10 δ(t, T ) is the risk-free pure-discount bond price, or discount function, for
maturity T . Implicit in this development, it should be stressed, is the independence
of the default event and the evolution of the instantaneous short rate.11

Equation 9.7 is very intuitive. The product c̄ · γ̄ describes the magnitude of the
loss in the event of default. Q(t < τi ≤ T ) modifies this value by the probability
of default occurrence and δ(t, T ) brings the entire amount back into present-value
terms.

It is helpful to recall that the default probability is simply one less the survival
probability or more technically,

Q (t < τi ≤ T ) = 1 −Q(τi > T ), (9.8)

= 1 − Si(t, T ).

10 Note that E
Q

t (·) is shorthand for E
Q(·|Ft ); for notational convenience and readability, we

suppress the σ -algebra. It is still, however, present in the background.
11 Duffie and Singleton [10] would, very rightly, contest this assumption.
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This simple fact provides some welcome insight into our final result. Plugging this
value back into Eq. 9.7 and simplifying, generates

E
Q

t

(

Lt,i(t, T )

)

=
(

1 − Si(t, T )

)

︸ ︷︷ ︸

Q(t<τi≤T )

·c̄i (t, T ) · γ̄i(t, T ) · δ(t, T ), (9.9)

= c̄i (t, T ) · γ̄i(t, T ) ·
⎛

⎜

⎝δ(t, T )− Si(t, T )δ(t, T )
︸ ︷︷ ︸

δ̃i (t,T )

⎞

⎟

⎠ ,

= c̄i (t, T ) · γ̄i(t, T ) ·
(

δ(t, T )− δ̃i (t, T )
)

︸ ︷︷ ︸

Difference between
risk-free and risky
discount factors

.

This is not a typical representation of default losses, but it is nonetheless informative.
If the instrument is risk-free, then δ(t, T ) ≡ δ̃i (t, T ) and the expected credit
loss vanishes. In all other cases, δ(t, T ) > δ̃i(t, T ) implying a positive expected
credit loss. Moreover, the greater the probability of default, the lower the survival
probability and consequently, the larger the expected credit loss. Practically, the
distance between the risk-free and risky discount functions (i.e., δ(t, T )− δ̃i (t, T ))
could be inferred from bond or credit default-swap spreads. This quantity is, after
all, a present-valued adjusted risk-neutral default probability.

Changing tactics, we may also readily compute the expectation of Eq. 9.6 with
respect to the real-world, or physical, probability measure. The result is

E
P

t

(

Lt,i(t, T )

)

= E
P

t

(

I{t<τi≤T }ci(t, T )γi(t, T )e−
∫ T
t rudu

)

, (9.10)

= P (t < τi ≤ T ) · c̄i (t, T ) · γ̄i(t, T ) · EP

t

(

e−
∫ T
t rudu

)

,

= pi(t, T ) · c̄i (t, T ) · γ̄i(t, T ) · δ̂i (t, T ),

where, as in previous chapters, pi(t, T ) denotes the cumulative default probability
of the ith credit obligor over the interval (t, T ]. The principal difficulty of this
formulation relates to the interest-rate element. In particular, the P-expectation
of the path associated with the instantaneous interest rate does not reduce to the
risk-free discount factor.12 δ̂i (t, T ) is, consequently, not readily determined. The
appropriate discount rate would need, in principle at least, to be estimated through

12 The difference relates to risk preferences. The P-dynamics of rt cannot be uniquely specified;
see Björk [5, Chapter 16] or Bolder [7] for more detail. In interest-rate theory, this issue is closely
linked to the so-called market price of risk.
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an econometric, time-series model. This is consistent with the cumulative default
probability values, which must also be determined in a similar fashion.

Colour and Commentary 104 (CHOOSING A PROBABILITY MEASURE):
The discounted credit loss is a fairly intuitive function of four components:
the default event, asset exposure, loss-given-default, and the path of future
interest rates. Transforming this quantity into an expected value, however,
requires a choice. One must decide under what probability measure to take
the expectation. This is not merely a theoretical choice. It has important
implications for how one computes key calculation inputs and the overall
magnitude of one’s estimates. Use of the pricing measure, Q, allows one
to infer risk-neutral default probabilities from market data and discount
directly with risk-free interest rates. Application of the physical measure,
P, requires use of an econometric technique to determine real-world default
probabilities and discount factors. The former case involves calibration, while
the latter requires statistical estimation. A final point, which should not be
ignored, is the size of the corresponding credit-loss expectation. Risk-neutral
default probabilities are typically significantly higher than their real-world
equivalents; use of the Q measure will thus result in a systemically higher
estimate of expected default losses. Whatever the choice, one point is clear:
one cannot cherrypick elements from both perspectives in one’s expected-loss
calculation. Put succinctly, one has to pick a lane.

The final choice of probability measure must ultimately come from the account-
ing guidance. The Q-measure values are, conceptually at least, much closer to
the market-price adjustments associated with fair-valued balance-sheet assets. This
would seem to argue for evaluation of Eq. 9.6 with the pricing measure. The IFRS 9
standard is nonetheless extremely clear about the need for loan-impairment compu-
tations to incorporate a forward-looking viewpoint. This manifests itself through the
incorporation of—internal or external—macro-financial scenarios into one’s default
probability inputs.13 Indeed, the entire related distinction—discussed at length in
previous chapters—between through-the-cycle and point-in-time perspectives has
no obvious meaning in the risk-neutral setting. This brings us firmly into the domain
of statistical estimation and, by logical extension, the physical probability measure.
Although the accounting standard—and associated literature—does not speak to
the probability measure question explicitly, the choice is implicitly driven by the
underlying requirements. Some effort will nonetheless be required to identify a
sensible discount rate under the physical probability measure.

13 We have, in fact, already dedicated the entirety of Chap. 8 to the details of how one might
construct such a statistical relationship.
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9.1.3 Managing the Time Horizon

Each loan has its own cash-flow profile. Some are bullet loans with a single
repayment at maturity, while others have an amortizing schedule. Some pay annual
coupons, whereas other have a semi-annual (or higher) payment frequency. Coupon
payments can be fixed or based on some floating reference rate. In principle, each
individual ECL computation could, or should, be performed at the instrument
level using its individual cash-flows. This should be the end of the story, but
unfortunately it is a bit more complicated. As will be discussed later, the IFRS 9
guidance incorporates some logic as to just how far into the future one needs to
consider credit losses; the consequence is that our various quantities—exposures,
probabilities, loss-given-defaults, and discount factors—are required at much higher
(and common) levels of granularity. Given this twist, the time aspect matters. This
dimension thus needs to be explicitly managed, from the beginning, within the
context of our expected-loss calculation. It is not a particularly fascinating area of
discussion, but robust loan-impairment estimates depend importantly on getting it
right.

Let’s begin with some notation. In general, our analysis occurs over the time
interval, (t, T ]. T − t might be a week, a month, a year, or a decade; it will depend
on the individual loan instrument. The first order of business is to partition (t, T ]
into n ∈ N sub-intervals as follows:

{

t = t0, t1, ..., tn−1, tn = T

}

(9.11)

This can be done in many ways, but we will employ an evenly spaced grid where
tk − tk−1 is a fixed constant for all k = 1, ..., n. Again, our choice of n need not be
immediately specified. The key point, however, is that the time partition (or grid)
in Eq. 9.11 is absolutely central to the loan-impairment calculation. Looking to
Eq. 9.10, we need to be able to defensibly assign a value—for each of our four
main quantities—to each individual associated point in time. This will involve a bit
of effort and reflection.

The default-probability element in Eq. 9.10 is written in cumulative form. That
is, it begins at time t and ends at time T . It is quite natural, in light of our time
partition, to extend this idea to

p(t, tk) ≡ p(t0, tk), (9.12)

for k = 1, ..., n. In our practical example, we will make use of a sequence of
cumulative default probabilities—each anchored to the current point in time, t0—
(mostly) defined on an annual grid.14 The most sensible solution is to interpolate

14 The final, official computations, start from—as discussed in Chaps. 7 and 8—a quarterly grid.
We use the annual grid in this example, because it is easier, within visualizations, to see what is
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any necessary intermediate values on our arbitrary partition in Eq. 9.11. Linear inter-
polation springs to mind, but this leads to discontinuities in the cumulative default
curve. This is probably acceptable, in a general sense, but it does create issues for
the computation of other default quantities. A smoother form of interpolation, as we
will examine in a moment, turns out to be practically preferable.

Time-Frequency, Interpolation and Bootstrapping

Cumulative default probabilities will not be entirely sufficient for our computations.
We also require the probability of default associated with each slice of our partition;
that is, (tk−1, tk] for k = 1, ..., n. This variation of default likelihood—introduced in
previous chapters—is referred to as the forward default probability. It is, however, an
open question—raised in the introduction to this section—as to whether we require
conditional or unconditional forward probabilities. It will be useful to consider both
to arrive at the correct choice. If we start with the conditional forward probabilities,
we require the values

p(t, tk−1, tk) ≡ p(t0, tk−1, tk), (9.13)

for k = 1, ..., n. This is the probability of default over the interval (tk−1, tk],
assuming survival to time tk−1.

The obvious way to procure these conditional forward default probabilities would
be to compute them from our annual (or quarterly) cumulative default probabilities
and then interpolate these values to our grid. This almost works, but it unfortunately
fails to preserve the arithmetic relationship between cumulative and conditional
forward default probabilities. In particular, we require that

p(t0, tk) = 1 −
(

k
∏

i=1

(

1 − p(t0, ti−1, ti )

)
)

, (9.14)

for all k = 1, ..., n. If this does not hold, then our grid interpolation approach
will have introduced an inconsistency between cumulative and forward default
probabilities. This might not appear important, but getting this even slightly wrong
can bring us rather far afield. Since we will need to examine the implications of this
choice, we require the highest degree of equivalence possible.

Imagine that we have a smooth—cubic-spline or otherwise—interpolated set of
cumulative default probabilities in the form of Eq. 9.12. We may then proceed
to compute, in a recursive manner, a consistent set of conditional forward default

going on. For production computations, a finer grid is employed although, in principle, the final
choice is a matter of taste.
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probabilities from Eq. 9.14. To start, we set k = 1 then we immediately find that,

p(t0, t1) = 1 −
(

1
∏

i=1

(

1 − p(t0, ti−1, ti )

)
)

, (9.15)

p(t0, t0, t1) = p(t0, t1).

In other words, the first term on the grid is equal for both flavours of probability. Let
iterate forward to k = 2, which yields

p(t0, t2) = 1 −
(

2
∏

i=1

(

1 − p(t0, ti−1, ti )

)
)

, (9.16)

= 1 −
(

1 − p(t0, t1, t2)

)

︸ ︷︷ ︸

Unknown

·
1
∏

i=1

(

1 − p(t0, ti−1, ti )

)

︸ ︷︷ ︸

Known

,

p(t0, t1, t2) = 1 − 1 − p(t0, t2)

1
∏

i=1

(

1 − p(t0, ti−1, ti)

)

.

This illustrates that, having already determined the value for t1, the general
expression from Eq. 9.14 reduces to one equation with a single unknown. This
allows us to easily determine the t2 value. If we increment to k = 3, logic tells
us that given the t1 and t2 probabilities, we can figure out the t3 figure. The general
expression follows. The kth conditional forward default probability depends on the
kth cumulative default quantity and the other, already computed, k − 1 forward
likelihoods as

p(t0, tk−1, tk) = 1 − 1 − p(t0, tk)

k−1
∏

i=1

(

1 − p(t0, ti−1, ti )

)

, (9.17)

for k = 2, ..., n. This, admittedly tedious, computation is strongly reminiscent of
the so-called bootstrapping calculation used to infer zero-coupon interest rates from
bond or swap yields.15

15 See Bolder and Stréliski [8] for a description of this practice. A bit of caution is, however,
required to avoid confusing this practice with statistical bootstrapping as introduced by Efron [11].
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Fig. 9.1 Role of frequency: The graphics above describe the interplay between our various default
probability term structures. The left-hand graphic displays the PD12 cumulative through-the-cycle
default-probability curve. The right-hand graphic illustrates both conditional (i.e., solid-lined) and
unconditional (i.e., dash-lined) through-the-cycle default probabilities computed over a range of
time grids from daily to annual frequency. All of the quantities in the right-hand graphic are
computed via the left-hand graphic and Eqs. 9.17 and 9.18.

Unconditional forward default probabilities, the second possible definition, are
rather easier to determine. We define the collection of these values as

p(tk−1, tk) = p(t0, tk)− p(t0, tk−1), (9.18)

for k = 1, .., n. These are comfortably computed using the smoothed cumulative
default probabilities.

Figure 9.1 provides a stylized description of the NIB master-scale PD12 through-
the-cycle probabilities: the cumulative, conditional forward, and unconditional
forward default term structures. Our internal non-homogeneous Markov chain
model—based on Bluhm and Overbeck [6]’s work—was used to build the left-
hand-graphic cumulative values. Using this cumulative quantity, the forward curves
displayed in the right-hand side have been fit to a variety of partitions—ranging
from daily to annual—over a 15-year horizon. The unconditional forward default
probabilities—represented as dashed lines—simply use the smoothed cumula-
tive likelihoods and Eq. 9.18. The associated conditional forward probabilities—
appearing as solid lines in Fig. 9.1—are determined with the recursive algorithm
outlined in Eqs. 9.15 to 9.17. The consequence is that, for every single grid point, the
identity from Eq. 9.14 holds. Following the preceding steps, therefore, ensures that
we have mathematical equivalency—irrespective of the time granularity—between
these central default-probability definitions.

The form of the cumulative default probability curve, from Fig. 9.1, is basically
invariant to the choice of default frequency. Since it is always defined relative to
the starting point (i.e., t0), the identical curve is used for every possible choice of
end tenor (i.e., tk). The only requirement is the ability to compute a value for any
possible choice of tk; we make use of a cubic-spline approximation for this purpose.



556 9 Computing Loan Impairments

When one employs linear interpolation, by contrast, the basic shape is preserved,
but the actual values are much choppier. The unconditional default probabilities are
similarly noisy when computed with linearly interpolated cumulative values. To be
fair, this may not dramatically impact the final computations, but it should ease
comparison and analysis of key inputs.

Since the default probabilities in Fig. 9.1 apply to smaller and smaller time
increments, as the frequency increases, the overall level of the curves is a decreasing
function of frequency.16 A daily grid probably amounts, for practical purposes,
to overkill; it is nonetheless useful to understand how the calculations perform
at the limit.17 As a final point, Fig. 9.1 permits us to visualize the difference
between conditional and unconditional forward default probabilities. For short
tenors, deviations are almost imperceptible. As time passes, however, we see the
distance between these two quantities gradually increases. This is the role of
conditionality at work.

Colour and Commentary 105 (DEFAULT PROBABILITY INGREDIENTS):
As seen in Chaps. 7 and 8, both through-the-cycle and point-in-time default-
probability term structures are constructed at annual or quarterly frequen-
cies. The expected-credit loss calculation, however, is typically based on a
finer time partition. This raises the question of how one should determine
these intermediate values. In principle, this is not an incredibly central choice,
since it does not dramatically impact the final results; that said, there are a
few possible traps for the unwary. It is also thus helpful to properly sort out the
various quantities and have both clear mathematical formulae and computer
sub-routines to move between them. Given more than one recipe for the final
expected-credit loss computation, it is good practice to carefully organize
the various ingredients. The cumulative default-probability curve—with its
ease of interpretation and frequency invariance—is the recommended starting
point. The conditional and unconditional forward default probabilities then
follow naturally.

9.1.4 The Simplest Example

While a consistently computed set of default probabilities across our time partition
is an essential prerequisite for the expected-loss computation, there still remain a
number of questions on our list that need to be answered. To help make things

16 252 business days per year over 15 years implies almost 3800 individual grid points. To satisfy
the preceding equations, the default-probability level must necessarily fall with the frequency.
17 A monthly partition of one’s time interval will typically suffice for production work.
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Table 9.1 Bullet-loan example details: This table provides a quick overview of the main details
associated with a simple bullet-loan example. Computing the expected credit loss of this loan in
various ways will help us clarify a defensible computation algorithm.

Characteristic Value

a bit less abstract, it is useful to introduce a simple example. This will assist in
considering the implications of different calculation approaches and, ultimately,
identification of a defensible algorithm. Table 9.1 introduces the details of an
entirely fictitious, relatively plain-vanilla, EUR one million, 15-year, PD12, bullet-
amortizing loan with a constant loss-given-default value of 0.3. The credit rating
of our example loan was not selected randomly. It coincides with the default
probabilities displayed in Fig. 9.1, permitting use of the values from our previous
illustrative computations.

The bullet-bond form dramatically simplifies matters. Things are further
improved by the use of a constant (i.e., time homogeneous) loss-given-default
figure.18 Finally, we initially make the (entirely unreasonable) simplifying
assumption of a zero coupon rate. This unconscionable choice will be relaxed
later, but helps us to avoid significant clutter in the early stages. Using Eq. 9.10,
Fig. 9.1, and Table 9.1, the expected credit loss reduces to the product of four
figures:19

E
P

t

(

Lt (t, T )

)

= p(t, T ) · c̄(t, T ) · γ̄ (t, T ) · δ̂(t, T )
︸ ︷︷ ︸

Eq. 9.10

, (9.19)

= p(t, T ) · c̄ · γ̄ · e−y(T−t ),

= (0.170) · (1, 000, 000) · (0.30) · (0.741)

= 37, 758,

18 We make this simplifying assumption for all of our loan-impairment calculations. In short, the
loss-given-default value does not vary across the through-the-cycle and point-in-time perspectives.
Such an assumption can naturally be relaxed, but it immediately raises significant parametrization
challenges.
19 We drop the i obligor index to avoid notational clutter.
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We may state without controversy—by virtue of the simplicity of our example—that
the true loan-lifetime, expected credit loss for this instrument is thus approximately
EUR 38,000. This amounts to about 3 3

4 % of the initial notional amount, which
is generally consistent with the highly skewed nature of default loss distributions
examined at length in previous chapters.

While the true expected loss value is now known, it is not immediately obvious
how one might replicate this calculation on our time partition. This may appear to
be a waste of time and energy for this example, but loan-impairment calculations
will involve more complex loans and other computational gymnastics necessitating
a time partition. Our preference is to get the computation straight in the simplest
possible setting before increasing the complexity. The key idea is that if our time-
partition calculation works in this most straightforward of cases, it will generalize
in a reasonable way. If not, at least we’ll have an idea of where to look if things go
astray.

A sensible starting point for replicating the computation in Eq. 9.19 over our time
partition is

E
P

t

(

Lt (t, T )

)

≡ E
P

t

(

Lt(t0, tn)

)

=
n
∑

k=1

p(t0, tk−1, tk) · c̄ · γ̄ · δ̂(t0, tk), (9.20)

= c̄ · γ̄ ·
n
∑

k=1

p(t0, tk−1, tk) · δ̂(t0, tk).

Here we use the conditional forward default probabilities for each time interval; to
repeat, these are the default probability on each (tk−1, tk], conditional on survival to
tk−1. Inspection of Eq. 9.20 reveals that each term in the sum involves the product
of a default probability and a discount factor. This will be difficult to simplify.
Let’s ease matters, for the moment, by setting the discount rate identically to zero.
The consequence is that δ̂(t0, tk) = 1 for all k = 1, ..., n. This permits some
rearrangement

E
P

t

(

Lt (t0, tn)

)

= c̄ · γ̄ ·
n
∑

k=1

p(t0, tk−1, tk), (9.21)

= c̄ · γ̄ ·
n
∑

k=1

p(t0, tk)− p(t0, tk−1)

1 − p(t0, tk−1)
︸ ︷︷ ︸

p(t0,tn)?

,

where the first-principle definition—derived in previous chapters—of the condi-
tional forward default probability is used. If we could show that the sum in
Eq. 9.21 is equal to p(t0, tn), this would establish equivalence—at least under a
zero discount factor—with the correct calculation in Eq. 9.19. The sum is not easily
simplified—given that each term has a different denominator—and our identity
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from Eq. 9.14 indicates that the relationship between cumulative and conditional
forward probabilities is multiplicative and not additive. Indeed, try as we might, our
sum does not collapse to the desired conditional default probability. If we use the
suggested approach from Eq. 9.20, we arrive at an expected credit loss of about EUR
49,000. The actual undiscounted outcome, calculated using Eq. 9.19, is almost EUR
51,000.

The use of conditional forward default probabilities is a failure. This would
appear to be the consequence of two elements. First, the aggregation of expected
credit losses is performed additively over the time partition; this creates an issue
due to the multiplicative relationship between cumulative and conditional forward
default probabilities. Second, and perhaps more importantly, the loan-impairment is
unconditional—at least, with respect to time—and introduction of conditionality is
inconsistent with the fundamental approach.20 This suggests restating Eq. 9.20 with
unconditional forward default probabilities as,

E
P

t

(

Lt (t0, tn)

)

=
n
∑

k=1

p(tk−1, tk) · c̄ · γ̄ · δ̂(t0, tk), (9.22)

= c̄ · γ̄ ·
n
∑

k=1

p(tk−1, tk) · δ̂(t0, tk).

Facing the same issue with managing the product of default probabilities and
discount factors, we again deploy the trick of setting the discount rate to zero. The
consequence is,

E
P

t

(

Lt (t0, tn)

)

= c̄ · γ̄ ·
n
∑

k=1

p(tk−1, tk), (9.23)

= c̄ · γ̄ ·
n
∑

k=1

(

p(t0, tk)− p(t0, tk−1)

)

︸ ︷︷ ︸

Telescoping sum

,

= c̄ · γ̄ ·
⎛

⎝p(t0, tn)− p(t0, t0)
︸ ︷︷ ︸

=0

⎞

⎠ ,

= c̄ · γ̄ · p(t0, tn).

20 Conditionality of expected losses will, in latter sections, be introduced with respect to macro-
financial outcomes. This, however, is embedded in the point-in-time perspective and is a rather
different style of conditionality.
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This happy result stems from the first-principle definition of unconditional forward
default probabilities and the telescoping nature of their sum over the time partition.
Up to the discount factor, Eq. 9.22 and the true value—summarized in Eq. 9.19—
look to be equivalent.

This is progress. If we set the discount rate back to its setting from Table 9.1,
however, we encounter a slight setback. The expected-loss estimate, using Eq. 9.22,
is about EUR 45,000. Despite the equivalence of Eqs. 9.19 and 9.23, a source
of difference remains. As the only remaining difference, it must be related to the
discount factor. The reason for this issue, in fact, stems from our assumptions about
the magnitude of the exposure-at-default value. Fixing it at the final time point is
perfectly acceptable, but fixing it over the entire time partition is not. If default
occurs on interval (tk−1, tk], then the size of the credit exposure is not c̄. Instead, it
is the present value of c̄ at time, tk . In other words, we need to write,

ċ(tk) = c̄e−y(tn−tk), (9.24)

for k = 1, ..., n. Two assumptions are quietly embedded in this representation:
default occurs at time tk and interest rates may be continuously compounded.
Neither are particularly defensible—and both may be relaxed—but for a reasonably
large number of time steps, neither choice will make much of a difference on the
final result.

Using this updated, or time-adjusted, exposure-at-default definition, we may
return to Eq. 9.22 and simplify,

E
P

t

(

Lt (t0, tn)

)

=
n
∑

k=1

p(tk−1, tk) · ċ(tk) · γ̄ · δ̂(t0, tk), (9.25)

= γ̄ ·
n
∑

k=1

p(tk−1, tk) · c̄e−y(tn−tk)
︸ ︷︷ ︸

ċ(tk)

· e−y(tk−t0)
︸ ︷︷ ︸

δ̂(t0,tk)

,

= c̄γ̄ ·
n
∑

k=1

p(tk−1, tk) · e−y(tn−�tk)−y(�tk−t0),

= c̄γ̄ · e−y(tn−t0)
︸ ︷︷ ︸

δ̂(t0,tn)

·
n
∑

k=1

p(tk−1, tk)

︸ ︷︷ ︸

p(t0,tn)

,

= p(t0, tn) · c̄ · γ̄ · δ̂(t0, tn)
︸ ︷︷ ︸

Eq. 9.19

.

We have another cheerful result. When we appropriately adjust the exposure-at-
default for the time value of money, we find a direct correspondence between the
true (cash-flow determined) and time-partitioned computations. It should be clear,
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Table 9.2 Bullet-loan example results: This table provides the results of a range of alternative
approaches for the computation of the expected credit loss for the bullet-bond introduced in
Table 9.1. Unconditional forward default probabilities and time-adjusted (i.e., discounted) loan
exposures are required to correctly compute expected credit losses on a time partition.

y = 0 y = 2.00%

Approach Flat c̄ Flat c̄ Adjusted c̄

Cumulative without partition 50,958 37,751
Conditional forward on partition 55,462 48,420 41,087

Unconditional forward on partition 50,958 44,674 37,751

Fig. 9.2 ECL calculation alternatives: This graphic, using the alternatives from Table 9.2 visually
highlights the importance of the default-probability definition and proper discounting to the
expected-credit-loss calculation.

from the development in Eq. 9.25, that this only works when there is a fixed and
common discount rate, y.

Table 9.2 summarizes the various cases that we have examined. The first variation
involves setting the discount factor to zero. We clearly see that use of cash-flows
and cumulative default probabilities agrees perfectly when applying unconditional
default probabilities to an exposure-based time partition. Use of conditional default
probabilities simply does not work. Introducing a non-zero discount factor, however,
leads to some additional complication. We need to adjust the individual exposures
on our partition for the time value of money to reestablish equivalence between the
cumulative-probability cash-flow and unconditional-probability, time-partitioned
exposure calculations. This result is visually demonstrated in Fig. 9.2.

To really underscore our bullet-bond example, Table 9.3 illustrates all of the
individual components, on an annual basis, associated with the actual computa-
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tion.21 Although it is not enormously interesting in this bullet-bond case, it sets the
stage for detailed comparison with the more complicated upcoming cases. Table 9.3
nonetheless shows the unconditional forward probabilities, discount factors, and
discounted outstanding amounts for each year over the 15-year time horizon. The
discount factors decrease monotonically over the period, whereas there is a gradual
increase in the discounted outstanding. The actual expected-credit loss values,
however, are strongly influenced by the time profile of the unconditional forward
default probabilities. This allows us, for the first but not the last time, to look at
the evolution of expected-credit loss over time. The lifetime expected-credit loss
of about EUR 38,000 reduces to roughly EUR 1800, if we examine only a one-
year horizon. To obtain a one-year value using the cash-flow-based computation
with cumulative default probabilities requires using the one-year cumulative default
probability in Eq. 9.19. For comparative purposes, the result for annual time steps is

E
P

t

(

Lt(t0, t1)

)

= p(t0, t1) · c̄(t0, t1)
︸ ︷︷ ︸

c̄

·γ̄ · e−y(t1−t0), (9.26)

= (0.008) · (1, 000, 000) · (0.30) · (0.980)

= 2364.

In this simple bullet-bond case, the lifetime expected-credit loss estimates agree
perfectly. At the one-year horizon, however, they diverge.22 This will not change as
we relax the simplifying assumptions embedded in this example.

Colour and Commentary 106 (CHOOSING A DEFAULT PROBABILITY):
Entering into our first example, it was unclear which flavour of default
probability should be used in the expected-credit-loss calculation. When
employing the instrument’s cash-flows, the cumulative default probability is
the most natural and appropriate choice. It treats each bond as a portfolio
of separate zero-coupon bonds; each receiving their own discount factor and
cumulative default probability. The IFRS 9 guidance strongly pushes us in
the direction of employing a time partition and some notion of exposure-at-
default for each increment. This implies that it will be difficult to use the
intuitive cash-flow-based approach in a generic fashion. We demonstrated
unequivocally in this section that, when using a time partition, one must

(continued)

21 We can do this for a much finer time partition, but Table 9.3 probably already has too many
rows.
22 Equation 9.26 can be fixed by appropriate discounting of the final exposure (i.e., setting c̄ =
1,000,000 · e−14·0.02 = 755,784), but this logically undermines the spirit of the cash-flow-based
computation.
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Colour and Commentary 106 (continued)
employ the correctly discounted loan exposures along with unconditional
forward default probabilities in the expected-loss calculation. This avoids
problems with time conditionality while the additive form preserves the
integrity of the computation. There are thus two equivalent avenues one
might follow: use of cash-flows and cumulative default probabilities or
appropriately discounted exposures on a time partition with unconditional
forward default probabilities. Although there is perfect agreement—given
a fixed and common discount rate—over the loan’s lifetime, they will not
generally agree for each sub-period.

9.1.5 A More Realistic Example

The bullet loan example is somewhat oversimplified; many real-world loans exhibit
an amortizing schedule. In other words, principal is gradually paid down over
the loan’s lifetime leading to a predicable decrease in exposure and associated
credit risk. In this section, we’ll extend our example to incorporate this dimension.
Table 9.4 thus revises Table 9.1 to capture this amortizing dimension. In particular,
after a five-year grace period, there is a linear reduction in loan principal.

Figure 9.3 helps us to envision the time profile—on a time partition with an
annual frequency—of our amortizing loan. The exposure remains fixed for the first
six years and then begins to decline in a linear fashion. Although the principal
repayments occur from years 6 through 15, the exposure includes the actual
repayment. This is because we are worried about default up to that point, which
also includes the principal repayment.

The natural starting point is with the intuitive cash-flow-based approach. A bit
more caution is required. First of all, we need to make a distinction between our time
partition and the cash-flow pattern. In this first calculation, we will restrict ourselves
to the cash-flow profile. Given m ∈ N cash-flows, we imagine that the cash-flows

Table 9.4 Amortizing-loan
example details: This table
provides a quick overview of
the main details associated
with an extension to an
amortizing-loan setting. This
is one step towards full
generalization of the
expected-credit loss
calculation.

Characteristic Value
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Fig. 9.3 Amortizing-loan profile: This graphic, using the details from Table 9.4, outlines the
exposure and cash-flow profile—using an annual time partition—associated with our amortizing-
loan example.

are spread over time as

{

t = T0, T1, ..., Tm−1, Tm = T

}

(9.27)

This compares logically with Eq. 9.11. They share the same beginning (i.e., time
t) and ending (i.e., time T ) points, but the frequencies can be rather different.23

Unlike the original time partition from Eq. 9.11, the steps between the grid points
need not be equal. That is, Tm − Tm−1 is not always constant.24 This is a subtle,
but important difference, which the notation tries to capture with the upper- and
lower-case representations of time (i.e., t versus T ) and the distinction between m

and n.
Using the cash-flow partition from Eq. 9.27, and generalizing the initial calcula-

tion from Eq. 9.19, we arrive at the following expression:

E
P

t

(

Lt (t, T )

)

=
m
∑

k=1

p(T0, Tk) · c̄(Tk) · γ̄ · δ̂(T0, Tk). (9.28)

We can think of each individual cash-flow as being a separate instance of Eq. 9.19—
each with its own cumulative default probability and discount factor—and Eq. 9.28
is simply adding them all together. The notation c̄(Tk) is a slight extension to refer
to the treatment of each (i.e., kth) cash-flow as its own zero-coupon, or bullet, loan.

23 Practically, for example, it is common that n � m.
24 Indeed, this will only occur on cash-flow dates.
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Table 9.5 Amortizing-loan cash-flow results: This table provides the individual details of the
cash-flow-based expected-credit-loss computation introduced in Eq. 9.28 for the amortizing bond
example introduced in Table 9.4. It is useful to think of each row as a separate instance of Eq. 9.19.

Cumulative Discount

Year probability LGD factor Cash-flow ECL

k p(T0, Tk) γ̄ d̂(T0, Tk) c̄(Tk) p(T0, Tk) · γ̄ · d̂(T0, Tk) · c̄(Tk)
1 0.0080 0.3 0.980 0 0

2 0.0233 0.3 0.961 0 0

3 0.0414 0.3 0.942 0 0

4 0.0596 0.3 0.923 0 0

5 0.0764 0.3 0.905 0 0

6 0.0916 0.3 0.887 100,000 2437

7 0.1050 0.3 0.869 100,000 2738

8 0.1168 0.3 0.852 100,000 2985

9 0.1272 0.3 0.835 100,000 3187

10 0.1364 0.3 0.819 100,000 3350

11 0.1446 0.3 0.803 100,000 3481

12 0.1519 0.3 0.787 100,000 3585

13 0.1585 0.3 0.771 100,000 3666

14 0.1644 0.3 0.756 100,000 3728

15 0.1699 0.3 0.741 100,000 3775

Total 1,000,000 32,932

Unlike the bullet-bond example, a bit more work is involved to arrive at the
final expected-credit-loss estimate using Eq. 9.28. To ensure the maximal amount of
clarity—as well as comparability—Table 9.5 chronicles all of the annual cumulative
default probabilities, discount factors, and cash-flows involved in the computation.
The final result is about EUR 33,000. Comparing this to the bullet-bond example
in the preceding section, we observe a roughly EUR 5000 (i.e., 13%) decrease in
expected-credit loss. This makes logical sense; the presence of gradual principal
repayment over the loan’s lifetime reduces credit risk and should manifest itself in
lower expected credit losses.

Moving to the exposure-based calculation, even more machinery is required.
First of all, for an arbitrary point along the equally spaced time partition tk , we need
to describe the outstanding loan amount. This is accomplished via a time-varying
sum over the remaining cash-flows

X(tk) =
Tm
∑

Tj≥tk
c̄(Tj ). (9.29)

Although the calculation occurs on the time partition from Eq. 9.11, the sum is taken
over the cash-flow grid introduced in Eq. 9.27. X(tk), despite its rather ugly form, is
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essentially the sum of the remaining notional cash-flows from time tk until maturity
(i.e., T = Tm = tn).

Having learned our lesson from the previous bullet-bond example, we know that
Eq. 9.29 will not quite work without some kind of discounting adjustment. More
specifically, as at time tk , each of the future cash-flows in our sum needs to be
discounted back to the specific interval. This leads to the following modification of
Eq. 9.29:

Ẋ(tk) =
Tm
∑

Tj≥tk
c̄(Tj )e

−y(Tj−tk). (9.30)

This is the amortizing-bond analogue to the bullet-bond quantity from Eq. 9.24. The
objective is to preserve the integrity of the time value of money across each of our
time steps. Once again, time-homogeneity of the discount rate will be essential to
maintain equivalence.

The exposure-based computation on our time partition is defined as

E
P

t

(

Lt (t0, tn)

)

=
n
∑

k=1

p(tk−1, tk) · δ̂(t0, tk) · Ẋ(tk) · γ̄ , (9.31)

which compares directly to the bullet-loan definition from Eq. 9.25. Unlike Eq. 9.25,
it is not particularly easy to establish a correspondence with the cash-flow-based
computation. Working with the basic definitions, we can re-arrange Eq. 9.31
somewhat as

E
P

t

(

Lt (t0, tn)

)

=
n
∑

k=1

p(tk−1, tk) · δ̂(t0, tk) · Ẋ(tk) · γ̄
︸ ︷︷ ︸

Eq. 9.31

, (9.32)

= γ̄ ·
n
∑

k=1

p(tk−1, tk) · e−y(tk−t0)
︸ ︷︷ ︸

δ̂(t0,tk)

·
Tm
∑

Tj≥tk
c̄(Tj )e

−y(Tj−tk)

︸ ︷︷ ︸

Eq. 9.30

,

= γ̄ ·
n
∑

k=1

p(tk−1, tk) ·
⎛

⎝

Tm
∑

Tj≥tk
c̄(Tj ) · e−y(Tj−�tk)−y(�tk−t0)

⎞

⎠ ,

= γ̄ ·
n
∑

k=1

p(tk−1, tk) ·
⎛

⎝

Tm
∑

Tj≥tk
c̄(Tj ) · e−y(Tj−t0)

⎞

⎠ .

This is not a terribly promising path to establishing the analytic relationship between
Eqs. 9.28 and 9.31. It will take a bit more patience and creativity. Let’s, once
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again, set the discount rate y = 0 and force our equally spaced time and cash-flow
partitions to agree perfectly; this basically means that m = n and we are sitting at a
cash-flow date. Also ignoring the loss-given-default, which is common to all terms
in Eq. 9.32, we can organize each of the terms in our sum within the following
matrix:

1 p(T0, T1) · c̄(T1) p(T0, T1) · c̄(T2) p(T0, T1) · c̄(T3) · · · p(T0, T1) · c̄(Tm−1) p(T0, T1) · c̄(Tm)
2 − p(T1, T2) · c̄(T2) p(T1, T2) · c̄(T3) · · · p(T1, T2) · c̄(Tm−1) p(T1, T2) · c̄(Tm)
3 − − p(T2, T3) · c̄(T3) · · · p(T2, T3) · c̄(Tm−1) p(T2, T3) · c̄(Tm)
.
.
.

.

.

.

.

.

.

.

.

.
. .
.

.

.

.

.

.

.

m− 1 − − − · · · p(Tm−2, Tm−1) · c̄(Tm−1) p(Tm−2, Tm−1) · c̄(Tm)
m − − − · · · − p(Tm−1, Tm) · c̄(Tm)

p(T0, T1) · c̄(T1) p(T0, T2) · c̄(T2) p(T0, T3) · c̄(T3) · · · p(T0, Tm−1) · c̄(Tm−1) p(T0, Tm) · c̄(Tm)

Working from right to left, the c̄(Tm) cash-flow arises m times across our double
sum. If we sum all of its contributions we recover the cumulative default probability,
p(T0, Tm). Similarly, the c̄(Tm−1) cash-flow shows up onm−1 occasions permitting
us to recover its product with p(T0, Tm−1). This continues all the way down to
the first cash-flow, c̄(T0, T1), which makes only a single appearance. Adding up all
of these contributions, it is not hard to see the form of Eq. 9.28 albeit absent the
discount factors and loss-given-default components.

This provides the intuition, but we can do a bit better. It requires some reordering
of our sums. Admittedly somewhat painful and tedious, this is nonetheless really our
only (rigorous) way forward. To see more clearly how this is done, let’s simplify the
form of Eq. 9.32 as,

Eq. 9.32
︷ ︸︸ ︷

n
∑

k=1

p(tk−1, tk)
︸ ︷︷ ︸

yk

n≡m
∑

j=k
c̄(Tj )e

−y(Tj−T0)

︸ ︷︷ ︸

xj

=
n
∑

k=1

n
∑

j=k
xjyk, (9.33)

where xj = c̄(Tj )e
−y(Tj−T0) and yk = p(tk−1, tk). Let’s us now try expand, and

then collapse, Eq. 9.33

n
∑

k=1

n
∑

j=k
xjyk =

x1y1+
x2y1 + x2y2+

x3y1 + x3y2 + x3y3+
...

xny1 + xny2 + xny3 + · · · xnyn

, (9.34)
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=

x1y1+
x2 (y1 + y2)+

x3 (y1 + y2 + y3)+
...

xn (y1 + y2 + y3 + · · · yn)

,

= x1

1
∑

k=1

yk + x2

2
∑

k=1

yk + x3

3
∑

k=1

yk + · · · xn
n
∑

k=1

yk

=
n
∑

j=1

j
∑

k=1

xjyk.

Without changing the final value, we’ve essentially switched the order of our
summations while simultaneously revising their starting and end points. This is the
analytic equivalent of our previous matrix computation.

This turns out to be really quite useful. Let’s return to Eq. 9.32 and—to keep
from completely losing our minds—continue to force our time partition to perfectly
agree with the cash-flow pattern (i.e., set n = m). Keeping this simplification and
our trick at the ready, we have

E
P

t

(

Lt (t0, tn)

)

= γ̄ ·
n
∑

k=1

p(tk−1, tk) ·
⎛

⎝

Tm
∑

Tj≥tk
c̄(Tj ) · e−y(Tj−t0)

⎞

⎠

︸ ︷︷ ︸

Eq. 9.32

, (9.35)

= γ̄ ·

Put into form of Eq. 9.33
︷ ︸︸ ︷

n
∑

k=1

p(Tk−1, Tk)
︸ ︷︷ ︸

yk

n=m
∑

j=k
c̄(Tj ) · δ̂(T0, Tj )
︸ ︷︷ ︸

xj

,

= γ̄ ·
n
∑

j=1

j
∑

k=1

p(Tk−1, Tk)c̄(Tj ) · δ̂(T0, Tj )

︸ ︷︷ ︸

Apply the result from Eq. 9.34

,

= γ̄ ·
n
∑

j=1

c̄(Tj ) · δ̂(T0, Tj )

j
∑

k=1

p(Tk−1, Tk)

︸ ︷︷ ︸

Telescoping
sum

,
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Fig. 9.4 Frequency and cash-flows: The preceding graphics consider two separate elements of
the expected-credit-loss computation. The left-hand graphic demonstrates the invariance of the
results to the choice of time-partition granularity when using Eq. 9.31. The right-hand graphic, on
an annual time partition, compares the periodic expected-credit-loss partitions associated with the
exposure and cash-flow-based approaches.

= γ̄ ·
n
∑

j=1

c̄(Tj ) · δ̂(T0, Tj )p(T0, Tj )

︸ ︷︷ ︸

Eq. 9.28

.

This returns us to the cash-flow definition introduced—for a zero-coupon bond—in
Eq. 9.28. When our time-partitioned and cash-flows-based computations are put on
a common grid, then the values should agree with one another. With some patience,
and a bit of pain, it is presumably possible to demonstrate the more general result
for differing time- and cash-flow grids.

Although it is reassuring to understand the analytical relationship between these
two approaches—within the context of a zero discount factor—it is even better
to numerically demonstrate their equivalence. Table 9.6 provides the gory details
of the various inputs to the exposure-based expected-credit-loss computation—on
an annual grid—stemming from Eq. 9.31 for the amortizing bond example. The
agreement with the cash-flow-based results in Table 9.5 is evident. Our caution in
managing the various discount rates has clearly paid dividends.

Figure 9.4 takes things a step further by attempting to address two open ques-
tions. The first relates to the granularity of the time partition in the exposure-based
computation. Tables 9.5 and 9.6 illustrate equivalence when there is a common
annual time partition for both exposures and cash-flows.25 What happens when n

is much greater than m. The left-hand graphic of Fig. 9.4 shows, rather definitively,
that the results are invariant to the fineness of our time partition. Breaking up each

25 This was done to ease direct comparison and keep the overall number of rows (slightly) under
control.
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year into 252 daily time intervals or taking a single step yield the same result, which
also perfectly matches the cash-flow-based value.

The right-hand graphic of Fig. 9.4 basically compares the final columns—
representing the annual expected-credit-loss allocations—of Tables 9.5 and 9.6.
This brings us back to the observation in the bullet-bond setting: although the life-
time expected-credit loss is identical in the cash-flow and exposure-based methods,
the periodic amounts follow rather different patterns over the loan’s maturity profile.
When using loan exposures, as in Table 9.6, the annual contributions are skewed
towards the early part of the loan. The cash-flow computation has the opposite
effect; its contributions coincide unsurprisingly with the cash-flow incidence.26 If
our only interest was lifetime expected-credit loss, this would be irrelevant. As we’ll
see shortly, however, the IFRS 9 guidance takes a significant interest in the time
dimension.

Colour and Commentary 107 (CASH-FLOWS VERSUS EXPOSURES): In
introducing this section, we posed a number of questions. One critical query
related to whether or not one should employ cash-flows or exposures in the
computation of expected credit loss. To answer this point we have examined,
analytically and numerically, both approaches in the context of bullet and
amortizing loans. The conclusion is rather clear: it does not matter. If one is
sufficiently careful in one’s treatment of the time value of money and choice
of default probabilities, the two approaches are mathematically equivalent.
There is one important caveat. This result only applies to the total expected-
credit loss computed over the loan’s entire lifetime. The periodic profile of
exposure and cash-flows are not equivalent and, as a consequence, in any
one period the values need not agree. While useful, therefore, the analytical
equivalence between these approaches can only bring us so far. We will, rather
soon, need to make a concrete choice taking into account the demands of the
IFRS 9 accounting guidance.

9.1.6 Coupon and Discount Rates

To this point, we have been rather vague about the discount rate and essentially
assumed away the loan’s coupon rate. In practical settings, of course, loans bear
coupons and this will turn out to have rather important implications for the discount
factor.

26 One could with appropriate discounting, of course, pull the cash-flows back into any given
period. This may prove useful, but would also somewhat defeat the purpose.



9.1 The Calculation 573

The discount rate has, in fact, a rather fancy name. It is referred to as the effective
interest rate and needs to be determined from the loan cash-flows. Indeed, it is a
time-varying quantity and must be re-estimated for each new calculation date. This
turns out to be rather straightforward, thankfully, since it is basically a form of bond-
yield computation.

Let’s begin with a generic non-zero coupon rate of υ. Recall that
∑m

k=1 c̄(Tk)

denotes the notional (or outstanding) value of our loan, or bond, at the current point
in time. We then also need to add accrued interest at the calculation time, which
we will represent as a(T0). The combination of these two quantities provides a
description of the loan’s gross carrying amount. The cash-flows are readily defined
by our pre-defined principal repayment stream and the coupon rate. The effective
interest rate is defined as the root—in our discount rate, y—of the following one-
dimensional non-linear equation:

(

m
∑

k=1

c̄(Tk)+ a(T0)

)

︸ ︷︷ ︸

Gross carrying amount

−
m
∑

k=1

(

(1 + υ) · c̄(Tk)
)

e−y(Tk−T0)

︸ ︷︷ ︸

Present value of cash-flows

= 0. (9.36)

y is the common discount rate that equates the discounted loan cash-flows with its
gross carrying amount. For each loan—depending on its cash-flow profile, principal
structure, accrued interest, and coupon rate—it will be slightly different. To be frank,
although Eq. 9.36 represents the spirit of the effective-interest-rate calculation, it
is not quite correct. The reason relates to the compounding decision. Typically a
continuously compounded discount factor is not employed, but rather some sort
of discrete compounding. While these details are practically important, for sheer
mathematical elegance and comparison to our previous development, we’ll stay with
continuous compounding.27

At this point, it is useful to recall why we use the notation d̂(t0, tk) to denote
the discount factor over the time interval, [t0, tk]. It is the expectation of the
continuously compounded integral of the instantaneous short-term interest rate over
[t0, tk] taken with respect to the physical probability measure, P. It is decidedly not
a risk-free rate and needs to incorporate the credit-risk dimension of one’s loan. It is
not obvious that Eq. 9.36 perfectly catches the risk dimension, but it also does not
ignore it. To the extent that the coupon rate—or in the floating-rate case, the margin
over the forecasted reference rate—embeds the credit riskiness of the underlying
obligor, it can be considered a proxy for the appropriate discount rate. To be fair to
the accounting guidance, such a quantity is not easily estimated.

Table 9.7 provides the final revision to our amortizing loan example originally
introduced in Table 9.4. The first addition is a (arbitrarily selected) non-zero fixed
coupon rate of 3%. This choice immediately allows us to formally compute the

27 We can think of this as artistic license in the presentation of overall methodology. The actual
differences are typically quite small.
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Table 9.7 Full amortizing-loan example details: This table revises (once again) our amortizing
loan example from Table 9.4 through the addition of an actual coupon rate. This also allows us
to formally compute the common discount rate by solving Eq. 9.36, which is referred to as the
effective interest rate.

Characteristic Value

common discount rate by solving for the root of Eq. 9.36 in y. The result, which we
now know is typically referred to as the effective interest rate, is 2.96%. If we had
used discrete annual compounding—since we are computing the value at inception
with no accrued interest—the coupon and effective interest rates would perfectly
coincide. The small, immaterial difference arises from our choice of continuous
compounding.

Table 9.8 immediately makes use of these new coupon and discount rate values
to compute the expected-credit loss under both the cash-flow- and exposure-
based approaches. As previously in Table 9.5 and 9.6, the time partition has been
selected to be consistent with the cash-flow profile (i.e., n = m). As before, with
the introduction of a non-zero coupon, the two methods generate precisely the
same lifetime expected-loss results. At EUR 36,000, the outcome quite reasonably
exceeds the zero-coupon result by about 10%. It remains, despite the 3% coupon,
slightly south of the zero-coupon bullet bond example presented in Table 9.3. These
variations on our simple example provide some interesting insight into the role of a
loan’s cash-flow structure on its lifetime expected-loss estimate.

The discounted outstanding column in Table 9.8 also helps explain the logic
lying behind Eq. 9.36. For each time increment from years 1 to 6, the Ẋ(tk)

values are equivalent to the overall notional value plus the (as-yet-unpaid) annual
coupon payment. The same occurs from years 7 to 15, but it is less easy to see.
No other discount rate will generate this result.28 This is another reason for the
(slightly controversial) choice of continuous compounding; using discrete annual
compounding, this effect would not have been visible. The effective interest rate

28 Moreover, such an effect would be impossible absent the use of a single common discount factor
to move cash-flows forward and backward in time.
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was clearly explicitly selected, by those responsible for the accounting guidelines,
to ensure consistency between cash-flow treatment and the gross carrying amounts
found in the firm’s balance sheet.

Table 9.8 also indicates that the addition of coupon payments does nothing to
improve the temporal inconsistency of the cash-flow- and exposure-based computa-
tions. Results of the cash-flow method still push expected credit-loss further into the
future, closer to the end of the loan’s lifetime, while the exposure-based technique
has the opposite behaviour. When we address some of the key aspects of the IFRS
9 standard, this seemingly modest distinction will take on a much higher degree of
importance.

Colour and Commentary 108 (THE EFFECTIVE INTEREST RATE): When
performing computations that involve moving cash-flows both forward and
backwards in time, as in the expected-loss setting, the choice of discount
factor will inevitably play a central role. Given that a common discount
rate is clearly essential to maintaining equivalence between the cash-flow-
and exposure-based approaches, we cannot simply use the term structure
of interest rates at the time of computation. Moreover, as we saw earlier,
the discount factor involves the expectation under the physical probability
measure, P. As a consequence, it cannot be a risk-free interest rate, but
needs to incorporate some dimension of risk. The effective-interest-rate
computation, which stems from the more general treatment of non-marketable
(i.e., non-traded) loans and bonds, can be considered to be a proxy from this
credit-risky discount factor.a The double incidence of credit risk—through
the separately determined default probabilities and discount factor—can be
considered to be a feature of the expected-credit loss computation. In any
event, the effective interest rate is the common, time-homogeneous discount
rate that equates the present value of the instrument’s cash-flows with its gross
carrying amount. This definition appears to have been explicitly selected, by
those responsible for the accounting guidelines, to ensure general consistency
with other balance-sheet reporting and equivalence between cash-flow- and
exposure-based versions of the expected-credit loss computations.

a This occurs from the presence of credit risk within the coupon rate or lending margin.

9.1.7 Impact of Credit Rating

Over a loan’s lifetime, particularly one with a long tenor, there is a reasonable
probability that it might experience a change in its credit rating. The expected-
credit loss computation does not attempt to explicitly predict the incidence of credit
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Fig. 9.5 Probability term structures by rating: The graphics above display—for a selection of
different internal ratings—the through-the-cyle cumulative and unconditional forward default
probability term structures over a 15-year horizon. The construction of these curves is detailed
in Chap. 7.

migration, but it readily permits adjustment for any possible rating change. The
calculation simply jumps to another default-probability curve. Other than changing
the underlying probabilities, therefore, nothing else changes in the details of our
computation.

Figure 9.5 displays—for four distinct internal rating levels—the through-the-
cyle cumulative and unconditional forward default probability term structures
over our example loan’s 15-year lifetime. Given the exponential nature of default
on the rating scale, the differences between the various notches in Fig. 9.5 are
enormous. As detailed in Chap. 7, the construction of such curves is not a trivial
undertaking. Their current availability, however, makes determining the impact of
rating transition very straightforward.

Table 9.9 employs the default-probability curves from Fig. 9.5—along with all
of the previous cash-flow and discount-rate information—to compute the expected-
credit loss for our coupon-bearing, amortizing bond example under four different
rating levels. We see immediately, from the shading, the EUR 36,000 value from
Table 9.8 under the original credit category, PD12. In the unlikely event of an eight-
grade upgrade, this number would fall to roughly EUR 1800. This amounts to a
reduction in excess of 90%. On the other hand, a four-notch downgrade almost
doubles the expected-credit loss estimate.

Figure 9.6 allows us to visualize all possible rating levels for our concrete
amortizing loan example. It includes, in explicit form, the values from Table 9.9
to help interpret the results. Interestingly, the expected-credit loss under the PD20
rating—amounting to about EUR 120,000 or 12% of our loan’s notional value—is
almost 70 times larger than the its PD01 equivalent. If we stay closer to home, and
consider ± one credit-rating step, the expected-credit loss ranges from EUR 27,000
to 45,000. When considering the outcome as a percentage of loan notional amount,
this amounts to a variation of about ± 1% in expected-credit loss associated with
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Table 9.9 Expected-credit loss by rating class: This table produces the expected-credit loss
results, for our running example, with four alternative credit ratings. No other aspects of our
amortizing-loan are changed and all computations employ the exposure-based method.

Unconditional forward probabilities Expected-credit loss

k PD04 PD08 PD12 PD16 PD04 PD08 PD12 PD16

1 0.0003 0.0016 0.0080 0.0414 83 475 2412 12,423

2 0.0004 0.0020 0.0153 0.0437 112 596 4449 12,719

3 0.0005 0.0022 0.0181 0.0359 140 627 5117 10,158

4 0.0006 0.0023 0.0182 0.0287 165 634 4988 7885

5 0.0007 0.0024 0.0169 0.0231 185 627 4496 6153

6 0.0008 0.0024 0.0151 0.0188 197 610 3917 4858

7 0.0008 0.0023 0.0134 0.0155 183 526 3029 3499

8 0.0008 0.0023 0.0118 0.0129 163 444 2303 2522

9 0.0009 0.0022 0.0104 0.0109 141 365 1725 1812

10 0.0009 0.0021 0.0092 0.0094 118 293 1270 1292

11 0.0008 0.0020 0.0082 0.0081 94 227 914 907

12 0.0008 0.0019 0.0073 0.0071 72 168 634 619

13 0.0008 0.0018 0.0066 0.0063 51 116 416 400

14 0.0008 0.0017 0.0060 0.0057 32 71 243 232

15 0.0008 0.0017 0.0054 0.0052 15 33 108 102

Total 1752 5814 36,021 65,581

Fig. 9.6 Through-the-cycle expected-credit loss by rating: This graphic shows the lifetime,
through-the-cycle expected-credit loss—for our concrete amortizing loan—across every internal
rating grade. The four specific cases from Table 9.9 are presented to aid interpretation.
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a (rather probable) single notch movement. There is no way around it; an entity’s
credit rating plays a central role in its expected-credit loss estimate.

Figure 9.6 provides another useful insight. Visually, the evolution of expected-
credit loss is relatively flat from PD01 to roughly PD08. At that point, it appears
to increase in an approximately linear manner up to the final rating category,
PD20. If our loan remains reasonably deep within investment-grade category,
the expected-credit loss remains comfortably below 1% of its notional value.
The broad conclusion from this observation is that expected-credit losses will be
vanishingly small for high-quality instruments. If a default does occur, however, the
actual loss—depending on the exposure profile of one’s portfolio—is likely to be
significantly larger. We will return to this idea later in our discussion.

Colour and Commentary 109 (EXPECTED-CREDIT LOSS AND CREDIT

RATING): While hardly a controversial statement, it nonetheless bears mak-
ing: an entity’s credit rating matters very importantly for the determination
of its expected-credit loss. The details of the calculation, however, barely
change. In the event of a rating upgrade or downgrade, one simply replaces
the unconditional forward default probabilities with the new curve. Com-
putational simplicity aside, even a one- or two-grade rating migration has
a significant impact on the lifetime expected-credit loss estimate. Multiple
step rating changes—which may accrue over a loan’s lifetime—can lead to
expected-credit losses being multiples (or fractions) of the original estimate.
Longer-term loans will be particularly sensitive to such rating movement.
As a final point, the sensitivity of (lifetime) expected-credit loss outcomes
depends upon the instrument’s location along the credit spectrum. Within
investment grade, the economic impact of rating change is relatively flat.a As
we move into speculative grade, however, there is a rather steep relationship
between credit downgrades and expected-credit loss. If we imagine a portfolio
of investment-grade loans, therefore, the expected-credit loss estimate will
typically be rather small relative to the overall portfolio. If exposures are
uneven, or lumpy, this could lead to a disconnect between any actual credit
losses and the expected values. More on this important point later.

a Strictly speaking, it is not flat, but the changes are so small in currency terms that they
practically appear economically fairly indistinguishable.

9.1.8 Adding Macro-Financial Uncertainty

Having addressed the main technicalities of the expected-credit loss calculation, we
are finally in a position to answer our final question: how do we incorporate—as
required by IFRS 9 guidance—the forward-looking element. This also involves a
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Fig. 9.7 Probability term structures by scenario: The graphics above display—for three dis-
tinct macro-financial scenarios—the (PD12) point-in-time cumulative and unconditional forward
default probability term structures over our 15-year horizon. The construction of these curves is
detailed in Chap. 8. Weighted average and through-the-cycle default-probability term structures
are included for comparison.

rather straightforward—when leaning upon the hard labour performed in Chap. 8—
adjustment to our underlying default-probability term structures.

Figure 9.7 provides us—in a manner analogous to Fig. 9.5—with the raw
ingredients. For rating category PD12, it illustrates the point-in-time cumulative and
unconditional forward default probability term structures for three distinct macro-
financial scenarios: upside, baseline, and downside.29 IFRS 9 does not provide any
direct guidance—beyond requiring a minimum amount of coverage—on the number
of scenarios that one should utilize; the choice lies with the financial institution. That
said, three scenarios—including a baseline bracketed by a positive and negative
view—should be considered as the minimal necessary construction. It would be
hard to argue for a balanced perspective on future outcomes absent, at least, three
such scenarios.

Although perhaps minimalist, three forward-looking scenarios—with ten macro-
financial state variables—nonetheless provide the analyst (and the financial institu-
tion) with significant flexibility. It becomes even more nuanced when we introduce
the notion of scenario weights. Since expected-credit loss is a single number,
some method for combining our three scenarios is necessary. These weights, rather
unsurprisingly, determine the relative importance of each scenario in the final
calculation. Naturally non-negative and summing to unity, these are not estimated
quantities. We can think of them as subjective probabilities—calibrated during the
forecasting process—associated with the various scenarios.30 Logic also argues for
a (conceptual) minimum of or 40–50% weight on the so-called baseline or central

29 These are based on our variation of Yang [27]’s methodology. See Chap. 8 for a detailed
discussion of how one constructs such curves.
30 Subjectivity is not a requirement. It is also entirely possible, within one’s modelling framework,
to formally assign scenario probabilities.
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scenario.31 The reader will hopefully agree that ten macro-financial variables,
three scenarios, and an equal number of scenario weights permits a rather rich
characterization of the future.

To continue with our concrete example, we have concocted some imaginary
scenarios weights. The baseline occurs with a 60% subjective probability, while the
upside and downside cases receive 15% and 25%, respectively.32 These values allow
us to display the weighted average default-probability term structures in Fig. 9.7; it
appears to come out, for most periods, just slightly below the through-the-cycle
values. Not surprisingly, the associated upside forward default probabilities are
the most optimistic, the downside are the most conservative, while the baseline
values lie somewhere in between. While this need not always be the case—it will
ultimately depend on the constellation of individual macro-financial scenarios—we
would typically expect to observe this general pattern.

Table 9.10 highlights these individual forward probabilities for our example 15-
year, fixed-coupon-bearing,amortizing loan. It also includes the expected-credit loss
contributions associated with each of the scenarios along with the weighted-average
outcome. The figures are presented so that one can simply sum the expected-
credit loss upside, baseline, and downside figures to arrive at the final column. As
we would have likely predicted, from the default-probability curves in Fig. 9.7,
the forward-looking expected-credit loss is slightly below the through-the-cycle
estimate. There is not much to read into this result. The distance between the
through-the-cycle and point-in-time estimates can vary dramatically depending
on the structure of the macro-financial scenarios—which are, in this example,
symmetric by construction—or the scenario weights or both.33

Another perspective is provided in Fig. 9.8. It demonstrates each of the annual
expected-credit loss values, for each of the macro-financial scenarios and their
weighted average, over the entire 15-year lifetime of our concrete example.34

Up until about four or five years, the downside estimates dominate the baseline,
upside, and through-the-cycle values. As we move towards years eight to ten,
however, the annual figures across all scenarios gradually converge to a common
value. This is entirely driven by the convergence of the point-in-time scenarios
to the through-the-cycle perspective over time. We also see the slight superiority
of the through-the-cycle calculations over the weighted average outcomes; this
supports the modest decrease in lifetime, point-in-time expected-credit loss. It bears

31 Although not written in stone, it is hard to defend the centrality of the baseline view when it
does not dominate one’s scenario weights.
32 This is a typical result when pessimistic risk managers are left to their own devices.
33 There is, however, a clear relationship between the two perspectives. The horizontal line between
year 10 and 11, in Table 9.10, describes the point beyond which all point-in-time scenarios have
converged to the through-the-cycle estimate. This feature, and the value of information, is discussed
in Chap. 8.
34 In all cases, for Table 9.10 and Fig. 9.8, the exposure-based approach is used.
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Fig. 9.8 Point-in-time expected-loss profile: This graphic demonstrates each of the annual
expected-credit loss values, for each of the macro-financial variables and their weighted average,
over the entire 15-year lifetime of our concrete example. In all cases, the exposure-based approach
is used. The through-the-cycle values are also provided for comparative purposes.

Fig. 9.9 Lifetime point-in-time expected-credit loss by scenario and rating: This graphic shows
the lifetime, point-in-time expected-credit loss—for our concrete amortizing loan—across every
internal rating grade and macro-financial scenario. Our original through-the-cycle PD12 estimate
is highlighted to help anchor our starting point.

repeating, because it will become important quite soon, that the difference between
the macro-financial scenarios are highest in the first few years of the analysis.

Figure 9.9 takes this analysis to its logic limit by displaying the lifetime, point-
in-time expected-credit loss—still for our concrete amortizing loan—across every
internal rating grade and each macro-financial scenario. The original through-the-
cycle PD12 estimate of EUR 36,000 is also highlighted to help us anchor to the
previous analysis. Figure 9.9 is usefully compared to Fig. 9.6. The same low,
roughly economically equivalent, expected-credit loss estimates are evident—across
all scenarios—up to about PD08 or PD09. From that point, we again observe a fairly
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steep linear increase in expected-credit loss up to PD20. The slope of the increase,
however, differs significantly across the macro-financial scenarios. A 100% weight
on the downside scenario in PD20 would lead to a lifetime expected-credit loss
in excess of 16% of our amortizing loan’s face value. A similar experiment with
the upside scenario, by contrast, cuts the expected-credit loss by more than half.
Although somewhat extreme at the PD20-rating level, this is precisely the objective
of the IFRS 9 guidance: it seeks to incorporate a forward-looking dimension rooted
in macroeconomic and financial outcomes into a firm’s loan-impairment calculation.

Colour and Commentary 110 (FORWARD-LOOKING EXPECTED-CREDIT

LOSS): Chapters 7 and 8 represented a long and laborious detour into the
world of through-the-cycle default-probability term structures and mapping
macro-financial scenarios into general credit conditions for the construction
of a defensible point-in-time perspective. At times, the reader may have
(legitimately) wondered where all this development was headed. We now reap
the benefits of this hard work. Our conditional, forward-looking, point-in-time
unconditional forward default probabilities are (almost) effortlessly slipped
into the base expected-credit loss computation. The consequence is a separate
expected-credit loss estimate for a variety of potential future scenarios
of economic and financial outcomes. We use, as do many institutions, a
minimalist scenario structure with three outlooks: an upside, a baseline,
and a downside scenario. Through the introduction of subjective scenario
probabilities—non-zero weights for each scenario summing to unity—these
disparate future viewpoints are readily combined into a single expected-credit
loss estimate. Three scenario outlooks, ten macro-financial variables, and
significant (and welcome) flexibility on the scenario weights permit a rich
characterization of future outcomes.

9.1.9 Tying It All Together

At the beginning of this section, we posed a range of questions concerning the
loan-impairment computation. Over the preceding pages we have, in occasionally
excessive detail, attempted to answer these queries. Table 9.11 seeks to collect our
answers. It contains a surprising number of important practical details such as the
probability measure, the distinction between use of cash-flows and exposures, the
proper default-probability flavour to use, how to compute the correct discount factor,
and the incorporation of point-in-time scenarios.

These lessons allow us to write down, with a reasonable amount of rigour, a
mathematical definition of the overall portfolio lifetime expected-credit loss. This
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Table 9.11 Loan-impairment questions and answers: This table revisits the questions posed at
the beginning of this section and attempts to provide—gleaned from the previous analysis—a set
of succinct answers.

Question Answer

PROBABILITY MEASURE? The physical measure, P.

MANAGING EXPOSURE? Cash-flows or (appropriately) discounted
exposures.

TIME INCREMENTS? Exposures can be placed on an arbitrary,
equally spaced grid.

DISCOUNT FACTOR? Common, numerically determined effective
interest rate.

DEFAULT-PROBABILITY? (CASH-FLOW

APPROACH)
Cumulative default probabilities.

DEFAULT-PROBABILITY?
(EXPOSURE-BASED APPROACH)

Forward unconditional default probabilities.

INCORPORATING SCENARIOS? Point-in-time perspectives combined with
scenario weights.

is an important step in the determination of the loan-impairment entry into a firm’s
balance sheet. It has the following form:

Lifetime Portfolio ECL =

Averaging over all scenarios
︷ ︸︸ ︷

J
∑

j=1

ωj

I
∑

i=1

n
∑

k=1

pij (tk−1, tk) · δ̂(yi , t0, tk) · Ẋi (tk) · γ̄i
︸ ︷︷ ︸

Each individual loan: Eq. 9.31
︸ ︷︷ ︸

The portfolio viewpoint: all I assets

, (9.37)

=
J
∑

j=1

ωj

I
∑

i=1

E
P
t

(

Lijt (t0, tn)

)

.

Although this has many familiar elements—and exploits Eq. 9.31 as its kernel—it
still requires a bit of translation. The first point is that we make use of the exposure-
based computation. Whatever the granularity of the time-partition, it is important to
select a value of n that captures the full lifetime of the longest maturity instrument in
one’s portfolio.35 For short-tenor assets, the values of Ẋ will be simply be zero for
the majority of the outer time steps. The second point is that we use the i subscript
to refer to each of the I financial instruments in one’s portfolio. Each will have
a different effective interest rate (i.e., yi) implying alternative discount rates. They
will also have varying loss-given-default values, exposure profiles, and their forward
unconditional default probabilities will depend on their current credit rating. Every
element in Eq. 9.31 will thus potentially vary between individual loans or bonds.

35 In our production implementation, we use a monthly time grid and set n = 480, which pushes
us out 40 years into the future.



586 9 Computing Loan Impairments

The final point is the presence of J = 3 macro-financial-motivated point-in-time
scenarios with associated subjective weights, {ωj : j = 1, ..., J }.36

Equation 9.37 can also, of course, be written using the cash-flow approach. As
we’ve seen, if done correctly, these two approaches are numerically equivalent. In
the next section, we will finally explain the relevance of our time partition and our
significant efforts to build an exposure-based loan-impairment estimator. This will
bring us away from our heretofore mathematical perspective and introduce some
important underlying accounting logic.

Colour and Commentary 111 (MEASURE THRICE, CUT ONCE): Wood,
stone, glass, or steel are expensive materials. When an experienced artisan
is working with any of these materials, common practice is to take numerous
measurements before actually proceeding to slice, grind, or cut. Measurement
is cheap, but incorrect action can be costly. This section has taken this
hard-earned practical advice to heart and tried to apply it—conceptually,
at least—to the financial loan-impairment calculation.a We have carefully
constructed the expected-credit loss computation from first principles, thought
about the appropriate probability measure behind the expectation operator,
wrestled with cash-flow exposures and their associated probabilities, identi-
fied a sensible common discount rate and examined its overall role, thought
carefully about various time partitions, considered the importance of an
instrument’s ratings, and finally incorporated the macro-financial scenarios
constructed in previous chapters. These myriad measurements, and their
associated lessons, now permit us to move forward and confidently cut our
materials.

a One might argue that the costs of an incorrect mathematical computation are quite low.
For figures that ultimately find their way into a firm’s financial statements, however, this is
not a terribly compelling argument.

36 To be a bit pedantic, we require that ωj > 0 for j = 1, ..., J and

J
∑

j=1

ωj = 1. (9.38)

These fairly commonsensical subject-probability constraints should be explicitly mentioned (at
least) once.
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Table 9.12 IFRS 9 stage allocation: The IFRS 9 guidance allocates financial instruments to three
distinct stages with differing treatment. This table summarizes their key aspects.

Stage I PERFORMING No significant increase in credit risk since initial recognition
12-month expected credit loss

Stage II UNDER-PERFORMING Significant increase in credit risk since initial recognition
Lifetime expected credit loss

Stage III NON-PERFORMING Credit impaired financial asset
Lifetime expected credit loss (or writedown)

9.2 Introducing Stages

If we were considering FASB’s current expected-credit loss methodology (CECL),
then we could essentially move directly to the discussion of adjustments for
portfolio composition. Under CECL, all loans are assigned their lifetime expected-
credit loss using either the cash-flow- or exposure-based approaches highlighted in
the previous development. Since we are interested in the IFRS 9 approach, however,
another important step remains: stage allocation. Under IFRS 9, each financial asset
subject to the loan-impairment calculation is assigned to one of three stages, which
receive alternative expected-credit loss treatment. Loosely speaking, stages I to III
deal with performing, under-performing, and non-performing assets, respectively.

Table 9.12 provides the key elements of IFRS 9 stage allocation definitions. In
stage I, things are going according to plan with the credit obligor and the firm
has no information to suggest any significant deterioration of credit quality. The
consequence is that only 12 months of expected-credit loss is provisioned for such
loans.37 Financial assets where, since initial recognition, the firm has ascertained a
significant increase in credit risk are assigned to stage II. Such financial instruments
are assigned a lifetime expected-credit loss provision. Finally, in the event of credit
impairment, the assets are allocated to stage III. Again, lifetime ECL is necessary,
but quite often a more conservative financial provision is taken. Typically, handling
of these non-performing assets falls out of the responsibility of the quantitative risk
analyst and moves to the domain of accountants and credit experts.

It is at this point that we may finally reveal the true reason for preference of
an exposure-based expected-credit loss to the more natural, and intuitive cash-flow
approach. It is possible to use cash-flows to produce 12-month stage I expected
credit-loss estimates, but it is awkward. The heterogeneity of cash-flows patterns
among various loans makes organization of the implementation—not to mention
comparison of the final results—a confusing and error-prone task. The exposure-
based method allows us to place all of our financial instruments onto a common
grid for ease of calculation and interpretation. In fact, the stage-logic leads to two

37 This stage differentiation is the principal difference—for a quantitative analyst—between IFRS’
ECL and FASB’s CECL. There are others and these distinctions are well described in Etheridge
and Hsu [13].
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separate grids: a 12 month partition for stage I and another lengthier time grid out
to some distant point in the future for computation of stage-II estimates.38

Two key issues immediately arise when looking at the definitions found in
Table 9.12: what are the implications for loan impairments and how does one
actually decide on the stage allocations? Both questions are interesting and their
answers yield important insight into the overall calculation. Let’s consider each in
turn.

9.2.1 Stage-Allocation Consequences

The first consequence of this stage allocation is that it makes a large difference in
the provisioning amounts. Table 9.13 returns to our simple fixed-coupon, amortizing
loan example from the previous example and illustrates the different estimates—
across a variety of perspectives—for the 12-month (i.e., stage-I) and lifetime (i.e.,
stage-II) expected-credit losses. For our 15-year loan, the weighted-average, lifetime
expected credit loss is almost 14 times smaller than its one-year equivalent.39

Table 9.13 The impact of stage allocation: This table presents, again using our concrete
fixed-coupon, amortizing loan, the expected-credit losses estimates across various perspectives
employing both the stage I and II definitions. The stage-allocation decision, in this particular case,
alters the fundamental relationship of the weighted-average estimate relative to the through-the-
cycle value.

Stage I Stage II

Perspective (1-Year) (Lifetime)

Through-the-cycle 2412 36,021

Upside (15%) 972 25,653

Baseline (60%) 2091 32,392

Downside (25%) 4281 44,047

Weighted Average (Total) 2470 34,295

A dramatic provisioning reduction is not the only by-product of stage allocation.
While on a lifetime basis the through-the-cycle expected credit loss exceeds the
weighted average value by about 5%, it is actually 2% lower on a one-year basis.
The stage-allocation decision, in this particular case at least, alters the fundamental
relationship of the weighted-average estimate relative to the through-the-cycle
value. The reason stems from Fig. 9.7 and the time value of macro-financial

38 The length and granularity of one’s time grid, of course, will depend on an institution’s lending
maturity profile.
39 Due to non-linearities associated with discounting, coupon payments, and amortizing notional,
we should not expect the one-year expected credit-loss of a 15-year loan to be simply 1

15 th of the
lifetime value.
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Fig. 9.10 Stage-I point-in-time expected-credit loss by scenario and rating: The graphic above
shows the stage-I, point-in-time expected-credit loss—for our concrete amortizing loan—across
every internal rating grade and macro-financial scenario. These results are usefully compared with
Fig. 9.9. Given its exponential raw form, it is also presented on a logarithmic scale. Our original
through-the-cycle PD12 estimate is highlighted to help anchor our starting point.

forecasting information. Over the lifetime of a relatively long-tenored financial
instrument, the forward-looking element will naturally converge to the through-the-
cycle approach. The obvious reason is that our ability to forecast deteriorates with
time and, ultimately, our best guess about the future is our long-term unconditional
estimator. When solely examining the one-year expected-credit loss estimate,
however, the full extent of these forecasting differences comes into play. A portfolio
comprised of stage-I assets will thus, by logical extension, exhibit rather greater
sensitivity to macro-financial conditions than a portfolio dominated by stage-II
credits.40

To underscore this point, Fig. 9.10 displays the evolution of the one-year
expected-credit loss across all credit-rating categories or the various scenarios. This
result is best compared with the lifetime expected-credit loss results from Fig. 9.9.
The deviations between the one-year and lifetime profiles are fairly dramatic for our
15-year maturity loan. Whereas the lifetime expected-credit loss is fairly flat out
to about PD09 and then increases linearly thereafter, the one-year ECL looks to be

40 How much of a difference, of course, will depend importantly on the maturity profile of the
underlying assets. If all loans were to mature within the next year, for example, we would expect
no difference.
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an exponential function of the credit rating; this pattern occurs, albeit for different
levels of growth, across all scenarios. This effect is so strong that it complicates
interpretation of the results and virtually begs for transformation of the raw currency
values onto a logarithmic scale. The linear form of the transformed values supports
the exponential nature of the relationship.

The exponential form of expected-credit losses as a function of credit rating
stems from two main factors. First of all, over a one-year horizon, default proba-
bilities increase exponentially along the credit spectrum.41 While present over the
entire term structure of default probabilities, the magnitude of this effect typically
attenuates somewhat over time. The second aspect is that the default probability
is the key component of the one-year expected-credit loss computation. While
important for all periods, discount factors and amortizing schedules take on an
increasingly central role with the passage of time.

Colour and Commentary 112 (STAGE-ALLOCATION CONSEQUENCES):
IFRS 9—in contrast to FASB’s CECL standard—employs an approach
placing each financial asset requiring a loan-impairment calculation into
three buckets or stages: performing (stage I), under-performing (stage II),
and non-performing (stage III). Stage III assets typically fall outside of
the quantitative analyst’s purview.a The remaining stage-I and II financial
instruments are treated rather differently from a loan-impairment perspective.
Stage-I assets are assigned one-year of expected-credit loss, while the full
lifetime value is allocated to stage-II instruments. For a portfolio comprised
of medium to long-tenor loans, the differences in impairment values
associated with stage allocation can be considerable. In particular, stage-I
assets will typically receive only a fraction of the overall loan-impairment
value and they will simultaneously exhibit a higher degree of sensitivity to
macro-financial scenarios.

a This is not to say that their treatment is unimportant, but rather that stage-III assets require
a level of specificity and nuance that do not (usually) lend itself to mathematical modelling.

9.2.2 Stage-Allocation Logic

Like many accounting standards, IFRS 9 is not prescriptive, but rather directive. It
does not tell you precisely what you need to do, but rather describes the general
principles of how the task should be accomplished. This has both advantages and

41 This fact has been demonstrated on many occasions in previous chapters; Chap. 7, in particular,
delves into this idea.
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disadvantages whose discussion are best left for those with a better understanding
of accounting concepts. One challenge, for the quantitative analyst at least, relates
to the non-prescriptive definition of under-performing stage-II assets. To properly
distinguish between stage-I and stage-II instruments, one must somehow decipher
the phrase “significant increase in credit risk since initial recognition.” The main
difficulty is that this principle can clearly be defined in a range of different ways.42

One common approach is the construction of a quantitatively motivated test to
determine stage membership.43 It needs to somehow measure the change in credit
risk from initial recognition—in other words, since loan issuance—until the current
point in time. A natural candidate for this task is the point-in-time default term
structure. Defining τi as the default event of the ith asset, we set t̄i , t , and Ti as the ith
inception (i.e., issuance), current calculation, and maturity date, respectively. Our
interest is the financial asset’s cumulative default probability over [t, Ti], computed
at two different time points. In the first case, we introduce the following quantity
based upon the inception point-in-time term structure:

di(t) = Pt̄i

(

τi ∈ (t, Ti ]
)

, (9.39)

=
Ni
∑

k=1

pt̄i (tk−1, tk),

where Ni denotes the remaining number of grid points for the ith instrument as of
time t . This is essentially the total probability mass over the loan’s remaining time
to maturity—captured by the interval, [t, Ti]—assessed at the loan-issuance date.
The revised probability, at the calculation date, is written as

ni(t) = Pt

(

τi ∈ (t, Ti]
)

, (9.40)

=
Ni
∑

k=1

pti (tk−1, tk).

This is comparable to the quantity in Eq. 9.39, but it is updated to incorporate the
default-probability estimate embedded in the latest point-in-time curve. It is, to be
clear, entirely possible that the credit obligor may have experienced an upgrade or
downgrade from inception (i.e., t̄i ) to the current calculation date (i.e., t). In most
cases, however, we would expect the credit rating to remain unchanged.

42 Beerbaum and Ahmad [3] provide some useful insight into this question.
43 One can, and should, also use qualitative criteria to determine if a significant increase in credit
risk has occurred. Given the focus of this work, however, we will restrict our attention to the
quantitative dimension.
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Fig. 9.11 A possible stage-allocation rule: This graphic schematically describes a possible
quantitative decision rule—following from Eqs. 9.39 to 9.41—to determine the stage membership
of an individual loan.

Given the definitions from Eqs. 9.39 and 9.40, a proposed quantitative decision
rule becomes

(Possible) Stage Decision Rulei =
{

ni (t)
di (t)

≤ ε: Stage 1
ni (t)
di(t)

> ε: Stage 2
, (9.41)

for i = 1, ..., I where ε ∈ R+ is a predetermined boundary.44 It is basically a ratio
of current to original default-probability estimates over each loan’s remaining term.

Figure 9.11 schematically describes the decision rule following from Eqs. 9.39
to 9.41. It is clear that our ratio ni (t)

di(t)
, under this construction, must exceed one

to represent any degree of credit-risk increase. What specifically represents a
significant increase is unclear. Does it need to double or triple (i.e., ε = 2 or 3)?
This is for the firm, and their auditors, to determine. In any event, it is a fairly
important decision.

While this approach to stage-allocation has a sensible internal logic and provides
some quantitative security, it is not without its flaws. From a modelling perspective,
it does not receive high marks for parsimony. While we can conceptually understand
what is going on, it is practically difficult to develop much intuition as to which
specific firms will find their way into stage II. This lack of clarity can create
interpretation and communication challenges.

The second, more serious, challenge relates to the passage of time and the value
of information. The comparison of point-in-time default probabilities, formulated at

44 It is also possible, and practically advisable, to require that ni(t)−di (t) exceeds some minimum
value. This avoids large percentage changes in small numbers driving a stage-allocation decision.



9.2 Introducing Stages 593

two distinct moments, is a central aspect of the decision rule in Eq. 9.41. It is also
its principal weakness. We are comparing a loan at two potentially very different
points in its life cycle. If t̄i � t , for example, then the value of di(t) will essentially
be summing over through-the-cycle default probabilities.45 In certain situations, our
decision rule can find itself performing a pure comparison between point-in-time
and through-the-cycle default curves. This undermines the logic of the quantitative
test.

Following from the previous point, it is possible for a loan, when using the
approach in Eq. 9.41, to move into stage II absent an actual credit-rating downgrade.
Let’s consider financial institutions computing expected-credit losses—and using
our decision rule from Eq. 9.41—during the extreme macro-financial setting
reigning in the spring of 2020 at the outset of the COVID-19 pandemic. Most
macro-financial scenarios during this period were (quite rightly) dire. This led to
a significant upwards shift in virtually all point-in-time default probabilities curves.
The ratio of current to initial cumulative default probability consequently stepped up
importantly forcing numerous firms—who had not experienced a downgrade—into
stage II. In the limit, pushing this point to its logical extreme, a sufficiently sizable
macro-financial shock could theoretically force the entire portfolio into stage II.

It is hard to tell if this is a feature or a shortcoming of Eq. 9.41’s decision
rule. We can, in a rough manner, view a loan’s credit rating as mainly describing
the idiosyncratic dimension. The point-in-time default probability, by contrast
and construction, possesses a strong systemic element. Our decision rule—absent
any credit migration—appears to be disproportionately focused on the systemic
dimension. It is an open question, unfortunately not directly addressed in the IFRS
9 guidance, as to whether the stage-allocation decision should be driven by a loan’s
idiosyncratic or systemic risk characteristics. While somewhat out of the scope of
this predominately practical quantitative discussion, the consequent macroeconomic
pro-cyclicality of this decision rule is certainly of interest to financial regulators.46

Whether you find it compelling or not, the stage logic embedded in Eq. 9.41
is complex. It is difficult to understand, communicate, implement, and validate.
Moreover, its heavy weight on the systemic dimension can lead to unwanted pro-
cyclical loan-impairment dynamics. The systemic dimension aside, some may find
it rather hard to argue for a significant increase in credit risk without any explicit
(internal or external) credit downgrade. To this end, we offer a simplified alternative.
It focuses entirely on the distance between the loan obligor’s current and initial
(i.e., at loan issuance) credit rating. By construction, a downgrade is necessary
for movement to stage II and involves four disjoint cases. Specifically, a loan is
classified depending on the magnitude and final location of any downgrade between

45 This is because the macro-financial information will have long decayed and the associated
default probabilities will have converged to their unconditional values.
46 For those interested in an engaging discussion of these issues, please see ESRB [12].
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the issue time (i.e., t̄i) and the current time (i.e., t) of

(Alternative) Stage Decision Rulei =

⎧
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{

Si(t)− Si(t̄i ) ≥ 1
}

︸ ︷︷ ︸

1+ notch downgrade

∩ {Si(t) ≥ 11}
︸ ︷︷ ︸

Speculative
grade

: Stage 2 (Case 1)

{

Si(t)− Si(t̄i ) ≥ 2
}

︸ ︷︷ ︸

2+ notch downgrade

∩ {6 ≤ Si(t) ≤ 10}
︸ ︷︷ ︸

Low investment
grade

: Stage 2 (Case 2)

{

Si(t)− Si(t̄i ) ≥ 3
}

︸ ︷︷ ︸

3+ notch downgrade

∩ {1 ≤ Si(t) ≤ 5}
︸ ︷︷ ︸

High investment
grade

: Stage 2 (Case 3)

Otherwise: Stage 1 (Case 4)

,(9.42)

for i = 1, ..., I where Si(x) denotes the credit rating of the i financial asset at time x.
It is logically motivated by the form of the lifetime expected-credit loss, as a function
of credit rating, illustrated in Fig. 9.9. A one-notch downgrade in speculative grade
(i.e., PD11 to PD20) leads to a linear increase in expected-credit loss. This can be
characterized as significant. A one-notch downgrade in the investment-grade sector,
however, would not appear to rise to the level of “significant.” Investment grade
is itself split into two halves. From PD05 to PD10, where the slope of Fig. 9.9 is
beginning to rise, a two-notch downgrade is considered significant. From PD01 to
PD05, a downgrade of three steps is necessary for movement to stage II. Naturally,
any four-notch downgrade is considered significant. One can naturally quibble
with this logic, but it is less complex, easily verified, systemically independent,
and dramatically easier to manage.47 It also, strictly speaking, fulfils the IFRS 9
guidance insofar as it takes into account the initial recognition information and
explicitly defines a significant credit event. It fails, however, to incorporate a
forward-looking (or systemic) perspective.

Colour and Commentary 113 (STAGE-ALLOCATION RULES): The princi-
ples-based IFRS 9 is not particularly concrete regarding the practical
distinction between stage I and II assets. The phrase “a significant increase
in credit risk” leaves much room for interpretation. Two possible alternatives
are considered. The first involves a rather complex comparison of cumulative
point-in-time default probabilities—constructed at both the initial (i.e. loan
issuance) and current time points—over the remaining lifetime of the loan.
The resulting quantitative test offers some benefits, but it makes it hard for
loan-impairment consumers to predict, interpret, and verify stage-allocation
decisions. The central role of systemic-driven elements—not to mention the

(continued)

47 One could also easily add different cases or change the boundaries in Eq. 9.42 without
undermining the basic idea.
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Colour and Commentary 113 (continued)
confusing combination of point-in-time and through-the-cycle perspectives—
implies that a loan can potentially move to stage II absent an actual
credit downgrade. Moreover, the same dynamics create a highly pro-cyclical
expected-credit loss estimator. Depending on one’s perspective, this may
be considered either a feature or a bug. The second, less controversial
alternative, employs the distance between inception and current credit ratings
to make the stage-allocation decision. Requiring explicit downgrade, it also
incorporates some of the lessons regarding the interaction between expected-
credit loss and credit quality learned in the previous analysis. Any actual
stage-allocation logic should probably combine a bit of both alternatives as
well as any available qualitative criteria.

9.3 Managing Portfolio Composition

Loan portfolios can look very different. A retail-debt portfolio—comprised of
say credit-card, automobile, or student-loan obligations—involves a large number
of similarly sized, relatively homogeneous credit obligors. Expected-credit losses
are, in such cases, rather sensible estimators for true future credit losses. On the
other end of the spectrum, one finds small to medium-sized commercial-lending
portfolios. In this setting, there is typically only a moderate number of credit
counterparties with rather disparate exposures—some small, some average, and
others quite large—in the context of fairly heterogeneous credit characteristics.
Given the inherent concentrations in such portfolios, expected-credit loss may
need to be supplemented. In this final section, we propose a so-called portfolio-
composition adjustment that—linking into the economic-capital ideas presented in
the previous chapters—(imperfectly) attempts to address this situation.

Our objective is to construct an instrument-level add-on for concentration risks
that is simultaneously conceptually defensible and relatively easy to compute. This
is not an easy task and we do not claim to have the last word. Instead, the idea is to
motivate the problem and transparently propose a possible solution.

9.3.1 Motivating Our Adjustment

For reasonably concentrated commercial-loan portfolios, the expectation of the
credit-loss distribution (i.e., the expected-credit loss) may not tell the whole story. To
understand this point, let us return to our original 15-year, fixed-coupon, amortizing
loan example. At PD12, its (lifetime) expected-credit loss was about EUR 36,000,
while if assigned PD04 this falls to EUR 1800. If it actually defaults—and the
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loss-given-default value of 0.3 is realized—the actual loss would amount to EUR
300,000. Irrespective of the rating category, this is many multiples of the expected-
credit loss; the situation only gets worse if it is a stage-I asset. If we had 250
such loans with similar characteristics, however, then the expected loss becomes
a reasonable estimator of actual credit losses.

Let’s make this a bit more precise. The (stage I) expected-loss estimate for
a portfolio comprised of 250 identical loans to our amortizing example, from
Table 9.7, would be about EUR 2470 × 250 = EUR 617, 500. Realization of such
an actual credit loss would necessitate EUR 617,500

EUR 300,000
≈ 2 defaults. This is about

0.8% of the total loans, which agrees very well with the one-year default probability
associated with the PD12 credit class.48 One default would lead to an overestimate
of our actual credit losses, while three defaults would move in the other direction.
But anything from zero to four or five defaults would put expected and realized
defaults roughly into the same ballpark.

To make a point about concentration, we’ll now do something a bit unfair and
extreme. Let’s make one addition to our 150-loan portfolio. It has all of the same
characteristics, but unlike the other it has a EUR 50 million notional value. The
expected credit loss scales linearly so that we estimate it to be EUR 617, 500 +
EUR 2470× 50 = EUR 741, 000. There is a slight increase in expected-credit loss,
but the concentration is ignored. Imagine now, and you probably saw this coming,
that the single large EUR 50 million exposure was to default.49 The consequence—
again assuming a 0.3 loss-given-default—would be an actual credit loss of EUR 15
million, which is about 20 times the expected credit loss estimate.

Despite its inherent unfairness—and slight lack of realism—this example makes
an important point. The presence of exposure-based concentrations can, given
an unfortunate constellation of defaults, lead to spectacular deviations between
estimated expected-credit and realized credit outcomes.50 Given the lumpy nature of
defaults, we do not require a perfect relationship between these two quantities. The
problem is that important concentrations can lead to pathological differences. Such
a potential wedge between loan impairments and actual credit losses essentially
defeats the purpose of entire exercise.

48 See the first row of the second column of Table 9.8 for this value.
49 If we like, we can add zero to four defaults in the other instruments as well. It doesn’t really
matter; the large position is dominant.
50 In a perfect world, with rich and informative firm-specific datasets, this issue might be addressed
in the construction and calibration of the point-in-time stress scenarios. Medium-sized portfolios
and rarity of default, however, conspire to force us to estimate loan impairments independently
from portfolio concentration.
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9.3.2 Building an Adjustment

Our concentration problem is intimately related to the right (or positive) skew of
the credit-loss distribution.51 Expected-credit loss is a measure of central tendency,
but it has difficulties in the presence of skewness. It is an average loss outcome.
Another, well-known and closely related, measure is the median credit loss, which
is defined as

M(L) = inf

(

� : P(L ≤ �) ≥ 0.5

)

, (9.43)

where L simply denotes the portfolio-credit loss. In a sentence, half of the
probability mass lies below (and above) the median. We can provide a more practical
definition of Eq. 9.43, which will also look rather familiar. Letting fL(�) describe
the portfolio credit-loss density, we have that

∫ ∞

M(L)

fL(�)d� = 0.5, (9.44)

and with some elementary manipulation, we may conclude that

P(L ≥ M(L)) = 0.5, (9.45)

1 − P(L ≥ M(L)) = 1 − 0.5,

P(L ≤ M(L)) = 0.5,

FL(M(L)) = 0.5,

M(L) = F−1
L (0.5).

While concluding that M(L) is the 50th quantile of the credit-loss distribution is
mostly a definitional exercise, it also explicitly pulls us back into the world of
economic capital.

We might (reasonably) expect that E(L) ≈ M(L). It turns out that there is
no specific link between skewness and the relationship between the mean and the
median. Thus, although the median cannot directly help us with our concentration
problem, it can nonetheless provide some direction. Generalizing Eq. 9.43, we can
introduce the following quantity:

Vδ(L) = inf

(

� : P(L ≤ �) ≥ δ

)

, (9.46)

51 All credit-loss distributions, by their very nature, exhibit such behaviour. Concentration risk,
however, exacerbates this situation.
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Fig. 9.12 A possible portfolio-composition adjustment: This graphic displays a stylized credit-loss
distribution. We see both the expected-credit loss and the α-quantile economic capital. A possible
portfolio-composition adjustment involves identifying a sensible δ-quantile somewhere between
these two extremes.

which allows to immediately conclude that

Vδ(L) = F−1
L (1 − δ), (9.47)

≡ VaRδ(L),

is nothing other than a familiar friend: the 1− δ quantile Value-at-Risk (i.e., δ-VaR)
of the credit-loss distribution. This generalization of the median can be tailored to
meet our needs.

The source of this concentration issue relates to the linear nature of the expected
credit-loss computation. A doubling or tripling of credit exposure leads directly to
a strict doubling or tripling of expected-credit loss. Faced with important exposure
concentrations in one’s portfolio, this characteristic is not entirely reasonable. Not
all risk measures, however, have this property. Operating on the same underlying
credit-loss distribution, a quantile-based risk metric (i.e., VaR) of a given loan
position will scale non-linearly for changes in its exposure. If we double the
exposure of a position, therefore, we should expect to more than double its VaR-
related risk.52

Figure 9.12 displays a stylized credit-loss distribution in an effort to motivate
our proposed portfolio-composition adjustment. We see both the expected-credit
loss (i.e., E(L)) and the α-quantile Value-at-Risk (i.e., Vα(L)). The intuition is

52 The degree of non-linearity will be a function of the position’s concentration within the overall
portfolio. For a coherent risk measure, exhibiting positive homogeneity as required by Artzner
et al. [2], doubling one’s portfolio will double its risk. At the instrument level, however, this does
not generally hold.
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fairly simple. In a concentrated portfolio, the mean (or the median) is likely to
underestimate actual credit losses. A sufficiently high-level VaR figure will do a
much better job of capturing worst-case losses, but is far too conservative a tool for
loan-impairment purposes. The proposition is that there exists some quantile—let’s
call it δ—that pulls us away from the expected-loss understatement and incorporates
a meaningful degree of worst-case concentration-loss potential. There is no strictly
objective way to determine δ—it is an inherently subjective choice—but it is a
promising conceptual path for our portfolio-composition adjustment.

To advance ideas, let’s leave δ as an arbitrary value.53 For each individual
instrument, the δ-VaR can be computed and summed to an overall portfolio value as

Vδ(L) =
I
∑

i=1

Vδ(Li). (9.48)

We can view each of the terms in the right-hand side of Eq. 9.48, which are
readily computed from the economic-capital model presented in Chap. 2, as the raw
materials for our portfolio-composition adjustment. For our purposes, we simply
employ a variation of the approximation model introduced in Chap. 5.

The portfolio-composition adjustment should be a non-negative, relatively stable
add-on to our base model-derived expected-credit loss estimate. We propose the
following structure:

Oδ(Li) = max

(

Vδ(Li)− E(Li), 0

)

(9.49)

for the i = 1, ..., I exposures in the loan-impairment calculation. Equation 9.49
basically compares—on an individual loan basis—the expected-credit loss and δ-
VaR values. Should the δ-VaR, with its focus on concentration, exceed our expected-
credit loss the difference is allocated to the adjustment. If not, the adjustment is
assigned a value of zero.

Combining these ideas with our original expected-credit loss computation, the
total proposed loan-impairment of the ith instrument is thus,

Ẽ(Li) = E(Li)
︸ ︷︷ ︸

Model
ECL

+Oδ(Li)
︸ ︷︷ ︸

Concen-
tration

, (9.50)

53 The reader should feel free to mentally choose any value between about 0.55 and 0.9, depending
on the desired degree of risk aversion and conservatism.
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where the associated portfolio-level loan-impairment is

Ẽ(L) =
I
∑

i=1

(

E(Li)+Oδ(Li)

)

︸ ︷︷ ︸

Ẽ(Li)

. (9.51)

We can clearly see the importance of one’s choice of δ. If we are too conservative,
then it is entirely possible that Vδ(Li) > E(Li) for all i. The consequence would be
that

Ẽ(L) =
N
∑

i=1

Oδ(Li) = VaRδ(L). (9.52)

In other words, the entire expected-shortfall computation would be replaced with the
δ-quantile VaR measure. This would clearly undermine the entire exercise. The trick
is to find a level of δ that is, for most financial assets, close to zero. Ideally, it would
take a larger positive value for large concentration positions in one’s portfolio. These
are precisely the targeted assets, since they are culprits driving the concentration
problem. As we saw in our (somewhat rigged) example, a well diversified portfolio
typically has a relatively healthy relationship between expected and realized credit
losses. If one’s portfolio is absent any important concentrations, then optimally our
adjustment would be quite small.

Some individuals, when considering the nature of this proposed portfolio-
composition adjustment, might object to the inclusion of economic-capital (i.e.,
unexpected loss) information in the computation of an expected-loss quantity. This
is understandable; it feels like mixing apples and pears. To the extent that we wish
to correct the expected-loss downward bias arising from concentration, however,
there is not an enormous range of useful alternatives. In Chap. 5, we did touch
on the concentration literature, which includes concentration and Lorenz curves,
Herfindahl-Hirschman indices and Gini coefficients.54 While it is entirely possible
to construct an alternative portfolio-composition adjustment using a variation of
such measures, we logically prefer the proposed method. There are two main
reasons for this view. First, classical concentration measures consider only the size
of the exposure and do not readily simultaneously incorporate regional, industrial,
and firm-size considerations. Our economic-capital quantile measures, by virtue of
our extensive efforts in previous chapters, do this naturally in the context of our
own lending portfolio. In short, it is very hard to find a better source regarding our
internal portfolio concentrations than our economic-capital model. This brings us to
the second, related point: quantile economic-capital measures are working with the
same underlying credit-loss distribution as loan impairments. Admittedly, there are

54 Yitzhaki and Olkin [28], Figini and Uberti [16], Bellalah et al. [4], Milanovic [24], and
Lütkebohmert [22] are a range of helpful entry points into this discussion.
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Table 9.14 Final
amortizing-loan example
details: This table revises
(one final time) our
amortizing loan example
from Table 9.4. It adds a
number of additional fields
required for the use of the
economic-capital
default-approximation model
from Chap. 5.

Characteristic Value

potential differences in time horizon (i.e., one-year or lifetime) and conditionality
(i.e., through-the-cycle or point-in-time), but they have a rather great deal in
common. To make a sensible adjustment to the bias associated with an estimator
to the central moment of any distribution, we necessarily need to incorporate
higher moment information. There is simply no better, practical, available source
of intelligence about the higher moments of our credit-loss distribution than our
very own economic-capital model.

9.3.3 Retiring Our Concrete Example

Our definition of the portfolio-composition adjustment is admittedly abstract. For
the final time, before its official retirement, we will return to our imaginary 15-
year, PD12, fixed-coupon, amortizing loan. Since we will find ourselves computing
various δ-VaR estimates for this instrument, we will require some additional
information. Table 9.14 updates our example details to include a concentration-
index value, a systemic-weight parameter, and its public-sector status.55 These
values are required—as we saw in Chap. 5—to use our economic-capital default-
approximation model.56

While certainly computationally convenient, use of our approximation model
does pose a few problems. The first is that it approximates economic capital, which
is the difference between worst-case and expected credit loss. If we used economic-
capital to estimate our δ-VaR, then we’d essentially subtracting expected losses
twice when applying Eq. 9.49. This is, fortunately, easily resolved. The default

55 We’ve selected fairly average values for this example.
56 Given the sole focus on the default dimension, we need not use the migration approximation
methodology from Chap. 5.
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approximation model explicitly includes expected loss; we need only add it back
into our approximation.

The second point relates to the nature of the credit-loss distribution returned
from our approximation model. The expected-credit loss from Eq. 9.49 will—
depending on its stage allocation—be some combination of the point-in-time and
through-the-cycle components. If allocated to stage II, then the expected-loss also
considers the entire asset’s lifetime. The approximation model—based upon daily
production runs of the economic-capital model—focuses on a one-year horizon and
unambiguously adopts the through-the-cycle perspective. This may appear to be a
situation of combining apples and pears. A bit of reflection, however, suggests that
this is not necessarily an issue. The base expected-loss calculation and the stage-
allocation rules concern themselves with management of the time-perspective and
macro-financial conditionality. The portfolio-composition adjustment, conversely,
takes a stable, one-year, unconditional (i.e., through-the-cycle) standpoint; in doing
so, it (reasonably) cleanly captures the exposure structure of the current portfolio.

The final shortcoming is a bit slippery. Our economic-capital model employs
expected shortfall, while we require a VaR estimator for our proposed adjustment.
The easiest—although computationally most expensive—solution would be to re-
run one’s credit-risk model to extract the associated VaR estimators. Since we’d
prefer to use our base approximation model from Chap. 5, however, we’ll need
to do some additional work. The plan is to use the ratio of the multipliers from
the parametric versions of the t-distributed VaR and expected-shortfall estimators.
Our objective is to identify a sensible factor—or rather a number between zero and
one—that we can use to scale down the expected-shortfall estimates to bring them
closer to an associated VaR.57 While conceptually straightforward, it involves a bit
of tedious mathematics.

Our task is to derive analytic expressions for the VaR and expected shortfall
measures under the assumption of t-distributed credit losses.58 From Eq. 9.44, the
(1 − α)-quantile of a standard t-distributed variate L with ν degrees of freedom—
which we’ll call q(ν, α)—is written as

∫ q(ν,α)

−∞
�(n+1

2 )

�
(

ν
2

)√
πν

(

1 + �2

ν

)− (ν+1)
2

︸ ︷︷ ︸

Loss distribution

d� = 1 − α, (9.53)

P

(

L ≤ q(ν, α)

)

= 1 − α,

FTν

(

q(ν, α)

)

= 1 − α,

57 Recall that, by its very construction, the expected-shortfall must be greater than or equal to the
VaR metric.
58 See Kotz and Nadarajah [21] for a wealth of information on this statistical distribution.
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where FTν (·) denotes the standard t cumulative distribution function with ν degrees
of freedom. The solution, as we’ve seen, is merely

q(ν, α) = F−1
Tν

(1 − α). (9.54)

The standard inverse t cumulative distribution function, F−1
Tν

(·), similar to its
Gaussian counterpart, does not have a closed-form solution. Its value can be found
in most statistical or mathematical software packages.59

To arrive at a parametric VaR estimator, we need to scale the outcome to the
moments of our credit-loss distribution. If Y is a one-dimensional t-distributed ran-
dom variable with ν degrees of freedom, then Ŷ = a +√

bY ∼ Tν

(

a, b ·
(

ν
ν−2

))

.

We actually desire Ŷ ∼ Tν (a, b), which is resolved by defining Ŷ = a +
√

ν−2
2

√
bY ; in this case, then we have indeed Ŷ ∼ Tν (a, b). This is easily verified

Ŷ = a +
√

n− 2

2

√
bY, (9.55)

var(Ŷ ) = var

(

a +
√

n− 2

2

√
bY

)

,

=
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n− 2

2

)

· b · var(Y ),

=
�
�
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The VaR of the credit-loss distribution is thus approximated as,

VaRα(ν, L) ≈
√
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n
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√

var(L), (9.56)

=

χVaR(α): VaR multiplier
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√

ν − 2

ν
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Eq. 9.54

√

var(L).

This is the basic idea behind the parametric estimator, where the term χVaR(α)
approximates the α-VaR as a multiple of the loss variance.

59 For a more detailed discussion of numerical and analytic approximations of the standard inverse
t-distribution, see Shaw [25].
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To complete our adjustment ratio, we also need to extend the t-distributed
parametric credit loss to the notion of expected shortfall. The (1 − α)-quantile
expected shortfall is readily defined as
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where �(·) denotes the gamma-function.60 This is a bit ugly, but it can be simplified
somewhat by patiently collecting a few terms as
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60 McNeil et al. [23] provide an excellent overview of various risk measures.
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Returning to our running example, we may approximate the t-distributed α-level
expected shortfall as,
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χES(α): Expected-shortfall multiplier
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Eq. 9.58

√

var(L).

This finally gets us to our desired quantity. If we combine the multipliers from
Eqs. 9.56 and 9.60, we may construct the following approximate adjustment to our
expected-shortfall estimates:

Adjustment Factor(α) = χVaR(α)

χES(α)
. (9.61)

If α = 0.9997, then this amounts to about 0.92. That is, the VaR estimate is
(approximately) 8% smaller than the equivalent expected-shortfall estimate. It falls
to about 0.8 if we reduce α to 0.95. Unfortunately, this analytical approximation
starts to break down as we reduce the value of α too far. For our purposes, in the
spirit of approximation, we will simply fix α = 0.999 and use an adjustment factor
of roughly 0.85 to scale down our expected-shortfall estimates across all quantiles.

Figure 9.13 illustrates the application of our approximation model and Eq. 9.50
to our amortizing-bond example. Arbitrarily (but conservatively) setting δ = 0.85,

61 If you wish to convince yourself of this fact, start with the definition of the gamma function and
the integration-by-parts formula,

∫ ∞

0
udv = uv|∞0 −

∫ ∞

0
vdu, (9.59)

where u = x
n−1

2 and dv = e−t dt .
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Fig. 9.13 Applying our proposed portfolio-composition adjustment: This graphic summarizes the
implications of applying our proposed portfolio-composition adjustment to our amortizing loan
example. The displayed value is based, rather arbitrarily, on the 85th quantile. Stage I and II,
median, and 99.97th quantile credit losses are included for context.

the portfolio-composition adjustment amounts to roughly EUR 6000. This leads to
a roughly threefold increase in stage I loan-impairment allocation for this asset,
but only a fraction of the stage-II figure. Interestingly, the median credit-loss is
approximately twice the original one-year expected-credit loss of around EUR 2500.
The 99.97th quantile VaR estimate, by way of comparison, is slightly less than twice
the stage II allocation.

Table 9.15 numerically summarizes the portfolio-composition adjustment
results—from both stage I and II perspectives—for a possible range of δ values
from 0.5 to 0.999. What can we conclude? For most reasonable choices of δ, the
magnitude of the portfolio-composition adjustment is relatively modest—at least in
absolute terms—assuming the loan is allocated to stage I. If our loan is classified

Table 9.15 Portfolio-composition adjustment by the numbers: This table enhances Fig. 9.13
by including the numerical portfolio-composition adjustment values—from both stage I and II
perspectives—for a range of alternative choices of δ. Again, all the computations are performed
using our running amortizing-bond example.

max

(

Vδ(Li)− E(Li), 0

)

Perspective Stage I Stage II

(Model) expected-credit Loss 2470 34,295

50.00th quantile adjustment 2134 0

65.00th quantile adjustment 3194 0

85.00th quantile adjustment 5716 0

95.00th quantile adjustment 10,419 0

99.90th quantile adjustment 44,320 12,495
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as a stage II credit, then a rather unrealistic setting of δ is required to generate a
non-zero portfolio-composition adjustment.

One financial asset is clearly insufficient to inform one’s selection of δ. It needs
to be calibrated through examination of one’s portfolio concentrations and possible
constellations of actual credit losses. Table 9.15 nonetheless provides a few insights.
It supports the general idea. Within this fairly generic example, without shocking
amounts of effort, it generates fairly reasonable outcomes. It also suggests that one
might defensibly set δ to some value in the interval [0.55, 0.85]. Actually identifying
a specific setting within this interval, unfortunately, remains a matter of judgement,
discussion and potentially disagreement.

Colour and Commentary 114 (A PORTFOLIO-COMPOSITION ADJUSTM-
ENT): The IFRS 9 guidance is predicated on the fundamental idea that loan
impairments stemming from forward-looking expected-credit loss calcula-
tions are sensible predictors of actual portfolio credit losses. This need not
be perfect, nor should we expect it to be. Forecast errors and timing issues
can lead to significant differences between expected and observed credit
losses. For small to medium-sized commercial loan portfolios with significant
concentrations, however, the standard expected-credit loss methodology has a
downward bias. A few large defaults can generate actual losses that are many
multiples of forecasted loan impairments. Borrowing key concepts and tools
from previous chapters, we propose a possible add-on to counteract this bias.a

Consistent with the underlying, through-the-cycle credit-loss distribution,
it operates on an instrument level to slightly increase the overall loan
impairment and thereby counteract the concentration-related bias. Based on
a single parameter, which is admittedly difficult to calibrate, this method is
far from perfect. That said, although we are unsure of the magnitude of the
adjustment, its direction is quite clear. We argue, however, that it is better to
imperfectly address this fundamental shortcoming than to ignore it.b

a The idea is to get as close as possible to an unbiased estimator.
b We are essentially trying to avoid Voltaire’s famous observation that, in practical affairs,
often “perfect is the enemy of the good.”

9.4 Wrapping Up

In recent years, starting around 2017 or so, the computation of loan impairments
has become a necessarily complicated business. This chapter—supported heavily by
extensive foundational discussions in Chaps. 7 and 8—bears evidence to this claim.
Derivation of a consistent forward-looking expected-loss estimator on an arbitrarily
granular time partition raises a number of questions related to choice of probability
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measure, handling of the time value of money, determination of default-probability
definition, scenario incorporation, and asset-exposure management. Formulating
careful and proper responses to these questions—within the context of a concrete,
illustrative example—consumed the majority of this chapter.

A second source of complexity relates to the notion of stage definition and
allocation introduced in the IFRS 9 accounting standard. While conceptually easy to
understand, the principle-based definition leaves substantial room for interpretation.
As a consequence, we consider two possible avenues for stage allocation. Both
are broadly consistent with the definition, but approach the problem in rather
different ways. The final twist on the loan-impairment question stems from the
relationship between expected- and realized-credit losses for small to medium-sized
commercial loan portfolios with sizable exposure concentrations. In such cases,
which coincide with our current situation, the expected-credit loss definition has
a downward bias. In other words, the default of a few medium- or large-sized
loans could lead to actual credit losses dramatically exceeding the loan-impairment
value. Finding a defensible bias correction for this problem is difficult; ultimately,
augmenting the central moment of the credit-loss distribution requires incorporation
of information regarding one’s portfolio composition. Making use of the previ-
ously described credit-loss distribution constructed within our economic-capital
framework—a natural, well-suited, and available source of intelligence regarding
our portfolio’s structure—we offer a possible portfolio-composition adjustment
to address this shortcoming. The complementarity between loan-impairments and
economic capital should not be terribly surprising, since they both depend (albeit in
different ways) upon our portfolio’s underlying credit-loss distribution.
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Part IV
Other Practical Topics



Chapter 10
Measuring Derivative Exposure

If a man tells you he knows a thing exactly, then you can be safe
in inferring that you are speaking to an inexact man.

(Bertrand Russell)

One of the central inputs in the computation of credit-risk economic capital, which is
often somewhat taken for granted, is a position’s expected exposure at default. In full
generality, this is a random quantity following some (potentially complicated) prob-
ability law. For standard linear instruments—such as loans, deposits, or bonds—it
is common practice to ignore their stochastic nature and assume deterministic
exposures. This is (mostly) defensible, because the uncertainty surrounding future
exposure outcomes is usually sufficiently small that the extra effort (and incremental
complexity) is unwarranted. For some financial instruments, this argument is less
compelling. Derivative contracts are the classic counterexample.

There is a fundamentally large amount of variability in the exposure associated
with a future default event involving (interest-rate, cross-currency, or default) swaps,
options, or forward contracts. Swaps and forward contracts are linear, but at any
given point in time they may represent an asset or a liability to their holders;
more importantly, their status can change quickly with market movements. The
same cannot (typically) be said for option contracts, but their situation is often
complicated by non-linear pay-off structures.1 To be blunt, assuming deterministic
exposure-at-default values for derivative contracts is a singularly bad idea.

This important realization, it turns out, opens something of a Pandora’s box of
incremental questions for consideration. Indeed, it is so involved that it has spawned
a separate, albeit related, field of analysis: counterparty credit risk. The bilateral
counterparty aspect is the deciding factor. Very often, collateral is exchanged to
offset and mitigate risks associated with the swings in derivative contract values.
Collateral exchange, of course, is governed by legal agreements and operates across
multiple derivative contracts with a single counterparty. This fact, combined with the

1 One can, of course, have swap contracts with embedded optionality. In this way, one has to juggle
both sign change in exposures and non-linearities with respect to underlying risk factors.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Bolder, Modelling Economic Capital, Contributions to Finance and Accounting,
https://doi.org/10.1007/978-3-030-95096-5_10

613

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95096-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-95096-5_10


614 10 Measuring Derivative Exposure

multiplicity of derivative contracts and their associated features, gives rise to many
special cases and detailed exceptions. To summarize, the world of counterparty
credit risk is not simple.

It is nonetheless necessary to wade into the realm of counterparty credit risk
to understand the techniques used to approximate (random) exposure-at-default
amounts associated with one’s derivative contracts. This chapter attempts to describe
the basic challenge, briefly sketch out the correct way to address it, review a widely
used (and surprisingly useful) regulatory derivative-exposure approximation, and
thereby motivate NIB’s approach.

10.1 The Big Picture

As the name strongly suggests, counterparty credit risk turns around the idea of a
counterparty. There are many other possible filters through which one can examine
this risk dimension, but this represents the highest level of aggregation. Exposure
at default is defined by each individual counterparty. One might, however, have
hundreds or even thousands of individual positions of various types, sizes, tenors,
and currencies. Moreover, it is entirely possible that multiple legal agreements
might be in place—for different sub-entities or instrument types—with a single
counterparty. This immediately raises a second critical point: how should these
various positions be aggregated? This falls under the category of questions that are
notoriously easy to ask, but rather more difficult to answer.

A useful way to think about aggregation is to introduce the notion of a netting
set. Duffie and Canabarro [11] refer to this helpful idea as a netting node, but the
idea is identical. Closely related, although not necessarily identical, is the so-called
margin set or node. Duffie and Canabarro [11] describe this as:

a collection of trades whose values should be added in order to determine the collateral to
be posted or received.

The central idea behind netting is to permit, within a collection of trades, market
values to offset one another when aggregating credit exposures. If, for example,
you have two trades—one negative and the other positive—netting permits the
negative exposure to (at least, partly) nullify the positive component.2 As clearly
highlighted in Gregory [13], such an arrangement has value under two main
conditions. First, some (or all) of the trades must potentially take negative values.
A bit of reflection reveals that no netting benefit is possible if all market values are
strictly positive (or negative). The second, perhaps less obvious, point touches upon
the dependence between market-value outcomes. In the event of perfect (positive)
correlation between current and future market values, there will be limited scope for

2 When you think about it, this is far from obvious, since these represent two separate contracts.
Salonen [20] provides an interesting and comprehensive discussion of how this notion developed,
which is far outside of the author’s area of expertise.
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any difference in sign between individual positions; the consequence would, once
again, be no netting benefit. Naturally, perfect correlation is somewhat exaggerated
and rarely observed in practice, but it represents a limiting case. In general, the
stronger the positive correlation between the underlying risk factors driving the
valuation of the derivative trades in one’s netting set, the lower the potential netting
benefit.

Although the most natural form of aggregation occurs along netting sets, the
margin set determines the collateral. Collateral levels, in turn, have important impli-
cations for one’s exposure computations. A central divide, therefore, is between
margined and unmargined netting sets. Unmargined netting sets are not, it should
be stressed, completely absent of any collateral. Typically, some initial margin or
independent amount is posted at the inception of these trades, which can often
be adjusted in the event of a credit-migration event by either counterparty.3 The
distinction between margined and unmargined netting sets comes from the role of
variation margin; these are amounts that are exchanged (usually on a daily basis) in
the event of changes in the netting set’s market value.

In straightforward cases—which happily coincides with NIB’s situation—a
counterparty can be mapped to a single, common netting and margin set. It is
possible to have a margin set comprise multiple netting sets; that is, there may
be a one-to-many mapping between margin and netting sets.4 For the purposes
of this discussion, we will assume a one-to-one mapping between netting sets and
counterparties as well as between netting and margin sets. To be very explicit, all
derivative trades (or positions) with a single counterparty are netted and follow
a common margin policy. Deviations from this rule are practically essential to
capture in one’s portfolio—and most definitely should not be assumed away—but
they do not add much to the overall narrative. They result in more dimensionality
and logistical complexity, but their management mostly just requires careful book-
keeping.

Figure 10.1 tries to conceptualize our simplified view of the interaction between
the counterparty, netting, margining, and our set of derivative trades. Practically, as
indicated, there might be multiple hedging sets within each margin set and many
margin sets for a given counterparty. The viewpoint in Fig. 10.1 will, however, be
sufficient to address the main concepts associated with the determination of credit
counterparty exposures.

3 Initial margin and independent amount are conceptually the same thing, but the specific choice of
term appears to depend on the situation and instrument type. See Gregory [13] for more background
on basic collateral concepts.
4 The reverse does not seem to be the case. That is, one does not (to the best of the author’s
knowledge) observe multiple margin sets within a single netting set.
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COUNTERPARTY

MARGIN SET

NETTING SET

Collection of
trades (or derivative

positions)

Fig. 10.1 A simplified hierarchy: This schematic illustrates, in a high-level conceptual manner,
the interactions between counterparty, margin and netting sets, and the collection of derivative
trades. This is a simplified representation; in practice, there are often many netting and margin sets
associated with a given counterparty.

Colour and Commentary 115 (A KEY TASK IN CREDIT COUNTERPARTY

RISK): Aggregation of exposures for plain-vanilla instruments—such as
loans, bonds, or deposits—is dead simple: you just need to add them up.
Moreover, their relative stability (typically) precludes the need to treat such
exposures as stochastic. The exposure picture for derivative contracts is rather
murkier due to their ability to quickly move from asset to liability, imperfect
correlation structures, and pay-off non-linearities. Derivative exposures, as
a consequence, cannot responsibly be treated in a deterministic fashion.
The quantitative risk analyst’s task is to determine a (defensible) derivative
exposure-at-default amount for each of her institution’s credit counterparties
at a given point in time. This necessitates the aggregation of individual trade
(or position) market values along netting relationships. It further involves
the incorporation of collateral over each margin set. The entire point of
collateral, of course, is to mitigate credit losses in the event of a counterparty
default. There will be different amounts of collateral depending on the
margining policy and this needs to be taken into consideration. The final, and
not least complicated, issue involves making some adjustment for the fact that
individual netting set market values can actually move against us. Despite the
presence of collateral, market forces can (and do) lead to increased exposure
and consequently larger potential default losses. Building a comprehensive
framework to capture all of these moving parts is, in terms of a big picture,
not particularly easy. We will have our hands full in the following discussion.
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10.2 Some Important Definitions

There are a number of fundamental definitions that need to be introduced to make
any useful headway in this area. Almost as important as the definitions themselves
is the establishment of a meaningful and descriptive notation. Given the numerous
possible levels of aggregation, keeping track of the details will prove essential to
success in this venture. There are many excellent sources on these basic definitions,
but this treatment draws principally from Gregory [13] and Duffie and Canabarro
[11]. Our notation has a few unique elements, but it is certainly inspired from these
and other helpful sources.

We begin at the trade or position level. Although we use the terms trade and
position interchangeably in this discussion, they are not precisely identical. One
might buy a futures contract in a number of separate transactions, where each one
would be a trade. The collection of these identical trades represents a position.
Systems operate at either level, and occasionally both, so exactly how this is
performed can vary. Whichever one uses, we can think of these as being (close
to) the most atomistic level of derivative exposure definition. We define Vkt (i) as
the market value of the kth derivative position with the ith counterparty at time t .5

The notation thus makes reference to the position, the counterparty, and the current
point in time. Assuming a single netting and margin set for the ith counterparty, we
can compute the netting-set market value as,

Vt (i) =
Ki
∑

k=1

Vkt (i), (10.1)

where Ki represents the number of individual derivative trades in the ith counter-
party’s netting set.6

The notion of exposure comes in a variety of flavours in the field of counterparty
credit risk. Counterparty exposure is typically written as,

Et(i) = max

(

Vt(i), 0

)

, (10.2)

≡
(

Vt(i)

)+
.

In plain English, the exposure is the positive part of the netting set’s market value.
The sole focus on positive outcomes is natural since, in the event of default, no

5 Unless otherwise specified, as elsewhere in this book, we use t to denote the current point in time.
6 In the case of multiple netting sets, then one has multiple versions of Eq. 10.1.
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loss is incurred in the face of negative market values.7 Sometimes the term current
exposure is used to refer to Eq. 10.2, because it denotes the time t exposure.

The origin of most of the complexity in this area stems from precisely the fact that
derivative transactions—and by extension derivative books—can take both positive
and negative values. That one’s current exposure is zero, by virtue of a negative
netted market valuation, is no assurance that it will remain so tomorrow, the day
after, or next week. Not being able to peek into the future, we cannot know what
will happen. As prudent risk managers, however, we can try to prepare for the worst.
This leads to the idea of future exposure, which we could denote as Et+T (i). This
would be the (unknown) exposure to counterparty i at time T or T − t units of time
into the future.

The best we can do, absent a functioning crystal ball, is to treat Et+T (i) as a
random variable. It is thus interesting to consider the mathematical expectation of
this value as,

E

(

Et+T (i)
∣

∣

∣

∣
Ft

)

= E

⎛

⎜

⎜

⎜

⎝

max

(

Vt+T (i), 0

)

︸ ︷︷ ︸

Eq. 10.2
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∣

∣

∣

∣

∣

∣

∣

∣

Ft

⎞

⎟

⎟

⎟

⎠

, (10.3)

Et

(

Et+T (i)
)

= Et

(
(

Vt+T (i)
)+)

,

where Ft is the information set (or σ -algebra) at time t . Probabilistic details aside,
the Ft explicitly captures the idea that such computations can only be performed
with the information available at time t; anything else would be essentially cheating.
To avoid the clutter of the conditioning set, however, we define the expected

exposure (or EE) as Et

(

Et+T (i)
)

. To actually evaluate Eq. 10.3, it is necessary

to make some sort of distributional assumption about the market value of our
counterparty’s netting set, Vt+T (i).

Equation 10.3 illustrates the expected exposure of counterparty i for a given point
of time in the future, T . Practically, for example, we might set T −t to be one-year in
the future. It is also interesting to consider the full time profile of expected exposures
for τ ∈ (t, T ]. To boil this down to a single number, it is common to compute the
average expected exposure over such a time interval. Mathematically, this would
reduce to integrating Eq. 10.3 over the time dimension and dividing the result by

7 It would be helpful to describe the quantity in Eq. 10.2 as positive exposure to avoid confusion.
Sadly, this is not the case.
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T − t . This yields

Et

(

E(i, t, T )

)

= 1

T − t

∫ T

t

Et

((

Vt+τ (i)
)+)

dτ. (10.4)

This quantity is generally referred to as the expected positive exposure or EPE.

We opted to write it as Et

(

E(i, t, T )

)

to illustrate the explicit dependence on the

counterparty, the information set, and the time interval.
Another twist on counterparty exposure is the so-called potential future exposure

or PFE measure. It may be defined as,

PFEα(i, t, T ) = inf
x∈R

(

x

∣

∣

∣

∣
P

(

Vt+T (i) ≥ x

)

≥ 1 − α

)

. (10.5)

where α is a predefined confidence level. Those familiar with the Value-at-Risk (or
VaR) metric—or have already reviewed Chaps. 2 or 5 or even Chap. 7—will see
a clear similarity. The key difference between PFE and VaR is which tail of the
value distribution they focus upon. VaR is concerned with downside losses, whereas
PFE attempts to describe upside derivative-valuation gains. The reason, of course,
is that the larger the positive value of one’s netted derivative exposure with a given
counterparty, the larger the scope for losses in the event of default. As we will see
in the next section, however, Eq. 10.5 might be the typical definition of PFE, but it
is not the only way this quantity might be computed.

Expected and potential-future exposure (i.e., EE and PFE) are thus looking at
the same underlying distribution; the former examines the expectation, while the
latter concerns itself with a given quantile. The choice of exposure measure along
with the specification of α and, not least, the determination of T all depend on
the specific application and one’s desired degree of conservatism. For the reporting
of one’s exposure, it might make sense to use the expected exposure measure.
Economic-capital—with its focus on worst-case events—might usefully employ
the PFE perspective. Whatever one’s selection, it requires some reflection and
justification.

Figure 10.2 helps to turn the previous equations into visualizations by illustrat-
ing the interaction between netting set valuations, (positive) exposure, expected
exposure, and potential future exposure. The left-hand side considers one-step into
the future over the interval, (t, T ]; here we clearly see the current, expected, and
potential-future exposures. The right-hand graphic, conversely, takes five steps to
span the time interval, (t, T ]; many more steps, of course, are possible. This allows
for the introduction of the expected positive exposure measure.

There are a few final concepts that are worth introducing to avoid confusion
down the road. These ideas stem principally from the regulatory setting.8 They

8 See BIS [3] for more detailed background.
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Fig. 10.2 Some useful visualizations: The graphics above illustrate the interaction between netting
set valuations, (positive) exposure, expected exposure, and potential future exposure. The two
graphics examine both one- and multiple-step perspectives, which allow for the introduction of
expected positive exposure.

all relate to the passage of time. Either the plain expected exposure (i.e., EE) or
expected positive exposure (i.e., EPE) can be computed for a range of possible future
points in time. As we move further out the horizon, there will be some maturities
in one’s derivative netting set. This will naturally lead to a gradual decrease in
both the EE and EPE measures. Although, in practice, these positions are likely to
be either rolled-over or otherwise replaced, such assumptions are complicated and
typically not included in one’s analysis. The regulatory solution was to introduce the
idea of effective EE and EPE measures. The effective means that the EE and EPE
profiles are computed, but then are adjusted so that they are (weakly) monotonically
increasing (i.e., non-decreasing).9 Imagine, for example, that you calculated the
effective exposure in monthly time steps out to a year. If the highest EE estimate
occurred during the seventh month, then the effective EE would fix all subsequent
(lower) values to the maximal amount.

Colour and Commentary 116 (DERIVATIVE EXPOSURE DEFINITIONS):
Counterparty credit risk can, and should, be viewed as a risk-management
sub-field. Like all areas of endeavour, it has its own central ideas and
vernacular. The preceding definitions represent essential groundwork for the
computation of exposure-at-default values for one’s derivative portfolios;
while not entirely comprehensive, they do touch upon the core of counter-
party credit-risk measurement. A few important commonalities arise. First,
attention is strongly on the positive part of the future netting-set valuations.

(continued)

9 This is a fairly unfortunate choice of word, since effective does not usually, in the author’s
understanding of general English-language parlance, imply weak positive monotonicity.
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Colour and Commentary 116 (continued)
This makes logical sense since this is where the risk lies. The second point
is that there are both cross-sectional and time dimensions at play. There is
a collection of derivative contracts for a given point in time (i.e., the cross
section), but we are also interested in how the value of these contracts behaves
over various periods (i.e., the time dimension). We will have to manage
randomness of the underlying risk drivers associated with our derivative
positions along both dimensions; this will necessarily involve implicitly or
explicitly introducing stochastic processes. Given that netting effectiveness
depends importantly on correlation assumptions, the joint distribution of the
various marginal risk-factor dynamics will also play an important role.

10.3 An Important Choice

Financial institutions with large derivative portfolios inevitably find themselves
in the valuation business. To permit proper exchange of collateral, a market-
consistent current value for all derivative contracts in one’s portfolio is required.
This necessitates implementation of pricing formulae (or numerical algorithms)
linking the individual cash-flows of each instrument to its associated underlying
risk factors: interest rates, exchange rates, commodity prices, and so on. Often
embedded within these pricing approaches—or determined for relatively modest
additional cost—are associated hedging ratios and risk-factor sensitivities. These
quantities can help predict changes in the value of individual instruments—and by
extension one’s portfolio—for given movements in key risk factors. Development,
construction, and maintenance of such valuation frameworks involve much work
and significant resources. It is, however, basically a cost of being a player in
derivative markets.

Linking this back to our previous definitions, we can see how this valuation
infrastructure feeds into counterparty credit risk. Without proper and timely val-
uations, we cannot hope to reasonably exchange collateral or compute current
exposure levels. Equations 10.1 and 10.2 are only knowable with the appropriate
valuation machinery. This is good news, since part of what we need is, literally
by construction, already available. As we move to Eq. 10.3, however, the situation
changes. No matter how sophisticated one’s valuation framework, it cannot tell you
the value of individual derivative instruments in the future. These outcomes are
unknown and depend, of course, on the stochastic evolution of multiple market-
related random variables.

The correct solution to this problem involves the creation of a second forward-
looking valuation framework, which lies on top of the base pricing infrastructure.
It is an analytically and computationally intensive undertaking. Generally, it relies
on simulation methods. This is partly due to the complexity of the underlying
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instruments, but principally due to the non-analytic nature of collateral exchange
and the management of netting and margin sets. It begins with the calibration and
simulation of a collection of correlated stochastic processes, over some pre-defined
analysis horizon, describing the set of risk drivers for one’s derivative portfolio.

Stepping forward into the future—for each sample path and along time grids
of varying granularity—one revalues each individual instrument, revises cash-flow
patterns as necessary, exchanges collateral (or not), and determines the time profile
of the netting set for each credit counterparty.10 This process helps to trace out the
(simulated) evolution of derivative exposure for each counterparty in one’s portfolio.
With such an engine, (positive) exposure, expected exposure, expected positive
exposure, potential future exposures, and many other possible variations are readily
numerically approximated.

The ability to describe the future evolution and distribution of one’s derivative
portfolio—by individual instrument and counterparty—offers value beyond expo-
sure computation. Following the great financial recession, there have been fairly
dramatic changes in how credit risk is incorporated into derivative pricing.11 This
leads to the idea of the credit valuation adjustment (CVA) and its many related
flavours, which is generally referred to as XVA.12 Such simulation engines also play
a central role in this derivative-pricing activity. As a consequence, it is common for
financial institutions heavily involved with derivative instruments to have not only a
valuation engine, but also a complex apparatus for PFE and XVA computations.

At first glance, the solution to our problem seems obvious. Given an army of
quantitative analysts already computing exposure profiles for individual instruments
and counterparties, we should simply borrow their results for our purposes. It is
always pleasant to find someone competent to perform a difficult task for you.
Ultimately, despite a few clear advantages, we have nonetheless opted not to
follow this route. Instead, we make use of a regulatory approximation. There
are three main reasons. First, and perhaps most importantly, our focus is on the
risk-management dimension. Most forward-looking simulation engines are firmed
focused on pricing; they work with different time horizons and probability measures.
A second point relates to conditionality. We seek a through-the-cycle perspective
in our economic-capital computations to avoid—as mentioned numerous times in
previous chapters—pro-cyclicality. Any sensible forward-looking simulation model
is calibrated to current market conditions—otherwise it cannot reproduce current
valuations—and is thus, by its very construction, working under the point-in-time
viewpoint. The final point relates back to our conceptual axioms introduced in
the preface. It is a difficult, full-time job to maintain and run a forward-looking

10 For some computations, particularly those over short periods, one may ignore the collateral
exchange to understand just how bad one’s exposure position could become with a given
counterparty.
11 The basic issue was that, prior to the 2008 crisis, most derivative pricing and hedging (more
or less) structurally ignored default risk. See Brigo [10] for a much more eloquent and detailed
description of this point.
12 See Ruiz [19] for an excellent jumping off point into this world.
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simulation platform; such an engine seeks to perform a complex array of tasks.
Were we to simply borrow these results, there is a very real danger of it becoming
a black box for risk-management staff. It seems more defensible to use a simpler,
more easily understandable approach for our purposes.

Colour and Commentary 117 (PICKING AN ANALYTIC LANE): Treatment
of derivative exposure as a random variable, for use in our economic-
capital model, complicates our life. It turns out, however, that we are not
the only group of quantitative analysts taking this perspective. Subsequent
to the 2008 global financial crisis, a major rethink occurred in the area of
derivative pricing. One of the (many) consequences has been the construction
of forward-looking derivative exposure simulation engines to support the
revised pricing algorithms. This infrastructure would, at first blush, seem to
be tailor-made for our purposes. Sadly, it is not. Forward-looking engines
have a pricing, and not risk-management, focus. They are also, by absolute
necessity, firmed rooted in the point-in-time perspective. Finally, they embed
a level of complexity rather far beyond what is required for our purposes.
Such exposure estimates could, rather easily, become a black-box input into
our economic-capital computations. From an economic-capital perspective,
we require short-term, P-measure, through-the-cycle, and relatively easily
interpretable derivative-exposure estimates. With some reluctance, therefore,
we have firmly elected to follow the simpler (pseudo-)analytic lane offered by
the regulatory authorities.a

a This choice, depending on one’s organization and resources, certainly need not apply to
all financial institutions.

10.4 A General, But Simplified Structure

To make any further progress, it is necessary to make some concrete assumptions
about the underlying distributional dynamics of the market value of one’s netting
sets. As just discussed, the most direct way would be to begin by describing the
joint behaviour of the underlying collection of (correlated) market risk factors—
such as interest rates, exchange rates, commodity prices, or volatilities—that drive
derivative valuations. While this approach is the most defensible, it also involves the
largest degree of complexity. We have opted for an alternative strategy.

Understanding our requirements, there is a strong incentive to simplify. A useful
approach involves working with the overall netting-set market value as a single,
aggregated random variable. In other words, we exploit the fact that a netting set is a
kind of sum of many other random variables. How might this work? Imagine that we
define the following stochastic process on (�,F ,P) describing the intertemporal
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dynamics of the ith counterparty’s netting set:

dVt (i) = μidt + σidWt , (10.6)

where μi ∈ R, σi ∈ R+ and {Wt,Ft } is a standard, scalar Wiener process on
(�,F ,P). This is a drifted Brownian motion. If we would like to solve Eq. 10.6 for
Vt(i), then we need to make use of the underlying, rather famous, theorem from the
stochastic calculus.13

Theorem 10.1 (Itô) Let Xt be a continuous semi-martingale taking values in an
open subset U ⊂ R. Then, for any twice continuously differentiable function f :
U → R, f (Xt ) is a semi-martingale and,

f (XT )− f (Xt) =
∫ T

t

∂f

∂Xu

dXu + 1

2

∫ T

t

∂2f

∂X2
u

d〈Xu〉, (10.7)

where d〈Xt 〉 denotes the quadratic variation of the process Xt .

This is a fairly trivial application, where we need only select the identity function
f (Vt (i)) ≡ Vt(i) to apply Theorem 10.1. This leads to:

VT (i)− Vt(i) =
∫ T

t

∂f (Vu(i))

∂Vu(i)
dVu(i)+ 1

2

∫ T

t

∂2f (Vu(i))

∂Vu(i)2
d〈Vu(i)〉u, (10.8)

=
∫ T

t

1 (μidu+ σidWu)−
������������
1

2

∫ T

t

0 · d〈μidu+ σidWu〉,

= μi

∫ T

t

du+ σi

∫ T

t

dWu,

VT (i) = Vt(i)+ μi(T − t)+ σi (WT −Wt) ,

where WT − Wt ∼ N (0, T − t) is a Gaussian-distributed, independent increment
of the Wiener process. The consequence is that for any future time period, T ≥ t ,
the market value of our netting set is distributed as

Vt+T (i) ≡ VT (i) ∼ N

⎛

⎜

⎝Vt(i)+ μi(T − t)
︸ ︷︷ ︸

μi(t,T )

, σ 2
i (T − t)
︸ ︷︷ ︸

σi(t,T )2

⎞

⎟

⎠ , (10.9)

for the ith credit counterparty where the functions μi(t, T ) and σi(t, T ) are
introduced to keep the notation moderately under control. In other words, starting

13 This is only a very quick (and non-rigorous) peek into this vast array of mathematical endeavour.
See Karatzas and Shreve [15], Oksendal [18], and Heunis [14] for much more information, rigour,
and intuition.
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from the current value of Vt(i), it will grow at the rate ofμi in a manner proportional
to the passage of time. The volatility around this value is σi scaled by the square-root
of the time interval.

The consequence of this mathematical detour is a cohesive approach to the
intertemporal dynamics of the total market value of the individual derivative
positions with counterparty i.14 Equation 10.9 basically tells us how we can describe
the value of a given netting set for any time τ ∈ (t, T ]. All of the intricacy
of underlying risk factors is embedded in the value of μi and σi . Information is
certainly lost, but this foundational assumption allows us to put more structure—
and specificity—to the exposure definitions introduced in the previous section.

10.4.1 Expected Exposure

Using Eq. 10.3 and the final result from Eq. 10.9, we may now proceed to put a face
to the notion of expected exposure. At first glance, it might seem difficult to actually
determine the expectation of only the positive part of Vt+T (i). It turns out, however,
to be relatively straightforward. Since Vt+T (i) is a Gaussian random variable with
support on R, the positive expectation is determined by simply integrating over the
positive part of this domain, R+. Practically, this reduces to:

Et

(

Et+T (i)
)

= Et

(
(

Vt+T (i)
)+)

︸ ︷︷ ︸

Eq. 10.3

, (10.10)

=
∫ ∞

0
vfV (v)dv,

=
∫ ∞

0

v

σi(t, T )
√

2π
e

−(v−μi(t,T ))2
2σi (t,T )

2
dv.

Although this involves a wearisome bit of calculus, it is instructive to actually solve
this integral.15 It does, however, necessitate a few substitutions. Let us first define
g = v−μi(t, T ). This immediately implies that v = g+μi(t, T ) and consequently

14 Basically this approach paves over all of the underlying market-risk factors—such as interest
rates, foreign-exchange, and key spreads—and operates immediately at the aggregate netting-set
level.
15 This is the type of exercise that is typically left for the reader, which always feels slightly unfair.



626 10 Measuring Derivative Exposure

dv = dg leading to:

Et

(

Et+T (i)
)

=
∫ ∞

0

g + μi(t, T )

σi (t, T )
√

2π
e

−g2

2σi (t,T )
2
dg, (10.11)

=
∫ ∞

0

g

σi(t, T )
√

2π
e

−g2

2σi (t,T )
2
dg + μi(t, T )

∫ ∞
0

1

σi(t, T )
√

2π
e

−g2

2σi (t,T )
2
dg.

Resolution of the first integral in Eq. 10.11 requires a second substitution. Setting

u = −g2

2σi(t,T )2
gives us du = −gdg

σi (t,T )
2 where gdg = −σi(t, T )2du. Plugging this

back into Eq. 10.11 and using some basic properties of the normal distribution, we
may simplify as:

Et

(

Et+T (i)
)

= −σi(t, T )�2
����σi(t, T )

√
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dv, (10.12)
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To standard normal
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By symmetry
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(
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(
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(
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)

,

where φ(·) and �(·) denote the standard normal probability density and cumulative
distribution functions, respectively.
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If we recall our definitions of μi(t, T ) and σi(t, T ), the expected exposure (or
EE) becomes, in its full glory,

Et

(

Et+T (i)
)

= σi
√
T − tφ

(

Vt(i)+ μi(T − t)

σi
√
T − t

)

+
(

Vt(i)+ μi(T − t)

)

�

(

Vt (i)+ μi(T − t)

σi
√
T − t

)

, (10.13)

for the ith counterparty and any arbitrary choice of T ∈ (t,∞). This may not be the
most pleasant looking or intuitive formula, but it is a concrete analytic consequence
of assuming one’s netting set’s market value follows a drifted Brownian motion
process and a firm focus on positive value outcomes. This expression also lies, as
we will see in following discussion, at the heart of the suggested regulatory approach
towards computation of derivative exposure-at-default estimates.16

10.4.2 Expected Positive Exposure

Given the form of Eq. 10.13, it would be convenient to derive another formula
for the expected positive exposure. Unfortunately, it is not so straightforward.
The cumulative distribution function, �(·), is not integrable. Adding another time-
related integral over (t, T ] does not help matters. In practical settings, it is common
practice to analytically compute the expected exposure using Eq. 10.13 over a
number of steps along a time partition of (t, T ]; we then approximate the EPE as
the average over this discrete partition of the time domain. This is not particularly
satisfying, but it is reasonably manageable. If one desires more precision, then it
is always entirely possible to numerically integrate Eq. 10.13 over any individual’s
time interval of interest.

Figure 10.3 attempts to provide a bit more colour by displaying the analytic
expected exposure over a given time period. This example was (arbitrarily) com-
puted using the formula in Eq. 10.13 with Vt(i) = 5, μi = 0.05, σi = 1.75, and T −
t = 10. The expected positive exposure is also computed in two ways: as a simple
average of the expected exposure observations and via numerical integration.17

There is little or no (practical) difference between these two approaches.

16 Equation 10.13 plays, roughly speaking, the same role for regulatory counterparty risk exposure
calculations as Gordy [12]’s ASRF model in the Basel IRB methodology. See Bolder [9, Chapter 6]
for an introduction to these concepts. We’ll also return to this point in Chap. 11 when we examine
the broader regulatory capital perspective.
17 For the average computation, four discrete steps are taken for each year over T − t for a total of
40 expected-exposure evaluations. As we increase the granularity of the time grid, of course, these
two approaches converge.
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Fig. 10.3 Analytic exposure: This graphic displays the analytic expected exposure over a given
time period. The EPE is also computed as a simple average of the EE observations and via
numerical integration; there is little or no economic difference. This example was (arbitrarily)
computed with Vt (i) = 5, μi = 0.05, σi = 1.75, and T − t = 10.

If one is willing to make an additional assumption, then it is possible to obtain
an analytic expression for the expected positive exposure. We need to assume that
μi(t, T ) = Vt (i) + μi(T − t) ≡ 0. Practically, this means that we must eliminate
the drift element from our Brownian motion in Eq. 10.6. This transforms Eq. 10.13
into

Et

(

Et+T (i)
)

= σi
√
T − tφ (0)+

���������
(0) ·�

(

0

σi
√
T − t

)

︸ ︷︷ ︸

Eq. 10.13

, (10.14)

= σi
√
T − t√
2π

.

This eliminates the annoying �(·) term and easily allows us to determine an
expected positive exposure expression as,

1

T − t

∫ T

t
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Et+τ (i)
)

dτ = 1

T − t
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√
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2π

dτ, (10.15)

= σi√
2π(T − t)

∫ T
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√
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3
2

]T

t

,
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= 2σi
3
√

2π����(T − t)
(τ − t) �

3
2 ,

= 2σi
√
τ − t

3
√

2π
.

The conclusion is that if the netting-set market value follows a Brownian motion
with a zero drift and time-homogeneous variance, then both the EE and EPE
measures are simply multiples of the volatility and the passage of time. Admittedly,
these are perhaps not the most reasonable possible assumptions one might take.
They do, however, permit (mostly) analytic formulae and a point of comparison.

10.4.3 Potential Future Exposure

Morgan/Reuters [17] originally suggested the VaR measure in the context of
portfolio loss. Equation 10.5 provides a twist on this idea. Let’s repeat it here—
in a slightly different form—to examine it in more detail, help consider alternatives,
and understand under what conditions it might be determined analytically. The α-
VaR of the ith counterparty’s netting-set exposure over the horizon T − t can be
written as,

qα(i, t, T ) = inf
x∈R

(

x

∣

∣

∣

∣
P

(

Vt+T (i) ≥ x

)

≥ 1 − α

)

. (10.16)

The function depends on two parameters: α, which a threshold for the probability on
the right-hand side of Eq. 10.16 and the time horizon, T −t . Imagine that we set α to
0.95 and T − t = 1

52 or one week. With these parameter choices, the VaR describes
the smallest exposure outcome that exceeds 95% of possible valuations, but is less
than 5% of them. In other words, qα(i, t, T ) is the upper (1 − α)-quantile of the
netting set’s exposure distribution.18 By common convention, the VaR is denoted as
qα(i, t, T ) to describe how far, for the ith counterparty, out into the future and the
distribution’s tail one wishes to go.

A second, increasingly common risk measure, is defined as the following
conditional expectation,

E

(

Vt+T (i)
∣

∣

∣

∣
Vt+T (i) ≥ qα(i, t, T )

)

= 1

1 − α

∫ ∞

qα(i,t,T )

vfVt+T (i)(v)dv. (10.17)

In words, Eq. 10.17 essentially describes the exposure given that one find’s oneself
at or beyond the (1 − α)-quantile, or qα(i, t, T ), level. This quantity is, for this

18 Quantiles are points in a distribution pertaining to the rank order of the distribution’s values. It
is a generalization of the notion of a percentile, which is defined on a scale of 0 to 100.
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reason, often termed the conditional Value-at-Risk, the tail VaR, or the expected
shortfall.19 We will use the latter term and denote it as Eα(i, t, T ) to explicitly
include the desired quantile defining the tail of the return distribution (as well as
the time horizon and credit counterparty). Either Eq. 10.16 or 10.17 is a reasonable
candidate for the potential future exposure.

Both of these quantities are fairly abstract. With a bit of additional effort and the
assumption of Gaussianity, we may derive analytic expressions for both measures.
From Eq. 10.16, the (1−α)-quantile satisfies the following (by-now-quite-familiar)
relation for a standard normal variate,

∫ ∞

qα(i,t,T )

fVt+T (i)(v)dv = 1 − α, (10.18)

1 −
∫ qα(i,t,T )

−∞
fVt+T (i)(v)dv = 1 − α,

∫ qα(i,t,T )

−∞
fVt+T (i)(v)dv = α,

P

(

Vt+T (i) ≤ qα(i, t, T )

)

= α,

�

(

qα(i, t, T )

)

= α,

qα(i, t, T ) = �−1(α).

The standard inverse normal cumulative distribution function, �−1(·), does not
have a closed-form solution, but through a variety of approximations, it is found
in virtually any software package.20

Equation 10.18 summarizes the results for a standard normal random variable.
All that remains is to scale the outcome to the moments of our portfolio-return
distribution. Recall that if Z ∼ N(0, 1), then X = a +√

bZ ∼ N(a, b). Using this
logic, it follows that

qp(α, T − t) = μi(t, T )+ qα(i, t, T )σi(t, T ), (10.19)

= Vt(i)+ μi(T − t)+�−1(α)
︸ ︷︷ ︸

Eq.
10.18

σi
√
T − t .

19 The expected shortfall measure—a central metric for our economic-capital model—also fulfills
all of the criteria for a co-called coherent risk measure. See Artzner et al. [1] for an introduction to
this theoretically important notion.
20 An α of 0.95, for example, leads to a constant value �−1(0.95) ≈ 1.65, whereas an α of 0.99
leads to �−1(0.99) ≈ 2.33.
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Given an α of 0.99, Vt(i) = 5, μi = 0.05, σi = 1.75, and T − t = 1
52 , a possible

VaR-based PFE estimate takes the value,

qα(i, t, T ) = 5 + 0.05 ·
(

1

52

)

︸ ︷︷ ︸

μi(t,T )

+�−1(0.99) · 1.75 ·
√

1

52
︸ ︷︷ ︸

σi(t,T )

, (10.20)

= 5.10 + 2.33 · 0.24,

= 5.66.

In this setting, the 99% VaR would be 5.66 units of currency. Alternatively, we
estimate that the worst-case increase in exposure over the next week, with a
99% degree of confidence, is qα(i, t, T ) − Vt(i) = 0.66 units of currency. The
computation itself is trivial. All of the effort is found in the identification of robust
and sensible expected return and portfolio volatility estimates.

To find a workable expression for an expected-shortfall-based PFE, we again
begin with a standard normal random variate, Vt+T (i) ∼ N(0, 1). The average
value in the tail beyond the (1 − α)-quantile is defined as follows,

E

(

Vt+T (i)
∣

∣

∣

∣
Vt+T (i) ≥ qα(i, t, T )

)

= 1

1 − α

∫ ∞
qα(i,t,T )

vfVt+T (i)(v)dv, (10.21)

= 1

1 − α

∫ ∞
�−1(α)

vφ(v)dv,

= 1

1 − α

∫ ∞
�−1(α)

v√
2π

e− v2
2 dv.

This is not, at first glance, a terribly easy integral to solve. If one computes φ′(v),
the solution presents itself directly. In particular,

φ(v) = 1√
2π

e−
v2
2 , (10.22)

φ′(v) =
(−2v

2

)

1√
2π

e−
v2
2 ,

= −v√
2π

e−
v2
2 ,

= −vφ(v),
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where φ(·) denotes the standard normal density function. Inserting Eq. 10.22
into 10.21, we have

E

(

Vt+T (i)
∣

∣

∣

∣
Vt+T (i) ≥ qα(i, t, T )

)

= 1

1 − α

∫ ∞

�−1(α)

v√
2π

e−
v2
2

︸ ︷︷ ︸

Eq. 10.22

dv, (10.23)

= 1

1 − α

∫ ∞

�−1(α)

−φ′(v)dv,

= 1

1 − α

[

− φ(v)

]∞

�−1(α)

,

= 1

1 − α

[

− lim
v→∞φ(v)

︸ ︷︷ ︸

=0

+φ(�−1(α))

]

,

= φ
(

�−1(α)
)

1 − α
.

Once again, this need only be scaled using our netting-set moments.

Eα(i, t, T ) ≡ E

(

Vt+T (i)
∣

∣

∣

∣
Vt+T (i) ≥ qα(i, t, T )

)

, (10.24)

= μi(t, T )+ φ
(

�−1(α)
)

1 − α
︸ ︷︷ ︸

Eq. 10.23

σi(t, T ),

= Vt(i)+ μi(T − t)+ φ
(

�−1(α)
)

1 − α
σi
√
T − t .

Returning to our previous example with α = 0.99 and the same set of parameter
values used earlier in the VaR setting, we may compute

E0.99(i, t, T ) = 5 + 0.05 ·
(

1

52

)

︸ ︷︷ ︸

μi(t,T )

+φ(�−1(0.99))

1 − 0.99
· 1.75 ·

√

1

52
︸ ︷︷ ︸

σi(t,T )

, (10.25)

= 5.10 + 2.67 · 0.24,

= 5.74.

It makes logical sense that the expected shortfall should exceed the VaR for the
same value of α. Indeed, since the expected shortfall is the average of all values
beyond the VaR values, it must logically be greater than (or, at the very least, equal
to) the VaR computation. Conceptually, since we are already quite far out in the tail
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Table 10.1 Simple example
details: This table
summarizes, at a glance, the
numerical details of various
exposure measures in the
context of a rather simple
example.

Characteristic Notation Value

Starting point Vt (i) 5.00

Drift (or trend) μi 0.05

Diffusion (or volatility) σi 1.75

Time horizon T − t 0.02

Confidence level α 0.99

VaR-based PFE qα(i, t, T ) 5.66

Expected-shortfall-based PFE Eα(i, t, T ) 5.74

and the Gaussian distribution has relatively small amounts of probability mass in its
extremes, it also makes sense that the expected shortfall is not dramatically larger
than the VaR values—in this case, it exceeds it by about Eα(i, t, T )− qα(i, t, T ) =
0.08 units of currency.21

Table 10.1 summarizes the results of this simple numerical exercise. Either the
VaR measure from Eq. 10.19 or the expected shortfall metric in Eq. 10.24 is a
reasonable choice for the ith counterparty’s potential future exposure. The expected
shortfall is, by construction, somewhat more conservative since it explicitly delves
into the tail of the netting set’s value distribution.22

Colour and Commentary 118 (CREDIT COUNTERPARTY RISK ANA-
LYTIC FORMULAE): This section has illustrated how far we can go, in terms
of analytic expressions for important counterparty credit risk quantities,
on the back of the assumption of drifted Brownian motion for one’s netting
set dynamics. Expected exposure, expected positive exposure (in the special
case of μi(t, T ) ≡ 0), and potential future exposure all boil down to
relatively concise formulae. While useful and insightful, it is important to
keep our enthusiasm somewhat in check. The central assumption is, if we
are honest with ourselves, quite likely flawed. Extensive empirical evidence
indicates that few, if any, important financial risk factors follow a Gaussian
distribution. The basic form and symmetry are consistent, but actual risk-
factor and market-value distributions are significantly more heavy tailed than
the assumption of normality would suggest. Perhaps more problematic is the
underlying complexity of the true netting-set valuation process. Given the
broad range of potential pay-off patterns and underlying risk factors, treating

(continued)

21 In the this Gaussian case, the parametric expected shortfall estimator simply amounts to a change
in the magnitude of the multiplier constant. The VaR multiplier is, for the 99% confidence level,
equal to about 87% of the expected-shortfall value.
22 A similar expression can be derived for different assumptions regarding the stochastic dynamics
of the netting-set process. Chapter 10, for example, provides similar computations under the t

distribution.
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Colour and Commentary 118 (continued)
the overall netting-set as a single monolithic object is hard to defend. For
this reason, as we’ve already highlighted, these various derivative exposures
definitions are typically computed using rather complicated simulation
engines. The previous investigation, however, remains pertinent since these
formulae represent the foundation for our chosen path: simplified regulatory
approximations. It is also useful as an easy-to-understand diagnostic and
comparator for more complex derivative-exposure calculations performed in
other parts of one’s organization.

10.5 The Regulatory Approach

Virtually every piece of regulatory guidance has a history; it can often prove
surprisingly helpful in appreciating the general context and what the regulators seek
to accomplish. It is nevertheless often difficult, for any given regulatory standard,
to know how far in time one should go back. In the area of counterparty credit risk,
perhaps the first reference is BIS [2] where the idea of a netted exposure add-on, to
account for potential value increases, was first introduced. BIS [2] is a revision to the
original 1988 Basel Accord. While interesting, this is probably a bit too far back into
the past. A better starting point would be BIS [3, Part I], which was written about ten
years after the first revision. This document provides a thorough description of the
so-called current-exposure and standardized methods; referred to understandably
as CEM and SM, respectively. These models are very useful background into the
regulator’s mindset with regard to counterparty credit risk.

The directives found in BIS [3] were nonetheless superseded about another
decade later with BIS [5]. This paper contains an updated exposure-at-default
measurement methodology, which has been catchily dubbed the standard approach
for counterparty credit risk. This being rather a mouthful has led to the broad-
based use of the unfortunate acronym, SA-CCR. Jumping into BIS [5] without
any preparation can be a bit overwhelming; perhaps appreciating this fact, a
helpful companion paper—see BIS [6]—was produced a few months later. BIS
[7] provides further responses to frequently asked questions. This section seeks to
provide a workable description of the Basel Committee on Banking Supervision’s
(BCBS) SA-CCR methodology. It makes ample use of BIS [2, 3, 5, 6, 7]—along
with a number of other references mentioned along the way—to accomplish this
task. It is precisely this so-called SA-CCR approach that we will use to describe
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our (non-deterministic) derivative exposures for the purposes of economic-capital
computations.23

Like most regulatory guidance, the SA-CCR is highly prescriptive and stylized.
This is, given regulatory objectives, both natural and understandable. It nonetheless
consists of a sequence of formulae that require some unpacking and deciphering.
Let’s not lose sight of our principal objective: a reasonably realistic and parsimo-
nious description of the current exposure-at-default (i.e., EAD) associated with an
arbitrary counterparty i. The SA-CCR high-level, entry-point formula for this object
has the following form:

EADt (i) = α ·
(

RCt (i)+ PFEt+T (i)
)

, (10.26)

where RCt (i) denotes the replacement cost of the ith credit counterparty at time
t and α ∈ R+. We use the Greek letter α in this context to be consistent with
the regulatory documentation. One should be careful to avoid confusion with the
confidence level, which uses the same symbol.

Replacement cost is intended to represent the loss incurred in the event of
immediate default. There is no lapse of time and, as a consequence, no possibility
of upward movement in the market value of one’s netting set. The PFE term, as you
might expect, looks T − t units of time into the future to capture possible value
increases. The sum of these current and forward-looking effects are modified by a
constant multiplier, α. As of the writing of this document, α was set to a value of
1.4.24 The rationale for α is, it would appear, to provide a cushion for increased
conservatism. The replacement-cost and PFE computations are distinct pieces with
different perspectives. Although obviously not unrelated, it is convenient to address
them separately. We’ll follow this strategy in the coming sections and then pull them
back together to complete the picture.

10.5.1 Replacement Cost

Of the two quantities in Eq. 10.26, the replacement cost is the least complicated to
compute. The reason is simple; it only depends on the current point in time. In its
basic form, the replacement cost is the sum of the market value of the individual
trades in the ith countparty’s netting set less the existing collateral. If the total
market value is EUR 10 million and one holds EUR 8 million of collateral, then
the replacement cost is EUR 2 million. Conversely, if you have a negative market

23 Derivative exposure—as we’ll soon see—also typically makes an appearance in leverage
calculations.
24 The constant α may take different values for different applications of the resulting exposure
estimate. When, for example, computing leverage—see BIS [4]—the value of α is fixed at unity.
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value of EUR −20 million and have posted EUR 15 million of collateral, then you
have a EUR −5 million replacement cost. This logic is approximately correct, but
also a bit faulty. We are not terribly interested in negative replacement costs and we
need to be a bit more conservative in our treatment of collateral.

To address these issues, BIS [5] defines the replacement cost as

RCt (i) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

max

(

Vt(i)− C̃t+T (i), 0

)

: No margin

max

(

Vt(i)− C̃t+T (i), 0,THi + MTAi − NICAt (i)

)

: Margin
.(10.27)

This is fairly detailed definition that requires a bit of digestion. Indeed, Eq. 10.27
contains a number of acronyms that are desperately in need of explanation. The
first point is that the replacement-cost definition differs by margin policy. For
unmargined netting sets, the replacement cost is simply the positive part of the
difference between the current market value and collateral holdings. Since there
is always the danger that non-cash collateral can lose value—due to adverse market
movements—C̃t(i) denotes the haircut value of any net collateral position.25 It is,
in a technical sense, described as,

C̃t+T (i) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Ct (i) ·
(

1 − h(t, T )

)

: Holding collateral where Ct (i) > 0

Ct (i) ·
(

1 + h(t, T )

)

: Posting collateral where Ct (i) < 0
,

(10.28)

where h(t, T ) is the haircut value over the time interval T − t and Ct (i) represents
the market value of the ith counterparty’s net collateral position at time t .26 The
introduction of T , as an argument, is necessary to reflect the role of the time-horizon
in the collateral haircut computation and our broader analysis.

The notion of net collateral will help us make sense of the second part of
the replacement-cost definition for margined netting sets in Eq. 10.27. The initial
margin or independent amount, given their similarity and the potential for confusion,
are referred to as independent collateral amount (or ICA) in the regulatory setting.
Unlike variation margin, the ICA can be simultaneously posted and received. This
immediately leads to the idea of net ICA, or NICA, which represents the difference
between received and posted initial collateral. The NICA value might be either
positive or negative; it really depends on the magnitude of the ICA values associated
with both counterparties. In the non-margin setting, therefore, the C̃t+T (i) value

25 A haircut is a rather colourful, colloquial term used to describe any adjustment to the valuation
of a collateral position to account for possible unfavourable market movements.
26 This is a very simplified set of haircut rules; it can, in practice, be much more nuanced.



10.5 The Regulatory Approach 637

basically refers to the NICA amount with the appropriate application of haircuts as
described in Eq. 10.28.

In the margined cases, the current collateral amount, C̃t+T (i), is related to
variation margin. The second line of Eq. 10.28, however, has three arguments
in the max operator. The third argument, THi + MTAi − NICAt (i), includes
the net independent collateral amount at the current time, t . This maintains a
separation between the variation and initial margins. The TH and MTA variables
are determined through the legal counterparty contracts governing the management
of margins. TH is an acronym for the collateral threshold; this is a lower bound,
below which collateral is not exchanged. For example, if there is a threshold of EUR
100,000 and the market value of the netting set is EUR 50,000, then no collateral
would be received. The point of the threshold is to reduce the operational costs
associated with calling and returning collateral. Naturally, this creates a trade-off
between risk mitigation and logistical costs.27

MTA represents the minimum transfer amount, which unsurprisingly is the
lowest amount of collateral that may be transferred between two entities. Much like
the threshold, the intention is to reduce operational overhead. It probably doesn’t
make logical sense to exchange EUR 10 of collateral for a minuscule change in
market value.28 The threshold and minimum transfer amount should not, however,
be considered separately. As clearly stated in Gregory [13]:

The minimum transfer amount and threshold are additive in the sense that the exposure must
exceed the sum of the two before any collateral can be called.

This succinctly explains why these two values enter jointly into the margined
netting-set replacement cost in Eq. 10.27. This extra condition covers the situation
where there is positive exposure, but it has not broken through the lower bound
required for receipt of collateral. The net ICA is subtracted from this amount to
account for the offsetting impact of the initial margin. In short, Eq. 10.27 is a rather
conservative view of the current losses associated with immediate counterparty
default.

10.5.2 The Add-On

Conservatism of its construction aside, the replacement cost does not tell the
whole story. It completely ignores the possibility of future value increases in the
counterparty’s netting set. This is precisely the role of the second term in the high-
level SA-CCR expression presented in Eq. 10.26. It has the following form,

PFEt (i) = Mi · A#
i , (10.29)

27 One may, of course, set the threshold to zero to move completely towards the risk-mitigation
direction.
28 Such a value should be somehow related—logically, at least, if not practically—to the confidence
interval around our valuation estimates.



638 10 Measuring Derivative Exposure

where Mi ∈ (0.05, 1] is a multiplier with a reasonably complex form and A
#
i

is referred to as the aggregate add-on for the ith credit counterparty. Putting the
multiplier aside for the moment, a central point is that what SA-CCR refers to
as PFE is actually something else. In fact, BIS [6] indicates that it is intended to
represent a conservative estimate of the netting set’s effective expected positive
exposure. To repeat, it does not technically describe potential future exposure.

The aggregate add-on, as the name strongly suggests, is some kind of function
of the underlying trades within the netting set designed to capture the risk of future
derivative-value increases. This naturally involves a number of levels and, of course,
a logical hierarchy to determine the proper order of aggregation. It is, quite frankly,
a bit messy. Figure 10.4 provides, in an attempt to help matters, a visualization of
the five levels associated with the SA-CCR methodology. Individual trades are first
organized into five distinct asset classes. These are essentially flavours of derivative
contracts: interest rate, currency, credit, equity, and commodity. This immediately
raises an important question: what is done with derivatives that touch upon multiple
asset classes?29 BIS [5]’s answer reads:

The designation should be made according to the nature of the primary risk factor. [...] For
more complex trades, where it is difficult to determine a single primary risk factor, bank
supervisors may require that trades be allocated to more than one asset class.

For the purposes of this discussion, we will assume that each derivative trade can
be reasonably and defensibly assigned to a single asset class. The aggregate add-on
is thus,

A
#
i =

∑

a∈Ai

A
(a)
i , (10.30)

where Ai denotes the collection of asset classes associated with netting set i. One
thus simply sums over the asset classes to get to the aggregate level.30

Within an asset class, the trades are further allocated into so-called hedging sets.
Again BIS [5], who introduce the concept, offer the best definition:

a hedging set is the largest collection of trades of a given asset class within a netting set for
which netting benefits are recognized in the PFE add-on of the SA-CCR.

The corollary, of course, is that hedging sets within an asset class are not
permitted to offset one another. If we write the collection of hedging sets within
asset class a and netting set i as H (a)

i , then these hedging sets are aggregated as

A
(a)
i =

∑

h∈H (a)
i

∣

∣

∣

∣
A
(a,h)
i

∣

∣

∣

∣
, (10.31)

29 A cross-currency swap, for example, has both currency and interest rate exposure.
30 To be crystal clear with this invented notation, if a netting set includes N assets classes then

Ai =
{

A(1)
i ,A(2)

i , · · · ,A(N)
i

}

.
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Netting Sets: AΣ
i

Trades: A(a,h,s,k)i

Single-Factor Sets: A(a,h,s)i

Hedging Sets: A(a,h)i

Asset Classes: A(a)i

Fig. 10.4 The add-on hierarchy: The schematic above outlines the five levels of aggregation
embedded in the SA-CCR methodology. In addition to visualizing how the aggregate add-on is
computed, it also introduces the notation used to describe the various components.

where A
(a,h)
i represents the calculated add-on for the hth hedging set of asset class

a associated with netting set i. H (a)
i is the related collection of hedging sets.

The notation is admittedly dreadful, but given the complexity of the hierarchy in
Fig. 10.4, it will only get worse. The absolute value operator in Eq. 10.31 precludes
any possible netting between these hedging sets.

The hedging set, as the name indicates, permits some form of diversification. This
is captured through non-perfect positive correlation between the individual single
factor sets comprising the hedging set. We further define the collection of hedging
sets in asset class a and netting set i as S(a,h)

i . This allows us to write the aggregation
of each hedging set as,

A
(a,h)
i =

√

√

√

√

∑

s∈S(a,h)
i

∑

r∈S(a,h)
i

ρ(s, r)A
(a,h,s)
i A

(a,h,r)
i , (10.32)

where A
(a,h,s)
i represents the sth single-factor set of hedging set h in asset class

a and ρ(r, s) is the (regulator determined) correlation between single factor sets r
and s. These latter values are explicitly provided by the regulatory authorities. Each



640 10 Measuring Derivative Exposure

A
(a,h,s)
i is referred to as a single-factor set. Equation 10.32 should be recognized

as the standard deviation of a group of correlated random variables.31 For it to
work, however, we must be able to interpret the individualA(a,h,s)

i terms as standard
deviations.

The single-factor set add-ons, in turn, are the direct sum of the trades falling into
that asset class, hedging set, and single-factor set. Calling this collection T (a,h,s)

i ,
the final level of aggregation is given as,

A
(a,h,s)
i =

∑

k∈T (a,h,s)
i

A
(a,h,s,k)
i . (10.34)

Practically, a single factor set is a sub-group of interest-rate tenors for a given
interest curve, a currency, or a credit single entity. The driving idea is that the
correlation within a single factor set is approximately perfectly positive, so they
can be directly summed.

Each individual derivative trade follows a clear hierarchy up to the netting set
level. The underlying logical chain illustrates how each trade, single-risk-factor,
hedging-set, and asset-class collection is nested,

T (a,h,s)
i ⊆ S(a,h)

i ⊆ H (a)
i ⊆ Ai , (10.35)

for the ith netting set.32

Just for fun, let’s now combine all of these elements together to create a single,
abstract representation of the aggregate add-on associated with the ith counterparty.

31 If X1, ..., XN are a collection of N correlated random variables, then the variance of their sum
can be represented as

var

(

X1 + · · · +XN

)

=
N
∑

i=1

N
∑

i=j
corr(Xi,Xj )

√

var(Xi)

√

var(Xj )

︸ ︷︷ ︸

∑N
i=1

∑N
i=j cov(Xi ,Xj )

, (10.33)

where we recover Eq. 10.32 by taking the square root of both sides.
32 Or, if you prefer a word equation, we might describe the idea in Eq. 10.35 as

Collection of Trades
︸ ︷︷ ︸

k∈T (a,h,s)
i

⊆ Single-Factor Sets
︸ ︷︷ ︸

s∈S(a,h)i

⊆ Hedging Sets
︸ ︷︷ ︸

h∈H (a)
i

⊆ Asset Class
︸ ︷︷ ︸

a∈Ai

. (10.36)
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Starting from Eq. 10.30, we have

A
#
i =

∑

a∈Ai

A
(a)
i

︸ ︷︷ ︸

Eq.
10.30

, (10.37)

=
∑

a∈Ai

∑

h∈H (a)
i

∣

∣

∣

∣
A
(a,h)
i

∣

∣

∣

∣

︸ ︷︷ ︸

Eq. 10.31

,

=
∑
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∣
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Eq. 10.32
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Eq. 10.34
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i
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i

︸ ︷︷ ︸

Eq. 10.34
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∣

∣

∣

∣

∣
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With its almost frightening array of sums, Eq. 10.37, is not particularly easy to
look at. It does, however, clearly chart out the path from individual trade to single-
factor set to hedging set to asset class and, ultimately, to netting set as described in
Fig. 10.4. Although slightly masochistic and certainly not the typical treatment of
this material, this final expression does provide some useful intuition to a complex
aggregation.

Colour and Commentary 119 (SA-CCR AGGREGATION LOGIC): As any-
one with a sock drawer can tell you, getting all of the right socks paired
up correctly with their partner can be a lengthy and annoying undertaking.
The SA-CCR regulatory guidance add-on calculations involve a five-level
hierarchy with three alternative aggregation approaches. The aggregation
logic is, to be blunt, ugly and rather hard to follow. Like a particularly untidy
and convoluted sock drawer, a bit of organization can go a long way. The
preceding discussion consequently introduces some (imperfect) notation and
logic to help keep some order in this hierarchy. A netting set is comprised
of a number of distinct asset classes. Within each asset class, trades are

(continued)
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Colour and Commentary 119 (continued)
allocated into hedging sets. The various single factor sets, within a hedging
set, combine together in a manner similar to variance. Between hedging sets,
no offsetting is permitted; aggregation occurs with absolute values. Trades
within each single factor set, by virtue of their perfect positive correlation, can
be simply summed. Perhaps somewhat ironically, the need to create a rather
straightforward formulaic exposure calculation is the main driver of this
relatively messy structure. In a classic potential-future-exposure computation,
the complexity is embedded in the dependence structure underlying the risk
factors and their mapping to derivative valuations. Netting set aggregation is,
in this setting, comparatively trivial.a In the SA-CCR, the risk-factor structure
is simplified. The cost is somewhat unwieldy aggregation logic.

a The heavy-lifting has to be performed somewhere. In this case, it is performed by the
forward-looking exposure engine.

10.5.3 The Trade Level

The effective expected positive exposure form of the add-on needs to meet a
central objective. As we saw in the previous section, to use the variance-motivated
aggregation at the hedging-set level as in Eq. 10.32, it is necessary to view the
individual (hedging-set) add-ons as a standard deviation. To accomplish this, a
number of assumptions regarding the market value of each individual trade are
required. These include—and are also outlined in both BIS [5, 6]—a zero current
market value, an absence of collateral, no cash-flows over the next one-year time
horizon, and undrifted Brownian-motion dynamics.33

We now reap the benefits of having worked through the details of the Brownian-
motion case. Let us employ k to denote an arbitrary trade with the i credit
counterparty. The market value of the ith trade at time t + T , following from the
preceding assumptions, is given as

Vt+T (i, k) ∼ N

⎛

⎜

⎝0, I{mk≥T }σk
√
T − t

︸ ︷︷ ︸

σik(t,T )

⎞

⎟

⎠ , (10.38)

33 These are fairly strong assumptions and, to a certain extent, they are relaxed through the
multiplier. We will address this point in forthcoming discussion.
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where mk is the remaining maturity. This is entirely consistent with the undrifted
Brownian-motion case. The only real twist is that all trades maturing before time
t + T are excluded.

Equipped with the definition of an arbitrary trade’s market-value, we observe that
we are in the general, but simplified, structure described in the preceding sections.
From Eqs. 10.13 and 10.14, the expected exposure associated with the kth trade is
simply

Et

(

Vt+T (i, k)+
)

= I{mk≥T }σk
√
T − t√

2π
. (10.39)

The actual value of T will vary depending on whether or not the netting set is
margined or non-margined. In the non-margined case, T − t = 1 year. For margined
netting sets, one needs to define a margin period of risk, which we will refer to as
t + τMi to reflect its dependence on the netting set. As discussed earlier, we can
compute the expected exposure profile by evaluating (and averaging) Eq. 10.39 for
a number of choices of T ∈ (t, t + 1] or T ∈ (t, t + τMi ] for non-margined and
margined netting sets, respectively.

The authors of the SA-CCR (understandably) wanted to avoid—as highlighted
in BIS [6]—the need to partition the time interval and repeatedly compute (and
average) Eq. 10.39. This leads to a restatement of our maturity indicator variable as

I{mk≥t} ≡ 1. (10.40)

This is equivalent to forcing all trades in one’s portfolio to have a minimum maturity
of—depending on the margin policy—either one-year or the margin period of risk.

This assumption allows us, following directly from Eq. 10.15, to represent the
expected positive exposure as

1

T − t

∫ T

t

Et

(

Vt+τ (i, k)+
)

dτ = 2σk
√
T − t

3
√

2π
, (10.41)

where T = 1 or τMi . Two features of Eq. 10.39 also make it the effective expected
positive exposure: over (0, T ] there are neither cash-flows nor maturities and σk ∈
R. The presence of these conditions ensures that the expression in Eq. 10.41 is
(at least) weakly positively monotonic in T . Under this monotonicity condition the
expected positive exposure (EPE) and effective expected positive exposure (EEPE)
coincide.

Pulling this all together, the trade-level add-on has the following theoretical form,

A
(a,h,s,k)
i = 2σk

√
T − t

3
√

2π
︸ ︷︷ ︸

Eq. 10.41

. (10.42)
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It is important to stress that this is not the final form of the trade-level add-on.
Ultimately, as we’ll see shortly, it has a rather different practical form. Nonetheless,
following from BIS [6], Eq. 10.42 describes its origins.

Colour and Commentary 120 (SA-CCR PFE COMPONENT): It should be
clear by this point that what the SA-CCR refers to as the PFE component is
not actually, in the typical definition of the term, potential future exposure. It
is, to be clear, not a tail-based measure of the worst-case upside movement in
a trade or netting set’s market value. Instead, it is defined with regard to the
expectation of the positive part of the trade or netting set’s future exposure; in
the non-margined case, this becomes effective positive exposure, whereas this
reduces to expected exposure in the margined setting. In both cases, numerous
assumptions are necessary to preserve analytic formulae for these quantities.
This choice is perfectly within the purview of the regulatory authorities
and, given their objectives, makes logical sense. Their characterization of
PFE does, after all, respect the fundamental idea of incorporating some
additional amount to accommodate the possibility of future value increases.
It nonetheless bears stressing that the add-on element should not be strictly
interpreted—relying on its name—as a quantile-based characterization of the
future counterparty level value distribution. Understanding this fact may very
well help to avoid unnecessary confusion.

The next step is to adjust Eq. 10.42 so that it naturally handles both margin
and non-margined netting sets. In principle, one could simply change the value
of T depending on the margin policy. As a practical matter, however, the EEPE
form from Eq. 10.42 only really applies to non-margined netting sets. For margined
netting sets, the margin period of risk is typically quite short: something between
10 to 20 working days. Averaging the expected positive exposure of this period
would, according to the formula, reduce the add-on by one third. Apparently, this
was judged to be insufficiently conservative. The SA-CCR consequently restates the
trade-level add-on as,

A
(a,h,s,k)
i =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

2σk

3
√

2π
: No margin (EEPE)

σk
√
τMi − t√
2π

: Margin (EE)
. (10.43)

Again, this is not precisely how it is represented in the SA-CCR documentation.
Instead, they express the trade-level add-on as,

A
(a,h,s,k)
i = 2σk

√
1-year

3
√

2π
MFk, (10.44)

= 2σk

3
√

2π
MFk,
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where MFk is called the maturity factor and it is defined as,

MFk =
⎧

⎨

⎩

1 : No margin (EEPE)
3
√
τMi − t

2
: Margin (EE)

. (10.45)

Rather obviously, Eqs. 10.44 and 10.45 are entirely equivalent to the representation
in Eq. 10.43. To avoid confusion in the application and discussion of the SA-CCR
computation, it is probably best to make use of the maturity factor.

Colour and Commentary 121 (THE SA-CCR MATURITY FACTOR): The
maturity factor is intended to simplify the SA-CCR implementation by permit-
ting a common form irrespective of a netting set’s margin policy. It is a rather
small point, but role of the maturity factor in the trade-level add-on obscures
a fundamental modelling choice. Non-margined netting set add-on values are
based on the effective expected positive exposure measure. Margined netting
sets, conversely, use straight-up expected exposure. Given the dramatic
difference between the time interval involved, this is an understandable and
conservative regulatory choice. It is still useful to see through the maturity
factor form and to be aware of this choice. If one is comparing SA-CCR
results to a model-based implementation, this could potentially lead to some
confusion.

BIS [6] indicates clearly that “the SA-CCR does not directly operate with trade
volatilities.” The actual form of the trade-level add-on is given as,

A
(a,h,s,k)
i = δk · d(a)k · SF(a)k · MFk, (10.46)

where δk is the directional delta, d(a)k is the adjusted notional, and SF(a)k is the
supervisory factor. The a subscript arises, because as we’ll see shortly, some of
these quantities are handled differently depending on their asset-class membership.
δk essentially denotes the sign of the add-on, while δk describes its magnitude.34

The supervisory factor provides the link back to the volatility structure found in
Eq. 10.44. Indeed, if we equate Eqs. 10.44 and the absolute value of 10.46 and solve
for σk we arrive at

2σk

3
√

2π
���MFk

︸ ︷︷ ︸

Eq. 10.44

=

∣

∣

∣

∣

∣

∣

∣

δk · d(a)k · SF(a)k ·���MFk
︸ ︷︷ ︸

Eq. 10.46

∣

∣

∣

∣

∣

∣

∣

, (10.47)

34 For option contracts, the directional delta captures the sign, but also tells us something about
moneyness.
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σk =
(

3
√
πSF(a)k√

2

)
∣

∣

∣

∣
δk

∣

∣

∣

∣
· d(a)k ,

σk ≈
(

2.66 · SF(a)k

)∣

∣

∣

∣
δk

∣

∣

∣

∣
· d(a)k .

The punchline is that the volatility of the trade is simply a scaled version of the

supervisory factor. What is particularly useful to know is that the term

(

2.66·SF(a)k

)

should be interpreted, according to BIS [6], as

the standard deviation of the primary risk factor at the one-year horizon.

The individual analyst does not determine these values; they are provided by
one’s friendly neighbourhood regulator. These supervisory factors are presumably
determined by individual asset class and single risk-factor definitions as a combina-
tion of calibration to historical outcomes and regulatory judgement.

Once again, pulling together the high-level aggregate add-on viewpoint from
Eq. 10.37 and incorporating Eq. 10.46, we arrive at:
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#
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i
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∣
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∣

∣
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√
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∑
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∑
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∣

∣
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Eq. 10.37

, (10.48)
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Eq. 10.46
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Eq. 10.46
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∣

.

Admittedly somewhat overwhelming, this representation nevertheless indicates
how the various pieces fall into place. The rather puzzling application of the
absolute-value operator to the result of a square root suggests differential treatment
among certain asset classes. We will turn to this important point after completing
the overall add-on computation.

10.5.4 The Multiplier

The multiplier is an attempt to attenuate the rather strong assumptions involved in
the construction of the add-on. The most violent choices, from an add-on perspective
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at least, entail ignoring any future collateral and forcing the current market value to
zero. Unlike the individual add-ons, however, the multiplier is defined at the netting-
set level. A bit of reflection suggests that the starting point, of any given netting set,
could be significantly negative for one (or a combination) of two reasons: the overall
netting-set market value is large and negative and/or there is over-collateralization.
Both situations can, and do, happen in practice. In the event that the starting
point is significantly negative, it seems reasonable to adjust the aggregate add-on
downwards to reflect this fact. To not do so, would be to unfairly overestimate the
SA-CCR aggregate add-on component.

Quite simply, the multipler is a netting-set level value in the unit interval—that
is, Mi ∈ [0, 1]—that modifies the aggregate add-on for a negative starting position.
As with many regulatory quantities, it is a bit funky, but it also follows a certain
logic. The actual construction takes a few steps, but relies on elements already
introduced and discussed in previous sections. The first step involves a distributional
assumption regarding the value of the ith netting set. Similar in spirit, but different
in level of aggregation, to Eq. 10.38 we have

Vt+T (i) ∼ N

⎛

⎜

⎝

μi(t,T )
︷ ︸︸ ︷

Vt(i)− C̃t+T (i),

σi(t,T )
︷ ︸︸ ︷

I{mk≥t}
︸ ︷︷ ︸

=1

σi
√
T − t

⎞

⎟

⎠ , (10.49)

Basically the mean starting-level has been added back. Immediately, again with
recourse to Eq. 10.13, we can write the expected exposure for the ith netting set
as,

Et

(

Et+T (i)
)

= σi
√
T − tφ

(

Vt(i)− C̃t+T (i)
σi
√
T − t

)

+
(

Vt(i)− C̃t+T (i)
)

�

(

Vt(i)− C̃t+T (i)
σi
√
T − t

)

. (10.50)

This form is not immediately helpful, since we do not actually work with the
volatilities, but rather with add-ons. Equation 10.43 illustrates the theoretical link
between the trade-level add-on and the volatility. Conceptually, for a margined
netting set, this reduces to:

A
#
i = σi

√
T − t√
2π

, (10.51)

σi = A
#
i

√
2π√

T − t
.
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We are, in this case, using the expected-exposure perspective add-on assumption
associated with a margined netting set. This is an important point, because the
expected positive exposure approach used for non-margined sets will not permit
an analytic solution. We saw this result in an earlier section.

If we plug Eq. 10.51 back into Eq. 10.50 and simplify things a little bit, we arrive
at

Et

(

Et+T (i)
)

=
σi
√
T − tφ

(

Vt (i)−C̃t+T (i)
σi
√
T−t

)
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)
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σi
√
T−t

)

︸ ︷︷ ︸

Eq. 10.13

, (10.52)
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Eq. 10.51
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where

v = Vt(i)− C̃t+T (i)
A
#
i

. (10.53)
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The consequence is a (fairly) concise analytic representation of the expected
exposure associated with the ith netting set written in terms of known quantities:
the aggregate add-on, the current netting-set valuation, and the collateral position.

The central part, or kernel, of the SA-CCR multiplier is now defined as the
quotient of the expected exposure representation in Eq. 10.52 and the aggregate
add-on. In particular, this gives

Et

(

Et+T (i)
)

A
#
i

=

Eq. 10.52
︷ ︸︸ ︷

�
�A#
i

(√
2π · φ

(

v√
2π

)

+ v ·�
(

v√
2π

))

�
�A#
i

, (10.54)

= √
2π · φ

(

v√
2π

)

+ v ·�
(

v√
2π

)

.

We can think of this as a form of standardization. If the expected exposure—
computed with the starting point and collateral in mind—exceeds the add-on (which
is determined assuming a zero replacement cost), then the ratio in Eq. 10.54 will
exceed one. This means the expected evolution of the netting set value is even
more positive than the aggregate add-on would suggest. This is not the situation
the regulators are interested in. The multiplier is intended to cover the opposite case

where Et

(

Et+T (i)
)

< A
#
i (or equivalently, where Eq. 10.54 is less than one). In

this case, the aggregate add-on assumptions are too conservative and the multiplier’s
job is to mitigate this somewhat.

With this in mind, the theoretical form of the multiplier is expressed as,

f̃i(v)
︸ ︷︷ ︸

M̃i

= min

⎛

⎜

⎜

⎝

1,
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Et+T (i)
)
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⎞

⎟

⎟

⎠

, (10.55)

f̃i (v) = min
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⎜

⎜

⎝

1,
√

2π · φ
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v√
2π
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+ v ·�
(

v√
2π
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Eq. 10.54
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⎟

⎟

⎟

⎠

,

where we can think of the multiplier as a function of v, denoted f̃i . The role of the
min(·) operator is to ensure that the multiplier only considers those cases where the
ratio is in the unit interval. A bit of reflection reveals that this occurs only when
the numerator of v—the initial replacement cost Vt(i)− C̃t+T (i)—is less than zero.
This, in turn, only happens when the initial market value is out-of-the-money or
overcollaterized.
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At this point, the construction of the multiplier starts to get a bit weird. BIS [6]
claims that:

MTM values of real nettings sets are likely to exhibit heavier tail behaviour than the one of
the normal distribution.

This is likely to be empirically true, but no other justification or motivation is
provided. The proposed solution—which comes a bit out of thin air—is to select the
following alternative multiplier function:

f̆i(v)
︸ ︷︷ ︸

M̆i

= min
(

1, eγ v
)

, (10.56)

where γ ∈ R+ is a parameter that requires specification. BIS [6] further indicates
that γ is determined by equating the derivatives of the theoretical and proposed
multiplier ratios evaluated at zero. This is readily verified
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2
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This leads to updating the proposed multiplier function to

M̆i ≡ f̆i(v) = min
(

1, e
v
2

)

. (10.58)

This is not, confusingly, the end of the story. BIS [6], making reference to the fact
that Eq. 10.58 “would still approach zero with infinite collateralization”, impose a
floored version with the following final form:

fi(v)
︸ ︷︷ ︸

Mi

= min
(

1, ϑ + (1 − ϑ) · e v
2·(1−ϑ)

)

, (10.59)



10.5 The Regulatory Approach 651

Fig. 10.5 The add-on multiplier: This graphic illustrates three alternative forms of the add-on
multiplier: the (theoretical) normal approximation from Eq. 10.55, the raw exponential form in
Eq. 10.58, and the official floored exponential version from Eq. 10.59. The only real difference
among these three choices is their speed of decrease in −v.

where, currently, ϑ = 0.05. The idea of Eq. 10.59 is that as v gets very large
and negative, the multiplier tends to ϑ rather than zero. This appears to be a
mathematical adjustment, rather than predicated on any theory.

Figure 10.5 illustrates three alternative forms of the add-on multiplier over the
interval [−5, 3]. It includes the theoretical normal approximation from Eq. 10.55,
the heuristic exponential form in Eq. 10.58, and the official floored exponential
version from Eq. 10.59. The only practical difference among these three choices
is their speed of decrease in −v. It is also quite clear, from Fig. 10.5, that none of
the multipliers plays an role for positive realizations of Eq. 10.53.

As a final point, the only distinction between the multiplier in margined and non-
margined netting sets relates to the treatment of the collateral in the definition of v.
That is,

v =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

Vt(i)− C̃t+1(i)

A
#
i

: No margin

Vt(i)− C̃t+τMi
(i)

A
#
i

: Margin

, (10.60)

where the haircut period applies to one-year and the margin period of risk for non-
margined, and margined netting sets, respectively. Although it is a bit difficult to
see after the multiple interventions, both computations also share the same expected
exposure foundation.



652 10 Measuring Derivative Exposure

Colour and Commentary 122 (THE SA-CCR ADD-ON MULTIPLIER): The
role of the multiplier is simple: it attempts to reduce the aggregate netting-set
add-on for excess collateral or large negative market values. Its construction
is, conversely, not at all simple. One could even claim that its derivation
follows a relatively weird, possibly over-engineered, or at least convoluted,
path. It starts out as the ratio of expected exposure to the aggregate add-on.
The expected-exposure numerator is computed by incorporating a non-zero
starting value and collateral under the typical assumption of Brownian-
motion dynamics. So far, so good. This yields a fairly intuitive expression.
Then the basic form is replaced with an exponential function, which is
vaguely calibrated to the original result. This can be accepted with a
slight “suspension of disbelief.” Finally, a floor is imposed for “infinite
overcollateralization.” The ultimate result is practical, workable, and appears
to meet the key regulatory objectives. The weirdness, therefore, has no
lasting consequences. One simply needs to invest some additional effort in
understanding the origins and justification of the add-on multiplier. Without
this background, examination of the final form might lead to a bit of head
scratching.

10.5.5 Bringing It All Together

The preceding sections have been, quite frankly, jumping around somewhat.
The idea has been to derive and motivate the various elements of the SA-CCR
exposure methodology, which forms the basis of our derivative-exposure model. It is
nonetheless admittedly hard to follow the thread connecting these diverse formulae.
Figure 10.6 attempts to (at least partially) rectify this situation by offering a high-
level overview of the main SA-CCR points. It begins from the derivative exposure
(i.e., EAD) equation and then splits into two streams: the replacement cost and the
add-on. Attempting to incorporate the margin and non-margin perspectives, it also
chronicles the various levels of the add-on hierarchy and a number of miscellaneous
definitions. It can be viewed as something of a cheat-sheet for anyone looking to
implement (or understand) this important calculation.

The description in Fig. 10.6 does, however, remain somewhat abstract. It does
not, for example, delve into the important instrument level details of the directional
delta, adjusted notional and supervisory factors. To actually use the SA-CCR
approach, it is necessary to grapple with these concepts. For this reason, these
components, determined at the individual asset-class level, are the next topic of
consideration.
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Fig. 10.6 SA-CCR cheat-sheet: This schematic outlines, at a single glance, the principal formulae
involved in the SA-CCR exposure calculation. It also attempts to highlight the most important
relationships between the key elements.

10.6 The Asset-Class Perspective

The SA-CCR methodology decomposes the universe of derivative contracts into five
distinct asset classes: interest rates, currency, credit, equity, and commodities. This
is a challenging task. Much like peeling an onion, one could easily construct many
other additional asset classes. There are also many sub-layers within a given asset
class. The notions of primary risk factors and hedging sets are, in fact, an attempt to
capture some of the complexity of these sub-layers.

To actually implement the SA-CCR methodology, Figs. 10.4 and 10.6, while
hopefully useful, are not enough. Additional colour is required—regarding
the directional deltas, adjusted notionals, and supervisory factors—to evaluate
Eq. 10.46. Detailed direction, and helpful examples, are found in BIS [5, 7]. The
following sections will walk through the key details in the area of interest-rate and
currency derivatives; these are the two areas of principal interest to the NIB. They
also coincide with the currently most popular and widely used OTC derivatives
found in financial markets: interest-rate and cross-currency swaps.
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10.6.1 Interest Rates

For most lending institutions using interest-rate swaps to match their assets and
liabilities—as discussed in detail in Chap. 6—this will likely be the most important
category of asset class. This makes it the most sensible entry point. There are
basically three additional aspects—in addition to the overall formulae—required
for each instrument within each asset class: its sign, initial magnitude, and risk
scaling. We’ll begin with the sign, which is captured by the general definition of
the directional delta and is given as

δk =
{

1 : Long
−1 : Short

, (10.61)

in the primary risk factor. This definition is sufficient for linear derivative instru-
ments, but more complexity is required for non-linear contracts.35

Equation 10.61 remains fairly abstract. Let’s consider the most popular case:
interest-rate swaps. The floating swap rate is, for the purposes of these instruments,
viewed as the primary risk factor. This implies that a receiver swap—where one
receives the fixed rate and pays floating—is a long position leading to δk = 1. By
the reverse logic, a payer swap is short in the primary risk factor leading to δk = −1.
Proper classification of one’s swaps can thus help tremendously in determination
of the directional delta. Basis swaps, where both legs represent alternative floating
rates, are less obvious. According to BIS [7], each floating pair needs to be treated
as a separate hedging set. In our implementation, we assume that the shortest reset
frequency is the primary-risk factor. In those (very rare) cases where the frequencies
of the floating components are equal, then the order of the indices determines the
sign.36

The adjusted notional amount of an interest-rate derivative with a lifetime over
the interval [Sk,Ek] is given as,

d
(IR)
k = Nk · SDk, (10.62)

where Nk denotes the average notional position over the instrument’s lifetime and
SDk represents the so-called supervisory duration. Sk and Ek are, as one might
expect, the start and end dates of the derivative contract. Using t , as usual, to
represent the current point in time, the remaining term to maturity (or tenor) is
simply Ek − t .

35 If the position possesses optionality, then the ±1 is replaced with the appropriately signed option
deltas. The model that one must use to determine these quantities—and the key input parameters,
such as implied volatility—is provided in the regulatory guidance. See BIS [5, 6] for more details.
36 In this case, the assignment of a sign is arbitrary. It just needs to be consistent across all ordered
pairs.
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As usual for the SA-CCR model parameters, the supervisory duration is deter-
mined via regulator-provided formulae. It also applies to both interest-rate and credit
derivatives. According to BIS [6] it stems from

SDk =
∫ Ek

max(Sk,t)
e−r(τ−t )dτ, (10.63)

=
[

−e−r(τ−t )

r

]Ek

max(Sk,t)

,

= e−r ·(max(Sk,t)−t ) − e−r(Ek−t )

r
,

where max(Sk, t) is intended to handle ongoing and forward-start derivative
contracts. In the current implementation of SA-CCR, the value of r has been
arbitrarily—and rather non-conservatively given current interest-rate levels—set to
5%.

Given that we typically think of the modified duration of a fixed-income
instrument as a normalized partial derivative of its value function with respect to
its yield, it is somewhat surprising to see the integral form in Eq. 10.63.37 It is not,
in fact, a classical estimate of duration, but rather the cumulative discount factor

over the interval,

[

max(Sk, t), Ek

]

.

Colour and Commentary 123 (SUPERVISORY DURATION): The term
supervisory duration, in the context of SA-CCR, is not easily interpreted.
As a (normalized) sensitivity to an interest-rate movement, duration is
typically defined as a derivative taken with respect to some dimension of
the yield curve. This could be a single rate, the instrument’s yield, or a
spread. Equation 10.63 illustrates the supervisory duration—rather uniquely
in the author’s experience—as the sum (or integral) of a continuously
compounded discount factor—at a fixed rate of 5%—over the trade’s lifetime.
The consequence is a rather high “duration” estimate; for Ek − Sk = 10,
for example, the result is approximately 7.9. Interestingly, as r → 0, the
supervisory duration estimate tends towards Ek − Sk . This leads to the
conclusion that supervisory duration is, loosely speaking, constructed under
the (rather conservative) treatment of a swap as something similar to the
cumulative discount factor of a bond with tenor Ek − Sk and a yield of 5%.
Once again, as we’ve already seen on numerous occasions, there is a certain
logic to this approach, but the rationale is not entirely clear from the outset.

37 See Bolder [8, Chapter 2] for rather more on the foundations of modified duration and related
concepts.
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An interest-rate hedging set encapsulates all trades in a given currency. As the
tenor of fixed-income securities is quite important—short-term instruments can act
rather differently, for example, than their long-term equivalents—this dimension is
used to construct primary risk factors. In particular, the notion of a maturity bucket
is introduced by BIS [5] and defined as,

Maturity Bucket ≡ MB =
⎧

⎨

⎩

Short (S) : Ek − t ∈ (0, 1]
Medium (M) : Ek − t ∈ (1, 5]

Long (L) : Ek − t ∈ (5,∞)

. (10.64)

This partition of yield-curve space is not particularly granular, but it dramatically
eases the implementation.

Although it is a bit tedious and repetitive, we will combine all of these elements
together and explicitly write out the aggregate relations from the trade to the
hedging-set level. This begins with the following trade description

A
(IR,CCY,MB,k)
i = ±

Eq. 10.62
︷ ︸︸ ︷

Nk

(

e−r ·(max(Sk,t)−t ) − e−r(Ek−t )

r

)

︸ ︷︷ ︸

Eq. 10.63

·MFk, (10.65)

where the sign is determined by Eq. 10.61. The add-on by primary factor set, or
rather maturity bucket in this case, is now

A
(IR,CCY,MB)
i

=
∑

k∈MB
±Nk

(

e−r ·(max(Sk,t)−t ) − e−r(Ek−t )
r

)

· MFk
︸ ︷︷ ︸

Eq. 10.65

. (10.66)

Each interest-rate hedging set is aggregated following the logic in Eq. 10.32 as

A
(IR,CCY)
i = 0.05%

︸ ︷︷ ︸

SFk

√

√

√

√

∑

s∈{S,M,L}

∑

r∈{S,M,L}
ρ(s, r)A

(IR,CCY,s)
i A

(IR,CCY,r)
i

︸ ︷︷ ︸

Eq. 10.66

, (10.67)

where CCY denotes a given currency defined hedging set and the supervisory factor,
SFk is given as 0.05% in BIS [5, Table 2].38 Practically, the correlation coefficients
are provided by the regulators and set to ρ(S,M) = ρ(M,L) = 0.7 and ρ(S,L) =
0.3. Although the absolute levels are not easily motivated across all currencies, the
choice makes sense given that adjacent maturity categories tend to be significantly

38 The previously discussed basis swaps, where each pair of floating indices are treated as separate
hedging sets, receive a supervisory factor of 0.025%. Cutting the base interest-rate swap amount
in half is explicitly indicated in BIS [7].
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more highly correlated than more distant nodes along the yield curve. Finally, the
sum over the currency hedging sets requires no application of the absolute-value
operator, because the hedging-set aggregation in Eq. 10.67 always yields positive
values.39

Computation of the interest-rate add-on, therefore, requires only a limited
amount of information for each instrument: the average notional amount, position
currency, start and end dates, and whether it is a short or long position. In line with
typical regulatory calculations, this imposes a limited operational and data burden
on the calculating agent.

10.6.2 Currencies

The currency asset class is a bit larger than one might initially imagine. This
is because cross currency swaps are allocated to this category. This might seem
somewhat odd, but given the significantly higher volatility of most currencies
relative to interest rates, this seems like a judicious choice.40 The ability of a proper
forward-looking simulation engine to simultaneously manage all underlying risk
factors associated with each position—by comparison—is definitely an advantage.
This is one of the costs of parsimony.

In contrast to interest rates, the currency asset class is relatively straightforward.
The adjusted notional amount is expressed as,

d
(CCY)
k = NLC

k , (10.68)

where LC denotes the local-currency value of the foreign-currency claim. If both
legs of the trade are in foreign currency, then BIS [5] recommends computing both
in local currency terms and using the larger of the two estimates.41 The directional
delta has the same basic form as found in Eq. 10.61, while the supervisory duration
is implicitly SDk ≡ 1. The corollary of this choice is that the trade-level add-on is
independent of the instrument’s maturity.

In the currency asset class, a hedging set is defined as a currency pair; we will
denote this by CP. The idea, it seems, is that each member of the hedging set’s
primary risk factor is the spot exchange rate associated with its currency pair. The
key practical task is to get the correct directionality of the currency pairs. A EUR-

39 If it did not, with the presence of the square-root operator, we might find ourselves with a
difficult-to-explain, complex-valued interest-rate add-on.
40 The regulators could, of course, have assigned them to both asset classes. This would, however,
lead to more complexity and immediately break the general rule of assigning each instrument to a
single asset class.
41 Our current implementation, incidentally, always conservatively uses the larger of the two legs
in local-currency terms.
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AUD pair is, of course, equivalent to an AUD-EUR position. What is important is
to identify the set of unique currency pairs and determine long and short positions
with respect to that combination.42

There is no primary risk factor sub-category in the aggregation, since it is already
defined at the trade level by the choice of currency pair. The trade-level formula is
given as,

A
(CCY,CP,k)
i = ±NLC

k · 4.0%
︸ ︷︷ ︸

SFk

·MFk, (10.69)

where the supervisory factor is significantly (and understandably) much larger than
in the interest-rate setting. Summing over all of the trades within a given currency
pair yields,

A
(CCY,CP)
i =

∑

k∈CP

±NLC
k · 4.0%

︸ ︷︷ ︸

SFk

·MFk

︸ ︷︷ ︸

Eq. 10.69

. (10.70)

The currency asset class add-on then reduces to the following final aggregation over
all of the individual currency pairs,

A
(CCY)
i =

∑

c∈CCY

∣

∣

∣

∣
A
(CCY,c)
i

∣

∣

∣

∣

︸ ︷︷ ︸

Eq. 10.70

. (10.71)

The uniqueness of the currency asset class stems from the overlap between the
trade and primary-risk factor levels. Equation 10.71 also reveals the reason for
the presence of the absolute-value operator in Eqs. 10.37 and 10.48. If it were not
present, then positive and negative exposures from different currencies would (rather
indefensibly) be able to offset one another.

10.7 A Pair of Practical Applications

As usual, we would like to conclude with some concrete discussion to help solidify
these ideas. Unfortunately, there are fundamental reasons that make it challenging
in this case. As should be clear from the previous sections, the individual SA-CCR
calculations are rather data-heavy and multi-layered; there is a real danger of spend-

42 Ultimately, the actual sign assigned to long and short trades does not matter since absolute
values will be imposed in a latter step. The key is consistency of sign treatment among short and
long positions with each unique currency pair.
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Fig. 10.7 Normalized portfolio-level derivative exposure: This graphic traces our normalized
portfolio-level SA-CCR derivative exposure estimate over a roughly six-month period in 2021.
It should help to visualize the relative roles of replacement cost, the model-based PFE component,
and the additional regulatory conservatism.

ing more time introducing the data than actually discussing the results. It is also
impossible to directly use NIB-related inputs, because these derivative obligations
represent rather sensitive internal data. Even if we could, the dimensionality of the
data would be a bit overwhelming.

To counteract these shortcomings, we will look at a pair of, rather stylized,
examples. The first examines a normalized view of our overall portfolio-level deriva-
tive exposure. These results generically describe the key relationships between the
various elements of the SA-CCR computation. Our second example investigates a
practical application—important for all financial institutions—of derivative expo-
sure estimates: the so-called leverage ratio.

10.7.1 Normalized Derivative Exposures

Derivative exposures are computed at the counterparty level; this is an unavoidable
consequence of counterparty credit risk. When the exposures of all individual
derivative counterparts are summed up, however, we arrive at a surprisingly
interesting perspective on portfolio-level exposure.

Figure 10.7 provides, for an arbitrarily selected six-month time interval during
2021, the normalized view of our portfolio-level derivative exposure.43 This vantage
point allows us to establish a few basic facts about the SA-CCR computation.

43 The normalization involves imposing unit volatility and scaling by the maximum observation.
This allows us to abstract from the actual values and focus on trends and broad-based insights.
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Fig. 10.8 Normalized portfolio-level replacement cost: The graphic above traces the our normal-
ized portfolio-level replacement cost over a roughly six-month period in 2021. This should be
viewed as drilling deeper into the replacement-cost component presented in Fig. 10.7.

The portfolio-level values—which are a function of three main components—are
relatively stable across time. Moreover, the replacement cost represents a fairly
modest part of the overall picture. This is essentially the point of the SA-CCR;
the add-on-related PFE component is an adjustment for risk placed on top of the
collateralized current exposure. This PFE element, which is determined by the
structure of the underlying derivative instruments, is naturally quite persistent.44

The final component, stemming from the constant in Eq. 10.26, is a bit of additional
conservatism provided by our regulators.

Figure 10.8 drills deeper into the replacement-cost component. As we learned
in the previous discussion, the key replacement-cost drivers are market value and
collateral. Again using a normalized, portfolio-level perspective, we see clearly that
collateral and derivative valuations are essentially mirror images of one another.45

This is, in fact, the entire point of the collateral process. As market values move
in the financial institution’s favour, collateral is received to offset the increasing
counterparty credit risk.46 The component called Other factors in Fig. 10.8 relates
to the net initial collateral, collateral threshold, and minimum transfer amounts
introduced in Eq. 10.27. These elements—which are simply the difference between
the SA-CCR replacement cost and the residual market value after collateral—are
uniformly positive. They represent an additional element of caution in the SA-CCR
construction.

44 A big part of the reason is the fixed regulatory parameters, which are not recalibrated on a daily
basis as is the case with most forward-looking exposure engines.
45 The offset is not perfect, but the correlation coefficient between these two series over this period
is approximately −0.9.
46 Over this period, NIB was a net receiver of collateral at the portfolio level. An institution’s
collateral position tends to ebb and flow over time with market movements and portfolio
composition.
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Fig. 10.9 Normalized portfolio-level SA-CCR PFE: This graphic traces our normalized portfolio-
level SA-CCR PFE over a roughly six-month period in 2021. This should, once again, be visualized
as zooming in on the PFE component presented in Fig. 10.7.

Figure 10.9 concludes our high-level examination by zooming in on the PFE
component. This normalized, portfolio-level risk-adjustment is decomposed into
two sub-components: the aggregate add-on and the multiplier reduction. Recalling
from Eq. 10.59, the multiplier acts to reduce the overall PFE component in cases
of negative market values or overcollateralization. Over this period, the multiplier
plays a comparatively limited role in the determination of the PFE contribution to
overall portfolio derivative exposure. This is both typical and consistent with the
regulatory guidance; the multiplier is an adjustment to handle a special case.

Colour and Commentary 124 (INTERPRETING DERIVATIVE EXPO-
SURES): Much can be learned from a high-level analysis of one’s own
derivative portfolio. Using a normalized daily portfolio-level view, we
consider values over a six-month period during 2021. This bird’s eye
perspective yields a number of interesting points. The total portfolio-level
derivative exposure is generally quite stable over time; this is consistent
with our desired through-the-cycle exposure estimate.a Replacement cost is,
in general, only a relatively small fraction of the overall SA-CCR estimate;
the risk-related PFE component represents the dominant contribution.
Collateral and derivative market values, as one would expect, largely offset
one another. This drives the stability and (relatively small) magnitude
observed in the replacement cost. The add-on multiplier, while conceptually
important, appears to play a fairly limited role. Finally, the presence of other
(collateral-related) factors in the replacement cost and the scaling constant
in the overall computation lend additional conservatism to the final result.

a This is a direct consequence of fixed regulatory risk parameters.
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10.7.2 Defining and Measuring Leverage

Leverage, at its heart, seeks to measure the amount of debt employed to finance a
firm’s assets. All else equal, less leverage is preferred to more, because the greater
the debt burden, the more difficult it is for a firm to meet its claims. Excessive
amounts of debt can become particularly problematic in the event of financial stress.
Debt in a firm’s capital structure is, of course, not without its benefits. In particular,
tax treatment typically makes debt financing relatively cost effective.47 As is so
often the case, the firm must find a balance between the benefits and risk associated
with the use of leverage.

Given the accounting identity that firm assets are the sum of debt and equity,
there are a variety of (broadly equivalent) ways to estimate leverage. Sometimes
it is represented as a debt-to-equity ratio, while in other cases one examines the
ratio of debt to total assets. In the financial-institution setting, the leverage ratio is
computed as

Leverage Ratio = Available Financial Resources (Equity)

Total Asset Exposure
. (10.72)

This particular definition is consistent with European Union banking regulation.48

The benefit of the unit-less ratio format is that it is easy to interpret, enforce, and
compare with other financial institutions.

It is natural to compare Eq. 10.72 to the concept of capital headroom discussed on
numerous occasions in previous chapters. Both involve, after all, the firm’s capital
supply. When inspecting Eq. 10.72, we find that it is silent on the riskiness of the
underlying assets. It depends solely on their overall magnitude or, as it is commonly
referred to, volume. This is simultaneously a strength and a weakness. On the
positive side, it is relatively easily described and computed. There is little scope
for analytical freedom in determination of Eq. 10.72. More negatively, asset-risk
composition matters. Two financial institutions might have the save leverage ratio,
but vastly different asset-risk profiles. The leverage ratio provides no information
on this dimension. A solid compromise is to avoid arguing about the relative merits
of economic capital and leverage; instead, one can easily use both and thereby gain
a broader complementary perspective.

The leverage ratio, while vastly simpler to compute than economic capital, still
has a few tricky parts. While the numerator of the leverage-ratio definition in
Eq. 10.72 is fairly clearly related to some variation on internal capital supply, the
denominator remains somewhat vague. The regulation is, however, quite specific. In
particular, the guidance stipulates that it must include:

47 This fact has been appreciated for decades and is a key driver of capital-structure decisions; see,
for example, Modigliani and Miller [16].
48 Further background, from the regulatory side, is found in BIS [4].
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1. an accounting representation of firm assets excluding derivative contracts and
associated collateral;

2. an allocation for non-derivative-related off-balance sheet items; and
3. an allowance for derivative contracts incorporating an add-on for counterparty

credit risk.

It is this final point that, in the context of this chapter, catches our interest. Pulling
these directions together, we arrive at the following revised, and more precise,
description of the leverage ratio:

Leverage Ratio = Tier I Capital Position

Accounting Assets ex Derivatives
+Off-Balance Sheet Items + Derivatives

. (10.73)

Practically, most of the ingredients are relatively easily procured. Accounting asset
values are sourced from internal systems. Off balance-sheet items relate exclusively
to agreed, but not-yet-disbursed loans. Committed agreed, not disbursed loans are
transformed with a 50% credit-conversion factor into loan equivalents; only 10%
of uncommitted loans are included.49 The wild-card in this calculation, however,
relates to derivative exposure.

The regulatory term “allowance for derivative contracts” is a bit vague. Assuming
a financial institution can convince its regulator of the reasonableness of its
computation, then presumably it has a fairly broad range of alternatives. Common
practice, and in this respect NIB is no exception, is to simply employ the SA-CCR
methodology for this purpose. This completes Eq. 10.73 and readily permits its
computation.50

Colour and Commentary 125 (MEASURING LEVERAGE): Leverage seeks
to describe the amount of debt employed to finance one’s assets.a Unlike the
risk-based economic-capital measure, which sits at the heart of this book,
it focuses exclusively on volume. It can nonetheless provide a very useful
complement to risk-based metrics. While leverage can be measured in many
ways, it is common to construct ratios involving a firm’s assets and equity
(i.e., capital supply). The majority of the inputs into any leverage assessment
are not particularly controversial and easily obtained from a firm’s financial

(continued)

49 The credit-conversion factor is a regulatory invention, which we have already encountered in
previous chapters. It is a value between zero and one that, when multiplied by the instrument’s
notional value, transforms an off-balance-sheet item into a balance-sheet equivalent.
50 Somewhat ironically, given that it typically only represents a small fraction of a financial
institution’s total assets, much of the effort associated with the leverage-ratio computation relates
directly to the derivative component.
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Colour and Commentary 125 (continued)
statements. Derivatives, which may be either an asset or a liability depending
on their mood, are the exception. Regulatory guidance on the measurement
of leverage counsel excluding all derivative-related balance-sheet inputs—
both collateral and valuations—and replacing them with an allowance for
derivative contracts. Those wishing to measure leverage thus find themselves
in the business of estimating derivative exposure. The SA-CCR computation
jumps into this breach and offers a tailor-made solution to this problem.

a Assets, in this context, go somewhat beyond the accounting view to consider off-balance
sheet items.

10.8 Wrapping Up

There are many ways, of varying degrees of complexity, to compute forward-
looking measures of derivative exposure. The most conceptually correct methods
involve the construction of a high-dimensional instrument-level, simulation-based
valuation engine that also incorporates time-varying collateral behaviour. For
quantitative analysts involved in derivative pricing, complex simulation engines
are a non-optional prerequisite. For economic-capital purposes, however, such
complexity is neither necessary nor desired. The more stable, through-the-cycle, P-
measure-based regulatory capital calculations make for a more natural choice. They
provide defensible risk-based derivative exposure estimates and, as a side benefit,
represent a helpful input into the measurement of one’s leverage position.
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Chapter 11
Seeking External Comparison

It does not do to leave a live dragon out of your calculations, if
you live near him.

(J.R.R. Tolkien)

Few things are done in isolation, and NIB’s computation of economic capital
is certainly not one of them. While an unregulated entity, we assign significant
importance towards regulatory capital calculations for the benchmarking of internal
methodologies. The Basel Committee on Banking Supervision (BCBS) and the
European Banking Authority (EBA) support a two-pillared approach towards the
estimation of regulatory capital requirements.1 Pillar I refers to a collection of
highly formulaic, portfolio-invariant approaches. Easy to compute, interpret, and
compare, these are the bread-and-butter of the regulatory capital calculation. Pillar
II deals with complexities surrounding the (necessary) simplifications made in Pillar
I. It should come as no surprise, therefore, that Pillar II computations are hard
work.

The supervisory community is not the only group interested in capital adequacy.
Credit-rating agencies, in their quest to assess the credit quality of large numbers
of institutions, also have a keen interest in this area and, to varying degrees,
possess their own perspectives and methodologies. To be more concrete, on an
semi-annual basis—in addition to ongoing monitoring—the Standard & Poor’s
(S&P) credit-rating agency performs a regular assessment of the creditworthiness
of many corporate, supranational, and sovereign entities. NIB falls into this group.
S&P examines myriad criteria to arrive at their final appraisal.2 A key figure plays
an important role: it is termed the S&P risk-adjusted capital (RAC) ratio. The
objective of this S&P calculation—based on a comprehensive internally developed
methodology—is to place global institutions on equal footing and facilitate their
fair and independent comparison and ranking. In this respect, the objectives

1 There is also a third pillar, but it is more concerned with the presentation rather than the
computation of capital adequacy.
2 S&P [32] is an excellent survey of the elements considered.
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of credit-rating agencies and regulators coincide. Given the centrality of NIB’s
external-debt rating to its business model, this measure is worth investigating and
understanding.

In quantitative modelling endeavours, multiplicity of perspective is highly valu-
able. Regulatory capital and key credit-rating agency measures represent crucially
important points of comparison for our internal capital adequacy calculations. These
alternative approaches also share some important similarities. S&P’s RAC ratio
computation is broken down into two pieces: calculation of risk-weighted assets
and associated adjustments. These elements are conceptually analogous to the Pillar
I and II processes. Interestingly, numerous underlying mathematical and statistical
techniques are also shared. Their relationship thus goes beyond a conceptual level.

Pillar II computations and S&P risk-weighted asset adjustments are,
unfortunately, not particularly trivial. Pillar I style risk weighting of an entity’s
assets are performed upon each exposure independently, thereby ignoring
important portfolio concepts such as diversification and concentration. These
simplifications need to be corrected in the second stage. Specific examples
relate to the role of single-name concentration, geographic and sectoral
diversification effects, and the role of multiple underlying systemic factors.
Many of these computations are motivated from the regulatory and academic
literature and encompass—to understand what is actually being done—reasonably
involved mathematics. Working through these details and finding sensible
implementations will require a heavy effort. This will be the main task of this
chapter.

A second, and somewhat unique, source of complexity is the lack of complete
clarity regarding the S&P approach. S&P [31, 33] provide a useful high-level
overview of their RAC calculation, but, in many cases, they are short on the actual
details. To a certain extent, therefore, the analyst performing this replication is
required to operate in the dark. This is, in fact, by design. S&P is open about their
desire to leave a degree of ambiguity with respect to their methodology. Their view
is that this inherent opacity makes it difficult for rated entities to reverse-engineer
their computation to achieve a desired rating outcome. Although entirely defensible,
this practice complicates comparison.

In short, the techniques presented in this chapter are not easy. It is, however, a
worthwhile and valuable exercise. The importance of credit ratings and regulatory
capital-adequacy calculations notwithstanding, the principle benefit arises from
their role as outside comparators. Every internal economic-capital framework is,
by necessity, complex and involved. Any external methodology—be it from the
credit-rating or regulatory perspectives—offers a unique opportunity to assess the
consistency and deviations between these alternative approaches. Much is learned
from such constant and explicit comparison.
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11.1 Pillar I

Pillar I computations turn principally around the idea of risk-weighted assets. In its
most general form, this quantity is, for the ith exposure, defined as,

Risk-Weighted Assetsi = Exposure-at-Defaulti
︸ ︷︷ ︸

ci

· 12.5 · Risk Capital Weighti
︸ ︷︷ ︸

Risk Weighti

,

(11.1)

for i = 1, . . . , N individual asset exposures held by a given corporate entity.3 At
the risk of stating the painfully obvious, each asset is weighted by some measure
of its risk. The secret sauce, of course, associated with any of these Pillar I based
(or inspired) methodologies relates to precisely how one determines these weights.
Two central properties of risk-weighted assets (or RWA) are their additivity and
independence. Equation 11.1 can be computed independently for each exposure;
to be clear, no other portfolio information is required. If one desires the total
RWA figure, one need only sum over all individual exposures.4 While theoretically
shaky, these analytical properties dramatically simplify computations and foster
comparison.5 With this in mind, we will examine three alternative approaches to
the Pillar I computation.

11.1.1 The Standardized Regulatory Approach

The most natural place to start is with the regulatory perspective. Within the
regulatory world, it makes the most logical sense to begin with the so-called BCBS
standardized approach. The gory details are found in BIS [6, Part 2, Section II]. The
basic idea is, however, very simple: the risk weight from Eq. 11.1 is determined
as a function of the type and credit quality of the underlying exposure. In practice,
however, it is not quite as simple. There are a wealth of acronyms and exceptions to
consider and manage. Getting to the actual implementation requires multiple careful
readings of BIS [6] or the more recent publication, BIS [8].

Table 11.1 provides a high-level description of the standardized approach risk-
weight guidance from BIS [6, Part 2, Section II]. There are basically three
types of exposure: sovereign and central banks, banks and securities firms, and

3 The factor 12.5 is merely the reciprocal of the classic 8% charge in the Basel setting.
4 Naturally, it follows immediately from Eq. 11.1, that if we divide the risk-weighted assets by
12.5, we arrive at the risk-capital amount.
5 The combination of these two characteristics is often referred to as portfolio invariance. The risk
weight, for a given asset, is invariant to the portfolio composition. From first principles of portfolio
theory, this cannot be correct.
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Table 11.1 Standardized-model risk weights: The underlying table describes the (high level) risk
weights used, under the Basel II guidance, within the standardized model for the computation of
risk-weighted assets (and regulatory capital). Each risk weight is a function of external rating and
asset sector; there are many exceptions and, for a precise implementation, the Basel documentation
should be consulted. These values will be replaced in January 2022 with a revised implementation.
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Sector

1 2 3 4 5 6 7

Sovereignsa and Central Banksb
c

0.0 0.2 0.5 1.0 1.0 1.5 1.0
Banks and Securities Firms (Base) 0.2 0.5 0.5 1.0 1.0 1.5 0.5
Banks and Securities Firms (Short-Term) 0.2 0.2 0.2 0.5 0.5 1.5 0.2
Corporations 0.2 0.5 0.5 1.0 1.5 1.5 1.0

aFor sovereign risk weights, there is another option. Country risk scores provided by export credit
agencies (ECA)—who opt to follow a pre-determined OECD methodology—can also be used.
This leads to another set of risk weights on a seven-point scale.
bLocal and regional governments can qualify for the same treatment as sovereigns and central
banks if certain conditions are met. Other public-sector entities may require different treatment.
cNot all regulatory jurisdictions permit the use of external ratings for bank exposures; for this
reason, a separate standardized credit risk assessment (SCRA) approach is provided. Securities
firms must be regulated as banks to qualify for this approach.

corporations. It is reasonable to distinguish between such exposure types due
to underlying distinctions in how they are financed and meet their financial
claims. Other sub-categories are mentioned and may either fall into the groups
from Table 11.1 or be treated slightly differently. Using the S&P’s credit rating
scale, firm creditworthiness is partitioned into seven groups. The standardized
risk weight is thus simply determined by looking up the appropriate value from
Table 11.1.

As of 1 January 2022, the standardized approach is governed by BIS [8].
This leads to the revised risk weights found in Table 11.2. The most important
distinction is that BIS [8] provides additional colour on a number of different
asset types. In particular, the risk weights associated with multilateral development
banks (MDBs), public-sector entities, and covered bonds are precisely detailed.
As a second point, BIS [8] also involves some slight changes in weights. The
largest differences occur with the, generally more conservative, treatment of unrated
bonds. To briefly summarize, the standardized implementation will not change
dramatically. There is, however, heightened clarity and slightly more conser-
vatism.
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Table 11.2 Forthcoming standardized-model risk weights: The underlying table provides a (very
high level) description of the forthcoming risk weights to be used, under the Basel III guidance,
within the standardized model for the computation of risk-weighted assets (and regulatory capital).
These values will take effect in January 2022. As is typically the case, there are many exceptions
and, for a precise implementation, the Basel documentation should be consulted.
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1 2 3 4 5 6 7

Central Banks and Sovereignsa

b

0.0 0.2 0.5 1.0 1.0 1.5 1.0
Multilateral Development Banks 0.2 0.3 0.5 1.0 1.0 1.5 0.5
Public-Sector Entity 0.2 0.5 0.5 1.0 1.0 1.5 0.5
Banks and Securities Firms (Base) 0.2 0.3 0.5 1.0 1.0 1.5 1.5
Banks and Securities Firms (Short-Term) 0.2 0.2 0.2 0.5 0.5 1.5 1.5
Covered Bonds 0.1 0.2 0.2 0.5 0.5 1.0 c

Corporations 0.2 0.5 0.75 1.0 1.5 1.5 1.0

aFor sovereign risk weights, there is another option. Country risk scores provided by export credit
agencies (ECA)—who opt to follow a pre-determined OECD methodology—can also be used.
This leads to another set of risk weights on a seven-point scale.
bNot all regulatory jurisdictions permit the use of external ratings for bank exposures; for this
reason, a separate standardized credit risk assessment (SCRA) approach is provided. Securities
firms must be regulated as banks to qualify for this approach.
cA separate scale is provided for unrated covered bonds, which depends on the risk weight of the
issuing bank.

The standardized approach places a relatively light burden on exposure-level
data collection. One need only know the type of asset and its external rating.6

Everything else is prescriptively provided by one’s regulator. In terms of advantages,
this approach offers simplicity of computation and interpretation and a relatively
high degree of conservatism. On the other hand, the link to actual risk outcomes
is fairly tenuous and the portfolio perspective is entirely absent. The next approach
represents a comprehensive effort by the regulatory community to address some of
the shortcomings of this standardized model.

6 For internal implementation of this benchmarking model, we also make (sparse) use of a partition
of our own 20-notch rating scale. In particular, in rare cases when S&P or equivalent external
ratings are unavailable, we map as follows:

1. AAA to AA− to PD01–PD04;
2. A+ to A− to PD05–PD07;
3. BBB+ to BBB− to PD08–PD10;
4. BB+ to BB− to PD11–PD12;
5. B+ to B− to PD13–PD14;
6. Below B− to PD15–PD19; and
7. Unrated to PD20.
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Colour and Commentary 126 (THE STANDARDIZED APPROACH): The
idea of risk weighting does not appear to have been introduced by the BCBS,
but BIS [2] looks to have been instrumental in popularizing and codifying its
use. Although the standardized model treats risk weights associated with indi-
vidual exposures in a very simple way, it is actually an interesting benchmark.
The burden of information required is extremely low—only the magnitude,
type, and external credit rating for each institution are employed—permitting
straightforward computation and comparison. Maintaining the idea that
minimum risk-capital requirements should be, at least, 8% of an entities risk-
weighted assets permits one—with use of the factor 12.5—to easily move
back and forth between these two quantities. Given its historical importance
and continued relevance—simplicity and portfolio invariance aside—the
standardized approach needs to be the starting point for any discussion of
regulatory capital computations.

11.1.2 The Internal Ratings-Based Approach

The principal alternative to the standarized model is the BCBS’ so-called Internal-
Rating-Based (IRB) approach.7 The risk weights, in this setting, are not simply
derived from a regulatory matrix. Instead, the computation is supported by an
explicit attempt to model the risk characteristics of each position, albeit in a
restricted manner.

To be more specific, each risk weight is indexed to a given level of confidence
and is closely related—although with some slight differences—to the popular risk
measure, VaRα(L).8 This makes logical sense considering that economic capital is
generically defined, for a given level of confidence, α, as

Unexpected Loss = Worst-Case Loss − Expected Loss, (11.2)

= VaRα(L)− E(L).

As we’ve seen in previous chapters, the unexpected loss is thus essentially the worst-
case loss, for a given level of confidence, less the expected default loss. The expected
default loss is subtracted, because it has already been explicitly considered in the
pricing of the underlying obligation.

7 See BIS [3, 4, 5] or Bolder [9, Chapter 6] for a (much) more detailed discussion.
8 See Jorion [22] for detailed background on this risk metric.
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According to current Basel IRB guidance, the risk weight associated with the ith
obligor has the following form:

Risk Weighti (α) = γ̄i · Unexpected Lossi
︸ ︷︷ ︸

Kα(i)

, (11.3)

where γ̄i denotes the expected loss-given-default and Kα(i) represents the risk-
capital contribution. This latter quantity is constructed to relate directly to the
exposure’s unexpected loss.

The BCBS faced a tricky question. Although there was a desire to incorporate
more realistic risk characteristics into the IRB risk weights, the approach needed
to remain formulaic and reasonable tractable. In particular, it was necessary to
maintain the notion of portfolio invariance. To accomplish this, two rather strong
assumptions were required. First of all, there could be only a single source of
systemic risk; let’s denote it as G. The actual implementation choice was a one-
factor Gaussian threshold model.9 Secondly, and perhaps more strongly, it was
assumed that the only source of default risk is systematic so that,

VaRα(L) ≈ E

(

L

∣

∣

∣

∣
G = �−1(1 − α)

)

, (11.4)

≈
N
∑

i=1

E

(

Li

∣

∣

∣

∣
G = �−1(1 − α)

)

.

In words, therefore, the Value-at-Risk (for a given confidence level) is fully
described by the conditional expectation of the portfolio loss given an extreme
outcome of the systemic risk factor. This can only be true in the virtual absence
of any idiosyncratic risk. A lack of idiosyncratic risk, in truth, can only occur when
the portfolio is highly diversified. That is, the idiosyncratic elements have been fully
diversified away. Gordy [14] first described this as the infinitely granular portfolio
assumption. Under this condition, the overall conditional portfolio loss or Value-
at-Risk—as shown in Eq. 11.4—can be expressed as the sum of the conditional
expectations of each individual exposure given an extreme systemic risk-factor
outcome.

To actually evaluate Eq. 11.4, a bit more structure is involved. Imagine that the
composite state variable of our one-factor Gaussian threshold model looks like,

Xi = riG+
√

1 − r2
i εi , (11.5)

9 The choice of one-factor model, as we’ll see when we move to Pillar II, is not so essential. Any
one-factor threshold or mixture model will do the job.
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for i = 1, . . . , N and where G and εi are independent and identically distributed
random normal variates. Moreover, as usual, the incidence of the ith default event,
Di , is defined as

IDi = I{Xi≤�−1(pi)}. (11.6)

The obvious corollary is that the ith exposure’s loss is described as Li = ciγiIDi .
Equipped with all of the necessary (and familiar) elements to determine the risk

weight and the unexpected loss, we have

ci ·
Risk Weighti(α)

︷ ︸︸ ︷

γ̄i · Unexpected Lossi
︸ ︷︷ ︸

Kα(i)

≈ E

(

Li

∣

∣

∣

∣
G = �−1(1 − α)

)

︸ ︷︷ ︸

Eq. 11.4

−E(Li), (11.7)

≈ E

(

ciγiIDi

∣

∣

∣

∣
G = �−1(1 − α)

)

− E

(

ciγiIDi

)

,

= ciE(γi) P

(

Di

∣

∣

∣

∣
G = �−1(1 − α)

)

− ciE(γi)P

(

Di

)

︸ ︷︷ ︸

pi

,

= ci γ̄i

⎛

⎜

⎝P

(

Xi ≤ �−1(pi)
︸ ︷︷ ︸

Eq. 11.6

∣

∣

∣

∣

∣

∣

∣

G = �−1(1 − α)

)

− pi

⎞

⎟

⎠ ,

= ci γ̄i

⎛

⎝P

⎛

⎝εi ≤ �−1(pi)− ri�
−1(1 − α)

√

1 − r2
i

⎞

⎠− pi

⎞

⎠ ,

= ci γ̄i

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

⎛

⎝

�−1(pi)− ri�
−1(1 − α)

√

1 − r2
i

⎞

⎠

︸ ︷︷ ︸

pi(�−1(1−α))

−pi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

�ci · γ̄i · Unexpected Lossi =�ci γ̄i
(

pi

(

�−1(1 − α)

)

− pi

)

,

�̄γi · Unexpected Lossi
︸ ︷︷ ︸

Risk Weighti (α)

= �̄γi
(

pi

(

�−1(1 − α)

)

− pi

)

,

Unexpected Lossi
︸ ︷︷ ︸

Kα(i)

= pi

(

�−1(1 − α)

)

− pi,

where pi(g) = E(IDi |G = g) = P(Di |G = g) is referred to as the conditional
probability of default. The final two lines of Eq. 11.7 provide us with workable
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exposure-level expressions for the Basel IRB risk weight and unexpected loss,
respectively.

In regulatory publications, the final line of Eq. 11.7 has a (slightly) different form.
It is often written as a function of two main arguments: the unconditional default
probability,pi , and the tenor, or term to maturity, of the underlying credit obligation
denoted Mi . The risk coefficient (or unexpected loss) is typically described as

Kα(Tenori ,Default probabilityi )
︸ ︷︷ ︸

Unexpected Lossi

=
⎛

⎝

Conditional
Default

Probabilityi
−

Unconditional
Default

Probabilityi

⎞

⎠ · Maturity
Adjustmenti

,

(11.8)

Kα(Mi, pi) =
(

pi

(

�−1(α)

)

− pi

)

τ(Mi, pi),

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

⎛

⎝

�−1(pi )+
√

r2
i (pi )�

−1(α)
√

1 − r2
i (pi)

⎞

⎠

︸ ︷︷ ︸

pi(�−1(α))

−pi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

τ(Mi, pi ),

where τ (Mi, pi) is a maturity adjustment or correction, which depends on the tenor
of the credit exposure, Mi .

It is relatively easy to identify the similarities between Eqs. 11.7 and 11.8. There
are also a few deviations. First of all, the systemic weights (i.e., ri ) are not selected
by the financial institution, but rather specified by the regulator. The Basel IRB
approach recommends a specific level of the state-variable (i.e., asset) correlation
function, r2

i (pi), as a function of its credit quality for each credit obligor as,

r2
i (pi) = " ·

(

ρ−q(pi)+ ρ+
(

1 − q(pi)

))

, (11.9)

where

q(pi) = 1 − ehpi

1 − eh
, (11.10)

and

" =
{

1.25 If firm i is a large and regulated financial institution
1 otherwise

. (11.11)

The actual choice of r2
i is thus a convex combination of the limiting values ρ−

and ρ+ in terms of q(pi). The value q(pi) is confined, by construction, to the unit
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interval, which ensures the asset-correlation coefficient lies in the interval, ρ(pi) ∈
[ρ−, ρ+].

The maturity adjustment, τ , is a regulatory addition. Quite simply, long-term
exposures are riskier than their shorter-term equivalents. To increase the risk weight-
ing for longer-term maturities, an adjustment factor—once again incorporating the
unconditional default probability—is included. The maturity adjustment is written
as,

τ (Mi, pi) =
1 +

(

Mi − 5
2

)

b(pi)

1 − 3
2b(pi)

. (11.12)

The embedded function, b(pi) is given a very specific form,

b(pi) =
(

0.11852 − 0.05478 ln(pi)

)2

, (11.13)

and is usually referred to as the slope function. To collect the main points together,
the maturity function is an increasing linear function of the instrument’s tenor, larger
(smaller) for high (low) quality credit obligations and is neutral when Mi = 1.10

There is also a final technical precision regarding the conditional default
probability, pi(g). BCBS’s idea, it appears, was to simplify the usage. When
g is evaluated at its worst-case α-level outcome, the regulators have replaced
�−1(1−α) with �−1(α). This changes the sign in the second term of the numerator,
makes the formula easier to follow, and avoids the need to discuss the negative
relationship between the systematic variable and default outcomes implicit in the
one-factor Gaussian threshold model. The combination of these three differences—
the systemic weight, the maturity adjustment, and the sign of the extreme systemic
outcome—provides a complete reconciliation between Eqs. 11.7 and 11.8.

In a nutshell, the risk weight Basel IRB approach attempts to describe the
expected loss under the assumption that one’s portfolio is perfectly diversified.
It also incorporates loss-given-default and a maturity adjustment to capture other
dimensions of risk. Finally, it provides prescriptive guidance on the selection of
systemic weights. It would thus have appeared to have achieved its objective: a
relatively simple implementation requiring only a few straightforward formulae and
a more realistic link to each exposure’s risk characteristics.

It is important to stress, of course, that this places a higher burden on the firm. It
requires a reliable internal production of firm ratings and loss-given-default values.

10 This is easily verified,

γ (1, pi ) =
1 +

(

1 − 5
2

)

b(pi )

1 − 3
2b(pi )

= �����1 − 3
2b(pi )

�����
1 − 3

2b(pi )
= 1. (11.14)
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For this reason, it is not available to all regulated entities. Explicit permission,
following extensive review and discussion with one’s regulators, is required. NIB
is not a regulated entity and, as a consequence, cannot presume to qualify for the
Basel IRB approach. Whether or not we would receive permission to use Basel IRB
is actually beside the point; our economic-capital requirements are managed via
the internal model discussed in previous chapters. Practically, we do nevertheless
compute regulatory capital requirement under both approaches—on a daily basis—
to permit a broader scope of comparison.

Colour and Commentary 127 (BASEL IRB): The internal ratings based
approach represents a monumental step forward in the notion of risk
weighting and regulatory capital computation. It is built on the foundation
of a structural credit-risk model—the one-factor Gaussian threshold model
popularized by Vasicek [37, 38, 39]—that logically flows from Merton [26]’s
original paper, which essentially founded the modern study of credit risk.
In other words, it establishes an explicit link between risk and risk weights.
To incorporate the risk dimension and yet simultaneously preserve portfolio
invariance, some hard choices had to be made. The two principal elements—
as highlighted by Gordy [14]—involve the necessity of a single-factor model
and a sole and unique focus on systemic risk. In effect the Basel IRB approach
takes some important elements of risk on board, but also sweeps other critical
pieces under the rug. It is precisely these ignored items that lead to the
necessity of the Pillar II process.

11.1.3 S&P’s Approach to Risk-Weighting

S&P, in the context of their RAC computation, have their own approach to risk
weighting assets. The key ideas are summarized by two principal documents, S&P
[31, 33].11 In 2016, S&P updated and republished both documents as part of an
effort to gather feedback from interested parties with regard to their suggested
improvements and alterations. The combination of these two sources thus forms
the basis of any external implementation or replication.

At the outset, it is important to understand that a single measure, even one as
involved and useful as S&P’s RAC ratio, does not drive the overall credit rating.
Indeed, S&P [32] make it quite clear that a multiplicity of dimensions are considered
in the establishment of a credit rating. S&P [32, Paragraph 20] states further that

11 S&P [31] outlines the treatment of financial institutions in general, whereas S&P [33] provides
some additional details for multilateral-lending institutions (MLIs). These will be important in the
second (Pillar II) part of this discussion.
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“the most important step in analyzing the creditworthiness of a corporate or govern-
mental obligor is gauging the resources available to it for fulfilling its obligations.”
As a ratings agency, S&P faces some unique challenges. It is required to combine a
broad range of both qualitative and quantitative factors together and distill them into
an assessment of the relative credit quality of a vast array of obligors. Moreover,
these entities are spread across the globe and face different accounting standards,
regulatory environments, and disclosure requirements. Consistency of data inputs
and treatment is, thus, a critical concern.

Capital-adequacy, while only one piece of the rating puzzle, remains important.
To maintain consistency, independence and to avoid reliance upon modelling
assumptions, S&P have created their own methodology for its measurement: the
S&P-RAC framework. Conceptually, it is dead easy and critically linked to the idea
of risk-weighted assets. In particular, the RAC ratio is merely,

Risk-Adjusted Capital = Total Adjusted Capital

Risk-Weighted Assets
. (11.15)

The larger the ratio, all else equal, the greater the creditworthiness of the obligor. It
is easy to see that as the magnitude of the risk-weighted assets decreases, for a fixed
amount of capital, the RAC ratio will increase. The RAC ratio is thus a deflated or
normalized measure of a firm’s base capital. One point is also abundantly clear; the
RAC definition from Eq. 11.15 brings S&P into the business of estimating asset risk
weights.

A firm’s assets are organized by S&P into three main categories for the purposes
of the RAC computation: credit, market, and operational. The credit risk component
will be our focus in this chapter. The largest, and most complex, of these categories,
which one would expect since we are dealing with financial institutions, relates
to credit risk. It is comprised of six asset classes. The five key asset classes are
schematically summarized in Fig. 11.1.

Credit RWA

Governments

Central
government

Sub-national

LCU

Other

Financial
Sector

Financial

Covered
bonds

Corporate
Sector

Corporate

Construction

Securitization

ABS

RMBS

US Government
Guarantee

Other

Non-credit

Past-due
commitments

Fig. 11.1 Credit risk-weighted assets: This schematic summaries the five key elements of the
credit risk-weighed asset definition. Each aspect has numerous sub-elements requiring slightly
different treatment. There is an additional sixth category, termed the retail sector, that arises in
S&P [31, 33]. It is not, however, relevant for NIB.
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The first asset class, termed governments or sovereigns, includes four sub
classes: exposures related to central and sub-national governments, un-hedged local-
currency bonds (i.e., LCU), and a fourth container for anything not fitting into the
previous sub-classes. The next two asset classes relate to the financial and corporate
sectors. Different nomenclature is possible, which can lead to some confusion. The
financial sector sub-class is also sometimes referred to as institutions. Moreover, the
corporate sector has a large number of additional sub-categories, but only the two
presented groupings have any potential relevance for us.

There is also a retail sector, described in great detail in S&P [31], that is not
pertinent for our analysis since NIB has neither a retail presence nor any retail
activities. For typical financial institutions, however, this could involve quite a bit
of work. Securitized assets are an additional asset class. The main areas of interest
are covered bonds, asset-backed (ABS) and residential mortgage-backed (RMBS)
securities. A separate sub-category was created for US government guarantees, since
this has potentially important implications for the risk weights.

S&P [31] also highlights an additional exposure for asset classes related to
collateral and other credit-risk mitigation. Sovereign and financial-sector collateral
has already, for the most part, been netted from the reported credit positions. As
such, the argument is that it need not be considered explicitly. S&P [31] does indeed
hold that collateral, after an appropriate haircut, must be netted from the exposure
position. Depending on the manner by which one’s collateral is netted from reported
exposures, there is the potential for some differences.

Colour and Commentary 128 (S&P TREATMENT OF COLLATERAL):
There is the potential for divergent treatment of collateral between a given
financial institution and S&P. S&P [31] requires that collateral, after an
appropriate haircut, needs to be netted from the exposure position. The official
formula, from S&P [31, Paragraph 75] is

Collateralized Exposure =Adjusted Exposure −Covered Exposure ·
(

1−Haircut

)

.

(11.16)

If S&P makes some adjustment for the haircut, while you do not, it could lead
to differences. This is not a particularly deep point, but it is a common source
of disagreement.

The final asset class is another catch-all category termed “other.” These include
past-due and other non-credit-obligation assets. Past-due exposures are often subject
to a constant, but non-standard risk weight. S&P [31, 33] provide no guidance on
this question; this lack of detailed documentation represents one of the challenges
associated with replicating the S&P-RAC methodology.
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S&P’s approach to determination of risk weights is, practically speaking, rather
closer to the standardized than the Basel IRB approach. Asset class and quality are
used to select from a broad range of possible weights. Actual choices are selected
by S&P to represent the worst-case unexpected loss—which implies some choice of
confidence interval—from a given risk scenario. The associated hypothetical stress
scenarios are, organized by ratings categories AAA through B and described in S&P
[30, Appendix IV]. There is, therefore, an underlying risk-weight calibration logic
underlying the specific S&P choices. In particular, given a specific asset class, there
are three main determinants of risk weights in S&P’s methodology. These include:

Credit Ratings S&P uses a 25-notch alphabetic credit-rating scale ranging from
AAA to C-.12 For the purposes of the risk-weight determination, the sovereign
long-term credit rating is employed.

BICRA S&P’s Banking Industry Country Risk Assessment (or BICRA) is a 10-
notch numeric scale ranging from 1 to 10 used by S&P to describe the relative
riskiness of different countries’ banking systems. S&P [34] indicates that “a
BICRA score is a combination of multiple factors reflecting a country’s economy,
financial regulatory infrastructure, and the credit culture of its banking industry.”
A score of 1 denotes the lowest risk category, whereas 10 represents the highest
level of riskiness.

Equity Group According to S&P [31, Paragraph 87], the S&P-RAC method-
ology places equity investments into one of four equity-market groups. These
are defined—although the precise methodology is not described—using 30-year
stock volatility measures from a country’s major stock-market index. S&P [31,
Table 13] merely allocates 100 countries to one of these four numeric categories
ranging, in ascending order of riskiness, from 1 to 4.

The specific choice of risk-weight determinant is made by S&P.
The actual risk-weights are summarized, by asset class, in a number of tables

found in S&P [31]. It is useful to examine these values graphically to gain
some intuition into the underlying computation. The rating-based risk-weights are
illustrated in Fig. 11.2. Quite reasonably, the magnitude of the risk weight is an
inverse function of an asset’s credit quality. AAA assets, for example, have very
small risk-weight values. Moreover, the type of exposure also appears to matter.
Securitized assets are clearly viewed as significantly more risky, particularly as we
move out the credit spectrum, than exposure to central or local governments. Finally,
unrated exposures, denoted as WR, are accorded the same risk weight as the lowest
rating category.

Figure 11.3 takes our analysis of risk weights a step further and outlines, by
asset class, the BICRA and equity-group values. Similar patterns to the ratings

12 An additional notch can be added if one wishes to include default. Defaulted positions are,
however, not typically treated as assets and thus can be ignored. We typically only focus on the
first 17 non-default rating categories: the 16 typical categories from AAA to B− and places all of
the CCC+ to C− classes into a single CCC category. This choice stems from the credit quality of
our assets.
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Fig. 11.2 Ratings-based risk weights: This figure summarizes the S&P risk weights organized by
asset class and credit ratings. The three main asset classes are sovereign unadjusted, sub-national,
and securitization. These values are found in S&P [31, Tables 4 and 9].

Fig. 11.3 Other risk-weight determinants: This figure describes the relationship, for non-
sovereign asset classes, between risk-weight and their underlying determinant. The BICRA ranking
and the equity-group classification are used by S&P, rather than credit rating, to distinguish
between different issuers.

classification are visible: risk weights increase as credit quality decreases and
riskier asset classes are assigned higher values. All graphics in Figs. 11.2 and 11.3
are on the same scale, so we can see that securitized assets are viewed as the
highest-risk assets. These are followed by listed and unlisted equity as well as
construction. Indeed these assets possess risk weights that are many multiples
of the base sovereign, institutional, and corporate assessments. Broadly speaking,
we can think of Figs. 11.2 and 11.3 as being the S&P equivalent of Tables 11.1
and 11.2 describing the risk-weight choices from the standardized regulatory
approach.
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Colour and Commentary 129 (S&P RISK-WEIGHT COMPLEXITY): S&P
take the computation of risk-weighted assets rather seriously. Between the
three presented risk-weight scales and the various asset classes, there are
roughly 130 distinct possible risk-weight values. This is, by almost any
practical standard, a reasonable amount of complexity. It certainly looks to
be somewhat more involved than the standardized or Basel IRB approaches.
Another interesting reflection is the various patterns of risk weights as a
function of their riskiness. The ratings-based risk weights are an increasing
step-wise function, BICRA risk weights follow a smooth non-linear pattern,
whereas equity-group risk weights are linear. This underscores, to an outside
observer at least, the relatively heuristic nature of these values. There are most
certainly good reasons for these differences, but they are not documented. This
is, of course, entirely S&P’s prerogative. The consequence, however, is that
such specifications, without a firm foothold, can be easily changed suggesting
that any firm, seeking to understand this approach, is well advised to keep a
close eye on any and all S&P publications.

11.1.4 Risk-Weighted Assets

Computation of risk-weighted assets is essentially a book-keeping exercise. Based
on high-level characteristics of each asset in one’s portfolio—sector, region, type of
entity, credit rating, tenor, and so on—the underlying exposure is scaled. The sum of
these scaled exposures yields the total portfolio-level risk-weighted assets. The basic
idea is clever and appealing; one’s assets are transformed from raw currency terms
into a risk-motivated representation. The ability to perform this computation on each
individual asset independently of the other positions—while deeply unrealistic—
drastically eases the complexity of these computations and facilitates aggregation
across large portfolios distributed across the globe.

This simplicity has a flip side, which will become clearly evident in the following
section. A price must be paid to adjust for the central simplifying assumption
adopted in the Pillar I setting. In many discussions, these skeletons are left in the
furthest reaches of our analytic closet. We will, however, follow a rather different
strategy. For everyone who has ever been annoyed with a textbook leaving crucial
elements as an exercise for the reader, the following section is for you. We’ve
tried hard to include all of the important, technical bits in the most honest possible
manner. That said, the minutiae can, at times, get a bit out of control. The reader
should feel free to select the degree of detail that best fits her interests and purposes.
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11.2 Pillar II

The first regulatory pillar is basically concerned—via the idea of asset risk
weighting—with the notion of minimum regulatory capital requirements. Although
perhaps taken somewhat for granted in recent years, this is a pretty important point.
Creating a link between a firm’s capital position and the riskiness of its assets—and
thus establishing a capital floor—has rather fundamental consequences for financial
stability. As should nonetheless have become clear in the previous pages, risk-
weighted assets are, without some form of adjustment, a fairly blunt instrument.
Into this breach enters Pillar II. This second step is basically about specializing the
generic Pillar I analysis to a specific institution. It is much more flexible. As they
say, however, “flexibility is the mother of all complexity.” As a consequence, Pillar
II is more difficult to precisely describe.

A working description of Pillar II is nevertheless found in BIS [7] and reads:

Pillar 2 of the Basel Framework does not include prescriptive guidance or direction on
supervisory approaches. Rather, it is principles-based and intended to be tailored to the
risks, needs and circumstances of the respective jurisdictions.

Pillar II thus covers a significant amount of ground and does not necessarily
follow a clear-cut form for each supervised entity. The headline aspects principally
include concentration risks: single-name, sectoral, and geographical. These lend
themselves to the most objective, quantitative style of analysis. Despite this view-
point, it is important to stress that Pillar II is rather larger than simply concentration
risks. It casts a much wider net by also including reputation-related, legal, and
strategic business-model risks.13 These are important risks, but they are rather more
difficult to measure. Given that this book takes the perspective of the quantitative
analyst working on the front lines of risk measurement, we will restrict our attention
to the more technical elements of Pillar II.

The S&P RAC methodology does not, since it is obviously not a regulatory
calculation, have any explicit link to Pillar II. S&P, despite having invested a
significant amount of time and effort into their methodology for risk-weighted-
asset estimation, fully appreciate that it has some shortcomings. It turns out that,
since their basic approach is conceptually closely related to the Pillar I world, they
share many of the same limitations with the regulatory approach. To improve the
precision of their estimates and address the major issues, S&P performs a series
of adjustments. These adjustments overlap in important ways with the Pillar II
guidance. The relevant adjustments for a multilateral-lending institution (MLI) such
as NIB are summarized in S&P [33].

There are multiple adjustments, each of varying degrees of complexity, but we
will restrict our focus to the three most important. They are schematically described
in Fig. 11.4. The principal deficiency of the risk-weighted asset approach is its

13 It also contains a section relating to interest-rate risk in a regulated firm’s banking book (or
IRRBB).
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MLI RWA Adjustments

Geographic
and Sector

Diversification

Preferred
Creditor
Treatment

Single-Name
Concentration

Fig. 11.4 Multilateral-lending institution adjustments: This schematic outlines three risk-
weighted asset adjustments required for the S&P-RAC computation. A significant amount of
uncertainty surrounding the precise computation makes it difficult to precisely replicate the S&P
calculations. These ideas also apply, albeit in potentially different ways, to Pillar II analysis.

instrument, or exposure, based perspective.14 That is, as we’ve seen before, the
composition of the overall portfolio is not considered in the base computation.
This applies to all three previously discussed methods for the computation of
risk-weighted assets: the standard, IRB, and S&P approaches. The geographic-
diversification and single-name concentration adjustments, therefore, seek to incor-
porate this aspect by adopting a portfolio perspective. This is not completely trivial,
which leads to a number of rather mathematically involved calculations.

The remaining adjustment is rather less technically involved, but nonetheless
pertinent. As an MLI, NIB benefits in some cases from the so-called preferred-
creditor treatment. Given the policy importance of these multilateral financial
institutions, most countries will continue to service MLI debt even when they find
themselves in financial distress.15 The relative indebtedness of an MLI’s obligors are
considered and the risk weights are varied accordingly to account for this preferred-
creditor status.

In the following discussion, we will work through each of these adjustments,
derive the central results and explain how they are performed. This will set the stage
for the examination of these various effects within the context of our portfolio.

Colour and Commentary 130 (THE UGLY TRUTH ABOUT PILLAR II):
The notion of Pillar II introduced by the second round of the Basel Accord
(i.e., Basel II) is a useful and welcome addition to the regulatory framework.
As a catch-all category for residual risks not adequately captured in the Pillar
I setting, it nonetheless finds itself facing some difficult tasks. Understanding
this fact helps one to appreciate an important, and slightly ugly, truth about

(continued)

14 To be fair, this is simultaneously its greatest strength and weakness.
15 They are a variety of reasons for this behaviour. Although far behind the scope of this technical
modelling discussion, some entities may also have explicit (bilateral) framework agreements for
lending operations with sovereigns, which protect and codify this preferred-creditor status. The
basic concept is well introduced in S&P [33, Paragraph 25].
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Colour and Commentary 130 (continued)
Pillar II: it is very complicated. Strategic, reputational, and legal risks—while
quite real and vital to a firm’s well being—are notoriously difficult to quantify.
Concentration and diversification effects, the focus of the remainder of this
chapter, necessitate rather heavy mathematical manipulations. The forthcom-
ing pages will appear, to many readers, to be virtually indistinguishable
from a treatise on mathematics. This is regrettable and unfortunate, but it is
also an unavoidable consequence of the dramatic simplifying assumptions—
most particularly, portfolio invariance—made in the Pillar I methodology.
Sweeping these issues under the carpet in the first act simply implies their
more intense, and furious, return in the second.

11.2.1 Geographic and Industrial Diversification

Our emphasis is on specific techniques that will permit us to construct a meaningful
benchmark comparison with our internal economic-capital computations. We will
begin with the notion of geographical and sectoral diversification. This section,
however, is principally concerned with the S&P approach to this question, although
with minor adjustment this method could readily fulfill one’s Pillar II requirements.
There are other possible techniques that one might consider. Lütkebohmert [23] is,
for example, an excellent starting point for a broad-based discussion of concentra-
tion effects. It provides a much wider and more nuanced discussion than what we
can reasonably cover in this chapter.

Risk-weighted assets, as we saw in the previous sections, are computed individ-
ually ignoring the portfolio perspective and any associated diversification benefits.
Diversification effects can stem from industrial or geographical elements. If expo-
sures are spread across multiple regions or industries—as is the case for the majority
of financial institutions—the net effect of incorporating diversification would be
to somewhat reduce the risk-weighted assets. Diversification imposes, after all,
downward pressure on one’s risk estimates. Reducing risk-weighted assets will, all
else equal, have the impact of increasing the S&P-RAC ratio or reducing the Pillar-I
reported risk-weighted assets.

Let us focus, for the moment, on the geographic dimension since the industrial
approach works in an analogous manner. In the S&P documentation—S&P [31,
Paragraph 133-134]—the geographic adjustment has a basic quadratic form. The
vector of n = 1, . . . , N distinct country weights is written as follows,

ζ = [

K1 · C1 K2 · C2 · · · KN · CN

]T
, (11.17)
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where Kn denotes the total risk-weighted assets associated with the nth geo-
graphical entity and Cn denotes the nth concentration factor or coefficient. For
typical financial institutions, these concentration factors are provided by S&P and
determined using the volatility of the relevant country’s gross domestic product.16

For multilateral lending institutions, this is irrelevant, since S&P [33, Paragraph
46] reads “we remove penalization (to avoid double counting) for geographic
concentration.” This implies that Cn = 1 for all n = 1, . . . , N . This allows us
to redefine our vector of country weights as,

ζ = [

K1 K2 · · · KN

]T
. (11.18)

ζ thus amounts to a vector of total risk-weighted assets organized by country. An
analogous organization of risk-weighted assets is also possible following some
industrial categorization.17 The following development—presented here from the
regional perspective—thus applies equally to both geographic and industrial Pillar-
II effects.

To capture diversification effects, we will need to describe the dependence
structure, or correlation, between individual geographic (or industrial) sectors. To
motivate this idea, imagine that we define the following matrix,

�(γ ) =

⎡

⎢

⎢

⎢

⎣

1 γ · · · γ
γ 1 · · · γ
...
...
. . .

...

γ γ · · · 1

⎤

⎥

⎥

⎥

⎦

. (11.19)

This is simply a matrix with ones along the diagonal and the parameter, γ ∈ [0, 1],
populating all of the off-diagonal elements. Imagine that we set γ = 1 and compute
the following quantity,

√

ζ T �(1)ζ =

√

√

√

√

√

√

√

√

[

K1 K2 · · · KN

]

⎡

⎢

⎢

⎢

⎣

1 1 · · · 1
1 1 · · · 1
...
...
. . .

...

1 1 · · · 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

K1

K2
...

KN

⎤

⎥

⎥

⎥

⎦

, (11.20)

16 The factors are normalized so that the USA takes a value of unity; lower total output values are
assigned a larger concentration coefficient. See S&P [31, Table B.2].
17 Here, as touched upon in Chap. 3, one might make use of one’s internal or external industrial
classification taxonomy.
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This might seem to be of limited interest, but it nevertheless demonstrates a point.
The sum of the risk-weighted assets, when weighted in a quadratic form by a matrix
of ones is unchanged. If the off-diagonal elements in �(γ ), however, are no longer
unity, then Eq. 11.20 is no longer true. What is true, however, is that

√

ζ T �(γ )ζ <

√

ζ T �(1)ζ , (11.21)

for all values of γ ∈ [0, 1). That is, as long as γ remains in the unit interval and
takes a value of less than unity, the square-root of the quadratic weighting of the
risk-weighted assets will be reduced.

The matrix, �, is, of course, a correlation matrix and the off-diagonal elements
represent the pairwise linear correlation coefficient between the N geographical
entities. Naturally, when this correlation matrix is estimated, it is not the case that
all off-diagonal elements are equal to γ . Instead, the values should vary between
−1 and 1. We used the notion of γ to gain some intuition into the nature of the
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computation.18 As long as we do not observe perfect correlation between any two
countries, we should observe the phenomenon in Eq. 11.21.19

The geographic (industrial) diversification computation is thus,

Geographic (industrial) diversification adjustment =
√

ζ T �̂ζ −√ζ T �(1)ζ ,

=
√

ζ T �̂ζ −
N
∑

n=1

Kn

︸ ︷︷ ︸

Total
unadjusted

RWA

,

(11.22)

where �̂ denotes the empirically estimated correlation matrix between the various
geographic (industrial) entities. Given this correlation matrix, therefore, the actual
computation merely requires summing the risk-weighted assets by each geographic
(or industrial) entity and performing some matrix multiplication.

A natural question is: what is the source of these correlations? Given �̂, the
computation is easy, but obtaining �̂ is not so obvious. S&P [31, Paragraph 142]
claim that “for correlations by geographic regions and industry sectors, we have
used the MSCI stock indices.” It is unclear what data-range is employed in S&P’s
computations and with what frequency it is updated. To perform this computation
for the Pillar II diversification effect, however, we might simply make use of the
same MSCI stock-return data to inform the correlation parameters of the collection
of systemic risk factors introduced in previous chapters.20

Fisher’s z-Transformation

This is not the end of the geographic and industrial diversification story. Additional
complexity lies in the determination of the individual entries of the correlation
matrix. S&P [31, Paragraph 144], somewhat curtly reads “we stressed the results
to capture more fat-tail risk. To do so, we use a Fisher transformation and stress
the resulting value to a confidence interval of 99.5%.” R.A. Fisher, one of the most

18 We had to originally place some restrictions on the naive form of �(γ ), because if all off-
diagonals are the same negative number, it breaks the positive-definiteness of the matrix. In this
case, it is not longer a correlation matrix. As long as � is a true correlation matrix, however,
Eq. 11.21 will hold.
19 Indeed, with negative correlation, which is empirically less common, the impact is even greater.
20 This is the (annually updated) roughly 20-year collection of monthly stock-return values for 13
regions and 11 industrial categories introduced in Chap. 3.
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prodigious statisticians of all time, has worked on many aspects of modern statis-
tics.21 We deduce that S&P is referring to Fisher’s so-called z-transformation.22

The original reference is Fisher [13], but a more accessible discussion is found in
Stuart and Ord [35, Sections 16.33–34] and Held and Bové [20, Example 4.16]. The
original application of this result, as clearly suggested by the title of Fisher [13],
was to understand the asymptotic behaviour of correlation-coefficient estimates for
the purposes of statistical inference. McNeil et al. [25, Chapter 3] refer to the Fisher
transform as a “variance-stabilizing transform.”

The basic idea behind the technique is quite clever. Consider the (unknown)
population correlation coefficient between two random variables, X and Y , as ρ.
In practice, we collect data on X and Y as the best we can. To approximate
ρ, we then compute the sample correlation coefficient, which we will denote as
r . The distribution of this estimatior, r , is practically difficult to use.23 Fisher’s
method transforms r such that the distribution of the revised value is approximately
Gaussian. The resulting “stabilized” distribution for r is correspondingly quite
useful. From the cryptic quote in S&P [31, Paragraph 144], we infer that they
transform each r , apply a normal shock to move to the top of the estimator’s
confidence interval, and then perform the inverse transformation to arrive at a
revised estimate of the correlation coefficient. The remainder of this section works
through the necessary, but fairly involved, technical details. It also provides some
additional insight into the origin of this technique.

Let us return to our two random variables, X and Y , and denote ρ as their
(unknown) correlation-coefficient population parameter. Assume that we have
N observations of each random variable. The population parameter, ρ, can be
estimated by the Pearson correlation coefficient as,

r =
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∑
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≡
̂cov(X, Y )

σ̂ (X)σ̂ (Y )
,

(11.23)

21 See, for example, Savage [29] for an overview of his work.
22 This is not to be confused with the discrete analogue of the Laplace transformation, which
is also (regrettably) referred to as a z-transformation. See, for example, Harris and Stocker [19,
Section 20.6].
23 It is, in fact, skewed. For more information see, for example, Stuart and Ord [35, Chapter 13].
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where ̂σ(·) denotes the classic estimator of the standard deviation of a given random
variable. The (large-sample) distribution of r is, asymptotically,

r ∼ N
(

ρ,
(1 − ρ2)2

N

)

. (11.24)

This lovely form is not available to us, however, because it requires knowledge of
the unknown population parameter, ρ. The small-sample version is, by contrast not
particularly nice.24 The consequence of this form is a serious challenge associated
with the performance of any statistical inference on r .

To resolve these shortcomings, Fisher [13] offers a clever trick, which has come
to be referred to as the Fisher z-transformation. It is described as,

zXY = 1

2
ln

(

1 + r

1 − r

)

. (11.25)

Examination of Eq. 11.25 may look somewhat familiar. If |r| < 1, then—see, for
example, Harris and Stocker [19, Section 5.3]—this is the inverse hyperbolic tangent
function, which allows us to rewrite Eq. 11.25 as,

zXY = arctanh(r). (11.26)

This quantity may also be written as tanh−1(·).
While this mathematical transformation may not seem to follow a specific

purpose, it follows asymptotically that if X and Y are bivariate normal, then

zXY ∼ N
(

1

2
ln

(

1 + r

1 − r

)

,
1

N − 3

)

. (11.27)

Since the demonstration of this fact is not exactly straightforward, we will treat it
as given. Equation 11.27 is precisely true if X and Y are bivariate Gaussian, but
approximately true in cases where this assumption is not too egregiously violated.
Financial returns are not, in general, Gaussian, but the distance from normality is
not enormous. In this case, Eq. 11.27 can be considered a fairly reasonable approx-
imation of the distribution of the transformed correlation-coefficient estimate.

Since zXY is Gaussian, we can construct an α shock to its value in the usual way.
Let us define a perturbation of one α standard-deviation from the current value as,

εα = �−1(α) ·
√

1

N − 3
, (11.28)

24 See Wishart [41] or Stuart and Ord [35, Sections 16.24–16.32] for treatment of the small-sample
distribution of the correlation coefficient where both underlying random variables are normally
distributed.
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where �−1(·) is (as usual) the inverse standard normal cumulative distribution
(or quantile) function. From Eq. 11.27, we can (reasonably) safely assume that
the standard-error of the correlation coefficient—in this transformed space—is

approximately
√

1
N−3 . If we add εα to our sample estimator, r , this amounts to

an upper (or worst-case) bound on the correlation coefficient. This is sensible since,
from S&P’s perspective, the larger the correlation, the smaller the risk-weighted-
asset adjustment.

The upper bound, again in transformed space, is thus simply,

z̃XY = zXY + εα. (11.29)

Quite simply, z̃XY is an α standard-deviation shock to the expected (transformed)
value of the correlation-coefficient estimate.

We now require the inverse transform to recover the actual (true) upper bound
on our correlation-coefficient estimate. This is a simple algebra exercise where we
solve Eq. 11.25 for r . More specifically,

zXY + εα
︸ ︷︷ ︸

z̃XY

= 1

2
ln

(

1 + r̃

1 − r̃

)

︸ ︷︷ ︸

Eq. 11.25

, (11.30)

1 + r̃

1 − r̃
= e2z̃XY ,

(1 − r̃)e2z̃XY = 1 + r̃ ,

e2z̃XY − 1 = r̃
(

e2z̃XY + 1
)

,

r̃ = e2z̃XY − 1

e2z̃XY + 1
,

= e2(zXY+εα) − 1

e2(zXY+εα) + 1
.

Or, if you wish to use the trigonometric form from Eq. 11.26, then our upper bound
is simply

zXY + εα = arctanh(r̃), (11.31)

r̃ = tanh (zXY + εα) .

The representations in Eqs. 11.30 and 11.31 are equivalent.
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Colour and Commentary 131 (THE POINT OF FISHER’S z-TRANS-
FORMATION): Measurement of geographical or sectoral diversification
effects essentially involves adjusting risk-weighted assets by the associated
correlation structure. It is, in fact, the failure of the portfolio-invariant Pillar
I approach to capture this (less-than-perfect) correlation that necessitates the
adjustment. The question becomes a bit more interesting when we consider
how to actually estimate the correlation coefficients. The simplest approach
would be to apply the classic Pearson correlation coefficient estimator
to a collection of historical data.a Although this would yield an unbiased
estimator of pairwise correlation, S&P prefers a more conservative approach.
This is the reason for employment of Fisher’s so-called z-transformation. It
offers a relatively simple formula—based upon a clever (and very useful)
simplification of the distribution of the correlation coefficient estimator—to
place an upper bound on the level of correlation between any two random
variables. Thus instead of using a central estimate of the correlation
coefficient, one uses a more conservative value. The level of conservatism
is then determined by the choice of confidence level, α. Setting α = 0.99,
for example, would imply that if one were to draw 100 independent samples,
only once would one expect to find a larger estimate of one’s correlation
coefficient upper bound.

a We are interested in asset correlation between geographic and industrial regions; since this
is difficult to procure, stock-return data is typically employed as a proxy.

11.2.2 Preferred-Creditor Treatment

In comparison to the complex geographical-industrial and (forthcoming) single-
name-concentration adjustments, this element is relatively straightforward. The
preferred-creditor-treatment adjustment attempts to take into account the policy
importance of international institutions such as the NIB. Many sovereign borrowers
will continue to service multilateral-lending institution debt even when they find
themselves in financial distress. This applies, quite naturally, only to sovereign
debt and, most importantly, it is not a contractual right. It is more a question of
political economy. International financial institutions often act as lenders of last
resort; knowing that in the worst case one might need to rely upon their support
leads to a reluctance to default. S&P, realizing this fact, incorporate the preferred-
creditor aspect by adjusting the risk weights of government debt. Such adjustments
do not arise in the Pillar-II setting, because entities experiencing this effect are (as a
rule) not regulated.
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Fig. 11.5 Preferred-creditor adjusted risk weights: This figure summarizes the adjusted risk-
weights—assigned as a function of MDB debt and total debt—used to adjust for preferred-creditor
status.

The level of adjustment is a function of the ratio of multilateral-development
bank (MDB) to total indebtedness. Figure 11.5 summarizes the adjusted risk-
weights—assigned as a function of MDB and total debt—used to adjust for
preferred-creditor status. If the ratio of MDB to total debt exceeds 75%, then the
risk weights default back to the base government risk weights. Otherwise, the S&P
risk weights are a decreasing function of proportional MDB debt.

Practically, there is not much to be done. One needs to collect the MDB and
total debt data, compute the appropriate ratio, find the associated risk weights,
and adjust the government exposures. In our setting, given the currently relatively
limited amount of sovereign lending, this is typically a rather small adjustment. If,
conversely, you are working for a normal, garden-variety financial institution, you
may happily ignore this element.

11.2.3 Single-Name Concentration

This brings us to the final, and most complex, of the Pillar II quantitative adjust-
ments: concentration. As we saw in the previous settings, Pillar I computations
have a tendency to overstate the risk due to the presence of diversification effects.
Simultaneously, however, there is an offsetting tendency to understate the risks
associated with concentration. The techniques described in the following pages—
despite their complexity—are attempts to find analytic formulae permitting us to
describe the magnitude of this understatement of risk.

The Basel-IRB approach and the unadjusted S&P-RAC framework—as already
highlighted on numerous occasions in this chapter—are based upon a very impor-
tant, but unrealistic, assumption: portfolio invariance. This means that the risk
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characteristics of the portfolio depend only on the individual exposure and are
independent of the overall portfolio structure. This contradicts a basic tenet of
modern portfolio theory, which holds that if you add a new position to your
portfolio—whether considering a market- or credit-risk perspective—its risk impact
will depend upon what you already hold.

Gordy [14], in a seminal contribution to the literature, identifies what models,
and what conditions, are consistent with the portfolio-invariance property. The list
is not long. His result begins with two logical definitions. The total total default
loss is defined as LN ; this is also referred to as unconditional loss. The systemic
(or conditional) systematic loss is denoted LN |G. Gordy [14]’s answer to the
question of portfolio invariance is that, in the limit—under a number of technical
conditions—when talking about portfolio invariance, only the systematic element
matters. We can thus think of portfolio invariance as implying something like:

lim
N→∞LN ≈ E (LN |G) . (11.32)

In other words, it assumes an infinite number of small positions. For large, well-
diversified portfolios, total default loss tends towards systematic loss. Unfortunately,
in practice, not all portfolios satisfy the large, well-diversified condition. This is not
terribly precisely stated, but rather more an intuitive expression.25

The key finding of Gordy [14] is that portfolio invariance is possible only
under what he refers to as an asymptotic single-factor risk (ASRF) model. No
other model possesses this characteristic. It is typically represented as a type of
limiting model, as N → ∞, of the Gaussian threshold model forwarded by
Vasicek [37, 38, 39]. Gordy [14] identifies the technical conditions under which
unconditional and conditional VaR converge—this is roughly equivalent to applying
the VaR operator to both sides of Eq. 11.32. For this to hold, two key assumptions
are required:

1. one’s portfolio must be infinitely grained; and
2. there can be only one systematic risk factor.

Infinitely grained means that no single exposure may dominate total portfolio
exposure. It is an asymptotic result, which does not hold for any real portfolio, but
may represent a reasonable approximation for large, well-diversified financial insti-
tutions. While neither assumption is particularly realistic, together they represent
the price of portfolio invariance. The larger point is that the ASRF, the standarized
model, the IRB approach, and the (unadjusted) S&P-RAC framework all studiously
ignore idiosyncratic risk.26 The only source of risk in these settings stems from
systematic factors impacting, to varying degrees, all credit obligors.

25 A rigorous and axiomatic treatment is found in Gordy [14].
26 The case for sole focus on systemic risk is a bit less open-and-shut for non Basel-IRB
approaches. The reason is that we do not know precisely how the risk weights are determined;
they are simply provided. It is possible that some elements of idiosyncratic risk were employed
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This leaves the many institutions who are far from the infinitely granular ideal
with a need to perform some kind of adjustment for their portfolio concentrations.
Indeed, Pillar II requires regulated financial institutions to address concentration
risk. Easily required, this demand is rather more difficult to fulfil. Gordy [14],
very aware of the inherent challenges of portfolio invariance, offers a solution.
He suggests an add-on to account for concentration risk. While a fantastic idea
that has gained widespread acceptance, it turns out to be, mathematically at least,
a surprisingly complex undertaking. Creating an additive adjustment for concen-
tration risk is not a completely natural process. The reason is simple; portfolio
concentrations are complicated, non-linear functions of one’s portfolio composition.
In the following sections, we will describe the details behind the computation of
such add-ons making liberal use of results from Gordy [14], Martin and Wilde [24],
Emmer and Tasche [12], and Torell [36] among others.27 Given our aversion to
black boxes, we wade rather deep into the details to ensure a full understanding of
what is behind these computations. The reader less interested in the technical details
can restrict her attention to the gray boxes.

A First Try

Following from Eq. 11.32, we redefine the total default loss as L and the systematic
loss as E(L|G). In this case, G represents the global or systematic risk factor (or
factors) impacting all credit obligors. Using a bit of algebraic slight of hand, we can
construct a single identity including all of the key characters as follows,

L = L+ E(L|G)− E(L|G)
︸ ︷︷ ︸

=0

, (11.33)

L
︸︷︷︸

Total
Loss

= E(L|G)
︸ ︷︷ ︸

Systematic
Loss

+L− E(L|G)
︸ ︷︷ ︸

Idiosyncratic
Loss

.

If the total loss is L and the systematic loss is E(L|G), then it logically follows that
L − E(L|G) represents the idiosyncratic risk. That is, the specific or idiosyncratic
element of risk is merely the distance between total and systematic risk. As
the idiosyncratic risk is diversified away, the distance |L− E(L|G)| becomes
progressively smaller and, ultimately, tends to zero. This only happens if, as the
portfolio grows, it becomes increasingly granular.

in their calibration. In the Basel IRB setting, the logic is clear and it excludes the idiosyncratic
element.
27 In the early parts of the discussion, there is also a significant overlap with Bolder [9, Chapter 6].
This treatment nevertheless goes rather deeper into the granularity adjustment.
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Colour and Commentary 132 (MODELLING CONCENTRATION): For
small and concentrated portfolios, idiosyncratic risk is probably quite large
and requires one’s consideration. To do so, however, we need some kind of
analytic foothold. Gordy [14] comes to our rescue. He describes the total
credit loss of the portfolio as L and represents the systemic credit loss as
the conditional expectation of this loss given the systemic risk factor, G. We
will, borrowing his notation, denote this quantity as E(L|G). Measuring
concentration risk, therefore, amounts approximating the magnitude of the
distance between these two quantities: |L− E(L|G)|.a In plain English,
subtracting systematic risk from total risk must necessarily yield the
idiosyncratic (i.e., concentration) component. This is the fundamental form
of the concentration add-on; the rest is just (unfortunately quite complicated)
detail.

a In practice, it is somewhat more involved, because we need to do this in terms of
unexpected loss, which leads us to the Value-at-Risk (VaR) measure.

A Complicated Add-On

We begin by assuming that we have a generic one-factor stochastic credit-risk
model. L, as usual, represents the default loss and G denotes the common
systematic factor. We denote the VaR of our portfolio’s default loss, for a given
quantile α, as qα(L). This is a quantile at some point in the tail of the default-
loss distribution and, by construction, includes both idiosyncratic and systematic
elements.

We further define qASRF
α (L) as the diversified VaR estimate associated with

the ASRF model. The systematic loss, to lighten somewhat the notation burden,
is referred to in short form as X = E(L|G). Gordy [14], in one of its many
contributions, showed us that

qASRF
α (L) = qα (E(L|G)) , (11.34)

= qα(X).

This is the systematic VaR. In the limit, we know that, conditional (i.e., systematic)
and unconditional (i.e., total) VaR converge. Our job, however, is to describe this
difference,

| Real-world VaR − Infinitely grained VaR | = | qα(L)− qα(X) | .
(11.35)
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The first (critical) step involves an ingenious trick that helps us isolate our
distance of interest. We start with qα(L), which is our total α-level credit VaR,
including both systematic and idiosyncratic elements. The idea is similar to the
expansion from Eq. 11.32

qα(L) = qα

⎛

⎝L+X − X
︸ ︷︷ ︸

=0

⎞

⎠ , (11.36)

= qα (X + (L−X)) ,

= qα (X + ε (L−X))|ε=1 ,

= qα (f (ε))|ε=1 ,

where L = f (1) conveniently contains both the idiosyncratic and systematic
elements. This might not look like much; it is, in fact, simply a notational change.
It does, however, introduce both the total and systematic VaR figures into a single
expression. This is a surprisingly important first step.

The second task is to tease out the idiosyncratic and systematic elements. To do
this, we will perform a second-order Taylor series expansion of qα(L) around ε = 0.
This yields,

qα (f (ε))|ε=1 ≈ qα (f (ε))|ε=0 + ∂qα (f (ε))

∂ε

∣

∣

∣

∣

ε=0
︸ ︷︷ ︸

=0

(1 − 0)1 (11.37)

+1

2

∂2qα (f (ε))

∂ε2

∣

∣

∣

∣

ε=0
(1 − 0)2,

qα (f (1)) ≈ qα (f (0))+ 1

2

∂2qα (f (ε))

∂ε2

∣

∣

∣

∣

ε=0
,

qα(X + 1 · (L−X)) ≈ qα (X + 0 · (L−X))+ 1

2

∂2qα (X + ε (L−X))

∂ε2

∣

∣

∣

∣

ε=0
,

qα(L)− qα (X)
︸ ︷︷ ︸

Eq. 11.35

≈ 1

2

∂2qα (X + ε (L− X))

∂ε2

∣

∣

∣

∣

ε=0
.

This is important progress. The Taylor expansion has allowed us to move from the,
relatively unhelpful, VaR of the sum of two elements of risk—idiosyncratic and
systematic—towards the (approximate) difference of the VaRs of these quantities.
In other words, we have, using a mathematical trick, happily found a representation
for Eq. 11.35. The result is that this difference is approximately one half of the
second derivative of the VaR of f (ε) evaluated at ε = 0. This an elegant result.
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Further progress depends importantly on our ability to evaluate the second
derivative of this VaR expression. Fortunately, this is a known result provided by
Gourieroux et al. [17]. We must first explain why the first derivative vanishes. It is
somewhat messy and depends on the structure of the first derivative of VaR—also
found in Gourieroux et al. [17]. The formal development is,

∂qα (X + ε(L−X))

∂ε

∣

∣

∣

∣

ε=0
= E

(

L−X

∣

∣

∣

∣
X = qα(X)

)

, (11.38)

= E

(

L− E (L|G)
∣

∣

∣

∣
E (L|G) = qα (E (L|G))

)

,

= E

(

L− E (L|G)
∣

∣

∣

∣
G = q1−α (G)
︸ ︷︷ ︸

X is monotonic in G

)

,

= E

(

L

∣

∣

∣

∣
G = q1−α (G)

)

− E

(

E (L|G)
∣

∣

∣

∣
G = q1−α (G)

)

,

= E

(

L

∣

∣

∣

∣
G = q1−α (G)

)

− E

(

L

∣

∣

∣

∣
G = q1−α (G)

)

︸ ︷︷ ︸

By iterated expectations

,

= 0.

The first critical line stems from Gourieroux et al. [17].28 It turns out that there is a
close link between conditional expectation and the derivatives of VaR. We provide
this result without derivation, but the interested reader is referred back to Chap. 2
where the concept of exposure-level risk decomposition is introduced. The second
point, where the conditioning variable X = qα(X) is replaced by G = q1−α(G),
stems from the relationship between default loss and the systematic risk variable. L
and E(L|G) are both strictly monotonically decreasing in G.29 For this reason, the
two conditioning sets are equivalent.

Having established that the first derivative of VaR vanishes in this setting, we
now face the challenge of evaluating the second derivative. This requires a bit of
additional heavy-lifting. Starting from the object of interest, we may perform the

28 Rau-Bredow [28] also addresses this tricky issue in substantial detail.
29 This is specialized to the Gaussian threshold setting, but in any one-factor setting this behaviour
is prevalent. The systematic factor may be, of course, monotonically increasing in G. The key is
that, in all one-factor models, default loss is a monotonic function of the systematic factor; the
direction of this relationship is irrelevant.
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following manipulations, using the definition of the second derivative of VaR, from
Gourieroux et al. [17], as our starting point

∂2qα (f (ε))

∂ε2

∣

∣

∣

∣

∣

ε=0

(11.39)

= ∂2qα (X + ε (L−X))

∂ε2

∣

∣

∣

∣

∣

ε=0

,

= −var (L−X|X = x)
∂ lnfX(x)

∂x

∣

∣

∣

∣

x=qα(X)
− ∂var (L−X|X = x)

∂x

∣

∣

∣

∣

x=qα(X)
,

=
(

−var (L−X|X = x)

(

1

fX(x)

)

∂fX(x)

∂x
− ∂var (L−X|X = x)

∂x

)∣

∣

∣

∣

x=qα(X)
,

= − 1

fX(x)

(

var (L−X|X = x)
∂fX(x)

∂x
+ ∂var (L−X|X = x)

∂x
fX(x)

)∣

∣

∣

∣

x=qα(X)
,

= − 1

fX(x)

∂

∂x

⎛

⎜

⎝var (L−X|X = x) fX(x)
︸ ︷︷ ︸

By product rule

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

x=qα(X)
,

= − 1

fX(x)

∂

∂x

⎛

⎜

⎝var (L|X = x) fX(x)
︸ ︷︷ ︸

var(X|X=x)=0

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

x=qα(X)
,

where the manipulation in the final step arises, because var(X|X = x) is
equal to zero—given the value of the random variable, X, there is no remaining
uncertainty. This is a useful simplification, but we’d like to take it a step further. The
conditioning, and differentiating, variable is x = qα(X). We would like to perform a
transformation of variables so that we replaceX with the global systematic variable,
G. We have established already, through the monotonicity of X in G, that the
following two conditioning statements are equivalent,

{x = qα(X)} ≡ {g = q1−α(G)} . (11.40)

A critical consequence of this fact is that α quantile of the systematic VaR—that is,
qα(X)—coincides with the expected loss when the systematic variable falls at its
1 − α quantile. Specifically, it is true that

qα(X) = E (L|G = q1−α(G)) . (11.41)
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If we plan to change variables, then we will move from the density of X to G. This
will require the change-of-variables formula.30 The density of X can now be written
as,

fG(q1−α(G)) = fX(qα(X))

∣

∣

∣

∣

∂qα(X)

∂q1−α(G)

∣

∣

∣

∣
, (11.42)

= fX(qα(X))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂

Eq. 11.41
︷ ︸︸ ︷

E (L|G = q1−α(G))
∂q1−α(G)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

fX(qα(X)) = fG(q1−α(G))
(∣

∣

∣

∣

∂E (L|G = q1−α(G))
∂q1−α(G)

∣

∣

∣

∣

)−1

.

This allows us to write the second derivative in the following form,

∂2qα (f (ε))

∂ε2

∣

∣

∣

∣

ε=0
= − 1

fG(g)

∂

∂g

⎛

⎝

fG(g)var (L|G = g)

∂E(L|G=g)
∂g

⎞

⎠

∣

∣

∣

∣

∣

∣

g=q1−α(G)

,(11.43)

This, recalling Eq. 11.37, leads us to the underlying approximation of the distance
between total and systematic portfolio risk,

qα(L)− qα (E(L|G)) ≈ 1

2

∂2qα (E(L|G)+ ε (L− E(L|G)))
∂ε2

∣

∣

∣

∣

ε=0
, (11.44)

Gα(L) = − 1

2 · fG(g)
∂

∂g

⎛

⎝

fG(g)var (L|G = g)

∂E(L|G=g)
∂g

⎞

⎠

∣

∣

∣

∣

∣

∣

g=q1−α(G)

.

Commonly referred to as the granularity adjustment, this explains why we use the
symbol G to describe it. We have eliminated any reference, through our change of
variables, to the systematic loss variable, E(L|G). Although not directly applicable
in this form, Eq. 11.44 is written completely in terms of the systematic global risk
factor, G. With a specific choice of model, we may now obtain our objective: a
practical, exposure-level add-on to approximate idiosyncratic risk.

30 See Billingsley [1, Sections 16–17] for more colour on the change-of-variables technique. Torell
[36] does this in a slightly different, but essentially, equivalent manner.



11.2 Pillar II 701

Colour and Commentary 133 (A TAYLOR SERIES EXPANSION): The ker-
nel of the additive concentration risk adjustment stems from the combination
of three immensely clever manipulations. The first begins with the first-
principles definition of credit Value-at-Risk; by simply adding and subtracting
the systemic element, one arrives at a workable expression for our object of
interest, |L− E(L|G)|. A dummy variable, ε = 1, is then created to logically
isolate |L − E(L|G)|. In the second step, this expression is given concrete
form as a second-order Taylor series expansion of the VaR function with ε = 1
around the point ε = 0. The corresponding derivatives of VaR are neither easy
to look at nor particularly fun to work with. The third, and final, manipulation
involves using the change-of-variables formula to move from the portfolio loss
to the systemic risk-factor density. The overall result of these complex steps is
nevertheless a tractable expression for our desired idiosyncratic dimension of
risk.

To get the granularity adjustment into a more practical form, we need to first
evaluate the necessary derivatives. To ease the notation, let us define the following
functions

f (g) = fG(g), (11.45)

μ(g) = E(L|G = g),

ν(g) = var(L|G = g).

These are the density of the systematic risk factor and the conditional expectation
and variance of the default loss given a specific value of the systematic risk factor,
respectively. This allows us to re-state Eq. 11.44 as,

Gα(L) = − 1

2 · f (g)
∂

∂g

(

f (g)ν(g)

μ′(g)

)∣

∣

∣

∣

g=q1−α(G)
. (11.46)

Recalling the quotient and product rules, it is a simple bookkeeping exercise to
expand Eq. 11.46 into the following, more expedient form,

Gα(L) = − 1

2 · f (g)

⎛

⎜

⎜

⎜

⎝

(

f (g)ν(g)

)′
μ′(g)− f (g)ν(g)μ′′(g)

(μ′(g))2
︸ ︷︷ ︸

Quotient rule

⎞

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

g=q1−α (G)

, (11.47)
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= − 1

2 · f (g)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Product rule
︷ ︸︸ ︷

(

f ′(g)ν(g)+ f (g)ν′(g)
)

μ′(g)− f (g)ν(g)μ′′(g)

(μ′(g))2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g=q1−α (G)

,

= − 1

2 · f (g)
(

f ′(g)ν(g)μ′(g)+ f (g)ν′(g)μ′(g)− f (g)ν(g)μ′′(g)
(μ′(g))2

)∣

∣

∣

∣

g=q1−α (G)
,

= − 1

2

(

f ′(g)ν(g)
f (g)μ′(g)

+ ν′(g)
μ′(g)

− ν(g)μ′′(g)
(μ′(g))2

)∣

∣

∣

∣

g=q1−α (G)
,

= − 1

2

(

1

μ′(g)

(

f ′(g)ν(g)
f (g)

+ ν′(g)
)

− ν(g)μ′′(g)
(μ′(g))2

)∣

∣

∣

∣

g=q1−α (G)
.

Admittedly somewhat unwieldy, this expression is the starting point for the add-on
to the ordinary Basel-IRB regulatory-capital amount. It is also the springboard for
the single-name concentration adjustment in the S&P-RAC ratio.

Colour and Commentary 134 (GRANULARITY ADJUSTMENT

INGREDIENTS): Despite its complex form, the granularity adjustment
has only three main ingredients: the density function of the systemic
risk factor and the conditional expectation and variance of the systemic
portfolio loss. The latter two quantities, in both cases, condition upon an
extreme outcome—with confidence level α—of the systemic risk factor.
Not coincidentally, this is consistent with the Basel IRB approach. Armed
with these three elements and the second-order Taylor series expansion
of portfolio VaR, some basic calculus permits development of a practical
expression for the granularity adjustment. To actual implement it, however,
one needs to choose a specific underlying credit-risk model. This choice
will fix the identity of our three ingredients and lead to concrete granularity
adjustment formulae. The final form, of course, will vary depending on the
specific model one selects.

The CreditRisk+ Case

A popular, practical choice of granularity adjustment—following from Gordy and
Lütkebohmert [15, 16]—is based on the one-factor CreditRisk+ model.31 This
credit-risk approach—introduced by Wilde [40] and covered in great detail in Gund-

31 For more on concentration risk, the reader is referred to Lütkebohmert [23].
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lach and Lehrbass [18]—is essentially a special case of a Poisson-Gamma model.
This implementation is also used in the context of the S&P RAC methodology.

In the CreditRisk+ setting, the defaults in a portfolio of N obligors are governed
by i = 1, . . . , N independent and identically distributed Poisson random variables,
Xi ∼ P(λi(S)). The ith default indicator is re-defined as,

IDi ≡ I{Xi≥1} =
{

1 : defaults occurs before time T with probability pi(S)
0 : survival until time T with probability 1 − pi(S)

,

(11.48)

where S ∼ �(a, b) is an independent (common) gamma-distributed random
variable. S, in this model, plays the role of the systematic state variable; it is the
analogue of the variable, G, in the one-factor threshold setting.

Given the relatively small probability of default, it is further assumed that ,

pi(S) ≡ E
(

IDi

∣

∣ S
)

, (11.49)

= P (Di |S) ,
≈ λi(S).

In other words, the random Poisson arrival intensity of the default outcome and the
conditional probability of default are assumed to coincide.32

Wilde [40] gave pi(S) an ingenious functional form,

pi(S) = pi

(

ωi,0 + ωi,1S

)

, (11.50)

where ωi,0 + ωi,1 = 1 implying that we can restate Eq. 11.50 more succinctly as,

pi(S) = pi

(

1 − ωi + ωiS

)

. (11.51)

We can interpret the parameter ωi as the factor loading on the systematic factor,
while 1 − ωi denotes the importance of the idiosyncratic factor.33 It is easy to show
that, if we select the parameters of the gamma-distributed S such that E(S) = 1,
then E(pi(S)) = pi . That is, in expectation, the conditional default probability
reduces to the unconditional default probability. If one assumes the shape-scale

32 Practically, for small values of λi(S), the random variable Xi basically only takes two values: 0
and 1. The P(Xi > 1) is vanishingly small.
33 If, for example, ωi = 0, then this reduces to an independent-default Poisson model.
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parametrization of the gamma distribution, it is necessary to assume that S ∼
�
(

a, 1
a

)

.34

An excellent discussion of the granularity adjustment for the one-factor Cred-
itRisk+ model is found in Gordy and Lütkebohmert [15, 16]. This work forms
the foundation of many Pillar II implementations of single-name concentration
risk. It is also the documented choice of S&P’s single-name concentration RAC
framework implementation.35 Given this formulation, we will work through the
general CreditRisk+ granularity adjustment and touch on the simplifications and
calibrations suggested by Gordy and Lütkebohmert [15, 16].

Gordy and Lütkebohmert [15, 16] also allow for the incorporation of random
recovery. In other words, the loss-given-default parameter for the ith obligor, still
denoted as γi , is assumed to be stochastic. Its precise distribution is not given, but
it is assumed to be independent of default and any other recovery events. Moreover,
its first two moments are described as,

E(γi) = γ̄i , (11.52)

var(γi) = νγi .

The principal consequence of this modelling choice is that the default loss function
is a bit more complicated as,

L =
N
∑

i=1

γiciIDi . (11.53)

With the (assumed) model details established, all that remains is the mundane
task of extracting the conditional expectation, conditional variance, and state-
variable density terms and their derivatives. We will begin with the conditional
expectation of the default loss given a specific value of the systematic state variable,
S. Working from first principles, we have

μ(s) = E (L| S = s) , (11.54)

= E

⎛

⎜

⎜

⎜

⎜

⎝

N
∑

i=1

γiciIDi

︸ ︷︷ ︸

Eq. 11.53

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S = s

⎞

⎟

⎟

⎟

⎟

⎠

,

=
N
∑

i=1

ci E
(

γiIDi

∣

∣ S = s
)

,

34 In the shape-rate parameterization, the density has a slightly different form. In this case, we
assume that S ∼ � (a, a). Ultimately, there is no difference in the final results.
35 See, for example, S&P [31, Paragraphs 148-151].
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=
N
∑

i=1

ci E (γi | S = s) E
(

IDi

∣

∣ S = s
)

,

=
N
∑

i=1

ciE (γi) P (Di | S = s) ,

=
N
∑

i=1

ci γ̄ipi(s),

where most of the preceding manipulations are definitional. We should stress that,
since each γi is independent of S, E(γi |S) = E(γi); no information is provided by
the conditioning set.

Recalling the definition of pi(S) from Eq. 11.51, we can readily determine the
first derivative of μ(s) as,

μ′(s) = ∂

∂s

⎛

⎜

⎜

⎜

⎜

⎝

N
∑

i=1

ci γ̄ipi(s)

︸ ︷︷ ︸

Eq. 11.54

⎞

⎟

⎟

⎟

⎟

⎠

, (11.55)

= ∂

∂s

⎛

⎜

⎝

N
∑

i=1

ci γ̄i pi (1 − ωi + ωis)
︸ ︷︷ ︸

Eq. 11.51

⎞

⎟

⎠ ,

=
N
∑

i=1

ci γ̄ipiωi .

It is easy to see—since μ(s) is a linear function of s—that the second deriva-
tive, μ′′(s), vanishes. This simple fact has important implications since the sec-
ond term in Eq. 11.47 conveniently disappears, significantly simplifying our
task.

Determining the conditional variance is rather heavy. Two facts will prove quite
useful in its determination. First, the default event, by Eq. 11.48, is Poisson-
distributed. An interesting feature of the Poisson distribution is that its expectation
and variance are equal: that is, in this case, E(IDi ) = var(IDi ). The second fact is
that, from first principles, if X is a random variable with finite first two moments,
then var(X) = E(X2)−E(X)2. This implies directly that E(X2) = var(X)+E(X)2.
Both of these observations, which we will employ directly, apply unconditionally
and conditionally.
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The conditional variance can be written as,

ν(s) = var (L|S = s) , (11.56)

= var

⎛

⎜

⎜

⎜

⎜

⎜

⎝

N
∑

i=1

γiciIDi

︸ ︷︷ ︸

Eq. 11.53

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S = s

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

=
N
∑

i=1

c2
i var

(

γiIDi

∣

∣ S = s
)

,

=
N
∑

i=1

c2
i

(

E

(

γ 2
i I

2
Di

∣

∣

∣ S = s
)

− E
(

γiIDi

∣

∣ S = s
)2
)

︸ ︷︷ ︸

By definition

,

=
N
∑

i=1

c2
i

(

E

(

γ 2
i

∣

∣

∣S = s
)

E

(

I
2
Di

∣

∣

∣ S = s
)

− E (γi | S = s)2 E
(

IDi

∣

∣ S = s
)2
)

,

=
N
∑

i=1

c2
i

(

E

(

γ 2
i

)

E

(

I
2
Di

∣

∣

∣ S = s
)

− E (γi)
2
E
(

IDi

∣

∣S = s
)2
)

,

=
N
∑

i=1

c2
i

(
(

var(γi)+ E(γi)
2
)

︸ ︷︷ ︸

νγi+γ̄ 2
i

(

var
(

IDi

∣

∣ S = s
)+ E

(

IDi

∣

∣S = s
)2
)

− γ̄ 2
i pi (s)

2
)

,

=
N
∑

i=1

c2
i

(
(

νγi + γ̄ 2
i

) (

E
(

IDi

∣

∣S = s
)+ E

(

IDi

∣

∣ S = s
)2
)

− γ̄ 2
i pi(s)

2
)

,

=
N
∑

i=1

c2
i

(
(

νγi + γ̄ 2
i

) (

pi(s)+ pi(s)
2
)

− γ̄ 2
i pi (s)

2
)

,

=
N
∑

i=1

c2
i

(

νγi pi(s)+ νγi pi (s)
2 + γ̄ 2

i pi(s)+����γ̄ 2
i pi(s)

2 −����γ̄ 2
i pi(s)

2
)

,

=
N
∑

i=1

c2
i pi(s)

(

γ̄ 2
i + νγi (1 + pi(s))

)

.
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We can now directly determine the required first derivative of the conditional
variance. With the fairly succinct form of Eq. 11.56, it is readily written as

ν′(s) = ∂

∂s

⎛

⎜

⎜

⎜

⎜

⎝

N
∑

i=1

c2
i pi(s)

(

γ̄ 2
i + νγi (1 + pi(s))

)

︸ ︷︷ ︸

Eq. 11.56

⎞

⎟

⎟

⎟

⎟

⎠

, (11.57)

= ∂

∂s

(

N
∑

i=1

c2
i

(

νγi pi(s)+ νγi pi(s)
2 + γ̄ 2

i pi(s)

)
)

,

=
N
∑

i=1

c2
i

(

νγi piωi + νγi2pi(s)piωi + γ̄ 2
i piωi

)

,

=
N
∑

i=1

c2
i piωi

(

γ̄ 2
i + νγi (1 + 2pi(s))

)

.

The final remaining piece of the puzzle is the density function of the systematic
state variable and its first derivative. Recall that, to meet the needs of the model, we

require that S ∼ �
(

a, 1
a

)

. The shape-scale version of the density of the gamma

distribution for these parameter choices is written as,

fS(s) = sa−1e−sa

�(a)
(

1
a

)a , (11.58)

where �(a) denotes the gamma function.36 The first derivative with respect to s has
a convenient form,

f ′
S(s) =

∂

∂s

⎛

⎜

⎝

sa−1e−sa

�(a)
(

1
a

)a

⎞

⎟

⎠ , (11.59)

= 1

�(a)
(

1
a

)a

(

(a − 1)sa−2e−sa − asa−1e−sa
)

,

36 See Casella and Berger [10, Chapter 3] or Johnson et al. [21, Chapter 17] for more information
on the gamma distribution.
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= sa−1e−sa

�(a)
(

1
a

)a

︸ ︷︷ ︸

fS(s)

(

(a − 1)s−1 − a

)

,

= fS(s)

(

a − 1

s
− a

)

.

While the convenience might not be immediately clear, we will require the ratio of
the first derivative of the gamma density to its raw density for the calculation of the
granularity adjustment. This ratio, following from Eqs. 11.58 and 11.59, is thus

f ′
S(s)

fS(s)
=

���fS(s)
(

a−1
s

− a
)

���fS(s)
, (11.60)

A = a − 1

s
− a.

This quantity depends only on the model and, more particularly, on the parametriza-
tion of the underlying gamma distribution. The density function itself happily
cancels out.

We finally have all of the necessary elements to describe, at least in its raw
form, the granularity adjustment for the one-factor CreditRisk+ model. Revisiting
Eq. 11.47 we have,

Gα(L) = − 1

2

⎛

⎜

⎜

⎜

⎝

1

μ′(s)

(

f ′(s)ν(s)
f (s)

+ ν′(s)
)

− ν(s)μ′′(s)
(μ′(s))2
︸ ︷︷ ︸

=0

⎞

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

Eq. 11.47

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s=qα(S)≡qα

,(11.61)

= −1

2

(

Aν(qα)+ ν′(qα)
μ′(qα)

)

,

= −Aν(qα)− ν′(qα)
2μ′(qα)

,

where qα ≡ qα(S) and we use α instead of 1− α, because the probability of default
is monotonically increasing as a function of the state-variable in the CreditRisk+
setting. If we select a parameter a and determine the desired degree of confidence
(i.e., α), then we can input Eqs. 11.55–11.57 and 11.60 into the revised granularity-
adjustment expression in Eq. 11.61. This would represent a practical concentration
adjustment.
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Colour and Commentary 135 (SEEING THE FOREST THROUGH THE

TREES): A common choice of granularity adjustment stems from selection
of the Poisson-gamma mixture model—with random recovery—referred to as
the CreditRisk+ approach. A number of detailed computations are required
to identify our three main ingredients—the systemic density and conditional
expectation and variance—along with their derivatives. It is unfortunately
rather easy to get lost in the detail. Gordy and Lütkebohmert [15, 16], appre-
ciating this fact, invest a significant amount of effort to improve this situation.
In particular, they perform three tasks: they simplify the notation, write the
granularity adjustment in terms of exposure-level add-ons, and eliminate a
few complex, but not terribly important terms.a We work through these, at
times tedious calculations, in the following discussion. Understanding the
helpfulness of this additional work helps make the forthcoming mathematical
manipulations a bit more bearable.

a This slightly reduces the sharpness of the approximation, but dramatically eases the
presentation.

Equation 11.61 would, usually, be the end of the story. Gordy and Lütkebohmert
[15, 16], in their desire to use this approach for regulatory purposes, quite reasonably
seek to streamline the presentation and simplify the final result. This requires some
additional manipulation. To accomplish their simplification, they introduce three
new terms. The first is,

Ri = γ̄ipi . (11.62)

The second is not merely a simplification, but also an expression in its own right. It
is the amount of regulatory capital for the ith obligor required as a proportion of its
total exposure. More specifically, it is given as,

Ki = Worst-Case Loss from Obligor i − Expected Loss from Obligor i

ith Exposure
,

= E
(

γi�ciIDi

∣

∣ S = qα
)− E

(

γi�ciIDi

)

�ci
, (11.63)

= E
(

γiIDi

∣

∣ S = qα
)− E

(

γiIDi

)

,

= E (γi) E
(

IDi

∣

∣ S = qα
)− E (γi)E

(

IDi

)

,

= γ̄ipi(1 − ωi + ωiqα)− γ̄ipi,

=��γ̄ipi − γ̄ipiωi + γ̄ipiωiqα −��γ̄ipi ,

= γ̄ipiωi (qα − 1) .
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The sum of Ri and Ki also has a relatively compact form,

Ri +Ki = γ̄ipi
︸︷︷︸

Eq.
11.62

+ γ̄ipiωi (qα − 1)
︸ ︷︷ ︸

Eq. 11.63

, (11.64)

= γ̄ipi + γ̄ipiωiqα − γ̄ipiωi,

= γ̄i pi

(

1 − ωi + ωiqα

)

︸ ︷︷ ︸

pi (qα)

,

= γ̄ipi(qα).

The final definition involves the mean and variance of the loss-given-default
parameter,

Ci = γ̄ 2
i + νγi

γ̄i
. (11.65)

Outfitted with these definitions, we can follow the Gordy and Lütkebohmert
[15, 16] approach to find a more parsimonious representation of the CreditRisk+
granularity adjustment. Starting with Eq. 11.61, this will take a number of steps.
First, we begin with the following adjustment,

Gα(L) =
(

qα − 1

qα − 1

)

︸ ︷︷ ︸

=1

−Aν(qα)− ν′(qα)
2μ′(qα)

︸ ︷︷ ︸

Eq. 11.61

, (11.66)

= δα(a)ν(qα)− (qα − 1)ν′(qα)
2(qα − 1)μ′(qα)

,

where the new, model-based constant δα(a) is written as,

δα(a) = (qα − 1)A, (11.67)

= −(qα − 1)

(

a − 1

qα
− a

)

,

= (qα − 1)

(

a − a − 1

qα

)

,

= (qα − 1)

(

a + 1 − a

qα

)

.

We will return to this constant when we are ready to actually implement the model—
Gordy and Lütkebohmert [15, 16] allocate a significant amount of time to its
determination.
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There are three distinct terms in Eq. 11.66. We will use the preceding definitions
to simplify each in turn. Let’s start with the denominator. From Eq. 11.55, we have
that,

(qα − 1)μ′(qα) = (qα − 1)
N
∑

i=1

ci γ̄ipiωi

︸ ︷︷ ︸

Eq. 11.55

, (11.68)

=
N
∑

i=1

ci γ̄ipiωi(qα − 1)
︸ ︷︷ ︸

Ki (Eq. 11.63)

,

=
N
∑

i=1

ciKi ,

= K∗,

which is the total regulatory capital under the CreditRisk+ model.
The first term in the numerator is reduced, using Eq. 11.56, to

δα(a)ν(qα) = δα(a)

N
∑

i=1

c2
i pi(qα)

(

γ̄ 2
i + νγi (1 + pi(qα))

)

︸ ︷︷ ︸

Eq. 11.56

, (11.69)

= δα(a)

(

γ̄i

γ̄i

)

︸ ︷︷ ︸

=1

N
∑

i=1

c2
i pi(qα)

(

γ̄ 2
i + νγi (1 + pi(qα))

)

,

= δα(a)

N
∑

i=1

c2
i γ̄ipi(qα)
︸ ︷︷ ︸

Ri+Ki

(

γ̄ 2
i + νγi

γ̄i
︸ ︷︷ ︸

Ci

+νγi

γ̄i

(

γ̄i

γ̄i

)

︸ ︷︷ ︸

=1

pi(qα))

)

,

= δα(a)

N
∑

i=1

c2
i (Ri +Ki )

(

Ci + νγi

γ̄ 2
i

γ̄ipi(qα))
︸ ︷︷ ︸

Ri+Ki

)

,

=
N
∑

i=1

c2
i

(

δα(a)Ci (Ri +Ki )+ δα(a) (Ri +Ki )
2 νγi

γ̄ 2
i

)

.

Although this does not seem particularly concise, it does permit us to write
everything in terms of the various definitions.
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The second term in the numerator and the last term required to re-write the
granularity adjustment, depend on our derivation in Eq. 11.57,

(qα − 1)ν′(qα) = (qα − 1)
N
∑

i=1

c2
i piωi

(

γ̄ 2
i + νγi (1 + 2pi(qα))

)

︸ ︷︷ ︸

Eq. 11.57

, (11.70)

=
(

γ̄i

γ̄i

)

︸ ︷︷ ︸

=1

N
∑

i=1

c2
i piωi(qα − 1)

(

γ̄ 2
i + νγi (1 + 2pi(qα))

)

,

=
N
∑

i=1

c2
i γ̄ipiωi(qα − 1)
︸ ︷︷ ︸

Ki

⎛

⎜

⎜

⎜

⎝

γ̄ 2
i + νγi

γ̄i
︸ ︷︷ ︸

Ci

+2
νγi

γ̄i

(

γ̄i

γ̄i

)

︸ ︷︷ ︸

=1

pi(qα)

⎞

⎟

⎟

⎟

⎠

,

=
N
∑

i=1

c2
iKi

⎛

⎜

⎝Ci + 2
νγi

γ̄ 2
i

γ̄ipi(qα)
︸ ︷︷ ︸

Ri+Ki

⎞

⎟

⎠ ,

=
N
∑

i=1

c2
iKi

(

Ci + 2 (Ri +Ki )
νγi

γ̄ 2
i

)

.

Collecting Eqs. 11.68 to 11.70 and plugging them into Eq. 11.66, we have the
following lengthy expression for the granularity adjustment,

Gα(L) = δα(a)ν(qα)− (qα − 1)ν ′(qα)
2(qα − 1)μ′(qα)

︸ ︷︷ ︸

Eq. 11.66

, (11.71)

=

Eq. 11.69
︷ ︸︸ ︷

N
∑

i=1

c2
i

(

δα(a)Ci (Ri +Ki )+ δα(a) (Ri +Ki )
2 νγi

γ̄ 2
i

)

−

Eq. 11.70
︷ ︸︸ ︷

N
∑

i=1

c2
iKi

(

Ci + 2 (Ri +Ki )
νγi

γ̄ 2
i

)

2 K∗
︸︷︷︸

Eq.

11.68

,

= 1

2K∗
N
∑

i=1

c2
i

((

δα(a)Ci (Ri +Ki )+ δα(a) (Ri +Ki )
2 νγi

γ̄ 2
i

)

−Ki

(

Ci + 2 (Ri +Ki )
νγi

γ̄ 2
i

))

.

Again, this does not seem like a dramatic improvement, in terms of parsimony
at least, relative to the raw form found in Eq. 11.66. It is, however, the form
summarized in equation 6 of Gordy and Lütkebohmert [15, Page 7]. Moreover, this
is the structure quoted in most regulatory discussions of the granularity adjustment.
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Some additional parametric details helps somewhat. Gordy and Lütkebohmert
[15] suggest a specific form for νγi to “avoid the burden of a new data requirement.”
Their recommended choice is,

νγi = ξ γ̄i (1 − γ̄i), (11.72)

where ξ ≈ 0.25.37 This has some precedent in previous regulatory discussions.
Our method-of-moments approach, from Chap. 3, to the calibration of individual
recovery beta distributions is another potential source for specification of νγi .

In their quest for parsimony, Gordy and Lütkebohmert [15] also offer a further
simplification. They argue that, given the relative sizes of Ri and Ki , prod-
ucts of these quantities are of second-order importance and—in the spirit of
approximation—can be summarily dropped. Practically, this involves setting (Ri +
Ki )

2 and Ki (Ri +Ki ) equal to zero. The impact on Eq. 11.71 is quite substantial,

Gα(L) = 1

2K∗
N
∑

i=1

c2
i

((

δα(a)Ci (Ri +Ki )+
���������
δα(a) (Ri +Ki )

2 νγi

γ̄ 2
i

)

−Ki

(

Ci +
�������2 (Ri +Ki )

νγi

γ̄ 2
i

))

,

= 1

2K∗
N
∑

i=1

c2
i

(

(δα(a)Ci (Ri +Ki ))−KiCi
)

, (11.73)

= 1

2K∗
N
∑

i=1

c2
i Ci
(

δα(a) (Ri +Ki )−Ki

)

.

It is occasionally simplified even further to,

Gα(L) = 1

2K∗
N
∑

i=1

c2
i CiQi , (11.74)

where

Qi = δα(a) (Ri +Ki )−Ki . (11.75)

Ultimately, after much effort and tedium, we have achieved a reasonable degree of
simplification. How good this granularity adjustment performs in an absolute sense,

37 Incidentally, the fixed recovery volatility value from the legacy implementation of our credit-risk
economic capital model was loosely motivated by this work.
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and relative to the more precise form in Eq. 11.71, is an empirical question. It turns
out, however, to be quite effective in many cases.38

Colour and Commentary 136 (GRANULARITY-ADJUSTMENT MISMAT-
CH): A logical problem arises if one selects the CreditRisk+ model,
as proposed by Gordy and Lütkebohmert [15], to build a single-name
concentration adjustment. The Basel IRB approach is predicated on a
one-factor Gaussian threshold model. This creates something of a mismatch
between the threshold-based description of systemic risk and the mixture-
based concentration model. While it is useful and important to be aware of
this point, it is not an insurmountable issue. Gordy and Lütkebohmert [15]
establish a certain degree of equivalency between the two approaches through
the calibration of key model parameters. In particular, the factor loadings
in the CreditRisk+ granularity adjustment are selected to be consistent with
those found in the ASRF model.

Establishing some form of equivalency between the ASRF and one-factor
CreditRisk+ models is required. The Basel-IRB model is, for a given parameter
ρ, roughly equivalent to the ASRF model. This permits us to use the ASRF model
as our starting point. The appendix of Gordy and Lütkebohmert [15], in an effort
to highlight their choice of ξ , presents an interesting method to identify the ωi
parameter. The authors do this by identifying the contribution to economic capital
associated with the ith obligor in both the CreditRisk+ and the asymptotic one-
factor Gaussian threshold (i.e., ASRF) approaches. In the CreditRisk+, we define
this quantity as,

K (1)
i = γ̄icipi (qα(S))

︸ ︷︷ ︸

Unexpected loss

− γ̄icipi
︸ ︷︷ ︸

Expected
loss

, (11.76)

= γ̄ici

(

pi (1 − ωi + ωiqα(S))− pi

)

,

= γ̄ici

(

��pi − piωi + piωiqα(S)−��pi

)

,

= γ̄iciωipi

(

qα(S)− 1

)

︸ ︷︷ ︸

Eq. 11.63

.

38 See Bolder [9, Chapter 6] for a practical analysis of this question.
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This is a function of obligor data, but also the parameter ωi and the degree of
confidence, α. The associated ASRF quantity is,

K (2)
i = γ̄icipi (q1−α(G))

︸ ︷︷ ︸

Unexpected loss

− γ̄icipi
︸ ︷︷ ︸

Expected
loss

, (11.77)

= γ̄ici

⎛

⎝�

⎛

⎝

�−1(pi)− ri�
−1(1 − α)

√

1 − r2
i

⎞

⎠− pi

⎞

⎠

︸ ︷︷ ︸

Eq. 11.7

.

The ASRF expression depends on similar obligor data inputs, but also on the ri
parameter and the degree of confidence.39

In the Basel framework, guidance is provided for the choice of ri . Indeed, it is
a predefined function of the credit counterparties unconditional default probability;
that is, ri = f (pi) from Eq. 11.9 on page 675. Given this choice, we seek the
appropriate, and equivalent choice of ωi in the CreditRisk+ model. Both are factor
loadings on the systematic state variable. The (approximate) solution is to equate
Eqs. 11.76 and 11.77 and to solve for ωi . The result is,

K (1)
i = K (2)

i , (11.78)

��γ̄iciωipi

(

qα(S)− 1

)

︸ ︷︷ ︸

Eq. 11.76

=��γ̄ici

⎛

⎝�

⎛

⎝

�−1(pi)− ri�
−1(1 − α)

√

1 − r2
i

⎞

⎠− pi

⎞

⎠

︸ ︷︷ ︸

Eq. 11.77

,

ωi =

(

�

(

�−1(pi)−ri�−1(1−α)
√

1−r2
i

)

− pi

)

pi

(

qα(S)− 1

) .

While useful, this expression has a few drawbacks. Perhaps most importantly, it
depends on the level of confidence, α. A different level of ωi is derived for each
level of α. The CreditRisk+ parameter has an additional parameter, a, summarizing
the variance of the underlying gamma distribution used to describe the Poisson

39 Recall that the monotonicity of conditional default probabilities runs in opposite directions for
the CreditRisk+ and threshold methodologies. Thus, q1−α(G) is (directionally) equivalent to qα(S)
where G and S denote the standard-normal and gamma distributed systematic state variables,
respectively.
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arrival intensity.40 The α quantile of S, which shows up as qα(S) in Eq. 11.78,
also explicitly depends on a.

Determining a is not an obvious task. An important, and very welcome,
contribution of Gordy and Lütkebohmert [15, 16] was to provide some concrete
suggestions regarding its value. They construct an equation where a is set equal to
the default-probability variance—this is accomplished using, among other things,
the trick from Eq. 11.78. Fixing the other quantities in Eq. 11.78, they numerically
find the value of a that satisfies it. Gordy and Lütkebohmert [15] recommend a
value of 0.25, which was revised in Gordy and Lütkebohmert [16] to 0.125. This
choice, in addition to informing the choice of ωi , also has an important influence
on the δα(s) quantity described in Eq. 11.67. If one sets a = 0.25 and α = 0.999,
we arrive at an approximate value of 4.83 for δα(a). This is commonly used in
regulatory applications and, in our specific case, is the current value employed in
the S&P-RAC framework.

Figure 11.6 collects together all of the key formulae from Gordy and Lütke-
bohmert [16]’s CreditRisk+ implementation of the granularity adjustment.41 It
is essentially this form that is employed in many Pillar II concentration risk
calculations; it is also the foundation of S&P’s single-name adjustment.

11.2.4 Working with Partial Information

Gordy and Lütkebohmert [16, Section 3] offer an additional contribution—which
is employed in the S&P RAC computations—for handling situations with partial
information. In particular, they argue that

aggregation of multiple exposures into a single exposure per borrower is likely to be the
only substantive challenge in implementing the granularity adjustment.

For very large banks with operations (and systems and data repositories) in
jurisdictions across the globe, this is almost certainly the case. For small to
medium-sized players, this may be somewhat less pertinent. There is nonethe-
less value in understanding Gordy and Lütkebohmert [16, Section 3]’s proposal,
particularly since it is also required to better appreciate S&P risk-adjusted asset
adjustments.

Gordy and Lütkebohmert [16, Section 3]’s specific suggestion, to address this
potential challenge, is to construct an upper bound permitting the calculation of the
granularity adjustment on “a subset consisting [of the firm’s] largest exposures.”
They demonstrate how such an upper bound might be constructed—in the context
of the CreditRisk+ implementation of the granularity adjustment—for both the

40 a, in principle, also describes the expectation of S, but this has been set to unity.
41 We could have, as many publications do, skipped directly to this final result. In doing so,
however, we would have missed out on all the fun and insight.
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Fig. 11.6 Granularity adjustment cheat-sheet: The schematic above outlines, at a single glance,
the principal formulae involved in Gordy and Lütkebohmert [16]’s CreditRisk+ implementation of
the granularity adjustment calculation. It also attempts to highlight the most important relationships
between the key elements.

cases of homogeneous and heterogeneous exposures. While interesting from a
motivational perspective, the homogeneous exposure case is not overly realistic.
In our presentation of their upper bound, we will restrict our attention to the
heterogeneous situation.

A bit of set-up is involved. First of all, we identify the M distinct largest
borrowers for whom we have complete information.42 We will refer to this set of
exposures as M. By simple arithmetic, there exist N − M remaining exposures
outside of this set. We assume knowledge of an upper bound, c̄, on their individual
exposure. That is, c̄ ≥ ci for all i /∈ M.43 As a final step, some portfolio-level

42 Complete information, in this context, is all the information to perform the computation
summarized in Fig. 11.6.
43 This should not be hard to find. One could simply order the exposures outside M and use the
largest one. Alternatively, we could use the smallest exposure from M.
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constants are required. In particular, we need to know K∗ as defined in Eq. 11.68;
this quantity is the capital requirement. We will also require

R∗ =
N
∑

i=1

ciRi , (11.79)

=
N
∑

i=1

ci γ̄ipi
︸︷︷︸

Eq.
11.62

,

which is basically the (high-level) loan-loss provision. It is hard to imagine, given
their broader significance, that K∗ and R∗ would not be readily available.

An important observation is required with regard to the quantity Ci found in
Eq. 11.65. Using the original definition and the proposed representation of the loss-
given-default variance from Eq. 11.72, we may simplify its form as

Ci = γ̄ 2
i + νγi

γ̄i
︸ ︷︷ ︸

Eq.
11.65

, (11.80)

= γ̄ 2
i +

Eq. 11.72
︷ ︸︸ ︷

ξ γ̄i (1 − γ̄i)

γ̄i
,

=
��̄γi

(

γ̄i + ξ(1 − γ̄i)

)

��̄γi
,

= ξ + γ̄i(1 − ξ).

Given that values of γ̄i ∈ (0, 1), Eq. 11.80 permits us to show that Ci ∈ (ξ, 1).
Moreover, since practical values of ξ are in the neighbourhood of 0.1 to 0.3, we can
comfortably conclude that Ci ≤ 1 for any choice of loss-given-default parameters
(and for all i = 1, . . . , N). This fact will prove helpful in the derivation of the upper
bound.

The final step in our preparation of Gordy and Lütkebohmert [16, Section 3]’s
upper bound involves the definition of some important constants. Let us denote the
total capital requirement within the observable set as,

K∗
M =

∑

i∈M
ciKi . (11.81)
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We then introduce the observable loan-loss reserve requirement as,44

R∗
M =

∑

i∈M
ciRi . (11.82)

These two quantities turn out to be quite useful, since if one knows the total amount
and the observable amount, then the unobservable quantity must be their difference.

Collecting all of these pieces together, Gordy and Lütkebohmert [16, Section 3]’s
upper bound, when given partial information about the composition of one’s
portfolio, is derived as

Gα(L) = 1

2K∗
N
∑

i=1

c2
i CiQi

︸ ︷︷ ︸

Eq. 11.74

, (11.83)

= 1
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c2
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+
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︸ ︷︷ ︸
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⎟

⎟

⎟

⎟

⎠
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2K∗

⎛

⎜

⎜

⎝

∑

i∈M
c2
i CiQi +

∑

i /∈M
c̄ci
︸︷︷︸

≤c2
i

Ci
︸︷︷︸

≤1

Qi

⎞

⎟

⎟

⎠

,

≤ 1

2K∗

⎛

⎜

⎜

⎜

⎝

∑

i∈M
c2
i CiQi + c̄

∑

i /∈M
ci

(

δα(a)

(

Ri +Ki

)

−Ki

)

︸ ︷︷ ︸

Qi

⎞

⎟

⎟

⎟

⎠

,

≤ 1

2K∗

⎛

⎝

∑

i∈M
c2
i CiQi + c̄

∑

i /∈M
ci

(

(δα(a)− 1)Ki + δα(a)Ri
)

⎞

⎠ ,

≤ 1

2K∗

⎛

⎝

∑

i∈M
c2
i CiQi + c̄

(

(δα(a)− 1)
∑

i /∈M
ciKi + δα(a)

∑

i /∈M
ciRi

)

⎞

⎠ ,

44 This notion of loan-loss reserve (or loan impairment) is not as general as the expected-credit loss
calculation addressed in Chap. 9. It simply provides a more classic assessment of the unconditional
expectation of portfolio credit loss over a one-year horizon.



720 11 Seeking External Comparison

≤ 1

2K∗

⎛

⎜
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⎝
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(

(δα(a)− 1)

(

K∗ −K∗
M

)

︸ ︷︷ ︸

∑

i /∈M ciKi

+δα(a)
(

R∗ − R∗
M

)

︸ ︷︷ ︸

∑

i /∈M ciRi

)

⎞

⎟

⎟

⎟

⎟

⎠

,

≤ 1

2K∗

⎛

⎝

∑

i∈M
c2
i CiQi + c̄

(
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(
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⎞

⎠ .

It is also relatively easy to see that as the observable set M converges to the total
collection of portfolios, then the two terms K∗ − K∗

M and R∗ − R∗
M tend to zero.

The result is that the upper bound converges, as one would logically expect, to the
usual granularity adjustment.

Colour and Commentary 137 (AN UPPER BOUND ON THE GRANULAR-
ITY ADJUSTMENT): Large financial institutions might find it challenging
to (affordably) collect all of the diverse exposures—spread over multiple
branches over the globe—into a single place. Gordy and Lütkebohmert
[16, Section 3] provide, for just such an eventuality, an upper bound on
the granularity adjustment. The idea is simple; one focuses on the largest,
most important, exposures in the portfolio. Partial information regarding
the portfolio is sufficient for construction of this upper bound. One needs
full information regarding the main exposures, some modest portfolio-wide
quantities as well as a cap on the magnitude of the unobserved exposures. The
form of the upper bound is intuitive and, as we tend towards full information
about the portfolio, it collapses to the usual granularity adjustment. A small-
or medium-sized institution may not find this particularly important, but its
occasional use by S&P in their RAC methodology argues for investing some
effort towards understanding its construction.

11.2.5 A Multi-Factor Adjustment

The preceding granularity adjustment—offered by Gordy and Lütkebohmert [15,
16]—is not the only approach to this question. Pykhtin [27] proposes an alternative
that essentially permits expanding our treatment to include two distinct elements: the
usual single-name and a new multi-factor adjustment. Unlike the previous section,
this effort restricts its focus to the Gaussian threshold—or what we could also refer
to as CreditMetrics—methodology. There are only a few twists over the preceding
discussion, but the discussion remains rather heavy from a technical perspective. It
is nonetheless a useful exercise to solidify the key ideas in the granularity adjustment
and, in many ways, better comprehend our credit-risk economic-capital model.
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Again, the less enthusiastic reader is advised to keep to the figures and gray boxes
(or skip immediately to Chap. 12).

A Generic Multi-Factor Model

As with all granularity adjustments, the following development involves a high
level of complexity. To avoid potential confusion and to permit easy comparison,
we’ll endeavour to derive the key relationships using the broad strokes of Pykhtin
[27]’s notation. The approach begins with the definition of a fairly generic multi-
factor Gaussian threshold model. The ith credit obligor has the following structural
composite latent state variable,

Xi = riYi +
√

1 − r2
i ξi , (11.84)

where ξi ∼ N(0, 1) and

Yi =
K
∑

k=1

αikZk, (11.85)

for i = 1, . . . , N . The systemic component is thus a linear combination of K (i.e.,
{Zk; k = 1, . . . ,K}) independent, identically distributed N(0, 1) random variates.
We further wish that Xi ∼ N(0, 1) for i = 1, . . . , N , which requires the following
condition on the form of each Yi :

K
∑

k=1

α2
ik = 1. (11.86)

This condition is readily met in our credit-risk economic-capital implementation,
where we denote the αik coefficients as

αik = βik
√

βi�β
T
i

, (11.87)

where βik is the ith counterparty’s loading on the kth factor and � ∈ R
K×K

represents the factor correlation matrix. These are not directly comparable, however,
because the underlying state variables in our approach are not orthogonal. To get our
model into this form entails orthogonalization of our industrial and geographical
factor space.45

45 We achieve this by performing a Cholesky decomposition on � = UUT and then rewriting
the factor-loaded system as (βU)I (UT βT ). The numerator in Eq. 11.87 is simply replaced with
(βiU)k . That is, it is the kth element of the product of the ith obligor’s raw factor loadings and
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The (asset) correlation between any two arbitrary entities—which will make an
appearance in latter discussion—is given as,

corr(Xi,Xj ) = cov(Xi,Xj )
√

varXi
︸ ︷︷ ︸

=1

√

varXj
︸ ︷︷ ︸

=1

, (11.88)
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︸ ︷︷ ︸
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︸ ︷︷ ︸
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⎠ ,

= E
(

XiXj

)

,

= E
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riYi +
√

1 − r2
i ξi

)
(

rj Yj +
√

1 − r2
j ξj

)
)

,

= rirjE
(

YiYj
)

,

= rirjE

((

K
∑

k=1

αikZk

)(

K
∑

k=1

αjkZk

))

= rirj E

(

K
∑

k=1

αikαjkZ
2
k

)

︸ ︷︷ ︸

By independence

, ,

= rirj

K
∑

k=1

αikαjk E

(

Z2
k

)

︸ ︷︷ ︸

=var(Zk)=1

,

= rirj

K
∑

k=1

αikαjk.

That is, the asset correlation is a function of the systemic weights of both
counterparties and their factor loadings on the latent systemic state variables.

The portfolio loss function is thus readily written as,

L =
N
∑

i=1

ci γ̄iI{Xi≤�−1(pi)}. (11.89)

the upper-diagonal matrix stemming from the Cholesky decomposition of the systemic-factor
correlation matrix; everything else remains unchanged. See Chap. 2 for more on this point.
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When K > 3 or 4, we need to take recourse with simulation methods to solve this
problem.46 Following the lead from Gordy [14], we can write the limiting loss of
the infinitely granular version of our portfolio as,

L∞ = E(L| �Z), (11.90)

where �Z denotes our collection of systemic state variables. In plain English, the
infinitely granular portfolio loss is the systemic part of L; it is what is left once the
idiosyncratic aspect has been diversified away. This is conceptually identical to the
previous setting with one important distinction: we are not conditioning on a single
systemic risk factor, but rather a collection of them. Evaluating Eq. 11.90 in the
usual way results in the very familiar

L∞ =
N
∑

i=1

ci γ̄i �

⎛

⎝

�−1(pi)− ri
∑K

k=1 αikZk
√

1 − r2
i

⎞

⎠

︸ ︷︷ ︸

p̂i (y)≡p̂i
(

∑K
k=1 αikZk

)

, (11.91)

where p̂i(y) is the conditional default probability associated with the multi-factor
model. Since the granularity adjustment relies on the single-factor structure, these
ideas cannot be used directly.

Introducing a One-Factor Model

To this point, we have not done anything particularly new. The basic notation
of a generic multi-factor Gaussian threshold has been advanced. Building on this
foundation, Pykhtin [27] then introduces a one-factor model. He does so, however,
in a clever manner. In particular, the latent state variable is written as

Xi = aiȲ +
√

1 − a2
i εi, (11.92)

where εi ∼ N(0, 1) and

Ȳ =
K
∑

k=1

bkZk. (11.93)

46 The saddlepoint method, see Bolder [9, Chapter 7] and the many useful references therein, offers
a very effective pseudo-analytic solution for low-dimensional credit-risk models.
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Again, we desire Xi to be standard normally distributed so we impose the condition

K
∑

k=1

b2
k = 1. (11.94)

to maintain unit variance of Ȳ and, by extension, Xi . The trick is that the one-factor
model is also a function of the (same) multidimensional set of systemic factors,
but the weights are fixed for all obligors. This implies that Ȳ is a single, global
systemic factor. Quite naturally, it is some linear combination of a larger set of
underlying factors. This makes sense. The real world is obviously multidimensional.
Reducing it to a single dimension will invariably involve averaging over existing
dimensions.47 It also, via its one-factor structure, provides us access to the usual
granularity adjustment logic.

We may now introduce the conditional portfolio loss associated with the one-
factor model given Ȳ as

E(L|Ȳ )
︸ ︷︷ ︸

L̄

=
N
∑

i=1

ci γ̄i �

⎛

⎝

�−1(pi)− aiȲ
√

1 − a2
i

⎞

⎠

︸ ︷︷ ︸

pi(Ȳ )

, (11.95)

where we typically approximate the αth quantile of the one-factor loss distribution
by replacing Ȳ with�−1(1−α). Note that pi(·) represents the one-factor conditional
default probability; we’ll need to be careful to keep p̂i (·) and pi(·) distinct. To
be crystal clear, they are associated with the single- and multi-factor models,
respectively. This concentrated (or granular) one-factor model will be used, with
some modifications, in the forthcoming concentration adjustment.

The next part of the set-up is the classic granularity adjustment approach. We
attempt to estimate the distance

∣

∣ qα(L)− qα(L̄)
∣

∣ using the surprisingly effective
manipulation:

qα(L) = qα

⎛

⎝L+ L̄− L̄
︸ ︷︷ ︸

=0

⎞

⎠ , (11.96)

= qα

⎛

⎜

⎝L̄+ ε
(

L− L̄
)

︸ ︷︷ ︸

Lε

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

ε=1

,

47 An analogous situation arises with the one-dimensional Capital Asset Pricing Model (CAPM)
and the multi-dimensional Arbitrage Pricing Theorem (APT).
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The leads to the Taylor series expansion around ε = 0 and

qα(L)− qα
(

L̄
)

︸ ︷︷ ︸

Gα(L)

≈ ∂qα
(

L̄+ ε
(

L− L̄
))

∂ε

∣

∣

∣

∣

∣

ε=0

+ 1

2

∂2qα
(

L̄+ ε
(

L− L̄
))

∂ε2

∣

∣

∣

∣

∣

ε=0

,

≈ E

(

L− L̄

∣

∣

∣

∣
L̄ = �−1(1 − α)

)

︸ ︷︷ ︸

=0?

− 1

2

1

φ(y)

∂

∂y

⎛

⎝

φ(y)var
(

L− L̄|Ȳ = y
)

∂E(L−L̄|Ȳ=y)
∂y

⎞

⎠

∣

∣

∣

∣

∣

∣

y=�−1(1−α)
,(11.97)

where we use the (extensive and laborious) logic from the preceding section to get
to this point. To ease the notation, we use φ(y) to describe the Gaussian density
function of the one-factor state variable and set

μ(y) = E(L− L̄|Ȳ = y), (11.98)

and

ν(y) = var(L− L̄|Ȳ = y). (11.99)

Again, this is all entirely consistent with the development in the previous sections.
The only difference is that we are working with an alternative definition of the one-
factor model. In other words, we have previously spoken of a blanket systemic risk
factor, G. In this case, we denote it as Ȳ and assign it the specific construction in
Eq. 11.93.

Calibrating the Multi- and Single-Factor Worlds

The principal job at hand, and the challenge that Pykhtin [27] resolves, is to use
the connection between Ȳ and �Z—that is, the single global source of risk and the
underlying collection of systemic risk factors—to describe the difference between
L and L̄. In this formulation, there are two elements of difference: the number of
factors and the level of portfolio granularity. Pykhtin [27]’s method permits us to
capture both.

To do this, a central requirement is to determine the coefficients {ai; i =
1, . . . , N} and {bk; k = 1, . . . ,K}. These are the factor loadings on the one-
factor state variable and the fixed linear combination of the multiple underlying
risk factors, respectively. Identification of these parameters is thus essentially a
calibration exercise. The driving idea is to create a form of equivalency between
these multi- and single-factor credit-risk models.
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Accomplishing this begins with the definition of another representation of the
systemic state variable, Yi . Pykhtin [27] writes it as,

Yi = ρi Ȳ +
√

1 − ρ2
i ηi

︸ ︷︷ ︸

Also
K
∑

k=1

αikZk by

Eq. 11.85

, (11.100)

where, as usual, ηi ∼ N(0, 1) and ρi is the ith obligor’s loading on the
single global factor. There is, nonetheless, a twist. Each ηi is independent of
Ȳ , but they are not mutually independent. That is, cov(ηi , ηj ) �= 0 for each
i, j = 1, . . . , N . This basically decomposes the composite latent state variable,
in the multiple risk-factor setting, into two main components: the single-factor
component and the residual from the other state variables. This is the reason
that the residual components, embedded in the η terms, are not independent. It
is basically a risk decomposition between the single- and multi-factor perspec-
tives.

The ρi coefficients, as one would expect, represent the correlation between each
Yi variable and Ȳ . This is readily demonstrated:

corr(Yi, Ȳ ) =
E

⎛

⎜

⎝

⎛

⎝Yi −
=0
︷ ︸︸ ︷

E(Yi)

⎞

⎠

⎛

⎜

⎝Ȳ −
=0
︷︸︸︷

E(Ȳ )

⎞

⎟

⎠

⎞

⎟

⎠

√

var(Yi)
︸ ︷︷ ︸

=1

√

var(Ȳ )
︸ ︷︷ ︸

=1

, (11.101)

= E(Yi Ȳ ),

= E

((

ρi Ȳ +
√

1 − ρ2
i ηi

)

Ȳ

)

,

= ρi E(Ȳ 2)
︸ ︷︷ ︸

=var(Ȳ )=1

+
���������√

1 − ρ2
i E(ηi)E(Ȳ )

︸ ︷︷ ︸

=0

,

= ρi .

Using our alternative definition of Yi , we can find an equivalence between ρi and
other important model coefficients. In particular,

corr(Yi , Ȳ ) = E(Yi Ȳ ), (11.102)

= E

⎛

⎜

⎜

⎜

⎜

⎝

(

K
∑

i=1

αikZk

)

︸ ︷︷ ︸

Yi

(

K
∑

i=1

bkZk

)

︸ ︷︷ ︸

Ȳ

⎞

⎟

⎟

⎟

⎟

⎠

,
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=
K
∑

i=1

αikbk

=var(Zk)=1
︷ ︸︸ ︷

E

(

Z2
k

)

︸ ︷︷ ︸

By independence
of {Zk; k = 1, . . . , K}

,

=
K
∑

i=1

αikbk.

This naturally implies that ρi = ∑K
i=1 αikbk. While essentially just a consequence

of the various definitions, these relationships will prove useful later in the develop-
ment.

Even more interesting is what happens when we plug in this revised definition
of Yi into our original multi-factor composite latent state variable, Xi . The develop-
ment is a bit less obvious and looks as follows:

Xi = riYi +
√

1 − r2
i ξi

︸ ︷︷ ︸

Eq. 11.84

, (11.103)

= ri

(

ρi Ȳ +
√

1 − ρ2
i ηi

)

︸ ︷︷ ︸

Eq. 11.100

+
√

1 − r2
i ξi ,

= riρi Ȳ + ri

√

1 − ρ2
i ηi +

√

1 − r2
i ξi,

= riρi Ȳ +
√

r2
i − r2

i ρ
2
i ηi +

√

1 − r2
i ξi .

With three sources of risk, this does not appear terribly easy to get this into a
tractable form. Reading between the lines—since it is not explicitly demonstrated—
Pykhtin [27] opts for a representation that preserves the standard normality of Xi .
The expectation is uninteresting; it will remain zero in virtually all cases. This brings
us to the variance. We need to recall that each individual variable (i.e., Ȳ , ηi , and ξi )
is statistically independent. We begin with

var(Xi) = var

(

riρiȲ +
√

r2
i − r2

i ρ
2
i ηi +

√

1 − r2
i ξi

)

, (11.104)

= r2
i ρ

2
i var(Ȳ )+ (r2

i − r2
i ρ

2
i )var(ηi)+ (1 − r2

i )var(ξi).
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Now, since var(ηi) = var(ξi) = 1, we will replace it with another standard normal
random variable, ζi ∈ N(0, 1). This leads to

var(Xi) = r2
i ρ

2
i var(Ȳ )+ (r2

i − r2
i ρ

2
i ) var(ζi)
︸ ︷︷ ︸

=var(ηi)

+(1 − r2
i ) var(ζi)
︸ ︷︷ ︸

var(ξi )

, (11.105)

= r2
i ρ

2
i var(Ȳ )+

(

��r
2
i − r2

i ρ
2
i + 1 −��r

2
i

)

var(ζi),

= r2
i ρ

2
i var(Ȳ )
︸ ︷︷ ︸

=1

+(1 − r2
i ρ

2
i ) var(ζi)
︸ ︷︷ ︸

=1

,

= 1.

The corollary is that we may write Xi much more succinctly as,

Xi = riρi Ȳ +
√

1 − r2
i ρ

2
i ζi, (11.106)

without any loss of generality. This allows us to re-write the conditional portfolio
loss as,

E(L|Ȳ )
︸ ︷︷ ︸

L̄

=
N
∑

i=1

ci γ̄i�

⎛

⎝

�−1(pi)− riρiȲ
√

1 − r2
i ρ

2
i

⎞

⎠

︸ ︷︷ ︸

Same form as Eq. 11.95

, (11.107)

and immediately infer from Eq. 11.95 that ai = riρi . Indeed, collecting our previous
definitions, we have established that

ai = ri

K
∑

i=1

αikbk

︸ ︷︷ ︸

ρi

. (11.108)

The {ai; i = 1, . . . , N} and {ρi; i = 1, . . . , N} parameters are thus a function of
three deeper components: the ri ’s, the αik’s, and the bk’s.

It is useful, at this point, to take stock of the various model parameters. The
{ri; i = 1, . . . , N} are the systemic-weight parameters. These are determined to
capture the importance of the systemic and idiosyncratic elements of each credit
obligor, which are estimated outside of this procedure. The {αik; i = 1, . . . , N}
parameters denote the factor loadings. Again, computed outside this approach, these
describe the importance of the individual sectoral and geographical state variables
to a given credit counterpart. This leaves us with the set of {bk; i = 1, . . . , N}
parameters; this is the only area where we have some choice. At this point, however,
our sole available insight regarding the bk’s is that they must meet the condition
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that
∑K

k=1 b
2
k = 1. Beyond this meagre restriction, the set of options is rather

broad.
Pykhtin [27] indicates that, conceptually, we would like to select the {bk; i =

1, . . . , N} parameters to minimize the distance between qα(L) and qα(L̄). Since
L is unknown, and ultimately the object we are attempting to approximate, this
understandably turns out to be a difficult task.48 Instead, Pykhtin [27] proposes a
proxy. He recommends selecting the bk’s to generate the largest possible positive
correlation between the single risk factor and the composite risk factors. That is, to
maximize corr(Yi, Ȳ ).

To be rather more specific, this leads to the following constrained optimization
problem:

max
b1,...,bK

N
∑

i=1

ωi

Eq.
11.102

︷ ︸︸ ︷

K
∑

k=1

αikbk

︸ ︷︷ ︸

corr(Yi ,Ȳ )

, (11.109)

subject to:
K
∑

k=1

b2
k = 1 (from Eq. 11.94).

The role of the ωi ’s is essentially to combine, or weight, the pairwise correlation
coefficients between the single and multi-factor perspectives. This problem can
be happily solved analytically using the method of Lagrange multipliers. If we
formulate the associated Lagrangian, we have

L =
N
∑

i=1

ωi

K
∑

k=1

αikbk − λ

(

K
∑

k=1

b2
k − 1

)

, (11.110)

for k = 1, . . . ,K and where λ denotes the Lagrange multiplier. The first-order
conditions are given by

∂L
∂bk

= ∂

∂bk

(

N
∑

i=1

ωi

K
∑

k=1

αikbk − λ

(

K
∑

k=1

b2
k − 1

))

, (11.111)

=
N
∑

i=1

ωiαik − 2λbk,

48 Indeed, if we could readily solve this problem, we wouldn’t need the approximation in the first
place.
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for k = 1, . . . ,K . This, in turn, implies that for each k

bk =
N
∑

i=1

ωiαik

2λ
. (11.112)

This is a good first step, but we need now to specify both λ and the ωi ’s. To
determine the Lagrange multiplier, we differentiate the Lagrangian with respect to
λ as

∂L
∂λ

= ∂

∂λ

(

N
∑

i=1

ωi

K
∑

k=1

αikbk − λ

(

K
∑

k=1

b2
k − 1

))

, (11.113)

=
K
∑

k=1

b2
k − 1.

Setting this second condition to zero and plugging in our intermediate value of bk
yields

K
∑

k=1

(

N
∑

i=1

ωiαik

2λ

)2

= 1, (11.114)

λ = 1

2

√

√

√

√

√

K
∑

k=1

(

N
∑

i=1

ωiαik

)2

.

Introducing this back into our original quantity provides us with an estimate for
each bk parameter

bk =

N
∑

i=1

ωiαik

√

√

√

√

√

K
∑

m=1

(

N
∑

i=1

ωiαim

)2
. (11.115)

This leaves us with the thorny question of selecting the ωi’s. Pykhtin [27] suggests
the following choice:

ωi = ci γ̄i�

⎛

⎝

�−1(pi)− ri�
−1(1 − α)

√

1 − r2
i

⎞

⎠ , (11.116)

= ci γ̄i p̂i

(

�−1(1 − α)

)

︸ ︷︷ ︸

See Eq. 11.91

,
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for i = 1, . . . , N . This is essentially the conditional expected loss for the ith
obligor given an adverse (i.e., 1−α confidence level) systemic risk-factor outcome.
The final result is a fairly unwieldy, but entirely calculable expression for each of
our bk’s

bk =

N
∑

i=1

ci γ̄i p̂

(

�−1(1 − α)

)

αik

√

√

√

√

√

K
∑

m=1

(

N
∑

i=1

ci γ̄i p̂

(

�−1(1 − α)

)

αim

)2
. (11.117)

Each bk parameter, therefore, is a function of the portfolio exposures, loss-given-
defaults, systemic weights, and factor loadings. It is a complicated function of the
expected loss of each credit obligor conditional on the underlying state variable
being realized at an α level.

Colour and Commentary 138 (CALIBRATING THE PYKHTIN [27] MOD-
EL): To actually use any model, a practical strategy is required to determine
its parameters. There are basically five groups of model coefficients: the ri ’s,
the αik’s, the ρi’s, the ai’s and the bk’s for i = 1, . . . , N credit obligors
and k = 1, . . . ,K systemic risk factors. The first two are given by the
multi-factor model: the ri’s and αik’s represent its systemic weights and
factor loadings, respectively. These are readily available; indeed, we discuss
their estimation in Chap. 3. The ρi coefficients represent the correlation
between the single systemic risk factor, Ȳ , and Pykhtin [27]’s alternative
representation of the one factor state variable. This is basically a stepping
stone between the single- and multi-factor models. It turns out that the ρi’s are
a function of the αik’s and the bk’s. The ai parameters are the systemic weights
associated with the equivalent one-factor model. They can be written as a
function of the ri’s, αik’s and the bk’s. The only missing remaining unspecified
piece, therefore, relates to the bk’s; these are the (fixed) combination of
the systemic system of risk factors {Zk; k = 1, . . . ,K} yielding the single-
factor, Ȳ . As long as the constraints are preserved, any choice of bk’s is
possible. Practically, however, we wish to use this opportunity to bring
the single- and multi-factor models maximally together. Pykhtin [27] thus
suggests that the bk’s are selected to generate the largest possible positive
correlation between the single risk factor and the composite risk factors.

(continued)
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Colour and Commentary 138 (continued)
That is, to maximize corr(Yi , Ȳ ). This leads to a maximization problem and
explicit closed-form expressions for the bk’s. In many ways, this is the most
important step in the practical implementation of Pykhtin [27]’s granularity
adjustment.

Granularity Adjustment Revisited

We can now return to our Taylor-series expansion. Since we have imposed the
condition that L̄ = E(L|Ȳ ), the first derivative vanishes. We saw the same result in
the previously analyzed standard granularity adjustment. This allows us to describe
our approximation as,

qα(L)− qα(L̄) ≈ − 1

2 · φ(y)
∂

∂y

(

φ(y)ν(y)

μ′(y)

)∣

∣

∣

∣

y=�−1(1−α)
︸ ︷︷ ︸

Eq. 11.97

, (11.118)

≈ − 1

2

(

1

μ′(y)

(

φ′(y)ν(y)
φ(y)

+ ν′(y)
)

−ν(y)μ′′(y)
(μ′(y))2

)∣

∣

∣

∣

y=�−1(1−α)
,

which is precisely the same form as in Gordy and Lütkebohmert [15, 16]’s granu-
larity adjustment. One important difference, however, is that in this case the density
of the underlying latent risk factor follows a standard-normal Gaussian distribution;
that is, f (y) = φ(y). We may cheerfully take advantage of the convenient fact
that, for this specific density function, φ′(y) = −yφ(y). This (again) allows us to
practically eliminate the density component from this expression. It also permits a
slight rearrangement of the terms to agree with Pykhtin [27]’s representation. This
is a small point, but it turns out to be important in subsequent analysis when the
approximation is decomposed into two distinct parts. The starting point is thus,

qα(L)− qα(L̄) ≈ − 1

2

⎛

⎜

⎜

⎜

⎜

⎝

1

μ′(y)

⎛

⎜

⎜

⎜

⎜

⎝

φ′(y)
︷ ︸︸ ︷

−y��φ(y) ν(y)
��φ(y) + ν′(y)

⎞

⎟

⎟

⎟

⎟

⎠

− ν(y)μ′′(y)
(

μ′(y)
)2

⎞

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y=�−1(1−α)

,(11.119)

Gα(L) = − 1

2μ′(y)

(

ν′(y)− ν(y)

(

μ′′(y)
μ′(y) + y

))∣

∣

∣

∣

y=�−1(1−α)
.

Since we would like to use this method to perform practical computations,
we now need to identify the individual characters in our approximation. Let us
begin with the conditional loss term μ(y) and its derivatives. These are, with the
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exception of the revised density, identical to the standard CreditRisk+ based Gordy
and Lütkebohmert [16] granularity adjustment. In particular, we have that

μ(y) = E (L| Ȳ = y
)

, (11.120)

= E

(

N
∑

i=1

ciγiIDi

∣

∣

∣

∣

∣

Ȳ = y

)

,

=
N
∑

i=1

ci γ̄i�

⎛

⎝

�−1(pi)− aiy
√

1 − a2
i

⎞

⎠ ,

=
N
∑

i=1

ci γ̄ipi(y).

As we’ve seen many times before, the conditional default loss is the sum of the
exposure-weighted conditional default probabilities: pi(y) for i = 1, . . . , N . What
is new, however, is the need to evaluate both the first and second derivatives of this
equation. The first derivative is,

μ′(y) = ∂

∂y

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

N
∑

i=1

ci γ̄i�

⎛

⎝

�−1(pi)− aiy
√

1 − a2
i

⎞

⎠

︸ ︷︷ ︸

Eq. 11.120

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11.121)

= −
N
∑

i=1

ci γ̄i
ai

√

1 − a2
i

φ

⎛

⎝

�−1(pi)− aiy
√

1 − a2
i

⎞

⎠ ,

= −
N
∑

i=1

ci γ̄i
ai

√

1 − a2
i

φ

(

�−1 (pi(y))

)

︸ ︷︷ ︸

p′
i (y)

.

The final line is a bit of shorthand. We have already defined the conditional default
probability more succinctly as pi(y). If we only want the argument evaluated in
the Gaussian cumulative distribution function in pi(y), we need merely apply the
Gaussian quantile function. That is,

�−1 (pi(y)) = �−1

⎛

⎝�

⎛

⎝

�−1(pi)− aiy
√

1 − a2
i

⎞

⎠

⎞

⎠ , (11.122)
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= �−1(pi)− aiy
√

1 − a2
i

.

This allows us to shorten some of our expressions and (happily) recycle existing
computer code; it also makes the expressions slightly easier on the eyes.

The second derivative involves a tad more effort, but can ultimately be written as

μ′′(y) = ∂

∂y

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
N
∑

i=1

ci γ̄i
ai

√

1 − a2
i

φ

⎛

⎝

�−1(pi)− aiy
√

1 − a2
i

⎞

⎠

︸ ︷︷ ︸

Eq. 11.121

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11.123)

= ∂

∂y

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−
N
∑

i=1

ci γ̄i
ai

√

1 − a2
i

1√
2π

exp

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−
(

�−1(pi)−aiy
√

1−a2
i

)2

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

= −
N
∑

i=1

ci γ̄i
ai

√

1 − a2
i

⎛

⎝− ai
√

1 − a2
i

⎞

⎠

⎛

⎝−�−1(pi)− aiy
√

1 − a2
i

⎞

⎠

1√
2π

exp

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−
(

�−1(pi)−aiy
√

1−a2
i

)2

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

= −
N
∑

i=1

ci γ̄i
a2
i

1 − a2
i

�−1(pi)− aiy
√

1 − a2
i

φ

⎛

⎝

�−1(pi)− aiy
√

1 − a2
i

⎞

⎠ ,

= −
N
∑

i=1

ci γ̄i
a2
i

1 − a2
i

�−1 (pi(y)) φ

(

�−1 (pi(y))

)

︸ ︷︷ ︸

p′′
i (y)

.

At this point, things start to deviate importantly from the standard Gordy and
Lütkebohmert [16] granularity adjustment calculation. Let’s begin with the usual
form of the conditional variance of the default loss. Using similar ideas to those
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developed so far and exploiting the conditional independence of the default events,
we have

ν(y) = var (Li | Ȳ = y
)

, (11.124)

= var

(

N
∑

i=1

ciγiIDi

∣

∣

∣

∣

∣

Ȳ = y

)

,

=
N
∑

i=1

c2
i var

(

γiIDi

∣

∣ Ȳ = y
)

︸ ︷︷ ︸

By independence

.

Although γi and IDi are independent, the variance of their product is not particularly
easy to compute. It requires first removing the conditioning set, performing a few
manipulations, and then adding it back. The consequence will be a more workable
expression. This tedious operation begins with the first-principles definition of
variance as

var
(

γiIDi

) = E

(

(

γi IDi

)2
)

− E

(

γiIDi

)2

, (11.125)

var
(

γiIDi

∣

∣ γi
) = E

(

(

γiIDi

)2
∣

∣

∣

∣
γi

)

− E

(

γiIDi

∣

∣

∣

∣
γi

)2

,

E

(

(

γiIDi

)2
∣

∣

∣

∣
γi

)

= var
(

γiIDi

∣

∣ γi
)+ E

(

γiIDi

∣

∣

∣

∣
γi

)2

,

E

(

E

(

(

γiIDi

)2
∣

∣

∣

∣
γi

))

= E

(

var
(

γiIDi

∣

∣ γi
)+ E

(

γiIDi

∣

∣

∣

∣
γi

)2
)

︸ ︷︷ ︸

Taking expectation of both sides

,

E

(

(

γiIDi

)2
)

︸ ︷︷ ︸

By iterated
expectations

= E

(

var
(

γiIDi

∣

∣ γi
)+ E

(

γiIDi

∣

∣

∣

∣
γi

)2
)

,

E

(

(

γi IDi

)2
)

− E(γiIDi
)2

︸ ︷︷ ︸

Subtract from
both sides

= E

(

var
(

γiIDi

∣

∣ γi
)+ E

(

γiIDi

∣

∣

∣

∣
γi

)2
)

− E(γi IDi
)2

︸ ︷︷ ︸

Subtract from
both sides

,

E

(

(

γiIDi

)2
)

− E(γi IDi
)2

︸ ︷︷ ︸

var(γi IDi
)

= E

(

var
(

γiIDi

∣

∣ γi
)+ E

(

γiIDi

∣

∣

∣

∣
γi

)2
)

− E

(

E

(

γiIDi

∣

∣

∣

∣
γi

))2

︸ ︷︷ ︸

By iterated
expectations

,

var(γiIDi
) = E

(

var
(

γiIDi

∣

∣ γi
)

)

+ E

(

E

(

γiIDi

∣

∣

∣

∣
γi

)2
)

− E

(

E

(

γi IDi

∣

∣

∣

∣
γi

))2

︸ ︷︷ ︸

var

(

E
(

γiIDi

∣

∣γi
)

)

,
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var(γiIDi
) = E

(

var
(

γiIDi

∣

∣ γi
)

)

+ var

(

E
(

γiIDi

∣

∣ γi
)

)

,

var
(

γiIDi

∣

∣ Ȳ = y
) = E

(

var
(

γiIDi

∣

∣ γi
)

∣

∣

∣

∣
Ȳ = y

)

+ var

(

E
(

γiIDi

∣

∣ γi
)

∣

∣

∣

∣
Ȳ = y

)

︸ ︷︷ ︸

Reintroduce original conditioning information

.

Thus after a significant amount of manipulation, we have an alternative expression
for the conditional variance of the product of our (independent) loss-given-default
and default-event variables. At this point, we can exploit the independence of these
variables along with the conditioning information to, if not simplify, rearrange this
expression into known quantities. In particular,

var
(

γiIDi

∣

∣ Ȳ = y
)

(11.126)

= E

(

γ 2
i var

(

IDi

∣

∣ γi
)

∣

∣

∣

∣
Ȳ = y

)

+ var

(

γiE
(

IDi

∣

∣ γi
)

∣

∣

∣

∣
Ȳ = y

)

,

= E

(

γ 2
i var

(

IDi

)

∣

∣

∣

∣
Ȳ = y

)

+ var

(

γiE
(

IDi

)

∣

∣

∣

∣
Ȳ = y

)

,

= E

(

γ 2
i

∣

∣

∣

∣
Ȳ = y

)

E

(

var
(

IDi

)

∣

∣

∣

∣
Ȳ = y

)

+ E
(

IDi

∣

∣ Ȳ = y
)2 var

(

γi

∣

∣

∣

∣
Ȳ = y

)

,

= E

(

γ 2
i

)

var
(

IDi

∣

∣ Ȳ = y
) + E

(

IDi

∣

∣ Ȳ = y
)2 var (γi) ,

=
(

E (γi)
2 + var (γi)

)

︸ ︷︷ ︸

E
(

γ 2
i

)

var
(

IDi

∣

∣ Ȳ = y
) + E

(

IDi

∣

∣ Ȳ = y
)2 var (γi) ,

= E (γi)
2 var

(

IDi

∣

∣ Ȳ = y
)+ var (γi) var

(

IDi

∣

∣ Ȳ = y
)+ E

(

IDi

∣

∣ Ȳ = y
)2 var (γi) ,

which includes a number of familiar characters. Plugging this back into our original
conditional variance expression, we arrive at

ν(y) (11.127)

=

Eq. 11.124
︷ ︸︸ ︷

N
∑

i=1

c2
i

(

E (γi)
2 var

(

IDi

∣

∣ Ȳ = y
) + var (γi) var

(

IDi

∣

∣ Ȳ = y
)+ E

(

IDi

∣

∣ Ȳ = y
)2

var (γi)
)

︸ ︷︷ ︸

Eq. 11.126

,

=
N
∑

i=1

c2
i

(

γ̄ 2
i pi (y)

(

1 − pi(y)

)

+ νγi pi (y)

(

1 − pi(y)

)

+ pi(y)
2νγi

)

,

=
N
∑

i=1

c2
i

(

γ̄ 2
i

(

pi(y)− pi(y)
2
)

+ νγi pi (y)−����pi(y)
2νγi +����pi(y)

2νγi

)

,
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=
N
∑

i=1

c2
i

(

γ̄ 2
i

(

pi(y)− pi(y)
2
)

+ νγi pi (y)

)

≡
N
∑

i=1

c2
i pi (y)

(

νγi + γ̄ 2
i

(

1 − pi(y)

))

︸ ︷︷ ︸

Put aside for (future) comparison
to Eq. 11.149

.

Finally, after a lengthy and wearisome computation, we have an expression for the
conditional variance.49 While interesting, and most definitely an important part of
the foundation for future computations, this definition of conditional variance is not
directly employed in the Pykhtin [27] model.

Very quickly, before we move on, and because it will prove interesting, we
compute the first derivative of this (unused) version of conditional variance. It is
given as,

ν′(y) = d

dy

(

N
∑

i=1

c2
i

(

γ̄ 2
i

(

pi(y)− pi(y)
2
)

+ νγi pi(y)

)
)

, (11.128)

=
N
∑

i=1

c2
i

(

γ̄ 2
i

(

p′
i (y)− 2pi(y)p′

i (y)

)

+ νγip
′
i (y)

)

,

=
N
∑

i=1

c2
i p

′
i (y)

(

γ̄ 2
i

(

1 − 2pi(y)

)

+ νγi

)

.

We will keep this mind when interpreting a key part of the final result proposed by
Pykhtin [27].

Without perhaps realizing it, we have actually developed all of the formulae and
machinery required for the computation of Gordy and Lütkebohmert [16]’s gran-
ularity adjustment in the one-factor Gaussian threshold model setting. Figure 11.7
collects all of the loose ends from the previous derivations and presents the final
result. While perhaps not packaged as neatly as the construction in Fig. 11.6, this
is nonetheless a legitimate Pillar II option for one’s concentration adjustment. The
remaining discussion in this section examines how Pykhtin [27] extends this basic
construction to a more ambitious description of concentration effects.

The Big Reveal

Pykhtin [27] does not seek to replicate the standard granularity adjustment. His
objective is to incorporate both concentration and multi-factor effects. To achieve
this difficult feat, Pykhtin [27] relies on the so-called law of total variance. Imagine

49 The complexity of this result likely explains, at least in part, Gordy and Lütkebohmert [16]’s
preference for use of the CreditRisk+ model in their granularity adjustment. Bolder [9, Chapter 6]
considers the constant loss-given-default case of the one-factor, Gaussian threshold model; this
relatively unrealistic choice nonetheless dramatically eases the mathematics.
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Fig. 11.7 Gaussian threshold granularity adjustment: This schematic outlines, at a single glance,
the principal formulae involved in Gordy and Lütkebohmert [16]’s granularity adjustment calcu-
lation. The key difference is that, in this case, it is applied to the one-factor Gaussian threshold
model rather than the CreditRisk+ mixture approach from Fig. 11.6.

that we have two random variables, X and Y . The law of total variance holds that50

var(X) = E

(

var(X|Y )
)

+ var

(

E(X|Y )
)

. (11.129)

Pykhtin [27] essentially takes this one level deeper and adds a third conditioning
variable; let’s call it Z.51 This leads to:

var(X|Z) = var

(

E(X|Y )
∣

∣

∣

∣
Z

)

︸ ︷︷ ︸

Explained (systemic)
component

+ E

(

var(X|Y )
∣

∣

∣

∣
Z

)

︸ ︷︷ ︸

Unexplained (idiosyncratic)
component

. (11.130)

In practical statistical applications—when, for example, one is decomposing
variance—these two components are often referred to as the explained and
unexplained components. Linking this back to finance theory, we cannot escape the
systemic or explained component, but as the portfolio tends to infinite granularity,

50 This is a well-known result in probability theory. For more on this idea, see Durrett [11,
Section 4.1, Exercise 1.9]. Indeed, the attentive reader will have noticed that we have already
derived it, from first principles, during the construction of ν(·) in Eq. 11.125.
51 Of course, as is typical in finance applications, we are being rather loose with the notion of
conditioning set. More technically, we are conditioning on the σ -algebra generated by Z or σ {Z}.
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the idiosyncratic element can be diversified away. This foreshadows their respective
role in describing the multi-factor and concentration effects.

Application of this idea to the conditional variance arising in this problem, ν(·),
leads to the following very important decomposition:

var(L|Ȳ = y)
︸ ︷︷ ︸

ν(y)

= var

(

E(L|{Zk})
∣

∣

∣

∣
Ȳ = y

)

︸ ︷︷ ︸

ν∞(y)

+E

(

var(L|{Zk})
∣

∣

∣

∣
Ȳ = y

)

︸ ︷︷ ︸

νG(y)

,

(11.131)

where ν∞(y) and νG(y) denote the conditional variance associated with the multi-
factor and concentration effects, respectively.

If we plug this decomposition into our originally derived approximation, this
yields

qα(L)− qα(L̄) ≈ −

Eq. 11.119
︷ ︸︸ ︷

1

2μ′(y)

⎛

⎜

⎜

⎜

⎝

(

ν′∞(y)+ ν′G(y)
)

︸ ︷︷ ︸

ν′(y)

− (ν∞(y) + νG(y)
)

︸ ︷︷ ︸

ν(y)

(

μ′′(y)
μ′(y) + y

)

⎞

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y=�−1(1−α)

, (11.132)

Gα(L) = − 1

2μ′(y)

⎡

⎢

⎢

⎢

⎣

(

ν′∞(y)−ν∞(y)

(

μ′′(y)
μ′(y) + y

))

︸ ︷︷ ︸

Multi-factor component

−
(

ν′G(y)− νG(y)
(

μ′′(y)
μ′(y) + y

))

︸ ︷︷ ︸

Concentration component

⎤

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

∣

y=�−1(1−α)

,

which explains why it was important to re-arrange and isolate the conditional
variance terms. This is possible due to the linearity of the original decomposition
and the linear properties of first derivatives. Pykhtin [27] refers to this as the quantile
correction or multi-factor adjustment.

Colour and Commentary 139 (VARIANCE DECOMPOSITION): The “rev-
eal” is a literary term used to describe when a piece of information, critical
to a book or play or movie’s plot, is finally exposed to the audience or reader.
Pykhtin [27]’s big reveal stems from an astute application of the law of
total variance. He uses this well-known variance decomposition method to
place the conditional variance of credit loss into two categories: systemic
and idiosyncratic components. The idiosyncratic element is broadly consistent
with the usual concentration adjustment. As the portfolio tends to infinite
granularity, it will tend to zero. The systemic component, however, cannot
be diversified away. Moreover, since single- and multi-factor models use
alternative approaches to describe the nature of systemic risk, this component
captures the multivariate dimension. The linearity of this breakdown and

(continued)
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Colour and Commentary 139 (continued)
its derivatives also permit the maintenance of the linear form of this add-
on. Each effect can be computed and measured separately. Their relative
magnitude is an interesting empirical question.

The Drudgery

The final task, before we can actually implement this approximation, is to determine
the specific form of our conditional variance terms and their first derivatives.
This turns out, rather unfortunately but not terribly surprisingly, to be a relatively
unpleasant undertaking. Simply put, it is mathematical drudgery. It should perhaps
be relegated to an appendix, but it is included here to appease our intense aversion
to black boxes.

The first step is to find an alternative expression for Xi , our original multi-factor
composite state variable, in terms of Pykhtin [27]’s alternative representation of the
systemic state variable. This amounts to,

Xi = riYi +
√

1 − r2
i ξi, (11.133)

= ri

(

ρi Ȳ +
√

1 − ρ2
i ηi

)

︸ ︷︷ ︸

Alternative representation

of Yi =∑K
k=1 αikZk

+
√

1 − r2
i ξi ,

= riρiȲ + ri

√

1 − ρ2
i ηi +

√

1 − r2
i ξi ,

= riρi
︸︷︷︸

ai

Ȳ + ri����√

1 − ρ2
i

⎛

⎜

⎝

Yi − ρiȲ

����√

1 − ρ2
i

⎞

⎟

⎠

︸ ︷︷ ︸

ηi

+
√

1 − r2
i ξi,

= aiȲ + ri
(

Yi − ρiȲ
)+

√

1 − r2
i ξi ,

= aiȲ + ri

K
∑

k=1

αikZk

︸ ︷︷ ︸

Yi

− riρi
︸︷︷︸

ai

K
∑

k=1

bkZk

︸ ︷︷ ︸

Ȳ

+
√

1 − r2
i ξi,

= aiȲ +
K
∑

k=1

(

riαik − aibk

)

Zk +
√

1 − r2
i ξi .
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It is perhaps tempting to conclude that this is yet another manipulation of definitions.
It is not. It turns out to be an essential component of computing the asset correlation
between any two credit obligors. To see this, let’s first determine the conditional
expectation and variance (given Ȳ ) of this revised version of Xi . The expectation is
given as,

E(Xi |Ȳ ) = E

(

aiȲ +
K
∑

k=1

(

riαik − aibk

)

Zk +
√

1 − r2
i ξi

∣

∣

∣

∣

∣

Ȳ

)

, (11.134)

= E
(

aiȲ
∣

∣ Ȳ
)+

K
∑

k=1

(

riαik − aibk

)

E (Zk| Ȳ
)

︸ ︷︷ ︸

=0

+
√

1 − r2
i E (ξi | Ȳ

)

︸ ︷︷ ︸

=0

,

= aiȲ ,

while the conditional variance is

var(Xi |Ȳ ) = var

⎛

⎝ai Ȳ +
K
∑

k=1

(

riαik − aibk

)

Zk +
√

1 − r2
i ξi

∣

∣

∣

∣

∣

∣

Ȳ

⎞

⎠ , (11.135)

= a2
i var

(

Ȳ
∣

∣ Ȳ
)

︸ ︷︷ ︸

=0

+ var

⎛

⎝

K
∑

k=1

(

riαik − aibk

)

Zk

∣

∣

∣

∣

∣

∣

Ȳ

⎞

⎠+ (1 − r2
i ) var (ξi | Ȳ

)

︸ ︷︷ ︸

=1

,

=
K
∑

k=1

(

riαik − aibk

)2
var (Zk | Ȳ

)

︸ ︷︷ ︸

=1

+(1 − r2
i ),

=
K
∑

k=1

(

r2
i α

2
ik − 2airiαikbk + a2

i b
2
k

)

+ (1 − r2
i ),

= r2
i

K
∑

k=1

α2
ik

︸ ︷︷ ︸

=1

−2ai ri

K
∑

k=1

αikbk

︸ ︷︷ ︸

ai

+a2
i

K
∑

k=1

b2
k

︸ ︷︷ ︸

=1

+(1 − r2
i ),

=��r
2
i − 2a2

i + a2
i + 1 −��r

2
i ,

= 1 − a2
i .

The consequence is that Xi ∼ N(ai Ȳ , 1 − a2
i ).

Now we have the various pieces required to compute the correlation between the
composite latent state variables of two arbitrarily selected credit obligors, i and j .
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Let us begin with the covariance term:

cov
(

Xi,Xj

∣

∣ Ȳ
) = E

((

Xi − E(Xi)

)(

Xj − E(Xj )

)∣

∣

∣

∣
Ȳ

)

, (11.136)

= E
(

XiXj

∣

∣ Ȳ
)− E (Xi | Ȳ

)

E
(

Xj

∣

∣ Ȳ
)

,

= E
(

XiXj

∣

∣ Ȳ
)− aiajE

(

Ȳ 2
∣

∣

∣ Ȳ
)

,

= E
(

XiXj

∣

∣ Ȳ
)− aiajE

⎛

⎜

⎜

⎜

⎜

⎝

(

K
∑
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)2

︸ ︷︷ ︸
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ȳ

⎞

⎟

⎟

⎟

⎟

⎠

,

= E
(

XiXj

∣

∣ Ȳ
)− aiaj

K
∑

k=1

b2
k E (Zk| Ȳ

)

︸ ︷︷ ︸

=var(Zk)=1

,

= E
(

XiXj

∣

∣ Ȳ
)− aiaj

K
∑

k=1

b2
k

︸ ︷︷ ︸

=1

,

= E
(

XiXj

∣

∣ Ȳ
)− aiaj .

The first term on the right-hand side merits special attention.

E
(

XiXj

∣

∣ Ȳ
)

(11.137)

= E

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∏

n=i,j

⎛

⎝anȲ +
K
∑

k=1

(

rnαnk − anbk

)

Zk +
√

1 − r2
nξn

⎞

⎠

︸ ︷︷ ︸

Eq. 11.133

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ȳ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

= E

(

aiaj Ȳ
2 + ai Ȳ

K
∑

k=1

(

rj αjk − aj bk

)

Zk + aj Ȳ

K
∑

k=1

(

riαik − aibk

)

Zk

+
∏

n=i,j

K
∑

k=1

(

rnαnk − anbk

)

Zk

∣

∣

∣

∣
Ȳ

)

,

= aiaj Ȳ
2 + E

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ai Ȳ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

rj

K
∑

k=1

αjkZk

︸ ︷︷ ︸

Yj

−aj
K
∑

k=1

bkZk

︸ ︷︷ ︸

Ȳ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ aj Ȳ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ri

K
∑

k=1

αikZk

︸ ︷︷ ︸

Yi

−ai
K
∑

k=1

bkZk

︸ ︷︷ ︸

Ȳ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ȳ

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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+E

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∏

n=i,j

⎛

⎜

⎜

⎜

⎜

⎜

⎝

rn

K
∑

k=1

αnkZk

︸ ︷︷ ︸

Yn

−an
K
∑

k=1

bkZk

︸ ︷︷ ︸

Ȳ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ȳ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

=���aiaj Ȳ
2 + E

⎛

⎝airj Ȳ Yj −���aiaj Ȳ
2 + aj ri Ȳ Yi − aiaj Ȳ

2 +
∏

n=i,j

K
∑

k=1

(

rnYn − anȲ
)

∣

∣

∣

∣

∣

∣

Ȳ

⎞

⎠ ,

= E

(

airj Ȳ Yj + aj ri Ȳ Yi − aiaj Ȳ
2 + (riYi − ai Ȳ

) (

rj Yj − aj Ȳ
)

∣

∣

∣

∣
Ȳ

)

,

= E

(

����airj Ȳ Yj +���aj ri Ȳ Yi −���aiaj Ȳ
2 +

(

ri rj YiYj −���aj riYi Ȳ −����ai rj Yj Ȳ +���aiaj Ȳ
2
)
∣

∣

∣

∣
Ȳ

)

,

= ri rjE

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝

K
∑

k=1

αikZk

⎞

⎠

︸ ︷︷ ︸

Yi

⎛

⎝

K
∑

k=1

αjkZk

⎞

⎠

︸ ︷︷ ︸

Yj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ȳ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

= ri rj

K
∑

k=1

αikαjk E
(

Z2
k

∣

∣

∣ Ȳ
)

︸ ︷︷ ︸

=var(Zk)=1

,

= ri rj

K
∑

k=1

αikαjk.

Pulling all of the pieces together finally gets us to the desired conditional correlation
coefficient. It is given as

corr
(

Xi,Xj

∣

∣ Ȳ
)

︸ ︷︷ ︸

ρij

= cov
(

Xi,Xj

∣

∣ Ȳ
)

√

var(Xi |Ȳ )
√

var(Xj |Ȳ )
, (11.138)

ρij =
rirj

K
∑

k=1

αikαjk − aiaj

√

1 − a2
i

√

1 − a2
j

.

This gives us the necessary pieces to find concrete expressions for the two
elements of conditional variance. Beginning with the systemic component, we have

ν∞(y) = var

(

E(L|{Zk})
∣

∣

∣

∣
Ȳ = y

)

︸ ︷︷ ︸

First term of Eq. 11.131

, (11.139)



744 11 Seeking External Comparison

= var

(

N
∑

i=1

ci γ̄iE
(

I{Xi≤�−1(pi )}
∣

∣ {Zk}
)

∣

∣

∣

∣

∣

Ȳ = y

)

,

=
N
∑

i=1

N
∑

j=1

cicj γ̄i γ̄j cov
(

E
(

I{Xi≤�−1(pi )}
∣

∣ {Zk}
)

,E
(

I{Xj≤�−1(pj )}
∣

∣

∣ {Zk}
)∣

∣

∣ Ȳ = y
)

︸ ︷︷ ︸

X

.

This leads us to the fairly nasty looking covariance term. To ease the notation when
deriving this term, let’s define Hi = I{Xi≤�−1(pi)}. This allows us to write our
covariance term (reasonably succinctly) as

X = E

((

E (Hi | {Zk})− E (E (Hi | {Zk}))
)(

E
(

Hj

∣

∣ {Zk}
)− E

(

E
(

Hj

∣

∣ {Zk}
))

)∣

∣

∣

∣
Ȳ = y

)

,

(11.140)

= E

((

E (Hi | {Zk})− E (Hi)

)(

E
(

Hj

∣

∣ {Zk}
)− E

(

Hj

)

)∣

∣

∣

∣
Ȳ = y

)

,

= E

(

E (Hi | {Zk})E
(

Hj

∣

∣ {Zk}
)− E (Hi | {Zk})E

(

Hj

)− E
(

Hj

∣

∣ {Zk}
)

E (Hi)

+E (Hi)E
(

Hj

)

∣

∣

∣

∣
Ȳ = y

)

,

= E

(

E
(

HiHj

∣

∣ {Zk}
)− E (Hi | {Zk})E

(

Hj

)− E
(

Hj

∣

∣ {Zk}
)

E (Hi)+ E (Hi)E
(

Hj

)

∣

∣

∣

∣
Ȳ = y

)

,

= E
(

HiHj

∣

∣ Ȳ = y
)− E (Hi | Ȳ = y

)

E
(

Hj

∣

∣ Ȳ = y
)−

											
E
(

Hj

∣

∣ Ȳ = y
)

E (Hi | Ȳ = y
)

+
											
E (Hi | Ȳ = y

)

E
(

Hj

∣

∣ Ȳ = y
)

,

= E

(

I{Xi≤�−1(pi )}I{Xj≤�−1(pj )}
∣

∣

∣ Ȳ = y
)

−E

(

I{Xi≤�−1(pi )}
∣

∣

∣ Ȳ = y
)

︸ ︷︷ ︸

pi(y)

E

(

I{Xj≤�−1(pj )}
∣

∣

∣ Ȳ = y
)

︸ ︷︷ ︸

pj (y)

,

= P

(

{Xi ≤ �−1(pi )} ∩ {Xj ≤ �−1(pj )}
∣

∣

∣

∣
Ȳ = y

)

− pi(y)pj (y),

= P

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

ξi ≤ �−1(pi)− aiy
√

1 − a2
i

︸ ︷︷ ︸

�−1(pi (y))

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

⋂

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ξj ≤ �−1(pj )− aj y
√

1 − a2
j

︸ ︷︷ ︸

�−1(pj (y))

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

− pi(y)pj (y),

= P

(
{

ξi ≤ �−1(pi (y))
}

∩
{

ξj ≤ �−1(pj (y))
}
)

− pi(y)pj (y).

This is progress. The final stumbling block is the first joint probability term.
This is, of course, the joint conditional probability of default; or rather the
probability of simultaneous occurrence of both default events: Di and Dj . In the
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Gaussian threshold model, this is conveniently characterized by the bivariate normal
distribution. It has the following specific form,

P
(

Di ∩Dj

∣

∣ Ȳ = y
) = P

(

ξi ≤ �−1(pi(y)), ξj ≤ �−1(pj (y))

)

, (11.141)

=
∫ �−1(pi(y))

−∞

∫ �−1(pj (y))

−∞
1

2π
√

1 − ρ2
ij

e

−
(

u2−2ρij uv+v2
)

2(1−ρ2
ij
)

dvdu,

= �

(

�−1(pi (y)),�
−1(pj (y)); ρij

)

.

This value is easily and directly computed using numerical integration. Collecting
all of these pieces together, the conditional variance of the systemic component is
written as

ν∞(y) =
N
∑

i=1

N
∑

j=1

cicj γ̄i γ̄j

(

�

(

�−1(pi(y)),�
−1(pj (y)); ρij

)

− pi(y)pj (y)

)

︸ ︷︷ ︸

Eqs. 11.140 and 11.141

.

(11.142)

This then brings us to the next step: calculation of the first derivative of the
systemic aspect of conditional variance with respect to y. This is, to be blunt, rather
a handful.

ν′∞(y) = d

dy

⎛

⎜

⎜

⎜

⎜

⎜

⎝

N
∑

i=1

N
∑

j=1

cicj γ̄i γ̄j

(

�

(

�−1(pi (y)),�
−1(pj (y)); ρij

)

− pi(y)pj (y)

)

︸ ︷︷ ︸

Eq. 11.142

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

(11.143)

=
N
∑

i=1

N
∑

j=1

ci cj γ̄i γ̄j

⎛

⎜

⎜

⎜

⎝

d

dy

(

�

(

�−1(pi (y)),�
−1(pj (y)); ρij

))

︸ ︷︷ ︸

A

− d

dy

(

pi(y)pj (y)

)

︸ ︷︷ ︸

B

⎞

⎟

⎟

⎟

⎠

.

This is sufficiently messy that it will be necessary to divide and conquer by
separately handling each of the A and B components of the previous expression.
As will become obvious in a moment, y enters into the bivariate density through
both arguments of the double integral. This implies that there are two derivatives to
resolve:

A = Ai +Aj , (11.144)
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= d

dy

(

�

(

�−1(pi(y)), �
−1(pj (y)); ρij

))

︸ ︷︷ ︸

Ai

+ d

dy

(

�

(

�−1(pj (y)),�
−1(pi(y)); ρij

))

︸ ︷︷ ︸

Aj

.

Let’s begin with the first term and, since they are symmetric, this will be sufficient
to specify both. In particular,

Ai = d

dy

(

�

(

�−1(pi (y)),�
−1(pj (y)); ρij

))

, (11.145)

= d

dy

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∫ �−1(pi (y))

−∞

∫ �−1(pj (y))

−∞
1

2π
√

1 − ρ2
ij

e
− (u

2−2ρij uv+v2)
2(1−ρ2

ij
)

dvdu

︸ ︷︷ ︸

Eq. 11.141

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

=
⎛

⎝

∫ �−1(pj (y))

−∞
1

2π
√

1 − ρ2
ij

e
− (�

−1(pi (y))
2−2ρij �

−1(pi (y))v+v2)
2(1−ρ2

ij
)

dv

⎞

⎠

d

dy

(

�−1(pi(y))

)

,

=
⎛

⎜

⎝

∫ �−1(pj (y))

−∞
1

2π
√

1 − ρ2
ij

e
−
(

�−1(pi (y))
2−2ρij �

−1(pi (y))v+v2+�−1(pi (y))
2ρ2
ij

−�−1(pi (y))
2ρ2
ij

)

2(1−ρ2
ij
)

dv

⎞

⎟

⎠

× d

dy

⎛

⎝

�−1(pi )− aiy
√

1 − a2
i

⎞

⎠ ,

=
⎛

⎜

⎝

∫ φ

(

�−1(pj (y))

)

−∞
1

2π
√

1 − ρ2
ij

e
− �−1(pi (y))

2
��(1−ρ2

ij
)

2��(1−ρ2
ij
)

− (v−ρij �
−1(pi (y)))

2

2(1−ρ2
ij
)

dv

⎞

⎟

⎠

⎛

⎝− ai
√

1 − a2
i

⎞

⎠ ,

=
(

1√
2π

e−
�−1(pi (y))

2

2

)

︸ ︷︷ ︸

φ

(

�−1(pi (y))

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∫ �−1(pj (y))−ρij�−1(pi (y))
√

1−ρ2
ij

−∞

1√
2π

e−
v2
2 dv

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

�

⎛

⎜

⎝

�−1(pj (y))−ρij �−1(pi (y))
√

1−ρ2
ij

⎞

⎟

⎠

⎛

⎝− ai
√

1 − a2
i

⎞

⎠ ,
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= �

⎛

⎝

�−1(pj (y)) − ρij�
−1(pi (y))

√

1 − ρ2
ij

⎞

⎠

⎛

⎝− ai
√

1 − a2
i

φ

(

�−1(pi (y))

)

⎞

⎠

︸ ︷︷ ︸

p′
i (y)

,

= �

⎛

⎝

�−1(pj (y)) − ρij�
−1(pi (y))

√

1 − ρ2
ij

⎞

⎠

︸ ︷︷ ︸

�ji (y)

p′
i (y).

This settles the first part. It immediately implies that

A =

�ji (y)
︷ ︸︸ ︷

�

⎛

⎝

�−1(pj (y))− ρij�
−1(pi(y))

√

1 − ρ2
ij

⎞

⎠p′
i (y)

︸ ︷︷ ︸

Ai

(11.146)

+

�ij (y)
︷ ︸︸ ︷

�

⎛

⎝

�−1(pi(y))− ρij�
−1(pj (y))

√

1 − ρ2
ij

⎞

⎠p′
j (y)

︸ ︷︷ ︸

Aj

.

The second piece is easily resolved as

B = d

dy

(

pi(y)pj (y)

)

, (11.147)

= p′
i (y)pj (y)+ pi(y)p

′
j (y),

This leads to the final result as,

ν′∞(y) =
N
∑

i=1

N
∑

j=1

cicj γ̄i γ̄j (A− B) , (11.148)

=
N
∑

i=1

N
∑

j=1

cicj γ̄i γ̄j

(

p′
i (y)

(

�ji(y)− pj (y)

)

+ p′
j (y)

(

�ij (y)− pi(y)

))

,

= 2
N
∑

i=1

N
∑

j=1

cicj γ̄i γ̄j p
′
i (y)

(

�ji(y)− pj (y)

)

︸ ︷︷ ︸

By symmetry

,
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where the final step, in this exhausting calculation, stems from the symmetry of the
problem and the double summation.52

This brings us to the second component of our conditional variance decomposi-
tion. We need to recall that σ {Ȳ } ⊂ σ {Zk} and, in the memorable words of Durrett
[11], “the smaller σ -field always wins.”

νG(y) = E

(

var(L|{Zk})
∣

∣

∣

∣
Ȳ = y

)

︸ ︷︷ ︸

Second term of Eq. 11.131

, (11.149)

= E

(

var

(

N
∑

i=1

ciγiIDi
|{Zk}

)∣

∣

∣

∣

∣

Ȳ = y

)

,

= E

(

N
∑

i=1

c2
i var

(

γiIDi
|{Zk}

)
∣

∣

∣

∣

∣

Ȳ = y

)

,

= E

(

N
∑

i=1

c2
i

(

E

(

γ 2
i I

2
Di

|{Zk}
)

− E
(

γiIDi
|{Zk}

)2
)
∣

∣

∣

∣

∣

Ȳ = y

)

,

=
N
∑

i=1

c2
i E

((

E(γ 2
i )E

(

IDi
|{Zk}

)− E(γi)
2
E
(

IDi
|{Zk}

)2
)∣

∣

∣

∣
Ȳ = y

)

,

=
N
∑

i=1

c2
i

(

E(γ 2
i )E

(

IDi
|Ȳ = y

)− E

((

E(γi)
2
E
(

IDi
|{Zk}

)2
)∣

∣

∣

∣
Ȳ = y

))

,

=
N
∑

i=1

c2
i

⎛

⎜

⎜

⎜

⎝

(

νγi + γ̄ 2
i

)

pi(y)− γ̄ 2
i E

((

E
(

IDi
|{Zk}

)2
)∣

∣

∣

∣
Ȳ = y

)

︸ ︷︷ ︸

Smaller σ -algebra wins!

⎞

⎟

⎟

⎟

⎠

,

=
N
∑

i=1

c2
i

(
(

νγi + γ̄ 2
i

)

pi(y)− γ̄ 2
i E

(

IDi
· IDi

∣

∣

∣

∣
Ȳ = y

))

,

=
N
∑

i=1

c2
i

(
(

νγi + γ̄ 2
i

)

pi(y)− γ̄ 2
i P

(

Di ∩Di

∣

∣

∣

∣
Ȳ = y

))

,

=
N
∑

i=1

c2
i

(
(

νγi + γ̄ 2
i

)

pi(y)− γ̄ 2
i P

(

{Xi ≤ �−1(pi)} ∩ {Xi ≤ �−1(pi)}
∣

∣

∣

∣
Ȳ = y

))

,

=
N
∑

i=1

c2
i

⎛

⎝

(

νγi + γ̄ 2
i

)

pi(y)− γ̄ 2
i P

⎛

⎝

⎧

⎨

⎩

ξi ≤ �−1(pi)− aiy
√

1 − a2
i

⎫

⎬

⎭

52 We have tested both formulations—from the second and third lines of Eq. 11.148—numerically
and they are indeed, as expected, equal.
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⋂

⎧

⎨

⎩
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⎫

⎬

⎭

⎞

⎠

⎞
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=
N
∑

i=1

c2
i

(
(

νγi + γ̄ 2
i

)

pi(y)− γ̄ 2
i �

(

�−1(pi(y)),�
−1(pi(y));ρii

))

,

=
N
∑

i=1

c2
i pi (y)

⎛

⎜

⎜

⎝

νγi + γ̄ 2
i

⎛

⎜

⎜

⎝

1 −
�

(

�−1(pi(y)),�
−1(pi(y));ρii

)

pi(y)

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

︸ ︷︷ ︸

Now’s a good time to return for comparison to Eq. 11.127

,

where,

ρii =
r2
i

=1
︷ ︸︸ ︷

K
∑

k=1

α2
ik −a2

i

1 − a2
i

, (11.150)

= r2
i − a2

i

1 − a2
i

.

On its own, Eq. 11.149 is difficult to interpret. Setting an important set of
parameters to an extreme value can sometimes be helpful. In this case, if we set
ρii = 0, something interesting happens. The bivariate Gaussian distribution term
collapses to

�

(

�−1(pi(y)),�
−1(pi(y)); ρii

)

(11.151)

=
∫ �−1(pi(y))

−∞

∫ �−1(pi(y))

−∞
1

2π
√

1 − ρ2
ii

e
− (u

2−2ρii uv+v2)
2(1−ρ2

ii
) dvdu,

�

(

�−1(pi(y)),�
−1(pi(y)); 0

)

=
∫ �−1(pi(y))

−∞

∫ �−1(pi(y))

−∞
1

2π
e−

(u2+v2)
2 dvdu,

=
(
∫ �−1(pi(y))

−∞
1√
2π

e
−v2

2 dv

)(
∫ �−1(pi(y))

−∞
1√
2π

e
−u2

2 du

)

,

= �

(

�−1(pi(y))

)

�

(

�−1(pi(y))

)

,
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= pi(y)
2.

The consequence is that νG(y) reduces to our original conditional variance term,
ν(y). This quantity was previously derived, without Pykhtin [27]’s variance-
decomposition, in Eq. 11.127. We actually put an explicit note on this value so
that we could come back to it later. Plugging Eq. 11.151 into Eq. 11.149 permits
us to establish—naturally under the assumption of ρii ≡ 0—equivalence with the
basic conditional variance found in Eq. 11.127. This condition provides a useful
link between the standard one-dimensional Gaussian threshold model granularity
adjustment summarized in Fig. 11.7 and Pykhtin [27]’s method.53

Moving on to the derivative of this second flavour of conditional variance, we are
one step away from completion. Rather exceptionally—and mostly because of our
previous efforts—this turns out to be rather straightforward to compute. We have

v′G(y) = d

dy

⎛

⎝

N
∑

i=1

c2
i

(
(

νγi + γ̄ 2
i

)

pi(y)− γ̄ 2
i �

(

�−1(pi(y)), �
−1(pi(y)); ρii

))

⎞

⎠ ,

(11.152)

=
N
∑

i=1

c2
i

(
(

νγi + γ̄ 2
i

)

p′
i (y)− γ̄ 2

i

d

dy

(

�

(

�−1(pi(y)),�
−1(pi(y)); ρii

)))

,

=
N
∑

i=1

c2
i

(
(

νγi + γ̄ 2
i

)

p′
i (y)− γ̄ 2

i

(

�ii(y)p
′
i (y)+�ii(y)p

′
i (y)

))

,

=
N
∑

i=1

c2
i p

′
i (y)

(

νγi + γ̄ 2
i

(

1 − 2�ii(y)

))

.

Recalling that �ii(y) = �

(

�−1(pi(y))−ρii�−1(pi(y))
√

1−ρ2
ii

)

and setting ρii = 0, �ii(y)

collapses to pi(y). In this case, we again establish equivalency between ν′(y) in
Eq. 11.128 and ν′G(y). The actual value of ρii depends upon the interaction between
the ri , ai , and ρi parameters. It does not, however, typically take the value of zero
and that is precisely the point.

Figure 11.8 completes our analysis with a high-level summary of the principal
formulae involved in Pykhtin [27]’s granularity adjustment calculation. It has many
logical similarities to the one-factor Gaussian threshold model from Fig. 11.7, but
capturing the multi-factor dimension leads to a significant increase in complexity.
Although it deepens our appreciation of the granularity adjustment, it is not difficult
to imagine why this approach might not have caught on as a regulatory standard.
There is also a much higher parametric burden with Pykhtin [27]’s proposal.

53 The simplest interpretation is that, in the one-factor setting, the a and r parameters are equal.
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Fig. 11.8 Pykhtin [27]’s Granularity adjustment: This schematic outlines, at a single glance,
the principal formulae involved in Pykhtin [27]’s granularity adjustment calculation. It has many
logical similarities to the one-factor Gaussian threshold model from Fig. 11.7, but capturing the
multi-factor dimension leads to a significant increase in complexity.

Keeping this in mind, the results in Fig. 11.8 also can be fruitfully compared to
Gordy and Lütkebohmert [16]’s CreditRisk+ implementation in Fig. 11.6.

Colour and Commentary 140 (FIGHTING AGAINST BLACK BOXES):
Derivation of the previous concentration adjustment results represents, it must
be admitted, something of a mathematical marathon. By assuming portfolio-
invariance, a quite indefensible assumption, the Basel-IRB and S&P-RAC
approaches hoped to avoid some complexity and reduce the regulatory
burden. The intricacies of credit-risk modelling, however, return in full force
when trying, in the context of Pillar II, to adjust for concentration risk.

(continued)
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Colour and Commentary 140 (continued)
One could (half seriously) argue that it remains straightforward; one need,
after all, only skip to the final formulae so generously derived by Gordy
and Lütkebohmert [15], Pykhtin [27], and colleagues, to arrive at the result.
A responsible quantitative analyst, however, is obliged to work through the
details to understand what assumptions and simplifications are embedded
in these regulatory formulae. Using the final result without understanding
amounts to the construction of a black box. This might save time in the short
run, but sooner or later, reliance on black boxes always ends in tears.

11.2.6 Practical Granularity-Adjustment Results

Actual implementation of Pykhtin [27]’s model will depend importantly on one’s
portfolio and critical assumptions about the factor structure of one’s economic-
capital model. In this final section, we will nonetheless provide a quick comparison
of the three alternative versions of the granularity adjustment considered in the
previous discussion: the one-factor Gaussian threshold, the multi-factor Pykhtin
[27], and Gordy and Lütkebohmert [16]’s CreditRisk+ implementations. This will
help to underscore the lengthy abstract discussion in the previous sections.

The plan is to address the various steps required to obtain a reasonable working
version of our granularity adjustment. The first bit involves determination of the
various Pykhtin [27] model parameters. A large number of model coefficients—and
some useful summary statistics—are provided in Table 11.3. The central choice
relates to the so-called b parameters linking the one- and multi-factor models.
Unsurprisingly, the multi-factor systemic weights (i.e., the r’s) fall somewhat on
average when moving from the single-factor setting (i.e., the a’s). This is related
to the concentration of all systemic risk into a single factor; when there are many
factors, it is spread out and individual factor sensitivities can be higher. Figure 11.9
provides a graphical description of the centrally important b coefficients governing
this transformation into a (roughly) equivalent one-factor model.54

Using the common equivalent one-factor model a parameters from Table 11.3,
we can compute a reasonably fair comparison of the granularity adjustment across
our three models. All use the same exposures, loss-given-default, unconditional
default probabilities, and systemic weights. They differ in terms of the number
and distribution of the systemic factors. The high-level results are summarized in

54 These values are computed by solving the optimization problem presented in Eq. 11.109, but
a bit of trial-and-error reveals that the final results are rather sensitive to these parameter values.
We’d thus recommend, when actually implementing Pykhtin [27], experimenting with different
approaches to the selection of b.
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Table 11.3 Pykhtin [27] Parameter overview: This table summarizes a set of selected summary
statistics associated with the main Pykhtin [27] model parameters derived from our economic-
capital model using an arbitrarily selected date in 2020. In all cases, where relevant, y = �−1(1−
α) given a confidence level of α = 0.999.

Selected statistics

Parameter Mean Volatility Minimum Maximum

γ̄i 0.314 0.161 0.100 0.990

ri 0.590 0.080 0.346 0.632

bk 0.142 0.147 0.000 0.614

ρi 0.307 0.154 0.003 0.614

ai 0.185 0.102 0.002 0.388

pi 0.003 0.010 0.000 0.200

p̂i (y) 0.071 0.102 0.006 0.925

pi(y) 0.009 0.024 0.000 0.444

P
(

Di ∩Dj

∣

∣ Ȳ = y
)

0.000 0.001 0.000 0.221

ρij 0.013 0.103 -0.099 0.400

Fig. 11.9 The bk coefficients: This figure outlines the K = 24 individual (ordered) fixed weights
used to transform the multi-factor structure our internal production model—for an arbitrary date in
2020—into a one-factor model. These values are a complicated function of the portfolio structure,
the factor loadings, and the systemic-weight correlations from Eq. 11.117.

Table 11.4; all values are computed using a α = 0.999 confidence level for an
arbitrarily selected date. Moreover, since the actual currency values are unimportant,
we have simply normalized the results so that the classic Gordy and Lütkebohmert
[16] model yields 100 units. This permits easy comparison of the final outcomes.

The standard, one-factor Gaussian threshold model granularity adjustment
amounts to—for this example and parametrization—a roughly 50% larger outcome
than in the CreditRisk+ implementation. As we would hope, the Gaussian model
compares favourably to the Pykhtin [27] granularity adjustment. The Pykhtin [27]
multi-factor adjustment is only about 7% of the base CreditRisk+ figure. This
is a relatively modest amount suggesting that, for this parametrization, there is
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Table 11.4 Flavours of granularity adjustment: This table illustrates, again for our arbitrarily
selected date, three different flavours of granularity adjustment: the standard one-factor Gaussian-
threshold and Poisson-gamma mixture models as well as Pykhtin [27] multi-factor approach. All
figures are normalized so that the Gordy and Lütkebohmert [16] model yields an estimate of 100
units. The a parameters from Table 11.4 are employed for all models to permit better comparison.

Normalized

Granularity adjustment estimate

Standard one-factor Gaussian threshold model 153.1

Pykhtin multi-factor element 7.4

Pykhtin concentration element 151.2

Total Pykhtin approach 158.7

CreditRisk+ one-factor Poisson-gamma mixture model 100.0

not a particularly large overall difference between the single- and multi-factor
implementations (at least in terms of impact on the concentration adjustment).

Figure 11.10 closes this analysis with an exposure-level presentation of the
three models. The common ordering—stemming from the one-factor CreditRisk+
implementation sitting underneath Gordy and Lütkebohmert [16]—permits an
exposure-by-exposure comparison. The multi-factor Pykhtin [27] element inter-
estingly exhibits both positive and negative values, whereas all other produce
only positive granularity adjustments. The threshold and mixture models appear to
be generally quite consistent; the mixture approach, however, seems more likely
to assign extreme values at the lower and higher ends of the spectrum. This
seems defensible given the fundamental differences between these two modelling
approaches.

When calibrating the one- and multi-factor models to be essentially equivalent,
it makes sense that they yield roughly the same total results. If they did not, it would
be cause for concern. How the total risk is allocated to individual exposures—
as described in Fig. 11.10—would seem to be the main avenue of difference.
Pykhtin [27]’s multi-factor adjustment thus appears to provide useful help along
this dimension.

11.3 Wrapping Up

More than 200 years ago, the famous British mathematician and scientist Lord
Kelvin commented that “when you can measure what you are speaking about, and
express it in numbers, you know something about it.” This captures the essence
of seeking external comparison. We compute a broad range of economic-capital
measures using our internally developed modelling framework. Although we have
confidence in these figures, it is enormously helpful to establish explicit points
of comparison. Challenger models represent one important touchstone for this
strategy. The various flavours of regulatory guidance—within both Pillar I and II—
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and the external-rating agencies represent another essential benchmark. Expressing
this wide range of possible capital perspectives as concrete numbers and regularly
contrasting them helps us to operationalize Lord Kelvin’s advice and really “know
something” about our economic-capital estimates.
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Chapter 12
Thoughts on Stress Testing

Reality is the leading cause of stress.

(Lily Tomlin)

There are a number of good reasons why stress-testing analysis finds itself as the
final topic considered in this book: it is difficult, somewhat awkward, and requires a
bird’s eye view of one’s portfolio and modelling techniques. This, perhaps slightly
controversial, opening statement requires some additional colour and justification.
Stress-testing’s difficulty is easily explained. There is always a range of choice in
any financial modelling exercise, but stress-testing is rather extreme. There are at
least two fundamental perspectives that one might follow and, within each of these
approaches, literally an infinity of possible stress scenarios that one might select,
employ, and analyze. There is, in fact, basically too much choice. Creating some
kind of logical order and structure, in face of this potential chaos, is one of the
fundamental tasks that we will face in the following discussion.

Onto the awkwardness. The words of Rebonato [26] express this sentiment rather
well, stating that stress testing

has always been the poor relation in the family of analytical techniques to control risk.

Rather harsh words, but the underlying reason stems from the fundamental struc-
ture of stress-testing. It proposes outcomes or events—which are typically extreme
and lead to rather adverse portfolio effects—without an associated assessment of
their probability. This stands in sharp contrast to classical risk metrics—such as VaR
or expected shortfall—that structurally involve the combination of events and their
associated likelihoods. Prowling in the background of both worlds, as we’ve seen
in previous chapters, is necessarily an underlying (and unknown) loss distribution.
We can envisage a stress scenario as a set (or event) in one’s probability space.
Unfortunately, we do not know how to assign a measure to it.1 The consequence is
an inherent degree of subjectivity in any stress-testing analysis.

1 At the same time, we (rather keenly) hope that it is not a set of measure zero.
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This situation creates an incongruity between standard risk measures on the one
hand and stress-testing results on the other; it feels like a situation of comparing
apples and pears. Aragonés et al. [2] summarize this sentiment very well with the
following question:

How can we combine a probabilistic risk estimate with an estimate that such-and-such a
loss will occur if such-and-such happens?

At the same time, however, there appears to be a real need for stress-testing.
Quantitative analysts should not start patting one another on the back because
of the logical consistency of event and probability treatment within their models.
Time and again, over recent decades, probabilistic risk estimates have failed to
predict a dismaying number of crises associated with realizations of extreme
financial outcomes. Why is this the case? It may stem from over-optimism in one’s
parametrization, leading to insufficient weight on severely adverse outcomes. Part
of the explanation is certainly, as argued by Taleb [31], that unknown unknowns
driving financial crises structurally elude our models until it is too late.2 It is
also entirely possible that asking our models to accurately predict inherently
unpredictable financial shocks, driven by complex human behaviour, is simply
too tall an order. Whatever the reason, it is useful to (once again) underscore the
fallibility of probabilistic models.

Stress-testing, when done well, is thus a complement and not a competitor to our
probabilistic models. The key objective of stress-testing analysis is not necessarily
the construction of extreme scenarios not fully captured in our base models—
although this is certainly part of it—but rather to identify vulnerabilities in our
portfolios. Where, for example, are the weak spots? What constellation of events
would be particularly troublesome for our portfolio? Such information, despite its
subjectivity and lack of probability assignment, is useful. When combined with our
standard modelling framework, it tells a more nuanced and complete story.

The final claim—the need for a bird’s eye view—is the strongest reason for
treating stress-testing analysis in our final chapter. “If such-and-such happens”, to
borrow again the expression from Aragonés et al. [2], we need to understand the
implications for our portfolio. For our purposes, this basically amounts to estimating
the impact on our firm’s capital position. Such an assessment requires understanding
the big picture. We need to incorporate dimensions—introduced in Chap. 1—
of both capital demand and supply. The capital-demand impact will necessarily
flow through our economic-capital model addressed in Chaps. 2 to 4; as a result,
we need to understand how precisely this will happen and how to estimate it.
Capital-supply effects arise via the profit-and-loss statement; our loan-impairment
computations from Chap. 9 will play a central role in this respect. We will also
recycle—and, in some ways, extend—many of the earlier ideas associated with
stress-scenario generation introduced in Chaps. 7 and 8. Faced with the need to

2 Such never-before-observed events cannot, by their very nature, be incorporated into our
parameter estimates.
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estimate large number of computationally intensive economic-capital values, we
will again rely upon our approximation model from Chap. 5. Thus, while it might
be an exaggeration to state that this final discussion relies on all of the previous
chapters, it does lean heavily on most of them.

To summarize, stress-testing is not easy and requires a broader perspective.
It is, however, useful and represents a welcome companion to the classical,
probabilistic models presented in previous chapters. In the following sections, we
will consider a range of alternative approaches—with our usual focus on the credit-
risk perspective—towards the incorporation of stress scenarios into our analysis.

Colour and Commentary 141 (THE ROLE OF STRESS-TESTING ANALY-
SIS): Among quantitative analysts, stress-testing has something of a bad
reputation. Its very structure—involving specification of an extreme event
without an associated probability—is somewhat awkward. Such analysis can
be hard to interpret and difficult to combine with traditional probabilistic
models. Since the great financial crisis, however, there has been a groundswell
of support for stress-testing. Failure of probabilistic models to predict numer-
ous past crises have undermined their credibility; some even argue that
such models should be entirely replaced with stress-testing analysis. These
arguments, for and against stress-testing, both have some merit. Stress-testing
certainly deserves more credit and attention, but it is not a replacement for
more holistic financial models.a In practice, there is ample room for both
approaches in the assessment of financial risk. Stress-testing, in short, is
an effective complement to probabilistic models and a powerful tool for the
identification of vulnerabilities in one’s portfolio.

a To entirely replace probabilistic models with stress-testing would essentially amount to
“throwing the baby out with the bath water.” One can certainly improve basic modelling
techniques (i.e., eliminate the dirty water) while maintaining their fundamental usefulness
(i.e., keeping the baby).

12.1 Organizing Stress-Testing

Before jumping into the technical details and considering practical examples, we
first need to organize our thinking. As is often the case, it is useful to highlight the
key issues as a catechism. We thus raise three important questions:

1. What pathways do stress-scenarios follow on their way to impact the firm’s
capital position?

2. What logical approach should we take in our construction of a stress-testing
framework?
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3. How do we manage, in a stress-testing setting, the passage of time and our
portfolio composition?

Reflecting upon these questions and providing detailed answers will help immensely
in clarifying a possible, and pragmatic, way of thinking about stress-testing. Let’s
address each in turn.

12.1.1 The Main Risk Pathway

Our first question can basically be translated as: what does stress-testing actually
even mean within our context? We are considering the firm’s economic-capital
position—and associated measures—from a predominately credit-risk perspective.
Economic-capital, as we’ve indicated and discussed numerous times, is fundamen-
tally based on a long-term, unconditional, through-the-cycle parametrization. This
assumption permeates our basic credit-risk model and, as we saw in Chap. 11,
underscores most of the regulatory guidance. This is logically rather problematic; to
be frank, it feels like a deal-breaker. The very structure of our economic-capital
computations would appear to preclude the role of stress scenarios. The long-
term, through-the-cycle view presumably incorporates numerous, extreme stress
outcomes, but when averaged over many, more normal events, their individual-
parameter influence is strongly diluted.

If our model parameters cannot change, then what is effected by stress scenarios?
A bit of reflection suggests that, although the through-the-cycle perspective needs
to be maintained, stress outcomes can indeed have an important impact on our
portfolio’s risk profile. Since the beginning of Chap. 2, we have focused on the
three key credit-risk variables: default probability (i.e., credit rating), loss-given-
default, and exposure. All three aspects can be altered from a specific stress scenario.
The most obvious, and important, relates to the credit ratings of one’s obligors. An
adverse event may not change the model parameters, but if it creates broad-based
rating downgrade of one’s credit counterparties, the impact can be quite severe.

Economic-capital is, in fact, influenced via two main avenues associated with
the downgrade of a given credit obligor. The first is quite direct. In most cases, a
downgrade will lead to an increase in the amount of economic-capital associated
with a given credit counterpart.3 Downgrades, all else equal, will lead to an increase
in capital demand. The result is thus a reduction of the firm’s capital headroom.

3 This is not always true. Since default and migration risk often move in opposite directions, the net
impact of a downgrade can sometimes lead to small decreases in economic capital. While possible,
however, such outcomes are not typical and, when they occur, are generally small in magnitude.



12.1 Organizing Stress-Testing 763

The second avenue depends on the accounting treatment of the counterparty’s
exposure. If the underlying instruments are fair-valued, there will be a valuation
impact associated with the downgrade.4 Should the underlying instruments be
held at amortized cost—as is typical for a loan portfolio—then there will be
consequences for loan impairments. The expected-credit loss will move to a new
(higher) default-probability term structure and, depending on the magnitude of the
downgrade, may even involve stage-II lifetime treatment. Either way, the loan-
impairment balance will rise. Although the magnitude of the effects will differ
depending on fair-value or amortized-cost treatment, the logical consequences are
the same. The resulting losses will pass through the profit-and-loss statement and
lead to a reduction in capital supply and, as an unwelcome side-effect, a decrease in
capital headroom.

A credit downgrade basically creates a squeeze-play for firm’s capital position.
Capital demand is pushed upwards, capital supply is pushed downwards, and the
capital headroom is caught in the middle. A sufficient number of credit downgrades
of sizable magnitude can—depending on the firm’s capital position—lead to
complete erosion of the firm’s capital position. The result may involve a credit
downgrade of its own or, in the worst case, reduced confidence in the firm, triggering
a chain of events leading to default. All of this occurs within the through-the-cycle
perspective without any impact on the model parameters. The entire adjustment
occurs through the stress-induced deterioration of credit quality of one’s portfolio.

This is, of course, a very credit-risk-centric view of stress-testing. Large, adverse
shocks to market-risk factors will also—even in the through-the-cycle setting—
generate negative valuation effects impacting capital supply. One might wish
to revisit operational-risk capital estimates or even adjust capital buffers. These
effects matter and are important—although they tend to play a lesser role in most
lending institutions—but will not be addressed in our treatment. Our focus will—
in a manner consistent with previous development—lie firmly upon the credit-risk
dimension.

4 Given increased risk, we should expect a higher discount factor, a lower value, and thus a
valuation loss.
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Colour and Commentary 142 (CREDIT-RISK STRESS-TESTING PATH-
WAYS): Crime dramas, investigative journalists, and political actors are
fond of using the phrase “follow the money.”a As exciting as it sounds, it
sadly doesn’t typically come up too often in quantitative modelling. In this
case, however, we have identified a possible exception. The fundamental
through-the-cycle perspective of economic-capital computations—with its
stable, long-term, unconditional parameters—precludes any direct modelling
impact from adverse stress scenarios. At first glance, one might reasonably
conclude that stress analysis is misplaced in this context. An important
indirect pathway nonetheless exists. Should a stress scenario lead to broad-
based credit-obligor downgrade, two capital effects present themselves. The
first is a direct increase in capital demand associated with lower portfolio
credit quality. The second is—via either valuations or loan-impairments—a
decrease in capital supply. Following the money through our modelling
frameworks and financial statements, we can identify a consequent squeeze
in one’s capital headroom. A severe stress scenario can thus, without
impacting our model parameters, lead to dramatic weakening of a firm’s
capital-adequacy position. Portfolio downgrade, through economic-capital,
market valuation, and loan impairments, represents the (principal) risk
pathway of our stress-testing analysis.

a Apparently, this dangerous-sounding expression originated from the 1970’s movie “All the
President’s Men” surrounding the Watergate scandal starring Robert Redford and Dustin
Hoffman.

12.1.2 Competing Approaches

Most authors on stress-testing—see, for example, Rebonato [26], Bellini [4] or
Rösch and Scheule [28]—would agree that there are two broad-based approaches to
the topic: top-down or bottom-up. Within each class, there are many variations and
there are presumably arguments to be made for an alternative organization. For our
purposes—that is, examining how external stress can generate portfolio downgrades
and capital degradation—this structure is perfectly sufficient.

Figure 12.1 schematically illustrates these two ideas. As the name suggests, the
top-down approach takes a macro perspective. The stress scenarios are defined, in
a global sense, through adverse changes in economic output, inflation, monetary
policy, commodities prices, and so on. This comfortably links back to our discussion
of stress-scenario construction in Chap. 8.
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Fig. 12.1 Attacking the stress-testing problem: This schematic illustrates the two broad-based
approaches to the stress-testing problem. One may approach from either a top-down or bottom-
up perspective. The top-down viewpoint necessarily works through macro-financial outcomes,
whereas the bottom-up method is rather less obviously defined.

The top-down approach to the stress-testing problem is, in many ways, the most
natural viewpoint. It easily allows us to construct interesting, and topical, narratives.
What are the implications, one might ask, of prolonged lower output and higher
inflation following the resolution of the COVID-19 pandemic? What if inflationary
expectations get out of hand leading to a secular increase in commodity prices
and interest rates? Constructing a story for each stress-testing scenario helps to
practically narrow down the, literally infinite, number of potential options.

There are other ways to identify top-down stress scenarios. It is possible, and
indeed fairly common practice, to borrow extreme outcomes from the past to inform
one’s macro-financial shocks. We could go back as far as the bond-market sell-off
in 1994, the Asian crisis, the dot-com bubble, the events surrounding the Lehman
Brothers bankruptcy, or the most recent COVID-19 pandemic. There is no shortage
of choice.5 The significant advantage is that the analyst need not construct an
explicit macro-financial outcome, nor does she need to worry whether it could
potentially occur.6 The downside is that, because it already took place, the likelihood
of a repeat performance is vanishingly small.

There is also an entire industry dedicated to the collection, processing, and
forecasting of key financial variables. Such firms are quite competent at shuffling
through all of the complexity of economic conditions and financial markets. They
not only provide baseline point forecasts and uncertainty bounds, but also stress
scenarios of varying degrees of uncertainty. For those institutions with sufficient
resources, this is a sensible path to scenario identification.

5 Reinhart and Rogoff [27] is an excellent source of inspiration for past crises.
6 This is because it has, in fact, already happened.
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The top-down approach thus requires building, buying or borrowing one or
more macro-financial stress scenarios.7 Equipped with these events, one must
then determine how precisely they impact the general credit quality (i.e., credit
ratings) of one’s portfolio. These downgrades then translate into capital demand
and supply effects. Although the chain of logic is rather long and complex, it is a
very compelling approach. Once completed and all the intermediate steps arranged,
one can examine the impact of an output shock on the firm’s capital position. Or,
as another possible example, we could examine the sensitivity of one’s current
portfolio to a repeat of the 1998 Asian crisis.

The bottom-up approach attacks the stress-testing problem from the opposite
direction. One asks, in a micro fashion, what would be the impact of a direct
downgrade to a specific subset of counterparties. The location of downgrade could
be determined by individual identity, rating level, industrial sector, region, or it
might even be randomized. There is no logical link—at least, directly—to the state
of the macroeconomy or financial markets. Instead, it looks to the portfolio structure
and seeks to understand the vulnerabilities associated with key concentrations.

This bottom-up perspective appears rather less structured, and thereby less
conceptually compelling, than the top-down approach. While entirely true, it
also relies less upon the (at times) tenuous set of statistical relationships for its
computation. As we’ve seen in Chap. 8—and will see again in later discussion—
establishing a robust relationship between general credit conditions and a set of
macro-financial variables is not an easy or unequivocal task. Although we may
be rather interested in determining the impact of an output shock on our capital
position, our ability to accurately measure such an effect will be limited. Rather
less sexy, the bottom-up approach makes up in honesty what it lacks in conceptual
appeal.

While not precisely the same thing, there is, in our case at least, a link between
the bottom-up approach and the idea of reverse stress-testing. The basic idea of
reverse stress testing is to identify those scenarios that create headaches for the firm.
There is a relatively small, but growing quantitative literature on this topic—see,
for example, Albanese et al. [1] in the market-risk setting—and it appears to be
increasingly popular in regulatory circles.8

7 Given the difficulty of identifying sensible stress scenarios, it may even be preferable to source
them from multiple places.
8 It finds, for example, explicit mention in BIS [6].
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Fig. 12.2 Forward and reverse stress-testing: This schematic illustrates, in a highly stylized
fashion, the logical distinction between forward and reverse stress testing. The forward direction
follows the standard approach of translating a macro-financial shock into a portfolio result. Reverse
stress-testing tries to work backwards from a particularly unpleasant portfolio outcome to the
original macro-financial shock. This helps to identify vulnerabilities.

Figure 12.2 provides a visualization of the notion of reverse stress testing. The
forward direction follows the standard, top-down approach of translating a macro-
financial shock into a portfolio result. Reverse stress-testing works backwards from
a particularly unpleasant (i.e., nasty) portfolio outcome to the original macro-
financial shock. Thinking a bit more mathematically, the set of macro-financial
scenarios can be seen as the domain. Each stress scenario, or function argument,
is passed through some (usually unknown) stress-testing function to determine
the portfolio impact (i.e., the function target or image). Reverse stress-testing
essentially involves selecting some portfolio loss from the image of the stress-testing
function and trying to infer its pre-image.9 Notice that we explicitly avoid the term
inverse, but instead use pre-image; there is no reason to expect a unique one-to-
one correspondence between portfolio outcomes and macro-financial scenarios. A
bad portfolio outcome could occur through many different possible constellations
of adverse macro-financial variables (and vice versa).

By focusing on adverse portfolio outcomes, the reverse stress-testing process
can help to identify vulnerabilities. Once again, this is not quite equivalent to a
bottom-up approach. In the forthcoming practical discussion, however, it will come
tantalizingly close.

9 Since we don’t really know the true form of the stress-testing function, this can be a challenging
task.



768 12 Thoughts on Stress Testing

Colour and Commentary 143 (STRESS-TESTING STRATEGIES): Stress-
testing analysis seeks to identify portfolio vulnerabilities associated with
extreme, adverse states of the world.a There are two main ways to address
this problem. The first, and most popular, is the top-down approach. Motivated
from forward-looking analysis or historical crises, one identifies a collection
of unpleasant macro-financial outcomes and traces out their impact on one’s
capital position. The logic is basically summarized as: if this macro-financial
event happens, this is the implication for our portfolio. The alternative,
referred to as the bottom-up approach, looks at the impact of specific adverse
portfolio events. In our specific case, this would amount to the downgrade
of a given set of obligors or those within a geographic region or sector.
Related to the bottom-up approach, but nonetheless distinct, is the notion of
reverse stress-testing. This basically takes the bottom-up method a step further
by trying to identify the macro-financial shock (or shocks) that might have
created it. Although the context differs, the conceptual idea of stress-testing
is identical in engineering settings. When building a bridge, for example, the
engineer seeks to understand the vulnerability in her design and construction
to various wind sheers, weight loads, and a variety of other dimensions
beyond a financial analyst’s expertise. Instead of physical structures, our
objective is to explore and identify important vulnerabilities in our asset
portfolios that might jeopardize the firm’s capital adequacy position.

a The creditworthiness state variable in our credit-risk economic capital model incidentally
uses a similar idea, but maps out the entire credit loss distribution (including many extreme
outcomes).

12.1.3 Managing Time

In stress-testing analysis, time can be a bit tricky. When, for example, does a
scenario actually occur? We cannot simply (without some reflection, at least) snap
our fingers and impose a large-scale, negative shock to our asset portfolio. Granted,
some adverse situations can occur quickly, but often they unfold over multiple
quarters or even years. Even if the effect is instantaneous (or close to it), the
aftermath is also important for our analysis.

The consequence is that we should expect our macro-financial scenarios to
unfold over time. For argument’s sake, let’s fix our stress horizon to one year.10

This immediately raises a second question: how do we describe the portfolio? It is
exceedingly unlikely that the portfolio remains fixed over a one-year period. Even

10 This is at the lower end of the scale. It is not uncommon to see two- to five-year stress horizons.
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in the unlikely case that it did, multiple aspects of the portfolio will nonetheless
change. At a minimum, there will be principal repayments reducing exposures and
all instruments will have a shorter tenor.11 In short, the passage of time creates a
number of thorny issues.

There is no single correct way to solve this problem. It basically involves a trade-
off between granularity and accuracy on one hand and parsimony and manageability
on the other. Looking out numerous years into the future makes it logistically almost
impossible to maintain the full details of one’s current portfolio structure. There are
simply too many moving parts associated with the roll-down of the current portfolio
and assumptions regarding the details of new assets. The only workable approach
involves dimension reduction. One creates a stylized, low-dimensional view of one’s
portfolio and builds a model to describe its intertemporal evolution.12 The top-
down or bottom-up scenarios are then applied to this stylized portfolio. Corners
nonetheless need to be cut and overall accuracy suffers.

The alternative, which is only tenable for reasonable short time horizons, involves
assuming that the current portfolio remains fixed in its current state. As unrealistic
as this might appear, it does offer some important advantages. The full granularity
of the portfolio is preserved. The regional and industry identities along with
credit ratings, loss-given-defaults, tenors, and exposures are known with precision.
This permits continued use of our detailed economic-capital and loan-impairment
frameworks in the computation. If one looks too far into the future or expects
imminent portfolio changes, then this tactic will break down.

This issue basically brings us to the distinction between risk-management and
strategic analysis. The risk-management viewpoint takes the portfolio as it is,
operates at the highest level of detail, and restricts its attention to relatively short
time periods. Strategic analysis extends over longer horizons and provides the
analyst with flexibility over the portfolio structure. The ability to dial up or down
risk attributes to meet strategic objectives is, after all, the main point of the exercise.
To do this, one needs to stylize the portfolio construction. Generally speaking, since
one cannot legitimately do both, it is necessary to pick a lane.

With these ideas in mind, we will consciously take the risk-management pathway.
Preservation of full portfolio dimensionality is critical, because it allows us to
borrow from the various helpful ideas presented in previous chapters. Digging into
the minutiae of the portfolio, from both top-down and bottom-up perspectives, also
permits us to more definitely identify vulnerabilities. There is a price. We cannot
defensibly look too far into the future. A one-year time horizon is thus a fairly tight
constraint for our analysis.

11 All else equal, this roll-down effect will reduce migration risk.
12 This is common in strategic portfolio-choice problems. See, for example, Bolder [7, 8] or Bolder
and Deeley [9] for a practical example demonstrating just how involved such exercises can become.
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12.1.4 Remaining Gameplan

We asked three fundamental questions and have provided detailed answers for each
of them. Our first question enquires about the practical link between stress and
portfolio outcomes. The principal risk pathway for our stress scenarios towards
the firm’s capital position—within economic capital’s through-the-cycle goggles—
is via downgrade of individual credit obligors. This provides us with a fairly clear
idea of the capital demand and supply effects to be considered.

The second question is strategic: how does one actually go about stress testing?
There are two fairly broadly defined alternative avenues for the investigation of
stress-scenario impact on our portfolios: the top-down and bottom-up approaches.
Rather than choosing a specific track, we will, as we’ve done throughout this entire
book, consider both approaches to this problem. There is no compelling reason to
specialize our stress-testing framework when much can be learned from exploration
of both alternatives

The final question relates to management of the time dimension. We will make
use of the current portfolio—in all of its detail—for our analysis. This critically
assumes that the portfolio structure remains unchanged as we advance in time. To
avoid this assumption turning into conceptual abuse, we must constrain our time
horizon to a single year.13 In making this choice, we have explicitly adopted a high-
dimensional, risk-management perspective in our stress-testing analysis.14

The remaining discussion in this chapter is relatively easily described. In the
context of a small (fictitious) portfolio, we will proceed to examine both the theory
and implementation associated with both the top-down and bottom-up approaches
to stress-testing analysis. This exercise will not only underscore the key ideas, it
will also uncover the many links to the discussion from previous chapters. In this
manner, it pulls the (occasionally) disparate material in this book together for the
reader.

12.2 The Top-Down, or Macro, Approach

The top-down approach is the proper starting point. When most people think
about stress-testing analysis, it is the top-down perspective that they have in mind.
Figure 12.3 gets right to the point with a description of the various steps involved
in our specific capital-focused, credit-risk implementation of a top-down stress
analysis.

13 This, to be perfectly frank, is already pushing things somewhat. Its defensibility will turn on
whether or not one believes that the current portfolio is a reasonable estimator for the future
portfolio one year hence.
14 The longer-term, strategic perspective is also entirely sensible. It does, however, bring us closer
to the important (strategic) question of capital forecasting and planning.
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Infer Downgrade Outcomes

Build (Point-in-Time) Transition Matrices

Select Stress Scenario

Determine Capital-
DEMAND Effects

Determine Capital-
SUPPLY Effects

Compute TOTAL Capital Impact

Fig. 12.3 Top-down sequencing: This graphic walks through the sequence of steps—from selec-
tion of stress scenarios to computation of the total capital impact—involved in the performance of
a top-down stress-testing analysis. It is a relatively complex multi-step undertaking.

The sequence of steps in Fig. 12.3 is surprisingly long. Selection of one’s stress
scenario—which is of utmost importance—is only the beginning. One then needs
to establish a link between these adverse macro-financial outcomes and individual
credit-obligor downgrades. Fortunately, in Chap. 8 we constructed a methodology
for mapping stress outcomes into point-in-time default and transition probabilities.
The basic loan impairment calculation—from Chap. 9—relied heavily upon the
default-probability dimension. Our top-down stress-testing efforts, by contrast, will
exploit the full point-in-time transition matrices to infer portfolio downgrades.15

Given the resulting portfolio downgrades, the remaining effort is rather straight-
forward. We simply determine the valuation, loan-impairment and economic-capital
consequences, organize the results, and compute the capital impact. The lower boxes
in Fig. 12.3 are common in both the top-down and bottom-up approaches. This is the
good news. The bad news is that there is an infinity of possible stress scenarios that
one might potentially select. We require some way to make sense of this bewildering
array of choice.

Some useful guidance can be found in the field of macroeconomics. More than 40
years ago, in a path-breaking paper, Sims [29] introduced the vector auto-regression
(VAR) model to the economics profession.16 VAR models remain, to this day,
a critical element of the economist’s toolkit. The reason is that this approach is
surprisingly flexible in its ability to capture the complex interactions between a
system (i.e., vector) of correlated, time-indexed random variables. Not only does

15 The through-the-cycle matrix is still used to compute credit-migration economic capital given
each obligor’s (shocked or current) credit state.
16 Christiano [10] is a fascinating look into the history and repercussions of Sims [29] and related
work.
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it provide a useful statistical description, but VAR models also permit generally
effective forecasts of macro-financial systems. Quite simply, the VAR model is
basically custom-built for our purposes.

Vector auto-regressive models—of even moderate size—almost invariably pos-
sess a large number of estimated parameters.17 It is typically fairly hopeless to try
to interpret, or perform statistical inference upon, individual model coefficients. For
this reason, different strategies are used to interpret and employ VAR models. One
common, and powerful, technique is referred to as the impulse-response function.
The core idea is to shock a single variable in one’s VAR system at the current time,
while simultaneously leaving the others unaffected. This shock will typically exert
an instantaneous effect on the other variables in the system. The VAR model is then
forecasted forward—with no other sources of uncertainty—allowing it to return to
its long-term equilibrium values.18 Shocking a single variable is the impulse, while
the forecasting results represent the response.

While not a definitive solution, the VAR framework and its associated impulse-
response functions offer a helpful strategy for organizing the vast array of possible
stress scenarios. The first step is to transform our collection of macro-financial
variables—we will continue to use the specific variable choices introduced in
Chap. 8—into vector-auto-regressive form. We then build the appropriate impulse-
response functions. Using these quantities, we may then investigate, for each of
our macro-financial state variables, the joint impact of a multiple standard-deviation
shock over a one-year stress horizon. Following the sequence of steps outlined in
Fig. 12.3, we may then compute a separate capital impact for each macro-financial
shock. Instead of a single stress scenario, we produce an logically organized
collection of them. This provides some semblance of order to the confusing task
of stress-scenario selection. It need not be the end of the line. One can use this
information to construct more global stress scenarios, but this analysis will help
identify key vulnerabilities. In this way, it lends a bit of direction to any subsequent
investigation.

Colour and Commentary 144 (THE IMPULSE-RESPONSE FUNCTION): It
is simultaneously easy and difficult to select a macro-financial stress sce-
nario. It is practically easy, since one need only mix and match some
random set of movements in one’s collection of state variables. It is difficult,
because there are infinitely many possible choices and it’s not a priori

(continued)

17 This is not always true, since one can impose numerous clever constraints to control and guide
variable interactions. In these cases, individual parameters can become quite important. The sizable
parameter dimensionality, the previous point notwithstanding, typically holds.
18 Although the term through-the-cycle is not actively used in macroeconomics, the long-term
equilibrium of a VAR model is essentially the same idea.
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Colour and Commentary 144 (continued)
clear how to identify a meaningful one. The field of macroeconomics offers
a clue towards resolving this impasse. Introduced decades ago by Sims
[29], the vector auto-regressive model admirably captures the dynamics of
high-dimensional, correlated, macroeconomic and financial time series. The
vector-auto-regressive framework also offers a tool—termed the impulse-
response function—that describes the system-wide impact of a shock to a
single variable in one’s system. Capturing the correlation effects, the impulse-
response function traces out the system’s return to its long-term equilibrium.
Shocking each macro-financial variable and applying the associated impulse-
response function in a systematic fashion allows us to examine our portfolio’s
vulnerabilities one source of uncertainty at a time. The results might represent
one’s final analysis or a stepping stone to the construction of a more detailed
stress scenario. In either case, this strategy lends some welcome structure to
a difficult choice.

12.2.1 Introducing the Vector Auto-Regressive Model

Nothing in life is free. To effectively employ impulse-response functions in our
exploration of our macro-financial scenario space, we first need to fully understand
how they work. This requires an associated appreciation of the vector auto-
regressive model. Accomplishing this task, which will require a bit of work and
patience, is the objective of this section.

12.2.2 The Basic Idea

Given their general popularity in economic circles, there is no shortage of superb
sources on vector auto-regressive models. A central resource, for time-series
analysis in general and vector auto-regressions in particular, is Hamilton [16].19 We
will lean heavily on his treatment and, indeed, borrow his general notation to sketch
out the main elements required for our purposes.20 We begin with a time-indexed,
vector-valued collection of random variables, yt ∈ R

κ×1. For our purposes, this will
be our set of macro-financial variables introduced in Chap. 8. More generally, they
could be anything. As the name strongly suggests, we are basically regressing the

19 Judge et al. [18] and Lütkepohl [20] are two other excellent alternative choices.
20 The reader is, of course, recommended to return to the source. Hamilton [16] is a much more
complete, nuanced, and thoughtful exposition.
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current values of the system on their previous values. That is, we are regressing the
vector yt on previous versions of itself. More specifically, we postulate a description
of yt as a linear function of its previous values. In general, it can be written as

yt = c +
p
∑

i=1

�iyt−i + εt , (12.1)

where c ∈ R
κ×1 is a vector of constants, each �i ∈ R

κ×κ is a parameter matrix,
and εt ∈ R

κ×1 is an error vector. p ∈ N is the number of lags, or time steps into the
past, used to describe the current yt outcome. This model arises very naturally. If we
perform, as we did in Chap. 2, a standard discretization of a Markov process (such
as a drifted geometric Brownian motion) we will recover something conceptually
similar to Eq. 12.1. There is, therefore, a clear link between these econometric ideas
and the study of stochastic processes.

To keep the notational clutter under control—and to specialize to our specific
application—we will set p = 1 leading to:21

yt = c +�yt−1 + εt . (12.2)

In this case, we have a single matrix, � ∈ R
κ×κ , of coefficients in addition to the

constant vector, c. The structure of the error term is crucially important. In particular,
we assume that E(εs) = 0 for all s and

E

(

εtε
T
s

)

=
{

� : t = s

0 : t �= s
, (12.3)

where � is a real-valued, positive-definite, symmetric covariance matrix. This
basically means that there is a fixed error structure at each point in time, but these
errors are not serially correlated throughout time.

21 All of the following results generalize readily the p-lag case. In fact, with a bit of cleverness,
any vector auto-regressive process can be written with a first-order structure. This is referred to as
the so-called companion form. Again, Hamilton [16] is a good starting place for this discussion.
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If we take expectations of both sides of Eq. 12.2, we can determine the long-term
unconditional average value of yt . The consequence is:

E(yt ) = E

(

c +�yt−1 + εt

)

, (12.4)

E(yt ) = c +�E(yt−1)+ E(εt )
︸ ︷︷ ︸

=0

,

E(yt )
︸ ︷︷ ︸

μ

−�E(yt−1)
︸ ︷︷ ︸

μ

= c,

μ = (I −�)−1c,

where μ represents the (unconditional) mean of our vector auto-regressive process.
This is the multivariate analogue of the one-dimensional average, c

1−� . In the
univariate case, it is clear that � ∈ R has to be less than unity or the long-term
mean is undefined. The same intuition applies to Eq. 12.4, but the condition is a
bit more complicated. We rather obviously require that the κ × κ matrix, (I − �),
be non-singular. The constraint is that all of the κ eigenvalues of � must lie in the
unit circle.22. Vector auto-regressions satisfying this constraint are referred to as
covariance-stationary. In practice, this is essentially a non-negotiable condition.

Our principal interest lies with the forecasting of yt several periods into the
future. This is accomplished with the use of the natural recurrence in the vector
auto-regression. Let us begin, again from Eq. 12.2, with the conditional expectation
of yt+1,

yt+1 = c +�yt + εt , (12.5)

E

(

yt+1

∣

∣

∣

∣
σ {yt }

)

= E

(

c +�yt + εt

∣

∣

∣

∣
σ {yt }

)

,

= c +�E

(

yt

∣

∣

∣

∣
σ {yt }

)

︸ ︷︷ ︸

yt

+E

(

εt

∣

∣

∣

∣
σ {yt }

)

︸ ︷︷ ︸

=0

,

= c +�yt,

where σ {yt} denotes the σ -algebra—or as econometricians refer to it, the infor-
mation set—generated by yt . This result is relatively unsurprising: the conditional
one-step forward expectation is a linear function of the lagged values, yt . Trying

22 Or, equivalently, that the eigenvalues of (I − �) are all outside the unit circle. We refer to
the unit circle because eigenvalues may occasionally take complex values. We thus consider the
complex norm or modulus of the eigenvalue. If λ denotes the eigenvalue, then the general condition
is |λ| = |r + zi| = √

r2 + z2 < 1 for any r, z ∈ R where i = √−1. For more on the complex
norm, see Harris and Stocker [17, Chapter 17]
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two steps forward—with the same information set—and using similar arguments,
yields

yt+2 = c +�yt+1 + εt+1, (12.6)

E

(

yt+2

∣

∣

∣

∣
σ {yt }

)

= E

(

c +�yt+1 + εt+1

∣

∣

∣

∣
σ {yt}

)

,

= c +�E

(

yt+1

∣

∣

∣

∣
σ {yt }

)

︸ ︷︷ ︸

Eq. 12.5

+E

(

εt+1

∣

∣

∣

∣
σ {yt }

)

︸ ︷︷ ︸

=0

,

= c +�

(

c +�yt

)

,

= c +�c +�2yt .

We can, of course, continue to play this game as long as we like. Ultimately, the
general term for k steps into the future is described as

yt+k = c +�c + · · · +�k−1c +�kyt , (12.7)

= (I +�+ · · · +�k−1
)

c +�kyt ,

=
k−1
∑

i=0

�ic +�kyt .

This yields a rather elegant result. If we continue to the limit and let k tends towards
infinity, then two things happen. First, given that all of the eigenvalues of � are in
the unit circle, for sufficiently large k, �k tends to zero. This means that the impact
of the conditioning information, yt , disappears over time. Using the same properties
of �, the first term in Eq. 12.7 converges to (I − �)−1c, which is none other than
the long-term unconditional mean from Eq. 12.4. To be very definitive, using the
fact that the limit of the sum is the sum of the limits, the result is:

lim
k→∞ yt+k = lim

k→∞

( k−1
∑

i=0

�ic +�kyt

)

, (12.8)

= lim
k→∞

( k−1
∑

i=0

�ic

)

︸ ︷︷ ︸

(I−�)−1c

+ lim
k→∞�kyt
︸ ︷︷ ︸

=0

,

= μ.
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Table 12.1 Vector auto-regression details: The underlying table highlights a number of interest-
ing details associated with a VAR(1) implementation of our κ = 10 macro-financial variables. We
observe, by virtue of the eigenvalues of �, that it is covariance stationary. The volatility of the
error term and the long-term mean values are also displayed for each state variable.

� Eigen- � Error Long-term Series
Macro-financial variable values volatility mean (μ) mean

Credit spreads (ϕt ) 0.32 0.34 2.03 2.01

Inflation (πt ) 0.82 0.20 0.43 0.42

Fed Funds (rt ) 0.82 0.27 −0.03 −0.04

GDP (θt ) 0.62 4.17 2.45 2.57

Unemployment (kt ) 0.51 0.90 5.88 5.89

(Non-Fuel) Commodities (wt ) 0.51 5.29 0.79 0.79

S&P 500 (mt ) 0.33 5.38 1.82 1.97

Oil (ht ) 0.33 0.15 0.01 0.01

Curve slope (st ) 0.13 0.34 −0.02 −0.01

VIX (σt ) 0.07 5.07 0.10 0.05

In other words, as we move into the future, our forecasted values of yt+k ultimately
tend towards the unconditional mean of our vector auto-regressive process. As a
practical matter, this convergence can occur rather quickly, often with a few years.
This is precisely the same logic—indeed, borrowed from this fundamental aspect of
time-series analysis—used in Chap. 8 to motivate the notion of time decay.

At this point, let’s quickly return to our concrete situation. We introduced a
κ = 10 system of macro-financial variables in Chap. 8. While perhaps somewhat
USA-centric, they do represent a fairly broad view of the global macroeconomy and
financial markets. It is a good idea, at this early stage, to fit a VAR(1) specification
to this data-set.23 Table 12.1 provides some key values for each macro-financial
variable. The first point is that all of the eigenvalues of the slope coefficient matrix,
�, are comfortably below unity. We may thus, with some relief, conclude that
a VAR(1) model of our macro-financial system is covariance stationary. Using
Eq. 12.8, we also display the long-term equilibrium values for each variable. In the
column immediately beside it, we find the average value for each time series across
our three-decade data-set. While not precisely the same, the individual μ values
are generally quite close to their simple, long-term mean. This should underscore
the conceptual link between equilibrium VAR values and the through-the-cycle
perspective. The final element in Table 12.1, from the diagonal of �, is an estimate
of each macro-financial variable’s error volatility. This provides some insight into
the typical magnitude of a shock.

23 Recall that our quarterly data spans almost 30 years from the early 1990s until 2021; it thus
comprises about 120 observations for each macro-financial variable.
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Colour and Commentary 145 (A VECTOR AUTO-REGRESSIVE STARTING

POINT): In Chap. 8, when introducing our system of 10 macro-financial
variables, we took pains to ensure that none of the individual components was
non-stationary.a This was important for estimation of Yang [33]’s structural
model linking through-the-cycle and point-in-time probabilities, but it also
proves helpful in the stress-testing setting. Estimating a VAR(1) specification
for our macro-financial system reveals a covariance-stationary result.b This
basically ensures that our statistical model is stable. Moreover, when left to its
own devices, it will tend back towards its well-defined long-term equilibrium
values. These equilibrium outcomes, not coincidentally, are not far from the
long-term unconditional mean estimates for each individual time series. The
VAR model equilibrium is thus closely coupled with the idea of a through-the-
cycle perspective.

a We relied on the work of Dickey and Fuller [11] to test this condition.
b Or, in other words, all of the eigenvalues of the slope coefficient matrix, �, are
comfortably within the unit circle.

12.2.3 An Important Link

There is an equivalent representation of the vector auto-regression, which is
particularly important for our purposes. It is based on a recursive argument and,
to be honest, is a bit tedious to construct. It nevertheless relies on a number of the
basic ideas introduced in the preceding discussion. Let’s again begin with Eq. 12.2,

yt =

Eq. 12.2
︷ ︸︸ ︷

c +�

(

c +�yt−2 + εt−1

)

︸ ︷︷ ︸

yt−1

+εt , (12.9)

= c +�c +�2yt−2 +�εt−1 + εt ,

= c +�c +�2
(

c +�yt−3 + εt−2

)

︸ ︷︷ ︸

yt−2

+�εt−1 + εt ,

= c +�c +�2c+�3yt−3 +�2εt−2 +�εt−1 + εt ,

=
2
∑

i=0

�ic +�3yt−3 +
2
∑

i=0

Biεt−i ,
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where Bi = �i denotes the ith moving-average coefficient matrix. After two
recursions, we begin to see the general pattern. If we push this out indefinitely,
we arrive at the following structure with two main components,

yt =
∞
∑

i=0

�ic

︸ ︷︷ ︸

(I−�)−1c

+
∞
∑

i=0

Biεt−i , (12.10)

= μ+
∞
∑

i=0

Biεt−i ,

which, as we saw before, is only possible if yt is covariance stationary. This
is sometimes called the Wold representation of the vector auto-regression; it is
basically a vector moving-average process with an infinite number of lags. The idea
is that the current value of our random vector (i.e., yt ) can be described as its long-
term average plus the sum of all of the past Bi -weighted shocks going back as far as
one can imagine. Because all of the eigenvalues of � are restricted to the unit circle,
however, the importance of these past errors, shocks or innovations gradually decays
and, ultimately, disappears over time. Thus, the long-term unconditional average
plays a central role whether we are looking forward as in Eq. 12.8 or backwards as
in Eq. 12.10.

From a stress-testing perspective, our interest is in the consequences of a specific
(adverse) shock to one of the key elements of yt . Specifically, we might ask about
the impact of a three standard deviation downward movement in economic output.
It is very interesting to consider, on a standalone basis, what this might mean for our
portfolio? Equation 12.10 shows us, rather clearly, that the mechanism to construct
such a shock is through a perturbation of one or more elements in εt . Let’s consider
a concrete one-period forward version of Eq. 12.10

yt+1 = μ+
∞
∑

i=0

Biεt+1−i . (12.11)

What if we compute the derivative of yt+1 with respect to εt? That is, the sensitivity
of our vector process to a change in the innovation term. The result is

∂yt+1

∂εt
= ∂

∂εt

(

μ+
∞
∑

i=0

Biεt+1−i

)

, (12.12)

= B1.
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This immediately allows us to describe the impact of our perturbation on yt+1 as

yt+1 − yt
︸ ︷︷ ︸

�yt+1

= ∂yt+1

∂εt
εt , (12.13)

= B1εt .

Repeating this same chain of logic leads to the following general version of
Eq. 12.11

yt+n = μ+ Bnεt , (12.14)

for an arbitrary choice of n. This immediately suggests that we can categorize our
time t shock to εt as

yt+n − yt
︸ ︷︷ ︸

�yt+n

≈ ∂yt+n
∂εt

εt , (12.15)

≈ Bnεt .

Given that each of the moving-average coefficients is intimately related to powers
of the � matrix, as discussed previously, the impact of the εt shock ultimately
dissipates to zero.

It is rather interesting to think about a shock at time t of magnitude εt , but zero
for all other future periods (i.e., εt+1, · · · , εt+n ≡ 0). To make it more specific,
we could give a special structure to εt ; in particular, we might define it as a one
standard-deviation shock to the j th element of εt and zero for all other factors.
Following Eq. 12.15, the system impact going forward in time is simply,

B1εt , B2εt , · · · , Bnεt , · · · . (12.16)

The specific shock could be to output, employment, or the oil price. Indeed, we
could perform a sequence of such shocks, in an organized sequential fashion, for
each of our macro-financial variables. This powerful idea is called the impulse-
response function. It helps us identify—within the context of a large number of
variables and parameters—the impact of a shock to inflation on, for example, the oil
price in three periods.

12.2.4 The Impulse-Response Function

There is, however, a catch. Since εt is a correlated system of errors, it becomes
very difficult to disentangle the effects of a given shock. The consequence is that
Eq. 12.15—since it is not really telling us what we would like to know—is not
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typically directly used for this task. Instead, econometricians use some clever tricks
to orthogonalize the covariance matrix of εt . The consequence of this adjustment is
that we can interpret a modified version of Eq. 12.15 as a true partial derivative.

The general approach is to revise somewhat the Wold representation from
Eq. 12.14—under the assumption of a single time-t shock—as

yt+n = μ+ Bn

I
︷ ︸︸ ︷

H−1H εt
︸ ︷︷ ︸

Eq. 12.14

, (12.17)

= μ+ BnH
−1ut ,

where ut = Hεt and H ∈ R
κ×κ is non-singular. This mathematical sleight of

hand—essentially multiplying by the matrix equivalent of one—permits us to treat
our revised error vector as a projection.

While this might not seem like progress, it all depends on the choice of H . The
objective is to find an H such that the covariance matrix of ut is diagonal. From
Eq. 12.3, the error-covariance matrix of εt is denoted as �, which represents a
fairly natural jumping-off point. In particular, given its real-valued, symmetric and
positive-definite form, we may write this error covariance matrix as,

� = PPT , (12.18)

where P ∈ R
κ×κ is a lower-triangular matrix.24 The direct corollary of Eq. 12.18 is

that

P−1�(P−1)T = I. (12.19)

With H = P−1, or equivalently ut = P−1εt , the variance of ut immediately
becomes

var(ut ) = var

(

P−1εt

)

, (12.20)

= P−1 var(εt )
︸ ︷︷ ︸

�

(P−1)T ,

= P−1�(P−1)T
︸ ︷︷ ︸

Eq. 12.19

,

= I.

24 This is referred to as the Cholesky factorization or decomposition, which has already made
multiple appearances in previous chapters. Loosely speaking—although, not technically quite
true—it feels a bit like the square-root of a matrix. See Golub and Loan [14, Chapter 4] and Press
et al. [25, Section 2.9] for much more detailed background.
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This is a pretty convenient choice of H , because the covariance matrix of ut is now
the identity matrix. This amounts to an orthogonalization of the macro-financial
shock dimension.

To introduce our (now independent) shocks, we let δj denote a κ-dimensional
vector with a value of 1 at element j and zero everywhere else. The value of δ1, for
example, is simply

δ1 =

⎡

⎢

⎢

⎢

⎣

1
0
...

0

⎤

⎥

⎥

⎥

⎦

(12.21)

By iterating over δj for j = 1, . . . , 10, we can induce consecutive one-standard-
deviation shocks for each of our individual macro-financial variables. Should we
wish to generate larger shocks, we need only scale up the value of each δj by the
appropriate constant.

We now have all of the moving parts needed to construct our impulse-response
function. For the ith step into the future, it is usefully conceptualized as the
difference of two conditional expectations. The first involves a shock of δj at time
t , while the second is business as usual where we have no information on the shock.
In both cases, we condition on the information available at time t − 1. The distance
between these conditional expectations brings us to the following orthogonalized
form of the impulse-response function:

irf(i, j) = E

(

yt+i
∣

∣

∣

∣
ut = δj , σ {εt−1}

)

︸ ︷︷ ︸
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shock to variable j

−E

(

yt+i
∣

∣

∣

∣
σ {εt−1}

)

︸ ︷︷ ︸

Normal conditional
expectation

, (12.22)

= E

⎛

⎜

⎝�μ+ BiPut
︸ ︷︷ ︸

Eq. 12.17
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E

(

εt

∣

∣

∣

∣
σ {εt−1}

)

︸ ︷︷ ︸

=0

,

= BiPδj .

for i = 0, . . . , n and j = 1, . . . , κ where Bi is the ith moving-average coefficient
matrix and P is the lower-diagonal factorization of �. Given that Bi, P ∈ R

κ×κ
and δj ∈ R

κ×1 the result of Eq. 12.21 is a κ-dimensional vector for each time
step. Tracing out Eq. 12.22 for each i = 1, . . . , n describes the adjustment of our
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macro-financial system associated with a one-standard-deviation innovation to the
j th variable.

The orthogonalized impulse-response function is a huge step forward, but it
still has an important shortcoming. The order of the shocks still matters. Slightly
annoying, this requires us to reflect on issues of causality and essentially increases
our number of cases from κ to something rather larger. Koop et al. [19] and Pesaran
and Shin [24]—with a significant amount of additional effort—offer a solution to
this problem. Referred to as the generalized impulse-response function, they offer
the following twist on Eq. 12.22

girf(i, j) = E

(

yt+i
∣

∣

∣

∣
εt = δj

√
ωjj , σ {εt−1}

)

︸ ︷︷ ︸
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shock to variable j

−E
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∣

∣

∣
σ {εt−1}

)
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Normal conditional
expectation

, (12.23)

= E

⎛

⎜

⎝�μ+ Biεt
︸ ︷︷ ︸

Eq. 12.14
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ωjj

Bi�δj ,

which is invariant to the ordering of the macro-financial shocks for i = 0, . . . , n
and j = 1, . . . , κ . This result relies on the fact that εt is multivariate normally
distributed and requires setting the shock to εjt to the volatility of the j th element
in our vector auto-regression.

We can immediately turn this, relatively abstract, discussion into practical, use-
able outputs. Figure 12.4, for each of our 10 macro-financial variables, illustrates the
impact of a multiple standard-deviation downward shock to the Fed-funds rate over
a 16-quarter (i.e., 4-year time horizon). The entire three-decade history and fitted
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Fig. 12.4 Fed-funds impulse response functions: These graphics illustrate the impact of a multiple
standard-deviation downward shock to the Fed-funds rate variable. We observe the simultaneous
impact to the other macro-financial variables and the gradual return—over a four-year period—
back to their long-term values. Both the orthogonalized (O-IRF) and generalized (G-IRF) impulse-
response functions are provided for comparison.

VAR(1) values are also presented. The orthogonalized and generalized impulse-
response functions—from Eqs. 12.22 and 12.23, respectively—are naturally both
included. Although they provide relatively similar results, there are a few notable
points of deviation. In the following analysis, we will use the generalized method,
from Eq. 12.23, since it is independent of the ordering.

The utility of the impulse-response function is clearly visible in Fig. 12.4. A
large downward shock to the Fed-funds rate leads to instantaneous adjustment to
all factors. Particularly effected are the credit spreads, unemployment, output, oil
prices, and the slope of the yield curve. The magnitude, direction, and duration
of the effects are interesting to examine. Figure 12.4 starkly illustrates why Sims
[29]’s suggested use of VAR models found such success. It permits us to assess
the plausibility of the model dynamics within an intuitive framework. It seems
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Table 12.2 An imaginary portfolio: To examine the various flavours of stress-testing analysis that
one may perform, it is easier to conceptualize with a concrete portfolio. This entirely fictitious
example, summarized in the underlying table, is hopefully small enough to see what is going on,
but large enough to illustrate key trends.

Exposure Tenor Grace Bullet Coupon Fair- Systemic Concentr.
# PD

(EUR)
LGD

(yrs. ) (yrs. ) Loan ? Rate Valued ? Weight Index

1 3 3,500,000 0.40 6 0 True 1.50% True 0.24 0.75
2 4 1,500,000 0.35 4 0 True 1.75% True 0.19 0.72
3 7 2,000,000 0.45 3 1 False 1.00% False 0.22 0.80
4 9 1,750,000 0.55 2 0 True 2.25% False 0.30 0.85
5 13 1,500,000 0.60 5 2 False 3.50% False 0.15 0.70
6 14 3,000,000 0.15 18 6 False 3.00% False 0.40 0.95
7 15 1,000,000 0.35 3 1 False 4.00% False 0.28 0.90
8 17 4,500,000 0.30 15 5 True 5.00% False 0.22 0.75
9 18 750,000 0.40 5 2 False 6.50% False 0.20 0.80
10 20 500,000 0.20 4 1 False 6.00% False 0.40 0.90

Total/Mean 11.1 20,000,000 0.36 8.7 2.4 56% 3.12% 25% 0.26 0.80

rather plausible that a dramatic downward movement in interest rates would be
accompanied with falling output, commodity and equity prices, a widening of credit
spreads, lower inflation, higher unemployment, a steeper yield curve, and enhanced
financial-market volatility. The behaviour of each individual member of our macro-
financial system can be examined in this manner. For our purposes, therefore, it
makes for an excellent stress-testing tool. In the coming sections, we’ll investigate
the portfolio and capital consequences associated with 10 separate versions of
Fig. 12.4.

12.2.5 A Base Sample Portfolio

Equipped with all of the necessary technical elements to perform a top-down stress-
testing analysis, all we need is a portfolio. For obvious reasons, the examination
of the vulnerabilities of NIB’s actual portfolio is a bad idea. Even if we could,
the expositional and pedagogical value would be limited by the portfolio size. It
is simply too hard to see precisely what is going on in the face of hundreds, or even
thousands, of individual positions. Our solution, as in a few previous chapters, is to
consider a fabricated example.

Table 12.2 displays a fictitious portfolio comprised of ten distinct positions with
an equal number of credit obligors.25 The number of positions is intended to form
a happy compromise along the size dimension. Too many instruments and it is

25 This abstracts from many complicating real-world factors such as multiple loans and instruments
with a single credit counterparty, guarantees, and derivative contracts.
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difficult to follow, but too few limits the possible dynamics and interesting cases
to be examined. The total portfolio is EUR 20 million with an average PD—
along our internal scale—of roughly 11, a mean tenor of roughly 9 years, and a
weighted-average loss-given-default of about 0.35. The elements have an assortment
of coupon rates and about half of the total notional amounts have a bullet-repayment
profile. Two high-quality instruments—allocated to an internal trading portfolio—
are fair-valued, while the remainder are accounted for via amortized cost. This
creates some distinction between valuation and loan-impairment effects. Finally,
Table 12.2 also includes (randomly assigned) systemic weights and concentration-
index values to permit easy use of the economic-capital approximation model from
Chap. 5.

Using Tables 12.2, 12.3 demonstrates the base, un-shocked, risk position for our
imaginary portfolio. It includes both the stage-I and II through-the-cycle expected-
credit loss amounts as well as the default, migration, and total economic-capital
estimates. We assume that all obligors, at inception, find themselves in stage I.26

The consequence is that the total loan-impairment is less than one percent of the
overall portfolio.27 Credit-risk economic capital, by contrast, represents almost 9%
of the portfolio value. This ranges from a few percent, at the upper end of the credit
scale, to about 15% at the bottom end.

Table 12.3 is our baseline. These results will be our point of comparison for all
future stress-testing shocks, whether from the top-down or bottom-up approaches.
A couple of simplifications need to be mentioned. First, we use the economic-
capital approximation with the parameters described in Chap. 5. This is, of course,
a slight abuse because these parameters apply to a rather different underlying
portfolio. Hopefully the reader will excuse this discretion in the name of simplicity.
The second issue, relating to the expected-credit loss, is a bit harder to justify.
Chapter 9 indicated clearly that the overall expected-credit loss estimate is a
(subjectively) weighted average of three forward-looking macro-financial scenarios.
With plans to systematically shock each of our macro-financial variables, it is
difficult to imagine the consequence for our forward-looking scenarios. With some
patience and imagination, one could attempt to reconstruct a set of macro-financial
shock consistent with the forward-looking point-in-time default-probability term
structures. In this analysis, however, we have taken the easy way out. The expected-
loss calculation is proxied with the shock-invariant through-the-cycle default curves.
Given its centrality to the forward-looking construction, it will do a sensible job

26 This implies that they have not experienced any significant decrease in credit quality since
inception. See Chap. 9 for more discussion on IFRS 9 stage-allocation logic.
27 The fair-valued instruments do not contribute to this overall ECL amount. These positions
are excluded from the loan impairments; any valuation effects associated with credit-spread
movements flow directly through the profit-and-loss statement.
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of capturing the downgrade and stage-allocation effects. It ignores, and this is
important to stress, any macro-financial-related shock consequences.28

Colour and Commentary 146 (A MINIMAL WORKING PORTFOLIO):
Internally, as do all financial institutions, we naturally perform our stress-
testing analysis using our current portfolio in all of its (gory) detail. This
nonetheless creates two problems for the present discussion. The specific
structure and vulnerabilities of our actual portfolio contain numerous
proprietary and confidential elements. As such, it cannot really be used.
Even if it was useable, its sheer size and complexity would certainly make
it sub-optimal for our pedagogical discussion. To resolve this problem, we
invented a small portfolio comprised of 10 positions each associated with a
different credit obligor. Although entirely fictitious, it does cover a reasonable
range of credit ratings, position sizes, tenors, notional repayment profiles,
accounting treatments, and recovery values. It is big enough to illustrate
reasonably complex effects, but small enough to actually see what is going on.
As such, it strikes a workable compromise between parsimony and realism.

12.2.6 From Macro Shock to Our Portfolio

Given a specific macro-financial shock, the link to an associated transition matrix
is described in Chap. 8. In brief, there are three steps in the construction of a
point-in-time transition matrix. The first is the impact upon the default probabilities
in the final column. The second involves the so-called upgrade and downgrade
ratios. These are factors, centred on unity, that scale up or down the (non-
default) off-diagonal, through-the-cycle, quarterly transition matrix elements. In this
way, a given macro-financial shock impacts the likelihood of default and relative
probability of upgrade and downgrade. The final step is the necessary adjustment of
the diagonal elements to ensure each row still sums to unity.29

Figure 12.5, to underscore the link to our transition matrices, shows these
upgrade and downgrade ratios for each of our 10 macro-financial-variable shocks
four quarters into the future. We observe rather important differences among the
various shocks as well as throughout time. As we would expect, the distance from
zero appears to be gradually decreasing with each time step. Eventually, as the shock
dissipates, we recover our through-the-cycle transition matrix.

28 Such effects can, with some additional effort and assumptions, be incorporated into one’s
analysis.
29 This is a kind of conservation-of-(probability-)mass constraint.
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Some time-related book-keeping is required. With a quarterly model of macro-
financial movements, it is also necessary to work with a quarterly transition matrix.
To address this point, we need the generator matrix G, which is computed from the
(annual) through-the-cycle transition matrix, P .30 The quarterly through-the-cycle
transition matrix is obtained through the following transformation:

PQ = exp

(

1

4
·G
)

, (12.24)

where exp(·) denotes the matrix exponential. We then combine the quarterly
through-the-cycle transition matrix, our macro-financial shocks, and the previously
described point-in-time transition-matrix construction logic. The result is a sequence
of point-in-time transition matrices,

{

PQ(i, j) : i = 1, . . . , n

}

, (12.25)

for each j = 1, . . . , κ macro-financial shock. There is thus a logical correspondence
between the generalized impulse-response function from Eq. 12.23 and the point-in-
time transition matrices for the ith step into the future and the j th macro-financial
shock.

Our interest lies with the final transition matrix after n steps into the future along
our shocked macro-financial variable paths. We use the time-homogeneity feature
of the transition matrix to approximate this quantity as,

P(n, j) =
n
∏

i=1

PQ(i, j) (12.26)

with an associated generator matrix, G(n, j). After having invested much time
maligning the lack of time homogeneity in credit-rating transition matrices, it may
appear somewhat suspicious to see it being used in Eq. 12.26. For relatively small
n, assuming that our transition-matrices are time-homogeneous does not represent
a serious crime. We can think of it as roughly equivalent to annualizing an interest
rate applied over some fraction of a year.

To respect our one-year stress-testing horizon, we set n = 4. The consequence
is a collection of κ one-year, point-in-time transition matrices: one for each macro-
financial shock. The next step, in our rather lengthy chain of logic, involves inferring
the associated credit rating for each instrument in Table 12.2 across each top-down
shock. The transition matrix provides us with all of the requisite information. Let’s
begin with our through-the-cycle matrix, P . If we are told that a credit obligor is in
state Sk(t) at time t , then its predicted value in one-year’s time is simply,

Sk(t + 1) =
21
∑

m=1

Pk,m ·m. (12.27)

30 These ideas were also introduced in Chap. 8.
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We exploited this trick in Chap. 5 when constructing our migration economic-capital
estimator. To determine the natural progression of the portfolio, over a one-year
horizon, we need only apply Eq. 12.27 for k = 1, . . . , 20. We then compare the set
of distances,

ϒk = Sk(t + 1)− Sk(t), (12.28)

for k = 1, . . . , 20. The sign and magnitude of ϒk determine the downgrade
outcome. If ϒk = 0.1, this suggests a tendency towards credit deterioration, but
it is not large enough to predict an actual downgrade. Although debatable, we set
the threshold at 0.5. That is, there is a one-notch downgrade if ϒk > 0.5, a two-
notch downgrade if ϒ > 1.5, and so on. Interestingly, using this criterion, the
one-year, through-the-cycle transition matrix does not predict a downgrade for any
credit rating.31

To concretely establish the link from macro-financial shocks to transition matrix
matrices to attendant rating outcomes, we arrive at

ϒk(n, j) =

Sk(t+1,j)
︷ ︸︸ ︷

21
∑

m=1

Pk,m(n, j) ·m
︸ ︷︷ ︸

Shocked
rating

− Sk(t + 1)
︸ ︷︷ ︸

TTC
forecast

, (12.29)

for n = 4 and j = 1, . . . , κ . To suit our purposes, we have slightly modified the
definition of Eq. 12.28. We are comparing the one-year shocked credit-rating out-
come to the one-year, through-the-cycle forecast. This ensures an apples-to-apples
comparison. If, for example, the shocked rating forecast is 9.6, but the through-
the-cycle downgrade expectation is 9.7, we can hardly attribute a downgrade to the
macro-financial shock.

12.2.7 The Portfolio Consequences

Having delineated the path from macro-financial system to impulse-response
function to point-in-time transition matrix to portfolio downgrades, we may now
reap the benefits. Table 12.4 provides a concrete point of comparison to the base
results in Table 12.3 associated with a multiple standard-deviation shock to the Fed
Funds rate—as described in Fig. 12.4—over our one-year stress-testing horizon.

31 Naturally, given its structure, it eventually pulls all credit counterparties to downgrade, and
ultimately default, as we move sufficiently far into the future.
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Table 12.4 A (first) macro-financial shock analysis: The underlying table illustrates the
impact—via portfolio downgrades—of a multiple standard-deviation shock to the Fed Funds
rate as summarized in Fig. 12.4. The default-probability, valuation losses, expected-credit loss
(including stage-allocations), and economic-capital implications are presented.

Trade Details Capital Supply Capital Demand

ECL MTM Economic Capital
# PD0 PD1 EAD LGD TTM

Stage I/II Δ-Spread Default Migration Total

1 3 4 3,500,000 0.40 6 0 10,139 27,281 57,606 84,886
2 4 5 1,500,000 0.35 4 0 3,512 8,742 13,358 22,100
3 7 7 2,000,000 0.45 3 920 0 41,510 13,434 54,944
4 9 9 1,750,000 0.55 2 2,371 0 123,618 11,630 135,248
5 13 15 1,500,000 0.60 5 104,016 0 118,496 12,373 130,868
6 14 16 3,000,000 0.15 18 103,158 0 308,689 94,721 403,410
7 15 17 1,000,000 0.35 3 47,882 0 183,635 5,040 188,676
8 17 19 4,500,000 0.30 15 470,857 0 541,849 250,467 792,315
9 18 19 750,000 0.40 5 79,747 0 104,040 16,456 120,496
10 20 20 500,000 0.20 4 19,996 0 71,339 2,676 74,016

Total/Mean 11.1 12.4 20,000,000 0.36 8.7 828,947 13,650 1,529,199 477,762 2,006,960
Percent of Portfolio 4.1% 0.1% 7.6% 2.4% 10.0%

Seven of our ten credit obligors experienced a downgrade; three of these were
downgraded by a single notch, while the other four experienced a two-grade move-
ment. The credit-risk economic capital allotment rose by about EUR 300,000 or 1 1

2
percentage points of the portfolio’s notional amount. Although both the migration
and default dimensions were impacted, around three quarters of the increase can
be attributed to default risk. One-notch downgrades to our two high-quality fair-
valued securities lead to a modest valuation loss. The largest impact, by a significant
margin, stems from the loan-impairment side. The expected-credit loss rise by
almost EUR 700,000—about twice the economic-capital movement—amounting to
more than 3% of the total portfolio. The lion’s share of the loan-impairment result
stems from the allocation of five positions—comprising more than one half of the
portfolio’s value—to IFRS 9’s stage II. The corresponding lifetime expected-credit
loss values represent a sizable, non-linear hit to the firm’s capital position.

Combining the figures in Table 12.4 gets us to the ultimate prize: the capital
impact of a given macro-financial shock. The total increase in capital demand
is, as mentioned, about EUR 300,000. The corresponding capital-supply result
approaches EUR 700,000. Together they squeeze the firm’s capital headroom by
a total of approximately EUR 1 million. This represents about 5% of the total assets
and—although we have not specified the original capital position—would be a tough
blow for any financial institution.

Table 12.4 is a critical milestone, but Fig. 12.6 is the end game. It illustrates—
for a multiple standard-deviation shock of each macro-financial variable—the
combined impact of the five capital drivers associated with credit risk: default and
migration economic capital, stage I and II expected-credit losses, and valuation
adjustments. The red, downward-trending, bars in Fig. 12.6 cut to the chase. They
provide the overall impact to the firm’s capital associated when we combined the
one-two punch of capital demand and supply effects.
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Fig. 12.6 Impulse-response-function intuition: The preceding graphic provides—in a systematic
fashion—the expected-credit loss and economic-capital outcomes associated with a multiple
standard-deviation shock to each of our κ = 10 macro-financial variables. The net capital impact,
combining both capital supply and demand effects, is also presented.

Given the extreme nature of the shocks, none of our κ stress scenarios looks
particularly appealing. The advantage of this visualization—indeed, the entire
exercise—is that it allows us to classify our portfolio’s sensitivity to the various
macro-financial factors. Overall, credit spreads seem to exhibit the largest capital
impact, while the portfolio is least sensitive to inflation. Examining Fig. 12.6
we could, in fact, put our macro-financial factors into three groups. The highest
impact group—with a capital squeeze in the neighbourhood of EUR 1 million—
include credit spreads, the Fed Funds rate, commodity and equity prices, and finally
financial-market volatility. A medium impact group would include unemployment,
oil prices, and the yield-curve slope. The capital consequence for this group is in the
neighbourhood of EUR 600,000 to 700,000. Output and inflation appear to be the
final, lower-effect, macro-financial variables with capital reduction about half of the
magnitude of the high-impact group.

While there are clearly limits to the potential interpretation of an imaginary
portfolio, Table 12.4 and Fig. 12.6 illustrate the cornerstones of a larger, broader
top-down analysis. It is perfectly reasonable to augment this analysis with a few
forward- or backward-looking macro-financial stress scenarios. The technical steps
in moving from scenario to portfolio impact remain unchanged. Most importantly,
our systematic, variable-by-variable, shock-based assessment provides valuable
insight into portfolio vulnerabilities and dramatically eases interpretation and
communication of the results from more global stress scenarios.



794 12 Thoughts on Stress Testing

Colour and Commentary 147 (TOP-DOWN STRESS-TESTING ANALY-
SIS): Stress testing is, at its heart, trying to understand how one’s portfolio
would fare in a financial crisis. A top-down, macro-motivated approach
is consequently what most everyone has in mind. The idea of determining
one’s portfolio sensitivity to a specific, extreme, and adverse macro-financial
scenario is inherently conceptually appealing. This is, after all, how a
typical financial crisis manifests itself. Actually turning this conceptual idea
into a practical outcome is not particularly easy. It involves translating a
macro-financial shock into general credit conditions over some horizon,
inferring the associated impact on one’s portfolio composition and then
computing the capital demand and supply effects. To crown it all, there
are an infinity of possible stress scenarios from which to choose. Using a
workhorse model from macroeconomics, we propose a systemic approach
to examine macro-financial shocks—of various degrees of severity—one
macro-financial variable at a time. This helps to manage the complexity of
stress-scenario selection. The long and tenuous chain of logic from scenario
to capital impact, however, is simply a feature of top-down analysis. It is
also a weakness, which suggests a motive to intellectually diversify. For
this reason, the top-down approach to the stress-testing problem is sensibly
complemented with a bottom-up perspective.

12.3 The Bottom-Up, or Micro, Approach

As discussed, it is possible to come at the stress-testing question from another
angle. The bottom-up approach side-steps the macro-financial dimension and jumps
straight to the downgrade outcomes. Figure 12.7 provides a visualization of the
sequencing associated with this alternative strategy. Comparing it to the top-down
logic from Fig. 12.3, we see two main differences. First, the macro-financial
stress scenarios and point-in-time transition matrices disappear. Second, we identify
portfolio downgrades rather than infer them from macro-financial shocks. We are
basically imagining that, at the snap of our fingers, we can change the credit state of
any (and every) credit obligor in our current portfolio. This is not very realistic, of
course, but we can view this as the essence of the bottom-up thought experiment.

The bottom-up approach liberates us somewhat, but also creates its own chal-
lenges. The change of viewpoint does not, to be clear, resolve many of the
fundamental issues associated with stress-testing analysis. Direct identification of
portfolio downgrades remains absent any probability assignment and there are
many—indeed, far too many—possible combinations of downgrade that one might
select for consideration. The objective is nonetheless the same: to identify important
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Identify Downgrade Outcomes

Determine Capital-
DEMAND Effects

Determine Capital-
SUPPLY Effects

Compute TOTAL Capital Impact

Fig. 12.7 Bottom-up sequencing: This graphic describes the sequence of steps—as compared to
the schematic in Fig. 12.3—involved in the performance of a bottom-up stress-testing analysis.
Conceptually, at least, it is rather less involved than the top-down case.

vulnerabilities in one’s portfolio. Like the top-down setting, effective use of the
bottom-up approach will require some structure and organization. To the best of the
author’s knowledge, there is no correct way to perform this task. In the remainder of
this chapter, we will instead consider a number of practical variations of the bottom-
up approach and, in doing so, help to complement the preceding top-down results.
The first order of business is to motivate the need for a master plan.

12.3.1 The Limits of Brute Force

Although we’ve eliminated the thorny question of selecting macro-financial sce-
narios, we immediately face another problem.32 How precisely do we identify
downgrade cases? The simple, and naive, answer is all of them. This essentially
means looking at all possible combinations of downgrades one’s portfolio might
experience. While it has a certain appeal, for even a moderate number of credit
obligors, this implies an enormous number of possible future combinations and
permutations of different credit migrations. The number of combinations of credit
ratings—across our 20-notch non-default scale—associated with several hundred
different credit obligors is simply staggering.33

One might argue that the full power set of downgrade permutations is exces-
sive.34 Perhaps we might wish to consider the set of all possible one-notch

32 This situation brings to mind the old proverb, which is used in Tolkien [32], about moving “out
of the frying pan and into the fire.” It describes going from a bad situation to a worse one.
33 Even with n = 10 counterparties and k = 20 credit states, there are some

(

n+ k − 1

k − 1

)

≈ 20, 000, 000, (12.30)

possible combinations of portfolio credit ratings. For any meaningful number of obligors, this is
an insurmountable hurdle.
34 We use the term power set to represent the set of all subsets of downgrades.
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Fig. 12.8 One-notch downgrade distribution: The preceding histogram maps out the capital
impact of the set of 1023 possible downgrade combinations for our 10-counterparty example
introduced in Table 12.2. While interesting, such analysis is not possible outside of unrealistically
small portfolio examples.

downgrades. With two counterparties, this is a very small set: each downgrade and
both downgrade. It contains only three cases. If we add another counterparty, the set
grows to seven elements, but it is still manageable. As a general rule, the number
outcomes is

n-notch downgrade outcomes = (n+ 1)Number of counterparties − 1, (12.31)

using basic combinatorial logic and subtracting off the single case where no obligor
downgrades. Applying Eq. 12.31 to our 10-obligor portfolio from Table 12.2, where
n = 1 yields 1023 different possible combinations of one-notch downgrade. Again,
while not small, this seems like something we can handle. If we increase the number
of obligors to a modest 100, however, the number becomes simply too large to
reasonably write down.35

Figure 12.8 provides a histogram of the capital impact associated with the set of
1023 possible one-notch downgrades for our small example in Table 12.2. There
is no denying that this is an interesting object. It has two modes: one around
EUR 200,000 and another in the neighbourhood of EUR 550,000. Many possible
combinations of downgrades can generate such reductions in capital. There are only
very few constellations of one-notch downgrades, by contrast, that can generate

35 Some readers might recognize this idea from the story about a clever inventor, a King, a
chessboard, and many grains of rice. See Tahan [30] for more on this ancient take on Bellman
[5]’s curse of dimensionality.
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capital decreases of EUR 700,000. Although a bit cumbersome—given the relatively
large number of cases—one could drill into Fig. 12.8 and try to identify trends and
patterns within the downgrades.

The bottom line is that, however interesting it may be, Fig. 12.8 is simply not
available. No matter how much we might wish to perform such an analysis, the
dimensionality of the power set of downgrades in a real-life portfolio—even for a
single notch—is just too big to tame. Another solution needs to be found.

12.3.2 The Extreme Cases

When faced with such a complex problem, one’s first thought is typically try to
reduce dimensionality. How might we start? While it might sound a bit silly at first,
one option is to look at the extremes. By extreme we mean placing all of our credit
obligor into the same rating category. The result is a portfolio entirely comprised of
PD01 ratings, another completely in PD02 and so on out until PD20; this assignment
occurs irrespective of an obligor’s starting point.36 We can organize this idea in
the form of a matrix, which we’ll call E. If we place the I instruments in one’s
portfolio along the horizontal axis and map the columns to the rating categories,
we have E ∈ R

I×20. Computing the capital-demand and supply effects for each
element in this matrix, (I−1)×N instrument-level computations are involved.37 For
a medium-sized portfolio with 500 credit obligors, this amounts to approximately
10,000 sets of calculations. The main takeaway is that only 20 (extreme) portfolios
are considered: one for each credit rating. There is much to criticize, but the huge
advantage of this perspective is its invariance to the size of the portfolio.

It is admittedly somewhat artificial and unnatural to assign all of the credit
obligors in one’s portfolio simultaneously to the same credit category. Information
is clearly being lost, but that is the price of dimension reduction. The litmus test is
the helpfulness of this approach and the associated insights it provides into one’s
portfolio.

For our sample portfolio where I = 10, this dimension-reduction idea involves
20 new portfolios with only 180 instrument-level calculations. As a consequence,
the figures are quickly computed. As in all of the previous analysis, we employ our
default and migration economic-capital approximation model. This is not without
some drawbacks. Our approximations are estimated using the current portfolio with
a broad mixture of rating outcomes. It is rather unfair to then ask the approximation
framework to provide entirely sensible results for such extreme portfolios. It will,
in particular, have difficulty with the corner cases; that is, where all obligors

36 Each counterparty will thus experience—depending on its starting point—an upgrade, a
downgrade, or no change at all.
37 This is specialized to our 20-notch (non-default) credit-rating scale. It naturally generalizes to
any finite number of credit ratings.
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Fig. 12.9 An extreme portfolio perspective: These graphics summarize the capital demand and
supply effects associated with a rather extreme what-if exercise. All positions are simultaneously
moved into the same, common credit rating.

are assigned either the highest or lowest credit quality. This situation is readily
resolved by simply re-running the simulation model either for all 20 portfolios or, if
computational resources are constrained, for the most extreme portfolios.

Figure 12.9 highlights the capital-demand and supply implications of—starting
from our baseline—moving all positions into our 20 extreme-rating configurations.
On the capital-demand side, default economic capital is a rather smooth increasing
function of the credit state. Migration, however, is a bit less well-behaved. This
is partly due to difficulty on the part of the approximation model and lumpiness
in our small portfolio. Positions #6 and #8 with their large exposures—together
representing close to 40% of the portfolio—have rather long tenors. At the corners,
this can lead to odd behaviour. This could be partly resolved with proper portfolio
simulations, but perhaps not completely eliminated.

The right-hand graphic of Fig. 12.9 illustrates the capital-supply consequences
for these extreme portfolios. The loan-impairment allocation ranges from effectively
zero to more than 8% of the overall portfolio value.38 The valuation impact,
which influences only two securities, are surprisingly large. These are nonetheless
relatively sizable, reasonably long-tenor positions currently situated at the upper
echelon of the credit spectrum. Dramatic downgrade—below PD12 or so—would

38 The reasonableness of this figure is easily verified by calculating:

Extreme PD20 ECL ≈ Total Exposure · PD20 Default Probability · Average LGD,
(12.32)

≈ EUR 20, 000, 000 · 20% · 0.36,

≈ 1, 440, 000,

which is slightly more than 7% of the portfolio.
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Fig. 12.10 Capital impact at the extremes: This graphic combines the capital demand and supply
effects—across our extreme views of the portfolio—and illustrates the associated capital impact
relative to our baseline setting.

involve significant spread widening with attendant valuation consequences. For
small shocks of one or two credit notches, this effect is not visible.

Combining the capital demand and supply graphics from Fig. 12.9 and incor-
porating the baseline perspective, Fig. 12.10 lays out the capital impact of these
extreme portfolios. It tells an interesting story. Moving south of the current
portfolio—with an average credit rating of about PD11—there is an increasing
reduction of capital headroom. At PD19 or PD20, this amounts to roughly EUR
4 million. At the other end of the spectrum, up to about EUR 1 million of capital is
actually released. There is thus a certain asymmetry around the baseline portfolio.

Figure 12.11 provides a final perspective on our extreme-portfolio construction.
At the position level—as a percentage of its notional value—the individual capital
demand and supply results are presented. A heat-map format is employed to
incorporate the three dimensions of position, credit rating, and capital percentage.
The current baseline portfolio is represented as the shaded line running roughly
through the diagonal of our heat maps. The objects in Fig. 12.11 are basically capital
demand and supply versions of the previously introduced matrix, E. For lack of a
better term, we refer to these as stress matrices.

In a real-world portfolio, such matrices can be quite large.39 If one orders the
positions from highest to lowest credit category, however, an interesting pattern
emerges. Everything to the right of the shaded baseline-portfolio line represents
various combinations of portfolio downgrade, whereas everything to the left of

39 To manage the sheer size of these stress matrices, it is also entirely possible to collect
the individual positions into meaningful sub-categories. Good examples would include regions,
industries, firm-size, or initial credit rating. Indeed, the organization is limited only by the analyst’s
creativity (and data availability).
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Fig. 12.11 Extreme stress matrices: These graphics display—as a percentage of their underlying
notional value—the capital demand and supply impact in grid format. These so-called stress
matrices permit identification of particularly sensitive instruments. The true portfolio is highlighted
in white.

the demarcation denotes upgrade. As pessimistic risk managers, we naturally focus
on the right-hand side, but both provide insights into one’s portfolio. The capital-
supply heat map suggests, for example, that there is little scope for capital relief
associated with upgrade along this dimension; everything left of the shaded line
has essentially the same colour. On the capital-demand side, the picture is a bit
more subtle. Some positions—such as #4 and #7—are relatively stable for a one-
or two-notch downgrade. As we move to multiple downward steps, however, their
capital-demand requirements increase substantially. Moreover, something funny
(and possibly incorrect) is occurring for extreme upgrades of position #6. The
visualization in Fig. 12.11, while certainly imperfect, does provide a slightly
different perspective on one’s portfolio.

Colour and Commentary 148 (BRUTE-FORCE AND EXTREMES): A brute-
force examination of the power set of one- or two-notch downgrades—despite
its intellectual and practical appeal—is unfortunately off the table. The
combinatorics tell the merciless story of a mind-bogglingly large set of
possibilities. When the dimensionality is too large, common practice is to
identify ways that it might be reduced. A simple approach, which involves a
computational burden that is roughly invariant to one’s portfolio size, involves
consideration of so-called extreme portfolios. This basically means placing
all of one’s position sequentially into each of the rating buckets. The result
is a collection of highly stylized extreme portfolios. The truth is that this is
probably an excess of dimension reduction. Much information is lost and
the associated portfolio outcomes are not realistic. There is, however, some
insight to be gained. Our extreme-portfolio construction, while it cannot be

(continued)
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Colour and Commentary 148 (continued)
the sole bottom-up strategy for our stress-testing analysis, allows for rather
informative visualization of our portfolio. Portfolios are complicated high-
dimensional objects. Anything we can do to visualize these sensitivities and
vulnerabilities is thus both helpful and entirely welcome.

12.3.3 Traditional Bottom-Up Cases

While a useful starting point, the extreme-portfolio perspective should rather be
viewed as exploratory analysis. We can learn a few high-level vulnerabilities of our
portfolio, which might be incorporated into more realistic cases. Analogous to the
top-down setting, when it comes down to it, stress-testing basically boils down to
subjective selection of shocks. In this section, we will investigate a few alternative
(and perhaps more typical) ways to proceed.

The term chestnut, beside its obvious meaning, is used by (typically fairly old)
English-speakers to describe an over-used joke, story, or example.40 Our first choice
of standalone bottom-up scenario definitely falls into this definition. It involves
a case of a global and simultaneous one- or two-notch downgrade to all of the
positions in one’s portfolio. Its conceptual shortcomings are (partially) offset by its
simplicity. No deep reflection or complex logic is required; each position is treated
in the same manner.

Table 12.5 summarizes the aggregate, instrument-level, capital-related results of
this type of global one- and two-notch portfolio downgrade. The reduction to the
firm’s capital headroom is displayed in both currency and percentage terms and
ordered, in descending fashion, by the two-notch downgrade percentage impact. A
global one-grade downgrade leads to a roughly EUR 700,000 headroom squeeze,
which corresponds to a medium-impact macro-financial impulse-response function
shock. At two notches, the EUR 1.1 million headroom exceeds any of our macro-
financial scenarios. This comparison of bottom-up shocks to our top-down macro-
financial outcomes is not precisely reverse stress-testing, but it is rather close.

Table 12.5 also provides useful information about our individual positions that, in
some cases, overlaps with the extreme-portfolio analysis from the previous section.
In the final column, for example, we observe that the average capital effect—
when moving from one to two notches of downgrade—is about +70%. This varies
wildly across individual positions. One instrument experiences, in fact, a negative

40 See Merriam-Webster [22, page 231].
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Table 12.5 An analytic chestnut: This table summarizes the (ordered) capital-headroom results
of the classic (and perhaps slightly overused) trick of applying a broad one- or two-notch
downgrade to one’s entire portfolio. While not particularly nuanced, it does help identify the
most capital-sensitive sensible instruments in both currency and percentage terms.

Trade Details One Notch Two Notches
#

PD EAD LGD Tenor EUR Per cent EUR Per cent

Notch
Increase

Percentage

8 17 4,500,000 0.30 15 354,571 7.9% 650,482 14.5% 83%
9 18 750,000 0.40 5 71,587 9.5% 74,701 10.0% 4%
5 13 1,500,000 0.60 5 86,020 5.7% 122,121 8.1% 42%
7 15 1,000,000 0.35 3 43,079 4.3% 73,599 7.4% 71%
4 9 1,750,000 0.55 2 32,885 1.9% 79,270 4.5% 141%
6 14 3,000,000 0.15 18 82,577 2.8% 81,946 2.7% -1%
3 7 2,000,000 0.45 3 14,018 0.7% 31,113 1.6% 122%
2 4 1,500,000 0.35 4 4,911 0.3% 10,587 0.7% 116%
1 3 3,500,000 0.40 6 -9,560 -0.3% 7,960 0.2% 183%
10 20 500,000 0.20 4 0 0.0% 0 0.0% 0%

Total/Mean 11.1 20,000,000 0.36 8.7 680,087 3.3% 1,131,779 5.0% 72%
Percent of Portfolio 3.4% – 5.7% – –

movement.41 Another exhibits no movement at all.42 A handful of instruments
encounter increases of around twice the portfolio average. These are, from a risk-
management perspective at least, quite interesting cases.

Credit analysts work with watch lists of firms that appear close to downgrade or
even default. Figure 12.12 runs with this idea and extends it—using the information
in Table 12.5—to a create a quantitatively motivated danger list. These firms may be
in fine financial shape, in contrast to the watch list, but were they to be downgraded,
they would exert the greatest negative capital impact on the financial institution.
Figure 12.12 restricts this to the top-four most sensitive instruments in our small,
fictitious portfolio. In a real-life portfolio, this idea can be made much more precise
and refined. It nonetheless represents a pragmatic application of the chestnut one- or
two-notch downgrade scenarios, which can aid in the identification of real portfolio
vulnerabilities.

If a global one- or two-notch downgrade bottom-up strategy lacks finesse, then
how might we do better? Again, the challenge is the sheer number of possible
combinations. There is, however, an entire class of bottom-up scenarios that are
constructed using portfolio-level knowledge. There are many possible examples.
One might consider downgrades, of various magnitude, for a given industrial

41 This is related to the vagaries of migration risk for long-tenor, high-quality securities.
42 Since position #10 is already in PD20, it can no longer downgrade without moving into default.
We have precluded this possibility and held it fixed. Alternatively, of course, one could move it
into default and compute the loss. It is a question of preference.
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Fig. 12.12 Creating a quantitative danger list: This graphic uses 7th and 8th columns of
Table 12.5 to construct a quantitatively motivated danger list. These are securities with the highest
capital sensitivity to one- or two-notch downgrade.

sector, or firm size, or geographical region. These might be supported by portfolio
concentrations, macro-financial reasoning, or a gut feeling. Typically, there is a story
associated with such scenarios. The deteriorating prospects of a particular industry,
as an example, may have been treated extensively in the media or identified by one’s
credit analysts. A natural bottom-up stress scenario would involve a broad-based, or
more complex, set of downgrades to one’s obligors in this industry.43

To illustrate and motivate this idea, we will construct a fairly artificial example
for our sample portfolio. The idea is to use the concentration index from Table 12.2.
These, completely invented, values shouldn’t really be taken very seriously when
thinking about these ideas and interpreting the results. Instead, we should view
them as a proxy for something more complicated in the underlying structure of
the portfolio. In particular, we propose the following bottom-up stress scenario:

Downgradei =
⎧

⎨

⎩

Concentration Indexi ≥ 0.9 : +3
Concentration Indexi ∈ [0.8, 0.9) : +2

Concentration Indexi < 0.8 : 0
, (12.33)

43 This might feel a bit like a macro-financial scenario, and to a certain extent it is, but such
situations are typically too granular (or micro-focused) for treatment within a macro-financial
model.
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Table 12.6 A concentration-motivated case: The underlying table illustrates the capital supply
and demand implications of stress scenarios constructed with the portfolio’s concentrations in
mind. Using the concentration index from our simple example, this is representative of a class of
possible bottom-up approaches.

Trade Details Capital Supply Capital Demand

ECL MTM Economic Capital
# PD0 PD1 EAD LGD

Conc.
Index Stage I/II Δ-Spread Default Migration Total

1 3 3 3,500,000 0.40 0.75 0 0 20,895 83,690 104,585
2 4 4 1,500,000 0.35 0.72 0 0 6,638 14,064 20,702
3 7 9 2,000,000 0.45 0.80 5,942 0 69,383 11,652 81,035
4 9 11 1,750,000 0.55 0.85 16,398 0 185,515 14,976 200,491
5 13 13 1,500,000 0.60 0.70 11,187 0 82,369 19,207 101,576
6 14 17 3,000,000 0.15 0.95 123,291 0 334,819 67,071 401,890
7 15 18 1,000,000 0.35 0.90 62,826 0 200,007 2,993 203,000
8 17 17 4,500,000 0.30 0.75 84,324 0 467,692 60,674 528,366
9 18 20 750,000 0.40 0.80 95,166 0 103,871 4,320 108,191
10 20 20 500,000 0.20 0.90 19,996 0 71,339 2,676 74,016

Total/Mean 11.1 12.2 20,000,000 0.36 0.80 419,129 0 1,542,529 281,322 1,823,851
Percent of Portfolio 2.1% 0.0% 7.7% 1.4% 9.1%

for i = 1, . . . , I . Equation 12.33 consequently applies a three-notch downgrade to
the most concentrated aspects of the portfolio, two grades for moderate concentra-
tion, and no change for everything else. In this way, specific positions or obligors are
not targeted. Instead, some set of downgrade criteria are applied and investigated.
Equation 12.33 is simply one example of a very large, probably countably infinite,
class of stress scenarios. The trick is to identify a few that are meaningful and useful
for one’s purposes.

Following the usual format, Table 12.6 provides the capital implications of the
stress scenario from Eq. 12.33 for our example portfolio. There are three cases with
a three-step downgrade; position #10, already being at the very bottom of the scale,
is nonetheless left unaffected. Another three cases are downgraded by two notches,
while all other positions remain unchanged. Comparing to the baseline in Table 12.3,
the total capital headroom reduction is slightly less than EUR 400,000. Roughly 2

3
of the impact can be attributed to the capital-supply effects stemming from the loan-
impairment calculation. Since only about 40% of the portfolio is hit by this stress
scenario, the results are relatively less severe than we’ve seen in previous bottom-up
and top-down cases. In a real-life portfolio, the depth of analysis and insight are
potentially more significant than with our imaginary example. Equation 12.33 and
Table 12.6 nonetheless provide a concrete illustration of the more traditional class
of bottom-up scenarios.
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Colour and Commentary 149 (CLASSIC BOTTOM-UP STRESS SCENAR-
IOS): Top-down macro-financial related stress-testing scenarios, to be effec-
tive, usually involves an associated narrative. One envisions the outcome as
a consequence of some forward- or backward-looking sequence of events.
Bottom-up scenario construction, albeit in a different way, is similarly
constrained. We can ignore this point via global n-notch portfolio down-
grades.a This provides some useful insight in a more realistic manner than
in our extreme-portfolio experiment. It can even help to build danger lists of
instruments with particular capital sensitivity to downgrade. To really gain
traction in bottom-up analysis, however, a narrative is indispensable. Clas-
sical bottom-up scenarios involve identifying downgrade stories for different
aspects of one’s portfolio. Related to elements such as firm size, industry, or
region, they are typically inspired by intimate portfolio knowledge. A good
start is the well-known risk-management question: what keeps you up at
night? Practical examples are related to concentrations, known weaknesses,
or specific public information too granular for inclusion in one’s macro-
financial model.

a Usually, we set n = 1, 2, although there are no fast rules. For sufficiently large n, however,
the results converge to the lower end of our extreme-portfolio analysis.

12.3.4 Randomization

Our final flavour of bottom-up stress-testing scenario construction is less conven-
tional, but has a long and successful history in quantitative analysis: randomization.
It has been used to solve intractable high-dimensional problems via Monte Carlo
simulation,44 to identify useful search directions in complex non-linear optimization
problems,45 and to improve the efficiency of solutions to stochastic optimal-control
problems.46 All of these examples have something in common; they involve trying
to solve problems in the face of potentially crippling dimensionality. As we quickly
learned when attacking the selection of bottom-up scenarios via brute force, we face
a similar challenge in this setting. It thus stands to reason that we might also benefit
from this technique.

44 Indeed, we already investigated these ideas extensively in Chap. 4.
45 See, for example, McCall [21].
46 There are multiple possible references for this field, all widely outside the author’s area of
competence, with increasing levels of technical complexity. Ono et al. [23] is a deeply cool
example—to give the reader a sense of the broad applicability of randomized strategies—involving
planning trajectories of entry, descent, and landing for future Mars missions.
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While randomization of downgrade outcomes might be employed in any number
of ways, we will examine it in a rather specific manner. Our interest is in the
significant—let’s call it catastrophic—downgrade of a small number of important
credit obligors in one’s portfolio. It could also be restricted to some subset of the
portfolio such as the largest exposures, those obligors with the highest loss-given-
default uncertainty, or those with generally excellent credit credentials. Assigning
downgrade to a handful of members of such a portfolio subset—as a specific stress
scenario—is problematic. The analyst will inevitably be asked: why did you pick
this obligor and not another one? The question is entirely justified. Our response is to
abstract from any one (or several) obligors and select all of them. The difference with
the brute-force setting is that we will randomly downgrade a few counterparties—
by numerous credit notches—and compute the capital-headroom implications. We
will then reset the portfolio and repeat the process. Performing this randomized
action many times and averaging across the results will—integrating across all
the possibilities—approximate the capital impact of catastrophic downgrade in a
subset of one’s portfolio. It will do so, however, in a global sense without explicitly
identifying any specific credit counterparties.

Let’s assume that we have I members in our portfolio and we wish to consider
all possible combinations of catastrophic downgrade by n credit counterparts. This
is a well known counting problem with the solution,

(

I

n

)

= I !
n!(I − n)! . (12.34)

For small I and n, this number of combinations is quite manageable. Imagine
that you have 100 large exposures and wanted to consider all combinations of
two multiple-step downgrades. Using Eq. 12.34 with these values generates 4950
possibilities. Randomization hardly seems necessary. We could compute the capital
impact for each case and take the average. Once again, however, dimensionality
becomes a problem. For I = 100, Eq. 12.34 grows very fast in n.47 Setting n = 3
yields more than 150,000 combinations, while n = 5 already puts the total to more
than 75 million. Examining all possible combinations is thus not a suitable general
strategy; randomization, in such cases, can get us to good answers with much less
computational effort.

We’ll use our small portfolio to make this idea a bit more tangible. Given that
I = 10, a value of n = 5 generates the largest number of possible combinations:
210 cases. As a consequence, a randomization strategy is not really necessary for
any choice of n. Setting n = 2, however, does allows us to investigate the interplay
between randomization and simply examining all possible instances of catastrophic
default.

47 Given that Pascal’s triangle is lurking in the background, Eq. 12.33 reaches a maximum when
n = I

2 —if I is an even number—and then starts to decrease again.
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Fig. 12.13 Partitioning the unit square: To motivate the randomization strategy among our I =
10 exposures, this square allows us to visualize the set of all possible combinations of n = 2
catastrophic downgrades. By symmetry, the values above and below the diagonal have an identical
portfolio impact.

We will also use a rather simple method for random selection of our two
downgrade candidates. There are other, rather more clever ways to do this, but the
presented method helps us see clearly what is going on. Our plan is to choose, in a
uniformly random manner, two of I = 10 obligors.48 This can be accomplished by
partitioning the unit square into I × I sub-squares, where each square is described
by two integer coordinates.49 This object is presented in Fig. 12.13. There are
K × K = 100 sub-squares. Due to the inherent symmetry of our problem—the
order of the pair has no importance—and a need to avoid the diagonal, there are

only I 2−I
2 = 45 unique combinations.50

48 The technique we present is conceptually related to the more general stratified sampling method
termed Latin-hypercube sampling. See, for example, Glasserman [13, Section 4.3], Fishman [12,
Section 4.3], and Asmussen and Glynn [3, Section V.7]. The basic idea is to divide the one’s
sample space into a disjoint set of sub-regions—typically referred to as strata—and to ensure
that simulated random variates fall into each of these strata. This partitioning of the sample
space ultimately leads to reduction of variance in one’s simulation estimators without biasing its
convergence.
49 For n = 3, this becomes the unit cube, while for larger values it generalizes to the unit hypercube.
50 This happily coincides, as it must, with evaluation of

(10
2

) = 45 from Eq. 12.34.
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Fig. 12.14 Unit-square coverage: By uniform random selection of downgrade pairs, it takes a
rather large number of draws to cover the lower-diagonal of our partitioned unit square. 100 draws
is not enough, while 500 seems to do the job. Considering there are only 45 combinations, this is
not very efficient. As we add dimensions to our hypercube and increase I , however, this becomes
a viable strategy.

Randomly selecting a pair of obligor downgrades thus reduces to picking a
single sub-square. This is operationalized by selecting uniformly distributed random
variates, U1, U2 ∼ U[0, 1]. The corresponding square is given by

⎛

⎝�I · U1 
︸ ︷︷ ︸

Row

, �I · U2 
︸ ︷︷ ︸

Column

⎞

⎠ ≡
⎛

⎝�I · U2 
︸ ︷︷ ︸

Row

, �I · U1 
︸ ︷︷ ︸

Column

⎞

⎠ . (12.35)

where �· denotes the ceiling operator to ensure that we obtain integer coordinates.51

The only constraint is that we need to ensure that no draw falls along the diagonal,
since this amounts to having a single counterpart downgrading twice.52

How well does repeated draws from Eq. 12.34 fill in the unit square? Not
particularly well. Figure 12.14 displays—for 100 and 500 randomly drawn pairs
of downgrades—the coverage of the lower-diagonal of our partitioned unit square
from Fig. 12.13. 100 draws is not enough, while 500 seems enough to do the
job. Considering there are only 45 combinations, this is fairly inefficient. For our
(very small) sample portfolio, this is clearly overkill. As we add dimensions to
our hypercube (i.e., n > 4 or so) and increase the number of counterparties (i.e.,
I > 50), however, this becomes an entirely (indeed, perhaps the only) viable
strategy.

51 This is readily generalized for arbitrary n by selecting n independent uniform variates and
adjusting Eq. 12.35 accordingly.
52 Practically, this means we toss out any randomized draws from the diagonal. This is admittedly
not very elegant and a bit computationally wasteful.
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Fig. 12.15 Randomized convergence: After a few hundred randomly drawn downgrade pairs, the
average capital impact converges rather closely to the grid-based solution involving the (known) 45
possible combinations. Once again, as we increase both I and n, randomization strategies represent
our only hope of solving this problem.

Figure 12.15 submits the (rather sad) results of comparing various numbers of
random pairs of downgrades to the average across all of the known combinations
for our simple 10-security portfolio. It takes a few hundred random samples to get
near to the final figure, which is just south of about EUR 800,000. This is rather
typical. In low dimensions, randomization is a poor, inefficient strategy. Numerical
approaches using grids or working with the power set routinely dominate in terms
of accuracy and speed. A randomized approach, for all its shortcomings, does have
an important advantage. It is roughly invariant to dimensionality; that is, its (slow)
convergence rate does not change (much) for very large problems.

At this point in our discussion, we should take a moment to underscore the
importance of Chap. 5. While the expected-credit-loss and credit-spread-valuation
computations are fast, estimating economic capital consequences are not. If we had
to turn to our simulation engine to estimate the implications of every downgrade,
the majority of the ideas we’ve considered in our bottom-up analysis would be
infeasible. Our economic-capital approximation models thus open up broad avenues
of investigation, which were previously inaccessible. This is a huge analytic advan-
tage. The approximation does, of course, have some shortcomings. In particular, for
extreme changes to our portfolio, we should be somewhat cautious in interpreting
the result.53 Indeed, in such cases, there is certainly value in turning back to the
simulation engine to verify the approximation-model results.

53 Handling the downgrade of a few positions within the overall portfolio, by contrast, is an entirely
natural application of the approximation model.
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Table 12.7 Randomized two-obligor catastrophic downgrade: The underlying table, in the usual
way, outlines the average capital demand and supply repercussions of a randomized pair of
catastrophic downgrades. To obtain these results, we employed 500 random downgrades of two
obligor’s current credit ratings down to PD20.

Trade Details Capital Supply Capital Demand

ECL MTM Economic Capital
# PD0 PD1 EAD LGD

Conc.
Index Stage I/II Δ-Spread Default Migration Total

1 3 6.4 3,500,000 0.40 0.75 0 144,538 103,273 72,440 175,713
2 4 7.3 1,500,000 0.35 0.72 0 43,217 29,968 12,809 42,777
3 7 9.1 2,000,000 0.45 0.80 42,765 0 90,146 12,586 102,733
4 9 11.8 1,750,000 0.55 0.85 67,623 0 220,890 10,296 231,185
5 13 14.4 1,500,000 0.60 0.70 66,505 0 98,620 16,927 115,547
6 14 15.1 3,000,000 0.15 0.95 40,289 0 269,501 147,059 416,560
7 15 16.1 1,000,000 0.35 0.90 28,698 0 158,317 8,981 167,298
8 17 17.6 4,500,000 0.30 0.75 178,757 0 483,600 61,142 544,742
9 18 18.4 750,000 0.40 0.80 40,384 0 99,587 2,728 102,315
10 20 20.0 500,000 0.20 0.90 19,996 0 71,339 2,676 74,016

Total/Mean 11.1 12.9 20,000,000 0.36 0.80 485,017 187,755 1,625,242 347,645 1,972,888
Pecent of Portfolio 2.4% 0.9% 8.1% 1.7% 9.9%

Table 12.7 outlines, in the now familiar format, the detail capital demand and
supply results associated with many randomized pairs of catastrophic downgrades.
As in Fig. 12.15, catastrophic implies an obligor being downgraded from its current
credit rating all the way down to PD20.54 The average increase in capital demand is
a bit over EUR 250,000, while the loan-impairment impact comes to around EUR
300,000. Interestingly, the valuation repercussions total almost EUR 200,000. This
stems from the current high quality of the fair-valued securities in our portfolio.
Overall, as we saw in Fig. 12.15, the total capital squeeze amounts to just shy of
EUR 800,000. As always in a stress-testing analysis, we cannot assign a probability
to this outcome. We can, however, state that it is twice our concentration-motivated,
bottom-up scenario from Table 12.6, it is roughly equivalent to an extreme portfolio
with all obligors assigned about PD13, and it lies at the upper end of our medium-
impact impulse-response function macro-financial shocks.

54 As before, for credit counterparties already at PD20, we do not force default.
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Colour and Commentary 150 (THE POWER OF RANDOMIZATION): Tradi-
tional bottom-up stress-testing, in contrast to the top-down approach, places
higher importance on the idiosyncratic dimension. These are risks specific to
the financial institution’s portfolio. They consider downgrades—in terms of
concentrations, industries, and regions—that may really do harm to one’s
capital position. Taking idiosyncratic risk to its logical limit, we should
also consider a small number of individual obligors experiencing severe
deterioration in their credit quality. Independent of macro-financial shocks
and portfolio structure, this basically captures bad luck. While tempting, it
is not a good idea to simply pick a handful of names from one’s portfolio,
downgrade them by multiple notches, and call it misfortune. You will naturally
be asked: how did you come to choose those particular names? It also
represents a single, extremely low probability, case. An alternative solution
is to use a randomization strategy. One thus computes the average capital
demand and supply outcomes over many randomly selected sets of hard-luck
(or catastrophic) downgrades.a The results shine a different light on (more
global) idiosyncratic vulnerabilities in one’s portfolio.

a One can make this even more meaningful by focusing on subsets of one’s portfolio.
Selecting a small number of obligors from the firm’s 100 largest exposures or a particularly
important industry or region.

12.3.5 Collecting Our Bottom-Up Alternatives

The various alternatives examined in the previous sections should not be viewed as
an exhaustive review of the entire universe of bottom-up stress scenarios. Instead,
they represent some practical ideas for getting a handle on the complexity associated
with scenario selection. Whatever strategy one follows to identify meaningful
bottom-up stress scenarios, however, it is important to impose some structure
and organization. Failure to do so does not immediately imply disaster, but does
substantially increase the chances of losing the forest for the trees.

To close out our bottom-up stress-testing analysis, Fig. 12.16 presents four of
the main scenarios examined in this section. Designed analogously to the macro-
financial results presented in Fig. 12.6, it allows comparison of capital demand and
supply effects in a single glance. Our simple portfolio example does not permit
incredibly complex dynamics, but there is nonetheless a surprising amount of intra-
scenario deviation among the individual components. The loan-impairment stage
allocation and valuation effects are rather more nuanced in the concentration-index
and randomized-downgrade scenarios.

Stress-testing, as the preceding discussion hopefully makes clear, is hard work.
There are no short cuts; it is inherently a bit messy, hard to manage, and high
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Fig. 12.16 Bottom-up intuition: This graphic illustrates, in a manner analogous to the macro-
financial results from Fig. 12.6, the individual capital demand and supply consequences for four of
the bottom-up scenarios considered in this section. It is enlightening to inspect the capital impact
and its various sources across the different stress-tests.

dimensional. It is precisely such multifaceted analysis of alternative bottom-up—
and, of course, also top-down—scenarios that contributes to a deeper understanding
of the vulnerabilities in one’s portfolio. No one scenario provides the full picture.
It is rather through the judicious selection and comparison of various scenarios,
constructed following different strategies, that stress-testing analysis adds value.

12.4 Wrapping Up

In the banking world over the last few decades, much (entirely warranted) emphasis
has been placed on the notion of know-your-customer to help minimize money
laundering activities and other financial crimes.55 The core idea is that more
knowledge about a phenomenon leads to improved understanding and management
of associated risks. This excellent and uncontroversial point is readily extended
to our stress-testing discussion in the form of the snappy, but entirely pertinent,
catchphrase: know your portfolio.

Our risk-management models, as we’ve seen in previous chapters, provide us
with a wealth of information. Much of it, however, is embedded in the through-the-
cycle perspective with the assumption of a constant portfolio. Stress-testing expands
our horizon by examining—from a rich array of perspectives—the repercussions
of downgrade-related portfolio changes. Although broadly defined and difficult
to organize, the principal contribution of stress-testing is portfolio knowledge.
Better comprehension and classification of portfolio weaknesses and vulnerabilities

55 There are many sources on this area, but Graham [15] provides an interesting introduction.
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Table 12.8 A stress-testing menu: The underlying table, like an à la carte menu, illustrates the
seven alternative top-down and bottom-up stress-testing techniques treated in this chapter. While
certainly non-exhaustive, hopefully it can help readers design and execute their own menus.

I. TOP-DOWN I.1 Forward-looking adverse scenarios

I.2 Historical backward-looking crisis outcomes

I.3 Structured impulse-response-function motivated analysis

II. BOTTOM-UP II.1 The power set of all downgrades

II.2 Extreme (all in one credit class) portfolios

II.3 The n-notch global downgrade chestnut

II.4 Classic portfolio-knowledge motivated scenarios

II.5 Randomized catastrophic defaults

complement traditional probabilistic models and help stakeholders take better
decisions.

Table 12.8 is given the last word. Organized like an à la carte menu from
a fancy restaurant, it summarizes the seven alternative top-down and bottom-up
stress-testing techniques examined in the previous sections. While certainly not an
exhaustive list, it does provide a reasonable amount of choice. Hopefully, when
combined with the ideas presented in preceding chapters, it can help the reader
design and execute her own stress-testing menu.
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