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Abstract. Location-Based Recommendation Services (LBRS) has seen
an unprecedented rise in its usage in recent years. LBRS facilitates a user
by recommending services based on his location and past preferences.
However, leveraging such services comes at a cost of compromising one’s
sensitive information like their shopping preferences, lodging places, food
habits, recently visited places, etc. to the third-party servers. Losing such
information could be crucial and threatens one’s privacy. Nowadays, the
privacy-aware society seeks solutions that can provide such services, with
minimized risks. Recently, a few privacy-preserving recommendation ser-
vices have been proposed that exploit the fully homomorphic encryp-
tion (FHE) properties to address the issue. Though, it reduced privacy
risks but suffered from heavy computational overheads that ruled out
their commercial applications. Here, we propose SHELBRS, a lightweight
LBRS that is based on switchable homomorphic encryption (SHE), which
will benefit the users as well as the service providers. A SHE exploits
both the additive as well as the multiplicative homomorphic properties
but with comparatively much lesser processing time as it’s FHE coun-
terpart. We evaluate the performance of our proposed scheme with the
other state-of-the-art approaches without compromising security.

Keywords: Homomorphic encryption · Location-Based
Recommendation Services (LBRS) · Co-occurrence Matrix (CM)

1 Introduction

Location-Based Recommendation Services (LBRS) grant users access to relevant
information about their surroundings based on their location and history. For
instance, a person searching for a coffee shop nearby his/her location. The ser-
vice providers would provide the best search results considering his/her present
location and previous history. However, availing of such services risks the user’s
privacy as the shared sensitive information could be misused by these third-
party servers to their advantage, causing serious losses to the user [15]. This fact
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kind of delimits the privacy-aware society rushing to leverage such services and
creates an urgent need for privacy-preserving recommendation services.

The real-time location information of the user is handled by location based
services (LBS). It also provides recommendation over encrypted history prefer-
ences which ensures the user’s privacy. Lyu et al. proposed one such state-of-the-
art protocol. They adopt the Hilbert curve [16] as a mapping tool, collaborative
filtering recommender based on the co-occurrence matrix as a recommendation
technique [11,17], and Brakerski-Gentry-Vaikuntanathan (BGV) fully homomor-
phic encryption (FHE) as an encryption scheme [2]. However, it is still infeasible
for the use of commercial recommendation services due to the high processing
time.

In this paper, we propose SHELBRS, a lightweight LBRS that will benefit
the users as well as the service providers. Instead of FHE, we employ switchable
homomorphic encryption (SHE) that securely switches between partially homo-
morphic encryption (PHE) schemes. Specifically, Paillier Homomorphic Encryp-
tion and ElGamal Homomorphic Encryption for performing additions and mul-
tiplications on the encrypted data. PHE evaluates arithmetic operations more
efficiently at least 2–3 order of magnitude compared to FHE. SHE supports an
arbitrary number of additions and multiplications over encrypted data and serves
the principle of FHE with better efficiency. The overall computation and commu-
nication cost required in switching between the PHE’s is reasonable for real-life
applications. It overall reduces the processing time without compromising the
security.

The remainder of this paper is structured as follows: Sect. 2 discusses some of
the related works. Section 3 gives an overview of the Hilbert curve, collaborative
filtering based on Co-occurrence Matrix (CM), PHE, and the SHE schemes.
Section 4 presents the LBRS using FHE [9] while Sect. 5 details the proposed
SHELBRS scheme. Section 6 discusses the experimental results and the security
analysis of the proposed scheme. Section 7 concludes the work along with some
future directions.

2 Related Work

Lattice-based FHE scheme introduced by Craig Gentry in 2009, is a milestone
research that opened doors for proposing possible solutions for encrypted data. It
was made possible as this scheme supported computation of arbitrary functions
and operations on the ciphertext, without the need of actually decrypting it [3].

Many LBS were proposed in the literature to search nearest Point of Inter-
ests (POI)’s to the user’s private location. In 2003, K-anonymous based tech-
nique was introduced which adopts temporal and spatial cloaking [4]. It acquires
accuracy but requires a trusted third party to hide the user’s location. Private
Information Retrieval (PIR) [10], Private Circular Query Protocol (PCQP) [6]
and Lightweight Private Circular Query Protocol (LPCQP) [19] are the LBS
based on the cryptography methods. In PIR scheme, the user receives POI from
the server’s database based on Quadratic Residuosity Assumption (QRA) with-
out server’s knowledge of which POI a user is interested in. It provides security
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but takes high execution time for searching POIs. PCQP proposed by Lien et
al. is an effective k-NN search algorithm based on Paillier cryptosystem and
Hilbert curve. It secretly shifts the POI-info circularly which is stored on the
server. LPCQP, proposed by Utsunomiya et al. is a lightweight protocol that
removes unnecessary POI information from the requesting user to reduce com-
putational cost. PIR, PCQP, and LPCQP are secure against single point failures
and Denial of Service (DOS) attacks. In 2012, Pingley et al. proposed a context-
aware scheme for privacy-preserving LBS [13]. It projects the user’s location on
various-grid-length Hilbert curve and uses location perturbation technique to
prevent user’s privacy from the LBS server. Gang et al. proposed location-based
social network (LBSN) towards privacy preservation for “check-in” services in
2019 [18]. It designs the framework using k-anonymity based algorithms with-
out using a trusted third-party server. It guarantees secure access and preserves
user’s location privacy.

The detail of recommender systems and discussion about different recom-
mendation algorithms based on traditional and network approaches was studied
by Lu et al. in 2012 [8]. It compares the performance of different recommen-
dation algorithms. Badsha et al. introduced an Elgamal cryptosystem based
privacy-preserving item-based Collaborative Filtering (CF) in 2016 [1]. It pro-
vides recommendations based on the user’s average ratings and the similarities
between the items. Zhang et al. proposed Factorization Machines (FM) based
recommendation algorithm for Rural Tourism in 2018 [20]. It provides recom-
mendations based on geographical distribution and seasonal features such as the
user’s best suitable season for traveling, how many kilometers is the traveling
spot away from the city, and other user’s reviews or comments for the particular
location. In 2018, Horowitz et al. proposed a mobile recommender system named
“EventAware” for the events [5]. It provides recommendations on the basis of
both context-aware and tag-based algorithms. In 2019, Qi et al. proposed a time-
aware and privacy-preserving distributed recommendation service based on a
locality-sensitive hashing (LSH) to provide most accurate recommended results
[14]. Papakyriakopoulos et al. analyzed the political networks based on hybrid
collaborative filtering and deep learning recommender algorithms in 2020 [12].
It shows how hyperactive users influence recommendations. It also compares
the results based on likes and comments with and without the inclusion of the
hyperactive users along with the rest of the users in the datasets.

Combining both location privacy and privacy-preserving recommendations,
Lyu et al. proposed privacy-preserving recommendations for LBS in 2019 [9].
It provides suggestions over encrypted previous histories considering user’s live
location data. This protocol uses one trusted third party server where sensitive
data such as crypto keys are stored and one honest but curious server where all
the computations are performed. Compared to Lyu et al. protocol, the proposed
SHELBRS protocol requires less computation cost as it uses SHE instead of FHE
and maintains security while sharing sensitive data between the servers.
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3 Preliminaries

3.1 Hilbert Curve

Hilbert curve is a mapping tool that is used to transform 2-D space into 1-D
space. It preserves the adjacency of the neighboring points and has best clus-
tering properties. In order to preserve the adjacency property, the orientation is
not retained [11,16]. As we increase the order of a pseudo-Hilbert curve, a given
point on the line converges to a specific point. The two data points which are
close to each other in 2-D space are also close to each other after mapping into
1-D space.

Fig. 1. The combination of continuous Hilbert space-filling curve and location-based
services

Figure 1 shows a Hilbert curve over the landscape, storing the POI look-up
table at the user end and the POI information table at the server end. The user
p3 is located on cell 7 and he/she is requesting POIs from the server. At the
user’s side, p3 is located at Index-3 and after sending index information to the
server, the server sends nearby POIs i.e. p2, p3, p4 corresponding to the current
index back to the user. This is how the nearest POIs to the user’s location is
suggested when the landscape is mapped on the Hilbert curve. However, sending
such information in plaintext does not ensure the user’s privacy.

3.2 Collaborative Filtering (CF) Recommender Based
on Co-occurrence Matrix (CM)

CF Recommender consists of two well-known algorithms: user-based CF and
item-based CF. We used an item-based CF recommender as similarities between
items are more stable than that of users. It finds the similarity between items and
provides the best recommendation. Some E-commerce websites such as Amazon
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provide recommendations such as “A person that bought product A also bought
product B” or “A person that liked the cafe A also liked cafe B”.

CM contains the visited POIs information. It computes the number of times
each pair of items occurs together in the user-item inversion list. To generate
CM, the first step is to generate a user-item inversion list and the second step
is to traverse the list and follow the algorithm as described:

– CM [i][j](i! = j) is increased by 1 if item i and the item j are in the same
user’s inversion list.

– CM [i][j](i == j) is increased by 1 for every item i.

Fig. 2. Formation of the final CM [9]

Figure 2 shows the formation of CM based on the user-item inversion
list. According to the user-item inversion list, User1 has the preference for
indices 2, 3, 5, 6. The value at all possible pairs of indices in CM such
as CM [2][3], CM [2][5], CM [2][6], CM [3][2], CM [3][5], CM [3][6], CM [5][2],
CM [5][3], CM [5][6], CM [6][2], CM [6][3], CM [6][5] is incremented by 1. Every
time an item occurs in the list, the value in CM such as CM [2][2], CM [3][3],
CM [5][5], and CM [6][6] is incremented by 1. Likewise for all the users, the above
algorithm is performed to get the final CM .

3.3 Partially Homomorphic Encryption (PHE)

PHE schemes are a kind of encryption schemes that allow only certain types of
operations on the encrypted data. If we decrypt the processed encrypted data,
the results would be the same as if calculated over the corresponding plaintext
values. Based on the type of operations supported, it can be categorized as
additive PHE or multiplicative PHE. For instance, Paillier is an example of
additive PHE and ElGamal, an example of multiplicative PHE. We will briefly
describe each of them along with their homomorphic properties.
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Paillier Encryption as Additive PHE

– KeyGen(1n,+): On input a security parameter 1n, the algorithm chooses
(N, p, q) where N = p ∗ q, p and q are n bit primes, and φ(N) = (p − 1) ∗
(q − 1). The Paillier ADD scheme public-private key pair:

〈
pk+, sk+

〉
= 〈N, (N,φ(N))〉 (1)

– Enc(pk+,m): The algorithm takes a plaintext m and a public key N as input.
It chooses a random r ∈ Z∗

N and outputs the ciphertext:

c+ = (1 + N)m.(r)N mod N2 (2)

– Dec(sk+, c+): The algorithm takes a ciphertext c+ and a private key
(N,φ(N)) as input and outputs the message:

m =
((c+)φ(N) mod N2) − 1

N
.φ(N)−1 mod N (3)

– Paillier homomorphic properties:
1. Addition: The product of two encrypted ciphertexts results in the sum

or addition of their corresponding plaintexts:

Dec(E+(m1) ∗ E+(m2) mod N2) = (m1 + m2) mod N (4)

2. Scalar Multiplication: Raising a scalar to the power of encrypted
ciphertext results in the product of the scalar and the corresponding
plaintext:

Dec(E+(m1)k) mod N2) = (k ∗ m1) mod N (5)

ElGamal Encryption as multiplicative PHE

– KeyGen(1n, ∗): On input a security parameter 1n, the algorithm chooses
(N, p, q) where N = p ∗ q, p and q are n bit primes, considers g as square
value and sets g = 16. It also chooses a random odd number x, and sets
h = gx mod N . The ElGamal MUL scheme public-private key pair:

〈pk∗, sk∗〉 = 〈(N, g, h), (N, g, x)〉 (6)

– Enc(pk∗,m): The algorithm takes a plaintext m and a public key (N, g, h)
as input. It chooses a random r ∈ Z∗

N and outputs the ciphertext:

c∗ = 〈c∗
1, c

∗
2〉 = 〈mhr, gr mod N〉 (7)

– Dec(sk∗, c∗): The algorithm takes a ciphertext c∗ and a private key (N, g, x)
as input and outputs the message:

m =
c∗
1

(c∗
2)x

mod N (8)

– ElGamal homomorphic properties:
1. Multiplication: The product of two encrypted ciphertexts results in the

multiplication of their corresponding plaintexts:

Dec(E∗(m1) ∗ E∗(m2) mod N2) = (m1 ∗ m2) mod N (9)
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3.4 Switchable Homomorphic Encryption (SHE)

We work with a variant of ElGamal MUL scheme E∗ and Paillier ADD scheme
E+. ElGamal MUL scheme uses a large composite modulus i.e., N = p ∗ q,
where p and q are large primes. Both the partially homomorphic schemes share
the same modulus. We consider two servers, say a server and a proxy. The
algorithms used in the SHE scheme are described as follows:

– KeyGen(1n): On input a security parameter 1n, the algorithm outputs
(N, p, q), where N = p ∗ q, p and q are n bit primes, and φ(N) = (p − 1)(q − 1).
The Paillier ADD scheme public-private key pair:

〈
pk+, sk+

〉
= 〈N, (N,φ(N), p, q)〉 (10)

It also chooses the generator g = 16, two random odd numbers x0, x1 ∈ Z∗
N

where |x0| ≈ |x1| < 1/2 |N |. It sets x = x0x1 and h = gx. The ElGamal MUL
scheme public-private key pair:

〈pk∗, sk∗〉 = 〈(N, g, h), (N, g, x0, x1)〉 (11)
– Enc(pko, m): The algorithm runs E+ encryption scheme if o is ‘+’ else runs

E∗ encryption scheme.
– Dec(sko, co): The algorithm runs E+ decryption scheme if o is ‘+’ else runs

E∗ decryption scheme.
– KeyShaGen(sk+): The algorithm sets both the secret key shares k+

0 (proxy)
and k+

1 (server) to NULL.
– KeyShaGen(sk∗): The algorithm sets both the secret key shares k∗

0 (proxy)
and k∗

1 (server) to x0 and x1 respectively.
– AddToMul(c+, pk∗): The algorithm is run locally by the server. Given an

ADD ciphertext of the form:

E+(m) = (1 + N)m.(r′)N mod N2 (12)
and the MUL public key pk∗ = (N, g, h), the algorithm chooses a random r
∈ Z∗

N and outputs the encrypted MUL ciphertext:

E+(E∗(m)) =
〈
(1 + N)mhr

.(r′)Nhr

mod N2, gr
〉

(13)

– MulToAdd(c+, k∗
0 , k

∗
1): The algorithm is jointly run by a server and a proxy.

On input an encrypted MUL ciphertext of the form (13) the server chooses a
random s ∈ Z∗

N , computes

c′ = (gr+s)k∗
1 , R = gs (14)

and forwards (13) and (14) to the proxy.
The proxy then using its key shares k∗

0 , computes (c′)k∗
0 = hr+s and finds its

inverse (hr+s)−1. It also computes and returns

c′′ = ((1 + N)mhr

.(r′)Nhr

)hr+s−1

mod N2

= (1 + N)mh−s

.(r′)Nh−s

mod N2 (15)

= E+(mh−s)
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and R′ := Rk∗
0 to the server.

Finally, the server computes (R′)k∗
1 = hs and recovers the corresponding ADD

ciphertext E+(m) by homomorphically removing h−s from c′′.

4 Lyu et al.’s Protocol

In this section, we give an overview of Lyu et al. protocol which was meant
to recommend services based on the current location of a user and his past
behavior without compromising his privacy [9]. It solved the problems existing
in the state-of-the-art privacy-preserving algorithms that were based on k-NN
technique for searching POI’s [6]. The major bottleneck was that the recommen-
dation service didn’t consider the user’s past behavior while recommending any
services that ultimately resulted in failing to attract the user’s usage of the rec-
ommendation system. Another major demerit was it lacked any benefits for the
service providers facilitating such services as the private keys were available only
to the user and hence, the service providers could not extract any information
from the user’s data towards making their profits.

Lyu et al. resolved the aforementioned issues using collaborative filtering
technique that works on top of database encrypted using FHE, besides encrypt-
ing the user’s location and preferences. Also, it allowed the service providers to
extract some aggregate information based on the user’s data via an introduction
of a Privacy Service Provider (PSP) that generates and holds the private keys.
This increased the commercial value of the recommendation service but still the
need of heavy computational resources required for FHE restricts the usage.

4.1 System Model

An overview of the protocol is shown in Fig. 3. It involves three main components:

– Privacy-Preserving Recommendation Server (PPRS): PPRS is a
semi-trusted i.e. honest but curious entity that is responsible for finding the
nearest POIs to the user, by considering the similarity between the POIs near
the user and his current location. It performs two main tasks: The first task
is to calculate the recommendation list based on preference vector PV and
co-occurrence matrix CM . Here, PV provides a rating of a user for a partic-
ular item and CM describes the similarities between the items. The second
task is to calculate the aggregated user behavior over the encrypted database
(ED).

– Privacy Service Provider (PSP): PSP is a trusted third party which
makes a profit from user’s behavior statistics. It holds and generates the pri-
vate and public key pairs. It is responsible for providing public keys to users,
ED and PPRS whenever the requests arrive. It generates partial recommen-
dation list based on user’s location information.

– Encrypted Database (ED): It stores CM encrypted by FHE.
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Fig. 3. An overview of Lyu et al.’s protocol

4.2 Description of Lyu et al.’s Protocol

This section describes Lyu et al.’s protocol. First, we describe briefly the three
main phases of the protocol and then go for a detailed step-by-step description.
The three main phases are as follows:

Initialization Phase: Personal co-occurrence matrix (CMu), which contains
the information of visited POIs, is generated by the user on the basis of his/her
preferences. Each user sends his/her encrypted CMu to the PPRS. PPRS con-
structs the final CM by combining these CM ′

us. The operation performed here is
exploiting the homomorphic addition property of FHE operation. This combined
matrix CM is stored in the ED.

Recommendation Phase: For computing full recommendation list for the
user, each item’s prediction value is computed by performing homomorphic addi-
tion and multiplication property of FHE. Prediction value is derived as

Pu.i =
∑

j∈N(u)

(wij ∗ ruj) (16)

where,
N(u) denotes all the items, wij is the similarity item i and j, and ruj is the

rating of user u for item j.
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ED Updation Phase: ED stores the CM and it needs to be updated according
to the user’s new behaviors. The updation occurs as follows:

– After receiving recommendation results from PSP in plain text, the target
user selects any POI of his/her choice.

– He/She then sends the encrypted results to the ED for further updated rec-
ommendation.

– Instead of sending the whole CM , each user sends only the difference from
its original CM to update the matrix with the latest information. It protects
the privacy of the user from PPRS by sending the matrix in an encrypted
FHE domain.

The detailed step-by-step description of the Lyu et al.’s protocol is as follows:

Step 1: Initially, the public key (pk) is distributed by the PSP to a user and
PPRS. The target user sends her/his encrypted location to PSP.
Step 2: The target user also sends encrypted preference vector to PPRS at
the same time.
Step 3: PPRS generates and sends the encrypted full recommendation list
to PSP.
Step 4: After PSP decrypts both the target user’s location and the full
recommendation list, it scans the whole list and generates the partial recom-
mendation list according to the user’s location information. It ensures user’s
privacy by sending it through an encrypted channel to the target user.
Step 5: The target user selects the POI from the partial recommendation
list.
Step 6: She/he sends the encrypted result to the PPRS.
Step 7: PPRS then updates the ED for providing the best recommendation.

5 Proposed SHELBRS Protocol

In our proposed framework, we replace the FHE component with SHE to mini-
mize the overall computational complexity and also, speed up the entire process
so that it could be better suited for real-life scenarios. The security of the pro-
posed protocol is kept at par with the corresponding FHE based protocol. Our
protocol does not make use of any trusted third party server to store crypto keys.
It simply sends the secret key shares between the servers so that an individual
server cannot leak any user’s sensitive information.

The details of each stage of SHELBRS protocol is discussed as follows:

5.1 Setup Stage

The setup of SHELBRS is based on a client-server architecture. We consider two
servers, say server X and server Y , and the interaction between the servers or
a server and a client is shown in Fig. 4. Security holds as long as at least one
of the servers is honest i.e. they do not collude by sharing cryptographic keys.



SHELBRS 73

Fig. 4. Secure computation via two servers

Let us assume that the landscape I is mapped on a Hilbert curve and divided
into indices I1, I2, . . . In. Based on a client-server model, a client is located on
one of the indices and has its own preference vector. The encrypted database of
CM is already stored at server Y . A client generates a public-private key pairs
using (10) (11) and sends public keys pk+ and pk∗ to both the servers. Clients
uses KeyShaGen(sk∗) and KeyShaGen(sk+) algorithms as described in Sect. 3.4
and sends k∗

0 and k+
0 to server X and k∗

1 and k+
1 to server Y . The POIs nearby

user’s location is recommended by the computations which are being performed
on the servers.

5.2 Initialization Stage

This stage describes the steps which needs to be computed before the client
starts executing his/her role.

– Personal co-occurrence matrix (CMu) contains the information of visited
POIs. During the initialization stage, each user generates his/her personal
CMu based on initial users’ preference.

– An user u sends CMu, which is encrypted by the public key pk+, to the server
Y .

– The end task is to merge all CMu to generate the final CM . This requires
paillier homomorphic Addition property as described in (4) and AddToMul
algorithm as discussed in Sect. 3.4.
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Fig. 5. SHELBRS: proposed recommendation

– The encrypted CM is stored at server Y.

The computation of CM is considered as the initial setup required before client’s
experiment. So, the computation cost of CM is not considered in the total
computation cost taken by the client.

5.3 Protocol Operation Stage

The detailed process of how the recommendation is being generated is shown in
Fig. 5. The client and the servers interact in the following manner:

Step 1: The client encrypts history preference vector PV using Enc(pk∗, PV )
and location info using Enc(pk∗, Location info) and sends it to server Y .
Step 2: The client computes each item’s prediction value P using (16) to gen-
erate a recommendation list. The prediction is generated using Algorithm 1.
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Algorithm 1. Recommendation
INPUT: CM∗, PV ∗, Item Index set I∗

OUTPUT: Recommendation list RL for all items
Define: 1. CM∗ is ElGamal encrypted co occurrence matrix

2. PV ∗ is ElGamal encrypted history preference vector
3. RL[i] is item i′s recommendation score

1: procedure recommend(CM∗ , PV ∗ , I∗, size)
2: Assign RL+[1 · · · size] = 0
3: for i = 1; i <= size; i = i + 1 do
4: for j = 1; j <= size; j = j + 1 do

ctotal = ElGamalMultiplication(CM [i][j]∗, PV [j]∗)

c1 = PallierEncryption(pkadd, ctotal[0])

temp = MulToAdd([c1, ctotal[1]], k∗
1 , k

∗
0)

RL[i]+ = PaillierAddition(RL[i]+, temp)

5: end for
6: end for
7: return RL+

8: end procedure

To calculate each index’s recommendation score, ElGamal encrypted CM∗

and PV ∗ are elementwise multiplied using the multiplicative property
of ElGamal Encryption. The corresponding result is transformed into
encrypted ElGamal ciphertext using Paillier Encryption scheme in
Sect. 3.3.
Step 3: It is further converted into Paillier encrypted ciphertext using Mul-
ToAdd algorithm in Sect. 3.4. The corresponding result is finally added using
additive property of Paillier Encryption to generate the corresponding rec-
ommendation score.
Likewise, the above steps 2 and 3 are executed for each index to generate the
final recommendation list.
Step 4: According to the target user’s location, the final recommendation
list is filtered out.
The server Y performs Paillier homomorphic subtraction property corre-
sponding to the indices stored in the recommendation list and user’s location.
It appends the result to the recommendation list and the updated list is sent
to the client.
Step 5: The client then decrypts it using Paillier decryption algorithm and
filters out the records corresponding to the value ‘0’. The client chooses one
of the locations (indices) from the recommendation list according to his/her
choice and update his/her behavior in the inversion list. Each client sends
only his/her new paillier encrypted CMu to server Y which is the difference
between the current CMu and the client’s original CMu before the recom-
mendations.
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6 Experimental Results

To validate the proposed protocol based on SHE, the experiment is executed on
Ubuntu 20.04.2 LTS powered by Intel R© CoreTM i5-6200U CPU @ 2.30 GHz ×
4 processor and RAM 8 GB. We have considered a client and two servers on
the same machine. In this experiment, we considered the artificial dataset with
POIs in range {10, 20, 40, 80, 100, 1000}.

The CM is already stored on the server Y and then, the client starts execut-
ing his/her behavior. So, the execution time taken for the computations during
initialization phase to generate CM is not considered in the total computation
cost taken by the client. The time taken to generate public-private keypair is
constant. The updation of ED can be performed even when a user is offline, so
it does not affect the efficiency of the system.

Table 1. Computation cost

Total elements Encryption
time [s]

Recommendation
time [s]

Decryption
time [s]

10 0.001 0.022 0.001

20 0.001 0.081 0.001

40 0.001 0.299 0.002

80 0.003 1.142 0.004

100 0.004 1.923 0.006

1000 0.04 197.99 0.058

The total computation cost involves encryption of a client’s preference vector,
computation of recommendation list and decryption of recommendation list.
In Table 1, we measured encryption time, recommendation time,and decryption
time for the indices in an encrypted domain. We have run the experiment five
times for each index and taken an average of it.

The experiment uses encryption which adds extra computation cost over
plaintext. So, we calculated and compared the total computation cost for the
plaintext and encrypted domain up to 1000 indices as shown in Table 2.

We also plotted the graph comparing the total execution time taken by SHEL-
BRS scheme and Lyu et al. protocol in Fig. 6 and Table 3.

6.1 Security Analysis

Our protocol aims to provide data confidentiality. It does not leak any meaningful
information throughout the protocol. The security of the scheme is based on the
following assumptions:

– The ElGamal and Paillier schemes are secure.
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Table 2. Comparison of total execution time in plaintext domain and encrypted
domain

Total elements Plaintext domain Encrypted domain

10 0.001 0.024

20 0.001 0.083

40 0.002 0.302

80 0.005 1.149

100 0.007 1.933

1000 1.32 198.088

Table 3. Comparison of total execution time taken by proposed SHELBRS scheme
and Lyu et al. [9]

Total elements Proposed
SHELBRS
scheme

Lyu et al. [9]

10 0.024 2.79

20 0.083 5.48

40 0.302 11.13

80 1.149 22.32

100 1.933 28.03

1000 198.088 269.47

– At least one of the servers is honest i.e. if one of the servers is malicious, the
other server remains honest.

– None of the servers collude.

Let us assume an Adversary A plays the role of either a malicious server Y or
a malicious server X. Initially, A is given the public keys and private key shares
to perform Paillier encryption E+, ElGamal encryption E∗, AddToMul and
MulToAdd algorithms. A is also given access to choose any arbitrary plaintext
and can perform encryption to get the corresponding ciphertext. A user sends
E∗(m0) to the server Y where m0 is an integer except a value 0. Now, A’s goal
is to find a challenge m′

0 such that m′
0 = m0. If A’s goal is achieved, the security

is broken. To prove m′
0s security, below mentioned lemmas are as follows.

Lemma 1: If Server Y is a malicious server and A chooses to attack AddToMul
algorithm, it has access to E∗(m0), E+(m0) and E+(E∗(m0)). Paillier encrypted
E+(m0) and E+(E∗(m0)) terms are semantically secure and no decryption key
sk+ is associated with any server, so, no information regarding m0 is leaked
through these terms. Server Y has key share k∗

1 = x1 and E∗(m0) = (m0h
r, gr)

where r is randomly chosen from the group Z∗
N . The security of E∗(m0) based
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Fig. 6. Comparison of total execution time taken by proposed SHELBRS scheme and
Lyu et al. [9]

on SHE security proof [7] is perfectly secure. So, A cannot learn anything about
m0 in the protocol.

Lemma 2: If Server Y is a malicious server and A chooses to attack MulToAdd
algorithm, it has access to k∗

1 = x1. E∗(m0), E+(E∗(m0)), R′ = gsx0 and c′′ =
E+(m0h

−s). E∗(m0), E+(E∗(m0)) and c′′ are secure according to Lemma 1. A
cannot learn about secret key share x0 from R′ as s is randomly chosen from
the group Z∗

N . Therefore, the proposed scheme is secure against the malicious
activity performed by server Y itself.

Likewise, we can prove the data confidentiality using Lemma 1 and Lemma
2 when Server X acts as an adversary A.

Now, we will handle the case when the client performs elGamal encryption on
a message m0 where m0 = 0. The ElGamal Encryption of m0 plaintext results
into one of the ciphertexts as “zero”. This is not secure as it leaks information
regarding plaintext data. To handle such problems, we can represent “zero” in
the form

MulToAdd(E+(E∗(n1))) ∗ MulToAdd(E+(E∗(n1)))
−1 = E+(0) (17)

7 Conclusions and Future Work

A lightweight privacy-preserving recommendation protocol for LBS was proposed
in this paper. It incorporated Hilbert curve, collaborative filtering recommender
based on co-occurrence matrix and SHE to recommend the services. Based on
the simulation and experiments, we found that the computation cost for 1000
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POIs is 198.088 s. Compared with the state-of-the-art protocol, the proposed
protocol takes less computation time and reduces complexity, providing at par
security. As the future direction of the work, we would like to extend our protocol
for the larger geographical area as we focused herein only on item-based filtering
on a single geographical area.
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